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Abstrak 

Takungan merupakan salah satu pendekatan berstruktur utama bagi tebatan banjir.  

Semasa banjir, pelepasan awal air takungan merupakan salah satu daripada tindakan 

yang diambil oleh operator takungan bagi menampung hujan lebat yang akan 

diterima.  Pelepasan air lewat mungkin akan memberi kesan negatif kepada struktur 

takungan dan menyebabkan banjir di kawasan hilir.  Walau bagaimanapun, hujan 

semasa tidak akan mempengaruhi perubahan paras air takungan secara langsung.  

Kelewatan ini terjadi kerana aliran yang membawa air mungkin akan mengambil 

sedikit masa untuk sampai ke takungan. Kajian ini bermatlamat untuk 

membangunkan model peramalan bagi perubahan pada peringkat paras air takungan.  

Model ini mengambil kira perubahan paras dan peringkat air takungan sebagai input 

dan perubahan pada peringkat air takungan pada masa hadapan sebagai output. 

Dalam kajian ini, data pengoperasian takungan Timah Tasoh telah diperolehi dari 

Jabatan Pengairan dan Saliran Perlis (DID).  Paras air takungan telah dikategorikan 

kepada peringkat tertentu berdasarkan panduan dari DID.  Algoritma Sliding Window 

yang telah diubah suai telah digunakan untuk membahagikan data kepada corak 

temporal. Berdasarkan corak berkenaan, tiga model telah dibangunkan: model paras 

air takungan, model perubahan paras air takungan dan peringkat paras air takungan 

dan model gabungan perubahan paras air takungan dan peringkat paras air takungan.  

Kesemua model disimulasikan menggunakan rangkaian neural dan prestasinya 

dibandingkan menggunakan min kuasa dua ralat (MSE) dan peratusan ketepatan. 

Dapatan kajian menunjukkan model perubahan paras air takungan dan peringkat 

paras air takungan menghasilkan MSE terendah dan peratusan ketepatan paling tinggi 

berbanding dua model lain.  Dapatan kajian juga menunjukkan bahawa kelewatan 

dua hari sebelumnya telah memberi kesan terhadap perubahan dalam peringkat paras 

air takungan. Model ini boleh diaplikasikan bagi menyokong keputusan pelepasan 

awal air takungan.  Oleh itu, mengurangkan kesan banjir di kawasan hilir. 
 

Kata Kunci: Model ramalan, Perkomputeran pintar, Rangkaian neural, Operasi takungan, 

Paras air takungan.  
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Abstract 

Reservoir is one of major structural approaches for flood mitigation. During floods, 

early reservoir water release is one of the actions taken by the reservoir operator to 

accommodate incoming heavy rainfall. Late water release might give negative effect 

to the reservoir structure and cause flood at downstream area. However, current 

rainfall may not directly influence the change of reservoir water level. The delay may 

occur as the streamflow that carries the water might take some time to reach the 

reservoir. This study is aimed to develop a forecasting model for the change in stage 

of reservoir water level.  The model considers the changes of reservoir water level 

and its stage as the input and the future change in stage of reservoir water level as the 

output. In this study, the Timah Tasoh reservoir operational data was obtained from 

the Perlis Department of Irrigation and Drainage (DID). The reservoir water level 

was categorised into stages based on DID manual.  A modified sliding window 

algorithm has been deployed to segment the data into temporal patterns.  Based on 

the patterns, three models were developed: the reservoir water level model, the 

change of reservoir water level and stage of reservoir water level model, and the 

combination of the change of reservoir water level and stage of reservoir water level 

model.  All models were simulated using neural network and their performances were 

compared using on mean square error (MSE) and percentage of correctness. The 

result shows that the change of reservoir water level and stage of reservoir water 

model produces the lowest MSE and the highest percentage of correctness when 

compared to the other two models.  The findings also show that a delay of two 

previous days has affected the change in stage of reservoir water level. The model 

can be applied to support early reservoir water release decision making. Thus, reduce 

the impact of flood at the downstream area. 
 

Keywords: Forecasting model, Computational intelligence, Neural network, 

Reservoir operation, Reservoir water level. 
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CHAPTER ONE 

INTRODUCTION 

 Background of Study 

Reservoir is one of the ciritical components in water resources management.  

Reservoir can be defined as a natural or artificial lake or large tank used to store and 

control water for various purposes such as supplies and irrigation. It can also serve as 

a shield during flood and drought situations (Gotoh, Maeno, Takezawa, & Ohnishi, 

2011; Romanescu, Stoleriu, & Romanescu, 2011; Wan Ishak, Ku-Mahamud, & 

Norwawi, 2011b). Typically, reservoir can be clasified into single and multipurpose 

reservoirs. A single purpose reservoir is constructed to serve only one purpose, such 

as a hydroeletric reservoir that is to generate electricity. A multipurpose reservoir is 

aimed to serve more than one purpose, such as flood mitigation, water supply, and 

recreation. Thus, the water storage has to be divided to fullfil the purposes.    

 

Reservoir systems can be separated into four parts: upstream, reservoir, spillway gate 

and downstream (Figure 1.1). Upstream is the water source or inflow of the reservoir. 

The upstream data is recorded through gauging and telemetric stations. The water 

inflow is compounded at the reservoir before it is released to the downstream water 

channel. Reservoir is a system that is controlled by human decisions. The decisions 

are based on their past experience and knowledge and the current hydrological 

conditions such as precipitation, upstream river water level, etc. The spillway gate is 

used as the outlet for the reservoir water. Some reservoirs are equipped with an 
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ungated spillway and some others have both types of spillways. A few numbers of 

decisions are required for the gated spillways, like the numbers of gates and the size 

and duration of the opening. Typically, this information is recorded in the operation 

logbook by an authorised reservoir operator (Wan Ishak et al., 2011b).   

 

 

 

 

 

Figure 1.1. Conceptual Model of the Reservoir System (Source: Wan Ishak et al., 

2011) 

Reservoir release can be expressed as a function to calculate the amount of available 

water at the current time (i.e., current water level, plus (+) inflows, minus (-) 

evaporation during the current period). As stated by Wurbs (1993), the water release 

decision is used to determine the quantity of water to be stored and to be released or 

withdrawn from a reservoir under various conditions. During unwanted events such 

as flood and drought situations, the decisions are formulated based on previous 

releases, water demands, and time and water available (Hejazi, Cai, & Ruddell, 2008; 

Jain & Singh, 2003) . 

 

Flood is one of the natural disasters that could strike repeatedly. It can indirectly or 

directly cause extreme losses to the public, such as properties, homes and innocent 

souls. Flood is directly associated to the reservoir as the latter is one of the flood 

Water Release/ 

Outflow 

Water Source/ 

Inflow 

Location Upstream           Reservoir 
Spillway 

Gate Downstream 

Reservoir 

Structure 
Catchment 
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mitigation mechanisms. According to Jonkman and Kelman (2005), normally the 

lowland areas are struck with flood and these areas are commonly more populated as 

the lands are fertile and crowded with human activities, especially in the agriculture 

sector. This area is typically the downstream area of the reservoir. It usually occurs in 

areas that obviously impede social interaction. The preventive measure prior to the 

flood for reservoir water release can assist to control the water flow and the river 

capacity to reduce and prevent losses.   

 

In a reservoir operation, decision making is one of the vital procedures that need to be 

implemented wisely in order to balance the demand and supply of water for optimal 

social, economic and environmental benefits. The problems in early decision making 

of reservoir water release usually occur in unpredicted weather conditions. Therefore, 

simulation and optimisation techniques are exploited to be optimised in a reservoir 

system. According to Labadie (2004), the multiple reservoir systems can utilise the 

optimisation strategies with multiple objectives, such as implicit stochastic 

optimisation, explicit stochastic optimisation, real-time optimal control with 

forecasting, and heuristic programming methods. 

 

In order to make early water release decision, the reservoir operator utilises the 

information about the delay as well as the current reservoir water level by monitoring 

the changes of the water level and referring to the superior officer before taking any 

action. Early water release is crucial to reserve space for incoming upstream inflow. 

Furthermore, the capacity of the downstream river will be controlled by the quantity 
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of water being released. Moreover, in order to avoid flooding risks at the downstream, 

the river capacity can be controlled by the appropriate releasing of water quantity.  

 

Many studies have focused on forecasting water level at multipurpose reservoirs 

(Chang & Chang, 2006; Hipni et al., 2013; Valizadeh, El-Shafie, Mukhlisin, & El-

Shafie, 2011; Valizadeh & El-Shafie, 2013). Wan Ishak et al. (2011), for example, 

applied the Backpropagation Neural Network (BPNN) in forecasting reservoir water 

level in a multipurpose reservoir. The ability of Artificial Neural Network (ANN) has 

been accepted by many disciplines and it is suitable for hydrological problems 

(Piasecki, Jurasz, & Skowron, 2015). Several researches have employed ANN in their 

water level forecast model. Othman and Naseri (2011), for example, used ANN in 

forecasting reservoir monthly inflow using the Levenberg-Marquardt BP (LMBP) 

algorithm. Piasecki et al. (2015) and Young, Liu, and Hsieh (2015) discovered that 

ANN performs much better in the prediction of water level fluctuation compared to 

the traditional methods.   

 

There are many factors that could influence the reservoir water level. However, in 

certain areas, only limited data is available such as rainfall and river water level. Some 

of the data such as reservoir operation and water release decision can be extracted from 

the reservoir operation logbook. Timah Tasoh is one of the reservoirs that were 

developed for flood mitigation purpose in addition to other purposes. Besides the 

Timah Tasoh Reservoir, there are six other reservoirs in Malaysia developed for the 

same purpose, such as Padang Saga, Batu, Bekok, Sembrong, Macap and Beris (Table 

1.1). 
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Table 1.1 

 

Data of Dams under the Department of Irrigation and Drainage 

Name of 

Dam 

 

(Year 

Complet

ed)/Size 

(L/S) 

Locati

on 

DAM Reservoir 

Hazard 

Classific

ation 

Purp

ose 

Constructi

on Cost 

(RM) 
Ty

pe  

Heig

ht 

(m) 

Crest 

Lengt

h (m) 

Crest 

Elevat

ion 

(m) 

Catch

ment 

Area 

(sq 

km) 

Capa

city 

(mc

m) 

Max. 

Spillw

ay 

Discha

rge 

(cume

cs) 

Surfa

ce 

Area 

(sq.k

m) 

Elevat

ion 

(NPL 

in m) 

Timah 

Tasoh 

(1992)/L 

Perlis Earth 
17.30(

L) 
3455(L)  32.0 191  40.0(L) 436 13.33 29.1  High I/W/F 

24,521,655.

60 

Padang 

Saga 
(1964)/S 

Kedah Earth 8.3  61 23.01 12 0.2 195 0.05 21.18 
Significant

  
I/W/F 243,285.95  

Bukit 

Kwong 

(1979)/L 

Kelantan Earth 7.62 1524(L)  18.29 11 14.3(L) 42.5 4.04 16.76 High I/W NA 

Bukit 
Merah 

(1906)/L 

Perak Earth 9.1 
579.09(

L) 
11.28 480 

74.98(

L) 
424.7 41.0 8.69 High I/W 1.6 Juta 

Gopeng 

(1961)/S 
Perak Earth 8.54 85.34 70.71 10.6 0 78 NA NA Low Sr NA 

Old Repas 

(1925)/S 
Pahang Earth 13.4(L) 210 143.29 10 0 60 NA NA Low Sr NA 

New 

Repas 

(1963)/L 

Pahang Earth 
20.0(L)

  
40 128.96 11  0.4  85 0.05 126.22 Significant Sr NA 

Batu 

(1987)/L 
Selangor Earth 44.0(L) 550(L) 109.0  50 36.6(L) 228 2.50 102.7 High W/F 19.7 juta 

Pontian 
(1985)/L 

Pahang Earth 15.5(L) 350 7.5 170 40.0(L) 605 20.0 5.00 Significant I/W 
15,835,664.
92 

Anak 

Endau 

(1985)L 

Pahang Earth 18.0(L) 700(L) 23.0 36 38.0(L) 250 7.20 19.00 High  I/W 
9,873,663.5

0 

Labong 

(1949)/L 
Johor Earth 10.67 259 10.67 16 12.8(L) 84.5 6.05  8.03 Significant I/W NA 

Bekok 

(1990)/L 
Johor  Earth 20.3(L) 3460(L) 23.00 326 

 32.0(L

) 
1152 12.0 13.30 High W/F 22.0 juta 

Sembrong 

(1984)/L 
Johor Earth 11.0(L) 1770(L)  15.0  130 

 18.0(L

) 
 640  8.50  8.50 High  W/F 24.0 juta  

Macap 

(1982)/L 
Johor Earth 11.5(L) 550  19.81  77  30.6  306  9.09  15.85 Significant  W/F 15.6 juta 

Perting 

(2003)/L 
Pahang 

Poro

us 
21.5(L) 138.6  118.0  125 NA  28.3  1.05  NA   High  Sr NA 

Beris 

(2004)/L 
Kedah CFR 40.0(L) 155  88.0  116 

122.4(

L) 
 260  16.1  84.00  High I/W/F   360 Juta 

LEGEND 

L-Large Dam/S-Small Dam  

NPL - Normal Pool Level 
Mcm - 1x106 m3 

NA - Not Available 

F - Flood Mitigation 

W - Water Supply 
I - Irrigation 

Sr - Silt Retention 

CFR - Concrete Face Rockfill 

http://www.water.gov.my/index.php?option=com_content&task=view&id=296&Itemid=835
http://www.water.gov.my/index.php?option=com_content&task=view&id=296&Itemid=835
http://www.water.gov.my/index.php?option=com_content&task=view&id=296&Itemid=835
http://www.water.gov.my/index.php?option=com_content&task=view&id=306&Itemid=835
http://www.water.gov.my/index.php?option=com_content&task=view&id=306&Itemid=835
http://www.water.gov.my/index.php?option=com_content&task=view&id=306&Itemid=835
http://www.water.gov.my/index.php?option=com_content&task=view&id=302&Itemid=835
http://www.water.gov.my/index.php?option=com_content&task=view&id=302&Itemid=835
http://www.water.gov.my/index.php?option=com_content&task=view&id=302&Itemid=835
http://www.water.gov.my/index.php?option=com_content&task=view&id=321&Itemid=835
http://www.water.gov.my/index.php?option=com_content&task=view&id=321&Itemid=835
http://www.water.gov.my/index.php?option=com_content&task=view&id=321&Itemid=835
http://www.water.gov.my/index.php?option=com_content&task=view&id=303&Itemid=835
http://www.water.gov.my/index.php?option=com_content&task=view&id=303&Itemid=835
http://www.water.gov.my/index.php?option=com_content&task=view&id=309&Itemid=835
http://www.water.gov.my/index.php?option=com_content&task=view&id=309&Itemid=835
http://www.water.gov.my/index.php?option=com_content&task=view&id=308&Itemid=835
http://www.water.gov.my/index.php?option=com_content&task=view&id=308&Itemid=835
http://www.water.gov.my/index.php?option=com_content&task=view&id=308&Itemid=835
http://www.water.gov.my/index.php?option=com_content&task=view&id=299&Itemid=835
http://www.water.gov.my/index.php?option=com_content&task=view&id=299&Itemid=835
http://www.water.gov.my/index.php?option=com_content&task=view&id=307&Itemid=835
http://www.water.gov.my/index.php?option=com_content&task=view&id=307&Itemid=835
http://www.water.gov.my/index.php?option=com_content&task=view&id=298&Itemid=835
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http://www.water.gov.my/index.php?option=com_content&task=view&id=445&Itemid=835
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 Problem Statement  

Previous studies (Hipni et al., 2013; Nwobi-Okoye & Igboanugo, 2013; Rani & 

Parekh, 2014; Valizadeh et al., 2011; Valizadeh & El-Shafie, 2013) focused on 

variables such as rainfall, river water level, reservoir water level, inflow and outflow 

in their forecasting model. These variables can be considered as typical variables in 

water resources management. The data is typically measured as density and volume 

of water, while the aggregation method is usually applied to aggregate the data in 

groups or categories, such as normal, alert, warning and danger. Through this 

approach, some of the small valuable information will be lost. Among the information 

that will be lost is the changes of the reservoir water level, which provides insights on 

the increase or decrease of reservoir water level (Wan Ishak et al., 2011b). This 

information is crucial in a reservoir operation as the change of reservoir water level 

might influence the water release decision. This is evident from the Bertam Valley 

incident at Cameron Highlands, where the rapid increment of the reservoir water level 

has triggered the reservoir water release (Tenaga Nasional Berhad, 2013). Prior to the 

event, the reservoir management decision was relied on the inflow and reservoir water 

level. Therefore, it is vital to focus the study on the modelling of the change of 

reservoir water level in forecasting the next day of the reservoir water level. In this 

study, a modified version of the sliding window algorithm is proposed to extract a 

temporal pattern from the reservoir water level, particularly the change of reservoir 

water level pattern. 
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The modelling of the change of reservoir water level can be established by various 

computational models that are either based on statistical approaches or computational 

intelligence (CI) approaches. Statistical approaches are well known to solve linear 

problems, but have poor performance on nonlinear problems (Tokar & Markus, 2000). 

CI approaches such as fuzzy logic, neural network, and evolutionary computing 

(Eberhart & Shi, 2007) are the best approaches to deal with nonlinear problems as 

these techniques are constructed based on natural intelligence. Among the CI 

techniques, neural network is advantageous in problems that deal with massive 

amounts of data and nonlinear mapping of the problems. A study by Litta, Idicula and 

Mohanty (2013) stated the prediction has worked well using the capability of neural 

network. However, the neural network model needs to be redeveloped as the 

combination of parameters varies depending on the nature of the variables. 

 Research Questions 

The research questions of this study are as follows: 

1. How to extract a temporal pattern for the change of reservoir water level that 

affects the reservoir water level stage? 

2. Can a model be formulated to forecast the change in the stage of the reservoir 

water level? 

 Aim and Research Objectives 

The aim of this study is to develop a forecasting model for the change in the stage of 

reservoir water level. The model considers the changes of reservoir water level and 
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the stage of reservoir water level. The modified sliding window algorithm is proposed 

to segment the data based on the time delay in the change of reservoir water level and 

to fit the purpose of this study. The study objectives include:  

 

1. To propose a method to extract a temporal pattern for the change of reservoir 

water level that affects the reservoir water level stage. 

2. To formulate a forecasting model for the change in the stage of reservoir water 

level. 

3. To evaluate the performance of the forecasting model. 

 

 Scope of Study 

The scope of this study is to forecast the change in the stage of the reservoir water 

level. The focus of this study is on the reservoir operation and decision making. The 

computational intelligence technique that has been used in this study is neural network. 

This research focuses on Timah Tasoh as a case study. The reservoir operation 

logbook for 1999-2013 has been acquired from the Department of Irrigation and 

Drainage (DID), Perlis. 

 

Timah Tasoh reservoir is one of the reservoirs under DID that serve multipurpose 

operations, for instance flood mitigation, and serves water for other purposes such as 

water supply for house use and irrigation, fishing and recreation. The other reservoirs 

have different operation procedures from Timah Tasoh, therefore, the model 
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developed from this study is only applicable for Timah Tasoh. Most of the water are 

automatically released after the reservoir water level exceeds its maximum level. 

Timah Tasoh is the only flood mitigation reservoir in Malaysia that completely 

requires human decisions for it to be operational (Ministry of Agriculture Department 

of Irrigation and Drainage et al., 1993).  

 

The Timah Tasoh reservoir is located around 13 km north of Kangar town, Perlis. It 

covers an area of 13.33 km2 with the catchment area of 191.0 km2 and could hold up 

until a maximum capacity of 40.0 mm3. Sungai Korok is located about 2.5 km below 

the confluence of Sungai Timah and Sungai Tasoh as depicted in Figure 1.2. 

 

 

                       

  

 

          

Figure 1.2. A Case Study Area (Source: Kamarudzaman, Feng, Aziz, Faizal, & Jalil, 

2011) 
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Based on the operation and maintenance manual of Timah Tasoh, the flood situation 

is monitored by DID that reports to the State Security Committee (Jawatankuasa 

Keselamatan Negeri). The assessment of the situation is done by DID at the following 

stages: alert, warning and danger and the basic action taken for each stage. The 

reservoir operation rules include operation of spillway, emergency spillway and outlet 

works. 

 Significance of Study 

The significance of the study are as follows: 

1. The preparation of data using the modification of sliding window where it is based 

on the changes of reservoir water level stage. For this modification, it can produce 

the pattern that can be used in forecasting the change of reservoir water level stage 

for the next day. 

2. The proposed model can be useful to help reservoir operators to make early 

decisions and prepare for the incoming inflow; thus, reducing the impact of flood 

while maintaining the supply of water for other purposes. It also lowers the risk 

of property damage, which will consume a lot of costs and time to build back the 

facilities. Additionally, the authority does not need to spend a large amount of 

funds to repair and maintain the dam. Hence, it is important to obtain details about 

the water level to avoid any inappropriate incident while maintaining the dam in 

a good and safe condition. 
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 Organization of the Thesis 

In this chapter, an overview on reservoir operation has been given. Several concepts 

such as forecasting, artificial neural network, sliding window, reservoir water level, 

and temporal data mining have been defined. In Chapter 2, the discussion focuses on 

the review of the related literature. This section also discusses temporal data mining 

related to the technique which is involved in developing a forecasting model. In 

Chapter 3, the step of developing the forecasting model is discussed in detail to achieve 

the research objectives. It gives an explanation of the five sequential steps in the 

forecasting model development process. Chapter 4 presents the development of the 

forecasting model of the reservoir water level stage. During the development, sliding 

window has been used to produce the temporal pattern and modification of the 

algorithm based on the changes of the reservoir water level stage. Chapter 5 is devoted 

to the results of models from the experiments. This chapter is achieved the last research 

objective, which is phase 4: Model Evaluation, where it evaluates the performance of 

the forecasting model. Chapter 6 concludes the research summary and contribution. It 

also provides the limitation of the study and recommendation of future works to 

improve this study.  
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CHAPTER TWO 

LITERATURE REVIEW 

This chapter describes the literature review that has been performed on reservoir 

operation, reservoir operating policy, reservoir release operation, reservoir water level 

and reservoir forecasting model. Section 2.1 explains the water resources management 

and the hydrodynamics characteristics of river, lake and reservoir. In reservoir 

operating policy, there are several types of operating policy, such as standard operating 

policy (SOP), rule curve and hedging rule discussed in Section 2.2. The previous 

studies on reservoir water level with types of reservoir, techniques, data that have been 

used and findings are elaborated in Section 2.3. Section 2.4 discusses the forecasting 

techniques in classification and computational intelligence techniques that have been 

used to forecast, such as neural network, fuzzy logic and hybrid models, which are 

elaboratively described in the following section. The details of neural network are 

discussed in Section 2.6. 

 Reservoir Operation and Management 

Reservoir operation is one of the complex multiobjective and challenging problems in 

water resources management with an addition of conflicting constraints and 

objectives. Typically, a reservoir operation is managed by an authorized and 

experienced reservoir operator. Emergency situations and any uncertainty that occur 

in the hydrological variables, such as social and economic catastrophies could affect 

the regulating policy, and also the frequency of the reservoir water release could 

deviate from the regular reservoir operation (Kim, Heo, Bae, & Kim, 2008; Pinthong, 
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Gupta, Babel, & Weesakul, 2009). According to Duckstein, Bogardi, and Huang 

(1989), the probability of changes in the operational mode of the reservoir are caused 

by the needs of certain conditions. Reservoir operating rules are used to determine 

water yield from a single reservoir system or a multireservoir system under various 

hydrologic conditions (Wurbs, 1993; Yeh, 1985). In addition, a reservoir operation 

depends on the purposes and objectives of the reservoir, which require different 

operation rules (Wan Ishak, Ku-Mahamud, & Norwawi, 2011c).  

 

A reservoir dam is built on a river stream. Typically, only one reservoir is built on one 

river stream. However, in some cases, more than one reservoir are built on the same 

river stream or the same river network. This structure is called a multireservoir system. 

A multireservoir system is more complex compared to a single reservoir system and 

it can be classified based on its purposes and functions. A reservoir with one purpose 

or function is called a single purpose reservoir, while a reservoir with more than one 

purpose is a multipurpose reservoir. As stated by Fischer and Schultz (1991), the 

simplest system refers to a single purpose single unit reservoir, meanwhile the most 

complex system refers to a multipurpose multiunit reservoir system. The simplest 

system is developed for the single purpose operation such as hydropower generation 

or flood protection. The most complex reservoir system is created for multiple purpose 

operations such as flood protection, navigation, hydropower generation and recreation 

(Tu, Hsu, & Yeh, 2003). 
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In previous studies, the optimization models have been studied and deployed in the 

operation of complex reservoir systems. Several studies (Chang, Chang, Wang, & Dai, 

2010; Mehta & Jain, 2009; Ngoc, Hiramatsu, & Harada, 2014; Pinthong et al., 2009; 

Shiau, 2009; Tospornsampan, Kita, Ishii, & Kitamura, 2005; Tu, Hsu, Tsai, & Yeh, 

2008) have extensively reviewed multipurpose reservoir systems and functions, where 

various models have been proposed.  

 

Reservoirs have been created by humans to impound water for certain purposes. These 

artificial water bodies have been created for the specific purposes of water resources 

management. In the reservoir, runoff will be discharged through the river tributaries. 

Runoff is a complicated hydrologic process that is influenced by weather, human 

activities, geomorphology and much more. However, forecasting in reservoir water 

level and streamflow are totally different because the reservoir is a control system and 

it is not determined by hydrological effects (Chang, Chen, & Chang, 2005).  

 

The Klang Gates Dam is one of multipurpose reservoirs that operate for flood 

mitigation, hydropower, and industrial and domestic supplies. The flow of the Klang 

Gates Dam is influenced by the Klang River, which is joined by 11 major tributaries. 

The major tributaries include Ampang, Penchala, Kuyoh, Keruh, Damansara, 

Kerayong, Batu and Gombak Rivers (Akrami, El-Shafie, & Jaafar, 2013). The location 

of the Klang River is in Peninsular Malaysia and flows through Klang Valley and 

Kuala Lumpur. Malaysia has a tropical climate that is influenced by a monsoonal 
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climate throughout the year, which receives warm weather and humidity (Hipni et al., 

2013).  

 

A river is one of the natural watercourses that link with each other while flowing 

towards an ocean, or lake, and its water source usually consists of freshwater. The 

characteristics of a river depend on the climate, rainfall activities and evaporation 

along the river stream network, which could influence the river features. Typically, 

the impact of a hydrological cycle on a river can be severe and can cause phenomena 

such as floods, droughts and low flow effects. The river plays a significant major role 

in the country’s economy development field. In several studies (Bessaih, Rosmina, & 

Saad, 2004; Bustami, Bessaih, & Muhammad, 2006), it is revealed that the river is one 

of the main contributors to the economic development in Sarawak. However, over the 

past 40 years, there have been several hydrological events that caused extensive 

flooding in the Sarawak River. Heavy rainfall during monsoon seasons between 

October and March causes flood in certain areas in Terengganu. The Dungun River is 

one of the longest river in Dungun and one of the rivers that experience flood almost 

every year (Arbain & Wibowo, 2012a; Gasim, Adam, Toriman, Abd Rahim, & Juahir, 

2007). A study by Kar, Winn, Lohani, and Goel (2012) stated that along the river in 

Myanmar, the areas had been hit with severe flood events in the previous few decades. 

According to DID, in Malaysia, water level is one of the measurements of flood 

characteristics (Arbain & Wibowo, 2012a, 2012b). DID introduced the categories of 

flood stages for the river water level, namely normal, danger and alert levels. The 
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stages of water level are introduced to notify the authority on the rise of the river water 

level. These stages are currently applied at the Dungun River in Terengganu. 

 

The Yangtze River, China has experienced flood events caused by natural disasters 

(Hartman, Becker, King, & Jiang, 2008). The inflow of the Yangtze River after the 

long rainy season in summer also increased flood risks and several studies found that 

the flood in the Yangtze River is caused by human activities and meteorology events 

(Becker, Gemmer, & Jiang, 2006; Gemmer, 2004; Wang, Jiang, Bothe, & Fraedrich, 

2007). The discharge of the Yangtze River is used as a key variable for the inflow into 

the Three Gorges Reservoir (Chen, Zong, Zhang, Xu, & Li, 2001). 

 

A lake is entirely different from a stream or river, which have streamflow. There are 

many other environmental factors that influence the variations in the lake water level, 

such as direct precipitation, groundwater, inflow and outflow of rivers. In addition, 

meteorological factors such as water and air temperature, evaporation from the lake 

surface, and precipitation along the drainage area play important roles in the lake water 

level fluctuations (Abdüsselam Altunkaynak, 2007). Chini Lake or Tasik Chini is the 

second largest natural freshwater inland lake in Peninsular Malaysia, which consists 

of 12 tributaries. The largest tributaries are Laut Gumum, Melai, Serodong, Jembarau 

and Jerangking (Mohamad & Toriman, 2006). However, it is different from Van Lake, 

Turkey, where it receives water through precipitation and snow melt inflow (Huguet 

et al., 2012). Van Lake is the largest lake located in eastern Turkey. Studies by Jaafar 

et al. (2010) indicated that the water level fluctuation in Chini Lake follows the 
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discharge trend, where the increase of the discharges will be followed by the high 

water level. The damming of the Chini River is to increase the water level for tourism 

activities during the drought season; however, it gives a negative impact on 

ecosystems and water bodies (Mohamad & Toriman, 2006). Table 2.2 summarizes the 

different characteristics of reservoir, river and lake in terms of water level fluctuations, 

inflow, outflow and flushing rate. Based on Table 2.2, it is clearly seen that a reservoir 

is a complex system that involves inflow and outflow. Decision making is required in 

most of the reservoir outflow channels. 

Table 2.2 

 

Hydrodynamic Characteristics of River, Reservoir and Lake 

Characteristics Rivers  Reservoirs  Lakes  

Water level 

fluctuations  

Large, rapid, 

irregular, flooding 

common  

Large, irregular  Small, stable  

Inflow  Overland and 

groundwater runoff; 

highly irregular and 

seasonal, less so with 

large groundwater 

inflows  

Most runoff to reservoir 

via river tributaries (high 

stream orders) 

Runoff to lake via 

tributaries (often low 

stream orders) and 

diffuse sources  

Outflow 

(withdrawal)  

Discharge highly 

irregular with inflows 

and precipitation 

event frequency  

Highly irregular with 

water use; withdrawals 

from surface layers or 

from hypolimnion  

Relatively stable; 

usually largely 

surface water via 

surface outflow or 

shallow ground water  

Flushing rates  Rapid, unidirectional, 

horizontal  

short, variable (days to 

several weeks); increase 

with surface withdrawal 

Long, relatively 

constant (one to many 

years) 
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 Reservoir Water Release Decision  

Reservoir operating policy is important in reservoir operation as the impact of the 

reservoir operation on society and economy is huge (Neelakantan & Pundarikanthan, 

1999). Reservoir operators and planners are required to plan a strategy that can be used 

to determine the decision (Rittima, 2009). The operating policies for reservoirs are 

usually developed based upon previous meteorological and hydrological data (Alemu, 

Palmer, Polebitski, & Meaker, 2011). In certain conditions, operating policies, also 

known as operating rules, are commonly used in the early or planning level of the 

proposed reservoir. Moreover, reservoir water release decisions are guided by the 

reservoir operating policy (Draper & Lund, 2004; Pinthong et al., 2009). 

 

According to Wurbs (1993), reservoir operating decisions can be categorized into 

three conditions: 1) during unwanted events: flood, drought (low flow), 2) normal 

hydrological conditions in terms of maintaining capabilities to face unwanted events 

at unknown times in time to come: supply water for various purposes; and 3) normal 

hydrological conditions in terms of optimising the beneficial usability of the reservoir 

system. 

 

In the past decade, the development of reservoir operating policy has been explored 

and many improvements on the optimisation and simulation models have been 

proposed. Techniques such as heuristic algorithm, genetic algorithm and rough set or 

fuzzy logic have been proposed in developing new reservoir operating rules (Rittima, 

2009). These rules are in accordance to the reservoir water demand and operation 
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policies that provide guidelines for the release decision. There are several types of 

reservoir operating policies such as standard operating policy (SOP), rule curve, and 

hedging rule. 

2.2.1 Standard Operating Policy 

SOP is commonly used in reservoir operating. It consists of a set of the most simple 

rules that guide water release decision to meet the needs and requirements of the 

operation. However, SOP does not aim to preserve water for future demand. The 

reservoir might be emptied if the water storage cannot fulfil its operation requirement. 

On the other hand, if the demand is less than the available water, the excessive water 

will be spilt out from the reservoir (Vudhivanich & Rittima, 2003). In terms of water 

supply, it aims to minimise the total deficit along duration (Neelakantan & 

Pundarikanthan, 1999).  

2.2.2 Rule Curve 

Rule curve or guide curve is frequently used in reservoir operations. According to 

previous researches, the best practice of reservoir operation is with a single group of 

operation rule curves. Traditionally, optimisation techniques of rule curve deal with 

historical data in order to get the optimum result (Wang, Chen, Tung, & Hsu, 2004). 

The rule curve is divided into three zones: zone one is for the firm storage curve, while 

zone two is in the target storage curve, and zone three is the flood control curve. These 

curves are commonly used in the early planning stage as a guideline for reservoir 

operation, but they will change and will be updated from year to year. 
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2.2.3 Hedging Rule 

Hedging rules in reservoir operation refer to a policy, where water is stored in the 

current operation period to reduce the probability of failure to satisfy water demands 

in the next operation period (Wang & Liu, 2013). Hedging rule is one of the operating 

policies that is used to minimise the overall damage when drought strikes. In previous 

studies, hedging rules have been applied to improve the performance of reservoir 

operation. Since the 1980s, the concept of the hedging rule had been discovered and 

many future works have been proposed by researchers in this field (Rittima, 2009). 

Neelakantan and Pundarikanthan (1999) described an improvement in the 

optimisation and performance for reservoir operation through simulation. Neelakantan 

and Pundarikanthan (2000) also suggested multiple hedging rules that divide the 

storage into four zones, in order to reduce the critical water shortage. Tu et al. (2008) 

proposed new hedging rules for the existing multireservoir system. New hedging rules 

were developed from the changes of demand characteristics in the reservoir system. 

The result shows the improvement on the efficiency of the reservoir operation. The 

common forms of hedging are (Draper & Lund, 2004): Trigger Hedging Value (One-

point-hedging), Two-point hedging, Three-point hedging, Continuous hedging and 

Zone-based-hedging. 

 Reservoir Water Level Forecasting Model 

The major part of the modelling process in a study is regarding data availability. In 

previous studies, forecasting reservoir water level using historical data is one of the 

elements in making a decision operational. The principal inputs which were used for 
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the prediction of reservoir water level were inflow, evoporation, outflow or water 

release or discharge, rainfall and much more. However, several of the historical 

information available such as water level, rainfall and current outflow had been 

utilised for the prediction. The daily rainfall and water level data had been considered 

in the multipurpose reservoir forecasting model (Hipni et al., 2013; Rani & Parekh, 

2014; Valizadeh et al., 2011; Valizadeh & El-Shafie, 2013; Wan Ishak et al., 2011b). 

Nwobi-Okoye and Igboanugo (2013) used the daily water level of the Kainji Dam in 

their prediction model. However, Chang and Chang (2006) used the hourly water level 

and the current outflow data to develop a forecasting model upon the reservoir water 

level for the next three hours during a flood event. 

 

There are several techniques that have been used in forecasting reservoir water level, 

such as Artificial Neural Network (ANN), Adaptive Neuro Fuzzy Inference System 

(ANFIS), Support Vector Machine (SVM), and Autoregressive Integrated Moving 

Average (ARIMA). Hipni et al. (2013) compared the performances between SVM and 

ANFIS techniques. The SVM performance is superior and much better than ANFIS 

based on statistical evaluation. Meanwhile, Nwobi-Okoye and Igboanugo (2013) used 

ANN in forecasting water level and the findings are compared with ARIMA. The 

findings suggest that ANN produces better prediction models, however, a simpler 

mathematical formulation is needed to build a good model. Table 2.3 summarises the 

related studies on reservoir water level forecasting, type of reservoir, techniques and 

data used. 
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Table 2.3 

 

Studies on Forecasting of Reservoir Water Level 

Studies Type Techniques Data 

Rani and Parekh 

(2014) 

Multipurpose  Neural Network 

-Feed Forward 

Backpropagation (BP) 

-Cascade 

-Elman 

 

 Daily water level 

 Daily inflow 

 Daily release 

Hipni et al. 

(2013) 

Multipurpose  Support Vector 

Machine(SVM) 

 Adaptive Neuro 

FuzzyInference System 

(ANFIS) 

 

 Daily rainfall 

 Daily water level 

Nariman 

Valizadeh and El-

Shafie (2013) 

 

Multipurpose Adaptive Neuro Fuzzy 

Inference System (ANFIS) 

 Daily rainfall 

 Daily water level 

 

Nwobi-Okoye 

and Igboanugo 

(2013) 

Single  

purpose 

Hydropower 

 Neural network 

 Autoregressive Integrated 

Moving Average (ARIMA) 

 

 Daily water level 

Valizadeh et al. 

(2011) 

Multipurpose Adaptive Neuro Fuzzy 

Inference System (ANFIS) 

 

 Daily rainfall 

 Daily water level 

Wan Ishak et al. 

(2011a) 

Multipurpose  Neural Network 

-Intelligent decision 

support model 

 

 Daily rainfall 

 Daily water level 

Chang and Chang 

(2006) 

Multipurpose Adaptive Neuro Fuzzy 

Inference System (ANFIS) 

 Hourly water 

level 

 Current outflow 
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Based on previous studies, the area of study for the types of reservoir is multipurpose 

and single purpose for hydropower. ANN and ANFIS received attention as forecasting 

techniques that had been used by researchers using the ability of both artificial 

intelligence techniques, i.e neural network and fuzzy logic. The limitation of 

technology, political issues and human knowledge are used to obtain the data to 

produce accurate forecasting (Hipni et al., 2013).  

 

Table 2.4 shows the result of previous studies on the forecasting of reservoir water 

level. There are three previous studies continuous from each other, namely the studies 

by Valizadeh et al. (2011), Valizadeh and El-Shafie (2013) and Hipni et al. (2013). 

The study by Valizadeh et al. (2011) showed that the accuracy of Scenario 3 with 

model R(t-i)L(t-i) gives fitness between the actual and estimated data. In their studies, 

the different scenarios and various time lags are used as input data. Meanwhile, 

Valizadeh and El-Shafie (2013) used the historical data of rainfall and water level in 

two different models for each type of membership function (MF). There are three 

different time lags that produced the accurate results from Valizadeh et al. (2011), 

which considered Rt0Lt1, Rt1Lt1 and Rt2Lt2. R and L to represent the rainfall and the 

reservoir level and t1 and t2 to represent a one- and two-day time lag.  

 

Another study by Hipni et al. (2013) compared the Support Vector Macine (SVM) 

with the previous study which used ANFIS (Valizadeh and El-Shafie 2013) with the 

percentage error of 1.64%. A study by Nwobi-Okoye and Igboanugo (2013) used five 

input neural network architectures to define the best prediction on reservoir water 
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level; however, the result of relative error shows that ARIMA gives a better result with 

an error of 0.039% compared to neural network with a percentage of 0.062%. 

According to a study by Wan Ishak et al. (2011a), the aim of their study is to create a 

forecasting model and decision model, where the forecasting model is for reservoir 

water level, and the decision model is for the classification of the current and the 

changes of reservoir water level. Chang and Chang (2006) used a model with and 

without human decision as input in order to provide a high accuracy and reliability for 

reservoir water level forecasting. Their study indicated that a model with human 

decision gives accurate results than without human decision, and it provides accurate 

results where the correlation coefficients are very close to the higher value (larger than 

0.99). Table 2.4 summarises the related studies of reservoir water level from previous 

studies based on the input, output, methods that have been used and the result of each 

study. 
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Table 2.4 

 

Result of Previous Studies on Forecasting of Reservoir Water Level 

Studies Input Output Methods Result 

Rani and 

Parekh 

(2014) 

- Inflow 

- Water Level 

- Release 

Water level Neural network 

 Feed Forward 

BP 

 Cascade 

 Elman 

 

Feed Forword 

BP 

RMSE : 0.92 

R : 0.97 

R2: 0.95 

D: 1.00 

 

Cascade  

RMSE : 0.73 

R : 0.98 

R2: 0.96 

D: 1.00 

 

Elman 

RMSE : 0.81 

R : 0.98 

R2: 0.95 

D: 1.00 

 

Hipni et al. 

(2013) 

Scenario 1 - rainfall 

Scenario 2 - rainfall 

and average dam 

water level 

Scenario 3 - rainfall 

and dam water 

level 

𝐿(𝑡) – Level 

of dam 

SVM 

 

 

 

 

 

 

 

 

 

ANFIS 

RMSE: 

0.0000009 

MAE: 

0.00000026 

MAPE: 

0.000009 

R: 0.988962 

Error: 1.64% 

 

RMSE: 0.3741 

MAE: 0.1359 

MAPE: 0.2539 

R: 0.9930 

 

Nariman 

Valizadeh 

and El-

Shafie 

(2013) 

 

1. Daily rainfall at 

time(t-i) 

2. Dam level at 

time(t-j) 

 

𝐿(𝑡) – Level 

of dam 

ANFIS Error : 4.00% 
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Nwobi-

Okoye and 

Igboanugo 

(2013) 

Five input neural 

network 

architectures 

Level of dam Neural Network 

 

 

 

 

 

ARIMA 

Four input 

neural network 

models:  

Relative Error : 

0.062 

 

Relative Error : 

0.039 

 

Valizadeh et 

al. (2011) 

Model1- R=rainfall 

R(t-i) 

Model2 –

R=rainfall, average 

of reservoir’s level  

R(t-i)L7 

Model3 - L= level 

of dam, R=rainfall 

R(t-i)L(t-i) 

 

𝐿 𝑡 – Level 

of dam 

ANFIS Model 1: 

RMSE: 1.5997 

MAE: 1.338 

MAPE: 2.5939 

R: 0.086 

 

Model 2: 

RMSE: 0.287 

MAE: 0.2136 

MAPE: 0.403 

R: 0.9838 

 

Model 3: 

RMSE: 0.078 

MAE: 0.046 

MAPE: 0.085 

R: 0.999 

 

Wan Ishak et 

al. (2011a) 

Forecasting model: 

1. Current 

reservoir water 

level (t)  

 

 

Decision model: 

1. Current water 

level (t) 

2. Tomorrow 

water level ( t + 

1) 

3. Changes of 

water level ( t , 

t – 1,…,t-w) 

 

Forecasting 

model: 

t + 1 – 

reservoir 

water level 

 

Decision 

model: 

Gate 

opening/ 

closing (t) 

Neural Network Forecasting 

model: Error : 

0.443816% 

 

 

 

Decision model: 

Error : 

0.032103% 
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Chang and 

Chang 

(2006) 

Model 1 – Lm (t + 

i) = upstream flow, 

O(t) = current 

outflow 

Model 2 – Lm (t + 

i) = upstream flow 

Lm (t + i) - 

water level 

 

ANFIS Gbench : 0.733 

MAE : 0.436 

RMSE : 0.597 

Correlation 

Coefficients: 

0.998 

 

Based on Table 2.4, previous studies focus on the forecasting of reservoir water level 

using the historical data. The limitation caused by technology and management 

reduces the availability of the data. As shown in Table 2.3, the data column shows the 

limitation of data preparation such as data being measured daily, thus an hourly 

prediction model cannot be performed even though the accuracy of prediction is more 

precise. In addition, these studies do not consider the change of water level that caused 

the increase or decrease in the stage of reservoir water level. Therefore, in this study, 

those inputs are devoted as parameters and input patterns in architecture to define 

whether they give a minimum error of models. The changes of water level is very 

important because the rise of water level has been monitored. Then, three models 

based on the different input pattern and parameter are developed to define the best 

models as to whether the change of water level gives an impact on the forecasting 

model.   

In terms of water level stage, DID has introduced a guideline to the local authority to 

alert when the water level rises. The stage of water level has been categorised based 

on the different ranges of water in the certain areas (river, lake or dam). These 

categories of water level stage are also known as the flood stages, namely normal, 

alert, warning and danger levels (refer Table 3.4) for the Timah Tasoh Dam, Perlis.  
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 Classification of Forecasting Techniques 

Forecasting is a prediction of what will occur in the future. It deals with a system in 

which thousands of inputs interact in a complex nonlinear system and is illustrated as 

highly “noisy” application (Atiya, El-Shoura, Shaheen, & El-Sherif, 1999). 

Classification can be a classifying input set into one of two or more groups or 

categories. There are two types of classification of forecasting techniques that will be 

discussed, which are statistical and computational intelligence techniques.    

There are a variety of well-known statistical methods such as linear regression and 

general least squares, logistic regression and discrimination, principal component 

analysis, discriminant analysis, k-nearest neighbour (k-NN) classification, and ARMA 

and nonlinear ARMA time series forests. Linear regression and general least squares 

are methods for predicting the value of a dependent variable Y, based on the value of 

an independent variable X. Logistic regression refers to a simple logistic regression 

with one nominal variable with two values (female/male) and one measurement 

variable. These methods have been used in medical fields for the prediction of 

patients’ outcome and identifying the problem by examining the symptoms (Royston 

& Altman, 2010). The ability of discriminants can identify patients who have (or will 

have) and those who do not (or will not) have an event of interest. Graphical aids are 

important in the understanding of a logistic model. Discriminant analysis resulting 

from an estimated logistic regression is called logistic (Croux, Gentiane, & Joossens, 

2008). Principal Component Analysis (PCA) is a method of analysing relationships 

between sets of data in mathematics and statistical techniques that analyse patterns in 
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datasets of higher dimensions. The standard PCA suffers from the fact that principal 

components (PCs) are usually linear combinations of original variables.  

The k-NN rule is one of the simplest and oldest methods for pattern classification 

(Cover & Hart, 1967). It has two stages, which are the determination of the nearest 

neighbours and the determination of the class using those neighbours. A study by Kim, 

Choi, Moon, and Mun (2011) found that k-NN performs better compared with the 

other two algorithms, quadratic discriminant and linear discriminant analysis in 

classifying electromyogram signals based on the wrist-motion direction. The 

performance through statistical analysis between the three algorithms was not entirely 

different; however, they declared k-NN is better as a classifier. The disadvantages of 

k-NN are that it must compute the distance and take all the data which increases the 

storage space. However, Xiaoyu, Yisheng, and Siyu (2013) improved the efficiency 

and reduced a lot of the storage space when searching to obtain the best final result.  

 

A time series is a sequence of numbers at regular intervals. The time series data can 

be found in various applications in wide areas, such as economics, environmental, 

finance, medicine and much more. During the last few decades, several types of 

stochastic models have been developed and proposed for modelling hydrological time 

series (Salas & Smith, 1981). The stochastic models are autoregressive (AR), Moving 

Average (MA), Autoregressive Moving Average (ARMA), and Autoregressive 

Integrated Moving Average (ARIMA). The ARIMA and seasonal autoregression 

integrated moving average (SARIMA) models have been identified to be effective in 

time series forecasting. The time series seasonal have been successfully used in the 
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application of forecasting economic, foreign exchange, stock problems, social and 

engineering (Khashei, Bijari, & Hejazi, 2012). The advantage of SARIMA model is 

that it can deal with data involving trend and seasonality. Traditionally, these 

techniques are used for building mathematical models to generate hydrologic records 

in hydrology and water resources (Wang, Chau, Cheng, & Qiu, 2009). However, these 

techniques are not appropriate because of the complex interaction and poor 

understanding of the relations between processes (Toro, Gómez Meire, Gálvez, & 

Fdez-Riverola, 2013). Therefore, nonlinear relationships and a large number of 

datasets exist in hydrological studies where the traditional methods are not preferable 

(Valizadeh & El-Shafie, 2013). The comparison between statistical and computational 

intelligence techniques can be defined in Table 2.5. 

Table 2.5 

 

Comparison between Statistical and Computational Intelligence Techniques 

Criteria Statistical Computational Intelligence 

Pattern Linear Nonlinear 

Method Linear regression and general least 

squares, logistic regression and 

discrimination, principal component 

analysis, discriminant analysis, k-

nearest neighbour (k-NN) 

classification and ARMA and 

nonlinear ARMA time series forests 

Neural Network, Fuzzy Logic, 

Evolutionary computation, 

hybrid model 

Form of data Time series, seasonal Spatial, time series, temporal 
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 Computational Intelligence Techniques 

Computational intelligence techniques can be defined in several approaches such as 

artificial neural network (ANN), fuzzy logic (FL), evolutionary computation, and 

hybrid models.  

 

FL model, proposed by Zadeh (1968), is another type of artificial intelligence model 

that deals with the uncertainty of the event (Altunkaynak & Şen, 2007). Due to the 

uncertainty in the stock markets, the FL approach is combined with the association 

rule to overcome the difficulty of autoregression integrated moving average (ARIMA) 

to adapt in a noisy environment (Ho et al., 2012). The limitation of ARIMA had also 

been improved with the FL approach and other approaches to obtain more accurate 

results. The proposed model can be used as an alternative tool in the financial market 

(Khashei, Bijari, & Raissi Ardali, 2009). A research by Tavakkoli, Jamali, and 

Ebrahimi (2010) proposed a new method using the FL approach to evaluate the 

financial performance of companies. 

 

FL-based modelling approaches have also received attention in hydrological 

modelling and reservoir operation (Jacquin & Shamseldin, 2009; Lohani, Goel, & 

Bhatia, 2011; Moeini, Afshar, & Afshar, 2011; Rani & Moreira, 2010; Zhang, Wang, 

Zhang, & Zhou, 2012). Moeini et al. (2011) proposed the fuzzy rule-based model for 

a single purpose (hydropower) reservoir operation, where the knowledge base is 

obtained from the stochastic dynamic programming (SDP) with the standard policy. 

The proposed model is based on the actual previous operations, which have been done, 



 

32 

 

and on expert knowledge. The advantages of the proposed model are: the reservoir 

operator can be involved in constructing, it can be applied, and is easy to be used in 

rules. The advantages of the FL approach also received the attention of Kar et al. 

(2012) and  Lohani, Goel, and Bhatia (2014) to employ it in flood forecasting. Jacquin 

and Shamseldin (2009) reviewed the use of the FL approach in river flow forecasting 

and claimed that this technique is not widely used in river forecasting compared with 

ANN. However, the uses of the FL approach in river forecasting is commonly used in 

coupling or hybridising with other approaches (Alvisi & Franchini, 2011). 

 

In meteorological forecasting fields, FL is a clever tool to deal with uncertainty. It can 

easily cooperate expert knowledge into standard mathematical models in the form of 

a fuzzy inference system (FIS). Asklany, Elhelow, Youssef, and Abd El-wahab (2011) 

applied FL with rule based reasoning using five inputs to create the rainfall event 

prediction model. Monfared, Rastegar, and Kojabadi (2009) proposed the strategy of 

wind speed using the FL approach, which did not only provide the rule base, it also 

increased the speed prediction results. 

 

In recent years, there is an increasing number of combination techniques, in which two 

or more soft computing had been integrated into an individual technique with more 

advantages. Recently, the potential of both ANN and FL resulted in the proposal of 

techniques, such as adaptive neural network fuzzy inference system. Monfared et al. 

(2009) applied both ANN and FL in the wind speed forecasting, where the models not 

only reduced time process, but also produced a better prediction performance.  
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The ANFIS model, introduced by Jang (1993), is a universal approximation 

methodology. It has been applied in numerous studies. ANFIS contains the neural 

network algorithm and fuzzy reasoning, thus, used to map an input space to the output 

space. Chang and Chang (2001) employed ANFIS in water resources modelling. 

Based on their study about reservoir operation, it is stated that ANFIS is more efficient 

compared to classical models based on the rule curve.  

 

The ANFIS methodology was used in predicting the reservoir water level (Valizadeh 

& El-Shafie 2013; Hipni et al., 2013; Valizadeh et al., 2011; Chang & Chang 2006). 

In another study, Chang and Chang (2006) used the hybrid approach to forecast water 

level using these two ANFIS models based on human decision and vice versa. The 

result showed that accuracy and reliability in the estimation of level in the reservoir 

within the next three hours with human decision is more consistent.  

 

The ANFIS techniques are also applied in predicting the changes of water level in a 

lake (Yarar, Onucyıldız, & Copty, 2009). Yarar et al. (2009) discovered that ANFIS’s 

performance is superior when compared with ANN and SARIMA due to the response 

towards the climate change in the complex hydrological system at Lake Beysehir, 

Turkey. ANFIS has also been successfully applied in the modelling of hydrological 

time events (Firat & Güngör, 2007; Keskin, Taylan, & Terzi, 2006; Zounemat-

Kermani & Teshnehlab, 2008). The combination of two methods, ANN and fuzzy 

system, reduces some disadvantages where ANN becomes transparent and the fuzzy 
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system takes the ability to learn. Based on this knowledge, there are a variety of 

different backgrounds and fields of experts, and the acquisition process is considered 

time consuming (Azeez, Ali, Gan, & Saiboon, 2013). Another problem is to find the 

optimal network architecture and initial weights and the related parameters that 

influence the performance of ANFIS. However, there are no specific procedures to 

develop the optimal network, thus a trial and error method is one of the popular 

practices (Nazari, 2012).  

 Artificial Neural Network (ANN) 

ANN model, proposed by McCulloch and Pitts, (1943) is a useful tool for modelling 

complex nonlinear systems and making predictions (Ham & Kostanic, 2000). ANN 

has been deployed in many forecasting applications, such as in finance (Mokhatab, 

Manzari, & Bostanian, 2011; Mostafa, 2010), business (Moosmayer, Chong, Liu, & 

Schuppar, 2013), medical (Rale, Gharpure, & Ravindran, 2009) and much more. In  

medical, Rale et al. (2009) compared the performance of multilayer perceptron (MLP) 

between Radial Basis Function (RBF) in the X-Ray images, which is a complex nature 

and is noisy on the images. In order to capture a nonlinear decision, the advantages of 

neural network have been used in the business field. Moosmayer et al. (2013) used the 

neural network to predict the relationship between the factors in predicting price 

negotiation and discovered that it performs better compared to the regression analysis.  

 

In hydrological forecasting, ANN had been successfully found to be an alternative in 

rainfall forecasting (Antar, Elassiouti, & Allam, 2006; Hung, Babel, Weesakul, & 
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Tripathi, 2009), streamflow forecasting (Edossa & Babel, 2011; Singh & Kumar, 

2007), river water level forecasting (Adnan, Ruslan, Samad, & Md Zain, 2012; 

Hartman et al., 2008; Sulaiman, El-Shafie, Karim, & Basri, 2011), groundwater 

modelling (Affandi, Watanabe, & Tirtomihardjo, 2007; Ghadampour & 

Rakhshandehroo, 2010; Mohanty, Jha, Kumar, & Sudheer, 2010), reservoir operation 

(Sharifi, Haddad, Naderi, & Alimohammadi, 2005), and reservoir water release 

(Abdul Mokhtar, Wan Ishak, & Md Norwawi, 2014) compared to traditional methods. 

ANN has the ability to be used in several domain areas including unpredictable and 

changing environments such as safety critical areas (Kurd, Kelly, & Austin, 2007). It 

also has the capabilities to learn and deal with the input while maintaining a good 

performance in operational and computational efficiencies. Basically, ANN modelling 

is to establish the mapping between the input and output data targets. The learning 

process begins in the data of the input layer of the network. Ondimu and Murase 

(2007) proposed ANN to predict the lake water level monthly. They focused on 

features such as water level, rainfall, evaporation, inflow from River Malewa, inflow 

from River Gilgil and simple time harmonics of the month of the year and also effects 

on the data compression. Based on the features, they have developed six multilayer 

perceptron (MLP) models to estimate the accuracy of the lake water level.  

 

Multilayer perceptron (MLP) is a supervised learning procedure to produce an 

estimation model based on the value of predictor variables for one or more targets. 

Nwobi-Okoye and Igboanugo (2013) developed MLP for the prediction of the dam 

water level. The finding showed the accuracy increment, but it started to decline at the 
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four-input model. In hydrological forecasting, the multilayer feed forward neural 

networks were extensively used and trained by standard BP algorithms (Rumelhart et 

al., 1986; Sharifi et al., 2005). Even though ANN is well known in accurate 

forecasting, however, the performance in certain specific situations is still inconsistent 

(Khashei & Bijari, 2011).  

 

In water resources environment, the nature of data are nonlinear (spatial and temporal) 

and complex phenomena. Engineers have faced the difficulty in the prediction and 

estimation of parameters such as rainfall, water level, sediment discharge, streamflow, 

and runoff. ANN has the ability to deal with that problem and learn the behaviour 

between input and output, even though with some flaws in the data pattern such as 

noise, missing value and human error.  

 Temporal Data Mining in Reservoir  

Data mining is the extraction of some new nontrivial information from large databases 

to find useful data. The aim is to define hidden patterns, unusual trends or other 

ambiguous relationships in data using the combination of techniques. Temporal data 

mining is the data mining of temporal sequence of a set of temporal patterns (Laxman 

& Sastry, 2006). For example, rainfall temporal patterns represent the variations of 

rainfall during a typical storm and design storm, which contributes the factors that 

affect the magnitude, runoff volume and timing of the peak discharge (Rosmina, Rosli, 

Adam, & Li, 2012).  
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Temporal pattern is a sequence of events that occurred according to time (Last, Klein, 

& Kandel, 2001). Shahnawaz, Ranjan  and Danish (2011) has assigned different types 

of temporal data such as static data, sequences, time stamped, time series and fully 

temporal. Static data does not contain any temporal information, and sequence data is 

the list of events where the information can be extracted based on sequences. However, 

time stamped contains more temporal information because it is a timed sequence of 

static data carried at certain durations. Fully temporal is data that is entirely dependent 

on time, and time series data is the sequence of data change during a certain time and 

the events have a distance on the time scale, for example, the behaviour of wind 

velocity (Vafaeipour, Rahbari, Rosen, Fazelpour, & Ansarirad, 2014), river water 

level (Arbain & Wibowo, 2012a; Kisi, 2011), time series of river flow (Krishna, Rao, 

& Nayak, 2011; Toro et al., 2013), and so on. 

The problem of data mining usually involves time aspect and time series being 

frequent forms in representing temporal data. A survey by Keogh, Chu, Hart, and 

Pazzani (2001) discussed the segmentation techniques that are based on a linear model. 

In the study, there are three algorithms that have covered a large number of 

segmentation algorithms based on the Piecewise Linear Representation (PLR), which 

are as follows: Top-Down, Bottom-Up and Sliding Window Algorithm (SWA).  

Top-Down approach works in partitions of time series and splitting it at the best 

location. The segment of time series is recursively partitioned and it stops when the 

criteria are reached. The result of this approach is reasonable; however, it does not 

scale well in the massive time series stream (Alberg & Laslo, 2014). The top-down 
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approach and bottom-up approach are both offline approaches. The accuracy of 

bottom-up is impractical in the data mining context, it has to deal with the big data 

(terabytes) or arrives in the continuous stream. The superiority of this approach is it 

needs to capture the online nature of SWA. The proposed combination of bottom-up 

and SWA that applies the capabilities of both approaches is called (SWAB) Sliding 

Window and Bottom-Up (Keogh et al., 2001). 

SWA is a well-known time series in the data segmentation method and is an online 

approach. SWA is especially performed easily using an online algorithm. The goal of 

using SWA is to find a set of points in partitioning the range into small intervals. SWA 

has been proven to be able to detect patterns from temporal data, where it captures the 

time delay within the dataset (Ku-Mahamud, Zakaria, Katuk, & Shbier, 2009; Wan 

Ishak, Ku-Mahamud, & Norwawi, 2011a). The review on the common segmentation 

methods in PLA can be found in Keogh, Chu, Hart, & Pazzani (2003). Keogh et al. 

(2003) claimed that the sliding window algorithm has a poor performance in many 

real-life datasets based on the test on 10 datasets. However, based on previous studies 

(Kapoor & Bedi, 2013; Ku Ruhana Ku-Mahamud & Yun, 2009; Malik, 2011; 

Mozaffari, Mozaffari, & Azad, 2015; Paoli, Voyant, Muselli, & Nivet, 2010; 

Vafaeipour et al., 2014; Yu, Zhu, Li, & Wan, 2014), the sliding window approach is 

successful in making predictions in different datasets: forest fire, image, humidity, 

temperature, rainfall, wind velocity, water level, daily flow, traffic flow, vehicle speed 

and solar radiation. Studies by Paoli et al. (2010) and Vafaeipour et al. (2014) 

predicted the solar radiation and wind velocity time series. The combination of the 

sliding window approach with ANN is developed to predict the values of multilayer 
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perceptron networks, a fixed number p of previous data values as the input of the 

network for training, validation and testing processes, while the output is the future 

forecast values of time series. The sliding window technique with ANN is illustrated 

in Figure 2.1. 

 
 

Figure 2.1. Sliding window technique with ANN (Paoli et al., 2010; Vafaeipour et al., 

2014) 

In forecasting the weather condition on the current days, the selected window for the 

current years of weekly variations are used (Kapoor & Bedi, 2013). In the study, the 

Input Windows 

Xt 

Sliding Window Technique 

t 

Error 
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Xt-3 

Xt-p 
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weather conditions that occur in a year may not fall on exactly the same day as in 

previous years. The seven previous days and seven ongoing days in previous years are 

considered with the parameters of maximum and minimum temperatures, rainfall and 

humidity. For example, if the weather condition of 20 December 2014 is to be 

predicted, then consider the conditions from 13 December to 19 December 2014 and 

the conditions from 13 December to 26 December 2013 for previous years. The 

concept of sliding window with parameters is illustrated in Figure 2.1. In the figure, 

W1 represents Window number 1 and W2 represents Window number 2.  

S. No. 
Max 

temp. 

Min 

temp. 
Humidity Rainfall 

1     

2     

3     

4     

5     

6     

7     

8     

9     

10     

11     

12     

13     

14     

Figure 2.2. Sliding window concept with the parameters (Kapoor & Bedi, 2013) 

Based on the capability of sliding window to capture temporal data with the time delay, 

the segmentation technique for temporal pattern to classification has been proposed 

(Nawawi, 2004). Adopted from Nawawi (2004), Hassin, Norwawi, and Aziz (2006) 

used the steps of sliding window for the temporal case-based reasoning (CBR) engine 

module. In the study, the event of gate opening in a reservoir depends on the rise of 

W2 

W1 
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the water level due to rainfall; and the time delay of rainfall has been captured. The 

segmentation and partition of patterns are used for the proposed temporal CBR engine 

module. Figure 2.3 shows the steps of sliding window, which is modified based on the 

purpose of the study.  

 

Figure 2.3. Steps for Sliding Window (Source : Hassin, Norwawi, & Aziz, 2006) 

Figure 2.3 shows the steps of the sliding window technique, where t represents the 

time, and n represents the size of the window. This step is to capture the time delay. 

The first line is to loop time t until the end of file and in loop for, the first line is read 

data at time t. The second line is to get data (pattern) from t-1 until the fixed number 

of n of the prevoius data. The last line in loop for is insert the pattern into the database 

(window slices set).   

 

 Summary 

Reservoir operations have their own functions based on the type of reservoir. 

Reservoir water release decision model is built to define the precise decisions. In 

general, the decisions are usually conducted by the reservoir operating policy. The 

reservoir operating policy is one of the essential elements in reservoir operation and 

there are several types of reservoir operating policies, such as standard operating 

policy (SOP), rule curve and hedging rules. Water level or stage information has been 
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studied especially in the context of reservoir, river and lake using a few techniques. 

The techniques can be divided in two types, which are statistical and computational 

intelligence techniques. Both of these techniques have their own strengths in 

forecasting models. 
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CHAPTER THREE 

RESEARCH METHODOLOGY 

The previous chapter described the theoretical literature and related areas in the study. 

This chapter discusses the process conducted in the research framework. In this study, 

the change of reservoir water level stage model is developed and the sliding window 

algorithm is modified to construct proper temporal patterns. 

 Research Framework  

This study consists of four phases that begin with data preparation, temporal pattern 

formation, forecasting model development, and model evaluation. These phases are as 

shown in Figure 3.1. The figure shows the phases, methods used during the 

development, and the expected outcome. The explanations on every phase are 

discussed in the next section. 
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Phase Methods Outcome

Phase 1:

Data Preparation

Develop model using neural network

Phase 3:

Forecasting Model 

Development

Method to extract the 

temporal pattern

(Objective 1)

Modification of sliding window 

algorithms to detect the temporal 

patterns

Phase 2:

Temporal Pattern 

Formation

Data Selection:

Data source: Operational logbook

- water level( 1999-2013)

Data Cleaning:

Detected inconsistencies from data

Data Transformation:

Consolidated or transform data

Cleaned data

Forecasting model 

(Objective 2)

Phase 4: 

Model Evaluation

Evaluate the performance of 

forecasting model 

- MSE

- % correctness

Performance of 

forecasting model

(Objective 3)

 

Figure 3.1. Phases in Research Framework 

Data preparation describes the step where data is collected and preprocessed. 

Temporal pattern formation constructs the patterns based on the time using the sliding 

window technique. In this study, the sliding window algorithm is modified to form 

patterns for the next phases. The forecasting model development phase is to build the 

forecasting model. The last phase is model evaluation, where the forecasting model is 

evaluated. 
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3.1.1 Data Preparation 

Data preprocessing is aimed to prepare the data for this study. The data preparation  

process (Figure 3.2) consists of three phases, which are data selection, data cleaning 

and data tranformation. The next section describes the respective steps of data 

preparation. 

 

 

 

 

 

 

 

Figure 3.2. Data Preprocessing 

Data selection is to identify the targets and relevant datasets. This step is important in 

order to select the related data to be used in this study. The daily reservoir water level 

data was obtained from Timah Tasoh reservoir operation. Table 3.1 shows an example 

of the Timah Tasoh water level data given in meters (m). 

 

 

 

 

Data selection 

Data cleaning 

Data 

transformation 

Data source: Operational 

logbook – water level 

data 

Detected 

inconsistencies from 

data 

Consolidated or 

transform data 
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Table 3.1 

 

Sample of the Water Level Data 

Date Water Level (m) 

1/9/2011 28.930 

2/9/2011 28.900 

3/9/2011 28.890 

4/9/2011 28.890 

5/9/2011 28.870 

6/9/2011 28.850 

7/9/2011 28.810 

8/9/2011 28.810 

9/9/2011 28.800 

10/9/2011 28.830 

11/9/2011 29.020 

12/9/2011 29.690 

13/9/2011 29.840 

14/9/2011 29.670 

15/9/2011 29.480 

 

In data cleaning, there are a few activities that include data cleaning, such as handling 

missing values and noise or outliers. In this stage, it deals with detecting and removing 

errors and inconsistencies from the data in order to improve the quality of the data. 

Data quality problems are present in single data collections, such as files and 

databases, e.g., due to misspellings during data entry, missing information or other 

invalid data. 
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Table 3.2 

 

Sample Missing, Noise or Outliers Data of the Water Level 

Date Water Level (m) 

7/6/2011 27.92 

8/6/2011 27.91 

9/6/2011 97.9 

10/6/2011 27.89 

11/6/2011  

12/6/2011  

13/6/2011 27.9 

14/6/2011 27.9 

15/6/2011 27.9 

 

In Table 3.2, the red colour represents the sample data of noise or outliers and the blue 

colour represents the missing value in the water level data. The probability of the 

misspellings during data entry is very high for the red coloured data (97.9), where the 

range of data is 27.91 – 27.89. The missing value for the blue data and noise or outliers 

value for the red data have been replaced with the linear interpolation. Linear 

interpolation is a consecutive missing value between last values before the missing 

data and the first values after the missing data. The linear interpolation technique 

connects two data points with a straight line and a linear relationship between 

consecutive missing values. The equation of the linear interpolation function by 

Chapra and Canale (1998) has been applied: 

𝑓1(𝑥) = 𝑎0 + 𝑎1(𝑥 − 𝑥0)              (3.1) 

Where, 
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x = independent variable, 

xi = known value is independent variable (i = 0,1,2,..), 

bi = unknown coefficients, 

 

Table 3.3 shows that the value of missing data and noise or outliers has been filled in 

using the linear interpolation. Hence, the values in blue or red coloured rows are still 

in the surrounding range between the missing values. 

Table 3.3 

 

Complete Set of Water Level Data 

Date Water Level(m) 

7/6/2011 27.92 

8/6/2011 27.91 

9/6/2011 27.9 

10/6/2011 27.89 

11/6/2011 27.893 

12/6/2011 27.897 

13/6/2011 27.9 

14/6/2011 27.9 

15/6/2011 27.9 

 

In data transformation, the data is transformed or consolidated into forms appropriate 

for data mining. In this study, normalisation is used where the attribute data is scaled 

so as to fall within a small specified range, such as from 1 to -1 or from 0 to 1. The 

normalisation process uses the min-max method (Jain & Bhandare, 2011) to transform 

a value x to fit in the range [C, D]. The min-max values are calculated by the following 

formula (Equation 3.2): 
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Before applying the ANN to the data, the training input and output values are 

normalised using the following equation: 

𝑁𝑒𝑤 (𝑥) = (𝐷 − 𝐶) ∗ 
𝑥−min(𝑥)

max(𝑥)−min(𝑥)
+ 𝐶               (3.2) 

Where, 

 C = new minimum (-1), 

 D = new maximum (1), 

 min(x) = minimum value of attribute, 

 max(x) = maximum value of attribute. 

 

Data normalisation values are displayed in Table 3.4 using Equation 3.2. data 

transformation is performed to transform the reservoir water level into its stages. The 

original data of the changes of reservoir water level and the changes of stage of 

reservoir water level is discretised for the ease of understanding. Usually, humans are 

more comfortable with linguistic terms such as normal and alert rather than 29 m and 

29.3 m water level measurements (Liu & Jin, 2012). Flood stage is used by Timah 

Tasoh Dam experts to classify the reservoir water level (Table 3.4). 

Table 3.4 

 

Water Level Stage Representation 

Water Level (m) Flood Stage Nominal Value Data Normalisation Value 

< 29.0 Normal (N) 1 1 

> 29.4 Alert (A) 2 0.33333 

< 29.6 Warning (W) 3 -0.33333 

> 29.6 Danger (D) 4 -1 
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In this study, the changes of the reservoir water level are used as the input pattern 

instead of the actual reservoir water level. These changes of reservoir water level are 

calculated using Equation 3.3. 

 ∆𝑊𝐿𝑡 = 𝑊𝐿𝑡 − 𝑊𝐿𝑡−1                   3.3 

Where  

∆𝑊𝐿𝑡 = the change of reservoir water level at t 

𝑊𝐿𝑡 =  reservoir water level at t 

𝑊𝐿𝑡−1 = reservoir water level at t-1. 

 

Table 3.5 shows a sample of reservoir water level data that has been transformed based 

on Table 3.4 and the changes of reservoir water level data which has been calculated 

using Equation 3.3. The change of reservoir water level can be either of negative, 

positive or zero value. A negative value represents the decreasing water level, while a 

positive value represents the increasing water level. A zero value means that there are 

no changes in the reservoir water level. 
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Table 3.5 

 

Sample of the Changes of Reservoir Water Level Data 

Date 
Water Level (m) 

(WL) 
Flood Stages 

Changes of Reservoir 

Water Level (∆WL) 

Symbolic 

of ∆WL 

1/9/2011 28.930 N 0.125 1 

2/9/2011 28.900 N -0.030 -1 

3/9/2011 28.890 N -0.010 -1 

4/9/2011 28.890 N 0.000 0 

5/9/2011 28.870 N -0.020 -1 

6/9/2011 28.850 N -0.020 -1 

7/9/2011 28.810 N -0.040 -1 

8/9/2011 28.810 N 0.000 0 

9/9/2011 28.800 N -0.010 -1 

10/9/2011 28.830 N 0.030 1 

11/9/2011 29.020 A 0.190 1 

12/9/2011 29.690 D 0.670 1 

13/9/2011 29.840 D 0.150 1 

14/9/2011 29.670 D -0.170 -1 

15/9/2011 29.480 W -0.190 -1 

 

3.1.2 Temporal Pattern Formation 

In this phase, the aimed activity is to construct the temporal pattern from the 

preprocessed data. The sliding window technique will be used to segment the data into 

temporal patterns continuously (Ku-Mahamud et al., 2009; Wan Ishak et al., 2011a). 

Sliding window is one of the techniques used in temporal data mining with the aim to 

capture the time delay within the dataset (Wan Ishak et al., 2011a, 2011b). According 

to Ku-Mahamud et al. (2009), sliding window can be used to develop a good 

prediction model with good accuracy. The following parameters: minimum 
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temperature, maximum temperature, humidity and rainfall represent the patterns 

captured for the seven-day (window size) time delays from Window 1 and Window 2.  

In this study, the patterns will be captured based on the changes of water level that 

affect the stage of water level. After a captured pattern changes, the window size (time 

delay) is segmented and the next pattern will be captured. The steps of sliding window 

in Figure 3.3 will be modified in order to segment the data pattern to fit the purpose 

of study. The purpose of the study using sliding window is to segment the dataset 

based on the changes of reservoir water level. The changes of reservoir water level for 

the next day depends on the changes on reservoir water level, whether increase or 

decrease, which affect the water level stage. The water level is the cause and the time 

delay between the water level affects the change of water level. In this study, the focus 

will be on the changes of reservoir water level as input data, while the change of the 

reservoir water level stage as the predicted output.  

3.1.3 Forecasting Model Development 

In this phase, a forecasting model for the changes of reservoir water level stage has 

been developed. The model deployed a supervised ANN algorithm, particularly BP  

algorithm. ANN is one of the computational intelligence techniques that have been 

inspired by biological neurons. ANN has been deployed in many forecasting 

applications, such as in finance (Mokhatab et al., 2011; Mostafa, 2010), business 

(Moosmayer et al., 2013), medical (Rale et al., 2009), and much more. It is known to 
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yield a better performance compared to statistical approaches in nonlinear problems 

(Kisi, 2011; Thirumalaiah & Deo, 1998, 2000). 

Typically, the ANN model consists of three layers, which are input, hidden and output 

layers. Figure 3.3 shows the sample diagram of the BP neural network, where the 

architectures are input layer (n), hidden layer (Zm), and output layer (1). 

 

Output
Input 3

Input 2

Input 1

Input n

…
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...

…
…
…
…
…
…
…
…
…
…
…

..

Node 1

Node 2

Node 3

Node 4

Node m

 
 

 Input layer         Hidden layer      Output layer 

 

Figure 3.3. Sample of BP Neural Network for Forecasting Model. 

Each of these layers have a number of processors called nodes. The BP algorithm 

trains the network to obtain a balance between the ability to respond correctly to the 
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input patterns that are used for breeding. The BP training algorithm is conducted in 

three steps: a) feedforward for input pattern, b) calculation and back propagating the 

error, and c) adjustment of the weight.  

DATA ACQUISITION

DATA REPRESENTATION

MODEL DEVELOPMENT

THE BEST MODEL

Selecting the data representation
TESTING & 

TRAINING

Number of hidden layers

Number of hidden units

Determining learning rate

Determining momentum

TESTING & 

TRAINING

TESTING & 

TRAINING

TESTING & 

TRAINING

TESTING & 

TRAINING

The best representation

The best hidden layer

The best hidden units

The adequate learning rate

The adequate momentum

Experiments

 

Figure 3.4. Overall Flow in ANN Application (Source: Yamin, Wan Ishak, & 

Othman, 2006) 

Figure 3.4 shows the flow of the ANN experiment. The flow starts with data 

acquisition, data representation, and model development in order to obtain the best 

ANN model. The data representation phase needs a series of experiments in order to 

define the best representation, and the model development phase also requires to repeat 

the experiments to gain the best hidden layer, the best hidden units, the adequate 

learning rate and momentum. 
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3.1.4 Model Evaluation 

In this phase, the performance of the forecasting model that has been developed is 

evaluated using statistical criteria, i.e, root mean square error (MSE) and prediction 

correctness in conjuction with a confusion matrix by Keally (1999): 

%𝐶𝑜𝑟𝑟𝑒𝑐𝑡 =  
∑

𝑁
𝑖=1

[𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑓𝑜𝑟 𝐶𝑙𝑎𝑠𝑠 𝑖]

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
× 100%      3.4 

Where, 

 n = number of classes. 

 

MSE is used to evaluate the average of the square of the difference between the actual 

and forecasted dam levels (Moses & Devadas, 2012). The best fit of MSE is smaller 

to zero. In Equation 3.5, MSE is defined mathematically as: 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑋𝑜𝑏𝑠,𝑖 − 𝑋𝑚𝑜𝑑𝑒𝑙,𝑖)

2𝑛
𝑖=1                 (3.5) 

 

where  

Xobs = observed values or forecast value  

Xmodel = modelled values  

i = time/place 

n = the number of verifying points (grid points or observations) in the 

verification area 
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In addition, the model will also be compared with other statistical models such as 

multivariate multiple nonlinear regression (Sarle, 1995) in order to validate its 

performance. 

 Summary 

The method that has been used was able to achieve the objective of the study. Four 

phases are applied in this study as the flow of process in developing the model of the 

changes of the reservoir water level stage, namely: data preparation, temporal pattern 

formation, forecasting model development and model evaluation. 
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CHAPTER FOUR 

PROPOSED FORECASTING MODEL 

This chapter describes the forecasting model of the reservoir water level stage. During 

the development of the model, a technique has been used to produce the temporal 

pattern. The technique is sliding window and the modification of the algorithm for this 

technique is based on the changes of the reservoir water level stage. Section 4.1 

discusses the data preparation, Section 4.2 explains the modification of the sliding 

window algorithm and temporal pattern, Section 4.3 describes building the neural 

network model, and Section 4.4 discusses the result of the experiments. 

 Data Preparation 

Data preparation is a process to transform the lacking data values, incomplete or 

missing data into a clean and understandable format to be fit for further processing. 

This process is to ensure the quality data is selected. For example, Table 4.1 shows an 

example of normalised data after preprocessing has been performed.  
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Table 4.1 

 

Example of the Normalised Data  

Nominal Value 

of ∆WL 

Nominal Value 

of SWL 

Change of Reservoir Water 

Level Stage (∆SWL) 

1 -1 -1 

-1 -1 -1 

-1 -1 -1 

0 -1 -1 

-1 -1 -1 

-1 -1 -1 

-1 -1 -1 

0 -1 -1 

-1 -1 -1 

1 -1 -1 

1 -0.33333 1 

1 1 1 

1 1 -1 

-1 1 -1 

-1 0.333333 1 

 

The nominal value of ∆WL represents the change of water level, where the decrease, 

increase and no changes are denoted with -1, 1 and 0, respectively. The nominal value 

of SWL represents the data normalisation value as mentioned in Chapter 3 (Table 3.4), 

where it refers to the input pattern value. The last column represents the changes of 

reservoir water level stage (∆SWL), where one (1) refers to the changes of stage, 

meanwhile negative one (-1) refers to the same stage from the previous day. The steps 

in sliding window are modified to detect the changes of the reservoir water level stage 

and are further discussed in Section 4.2. 
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 Modified Sliding Window Algorithm 

Based on Figure 3.3, the modified sliding window algorithm is proposed to capture 

the time delay based on the changes of reservoir water level stage. Figure 4.1 illustrates 

how the modification of sliding window works based on the changes of reservoir water 

level stage. 
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Figure 4.1. Sliding Window with Size 3 

The target output is the change of the reservoir water level stage represented by 

column ∆SWL. Meanwhile, columns ∆WL and SWL represent the input data. The red 

box in Figure 4.1 (1) indicates that there are changes in the reservoir water level stage. 

At this point, a window slice will be formed beginning from that point and to the 

previous w days according to the window size. For example, as shown in Figure 4.1, 
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the change of water level has been detected on the previous three days of ∆WL and 

SWL, which are selected as the following input pattern: 

Pattern 1 = {0, -1, -1, -1, 1, 1, 1}, 

Pattern 2 = {-1, -1, 1, 1, 1, -0.33333, 1}, 

Pattern 3 = {1, 1, 1, 1, -1, 1, 1}. 

In this study, the steps of pseudocode begin with the data being prepared through the 

data preparation process until cleaned data is obtained. The next process is to define 

the data containing the event, which is the changes of stage of reservoir water level. If 

the data does not contain the event, the next process is to read another data and if the 

data does not exist, it will end the process. If the data contains the event, the next 

process is to form the window slices and store them in the database. Each window 

slice captures a set of patterns consisting of input pattern values that depend on the 

pattern and are recorded in the database. Each time a change of reservoir water level 

stage is detected at time t-1, a window of size w is formed. For example, the 

segmentation process based on the sliding window technique begins with window size 

3, that represents three days of delay and the window slices set is added. Figure 4.2 

shows the pseudocode for the modification of the sliding window algorithm and Figure 

4.3 represents the flow of the modification of sliding window based on the pseudocode 

to extract the temporal patterns.  
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repeat 

 read clean data at time t 

 detect event into data 

 if change WL stage detected then 

  form window slice at (t-1)…(t-n) 

  add pattern to store in database  

 else 

 if anymore data then 

  read next clean data t-1 

 end if 

until no more data 

Figure 4.2. Steps in Modification of Sliding Window Algorithm 

Clean Data

Form Window 

Slices 

Start

End

Event?

∆WL= 1

Yes

Anymore data?
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Detect Event

Database 

Window Slices

Yes

No

 

Figure 4.3. Flowchart of Modification of Sliding Window 
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Then, the temporal pattern is extracted through the steps of the modified sliding 

window. The extracted temporal patterns are used to develop three models with 

different architectures in the input pattern. In this study, three models with different 

architectures are developed as shown in Table 4.2.  

Table 4.2 

 

Three models with different architectures 

Model Description 

Water Level Model Reservoir water level (SWL) as input pattern 

 

The Change of Water Level 

and Stage of Water Level 

Model  

 

1. The change of reservoir water level (∆WL) as input 

pattern 

2. The stage of reservoir water level (SWL) as input pattern 

 

Combination of The 

Change of Water Level and 

Stage of Water Level 

Model 

The changes of reservoir water level and stage of reservoir 

water level (CSWL) as combination input pattern 

 

4.2.1 Water Level Model 

Based on previous studies (Chang & Chang, 2006; Nwobi-Okoye & Igboanugo, 2013; 

Valizadeh et al., 2011; Valizadeh & El-Shafie, 2013), there have been predictions on 

water level using actual data of reservoir water level. In this section, the temporal 

pattern for the water level model deployed by the actual data values are transformed 

using normalisation as discussed in Section 3.1.1 (Table 3.4). Table. 4.3 shows the 

temporal pattern for the window size of three days previous with the changes of 

reservoir water level stage as a target is presented. The temporal patterns (various 
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window sizes) for this model can be referred in Appendix A (pages 111-117). The 

temporal patterns for this model using nominal values have been normalised from the 

actual data.  

Table 4.3 

 

Example of Temporal Patterns using the Nominal Value (w=3) 

SWLt-2 SWLt-1 SWLt ∆SWLt+1 

-1 -1 1 1 

-0.33333 -1 -0.33333 1 

-1 -0.33333 0.333333 1 

-0.33333 0.333333 1 1 

0.333333 1 0.333333 1 

1 1 -0.33333 1 

-1 -0.33333 -1 -1 

-0.33333 0.333333 -0.33333 -1 

0.333333 0.333333 -0.33333 -1 

-1 -0.33333 1 -1 

The general structure of the reservoir water level can be expressed as follows 

(Equation 4.1): 

∆𝑆𝑊𝐿𝑡+1 = 𝑓(𝑆𝑊𝐿𝑡−1, 𝑆𝑊𝐿𝑡−2, 𝑆𝑊𝐿𝑡−3 … . , 𝑆𝑊𝐿𝑡−𝑛) (4.1) 

Where, 

 n <= the window size, 

 t = time, 

 ∆SWLt+1 = the change of reservoir water level stage at time next day, 

 SWLt-n = reservoir water level stage at time t-n, 
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4.2.2 The Change of Water Level and Stage of Water Level Model 

The value of input for the change of reservoir water level (∆WLt) has been discussed 

and calculated using Equation 3.3 in Section 3.1.1. The value of input for the stage of 

water level (SWLt) has been represented in Section 3.1.1 (Table 3.4). Both inputs are 

used in this model, where ∆WLt represents the changes of water level at current time 

(t) and SWLt represents the stage of water level at current time (t). Table 4.4 shows the 

temporal pattern for the change of water level and stage of water level model that has 

been extracted from the sliding window algorithm for the previous three days. The 

temporal pattern (various window sizes) for this model can be referred in Appendix A 

(pages 118-124). 
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Table 4.4 

 

Example of Temporal Patterns using the Change of Water Level and Stage of Water 

Level (w=3) 

∆WLt-2 SWLt-2 ∆WLt-1 SWLt-1 ∆WLt SWLt ∆SWLt+1 

-1 -0.33333 -1 -0.33333 1 0.333333 1 

-1 -0.33333 1 0.333333 1 1 1 

1 0.333333 1 1 -1 0.333333 1 

1 1 0 1 -1 1 1 

0 1 -1 1 -1 -0.33333 1 

1 1 -1 1 -1 0.333333 1 

-1 -1 -1 -1 1 1 1 

0 -1 -1 -1 1 -1 1 

1 -1 -1 -1 -1 -1 -1 

0 -1 0 -1 -1 -1 -1 

0 -1 0 -1 0 -1 -1 

0 -1 -1 -1 0 -1 -1 

1 -1 0 -1 -1 -1 -1 

-1 -1 0 -1 1 -1 -1 

1 -1 1 -0.33333 -1 -1 -1 

 

In this study, the target output is the changes of reservoir water level stage for the next 

days (∆SWLt+1). The values in column (∆SWLt+1), which are 1, indicate there are 

changes, and the values which are -1 imply that there are no changes in the reservoir 

water level stage. Therefore, once the value changes to a number 1, a window slice 

will be formed and the previous w days according to window size is calculated to 

capture the time delay. Based on Table 4.4, the total of columns for window size 3 is 

six columns, where the first column for ∆𝑊𝐿𝑡−2 is changes of water level at previous 

two days and the second column for 𝑆𝑊𝐿𝑡−2  is water level stage at previous two days 
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until time t. The six columns refer to the six input patterns as depicted in Table 4.3. 

The general structure of the change of reservoir water level and reservoir water level 

stage model is given in Equation 4.2.   

∆SWLt+1 = f(∆WLt−1,   SWLt−1 , ∆WLt−2, SWLt−2 ,  ∆WLt−3,

SWLt−3, … . . . , ∆SWLt−n, SWLt−n) 

(4.2) 

Where, 

 n = the window size, 

 t = time, 

 ∆SWLt+1 = the change of reservoir water level stage at time next day, 

 ∆WLt-n = the change of reservoir water level at time t-n, 

 SWLt-n = the reservoir water level stage at t-n, 
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4.2.3 Combination of the Change of Water Level and Stage of Water Level 

Model 

In this section, the change of reservoir water level and the stage of reservoir water 

level are combined, where CSWL is determined as an input pattern. The combination 

produced 12 input pattern values, which used Equation 3.2 (Section 3.1.1). The value 

of the combination between ∆WL and SWL is represented in the last column, where 

it is used as an input pattern. ∆WL represents the changes of reservoir water level, 

where increase (1), decrease (-1) and no changes (0) of the reservoir water level and 

the nominal value are expressed from Table 3.4. The CSWL pattern values are 

depicted in Table 4.5. All the combination of 12 input patterns for various window 

sizes can be referred in Appendix A (pages 125-131).  

Table 4.5 

 

Combination of Water Level and Stage of Water Level Representation  

Input Pattern 
Changes of Water 

Level (∆WL) 

Stage of Water 

Level (SWL) 

Data Normalisation 

Value 

1 1 1 -1 

2 1 2 -0.818181818 

3 1 3 -0.636363636 

4 1 4 -0.454545455 

5 -1 1 -0.272727273 

6 -1 2 -0.090909091 

7 -1 3 0.090909091 

8 -1 4 0.272727273 

9 0 1 0.454545455 

10 0 2 0.636363636 

11 0 3 0.818181818 

12 0 4 1 
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Based on Table 4.5, the values of input patterns are different from the reservoir water 

level model and the change of reservoir water level and stage of reservoir water level 

model; however, the target output is still the same, which is the change of stage of 

reservoir water level. Table 4.6 shows the temporal pattern of the combination with 

the window size 3 (w=3) and the changes of reservoir water level stage for the next 

day. 

Table 4.6 

 

Example of Temporal Pattern using Combination of Change of Water Level and 

Stage of Water Level (w=3) 

CSWLt-2 CSWLt-1 CSWLt ∆SWLt+1 

-0.09091 -0.09091 -0.63636 1 

-0.09091 -0.63636 -0.45455 1 

-0.63636 -0.45455 0.090909 1 

-0.45455 1 0.272727 1 

1 0.272727 -0.09091 1 

-0.45455 0.272727 0.090909 1 

-0.27273 -0.27273 -0.45455 1 

-1 -0.81818 -0.81818 1 

-1 -0.27273 -0.27273 -1 

0.454545 0.454545 -0.27273 -1 

0.454545 0.454545 0.454545 -1 

0.454545 -0.27273 0.454545 -1 

-0.27273 0.454545 -1 -1 

-1 -0.81818 -0.27273 -1 

-0.81818 -0.27273 -0.27273 -1 
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The first column (CSWLt-2) is at two days of delay and the second column (CSWLt-1) 

is for the combination at one day of delay until time t. The general structure for CSWL 

can be expressed as follows (Equation 4.3):  

∆SWLt+1 = f(ISWLt−1, ISWLt−2, ISWLt−3 … . , ISWLt−n) (4.3) 

 

Where, 

n = the window size, 

t = time, 

 ∆SWLt+1 = the change of reservoir water level stage at time next day, 

CSWL = combination of changes of reservoir water level and the stage of 

reservoir water level. 

Equations 4.1, 4.2 and 4.3 represent the operations to forecast the changes of reservoir 

water level stage with 2, 3, 4, 5, 6 and 7 days antecedent data, respectively. The inputs 

are arranged sequentially as time is one of the important factors in the model. 
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 Building ANN Forecasting Model 

In this study, three models are developed with six different architectures. The six 

different architectures refer to the data with different window sizes from 2 until 7. The 

window size alludes to the previous day of time delay. The selection of window sizes 

(2-7) consider the expert advice from DID, where the large scales can make the 

prediction itself irrelevant. Table 4.7 shows the parameters of ANN that are used in 

this study. 

Table 4.7 

 

Parameters used in ANN 

Parameters Values 

No. of input neurons 2 - 14 

No. of hidden layers 1 

No. of neurons in the hidden layer 3,5,7, 9…, 21, 23, 25 

Learning rate 0.1 – 0.9 

Momentum 0.1 – 0.9 

Comparison function MSE 

Epoch size 1000 

Ratio of Training and Validation 10% of each 

Ratio of Testing 80% of each 

 

Based on the previous studies (refer Table 2.3) on forecasting reservoir water level, 

the variables that have been used are water level and rainfall, and several studies 

considered water release and inflow. In this study, the variables considered are the 

reservoir water level and the changes of reservoir water level from the manipulation 

of reservoir water level using Equation 3.3. Three models (refer Table 4.2) with 

architectures have been developed to determine the ability to deal between the 
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reservoir water level and the changes of reservoir water level and also the combination 

of both variables.  

 

Each neural network model is trained with one dataset. Each model is trained with a 

different combination of hidden units, learning rate and momentum. The values for 

the learning rate and momentum parameters are numbers 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 

0.7, 0.8 and 0.9. The learning parameter plays an important role in the performance of 

neural network (Hinton, Srivastava, Krizhevsky, Sutskever, & Salakhutdinov, 2012; 

Matignon, 2005). The performance of a trained neural network depends on its 

architecture. The learning function used is BP and makes use of two parameters that 

control the rate at which learning was used. The first parameter is momentum and 

second parameter is learning rate. The architecture of the network is determined using 

the trial and error method (Hsu et al., 1995). In this study, the trial and error procedure 

defines the optimal network for the change of stage of reservoir water level 

forecasting. The networks are trained for 1000 epochs. For each epoch, the BP learning 

algorithm builds a different model network with a different set of weights (Carney & 

Cunningham, 1998). If a neural network is trained to 100 epochs, the learning 

algorithm process loops through 100 different models. In this study, the epochs are 

trained until the maximum of 1000 epochs.  

 

Neural network learning can be viewed as a search through a large number of models, 

for a model that has the set of weights that will provide the best generalisation 

performance. Hence, the network parameters in this study are given in Table 4.7. 
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Based on the network parameters (Table 4.7), the architectures are developed. The 

input layer is the variables of the changes of reservoir water level and reservoir water 

level stage which are considered as the input, where the total of maximum input node 

is 14 and the minimum input node is 2.  

 

The data is divided randomly into three groups: training set, validation set and testing 

set. The training set has three elements: (1) maximum epoch, (2) minimum error, and 

(3) early stopping condition. The validation error keeps on arising in several epochs, 

then early stopping is executed (Sarle, 1995). The procedure of the training BP neural 

network starts from Figure 4.4 until Figure 4.7, where Figure 4.4 is the general nested 

structures as the main structures to call the other functions (feedforward, BP error and 

weight update) to find the best result of the training neural network. The process of 

the experiment using neural network can also be defined in Figure 3.4. After training 

the network, the results are evaluated using the statistical criteria that are Mean Square 

Error (MSE) and the percentage of correctness.  

 
for Epoch = 1 to Max_Epoch 

{ 

       For pattern = 1 to T_Pattern 

       { 

        feedforward(Pattern) 

        backpropagation_error(Pattern) 

        weight_update() 

       } 

        MSE = calculate_MSE() 

        test_stopping_condition(MSE) 

} 

 

Figure 4.4. General nested structures for the BP Algorithm 
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feedforward(Pattern) 

{ 

         for x=1 to n 

         { 

                  for j = 1 to p 

                  { 

                  calculate the output signal of Z 

                  } 

         } 

         for j = 1 to p 

         { 

                  for k = 1 to m 

                  { 

                  calculate the output signal of Y 

                  } 

         } 

} 

 

Figure 4.5. Nested structures for feedforward 

backpropagation_error(Pattern) 

{ 

        for k = 1 to m 

        { 

                 calculate error information term for each output unit y 

                 calculate Squared Error and Total Squared Error 

                 for j = 1 to p 

                 { 

                          calculate weight correction term 

                  } 

                  calculate bias correction term 

          } 

          for j = 1 to p 

         { 

                   sums delta input for each hidden unit 

                   calculate error information term 

                   for i = 1 to n 

                   { 

                             calculate weight correction term 

                   } 

                   calculate weight correction term 

          } 

} 

Figure 4.6. Nested structure for BP error 
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weight_update() 

{ 

          for j = 0 to p 

          { 

                    for k = 1 to m 

                    { 

                               update bias and weights for each output unit 

                               (at output layer Y) 

                    } 

          }   

          for l = 0 to n 

          { 

                     for j = 1 to p 

                     { 

                                 update bias and weights for each output unit 

                                 (at output layer Z) 

                     } 

          } 

} 

Figure 4.7. Nested structure for weight update 

 

 Experimental Design 

The actual data is acquired from the reservoir operation logbooks of 1999-2013 from 

DID, Perlis. The three models with six different architectures are developed based on 

the manipulation and normalisation of the actual data. The temporal pattern is 

produced from the modification of the sliding window algorithm with window sizes 

of 2, 3, 4, 5, 6 and 7. Each temporal pattern is trained using neural network and divided 

randomly into three datasets: training (80%), validation (10%) and testing (10%). The 

performance of the models is evaluated using the percentage of correctness and MSE. 

The comparison of each model is determined based on the best performance with 

different architectures. 
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 Summary 

This chapter described the proposed forecasting model in detail. Sliding window is a 

technique that has been used to produce the temporal pattern. The modification of the 

sliding window technique is discussed and implemented to the three models with 

different architectures. The models are trained using the trial and error method with 

different parameters to find the best model with less errors.    
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CHAPTER FIVE 

RESULTS AND DISCUSSION  

This chapter discusses the results of the models in forecasting the change in the stage 

of reservoir water level. The results of each model with different architectures are 

analysed and compared. Section 5.1 presents the performance result of each model, 

which explains the original data, sample diagram, result (training, validation and 

testing) and the neural network parameter. Next, Section 5.2 describes the discussion 

where a comparison between the models is conducted to define the best model of 

changes in the stage of reservoir water level. Finally, the summary of the findings are 

discussed in Section 5.3.  

 Performance Results 

The performance results are obtained from training the patterns using neural network;  

six datasets of each model have been formed and a comparison between the three 

models has been performed. The results are analysed and explained in the next 

sections.    
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5.1.1 Result for Water Level Model 

The unique record or no redundancy number of input is getting smaller after removing 

the redundancy compared to other dataset models. Table 5.1 shows the original dataset 

of each window size for the stage of reservoir water level model. 

Table 5.1 

 

Original Data and Experiment Dataset of Each Window Size for the Stage of 

Reservoir Water Level.  

Dataset Window Size 
# Input 

Original Unique Record / No Redundancy 

1 2 5779 14 

2 3 5778 35 

3 4 5777 64 

4 5 5776 104 

5 6 5775 142 

6 7 5774 182 

 

The number of unique record is reduced from the original data. Figure 5.1 shows the 

sample diagram for the BP neural network for water level model architecture. The 

sample represents the input layer (SWLt), hidden layer (Zm) and output layer 

(∆SWLt+1) that have been used in training the water level model. The input layer and 

the output layer have been discussed in Section 4.2.1.  
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SWLt

SWLt-1

SWLt-2

∆SWLT+1
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…
…
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SWLt-n

…
…

Z1

Z2

Zm

 

   Input layer        Hidden layer    Output layer 

Figure 5.1. Sample Diagram for BP Neural Network for Water Level Model 

Architecture 

Table 5.2 shows that window size 4 (previous four days) gives a better result compared 

to the other window sizes. Window size 4 with dataset 3 achieves 92.31% of training 

performance, and validation and testing performance are 100%, which give a better 

performance than other sizes. The errors of window size 4 are 0.153913659, 

0.006453737 and 0.019636617, respectively.  

Table 5.2 

 

Results of Training, Validation and Testing  

Window 

Size 

Training Validation Testing 

MSE % MSE % MSE % 

2 0.166666208 91.67 0.010554764 100 0.0000000222 100 

3 0.518519083 74.07 0.500000001 75 0.0000000002 100 

4 0.153913659 92.31 0.006453737 100 0.019636617 100 

5 0.489835559 71.43 0.589901874 70 0.684932503 70 

6 0.560240315 71.93 0.428165889 78.57 0.571530997 71.43 

7 0.425798538 78.08 0.403071357 77.78 0.592914878 72.22 
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Table 5.3 shows the neural network parameters that give the minimum error and 

maximum percentage correctness in training, validation and testing for the water level 

model (Table 5.2). The datasets represent the window sizes, where dataset 3 is equal 

to window size 4 and also equals to 4 input units.  

Table 5.3 

 

Neural Network Parameters for Minimum Error and Maximum Percentage of 

Correctness 

Dataset Input Unit Hidden Unit Output Unit Learning Rate Momentum 

1 2 17 1 0.7 0.7 

2 3 13 1 0.9 0.8 

3 4 21 1 0.9 0.3 

4 5 3 1 0.9 9.5 

5 6 5 1 0.6 0.7 

6 7 7 1 0.2 0.8 

 

The combination of neural network parameters for dataset 3 was obtained from dataset 

3. The architecture for dataset 3 is 4-21-1 (Figure 5.2) with a learning rate of 0.9 and 

a momentum of 0.3. The combinations of parameters are defined based on the trial 

and error procedure, in which each combination of parameters had been discussed in 

Section 4.3 (building ANN forecasting model). Dataset 3 was formed with window 

size 4 and 64 of number of instances. Figure 5.2 shows the diagram for water level 

model (4-21-1) architecture, where 4 is the input layer (previous four days), 21 is the 

hidden layer, and 1 is the target output.  
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Figure 5.2. BP Neural Network for Water Level Model (4-21-1) Architecture 
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5.1.2 Result for the Change of Water Level and Stage of Water Level Model 

The unique record or no redundancy number of input has been used in the neural 

network performance and has been divided into three datasets: training, validation and 

testing. Table 5.4 shows the original dataset of each window size for the changes of 

reservoir water level and the stage of reservoir water level as the input pattern. 

Table 5.4 

 

Original Data and Experiment Dataset of Each Window Size for the Model. 

Dataset Window Size 
# Input 

Original Unique Record / No Redundancy 

1 2 5779 50 

2 3 5628 150 

3 4 5426 350 

4 5 5070 709 

5 6 4562 1213 

6 7 3963 1811 

 

The numbers of neurons in the hidden units, learning rate and momentum are 

determined by the trial and error procedure to find the network structure. The target 

output is 1, which refers to the change of reservoir water level stage. For the remaining 

datasets, dataset 1 until dataset 6, the input data keeps increasing two inputs depending 

on the temporal patterns that had been discussed in Section 4.3.1.  
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Figure 5.3 shows the sample diagram for the BP neural network for water level and 

stage of water level model architecture. This sample represents the input layer, hidden 

layer and output layer that had been used in training the model. The input layer and 

the output layer have been discussed in Section 4.2.2. 

ΔWLt

SWLt

ΔWLt-1

SWLt-n

∆SWLt+1

…
…
…

...

SWLt-1

ΔWLt-n

…
…

Z1

Z2

Zm

 

   Input layer        Hidden layer    Output layer 

Figure 5.3. Sample Diagram for BP Neural Network for the Change of Water Level 

and Stage of Water Level Architecture 

The results of the model are presented in Table 5.5. From the table, it shows that 

window size 2 (previous two days) gives a better result compared to the other window 

sizes. Neural network training with dataset 1 achieves 92.5% of training performance 

and both validation and testing performance are 0%. The performance of BP ANN 

models with different combinations of neural network parameters (Table 4.7) is shown 

in Table 5.5. The different combination of learning rate and momentum, and the 

number of neurons in the hidden layer are finalised after a trial and error procedure.  



 

83 

 

Table 5.5 

 

Results of Training, Validation and Testing 

Window 

Size 

Training Validation Testing 

MSE % MSE % MSE % 

2 0.150000959 92.5 0 100 0 100 

3 0.432851051 73.33 0.605505944 66.67 0.497326619 73.33 

4 0.448398958 77.58 0.457142574 77.14 0.318823948 82.86 

5 0.246922835 87.65 0.273057187 85.92 0.294699054 84.51 

6 0.207943 88.26 0.18908 89.26 0.216076 87.6 

7 0.136307 92.62 0.163824 91.16 0.187749 90.06 

 

The different numbers of hidden nodes or units from dataset 1 until dataset 6 are 

selected and obtained from Table 5.5 based on the best results of training, validation 

and testing. Table 5.6 shows the neural network parameters for the change of reservoir 

water level and stage of reservoir water level using the parameters in ANN (Table 4.7). 

Table 5.6 

 

Neural Network Parameters for Minimum Error and Maximum Percentage of 

Correctness 

Dataset Input Unit Hidden Unit Output Unit Learning Rate Momentum 

1 4 17 1 0.7 0.7 

2 6 3 1 0.6 0.6 

3 8 25 1 0.4 0.6 

4 10 11 1 0.3 0.6 

5 12 3 1 0.6 0.4 

6 14 3 1 0.8 0.4 

 

The architecture found from Table 5.5 is 4-17-1, the learning rate is 0.7 and the 

momentum is 0.7. Dataset 1 is formed with window size 2 of 50 instances. Figure 5.4 



 

84 

 

shows the diagram for reservoir water level and stage of reservoir water level (4-17-

1) architecture, where 4 is the input layer (previous two days), 17 is the hidden layer, 

and 1 is the target output.  

∆WLt-1

SWLt-1

SWLt

∆WLt 

∆SWLt+1

 

                     Input layer       Hidden layer           Output layer 

Figure 5.4. BP Neural Network for the Change of Water Level and Stage of Water 

Level (4-17-1) Architecture 
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5.1.3 Results for the Combination of the Change of Water Level and Stage of 

Water Level Model  

After removing the redundancy input from the original input, the unique record of the 

combination of the changes of reservoir water level and stage of reservoir water level 

is used in training the neural network (Table 5.7). Table 5.7 shows the window size 

with the unique record for the combination between the changes of reservoir water 

level and stage of reservoir water level. 

Table 5.7 

 

Original Data and Experiment Dataset of Each Window Size for Combination.  

Dataset Window Size 
# Input 

Original Unique Record / No Redundancy 

1 2 5779 49 

2 3 5778 144 

3 4 5777 348 

4 5 5776 707 

5 6 5775 1215 

6 7 5774 1816 

 

Figure 5.5 shows the sample diagram for the BP neural network for the model 

architecture. The sample represents the input layer, hidden layer and output layer that 

have been used in training the model. The input layer and the output layer have been 

discussed in Section 4.2.3. 
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Figure 5.5. Sample Diagram for BP Neural Network for Combination of Water 

Level and Stage of Water Level Model Architecture 

The performance of the model is shown in Table 5.7. The second, third, and fourth 

columns contain the MSE and percentage correctness for all window sizes in the 

training, validation and testing datasets. From Table 5.8, it can be seen that window 

size 7 (previous seven days) gives a better result compared to the other window sizes. 

Neural network training with dataset 6 achieves 91.46% of training performance, 

90.66% of validation and 90.11% of testing performance. The errors are 0.15990066, 

0.177182145 and 0.19052576, respectively. The architecture is 7-3-1 with the learning 

rate of 0.1 and the momentum of 0.1. Dataset 6 is formed with window size 7 of 50 

instances. 
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Table 5.8 

 

Results of Training, Validation and Testing 

Window 

Size 

Training Validation Testing 

MSE % MSE % MSE % 

2 0.168520654 89.74 0.404720598 80 0.401644822 80 

3 0.495235126 61.21 0.6552951 57.14 0.623417754 57.14 

4 0.421348971 68.71 0.491883337 68.57 0.34632133 68.57 

5 0.357993366 78.94 0.456147716 74.65 0.336441073 74.65 

6 0.197618269 89.8 0.222921079 88.52 0.215033299 89.34 

7 0.15990066 91.46 0.177182145 90.66 0.19052576 90.11 

 

Table 5.9 shows that the neural network parameters are obtained from the minimum 

MSE and maximum percentage correctness and are used to develop the model for the 

combination between changes of reservoir water level and the stage of reservoir water 

level. 

Table 5.9 

 

Neural Network Parameters for Minimum Error and Maximum Percentage of 

Correctness 

Dataset Input Hidden Unit Output Learning Rate Momentum 

1 2 17 1 0.1 0.1 

2 3 21 1 0.2 0.7 

3 4 23 1 0.1 0.2 

4 5 3 1 0.9 0.6 

5 6 25 1 0.5 0.2 

6 7 3 1 0.1 0.1 

 

The number of hidden nodes is defined after the trial and error procedure, using 

different combinations of learning rate and momentum terms. In this model, dataset 6 
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gives the combination of learning rate and momentum as 0.1, while the number of 

hidden nodes is 3, similar with dataset 1, where the combination of learning rate and 

momentum is 0.1. However, the number of hidden nodes is high, which is 17. The 

combination of both datasets also has to refer to the result of the error and percentage 

of correctness. Every dataset has used the neural network parameters that had been 

discussed in Section 4.4. The second column contains the input layer, which keeps 

increasing one input depending on the temporal pattern (Section 4.3.2). The hidden 

units, learning rate and momentum from dataset 1 until dataset 6 are selected from the 

best results of training, validation and testing. The parameters of neural network found 

that the architecture for dataset 6 is 7-3-1, and the learning rate and momentum are 

0.1. Figure 5.6 shows the diagram for model 3 (7-3-1) with 7 as the input layer 

(previous six days), the hidden layer is 3 nodes, and the output layer is 1. 

ISWLt

ISWLt-1

ISWLt-2

ISWLt-3

ISWLt-4

ISWLt-5

ISWLt-6

∆SWLt+1

 

   Input layer        Hidden layer    Output layer 

Figure 5.6. BP Neural Network for Combination of the Change of Water Level and 

Stage of Water Level Model (7-3-1) Architecture 
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 Discussion 

In order to find the best model of the change of reservoir water level stage based on 

performance, the good performances of the three models with different architectures 

are defined using MSE. The performance of MSE in testing data demonstrates the 

differences between actual and observed data with different window sizes as shown in 

Figure 5.7, Figure 5.8 and Figure 5.9.  

 

   

Figure 5.7. The Difference of Actual and Observed Data for Water Level Model 

(Window Size 4)  
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Figure 5.8. The Difference of Actual and Observed Data for the Change of Water 

Level and Stage of Water Level Model (Window Size 2) 

 

Figure 5.9. The Difference of Actual and Observed Data for the Combination of the 

Change of Water Level and Stage of Water Level Model (Window Size 7) 
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From Tables 5.2, 5.5, and 5.8 from the previous section, the best time duration of delay 

of each model for water level model is window size 4, the change of water level and 

stage of water level model is window size 2, and the combination of the change of 

water level and stage of water level model is window size 7. Window sizes 2, 7 and 4 

represent the time delay of two days, seven days and four days. The best capture of 

time delay is the smaller window size of captured two days previous.   

 

Based on Figure 5.10, it shows the comparison of MSE between the models (best time 

duration). Overall, the change of water level and stage of water level model gives a 

better result compared with the other models. The smallest error gives a good 

performance and the highest error gives the worst performance. A study by Arbain 

and Wibowo (2012b) defined the good performance using MSE to define the accuracy 

when the smallest MSE value is considered the best model. The error of training has 

not much difference compared with the other models, where the highest error is 

0.15990066 (water level model) and the lowest errors are 0.150000959, and 

0.009899701 (the change of water level and stage of water level model). However, the 

results of validation and testing are obvious different values of errors between each 

model. The error of the models can be seen in Figure 5.10. 
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Figure 5.10. Comparison of MSE in Training, Validation and Testing between the 

Models 

As seen in Figure 5.11, it shows the percentage of correctness in training, validation 

and testing among the models. The lowest and highest percentages in training are 

91.46% and 92.5%. The lowest and highest percentages in validation are 90.66% and 

100%, while for testing, there is not much difference, which are 90.11% and 100%. 

The different values of training, validation and testing are 1.04%, 9.34% and 9.89%. 

The percentage of correctness has given a small difference between the lowest and 

highest results. The neural network has obviously learned the data very well. For the 

water level model and the change of water level and stage of water level model, the 

different value of training is very small, which is 0.19%, and the validation and testing 
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give 100%. However, the change of water level and stage of water level model has 

been chosen as the suitable model to forecast the change of reservoir water level stage, 

where the result of the change of water level and stage of water level has the lowest 

error. 

 

 

Figure 5.11. Comparison Percentage of Correctness in Training, Validation and 

Testing between the Models. 

The neural network parameters are obtained from the models with the best time 

duration. The architecture of the BP neural network achieved for the change of water 

level and stage of water level model is 4-17-1. From Figures 5.10 and 5.11, ANN with 

4-17-1 architecture uses the changes of reservoir water level and stage of reservoir 

water level model, which gives a better result compared to the others. The BP neural 

network parameters of each model are shown in Table 5.10. 
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Table 5.10 

 

Comparison of Neural Network Parameters between Models 

Model Architecture Learning Rate Momentum 

Water Level Model 

 
4-21-1 0.9 0.3 

The Change of 

Water Level and 

Stage of Water 

Level Model 

4-17-1 0.7 0.7 

 

Combination of the 

Change of Water 

Level and Stage of 

Water Level Model 

7-3-1 0.1 0.1 

 

Based on the previous studies (Nwobi-Okoye & Igboanugo, 2013; Rani & Parekh, 

2014b) using ANN, the performance of error using the change of water level and stage 

of water level model is better compared to both of the studies. According to the 

statistical evaluation, the RMSE was 0.92, in which the mean in the MSE was 0.8464 

compared to the change of water level and stage of water level for the testing and 

validation data, which was zero error. However, in the training data, it was 

0.150000959. Furthermore, according to a study by Nwobi-Okoye and Igboanugo 

(2013), the error in the four input neural network models was 0.062 compared to the 

change of water level and stage ofwater level, which was zero on the testing data, and 

it makes the change of water level and stage of water level much better. The input data 

for both studies are different even though the same techniques have been used. The 
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previous studies can be referred in Table 2.4 in terms of input, output, techniques and 

result of each studies.  

In making the reservoir water release decision, the reservoir water level had been one 

of the evaluation and measures for the reservoir operator to monitor the changes of 

water level. The changes of reservoir water level can be divided into two conditions: 

the increase or decrease of observed reservoir water level. The reservoir operator 

observes the changes of water level, whether the increase or decrease of water level 

can cause the changes of flood stage. For example, the data on 10 September 2011 

displayed the water level of 28.830 meters, which is in the normal stage, and on the 

next day, the water level increased 0.19 meters to 29.020 meters and the stage also 

increased to alert following a day after that date, thus, the trend of data increased. The 

reservoir operator monitors the trend of data and seeks advice from the superior officer 

before making any decisions. The decisions are made by the superior officer in terms 

of the amount of water release, and the opening and closing of gates based on the stage 

of reservoir water level. However, an early decision of water release can assist the 

reservoir to reserve space for incoming inflow according to heavy rainfall in the 

upstream. On the other hand, flood risks in the downstream can be minimised due to 

the controlled capacity of water release.   
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 Summary 

In this chapter, the developments of modelling and experimental results of forecasting 

models are performed. The original data of the reservoir water level from Timah Tasoh 

has been prepared using the modification of the sliding window algorithm. The 

performances of models are evaluated based on MSE and percentage of correctness 

results. There are three models with six different architectures developed and trained 

using the BP neural network.  

The first model is developed based on previous studies with actual reservoir water 

level, the second model is built with the changes of reservoir water level and stage of 

reservoir water level, and the third model with the changes of reservoir water level and 

stage of reservoir water level as separate inputs. The finding of this study has shown 

that the change of reservoir water level and stage of reservoir water level model 

produced the acceptable performance with training of 92.5%, and both validation and 

testing are 100%. The result of error with training is 0.150000959 and both validation 

and testing are 0. The result has shown that dataset 1 is formed with window size 2, 

where it represents the two days observation of time duration for the delay. 
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CHAPTER SIX 

CONCLUSION 

This chapter describes the conclusion of the study by the following sections: Section 

5.1 asserts the contribution of the study, Section 5.2 discusses the limitation of the 

study, and Section 5.3 describes the recommendations for future work. 

 Research Summary 

This study focused on the forecasting model for the change of stage of reservoir water 

level on the Timah Tasoh Dam, Perlis as a case study. The reservoir water level data 

has been collected from DID, Perlis. In this study, there are three models (the reservoir 

water level model, the change of reservoir water level and stage of reservoir water 

level model, and the combination of the change of reservoir water level and stage of 

reservoir water level model) developed with six different architectures, where each 

model has been trained using a multilayer perceptron BP neural network. The sliding 

window algorithm has been modified according to the purpose of study, and used to 

segment the data based on the number of days of delay in the change of reservoir water 

level. The experiment results show that the change of reservoir water level and stage 

of reservoir model gives a better performance when the MSE and percentage of 

correctness are compared with the other two models. The second days previous of time 

delay to observe the reservoir water level uses the change of reservoir water level and 

stage of reservoir water level variables.  
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 Research Contribution 

This study focused on a forecasting model for the changes of stage of the reservoir 

water level. The preparation in the input data for model development is vital to provide 

the best model. The formation of the temporal pattern has been prepared with the 

modification of sliding window based on the changes of stage of reservoir water level. 

In developing the model, the back propagation algorithm is used because of its ability 

to learn the pattern to obtain the balance response to the input pattern. 

The experiments are conducted based on the three models. The experimental results 

show that the second model with more data input produces better results when 

compared to less numbers of data input. The models are evaluated based on MSE and 

percentage of correctness. 

As explained in Chapter 1, the aim of this study is to develop a forecasting model for 

the change in the stage of reservoir water level. The sub-objectives to support the main 

objective of the study are as follows:  

Research Objective 1: 

The first objective is to propose a method to extract the temporal pattern for the change 

of reservoir water level that affects the reservoir water level stage. The availability of 

data from the first phase (data preparation) is to construct the temporal patterns. Data 

preparation consists of three phases, such as data selection, data cleaning and data 

transformation, which are discussed in Chapter 3, Section 3.1.1. The temporal patterns 
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are produced using the modified sliding window technique. The data is segmented 

based on the changes of stage of reservoir water level.   

 

Research Objective 2: 

The second objective is to formulate a forecasting model for the change in the stage 

of the reservoir water level. The model development deployed the BP Neural Network 

algorithm to define the parameters: hidden layer, hidden unit, learning rate and 

momentum rate. The overall process is discussed in Chapter 3 (Section 3.1.3) and the 

best parameters are discussed in Chapter 4 (Section 4.2). 

 

Research Objective 3: 

The third objective is to evaluate the performance of the forecasting model. The 

performances are evaluated using statistical criteria that are MSE and percentage of 

correctness. The results of the best model performance are discussed in Chapter 4 

(Section 4.3). 

 Limitation 

The limitations of this study are as follows: 

 

1. This study focuses on the Timah Tasoh reservoir as the case study. The data from 

other reservoirs cannot be used in this study as those reservoirs have different 

purposes, characteristics and operational procedures. However, it can be extended 

and adapted with other reservoir data.  
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2. The hydrological and operational data recorded at Timah Tasoh is of daily basis. 

Therefore, the proposed model has been designed for the next day forecasting. 

Next hour forecasting is not applicable. If the availability of data in hours is 

obtained, maybe more details and precise information will give better results than 

in daily data. 

 Future Work 

The model has been trained using the water level data from the Timah Tasoh Dam, 

Perlis, Malaysia. Even though this study has achieved the research objectives, 

however, there are further improvements for the model as explained below:  

1. A further study on rainfall forecasting and the forecasting of the total amount of 

releasing water from the dam and the opening or closing of the spillway gate can 

be carried out to enhance the changes of stage of reservoir water level prediction 

model, and then the changes of stage can be predicted much earlier. Hence, it can 

improve the changes of stage of reservoir water level prediction. 

2. The range of daily basis is very long, however, in future, if the availability of data 

for the water level data includes the scale of rainfall and data telemetry in hourly 

rates, it will be much easier to predict in a short period. 

Finally, the existing model creates a reservoir water level prediction based on the 

availability of data and techniques as mentioned in Table 2.4. This study is an 
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inspiration of existing models, where it focuses on the changes of flood stage, whether 

the probability of water increases or decreases, which affects the flood stage. 
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