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Abstrak 

Kajian ini tertumpu kepada ujian kumpulan bebas bagi membandingkan dua atau 
lebih min menggunakan kaedah berpararneter iaitu ujian Alexander-Govern (AG). 
Ujian ini menggunakan min sebagai sukatan kecenderungan memusat dan dianggap 
sebagai alternatif yang lebih baik berbanding ANOVA, ujian Welch dan ujian James. 
Walaupun ujian AG mempunyai kawalan yang baik terhadap kadar ralat Jenis I dan 
menghasilkan kuasa yang tinggi pada varians heterogen, ujian ini tidak teguh pada 
data yang tidak normal. Justeru, min terpangkas telah dicadangkan dalam ujian 
tersebut untuk menangani masalah ketaknormalan dan kemudiannya, satu penganggar 
yang lebih teguh dikenali sebagai penganggar M satu langkah terubahsuai telah 
diperkenalkan. Penganggar berkenaan adalah tidak dipengaruhi oleh bilangan 
kurnpulan, namun telah gaga1 untuk menghasilkan kawalan yang baik terhadap 
kawalan ralat Jenis I, dalam keadaan kepencongan dan kurtosis yang ekstrim. Kajian 
ini mencadangkan penganggar MOM terWinsor ( M O M )  sebagai sukatan 
kecenderungan memusat dalam usaha untuk meneguhkan ujian AG. Ujian AG yang 
ditambah baik ini, AGWMOM mampu menyingkirkan kewujudan data terpencil 
daripada taburan data. Satu kajian simulasi terhadap 5,000 set data telah dilaksanakan 
untuk membandingkan prestasi ujian: AG, AGMOM (ujian AG menggunakan 
penganggar MOM), AGWWOM, ujian-t dan ANOVA. Keputusan menunjukkan 
bahawa ujian AGE'MOM telah meningkatkan bilangan kondisi teguh pada taburan 
terpencong dengan hujung normal dan taburan terpencong dengan hujung berat 
berbanding ujian yang lain. 
Sebagai tambahan, ujian ini telah menghasilkan kuasa yang tinggi dalam kebanyakan 

kondisi pada empat kumpulan dengan saiz sampel tidak seirnbang. Dapatan kajian 
mendorong untuk ujian ini menjadi paling sesuai apabila taburan data adalah 
berhujung berat. 

Kata kunci: ujian Alexander-Govern, penganggar MOM, kadar ralat Jenis I, Kuasa 
ujian, ujian AGFXfOM 

. . 



Abstract 

This research centres on independent group test of comparing two or more means by 
using the parametric method, namely the Alexander-Govern (AG) test. It uses mean as 
its central tendency measure and is considered as a better alternative to the ANOVA, 
the Welch test and the James test. Although the AG test has a good control of Type I 
error rate and produces a high power under variance heterogeneity, it is not robust to 
non-normal data. Thus, trimmed mean was proposed in the test to handle the problem 
of non-normality and later, a more robust estimator called modified one step M 
(MOM) estimator was introduced. These estimators are not influenced by the number 
of groups, but failed to give a good control of Type I error rate, under extreme 
conditions of skewness and kurtosis. This research proposes the Winsorized MOM 
(FFWOM) estimator as a measure of central tendency in attempt to robustify the AG 
test. This enhanced AG test, AGWMOM is able to remove the appearance of outliers 
from the data distribution. A simulation study of 5,000 data sets was conducted to 
compare the performance of the tests: AG, AGMOM (AG test using MOM estimator), 
AGPMOM, t-test and ANOVA. The results show that the AGWMOM test has 
improved the number of robust conditions under skewed normal tailed and skewed 
heavy tailed distributions compared to the other tests. Additionally, the test produced 
high power in most conditions under four groups with unbalanced sample size. It 
leads that this test is convenient specifically when the data distribution is heavy tailed. 

Keywords: Alexander-Govern test, MOM estimator, Type I error rate, power of test, 
AGWMOM test 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background of the Study 

This research makes comparison of the performances of the Type I error rate and 

power of five different tests. These tests are (i) Alexander-Govern test (AG test), (ii) 

Modified One Step M-estimator (MOM) estimator in the Alexander-Govern test 

(AGMOM test), (iii) Winsorized Modified One Step M-estimator (WMOM> estimator 

in the Alexander-Govern test (AGWMOM test), (iv) t-test (v) Analysis of Variances 

(ANOVA). Each test is performed under two, four and six groups conditions, with the 

combination of both balanced and unbalanced sample sizes, equal and unequal 

variances respectively, with each of the g- and h- distributions. The g- and h- 

distribution is used to determine the level of skewness and kurtosis respectively in a 

data distribution. 

The best among the five tests will produce the best control of Type I error rate and 

also produce high power, under skewed heavy tailed distribution. The independent 

group tests such as the ANOVA have been applied in different field of life, for 

example in medicine, economics, sociology and agriculture, as discussed by Pardo, 

Pardo, Vincente and Esteban (1 997). Three main assumptions have to be filfiUed 

before the ANOVA can work effectively, namely: (i) homogeneity of the variance (ii) 

normality of the data and (iii) independent observations of the data distribution. 



The ANOVA is a classical method of analysis for comparing the differences between 

three or more means. It is used for testing the equality of the measure of the central 

tendency of a distribution, and is robust to small deviations from a normal 

distribution, mainly when the sample size is large enough to guarantee normality, as 

mentioned by Wilcox (1997,2003). 

Yusof, Abdullah, Yahaya and Othman (201 1) in their research discovered that the 

two major problems affecting the ANOVA is the appearance of non-normality and 

heterogeneity of the variance in a data distribution. Due to this, the Type I error rate 

is increased and there is a reduction in the power of the test. When the distribution of 

the data is heavy tailed, the standard error of the mean can be greatly increased 

(Wilcox & Keselman, 2002). Due to this, the standard error of the ANOVA becomes 

larger than it ought to be and the power of the test is reduced. In order to obtain a 

good test, the Type I error rate should be well controlled and the power of the test 

must not be reduced. This implies that neither should Type I error rate be increased 

nor should there be a decrease in the power of the test. 

The ANOVA is very sensitive to the homogeneity of variance assumption and when 

there is violation, the outcome of the analysis could be unreliable; whereby the p- 

value may become too conservative or large. Therefore, it is very crucial to test for 

the homogeneity of the variance and to check for the equality of the variance 

assumptions by using the correct test, so as to increase the genuineness of the results 

(Brown & Forsythe, 1974; Wilcox, Charlin, & Thompson, 1986). 



The problem of heterogeneity of variance has been discussed by few researchers and 

some alternatives have been proposed. Welch (1 95 1) introduced the Welch test that is 

used for testing the hypothesis of two populations with equal means. It is mentioned 

in different literatures as a better alternative to the ANOVA (Keselman, 1982; Wilcox 

et a[. , 1986; Algina, Oshima & Lin, 1994; Lix, Keselrnan, & Keselman, 1996). 

The Welch test gives a good control of Type I error rate when the variances are not 

equal. It becomes a common alternative to parametric procedure that deals with 

heteroscedasticity. However, for a small sample size, the Welch test fails to give a 

good control of Type I error rate, as the group size increases (Wilcox, 1988). James 

(1951) introduced the James test as a better solution for ANOVA under heterogeneity 

of variance. The James test is used for weighing means sample and is discussed in 

different literatures as a better alternative to using the ANOVA (Lix et al., 1996; 

Oshima & Algina, 1992; Wilcox, 1988). 

When the sample size is small, and the data distribution is non-normal, the James test 

fails to give a good control of Type I error rate. Both the Welch test and the James 

test are used for analyzing a data distribution that is non-normal with unequal 

variance (Brunner, Dette, & Mu& 1997; Kohr & Games, 1974; Krishnamoorthy, Lu, 

& Matthew, 2007; Wilcox & Keselman, 2003). 

The Alexander-Govern test was introduced in 1994 to deal with heterogeneity of 

variance under the condition of normality, but is a test that is not robust to non- 

normal data. Schneider and Penfield (1997) and Myers (1998) accepted that 

performance of the Alexander-Govern test is better compared to the James test and 



Welch test respectively. Myers (1998), suggested that the Alexander-Govern test 

provides a good solution to the problem of variance heterogeneity. The A G test can 

excellently put under control the Type I error rate when there is heterogeneity in the 

variances, under a normal data distribution. 

It is a well-known fact that the common mean is a very good estimator under normal 

distribution but it is extremely sensitive to the presence of outliers. The Alexander- 

Govern test was originally developed using the common mean as its central tendency 

measure, hence, directly affecting its performance when dealing with non-normal 

data. As a result, it fails to provide a remarkable control over the probability of Type I 

error rate for a non-normal data and the power of the test is reduced. 

Lix and Keselman (1998) introduced a better alternative to the common mean with 

the use trimmed mean in a few robust test statistics that improved the performance of 

the tests for a non-normal data. The use of trimmed mean and Winsorized variance 

are better alternatives to the common mean and variance respectively. This is 

attributed to some good properties, such as having a remarkable control of Type I 

error rate and the power of the test is increased, when there is a violation under the 

assumptions of homogeneity of the variance and when the distribution of the data is 

normal (Wilcox, 1 995). 

Trimmed mean is obtained by taking the average of the middle data only after 

removing a certain percentage of the largest and the smallest data value, while its 

variance is estimated by using the Winsorized variance. Trimming is the process of 

removing a fixed amount of extreme value in percentage, fkom both tails of a 

4 



distribution during the process of analyzing data (Abdullah, Othman, Yahaya & & 

Yusof, (201 1). Suppose in an experiment consisting of two groups, an individual may 

choose not to consider the two largest scores and the two smallest scores fiom each of 

the groups, such that the outliers present in either group would be removed. In using 

trimmed mean as a robust measure and scale in a data distribution, some limitations 

exist when the data are trimmed symmetrically without considering the nature of the 

distribution. 

In general, the amount of trimming is performed regardless of the distribution of the 

data. There will be a great mistake in removing a data distribution where outliers are 

not located, mainly in a normal data distribution, because in doing so it will lead to 

loss of information. Meanwhile, in cases of skewed data distribution, the trimming 

process performed on the data must not be equal at the right and left tail of the data 

distribution. Another weakness in using trimmed mean is that it cannot give a good 

control of Type I error rate when the number of groups is more than two; i.e h r  four 

groups and above, it could no longer control the error rate in the test, especially when 

applied in Alexander-Govern test as its central tendency measure (Lix & Keselman, 

1995). 

One of the suggested estimators as a better alternative to the trimmed mean is known 

as the MOM, which is able to detect the appearance of outliers in a data distribution 

(Yusof, Abdullah, Yahaya & Othrnan, 201 1). The MOM estimator empirically trims 

only the extreme data sets (Othman, Keselman, Padmanabhan, Wilcox, & Fradette, 

2004). However, the main disadvantage of using the MOM estimator as a measure of 



the central tendency, in Alexander-Govern test, is that it cannot control the error rate 

in the test under extreme condition of skewness and kurtosis. 

1.2 Problem Statement 

In testing the equality of means between independent groups, two major issues need 

to be satisfied which are nonnal distribution and equal variances. The problems with 

unequal variances were discovered in statistical literature by Behrens (1929) and 

Fisher (1935). A few studies offered some alternative approaches in handling these 

problems. The most common approaches that made used of robust statistical tests are 

those of the Welch (1951) and the James (195 1). 

The Alexander-Govern (1 994) test is a better alternative to Welch test, James test and 

the ANOVA. This is due to its simplicity in calculation (Schneider & Penfield, 1997). 

According to Schneider and Penfield (1 997), Lix and Keselrnan, (1 998) and Myers 

(1998), the Alexander-Govern test gives a good control of Type I error rate for a 

normal data under variance heterogeneity, but this test is not robust for a non-normal 

data. This results showed that the Type I error rate became out-of-control when data 

distribution was not normal. 

The main reason why it cannot work correctly under non-normal data is because it 

uses common mean as its central tendency measure. The common mean is affected by 

the appearance of outliers when there is a deviation fiom normality. Lix and 

Keselman (1998) introduced the trimmed mean as a better alternative to the mean for 

a non-normal data. The trimmed mean has been used by different researchers in the 



past to give a good control of Type I error rate for a non-normal data (Keselman, 

Wilcox, Taylor, & Kowalchuk, 2000; Luh & Guo, 2005; Luh, 1999). 

In applying trimmed mean in a data distribution, it possesses some disadvantages. 

Firstly, the percentage of trimming is placed at prior, resulting in the elimination 

process. Secondly, in trimming process, it should be done carehlly, to minimize loss 

of information. Thirdly, it cannot handle large size of extreme value (Yahaya, 

Othman, & Keselrnan, 2006). 

According to Abdullah, Yahaya and Othman (2007), an alternative to the use of 

trimmed means in Alexander-Govern test is a highly robust estimator, referred to as 

the MOM estimator. It was observed that when the distribution of the data is skewed, 

the MOM estimator kept under control the Type I error rate. The MOM estimator 

empirically trims extreme data set depending on the kind of the data set, be it a 

normal or skewed data distribution. When it was applied in Alexander-Govern test, it 

gave a remarkable result in putting under control Type I error rate, for a normal or 

highly skewed data distribution, but it failed to produce a remarkable control over the 

probability of Type I error rate under extreme condition of skewness and kurtosis 

(Othman et al., 2004). 

In a condition where the degree of skewness and kurtosis is exceptionally high, 

another preferred option is Winsorized mean, as introduced by Hasings, Monsteller, 

Tukey and Winsor (1947). Unlike the trimmed mean where data are trimmed &om 

both tails of the distribution, the Winsorization process does not affect the sample 

size (Dixon & Tukey, 1968; Tukey & McLaughlin, 1963). 



Ochuko, Abdullah, Zain and Yahaya (20 15) described the Winsorization process as 

making a replacement or an exchange for the outlier detected value with a preceeding 

value closest to it. Winsorization has several advantages more than using the 

trimming procedure in a data distribution. Firstly in Winsorization, it makes a 

replacement or an exchange for an outlier detected value with the closest value to the 

outlier. Secondly, the sample size of the data remains unaltered. Thirdly, 

Winsorization helps to prevent loss of information. Fourthly, Winsorization helps to 

make the sample sizes of the data to be the same unlike using the trimming 

procedures. 

1.3 Objective of the Research 

The objective of this research is to produce a good statistical test in comparing the 

mean of independent groups when the assumptions of variance homogeneity and 

normality are violated. 

The specific objectives are: 

i. To modify the AG test using the new estimator namely the Winsorized MOM 

estimator. 

. . 
11. To evaluate the robustness of the modified AG test in terms of Type I error 

rate and power. 

iii. To compare the performance of the AG test, AGMOM test, A G W O M  test, t- 

test and the ANOVA. 

iv. To evaluate the reliability and efficiency of the test using real data. 



1.4 The Scope of the Research 

This research deals with the modification of the Alexander-Govern test, by using the 

Winsorjzed MOM estimator as its central tendency measure, under variance 

heterogeneity, to produce a good control of Type I error rate and high power under 

extreme conditions of skewness and kurtosis. 

1.5 Significance of the Research 

This research will appraise existing tests used when the assumptions of variance 

homogeneity and normality are violated. 

To students: This research will expose and educate them on the importance of 

applied statistics in our world today, in overcoming insurmountable problems of the 

past with the aid of using simulated programmes, such as the Statistical Analysis 

Software (SAS) software programming package, for the analysis of simulated data, to 

making life easier and convenient in addressing problems, relating to comparing the 

scores among independent groups, with the goal of giving accurate results for the 

analysis of the independent groups. 

To future researchers: 

This research will be of great benefit to researchers by providing new findings in 

solving problems relating to comparing the scores among independent group test, on 

how the Winsorized MOM estimator was applied in the Alexander-Govern test, to 

overcome its weakness under non-nomlit y in the presence of variance heterogeneity 

and as result, giving remarkable control of Type I error rate and to produce high 

power for the test, under skewed heavy tailed distribution. 



1.6 Organization of the remaining Chapters 

In Chapter One, the background of the study was elaborated, focusing on the 

independent group tests, such as the ANOVA, its application in different fields of life. 

The assumptions that must be fillfilled before the ANOVA can perform effectively 

have been described. The two main factors affecting the ANOVA in the control of 

Type I error rate and increase power were highlighted. 

Other better alternatives to the ANOVA were mentioned, such as the Welch test and 

the James test. The constraints that affects the Welch test and the James test in the 

control of Type I error rate and high power was indicated in this chapter. The 

Alexander-Govern test is a better alternative to the Welch test, the James test and the 

ANOVA was mentioned and the reasons were listed. 

The Alexander-Govern test is not robust to non-normal data under variance 

heterogeneity. As a result, the test fails to give good control for Type I error rate and 

high power under this condition. The problem statement in this research was 

identified. The objective of the research was listed. The scope of the research was 

elaborated. The significance of this research, namely to students and fbture research 

was explained in this chapter. 



CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

The independent group test is all about making comparison of the equality of 

independent groups, either with the use of parametric or non-parametric method. In 

using parametric method, the ANOVA is seriously affected by the presence of 

heterogeneity of the variance and non-normality in a data distribution. The 

performance worsens when there are differences in the group sizes. The ability of this 

classical group test in controlling the Type I error rate reduces, thereby leading to an 

increase in the rejection of the null hypothesis testing for equal means in the 

distribution, especially under small sample sizes (Kulinskaya, Staudte, & Gao, 2003). 

In a situation with unequal population variances, it will adversely affect the outcome 

and authenticity of the ANOVA mainly when the sample group sizes are not equal 

(Glass & Sanders, 1972; Harwell, Rubinstein, Hayes, & Olds, 1992; Kohr & Games, 

1974; Scheffe, 1959). Ironically, in real life data, the heterogeneity of variance is a 

very common situation; for instance in behavioral sciences, it is a common practice 

for researchers to work with unequal variance in a data distribution (Erceg-Hurn & 

Mirosevich, 2008; Golinski & Cribbie, 2009; Grissoq 2000; Keselman, Kowalchuk, 

Algina, Lix & Wilcox, 2003). 

To give solution to the presence of non-normal with heterogeneity of the variance, 

reliable alternative techniques such as the James (1 95 1) and the Welch (195 1) have 
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been provided. The Alexander-Govern test is a better alternative to the Welch test, the 

James test and the ANOYA, because of its' simplicity in calculation and giving 

excellent control of Type I error rates for a normal data, but the test is not robust to 

non-normal data. 

Wilcox (2003) stated that for every procedure which is based on mean, it will give 

poor performance when the normality distribution is deviated. From previous 

researches, it is observed that different approaches have been suggested in analyzing 

data distributions that are non-normal with heterogeneity of variances (Brunner, 

Dette, & Munk, 1997; Wilcox & Keselman, 2003; Cribbie, Wilcox, Bewell, & 

Keselman, 2007). 

2.2 Robust Statistics 

Robust statistics majorly deals with the spotting out of outliers in a given data 

distribution and reducing the appearance of the outliers as much as possible in the 

data distribution, so that the good observations are far more than the outliers located 

in the given data set. Robust statistics mainly use parametric models that permit 

deviations from models assumptions (Huber, 1981; Barnett & Lewis, 1994). Outliers 

could also be defined as observations or subsets of observations seen in a data 

distribution that are not consistent with the other data sets in the given data 

distribution (Barnett & Lewis, 1994). 

According to Lix and Keselman (1998) the empirical rate of Type I error for stringent 

criteria of robustness must fall within the interval of 0.0421a10.058 to judge the 

robustness of a given test at level of significance. As stated by Bradley's (1978) 
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the lenient criteria of robustness of a given test must fall within the interval of ( 

0.025-0.075 ), in order to judge the robustness of a given test at a level of 

significance. In this research both lenient and stringent criteria of robustness was used 

to judge the robustness of the tests. 

2.3 Dealing with Non-Normal Data 

A non-normal data is a condition whereby a data is not normally distributed. 

Investigation under empirical test reveals that the Alexander-Govern test performed 

remarkably well compared to the ANOVA in controlling Type I error rate and power 

in the condition of variance heterogeneity and normality (Alexander & Govern, 

1994). Additionally, Schneider and Penfield (1997) reported that the Alexander- 

Govern test is a good alternative to the ANOVA for variance heterogeneity compared 

to the Welch test and the James test due to its simplicity in calculation and having a 

good control for Type I error rate. 

It also produces a high power under most experimental situations, referring to 

different levels of examination, when the test was applied in a data distribution, in 

order to evaluate its effectiveness in a data distribution. However, under the condition 

of heterogeneity of variances, it was recommended for only normal data but not 

robust to non-normal data, as discussed by Myer (1 998). 

With the use of non-normal data, transformation might be a favorable technique. 

Transformation is a special approach for transforming a data set that is non-normal in 

form and also having the appearance of variance heterogeneity in the data 

distribution. By so doing, the present scores in the distribution becomes normal and 
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having equal variance. Despite the fact that it has the ability of transforming skewed 

data, it possesses some disadvantages in its usage. 

Wilcox (2002) noted that using transformation on the square root of the mean and 

likewise with the log of the mean eliminates the influences on a real data set. 

Transformation also cannot remove the impact of outliers in a data distribution. In a 

situation where the extent of transformation is complex in a given distribution, it 

suffers the constraint of normalizing the data that is skewed. Other approach that is 

usually chosen by statistician practitioners when there is non-normal data distribution 

is using non-parametric methods. 

According to Marascuilo and McSweeney (1977), a non-parametric test makes no 

exact assumption in relation to one or more of the population parameters that define 

the given distribution, for which the test is to be used. It is used to eliminate a 

nominal and ranked order data and can be described as an assumption free test or 

otherwise referred to as a distribution fiee test. However, non-parametric tests are not 

as sensitive as parametric tests when the basic assumptions ofthe parametric tests are 

fulfilled. 

Hence, larger differences are required before a rejection of the null hypothesis is 

performed. In other situations, non-parametric approaches also need a large number 

of sample sizes to prevent the loss of information. Examples of non-parametric test 

are Friedman test, Mann-Whitney U test, Wilcoxon Signed-Ranked test, Fisher Exact 

Probability test, Kruskal-Wallis test, Cochran Q test, McNernar test and the Chi- 

square test as mentioned by Daniel (1 990). 



In considering the weaknesses observed in using the non-parametric tests, researchers 

have discovered the use of robust estimators as a better alternative when dealing with 

non-normal data. Robust estimator that is commonly chosen in improving the 

independent group test is the trimmed mean. This estimator has been successfblly 

used to improve the Alexander-Govern test under non-normal distribution (Guo & 

Luh, 2000; Lix & Keselman, 1995; Luh, 1999). Although trimmed mean possesses a 

remarkable control over the probability of Type I error rate, the trimming process is 

performed irrespective of the nature of the distribution. 

Whether outliers are present or not in a data distribution, the percentage of trimming 

is set at prior, thereby resulting in the elimination process done without regarding the 

shape of the data distribution. Therefore, it might lead to further loss of information. 

An alternative to the use of trimmed means is a highly robust estimator, which is 

referred to as the modified one-step M-estimator (Wilcox & Keselman, 2003). 

Othman et al. (2004) stated that the MOM estimator empirically trims extreme data 

set only by depending solely on the nature of the data set. Ln a situation of skewed 

data, the amount of trimming should not be the same at both tails of the distribution. 

For example, if the data is skewed to the right, more data on the right should be 

trimmed fiorn the distribution. 

In using any estimator that is based on trimming, one major need to be placed under 

consideration, is the process of trimming itself. As mentioned previously, the 

trimmed mean trims data symmetrically without any consideration on the nature of 

the distribution. Meanwhile, the MOM estimator only trims data that is suspected as 
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outliers. If both tails of a data set are detected as outliers, then the data distribution 

would be trimmed symmetrically, otherwise if it is one side of the data set that is 

detected as outliers, it would be trimmed asymmetrically, meaning that only one tail 

of the data set would be trimmed. 

2.4 MOM Estimator 

Scholars such as Wilcox and Keselman (2003a, 2003b) introduced the modified one 

step M-estimator to correct the problem associated with trimmed means, where the 

proportion of outliers is more than the percentage on trimming to be applied on the 

data set that is associated with the power of the test. 

More trimming or other measure of location that is in a very small extent not affected 

by a large number of outliers is required. Also, when a data distribution is highly 

skewed to the right, it is very reasonable to trim more of the data set fiom the right 

tail than the left tail of the distribution. Wilcox and Keselman (2003a, 2003b) 

modified the one-step-M estimator, which is defined using the formula below: 

1 . 2 S ~ N j  (i, -i,)+C';" Z = ~ ~ + I  Y(i)  j 
0= 

where 

n j  = the sample sizes of the data distribution, 

i, = the number of X ,  observations when Ixi - M I  < - K ,  

MAD, 



i, = is the number of xu observations when Ixi - M I  
> K ,  

M m n  

In eliminating 1 .28MADNj (i, -i, ), where MADN, = mi / 0.6745, the MXD, is 

I & I  I 
/, 

the median of the values of y, -M, ,..., Y, j - M  . Note that M i  is defined as the 

median of the jth group, i, is the number of observations where 

A 

%-Mi >2.24MADNj. 

Therefore, the modified M-estimator proposed by Wilcox and Keselman (2003) is 

defined as: 

A one-step M estimator is defined as: 

 given^,,, rx,2j I...IX[~,, as the observations expressed fiom the least value to the 

P. 

largest value. The expression 1.28 (MAD,) (i, -i,) in 6'0s , arises for technical 

reasons; overlooking it, results to the popularly known estimator, otherwise called the 

modified one step M-estimator (MOM). 

Outliers in a data distribution can be detected by using the formula below: 



or when Ixj -MI <-K , 
-n 

where X ,  represents the ordered random sample observations, M is the median of the 

ordered random samples and AhDn is the median absolute deviation about the 

median The value of K is 2.24. This value was proposed by Wilcox and Keselman 

(2003) for detecting the presence of outliers in a data set, because it has very small 

standard error, when sampling fiom a normal distribution. 

The MOM estimator is also defined as: 

MOM = 
1 C nj - i l  -i2 i = i , + l  

According to Abdullah, Yahaya and Othrnan (2007), the formula for the MOM 

estimator is defined in Equation (2.6), 

where: 

.fh X(, ,  = the z sample ordered observations for the j group, 

and K = 2.24 

Substituting K equals to 2.24, to obtain a small reasonable standard error, for a 

normal data distribution, either i, or i, is used, which is defined as follows: 

i, is the number of observations, when Ixi - M I  < - 2.24 
MAD, 

i, is the number of observations, 

when xi - M I  > 2.24. 
-n 



The MOM estimator is obtained by using either equation (2.7) or equation (2.8) as 

expressed above, which is used to detect the presence of outliers from the ordered 

data set. Inusing equation (2.8), if the absolute value of the observed ordered data set 

subtracted fiom the median, divided by the value of the AkDn is greater than K, then 

that observed value is considered to be an outlier. 

The estimate of location for the MOM estimator is defined as the average of the 

values remaining after all the outliers, if there are any present in the data set, are 

removed. The value of 2.24 is motivated in part with the aim of getting a reasonable 

small standard error when taking samples fiom a normal distribution. The one step 

M-estirnator is more satisfactory in obtaining a relatively small standard error, but the 

MOM estimator has some advantages over the one-step M-estimator, as follows. 

The MOM estimator is very flexible in relation to the number of observations that 

should be removed as outliers fiom the distribution. 

1. The MOM estimator can deal relatively large number of outliers. 

2 It results in using the common mean, when no outliers are found in a data 

distribution. 

3. It permits different amount of trimming from the left tail to the right tail of the 

distribution. 

2.5 Trimming and Winsorization Methods 

Trimming process is a technique used in removing a certain amount of data either by 

setting the percentage of trimming at prior or identify the amount of trimming using 

any procedure of outlier detection (Yusof, Abdullah & Yahaya, 201 1). As an 



example, in considering two groups when performing an experiment, a person may 

decide to neglect the two highest and the two lowest scores fiom each group in the 

data set, with the aim of removing outliers present in either group. As mentioned 

earlier, trimming process needs to be done carefilly because every single data value 

brings valuable information. The obvious disadvantage of trimming process is that it 

reduces the number of data to be considered. Therefore, if the sample size is small, 

trimming will make the sample size even smaller. 

Winsorization is another approach in dealing with the influence of outliers. The term 

Winsorization was discovered by Hasings, Monsteler, Tukey and Winsor (1 947) as a 

change in a data distribution by restricting extreme values with the aim of reducing 

the appearance of outliers ti-om the distribution. In Winsorization process, the value 

of the outlier detected are replaced or exchanged with a preceding value, closest to it. 

As a result, the sample size of the data set is not affected. 

To illustrate the Winsorization process, consider the following data set given as: 1, 2, 

3,4,  5, 6, 7 and 8 (Tukey & McLaughlin, 1963; Staudte & Sheather, 201 1). The total 

sample size of this data set is eight. The mean of the distribution is 4.5. Therefore, 

20% trimmed mean of the sample size of the data set is 1.6 and the approximated 

value is 2. 

This indicates that two data would be discarded or trimmed %om the left tail and the 

right tail of the data distribution. Hence, the distribution becomes; 3, 4, 5 and 6 

respectively. As a result of this, the sample size is affected. It is reduced to four 

instead of eight (50% reduction) with the use of trimmed mean on the distribution. 



For the Winsorization process, the two smallest and greatest values are replaced or 

exchanged with a preceding value closest to the outlier detected values. Hence, the 

Winsorized distribution becomes: 3, 3, 3, 4, 5 ,  6, 6, 6. Winsorization is a process that 

involves making a replacement or an exchange for the outliers values detected. 

Hence, the sample sizes in the data distribution remains the same. It helps to prevent 

loss of information and hence, the data is preserved, unlike the trimmed mean 

procedure. 

2.6 The Alexander-Govern Test and its Test Statistic 

The Alexander-Govern test is proposed by Alexander-Govern (1994). This test uses 

mean as its central tendency measure. It gives a remarkable control of Type I error 

rate and high power for a normal data, under variance heterogeneity. But this test is 

not robust for a non-normal data and fails to give a good control of Type I error rate 

under this condition. The test is used for comparing two or more groups. The test 

statistic for the Alexander-Govern (AG) test is obtained by using the following 

procedures. 

The procedure in obtaining the test statistic for the Alexander-Govern test starts by 

first ordering the data set, having population j ( j=l ,  ..., J). For each of the data set, 

the mean is calculated using: 

where X, represent the observed ordered random samples and n, denote the sample 

size of the j observations. The mean is used as a measure of the central tendency in 
2 1 



the Alexander-Govern (1994) procedure. After obtaining the mean, the estimate of 

the usual unbiased variance is calculated using: 

- 
where, X j  is used for estimating p, for the population j . The standard error of the 

mean is calculated for each group using: 

The weight (w , )  for the group sizes with j population of the ordered sample data is 

defined such that summation of the weight (Cw,) should be equal to 1. So, the 

weight for each of the group is calculated using the formula below: 

The null hypotheses testing for the Alexander-Govern (1 994) method, for the equality 

of the mean and under variance heterogeneity are expressed as: 

Ho :,ii, =...=p, 

H~ 'Pi , for at least i# j 

The alternative hypothesis, ( H A )  contradicts the claim or statement made by the null 

hypothesis. The grand mean for all the groups is calculated using: 
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- 
where, x j and wj  are defined in Equations (2.9) and (2.12) respectively. 

The t statistic for each group is calculated by using: 

- 
where, x, , ,u and S,. are given in Equations (2.9), (2.1 3) and (2.1 1 )  respectively. 

The t statistic is distributed as a t variable, having (nj -1 ) degrees of freedom, for 

each of the independent groups in the order data set. The t statistic obtained for each 

of the group is converted to a standard normal deviates (z, )  with the use of Hill's 

( 1970) normalization approximation in the Alexander-Govern ( 1  994) approach. The 

formula is defined below: 

l . L  

where c = [a x log, (1 
vi 

2 v, =n, - l , a = v j  -0.5 and b=48a (2.17) 

The test statistic for the Alexander-Govern (AG) approach is defined below: 



A chi-square distribution table is used to obtain thep-value for the Alexander-Govern 

test at a=0.05 level of significance. If the p-value is less than 0.05, it is concluded 

that the test is significant otherwise, it is not, 

2.7 Summary 

In comparing independent groups, the classical group test such as the ANOVA is 

seriously affected by the appearance of heterogeneity of the variance and non- 

normality in a data distribution. Reliable parametric alternatives such as the James 

test, the Welch test, and the Alexander-Govern test have been proposed to solve the 

problem of variance heterogeneity. The Alexander-Govern test is considered as a 

better alternative to the Welch test and the James test because it is easy to compute, it 

produces a high level of power and possesses a remarkable control over the 

probability of Type I error rate. However, it has a weakness being that, it is not robust 

to non-normality under variance heterogeneity. 

When trimmed mean was applied in the Alexander-Govern test, it was only robust for 

two group cases, but when there was an increment in the group sizes above two, the 

test was no longer robust and hence, could not give a good control of Type I error 

rate. A highly robust estimator known as the MOM estimator was applied on the test, 

as a substitute for its measure of central tendency. This estimator is not affected by 

the number of groups. It gave an excellent control of Type I error rate under a skewed 

distribution. But it failed to give a good control of Type I error rate, under skewed 

heavy tailed distribution. 



Therefore, in this research, the Winsorized MOM estimator was applied in Alexander- 

Govern test to overcome its weakness under non-normality in the presence of 

variance heterogeneity, in an extreme condition of skewness and kurtosis and it gave 

the test an excellent control of Type I error rate and high power, 



CHAPTER THREE 

RESEARCH METHODOLOGY 

3.1 Introduction 

This chapter explains how the Winsorized modified one step M-estimator (WMOM) 

was used as a replacement for the central tendency measure in Alexander-Govern 

test, to overcome the weakness of the test for non-normality under variance 

heterogeneity, in an extreme condition of skewness and kurtosis. In this chapter, the 

test statistic for the Winsorized modified one step M-estimator is explained in 

detailed. 

There are five different variables that were used in this research, which are: balanced 

(equal) and unbalanced (unequal) sample size, variance ratio, group sizes i.e J = 2, 4 

and 6, types of distribution and nature of pairing. The research design shows the 

combination and pairing of both balanced (equal) and unbalanced (unequal) sample 

sizes with both equal and unequal variance, for both positive and negative pairing 

condition with each of the g- and h- distribution for two, four and six groups 

conditions. 

In the research design, 84 conditions of pairing were used for the five different tests, 

which are: the Alexander-Govern (AG) test, the modified one step M-estimator in the 

Alexander-Govern (AGMOM), the Winsorized modified one step M-estimator in the 

Alexander-Govern (AGWMOM) test, the t-test and the ANOVA respectively. Lastly, 

the statistical power of a test is defined as the probability of not accepting the null 



hypothesis when it is false. The power of a test is affected by three main factors, 

which are: sample size, level of significance and the effect size. The Effect Size Index 

is divided into three types, namely: small, middle and large. In this research the Large 

Effect Size Index was used to produce high power for each of the tests. 

3.2 The Modified Alexander-Govern Test 

The WMOM estimator is applied on the data distribution where the outlier detected 

value is replaced or exchanged with a preceding value closest to the position the 

outlier is located. The WMOM estimator is obtained by averaging the Winsorized data 

distribution. It is expressed by using formula (3.1): 

The WMOM estimator is used as a replacement for the common mean as the central 

tendency measure in the Alexander-Govern test, for the following reasons: 

i. to eliminate the appearance of outliers from the data distribution. 

. - 
11. to make the Alexander-Govern test to be robust to non-normality. 

The Winsorized sample variance is defined as: 

zJ (X, - X W M O V ~ ) ~  
J = L  

s2WMOq7= 
n-1 

> 

- 

where, xj is the random ordered observed sample and X W , M O , ~  is the Winsorized 

MOM estimator for the Winsorized data distribution. The standard error of WMOM is 



obtained by using the bootstrapping method. The bootstrapping algorithm for 

estimating the standard errors is defined below. 

* B  Firstly, we chose B independent bootstrap samples defined as: x*' ,x" ,..., x , where 

each of these random samples comprises of n data values selected with replacement 

corn x defined below: 

X* = ( x [ , x  2 , . . . ,  x,) (3.3a) 

The indication of the symbol (*) shows that x* is not the real data set of x but it 

refers to a randomized or resampled version of x. Where s is used fox estimating 

P. r. 1 
t (F) and F is the empirical distribution for the probability of - on each of the 

n 

observed values of xi , i = 1,2, ..., n .  

In estimating the standard error of the bootstrap samples, the number of B falls within 

the range of (25 - 200). According to Efron and Tibshirani (1998) bootstrap sample 

size of 50 is sufficient enough to give a reasonable estimate of the standard error of 

the MOM estimator. In this research, the same sample size was used to estimate the 

standard error of the MOM estimator. 

Secondly, the bootstrap replications equating to each of the bootstrap samples is 

defined below : 

s(x*) is the mean ofthe bootstrap data distribution were evaluated. 



h 

Thirdly, we estimate the bootstrap estimate of se, (0) fiom the sample standard 

deviation of the bootstrap replications as defmed below: 

where i j  (-) = xB b = l  2 (b) I B 

h * 
and 8 =s (x*)  

The weight W ,  for the Winsorized data distribution for each group is expressed as 

below: 

J 

where C 1 1 ~ ' e i ~ ~ ~  is the sum of the inverse of the square of the standard error for 
j=l 

all the groups in the ordered data distribution, fi-om the real data distribution. Where 

1 / ~ ~ e ~ ~ ~ ~ ~  is the reciprocal of the standard error of the Winsorized data distribution 

and S ' ~ ~ O , ~  is the standard error of the Winsorized data distributon and is defined 

using the formula below: 



The variance weighted estimate of the total mean for the Winsorized data distribution 

for all the groups is expressed as: 

- 

where wj is given in equation (3.6) and X ~ w o , ~  is given in equation (3.1). 

The t statistic for the Winsorized data distribution for each of the group is obtained 

using the formula below: 

- 
where XMW , i ,  and S, is the Winsorized MOM estimator, the total mean for the 

Winsorized data distribution and the standard error of the Winsorized data 

distribution respectively. In the Alexander-Govern (1994) approach, the t ,  value is 

transformed to a standard normal with the use of Hill's (1970) normalization 

approximation technique and the hypothesis testing of the Winsorized data 

distribution, where S~WMO,W is the usual estimate of the Winsorized sample variance 

of the W O M  estimator for p, is defined below: 



The alternative hypothesis, ( H A )  contradicts the claim or statement made by the null 

hypothesis. The grand mean for all the groups is calculated using: 

Thus, the normalization approximation formula for the Alexander-Govern method, 

using the Winsorized data distribution is expressed as the original AG test (see 

Section 2.6.1). 

The test statistic of the Winsorized Modified One Step M- estimator in the Alexander- 

Govern test (AGKMOM) test for all the groups in the ordered data sample is 

expressed as: 

The test statistic for the AGWMOM test follows a chi-square distribution at a=0.05 

level of significance, having (J - 1) chi-square degrees of fi-eedom The p-value can 

be determined using a standard chi-square distribution table. If the p- value of the 

AGWMOM test is less than 0.05, then we can say that the test is significant, 

otherwise, the test is referred to as not significant. 

3.3 Variables Investigated in this Research 

There are five different types of variables that were used in this research, namely: 

sample size, variance ratio (equal and unequal variance), group sizes, types of 

distribution, and nature of pairing. All these variables were manipulated to investigate 

the strength and the weakness of the original Alexander-Govern test (AG) test, the 

Modified One Step M-estimator in Alexander-Govern test (AGMOM) test, the 



Winsorized Modified One Step M-estimator in Alexander-Govern test (AGWMOM) 

test, the t-test and the ANOVA. 

3.3.1 Balanced and Unbalanced Sample Size 

Researchers such as Yusof, Abdullah, Yahaya and Othman (201 1) made used of 

equal and unequal sample sizes (balanced and unbalanced) condition in their research 

fmdings. For a balanced sample size, they used sample sizes of N = 60, where 

n, =15, n, =15, n, =15 and n4 =15, and for N=80, where 

n, = 20, n2 =20, n, =20n4 =20 and n, = 20 .Under an unbalanced sample size 

condition, where N = 60, they selected n, =12, n, = 14, n, =16 and n, = 18, for 

N=80, they selected n, = 10, n2 =20, n, = 20 and n, =30. The selection of the sample 

sizes chosen by these researchers gave them a remarkable control of Type I error rate. 

On the other hand, Othrnan et ul. (2004) and Keselman et ul. (2007) in their 

researches, used unbalanced sample size of N = 25, where n, =lo, and n, =15 , for N 

= 30, where n, = 10 and n, =20, for N = 40, where n, =15 and n, =25 , for N= 70, 

where n, =lo, n, =15, n, =20 and n, =25, for N = 90, where 

n, =15, n, =20, n, =25 and n, =30. The selection of the sample sizes chosen by 

these researchers gave them an excellent control of Type I error rate. 

Abdullah, Yahaya and Othrnan (2007) used unbalanced sample sizes of N = 40, 

where n, =15 and n, =25, for N =  80, where n, =10,n2 =15,n, =25 and n, =30. The 

selection of the sample sizes chosen by these researchers are considered to be 
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moderate quantities of sample sizes and it gave them a good control of Type I error 

rate and a high power for their test in the course of their analysis. Furthermore, 

Yusof, Abdullah and Yahaya (2012) also used unbalanced samples in their research, 

such as for N = 60, where n, =12, n, =14, n, =16 andn, =18, for N = 80, where 

n, =lo, n, =20, n, =20 and n, =30. The selection of the sample sizes used by these 

researchers gave them a remarkable control of Type I error rate. 

In this research, both balanced (equal sample sizes) and unbalanced sample sizes 

(unequal sample sizes) were selected. Under a balanced sample size condition, for N 

= 40, the sample sizes used are n, = 20 and n, = 20, under two groups 

condition. For the case of four groups, where N = 80, nl, nz, nj and nd were all set 

equal to 20. Under a balanced sample size for six group condition, the total N = 120, 

where n, = 20,n, = 20,n, = 20,n,= 20,n, = 20and n, = 20. 

For unbalanced sample size condition, the sample sizes used are n, = 16, and n, = 24, 

for four group case, where n, =15, n, =15, n, =20 and n, = 30. For six group 

condition, the sample sizes used are n, =2, n, =4, n, =4, n, =16, n, =32 , n, = 62. 

The selection of both balanced and unbalanced sample sizes in this research, has 

assisted us to see the performance of our newly proposed method under these two 

conditions of sample sizes. The quantities of sample sizes chosen in this research are 

referred to as moderate amount of sample sizes to make comparison on the effect of 

power on the number of groups on this new method (Abdullah, Yahaya & Othman, 

2008). 
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3.3.2 Variance Ratios 

Othman et al. (2004) and Keselrnan et al. (2007) in their research analysis used 

unequal variance ratios of 36:1, 8:l as well as 36:l: 1:l and 8:l:l:l. The variance 

ratios of 36:l and 36:l: 1:l are considered as extreme conditions of variance 

heterogeneity, while the variance ratio of 8:l and 8:l: 1:l are considered as less 

extreme conditions of variance heterogeneity. These researchers agreed that the 

variance ratios of 36: 1 and 36: 1 : 1 : 1 are considered large enough to give researchers 

acceptable results for their data analysis. 

Meanwhile, Abdullah, Yahaya and Othman (2008) used different extreme conditions 

of variance heterogeneity of 1:36, 1:1:1:36, 1:l:l: 1:1:36 1.4: 16:36, and 

1 :4:4: 16: 16:36 respectively. It was observed that the variance ratios of 1 : 1: 1 :36 

produced a higher power compared to the variance ratio of 1:4: 16:36. The difference 

in the values of the power between these two variance ratios was 0.77, which gave a 

power of 0.8. 

The variance ratios of 1:4: 16:36 produced a smaller power compared to the 0.8, for a 

large effect size. The variance ratio of 1: 1: 1: 1 : 1:36, produced a higher power 

compared to the variance ratio of 1 :4:4: 16: 16:36, where the difference in the power 

values was as large as 0.8 (0.8098). The selection of variance ratio can have a great 

influence on the power of a test. The variance ratio of 1:1:1:1:1:36 makes the test to 

be more powerful. 

In this research, the variance ratios that were used are: (1: l), (1 :36) and (1 :1) (36:1), 

(1:l:l:l) and (1:1:1:36) and (1:l:l:l) (36:1:1:1), (1:l:l:l) (1:4:16:36') and (1:l:l:l) 
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(36:16:4:1) and (1:l:l:l:l:l) (1:4:4:16:16:36) and (1:l:l:l:l:l) (36:16:16:4:4:1) 

under variance heterogeneity. The selection of the variance ratio in this research has 

helped to show how well this new method can perform under extreme condition of 

variance heterogeneity. 

3.3.3 Group Sizes 

Scholars such as Othman et al. (2004) and Keselman et al. (2007) used group size of 

J = 2 and the results shows that all the method they used were robust. All the values 

of their method fell within the Bradley's (1978) stringent condition of robustness 

between the interval of 0.025 and 0.075. In the case of J = 4, all the methods they 

used fell within the Bradley's condition of robustness except for one which was not 

robust under very severe condition of non-normality. 

According to Yusof, Othman and Yahaya (2008) in their research for J = 2, all the 

values for the method they used fell within the stringent criterion of robustness. In the 

case of J = 4, all the method used fell within the Bradley's condition of robustness 

with one of the methods used having the closest value to the nominal value of 0.05. 

In the work done by Abdullah, Yahaya and Othman (2007)' they used group sizes of 

J = 2, J = 4 and J = 6, and a standard stringent criteria of robustness was considered 

within the interval 0.042 and 0.058 to judge the robustness of the three methods they 

used in their analysis, namely the Alexander-Govern test with common mean, the 

Alexander-Govern test with trimmed mean, and the Alexander-Govern test with 

MOM estimator. It was discovered that the Alexander-Govern test using common 



mean and the MOM estimator as a measure of the central tendency for the test, were 

robust for all the groups, the trimmed mean was robust only for two groups. 

All these findings showed that the number of group gives significant impact to the 

performances of the test. Similarly, in this research, different groups sizes of J =2, J 

= 4 and J =  6 were used to investigate the performance of this new method. 

3.3.4 Types of Distribution 

In this research, four different types of distribution, namely: standard normal 

distribution, symmetric heavy tailed distribution, skewed normal distribution and 

skewed heavy tailed distribution, were used to examine the effects of Type I error 

rate on the types of distribution. These four different types of distribution, represents 

different levels of skewness and kurtosis, by using the g- and h- distribution. 

The term heavy tailed distribution in probability distribution theory could be 

described as the tail that is not exponentially bounded. As a result, the tails are 

heavier than the exponential distribution. While a skewed normal tail distribution 

describes the measure of the symmetry of the probability of the real-valued random 

variable about the distribution. Skewness in a data distribution is defined as the curve 

that is seen distorted or when it is skewed either to the right tail or  to the left tail of a 

given data sets. The word "kurtosis" is defined as the measure of the peak of a 

distribution and it shows how high the distribution is close to the mean. The 

distribution of the data is said to be symmetric when g = 0 and h = 0 as discussed by 

Abdullah, Yahaya and Othman, (2007). 



According to Yusof, Abdullah, Yahaya and Othrnan (201 l) ,  the g- and h- distribution 

is modified fi-om the normal distribution, where g is a constant that controls the value 

of skewness in the distribution, and h is a constant that controls the value of kurtosis 

in the distribution. As the value of the g and h increases, the level of skewness and 

kurtosis increases accordingly. 

The observations of the g- and h- distribution are obtained by transforming the 

standard normal variat es using the formula below: 

where Z ,  is the standard normal distribution with i and j population. 

The values of the g- and h- distribution that were used in this research are: g = 0 and h 

= 0 (standard normal distribution), g = 0 and h = 0.5 (symmetric heavy tailed 

distribution), g = 0.5 and h = 0 (skewed normal tailed distribution), and g = 0.5 and h 

= 0.5 (skewed heavy tailed distribution) as discussed by Abdullah, Yahaya and 

Othrnan (2007). The characteristics of the g- and h- distribution are presented in 

Table 3.1. 



Table 3.1 

The characieristics of the g- arzcl h- distribution 

g- h- Types of 
(Nonnegative (Nonnegative Skewness Kurtosis distribution 

content) content) 
0 0 0 3 Standard normal 

0.5 0 
Symmetric 

986'20 heavy tailed 

0 1.81 18393.60 
Skewed normal 

tailed 

0.5 120.10 18393.60 
Skewed heavy 

tailed 
Source: Wilcox (1 997) 

3.3.5 Types of Pairing 

In this research, the robustness of the Alexander-Govern test, the Modified One Step 

M-estimator in the Alexander-Govern test and the Winsorized Modified One Step M- 

estimator in the Alexander-Govern test were determined by using two types of 

pairing: positive pairing and negative pairing. Positive pairing is a kind of pairing that 

occurs, whereby a smaller sample size is being paired with a smaller variance while a 

larger sample size is being paired with a larger variance. While negative pairing is the 

kind of pairing that occurs, whereby a smaller sample size is being paired with a 

larger variance, and a larger sample size is being paired with a smaller variance 

(Othrnan et al., 2004 & Keselrnan et al.', 2007) 

These conditions of pairing are selected, since they can mainly give conservative or 

conventional results for positive pairings and liberal or substantial results for negative 

pairings accordingly (Keselrnan et al., 2007). In a balanced condition for two groups 

(see Table 3.2), for four groups (see Table 3.3) and for six groups (see Table 3.4) is a 

condition where a balanced sample size is combined with a balanced variance ratio. It 
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is also referred to as a perfect condition with the combination of both balanced 

sample size with equal variance. 

3.4 Reseaxch Design 

The Alexander-Govern test is a test that uses mean as a measure of its central 

tendency, but is not robust for non-normal data under variance heterogeneity. For the 

design of this research, both balanced and unbalanced sample sizes were paired with 

equal and unequal variance for two groups (J = 2), four groups (J = 4), and for six 

groups (J = 6), positively and negatively with each of the g- and h- distribution. 

For each of the tests namely: the AG test, the AGMOM test, the A G W O M  test, the t- 

test and the ANOVA, data set of 5,000 were simulated in the research design. The 

values of the skewness and kurtosis for the g- and h- distributions are theoretical 

values and a computer generated values, based on 5,000 observations were simulated 

for these values (Wilcox, 1997). 5,000 data sets were used in this research to give us a 

satisfactory result for each of the tests. To obtain the pseudo random variates, SAS 

generator RANNOR (SAS Institute, 1999) was used with a nominal level of a = 0.05 

for the analysis of the tests in this research 

The robustness of the WMOM estimator with respect to the Type I error rate and the 

power of the test, was obtained by manipulating the five listed variables as mentioned 

previously in Section 3.3. The research design used in this research, for two, four and 

six groups, shows the combination and pairing of both balanced and unbalanced 

samples with equal and unequal variance, with each of the g- and h- distribution, 

positively and negatively. Each of this pairing condition is denoted by C1 to C84 
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respectively. The research design is illustrates in tabular form, for two groups (see 

Table 3.2), four groups (see Table 3.3) and six groups (see Table 3.4) groups 

respectively. 

Table 3.2 

Research Design for Two Groups Condition with N = 40 

The g- and h- 
distribution 

g = O a n d h = O  

g =  0 and h = 0.5 

g = 0.5 and h = 0 

g =  0.5 and h =  0.5 

Nature of 
Pairing 

Balanced 
condition 

Positive Pairing 

Positive Pairing 
Negative 
Pairing 

Balanced 
condition 

Positive Pairing 

Positive Pairing 
Negative 
Pairing 

Balanced 
condition 

Positive Pairing 

Positive Pairing 
Negative 
Pairing 

Balanced 
condition 

Positive Pairing 
- - 

Balanced and 
Cnbalanced 
sample size 

20:20 

16:24 

20:20 

16:24 

20:20 

16:24 

20:20 

-- 

16:24 

No tations 
for the 

Conditions 

C 1 

C2 
C3 
C4 

C5 

C6 

C7 
C8 
C9 

C 10 

C11 

C12 
C 13 
C 14 

C15 

C 16 

C17 
C18 

Variance 
ratio 

1:l 

1 :36 
1:l 

1 :36 

36: 1 

1:l 

1 :36 
1 : 1 

1:36 

36:l 

1:l 

1 :36 
1:l 

1 :36 

36:l 

1:l 

1 :36 
1:l 

1 :36 

36: 1 

Positive Pairing 
Negative 
Pairing 

C 19 

C20 



Table 3.3 

Research Design for Four Groups Condition with N = 80 

The g- and h- 
distribution 

g = O a n d h = O  

g = O a n d h = 0 . 5  

g = O S a n d h = O  

g = 0 . 5 a n d h =  
0.5 

Nature Of 

Pairing 

Balanced 
condition 

Positive Pairing 
Positive Pairing 

Positive Pairing 
Negative 
Pairing 

Positive Pairing 
Negative 
Pairing 

Balanced 
condition 

Positive Pairing 
Positive Pairing 

Positive Pairing 
Negative 
Pairing 

Positive Pairing 
Negative 
Pairing 

Balanced 
condition 

Positive Pairing 
Positive Pairing 

Positive Pairing 
Negative 
Pairing 

Positive Pairing 
Negative 
Pairing 

Balanced 
condition 

Positive Pairing 
Positive Pairing 

Positive Pairing 
Negative 
Pairing 

Positive Pairing 
Negative 
Pairing 

Balanced and 
Unbalanced 
sample size 

20:20:20:20 

15:15:20:30 

20:20:20:20 

15:15:20:30 

20:20:20:20 

15:15:20:30 

20:20:20:20 

15:15:20:30 

Notations for 
the Nature of 

Pairing 

C2 1 

C22 
C23 
C24 
C25 

C26 

C27 

C28 

C29 

C30 
C3 1 
C32 
C33 

C34 

C3 5 

C36 

C37 

C38 
C39 
C40 
C4 1 

C42 

C43 

C44 

C45 

C46 
C47 
C48 
C49 

C50 

C5 1 

C52 

Variance ratio 

1:l:l:l 

1:1:1:36 
1 :4: 16:36 

1:1:1:1 
1:1:1:36 

36:l:l:l 

1 :4: 16:36 

36:16:4: 1 

1:l:l:l  

1:1:1:36 
1:4: 16:36 
1:l:l:l  

1:1:1:36 

36:l:l:l 

1 :4: 16:36 

36: 16:4: 1 

1:l:l:l 

1:1:1:36 
1 :4: 16:36 
1:l:l:l 

1:1:1:36 

36:l:l:l 

1 :4:16:36 

36: 16:4: 1 

1:l:l:l  

1:1:1:36 
1 :4: 16:36 
1:l:l:l 

1:1:1:36 

36:l:l:l 

1 :4: 16:36 

36: 16:4: 1 



Table 3.4 

Research Design for Six Groups Condition with N = 120 

Of 

Pairing 

Balanced 
condition 

Positivepairing 
Positive Pairing 

Positive Pairing 
Negative 
Pairing 

Positive Pairing 
Negative 
Pairing 

Balanced 
condition 

Positive Pairing 
Positive Pairing 

Positive Pairing 
Negative 
Pairing 

Positive Pairing 
Negative 
Pairing 

Balanced 
sample size 

Positive Pairing 
Positive Pairing 

PositivePairing 
Negative 
Pairing 

Positive Pairing 
Negative 
Pairing 

Balanced 
condition 

Positive Pairing 
Positive Pairing 

Positive Pairing 
Negative 
Pairing 

Positive Pairing 
Negative 
Pairing 

Variance ratio 

1:l: l : l : l : l  

1:1:1:1:1:36 
1:4:4: 16: 16:36 

1:l:l:l:l:l 
1:1:1:1:1:36 

36:l:l:l:l:l 

1 :4:4: 16: 16:36 

36:16:16:4:4:1 

1:l:l:l:l:l 

1 l : l :  1:1:36 
1:4:4: 16: 16:36 

1:l:l:l:l:l 
1 : 1 : 1 : 1 : 1 3 

36:l:l:l:l:l 

1:4:4: 16: 16:36 

36: 16:16:4:4:1 

l : l : l : l : l : l  

1 : 1 : 1 : 1 : 1 3 6  
1:4:4: 16: 16:36 

1:l : l : l : l : l  
1:1:1:1:1:36 

36:l:l:l:l:l 

1:4:4: 16: 16:36 

36:16:16:4:4:1 

1:l : l : l : l : l  

1 1 : 1 : 1 : 1 3 6  
1:4:4: 16: 16:36 

1:l:l:l:l:l 
1 1  : 1 : 1:1:36 

36:l:l:l:l:l 

1:4:4: 16: 16:36 

36:16:16:4:4:1 

'Ihe g- and '- 
distribution 

g = O a n d h = O  

g=Oandh=0 .5  

g=O.Sandh=O 

g = 0 . 5 a n d h =  
0.5 

Notations for 
the Nature of 

Pairing 

C53 

C 54 
C55 
C56 
C57 

C58 

C59 

C60 

C61 

C62 
C63 
C64 
C65 

C66 

C67 

C68 

C69 

C70 
C7 1 
C72 
C73 

C74 

C75 

C76 

C77 

C78 
C79 
C80 
C8 l 

C82 

C83 

C 84 

Balanced and 
Unbalanced sample 

size 

20:20:20:20:20:20 

2:4:4: 16:32:62 

20:20:20:20:20:20 

2:4:4: 16:32:62 

20:20:20:20:20:20 

2:4:4:16:32:62 

20:20:20:20:20:20 

2:4:4: 16:32:62 



The research design was used to determine the robustness of the modified Alexander- 

Govern test. By using this research design, the best procedure was obtained for the 

tests. According to Lix and Keselrnan (1998), the empirical rate of Type I error must 

A 

be within the interval of 0.0421a 50.058 that is use judge the robustness of a given 

test at a level of significance. The interval of the values selected in this research 

gave a strict condition for the robustness of the tests, with the aim of producing 

minimum error rate with deviation fiom model assumptions. 

Abdullah, Yahaya and Othman, (2007) used the interval of 0.042 and 0.058 for 

evaluating the robustness of the test in their analysis. The interval selected by these 

researchers, shows that a test is said to be robust when its' Type I error rate is within 

the stringent criterion of robustness. Otherwise, if the test falls outside the stringent 

criteria of robustness, then the Type I error rate is out of control. According to 

Bradley's (1978) the lenient criteria of robustness should be within the interval of 

(0.025 - 0.075). This interval of robustness is also selected in this research, to see 

those tests that can give excellent control of Type I error rate. 

3.5 Statistical Power Analysis 

The statistical power of a test is defined as the probability that it will definitely result 

in significant outcomes (Cohen, 1988). It could also be described as the capacity of a 

test to recognize any effect when the effect size occurs. Cohen (1988) explains that 

the effect size is the extent at which a phenomenon is observed in the population. As 

a result, the null hypothesis becomes false in the population. When making 

hypothesis testing, the probability of accepting the null hypothesis when it is false, is 

referred to as Type I1 error which is represented as P. In addition, the power of a test 
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could be defined as the probability of not accepting the null hypothesis when it is 

false, and it is represented as 1 -P (Cohen, 1988). 

The power of a test is affected by three variables, namely: (i) sample size, (ii) level of 

significance and (iii) effect size. 

The sample size: In detecting the power of a test, the selection of the sample size 

chosen by the researcher is very important. The selection of the sample sizes directly 

affects the power of a test. For a small sample size selected, it will result to a very 

small amount of the power of the test. When the sample size is large, it will def i te ly  

result to a large amount of the power of the test. Hence, the selection of the sample 

size chosen by the researcher will directly affect the power output of the test. The 

power of a test is directly proportional to the quantity of the sample sizes selected 

(Abdullah, Yahaya & Othman, 2008). 

Murphy and Myors (1998) stated that the power of a test must be above 0.5 and can 

be considered sufficient when the value is 0.8 and above. When the power of a test is 

0.8, it shows that success which is the probability of not accepting the null hypothesis 

is four times as certain as failure. When the power of a test is 0.9, it shows that the 

success is nine times as certain as failure. 

The level of significance: It is the process of neglecting the null hypothesis when it is 

actually true, and is otherwise referred to as Type I error. The level of significance is 

expressed as a. To obtain the power of a test, the value of a selected is very crucial 

(Abdullah, Yahaya & Othman, 2008). The level of significance selected for this 



research is a=0.05. When the value of a to be chosen is too small, it will definitely 

result to a smaller amount of the power of the test. 

Effect size: In statistics, it is observed that the probability of the null hypotheses, that 

is the p-value, decreases as the effect size increases and the sample size increases 

accordingly. The effect size shows the differences between the maximum and 

minimum means between two groups, divided by the standard deviation inside the 

population (Cohen, 1998). 

3.5.1 The Effect Size Index 

In this research, the effect size that was used for two groups (J = 2), four groups (J = 

4) and six groups (J = 6 )  and their pattern of variability is explained below: 

3.5.2 The Effect Size Index for J = 2 

Abdullah, Yahaya and Othman (2008) stated that when considering two population 

groups, the effect size index, is the effect size that we are aiming at detecting. By 

defmition, the effect size index (d) is expressed as: 

where: 

I m, -m,l is the absolute value of the difference between the maximum and 

minimum means between the two groups. 

o= the standard deviation of the population. 
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According to Murphy and Myors (1998) the effect size is said to be small when 

d =0.2, it is said to be medium when d = 0.5 and it is said to be large when d = 0.8. 

3.5.3 The Effect Size Index for J = 4 or More 

According to Cohen (1988) when k > 2, where k represents the number of means in 

the distribution, and it implies that the number of means is increased above two. The 

association between the number of means and the range of the standardized mean 

relies precisely on how much the means are dispersed over the range in the 

distribution. The spread of the means V) is expressed as: 

where: 

a, is the original scale units of the standard deviation 

Under this situation, d is no longer an effect size, but it represent the largest and the 

smallest means or otherwise, the range of the standardize means. 

By definition, d is expressed as: 

Given: 

m, is the biggest value of K means, and 
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m, is the smallest value of K means 

The f index relies on the specification in the patterns of differences of the means. 

Cohen (1998) also mentioned that there are three forms of variability that shows the 

association between f and d as expressed below. 

Form 1 : 

Small variability, where f is expressed as: 

f is the effect size index for more than two groups i.e for four groups and above, 

while d is the effect size index for two groups condition. 

Form 2: 

Medium variability, where f is expressed as: 

Form 3 : 

Large variability, where f is expressed as: 

1 
f =- d , when k is said to be even; 

2 

J k 2  -1 
f =d- , when k is odd 

2k 



*Note that k is the number of means in the population. 

When f is 0.1, the effect size index is said to be small, when f is 0.25, the effect 

size index is said to be medium, when f is 0.4, the effect size index is said to be 

large accordingly (Abdullah, Y ahaya & Othman, 2008). 

Table 3.5 

Pattern of Variability of the Effect Size Index for 4 Groups and 6 Groups 

The Effect Size For J = 4  For J =  6 Index 

Small 

1 1 1 1  
1 1  1 1 1 1  

--d,--d,--d ,-d, -d, -d  
Medium --d,--d,-d,-d 

2  4 4 2  
2  3 6 6 3 2  

1 1 1 1  
1 1 1 1 1 1  

--d,--d,--d,-d,-d,-d 
Large --d,--d,-d,-d 

2  2 2 2  
2 2  2 2 2 2  

Source: Cohen (1988). 

It should be noted that the effect size index is not considered in analyzing for the 

Type I error rate for the AGMOM test, the A G W O M  test, the t-test and the ANOVA, 

in this research. The effect size index (6) is only used in analyzing for the power of 

the tests. The effect size index used in analyzing the power of the tests for two groups 

condition in this research are: d = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8 respectively. For 

four groups condition, d = 0.29, 0.57, 0.80, 0.80, 1.00, 1.20, 1.40 and 1.60 

respectively. Under six groups condition, d = 0.34, 0.69, 0.88, 0.80, 1.00, 1.20, 1.40 

and 1.60 respectively. 



Case 1: The pairing of equal sample size with equal variance, the population means 

are calculated as thus: 

The effect size index for two groups is obtained using the formula below: 

where 

,u, is the first population mean, 

pB is the second population mean and 

a is the standard deviation of the population means. 

When d = 0.2, p, = 1, and a = 1 

substituting into Equation (3.18); 

0.2=1-p, 

p, =1-0.2 

Therefore, p, = 0.8. 

Then, the population means for two groups conditions, with the pairing of equal 

sample size with equal variance are 

( P A  9 rug ) = (1 9 0.8) 

Case 2: Pairing of equal sample size with equal variance, for both positive and 

negative pairing. 



Where d=0.2, the standard deviation is obtained for the unequal variances using the 

formula below : 

where, V ,  andv, represents the variance ratio for two groups condition. 

For example, when v, = 1 and v,  = 36, 

.=;"" 2 

0=4.3012. 

By using Equation (3.1 8) the second population mean can be obtained. 

For example, when d = 0.2, = 1 and 6 = 4.3012, substituting into Equation (3.18) 

0.2(4.3012) = 1 - pB 

p, =1-0.8602 

pB =0.1398 

Thus, 

(PA ,PB )=(1,0.1398). 

In the research design for analyzing the Type I error rates of the tests, the effect size 

index (4 is not considered. 

Case 3: The pairing of unequal sample with unequal variance i.e. (16, 24), (1, 36) or 

(16,241, (1, 36). 



For v = (1:36) with s = (16, 24), the standard deviation is obtained by using Equation 

(3.19): 

Substituting, n, = 16, n, = 24, o2 I = 1 and a 2 2  = 36 into Equation (3.19), 

= 4.6904 

Substituting cl = 0.2, p, = 1 and o = 4.6904 into Equation (3.18), the mean for the 

second population is given by 

Hence, 01, ,P, )= (1,0.0619) 

Under four and six groups condition the effect size index V)  that was used for this 

researchare: f=0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and0.8 

When f = 0.1, the value of d is calculated using the formula for small effect size 

index, in Equation (3.14). 

For four groups case, where k is defined as the number of groups in the distribution, 

Substituting k = 4, and f = 0.1 into Equation (3.14), 

5 1 



The population mean is obtained by using the formula for calculating the large pattern 

of variability for four groups in Table 3 - 5  as: 

By substituting d = 0.29 into the formula, 

= - 0.145, - 0.145, 0.145, and 0.145. These are the values of the population means for 

four groups when d = 0.29. 

When f = 0.5, it falls under large effect size index, since k of 4 is an even number, we 

use Equation (3.16) to calculate d: 

From Table 3.5, the population means for four groups is obtained by: 

p = -  0.50, - 0.50, 0.50, and 0.50. 

For six groups condition, where f = 0.3 and k = 6, the value of d is obtained using 

Equation (3.15): 
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0.6 = 0.68d 

d = 0.6/0.68 

= 0.88 

From Table 3.5, when d = 0.88, the population means for the large pattern of 

variability is obtained using: 

p=-0.44,-0.44,-0.44,0.44, 0.44,0.44 

In conclusion, the power of a test is affected by the quantity of the sample sizes 

chosen; the higher the sample sizes selected, the higher would be the power of the 

test. The sample size selected in a data distribution is directly proportional to the 

power of a test. 



CHAPTER FOUR 

RESULTS AND ANALYSIS 

4.1 Introduction 

This chapter examines the performance of the Type I error rate and power for each of 

the tests, namely: the AG test, the AGMOMtest, the AGWMOM test, the t-test and the 

ANOVA, for four different distributions, under two, four and six group conditions. So 

as to see of the five different tests mentioned above, which among them will give a 

good control of Type I error rate and high power. 

4.2 The Type I Error Rate 

The Type I error rate of the five different tests that were used in this research must 

fall under three criteria of robustness. Which are (i) those tests that fall within the 

stringent criteria of robustness, (ii) those tests that fall within the lenient criteria of 

robustness and (iii) those tests that do not fall on neither stringent criteria of 

robustness nor lenient criteria of robustness and are considered not to be robust. 

This research considers stringent criteria of robustness, within the interval of (0.042 - 

0.058), to judge the robustness of the tests (Lix & Keselman, 1998) and also 

considers the lenient criteria of robustness to judge the robustness of the tests that are 

within the interval of (0.025 - 0.075) as stated by Bradley's (1978). These intervals of 

robustness are selected in this research, to see those tests that can give excellent 

control of Type I error rate. 



All the values presented in the Tables, are bolded and italized, bolded and unbolded. 

The bolded and italized values are those values that are strictly within the stringent 

criteria of robustness. The bolded values represent those values that are within the 

lenient criteria of robustness, but do not fillfill the stringent criteria of robustness. The 

unbolded values are those values that are considered not to be robust. This implies 

that they neither within the stringent criteria of robustness nor within the lenient 

criteria of robustness. 

4.2.1 Two Groups Case 

Under two groups condition, the Type I error rate is compared for each of the tests, 

namely, the AG test, the AGMOM test, the AGWMOM test and the t-test with each of 

the four different distributions, in order to see those test that are within the stringent 

criteria of robustness and also those that are within the lenient criteria of robustness. 

As a result, the tests are said to have remarkable control of Type I error rate. 

4.2.1.1 Normal Distribution (g= 0; h= 0) 

In Table 4.1, under a normal distribution, for two group condition, all the Type I error 

rate for the AG test, the AGMOM test and the AG WMOM test performed well where 

these tests are robust in all conditions regardless of the sample sizes and the variance 

ratio. The t-test also performed quite good where it provides good control of Type I 

error rate in all the conditions except for negative pairing condition. The test is 

considered not robust where the Type I error rate with value of 0.1078 is outside the 

robust criteria. 



Among all the tests, the AG test has better result compared to the AGMOM test and 

the AGWMOM test because its' Type I error rate fall within the stringent criteria of 

robustness. 

Table 4.1 

Co~nparison of the Type I Error Rate for tlze AG, AGMOM, AGWMOM, and t-test 

Under Normal Distribution for Two Groups Condition 

Equal and 
Sample Size Unequal AG AGMOM AG WMO 

M t-test 
Variance 

4.2.1.2 Symmetric Heavy Tailed Distribution (g = 0 and h = 0.5) 

In Table 4.2, under a skewed normal tailed distribution, the Type I error rate for the 

AG test, the AGMOM test and the AGWMOM all fall within the lenient criteria of 

robustness and gave the best control of Type I error rate over the t-test. For both 

positive and negative pairing condition, the t-test produced Type I error rate with 

value 0.0138 and 0.0814 that fall outside the criteria ofrobustness. 



Table 4.2 

Compurison of the Type I Error Rate for the AG, AGMOM, AGWMOM, @and t-test, 

Under a Symmetric Heavy Tailed Distribution for Two Grotlps Condition 

Equal 

and AG AGMOM AGW%ZOM Size Unequal t-test 

Variance 
1:1 0.0336 0.0262 0.0346 0.0356 

20:20 1:36 0.0340 0.0358 0.0392 0.0402 
1 : 1 0.0304 0.0266 0.0352 0.0430 

4.2.1.3 Skewed Normal Tailed Distribution (g = 0.5 and h = 0) 

In Table 4.3, under a skewed normal tailed distribution, for two groups conditions, 

the AG test, the AGMOM test and the AGWMOM test gave an excellent control of 

Type I error rate over the t-test, because these tests are robust in all conditions. While 

the 1-test only robust with stringent criteria when variance are equal regardless the 

number of sample size. It is also found to be robust under condition of positive nature 

of pairing. 



Table 4.3 

Comparison ofthe Type I Error Rate for the AG, AGMOM, AGWMOM, und t-test 

Under a Skewed Normal Tailed Distribution for Two Groups Condition 

Equal 

Sample Size and 
Unequal AGMOM AGWMOM t-test 

Variance 

20:20 1: l  0.0508 0.0420 0.0364 0.0474 
1 : 36 0.0562 0.0534 0.0558 0.0882 
1:l 0.0480 0.0434 0.0386 0.05 70 

4.2.1.4 Skewed Heavy Tailed Distribution (g =0.5 and h = 0.5) 

In Table 4.4, under a skewed heavy tailed distribution, the AGMOM and AGWlMOM 

test gave a remarkable control of Type I error rate compared to the AG test and the t- 

test, because the test falls within the robust criteria in all the conditions. The AG test 

has Type I error rate that are outside the criteria of robustness, which are under 

balanced sample size with unequal variance and unbalanced sample size with 

positive pairing condition. The Type I error rate of the t-test has a value of 0.0138 and 

0.0878, for both positive and negative condition of pairings accordingly, that falls 

outside the criteria of robustness. 



Table 4.4 

Con~purison of the Type I Error Rate for the AG, A GMOM, AGtVlMOM, and t-test 

Under u Skewed Heavy Tailed Distribution for Two Groups Condition 

Equal 

Sample Size and AG AGMOM AGlYMOM t-test Unequal 
Variance 

20:20 
1:l 0.0336 0.0258 0.03 14 0.0288 
1:36 0.3400 0.0374 0.04 70 0.0430 
1:l 0.0274 0.0272 0.0352 0.0370 

16:24 1:36 0.3940 0.0378 0.0422 0.0138 
36:l 0.0312 0.0332 0.0298 0.0878 

4.2.2 Four Groups Condition 

Under four groups condition, the Type I error rate is compared for each of the tests, 

namely: the A G test, the AGMOM test, the A G W O M  test and the ANOVA for each 

of the four different distributions, to see which of the test is more robust and have an 

excellent control of Type I error rate. 

4.2.2.1 Normal Distribution (g = 0 and h = 0) 

In Table 4.5, under a normal distribution, for four group conditions, the AG test, the 

AGMOM test and the AG WlMOM test gave an excellent control of Type I error rate 

compared to the ANOVA. Under balanced sample the ANOVA falls outside the criteria 

of robustness when the variances are unequal. Under unbalanced sample size the test 

is considered not robust when the nature of pairing is negative. 



Table 4.5 

Comparison of the Type I error rates for the AG, AGMOM, AGWMOM, ond the 

ANOVA Under u Normal Distribution for Four Grotps condition 

Equal 
and sample size Unequal AG AGMOM A G W O M  AN0 VA 

Variance 
1:l:l:l 0.0518 0.0404 0.0386 0.051 8 

20:20:20:20 1 :  1 3 6  0.0522 0.0428 0.0408 0.1096 

4.2.2.2 Symmetric Heavy Tailed Distribution (g = 0 and h = 0.5) 

In Table 4.6, under a symmetric heavy tailed distribution, the AGJVMOM test gave an 

outstanding control of Type I error rate compared to the other three tests. Only one 

condition of the test did not fall within the criteria of robustness. The AG test was 

found to be robust only under balanced sample size condition. For the AGMOM test, 

it is robust only under two conditions with variance ratio of 1:4:16:36 that are 

balanced sample size and unbalanced sample size with positive pairing. The ANOVA 

still can be considered robust as long as the variances are equal regardless of the 

sample size. It is also robust under balanced sample size with variance ratio 



Table 4.6 

Comparison of the Type I Error Rate for the A G, AGMOM, AGEMOM, and the 

AN0 VA Under a Symmetric Heavy Tuiled Distribution, for Four Groups Condition 

Sample Size 

Equal 
and 

Unequal AGMOM AGWMOM 

Variance 
1:l:l:l 0.0280 0.0218 0.0282 0.0336 

20:20:20:20 1 1  : 1 3 6  0.0282 0.0230 0.0310 0.0782 
1:4: 16:36 0.0282 0.0260 0.0330 0.0484 
1:l:l:l  0.0240 0.0192 0.0660 0.0344 
1:1:1:36 0.0238 0.0212 0.0772 0.01 82 

15:15:20:30 36:l:l:l 0.0208 0.0192 0.0664 0.1328 
1:4: 1636 0.0230 0.0258 0.0298 0.0178 
36: 16:4: 1 0.0238 0.0234 0.0286 0.1130 

4.2.2.3 Skewed Normal Tailed Distribution (g = 0.5 and h = 0) 

In Table 4.7, under a skewed normal tailed distribution, the AGWMOM test gave an 

excellent control of Type I error rate compared to the AG test, the AGMOM test and 

the ANOVA because all the conditions of the tests falls within the criteria of 

robustness. Under equal variance condition all the tests are found to be robust. For the 

AG test, it is robust under unequal variance with values 1 : 1 : 1 :36 regardless of sample 

size and nature of pairings. While the AGMOM test, is not robust under the condition 

of positive pairing. The ANOVA is not robust under unequal variance with balanced 

sample size. It is also not robust when the natures of pairings are negative. 



Table 4.7 

Comparison of the Type I Error Rate ,for the AG, AGMOM, AGWMOM, and the 

AN0 VA Under u Skewed Normal Tailed Distribution for Four Groups Condition 

Sample Size 

Equal 
and 

Unequal 
AGMOM A G W O M  

variances 
1:1:1:1 0.0620 0.0436 0.0452 0.0550 

20:20:20:20 1:1:1:36 0.0620 0.0460 0.0272 0.1714 

4.2.2.4 Skewed Heavy Tailed Distribution & = 0.5 and h = 0.5) 

In Table 4.8, under a skewed heavy tailed distribution, the AGWMOM test is 

discovered to be robust in all the condition tested that makes this test produced a 

remarkable control of Type I error rate compared to the AG test, the AGMOM test and 

the ANOVA. The Type I error rate for the AG test produced robust values for all 

balanced conditions. When the sample size is unbalanced the test becomes not robust 

even when the variances are equal. 

However, it still can consider robust for negative pairing with variance ratio 36: 1 : 1 : 1 

and positive pairing with variance ratio of 1 :4: 16:36. The A GMOM test is not robust 

under equal variance regardless of the sample sizes. Yet, it is robust under positive 

and negative pairing conditions. For the ANOVA, it is robust with equal variance ratio 



regardless of the sample sizes. The Type I error rate of the AN0 VA for both positive 

and negative pairing condition falls outside the criteria of robustness. 

Table 4.8 

Compan*son of the Type I Error Rate for the AG, AGMOM, AGWMOM, und the 

AN0 VA Under a Skewed Heavy Tailed Distribution for Four Groups Condition 

Equal 
Sample 

Size and AG AGMOM AGWMOM Unequal 
Variance 

1: 1: 1:l 0.0322 0.0206 0.0398 0.0290 
20:20:20:20 1: 1:1:36 0.0320 0.0220 0.0326 0.0880 

4.2.3 Six Groups 

For six groups condition, the results of the Type I error rate are presented as 

following. 

4.2.3.1 Normal Distribution (g = 0 and h = 0) 

In Table 4.9, under a normal distribution, for six group conditions, the AG test, the 

AGMOM test and the AGWMOM test have the best control of Type I error rate 

compared to the ANOVA. The Type I error rate of the three tests falls within the 

criteria of robustness in all the balanced conditions. It is no doubt that the ANOVA is 

very good only under perfect condition, which is normal distribution with balanced 



sample size and equal variance. However, this test is not robust when the variances 

are not equal. Under unbalanced conditions all the tests are not robust except for 

ANOVA which is still robust as long as the variances are equal. 

Table 4.9 

Compurison of the Type I Error Rate for the AG, AGMOM, AGVWOM, and the 

ANOVA, Under u Nomal Distribution for Six Groups Condition 

Sample Equal and Unequal AG AGW ANOV AC Size Variances MOM MOM A 

4.2.3.2 Symmetric Heavy Tailed Distribution (g = 0 and h = 0.5) 

In Table 4.10, under a symmetric heavy tailed distribution, the AG test gave a 

remarkable control of Type I error rate compared to the A GMOM test, the AG WlMOM 

test and the ANOVA. The AG test is seen to be robust in all conditions under balanced 

sample size. It is also robust under unbalanced sample size with positive nature of 

pairing. The AGMOM test is not robust in all the conditions of balanced sample 

sizes. This test is robust under positive pairing condition, and also the test is found to 

be robust under negative with variance of 36: 16: 16:4:4: 1. The A G W O M  test has its 

Type I error rate fall within the interval of robustness, in all the balanced condition 

but the test is not robust under unbalanced samples. The ANOVA falls within the 
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criteria of robustness, under balanced condition, except for variance ratio of 

(1 : 1 : 1 : 1 : 1 : 36). Under unbalanced sample size, this test is only robust for negative 

pairing with variance value of (36: 16: 16.4.4: 1). 

Table 4.10 

Comparison of the Type I Error Rate for the AG, AGMOM, AGWMOM, and the 

ANOVA Under a Symmetric Heavy Tuiled Distribution for Six Grolips Condition 

Equal and Unequal AG 
Sample Size AGMOM OM ANOVA Variance 

4.2.3.3 Skewed Normal Tailed Distribution (g = 0.5 and h = 0) 

In Table 4.1 1, under a skewed normal tailed distribution, the AGMOM test and the 

AGWMOM test is more robust compared to the AG test and the ANOVA. Under 

balanced condition, all the Type I error rate of the AGMOM test and the AG WZi'OM 

test fall within the interval of robustness. The AG test is robust only under equal 

variance and unequal variance with value of (1 : 1 : 1 : 1 : 1 :36).The ANOVA has its Type I 

error rate fall within the interval criteria of robustness, only under equal variances 

regardless of the sample sizes. 



Table 4.1 1 

Comparison of the Type I Error Rate for the AG, AGMOM, AGWMOM, and the 

AN0 VA Under a Skewed Normal Tailed Distribution for Six Groups Condition 

Equal and 
Sample Size Unequal AG AGMOM AGWM OM ANOVA 

Variances 

4.2.3.4 Skewed Heavy Tailed Distribution (g = 0.5 and h = 0.5) 

In Table 4.12, under a skewed heavy tailed distribution with balanced sample size, 

the AGWMOM produced the most convincing results where it is robust in all the 

conditions. While the ANOVA is robust for two conditions and the AG test is robust 

under one condition only. The AG test is not robust in all the balanced condition. 

Under the unbalanced sample sizes the AG test and the ANOVA is not robust in all the 

conditions. While the A GMOM is robust under one condition and the AG WMOM test 

is robust under two conditions. 



Table 4.12 

Comparison of the Type I Error Rutefor the AG, AGMOM, AG WMOM, and the 

ANOVA Under a Skewed Heavy Tailed Distribution for Six Groups Condition 

Equal and 
Sample Size Unequal AG AGMOM A G W O M  ANOVA 

Variances 
20:20:20: 1 l : l : l : l : l  0.0370 0.0208 0.0286 0.0330 

4.2.4 Overall Conclusion on the Type I Error Rate 

As the overall conclusion of the Type I error rate, the number of conditions is counted 

to see how many conditions of the tests can be considered as stringent robust (SR), 

only lenient robust (LR - SR) and not robust (NR). It should be noted that the total 

conditions of each test under each distribution is twenty-one (21). Table 4.13 shows 

the number of conditions according to the types of distribution. 



Table 4.13 

Number of Conditions Based on the Type I Error Rates 

Distribution Robustness AG AGMOM A G W M  t-tesUAN0VA 
Normal 

Distribution 
( g = O a n d h =  

SR 16 14 

0) 
LR- SR 0 2 6 5 

NR 5 5 5 11 
Total 2 1 2 1 2 1 2 1 

Symmetric 
Heavy 
  ailed 

Distribution 
SR 0 3 

(g = 0 and h = 

0.5) 
LR-SR 13 7 15 5 

NR 8 11 5 12 
Total 2 1 2 1 2 1 2 1 

Skewed 
Normal Tailed 

Distribution SR 5 14 11 6 
(g = 0.5 and h 

= 0) 
LR-SR 8 0 

NR 8 7 5 12 
Total 2 1 2 1 2 1 2 1 

Skewed Heavy 
Tailed 

SR 0 I 

Distribution LR - SR 9 10 9 6 
(g = 0.5 and h 

= 0.5) 
NR 12 10 

Total 21 2 1 2 1 2 1 
Grand 
Total 84 8 4 

Note: SR = Stringent Robust, LR = Lenient Robust and NR = Not Robust 

In Table 4.13, under a normal distribution, for all the group sizes, the AG test, the 

AGMOM test and the A G W O M  test are more robust compared to the t-test and the 

ANOVA. The AG test has 16 of its condition fall within the stringent criteria of 

robustness. None of the conditions of the AG test is within the lenient criteria of 
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robustness. The ANOVA also performed quite good in the control of Type I error rate 

with 10 conditions of  the tests that are regarded as robust. Among the four tests, the 

ANOVA has the highest number of conditions with the total number of 11 conditions 

that are considered not robust. The AG test has the best control of Type I error rate 

with 16 conditions of the test that are considered to be robust compared to the other 

four tests. 

Under symmetric heavy tailed distribution, the AGWMOM test has the best control of 

Type I error rate with a total of 16 conditions of the test that are regarded as robust 

compared to the other three tests. The ANOVA has the highest number conditions that 

are considered not robust compared to the other three tests. 

Under a skewed normal tailed distribution, the A G M O M  test has the best control of 

Type I error rate, with a total of 16 conditions of the test that are referred to as robust, 

compared to the other three tests. None of the conditions of the AG test falls within 

the stringent criteria of robustness. The ANOVA has the highest number of conditions 

that are referred to as not robust compared to the other three tests. 

Under skewed heavy tailed distribution, the A G M O M  test has the best control of 

Type I error rate with 14 conditions of the test that are referred to as robust, compared 

to the AG with 9 conditions, AGMOM with 11 conditions and ANOVA with 9 

conditions. The AGWMOM test has the highest number of conditions that falls within 

the stringent criteria of robustness, compared to the other three tests. The AGMOM 

test has the highest number of conditions that are said to be robust, under lenient 

criteria of robustness, compared to the other three tests. 



As the distribution changes from normal to non-normal distribution, the number of 

conditions of the ANOVA for both stringent and lenient criteria of robustness remains 

the same. That is a total of nine conditions of the ANOVA are considered to be robust 

when the distribution is non-normal. Both the AG test and the ANOVA have equal 

number of conditions that are considered not robust, compared to the other two tests. 

In overall the AGWl4OM test gave the best control of Type I error rate under non- 

normality, compared to the AG test, the AGMOM test and the ANOVA, because has it 

always has the highest number of conditions under robust criteria. 

4.3 The Power Rate of the Test 

In this section, the power of the tests is explained for each of the tests, for each of the 

four different types of distribution, with the pairing of the sample sizes and variances, 

positively and negatively, for two, four and six groups respectively. 

The power rate of the tests is represented graphically where the y-axis corresponds to 

the power of the tests and the horizontal axis represents the effect size index d for two 

groups case and f for more than two group case. The graph is used to show the trend 

of the power of the tests in relation to the effect size index. According to Murphy and 

Myors (1998) the power of a test is considered sufficient when it is 0.5. It can be 

considered to be high when its value is 0.8 and above. 

From the graph, it reveals those tests that have low power, sufficient and high power 

with respect to the effect size indexes (d and A. In this research there are 84 



conditions, denoted by C1 to C84, which can be referenced fiom Table 3.2, Table 3.3 

and Table 3.4, in the research design for two, four and six groups in Chapter 3. 

4.3.1 Two Groups Condition under Normal Distribution 

In Figure 4.1, the power of the four tests, namely, the AG test, the AGMOM test, the 

AGWMOM test and the t-test is increasing as the effect size index is increasing. The 

power of the four tests is regarded as sufficient, since their power values are above 

0.5. The AG test has the highest power in C3 and C4. While the t-test, has the highest 

power in Cl, C2 and C5. In C5, despite the fact that the t-test has the highest power 

with value of 0.8004, as reference fiom appendix B2, the test is regarded as not 

robust, because its' Type I error rate is outside the criteria of robustness. As a result, 

the power of the test is referred to as not very good. 



Figure 4.1. Power versus Effect Size Index, for two groups condition under a 
normal distribution. 

4.3.2 Two Groups Condition under Symmetric Heavy Tailed Distribution 

.... .- 

In Figure 4.2, from C6 to C10, the power of the four tests is increasing as the effect 

size index is increasing. In C6, C7, C9 and C10, the power of the four tests are 

referred to as not sufficient, because their power values is not up to 0.5. Only in C8, 
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there are two tests that achieve 0.5 i.e the AGMOM and the AGWMOM. The 

A G W O M  has the highest power compared to the other three tests, under symmetric 

heavy tailed distribution, for two group condition. 
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Figure 4.2. Power versus Effect Size Index, for a symmetric heavy tailed 
distribution, for two groups condition 



4.3.3 Two Groups Condition under a Skewed Normal Tailed Distribution 

In Figure 4.3, the power of the four tests is displayed according to conditions C11 to 

CIS. The power is increasing as the effect size index is increasing. All the tests are 

considered not having high power since they did not achieve 0.8 in all conditions, 

except for the AG test which obtained power value of 0.8540 under C15. In Cl 1 and 

C13, the AG and t-test are considered having sufficient power, when both tests 

achieve a power value of 0.5. In C14, only the AGMOM test and A G W O M  test 

reach the sufficient value of power. 



Figure 4.3. Power versus Effect Size Index, for two groups condition under a 
skewed normal tailed distribution 
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4.3.4 Two Groups Condition under a Skewed Heavy Tailed Distribution 

In Figure 4.4, the power of the four tests is increasing as the effect size index is 

increasing. In C16 to C20, the power of the four tests is not up to 0.5 and are said to 

be low and insufficient. In C16, C17, C18 and C19, the AGMOM test has the highest 

power. In C20, the t-test has the highest power. 
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Figure 4.4. Power versus Effect Size Index, for two groups condition, for g = 0.5 
and h =  0.5 



4.4 The Power of the Four Tests, For Four Groups Condition, Under Four 

Different Distributions 

The power of the AG test, the AGMOM test, the AGWMOM test and the ANOVA are 

examined in four different distributions under four group conditions. 

4.4.1 Four Groups Condition under a Normal Distribution 

The power values of all the compared tests are displayed in figure 4.5. The power of 

the AG test, the AGMOM test, the AGWMOM test and the ANOVA is increasing as the 

effect size index is increasing in like manner. All the four tests have sufficient and 

high power in C21. The AG test, AGMOM test and the A G W O M  test are regarded 

as having high and sufficient power in C22, C25 and C26. The four tests are observed 

to have a very low power in C23, C24, C27 and C28 respectively. 



Figure 4.5. Power versus Effect Size Index for Four Groups Under a normal 

distribution 
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4.4.2 Four Groups Condition under Symmetric Heavy Tailed 

Distribution 

In Figure 4.6, it can be noticed that the power of the four tests is increasing as the 

effect size index is increasing in all conditions except in C32. In C32, the power 

values ofthe tests are found not to be consistent with the effect size index, due to fact 

that all the tests are not robust under this condition (refer to Table 4.6). In C29, 30, 

31, 33 and 34, the AGMOM and the A G W O M  have high power where their power 

values achieve 0.8. In C33, the A G M M  test is observed not to be robust. In C35 

and C36, the power of the all the tests is observed to be very low and insufficient. 
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Figure 4. 6. Power against Effect Size Index, for four groups condition, for g = 0 
and h= 0.5 



4.4.3 Four Groups Condition under a Skewed Normal Tailed 

Distribution 

The four compared test in Figure 4.7, is increasing as the effect size index is 

increasing. All the four tests have high and sufficient power in C37. The AG, 

AGMOM and the AGWMOM test produced sufficient and high power in C38, C40 

and C42. The A G W O M  test and the ANOVA have sufficient power in C39. Only the 

AG test has sufficient power in C43. The four tests have very low power in C41 and 

C44. 



Figure 4.7. Power versus Effect Size Index, for four groups condition, Under a 

skewed normal tailed distribution 
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4.4.2 Four Groups Condition, Under a Skewed Heavy Tailed Distribution 

The power values of the four tests are increasing as the effect size index is increasing, 

except in C5 1, where the ANOVA is found to be decreasing as the effect size index is 

increasing. The AGMOM and the A G W O M  test produced a high and sufficient 

power values in C45, C46, C48, C49 and C50. The power of the four tests is 

considered to be very low in C47, C51 and C52. In C51, the power value of the 

ANOVA is regarded as very low and is the test not robust. 
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Figure 4.8. Power versus Effect Size Index, under a skewed heavy tailed 

distribution, for four groups condition 



4.5 The Power of the Tests, For Six Groups Condition, Under Four Different 

Distributions 

The power of the four tests, namely, the AG test, the AGMOM test, the A G W O M  

test and the ANOVA will be investigated under four different distributions, to see of 

the four tests which one of them will have its power value above the 0,s and also the 

test that can produce a power value of 0.8 and above, that can be considered as 

sufficient and high, under six groups condition. 

4.5.1 Six Groups Condition, Under a Normal Distribution 

In Figure 4.9, all the compared tests are increasing as the effect size index is 

increasing accordingly. All the four tests have high and sufficient power in C53 and 

C55. In C56 and C58, the four tests are observed to have sufficient power. Only the 

ANOVA have a sufficient power in C60. The AG, AGMOM and the AGMWOM test 

have sufficient power in C57. The power of the four tests is considered to be very low 

in C59. 



r n ~ v ~ t r n ~ ~ w ~ ~ ~  ANOVA 
Effect Size ladex 

----ANOVA 
Effect Size Index 

A G M O M  

-AGMOM -AGWMOM 

0*5 0.7 M ~ ~ A N O V A  

Effect Size Index 

-AGMOM 

0.5 0.7 

Figure 4.9. Power versus E f f ~ t  Size Index, for six groups condition under 
a normal distribution 



4.5.2 Six Groups Condition, Under a Symmetric Heavy Tailed Distribution 

In Figure 4.10, the power of the four tests is increasing as the effect size index is 

increasing, except in C68. In C8, the power of the tests are observed not to be 

consistent with the effect size index, because the AG test and the A M M  test are 

seen not to be robust under this condition (see Table 4.10). In C6 1, all the four tests 

achieve a sufficient power. The AG test, the AGMOM test and the AGWMOM test 

have sufficient power in C62, C64 and C65. In C63, C66 and C67, the power values 

of the four tests are below 0.5 and are regarded as not sufficient. 
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Figure 4.10. Power versus Effect Size Index, for six groups condition, under a 
symmetric heavy tailed distribution 



4.5.3 Six Groups Condition, Under a Skewed Normal Tailed Distribntion 

In Figure 4.11, the power of the four tests is increasing as the effect size index is 

increasing accordingly. The power of the four tests is regarded as sufficient and high 

in C69 and C70. The four tests have sufficient power only in C74. In C75, the AG 

test, the AGMOM test and the AGHWOM test have sufficient power. Only the 

ANOVA has sufficient power in C76. The power of the four tests is referred to as very 

low in C73. 



Figure 4.11. Power versus Effect Size Index under a skewed normal tailed 
distribution, for six groups condition 
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4.5.4 Six Groups Condition, Under a Skewed Heavy Tailed Distribution 

The power of the compared tests in Figure 4.12 is increasing as the effect size index 

is increasing. The AGMOM test and AGKWOM test have sufficient and high power 

in C77 and C78. The AG, AGMOM and AGWMOM test have sufficient power in C77, 

C78, C80 and C8 1. Only the AG test has sufficient power in C82. The four tests have 

a very low power in C79, 83 and C84. 
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Figure 4.12. Power versus Effect Size Index, for six groups condition, under a 
skewed heavy tailed distribution 



4.6 Evaluating the Capacity of the Test Using Real Data 

To fulfill the fourth objective of this research, a real life data was used which was 

extracted fiom Keselman et al. (2007) that comprises of three independent groups, 

namely group young, middle and old, see appendix 0. The test of homogeneity of the 

variance was used for the three independent groups, using the Levene's test to 

determine if the three independent groups are different from each other or not as the 

reaction time changes. 

In this section, test of homogeneity of variances, descriptive statistics, test statistic of 

AG test and AGWMOM test, and test of normality are performed to show the 

advantages of each test. 

Table 4.1 3 

Test of Homogeneity of Variances 

Test of Homogeneity of Variances 
Reaction 

Levene Statistic dfl d B  17-value 

a = 0.05 

H,  : If there is no difference between the groups 

H,  : Ifthere is difference between the groups 

If the p-value from the test of homogeneity is less than 0.05, we can reject H ,  

otherwise failed to reject H ,  . When thep-value is > 0.05, we accept H ,  and reject 

H,.  Thep-value from the test of homogeneity of the variance, is > 0.05, i.e 0.174 > 

0.05, implies that we accept H ,  and conclude that there is no difference between the 

groups as the reaction time changes. 

In Table 4.14 below, shows the descriptive statistics for the three independent groups, 

for the AG test. 

95 



Table 4.14 

Descriptive Statistics for the Young, Middle and Old Groups using tlze AG test and 

the AG W O M  test 

Descriptive 
Test statistic Young Middle Old statistic 

AG test Mean 544.05 1 1 473.6992 571.6813 
Standard error 59.7266 144.6221 49.5377 

A G W O M  
test 

Mean 

Standard error 4.9059 12.1963 6.75 18 

In Table 4.14, the mean of the three independent groups, namely the young, middle 

and old groups, are stated above. The standard errors for the young, middle and old 

groups are considered to be very high with values 59.7266, 144.6221 and 49.5377 

respectively, for the three independent groups. This is as a result of the presence of 

outliers in the real life data for the AG test. 

In Table 4.14, the Winsorized mean for the three independent groups, namely: the 

young, middle and old groups respectively are; 505.8433, 456.8608 and 55 1.0392 and 

are observed to be smaller in comparison to the mean for the young, middle and old 

groups respectively of the AG test. The standard errors for the Winsorized young, 

middle and old groups respectively are: 4.9059, 12.1963 and 6.7518 and are 

considered to be far smaller compared to the standard error for the young, middle and 

old groups of the AG test in Table 4.15. This is as a result of the elimination of the 

presence of outliers fiom the real life data that have been replaced with the preceding 

values closest to the outlier values from the real life data. 



Table 4.15 

Tests of Normality 

Kolmogorov-Srnirnova Shapiro-Wilk 
Statistic Df Sig. Statistic Df Sig. 

Young .I85 18 .200' ,924 18 ,319, 
~ i d d k  .347 11 .OOO ,721 11 ,001 

Old .I99 14 .200* ,935 14 .43 1 

Shapiro-Wilk Test is a test that is frequently used for sample sizes that is less than 50. 

This test can be used to handle sample size that is more than 2000 (Shapiro & Wilk, 

1965). Therefore, the Shapiro-Wilk Test is used to test for the normality of the three 

independent groups, which are the young, middle and old groups. For the significance 

level of a =0.05, if the significant value of any of the three independent groups is 

greater than 0.05, the data is considered to be normally distributed. Otherwise, if the 

significant value is less than 0.05, the data distribution is regarded as non-normal. 

The results fi-om Table 4.16 show that the p-value for the group young and old are 

greater than 0.05, hence both groups are said to be normally distributed. The middle 

group has a p-value of 0.001 which is less than 0.05 and is regarded as non-normally 

distributed. 

Table 4.1 6 

The statistic test for the AG test and the A G W O M  test 

Test Test Statistic p-Va lu e 
Original A G 5.3237 0.06982 
AG W O M  30.1280 0.0000002869 

In Table 4.16, the results of the test statistics show that the AG test has a p-value of 

0.0698, that is regarded as not significant because its value is greater than 0.05, while 



the AGWhrfOM test produced ap-value of 0.0000002869 that is considered to be less 

than 0.05 and is said to be significant. 

In conclusion, the AGTMOM test is considered to be more reliable and efficient in 

minimizing error as much as possible from the real life data, because the test 

produced a smaller standard error for the three independent groups, namely: the 

young, middle and old group respectively, in comparison to the AG test. Therefore, 

the performance of  the A G W O M  test is more efficient and reliability compared to 

the AG test in evaluating the efficient and reliability of the tests using real life data. 



CHAPTER FIVE 

DISCUSSION AND CONCLUSION 

5.1 Summary 

The Alexander-Govern test is a test proposed by Alexander-Govern (1 994). This test 

uses mean as its central tendency measure and is considered as a better alternative to 

the ANOVA, the Welch test and the James test, for producing an excellent control of 

Type I error rate and high power for a normal data under variance heterogeneity. But 

the Alexander-Govern test is not robust to non-normal data. Researchers such as Lix 

and Keselman (1998) proposed the trimmed mean in Alexander-Govern test to solve 

the problem of non-normality for the test. 

Wilcox and Keselman (2003) introduced the MOM estimator as a measure of the 

central tendency for the test. Abdullah, Yahaya and Othman (2007) also used the 

MOM estimator as a measure of the central tendency in Alexander-Govern test and it 

gave them a remarkable control over the probability of Type I error rate for both 

normal and skewed data distribution. The MOM estimator is not influenced by the 

number of groups. It gave a good control over the probability of Type I error rate 

under normal and highly skewed condition for all group sizes. But this estimator fails 

to give a good control over the probability of Type I error rate in an extreme 

condition of skewness and kurtosis. 

In this research, the A G M M  test was applied in Alexander-Govern test to 

overcome its weakness for non-normal data in an extreme condition of skewness and 

kurtosis and also under variance heterogeneity. 



5.2 Implication and Conclusion 

In Table 4.13 as the distribution changes from normal to symmetric heavy tailed 

distribution, the number of conditions of the AGWUOM test decreased fiom ten to 

one under stringent criteria of robustness and increased fiom six to 16 under lenient 

criteria of robustness. This is as a result of a decrease in the number of conditions of 

the AGWMOM test (fiom 5 cases to 4 cases) that are considered not robust. When the 

distribution changes fi-om normal to skewed normal tailed distribution the conditions 

of the AGWMOM test changed, fiom ten to eleven under stringent criteria of 

robustness. The number of conditions of the test also changed from six to four under 

lenient criteria of robustness. The number of conditions of the test that is said not to 

be robust changed &om five to six cases. 

It is observed that as the distribution changes fiom normal to skewed heavy tailed 

distribution, the conditions of the AG M O M  test decreases fiom ten to five, under 

stringent criteria of robustness and increased fi-om six to thirteen under lenient criteria 

of robustness. This is as a result of a reduction in the conditions of the test that are 

regarded as not robust. This is because the AGWMOM test has a high rise in the 

number of conditions of the test under lenient criteria of robustness, £rom six to 

thirteen, that led to a decrease in the number of conditions of the test that is 

considered not robust. 

As the distribution changes from symmetric heavy tailed to skewed heavy tailed 

distribution, the number of conditions of the A G W O M  test increased ffom one to 

five under stringent criteria of robustness and decreased from 15 to nine under lenient 



criteria of robustness. This is as a result of an increase in the number of conditions of 

the test that is regarded as not robust f?om five to seven 

A change in the distribution fi-om skewed normal tailed to skewed heavy tailed, 

shows that the AGWUOM test experienced a reduction in the conditions of the test 

that fall under stringent criteria of robustness, fiom eleven to five. There is an 

increase in the conditions of the test from four to thirteen under lenient criteria of 

robustness and this brought about a reduction in the conditions of the test that are 

considered not robust, from six to three. It can be seen that when the distribution 

moves fi-om normal to skewed heavy tailed distribution, the number of conditions of 

the A G W O M  test under stringent criteria of robustness, decreased ten to five. This 

led to a decrease in the number of conditions of the test that is not robust, fiom five to 

three. 

Example to illustrate robustness of the A G WMOM from normal to skewed heavy 

tailed distribution is shown in Table 5.1. 

Table 5.1 

Number of Conditions ofAGKA4OM test from norm1 to skewed normal tailed 

distribution 

Robustness Normal Skewed heavy tailed 



5.3 Suggestion and Future Research 

In this research, for both stringent and lenient criteria of robustness, the A G W O M  

test has provided a remarkable control of Type I error rate under skewed normal 

tailed distribution and skewed heavy tailed distribution, compared to the AG test, the 

AGMOM test and the ANOVA respectively. But it can be observed that as the 

distribution changes from normal to skewed normal tailed distribution, the robustness 

of the test increased from ten to eleven under stringent criteria of robustness and 

decreased from six to four under lenient criteria of robustness. 

Under skewed heavy distribution, the robustness of the AGWMOM test reduces under 

stringent criteria of robustness &om ten to five and increases under lenient criteria of 

robustness fiom six to thirteen. Future research can be done, to introduce a more 

robust estimator that can increase the robustness of the test for both stringent and 

lenient criteria of robustness, as the distribution changes fiom normal to skewed 

normal tailed distribution and fiom normal to skewed heavy tailed distribution 

respectively. 
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