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Abstrak 

Ketidaktentuan dalam proses pembinaan model dapat dijelaskan oleh pakar 
pemodelan kerana pengetahuan tersirat yang diperoleh melalui pengalaman 
menjalankan penyelidikan. Sementara itu, pengamal yang kebiasaannya bukan pakar 
dan kurang pengetahuan statistik akan berhadapan dengan kesukaran semasa proses 
pemodelan. Maka, algoritma yang disertai panduan langkah demi langkah adalah 
bermanfaat dalam pembinaan, pengujian dan pemilihan model. Bagaimanapun, 
kebanyakan algoxitma pemilihan model seperti Az~tometrics hanya tertumpu pada 
pemodelan persamaan tunggal yang aplikasinya adalah terhad. OIeh itu, kajian ini 
bertujuan membangunkan algoritma bagi pemilihan model dalam persamaan berganda 
yang memfokuskan kepada model Seemingly Unrelated Regression Equations 
(SURE). Algoritma tersebut dibangunkan dengan menyepadukan model SURE dan 
strategi carian oleh Autometrics; maka dinamakan SURE-Atrtometrics. Prestasinya 
dinilai dengan menggunakan ujikaji simulasi Monte Carlo berdasarkan lima model 
spesifikasi, tiga tahap kekuatan korelasi antara ralat, dan dua saiz sampel. Dua set 
General Unrestricted Models (GUMS) kemudiannya diformulasi dengan menambah 
beberapa pemboleh ubah tidak relevan terhadap model spesifikasi tersebut. Prestasi 
tersebut ditentukan melalui peratusan keupayaan algoribna SURE-Atltometrics 
berupaya menyingkirkan pemboleh ubah tidak relevan dalam GUMS awalan yang 
terdiri daripada dua, empat dan enam persamaan. SURE-Autometrics juga 
ditentusahkan menggunakan dua set data sebenar melalui perbandingan ramalan 
ukuran ralat telahan dengan lima algoritma pemilihan model dan tiga prosedur bukan 
algoritma. Dapatan daripada uji kaji simulasi mencadangkan bahawa SURE- 
Azltometries berprestasi baik apabila bilangan persamaan dan bilangan pemboleh ubah 
relevan dalam model spesifikasi sebenar adalah minima. Aplikasi terhadap data 
sebenar menunjukkan bahawa beberapa model mampu meramal dengan tepat jlka 
data tidak mempunyai masalah kualiti. Algoritma pemilihan model secara automat& 
hi adalah lebih baik berbanding prosedur bukan algoritma yang memerlukan 
pengetahuan dan masa tambahan. Kesimpulannya, prestasi pemilihan model bagi 
persamaan berganda menggunakan SURE-Autometries bergantung pada kualiti data 
dan kompleksiti dalam model SURE. 

Kata kunci: Pemilihan model, Algoritma SURE-Autometrics, Seemingly zrnrelated 
regression eqtrations. 



Abstract 

The ambiguous process of model building can be explained by expert modellers due 
to their tacit knowledge acquired through research experiences. Meanwhile, 
practitioners who are usually non-experts and lack of statistical knowledge will face 
difficulties during the modelling process. Hence, algorithm with a step by step 
guidance is beneficial in model building, testing and selection. However, most model 
selection algorithms such as Atitometrics only concentrate on single equation 
modelling which has limited application. Thus, this study aims to develop an 
algorithm for model selection in multiple equations focusing on seemingly unrelated 
regression equations (SURE) model. The algorithm is developed by integrating the 
SURE model with the Atrtometrics search strategy; hence, it is named as SURE- 
Atrtometrics. Its performance is assessed using Monte Carlo simulation experiments 
based on five specification models, three strengths of correlation disturbances and two 
sample sizes. Two sets of general unrestricted models (GUMS) are then formulated 
by adding a number of irrelevant variables to the specification models. The 
performance is measured by the percentages of SURE-Azrtometrics algorithm that are 
able to eliminate the irrelevant variables from the initial GUMS of two, four and six 
equations. The SURE-Autometrics is also validated using two sets of real data by 
comparing the forecast error measures with five model selection algorithms and three 
non-algorithm procedures. The findings from simulation experiments suggested that 
SURE-Atrtometrics performed well when the number of equations and number of 
relevant variables in the true specification model were minimal. Its application on real 
data indicated that several models are able to forecast accurately if the data has no 
quality problem. This automatic model selection algorithm is better than non- 
algorithm procedure which requires knowledge and extra time. In conclusion, the 
performance of model selection in multiple equations using SURE-At~tometrics is 
dependent upon data quality and complexities of the SURE model. 

Keywords: Model selection, SURE-Atltometrics algorithm, Seemingly unrelated 
regression equations. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background of the Study 

Statistical modelling normally has inexplicit processes due to a tacit or personal 

knowledge. This can be gained through experience where modellers combined their 

judgmental knowledge and theoretical studies at some point in the modelling process 

(Magnus & Morgan, 1999). Generally, the process commence with a model 

formulation which involves specification of identified variables and followed by 

estimation procedure. Then it is validated through a series of evaluations where re- 

specification will be required according to certain criteria such as diagnostic testing, 

goodness of fit and hypothesis testing of the parameters. 

The specification of model involves choosing which variables to include or exclude 

from the model while maintaining the consistencies with the observed data. 

According to Magnus (1999), the selection of predictor variables could be based on 

two basic modelling approaches where it can possibly starts from a simple model and 

expand it, or from a general model which subsequently reduce to a more simplified 

form. The first approach is known as specific-to-general or bottom-up where it uses 

the theory to provide an initial specification. Then, it is refined by adding or 

subtracting the variables or substitutes the coefficients estimator according to 

modeller's prior belief or data exploration techniques such as Cochrane-Orcutt 

transformation. On the contrary, the second approach starts with a general model 

formulated based on information collected from theories, previous empirical research 

evidence, institutional knowledge, and common sense (Hendry & Doornik, 2014). 

This initial model which comprises of all the candidate variables is then refmed by the 
1 



process of removing unimportant variables, leading to a simple model that better 

represents the data. Thus, it is called a general-to-specific (GETS) or top-bottom 

approach. However, experts acknowledged that there is no best way amongst these 

two approaches in specifying the model (Granger, 1999; Hendry, 1980). 

Once the model has been specified by either way of approach, it will be estimated and 

tested for diagnostic to ensure it is consistent with the observed data. Practically, there 

is no assurance that a given model is correctly specified especially in a non- 

experimental study such as econometric modelling (Hendry, 2001). The 

rnisspecification occurs whenever the relevant variables are omitted from the model, 

the irrelevant variables included in the model, incorrect choices of functional form or 

the model failed any diagnostic tests. These specification errors will influence the 

properties of estimation technique, the quality of inferences, and the accuracy of the 

forecasting. 

Thus, if the initial model is already mis-specified, then the attempts of refining the 

model on the basis of statistical tests are comparable to improvement based on 

erroneous statistical procedure. According to Granger and Hendry (2005), there is 

insufficient theoretical justification for adding new variable in order to improve a 

model with an evidence of serial correlation in the errors. This state commonly occurs 

to those who employed the specific-to-general approach. For instance, Bhatti, Al- 

Shanfari and Hossain (2006) found that the estimated model sometime failed to 

advocate an adequate functional form. Hence, choosing the general-to-specific 

modelling approach would overcome this weakness where the models will be revised 

as a response to any indications of model misspecification. 



However, to formulate and simplify such a general model requires resource 

demanding, and time consuming (Magnus, 1999). Moreover, with k number of 

candidate variables will produce 2k number of possible specifications. Thus, model 

simplification leads to difficulties in determining which set of predictors that best 

explain the observed responses because there could be more than one possible 

specification for one modelling situation. 

A procedure of choosing an adequate model rather than making an arbitrary choice of 

model is known as model selection. The specification will solely determine by the 

data through the process of estimating the performance of different models in order to 

choose the 'best' one that described the process under study (Hastie, Tibshirani, & 

Friedman, 2001). It involves the inclusion or removal of variables until some 

termination criterion is satisfied. The criterion is used as an indicator for the goodness 

of fit for a particular model while taking into account the number of estimated 

parameters. The criteria that can be used for this purpose are adjusted Akaike's 

information criterion (AIC), Schwartz's criterion (SC), final prediction error (FPE), 

etc. As a guide for selecting the 'best' model, Doornik (2008) favoured the 

termination based on a principle of minimizing the residual sum of squares or pre- 

specified significance level. 

In practice, the modellers frequently used the significance values of t and F tests to 

decide whether certain variable or a group of variables should be included or excluded 

from the model. Thus, the 'best' model is presented with all the significant predictors. 

Moreover, Hendry and Doornik (2014) showed that a good model not only the ' b e d  



model but also consistent with the observed data which means that it is not violated 

any diagnostic tests such as normality, autocorrelation and homoscedasticity. 

Overall, the formulation of a model involves the process of finding the right 

specification by selecting appropriate variables without violating any assumptions 

about the error component in order to be a good model as a representation of a 

particular phenomenon under study. Hence, the model will give accurate forecasts. 

1.2 Problem Statement 

Commonly, expert modellers are unable to clearly explain the process of finding the 

right variables in a good model determined by the data. The experimental studies by 

Magnus and Morgan (1 999) proved the involvement of 'tacit' or personal knowledge 

along the process of modelling. This type of knowledge cannot be articulated and can 

only be learned through research experiences since it combined both theories and 

intuitive judgments. Therefore, it is difficult to master (Pindyck & Rubinfeld, 1998) 

especially for practitioners who are usually non-experts and lack of statistical 

knowledge. The gap can be bridged through an automatic modelling approach which 

provided an algorithm to guide the modellers a step-by-step procedure of formulating 

and testing the model in order to find the appropriate one for forecasting or policy 

making purposes. As a consequence, different researchers should obtain the same 

results by following the same algorithm for a given data set. 

The model selection algorithm executes the process of inclusion or exclusion of 

variables from or into the model according to some termination criteria. These 

algorithms search the 'best' model that fits the data from a set of alternative possible 

models to be a good forecasting model or to enhance the reliability of coefficient 
4 



estimates. The most notable algorithm is Stepwise Regression whlch introduced by 

Efroyrnson (1960). The procedure starts from simple model and expand it by adding 

variables. Even though it has been widely used in many fields, stepwise also received 

various criticisms (see among others, Love11 (1983), Derksen and Keselrnan (1992), 

Foster and Stine (2004) and Whittingham, Stephens, Bradbury, and Freckleton 

(2006)) particularly due to the consequence of misspecification in the initial model 

where the criterion used to decide the additional variable will be tainted by the biases. 

Moreover, the search strategy leads to the algorithm that stuck in a sequence of tests 

that accidentally eliminates a variable which matters, and thereby retains 'spurious7 

variables (Hendry & Krolzig, 2003). 

Unllke Stepwise, the algorithm that explores more than one path and includes the 

diagnostic tests as one of the termination criteria is PcGets (Hendry & Krolzig, 2001). 

It has been replaced by Atltonzetrics (Doornik, 2009) in order to introduce more paths 

searches by implementing tree search strategy which uses a systematic reduction 

process and to improve the computational efficiency. Both algorithms able to solve 

the problem faced in Stepwise by employing general-to-specific (GETS) approach 

while finding the best model. Hence, the algorithm developed within the GETS has 

found to be more advanced due to an exhaustive search strategy (Castle, Doornik, & 

Hendry, 201 1; Granger, Hendry, & Hansen, 2005; Hendry & Krolzig, 2005). 

Previous studies indicate that most of the model selection algorithms are established 

for single equation (Castle, Qin, & Reed, 2013; Hendry & Dooraik, 2014; Santos, 

Hendry, & Johansen, 2007) but limited for multiple equations model (Ismail, 2005; 

KroIzig, 2001). This leads to more opportunities on extending and exploring the 



algorithm for multiple equations. Specifically model selection within the GETS 

approach since the properties have been well developed (Castle et al., 201 1; Hendry 

& Doornik, 2014; Hendry & Krolzig, 2005). 

Hence, this study aims to develop a model selection algorithm on the basis of GETS 

approach for multiple equations. The motivation is to advance the specification 

process during the model formulation through a model selection technique by 

providing an algorithm for automatic procedure. Moreover, this study is inspired to 

implement the model selection process withn the GETS approach, as well as to 

broaden the theme of algorithm development which most previously favours on the 

single equations modelling. 

1.3 Objectives of the Study 

Based on the aim, thls study embarks on the following objectives, 

1 .  To develop an algorithm of model selection for seemingly unrelated regression 

equations model. The new algorithm is named as SURE-Atltometrics. 

2. To assess the performances of SURE-Atitometrics using simulation 

experiments based on five specification models with three different number of 

equations, three strength of correlation disturbances, two sample sizes, two 

sets of initial models and two sigmficance levels. 

3. To evaluate the performances of SURE-Autometrics using two sets of real data 

based on forecasting accuracy. 



1.4 Significance of the Study 

Most modellers implement tacit knowledge throughout the modelling process. 

Pindyck and Rubinfield (1998) believed that this type of knowledge is very difficult 

to master especially inexperience researchers. Hence, an automatic modelling 

approach can be a formal way of bridging the gap. It provides an algorithm to guide 

the modellers a step-by-step procedure of formulating and testing the model in order 

to find the most appropriate for forecasting and policy making purposes. 

Substantially, this study offers a reliable guidance steps in developing automatic 

model selection for multiple equations model. The new algorithm is established for 

the seemingly unrelated regression equations (SURE) model type. Thus, it will lessen 

the dispute amongst modellers in the process of multiple equations modelling. Since 

real data possess different characteristics, assessments of the new algorithm are 

crucial to highlight the performances of the new algorithm. 

1.5 Scope of the Study 

This study concentrates on the econometric modelling using the general-to-specific 

(GETS) approach where the data are time series. While there are many types of 

multiple equations model, the focus was on the initial specification of seemingly 

unrelated regression equations (SURE) proposed by Zellner (1 962). 

1.6 Thesis Outline 

This thesis is organized in six chapters as follows: 



Chapter one provides an overview of the study regarding the background, statement 

of the problem, objectives as well as the scope, the significance of this study and 

finally the outline of thesis. 

Chapter two reviews all the previous studies concerning the issues in statistical 

modelling approaches which lead to the implementation of automatic procedure. In 

general, this chapter discusses topics regarding model selection algorithm within the 

general-to-specific approach for single and multiple equations. 

Chapter three contains the main contributions of this study where it describes the 

development of new model selection algorithm for multiple equations within the 

general-to-specific approach. The descriptions are based on five development phases. 

Chapter four assesses the performances of SURE-Autometrics through various 

experimental simulations. It starts with the experimental frames involving data 

generation process and several conditions that are considered during the model 

selection procedure. The simulation results are separated according to number of 

equations. 

Chapter five illustrates the application of the SURE-Autometries using air 

passengers' flows data and national growth rates data. The chapter begins with 

descriptions of several model selection using algorithm (automatic) and non- 

algorithm (manual) procedures. The forecasts £?om model selected by these 

procedures are compared using the error measures and equality tests. 

Chapter six presents the overall conclusions. It also specifies the suggestions for 

further study. 
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CHAPTER TWO 

MODEL SELECTION ALGORITHM WITHIN THE GENERAL- 

TO-SPECIFIC APPROACH 

2.1 Model Selection 

The model selection technique is a statistical procedure of searching for the 'best' 

model that fits the data from a set of alternative possible models (Bhatti et al., 2006; 

Miller, 2002). Generally, the techniques can be classified into two broad categories. 

The first category is based on hypothesis testing procedures (Leeb & Potscher, 2005) 

where multiple tests such as t test and F test are required to determine the significance 

of variables in the model, and diagnostic tests for checking any violation in model's 

assumptions. Thus, the data set is reused for the purpose of model selection. This 

situation is known as data mining (Lovell, 1983) or data snooping (White, 2000) 

leading to the problem of mass sigmficance where incorrect significance level is 

actually reported by the modellers. Moreover, Denton (1985) showed the probability 

of false inclusion increases with the number of researchers involved (or number of 

hypotheses tested) which implied that data mining also occur when a single researcher 

tests on several hypotheses and selects the best model, or many researchers test one 

hypothesis each and only si,&icant results are reported. For instance, 40% of overall 

significance is gained if repeated testing is done at 5% nominal level for ten different 

tests. This means, a nominal level of 0.1% to 1% is needed to obtain an overall level 

of 5%, depending on the number of tests perform. Besides, this category only 

appropriate for nested case where the set of competing models are ordered by the 

inclusion of relation (Leeb & Potscher, 2009). 



The second category is another way of selecting models by optimizing an information 

criterion (IC). There are many criteria have been proposed over the years where R2 

and adjusted R2 are amongst the earliest one. Some other examples include final 

prediction error criterion (FPE), Akaike information criterion (AIC), Mallows' C, 

criterion, Schwarz's Bayesian information criterion (SC), and Hannan and Quinn's 

(HQ) criterion. Among these, AIC and SC are the most commonly used in 

econometrics studies (Bhatti et al., 2006). The main aim of these criteria is to select a 

model that gives the maximum or minimum information by using risk measure such 

as mean square error of prediction and Kullback-Leiber discrepancy. However, this 

category seems infeasible for large number of predictors because the information 

from all the 2k possible models (including empty model) need to be computed in order 

to select the 'optimum' specification, yet the result is either asymptotically efficient or 

consistent. Moreover, the criteria are not particularly concerned about whether a true 

model exists or not (Leeb & Potscher, 2009). 

In recent years, shrinkage estimators and Bayesian model averaging (BMA) also can 

be considered for model selection (Leeb & Potscher, 2009; Miller, 2002). Shrinkage 

methods can be seen as continuous versions of model selection where different 

weights are allocated to the regression coefficients in relation to their significance. 

Methods that have been proposed which essentially give shrunken estimates are ridge 

regression, nonnegative garrotte (Breiman, 1995) and LASSO (least absolute 

shrinkage and selection operator) (Tibshirani, 1996). The first is continuously shrinks 

the coefficients by minimizing a penalized residual of sum squares while the rests are 

both impose a limit on the sum of absolute values of the regression coefficients, and 



lower this limit until some kind of optimum is reached. For further discussions, see 

Hastie, Tibshirani, and Friedman (2001), and Miller (2002). 

Unlike shrinkage methods, BMA gives weight to the models. Leamer (1 978) appeared 

to be the first pointed out the fundamental idea of BMA as a means of combining 

models so that it will account for the uncertainty involved in selecting the model or 

uncertainty about statistical structure when making inferences. Instead of choosing 

one model, this technique considered an average over all possible models in a given 

model class. The weight are the posterior probabilities that are strongly influenced by 

the two components of the prior probabilities, that is the prior for the model and the 

prior for the parameters (regression coefficients and residual variance) in that model. 

Theoretically, BMA provides better average predictive performance which Hoeting, 

Madigan, Raftery, and Volinsky (1999) supported by practically implementing to four 

different classes of model: linear regression models; generalized linear models; 

survival analysis; and graphical models. 

However, shrinkage and BMA procedures have some disadvantages. The shnnkage 

methods trading-off decreased variance for increased bias in the estimates of 

regression coefficients estimators as well as estimates which have been shrunk 

(Miller, 2002). In other words, the model has too many variables to make sure that the 

relevant one is not dropped. BMA also gives a similar outcome with shnnkage 

methods where the fmal model includes all of the predictors, though usually some of 

them are given so little weight that they are effectively excluded. Hendry and Reade 

(2008) suggested model averaging will be much more effective after a good model 

selection is carried out. Thus, model averaging is complementary to model selection. 



According to all the selection techniques, it seems sequential testing is very crucial in 

econometric empirical modelling because the formulation involves simultaneous 

activities of hypothesis testing and estimation method (Hendry, 1980; Magnus, 1999). 

The mass significance problem though can be avoided if we are able to control the 

probability of making at least one false rejections or also known as Family-Wise Error 

(FWE) (Hansen, 2005; Romano, Shaikh, & Wolf, 2008; White, 2000). Since the 

procedure requires a large number of tests and time consuming, it would be better if 

we employ an automatic procedure rather than manual procedure. Besides, it will 

reduce human interference in the process of re-specification. 

For a given data set, the manual process fi-equently leads to different final models due 

to specialization of interest and beliefs, specific or mix of methodological approach, 

and general scientific principles (Magnus & Morgan, 1999). This situation 

particularly will affect the choice of response and predictor variables, the 

measurement of the variables, and the effect of including dynamics. For instance, 

most of the modellers involved in the experimental study conducted by Magnus and 

Morgan (1999) showed that re-specification was based on the diagnostic results where 

the model is re-specified to overcome heteroscedasticity and non-normality problem, 

or because of the presence of outliers. 

The disagreements among the modellers are not only about the approach or the results 

obtained, but most importantly about the justification for intermediate steps which 

were seen to embody methodology, assumptions, and technical slulls. In most of 

empirical studies, the results are reported without explicitly explaining the modelling 

process. Thus, it will be hard for other practitioners to capture the methodology, 



unless they read on theoretical articles and refer examples through applied works 

which will lead to different interpretations. As for those who have experienced, 

personal knowledge would be involved in the model specification (Magnus & 

Morgan, 1999). 

2.2 Algorithm of Model Selection 

Utilizing the computerized procedure particularly for model selection provide a rule 

or algorithm that will be the guide for practitioner in empirical modelling where the 

data-generating process (DGP) and coefficients are unknown (Hendry & Doornik, 

2014). Recently, Castle, Qin and Reed (2013) reviewed several model selection 

algorithms and concluded that these algorithm were developed with different 

purposes. The aims of selecting a model(s) is to find the best that represents the true 

DGP, to advance the properties of inference such as reliable coefficient estimates, and 

finally to find a good model with ability to forecast out-of-sample observations. At the 

same time, algorithm could help diminishing the role of tacit knowledge as well as 

eliminating computational burden with the increasing large amounts of information 

which is very rare in the past (Granger & Hendry, 2005). 

A model selection algorithm requires a strategy in searching the best model. The 

search strategies can be divided into two groups which are 'cheap' methods and 

exhaustive methods. The first group is called the 'cheap' strategy due to its 

inconsistency in finding the best fitting model (Miller, 1984). The algorithms in this 

group are usually referred to as stepwise multiple regression (Miller, 2002). These 

include forward selection, backward elimination and stepwise regression. The most 

commonly used by practitioners is the stepwise regression (Whittingham et al., 2006). 



The forward selection operates by successively adding a sigmficant variable 

according to the highest correlation with the response in the initial step, and partial 

correlation on the following steps. On the contrary, backward elimination starts with 

all the candidate variables included in the model. Any insignificant variables are 

removed consecutively based on t value at each steps. Combining both procedures, 

stepwise regression employs forward selection first, followed by backward 

elimination to examine whether the included variables could be removed along the 

process. 

The stepwise regression is basically developed within the specific-to-general 

approach. Even for manual procedure, this modelling approach shows disadvantages 

that cause most of econometric modellers preferred to commence from the other way 

around (Hendry, 1980; Learner, 1978; Sims, 1980). The main problem is when the 

simple model has incorrect specification. For instance, the model has two or more 

failure tests of diagnostic assumptions such as heteroscedasticity and autocorrelated 

disturbances. It can be refined based on correction of one or both conditions, or 

sought other factors. According to Hendry and Krolzig (2001), if several tests are 

computed sequentially, and a later one rejects, then it will invalidate all the earlier 

inferences which indicated that the approach is inefficient. 

Therefore, studies have shown that the algorithm developed w i t h  the general-to- 

specific (GETS) modelling approach are more advanced in this field (Granger & 

Hendry, 2005; Hendry & Krolzig, 2003). The algorithm implements an exhaustive 

search strategy to ensure the fmding of the best fitting model. The idea is to formulate 

a general model that captures the characteristics of the data including previous 



empirical findings and knowledge of economic theories, and then proceed with the 

process of variables elimination via sequential testing to select a parsimonious model 

that encompasses rival models, whlle retaining the congruency. According to Hendry 

(1995), a model is congruent if it passes all the misspecification tests such as 

normality, structural change, autocorrelation, and heteroscedasticity. Every 

insignificant variable in the general model defines a path. Instead of searching for one 

path as in 'cheap' method, PcGets (Krolzig & Hendry, 2001) implements the multiple 

paths search where more than one simplified model could be resulted which all are 

valid reduction of the general model. However, Doornik (2009) said that most of the 

paths possibly will turn out to be the same and the rest are left unsearched. Thus, 

algorithm known as Autometrics (Doornik, 2009) embedded in PcGive software is 

developed to introduce more paths by searching the whole space of models generated 

by the variables in the initial model. 

Overall, the stepwise, PcGets and Atitornetrics are widely used since the algorithms 

have been transformed into software that is easily applied. However there are other 

algorithms for model selection. As for example, ModelBz~ilder (Mycielski & 

Kurcewicz, 2004) is the extended version of PcGets that accounts for cointergration 

vectors, Relevant Transformations of the Inputs Network Approach (RETINA) (PQez- 

Amaral, Gallo, & White, 2003) is developed for selecting nonlinear representations, 

and PIC model selection (Philips, 2003) used the Bayesian approach to select 

forecasting models. Their algorithms rely on automated significance tests in 

conjunction with model selection rules for dealing with rival specifications that are 

unresolved by sigmficance testing. 



Finally, the drawbacks of model selection technique could be reduced by properly 

implementing it during the model formulation phases. The best strategy is via 

algorithm where we can simulate the process in order to study the cost of selection 

(Hendry & Krolzig, 1999; Hoover & Perez, 1999; Lovell, 1983). The cost is 

important to determine the accuracy of recovering the true model if its specification 

were known, and to measure the Type I and Type I1 error rates. Compared to 

commonly practice model selection algorithm, the algorithms w i t h  GETS approach 

have shown their success in producing low costs of selection (Hendry & Krolzig, 

2005). 

2.3 General-to-Specific Modelling Approach 

The general-to-specific (GETS) method of modelling also known as 'Hendry' 

methodology was promoted by David Hendry in early 1980. It is developed based on 

model specification philosophy in the LSE framework. The abbreviation 'LSE' is 

derived fiom the fact that there is a tradition of time-series econometrics that arose in 

the 1960s at the London School of Economics. A brief history of this philosophy can 

be found in Wzon (1995) while the description about the origins was provided by 

Hendry (2003). 

Basically, Hendry (1980, 1995) viewed a model specifically the econometric model as 

a representation of the process or probability distribution generating the sample data 

that is data-generating process (DGP). It begins with a very general parameterisation 

that is acceptable to a range of plausible theoretical positions representing the DGP. 

Then it is reduced to the 'local' DGP (LDGP) which defined as the joint distribution 

of the subset of variables by operations such as aggregation, marginalization, 
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conditioning, sequentially factorization and transformation. This is a theory of 

reduction (Hendry, 1995). Ln other words, the potentially vast initial of information 

set is reduced to the small transformed subset that is relevant for the problem in 

question. The general intention is to counteract the fundamental problem in the 

classical economic research which naturally using the specific-to-general approach. 

Figure 2.1 shows this modelling concept. 

Figure 2.1. Concept of GETS Modelling Approach. Adapted from "The Theory of 

Reduction" by D. F. Hendry and J. A. Doornik, 20 14, Empirical Model Discovery and 

Theory Evaluation, p. 96. Copyright 2014 by the MIT Press. 

GUM 

Practically, a general unrestricted model (GUM) that captures the characteristics of 

v 

the data including previous empirical findings and knowledge of economic theories is 

v 

derived. Then statistical procedures are applied to the GUM whereas diagnostic tests 

are used to retain the congruency. According to Hendry (1995), a model is congruent 

SPECIFIC LDGP 

if it passes all the misspecification tests such as normality, structural change, 

autocorrelation, and heteroscedasticity. In this way, the empirical model is determined 

only via estimation and testing procedures (Bond & Hamson, 1992). Hendry (1980) 



also admitted that this approach is ad hoc and used economic theory as a guideline 

and relied heavily on data. 

Hoover and Perez (1999) was the frrst who evaluated the performances of GETS 

modelling using an algorithm. They simulated GETS selection for dynamic linear 

regression models and found that their algorithm performs well in re-mining the 

'Lovell database' (1983). The search commenced from a congruent general model, 

followed by a number of reduction paths which can be terminated by either no further 

feasible reductions or significant diagnostic tests occurred. Models survived from the 

reduction process were selected based on whch one fits best. They showed that with a 

structured approach of GETS method of econometric modelling, the results are better 

than any method Lovell considered. Note that the methods are 'max-min-t7 selection 

strategy, maximizing R~ through exhaustive search, and a stepwise regression 

procedure. Additionally, the size (type I error rates) of their selection procedure was 

close to expectation, and the power (type I1 error rates) of test was reasonable. 

Subsequently, PcGets (Hendry & Krolzig, 1999) algorithm adopted the multiple paths 

strategy, exploring the consequences of all initially feasible paths, and collecting the 

'terminal' models resulting from each search. If many 'terminal' models are found, 

these are tested for parsimoniously encompassing their union, namely the smallest 

model that nests all the contenders. The algorithm also able to achieve a better size 

and power of test using the similar Lovell's experiments (Hendry & Krolzig, 1999; 

Krolzig & Hendry, 2001). With multiple series of studies, Hendry and Krolzig (2001, 

2003,2004,2005) demonstrated the major and unique strength of GETS approach are 

within their guidelines regarding specification search via model selection algorithm. 



Essentially, PcGets has exemplified a more robust approach by adding the 

specification tests in the process of model selection. 

Ultimately in 2007, Doornik and Hendry have introduced Autometrics as a new model 

selection algorithm. This is an improvement that the algorithm within GETS approach 

showed progressively enhancing through the years. The new algorithm advanced on 

several aspects such as, new search method by considering more paths; avoid repeated 

estimation of the same model; delay diagnostic testing; and recall terminals between 

iterations (Doomik, 2009). Hence, the computational efficiency has improved and 

better results are obtained in the operational studies of cost of selections. 

2.4 PcGets and Autometrics Algorithm 

PcGets is an algorithm developed by Hendry and Krolzig (2001) for implementation 

of an automatic selection for linear, dynamic, regression models. The algorithm was 

embedded in an econometric software package known as GiveWin 2.10. The 

algorithm was based on the principles discussed in Hendry (1995) which is the 

general-to-specific (GETS) approach. It also successfully executes a consistent 

automatic model selection for single equation econometric modelling (Hendry & 

Krolzig, 2005) which has been the main problem faced by stepwise regression. Unlike 

stepwise, the GETS algorithm implements a multiple paths search strategy within a 

general-to-specific approach with diagnostic checking for each selection stages. The 

path is determined by each of insignificant variable in the general model (Hoover & 

Perez, 1999) and a number of variables that is grouped according to pre-specified 

significance level (Hendry & Krolzig, 1999). Since PcGets implements multiple path 

searches, there is possibility that more than one candidate model (denoted terminal) 
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survived the reduction process. Thus the terminals are tested by encompassing against 

the general model. If several terminals remain acceptable, so the reduction process 

recommences from their union, till a unique outcome is obtained. The search is 

terminated whenever all selected simplifications re-appear and the final model is 

chosen using the Schwarz (1978) information criterion. Finally, PcGets employs a 

sub-sample insignificance in order to identify 'spuriously significant' predictors. 

Every estimated model including the initial GUM in GETS modelling is subjected to 

a battery of diagnostic tests to ensure the validity of the model along the reduction 

process. Hendry (2000) described that a model is congruent if it is fulfil all criteria 

resulted from empirical model selection. The criteria are homoscedastic innovation 

errors, weakly exogenous conditioning variables for the parameters of interest, 

constant or invariant parameters of interest, theory consistent, identifiable structures, 

and data admissible formulations on accurate observations. Specifically, the model 

should pass the entire following tests, 

1. Normality 

2. Autocorrelation (AR) 

3. Autocorrelated conditional heteroscedasticity (ARCH) 

4. Heteroscedasticity 

5. Parameter constancy 

Section 3.2.1 will describe these tests explicitly. 

The modellers should decide whether to ignore the rejected tests, continue or revise 

the GUM when one or more these tests rejects the GUM (Hendry & Krolzig, 1999). 



While on the reduction process, PcGets will adjust the significant level to prevent 

them from rejection test. For example, 1% level is reduced to 0.1%. 

However, Autometrics (Doomik, 2009) behaved in different way where the diagnostic 

validity is restored along the process of reduction by giving the preference to terminal 

models that pass on the original level (say 1%) during the search. The algorithm is 

embedded within the current version of PcGive which is Version 12. It is computer 

software for econometric data analysis where the 'GIVE' stands for Generalised 

Instnmental Variables Estimators. Azltometrics is considered as a new generation of 

PcGets where it contemplates all the properties in general-to-specific model selection 

(Hendry & Krolzig, 2005). It has three main features that are aimed to improve the 

predecessor. First, Autometrics is able to function with or without pre-search 

reduction process because it was an ad-hoc procedure in PcGets (Doonzik, 2009). 

Second, instead of multiple paths search, Azrtometrics introduced tree search strategy 

to find all the possible sets of variables in the general model whch will lead to more 

paths can be explored in a systematic way. By employing pruning, bunching, and 

chopping, more terminal models are available to be selected by the information 

criteria. Finally, Autometrics aimed to improve the computational efficiency in GETS 

modelling which is achieved by avoiding repeated estimation of the same model, 

delayed the diagnostic testing, and memorize terminals between iterations. 

Consequently, it has been successfully applied for single equation modelling 

(Ericsson & Kamin, 2009; Reade, 2007). 

Hence, Autometrics is the most recent model selection algorithm. It is a successor of 

PcGets and can be considered as the third generation of GETS model selection 



algorithm. The program embedded with this algorithm was already available to 

practitioners since 2007, though the description is in Doornik (2009). An overview of 

the algorithm is provided in Appendix A. 

The algorithm has all the properties in automated GETS modelling. Thus it 

implements all the main elements in PcGets namely, the general model, diagnostic 

testing, presearch reduction prior to multiple path searches, encompassing tests, and 

iterative procedure. 

Figure 2.2. Search strategy in Azitometrics. Adapted from "Autometrics" by J. A. 

Doornik, 2009, The Methodology and Practice of Econometrics, p. 93. Copyright 

2009 by the Oxford University Press. 

The resulting tree is a unique representation of the model space. Precisely, all possible 

models would be estimated if we move from left to the right, and top to the bottom. In 

other words, we have considered all possible subsets starting from the GUM, where 

the ordering is defined by increasing significance. Note that the frs t  path in the tree 



corresponds to the first of the paths considered in Hoover and Perez (1999) and 

Hendry and Krolzig (1999, 2001) but after that it diverges. Doornik (2009) admitted 

that each of subset is not feasible. Therefore, he implemented systematic strategies to 

move efficiently through pruning, bunching, and chopping scheme. 

2.5 Multiple Equations Model 

Most of the algorithms were successhlly developed for single equation modelling 

(Castle et al., 2013; Doomik & Hendry, 2007; Hendry & Krolzig, 2001). A model too 

might contain a series of equations that are independent of each other such as 

multivariate linear regressions. In t h s  situation, Atitometrics treats the equation 

individually by executing a model selection separately for multiple times. This 

procedure however is inappropriate if these equations have contemporaneously 

correlated disturbances amongst the equation. Zellner (1962) presented this type of 

model as a seemingly unrelated regression equations (SURE) model for 

simultaneously estimating the equations. 

Most of SURE model applications arises in econometric, fmancial and sociological 

modelling (Fildes, Wei, & Ismail, 201 1; Srivastava & Giles, 1987; Zellner, 1962). 

However, it can also be applied to other areas such as human genetics (Verzilli, 

Stallard, & Whittaker, 2005) and behavioural science (Femandez, Smith, & Wenger, 

2007; Schwartz, 2006). These examples advocate that SURE model is appropriate and 

useful for wide range of applications. 

The main goal of modelling with SURE specification is to improve efficiency in 

estimation by combining information on different equations. It also aims to impose or 



to test restrictions that involve parameters in different equations. The series of 

equations are specified as follows, 

Y i r  = P I I X I ~ , ~  + P I ~ x I ~ , ~  + ' ' '  + P ~ k , x l r , k ,  + ' 1 1  

Y 2 r  = P 2 1 ~ 2 1 , 1  + P 2 2 ~ 2 r , 2  + " ' + P 2 k ,  ~ 2 1 . k ~  + ' 2 1  

Y m r  = P m l x m r , l  + bm2'n11,2 + ' '  ' + P m k ,  'm~,k , , ,  + 'nrr 

which can be written in general form, 

where yi is vector of T identically distributed observations for each random variable, 

Xi is a non-stochastic matrix of fixed variables of rank ki, Pi is vector of unknown 

coefficients, and E;: is a vector of disturbances. 

As usual, it is assumed that the disturbances has a multivariate normal distribution 

with mean and covariance structure, 

E(E , , )=o ,  E(E,E , , )  =ou, and E(E,/E,,) = O  if t # I  (2.3) 

where i, j = 1, 2, . . ., m and t, I = 1, 2, . . ., T. If the disturbances are contemporaneously 

correlated (Kontoghiorghes, 2004) it can be expressed as, 

~ ( q )  = 0 and E(E,E, I) = ouI, 



where ol; = g2 is the variance of disturbances for the ith equation if i = j,  and E( . )  is 

the expectation operator. 

Further simplification of equations in 2.1 can be accomplished in vector concatenation 

form by stacking the m vector equations together (Beasley, 2008; Kontoghiorghes, 

2004; Timm & Al-Subaihi, 2001). The T observations vectors yi and the 

corresponding disturbances vectors ui are stacked one upon another to form the single 

observation vectors y iTmx,) = (y 1, y;, ..., y 6) and 6 '(Tmx,) = (E  I,, E ',, ..., 6 I,,,) , 

respectively. Additionally, the design matrix for the m stacked observation vectors y 

is allowed to be the matrix Xi,,x,) = @,?, which is the direct sum of the individual 

design matrices Xi for the rn equations where k = Crn k, is the total number of 
, = I  

parameters over the m equations. It can be defined as, 

Then, the SURE model can be written in compact form as the following linear model, 

The vector P in 2.6 is constructed in a same manner as vector y and E, is a stacked 

vector containing stacked elements the parameter vectors P, defmed in 2.2. Thus, 

equation 2.4 becomes, 



E (E) = 0 and E (EE') = X @Ir = 

where €3 denotes a Kronecker product, IT is TxT identity manix, and T. = [ D ~ ]  is a 

mxm positive definite symmetric covariance matrix. 

The specification of SURE model in econometric analysis can be distinguished 

through four cases (Greene, 20 12): 

i. The equations are contemporaneously uncorrelated disturbances. 

ii. The equations have identical predictor but contemporaneously correlated 

disturbances. 

iii. The equations are contemporaneously correlated disturbances with different 

predictors across equations. 

iv. The equations are related and predictors in one block of equations are a subset 

of those in another (contemporaneously correlated disturbances, with a subset 

of identical predictors across the equations). 

The first case is actually the classical multivariate linear regression model if it 

assumed that the same predictors are associated with all the response variables. Thus, 

the efficient and best linear unbiased estimators are given by ordinary least squares 

(OLS). For the second case, it is well known that the generalised least square (GLS) is 

more efficient since the OLS estimators are no longer efficient if the disturbances are 

correlated. However, in most cases, the covariance of disturbances f2 is unknown, and 

hence GLS is not feasible. Therefore, Zellner (1962, 1963) proposed feasible 
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generalised least squares (FGLS) where SZ is replaced by a consistent estimator. The 

rest of the cases are considered in Srivastava and Dwivedi (1979). 

The FGLS estimator of P is given by, 

p FGLS = ( x l ~ - l x ) - '  X~h-ly 

where h is a consistent estimator based on the residuals. Thus, the elements of matrix 

fi can be computed as follows, 

where T is total observations for each of rn equation. The covariance matrix of the 

estimated parameters is, 

2.6 SURE-PcGets Algorithm 

The PcGets and Az~tometrics were implemented for the multiple equations model but 

particularly on the Vector Autoregressive (VAR) model (Doornik & Hendry, 2007; 

Hendry & Krolzig, 2001; Krolzig, 2001). Hendry and Krolzig (2005) also showed the 

possibility of implementing automatic GETS selection. for simultaneous equations 

model but conditional to endogenous predictors as in the VAR model. 
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The VAR model is introduced by Sims in 1980. Since then, it is widely used in 

econometrics studies due to minimal theoretical demands on the structure of a model 

where the dynamic relations between variables is unrestricted (Greene, 2012). 

Moreover, the equations are constrained to be linear thus the modellers need not be 

concerned with the functional forms. The specification of thls model requires the 

endogenous and exogenous variables that are believed to interact, and the largest 

number of lags needed to capture most of the effects that the variables have on each 

other (Pindyck & Rubinfeld, 1998). Thus, it indicates that both algorithms have been 

extended to multiple equations particularly for VAR model selection. 

The reduction process of VAR within the general-to-specific modelling initiated from 

an unrestricted VAR with assumptions that the VAR is covariance-stationary and the 

variance-covariance matrix also unrestricted (Doornik & Hendry, 2007; Hendry & 

Krolzig, 2001). In the case of a vector system, there are two phases of reduction: (i) 

joint reductions of the system and (ii) reductions of the individual equations. The first 

reduction imposed parameters restriction which will determine whether the predictors 

should be excluded from all equations of the system. The process is a sequential 

simplification and testing procedure corresponds to the reduction process of single 

equation modelling, but the diagnostics are constructed to test the properties of the 

vector of residuals. Second phase concerned on the test of causal relationships where 

the result will decide whether the equations are considered as a system or separately 

treat as individual. Contemporaneous non-causality implies that the equations of the 

VAR are unrelated thus model selection procedures can be applied equation-by- 

equation without a loss in efficiency. 



The equations in the VAR are only seemingly unrelated to each other if the predictors 

found to be weakly exogenous (Krolzig, 2001). Thus eliminating a variable in one 

equation will affect the others which indicate that single equation model selection is 

inefficient. Jn the current form, Az~tometrics does not offer application for this 

condition. However, Ismail (2005) had made an attempt for this application by 

introduced SURE-PcGets algorithm as an extended version of PcGets. 

The GETS algorithm has been applied to multiple equations model such as seemingly 

unrelated regression equations (SURE) model known as SURE-PcGets (Ismail, 2005). 

The basic concept of this algorithm is combining the selection stages in PcGets with 

SURE models. The SURE-PcGets selection steps are similar to those of PcGets, but 

the differences are in the f ~ s t  step where the GUM is formulated and there is an extra 

step, i.e. testing for contemporaneous correlation disturbances. 

Designing the GUM in the frs t  step is very crucial in determining the success of 

SURE-PcGets, because the steps that follow in the simplification process are done 

automatically. A poor general framework is unlikely to lead to a good final model 

choice. The formulation of the GUM based on subject matter theory, institutional 

knowledge, historical contingencies, data availability and measurement information, 

ensuring the resulting model encompasses previous evidence, with a relatively 

orthogonal parameterisation of the k candidate predictors. 

The diagnostic tests in the second step play an important role in identifying 

congruence model since SURE model can be used when the classical assumptions of 

linear regression are satisfied (Srivastava & Maekawa, 1995). In order to conduct the 



test, each equation is estimated using OLS. If the test is not fulfilled in one or more of 

the equation, the GUM needs to be reformulated. 

Once the GUM is congruent, pre-search testing of lags, top down (removed groups of 

irrelevant variables) and bottom up (include groups of relevant variables) are then 

conducted where groups of predictors in each equation are tested and removed in the 

order of their absolute t-values. Then, the simplified model obtain for each equation 

are estimated using FGLS. 

At the next step of SURE-PcGets, the models are simplified using the multiple search 

paths implemented in PcGets where the removal of variables are determined through 

a block search. Based on Hendry and Krolzig (2001), the variables are grouped 

according to the following t-probability, 

1. 

. . 
11. 

... 
111. 

iv. 

v. 

vi. 

vii. 

viii. 

t-probs > 0.900 

t-probs > 0.700 

t-probs > 0.500 

t-probs > 0.250 

t-probs > 0.100 

t-probs > 0.050 

t-probs > 0.010 

t-probs > 0.00 1 

If the model is congruent after removing this group, then a terminal model is found. If 

more than one terminal model is found after the block search, then encompassing 

testing starts. 



A model encompasses another if it contains all the information conveyed by another 

model. Encompassing tests select between candidate congruent models at the end of 

each path search procedure. Each contender is tested against the union. If a unique 

model results, it is selected; otherwise, if some are rejected, SURE-PcGets forms the 

union of the remaining models. That union then constitutes a new starting point and 

the path-searching algorithm repeats until the union remain unchanged between 

successive rounds. If more than one model survives this test, the final model is 

selected based on information criteria. 

The simplified model is tested for sub-sample reliability, which helps to identify 

'spuriously significant' predictors. The sample is split into two (possibly overlapping) 

sub-samples. The sub-samples are the Erst 75% (denoted Split 1 )  and the last 75% 

(denoted Split 2) of the full sample. The two sub-samples overlap in the middle 50% 

of the full sample. Once the sub-samples are identified, FGLS is used to estimate the 

model for full sample, and the two sub-samples. 

Last but not least, a Monte Carlo-quasi likelihood ratio test (MC-QLR) was conducted 

to test the correlation in the errors across the equations. SURE-PcGets algorithm was 

developed based on the selection steps described above. An overview of the algorithm 

is shown in Appendix B. 



CHAPTER THREE 

SURE-A UTOMETNCS ALGORITHM 

3.1 Framework of Algorithm DeveIopment 

Achievement of SURE-PcGets motivates this study to develop an algorithm of model 

selection for multiple equations model. Similarly to PcGets, Autornetrics algorithm 

also possesses the model selection properties within GETS approach. Hence, the 

name of the new algorithm is SURE-Atltometrics since it is implements the selection 

strategies in Autometrics. 

Basically, the SURE-Azitometrics is developed in five phases. The search of the 'best' 

SURE model starts with the initial formulation of general unrestricted model in the 

first phase. Second phase aims to reduce the complexities in the initial model by 

concentrate at reduction of lagged variables. Two strategies are used in removing the 

hlghest insignificant lagged variables where each will end with one reduced model. 

Thus, a new general model is formulated based on the encompassing test results. 

Third phase involves the implementation of tree search procedure where the variables 

in each equation are reduced to simplify the model. Fourth phase intents to achieve 

more reduced model. This phase and the previous phase are iterated whenever it is 

possible to create another new general model that is less complex than the previous 

general model. Since there are many possible specific models survived the reduction 

processes, the fmal phase chooses one of them to be the 'best' simplified models 

using information criterion. This development framework is summarised in Figure 

3.1. The details of each procedure are described in Section 3.2 to 3.6. 



1 PHASE 1 : INITIAL GENERAL, UNRESTRICTED MODEL I 

PHASE 2: PRE-SEARCH REDUCTION 

Common [ 

I Encompassing Test 

PHASE 3: VARIABLE REDUCTION OVER THE ROOT 
BRANCHES 

4 
PHASE 4: SEARCH FOR NESTED TERMINALS 

Terminal Contrast Union Contrast 

PHASE 5: SELECTION OF FNAL MODEL I 

I 

Figure 3.1. SURE-Autometries Development Framework 



3.2 Phase 1: Initial General Unrestricted Model (GUMS) 

The SURE-Azltometrics algorithm is developed within the GETS modelling approach. 

Thus, the model selection for SURE begins with an initial formulation of general 

unrestricted model which is denoted as GUMS. The addition of 'S' in the acronym 

'GUM' is to reflect the multiple equations in the model, unlike the 'GUM' in 

At~tometrics. The specification of each equation involves all the potential relevant 

variables including their lags which have been reviewed from previous theoretical and 

empirical fmdings. It starts off by setting up the main significance level for selection 

atp, = 5% orp, = 1%. In order to ensure the congruency of the GLMS, each equation 

is run through a series of diagnostic tests. Details of these tests are explained in 

Section 3.2.1. Then, the model is tested for dependency of disturbances amongst 

equations. Section 3.2.2 describes more on this test. Finally, the initial GUMS is 

estimated using the feasible generalised least squares (FGLS) method. 

3.2.1 Series of Diagnostic Tests 

Model adequacy checking analysis comprises a similar series of diagnostic tests as in 

Autometrics. In this part, these tests are implemented as a signal to modellers about 

the congruency of the formulated initial GUMS. If there is any of the tests fail, then it 

is up to the modellers to reformulate or continue with the model selection. The series 

are again used throughout the reduction process to ensure the simplified models are 

also congruent. 

All the equations are tested separately. Hence, this part involves the OLS residuals of 

each equation and the significance level is pd = 0.01. The tests are checking the 

assumption of a normal distribution errors, parameter constancy, autocorrelation 
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errors, unconditional and conditional homoscedasticity. Descriptions of these tests are 

briefly explained in the following sub-sections. 

3.2.1.1 Test of normal distribution 

The test is for checking whether the skewness and kurtosis of the residuals correspond 

to the assumption of a normal distribution where the hypotheses are, 

Ho: Errors are normally distributed 

The skewness and kurtosis are defined respectively as, 

P4 and p = - 
4 

where p denote the mean and pi = ~ [ x '  - pli. c? is the variance of variable x,, so that 

2 2 cr = p . A normal variate will have J8; = 0 and p2 = 3 .  

The sample estimates of these parameters are given by, 

1 1 m3 m4 ?=-Zxt , rn,=-E(x,-~)i , &=, and 4 =y 
T I= ,  T I=,  m2 m2 

(3 -2) 

where T is the number of observations. Based on Doornik and Hansen (1994), the test 

statistic is, 



where zl and z2 represent the transformed of skewness and kurtosis which are defined 

as, 

3.2.1.2 Test of parameters constancy 

Chow predictive test is used to examine whether the coefficients in two models on 

different data sets are equal. The equation is divided into two where the firs.t is based 

on the whole sample, T and the second is the sub-sample, TI determined at 70% 

breakpoint. The null hypothesis is, 

Ho: The coefficients are identical in both equations 

The test statistic has the following form, 

where k is the number of parameters in the equation, TI is number of observations in 

sub-sample, RSSr is the residual sum of squares for the whole sample, and RSSTl is the 

residual sum of squares for the sub-sample. 

3.2.1.3 Test of autocorrelation 

The test is an auxiliary regression of residuals on all the predictors of the original 

equation and the lagged residuals for lags p to r where missing residuals are set to 

zero. The hypothesis is, 
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Ho: p = 0 (there is no autocorrelation i. e. errors are white noise) 

Hence the statistic is, 

which equivalent to, 

where p is the minimum lag number, r is the maximum lag number and R~ is the 

goodness of fit measure. All results fiom auxiliary regression in Autometrics come in 

the form of F distribution (Doomik & Hendry, 2007, p. 216). Thus, SURE- 

Autornetrics follows this setting including test for unconditional and conditional 

homoscedasticity. 

3.2.1.4 Test of unconditional homoscedasticity 

The test is checking for assumption of constant error variance or homoscedasticity. 

The condition of unequal variances is known as heteroscedasticity. In At~tometrics, 

the test also involves an auxiliary regression of squared residuals on the original 

predictors, xi, and all their squares, x,: . The null hypothesis is, 

Ho: Var(&,) = 0' is constant (unconditional hornoscedasticity) 

The statistic is based on White (1980), 



where q is number of original regressors and all their cross-product. 

3.2.1.5 Test of conditional homoscedasticity 

This is the autoregressive conditional heteroscedasticity (ARCH) test (Engle, 1982) 

which involves the following hypothesis: 

Ho: y= 0 (conditional homoscedasticity) 

The model is, 

where y = ( y,, . . ., y?)' and r is the maximum lag number. Again, the F form is, 

"2 " 2 "2 
from the regression of El on a constant and 6,-, up to F,-r 

3.2.2 Test of Correlation Disturbances amongst Equations 

Basically, the decision whether to apply FGLS or OLS on SURE model is relies on 

the covariance of disturbances. Both estimators are equivalent if the disturbances 

between equations are uncorrelated i.e. independence. Explicitly, 



o , = O  for V i # j  

Under the null hypothesis, the disturbances in multiple equations are 

contemporaneously uncorrelated where the covariance will be a diagonal matrix i.e., 

Initially, this study has two choices of dependence test of the correlation disturbances. 

One is the Monte Carlo-quasi likelihood ratio (MC-QLR) (Dufour & Khalaf, 2002) 

test, and the other is the multivariate independence (MI) (Tsay, 2004) test. The MC- 

QLR test is able to control the probability of type I errors while the NII test is 

specially developed to control the serial dependence of disturbances. Yusof and Ismail 

(201 1) compared these tests using data fiom Fisher (1993) in order to choose the one 

that is fit in the algorithm. The findings suggested that MC-QLR is more appropriate 

because MI test produced inconsistent results. Furthermore, the SURE-Azrtometrics 

already has the diagnostic test for autocorrelation. 

Therefore, SURE-Autometrics only considers the MC-QLR to indicate the 

dependencies of correlation disturbances amongst the equations in SURE model. 

Moreover, this test also was implemented in SURE-PcGets algorithm. The 

significance level is setup at 0.10. The value is quite high as compared to 0.01 in the 

diagnostics testing series because the efficiency of FGLS estimator not only depends 

of the correlation disturbances, but also relies on the number of equations and the 

sample sizes (Srivastava & Maekawa, 1995; Timm, 2002). The following sections 

describe both tests in details. 



3.2.2.1 Monte Carlo-quasi likelihood ratio test 

The Monte Carlo (MC) test allows us to obtain provably exact randomized tests in 

finite samples using very small numbers of MC replications of the original test 

statistic under the null hypothesis. Dufour and Khalaf (2002) showed that the 

performance of Monte-Carlo-quasi likelihood ratio (MC-QLR) was outstanding in 

testing the dependency of correlation disturbances amongst equations in SURE 

model. Thus, this study employs the MC test with 999 replications of quasi-likelihood 

ratio (QLR) test statistic. The statistic is based on FGLS estimators where the OLS 

residuals are used to estimate the disturbance covariance matrix. The test statistic is, 

where Dm (5;) is the diagonal matrix whose diagonal elements are &;, . . .&: , m is 

the number of equations, T is the number of observations and k(h) is the partially 

iterated estimators of disturbances covariance matrix. 

If QLR is large, then Ho as in equation 3.12 will be rejected. To compute the p-value 

for the MC-QLR test, the survival function under Ho is denoted by G(x) = P[QLR 2 

x]. Suppose QLRo be the test statistic computed from the observed data. Then the 

associated critical region of size a is expressed as G(QLRo) 5 a. The MC methods is 

used to generate N independent realizations QLRI, QLR2, . . ., QLRN of QLR under Ho 

and computes the randomized p-value as follows, 



~6~ (x) + 1 
i , v  (x) = N+1 

where 

This test requires the variables in the model to be fixed or strictly exogenous and 

independent of disturbances. Additionally, it also assumes that the disturbances of 

each equation are independent and identically normal distribution. 

3.2.2.2 Multivariate independence test 

As compared to previous test, multivariate independence (MI) test is an asymptotic 

test proposed by Tsay (2004). This test is considered in the development of SURE- 

Azltornetrics since it allows the disturbances to be weakly dependent processes. 

Hence, in addition to assumptions in MC-QLR, this test assumes that the variables are 

dependent observations. This assumption is useful for application using time series 

data. From the OLS residuals (i,,) of m regression model, the statistic is defmed as, 

where 



m(m-1) m(m-1) h i s a  x matrix such that, 
2 2 

Here, C is a sum over 1 5 t, t + h 5 T. The MI statistic has 2 distribution with 

m(m-1)/2 degrees of freedom. 

3.3 Phase 2: Pre-search Reduction 

The second phase is known as the pre-search reduction aims to remove a group of 

variables from the initial GUMS at loose siwficance levels. It is defined as follows, 

where p, is the main significance level (0.01 or 0.05). The value of pre-test 

significance value,pp are 0.1 141 and 0.3337, respectively. If only one variable need to 

be removed, the pre-test significance value is given by, 



The reduction procedures will be focused on the lagged variables only. There are 

three types of reduction that will be executed in two strategies. The types are, 

1. Closed lag reduction to remove the group of variable with the largest lag 

downwards and stop when the removal is failed. 

2. Common lag reduction to remove the group of variable with the highest 

insignificant value. 

3.  Common-X lag reduction. It has similar removal procedure as in common lag 

except that it excludes the lagged dependent variable (Y). 

Details of these procedures are explained in Sections 3.3.1 to 3.3.3. Sequentially, each 

equation attempts for the lag variable reduction while estimating as a multiple 

equations using FGLS method. Meanwhile, the two strategies are, 

1. Starts with closed lag, and then followed by common lag and ends with 

common-X lag. The reduced model is denoted as Model 1 (Ml). 

2. Starts with common-X lag, and then followed by common lag and ends with 

closed lag. The reduced model is denoted as Model 2 (M2). 

Both resulted models are tested using encompassing test to select either one or the 

union of both models to be the current GUMS. The encompassing test is described in 

Section 3.3.4. 



3.3.1 Closed Lag 

In this procedure, the removal of group lag variable is based on the lag number 

starting from the highest value. The process begins with identification of the group 

according to their lag number. Suppose q is the highest lag in each equation. Then, the 

variables with lag q are grouped and kp is denoted as the number of variables 

involved. The removal of this group is based on four conditions. 

The first condition concentrates on the p-value of each variable in the group. The 

inhvidual p-values are checked against a specified significance value which 

determined by the following, 

The p*,,, value will change according to the number of variables involved (k,). The 

possible value with respect to the correspond k, are shown in Table 3.1. 

Table 3.1 

Pre-test Significance Values for kp = I ,  2, .. . , 5 

Main significance Pre-test significance No. of 
level, p, level, p, PP,I variables, k, P*PJ (kp) 
0.0 1 0.1 141 0.0500 1 0.0500 

2 0.0975 
3 0.1426 
4 0.1855 



If all the individual p-values are found to be larger than p*p,~, then the group of 

variable is removed from the equation. For instance, if the main significance level is 

setup at 0.05 and there are four variables with the highest lag, then their individual p- 

values should be more than 0.3776 so that all these variables are able to be removed 

fiom the equation. 

The second condition focuses on the model after the removal of the group variables 

for each equation. The reduced model is estimated using FGLS and the joint p-value 

obtained through F test is compared against the model before reduction. If the value is 

greater than the pre-test significance value, p,, then the process is continued. 

The third condition is similar to the second condition but the joint p-value is 

compared against the initial GUMS. Both tests are important to make sure that the 

removal of variables is a valid reduction fiom the general model. 

The fourth condition inspects whether the removal of variables affect the congruency 

of model. Each of equation is tested through a series of diagnostic tests. All the 

variables in the group are returned back to the equation if any of these conditions has 

failed, and the process of reduction is stopped. Otherwise, the removal will continue 

with group of lag (9-1) until lag of one. 

3.3.2 Common Lag 

In this part of reduction, the lag variables are grouped according to their lag number, 

and their joint significance are calculated and arranged in descending order. The 

process of reduction starts with the group of lag with the hghest insigmficance value. 



The procedure starts with the collection of all predictors at lag one until q in each 

equation. Then, the group is removed starting from the highest lag, q. The reduced 

model is estimated using FGLS and test against current model (model before 

reduction) to determine their joint p-values. The processes of finding these values are 

repeated for all lag number. 

The reduction starts with the group of lag that has the highest insignificant joint p- 

value. The decision whether it is able to be removed or not is similar to all the 

conditions described in previous section. 

3.3.3 Common-X Lag 

The reduction procedure is similar to common lag procedure except that lag of Y is 

excluded from the process. 

3.3.4 Encompassing Test 

A model is said to encompass another if it contains all the information conveyed by 

another model (Hoover & Perez, 1999). Hence, the aim of this test is to determine 

which model resulted fiom the two strategies (MI or M2) is better than the other. 

Each model is tested against the union of both models. 

Suppose MI has Ell as the fmt  equation with kl+k2 predictors (xlt, x2,), whereas El:! is 

the first equation fiom M2 has k2+k3 (xz,, ~3, ) .  Thus, x2, is in common and their union, 

El" comprises of k = kl+k2+k3 a non-redundant set for XI,, xz,, and ~3~ Meanwhile 

RSSI1, RSS12, and RSSlu denote the residual sum of squares from Ell, E12, and Elu 

respectively. 



The hypotheses are, 

Ho: El 1 Ep EL2 (El 1 parsimonious encompassing El2) 

HI : El 1 does not encompass 

The test statistic is, 

where k3 is the number of non-redundant predictors for Ell and E1u. The tests are 

conducted at main significance level @,) for each of equation in the model. The result 

could either be only one of the equations or the union of both equations. Then, the 

equations resulted from this test becomes the first equation in the reduced GUMS. 

This new GUMS will be tested for adequacy for each equation and determined for 

dependency of correlation disturbances amongst the equations. 

3.4 Phase 3: Variable Reduction over Root Branches 

This phase contains the main procedure in SURE-Azltometrics which is known as tree 

search. The tree is meant to discover all the unique models generated fi-om the 

variables in the GUMS. 

The reduction procedure in this phase starts with an attempt of removing all the 

variables in the model. If it failed, then the current GUMS is denoted as GUMS 0. 

Reduction from root branches means that the removal of variables begins with the 

highest insignificance variable in each equation in the model. Then the process of 



reduction continues by implementing three principles which are pruning, bunchmg, 

and chopping. These principles are described in Section 3.4.1. 

Similar to previous phase, the processes of reduction will be done sequentially 

amongst the equation. The FGLS method is employed whenever estimation is needed. 

The model that cannot be reduced anymore is known as terminal model. The terminal 

has to go through the series of diagnostic test as described in Section 3.2.1. Indication 

of any failure due to significance level, pd = 0.01 will let the level to be reduced at 

0.005. 

3.4.1 The reduction principles 

The aim of employing the tree search is to find all the possible models according to 

variables in the GUMS. However, it would be computationally inefficient to fmd all 

the possibility of variables combinations. Hence, the reduction principles are 

important to advance the search in a systematic way so that unnecessary path could be 

skipped so that only unique models are obtained. Following Atltometrics, the 

principles are pruning, bunching and chopping. 

3.4.1.1 Pruning 

In this principle, the subsequent path are pruned or ignored whenever a removal of 

one variable is failed due to either p-value is greater than pa, or violation in any of 

diagnostic tests. 



3.4.1.2 Bunching 

Instead of removing a variable one by one, this principle allows the removal of a 

group or bunch of variables in a single step. The significance test of the bunch is done 

at p, while the p-value p b  determine the amount of bunching.' The variables are 

grouped according to their individual insignificance as long as their smallest p-value 

in the bunch is larger thanpb*(kb) which given by, 

where kb is the size of bunch. If removal fails, the bunch is shrunk until size of one. 

Table 3.2 shows the significance values used in this principle with respect to the size 

or number of variables involved in the group. 

Table 3.2 

Significance Values wing Bunching Principle for kb = 1, 2, ..., 5 

Main significance level, p, P b  k b  p b * ( k b )  

0.01 0.0500 1 0.0500 
2 0.0888 
3 0.1190 
4 0.1424 
5 0.1605 

0.05 0.1118 1 0.1118 
2 0.1862 
3 0.2358 
4 0.2687 
5 0.2907 



For instance, at 5% level of significance, a bunch of four variables are removed if 

their individual p-value is larger than 0.2687. The group removal fails when at least 

one of individual p-value is smaller than 0.2687. Then the size of bunch is reduced to 

three variables where individual p-value must be greater than 0.2358 in order to be 

removed from the equation. The process of reducing the size of bunch is continued to 

make sure that at least one variable can be removed by using this principle. 

3.4.1.3 Chopping 

Reduction of variables through this principle is a way of removing one or more 

variables permanently from the search procedure if it is highly insignificant. The 

reduction is determined by the specified significance valuep, which is defined as, 

3.5 Phase 4: Search for Nested Terminals 

This phase focuses on finding further terminals using model contrast technique. Since 

the tree is uniquely ordered, then findings a similar terminal is already void. This 

phase however aims to determine different terminal models through the deletion of 

minimal bunch along the current path. Unlike previous phases, the search 

concentrates more on the removal of variables where the interest is to find variables 

that should be in the equation w i t h  the GUMS. Two strategies are employed which 

are union and terminal contrast. 



1. Union contrast determines the contrasting bunch with respect to the union of 

the current set of terminal models. This type of contrast is used whlle current 

GUMS still changes between iterations. 

2. Terminal contrast determines the smallest bunch that would yield a model that 

is different from any of the current terminals. T h s  mode is used at the end 

when the current GUMS is fixed. 

3.6 Phase 5: Selection of the Final Model 

The procedures in Phases 3 and 4 will produce more than one terminal model. These 

terminals are valid reduction from the GUMS when variables are significant, each 

equation passed every diagnostic test and disturbances are contemporaneously 

correlated amongst equations. As an algorithm aims for the automatically model 

selection procedure, only one terminal will be selected as the 'best' model. The 

chosen terminal is the final model and known as a specific unrestricted model 

(SUMS) since the algorithm initiated from a very general model. 

The selection is based on information criteria. Following SURE-PcGets, three 

information criteria are considered i.e. Akaike criterion (AIC), Hannan-Quinn 

criterion (HQ), and Schwartz criterion (SC). These criteria respectively defined as, 



where the maximum likelihood estimate of 5' is given by, 

with i, is the disturbances, T is the number of observations and k is the number of 

predictors. All these criteria are calculated for each of equations and averaged across 

the terminals. However, only SC with the smallest average value is used to select the 

terminal that will be the SUMS. The criterion was chosen because it could lead to a 

consistent model selection (Hendry & Krolzig, 2001; Judge, Hill, Griffiths, 

Liitkepohl, & Lee, 1988). Moreover, it is also used by the Autometrics. 

Details of the SURE-Azltometrics algorithm are presented at Appendix C. 

Subsequently, the algorithm is transformed into a computer program via GAUSS 

(Version 9.0) programming language. This algorithm is suitable for SURE model 

since it simultaneously selects all the equations whle using the FGLS to maintain the 

efficiency of the estimators. The estimation method used in Azitometrics ignores the 

correlation of disturbances amongst the equations in SURE model. Hence, the 

standard error of selected model is large because the selection are done separately 

equation by equation. 



CHAPTER FOUR 

SIMULATION ASSESSMENT OF SURE-AUTOMETRICS 

4.1 Experimental Frames 

Upon completion of the computer programme for the SURE-Azrtometrics algorithm, 

its performances have to be assessed using various simulation experimental 

conditions. The goal is to measure the ability of algorithm in finding the true SURE 

model specification when data-generating process (DGP) is known. Irrelevant 

variables are added in the true models to form the general unrestricted model (GUMS) 

which will be simplified using the algorithm. The algorithm is well performed if it 

would be able to remove the irrelevant variables during the model selection processes. 

The simulation experiments involve 100 replications of SURE-Atltometrics 

simplifying the initial GUMS based on several conditions. Most of the experimental 

conditions considered in this study were adopted from the evaluation of SURE-PcGets 

(Ismail, 2005) and Az~tometrics (Doornik, 2009). The analyses start by generating 

artificial dependent variables according to five models specification (Sl, S2, S3, S4, 

S5), three strengths of correlation disturbances amongst equations (p  = 0.9, 0.6, 0.2) 

and two sample sizes (n = 146, 73). The number of specifications which different in 

terms of number of variables are based on Doornik (2009), while the other two 

conditions were chosen according to Ismail (2005). Then, the SURE-Autometrics is 

run at two significance levels ( a  = 0.05, 0.01) to simplify two sets of initial GUMS (k 

= 18, 39). Since the evaluation of SURE-PcGets (Ismail, 2005) only involved with 

equations model, this study varied the multiple equations number by assessing the 

simulation on model of two, four and six equations (m = 2, 4, 6). Hence, the 



performances of algorithm are measured for model contains small to large number of 

equations. 

4.1.1 Artificial Dependent Variables 

In simulation study of SURE-Azitometrics performances, the artificial dependent 

variables (yi,) are generated according to true specification models. Ismail (2005) used 

three specifications of six equations model to assess the performances of SURE- 

PcGets as shown in Table 4.1. 

Table 4.1 

Trtie Speczfkation Models tised by SUREPcGets 

HP1 y,, = 0.017 + 0 . 0 2 6 ~ ~ ~  y,, = 0.043 +0.061~,, 
y,, = 0.025 + 0 . 0 3 2 ~ ~ ~  y,, = 0.023 + 0 . 0 2 9 ~ ~ ~  

y,, = 0.01 8 + 0.028~,, y,, = 0.018 + 0 . 0 2 4 ~ ~ ~  

HP2 y,, = 0.005 + 0.7092~ ,,-, + 0 . 0 2 6 ~ ~ ~  y,, =0.022+0.4963y4,-, + 0 . 0 6 1 ~ ~ ,  

y,, =0.010+0.5924y2,-, +0.032~,, y,, =0.009+0.6218y5,~, +0.029~,, 

y,, =0.007+0.6295y ,,-, +0.028s,, y,, = 0.006 + 0.6896yG,-, + 0 . 0 2 4 ~ ~ ~  

HP7 y,, =0.005+0.7156y ,,-, +0.2960x2,, t 0 . 0 6 2 7 ~  ,,,-, +0.014q, 

y,, = 0.010 + 0.5946y2,-, + O.O379x,, - O.O09x,,-, + 0.0 ~ O E ~ ,  

y,, = 0.005 + 0.7O74y3,-, + 0 . 4 0 9 3 ~ ,  + O.O532x,,-, + 0 . 0 2 8 ~ ~ ~  

y,, =0.018+0.5301y4,~, +0.6493x,,, -0.4794x2,,-, +0.014~,, 

y,, = 0.008 + 0.6555y5,-, + 0 . 3 7 2 4 ~ ~ ~  + 0.0630+,-, + 0 . 0 0 2 ~ ~ ~  

y,, = 0.005 + 0 . 7 2 9 9 ~ ~ ~ - ,  + 0.2993x2,, + 0.0372~ ,,-, + 0.0 1 9s6, 

Note. Adapted from "Algorithmic Approaches to Mz~ltiple Time Series Forecasting (Doctoral 
dissertation)," by S. Ismail, 2005, University of Lancaster, Lancaster. 

Originally, there were nine specifications initiated by Hoover and Perez (1999) 

denoted HP1 to HP9. However only three were chosen in the evaluation of PcGets 

(Hendry & Krolzig, 1999). Since both studies have focused on the single equation 

model, Ismail (2005) revised the three specifications to fit the six equations of SURE 

model. Based on the table, HP 1 does not has any variable while HP2 contains lag one 

of dependent variable, and HP7 has three variables which are lag one of dependent 



variable, one independent variable including the lag one of independent variable. 

Basically, the inclusions of variables in the specifications are instigated through 

Hendry and Krolzig (1999) and the coefficients' values are estimated by FGLS using 

a real data. 

Meanwhile the simulation assessment of At~tometrics (Doornik, 2009) also relied on 

PcGets with additional of HP8 and HF'9 from Hoover and Perez (1999). Both added 

models have one lag of the dependent variable. HP8 is different from HP7 in terms of 

independent variable that was included, whereas HP9 contains both independent 

variables considered in HP7 and HP8 including their lag of one. Sharing a similar 

evaluation approach with Ismail (2005), five models are specified in this study 

according to two, four and six equations model as shown in Table 4.2, 4.3 and 4.4, 

respectively. 

Table 4.2 

Tnle Specification Models of Two Eqtiations (m = 2) by SURE-Azitometrics 

y,, = 0.0230 t 0.0293~~~ 
S 1 

y,, = 0.0 182 + 0.0240~,, 

y,, =0.0087t0.617Oy ,,_, +0.0229~,, 
S2 

y,, =0.0058t0.6825y ,,., +0.0173~,, 

y,, = 0.0078 t 0.6340y,,-, + 0 . 3 6 8 5 ~ ~ ~ ~  -0.3020~ ,,,_, t 0.0201~~~ 
S3 

y,, =0.0060+0.6915y ,,_, +0.2811~~~, -0.2224xn,-I +0 .0151~~~  

y,, = 0.0049 t 0.5966~ ,,_, + 0.4820x,,, - 0.2072~ ,,,_, t 0.0221~,, 
s4 

y,, =0.0028+0.6517y1,~, +0.1273xal +0.1053,~ ,,,-, +0.0171&,, 

y,, = 0.0049 +0.6154y ,,-, +0.3376x2, -0.28813 ,,-, + 0.3429x,,, -0.1237~ ,,,-, +0.0197q, 
S5 

y,, = 0.0038 + 0 .6720~  ,,-, + 0 . 2 7 4 2 ~ ~ ~  - 0.2268~ ,,,-, + 0 . 0 2 7 8 ~ ~ ~ ~  +O. 1377x ,,,-, + 0.0 149&,, 

The variables inclusion were based on HPl, HP2, W7, HP8 and HP9 where each was 

rename with S1, S2, S3, S4 and S5, respectively. The coefficients' values in the 

models were obtained by using a real data through FGLS estimation method. The data 
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represents the annual number of air passengers between United Kingdom (UK) and 

six different countries from 1961 to 1997 which was acquired from the study of 

SURE-PcGets (Ismail, 2005). The countries are Germany, Sweden, Italy, Japan, 

United States (US), and Canada. The numbers of equations in the model are 

represented by the routes connecting the UK and the countries. Model with six 

equations involved all the routes, whereas four equations model are UK-Germany, 

UK-Italy, UK-US, and UK-Canada. Since US and Canada are from the same region, 

then routes UK-US and UK-Canada are selected for a two equations model. 

Table 4.3 

Tnre Specification Models of Four Equations (m = 4) by SURE-Az~tometrics 

y,, = 0.01 75 + 0.0259~,,  y,, = 0.0230 + 0 . 0 2 9 3 ~ ~ ~  
S 1 

y,, = 0.0179 t 0 . 0 2 7 9 ~ ~ ~  y,, = 0.0182 t 0 . 0 2 4 0 ~ ~ ~  

y,, = 0.0058 t 0.6653yl,-, +0 .0182~ ,~  y,, = 0.0094 t 0.5864y1,., t 0 . 0 2 2 9 ~ ~ ~  
S2 

y,, =0.0077t0.5711~2,~, t 0 . 0 2 1 6 ~ ~ ~  y,, =0.0063t0.6563y ,,_, t 0 . 0 1 7 3 ~ ~ ~  

y,, =0.0052+0.6359y ,,-, t0.3652x2,, -0 .2681~ ,,,-, t 0 . 0 1 6 9 ~ ~ ~  

y2, =0.0059+0.6325y1,~, +0.4056x,, -0.325I?r,,-, t 0 . 0 1 7 1 ~ ~ ~  
S3 

y,, =0.0084+0.6114y ,,-, +0.30O8xz, -0.2532r,,-, +0.0203~,, 

y,, = 0.0063+0.6725y ,,-, +0.2933xl,, -0.2360x,,,-, t 0.0151~,, 

y,, = 0.0026 + O.6406yl,-, t 0 . 3 4 8 0 ~ ~ ~ ~  - 0.1096~ ,,,-, t 0.0 1775, 

y,, =0.0047t0.5600y2,~, tO.l442u,, t0.0602r,21-, t 0 . 0 2 1 5 ~ ~ ~  
S4 

y,, = 0.0052+0.5724y3,_, +0.4896x4,, -0.1932.~ 4,1-, + 0 . 0 2 2 1 ~ ~ ~  

y,, =0.0030+0.6296y ,,_, +0.1358x,, t 0 . 1 1 2 8 ~  ,,-, + 0 . 0 1 7 1 ~ ~ ,  

y,, =0.0027+0.6147yl,-, +0.3459x2,, -0.2600~ ,,,-, +0.2118~,,, -0.0151~,,,-, +0.0167~,, 

y,, = 0.0042 + 0 .6272~  ,,-, + 0.4040x2,, - 0 . 3 2 8 3 ~ ~  ,,-, + 0.03 15x4,, + 0-0874~,,,-, + 0.01 70&,, 
S5 

y,, = 0.0051 + 0 .5957~  ,,-, + 0.2757x,, -0 .2429~ ,,-, +0.3750x4,, - 0 . 1 2 5 5 ~ ~  ,,-, +O.0198&,, 

y,, = 0.0039 + 0.6551~ ,,, +0.2865x2,, -0 .2398~ ,,_, + 0.0307xM, +0. 1469x ,,-, +0.0149&,, 

The dependent variable bit) is the number of air passengers' and there are seven 

independent variables that can be associated with this variable. The aim of this 

chapter is to assess whether SURE-At~tometrics able to find the specifications used in 



generating the artificial data. Hence, the details about the dependent variable as well 

as the independent variables are not explained in this chapter. The applications of the 

reaI data are discussed in Section 5.3. 

Table 4.4 

True SpeciJication Models of Six Equations (m = 6) by SURE-At~tometrics 

y,, = 0.0175 t 0.0259~,, 

S 1 y,! = 0.0245 t 0 . 0 3 2 2 ~ ~ ~  

y3, = 0.0179 t 0 . 0 2 7 9 ~ ~ ~  

y,, =0.0054t0.6891y,,~, t 0 . 0 1 8 2 ~ ~ ~  y4, = 0.0184 t 0 . 5 6 9 4 ~ ~ ~ - ,  t 0.0526~,, 

S2 y,, = 0.0103 t 0 . 5 9 0 0 ~  ,,_, + 0 . 0 2 6 1 ~ ~ ~  y,, = 0.0095 t 0 . 5 8 5 5 ~ ~ ~ - ,  t 0 . 0 2 2 9 ~ ~ ~  

y3, = 0.0073 t 0.5934y3,-, t 0.0216q, y,, =0.0067t0.6317y6,-, t 0 . 0 1 7 4 ~ ~ ~  

y,, = 0.0049 t 0.6600y1,~, t 0 . 3 0 6 7 ~ ~ ~ ~  - 0.2224x2,,-, t 0.0 169&,, 

y,, =0.0101+0.5944y ,,_, tO.O23Ox,,, +0.0082~,~-, + 0 . 0 2 6 0 ~ ~ ,  

y,, = 0.0059+ 0.6326y3,_, t 0.3603x,, -0 .2793~ ,,-, t 0.01 7 2 ~ , ,  
S3 

y,, =0.0154+0.5926~ ,,_, +0.700lx,, - 0 . 5 5 3 8 ~ ~ ~ - ,  t 0 . 0 4 6 6 ~ ~ ~  

y,, = 0.0085 + 0.6079yj,-, + 0 . 2 9 6 8 ~ ~ ~  - 0.242Ox2,,-, + 0 . 0 2 0 3 ~ ~ ~  

y6, =0.0073+0.6266y6,+, tO.2852xX, -0 .2012~ ,,-, +0.0151~,, 

y,, = 0.0025+0.6735y ,,_, t 0.3361x,,, -0.1268~ ,,,-, t 0 . 0 1 7 7 ~ ~ ~  

y,, = 0.0052 t 0.5720yj,_, + 0.4898~,~, - 0.1929~~,,-, t 0 . 0 2 2 1 ~ ~ ~  

y,, =0.0031t0.6052y6,~, tO.I45Ix,, t 0 . 1 2 1 2 ~  ,,-, t 0 . 0 1 7 1 ~ ~ ~  

y,, =0.0025+0.645ly ,,-, +0.2992x2,, - 0 . 2 2 2 3 ~ ~  ,,-, +0.2198x4,, - 0 . 0 4 3 5 ~ ~  ,,-, +0.0166&,, 

y,, = 0.0069 +0.5827y2,-, +O.O135x,, +O.O069x ,,-, +0.3045x4,, -0.0799~,~,-, +0.0257&,, 

y,, = 0.0042 + 0.6283~ ,,-, + O.3582xn, -0.2801~ ,,-, + 0.0396xJ3, +0.0778x4 ,,-, +0.0171~~,  
S5 

y,, = 0.0142 +0.5900y ,,-, +0.6638x2,, -0 .5258~ ,,-, -0.5428x,, +0.6469x ,,-, +0.0458&,, 

y,, = 0.0051 + 0.5933yj,-, + 0.270IxX, -0 .2278~ ,,-, +0.3759x4,, -0.131 lx,,,-, +0.0198~,, 

y,, = 0.0047 + 0.6090y6,-, + 0.2709x,, -0.1943~,,-, + 0.0485xJ,, + 0 . 1 4 2 3 ~ ~  ,,-, + 0.0150&,, 

A constant term in S1 was based on the mean of yi, and the coefficient for 

disturbances is represented by the standard deviation of yi, for each equation. As for 

other specifications (S2, S3, S4 and S5), the coefficients were FGLS estimators 
5 7 



obtained by using the real data where the standard error of estimated equation be the 

coefficients for the disturbances. Meanwhile, the S3 or S4 model contains one out of 

seven independent variables. Similar to Azrtometrics, S3 considers variable with the 

highest correlation with yi, and S4 includes the second highest correlation variable. 

Since the annual series only contains 37 observations, it was converted to quarterly 

data using quadratic-match sum frequency conversion in EYiews for the purpose of 

simulation study. Subsequently the quarterly data were log-transformed as well as 

differenced two times in order to achieve stationarity. Therefore, the total number of 

observations turns into 146. 

Noticeably, the specification models also contains the disturbances terms. Another 

requirement for generating the artificial dependent variable is to allow the 

contemporaneous correlation disturbances amongst the equations. Hence, the 

disturbances are simulated using standard normal distribution and allowed to correlate 

with other equations based on three levels of correlation strength. The levels are 0.9 to 

indicate strong correlation, 0.6 to represent moderate correlation, and 0.2 for weak 

correlation. 

In general, generating the artificial dependent variables require the real data, the 

specification models and the simulated random error variable. The real data will be 

used to find the coefficient values in the models as well as the variables during the 

generating process. 



4.2 Measurement of SURE-Autometries Performance 

Basically, each specification model has 300 artificial dependent variables generated 

according to three different levels of correlation disturbances strength since they will 

be replicated 100 times. As a result, each different number of equations has 1500 

artificial data sets which lead to a total of 4500 sets since each true specification has 

three different levels of strength. These data sets are used for the simulation 

assessment of SURE-Autometrics. Subsequently, numerous irrelevant variables were 

added to the specifications during the formulation of the initial GUMS in the first 

phase of SURE-Autometrics. The algorithm will reduce the variables in searchmg the 

'best' multiple equations model. The algorithm is performing well if it able to remove 

the irrelevant variables and retain the relevant variables since the artificial data were 

generated based on the specification model. Hence, the true specification model is 

obtained. The simulation outcomes of SURE-Autometrics model selection are 

classified into four categories where the criteria were adapted from Ismail (2005). The 

categories are described in Table 4.5. The outcomes fall to the designated category if 

all the equations in the model possessed the criteria. 

Table 4.5 

Categories ofSirnuIation Ot~tcomes 

Category Criteria Explanation 
1 TRUE = FINAL The true specification is chosen. 

2 TRUE c Final The true specification is nested in the final 
specification. 

3 TRUE ct Final An incorrect specification is chosen, the true 
specification is not nested in the final 
specification. 

4 At least one of the equations failed to fall under the same category 



The performance of SURE-Autometrics is indicated by high percentage of outcomes 

in Category 1 where all the equations have similar variables as in the true 

specification. Category 4 is designated for model with outcomes of each equation are 

different. 

4.3 Simulation Results 

The simulation experiments have various conditions varying fi-om different GUMS to 

the different sample sizes. Hence, each table of the results contain the percentages of 

outcomes in finding S1 to S5 when the initial GUMS comprises of 18 and 39 number 

of variables using large (n = 146) and small (n  = 73) sample size. The results tables 

also indicated the outcomes when changing the setting of significance level in the 

SURE-Atltometrics algorithm. The results were classified into three parts according to 

the number of equations in the model. The performances of SURE-At~tometrics for 

each specification w i t h  any number of equations is assessed through 24 conditions 

comprised of combinations between two sets of initial GUMS, three strengths of 

correlation disturbances, two sample sizes and two significance levels. Hence a total 

of 120 conditions used to assess different multiple equations. The performances are 

measured by the percentage of similarities among the selected final model and the 

specification in terms of the variables which indicated by the outcomes in Category 1. 

This measure also equivalent as calculating the probability of the algorithm finding 

the correct specification models. 

4.3.1 Two Equations Model 

The simulation experiments of SURE-Azltometrics started with assessment of two 

equations model as initiaI indicator for the algorithm performances in small number of 
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multiple equations model. Each of 120 conditions discussed in Section 4.1 were 

replicated 100 times using the artificial data sets. The outcomes of simulating SURE- 

Atltometrics on two equations initiated fi-om large (k = 39) and small (k = 18) GUMS 

for full sample size (n = 146) are shown in Table 4.6 and 4.7, respectively. While 

Tables 4.8 and 4.9 indicate the simulation outcomes for half of the sample size (n = 

73). Each table represents the percentages of outcomes in Category 1 to 4 for five true 

specifications (Sl, S2, S3, S4, and S5). Each specification has three levels (0.9, 0.6, 

and 0.2) of disturbances correlation strength. The results in Tables 4.6 to 4.9 also have 

been classified into two significance levels (0.05 and 0.01). 

All the tables indicate that most of the outcomes were in Category 1 which implied 

that the true specifications for multiple equations are similar to the fmal selected 

model. Unlike other true models, only S1 resulted in two categories which are 

Category 1 and 2 for all experiment conditions. This is because the model simply 

contains a constant value. Thus S1 is always nested in the final selected model. 

Outcomes in Category 4 reveals that less than 10% achieved models contain of 

equations with different outcome's category. Generally, the overall results were high 

for full sample size, small initial GUMS and 5% level of significance. 

In particular, Table 4.6 shows overall outcomes of 83.87% and 78.87% using 0.05 and 

0.01 level of significance, respectively. Both S1 and S3 with the strongest (0.9) 

correlation disturbances are able to achieve the highest percentage of similarities 

(89%) although significance level is different, whereas S5 received the lowest 

percentage (67%). 



Table 4.6 

Simulation Results for m = 2, n = 146, k = 39 

S 1 S2 S3 S4 S5 Overall 
Level Category 

0.9 0.6 0.2 0.9 0.6 0.2 0.9 0.6 0.2 0.9 0.6 0.2 0.9 0.6 0.2 (%) 
5% 1 89 83 85 88 85 86 83 80 81 87 84 82 83 82 80 83.87 

0\ 
Table 4.7 

Simulation Results for m = 2, n = 146, k = 18 

Level Category 
S l  S2 S3 S4 S5 Overall 

0.9 0.6 0.2 0.9 0.6 0.2 0.9 0.6 0.2 0.9 0.6 0.2 0.9 0.6 0.2 ("/.I 
5% 1 96 97 94 91 92 85 88 90 88 92 94 89 90 87 85 90.53 



Table 4.8 

Simulation Results for m = 2, n = 73, k = 39 

Level Category 
S1 S2 S3 S4 S5 Overall 

0.9 0.6 0.2 0.9 0.6 0.2 0.9 0.6 0.2 0.9 0.6 0.2 0.9 0.6 0.2 ("/.I 
5% 1 88 85 87 85 84 84 82 84 83 84 86 85 79 80 82 83.87 

0\ 
P 

Table 4.9 

Simulation Results form = 2, n = 73, k = 18 

Level Category 
S1 S2 S3 S4 S5 Overall 

0.9 0.6 0.2 0.9 0.6 0.2 0.9 0.6 0.2 0.9 0.6 0.2 0.9 0.6 0.2 (%> 
5% 1 9 1 92 91 89 89 88 84 82 84 89 89 88 87 87 87 87.80 



Meanwhile, the overall values are slightly higher for the small sets of initial GUMS 

as displayed in Table 4.7 which are 90.53% and 85%. Again S 1 and S5 obtained the 

highest (97%) and the lowest (81%) percentages. These values are indeed higher 

than the results from the large sets of initial GUMS. Significance level of 0.05 

consistently yields high percentages as compared to 0.01 based on Category 1 and 2. 

The results obtained by using half of the sample size according to Table 4.8 and 4.9 

show similar occurrences as in utilising full sample. At main significance level of 

0.05, the hlghest percentage accomplished by S1 for both sets of initial GUMS while 

S5 is unable to achieve more than 82% if selected from large set of GUMS. The 

values were dropped tremendously when the level is set at 1 % where the percentages 

are around 65%. These results are the lowest amongst others. 
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Figzire 4.1. Overall Performances on Two Equations Model using Large Sample Size 

Figure 4.1 above shows the performances of SURE-Azltornetrics correctly found the 

five specification models based on four combinations of two initial GUMS and two 

significance levels using all the observations in the sample. Obviously it can be seen 



that the algorithm is poorly performed in finding the S5 specification when initiated 

from large set of GUMS using I% level of significance. While there is not much 

different performances in finding other specification models based on the four 

combinations of two initial GUMS and two levels of significance. 

Figure 4.2 below displays the performances using the small sample size which is half 

of the observations. The figure seems similar to previous but the pattern in S2 and S3 

are slightly different. In finding S2 at small significance level (0.01), the lowest 

percentages obtained by large set of GUMS using half of sample size as compared to 

small GUMS for full sample size. SURE-Atitometrics has similarly performed for all 

combinations in finding S3 specification using small size, whereas the percentages 

are marginally lower for the combination of 0.05 significance level and large GUMS 

using large sample size. In general, both figures are almost comparable indicating 

that the sample sizes did not affect the algorithm performances. 
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Figtire 4.2. Overall Performances on Two Equations Model using Small Sample Size 



4.3.2 Four Equations Model 

The simulation assessment of SURE-Azltornetrics on four equations used similar 

procedures as in two equations model. The data set consists of artificial dependent 

variables that were generated for the five true specification models (Sl, S2, S3, S4 

and S5) based on Table 4.3. Subsequently SURE-Autometries is employed at two 

sigmficance levels (0.05 and 0.01) to search the best models from two sets of initial 

GUMS comprises of 39 and 18 predictor variables using full and half of the sample 

sizes (146 and 73). 

The outcomes are categorised according to criteria indicated in Table 4.5. The 

performances are measured by the percentages of outcome has the criteria for the 

corresponding category's. The results of simulation are divided into four tables 

where Tables 4.10 and 4.1 1 show percentages obtained by searching model from two 

sets of GUMS with all observations, whereas Table 4.12 and 4.13 display results 

using half observations in the sample. 

On average, the overall percentages resulted in Category 1 ranged from 77% to 84% 

for selection at 5% level of significance, while changing to smaller level (1%) causes 

the percentages reduced slightly in the range of 2% to 3%. Sharing similar patterns 

as in two equations model, none of the outcomes in Category 3 for S 1 because all the 

final selected models contained a constant value. Thus, it will always nest the true 

specification models. Moreover, the outcomes of simulation in assessing S 1 show 

that the four equations have similar criteria which are why none of the outcomes are 

in Category 4. 



Table 4.1 0 

Simulation Results for m = 4, n = 146, k = 39 

- 

S1 S2 S3 S4 S5 Overall Level Category 
0.9 0.6 0.2 0.9 0.6 0.2 0.9 0.6 0.2 0.9 0.6 0.2 0.9 0.6 0.2 (%) 

5% 1 87 88 85 85 82 84 86 87 85 82 83 81 79 77 78 83.27 

Table 4.1 1 

Simulation Results for m = 4, n = 146, k = 18 

S 1 S2 S3 S4 S5 Overall 
Level Category 

0.9 0.6 0.2 0.9 0.6 0.2 0.9 0.6 0.2 0.9 0.6 0.2 0.9 0.6 0.2 (%> 



Table 4.12 

Simulation Results form = 4, n = 73, k = 39 

S 1 S2 S3 S4 S5 Overall 
Level Category 

0.9 0.6 0.2 0.9 0.6 0.2 0.9 0.6 0.2 0.9 0.6 0.2 0.9 0.6 0.2 (%) 
5% 1 81 81 82 84 85 82 81 79 82 81 80 78 78 75 77 80.40 

Table 4.13 

Simulation Results for m = 4, n = 73, k = 18 

S1 S2 S3 S4 S5 Overall 
Level Category 

0.9 0.6 0.2 0.9 0.6 0.2 0.9 0.6 0.2 0.9 0.6 0.2 0.9 0.6 0.2 ( O h >  

5% 1 84 85 84 79 80 81 71 75 76 72 76 73 77 75 78 77.73 



However, the outcomes in Category 4 for other specifications shows an increment 

indicating that the percentages of equations obtained different category within the 

same model had increased as compared to model with two equations. Regardless the 

condition of experiments, the lowest percentage in this category is 5% whch has 

increased by 2.33%, whereas the highest percentage (8.47%) is also increased by 

2.38%. 

By considering the highest outcomes in the experiments of four equations model 

amongst all the conditions indicated in the tables, S 1 with full observations was able 

to accomplish the highest outcomes (92%) when searched from small set of initial 

GUMS (k = 18) at 0.05 significance level. The results also show that by using 0.01 

level of significance value, S2 obtained 89% and 84% for both sample sizes. On 

contrary, percentages for S5 were constantly lowest except for small sample size of 

GUMS with 13 irrelevant variables. Once more, the percentages of outcomes are 

generally equivalent between three correlation disturbances and generally the overall 

results for two levels of significance are quite similar with difference of 1 % to 2%. 

The overall performances of SURE-Atrtometrics on four equations based on 

combinations of two initial GUMS and two significance levels are summarised in 

Figure 4.3 and 4.4 using full and half of the sample sizes, respectively. By using all 

the observations (n = 146), the algorithm has well performed for all the combinations 

in finding S1 as compared to S5 specification. Regardless the combinations, the 

percentages are similar for S3, S4 and S5, while S2 obtained a little bit higher 

percentage values. 
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Figure 4.3. Overall Performances on Four Equations Model using Large Sample 

Size 

The performances varied differently for finding S1 and S2 when using half of the 

sample size with only S3 displays similar pattern. Generally, the percentage values 

are declined for all the combinations of set of GUMS and significance levels. 
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Figure 4.4. Overall Performances on Four Equations Model using Small Sample 

Size 



4.3.3 Six Equations Model 

The simulation experiments involving six equations model also have all the 

conditions tested in models of two and four equations. The true specification models 

(S 1, S2, S3, S4 and S5) were based on Table 4.4. The performances of SURE- 

Azrtometrics are assessed by computing the percentages of simulation outcomes fall 

to any category described in Table 4.5. 

Two sets of initial GUMS were formulated in the fust phase of SURE-Autometrics 

which then reduced to the final model which also known as the specific-to-general 

model (SUMS) at 5% and 1% levels of significance. The simulation processes and 

assessment are similarly used as in two and four equations model. However, the 

results from previous model of two and four equations implied that the performances 

of SURE-Autometries deteriorated as the number of equations changed, including the 

number of variables in the specification such as S3, S4 and S5 which have at least 

three variables. 

The results are shown in Table 4.14 to Table 4.17. These tables display that most of 

the outcomes were in Category 1 which means that all the six equations in the final 

selected model have similar specification as in the true models. Specifically, the 

overall percentages have reduced with large difference against the results in two 

equations model and slightly dissimilar fiom four equations model. At 0.05 and 0.01 

level of significance, the overall values ranged from 72% to 76%, and 70% to 75%, 

respectively. 



Table 4.14 

Simulation Results for m = 6, n = 146, k = 39 

Level Category S1 S2 S3 S4 S5 Overall 
0.9 0.6 0.2 0.9 0.6 0.2 0.9 0.6 0.2 0.9 0.6 0.2 0.9 0.6 0.2 (%) 

5% 1 79 78 SO 78 79 77 74 72 75 74 74 73 71 70 72 75.07 
2 2 1 22 20 6 6 7 8 8 6 7 8 9 9 9 10 10.40 
3 - - - 5 5 4 7 9 9 7 7 6 9 11 5 5.60 
4 - 11 10 12 11 11 10 12 11 12 11 10 13 8.93 

1% 1 73 75 74 76 75 77 78 79 75 72 73 71 69 67 70 73.60 
2 27 25 26 9 8 8 8 7 7 9 7 10 10 8 8 11 .SO 
3 - - - 2 3 1 2 2 3 5 5 7 6 10 8 3.60 
4 - - 13 14 14 12 12 15 14 15 12 15 15 14 1 1 .OO 

2 Table 4.15 

Simulation Results for m = 6, n = 146, k = 18 

S1 S2 S3 S4 S5 Overall 
Level Category 

0.9 0.6 0.2 0.9 0.6 0.2 0.9 0.6 0.2 0.9 0.6 0.2 0.9 0.6 0.2 ("/.I 
5% 1 79 SO 78 77 75 76 74 75 72 74 76 75 72 70 71 74.93 

2 21 20 22 7 8 9 9 8 9 8 7 8 9 11 10 1 1.07 
3 - - 6 8 4 6 5 9 6 6 6 7 9 7 5.27 
4 - - - 10 9 11 11 12 10 12 11 11 12 10 12 8.73 

1% 1 76 77 74 76 75 78 74 75 73 78 79 76 74 73 71 75.27 
. . 2 24 23 26 6 5 6 6 8 9 7 5 5 9 6 9 10.26 

3 - - - 8 8 7 9 6 9 5 7 6 4 10 5 5.60 
4 - - 10 12 9 11 11 9 10 9 13 13 11 15 8.87 



Table 4.16 

Simulation Results for m = 6, n = 73, k = 39 

S1 S2 S3 S4 S5 Overall 
Level Category 

0.9 0.6 0.2 0.9 0.6 0.2 0.9 0.6 0.2 0.9 0.6 0.2 0.9 0.6 0.2 (%> 
5% 1 77 78 75 75 75 76 70 69 71 73 71 69 71 67 69 72.40 

2 Table 4.17 

Simulation Results for m = 6, n = 73, k = 18 

Level Category 
S1 S2 S3 S4 S5 Overall 

0.9 0.6 0.2 0.9 0.6 0.2 0.9 0.6 0.2 0.9 0.6 0.2 0.9 0.6 0.2 ("/.I 
5% 1 75 72 74 76 74 77 72 70 69 70 71 69 71 68 72 72.00 



The tables also indicated that overall outcomes in Category 4 have slightly increased 

showing that with large number of multiple equations, different outcome categories 

are achieved amongst the equations. The results in this category ranged from 8% to 

11% suggested that difficulties in getting similar specification for all six equations. 

The condition with the highest percentage of this is GUMS with 39 variables selected 

at 1% level where both sample sizes produce almost similar values (12.92% and 

13.75%). 

The S1 specification is once again accomplished the highest percentages for all type 

of conditions where none of the outcomes resulted in Category 3 and 4. Similar to 

other multiple equations, the reason is S1 always nested in the frnal selected model 

since it only contains constant value. Meanwhle, S5 specification is easily 

comparable because it keeps achieving the lowest percentages except in two 

conditions. Both conditions are different at significance level for small set of GUMS 

(k = 18) and small sample size (n = 73). These conditions are the lowest obtained by 

S4 specification. Despite of the severe results, the range of percentages in Category 1 

is from 65% to 80%. The outcomes within the same specification are not affected by 

different strength of correlation disturbances. 
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Figure 4.5. Overall Performances on Six Equations Model using Large Sample Size 
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Figure 4.5 summarised the overall performances for each specification model based 

on the combination of initial GUMS and the significance level using all the 

observations. The multiple bar charts indicated that minor differences amongst the 

four combinations within each specification. Meanwhile, the overall performances 

using half sample size are displayed in Figure 4.6. Similarly, there are not much 

different between the combinations of two sets of GUMS and two levels of 

significance in finding each true specification model. However, the figure showed that 

the bars are slightly lower than previous figure implying that the performances are 

much better using large sample size. 

10.05,k=39 10.05,k=18 bO.Ol,k=39 BO.Ol,k=18 

100 
90 
80 
70 
60 2 

z 50 
W 

40 
30 
20 

10 
0 

5 1  s2 53 54 S5 

SPECIFICATION MODELS 

Figure 4.6. Overall Performances on Six Equations Model using Small Sample Size 

4.4 Summary of Findings 

The purpose of experimental simulation is to assess the performances of SURE- 

Atltometrics in finding the true specification models since the data-generating process 

is known. The measure also indicates the probability of finding the true multiple 

equations model Gom the GUMS that is formulated during the initial phase of SURE- 

Azrtometrics. The specification searches involved 120 experiment conditions of three 



different numbers of equations with a total of 360 conditions. The conditions arise 

during the artificial data generation and simulation of SURE-Az~tometrics. 

Specifically, it based on the multiple numbers of equations models, the specifications 

model used in generating data, the strengths of correlation disturbances amongst the 

equations, the initial sets of GUMS, the sample sizes and the levels of significance. 

These conditions were shown in Table 4.18. 

Table 4.18 

Simzllation Experiment Conditions 

Conditions of experiment Level 

1. Number of equations in the model Small, m = 2 
Medium, m = 4 
Large, m = 6 

2. True specification model S 1 = without any relevant variables 
S2 = one relevant variable 
S3 = three relevant variables 
S4 = three relevant variables 
S5 = five relevant variables 

3. Strength of correlation disturbances Strong, p = 0.9 
Moderate, p = 0.6 
Weak, p = 0.2 

4. Initial GUMS 

5.  Sample sizes 

6.  Main significance level 

Small set, k = 18 variables (1 3 to 18 irrelevant) 
Large set, k =  39 variables (34 to 39 irrelevant) 

Large, n = 146 
Small, n = 73 

Most of these conditions have been adopted from the simulation study of SURE- 

PcGets (Ismail, 2005) and Azitometrics (Doornik, 2009). SURE-PcGets used similar 

conditions but only focused on the selection of six equations model with only three 



Based on the table, at least 80% of the final selected multiple equations models have 

similar specification as the true models. It was obtained by all except for one 

condition which resulted in less than 70% for both sample sizes. Specifically, S5 

already has five variables which are relevant to the fmal model and there were another 

34 variables added in the formulation of initial GUMS. Hence the total of variables is 

39 variables. The additional variables are irrelevant to be retained in the fmal model. 

Moreover, the percentages &om small set of GUMS (at most 18 irrelevant variables) 

were considerably higher compared to large set. 

Table 4.20 

Percentages of Finding Correct SpeciJication for rn = 4 and p = 0.9 

True Sample a=5% a= 1% 

specification sizes, n k = 3 9  k = 18 k = 3 9  k = 1 8  
S1 146 87 89 85 85 

As compared to the results from model of two equations, Table 4.20 indicated that 

SURE-Az~tometvics performed well by obtaining 70% to 90% similarities to the true 

specification four equations model. However, it also indicated that the algorithm were 

not able to achieve 80% in finding the true specification of S5 model. The highest 

percentage (89%) was from the same condition as in two equations model, whereas 

the lowest percentage (71%) attained at two conditions by S3. On average, outcomes 
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from large set of GUMS for these models are higher than the small set and there are 

only slight differences between two levels of significance. 

Meanwhile, the result from Table 4.21 proved that as number of equations in the 

model increases, the probability of SURE-Atitometrics finds the true specification 

becomes lower indicating that the performances are deteriorated. The algorithm 

started to show inability of achieving higher than 80% for most of the experimental 

conditions for model with four equations (Table 4.20) where the highest probability to 

find S5 is 79%. This could be due to number of variables that should be retained in S5 

is more than other specifications. Moreover, all four equations must be able to reduce 

all the irrelevant variables in order to be counted as successful. However, the 

percentages were not that bad because it was at least 70%. Therefore, it was expected 

that outcomes for the simulation experiment using six equations will be slightly 

decreased from these results. 

Table 4.21 

Percentages of Finding Correct Specification for rn = 6 and p = 0.9 

True Sample a=5% a= 1% 

specification sizes, n k = 39 k =  18 k = 39 k =  18 
S 1 146 79 79 73 76 

73 77 75 72 74 



In general, the SURE-Autometrics is able to achieve the true specification model with 

high percentages of simulation outcomes for SURE model with two and four 

equations. However, the number of variables in the true models appears to affect the 

algorithm performances. This can be seen from the results where there is high 

percentage in finding S1 as compared to low achievement in fmding S5 for three 

different numbers of equations. 

Based on these tables, the SURE-At~tometrics performed well in the simulation 

analysis when the number of equations and number of variables in the true 

specification models were as minimal as possible. These variables are relevant to 

retain in the final model while the additional variables included in the initial GUMS 

are irrelevant and should be removed during the model selection procedure. Hence, it 

will be difficult to have similar results for all the equations within the model since S3, 

S4 and S5 contain of at least three relevant variables while removing 34 to 36 or 13 to 

15 irrelevant variables. 

Meanwhile, different setting of sigmficance levels seems to have small effect on the 

algorithm performance. Figure 4.7 shows the performances of each number of 

equations in finding the correct specification based on two levels of significance. It 

can be seen that the effects of significance levels within the equation are marginal. 
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Figzlre 4.7. Overall Performances in Finding Correct Specifications 

The sample size has some effects on the performances but it also related to the 

specification models which characterise by the number of variables in the model. 



CHAPTER FIVE 

EVALUATION OF SURE-AUTOMETRlCS USING REAL DATA 

5.1 Model Selection Procedures 

Evaluation using real data is very crucial in identifjmg whether the SURE- 

Atitometrics algorithm exhibits 'data mining' characteristics. This problem is common 

amongst model builders since data mining permitted the selection of best models 

within-sample fitted model and able to satisfy all measures of goodness of fits. 

However, the data mining models might fail when it comes to forecasting. In this 

chapter, SURE-Atitometrics and several other model selection procedures were 

applied on two sets of real data. Section 5.3 illustrates the analysis of the air 

passengers' flows data, whereas Section 5.4 analyses the national growth rates data. 

Subsequently, the selected models were used in forecasting where the error measures 

were compared to determine which procedure offers a model with better forecasts. 

The data were also utilised in the validation of SURE-PcGets. Hence it were obtained 

fiom Ismail (2005). 

The model selection procedures considered in t h s  study involving algorithm and non- 

algorithm procedures. Implementation with algorithms imply that the selection are 

done automatically based on the steps provided in the algorithms, while non- 

algorithm indicates manual selection procedures using my own personal knowledge 

on theory, judgement and experience in statistical modelling. Additionally, these 

procedures varied with two estimation methods which are feasible generalised least 

squares (FGLS) and ordinary least squares (OLS). Model selection procedures 



through OLS method means that the equation is selected separately within the model, 

whereas FGLS indicates the multiple equations are selected simultaneously. 

Specifically, there are nine model selection procedures that can be classified into four 

categories as follows, 

1.  Azltometrics and Stepwise are the algorithms for single equation model. Since 

the model has multiple equations, each is estimated using OLS and 

individually selected for multiple times. Model selection through Azrtornetrics 

is applied using PcGive software and Stepwise is employed by SAS Enterprise 

Glide. 

2. At~tometrics-SURE and Stepwise-SURE are procedures that used previous 

algorithms in the model selection where each equation separately selected with 

OLS estimation method. However the final model is estimated using FGLS. 

3.  SURE-Az~tometrics and SURE-PcGets are the algorithms for automatic model 

selection procedures focus on the multiple equations model. The selection is 

implemented simultaneously with FGLS method of estimation. 

4. Mine, Mine-SURE and SURE-Mine are non-algorithm model selection 

procedures which means the selection is a process of trial and error based on 

my personal judgment. Each of these procedures are fitted into each previous 

category, respectively. 

The SURE-Mine used FGLS as a method of estimation and the inspection of variables 

are done simultaneously within the model according to the rules above. Meanwhile, 
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the Mine-SURE and Mine selects the equation by equation with OLS estimators and 

FGLS is used to estimate the fmal model of Mine-SURE. 

By the inclusion of the fourth categories amongst the model selection procedures, this 

study aims not to overlook the performances of manual selection procedures as 

compared to algorithm procedures. Hence the existence of tacit knowledge can be 

ascertained. The selections of models are determined manually by inspecting the p- 

values and decision is made based on personal knowledge. 

In the manual selection, insignificant variables are determined fiom the GUMS using 

the p-values based on 5% significance level. The standard errors of estimated model, 

as well as the correlations between the independent and dependent variables are also 

considered in the process of malung decision whether to remove or retain the 

variables. The rules are arranged as follows, 

The removal of variables depends on insignificant p-values starting with the 

highest value in the model. 

If the correlation is high but insi,eficant p-value also high, then the variable 

is skipped. 

If the removal of variable causes the increment in the standard error, then the 

variable is retained. 

If more than one variable are highly insignificant together with weak 

correlations, then the variables are removed as a group. 



The reduced model must passes all diagnostic tests as described in Chapter 3.  

In particular, the nine model selection procedures are SURE-Autometrics, SURE- 

PcGets, SURE-Mine, Azltornetrics-SURE, Stepwise-SURE, Mine-SURE, Azrtornetrics, 

Stepwise and Mine. The performance of models selected using these procedures are 

compared by measuring forecast errors. 

5.2 Measures of Forecasting Errors 

In this study, the data is divided into in-sample for estimate the model, and out-sample 

for model validation. A model that fit 'best' in-sample might not be also 'best' when 

it comes to prediction using the out-sample data (Bartolomei & Sweet, 1989; Pant & 

Starbuck, 1990). Hence the accuracy of forecasting using the estimated model is 

assessed by the out-of-sample tests instead of goodness of fit in the in-sample tests. 

According to Greene (2012), most of forecasting accuracy measures are designed to 

evaluate out-sample forecasts. These measures are based on the errors from the 

forecasts. 

An out-of-sample evaluation of forecasting accuracy begins with the division of the 

data series into a fit period (i.e. in-sample) and test period (i.e. out-sample). The fit 

period is used to identify and estimate a model while the test period is reserved to 

assess the model's forecasting accuracy. Ln this study, the forecasts of one until three- 

steps ahead are performed recursively until all out-sample data points are exhausted. 

Subsequently, the forecast errors are determined by subtracting each of these forecasts 

from the observe data values in the test period as follows, 



where 1 denotes number of steps-ahead forecast. At forecasting origin (I*), the 

forecasts are generated for time periods T+1, T+2, . . ., T+l. 

5.2.1 Error Measures 

This study compared the forecast errors from final model selected by SURE- 

Az~tornetrics and other selection procedures discussed in Section 5.1. The errors are 

calculated by the difference between the actual values and out-sample forecasts. There 

are various ways of obtaining the summary statistic of the forecast errors. As 

discussed in Hyndman and Koehler (2006), it depends on the choice of error measures 

and the use of statistical operator. For instance, the error measures would be an 

absolute errors, squared errors, percentage errors, or relative errors, whereas the 

possible statistical operator is median, arithmetic mean or geometric means. 

Typically, personal taste or certain criteria such as reliability, resistant to outliers, 

interpretability, validity or consensus, and descriptive of underlying distribution could 

be as reference in choosing the error measure (Armstrong & Collopy, 1992; Fildes, 

1992). 

Hence the root mean square error (RMSE) and geometric root mean square (GRMSE) 

are chosen for this study for the purpose of comparison analysis with SURE-PcGets 

since the measures were employed in Ismail (2005). Despite of this, the RMSE is the 

most commonly error measure for assessing the performance of forecasting models 

and the GRMSE is able to deal with outliers and extreme values. An indicator for a 



good forecasting performance is through the smaller values of these measures. Both 

error measures are described as follows, 

1 
[T: ]2(n+1-I)  

GRMSE = n g: ( I )  

where 2, (1) is forecast error at the 1-step-ahead forecast, n is number of observations 

in test period, T is the forecast origin time, and 1 is number of steps-ahead. 

The median across all equations for both RMSE and GRMSE are used to represent the 

selected models. The performance of each model selection procedure are assessed by 

ranking these medians in ascending orders from one to nine where one will represent 

the best forecasting performance. If the median values are similar, then the procedure 

receives the lowest rank. 

5.2.2 Equality Test 

The measures in previous section assesses the forecast accuracy of an estimated final 

models based on the forecast error statistics. According to recent study, (Chen, Wan, 

& Wang, 2014), these measures have some limitations where the values resulted due 

to chance and the difference between competing models might be stochastically 

generated. Thus, the judgment about the forecasting performances based on these 

error measures only, might be inefficient. Hence, tlvs study also included statistical 

tests as a formal way to determine whether forecasting using final models selected by 
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SURE-Az~tometrics predicts more accurately than others. A statistical test was 

employed to test the equality of forecasts fiom the competing models. This test also 

being applied in SURE-PcGets (Ismail, 2005) evaluation. 

The test was based on the small sample modification of the Diebold-Mariano test 

proposed by Harvey, Leybourne and Newbold (1997). It focused on the loss 

differentials denoted by, 

6 

where El, is error measure fiom models selected by SURE-Az~tometrics, and El, is 

error measure from the competing models selected by other selection procedure. The 

two procedures have an equal performance if and only if the error measures have zero 

expectation for all equations in the model. Hence, the null hypothesis is given as, 

H , : E ( ~ , ) = o  forallt (3.35) 

Then, the sample mean loss differential is, 

and the estimated variance of the mean loss differential is, 

2 h-1 

( 2 )  = [ *  n + - n - * ) f *  (X)] 
k=I 



The statistic has asymptotically t distribution with (n-1) degrees of freedom, is 

formulated as follows, 

where h is the number of steps-ahead. 

5.3 Air Passenger Flows Data 

In 2005, Ismail conducted a study on demand for air travel between UK and six 

countries using a seemingly unrelated regression equations (SURE) model. The 

annual data from year 1961 to year 2002 was used in the empirical study of SURE- 

PcGets. The dependent variable (Yi,) was the total annual of international passenger 

traffic (in thousands) from and to UK (two-way) reported by airports country, which 

known as a route onwards. The values represent the total passengers camed by all 

airlines flying between the LK and each route including all passengers camed on 

scheduled and chartered services, excluding those camed on aircraft chartered by 

Government Departments, regardless the economy or business classes. 



The countries included are Germany, Sweden, Italy, Japan, USA and Canada. These 

routes were chosen to evade the routes of hlgh tourist intensity such as Spain. Fibwe 

5.1 displays the number of air passengers for the six routes from 196 1 to 2002. 

Figure 5.1. Number of Air Passengers for Six Routes 

The figure showed the trends of passengers' numbers flying on the six routes are 

increasing over the years. The increment is noticeably for UK-US route starting from 

year 1976, but the numbers of passengers have decreased since 2001. This might be 

due to terrorist incident in September 11, 2001. The trends of flight passengers using 

UK-Sweden and UK-Japan are the lowest compared to other routes and they are quite 

similar with the latter has slightly decreased after 1997. Meanwhile, trend of 

passengers using UK-Italy route arose over the trend of UK-Germany air passengers. 

The independent variables are income (in USD billion), trade (in USD million), price 

ticket (in USD) and 'world' trade (in USD billion). The income variable is a personal 

disposable income (xi,,), whereas the trade ( ~ ~ 2 , )  was included to capture the effects of 

passengers who travel for business purposes which reflect the strength of economic 
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relationship between UK and the respective country. The price ticket (xi3[) is the 

return fare between UK and country using the airports that are selected on the basis of 

its importance as a gateway to enter or leave a country as shown in Table 5.1. Both 

income and price were common variables used in many travel demand models (Ismail 

& Fildes, 2007; Lazirn, 1995). Since they are in local currency, it was converted to 

USD currency after being deflated using consumer price index (CPI). Meanwhile, the 

'world' trade (xi4J is a total trade of all industrial countries that is included to improve 

forecast as well as to consider the effects of transit passengers (Garcla-Ferrer, 

Highfield, Palm, & Zellner, 1987). 

Table 5.1 

The Selected Airports to Determine Price Tickets between Coz~ntries 

Country Airports 

UK 

Germany 

Sweden 

Italy 

Japan 

us 
Canada 

London 

Frankfurt 

Stockholm 

Rome 

Tokyo 

New York 

Vancouver 

In thls application study, all the variables including the number of passengers have 

been transformed to achieve stationarity where each variable was log transformed and 

differenced one time. During the estimation, 36 observations starting from year 1962 

to 1997 are used to fit the models and the remaining observations (1998 - 2002) are 

used to evaluate the models. The model has six equations correspond to the six routes. 

As guidelines, this study referred to Ismail (2005) in formulating the initial GUMS. It 



comprises of three lags of dependent variables (Ayit) and four independent variables 

(Ax&) including their first lag   AX;^(^-^)). Hence, the initial GUMS has a total of 11 

variables for each equation as follows, 

where j is the lag length, Ayi, is the growth rate of the number of passengers in year t 

for route i, AxikI is the growth rate of the kth independent variable in year t for route i, 

sit are identically independent normally distributed disturbances with mean zero and 

variance 2, a and 4 are unknown parameter vectors to be estimated. 

Table 5.2 shows the initial GUMS estimated using FGLS by SURE-Atrtometrics, 

SURE-PcGets and SURE-Mine, including OLS estimates by Autometrics, Stepwise, 

Mine, Autometvics-SURE, Stepwise-SURE and Mine-SURE. Each estimated equation 

(route) in the GUMS passed all the diagnostic tests except the deteroscedasticity test 

which is not computed due to insufficient observations. This should not be a matter of 

concern since heteroscedasticity is often a problem associated with cross-sectional 

data, but not time-series data. The p-value of MC-QLR test is 0.082 which is 

significant at 10% level of significance indicating that the seemingly unrelated 

regression equations (SURE) model is appropriately specified. Additionally, the 

adjusted R squares ( R 2 )  and standard errors for each route also shown in the table. 



Table 5.2 

Estin~nted GUMS ofAir Passengers' Flows using FGLS and OLS 

Variables 

Constant 

bi,, (Income) 

hi , ( , - I )  

Ax,,, (Trade) 

%(,-I) 

kc,,, (Price) 

hi3(1-1) 

kci,, ('World 
Trade') 

UK-Germany UK-Sweden ZK-Italy UK-Japan UK-US UK-Canada 

FGLS OLS FGLS OLS FGLS OLS FGLS OLS FGLS OLS FGLS OLS 

. . 0.5 19* 0.492 -0.138 -0.159 -0.015 -0.156 0.037 0.360 0.188 0.108 -0.002 -0.109 
. . hi4(t-~) (1.757) (1.253) (-0.357) (-0.319) (-0.055) (-0.438) (0.063) (0.483) (0.573) (0.244) (-0.009) (-0.354) 

R2 0.309 0.356 0.090 0.105 0.483 0.503 0.181 0.214 0.090 0.17 1 0.643 0.653 
Standard errors 0.060 0.072 0.078 0.096 0.05 1 0.062 0.118 0.145 0.070 0.083 0.038 0.047 
*** Significant at 1%, ** Significant at 5%, * Significant at lo%, ( ) t-value 



In the table, values of R2 from OLS estimate are much larger compared to FGLS 

estimates for all the routes, which in contrast to the standard errors. This is expected 

since FGLS is more efficient in SURE model. At least 63.6% of the variables in the 

GUMS are insignificant except for UK-Canada route estimated by FGLS. The route 

has the highest R2 and the lowest standard error which showing that 7 out of 11 

variables are already significant at 10%. The GUMS also reveals that UK-Sweden and 

UK-US are initially have the lowest R2 for both estimation method, but the standard 

errors are quite smaller as compared to large value in UK-Japan. 

Then, nine model selection procedures as explained in Section 5.1 are used to find the 

'best' model £rom the initial GUMS. Subsequently, the selected models are employed 

on the one until three-steps ahead forecast. In order to determine which procedure 

yield the smaller forecast error, two error measures and two types of statistical tests as 

mentioned in Section 5.2. 

5.3.1 Estimated Models of the Six Routes 

This section represents the estimated model of air passengers selected using the nine 

model selection procedures. SURE-Atltometrics, SURE-PcGets and SURE-Mine are 

implemented on the initial GUMS based on FGLS estimation, whereas At~tometrics, 

Stepwise, Mine, Atitometrics-SURE, Stepwise-SURE and Mine-SURE are applied on 

initial GUMS that is estimated using OLS. All these procedures used 5% as the 

sigtllficance level. The estimated models are separately shown in Table 5.3 to Table 

5.8 according to UK-Germany, UK-Sweden, UK-Italy, LK-Japan, UK-US and UK- 

Canada route, respectively. The models estimated by SURE-Autometrics, SURE- 

PcGets, SURE-Mine, Atrtometrics-SURE, Stepwise-SURE and Mine-SURE displayed 
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the FGLS coefficients' estimates. While the OLS coefficients presented by 

Azrtometrics, Stepwise and Mine. The models selected by SURE-PcGets were re- 

estimated using FGLS based on selected variables from Ismail (2005) since the study 

allowed for the exclusion of constant term in the model. 

The model selected by SURE-Azitometvics, SURE-PcGets and SURE-Mine showed 

that the p-value of the correlation disturbances amongst the equations using the MC- 

QLR test are 0.001, 0.007 and <0.001, respectively. As for both Autornetrics-SURE 

and Stepwise-SURE, the p-value is 0.010 while Mine-SURE resulted in 0.001. These 

results indicated that these models are more efficient with FGSL estimation. 

Furthermore, each equation within these models has passed all the diagnostic tests. 

The tables also consist of adjusted R' and standard error for each of the estimated 

models. Based on the adjusted R~ values, models for UK-Canada have the highest 

values with an average of 0.6, followed by 0.5 in UK-Italy. Amongst the model 

selection procedures within the UK-Italy though, showed that model estimated by 

SURE-PcGets produced substantially lower than average (0.23). This could be due to 

number of variables retained in the model since other procedures choose at least three 

variables, except only one in the model selected by SURE-PcGets. Moreover, this 

procedure is the only one has insignificant variable in the model which is the price 

(Ax3) in UK-Sweden and lag one of trade (AqtUl)) in UK-Japan. It might be due to re- 

estimation. By focusing on the standard errors of the estimated model, UK-Japan has 

the hghest where all the values were above 10%. While the standard errors for UK- 

Sweden was close to 10%. Other routes obtained about 5% to 8% for all the nine 

model selection procedures. 
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Table 5.5 

Estimated Models for UK-Italy Route 

Model selection procedures 

SURE- SURE-PcGets SURE- Autometrics- Mine- 
Variable Mine SURE Stepwise-SURE Autometrics Stepwise Autometrics h4in e 

Constant 0.035** 0.063*** 0.047*** 0.034* 0.034' 0.034* 0.035* 0.035* 0.035* 
(2.083) (4.833) (2.867) (2.009) (2.009) (2.018) (1.935) (1.935) (1.935) 

AY,,-3 - - - - - - - - - 

AX,,, (Income) 0.448*** 0.329*** 0.517*** 0.452*** 0.452*** 0.478*** 0.504*** 0.504*** 0.504*** 
(5.363) (3.275) (6.494) (5.427) (5.427) (5.691) (4.756) (4.756) (4.756) 

Axl3, (Price) 

hi,, ('World 0.657*** 0.514** 0.671*** 0.671*** 0.670*** 0.667** 0.667** 0.667** - 
Trade') (2.889) (2.343) (2.946) (2.946) (2.942) (2.73 1) (2.73 1) (2.73 1) 

Standard errors 0.058 0.075 0.054 0.058 0.058 0.058 0.061 0.061 0.061 
*** Significant at I%, ** Significant at 5%, * Significant at lo%, ( )  t-value 



Table 5.6 

Estimated Models for UK-Japan Route 

Model selection procedures 

SURE- SURE-PcCets SURE- Mine- Autometrim- Stepwise-SURE SURE SURE Autometrim Stepwise Mine 
Variable Automeirics Mine 

Constant 0.045 0.100** 0.044 0.074* 0.074* 0.024 0.066 0.066 0.029 
(1.374) (2.749) (1.379) (1.785) (1.785) (0.645) (1.508) (1.508) (0.655) 

&,,, (Income) - - - - - - - - - 

1.168*** - 0.921*** - - 1.012*** - - 
0.824**  hi^(!-^) (4.361) (3.504) (3.736) (2.414) 

~ x , ~ !  ('World - - - 
Trade') 

Standard errors 0.137 0.150 0.128 0.148 0.148 0.13 1 0.152 0.152 0.140 
*** Significant at 1%, ** Significant at 5%, * Significant at lo%, ( )  t-value 



Table 5.7 

Estimated Models for UK- US Route 

Model selection procedures 

SURE-PcGets SURE- Autometrim- Mine- 
Variable Mine SURE Sfepwise-SURE SURE Autometrim Auiometrics Stepwise Mine 

Constant 0.03 1 0.048** 0.016 0.03 1 0.03 1 0.016 0.029 0.029 0.014 
(1.498) (2.245) (0.782) (1.349) (1.349) (0.770) (1.215) (1.215) (0.622) 

Ax,,, (Income) - - 

Axi,, (Price) - - - - - - - - - 

0.104** 
- 

0.149*** 
hi3(1-1) (2.156) (3.354) - - - - 

0.135*** 0.135** 
(2.906) (2.101) 

AY,~, ('World 0.938*** 0.622** 0.960*** 0.911*** 0.91 I*** 0.948*** 0.943*** 0.943*** 0.929*** 
Trade') (3.254) (2.268) (3.424) (2.968) (2.968) (3.41 1) (2.927) (2.927) (3.007) 

R2 0.247 0.165 0.298 0.191 0.191 0.301 0.191 0.191 0.302 
Standard errors 0.076 0.081 0.072 0.080 0.080 0.072 0.082 0.082 0.076 

*** Significant at 1%, ** Significant at 5%, * Significant at lo%, ( ) t-value 



Table 5 . 8  

Estimated Models for U K - C a n a d a  Route 

Model selection procedures 

SURE- SURE-PcGeis SURE- Autometrics- Mine- 
Variable SURE Stepwise-SURE Auiometrics Auiornetrics Mine Stepwise Mine 

Constant 0.009 0.008 0.008 0.003 0.003 0.00 1 -0.003 -0.003 -0.003 
(0.605) (0.549) (0.543) (0.229) (0.229) (0.107) (-0.199) (-0.199) (-0.199) 

AY,,-1 
- - - - - - - - - 

0.347*** 0.369*** 0.353*** 0.238** 0.238** 0.247** 0.303** 0.303** 0.303** 
AYiYil-2 (3.689) (3.927) (4.170) (2.533) (2.533) (2.633) (2.654) (2.654) (2.654) 

- - - 0.224** 0.224** 0.214** 0.268** 0.268** 0.268** 
Ayit-? (2.349) (2.349) (2.280) (2.288) (2.288) (2.288) 

Ax,,, (Income) - - - - - - - - - 

hi,, (Price) -0.120*** -0.113*** - 
(-2.945) (-2.769) 

Axi4, ('World 0.561*** 0.545*** 0.710*** 
Trade') (3.211) (3.057) (3.810) 

Standard errors 0.047 0.048 0.048 0.043 0.043 0.043 0.047 0.047 0.047 
* * *  Significant at 1%, ** Significant at 5%, * Significant at lo%, ( ) t-value 



Basically, Autometrics and Stepwise have selected similar variables for all routes. The 

similarities also shared by manual selection which is Mine but only for LK-Germany, 

UK-Sweden, UK-Italy, and UK-Canada. Since Autornetrics-SURE, Stepwise-SURE and 

Mine-SURE are based on the same principle of single selection, thus the resulted 

variables in the selected models also possess the similarities. However, the coefficients 

are different due to estimation are done using the FGLS. Meanwhile, SURE-Autometrics 

and SURE-PcGets are able to obtain similar variables only for UK-Canada. There were 

also variables that were removed fi-om the GUMS by all the model selection procedures. 

Amongst them are three periods of lags dependent variables in UK-Germany, UK-Italy 

and UK-US, besides the other three routes removed fust period lag. 

Afterwards, these models are used to forecast up to three-steps-ahead using the 5 

remaining observations in the data (1998 - 2002). For one-step-ahead process, the 

forecast of 1998 is equivalent to the forecast from the final selected models using data for 

1997. Then the data for 1998 is added to the 1962 to 1997 series and the model is re- 

estimated to obtain the forecast for 1999. The whole process of adding, re-estimating, and 

forecasting is performed repeatedly until 2002. As for the two-steps ahead, the process 

started from year 1999 until 2002 while the three-steps-ahead calculated recursively from 

2000. 

The forecasting accuracies from all procedures are measured by the root mean squares 

error (RMSE) and the geometric root mean squares error (GRMSE). Both measures were 

calculated for each route. This study used the median of these measures to represent each 

model selection procedure. The one up to three-steps-ahead forecasting accuracy 
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represented by median of RMSE and GRMSE for all model selection procedures are 

summarised in Table 5.9 and Table 5.10, respectively. The performances are ranked from 

1 (smallest error measure) to 9 (largest error measure). Procedures with similar errors 

received the lowest rank. 

Based on RMSE, the first classification of model selection procedure which comprises of 

Autometrics, Stepwise and Mine outperformed other procedures for one and two-step 

ahead forecasts. While the best procedure for three-step-ahead was SURE-PcGets and 

SURE-Autonzetrics was rank second placed indicating that simultaneously selection with 

FGLS estimates were performed better for long forecast horizon. The one and two-step- 

ahead forecast for both procedures were ranked at the bottom including SURE-Mine 

which using manual selection. 

Table 5.9 

Air Passengers' Forecasting Performances based on RMSE 

Model Selection One-Step Two-steps Three-Steps 

Procedures RMSE Rank RMSE Rank RMSE Rank -~~~ ~ 

1.  SURE- 
Autometrics 8.77 8 9.65 9 9.35 2 

4. Azltometrics- 
SURE 

8.63 

8. Stepwise 8.60 1 9.37 1 10.19 3 

9. Mine 8.60 1 9.37 1 10.19 3 



GRMSE values in Table 5.10 however showed the performances of model selection 

procedures were ranked differently. In general, all the values were smaller than RMSE 

values suggesting the existence of large or small forecast error amongst the routes. It turn 

outs UK-Japan obtained the largest errors as compared to others. Therefore, 

performances based on GRMSE are more reliable than RMSE. The best performance 

obtained by SURE-PcGets for short forecast horizon (one and two-steps-ahead) whereas 

Autometrics and Stepwise was the best at three-steps-ahead forecast. These findings are 

contradicted to performances based on RMSE. Moreover, model selection through all 

non-algorithm procedures were underperfomed at all forecast horizon except for two- 

steps-ahead forecasts where SURE-Mine remarkably ranked at second places with only 

0.1 1 differences. SURE-Autometrics however was unable to perform well using the 

GRMSE values. 

Table 5.10 

Air Passengers' Forecasting Performances based on GRMSE 

Model Selection One-S tep Two-steps Three-Steps 

Procedures GRMSE Rank GRMSE Rank GRMSE Rank 
1. SURE- 

Autometrics 5.15 6 7.18 7 8.25 6 

4. Autometrics- 
SURE 4.92 2 7.09 3 6.67 3 

7. Autometrics 4.99 4 7.13 5 6.33 1 

8. Stepwise 4.99 4 7.13 5 6.33 1 

9. Mine 5.78 9 7.50 9 8.58 9 



Table 5.1 1 

Estimated Models for UK-Germany without UK-Japan Rozrte 

Variable 

Constant 

AY,,-, 

AYi,-2 

A~i,-3 

hi,, (Income) 

+ o b i ~ ( f - , )  
'3 

Ax,,, (Trade) 

&iXi2(1-,) 

Axi,, (Price) 

&i3((- \ )  

Ax,,, ('World 

Trade') 

hid( , - , )  

R2 
Standard errors 

* * *  Significant 

I Model selection procedures 

AII routes UK-Japan 
0.012 0.017 

0.356 0.376 
0.068 0.067 

1%, * *  Significant at 5%, 

Without 
[IK-Japan All routes 

0.001 0.020 

0.357 0.349 
0 066 0.068 

Significant at lo%, ( ) t-v 

Without Without 
UK-Japan routes UKJa an All routes 

-0.003 -0.01 1 0.006 0.007 

Mine-SURE 

Without AII routes UK-Japan 





V) Q) 

* ?+s E 2 ! $$ : G  
I I I I I;;:.? I I I 

2  z Dl b 
o 3 8 

2 
{ 2 : - 

* s' : ;;; 
I I I S ?  I I I I Eg I 

Cl b 
b  y CJ, 
0 q A  

VI w  

; 5  
0 0 

10 9 
0 0 

2  % 
T q  
0 0 

2 ,? % 
o o 

C.l e- 
9 8  
0 0 

O\ b s ?  
a a 

0 'a 

I q g :  
O 0 g -  

a,N ~ 8 %  
0 0  

2 %  
0 0 

V) 

6) 
3 - 
6 :: u 

w 
Y 
Ld 
Y c 
Z 

5 
Gi 
* 
g 
V, 

* 

5 
N .. 
i 
d 
2 

A 
2 5 

u 
0 0 

8 0 

: 5 : s * : 6 
1 I l g b  I 1 %  1 1 I 

* z *  

A @ 
.O 6 
'. .y 
5 3  

 GO 

5 
$ 
2 

% 

3 
" 

B "- 0 

* n  E S ; ~  !=:a 0 CI , cO 

2 "  P zc 4 -  

f;e- I I 1 g ; ; 1 6  zmo: r n  
3 g 8  2 c 2 c  p q A  3 8 

h 

, 
$ & Z m * c  

m 

z + , 

= b V )  

: - : s * * s 
5;~s 1 1 1 - a  I 1 1 1 E %  1 

*k&oC 3 o " VI % 6 2, ~i 8 

* 292s * A X h :g I Y W  

n 

5 
U 
5 
5 . - 

Y O *  
0 0 

*. 

g - 
+ m 
1 

I I 1 5 % % %  I I ? Z ~  I I 
= 9 3  " Z Z E  ;zys 0 v 

- i 5 *  
2,: 

m 
Q) * 
3 0 

= : *  
- z *  

a 

m 
Q) 

Ei " - 

0 

- : n* n : 3 ; q  * % & Z  X n 
x \O 

2 %  I I l  o:zp I I ZG I 

s2p5 ~ ~ ' 2 d  4-1-4w 2 c 

* A  * h  : z  : 2 & S F  I I I I I 1  I I I 

gp. 2 c!, 

,-, 4 

l m Y T 6  S  : 5 ; * 3  * =' z % - m w m  ,36111? I I * " m e  goqf lF ; " Z g  I 8% I 
p p 8 0 z  ?z0=  2j,4z oz 

0 

* 
Y -  2; * 6 s & Z  

I I I I I I 1 5 s  
-.!3 r-4 b 6 &  2 ,  



Table 5.14 

Estimated Models for UK-US without UK-Japan Route 

I Model selection procedures 

Constant 
(1.318) (1.498) 

h,,, (Income) I - 
- 

(Price) 

h ( 1 - I )  

hi,, ('World 
Trade') 

k;4(1-l) 

R2 
Standard errors 
*** Significant 

0.193 0.247 
0.078 0.076 

; I%, ** Significant at 5% 

Without AII routes UK-Japan 
0.027 0.048** 

0.195 0.165 
0.078 0.081 

* Significant at lo%, ( ) t-I 

AII routes UK-Japan 
0.027 0.016 

AII routes 
UK-Japan 

0.018 0.016 



Table 5.15 

Estimated Models for UK-Canada without UK-Japan Route 

Variable 

Constant 

Ax,,, (Trade) 

%,(I-,) 

&,, ('World 
Trade') 

%4(l-l) 

I Model selection procedures 

Without AII routes UK-Japan 
-0.001 0.001 

SURE-PcGets 

Without A I ~  routes UKJapan 
0.001 0.008 

SURE-Mine 

Without AII routes UK-Japan 
0.002 0.008 

X2 
Standard errors 

Autometrics-SURE/ 
Stepwise-SURE 

Without AII routes UK-Japan 
-0.00 1 0.003 

***  Significant at 1%, ** Significant at 5%, * Significant at lo%, ( )  I-value 

0.598 0.581 
0.045 0.047 

0.553 0.576 
0.047 0.048 

0.601 0.553 
0.045 0.048 

0.646 0.636 
0.043 0.043 

0.645 0.637 
0.043 0.043 



Based on the findings, this study tried to firther the analysis by reducing the number 

of equations. Previous simulation study implied that SURE-Autometries performed 

well on a small number of multiple equations. Therefore, this data were re-analysed 

by excluding the UK-Japan route since it obtained the largest forecast errors. The 

route also has large standard error amongst the estimated models. Besides, it is the 

only Asian country considered in the data. The new estimated models and forecasting 

accuracy are explained in the following section. 

5.3.2 Air Passengers Flows excluding the UK-Japan Route 

Generally, the UK-Japan has the largest standard error for all types of procedures. 

Therefore this study also assessed the performances of all the nine model selection 

procedures when the route is removed from the model which leads to specification of 

five equations model. In this part, model selection using Autometrics, Stepwise and 

Mine were not re-applied because their selection principle is on the individual 

equation using OLS estimates. Therefore, the estimated equations for other routes are 

not affected by the removal of UK-~apan route. On the other hand, SURE- 

Atitometrics, SURE-PcGets, SURE-Mine, Autometrics-SURE, Stepwise-SURE and 

Mine-SURE are required to simplify the initial GUMS without the UK-Japan route 

since they are using FGLS estimates. 

The estimated models with or without the route are shown in Table 5.11 until Table 

5.15. As expected, SURE-Azitometrics, SURE-PcGets and SURE-Mine retained 

different variables w i t h  the equation as changing the number of equations. These 

procedures excluded or included the variables simultaneously for all the equations 

based on p-values obtained through FGLS estimation. Thus the selected models are 



dissimilar. SURE-PcGets attained insignificant variables of lagged one dependent 

variable for UK-Germany, UK-Italy and UK-Canada. The variable was originally 

significant in Ismail (2005) study with UK-US and UK-Canada excluded the constant 

terms. The development of SURE-Atltometrics followed Autometrics where the 

constant term is not included the reduction processes. Therefore, this study has re- 

estimated the models selected by SURE-PcGets with constant tenn be in all the 

equations. Other than that, all the selected models have significant variables at 5% 

and 1% level of significance. Regrettably, the MC-QLR test for model selected by 

SURE-PcGets is insignificant since the p-value equals to 0.145, whereas SURE- 

Autometrics, SURE-Mine, Mine-SURE and Autometrics-SURE obtained significant 

test with the p-value for the latter is 0.003 and the others are 0.001. 

Table 5.16 

Forecasting Performances (without UK-Japan) based on RMSE 

Model Selection One-Step Two-steps Three-Steps 

Procedures RMSE Rank RMSE Rank RMSE Rank 
1. SURE- 

Autometrics 7.90 3 8.72 3 9.58 2 

3. SURE-Mine 7.79 2 8.61 2 9.58 2 

4. Autometrics- 
SURE 8.33 7 9.34 4 9.58 2 

7. Autometrics 8.32 4 9.34 4 9.58 2 

8. Stepwise 8.32 4 9.34 4 9.58 2 

9. Mine 8.32 4 9.34 4 9.58 2 

Next, the one up to three-steps-ahead forecast were done by the estimated models. 

The forecast errors for each route are measured using RMSE and GRMSE. Table 5.16 
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shows the median of RMSE values across five routes. The model selection procedures 

are ranked 1 to 9 from smallest to largest value. The lowest rank is given to 

procedures with similar values. SURE-PcGets consistently ranked at 1 for all the 

forecast horizons. By the exclusion of UK-Japan route, simultaneous model selection 

with FGLS method using either algorithm or non-algorithm is outperformed other 

model selection principles. Starting from one up to three-steps-ahead, all the 

procedures have equivalently performed. 

As shown in Table 5.17, the performances of SURE-Azltometrics has improved by 

outperformed SURE-PcGets on the two and three-steps-ahead forecasts based on 

GRMSE. Although SURE-PcGets is consistently performed well in short term 

forecast horizon, the procedures ranked at last in the three-steps-ahead forecast which 

in reverse place of performance using RMSE. Meanwhile, other procedures have 

equivalent performance since they received similar rank as in RMSE. 

Table 5.17 

Forecasting Performances (without UK-Japan) based on GRMSE 

Model Selection One-Step Two-steps Three-Steps 

Procedures GRMSE Rank GRMSE Rank GRMSE Rank 
1. SURE- 

Autometrics 3.65 6 4.01 1 6.34 1 

4. Autometrics- 
SURE 3.50 2 6.66 4 7.12 2 

7. Autometrics 3.60 4 6.66 4 7.12 2 

8. Stepwise 3.60 4 6.66 4 7.12 2 

9. Mine 5.19 9 7.40 8 7.12 2 



The findings in this section demonstrate that forecasting performances of SURE- 

Autometrics has been improved by reducing the number of equations or specifically 

removing the equation that has poor data quality indicated by the standard error. 

Further verification is required to validate this by applying the algorithm on four 

equations since simulation study considered the number on the assessment. Thus, this 

application will support the conclusion that SURE-Autometrics is performing well 

when number of equations are minimal. 

5.3.3 Air Passengers Flows excluding the UK-Japan and UK-Sweden Routes 

In this part, SURE-PcGets is not involved in the comparison amongst model selection 

procedures since it was developed for five and six equations only. This time, the UK- 

Sweden route was excluded from the multiple equations model due to large standard 

error in the previous estimated model. Similarly, only SURE-At~tometrics, SURE- 

Mine, Az~tometrics-SURE, Stepwise-SURE and Mine-SURE will be affected by the 

route exclusion. 

Table 5.18 and 5.19 indicate the forecasting performances for the eight model 

selection procedures based on RMSE and GRMSE in the forecast of one up to three- 

step-ahead. Generally, the GRMSE values are still lower than RMSE. This could be 

due to UK-US route since the evaluation contains year 2001 where September 1 lth 

has happened. This incident really affects the number of passengers' in this route 

where it has been dropped tremendously according to Figure 5.1 (pg. 91). 



Table 5.18 

Forecasting Performances (without UK-Japan and UK-Sweden) based on RMSE 

Model Selection One-Step Two-steps Three-Steps 

Procedures RMSE Rank RMSE Rank RMSE Rank 
1. SURE- 

Autometrics 6.62 2 7.3 1 1 8.67 1 

3. Autometrics- 
SURE 

6. Autometrics 6.91 6 7.66 6 8.79 5 

7. Stepwise 6.91 6 7.66 6 8.79 5 

8. Mine 6.9 1 6 7.66 6 8.79 5 

Table 5.1 9 

Forecasting Performances (without UK-Japan and UK-Sweden) based on GRMSE 

Model Selection One-Step Two-steps Three-Steps 

Procedures GRMSE Rank GRMSE Rank GRMSE Rank 
1. SURE- 

Automefvics 3.20 1 3.14 1 5.73 1 

3. Autometrics- 
SURE 3.49 2 5.03 3 6.73 2 

6. Autornetrics 3.55 4 5.10 5 6.88 4 

7. Stepwise 3.55 4 5.10 5 6.88 4 

8. Mine 4.40 8 5.47 8 7.35 7 

Based on RMSE, the forecasting performances of SURE-Autometrics in four 

equations model is getting better as compared to five and six equations model. SURE- 

Mine also well performed except for the three-step-ahead forecast. The ranking 
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indicate that UK-Germany, UK-Italy, UK-US and UK-Canada have better forecasts 

using FGLS estimation because Autometrics, Stepwise and Mine were unable to 

outperfom other model selection procedures. 

Through GRMSE, SURE-Azrtometrics shows an outstanding performance by being at 

the first rank for all forecast horizons. Meanwhile, SURE-Mine, Mine-SURE and Mine 

which representing the non-algorithms procedures have not performed as compared to 

Autometrics-SURE, Stepwise-SURE, At~tometries and Stepwise. 

Overall, application using the air passengers7 flows data has verified the findings in 

simulation experiments study. SURE-Autometries was able to simplify the GUMS by 

selected different models from the other model selection procedures. Forecasting 

using the selected models uncover the outstanding performances of SURE- 

Azrtometrics in four equations model. 

5.4 National Growth Rates Data 

In addition to air passengers flows data analysed in previous section, this study also 

evaluate the forecasting performance of SURE-Azrtometrics using national growth 

rates data based on the study by Garcia-Ferrer, Highfield, Palm and Zellner (1987). It 

contains of the annual gross domestic product (GDP, Y,) from 1951 until 1981 for 

nine countries. Garcia-Fen-er has provided the data of GDP, real stock return (x,,), 

'world' stock return ( x ~ ~ ) ,  and money (Ml, x3,). Subsequently, updated data until 2003 

was obtained online from International Financial Statistics (IFS) database 

(www.imf.org/en/Data) only for six countries due to the availability of the data. The 

countries are Denmark, Ireland, Italy, Netherlands, UK and US. Based on the study, 

the stock return is defined as the industrial share prices and 'world' stock return is the 
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median of stock return of the six countries. The GDP measured in constant year was 

deflated using GDP deflator, whereas the real stock retum and the money were 

deflated using consumer price index (CPI). Similar to the data in Section 5.3, these 

data too were log transformed and differenced one time to avoid the issues with non- 

stationarity. The observations from 1952 to 1998 (T = 47) are used to fit the estimated 

models and the remaining 5 observations (1999 - 2003) are used for the validation 

purpose. 

According to Garcia-Ferrer et al. (1987), the estimated models for national growth 

rates which formulated within the specific-to-general approach, consisted of three lags 

of the dependent variable, two lags of stock return, one lag of 'world' stock return and 

one lag of money growth rate. Taking th s  information into consideration including 

the sample size of 47, the maximum lag length of four for each of the independent 

variables are chosen in the formulation of the initial model so that it will be as general 

as possible. However there is a possibility of endogeneity biases exist in the model, 

but this issue are not discussed in this study since the aim is on the forecasting 

accuracy amongst different procedures of model selection which is not affected by the 

endogeneity problem. 

Hence, the initial GUMS consists of four lags of dependent variable, three predictors, 

each with four period of lags with a total of 19 variables in each equation whlch 

defined as follows, 



where j is the lag length, i = 1,2,. . .,6 (countries), t = 1,2,. . .,T (time periods) and Ayi, 

is the growth rate of the GDP in year t for country i. Axikl is the growth rate of the kth 

predictor in year t for country i, G~ are identically independently distributed random 

errors with mean zero and variance 2. a and 4 are unknown parameter vectors to be 

estimated. The initial GUMS is estimated using FGLS whenever SURE-Autometrics, 

SURE-PcGets and SURE-Mine are applied, whereas other model selection procedures 

employed OLS method of estimation. Each estimated equation for national growth 

rates has passes all the diagnostic tests except the heteroscedasticity test since it is 

unable to compute due to insufficient observations. The p-value of MC-QLR test of 

contemporaneous correlation disturbances is 0.091 which is significant at 10% level 

of significance indicating that the seemingly unrelated regression equations (SURE) 

model is appropriately specified. 

Table 5.20 presents the estimated GUMS based on FGLS and OLS method, including 

the adjusted R square (R2) and standard errors for each equation. In general, the 

equations within the GUMS estimated by FGLS have smaller values of R2 and 

standard error as compared to GUMS with OLS estimates. Regardless of whether it is 

FGLS or OLS method, Denmark has the highest value of R2 whereas US obtained the 

lowest values for both R2 and standard error. Moreover, both methods showed that 

only one out of 19 variables is significant at 10% for US model. Generally, the 

percentages of significant variables in the GUMS with FGLS are much higher than 

OLS. Both estimation methods indicated that money is significant at 1% for all 

countries except for the US where only lag one of money is significant. 



Table 5.20 

Estimated GUMS of National Growth Rates using FGLS and OLS 

Denmark Ireland Italy Netherland UK US 
Variables FGLS OLS FGLS OLS FCLS 0 LS FGLS OLS FGLS OLS FGLS OLS 
Constant -0.015** -0.016 0.006 0.006 0.039** 0.034 0.005 0.004 0.004 0.003 0.033*** 0.030** 

AY;,-, 

AY,,-~ 

Ay1t-3 

AY;,-, 

Axl,, (Stock) 

~ , , ( r - , )  

&,,(,-2) 

+ h i , ( , - 3 )  
+ a hi , ( ' - 4 )  

Axi2, ('world') 

&;z(r-I) 

h , 2 ( , - 2 )  

aL!2 ( I -3 )  

&;2(t-4) 

4, (Money) 

h i 3 ( , - , )  

aXz3(#-2) 

&i3(,-3) 

k~slr-41 

R2 0.802 0.825 0.788 0.794 0.43 1 0.479 0.689 0.703 0.75 1 0.760 0.126 0.178 
Standard errors 0.034 0.044 0.03 1 0.042 0.063 0.082 0.045 0.060 0.040 0.054 0.017 0.022 
*** Significant at 1%, ** Significant at 5%, * Significant at 10% 



5.4.1 Estimated Models of National Growth Rates 

All the nine procedures were applied to select the 'best' model by simplifying the 

initial GUMS stated in previous section. The simplified models are shown in Table 

5.21 until 5.26 according to Denmark, Ireland, Italy, Netherland, UK, and US country, 

respectively. Each table corresponds to each country displays estimated equation by 

SURE-At[tometrics, SURE-PcGets, SURE-Mine, Autometrics-SURE, Stepwise-SURE, 

Autometrics, Stepwise and Mine, as well as R2 and standard error values. The 

variables in the model selected by SURE-PcGets were obtained from Ismail (2005) 

and re-estimated because there were equations without constant term within the 

model. The test of independence amongst the estimated models indicated that FGLS 

is more appropriate than OLS where the p-values of MC-QLR test are 0.037, 0.004, 

<0.001, 0.081, 0.041 and 0.054, respectively selected by SURE-At~tometrics, SURE- 

PcGets, SURE-Mine, Autometrics-SURE, Stepwise-SURE and Mine-SURE. However, 

estimated model of Netherland (0.006) and US (0.002) growth countries selected by 

Stepwise and Stepwise-SURE have failed normality assumption on disturbances tern. 

The equation of Denmark originally has six to seven significant variables estimated 

either by OLS or FLGS. After the simplification, SURE-Atltometrics was able to 

increase the numbers by getting nine variabIes significant at 5%. Thus, the equation 

has the highest R2 with the smallest standard error compared to other procedures. 

Atltometrics, Stepwise and Mine selected similar variables, so did Az~tometrics-SURE, 

Stepwise-SURE and Mine-SURE where the estimated values were slightly different 

since FGLS was used instead of OLS. SURE-PcGets however retained only five 

variables. In this equation, only SURE-Atltometrics and SURE-Mine retained lag one 

the growth rates. 
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Table 5.21 

Estimated Models of Denmark Growth Rate 

Model selection procedures 

SURE-PeCets SURE- Autometrics- 
Variable Mine SURE Stepwise-SURE Mine-SURE Autometries Stepwise Autometria Mine 

Constant -0.012* -0.003 -0.015** -0.010 -0.010 -0.010 -0.015* -0.015* -0.015* 

AY,,-3 - - - - - - - - - 

A~,,-4 0.246*** - 0.221*** 0.208*** 0.202*** 0.214*** 0.243*** 0.243*** 0.243*** 

AX,,, (Stock) -0.062** - - - - - - - - 

* i ~ ( r - ~ )  - 0.11lr** - - - - - - - 

& , ~ ( t - q  -0.073*** -0.083*** - -0.094*** -0.088*** -0.089*** -0.115*** -0.1 15*** -0.115*** - *,l(r-s) - 
h) 
+ *,1(,-4) - 

 AX,^, ('World') - 

*,2(,-1) 0.259*** 

R 
Standard errors 

*** Significant at I%,  * *  Significant at 5%, * Significant at 10% 





7s =- 
I L L  - 

b f l  



Table 5.24 

Estimated Models of Netherland Growth Rate 

Model selection procedures 
SURE- n.,w.r. n - . SURE- Autometrics- 

Stepwise-SURE Mine-SURE Autometrics ve Stepwise Mine 

0.015* 0.016* 0.016* 0.012 

&,I(,-*) - - - - - - - - - 

+ * I I ( , - ~ )  - -0.016 - - - - - - - 
N 

k1~(r -4 )  -0.243*** - -0.237*** -0.189** - -0.231*** -0.220** - -0.258*** 
 AX,^^ ('World') - -0.294* - - - - - - - 

R2 0.776 0.743 0.772 0.761 0.737 0.772 0.765 0.745 0.779 
Standard errors 0.048 0.053 0.049 0.05 1 0.055 0.049 0.054 0.056 0.052 

*** Significant at 1%, ** Significant at 5%, * Significant at 10% 



Table 5.25 

Estimated Models of UK Growth Rate 

Model selection procedures 

SURE-PcGets SURE- Autornetrics- 
Variable Mine SURE Stepwise-SURE Mine-SURE Autometrics Stepwise Autometrics Mine 

Constant 0.002 -0.001 0.00 1 0.002 0.003 0.002 0.001 0.00 1 0.00 1 

AY,+? - - - - - - - - - 

*Yit-3 -0.245** - -0.238** - - - - - - 

A ~ i f - 4  -0.302*** - -0.260*** -0.242* * * -0.255*** -0.238*** -0.202** -0.202** -0.202** 

bx,,, (Stock) - - - - - - - - - 

R2 0.767 0.633 0.766 0.765 0.762 0.765 0.769 0.769 0.769 
Standard errors 0.047 0.064 0.048 0.049 0.050 0.049 0.053 0.053 0.053 
*** Significant at 1%, ** Significant at 5%, * Significant at 10% 



As for Ireland, all the procedures selected lagged two of stock return and money 

except that SURE-PcGets and SURE-Mine have retained additional variables which 

are lagged one of dependent variable and lagged one of money. SURE-Mine also 

included lagged three of stock return which only significant at 10%. The values of R2 

and standard errors in this equation were quite similar for all procedures. 

Regardless differences in all procedures, the estimated growth rates for Italy revealed 

an exact variables where R2 is 60.3% and standard errors is 0.072 for Azrtometrics, 

Stepwise and Mine. These values are somewhat higher than others because OLS 

estimates. The selected variables are lagged one of growth rates, the stock return and 

the money. 

Stepwise and Stepwise-SURE only has retained the money when estimating the 

growth rates for Netherland with high R2 which is 74.5% and 73.7%, respectively. 

This indicated that the money was an important variable. Other procedures also 

retained this variable with additional variables such as lagged four of the stock return 

and lagged four of the 'world' stock return. Both SURE-Azltometrics and SURE- 

PcGets included the basic of these variables in the equation. Amongst procedures that 

employed FGLS estimates, SURE-Atltometrics obtained largest R2 (77.6%) and 

smallest standard error (0.048). 

The equation in estimating of UK growth rate were equivalent when using 

Autometrics, Stepwise and Mine since they selected lagged four of dependent variable, 

lagged four of stock return, lagged two and four of 'world' stock return and the 

money. SURE-Atitometrics and SURE-Mine also choose these variables with the 



addition of lagged three of dependent variable and lagged three of the money. The 

estimated growth rate for US country failed the Chow test at 1 % level of significance. 

Therefore Autornetrics included the insignificant lagged one of dependent variable to 

maintain the con,mency whlch is the reason of Azltometrics-SURE also has this 

variable. However, SURE-Mine included the stock return which sigmficant at 10% 

and passed all the diagnostic test. SURE-Azltometrics did not retain any of these 

variables because the algorithm has tolerance for the Chow test at 0.5%. 

Overall, the estimated equation for US growth rate obtained not only lowest standard 

error but also smallest R2value. The most reliable variables in estimating the growth 

rates for any countries are the stock return and the money in spite of model selection 

procedures implemented. 

5.4.2 Forecast Accuracy of National Growth Rates 

Subsequently, the estimated models in Section 5.4.1 were employed for the forecast 

of one up to three-steps-ahead. The performances of all the model selection 

procedures were compared using the median of RMSE and GRMSE across equations 

to represent each procedure. Table 5.27 shows the percentages of forecasts error 

measured by RMSE for one until three-step-ahead forecasts. The values are ranked 

fi-om 1 (the smallest) to 9 (the largest) to indicate the forecasting performances for the 

procedures where similar values received the lowest rank. 

The RMSE for one-step-ahead forecasts shows that the model selected simultaneously 

using FGLS estimation such as SURE-PcGets, SURE-At~tometrics and SURE-Mine 

outperformed others where the former is the best procedure. The performances are 
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similar for two-steps-ahead forecasts with SURE-Mine shifted the rank with SURE- 

PcGets to be the best procedure and sustained it up to three-steps-ahead forecasts. 

Regardless the forecasts horizon, SURE-At~tometrics maintained the performances at 

the second placed. SURE-PcGets however were distinctively underperformed when 

forecasted at three-steps-ahead since it is ranked at 9. 

Table 5.27 

National Growth Rates' Forecasting Performances based on M E  

Model Selection One-Step Two-step Three-Step 

Procedures RMSE Rank RMSE Rank RMSE Rank 
1. SURE- 

Autometrics 

2. SURE-PcGets 

3. SURE-Mine 

4. Autometrics- 
SURE 

5. Stepwise-SURE 

6. Mine-SURE 

7. Autometrics 

8. Stepwise 

9. Mine 

As described in Section 5.1, all these procedures are classified into four categories 

where the last belongs to manually selection procedures. By disregarding the best 

three ranked forecasting performances based on RMSE, the manual selection 

procedures was better than the algorithm procedures. Amongst individually selection 

procedure where OLS is the estimation method, Mine outperformed Autometrics and 

Stepwise for all forecasting horizon where the rank is 5, 4 and 3, respectively. This 

alikeness also occurs within the second model selection classification which 
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comprises of Autometrics-SURE and Stepwise-SURE. Forecast of one up to three- 

step-ahead reveals that Mine-SURE (rank 4) consistently outperformed these 

procedures. 

Table 5.28 

National Growth Rates' Forecasting Performances based on GRMSE 

Model Selection One-Step Two-steps Three-Steps 

Procedures GRMSE Rank GRMSE Rank GRiiSE Rank 
1. SURE- 

Autometrics 

4. Autometrics- 
SURE 

7. Autometrics 4.44 8 4.97 6 4.79 7 

8. Stepwise 4.44 8 4.97 6 4.48 5 

9. Mine 3.95 4 4.23 4 3.75 3 

Table 5.28 shows the summaries of one up to three-step-ahead forecasting 

performances measured by GRMSE. Unlike RMSE, the best procedure measured 

using GRMSE is the Mine-SURE for one-step forecast, and SURE-Mine for two and 

three-step-ahead forecast. Although the values are slightly lower, the SURE-Mine 

obtained similar ranks as in RMSE. The SURE-Atltometrics however has performed 

very poorly (rank 7) at one-step-ahead forecasts. By chance, the difference with 

SURE-Mine is insignificant using the modified Diebold-Mariano test (SI* = 0.6895). 

The performance of SURE-Autometrics for two and three-step-ahead also decline but 

it is not as tremendously bad as one-step-ahead forecast. The procedure is ranked at 3 
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and 4, respectively as compared ranked 2 using RMSE. The three-steps-ahead 

forecasts also reveals that SURE-PcGets, Autometrics-SURE, Stepwise and Mine has 

equally ranked for both error measures where the former at the bottom. 

Again, the manual selection procedures outperformed algorithm procedures on the 

individual selection using OLS and initially individual selection with FGLS estimates 

for the fmal model. Particularly, Mine outperformed Autornetrics and Stepwise, 

whereas Mine-SURE outperformed Autometrics-SURE and Stepwise-SURE for all 

forecasting horizon. 

Table 5.29 

Measures of Forecast Error for Italy Growth Rate 

Model Selection One-Step Two-steps Three-Steps 

Procedures RMSE GRMSE RMSE GRMSE RMSE GRMSE 
1. SURE- 

Autometrics 2.52 1.02 0.89 0.53 0.60 0.40 

4. Autometrics- 
SURE 

7. Autometrics 2.69 0.83 1.01 0.58 0.72 0.22 

8. Stepwise 2.69 0.83 1.01 0.58 0.72 0.22 

9. Mine 2.69 0.83 1.01 0.58 0.72 0.22 

By using this data, all model selection procedures were able to select the stock return 

and money to estimate the growth rate of Italy. Hence Table 5.29 shows the error 

measures of one up to three-step-ahead forecast specifically for this country. On the 



basis of RMSE, SURE-Azitometrics (2.52) has the lowest error only for short horizon, 

while Stepwise-SURE performed on the other horizons. Meanwhile, GRMSE 

indicated that all the single model selection procedures with OLS estimation which 

are Autometrics, Stepwise and Mine are the best procedures for one and three-step- 

ahead forecasts. 

Based on the forecasting analysis, SURE-Atitometrics was able to perform quite well 

for all forecasts horizon on the basis of RMSE. However, GRMSE indicated that it 

has underperformed. Previous results also implied that the performances of algorithm 

become better as the number of multiple equations decreased. Additionally, growth 

rate for Italy suggested that it has the best forecast accuracy when the model is 

selected by single equation procedure with OLS estimation method. Therefore, the 

data are re-analysed using five equations where Italy has been chosen to be excluded 

from the group. 

However, only eight procedures of model selection were involved since SURE- 

PcGets only applied on six equations model. Subsequently, the selected models were 

used to forecast the countries' growth rate for one up to three-step-ahead. The forecast 

errors from each country are measured using RMSE and GRMSE. The median of 

these values are shown in Table 5.30 and 5.3 1, respectively. Similarly, the forecasting 

performances of the procedures are ranked according smallest to highest value. 

Table 5.30 indicated that Mine-SURE is the best model selection procedure for one- 

step-ahead forecast, whereas both two and three-step-ahead are best forecasted by 

model selected by SURE-Mine. SURE-Autometrics received the second rank for all 



forecast horizons. This implied that modelling with or without Italy does not affect the 

forecasting performances of model selected by SURE-Autometries since the ranked 

remain unchanged for both multiple equations models. RMSE also showed that 

procedures using FGLS is outperformed model with OLS estimates. 

Table 5.30 

Forecasting Performances (without Italy) based on RMSE 

Model selection One-Step Two-steps Three-Steps 

procedures RMSE Rank RMSE Rank RMSE Rank 
1. SURE- 

Autometrics 5.76 2 6.36 2 5.74 2 

2. SURE-Mine 5.76 2 4.92 1 4.7 1 1 

3. Autometrics- 
SURE 5.82 5 6.38 3 6.16 8 

6. Automeb-ics 5.86 6 6.42 6 6.1 1 7 

7. Stepwise 6.20 8 6.42 6 6.08 5 

8. Mine 5.80 4 6.42 6 5.75 3 

Even with GRMSE as shown in Table 5.31, Mine-SURE once more outperformed 

other model selection procedures for one-step-ahead including the three-step-ahead 

forecast. While the best performance of forecast at two-step-ahead still retained by 

SURE-Mine and SURE-Azltometrics maintained at the second place. By using the 

GRMSE, the ranked of SURE-Azltometrics has declined from the second to fourth 

place for one-step-ahead and third place for three-step-ahead forecast. These results 

revealed that manual selection procedures outperformed algorithm procedures where 

Mine has the third rank for one and two-step-ahead forecasts. 



Table 5.31 

Forecasting Performances (without Italy) based on G M S E  

Model selection One-Step Two-steps Three-Steps 

procedures GRMSE Rank GRMSE Rank GRMSE Rank 
1. SURE- 

Autometrics 

3. Autometrics- 
SURE 

6. Autometrics 4.95 5 5.65 7 5.93 7 

7. Stepwise 4.95 5 5.65 7 5.32 6 

8. Mine 3.98 3 4.30 3 3.87 4 

Since SURE-Autometrics was unable to show an outstanding performance, the 

number of equations has to be reduced. As revealed by air passengers' data and 

simulation results, the algorithm performed well on four equations model. Hence, 

another country is excluded fiom the group of countries. Initially, Denmark was 

removed due to large forecast errors amongst other countries. However the MC-QLR 

test indicated that the contemporaneous correlation disturbances amongst equations 

are insignificant which lead to inappropriate of SURE specification. Thus Denmark is 

added back to the model. Subsequently, US country is removed since the estimated 

model has the lowest R2 value and the forecast errors are extremely lower as 

compared to other countries. Moreover the MC-QLR test showed significant result of 

dependencies between disturbances term. 

Eight model selection procedures were employed in fmding the best model 

representing the growth rate of Denmark, Ireland, Netherland and UK. The 
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procedures are listed in Table 5.32 as well as the error measure of one until three-step- 

ahead forecasted fiorn the selected models. The values represent the median of RMSE 

between the four countries. The performance of each procedure is ranked for 1 

(smallest) to 8 (largest) where ties received the lowest rank. 

Table 5.32 

Forecasting Performances (without Italy and US) based on RMSE 

Model selection One-Step Two-steps Three-Steps 

procedures RMSE Rank RMSE Rank RMSE Rank 
1. SURE- 

Autometrics 6.50 6 6.60 8 6.24 2 

2. SURE-Mne 5.94 1 5.67 1 5.71 1 
3. Autometrics- 

SURE 6.4 1 3 6.39 3 6.43 5 

6. Autometries 6.48 5 6.53 5 6.54 8 

7. Stepwise 6.65 8 6.53 5 6.53 7 

8. Mine 6.45 4 6.53 5 6.36 4 

Forecasting performances for multiple equations model without Italy and US showed 

SURE-Mine has outperformed other model selection procedures for all forecast 

horizons. Besides that, Mine-SURE keep up the good performances by receiving 

second rank for both one and two-step-ahead forecasts. SURE-Autometrics though 

was only able to sustain the good performance for forecast at three-step-ahead. The 

algorithm obtained sixth place for the short forecast horizon and ranked at last for 

two-step-ahead forecast indicating poor performance so far as compared to previous 

results. 



Table 5.33 

Forecasting Performances (without Italy and US) based on GRMSE 

Model selection One-Step Two-steps Three-Steps 

~rocedures GRMSE Rank GRMSE Rank GRMSE Rank 
1. SURE- 

Autometrics 3.85 1 5.1 1 4 4.71 1 

3. Autometrics- 
SURE 

6. Autometrics 5.04 5 5.81 8 6.14 8 

7. Stepwise 5.04 5 5.66 6 5.84 6 

8. Mine 4.46 4 4.97 3 5.1 1 4 

Table 5.33 shows the forecasting performances of four countries estimated by model 

selected by the eight procedures using median of GRMSE. Ultimately, SURE- 

Atttometrics was able to be the best procedure in one and three-steps-ahead forecasts 

but the performance was ranked at fourth for two-steps-ahead forecast. Nonetheless, 

SURE-Mine again indicates a good performance since it received onIy fust or second 

ranked. 

5.5 Summary of Findings 

Both data used in this study have six equations represented by routes in the air 

passengers' flows data and countries in national growth rates data. The routes were 

UK-Germany, UK-Sweden, UK-Italy, UK-Japan, UK-US and UK-Canada. 

Meanwhile the countries were Denmark, Ireland, Italy, Netherlands, L K  and US. The 

initial GUMS of air passengers has 11 variables with 33 observations while GUMS of 

growth rates has 19 variables with 47 observations. Nine model selection procedures 
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were applied to simplify the GUMS. The procedures are Autometrics, Stepwise, 

Autometrics-SURE, Stepwise-SURE, SURE-Autometrics, SURE-PcGets, Mine, Mine- 

SURE, and SURE-Mine. 

For air passengers' model selection, Autometrics and Stepwise has similarly selected 

variables in the equation for all the routes. Therefore, Autometrics-SURE and 

Stepwise-SURE also has similar variables with different estimated coefficients. They 

shared similar principle in the selection procedures but the final model is estimated 

using different method. In the same way, Mine and Mine-SURE has similar variables 

except the estimates. Meanwhile, SURE-Autometrics, SURE-PcGets and SURE-Mine 

has selected different variables for each route. Only model selected by SURE-PcGets 

contained insigmficant variables. The forecasts using the selected models revealed 

RMSE values were larger than GRMSE. The reason could be due to the presence of 

year 2001 in the out-sample data where September llth incident had happened. As 

concurred with Armstrong and Fildes (1995), RMSE does greatly affected by extreme 

values. Consequently, GRMSE is preferred in indicating the forecast accuracy. 

However, other procedures outperformed SURE-Az~tometrics. It was presumed since 

the simulation study already showed poor performance in six equations model. 

Following Ismail (2005), the number of equations reduced to five where UK-Japan 

was removed due to highest standard error. The estimated models using Az~tometrics, 

Stepwise and Mine are still similar because they were selected individually. Thus the 

removal of equation does not affect the estimated model, whereas the estimated 

values were affected in models selected by Autometrics-SURE, Stepwise-SURE and 

Mine-SURE since it used FGLS method. Other procedures have selected models 
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differently as the number of equations changed. The forecasting accuracy for SURE- 

Autometrics did improved a lot by obtained the smallest GRMSE values in two and 

three-step-ahead forecast. Ji conjunction with simulation study, forecasting accuracy 

for four equations model was measured by eliminate the UK-Sweden route. As 

verifymg the study, SURE-Autometrics showed an outstanding performance in the all 

forecasts horizon based on GRMSE. Without both routes, RMSE also conformed 

SURE-At~tometrics forecasting accuracy. 

The application on national growth rates data is to validate the forecasting 

performances for model selected fi-om large set of initial GUMS. The fmdings were 

not comparable as air passengers' data. Even though the procedures are different in 

the selection principle, surprisingly they were able to obtain similar variables for Italy 

growth rates. Autometrics and Autometrics-SURE retained one insignificant variable 

to maintain the congruency of in the US model. Unlike previous data, Autometrics 

and Stepwise included different variables in the growth rates of Netherland and US. 

As for the forecasting accuracy, the values of RMSE and GRMSE were different only 

slightly. SURE-Autometrics was performed well by ranked at the second place for all 

forecast horizon based on RMSE values. However, these findings were not supported 

by GRMSE values which showed severe performance in one-step-ahead forecast. The 

accuracy increased for two and three-step-ahead forecasts. 

As expected, SURE-Autometrics was performed well when the number of equations is 

reduced to five and four by the exclusion of Italy followed by US. Even though the 

algorithm has not produced the lowest RMSE value, it still in the top three ranked. By 

using GRMSE indicator, SURE-Atltometrics has outstanding performances when 

138 



there are four equations in the model. However both error measures showed that the 

forecasts are more accurate with model estimated by FGLS method and selected using 

manual procedures where SURE-Mine and Mine-SURE maintained the top three 

performances' ranked. 

The national growth rates data revealed that manual procedures outperformed 

algorithm procedures could be due to failure in several diagnostic tests whenever a 

certain variable is excluded from the equations. The tests that failed are either 

normality test or heteroscedasticity test or Chow test. By using the manual 

procedures, these problems can be monitored closely. 

From the above discussion, it can be summarised that SURE-Az~tornet~.ics appears to 

perform well on model with four equations. Nevertheless, the performances depend 

on whether a relatively good quality data are used. This suggests that the formulation 

of initial GUMS also plays an important role in the success of this procedure, 

confirming Hendry and Doornik (2009) conclusion about At~tornetrics. 



CHAPTER SLX 

CONCLUSION AND FUTURE RESEARCH 

6.1 Conclusion 

Common practices in the model formulation involved human intervention. The 

specification of model such as inclusion of variables is decided through theories and 

personal knowledge. This situation indicates the existence of tacit knowledge which 

can be gained through research experiences and cannot be articulated. Consequently 

the model building becomes a challenging practice especially for non-experts due to 

inexperience in research studies and lack of statistical knowledge. After years of 

research on the area of automatic modelling, Hendry and Doornik (2014) has 

concluded that the automatic modeller using model selection technique would be able 

to obtain a better model as compared to human modeller. This automatic modelling 

tool relies on algorithm that provides a step by step guidance in the model selection 

processes which will lessen the role of tacit knowledge. Regardless the experience 

and expertise, modellers are able to practice in a wide range of research contexts by 

employing the algorithms. 

Most of the existing algorithms focus on the modelling of single equation. Thus, this 

study has explored the possibility of model selection for multiple equations using 

automatic approach by algorithm. Hence, the development of an algorithm known as 

SURE-Autometrics has been established. The selection strategy is on the basis of 

general-to-specific (GETS) modelling approach. Particularly, the algorithm is 

developed to select the 'best' model for seemingly unrelated regression equations 

(SURE). 
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The selection procedure begins with the formulation of general model consists of all 

the possible predictors which then is reduced to a parsimonious model. Since there are 

many types of multiple equations, this study highlighted the seemingly unrelated 

regression equations (SURE). This type of model has one of the properties in model 

selection algorithm within GETS approach where each equation should be congruent. 

In other words, there is no violation in any assumptions regarding the disturbances for 

each equation. Thus the disturbances are identically independent normally distributed 

(i.i.d) with homoscedasticity variance. However, these multiple equations are 

correlated to each other through the disturbances where the feasible generalised least 

squares (FGLS) method of estimation is more efficient rather than ordinary least 

squares (OLS). Model selection using OLS estimates require the equations to be 

selected individually. 

Basically, the new algorithm was developed using the search strategy in Autometrics 

algorithm with additional dependence test of correlation disturbances in the series of 

diagnostic tests for model adequacy checlung analysis. The inclusion of dependence 

test is to ensure that the model is appropriate for SURE specification. Otherwise, the 

equations are better using single equation model selection such as Azitometrics. 

Therefore, while maintaining the search method in Autometrics, the new algorithm 

replaced the single equation estimation (OLS) with multiple equations estimation 

(FGLS), besides the inclusion of independence test in the diagnostic checking 

procedure. Hence, the name of the new algorithm is SURE-Azitometrics. 

The SURE-Autometrics has five development phases. The first phase deals with the 

formulation of an initial specification of the general unrestricted model (GUMS), and 
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then followed by the second phase which can be considered as pre-search reduction 

process. At this phase, the highest insignificant variables are deleted to reduce the 

complexities of variables in the initial GUMS. Third phase is the procedure of finding 

the all possible simplified models from the GUMS after pre-search. The tree search 

strategy is used to minimize the computational efficiency so that only terminal models 

are considered instead of all the possible models. The terminal is defined as a model 

with significant variables, valid reduction from the GUMS and each equation is 

congruent. The fourth phase is similar to the third by reiterated the tree search strategy 

to produce more terminal models. Finally, the last phase is dedicated to select the 

'best' final simplified model amongst all the terminal models resulted from the third 

and fourth phase based in information criteria. The selected final model is denoted as 

the specific unrestricted model (SUMS). The fully developed algorithm is then 

transformed into a computer programming code via GAUSS (version 9.0) language. 

Afterwards, the performance of SURE-Atltometrics was assessed through simulation 

experiments. The algorithm was replicated 100 times for each of experimental 

conditions using artificial data that were generated based on true specification models 

and requires the usage of real and simulated data. Since the data-generating process is 

known, the performances are measured by the percentages of similarities in the 

inclusion of variables between selected model and true model. This measure also 

equivalent with the probability of SURE-Atitometrics finds the correct specification. 

There are five correct specification models which are described as follows, 



S1: Each equation consists of constant term and disturbances where the 

constant is estimated by the mean of dependent variable and the coefficient for 

disturbances represent by the standard deviation of dependent variable. 

S2: Each equation has constant term, one lag of dependent variable and 

disturbances where the coefficients' are estimated by FGLS and disturbances' 

coefficient is the standard error of each estimated model. 

S3: Each equation has constant term, one lag dependent variable, one 

independent variable including the lag one variable and disturbances. The 

coefficients' associated with the variables are estimated by FGLS and 

coefficient's for disturbances is represented by the standard error of model. 

S4: Each equation is specified similarly to S3 except that different 

independent variable is considered. The coefficients' associated with the 

variables are estimated by FGLS and coefficient's for disturbances is 

represented by the standard error of model. 

S 5 :  Each equation is specified by the union of S3 and S4 for each equation. 

The coefficients' associated with the variables are estimated by FGLS and 

coefficient's for disturbances is represented by the standard error of model. 

The values of disturbances in the true specifications were simulated using standard 

normal distribution and were allowed to correlate amongst the equations from 

weakest to strongest strength. 



During the simulation of SURE-Autometrics, initial GUMS is formulated according to 

two sets where small set contains 18 variables and large set comprises of 39 variables. 

Subsequently, SURE-Atitometrics simplified the GUMS at 5% and 1% significance 

level for sample of 146 observations and half of it whlch is 73 observations. 

The algorithm assessment involved the specification searches on 120 experiment 

conditions that were designed from various characteristics that rise during the data- 

generating process (DGP) and variation during SURF-Atltometrics simplification. 

Since the algorithm was developed for multiple equations model, the performances 

were not only performed on six equations model as in Ismail (2005), but also on two 

and four equations model. Hence, the total conditions were 360. In assessing the 

performances, each condition was replicated 100 times where the outcomes were 

classified into four categories. Category 1 indicates that the true specification has 

been selected, whereas Category 2 considers the true specification nested in the 

selected model. Failure of selecting model without the right specification is classified 

to Category 3, and Category 4 belongs to model with equations resulted in different 

category. The outcomes in Category 1 were similar as the probability of SURF- 

Atltometrics finds the correct specification. 

The algorithm has well performed by achieving high probabilities which is at least 

80% (Doornik, 2009; Hoover & Perez, 1999; Ismail, 2005). Table 6.1 shows the 

conditions where SURE-Atitometrics able to obtain the high probability. It is clearly 

showed that the algorithm is not performed in the model with large number of 

equations since none of the conditions obtained high probability in correctly specified 

all five true models. However, the outcomes were actually at least 70% which 
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signifies the possibility that the algorithm also is likely to perform well for a model 

with large number of equations. Low probabilities might be due to unable to consider 

the model resulted with different variables amongst the equations. As the number of 

multiple equations increase, the different between equations become larger. Hence, 

simple model such as two equations is able to get higher probabilities. 

Table 6.1 

Experiment Conditions with Probabilities above 80% 

True Number of equations 
specification 2 4 6 

Based on these simulation findings, it can be concluded that the SURE-Atltometrics 

has an outstanding performances for all conditions in the model of two equations. 



Amongst the five specification models, S5 received lower probability as number of 

equations increased. This is because S5 contains five relevant variables and added 

with 13 to 36 irrelevant variables in the initial phase of GUMS. During the evaluation, 

the fmal selected model retained irrelevant variables and removed relevant variables. 

These variables are varied across the equations. Details inspection revealed that 

within the model, there is equation able to remove all the irrelevant variables but 

failed to retain at least one of the relevant variables. This situation is actually occurs 

to S3 and S4 which originally has three variables and added up with irrelevant 

variables from 15 to 36. As the number of equations increased, the selected variables 

across the equations become difficult to assess. 

Overall findings also suggested that the performance of SURE-Autometrics indicated 

by the probability of correct specification decreased as the number of equations 

increased. This can be seen starting from the model of four equations where not all 

conditions were able to achieve high percentages and none of the conditions in S5 are 

found to be the best. This is expected since the true model of S5 contains five 

predictors and all four equations must be able to reduce all the irrelevant variables in 

order to be counted. However, the probabilities were not very bad because it was at 

least 70%. 

To conclude, the algorithm performed well when the number of equations and number 

of predictors in the true specification models were as minimal as possible. The target 

size or significance level setting also affects the outcomes of simulation results where 

probabilities are higher for 5% level as compared to 1% level of significance. 



Afterwards, two sets of real data were used for validation of SURE-Autometrics. The 

algorithm is applied in modelling air passengers' flows data, and national growth rates 

data. These data were based on Ismail (2005). In the application, several model 

selection using algorithm and non-algorithm procedures were considered. The non- 

algorithm signifies the selection through manual process where the removal and 

inclusion of variables are using trial and error process based on author's judgment. All 

these procedures are classified according to type of selection and method of 

estimation. The classification and the corresponding procedures are as follows, 

1. At~tometrics and Stepwise are algorithm procedures that select the equations 

individually using OLS estimation method. 

2. Autometrics-SURE and Stepwise-SURE are algorithm procedures that select the 

equations individually using OLS and the final selected multiple equations will be 

estimated by FGLS method. 

3. SURE-Autometrics and SURE-PcGets are algorithm procedures that 

simultaneously select the multiple equations using FGLS method. 

4. Mine, Mine-SURE, and SURE-Mine are non-algorithm procedures where the 

selection form and estimation method for each procedure corresponds to each 

classification above, respectively. 

Specifically these nine model selection procedures were classified based on the 

selection process (algorithm vs. manual), type of model (single vs. multiple equations) 

and method of estimation (OLS vs. FGLS). For each of data set, the model can be 
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specified as SURE model or several equations that are independent of each other's. 

Then, the selection were done automatically (i.e. algorithm) and manually where each 

can be estimated using FGLS and OLS. 

Subsequently, the forecast of one until three-steps ahead were carried out by the 

selected models. The forecasting performances amongst these nine model selection 

procedures were compared to determine which procedure yields the smallest error in 

forecasts. The forecast errors were measured using the root mean square error 

(RMSE) and geometric root mean square error (GRMSE). Since there were multiple 

equations, median of these measures was chosen to represent the procedures. The best 

procedure is identified according to the ranked of these medians. 

Throughout the real data studies, it was revealed that application of model selection 

using algorithm procedures where it is automatically select a model are more easier 

than using non-algorithm procedures. The modellers require spending extra time in 

deciding the removal or inclusion of variables since it involved trial and error 

processes while maintaining the congruency of each equation. Both real data revealed 

that there was more than one possible model that is 'best7 in representing data. 

Although the equations within initial model have similar number of variables, the 

final selected model might be Qfferent in terms of number of variables as well as the 

variables itself. 

As concluded in the simulation study, SURE-Autornetrics demonstrated excellent 

performances for one until three-steps ahead forecast when the equations number is 

not large. However, it also depends on the data because the forecast of growth rates 



for six countries showed SURE-Autometrics is the second best procedure. Therefore, 

it can be assumed that the algorithm has the possibility to give high accuracy in the 

forecasting. 

Finally, this study concludes that the model selection algorithm for multiple equations 

has successhlly developed. The algorithm is recognised as SURE-Atltometrics where 

performances fiom both simulation experiments and real data application indicated 

that it has surpassed the algorithm with similar principles which is SURE-PcGets. The 

latter has been developed only for five and six equations model while SURE- 

Azrtometrics can be applied to at least two equations model. The severe results in 

experiments suggested the need in improving the search strategies in the algorithm. 

Realising there are others model selection procedures can be implemented, the 

application studies illustrated that SURE-Autometrics selects different model from 

others. Based on the forecasting accuracy, the selected models sometimes 

outperformed, other procedures and sometimes are underperformed. However, the 

differences are insignificant. Amongst the two sets of data, the national growth rates 

has problem with the congruency of estimated equations within the model as 

compared to air passengers' data. The estimated national growth rates suffered from 

failure in normal distribution, heteroscedasticity variance and parameter constancy. 

Thus, the performances of SUE-Atttometrics based on forecasting accuracy also rely 

on the quality of the data. 

Even though non-algorithm procedures which manually selecting the model 

sometimes have outstanding performances, this type of procedure are time 



consuming. During the real data analyses, it took about more than 10 minutes to 

employ the non-algorithm procedures as compared to less than 3 minutes using the 

algorithm. However, these average times are insignificant for other researchers since 

it will be varied according to the software used in the execution of the procedures, the 

complexities of the multiple equations, the quality of data, and the tacit knowledge 

acquired by the researchers The time could be longer especially for young researchers 

due to difficulties in deciding which variables should be removed or retained in the 

model. It involves the process of trial and error in removing variables which could 

lead to the problem of mass significance as discussed in Chapter 2. The SURE- 

Autornetrics, SURE-PcGets and Azltornetrics are model selection algorithms that were 

developed within the GETS approach. These algorithms actually have more than one 

possible model that is best represents the data. Since it aims to help the practitioners 

in modelling, automatically there is only one model presented for the purpose of 

forecasting. The selected model is based on the information criterion. Therefore, 

SURE-Az~tometrics could possibly achieve a similar model as selected by other 

procedures, but it was neglected during the selection procedure. 

This study also concludes that the search strategy in SURE-Azltometrics needs an 

improvement. The drawback is identified during the manual selection procedures for 

modelling growth rates of six countries. Throughout the selection process where 

variables are removed or included in the model, the data showed the problem of 

maintaining the congruency for each country. Additionally, the removal of variables 

does not only affects the significance of other variables within the equation, but also 

influent the significance of variables in other equations by using FGLS estimation. 

The modellers will not realize this behaviour by using algorithm procedures. The 
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search strategy implemented on SURE-Atltometrics is based on sequential procedure 

where the selections are one by one but the estimation involved all the equations. The 

problem could be arise if the data lack of quality such as failure in any diagnostic tests 

or the dependent variable also correlated with independent variables in other 

equations. This could be the reason of SURE-Autometrics has inconsistent 

performances based on RMSE and GRMSE for one up to three-step-ahead forecasts. 

Nevertheless, the findings from real data applications also demonstrated that 

modellers need to pay more concentration during the formulation of initial GUMS 

because it is the most crucial part in any model selection algorithm within the GETS 

approach. Furthermore, model selection using non-algorithm procedures is time 

consuming and the modellers require knowledge and experience to make judgment 

about the removal and inclusion of the variables. This problem is overcome by the 

algorithm offered by this study. It is suitable to be implemented by students who still 

in the learning process or novice in research areas. 

6.2 Suggestions for Further Research 

Based on the conclusions, there are three aspects that can be considered for future 

study which are algorithm development, assessment of the simulation experiments 

and application using real data. At first, the development of SURE-Autometrics needs 

to be advanced in two ways. One way is by providing an alternative method for model 

estimation. Rather than FGLS method, the full information maximum likelihood 

(FIML) or iterative feasible generalised least squares (IFGLS) can be used to estimate 

the S L N  model. Second way is to improve the search strategy in model selection 



procedure through parallel computing. This technique will gain the computational 

efficiency for model selection of multiple equations. 

As for assessment of simulation experiments, additional measures could be used to 

evaluate the ability of SURE-Atrtometrics in fmding the true model when the data- 

generating process (DGP) is known. Specifically, if the algorithm is unable to obtain 

similar specification as the true model, the performance could be assessed by the 

average proportion of irrelevant variables that are retained in the final model whch 

indicate that it survives the reduction process. This statistic may reflect the size of 

hypothesis testing. Hence, the average proportion of relevant variables will indicate 

the success of the reduction which also signifies the power of hypothesis testing. 

Moreover, the experimental condition could be varied in terms of unequal number of 

observation within the model. 

Lastly, the application of algorithm on real data could be extended to cross-sectional 

type of data. In this situation, the second phase of SURE-Autometrics which focused 

on the reduction of lag variable should be turn off. At the same time, analysis of 

variance (ANOVA) can be considered for the comparison of forecast errors amongst 

the model selection procedures to determine whether the dfferences are significant. 

Sharing the same belief as Hendry and Doornik (2014), Ismail (2005) and other 

researchers (Castle et al., 2013), model selection algorithm could advance the 

automatic modelling approach. This approach however still needs human intervention 

in the first phase, which is very crucial in determining the success of the model 

selection procedure. It is hoped that the existence and exploration of automatic 



approaches will bridge the gap between applied and theoretical modelling and lessen 

the role of tacit knowledge. 
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