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Abstrak

Banyak permasalahan yang timbul daripada pelbagai aplikasi kehidupan nyata boleh
menjurus kepada model matematik yang dapat diungkapkan sebagai masalah nilai
awal (MNA) dan masalah nilai sempadan (MNS) untuk persamaan pembeza biasa
(PPB) peringkat pertama dan kedua. Masalah ini mungkin tidak mempunyai
penyelesaian analitik, dengan itu kaedah berangka diperlukan bagi menganggarkan
penyelesaian. Apabila sesuatu persamaan pembeza diselesaikan secara berangka,
selang pengamiran dibahagikan kepada subselang. Akibatnya, penyelesaian
berangka pada titik grid dapat ditentukan melalui pengiraan berangka, manakala
penyelesaian antara titik grid masih tidak diketahui. Bagi mencari penyelesaian
hampir antara dua titik grid, kaedah splin diperkenalkan. Walau bagaimanapun,
kebanyakan keadah splin yang sedia ada digunakan untuk menganggar penyelesaian
bagi MNA dan MNS yang tertentu sahaja. Oleh itu, kajian ini membangunkan
beberapa kaedah splin baharu yang berasaskan fungsi splin polynomial dan bukan
polynomial bagi menyelesaikan MNA dan MNS umum yang berperingkat pertama
dan kedua. Analisis penumpuan bagi setiap kaedah splin baharu turut dibincangkan.
Dari segi pelaksanaan, kaedah Runge-Kutta tersurat bertahap empat dan berperingkat
keempat digunakan bagi mendapat penyelesaian pada titik grid, manakala kaedah
splin baharu digunakan untuk memperoleh penyelesaian antara titik grid. Prestasi
kaedah splin yang baharu kemudiannya dibandingkan dengan beberapa kaedah splin
yang sedia ada dalam menyelesaikan 12 masalah ujian. Secara umumnya, keputusan
berangka menunjukkan bahawa kaedah splin baharu memberikan kejituan yang lebih
baik daripada kaedah splin yang sedia ada. Oleh itu, kaedah splin baharu adalah
alternatif yang berdaya saing dalam menyelesaikan MNA dan MNS berperingkat
pertama dan kedua.

Kata kunci: Interpolasi, Keadah splin, Masalah nilai awal, Masalah nilai sempadan,
Persamaan pembeza biasa.



Abstract

Many problems arise from various real life applications may lead to mathematical
models which can be expressed as initial value problems (IVPs) and boundary value
problems (BVPs) of first and second ordinary differential equations (ODEs).These
problems might not have analytical solutions, thus numerical methods are needed
inapproximating the solutions. When a differential equation is solved numerically,
the interval of integration is divided into subintervals.Consequently, numerical
solutions at the grid pointscan be determined through numerical computations,
whereas the solutions between the grid points still remain unknown. In order to find
the approximate solutions between any two grid points, spline methods are
introduced. However, most of the existing spline methods are used to approximate
the solutions of specific cases of IVPs and BVPs. Therefore, this study develops new
spline methods based on polynomial and non-polynomial spline functions for
solving general cases of first and second order 1\VVPs and BVPs. The convergence
analysis for each new spline method is also discussed. In terms of implementation,
the 4-stage fourth order explicit Runge-Kutta method is employed to obtain the
solutions at the grid points, while the new spline methods are used to obtain the
solutions between the grid points. The performance of the new spline methods are
then compared with the existing spline methods in solvingl2 test problems.
Generally, the numerical results indicate that the new spline methods provide better
accuracy than their counterparts. Hence, the new spline methods are viable
alternatives for solving first and second order IVVPs and BVPs.

Keywords: Interpolation, Spline method, Initial value problem, Boundary value
problem, Ordinary differential equation.
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CHAPTER ONE

INTRODUCTION

1.1 Background of the Study

Spline functions have been rapidly developed as a result of their applications
usefulness. Spline functions with their various categories have many high quality
approximation powers as well as structural properties such as zero properties, sign
change properties and determinental properties (Dold & Eckmann, 1976). There are
many applications of spline functions in applied mathematics and engineering. Some
of these applications are data fitting, approximating functions, optimal control
problems, integro-differential equation and Computer-Aided Geometric Design
(CAGD). It is important to note that programmes based on spline functions have

been embedded in various computer applications.

A common consensus is that, Schoenberg (1946) made the first mathematical
reference to spline in his interesting article, and this probably was the first time that
‘spline” was used in connection with smooth piecewise polynomial approximation.
However, it is important to note that the ideas of developing splines were originated
from shipbuilding and aircraft industries earlier than computer modeling was
available (Dermoune & Preda, 2014). Then, naval architects faced the necessity to
draw a smooth curve through a set of points. The answer to this challenge was to put
metal weights (called knots) at the points of control so that a thin metal or wooden
beam (called a spline) would be bent through the weights (see Figure 1.1). Bending

splines from physicist’s point of view was important as the weight has some greatest
1
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