The copyright © of this thesis belongs to its rightful author and/or other copyright owner. Copies can be accessed and downloaded for non-commercial or learning purposes without any charge and permission. The thesis cannot be reproduced or quoted as a whole without the permission from its rightful owner. No alteration or changes in format is allowed without permission from its rightful owner.
ROBUST MULTIPLE PAIRWISE COMPARISON PROCEDURE FOR ADAPTIVE TRIMMED MEAN VIA P-METHOD

LOW JOON KHIM

MASTER OF STATISTICS
UNIVERSITI UTARA MALAYSIA
2016
Permission to Use

In presenting this thesis in fulfilment of the requirements for a postgraduate degree from Universiti Utara Malaysia, I agree that the Universiti Library may make it freely available for inspection. I further agree that permission for the copying of this thesis in any manner, in whole or in part, for scholarly purpose may be granted by my supervisor(s) or, in their absence, by the Dean of Awang Had Salleh Graduate School of Arts and Sciences. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use which may be made of any material from my thesis.

Requests for permission to copy or to make other use of materials in this thesis, in whole or in part, should be addressed to:

Dean of Awang Had Salleh Graduate School of Arts and Sciences
UUM College of Arts and Sciences
Universiti Utara Malaysia
06010 UUM Sintok
Abstrak

Ujian omnibus teguh yang boleh didapati secara meluas biasanya digunakan sebagai alternatif kepada Analisis Varians (ANOVA) klasik apabila andaian tidak dipenuhi. Seperti ANOVA, setiap ujian omnibus memerlukan prosedur post hoc (perbandingan pasangan berganda) apabila ujian didapati signifikan. Walau bagaimanapun, kajian terhadap prosedur post hoc untuk ujian omnibus teguh yang sedia ada kurang diberi perhatian. Kebanyakan ujian omnibus teguh dibiarkan tanpa prosedur post hoc dan ujian sebegini dianggap tidak lengkap. Dalam kajian ini, kami telah mengambil inisiatif untuk membangunkan prosedur post hoc yang dikenali sebagai Kaedah-P untuk \(HQ \) dan \(HQ_1 \), iaitu dua penganggar teguh priori yang digunakan dalam menguji kesamaan kumpulan. Selain daripada dua penganggar teguh tersebut, kajian ini juga mengkaji keberkesanan min klasik menggunakan Kaedah-P. Kaedah-P adalah kaedah yang berasaskan bootstrap. Masing-masing ditandakan sebagai \(P-HQ \), \(P-HQ_1 \) dan \(P-Min \), program komputer untuk prosedur tersebut telah dibangunkan dan keberkesananannya dalam mengawal ralat Jenis I (keteguhan) telah dinilai. Satu kajian simulası telah dijalankan untuk mengkaji kekuatan dan kelemahan prosedur. Bagi tujuan tersebut, lima pembolehubah telah dimanipulasikan untuk mewujudkan pelbagai keadaan yang sering berlaku dalam kehidupan sebenar. Pembolehubah tersebut adalah bentuk taburan, bilangan kumpulan, saiz sampel, tahap kepelbagaian varians dan pasangan saiz sampel dan varians. Sebanyak 2000 set data telah disimulası menggunakan pakej SAS/IML Versi 9.2. Kriteria teguh liberal Bradley telah digunakan sebagai penanda aras keteguhan setiap prosedur. Akhir sekali, kaedah yang dicadangkan (\(P-HQ \) dan \(P-HQ_1 \)) dan \(P-Min \) dibandingkan dengan kaedah LSD-Bonferroni Correction yang sedia ada. Hasil kajian mendapati \(P-HQ \) dan \(P-HQ_1 \) berkesan mengawal ralat Jenis I dan dengan itu boleh digunakan sebagai prosedur post hoc untuk ujian omnibus yang didapati signifikan membabitkan penganggar \(HQ \) dan \(HQ_1 \). Di samping itu, kajian ini juga mendapati bahawa \(P-Min \) adalah teguh walaupun di bawah pelanggaran yang teruk. Kajian ini secara keseluruhannya berjaya menghasilkan ujian post hoc yang boleh percaya untuk penganggar \(HQ \) dan \(HQ_1 \).

Kata Kunci: Ujian post hoc, \(P-HQ \), \(P-HQ_1 \), \(P-Min \)
Abstract

Robust omnibus tests which are widely available are commonly used as alternatives to the classical Analysis of Variance (ANOVA) when the assumptions are violated. Like ANOVA, each of these omnibus tests needs a post hoc (pairwise multiple comparison) procedure when the test turns out to be significant. However, works on post hoc procedures for the existing robust omnibus tests are not given much attention. Most of the robust omnibus tests are left without the post hoc procedures and the tests are deemed incomplete. In this study, we have taken the initiative to develop the post hoc test known as P-Method for HQ and HQ₁, the two robust estimators priori used in testing the equality of groups. Apart from the two robust estimators, this study also looked into the effectiveness of the classical mean using P-Method. P-Method is a bootstrap based method. Respectively denoted as P-HQ, P-HQ₁ and P-Mean, computer programs for the procedures were developed and their effectiveness in controlling Type I error (robustness) was evaluated. A simulation study was conducted to investigate on the strength and weakness of the procedures. For such, five variables were manipulated to create various conditions that often occur in real life. These variables are the shape of the distributions, number of groups, sample sizes, degree of variance heterogeneity and pairing of sample sizes and variances. A total of 2000 datasets were simulated using SAS/IML Version 9.2. Bradley’s liberal criterion of robustness was adopted to benchmark each procedure. Finally, the proposed methods (P-HQ and P-HQ₁) and P-Mean were compared with the existing LSD-Bonferroni correction. The finding revealed that P-HQ and P-HQ₁ could effectively control Type I error and thus could be used as the post hoc procedure for significant omnibus test using HQ and HQ₁ estimators. In addition, this study also observed that P-Mean is robust even under severe violation of assumptions. In general, this study managed to develop a reliable post hoc test for HQ dan HQ₁ estimators.

Keywords: Post hoc test, P-HQ, P-HQ₁, P-Mean
Acknowledgement

Foremost, I would like to express the deepest appreciation to my first supervisor Assoc. Prof. Dr. Sharipah Soaad Bt. Syed Yahaya for the continuous guidance, caring and patience in my master study and research. I would also like to thank her for her continuous help and support in all stages of this thesis. Next, I would like to express my gratitude to my second supervisor Dr. Suhaida Bt. Abdullah for the useful comments and engagement in my master learning process. Without their supervision and constant help, this dissertation would not have been possible.

I would also like to thank my parents Low Kim Hong and Low Yok Em for always supporting and encouraging me with their best wishes and effort. The appreciation also goes to my husband Ch’ng Chee Keong for his emotional support, love and motivation during my study.

Special thanks to the various people in School of Quantitative Sciences, Universiti Utara Malaysia as they provided me a very useful and helpful assistance.

Thanks in million again to all for providing me a loving environment to complete my master study.
Table of Contents

Permission to Use ..i
Abstrak...ii
Abstract..iii
Acknowledgement ...iv
Table of Contents ...v
List of Tables ...viii
List of Figures ...x
List of Appendices ... xi

CHAPTER ONE INTRODUCTION ... 1
1.1 Background ...1
1.2 Problem Statement ...5
1.3 Research Objective ...6
1.4 Significance of Study ...6

CHAPTER TWO LITERATURE REVIEW ... 7
2.1 Introduction ...7
2.2 Trimming: A Robust Approach ...8
 2.2.1 Usual Trimmed Mean ..8
 2.2.2 Adaptive Trimmed Means with hinge Estimators ..10
 2.2.2.1 Hinge Estimator, HQ ..12
 2.2.2.2 Hinge Estimator, HQ_1 ..12
2.3 Multiple Pairwise Comparison Procedures ...13
 2.3.1 Percentile t-Bootstrap ...14
 2.3.2 Percentile Bootstrap Method, Method P ..14
 2.3.3 Method PW and PTW ..14
2.4 LSD with Bonferroni Correction ..15
2.5 Bootstrap Method ...17

CHAPTER THREE METHODOLOGY ... 19
3.1 Introduction ...19
3.2 P-Method ...19
3.3 Variables Manipulated ... 223
3.4 Data Generation .. 27
3.5 Application of Bootstrap Method .. 30
3.6 Measure of Robustness .. 32

CHAPTER FOUR RESULTS OF THE ANALYSIS ... 33
4.1 Introduction ... 33
4.2 P-Method ... 34
 4.2.1 Type I error for $J = 4$.. 34
 4.2.1.1 Unbalanced Design ($J = 4$) .. 34
 4.2.1.2 Balanced Design ($J = 4$) .. 38
 4.2.2 Type I error for $J = 6$.. 40
 4.2.2.1 Unbalanced Design ($J = 6$) .. 40
 4.2.2.2 Balanced Design ($J = 6$) .. 44
4.3 P-Method with Mean (P-Mean) versus LSD with Bonferroni Correction (LSD-Bonferroni Correction) .. 46
 4.3.1 Type I error for $J = 4$.. 46
 4.3.1.1 Unbalanced Design ($J = 4$) .. 47
 4.3.1.1.1 Analysis on Degree of Heteroscedasticity ... 47
 4.3.1.2 Balanced Design ($J = 4$) .. 51
 4.3.2 Type I error for $J = 6$.. 53
 4.3.2.1 Unbalanced Design ($J = 6$) .. 53
 4.3.2.1.1 Analysis on Degree of Heteroscedasticity ... 53
 4.3.2.2 Balanced Design ($J = 6$) .. 56
4.4 Real Data Analysis ... 59

CHAPTER FIVE CONCLUSION .. 62
5.1 Introduction ... 62
5.2 P-Method Performance .. 63
 5.2.1 Conditions for Distributions ... 63
 5.2.1.1 Four Groups Case ($J = 4$) ... 66
 5.2.1.2 Six Groups Case ($J = 6$) .. 67
 5.2.2 Conditions for Heteroscedasticity ... 68
5.3 P-Mean and LSD-Bonferroni Correction in a Nut Shell .. 71
 5.3.1 Conditions for Distributions .. 71
 5.3.1.1 Four Groups Case ($J = 4$) ... 72
 5.3.1.2 Six Groups Case ($J = 6$) ... 74
 5.3.2 Conditions for Heteroscedasticity ... 75
5.4 P-Mean Robustness .. 76
5.5 Overall Summary ... 76
5.6 Implications ... 78
5.7 Suggestions for Future Research ... 79

REFERENCES .. 81
List of Tables

Table 2.1 Q Tail Length Measurement .. 11
Table 2.2 Q_tail Length Measurement .. 11
Table 3.1 Descriptions of Variable Being Manipulated ... 23
Table 3.2 g-and-h Distributions ... 24
Table 3.3 Nature of Pairing with Moderate Degree of Heterogeneity for J = 4 25
Table 3.4 Nature of Pairing with Extreme Degree of Heterogeneity for J = 4 26
Table 3.5 Nature of Pairing with Moderate Degree of Heterogeneity for J = 6 26
Table 3.6 Nature of Pairing with Extreme Degree of Heterogeneity for J = 6 26
Table 3.7 Location Parameters with Respect to Distribution ... 29
Table 4.1 Type I error Rates for J = 4 under Moderate and Extreme Degree of
Heteroscedasticity .. 35
Table 4.2 Type I error Rates for J = 4 Balanced Design ... 38
Table 4.3 Type I error Rates for J = 6 under Moderate and Extreme Degree of
Heteroscedasticity .. 41
Table 4.4 Type I error Rates for J = 6 Balanced Design ... 44
Table 4.5 Type I error Rates for J = 4 under Moderate and Extreme Degree of
Heteroscedasticity .. 48
Table 4.6 Type I error Rates for J = 4 Balanced Design ... 51
Table 4.7 Type I error Rates for J = 6 Under Moderate and Extreme Degree of
Heteroscedasticity .. 54
Table 4.8 Normality Test .. 57
Table 4.9 Homogeneity of Variances Test ... 59
Table 4.10 Homogeneity of Variances Test ... 60
Table 4.11 p-value Comparison for P-Mean, P-HQ, P-HQ1 and LSD when J = 4 60
Table 5.1 Percentage of Robust Conditions for P-Method under J = 4 and J = 6 64
Table 5.2 Percentage of Robust Conditions for P-Method under J = 4 66
Table 5.3 Percentage of Robust Conditions for P-Method under J = 6 67
Table 5.4 P-Method Robustness in Balanced and Unbalanced Design 69
Table 5.5 Percentage of Robust Conditions for P-Mean and LSD-Bonferroni Correction
under J = 4 and J = 6 .. 71
Table 5.6 Percentage of Robust Conditions for P-Mean and LSD-Bonferroni Correction
under J = 4 ... 73
Table 5.7 Percentage of Robust Conditions for P-Mean and LSD-Bonferroni Correction under $J = 6$.. 74
Table 5.8 P-Mean and LSD-Bonferroni Correction Robustness in Balanced and Unbalanced Design .. 75
List of Figures

Figure 3.1. Statistical test with the corresponding robust estimators................................. 19
Figure 3.2. P-Method algorithm .. 22
Figure 3.3. Summary of variances manipulated in this study ... 27
Figure 5.1. Summary of proposed post hoc test and estimators.. 70
List of Appendices

Appendix A PROGRAM FOR TESTING THE P–MEAN PROCEDURE 84
Appendix B PROGRAM FOR TESTING THE P–HQ PROCEDURE 88
Appendix C PROGRAM FOR TESTING THE P–HQ, PROCEDURE 94
Appendix D PROGRAM FOR TESTING THE LSD-BONFERRONI CORRECTION PROCEDURE ... 100
CHAPTER ONE
INTRODUCTION

1.1 Background

When group means are compared, then the null hypothesis of equality (or homogeneity) is rejected, at this point there is no equality among them, but we have no idea about the form of the inequality. Usually, we undertake an analysis thoroughly of the nature of the difference. For example which group mean(s) differ from the others or does mean of group 1 differ from that of group 2? Thus, multiple pairwise comparison procedure (MCP) is needed to answer these queries. Cause of rejection of the null hypothesis will be investigated by the MCPs. There are several powerful MCPs that we can use after observing experimental results. Since each MCP has its strengths and weaknesses, it is advisable to make comparison among the MCPs and choose the MCP which can control Type I error, as well as to maximize power. The most widely used MCPs and can be found in major statistical packages are procedures such as Least Significant Difference (LSD), Scheffé, Tukey, and Bonferroni. However, the procedures are adversely affected by nonnormality, particularly when variances are heterogenous and group sizes are unequal (Keselman, Cribbie & Wilcox, 2002). Under these conditions, the rate of Type I error will increase, and cause spurious rejections of null hypothesis, and power is reduced, resulting in the test effects going undetected. Actual Type I error can exceed or below the nominal level when the sample sizes are twenty or smaller and power might be relatively low when the Type I error is well below the nominal level (Wilcox, 2001).
The contents of the thesis is for internal user only
REFERENCES

