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Abstrak

Banyak permasalahan yang timbul daripada pelbagai aplikasi kehidupan nyata boleh
menjurus kepada model matematik yang dapat diungkapkan sebagai masalah nilai
awal (MNA) dan masalah nilai sempadan (MNS) untuk persamaan pembeza biasa
(PPB) peringkat pertama dan kedua. Masalah ini mungkin tidak mempunyai
penyelesaian analitik, dengan itu kaedah berangka diperlukan bagi menganggarkan
penyelesaian. Apabila sesuatu persamaan pembeza diselesaikan secara berangka,
selang pengamiran dibahagikan kepada subselang. Akibatnya, penyelesaian
berangka pada titik grid dapat ditentukan melalui pengiraan berangka, manakala
penyelesaian antara titik grid masih tidak diketahui. Bagi mencari penyelesaian
hampir antara dua titik grid, kaedah splin diperkenalkan. Walau bagaimanapun,
kebanyakan keadah splin yang sedia ada digunakan untuk menganggar penyelesaian
bagi MNA dan MNS yang tertentu sahaja. Oleh itu, kajian ini membangunkan
beberapa kaedah splin baharu yang berasaskan fungsi splin polynomial dan bukan
polynomial bagi menyelesaikan MNA dan MNS umum yang berperingkat pertama
dan kedua. Analisis penumpuan bagi setiap kaedah splin baharu turut dibincangkan.
Dari segi pelaksanaan, kaedah Runge-Kutta tersurat bertahap empat dan berperingkat
keempat digunakan bagi mendapat penyelesaian pada titik grid, manakala kaedah
splin baharu digunakan untuk memperoleh penyelesaian antara titik grid. Prestasi
kaedah splin yang baharu kemudiannya dibandingkan dengan beberapa kaedah splin
yang sedia ada dalam menyelesaikan 12 masalah ujian. Secara umumnya, keputusan
berangka menunjukkan bahawa kaedah splin baharu memberikan kejituan yang lebih
baik daripada kaedah splin yang sedia ada. Oleh itu, kaedah splin baharu adalah
alternatif yang berdaya saing dalam menyelesaikan MNA dan MNS berperingkat
pertama dan kedua.

Kata kunci: Interpolasi, Keadah splin, Masalah nilai awal, Masalah nilai sempadan,
Persamaan pembeza biasa.



Abstract

Many problems arise from various real life applications may lead to mathematical
models which can be expressed as initial value problems (IVPs) and boundary value
problems (BVPs) of first and second ordinary differential equations (ODEs).These
problems might not have analytical solutions, thus numerical methods are needed
inapproximating the solutions. When a differential equation is solved numerically,
the interval of integration is divided into subintervals.Consequently, numerical
solutions at the grid pointscan be determined through numerical computations,
whereas the solutions between the grid points still remain unknown. In order to find
the approximate solutions between any two grid points, spline methods are
introduced. However, most of the existing spline methods are used to approximate
the solutions of specific cases of IVPs and BVPs. Therefore, this study develops new
spline methods based on polynomial and non-polynomial spline functions for
solving general cases of first and second order 1\VVPs and BVPs. The convergence
analysis for each new spline method is also discussed. In terms of implementation,
the 4-stage fourth order explicit Runge-Kutta method is employed to obtain the
solutions at the grid points, while the new spline methods are used to obtain the
solutions between the grid points. The performance of the new spline methods are
then compared with the existing spline methods in solvingl2 test problems.
Generally, the numerical results indicate that the new spline methods provide better
accuracy than their counterparts. Hence, the new spline methods are viable
alternatives for solving first and second order IVVPs and BVPs.

Keywords: Interpolation, Spline method, Initial value problem, Boundary value
problem, Ordinary differential equation.
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CHAPTER ONE

INTRODUCTION

1.1 Background of the Study

Spline functions have been rapidly developed as a result of their applications
usefulness. Spline functions with their various categories have many high quality
approximation powers as well as structural properties such as zero properties, sign
change properties and determinental properties (Dold & Eckmann, 1976). There are
many applications of spline functions in applied mathematics and engineering. Some
of these applications are data fitting, approximating functions, optimal control
problems, integro-differential equation and Computer-Aided Geometric Design
(CAGD). It is important to note that programmes based on spline functions have

been embedded in various computer applications.

A common consensus is that, Schoenberg (1946) made the first mathematical
reference to spline in his interesting article, and this probably was the first time that
‘spline” was used in connection with smooth piecewise polynomial approximation.
However, it is important to note that the ideas of developing splines were originated
from shipbuilding and aircraft industries earlier than computer modeling was
available (Dermoune & Preda, 2014). Then, naval architects faced the necessity to
draw a smooth curve through a set of points. The answer to this challenge was to put
metal weights (called knots) at the points of control so that a thin metal or wooden
beam (called a spline) would be bent through the weights (see Figure 1.1). Bending

splines from physicist’s point of view was important as the weight has some greatest
1



influence at the contact point but further smoothly along the splines. The draftsman
added some more weights in order to exercise more control on specific region of the
splines. The scheme poses some enormous challenges especially with the exchange
of data, and hence, arise the need to describe the shape of the curve mathematically.
Mathematically, the equivalence of draftsman’s wooden beam is actually cubic
polynomial splines. Since then, splines have achieved more importance especially
with the evolution of computer as they were used first to replace polynomials in the
interpolation and then as an instrument to build flexible and smooth shapes in

computer graphics.

A thin metal or wooden beam

N g

The weights

T A,

Points of control

Figure 1.1. A thin metal or wooden beam bent through the weights

During the 1960s and 1970s, there were articles which made substantial
contributions to the splines developments such as Schoenberg (1958), Birkhoff and
Garabedian (1960), Ahlberg and Nilson (1963), Loscalzo and Talbot (1967), Rubin
and Khosla (1976), and Sastry (1976). Though in the 1960s, univariate splines were

intensely studied, but the in-depth understanding of it came to light in the 1970s,
2



which gave rise to its treatments in various books. Furthermore, these are some
books which discussed splines completely, including Ahlberg, Nilson and Walsh
(1967), Prenter (1975), Schumaker (1981), Shikin and Plis (1995), Spath (1995), and
De Boor (2001). Notably, some authors in their earliest articles used spline functions
to obtain smooth approximate solutions of ordinary differential equations (ODEs),
for examples, Loscalzo and Talbot (1967), Bickely (1968), Albasiny and Hoskins
(1969), Crank and Gupta (1972), Usmani and Warsi (1980), Sallam and Karablli
(1996), Al-Said (1998), and Sallam and Anwar (1999, 2000). All of these articles
demonstrate that splines of various degrees can be used to approximate the solutions
of first order and second order initial value problems (I\VVPs) as well as second order
boundary value problems (BVPs). Nowadays, many researchers are still publishing

their works on this subject, which make this topic remains an active area of research.

Lately, non-polynomial spline methods become a useful tool which efficiently
compute accurate solutions of ODEs. Many articles proposed non-polynomial spline
methods to find the numerical solutions of second order BVPs, such as Hossam,
Sakr and Zahra (2003), Khan (2004), Ramadan, Lashien and Zahra (2007),
Rashidinia, Mohammadi and Jalilian (2008), Hamid, Majid and Ismail (2010),

Jalilian (2010), and Zarebnia and Sarvari (2012, 2013).



1.2 Existence and Uniqueness of Solutions to Initial Value Problems for First

Order Ordinary Differential Equations
The first order initial value problems of ODE is generally represented in the
following form
u'=f(x,u), u(@=n. (1.2

The most important theorem here is the existence and uniqueness theorem which states
the sufficient conditions for a unique solution of (1.1) to exist. This theorem is given

as below (Lambert, 1991).

Theorem 1.1 (Existence of unique solution of a first order IVP). Let f(x,u), where
f R xN — R, be defined and continuous for all (X,u) in the region D defined by

a<x<h,—co<u<oo, aandb are finite, and let there exist a constant L such that
| u)— f(x,u®) <LJju—u%, (1.2)

holds for every (X,u), (X,u*) € D. Then for any 7 € R, there exist a unique solution
u(x) for the problem (1.1) where u(x) is continuous and differentiable for all

(x,u) e D.

The requirement (1.2) is known as Lipschitz condition and the constant L as a
Lipschitz constant. If f(x,u) is differentiable with respect to u, then from the mean

value theorem

f(x,u)— f(x,u*) :%u’a)(u —u%), (1.3)



where u is a point in the interior of the interval whose end-points are u and u*, and

(x,u), (x,u*) are both in the region D (Lambert, 1973). Therefore, if we choose

' (1.4)

(x,u)eD|

then condition (1.2) of Theorem 1.1 is satisfied.

If there are more than one first order ODEs that need to be solved at one time, then
we deal with a system of m simultaneous first order ODEs in m dependent variables

U, U,,...,u,. If each of these variables satisfies the initial conditions that are

prescribed at the same point, then we have an IVP for a first order system (Lambert,
1991)

u; = f,(x,u,U,,---,Uy,), U, (@)=n,

UEZfZ(X,Ul,UZ,”',Um): u2(a):772’

(1.5)
u. =Tt (xu,u,,---,u.), u.(@)=n,.
For simplicity, system (1.5) can also be expressed in the following vector form
u' =f(x,u), u(a)=n, (1.6)
where
ul
u
u=|.7
u



f,(x,u;,uU,,---,u.)

fZ(X’ul’UZ’“"um)

f(x,u) = : :
fn (X U, g, U)
and
w@ ) (m
u(a) = “f(a) _| " =y
U.m(a) 77.m

Theorem 1.1 readily generalizes to give necessary conditions for the existence of a
unique solution to the system (1.6); where the region D now is defined by
as<x<hb, —w<u, <owfori=12,...,m, and conditions (1.2) is replaced by the

condition
[fxu)—f(x,u¥)| <L Ju—u*, 1.7
where (x,u)and (x,u*) arein D, and || denotes a vector norm (Lambert, 1973). If

f(x,u) is differentiable with respect to u, then from the mean value theorem
£(x,u) —F (x,u*) = %(u —u®), (1.8)
u

where the notation implies that each row of the Jacobian af (x,u)/éu is evaluated at

different mean values which are internal points of the line segment from
6



(x,u) to (x,u*), all of which are points in the region D (Lambert, 1973). Therefore,

if we choose

(x,u)eD

then condition (1.7) is satisfied (Lambert, 1991).

Some of the solutions of (1.1) and (1.6) can be obtained analytically. When an I\VP
can be solved analytically, then this particular problem has one exact solution for
(1.1) and m exact solutions for (1.6). Numerical integration formulae for (1.1) and
(1.6) are used when exact solution(s) cannot be obtained. Numerical integration
formulae will give approximate solutions for the exact solutions. There are three
popular integration methaods for solving (1.1) and (1.6). We can use either linear
multistep method, predictor-corrector method or Runge-Kutta method to obtain the
approximations for IVPs (1.1) and (1.6). These numerical methods are classical
numerical methods and can be found in some well known text books on numerical
solution of ODE, see Henrici (1962), Milne (1970), Gear (1971), Stetter (1973),
Lambert (1973), Jain (1984), Butcher (1987), Fatunla (1988), Lambert (1991),
Hairer and Wanner (1991), Hairer, Norsett and Wanner (1993), Iserles (1996), and

Butcher (2003).



1.3 Existence and Uniqueness of Solutions to Boundary Value Problems for

First and Second Ordinary Differential Equations
Consider the general form of the first order BVPs given by

u' =f(x,u),
(1.9
Au(a) =a, Bu(b) =8,

where A and B are mxm matrices. According to Holsapple, Venkataraman and
Doman (2004), it is difficult to set up an existence and uniqueness theorem for first

order BVPs. Therefore, in this work, we assume that the existence and uniqueness of
the solution for equation (1.9) is known over the interval [a,b]. Moreover, we also

assume that the boundary conditions for equation (1.9) are sufficient for the solution

to exist.

Now, consider the general form of the second order ODE given by
u"=f(xu,u’, (1.10)

subject to the mixed boundary conditions of the form

au(@)+a,u’'(a) =A |[a|+|a,|#0,

' i 2l +fa (1.11)
byu(b) +b,u’(b) = B, o, +|b,| # 0,

where a;, a,,b,,b,, Aand B are given constants. We note that (1.11) becomes the

Dirichlet boundary conditions when a, =b, = 0. On the other hand, (1.11) becomes

the Neumann boundary conditions when a, =b, =0.

The theorem which states the sufficient conditions for existence and uniqueness of

the solution of the second order BVP (1.10) - (1.11) is given below (Keller, 1966).



Theorem 1.2 (Existence of unique solution of a second order BVP). Let f(x,u,u’)

in (1.10) have continuous derivatives which satisfy

of (x,u,u’)

>0, and
ou

i douu)
ou’

for some M >0,a<x<b and all continuously differential functions u(x). Let the
constants a,, b, satisfy
a >0,b,>0,i=12;anda, + b, >0.

Then a unique solution of the second order BVP given by (1.10) and (1.11) exists for

each A and B.

Consider the following corollary which is a special case of (1.10) and (1.11), where
f(x,u,u’)=pJu’+q(x)u+r(x) with the boundary conditions

u(a) = Aand u(b) = B. This corollary is given as below (Farago, 2014).

Corollary 1.1 Assume that f(x,u,u’) is a linear non-homogeneous function.

Consider the second order linear BVP of the form
u”=f(xu,u’)=pu+q(x)u+r(x), a<x<b,

subject to the condition

u(a) = A u(b) =B,



where p(x),q(x) and r(x)are given continuous functions on [a,b]. If g(x) >0on

[a,b], then the given second order linear BVP has a unique solution.

In general, the exact solution of the second order BVPs given by (1.10) subject to the
boundary conditions (1.11) does not exist or it is very difficult to obtain. Therefore,
numerical integration formulae are needed to solve problem (1.10) with the
boundary conditions (1.11). There are three popular integration methods for problem
(1.10) with the boundary conditions (1.11). For examples, we can either use finite
difference method, finite element method or shooting method to obtain the
approximations for problem (1.10) - (1.11). These numerical methods can be found
in some well known text books on numerical solutions of second order BVPs, see
Zienkiewicz and Marice (1971), Reddy (1993), Gupta (1995), Rao (2001), Stoer and

Bulirsch (2002), Press (2007) and Chapra and Canale (2010).

1.4 Preliminaries

In this section, we introduced some preliminary definitions, theorems and notations

that will be used throughout this work.

1.4.1 Some Properties of Vector and Matrix

In order to analyze and measure the size of the errors in vector and matrix forms, we

introduce the following properties.

10



Definition 1.1 (Ghufran, 2010). The norm of a vector v is a nonnegative function

1] : R" — R with the following properties:
i.  |l|>O0when v=0and|v]|=0iff v=0inR",
ii. ||a 1)|| = |a| ||1)|| forall « e R, and

i, u+o] <|u]+ o forall u, v e 5"

Definition 1.2 (Ghufran, 2010). A matrix norm is a nonnegative real valued function

[ : R™" — R, if for all A BeR™", it satisfies the following three axioms:
i. ||A]>0when A=0and|A|=0iff A=0,

i. JaA|=|df|A]|foralle e R,

iii. ~ [A+B|<[A]|+]B|forall A BeR™.

One of the most common vector norms used in numerical linear algebra is infinity

norm (oo- norm), and it is defined in Definition 1.3.

Definition 1.3 (Cowlishaw & Fillmore, 2010). The o- norm of a vector v (|| ) is

defined by

n
ol = maxdo .

Similarly, we defined the infinity norm (- norm) for the matrices in Definition 1.4.
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Definition 1.4 (Cowlishaw & Fillmore, 2010). The - norm of the matrix A (

IA|. ) is defined by

AL =max3 fa, |

Definition 1.5 (Engeln-Miillges & Uhlig, 2013). A square matrix A is said to be

diagonally dominant matrix if ‘aii‘ > Ziﬂ_‘aij‘ for all i.

Definition 1.6 (Engeln-Miillges & Uhlig, 2013). A square matrix A is said to be
strictly diagonally dominant matrix if ‘aii‘ > Ziij ‘ai j‘ for alli.

Theorem 1.3 (Varah, 1975). Assume that A is strictly diagonally dominant matrix

& _Z#j

by rows and let & = min( a,,[), then A < é.

Theorem 1.4 (Lui, 2012). Diagonally dominant matrices are invertible.

1.4.2 Peano Kernels

We begin this subsection with the expansion of a function f(x) in Taylor
polynomial plus an error term which expressed as an integral. Thus, if f ™% (x)

exists on the interval [a,b], then

f(x)=f(a)+ 1“(a)(x—a)+~--+%(x—a)n +r (),
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X

for a<x<b, where rn(f):%j f ™D (t)(x—t)"dt. Now, we defined the truncated

a

power function in Definition 1.7.

Definition 1.7 (Phillips, 2003). For any fixed real number x and any nonnegative
integer n, we write (x—7)", which is called a truncated power function (TPF), to

denote the function of z defined for —oo < 7 < oo as follows:

(x—17)" :{(x—r)” rex

0 T2>X

By the introduction of the TPF, the error term r. (f) can be written as

G T TOYOR

Thus, by imposing the TPF for (x —7)", the terminals of the integration in r, (f) are

independent of x. Therefore, this leads us to present Theorem 1.5.

Theorem 1.5 (Sarfraz, Hussain & Nisar, 2010). If f eC"[a,b], f™(x)

absolutely continuous, then
b
E(f)=[ " (2)R, [(x-7)]]dr,

where the expression R, [(x—7)"] is called the Peano kernel.

We note that the Peano kernel function can be rewritten on the interval [a,b] as

13



r(z,x), a<r<xX,

R, [(x~1)"] ={

s(r,X), x<z<h.

In order to estimate the interpolation error using the Peano kernel theorem in

Theorem 1.5, we introduce Theorem 1.6.

Theorem 1.6 (Li, 2007). If f e C™[a,b] and f ™ (x) is bounded, then

dr.

R, [(x-7)!]

1 (n+1) ’
CQ B IR

1.5 Problem Statement and Scope of Study

Many natural phenomena in various fields of sciences and engineering can be
described as mathematical models which involve differential equations. The
mathematical representations for these models could range from very simple model
which consists of a single differential equation to very complex model which
involved more than one differential equations. There is a higher chance for a simpler
model to have a known exact solution; otherwise the mathematics involved may be
so complex that there is little hope in solving the model analytically (Giordano, Fox,
Horton & Weir, 2009). When the exact solutions for differential equations are not

known, then we need to approximate them numerically.

When solving differential equations numerically, we have to discretize the interval
of integration into smaller sub-intervals. The size of the sub-intervals can be equally
fixed (in the case of fixed step-size strategy) or they can be varying (in the case of

variable step-size strategy). For both cases, sub-intervals are separated by grid points
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based on the step-size. Therefore, numerical solutions fall on the grid points are
known through numerical computations, whereas the solutions fall between any two
subsequent grid points are still unknown. Spline methods are introduced to find the
approximate solutions fall between any two subsequent grid points. The main
advantage of spline methods is, once the splines have been determined, the

numerical solutions at any locations over the interval of intergration are available.

From the literature, spline interpolation techniques or spline methods are widely
used to approximate the numerical solutions of second order BVPs (Chang, Yang &
Zhao, 2011). Moreover, we have observed from the literature that most of the recent
works about the spline methods were developed to approximate special cases of
second order BVPs. These cases can be sorted out into four categories; that are

. u"(x) =g(X)u(x) +r(x), as in Ramadan et al.(2007), Rashidinia, Jalilian and
Mohammadi (2009), Zahra, Abd El-Salam, El-Sabbagh and Zaki (2010),
Srivastava, Kumar and Mohapatra (2011), and Chen and Wong (2012).

i, u"(x) = p(x)u’(x) +g(x)u(x) +r(x), as in Hamid et al. (2010), Chang et al.
(2011), Hamid, Majid and Ismail (2011), Kalyani and Rama Chandra Rao
(2013).

. —(pYu’'(x))’ =r(x), as in Caglar, Caglar and Elfaituri (2006) and
Rashidinia et al. (2008).

iv. u"(x)= f(x,u(x)), as in Al Bayati et al. (2009), Caglar, Caglar, Ozer,
Valaristos and Anagnostopoulos (2010), Liu, Liu and Chen (2011), El hajaji,

Hilal, Mhamed and Jalila (2013), and Ogundare (2014).
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Moreover, while going through the literature, it is noticed that the majority of the
spline methods used to approximate second order BVPs subject to Dirichlet
boundary conditions and few for second order BVPs subject to Neumann boundary
conditions. On the other hand, many authors used different type of spline methods to
approximate the solutions of second order IVPs (Al Bayati, Saeed & Hama-Salh,

2009).

However, for the first order I\VVPs, it is proven in Loscalzo and Talbot (1967) that for
spline methods of degree higher than three, those methods are divergent. Moreover,
for the second order IVPs, Micula (1973) showed that every spline method of degree
higher than four are divergent. Nevertheless, we noticed that the divergence can be
avoided if the spline function appeared in the spline method is carefully defined. To
the best of our knowledge, we did not find any spline method used to approximate
first order BVVPs during our investigation of the spline methods in the literature

review.

Through our examinations of the current developments of spline methods in the
literature, we identify a few gaps which can be fulfilled in this study:
i.  The necessity to develop new spline methods that are based on higher degree
polynomial spline functions and non-polynomial spline functions,
ii. New spline methods which guarantee convergence even if higher degree
spline functions are employed, and
iii.  New spline methods that are capable in solving the following problems with

improved numerical accuracy:
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. General first order IVPs (mixtures of autonomous, non-

autonomous, linear, nonlinear)

u'(x) = f(x,u(x)), u(@)=n. (1.12)

. First order BVPs of the form

u’'(x) = A(X)u(x) + B(x),
(1.13)
Au(a) = a, Bu(b) = .

. General second order IVPs (mixtures of linear, nonlinear,

with/without the presence of u’(x))

u"(x) = f(x,u(x),u’(x)),

(1.14)
u(@ =aandu’(a) = p.

. General second order BVPs (mixtures of linear, nonlinear,

with/without the presence of u’(x))
u”(x) = f (x,u(x),u’(x)), (1.15)

subject to u(a) =, and u(b) = f,; or u'(a) =, and u'(b) = g,.

1.6 Objectives of the Study

The main objective of this study is to develop new spline methods for solving first

and second order IVVPs and BVPs numerically, which can be accomplished by:

Developing two new spline methods based on polynomial spline functions
and two new spline methods based on non-polynomial spline functions.

Analyzing the convergence properties for each of the proposed spline
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iii.  Comparing the performance of the proposed spline methods in terms of
errors with other existing spline methods in solving first and second order

IVPs and BVPs.

1.7 Significance of the Study

New convergent spline methods for solving first and second order ODEs have been
introduced in this study. This study shows that the newly developed spline methods
do provide alternatives to current spline methods found in the literature. We also
proved that the same spline methods can be used for both first and second order IVPs
and BVPs, rather than having different spline methods to treat different types of
problems separately. This will reduce the number of spline methods that need to be
developed. Finally, Loscalzo and Talbot (1967) showed that spline methods of
degree greater than three could produce divergent numerical solutions for first order
IVPs. Moreover, Micula (1973) proved that spline methods of degree higher than
four might generate divergent numerical solutions for second order IVPs. The new

spline methods developed in this study do not suffer from these drawbacks.

1.8 Thesis Organization

This thesis consist of six chapters. Chapter One covers a general introduction of the
study. It presents the background of this study, existence and uniqueness theorems
involving first and second order ODEs, preliminaries, problem statements and scope

of study, objectives of the study, significance of the study and thesis organization.
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In Chapter Two, the literature review focus on the discussions of existing spline

methods in solving first and second order 1\VVPs and BVPs.

In Chapter Three, new quartic and quintic spline methods are developed to
approximate the solutions of the first and second order IVPs and BVPs. Convergence

analyses of the two proposed spline methods are presented.

Chapter Four presents the construction of new cubic and quintic non-polynomial
spline methods for the numerical solutions of the first and second order I\VVPs and
BVPs. Moreover, the convergence analyses for each proposed spline methods are

established.

Chapter Five covers the implementations of the new proposed spline methods on 12
test problems found in the current literature. These test problems consist of first and
second order IVPs and BVPs with known exact solutions. Using the infinity error
norms, the accuracy and the applicability of the proposed spline methods are

examined through the comparisons with some existing methods.

Finally, Chapter Six contains conclusions and some suggestions for future research.
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CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

The mathematical modeling of many problems in science and engineering leads to
ODEs. Depending upon the form of the boundary conditions to be satisfied by the
solution, problems involving ODEs can be divided into two main categories, namely
IVPs (conditions prescribed at one end of the domain of analysis) and BVPs
(conditions prescribed at both ends of the domain of analysis). Analytic solutions for
these problems are not generally available and hence numerical methods must be
resorted to (Mai-Duy & Tran-Cong, 2001). In this chapter, reviews of existing spline
methods for the numerical solutions of the first order I1VPs, the first order BVPs,

second order I\V/Ps and second order BVPs are presented.

2.2 Numerical Methods Based on Spline Functions

Literatures show that some researchers such as Schoenberg (1958), Walsh, Ahlberg
and Nilson (1962), Ahlberg and Nilson (1963) and Ahlberg et al. (1967), started to
study the properties of using spline functions to approximate any function f(x).
According to Haque (2006), spline function can be defined in general as a piecewise
function in which the pieces joined together in a suitably smooth fashion.

(See Figure 2.1).

20



For the remaining of this chapter, we are going to discuss different types of spline
methods for the numerical solutions of first and second order IVPs and BVPs.
Readers should note that every spline in this discussion is defined on the partition P

of the interval [a,b], unless mentioned otherwise. This partition P is defined as

follows

P:{a:X0<X1<-.-<Xn:b}’

- b-a . .
where x;, =a+ih,i=012,...,n, and h:T is constant step size.

Xo Xy X, X Xisn  Xio Xn_2 Xna X, X

Figure 2.1. A spline function of degree m composed of n segments joined together at
the grid points

21



2.2.1 Spline Methods for Solving First Order Ordinary Differential Equations

In the literature, Loscalzo and Talbot (1967) constructed a class of spline of degree

m (m=>2),S;(x), to find the approximate solution for (1.1) on the interval [0,b].

The construction of this spline is started on the subinterval [0,X,], by defining the

first component of S, (x) as follows

_ ’ 1 (m-1) m-1 i m
So(x)—u(0)+u(0)x+...+—(m_1)!u (O)x +m!a0x , (2.1)

where a, is an undetermined coefficient. To determine the value of a,, S,(x)
should satisfy the IVP at x=h, this yields the equation S;(h) = f(h,S,(h)) which
solved for a,. The second component of S,(x) will be determined on the subinterval

[X,X,] as
(0= LsWmy-hm i+ La by 22)
T m!

In order to find the wvalue of a, S;(x) should satisfy equation
S/(2h) = f(2h,S,(2h)). By continuing in the same way, a spline function S;(x),
which satisfied the equation S/(vh)= f(uh,S;(vh)), v=01,...,n, is obtained.
Moreover, they investigated three cases, i.e. m=2,3and m>4. It turns out that:
when m=2, this quadratic spline is the trapezoidal rule; when m=3, this cubic

spline is nothing but another way of writing the Simpson’s rule; and the method is

divergent if m>4, as h—0.
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Patricio (1978) used the cubic spline method presented in Ahlberg et al. (1967),

which is given on the subinterval [x;,X; ,] as

- B O) gy (o) s

(2.3)
(X —X)°[2(x =) +h]

(x=%)*[2(%;. =) + ]
h? ’

+ u(xi) hi3

+ U(Xi+l)

to approximate the numerical solution of the first order IVP (1.1), where

S/ = f(x;,5;(x,)). The order of convergence of the spline method (2.3) is proved to

be O(h*). Moreover, systems of first order IVPs as in (1.6) can be solved using this

method.

Sallam and Anwar (1999) created a quadratic spline method for solving the first

order I\VP (1.1). They wrote the quadratic spline method as

s(x) =s; +hs{ A(t) + hs;, ; B(1), (2.4)
where t=2"X g =s'(x,) A(t)—t—i B(t)—i and pe€(01]. The
R Y A Y o

continuity conditions are used to obtain the following relations

S. = Si—l + h(l— i)S:_]_ + L f (Xi—1+ﬂ ' Si—1+,3)’

' 2p 2p

and
[ 1 ! 1
s/ = (1_E)si_l +E f (Xi_1+ﬂ,3i_1+/3).

They confirmed that the quadratic spline method (2.4) is of order O(h?), if S>1/2,

and when S <1/2 the method is divergent.
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In Nikolis (2004), a quadratic trigonometric spline method is proposed to
approximate the first order IVP (1.1). This method is defined as a linear combination

of the trigonometric basis functions as
n-1
s(x) = >_C,TB(x), (2.5)
i=2

where the trigonometric basis functions, TB? (x) is defined as follows

L, X=X
sin? (—-

)1 XE[Xi’XHl)!

X=Xy K, — X
sin sin
(—)sin(=5—)

1

TB? (x) = -
sin(h)sin(a)

+sin<xi+32‘ X)sin( ‘zx”l), X € [Xi1 Xi10)s

. X =X
sz(%)v X € [Xi.0 Xi.sl,

Ny otherwise.

Additionally, the order of convergence of this numerical method (2.5) is

demonstrated to be O(h?).

Defez, Soler, Hervas and Santamaria (2005) extended the method in Loscalzo and
Talbot (1967) to approximate the solution of a system of linear first order I\VPs of

the form
u’'(x) = A(X)u(x) + B(x). (2.6)

They expressed the cubic spline method on the first interval [X,, x,], in the form of
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5000 =U0X) U )X Xo) + U ()K= %) 42 ap(X 1) (27)

To determine the value of a, u"(x,) is needed, which can be found by

differentiating u’(x) once in order to obtain
u”(x) = (A'(X) + A>(X))u(x) + A(X)B(X) +B'(X).

The first continuity property is imposed at the point X, , to get

h 2 , 1,
(I __A(Xl))ao I—Z(A(Xl)(U(XO)+U (Xo)h+_u (Xo)hz)
3 h 2! (2.8)
+B(X,) —U'(X,) —u"(x,)h).
Equation (2.8) is solved for a,, and therefore, the spline method (2.7) is totally
determined on the first subinterval. Similarly, they defined the cubic spline method

over the subinterval [x;,x.,],1=12,...,n=1, as

510/ =50,06) + S (k)X =X) 4 8T ()X =1) g (k). (29
Thus, the spline method (2.9) will be completely defined by determining the values
of a; on its corresponding subintervals. Moreover, they revealed that the spline

method (2.9) is of order O(h*).

In Ogundare and Okecha (2008), two spline methods are developed to solve the first
order IVP (1.1). The first method is a quadratic spline method and the second

method is a cubic spline method. The iterative numerical schemes are derived as

U, =U,, +2hf;, (2.10a)
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U, =U, +g(3fi - f.,), (2.10b)

u, =u,, +g(fi + 1), (2.10c)
and

Uiy = 2U; — U +g(fi+1 - fi), (2.10d)

where u, =u(x;) and f, = f(x;,u(x;)). The methods (2.10a) — (2.10c) result from

the quadratic spline method and they are convergent with order O(h*). One the
other hand, the scheme (2.10d) results from the cubic spline method and it gives

convergent solution of order O(h?).

Tung (2013) generalized the cubic spline method proposed in Defez et al. (2005) to
approximate the nonlinear system of first order 1\VVPs (1.6). The cubic spline method

is written on the first interval [X,, x,], as in equation (2.7). Consequently, in order to
find the value of a,, u”(x,) is required. Differentiating u’(x) once to get

of (x,u(x))

+((vecf (x,u(x))' ®1,) ovecu(x)

(- 10900

where ® represents the Kronecker product and |, is the identity matrix of size r.
For a matrix AeC™", we have

vecA=| : | whereA, =
A a

on mk

The continuity of the first derivative is used at the point X, to get the value of a,as
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a, =£2(f(x1,u(x0)+u’(x0)h +lu”(x0)h2 +1u0h3)

h 2! 3 (2.11)
—U'(%,) —U"(X,)h).

Hence, the spline method is fully defined on the first subinterval by solving the

above equation. In the same way, the cubic spline method on any arbitrary

subinterval [x;,%;,,].1=12,...,n=1, is stated as in equation (2.9). Thus, the cubic
spline method will be identified by determining the values of a; on its

corresponding subinterval. The author concluded that the cubic spline method is of

order O(h*).

However, according to the best of our knowledge, there is no previous spline
methods used to approximate first order BVPs. Hence, this is our first attempt to

handle this problem.

The highlights of this section are presented in Table 2.1.
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Table 2.1

Highlights of Literature Review on Spline Methods for Solving First Order IVPs

Authors

Methods

Advantages

Disadvantages

Loscalzo and

Presented a class

of spline methods

These methods are
used to approximate
the solution of (1.1).

Moreover, for

This method is

divergent if m2 4,

Talbot (1967) of degree
m=2 and m = 3, the as h— 0.
m (m>2)
resultant methods are
convergent.
This method

Patricio (1978)

Implemented the
cubic spline
method presented
in Ahlberg et al.
(1967)

approximates the
numerical solution of
the first order I\VP
(1.1). The order of
convergence of the
spline method is
O(h*). Moreover,
systems of first order
IVPs (1.6) can be
solved using this

method.

The accuracy of
the method can
beimproved.

Sallam and
Anwar (1999)

Developed a
quadratic spline
method depending

on a parameter

This method solves
the first order IVP

(1.1). Furthermore,
the quadratic spline

method is of order

o(h?) if f>1/2.

This method is
divergent
when S <1/2.
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Table 2.1

Continued

Nikolis (2004)

Proposed a
quadratic
trigonometric

spline method

This method solves
the first order IVP
(1.1). In addition,
the order of
convergence of this

numerical method

is O(h?).

The method is of
lower accuracy.

Defez et al. (2005)

Extended the cubic
spline method in

Loscalzo and

This spline method
is of order O(h*).

This method is
used to
approximate the

solution of linear

Ogundare and
Okecha (2008)

Talbot (1967) system of first
order I\VP.
The method solve
the general first
order IVP (1.1). The order of
Moreover, the accuracy for these

Developed a class

of spline schemes

based on quadratic
and cubic spline

methods

order of
convergent of the
schemes based on
quadratic spline
method is two,
while for cubic
spline method is
three.

methods is low.
Moreover, they
only consider
linear first order
IVP.




Table 2.1

Continued
For large m, m is
Approximate the the number of
Generalized the nonlinear system of | subintervals, the
cubic spline method | first order I\VVPs method becomes
Tung (2013) _ . ]
proposed in Defez | (1.6). The cubic very complicated
et al. (2005) spline method is of | due to the
order O(h*). Kronecker
product.

2.2.2 Spline Methods for Solving Second Order Initial Value Problems

Consider the following second order ODE of the form
u”(x) = f(x,u(x)), (2.12)

subject to the initial conditions u(a) = « and u’(a) = .

Micula in 1973 followed the approach in Loscalzo and Talbot (1967) in constructing

a class of spline method of degree m, where m is an integer greater than two. The

constructed spline method on the subinterval [x;, x..,] is given by
S 1 (v) m-1 1 m
Si(x) :Z_S (Xi)(x_xi) + am(x_xi) . (2.13)
oo 0! m!

The proposed spline method (2.13) is used for solution of second order IVPs (2.12).
He discovered that the spline method (2.13) diverged when m is greater than four.

Consequently, a spline method of degree three and another spline method of degree
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four are constructed. Moreover, it is proved that these methods are of order O(h®)

and O(h®), respectively.

Sallam and Karaballi (1996) introduced a quartic spline method for solving second

order IVP (2.12). The quartic spline method over the subinterval [x,x ,] is given in

the following form

s(x) =s; +hs! B(t) + h?s/C(t) + h®s/,

i+1

D(t) + h®s"E(t),

where t = 2% 8™ =s™(x;),m=0,1,2and 3,
h

B(t) =t,
c-"6-1)
o -1,
and
E(t) = ts(jz-—z_t)

From the continuity conditions, the following relations are derived

2

L h® _,
si = si—l + hSi—l + E (Sf (Xi_lv Si—l) + f (Xi v S )) + E S

i i-17

2
s =s/,+hs, +2(2 f(Xi4,8i0) + T(X,s))+ %s”’

irvi i-1?

s' = f(x.,s,),
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and
m " 2
Si=-Siu1t H(f (Xir8i) — F(X1,8i4))-
On the first subinterval [0, x,], the starting values for the scheme are chosen to be
s(0) =u(0),
s'(0) =u’(0),
and

§"(0) =u"(0) = £, (O,u(0)) + f,(O,u(0)u’(0).

They verified that the quartic spline method (2.14) is of order O(h*).

Sallam and Anwar (2000) established a quintic spline method for obtaining the

solution of second order I\VVP (2.12). The quintic spline method is considered as

s(X) =s; +hs/ A(t) + h*s/ B(t) + h®s/ ;5 C(t)+h’s/ 5 D(t) + h’s/, E(t), (2.15)

i+l
X=X otm) _ o(m)
where t =——+,s{" =s"(x;),m=0,1and 2,
h

At) =t,

t2  11t* 3t* ot

B-L M st St
2 12 4 40
3 4 5
S S5
2 8 40
3 4 5
Dty =L 321t

4 2 40

and
32



3 4 5
F(t)—t__BL_{_gL
6 8 40

Moreover, the following relations are obtained from the continuity conditions as

S, e =si_l+%hsi’_1 Z;Z; (s |_1)+19;OZ s )
(X 500 g 15,5
S, 1/ :si1+§hs;1 Zf(;‘z f( 5 )+ 22322 s )
—%f(x, /3 |1,3)+ih f(x.,s,),
13h? an?

i =Sy +hsi; + 120 f(Xig i)+ 0 F(Xi_2/3:Si-2/3)

3h? h?
=y i 40 f(Xl -1/3? |l/3)+ f(xl’sl)

14 ! h
7 Fy (F(Xii8i) +3F (X 575081 0/5) +3F (X /5, 81/3)

+ 106.5),

and

SZ: = f(Xa’Sa)’
... 2. 1. .
where a ={i—-1,i —E,I —g,l}. In order to get the solution for the above system,

they selected the starting values at the first subinterval [0, x, ], as follows:
s(0) =u(0), s'(0) =u’(0).

The fourth order of convergence for the quintic spline method (2.15) is verified.
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Najafi, Kordrostami and Esmaeilzadeh (2005) introduced a quartic spline method

and a quintic spline method to solve second order IVP (2.12). The quartic spline

method is expressed on the subinterval [x. ,,X;] as

s(x) =s,, +hs/, B(t)+h?s", C(t) + h*s"D(t) + h®s/", E(t), (2.16)
X=X o) _ o(m _
wheret:T,sj =s"(x;),m=0,12and 3,

B(t) =t,

t?(6-t%)

c=—7

D -1,

and

t4
E(t)=—.
(t) -

Furthermore, the following relations are generated from the continuity conditions

2
"

, h h®
S =S, +hsi,+ E(5f (Xi1:8i4) + £(X;,8:)) +Esi—l’

m

2
Si =S, +hs{, + g (2F(Xiy,Si0) + F(X,8))+ %Si—l'

= (x.5), (2.17)

and

s/'=—-s", + % (F(xir8) — £(X0,814))
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On the subinterval [0,x;], they took the initial values for the system (2.17) as

follows
$(0) =u(0),
§'(0) =u’(0),
and
§"(0) =u"(0) = £, (0,u(0)) + f,(0,u(®) u’(0).

In addition, to solve the system (2.17), the values of s, and s on the right hand side

of system (2.17) are calculated by

h? h?®
S =S, ths; + E Sia T E Sia
and
r_ SiTSia
= )
Xj — Xiq

respectively. On the other hand, the quintic spline method is expressed in the form
s(x) =s,_, +hs/, B(t)+h?s!", C(t) + h?s,,, D(t) + h?s!,,, E(t) + h’s’F(t), (2.18)
where t= % si™ =s™(x;),m=0,1and 2,
B(t) =t,

2 3 4 5
Ct) = % 1wt 3t ot

12 4 40°

3 4 5
by = 3 18t 2n
2 8 40
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3t® 3t 27’

E()=———+=—— :
® 4 2 40
and
3 4 5
F(t)_t__i_{_gl
6 8 40

By the continuity conditions, the following schemes are derived

1, ., 97h? 19h?
Si—213 = Si +§h3i71 3240 —— f(X 8 +—— 540 f(Xi_2/3:8i 2/3)
_13n* h?
1080 f(xl -1/3? | 1/3) +— 4 f(XN |)
2, , 28h? 22h?
Sisi/3 = Sia +§h5i—1 +4—05 f(X4,Si)+ 135 f(Xi_2/3:Si 2/3)
2h? 2h?
_Iggf(XI -1/3 |l/3)+4 f(XU |)

, 13h? 3h?
S =8, +hs{, + m (X 1,84)+ E f(Xi2/31Si 2/3)

3h? h?2
B 20 f(Xiy/as |1/3)+ f(X.’ 5,

! ! h
Si =S4+ g (F(Xigs8i0) +3F (X _5/3:8i0/3) +3F (X 1/3:Si./3)
+ f(%;,8:)),

and

A
s"=f(x ,s ), a={i,i—=,i——=}.
o= f(x,.8,), a={ 3 3}

They selected the initial values for the system (2.19) as

s(0) =u(0), s'(0) =u’(0) and s; = f(X,,S,)-
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In order to find the solution for the system (2.19), the values of s, on the right hand

side of system (2.19) are evaluated from

s = 4Sa—2/3 —-S
“ 2

.1 . 2
(1—1/3, ={i,i—-=,i—=)
a={l1-2.1-2}

In Al Bayati et al. (2009), they presented a quintic spline method to approximate the

solution of the second order I\VP (2.12). The quintic spline method is written as

s(x) = A(X)s, + B'(X)s,,, + h*C(x)s/+h*D(x)s/,

) : (2.20)
+h’E(X)s"E(t) + h°F(x)s",,
where
A(x) =1,
B(x) = x,
C(x)= 210 (—=10x +10x* —5x* + 2x°),
D(x) = 1 (-10x +5x* — 2x°)
20 ’
1 3 4 5
E(X) = — (-5x+10x” —10x" +3x°),
60
and

1
F(X) = — (5x —5x* +3x°).
(X) 60( )

They showed that the following relations are obtained from the continuity

conditions, i.e.
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2 3

S, =S,, +hs/ — % Bf (X, Si)+7f(x,8)+ % s/, (2.21a)

’ ’ h
Si:5F1+§(f(K4J&4)+f(&'&)% (2.21b)

m n 3
Siy =98y + h (f (Xi1:Si0) = F (X5, 8i0))s (2.21c)

and

si = f(x,s)). (2.21d)

Additionally, the following starting values for the above system are used

s(0) = u(0),

s'(0) =u'(0),
and
s"(0)=u"(0) = f,(O,u(0))+ f,(O,u(0))u’(0).

In order to find the solution of the system (2.21), the values of s, and s on the right
hand side of system (2.21) are computed by the help of

h2 h3 4 h5
=s_,+hs  +—s' +—s/" +—s +—s0

° 207 3T T g Y

and

h? h? h*
Si =siy +hs’, + ES{Q + gsi(fl) T S

respectively. They illustrated that the spline method (2.20) is of order O(h®).
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Ogundare (2014) derived class of schemes based on cubic and quartic spline

methods to approximate the second order IVP (2.12). These schemes are stated as

follows
U, =2U; —u,_, +h*f,, (2.22a)
U,, =3u, —2u,_, +h*(4f, — f,), (2.22b)
h2
u,, =2u, —u, , +—(f, +23f,.,), (2.22¢)
24
h2
Ui, =Uipg +U; — Uiy +?(9 fi+fii+21,), (2.22d)
h2
Uiig = Upy U — Uiy + - (-3f,, +22f +3f_ +2f,_,), (2.22¢)
and
h2
Ui, =2U; — U, +Z§(_ i, +47F +f_ +1_,). (2.22f)

It is noted that scheme (2.22a) and scheme (2.22b) are derived from cubic spline,
while the other schemes (2.22c) - (2.22f) are formulated from quartic spline.
Additionally, it is illustrated that only (2.22a), (2.22c) and (2.22f) are convergent and

provide accuracies of order 3, 2 and 2, respectively.

We summarize the highlights of this section in Table 2.2.
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Table 2.2

Highlights of Literature Review on Spline Methods for Solving Second Order IVPs

Authors

Methods

Micula (1973)

Constructed a
class of spline

method of degree

Advantages Disadvantages
The methods are
Convergence used to

analysis proved that
for m=3 and
m =4, the resultant

methods provide

approximate
nonlinear second
order 1\VVPs without
the presence of

Sallam and
Karaballi (1996)

m (m>2) third and fifth order | U'(X). Moreover,
of accuracy, The method is
respectively. divergent if m> 4,
as h—0.
This method finds
the solutions of
Developed a

quartic spline
method

This method is of
order O(h*).

nonlinear second
order IVVPs without
the presence of

u’(x).

Sallam and Anwar
(2000)

Established a
quintic spline

method

This method

provide accuracy of
order O(h*).

This method solves
nonlinear second
order 1VVPs without

the presence of

u’(x).
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Table 2.2

Continued

Najafi et al. (2005)

Introduced a
quartic and a
quintic spline

methods

The results
generated by these
methods are

accurate.

These methods are
developed to solve
nonlinear second
order IVPs without
the presence of

u’(X). Furthermore,

the authors do not
provide the details of
the convergence

analysis.

Al Bayati et al.
(2009)

Presented a quintic

spline method

The spline method

produce accuracy

of order O(h°).

This method used to
approximate the
solutions of nonlinear
second order 1\VPs
without the presence
of u'(x).

Ogundare (2014)

Derived a class of
six schemes based
on cubic and
quartic spline

methods

Schemes (2.22a),
(2.22c) and (2.22f)

are convergent.

Approximate the
solutions of nonlinear
second order IVPs
without the presence

of u'(x). Three out of

six developed
schemes are
divergent. Moreover,
the order of accuracy
for the converge

methods is low.
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2.2.3 Spline Methods for Solving Second Order Boundary Value Problems

Consider the general form of the second order ODE given by
u’(x) = f (x,u(x),u’(x)),a<x<b, (2.23)
subject to Dirichlet boundary conditions i.e. u(a) =¢, and u(b) = £,; or subject to

Neumann boundary conditions i.e. u’'(a) =, and u'(b) = 5,.

In the literature, Bickley (1968) proposed a cubic spline method in the form
S(X) =a-+b(x—X,)+c(X—X,)* +d,(X—X%,)°, (2.24)
to approximate the solution of the following second order BVPs:

u”(x) = pOQuU’(x) + g(X)u(x) + r(x), (2.25)
subject to mix boundary conditions (1.11). This method is started at x, in the interval
[X,, %] In the next interval [x,,X,], the term d,(x=x,)° is also added to the
approximate function S(X) in (2.24). On advancing into the next interval [x,,X,],

the term d,(x—x,)* is appended to the last term. This process is continued until the
last interval [x, ,,X,] is reached. So, this spline can be represented on the interval

[X;,X;,;], in the following form
S(X) =a+b(x—%,) +c(x—%,)* + > d; (x—x;)°. (2.26)
j=0
Albasiny and Hoskins (1969) used the cubic spline method suggested by Ahlberg et
al. (1967), which is given in the form
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5,0 = 51 (1 =0)° + 1 () (2] DBy
+(M_m)(xm -X), (2.27)

h, 6
to obtain the approximate solution for two specific cases of the second order BVPs
associated  with  Dirichlet  boundary  conditions. ~We  observe that

M, =S/(x;),1=01,...,n—=1. The first case is when the first derivative is absent from
(2.25), i.e.

u”(x) = a(u(x) +r(x), (2.28)
and the second case is when the first derivative is present, i.e. the second order BVPs

(2.25). Moreover, they found that the cubic spline method (2.27) is of order

O(h*) for both cases.

Fyfe (1969) used the cubic spline method (2.26) to obtain the approximate solution

for the second order BVP (2.25). It is shown that the cubic spline method (2.26)

provides accuracy of order O(h*).

According to Usmani and Warsi (1980), a quintic spline method in the following

form
Si(X):ai(X_Xi)S+bi(x_xi)4+Ci(X_Xi)3
(2.29)
+d. (x=x)* +e,(x—x)+f,,

is derived to find the approximate solution for the second order BVP (2.28) subject

to Dirichlet boundary conditions. The coefficients in equation (2.29) are given by
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: 6h 36
g M
2
e _Uig 4 _h(M - 2M; ) h? (S|+1 i)
' h 6 360
and
f=u, i=01...,n

where M, and s; are approximations to u”(x;) and u®(x), respectively. They

proved that the order of convergence for the proposed method (2.29) is O(h*).

Chawla and Subramanian (1988) constructed a scheme based on the cubic spline

method (2.27), given by

(X_Xi)SM +(~ h MI)( i+l )

(X' 1 _X)3
S(X) = i M. + .
() 6h ' 6h e
(2.30)

2

h“M.. . X—X
+(u|+1 6I+1)( h I)’

for solving second order nonlinear BVPs of the form (2.23) subject to mix boundary
conditions (1.11). We note that M, =u"(x;) and U,, 1=01...,n, represents the
approximate solution obtained using the finite difference method. The spline method
(2.30) is shown to be fourth order of accuracy.
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Al-Said (1998) formulated a cubic spline method in the form
S,(X)=a,(x—x)%+b (x—x)* +c,(x—x)+d,, (2.31)

to find the approximate solution for the second order BVPs (2.28) subject to
Dirichlet boundary conditions. The following equations are established for the

coefficients of cubic spline method (2.31)

1
a=—(T.,+T)
i 12(T|+1 |)

1 h
b, = 5 Fias _g(Tiu +T)),
¢ =D,
and
h h? h®
d; =Si Y D, _EFH&/Z +4’8(Ti+1 +T),

[ n” 1 "
where s, ;. =S (X.1/,), Dy =S8i(%)s Rz =S(X.42), and E(Tm +T) = 5 (Xi,12)-

In addition, it turns out that the cubic spline method (2.31) is of order O(h?).

Hossam et al. (2003) derived a quadratic spline method for solving the second order
BVP (2.28) subject to Dirichlet boundary conditions. Their quadratic spline method

is given by
S.(X)=a,(x—x%)? +b, (x—x,) +cC,. (2.32)

The values of the coefficients are computed as
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a = Fi+1/2'

N

and

where s, =S;(X,1,), D, =S/(x), and F,,, =S/(x,,,,). They also proved that

spline method (2.32) is of order O(h?).

Khan (2004) developed a cubic non-polynomial spline method with a parameter ¢
to approximate the second order BVP (2.28) subject to Dirichlet boundary

conditions. The cubic non-polynomial spline method is defined as follows

S(X) = e [87(x,.,) sin(ES
w* sin(o)

+ S"(x;)sin( Yoy s )]

Xi)

U eI (2.33)

+f1)_228(x”1))+(i+1—h)(8”()()+ S(x)]

1
where @ =hrz?2. The main relation in this article is given by

h?(aS"(X, 1) +288"(X) + @ S"(X1) = U(X,1) —2u(X;) +u(X; 4),

where a a)csc(go) 1, p=
@

1_“"32“”) and i=1,2,...,n—1. He verified that this

method (2.33) is of order O(h?) for any values of « and g such that a+ :%,

while it is of order O(h*) for « -1 and ﬂ:i.
12 12
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Caglar et al. (2006) applied a cubic B-spline method to second order BVP of the
form
—(POYU'(X))" = r(x), (2.34)

subject to Dirichlet boundary conditions. The cubic B-spline method is written as

m+1

Si(x)= Zbi B, (X), (2.35)

where the basis function B, (x) is given by

(X_Xi)sf X € [%, X1,

h® +3h*(x-x,,,) +3h(x—X;,,)°

=3(x—x,y)°, X € [Xi1: %21,
B9 = 51" + 3% (X, ~ )+ 3n(x,, — 0)*

_SO%G_Xfi X € [Xi 2, Xi3],

(Xira — %), X & [Xi3, Xiral,

0, otherwise.

In Ramadan et al. (2007), a quadratic spline method and a cubic spline method are
constructed to approximate the solution of the second order BVP (2.28) subject to

Neumann boundary conditions. This quadratic spline method is defined in the form
S,(X)=a,(x—x)*+b,(x—x,)+c,. (2.36)

Besides, the coefficients are determined as

1

a; = E Fi+l/21

b, =D,

and
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2
C. =S hD-—h—F

i i+1/2 — A Vi i+1/21
2 8

where s,.,,, =S;(X.,,»), D, =S/(x), and F,,,, =S/(X,,,,)- On the other hand, the
cubic spline method is found to be identical to the cubic spline method (2.31). They

proved that both quadratic and cubic spline methods are of order O(h?).

Rashidinia et al. (2008) developed a cubic non-polynomial spline method for the
solution of the second order BVP (2.34) subject to Dirichlet boundary conditions.

They expressed the cubic non-polynomial spline as
S;(X)=a, +b,(x—x)+c;sinz(x—x)+d, cosz(Xx—X,). (2.37)

Moreover, the coefficients of the non-polynomial spline (2.37) are computed to be

i Ui, —U; 8 Hig — H;
' h 70

)

c = Hi cos(0) -ty
I 77 sin(0)

and

where u;, =u(X;), £ =S/(%), #.,=5'(X,) and &=hz. The main relation is

given by

oty 20 1 +aph, = h—lz(u(xm) ~2u(%,) +U(X,)
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gcsc(h) -1

N | ﬁzl—ecot(e)

" and i=12,...,n-1. They showed that the

where a=

spline method (2.37) is of order O(h?) for any values of « and g such that

1 . : 1 5

+ ==, whereas it is optimal O(h®) for « =-— and f=—.

a+p > p (h?) for T p T
Rashidinia et al. (2009) proposed a quintic non-polynomial spline method to
approximate the solution of the second order BVP (2.28) subject to Dirichlet

boundary conditions. They considered the quintic non-polynomial spline method in

the following form

S, (¥) =&, +b,(x=x)+¢;(x=x)* +d; (x=x)°
(2.38)
+e,sinz(x—X;) + f; cosz(x—X;).

The coefficients above are calculated as

Uig —Ui F—Fa hu +24) h@F+Fy)
' h %0 6 67° ’

1 F
C, =—(u +—),
| 2(#. Tz)

d, = Hin —Hi | F.—F
6h 60r

o - F.., — F, cos(9)
i 7*sin(0)

and
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b

[ 4
T

where 6 = h, Si (Xi) =Uu;, Si (Xi+l) =Ug, Si”(xi) = U Si"(xi+1) = Hii1» Si(4) (Xi) = Fi )
and S{¥(x,,) = F,,.It turns out that the main relation of their work is

Pti, 1 iy + S V0 + P, =

h%(a(um FU,) 2 - @)Uy + Uy 1)+ e~ 4B),),

where
I
p=a 6’
=20 2a+ )~ (@ - )
s 2(615 (a+4B)+ (@, ~2),
92
_1-0cot(6)
ﬂ_ 02 !
and
1.1
B =57 g—ﬁ)-
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They verified that the spline method (2.38) is of order O(h?*) for « =% and p =%

while it is of order O(h*) when « =% and ﬂz%. Moreover, this method is of

1 5
order O(h®) if ¢ =— and B =—.
W) Wa=pand =0
Raslan, Al-Jeaid and Aboualnaja (2010) considered the solution of the second order

BVP of the form
K(x)u"(x) + p(x)u’ (x) + q(x)u(x) = f (x,u(x)), (2.39)

subject to Dirichlet boundary conditions, using quartic and quintic B-spline methods.
Details are given only for the calculation in the quartic spline case. Therefore, the

quartic B-spline method is expressed as follows

m+1

Si(X) = Zci B; (%), (2.40)
i=—2
where the basis function B, (x) is defined as

(X_Xi—2)4! X € [%, X1,
(X=%)" =5(x=x1)*, X e[X,p X2 ],
(X=X;_5)* =5(x—x; ;)"

B, () = - +10(x-x)", XelK0 %],
(X=Xu3)* =B(X=X;,5)", X €[Xi5: Xia],
(X_Xi+3)4' X € [Xii3: Xia],
0 , otherwise.

They demonstrated that the presented spline methods are of order O(h*).

51



According to Hamid et al. (2010), the second order BVPs (2.25) subject to Dirichlet
boundary conditions, are solved using a cubic non-polynomial B-spline method. The

cubic non-polynomial B-spline method is defined as
n-1
s(x) = > CTB}(X), (2.41)
i=—2
where the trigonometric basis functions TB®(x) is defined as follows

o* (x,), X €[X, %]

o (%)(0(%) 5 (X2) + 5 (X,5) 0 (%,.1))

s L +6(%,0) 0 (1), X € X1 X0,
71 o(x)5? (%.5)

+ 6 (X )0 (Xi) 6 (Xi,3) + 6 (X 4) o(Xi,2)), X € [Xi 0, Xius]s

§3(Xi+4)’ X E[Xi+3lxi+4]'

where o) =$in( =), () =sin(™_ =), and e=sin<g)sin<h)sin(%).
Jalilian (2010) used the quintic non-polynomial spline method (2.38) to approximate

the solution of a second order Bratu type problem in one dimension given by

u"(x) + 1e"® =0,
(2.42)
u(0)=u@ =0.

The spline method (2.38) is proved to be of order O(h®) for « :é and g = %
Zahra et al. (2010) presented a cubic non-polynomial spline for the numerical
solution of the second order BVPs (2.28) subject to Neumann boundary conditions.

They wrote the cubic non-polynomial spline method in the form of
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S;(x)=a;sinz(Xx—x;)+b, cosz(x—x;)+c, (x—x)+d,. (2.43)

The coefficients of the above method are found to be

1
a; = _?(Tm +T0),
tan(z) sec(—)
b, = (T +T) ——— ti1/0

and

1 h h
d; =S, +— Mg, — =D —— (Ma +T0),
T 2 47

-
where S, =S;(Xi2): D =S/(%), i1, =S (X12)s % =35/(%), and

6 =hz. Additionally, they derived the main relation as

Siisi2 = 2Si4/2 + St =N thi g0 + B lliasn +Otli1)s (2.44)
6’—23in(g) Zesinz(g)+4sin(€)—0(1+ cos(6))
where a= —92 p= 2 : 7 and
26? sin(E) 20° sin(E)

i=2,3,...,n=1. Since the previous relation (2.44) gives (n—2)equations in n
unknowns, two equations are added, one at each end of the interval of integration

using Taylor series and the undetermined coefficients method. These equations are

—hSg —S,,, +S;,, = hz(Wo My + Wy flgyy + Wy flg p +Ws 41,,) ati =1,
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and

’ 2 H
Shar2 =Snan NSL =N (Wy g1, 15 + Wy 2, 55 + W, £, 55 +Ws 2, 5,) a1 =n.

1 10 1 1
They showed that for ¢ =—, =— and (w,,w,,w,,w,)=(1-——,—,0), the
Vi (24 12 B 12 ( 01 Wy, Wy 3) ( 24’ 24 )

spline method (2.43) is of order O(h®). On the other hand, it is of order O(h*) if

6007 981 981 247

W,, W, W,,W;) = T ) (.
(Wo. W, W, Ws) (5760 5760 5760 5760

).

Caglar et al. (2010) used the cubic B-spline method (2.35) to find the approximate

solution of the second order Bratu type problem (2.42).

In Srivastava et al. (2011), the quintic non-polynomial spline method (2.38) is
extended to compute the approximate solution of the second order BVP (2.28)

subject to Neumann boundary conditions. They also proved that the spline method is

of order O(h*) for azi and ,Bz%, whilst it is of order O(h*) for a:% and
B=

1
=

Chang et al. (2011) used the cubic B-spline method (2.35) to approximate the

solution of the second order BVP (2.25) subject to Dirichlet boundary conditions.

Hamid et al. (2011) solved the second order BVP (2.25) subject to Dirichlet

boundary conditions via extended cubic B-spline method. The extended cubic B-
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spline of order four is an expansion of the cubic B-spline with one shape parameter,

namely A. The extended cubic B-spline method is given by
n-1
s(x) = > CTB(X), (2.45)
i=—2

where

—4h(A -1 (x—x)° +3A(x—x,)*, xe[X, X.,],
(4-2)h* +12h°(x—X,,)

+6h*(2+A)(X—X,,,)*

—12h(x—X;,,)° =3A(x-x.,)*,  xe[X. ., X.,]

1 |(26+22)h* —12h*(2+ 2)(x =X, ,)’

TB*(x) =
) 24h*

+12h(1+ A)(x - X, ,,)*
—3A(X—X.5)", X € [Xi5, X5,
—(h+x.,=-x°((1-4)

+3A(X=X;,3)), X €[Xi.3: X4l

0, otherwise.

The value of 4 can be optimized such that the generated approximate solution has

minimal global error.

Liu et al. (2011) suggested an algorithm based on quartic spline method for solving

the second order BVP of the form
u”(x) = f(x,u(x)), (2.46)

subject to Neumann boundary conditions. They introduced the quartic spline method

in the form of
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s(X) =S, , +hs!, B(t) +h?s/, C(t) + h?s/ D(t) + h’s”, E(t), (2.47)

where t = =X g =s™(x;), m=0,1, 2and3,
h J J

B(t) =t,

t*(6-t°%)

ct=—""7

4

DO -+

and

t*(2-t)

E(t) = 5

The following relations are developed from the continuity conditions:

5h° h? i
Si=Siy+hsi, +——s', +—8'+_—8",
12 12 12

14 r 2h 14 2h 14 h2 "
Si =Siait— Siat—Si+—Sin
3 3 6

and

m m

2
S§i=-S.,t E (i —siy)

The main recurrence relation declared in this article is

is” +§s”+is" —i(s -2S,+S,,)

12 i+l 6 i 12 i-1 h2 i+l i i-17"
They discovered that scheme (2.47) can attain sixth order of accuracy at the internal
grid points and fourth order of accuracy on the boundary or close to the boundary for

solving (2.46) in linear form. Moreover, the spline method (2.47) is of order O(h*).
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Al-Said, Noor, Almualim, Kokkinis and Coletsos (2011) used a quartic spline
method to derive a numerical algorithm for approximating the solution for the
second order BVP (2.28) subject to Dirichlet boundary conditions. The quartic spline

method is written in the following form:
S,(X)=a,(x—x)" +b (x—x)%+c,(x—x)° +d,(x—x,) +¢e,. (2.48)
The coefficients of this method are calculated as

1
a, =—(F +F,),
1 48( i |+1)

1 h
b=—(D.,-D)-—(F +F.),
i 6h( i+1 |) 24( i |+1)
CI:lDi’
2

3

1 h h
d, (Si+1_Si)_g(Di+l+2Di)+21§(Fi +F.),

|:E

and

e =S5,

where s =Si (%), Si1 = Si (Xi,)s D, =S5{(x), D, =57 (Xi,0), and

%(Fi +F.,) =S™(x,). They found the main relation as

2

Siv _23i TSy = :_]_2([) +10Di + Difl)'

i+1

They also showed that the spline method (2.48) is of order O(h*).
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According to Chen and Wong (2012), a cubic spline method was presented to
approximate the second order BVP (2.28) subject to Dirichlet boundary conditions.

They expressed the cubic spline method in the form of

— 3 — X. 3 . — — X
Si (X) — ai_l (Xi X) + ai (X lel) + bi (X| X) + Ci (X Xlfl) , (249)

6h 6h h h

where
q; = Si”(xi)l
h2 _ 2 ,
bi = Si—l - P Si—l(xi—l)’
6
2 2
C; =S5 — " —p S{(x)),

and

p € (0,h] is a given constant.

The recurrence relation is stated as

2

) 2 2 2
h +2(2h ;_p )Ci+(h 6p )Ciy =S — 28 +S; ;.

(Tp)c

i+1

In addition, it is proved that the spline method (2.49) is of order O(h*) if p=—,

<=

and of order O(h?®) for other values of p.

Shafie and Majid (2012) discussed the implementations of three numerical methods
to approximate the solution of the second order BVP (2.25). These methods are the

cubic B-spline method (2.35), the shooting method and finite difference method.
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Zarebnia and Sarvari (2012) applied the quintic non-polynoimal spline method

(2.38) to the Bratu type problem (2.42). They also confirmed that the spline method

is of order O(h®) for o = S and B = i.
12 12
El hajaji et al. (2013) developed a numerical algorithm for solving the Bratu type

problem (2.42) using the cubic B-spline method (2.35) and the generalized Newton

method. They deduced that the cubic B-spline method (2.35) is of order O(h?).

Kalyani and Rama Chandra Rao (2013) constructed a scheme based on the cubic
non-polynomial spline method (2.37) to approximate the solution of the second order
BVP (2.25) subject to Dirichlet boundary conditions. The following approximation

formulae are derived from the finite difference approach for the first derivative:

Ui, _ U, — Ui, :
2h
' 3ui+l _4ui +Uj
ui+1 = !
2h (2.50)
and
o, = —3U;, +4u; —U;, .

2h

They substituted z; =u/ in the second order BVP (2.25) to get
M+ PU+ QU =T (2.51)

The formulae (2.50) and (2.51) are imposed into BVP (2.25) to obtain the following

main relation:
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3h h
(?a P +hpp, 5 P, —h’aq,, -y, , +(-2ha p,,

+2ha p., —2h? B, +2)y; +(20‘ P, —hpBp, _%0‘ Pi

—h*a Oy —Du;, = _hz(a Lo +281 +ar,).

Zarebnia and Sarvari (2013) used the cubic non-polynomial spline method (2.33) to

solve the Bratu type problem (2.42). They illustrated that the presented cubic non-
: . . ’ 1 1 -
polynomial spline method is of order O(h®) for a = 5 and g ==, whereas it is of

S

1
order O(h*) for ¢ =— and S =
(W) for =10 and f =27

Dabounou, Khayyari and Lamnii (2014) proposed a cubic non-polynomial B-spline
method for the numerical solution of the second order BVP (2.25) subject to

Dirichlet and Neumann boundary conditions. They considered the partition

R={a=w =UBNerHdti<tdiarQa=MNasay,H .

n+ T

The proposed cubic non-polynomial B-spline method is given by

n+2

S, (x) = ZC‘ HB?(x), (2.52)
where
—1+cos(A(x - X)), X €[X;, Xi,),
2(cos(4h) —cos(4 n) coS(A(X;,, + h_ X)), X€[Xi1)Xiin)
HB’(x) =¢ 2 2
—1+cos(A(X = X;,5)), X €[Xi2, Xisa ]
0, otherwise.
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Additionally, the particular cubic non-polynomial B-spline functions around the

neighborhood of the boundaries are

{2(—1+ cos(A(h—x+a)), Xe[X,X),
HB> (x)=c
0

, otherwise,

1+ 2cos(Ah) —cos A(—a+ X)

—2cosA(a+h—x), X €[Xo, %),
HB® (x) =c¢
—1+cosA(a+2h—-x), xe[x,X,),

0o , otherwise,

—1+cos A(b—2h—x), Xe[X,,X,.1),

1+ 2cos(4Ah) —cos A(b —x)
HB;..(x) =¢

_ZCOSl(b_h_X)’ XE[Xn+1’Xn+2)’

0 , otherwise,
and

2(-1+cos(A(b—h—Xx)), Xe[X, X,.1),
HB;., (x) =¢
, otherwise,
where ¢ = ! . They showed that the spline method (2.52) is of order
2(—1+ cos(A4h))

O(h*).

According to El Khayyari and Lamnii (2014), a quartic hyperbolic B-spline method
is proposed for the numerical solution of the second order BVP (2.25) subject to

Dirichlet and Neumann boundary conditions. The following partition is considered

P={a=X,=X,=X,=X, <X <:-<X, 4 <X, =Xqy =Xp0 = Xp.3 =0}

n-1 n
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The quartic hyperbolic B-spline method is given by

where

HB'(x)=c

for c=
4hsin® (=
(2)

n+3

Si(x) = Zci HB (),

— X+ X; +sinh(x—X;),

X=X, +2(X—X,,,)cosh(h)

i+2

+2sinh(X;,, — X) +sinh(x;,, — X),

i+1

— X+ X, +2(X;,; —X)cosh(h)

i+3

—sinh(x;,, — X) — 2sinh(x;,; — X),

i+2

X—X;,, +sinh(x;,, —X),

i+4

0,

XX X)),

Xe [Xi+l’ Xi+2)’

Xe [Xi+2 ’ Xi+3)’

Xe [Xi+3’ Xi+4]!

otherwise,

and i=01...,n—4. Moreover, they defined the

hyperbolic B-spline functions around the neighborhood of the boundaries as

HB,(x) =

—h+x-a+sinh(h—x-a)

—h+sinh(h)
0,
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X E[Xo' X,),

otherwise,

(2.53)

quartic



HB% (x) =4+

HB* (X) =

x—a-sinh(h) +sinh(h - x-+a) X €[Xy,%,),
h —sinh(h)
a— X —2xsinh(h) + 2asinh(h) + 2sinh(h)
2hcosh(h) — 2sinh(h)
— 2sinn(h— -+ ) + sinh(x—a) X €[x,,%,),
2hcosh(h) - 2sinh(h)
X —2h—a+sinh(2h—x+a)
_ X €[X,,Xs),
2hcosh(h) —2sinh(h)
0 otherwise,

X —a—sinh(h) X a+ 2(x—a)cosh(h) —2sinh(h)
—2h+2hcosh(h) 2hcosh(h) —2sinh(h)

2sinh(h—x+a) —sinh(x—a)
2hcosh(h) — 2sinh(h)

h —sinh(h)
—2h+ 2hcosh(h)

X €[Xg, %),

2h—x+a-sinh(2h—x+a)
2hcosh(h) — 2sinh(h)

. 2(h—x+a)cosh(h) —sinh(h)
4hsinh2(2)

N sinh(h—x+a)+sinh(2h—x+a)

n , X e[X;,X,),
4hsinh? (=)
2

—3h+x—a+sinh(3h—x+a)

h , X €[X,,X3),
4hsinh? (=)
2

0, otherwise,
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b—x-3h+sinh(3h—b+Xx) Xel[X.,X )
, n!n+l /0

. h
4hsinh?(—
(2)
_b-2h—x+sinh(2h—x+a)

h —sinh(h)
2hcosh(h) —2sinh(h)

2h —2hcosh(h)
N 2(b —2h —x) cosh(h) + sinh(h)
4hsinh2(2)

+Slnh(_b+h+X)+SInh(2h+X_b), Xe[xn+llxn+2)’

HB,,(x) = 4hsinh? (2)

h(b — x)cosh(2h) + 2h cos(32h —b+ x)sinh(g)
2h(=1+ cosh(h))(hcosh(h) —sinh(h))

2hsinh(h) —bsinh(h) + xsinh(h) — hsinh(h)
2h(=1+ cosh(h))(hcosh(h) —sinh(h))

sinh(h)sinh(b — x) — hsinh(h + b - x)
- ' Xe [Xn+2 ' Xn+3)!
2h(—=1+cosh(h))(hcosh(h) —sinh(h))
0, otherwise,
b—x-2h+sinh(2h—b+x
( ) XD %)

2hcosh(h) — 2sinh(h)
—sinh(h)(b—x—-2h+ 2(h + x)cosh(h))
2(h+sinh(h))(hcosh(h) —sinh(h))

HB® () — o ZSTN()SInh(-x ) + h(b-+ x) + bsinh(h)
n2 %)= 2(h +sinh(h))(hcosh(h) —sinh(h))

—h(2sinh(=b + x+ h) + sinh(2h + x —b) Xe[X . x)
2(h +sinh(h))(hcosh(h) —sinh(h)) n+1r Xns2 /s

otherwise,

and

64



h+x—b+sinh(-h—-x+b)
HB? ,(x) = h —sinh(h)

0, otherwise.

1 XE[Xn’Xn+l)7

It is showed that the spline method (2.53) is of order O(h*).

Al-Towaiq and Ala’yed (2014) proposed an algorithm based on cubic spline method
on the finite difference method to solve the Bratu type problem (2.42) numerically.

The proposed cubic spline method is expressed as

(Xi+l_x)3 + (X_Xi)3

S (%) = Hig
thh X, —X o X — X (2:54)
+(Wi _Eﬂi)%_{_(wwl 6 /u|+l) ( h )

where x =S/(x,) and w; is the approximate solution of u(x) at the point x,. They

found that the main relation is

E(Wi-1 —2W, + W, )

Mg HAu + = h2

El hajaji, Hilal, Jalila and Mhamed (2014) used the cubic B-spline method (2.35) and
the generalized Newton method for solving the Troesch’s problem given by

u”(x) = Asinh(Au(x)),
(2.55)
u(0)=0 and u() =1.

They showed that the cubic B-spline method is of order O(h?).

Zarebnia and Hoshyar (2014) presented a cubic non-polynomial spline for the
approximate solution of the Bratu type problem (2.42). They derived the cubic non-

polynomial spline in the form
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Si(X) = a4, SINT(X—Xi,1/5) + 0,1/, COST(X—Xi,1/5) +Cibyyo (X—=Xiyyy) +diyyn. (2.56)

The coefficients in formula (2.56) are found to be

1
Qi = _m(ﬂimz COS(0) — 4;,3/2)

/ui+
bi+l/2 =—h’ 0—12/2

_Diu+Digypn (K112 €0S(60) — 4,1,,) A+ COS(6))

C' - ]
iz 2 27sin(6)
and
d; =S, +— M2
T
where Stz =Si(Xi,1/2) = Uiy Di.12 = S{(Xi1/2)s Disarz = S{(Xi,3/2)s

Ui =SI(Xi10)s iz =S (X.55), and @ =hz. They obtained the main relation

as
Uiz —2Ui 5 + Uiy = h? (@ 1431 2B 14y + Ohliy), (2.57)

1 _ 1 cos(9)

- -—, B=— _ and i=2,3,...,n-1. As the formula
gsin(d) 0 -  0sin(0)

where a=

(2.57) provide (n—2) equations with n unknowns, a couple of equations are added,

one at each end of the interval. These extra equations are obtained using Taylor

series and undetermined coefficients method as

-1 5 7 1 :
205 —=3Uy), +Uy, = hz(@ﬂo +§ﬂ1/2 +4_8/u3/2 _%ﬂS/z) ati=1,

and
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5 7 1 ]
2U, —3U, 4 + U, 55 = hz(@ﬂn +§:‘un—1/2 +4_8,un73/2 _%:un—Slz) ati=n,

where y; =—2e"%). They demonstrated that the spline method (2.56) is of order

1 10
Oo(h*) for a =— and f=—.
(h) fora=5 and =7

Rashidinia and Sharifi (2015) applied the quartic B-spline method (2.40) to the
second order BVP (2.25) subject to Dirichlet boundary conditions. The resulting

system consists of (n+3) equations in (n+4) unknowns. In order to solve this

system, one more equation at the point x,, is added. They proved that this spline

method is of order O(h®).

Finally, the highlights of this section are concluded in Table 2.3.
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Table 2.3

Highlights of Literature Review on Spline Methods for Solving Second Order BVPs

Types of
Authors Methods Advantages | Disadvantages | boundary
conditions
The method
solves only
) linear second )
Proposed a The method is Mix
) _ _ order BVPs.
Bickley (1968) | cubic spline easy to ) boundary
_ Besides, he -
method implement. conditions
does not
provide the
error analysis.
The method is
used to
The approximate
Employed the .
convergence solution for
cubic spline e . o
analysis is two specific Dirichlet
Albasiny and method !
considered, and | cases of the boundary
Hoskins (1969) | suggested b L
( ) 99 y it is proved that | second order conditions

Ahlberg et al.
(1967)

this method is

of order O(h*).

BVPs i.e. linear
with/without
the presence of

u'(x).
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Table 2.3

Continued
The
convergence
Applied the .. The method
analysis is
cubic spline : . approximates Dirichlet
investigated.
F 1 h ly li
yfe (1969) method The method only linear boundary
reported in . second order conditions
provides
Bickley (1968) BVPs.
accuracy of
order O(h*).
They ]
] ) The method is
investigate the
employed only
convergence )
/ Developed a . to linear second | Dirichlet
Usmani and . | analysis. ,
: quintic spline order BVPsin | poundary
Warsi (1980) Moreover, the |
method : which u’(X) conditions
method is
tHustrated to be doe> TIOt
appear.
of O(h*). P
The method is
The method
shown to be
Constructed a can be used
fourth order of
scheme based only after some
_ convergence. )
Chawla and on the cubic ) other fourth Mix
_ ) This method
Subramanian spline method order method boundary
also solves o o
(1988) proposed by _ such as finite conditions
linear and )
Ahlberg et al. _ difference
nonlinear )
(1967) method is
second order
employed

BVPs.
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Table 2.3

Continued

The method can

The .
only be applied to
convergence . o
Proposed a _ linear second order | Dirichlet
) _ _ analysis of the .
Al-Said (1998) | cubic spline . BVPs without the | boundary
method is . N
method ] ) presence of U'(X). | conditions
established in
. The accuracy of
details.
the method is low.
The method only
approximates the
. solution for the
The details of
the linear second order
Derived a BVPs in which Dirichlet
Hossam et al. i convergence bound
uadratic f oundar
(2003) q i - analysis of this N BNy dit Y
spline metho A appear. The conditions
provided accuracy of the
method in terms of
error is not
encouraging.
The method is
Developeda | The method constructed only N
_ . . Dirichlet
cubic non- can attain for the linear
Khan (2004) ) boundary
polynomial fourth order of | second order N
conditions

spline method

accuracy.

BVPs without the

presence of u'(X).
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Table 2.3

Continued
The details of | The method is
the solely applied to
Employeda | implementation | special linear Dirichlet
Caglar et al. ) ) _
(2006) cubic B-spline | of this method | second order boundary
method are presented | BVPswhenthe | conditions
in step by step | term u(X) is
fashion. absence.
The method can
only solve the
The error )
linear second
analysis of
Proposed a order BVPs
I each method is ) Neumann
Ramadan et al. | quadratic and without the
) | presented and . boundary
(2007) a cubic spline | existence of N
it is shown to , conditions
method u’(x). Moreover,
be of order two
the accuracy of
for both cases. <
these methods are
not encouraging.
They provide | The method is
the full details | solely employed
Developed a of the to linear second N
N . . Dirichlet
Rashidinia et al. | cubic non- convergence order BVPs with
] ] ) boundary
(2008) polynomial analysis. the term u(X) is N
: conditions
spline method | Furthermore, absence. The

the method is

of order two.

method is of

lower accuracy.
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Table 2.3

Continued

The method
can achieve

second, fourth

The method is

employed only

Proposed a or sixth order | to special case
L . . Dirichlet
Rashidinia et al. | quintic non- of accuracy of the linear
. boundary
(2009) polynomial depending on | second order N
. . conditions
spline method | the values of BVPs i.e. when
a and B in the term u'(X) is
the recurrence | absence.
relation.
Details of
_ derivations are
Details are ]
) not provided for
given only for ol
; the quintic
: the calculation .
Derived : : spline. The .
_ in the quartic Dirichlet
Raslan et al. quartic and > methods are
o spline case. boundary
(2010) quintic B- constructed only -
Both methods conditions

spline methods

can achieve
fourth order of

accuracy.

to approximate a
special case of
the nonlinear
second order
BVPs.
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Table 2.3

Continued
The method is The method can
slightly more just be applied
Employed )
) accurately than the | to the linear
a cubic ] ] o
) cubic B-spline second order Dirichlet
Hamid et al. non- _
_ method if the BVPs. The boundary
(2010) polynomial _ N
B-oll problems being convergence conditions
-spline
P solved involving analysis is not
method _ _
trigonometric presented for
expressions. this method.
Implemente i
The method is
d the _ )
. just valid for
quintic The method is
) special case of
non- confirmed to reach
_ _ nonlinear o
polynomial | sixth order of Dirichlet
R | .| second order
Jalilian (2010) | spline accuracy for special _ boundary
BVP. This .
method values of « and S : conditions
] problem is
reported in | in the recurrence
o known as Bratu
Rashidinia | relation.
type problem
et al.
(2.42).
(2009)
The method
The method can
o constructs only
attain third or )
Presented a for special case
fourth order of ) Neumann
Zahra et al. cubic non- ] of the linear
accuracy depending boundary
(2010) polynomial second order N
on the values of « i conditions
spline BVPs i.e. when

and g inthe

recurrence relation.

the term u’'(X)

is not present.
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Table 2.3

Continued
The method is
Used the cubic = just applicable
e
B-spline ) ) for Bratu type -
implementation Dirichlet
Caglar et al. method _ problem.
_ of this method boundary
(2010) proposed in o Furthermore, .
is simple and conditions
Caglar et al. they do not
Clear. )
(2006) provide the
error analysis.
The method
_ The method can
can achieve ]
Applied the just be
second or
quintic non- employed to
fourth order of ]
_ polynomial special case of | Neumann
Srivastava et al. : accuracy i
spline method _ the linear boundary
(2011) depending on
reported in second order conditions
the values of ]
Rashidinia et _ BVPs, 1.e. BVPs
a and Sin _
al. (2009) with out the
the recurrence ,
term u'(x)
relation.
The method is
solely applied to
the linear
Employed the | The
) ) ) ) second order o
cubic B-spline | implementation Dirichlet
Chang et al. _ BVPs.
method stated | of this method boundary
(2011) ) _ ) ) Moreover, the -
in Caglar et al. | is provided in conditions
) convergence
(2006) details.

analysis is not
given for this

method.
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Table 2.3

Continued
The method is
developed only
Introduced an )
) for the linear
extended cubic | The method
_ _ second order o
) B-spline can achieve Dirichlet
Hamid et al. BVPs.
method of more accurate boundary
(2011) ] Moreover, the .
order four solution by conditions
o convergence
based onone | optimizing A. ) )
analysis for this
parameter A )
method is not
provided.
The method is
Proposed an just derived for
algorithm The spline the nonlinear Neumann
Liu et al. (2011) | based on method is of -~ | Second order boundary
quartic spline{-order four. BVPs when the | conditions
method term u’(x) is
not present.
The method can
just be
employed to
_ Developed a | The spline special case of | Dirichlet
Al-Said et al. ) ) . .
quartic spline method is of the linear boundary
(2011) . .
method order O(h*). | second order conditions
BVPs, i.e. BVPs
with out the
term u’(X).
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Table 2.3

Continued
The
convergence
analysis is
provided and it | The method can
is proved that | only be
Constructed a . . .
this method is | implemented to
cubic spline ) Dirichlet
Chen and of order special case of
method based i . boundary
Wong (2012) o(h?) if the linear
on a parameter conditions
0.1] h ’ second order
’ 1 = T an -
PPl =2 BVPs with
of order vanishing u’(x).
O(h?) for
other values of
p.
The method is
gpvliedthe confirmed to
uintic non-
| _ be of order The method is N
) polynoimal 6 ) Dirichlet
Zarebnia and _ O(h®) for just employed to
) spline method boundary
Sarvari (2012) special values | the Bratu type -
suggested by conditions

Rashidinia et
al. (2009)

of « and g in

the recurrence

relation.

problem.
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Table 2.3

Continued
Applied the )
_ _ The method is o
o cubic B-spline | Dirichlet
El hajaji et al. The method is | just employed to
method stated boundary
(2013) _ of order two. | the Bratu type .
in Caglar et al. conditions
problem.
(2006)
The method
can achieve
Used the cubic | second or _
The method is
non- fourth order of
Kalyani and ) developed Dirichlet
polynomial accuracy
Rama Chandra ) ) solely for the boundary
spline method | dependingon | B
Rao (2013) linear second conditions
developed by the values of
) order BVPs.
Khan (2004) a and B in
the recurrence
relation.
The method is | The method is Dirichlet
Proposed a )
_ of order just developed and
Dabounou et cubic non- )
_ Oo(h*). for the linear Neumann
al. (2014) polynomial B-
) second order boundary
spline method -
BVPs. conditions
~ | The method is Dirichlet
] Presented a The method is
El Khayyari ) developed only | and
§ quartic of order _
and Lamnii ) for the linear Neumann
hyperbolic B- | O(h*).
(2014) ) second order boundary
spline method .
BVPs. conditions
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Table 2.3

Continued
Proposed an | The method is
algorithm easy to
based on implement. The method can o
) ) ) ) Dirichlet
Al-Towaiqg and | cubic spline | Moreover, the be improved by
_ ] boundary
Ala’yed (2014) | method on numerical results | choosing better .
o ) o conditions
the finite confirmed that extra conditions.
difference the method is
method accurate.
Implemented
the cubic B- ™ thod i
. e method is
o spline The cubic B- _ _ Dirichlet
El hajaji et al. : . just valid for
method spline method is boundary
(2014) ) Troesch’s .
stated in of order O(h?). conditions
problem.
Caglar et al.
(2006)
The method can
achieve fourth
The method is
Presented a | order of accuracy
Zarebnia and ) ) just proposed to | Dirichlet
cubic non- depending on the
Hoshyar ) approximate the | boundary
polynomial | values of ¢ and N
(2014) _ . Bratu type conditions
spline S inthe
problem.
recurrence
relation.
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Table 2.3

Continued

Rashidinia and
Sharifi (2015)

Applied the
quartic B-

spline method

This
method

order O(h®).

spline

is of

The method is
developed only
for the linear
second order
BVPs.

Dirichlet
boundary

conditions
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CHAPTER THREE
NEW QUARTIC AND QUINTIC SPLINE METHODS

3.1 Introduction

In this chapter, we derive a new quartic spline method and a new quintic spline
method to approximate first order I\VPs (1.12), first order BVPs (1.13), second order
IVPs (1.14) and second order BVPs (1.15). We present the process of derivations, as

well as the convergent analysis for each method derived.

3.2 Quartic Spline Method
In this section, we present the construction process of the new quartic spline method

as well as the convergence analysis for it.

3.2.1 Construction of Quartic Spline Method
Let P be the partition for the interval [a,b] such that
P={a=x,<x<...<X,=b},

. b-a .
where x, =a+ih,and h:T. We let U(X) be the exact solution of problem

(1.12), (1.13), (1.14) or (1.15), and s, be the approximate solution to u, =u(x;)
obtained by the quartic spline s,(x) on the interval [x;,X.,]. Every quartic spline

function S(x) has to satisfy the following conditions:

e S(X)=s,(x), xe[x,%,], 1=01...,n-1,
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e S(a)=u(a), S(b) = u(b), and

¢ Si(r) (Xi+l) = S(r) (Xi+]_)1 r= 0,112,3

i+1

Since quartic spline is of degree four, the third derivative is a linear polynomial,

which can be written as follows

Siﬂ(x) — Zi+l (X B Xi) + Zi (Xi+1 — X) ’ (31)
h h
where Z, =s/(x.) and x €[x.,X.,,]. On integrating equation (3.1) three times, we
first obtain
§1(0 =2, X 7 (=X (3.2)
i i+l 2h i 2h !
then followed by
sz, BEX) Lo (igmx)° A(x—x)+B, (3.2b)
i i+1 6h i 6h i [

and finally

S(X) =2, ()’ -Z O =) + A (x=x)" +B(x

24h YT -X)+Ci(x-x), (3.20)

i+1
where A, B;,andC,,i=0,1,...,n—1, are coefficients which need to be determined in

terms of u;, u 4, and Z,, where gz =s/(x;). In order to derive explicit

i+17
expressions for the three coefficients of equation (3.2c) i.e. A,B,,and C,, we

define the following relations
U, = 5;(x;), (3.3)

Uia =5 (Xi+l)’ (3.4)
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and

Hi = S7(%)- (3.5)

From equations (3.3), (3.4) and (3.5), and by using straightforward calculation, we

obtain the following expressions

& h
=047, 3.6
A > T2 (3.6)

2
L 3.7)

h 24

and
u. h? h? h
C=—t__ 7 7 . 3.8

i h 4 i 24 i+1 Zlul ( )

Now, we impose the first and second continuity conditions of quartic spline s;(x) at

the point x.;, i.e. s”(x,,)=s"(x.,,),r=12, and the following relations are
obtained
5h? 6h? h? h h u, —2u,, +u.
- 7 +— 7 o +—7 o 4—py -y = i+1 |+2, 3.9
24 i 24 i+1 24 i+2 2/u| 2:u|+l h ( )
and
h h
SLi+ 5L+ 1=, =0, (3.10)
2 2
respectively. Then, we eliminate z from equations (3.9) and (3.10) to obtain
u—2u,,+u., h h
= 2y 7 ——Z . 3.11
:u|+1 hz 24 i 24 i+2 ( )
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On substituting equation (3.11) into equation (3.9), we obtain the following main
recurrence relation given by
Z  +117, +117,, + Z,,
24 _ (3.12)
:F(_Ui_l +3u; —3u,,, +U,,,),i=1...,n-2.
Equation (3.12) forms a system of n—2 equations with n+1 unknowns, which are
the Z,, where i =0,...,n. To solve this system uniquely, we have to add three more

conditions at the end points x, and x,. Here, we choose the extra conditions as

m

follows: Z, =u"(x,), Z,=u"(x,) and z, =u"(X,). To obtain the last equation, we

eliminate gz, , from equations (3.9) and (3.10), and substitute i =0, we get

24 24
127, + Z, ZF(UO —2u; +U,) 117, —Fﬂo- (3.13)

Equations (3.12) and (3.13) form a system of n—1 equations with n—1 unknowns
ie. Z, wherei=12...,n-1. These unknowns can be solved using the

MATHEMATICA software.

To construct an algorithm for the proposed quartic spline method, we can use the

following steps:

Step 1: Divide the interval [a,b] into n—1 subinterval by taking x, =a-+ih,

where h=(b—a)/n and i=0,1,...,n.
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Step 2:

Step 3:

Step 4:

To obtain the approximate solution u. at the grid points, we
apply the explicit 4-stage fourth order Runge-Kutta method to the first
order IVP (1.12), or

apply the approach in Palancz and Popper (2000), which is based on the
explicit 4-stage fourth order Runge-Kutta method, to the first order BVP

(1.13), or

apply the explicit 4-stage fourth order Runge-Kutta method to the second

order IVP (1.14), or

apply shooting method with the explicit 4-stage fourth order Runge-Kutta
method to the second order BVP (1.15).
Use equations (3.12) and (3.13) to form a system of linear equations, and

then solve for the values of Z,,1=12,...,n—1.
Use the values of u; and Z, obtained from Step 2 and Step 3 to determine

the values of A, B,, and C,. Therefore, the quartic spline method s, (x)

in equation (3.2) is totally defined.

We note that the explicit 4-stage fourth order Runge-Kutta method is used in Step 2
because we want the calculated numerical solutions at the grid points to achieve an
accuracy at least as high as the accuracy of the proposed spline methods. Moreover,
the explicit 4-stage fourth order Runge-Kutta method represents a suitable
compromise between the competing requirements of a low truncation error per step

and a low computational cost per step (Azimi & Mozaffari, 2015).

84



3.2.2 Convergence Analysis of Quartic Spline Method

Let s;(x) given by equation (3.2), denotes the quartic spline using the exact values

u,, 4 and Z.. Also, let s.(x) denotes the quartic spline constructed using the values

u,, & and Z~i , where U, is the approximate solution of problem (1.12), (1.13), (1.14)
or (1.15), at the grid points which obtained using the explicit 4-stage fourth order

Runge-Kutta method, ; and Z~i are the second and the third derivatives of the
function s, (x) at the point (x;,U;), respectively. Then, S;(x) is given by

> (X_Xi)4 _

5(0=Z., 7, 000" R )+ B0+ G x-x), (B.14)

24h ' 24h i

where x e[x;, X.,;], and

A ﬁi h >
=—+—-7,
A B
—~ T 2-..,
Bi:li_‘_hi i
h 24
and
u h? =~ h? = h -

Assume that €(X) defines the error between the exact solution U(X) and the
approximate solution generated by spline function s, (x) for problem (1.12), (1.13),

(1.14) or (1.15), which is

e(x) =u(x) - S (x), x [a,b]. (3.15)
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It is easy to verify that we can rewrite the error function €(X) in equation (3.15) as
follows

e(X) =[u(x) - S(x)]+[S(X) - S (X)]
=e, (X) +ep(X), (3.16)

where e, (X) is the error caused by spline interpolation and e, (x) is the error caused
by discretization of problem (1.12), (1.13), (1.14) or (1.15). Now, to estimate €(X)
we have to estimate ¢, (x),and e, (X) separately. In the rest of the discussion in this

section, we have to assume that u(x) e C°[a,b] as needed in equations (3.17) -
(3.19).

Since our spline is a polynomial of degree four, then we can write €, (x) over the

subinterval (x;,X;,;) as

(5)
095,00 = 2 (x X)X KX K%K Kg), (31)

forsome £, e(x;,X,,;). Recall that every subinterval has length of h, and if we let

t =x—x;, then equation (3.17) can be rewritten as
u® (<)
U0 —5,(x) === @h+(h+ (O 1) (2 -1) (3.18)
By using the first derivative test on the expression (2h-+t)(h+t)(t)(h—t)(2h—t) in

equation (3.18), i.e. %((Zh+t)(h+t)(t)(h—t)(2h—t))=0, we found that it has

maximum value at t:—1/15+1—0 '145h. This maximum value is equal to

3.632h°.Then, |u(x) —s;(X)|. is bounded by
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Ju() =], <0.0303h%u® ()] . (3.19)

Let W° = max
xela,b]

u® (X)H . Therefore, it is easy to conclude that

ey (x)]. <0.0303w°h°. (3.20)

In order to estimate the error function e, (X), we can subtract equation (3.14) from

equation (3.2), to obtain

Si(x)_gi(x):(znl_zwl) (X2_4);;) _( i_~i)%

+(A = A)(X=%)?+(B; —B)(X, — X)
+(C —C)(x— %), (3.21)
where Xe[x,,X,]. Let U=(,,....u. )", U=(,....0 ) w=(y....;t,,)",

=y fig) Z=(Z,,....2, ) \and Z =(Z,,...,Z,,)". Therefore, by using
the first derivative test on equation (3.21), i.e. j(si (x) =5, (x)) =0 together with the
X

definition of infinity norm, we can obtain

7h’

- 2
leo ), <[ -0 + %ny -, + s

HZ—ZL. (3.22)

Next, we will estimate ||z — 2| . We use equation (3.11) to obtain

~ u,-U, ,u-U u,+u0, h =
M= = 1h2 t-2 h? 1h2 : +z(zm —-Z4)
h ~
_ﬂ(znl —Zi 1) (3.23)

On taking the infinity norm of equation (3.23) gives
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Ju-al, <5 -0], +-2z-2].. (3:24)

On substituting inequality (3.24) into inequality (3.22), we have

oo, <>Ju 0] + bz - 2] . (3.25)

To estimate HZ - Z~H in inequality (3.21), we let Q =(q ;) denotes a matrix with

12, i=j=1
L j=i+li=12...n-2,
11, i=ji=23...,n-1

iy j=i-vi=23...n-1
L j=i<2i=34m,n=1

0, otherwise.

We also let J =(j,,, ) to denote a matrix with

1 Pve s ks L

1 l=m+1L,m=12,...,n-2,
_ -3, m=I,m=23,...,n-1,
s I Cmeim=23..n-1

-1, l=m-2,m=34,...,n-1,

0, otherwise.

Let y/:(%uo -117, —2—:;10,—%% —ZO,O,...,O,ﬁ—f’un —Z,)", then the system

which contains equations (3.12) and (3.13) can be rewritten in a matrix form as

Qz = %Ju +y. (3.26)
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From equation (3.26), one can obtain
~ 24 ~
Q(Z—Z)=FJ(U —U) +z(h), (3.27)

where z(h) = (z,(h),z,(h),...,z, ,(h))" is the error due to the discretization. By using
the mean value theorem on each of the component z, (h), the following expressions

can be obtained:
7,(h) <¢ch, 7; (h) <c,h, 7, (h) <c;h, (3.28)
and
r(h):—%hu“xgg,g}e(&,xﬂyi::zspu,n—z, (3.29)
where ¢, ¢, andc, are constants. From inequality (3.28) and equation (3.29), it
follows that

[=(h)],, <cch, (3.30)

1
where ¢, = max{c,, C,, C;,— c4} and ¢, = max

a<x<b

u“ ()| -

Since Q is invertible perturbed matrix, then HQ‘le <l and |J] =8. Together with

equation (3.27) and inequality (3.30), we obtain

192 ‘

Hz-ﬂL< u-U| +ch (3.31)

From inequalities (3.25) and (3.31), we obtain

|p(ﬂ|<§§w -0] + g%%cw (3.32)
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In order to derive a bound for the error function |e,(x)|_, we introduce Theorem
3.1.

Theorem 3.1. (Chawla and Subramanian, 1988) Assume that u(x) is the exact
solution and u(x) is the approximate solution. If u(x) is sufficiently smooth, then
there exists a constant ¢ independent of h such that

lu(x)-a(x)|. <ch®.

Therefore, from inequality (3.31) together with Theorem 3.1, we have

leo ()], < csh®, (3.33)
386 193 . : : .
where c; :750+516605' Finally, from equation (3.16) and inequalities (3.20) and
(3.33), we can get
o0, <le (I, +]eo (], <c:h*, (3.34)

0.0303(b —a)W ®

where ¢, = 3

+c,. We summarize the above convergent analysis in

the following remark.

Remark: With the assumptions of Theorem 3.1, if S(x) is the quartic spline method
(3.14) that used to approximate the solution of problem (1.12), (1.13), (1.14) or

(1.15), i.e u(x), then

Hu(x) -S (x)”w <c,h’, (3.35)
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0.0303(b — )W ®
+C

where ¢, = 3 6

3.3 Quintic Spline Method

In this section, the derivation and convergent analysis of the new quintic spline

method are established.

3.3.1 Construction of Quintic Spline Method

Consider the following partition for the interval [a,b], i.e.
P={a=x<x<...<X,=b},

: b-a .
where  X; :a+|h,andh:T. We have U(X) denotes the exact solution of

problem (1.12), (1.13), (1.14) or (1.15), and s, represent the approximate solution to
u, =u(x) acquired by the quintic spline s,(x) on the interval [x,X.,]. The
following conditions have to be satisfied by every quintic spline function S(x):

e S(X)=s,(x), xe[x,x.,], 1=01...,n-1,

e S(a)=u(a),S(b)=u(b),and

° si(r) (Xi+l) = Si(ri(xiﬂ)! r= O’:L213y4'

+.

The fourth derivative of quintic spline is a linear polynomial; therefore, it can be

expressed as

0022, 8 8 47 (a0, (3:39)
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where Z. =s®(x,) and x e[x;,x,,].

We integrated equation (3.36) four times to produce the following equations

51 =2, X _2;“) 7 (sz;] I (3.37a)
s7x) = Z,., X = r):i Y,z (XMe; X\ A(x-x%)+B. (3.37h)
S0 =20 (X2_4);;)4 ~4 (Xi;;hxy FAGEX)’ (3.37¢)
1B, (X, ~X)+C,,
5,00 =2, BN 7 Lea =X g () 4B (0, '

120h ' 120h (3.37d)
+Ci(X=X;) + B; (X, =X),
where A,B;, C,, and D,, i=01..,n-1, are coefficients that can be determined

using U, Ui, 4, 17;, and Z,, where x =s/(x;) and 7, = S/(x;). To determine the

four coefficients in (3.37d) i.e. A, B,,C,, and D,, we first define:

u; =s, (%), (3.38)
Uy = (%), (3.39)
2 =ST(%,), (3.40)

and
7, =5s!(X,)- (3.41)
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By substituting x, and x,, into s,(x) and equations (3.38)-(3.41), and by using

i+1

straightforward calculation, the following equations are obtained

h .
=—7Z +-*, 3.42
A 251 (3.42)
2

BNzt (3.43)

12777

u, h*_ b h?
T R L L L S Lo 3.44
T 125 10 g (344)
and
u 9h® h

p-Y%, N, " 3.45
T 10 2 M (3.45)

On using the first, second and third continuity conditions of quintic spline s;(x) at

the point x;,,, i.e. s (x,,,) =s") (x.,), r =1,2,3, we get the following equations

i+1

120 71 100 S g S 6 1 6 Min 5 Hi
h 0 b NASS [
£ Ha = hl 2, (3.46)
2 2
%Zi +£Zi+l +hn + 1 — 1, =0, (3.47)
and
h h
Ezi +Ezi+l +17; = 1ia =0, (3.48)

respectively. From equation (3.47), it follows that

po—y My | A (3.49)

27 127" h h°

On substituting equation (3.49) into equation (3.48) and equation (3.46), we obtain
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h, 4, by —ﬂ+ﬂ_m=o, (3.50)

+—/.
6 i 6 i+1 6 i+2 h h h

and
7h? 16h° 7h? h 4h h
— o Zi— Zin—mLig T M+ Mg + 2 Higs
360 360 360 6 6 6
(3.51)
_ui— 2 + Uiy
h H

respectively. On eliminating z; and ., from equation (3.50) and equation (3.51),
we get

2 2 2
u, —2ui+21 +U,, 3h z, - 24h 7 .- 3h Z,.,.
h 360 360 360

Uiy = (3.52)

On substituting equation (3.52) into equation (3.50), the main recurrence relation is
found to be

120

2,1+ 262, 867,y +267,5 + Zyig =7 (Upy — AU, +6Uy 40, +U,.0), (353)

i+1

where i =1,...,n-3.

Equation (3.53) gives n-—3 equations in n+1 unknowns, which are the

Z,, where i=0,...,n. In order to get a unique solution for this system, we need
additional four equations at the end points X, and x,. Therefore, we choose these
extra equations as follows: Z,=u®(x,), Z,=u®(x,), u, =u"(x,) and

Hy =u"(X,).
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On replacing ., and x, , in equation (3.51) by their values obtained from equation

(3.52), and then substituting i =0 in equation (3.51) which yields

18h? 65h? 26h? h? —2U, +5uU, —4u, +Uu
= Z + Z + Z, + Z.— 0 L 23 (354
Mo =120 7" 120 7t 120 P 1207 h? (3:54)
Lastly, On substituting the values of u,and Z, from the extra conditions into

equation (3.54) leads to the second to last equation as

120

65Z,+26Z,+ 7, = F(—2u0 +5u, —4u, +u,) +1hz—20y0 -187,. (3.55)
Likewise, substituting s and £, in equation (3.51) by their values from equation
(3.52), and replacing i by n—2 in equation (3.51) form the last equation which is
given by

Z\| B Z0d 1 657 \& f—f(—un + 3UNER U U B +f_£ﬂ” -18Z,. (3.56)

Equations (3.53), (3.55) and (3.56) leads to a n—1 by n—1 system which can be

solved using the MATHEMATICA software.

To compute the approximate solution of problem (1.12), (1.13), (1.14) or (1.15),
using the proposed quintic spline method on the interval [a,b], we design an
algorithm which consists of four steps as follows:

Step 1: The interval [a,b] is divided into n subinterval by the means of points
X, =a+ih, where h=(b-a)/n and i=0,1...,n.

Step 2: In order to generate the numerical solution u; at the point x;, we
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Step 3:

Step 4.

apply the explicit 4-stage fourth order Runge-Kutta method to the first

order IVP (1.12), or

employ the approach in Palancz and Popper (2000), which is based on the
explicit 4-stage fourth order Runge-Kutta method, to the first order BVP

(1.13), or

use the explicit 4-stage fourth order Runge-Kutta method to the second

order IVP (1.14), or

exercise the shooting method with the explicit 4-stage fourth order Runge-
Kutta method to the second order BVP (1.15).
Solve the constructed system which contains equations (3.53), (3.55) and

(3.56), for Z,,i=12,...,n-1.
Determine the values of the coefficients A, B, C,,and D, by using the
values of u, and Z, from Step 2 and Step 3. Thus, the quintic spline

method s, (x) in equation (3.37d) is completely determined.

3.3.2 Convergence Analysis of Quintic Spline Method
In order to investigate the convergence analysis for the proposed quintic spline

method, we start by introducing S;(x) to represent the quintic spline method (3.37)

constructed by means of the values 0,7 and Z,, where {, denotes the

approximate solution of problem (1.12), (1.13), (1.14) or (1.15) at the points X;

which generated by the explicit 4-stage fourth order Runge-Kutta method, whereas
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., 7.and Z, are the second, third and fourth derivatives of the function §(x) at

the point (x,,; ), respectively. Then, §(x) is defined as

s 5 (=%)  5 (%X % Y\ LR 2
S () =2, 120 +Z 120N +A(X=X)"+Bi (X, —X) (357)

+6i (x=%)+ D, (X1 — X),

where x €[x,X,,], and

~ h ~ n,
=—1Z +—,
A 12 "' 6
_~ 2 o~ ~_
5 --Nz7 .4
12 2
T |
i h 12 i 120 i+1 677”
and
~ U0 9= h-
D=2ty 7 _
T 10T 2

Here, we defined the error function €(X) as the difference between the exact
solution U(X) and the approximate solution obtained by spline method S (x) in
equation (3.57) for problem (1.12), (1.13), (1.14) or (1.15). Therefore, €(X) is

expressed by the following equation

e(x) =u(x) - S(x), x e[a,b]. (3.58)

We note that €(X) can be revised as
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e(x) =[u(x) = ST +[S () ~ S (¥)]

(3.59)

=€, (X) +ep(x),
where €,(X) and e,(x) denote the errors caused by spline interpolation and
discretization of problem (1.12), (1.13), (1.14) or (1.15), respectively. As a result, to
estimate €(X), we have to estimate e, (X)ande,(X) separately. Throughout this

discussion in this section, we are required to assume that u(x) € C°[a,b], as we are

employing this assumption in the upcoming equations.

As the degree of the quintic spline method is five, then €, (X) can be rewritten over

the subinterval (x.,x;.,) as

u® ()

6l

u(x) - () =

(X=X ,) (X=X )(X= %) (X=X, ) (X=X, )(X—X,.5), (3.60)

for some ¢; e (x;,X,,,). Onsubstituting t = X— X, in equation (3.60), this yields

u®(g)
u(X) =809 == =7 2h + )+ O -)@N - )(3h 1), (3.61)

where h denotes the Ilength of each subinterval. The expression

(2h+t)(h+t)(t)(h—t)(2h—t)(3n—t) in equation (3.61), has a maximum value at

_ h(3-+/3435+8V7)
6

t via the first derivative test. Moreover, the maximum value

is equal to 16.901h°. Then, [u(x) —s;(x)||. is bounded by
Ju() =5, (3], <0.02340°|u® (&) . (3.62)

Let W°® = max
xela,b]

u® (x)” . Thus, we can conclude that
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e, (x)], <0.0234wW °h°. (3.63)

To estimate the error function ey(X), equation (3.57) can be subtracted from

equation (3.37d), to give
(x=x)° > (g —%)°
+(Z. =7 )T
|+1) 12 h ( i |) 120h

(A = A)X=X)% + (B, = B)(X,.; —X)°
+(C =C(x=%) + (D, = D,) (X, — X),

$;(X)=5(0)=(Z., -
(3.64)

where xe[x.,X.,]. Let U=(u,,....u )", U=(@@,,....0_)" =0, pt,,)",
ﬁ:(ﬁl ’’’’ IZZn—l)t! n=,..., 77n—1)tv 77:(771 """ 77n—1) Z=(Z,,..., Z,4)
Z= (Z~0,..., Z~n)t. By applying the first derivative test and infinity norm on equation

(3.64), we get

e e VIR e i Vi Wi v B X2
Now, we will estimate |7 -7 using equation (3.49) as
I =2 @ = 2) =2 s =2~ = )+ = ) (369)
Then, taking the infinity norm on equation (3.66) yields
-7, < 2=l +3J2 -2, @)

After that, we substitute inequality (3.67) into inequality (3.65), and as a result, we

have
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212h?

leo 9, <[u -0 +220 7, + 2027

800

On using equation (3.52), we can estimate ||z — ] as follows

wfwm-éw—M+$uﬂ 0.)

Hi _ﬁi :h_2
h? ~ . 8h? ~ . h?
———2Z.,-2.)-—(2Z,-2)-—
120 ( i-1 |—1) 120 ( i |) 120 ( i1

Therefore, from equation (3.69), we obtain

u-al, <50 -0+

On substituting inequality (3.70) into inequality (3.68), we get

1648 ” ~H 212h

leo ), = S L

To estimate HZ % ZH , we let Q = (g, ;) represents a matrix with

65, 1=j=landi=j=n-1,
1,  j=i+2,i=12...,n-2,

26, j=i+1i=12,..,n-2,

q,; =466, i=],i=23..,n-1

26, j=i-1i=23,...,n-1

1, j=i-2,i=34,...,n-1,

0, otherwise.

Similarly, we also let J =(j,,,)to designate a matrix with
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5, m=Il=1,andm=Il=n-1
1 l=m+2,m=12,....n-2,
—4, l=m+1m=12,....n-2,

Jmys =16, m=I,m=23,...,n-1,

-4, l=m-1m=23,...,n-1,
1 l=m-2,m=34,...,.n-1,
0, otherwise.

In order to write equations (3.53), (3.55) and (3.56) in terms of matrix form, we let

120 120 120 120

!//:(—h—AUO _ZO +Fﬂ0,h—4uo _ZO’O""’O’h_4un —Zn,
120 120
_h_4un _Zn +h_2/un)t'

As a result, this system can be written as

~ 120

From equation (3.72), we obtain
~. 120 ~
Q(Z—Z):FJ(U —U) +z(h), (3.73)

where z(h) = (z,(h),z,(h),..., 7, ,(h))" is the error due to the discretization. By using

the mean value theorem on each of the component z, (h), we have
7,(h) <ch, 7, (h) <c,h, 7, ,(h) <c;h, 7, ,(h) <c,h, (3.74)
and

r,(N) =—hu® (&), & e (X, %), i=2,3...,n—3, (3.75)
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where c,, c,, C, and ¢, are constants. From inequality (3.74) and equation (3.75), it

follows that

[z, <cgh, (3.76)

u@ (),

where ¢, =max{c,, ¢c,, C,,C,,C.}, and C; =

a<x<b

We note that the matrix Q is invertible because it is strictly diagonally dominant

matrix, which implies HQ H 12 Moreover, the infinity norm for the matrix J is

computed to be 16 i.e. HJ ‘le =16. On using this information together with equation

(3.73) and inequality (3.76), we acuire

le=7], <5

u UH —c h. (3.77)
From inequalities (3.71) and (3.77), we obtain

3 ¢t (3.78)

leo . = ro U -V, +

From inequality (3.78) together with Theorem 3.1, we have

les (), <c;h*, (3.79)

839 N 53(b-a)c,

where ¢, = C
150 28800

. Finally, from equation (3.59), inequalities (3.63) and

(3.79), we get

eCAl. < e, (., +[leo (9. < ch®, (3.80)
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0.02347(b—a)’W°®

where ¢, 95

+c,. Last but not least, we summarize the above

convergence analysis in the following remark.

Remark: With the assumptions of Theorem 3.1, if S(x) is the quintic spline method

(3.57) that used to approximate the solution of problem (1.12), (1.13), (1.14) or
(1.15), i.e. u(x), then
Hu(x)—§ (x)H <cgh?, (3.81)

_002347(b—a)’'W*

where ¢, 55

o
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CHAPTER FOUR
NEW CUBIC AND QUINTIC NON-POLYNOMIAL SPLINE
METHODS

4.1 Introduction

This chapter considers the derivations of two new non-polynomial spline methods
for the approximate solution of first order IVPs (1.12), first order BVPs (1.13),
second order 1\VVPs (1.14) and second order BVPs (1.15). Moreover, the convergent

analysis for each derived method is considered as well.

4.2 Cubic Non-polynomial Spline Method

The construction process and the convergent analysis of the new cubic non-

polynomial spline method are described in this section.

4.2.1 Construction of Cubic Non-polynomial Spline Method

During our investigations through the literature, we note that there exists some non-
polynomial splines that are based on the trigonometric functions sine and cosine
together with polynomial. Likwise, there also exists non-polynomial splines which
depend on sine hyperbolic, cosine hyperbolic functions and polynomial. Therefore,
in this section, we examine the derivation of new spline method which contains the

functions sine, cosine, and their hyperbolic counterparts, in solving first and second

order ODEs. Hence, let the interval [a,b] being divided into n—1 equal subintervals
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[x,,%.,,], each of length h, where x; =a+ih,and h= b;na. For each i-th segment,

the cubic non-polynomial spline s, (x) on the interval [X;, X, ,] has the form
s, (X)=a; sink(x —x;)+b, cosk(x —x; }+c; sinhk(x—x; )+d; coshk(x—x%;) , (4.1)

where a;,b,,c,,andd,,i=0,1,...,n-1, are finite constants and k is a free parameter.

The following conditions have to be satisfied by each cubic non-polynomial spline

function S(x):

e S(X)=s,(x), xe[x,x.,), 1=0L...,n-1,

e S(a)=u(a), S(b) =u(b),and

o 59 (x) 0%, r =012
where u(X;) is the exact solution of problem (1.12), (1.13), (1.14) or (1.15), and s; be
the approximate solution to U, =u(X,) generated by the cubic non-polynomial spline s, (x)

on the subinterval [x;, X;,,]-

To obtain expressions for the four coefficients of equation (4.1) in terms of

u;,u.,,and g, the following relations are defined for each value of i:

U, =s;(x), (4.2)
Uiy =8 (X)), (4.3)
") @)

and
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Hig = Si”(XHl)' (45)

On applying equations (4.2), (4.3), (4.4) and (4.5) to the cubic non-polynomial spline

S; (X), we acquired the following equations

__u; cot(kh) v Yia A cot(kh) Hig

T T 2sinkn) T 22 2KZsin(kh) (4.6)
U 4
. B I 4.7
= T2 (4.7)
G P | G D PN
2 2sinh(kh) 2k 2k “ sinh(kh)
and
b2 2k? (4.9)

The continuity condition of the first derivative of the cubic non-polynomial spline

s, (x) is exploited at the paint X, ,;,1.€. 8/ (X,,,) =81 (X;,), 1o get

i+17
a; kcos(kh) —b, ksin(kh) +c; k cosh(kh) + d; ksinh(kh) =a,,, k +c,,, k, (4.10)
where 1=01,...,n—2. On substituting the results in equations (4.6) - (4.9) into

equation (4.10), this gives

(

cot(kh) cos(kh) . sin(kh) coth(kh) cosh(kh) = sinh(kh)
+ - + )
2 2 2 2
1 1

*(=cot(kh) + coth(kh)) ..+ (5 sin(kh) 2 sinh(kh)

):ui+2

etk 2cos(kh) +sin;kh) N coth(kh)zcosh(kh) _sinh(k),
. . (4.12)
+ (~cot(kh) - coth(k)u,..+( Uia).

+
2 sin(kh) 2 sinh(kh)
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On simplifying equation (4.11), we acquire the following main recurrence relation
apt + g+t =K (B + BoU,, + BU,L,), (4.12)

where 1=01,...,n-1,

sinh(kh) sin(kh)
a, = 2 - 5y

a, =—cos(kh)sinh(kh) + cosh(kh)sin(kh),

_sinh(kh) _ sin(kh)
2 2

by

and

S, =—cos(kh)sinh(kh) — cosh(kh) sin(kh).

Equation (4.12) gives a system of n—1 equations in n+1 unknowns, which are the

w, 1=0%...,n=1n. This system can be solved uniquely by adding two extra
conditions at the points X, and x,. For this reason, we choose g, =u"(x,), and
4, =u"(x,). By substituting the values of z, and x, in equation (4.12), the last two
equations are

o,y + o, =K (B, + BouUy + BU,) —ay tiy, (4.13)

and

Qi , T O U, = k? (B, o+ BoU, + BU) —ag . (4.14)
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This system can be solved for 4, i=01...,n=1n, using the MATHEMATICA

software.

In order to obtain numerical solution using the proposed cubic non-polynomial
spline method, we construct the following algorithm:

Step 1: The interval [a,b] is partitioned into n subintervals by inserting n—1
equally spaced points, i.e. x =a+ih, where h=(b—a)/n and
i=12,...,n-1

Step 2: To find the approximate solution u, at the grid points, we

e employ the explicit 4-stage fourth order Runge-Kutta method to first order
IVP (1.12), or

e exercise the approach in Palancz and Popper (2000), which is based on the
explicit 4-stage fourth order Runge-Kutta method, to first order BVP
(1.13), or

e apply the explicit 4-stage fourth order Runge-Kutta method to second
order IVP (1.14), or
e use the shooting method together with the explicit 4-stage fourth order
Runge-Kutta method to second order BVP (1.15).
Step 3: The linear system which consists of equations (4.12), (4.13) and (4.14) is

solved for the values of 1, 1=123,...,n-1.
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Step 4: Use the values of u. and g generated from Step 2 and Step 3 to obtain the
values of a;, b, c,, and d,. Therefore, the cubic non-polynomial spline

method s, (x) in equation (4.1) is wholly defined.

4.2.2 Convergence Analysis of Cubic Non-polynomial Spline Method

Assume that the cubic non-polynomial spline s,(x) given by equation (4.1) is
developed using the exact values u, and z. Let the cubic non-polynomial spline
constructed using the values U, and z; being denoted by S, (x), where U, is obtained

using the explicit 4-stage fourth order Runge-Kutta method when solving problem

(1.12), (1.13), (1.14) or (1.15), and w, represents the second derivative of s (x) at
the point (x;,U.). Thus, S,(x)can be given in the form

S, (X)=a, sink(x —x,)+ 5, cosk(x—x, )+ C, sinhk(x — x, )+ Ji coshk(x=X), (4.15)
where x e[x;, X;,,], and

i+1

g cot(kh)+ u +ﬁi cotkh) 4y

= ,
| 2 2sin(kh) . 2k?  2K’sin(kh) (4.16)

- 0 I
b =— M 4.17
2 2k? (4-17)

~ U coth(kh u. 1. coth(kh 1
== i ( )+ . i+l _lul 2( )+ ; /L-l|+1 , (418)
2 2sinh(kh) 2k 2k “ sinh(kh)
and

T
d =L+, 4.19
b2 i 2k? (4.19)
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Assume that €(X) denotes the error between the exact solution U(X) and the

approximate solution S, (x) for problem (1.12), (1.13), (1.14) or (1.15). Therefore,
e(X) can be defined as follows

e(x) =u(x)— S (x), x[a,b]. (4.20)

It is simple to verify that we can write €(X) in equation (4.20) as

e(x) =[u(x) ~ S(IT+[S(x) - S (¥)]

=6, (X)+8 (), (4.21)

where €, (X) and ey(x) are the errors due to the cubic non-polynomial spline
interpolation and discretization of problem (1.12), (1.13), (1.14) or (1.15),

respectively. The estimation of €(X) in equation (4.21) requires the estimations of
both e, (x) and e, (x). In the remainder of the discussion in this section, we suppose

that u(x) e C*[a,b], since up to the fourth derivative of the solution u(x) is needed.

On using Theorem 2.5, €, (X) can be defined on the interval [x;,X;.,] as follows

Xis1

u(x)—s;(x) =% I u® () R, [(x-7)3]dx, (4.22)

where R, [(x—7)°] is the Peano kernel. According to Definition 2.7, we can revise
the Peano kernel function on the subinterval [x;,x;,,] as

r(z,x), X, <z<X,

S(7,X), X<7T<Xy-

R, [(x~7)°] —{
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By taking the absolute value of equation (4.22) on the interval [x;,x.,] and with the

help of Theorem 2.6, we have

1
U0 s, 00] < u (4.23)

Therefore, we can rewrite the i in inequality (4.23) as

(4.24)
To evaluate the Peano kernel R, [(x—17)*], it can be written as
. =7)>  BhA(x, =),
R = 3 = (X — 3 (X|+l T)+ i+1
AG=a)d = 0= 2sin @ 267 sin6
_\3 2
| (x; —7); cot@ . 6h°(x, —7), coté?]Sm K(x=x)
2 26°
_[(Xi _T)i =1 6h2(xi —T)Jr]cosk(x_ X )
2 26° i
4.25
_[(Xi+l —Z')i + 6h (X|+l )+ _ (Xi _T):j- coth @ ( )
2sinh 20°sinh @ 2
6h*(x, —7), coth@ (x, —7)°
- ' - sinh k(x — x;
YE ] (X=x)-[———— 5

M] coshk(x —x;),

where @ =kh. Thus, the Peano kernel R_[(x—7)%] can be rewritten depending on

the value of 7, i.e. if X, <7 <X, equation (4.25) becomes
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r(,X) = (x—7)° _[(Xizii; ;) - She(z):i*;;r)]sin K(x—x)

_7)? 2 _ (4.26)
=) 300 0k x).
2sinh @ 6°sinh @
Otherwise, if x <7 <X,,,then equation (4.25) becomes
S(T X) _ _[(Xi+1 _/Z-)3 _ 3h2(xi+l _T)]Sil’l k(x_ X )
' 2sin@ 0%sin@ i
(4.27)

_[(XM_ 7) n 3h 2(XI-+1 z-)]Sil’lh K(X=X;)-
2sinh & ¢”sinh o

We observed that r(x,x) =0 if and only if x=x, or x=x,,.

In order to find the values of z such that r(z,x) =0, we assume that p=x—z in

equation (4.26). As a result, we get

r P P (G E X)° +3(%;,, — X)2 0+ 3(X — X) 07 + p°
| 2sin@
3" (%0 =X+ ), (X =X +3(X = X) p
> ) Slnk X=X )— i+1 i+1
0%sin® EPsitiutt 2sinh @ (4.28)
23 =X)p"+p” 3N ((X2.+1_ 9+ 2) i k(- x ) 0.
2sinh @ 6°sinh g

Equation (4.28) can be solved by using MATHEMATICA software to conclude that

r(z,x)=0 for all ze(x,x). Furthermore, for all re(x,x), r(z,x)>0, ie.

Ir(z,x)|=r(z,x).

Likewise, to determine the values of 7 such that s(z,X)=0, we also use the

assumption p = x— inequation (4.27), and we acquire
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N3 o 2 o 2 3
S(T,X):_[(XHl X) +3(X|+l X)- p+3(xl+l X)p +p
2siné@
30° (%y =X+ P) (X =%)° 4304, =X)*p
_ i+ sink(x — x. ) — [~ -
S sink(x—x,) [ s 6 (4.29)
_ 2 3 2 _
+3(Xi+l X),D tp +3h ((Xz”l_ X)+'D)]Sinh k(x—x;)=0.
2sinh @ 0°sinh @

By using MATHEMATICA software to solve equation (4.29), we notice that the only

value for z such that s(z,x)=0, is r=x,,,, which does not belong to the interval
(X,%.,). Thus, s(z,x)=0 for all re(x,x,). Moreover, for all ze(X X,,)
S(z,X) >0, ie. |s(r,x)|=s(z,x). In view of the fact that the functions s(z,x) and

r(z,x) are positives on their respective intervals, and hence, equation (4.24)

becomes

Xii1 X Xis1

jRX [(x=7)2]|dz = [r(z,x)d7 + js(r,x)dr. (4.30)

Xi X

The integrations of equation (4.28) and equation (4.29) on their respective intervals

by means of the MATHEMATICA software produce

IV(T,X)dT:—£h4(g)4+(h4(1-_o-)4 ~ _h4 _3h42(1.—0')2
% 4 8sin(¢)  8sin(d) 80*sin(v)
h4 . h4(1_0)4 h4
+89Tin(9))sm(6'a)+( 8sinh(0) _8sinh(9) (4.31)
+ 3h*(1l-0)? h Jsinh(0.0).

862 sinh(d) 867 sinh(Q)

and
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[seydr=(-Ml=0) S A=0))
’ 8sin(8) 807 sin(0)

X

in(6 o)

h'@-o)" , 3h4(1“’)2)sinh(ea),

~( 8sinh(9) 862 sinh(d)

(4.32)

X—X; . .
where azT'. On substituting equation (4.31) and equation (4.32) into equation

(4.30), we have

X4

[R, [0x=2)"1

Xi

dr = f(x),

where

h* h*
- +
8sin(@) 867%sin(H)
h* h*
" 8sinh(6) 867 sinh(8)

)sin(6 o)

f(x) =—%h4<a)“ £

+( )sinh(6c).

Thus, inequality (4.23) can be written as
L@
u(x) s, (x)| < EHu ()] ).
On maximizing both sides of inequality (4.35), we get

exju(0—5,00] < 6 | max, 09,

From equation (4.34), it is confirmed that

max | f (x)| < c;h?,

[%i X411

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

where ¢, is a constant. On substituting inequality (4.37) into inequality (4.36), this

yields
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Ju) =5, ()], <|u® @) | c;h*. (4.38)

Hence, the error function [e, (x)|_can be estimated on the interval [a,b] as shown
below:

e, ()], <csh®, (4.39)

where ¢, = rr}a>b<]
Xela,

u®(x) H , and ¢, =c, xC,.

In order to complete the estimation of e(x), we have to estimate e, (X). Therefore,
we subtract equation (4.15) from equation (4.1), to gain

5,() -5 (0=(a, - &)sink(x—x)+ (b, ~b;)cosk(x—x,)

+( ¢;= C)sinhk(x=x)+ (d;=d,)eoshk(x—x), (4.40)
where
T TF 2 = 2 R
ai _ai L . (ui —ul)COt(e) + (ui+1._ui+l) + h (1u| _,u|2) Cot(g) o h (lu2i+1-_lui+l) | (441)
2 2sin(6) 26 26%sin(6)
- 0 20, _ =
by —b, = (U ~4,) - (s 2 lu'), (4.42)
2 20
-u, = 201 —11 20, _7
Ci _Ei =— (ui ul)COth(H)+ (u'+1_ u'+1) _ h (lul /u|200th(9) + h (/l:|+:l: /’lH—l)’ (443)
2 2sinh(6) 20 207 sinh(6)
and
-~ . — ~. 2 L — ~_
g - <=0 ' -7) w0
2 20
where 6 =kh.
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Let U =(Uy,....Upy)'s U =(@eeel,0)'s = (e tty )t a0 J1= (i, fly )
Thus, by applying the first derivative test and infinity norm to equation (4.40), we

obtain

oo, <[u -0+ .. (4.45)

In order to estimate |e, (x)|_, we first estimate ||..— x| . Let B=(b,;) designates a

matrix defined as

0 0 o a]

Besides, let. V. = (v, ;) denotes a tridiagonal matrix defined as

5 B O 0
B P B O
0 B B B O
V = e Tes el T .
p B B O
0 B B B
0 0 B 5]

Therefore, our system, which consists of equations (4.12)-(4.14), can be represented

in matrix form as

Bu= h—12VU +C, (4.46)
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(04 (04
where C = (%uO —H—;uo,o,...,o,%un _?;ﬂn)t-
From equation (4.46), we get
~ 1 ~
B~ ) =V (U ~U) +r(h), (4.47)

where z(h) = (z,(h),z,(h),...,7,,(h))". By using the mean value theorem on each of
the component z, (h), we obtain
r,(h)<c,h?, 7, (h) <c,h?,
and
Iz (M| segh?,ii=12,...,n-2,
where c,, €, and ¢, are constants. Thus, form the above inequalities, we can get
”T(h)Hw <c,h?, (4.48)

where ¢, =max{c,, C., C,}.

As B is strictly diagonally dominant matrix over the interval [0.1,1], then B™ exists
and HB’lu <30. Moreover, we find that [V| <3.96. On substituting inequality

(4.48) into equation (4.47), we have

119

~ Ju-U| +30c, h?. (4.49)

o=, <
So, the substitution of inequality (4.49) into inequality (4.45) gives
leo (9], <Ju -U]_ +14.85u-U| +3.75¢;h*, (4.50)
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leo ()], <15.85Ju —U| +3.75¢;h*, (4.51)

By using Theorem 3.1, we may conclude that

leo ()], <c5h* (4.52)
where ¢, =15.85¢c +3.75¢c,. Hence, on substituting inequalities (4.52) and (4.39) into
equation (4.21), we obtain

le()],, <coh*, (4.53)
where ¢, =cC, +C,. We summarize the above convergence analysis in the following

remark.

Remark: With the assumptions of Theorem 3.1, if S(x) is the cubic non-polynomial
spline method (4.15) that used to approximate the solution of problem (1.12), (1.13),

(1.14) or (1.15), i.e. u(x), then
u) =S (9], <ccht, (4.54)

where ¢, =C, +C,.

4.3 Quintic Non-polynomial Spline Method

The development process and convergent analysis of the new quintic non-

polynomial spline method are examined in this section.
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4.3.1 Construction of Quintic Non-polynomial Spline Method

In the previous section, we have examined a cubic non-polynomial spline which
solely consists of four transcendental functions, i.e. sine, cosine, sine hyperbolic and
cosine hyperbolic. In this section, we extend the cubic non-polynomial spline to a
new quintic non-polynomial spline, by adding a linear polynomial to the cubic non-

polynnomial spline. Thus, let us consider h=(b—a)/n, n being a positive integer,

so that the partition of the interval [a,0] is given by
P={a=x<x<...<X,=b},

where x; =a+ih,i=01...,n-1. On each interval [x;,x;,], we let u, and s,
represent the exact solution and approximate solution of problem (1.12), (1.13),
(1.14) or (1.15) at the point x., respectively. Each quintic non-polynomial spline
function S(x) has to satisfy the following conditions:

o " S(X)=S, (X)X el XynXkisyle pi=01 . 110 =1,

e S(a)=u(a), S(b) =u(b),and

i Si(r) (Xi+l) = Si(rjl). (Xi+1)l r= 0!1721314’5-

4+

For every interval [x;,X;,;], the quintic non-polynomial spline can be written in the
following form

S, (X)=a, sink(x—x.)+ b, cosk(x—x;)+ ¢, sinhk(x—x;)

+d, coshk(x—x)+ f,(x—x.)+9,, (4.55)
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where a;, b, c;,d,, f,and g;, i=01...,n—-1, are coefficients to be specified and k

is a free parameter. Therefore, to determine the coefficients of the quintic non-

polynomial spline (4.55) in terms of u;, u;,,, 24, t4,,, Z; and Z,,,, we define

u, =5 (Xi)’
Uiy =S (Xi+l)’
Hi = Si”(xi)!

:ui+1 = Si"(XiJrl)’
Zi = Si(4) (Xi),
and

4
Zi+1 B Si( )(Xi+l)-

(4.56)

(4.57)

(4.58)

(4.59)

(4.60)

(4.61)

On substituting s;(x), its second and fourth derivatives in equations (4.56) - (4.61),

this leads to a system of six equations with six unknowns. By solving this system,

we are able to obtain the values of the coefficients as given below:

QM cottkh) iy _Zicot(kh)+ Z,

i+1

' 2k? 2k?sin(kh)  2k* 2k*sin(kh)

b __'_|__"
' 2k*  2k*
_ K coth(kh) 4 Hi _Z coth(kh) N Zis
i 2k® 2k sinh(kh) 2k* 2k sinh(kh)
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i :§+2—ki4, (465)
Ui, —U; Zi _Zi+
fi=std o S (4.66)
and
Z.
g = _k_‘:' (4.67)

After that, the first, third and fifth continuity conditions of the quintic non-

polynomial  spline s, (x) are imposed at the knot Xx,,, I.e.
sV (x.,,) =s"(x.,,), r =1,3,and 5. This leads to
a.k cos(kh) — bk sin(kh)+c. k cosh(kh)+d. k sinh(kh) + f,
(4.68)
=K +C K+ f,
—a,k® cos(kh) +bk® sin(kh) + ¢,k *® cosh(kh)+d.k* sinh(kh)
(4.69)
=-a,k®+c, k3 and
a,k® cos(kh) —b.k® sin(kh) + ¢,k cosh(kh)+ d.k* sinh(kh)
(4.70)
= a‘i+lk5 + Ci+1k5'

respectively. By substituting the coefficients a;, b, c;, d;, f, and g, defined in

equations (4.62) - (4.67) into equations (4.68), (4.69) and (4.70), we acquire
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a cot(kh) cos(kh) sin(kh)  coth(kh) cosh(kh) sinh(kh)+ 1

+ .

2k?3 2k?3 2k 3 2k hk“) '

cot(kh) coth(kh 2 1 1 1
+( (3 ) + g ) - 4)Zi+l+(_ 3 . - 3 - + 4)Zi+2

k k hk 2k*sin(kh) 2k~sinh(kh) hk

cot(kh) cos(kh) N sin(kh)  coth(kh) cosh(kh) N smh(kh))ﬂi (4.71)
2k 2k 2k 2k

cot(kh) coth(kh) 1 1
+(= + i+ ( 5 - -
k k 2k sin(kh) 2k sinh(kh)

+(

)zui+2

u, —2u

i i+1 + ui+2

h 1

(cot(kh) cos(kh) N sin(kh) _ coth(kh) cosh(kh) N sinh(kh))Z
2k 2k 2k 2k !
_ cot(kh) N coth(kh))Z 1 1

+ ( i+1 + ( . - .
K K 2ksin(kh) 2k sinh(kh)

)Zi+2
(4.72)

k cot(kh) cos(kh) ksin(kh) k coth(kh) cash(kh) ksinh(kh)

+ (- - - . )
2 2 2 2

K k

+ (k cot(kh) + k coth(kh)) ., + (= 2sin(kh) a 2sinh(kh)

;.. =0,
and

k cot(kh) cos(kh) ksin(kh) kcoth(kh) cosh(kh) ksinh(kh)
= 2 2 2 ey 4

k K
2sin(kh)  2sinh(kh)

+ (kcot(kh) + k coth(kh))Z;,, + (-

i+1

)Zi+2

4.73
. I(3(cot(kh) cos(kh) N sin(kh)  coth(kh) cosh(kh) N Sinh(kh))ﬂi “7)

2 2 2 2

k3 'S
+(=k3 cot(kh) + k* coth(kh)) zz. ., + — . =0,
( ( ) ( )):uH—l (25|n(kh) ZSinh(kh))luHZ

respectively. The eliminations of 4 and 4., from equations (4.72)

and (4.73) yield
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—csc(kh)esch(kh) Z; + cot(kh) csch(kh) Z,,, +coth(kh) csc(kh) Z,,
—csc(khyesch(kh)Z. ., +k?(coth(kh) csc(kh) (4.74)
—cot(kh)csch(kh)) g, = 0.

As a result, from equation (4.74), we have

_ 4L (cos(kh) + cosh(kh))Z.., + Z.,,
fia k?(cos(kh) —cosh(kh))

(4.75)

The following recurrence relation is obtained by eliminating 4,

4., and g, from equations (4.71) and (4.73):

Z,-2Z,,+Z,,=k*(@u, —2u,, +u,,), (4.76)

i+1

where i=01...,n—3,n-2.

Equation (4.76) provides a system of n—1 equations in n+1 unknowns, which are
the Z,, i=0L...,n=1n. As a result of choosing Z, =u(x,) and. Z, =u®(x,)

as extra conditions, this system can be solved uniquely.

To obtain the last two equations, we substitute the values of Z, and Z, in equation
(4.76), to get
-2Z,+Z, =k*(u, —2u, +u,)—Z,, (4.77)
and
-2Z. ,+Z,,=k*WUu,,—2u,,+u)-Z.. (4.78)

As a result, a system of n—1 equations with n—1 unknowns has been formed.

These unknowns can be solved using the MATHEMATICA software. Finally, to fully
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determine the proposed quintic non-polynomial spline, we choose z, =u”(x,) and
u, =u"(x,). Thus, our quintic non-polynomial spline s,(x) in equation (4.55) is

completely defined.

To construct an algorithm for the proposed quintic non- polynomial spline method,
we use the following steps:

Step 1: Divide the interval [a,b] into n subintervals by the points x =a+ih,
whereh=(b-a)/n and i=0,1,...,n.
Step 2: To attain the approximate solution u; at the grid points, we

e implement the explicit 4-stage fourth order Runge-Kutta method to first
order IVP (1.12), or

e apply the approach in Palancz and Popper (2000), which is based on the
explicit 4-stage fourth order Runge-Kutta method, to first order BVP
(1.13), or

e employ the explicit 4-stage fourth order Runge-Kutta method to second
order IVP (1.14), or

e exercise the shooting method with the explicit 4-stage fourth order Runge-
Kutta method to second order BVP (1.15).

Step 3: Equations (4.76), (4.77) and (4.78) forms a linear system which can be

solved for the values of Z,, for i=12,...,n—1.
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Step 4: The values of u, and Z, produced from Step 2 and Step 3 are used to

polynomial spline method s, (x) in equation (4.55) is fully defined.

4.3.2 Convergence Analysis of Quintic Non-polynomial Method

establish the values of a,b,c,d, f and g,. Hence, the quintic non-

We consider s;(x) and S, (x) to represent the quintic non-polynomial spline (4.55)

using the exact values u,, 4 and Z,. and the approximate values U,z and Zi,

respectively. The approximate solution U, is obtained with the help of explicit 4-

stage fourth order Runge-Kutta method of the problems mentioned in (1.12), (1.13),

(1.14) or (1.15), and z; and Zi are the second and fourth derivatives of s;(x) at the

point (x;,U;), respectively. Then, s;(x) takes the following form

where

S,(x)=a, sink(x—x)+ 5, cosk(x—x;)+ c; sinhk(x —x.)

+d, coshk(x—x )+ f;(x=x)+

 _dcotkh) R, Ziootkh)  Zy,
i 2k 2k%sin(kh)  2k* 2k* sin(kh)’
- L 7
b =—LL 4 —L
' 2k? i 2k*
- __Boothkh) — f, _Z cothikh) Zis
‘ 2k 2k 2 sinh(kh) 2k’ 2k sinh(kh) "

Z,
d, +—,
bo2k* o 2k®
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f — i+l |+ i i+1, 4.84
' h hk (4.84)
and

g, =1 - E— (4.85)

The convergence of the proposed method can be proved by defining €(X) to be the
difference between the exact solution U(X) and the approximate solution by the
quintic non-polynomial spline function s (x)for problem (1.12), (1.13), (1.14) or
(1.15). As aresult, we get

e(x) =u(x) - S(x), x <[ab]. (4.86)

It is easy to show that €(X) in equation (4.86) could be rewritten as follows

e(x) =[u(x) - S (Y] +[S(¥) - S (V)]

(4.87)

=€, (X) +e5(X),
where €, (X) is the error caused by the quintic non-polynomial spline interpolation
and e, (X) is the error on account of discretization of problem (1.12), (1.13), (1.14)

or (1.15). So, to estimate €(X), we need to estimate e, (x)and e,(x) separately. It

will be assumed throughout this discussion that u(x) € C°[a, b].

The error function €,(X) can be estimate via Theorem 2.5. Therefore, we defined

e, (x) on the interval [x;,x,,] as
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Xi

a9 -5,00 == [uO @R, [(x-)*1dr, 4.89)

Xi

where R, [(x—7)?] denotes the Peano kernel. Therefore, by using Definition 2.7,
the Peano kernel function on the subinterval [x;,x;,,] can be expressed as

r(z,x), X <z<X,

RXKX—Tﬁ]—{

S(7,X), X<T<X.

Taking the absolute value for equation (4.88) on the interval [x.,x.,,] and by using

Theorem 2.6, this gives

Xit1

J

X

R, [(x—1):]

u(x) - s, (9| < 2—14uu SIONR dr. (4.89)

The integral _[RX [(x=7)?]|dz on the right hand side of inequality (4.89) can be

written as

i

[IR, 10=2)°1

X;

dr :JX.XI‘(T,X)Xdr+xﬁs(r,x)Xdr. (4.90)

In order to evaluate the Peano kernel R [(x—7)?], it can be expressed as
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24h*  12h*(x,, —7) 24h*cotd

R [(x-7)1=(x-7)% -1

20*sin @ 20°sin@ 20*
12h%(x. —7)% cot @, . 24h*
+ ! + sink(x—x.)—
YE Isink(x—x;) [294
2 Y 4 20y _ )2
_12h (xi2 T)+]cosk(x—xi)—[ 24h +12h (X, —7)%
20 20

“sinh @ 20°sinh @ (4.91

4 2(x. —71)2
_2ah c?th9_12h (X TZ)* Cothg]sinh K(x=X;) )
20 20
24h*  12h%(x, —7)> (X = 7)"
_ + 2 ]coshk(x — X, ) — 22 (X — X;
oo 207 1oOMKOX) o SN
24h*
—[(x —7)* —=—— )
[( i T)+ 204 ]

where € =kh As a consequence, from equation (4.91), we note that the Peano
kernel could be reformulated as follows

24h*  12h*(x,—7)* 24h%cotd
260%sin @ 26%sin6 26°

r,x)=(x=7)* = Isink(x —x;)

4 4 2 N2
242 cosk(x—x)—[ §4h +12h (2xif1 7)
0 20°sinh @ 260°sinh @

(4.92)

24h*cotho, . 24h*
- smh k(x—x)-—
26* ] (x=x) 26*

(%= )" 24h"
—— 2 (x—X)+ :
h ( ) 26*

coshk(x—x;)

if x, <7 <x; otherwise
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24h*  12h*(x,, —7)° 24h*cotd

s(7,x) =— sink(x — x;
(7.%) [294sin9 260°sin@ 260" ] ( )
4 4 2 )2
B 4h4 cosk(x—x ) —[ §4h +12h (zxn_1 7)
0 207" sinh @ 20°sinh @ (4.93)
24h* coth @, 24h* '
- sinhk(x=x,) — coshk(x — x.
P ] (X=%) 25 (X=x)
(Xi+1 - T)A 24h4
7 (X=X )+ —,
h (=) 26*
if Xx<7<Xx,,. Wenote that r(x,X) =0 forall xe(x,,X,,)

To determine the values of 7 such that r(z,X) =0, we let p = x—7. On substituting
this assumption into equation (4.92), we obtain

12h* r Bh* (X =2)° + 20Xy = X) + p°)

r(r,X)=p" -
EX =P ~lang 9%sind
4 4
—M]Sin k(x—xi)—2240h4 cosk(x—x.)
y 12h* n 6h* (X, =X)* +2p(x; =X)+p°)
20" sinh @ 6°sinh @
(4.94)
12h* coth @, . 12h*
——————]sinhk(x—x;) - P coshk(x—x;)
_ 4 . 3 2 o 2
_((Xi+l X) +4p(x|+l X) +6p (X|+l X) (X—Xi)
h
3 _ 4 4
+4p (Xi+1hx)+p )(X_Xi)+1zr: —0.

By using MATHEMATICA software to solve equation (4.94), we find that there is no

real root for r(z,x) for all ze(x;,%). Moreover, for all 7 (x;,X), r(z,x)<0, i.e.

Ir(z,x)| =—r(z,X).
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Similarly, in order to find out the values of z such that S(z,x)=0, the same

assumption p = x—¢ is substituted in equation (4.93) and this gives

4 —_ 2
S(r, X) = [ 12h 6h* (X, —X)* +2p(X.., —X) + p°)
0'sing 9%sin @
4 4
M] nk(x-x)- h “=—cosk(x—x;)
— 12h4 6h ((X|+1 B X) + 2p(X|+l X) +p2)
294 S|nh0 Slnhﬁ
(4.95)
4 4
B 12he+0tw]3inh K(x—x;)— 12? coshk(x—x;)
_(( i+1 X) +410(X|+1 ) +6P (X|+1 ) (X—Xi)
h
3 B 4 .
AP g X) P )(X_Xi)+12r: _g

h
By using MATHEMATICA software to solve equation (4.95), we note that

S(z,x)#0 for all ze(x,x,,). Furthermore, the function s(z,x) is negative for all
Te (X X,1), Le |s(r,x)] = —s(z, x). Therefore, the integrals in equation (4.90) can be

written as

X1 Xis1

—Ir(r x)dz — IS(T x)dr. (4.96)

On integrating each integral in the right hand side of equation (4.96) on their

respective intervals, we get
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12h°c N 2h*(1-o)°® - 2h®
6* sin(0) 6% sin(6)

jir(T,X)d’L':%hs(O')s—(

1o cot0), gy - 200 hs cos(0.0)

12h°c 2h°(l-0o)° -2h°
— (== - e (4.97)
6" sinh(6) 6° sinh(0)

_ Lo 0l0)) Ginnp o) - 225 cosh(0.o)
12h5
+—((1— o)’ -Do o
and
js(ax)dT:_(lﬂf(.l—a)_2hZ(1_—6)3
5 6" sin() 67 sin(6)
12h @a- a)cot(e)) in(0 o) — 12h5(£_0)cos(6la)

64
12h a- (7) 2h°(l-o)°
smh(@) 0° sinh(0)

(4.98)

12h (1— o) cot(6)
o* )s!
5 5 5
_hd-0) G+12h @-o0)
5 o*

5  —
12h (ZE1 O')C

nh(d o) osh(6 &)

where o = % On substituting equation (4.97) and equation (4.98) into equation

(4.96), we get

+1
'[ X

(4.99)

where
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_ 5 5 5
F(x)= Tho (o) 4+ (22, 2 120 Cot0)y G o
5 6" sin(@) 6°sin(0) 0
5 5 5
—lZT cos(f o)+ (—; h — 22_h
0 6" sinh() 6°sinh(0)
5 5 4 5
- 1206 sinn(@ o) - 2% cosh(@ o) - o+ L
% 4 %
On substituting equation (4.99) into inequality (4.89), we have
1
u(x) s, (x)| < zHu O@) | f. (4.100)
Taking the maximum on both sides of inequality (4.100), this yields
C
ue) -5, (9, <5 @ | b, (4.101)

where ¢,h* = max f(x). Therefore, we can estimate the error function [e, (x)[_ on

Xe(X;, Xi.1)
the interval [a,b] as
e, ()], <c;h® (4.102)

Buic
where ¢, = —1—>2

and ¢, = max
xe[a,b]

u®(x) ))w

Next, to estimate the error function e, (X), subtract equation (4.79) from equation

(4.55) to obtain

5,() ~§ (0=(a — &)sink(x—x)+ (b, ~b;)cosk(x~x,)
+(c, — C)sinhk(x—x)+ (d, —d,)coshk(x—x,)  (4.103)
+ (= ) (x=x)+(g, -3,

where
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= _ NG = 1)eot() N~ i) 0*(Z,—Z,)cot(6)

a4 —§ .

26° 26° sin(6) 26*

_ (4.104)
+ h4(zi+l - Zi+1)
20" sin(0)
_ 20, _ 7 407 _ 7
bi_bi:_h (lLll ZILlI)_l_h (ZI 4Z|)1 (4105)
20 20
C —F =— h? (44 — p;) coth(6) + h? (i — M)
b 26° 26° sinh(6)
_ _ (4.106)
_ h4(zi —Zi)COth(é') n h4(zi+1 _Zi+1)
20* 20*sinh(9)
_ 20, _ 5 407 _ 7
di_di:h (1u| 2ﬂ|)+h (Z| 4Z|)’ (4107)
20 20
fi 1 E i (Ui+1 _Ji+1?]_ (Ui —Gi) 4 hB(Zéi)A— Z~|) B ha(zig; Z~i+1)’ (4.108)
and
. — ~.
6, -G = -5) -G, (4.109
0
where 6 =kh.

Let U=(Up.Upy)'s U=(nly))'s g=entty)'s = fiy)'s
Z=(Z,...Z, )" and Z =(Z,,...,Z.,)". Therefore, by using the infinity norm
together with the first derivative test on equation (4.103), we can see that

14h*

mHz -Z].. (4.110)

- 2
e, <Ju-0] + -7l +
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Next, to estimate |e, (x)|., We have to estimate |x— x| and HZ —Z~H . We noted
that |..— 2z can be estimated using equation (4.75) as follows

_ 7 =—h? (Ziy- Zi—l) —(cos & +cosh 6)(Z; - Zi )+ (Zin— Zm)_

: 4111
A 6” (cos @ —cosh ) ( )
Hence, on applying the infinity norm to equation (4.111), we acquire
~ h? ~
|-, < EHz -Z|.. (4.112)
On substituting inequality (4.112) into inequality (4.110), we have
leo (9, <|u -] +0.025n*|z-2Z] . (4.113)

In order to estimate HZ —ZH , we let B = (b, ;) denotes a tridiagonal matrix defined

as

94%000 0
1 -2 1

1 -2 1
0 57 o7 o
B=
1 -2

o o o

1 2 1

" o o

1 -2

0 0 7 &

We also, let V = (v, ;) represents a tridiagonal matrix defined as
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-2 1 0 0 O 0 |
1 -2 1 0 0
1 -2 1 0
V = ‘
1 -2 1
1 -2 1
0 0 1 -2

Then, our system which consist of equations (4.76), (4.77) and (4.78), is able to be

expressed in matrix form as

BZ = hi4VU +C, (4.114)
1 1 1 1_ . .
where C = (Fuo _?2010’“"0’Fun _?Z”) . From equation (4.114), we have
~ 1 ~
B(Z-2) :h_“V(U —U) +7z(h), (4.115)

where z(h) = (z,(h), z,(h),...,z, ,(h))". By means of the mean value theorem on each

of the component z, (h), we can get
,(h)<c,,7,,(h)<c,
and
[z; (M, <ce,i=12,...,n=2,

where c,,c;andc, are constants. Therefore, by using these two inequalities, it

follows that
[e(h)], <c;. (4.116)
where ¢, =max{c,, C, C.}.
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Since B is diagonally dominant matrix, then B is invertible, and by using

MATHEMATICA software, we find HB’luw <0.07 and |V| =4. On substituting

inequality (4.116) into equation (4.115), we obtain

[2-2], <. 2 u-0], +oore,. (4.117)

Consequently, we can estimate the error function e, (x)|_as

les (9], <0.007|u ~U]| +0.002¢,h*. (4.118)

By using Theorem 3.1, we can obtain the following result
leo (], <c5h*, (4.119)

where ¢, =0.007¢ +0.002¢c,. Thus, on substituting inequalities (4.102) and (4.119)

into equation (4.87), we acquire
le)|l, = ¢sh”, (4.120)

wherec, =c; +c;. We summarize the above convergent analysis in the following

remark.

Remark: With the assumptions of Theorem 3.1, if S(x) is the quintic non-
polynomial spline method (4.79) that used to approximate the solution of problem

(1.12), (1.13), (1.14) or (1.15), i.e. u(x), then
Hu(x) -s (x)Hw <c,h*, (4.121)
C, =C, + Cq.
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CHAPTER FIVE
NUMERICAL RESULTS AND DISCUSSIONS

5.1 Introduction

In this chapter, some test problems consist of a variety of first and second order 1\VVPs
and BVPs, that are chosen to check the accuracy of the new spline methods.
Comparisons with existing spline methods in terms of accuracy are carried out as

well. For every test problem, numerical accuracy of all spline methods is

investigated through the error ‘u(xiﬂ.)—g(xiﬂ.)‘ generated over the integration

interval. We note that u(x,.) represents the theoretical solution and §(xi+j)

i+]
represents the numerical solution at the point x ; =a+(i+j)h, for
i1=012...,n=1 n is the number of subintervals and 0< j<1. Moreover, the

value of n and the points of comparison are stated for each test problem.

It is worth to mention that we extend some test problems domain in order to test the
efficiency of the developed spline methods on large domain. Moreover, we compare
the numerical results of the new spline methods with some existing methods of the
same order at different values of j to verify the capability of the developed methods
to perform well for every test problem. For the test problems involving first and
second order IVPs, the numerical results obtained from our new spline methods are

compared with the numerical results obtained from the cubic spline method of order

O(h*) in Tung (2013).
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For the test problems involving second order BVPs with Dirichlet boundary

conditions, the numerical results generated from our spline methods are compared
with those generated by: i) the quartic spline method of order O(h*) in Al-Said et al.
(2011), ii) the cubic spline method of order O(h*) in Al-Towaiq and Ala'yed (2014)
and iii) the quartic B-spline method of order O(h®)in Rashidinia and Sharifi (2015).

For test problems involving second order BVPs with Neumann boundary conditions,

we compared the numerical results obtained from our spline methods with the

numerical results obtained from the quartic spline method of order O(h*) in Liu et
al. (2011). Last but not least, the graphs of Ioglo[‘u(xi)—g(xi)‘] vs. x, are also

presented. The logarithm scale is used in the graphs because it allows a large range
of error values to be displayed without small values of error being compressed down

into bottom of the graphs.

5.2 Numerical Comparisons Involving Initial Value Problems

In this section, we have used 6 test problems involving first and second order 1\VPs
to illustrate the accuracy of the new developed spline methods in terms of error. The

findings are discussed at the end of this section.

Problem 1 (Ayinde & Ibijola, 2015)
u'(x) =u(x)+ x>, u(0)=1n=40, x<[0,4].
The theoretical solution is given by u(x) = —2—2x—x*+3e*. The exact and

approximate solutions are evaluated at the point x;,,,,, as shown in Table 5.1.
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Problem 2 (Rehman, Mumtaz & Iftikhar, 2012)

u'(x) =u(x)? — x*sin®(x) + x* cos(x) + 2xsin(x), u(0) =0, n =10, x € [0,1].

The theoretical solution is given by u(x) = x* sin(x). The exact and numerical
solutions are calculated at the points X;,,,,, X;.1,, and X;,5,,, as presented in Table

5.2.

Problem 3 (Yahaya & Badmus, 2009)
u”(x)=u’(x),,u(0)=1u'(0) :%, n =20, x €[0,2].

The theoretical solution is given by u(x) =1—e*. We calculate the exact and

approximate solutions at the points x;,,,, and x,,,,, as illustrated in Table 5.3.

Problem 4 (Jator & Li, 2009)

u”(x) = x u’(x)*, u(0) =1, u'(0) = ; n=10,x €[01].

The theoretical solution is given by u(x) =1+ % In(?). We evaluate the exact and

numerical solutions at the points X, ,,,, X4, ad X,.,,,, as displayed in Table 5.4.
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Problem 5 (Tung, 2013)

u; (X) =—=1+e* —sin(x) +sin(u, (x)),

1 1
4+u,(x)®> 5+e* +2e*cos(x)—sin?(x)’

Us (x) =

u, (0) = 2, u,(0) = % n =40, x € [0,4].

The theoretical solution is given by u,(x) =e* + cos(x) and u, (x) = % The exact and

approximate solutions are computed at the point x;,,,;, as in Table 5.5.

Problem 6 (Tung, 2013)
The following linear matrix differential equations is a Sylvester matrix differential
problem of the form

U'(x) = A(X)U (x)+U (x) B(x) + D(x), x e[a,b],

U(a)=U,,
where U(X), A(x), B(x) and D(x)eC™". According to Tung (2013), the constant
coefficients case has been investigated extensively in the literature. However, the
numerical treatment in the variable coefficients case has received little attention. For

instance, consider the following Sylvester problem with

A(X) = (0 ng} B(x) = (0 X], D(x) = (_ (L+x*)e* - 2xe"}

X 00 1-xe™ —x°

U(0) = ((1) SJ n =40, x €[0,4].
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-X

e” 0
The theoretical solution for this problem is given by U (x) :( 1]. We compute
X

the exact and numerical solutions at the point x,,,,, as given in Table 5.6.

Problem 6 arises frequently in many important fields such as optimal control,
differential games theory, invariant embedding and scattering processes and spectral
factorization. For details, one can refer to Freiling, Jank and Sarychev (2000) and

references cited therein.

In Problem 5 and Problem 6, we first evaluate the error between the theoretical and
the approximate solutions, and then take the infinity norm of this computed error.
The maximum of these errors are tabulated for each subinterval as shown in
Table 5.5 and Table 5.6.
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Table 5.1

Errors Obtained by Different Spline Methods in Problem 1

. L New Cubic New Quintic
New Quartic New Quintic
X Tung (2013) . . Non-polynomial Non-polynomial
Spline Spline ) )
Spline Spline

0.025 2.2032(-7) 5.2307(-8) 8.8446(-9) 1.0631(-6) 2.9134(-7)
0.125 3.4926(-6) 7.4403(-9) 6.2046(-8) 2.1387(-7) 8.9034(-7)
0.225 1.1082(-6) 1.8959(-7) 1.4816(-7) 5.8690(-7) 1.4210(-6)
0.325 4.3184(-6) 2.1806(-7) 2.7386(-7) 6.8434(-7) 1.8781(-6)
0.425 2.2577(-6) 4.8601(-7) 4.4615(-7) 9.1659(-7) 2.2544(-6)
0.525 5.4553(-6) 6.1616(-7) 6.7362(-7) 1.1841(-6) 2.5413(-6)
0.625 3.7491(-6) 1.0039(-6) 9.6588(-7) 1.5254(-6) 2.7293(-6)
0.725 6.9932(-6) 1.2746(-6) 1.3341(-6) 1.9440(-6) 2.8071(-6)
0.825 5.6845(-6) 1.8267(-6) 1.7910(-6) 2.4547(-6) 2.7620(-6)
0.925 9.0468(-6) 2.2891(-6) 2.3511(-6) 3.0714(-6) 2.5796(-6)
1.025 8.1944(-6) 3.0642(-6) 3.0312(-6) 3.8109(-6) 2.2430(-6)
1.125 1.1763(-5) 3.7851(-6) 3.8502(-6) 4.6924(-6) 1.7333(-6)
1.225  1.1445(-5) 4.8595(-6) 4.8299(-6) 5.7375(-6) 1.0287(-6)
1.325 1.5327(-5) 5.9261(-6) 5.9949(-6) 6.9708(-6) 1.0459(-7)
1.425 1.5646(-5) 7.3990(-6) 7.3735(-6) 8.4207(-6) 1.0673(-6)
1.525  1.9976(-5) 8.9244(-6) 8.9977(-6) 1.0119(-5) 2.5189(-6)
1.625 2.1066(-5) 1.0924(-5) 1.0904(-5) 1.2102(-5) 4.2867(-6)
1.725  2.6011(-5) 1.3055(-5) 1.3133(-5) 1.4412(-5) 6.4120(-6)
1.825  2.8042(-5) 1.5748(-5) 1.5733(-5) 1.7095(-5) 8.9417(-6)
1.925  3.3813(-5) 1.8671(-5) 1.8756(-5) 2.0204(-5) 1.1929(-5)
2.025 3.7005(-5) 2.2270(-5) 2.2264(-5) 2.3800(-5) 1.5435(-5)
2.125  4.3863(-5) 2.6229(-5) 2.6323(-5) 2.7951(-5) 1.9526(-5)
2.225  4.8496(-5) 3.1009(-5) 3.1011(-5) 3.2734(-5) 2.4282(-5)
2325  5.6769(-5) 3.6313(-5) 3.6417(-5) 3.8238(-5) 2.9788(-5)
2425 6.3199(-5) 4.2625(-5) 4.2639(-5) 4.4560(-5) 3.6145(-5)
2.525 7.3301(-5) 4.9671(-5) 4.9788(-5) 5.1813(-5) 4.3464(-5)
2.625 8.1977(-5) 5.7964(-5) 5.7991(-5) 6.0123(-5) 5.1871(-5)
2.725 9.4426(-5) 6.7260(-5) 6.7391(-5) 6.9632(-5) 6.1508(-5)
2.825 1.0592(-4) 7.8105(-5) 7.8150(-5) 8.0502(-5) 7.2538(-5)
2925 1.2136(-4) 9.0296(-5) 9.0445(-5) 9.2915(-5) 8.5141(-5)
3.025 1.3639(-4) 1.0442(-4) 1.0449(-4) 1.0707(-4) 9.9523(-5)
3.125 1.5565(-4) 1.2033(-4) 1.2050(-4) 1.2321(-4) 1.1591(-4)
3.225 1.7512(-4) 1.3867(-4) 1.3877(-4) 1.4159(-4) 1.3457(-4)
3.325  1.9922(-4) 1.5934(-4) 1.5949(-4) 1.6250(-4) 1.5580(-4)
3.425 2.2427(-4) 1.8305(-4) 1.8327(-4) 1.8625(-4) 1.7991(-4)
3.525  2.5449(-4) 2.0981(-4) 2.0981(-4) 2.1329(-4) 2.0729(-4)
3.625 2.8655(-4) 2.4040(-4) 2.4108(-4) 2.4381(-4) 2.3835(-4)
3.725 3.2451(-4) 2.7491(-4) 2.7393(-4) 2.7907(-4) 2.7356(-4)
3.825 3.6538(-4) 3.1421(-4) 3.1234(-4) 3.1667(-4) 3.1345(-4)
3.925 4.1310(-4) 3.5912(-4) 3.6007(-4) 3.6811(-4) 3.5871(-4)
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Figure 5.1. Graph of Ioglo[‘u(xi)—g(xi)‘] vs. X, for the new spline methods proposed in Chapter Three and Chapter Four, and the spline

method from Tung (2013), correspond to Problem 1
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Table 5.2

Errors Obtained by Different Spline Methods in Problem 2

. L New Cubic New Quintic
New Quartic New Quintic . .
X Tung (2013) ) ) Non-polynomial  Non-polynomial
Spline Spline ] ;
Spline Spline

0.025 4.1746(-8) 2.4968(-7) 1.8254(-8) 2.1753(-7) 4.0665(-7)
0.05  2.9491(-7) 3.9647(-7) 3.6698(-8) 2.2364(-7) 6.1071(-7)
0.075  7.7569(-7) 2.9428(-7) 5.5136(-8) 2.1526(-9) 4.6404(-7)
0.125 8.5843(-7) 4.3941(-7) 8.8971(-8) 4.3837(-7) 1.2555(-6)
0.15 8.7888(-7) 5.3855(-7) 1.0278(-7) 6.7762(-7) 1.8021(-6)
0.175 1.5776(-6) 3.8330(-7) 1.1312(-7) 2.3934(-7) 1.3201(-6)
0.225 1.6594(-6) 1.4994(-7) 1.1717(-7) 6.8824(-7) 2.0552(-6)
0.25  1.4480(-6) 3.1706(-7) 1.1061(-7) 1.1691(-6) 2.9205(-6)
0.275 2.3517(-6) 2.4360(-7) 9.9202(-8) 5.3637(-7) 2.1485(-6)
0.325 2.4361(-6) 4.0105(-7) 5.5771(-8) 1.0220(-6) 2.8028(-6)
0.35  2.0009(-6) 4.5301(-7) 1.9227(-8) 1.7523(-6) 3.9426(-6)
0.375 ~ 3.0949(-6) 2.4117(-7) 3.0828(-8) 9.5192(-7) 2.9493(-6)
0.425  3.1914(-6) 4.4688(-7) 1.8254(-7) 1.4903(-6) 3.5053(-6)
0.45  2.5484(-6) 6.9338(-7) 2.8017(-7) 2.4707(-6) 4.8582(-6)
0.475  3.8173(-6) 7.1093(-7) 3.8583(-7) 1.5391(-6) 3.7389(-6)
0.525  3.9425(-6) 3.0501(-7) 6.2946(-7) 2.2059(-6) 4.1948(-6)
0.55 = 3.1162(-6) 3.7675(-7) 7.8663(-7) 3.4683(-6) 5.6874(-6)
0.575 4.5451(-6) 7.2788(-7) 9.8569(-7) 2.4522(-6) 4.5663(-6)
0.625 4.7246(-6) 1.7707(-6) 1.5348(-6) 3.1716(-6) 4.9430(-6)
0.65  3.7487(-6) 2.2032(-6) 1.8543(-6) 4.6539(-6) 6.4935(-6)
0.675 5.3244(-6) 2.4269(-6) 2.1659(-6) 3.6200(-6) 5.5233(-6)
0.725 5.5948(-6) 2.5268(-6) 2.7596(-6) 4.9720(-6) 5.8625(-6)
0.75  4.5129(-6) 2.8624(-6) 3.1285(-6) 6.9903(-6) 7.3784(-6)
0.775 6.2262(-6) 3.5001(-6) 3.6398(-6) 5.9857(-6) 6.7334(-6)
0.825 6.6392(-6) 5.2244(-6) 4.7521(-6) 6.1698(-6) 7.0806(-6)
0.85  5.5075(-6) 6.0090(-6) 5.3650(-6) 7.6307(-6) 8.4488(-6)
0.875 7.3568(-6) 6.5974(-6) 6.1417(-6) 6.7953(-6) 8.3084(-6)
0.925 7.9876(-6) 7.4327(-6) 7.9061(-6) 1.2859(-5) 8.6773(-6)
095  6.8794(-6) 8.0807(-6) 8.7850(-6) 1.7870(-5) 9.7450(-6)
0.975 8.8775(-6) 9.0846(-6) 9.6426(-6) 1.6940(-5) 1.0272(-5)
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Figure 5.2. Graph of Ioglo[‘u(xi)—g(xi )‘] vs. x; for the new spline methods proposed in Chapter Three and Chapter Four, and the spline

method from Tung (2013), correspond to Problem 2
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Table 5.3

Errors Obtained by Different Spline Methods in Problem 3

) o New Cubic New Quintic
New Quartic New Quintic ) .
X  Tung (2013) ) i Non-polynomial Non-polynomial
Spline Spline ] ]
Spline Spline
0.03 1.6107(-7) 4.5412(-8) 2.6678(-8) 6.3707(-7) 2.7367(-8)
0.06 8.6871(-7) 7.6964(-8) 5.4743(-8) 5.3460(-7) 5.5395(-8)
0.13  9.7576(-7) 9.5114(-8) 1.1671(-7) 2.1409(-7) 1.1681(-7)
0.16  4.0098(-7) 1.3327(-7) 1.5088(-7) 2.8327(-7) 1.5097(-7)
023  4.3817(-7) 2.4408(-7) 2.2589(-7) 4.6076(-7) 2.2593(-7)
0.26 1.1198(-6) 2.8950(-7) 2.6692(-7) 4.9241(-7) 2.6696(-7)
0.33  1.2487(-6) 3.3469(-7) 3.5663(-7) 5.5468(-7) 3.5670(-7)
0.36  7.3323(-7) 3.8852(-7) 4.0561(-7) 6.0617(-7) 4.0567(-7)
0.43 8.0111(-7) 5.3022(-7) 5.1242(-7) 7.2034(-7) 5.1248(-7)
0.46 1.4641(-6) 5.9373(-7) 5.7055(-7) 7.7780(-7) 5.7061(-7)
0.53 1.6227(-6) 6.7462(-7) 6.9701(-7) 9.0230(-7) 6.9709(-7)
0.56 1.1691(-6) 7.4923(-7) 7.6569(-7) 9.7115(-7) 7.6576(-7)
0.63 1.2762(-6) 9.3210(-7) 9.1477(-7) 1.1208(-6) 9.1485(-7)
0.66 1.9290(-6) 1.0195(-6) 9.9556(-7) 1.2015(-6) 9.9564(-7)
0.73  2.1273(-6) 1.1477(-6) 1.1706(-6) 1.3764(-6) 1.1707(-6)
0.76 1.7398(-6) 1.2497(-6) 1.2653(-6) 1.4712(-6) 1.2654(-6)
0.83  1.8971(-6) 1.4869(-6) 1.4702(-6) 1.6761(-6) 1.4703(-6)
0.86  2.5495(-6) 1.6056(-6) 1.5808(-6) 1.7867(-6) 1.5809(-6)
0.93  2.8003(-6) 1.7962(-6) 1.8198(-6) 2.0257(-6) 1.8199(-6)
0.96  2.4850(-6) 1.9340(-6) 1.9487(-6) 2.1546(-6) 1.9488(-6)
1.03 | 2.7066(-6) 2.2427(-6) 2.2267(-6) 2.4326(-6) 2.2268(-6)
1.06 3.3705(-6) 2.4022(-6) 2.3764(-6) 2.5823(-6) 2.3765(-6)
1.13  3.6899(-6) 2.6746(-6) 2.6990(-6) 2.9049(-6) 2.6991(-6)
1.16  3.4554(-6) 2.8590(-6) 2.8726(-6) 3.0785(-6) 2.8727(-6)
1.23  3.7594(-6) 3.2612(-6) 3.2461(-6) 3.4520(-6) 3.2462(-6)
1.26  4.4488(-6) 3.4739(-6) 3.4468(-6) 3.6527(-6) 3.4470(-6)
1.33  4.8576(-6) 3.8530(-6) 3.8784(-6) 4.0844(-6) 3.8785(-6)
1.36  4.7155(-6) 4.0979(-6) 4.1101(-6) 4.3162(-6) 4.1102(-6)
143  5.1249(-6) 4.6218(-6) 4.6077(-6) 4.8133(-6) 4.6079(-6)
1.46 5.8571(-6) 4.9034(-6) 4.8747(-6) 5.0801(-6) 4.8749(-6)
1.53  6.3817(-6) 5.4211(-6) 5.4476(-6) 5.6550(-6) 5.4478(-6)
1.56 6.3471(-6) 5.7444(-6) 5.7548(-6) 5.9628(-6) 5.7549(-6)
1.63  6.8914(-6) 6.4260(-6) 6.4132(-6) 6.6139(-6) 6.4134(-6)
1.66 7.6874(-6) 6.7965(-6) 6.7659(-6) 6.9641(-6) 6.7662(-6)
1.73  8.3612(-6) 7.4940(-6) 7.5218(-6) 7.7476(-6) 7.5219(-6)
1.76  8.4540(-6) 7.9185(-6) 7.9263(-6) 8.1616(-6) 7.9264(-6)
1.83  9.1708(-6) 8.8007(-6) 8.7920(-6) 8.9241(-6) 8.7926(-6)
1.86  1.0057(-5) 9.2829(-6) 9.2553(-6) 9.3519(-6) 9.2559(-6)
1.93  1.0922(-5) 1.0245(-5) 1.0248(-5) 1.0731(-5) 1.0253(-5)
1.96  1.1168(-5) 1.0828(-5) 1.0779(-5) 1.1393(-5) 1.0784(-5)
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Table 5.4

Errors Obtained by Different Spline Methods in Problem 4

] o New Cubic New Quintic
Tung New Quartic New Quintic
Non-polynomial Non-polynomial
(2013) Spline Spline . )
Spline Spline
0.025 2.1191(-9) 1.2701(-8) 2.5862(-9) 5.0953(-7) 1.6330(-7)
0.05 1.5487(-8) 2.1529(-8) 5.2036(-9) 6.3338(-7) 2.4755(-7)
0.075 4.4017(-8) 2.0985(-8) 7.8510(-9) 3.4150(-7) 1.9486(-7)
0.125 9.8874(-8) 1.8183(-10) 1.3142(-8) 2.7612(-8) 5.1703(-7)
0.15 1.3539(-7) 8.0225(-13) 1.5874(-8) 1.3227(-7) 7.358(-7)
0.175 1.9221(-7) 9.0316(-9) 1.8737(-8) 6.9068(-8) 5.4731(-7)
0.225 2.0089(-7) 3.4675(-8) 2.4612(-8) 1.3585(-7) 8.5554(-7)
0.25 1.7776(-7) 4.4489(-8) 2.7695(-8) 2.4102(-7) 1.2026(-6)
0.275 2.0795(-7) 4.4750(-8) 3.0967(-8) 1.2158(-7) 8.8303(-7)
0.325 2.7171(-7) 2.4496(-8) 3.7638(-8) 8.0896(-8) 1.1656(-6)
0.35 3.2102(-7) 2.6090(-8) 4.1221(-8) 1.7927(-7) 1.6299(-6)
0.375  4.3496(-7) 3.6673(-8) 4.5227(-8) 8.2083(-8) 1.1884(-6)
0.425 = 4.5985(-7) 6.3333(-8) 5.3866(-8) 6.2158(-8) 1.4294(-6)
0.45  4.0490(-7) 7.6035(-8) 5.8561(-8) 1.5306(-7) 1.9930(-6)
0.475  4.5749(-7) 7.8888(-8) 6.3671(-8) 6.0494(-8) 1.4446(-6)
0.525  5.4551(-7) 6.0430(-8) 7.4032(-8) 1.8684(-8) 1.6208(-6)
0.55  6.1144(-7) 6.6607(-8) 7.9875(-8) 9.5400(-8) 2.2558(-6)
0.575  8.1255(-7) 8.1348(-8) 8.6964(-8) 1.7636(-8) 1.6241(-6)
0.625 8.7724(-7) 1.1110(-7) 1.0351(-7) 3.0183(-8) 1.6994(-6)
0.65 7.9732(-7) 1.3103(-7) 1.1275(-7) 3.3575(-8) 2.3626(-6)
0.675 9.1985(-7) 1.4051(-7) 1.2262(-7) 2.4476(-8) 1.6839(-6)
0.725 1.0683(-6) 1.2804(-7) 1.4141(-7) 1.4055(-7) 1.5996(-6)
0.75 1.1602(-6) 1.4648(-7) 1.5276(-7) 1.2904(-7) 2.2225(-6)
0.775 1.5216(-6) 1.7221(-7) 1.6837(-7) 1.5414(-7) 1.5539(-6)
0.825 1.6864(-6) 2.0776(-7) 2.0959(-7) 1.7306(-7) 1.2109(-6)
0.85 1.6023(-6) 2.4252(-7) 2.3288(-7) 1.2291(-7) 1.6819(-6)
0.875 1.9166(-6) 2.6829(-7) 2.5584(-7) 1.0578(-7) 1.1147(-6)
0.925 2.2281(-6) 3.1639(-7) 2.9324(-7) 7.4256(-7) 3.3934(-7)
095  2.3845(-6) 4.1609(-7) 3.1957(-7) 1.0837(-6) 4.7105(-7)
0975 3.1104(-6) 4.9066(-7) 3.6296(-7) 9.6739(-7) 1.5654(-7)
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Figure 5.4. Graph of Ioglo[‘u(xi)—g(xi )‘] vs. x; for the new spline methods proposed in Chapter Three and Chapter Four, and the spline
method from Tung (2013), correspond to Problem 4



Table 5.5

Errors Obtained by Different Spline Methods in Problem 5

. o New Cubic New Quintic
New Quartic New Quintic .
x  Tung (2013) ) ) Non-polynomial Non-polynomial
Spline Spline ;
Spline Spline
0.03  3.1344(-7) 1.5993(-8) 1.1607(-9) 9.5836(-7) 1.1571(-9)
0.13  1.6859(-6) 2.5180(-8) 4.6533(-9) 1.5435(-7) 4.6424(-9)
0.23  3.8398(-7) 8.9819(-9) 8.1988(-9) 3.7070(-7) 8.1808(-9)
0.33  1.7578(-6) 3.2382(-8) 1.1847(-8) 3.1342(-7) 1.1820(-8)
0.43  4.5825(-7) 2.7999(-9) 1.5653(-8) 3.2929(-7) 1.5616(-8)
0.53 1.8357(-6) 4.0314(-8) 1.9681(-8) 3.2550(-7) 1.9633(-8)
0.63 5.4096(-7) 7.0264(-9) 2.4004(-8) 3.2701(-7) 2.3944(-8)
0.73  1.9248(-6) 4.9554(-8) 2.8702(-8) 3.2724(-7) 2.8628(-8)
0.83 6.3818(-7) 1.7183(-8) 3.3868(-8) 3.2808(-7) 3.3779(-8)
0.93  2.0320(-6) 6.0826(-8) 3.9600(-8) 3.2912(-7) 3.9495(-8)
1.03  7.5747(-7) 2.9792(-8) 4.6012(-8) 3.3058(-7) 4.5888(-8)
1.13  2.1656(-6) 7.5015(-8) 5.3223(-8) 3.3246(-7) 5.3079(-8)
1.23  9.0804(-7) 4.5825(-8) 6.1369(-8) 3.3479(-7) 6.1202(-8)
133 2.3359(-6) 9.3184(-8) 7.0593(-8) 3.3754(-7) 7.0404(-8)
143 1.1010(-6) 6.6445(-8) 8.1057(-8) 3.4064(-7) 8.0842(-8)
1.53  2.5548(-6) 1.1659(-7) 9.2931(-8) 3.4400(-7) 9.2688(-8)
1.63  1.3494(-6) 9.3029(-8) 1.0641(-7) 3.4752(-7) 1.0613(-7)
1.73  2.8366(-6) 1.4676(-7) 1.2169(-7) 3.5106(-7) 1.2138(-7)
1.83  1.6688(-6) 1.2720(-7) 1.3898(-7) 3.5449(-7) 1.3864(-7)
1.93  3.1983(-6) 1.8543(-7) 1.5855(-7) 3.5775(-7) 1.5817(-7)
2.03 ' 2.0777(-6) 1.7088(-7) 1.8065(-7) 3.6072(-7) 1.8023(-7)
213 3.6597(-6) 2.3469(-7) 2.0556(-7) 3.6339(-7) 2.0509(-7)
223 2.5976(-6) 2.2634(-7) 2.3359(-7) 3.6572(-7) 2.3307(-7)
2.33  4.2446(-6) 2.9701(-7) 2.6509(-7) 3.6772(-7) 2.6451(-7)
2.43  3.2543(-6) 2.9626(-7) 3.0040(-7) 3.6941(-7) 2.9977(-7)
2.53  4.9807(-6) 3.7532(-7) 3.3995(-7) 3.7081(-7) 3.3925(-7)
2.63  4.0782(-6) 3.8382(-7) 3.8416(-7) 3.8340(-7) 3.8339(-7)
2.73  5.9014(-6) 4.7309(-7) 4.3352(-7) 4.3268(-7) 4.3267(-7)
2.83 5.1056(-6) 4.9285(-7) 4.8855(-7) 4.8762(-7) 4.8762(-7)
2.93  7.0464(-6) 5.9451(-7) 5.4983(-7) 5.4880(-7) 5.4880(-7)
3.03 6.3801(-6) 6.2791(-7) 6.1797(-7) 6.1685(-7) 6.1685(-7)
3.13  8.4635(-6) 7.4458(-7) 6.9372(-7) 6.9246(-7) 6.9246(-7)
3.23  7.9542(-6) 7.9450(-7) 7.7772(-7) 7.7639(-7) 7.7639(-7)
3.33  1.0210(-5) 9.2936(-7) 8.7108(-7) 8.6948(-7) 8.6948(-7)
3.43  9.8911(-6) 9.9931(-7) 9.7407(-7) 9.7264(-7) 9.7264(-7)
3.53 1.2356(-5) 1.1562(-6) 1.0893(-6) 1.0869(-6) 1.0869(-6)
3.63  1.2268(-5) 1.2506(-6) 1.2141(-6) 1.2134(-6) 1.2134(-6)
3.73  1.4987(-5) 1.4316(-6) 1.3585(-6) 1.3534(-6) 1.3533(-6)
3.83 1.5177(-5) 1.5811(-6) 1.5037(-6) 1.5079(-6) 1.5080(-6)
3.93 1.8204(-5) 1.5403(-6) 1.6972(-6) 1.6797(-6) 1.6801(-6)
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Table 5.6

Errors Obtained by Different Spline Methods in Problem 6

. L New Cubic New Quintic
New Quartic New Quintic
x  Tung (2013) _ ) Non-polynomial ~ Non-polynomial
Spline Spline
Spline Spline
0.05 4.1959(-7) 2.1271(-8) 1.6520(-8) 6.4524(-7) 1.6401(-8)
0.15 3.9293(-7) 4.6745(-8) 4.6483(-8) 1.7945(-7) 4.6414(-8)
0.25 3.6903(-7) 7.1010(-8) 7.1302(-8) 3.4353(-7) 7.1332(-8)
0.35 3.4762(-7) 1.0106(-7) 1.0223(-7) 3.5534(-7) 1.0227(-7)
0.45 3.2946(-7) 1.5995(-7) 1.5875(-7) 4.2111(-7) 1.5872(-7)
0.55 3.1295(-7) 2.2155(-7) 2.2276(-7) 4.8266(-7) 2.2277(-7)
0.65 3.0096(-7) 2.9361(-7) 2.9239(-7) 5.5295(-7) 2.9239(-7)
0.75 2.8896(-7) 3.6452(-7) 3.6573(-7) 6.2611(-7) 3.6573(-7)
0.85 2.8339(-7) 4.4232(-7) 4.4110(-7) 7.0153(-7) 4.4110(-7)
0.95 2.7540(-7) 5.1570(-7) 5.1692(-7) 7.7733(-7) 5.1692(-7)
1.05  2.7625(-7) 5.9294(-7) 5.9172(-7) 8.5214(-7) 5.9172(-7)
1.15  3.3328(-7) 6.6295(-7) 6.6417(-7) 9.2458(-7) 6.6417(-7)
1.25 3.1315(-7) 7.3425(-7) 7.3303(-7) 9.9345(-7) 7.3303(-7)
1.35  4.4777(-7) 7.9597(-7) 7.9719(-7) 1.0576(-6) 7.9719(-7)
1.45 5.2104(-7) 8.5684(-7) 8.5562(-7) 1.1160(-6) 8.5562(-7)
1.55 = 5.9795(-7) 9.0617(-7) 9.0739(-7) 1.1678(-6) 9.0739(-7)
1.65  8.5046(-7) 9.5284(-7) 9.5162(-7) 1.2120(-6) 9.5162(-7)
1.75  9.6205(-7) 9.8629(-7) 9.8750(-7) 1.2479(-6) 9.8751(-7)
1.85  1.3250(-6) 1.0154(-6) 1.0142(-6) 1.2746(-6) 1.0142(-6)
1.95  1.4849(-6) 1.0299(-6) 1.0311(-6) 1.2915(-6) 1.0311(-6)
2.05 ' 1.9928(-6) 1.0384(-6) 1.0372(-6) 1.2976(-6) 1.0372(-6)
2.15  2.2197(-6) 1.0306(-6) 1.0318(-6) 1.2922(-6) 1.0318(-6)
225 2.9155(-6) 1.0152(-6) 1.0139(-6) 1.2743(-6) 1.0139(-6)
2.35  3.2349(-6) 9.8136(-7) 9.8258(-7) 1.2429(-6) 9.8258(-7)
245  4.1715(-6) 9.3784(-7) 9.3662(-7) 1.1970(-6) 9.3663(-7)
2.55 4.6165(-6) 8.7358(-7) 8.7480(-7) 1.1352(-6) 8.7481(-7)
2.65 5.8582(-6) 7.9689(-7) 7.9567(-7) 1.0560(-6) 7.9568(-7)
2.75  6.4714(-6) 6.9640(-7) 6.9762(-7) 9.5803(-7) 6.9762(-7)
2.85 8.0956(-6) 5.8003(-7) 5.7881(-7) 8.3922(-7) 5.7881(-7)
2.95 8.9303(-6) 4.3597(-7) 4.3719(-7) 6.9761(-7) 4.3720(-7)
3.05 1.1029(-5) 3.8379(-7) 3.8346(-7) 5.7511(-7) 3.8346(-7)
3.15 1.2150(-5) 4.2279(-7) 4.2312(-7) 5.7166(-7) 4.2312(-7)
3.25 1.4830(-5) 4.6655(-7) 4.6622(-7) 5.6616(-7) 4.6622(-7)
3.35 1.6318(-5) 5.1267(-7) 5.1300(-7) 5.5963(-7) 5.1300(-7)
3.45 1.9705(-5) 7.0136(-7) 7.0258(-7) 5.6368(-7) 7.0257(-7)
3.55 2.1652(-5) 1.0398(-6) 1.0386(-6) 7.7629(-7) 1.0386(-6)
3.65 2.5887(-5) 1.4182(-6) 1.4194(-6) 1.1663(-6) 1.4194(-6)
3.75 2.8402(-5) 1.8504(-6) 1.8492(-6) 1.5614(-6) 1.8492(-6)
3.85 3.3648(-5) 2.3314(-6) 2.3326(-6) 2.1744(-6) 2.3327(-6)
3.95 3.6857(-5) 2.8765(-6) 2.8750(-6) 2.2334(-6) 2.8751(-6)
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Figure 5.6. Graph of Ioglo[‘u(xi)—g(xi )‘] vs. x; for the new spline methods proposed in Chapter Three and Chapter Four, and the spline

method from Tung (2013), correspond to Problem 6
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In this section, a total of 6 I\VPs from the literatures are solved by the new proposed
spline methods and the existing spline method of Tung (2013). These 6 test problems
can be divided into three groups:
i.  Problem 1 and Problem 2 are first order I\VVPs.
ii.  Problem 3 and Problem 4 are second order I\VPs.
iii.  Problem 5 and Problem 6 are matrix differential equations with initial
conditions.

For most of the problems being tested, from Table 5.1 - Table 5.6, it can be observed
that the new presented spline methods are more accurate than the cubic spline
method in Tung (2013). Specifically, we can see from Table 5.1 - Table 5.4 that, the
errors caused by the developed spline methods are smaller than those from the cubic
spline method at the beginning of the interval of integration. Besides, the errors
results from these methods become closer to each other towards the end of the
interval. Over all, we observe from Table 5.5 and Table 5.6 that, the errors due to the
developed spline methods are less than those produce from the cubic spline method

on the entire interval of integration.

Particularly, in Table 5.1, Table 5.3 and Table 5.5, it can be noticed that the accuracy
of the new spline methods for solving the related problems is higher than the cubic
spline method in Tung (2013). In addition, it is apparent in Table 5.4 that the results
of the new quartic, quintic and cubic non-polynomial spline methods outperform the
cubic spline method in Tung (2013) for solving the corresponding problem.
Whereas, the results of the cubic spline method in Tung (2013) are found better than

those results generated by the new quintic non-polynomial spline method.
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From Table 5.2, we can see that the results generated by the new quartic and quintic
spline methods are more accurate than the cubic spline method in Tung (2013) in
solving Problem 2. Moreover, the numerical results obtained from cubic and quintic
non-polynomial spline methods are comparable with those obtained from the cubic
spline method in Tung (2013) in solving the same problem. The results shown in
Table 5.6 implies the efficiency of the proposed methods (except for the cubic non-
polynomial spline method) in terms of accuracy, over the cubic spline method in

Tung (2013) in solving Problem 6.

The numerical results of the new quintic non-polynomial spline method in Table 5.1
compared favorably with the new quartic spline method and the new quintic spline
method, and more accurate than the new cubic non-polynomial spline method for
solving Problem 1. Additionally, the numerical results in Table 5.2 and Table 5.4
seem to indicate that the new quintic spline method is more accurate compared to
other new spline methods for the solutions of Problem 2 and Problem 4,

respectively.

It is clear that the accuracy of the new quintic spline method and the new quintic non-
polynomial spline method are comparable when solving Problem 3 and Problem 5.
Last but not least, it can be noticed from the numerical results in Table 5.6 that the
accuracy of the new quartic, quintic and quintic non-polynomial spline methods are

comparable in solving Problem 6.
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5.3 Numerical Comparisons Involving Boundary Value Problems

In this section, 6 test problems involving first and second order BVPs have been
used to demonstrate the performance of the new spline methods in terms of error.
We observe that Problem 7 and Problem 8 are first order BVPs, Problem 9 and
Problem 10 are second order BVPs subject to Dirichlet boundary conditions,
whereas Problem 11 and Problem 12 are second order BVPs subject to Neumann

boundary conditions. The findings are examined later in this section.

Problem 7 (Ascher & Chan, 1991)
u; (x) _[ —cos(2x) 1+ sin(ZX)J U, (x) e —€0s(2x) +sin(2x)
us(x) (—1+sin(2x)  cos(2x) u,(x) 2 — cos(2x) —sin(2x) )
u,(0) =1, u,(4)=e*, n= 40, x [0,4].

The theoretical solutions are given by u,(x)=¢e* and u,(x) =e*. We compute the

exact and numerical solutions at the point X;,,,, as shown in Table 5.7.

Problem 8 (Holsapple et al., 2004)

up(x) ) (us(x)
U (X) || Us(x)
Us(X) | | Up(x)

u;(x)) (u(x)

U, (1) = -2 +%+ e, U, (~1) = 2 +%+ e, u,(1) = 2, u, (1) = 2, n = 20, x € [-11].
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The theoretical solutions are given by

e " (—2e+e” —e® +2eM%)
—1+¢e?

e *(—2e + e? —e®* +2e"%)
~1+¢?

u (x) = , Uy (X) =

e—x (ze _ e2 _ er + 2e1+2X)
—1+¢?

e—x (2e _ e2 _ e2x + 2el+2X)

,andu,(x) = o

U3(X) =

The exact and numerical solutions are evaluated at the points x,,,,; and x;,,,5, as

presented in Table 5.8.

Problem 9 (Islam & Shirin, 2011)

u”(x) :X—zzu(x)—i, u(2)=u(3)=0,n=10, x[2,3].

The theoretical solution is given by u(x) :318(—5x2 +19x—%). We calculate the
X

exact and numerical solutions at the points X; ,,,, Xi.1;, and X;.,,,, as in Table 5.9.

Problem 10 (Pandey, 2016)

e + (U(X)’

u"(x) = )

,u(0)=0,u(2) =-In(3), n =20, x €[0,2].

. S 1 .
The theoretical solution is given by u(x):ln(l—). The exact and numerical
+ X

solutions are computed at the points x,,,, and X;,,,,, as illustrated in Table 5.10.

Problem 11 (Liu et al., 2011)

u"(x) = —xu(x) + (3—x— x> + x*)sin(x) + 4xcos(x), u'(0) = -1, u'(1) = 2sin(1), n =10,
x €[0].
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The theoretical solution is given by u(x) = (x* —=1)sin(x). The exact and numerical
solutions are calculated at the points X,,,, X1/, @nd X;,5,,, as displayed in Table

5.11.
Problem 12 (Lakestani & Dehghan, 2006)

u"(x)=2u(x)®,u’'(0)=-1u'()) = —%, n=10, x[0,].

. N 1
The theoretical solution is given by u(x)zl—. We evaluate the results of exact
+X
and numerical solutions at the points X,.,,,, Xi.,,, and X;.5,,, as given in Table 5.12.
Lastly, for Problem 7 and Problem 8, the error between the theoretical and
approximate solutions are evaluated first, followed by taking the infinity norm of the

computed error. Then, we tabulate the maximum of these errors for each subinterval

as in Table 5.7 and Table 5.8.
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Table 5.7

Errors Obtained by Different Spline Methods in Problem 7

. L New Cubic New Quintic
New Quartic New Quintic
X . i Non-polynomial Non-polynomial
Spline Spline
Spline Spline
0.075 8.4312(-6) 8.4144(-6) 8.4145(-6) 8.4138(-6)
0.175  9.1755(-6) 9.1868(-6) 9.1867(-6) 9.1864(-6)
0.275  9.8934(-6) 9.8767(-6) 9.8769(-6) 9.8769(-6)
0.375  1.0455(-5) 1.0465(-5) 1.0465(-5) 1.0465(-5)
0.475  1.0947(-5) 1.0930(-5) 1.0930(-5) 1.0930(-5)
0.575  1.1242(-5) 1.1252(-5) 1.1252(-5) 1.1252(-5)
0.675  1.1430(-5) 1.1412(-5) 1.1412(-5) 1.1412(-5)
0.775  1.1389(-5) 1.1397(-5) 1.1397(-5) 1.1397(-5)
0.875  1.1773(-5) 1.1753(-5) 1.1753(-5) 1.1753(-5)
0.975 1.3322(-5) 1.3331(-5) 1.3331(-5) 1.3331(-5)
1.075  1.4864(-5) 1.4843(-5) 1.4843(-5) 1.4843(-5)
1.175 1.6242(-5) 1.6250(-5) 1.6250(-5) 1.6250(-5)
1.275 1.7535(-5) 1.7513(-5) 1.7513(-5) 1.7513(-5)
1375  1.8590(-5) 1.8596(-5) 1.8596(-5) 1.8596(-5)
1.475 ~ 1.9494(-5) 1.9470(-5) 1.9470(-5) 1.9470(-5)
1575  2.0109(-5) 2.0112(-5) 2.0113(-5) 2.0112(-5)
1.675  2.0537(-5) 2.0510(-5) 2.0511(-5) 2.0510(-5)
1.775 = 2.0662(-5) 2.0664(-5) 2.0664(-5) 2.0664(-5)
1.875  2.0615(-5) 2.0586(-5) 2.0586(-5) 2.0586(-5)
1.975  2.0306(-5) 2.0304(-5) 2.0304(-5) 2.0304(-5)
2.075  1.9894(-5) 1.9862(-5) 1.9862(-5) 1.9862(-5)
2175  1.9319(-5) 1.9314(-5) 1.9315(-5) 1.9315(-5)
2275  1.8767(-5) 1.873(-5) 1.8731(-5) 1.8731(-5)
2375  1.8196(-5) 1.8186(-5) 1.8187(-5) 1.8187(-5)
2475  1.7802(-5) 1.7761(-5) 1.7762(-5) 1.7762(-5)
2.575 1.7546(-5) 1.7531(-5) 1.7532(-5) 1.7532(-5)
2.675  1.7606(-5) 1.7559(-5) 1.7560(-5) 1.7560(-5)
2.775  1.7909(-5) 1.7888(-5) 1.7888(-5) 1.7889(-5)
2.875 1.8580(-5) 1.8526(-5) 1.8526(-5) 1.8527(-5)
2975  1.9466(-5) 1.9437(-5) 1.9438(-5) 1.9439(-5)
3.075 2.0592(-5) 2.0529(-5) 2.0530(-5) 2.0531(-5)
3.175  2.1678(-5) 2.1640(-5) 2.1641(-5) 2.1642(-5)
3.275  2.2600(-5) 2.2527(-5) 2.2528(-5) 2.2529(-5)
3.375 2.2908(-5) 2.2857(-5) 2.2859(-5) 2.2861(-5)
3475  2.2293(-5) 2.2209(-5) 2.2208(-5) 2.2210(-5)
3.575 2.0115(-5) 2.0045(-5) 2.0050(-5) 2.0053(-5)
3.675  1.5871(-5) 1.5781(-5) 1.5774(-5) 1.5771(-5)
3.775 8.7505(-6) 8.6352(-6) 8.6490(-6) 8.6657(-6)
3.875  3.4479(-6) 3.3638(-6) 3.3577(-6) 3.3731(-6)
3975  1.6562(-5) 1.7337(-5) 1.7345(-5) 1.7397(-5)
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Figure 5.7. Graph of Ioglo[‘u(xi)—g(xi)‘] vs. X, for the new spline methods proposed in Chapter Three and Chapter Four, correspond to
Problem 7



Table 5.8

Errors Obtained by Different Spline Methods in Problem 8

. L New Cubic New Quintic
New Quartic New Quintic
X . . Non-polynomial Non-polynomial
Spline Spline
Spline Spline
-0.96 6.9389(-7) 7.1162(-7) 7.1191(-7) 7.1205(-7)
—0.93  6.6144(-7) 6.8285(-7) 6.8309(-7) 6.8328(-7)
-0.86 6.5253(-7) 6.3084(-7) 6.3078(-7) 6.3092(-7)
—-0.83  6.2573(-7) 6.0750(-7) 6.0747(-7) 6.0757(-7)
—0.76  5.4747(-7) 5.6551(-7) 5.6554(-7) 5.6550(-7)
—-0.73  5.2525(-7) 5.4662(-7) 5.4664(-7) 5.4661(-7)
—0.66  5.3420(-7) 5.1270(-7) 5.1271(-7) 5.1272(-7)
—-0.63  5.1578(-7) 4.9754(-7) 4.9755(-7) 4,9755(-7)
—0.56  4.5224(-7) 4.7040(-7) 4.7040(-7) 4.7040(-7)
—0.53  4.4294(-7) 4.5826(-7) 4.5826(-7) 4.5826(-7)
—0.46  4.6221(-7) 4.7215(-7) 4.7210(-7) 4.7211(-7)
—0.43  4.7987(-7) 4.8969(-7) 4.8964(-7) 4.8965(-7)
—-0.36  5.3065(-7) 5.2128(-7) 5.2123(-7) 5.2124(-7)
—0.33  5.4455(-7) 5.3537(-7) 5.3532(-7) 5.3533(-7)
—-0.26 - 5.5060(-7) 5.6023(-7) 5.6018(-7) 5.6019(-7)
—-0.23  5.6088(-7) 5.7102(-7) 5.7098(-7) 5.7098(-7)
-0.16  5.9906(-7) 5.8938(-7) 5.8933(-7) 5.8934(-7)
—-0.13  6.0580(-7) 5.9694(-7) 5.9689(-7) 5.9690(-7)
—0.06 = 5.9952(-7) 6.0884(-7) 6.0879(-7) 6.0880(-7)
—-0.03  6.0268(-7) 6.1316(-7) 6.1312(-7) 6.1312(-7)
0.03  6.2849(-7) 6.1850(-7) 6.1844(-7) 6.1845(-7)
0.06  6.2797(-7) 6.1947(-7) 6.1942(-7) 6.1943(-7)
013  6.0895(-7) 6.1795(-7) 6.1789(-7) 6.1790(-7)
0.16 6.0453(-7) 6.1539(-7) 6.1534(-7) 6.1534(-7)
023  6.1687(-7) 6.0654(-7) 6.0648(-7) 6.0649(-7)
026  6.0826(-7) 6.0017(-7) 6.0011(-7) 6.0012(-7)
033  5.7469(-7) 5.8334(-7) 5.8328(-7) 5.8329(-7)
036  5.6149(-7) 5.7278(-7) 5.7272(-7) 5.7273(-7)
043  5.5781(-7) 5.4712(-7) 5.4706(-7) 5.4706(-7)
0.46  5.3952(-7) 5.3189(-7) 5.3183(-7) 5.3184(-7)
0.53 4.8806(-7) 4.9632(-7) 4.9625(-7) 4.9627(-7)
056  4.6405(-7) 4.7583(-7) 4.7576(-7) 4.7578(-7)
0.63  4.4018(-7) 4.2908(-7) 4.2901(-7) 4.2900(-7)
0.66  4.0971(-7) 4.0262(-7) 4.0256(-7) 4.0254(-7)
0.73  3.3513(-7) 3.4303(-7) 3.4291(-7) 3.4299(-7)
0.76 2.9719(-7) 3.0973(-7) 3.0959(-7) 3.0970(-7)
0.83  2.4818(-7) 2.3570(-7) 2.3580(-7) 2.3554(-7)
0.86 2.0302(-7) 1.9461(-7) 1.9482(-7) 1.9443(-7)
093  1.9159(-7) 2.1026(-7) 2.1097(-7) 2.1141(-7)
096  2.4940(-7) 2.5738(-7) 2.5823(-7) 2.5858(-7)
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Problem 8



Table 5.9

Errors Obtained by Different Spline Methods in Problem 9

Al- New
) ) Rashidinia New Cubic o
Al-Said Towaiq New New Quintic
and Non-
X et al. and . Quartic Quintic ) Non-
Sharifi polynomial
(2011) Ala'yed Spline Spline . polynomial
(2015) Spline .
(2014) Spline
2.025 5.6189(-7) 2.2076(-4) 1.2573(-8) 2.5718(-8) 5.8742(-9) 3.4252(-7) 6.4028(-8)
2.05 7.8975(-7) 2.2834(-4) 1.8787(-8) 4.3002(-8) 1.0403(-8) 4.2561(-7)  9.8960(-8)
2.075 5.7429(-7) 1.2181(-4) 2.4979(-8) 4.0042(-8) 1.3296(-8) 2.2971(-7) 8.4218(-8)
2.125 5.2868(-7) 5.9219(-5) 4.9539(-8) 1.0741(-8) 1.7609(-8) 1.7802(-8) 1.7632(-7)
2.15 7.2686(-7) 6.1327(-5) 5.4377(-8) 1.6849(-8) 2.0047(-8) 4.0820(-8)  2.4232(-7)
2.175 5.3479(-7) 3.2712(-5) 5.5646(-8) 1.6768(-9) 2.2357(-8) 1.8169(-8) 1.8767(-7)
2.225 3.9756(-7) 1.5820(-5) 6.2101(-8) 4.9622(-8) 2.6241(-8) 5.1736(-8)  2.3388(-7)
2.25 5.3324(-7) 1.6316(-5) 6.2415(-8) 6.2850(-8) 2.7597(-8) 1.0359(-7)  3.1442(-7)
2.275 3.9919(-7) 8.7050(-6) 6.3723(-8) 5.5364(-8) 2.8395(-8) 4.8101(-8)  2.3897(-7)
2.325 3.9132(-7) 4.2315(-6) 7.4815(-8) 1.7353(-9) 2.9365(-8) 1.5202(-8)  2.5325(-7)
235 5.1966(-7) 4.3910(-6) - 7.5439(-8) - 7.2126(-9) 2.9770(-8)  5.8552(-8)  3.3690(-7)
2.375 3.8970(-7) 2.3092(-6) 7.3194(-8) 4.9865(-9) 2.9964(-8) 2.2496(-8) 2.5392(-7)
2425 2.8016(-7) 1.0211(-6) 6.9873(-8) 5.4482(-8) 2.9921(-8) 1.3587(-8) 2.4611(-7)
2.45 3.6227(-7) 9.3054(-7) 6.7131(-8) 6.5596(-8) 2.9684(-8) 5.0931(-8)  3.2499(-7)
2.475 2.7616(-7) 4.1449(-7) 6.5873(-8) 5.5881(-8) 2.9201(-8) 1.8270(-8) 2.4364(-7)
2.525 2.8887(-7) 1.1361(-7) 6.9766(-8) 8.7363(-10) 2.7899(-8) 7.4923(-9) 2.2067(-7)
2.55 3.7565(-7) 4.4319(-7) - 6.8140(-8) - 9.6619(-9)  2.7150(-8) - 3.9702(-8)  2.8945(-7)
2.575 2.8309(-7) 5.8523(-7) © 16.3994(-8) 8.6904(-10) 2.6249(-8) . 11.3333(-8)  2.1598(-7)
2.625 1.8901(-7) 1.4826(-6) 5.5297(-8) 4.9323(-8) 2.4187(-8) 5.4891(-9) 1.8281(-7)
2.65 2.3855(-7) 2.8705(-6) 5.0874(-8) 5.9234(-8) 2.3051(-8) 3.2801(-8)  2.3796(-7)
2.675 1.8190(-7) 2.7947(-6) 4.8185(-8) 4.8252(-8) 2.1786(-8) 1.1051(-8) 1.7656(-7)
2.725 2.0635(-7) 5.8176(-6) 4.8006(-8) 7.6271(-9) 1.9071(-8) 6.9355(-9) 1.3678(-7)
2.75 2.6735(-7) 1.0904(-5) 4.5103(-8) 1.9163(-8) 1.7640(-8) 3.1679(-8) 1.7607(-7)
2.775 1.9821(-7) 1.0562(-5) 3.9863(-8) 9.6370(-9) 1.6104(-8) 1.4271(-8) 1.2944(-7)
2.825 1.1313(-7) 2.1793(-5) 2.8037(-8) 3.8747(-8) 1.2838(-8) 1.6642(-9) 8.5678(-8)
2.85 1.4207(-7) 4.0869(-5) 2.2628(-8) 4.8575(-8) 1.1144(-8) 1.6918(-8) 1.0786(-7)
2.875 1.0419(-7) 3.9492(-5) 1.9087(-8) 3.7067(-8) 9.3928(-9) 4.0501(-9) 7.7611(-8)
2.925 1.3559(-7) 8.1334(-5) 1.6468(-8) 2.5042(-8) 5.8367(-9) 2.7937(-8) 3.1766(-8)
2.95 1.7999(-7) 1.5245(-4) 1.2791(-8) 4.3607(-8) 3.9985(-9) 6.0594(-8)  3.6289(-8)
2.975 1.2600(-7) 1.4735(-4) 6.8758(-9) 3.7077(-8) 2.0460(-9) 5.0253(-8)  2.3219(-8)
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Figure 5.9. Graph of Ioglo[‘u(xi)—g(xi )‘] vs. X; for the new spline methods proposed in Chapter Three and Chapter Four, and the spline
methods from Al-Said et al. (2011), Al-Towaiq and Ala’yed (2014) and Rashidinia and Sharifi (2015), correspond to Problem 9
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Table 5.10

Errors Obtained by Different Spline Methods in Problem 10

Ao Al Rashidinia New Cubic oW

ai Towaiq and New New Non- Quintic

X et al. and o Quartic Quintic ] Non-
2011) Alaived Sharifi spline Spline polynomial | -

( a'ye (2015) spline polynomia

(2014) Spline

0.03 - 4.8176(-4) 2.8083(-7) 4.5360(-7) 1.5169(-7) 3.2149(-6) 1.7013(-6)
0.06 - 3.2598(-4) 4.5543(-7) 6.2362(-7) 2.4676(-7) 2.4583(-6) 2.0142(-6)
0.13 - 1.2957(-4) 9.6810(-7) 7.9295(-8) 3.4605(-7) 3.4017(-7) 4.4641(-6)
0.16 - 8.7871(-5) 1.0452(-6) 8.8610(-9) 3.9997(-7) 1.0440(-7) 4.6346(-6)
0.23 - 3.4662(-5) 1.1039(-6) 8.6302(-7) 4.8508(-7) 2.0604(-7) 5.9797(-6)
0.26 - 2.3448(-5) 1.1360(-6) 9.1223(-7) 5.0691(-7) 1.7557(-7) 6.0676(-6)
0.33 - 9.0962(-6) 1.3653(-6) 1.0767(-7) 5.2682(-7) 1.6886(-7) 6.7530(-6)
0.36 - 6.1291(-6) 1.3634(-6) 1.3306(-7) 5.3526(-7) 1.2963(-7) 6.7914(-6)
0.43 - 2.7695(-6) 1.2459(-6) 9.3846(-7) 5.4285(-7) 1.9056(-7) 7.0685(-6)
0.46 - 1.9394(-6) 1.2325(-6) 9.4950(-7) 5.4119(-7) 1.7208(-7) 7.0761(-6)
0.53 - 3.3565(-7) 1.3684(-6) 1.1672(-7) 5.3039(-7) 2.4156(-7) 7.0923(-6)
0.56 - 1.4580(-7) _1.3407(-6) 1.1889(-7) 5.2375(-7) 2.1963(-7) 7.0805(-6)
0.63 - 5.2860(-7) 1.1565(-6) 9.0854(-7) 5.0688(-7) 2.4379(-7) 6.9254(-6)
0.66 - 4.4749(-7) 1.1283(-6) 9.0516(-7) 4.9690(-7) 2.2477(-7) 6.9011(-6)
0.73 - 3.0232(-7) 1.2341(-6) 6.3771(-8) 4.7445(-7) 2.3311(-7) 6.6312(-6)
0.76 - 2.9593(-7) 1.1986(-6) 5.6914(-8) 4.6272(-7) 2.1512(-7) 6.5986(-6)
0.83 - 3.5078(-7) 9.8683(-7) 8.4218(-7) 4.3801(-7) 2.0931(-7) 6.2503(-6)
0.86 - 3.2625(-7) 9.5440(-7) 8.3315(-7) 4.2526(-7) 1.9266(-7) 6.2123(-6)
0.93 - 3.1438(-7) “1.0536(-6) 1.0094(-8) 3.9903(-7) 1.7844(-7) 5.8095(-6)
0.96 - 2.9644(-7) | 1.0167(-6) 2.0452(-8) ~3.8581(-7) ' 1.6287(-7) 5.7679(-6)
1.03 - 2.9298(-7) 7.9269(-7) 7.6447(-7) 3.5909(-7) 1.4280(-7) 5.3269(-6)
1.06 - 2.7462(-7) 7.6003(-7) 7.5332(-7) 3.4571(-7) 1.2821(-7) 5.2828(-6)
1.13 - 2.6429(-7) 8.6164(-7) 8.9375(-8) 3.1890(-7) 1.0434(-7) 4.8148(-6)
1.16 - 2.4791(-7) 8.2562(-7) 1.0094(-7) 3.0558(-7) 9.0602(-8) 4.7692(-6)
1.23 - 2.2923(-7) 5.9576(-7) 6.8504(-7) 2.7903(-7) 6.4314(-8) 4.2819(-6)
1.26 - 2.1146(-7) 5.6428(-7) 6.7329(-7) 2.6587(-7) 5.1354(-8) 4.2353(-6)
1.33 - 2.1428(-7) 6.7174(-7) 1.6806(-7) 2.3975(-7) 2.3309(-8) 3.7342(-6)
1.36 - 2.055(-7) 6.3741(-7) 1.7984(-7) 2.2683(-7) 1.0950(-8) 3.6869(-6)
1.43 - 1.1784(-7) 4.0434(-7) 6.0762(-7) 2.0125(-7) 1.7221(-8) 3.1760(-6)
1.46 - 7.9324(-8) 3.7447(-7) 5.9591(-7) 1.8861(-7) 2.8716(-8) 3.1284(-6)
1.53 - 3.2342(-7) 4.8893(-7) 2.4392(-7) 1.6362(-7) 6.0281(-8) 2.6105(-6)
1.56 - 3.9916(-7) 4.5647(-7) 2.5551(-7) 1.5129(-7) 7.2245(-8) 2.5628(-6)
1.63 - 5.9895(-7) 2.2127(-7) 5.336(-7) 1.2691(-7) 9.3039(-8) 2.0400(-6)
1.66 - 9.4666(-7) 1.9307(-7) 5.2229(-7) 1.1488(-7) 1.0080(-7) 1.9922(-6)
1.73 - 2.6887(-6) 3.1471(-7) 3.1719(-7) 9.1123(-8) 1.6231(-7) 1.4660(-6)
1.76 - 3.9240(-6) 2.8403(-7) 3.2941(-7) 7.9400(-8) 1.8358(-7) 1.4183(-6)
1.83 - 9.7345(-6) 4.7116(-8) 4.7227(-7) 5.6212(-8) 9.2699(-8) 8.8992(-7)
1.86 - 1.4405(-5) 2.0461(-8) 4.7131(-7) 4.4776(-8) 6.1601(-8) 8.4232(-7)
1.93 - 3.6478(-5) 1.4907(-7) 4.7731(-7) 2.2249(-8) 5.3840(-7) 3.1252(-7)
1.96 - 5.3849(-5) 1.2001(-7) 5.8743(-7) 1.1107(-8) 7.0094(-7) 2.6509(-7)
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Figure 5.10. Graph of Ioglo[‘u(xi)—g(xi )‘] vs. X, for the new spline methods proposed in Chapter Three and Chapter Four, and the spline
methods from Al-Said et al. (2011), Al-Towaiq and Ala’yed (2014) and Rashidinia and Sharifi (2015), correspond to Problem 10



Table 5.11

Errors Obtained by Different Spline Methods in Problem 11

) New Quintic
New Cubic
Liuetal. New Quartic New Quintic ) Non-
Non-polynomial
(2011) Spline Spline polynomial
Spline
Spline

0.025  4.2929(-5) 6.4722(-6) 6.7537(-6) 6.5174(-6) 6.3281(-6)
0.05  4.3512(-5) 6.2194(-6) 6.6747(-6) 6.4134(-6) 6.0261(-6)
0.075  4.4879(-5) 6.2284(-6) 6.5956(-6) 6.5377(-6) 6.0756(-6)
0.125 4.8937(-5) 6.8053(-6) 6.4367(-6) 5.9101(-6) 5.0930(-6)
0.15  5.0294(-5) 6.8159(-6) 6.3573(-6) 5.5780(-6) 4.4538(-6)
0.175 5.0857(-5) 6.5628(-6) 6.2782(-6) 5.9267(-6) 4.8462(-6)
0.225  5.0966(-5) 5.8371(-6) 6.1192(-6) 5.3123(-6) 3.9460(-6)
0.25  5.1507(-5) 5.5878(-6) 6.0398(-6) 4.7575(-6) 3.0069(-6)
0.275  5.2820(-5) 5.5988(-6) 5.9613(-6) 5.3234(-6) 3.7120(-6)
0.325  5.6769(-5) 6.1704(-6) 5.8041(-6) 4.7298(-6) 2.9496(-6)
0.35  5.8047(-5) 6.1879(-6) 5.7260(-6) 3.9605(-6) 1.7712(-6)
0.375 ~ 5.8520(-5) 5.9406(-6) 5.6496(-6) 4.7337(-6) 2.7370(-6)
0.425  5.8489(-5) 5.2118(-6) 5.4979(-6) 4.1819(-6) 2.1677(-6)
0.45  5.8912(-5) 4.9742(-6) 5.4232(-6) 3.2184(-6) 8.3215(-7)
0.475  6.0095(-5) 4.9963(-6) 5.3510(-6) 4.1853(-6) 1.9864(-6)
0.525  6.3848(-5) 5.5702(-6) 5.2094(-6) 3.6519(-6) 1.6641(-6)
0.55 = 6.4965(-5) 5.6057(-6) 5.1409(-6) 2.4920(-6) 2.7455(-7)
0.575 6.5265(-5) 5.3764(-6) 5.0760(-6) 3.6381(-6) 1.5252(-6)
0.625  6.4975(-5) 4.6584(-6) 4.9521(-6) 3.2712(-6) 1.5019(-6)
0.65  6.5193(-5) 4.4465(-6) 4.8936(-6) 2.0174(-6) 1.8074(-7)
0.675 6.6157(-5) 4.4946(-6) 4.8394(-6) 3.3184(-6) 1.4174(-6)
0.725  6.9582(-5) 5.0917(-6) 4.7384(-6) 2.6296(-6) 1.7423(-6)
0.75  7.0448(-5) 5.1624(-6) 4.6929(-6) 1.0128(-6) 6.2916(-7)
0.775  7.0482(-5) 4.9685(-6) 4.6540(-6) 2.4690(-6) 1.7246(-6)
0.825  6.9790(-5) 4.2797(-6) 4.5901(-6) 3.3480(-6) 2.4428(-6)
0.85  6.9709(-5) 4.1034(-6) 4.5644(-6) 2.5026(-6) 1.6925(-6)
0.875  7.0362(-5) 4.1933(-6) 4.5442(-6) 4.0111(-6) 2.5043(-6)
0.925  7.3315(-5) 4.9116(-6) 4.5131(-6) 5.2884(-7) 3.6587(-6)
095  7.3835(-5) 5.1140(-6) 4.5068(-6) 4.6913(-6) 3.4405(-6)
0.975  7.3511(-5) 5.0035(-6) 4.5123(-6) 2.8602(-6) 3.8122(-6)
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Figure 5.11. Graph of Ioglo[‘u(xi)—é:(xi )‘] vs. X; for the new spline methods proposed in Chapter Three and Chapter Four, and the spline

method from Liu et al. (2011), correspond to Problem 11
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Table 5.12

Errors Obtained by Different Spline Methods in Problem 12

) New Quintic
New Cubic
Liu et al. New Quartic New Quintic Non-
Non-polynomial
(2011) Spline Spline . polynomial
Spline
Spline

0.025 9.6982(-5) 6.4105(-6) 7.4973(-6) 1.8073(-5) 2.1094(-6)
0.05  9.4611(-5) 4.7190(-6) 6.5411(-6) 1.9825(-5) 1.6576(-6)
0.075 8.8736(-5) 4.3109(-6) 5.8349(-6) 1.3402(-5) 7.2357(-7)
0.125 7.1452(-5) 6.4590(-6) 4.7674(-6) 3.6920(-6) 9.2247(-6)
0.15  6.6460(-5) 6.5306(-6) 4.2580(-6) 4.5511(-6) 1.5264(-5)
0.175 6.5840(-5) 5.3102(-6) 3.7809(-6) 4.2105(-6) 1.0682(-5)
0.225 7.0906(-5) 1.4828(-6) 2.9730(-6) 4.4395(-6) 1.4215(-5)
0.25  7.0895(-5) 4.7905(-7) 2.6575(-6) 5.0754(-6) 2.1024(-5)
0.275 6.7069(-5) 7.8425(-7) 2.4052(-6) 3.8681(-6) 1.4936(-5)
0.325 5.2751(-5) 3.6534(-6) 1.9914(-6) 2.3634(-6) 1.5737(-5)
0.35  4.9364(-5) 4.0862(-6) 1.8001(-6) 2.7662(-6) 2.2475(-5)
0.375  5.0169(-5) 3.2163(-6) 1.6256(-6) 2.2498(-6) 1.6042(-5)
0.425  5.6507(-5) 2.4815(-7) 1.3256(-6) 1.7421(-6) 1.5267(-5)
0.45  5.7640(-5) 1.0429(-6) 1.2003(-6) 2.0168(-6) 2.1439(-5)
0.475  5.4849(-5) 5.3165(-7) 1.0940(-6) 1.6014(-6) 1.5326(-5)
0.525  4.1727(-5) 2.5518(-6) 9.1244(-7) 1.1447(-6) 1.3605(-5)
0.55  3.9189(-5) 3.1093(-6) 8.3009(-7) 1.3270(-6) 1.8910(-5)
0.575 4.0774(-5) 2.3623(-6) 7.5569(-7) 1.0687(-6) 1.3513(-5)
0.625 4.8131(-5) 9.7389(-7) 6.2570(-7) 7.9269(-7) 1.1204(-5)
0.65 4.9918(-5) 1.692(-6) 5.6899(-7) 9.1240(-7) 1.5455(-5)
0.675  4.7735(-5) 1.1048(-6) 5.1898(-7) 7.3374(-7) 1.1019(-5)
0.725 3.5483(-5) 2.0624(-6) 4.3098(-7) 5.4024(-7) 8.3343(-6)
0.75  3.3465(-5) 2.6733(-6) 3.9108(-7) 6.2067(-7) 1.1408(-5)
0.775 3.5539(-5) 1.9764(-6) 3.5501(-7) 5.0260(-7) 8.0874(-6)
0.825 4.3646(-5) 1.3477(-6) 2.9131(-7) 3.4432(-7) 5.1561(-6)
0.85  4.5858(-5) 2.0780(-6) 2.6268(-7) 3.7913(-7) 6.9737(-6)
0.875  4.4079(-5) 1.4753(-6) 2.3647(-7) 3.0242(-7) 4.8687(-6)
0.925 3.2478(-5) 2.1095(-6) 1.8818(-7) 2.7767(-7) 1.7722(-6)
095 3.0818(-5) 3.1757(-6) 1.6616(-7) 3.4700(-7) 2.2783(-6)
0975 3.3235(-5) 2.6607(-6) 1.4669(-7) 2.9500(-7) 1.4576(-6)
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In this section, we examine 6 BVPs from the literatures using the new proposed
spline methods and the existing spline methods of Al-Said et al. (2011), Al-Towaiq
and Ala'yed (2014), Rashidinia and Sharifi (2015) and Liu et al. (2011). These 6 test
problems can be sorted out into three groups:
i.  Problem 7 and Problem 8 are first order BVPs.
ii.  Problem 9 and Problem 10 are second order BVPs subject to Dirichlet
boundary conditions.
iii.  Problem 11 and Problem 12 are second order BVPs subject to Neumann

boundary conditions.

The numerical results in Table 5.9 and Table 5.10 confirm that the new quartic
spline, quintic spline and cubic non-polynomial spline methods are more accurate
than the quartic B-spline method in Rashidinia and Sharifi (2015), the quartic spline
method in Al-Said et al. (2011), the cubic spline method in Al-Towaiq and Ala'yed
(2014), the new quintic non-polynomial spline methods in solving Problem 9 and
Problem 10. We note that the quartic spline method in Al-Said et al. (2011) is

derived for solving specific linear second order BVPs where the term u’(x) is

absent. Therefore, the quartic spline method in Al-Said et al. (2011) is not applicable
to Problem 10, and hence there are no numerical results presented in Table 5.10.
Moreover, the results from Table 5.11 and Table 5.12 showed that the proposed
methods are generally more accurate than the quartic spline method in Liu et al.

(2011) in solving Problem 11 and Problem 12, respectively.

Furthermore, the numerical results in Table 5.9 and Table 5.12 for the new quintic

spline method stated favorably over the new quartic, cubic non-polynomial, and
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quintic non-polynomial spline methods for solving Problem 9 and Problem 12. On
the other hand, the cubic non-polynomial spline method is more accurate than other
new proposed methods when solving Problem 10. In addition, the numerical results
of the new quintic non-polynomial method considered preferable over other new
developed methods in solving Problem 11. This can be noticed in Table 5.11.
Finally, the results in Table 5.7 and Table 5.8 seem to indicate that the new proposed
spline methods are found to have comparable accuracy in solving Problem 7 and

Problem 8, respectively.
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CHAPTER SIX
CONCLUSION AND FUTURE RESEARCH

6.1 Conclusion

In this research work, after a short introduction in Chapter One and some literature
review to support the rationale of our studies, the main contributions of this thesis
begin with the developments of four new spline methods for solving first and second
order IVPs and BVPs proposed in Chapter Three and Chapter Four. In Chapter
Three, two new methods based on polynomial spline functions, namely: quartic and
quintic spline methods are developed. On the other hand, two new methods based on
non-polynomial spline functions, namely: cubic non-polynomial and quintic non-

polynomial spline methods are developed in Chapter Four.

Every spline function of order m should have a continuous (m-1)-th derivatives on

the interval of integration [a,b]. In order to develop a polynomial spline method, we
defined the (m-1)-th derivative at the subinterval [x;,X;,,] as a linear polynomial by

using Lagrange polynomial and then integrated it (m-1) times to obtain a polynomial
spline function of order m with unknown coefficients. While for a non-polynomial
spline method, we directly defined the spline function as a linear combination of

non-polynomial functions with unknown coefficients over the subinterval [x,x..,].

For both polynomial and non-polynomial splines, the continuity conditions are then
imposed at the interior points to gain sufficient conditions, so that the unknown
coefficients for all spline functions are uniquely determined. On applying Gaussian
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elimination method to the equations formed by the continuity conditions, the values
of the unknown coefficients are determined. These coefficients are substituted back

into the original spline functions to form continuous schemes.

The basic idea used in the convergence analysis for each developed spline method, is
to investigate whether a spline method approximates the solutions of first and second
order IVPs and BVPs. A spline method is said to be convergent if the generated
approximate solution approaches the exact solution as the step-size goes to zero.
This can be visualized through the error sustained by a spline method in all steps,
and the error is being bounded as the step-size goes to zero. Each newly developed
spline method in Chapter Three and Chapter Four is proven to be convergent, as the
error is being bounded. Hence, the convergence properties for all proposed spline
methods are stated in four new theorems of convergence. These four theorems

showed that the order of convergence for these proposed spline methods are four.

For the implementations, we first divide the interval of integration [a,b] into small

subintervals, then the 4-stage fourth order explicit Runge-Kutta method is applied to
obtain the approximate solutions at the grid points, while the new derived spline
methods are used to obtain the approximate solutions between the grid points. The
proposed new spline methods are validated through 12 test problems chosen from the
literature. These test problems can be classified into three categories:

i.  Firstand second order I\VPs.

ii.  First and second order BVPs subject to Dirichlet boundary conditions.

iii.  Second order BVPs subject to Neumann boundary conditions.
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Moreover, to check the accuracy of the new developed spline methods, the numerical
results of the new spline methods are compared with those numerical results

generated by:
i.  The cubic spline method of order O(h*) in Tung (2013) for the test problems
involving first, second and third order 1\VVPs.
ii.  The quartic spline method of order O(h*) in Al-Said et al. (2011), the cubic
spline method of order O(h*) in Al-Towaiq and Ala'yed (2014) and the

quartic B-spline method of order O(h®) in Rashidinia and Sharifi (2015) for

the test problems involving second order BVPs with Dirichlet boundary

conditions.
iii.  The quartic spline method of order O(h*) in Liu et al. (2011) for the test

problems involving second order BVPs with Neumann boundary conditions.
Generally, the new proposed spline methods are more accurate in terms of error and

these new methods can be implemented on a computer without any difficulties.

Last but not least, all objectives stated in Chapter One have been achieved.
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6.2 Future Research

This research considered the derivations of new spline methods to obtain numerical
solutions of first and second order 1\VVPs and BVPs. This study has spawned some
open research problems as shown below:

i.  New spline methods which solve IVPs and BVPs directly without the
assistance of other methods such as the 4-stage fourth order explicit Runge-
Kutta method or reduction approach.

ii. New spline methods to solve problems involving partial differential
equations, fuzzy differential equations, fractional differential equations,
differential-algebric equations, integro-differential equations and delay
differential equations, to name a few.

iii. ~ New spline methods which implement in variable step-size approach in order

to control the error introduced at each individual step.
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