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Abstrak

Kajian ini tertumpu kepada ujian kumpulan bebas bagi membandingkan dua atau
lebih min menggunakan kaedah berparameter iaitu ujian Alexander-Govern (4G).
Ujian ini menggunakan min sebagai sukatan kecenderungan memusat dan dianggap
sebagai alternatif yang lebih baik berbanding ANOVA, ujian Welch dan ujian James.
Walaupun ujian 4G mempunyai kawalan yang baik terhadap kadar ralat Jenis I dan
menghasilkan kuasa yang tinggi pada varians heterogen, ujian ini tidak teguh pada
data yang tidak normal Justeru, min terpangkas telah dicadangkan dalam ujian
tersebut untuk menangani masalah ketaknormalan dan kemudiannya, satu penganggar
yang lebih teguh dikenali sebagai penganggar M satu langkah terubahsuai telah
diperkenalkan. Penganggar berkenaan adalah tidak dipengaruhi oleh bilangan
kumpulan, namun telah gagal untuk menghasilkan kawalan yang baik terhadap
kawalan ralat Jenis I, dalam keadaan kepencongan dan kurtosis yang ekstrim. Kajian
ini mencadangkan penganggar MOM terWinsor (WMOM) sebagai sukatan
kecenderungan memusat dalam usaha untuk meneguhkan ujian AG. Ujian AG yang
ditambah baik ini, AGWMOM mampu menyingkirkan kewujudan data terpencil
daripada taburan data. Satu kajian simulasi terhadap 5,000 set data telah dilaksanakan
untuk membandingkan prestasi ujian: AG, AGMOM (ujian. AG menggunakan
penganggar MOM), AGWMOM, ujian-t dan ANOVA. Keputusan menunjukkan
bahawa ujian AGWMOM telah meningkatkan bilangan kondisi teguh pada taburan
terpencong dengan hujung normal dan taburan terpencong dengan hujung berat
berbanding ujian yang lain.

Sebagai tambahan, ujian ini telah menghasilkan kuasa yang tinggi dalam kebanyakan
kondisi pada empat kumpulan dengan saiz sampel tidak seimbang. Dapatan kajian
mendorong untuk ujian ini menjadi paling sesuai apabila taburan data adalah
berhujung berat.

Kata kunci: ujian Alexander-Govern, penganggar MOM, kadar ralat Jenis I, Kuasa
ujian, ujian AGWMOM



Abstract

This research centres on independent group test of comparing two or more means by
using the parametric method, namely the Alexander-Govern (4G) test. It uses mean as
its central tendency measure and is considered as a better alternative to the ANOVA,
the Welch test and the James test. Although the AG test has a good control of Type I
error rate and produces a high power under variance heterogeneity, it is not robust to
non-normal data. Thus, trimmed mean was proposed in the test to handle the problem
of non-normality and later, a more robust estimator called modified one step M
(MOM) estimator was introduced. These estimators are not influenced by the number
of groups, but failed to give a good control of Type I error rate, under extreme
conditions of skewness and kurtosis. This research proposes the Winsorized MOM
(WMOM) estimator as a measure of central tendency in attempt to robustify the AG
test. This enhanced AG test, AGWMOM is able to remove the appearance of outliers
from the data distribution. A simulation study of 5,000 data sets was conducted to
compare the performance of the tests: AG, AGMOM (AG test using MOM estimator),
AGWMOM, ttest and ANOVA. The results show that the AGWMOM test has
improved the number of robust conditions under skewed normal tailed and skewed
heavy tailed distributions compared to the other tests. Additionally, the test produced
high power in most conditions under four groups with unbalanced sample size. It
leads that this test is convenient specifically when the data distribution is heavy tailed.

Keywords: Alexander-Govern test, MOM estimator, Type I error rate, power of test,
AGWMOM test
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CHAPTER ONE

INTRODUCTION

1.1 Background of the Study

This research makes comparison of the performances of the Type I error rate and
power of five different tests. These tests are (i) Alexander-Govern test (4G test), (i)
Modified One Step M-estimator (MOM) estimator in the Alexander-Govern test
(AGMOM test), (iii) Winsorized Modified One Step M-estimator (WMOM) estimator
in the Alexander-Govern test (AGWMOM test), (iv) t-fest (v) Analysis of Variances
(ANOVA). Each test is performed under two, four and six groups conditions, with the
combination of both balanced and unbalanced sample sizes, equal and unequal
variances respectively, with each of the g- and k- distributions. The g- and A-
distribution is used to determine the level of skewness and kurtosis respectively in a

data distribution.

The best among the five tests will produce the best control of Type 1 error rate and
also produce high power, under skewed heavy tailed distribution. The independent
group tests such as the ANOVA have been applied in different field of life, for
example in medicine, economics, sociology and agriculture, as discussed by Pardo,
Pardo, Vincente and Esteban (1997). Three main assumptions have to be fulfilled
before the ANOVA can work effectively, namely: (i) homogeneity of the variance (ii)

normality of the data and (iii) independent observations of the data distribution.



The ANOVA is a classical method of analysis for comparing the differences between
three or more means. It is used for testing the equality of the measure of the central
tendency of a distribution, and is robust to small deviations from a normal
distribution, mainly when the sample size is large enough to guarantee normality, as

mentioned by Wilcox (1997, 2003).

Yusof, Abdullah, Yahaya and Othman (2011) in their research discovered that the
two major problems affecting the ANOVA 1s the appearance of non-normality and
heterogeneity of the variance in a data distribution. Due to this, the Type I error rate
is increased and there is a reduction in the power of the test. When the distribution of
the data is heavy tailed, the standard error of the mean can be greatly increased
(Wilcox & Keselman, 2002). Due to this, the standard error of the ANOVA becomes
larger than it ought to be and the power of the test is reduced. In order to obtain a
good test, the Type [ error rate should be well controlled and the power of the test
must not be reduced. This implies that neither should Type I error rate be increased

nor should there be a decrease in the power of the test.

The ANOVA is very sensitive to the homogeneity of variance assumption and when
there is violation, the outcome of the analysis could be unreliable; whereby the p-
value may become too conservative or large. Therefore, it is very crucial to test for
the homogeneity of the variance and to check for the equality of the variance
assumptions by using the correct test, so as to increase the genuineness of the results

(Brown & Forsythe, 1974; Wilcox, Charlin, & Thompson, 1986).



The problem of heterogeneity of variance has been discussed by few researchers and
some alternatives have been proposed. Welch (1951) introduced the Welch test that is
used for testing the hypothesis of two populations with equal means. It is mentioned
in different literatures as a better alternative to the ANOVA (Keselman, 1982; Wilcox

et al., 1986; Algina, Oshima & Lin, 1994; Lix, Keselman, & Keselman, 1996).

The Welch test gives a good control of Type I error rate when the variances are not
equal. It becomes a common alternative to parametric procedure that deals with
heteroscedasticity. However, for a small sample size, the Welch test fails to give a
good control of Type I error rate, as the group size increases (Wilcox, 1988). James
(1951) introduced the James test as a better solution for ANOVA under heterogeneity
of variance. The James test is used for weighing means sample and is discussed in
different literatures as a better alternative to using the ANOVA (Lix et al., 1996;

Oshima & Algina, 1992; Wilcox, 1988).

When the sample size is small, and the data distribution is non-normal, the James test
fails to give a good control of Type [ error rate. Both the Welch test and the James
test are used for analyzing a data distribution that is non-normal with unequal
variance (Brunner, Dette, & Munk, 1997; Kohr & Games, 1974; Krishnamoorthy, Lu,

& Matthew, 2007; Wilcox & Keselman, 2003).

The Alexander-Govern test was introduced in 1994 to deal with heterogeneity of
variance under the condition of normality, but is a test that is not robust to non-
normal data. Schneider and Penfield (1997) and Myers (1998) accepted that

performance of the Alexander-Govern test is better compared to the James test and



Welch test respectively. Myers (1998), suggested that the Alexander-Govern test
provides a good solution to the problem of variance heterogeneity. The AG test can
excellently put under control the Type I error rate when there is heterogeneity in the

variances, under a normal data distribution.

It is a well-known fact that the common mean is a very good estimator under normal
distribution but it is extremely sensitive to the presence of outliers. The Alexander-
Govern test was originally developed using the common mean as its central tendency
measure, hence, directly affecting its performance when dealing with non-normal
data. As a result, it fails to provide a remarkable control over the probability of Type I

error rate for a non-normal data and the power of the test is reduced.

Lix and Keselman (1998) introduced a better alternative to the common mean with
the use trimmed mean in a few robust test statistics that improved the performance of
the tests for a non-normal data. The use of trimmed mean and Winsorized variance
are better alternatives to the common mean and variance respectively. This is
attributed to some good properties, such as having a remarkable control of Type I
error rate and the power of the test is increased, when there is a violation under the
assumptions of homogeneity of the variance and when the distribution of the data is

normal (Wilcox, 1995).

Trimmed mean is obtained by taking the average of the middle data only after
removing a certain percentage of the largest and the smallest data value, while its
variance is estimated by using the Winsorized variance. Trimming is the process of

removing a fixed amount of extreme value in percentage, from both tails of a



distribution during the process of analyzing data (Abdullah, Othman, Yahaya & &
Yusof, (2011). Suppose in an experiment consisting of two groups, an individual may
choose not to consider the two largest scores and the two smallest scores from each of
the groups, such that the outliers present in either group would be removed. In using
trimmed mean as a robust measure and scale in a data distribution, some limitations
exist when the data are trimmed symmetrically without considering the nature of the

distribution.

In general, the amount of trimming is performed regardless of the distribution of the
data. There will be a great mistake in removing a data distribution where outliers are
not located, mainly in a normal data distribution, because in doing so it will lead to
loss of information. Meanwhile, in cases of skewed data distribution, the trimming
process performed on the data must not be equal at the right and left tail of the data
distribution. Another weakness in using trimmed mean is that it cannot give a good
control of Type I error rate when the number of groups is more than two; i.e for four
groups and above, it could no longer control the error rate in the test, especially when
applied in Alexander-Govern test as its central tendency measure (Lix & Keselman,

1995).

One of the suggested estimators as a better alternative to the trimmed mean is known
aé the MOM, which is able to detect the appearance of outliers in a data distribution
(Yusof, Abdullah, Yahaya & Othman, 2011). The MOM estimator empirically trims
only the extreme data sets (Othman, Keselman, Padmanabhan, Wilcox, & Fradette,

2004). However, the main disadvantage of using the MOM estimator as a measure of



the central tendency, in Alexander-Govern test, is that it cannot control the error rate

in the test under extreme condition of skewness and kurtosis.

1.2 Problem Statement

In testing the equality of means between independent groups, two major issues need
to be satisfied which are normal distribution and equal variances. The problems with
unéqual variances were discovered in statistical literature by Behrens (1929) and
Fisher (1935). A few studies offered some alternative approaches in handling these
problems. The most common approaches that made used of robust statistical tests are

those of the Welch (1951) and the James (1951).

The Alexander-Govern (1994) test is a better alternative to Welch test, James test and
the ANOVA. This is due to its simplicity in calculation (Schneider & Penfield, 1997).
According to Schneider and Penfield (1997), Lix and Keselman, (1998) and Myers
(1998), the Alexander-Govern test gives a good control of Type [ error rate for a
normal data under variance heterogeneity, but this test is not robust for a non-normal
data. This results showed that the Type I error rate became out-of-control when data

distribution was not normal.

The main reason why it cannot work correctly under non-normal data is because it
uses common mean as its central tendency measure. The common mean is affected by
the appearance of outliers when there is a deviation from normality. Lix and
Keselman (1998) introduced the trimmed mean as a better alternative to the mean for

a non-normal data. The trimmed mean has been used by different researchers in the



past to give a good control of Type I error rate for a non-normal data (Keselman,

Wilcox, Taylor, & Kowalchuk, 2000; Luh & Guo, 2005; Luh, 1999).

In applying trimmed mean in a data distribution, it possesses some disadvantages.
Firstly, the percentage of trimming is placed at prior, resulting in the elimination
process. Secondly, in trimming process, it should be done carefully, to minimize loss
of information. Thirdly, it cannot handle large size of extreme value (Yahaya,

Othman, & Keselman, 2006).

According to Abdullah, Yahaya and Othman (2007); an alternative to the use of
trimmed means in Alexander-Govern test is a highly robust estimator, referred to as
the MOM estimator. It was observed that when the distribution of the data is skewed,
the MOM estimator kept under control the Type I error rate. The MOM estimator
empirically trims extreme data set depending on the kind of the data set, be it a
normal or skewed data distribution. When it was applied in Alexander-Govern test, it
gave a remarkable result in putting under control Type I error rate, for a normal or
highly skewed data distribution, but it failed to produce a remarkable control over the
probability of Type I error rate under extreme condition of skewness and kurtosis

(Othman et al., 2004).

In a condition where the degree of skewness and kurtosis is exceptionally high,
another preferred option is Winsorized mean, as introduced by Hasings, Monsteller,
Tukey and Winsor (1947). Unlike the trimmed mean where data are trimmed from
both tails of the distribution, the Winsorization process does not affect the sample

size (Dixon & Tukey, 1968; Tukey & McLaughlin, 1963).



Ochuko, Abdullah, Zain and Yahaya (2015) described the Winsorization process as
making a replacement or an exchange for the outlier detected value with a preceeding
value closest to it. Winsorization has several advantages more than using the
trimming procedure in a data distribution. Firstly in Winsorization, it makes a
replacement or an exchange for an outlier detected value with the closest value to the
outlier. Secondly, the sample size of the data remains unaltered. Thirdly,
Winsorization helps to prevent loss of information. Fourthly, Winsorization helps to
make the sample sizes of the data to be the same unlike using the trimming

procedures.

1.3 Objective of the Research
The objective of this research is to produce a good statistical test in comparing the
mean of independent groups when the assumptions of variance homogeneity and

normality are violated.

The specific objectives are:
1. To modify the AG test using the new estimator namely the Winsorized MOM
estimator.
ii.  To evaluate the robustness of the modified 4G test in terms of Type I error
rate and power.
iii.  To compare the performance of the AG test, AGMOM test, AGWMOM test, ¢-
test and the ANOVA.

iv.  To evaluate the reliability and efficiency of the test using real data.



1.4 The Scope of the Research

This research deals with the modification of the Alexander-Govern test, by using the
Winsorized MOM estimator as its central tendency measure, under variance
heterogeneity, to produce a good control of Type I error rate and high power under

extreme conditions of skewness and kurtosis.

1.5 Significance of the Research

This research will appraise existing tests used when the assumptions of variance
homogeneity and normality are violated.

To students: This research will expose and educate them on the importance of
applied statistics in our world today, in overcoming insurmountable problems of the
past with the aid of using simulated programmes, such as the Statistical Analysis
Software (54S8) software programming package, for the analysis of simulated data, to
making life easier and convenient in addressing problems, relating to comparing the
scores among independent groups, with the goal of giving accurate results for the

analysis of the independent groups.

To future researchers:

This research will be of great benefit to researchers by providing new findings in
solving problems relating to comparing the scores among independent group test, on
how the Winsorized MOM estimator was applied in the Alexander-Govern test, to
overcome its weakness under non-normality in the presence of variance heterogeneity
and as result, giving remarkable control of Type I error rate and to produce high

power for the test, under skewed heavy tailed distribution.



1.6 Organization of the remaining Chapters

In Chapter One, the background of the study was elaborated, focusing on the
independent group tests, such as the ANOVA, its application in different fields of life.
The assumptions that must be fulfilled before the ANOVA can perform effectively
have been described. The two main factors affecting the ANOVA in the control of

Type I error rate and increase power were highlighted.

Other better alternatives to the ANOVA were mentioned, such as the Welch test and
the James test. The constraints that affects the Welch test and the James test in the
control of Type I error rate and high power was indicated in this chapter. The
Alexander-Govern test is a better alternative to the Welch test, the James test and the

ANOVA was mentioned and the reasons were listed.

The Alexander-Govern test is not robust to non-normal data under variance
heterogeneity. As a result, the test fails to give good control for Type I error rate and
high power under this condition. The problem statement in this research was
identified. The objective of the research was listed. The scope of the research was
elaborated. The significance of this research, namely to students and future research

was explained in this chapter.
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CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

The independent group test is all about making comparison of the equality of
independent groups, either with the use of parametric or non-parametric method. In
using parametric method, the ANOVA is seriously affected by the presence of
heterogeneity of the variance and non-normality in a data distribution. The
performance worsens when there are differences in the group sizes. The ability of this
classical group test in controlling the Type I error rate reduces, thereby leading to an
increase in the rejection of the null hypothesis testing for equal means in the

distribution, especially under small sample sizes (Kulinskaya, Staudte, & Gao, 2003).

In a situation with unequal population variances, it will adversely affect the outcome
and authenticity of the ANOVA mainly when the sample group sizes are not equal
(Glass & Sanders, 1972; Harwell, Rubinstein, Hayes, & Olds, 1992; Kohr & Games,
1974; Scheffe, 1959). Ironically, in real life data, the heterogeneity of variance is a
very common situation; for instance in behavioral sciences, it is a common practice
for researchers to work with unequal variance in a data distribution (Erceg-Hurn &
Mirosevich, 2008; Golinski & Cribbie, 2009; Grissom, 2000; Keselman, Kowalchuk,

Algina, Lix & Wilcox, 2003).

To give solution to the presence of non-normal with heterogeneity of the variance,
reliable alternative techniques such as the James (1951) and the Welch (1951) have

11



been provided. The Alexander-Govern test is a better alternative to the Welch test, the
James test and the ANOVA, because of its’ simplicity in calculation and giving
excellent control of Type [ error rates for a normal data, but the test is not robust to

non-normal data.

Wilcox (2003) stated that for every procedure which is based on mean, it will give
poor performance when the normality distribution is deviated. From previous
researches, it is observed that different approaches have been suggested in analyzing
data distributions that are non-normal with heterogeneity of variances (Brunner,
Dette, & Munk, 1997; Wilcox & Keselman, 2003; Cribbie, Wilcox, Bewell, &

Keselman, 2007).

2.2 Robust Statistics

Robust statistics majorly deals with the spotting out of outliers in a given data
distribution and reducing the appearance of the outliers as much as possible in the
data distribution, so that the good observations are far more than the outliers located
in the given data set. Robust statistics mainly use parametric models that permit
deviations from models assumptions (Huber, 1981; Barnett & Lewis, 1994). Outliers
could also be defined as observations or subsets of observations seen in a data
distribution that are not consistent with the other data sets in the given data

distribution (Barnett & Lewis, 1994).

According to Lix and Keselman (1998) the empirical rate of Type I error for stringent

criteria of robustness must fall within the interval of 0.042<a<0.058 to judge the
robustness of a given test at & level of significance. As stated by Bradley’s (1978)
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the lenient criteria of robustness of a given test must fall within the interval of (
0.025-0.075), in order to judge the robustness of a given test at « level of
significance. In this research both lenient and stringent criteria of robustness was used

to judge the robustness of the tests.

2.3 Dealing with Non-Normal Data

A non-normal data is a condition whereby a data is not normally distributed.
Investigation under empirical test reveals that the Alexander-Govern test performed
remarkably well compared to the ANOVA in controlling Type I error rate and power
in the condition of variance heterogeneity and normality (Alexander & Govern,
1994). Additionally, Schneider and Penfield (1997) reported that the Alexander-
Govern test is a good alternative to the ANOVA for variance heterogeneity compared
to the Welch test and the James test due to its simplicity in calculation and having a

good control for Type I error rate.

It also produces a high power under most experimental situations, referring to
different levels of examination, when the test was applied in a data distribution, in
order to evaluate its effectiveness in a data distribution. However, under the condition
of heterogeneity of variances, it was recommended for only normal data but not

robust to non-normal data, as discussed by Myer (1998).

With the use of non-normal data, transformation might be a favorable technique.
Transformation is a special approach for transforming a data set that is non-normal in
form and also having the appearance of variance heterogeneity in the data

distribution. By so doing, the present scores in the distribution becomes normal and
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having equal variance. Despite the fact that it has the ability of transforming skewed

data, it possesses some disadvantages in its usage.

Wilcox (2002) noted that using transformation on the square root of the mean and
likewise with the log of the mean eliminates the influences on a real data set.
Transformation also cannot remove the impact of outliers in a data distribution. In a
situation where the extent of transformation is complex in a given distribution, it
suffers the constraint of normalizing the data that is skewed. Other approach that is
usually chosen by statistician practitioners when there is non-normal data distribution

1S using non-parametric methods.

According to Marascuilo and McSweeney (1977), a non-parametric test makes no
exact assumption in relation to one or more of the population parameters that define
the given distribution, for which the test is to be used. It is used to eliminate a
nominal and ranked order data and can be described as an assumption free test or
otherwise referred to as a distribution free test. However, non-parametric tests are not
as sensitive as parametric tests when the basic assumptions of the parametric tests are

fulfilled.

Hence, larger differences are required before a rejection of the null hypothesis is
performed. In other situations, non-parametric approaches also need a large number
of sample sizes to prevent the loss of information. Examples of non-parametric test
are Friedman test, Mann-Whitney U test, Wilcoxon Signed-Ranked test, Fisher Exact
Probability test, Kruskal-Wallis test, Cochran Q test, McNemar test and the Chi-

square test as mentioned by Daniel (1990).
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In considering the weaknesses observed in using the non-parametric tests, researchers
have discovered the use of robust estimators as a better alternative when dealing with
non-normal data. Robust estimator that is commonly chosen in improving the
independent group test is the trimmed mean. This estimator has been successfully
used to improve the Alexander-Govern test under non-normal distribution (Guo &
Luh, 2000; Lix & Keselman, 1995; Luh, 1999). Although trimmed mean possesses a
remarkable control over the probability of Type I error rate, the trimming process is

performed irrespective of the nature of the distribution.

Whether outliers are present or not in a data distribution, the percentage of trimming
is set at prior, thereby resulting in the elimination process done without regarding the
shape of the data distribution. Therefore, it might lead to further loss of information.
An alternative to the use of trimmed means is a highly robust estimator, which is

referred to as the modified one-step M-estimator (Wilcox & Keselman, 2003).

Othman et al. (2004) stated that the MOM estimator empirically trims extreme data
set only by depending solely on the nature of the data set. In a situation of skewed
data, the amount of trimming should not be the same at both tails of the distribution.
For example, if the data is skewed to the right, more data on the right should be

trimmed from the distribution.

In using any estimator that is based on trimming, one major need to be placed under
consideration, is the process of trimming itself As mentioned previously, the
trimmed mean trims data symmetrically without any consideration on the nature of

the distribution. Meanwhile, the MOM estimator only trims data that is suspected as
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outliers. If both tails of a data set are detected as outliers, then the data distribution
would be trimmed symmetrically, otherwise if it is one side of the data set that is
detected as outliers, it would be trimmed asymmetrically, meaning that only one tail

of the data set would be trimmed.

2.4 MOM Estimator

Scholars such as Wilcox and Keselman (2003a, 2003b) introduced the modified one
step M-estimator to correct the problem associated with trimmed means, where the
proportion of outliers is more than the percentage on trimming to be applied on the

data set that is associated with the power of the test.

More trimming or other measure of location that is in a very small extent not affected
by a large number of outliers is required. Also, when a data distribution is highly
skewed to the right, it is very reasonable to trim more of the data set from the right
tail than the left tail of the distribution. Wilcox and Keselman (2003a, 2003b)

modified the one-step-M estimator, which is defined using the formula below:

1L28MADN, (i, —i, )+ 3~ Y (i) j 2.1
_ i=i)+ A

D>

nj -, L

where

n, = the sample sizes of the data distribution,

. |Xi - M‘
i, = the number of X observations when ———<-X,

n
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, : | X, ~ M|
i, = is the number of X observations when — > K

3

n

In eliminating 1.28 MADN, (i, —i,), where MADN,= MAD, /0.6745, the MAD, is

Y, j—AAl,» . Note that M ; is defined as the

yerey

the median of the values of: lYij M J

median of the ;" group, i, is the mnumber of observations where
Y, - M, >2.24 MADN,,.

Therefore, the modified M-estimator proposed by Wilcox and Keselman (2003) is
defined as:

Z 422 (2.2)

_/=
W~ LN

i=i +17%

A one-step M estimator is defined as:

n-i,
 L28(MAD,) G, —i)+ ) X,
905 = Tht 3 (23)

n—i -1,

given X, <X, <..<X,,, as the observations expressed from the least value to the

largest value. The expression 1.28(MAD, ) (i, —i,) in Bos , arises for technical

reasons; overlooking it, results to the popularly known estimator, otherwise called the
modified one step M-estimator (MOM).

Outliers in a data distribution can be detected by using the formula below:

|XJ. —M|
LA BN ‘o
MAD,

(2.4)

*
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|XJ'—M|<_
MAD

n

or when K, (2.5)

where X ; represents the ordered random sample observations, M is the median of the

ordered random samples and MAD, is the median absolute deviation about the

median. The value of K is 2.24. This value was proposed by Wilcox and Keselman
(2003) for detecting the presence of outliers in a data set, because it has very small

standard error, when sampling from a normal distribution.

The MOM estimator is also defined as:

MOM =—— 1 > X, (2.6)

n, =1 =i, ;5
According to Abdullah, Yahaya and Othman (2007), the formula for the MOM
estimator is defined in Equation (2.6),

where:

X, = the i* sample ordered observations for the j group,

()
and K =2.24

Substituting K equals to 2.24, to obtain a small reasonable standard error, for a

normal data distribution, either i, or i, is used, which is defined as follows:

X -
i, is the number of observations, when X | <-2.24 2.7
MAD

5

i, is the number of observations,

‘Xz' _M‘

when >2.24, (2.8)

n



The MOM estimator is obtained by using either equation (2.7) or equation (2.8) as
expressed above, which is used to detect the presence of outliers from the ordered
data set. In using equation (2.8), if the absolute value of the observed ordered data set

subtracted from the median, divided by the value of the AMA4D, is greater than X, then

that observed value is considered to be an outlier.

The estimate of location for the MOM estimator is defined as the average of the
values remaining after all the outliers, if there are any present in the data set, are
removed. The value of 2.24 is motivated in part with the aim of getting a reasonable
small standard error when taking samples from a normal distribution. The one step
M-estimator is more satisfactory in obtaining a relatively small standard error, but the

MOM estimator has some advantages over the one-step M-estimator, as follows.

The MOM estimator is very flexible in relation to the number of observations that

should be removed as outliers from the distribution.

1. The MOM estimator can deal relatively large number of outliers.

2 It results in using the common mean, when no outliers are found in a data
distribution.

3. It permits different amount of trimming from the left tail to the right tail of the
distribution.

2.5 Trimming and Winsorization Methods

Trimming process is a technique used in removing a certain amount of data either by
setting the percentage of trimming at prior or identify the amount of trimming using

any procedure of outlier detection (Yusof, Abdullah & Yahaya, 2011). As an
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example, in considering two groups when performing an experiment, a person may
decide to neglect the two highest and the two lowest scores from each group in the
data set, with the aim of removing outliers present in either group. As mentioned
earlier, trimming process needs to be done carefully because every single data value
brings valuable information. The obvious disadvantage of trimming process is that it
reduces the number of data to be considered. Therefore, if the sample size is small,

trimming will make the sample size even smaller.

Winsorization is another approach in dealing with the influence of outliers. The term
Winsorization was discovered by Hasings, Monsteler, Tukey and Winsor (1947) as a
change in a data distribution by restricting extreme valies with the aim of reducing
the appearance of outliers from the distribution. In Winsorization process, the value
of the outlier detected are replaced or exchanged with a preceding value, closest to it.

As aresult, the sample size of the data set is not affected.

To illustrate the Winsorization process, consider the following data set given as: 1, 2,
3,4,5,6,7 and 8 (Tukey & McLaughlin, 1963; Staudte & Sheather, 2011). The total
sample size of this data set is eight. The mean of the distribution is 4.5. Therefore,
20% trimmed mean of the sample size of the data set is 1.6 and the approximated

value 1s 2.

This indicates that two data would be discarded or trimmed from the left tail and the
right tail of the data distribution. Hence, the distribution becomes; 3, 4, 5 and 6
respectively. As a result of this, the sample size is affected. It is reduced to four

instead of eight (50% reduction) with the use of trimmed mean on the distribution.
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For the Winsorization process, the two smallest and greatest values are replaced or
exchanged with a preceding value closest to the outlier detected values. Hence, the
Winsorized distribution becomes: 3, 3, 3, 4, 5, 6, 6, 6. Winsorization is a process that
involves making a replacement or an exchange for the outliers values detected.
Hence, the sample sizes in the data distribution remains the same. It helps to prevent
loss of information and hence, the data is preserved, unlike the trimmed mean

procedure.

2.6 The Alexander-Govern Test and its Test Statistic

The Alexander-Govern test is proposed by Alexander-Govern (1994). This test uses
mean as its central tendency measure. It gives a remarkable control of Type I error
rate and high power for a normal data, under variance heterogeneity. But this test is
not robust for a non-normal data and fails to give a good control of Type I error rate
under this condition. The test is used for comparing two or more groups. The test
statistic for the Alexander-Govern (4G) test is obtained by using the following

procedures.

The procedure in obtaining the test statistic for the Alexander-Govern test starts by
first ordering the data set, having population j(j=1,...,J). For each of the data set,

the mean is calculated using:

P 2.9)

where X, represent the observed ordered random samples and », denote the sample

size of the j observations. The mean is used as a measure of the central tendency in
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the Alexander-Govern (1994) procedure. After obtaining the mean, the estimate of

the usual unbiased variance is calculated using:

5‘2=Z (X.)'_Xj)z

} = (2.10)

where, X'; is used for estimating x, for the population j . The standard error of the

mean is calculated for each group using:
S = | (2.11)

The weight (w,) for the group sizes with j population of the ordered sample data is
defined such that summation of the weight (3 w,) should be equal to 1. So, the

weight for each of the group is calculated using the formula below:

1/8%,

Zjl/S o

The null hypotheses testing for the Alexander-Govern (1994) method, for the equality

of the mean and under variance heterogeneity are expressed as:

Hy i #1;  for at least P77

The alternative hypothesis, (¥ ,) contradicts the claim or statement made by the null

hypothesis. The grand mean for all the groups is calculated using:
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FaS J -
y:ZJ_:le X; (2.13)

where, )_c ; and w, are defined in Equations (2.9) and (2.12) respectively.

The ¢ statistic for each group is calculated by using:

t =2 (2.14)

where, x,,4 and S, are given in Equations (2.9), (2.13) and (2.11) respectively.
The ¢ statistic is distributed as a ¢ variable, having (n, ~1) degrees of freedom, for

each of the independent groups in the order data set. The ¢ statistic obtained for each

of the group is converted to a standard normal deviates (z,) with the use of Hill’s

(1970) normalization approximation in the Alexander-Govern (1994) approach. The

formula is defined below:

[® +3c] [4c” +33c® +240¢” +855¢]

Z. =c+ 2,15
/ b [105* +8bc* +10005 ] @15
¢ 2
where c=[axlog, (1+-2-)]" (2.16)
v,
J
ijnj —l,CZ:Vj —-0.5 and b:48a2 (217)
The test statistic for the Alexander-Govern (4 G) approach is defined below:
J 2
A=) Z, (2.18)
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A chi-square distribution table is used to obtain the p-value for the Alexander-Govern
test at o=0.05 level of significance. If the p-value is less than 0.05, it is concluded

that the test is significant otherwise, it is not.

2.7 Summary

In comparing independent groups, the classical group test such as the ANOVA is
seriously affected by the appearance of heterogeneity of the variance and non-
normality in a data distribution. Reliable parametric alternatives such as the James
test, the Welch test, and the Alexander-Govern test have been proposed to solve the
problem of variance heterogeneity. The Alexander-Govern test is considered as a
better alternative to the Welch test and the James test because it is easy to compute, it
produces a high level of power and possesses a remarkable control over the
probability of Type I error rate. However, it has a weakness being that, it is not robust

to non-normality under variance heterogeneity.

When trimmed mean was applied in the Alexander-Govern test, it was only robust for
two group cases, but when there was an increment in the group sizes above two, the
test was no longer robust and hence, could not give a good control of Type I error
rate. A highly robust estimator known as the MOM estimator was applied on the test,
as a substitute for its measure of central tendency. This estimator is not affected by
the number of groups. It gave an excellent control of Type I error rate under a skewed
distribution. But it failed to give a good control of Type I error rate, under skewed

heavy tailed distribution.
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Therefore, in this research, the Winsorized MOM estimator was applied in Alexander-
Govern test to overcome its weakness under non-normality in the presence of
variance heterogeneity, in an extreme condition of skewness and kurtosis and it gave

the test an excellent control of Type I error rate and high power.
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CHAPTER THREE

RESEARCH METHODOLOGY

3.1 Introduction

This chapter explains how the Winsorized modified one step M—estiﬁlator (WMOM)
was used as a replacement for the central tendency measure in Alexander-Govern
test, to overcome the weakness of the test for non-normality under variance
heterogeneity, in an extreme condition of skewness and kurtosis. In this chapter, the
test statistic for the Winsorized modified one step M-estimator is explained in

detailed.

There are five different variables that were used in this research, which are: balanced
(equal) and unbalanced (unequal) sample size, variance ratio, group sizes i.e J =2, 4
and 6, types of distribution and nature of pairing. The research design shows the
combination and pairing of both balanced (equal) and unbalanced (unequal) sample
sizes with both equal and unequal variance, for both positive and negative pairing
condition with each of the g- and A- distribution for two, four and six groups

conditions.

In the research design, 84 conditions of pairing were used for the five different tests,
which are: the Alexander-Govern (4G) test, the modified one step M-estimator in the
Alexander-Govern (AGMOM), the Winsorized modified one step M-estimator in the
Alexander-Govern (A GWMOM) test, the t-test and the ANOVA respectively. Lastly,

the statistical power of a test is defined as the probability of not accepting the null
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hypothesis when it is false. The power of a test is affected by three main factors,
which are: sample size, level of significance and the effect size. The Effect Size Index
is divided into three types, namely: small, middle and large. In this research the Large

Effect Size Index was used to produce high power for each of the tests.

3.2 The Modified Alexander-Govern Test

The WMOM estimator is applied on the data distribution where the outlier detected
value is replaced or exchanged with a preceding value closest to the position the
outlier is located. The WMOM estimator is obtained by averaging the Winsorized data

distribution. It is expressed by using formula (3.1):

J
Z,-=1Xwow

n

WMOM = X wyow = 3.1)

The WMOM estimator is used as a replacement for the common mean as the central
tendency measure in the Alexander-Govern test, for the following reasons:
1. to eliminate the appearance of outliers from the data distribution.

i1.  to make the Alexander-Govern test to be robust to non-normality.

The Winsorized sample variance is defined as:

i _
(X, =X wuom)’
SzwoMFZf-‘ d 1 , (3.2)
n__

where, X ; is the random ordered observed sample and X wwos is the Winsorized

MOM estimator for the Winsorized data distribution. The standard error of WMOM is
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obtained by using the bootstrapping method. The bootstrapping algorithm for

estimating the standard errors is defined below.
Firstly, we chose B independent bootstrap samples defined as: x*',x™,...,x*%, where

each of these random samples comprises of n data values selected with replacement

from x defined below:

X5 =X, Xy, %,) (3.3a)
F—)(xl* ’xZ‘ :-~')xn‘ ) (33b)

The indication of the symbol (*) shows that x* is not the real data set of x but it

refers to a randomized or resampled version of x. Where s is used for estimating
- . . I . 1

t(F) and F is the empirical distribution for the probability of — on each of the
n

observed values of x, ,i=1,2,..,n.

In estimating the standard error of the bootstrap samples, the number of B falls within
the range of (25 — 200). According to Efron and Tibshirani (1998) bootstrap sample
size of 50 is sufficient enough to give a reasonable estimate of the standard error of
the MOM estimator. In this research, the same sample size was used to estimate the
standard error of the MOM estimator.

Secondly, the bootstrap replications equating to each of the bootstrap samples is

defined below:

B (B)=s(x")b=1,2,... B, (3.4)

s(x") is the mean of the bootstrap data distribution were evaluated.
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Thirdly, we estimate the bootstrap estimate of sep (9) from the sample standard

deviation of the bootstrap replications as defined below:
N B NE ,
sey ={ ) [0(b)- 9 I/ (B-1)}""2, (3.5)
b=l

g

where & ()=Y " 0(b)/B
and /9=s(x')
The weight w, for the Winsorized data distribution for each group is expressed as

below:

I/Sze f MY
W, =, (3.6)
Zl/SzeWMOMj

j=1

J
where Zl/ S?emmor; is the sum of the inverse of the square of the standard error for
j=1

all the groups in the ordered data distribution, from the real data distribution. Where
1/ 5% emmong is the reciprocal of the standard error of the Winsorized data distribution
and S’.mmon is the standard error of the Winsorized data distributon and is defined

using the formula below:

2
S WMOM;

(37

2
S ewmong =

R,
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The variance weighted estimate of the total mean for the Winsorized data distribution

for all the groups is expressed as:

A -
2y =ij X waom; (3.8)

J=1

where w, is given in equation (3.6) and X wwos; is given in equation (3.1).

The ¢ statistic for the Winsorized data distribution for each of the group is obtained

using the formula below:

)—(WMOMj —/Al ,

eWMOM)

where xwuou , p¢; and S, is the Winsorized MOM estimator, the total mean for the

Winsorized data distribution and the standard error of the Winsorized data

distribution respectively. In the Alexander-Govern (1994) approach, the ¢, value is

transformed to a standard normal with the use of Hill’'s (1970) normalization

approximation technique and the hypothesis testing of the Winsorized data
distribution, where S”waouny is the usual estimate of the Winsorized sample variance

of the WMOM estimator for 4, is defined below:

Hyipy=..=p,

Hy li#1  for at least 17/

30



The alternative hypothesis, (/ ,) contradicts the claim or statement made by the null
hypothesis. The grand mean for all the groups is calculated using:

Thus, the normalization approximation formula for the Alexander-Govern method,
using the Winsorized data distribution 1s expressed as the original AG test (see

Section 2.6.1).

The test statistic of the Winsorized Modified One Step M- estimator in the Alexander-
Govern test (AGWMOM) test for all the groups in the ordered data sample is

expressed as:

AGWMOM = Z *waon (3.10)

The test statistic for the AGWMOM test follows a chi-square distribution at a=0.05
level of significance, having (J — 1) chi-square degrees of freedom. The p-value can
be determined using a standard chi-square distribution table. If the p- value of the
AGWMOM test is less than 0.05, then we can say that the test is significant,

otherwise, the test is referred to as not significant.

3.3 Variables Investigated in this Research

There are five different types of variables that were used in this research, namely:
sample size, variance ratio (equal and unequal variance), group sizes, types of
distribution, and nature of pairing. All these variables were manipulated to investigate
the strength and the weakness of the original Alexander-Govern test (4G) test, the

Modified One Step M-estimator in Alexander-Govern test (AGMOM) test, the
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Winsorized Modified One Step M-estimator in Alexander-Govern test (AGWMOM)

test, the s-test and the ANOVA.

3.3.1 Balanced and Unbalanced Sample Size

Researchers such as Yusof, Abdullah, Yahaya and Othman (2011) made used of
equal and unequal sample sizes (balanced and unbalanced) condition in their research

findings. For a balanced sample size, they used sample sizes of N = 60, where
n =15, n, =15, n, =15 and n,=15, and for N=80, where
n, =20, n, =20, n,=20n,=20 and #n,=20 .Under an unbalanced sample size
condition, where N = 60, they selected n, =12, n, =14, n, =16 and n,=18, for
N=80, they selected », =10, n, =20, n, =20 and 7, =30. The selection of the sample

sizes chosen by these researchers gave them a remarkable control of Type I error rate.

On the other hand, Othman ef a/ (2004) and Keselman et «l (2007) in their

researches, used unbalanced sample size of N = 25, where 1, =10, and n, =15 , for N
= 30, where n, =10 and n,=20, for N = 40, where n, =15 and n, =25, for N= 70,
where  n, =10, n, =15, n,=20and n,=25, for N = 90, where
n =15, n, =20, n, =25 and n,=30. The selection of the sample sizes chosen by

these researchers gave them an excellent control of Type I error rate.

Abdullah, Yahaya and Othman (2007) used unbalanced sample sizes of N = 40,
where n, =15 and n, =25, for N= 80, where n =10,n, =15,n, =25 and n,=30. The

selection of the sample sizes chosen by these researchers are considered to be
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moderate quantities of sample sizes and it gave them a good control of Type I error
rate and a high power for their test in the course of their analysis. Furthermore,

Yusof, Abdullah and Yahaya (2012) also used unbalanced samples in their research,

such as for N = 60, where n, =12,n, =14,n, =16 andn, =18, for N = 80, where
n,=10,n,=20,n, =20 and n,=30. The selection of the sample sizes used by these

researchers gave them a remarkable control of Type I error rate.

In this research, both balanced (equal sample sizes) and unbalanced sample sizes
(unequal sample sizes) were selected. Under a balanced sample size condition, for ¥
= 40, the sample sizes used are n, =20 and n, = 20, under two groups
condition. For the case of four groups, where N = 80, ny, n,, n3 and ny were all set
equal to 20. Under a balanced sample size for six group condition, the total N = 120,

Where nl — 20,}12 = 20,}’[3 = 20’}14 = 20,”5 = 20and n6 = 20.

For unbalanced sample size condition, the sample sizes used are n, =16, and n, =24,
for four group case, where n, =15,n,=15n,=20 and n,=30. For six group

condition, the sample sizes used are n, =2,n, =4,n, =4,n, =16,n, =32 ,n, =62.

The selection of both balanced and unbalanced sample sizes in this research, has
assisted us to see the performance of our newly proposed method under these two
conditions of sample sizes. The quantities of sample sizes chosen in this research are
referred to as moderate amount of sample sizes to make comparison on the effect of
power on the number of groups on this new method (Abdullah, Yahaya & Othman,

2008).
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3.3.2 Variance Ratios

Othman et al. (2004) and Keselman ef al. (2007) in their research analysis used
unequal variance ratios of 36:1, 8:1 as well as 36:1:1:1 and 8&:1:1:1. The variance
ratios of 36:1 and 36:1:1:1 are considered as extreme conditions of variance
heterogeneity, while the variance ratio of 8:1 and 8:1:1:1 are considered as less
extreme conditions of variance heterogeneity. These researchers agreed that the
variance ratios of 36:1 and 36:1:1:1 are considered large enough to give researchers

acceptable results for their data analysis.

Meanwhile, Abdullah, Yahaya and Othman (2008) used different extreme conditions
of variance heterogeneity of 1:36, 1:1:1:36, 1:1:1:1:1:36, 1:4:16:36, and
1:4:4:16:16:36 respectively. It was observed that the variance ratios of 1:1:1:36
produced a higher power compared to the variance ratio of 1:4:16:36. The difference
in the values of the power between these two variance ratios was 0.77, which gave a

power of 0.8.

The variance ratios of 1:4:16:36 produced a smaller power compared to the 0.8, for a
large effect size. The variance ratio of 1:1:1:1:1:36, produced a higher power
compared to the variance ratio of 1:4:4:16:16:36, where the difference in the power
values was as large as 0.8 (0.8098). The selection of variance ratio can have a great
influence on the power of a test. The variance ratio of 1:1:1:1:1:36 makes the test to

be more powerful.

In this research, the variance ratios that were used are: (1:1), (1:36) and (1:1) (36:1),

(1:1:1:1) and (1:1:1:36) and (1:1:1:1) (36:1:1:1), (1:1:1:1) (1:4:16:36) and (1:1:1:1)
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(36:16:4:1) and (1:1:1:1:1:1) (1:4:4:16:16:36) and (1:1:1:1:1:1) (36:16:16:4:4:1)
under variance heterogeneity. The selection of the variance ratio in this research has
helped to show how well this new method can perform under extreme condition of

variance heterogeneity.

3.3.3 Group Sizes

Scholars such as Othman et al. (2004) and Keselman et a/. (2007) used group size of
J =2 and the results shows that all the method they used were robust. All the values
of their method fell within the Bradley’s (1978) stringent condition of robustness
between the interval of (0.025 and 0.075. In the case of J = 4, all the methods they
used fell within the Bradley’s condition of robustness except for one which was not

robust under very severe condition of non-normality.

According to Yusof, Othman and Yahaya (2008) in their research for J =2, all the
values for the method they used fell within the stringent criterion of robustness. In the
case of J = 4, all the method used fell within the Bradley’s condition of robustness

with one of the methods used having the closest value to the nominal value of 0.05.

In the work done by Abdullah, Yahaya and Othman (2007), they used group sizes of
J=2,J=4 and J= 6, and a standard stringent criteria of robustness was considered
within the interval 0.042 and 0.058 to judge the robustness of the three methods they
used in their analysis, namely the Alexander-Govern test with common mean, the
Alexander-Govern test with trimmed mean, and the Alexander-Govern test with

MOM estimator. It was discovered that the Alexander-Govern test using common
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mean and the MOM estimator as a measure of the central tendency for the test, were

robust for all the groups, the trimmed mean was robust only for two groups.

All these findings showed that the number of group gives significant impact to the
performances of the test. Similarly, in this research, different groups sizes of J =2, J

=4 and J = 6 were used to investigate the performance of this new method.

3.3.4 Types of Distribution

In this research, four different types of distribution, namely: standard normal
distribution, symmetric heavy tailed distribution, skewed normal distribution and
skewed heavy tailed distribution, were used to examine the effects of Type I error
rate on the types of distribution. These four different types of distribution, represents

different levels of skewness and kurtosis, by using the g- and /- distribution.

The term heavy tailed distribution in probability distribution theory could be
described as the tail that is not exponentially bounded. As a result, the tails are
heavier than the exponential distribution. While a skewed normal tail distribution
describes the measure of the symmetry of the probability of the real-valued random
variable about the distribution. Skewness in a data distribution is defined as the curve
that is seen distorted or when it is skewed either to the right tail or to the left tail of a
given data sets. The word “kurtosis” is defined as the measure of the peak of a
distribution and it shows how high the distribution is close to the mean. The
distribution of the data is said to be symmetric when g = 0 and 4 = 0 as discussed by

Abdullah, Yahaya and Othman, (2007).
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According to Yusof, Abdullah, Yahaya and Othman (2011), the g- and k- distribution
1s modified from the normal distribution, where g is a constant that controls the value
of skewness in the distribution, and / is a constant that controls the value of kurtosis
in the distribution. As the value of the g and / increases, the level of skewness and

kurtosis increases accordingly.

The observations of the g- and A- distribution are obtained by transforming the

standard normal variates using the formula below:

e Z.)—1
Mexp(h22g/2)forg¢0
Y, = g , (3.11)

/]
Z, exp(hZ*; 12) forg=0

where Z, is the standard normal distribution with ; and j population.

The values of the g- and /- distribution that were used in this research are: g = 0 and &
= (0 (standard normal distribution), g = 0 and 2 = 0.5 (symmetric heavy tailed
distribution), g = 0.5 and # = 0 (skewed normal tailed distribution), and g = 0.5 and 4
= 0.5 (skewed heavy tailed distribution) as discussed by Abdullah, Yahaya and
Othman (2007). The characteristics of the g- and A- distribution are presented in

Table 3.1.
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Table 3.1

The characteristics of the g- and h- distribution

8- h-

. . . Types of
(Nonnegative (Nonnegative Skewness Kurtosis distribution
content) content)
0 0 0 3 Standard normal
Symmetric
0 05 0 11986.20 heavy tailed
0.5 0 1.81 1839360  Skewed normal
tailed
0.5 0.5 120.10 1830360  Skewed heavy
tailed

Source: Wilcox (1997)

3.3.5 Types of Pairing

In this research, the robustness of the Alexander-Govern test, the Modified One Step
M-estimator in the Alexander-Govern test and fhe Winsorized Modified One Step M-
estimator in the Alexander-Govern test were determined by using two types of
pairing: positive pairing and negative pairing. Positive pairing is a kind of pairing that
occurs, whereby a smaller sample size is being paired with a smaller variance while a
larger sample size is being paired with a larger variance. While negative pairing is the
kind of pairing that occurs, whereby a smaller sample size is being paired with a
larger variance, and a larger sample size is being paired with a smaller variance

(Othman et al., 2004 & Keselman et al., 2007).

These conditions of pairing are selected, since they can mainly give conservative or
conventional results for positive pairings and liberal or substantial results for negative
pairings accordingly (Keselman et al., 2007). In a balanced condition for two groups
(see Table 3.2), for four groups (see Table 3.3) and for six groups (see Table 3.4) is a

condition where a balanced sample size is combined with a balanced variance ratio. It
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is also referred to as a perfect condition with the combination of both balanced

sample size with equal variance.

3.4 Research Design

The Alexander-Govern test is a test that uses mean as a measure of its central
tendency, but is not robust for non-normal data under variance heterogeneity. For the
design of this research, both balanced and unbalanced sample sizes were paired with
equal and unequal variance for two groups (J = 2), four groups (J = 4), and for six

groups (J = 6), positively and negatively with each of the g- and A- distribution.

For each of the tests namely: the AG test, the AGMOM test, the AGWMOM test, the t-
test and the ANOVA, data set of 5,000 were simulated in the research design. The
values of the skewness and kurtosis for the g- and /- distributions are theoretical
values and a computer generated values, based on 5,000 observations were simulated
for these values (Wilcox, 1997). 5,000 data sets were used in this research to give us a
_satisfactory result for each of the tests. To obtain the pseudo random variates, SA4S

generator RANNOR (SAS Institute, 1999) was used with a nominal level of «=0.05

for the analysis of the tests in this research.

The robustness of the WMOM estimator with respect to the Type I error rate and the
power of the test, was obtained by manipulating the five listed variables as mentioned
previously in Section 3.3. The research design used in this research, for two, four and
six groups, shows the combination and pairing of both balanced and unbalanced
samples with equal and unequal variance, with each of the g- and A- distribution,

positively and negatively. Each of this pairing condition is denoted by C1 to C84
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respectively. The research design is illustrates in tabular form, for two groups (see
Table 3.2), four groups (see Table 3.3) and six groups (see Table 3.4) groups

respectively.

Table 3.2

Research Design for Two Groups Condition with N = 40

Balanced and . Notations
The g- and 4- Unbalanced | Y2riance Nature of for the
distribution samole si ratio Pairing Conditi
ple size onditions
Balanced
20:20 ki condition cl
1:36 Positive Pairing C2
g=0and =0 1:1 C3
16:24 1:36 Positive Pairing C4
' 361 Negative Cs
) Pairing
; Balanced
20:20 . condition ¥
1:36 Positive Pairing C7
g=0and h=0.5 1:1 C8
16:24 1:36 Positive Pairing C9
' ) Negative
36:1 Pairing C10
) Balanced
20:20 I:l condition Cll
1:36 Positive Pairing Cl2
g=05and2=0 1:1 C13
16:24 1:36 Positive Pairing Cl4
' ) Negative
36:1 Pairing C15
Balanced
20:20 bl condition 16
1:36 Positive Pairing C17
g=05and 2= 0.5 1:1 C18
16:24 1:36 Positive Pairing C19
' . Negative
36:1 Pairing C20
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Table 3.3

Research Design for Four Groups Condition with N = 80

The g- and h- Bz}lanced and . - Nature of Notations for
e Unbalanced Variance ratio . the Nature of
distribution . Pairing .
sample size Pairing
1:1:1:1 foﬂgi‘;:i c21
20:20:20:20 1:1:1:36 Positive Pairing C22
1:4:16:36 Positive Pairing C23
1:1:1:1 C24
g=0andh=0 1:1:1:36 Positive Pairing C25
. Negative
15:15:20:30 36:1:1:1 Pairing €26
1:4:16:36 Positive Pairing C27
36:16:4:1 Negative C28
Pairing
1:1:1:1 ?ﬂg‘;ﬁgﬁ C29
el 1:1:1:36 Positive Pairing C30
1:4:16:36 Positive Pairing C31
1;1:1:1 C32
g=0and 7=0.5 1:1:1:36 Positive Pairing C33
.8 Negative
15:15:20:30 po:1:1% Pairing i
1:4:16:36 Positive Pairing C35
36:16:411 Neeqoy & 36
Pairing
1:1:1:1 ?Oﬂi‘l‘ilgﬁ C37
20:20:20:20 1:1:1:36 Positive Pairing C38
1:4:16:36 Positive Pairing C39
1:1:1:1 C40
g=05and =0 1:1:1:36 Positive Pairing C41
1. Negative
15:15:20:30 36:1:1:1 Pairing 42
1:4:16:36 Positive Pairing C43
36:16:4:1 Negative Ca4
Pairing
1:1:1:1 foﬂgi‘;zi C45
20:20:20:20 1:1:1:36 Positive Pairing C46
1:4:16:36 Positive Pairing C47
= — 1:1:1:1 C48
£~ O'% a,ljnd h= 1:1:1:36 Positive Pairing C49
| . Negative
15:15:20:30 36:1:1:1 Pairing €50
1:4:16:36 Positive Pairing Csl1
36:16:4:1 Negative 52
Pairing
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Table 3.4

Research Design for Six Groups Condition with N = 120

The g- and h-

Balanced and

Nature of

Notations for

T Unbalanced sample Variance ratio .. the Nature of
distribution size Pairing Pairing
_____ Balanced
20:20:20:20:20:20 Bl condition -
e 1:1:1:1:1:36 Positive Pairing C54
1:4:4:16:16:36 Positive Pairing C55
1:1:1:1:1:1 C56
_ _ 1:1:1:1:1:36 Positive Pairing C57
g=fmdn=0 36:1:1: 1101 Negative C58
""" Pairing
2:4:4:16:32:62
1:4:4:16:16:36 Positive Pairing C59
36:16:16:4:4:1 Negative C60
e Pairing
1:1:1:1:101 f:;g‘i‘tcizg C6l
20:20:20:20:20:20 T1:1.1.136 | Positive Paiing C62
1:4:4:16:16:36 Positive Pairing C63
1:1:1:1:1:1 C64
g=0andh=0.5 1:1:1:1:1:36 Positive Pairin C65
_____ Negative
2:4:4:16:32:62 PO 1R Pairing 66
1:4:4:16:16:36 | Positive Pairing C67
36:16:16:4:4:1 Neg.a-tlve C68
Pairing
11:1:1:101 Sflflmcsj‘ie 69
20:20:20:20:20:20 T.1:1:1:1:36 | Positive Pairing C70
1:4:4:16:16:36 Positive Pairing C71
1:1:1:1:1:1 C72
g=0S5andh=0 1:1:1:1:1:36 Positive Pairing C73
_____ Negative
2:4:4:16:32:62 36111 Pairing C74
1:4:4:16:16:36 Positive Pairing C75
36:16:16:4:4:1 Negative C76
e Pairing
L:1:1:1:1:1 f:ig?gﬁ C77
20:20:20:20:20:20 1:1:1:1:1:36 Positive Pairing C78
1:4:4:16:16:36 Positive Pairing C79
_ _ 1:1:1:1:1:1 C80
g—O.% ",‘Sndh' 1.1:1.1.1:36__ | Positive Paining C8l
R T VI Te e Negative
2:4:4:16:32:62 36:1:1:1: 101 Pairing C82
1:4:4:16:16:36 Positive Pairing C83
36:16:16:4:4:1 Negative C84
Pairing
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The research design was used to determine the robustness of the modified Alexander-
Govern test. By using this research design, the best procedure was obtained for the

tests. According to Lix and Keselman (1998), the empirical rate of Type I error must

be within the interval of 0.042<q <0.058 that is use judge the robustness of a given
test at & level of significance. The interval of the values selected in this research

gave a strict condition for the robustness of the tests, with the aim of producing

minimum error rate with deviation from model assumptions.

Abdullah, vYahaya and Othman, (2007) used the interval of 0.042 and 0.058 for
evaluating the robustness of the test in their analysis. The interval selected by these
researchers, shows that a test is said to be robust when its’ Type I error rate is within
the stringent criterion of robustness. Otherwise, if the test falls outside the stringent
criteria of robustness, then the Type I error rate is out of control. According to
Bradley’s (1978) the lenient criteria of robustness should be within the interval of
(0.025 — 0.075). This interval of robustness is also selectgd in this research, to see

those tests that can give excellent control of Type I error rate.

3.5 Statistical Power Analysis

The statistical power of a test is defined as the probability that it will definitely result
in significant outcomes (Cohen, 1988). It could also be described as the capacity of a
test to recognize any effect when the effect size occurs. Cohen (1988) explains that
the effect size is the extent at which a phenomenon is observed in the population. As
a result, the null hypothesis becomes false in the population. When making
hypothesis testing, the probability of accepting the null hypothesis when it is false, 1s

referred to as Type Il error which is represented as f. In addition, the power of a test
43



could be defined as the probability of not accepting the null hypothesis when it is

false, and it is represented as 1- 8 (Cohen, 1988).

The power of a test is affected by three variables, namely: (i) sample size, (ii) level of
significance and (iii) effect size.

The sample size: In detecting the power of a test, the selection of the sample size
chosen by the researcher is very important. The selection of the sample sizes directly
affects the power of a test. For a small sample size selected, it will result to a very
small amount of the power of the test. When the sample size is large, it will definitely
result to a large amount of the power of the test. Hence, the selection of the sample
size chosen by the researcher will directly affect the power output of the test. The
power of a test is directly proportional to the quantity of the sample sizes selected

(Abdullah, Yahaya & Othman, 2008).

Murphy and Myors (1998) stated that the power of a test must be above 0.5 and can
be considered sufficient when the value is 0.8 and above. When the power of a test is
0.8, it shows that success which is the probability of not accepting the null hypothesis
is four times as certain as failure. When the power of a test is 0.9, it shows that the

success Is nine times as certain as failure.

The level of significance: It is the process of neglecting the null hypothesis when it is
actually true, and is otherwise referred to as Type I error. The level of significance is

expressed as «. To obtain the power of a test, the value of & selected is very crucial

(Abdullah, Yahaya & Othman, 2008). The level of significance selected for this
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research is @=0.05. When the value of a to be chosen is too small, it will definitely

result to a smaller amount of the power of the test.

Effect size: In statistics, it is observed that the probability of the null hypotheses, that
is the p-value, decreases as the effect size increases and the sample size increases
accordingly. The effect size shows the differences between the maximum and
minimum means between two groups, divided by the standard deviation inside the

population (Cohen, 1998).

3.5.1 The Effect Size Index
In this research, the effect size that was used for two groups (J = 2), four groups (J =

4) and six groups (J = 6) and their pattern of variability is explained below:

3.5.2 The Effect Size Index for J=2

Abdullah, Yahaya and Othman (2008) stated that when considering two population
groups, the effect size index, is the effect size that we are aiming at detecting. By

definition, the effect size index (d) is expressed as:

(3.12)

where:

m,—my| is the absolute value of the difference between the maximum and
minimum means between the two groups.
o= the standard deviation of the population.
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According to Murphy and Myors (1998) the effect size is said to be small when

d=0.2, it is said to be medium when & =0.5 and it is said to be large when 4=0.8.

3.5.3 The Effect Size Index for J =4 or More

According to Cohen (1988) when & > 2, where k& represents the number of means in
the distribution, and it implies that the number of means is increased above two. The
association between the number of means and the range of the standardized mean
relies precisely on how much the means are dispersed over the range in the

distribution. The spread of the means (f) is expressed as:

£=Zn (3.13)
o

where:

o, I1s the original scale units of the standard deviation
Under this situation, ¢ is no longer an effect size, but it represent the largest and the

smallest means or otherwise, the range of the standardize means.

By definition, d is expressed as:

m,—mg

a
il

(3.14)

Given:

m, is the biggest value of K means, and
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m, is the smallest value of X means
The f index relies on the specification in the patterns of differences of the means.
Cohen (1998) also mentioned that there are three forms of variability that shows the

association between f and 4 as expressed below.

Form 1:

Small variability, where f 1is expressed as:

1
f—a’\/; (3.15)

f is the effect size index for more than two groups i.e for four groups and above,

while d is the effect size index for two groups condition.

Form 2:

Medium variability, where f* is expressed as:

d | k+1
S=3 3 (3.16)

Form 3:

Large variability, where f is expressed as:

1
f =5d , when £ is said to be even; (3.17)

2

, when & is odd (3.18)

=d
4 2k
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*Note that k is the number of means in the population.

When f is 0.1, the effect size index is said to be small, when f is 0.25, the effect
size index is said to be medium, when f is 0.4, the effect size index is said to be

large accordingly (Abdullah, Yahaya & Othman, 2008).

Table 3.5

Pattern of Variability of the Effect Size Index for 4 Groups and 6 Groups

The Effect Size ForJ =4 For J— 6
Index
1 1 1 1
Small -=d,0,0,—d -~d,0,0,0,0,—d
2 2 2 2
1 1 1. 1. 1.1
1 11 1 ——d,——d,——d.,=d,~d, —d
Medi ——d,——d,—d,—d ) > y =, )
edium i 47 d5 ) 3 6269 3% 5
Large —ld __l_d ld ld "%da—%dr‘%d,%d,-;-d,%d
i 9 G )

Source: Cohen (1988).

It should be noted that the effect size index is not considered in analyzing for the
Type I error rate for the AGMOM test, the AGWMOM test, the t-test and the ANOVA,
in this research. The effect size index (d) is only used in analyzing for the power of
the tests. The effect size index used in analyzing the power of the tests for two groups
condition in this research are: d = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8 respectively. For
four groups condition, 4 = 0.29, 0.57, 0.80, 0.80, 1.00, 1.20, 1.40 and 1.60
respectively. Under six groups condition, d = 0.34, 0.69, 0.88, 0.80, 1.00, 1.20, 1.40

and 1.60 respectively.
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Case 1: The pairing of equal sample size with equal variance, the population means
are calculated as thus:

The effect size index for two groups is obtained using the formula below:

d:luA —Hy (3.19)
o

where
4, is the first population mean,
Hp is the second population mean and
o is the standard deviation of the population means.
When d =0.2, 2, =1,and 0 =1
substituting into Equation (3.18);

1—uy
1

0.2=

0.2=1-y4,
Hy=1-0.2
Therefore, 1, = 0.8.

Then, the population means for two groups conditions, with the pairing of equal

sample size with equal variance are

(1t 15 )=(1,0.8)

Case 2: Pairing of equal sample size with equal variance, for both positive and

negative pairing.
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Where d=0.2, the standard deviation is obtained for the unequal variances using the

formula below:

a 1 2
o=,—,

where, v, and v, represents the variance ratio for two groups condition.

For example, when v, =1 and v, = 36,

1+36
o=\
2

o=4.3012.
By using Equation (3.18) the second population mean can be obtained.

For example, when d= 0.2, ua = 1 and & = 4.3012, substituting into Equation (3.18)

2 — l_ﬂB
4,3012

0.2(4.3012) =1 - p,

My =1—0.8602
4, =0.1398
Thus,

(14145 )=(1,0.1398).

In the research design for analyzing the Type I error rates of the tests, the effect size
index (d) 1s not considered.
Case 3: The pairing of unequal sample with unequal variance i.e. (16, 24), (1, 36) or

(16, 24), (1, 36).
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For v = (1:36) with s = (16, 24), the standard deviation is obtained by using Equation

(3.19):

O_:\f(_nlxazl_)+(n2xo'22) (321)

n +n,

Substituting, n, = 16, n, =24, ¢’, =1 and ¢?; =36 into Equation (3.19),
1 2

Gz;/(16)(1)+(24)(36)
16+24

=4.6904
Substituting d =0.2, 4, =1 and ¢ = 4.6904 into Equation (3.18), the mean for the

second population is given by

(0.2) (4.6904)=1 - u,

0.9381 =1 - it

My =1-0.9381

My =0.0619

Hence, (> #s )= (1,0.0619)

Under four and six groups condition the effect size index (f) that was used for this
research are: f=0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8

When f = 0.1, the value of 4 is calculated using the formula for small effect size

index, in Equation (3.14).

For four groups case, where 4 is defined as the number of groups in the distribution,

Substituting £ = 4, and = 0.1 into Equation (3.14),
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0.1=d |-
2(4)

0.1=0.35d
d=10.1/0.35

d=0.20.

The population mean is obtained by using the formula for calculating the large pattern
of variability for four groups in Table 3.5 as:

1, 11,1,
2 2 2 2

By substituting ¢ = 0.29 into the formula,
—l(O 29) —1(0 29) l(0 29) l(0 29)
2V AN\ 2

=-0.145, - 0.145, 0.145, and 0.145. These are the values of the population means for
four groups when d = 0.29.
When f= 0.5, it falls under large effect size index, since £ of 4 is an even number, we

use Equation (3.16) to calculate 4:

1
0.5=2(d)

d=1.0
From Table 3.5, the population means for four groups is obtained by:

1, 1,11 1 1 1 1
——d,—~d ,~d,~d = -—=(1.0), —=(1.0),=(1.0),=

27 277272 o 10, =505 (107
4 =-0.50, - 0.50, 0.50, and 0.50.

For six groups condition, where /= 0.3 and & = 6, the value of d is obtained using

Equation (3.15):
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03 =

1 6+1
2V3(6-1)

0.6 =0.684
d=0.6/0.68

=0.88

From Table 3.5, when d = 0.88, the population means for the large pattern of

variability is obtained using:

Ly b, 1111,
2 2 2 2 2 2

1 1 1 1 1 1
=——(0.88),——(0.88),— - (0.88),— (0.88), =(0.88),~(0.88
p==7(088),=-(0.88), -~ (0:88),~ (0.88), 5.(0.88),5(0.88)

#=-0.44,-0.44,-0.44,0.44, 0.44,0.44

In conclusion, the power of a test is affected by the quantity of the sample sizes
chosen; the higher the sample sizes selected, the higher would be the power of the
test. The sample size selected in a data distribution is directly proportional to the

power of a test.
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CHAPTER FOUR

RESULTS AND ANALYSIS

4.1 Introduction

This chapter examines the performance of the Type I error rate and power for each of
the tests, namely: the AG test, the AGMOM test, the AGWMOM test, the t-test and the
ANOVA, for four different distributions, under two, four and six group conditions. So
as to see of the five different tests mentioned above, which among them will give a

good control of Type I error rate and high power.

4.2 The Type I Error Rate

The Type I error rate of the five different tests that were used n this research must
fall under three criteria of robustness. Which are (i) those tests that fall within the
stringent criteria of robustness, (ii) those tests that fall within the lenient criteria of
robustness and (iil) those tests that do not fall on neither stringent criteria of

robustness nor lenient criteria of robustness and are considered not to be robust.

This research considers stringent criteria of robustness, within the interval of (0.042 —
0.058), to judge the robustness of the tests (Lix & Keselman, 1998) and also
considers the lenient criteria of robustness to judge the robustness of the tests that are
within the interval of (0.025 — 0.075) as stated by Bradley’s (1978). These intervals of
robustness are selected in this research, to see those tests that can give excellent

control of Type I error rate.
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All the values presented in the Tables, are bolded and italized, bolded and unbolded.
The bolded and italized values are those values that are strictly within the stringent
criteria of robustness. The bolded values represent those values that are within the
lenient criteria of robustness, but do not fulfill the stringent criteria of robustness. The
unbolded values are those values that are considered not to be robust. This implies
that they neither within the stringent criteria of robustness nor within the lenient

criteria of robustness.

4.2.1 Two Groups Case

Under two groups condition, the Type [ error rate is compared for each of the tests,
namely, the AG test, the AGMOM test, the AGWMOM test and the r-test with each of
the four different distributions, in order to see those test that are within the stringent
criteria of robustness and also those that are within the lenient criteria of robustness.

As aresult, the tests are said to have remarkable control of Type I error rate.

4.2.1.1 Normal Distribution (g=0; A=0)

In Table 4.1, under a normal distribution, for two group condition, all the Type I error
rate for the AG test, the AGMOM test and the AGWMOM test performed well where
these tests are robust in all conditions regardless of the sample sizes and the variance
ratio. The #-test also performed quite good where it provides good control of Type 1
error rate in all the conditions except for negative pairing condition. The test is
considered not robust where the Type I error rate with value of 0.1078 is outside the

robust criteria.
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Among all the tests, the AG test has better result compared to the 4AGMOM test and
the AGWMOM test because its” Type I error rate fall within the stringent criteria of

robustness.

Table 4.1

Comparison of the Type I Error Rate for the AG, AGMOM, AGWMOM, and t-test

Under Normal Distribution for Two Groups Condition

Equal and
Sample Size Unequal AG AGMOM AGAV?/IO t-test
Variance
20:20 1:1 0.0508 0.0414 0.0392  0.0528
1:36 0.0562 0.0528 0.0496  0.0710
16:24 1:1 0.0484 0.0430 0.0386 0.0570
1:36 0.0570 0.0552 0.0496  0.0618
36:1 0.0498 0.0450 0.0438 0.1078

4.2.1.2 Symmetric Heavy Tailed Distribution (g =0and 4 =0.5)

In Table 4.2, under a skewed normal tailed distribution, the Type I error rate for the
AG test, the AGMOM test and the AGWMOM all fall within the lenient criteria of
robustness and gave the best control of Type I error rate over the t-test. For both
positive and negative pairing condition, the ¢-test produced Type I error rate with

value 0.0138 and 0.0814 that fall outside the criteria of robustness.
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Table 4.2

Comparison of the Type I Error Rate for the AG, AGMOM, AGWMOM, and t-test,

Under a Symmetric Heavy Tailed Distribution for Two Groups Condition

Equal
Sample  and o cyvoMm AacwMoM t-test
Size Unequal
Variance
20:20 1:1 0.0336 0.0262 0.0346 0.0356
) 1:36 0.0340  0.0358 0.0392 0.0402
1:1 0.0304  0.0266 0.0352 0.0430
16:24 1:36 0.0394  0.0340 0.0412 0.0138
36:1 0.0312 0.0294 0.0346 0.0814

4.2.1.3 Skewed Normal Tailed Distribution (g = 0.5 and 4 = 0)

In Table 4.3, under a skewed normal tailed distribution, for two groups conditions,
the AG test, the AGMOM test and the AGWMOM test gave an excellent control of
Type I error rate over the ¢-test, because these tests are robust in all conditions. While
the t-test only robust with stringent criteria when variance are equal regardless the
number of sample size. It is also found to be robust under condition of positive nature

of pairing.
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Table 4.3

Comparison of the Type I Error Rate for the AG, AGMOM, AGWMOM, and t-test

Under a Skewed Normal Tailed Distribution for Two Groups Condition

Equal

SampleSize *M% 4G AGMOM AGWMOM t-test

nequal

Variance
00 1 0.0508 0.0420  0.0364 0.0474
136 0.0562  0.0534 __ 0.0558 0.0882
1 0.0480 0.0434  0.0386 0.0570
16:24 136 0.0570 0.0560  0.0588 0.0380
6.1 0.0498  0.0504  0.0450 0.1538

4.2.1.4 Skewed Heavy Tailed Distribution (g =0.5 and & = 0.5)

In Table 4.4, under a skewed heavy tailed distribution, the AGMOM and AGWMOM
test gave a remarkable control of Type I error rate compared to the AG test and the ¢-
test, because the test falls within the robust criteria in all the conditions. The 4G test
has Type I error rate that are outside the criteria of robustness, which are under
balanced sample size with unequal variance and unbalanced sample size with
positive pairing condition. The Type I error rate of the #-test has a value of 0.0138 and
0.0878, for both positive and negative condition of pairings accordingly, that falls

outside the criteria of robustness.
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Table 4.4

Comparison of the Type I Error Rate for the AG, AGMOM, AGWMOM, and t-test

Under a Skewed Heavy Tailed Distribution for Two Groups Condition

Equal
Sample Size. ™™ 46 aGMOM AGWMOM -test
Unequal
Variance
20:20 1:1 0.0336  0.0258 0.0314 0.0288
' 1:36 0.3400 0.0374 0.0470 0.0430
1:1 0.0274  0.0272 0.0352 0.0370
16:24 1:36 0.3940  0.0378 0.0422 0.0138
36:1 0.0312  0.0332 0.0298 0.0878

4.2.2 Four Groups Condition

Under four groups condition, the Type I error rate is compared for each of the tests,
namely: the AG test, the AGMOM test, the AGWMOM test and the ANOVA for each
of the four different distributions, to see which of the test is more robust and have an

excellent control of Type I error rate.

4.2.2.1 Normal Distribution (g =0 and 4 =0)

In Table 4.5, under a normal distribution, for four group conditions, the 4G test, the
AGMOM test and the AGWMOM test gave an excellent control of Type I error rate
compared to the ANOVA. Under balanced sample the ANOVA falls outside the criteria
of robustness when the variances are unequal. Under unbalanced sample size the test

1s considered not robust when the nature of pairing is negative.
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Table 4.5

Comparison of the Type I ervor rates for the AG, AGMOM, AGWMOM, and the

ANOVA Under a Normal Distribution for Four Groups condition

Equal
sample size and AG AGMOM AGWMOM ANOVA
Unequal
Variance
L1:1:1  0.0518 0.0404 0.0386 0.0518
20:20:20:20  1:1:1:36  0.0522  0.0428 0.0408 0.1096
1:4:16:36  0.0544  0.0500 0.0468 0.0798
1.1:1:1  0.0504 0.0478 0.0458 0.0500
1:1:1:36  0.0514  0.0482 0.0458 0.0334
15:15:20:30  36:1:1:1  0.0504  0.0486 0.0446 0.1696
1:4:16:36  0.0520  0.0492 0.0464 0.0320
36:16:4:1 0.0516 0.0514 0.0468 0.1446

4.2.2.2 Symmetric Heavy Tailed Distribution (g =0 and 4 = 0.5)

In Table 4.6, under a symmetric heavy tailed distribution, the AGWMOM test gave an
outstanding control of Type I error rate compared to the other three tests. Only one
condition of the test did not fall within the criteria of robustness. The AG test was
found to be robust only under balanced sample size condition. For the A GMOM test,
it is robust only under two conditions with variance ratio of 1:4:16:36 that are
balanced sample size and unbalanced sample size with positive pairing. The ANOVA
still can be considered robust as long as the variances are equal regardless of the
sample size. It is also robust under balanced sample size with variance ratio

1:4:16:36.
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Table 4.6

Comparison of the Type I Error Rate for the AG, AGMOM, AGWMOM, and the

ANOVA Under a Symmetric Heavy Tailed Distribution, for Four Groups Condition

Equal
SampleSize .. ™" 46 AGMOM AcwMOM ANOVA
Unequal
Variance
I'1:1:1 00280 00218  0.0282 0.0336
20:20:2020  1:1:1:36  0.0282  0.0230  0.0310 0.0782
1:4:16:36 0.0282  0.0260  0.0330 0.0484
111 00240 00192 0.0660 0.0344
1:1:1:36 0.0238 00212  0.0772 0.0182
15:15:20:30  36:1:1:1 00208 00192  0.0664 0.1328
1:4:16:36 0.0230  0.0258  0.0298 0.0178
36:16:4:1 00238 0.0234  0.0286 0.1130

4.2.2.3 Skewed Normal Tailed Distribution (g = 0.5 and / = 0)

In Table 4.7, under a skewed normal tailed distribution, the AGWMOM test gave an
excellent control of Type I error rate compared to the AG test, the AGMOM test and
the ANOVA because all the conditions of the tests falls within the criteria of
robustness. Under equal variance condition all the tests are found to be robust. For the
AG test, it is robust under unequal variance with values 1:1:1:36 regardless of sample
size and nature of pairings. While the AGMOM test, is not robust under the condition
of positive pairing. The ANOVA is not robust under unequal variance with balanced

sample size. It is also not robust when the natures of pairings are negative.
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Table 4.7

Comparison of the Type I Error Rate for the AG, AGMOM, AGWMOM, and the

ANOVA Under a Skewed Normal Tailed Distribution for Four Groups Condition

Equal
Sample Size ™% 4G aGMOM AGwMOM  ANOVA
Unequal
Variances
1:1:1:1 0.0620 0.0436 0.0452 0.0550
20:20:20:20 1:1:1:36  0.0620 0.0460 0.0272 0.1714
1:4:16:36  0.0756  0.0546 0.0262 0.1098
1:1:1:1 0.0596 0.0460 0.0466 0.0508
15:15:20:30 1:1:1:36  0.0272 0.0148 0.0520 0.0756
T 36:1:1:1  0.0602 0.0482 0.0520 0.2330
1:4:16:36  0.0228 0.0102 0.0550 0.0444
36:16:4:1 0.0646 0.0560 0.0462 0.1954

4.2.2.4 Skewed Heavy Tailed Distribution (g = 0.5 and & = 0.5)

In Table 4.8, under a skewed heavy tailed distribution, the AGWMOM test is
discovered to be robust in all the condition tested that makes this test produced a
remarkable control of Type I error rate compared to the 4G test, the AGMOM test and
the ANOVA. The Type I error rate for the AG test produced robust values for all
balanced conditions. When the sample size is unbalanced the test becomes not robust

even when the variances are equal.

However, it still can consider robust for negative pairing with variance ratio 36:1:1:1
and positive pairing with variance ratio of 1:4:16:36. The 4 GMOM test is not robust
under equal variance regardless of the sample sizes. Yet, it is robust under positive

and negative pairing conditions. For the ANOV4, it is robust with equal variance ratio
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regardless of the sample sizes. The Type I error rate of the ANOVA for both positive

and negative pairing condition falls outside the criteria of robustness.

Table 4.8
Comparison of the Type I Error Rate for the AG, AGMOM, AGWMOM, and the

ANOVA Under a Skewed Heavy Tailed Distribution for Four Groups Condition

Equal

Sample and AG  AGMOM AGWMOM ANOVA
Size Unequal
Variance

1:1:1:1  0.0322 0.0206 0.0398 0.0290

20:20:20:20  1:1:1:36  0.0320 0.0220 0.0326 0.0880

1:4:16:36  0.0336  0.0250 0.0336 0.0512

1:1:1:1  0.3000 0.0190 0.0274 0.0336

1:1:1:36  0.3960 0.0256 0.0474 0.0240

15:15:20:30  36:1:1:1  0.0272  0.0260 0.0466 0.1394

1:4:16:36  0.0360 0.0266 0.0320 0.0164

36:16:4:1 0.0166  0.0256 0.0384 0.1130

4.2.3 Six Groups

For six groups condition, the results of the Type I error rate are presented as

following.

4.2.3.1 Normal Distribution (g=0 and 4 =0)

In Table 4.9, under a normal distribution, for six group conditions, the AG test, the
AGMOM test and the AGWMOM test have the best control of Type I error rate
compared to the ANOVA. The Type I error rate of the three tests falls within the
criteria of robustness in all the balanced conditions. It is no doubt that the ANOVA is

very good only under perfect condition, which is normal distribution with balanced
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sample size and equal variance. However, this test is not robust when the variances
are not equal. Under unbalanced conditions all the tests are not robust except for

ANOVA which is still robust as long as the variances are equal.

Table 4.9

Comparison of the Type I Error Rate for the AG, AGMOM, AGWMOM, and the

ANOVA, Under a Normal Distribution for Six Groups Condition

Sample Equal and Unequal AG AG AGW ANOV
Size Variances MOM MOM A
20:20:20: 1:1:1:1:1:1 0.0522 0.0440 0.0402 0.0530
202020 1:1:1:1:1:36 0.0522 0.0444 0.0406 0.1260

) 1:4:4:16:16:36 0.0572 0.0488 0.0464 0.0810
1:1:1:1:1:1 0.1522 0.1864 0.1796 0.0640

2-4:4:16- 1:1:1:1:1:36 0.1434 0.1698 0.1724 0.0002
3é'62 v 36:1:1:1:1:1 0.1192 0.1432 0.1378 0.5992

f 1:4:4:16:16:36 0.0920 0.0872 0.0926 0.0020
36:16:16:4:4:1 0.1148 0.1454 0.1362 0.6878

4.2.3.2 Symmetric Heavy Tailed Distribution (g =0 and 4 = 0.5)

In Table 4.10, under a symmetric heavy tailed distribution, the 4G test gave a
remarkable control of Type I error rate compared to the A GMOM test, the AGWMOM
test and the ANOVA. The AG test is seen to be robust in all conditions under balanced
sample size. It is also robust under unbalanced sample size with positive nature of
pairing. The AGMOM test is not robust in all the conditions of balanced sample
sizes. This test is robust under positive pairing condition, and also the test is found to
be robust under negative with variance of 36:16:16:4:4:1. The AGWMOM test has its
Type I error rate fall within the interval of robustness, in all the balanced condition
but the test is not robust under unbalanced samples. The ANOVA falls within the
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criteria of robustness, under balanced condition, except for variance ratio of
(1:1:1:1:1:36). Under unbalanced sample size, this test is only robust for negative

pairing with variance value of (36:16:16:4:4:1).

Table 4.10

Comparison of the Type I Error Rate for the AG, AGMOM, AGWMOM, and the

ANOVA Under a Symmetric Heavy Tailed Distribution for Six Groups Condition

SampleSize ~ TaudamdUnequal o samom AT anova
ariance oM

L1111 00260 01092  0.0266 0.0350

20:20:20:20:20:20 1:1:1:1:1:36 0.0258 00186  0.0256 0.0922

1:4:4:16:16:36 0.0248 00216  0.0288 0.0520

BRGES 0.0794 01092 0.1092 0.0988

1:1:1:1:1:36 0.0656  0.0450 0.0896 0.0040

2:4:4:16:32:62 36:1:1:1:1:1 00796 00896  0.0982 0.3890

1:4:4:16:16:36 0.0348  0.0486  0.0442 0.0130

36:16:16:4:4:1 0.0898  0.0456  0.1008 0.4732

4.2.3.3 Skewed Normal Tailed Distribution (g = 0.5 and & = 0}

 In Table 4.11, under a skewed normal tailed distribution, the AGMOM test and the
AGWMOM test is more robust compared to the 4G test and the ANOVA. Under
balanced condition, all the Type I error rate of the AGMOM test and the AGWMOM
test fall within the interval of robustness. The AG test is robust only under equal
variance and unequal variance with value of (1:1:1:1:1:36). The ANOVA has its Type [
error rate fall within the interval criteria of robustness, only under equal variances

regardless of the sample sizes.
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Table 4.11

Comparison of the Type I Error Rate for the AG, AGMOM, AGWMOM, and the

ANOVA Under a Skewed Normal Tailed Distribution for Six Groups Condition

Equal and
Sample Size Unequal 46 Aemom  ASMM 4nov
Variances
LLLLLL 00650  0.0498  0.0456 0.0544
20:20:20:20:20:20 L1136 00728 0.0508  0.0440 0.2070
1:4:4:16:1636  0.0860  0.0576  0.0514 0.1184
LLLLII 02080  0.1944 02118 0.0670
LLLLL36 02734 01692 02188 0.0060
2:4:4:16:32:62 36:LILLL 00678 0.1600  0.1740 0.5692
1:4:4:16:1636 02514 00880  0.1430 0.0034
36:16:16:4:4:1  0.1418 01636 0.1620 0.6722

4.2.3.4 Skewed Heavy Tailed Distribution (g = 0.5 and 4 = 0.5)

In Table 4.12, under a skewed heavy tailed distribution with balanced sample size,
the AGWMOM produced the most convincing results where it is robust m all the
conditions. While the ANOVA is robust for two conditions and the AG test is robust
under one condition only. The AG test is not robust in all the balanced condition.
Under the unbalanced sample sizes the 4G test and the ANOVA is not robust in all the

conditions. While the AGMOM is robust under one condition and the AGWMOM test

is robust under two conditions.
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Table 4.12

Comparison of the Type I Error Rate for the AG, AGMOM, AGWMOM, and the

ANOVA Under a Skewed Heavy Tailed Distribution for Six Groups Condition

Equal and
Sample Size Unequal AG AGMOM AGWMOM ANOVA
Variances
20:20:20: 1:1:1:1:1:1 0.0370  0.0208 0.0286 0.0330
1:1:1:1:1:36  0.0186 0.0186 0.0292 0.1028
20:20:20 1:4:4:16:16:36  0.0200 0.0246 0.0300 0.0574

1:1:1:1:1:1 0.1212 0.1136 0.0320 0.0970
1:1:1:1:1:36  0.1236 0.0964 0.1028 0.0100
36:1:1:1:1:1  0.1108 0.0898 0.1036 0.3336
1:4:4:16:16:36  0.0888 0.0478 0.0524 0.0200
36:16:16:4:4:1  0.1044 0.0962 0.1046 0.4090

2:4:4:
16:32:62

4.2.4 Overall Conclusion on the Type I Error Rate

As the overall conclusion of the Type I error rate, the number of conditions is counted
to see how many conditions of the tests can be considered as stringent robust (SR),
only lenient robust (LR — SR) and not robust (NR). It should be noted that the total
conditions of each test under each distribution is twenty-one (21). Table 4.13 shows

the number of conditions according to the types of distribution.
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Table 4.13

Number of Conditions Based on the Type I Error Rates

Distribution Robustness AG AGMOM AGWMOM t-test ANOVA

Normal
Distribution
(g=0and h = SR 16 14 | 10 5
0)
LR -SR 0 2 6 5
NR 5 5 5 11
Total 21 21 21 21
Symmetric
Heavy
Tailed
Distribution SR 0 3 I 4
(g=0and h =
0.5)
LR - SR 13 7 15 5
NR 8 11 5 12
Total 21 21 21 21
Skewed
Normal Tailed
Distribution SR 5 14 11 6
(g:ijo)andh LR-SR 8 0 5 3
NR 8 7 5 12
Total 21 21 21 21
Skewed Heavy
Tailed SR 0 1 5 3
Distribution LR - SR 9 10 9 6
(g=0.5and A
= 0.5) NR 12 10 7 12
Total 21 21 21 21
Grand
Total 84 84 84 84

Note: SR = Stringent Robust, LR = Lenient Robust and NR = Not Robust

In Table 4.13, under a normal distribution, for all the group sizes, the AG test, the
AGMOM test and the AGWMOM test are more robust compared to the #-test and the
ANOVA. The AG test has 16 of its condition fall within the stringent criteria of

robustness. None of the conditions of the 4G test is within the lenient criteria of
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robustness. The ANOVA also performed quite good in the control of Type I error rate
with 10 conditions of the tests that are regarded as robust. Among the four tests, the
ANOVA has the highest number of conditions with the total number of 11 conditions
that are considered not robust. The AG test has the best control of Type I error rate
with 16 conditions of the test that are considered to be robust compared to the other

four tests.

Under symmetric heavy tailed distribution, the AGWMOM test has the best control of
Type I error rate with a total of 16 conditions of the test that are regarded as robust
compared to the other three tests. The ANOVA has the highest number conditions that

are considered not robust compared to the other three tests.

Under a skewed normal tailed distribution, the AGWMOM test has the best control of
Type I error rate, with a total of 16 conditions of the test that are referred to as robust,
compared to the other three tests. None of the conditions of the AG test falls within
the stringent criteria of robustness. The ANOVA has the highest number of conditions

that are referred to as not robust compared to the other three tests.

Under skewed heavy tailed distribution, the AGWMOM test has the best control of
Type I error rate with 14 conditions of the test that are referred to as robust, compared
to the AG with 9 conditions, AGMOM with 11 conditions and ANOVA with 9
conditions. The AGWMOM test has the highest number of conditions that falls within
the stringent criteria of robustness, compared to the other three tests. The AGMOM
test has the highest number of conditions that are said to be robust, under lenient

criteria of robustness, compared to the other three tests.
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As the distribution changes from normal to non-normal distribution, the number of
conditions of the ANOVA for both stringent and lenient criteria of robustness remains
the same. That is a total of nine conditions of the ANOVA are considered to be robust
when the distribution is non-normal. Both the 4G test and the ANOVA have equal

number of conditions that are considered not robust, compared to the other two tests.

In overall, the AGWMOM test gave the best control of Type I error rate under non-
normality, compared to the AG test, the AGMOM test and the ANOVA, because has it

always has the highest number of conditions under robust criteria.

4.3 The Power Rate of the Test

In this section, the power of the tests is explained for each of the tests, for each of the
four different types of distribution, with the pairing of the sample sizes and variances,

positively and negatively, for two, four and six groups respectively.

The power rate of the tests is represented graphically where the y-axis corresponds to
the power of the tests and the horizontal axis represents the effect size index d for two
groups case and f for more than two group case. The graph is used to show the trend
of the power of the tests in relation to the effect size index. According to Murphy and
Myors (1998) the power of a test is considered sufficient when it is 0.5. It can be

considered to be high when its value is 0.8 and above.

From the graph, it reveals those tests that have low power, sufficient and high power

with respect to the effect size indexes (d and f). In this research there are 84
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conditions, denoted by C1 to C84, which can be referenced from Table 3.2, Table 3.3

and Table 3.4, in the research design for two, four and six groups in Chapter 3.

4.3.1 Two Groups Condition under Normal Distribution

In Figure 4.1, the power of the four tests, namely, the AG test, the AGMOM test, the
AGWMOM test and the ¢-test is increasing as the effect size index is increasing. The
power of the four tests is regarded as sufficient, since their power values are above
0.5. The AG test has the highest power in C3 and C4. While the ¢-test, has the highest
power in C1, C2 and CS. In C5, despite the fact that the ¢-test has the highest power
with value of 0.8004, as reference from appendix B2, the test is regarded as not
robust, because its’ Type [ error rate is outside the criteria of robustness. As a result,

the power of the test is referred to as not very good.
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Figure 4.1. Power versus Effect Size Index, for two groups condition under a
normal distribution.

4.3.2 Two Groups Condition under Symmetric Heavy Tailed Distribution

In Figure 4.2, from C6 to C10, the power of the four tests is increasing as the effect
size index is increasing. In C6, C7, C9 and C10, the power of the four tests are

referred to as not sufficient, because their power values is not up to 0.5. Only in C8,




there are two tests that achieve 0.5 ie the AGMOM and the AGWMOM. The
AGWMOM has the highest power compared to the other three tests, under symmetric

heavy tailed distribution, for two group condition.
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Figure 4.2. Power versus Effect Size Index, for a symmetric heavy tailed
distribution, for two groups condition
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4.3.3 Two Groups Condition under a Skewed Normal Tailed Distribution

In Figure 4.3, the power of the four tests is displayed according to conditions C11 to
C15. The power is increasing as the effect size index is increasing. All the tests are
considered not having high power since they did not achieve 0.8 in all conditions,
except for the AG test which obtained power value of 0.8540 under C15. In C11 and
C13, the AG and ¢-test are considered having sufficient power, when both tests
achieve a power value of 0.5. In Cl14, only the AGMOM test and AGWMOM test

reach the sufficient value of power.
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Figure 4.3. Power versus Effect Size Index, for two groups condition under a
skewed normal tailed distribution

76




4.3.4 Two Groups Condition under a Skewed Heavy Tailed Distribution

In Figure 4.4, the power of the four tests is increasing as the effect size index is
increasing. In C16 to C20, the power of the four tests is not up to 0.5 and are said to
be low and insufficient. In C16, C17, C18 and C19, the AGMOM test has the highest
power. In C20, the ¢-test has the highest power.
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Figure 4.4. Power versus Effect Size Index, for two groups condition, for g = 0.5

and h=0.5
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4.4 The Power of the Four Tests, For Four Groups Condition, Under Four
Different Distributions

The power of the AG test, the AGMOM test, the AGWMOM test and the ANOVA are

examined in four different distributions under four group conditions.

4.4.1 Four Groups Condition under a Normal Distribution

The power values of all the compared tests are displayed in figure 4.5. The power of
the AG test, the AGMOM test, the AGWMOM test and the ANOVA is increasing as the
effect size index is increasing in like manner. All the four tests have sufficient and
high power in C21. The AG test, AGMOM test and the AGWMOM test are regarded
as having high and sufficient power in C22, C25 and C26. The four tests are observed
to have a very low power in C23, C24, C27 and C28 respectively.
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Figure 4.5. Power versus Effect Size Index for Four Groups Under a normal

distribution
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4.4.2 Four Groups Condition under Symmetric Heavy Tailed

Distribution
In Figure 4.6, it can be noticed that the power of the four tests is increasing as the
effect size index is increasing in all conditions except in C32. In C32, the power
values of the tests are found not to be consistent with the effect size index, due to fact
that all the tests are not robust under this condition (refer to Table 4.6). In C29, 30,
31, 33 and 34, the AGMOM and the AGWMOM have high power where their power
values achieve 0.8. In C33, the AGWMOM test is observed not to be robust. In C35

and C36, the power of the all the tests is observed to be very low and insufficient.
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Figure 4. 6. Power against Effect Size Index, for four groups condition, for g = 0
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4.4.3 Four Groups Condition under a Skewed Normal Tailed

Distribution
The four compared test in Figure 4.7, is increasing as the effect size index is
increasing. All the four tests have high and sufficient power in C37. The AG,
AGMOM and the AGWMOM test produced sufficient and high power in C38, C40
and C42. The AGWMOM test and the ANOVA have sufficient power in C39. Only the
AG test has sufficient power in C43. The four tests have very low power in C41 and

C44.
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4.4.2 Four Groups Condition, Under a Skewed Heavy Tailed Distribution

The power values of the four tests are increasing as the effect size index is increasing,
except in C51, where the ANOVA is found to be decreasing as the effect size index is
increasing. The AGMOM and the AGWMOM test produced a high and sufficient
power values in C45, C46, C48, C49 and C50. The power of the four tests is
considered to be very low in C47, C51 and C52. In C51, the power value of the

ANOVA 1s regarded as very low and is the test not robust.
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Figure 4.8. Power versus Effect Size Index, under a skewed heavy tailed

distribution, for four groups condition
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4.5 The Power of the Tests, For Six Groups Condition, Under Four Different

Distributions

The power of the four tests, namely, the AG test, the AGMOM test, the AGWMOM
test and the ANOVA will be investigated under four different distributions, to see of
the four tests which one of them will have its power value above the 0.5 and also the
test that can produce a power value of 0.8 and above, that can be considered as

sufficient and high, under six groups condition.

4.5.1 Six Groups Condition, Under a Normal Distribution

In Figure 4.9, all the compared tests are increasing as the effect size index is
increasing accordingly. All the four tests have high and sufficient power in C53 and
C55. In C56 and C58, the four tests are observed to have sufficient power. Only the
ANOVA have a sufficient power in C60. The 4G, AGMOM and the AGWMOM test
have sufficient power in C57. The power of the four tests is considered to be very low

in C59.
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Figure 4.9. Power versus Effect Size Index, for six groups condition under
a normal distribution
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4.5.2 Six Groups Condition, Under a Symmetric Heavy Tailed Distribution

In Figure 4.10, the power of the four tests is increasing as the effect size index is
increasing, except in C68. In C8, the power of the tests are observed not to be
consistent with the effect size index, because the AG test and the A WMOM test are
seen not to be robust under this condition (see Table 4.10). In C61, all the four tests
achieve a sufficient power. The AG test, the AGMOM test and the AGWMOM test
have sufficient power in C62, C64 and C65. In C63, C66 and C67, the power values

of the four tests are below 0.5 and are regarded as not sufficient.
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Figure 4.10. Power versus Effect Size Index, for six groups condition, under a
symmetric heavy tailed distribution
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4.5.3 Six Groups Condition, Under a Skewed Normal Tailed Distribution

In Figure 4.11, the power of the four tests is increasing as the effect size index is
increasing accordingly. The power of the four tests is regarded as sufficient and high
in C69 and C70. The four tests have sufficient power only in C74. In C75, the AG
test, the AGMOM test and the AGWMOM test have sufficient power. Only the
ANOVA has sufficient power in C76. The power of the four tests is referred to as very

low in C73.
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Figure 4.11. Power versus Effect Size Index under a skewed normal tailed

distribution, for six groups condition
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4.5.4 Six Groups Condition, Under a Skewed Heavy Tailed Distribution

The power of the compared tests in Figure 4.12 is increasing as the effect size index
is increasing. The AGMOM test and AGWMOM test have sufficient and high power
in C77 and C78. The AG, AGMOM and AGWMOM test have sufficient power in C77,
C78, C80 and C81. Only the 4G test has sufficient power in C82. The four tests have

a very low power in C79, 83 and C84.
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Figure 4.12. Power versus Effect Size Index, for six groups condition, under a

skewed heavy tailed distribution
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4.6 Evaluating the Capacity of the Test Using Real Data

To fulfill the fourth objective of this research, a real life data was used which was
extracted from Keselman ef gl (2007) that comprises of three independent groups,
namely group young, middle and old, see appendix O. The test of homogeneity of the
variance was used for the three independent groups, using the Levene’s test to
determine if the three independent groups are different from each other or not as the
reaction time changes.

In this section, test of homogeneity of variances, descriptive statistics, test statistic of
AG test and AGWMOM test, and test of normality are performed to show the

advantages of each test.

Table 4.13

Test of Homogeneity of Variances

Test of Homogeneity of Variances

Reaction
Levene Statistic dfl df2 p-value
1.821 2 43 174
a=0.05

H ,: If there is no difference between the groups

H . Ifthere is difference between the groups

If the p-value from the test of homogeneity is less than 0.05, we can reject
otherwise failed to reject H, . When the p-value is > 0.05, we accept H, and reject

H|. The p-value from the test of homogeneity of the variance, is > 0.05, i.e 0.174 >

0.05, implies that we accept H, and conclude that there is no difference between the

groups as the reaction time changes.

In Table 4.14 below, shows the descriptive statistics for the three independent groups,

for the AG test.
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Table 4.14

Descriptive Statistics for the Young, Middle and Old Groups using the AG test and

the AGWMOM test
Test statistic D eSCriptive Youn Middle old
statistic g
AG test Mean 544.0511 473.6992 571.6813
Standard error 59.7266 144.6221 49.5377
AGI;Z{OM Mean 505.8433 456.8608 551.0392
Standard error 4.9059 12.1963 6.7518

In Table 4.14, the mean of the three independent groups, namely: the young, middle
and old groups, are stated above. The standard errors for the young, middle and old
groups are considered to be very high with values 59.7266, 144.6221 and 49.5377
respectively, for the three independent groups. This is as a result of the presence of

outliers in the real life data for the AG test.

In Table 4.14, the Winsorized mean for the three independent groups, namely: the
young, middle and old groups respectively are; 505.8433, 456.8608 and 551.0392 and
are observed to be smaller in comparison to the mean for the young, middle and old
groups respectively of the AG test. The standard errors for the Winsorized young,
middle and old groups respectively are: 4.9059, 12.1963 and 6.7518 and are
considered to be far smaller compared to the standard error for the young, middle and
old groups of the AG test in Table 4.15. This is as a result of the elimination of the
presence of outliers from the real life data that have been replaced with the preceding

values closest to the outlier values from the real life data.
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Table 4.15

Tests of Normality
Kolmogorov-Smirnov* Shapiro-Wilk
Statistic Df Sig. Statistic Df Sig.
Young .185 18 2007 924 18 319
Middle  .347 11 .000 721 11 001
od 199 14 200" 935 14 431

Shapiro-Wilk Test is a test that is frequently used for sample sizes that is less than 50.
This test can be used to handle sample size that is more than 2000 (Shapiro & Wilk,
1965). Therefore, the Shapiro-Wilk Test is used to test for the normality of the three
independent groups, which are the young, middle and old groups. For the significance
level of a=0.05, if the significant value of any of the three independent groups is
greater than 0.05, the data is considered to be normally distributed. Otherwise, if the
significant value is less than 0.05, the data distribution is regarded as non-normal.
The results from Table 4.16 show that the p-value for the group young and old are
greater than 0.05, hence both groups are said to be normally distributed. The middle
group has a p-value of 0.001 which is less than 0.05 and is regarded as non-normally

distributed.

Table 4.16

The statistic test for the AG test and the AGWIMOM test

Test Test Statistic p-Value
Original AG 5.3237 0.06982
AGWMOM 30.1280 0.0000002869

In Table 4.16, the results of the test statistics show that the AG test has a p-value of

0.0698, that is regarded as not significant because its value is greater than 0.05, while
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the AGWMOM test produced a p-value of 0.0000002869 that is considered to be less

than 0.05 and is said to be significant.

In conclusion, the AGWMOM test is considered to be more reliable and efficient in
minimizing error as much as possible from the real life data, because the test
produced a smaller standard error for the three independent groups, namely: the
young, middle and old group respectively, in comparison to the AG test. Therefore,
the performance of the AGWMOM test is more efficient and reliability compared to

the AG test in evaluating the efficient and reliability of the tests using real life data.
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CHAPTER FIVE

DISCUSSION AND CONCLUSION

5.1 Summary

The Alexander-Govern test is a test proposed by Alexander-Govern (1994). This test
uses mean as its central tendency measure and is considered as a better alternative to
the ANOVA, the Welch test and the James test, for producing an excellent control of
Type I error rate and high power for a normal data under variance heterogeneity. But
the Alexander-Govern test is not robust to non-normal data. Researchers such as Lix
and Keselman (1998) proposed the trimmed mean in Alexander-Govern test to solve

the problem of non-normality for the test.

Wilcox and Keselman (2003) introduced the MOM estimator as a measure of the
central tendency for the test. Abdullah, Yahaya and Othman (2007) also used the
MOM estimator as a measure of the central tendency in Alexander-Govern test and it
gave them a remarkable control over the probability of Type I error rate for both
normal and skewed data distribution. The MOM estimator is not influenced by the
number of groups. It gave a good control over the probability of Type I error rate
under normal and highly skewed condition for all group sizes. But this estimator fails
to give a good control over the probability of Type I error rate in an extreme
condition of skewness and kurtosis.

In this research, the AGWMOM test was applied in Alexander-Govern test to
overcome its weakness for non-normal data in an extreme condition of skewness and

kurtosis and also under variance heterogeneity.
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5.2 Implication and Conclusion

In Table 4.13 as the distribution changes from normal to symmetric heavy tailed
distribution, the number of conditions of the AGWMOM test decreased from ten to
one under stringent criteria of robustness and increased from six to 16 under lenient
criteria of robustness. This is as a result of a decrease in the number of conditions of
the AGWMOM test (from 5 cases to 4 cases) that are considered not robust. When the
distribution changes from normal to skewed normal tailed distribution the conditions
of the AGWMOM test changed, from ten to eleven under stringent criteria of
robustness. The number of conditions of the test also changed from six to four under
lenient criteria of robustness. The number of conditions of the test that is said not to

be robust changed from five to six cases.

It is observed that as the distribution changes from normal to skewed heavy tailed
distribution, the conditions of the AGWMOM test decreases from ten to five, under
stringent criteria of robustness and increased from six to thirteen under lenient criteria
of robustness. This is as a result of a reduction in the conditions of the test that are
regarded as not robust. This is because the AGWMOM test has a high rise in the
number of conditions of the test under lenient criteria of robustness, from six to
thirteen, that led to a decrease in the number of conditions of the test that is

considered not robust.

As the distribution changes from symmetric heavy tailed to skewed heavy tailed

distribution, the number of conditions of the AGWMOM test increased from one to

five under stringent criteria of robustness and decreased from 15 to nine under lenient
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criteria of robustness. This is as a result of an increase in the number of conditions of

the test that is regarded as not robust from five to seven.

A change in the distribution from skewed normal tailed to skewed heavy tailed,
shows that the AGWMOM test experienced a reduction in the conditions of the test
that fall under stringent criteria of robustness, from eleven to five. There is an
increase in the conditions of the test from four to thirteen under lenient criteria of
robustness and this brought about a reduction in the conditions of the test that are
considered not robust, from six to three. It can be seen that when the distribution
moves from normal to skewed heavy tailed distribution, the number of conditions of
the AGWMOM test under stringent criteria of robustness, decreased ten to five. This
led to a decrease in the number of conditions of the test that is not robust, from five to

three.

Example to illustrate robustness of the AGWMOM from normal to skewed heavy

tailed distribution is shown in Table 5.1.

Table 5.1

Number of Conditions of AGWMOM test from normal to skewed normal tailed

distribution
Robustness Normal Skewed heavy tailed
SR 10 5
NR 5 3
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5.3 Suggestion and Future Research

In this research, for both stringent and lenient criteria of robustness, the AGWMOM
test has provided a remarkable control of Type I error rate under skewed normal
tailed distribution and skewed heavy tailed distribution, compared to the AG test, the
AGMOM test and the ANOVA respectively. But it can be observed that as the
distribution changes from normal to skewed normal tailed distribution, the robustness
of the test increased from ten to eleven under stringent criteria of robustness and

decreased from six to four under lenient criteria of robustness.

Under skewed heavy distribution, the robustness of the AGWMOM test reduces under
stringent criteria of robustness from ten to five and increases under lenient criteria of
robustness from six to thirteen. Future research can be done, to introduce a more
robust estimator that can increase the robustness of the test for both stringent and
lenient criteria of robustness, as the distribution changes from normal to skewed
normal tailed distribution and from normal to skewed heavy tailed distribution

respectively.
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