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Abstrak 

Suatu sistem inventori berusaha mengimbangi antara lebihan stok and kekurangan 
stok bagi mengurangkan jumlah kos dan mencapai permintaan pengguna dalam masa 
yang tepat. Sistem inventori adalah seperti entiti yang tersembunyi dalam rantaian 
bekalan, yang mana rangkaian lengkap yang besar menyelaraskan satu siri proses 
yang saling berkaitan untuk sesuatu pengeluar, bagi mengubah bahan mentah kepada 
produk akhir dan mengagihkannya kepada pelanggan. Inventori optimum dan 
peruntukan dasar dalam rantaian bekalan untuk industri simen bagi kebanyakan jenis 
sistem pelbagai lapisan masih tidak diketahui. Dalam rangkaian pelbagai lapisan, 
kerumitan wujud apabila berbagai isu inventori timbul dalam pelbagai peringkat 
yang mana prestasi mereka dipengaruhi secara signifikan oleh permintaan dan masa-
pendulu. Oleh itu, objektif kajian ini adalah untuk membangunkan satu model 
matematik teranggar yang ditambahbaik dalam satu sistem inventori pelbagai lapisan 
melalui dasar ulasan berterusan yang tertakluk kepada permintaan berkebarangkalian 
dan masa-pendulu. Fungsi taburan kebarangkalian permintaan semasa masa-pendulu 
dijana dengan membangunkan satu model simulasi baru berkaitan permintaan 
semasa masa-pendulu (SMDDL) menggunakan prosedur simulasi. Model ini 
berupaya meramal permintaan dan permintaan semasa masa-pendulu untuk masa 
hadapan. Permintaan semasa masa-pendulu untuk masa hadapan yang diperoleh 
digunakan untuk membangun satu model inventori pelbagai lapisan bersiri (SMEI) 
dengan menerbitkan fungsi kos inventori untuk mengira ukuran prestasi bagi sistem 
inventori industri simen. Berdasarkan ukuran prestasi tersebut, satu model inventori 
pelbagai lapisan taburan yang diubahsuai dengan aturan tiba dahulu layan dahulu 
(FCFS) (DMEI-FCFS) diterbitkan untuk menentukan jangka masa menunggu terbaik 
dan jangkaan bilangan peruncit dalam sistem berdasarkan min kadar ketibaan dan 
min kadar perkhidmatan. Kajian ini menghasilkan lima fungsi taburan baharu bagi 
permintaan semasa masa-pendulu. Semua fungsi taburan mampu menambahbaik 
ukuran prestasi yang mana ianya menyumbang kepada pengurangan dalam jangka 
masa menungu dalam sistem. Keseluruhannya, model teranggar ini dapat 
mencadangkan tempoh masa yang tepat bagi mengatasi masalah kekurangan 
inventori simen yang mana seterusnya memenuhi kepuasan pelanggan.  
 
 
Kata kunci: Model inventori pelbagai lapisan, dasar ulasan berterusan, permintaan 

dan masa-pendulu berkebarangkalian , prosedur simulasi, aturan FCFS 

. 
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Abstract 

An inventory system attempts to balance between overstock and understock to 
reduce the total cost and achieve customer demand in a timely manner. The 
inventory system is like a hidden entity in a supply chain, where a large complete 
network synchronizes a series of interrelated processes for a manufacturer, in order 
to transform raw materials into final products and distribute them to customers. The 
optimality of inventory and allocation policies in a supply chain for a cement 
industry is still unknown for many types of multi-echelon inventory systems. In 
multi-echelon networks, complexity exists when the inventory issues appear in 
multiple tiers and whose performances are significantly affected by the demand and 
lead-time. Hence, the objective of this research is to develop an enhanced 
approximation mathematical model in a multi-echelon inventory system under a 
continuous review policy subject to probabilistic demand and lead-time. The 
probability distribution function of demand during lead-time is established by 
developing a new Simulation Model of Demand During Lead-Time (SMDDL) using 
simulation procedures. The model is able to forecast future demand and demand 
during lead-time. The obtained demand during lead-time is used to develop a Serial 
Multi-echelon Inventory (SMEI) model by deriving the inventory cost function to 
compute performance measures of the cement inventory system. Based on the 
performance measures, a modified distribution multi-echelon inventory (DMEI) 
model with the First Come First Serve (FCFS) rule (DMEI-FCFS) is derived to 
determine the best expected waiting time and expected number of retailers in the 
system based on a mean arrival rate and a mean service rate. This research 
established five new distribution functions for the demand during lead-time. The 
distribution functions improve the performance measures, which contribute in 
reducing the expected waiting time in the system. Overall, the approximation model 
provides accurate time span to overcome shortage of cement inventory, which in turn 
fulfil customer satisfaction. 
 
 
Keywords: Approximation multi-echelon inventory model, continuous review 
policy, probabilistic demand and lead-time, simulation procedures, FCFS rule  
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 CHAPTER ONE

 INTRODUCTION 

Over time, there have been an increasing number of studies in the area of a multi-

echelon inventory system, which is popularly called Supply Chain Management 

(SCM). The reason behind this continued interest is not only because of the 

complexity that arises from the interaction between the different stages (echelons) but 

also due to its immensely practical application in the real world. 

A supply chain is a complete system or network that synchronizes a series of 

interrelated processes (businesses, works, or jobs) in order to transform raw materials 

into final products or semi-finished goods, and distribute these final products from a 

distribution center to retailers or to customers directly (Min & Zhou, 2002). The 

primary objective of a supply chain is to maximize the profitability for all partners 

involved. The partners can be a single firm or more than one firm. The objective can 

be met if all partners think ‘win-win’ and are not worried about their individual 

performance optimization (Chopra & Meindl, 2001).  

Traditionally, inventories at various stocks in a supply chain were managed 

independently and stored with high inventories (Chen and Mushaluk 2014, Yvan 

2011). Market globalization and competitive pressures have increasingly forced 

companies to make more efforts to optimally control their inventories while 

improving customer service (Yang and Geunes 2007, Agudelo 2009). As a result, 

industrial practitioners and academic researchers have begun to pay extra attention to 

multi-echelon inventory management, which takes the interactions between different 

stocks in a supply chain into consideration. 
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Usually, manufacturing processes go through several stages until the final product is 

reached (Axsater, 2010; Beamon, 1998). This is an example of what multi-echelons 

mean in a supply chain. The massively tangible practical application makes the 

interaction through the stages very complex. Because of this complexity, many 

researchers focus on the system of multi-stage (echelon) inventory control under the 

name of Supply Chain Management (SCM). A SCM requires that all parties 

concerned, directly or indirectly, organize and coordinate the flow of materials from 

suppliers to end consumers for satisfying consumers request (Chopra & Meindi, 

2010). 

Most of the previous studies on multi-echelon inventory systems such as Axsäter and 

Marklund (2008), Axsäter (1984), Clark and Scarf (1960), Graves (1998), Hausman 

and Erkip (1994) Hosoda and Disney (2006) and  Muckstadt (1986) assume fixed 

lead-time or ignore the lead-time with probabilistic or constant demand. The 

probabilistic demand and probabilistic lead-time make the models of a multi-stage 

inventory system increasingly difficult than the deterministic models. Even most 

studies that considered probabilistic demand and lead-time adopt the Poisson 

distribution (Axsäter, 2011; Axsäter & Marklund, 2008; Bookbinder, Cakanyildrim, 

1999; Hosoda & Disney, 2006; Simchi-Levi & Zhao, 2005), which assumed discrete 

distribution or slow moving items (Deng, Song, Ji, & Zhang, 2010; Ghafour, 2007; 

Zhao et al., 2006). 

However, it is crucial also to consider and focus on probabilistic demand and 

probabilistic lead-time with uncertainty in high demand and lead-time, such as in the 

cement manufacturing sector. The rationale for investigating this manufacturing 
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sector was triggered by various situations (Greenstone & Syverson, 2012). The 

manufacturing process which passes through several stages (echelons), starting with 

storing raw materials, then going through the process of product manufacturing and 

storing in warehouses, and finally distributing to retailers through distribution centers 

(Karaman, 2007; You & Grossmann, 2011) . All of these stages need processors 

according to a multi-echelon inventory system regarding how much and when to 

order based on a probabilistic inventory system.   

1.1 Challenges of Supply chain management  

Previous studies in operations management, e.g., Hesse and Rodrigue (2004) and 

Stadtler (2005) focused on the analysis of a single company with suitable tools to 

develop efficiency in the firm through optimal solutions. At present, the globalization 

of the market and increased competition dominate business decisions between 

companies (Li, 2013; Pal, Sankar, & Chaudhuri, 2012). Moreover, more items and 

products reach customers through a supply chain, which consists of independent 

companies. A longer supply chain often involves a longer delivery lead time. As a 

result, the chain will often be expected to be less reliable because a longer chain may 

have low production flexibility. In addition there increasing difficulties to adapt to 

changes in the system because of a higher level of inventory. The answer to the 

problem of a longer lead-time is to accelerate the supply chain. In other words, there 

are many challenges faced by manufacturing industries, such as the cement 

manufacturers, infrastructure, and power plants. These challenges, if not addressed, 

may affect the economic growth and investment opportunities. The current challenges 
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can be classified into factors which are human resource, logistics, infrastructure, 

politics, and security.  

 Human resource factor 1.1.1

Human resource management is critical in the manufacturing world. Accordingly, 

human resource management practitioners have to develop new competencies in 

areas, such as changing the management and technology  (Crouse, Doyle, & Young, 

2011). Learning is a critical element and an important aspect of institution life 

because it helps individuals of the institutions adapt to changing environments (Doyle 

& Young, 2007), assists in growth and innovation, and helps develop competitiveness 

(Kock, 2007; Warring, Döös, Wilhelmson, Backlund, & Dixon, 2005). Furthermore, 

learning was positively associated with organizational performance (Olsen & 

Eikebrokk, 2010). Subsequently, interest in ergonomics learning has also increased in 

recent years (Ellinger & Cseh, 2007; Ouweneel, Taris, van Zolingen, & Schreurs, 

2009).  

However, the challenges to work in learning environment are factors that prevent 

learning from starting, impede or interrupt learning, or terminate learning earlier than 

it might be ordinarily happen (Hicks, Bagg, Doyle, & Young, 2007). Past literature 

suggested 45 learning challenges. However, Doyle, Reid and Young (2008), Lohman 

(2000; 2005; 2009), Paige (2002), White et al. (2000) and Crouse et al. (2011) 

reduced them to nine in view of the commonalities of the learning challenges. They 

include taking programs and courses, doing new tasks, working with others, 
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implementing e-learning, observing, trying trial and error, reading/researching, 

reflecting on the action and doing feedback or replication/vision.  

Other challenges appear to be more common for some groups than for others. For 

example, the cost of learning was found to be a bigger challenge for managers in 

small companies and factories than for managers in big companies and factories 

(Doyle et al., 2008). Partners thought that it was more difficult for trainees and 

directors to learn because there were too few knowledgeable people to help them. 

Shared and unique educational challenges exist within and through different 

professional strategies.  

The human resource factor plays a significant role in developing the capability of the 

organizations. In contrast, if the organization lacks of the human resource capability, 

it will not be able to cope with future challenges. 

 Logistics factor 1.1.2

The concept of logistics or reverse logistics is an answer not only for technical 

recovery, customer requirements, and technological innovations in the economy, but 

also for environmental pollution recovery that causes conflict between the economy 

and the environment (Abed, Alimi, Ghédira, Hsairi, & Benabdelhafid, 2011). Reverse 

logistics is the tool for creating and restoring economics and environmental balance 

(Popa, 2009). Reverse logistics permit the operation of goods, items, or products to 

move from a destination of their typical final point to the source of origin/recovery, 

which means that the purpose of conceivable reuse for all returned items or their parts 

and re-empowering these materials to forward logistics can be ascertained (Lee, 
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2005). Therefore, reverse logistics focus on the possibilities of value recovery from 

the used and returned goods (Stock, 1992). During the past years, the concept of 

reverse logistics has involved creating a practical usage by client companies with 

flows of returns, such as end-of-use returns, product recall, and warranty service 

returns. In highlighting the importance of the market, competition, the environment 

and the economy, it is also necessary to define the challenging elements of reverse 

logistics, such as economic barriers, organizational barriers, barriers related to 

market, and barriers related to government (Starostka-Patyk, Zawada, Pabian, & 

Abed, 2013).  

Sharma, Panda, Mahapatra, & Sahu (2011) classified the challenges in reverse 

logistics as absence of awareness about reverse logistics, management inattention, 

financial constraints, personal resources, problems with product quality, lack of 

appropriate performance management systems, inadequate information and 

technological systems, company policies, legal issues, administrative and financial 

burden of taxes, and limited forecasting and planning. 

For example, the current issues of logistics factor in the cement industry in Iraq are 

due to the security situations. Trucks have to go through many checkpoints before 

they can enter the Iraq-Kurdistan region to ensure the validity of the arrivals’ 

information. Moreover, most truck drivers that transport materials do not have the 

necessary documents, such as a general driving license and truck documents to 

present. Also, a lower level of the transportation sector is a challenge in these cases. 

The Iraq-Kurdistan region solely depends on road transportation because a sea port is 

not available due to its geographical location and because air transport is expensive. 
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As a result, transportation delivery takes a long time, which has a negative impact on 

the supply chain performance of the companies (Curtis, 2013). Therefore, logistics 

plays an important role to supply materials to the designated destinations. 

 Infrastructure factor 1.1.3

The prevailing construction element used in power plants, wharves, bridges, 

buildings and other infrastructures in the world is concrete (Stewart, Wang, & 

Nguyen, 2012). In Australia, more than $140 billion is spent yearly on houses, ports, 

buildings, dams, bridges and many other physical infrastructures (Zhao et al., 2006). 

In the United States, there are over five million commercial buildings, more than 

500,000 highway bridges, over 400 huge airports, and many other physical 

infrastructures. Therefore, infrastructure performance is vital to provide the nation 

with the essential services and keep its economic activities alive (Cook, 2006).  

However, infrastructure often deteriorates with age, and the worldwide annual cost is 

estimated to exceed $1.8 trillion, which represents 3-4% of gross domestic product 

(GDP) of industrialized countries (Stewart, Wang, & Nguyen, 2012). Concrete is the 

biggest volume material used by human and is indispensable for innumerate big 

infrastructure development (Agudelo, 2009). 

Infrastructures play an important role to rebuild the foundations and pillars of a state. 

For example, the recent history of Iraq is full of tragic events, and Kurdistan is not an 

exception to these events. Back in history from 1980 to 1988, the Iraqi and Iranian 

war lasted for eight years, and then for the next two years, there were ethnic cleansing 

and genocide. Subsequently, from 1990 to 2003, there were Gulf War I, Gulf War II, 
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and the US-led invasion. All of these wars and conflicts have wrecked the 

infrastructures. Rebuilding or rehabilitating infrastructures needs experience and 

skills. Because of these political issues and conflicts, the cement industry emerges as 

one of the most important industries for development (Bengio, 2012; Edwards, 2012; 

USAID, 2007). However, with the expectation of a huge demand, it is difficult to 

estimate the total demand for cement in Iraq, especially in the Kurdistan region. 

 Political factor 1.1.4

The political factor or political unrest is one of the challenges that face the growth of 

different fields, such as industry, economy, and agriculture (Boddewyn & Brewer, 

2014; Duffield, 2012; Greenstone, List, & Syverson, 2012). Political behavior 

typically involves the securing, acquisition, development, and use of power in 

relation to other entities. Here, power is viewed as the capacity of social actors to 

overcome the resistance of other actors; e.g., related actors located in the nonmarket 

environment of the firm, governments and interest groups (Lux, 2013). But, when 

this factor becomes a handicap in the face of economic development because power 

is used for personal interests, or when a new political party takes office and changes 

an organization to be in accordance with its interests, it becomes a negative factor and 

one of the critical challenges (Chwastiak, 2013). For example, in the parliamentary 

elections of the Iraq-Kurdistan region’s government in September 2013, a new 

political party appeared under the name, ‘the Change’. The political party obtained a 

second place in parliamentary elections with a large number of parliamentary seats 

with the third party (Independent Higher Elections Commission, 2013, Kurdistan 

Regional Government, 2013). The political scenario has an overall impact on the 
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economic process and creates disturbances in markets, which leads to the volatility of 

the market in terms of supply and demand. The target of this new political party is to 

fight against administrative and economic corruptions, so that organized situations in 

the regional government can be established. These situations led to a conflict of 

interests among large complacent corporations which in turn led to a disturbed 

market. 

 Security factor  1.1.5

Recently, the security factor has become one of the challenges and impediments in 

many countries (Dekker, 2009; Klein, 2007; Liow, 2004; Schwartz, 2007). Insecurity 

ergonomics lead to the absence of qualified staff, inadequate telecommunications, 

damaged and looted buildings, and general lack of fiscal infrastructure and policies  

(Zunes, 2009). For example, Iraq becomes one of the countries that has a serious 

security situation (Chwastiak, 2013). Moreover, because of the collapse of the 

security situation in the central and southern Iraq, the process of reconstruction has 

been slowed. Terrorism that is still besetting Iraq in general, except the Iraq-

Kurdistan region, has made selling and delivering of materials and goods in this 

region more expensive and complex (Zunes, 2009). The insecurity situation has led to 

increased pressure and demand for raw materials used in infrastructure on the Iraq-

Kurdistan region to meet the needs of other parts of Iraq, in addition to meeting 

Kurdistan’s needs.  
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1.2  Supply chain Management in manufacturing industry 

SCM is about organizing and coordinating the flow of materials from the supplier to 

the end consumer through the processes of production, storage, and distribution 

(Federgruen & Zipkin, 1984). Any company, whether producer or consumer, seeks to 

maximize its profits through certain procedures and practices. SCM is also defined as 

the mission of merging organizational units along a supply chain and coordinating the 

flow of financial, information, and materials to meet customer demands with the goal 

of improving the competitiveness of an SC as a whole (Huang and Xue, 2012). 

Integration of SC involves a systematic connection between internal and exogenous 

business operations during the management processes to control material, 

information, and flow of cash effectively (Agudelo, 2009; Kannan & Tan, 2005; 

Noche & Elhasia, 2013). 

Normally, SCM plays an instrumental and operational role within the cement 

industry. The administration of the cement supply chain will empower industries and 

incorporate logistics into a consistent pipeline to maintain a nonstop stream of bonds 

from crude material sources to the final retailer (Atan, 2010). However, by virtue of 

the classical operation role and the complexity of SCM in the cement industry, very 

few studies have paid attention to the cement industry supply chain (Agudelo, 2009). 

In general, the processes in supply chain management can include only one firm 

without partners with the objective of finding an optimal inventory system (single-

echelon or multi-echelon), depending on the nature of the problem according to the 

inventory policies. The decision in this type of procedure is called a centralized 

decision (Min & Zhou, 2002; Sidola, Kumar, & Kumar, 2012).  
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However, there is more than one partner in the supply chain because there are many 

firms in each echelon, and each firm is supplied by one or more firms in the previous 

echelon, and likewise, each firm can supply to one or more firms in the succeeding 

echelon (Gurgur & Altiok, 2004). This type of supply chain is called a supply chain 

network (Humair, Ruark, Tomlin, & Willems, 2013; Sahraeian et al., 2010) and a 

decision in this sense is decentralized (Goh, Lim, & Meng, 2007). System processes 

in a decentralized framework mean that there is a decision maker in each echelon 

who is trying to maximize or optimize its own objectives because each echelon 

represents a firm. As mentioned earlier, the main aim of a supply chain is to 

maximize the profitability of firms that are partners in the supply chain (Best, 2009; 

Schwarz, Frederick, Gerald, & Hamdy, 1972).  

That is why Chopra and Meindl (2007) and  Beamon (1998) suggested supply chain 

to include all parties concerned, directly or indirectly, to achieve a customer request. 

The supply chain not only contains the manufacturer and suppliers, but also 

transportation, depot, retailers, and the customer themselves as exhibited in Figure 

1.1. However, a typical supply chain includes a variety of echelons, which are 

suppliers of raw material, manufacturers, warehouses or depots, distributions centers, 

and retailers as the customers. 
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Figure 1.1.  A Supply chain process life cycle 

1.3 Supply chain Management in a cement industry 

The supply chain of a manufacturing industry is aligned with the supply chain of a 

cement industry, which consists of suppliers, raw material depots, manufacturer 

warehouses, distribution centers, and a number of retailers to satisfy a very large 

number of customers (Kock, 2007; Rhee, Veen, Venugopal, & Reddy, 2010). The 

second most consumed material in the world after water is cement (Noche & Elhasia, 

2013). It is an indispensable element in a vast majority of applications needed in our 

daily life. For example, civil infrastructure projects, houses, power generation 

stations, and many more cannot be built without it (Pyke & Cohen, 1993).  

Generally, cement components are a mixture of limestone, sand, shell, clay and iron. 

A worldwide example is the normal Portland cement type, which is commonly used 

worldwide (He, Jewkes, & Buzacott, 2002).  

Current demands for the improvement of construction and infrastructure, a growing 

consciousness of sustainable development, socially and environmentally motivated 

systems, resources limitation, as well as growth in some cement markets and a 
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reduction in others, have forced cement producers to focus on supply and logistics 

chains (Bernstein & De Croix, 2006). Developing and executing the right strategies 

of SCM will lead to an improvement and increase in productivity, maximized 

competence, minimized costs, and reduced environmental impacts (Flatt, Roussel, & 

Cheeseman, 2012). 

Cement, as the most important element or component of concrete, is an essential 

building material for society’s infrastructure construction around the world. The 

consumption rate of cement measures the economic growth and represents a 

development index of several countries (Elhasia, Noche, & Zhao, 2013). According 

to the United Nations Environment Program (2011), ‘basic construction materials 

serve an ever-increasing demand for the building sector, which leads to the annual 

growth rates of about 6% of cement and 3.8% of steel. At the same time, these 

industries cause about 6% of global anthropogenic greenhouse gas emissions. 

The operations of the cement industry involve various stages. First, raw materials, 

such as limestone and clay are taken away from a quarry. Then, they are crushed in 

the mill and carried to the area of depot and homogenization. Next, they are ground 

into raw crush for softer crushing. Subsequently, the material goes during the pre-

heater to the kiln where it is backed up to a temperature level of 1,500 Celsius and 

finally gets cooled to produce what is called, clinker. Finally, the clinker is ground 

with additives, like gypsum and pumice, and then ground together at a cement mill, 

which gives rise to what is called cement (Agudelo, 2009; Elhasia et al., 2013). 

Figure 1.2 illustrates the general mechanism of cement industry production. 
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Figure 1.2.  The cement production scenario (source Lafarge, (2010)) 

The supplier of raw materials to a cement company is divided into two types 

(Agudelo, 2009; Noche & Elhasia, 2013). Firstly, most of these raw materials are in 

the same factory site, which are stones taken from the mountain, and trucked to a raw 

materials depot. Secondly, external suppliers supply other materials that are used in 

the cement manufacturing. The main elements in the cement industry are stones. 

Figure 1.3 illustrates the supply chain process for a cement industry, which consists 

of suppliers, a raw material depot, manufacturer, three installation warehouses, 

distribution centers with n lines, and an unlimited number of retailers that satisfy a 

big number of customers (Chairman, 2012). 
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Figure 1.3. A supply chain process in a cement industry 

1.4 The role of inventory in a supply chain 

An inventory system plays an important role in the supply chain. That is why most 

studies in the field of supply chain used theories of inventory (Graves and Lesnaia, 

2004; Pal et al., 2012; Wang et al., 2010; Zaojie and Guoying, 2007). Inventories try 

to balance between assets and reduce the total cost in order to meet consumer 

demands in a timely manner (Vanany,  Zailani & Pujawan, 2009). Inventory policy 

changes by size or type of the case: single-echelon, multi-echelon, or both of them. 

Inventory parameters, demand, and lead-time are classified into two types: (a) 

deterministic, i.e., static or dynamic; and (b) probabilistic, i.e., stationary or non-

stationary. All of these cases have a role in inventory policy model building. As a 

result, with regard to the supply chain, multi-echelon inventory control in this kind of 

chain is prospering rapidly. Multi-echelon inventory system policy management is an 

assertive section of supply chain operations (Elhasia et al., 2013). Therefore, 

n 
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inventory control is classified as the hidden side of a supply chain. The essential 

elements that have a role to develop or modify an inventory system are multi-

echelon, inventory parameters demand, lead-time then demand during lead-time and 

cost. 

 Inventory in multiple stages 1.4.1

Over the last two decades, there were a large number of studies (Chung, Wee, & 

Yang, 2008; Gümüs & Güneri, 2007; Jie & Cong, 2009) on a multi-stage  inventory 

system, which generally focused on SCM. A multi-stage inventory system is also 

known as multi-echelon. A multi-echelon inventory system looks at the inventory 

levels entirely across the supply chain while taking into account the effect of 

inventories at any given stage or echelon on other echelons (Axsater, 2006). The 

reason for the enchantment in this field is not only due to the complexity of the 

interaction through the echelons but also due to its massively practical applications in 

reality. Globalization, economic and trade openness in finished goods, semi-finished 

goods, and other types of products, overlapping activities, a multitude of competitors, 

and complexity of production stages require that decision maker make concerted 

efforts to satisfy customers’ needs. Therefore, the absence of a strong inventory 

system, skills, and expertise in this area is likely to incur losses to the companies and 

manufacturers (Atan, 2010; Ganeshan, 1999; Roy, 2005). As the cement production 

process is subject to various supply chain stages, an effective multi-echelon inventory 

system to meet the market demand for cement is necessary (Elhasia et al., 2013). 
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  Demand and lead-time parameters 1.4.2

An inventory system is a hidden side of the supply chain. The variables that have a 

key role in an inventory system are demand process, lead-time process, and costs      

(Axsäter & Viswanathan, 2012; Diks, Kok, & Lagodimos, 1996; Li, Xu, & Ye, 

2007). Demand and lead-time are the keys to developing or modifying multi-echelon 

inventory system models (Hayya, Harrison, & Chatfield, 2009). Demand is the 

quantity of a particular economic item, product or service that meets a consumer or 

group of consumers’ needs in a unit measuring time. Demand is classified into two 

types, which are (a) deterministic, i.e., constant or dynamic, and (b) probabilistic, i.e., 

stationary or non-stationary. Lead-time is the time between the order requests until 

received or placed in the warehouse or the customer (Axsater, 2006; Lee, 2005). 

Lead-time is classified as deterministic, i.e., constant or fixed, and probabilistic. 

Inventory control is a wide and varied area. Generally, the essential aim of inventory 

control is to balance between overstock and understock (Frederick & Gerald, 2001; 

Min & Zhou, 2002), which depends on inventory system policies of whether a 

periodic review policy or continuous review policy be applied, in addition to, the 

variables. An inventory control problem appears when there is a need for physical 

storage of goods, items, and products for the purposes of meeting demand over time 

(deterministic and long). Meanwhile, the needs of any project in the business area are 

to keep inventory to ensure continued efficient operations. Usually, a project 

management needs to make a decision regarding the timing of the order at the order 

quantities of the stock. Therefore, the main objective of an inventory system is to 

achieve an adequate level and fewer expenses on inventory to meet future needs 
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regarding stocking inventory (Axsater, 2006; Dolgui, Ben Ammar, Hnaien, & Louly, 

2013; Funaki, 2012; Humair et al., 2013). Inventory control involves answering two 

conventional questions: How much should be ordered? and when should be ordered? 

Answering these two questions depend on the inventory policies that a company 

adopts. Deciding inventory policies can be very complex and risky. The purpose of 

these questions is to satisfy customer demands while optimizing profitability.  

Typically, demand and lead-time in an inventory system can both be constant, which 

is the simplest, or, the demand is probabilistic, and the lead-time is constant 

(deterministic), or, the demand is constant or deterministic, and the lead-time is 

probabilistic, or alternatively, both of them are probabilistic (Frederick & Gerald, 

2001; Hamdy, 2007). Therefore, the complexity comes from the behavior of the 

demand and lead-time. In particular, the demand and the lead-time behaviors are 

more complex when they are probabilistic, i.e., each of the demand and the lead-time 

has a probabilistic distribution function. On the basis of these two variables, the 

multi-echelon inventory systems policies are drawn. 

 Demand during lead-time parameter 1.4.3

Demand during lead-time is the mixed distribution of demand distribution and lead-

time distribution for each one. However, most studies on a multi-echelon inventory 

system (Axsäter & Marklund, 2008; Axsäter, 1984; Clark & Scarf, 1960; Graves, 

1986; Hausman & Erkip, 1994; Hosoda & Disney, 2006; Muckstadt, 1986; 

Ravichandran, 1995; Saffari & Haji, 2009; Sherbrooke, 1968; Zhao, Zhan, Huo, & 

Wu, 2006) considered demand distribution to be a Poisson, compound Poisson or 
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normal, and mostly a constant or fixed lead-time. Generally, these assumptions are 

valid in supply chains that carry expensive items and face low demand, but not 

necessarily valid for a highly uncertain demand (Caglar, Li & Simchi-Levi, 2004; 

Graves, 1985; Muckstadt, 1973; Sherbrooke, 1968). This procedural treatment is 

about the spare part items or slow moving items (slow moving items mean the 

demand for the items are periodical, for example, daily, weekly or monthly) where 

the lead-time is equal to zero or completely ignored.  

However, the treatment is different for slow and fast moving items in multi-echelon 

inventory systems. In spare part items or slow-moving items, demand is discrete, and 

subject to a discrete probabilistic distribution (Gümüs & Güneri, 2007; Schwarz, 

Frederick, Gerald, & Hamdy, 1972; Yang, Ding, Wang, & Dong, 2008). A fast 

moving item means that the demand for this item is high, very high or continuous in 

nature. Fast moving items are the most common inventory and the treatments of this 

type of items are more difficult that of the slow moving or spare part items. This is 

because fast moving items are subject to continuous probabilistic distribution 

functions (Bagchi & Hayya, 1984; Baykal-Gurosy & Erkip, 2010; Gümüs & Güneri, 

2007; Mitra & Chatterjee, 2004a). Most of the studies that deal with inventory 

problems, whether deterministic or probabilistic models; lead-time is to be a 

deterministic constant or stochastic variable. Lead-time includes elements, such as 

order setup, transit order, supplier lead-time, delivery time and setup time (Lee, 

2005).  
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Meanwhile, studies in fast moving items or high demand items (Chung, Wee, & 

Yang, 2008; Elimam & Dodin, 2013; Hosoda & Disney, 2006; Hsieh & Chou, 2010; 

Huang & Xue, 2012; Ignaciuk & Bartoszewicz, 2009; Mitra & Chatterjee, 2004b; 

Pal, Sankar, & Chaudhuri, 2012a, 2012b; Sahraeian, Bashiri, & Ramezani, 2010; 

Seliaman & Rahman, 2008; Seo, Jung, & Hahm, 2002; Xu, Zhang, & Liu, 2009; Yao, 

Yue, Mukhopadhyay, & Wang, 2009) hypothesized or proposed that demand is 

stochastic or probabilistic, and the lead-time is constant or they ignored the lead-time. 

The reason behind that is due to the stability of the market (i.e., stability of the 

demand and the lead-time during the long periods). When the market is not exposed 

to the sudden changes, the behaviors of the demand and the expected period of the 

lead-time may be affected (Demeter & Golini, 2014; Venkateswaran & Son, 2007). 

In this case, an inventory policy, whether it is a periodic review or a continuous 

review, is not as complicated as both of demand and lead-time are probabilistic. 

Based on the previous discussion, it can be concluded that the cement market has a 

high and fast moving demand. 

 Cost parameter 1.4.4

The parameter that plays a fundamental role in most studies in multi-echelon 

inventory system is costs, in all types and forms (Cheng, 1989; Federgruen & Zipkin, 

1984; Funaki, 2012; Mehmood Khan, Jaber, & Bonney, 2011; Moslemi & Zandieh, 

2011; Sheng & Wang, 2014). The studies aimed at reducing or minimizing the total 

cost or holding inventory cost to a minimum, for a very simple reason that these 

studies wished to help companies maximize their profit. Generally, costs in inventory 

systems are divided into four types: setup cost, holding cost, shortage cost, and 
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purchase cost (Axsater, 2006; Bolarín, Lisec, & Esteban, 2008; Frederick & Gerald, 

2001; Hamdy, 2007).   

It is necessary to find the inventory levels that can minimize the costs but yet ones 

that can achieve the highest level of efficiency, performance, and operation. Toward 

these purposes, manufacturers need to determine the economic inventory levels and 

the number of optimal purchases accurately. 

1.5 Methods for estimation of multi-echelon inventory system 

There are different methods utilized in a supply chain of a multi-echelon inventory 

system to reach a solution, such as the exact method (Axsäter & Marklund, 2008; 

Cheung & Hausman, 2000; Forsberg, 1997; Seo et al., 2002), approximate method 

(Axsater, 1993; Axsater, 2006; Gurgur & Altiok, 2004), simulation method (Elhasia 

et al., 2013; Kian Ng, Piplani, & Viswanathan, 2003; Santos & Santos, 2007; Towill, 

Naim, & Wikner, 1992) and forecasting method (Hosoda & Disney, 2006; Snyder, 

Koehler, Hyndman, & Ord, 2004; Wang, 2009). These methods are considered 

advanced technical methods to enhance decision making by analyzing the complex 

situations and building a system through these methods.  

A simulation method is the abstraction of the reality through the input-output 

relationship based on simple or complex mathematical expressions (Santos & Santos, 

2007). A simulation method in a multi-echelon inventory system tries to construct the 

approximate reality as much as possible and provides analytical tools to study the 

behavior of a complex system. Simulation applied in a multi-echelon inventory 

system has been used as a research technique and gained approximated results 



 

22 

(Axsäter, 2000; Barton, 1992; Jie & Cong, 2009; Kian Ng, Piplani, & Viswanathan, 

2003; Liberopoulos & Koukoumialos, 2005; Martel, 2003; Song, Li, & Garcia-Diiaz, 

2008; Tee & Rossetti, 2002; Towill, Naim, & Wikner, 1992). These studies provided 

generalized models with N-echelon and examined a small example as two- or three-

echelon. They assumed demand and lead times to be deterministic or constant and 

uncertain. However, the complexity of the system emerged when each of the demand 

and the lead-time was probabilistic and subject to the probabilistic distribution 

function. 

On the other hand, a forecasting method is widely used in a multi-echelon inventory 

system for different purposes and in a manufacturing problem as well (Flatt et al., 

2012; Huang & Xue, 2012; Snyder, Koehler, Hyndman, & Ord, 2004). Forecasting 

methods are often used to estimate the mean and the standard deviation of the 

demand (Baykal-Gurosy & Erkip, 2010; Hosoda & Disney, 2006; Snyder, Koehler, 

Hyndman, & Ord, 2004; Wang, Bunjira, & Lin, 2010). Therefore, the probability and 

uncertainty of the demand data lead to the use of a suitable forecasting method for 

estimation.   

The most common method used in an inventory system of multi-echelon to access the 

exact solution are mathematical methods, such  as linear programming (Chung et al., 

2008; Pattnaik, 2014), integer programing (Abu Alhaj & Diabat, 2009; Elimam & 

Dodin, 2013; Hsieh & Chou, 2010), dynamic programing (Humair & Willems, 2011; 

Minner, 1997), fuzzy goal programing (Torabi & Hassini, 2009) and quadratic 

programing (Ignaciuk & Bartoszewicz, 2009; Manna, Chaudhuri, & Chiang, 2007). 

Studies that used any one of these methods considered two, three or N-echelon 
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systems with deterministic or probabilistic demand. They assumed lead-time to be 

deterministic, constant, or zero, or they simply ignored the lead-time. 

Usually, these methods lead to exact results and optimal solution. But when the 

behavior of the problem is probabilistic and highly uncertain, the optimality is still 

unknown for most types of multi-echelon inventory systems (Atan, 2010; Chan, 

Routroy, & Kodali, 2005; Johansen, 2005; Mitra & Chatterjee, 2004a). Hence, there 

has been an increase interest in developing simple procedures to obtain results that 

approximate the true optimal as closely as possible (Axsater, 1993, 2003; Dong, & 

Lee, 2003; Gurgur & Altiok, 2004; Johansen, 2005). Subsequently, these procedures 

are classified as the approximation mathematical methods which are summarized as 

follow:  

Most inventory models whether single-echelon or multi-echelon adopts Probabilistic 

Service Approach (PSA), Chen and Zhang (2009); Chen and Lin (2009); 

Klosterhalfen, Dittmar and Minner (2013); Novoa and Storer (2009); Tarim and 

Kingsman (2004); Willemain, Smart and Schwarz (2004) and You and Grossmann 

(2010) as an approximation method. The PSA facilities each stock to preserve an 

adequate inventory level in order to meet its probabilistic demand. When the 

inventory level of a stock is not adequate to meet the demand coming from its 

downstream stocks or end customers, unsatisfied demand is fully backlogged and will 

be filled later when safety stock inventory becomes available. This implies that the 

stock may have a probabilistic delay to fill an unsatisfied demand. The lead-time for 

filling its demand is thus probabilistic. 
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Another approximation mathematical modelling method in the manufacturing 

industry to manage multi-echelon inventory in supply chain is the combined 

approaches of  simulation and forecasting (Axsater, 2003; Axsäter, 2011; 

Bollapragada et al., 1998; Cachon & Fisher, 2000; Giannoccaro, Pontrandolfo, & 

Scozzi, 2003; Graves, 1996; Liberopoulos & Koukoumialos, 2005; Moinzadeh & 

Aggarwal, 1997; Sleptchenko, van der Heijden, & van Harten, 2002; Verrijdt & De 

Kok, 1996; Yoo, Kim, & Rhee, 1997). Most of these studies gained an approximate 

solution by combining mathematical modeling and simulation. It is considered that 

the approximation mathematical method is suitable when there is the existence of the 

probability and uncertainty environment contributing the solution of the supply chain 

of the multi-echelon inventory system. This method deals with the development of 

appropriate algorithms that is able to search for the best inventory policies of the 

systems. Hence, exploring the potential algorithms through this approximation 

method is deemed necessary. 

1.6 Problem statement 

The optimality of inventory and allocation policies in supply chain is still unknown 

for most types of multi-echelon inventory systems. The inventory control problem 

appears when there is a need for physical storage of goods, items, and products for 

the purposes of meeting the demand overtime (deterministic and long) (Elimam & 

Dodin, 2013; Inderfurth & Vogelgesang, 2013; Min & Zhou, 2002). An inventory 

system tries to balance between overstock and understock to reduce the total cost and 

achieve consumer demands in a timely manner. However, it is important and useful 

to know how much should be ordered and when should be ordered.  
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The stability and certainty of the processed materials and distribution to various 

destinations in global markets have imposed the behavior of lead-time to be constant 

and remained unchanged. This is the main reason that previous studies such as 

Demeter and Golini (2014), Hesse and Rodrigue (2004) and Venkateswaran and Son 

(2007) assumed the lead-time to be constant, fixed or ignored. The problem arises 

when the demand and the lead-time are probabilistic which involved highly 

uncertained lead-time (Deng et al., 2010; Humair et al., 2013; Xu et al., 2009). 

Therefore, this research provides a potential solution through development of an 

approximation mathematical model for a probabilistic situation. 

The probability of demand and lead-time has imposed manufacturers to establish the 

demand during lead-time, which is a very critical element in an inventory system 

such as in a cement industry. When items, goods, or products are near completion, a 

decision maker starts to make a request for an order quantity to meet the needs of 

consumers and avoid falling into shortage as suggested by Bookbinder and 

Cakanyildrim (1999) and Funaki (2012) during this period, and until the required 

quantity arrives at the depot, customer demand is continuous. Since the processes are 

very nested, it is difficult to record the demand data until the items or the products 

reach the place. Therefore, this research explore on potential procedures such as the 

simulation to overcome the situation of demand during lead-time. 

A demand process at any plant or institution depends on the operations and decisions 

of downstream locations, while the lead time process depends on the operations and 

decisions of upstream locations. This is the situation where it involves a continuous 

review policy. Studies such as Hsieh and Chou (2010), Ignaciuk and Bartoszewicz 
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(2009), Moussourakis and Haksever (2013) and Pal et al. (2012) adopted a stochastic 

or constant demand, and ignored the lead time or assumed a constant lead time. 

However, the stochastic environment in a multi-echelon inventory system (i.e., 

probability of demand, probability of lead-time) imposes an approximation model to 

estimate the parameters and solve the problem under a continuous review policy. 

Therefore, to coordinate the flows of the supply chain elements in the cement 

industry whose the demand and lead-time are probabilistic through inventory policy, 

this research attempts to developed a model in a multi-echelon inventory system 

under a continuous review with probabilistic demand and probabilistic lead time. 

This model could establish the inventory performance measures. A similar study by 

Axsäter (2011) has also established an inventory performance measures. However, it 

was for a single echelon and not for a continuous review policy. Furthermore, the 

demand during lead-time was not considered in that study. Hence, our research could 

improve the study by considering a multi-echelon inventory system under the 

continuous review (R, Q) policy, where R is the reorder point and Q is the order 

quantity. 

In addition, Axsater (2010) developed a simple production inventory system with 

single-echelon and one service provider channel M/G/1 model. Subsequently, our 

research could be extended to introduce the multi-echelon and multi-channels service 

providers under the first come first serve (M/G/C-FCFS) model. By this extension the 

proposed model could reduce the long waiting time in the system. 
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1.7 Research Questions 

In order to address the aforementioned issues, this research tries to answer the 

following questions: 

1. How to establish the structure of the probability distribution function of 

demand during lead time? 

2. How to develop a formulation for order quantity, Q in a serial multi-echelon 

inventory system under a continuous review system with the probability 

distribution of demand during lead time? 

3. What is the optimal safety stock, SS that should be on hand for the 

warehouse, including each echelon of the three echelons in distribution with 

a multi-echelon inventory system under a continuous review system?  

4. What is the structure to find the reorder point, R in a distribution multi-

echelon inventory system under a continuous review system? 

5. How to establish the formulation or model for approximating the expected 

total cost for the whole system? 

6. How to integrate the FCFS queueing rule into the continuous review 

inventory system to reduce the long waiting time between the retailers and 

the distribution center? 
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1.8 Research Objectives 

The primary objective of this research is to develop an approximation mathematical 

model in a supply chain of the multi-echelon inventory system under the continuous 

review policy in the cement industry that can achieve the best inventory policy to 

satisfy the retailer’s needs, while considering the probability distribution function of 

demand during lead time. Specifically, this research aims at meeting the following 

objectives:  

1. To develop the probability distribution function of demand during lead time 

by using a simulation procedures. 

2. To develop an appropriate formulation for order quantity, Q in a serial multi-

echelon inventory system under a continuous review (R, Q) policy with the 

probability distribution of the demand during the lead time. 

3. To identify the optimal safety stock that should be on hand for the warehouse, 

including each of the three silos under a continuous review (R, Q) policy. 

4. To determine the optimal reorder point, R in the distribution multi-echelon 

inventory system under a continuous review (R, Q) policy, this also leads to 

extracting the inventory position and levels at each echelon. 

5. To develop the approximate total cost function for the whole system. 
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6. To develop the FCFS queue model in the continuous review inventory system 

in order to reduce the long waiting time between the distribution center and 

the retailers. 

1.9 Scope of the research 

This research was carried out based on the operation activities of a cement industry in 

the Iraq-Kurdistan regional government, which has a contract with the French 

company known as Lafarge. The secondary data were collected for the periods of 

2011 to 2013 because during this time the region has just opened to the world and 

international companies. The involved parties in this research are the decision makers 

and strategic planners from the government and industrial sectors. 

In order to develop an approximate mathematical model of a multi-echelon inventory 

system in a supply chain, demand and lead-time processes need to be identified. The 

demand process at any plant or institution depends on the operations and decisions of 

downstream locations, and lead time depends on the operations and decisions of 

upstream locations. The performance of individual plants depends on both demand 

and lead-time processes. Therefore, this requires an assumption of the probability 

theory.  

1.10 Research contributions 

In this research, we described and studied a combination of serial and distribution 

multi-echelon inventory supply chain and its operational rules. Our aim is to develop 

an approximation mathematical model in order to analyze the impacts of the 
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probability of demand and lead time behaviors in the supply chain using statistical 

methods, forecasting, simulation, and algorithms developments. The contributions of 

this research can be divided into two parts, theoretical and practical. 

 Theoretical contribution 1.10.1

The theoretical contribution of this research relates to the development of an 

approximation mathematical model in a multi-echelon inventory system under the 

continuous review (R, Q) policy with probabilistic demand and probabilistic lead-

time. The development contributes to three models: (a) simulation procedures to 

establish demand during lead-time probability distribution function, SMDDL model; 

(b) a serial multi-echelon inventory system under continuous review (R, Q) model, 

SMEI (R, Q) model; and (c) a distribution multi-echelon inventory system under the 

FCFS queue model which is known as DMEI-FCFS model. All the three models with 

the overall approximation model reviewed new knowledge, and thus enrich the body 

of knowledge for the field of multi-echelon inventory system. 

 Practical contribution 1.10.2

The multi-echelon inventory system under the continuous review (R, Q) policy 

coordinate the processes between the elements of the supply chain for directors, 

managers, officers, and retailers. However, the knowledge of demand and lead time, 

which is important in producing the finished goods, semi-finished goods and other 

types of products offers the decision makers to draw the best inventory system policy 

or to meet and satisfy the needs of markets, customers, and retailers.  
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The establishment of the three sub models in the whole approximation mathematical 

model can be expected to have an impact on the reorder point, lot size, and safety 

stock. In addition reduce the long waiting time in the whole system in order to satisfy 

the greatest extent of possible service seekers. By reducing the long waiting time, 

companies can save effort, time, and money. 

1.11 Organization of the thesis 

Overall, this thesis consists of six chapters, which are organized as follows Chapter 

One introduces background of a multi-echelon inventory system in the SCM. 

Emphases on the challenges faced and motivation are discussed. The issues raised 

and research gap or the problem statement is well defined. This chapter also 

delineates the objectives that need to be achieved in the research. 

Chapter Two presents three main aspects. Firstly, the benefits and the issues in supply 

chain management. Secondly, the types and policies of inventory systems in multi-

echelon inventory systems and thirdly, the fundamental and concept approaches in 

the multi-echelon inventory system. These aspects are important for highlighting the 

scientific gap between the previous studies and this research. 

Chapter Three is devoted to discussing the theoretical and conceptual methods used 

by previous studies. This chapter discusses three key issues. Firstly, the fundamentals 

of forecasting method in the multi-echelon inventory system; secondly, the 

fundamentals of simulation procedures, and thirdly, the fundamentals and concepts of 

multi-echelon inventory system policy. The aim of this chapter is to show the related 

theories of the multi-echelon inventory systems which are considered in this research. 
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In Chapter Four, we present the methodology of how to build and develop an 

approximation mathematical model based on a real word problem. This chapter is 

divided into two parts. The first part explains the simulation procedures to extract the 

probability distribution function of demand during lead time. An exponential 

smoothing method is also discussed. This first part or step is very important because 

it is the essential step to proceed to the second step, which in turn depends on the 

results of the first step. Moreover, step one represents a novel sub-step in this work. 

Secondly, the approximation mathematical model for a multi-echelon inventory 

system with the continuous review (R,Q) policy is developed. 

Chapter Five presents the key results of the new alternative method which contributes 

to the multi-echelon inventory system in supply chain. The performances of the 

proposed models are evaluated. The best solution of a multi-echelon inventory 

system in the cement industry based on the approximation mathematical model is 

discussed. Chapter Six concludes the research, while emphasizing how all objectives 

of the research are achieved. In addition, the chapter discusses the limitations of the 

research and the directions of future work 
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 CHAPTER TWO

LITERATURE REVIEW 

There is a large body of literature on the importance of supply chain management 

(SCM). Previously, researchers focused on the different processes of manufacturing 

supply chain. Presently, more attention is given to the performance, design, and 

analysis of supply chain as a whole because of such factors increase costs of 

manufacturing, decrease resources of manufacturing bases, shorten product life cycle, 

and market globalization. This research focuses on the role of inventory control 

which has practical significance. 

2.1 Supply Chain Management  

The terms supplier and customer has been used ever since commerce started. 

However, the supply chain concept began in the late 1950s after Jay Forrester and his 

colleagues from Massachusetts Institute of Technology began to study the 

relationship between suppliers and customers (Bolarín et al., 2008), and the concept 

of bullwhip effect came into existence to explain the changes in inventory as a result 

of the changes in customer demands. From a functional approach to managing units, 

the process-oriented term of SCM was also discussed by Oliver (1982). Then,  Porter 

(1985) developed the value chain processes, which have, until now, been the  

interface implementation (Blanchard, 2010). 

Even though the SCM concept emerged in the early 1980s, its operation was 

somewhat unstructured. This is reflected in long lead-times, inclusion with functional 

silos, and the lack of coordination, ending with extravagant inventory and higher 
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costs of production. Currently, the system of global planning is integrated with the 

supply chain members authorizing them to think and act as a team (Childerhouse & 

Towill, 2000). 

SCM is defined by various practitioners and researchers based on the background 

where they come from. Generally, the following definitions can be used to be a 

working definition of SC and SCM. 

2.2 Objectives and benefits of SCM  

The aim of SCM is to satisfy the end-customer requirement (Childerhouse & Towill, 

2000). Satisfied customers could be defined if they are basically a part and parcel of 

the system that delivers the item or product and services, giving direct input 

concerning their expectation (Fawcett, Ellram, & Ogden, 2007). As the core of SCM, 

there is a withdrawal system that starts with the customer, where the role and 

participation level would lead in the end to customer satisfaction.  

Concentration on customer satisfaction builds customer allegiance (Greenstone & 

Syverson, 2012). If companies are customer concentrated, they will grasp their key 

competitors well and the corresponding competitive forces (Min & Zhou, 2002), such 

as the level of pricing, quality of product, product availability, quality of service, and 

customer satisfaction (Yvan, 2011). A higher level of customer satisfaction leads to a 

higher level of customer allegiance, a high level of revenue and market share. In the 

end, it drives toward a high level of profitability (Best, 2009) 
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Presently, customers are demanding sufficiently by virtue of the level of the 

consciousness created (Chan et al., 2005; Chopra & Meindl, 2007; Vanany et al., 

2009). They anticipate lower prices, better quality, shorter lead times on deliveries, 

and high reliability (Verwaal & Hesselmans, 2004). Moreover, they are continuously 

searching for lower prices and comparing things with the level of technology the 

world availed for them. The case formed by globalization may give an opportunity 

for multinationals to supply products at their neighborhood gates by supplying from 

countries that are specified to be having a low cost of production (Duffield, 2012). 

Quality can be seen to be congruent to the standardization. However, this affirmation 

shall be clear enough to be easily grasped and found to the level of customer 

anticipations. Quality and prices are not the only factors that identify the level of 

customer gratification. Creativity, timely delivery, and service availability are the 

major requirements of the customers (Fawcett et al., 2007). 

2.3 Supply Chain Management Issues 

SCM includes the design of smooth value added operations through boundaries of an 

organization to enable the organization to cope with the real need of a customer 

(Fawcett et al., 2007). The design and execution impose many complex problems and 

challenges in implementing SCM. These main problems must be first well located so 

that the organization can come up with problem-solving mechanisms proactively. 
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Fawcett et al. (2007) listed the SC design and management problems to include the 

following: 

• Weak coordination of effort 

• Inconsistent information systems 

• Long cycle times 

• Problem of communication 

• Issues of customer service 

• Environmental declination and excessive waste 

• Inventory of high relativity for the level of customer service achieved 

• Below or less than optimal profits 

Public problems are those problems that cross multiple specific problems whereas 

private problems are those that happen in the vertical direction of problem 

disintegration and deal with one particular issue (Chandra & Grabis, 2007; 

Greenstone & Syverson, 2012; Vanany et al., 2009). Accordingly, Chandra and 

Grabis (2007) classified SCM issues as follows: 

• Configuration of the distribution network 

• Inventory control 

• Strategies for distribution 

• SC integration and strategic partnering 

• Procurement and outsourcing strategies 

• Decision support systems and information technology 

• Customer value 
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Some researchers (Axsäter & Zhang, 1999; Jie & Cong, 2009; Song et al., 2008; 

Yang & Geunes, 2007) are more interested in the SCM issues mentioned as follows: 

• Inventory control 

• Multi-Echelon inventory system in SCM 

• Customer demand behaviors 

• Lead-time behaviors 

2.4 Supply chain in a multi-echelon inventory system 

Previously, researchers and practitioners (Chan et al., 2005; Graves & Lesnaia, 2004; 

Kim, Jun, Baek, Smith, & Kim, 2005) investigated the different processes within 

manufacturing supply chain individually. However, there has been a growing interest 

in the performance, design, and analysis of supply chain as a whole (Beamon, 1998; 

Karaman, 2007; Tan & Xu, 2008). This interest is generally the result of the rising 

cost, globalization of market, a long list of products that are virtually endless, and the 

need for coordination (Beamon, 1998). Supply chain is an important element of 

business operations. Understanding its probability behaviors is a significant part of 

risk analysis and performance assessment in supply chain design and management 

(Chen, Federgruen, & Zheng, 2001; Lee & Whang, 1999; Tan & Xu, 2008). 

Therefore, supply chain can be defined as a complete or full manufacturing process 

wherein raw materials are mutated into final products, and then delivered to 

customers. At the highest level, a supply chain consists of two basic integrated 

processes: (a) the planning of the production and the inventory control, and (b) the 

logistic process and the distribution process (refer to Figure 1.1 in Chapter One). 
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Beamon (1998) analyzed 38 previous works published from 1980 to 1998 in supply 

chain. He classified each article according to the kinds of supply chain models used. 

The classification shows that the measures used were based on cost, customer 

responsiveness, and a combination of them (Cohen & Moon, 1990; Hammel & 

Kopczak, 1993; Lee & Billington, 1993). He analyzed the model types that were used 

(deterministic analysis, stochastic analysis, economic or simulation), decision 

variables (production/distribution scheduling, inventory levels/ordering batch size, 

number of stages, plant-product assignment, buyer-supplier relationship and number 

of product type help in inventory), and performance measures (cost, activity time, 

flexibility and customer responsiveness/backorder) (Chen, 1999; Cohen & Lee, 1989; 

Towill et al., 1992). 

A review of inventory modeling in supply chain management literature shows three 

new directions in SCM: materials procurement globalization, manufacture 

globalization, and product globalization (Roy, 2005; Vanany et al., 2009). 

Consistently, three areas in inventory modeling appear: (a) multi-supplier and multi-

product inventory models from upstream of the supply chain, (b) multi-echelon 

inventory control including manufacturers, and (c) stochastic multi-product demand 

inventory models from downstream of the supply chain (Zhao, Zhan, Huo, & Wu, 

2006). 

A typical supply chain includes a variety of echelons. An echelon means the main 

warehouse to manage branches or sub-stores to distribute items (Tan & Xu, 2008). In  

supply chain, there is more than one echelon, for example, between suppliers and 

manufacturers there is an echelon, and between the main warehouse and retailers 
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there is also an echelon which includes suppliers of raw materials, manufacturer, 

warehouses/depots, distribution centers, and retailers (Axsater, 2001). 

A supply chain is a general framework for coordinating workflow from the suppliers 

to the final stage, which is the customer (Hwan Lee & Rhee, 2010). Alternatively 

stated, the material flows downstream from suppliers to customers (Osman & 

Demirli, 2012). A multi-echelon system plays a significant role in supply chain 

because the flow of material passes through stages (echelons) before it becomes a 

product, stored and distributed to its final customers (Lee & Whang, 1999; 

Muckstadt, 1986; Rhee et al., 2010; Roy, 2005). 

2.5 Inventory control systems 

Multiple inventory control usually represents 45% to 90% of all expenses of the 

business, and there is a need to ensure that the company has the right items or 

products on hand in order to avert stockout to prohibit shrinkage (Cook, 2006). 

Inventory control involves the procurement, care, and disposition of materials 

(Sharma et al., 2011). There are three kinds of inventory managers have to pay 

attention to raw materials, semi-finished goods, and finished goods (Agudelo, 2009; 

Karaman, 2007). Hence, the purposes for inventory control system are to:  

• avoid overstock and understock 

• reduce increasing costs 

• help secure the best average of inventory turnover for each item, product, or 

goods 

• help decision makers regarding when and how much to order 
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 Single-Echelon inventory system 2.5.1

An inventory control system can be divided into two parts: single-echelon, and multi-

echelon. A single-echelon is simpler than multi-echelon because of its properties and 

composition (Hausman & Erkip, 1994; Shang, 2012). However, there is an interest 

among researchers in a multi-echelon inventory system because it reflects the real 

nature of the problem that needs a fact-finding of the parameters (Axsäter, 2011; 

Axsater, 2006a; Baten & Kamil, 2009; Deng et al., 2010; Johansen, 2005; Wu et al., 

2007). 

 Multi-Echelon inventory system 2.5.2

Multi-echelon inventory system policy management is an assertive section of supply 

chain operations (Kalchschmidt, Zotteri, & Verganti, 2003; Kian et al., 2003; Rhee et 

al., 2010; Song et al., 2008). The probabilities for effective control of a multi-echelon 

inventory system increase drastically during the last two decades. One of the main 

reasons is the advance in research, which has resulted in new methods and 

approaches that are more general and effective (Axsater, 2006). 

The terms multi-echelon or multilevel production distribution are also equivalent to 

such networks or supply chain when an item moves during more than one step before 

reaching the final customer (Gümüs & Güneri, 2007). There is a considerable interest 

by researchers in this field of study as a result of the expansion and openness of 

international markets, leading to intense competition. Hence, there is tremendous 

amount of literature on multi-echelon inventory control (Abu Alhaj & Diabat, 2009; 

Clark & Scarf, 1960; Graves, 1986; Hosoda & Disney, 2006; Ignaciuk & 
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Bartoszewicz, 2009; Jie & Cong, 2009; Liang & Huang, 2006; Mitra & Chatterjee, 

2004a; Pal, Sankar, & Chaudhuri, 2012; Reyes, 2005; Sahraeian, Bashiri, & 

Ramezani, 2010; Song, Li & Garcia-Diiaz, 2008; Zaojie & Guoying, 2007). 

In the early 1950s, many articles appeared discussing optimal policies of inventory 

problems (Chen, 2000; Clark & Scarf, 1960; Reyes, 2005; Tan, 1974; van Houtum, 

2006). These articles were dedicated to determining the optimal purchasing quantities 

at a single-echelon encountering with some pattern demand. Traditionally, to make 

the supposition that when the installation in question requests a shipment of 

inventory, a shipment will be delivered in a constant or probable stochastic time 

length, but at any average with a time lag, which is independent of the order placed 

size (Axsäter & Juntti, 1996; Axsäter & Rosling, 1993). 

A major example that arises is when there are a number of installations (1, 2, …, N). 

Installation one receives stock from installation two, and installation two receives 

inventory from installation three and so on. If an order is located by installation one 

for inventory from installation two, the period of time for delivery of this inventory is 

determined not only by normal lead-time between these two installations, but also by 

the availability of inventory at installation number two (Clark & Scarf, 1960; Hosoda 

& Disney, 2006; Seo et al., 2002). The model remarked about parameters that were 

specified (lead-time, demand distribution, purchasing cost, holding cost, shortage 

cost, etc.). Theoretically, the purchase quantities were optimally determined. A clear 

way forward would be a cost function for each arrangement of inventory at different 

installations, and the transit for the installations (from one to another). The type of 

functional equation will then be satisfied by cost function, which mostly appear in 
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inventory theory, and from which the optimally provided policies can be determined 

by a recursive computation (Clark & Scarf, 1960; Diks. et al., 1996; Tan, 1974). 

Clark and Scarf (1960) were the first researchers who wrote a multi-echelon 

inventory problem consisting of a two-echelon inventory system with a periodic 

review and computed the optimality of ordering policy for each echelon separately. 

They showed the optimality of a base-stock policy for a pure serial inventory system 

and developed an effective decomposing method to compute the optimal base-stock 

ordering policy (Federgruen & Zipkin, 1984a; Schmidt & Nahmias, 1985).  

Undoubtedly, many modifications and updates have been done on the approach to the 

present day, but these modifications or updates depend on the formulation of the 

problem under the study (Bessler & Veinott, 1966; Dong & Lee, 2003; Sinha, Sobel, 

& Babich, 2010; Tang & Grubbström, 2003). Alternatively stated, prior studies in 

this area that adopted a multi-echelon inventory system in a supply chain chose the 

variables and formulations according to the requirements of the study. Therefore, a 

large proportion of these studies focused on the type of costs in multi-echelon 

inventory systems, such as holding cost, shortage cost, setup cost, and backorder 

costs (Axsater, 2003; Bolarín et al., 2008; Cohen & Moon, 1990). The objective was 

to reduce or minimize the total cost in the supply chain (Axsäter & Rosling, 1999; 

Axsäter, 2010, 2011; Axsäter & Marklund, 2008; Diks, 1996; Muckstadt, 1986; Tan, 

1974). Others adopted in their studies the effects of information sharing in the supply 

chain with multi-echelon inventory systems (Axsater, 2006b). 



 

43 

Another set of studies in the multi-echelon inventory system adopted risks in their 

studies (Goh, Lim, & Meng, 2007; Qi-feng, Xiao-shen, & Wei, 2012; Vanany, 

Zailani & Pujawan, 2009). In addition to the aforementioned, simulation and 

forecasting have a significant share in this area. Supply chain management usually is 

complex, as we mentioned earlier. Therefore, it needs an effective or powerful 

method, such as simulation for modeling the probabilistic demand and lead-time.  

The extensions of Clark and Scarf’s (1960) model contain a general arborescent 

structure. The derivation of an expression of a closed form for the ‘order-up-to-level’ 

is in accordance with the equal fractal allocation proposition (Bessler & Veinott, 

1966). Several authors also considered this problem in different ways, due to the 

intractability and complexity of the multi-echelon problem (Bollapragada, Akella, & 

Srinivasan, 1998; Dong & Lee, 2003; Federgruen & Zipkin, 1984a; Moinzadeh & 

Aggarwal, 1997; Rosenbaum, 1981; Schwarz, Deuermeyer, & Badinelli, 1985; Tee & 

Rossetti, 2002; van der Heijden, 1999; van der Vorst, Beulens, & van Beek, 2000). 

Sherbrooke (1968) was the first researcher who modeled a multi-echelon inventory 

for managing an inventory of service parts under the name of the multi-echelon 

technique for recoverable item control (METRIC) which adopted a two-echelon 

model of an order policy for warehouses and retailers, which determine the inventory 

level, which reduces the expected number of backorders. Later, a wide a group of 

models, which were generally aimed at determining the optimal order quantity and 

safety stock in a framework of multi-echelon, were contributed by several researchers 

(Aggrwal & Moinzadeh, 1994; Moinzadeh & Lee, 1986; Nahmias & Smith, 1994; 

Svoronos & Zipkin, 1988; van der Vorst et al., 2000). Federgruen and Zipkin (1984c) 
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extended the approach of Clark and Scarf (1960) to an infinite horizon and showed a 

new methodology. 

 Multi-Echelon Inventory Management 2.5.3

Research of multi-echelon inventory systems was raised by the pioneering work of 

Clark and Scarf (1960). Since 1960, a tremendous amount of research was performed 

to extend the work of Clark and Scarf. Federgruen and Zipkin (1984c) generalized 

the Clark-Scarf model to the case of the infinite horizon.  Chen and Zheng (1994) 

gave new evidence to Clark and Scarf by deriving the lower bounds on the costs for 

the long-run of their model while  Zipkin (2000) discussed these results in more 

detail. Inderfurth (1991) and Minner (1997) suggested different algorithms of 

dynamic programming to find the optimal echelon base-stock policy from the Clark-

Scarf model. Zangwill (1966, 1969) and Love (1972) showed dynamic programming 

models with discrete time for a periodic review, as well as finite horizon serial 

systems with time-varying demand. Bessler and Veinott (1966) examined a general 

multi-echelon inventory system and tested the near-optimality of ‘myopic’ policies 

for one period of the system. Recently, Sinha, Sobel and Babich (2010) presented a 

unified approach and simple computations to the finite and infinite horizon of the 

Clark-Scarf model. For these additions, serial and assembly systems without setup 

costs of stage base-stock policies were indicated to be optimal. For distribution 

systems without setup costs, stage base-stock policies are optimal under the so-called 

assumption of balance, and vice versa if it is not optimal (Van Houtum, 2006). Due to 

the complex framework of multi-echelon systems with setup costs at each echelon, 
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the vast majority of researchers focused on optimizing and evaluating simple batch 

ordering policies, such as (R, Q) policies. 

2.6 Types of Multi-Echelon inventory system 

A multi-echelon inventory system can be observed in various environments, which 

include: 

i) Serial system. In this type, each location supplies raw materials from 

upstream location to downstream location, and only the downstream 

location meets customers demand (Dong, and Lee, 2003) see Figure 2.1.  

ii) Assembly system. In this type, there is more than one supplier supplying 

the raw material. Each supplier is from a different location. Arguably, the 

upstream location receives raw materials from different suppliers and goes 

through the downstream location to have a single product and single 

location to satisfy customers' demands (Gümüs & Güneri, 2007). 

iii) Distribution system. This system has a single supplier of raw materials and 

multiple finished goods or products (Atan, 2010) as exhibited in Figure 2.2.  

 

In addition, there are other types of multi-echelon inventory systems, called mixed 

systems, which combine serial and assembly systems (Atan,2010; Axsäter & 

Marklund, 2008), serial and distribution systems Axsäter (2007), or assembly and 

distribution systems (Jie & Cong, 2009; Li & Sheng, 2008). 
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Work in a multi-echelon model faces difficulties and challenges (Duffield, 2012). 

One of the greatest challenges is that there is not enough information on demand and 

lead-time in the main warehouse and sub-stores because of the independency of the 

sub-stores in work (Hosoda & Disney, 2006). The availability of such information 

and data will be useful for the main warehouse to meet the needs of sub-stores’ 

products and items. Other challenges include how to formulate a multi-echelon 

inventory model with the shape of complexity for the purpose of balancing between 

the assets in order to avoid an increase in inventory as well as a shortage of products 

and items (Huang & Xue, 2012). 

 

 

Figure 2.1. Serial Multi-Echelon inventory systems 

 

 

 

 

 

 

 

 

 

Figure 2.2.  Distribution of Multi-Echelon inventory systems 
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  Serial system in Multi-Echelon inventory 2.6.1

A significant amount of attention has been concentrated on one certain structure of a 

multi-echelon inventory system. This structure is known as the serial system (Atan, 

2010). Initially, such structure was necessary because it effectively modeled and 

assembled a system (Chopra & Meindi, 2010). A serial system requires that each 

location has at most one predecessor and successor (Beamon, 1998). A production 

system is distinguished from a serial system in two ways (Wagner, 1974). Firstly, it is 

the value-added function of the two environments. In a production system, some 

operations are implemented in the product, which normally adjust both the form and 

value of the product in a distribution system, where the value of the product is often 

unchanged through the system (Gurgur & Altiok, 2004). Secondly, the serial system 

structure is unattractive as a distribution system (He et al., 2002; Van Houtum, 2006). 

It is more reasonable to simplify the connecting exit node with the entrance node and 

get rid of the transient utilities.  

Given the former discussion about serial distribution, only a quick review of the 

literature in the area of the serial system of multi-echelon is presented. Clark and 

Scarf (1960) were the first researchers who wrote about a serial system as we 

previously mentioned. Santos & Santos (2007) provided a review of the extensions to 

the research performed by Clark and Scarf. Extending the work to a system with 

multiple utilities on the same level requires a supposition that all utilities on the same 

level are in balance. In a distribution multi-echelon system, this supposition is 

inappropriate.  
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Zangwill (1969) provided a solution to deterministic demand in a multi-echelon 

problem. The system was modeled to be a single network. The characteristics of this 

network were exploited to develop a dynamic programming solution similar to that of 

Wagner (1959). An important property of this procedure was that the optimal solution 

was a vector included in the set of extreme points. The idea of not initiating a 

replenishment order until a location inventory position reaches zero was essential and 

fundamental to all of the above research linked with deterministic demand. 

Crowston, Wagner, and Williams (1973) solved the order quantity problem under the 

assumption that the demand is constant and instantaneously replenished. The model 

assumes that the optimal solution is the familiar integer multiple types, which means 

that the order quantity at high levels is an integer multiple of the order quantity at the 

next lowest level. Williams (1982) showed through an example that the integer order 

quantity restriction does not always guarantee optimality. 

 Schwarz (1973) developed a heuristic solution to the assembly problem using a 

‘myopic policy’, which includes the optimal solution to all sequential two level 

problems. By considering two levels at a time, the solution procedure is simplified 

mathematically. He showed that the procedure of a myopic policy was optimal or a 

near-optimal. Furthermore, an approach of the branch and bound to the integer 

multiple solutions of Crowston et al. (1973) was provided, in which the result 

confirmed other outcomes, e.g., Clark and Scarf (1960) that decomposed the problem 

into a set of two-echelon problems, and gave near-optimal results. 
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 Distribution system in Multi-echelon inventory 2.6.2

There are two direction models in a multi-echelon inventory system: the 

‘probabilistic service model’ and ‘guaranteed service model (Funaki, 2012; Humair et 

al., 2013; Humair & Willems, 2011). These two models can be applied to any 

inventory system, although for computational reasons, they are usually studied for a 

cyclic network. The first model supposes that the service times between the echelons 

can differ depending on the availability of the predecessors (You & Grossmann, 

2011) while the second model supposes that each location has a guaranteed service 

time (Klosterhalfen et al., 2013; Li, 2013). This guaranteed service becomes possible 

by having external contingency resources.  

Zhao (2007) also considered the same suppositions about the lead-times and studied 

the distribution system with external compound Poisson processes demand. The 

author described the waiting times by virtue of backorders for each unit of demand at 

each location in the supply chain and showed the approximation for assessment at the 

base stock levels. The guaranteed service model was considered by Graves and 

Willems (2000) where the decision variables are schemed to be lead-time for all of 

the locations. They supposed that each location guarantees a delivery at the end of 

these lead-times. A dynamic programming algorithm was assumed to find the optimal 

base-stock levels. 

In a distribution system, few research has been done in one warehouse and multiple 

retailers (Graves, 1985; Lee & Moinzadeh, 1987a; Lee & Moinzadeh, 1987b; 

Sherbrooke, 1968; Svoronos & Zipkin, 1988, 1991). However, due to the expanded 

complexity of distribution systems caused by models with installation policies, the 
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management of inventory in distribution systems becomes more complex than that of 

serial and assembly systems. In previous studies, one common installation policy 

considered was FCFS, which fills retailers’ orders according to their arrival time. The 

adoption of this installation policy can be simplified to be an analysis of the 

distribution systems; however, it is generally not optimal (Axsäter, 2007). Due to the 

priority of FCFS, it is always given to the earliest backlogged order. Chen and 

Samroengraja (2000) also pointed out that this policy was the past priority allocation 

(PPA) policy. Alternatively, they presented another installation policy, called the 

current priority allocation (CPA) policy. The policy is used in a situation when a 

depot is unable to satisfy a retailer's order immediately, but at the same time has 

inventories dedicated to another. 

 Howard and Marklund (2011) considered a ‘state-dependent myopic policy’ rather 

than the FCFS, which allows an installation’s decision to be delayed at a later point in 

time and is based on the state of the system. With these installation policies, models 

of inventory with single-warehouse, multi-retailers have spurred a great interest in the 

literature. The majority of the models assume independent demands through retailers 

and the use of base inventory policies or continuous review (R, Q) policies. Studies 

on distribution system based inventory policies include the following: Axsäter 

(2007), Axsater (1990), Caglar and Simchi-Levi (2000), Gallego, Ozer, and Zipkin 

(2007), and Graves (1985). Forsberg (1997) and Axsäter (1998) introduced varying 

cost evaluation methods for a system with demand and general distribution of inter-

arrival times for customer orders. Cheung and Hausman (2000) introduced an 

accurate method for the steady-state performance evaluation of a distribution system 
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with a warehouse in a two-level. Cachon (2001) considered an accurate evaluation 

method for mean inventory, backorders, and fill rates for a distribution system with 

two levels.  

 Production inventory system 2.6.3

Much literature is available in the design and analysis of production/inventory 

systems. Altiok (1989) focused on production facilities and finished product depots in 

a single production system. They considered the continuous review policy (R, r) to 

control the level of inventory at the depot and presented a procedure to calculate the 

minimum values of cost by R and r for each backorder and lost sales. Altiok and 

Ranjan (1995) discussed a series of multi-echelon production inventory systems. 

Gurgur and Altiok (2004) extended Altiok and Ranjan’s study by considering that 

each echelon has its own input and output inventory activities in a multi-echelon 

production/inventory system. They used the (R, r) policy to control production within 

an echelon and also used the (Q, R) policy to control procurement between echelons.  

Ishii, Takahashi, and Muramatsu (1988) and So and Pinault (1988) considered a 

production/distribution system of a pull type. The base-stock level and lead-time 

method were determined in Ishii et al. (1988), while the safety stock method 

estimation was presented in So and Pinault (1988).  

Pykea and Cohen (1993) developed and analyzed the method of the flow material in 

an integrated production distribution by considering a single product system that 

includes manufacturers, finished goods, and a retailer. The (Q, R) policy base-stock 

was used for both retailers and finished goods with a constant transportation 
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assumption and set-up times. The analyzed methodology showed the isolation of 

finished goods and evaluated the distribution of the inventory on hand (safety stock). 

The probabilities were then used to link finished goods to the manufacturer and to the 

retailer in order to find the inventory distribution in each echelon. 

He et al. (2002) used a Markov decision approach to examine several inventory 

policies regarding replenishment for a make-to-order inventory production system 

and derived an optimal replenishment policy. Later, Bernstein and DeCroix (2006) 

considered an assembly system by using a stock policy. Then, Boute, Lambrecht, and 

Van Houdt (2007) presented a matrix-analytic procedure to calculate the 

replenishment lead-time distribution. 

 Deterministic inventory system 2.6.4

Generally, an inventory system is divided into two parts, deterministic and 

probabilistic (Pentico & Drake, 2011; Vrat, 2014). Whether the behaviors of an 

inventory system are deterministic or probabilistic, depend on the demand process 

(Pentico & Drake, 2011) . In practice, it is unrealistic to assume that the demand is 

deterministic or constant because the demand will change over time, e.g., dynamic, 

the demand rate changes with certain periods of time after, e.g., one week, month, 

season, etc. (Bookbinder & Cakanyildrim, 1999; Yao et al., 2009). But this does not 

mean that studies could not be done on deterministic demand. On contrary, many 

studies focused on this because of privacy, market stabilities, and other conditions 

(Fangruo Chen, 1999; Sana & Chaudhuri, 2008; Wee, 1995). However, the 

deterministic inventory model is much simpler than the probabilistic inventory 
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Cycle 1 Cycle 2 Cycle 3 

system because the demand and, in particular, the lead-time is constant. In general, 

there are four types of deterministic inventory models: the purchase without a 

shortage model, purchase with a shortage model, production without a shortage 

model, and production with shortage model with a single item or multi-item 

inventories. There is a scientific basis for each model. 

 Probabilistic inventory system 2.6.5

The most realistic, comprehensive, and complex inventory system is when the 

demand and the lead-time are probabilistic or stochastic (Marc & Graves, 1985; 

Saharidis, Kouikoglou, & Dallery, 2009; Sahraeian et al., 2010; Tan & Xu, 2008) and 

where it is not easy to control the unexpected and uncertain demand; the procedure is 

a subordination to the theories of probabilistic and inference in statistics. However, 

the demand fluctuation can be stationary or un-stationary; the historical data shows 

this fluctuation in the demand. Figure 2.3 displays the fluctuation of probabilistic 

demand in a probabilistic inventory system. 
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       Q                                                                                      β            Q 

 

 

Figure 2.3.  Probabilistic inventory system 
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2.6.5.1 Probabilistic Demand 

Demand plays a critical role in an inventory system, whether it is a single-echelon or 

multi-echelon. Demand for certain items, goods, or products can be deterministic or 

probabilistic (Bagchi & Hayya, 1984; Inderfurth & Vogelgesang, 2013; Willemain et 

al., 2004). In deterministic cases, it is easy to determine the system state at any 

specific amount of time (Sana & Chaudhuri, 2008). However, in a probabilistic state, 

since the demand is a stochastic variable, in a discrete case it assumed to have a 

known probability mass function, p.m.f and for continuous case it assume to have 

probability density function, p.d.f  (Marc & Graves, 1985; Hayya, Harrison, & 

Chatfield, 2009). Since most companies review historical data, they use forecasting 

techniques to determine the probability distribution of future demand (Starr & Miller, 

1962). 

Most literature in a multi-echelon inventory system supposed the demand distribution 

to be a Poisson or compound Poisson and lead-time to be constant or fixed (Axsäter 

& Marklund, 2008; Axsäter, 1984; Clark & Scarf, 1960; Graves, 1986; Hausman & 

Erkip, 1994; Hosoda & Disney, 2006; Muckstadt, 1986; Ravichandran, 1995; Saffari 

& Haji, 2009; Sherbrooke,1968; Zhao et al., 2006). The reason behind this, is that the 

stability of the markets (i.e., stability of the demand and the lead-time during the long 

periods) where, the market is not exposed to the sudden changes which may affect the 

behaviors of the demand and the expected period of the lead-time (Demeter & Golini, 

2014; Venkateswaran & Son, 2007). Therefore, the period of the lead-time is not 

probabilistic. Generally, these assumptions are valid in supply chains that carry 

expensive items and face a low demand but highly uncertain demand (Caglar, Li, & 
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Simchi-Levi, 2004; Graves, 1985; Muckstadt, 1973; Sherbrooke, 1968). We can, 

therefore, conclude that the procedural treatment is suitable for spare part items or 

slow moving items. Of course, the treatment is different for slow and fast moving 

items in multi-echelon inventory systems. In spare part items, or as it is called slow-

moving items, the demand is discrete and subject to the discrete probability 

distribution mass function, p.m.f. But the fast moving items are most common 

because the classification of the majority interference within fast moving items is 

subject to continuous probabilistic distribution density function, p.d.f, which is the 

most difficult. 

2.6.5.2 Probabilistic Lead-time 

Lead-time has been as an object of study for many researchers in inventory control 

and has been assumed to be fixed. However, lead-time can be deterministic (constant, 

zero, or ignored) or probabilistic. Lead-time is more realistic when it is probabilistic 

as it is more complex. The lead-time length impacts a customer service level, 

inventory on hand (safety stock) level, and efficiency of enterprises (Hariga & Ben-

Daya, 1999; Li, Xu, & Ye, 2007). Lead-time is the time between the order requests 

until they are received or placed in the warehouse or the customer. In fact, lead-time 

includes the following elements: order setup, transit order, supplier lead-time, 

delivery time, and setup time (Lee, 2005). 

Probabilistic lead-time is described as two different ways as follows: 

1. Sequential deliveries are independent of demand during lead-time. Sequential 

deliveries mean that the order cannot cross in time. This type of probabilistic 
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lead-time is most common in practice (Hariga & Ben-Daya, 1999; Kim & Tang, 

1997). For example, in a situation when ordering from a plant or external 

supplier, and the order placed with the outside suppliers are delivered according 

to FCFS basis. In this situation, the order cannot cross each other (Jain & 

Raghavan, 2008). The probabilistic lead-time for a certain order may depend on 

the previous demand by virtue of the earlier order that caused overcrowding in the 

supply system. However, the demand after the order will not affect the lead-time.    

2. Independent lead-time. The probabilistic lead-time may happen if the order is 

rendered by many independent servers (Axsater, 2006). If the lead-time for a 

confirmed order is significant, it may then occur that later demands will trigger 

orders that will be delivered earlier than the other consideration (Axsater, 

2010). In many cases, it is complex to model lead-time of type one. For 

example, orders for a plant and probabilistic lead-time at a confirmed time rely 

on the queues in front of several machines. These queues are by virtue of 

former orders for the time originally specified (Schwarz, Sauer, Daduna, Kulik, 

& Szekli, 2006). To model such lead-times, we may need to contain both the 

inventory and queues in an integrated model (Song, 1994; Zipkin, 2000; Zipkin, 

1986). The same case may happen in connection with a multi-echelon inventory 

system. In reality, it is normally more complex to appraise probabilistic 

variations in lead-time than variations of demand. This is true except when the 

lead-time variations are large, where it may be reasonable to ignore them and 

change a probabilistic lead-time by its mean (Roy, 2005; Snyder et al., 2004). 
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 Order quantity 2.6.6

The order quantity model with different mixed bags has surpassed the interests of 

various experts since it was first researched a century ago by Ford Whitman Harris in 

1913. Many authors, e.g., (Clark, 1972 ; Urgeletti Tinarelli, 1983) gave far-reaching 

audit for utilizing an order quantity model. Cheng (1989) explained order quantity for 

a solitary item of interest identified with a unit value by utilizing a geometric 

programming strategy. This model assumes that demand decreases exponentially 

over time. Wee (1995) inspected an order quantity with shortage. Sana and 

Chaudhuri (2008) considered an order quantity model for different sorts of 

deterministic demand when postponement in installment is allowed by the retailer to 

the supplier. 

 Teng, Yang and Ouyang (2003) augmented Chang and Dye's work by including a 

non-steady purchase cost into the model. Salameh and Jaber (2000) developed 

models on order quantity when secured products are of poor quality, and Khan, Jaber, 

Guiffrida and Zolfaghari (2011) outlined the momentum collection of research that 

augmented Salameh and Jaber’s (2000) order quantity model for defective items. 

 Taleizadeh, Pentico, Jabalameli and Aryanezhad (2013a) considered an order 

quantity issue under fractional deferred installment, and Taleizadeh, Pentico, Saeed 

Jabalameli and Aryanezhad (2013b) developed order quantity models with various 

prepayments under no shortage, full back ordering, and fractional delay purchasing. 

As the opposition increases and more choices in selecting dispersion channels are 

accessible, numerous organizations understand that the execution of their business is 

very dependent upon the level of joint effort and coordination over the supply chain. 
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Extensive studies on supply chain in which a producer supplies an item to a retailer 

were also attempted (e.g., Wang & Liu 2007; Lee & Rhee 2010). 

Many studies additionally examined coordination schemes on order quantity models. 

For example, Xia, Chen and Kouvelis (2008) inspected the supply chain coordination 

issue for an supply chain with different purchasers and numerous suppliers and found 

that matching purchasers' request profiles to suppliers' expense structures are the 

primary wellspring of supply chain coordination. Chen and Chen (2005) considered a 

multi-product inventory and production issue with joint setup costs for a solitary 

maker and a solitary retailer where the retailer confronts deterministic demand and 

offers various items in the marketplace. Based on order quantity, they identified the 

optimal replenishment approaches for the retailer's end-products and for the 

producer's crude materials to minimize the aggregate expense of the supply chain. 

They assumed a profit sharing instrument through a rebate plan to attain Pareto 

upgrades among the participants of a coordinated supply chain. 

 Chen and Mushaluk (2014) considered an SC coordination plan and issues in which 

a producer supplies an item to a retailer. The retailer chooses his optimal order 

quantity utilizing an economic order quantity (EOQ) model that contemplates the 

shipment expenses charged by the maker (Mehmood-Khan et al., 2011; Rezaei, 

2014).  

They demonstrated that under a few circumstances, the producer can offer an 

agreement that incorporates a markdown shipment charge for every conveyance and a 

shipment expense for every unit to organize the supply chain and improve the 
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benefits of both the maker and the retailer. They likewise recognized under which 

condition the producer cannot organize the supply chain with shipment charges. 

 Probabilistic demand and lead-time 2.6.7

In the following, we present studies that considered the probability of demand and 

lead-time from 1984 to 2012, focusing on the research techniques that were used and 

the objectives of the study. However, these studies did not necessarily adopt the 

probability distribution of demand during lead-time because of the nature of the study 

and complexity of the structure and algorithm to extract the demand during lead-time 

probability distribution. This is done for the purpose of showing the scientific gap 

that has been considered in this research.  

In fast moving items, the normal distribution was often used as a demand model 

(Gümüs & Güneri, 2007; Mitra & Chatterjee, 2004a). Bagchi and Hayya (1984) 

considered an expression for the probability density function of demand during lead 

time when the demand distributed normal and the lead-time distributed Erlang, a 

special case of the gamma distribution. In this case it was appropriate to use this 

probability density function of each distribution to modify the expressions for a 

protection level and potential lost sales mathematically. 

Dekker, Kleijn and De Kok (1998) used a mathematical modeling and simulation for 

a two-echelon inventory system (one warehouse and N-retailers) with normal demand 

and lead-time distribution to provide insight into the effect of the break quantity rule 

on the inventory holding costs without focusing on the demand during lead-time 

probability distribution for the nature of the study . Mohebbi & Posner (1998) studied 
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a two-echelon inventory system with the continuous review (s, Q) policy, compound 

Poisson demand, and exponentially lead-time distribution to introduce an accurate 

remedy of the sole versus dual sourcing problem under an inventory system of lost 

sales. They adopted slow moving items. Van der Heijden, Diks and De Kok (1999) 

developed an algorithm to analyze two-echelon divergent networks with the integral 

periodic review order-up-to (R, S) inventory control policy in the context of both 

probabilistic demand and lead-time, then extended to N-echelons. Ganeshan (1999) 

studied a three-echelons inventory system with multiple suppliers, one warehouse, 

and multiple retailers. He used a near-optimal (s, Q) type inventory policy for a 

production/distribution network. His study focused on the inventory analysis at the 

retailers, the demand operation at the warehouse, and the inventory analysis at the 

warehouse. The contribution of the model in Chen and Zhang (2009) is the smooth 

integration of the three components (inventory, transportation, and transit) to 

analyzes simple supply chains. The decisions focused on the cost framework. 

Bookbinder and Cakanyildrim (1999) considered two-echelon inventory models of 

the lot size/reorder point supply chain. They considered two-stage supply chain, 

which consists of a storage location, such as a warehouse order product from a 

manufacturer or supplier follow the (Q, r) inventory policy, where Q is the lot size or 

economic order quantity and r is the reorder point. The demand is constant and 

known, but the lead time is variable (stochastic). The study emphasized the 

importance of the practice of stochastic lead-time using mathematical expressions.  

Dong and Lee (2003) prolonged the approximation to the demand process of time and 

correlated it according to Clark and Scarf (1960). They assumed an autoregressive 
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demand model and variable lead-time to see the effect of autocorrelation and lead-

time on the system’s performance. The study adopted an inventory system periodic 

review with serial M-echelon.  

Tang and Grubbström (2003) studied a two-level assembly system with a lot-for-lot 

policy. Their objective was to minimize the total stockout and inventory holding cost 

depending on constant demand and stochastic lead-time. Kiesmüller et al. (2004) 

considered a decentralized inventory control in a divergent multi-echelon network. 

They also used a simulation approach for the N-echelons continuous review (s, nQ) 

stock installation policy with stochastic compound renewal demand and stochastic 

lead-time. The objective was to derive an analytical approximation for performance 

characteristics of a divergent multi-echelon distribution network.” 

Chiang and Monahan (2005) adopted a stochastic independent exponential random 

variable lead-time and stochastic demand. The technique involves the Markov 

decision process and scenario analysis with a one-for-one replenishment inventory 

policy. The objective was to analyze the effect of customers’ search rates on the 

performance of the channel. Johansen (2005) also used the Markov decision process 

research technique with simulation and Erlang loss formula. He adopted an inventory 

system of a single item and sequential supply chain with the Poisson demand 

distribution (slow-moving item) and stochastic Erlangian lead-time. The aim of the 

study was how to compute the optimal base stock for a lost sales inventory model 

with a sequential supply system and Erlangian lead-time.  
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Lee (2005) considered lead-time and order quantity as decision variables of a mixture 

of lost sales inventory model and backorders. The lead-time includes the following 

elements: order setup, transit order, supplier lead-time, delivery time, and setup time. 

The study assumed that the demand during lead-time follows a mixture of normal 

distribution because the demand of the different customers is not identical in the lead-

time. For that, the use of a single distribution for lead-time could not be used. The 

study developed a mathematical algorithm procedure to find the optimal order 

quantity and the optimal lead-time. 

Simchi-Levi and Zhao (2005) studied the problem of safety stock position single 

product multi-echelon supply chain with a tree network structure. Each echelon 

controls its inventory with a continuous review base stock policy. The study assumed 

that the external demands follow independent Poison processes, and the backorder at 

each stage came from unsatisfied demands. Which also assumed the transportation 

lead-time is stochastically, sequentially, and exogenously determined? Their study 

took only the transportation lead-time as a stochastic variable, and ignores the lead-

times in the system (from upstream to downstream). The study focused on a 

stochastic service model approach and derived recursive equations for the backorder 

delays at all echelons. 

Axsater (2006) considered a single-echelon inventory system under a continuous 

review (R, Q) policy, where, R is the reorder point and Q is the order quantity. The 

demand during lead-time is a normal distribution. The objective of the study was to 

minimize the holding and order costs underfill rate constraint depending on R and Q 

values. The problem is the basis for many industrial inventory control systems. 
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Wu, Lee and Tsai (2007) studied the situation when the demands of the various 

customers are not identical in the lead-time. Where, a single distribution cannot be 

used. Hence, the study proposed an inventory model considering a mixture of normal 

distribution and mixture of demand during lead-time distribution. The aim of the 

study was to minimize the total cost involving a negative exponential crashing cost 

and variable demand during lead-time using a mathematical derivation to develop 

two algorithmic procedures to find the optimal inventory policy. 

Li and Sheng (2008), in examining China’s industries of low technology, argued that 

the retailer’s inventory system lead-time may be changed with various suppliers. This 

study focused on inventory strategies in various classification of supply chain, 

assuming that all suppliers have the same product and the competition between them 

are on the price and lead-time. The considered inventory control policy is (S, s) for 

the retailers. The retailer cannot dominate his stock under the lead-time assumption 

that follows some distributions and the retailer also has various classifications of 

suppliers. They also suggested two actuation mechanisms for the retailer in addition 

to using a simulation for the multi-agent system and the company environment. The 

objective of the study was to elucidate that s can significantly change and that a 

financial benefit can be achieved while the retailer cooperates with various suppliers 

under supply chain. 

Baten and Kamil (2009) described the production inventory system with two Weibull 

distribution parameters for deteriorating items using the Pontryagin maximum 

principle and the dynamic programming principle. The aim of the study was to 

minimize the objective function of total cost. 
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 Deng, Song, Ji, and Zhang (2010) considered a stochastic periodic review model 

with both stochastic demand and lead-time. They proved the convexity of the cost 

function and global optimal solution by a clear form when the lead-time deteriorates 

to zero. Otherwise, the simulated annealing algorithm for Monte Carlo methods was 

used to find the global optimal solution of the model. 

Axsäter (2011) considered a single-echelon inventory system with continuous review 

and Poisson demand with standard linear holding cost and backorder cost, in addition 

to the change in the lead-time. He applied the philosophy of just-in-time (JIT) to 

increase the efficiency of supply chain, and the focus included the steady state 

situation before and after the change of the lead-time. In other words, the model 

discusses how to bring the system from its original steady state to the new steady 

state using a transient problem as in Axsater (2011). While considering that the lead-

time reduction occurs at some time. The objective of this study dealt with transient 

inventory problems caused by lead-time changes to minimize the holding and 

backorder costs and the total cost.  

Axsäter & Viswanathan (2012) dealt with an independent supplier inventory control 

problem with a continuous review system. The supplier faces demand from a single 

customer who in turn faces Poisson demand and follows the continuous review (R, Q) 

policy. The supplier, which is an independent entity and not part of an integrated 

supply chain, faces lot size demand of constant size Q, whose inter-arrival times are 

an Erlangian distribution. The aim was to reduce the average of long run inventory 

costs for the supplier. 
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 Table 2.1 summarizes previous works on probabilistic demand and lead-time, 

inventory system policy, the number of echelons, demand, and lead-time 

assumptions. 
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Table 2.1  

Multi-echelon parameters  

Source 
No. of 

Echelons 
Inventory system 

policy 
Demand 

assumption 
Lead-time 

assumption 

Bagchi and 
Hayya (1984) 

2  - Stochastic, normal Erlang 

Dekker et.al, 
(1998) 

2 - Stochastic, normal Stochastic, Normal 

Mohebbi and 
Posner (1998) 

2  (S, Q) policy Compound Poisson  Exponential  

Van der 
Heijden, Diks 
and De Kok 

(1999) 

2 
Periodic review       

Order-up-to (R, S) 
Stochastic Stochastic 

Ganeshan 
(1999) 

3  
Near-optimal (s, Q) 

type inventory policy 
Stochastic Stochastic 

Bookbinder  
Cakanyildrim    

( 1999) 
2  (Q, r) policy Constant Stochastic 

Dong and Lee 
(2003) 

N Order-up-to S policy 
Autoregressive 

demand 

stochastic to see the 
effect of 

autocorrelation on the 
system performance 

Tang and 
Grubbström 

(2003) 
2 Lot-for-Lot policy Deterministic Stochastic 

Kiesmüller et 
al., (2004) 

N 
Continuous review (s, 
nQ) stock installation 

policy 

Stochastic, 
compound renewal 

demand 
Stochastic 

Chiang and 
Monahan 

(2005) 
2 

Decentralized safety 
inventory policy 

Deterministic and 
stochastic 

Not specified 

Johansen 
(2005) 

Single Base stock policy Stochastic Poisson Stochastic Erlang 

Simchi-Levi 
and Zhao 

(2005) 
N 

Continuous review 
base stock policy 

Stochastic Poisson 
Stochastic 

transportation 

Lee (2005) 2 Continuous review 
Stochastic mixture 

normal 
Stochastic mixture of 

normal dist. 

Axsater 
(2006) 

Single 
Continuous review  

(R,Q) policy 
Normal distribution Normal distribution 

Wu and Tsai 
(2007) 

Single - 
Stochastic mixture 

normal 
Stochastic mixture of 
normal distribution 

Li and Sheng 
(2008) 

2 Retailer (S, s) policy Stochastic Deterministic 

Baten and 
Kamil (2009) 

Single 
2 Weibull distribution 

parameters 
Stochastic Deterministic 

Deng, Song  
and 

Zhang(2010) 
Single Periodic review Stochastic Stochastic 

Axsäter 
(2011) 

Single 
Continuous review 

system 
Stochastic Poisson Deterministic 

Axsäter and 
Viswanathan 

(2012) 
Single 

Continuous review 
(R, Q) system 

Stochastic Poisson Stochastic Erlangian 
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Table 2.1 summarizes previous studies based on the demand and lead-time 

assumptions. Table 2.2 shows the technique/method adopted and the objective of 

each of these studies. 
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Table 2.2  

Multi-echelon methods and objectives 

Source Technique Objective 

Bagchi and Hayya 
(1984) 

Mathematical model 
Modify mathematical expressions for potential lost 

seals 

Dekker, Kleijn and 
De Kok (1998) 

Mathematical model and 
simulation 

Provide insight into the effect of the break quantity 
rule on the inventory holding cost 

Mohebbi & Posner 
(1998) 

A system-point (SP) 
method of level crossings 

Formulate long-run average cost function 
with/without a service level constraint  

Van der Heijden, 
Diks and De Kok 

(1999) 

Derived a computational 
method  

Obtain the order-up-to level and the allocation 
fractions required to achieve given target fill rates 

Ganeshan (1999) Analysis Cost framework 

Bookbinder and  
Cakanyildrim           

( 1999) 
Mathematical model 

Obtain global minimization that depends on 
convexity of expected cost per unit time 

Dong and Lee 
(2003) 

Mathematical model 
Extend the time correlated demand process of 

Clark and Scarf (1960) 

Tang and 
Grubbström (2003) 

Mathematical model and 
simulation 

Minimize the total stockout and holding cost of 
inventory 

Kiesmüller. et al 
(2004) 

Simulation 
Performance properties of a divergent multi-

echelon distribution network to derive analytical 
approximations 

Chiang and 
Monahan (2005) 

Markov decision process 
and scenario analysis 

Impact of customers search rates on channel 
performance analysis and present a two-echelon 

dual channel inventory model 

Johansen (2005) 
Markov decision process, 
simulation and Erlang loss 

formulation 

Calculate the optimal base stock for lost sales 
inventory model 

Simchi-Levi and 
Zhao (2005) 

Mathematical model 
Derive recursive equations for the backorder delays 

at all echelons 

Lee (2005) 
Mathematical algorithm 

procedure 
Find the optimal order quantity and the optimal 

lead-time 

Axsater (2006) Mathematical expressions 
Minimize the holding order cost underfill rate 

constraint 

Wu, Lee and and 
Tsai (2007) 

Mathematical algorithm 
Minimize the total cost involving a negative 

exponential crashing cost and finding optimal 
inventory policy 

Li and Sheng (2008) 
Simulation and four 
strategic scenarios 

Demonstrate that s can significantly change and 
financial benefit can be a achieve while the retailer 

cooperates with different suppliers under four 
supply chains 

Baten and 
Kamil(2009) 

Dynamic programming and 
quadratic  control theory 

Minimize the objective function of total cost 

Deng, Song, Ji and 
Zhang (2010) 

Simulation 
Prove the convexity of cost function and global 

optimal solution 

Axsäter (2011) Mathematical model 
Solve transient inventory problems caused by lead-

time changes to minimize the holding and 
backorder costs and minimize the total cost 

Axsäter and 
Viswanathan (2012) 

Simulation and scenarios 
Minimize the long run average inventory costs for 

the supplier 
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In Table 2.2, only 15 studies adopted mathematical or simulation approaches. The 

remaining studies relied on other approaches, which are not related to the present 

research. Table 2.3 summarizes the relevant literature that adopted the mathematical 

approaches or/and simulation approach, the number of echelons, with probabilistic 

demand, lead-time, and demand during lead-time. 
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Table 2.3 

Summary of Multi-Echelon Problem with Mathematical and/or Simulation Methods 

Source 
No. 

echelons 

Demand 
distribution 
assumption 

Lead-time dist. 
assumption 

Demand 
during lead-

time dist. 
Technique 

Bagchi and 
Hayya (1984) 

2 Normal Erlang 

The parameter 
of each 

distribution 
used separately 
to achieve the 

study objective 

Mathematical 
model 

Dekker, et al,. 
(1998) 

2 Normal Normal 

The parameter 
of each 

distribution 
used separately 
to achieve the 

study objective 

Mathematical 
model and 
simulation 

Bookbinder and  
Cakanyildrim      

( 1999) 
2 Constant Stochastic ــــــــــــ 

Mathematical 
model 

Dong and Lee 
(2003) 

N 
Autoregressive 

demand 
Variable  

Measure the  
effect of 

autocorrelation 
on Lead-time 

Mathematical 
model 

Tang, and 
Grubbström 

(2003) 
2 Deterministic Stochastic ــــــــــــ 

Mathematical 
model and 
simulation 

Kiesmüller, et al 
(2004) 

N 
Compound 

Poisson 
Stochastic 

The parameter 
of each 

distribution 
used separately 
to achieve the 

study objective 
for slow 

moving items 

Simulation 

Simchi-Levi and 
Zhao (2005) 

N Poisson 
Stochastic only for 

transportation 

The parameter 
of each 

distribution 
used separately 
to achieve the 

study objective 
for slow 

moving item 

Mathematical 
model 

Lee (2005) 2 Mixture normal Mixture normal 

Assumed to be 
mixture of 

normal 
distribution 

Mathematical 
algorithm 
procedure 

Axsater (2006) Single Normal Normal 
Assumed to be 

normal 
distribution 

Mathematical 
expression 

Wu, et al. (2007) Single Mixture normal Mixture Normal Didn’t adopt 
Mathematical 

algorithm 
Li and Sheng 

(2008) 
2 Stochastic Deterministic ــــــــــــ 

Mathematical 
model 

Baten and Kamil 
(2009) 

Single Stochastic Deterministic ــــــــــــ Simulation 

Deng et 
al,.(2010) 

Single Stochastic Stochastic 

Monte Carlo 
methods was 

used to find the 
global optimal 
solutions of the 

model 

Simulation 

Axsäter (2011) Single 
Stochastic 

Poisson 
Deterministic ــــــــــــ 

Mathematical 
model 

Axsäter and 
Viswanathan 

(2012) 
Single Poisson Erlang ــــــــــــ 

Simulation and 
scenarios 
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From Table 2.3, we conclude that most of the studies did not adopt the probability of 

demand during lead-time, even with probabilistic demand and probabilistic lead-time 

and implemented either a single-echelon or two-echelon system. The problem with 

demand during lead-time is that this type of variable is not available in the reality 

because of the nested of the activities through the echelons of supply chain. They 

used only the parameters of each distribution of the demand and lead-time separately 

to achieve the objectives of the studies. 

There are only three studies adopted N-echelon. Most of the studies focused on 

reducing costs as shown in Table 2.2. This research focused on multi-echelon, 

because the procedure is different for multi-echelon and two types of echelons. 

Whenever the number of echelons increases, the complexity and the procedures of 

the mathematical model will increase, too. Table 2.4 summarizes the studies that 

adopted N-echelon inventory system, demand, and lead-time assumption, and the 

methods used. 

Table 2.4 

 Summary of inventory system with N-echelon 

Source 
No. of 

echelons 

Demand 
distribution 
assumption 

Lead-time 
dist. 

Assumption 

Demand during 
lead-time dist. 

Technique 

Dong and 

Lee (2003) 
N 

Autoregressive 
demand 

Variable  
Measure the  effect of 

autocorrelation on 
lead-time 

Mathematical 
model 

Kiesmüller 

et al., (2004) 
N 

Compound 
Poisson 

Stochastic 

The parameter of each 
distribution used 

separately to achieve 
the study objective for 

slow moving items 

Simulation 

Simchi-Levi 

and Zhao 

(2005) 

N Poisson 
Stochastic 
only for 

transportation 

The parameter of each 
distribution used 

separately to achieve 
the study objective for 

slow moving items 

Mathematical 
model 
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From Table 2.4, Dong and Lee (2003) considered N-echelon with a mathematical 

model to measure the effect of autocorrelation on lead-time by extending the time 

correlation demand process of Clark and Scarf (1960).  Kiesmüller et al., (2004) 

considered N-echelon but the adopted method was only simulation and the demand 

distribution assumption was Compound Poisson, which was suitable for slow moving 

items. They also did not adopt demand during lead-time distribution. Simchi-Levi & 

Zhao (2005) also considered N-echelon with a mathematical method, but they did not 

adopt demand during lead-time, and the demand distribution was the Poisson process. 

As a conclusion, these studies focused on stochastic demand and lead-time. However, 

some of them did not address the importance of the probability distribution of 

demand during lead-time, despite using the probability distribution of demand and 

lead-time because of the nature of the study. Others considered the parameters of the 

demand and lead-time distribution separately and then extracted the mean and the 

standard deviation of demand during lead-time based on theoretical equations to 

solve the problems. The methods that used to solve the problem are the Markov 

process, mathematical model, simulation, information sharing, costs, transit time, and 

demand correlation. Most of these studies include low demand items and in both 

cases used either the periodic review system or the continuous review system, and a 

centralized or decentralized system. 
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2.7 Multi-Echelon inventory system policies  

Any inventory models, whether single echelon or multi-echelon are based on 

ordering policy, followed by a location that can be categorized as a continuous 

review policy or periodic review policy (Axsäter & Zhang, 1999; Chen & 

Samroengraja, 2000; Chung et al., 2008). In a continuous review policy, a location 

may put an order of Q quantities when a reorder point of R is reached, called a (Q, r) 

policy (Bookbinder & Cakanyildrim, 1999; Dolgui et al., 2013). Concurrently, the 

time between orders is a stochastic variable. In a periodic review policy, a location 

puts an order as each T periods increases the level of inventory up to S quantities; for 

that, a periodic review policy is called (T, S) policy (Zaojie & Guoying, 2007). Here, 

the lot size or order quantity is classified as a random variable. The other more 

general type of inventory policy is the (S, s) policy (Federgruen & Zipkin, 1984a; Li 

& Sheng, 2008;  Yang et al., 2008), where the location takes an order up to S 

quantities when the reorder point is less than or equal to s quantities. This policy can 

be either a periodic review or a continuous review policy. 

The (s, S) policy is the optimal solution of a single-echelon under very general 

conditions where some results of optimality exist for a serial system (Axsater, 2006;  

Chen, 2000; Clark & Scarf, 1960; Muharremoglu & Tsitsiklis, 2003). But, in the 

structure of multi-echelon inventory systems, we can generally expect the optimal 

policy to be still unknown and quite complex (Axsater, 2006). Nevertheless, the 

policies in the inventory system can be classified as the (s, S) policy or base stock 

policy where s is the reorder point and S is the maximum level of inventory. In the     

(R, Q) policy (Matheus & Gelders, 2000; Mitra & Chatterjee, 2004), R is the reorder 
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point and Q is the batch size or order quantity. The (R, nQ) policy is the same as (R, 

Q) but Q is multiplied by the number of orders n (Axsäter & Marklund, 2008). 

Usually, each one of these policies changes with the variables of the study and is 

linked to other scientific techniques, like statistical theory, queueing theory, 

stochastic programming, linear programming, integer linear programming, etc. 

Yang, Ding, Wang, and Dong (2008) examined an optimal non-stationary of the (s, S) 

policy for multiple period replenishment lead-time and non-stationary stochastic 

demand in spare part items by analyzing the relationship of inventory between 

sequential periods and the stochastic dynamic programming that was established. 

Hence, the optimal solution algorithm was developed, and the result was a non-

stationary (s, S) policy form. Axsäter and Viswanathan (2012) considered the (R, Q) 

policy. Chen and Xu (2010) considered the (s, S) policy for an inventory system with 

two demand categories. Li and Sheng (2008) regarded a multi-agent system under the 

(S, s) policy for a controlled stochastic system in various supply chains. 

 Service Level 2.7.1

When the demand and lead-time are probabilistic or stochastic variables, the demand 

during lead-time is also a probabilistic variable (Bagchi & Hayya, 1984; Inderfurth & 

Vogelgesang, 2013). Therefore, the inventory of hand or the safety stock of an order 

that arrives is not known. However, when the demand during lead-time overrides the 

reorder point, stock-outs occur (Graves & Willems, 2003). A clear way of forbidding 

stock-out is to increase the availability of the product, but increasing the availability 

of the product will increase the safety stock (Yang & Geunes, 2007), thereby 
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increasing the inventory holding cost (Simchi-Levi & Zhao, 2005). As a result, there 

should be a trade-off between availability and cost. There are two kinds of objectives 

at the service level (Axsater, 2010; Axsater, 2006):  

1. Cycle service level, which is the part of order cycle that meets all the 

requirements of customers. 

2. Fill rate (FR), which is the ratio of demand that is filled from the current 

inventory. 

For guaranteed service, GS, deterministic service time of each inventory is set for 

satisfying any demand from its downstream inventory and guarantees that the 

demand can always be satisfied in the given service time (Humair et al., 2013). This 

approach supposes that overuses retailers demand superior to a bound is treated by 

some unprecedented measures, such as expediting and overtime. With this 

supposition, each inventory can forecast its maximum demand to fill and ensure 

given service time to its downstream inventory. Subsequently, the service time of 

each inventory in guaranteed service and GS is deterministic (Klosterhalfen et al., 

2013).  

The first researcher who examined guaranteed service, GS, was Kimball (1955). He 

focused on a single inventory with random but deterministic demand, which was 

controlled by a base-inventory policy. He demonstrated that the bound of the demand 

during given service time of the inventory could be used to set its base-inventory 

level. Simpson (1958) broadened Kimball’s model to a serial inventory system and 

demonstrated that the optimal inventory policy of the system is an “all or nothing” 

policy. Depending on this so-called the extreme point property, Graves, Kletter and 
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Hetzel (1998) stated that the optimization problem considered by Simpson can be 

formulated using a dynamic programming algorithm. In the ensuing years, this 

method was broadened to other network structures. Augmentations to assembly and 

distribution systems, spanning trees, or even general structures of the acyclic network 

can now be found (Graves & Willems, 2000; Humair & Willems, 2006, 2011; 

Inderfurth & Minner, 1998; Inderfurth, 1991; Minner, 2001). 

 Queueing system in multi-echelon inventory 2.7.2

A queueing system has a significant role in organizing and coordinating jobs in a 

supply chain (Jain & Raghavan, 2003). In a supply chain, each stage or echelon can 

be described to be a queue system with inventory, particularly when the process is 

subject to long waiting time for retailers to meet the product, which is due to the 

probability of uncertain demand and probability of lead-time, and a vast number of 

retailers and the limited number of distribution centers (Sahraeian et al., 2010). As a 

result, it is important to create a mechanism to help facilitate and reduce the waiting 

time in the system. 

The first-come-first-serve, also known as the FCFS system, is a procedure to reduce 

waiting time in the system related to the inventory system (Axsäter & Marklund, 

2008; Schwarz, Sauer, Daduna, Kulik, & Szekli, 2006). The disadvantage of using of 

the FCFS system is no limit to the proportion of increasing the cost (Schwarz et al., 

2006). The complexity of the system happens when the demand during lead-time is 

unknown, and it has a continuous distribution. In the literature, it is often assumed 

that the demand was distributed as a Poisson process (Ravichandran, 1995). 
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Therefore, they usually assumed that backorders at the warehouse were satisfied 

according to FCFS. 

Axsäter (2007) used FCFS in a two-echelon distribution systems with one warehouse 

and a number of retailers under the (S-1, S) policy, where the retailers faced 

stochastic demand distributed Poisson. He used a simple heuristic that always leads to 

fewer costs than an FCFS system, and the proposed heuristic was evaluated by using 

a simulation study.  Furthermore, Saffari and Haji (2009) and Sahraeian et al. (2010) 

tried to reduce the waiting time in their considered system by depending on a 

stochastic demand distributed be a Poisson process. However, in a continuous 

statistical distribution (fast moving items or products) the procedure is different 

because the objective is not about how to deal with backorders subject to FCFS; the 

problem is that the distribution centers cannot satisfy a large number of retailers that 

leads to long waiting time in the overall system (Sahraeian et al., 2010). 

Schwarz, et. al., (2006) solved stationary distributions of joint inventory operations 

and queue length in an explicit product form for different M/M/1-systems with a 

continuous review inventory system and various inventory management policies as 

well as with lost sales. The first M in the queueing discipline M/M/1 represents the 

statistical distribution for arrival process; second M represents service time 

distribution, and number 1 represents a number of service stations. They assumed that 

the demand is distributed Poisson, lead-time and service time were distributed 

exponentially. The Poisson and exponential distributions were used to find 

performance measures of the competent systems. In the case of an infinite waiting 

status, the basic result was that the abridging distributions of the queue length 
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operations are the same as in a traditional M/M/1/∞-system, where ∞ means the 

community size is infinite.  

Matheus & Gelders (2000) studied an inventory model subjected to a stochastic non-

unit sized demand style, and suggested an accurate and an approximate reorder point 

method of calculation for the (R, Q) inventory policy. Furthermore, they used 

simulation to present the results for different distributions under various service 

levels. Karmakar (1987) tested the effect of order quantity on work-in-operation 

inventory and lead-time. The models of queueing were used to capture the impact of 

density and size. Furthermore, the model was extended to a multiplicity of products.  

Kim and Tang (1997) concentrated on the inventory system in systems of pull 

production with a single warehouse and a single production facility. The form of a 

PA (Production Authorization system) card was used to control the inventory in the 

system. There was a trade-off between lead-time of manufacturing, response time. 

The optimal inventory at the warehouse is calculated using heuristics. A single 

echelon EK/M/1 queueing model (continuous time) was used for analyzing the 

system, where EK is  the arrival rate distributed Erlang  (Bhat, 2015). For the first 

time an inventory supply chain performance analysis was presented using queueing 

models with a discrete time by Jain and Raghavan (2003). Their work was an 

extension of the work by Kim & Tang (1997), albeit using a different approach for 

optimization and analysis.  
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Jain and Raghavan (2008) showed stylized models for a procedure performance 

analysis of the manufacturing supply chain network (SCN) in a probabilistic setting 

for order quantity. Queueing models were used to capture the flow of SCN. The 

analysis was restricted to an inventory optimization model that can be used for 

designing inventory policies. They used the three cases model. Firstly, the model 

showed a manufacturer with one warehouse, which supplies to different retailers. 

They identified the optimal warehouse inventory level, which minimizes the total 

expected cost of holding inventory, backorder cost connected with serving orders in 

the backlog queue, and setup cost. Secondly, they imposed a constraint on service 

level in terms of fill rate, supposing that customers do not joist from the system. 

Thirdly, the model was expanded to a three-echelon inventory model, which 

explicitly considers the logistics operation. 

  Costs 2.7.3

Any companies or firms that aim to gain profit must engage in economic decision 

making. Companies need to find ways to balance the two features, costs and 

production, and also an accumulation of material costs and increasing investment 

(Bolarín et al., 2008; Hwan Lee & Rhee, 2010). Therefore, it is necessary to find the 

inventory levels that can minimize costs yet achieve the highest level of efficiency, 

performance, and operations. In order to achieve that, firms need to be able to 

determine the economic inventory levels and the quantity of optimal purchases 

accurately. The following is a brief explanation of the most important types of costs 

(Axsater, 2006; Bolarín, Lisec, & Esteban, 2008; Frederick & Gerald, 2001; Hamdy, 

2007). 



 

80 

1. Setup cost, which is independent of the size of the orders of quantities for 

purchases or productions. Setup cost is a fixed cost (Karaman, 2007), denoted 

by A. It includes the following costs: 

• The issuance of document request and follow-up. 

• Putting the items or products in the depots. 

• Production setup. 

• Arranging the place. 

• The closing of buildings. 

• Inspection of bad or shoddy items or inspection quality. 

• Transportation. 

2. Holding cost, which is the cost that is carried by the firm or the project when 

storing materials in the warehouse or depots (Axsater, 2001) and denoted by 

h. It includes the following elements: 

• Interest on capital 

• The rent of the storage place including electricity, water, cooling, etc. 

• The insurance cost against unexpected accidents. 

• The damage that infects the products. 

There is an extrusive relationship (direct relationship) between holding cost and 

inventory level, i.e., the increase of the inventory level will increase the holding cost. 

Figure 2.4 explains this relationship. 
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Figure 2.4. The relationship between holding cost and inventory level 

 

Figure 2.4 shows that when the inventory level increases, the holding cost will 

increase, and this increase is proportional to the rate of increase in inventories i.e. any 

increase in inventory level will increase in holding cost and there are no limits to the 

increment of holding cost. 

3. Shortage cost. It is divided into two types (Axsater, 2006) 

• Unavailability of items or products in the depot. 

• The lost profit due to the lack of sales. 

4. Purchase cost, which is the unit cost and usually is fixed (Chang & Chun-Tao, 

2004). This cost changes with purchasing large amounts of products or items; 

therefore, a discount price is likely to be determined. 

Most studies in a multi-echelon inventory system discussed mechanisms of reducing 

cost to the minimum level in any companies, firms or organizations (Axsäter & 

Marklund, 2008; Axsater & Rosling, 1999; Axsater, 2010; Axsäter, 2011; Diks, 

1996; Muckstadt, 1986; Tan, 1974).  
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Nevertheless, this study considers both holding, A, and setup costs, h. Axsäter (1998) 

regarded a serial system with two echelons under continuous review installation 

policies (R, Q) and suggested an approach to evaluate holding and shortage costs 

accurately. De Bodt and Graves (1985), introduced the serial system with multi-

echelon echelon (R, Q) policies and showed an approximate model for the cost 

evaluation of the system. Axsäter and Rosling (1993) presented that the (R, Q) 

policies of the multi-echelon dominate installation (R, Q) policies for serial and 

assembly systems. For distribution systems in multi-echelon inventory installation 

and echelon under continuous review (R, Q) policies, however, they outperform each 

other in different situations. Chen and Zheng (1994) developed a procedure for exact 

performance evaluation of serial multi-echelon inventory systems under continuous 

review (R, nQ) policies. Axsäter (1997) suggested an alternative structure for the cost 

evaluation of a multi-echelon inventory system (R, Q) policy. The structure applies 

the idea of matching supply units with demand that was initially utilized for the 

assessment of stock installation policies. 

2.8 Approaches in a multi-echelon inventory system   

In a multi-echelon inventory system, there are many approaches utilized to assess the 

solution or objectives of the studies. These approaches can be classified as specific 

methods, such as linear programming, integer programming, dynamic programming, 

network, and quadratic programming, or general approaches that include simulation, 

forecasting, and information sharing. Some of the literature considered two of these 

approaches, for example, forecasting and simulation, linear programming and 
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simulation, etc. The following highlights the differences in some aspects of these 

approaches related to the problem of the multi-echelon inventory system. 

Chen (1998) and  Ding, Guo, and Liu (2011) considered the effects of different 

information sharing and/or coordination instruments on the performance of serial 

inventory systems controlled by installation/echelon the (R, nQ) policies. Rezg, Xie 

and Mati (2004) showed an integrated approach for production of inventory control 

in a line made up of N machines. They suggested a combined methodology for the 

simulation and genetic algorithms to optimize inventory control policies. Sahin, 

Buzacott and Dallery (2008) and Sahin and Dallery (2009) considered a three-

echelon system where implementation errors results in a contradiction between the 

physical inventory and information system. They provided a new cost element for the 

traditional Newsvendor model, capturing the cost of not satisfying an initial 

commitment due to inventory imprecision. Shang (2012) suggested a simple heuristic 

for determining inventory levels in a serial system with the non-stationary behavior 

of demand and no setup costs depending on single-echelon approximations. Gallego 

and Ozer (2003) and Huh and Janakiraman (2008) presented new evidence and new 

heuristic of the optimality of serial multi-echelon inventory systems without setup 

costs in the procedure of the Clark-Scarf (1960) model. Janakiraman (2010) 

considered a serial inventory system with periodic review lost sales and derived 

initial characteristics of the vector of optimal order quantity in this system. He 

showed that the optimal order quantity at each echelon was a decreasing function of 

the inventory at any downstream inventory and an increasing function of the 

inventory at any upstream inventory. 
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Dong and Lee (2003) reconsidered the serial multi-echelon inventory system of Clark 

and Scarf (1960) and offered three main outcomes depending on a mathematical 

modelling technique, which are (a) An approximate simple lower-bound to the 

echelon inventory levels and a cost upper bound of the total system for the primary 

model, (b) the optimal inventory policy framework of Clark and Scarf (1960) bearing 

in accordance with time-correlated demand processing using ‘Martingale model’ of 

forecast development, and (c) an extension of the demand process of time correlated 

and studied specifically for an autoregressive demand model, lead-times effect, and 

autocorrelation on serial inventory system performance. 

Graves and Willems (2003) made a comparison between a safety stock placement 

model and the approach of stochastic service model. Lee and Billington (1993) 

developed approximate expressions for the replenishment lead-times of all the 

locations in the supply chain. A similar model was studied by Ettl, Feigin, Lin, and 

Yao (2000). The latter discriminates between nominal and real lead-times, where 

replenishment represents the nominal lead-time plus the extra waiting time by the 

virtue of stockout at the supplier. By rapprochement, the expected backorder delays 

determine the base-stock level in order to guarantee the provided service level targets. 

Glasserman & Tayur (1995) studied the same model with production capacity limits. 

Their formulation permits a gradient-based search to find the optimal based stock 

levels. A very asymptotic model with different suppositions concerning the lead-

times was considered by Simchi-Levi and Zhao ( 2005) with outwardly distributed 

lead-times. They derived frequent equations for waiting times by virtue of backorders 

and developed approximations to coordinate the base stock levels through the supply 
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chain. Ettl et al., (2000) assumed that the lead-times are identical and independent 

distribution random variables. 

Most literature on installation (R, Q) policies highlight approximate and exact cost 

evaluation of such systems, such as in Svoronos and Zipkin (1988) and Axsater 

(1993). A general overview of these studies was given by Axsater (2003). Moreover, 

only a few researchers studied an optimization policy parameter of the distribution 

systems with installation/echelon (R, Q) policies. Early works on approximate 

optimization were completed by Deuermeyer and Schwarz  (1979),  Lee and 

Moinzadeh (1987), Moinzadeh and Lee (1986).  

More recently, Axsäter and Rosling (1993) showed that installation inventory and 

echelon (R, Q) policies may outperform each other in different positions for 

distribution systems. Axsäter and Juntti (1996) analyzed distribution systems with a 

two-level, stochastic demand by simulation. The outputs showed that echelon (R, Q) 

policies seem to control installation (r, Q) policies for long lead times of the 

warehouse. On the other hand, the converse is true for short lead-times of the 

warehouse. Axsäter (2005) introduced a simple method for identifying the cost of 

backorder to decide its order point in order for the sum of the expected costs to be 

minimized. 

 

 



 

86 

 Mathematical approaches 2.8.1

The most common methods used in an inventory system of multi-echelon, according 

to the literature, are mathematical approaches (Abu Alhaj & Diabat, 2009; Elimam & 

Dodin, 2013; Hsieh & Chou, 2010; Ignaciuk & Bartoszewicz, 2009; Manna et al., 

2007; Torabi & Hassini, 2009). In fact, variables formulation and translation to a 

mathematical model is a complex step, whose aim is to manage a multi-echelon 

inventory system in a supply chain. Diks and de Kok (1998) addressed a “divergent 

multi-echelon”, as a system of distribution or a production, and assumed constant 

lead-time arrival for orders. 

 Hariga (1998) showed a probabilistic model for a single-period production system 

that contains many assemblies/processing and adopts facilities in series. Chen (1999), 

Axsäter and Zhang (1999) and Nozick and Turnquist ( 2001) assumed that the retailer 

faces stationary independent Poisson demand. Mitra & Chatterjee (2004b) developed 

continuous review policies for a multi-echelon inventory problem with stochastic 

demand for fast moving items from the execution point of the review.  

Rau, Wu, and Wee’s (2003) model assumed that negligible lead-time, the rate of 

demand and production is deterministic and fixed, and shortage is not allowed.    So 

and Zheng ( 2003) used an analytical model to analyze two significant elements that 

can enhance the high degree of variability of batch quantity experienced by 

semiconductor manufacturers: lead-time of supplier’s and prediction demand 

updating. They assumed that the two sequential periods of time of retailer demands 

are correlated (Das & Tyagi, 1999). 
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As a conclusion, it can be said that most of the literature in mathematical approaches 

consider a two-, three-, or N-echelon system with probabilistic or deterministic 

demand. More importantly, they assumed that the lead-time is constant, fixed, 

deterministic, negligible, ignore, or zero (Axsäter & Marklund, 2008; Axsäter, 1984; 

Clark & Scarf, 1960; Graves, 1986; Hausman & Erkip, 1994; Hosoda & Disney, 

2006; Muckstadt, 1986; Ravichandran, 1995; Saffari & Haji, 2009; Sherbrooke, 

1968; Zhao, Zhan, Huo, & Wu, 2006) . 

 Simulation Approach 2.8.2

Simulation is an abstraction of reality through the input-output relationship based on 

a simple or complex mathematical expression (Santos & Santos, 2007). Apart of the 

intricacy, most systems can be shown as a diversion function between input variables 

and response variables. Simulation models try to build or construct the approximate 

reality as much as possible and provide analytical tools to study the behavior of a 

complex system (Axsäter, 2000; Barton, 1992; Jie & Cong, 2009; Kian, Piplani, & 

Viswanathan, 2003; Liberopoulos & Koukoumialos, 2005; Martel, 2003; Song, Li, & 

Garcia-Diiaz, 2008; Tee & Rossetti, 2002; Towill, Naim, & Wikner, 1992). One of 

these complex systems is the multi-echelon inventory system.  

It is difficult, if not impossible, to build close-form analytical solutions due to the 

complexity of a multi-echelon inventory system and potential uncertainty (Song et 

al., 2008). A simulation model will be massive and hard to understand for a complex 

system, in addition to the constraints, such as costs, resources, and burdens of the 

model development (Tee & Rossetti, 2002). Simulation approaches can be divided 



 

88 

into two parts in inventory systems, the general simulation approach that can be used 

by the companies as system software to organize the processes from upstream to 

downstream. METAMODEL (Barton, 1992; Santos & Santos, 2007; Song et al., 

2008) is one of these approaches. METAMODEL is a simulation abstraction to 

expose the system’s input-output relationship according to a simple mathematical 

expression. Another approach for supply chain warehousing is the discrete event 

simulation which can be analyzed using Arena software (Altiok & Melamed, 2001). 

This system is widely used by companies (Jie & Cong, 2009).  

The second part of the simulation is designed for the problems under study. In other 

words, the simulation approaches designed according to the accredited variables in 

the problems and also by the problem assumptions. In sum, we can say that 

simulation can be a very powerful tool that helps model the problem that does not 

really exist to see the effects that occur in the future based on a scientific theory. The 

most important foundation of simulation is a forecasting theory. 

 Forecasting Approach 2.8.3

Many studies dealt with demand forecasting for different purposes and in various 

problem settings. Efforts has been directed to solving a production problem or 

inventory control (Bradford & Sugrue, 1990; Chang & Fyffe, 1971; Eppen & Iyer, 

1997; Fisher & Raman, 1996; Hausman & Peterson, 1972; Hertz & Schaffir, 1960; 

Weng & Parlar, 1999). 

Lau & Hing-Ling Lau (1996) divided the estimation of demand work into two parts 

or groups. The first type takes data of sales including what is eliminated by stock out 
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and tries to estimate the parameters of demand distribution (mean and standard 

deviation). The procedure of maximum likelihood can be found in the literature 

Harter (1967) for mean and standard deviation estimation of several assumed 

distribution. The second type was for non-stationary demand fluctuation by providing 

a procedure to update the demand distribution parameters. The second type of 

problems appears to be the most suitable to the wholesaler or retailer. Bell (1978) 

achieved methods for magazine distribution to retail outlets and developed forecast 

demand procedure using an exponential smoothing method to estimate mean and 

standard deviation of demand. 

 Other Approaches 2.8.4

In the studies of a multi-echelon inventory system, other approaches were used, such 

as heuristics (Gallego, Ozer, & Zipkin, 2007; van Houtum, 2006), multi-echelon 

technique for recoverable item control (METRIC), (Graves, 1985; Sherbrooke, 1968), 

Vari-METRIC method (Sleptchenko et al., 2002), Markov process (He et al., 2002; 

Willemain et al., 2004), scenario analysis (Elhasia et al., 2013; Tan & Xu, 2008), 

statistical analysis, and model predictive control (MPC) (Braun, Rivera, Flores, 

Carlyle, & Kempf, 2003). These approaches, however, were seldom used and only 

found in a limited number of studies. 

Yoo, Kim, and Rhee (1997) and Abdul-Jalbar, Gutiérrez, and Sicilia (2005) 

considered multi-echelon inventory heuristics in the supply chain. They considered 

Raundy procedure and N log N heuristic in their study and proposed a fixed rate of 

customer demand that arrives at each retailer with negligible lead-time. Yoo, Kim, 
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and Rhee (1997) benefited from the heuristic approach in their study and did their 

experiment with different demand distribution, lead time, and forecast error 

distribution. Sleptchenko, van der Heijden and van Harten (2002) used the Vari-

METRIC approach in a multi-echelon, multi-indenture supply chain system for 

repairable service parts. They supposed that demand happens through stationary 

Poisson processes.  

Giannoccaro, Pontrandolfo and Scozzi ( 2003) showed a methodology to determine a 

supply chain inventory management policy, which depends on the idea of echelon-

stock and Fuzzy set method. They assumed that lead-times are constant and 

deterministic. Kalchschmidt, Zotteri and Verganti (2003) characterized a complete 

system for a multi-echelon spare parts inventory management in which customers of 

various sizes place at the same level of supply chain. A solution of an algorithmic 

was presented according to inventory management and probabilistic forecasting. 

Finally, we can say that the studies that adopted “other approaches” method obtained 

approximation solution with the assumption that demand are fixed, probabilistic, 

fuzzy and deterministic and lead-time is mostly fixed. 

2.9 Discussion 

In this Chapter, some crucial findings related to a multi-echelon inventory system 

which would be helpful in achieving the primary goal of this research were recapped. 

The methods mostly used in a multi-echelon inventory system were a mathematical 

method to obtain exact solution because they involve two essential elements, demand 

process, and lead-time process assumptions. Demand process was mostly assumed to 
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be deterministic or probabilistic. In contrast, lead-time was mostly assumed to be 

deterministic, fixed, zero or ignored. The behavior of these two variables plays an 

essential role in drawing the inventory policy, which means that when the lead-time 

is deterministic, fixed, zero or ignored and the demand is even deterministic or 

probabilistic, an exact solution is reached. On the other hand, when the demand 

process and the lead-time process have a separate probability distribution function, 

the optimality for multi-echelon inventory system is still unknown. 

 The different of this research with the previous studies, the previous studies 

probability of demand and lead-time were taken separately without extracting and 

establishing the probability distribution of demand during lead-time. They also do not 

reformulate the inventory function of total cost based on the probability distribution 

of the demand during lead-time to establish and develop the inventory performance 

measures. They used only the mean and standard deviation of the demand and lead-

time separately based on the distributions parameters instead of demand during lead-

time probability distribution to achieve the objectives of the studies.  

This research will establish the demand during lead-time probability distribution 

function using simulation procedures. In this case, an approximation mathematical 

method is the best solution to solve these types of problems based on this demand 

during lead-time. 
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 CHAPTER THREE

THEORIES AND CONCEPTS IN A MULTI-ECHELON 

INVENTORY SYSTEM 

This chapter focuses on the underlying concepts and methods that are the bases for 

the development of a multi-echelon inventory model, specifically on the continuous 

review system (R, Q) policy. The discussion is classified into two parts. First, the 

methods that are used to determine the demand during lead-time probability 

distribution function are discussed. The methods are forecasting technique for the 

demand data as well as the probability distribution function of the lead-time, and the 

simulation model. Second, the measures of a multi-echelon inventory system that are 

being studied in this research are presented.   

3.1 Elements in forecasting technique 

Forecasting estimates the values of the variables for cases that do not fall within the 

available observation units. Forecasting is not only intuitive or conjectures; but also 

the statistical treatment of past data in order to give any estimation of the variables 

stated in the future (Hausman & Peterson, 1972; Hertz & Schaffir, 1960). A 

predictive study may indicate, for example, a significant unexpected rise in 

consumption, which means the possibility of increasing the size of the stock, leading 

to a rise in items or products’ inventory to face an increase in consumption, or 

indicate the possibility of an economic crisis occurring (French, 1986; Rentz & 

Reynolds, 1991). Therefore, it is necessary to follow the procedures and policies to 

avert a crisis and ward off risks. However, the interest in forecasting inventory 
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policies is due to change in requirements, length of lead-time, and sudden changes in 

the volume of consumption (Syntetos, Boylan, & Disney, 2009). 

1. A change in requirements is when the variable rate is not revolving around a 

constant average. Otherwise, it can extract the reserve to face this fluctuation. 

2. The length of waiting time, i.e., the required period to access the orders and 

the possibility of achieving a balance between consumption and 

compensation. When the orders take a long time to arrive, changes in 

consumption may occur. This means that if there are no forecasts of 

consumption during this period, the balance will not be achieved by 

compensation and consumption. 

3. The sudden changes in the volume of consumption, which are mostly due to 

unusual circumstances, allow exact estimates. The changes could be a sudden 

increase in income or similar or more provision of services. 

In most literature, forecasting estimates the model parameters or determines the 

demand probability distribution (Baykal-Gurosy & Erkip, 2010; Choi, Chiu, & Fu, 

2011; Wang, 2009; Wang & Lin, 2010). The most often forecasting method used to 

estimate the means and the standard deviation is exponential smoothing methods 

(Snyder et al., 2004). These two parameters, means and standard deviation, depend 

on the effects of data trends and seasonal trends. That is, fluctuations in behaviors of 

demand data can be stationary over time, increase trends over time, decrease trends 

over time, or have seasonal trends. Usually, a long period of data has a stationary 

fluctuation. Therefore, the exponential smoothing method is the best method for 

estimation (Brown, 1959).   
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Wang (2009) used the third order exponential smoothing forecast to reduce the effect 

of bullwhip and costs in SC. A new technique for forecasting inventory policy was 

presented by using multi-regression based forecasting models for predicting for a 

supplier the total profit in a two-echelon SC. The assumed model was built by 

weighing the elements method and transformation of data, conferring a higher 

predictive precision than traditional regression models (Wang et al., 2010). 

3.2 Exponential smoothing method  

The exponential smoothing method (ESM) is the mostly used forecasting technique 

in the field of inventory control (Baykal-Gurosy & Erkip, 2010; Wang et al., 2010). 

This method is used because; it is simple of calculation, sensitive to the variables at 

any time and no need to store a large amount of information. 

Statistically, in order to forecast a variable based on the patterns, two parts are 

involved. First, an inevitable uniform variable without fluctuations can be expressed 

in an equation. Second, a stochastic variable has a certain distribution, with a mean of 

zero and standard deviation equal to 	
�. If the first part denotes to be Ut, and the 

second part �, then the expression becomes:  

� =  � + � , � = 1,2,3, .  .  .                                                                                   (3.1) 

If Ut reflects the fixed amount (Ut = �), this means that the value of the variable 

consists of a constant plus random variable.  

� = � + �                                                                                                                          (3.2) 
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Brown (1959) was the first who presented the ESM technique of series values of a 

variable with a fixed average fluctuation. 

��� = � � + (1 − �)�                                                                                                   (3.3) 

where,   

Ft+1: the forecast observation value for the next period. 

Xt : current observation value. 

Ft : the forecasted observation value for the current period. 

�: constant smoothing, ranging between 0 and 1, 0 ≤ α ≤ 1. 

This method is used when the data is stationary, and when there is no seasonal or 

periodic pattern. From Equation (3.3), we can note that the new forecasting value of 

Ft+1 is subject to: 

1. the current observation with a weighed α.  

2. the current period predicted with a weighed (1- α). 

This method is called exponential smoothing, ES because the meaning of Ft is clearer 

after degenerating to its compounds as seen in Equation (3.3). 

� = ���� + (1 − �)���                                                                                               (3.4) 

��� =  �� + (1 − �) ���� + (1 − �)���!                                                           (3.5) 

��� =  �� + �(1 − �)��� + (1 − �)����                                                             (3.6) 

Similarly, we degenerate ��� to its compounds. 
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��� =  �� + �(1 − �)��� + (1 − �)����+ (1 − �)$��$+ .  .  . + (1 − �)%����(%��)                                  (3.7) 

Note from Equation (3.7) that the effect of the previous observation was less 

exponential with the time. That is, the given weighting for each observation from the 

last observation would be less exponential. 

The problem now is how to calculate the first forecasted value, F1. This is because, in 

Equation (3.3), the value of Ft+1 depends on Xt and Ft. For example,                          

F2 = α X1 + (1 − �) F1. In order to calculate the value of F1, there is more than a 

direction or idea (Bates and Granger, 1969; Ghafour, 2007). 

1. The initial value of F1 is the average of real observation or historical data of 

Xt. 

           �� = 1' ( �)                                                                                                             (3.8)�
)+�  

This technique is used in situations when exponential smoothing needs to be 

done quickly and not used for future research. 

2. The initial value of F1 is the same value for the real observation, X1. This 

technique is used when the data is not adequate and convergent. 

                   �� = ��                                                                                                               (3.9) 

3. The initial value of F1 is the average of the first quarter of the real 

observation, Xt.  
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              �� = 1-'4. ( �)                                                                                               (3.10)0�-�1.
)+�  

Therefore, this research adopts Equation (3.10) to find the first forecasted value, F1 

because this equation used for long-term of future studies (Koehler, Snyder, Ord & 

Beaumont, 2012; Snyder et al., 2004). 

  Smoothing constant 3.2.1

A smoothing constant is a number used in the exponential smoothing technique to 

give the most recent period a different weight than the previous periods (Hillier & 

Lieberman, 2010). The value of a smoothing constant has an effective impact to 

successfully forecast a model (Snyder et al., 2004). The value of a smoothing 

constant, α which ranges between 0 and 1, 0 ≤ α ≤ 1 depends on the amount of weight 

that would give to a new value. The highest value maximizes the weight, which is a 

reference to Equation (3.3). If α = 1, that we give all weight to the last value and 

ignore the old average. If α = 0.5, it indicates great importance to the last real 

consumption. If α = 0, the last value is ignored (Chen, Ryan, & Simchi-Levi, 2000). 

As a conclusion, a high smoothing constant leads to the forecasting model having a 

fast response but is non-stationary. Otherwise, the low smoothing constant leads to a 

slow response, but a stationary forecasting model. In order to determine the 

smoothing constant value, we can use forecast error to be a measurement to choose 

the smoothing constant. The forecast error has a zero average and standard deviation 

σe. 
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2 = � − �																																																																																																																						�3.11� 

The forecast error can be negative or positive. So, in order to solve this problem, we 

take the square value of forecast error. For the purpose of obtaining a uniform scale 

of other data, ‘mean sum square error’ is calculated. Since its unit measurement is the 

square units of original values, it is possible to calculate a new measure by finding 

the square root of Mean Square Error (MSE) (Forbes, Evans, Hastings, & Peacock, 

2011; Hosoda & Disney, 2006). 

345 � 6�� ∑2)�	                                                                                                   (3.12) 

Based on Equation (3.12), the smoothing constant is altered within a reasonable 

range. Then, the constant that leads to less MSE is chosen. 

 Forecasting error 3.2.2

A forecasting error is a difference between the real value and the predicted value of a 

time series phenomenon (Croux, Gelper, & Mahieu, 2010). Irrespective of which 

method is used to get the forecasting value of X, for a single period or more periods, 

the real value will remain different from the predicted value (Liang & Huang, 2006). 

 In order to make an effort to estimate this error, forecasting error is used, where 

forecasting error is the difference between the real value Xt and the forecasted value 

Ft as shown in Equation (3.11), (Good & Hardin, 2006). In order to ensure that the 

predictive values is equal to the real values, the differences between these two values 

must be equal to zero (Baykal-Gurosy & Erkip, 2010). But the reality is not like this 



 

99 

because the value of et is unknown unless the value of Ft is already known. It was 

found that the forecasting error normally distributes (Brown, 1959). In order to 

determine the parameters of this distribution, the mean and variance must be known, 

and, the standard deviation, too. The variance error for the forecasting model 

exponential smoothing (ES) (Bates & Granger, 1969) is     

	8� � 22 − 	 	
�																																																																																																																			�3.13� 

where,  	
�  is the variance of the random variable. In order to calculate the variance 

error (	8�) from Equation (3.13), it must be specified that 	
� of the latter is also 

unknown. Therefore, we use the numerical relationship between mean absolute 

deviation (MAD) and standard deviation in order to estimate the value of 	
� (Hertz & 

Schaffir, 1960; Snyder et al., 2004).The original reason that MAD is estimated 

instead of 	 or 	� was that this simplified the computations. There is no problem to 

estimate 	or 	� directly, but still most forecasting systems first evaluate MAD. It is 

obvious that MAD and 	 in most cases give a very similar picture of the variations 

around the mean. It is also possible to relate them to each other. A common 

assumption is that the forecast errors are normally distributed (Axsater, 2006). In that 

case it is easy to show that 

	 � 9:/2		3<= � 	1.253<= 																																																																																			�3.14� 

where, 9:/2 	≈ 1.25	, therefore 

MAD = sum of absolute error/number of error                                                     (3.15) 
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Most facilities, manufacturers, and stakeholders prefer to use mean absolute deviation 

to obtain the standard deviation (Forbes et al., 2011; Huang & Huang, 2006;  

Schwarz et al., 1972) for the following reasons: 

1. It is a simple method to calculate. 

2. The mean absolute deviation can fit the exponential smoothing method 

because it can help obtain the estimate of mean absolute deviation by using an 

exponential smoothing method. 

3<=�� � �|2| + �1 − ��3<= 																																																																		�3.16� 

3. It can calculate mean absolute deviation, which is the forecasting error 

estimating for the next period.  

4. It can calculate mean absolute deviation, which is the average amount of 

stockout, without using the safety stock. 

5. It can calculate mean absolute deviation is the median value of convergence 

or divergence, when using a suitable forecasting model. 

From Equation (3.16), the problem is how to find the initial value of MAD. In order 

to determine the initial value of MAD1, the same steps for finding F1 as shown in 

Equation (3.10) are used. However, here we take the absolute error. 

3.3 Lead-time distribution 

Lead time is the amount of time that elapses between when a process starts and when 

it is completed and these times follow a statistical probability distribution (Wild, 

2007). A statistical distribution has an instrumental used to draw the behaviors of the 
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data. During these behaviors, distribution parameters that reflect the studied 

phenomenon can be found (Noufaily, Jones, & Mk, 2013). However, there are two 

statistical ways to generalize any set of data that represents a certain phenomenon, 

i.e., the draw method and statistical analysis (Forbes et al., 2011).  

The statistical analysis includes several tests to find the probability distribution of the 

data. They are Kolmogorov-Smirnov (K-S) test, Anderson-Darling test, and Chi-

Squared test (Balakrishnan & Nevzorov, 2003; Zong, 2011). These tests depend on 

the goodness of fit hypothesis. The goodness of fit of a statistical model portrays how 

well it fits with an observation’s set. The indices of the goodness of fit summarize the 

contrast between the observed values and the values expected under a statistical 

analysis. The statistics of the goodness of fit are the indices of the goodness of fit 

with known sampling distributions, normally acquired using asymptotic methods that 

are used in statistical hypothesis testing (Maydeu-Olivares and Garcia-Forero (2010). 

A goodness of fit (GOF) can be defined as the extent to which the observed data 

matches the values expected by theory (Maydeu-Olivares & Garcia-Forero, 2010). 

However, a GOF test; normally includes inspecting a random sample from some 

distributions that are unknown in order to test the null hypothesis for determine the  

distributions function which indeed is known (Ghosh, Delampady, & Tapas, 2006). 

Usually, a Kolmogorov-Smirnov (K-S) test is used to check the assumption of 

normality in variance analysis. 

Let X be a continuous random variable drawn from some populations and is 

compared with �∗�A� in some statistical ways to see in the event that it is sensible to 
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say that 	�∗�A� is the correct distribution function of the random variable (Zong, 

2011). There is one sensible method of comparing the random variable with 	�∗�A�, 

which is by the mean of the empirical distribution function, 4�A� (Noufaily et al., 

2013). 

Definition of hypothesis: Let � � ���, ��, .		.		 . , ���	be a random variable. The 

empirical distribution function 4�A� is a function of x, which is the equivalent to the 

fraction of �)B, which is equal to or less than x for each X, −∞	 < �	 < 	∞ 

(Boddewyn & Brewer, 2014; Zong, 2011). Therefore, 

4�A� � ∑ E FGHF!�)+�'  

S(x) is useful to be an estimator of F(x). �)B	unknown distribution function. In order 

to see if there is a good agreement between empirical distribution function 4�A� and 

the correct distribution function, 	�∗�A� as a comparison needs 4�A� with the 

hypothesized distribution function of 	�∗�A�. One of the simplest measures is the 

biggest distance between the S(x) functions and 	�∗�A� functions, measured in a 

vertical direction (Maydeu-Olivares & Garcia-Forero, 2010; Stephens, 1992).  

If ��A� is the data that includes a random variable ��, ��, .		.			 . , �� accompanied with 

some unknown distribution functions, and 4�A� was based on the random 

variable		��, ��, .		.			 . , ��, then 	�∗�A� can be a totally specified hypothesised 

distribution function (Ghosh et al., 2006). Suppose T has a statistic test to be the 
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greatest and is symbolized by ‘sup’ for the vertical distance between 4�A�	and	�∗�A�. 

Mathematically, it is stated that 

I � JKLF|	�∗�A� − 4�A�| 
Therefore, the hypothesized distribution function test will be as follows: 

M�: ��A� � 	�∗�A�	for				∀	A	�−∞	 < A < 	∞� 

M�: ��A� ≠ 	�∗�A�	for	at	least	one	value	of	A 

If T overrides the quantile of �1 − �� as given by the statistical table, then we reject 

M� at the level of significance α. The approximate p-value can be obtained through 

interpolation in the statistical table (Conover, 1999). In another meaning, H0: the data 

follow the specified distribution; H1: the data do not follow the specified distribution. 

The hypothesis regarding the distributional form is rejected at the chosen significance 

level α if the test Kolmogorov-Smirnov (K-S) is greater than the critical value 

obtained from a table (Balakrishnan & Nevzorov, 2003).  

The fixed values of α (0.01, 0.02, 0.05 etc.) are generally used to evaluate the null 

hypothesis (H0) at various significance levels. A value of 0.05 is typically used for 

most applications, however, in some critical industries; a lower value may be applied 

(Zong, 2011).  

The standard tables of critical values used for this test are only valid when testing 

whether a data set is from a completely specified distribution. If one or more 

distribution parameters are estimated, the results will be conservative: the actual 
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significance level will be smaller than that given by the standard tables and the 

probability that the fit will be rejected in error will be lower (Good & Hardin, 2006). 

3.4 Simulation technique 

Simulation is a reflection of the truth through the information, yielding a relationship 

that focuses around basic or complex numerical outflow Santos and Santos (2007). 

Separate from its many-sided nature; most frameworks can be demonstrated to have a 

redirection capacity between information variables and reaction variables (Altiok & 

Melamed, 2001).  

A simulation model attempts to construct or build an inexact reality. However, only a 

limited amount could reasonably be expected and give expository instruments to 

study the conduct of a complex framework (Jie & Cong, 2009). 

Towill (1991) and Towill, Naim, and Wikner (1992) used  simulation to assess the 

impacts of different inventory network systems on interest intensification. The 

techniques examined were as follows: 

• Eliminating the distribution stage of SC, by embedding the function of the 

distribution in the assembling stage. 

• Incorporating the stream of data throughout the chain. 

• Actualizing a Just-In-Time (JIT) stock approach to lessen time delays. 

• Enhancing the development of intermediate items and materials by altering 

the requested amounts strategies. 

• Altering the parameters of the current order quantity strategies. 
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The aim of a simulation model is to figure out which methodologies are the most 

compelling in smoothing the varieties in the interest example demand pattern (Elhasia 

et al., 2013; van der Vorst et al., 2000). As explained earlier in Chapter Two, there 

are two types of simulation approaches in SC, general package and specific or special 

package in which the design depends on the study (Barton, 1992; Song et al., 2008).  

3.5 Probability of demand during lead-time 

Demand during lead-time is the joint distribution of a demand distribution and a lead-

time distribution, which depends on the parameters (mean and standard deviation) for 

each (Bagchi & Hayya, 1984). The question that arises is why the demand during 

lead-time is critical in inventory control? The answer to this question is that when 

items, goods, or products are near completion, a decision maker starts to make a 

request for an order quantity to meet the needs of consumers and not to fall into 

shortage (Bookbinder and Cakanyildrim, 1999; Ravichandran, 1995). During this 

period, and until the required quantity arrives at the depot, customer demand is 

continuous, and since the processes are very nested, it is difficult to record these data 

on demand until the items or the products reach the place (Funaki, 2012). If the items 

arrive late to the warehouse, the warehouse covers or satisfies the customer demands 

or the markets’ demands from its safety stock (inventory on hand) (Jung, Blau, 

Pekny, Reklaitis, & Eversdyk, 2008; Tallon, 1993). Here, the idea is the demand is 

probabilistic and the lead-time of the items until placed in the warehouse is also 

probabilistic. Therefore, we need to know the probability distribution function of 

demand during lead-time in order to deal with it according to the requirements of the 

concerned party. A mathematical approach to finding the mean and standard 
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deviation regardless of the distribution of demand during lead-time can be calculated 

from the following two equations (Fishman, 1973).  

 \] � 5���5�^�                                                                                                   (3.17)  

	] �	95���_`a��� +	b5���c�_`a�^�	                                                            (3.18) 

where,  E(X) is the expected demand, E(L) is the expected lead-time , Var(X) is the 

variance of demand and Var(L) is the variance of lead-time, μL, σL are the mean and 

standard deviation of demand during lead-time, respectively. However, these two 

equations give only the value of mean and standard deviation without knowing the 

probability distribution function (pdf), which is of greatest importance (Fishman, 

1973; Lee, 2005). 

3.6 Generalized Gamma distribution 

The generalized gamma distribution is a continuous probability distribution with 

three parameters. It is a generalization of the two-parameter gamma distribution 

(Stacy & Mihram, 1965). One specific well-known model is Gamma distribution, 

G(α, β) (Khodabin & Ahmadabadi, 2010). This distribution may help explain a wider 

variety of phenomenon, especially in the area of queuing theory, reliability, inventory 

system, etc. (Axsater, 2010). In statistics, especially in probabilistic theory, gamma 

distribution, G(α, β), is a family of a continuous probability distribution with two 

parameters, the shape, α  and the scale parameter, β (Stacy, 1962). The probability 

density function p.d.f of G(α, β) distribution is: 
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d��, e� � 	 efΓ��� Af��2�hF						for		A ≥ 0		and		�, e > 0																																									�3.19� 

Where,  

l��� � m Af��n� 2�F	oA 																																																																																																	�3.20� 

The generalized gamma distribution, GG(α, β, k) three parameters is the general form 

of gamma distribution, G(α, β) which was introduced by Stacy (1962) and Stacy and 

Mihram (1965). The probability density function, p.d.f of GG(α, β, k)  is 

dd��, e, p� � pAqf��eqfl��� 2�rFhst 							A ≥ 0		and			�, e, p > 0																																			�3.21� 

where � and k are the shape parameters, β is the scale parameter, and           

l��� � u Af��2�Fn
� dx																																																																																																				�3.22� 

GG(α, β, k) is a desirable distribution because of its properties. It involves the 

exponential distribution, the Weibull distribution, the lognormal distribution, the 

Maxwell-Boltzmann distribution, and the Chi-square distribution, which are the 

special cases of generalized gamma distribution subfamilies with some conditions in 

the general form of GG distribution (Hiros, 2000; Khodabin & Ahmadabadi, 2010; 

Mihe, 2010; Stacy & Mihram, 1965). 

The generalized gamma distribution, GG(α, β, k, γ) four parameters is the general 

form of generalized gamma three parameters distribution. 
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Let X be a random variable and follow a generalized gamma distribution with four 

parameters (α, β, k, and γ). where α and k are the shape parameters, β is the scale 

parameter and γ is the location parameter. The probability density function, p.d.f, was 

given by (Stacy & Mihram, 1965): 

dd��, e, p, w� � x�A� � 

																					p�A − w�qf��eqf	l��� 2�r�F�y�h stz 					A ≥ 0		and				�, e, p, w	 > 0																				�3.23� 

And the cumulative distribution function, c.d.f  is:  

dd�A; �, e, p, w� � ���� � l�A − w�/eqfl��� 					A ≥ 0	and	�, e, p, w	 > 0												�3.24� 

The domain of	A	|J	w	 ≤ A	 < 	∞	. If the value of w	 → 	0, it gives GG(α, β, k)  three 

parameters. 

Many studies examined how to find the mean and standard deviation of GG by using 

a Maximum Likelihood Estimation (MLE) (Hiros, 2000; Huang & Huang, 2006; 

Khodabin & Ahmadabadi, 2010; Mihe, 2010; Noufaily, Jones, & Mk, 2013). The 

mean and the variance of GG(α, β, k) can be defined as follows: 

5�A� 	� 	 p	Γ r� + 1e s l(�)                                                                                                      (3.25) 
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_`a(A) =  p�
��

l(� + 2e) l(�) −  �pl(� + 1e) l(�)       �
�

��                                               (3.26) 

The estimation of the mean and the variance of GG, especially for four parameters, is 

very complex and subject to probabilistic theory. However, in Forbes, Evans, 

Hastings, and Peacok (2011), the expression of mean and the variance of GG four 

parameters are solved as follows: 

5(A) =  w + p Γ r� + 1e s 
Γ (�)                                                                                               (3.27) 

_`a(A) =  p�
�
��Γ �z����  � 

Γ (f) −  
��
�qΓ �z���� � 

Γ (f)       
��
��

�
��                                                         (3.28)   

This research dose not estimate the mean and standard deviation of GG(α, β, k, γ) 

four-parameter. These two measures are used in this research to be a sub-process in 

order to reach the objectives. However, any of the statistical package, e.g., (IBM, 

2011; Mathwave, 2015; StatSoft.Inc, 2007) gives the value of the mean and the 

standard deviation depending on the value of �, e, p and w the two shape, scale and 

location parameters, respectively, as shown in Equation (3.23). 

3.7 Continuous Review (R, Q) policy 

The first mathematical model of a multi-echelon inventory system adopts each 

echelon separately to determine the purchasing quantities, which lead to minimizing 
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the value of total cost based on a periodic review system, which was developed by 

Clark & Scarf (1960). 

      �(A) =
���
�� ℎA + L u(� − A)x(�)o�         A > 0n

�
L u(� − A)n

�  x(�)o�               A ≤ 0                                                       (3.29) 

where x is the ‘stock on hand’ at the starting of the period, p is the shortage cost. 

However, when the shortage cost is not allowed in the total cost function of the 

inventory model, it can compensate the holding cost instead of the shortage cost. 

Therefore, h and A are the marginal holding and setup costs, respectively. Equation 

(3.29) will be:  

      �(A) =  
���
�� ℎA + < u(� − A)x(�)o�         A > 0n

�
< u (� − A)n

�  x(�)o�               A ≤ 0                                                     (3.30) 

The model by Clark and Scarf (1960) was adopted and extended by many 

researchers. However, an extension of the model by Clark and Scarf (1960) was done 

by Schmidt and Nahmias (1985), who characterized a simple assembly system of an 

optimal inventory system. Federgruen and Zipkin (1984c) extended Clark and Scarf’s 

model to the infinite horizon and showed a new computational model. 



 

111 

3.8 Order quantity policy in the multi-echelon system 

In order to determine the order quantity for a multi-echelon inventory system, it was 

observed that the order quantity Q for a multi-echelon inventory system is not 

optimal to deal with each stage individually (Schwarz, Frederick, Gerald, & Hamdy, 

1972). The choice of Q at a certain stage will affect the demand structure primarily at 

the next upstream stage (Gümüs & Güneri, 2007). This accreditation makes the Q 

determination more complex even though it is not optimal to determine Q for each 

stage individually. This procedure of order quantity is very common in practice 

because it is very easy and leads to the ordering of very small quantities (Chang & 

Chun-Tao, 2004). When dealing with order quantity even in single-echelon or multi-

echelon, most of the literatures, e.g., Clark and Scarf (1960); Graves (1986); 

Hausman and Erkip (1994); Hosoda and Disney (2006); Sana and Chaudhuri (2008) 

Marc and Graves, (1985) and Hayya et al. (2009) assume that the customer demand is 

known. Furthermore, previous studies made a standard assumption that all lead-times 

are constant, when, in fact, they are equal to zero (Graves, 1985; Pal et al., 2012b). In 

the case of a probabilistic demand, it is normally reasonable to replace the probability 

demand by its mean (the mean of demand probability distribution function) and use a 

deterministic model when determining order quantity (Axsater, 2006). However, 

when the demand and the lead-time are subject to probability distribution functions 

separately, the procedure will be much more difficult.  

Determining the order quantity Q will be as follows: when the inventory level, IL, 

reaches the reorder point, R. where, R is the point that indicates when to order an 

order quantity to promote the inventory. The aim of this procedure is to find the 
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optimal values of Q and R, which, in turn, minimize or achieve the expected total 

inventory cost in the unit time De Bodt and Graves (1985). 

�(A) =  u a�\] �� �x(�) o�                                                                                            (3.31) n
�  

where, �(A)  is the probability function of demand during lead-time, r(\]/t) is a 

conditional probability distribution function of demand during lead-time and x(�) is a 

probability distribution function of lead-time. 

To apply the equation of total inventory cost, we need the average of inventory and 

average of shortage for each inventory cycle (Axsäter, 2011). The inventory cost 

depends on the pure inventory quantity located in the store at the beginning and end 

of the inventory cycle (Chiu, Ting, & Chiu, 2005), where the inventory level at the 

end of the inventory cycle, Cycle(ILend) is the expected value of reorder point minus 

the demand during lead-time.  

Cycle(ILend) = E(R – DL)                                                                                       (3.32) 

and the inventory level at the beginning of the inventory cycle, Cycle(ILbeg) is   

Cycle(ILbeg) = Q+ E( R - DL)                                                                                 (3.33) 

Therefore, the inventory average, M� for each cycle is 

M� =  b� + 5(� − =]) + 5(� − =]c2                                                                             (3.34) 
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M�  =  �2 + 5(� − =])                                                                                                      (3.35) 

Equation (3.35) is based on the average of the beginning and ending expected in 

cycle inventories of cycle � + 5(� − =]), respectively. As approximation, the 

exression ignores the case where 5(� − =]) may be negative (Hamdy, 2007). 

Therefore, 

5(� − =]) =  u(� − =])n
� x(A)oA  = � − 5(=])                                                   

∴  � − 5(=]) = � − \]                                                                                                  (3.36) 

where, \] is the mean of demand during lead-time. Accordingly, the total cost 

function, C(R, Q) = setup cost per order + holding cost per unit time + shortage cost 

per unit time. Since shortage is not allowed in this research, we delete this part from 

the total cost function so that it becomes normal (Hadley & Whitin, 1975). 

�(�, �) = < =]� + ℎ ���2 + u(� − =])n
� x(A)oA�                                                  (3.37) 

where, � = 1 − ��f� and �� is the production rate, then by substituting Equation (3.36) 

into Equation (3.37), we obtain  

�(�, �) = < =]� + ℎ r��2 + � − \]s                                                                           (3.38) 
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Meanwhile, the total cost function, C(R, Q) for the whole system can be extract from 

the following equation (Frederick & Gerald, 2001; Hamdy, 2007). 

�(�, �) =  < =]� + ℎ� r�2 s                                                                                             (3.39) 

Now we derive the corresponding relationship for demand distributed normal. When 

working with a normal distribution of demand, we also propose that the continuous 

inventory position, IP, is distributed uniformly on the interval (R, R+Q). This is a 

very rigorous rounding on condition that the potential of negative demand can be 

ignored (Axsäter, 2011). From this assumption, the mean of demand during lead-

time, \] and standard deviation of demand during lead-time, 	] established and 

extracted according to a simulation procedures (Lee, 2005; Snyder et al., 2004). 

These procedures of simulation will be discussed in Chapter Four section (4.5) later. 

Therefore, these two variables are novel in the model to reach the research questions.  

However, to determine the distribution function of the inventory level, an arbitrary 

time (t) when the system is in the steady state, assume the inventory position at the 

time t is IP(t), then consider the t+L and the inventory level, IL(t+L). Everything was 

on order at time t has been delivered at time t+L. Orders that have been triggered 

between t and t+L have not reached the inventory at time t+L (Axsater, 2006). 

Accordingly,  

IL(t+L) = IP(t) – D(t, t+L)                                                                                   (3.40) 

D(t, t+τ) = D(τ) = stochastic demand in the interval (t, t+τ].  
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where the demand during lead-time, D(t, t+L) is independent of the IP(t). Ignoring 

the probability of negative demand, the IP in the steady state is uniformly distributed 

on the interval (R, R+Q). The demand during lead-time is assumed to be normally 

distributed. Consequently, the inventory level, IL and given the inventory position (u) 

at time (t), the interval level of time t+L is less than or equal to x. If demand during 

lead-time is at least u-x, and assume f(x) and F(x) denote the density and the 

distribution function of the inventory level, IL in the steady state, then,  

�(A) = �(E^ ≤ A) =  1� u �1 − Φ(K − A − \]	] )   oK                                           (3.41)¡�¢
¡  

where , £(A) is the distribution function of the standardized normal distribution with 

mean equal to 0 and standard deviation equal to 1 (Good & Hardin, 2006). The loss 

function G(x) of the normal distribution is introduced as follows: 

d(A) =  u(¤ − A)¥(¤)o¤ =  ¥(A) − A(1 − Φ(A))                                               (3.42)n
F  

where, ¤ is the differentiable functions  and ¥(A) is the density of standardized 

normal distribution. Note that,     

d¦(A) =  Φ(A) − 1                                                                                                          (3.43) 

which means that d¦(A) is increasing and negative. Accordingly, G(x) is convex and 

decreasing. By using Equation (3.43), we can reformulate Equation (3.41). 
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�(A) =  1� u �−d¦ rK − A − \]	] s  oK ¡�¢
¡

=  	]�  �d r� − A − \]	] s − d r� + � − A − \]	] s                       (3.44) 

To verify that G(x) is decreasing and non-negative, d(A) → 0 as A → ∞ 

and d(−A) = d(A) + A, i.e., d(A) → −A as A → −∞. Using that d(A) → 0 as 

A → ∞, we have 

u �(A)oA�
�n =  u �1� u �−d¦ rK − A − \]	] s ¡�¢

¡ oK��
�n oA
= 1� u � u �−d¦ rK − A − \]	] s �

�n oA�¡�¢
¡ oK 

∴ u �(A)oA�
�n =  	]� u d rK − \]	] s¡�¢

¡ oK                                                                       (3.45) 

 From Equation (3.44) we can obtain the density function f(x) as 

x(A) =  1�  u 1	]  ¥ rK − A − \]	] s oK¡�¢
¡

=  (1	])� �Φ r� + � − A − \]	] s −  Φ r� − A − \]	] s                      (3.46) 

while, d¦(A) =  Φ(A) − 1 from Equation (3.43), by replacing  d¦(A) From Equation 

(3.44) into Equation (3.46) and assume � → 0, we obtain 
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�(A) =  d¦ r� − A − \]	] s = 1 − Φ r� − A − \]	] s 

           =  Φ §A − (� − \])	] ¨                                                                                           (3.47) 

x(A) =  1	]  ¥ §A − (� − \])	] ¨                                                                                     (3.48) 

when � → 0, this simply means that when applying an S policy to S = R, IP is kept at 

R all the time. The inventory level distribution is then normal distribution (Axsater, 

2006; Matheus & Gelders, 2000). 

3.9  Service Level 

In order to identify an appropriate reorder point or safety stock, the reorder point can 

be based on safety stock whether a planned service constraint or has a certain cost of 

shortage. Practically, it is often easier to identify a service level (Axsater, 2006b). 

Therefore, the service level is identified as: 

SL1 = probability of no stockout per cycle order. 

SL2 = fill rate portion of demand that can be satisfied instantly from safety stock 

(stock on hand). 

SL3 = ready rate portion of time with non-negative safety stock. 

 SL1 definition can be seen as the probability that an order arrives on time, i.e., before 

the safety stock is finished. SL1 is very easy to use; however, it also has some 

important defects (Tarim & Kingsman, 2004). The problem is that SL1 does not take 
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the order quantity into consideration. If the order size is big and meets the demand 

during a long time, it is not important how much of SL1 is low (Axsater, 2006).  

In most cases, there is still plenty of safety stock due to a large order quantity. If the 

order quantity is small, the real service can similarly be low even if SL1 is high 

(Axsäter, 1984; Tyagi & Das, 1998). As a result, SL1 cannot be recommended for 

inventory control in practice. The fill rate and ready rate make the determination of 

the corresponding reorder points to be something more complex (Osman & Demirli, 

2012; Schwarz et al., 1985).  

SL2 and SL3 are equivalent in continuous demand. This is not the situation even 

though a retailer or customer may order several quantities at the same time. Even if 

the safety stock is non-negative, the inventory may not be enough to cover a large 

number of retailers or customers’ order (Abu Alhaj & Diabat, 2009). If the inventory 

includes a small number of orders in hand, the ready rate still increases most of the 

time and the fill rate may still or may be very low if there are a large number of 

retailers and customers who order large quantities. 

3.10 Echelons and installations reorder point, R 

The differences between echelon inventory and installation inventory depend on the 

type of inventory system, whether it is serial or distribution as shown in Figures 2.1 

and 2.2 in Chapter Two (Axsäter & Juntti, 1996). However, echelon N (the final 

stage) faces customer demand. Echelon 1 is the raw material gained from outside 

suppliers. In order to analyze the relationship between echelon inventory policy and 

installation inventory policy, the order quantity, �� is equal to quantity of installation 
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1 (Mitra & Chatterjee, 2004a). Subsequently, in order to guarantee that the policies 

are stationary, the Q at each echelon should be an integer multiplied by Q of the 

predecessor echelon (Axsater, 2006a; De Bodt & Graves, 1985). Therefore, some 

additional assumptions made the order quantity at installation 2 to be an integer 

multiplied by order quantity at installation n-1 (it is suitable to define �� = 1). Then,  

�� =  ©���,  Therefore, the expression will be: 

�� =  ©�������                                                                                                                 (3.49) 

where ©� is an integer and nonnegative. These suppositions are natural if the policy of 

rationing is to satisfy either all or nothing of an order, in which the installation 

inventory at installation n includes a number that must always be of an integer of the 

next downstream order quantity (����). The aim of ©� is to guarantee that the policy 

are stationary, therefore, the order quantity at each echelon should be an integer 

multiplied by previous echelon order quantity. The extracting value of ©� will be 

discussed in Chapter Four. Now, we present some additional notations: 

E��) = Installation inventory position at installation n. 

E��8 =  E��) +  E����) +.  .  . + E��) = “Echelon stock of inventory position at installation 

n. 

��) = Reorder point at installation stock n. 

��8  = Reorder point at echelon stock n. 
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Now, suppose that the system starts with initial inventory position E��)� and E��8� that 

satisfies:  

��)  <  E��)�  ≤  ��) + ��                                                                                                 (3.50) 

��8  <  E��8�  ≤  ��8 +  ��                                                                                               (3.51) 

An inventory installation policy is always overlapping, e.g., installation n will not 

request unless its inventory position is recently decreased by a request from 

installation ' − 1. But, if installation ' − 1 orders, this must then be the situation for 

installation ' − 2, etc., and consequently for all installations downstream (Axsater, 

2001). The E��8 at installation n is not influenced by orders at installation 1, 2, .  .  ., 

n-1. If, for example, installation ' − 1 orders a quantity from installation n, E����)  is 

expanded by ���� and E��) is diminished by ����. This will unmistakably not 

influence E��8. The E��8 at installation n is only changed by the final demand at 

installation 1 and by replenishing orders at installation n (Fangruo Chen, 1998). We 

now demonstrate Propositions (3.1) and (3.2) for the special situation of unit demand 

and continuous review. We might also, without any absence of an all-inclusive 

statement, suppose that E��)� − ��)  is an integer multiple of ����. All demands at 

installation n are multiples of the order quantity at installation n-1, ����, and all 

replenishments are also multiples ���� because of Equation (3.50).  

Consequently, this supposition just implies that we will hit the R exactly when 

ordering. The reorder point ��) + ª where 1 ≤ ª < ���� will trigger orders at the 
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same times of IP. The main distinction is that the IP will be y units below the R when 

ordering because the R is y unit higher. 

Proposition 3.1: Reorder point of an installation inventory can constantly be 

replaced by a tantamount reorder point policy of echelon inventory (Axsäter, 2011). 

Proof:  Suppose the policy of installation inventory is given. Consider installation n, 

where the policy of installation inventory is interlaced, and since we select the 

reorder points in which all inventory positions will reach the reorder points precisely 

when orders are raised, the inventory position of echelon inventory after ordering 

must be: 

E��8 =  ∑ ��«) + �«�                                                                                                   (3.52)�«+�   

Then 

��8 =  ����) +   ∑ ��«) + �«�                                                                                    (3.53)���«+�   

Proposition 3.2:  Reorder point policy of an echelon inventory that is interlaced can 

always be substituted by a tantamount reorder point policy of installation inventory 

(Hausman & Erkip, 1994). 

Proof:  Suppose that the policy of an echelon inventory is given. For installation 1, 

there is no variance between the policy of an echelon inventory and installation 

inventory. Accordingly, ��) =  ��8, will raise orders at the same time as the policy of 

echelon stock. Consider installation ' ≥ 2. By virtue of the unit demand, all 

installations will always reach their order points when ordering. 
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E��) =  E��8 −  E����8 =  ��8 +  �� −  ����8 −  ����                                                  (3.54) 

Therefore, the policy of installation stock with reorder points is: 

��) =  ��8 , ��) =  ��8 −  ����8 −  ���� ,      ' > 1                                              (3.55) 

3.11 Policies of Order quantity in Serial system 

This section shows the order quantity policies in a multi-echelon inventory system for 

a serial system. In Section (3.10), we explained the differences between echelon 

inventory and installation inventory. However, the order quantity policies in a serial 

or distribution system depend on the comparison of echelon inventory and installation 

inventory (Axsäter & Juntti, 1996; Zhao et al., 2006). We might now assume up to 

the model in Section 3.9 by considering more general echelon stock (R, Q) policies. 

As in Section 3.6, we might manage with demand distributed normal, continuous 

review.  

We make suppositions that Q2 and the beginning of installation 2 are integer 

multiples by Q1. This implies that the stock inventory level installation at installation 

2 are multiples by Q1 all the time (Atan, 2010; Axsäter, 1998). Recall from Section 

3.8 that given these suppositions, the class of echelon inventory reorder point policies 

includes the class of installation inventory reorder point policies to be a subset. 

Furthermore, Chen (2000) showed that the echelon inventory (R, Q) policies are 

optimal under truly general conditions for a serial system. We shall derive the 

probability distribution of the echelon stock inventory level. The derivation basically 

follows Chen and Zheng (1994). Note first that the statuses of echelon inventory at 
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installation 2 are completely parallel to the status of a single-stage inventory. 

Consider a discretionary period, t.  

The position of echelon stock inventory just after a potential order in period t (before 

the demand), E��8(�), is a steady state uniformly distributed on the interval (R2, 

R2+Q2) (Inderfurth & Vogelgesang, 2013). The echelon inventory level in period 

t+L2 after the period demand E��8(� + ^�) is acquired by subtracting the demands in 

period (t, t+1, .  .  ., t+L2), i.e., the demand during L2+1 period D(L2+1), E��8(� +
^�) =  E��8(�) − =(^� + 1) (Li, 2013). The demand during lead-time has a mean of 

\] and a standard deviation of 	] as we proved earlier, and has a complete analogy 

with Equation (3.43). 

��(A) =  1	]�  �d r�� − A − \]	] s − d r�� + �� − A − \]	] s                                     (3.56) 

The corresponding density is (recall that  d¦(A) =  Φ(A) − 1) from Equation (3.43)). 

x�(A) =  1	]  �¥ r�� − A − \]	] s − ¥ r�� + �� − A − \]	] s                                      (3.57) 

The inventory position at installation 1, E��, after the review with plausibility to order 

is constantly in the interval (R1, R1+Q1) (Axsäter & Marklund, 2008). Consequently, 

if E^�8 < ��, we know that there is no installation inventory at installation 2 after the 

review at the inventory position of installation 1 (Axsater, 2001). All inventory in E^�8  

must be en route to, or already at installation 1. The other probability is that E^�8 >
��. Recall now that the installation inventory level at installation 2 after the review of 

installation 1 is always a multiple of Q1, say jQ1. We have ©�� = E^�8 − E�� > �� −
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(�� + ��) = −�� since E�� ≤ �� + ��. However, this implies that the © ≥ 0. 

Consequently, there are no backorders at installation 2 and all stock in E�� must be en 

route to, or already at installation 1 (Karaman, 2007). Note that given E^�8 , we can 

obtain E�� uniquely from the condition E�� =  E^�8 − ©�� and �� < E�� ≤ �� + �� 

since the second condition determines j uniquely. Let us symbolize the resulting j by 

¬̂ . We can infer that the acknowledged inventory position, e.g., the inventory, is on its 

way to, or already at installation 1, which can be expressed as: 

®(E^�8�) = ¯E^�8 ,                E^�8 ≤ ��E^�8 − ¬̂��,         Otherwise                                                                    (3.58) 

3.12 First come first serve queuing discipline in inventory system 

A queueing framework has a huge part to arrange and direct the works in the 

inventory network (Saffari & Haji, 2009). In a production network, each stage or 

echelon can be portrayed with a lining framework with stock (Jain & Raghavan, 

2008), especially when the procedure is liable to a long sitting tight time for retailers 

to meet the item.  

Axsäter (2007) utilized FCFS to be a part of a two-echelon dispersion framework 

with one stockroom and a number of retailers under (S-1,s) approach, where the 

retailers confront stochastic interest disseminated Poisson. Furthermore, Saffari and 

Haji (2009) and Sahraeian et al. (2010) attempted to diminish the holding up time in 

their considered framework by relying upon stochastic interest dispersed a Poisson 

process. Schwarz et al. (2006) tackled stationary conveyances of joint stock 

operations and line length in an unequivocal item structure for distinctive ‘M/M/1-

frameworks’ with a ceaseless audit stock framework and different stock management 
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approaches, as well as with lost deals. They assumed that the demand was Poisson 

and lead-time and service time was exponential. They used these two distributions to 

discover the measures of capable performance frameworks. 

The discipline for any system in queueing can be generalized as (a/b/c).(d/e/f) 

(Boucherie & van Dijk, 2010). Where,  

a: the statistical distribution for arrival process or the arrival distribution.  

b: service time distribution or departure distribution.  

c: number of parallel sources or number of service stations. 

d: distribution service discipline, and can be:  

• FCFS: first come first serve. 

• LCFS: last come first serve. 

• SIRO: service in random order. 

• GD: general service discipline. 

• PR: priority. 

e: maximum number of queue in the system (finite or infinite). 

f: customer source (community size) that needs service (finite or infinite). 

The standard symbols a and b used to express the arrival and departures are as 

follows: 

M: Poisson or Markovian arrival or departure distribution, or equivalently 

exponential inter-arrival or service time distribution.  

D: constant or deterministic inter-arrival, or service time. 
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Ek : Erlangian of gamma distribution of inter-arrival or service time distribution with 

parameter. 

GI: general independent distribution of arrival. 

G:  general distribution of departure or service time. 

Therefore, to adopt a queue system, the arrival distribution and service distribution 

should be known from the data of the system (Schwarz et al., 2006). Furthermore, it 

is necessary to know whether the queue numbers and community size are finite or 

infinite. Depending on these variables, we can formulate or build the queueing 

discipline to reach the desired goals of the system. 

Remark 3.1: order-up-to-level represents a private situation of a (R, Q) policy while 

demand distributed Poisson represents a private situation of a compound Poisson 

demand (Axsater, 2010; Axsater, 2001).. From Remark 3.1, we can use an order-up-

to-level in the continuous review (R, Q) policy with some changes in the model upon 

on the variables. This leads to additional notation to be: 

λ = mean arrival rate of retailers. 

μ = mean service rate of retailers. 

��(�) = the probability of arrival (n) units to the system for a period (t),  

Ls= the expected number of retailers in the system. 

Lq= the expected number of retailers in the queue. 

Ws= expected waiting time in the system. 

Wq= expected waiting time in the queue. 

Under the FCFS policy, the optimal ‘order-up-to-level’ satisfies 

 Si ≥ 0, i = 0, 1, 2,  .  .  ., N. 
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We consider a supply chain that includes one warehouse (with three installations), 

one distribution center (with six lines) and N-retailers. Furthermore, all retailers 

having identical requirements are assumed. Here, identical requirement means that 

different retailers require similar items (cement), but in a different configuration and 

different quantities.       

Now, the arrival process, which is the time between two consecutive arrivals of 

service place (Krakowski, 1974) is defined. These periods of time are probabilistic 

and have a probability distribution function (p.d.f). Assume that the arrival process to 

the service process stochastically with mean arrival rate, λ. The probability of arrival 

one unit during period (t) is (∆�). Furthermore, the probability of this unit during this 

period depends on the duration of (∆�) or (t, t + ∆� ) (Saffari & Haji, 2009). The 

probability of arriving more than two units during (∆�) is  ®(∆�). 
�µ  represents the 

arrival rate i.e. the mean time of two consecutive arrivals and distributed to be a 

negative exponential distribution (Wu et al., 2007). By using probabilistic arrival 

hypotheses and the probability distribution of mean arrival rate (λ) during a period 

time, the probability of arrival (n) units to the system for period (t), ��(�) will be:  

��(�) = ¶(�) u x(�)n
� o�                                                                                                  (3.59) 

where, ¶(�) =  λ2�µ¸, for an arrival process that has a negative exponential 

distribution, t > 0. Therefore, 

��(�) =  λ2�µ¸ u x(�)n
� o�                                                                                               (3.60) 
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In the service process, the period of service level is independent of each unit. 

Additionally, it assumes the homogeneity of the units (Jain & Raghavan, 2003). The 

probability to finish a service unit in a short period of time (∆�) depends on the 

previous period of O – t, t which follows t + ∆� . Now we will assume μ = mean 

service rate, the probability to finish a service for one unit in period (t + ∆�) is 

b\ ∆� + ®(∆�)c, and the probability to not finish the service unit through the same 

period (t + ∆� ) is [1 - (\ ∆� + ®(∆�))c. Then, 
�¹ is the service rate, in which the 

service unit takes in a period time (Krakowski, 1974).  

��(�) =  μ2�»¸ u x(�)n
� o�                                                                                               (3.61) 

To find the probability of arrival n units to the system for period ¼� in (� + ∆�) is, 

��(� + ∆�) =  ��(�)(1 − \�∆�)(1 − ¼�∆�) + ���� (�)¼���∆�(1 − \���∆�)
+  ����(�) \���∆�(1 − ¼���∆�)
+ ®(∆�)                                                                                                   (3.62) 

��(� + ∆�) =  ��(�)b1 − (¼� + \�)∆�c +  ¼�������(�)∆� +  \�������(�) ∆�
+ ®∆�                                                                                          ' ≥ 1  

��(� + ∆�) − ��(�)
= −b¼�∆� + \�∆�c + ¼�������(�)(∆�) + \�������(�) (∆�)
+ ®∆�                                                                                                       (3.63) 

Dividing Equation (3.63) by ∆�, we obtain: 
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��(� + ∆�) − ��(�)∆� = −b¼� + \�c + ¼�������(�) + \�������(�)  + ®∆�∆�  

And taking the limit for both sides,  ∆� → 0 

��¦(�) =  −b¼� + \�c��(�) + ¼�������(�) + \�������(�)                                    (3.64) 

 Steady state 3.12.1

In order to study any system according to a queueing theory, we need to apply the 

steady state. This is by calculating the steady state probability distribution and 

computing the most vital execution measures (Jain & Raghavan, 2008). The 

probability of the steady state of an item structure seems to be an extraordinary 

gimmick of the above model. This implies that an asymptotic and a stationary 

distribution of the joint (queue length/inventory size) procedure are factored into the 

stationary line length and stock size appropriation (Saffari & Haji, 2009). In other 

words, in the long run, and in balance, the length line methodology and the stock 

procedure carry on as though they are free (Schwarz et al., 2006).  

However, studying any queueing system needs a long period time in order to get a 

clear understanding of steady. Therefore, t approaches a very big number, and is 

supposed of approaching ∞, which means � → ∞. When, � → ∞, then ��(�) will be 

independent of the time. Therefore, ��(�) =  �� is the steady state (Bhat, 2008). 

By taking the first derivative of Equation (3.64) we obtain 

��¦(�) =  −[¼ + \]��(�) + ¼����(�) + \����(�)        ' ≥ 0 
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when ' = 0 

��¦(�) =  −[¼ + \]��(�) + \��(�)                                                                                  

��¦(�) =  −¼��(�) − \��(�)  + \��(�)                                                                         (3.65) 

-\��(�)  can be ignored from the Equation (3.65) because there is no negative service 

time, which means  ��(�) = 0  (already there is no service) (Bhat, 2008). 

Let  ��¦ = 0 

∴ ¼��(�) =  \��(�)                                                                                                           (3.66) 

From Equation (3.66) we can reformulate �� to be,  

��(�) =  ¼
\ ��(�)                                                                                                                (3.67) 

If n=1 

��¦(�) =  −[¼ + \]��(�) + ¼��(�) + \��(�)                                         

��¦(�) =  −[¼ + \] ¼
\ ��(�) + ¼��(�) + \��(�)                                                               

��¦(�) = − ¼
�

\ ��(�) − ¼��(�) + ¼��(�) + \��(�) 

 ��¦(�) =  − ½�
¹ ��(�) +  \��(�) 

∴  ��(�) =  ¼�

\� ��(�)                                                                                                         (3.68) 
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By mathematical induction, ��(�) is given by  

��(�) =  r¼
\s

�
��(�) 

Let  
½
¹ =  � and  � = ½

¹   < 1, where �  is the proportion units’ arrival rate in the unit 

time to the performance of the service rate in the unit time while  ½¹  is the proportion 

of traffic density in the system. Therefore, 

��(�) =  ����(�)                                                                                                              (3.69) 

Now we are interested in knowing the value of ��(�). The sum of probabilities values 

is equal to 1 (Balakrishnan & Nevzorov, 2003). Therefore, 

( ��(�)
n

�+�
= 1                                                                                                                     (3.70) 

By substituting Equation (3.69) into Equation (3.70), we obtain 

  ( ����(�)
n

�+�
= 1                                                                                                              (3.71) 

Equation (3.71) can be rewritten as: 

  ��(�)   ( ��
n

�+�
= 1     

  ��(�)(1 + � + �� + �$+ .    .    . ) = 1                                                                       (3.72) 
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We can define (1 + � + �� + �$+ .    .    . ) as infinite geometric series, which the 

general limit = first limit / (1- the base). Therefore, Equation (3.72) will be 

��(�) - �
��¾. = 1  

��(�) = 1 − �                                                                                                                    (3.73) 

Now, we can reformulate Equation (3.69) based on Equation (3.73)  

��(�) = ��(1 − �)                                                                                                           (3.74) 

Now we calculate the performance measures in a steady state (LS, Lq, WS, Wq) from  

Bhat (2008) as follows: 

Firstly, we find the expected number of retailers in the system. 

^¿ = ( '��(�)
n

�+�
=  ( ' ��(1 − �) = 

n

�+�
 

         ( ' �� −  ( ' ����
n

�+�
 

n

�+�
 

^¿ = ( ' �� −  ((' − 1)��
n

�+�
= 

n

�+�
 

          ( ' �� −  ( ' ��
n

�+�
+ ( ��

n

�+�
 

n

�+�
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^¿ = ( ��
n

�+�
= � + �� + �$ + �1 + .  .  . 

^¿ = �
(1 − �)                                                                                                                     (3.75) 

where,  � = ½
¹ and the expected waiting time in the system depends on the expected 

number of retailers in the system. Therefore, 

À¿ = ^¿
arrival rate =  

�
(1 − �)

¼  

∴  À¿ =  �
¼(1 − �)                                                                                                            (3.76) 

Secondly, the expected number of retailers in the queue (Lq) is  

^Á = ((' − 1)�� (�) =  
n

�+�
 

          ( '��(�) −   
n

�+�
( �� (�)

n

�+�
 

^Á = ^B − (1 − ��(�)) 

^Á = ^B − (1 − (1 − �)) 

^Á = ^B − 1 + (1 − �) 

^Á = ^B − �   =  � − � + ��

(1 − �)  
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∴ ^Á = ��

(1 − �)                                                                                                                 (3.77) 

The expected waiting time in the queue (Wq) will be  

ÀÁ =  ^Á
arrival rate   

ÀÁ =  ��

¼(1 − �)                                                                                                                (3.78) 

In the case of an infinite population, the restricting distribution of the queue length 

techniques harmonize with that of the M/M/1/∞ framework with the arrival rate λ and 

service rate μ (Jain & Sigman, 1996). This demonstrates a surprising and vital 

invariance property for the queueing frameworks regarding inventory systems and 

lost sales. In fact, we can see that for the effective arrival rate, ¼8ÂÂ ≠  λ holds, and 

that for the effective service rate \8ÂÂ ≠  \ holds (Schwarz et al., 2006). The 

surprising conclusion is that the framework without any other input manages to be a 

powerful service and has arrival rates in response to the lead time qualities, as well as 

the inventory system policy in a manner that the service system dependably 

encounters a traffic intensity � = µ¹ = µÃÄÄ¹ÃÄÄ . The main side condition is � = µ¹ < 1 

(Boucherie & van Dijk, 2010; Karaman, 2007). 

There is a strong relationship between Ls & Ws and between Lq & Wq. By determining 

one of these measures, the other can be determined (Axsäter, 2007; Diks et al., 1996). 

Suppose another measure is  λ8ÂÂ, where λ8ÂÂ is the effective average arrival rate 
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(independent of the number of the system). Therefore, the previous relation can be 

resolved as: 

^¿ = λ8ÂÂÀ¿                                                                                                                      (3.79� 

^Á = λ8ÂÂÀÁ                                                                                                                      �3.80� 

and 

λ8ÂÂ =  ( λ���
n

�+�  

While there is a direct relationship between Ws and Wq, this relationship is logical and 

can be determined by the definition: expected waiting time in the system = expected 

waiting time in the queue + expected service time (Bhat, 2008). Therefore, 

À¿ = ÀÁ � 1\                                                                                                                     �3.81� 

where, \ is the rate of service provider for each station or line, and the expected 

service time is 
�  ¹. Multiply Equation (3.81) by λ8ÂÂ, we obtain 

^¿ = ^Á � λ8Â\                                                                                                                    �3.82� 

 Waiting time distribution based on FCFS service discipline 3.12.2

The expected waiting time which has a probability density function is independent of 

the service discipline (Sahraeian et al., 2010). 
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Let Å be the amount of time retailers are arriving and must wait in the system until the 

service is complete. Based on the FCFS service discipline, if there are n retailers in 

the system ahead of an arriving retailer, then  

Å = Å¦ � Å� � Å� � Å$� .  .  . � Å��� � Å� � Å��� 

where Å¦ is the time needed for a retailer to actually be in service to complete the 

service while (Å� � Å� � Å$�  .  .  . �Å�) is the service time for ' − 1 retailer in the 

queue (Saffari & Haji, 2009). Å��� is the time represented, i.e., the service time 

arriving to a retailer. Assume Æ�Å/' � 1� is the condition’s probability density 

function of Å given n retailers in the system ahead of the arriving retailer (Axsäter, 

2007). Since Å) for all i is exponentially distributed to be a forgetfulness property (see 

Remark 3.2), Å¦ also has the same exponential distribution as 

Å� � Å� � Å$�  .  .  . � Å��� consequently, Å is the sum of ' � 1 which is independent 

and identically distributed (i.i.d) of exponential distribution. From probability 

theory, Æ�Å/' � 1� must be a Gamma distribution with parameter μ. Therefore, 

Æ�Å� =  ( Æ -Å' � 1.n
�+� �� =  ( \�\Å�� 2�¹Ç'!

n
�+�

�1 − ���� 

Æ�Å� = �1 − ��\2�¹Ç ( �¼Å�'!
�n

�+� =  \�1 − ��2�¹Ç�½Ç          Å > 0 

Æ�Å� = \�1 − ��2�¹���¾�Ç             Å > 0                                                                    �3.83� 

where Equation (3.83) is a distributed negative exponential with a means of  
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5bÅc =  1\�1 − ��                                                                                                             �3.84� 

In fact, the mean 5bÅc is equal to be an expected waiting time in the system, Ws.  

Remark 3.2: Forgetfulness property 

Poisson is a completely random operation because it contains the property in which 

the time interval remaining until the occurrence of the next event is totally 

independent of the time interval that elapsed since the occurrence of the last event 

(Bhat, 2008; Krakowski, 1974). 

 

This property is equivalent to proving the following probability statement �b� > I �
4/� > Jc 

� �� > I � 4� > J  =  �b� > I � 4 ∩ � > Jc�b� > Jc =  �b� > I � 4c�b� > Jc = 
=  Ê1 − 2�½�Ë�B�Ì − Ê1 − 2�½Ì2�½ = 1 −  2�½Ë 

∴ �b� > Ic =  1 −  2�½Ë                                                                                                 �3.85� 

 Performance measures for more than one parallel service station 3.12.3

When the parallel service stations, C, in the queue discipline are more than one (i.e. 6 

stations in the distribution centre), the measures of performance (LS, Lq, WS, Wq) will 

change (Bhat, 2008). This change or this effect will be as follows: 

S 
s T S+T 
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( �� = 1  ⟹        n
�+� ��' < Î� � ��' ≥ Î� 

             =  ( 1'!
Ï��
�+� ���� � ( ��Î! Î��Ï

n
�+Ï �� 

1 =  ( 1'!
Ï��
�+� ���� � ( 1Î! Î��Ï

n
�+Ï  ���� 

1 =  ��  Ð( ��'!
Ï��
�+� � ( 1Î! Î��Ï

n
�+Ï  ��Ñ 

1 =  ��  Ð( ��'!
Ï��
�+� � �ÏÎ!  ( 1Î��Ï

n
�+Ï  ���ÏÑ 

1 =  ��  Ð( ��'!
Ï��
�+� � �ÏÎ!  ( -�Î.��Ïn

�+Ï  Ñ 

1 =  ��  Ð( ��'!
Ï��
�+� � �ÏÎ!  �1 � �Î � �Î� � �Î$ �   .    .    . �Ñ 

1 =  ��  Ò( ��'!
Ï��
�+� � �ÏÎ!  � 11 − �Î�Ó 

∴  �� =   Ò( ��'!
Ï��
�+� � �Ï

Î! �1 − �Î� Ó
��

                                                                               �3.86� 

^Á = (�' − Î���
n

�+Ï ,                           Î > 1 



 

139 

      = 0�Ï � 1�Ï�� � 2�Ï�� � 3�Ï�$ �    .    .   .  �p�Ï�q 

       = ( p�q�Ï
n

q+�  

     = ( p �q�ÏÎ! Îq ��
n

q+�  

^Á =  �� �ÏÎ! . �Î  ( p -�Î.q��n
q+�   

Let  ¾Ï =  Ô then,    

^Á = ��   �Ï��Î! Î ( pÔq��n
q+�  

which mean, 

^Á =  ��  �Ï��Î! Î  b1 � 2Ô � 3Ô� � 4Ô$ �   .    .    .   c 

1 � 2Ô � 3Ô� � 43Ô$� .     .    .  =  ( 'Ô���n
�+�  

                                                        =  ooÔ Õ( Ô�n
�+� Ö 

                                                     =  ÔoÔ ¯ 11 − Ô× 

                                                     =  1�1 − Ô�� 
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∴ ^Á =  ��  �Ï  �Î!  Î ∗  1
-1 − �Î.�     

∴  ^Á = �� �Ï��
Î! -1 − �Î.�                                                                                                     �3.87� 

In order to determine or extract the rest of the formulas (Ls, Ws, Wq), we use the little 

formula (Bhat, 2008; Krakowski, 1974) which links between the averages of number 

units in the system and the average of queuing time in the system. The relationship is 

as follows: 

 ^¿ = ¼À¿                                                                                                                            �3.88� 

Moreover, there is a relationship linking the average of number units in the queue 

with the average of queue time in the queue line and the expected queue time in the 

system (Jain & Raghavan, 2008). which is given by, 

λÀ¿ = λÀÁ � µ¹     
 ∴  ^¿ = ^Á�                                                                                                                       �3.89� 

As previously mentioned in Section 3.13.1, there is a strong relationship between Ls, 

Lq Ws and Wq. Therefore, when we know the value of one of them, we can find the 

values of others. 
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 Gamma distribution 3.12.4

The completeness of the gamma distribution has the following density functions 

(Hiros, 2000; Khodabin & Ahmadabadi, 2010; Mihe, 2010). 

¶�A� =  e�eA�f��Γ��� 2�hF  ,                A ≥ 0                                                                    �3.90� 

The two parameters α and β are both nonnegative and l��� is the gamma function: 

Γ��� =  u Af��2�FoA.                                                                                                   �3.91�n
�

 

Given t, the mean μ, and the standard deviation 	, the parameters α and β are 

uniquely determined to be:  

� = -\	.�                                                                                                                            �3.92� 

e = \	�                                                                                                                                 �3.93� 

It is helpful to note that l��� = �� − 1�l�� − 1� and that:  

u Af2�hFoAn
�

=  l�� � 1�e�f���                                                                                             �3.94� 
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3.13 Discussion and summary 

In this Chapter, some crucial methods related to a multi-echelon inventory system, 

which would be helpful in meeting the objectives of this research, were recapped. 

The review presented revolves around the approximation mathematical model in a 

multi-echelon inventory system under the continuous review policy. So, these 

methods are linked to the simulation and forecasting methods in addition to the role 

of the first-come-first-serve (FCFS) queue model in a multi-echelon inventory 

system. In addition, the continuous review (R, Q) inventory policy was selected 

compare with other policies in an inventory system. When the inventory position, IP 

deteriorates to be below the reorder point, R an order quantity of size Q is ordered. If 

the IP is adequately low it may be necessary to order more than one orders to get 

above R (Axsater, 2006). If the demand is continuous or one unit at a time, we will 

always reach the reorder point exactly in the case of continuous review.  

In fast moving items with probabilistic and high uncertain of demand and lead-time, 

the appropriate inventory policy is (R, Q) compared with other policies (Moslemi & 

Zandieh, 2011) because the properties of the (R, Q) policy with regard to lead-time, 

(Li, 2013; Mitra & Chatterjee, 2004). Although management of the lead time is 

enormously important in competitive ergonomics and is conceptually stressed by 

operations management strategies (e.g. quick response, just in times and time based 

competition) (Elhasia et al., 2013).  

However, for the multi-echelon inventory system under the continuous review policy 

to be labeled as a good approximation mathematical model, it should satisfy several 

mathematical properties. They include a simulation procedures to extract the demand 
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during lead-time probability distribution function, a suitable forecasting method 

which is often the exponential smoothing method, a suitable policy in the multi-

echelon inventory system, such as an (R, Q) policy, and an inventory systems, such as 

serial and distribution inventory system.   

While the optimality is still unknown for most types of multi-echelon inventory 

systems because of the probability behavior of the demand and the lead-time, an 

approximation mathematical model offers the best solution by considering demand 

during lead-time probability distribution.  

In the next step, this research will develop an approximation mathematical model 

based on a simulation procedure to establish the demand during lead-time probability 

distribution. The model includes an exponential smoothing model and a lead-time 

probability distribution function by proposing two models, serial multi-echelon 

inventory system under the continuous review (R, Q) policy and distribution multi-

echelon inventory system under the FCFS queue model. The next chapter explains 

the model development in detail. 
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 CHAPTER FOUR

RESEARCH METHODOLOGY 

This chapter details the development of an approximation mathematical model in a 

multi-echelon inventory system under a continuous review (R, Q) policy depending 

on the novelty of the probability distribution function of the demand during lead-

time. It starts with the design of the research, data source, collection and types, 

simulation procedures to establish the demand during lead-time data, model 

formulation, and evaluation of the proposed models.  

4.1 Research Design    

In this research, we consider a supply chain of multi-echelon inventory system under 

a continuous review (R, Q) policy with probabilistic demand and lead-time, which 

includes four echelons. The data involve demand, lead-time, retailer’s arrival rates, 

service rate, and costs (i.e. holding cost and setup cost).  The type of this data is 

secondary and obtained from the database of the cement company directly. Overall, 

this research involves a model development of a multi-echelon inventory system. 

The first part of this research is establishing the demand during lead-time probability 

distribution function data by using simulation procedures, which is called the 

SMDDL model. This model develops a structure and an algorithm to establish the 

demand during lead-time probability which is not available in the reality. In the 

previous studies, probability of demand and lead-time were taken separately without 

extracting and establishing the probability distribution of demand during lead-time 
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and integrate the distribution of demand during lead-time in the total cost function of 

inventory to develop the inventory performance measures (i.e., the equation of order 

quantity, safety stock or reorder point) as explained in Chapter Two. They e.g., 

Dekker, et al.(1998), Van der Heijden et al, (1999), Tang and Grubbström (2003), 

Chiang and Monahan (2005), Wu et al., (2007), Baten and Kamil (2009) and Axsäter 

and Viswanathan (2012) used only the mean and standard deviation of the demand 

and lead-time separately based on the distributions parameters to achieve the 

objective of the study 

The SMDDL model depends on two types of data (demand and lead-time) as inputs, 

then a structure and an algorithm of simulation procedures. However, the extractions 

of these two types of data rely on, the parameters of the lead-time data distribution 

and the suitable demand forecasting method to establish the mean and standard 

deviation of the demand instead of using the available data of the demand. This is 

because demand forecasting estimates the values of the variables do not fall within 

the available data, and since it is demand, it is necessary to extract the expected future 

quantity of the demand based on the historical data (i.e., the mean and standard 

deviation). Additionally, the importance of demand forecasting can be short term, 

midrange, or long term. Typically, firms would use all three types of forecasting. 

The second part of this research attempts to develop an approximation mathematical 

model in a multi-echelon inventory system under a continuous review (R, Q) policy. 

At this stage, two sub-models are proposed. The first one is called the SMEI (R, Q) 

model and the other one is the DMEI-FCFS model. The first model is developed for a 

serial multi-echelon inventory system under a continuous review (R, Q) policy while 
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the second model is developed for a distribution multi-echelon inventory system 

under a first-come-first-serve queue model.  

In the SMEI (R, Q) model, the approximate order quantity Q for a serial multi-

echelon inventory model is developed. In addition, the reorder point R in a 

distribution system for each installation and echelon under a continuous review (R, 

Q) policy is established, the safety stock, SS, is optimized, and the approximate total 

cost equation based on the developed approximate order quantity Q is developed. 

In the DMEI-FCFS model, performance measures to reduce the long waiting time in 

the supply chain between the distribution centre and the retailers in the system by 

using a first-come-first-serve (FCFS) queue model with a finite production rate is 

developed. Finally, the validation and evaluation of the proposed models are 

compared with previous models based on different criteria. 

4.2 Research Process 

The present research activities are implemented in five stages as shown in Figure 4.1, 

starting with defining the problem and ending with validating the models developed.  
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The Objectives: 
1. To develop the probability distribution function of demand during lead time 

by using a simulation procedures. 
2. To develop an appropriate formulation for order quantity, Q in a serial multi-

echelon inventory system under a continuous review (R, Q) policy with the 
probability distribution of the demand during the lead time. 

3. To identify the optimal safety stock that should be on hand for the warehouse, 
including each of the three silos under a continuous review (R, Q) policy. 

4. To determine the optimal reorder point, R in the distribution multi-echelon 
inventory system under a continuous review (R, Q) policy, this also leads to 
extracting the inventory position and levels at each echelon. 

5. To develop the approximate total cost function for the whole system. 
6. To develop the FCFS queue model in the continuous review inventory system 

in order to reduce the long waiting time between the distribution center and 
the retailers. 

7. s. 

Stage 5 : 
Model validation 
 

1. Use three models for evaluation 
purposes 

2. Use simulation experimentation   
  

Achieve the best 
results 

Stage Methods and Techniques  Outcomes 

Stage 1: 

Problem definition 

Stage 2: 
Data collection and 
Simulation procedures 

Stage 3: 
SMEI (R, Q) model 

Development 

Stage 4 : 
DMEI-FCFS model 
development 
 

1. Review of the literature 
2. Preview Site on the ground 

1. Identify the types of the data 
2. Interview with managers  and 

collect  cost data from reports 
3. Develop a simulation procedures to 

extract the probability distribution 
of demand during lead-time 

4. Write an algorithm based on the 
simulation procedures 

1. Design and develop a model of 
serial multi-echelon under  the 
continuous review (R, Q) policy 

2. Formulate the model variables 
under demand during the lead-time 
probability distribution 

3. Write an algorithm to solve the 
model 

1. Design and develop a model of 
distribution multi-echelon under the 
FCFS queue model 

2. Write an algorithm to solve the 
model 

Achieve specific 
Objective 1 

Achieve specific 
Objective 2, 3, 4, 5 

Achieve specific 

Objective 6 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1.  Structure of research activities 
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A detailed research process framework is elaborated based on stages two, three, and 

four which describe the objectives to be achieved in each stage. The research process 

shows the types of data used to develop a simulation procedures, SMEI (R, Q) model, 

and DMEI-FCFS model. The process flow is exhibited in Figure 4.2. 
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Figure 4.2. Details of the research process 
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Furthermore, we build the structure of the work and show in which part the objectives 

are met, as indicated in Figure 4.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3.  The research work structure 
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4.3 Data source  

Lafarge is one of the leading global companies in cement production that has invested 

in the Iraq-Kurdistan region since 2008 through signing a contract joint venture with 

the Iraq-Kurdistan government to operate Tasluja United Cement Company (UCC), 

which is located in Sulaimanyia, the second biggest city in Kurdistan. Lafarge has 

improved the production capacity to 2.3 million tonne of cement per day by investing 

USD200 million (Lafarge, 2012; Lafont, 2011). 

4.4 Data types and collection 

This research involves five main data types. They are demand data, lead-time data, 

costs (i.e., holding cost and setup cost), arrival rate data (the number of retailers who 

arrive at the system), and service rate data. The data were secondary data obtained 

from the database of the cement company directly for the three-year periods (2011-

2013). The database has a lot of information and data about the work procedures, and 

most of the data sets were profile data. 

The data collected were preliminary, and they had to be processed to meet the 

requirements of the research. From this vast amount of data, loaded quantity 

(demand), packing, parking, total waiting time (lead-time or service time), and the 

number of arrivals had to be extracted. The following sections illustrate each of the 

data used in this research. 
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 Demand Data 4.4.1

Demand means the amount of cement that meets the retailers’ needs in tonnes per 

unit time. The demand data include the quantity required for load time, quantity in 

tonne, type of loading (bagged or bulk), the number of channels that provide service, 

and destination of loading, among others. The most important data are the net loaded 

quantity in tonne per unit time, for example, during a day.  

The aim of collecting demand data is to construct the distribution and then estimate 

the mean and the standard of deviation of the demand based on the appropriate 

forecasting method instead of using the mean and standard deviation of the available 

data. The reason behind that is to extract the expected future quantity of the demand 

and then its standard deviation which is the estimate for future quantities that do not 

fall within the available data.  

Additionally, the importance of demand forecasting in an inventory system is to 

increase customer satisfactions, reduce inventory stockout, schedule production more 

effectively, lower safety stock requirement, manage shipping better and plan sales 

strategies. Therefore, the suitable forecasting method depends on the pattern 

fluctuations of the demand data, increasing fluctuations, decreasing fluctuations, 

seasonal fluctuations or stationary fluctuations during the selected periods.  
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 Lead-time Data 4.4.2

Lead-time means the periods confined between the preparation of orders until they 

are obtained and placed in the warehouse for each order of time. These periods are 

subject to a probabilistic distribution. The extraction of lead-time data is divided into 

several axes, including the total period, which starts from when the raw materials are 

received, passed through the production process, and then loaded until they arrive at a 

retailer or customers. The aim of extracting lead-time data is to determine the 

probability distribution function parameters which are later used as input for the 

SMDDL model. 

However, the most difficult part of the data extraction process, which makes lead-

time long, is the loading period. The entry of trucks for the purpose of getting the 

required quantities takes a long time due to the following reasons: 

1. The huge number of retailers and the limited number of distribution centers. 

2. Loading period which includes the following elements: dispatch for an entry 

truck, booking, truck movement to the scale, the parking area which is the 

customer’s attainment and driver’s satisfaction, and packing house area. 

These elements are categorized in three conditions: 

a) Loading performance in terms of the efficiency of the mechanical 

status of the packers and the workers at loading.  

b) Contractor’s ability and commitment to providing enough workers for 

increasing demand and his treatment of the workers and drivers 

which constantly caused problem by the workers and drivers. 
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c) Shift change. Because there two shifts that occur on a daily basis, the 

loading has to stop for three hours, which means a loss of 600 tons 

from daily loading performance.  

Therefore, the mathematical formula of the total lead-time (waiting time) can be 

expressed as follows:    

Total waiting time = Parking Area + Packing House.  

On this basis, the system is subject to first-come-first-serve (FCFS), especially in the 

case of probabilistic lead-time. 

 Demand during lead-time data 4.4.3

Demand during lead-time is the joint distribution of lead-time distribution data and 

demand distribution data depending on the lead-time distribution parameters and the 

mean and standard deviation of the demand which extracted from the forecasting 

method. This type of data is not available directly from the source and is not recorded 

in reality due to the nesting of the activities and the complexity of the procedures.  

When the products are near completion, a decision maker starts to make a request for 

an order quantity to meet the needs of the retailers so that not the products to fall in 

shortage.  During this period, and until the required quantity is placed at the 

warehouse the retailers’ demands are continuous. Since the processes are very nested, 

it is hard to record these data on demands until the products are placed. If the 

products arrive late, the warehouse covers or satisfies the retailers’ demands from its 

safety stock (inventory on hand). 
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Therefore, simulation procedures will impose itself to generate demand during lead-

time probability distribution data, which named a SMDDL model. The procedure of 

the SMDDL model is by generating lead-time data based on the parameters of the 

original lead-time distribution (lead-time collected data) and integrating the demand 

data probability distribution parameters (i.e., mean and standard deviation) which is 

extracted from a demand forecasting method inside the generated lead-time data 

probability distribution. Afterward, the structure and the algorithm of the integrating 

of demand during lead-time probability distribution data to extract the mean and the 

standard deviation and the parameters of the distributions. This procedure is repeated 

for any adopting times, such as 1000 or 1500 times. 

 The differ of this model with previous studies, in the previous studies, e.g., Dekker, 

et al.(1998), Van der Heijden et al, (1999), Tang and Grubbström (2003), Chiang and 

Monahan (2005), Lee, (2005), Axsater (2006), Li and Sheng (2008), Baten and Kamil 

(2009) and Axsäter and Viswanathan (2012) the probability of demand and lead-time 

were taken separately without extracting and establishing the probability distribution 

of demand during lead-time for the purposes of their study.  

In addition, the complexity of the mathematical derivations of integrating the 

distribution of demand during lead-time in the total cost function of inventory to 

develop the inventory performance measures. Subsequently, these two parameters 

(i.e., mean and standard deviation) of demand during lead-time play an essential role 
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in the approximation mathematical model. The SMDDL model is discussed in details 

in Section 4.5. 

 Arrival rate data 4.4.4

Arrival rate is the number of customers or retailers that arrive at the system during a 

certain period of time. For example, between 10 am and 11 am, 15 customers or 

retailers enter the system to receive the service and this process is repeated during the 

day for all of the periods mentioned above. This type of data is called arrival rate 

distribution, which is represented by λ and distributed Poisson. The extraction of this 

type of data takes time and effort. In order to obtain the arrival rate data, we need to 

know how many retailers enter the system for each hour during the selected periods 

of the three years to obtain the product. Later this type of data is used as input to the 

DMEI-FCFS model. 

 Service rate data 4.4.5

Service rate is the mean of retailers that can be served at 100% utilization by each 

individual server per unit time (normally per hour or day) or the time spent to having 

the service. This type of data is called service rate distribution or departure 

distribution. The extraction of this type of data is similar to that of lead-time data. 

The difference is that the service rate data is to be the input of the DMEI-FCFS 

model as exhibited in Figure 4.2.  
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 Holding and setup costs 4.4.6

This research includes two types of costs, holding cost, h, and setup cost, A. A 

holding cost is the cost that is incurred by the firm or the project when materials are 

stored in the warehouse or the manufacturer cost when products are stored in 

warehouses. A setup cost is the  cost incurred to obtain equipment ready to process a 

various batch of items. Hence, the setup cost is considered a batch-level cost in 

activity-based costing. It is not easy to obtain data on holding and setup costs directly 

because of the sensitivity and complexity of the data as well as the overlapping of the 

components of these costs with each other.  

The data of holding cost and setup cost were obtained in two ways. First, they were 

obtained from the managers and accountants in the company concerned (UCC). 

Second, the data were obtained from the periodical or yearly reports, which have 

information about the capacity, total investment cost, selling price, and cash cost per 

tonne (Brokerage, 2010; Lafarge, 2012). The value of holding cost, h is; 

 

ℎ = (E)(�)																																																																																																																												�4.1� 

 where, I is the holding cost that is always represented in the percentage of inventory 

levels and includes the investment cost; insurance cost; and opportunity cost while C 

is the unit price cost. The value of I can be extracted by the investment cost per tonne, 

IC divided by the expected daily demand, DL.     

E � 	 E�=] 																																																																																																																																		�4.2� 
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using the values of holding cost h, the expected daily demand, DL and the price per 

tonne, we can extract the value of setup cost, A, as follows 

< � ℎ = 	 �=]��4��E� 	 
where, SP is the selling price per tonne. Therefore, 

< �	 �=]��4��E� − ℎ																																																																																																													�4.3) 

4.5  SMDDL model 

After the first stage, this research develops a structure and an algorithm to establish 

the probability distribution function of demand during lead-time data by a set of 

simulation procedures known as the SMDDL model. The aim of the SMDDL model 

is to generate data of demand during lead-time because this type of data is not 

recorded in reality due to the nesting of the activities and complexity of the 

procedures. There are two key purposes of the SMDDL model: (a) to establish the 

probability distribution function of the demand during lead-time, which, in turn, is 

used to develop the approximation mathematical model; and (b) to extract the mean 

and the standard deviation of the demand during lead-time which, in turn, is used to 

meet the remaining research objectives. Therefore, the implementation structure and 

algorithm of the SMDDL model are as follow: 

1. Analyze the historical data of the demand and then extract the mean and 

standard deviation using a suitable forecasting method based on the 

probability distribution function of the demand data. Often in previous 

studies, e.g., (Baykal-Gurosy & Erkip, 2010; Brown, 1959; Snyder et al., 
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2004; wang et al. 2010;  Wang, 2009) as mentioned in Chapter Three, data for 

long periods were distributed as a normal distribution. Moreover, the 

forecasting method relies on the pattern and fluctuations of the demand data. 

For example, increasing or decreasing fluctuation trends, seasonal fluctuation 

trends or stationary fluctuation trends. Each type of these fluctuation trends 

and patterns have its own method for forecasting (Baykal-Gurosy & Erkip, 

2010; Choi e al., 2011; Wang, 2009; Wang & Lin, 2010). The importance of 

demand forecasting is much higher in Made-to-Stock (MTO), Assemble-to-

Order (ATO) or just in time (JIT) Supply Business. In order to keep 

customer’s satisfaction, we need to provide them with the product they want 

when they need it. This advantage of forecasting in production or business 

will help predict product demand so that enough product is available to fulfill 

customer orders with short lead time and on-time.  

2. Analyze and test the lead-time data to extract the parameters of the lead-time 

probability distribution using the Kolmogorov-Smirnov (K-S) test. 

In generating demand during lead-time, the SMDDL model prepares an algorithm for 

this purpose as follows: Simulation algorithm generates a random number no less 

than 1,500 observations of lead-time depending on the original lead-time parameters 

that have been analyzed (step two). Next, 1,500 random numbers are generated inside 

each random number of the generated lead-time based on the demand mean and 

standard deviation which is extracted from the forecasting method. In order to show 

the demand during lead-time, we integrate these two distributions of lead-time and 

demand. In other words, when generating lead-time data for 1,500 random numbers, 
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we generate data according to the forecasted demand mean and standard deviation of 

each value of the generated lead-time data. The following example illustrates the idea 

better. 

Suppose the initially generated value of lead-times is equal to 6.57. Then, generate a 

value inside the initial value of the lead-time according to the forecasted demand 

parameters (i.e., mean and standard deviation) as much as the initial value which is 

6.57 times and calculate their sum. Repeat these procedures for the second lead-time 

generated value, third lead-time generated value, and as much as the lead-time 

generated data (1,500 times). The result of this process is the SMDDL model that 

represents the demand during lead-time data and has 1,500 observations of demand 

during lead-time. To show which probability distributions are identical with the 

generated demand during lead-time, the p-value, in contrast to fixed values, is 

calculated based on the test statistic, and denotes the threshold value of the 

significance level in the sense that the null hypothesis H0 will be accepted for all 

values of α less than the p-value. For example, if p = 0.025, the null hypothesis will 

be accepted at all significance levels less than p (i.e., 0.01 and 0.02), and rejected at 

higher levels, including 0.05 and 0.1. The p-value can be useful; in particular, when 

the null hypothesis is rejected at all predefined significance levels, and it need to 

know at which level it could be accepted. The p-values depend on the Kolmogorov-

Smirnov, (K-S) test calculated for each fitted distribution. 

Figure 4.4 shows a flow chart that describes the steps of generating data of demand 

during lead-time. 
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Figure 4.4. Framework of SMDDL for generating demand during lead-time data 

The question that appears here is why we generate data 1,500 times? Why not for 
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 Furthermore, when generating more or less than 1,500 times, there must be a 

compatible seed number for each generation. As a result, to ensure the validity of the 

considered simulation procedures, the standard error, SE, of the generated data and 

the original lead-time distribution must be similar as recommended by several 

researchers (Fishman, 1973; Forbes et al., 2011; Good & Hardin, 2006). 

The next step is the algorithm of generating lead-time data. The procedures of the 

SMDDL are as follows: 

Let X be a continuous random variable drawn from a population with a non-integer �. 

We may consider X to be the sum of K+1 independent variants, all with a scale 

parameter of β, but the first K has a unit shape parameter of �, while K+1 has a shape 

parameter of w = � − bAc. Assume Y and Z have independent variants from beta 

(w, 1 − w) and G(1, 1), respectively. Then, À = eØÙ has variants with G(γ, β). To 

see this, we note that: 

xÚ,Û(ª, Ü) = Ý 1Γ(w)Γ(1 − w) ªy��(1 − ª)�y2�Þ                          0 ≤ ª ≤ 1, ≤ Ü ≤  ∞
0                                                                                    otherwise  

Then 

xß,Û(Æ, Ü) = Ý e�yΓ(w)Γ(1 − w) Æy�� rÜ − Æes�y 2�Þ                          0 ≤ Æ, Ü ≤  ∞ 
0                                                                                             otherwise  
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xß(Æ) = u xß,Û(Æ, Ü)oÜ = à e�yΓ(w) Æy��2�á/h                                          0 ≤ Æ ≤  ∞0                                                                      Æ ≤ 0  n
�  

which is d(w, e). Therefore, the generation algorithm will be as follows: 

Algorithm for the program generation to simulate from the distribution with 

shape parameters â and ã, ä(â, ã) 

    1:           Set K ← Int (α), w ←  � − æ 

    2:           æ ← d(1) 

    3:           Generate K from d(1) and compute V as this sum 

    4:           Generate Y from Beta (w, 1 −   w) and Z from G(1) as follows: 

    5:                 Compute æ� as Int (a) and æ� as Int (b) 

    6:                 Set w�  ←  � − æ�, w�  ←  � − æ� 

    7:                 Generate  æ� from d(1) and compute ��∗ as their sum 

    8:                 Generate æ� from d(1) and compute ��∗ as their sum 

    9:                 Generate Ø�, Ù�, Ø� `'o Ù� from beta (w�, 1 − w�) 

   10:                Compute � = (��∗ + Ø�Ù�)/(��∗ + ��∗ + Ø�Ù� + Ø�Ù�) from  Beta (a,b) 

   11:          Compute � = e(_ + ØÙ) from d(�, e). 

   12:          d(�, e)  ←  �«      # �« denotes the random number generator 

 

The flow chart in Figure 4.5 shows these steps in detail for generation in a flow chart.

  

 

 

 

 

 



 

164 

No 

Yes 

X=0, K=[α] 
γ= α - K 

K=0

Generate  

Uj, j=1, …,K 

� = −log(é �«)ê
«+�  

Generate 

UK+1 

γ=0 

� = e� 

Ù = −log(�ê��) 

Generate Y from 

Beta(γ, 1-γ) 

j=1 

Generate 
Uj, Uj+1 

Ø = �«�z,   Ù = �«���/h
 

 

Y+Z≤1? j=  j+2 � = e(� + ØÙ) 

Done 

NO 

Yes 

No 

Yes 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5.  Lead-time flow chart generation 
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4.6 Proposed models 

This research considers a multi-echelon inventory system under a continuous review 

(R, Q) policy in a supply chain that includes four echelons (the manufacturer that 

produces one type of product (cement), warehouses with three installations, 

distribution centers with limited lines or installations equal to six and N retailers). In 

this multi-echelon model, we develop an approximation mathematical model by 

dividing it into two sub-models: (a) the serial multi-echelon inventory system under a 

continuous review (R, Q), SMEI (R,Q) policy to achieve research objectives two to 

five, which is an extension of  (Axsäter, 2011), and (b) the distribution multi-echelon 

inventory system under the first-come-first-serve FCFS queue model, called the 

DMEI-FCFS model to achieve objective six, which is an extension of (Axsater,  

2010). In Axsater (2010) model, a simple production inventory system with single-

echelon and one service provider channel M/G/1 model was developed. However, in 

DMEI-FCFS model, multi-echelon and multi-channels service providers under the 

first come first serve M/G/C-FCFS model is proposed. 

The first sub-model, which is a serial multi-echelon inventory system under a 

continuous review (R,Q), SMEI (R,Q) policy aims to: (a) formulate the order 

quantity, Q (Objective 2), reorder point, R, at each installation and echelon (Objective 

3) based on the probability distribution function of demand during lead-time, and 

SMDDL model (Objective 1); (b) optimize the safety stock, SS, which is a part of the 

reorder point (Objective 4); and (c) extract the approximate total cost (Objective 5) 

and the inventory position at each installation and echelon. A discussion of this 

model is detailed in Section 4.6.1. 
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The second sub-model, which is a distribution multi-echelon inventory system under 

the first-come-first-serve FCFS queue model, the DMEI-FCFS model aims to 

develop the performance measures in the considered model to reduce the long 

waiting time in the system between the distribution centre and the retailers by 

applying an inventory FCFS queue model (Objective 6). A discussion of this model is 

detailed in Section 4.6.2. 

In order to start developing the approximation mathematical model for the 

probabilistic multi-echelon inventory system, some assumptions and notations are 

imposed. 

• The assumptions 

1. Demand occurs only at the final echelon (the retailers). 

2. Each of the demand and the lead-time is probabilistic for the whole system. 

3. The long lead-time appears between the distribution centre and the retailers 

because of the huge number of retailers and a limited number of distribution 

centers. Therefore, this leads us to use the first-come-first-serve (FCFS) 

condition. 

4. The demand is probabilistic and subject to continuous probability density 

function. 

5. The lead-time is probabilistic and subject to continuous probability density 

function. 

6. Only holding cost and setup cost are adopted. Shortage and backorders costs 

are not allowed. 
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• The notations  

Q: Order quantity or the lot size 

R: Reorder point 

A: Setup cost per order. 

h: Holding cost per unit.  

f(x): Probability density function of demand. 

F(x): probability density function of demand during lead-time 

DL: Expected demand / per unit time (the mean of demand probability distribution) 

L: Total lead-time in the system 

L1: Lead-time between the distribution central and retailers  

SS: Safety stock 

   μL: Mean of demand during lead-time 

σL: Standard deviation of demand during lead-time 

μ : Mean of service rate 

σ: Standard deviation of the service rate 

CV: Coefficient of variation  

SE: Standard Error 

λ: Intensity arrival distribution that is Poisson 

�: Traffic density  

 S: Order-up-to level 

��: Production rate/per unit per unit time and equal to uniform replenishment rate. 

Also, �� > =] (the production rate should be greater than the demand rate in 

order to not fall into a shortage rate) 

Ws: Expected waiting time of demand at the retailer 
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Wq: Expected waiting time in the queue 

LS: Expected number of the arrival in the system 

Lq: Expected number of the arrival in the queue 

C (Q, R): Expected cost per unit time to be a function parameter of order quantity Q 

and reorder point R 

E «̂) : Inventory level of installation stock at installation j  before period demand 

E «̂8:	Inventory level of echelon stock at installation j  before period demand. 

E�«8  : Inventory position of echelon stock at installation N 

E�«��8  : Inventory position of echelon stock at installation N-1, in period (t+Lj+1). 

  Development of SMEI (R, Q) model 4.6.1

The aim of this section is to develop an approximate mathematical model by 

reformulating the order quantity, Q, the reorder point, R and optimizing the safety 

stock, SS. Moreover, the inventory positions, IP, and inventory level, IL, are 

developed to achieve the expected minimum total cost C(R, Q) function under a serial 

multi-echelon inventory continuous review (R, Q), known as the SMEI (R, Q) model. 

To achieve the new function of the total cost function, the variables that play a role in 

the SMEI (R, Q) model should developed: the order quantity, Q, the reorder point, R, 

and the safety stock, SS, which is a part of R.  

The extraction of these variables depends on the novelty of the demand during a lead-

time probability, i.e. the SMDDL model. Therefore, we need to extract a new formula 

of order quantity, Q, depending on the result of the SMDDL model and the safety 
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stock, SS, that leads to the reorder point at each installation 	��) 	and at each 

echelon	��8 .   

4.6.1.1 Development of the approximation mathematical model for order 

quantity  

The development of order quantity, Q, when the demand and the lead-time are 

probabilistic is subject to two constraints: (a) the demand during lead-time probability 

distribution which is extracted by the SMDDL model and (b) the function of total 

cost in the multi-echelon inventory system under continuous review (R, Q) policy. 

The first mathematical model of a multi-echelon inventory system adopts each 

echelon separately in order to determine the purchasing quantities, which lead to 

minimizing the value of total cost based on the periodic review system (Clark & 

Scarf, 1960). Many researchers, e.g., (Bessler & Veinott, 1966; Federgruen & Zipkin, 

1984; Schmidt & Nahmias, 1985) adopted Clark and Scarf’s (1960) model and 

extended it to different policies. However, Axsäter's (2011) work is mostly related to 

this study as the former considered a single-echelon inventory system with 

continuous review and Poisson demand.  

In order to determine the order quantity for a multi-echelon inventory system, it 

should be observed that the order quantity, Q, for a multi-echelon inventory system is 

not optimal to deal with at each stage individually. The choice of Q at a certain stage 

will affect the demand structure primarily at the next upstream stage. This makes the 

Q determination more complex. Even though it is not optimal to determine Q for each 

stage individually, this is common in practice because it is easy and leads to ordering 

a very small quantity.   
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When dealing with order quantity, either in a single-echelon or multi-echelon system, 

most literature assumes that the customer demand is known. Furthermore, it is 

assumed that all the lead-time is constant, and, in fact, equal to zero. In case of 

probabilistic demand, it is normally reasonable to replace the probability demand by 

its mean (the mean of demand probability distribution function) and use a 

deterministic model when determining order quantity.  

However, when the demand and the lead-time are subject to probability distribution 

function separately, the procedure is much more difficult. The determination of the 

order quantity, Q, will be as follows: when the inventory level, IL, reaches the reorder 

point, R, an order quantity to promote the inventory is ordered. The aim of this 

procedure is to reach a new formula of Q and R, which, in turn, minimizes or 

achieves the expected total inventory cost in the unit time. Therefore, the 

development process of Q requires is to:  

Integrate the distribution of Generalised Gamma four parameters as Equation (3.23) 

into Equation (3.37) with the function of the total cost, where Equations (3.23) and 

Equation (3.37) respectively given by: 

dd��, e, p, w� � x�A� � 

																																		p�A − w�qf��eqfl��� 2�r�F�y�h stz 					A ≥ 0	and	�, e, p, w	 > 0		 
���, �� � <=]� + ℎ���2 + u�� − =]�n

� x�A�oA� 
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Therefore, 

���, �� � <=]� 			
+ 			ℎ �� -1 − =]��.2
+ u(� − =])n

� 	p�A − w�qf��eqfl��� 2�r�F�y�h stzoA�																																								�4.4)	
Let � � 1 − ��f�, thus, 

�(�, �) = < =]� + ℎ ���2 + u (� − =])n
� 	p�A − w�qf��eqfl��� 2�r�F�y�h stzoA�																											�4.5) 

From Equation (3.36), � − 5(=]) = � − 	\]. Therefore,   

���, �� � <=]�
+ ℎ��� + 2�� − \]�2 ∗ 	l���u p�A − w�qf��eqf

n
� 	2�rF�yh stzoA�		�4.6) 

We simplify the integral part which is 

ª = u p(A − w)qf��eqf
n

� 	2�	�F�y�tzhtz oA																																																																															�4.7)		 
 For this, we derive the first derivative of  −-F�yh .qf

  

Taking 		K � 	− �F�y�tzhtz  
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oKoA � 	−p��A − w�qf��eqf  

oK	 � 	−p��A − w�qf��eqf 				oA																																								 
q�F�y�tzë�htz 	oK � 	− �f 	oK																																																																																																			�4.8)  

By substituting Equation (4.8) into Equation (4.7), we obtain 

∴ ª = u p(A − w)qf��eqf
n

� 	2�	�F�y�tzhtz oA 

									� 	− 1� 	u 2ìn
� 	oK 

								� 	−1� 		2�rF�yh stzí�
n

 

						� 	−1� 		� 12n − 1
2ryhstz� 

											� 	 1� 	2�ryhstz 																																																																																																													�4.9) 

Then, substituting Equation (4.9) in Equation (4.6) we obtain 
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�(�, �) = < =]� + ℎ ���2 	+ 2�� − \]� ∗ 	l��� î1� 	2�ryhstzï�																											�4.10) 

The aim of Equation (4.10) is to extract the formula of Q. By taking the partial 

derivative of Q and equal it to zero,    
∂ ð(¢,¡)
∂ ¢ = 0 , we obtain  

0 =  −<=]�� + ℎ�2                                                                                                                (4.11) 

Multiply Equation (4.11) by  2��, we obtain 

 2<=] = ��ℎ� 

Thus, 

�� =  2<=]ℎ�                    
Taking the square root for both sides to obtain the value of Q, thus 

∴  � =  ñ2<=]ℎ�                                                                                                                  (4.12) 

Equation (4.12) is the formula of order quantity, Q, under a continuous review (R, Q) 

policy when the demands during lead-time are distributed generalised Gamma four 

parameters. Moreover, Equation (4.12) is used only to extract the first-echelon 

quantities, j = 1. When j > 1, the equation of Q will change based on the reorder 
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point, R, as well as the inventory position, IP. Therefore, the extraction of the new 

order quantity equations for j > 1 will be performed after the establishment of the 

reorder point, R, as exhibited in Section 4.6.1.3. 

4.6.1.2 Optimisation of the safety stock   

Regarding the measure of service level, SL, the probability of no stockout per cycle 

order is normally used with the continuous review and continuous model of demand. 

The order quantity is supposed to be given, and the problem is to identify the safety 

stock, SS, in order to have a nomination identifying the probability service level for 

the demand during lead-time, =] , to be lower than the reorder point, R. Consequently,  

 �(=] ≤ �) = 4^ =  ∅ r� − \]	] s =  ∅ r44	] s                                                             (4.13) 

Since 44 = � − \], for a given value of SL, the ratio of  BBó�  is equal to K. The ratio 

value of K (the safety factor) depends on the probability distribution of demand 

during lead-time. For example, if the demand during lead-time is normally 

distributed, the value of K is taken from the normal distribution table under the 

adopted service level. However, in this research, the value of K is taken from the 

Gamma distribution table with two shape parameters under the considered service 

level. Therefore, 

 44 = æ	]                                                                                                                           (4.14) 
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In turn, Equation (4.14) represents a novelty in included elements because the safety 

factor, K, and the standard deviation, 	] are extracted from the probability 

distribution by the SMDDL model. 

Moreover, the safety stock, SS, plays an important role in determining the reorder 

point and/or if any delays occur in preparation or replenishment of the order quantity, 

Q, at the reorder point, R. Until Q is placed, the retailers’ orders will be satisfied from 

the safety stock. Furthermore, any extra quantities of SS lead to an extra holding cost, 

and any lacking quantities lead to a shortage. Therefore, Equation (4.14) gives the 

optimal SS under a continuous review (R, Q) policy. 

4.6.1.3 Establishment technique for the reorder point 

One of the necessary measures in a multi-echelon inventory system is the reorder 

point, R, especially when the considered policy is (R, Q). To establish the reorder 

point, regardless of which inventory policies are followed, the extracting of the 

reorder point consists of the safety stock, SS, plus the mean of demand during lead-

time, \] , � = 44 +  \] , which has to be an initial value for one echelon (single-

echelon).  

Therefore, the novelty of the extraction reorders point, R represented in the element, 

which are the safety stock and the mean of demand during lead-time. The problem 

appears when n ≥  2, i.e. when the number of echelons are more than one. In Section 

3.11 of Chapter Three, the methods that calculate the reorder point at each echelon 

and installation were discussed. The initial value of the reorder point at the 
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installation is equal to the reorder point at the echelon, which is Proposition 3.2 and is 

extracted from Equation (3.55).  

Based on Equations (3.53) and (3.55), Table 4.1 displays how to establish the reorder 

point at each installation and echelon when n ≥ 2. 

Table 4.1 

 Establishing the Reorder Point at Installations and Echelons for N-echelons 

N ôõö  ôõ÷  øõ 

1 ��) = 44 + \] ��8 =  44 + \] �� 

2 ��8 − ��8 − �� ��) + (��) + ��) �� 

3 �$8 − ��8 − �� ��) + Ê���) + ��� + (��) + ��)Ì �$ 

4 �18 − �$8 − �$ 
�$) + Ê���) + ��� + ���) + ���+ ��$) + �$�Ì �1 

. 

. 

. 

  

 

. 

. 

. 

n ��8 − ����8 − ���� ����) + ((�«) + �«)���
«+�  �� 

 

The Equations in Table 4.1 represent the values of the reached reorder point at each 

installation and echelon, ��)  and ��8 , to promote the inventory system by the order 

quantities, Qn, under a continuous review (R, Q) policy. 

The next step is to establish the order quantity at each echelon, Qn,, which, in turn, 

depends on the inventory position at each echelon and installation,  E��8  & E��).  
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Table 4.2 illustrates the procedure of how to establish the inventory position at the 

echelons and at the installations when n ≥ 2 from Equations (3.54) and (3.55). 

Table 4.2  

Extracting the Inventory Position at Echelons and Installations for N-echelons 

N úûõ÷  úûõö  

2 (��) + ��) E��8 − E��8 = ��8 + �� − ��8 − �� 

3 ���) + ��� + (��) + ��) E�$8 − E��8 = �$8 + �$ − ��8 − �� 

4 
���) + ��� + ���) + ��� + (�$)+ �$) 

E�18 − E�$8 = �18 + �1 − �$8 − �$ 

 

. 

. 

. 

 

 

. 

. 

. 

n ((�«��) + �«��)�
«+�  

E��8 − E����8 = ��8 + �� − ����8
− ���� 

 

Equation (4.12) is used only for one echelon (single-echelon) in order to analyze the 

relationship between echelon inventory (R, Q) policies and installation inventory (R, 

Q) policies and the order quantity �� = order quantity of installation 1. Subsequently, 

note that in order to guarantee that the policies are stationary; the Q at each echelon 

should be on an integer multiplying by Q immediately succeeding the echelon. 

Therefore,  �� =  ©�������, where ©� is an integer and nonnegative. This supposition 

is natural if the policy of rationing is to satisfy all or nothing of an order. 

Furthermore, when the installation inventory at installation n includes a number, it 
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must always be of an integer of the next downstream order quantity (����). Table 

4.3 explains the procedure of how to establish �� for more than one echelon. 

Table 4.3  

Extracting the Value of Qn by multiplying it with Integer jn 

N üõ üõøõ�ý 

2 E��) −  ��)  (E��) −  ��) )�� 

3 E�$) −  �$)  (E�$) −  �$) )�� 

4 E�1) − �1)  (E�1) − �1) )�$ 

. 

. 

. 

 

. 

. 

. 

n E��) − ��)  (E��) −  ��) )���� 

 

The Equations in Table 4.3 illustrate that the order quantity at echelon two is equal to 

the inventory position at Installation 2 minus the reorder point at Installation 2 

multiplied by the order quantity at Echelon 1. The missing content in this Equation is 

the order quantity at Echelon 1, ��. Therefore, �� will be extracted from Equation 

(4.12), which is the first echelon and by compensating it in other equations, the order 

quantity for each echelon can be obtained.  

4.6.1.4 Establishment of inventory level at each echelon 

The best technique and original measure for identifying the inventory levels in an 

inventory system of a multi-echelon were introduced by Clark and Scarf (1960). This 

technique fits a serial system and can be considered a disintegration technique. This 
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technique is fits for a two-echelon serial system with periodic review. Our 

suppositions (the continuous review [R, Q]) system with N-echelon, probability 

demand and lead-time) are different from those in Clark and Scarf (1960). The 

literature points out to those adopted this technique to either a single-echelon or two-

echelon system (Diks & de Kok, 1998; Van Houtum & Zijm, 1991). The inventory 

level for n echelon E^�8  was extracted as follows  

E^�8 =  E��8 −  \] ,    E^�8 ≥ E����8                                                                                   (4.15) 

Table 4.4 illustrates the procedure of how to find the inventory level when n ≥ 2. 

Note that the value of the reorder point at each echelon, E��8, and the mean of the 

demand during lead-time, \], was extracted in previous steps. 

Table 4.4  

Extracting Inventory Level for n ≥ 2-echelon 

The echelons úþõ÷  

2 E��8 − \] 

3 E�$8 − \] 

4 E�$8 − \] 

. 

. 

. 

. 

. 

. 

n E��8 − \] 
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4.6.1.5 Establishment of the approximate total cost 

The function of a total cost is a very important measure to evaluate or compare the 

model with previous models as a basis to assess the proposed model. Therefore, 

establishing a new approximated total cost function based on the developed order 

quantity equation needs to be done. In order to extract the new formula of the 

approximated total cost for the proposed model, a serial multi-echelon inventory 

system under continuous review (R, Q) policy, the SMEI (R, Q) model is run. 

Equation (4.12) is integrated with Equation (3.39). This cost function is called an 

approximate total cost function since the value of setup cost, A, and holding cost, h, 

are approximated values. 

Now by substituting Equation (4.12) into Equation (3.39), a new approximate total 

cost equation is obtained as follows:  

�(�, �) = <=]62<=]ℎ� + ℎ� �
�62<=]ℎ�2 �

�                                                                             (4.16) 

�(�, �) = 9<=]6 2ℎ� + 92<=]ℎ�2                                                                                        (4.17) 

Multiply Equation (4.17) by √ℎ� 

�(�, �) = 9<=]ℎ�√2 + 92<=]ℎ�2  

               = 92<=]ℎ� + 92<=]ℎ�2  
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  ∴  ���, ��   = 92<=]ℎ�                                                                                              (4.18� 

Note that, if the production price per tonne, PC is available, therefore, the quantities 

of the demand during lead-time, =] multiplied by the PC will be added to Equation 

(4.18). Thus, 

∴ ���, �� = ��� ∗ =])  + 92<=]ℎ�                                                                           (4.19� 

The Equation in (4.19) is the formula for the total cost function under a continuous 

review (R, Q) policy when the demands during lead-time are distributed to be 

Generalised Gamma four parameters. 

 Development of the DMEI-FCFS model 4.6.2

This model is developed to reduce the long waiting time in a three-echelon inventory 

system, which includes the main warehouse, distribution centre with six line, and 

unlimited N retailers by applying the FCFS queueing model. Thus, this model is 

named the DMEI-FCFS model. Figure 4.6 illustrates the structure of the model.  

The DMEI-FCFS model is an extension of Axsater's (2010) model, which considered 

a simple production inventory system, one echelon (production system and inventory) 

that has Poisson demand, and stochastic production time with the Gamma 

distribution. This model is controlled by S policy and uses M/G/1. 

 Retailers in the DMEI-FCFS model have probabilistic demand with a Poisson 

distribution and a continuous review system policy, i.e., the inventory position at the 

installation is preserved by a certain ‘order-up-to-level’. Order-up-to-level represents 
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a private situation of (R, Q) policy. The inventory position is the safety stock (stock 

on hand) plus outstanding orders to determine the cost function. 

Therefore, the DMEI-FCFS model analyzes the performance measures of the 

queueing model (M/G/6):(FCFS/∞/∞) with a (R, Q) policy in the supply chain multi-

echelon inventory system, where M is the arrival distribution rate or the arrival time 

distribution of the retailers to the system, which is Poisson with an arrival rate, λ. G is 

the general distribution of departure or the service time with the rate, μ, which is 

distributed Gamma with the parameters α and β. Number 6 represents the parallel 

sources or the number of service provider stations (the distribution centre which has 

six lines to distribute the cement product). FCFS represents the service distribution 

discipline, and we impose FCFS to absorb a large number of retailers in the system. 

Finally, the numbers of queues in the system and customer source (community size) 

are infinite. 
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Figure 4.6. Three echelon supply chain network 

The initial information about the considered model shows that there is a strong 

demand for cement. Also, because of a large number of retailers as well as a limited 

number of central distributions, a long waiting time in the queue and/or in the system 

until they get the product occurs. The waiting time in the whole system is very long. 

Therefore, the DMEI-FCFS model works to reduce the waiting time to a minimum 

level, in addition to extracting other performance measures in the considered model. 

4.6.2.1 Development of the queue performance measures 

Queueing models, in which the arrival and/or departure procedure do not follow the 

Poisson assumption, are more complex and may produce less tractable systematic 

results. In general, it is advisable in such cases to use simulation as a tool for analysis. 
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In this section, we present a non-Poisson queue model, of which analytic results are 

dealt with in our model (M/G/C):(FCFS/∞/∞), where G is the service time, described 

by a general probability distribution, which is Gamma distribution with a mean 5b�c 
and variance _b�c. In this situation, when the service time distributed Gamma we 

cannot get the performance measures (Pn ,Ls, Lq Ws and Wq) by the same method 

previously (as shown in Sections 3.13.1, 3.13.2 and 3.13.3) because the service time 

has a general probability distribution. Suppose λ is the arrival rate at service facilities 

and is given 5b�c and _b�c to be the mean and variance of service time distribution. 

However, when the service time is distributed gamma, the 5b�c and _b�c can be 

extracted as follows: 

5b�c =  �e 

_b�c = �e� 

However, in Section 3.13.3, we proved how to determine the performance measures 

(Ls, Lq Ws and Wq) for more than one parallel service station. Now, when the service 

time has a general distribution (Gamma) and multiple service channels, C, the 

extraction of performance measures based on the steady state theory is as follows: 

^¿ = ¼5b�c + ¼�Ê5b�c� + _b�cÌ� − Ê1 − ¼5b�cÌ                                                                                     (4.20) 

where,   ¼5b�c < 1 ⇒   � < 1 
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This expression is known to be the Pollaczek-Khintchine Formula (Krakowski, 

1974). The theory of the steady state as presented in Section 3.13.1 Chapter Three 

explains the relationship between the performances measures (Ls, Lq Ws and Wq). 

From this relationship, if one of the performance measures is extracted, the rest can 

be obtained based on this relationship. Therefore, based on ^¿ as in Equation (4.20), 

we can obtain the rest of the queue performance measures as follows: 

À¿ = ^¿¼                                                                                                                               (4.21) 

^Á = ^¿ − ¼5b�c                                                                                                                 (4.22) 

ÀÁ = ^Á¼                                                                                                                               (4.23) 

Note that the service rate,  \ = �
�bc 

Furthermore, we need to extract the value of the probability of zero numbers of 

retailers in the system or the system is idle, ��, and the probability of arrival n units to 

the system, ��.The values of  �� and �� depend on the value traffic intensity �. When 

the service time follows a general distribution and the server channel is more than 

one, the value of ρ will change and cannot be extracted according to the traditional 

methods. Therefore, we can reformulate � in the model and for the steady state to be:  

� = ¼Î5b�c                                                                                                                           (4.24) 

 



 

186 

Therefore, the probability of zero numbers in the system or the system is idle 

 ��(�) =   Ð( (Î�)�'!
Ï��
�+� + (Î�)ÏÎ! (1 − �) Ñ��                                                                         (4.25) 

 ��(�) represent the probability of zero numbers in the system (the system is idle). In 

contrast,  ��(�) represent the probability of the system is busy. The probability of 

 ��(�) depend on the server provider channels, number of retailers arrival to the 

system and  ��(�). Therefore, the formula of  ��(�) is: 

��(�) =  
���
�� 1'! �� ��(�)                                                                          ' < Î

  1Î! Î��ð  ����(�)                                                               ' ≥ Î 
             (4.26) 

4.6.2.2 Distribution of the arrival during Gamma service time 

Now, the probability of arrival n units to the system for a period t as in Equation 

(3.67) is considered. The number of arrivals and the probability of service time are 

independent. Let qj be the probability of demand j. Therefore,  

�« = u §e(eA)f��2�hF
Γ� ¨  §(¼A)«2�½F©! ¨n

�  oA                                                              (4.27) 
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It is helpful to note that l(�) = (� − 1)l(� − 1) and using Equation (3.94) which is 

m Af2�hFoAn� =  �(f��)h(z��) , and based on (Axsater, 2010; Axsäter, 2007) we can obtain:  

�« =  ef¼«l(� + ©)l(� )©! (¼ + e)f�«                                                                                                (4.28) 

for j = 0, we have: 

�� = ef(¼ + e)f                                                                                                                   (4.29) 

and for  j > 0, we have: 

�« = r ef(¼ + e)fs § ¼«(¼ + e)«¨ §�(� + 1).     .    . (� + © − 1)©! ¨                               (4.30) 

This implies that �«  has a negative binomial distribution that is not difficult to 

manage. At the point when μ is given and σ is equal to zero, the distribution in (4.29) 

and (4.30) will approach a Poisson distribution. Moreover, for 	 = 0, or very small, it 

is then computationally much more efficient to substitute (4.29) and (4.30) by a 

Poisson distribution i.e., 

�« =  r¼�e s« 2�½fh©!    
∴  �« =  (¼\)« 2�½¹©!                                                                                                           (4.31) 
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Recall from the steady state that was defined in Section 3.16.1 that the traffic 

density is equal to  ½Ï¹, while the coefficient of variation, CV is equal to 
ó¹ . The 

distribution of �« in Equation (4.31) is expressed in parameters λ, μ, and σ. It is not 

difficult to note that it can be determined entirely by the two parameters � and CV. 

We refer that  µh =  ��_� and � =  �ð��. 

4.7 Validation and evaluation of the models  

 Experimentation and verification are done on the proposed models by dividing this 

section into subsections as follows: (a) the validity and credibility of the SMDDL 

model and evaluating the whole system based on the SMEI (R,Q) model; (b) 

evaluating the DMEI-FCFS model based on the expected waiting time in the system, 

WS, in addition to the effect of increasing the server channels’ of service providers to 

the system.  

 Validation of the SMDDL model 4.7.1

In order to validate the generated data of the SMDDL model, some tests should be 

done on the generated data. We remind that, the SMDDL model generates two types 

of data in order to reach the demand during lead-time data. First, generating lead-time 

data based on the original lead-time parameters which are the basis for generating, 

then generating the demand during lead-time data. The validity implementations are 

as follows: 
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1. Extracting the mean and the standard deviation of the generated lead-time 

data distribution from the SMDDL model.  

2. Calculating the mean and the standard deviation of the demand during lead-

time regardless of the statistical distribution from Equations (3.17) and (3.18). 

If the results of the mean and the standard deviation of the generated lead-time 

distribution by the SMDDL model and the mean and the standard deviation of the 

demand, as well as the lead-time regardless of the statistical distribution of Equation 

(3.17) and (3.18) are close, the statistical distribution of the generated data is correct. 

Otherwise, there is an error in the SMDDL model. When extracting the standard 

error, SE refers to the standard deviation of the sample statistic based on the criteria 

of mean (Forbes et al., 2011; Good & Hardin, 2006) . The small and similar criteria 

of standard error, SE, measures the accuracy that there is not a notable difference in 

the distribution  (Ghosh et al., 2006), where the standard error, SE, is the term that 

measures the accuracy in which a sample represents a population or a certain 

phenomenon. The standard error is also inversely proportional to the sample size, in 

which a larger sample size means a smaller standard error because the statistic will 

approach the actual value. Standard error, SE, is equal to the standard deviation 

divided by square root of the sample size, 45�	 � ó
√�. 

 Evaluation of SMEI (R, Q) model  4.7.2

The evaluation of the SMEI (R, Q) model is performed to investigate how good our 

model is by comparing it with two models and different criteria. First, the model by 

Elhasia, Noche, and Zhao (2013) that used sustainable supply chain management, 
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SSCM, to analyze the cement industry operations by proposing three policies 

scenarios. These scenarios are ‘Make-to-stock’ (MTS), ‘Pack-to-order’ (PTO), and 

‘Grind-to-order’ (GTO) strategies. The implementation of these three scenarios is 

created by using an Arena program based on a discrete event simulation (DES) model 

of SSCM. The comparison is made based on the total production cost in similar 

ergonomics, which is the cement industry.  

The second model for comparison is Moslemi and Zandieh's (2011), they used a 

‘multi-objective practical swarm optimization’ (MOPSO) algorithm, which depends 

on the Pareto control to address conflict goals in a continuous review probabilistic 

inventory (r, Q) system. They employed the MOPSO for the multi-objective 

inventory system problem to integrate the mutation factor for the conservation 

diversity in the swarm, in addition to exploring all of the search spaces into the 

MOPSO. The basis for choosing Moslemi and Zandieh's (2011) model is because 

their model was found to be a better model than its predecessors. In addition, they 

used geographically based (Grids), MOPSO (grids), and, alternatively, a crowding 

distance element to select the global optimal particle as leader. The criteria they used 

to make the comparisons were based on the coefficient of variation, CV.  

The coefficient of variation, CV, is a measure or criteria used to compare between the 

dispersion data of two phenomena or more than one phenomenon. Meanwhile, the 

data that has a small CV means that it has less dispersion and vice versa. All 

experimentations are discussed in more detail in Chapter 5. 
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 Evaluation of DMEI-FCFS model 4.7.3

The evaluation of the DMEI-FCFS model is performed to investigate how good the 

model  by comparing it with the model by Mital (2012) which adopted an analytical 

approach based on real life data in accordance with the service level prescribed by the 

concerned authority. The queue discipline referred to either first-in and firs-out 

(FIFO). The study developed the performance measures of expected waiting tine in 

the system and the queue, Ws and Wq and the probability of zero units in the system, 

P0(t). The comparison is made based on the Ws and P0(t). 

Moreover, a what-if analysis is conducted to be a part of comparative evaluations by 

using a simulation experiment on the proposed model to show the impact of adding 

more channels’ of services providers to the system. All experimentations are 

discussed in more detail in Chapter 5. 

4.8 Summary of the chapter  

In order to accomplish the objectives of this research, five main stages were 

premeditated. In the first and second stages, the research explored the problem 

definition and the data source and types. In the third stage, the research developed the 

algorithm and the structures of how to generate data of the demand during lead-time 

probability distribution by the simulation procedures SMDDL model.  

In the fourth stage, the approximate in mathematical model in a multi-echelon 

inventory system under a continuous review (R, Q) policy was developed by dividing 

the work into two sub-models, the SMEI (R, Q) and the DMEI-FCFS.  
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The SMEI (R, Q) model discusses the methods to develop the performance measures 

of order quantity, Q, the reorder point at each installation and echelon, ��) , ��8 , the 

safety stock, SS, and the expected total cost C (R, Q). 

The DMEI-FCFS model discusses the methods to reduce the long waiting time in the 

system under an FCFS queue model when the arrival rate is distributed Poisson, and 

the service rate is distributed Gamma. Finally, this chapter discusses the evaluation 

and the comparison of the proposed procedure by certain criteria based on the 

previous models. In the next chapter, this research will examine the proposed models 

to test its feasibility. 
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  CHAPTER FIVE

RESULTS AND DISCUSSIONS 

In this chapter, the implementations of the proposed models are performed to 

generate the parameters based on the types of distribution obtained. From the 

parameters generated, the approximation models are developed to estimate the 

performance measures of the multi-echelon inventory system. Next, the evaluations 

of the proposed models are conducted by determining the selection criteria of 

performance measures.  

5.1 Establishing demand data distribution 

Demand data of the quantity amount of cement are recorded  and presented in Figure 

5.1. The figure shows that the demand is seen too high in the beginning period. 

However it reduces sharply to a normal pattern at the end of the period. Therefore, it 

can be concluded that demand data have a clear stationary pattern because there is no 

obvious an increasing and decreasing trend. 

 

 

 

 

 

Figure 5.1. Daily demand fluctuations for 2011-2013 



 

194 

The demand data are analysed to examine the normality of the demand by using the  

P-P plot test (probability-probability plot or percent-percent plot) (IBM, 2011) as 

shown in Figure 5.2. Based on this plot, the demand data observed are nearly close to 

the straight line which reveals that the demand data is normal. This finding is also 

supported when the analysis of business forecasting  is applied using the GMDH 

software version 3.6.1 (GMDH-SHELL, 2014). 

 

 

 

 

 

 

Figure 5.2. Analysis of normality base on P-P plot 

The normality of demand data is also verified by plotting the histogram. The 

histogram in Figure 5.3 indicates the shape of a normal distribution based on demand 

data. The frequency of classes increasing gradually until it reaches the highest order 

quantity, which then was decreased gradually afterwards.  
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Figure 5.3. Normality analysis based on histogram 

It seems that demand data are distributed normal and stationary pattern fluctuations. 

Therefore an exponential smoothing method (ES) is the most suitable forecasting 

method to extract the mean and the standard deviation as recommended by (Durbin & 

Koopman, 2012; Koehler, Snyder, Ord, & Beaumont, 2012). The ES method is used 

to forecast the demand data which shown in Figure 5.4. The mean (i.e., the expected 

demand per unit time) extracted for one period Ft+1 from Equation (3.3),  where,  Ft+1 

is a forecasted demand value for the next period, and the standard deviation is 

extracted from Equation (3.14) which depend on MADt+1 in Equation (3.16). MADt+1 

is a mean absolute deviation for the next period. The initial value of F1 was extracted 

from Equation (3.10). The value of smoothing constant, � is chosen to be 0.1 based 

on Forbes et al. (2011), because it shows a small value of mean square error (MSE) 

(Bates & Granger, 1969 and Maydeu-Olivares & Garcia-Forero, 2010) as shown in 

Table 5.1.  
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Figure 5.4. Forecasted demand during three years period 

Figure 5.4 shows the forecasted values of demand data based on the ES method. 

Based on the figure, a clear stationary trend of the demand fluctuations are observed 

for both actual and forecasted demand during the period of 2011 until 2013. 
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Table 5.1  

The Value of � based on the smallest MSE 

Weights, â Value of MSE 

0.1 3330.07 

0.2 3338.14 

0.3 3334.95 

0.4 3347.62 

0.5 3367.91 

0.6 3394.16 

0.7 3428.21 

0.8 3473.56 

0.9 3534.23 

Table 5.1 represents the values of MSE under different weights of α, where, the 

smallest value of MSE is when α equal to 0.1. 

Table 5.2 shows the value of the expected daily demand, DL, and the standard 

deviation, σ of demand distribution data based on the ES method. The detail 

procedures of the ES are available in Appendix A. 

Table 5.2  

Forecasted Mean and Standard Deviation for Demand Data  

Measures Value (tonne) 

The mean, (DL) 12037.75 

The standard deviation, σ  3369.1413 

 

Table 5.2 represents the expected daily demand, DL, of cement products in tonne and 

standard deviation generated using the ES method. These two parameters will be 
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considered as the inputs for the generation of the demand during lead-time 

probability distribution by implementing the SMDDL model. 

5.2 Establishing Lead-time data distribution  

The period of lead-time means the period confined between the preparations of the 

orders in tonnes until they reach the customers. These periods (days) are subject to 

probabilistic. The lead-time data need to be recorded and analyzed to determine its 

distribution. The analysis shows the daily lead-time data have more than the 

distributions using  Easy Fit software version 5.6, (Mathwave,2015). The 

Kolmogorov-Smirnov test (K-S) is conducted to determine the daily lead-time data 

distributions. The distributions are Gamma distribution, Gamma three parameters 

distribution, Generalized Gamma four parameters distribution, generalized gamma, 

Weibull distribution and Weibull three parameters distribution. The significant and 

strongest p-value obtained is 0.985 which is from Gamma distribution with a shape 

parameter, α, and a scale parameter, β. Table 5.3 shows the p-values based on the 

Kolmogorov-Smirnov test (K-S) of each distribution. Figure 5.5 shows the plotted 

histogram of the Gamma distribution. 
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Table 5.3  

The Distributions of the Daily Lead-time 

Distributions 
 p-value based on the 

Kolmogorov-Smirnov test 
(K-S) 

Gamma 0.985 

Gamma three parameters 0.812 

Gen. Gamma four parameters 0.806 

General Gamma 0.804 

Weibull 0.570 

Weibull three parameters 0.522 

 

From Table 5.3, the strongest and highest significant p-value obtained is shown in 

Gamma Distribution with the p-value is 0.985. 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 Gamma distribution as shown by the lead-time histogram  
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Table 5.4 shows the obtained parameter values of the daily lead-time data based on 

the significant p-value obtained which is Gamma distributed. 

 

Table 5.4  

Lead-time Parameters Based on the Gamma Distribution 

 Parameters Values 

The shape parameter,  � 1.3484134 

The scale parameter,  β 4.4800435 

 

5.3 The SMDDL model 

SMDDL model is developed to establish a demand during lead-time distribution data 

by preparing an algorithm. Its implementation requires the mean and standard 

deviation values of the forecasted demand and the parameters of the extracted lead-

time distribution. 

Most of the studies Axsäter and Marklund (2008); Axsäter (1984); Graves (1986); 

Hausman and Erkip (1994); Hosoda and Disney (2006); Muckstadt (1986); 

Ravichandran (1995); Saffari and Haji (2009) and Zhao et al.(2006), treated demand 

data as constant or stochastic (normal, Poisson or compound Poisson) while the lead-

time as constant, fixed, zero, or neglected. There are also some studies assuming 

probabilistic lead-time has normal, Poisson, Weibull, or Erlang distribution (Bagchi 

& Hayya, 1984; Baten & Kamil, 2009). These assumptions are valid in an inventory 

system when the market is stable and not subject to any sudden changes, such as 

political factors and security circumstances, as exemplified in this research. 

Unfortunately, these assumptions cannot be applied in this research as the scenario of 
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cement production in Iraq-Kurdistan is unstable. Therefore, this research has 

established the new distributions for the demand during lead-time by implementing 

the SMDDL model which is realistic to represent the probabilistic scenario of the 

cement production. 

The implementation of the SMDDL model shows five new probability distribution 

functions generated for demand during lead-time. The abnormal behaviors of the 

demand on cement and long lead-time in the system led to these new probability 

distributions of demand during lead-time which were not given attention in the past 

literature. The analyses of the SMDDL model are conducted by preparing an 

algorithm based on the structure of the SMDDL model as shown in Appendix E. The 

five distributions generated for the demand during lead-time are Generalized Gamma 

Four-Parameter, Pearson Type 6 Four-Parameter, Log-Pearson 3, Fatigue Life 

(Birnbaum-Saunders), and Inverse Gaussian Three-Parameter Distributions. The 

results and the details of these distributions which were obtained by the SMDDL 

model based on  the Easy Fit software version 5.6 (Mathwave, 2015) are presented 

below. 

 Generalized Gamma, GG Four Parameters Distribution 5.3.1

The Generalized Gamma, GG distribution has four parameters, two continuous shape 

parameters, K and α, a continuous scale parameter, β and a continuous location 

parameter,	w. The distribution is also verified by plotting the histogram. The 

histogram in Figure 5.6 indicates the shape of a GG(α, K, β,	w) distribution based on 
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the SMDDL model results. The frequency of classes starts increasing until it reaches 

the highest level, which then was decreased gradually afterwards. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6. Generalized Gamma Four-Parameter distribution based on the demand 
during  lead-time histogram 

Moreover, the shape of the curve in Figure 5.7 matches with the Generalized Gamma 

four parameters shape and reveals the significance level of the Generalized Gamma 

Four-Parameter distribution with the p-value = 0.93584 based on the (K-S) test, 

which is a very strong and significant p-value. 

 

 

 

 

 

 

 

 

 

Probability Density Function

Histogram Gen. Gamma (4P)

Frequancy classes histogram

4400004000003600003200002800002400002000001600001200008000040000

P
ro

b
ab

il
it

y
 d

en
si

ty
 f

u
n

ct
io

n
 f

(x
)

0.24

0.22

0.2

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0



 

203 

 

 

 

 

 

 

 

 

 

Figure 5.7  Generalized Gamma Four-Parameter Distribution of demand during lead-
time 

 Pearson Type 6 Distribution four-parameters 5.3.2

The Pearson Type 6 distribution has four parameters, two continuous shape 

parameters,	��and ��	, a continuous scale parameter, e and a continuous location 

parameter, w. The distribution is also verified by plotting the histogram. The 

histogram in Figure 5.8 indicates the shape of a Pearson Type 6 distribution based on 

the SMDDL model results. The frequency of classes starts from an increasing state 

until it reaches the highest level, which was then decreased gradually afterwards.  
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Figure 5.8. Pearson Type 6 Distribution Four-Parameter based on demand during 
lead-time histogram 

Additionally, the shape of the curve in Figure 5.9 matches with The Pearson Type 6 

distribution four-parameter shape and reveals the significance level of the Pearson 

Type 6 four-parameter distribution with the p-value = 0.85335  based on the (K-S) 

test, which is a very strong and significant. However, compared with the previous 

result, it was less accurate. 

 

 

 

 

 

 

 

 

 

 

Figure 5.9. Pearson Type 6 Distribution of demand during lead-time 
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 Log-Pearson 3 Distribution 5.3.3

The Log-Pearson 3 distribution has three parameters, a continuous shape 

parameters,	��, a continuous scale, e and a continuous location parameter, w. The 

distribution is also verified by plotting the histogram. The histogram in Figure 5.10 

indicates the shape of a Log-Pearson 3 distribution based on the SMDDL model’s 

results. The frequency of classes starts increasing until it reaches the highest level, 

which then was decreased gradually afterwards. 

 

 

 

 

 

 

 

 

 

Figure 5.10. Log-Pearson 3 distribution based on the demand during lead-time 
histogram 

Moreover, The shape of the curve in Figure 5.11 reveals the significance level of 

Log-Pearson 3 distribution with the p-value = 0.4285 based on the (K-S) test. When 

the p-value is compared with its predecessors, the value was less even though it had 

some significance. Even though the p-value was not strong, it was not rejected to be 

described a distribution. 
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Figure 5.11. Log-Pearson 3 distribution of demand during lead-time 

 Fatigue Life (Birnbaum-Saunders) Distribution 5.3.4

The Fatigue Life (Birnbaum-Saunders) distribution has three parameters, a 

continuous shape parameter,	��	a continuous scale parameter, e and a continuous 

location parameter, w. The distribution is also proved by drawing the histogram. The 

histogram in Figure 5.12 indicates the shape of a Fatigue Life (Birnbaum-Saunders) 

distribution based on the SMDDL model’s results. The frequency of classes starts 

increasing until it reaches the highest level, which then was decreased gradually 

afterwards.  
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Figure 5.12. Fatigue Life (Birnbaum-Saunders) based on demand during lead-time   
histogram 

Furthermore, the shape of the curve in Figure 5.13 reveals the significance level of 

the Fatigue Life distribution with the p-value = 0.41052 based on the (K-S) test. A 

similar comparison of the p-value can be made with its predecessors which shows 

less significant and not strong. However, it was acceptable and was not rejected to be 

a considered distribution. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13. Fatigue Life (Birnbaum-Saunders) distribution of demand during lead-
time 
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Frequancy classes histogram
4400004000003600003200002800002400002000001600001200008000040000

P
ro

b
ab

il
it

y
 d

en
si

ty
 f

u
n

ct
io

n
 f

(x
)

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0

Probability Density Function

Fatigue Life  (0.7783; 62811.0; -2650.1)

Frequancy classes 
3000002000001000000

P
ro

b
ab

il
it
y
 d

en
si

ty
 f
u
n
c
ti
o
n
 f
(x

)

1.2E-5

1.1E-5

1E-5

9E-6

8E-6

7E-6

6E-6

5E-6

4E-6

3E-6

2E-6

1E-6

0



 

208 

 Inverse Gaussian distribution three parameters 5.3.5

The Inverse Gaussian distribution has three parameters, two continuous parameters, 

	λ	and  \  and a continuous location parameter, w. The distribution is also confirmed 

by plotting the histogram. The histogram in Figure 5.14 indicates the shape of an 

Inverse Gaussian distribution based on the SMDDL model’s results. The frequency 

of classes starts increasing until it reaches the highest level, which was then 

decreased gradually subsequently. 

 

 

 

 

 

 

 

 

 

Figure 5.14. Inverse Gaussian distribution based on demand during lead-time 
histogram 

Besides that, the shape of the curve in Figure 5.15 discloses the significance level of 

Inverse Gaussian distribution with the p-value = 0.312592 based on the (K-S) test. 

Compared with its predecessors, it was the least significant and strong. However, it 

was acceptable and was not rejected to be a distribution. 
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Figure 5.15. Inverse Gaussian distribution of demand during lead-time 

 Discussion of SMDDL model 5.3.6

This section summarized the conclusion of the SMDDL model based on the five 

distributions. Table 5.5 exhibits and summarizes the parameters values of the demand 

during lead-time distribution for each of the five distributions. 
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Table 5.5 

Summary Values of the Demand during Lead-Time parameters with the Five 

Different Distributions  

Distributions 
Shape parameters 

Scale 
parameter 

Location 
parameter 

continuous 
parameter 

continuous 
parameter  p-Value 

K â âý â
 ã � �  

GG four 
paramete
rs Dist. 

 0.93584 ــــ ــــ 5058.1 11713.0 ـــ ـــ 0.66813 3.2

Pearson 
Type 6 
Dist. 

 0.85335 ــــ ــــ 4.6993E+5 5246.5 12.145 1.756 ــــ ــــ

Log-
Pearson 
3 Dist. 

 0.4285 ــــ ــــ 19.686 0.6985- ــــ ــــ 124.41 ــــ

Fatigue 
Life 
Dist. 

 0.4105 ــــ ــــ 2650.1- 62811 ــــ ــــ 0.7783 

Inverse 
Gaussian 
Dist 

 1.3942E+5 84739 0.31259 5485- ــــ ــــ ــــ ــــ ــــ

 

From the Table 5.5, the strongest and highest significant p-value obtained based on 

the (K-S) is shown in the Generalized Gamma Four Parameter Distribution with the 

p-value of 0.93584. Whenever the p-value increases, the accuracy of the results is 

more harmonious and convenient.  

Table 5.6, on the other hand, displays the extracted mean of demand during lead-

time, \], as well as the standard deviation of demand during lead-time, 	] , according 

to each type of the distribution. The mean and the standard deviation are extracted 

according to the arithmetic equation for each distribution (Mathwave, 2015).  
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Table 5.6  

Mean and Standard Deviation of the Demand during Lead-Time Based on the Five 

Distributions  

Distributions 

Values of the mean and standard deviations 
(tonne) 

Mean,  þ 
Standard deviation,   �þ 

Generalized gamma four parameters 
distribution (GG)  

79274 63018 

Pearson Type 6 Distribution with 
four-parameters 

79289 63009 

Log-Pearson 3 distribution 79692 66744 
Fatigue Life (Birnbaum-Saunders) 
distribution 

79185 64803 

Inverse Gaussian three parameters 
distribution  

79253 66062 

Therefore, this research only adopts the Generalized Gamma Four-Parameter 

distribution and with mean of demand during lead-time, \] = 79274 tonne/day and 

standard deviation of demand during lead-time, 	] =  63018 tonne/day since it 

shows the most significant value. The study by  Axsäter (2011) also considered  only 

one distribution for probabilistic cases. 

5.4 Arrival rate  

The development of the DMEI-FCFS model requires the determination of the arrival 

rate. To determine the arrival rate, the (K-S) test was conducted. The (K-S) test 

shows the arrival rate was distributed as Poisson with the mean, λ is equal to 19.74 

retailers/ hour. As it is integer, mean, λ considered is 20 retailers /hour. 
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5.5 Service rate  

Another requirement to develop the DMEI-FCFS model is the determination of the 

service rate. To determine the service rate, the (K-S) test was conducted. The (K-S) 

test shows the service rate was distributed as Gamma with shape parameter, α equal 

to 1.3484 and scale parameter, β equal to 4.4800.  

5.6 Establishing the costs 

The costs involved in the multi-echelon inventory system under the continuous 

review are holding cost, h and setup cost, A. It is observed from the annual reports of 

Lafarge (HC, Brokerage 2010), the current capacity of production, �� is 2.3 million 

tonne per day with the total the investment cost of US$276 million, while the selling 

price per tonne is US$120 and the production cost per tonne is US$25. Figure 5.16 

shows key indicators of cement operations: the price per tonne, cost per tonne 

including energy cost, labor, packaging, maintenance, other expenses and 

depreciation, and profit margin (%). 
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Figure 5.16. Cement Operations - key indicators. Source: HC Brokerage (2012) 

 Holding cost value 5.6.1

Holding cost, h is the cost carried by the firm, factory, or the project when store 

materials are in the depot. It includes the following elements: interest on capital, rent 

of storage place (which includes electricity, water, cooling, etc.), insurance cost 

against unexpected accidents, damage that infects the products, and investment cost. 

For some cases, the holding cost cannot be extracted directly because it depends on 

the percentage cost of inventory level, I and the cost per unit, C. Therefore, according 

to Equation (4.2), 

E � 		 $120
12037.74 � 0.01 

The unit costs C= $25/tonne,  

Then by using Equation (4.1), 

� � �E���� � �25��0.01� 	� 	$0.25/tonne. 

Price per tonne 
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Therefore, the holding cost, h for the whole day: 

� � �0.25��12037.74� � $	3009.44/day. 

 Setup cost value 5.6.2

The setup cost is the fixed cost which is independent of the size of order quantities 

for purchases or productions. It involves the cost of issuance of document request and 

follow-up, putting the items or products in the depots, production setup, arranging the 

place, demise of buildings, and inspection of bad or shoddy items or inspection 

quality. The extracted value of setup cost, A depends on Equation (4.3), 

where, h ≅ $3009.44/ day 

< � 	 �12037.74��120�120 � 3009.44 � $9028.3/Order 
5.7 The initial value of order quantity, Q 

The extraction of the initial value of order quantity, Q1, is according to Equation 

(4.12) with production rate, �� � 2.3 million tonne, A=$9028.3, h=3009.44 and 

DL=12037.75  

∴ 	 �� � 	� 2<=]��1 � =]��� 			� 	ñ
�2��9028.3��12037.74��3009.44��0.995� 		 

∴ 	�� � 270	tonnes/	order										 
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The value of order quantity,	�� for the number of echelons more than one is equal 

to		©�������. The value of 	©� can be obtained from the Table 4.4 depending on the 

inventory position and the reorder point at each installation. 

5.8  Optimal Safety stock 

One of the necessary measures in the SMEI (R, Q) model is the safety stock, SS. 

Optimal SS makes a balance between overstock and understock so that it does not fall 

into shortage. The SS is extracted from Equation (4.14).  

The safety factor, K, under any service level (confidence level), was extracted from 

the Generalized Gamma Distribution, GG(α, β, k, γ), four parameters based on the 

number of shape parameters. Table 5.7 represents the value of k (the safety factor) 

from SPSS, StatSoft-8.Inc (2007) based on a different service level. 

Table 5.7  

Values of Safety Factor, k, Based on GG(α ,β, k, γ) 

Service levels K-values Service levels k-values 

0.90 3.88720 0.95 4.743865 

0.91 4.021718 0.96 5.012760 

0.92 4.168266 0.97 5.355947 

0.93 4.333214 0.98 5.833922 

0.94 4.522184 0.99 6.638352 

 

From Table 5.7, it can be stated that when the service level value increase the safety 

factor k increases. The value of SS is extracted by preparing source code (see 

Appendix F) and it is based on different safety factor.  
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Table 5.8  

Values of Safety Stock, SS, under Different Service Levels 

 
Service levels 

 
Value of SS in 

tonne 

 
Service levels 

 
Value of SS 

in tonne 

0.90 244963.6 0.95 298948.9 

0.91 253440.6 0.96 315894.1 

0.92 262675.8 0.97 337521.2 

0.93 273070.5 0.98 367642.1 

0.94 284979 0.99 418335.7 

In fact, the best service level adopted in most similar cases or in the literature had 

95% credibility and 0.05% errors, which is more realistic (Graves & Willems, 2000; 

Humair, Ruark, Tomlin, & Willems, 2013).  

5.9 Order quantity, Q and Reorder point, R 

The reorder point at the installations and echelons are extracted from the equations in 

Table 4.1. The reorder point at Installation One is equals to the reorder point at 

Echelon One Proposition (3.2),  ��) = ��8 =  44 +  \]. 

 where,  

\] = 79274  and SS= 298948.9 under service level 0.95% 

� = 298948.9 + 79274 ≅ 378223 tonne /day. 

∴  ��) =  ��8 = 378223  tonne /day. 

for ' ≥ 2,  



 

217 

��) =  ��8 −  ����8 −  ����, if n=2,  ��) =  ��8 −  ��8 −  ��. 

In this equation, the value of reorder point at Echelon Two is missing. Therefore, 

based on the equations in Table 4.1, we can extract the reorder point at the echelons.  

��8 =  ����) +   ∑ ��«) + �«����«+�  ,    x�a  ' ≥ 2  

��8 =  ��) + (��) + ��)   
The value of  ��)  is extracted by substituting  ��8 in  ��)  and the process is repeated 

until n installations and echelons. However, the problem appears in the value of ��, 
for ' ≥ 2. The value of �� depends on the extracting value of ��8, where the value of 

�� =  ©������� , then it compensates with ©� = E��) − ��) . The formula of E��) is 

extracted from Table 4.4. For this purpose, source code was prepared to solve and 

find the value of the order quantity as well as the reorder point at each installation 

and echelon as shown in Appendix G.  

Table 5.9 shows the results of the order quantity and the reorder point for each 

installation and echelon by the algorithm outputs at service level 95%. 
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Table 5.9  

Reorder Point at Installation and Echelon stock with a Service Level of 95% for 

Three Echelons 

N 
Reorder point at installation 

(i = 3) in tonne/ day  

Reorder Point at 

Echelon (i = 3) in  

tonne/ day 

Order quantity 

for each 

order/tonne 

1 378223 378223 270 

2 378223 756716 96271 

3 1058223 1231210 96877 

The results in Table 5.9 shows that the reorder point at the first and second 

installation are identical, which means that the best reorder point at each installation 

is 378223tonne/day. For each echelon, the reorder point is different. The reorder 

point at echelon 1 is the same as in installation 1, the reorder point at echelon 2 is 

equal to the sum of the reorder point at installation 1 and 2, and the order quantity 

(i.e., 378223+378223+270). While the reorder point at echelon 3 is equal to the sum 

of reorder point at echelon 2, the reorder point at installation 2 and the order quantity 

(i.e., 756716+378223+96271).  The difference between the daily production capacity 

which is 2.3 million tonne and the three reorder point is 66149 tonne. The difference 

shown is small, which means in some ways the model seems to be represent the real 

situation. 

In order to generalise, the proposed model can be generated to any number of 

installations and echelons under any service levels by developing source code as in 

Appendix G and H.  
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5.10 Inventory position 

Important measures that must be extracted is the inventory position, IP at each of the 

installations and echelons. The IP is extracted from the Equations in Table 4.3. In 

order to generalise the IP to any number of installation and echelon, source code in 

Appendix I is generated. Table 5.10 represents the results of the inventory position in 

each installation and echelon at service level 95%. 

 

Table 5.10  

Extracted Values of Inventory Positions at Service Level 95% 

 

N 

 

IP at the installations 

(tonne) 

 

IP at the echelons (tonne) 

1 378223 378223 

2 379156 378534 

3 379156 757068 

4 379156 1135602 

5 379156 1514136 

6 379156 1892670 

7 379156 2271204 

8 379156 2649738 

9 379156 3028272 

10 379156 3406806 
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The results in Table 5.10 show the inventory position that should be at each 

installation and echelon under the service level of 95%. The inventory position at the 

echelons is determined according to the sum of the reorder point at the installations 

and the order quantity. While the inventory position at the installations depends on 

the difference between the current inventory position at the echelon and the previous 

one. In the SMEI (R, Q) model, four echelons are considered. However it can be 

generalized to N echelons at any service levels as presented in Appendix J.  

5.11  Inventory level 

The inventory level is extracted to help decision makers to make the right decisions at 

the right time in order to promote and enhance the inventory. Table 5.11 represents 

the results of the inventory level at each echelon based on the inventory position at 

service level 95%. 

Table 5.11  

Extracted Values of the Inventory Level at Each Echelon 

 

N 

 

IL at the echelon (tonne) 

2 299260 

3 677794 

4 1271328 

5 1434862 

6 1813396 

7 2191930 

8 2570464 

9 2948998 

10 3327532 
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The results in Table 5.11 show the inventory levels that should be at each echelon. As 

this research considered four echelons, the sum of the inventory level at echelon 2, 

echelon3 and echelon 4 is 2248382tonne/day. Based on the production quantity of 2.3 

million tonnes per day, the difference is 51618 tonnes. The results in Appendix K are 

generalised for N echelons at any service levels. 

5.12 Approximated total cost analysis 

In this model, these assumptions are made; only a single partner is considered and the 

type of the decision is centralized. The extracted approximate overall cost is 

generated as in Equation (4.19) where, PC = $25,  A = $9028.3, =] = 12037.75, h = 

$3009.4 and b = 0.995 

Therefore, 

�(�, �) = (25 � 12038) + √2�9028.3 � 12038 � 3009.4 � 0.995 =
$ 1107714/day. 

It is observed that the demand is in a normal range in comparison to the production 

rate and the high demand. Suppose that the selling price per tonne is $120, cost per 

tonne is $25, and the mean of demand during lead-time, \], is 79274 tonne per day. 

Therefore, the approximate profit calculated is $7531030. Now, if the approximate 

cost is subtracted from the approximate profit, the net profit will be $6423316. The 

amount obtained is not solely the profit value because there are some other extra 

costs that may not be taken into consideration, such as salaries and other additional 

expenses.  
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5.13  Performance measures of DMEI-FCFS model 

It is been observed that the initial information of the expected waiting time is 13 

hours and 30 minutes, which is quite a long waiting time for the retailers. This 

happened because of a limited number of distribution centers and a large number of 

retailers. The performance measures which include P0, Ls, Lq, Ws and Wq of the 

DMEI-FCFS model are presented. 

Initially, the traffic intensity � is extracted from Equation (4.24), the value of P0 from 

the Equation (4.25), and Pn. from Equation (4.26) by preparing source code as in 

Appendix L. The result obtained for each value is shown in Table 5.12.  

Table 5.12  

Values of Probability Measures �, �� 

Measures Value 

Traffic intensity or system utilization,  � 0.552 

The probability of no retailers in the system,  P0 0.004 

 

The result in Table 5.12 shows that the value of traffic intensity, �, is 0.552. It shows 

that the queue model is effective because � < 1. The value of ρ is not valid since, 

0 ≤ � ≤ 1. it means the queue model does not achieve the drawn objectives and it 

may lead to rising costs. 

The value of the probability that there are no retailers in the system, P0 is 0.004. The 

small value obtained indicates that the system is busy. Indirectly it shows that there is 

a strong demand for cement products. On the other hand, the results obtained of the 
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probability that there are n retailers in the system, Pn based on Equation (4.26) are 

shown in Table 5.13. 

Table 5.13  

Values of Probability of that there are n retailers in the system, ��  

Number of 

arrivals, n 
Values of Pn 

1 0.769 

2 0.943 

3 0.970 

4 0.861 

5 0.770 

6 0.715 

Table 5.14 represents the obtained values of the rest of performance measures (Ws, Ls, 

Lq and Wq) by applying the Equations (4.20), (4.21), (4.22) and (4.23) respectively. 

The values for each performance measures of Ls, Lq, Wq and Ws are obtained using 

source code as in Appendix L. 

Table 5.14  

Performance Measures of the DMEI-FCFS Model  

Measures Value 

The expected number of the retailers in the queue,  Lq 118 

The expected number of the retailers in the system,  Ls 121 

The expected waiting time in the queue,  Wq / hour 5  hours 

The expected waiting time in the system,  Ws/hour 6 h and 2 m 
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The results in Table 5.14 show that the expected number of retailers in the system is 

121 while the expected number of retailers in the queue is 118. It is believed the 

slight difference between these two numbers is because the arrangement of the 

procedures for obtaining the demand for each retailer is within the same area.  

As we can see, the expected waiting time in the system is 6 hours and 2 minutes, 

which shows a considerable reduction from 13 hours and 30 minutes. Hence, the 

proposed DMEI-FCFS model is effective in achieving the model objectives. Lastly, 

the expected waiting time is 5 hours.  

5.14  Evaluation of the proposed models   

This section explains the validation and comparison of the most important results. 

This section is divided into three parts. First, the simulation model’s validity and 

credibility are presented to test that our results are valid. Second, the comparison of 

the whole system based on the SMEI (R, Q) model using two different criteria, the 

coefficient of variation, CV, and expected total cost in the system.  

Finally, the comparison of the DMEI-FCFS model, which depends on the 

performance measure of the expected waiting time in the system, Ws, is explained. 

 Validation of the SMDDL model 5.14.1

In order to ensure the SMDDL model’s validity as well as the credibility of the 

generated data of demand during lead-time, some tests were done as follows: 
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We compared the mean and standard deviation of the generated lead-time distribution 

by SMDDL model with the mean and standard deviation of demand and lead-time 

regardless of the statistical distributions from Equations (3.17) and Equation (3.18). 

The mean and the standard deviation of the generated lead-time data by the SMDDL 

model which is Gamma distribution has a shape parameter, � =  1.412, a scale 

parameter, e =  4.2040 , mean equal to 5.953 and standard deviation equal to 

25.916. The mean and the standard deviation of the demand and the lead-time 

regardless of the statistical distributions from Equations (3.17) and (3.18) are 6.040 

and 27.063 respectively. The extracted standard error, SE for both techniques is 

calculated and is shows in Table 5.15. 

 

Table 5.15 

 Comparison values of the mean, standard deviation and standard error 

Measures Mean 
Standard 
deviation 

Standard 
Error 

Practically extracted from the SMDDL 
model 

5.953 25.916 0.7 

Theoretical values, regardless of the 
distributions (Fishman, 1973) 

6.040 27.063 0.81 

 

Table 5.15 shows how the results of the practical and theoretical mean and standard 

deviation are satisfied with each other. When the mean and standard deviation for 

both the practical and theoretical are similar, there is no notable difference in the 

distribution of this kind of satisfaction. Furthermore, a small standard error, SE, 

measures shows that there is no difference of overly between the two sample sizes 

(Forbes et al., 2011; Ghosh et al., 2006; Good & Hardin, 2006). 
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 Evaluation of the SMEI (R, Q) model 5.14.2

This section evaluates the proposed SMEI (R, Q) model based on two different 

criteria, the expected total cost of the system (Elhasia et al., 2013) and coefficient of 

variation, CV (Moslemi & Zandieh, 2011). The first criteria is considered with three 

policies or scenarios in a multi-echelon inventory system: “Make-to-stock” (In MTS), 

“Pack-to-order” (In PTO), and “Grind-to-order” (In GTO) strategies which are 

commonly used to draw the inventory policies in order to reach the lowest possible 

cost.  In this criteria, this assessment is to demonstrate that the proposed new formula, 

InSMEI (R, Q), gives less approximate total cost in the whole system in comparison with 

the three inventory policies. The comparison of the total production cost is made in a 

similar ergonomics, which is the cement industry.  

The cement industry, in terms of variables, modus operandi and ergonomics, is 

similar all over the world. The model was run 1500 times and the results obtained are 

illustrated in Table 5.16.  

Table 5.16 

Key Performance Indicators Based on Cost Analysis 

Index 
Key performance indicators / cost analysis ($) 

Approximate total Cost 

Current expected Cost 57500000 

InMTS Scenario 1 37720020 

InPTO Scenario 2 37690198 

InGTO Scenario 3 31553600 

    InSMEI(R, Q) 15003799 
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From Table 5.16, note that the minimum value of the total approximate cost of the 

proposed new formula is $15003799, compared with the three scenarios and the 

current expected cost of the ergonomics.  

For the second criteria of evaluation, one of the important statistical metrics to 

measure the dispersion of the data is the coefficient of variation, CV, CV is the 

division of the standard deviation, SD, on the average µ  of the data multiplied by 100. 

Whenever the CV proportion is less, there is less dispersion of data and indicates the 

accuracy of the results. The results of the comparison between the SMEI (R, Q) 

model and ‘multi-objective practical swarm optimization MOPSO (Grids) based on 

CV are illustrated in Table 5.17. 

Table 5.17 

Results of Data Dispersion Based on CV 

Measures  

 

MOPSO (Grids) 

Algorithm  

SMEI (R, Q) model 

Average, µ  1880.09 12037.74 

Standard deviation, SD 1380.43 3369.141 

CV 0.73 0.28 

CV Percentage % 73% 27% 

From the results in Table 5.17, note that the proportion of the coefficient of variation, 

CV, in the SMEI (R, Q) model is 27%, and which that in the MOPSO (Grids) is 73%. 

Based on this measure, the SMEI (R, Q) model gives a less ratio dispersion of data in 

comparison with the MOPSO (Grids) algorithm, which means that accurate results 

are obtained from the proposed model. 
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 Evaluation of the DMEI-FCFS model 5.14.3

This section evaluates the proposed DMEI-FCFS model based on the waiting time in 

the system , E0, which presented by Mital (2012) and what-if analysis of adding extra 

server channels to the model. In the first criteria, this assessment is to demonstrate 

that the proposed new formula Ws-DMEI-FCFS gives less waiting time in the system 

compared with E0 of Mital (2012). The results obtained are illustrated in Table 5.18. 

Table 5.18 

Results of Performance Measure based on Waiting Time 

Measure 
Expected waiting time in the  system 

(minutes) 

E0 10 
Ws-DMEI-FCFS 6 

From the results in Table 5.18, the proposed Ws-DMEI-FCFS gives less waiting time 

in the system compared with E0 with the difference of 4 minutes. 

The second evaluation of the DMEI-FCFS model was made based on the 

performance measure of the expected waiting time in the system, Ws. The comparison 

was carried out based on two tests. The first test used the WinQSB-queueing model 

analysis software in order to extract Ws for the same model inputs (WinQSB-2.0, 

2002). The second test performed a sensitivity analysis using simulation for 1000 

hours of loops based on an FCFS model to examine the effect of adding extra server 

channels to the model. For instance, the changes from 6 channels to 15 channels were 

recorded to observe the degree of reduction of the expected waiting time in the 

system. The results are illustrated in Table 5.19. 

 



 

229 

Table 5.19 

Impact of Simulated Time on Expected Waiting Time in the System, Ws  

Simulation sensitivity analysis of servers number  

Number of servers 

channel 

The expected waiting time in the system 

Ws 

6 6.818 

7 6.2867 

8 6.1217 

9 6.067 

10 6.049 

11 6.0432 

12 6.0415 

13 6.041 

14 6.0409 

15 6.0408 

 

From the results in Table 5.19, it can be seen that when the server channel is 6, the Ws 

is 6 hours and 49 minutes with a difference of 47 minutes for each retailer with the 

proposed model, i.e., 6 hours and 2 minutes (see Section 5.13). The result of the 

sensitivity analysis based on the simulation shows that when three more servers are 

added to the system, e.g., from 6 to 9 service providers, Ws is reduced by 45.06 

minutes. From 10 to 15 service providers, Ws constantly shows a very slight reduction 

and nearly remains the same.  

The model proposed in this research reduces the expected waiting time in the system 

at a rate of 47 minutes. However, when adding service providers to the system to 

satisfy the retailers’ orders from 9 channels to 15 channels, the expected waiting time 

in the system will not significantly change, and the service rate remains the same, 

taking into consideration that any extra service providers means an extra cost on the 

system. These interval changes are illustrated in Figure 5.17. 
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Figure 5.17. The Effect of Increasing Numbers of Servers’ Channel on Ws 

Finally, it can be stated that the proposed DEMI-FCFS model, significantly reduces 

the expected waiting time in the system from 13 hours and 30 minutes to 6 hours and 

2 minutes with an average reduction of 7 hours in the whole system. 

5.15 Discussion and summary  

In this chapter, all results were clarified and discussed. With the help of the proposed 

procedure, the aspects of probability and uncertainty in the multi-echelon inventory 

data were considered. The result found in the research can be summarized as follows: 

Firstly, the SMDDL model was able to establish five new probability distributions of 

demand during lead-time. They are the Generalized Gamma Distribution Four 

Parameters, Pearson Type 6 Distributions Four Parameters, Log-Pearson 3 

distribution, Fatigue Life (Birnbaum-Saunders) Distribution, and Inverse Gaussian 

Distribution.  
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The most previous studies, demand is often assumed to be constant or stochastic 

(normal, Poisson or compound Poisson) while the lead-time is constant, fixed, zero, 

or neglected. In reality, the probabilistic of both demand and lead-time make those 

assumptions are not applicable. Thus, this research has suggested new distribution to 

represent the demand during lead-time that considered both demand and lead-time are 

probabilistic.  

Secondly, based on the SMEI (R, Q) model, some findings such as the best order 

quantity, Qj, the optimal safety stock, SS, the best time to promote the reorder point, 

R at each installation and echelon, the inventory position, IP and inventory levels, IL, 

as well as, the minimum approximate total cost for the whole system are extracted. 

Thirdly, the DMEI-FCFS model is able to suggest the expected waiting time to 6 

hours and 2 minutes, which shows approximately seven hours reduction in 

comparison to actual waiting time of 13 hours and 30 minutes. Nonetheless, it has 

shown the effectiveness of the model proposed. 

Finally, the proposed models were evaluated based on different criteria for validation 

of the SMDDL model, SMEI (R, Q) model and DMEI-FCFS model.  
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 CHAPTER SIX

 CONCLUSIONS  

This chapter summarizes the research and discusses some of its contributions and 

limitations. Moreover, it additionally addresses a few potential works in the future.   

6.1   Summary of multi-echelon inventory system in supply chain 

This research addresses a multi-echelon inventory system under the continuous 

review (R, Q) policy, where R is the reorder point and Q is the order quantity with 

probabilistic demand and probabilistic lead-time, which plays the primary role in 

developing an approximation mathematical model in combining a serial and a 

distribution multi-echelon inventory system. An inventory system plays a significant 

role in supply chain, where most studies in the area of supply chain employ theories 

of inventory. There are a large number of studies on a multi-echelon inventory 

system that generally can be categorized as supply chain management. 

The supply chain of a manufacturing industry, which consists of suppliers, raw 

materials depots, manufacturer warehouses, distribution centers, and a number of 

retailers that satisfy a big number of customers, is aligned with the supply chain of a 

cement industry. The essential aim of an inventory system is to balance between 

overstock and understock. This balance depends on relevant inventory system 

policies, i.e., whether a periodic review policy or a continuous review policy and the 

behaviors of other variables, i.e., demand, lead-time process and costs.  
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An inventory problem appears when there is a need for a physical storage of goods, 

items, and products for the purposes of meeting demand overtime, a need for any 

project in the business area to keep inventory to ensure continued efficient operations. 

Therefore, demand and lead-time are the keys to developing or modifying multi-

echelon inventory system models.  

Typically, demand and lead-time in an inventory system can both be constant which 

is the simplest model, or demand is probabilistic and the lead-time is constant (i.e. 

deterministic), or demand is constant or deterministic and the lead-time is 

probabilistic, or alternatively, both of them are probabilistic. In particular, the 

demand and lead-time behaviors are very important and complex when they are 

probabilistic as each one has its own probability distribution function. Therefore, the 

probability and uncertainty ergonomics aim is to contribute to the supply chain of a 

multi-echelon inventory system by implementing algorithms that approximate the 

optimal inventory system policies of these systems. 

This research presents a new insight into an approximation mathematical model to 

obtain the best approximate solution of a multi-echelon inventory system under the 

continuous review (R, Q) policy in a cement industry with probabilistic demand and 

probabilistic lead-time. In the proposed approximation mathematical model, three sub 

models were developed which are the SMDDL model, the SMEI (R, Q) model and 

the DMEI-FCFS model. 
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In the SMEI (R, Q) model, we developed the formula for the order quantity, �«, the 

reorder point at each installation and echelon, ��) ,  ��8  , and the method of optimizing 

the safety stock, SS. In addition, a new formula was obtained for extracting the 

approximated total cost for the whole system, the inventory positions at each 

installation and echelon, and the inventory level at each echelon. 

In the DMEI-FCFS model, the performance measures were developed to reduce the 

long waiting time between the distribution center and the retailers by adopting 

(M/G/6):(FCFS/∞/∞) system with Poisson mean arrival rate and Gamma distribution 

service rate. Other performance measures in the considered model were the expected 

number of retailers in the system and the queue, ^¿, ^Á , the expected waiting time in 

the queue, ÀÁ , the probability that there is no retailers in the system (the system is 

idle), ��, and the probability that there are more than n retailers  in the system (the 

system is busy), ��.  

6.2 Accomplishment of the research objectives 

This research has fruitfully achieved all the research objectives as described in the 

Chapter One. The main objective of this research is to develop an approximation 

mathematical model in a supply chain of a multi-echelon inventory system under the 

continuous review policy in a cement industry that can achieve the best inventory 

policy to satisfy the retailer’s needs while considering the probability distribution 

function of demand during lead time. 
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In order to reach the best approximate solution, we outlined six specific objectives. 

The first specific objective is to develop simulation procedures to extract the demand 

during lead-time, the SMDDL model as described in Section 4.5. After running the 

model for 1,500 times, the demand during lead-time probability distribution data 

were generated. The data were generated using an algorithm based on demand data 

and lead-time data as described in Appendix E. The results of its implementation 

presented in Section 5.3 show five new probability distribution functions of demand 

during lead-time, which were not considered in the previous literature of a multi-

echelon inventory system. The abnormal behaviors of the demand on cement and 

long lead-time in the system led to these new probability distributions of demand 

during lead-time. They are Generalized Gamma Distribution Four Parameters, 

Pearson Type 6 Distributions Four Parameters, Log-Pearson 3 Distribution, Fatigue 

Life (Birnbaum-Saunders) Distribution, and Inverse Gaussian Distribution. The 

strongest and the highest significant p-value obtained from the results of the SMDDL 

model is the Generalized Gamma Four Parameter Distribution under p-value = 

0.93584.  

The second specific objective is to develop the formula for order quantity, Qj, in a 

serial multi-echelon inventory system under the continuous review (R, Q) policy, the 

SMIE (R, Q) model, with the probability distribution of demand during lead-time. In 

order to obtain the new formula, the probability distribution function of demand 

during lead-time, which is the Generalized Gamma four-parameter distribution, was 

integrated with the approximate total cost function of a serial multi-echelon inventory 
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system under the continuous review policy. This was accomplished in Section 

4.6.1.1, and the result is presented in Section 5.7. 

The third specific objective is to identify the optimal safety stock, SS that should be 

in hand to avoid falling into shortage. The optimal safety stock was obtained based on 

the mean of demand during lead-time, \], which was extracted from the SMDDL 

model and safety factor, K, under different service levels explained in Sections 

4.6.1.2. The results are presented in Table 5.8.  

The fourth specific objective is to establish the reorder point, R at each installation in 

each echelon in a serial multi-echelon inventory system under the continuous review 

(R, Q) policy. However, the extraction of the reorder point at the first installation in 

each first echelon contains the safety stock, SS plus the mean of demand during lead-

time, \]. Therefore, the novelty extraction of reorder point, R, is represented in the 

elements. The problem appears when n  ≥  2, where the number of echelons are more 

than one. Hence, the new formula of the order quantity, Q, which was developed and 

plays a role in establishing the reorder point at each installation in each echelon when       

n ≥ 2 is described in Section 4.6.1.3. The results are displayed in section 5.9. The 

reorder point, R, at the first installation in each first echelon include the safety stock, 

SS, which depends on different safety factor, k. satisfying the fourth objective, the 

inventory position and inventory level at each echelon were established. 

The inventory level at the echelon depends on the difference between the inventory 

position in the same echelon and the mean of demand during the lead-time, \]. On 

the other hand, the inventory position at each echelon depends on the sum of the 
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reorder point at the installation and the order quantity, Qj as  ∑ (�«) + �«)�«+� . 

Therefore, by calculating �«) and �«, we obtained the inventory position and 

inventory level as described in detailed in Section 4.6.1.4. Its results are explained in 

Sections 5.9 and 5.10, specifically in Tables 5.10 and 5.11. 

The fifth specific objective is to develop and establish the approximate total cost 

function for the whole system under a serial multi-echelon inventory (R, Q) policy. 

This objective was established by developing a new formula for the approximate total 

cost function by integrating the developed formula of the order quantity, Q with the 

equation of total cost function, which is explained in Section 4.6.1.5. Its result is 

described in Section 5.12. 

The final objective is to develop and identify the first-come-first-serve, FCFS queue 

rule in a distribution multi-echelon inventory system under a continuous review (R, 

Q) policy. The DMEI-FCFS model is developed to reduce the long expected waiting 

time between the distribution center and the retailers. The DMEI-FCFS model of 

queueing, in which the arrival rate and/or departure rate do not follow the Poisson 

assumption, leads to a higher complex and possibly less tractable systematic results. 

Therefore, we presented a non-Poisson queue model of (M/G/C):(FCFS/∞/∞), where 

G is the service time. It is described by a general probability distribution, which is 

Gamma distribution from the service time data with a mean, 5b�c and variance, _b�c. 

The reason to this is that, the performance measures and the system utilization (traffic 

intensity) cannot be extracted by the classical queue methods. The 5b�c and , _b�c   

depends on the probability distribution of the service rate, which, in turn, affects the 
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rest of the performance measures based on the FCFS discipline as described in 

Section 4.6.2. The results obtained are presented in Section 5.13.  

Consequently, the objective of the multi-echelon inventory system under the 

continuous review (R, Q) policy which proposed three models of the SMDDL model, 

the SMEI (R, Q) model, and the DMEI-FCFS model was met with the development 

of an approximation mathematical model. 

6.3 Contributions of the research 

By achieving all of the objectives, the research has contributed to the field of the 

multi-echelon inventory system, particularly in the design of a multi-echelon 

inventory system under the continuous review policy. The contributions of this 

research can be explained further as follow in two aspects. 

 Theoretical contribution 6.3.1

The main theoretical contribution is the study on multi-echelon inventory system 

under the continuous review (R, Q) policy problem, which established an 

approximation mathematical model for a combination of a serial and distribution 

supply chain subject to probabilistic of demand and lead-time. This theoretical 

contribution is in the development of three sub-models, i.e., the SMDDL, the SMEI 

(R, Q) and the DMEI-FCFS models. All the three models with the overall 

approximation model reviewed new knowledge, and thus enrich the body of 

knowledge for the field of multi-echelon inventory system. The establishments of 

these specialized sub-models are described below.  
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1. The SMDDL model provides a new knowledge related to the set of structure 

and algorithm based on simulation procedures for obtaining the demand 

during lead-time probability distribution. It consists of an algorithm and 

structure to establish the probability distribution of demand during lead-time 

based on a demand probability distribution and a lead-time probability 

distribution. The proposed SMDDL model is able to provide five new 

probability distributions that were not given attention in the past literature. 

This model, in turn, leads to new formulation of performance measures in a 

multi-echelon inventory system. 

2. The proposed SMEI (R, Q) model is a set of approximation mathematical 

formulations, which are reformulated in four specialized formulations to 

obtain the order quantity, Q, safety stock, SS, reorder point, R and the total 

cost function, C(R, Q). This new formula led to the best values of Q and R 

under the continuous review policy problem. The specialized formulation for 

Q and R led to the best value of minimum total cost in the whole multi-

echelon inventory system. Then, formulation for the safety stock, SS is able to 

identify the optimal quantity of the SS. The development of the SS relied on 

the demand during lead-time probability distribution parameters and the 

safety factor of the demand during lead-time probability distribution, which, 

in turn, is a new contribution to the inventory control variables. 

In addition, the formulation of the reorder point, R depends on the safety 

stock, SS, and the mean, \] of the demand during lead-time probability 

distribution. As a result, the formula for N installations and N echelons can be 

generalized. 
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Subsequently, a new formulation for the total cost function, C(R, Q) in the 

problem of a multi-echelon inventory system under the continuous review (R, 

Q) policy is obtained, which minimizes the expected total costs in the system.  

3. The proposed DMEI-FCFS model can include a new formula of the expected 

waiting time in the system, Ws, which affects the rest of the performance 

measures formula to identify the expected waiting time in the queue, Wq, and 

the expected number of the retailers in the system and the queue, Ls and Lq, 

because of the relationship between all of the performance measures.  

 Practical contribution 6.3.2

Several suggestions can be made to the general practitioners in relation to this 

research. The advantage of this research is that the efficient inventory policies 

established are able to coordinate the flows of the elements of the supply chain in the 

cement industry. Each model and formulation can benefit practitioners in the supply 

chain for the cement industry sector. 

• The proposed SMEI (R, Q) model gives a clear policy in a multi-echelon 

inventory system in order to coordinate the works in the cement supply chain 

industry for the directors and managers.  

• The proposed SMEI (R, Q) model reduces effort and time as much as possible 

for those in charge of the production and operating systems as well as 

retailers. 

• The SMEI (R, Q) model gives accurate information on the required quantities, 

Q in each order to enhance the inventory. This accurate information helps to 
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avoid the procurement department to fall into the possibility of not satisfying 

the needs of its customers. 

• Knowing the right time to promote the inventory of the reorder point, R at 

each installation and echelon helps the operating system decision makers to 

make the right decisions at the right moment. 

• Knowing the optimal quantity of safety stock, SS (inventory-on-hand) in order 

to meet the future needs can overcome shortage that may occur when 

processing retailers’ demand for the sales department and procurement 

department. 

• The DMEI-FCFS model is able to reduce the long expected waiting time 

between the distribution center and the retailers from 13:30 hours to only 6 

hours. Reducing this time leads to meeting the needs of more retailers, and 

therefore, more profits. The benefits of this reduction time are that the 

retailers spend less time to obtain the orders, resulting in the increase in the 

number of beneficiaries, and, hence, more profit for the manufacturer.  

• The DEMI-FCFS model is able to provide the expected number of the 

retailers in the system and the queue in addition to the expected waiting time 

in the queue. This information enables future policies to be drawn more 

clearly for the decision makers in the marketing department to be able to fill 

the needs of the market and face the competitors. 
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6.4 Limitations of the research   

As other research works, the present research has some limitations. The limitation of 

this research lies in the type of inventory model, i.e., whether it is deterministic or 

probabilistic. The treatment and the procedures for these two types are different 

because they depend on the demand and the lead-time variables. Therefore, the main 

limitation of this research is the data behaviors of demand (i.e., slow moving, spare 

part items) which prevent us from further explore them due to the complexity of the 

inventory environment. Besides that, due to limited access to data, this research is 

able to address only three years of data. Hence, a complete generalization was not 

able be done in this research. 

6.5 Future Research   

This research has offered some potential pathways for future research as described 

below. 

• In future, the SMDDL model can be utilized to address other multi-echelon 

inventory system problems that occur in different domains, such as service 

sector, vendor managed, food &and beverages, and just in time. 

• The new contribution of the demand during lead-time probability distribution 

function can lead to a new investigation in multi-echelon inventory systems, 

especially regarding the theoretical parts, to reformulate the equations of order 

quantity, Q, and reorder point, R, based on the obtained probability 

distribution of the demand during lead-time. Each obtained distribution can 

lead to a new formulation in a multi-echelon inventory system. 
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• Further work could consider other inventory system policies instead of the (R, 

Q) policy. For example, (Q, r) policy where Q is the order quantity when a 

reorder point of r is reached or (S, s) policy where the location takes an order 

up to S quantities when the reorder point is less than or equal to s quantities. 

• This research adopted the Generalized Gamma Distribution four parameters to 

be the demand during lead-time probability distribution function. There are 

four probability distribution functions of the demand during lead-time that 

was not considered before. These functions can be adopted to establish the 

impact of the proposed models or other multi-echelon inventory system 

policies.    

• Moreover, no estimation has been done on a multi-echelon inventory system 

in the Iraq-Kurdistan cement sector before. Hence, it might be useful to 

analyze further the implications of the Iraq-Kurdistan cement sector. 

• In future, if more data involving longer periods of data, for example, five or 

six years, can be carried out. 

•  The use of Gamma distribution is probably rare in the real world but useful. 

Therefore, the use of it can be extended to other complex situations and 

probably can be used in abnormal behaviours 
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