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Abstrak 

Model Jaynes-Cummings digunakan secara meluas dalam sistem kuantum kerana 

kemampuannya untuk  menerangkan telatah kuantum dengan lebih tepat dan mudah. 

Terkini, kajian tentang model Jaynes-Cummings tidak melibatkan peralihan multi-foton 

dan keterlibatan kuantum tri-qubit yang kedua-duanya digandingkan bersama medium 

Kerr-like. Oleh itu, tujuan utama kajian ini adalah mencari telatah baharu untuk sistem 

kuantum dengan kedua-dua syarat tersebut digandingkan bersama medium Kerr-like. Bagi 

mencapai objektif ini, model Jaynes-Cummings diubahsuai dengan menambah peralihan 

multi-foton dan sistem kuantum tri-qubit digandingkan bersama medium Kerr-like. 

Berdasarkan syarat peralihan multi-foton, keformalan Pegg-Barnett digunakan untuk 

mengukur telatah sistem kuantum dalam model Jaynes-Cummings terubah suai. Hasil 

kajian menunjukkan apabila kekuatan gandingan meningkat, telatah sistem kuantum 

menjadi lebih aktif. Walau bagaimanapun, peningkatan dalam bilangan peralihan foton 

akan mengurangkan pengaruh medium Kerr-like terhadap telatah sistem kuantum. 

Seterusnya, berdasarkan syarat sistem kuantum tri-qubit bersama peralihan foton-tunggal, 

keadaan tri-qubit kuantum berinteraksi dengan persekitaran Markovan dan tak-Markovan, 

yang keduanya diwakili oleh ketumpatan spektrum Lorenztian. Keserentakan batas bawah 

digunakan untuk mengukur keteguhan keterlibatan kuantum.Hasil kajian menunjukan 

apabila kekuatan gandingan Kerr-like ditingkatkan untuk kedua-dua persekitaran 

Markovan dan tak-Markovan, keterlibatan kuantum bertambah teguh. Pada masa yang 

sama, pengaruh keteguhan keterlibatan kuantum berkurang apabila interaksi dwikutub-

dwikutub semakin kuat. Kesimpulannya, kajian ini telah menemui telatah baharu bagi 

sistem kuantum dengan pengaruh medium Kerr-like yang mempunyai potensi dalam 

aplikasi pemprosesan maklumat kuantum. 

Kata kunci: Model Jaynes-Cummings, Keadaan kuantum tri-qubit, Peralihan multi-

foton, Medium Kerr-like.  
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Abstract  

Jaynes-Cummings model is widely used to represent a quantum system as it is able to 

explain quantum behaviour in a more accurate and simple way. To date, the study of 

Jaynes-Cummings model does not involve multi-photon transitions and also three-qubit 

quantum entanglement, both coupled with Kerr-like medium. Thus the main objective of 

this study is to discover new behaviour for quantum system under these two conditions 

coupled with Kerr-like medium. In achieving this objective, Jaynes-Cummings model is 

modified to include multi-photon transition and three-qubit quantum system coupling with 

Kerr-like medium. Under the multi-photon transition condition, Pegg-Barnett formalism is 

used to measure the quantum system behaviour in the modified Jaynes-Cummings model. 

The result shows that as the strength of the coupling increases, the quantum system 

behaviour becomes more active. However, as the number of photons transition increases, 

the influence from Kerr-like medium towards quantum system behaviour decreases. Next, 

under the three-qubit quantum system with one-photon transition condition, the three-qubit 

state interacts with Markovian and non-Markovian environments, both represented by 

Lorenztian spectral density. The lower bound concurrence is used to measure quantum 

entanglement robustness. Result shows that when Kerr-like medium coupling strength is 

increased for both Markovian and non-Markovian environments, the quantum 

entanglement are more robust. Concurrently, the influence of quantum entanglement 

robustness is reduced when dipole-dipole interaction is getting stronger. As a conclusion, 

this study discovered new quantum system behaviour under the influence of Kerr-like 

medium with potential application in quantum information processing. 

Keywords: Jaynes-Cummings model, Three-qubit quantum state, Multi-photon transition, 

Kerr-like medium.  
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CHAPTER ONE                                                                

INTRODUCTION 

1.1 Introduction 

 

Quantum physics has gained a considerable interest for its potential impact on technology. 

One of the uses of quantum physics is quantum information processing. Quantum 

information processing can be divided into quantum cryptography, computation, and 

teleportation (Atteberry, n.d.). Quantum information processing needs a robust quantum 

entanglement. The behaviour of a quantum system is described by its quantum state as a 

function of time. A quantum state is a vector in a vector space, which can also be called a 

state vector that describes the quantum system. A state vector contains the position and 

momentum of a particle, which describe the quantum state. This study mainly focuses on 

quantum entanglement and quantum system behaviour, which are useful in quantum 

information processing application.  

 

1.2 Qubit in Quantum System  

 

In quantum information processing, a quantum system is used. Data is stored, processed, 

and transmitted digitally in terms of qubit. The term qubit is used to represent a quantum 

system, which has two dimensions. For a quantum system consisting of two qubits, it will 

be represented by a density matrix with the symbol ρ.   
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 Quantum systems of different qubits will provide different entanglement properties 

whereby a three-qubit quantum system produces higher robustness than a two-qubit 

quantum system (Abdel et al., 2010). It has also been found that an entanglement of a three-

qubit quantum system is more complex than that of a two-qubit quantum system, which 

also tells us that the entanglement of a higher qubit system will display a more complex 

behaviour. For example, a study found a three-qubit quantum system entanglement of two 

different types of entanglement which acted differently and led to different entanglement 

properties (Dur et al., 2000). A three-qubit quantum state also opens up an opportunity to 

study higher level qubits. That is, we are able to explore and understand the entanglement 

of the three-qubit quantum behaviour which might prove beneficial towards its application 

in quantum information processing. Further explanation on the three-qubit quantum system 

entanglement will be explained in section 2.5. 

 

1.3 Quantum System and State  

 

In choosing a good quantum system, the system should be able to propagate well and be 

able to hold a quantum entanglement for a longer time where it needs to be in a discrete 

basis. Furthermore, the quantum system must be able to interact in a specified manner 

while maintaining the quantum entanglement of the whole coupled system. The main five 

quantum systems include photons, atoms/ions, quantum dots, magnetic moments or spins, 

and superconducting rings (Spiller, 1996). In this study atoms are chosen as the quantum 

system and known as qubit. This is because an atom is more stable and able to maintain a 

longer time of quantum entanglement (Langer et al., 2005). 
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 A quantum system behaviour is represented by the direction and momentum. In 

understanding the quantum system, a model is used to represent the quantum system 

behaviour. Hilbert space is widely used to represent the quantum state based on the position 

of the state, while Hamiltonian uses the total energy of the quantum system to determine 

the quantum behaviour. These are the two major representations being used and there are 

more models or formulation to represent a quantum state. Based on these formulations, a 

representation for a quantum system such as the Jaynes-Cummings model is used to 

represent the quantum state and model is explained below. Under the influence of time, a 

quantum system will start to interact with the environment or act differently, so a 

Schrodinger equation will come into play to represent the quantum system state dependent 

on time, which is explained further in section 2.3.2.  

 

 The Jaynes-Cummings model is one of the models that can represent a quantum 

system of a two-level atom interacting with a cavity field. In a recent study, a single, two 

and three-qubit quantum system were used to couple to a nanomechanical resonator which 

generated a cavity field. It was found that its entanglement properties are varied with 

different numbers of qubit (Abdel et al., 2010). The three-qubit quantum state showed a 

significance change in the quantum entanglement behaviour compared to the lower number 

of qubit where the quantum entanglement is more robust.  Besides that, the quantum 

entanglement of the three-qubit quantum state is more complex and this may be generalized 

to a higher qubit quantum state (Dür et al., 2000).  
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 Atoms in the Jaynes-Cummings model are also called quantum state. This study 

uses a three-qubit quantum state which consists of three types. The first type is GHZ state 

and W state, shown in equation (1.1) and (1.2), respectively.   

 111000
2

1
GHZ

 (1.1) 

 100010001
3

1
W   (1.2) 

 Both of these states consist of three states of entanglement where the first state is 

three-qubit quantum system is entangled to each other directly. The second state is a 

bipartite entanglement, where a two-qubit quantum system is entangled to each other, so 

that the two-qubit state will act as a single qubit state to form another entanglement with 

the other single qubit state (Chen et al., 2012). Figure 1.1 shows the visualization of the 

bipartite entanglement. The bipartite entanglement will be considered a two-qubit 

entanglement where the concurrence will be used as the entanglement measure.  

 

 

Figure 1.1. Bipartite entanglement for three-qubit quantum system 

 

 The last state of a three-qubit quantum state is the separable state where no 

entanglement exists among the qubit. 

Qubit A-Qubit B Qubit C 
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1.4 Quantum Entanglement  

 

A quantum entanglement plays an important role in quantum information processing, such 

as in quantum computation and quantum teleportation (Heo et al., 2015). It also plays a 

role in quantum cryptography. A quantum entanglement is used to reconstruct quantum 

states by measuring the correlation between each state.  A quantum entanglement produces 

a nonlocal correlation when a collective unitary transformation is applied to a quantum 

state (Plenio et al., 2014). Hence, the quantum information processing utilizes the quantum 

entanglement for faster results in terms of solving problems and sending messages. 

 

 A quantum entanglement involves particles, such as photons and atoms, which are 

separated after interacting with each other. After being separated, there will be a correlation 

between the particles where a change in one particle would also cause the other particle to 

change as well. In other words, each particle will be dependent on each other.  

 

 The particles can also be called a quantum state and they can be divided into pure 

and mixed where the mixed state of a quantum system consists of several pure states. This 

leads to a quantum entanglement, which is divided into pure and mixed, if the quantum 

state is pure and mixed, respectively.    
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1.4.1 Influence towards Quantum System Behaviour  

 

The robustness of a quantum entanglement and quantum behaviour can be influenced by a 

difference factors, such as the number of photon transition for two level atoms, the 

existence of Kerr-like medium coupling, the cavity field environment (Abdalla et al., 

2015), the detuning frequency, and the dipole-dipole interaction. A dipole-dipole 

interaction represents a quantum state where a three-qubit quantum state means there are 

three dipoles. These dipoles will interact with each other and form a quantum 

entanglement. An increase in the dipole-dipole interaction will be able to improve the 

quantum entanglement robustness (An et al., 2011).  

 

In reality, more than one factor will influence how a quantum system is going to 

behave. With a combination of different factors, different parameters or values of the factor 

lead to different quantum behaviours and then subsequently different quantum 

entanglement strength (Yu et al., 2013). It is thus interesting to identify which parameter 

will be able to optimize the quantum entanglement.  

 

 Numerous studies have been done to understand the behaviour of a quantum system 

in terms of model formulation and identification of variables that affect the behaviour of a 

quantum system.  A quantum behaviour can be influenced by numerous factors and one of 

them is a Kerr-Like medium coupling (Gantsog et al., 1996). The Kerr-like medium 

coupling influences the quantum state behaviour for different coupling strengths. In turn, 

the quantum state properties increase in collapse and revival as the Kerr-like medium 
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coupling strength increases. The Kerr-like medium coupling is also able to influence the 

quantum entanglement robustness (Yu et al., 2010), which motivates this study to observe 

the influence of the quantum state behaviour and quantum entanglement. 

 

 In observing quantum behaviour and in representing the real world quantum 

system, the number of photon transitions is considered as it is one of the factors to influence 

the behaviour of a quantum system. The quantum system becomes more active when there 

is an increase in the number of photon transitions, and with a combination of a Kerr-like 

medium the quantum system activity is likely to increase (Gantsog et al., 1996). This study 

formulates a quantum system involving a multi photon transition coupling with the Kerr-

like medium.   

 

1.4.2 Measurement Quantum Behaviour 

 

A suitable measurement needs to be selected to quantify and measure quantum behaviour 

and quantum entanglement base on formulated model. A better picture is needed to show 

the robustness of the quantum entanglement and quantum behaviour.  Currently, there are 

a few theoretical methods widely used to measure quantum entanglement, such as 

entanglement formation (Li et al., 2006), concurrence (Li et al., 2008), negativity 

(Verstraete et al., 2001) and entanglement witness (Behrman et al., 2013). Different 

measurement techniques reveal different entanglement behaviours depending on the focus 

area. This study uses lower bound concurrence to measure the entanglement properties. 

Lower bound concurrence (LBC) is suitable in measuring a multi-partite entanglement 



8 

 

because this type of entanglement is more complex and LBC is able to differentiate and 

provide accurate quantification towards the quantum entanglement robustness (Li et al., 

2009). In this study a three-qubit quantum state is used.  

 

 To observe the quantum state properties of quantum behaviour, the Pegg-Barnett 

Formalism is a suitable method to measure the quantum state properties in the Jaynes-

Cummings model when the qubit interacts with the cavity field. Section 2.5.3 explains 

further the method. 

 

1.4.3 Loss of Quantum Entanglement  

 

In the real world, quantum information processing will inevitably be affected by 

decoherence that destroys quantum superposition and quantum entanglement. Quantum 

decoherence can occur when the quantum system interacts with the environment or when 

it is disturbed, such as when conducting measurement (Paz et al., 2001).  When a quantum 

state interacts with the environment, it will cause the quantum state to resemble a classical 

system. Hence, the quantum entanglement is destroyed. A classical system is a system 

where the state is known with certainty. The environment-induced decoherence of 

superconducting charge qubits has been extensively studied both theoretically (Makhlin et 

al., 2001; Mooij et al., 1999) and experimentally (Nakamura et al., 2002) in the absence of 

ac driving fields (free decay). Therefore, it is necessary to reduce the impact of 

decoherence, on one hand, and to guarantee coherent interactions in order to create strongly 

entangled states, on the other hand.  Numerous studies have also been done to improve the 
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robustness of a quantum entanglement, such as by adding a correction term to a 

thermodynamic equilibrium for a better formulation of quantum behaviour (Wigner, 1932). 

A study on quantum behaviour by focusing on the effect of coupling strength in an open 

quantum system in the pure state has helped in the understanding of quantum decoherence. 

 

 Moreover, in superconducting-qubit-based quantum computation, ac fields (e.g., 

microwave fields) are usually used to manipulate the quantum state. A recent experiment 

(Ithier et al., 2005) showed that decoherence time of a superconducting qubit was 

significantly increased in the presence of a resonant ac driving field. Thus a comprehensive 

understanding of decoherence of a realistic superconducting qubit needs to include the 

influence of driving fields (Buchleitner et al., 2008).   

   

1.5 Problem Statement  

 

The Jaynes-Cummings model is represented by two level atoms where each level is called 

the excited and the ground state. Each time the atoms move from the excited to the ground 

state, a single photon transition will occur. A study on the Jaynes-Cummings model showed 

an increase in activity of the quantum behaviour when a number of photon transitions 

increased (Zhang et al., 1991).  Another study on the Jaynes-Cummings model coupling 

with a Kerr-like medium also showed an interesting behaviour of the quantum system (Chia 

et al., 2014). To the best of our knowledge, a study on the Jaynes-Cummings model coupled 

with a Kerr-like medium has not been conducted in-depth; rather studies have looked into 

a four-photon transition (Qing et al., 2010). Different numbers of photon transition show 
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different results (Trung et al., 1990). For example, a two-photon transition showed that the 

quantum behaviour is more active than one photon transition (Gantsog et al., 1996). 

Besides, an increase in the Kerr-like medium coupling strength causes quantum behaviour 

to be more active for both a single and a two-photon transition. Further increase in the 

number of photon transition to four has led to unexpected results showing that the quantum 

behaviour is more active with the presence of the Kerr-like medium (Qing et al., 2010). 

Hence, a study of a multi-photon transition coupling with a Kerr-like medium is an 

opportunity to discover a new feature of quantum behaviour. 

 

 Besides, Jaynes-Cummings model can be extended to a three-qubit quantum state. 

This is because a study of a three-qubit quantum system is the beginning for a multi-partite 

quantum system. The system has showed a more complex interaction than a bipartite 

quantum system, which is the first step towards a multi-partite quantum system. A three-

qubit quantum system is more robust than a bipartite quantum system (Abdel et al., 2010), 

so this is an opportunity to further study a three-qubit quantum system and understand the 

quantum entanglement properties for three-qubit quantum system. A study on a three-qubit 

quantum system will allow us to generalize to a higher qubit quantum system, which 

benefits future studies. Besides, an integration of a Kerr-like medium is able to change the 

quantum entanglement behaviour as it is able to increase the entanglement robustness. This 

is because the Kerr-like medium plays an important role in providing a strong quantum 

state (Tanaś et al., 1983). However, to the best of our knowledge, a vast span of literature 

on three-qubit quantum systems using the Jaynes-Cummings model does not include a 

Kerr-like medium coupling. Therefore, further studies on three-qubit quantum systems 



11 

 

coupling with a Kerr-like medium could lead to new improvements in the application of 

quantum information processing, provide new features to quantum entanglement 

robustness, and are useful future research on multi-qubit systems. In this study also, 

quantum system behaviour will be examined which include a multi-photon transition for 

the Jaynes-Cummings model coupling with a Kerr-like medium.   

 

1.6 Scope of Study 

 

This study is discovered the new features of quantum behaviours in the Jaynes-Cumings 

model under two circumstances. The first one is when the Jaynes-Cummings model is 

coupled with a Kerr-like medium for a multi-photons transition. This study will be based 

on the change of two parameters of a Kerr-like medium and the number of photon transition 

measured by the Pegg-Barnett formalism. This study also identified the number of photon 

transition up to six photons as one of the influence towards quantum behaviour. When the 

transition reaches this numbers, the behaviour shows a similar pattern with a five-photon 

transition.  

 

The second circumstance is the investigation of new features of quantum 

entanglement using the Jaynes-Cummings model for a three-qubit quantum system coupled 

with a Kerr-like medium. In the second circumstance, the Markovian and non-Markovian 

environment represented by Lorenztian spectral density are included. A three-qubit 

quantum state is represented by the dipole-dipole interaction. The measurement used in 

this study is lower bound concurrence to observe the quantum entanglement. The factors 
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that influence quantum entanglement considered are Kerr-like medium coupling strength, 

dipole-dipole interaction, Markovian or non-Markovian environment, and detuning 

frequency. The combination of each parameter will be simulated and the quantum 

entanglement is studied. 

 

1.7 Research Objectives  

 

The primary objective of this study is to model a quantum system behaviour of the Jaynes-

Cummings model under the influence of a Kerr-like medium. The objective is divided into 

sub-objectives, as shown below: 

 To discover the new features of quantum state properties under a multi-photon 

transition with the influence of Kerr-like medium coupling.  

 To identify the major variables that bring about the robustness of the quantum 

entanglement. 

 To investigate the new features that emerge when a three-qubit quantum system 

coupled with a Kerr-like medium is used.  

 

1.8 Framework of Study 

 

Figure 1.2 outlines the process of this study from input to output. The Hamiltonian rotating 

wave approximation will be the base model used to represent the Jaynes-Cummings model. 

Then the Schrondinger equation will be included into the Hamiltonian rotating wave 

approximation to transform the Hamiltonian rotation wave approximation into a time 
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dependent model. This study has two models which use a multi-photon transition Jaynes-

Cummings model and a single photon transition Jaynes-Cummings model for a three-qubit 

quantum state. Both of these models will be coupled with a Kerr-like medium. Then to 

measure the quantum behaviour (phase properties) and quantum entanglement, the Pegg-

Barnett formalism and lower bound concurrence are used, respectively. Different 

parameters will be observed to study the phase properties and quantum entanglement. For 

the phase properties the parameters are the Kerr-like medium coupling strength and the 

number of photon transition are observed. Then for quantum entanglement, the parameters 

considered are the Kerr-like medium, the type of environment, the dipole-dipole coupling 

strength, and the detuning frequency. 
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Figure 1.2. Framework of study on multi-photon Jaynes Cummings model coupled with 

Kerr-like medium and a three-qubit quantum state coupled with Kerr-like medium  
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1.9 Thesis Outline  

 

Improving quantum entanglement will provide better quantum information processing that 

will increase the effectiveness of its application. Applications of quantum information 

processing occur widely in many sectors, such as banking and finance, medicine, and 

communication. This study is primarily focused on quantum system behaviour of a multi 

photon transition Jaynes-Cummings model coupling with a Kerr-like medium and a three-

qubit quantum entanglement in the Jaynes-Cummings model coupling with a Kerr-like 

medium. 

 

In this thesis consist of five Chapter with Chapter One provides the overview of 

this study which includes the introduction of quantum physics, purpose and flow of this 

study. Then, Chapter Two discusses in detail each quantum behaviour, entanglement 

measurement methods, and the models to be used. The models discussed include the 

Jaynes-Cummings model, the Hamiltonian and a three-qubit quantum system. Chapter 

Three discusses the model formulation and the results observed of multi-photon transitions 

of the Jaynes-Cummings model with a Kerr-like medium. Next, Chapter Four discussed 

the integration of a three-qubit quantum state with the Jaynes-Cummings model with the 

Kerr-like medium. The quantum entanglement robustness when the quantum system 

begins to interact is discussed in this chapter as well. Lastly, this study is completed with 

some concluding remarks in Chapter Five.  
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CHAPTER TWO                                                                        

QUANTUM BEHAVIOUR WITH KERR-LIKE MEDIUM 

2.1 Introduction 

 

In this chapter, the discussion will focus on previous studies and how they can contribute 

to the current study.  

 

 This chapter is divided into three sections based on the objectives stated in Section 

1.7. Section 2.2 explains the behaviour of coupling, Section 2.3 model of quantum system, 

Section 2.4 characteristics of a three-qubit quantum system, and Section 2.5 entanglement 

measurement and phase properties.  

 

2.2 Behaviour of Coupling 

 

A quantum state does not only interact among the qubits only; it also interacts with the 

environment near them. For example, a cavity field entangling with a quantum state will 

interact which each other and influence the quantum state behaviour. It was found that the 

decay rate of a cavity field and the coupling strength between a qubit and the cavity field 

were able to affect the entanglement robustness (Abdel et al., 2009; Tahir & MacKinnon, 

2010). Increases in both the coupling strength and the decay reduce the entanglement 

robustness. This section discusses a Kerr-like medium coupling and a number of photon 

transition.  
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2.2.1 Kerr-Like Medium Coupling 

 

Studied on two-level atoms coupling to cavity field Kerr-like medium become one of the 

factor in influencing the phase properties which will change the quantum entanglement 

strength as well. Kerr-like medium has provided a lot of features of quantum system such 

as formation of Schrodinger cats which explain the superposition of quantum system and 

squeezing which able to improve the measurement of quantum behaviour (Ruiz et al., 2013; 

Baghshahi et al.,2014).  

 

 In actual cavity field will be influenced by environment and become non-linear 

medium (Rui et al., 2013). Kerr-like medium coupling with qubit will be able to stimulate 

well on the actual case. Kerr-like medium coupling will change the refractive index of the 

cavity field.  

 

 Kerr-like medium coupling changed the quantum behaviour significantly which is 

represent by phase properties. Without coupling of Kerr-like medium exist, the phase 

properties consist of a pattern with a peak at the phase equal to zero as shown in Figure 

2.1a. Once Kerr-like medium increased, it had impact the phase properties a lot and cause 

the phase properties uncertainty with more collapse and revival in the phase properties, 

Figure 2.1b.  
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Figure 2.1. Phase properties for (a) non-Kerr-like medium coupling (b) 0.01 of a Kerr-like 

medium coupling strength 

 

2.2.2 Photon Transition  

 

A multi-photon transition also causes a quantum behaviour to behave differently, which 

has become an interesting topic to study. A quantum system behaves differently for a single 

photon transition and a two-photon transition. Figure 2.2 shows that there is an increase in 

collapse and revival in a two-photon transition compared to a single photon transition 

(Gantsog et al., 1996). Figure 2.2 shows that a two-photon transition has a higher peak and 

more increases in collapse and revival than a single photon transition. Besides, the 

amplitude fluctuation also increases in a two-photon transition compared to a single photon 

transition. This shows that the two-photon transition influences the atom to be more excited 

and subsequently increase in fluctuation, which is the collapse and revival of the atoms. 
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Figure 2.2. Left is the phase distribution for a single photon transition while right is the 

phase distribution for a two-photon transition in Jaynes-Cummings model in terms of phase 

and time  

 

 A study on a multi-photon transition showed that the quantum behaviour acted 

differently when the number of photon transition was different in terms of quantum field 

squeezing (Zhang et al., 1991), which is useful for further study in quantum field theory. 

Quantum field squeezing is where the product of change of position, x  and change of 

momentum, p  is the minimum,
2

px


  and this is where the uncertainty of quantum 

system behaviour approaches to a constant. 

 

2.3 Model of Quantum System 

 

Numerous models have been used in past research to explain quantum behaviour. Table 

2.1 shows the different models to represent a quantum system. 
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Table 2.1 

Type of models used to represent quantum system 

Type of Model  Authors  

Hamiltonian Rotating Wave 

Approximation 

Gantsog et. al, 1996 

Jaynes-Cummings model  Obada et al., 1998 

Bosonic field in Heisenberg equation  Liu et al., 2005 

Bloch Sphere model  Li et al. 2008 

Markovian and non-Markovian Breuer et. al, 2009 

Non-equilibrium Green function model  Tahir and MacKinnon, 2010 

N-qubit Hamiltonian model  Abdel et al., 2010 

 

 One model is not able to represent a quantum system. For instance, Hamiltonian 

was used in a simple quantum system and applied to a non-equilibrium Green function to 

model the quantum system (Tahir & MacKinnon, 2010).  

 

 This section discusses the model used in this study. In Section 2.3.1, the 

Hamiltonian rotating wave approximation, which is the base model to derive the Jaynes-

Cummings model due to its simplicity to represent a quantum system coupling with a Kerr-

like medium, is discussed. Then Section 2.3.2 discusses the Jaynes-Cummings model of a 

quantum state, cavity field and the quantum system as whole. The cavity field is divided 

into two different phases. In the first cavity field involving the phase properties of a multi-

photon Jaynes-Cummings model, a coherent field is used as a cavity field because we are 
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able to replicate the classical harmonic oscillator which is close to reality. Then to simulate 

the situation of a non-Markovian and Markovian environment, Lorentzian spectral density 

is applied. 

 

2.3.1 Hamiltonian Rotating Wave Approximation 

 

This study uses the Jaynes-Cummings model which consists of a two-level atom interacting 

with a cavity field. The Hamiltonian rotating wave approximation is introduced to the 

model to assess the interaction between the atom and the cavity field.  

 

 The Hamiltonian rotating wave approximation is the fundamental model used to 

further develop the Jaynes-Cummings model. Hamiltonian is an operator which represents 

the energy of a total quantum system which includes kinetic energy and potential energy 

of particles. Kinetic energy is the ability of the particles to move around, while potential 

energy is the energy stored by the particles at a certain position. Equations (2.1) and (2.2) 

represent the total energy system for one particle and n-particles.    

VTH   (2.1) 
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 Equation (2.3) tells us that potential energy is a function of vector and time of the 

particles and kinetic energy is the function of dot product of the momentum divided by 

mass. Hence, Hamiltonian as a total system depends on the vector position and momentum 

of particles, as shown in equation (2.4) for a single particle, and (2.5) for n-particles. 
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 Under the Hamiltonian rotation wave approximation, the model is shown in 

equation (2.6). The rotating wave approximation is where one of the Hamiltonian fast 

oscillating factors is taken out, leaving only the slow oscillating factor. This model 

describes the interaction between the two-level atom and the cavity field with the effect of 

a Kerr-like medium in a multi-photon transition which is the focus of this study. 

  22tt

z0

t aaaagaaH   
 (2.6) 

  

 The lowering and raising operator is a pseudo spin operator used to represent the 

state of the atom or the quantum state for 01  and 10  which 1  and 0  

represent the excited and ground states, respectively. The inversion operator

0011z   is the difference of the population between the excited and ground state. 
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The pseudo spin operator represents the spin of the particles and will be changed in the 

quantum state either to be in the excited state or the ground state. The ground state and the 

excited state in a matrix representation are shown in equation (2.7) and the pseudo spin 

operators in the matrices are shown in equation (2.8), (2.9), and (2.10). 
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Two frequencies are also included in the Hamiltonian rotation wave approximation in 

equation (2.6), which are   and 0 . The two frequencies are equal to each other to 

produce resonance for the excitation of the quantum state as shown in equation (2.11). 

00    (2.11) 

  

 In equation (2.6) there is another operator, i.e. annihilation and creation operator, 

which plays an important role. The annihilation and creation operator is a mathematical 

operator used to lower and increase the number of photons. In this study, it is used to 

change the two-level quantum state from either the ground state and the excited state to the 

excited stated and the ground state, respectively.  The creation operator is adjoining the 

annihilation operator and the mathematical representation is shown in equation (2.12).  
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Equation (2.13) represents the change in the quantum state for the annihilation and 

creation operator. It is shown that the annihilation operator will reduce the number of 

particles, while the creation operator will increase the particle number.  

 

 The Hamiltonian rotating wave approximation model consists of two parts, which 

are: 
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 The Hamiltonian rotating wave approximation is the sum of free Hamiltonian and 

Hamiltonian interaction, shown in equation (2.14) (Gantsog et al., 1996). A free 

Hamiltonian consists of an annihilation and a creation operator, and also the inversion 

operator of a pseudo spin. A free Hamiltonian represents the quantum state that does not 

interact with a cavity field. A Hamiltonian interaction is the evolution of the quantum state 

when the interaction between the quantum state, the cavity field and a Kerr-like medium 

occurs. 

 

2.3.2  Jaynes-Cummings Model  

 

A commonly used model in representing a quantum system is the Jaynes-Cummings 

model. The Jaynes-Cummings model is a model that represents a two-level atom 

interacting with a cavity field. In this study a quantum state will be the two-level atom 

which consists of a ground state and an excited state.  

 

 This model has been used by many studies that looked at the phase properties under 

the effect of a Stark shift and a Kerr-like medium (Obada et al., 1998) and studies that 

examined the properties of the field in the Jaynes-Cummings model (Dung et al., 1990). 

The Jaynes-Cummings model is widely used because it is commensurable to Rabi 

frequencies and its behaviour in this model is periodic. Rabi frequencies are used to 

represent the strength of the coupling between light which acts as a cavity field and an 

atomic transition, which is an oscillation for the atomic transition which is proportionate 

to the Jaynes-Cummings model (Obada et al., 1998). This model was further developed 
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and applied to more levels atom such as a fix-level atom (Li et al., 2006). Besides that, the 

Jaynes-Cummings model has also been used to study the quantum entanglement properties 

when coupling between cavity fields or coupling among qubit, such as a three-qubit 

entanglement (An et al., 2011).  

 

 Section 2.3.2.1 and Section 2.3.2.2 explain respectively in detail the Jaynes-

Cummings model, which is divided into a quantum state and a cavity field. Finally, Section 

2.3.2.3 discusses a quantum system when both the quantum state and the cavity field 

interact with each other.   

   

2.3.2.1 Quantum State 

 

A quantum state and a cavity field interact with each other as time goes, so a Schrodinger 

equation is introduced to explain the evolution of the quantum state when it interacts with 

the cavity field. Equation (2.16) is the Schrodinger equation for the time dependent 

Hamiltonian, while equation (2.17) is for the time independent Hamiltonian. Both 

equations show similarities where the Hamiltonian interaction is used to evolve the 

quantum state. A free Hamiltonian, tiH0e
  is neglected because this study focuses on the 

quantum behaviour that interacts with a cavity field with a Kerr-like medium coupling. 

tiH1e
 is also called a unitary operator that represents the time evolution of the quantum 

state (Gantsog et al., 1996). 
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Equation is the interaction picture of a quantum system where it shows the 

Hamiltonian rotating wave approximation in the form of time dependent (Negele et al., 

1988). Equation (2.18) shows that the Hamiltonian rotating wave approximation contains 

two oscillating components, which are the fast oscillation   0  and the slow 

oscillation    0  where the     00 . The fast oscillating component is 

neglected in the Hamiltonian rotating wave approximation as the approximation is only 

valid for a low intensity cavity field and near resonance. Hence, only the slow oscillating 

component is maintained in this study.  

 

2.3.2.2 Cavity Field State  

 

Coherent state and Lorentzian spectral density will be used to represent the cavity field 

state of this study. The details discussion regarding these two fields are shown below:- 
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 Coherent State 

 

A cavity field for the Jaynes-Cummings model used in this study is a coherent state. The 

cavity field was initially in the coherent state. A coherent state is a quantum state which is 

almost similar to a classical harmonic oscillator. The coherent state of a cavity field means 

that the cavity field will be in an equilibrium position where if the cavity field fluctuates 

away from the equilibrium point, it will eventually restore to the equilibrium position. 

Equation (2.19) shows that the annihilation operator is on the left side of the coherent state. 

The annihilation operator is also the eigenvalue of the coherent state, shown in equation 

(2.20). Equation (2.19) also tells that the coherent state is not influenced by the annihilation 

operator, which means that the coherent state will remain unchanged compared to the 

quantum state. Hence, detecting back the quantum state will no longer be possible. 

 ta  (2.19) 
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The coherent state of the cavity field represented by equation (2.21).  
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 Lorentzian Spectral Density 

 

Lorentzian spectral density is a model for a cavity field based on a Lorentzian function. 

This model is a realistic cavity field where a photon will be able to be leaked out (An et 
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al., 2011). Equation  (2.22) represents Lorentzian spectral density.  represents half 

maximum of the value where the positive half will be considered. Figure 2.3 shows an 

example of Lorentzian spectral density was applied to the model and the entanglement 

measurement showed that the LBC started from 0 to the maximum value of 1. The equation 

was influenced by the atom-cavity coupling strength and will be useful in determining the 

Markovian and non-Markovian environment.  
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Figure 2.3.  Entanglement measurement for Lorentzian spectral density with function of 

time under Markovian environment  

 

2.3.2.3 Quantum System of Jaynes Cummings Model 

 

Initially the quantum system was in a separate state with no interaction between each other, 

as shown in equation  (2.23). 
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When the quantum state, the cavity field and the Kerr-like medium coupling start to interact 

with each other as shown in Equation (2.18) for t>0, the quantum will start to act 

differently. Equation (2.18) will become the model to represent the quantum behaviour 

when the interaction occurs, equation (2.24) (Gantsog et al., 1996).    

        





0n

nn

2in

n n,1tD1n,0tCtniexpeQt    (2.24) 

with,  
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2.3.3 Markovian and Non-Markovian  

 

A Markovian environment is also called a memoryless environment because in this 

environment information lost will not return (Breuer et al., 2009). This is based on Markov 

property where the future state of a system only depends on the present state (Terhal et al., 

2005). This is a kind of a stochastic process and for a quantum system interaction it is 

common to use a Markovian environment. The Markovian environment will also occur 

when the qubit and cavity field is in weak coupling.  
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 This study considers both Markovian and non-Markovian environment where for 

non-Markovian, this environment information will flow back to the quantum system. This 

means that the future state is not only based on the current state but it also considers other 

conditions, such as the past event of the quantum state that is going to change the quantum 

state. A strong coupling between the qubit and cavity field will lead to a non-Markovian 

environment.  

 

A Markovian and a non-Markovian environment are determined by the strength of 

the coupling between a qubit and the cavity field represented in equation (2.25). If qc TT 

this means that the quantum system is in a non-Markovian environment, which also 

indicates that the coupling strength is strong and vice versa. R represent the coupling 

strength between quantum state and cavity field,   is the dimentionless constant value to 

represent the qubit, qT  is the qubit relaxation time and cT  is the cavity correlation time.  
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2.4 Characteristics of a Three-Qubit Quantum System 

 

In this section, properties of a three-qubit quantum entanglement are discussed. The 

manner in which the entanglement of a three-qubit quantum system occurs is discussed as 

well. 

 

 Stochastic local operations and classical communication have also been used to 

study the entanglement of a three-qubit quantum system (Dür et al., 2000). The study (Dür 

et al., 2000) used the invertible local operator to relate the states, and then used stochastic 

local operations and communication to obtain and analyse the quantum entanglement. The 

results showed that a three-qubit entanglement contained two classes, which were GHZ 

and W, where W class was more robust than GHZ class in terms of a bipartite 

entanglement. Equations (2.26) and (2.27) show the state of the GHZ and W classes, 

respectively. 
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 (2.26) 

 100010001
3

1
W   (2.27) 

The properties of a three-qubit quantum system is similar to W class in that a three-qubit 

entanglement was more robust than the bipartite entanglement (Coffman et al., 2000). The 

difference is that stochastic local operations and classical communication were not used to 

build the model, but instead the model was built by defining the tangle itself using the spin-

flipped density matrix. Tangle would be the entanglement of the states. 

 

 Another similar three-qubit quantum entanglement in W class is a three-qubit 

entanglement whereby each three-qubit entanglement was separated by a biseparable state 

in a positive partially transpose mixture (Jungnitsch et al., 2011). Entanglement occurred 

when the biseparable state no longer existed. Although the research showed that GHZ class 

had higher white noise tolerance than W class, the white tolerance for W class was still not 

optimal compared to GHZ class. 

 

 W class was also used for a tripartite entanglement on perfect quantum teleportation 

and superdense coding (Agrawal et al., 2006). Equation (2.26) is not suitable for quantum 

teleportation and superdense coding. Later it has found that W class was suitable for 

quantum teleportation, as shown in equation (2.28), which was used as the initial state to 

study a three-qubit entanglement. 
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2.5 Entanglement Measurement and Phase Properties 

 

This section discusses quantum entanglement and phase properties to be used in this study. 

As quantum states interact with the measurement apparatus, decoherence will occur 

because the quantum system will change into a classical system because it had lost the 

quantum properties, as explained in the introduction (Paz, 2001). Hence, to reduce 

decoherence it is important for this study to use suitable measurement techniques. 

However, while past researchers have used several measurement techniques, this section 

discusses the ones to be applied in the current study. Before introducing different 

measurement techniques, the condition for a good entanglement is explained first, followed 

by an explanation about concurrence which will be used for a three-qubit quantum 

measurement and the Pegg-Barnett formalism which will be used to measure multi-photon 

transition phase properties.   

 

2.5.1 Entanglement Measure Condition  

 

A quantum entanglement is divided into a pure state entanglement and a mixed state 

entanglement. A pure state entanglement contains only a pure state in a system, while a 

mixed state consists of several pure states in a system that entangle with each other. The 

pure state entanglement can be quantified using the Von Nuemann entropy which cannot 
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be applied fully to the mixed state entanglement. The measurement of a mixed state 

entanglement can be different in different situations, further explained in a later section. 

A pure state is represented by the Hilbert space of a quantum system which is the state 

vector shown in equation (2.29). Equation  (2.30) shows an example of a pure state for a 

two-qubit quantum system. 

nHHHH 1...111 21   (2.29) 





n

1i

B

i

A

iic  (2.30) 

A mixed state consists of multiple pure states and is denoted by: 


i

iiip   

1 and  0
i

  ii pp    

 

 The Von Neumann entropy is the measurement of a quantum entanglement which 

is continuous probability. Equation (2.31) shows the Von Nenmann entropy measurement 

of a quantum entanglement with a function of density matrix. A fully entangled pure state 

will be a pure state which means that  vS  is equal to 1 and vice versa for a separable 

state.  
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For example, based on equation  (2.31) a quantum entanglement for a pure state can be 

measured. Equation  (2.32) shows the entanglement measurement of a two-qubit quantum 

system for the pure state.  

 
2

1100
21


 

QQ Tr  (2.32) 

 

 For a mixed state, there is no unique method to measure the quantum entanglement. 

The Von Neumann entropy is unable to fully quantify the quantum entanglement for the 

mixed state. For example,  

    1010011010010101
2

1
A

 (2.33) 

     
2

1
10100101

2

1
B

 (2.34) 

Equation (2.34) shows a maximally entangled state. However, equation (2.34) does not. 

Although it has two maximally entangled states, the Von Neumann entropy is considered 

a separable state.  

 

 The measurement of a quantum entanglement is considered good when it is able to 

fulfil the following criteria (Ho, 2008): 

 Entanglement is the mapping of positive real numbers from a density operator for 

bipartite systems.  
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 If a quantum state is separable, then the entanglement measurement will have a zero 

value which means that the quantum state in the quantum system does not have any 

entanglement properties. 

 Unitary transformation will not change the quantity of entanglement,  

   t

B

t

ABA UUUUEE  
  

 The expected entanglement will not increase under a local operation and classical 

communication is used to distinguish a quantum correlation from a quantum state 

and classical correlation.   

 Entanglement measure will reduce the entropy of the entanglement of pure states. 

 

2.5.2 Entanglement of Formation and Concurrence 

 

Entanglement of formation has been used to measure a bipartite entanglement of quantum 

states. Entanglement of formation was used to measure the entanglement of a two-qubit 

state (Li et al., 2006). Another piece of study by (Coffman et al.,2000) was regarding how 

a three-qubit entanglement could be formed under a maximum entanglement. Study also 

used entanglement of formation to measure the three-qubit entanglement where it is stated 

that entanglement of formation was unable to perform a three-qubit mix state measure 

accurately (Eisert & Plenio, 1999). Hence, concurrence was used to calculate the mixed 

state entanglement of entanglement formation as it was simpler. Concurrence is defined as 

the maximum of square root of eigenvalues of product matrix, shown in equation (2.35) . 

The eigenvalues are in a decreasing order.   
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   43210   , maxC  (2.35) 

In the measurement of a mixed state, entanglement of formation will take the infimum of 

all the pure state decomposition of  , (Wootters, 2001).  

 
j

jjf EpinfE   (2.36) 

   ivj SE    (2.37) 

Taking infimum of a pure state to measure the entanglement of a mixed state will result in 

a lot of work as an infinite pure state needs to be measured. Equation (2.36) is the reduced 

density matrix of one of the two-qubit quantum system. Based on equation (2.37), the 

entanglement formation also means that by producing infinite of quantum state for the 

measurement of the quantum entanglement.  

 

2.5.3 Pegg-Barnett Formalism 

 

Besides measuring the quantum entanglement, the measurement of a quantum state is also 

one of the important features to consider before measuring the quantum entanglement. A 

quantum state can be measured via representation of a linear Hermitian operator. A 

Hermitian operator is a self-adjoint operator and is restricted to (s+1)-dimensional 

quantum state space spanned by the first number states (Obada et al., 1998). This 

measurement uses the state of a well-defined phase as a starting point.    
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The value of   represents the arbitrary of a particular basic set of (s+1) which is a mutual 

orthogonal phase state. Equation (2.38) is the orthogonal phase state which is the eigenstate 

of the Hermitian operators, shown in equation (2.39). Using these operators will enable us 

to obtain the expectation value and the variance which will be able to explain the quantum 

phase state behaviour.  

 

 In evaluating the phase properties in the Jaynes-Cummings model, the Pegg-

Barnett Hermitian phase operator formalism is used. This formalism introduces a finite 

(s+1)-dimensional space spanned by the number of states (Gantsog et al., 1996). The 

expectation value in equation (2.38) will be calculated and the value of s will reach infinity. 

Equation (2.40) shows the complete orthonormal basis of (s+1) states.   

  ninexp
1s

1 s

0n

mm 


   (2.40) 

The value of 0  represents the arbitrary of a particular basic set of (s+1) which is a mutual 

orthogonal phase state. The Hermitian phase operator shown in equation (2.39).   is the 
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dependence on the choice of 0 . Equation (2.40) is the eigenstates for the phase operator 

in equation (2.39) with eigenvalues which lie between 0  and 0 +2π. Hence, the 

expectation value will be in a state described by the density operator, as shown in equation 

(2.41). 
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  (2.41)   

mm   is probability in a phase state 
m . Based on equation (2.41), as s tends to reach 

infinity with a density phase states, the equation can be rewritten as  
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and a continuum phase distribution can be introduced.  

 

    











0'n,n

mm
s

'nniexp'n,n

2

1s
limP









2

1
        

  

The continuous phase variable   replacing m  and  'n,n  are the matrix elements of the 

density operator in a number state basis. 

 

2.6 Conclusion 

 

This study mainly focuses on the Jaynes-Cummings model with coupling to a Kerr-like 

medium where it is derived from the Hamiltonian rotating wave approximation. Then the 

Schrondiger equation is used to produce a time dependent model to observe a quantum 

system evolution through time. This study is divided into two areas, the models of which 
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are shown in Table 2.2. One area studies the quantum behaviour of a multi-photon Jaynes-

Cummings model coupling with a Kerr-like medium and the second studies a three-qubit 

Jaynes-Cummings model coupling with a Kerr-like medium. 

  

A study on a quantum behaviour will use only a single qubit Jaynes-Cummings 

model that interacts with a coherent cavity field. This study focuses on the change of a 

quantum behaviour under a multi-photon transition coupling with a Kerr-like medium. This 

study focuses up to six-photon transition because the result starts to show similarity in the 

pattern of the quantum behaviour which will be further explained in Chapter 3.  

Next is the study of a quantum entanglement for a three-qubit Jaynes-Cummings 

model coupling with a Kerr-like medium. The cavity used in this case is the multi-mode 

leaky cavity field. This study only has a single photon transition which mainly focuses on 

a three-qubit quantum entanglement.   
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Table 2.2 

Two different types of Jaynes-Cummings model and measurement techniques used in this 

study. 

 Study of quantum 

behaviour   

Study of three-qubit quantum entanglement 

Number of qubit One Three 

Number of 

photon transition  

Up to six One 

Kerr-like 

medium coupling 

Yes Yes 

Cavity field  Coherent field Lorentzian spectral density for Markovian 

and non-Markovian representation. 

Measurement 

techniques 

Pegg-Barnett 

Formalism  

Lower bound concurrence 
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CHAPTER THREE 

 

MULTI-PHOTON TRANSITION FOR JAYNES-CUMMINGS 

MODEL WITH KERR-LIKE MEDIUM 

In this chapter, a model of multi-photon transition is developed based on the Jaynes-

Cummings model. This study only considers a single atom or a one-qubit quantum state 

interacting with a cavity field with the purpose to observe the phase properties of a quantum 

system interacting with the cavity field. 

 

Section 3.1 presents the development of the Jaynes-Cummings model. Then, 

Section 3.2 discusses the Pegg-Barnett Formalism in measuring the phase properties of the 

Jaynes-Cummings model under different Kerr-like medium coupling strength and different 

number photon transition. The analysis of the quantum behaviour will be provided in 

Section 3.3. Finally, Section 3.4 summarizes the findings of the presented algorithm. 

 

3.1 Jaynes-Cummings Model with Kerr-Like Medium 

 

The Hamiltonian with rotating-wave approximation is used as the fundamental equation to 

develop a multi-photon transition of the Jaynes-Cummings model with a Kerr-like medium 

(Qing et al., 2010). These models will be separated into two parts, which is a cavity field 

and a model for a quantum state (Huai et al., 2000). Then both the cavity field and a two-

level atoms will consider the time evolution of the quantum system when the cavity field 

and the atoms interact which each other. This interaction will be represented by the 

Schrodinger equation (Yu et al., 2010).  
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 Based on the interaction with the Hamiltonian rotating wave approximation of 

equation (2.15), the model will be enhanced to include a multi-photon transition (see 

equation (3.1)), in which the Jaynes-Cummings model will be completed with the 

interaction between the atom and cavity field. As a multi-photon transition will produce k-

photon, the annihilation and the creation operator will be the power of k. This means that 

the annihilation and the creation operator will be used to increase and decrease the number 

of photons in the cavity field. With the power of k this will lead to a multi-photon transition.  

  22ttkk

z0

t aaaagaaH   

 (3.1) 

 z
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00 2aaH    (3.2) 

  22ttkk

z1 aaaag
2

H  


   (3.3) 

 

Hamiltonian is divided into two sections, which is free Hamiltonian and interaction 

Hamiltonian, as shown in equation (3.2) and (3.3), respectively. 
1H will be considered 

while 0H  will be ignored in this study as the focus is on the phase properties when the 

interaction between qubit, cavity field, and Kerr-like medium takes place. In the 

Hamitonian equation,  and 0  are the field frequency and atomic transition frequency, 

respectively. ta and a  are the annihilation and the creation operator, respectively. z ,


and
  are inverse operator, raising operator, and lowering operator, respectively. Lastly,

  is a Kerr-like medium coupling, g the coupling strength between cavity field and qubit, 

and 0k  . k will be added to the field frequency for   due to k photon will be 
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released into the cavity field when a multi-photon transition happens. Based on the 

commutation relation in equation (3.4) and the creation and the annihilation operator 

relation in equation (3.5), the Kerr-like medium term will be shown in equation (3.6),  

      aN,a,aa,N,1a,a ttt   (3.4)

Naa t   (3.5)
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 (3.6) 

The matrix form of 
1H is as shown in equation (3.7). 
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 The initial state of the system is shown in equation (3.8). Initially the system is 

prepared in the excited state, 1  and initially no photon is released with the existing n -

photon in the cavity field. When a qubit undergoes a transition from the excited state to the 

ground state, it will release a photon to the field, which will add to  1n -photon. This 

process will happen repeatedly to produce more  kn  -photon to the cavity field. The 

cavity field is initially prepared in a coherent state with no coupling with a Kerr-like 

medium. Equation (3.8) also shows that initially the system,  0   is separable where 

there is no interaction between the cavity field and the qubit with   is the cavity field 
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state, n  the number of photon, and   the phase angle. The average photon number is 

represented by 
2

n   (Gantsog et al., 1996). 
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Equation (3.9) is multi-transition photon for a cavity field where initially no photon is 

available in the field (Gantsog et al., 1996).   
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For existing  n-photon in the cavity field, the multi-photon transition is shown in equation 

(3.10). This is acquired using factorial series shown in equation (3.11) where series of 

photon transition are formulated. Then based on the series, in equation (3.11) can be 

generalized to be equation (3.10) for a multi-photon transition developed in this study.  

Equation (3.10) is applied to the Jaynes-Cummings model for a multi-photon transition. 
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 In the Schrodinger equation, as times past, the result of the interaction between a 

qubit and a cavity field with coupling with a Kerr-like medium is shown in equation (3.12) 

where  tCn  and  tDn  are the observables. In the end a quantum system will have two 

states. One state will be the excited state with  n-photon in the cavity field. Another state 

will be the ground state with (n+k)-photon in the cavity field,  
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For a Kerr-like medium coupling term,  NN 2  the N will convert to another form as 

shown in equation (3.14) and (3.15) based on equation (3.13),  

nnnN    (3.13) 
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Due to a multi-photon transition, a new model is needed, as shown in equation (3.15). The 

term k is added to indicate a multi-photon transition, so equations (3.14) and (3.15) will be 

simplified to equations (3.16) and (3.17), respectively. This simplification is to balance 

between both cavity states n  and kn   needed in the later Jaynes-Cummings model.  
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 In order to obtain a model for a multi-photon transition, a quantum system which 

changes over time, and the Schrodinger equation (see equation (2.17)) are used (Gantsog 

et al., 1996). Base on equation (3.6) as explained previously, only the interaction 

Hamiltonian is used for the observation of the phase properties. In this study the 

Schrodinger equation is shown in equation (3.18), 
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the equation is further simplified as showed below, 

        n NitinQiAtt
n

kn ,1expexpexp
0

2






   

with, 

  Naag
2

A tkk

z  


   

By using equation (3.7), let A  as shown in equation (3.19). 2A  and 1n2A   be shown 

below. In equation (3.19), the Kerr-like medium term, one of the term in the matrix will be 

converted to be positive to provide a diagonal Hamiltonian equation (Klimov et al., 2002). 
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With the substitution of the annihilation and the creation operator to a photon transition, 

term 2A  forms, 
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Equation (3.21) is a diagonal matrix where power of n will produce the same diagonal 

matrix with the array to be power of n as well. This is as shown in equation (3.22). Hence, 

the equation for 12 nA  is as shown in equation (3.23). 
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The exponential for the term  itAexp   is shown in equation (3.24). The exponential 

function is expanded by using the trigonometry role of    sinxicosxixexp  . Then it is 

converted into power series, 
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Equation (3.24) will then be solved by separating the equation into two sections. The first 

section will be  
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respective nA2 and 12 nA  will be converted into matrix form. Then using the Taylor series 

both equations will then be converted into trigonometry function. 
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For simplification, n and n
 will be introduced as showed in equation (3.25) and (3.26). 

These equation will then be substituted to equation (3.24) and form equation (3.27). 
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 Using the role    aaafaaaf tt 1 and    1aafaaafa tttt   (Huai et al., 

2000), 
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The value of 𝑒𝑥𝑝⁡[−𝑖𝑡𝐴] will be substituted to the Schrodinger equation and yield the 

following,  
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Using equation (3.11), equation (3.29) na tk
 and na k

 will be converted into equation 

(3.30),  
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Equation (3.30) then convert into non-matrix form as showed in equation (3.31). 
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 (3.31) 

 

 Hence, the developed Jaynes-Cummings model for a multi-photon transition 

coupling with a Kerr-like medium in this study is shown in equation (3.32). 
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It is shown that the quantum phase state will mainly be influenced by the change of time, 

the Kerr-like medium, and the number of photon transition. In this study the purpose is to 

observe the influence of the Kerr-like medium coupling and the number of photon 



55 

 

transition on the phase properties, so the time and also the phase angle will be set to a 

certain range to enable for comparison between the change of number of photon transition 

and the Kerr-like medium coupling strength.  

 

3.2 Measuring Quantum Phase State  

 

In measuring the quantum phase state, the Pegg-Barnett Formalism is used. The Pegg-

Barnett Formalism uses the phase probability to indicate the behaviour of the quantum 

phase state. As explained in Chapter 2, the Pegg-Barnett Formalism is an introduction of 

finite (s+1)-dimensional space,   (Lahti et al., 2002). The phase probability is used to 

understand the quantum phase behaviour under the effect of a Kerr-like medium and the 

number of photon transition.  

 

 When rewritten, the quantum phase state in equation (3.32) gives equation (3.33),  
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By tracing over the atomic variables,  tg  and  te , the reduced density operator 

will be as shown in equation (3.34) 
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Using the continuum phase distribution of the Pegg-Barnett Formalism, the phase 

probability distribution in function of time, t and phase state,   is written as shown in 

equation (3.35) 
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The number of photon transition is considered until six because when it reaches a six-

photon transition the quantum phase state shows the same behaviour like the previous 

number of photon transition, which will be explained later. For variable 
2

n ,  ncos 2  

and  nsin 2 , refer to section, 3.1. 
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 As shown from equation (3.35), the value of mn  increases when the photon 

number transition increases. This indicates that a higher photon transition will lead to more 

fluctuations on the function. For example, for a number photon transition 5k  and 

31nm  , the first case and second case are 4k  and 31nm  . 
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This is only a part of the function. The next section explains further how the quantum phase 

state behaves. 

 

3.3 Analysis of Quantum Phase State   

 

This section discusses the phase properties of the quantum phase state for different number 

of photon transition and also a Kerr-like medium coupling. The result is produced via 

Mathematica software and programming language, as shown in Appendix A.  
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 The phase properties are analyzed from a single till a six-photon transition 

scenarios. The mean photon number is set at 102   as further increase in the mean 

photon number will not impact on the results and the detuning change is set at 0


g
 for a 

resonance transition of a qubit state. The variable is 
g


to see the changes on the phase 

properties when there is an increase in the Kerr-like medium. The values 
g


are 0, 0.01 and 

0.1 to observe the quantum behaviour when the coupling strength of the Kerr-like medium 

is higher. The phase properties are observed with the range of time, gt and also the phase 

state,  . Figure 3.1 until 3.6 illustrate the phase properties of a single to a six-photon 

transition, respectively, where a, b, and c represent different Kerr-like medium coupling 

strength of 0, 0.01, and 0.1. 

 



59 

 

 

Figure 3.1. Phase probability distribution for 1k  , scale time 20gt0  , and phase 

probability 2.5t),P(0    

 

 Figure 3.1 shows that with an increase in the Kerr-like medium, the collapse and 

revival increase and the amplitude of phase probability is reduced (Obada et al., 1998). 
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When there is an increase in Kerr-like medium coupling strength, the pattern changes 

(compare Figure 3.1a with Figure 3.2b). The peak is still maintained for different coupling 

strength where for the value 0  the phase probability is at 2.0t),P(  . When 

1.0
g



 , Figure 3c shows that the wave like pattern disappears, which is replaced by a 

small amplitude with 22.0t),P(   of collapse and revivals.  

 

 Figure 3.2 shows the phase probability of a two-photon transition. Figure 3.2a 

shows a wave pattern which disappears when 
g


 increases. Figure 3.2b shows that a slight 

increase in 
g


 reduces the wave pattern at 5.2gt  . An increase in 

g


 also increases the 

collapses and revivals, as shown in Figure 3.2c where the increase in the collapses and 

revivals 16.0t),P(  . Similar to Figure 3.1, there is a peak at 0  with 2.0t),P(   

(Gantsog et al., 1996). 

 

 Figure 3.2 shows that when the photon transition increases to two photon, the 

collapse and revival also increase. Figure 3.2a shows that the wave of the phase probability 

increases (compare it with Figure 3.1a), which shows an increase in the collapse and revival 

activity. Figure 3.2 also shows that the collapse and revival increase with amplitude when 

the coupling strength of Kerr medium increases (compare Figure 3.2b and 3.2c with Figure 

3.1b and 3.1c). However, in Figure 3.1c there are more small peaks (average phase 

probability of 16.0 ) with lesser amplitude (average phase probability of 17.0 ), whereas 
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Figure 3.2c contains a big wave along the time. This is because the two-photon transition 

plays a role in the phase properties along with the increase in Kerr-like medium coupling 

strength.  
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Figure 3.2. Phase probability distribution for 2k   scale time 20gt0  and phase 

probability 2.5t),P(0    
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Figure 3.3. Phase probability distribution for 3k   scale time 5gt0  and phase 

probability 0.1t),P(0    

 

 Figure 3.3 shows the phase properties of a three-photon transition. Figure 3.3a and 

3.3b show the same phase properties, which tell us that at this number of photon transition, 
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weak Kerr-like medium coupling will not have any impact on the phase properties. Both 

Figure 3.3a and 3.3b show a peak at 0  and then gradually decreases when 0  and   

together with time. There is also another peaks at the end of both sides. This shows that 

there is a collapse and revival within this. As compared to Figure 3.3c there exist a big 

wave with small collapse and revival in between of the wave. It also showed that the 

amplitude of the wave is high with more than one.  

 

 Compared to a single and a two-photon transition, a three-photon transition has a 

shorter wave for weak Kerr-like medium coupling. When the Kerr-like medium coupling 

becomes stronger, in overall there is wave with the phase properties showed more small 

fluctuations compared to the lesser photon transition. 

 

Next is the four-photon transition. Figure 3.4 shows that the wave like pattern no 

longer appears and peaks only appear at the beginning, then they become smaller for all 

the Kerr-like medium coupling strength. Then at 1.3gt   there is a sudden high peak or 

revival with showing the highest peak (see Figure 3.4a). The sudden peak also appears in 

Figure 3.4b but with lesser amplitude. 
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Figure 3.4. Phase probability distribution for 4k   scale time 5gt0  and phase 

probability 5.2t),P(0    

 

A further increase in photon transition destroys the wave pattern of the phase 

properties which become more active with collapses and revivals (see Figure 3.4). In 
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comparison to Figure 3.4a, the wave pattern only exists at 1.0gt  . Figure 3.4a and 3.4b 

show a sudden peak at 2.3gt   which does not occur in a lesser photon transition with a 

maximum phase probability at 0  of 6.14t),P(   and average 62.1t),P(   for 0

. Figure 3.4a and 3.4b show that at 2.3gt   till 0.4gt   there is a huge wave. An increase 

in a photon transition has reduced the wave into a small sudden peak in a short time. For a 

four-photon transition, when the Kerr-like medium coupling is strong, Figure 3.4c shows 

that the wave pattern is diminished with a small fluctuation. An increase in the number of 

photon transition has reduced the big wave (see Figure 3.1c, Figure 3.2c, and Figure 3.3c).   

 

 Figure 3.4 and 3.5 show the results when the photon transition increases to four and 

five. Higher photon transitions has caused the initial spread and the wave like pattern to 

disappear, which are found in a single, two-, and three-photon transitions. The four-photon 

transition in Figure 3.4a shows that there are some large peaks at 2.3gt   but they 

disappear in a five-photon transition (see Figure 3.5a). In the five-photon transition, the 

wave pattern totally disappears and is being totally substituted by uncertain collapses and 

revivals. The amplitude of the phase probability amplitude is lesser than the four-photon 

transition. For example, at 0.3gt   for 1.0
g



, the average is 19.0t),P(   for the four-

photon transition, while for the five-photon transition the average is 17.0t),P(  . For the 

five-photon transition, it can be seen that an increase in 
g


 does not form any wave like 

pattern. This has increased uncertainty. As shown in Table 3.1, the average is t),P(  for 
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different values of 
g


. It seems that for 0

g



 , t),P(  is lesser than for 01.0

g



but 

higher than 1.0
g



. 1.0

g



 shows the least t),P(  among the other Kerr-like medium 

coupling strength.   

 

Table 3.1  

Average of t),P( for different  .2 

g/  0 0.01 0.1 

t),P(  0.1575 0.1614 0.1556 
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Figure 3.5. Phase probability distribution for 5k   scale time 20gt0  and phase 

probability 0.1t),P(0    
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Figure 3.6. Phase probability distribution for 6k   scale time 20gt0  and phase 

probability 0.1t),P(0    

 

 As the number of photon transition increases, the phase properties show the same 

pattern. Figure 3.4 and Figure 3.5 show that the phase properties of a quantum system 

fluctuate in an uncertain way where the wave like pattern no longer appears. The changes 



70 

 

are lesser (see Figure 3.6) and they become similar (see Figure 3.5) with differences in 

amplitude. Hence, this study considers only a six-photon transition as no changes are 

observed when the number of photon increases beyond this point (see Figure 3.6). These 

scenarios tell us that at a high number of photon transition, the behaviour of the quantum 

system becomes more uncertain.   

 

3.4 Conclusion 

 

Under the Pegg-Barnett Formalism there exists a wave shaped pattern for a single and a 

two-photon transition. However, such pattern disappears at higher photon transitions 

resulting in a more frequent fluctuation on the collapse and revival. As the number of 

photon transition increases, the Kerr-like medium coupling becomes less influential on the 

phase properties. Initially, the Kerr-like medium coupling had a big influence on the phase 

properties but when it reaches a five-photon transition, the impact on the phase properties 

becomes less where the pattern of the fluctuation becomes similar with only a slight change 

in amplitude.  
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CHAPTER FOUR 

 

QUANTUM SYSTEM ENTANGLEMENT WITH KERR-LIKE 

MEDIUM 

4.1 Introduction  

 

After the phase state is derived for the Jaynes-Cummings model with the interaction 

between the cavity field and the atoms, this chapter considers the interaction between the 

atoms for the case of a three-qubit W-state. In this case focus is on the quantum 

entanglement behaviour with coupling of a Kerr-like medium, so the Jaynes-Cummings 

model will have only a single photon transition number.   

 

 This chapter is divided into three sections. Section 4.2 is the development of the 

Jaynes-Cummings model with the integration of a three-qubit quantum system and a Kerr-

like medium coupling. Section 4.3 discusses the measurement of a quantum entanglement. 

The discussion on the quantum entanglement based on the measurement results is included 

in the Section 4.4. Lastly, Section 4.5 concludes this chapter.   

 

4.2 Three-Qubit Jaynes-Cummings with Kerr-Like Medium   

 

This section discusses the development of a three-qubit Jaynes-Cummings model coupling 

with a Kerr-like medium. Section 4.2.1 describes the Hamiltonian equation which include 

the Kerr-like medium coupling. Section 4.2.2 describes the quantum system for a three-
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qubit quantum state coupling with a cavity field and the Kerr-like medium. Section 4.2.3 

discusses the Hamitonian model and the quantum system to find the time-dependent 

coefficient of the quantum system needed to determine the quantum entanglement 

behaviour. Time coefficient will be the observables of the quantum system used to measure 

the robustness of the quantum entanglement. 

  

4.2.1 Hamiltonian system for Three-Qubit Quantum System  

 

The Hamiltonian equation considers a three-qubit quantum state in a quantum system with 

coupling with a Kerr-like medium. This model represents the three-qubit quantum state 

interacting with the cavity field in the presence of the Kerr-like medium. Besides, a leaky 

multimode cavity field is considered as well, where it is modelled using Lorentzian spectral 

density (An et al., 2011). Hence, another factor considered in this case is the non-

Markovian and Markovian approximation, which represent the cavity field that will regain 

the part of the information or energy loss and the cavity field which is unable to regain the 

information lost, respectively. 

  

 Based on equation (3.1) in Chapter 3, 2H is added to represent the interaction 

between the three-qubit quantum state (An et al., 2011). After the modification of equation 

(3.1), the Hamiltonian rotating wave approximation of the total quantum system is shown 

in equation (4.1)-(4.4) (Flores & Galapon, 2015).  

210 HHHH   (4.1) 
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j  : Mode of photon. 

j : Cavity frequency for cavity mode of   j  photon.  

For the interaction Hamiltonian between the atom and the cavity field, 
1H  additional 

parameter introduced to individualize the atom (An et al., 2011). This parameter is the 

dimensionless real constant, n . The coupling strength between the qubit and the cavity 

field is represented by
jn g . lD  with  3,2,1l  is introduced to represent the dipole-

dipole interaction between the qubit with     3

mn

2

mnmnmnl r/r/r.dr.d3d.dD  . The qubit’s 

electric dipole moment is represented by d  and mnr  represents a two qubit separation (An 

et al., 2011). This study includes Kerr-like medium coupling strength represented by 


j

2

j

2t

jj aa  term in equation (4.3).   

 

4.2.2 Quantum System for Three-Qubit  

 

This section discusses the development of a time-dependent quantum system under the 

Schrodinger equation. The quantum system changes over time and this model represents 

the quantum system behaviour in the specific time. A three-qubit state is represented by a 



74 

 

W state generalization as a W state is more robust than a GHZ state (Vidal et al., 2000). 

The W state is able to maintain a bipartite entanglement after one of the atoms is being 

traced out, as explained in Chapter 2. 

 

 The initial state of the W state is shown in equation (4.5) for an empty cavity field, 

that is, 0 .  0al  with 3,2,1l   being the time-dependent coefficients. 
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 (4.5) 

The total quantum system when the atom interacts with the cavity field, 

    00W0   (4.6)

        

   










j
cj

it

j

it

jjetb

 ta ta taet

1000

0001010100

123

123312321231
0





 (4.7) 

where 0  is the cavity field state with zero photon on mode j  and 
cj1  is the cavity field 

mode when for one photon with mode j .  

 

 Equation (4.6) is the initial total quantum system and equation (4.7) is the state of 

the total system when t > 0. In equation (4.7) a Kerr-like medium is included only in the 

second term    




j
cj123

it

j 1000etb jj 
 which is the development done in this study. 

Initially when the cavity was zero, there will not be any Kerr-like medium until there is 

one photon in the cavity. Hence, the first term of equation (4.7) shows that the W state is 
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acting on the transition frequency. This also means that only a single photon transition will 

be considered in this study.     

 

4.2.3 Time Dependent Coefficients 

 

Time-dependent coefficients are observables measured to study the quantum behaviour. In 

other words, time-dependent coefficients explain the robustness of a quantum 

entanglement when measured. This section will solve the time-dependent coefficients to 

obtain an equation. The derived model in Section 4.2.1 and 4.2.2 is used to determine the 

time-dependent coefficient,  tal and  tb j , 
 

   t HH
dt

tid
 21


 , which is the 

Schrodinger equation of motion, which will also be used. Next, the Schrodinger equation 

is divided into two portions, 1H  and 2H  for simplicity in solving the Schrodinger 

equation.  

 

 Equation (4.9) shows 1H  term acting on the quantum system. Using the 

commutation relation for the annihilation and creation operator in Chapter 2 and, 

01  , 10  , 01  , 00   (4.8) 
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n  is the number of photon released to the cavity field. For 0 , 0n   and 
cj1 , 1n   

because there is no photon that exists for the quantum state 0  while one photon is 

released to the cavity field for the quantum state 
cj1 . Substituting the respective n  into 

the cavity field state, equation (4.9) will result in equation (4.10). 
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 will lead to zero due to the 

annihilation operator. Then using equation (4.8), the term 
t

jn

*

j ag   acting on in equation 

(4.10) will become zero which can be ignored. In the end, equation (4.10) evolves, as 

shown in equation (4.11). 
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 (4.10)
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Next will be the term for the three-qubit quantum state acting on the phase state. In this 

case term    




j
cj123

it

j 1000etb jj 
 will be zero since no W state exists, as shown in 

equation (4.14). Using equation (4.8) to expand equation (4.12), (4.13), and (4.14), this 

results in equation (4.15).  
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With equation (4.11) and (4.15), the Schrodinger equation for the respective time 

coefficient becomes equation (4.16), (4.17), (4.18), and (4.19).   
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 When t becomes large, 
ti je


 the term   ti

j

jj
je tb






  becomes smaller. The value 

of this term asymptotically goes to zero. Hence, equation (4.19) will become zero which 

will be substituted into equation (4.20), 
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Integrating  tb j  in equation (4.20) with the initial condition of   0tb j   will produce, 
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Substituting equation (4.21) into equation (4.16)-(4.18) gives,  
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where  J  is the spectral density of a cavity structure. Substituting this into equation 

(4.22)-(4.24) will get, 
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From the spectral density of cavity field which used to represent the photon leak to the 

environment shown in equation (4.28). This equation is called Lorentzian broadening 

(Weisstein, 2002).  

 
  22
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2R
J


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



  (4.28) 

A cavity supported mode is represented by c  and   is the half width at half height of the 

field spectrum profile inside the cavity. Besides, R is the atom-cavity coupling strength 

and cT  is the cavity correlation time with 1cT . Other than cavity correlation time, the 

qubit relaxation time will be   1
2

3

2

2

2

12


 RTq . The cavity correlation time and the 

qubit relaxation time are used to determine whether the environment is a Markovian or 

non-Markorian, which represents a weak and strong environment, respectively. A 
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Markovian mean is when qc TT   while a non-Markovian is when qc TT   (Breuer et al., 

2009). 

 

Next, based on equations (4.25)-(4.27) the Laplace transformation is taken from 

both sides of the equations to produce a set of equations for  1,2,3=n(z);= a~n . The 

Laplace transformation will transform the equations into a complex argument of z where z 

represents a pole in Lorenztian broadening. The notation is 𝑓(𝑧) = 𝐿[𝑓(𝜏)] =

∫ 𝑓(𝜏)𝑒−𝑧𝜏𝑑𝜏
∞

0
 (Douglas et al., 2012). The set of equation is as follows:  
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where  3,2,1n,m,l   with condition lnml   
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For convenience, dimensionless quantities are introduced based on above equation, 
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by definition 1r
3

1n

2

n 


. Applying the inverse Laplace transform will get the time-

dependent coefficient.  
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t    and jz are a pole of  za~n . Using the residue theory let 0zB
4

0m

m

m 


, which will 

produce a value of  jz  which is needed for the measurement of the quantum entanglement. 

A single-photon collective normalized state of the cavity field is represented as 
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The total state of the system developed in this study after obtaining the time-dependent 

coefficient will be  
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with 



 0

0   and 



 c

c  . 
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4.3 Measurement for Three-Qubit System 

 

After the development of a three-qubit quantum system model with coupling to a Kerr-like 

medium, this section measures the time-dependent coefficients to study the quantum 

entanglement. The time-dependent coefficients in equation (4.31) are used to measure the 

tripartite entanglement of the quantum system. In measuring the entanglement there are a 

few conditions that need to be met, which were explained in Section 2.5.1. The 

quantification of the quantum system needs to be done to measure the entanglement. 

 

 Initially the quantum system was in a separable state between the qubit,  0W  and 

the empty field. The coefficient,  0na  of the qubit is a non-zero value, which means that 

initially the entanglement already existed. Then, over time the qubit and the cavity field 

will be interacting with each other which will change the entanglement properties. This 

change is also transforming the quantum state from the pure to the mixed state. In 

measuring the entanglement and its changes, a concurrence of a three-qubit quantum state 

is used, which was explained in Chapter 2. 

 

 When the qubit and the cavity field start to interact with each other the quantum 

state of the qubit will change from the pure state to the mixed state, explained in the 

previous paragraph. This is shown in equation (4.34) and (4.35) (An et al., 2011). 
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        cavityTr0W   (4.34) 
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In this case the concurrence will be included to the mixed state by using the convex roof 

construction (Li et. al, 2008), 
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33  (4.36) 

where 
j  is the quantum state of the qubit which includes both the mixed and the pure 

state and jp  is the probability of the quantum state with 0jp  and 1p
j j  . Besides 

that,  j C 3
 is the concurrence for all possible decomposition density matrices, 

ii iip   .  

 

 In this study the concurrence used is the lower bound concurrence which is on linear 

entropy.  A lower bound concurrence (LBC) uses a bipartite entanglement to calculate the 

overall entanglement. A bipartite entanglement consists of two qubits being entangled, with 

one qubit entangling with another qubit, as explained in Chapter 2’s two partial positive 

transpose. The expression for the LBC is  
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for 
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where
lmn

1,j  is the eigenvalues in a decreasing order for matrix 
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j LL~   ,  

mn

jL  for 6,...,2,1j   is the generator of orthogonal group  4SO  which acts on qubits m, 

n, and 
l

y .  4SO  is the rotation about a fixed point in four-dimensional Euclidean space. 

l

y  is the Pauli matrix acting on qubit l  (An et al., 2011). A concurrence measurement 

indicates the higher the value of concurrence,   03 C . The stronger the entanglement 

will be when the concurrence approaches zero. In this case the quantum system model 

represents rank 4, which coincides between LBC and the convex roof for rank less than 4. 

The LBC is shown in equation (4.39).  
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4.4 Quantum System Entanglement in Kerr-like Medium 

 

A quantum entanglement is discussed in this section. The value of the LBC is produced by 

using Mathematica software based on the measurement equation (4.39) and the 

programming language used is shown in Appendix B. This section is divided into two 

areas: the first one will be the study of a tripartite entanglement, and the second one is the 

study of quantum entanglement between a cavity field and a three-qubit quantum state. 

Different values in the dipole-dipole interaction and Kerr-like medium coupling are 
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considered to observe the quantum entanglement robustness. The cavity field environment 

will be divided into a non-Markovian and Markavian environment.   

   

4.4.1 Three-Qubit Entanglment 

 

This section analyzes the entanglement of a three-qubit quantum system in influencing the 

Kerr-like medium under the environment of non-Markovian, 0.8G   and Markovian,

8.0G  . The quantum entanglement is measured via LBC with 1 , 
2

1
1 r ,

3

1
2 r ,

6

1
3 r  ,    

2

1
00 21  aa  and  

2

1
03 a . LBC will have a value from zero 

to one, with one having the most robust quantum entanglement and vice versa. The value 

of nr  is chosen with a combination of value  0an to achieve a robust entanglement (An et 

al., 2011), while the value of  0an  is used based on the quantum state in quantum 

teleportation (Agrawal et al., 2006).  For a dipole-dipole interaction, d will vary as shown 

in Figure 4.1e and Figure 4.2e and several Kerr-like medium coupling strength is used to 

analyze the effect of the quantum entanglement of the three-qubit quantum system. The 

value of pole, jz will vary according to the different values of the Kerr-like medium and 

the dipole-dipole interaction which contain three negative real numbers and a complex 

value, shown in Appendix C and D, except for a zero dipole-dipole interaction where jz  

consists of only two poles, as shown in Table 4.1 and 4.2. Both Table 4.1 and Table 4.2 are 

extracted from Appendix C and D. 
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Table 4.1 

Values of Poles for No Dipole-dipole Interaction, 0d   and 8.0G   with Different 

Kerr-like Medium Coupling Strength 

K jz  

0.000 0.000 

0.000 -0.0728 -0.0852 i 

0.000 -0.9272 + 1.0852 i 

0.0100 0.000 

0.0100 -0.0721 -0.0850 i 

0.0100 -0.9279 + 1.0950 i 

0.1000 0.000 

0.1000 -0.0658 -0.0833 i 

0.1000 -0.9342 + 1.1833 i 

2.5000 0.000 

2.5000 -0.0117 -0.0419 i 

2.5000 -0.9883 + 3.5419 i 
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Table 4.2 

Values of Poles for No Dipole-dipole Interaction, 0d   and 0.8G    with Different 

Kerr-like Medium Coupling Strength 

K jz  

0.000 0.000 

0.000 -0.4375 -3.5005 i 

0.000 -0.5625 + 4.5005 i 

0.010 0.000 

0.010 -0.4369 -3.4961 i 

0.010 -0.5631 + 4.5061 i 

1.000 0.000 

1.000 -0.3779 -3.0945 i 

1.000 -0.6221 + 5.0945 i 

3.000 0.000 

3.000 -0.2753 -2.4498 i 

3.000 -0.7247 + 6.4498 i 

 

 Figure 4.1 shows the entanglement strength for various dipole-dipole interactions 

and different Kerr-like medium coupling strength. Figure 4.1a shows that when there is no 

Kerr-like medium coupling, d increases the quantum entanglement, which becomes more 

robust and stable (An et al., 2011).  
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The quantum entanglement is shown in Figure 4.1b and 4.1c when the Kerr-like medium 

coupling strength is weak and the LBC shows that quantum entanglement is identical to 

each other. A slight increase in Kerr-like medium coupling does not seem to influence the 

quantum entanglement. For example, under 5.0d   the value for one of the poles is shown 

in Table 4.3. It seems that the change of the poles is less than 0.0006 on average for the 

real and the imaginary part. The small change has caused the LBC to be identical.  

 

Table 4.3 

Values of Poles for 8.0G  , 5.0d   and Different Values of K 

K jz  

0.0000 -0.9275 + 1.0576 i 

0.0100 -0.9281 + 1.0680 i 

0.1000 -0.9331 + 1.1607 i 

 

 However, when there is strong Kerr-like medium coupling, a change in the quantum 

entanglement is observed (see Figure 4.1d). In the beginning when there is a dipole-dipole 

interaction the quantum entanglement strength is in the same range except for d=0.5 where 

it seems to be above the other dipole-dipole interaction strength around. As usual for d=0.0 

the LBC is at the lowest in comparison with other d. As the time goes further decoherence 

occurs. It is also showed that a strong dipole-dipole interaction decay slower compared to 

other lower d.   
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Figure 4.1. Lower Bound Concurrence (LBC) 8.0G , various d as shown in e. and a. 

00.0K  , b. 01.0K  , c. 10.0K  , d. 50.2K  . Time scale, 101   

 

 When comparing the various Kerr-like medium coupling strength, the quantum 

entanglement for 0d  and strong Kerr-like medium coupling, it is showed that the 

decoherence increases at 2  . When Figure 4.1a, Figure 4.1b, and Figure 4.1c are 

compared with Figure 4.1d, the decoherence rate is slower, which produces a more robust 

quantum entanglement. This is also true for other dipole-dipole interactions except for 

0.3d  . 0.3d   shows that the decoherence rate is faster (compare Figure 4.1d with Figure 
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4.1a, Figure 4.1b, and Figure 4.1c). Besides, the fluctuation in Figure 4.1d is reduced when 

  increases and then decreases linearly (compare with Figure 4.1a, Figure 4.1b, and Figure 

4.1c). This tells us that an increase in the Kerr-like medium reduces the quantum 

entanglement robustness for a strong dipole-dipole interaction, 0.3d  . At the right d and 

strong K the decoherence rate is reduced, which shows a robust quantum entanglement (An 

et al., 2011).   

 

 Figure 4.2 shows the quantum entanglement robustness for various Kerr-like 

medium coupling and dipole-dipole interactions in a non-Markovian environment. Figure 

4.2a shows that where no Kerr-like medium coupling exists, a stronger dipole-dipole 

interaction leads to a robust quantum entanglement. The fluctuation, which is a small wave 

like pattern, also increases for strong a dipole-dipole interaction. The wave like pattern 

fluctuates in the same manner for 0.15d  and in the least decoherence rate. Hence, the 

quantum entanglement is most robust at the strong dipole-dipole interaction.  

 

 As the Kerr-like medium coupling slightly increases to 01.0K    (see Figure 4.2b), 

the quantum entanglement behaviour still shows an identical pattern as in Figure 4.2a. 

When the Kerr-like medium coupling strength further increases to become 00.1K  , 

Figure 4.2c shows this has caused slight changes in 0.9d   where at 5.0 there is a drop 

in the LBC before it increases back. This means that the quantum entanglement shows 

decoherence due to the effect of the Kerr-like medium coupling, but at 55.0  the LBC 

increases back which is identical to Figure 4.2a and 4.2b.  For a strong Kerr-like medium 

coupling, 00.3K  , some changes are shown in Figure 4.2d where the minimum level of 



91 

 

the LBC increases in comparison when 00.3K  . For example, for 0.3d  and 00.1K   

(see Figure 4.2c) and 0.3d   and 00.3K   (see Figure 4.2d) at 5.0 , there is a drop in 

the LBC, which leads to an increase in decoherence. When these two are compared, the 

drop in Figure 4.2d is lesser than that in Figure 4.2c, which tells us that the Kerr-like 

medium coupling is able to increase the quantum entanglement robustness. However, as d 

becomes stronger, the fluctuation pattern becomes the same, except when 5.0 and 

0d  . In this case, some differences in the fluctuation pattern can be observed. Hence, in 

the non-Markovian environment, only when 01.0K   the impact on the quantum 

entanglement is strong when the Kerr-like medium reduces the decoherence rate under

0.9d  . For 0.15d  the LBC is the same for all where Figure 4.2 shows the highest 

quantum entanglement robustness. Overall, a strong dipole-dipole interaction reduces the 

impact of the Kerr-like medium on the quantum entanglement.  
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Figure 4.2. Lower Bound Concurrence (LBC) for 0.8G  , various d as shown in e. and a. 

00.0K  , b. 01.0K  , c. 00.1K  , d. 00.3K  . Time scale, 31   

 

 Hence, a strong Kerr-like medium coupling will only change the quantum 

entanglement strength of three qubits. Besides, the quantum entanglement robustness is 

shown to have been less influenced by the Kerr-like medium in the Markovian environment 

and also when the dipole-dipole interaction is strong. When compared to the non-

Markovian environment, there is a huge change in the quantum entanglement robustness 

when the Kerr-like medium coupling is strong enough. However, quantum entanglement 
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showed the same results  where the strong dipole-dipole coupling reduces the influence of 

the quantum entanglement by the Kerr-like medium. The Markovian environment contains 

a more robust quantum entanglement than the non-Markovian environment because the 

coupling between the qubits and the cavity field has disrupted the tripartite quantum 

entanglement system.   

 

4.4.2 Positive Detuning Frequency 

 

This section discusses the quantum entanglement when detuning frequency is positive. The 

value for different parameters under positive detuning is displayed in Appendix E and F. 

Positive detuning has shown a different behaviour on the quantum entanglement behaviour 

from Section 4.4.2 where an in increase in the dipole-dipole interaction no longer produces 

a robust quantum entanglement.  



94 

 

 

Figure 4.3. Lower Bound Concurrence (LBC) for 0.2  and 8.0G  , various d as 

shown in e. and a. 00.0K  , b. 01.0K  , c. 00.1K  , d. 00.3K  . Time scale, 

101   

 

 Figure 4.3 shows the LBC in the Markovian environment with a different value of 

d  and K . In Figure 4.3a and 4.3b, the pattern is no longer observed where a stronger d  

leads to a robust quantum entanglement, as shown in Section 4.2.1. Instead, the LBC shows 

that the decoherence rate is random for the strong and weak dipole-dipole interaction. After 

the change of 0.2 , the initial increase in 0.1d   reduced the robustness of the quantum 
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entanglement, but once 0.1d0.4   the robustness increases back in a lesser rate of 

decoherence. Then when  0.4d   the quantum state is close to the separable state with the 

LBC near zero, with an average LBC value of 0.0058 for both 00.0K   and 01.0K  , 

respectively (see Table 4.4).  

 

Table 4.4  

Value of LBC for Different K and   

τ  0.01K   0.01K   

0 0.0068 0.0068 

1 0.0066 0.0066 

2 0.0063 0.0063 

3 0.0062 0.0062 

4 0.0060 0.0060 

5 0.0058 0.0058 

6 0.0056 0.0056 

7 0.0055 0.0055 

8 0.0053 0.0053 

9 0.0052 0.0052 

10 0.0050 0.0050 

 

Both Figure 4.3a and Figure 4.3b produce the same pattern of output and quantum 

entanglement strength, which tells us that a weak Kerr-like medium coupling does not have 
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a big influence on the entanglement. As shown in Table 4.5 the poles changes only in a 

small value when K  increases from 0.00 to 0.01. 

Table 4.5 

Value of Poles Changes Slightly for Weak Kerr-like Medium 

K d jz  

0.0000 1.0000 - 0.8600 + 2.0096 i 

0.0000 1.0000 - 0.1390 + 1.9985 i 

0.0000 1.0000 -0.0209 + 1.1285 i 

0.0100 1.0000 - 0.8600 + 1.9977 i 

0.0100 1.0000 - 0.1390 + 2.0004 i 

0.0100 1.0000 -0.0210 + 1.1287 i 

 

when 01.0K  , Figure 4.3c and 4.3d indicate that the entanglement shows a pattern where 

an increase in d  leads to an increase in the quantum entanglement robustness. An increase 

in the Kerr-like medium coupling from 00.1K   to 00.3K   increases the robustness for

0.0d  . Initially at 0.0d   the same rate of decoherence was observed (see Figure 4.3c 

and Figure 4.3d). However, when 0.0d   there is an increase in the entanglement 

robustness with a lesser decoherence rate (compare Figure 4.3d with Figure 4.3c). Figure 

4.3d shows that for 0.0d   the line is getting closer together. Figure 4.3d also shows a 

more robust quantum entanglement than 01.0K  . 
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Figure 4.4. Lower Bound Concurrence (LBC) for 0.2  and 0.8G  , various d as 

shown in e. and a. 00.0K  , b. 10.0K  , c. 00.1K  , d. 00.3K  . Time scale,

0.3τ1   

 

 Figure 4.4 shows the LBC in the function of τ , which in this case will be in the non-

Markovian environment. The result showed that there are 6 points where the LBC for 

0.0d  and 0.3d   crossed with each other (see Figure 4.4a and 4.4b). The result also 

showed that an increase from 0.0K   to 1.0K   increases the amplitude with an average 

difference of 0.063 from 0.0d   to 0.3d  . An increase in the Kerr-like medium coupling 
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helps improve the quantum entanglement and reduces the random affect of positive 

detuning in this case.  When 0.6d  , Figure 4.4a and Figure 4.4b show that the quantum 

entanglement is more robust with a huge increase, but Figure 4.4b has more waves than 

Figure 4.4a for 0.6d  , which indicates some instability to the entanglement. When K is 

further increased the cross, as shown in Figure 4.4c and 4.4d, disappears and it is followed 

by an increase in the quantum entanglement robustness with an increase in d , as shown 

in Figure 4.4c and Figure 4.4d. For 0.0d  , both Figure 4.4c and Figure 4.4d show the 

same pattern and the difference is close to zero. Table 4.6 shows that the value of jz  is the 

same for both 00.1K   and 00.3K  for 0.0d  . Then, when 0.0d  , the quantum 

entanglement becomes stronger for 00.3K   than for 00.1K  . When d  reaches 9.0 

the differences between Figure 4.4c and 4.4d become lesser with an average deviation of 

0.01 for 0.15d  .  

 

Table 4.6 

Value of Poles for K  3.000 and K  1.000 under d  0.000 

K jz  

1.00 - 0.5625 + 4.5005 i 

1.00 -0.4375 + 3.5005 i 

1.00 0.0000 

3.00 0.0000 

3.00 -0.5625 + 4.5005 i 

3.00 - 0.4375 + 3.5005 i 
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 Next,   is increased to 10.0, which shows a random LBC for a different value of

d (see Figure 4.5). When compared with Figure 4.3 where the randomness only applies to 

low K , Figure 4.5 shows that the strength of K only improves the entanglement robustness 

for certain dipole-dipole interaction strength. As usual, a weak Kerr-like medium coupling 

(see Figure 4.5a and 4.5b) shows a similar fluctuation pattern with pairs of 0.0d  and

0.9d  , 0.3d   and 0.6d    fluctuating close to each other. These two pairs become 

closer to each other when there is a further increase in 00.1K   (see Figure 4.5c). Lastly, 

when K  is increased to 3.00, the LBC changes with the close fluctuation does no longer 

exist and the quantum entanglement is seen to be more robust except for 0d  and 0.3d 

, which show a higher decoherence rate.  
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Figure 4.5. Lower Bound Concurrence (LBC) for 0.10  and 0.8G  , various d as 

shown in e. and a. 00.0K  , b. 10.0K  , c. 00.1K  , d. 00.3K  . Time scale,

0.3τ1   

 

Between the Markovian and the non-Markovian environment, the latter 

environment shows better quantum entanglement strength because of the energy that was 

lost will flow back to the quantum system. The Kerr-like medium coupling also influences 

the quantum entanglement where it reduces the decoherence rate. However, in the non-



101 

 

Markovian environment with 0.10 , the Kerr-like medium does not have enough 

influence on the entanglement. 

 

4.4.3 Conclusion 

 

Different parameters are observed and studied for the robustness quantum entanglement. 

Overall, a weak Kerr-like medium coupling does not influence much the quantum 

entanglement in all environments and also dipole-dipole interactions. Further enhancement 

of the Kerr-like medium coupling changes the quantum entanglement with different 

parameters of dipole-dipole interaction, environment or detuning frequency. Besides, a 

strong dipole-dipole interaction also reduces the influence of the Kerr-like medium 

coupling.   

 

For negative detuning frequency, the quantum entanglement becomes more robust 

with an increase in the dipole-dipole interaction and the strong Kerr-like medium coupling 

is able to increase the entanglement robustness. However, a higher decoherence occurs for 

the strong dipole-dipole interaction with the strong Kerr-like medium coupling in the 

Markovian environment. In the non-Markovian environment the quantum entanglement 

becomes more robust with an increase in the dipole-dipole interaction. This impact is 

reduced when the dipole-dipole interaction is getting stronger.  

 

For positive detuning frequency, the quantum entanglement robustness no longer 

increases with the dipole-dipole interaction. This happens in both the Markovian and non-
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Markovian environments where the entanglement robustness is in random when the dipole-

dipole interaction changes. With the appearance of the Kerr-like medium coupling, the 

random behaviour reduces and eventually reverts back to the same trend as negative 

detuning frequency for Markovian behaviour. The difference is that the quantum 

entanglement is more robust with a strong Kerr-like medium. In the non-Markovian 

environment, a strong Kerr-like medium produces a robust quantum entanglement and 

eliminates the randomness. However, for higher detuning frequency, 0.10 , the 

randomness still exists for a strong Kerr-like medium coupling where a certain dipole-

dipole coupling showed a more robust quantum entanglement, while the other showed a 

less robust entanglement when the Kerr-like medium coupling was weak.  
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CHAPTER FIVE 

CONCLUSON 

A study on the Jaynes-Cummings model under influence of a Kerr-like medium is 

presented in this thesis. From this model new features of quantum behaviour and the major 

influence of quantum behaviour are produced. Specifically, this model presents the new 

features of a quantum entanglement of a three-qubit quantum state under the influence of 

the Kerr-like medium.  

 

This chapter discusses the contribution of this study and offers recommendations 

for future study. 

5.1 Contribution of the Study 

 

This study developed the Jaynes-Cummings model for a multi-photon transition coupling 

with a Kerr-like medium and a three-qubit quantum state coupling with a Kerr-like 

medium. Using these two models, measurement was conducted to study the quantum 

behaviour and the quantum entanglement properties.  

 

A multi-photon transition of the Jaynes-Cummings model coupling with the Kerr-

like medium shows more collapses and revivals with the presence of both photons and the 

Kerr-like medium. With the increase in the number of photons, the influence of the Kerr-

like medium becomes lesser. Besides, the increase in the multi-photon transition increases 
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the collapses and revivals where the fluctuation becomes more frequent and random. This 

tells us that the increase in the multi-photon transition leads to an increase in the activity 

of the quantum behaviour.  

 

Another study of quantum entanglement shows that the Kerr-like medium coupling 

plays an important role with a three-qubit Jaynes-Cummings model. An increase in the 

Kerr-like medium coupling strength increases the entanglement robustness. However, the 

influence is reduced when a dipole-dipole coupling increases. 

 

As explained earlier, these two studies provide a good understanding of quantum 

system behaviour which will be useful in the future study of quantum entanglement under 

the coupling of a Kerr-like medium. Better understanding of the quantum entanglement 

will allow researchers to be able to optimize maximum robustness of the application. In 

this study, it was found that the Kerr-like medium will improve the quantum entanglement 

robustness especially with strong dipole-dipole coupling. This allows us to utilize the 

condition under which the influence on the quantum behaviour is likely to optimally robust. 

Hence, the application of quantum information can improve stability under a robust 

quantum entanglement. For example, quantum teleportation is the transmission of 

information from one place to another place using a quantum entanglement of qubit. The 

robustness of the quantum entanglement will ensure that quality information is able to be 

transferred with a high success rate. 
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5.2 Suggestion of Future Research  

 

A higher number of qubit in the Jaynes-Cummings model can be considered for future 

study. This will further increase the understanding of quantum behaviour. A three-qubit 

quantum state is the basic state of a multi-photon quantum state as the three-qubit quantum 

state contains more complex quantum entanglement, as explained in Section 1.3. A higher 

qubit quantum state will contain even more complex quantum entanglement which needs 

to be understood.  

 

Based on the Jaynes-Cummings model, more atom transition level could be 

considered as well. In reality atoms contain more than two levels. Further study on a higher 

qubit level, such as three, four or more will offer a better understanding of quantum 

behaviour.  
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