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Abstrak 

Kajian yang lepas menunjukkan model kemandirian campuran dua komponen 

mencatatkan prestasi yang lebih baik berbanding model kemandirian berparameter 

klasik tulen. Namun terdapat juga keperluan yang penting bagi model kemandirian 

campuran tiga komponen kerana tingkah laku data kemandirian heterogen yang 

lazimnya merangkumi lebih dari dua taburan. Oleh itu dalam kajian ini dua model 

bagi tiga komponen telah dibina. Model 1 adalah model kemandirian  campuran  

berparameter tiga komponen bertaburan Gamma dan Model 2 adalah model 

kemandirian  campuran  berparameter tiga komponen bertaburan Eksponen, Gamma 

dan Weibull. Kedua-dua model telah dianggar menggunakan Pemaksimuman 

jangkaan  (EM) dan pengesahan prestasi model melalui kajian simulasi dan 

empirikal. Simulasi telah diulang 300 kali dengan mengambil kira tiga saiz  sampel 

berbeza: 100, 200, 500; tiga peratus penapisan yang berbeza: 10%, 20%, 40%; dan 

dua set kebarangkalian bercampur secara: menaik (10%, 40%, 50%) dan secara 

menurun (50%, 30%, 20%). Beberapa set data sebenar telah digunakan dalam kajian 

empirikal dan perbandingan model-model telah dilaksanakan. Model 1 telah 

dibandingkan dengan model kemandirian berparameter klasik tulen, model 

kemandirian berparameter campuran dua dan empat komponen bertaburan Gamma. 

Model 2 telah dibandingkan dengan model kemandirian berparameter klasik tulen 

dan model kemandirian berparameter campuran tiga komponen bertaburan sama. 

Persembahan grafik, log likelihood (LL), Kriteria Maklumat Akaike  (AIC), Min 

Ralat Kuasa Dua (MSE) dan Punca Min Ralat Kuasa Dua (RMSE) telah digunakan 

bagi menilai prestasi. Dapatan simulasi menunjukkan bahawa kedua-dua model 

mencatatkan prestasi yang baik pada saiz sampel yang besar, peratus tertapis yang 

kecil dan  pada kebarangkalian bercampur secara menaik. Kedua-dua model 

menghasilkan ralat yang kecil berbanding dengan model kemandirian jenis lain 

dalam kajian empirikal. Ini menunjukkan bahawa kedua-dua model yang dibina 

adalah lebih tepat dan merupakan pilihan yang lebih baik untuk menganalisis data 

kemandirian heterogen. 

Kata kunci: data survival, heterogen, tiga komponen, eksponen, Gamma, Weibull,   

Pengmaksimuman Jangkaan   
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Abstract 

Previous studies showed that two components of survival mixture model performed 

better than pure classical parametric survival model. However there are crucial needs 

for three components of survival mixture model due to the behaviour of 

heterogeneous survival data which commonly comprises of more than two 

distributions. Therefore in this study two models of three components of survival 

mixture model were developed. Model 1 is three components of parametric survival 

mixture model of Gamma distributions and Model 2 is three components of 

parametric survival mixture model of Exponential, Gamma and Weibull 

distributions. Both models were estimated using the Expectation Maximization (EM) 

and validated via simulation and empirical studies. The simulation was repeated 300 

times by incorporating three different sample sizes: 100, 200, 500; three different 

censoring percentages: 10%, 20%, 40%; and two different sets of mixing 

probabilities: ascending (10%, 40%, 50%) and descending (50%, 30%, 20%). 

Several sets of real data were used in the empirical study and models comparisons 

were implemented. Model 1 was compared with pure classical parametric survival 

model, two and four components parametric survival mixture models of Gamma 

distribution, respectively. Model 2 was compared with pure classical parametric 

survival models and three components parametric survival mixture models of the 

same distribution. Graphical presentations, log likelihood (LL), Akaike Information 

Criterion (AIC), Mean Square Error (MSE) and Root Mean Square Error (RMSE) 

were used to evaluate the performance. Simulation findings revealed that both 

models performed well at large sample size, small percentage of censoring and 

ascending mixing probabilities. Both models also produced smaller errors compared 

to other type of survival models in the empirical study. These indicate that both of 

the developed models are more accurate and provide better option to analyse 

heterogeneous survival data. 

Keywords:  survival data, heterogeneous, three components, Exponential, Gamma, 

Weibull, Expectation Maximization. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background of the Study 

 Survival data analysis is the analysis of time to occurrence of a particular event of 

interest. The data are usually related to clinical studies of human, or laboratory 

studies of animal, or studies to test the life time of some devices. Major applications 

are in the areas of human clinical studies and industrial life testing (Kalbfleisch & 

Prentice, 2002). 

The event of interest in clinical studies could be death, remission, or some other 

clinical events. The event of interest could be time taken to learning a new skill, exit 

from unemployment, divorce of a couple or failure of a device, to mention a few. 

The variable of interest, the time to occurrence of particular event T, which is a 

positive random variable, should clearly be defined in the study at hand. The start 

and end with the length of the time period in-between corresponding to T, should 

also be clearly defined prior to the commencement of the study (Lee & Wang, 2003).  

Generally, in survival analysis, some individuals or objects do not experience the 

event of interest for one reason or the other, either they are lost to follow up during 

the period of the study or they do not experience the event until the end of the study. 

In such situation, the information about this particular individual will not be exactly 

known, and such individuals are referred to as censored observations or censored 

times.  
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When there is no censored observation the set of survival data is said to be complete. 

The occurrence of censoring is the reason for the uniqueness of the survival time 

data, in such case, the classical statistical methods may not be appropriate for 

analysing such data. Therefore, different statistical procedures have been developed 

to handle such complexity in the data. 

The purposes of applying the survival methods includes predicting the probability of 

response, comparing the survival distributions of experimental units and identifying 

the risk and/or prognostic factors related to the development of disease (Lee & 

Wang, 2003). 

Like other branches of statistics the survival statistical methods for data analysis 

include parametric and non-parametric methods. The parametric methods are more 

suitable when the data under study follow some specified probability distribution. 

While on the other hand, the non-parametric methods do not require distributional 

assumptions; they are more flexible, and are preferred when no particular parametric 

distribution is appropriate for the data. 

1.2 Problem Statement 

Parametric probability distributions are commonly employed in statistical analysis; 

they are very useful if the selected parametric probability distribution fits the data 

well. In survival analysis with its uniqueness of the presence of censored 

observations, the most frequently used parametric distributions are the Exponential, 

Gamma, Weibull, Lognormal and Gompertz. If a particular distribution is found to 

fit the data well, then analysis, estimation and statistical inference can be based on 
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the selected distribution (Ibrahim Chen & Sinha, 2001; Kalbfleisch & Prentice, 

2002; Lawless, 2003; Lee & Wang, 2003). 

Parametric survival mixture models provide the flexibility like the non-parametric 

models, while maintaining the features of parametric models. Many research works 

proposed parametric survival mixture model of the same probability distribution in 

survival analysis. Cheng and Fu (1982) proposed a parametric survival mixture 

model of Weibull distribution where they employed the weighted least squares 

method to estimate the parameters of the mixture model. Jiang and Kececioglu 

(1992a) estimated the parameters of a survival mixture model of Weibull distribution 

using graphical approach. They (Jiang & Kececioglu, 1992b) also developed a new 

procedure to estimate the parameters of a survival mixture model of Weibull 

distribution. Jaheen (2005) employed a parametric survival mixture model of 

Exponential-Exponential to model survival data. Zhang (2008) proposed a two-

component parametric survival mixture model of Weibull distribution to model 

survival data and investigated the suitability of the model in survival data analysis. 

Also, Erisoglu, Erisoglu & Erol (2012) modelled heterogeneous survival data by a 

survival mixture model of Gamma-Gamma, a survival mixture of Lognormal-

Lognormal and a survival mixture of Weibull-Weibull distributions, where they 

investigated the best fit model to real survival data. Other literature concerned with 

employing survival mixtures of same parametric distribution are; Ling, Huang & 

Liu, (2009); Farcomeni & Nardi (2010); Erisoglu, & Erol, (2010); and Zhang, Wang 

& Lu, (2011).  
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Most of the literatures above focused on parametric survival mixture models of same 

parametric distribution, very few considered survival mixture models of different 

parametric distributions. Among the few, Abu-Zinadah (2010) proposed a two 

components parametric survival mixture model of different distributions of 

Exponentiated pareto and Exponential distributions to model survival data. Recently, 

Erisoglu, Erisoglu & Erol (2011) proposed a two component parametric survival 

mixture model of two different distributions, namely: Exponential-Gamma, 

Exponential-Weibull and Gamma-Weibull, for the analysis of heterogeneous 

survival data. Their results showed the suitability of the parametric survival mixture 

models compared to the pure classical parametric survival models. 

The parametric survival mixture models are more flexible compared to the pure 

classical parametric survival models. Therefore, the parametric survival mixture 

models are better than the pure classical parametric survival model when the survival 

data come from a heterogeneous population (Lawless, 2003). The problem of 

heterogeneity arises frequently in survival data analysis, where the pure classical 

parametric methods become no longer appropriate to model such data. For instance 

in the case of an open-heart surgery: Blackstone, Naftel, and Turner (1986) were 

able to classify the risk of death after the surgery by three different times overlapping 

phases. The phases are defined as an early phase in which the risk is relatively high; 

a middle phase where the risk becomes constant, and finally a phase in which the 

risk starts to increase with the advancement of the age of patients. Modelling each 

time period with a separate pure classical parametric survival model may not be 

appropriate. Therefore, a three component survival mixture should be an effective 
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way of modelling such data (McLachlan & Peel, 2000; Ng, McLachlan, Yau, & Lee, 

2004; Zhang, 2008). 

In real life situation we encounter data with tri-modal nature due to some 

characteristics such as three age groups of some patients in a certain study or three 

modes of failure of a group of individuals or three geographical or regional or ethnic 

back grounds associated with some patients or three stages of certain disease of some 

patients. In some cases the graph of the real data is observed by employing the 

Exploratory Data Analysis (EDA) to find out what the data can tell about the 

appropriate model to be used (Tukey, 1977). Therefore, the three components 

parametric survival mixture model of Gamma distributions in some situations could 

be appropriate to model such types of data that may arise in real life. 

A considerable number of researches work explored survival mixture models of 

same parametric distribution in terms of parameter estimation and inference (Rider, 

1961; Jewell, 1982; Cheng & Fu, 1982; Jiang & Murthy, 1995; Sultan, Ismail, & Al-

Moisheer, 2007; Razali & Salih, 2009). Most of them focused on two components 

survival mixture model. However, very little has been done in choosing mixtures of 

two different parametric distributions to address the issue of heterogeneous survival 

data (Erisoglu, et al., 2011). Very few studies that considered three components 

parametric survival mixture model of the same distribution. In the case of parametric 

survival mixture model of the same distribution, Marin, Rodríguez-Bernal and 

Wiper, (2005) proposed a three component parametric survival mixture model of the 

Weibull distribution. To the best of our knowledge the Gamma distribution in a 

parametric survival mixture of three components did not receive much attention, 
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despite the importance of the Gamma distribution in survival data analysis 

(Kalbfeisch & Prentice, 2002; Lawless, 2003; Lee & Wang, 2003). Also, no study 

considered a three component parametric survival mixture model of the Exponential, 

Gamma and Weibull distributions. 

The Gamma distribution is flexible and closely related to the Exponential and 

Weibull distribution (Ibrahim, et al. 2002; Lee & Wang, 2003). There is a crucial 

need to develop parametric survival mixture model of Gamma distributions of three 

components to model heterogeneous survival data. Also a three components 

parametric survival mixture model of the Exponential, Gamma and Weibull 

distributions needs to be developed.   

This study focuses on modelling heterogeneous survival data by a parametric 

survival mixture model of three components of the Gamma distributions (Model 1) 

and a parametric survival mixture model of three components of different 

distributions of the Exponential, Gamma and Weibull distributions (Model 2). The 

proposed models are compared with pure classical parametric distribution models 

and the parametric survival mixture model of the same distribution.  

1.3 Objectives of the Study 

In this study, there are five objectives which are as follows 

(i) to develop three components parametric survival mixture model of the 

Gamma distributions (Model 1) to model heterogeneous survival data. 
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The sub-objective of objective (i) is to employ Model 1 in evaluating the 

pure classical parametric survival model when the number of components 

is set to one. 

(ii) To develop three components different parametric survival mixture model 

of the Exponential, Gamma and Weibull distributions (Model 2) to model 

heterogeneous survival data.  

(iii) To evaluate the performance of the models via simulation study with 

three different samples sizes, three different censoring percentages and 

two sets of three different mixing probabilities. 

(iv) To investigate the effect of the three different censoring percentages on 

the hazard function of the models via simulation study. 

(v) To investigate the survival function in evaluating the fit of the models 

using empirical study. 

1.4 Significance of the Study 

The significance of this study is to show the importance and appropriateness of the 

three components parametric survival mixture models in modelling real life cases 

involving heterogeneous survival data. The study also shows that some real life 

situations are better modelled with three components parametric survival mixture 

model of the same distribution (the Gamma distribution). In some other cases a three 

components parametric survival mixture model of different distributions (the 
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Exponential, Gamma and Weibull) would be the appropriate choice to model 

heterogeneous survival data.  

The study highlights the suitability, appropriateness and advantages of parametric 

survival mixture model over pure classical parametric survival models, when the 

data is heterogeneous.  

1.5 Outline and Summary of the Thesis 

Chapter Two is devoted to the literature review where basic concepts of the survival 

data analysis related to the parametric survival and the non-parametric methods were 

highlighted. Basic ideas of the parametric survival mixture models were elaborated. 

The recent expansions and development of the application of parametric survival 

mixture models were discussed.  

Chapter Three outlined the methodology adopted to realize the objectives of the 

study.  The introduction section highlighted the methodology frameworks of Model 

1 and Model 2 respectively. The following two sections describe the steps and the 

procedures employed for both Model 1 and Model 2 using simulated and real data 

respectively. 

Chapter Four is devoted to discuss Model 1. It includes an introduction section 

followed by a section in which the theoretical development of Model 1 and its 

transformation into computer coding were explained. In the next two sections the 

comparison studies of Model 1 were explained in details for both simulated and real 
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data respectively. Finally the last section devoted to the findings summary of Model 

1.  

 In Chapter Five, Model 2 has been discussed and it consists of four sections.  The 

first section was an introduction section followed by a section in which the 

theoretical development of Model 2 together with the computer coding used in the 

analysis was explained. In the next two sections the comparison studies of Model 2 

were explained in details for both simulated and real data respectively. Finally the 

last section devoted to the findings summary of Model 2.  

Chapter Six is the conclusion chapter that outlines the summary and findings of the 

thesis, the problems and the limitations that were encountered during the research 

work and finally suggestion for future research works.   
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CHAPTER TWO 

REVIEW OF THE LITERATURE 

2.1 Introduction 

Survival data analysis is concerned with implementing certain statistical methods to 

model and analyse survival data. The primary interest in such data is the endpoint 

time when an event of interest occurs. Generally, the events of interest are referred to 

as failures. For example, the time to death of a patient, time to learning a new skill, 

time to exit from unemployment, time to promotion for employees and time to 

breakdown of some devices. 

From the examples above it is possible that some objects or individuals might not 

experience the event of interest, either by design or because of random censoring. 

This happens when some devices do not fail at the end of the experiment; some 

patients survive to the end of a clinical study or fail to follow up. The presence of 

censoring in survival data made it necessary to develop methods that can 

accommodate censored observations. The name survival analysis is given to a 

collection of statistical methods which are employed to handle survival data with 

censored observations (Tableman & Kim, 2004).  

The survival time is used in connection with clinical studies. However, survival time 

has different names such as time to event, life time, duration time or failure time, 

depending on the field of application. In addition to medical studies, these methods 

have wide application in different fields such as, public health, epidemiology, social 

sciences, economics and engineering. The survival data analysis witnessed rapid 
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developments and expansions with respect to theory, methodology and field of 

application (Lawless, 2003). 

As mentioned earlier in Chapter One, the response of primary interest, 𝑇, is a non-

negative continuous random variable representing a survival time of an individual or 

object from a well-defined population. All the functions characterizing 𝑇 are defined 

over the interval [0, ∞). There are many ways to express the distribution of the 

random variable 𝑇. However, the three most useful functions in survival data 

analysis are; the probability density function (pdf) denoted by 𝑓(𝑡), survival function 

denoted by 𝑆(𝑡) and hazard function which is denoted by ℎ(𝑡) (Ibrahim, et al., 2001; 

Kalbfleisch & Prentice, 2002; Tableman & Kim, 2004). 

Let the random variable 𝑇 represents the survival time of occurrence of the event of 

interest, and let the cumulative distribution function of  𝑇 be defined by 

   𝐹(𝑡) = 𝑝(𝑇 ≤ 𝑡),   𝑡 > 0             (2.1) 

which represents, the probability of occurrence of event of interest at time 𝑡 or less 

than 𝑡. The probability density function (pdf) of the random variable 𝑇 can be 

written as 

   𝑓(𝑡) =
𝑑𝐹(𝑡)

𝑑𝑡
             (2.2) 

The probability density function can also be presented graphically, the graph of ( )f t  

is known as the density curve. The density function ( )f t  is a nonnegative function 

and the area between the curve and the t axis is equal to 1. 

 



 

 12 

The survival function is defined by 

   𝑆(𝑡) = 1 − 𝐹(𝑡)            (2.3) 

which means, the probability that an individual survives beyond time 𝑡. Note that the 

survival function 𝑆(𝑡) is a monotonic decreasing continuous function with 𝑆(0) = 1 

and 𝑆(∞) = lim𝑡→∞ 𝑆(𝑡) = 0. 

The survival function can be represented graphically, and the graph of ( )S t  is called 

the survival curve. This graph is used to estimate the 50
th

 percentile (median) and 

other percentiles of the survival time and also for comparing survival distributions of 

two or more groups (Lee & Wang, 2003). 

The hazard function can be defined as 

      ℎ(𝑡) = lim∆𝑡→0
𝑝(𝑡≤𝑇<𝑡+∆𝑡|𝑡)

∆𝑡
 

 ℎ(𝑡) =
𝑓(𝑡)

𝑆(𝑡)
             (2.4) 

which is the probability that an individual fails within a small interval ( , )t t t , 

given that the individual survived up to the beginning of the interval. The cumulative 

hazard function of the survival time 𝑇 is defined by 

0

( ) ( )

t

H t h u du               (2.5) 
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Therefore, when 0t   then ( ) 1S t   and ( ) 0H t  , and when t  , then ( ) 0S t 

and ( )H t  , that is, the cumulative hazard function can assume any value between 

zero to infinity. 

The hazard function specifies the instantaneous rate of failure at time 𝑡 given that the 

individual survived up to time 𝑡, and sometimes it is known as the instantaneous 

failure rate, force of mortality, conditional mortality rate, and age-specific failure 

rate. The hazard function may be also presented graphically (Lee & Wang, 2003). 

Those three important functions are equivalent, if one is known the other two can be 

derived. The following equations illustrate their relationship. 

  
'( ) [1 ( )] ( )

d
f t S t S t

dt
                  (2.6) 

  ( ) exp[ ( )]S t H t               (2.7) 

  
( )

( )
( )

f t
h t

S t
               (2.8) 

The conventional statistical methods are not appropriate to handle the survival data 

due to the fact that some observations cannot be exactly observed or they are 

censored. There are many types of censoring arising in practice (Ibrahim, et al., 

2001; Lee & Wang, 2003; Sun, 2006). Some of these types will be discussed in the 

following sections. 
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2.2 Censoring 

Generally, parametric methods are used if the distribution of the set of data is known 

to be normal, and nonparametric methods are used if the distribution is unknown. 

This assumption does not hold in the case of survival data because some of the 

survival times are not exactly known. The survival distribution is often skewed and 

far from normal, this is because some objects or individuals have not experienced the 

event of interest at the end of the study. Such individuals are referred to as censored 

observations (Lee & Wang, 2003). 

In survival data analysis there are three common modes of censoring namely, right 

censoring, interval censoring and left censoring. If it is known that the survival time 

T exceeds some particular time U, where U is the follow up time, then the survival 

time of that individual is said to be right censored, and U is called the censoring 

time. However, if the survival time T is not observed, but it is known to be less than 

or equals to some particular time U, then the individual is said to be left censored 

observation. Moreover, if it is known that the event time T is in between the two 

times U and V, where U < V, then the individual is said to be an interval censored 

(Ibrahim et al., 2001; Lawless, 2003; Lee & Wang, 2003). The most frequently 

encountered modes of censoring in survival data analysis are the right censoring. 

There are different types of right censoring; for example, type I censoring, 

independent random censoring and type II censoring, to mention some (Lawless, 

2003). 
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2.2.1 Some Types of Right Censoring 

Type I Censoring 

In type I censoring scheme, the potential censoring time 0iC   for each individual 

is fixed in advance, such that 
iT  observed if 

i iT C ; otherwise it is only known that 

i iT C . Type I censoring often arises when a study is conducted over a fixed period 

of time, after that time the study terminates, so all the individual are expected to fail 

on or before that time (Lawless, 2003).  Sometimes individuals or objects under 

study are divided into subgroups, with a fixed right censoring time for each 

subgroup, and that is what is known as progressive type I censoring. Generally, type 

I right censoring arises in engineering and animal studies (Tableman & Kim, 2004; 

Lee & Wang, 2003). 

Independent Random Censoring 

A very simple random censoring process that is always realistic is the one in which 

each individual is considered to have a survival time 𝑇 and a censoring time C. Here 

T and C are independent continuous random variables. Their survival functions are 

S(t) and G(t) respectively. All survival times and censoring times are assumed 

mutually independent and it is assumed that G(t) does not depend on any of the 

parameters of S(t) (Lawless, 2003). 

Type II Censoring 

The term type II censoring refers to the situation where only the r first survival times 

( ) ( )...i rt t   in a random sample of n objects or individuals are observed. Here r is a 

specified integer between 1 and n. This censoring scheme arises when n individuals 
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start the study at the same time, with the study terminating once r failures (or 

survival times) have been observed. Type I censoring is therefore much more 

common in planned experiments (Lawless, 2003). 

The type of censoring normally depends on the nature and the field of study. 

However, the most frequently encountered modes of censoring is the random 

independent censoring, which is applied to both the parametric and non-parametric 

cases as will be discussed in the next few sections.  

2.3 Parametric Methods in Survival Analysis 

Parametric statistical methods are very powerful tools in survival data analysis 

provided that the selected parametric distribution fits the data well. Otherwise, 

nonparametric statistical techniques will be a better choice. There are several 

theoretical probability distributions that have been widely used in modelling survival 

data. Table 2.1 displays some important characteristics of these distributions, which 

include the probability density functions denoted by ( )f t , cumulative distribution 

functions denoted by 𝐹(𝑡), survival functions denoted by ( )S t , the mean survival 

times denoted by ( )E t  and the set parameter(s) of each distribution. In the following 

subsections, some important parametric distributions employed in modelling survival 

data will be highlighted. 

2.3.1 The Exponential Distribution 

Exponential distribution is one of the most important and simplest distributions in 

survival data analysis. Researchers used the Exponential distribution to describe the 
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life pattern of electronic systems in the late 1940s of the twentieth century. The 

distribution is characterized by its constant hazard function, where the instantaneous 

hazard rate is independent of time t, regardless of the age of individuals. This is 

referred to as the memory-less property of the Exponential distribution (Lee & 

Wang, 2003).  
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Table 2.1 

 Some Important Parametric Distributions in Survival Data Analysis 

Distributions Parameters 𝒇(𝒕) 𝑭(𝒕) 𝑺(𝒕) 𝑬(𝒕) 

Exponential 𝜆 𝜆𝑒−𝜆𝑡 1 − 𝑒−𝜆𝑡 𝑒−𝜆𝑡 𝜆 

Gamma 𝛼 and 𝛽 𝑡𝛼−1
𝑒

−
𝑡
𝛽

𝛽𝛼Γ(𝛼)
 

Γ𝑥 (𝛼,
𝑡
𝛽

)

Γ(𝛼)
 

1 −
Γ𝑥(𝛼)

Γ(𝛼)
 𝛼𝛽 

Weibull 𝛼 and 𝛽 
𝛼

𝛽
(

𝑡

𝛽
)

𝛼−1

𝑒
(−(

𝑡
𝛽

)
𝛼

)
 1 − 𝑒

(−(
𝑡
𝛽

)
𝛼

)
 𝑒

(−(
𝑡
𝛽

)
𝛼

)
 𝛽𝛤 (1 +

1

𝛼
) 

Lognormal 𝜇 and 𝜎 𝑒
(−

1
2

(
𝑙𝑛𝑡−𝜇

𝜎
)

2

)

𝑡𝜎√2𝜋
 

𝜙 (
𝑙𝑛𝑡 − 𝜇

𝜎
) 1 − 𝜙 (

𝑙𝑛𝑡 − 𝜇

𝜎
) 𝑒

(𝜇+
𝜎2

2
)
 

Gompertz 𝛼 and 𝛽 𝜆𝑒
{𝛼𝑡−

𝜆
𝛼[𝑒(𝛼𝑡)−1]}

 1 − 𝑒
{−

𝜆
𝛼[𝑒(𝛼𝑡)−1]}

 𝑒
{−

𝜆
𝛼[𝑒(𝛼𝑡)−1]}

 
1

𝜆
𝐺 (

𝜆

𝛼
)*   

*Note: G(x) =
1

y
∫ e−ydy∞

x
 

A number of examples of survival data described by an Exponential distribution 

were given by Davis (1952), including bank statement and ledger error, payroll 

check errors, automatic calculating machine failure and radar set components failure. 

Epstein and Sobel (1953) selected the Exponential distribution over the popular 

Normal distribution and estimated its parameter when some of the data singly 

censored. In a paper presented before the Royal Statistical Society, Zelen (1966) 

enumerated the applications of the Exponential distribution in survival data analysis 

in the areas of cancer research. Also, in the last decade, Jaheen (2005) used the 

Exponential distribution to model survival data by a survival mixture model of two 

components of the Exponential distribution. 
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The Exponential distribution is characterized by one parameter 0   (scale 

parameter) which defines the constant hazard rate as mentioned earlier. When the 

value of   is high it means high risk and shorter survival time, when the value of   

is low it means low risk and longer survival time. The graph of a constant hazard 

function of the Exponential distribution is displayed in Figure 2.1.  

 

Figure 2.1 Hazard Function of Exponential Distribution  = 0.25 

Let the survival time T be a random variable that follows the Exponential 

distribution, then its probability density distribution (pdf) denoted by ( )f t , the 

cumulative distribution function denoted by ( )F t , the survival function denoted by 

( )S t  and mean survival time denoted by ( )E t  are as defined in Table 2.1 where 





 

 20 

0  and 0t   are the scale parameter and survival time respectively. Figure 2.2 

displays the survival function of the Exponential distribution. 

 

Figure 2.2.Survival Function of Exponential Distribution  = 0.25 

2.3.2 The Gamma Distribution 

The Gamma distribution has been mentioned in the literature long time ago. Brown 

and Flood (1947) used Gamma distribution to describe glass tumblers survival time 

in circulation in a cafeteria. Also, Birnbaum and Saunder (1958) used it to model the 

life length of materials. The Gamma distribution has been frequently and efficiently 

used in modelling survival data. The Gamma distribution is characterized by two 

parameters, namely, 0  the shape parameter and 0   the scale parameter. 

Figure 2.3 shows the Gamma density function with parameters  = 3 and   = 1. 


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Figure 2.3.Probability Density Function of Gamma Distribution 𝛼 = 3  and 𝛽 = 1   

Let the survival time T be a random variable that follows the Gamma distribution, 

then its probability density function (pdf) denoted by ( )f t , the cumulative 

distribution function denoted by ( )F t , the survival function denoted by ( )S t  and 

mean survival time denoted by ( )E t  are as defined in Table (2.1), where 0t  . 

Figure 2.4 shows the shape of the survival function of the Gamma distribution with 

parameters  = 3 and   = 1. 
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Figure 2.4.Survival Function of the Gamma Distribution =3 and =1 

2.3.3 The Weibull Distribution 

The Weibull distribution is characterized by two parameters, 0   which 

determines the shape of the distribution, and is known as the shape parameter, and 

0   which determines the scaling of the distribution, and is known as the scale 

parameter. The Weibull distribution is a generalization of Exponential distribution, 

but does not assume a constant hazard rate and therefore has broader applications 

(Lee & Wang, 2003).  

The Weibull distribution is named after Waloddi Weibull who was the first to 

promote the usefulness of the distribution for modelling data sets of widely differing 

applications (Murthy, Xie & Jaing, 2004). The Weibull distribution was first 

proposed by Weibull (1939), and later the different applications of the model to 

 
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survival data were discussed by Weibull (1951). Since then, the Weibull distribution 

has been used frequently in the literature, particularly in reliability and survival data 

analysis. Murthy et al. (2004) listed examples of some of the applications of the 

Weibull models in the literature, particularly in reliability data analysis and also 

generally in some other fields. When the shape parameter 1  , the hazard rate 

remains constant as time increases, this is the exponential case. When 1   , the 

hazard rate decreases with time and when 1  , the hazard rate increases with time. 

Thus, the Weibull distribution may be used to model survival data of population with 

increasing and decreasing, or constant risk. Figure 2.5 shows the nature of increasing 

hazard rate when the shape parameter is greater than one. Let the survival time T be 

a random variable that follows the Weibull distribution, as defined in Table 2.1, 

where 0t  . Figure 2.6 displays the survival function of the Weibull distribution. 

 

Figure 2.5.Hazard Function of the Weibull Distribution  4 
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Figure 2.6.Survival Function of the Weibull Distribution  

2.3.4 The Lognormal Distribution 

The Lognormal distribution is defined as the distribution of a random variable whose 

logarithm is normally distributed. The distribution is markedly positively skewed 

which makes it a good approximation of several diseases such as Hodgkin’s disease 

and chronic leukaemia since the data of these diseases are skewed to the right (Lee & 

Wang, 2003). Cohen (1951) and Harte and Moore (1966) discussed the Methods of 

estimating the parameters   and 
2  for complete samples of Lognormal 

distribution.  Recently, Vernic, Teodorescu and Pelican (2009) used insurance data 

set to fit a survival mixture model of two components of the Lognormal distribution. 

4 
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Let the survival time T be a random variable, if the distribution of logY T is 

normal with mean  and 
2 variance, then T  follows the Lognormal distribution 

with mean, 
21

exp
2

 
 

 
 

 and variance  2 2exp( ) 1 exp 2     
. It should be 

noted that  and 
2 are not the mean and variance of the Lognormal distribution. 

Figure 2.7 shows the nature of the probability density function of the Lognormal 

distribution. Figure 2.8 displays the survival function of the Lognormal distribution 

with mean 𝜇 = 5  and standard deviation 𝜎 = 3. 

Table 2.1 (p. 17) displays the probability density, the cumulative distribution and the 

survival functions of lognormal distribution where 0t   and , 0   .  

 

Figure 2.7 Density Function of the Lognormal Distribution  and   0  1 
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Figure 2.8.Survival Function of the Lognormal Distribution 𝜇 = 5  and  𝜎 = 3    

2.3.5 The Gompertz Distribution 

Benjamin Gompertz (1825) was the first to formulate the Gompertz distribution 

function to fit mortality table. The probability density function is characterized by 

two parameters   and  , which must be both positive for a proper probability 

density function. When 0    , the derivative of the density function is less than 

zero for (0, )t  , and the density function is monotone decreasing over (0, ) with 

its mode at 0t  , and if 𝛼 > 𝛽, the density function increases on 
mod(0, )et  and 

reaches its maximum at 
modet  and  then decreases to zero on 

mod( , )et  ( Al-Hussaini, 

Al-Dayian & Adham, 2000). The Gompertz distribution is characterized by the fact 

that it describes the survival pattern that has a constant initial hazard rate. The hazard 
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varies as an exponential function of time or age (Lee & Wang, 2003). Figure 2.9 

shows the Gompertz density function with parameters  =1.2 and   =1. 

Let the survival time T be a random variable that follows the Gompertz distribution, 

where 0t  . Figure 2.10 displays the survival function of the Gompertz distribution. 

 

Figure 2.9.Probability Density Function of the Gompertz Distribution 𝛼 = 1.2 and 

𝛽 = 1   
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Figure 2.10.Survival Function of the Gompertz Distribution 𝛼 = 3 and 𝛼 = 1   

2.3.6 Summary of Parametric Methods in Survival Analysis 

Among the most frequently used parametric distributions in survival data analysis 

aare the Exponential, the Weibull, the Gamma, the Lognormal and the Gompertz 

distributions. Each of these distributions is characterized by a number of parameters 

and has different patterns in representing the survival and hazard functions (Ibrahim, 

et al., 2001; Kalbfleisch & Prentice, 2002; Lawless, 2003; Lee & Wang, 2003). 

The parametric distributions are always preferred if some particular distribution 

seems to fit the data in the study as mentioned earlier. However, in cases where it is 

not appropriate to use a particular distribution, then the non-parametric method or 

distribution free approach is the alternative choice, which does not require any 

distributional assumptions, as it will be discussed in the next section. 
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2.4 Non-Parametric Methods in Survival Analysis 

Non-parametric or distribution-free methods are among the oldest methods in 

survival data analysis (Kalbfleisch & Prentice, 2002; Lawless, 2003; Lee & Wang, 

2003). They are flexible, easy to apply and do not require any theoretical 

distributional assumptions. When the survival data follow some particular theoretical 

parametric distribution, the non-parametric techniques are less efficient and loss their 

attraction. The most important non-parametric method in survival data analysis was 

introduced by the work of Kaplan and Meier (1958), which is used to estimate the 

survival function of a given survival data, and the estimated probabilities are also 

represented graphically.  

Let  be the survival times for a sample of n individual, and let 

1 2 ... kt t t    be the times of the occurrence of the event of interest, where ( )k n , 

and let 
jd  be the number of events of interest occurred at time 

jt  , and 
jn   the 

number of individuals at risk at time 
jt , and ( )n k  the number of censored 

observations, then the Kaplan-Meier (K-M) estimate of the survival function ( )S t   

is defined by; 

:

( )
j

j j

j t t j

n d
tS

n






       (2.9) 

 The Kaplan-Meier or Product Moment survival function is a step decreasing 

function with jumps at observed events of interest (Lee & Wang, 2003). Figure 2.11 

displays the non-parametric Kaplan-Meier survival function.  

1 2 ... nt t t  
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Figure 2.11.Kaplan-Meier Survival Function  

In the same way, the cumulative hazard function can be estimated by the Nelson- 

Aalen, which is defined by 

1

( )
i

j

i

j j

d
tH

n





       (2.10) 

where 
jn  and 

jd are as defined above, and the hazard can also be represented 

graphically. Figure 2.12 presents the cumulative hazard function. 
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Figure 2.12.Nelson-Aalen Cumulative Hazard Function  

The usual methods for modelling survival data are the parametric methods, when the 

distributional assumptions are satisfied or the non-parametric methods when no 

parametric distribution seems to fit the data. In some cases where the individuals are 

believed to arise from k distinct types with some proportion  , then survival 

mixture model methods will be the appropriate choice to model such data (Lawless, 

2003). The survival mixture model methods in survival data shall be discussed in the 

following sections. 

2.5 Mixture Models 

Mixture models have been known for more than 100 years. In recent decades, the 

mixture models witnessed a huge expansion due to the rapid development in 

computing facilities. The application of mixture models covers different fields, 



 

 32 

including biology, medicine, physics, economics, engineering and marketing to 

mention a few (Leisch, 2004). Mixture models arise when modelling a set of data 

drawn from a population that is believed to consist of subpopulations within the 

main population, without any need to identify the subpopulation to which an 

individual observation belongs.  

The parametric survival mixture models are more flexible compared to the pure 

classical parametric survival model, and they are the preferred choices for modelling 

the heterogeneous survival data. Bohning and Seide (2003) pointed out that, the 

reason why survival mixture models are developing very rapidly in recent decades, is 

their ability to offer natural models for unobserved population heterogeneity. Under 

the standard assumptions, the population is homogeneous, and pure classical 

parametric conventional distributions are used efficiently to model such 

homogeneous populations. However, when these assumptions are violated due to the 

heterogeneity of the population, the pure classical parametric survival models lose 

their attraction. Moreover, survival mixture models can easily handle cases of 

heterogeneous data.  

In survival data analysis, it is sometimes observed that a considerable number of 

individuals or items do not experience the event of interest; they are referred to as 

long-term survivors. In such a situation, data analysis of the population under study 

cannot be appropriately handled by the conventional parametric distribution 

methods. Instead, the survival mixture model will be the best choice to model the 

data. Larson and Dinse (1985) proposed a survival mixture of long-term survivors to 

model survival data with multiple modes of failure and with censored observations. 
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Kuk and Chen (1992) used a long-term survivor semi-parametric survival model, 

where they employed proportional hazards for the time of occurrence of the event 

and logistic regression for the probability of occurrence of an event.  Similarly, 

Taylor (1995) proposed a semi-parametric survival mixture model using logistic 

regression for the mixing probability and the nonparametric KM approach for the 

latency portion of the model. The two semi-parametric survival mixtures of 

parametric and non-parametric distributions (Kuk & Chen, 1992; Taylor, 1995) are a 

generalization of a parametric survival model proposed by Farewell (1982). Most of 

the above research works focus on semi-parametric survival modelling using a 

parametric model (logistic) for the mixing probability and a non-parametric 

distribution for the survival function of the uncured portion of the mixture model.  

Recently, researchers expanded the literature on long-term survivor techniques 

considering parametric survival mixture models for estimation and making inference, 

assuming that some part of the population will not experience the event of interest 

(cured portion of the population). A long-term survivor’s model was proposed by 

Copas and Hedary (1997), in which they used the Exponential distribution to model 

the re-offending of released prisoners within a given interval of time, during which 

they would have been in prison. In a study of the duration time until  having a second 

child among Chinese women, where the population of women who have one child is 

assumed to consist of two subpopulations, women susceptible to having  a second 

child within a given period of time, and those who will never have a second child, Li 

and Choe (1997), employed long-term survivors mixture model; they used the 

logistic regression model to assess the effects of covariates on the mixing probability 
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of the mixture model, and the piecewise proportional hazard model to assess the 

effects of covariates on the conditional survival function. Koti (2001) used 

Lognormal Distribution to model long-term survival data where Logistic regression 

was proposed for the incidence part of the model, also the covariate effects were 

considered.  Abu Bakar, Daud and Ibrahim (2006) proposed a long-term survivor 

logistic Weibull model to evaluate the effect of covariates associated with heart 

transplant surgery on the survival of the patient.  

Yu and Peng (2008) proposed a marginal Mixture Cure Models (MCM) to model 

multivariate survival data, where they employed the Weibull distribution as the 

latency survival function for the uncured patients. Also, Khalid and Morgan (2008) 

used the Weibull distribution in a long-term survivor mixture model to compare the 

efficiency of longitudinal and cross-sectional settings. Likewise, Othus and Tiwari 

(2009) proposed a semi-parametric transformation cure model that includes the 

proportional hazard model and the proportional odds model and allowed for time 

dependent covariate in the cure mixture model. Seppa, Hakulinen, Kim, and Laara 

(2010) proposed a Generalized Gamma distribution to model the survival function 

for non-cured breast cancer patients to identify the regional variation in the cure 

fraction and in the survival of the non-cured patients. Logistic model was used to 

model the cured proportion. In the long-term survivors cure model, one distribution 

is used for survival function of non-cured, and in most cases, the logistic model is 

employed to model the cured proportion.   

Mixture models have been discussed very frequently in the survival and reliability 

literature in cases of using mixtures of parametric and non-parametric distributions 
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when it is not appropriate to use exclusively parametric or non-parametric 

distributions.  For example, in a compromise between parametric and non-parametric 

distributions, Olkin and Spiegelman (1987) proposed a semi-parametric survival 

mixture procedure for estimating the probability density function of a mixture of 

parametric and non-parametric survival distributions. Also Kouassi and Singh (1997) 

and Zhang (2008), employing the technique of (Olkin & Spiegelman, 1987), 

proposed a semi-parametric survival mixture model to model the hazard and survival 

functions.  

Despite the fact that the semi-parametric distributions are very flexible in terms of 

estimation, it was found that they are computationally intensive in terms of time-

dependent mixing probability, the choice of parametric and non-parametric 

components  need to be justified and the fact that the mixing probability does not 

have closed form (Kouassi & Singh, 1997). Due to these drawbacks, the pure 

parametric survival mixture models become a better alternative for modelling 

survival time data. (Olkin & Spiegelman, 1987; Kouassi & Singh, 1997; Zhang, 

2008),  

 In most cases, parametric survival mixture models in the literature are mixtures of 

same parametric distribution. The method of moments was employed by Rider 

(1961) for the estimation of parameters of a parametric survival mixture of the 

Exponential distribution in a population assumed to have come from mixed 

Exponential distributions. Similarly, Jewell (1982) used the ML method to estimate 

the parameters of a proposed parametric survival mixture model of the Exponential 

distributions. 
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The Weibull distribution has been the most frequently explored distributions by 

many researchers for modelling survival data. Cheng and Fu (1982) employed the 

weighted least squares method to estimate the parameters of a two component 

parametric survival mixture of the Weibull distributions when data are grouped and 

censored. Jiang and Kececioglu (1992a) estimated the parameters of a two 

components parametric survival mixture model of the Weibull distribution 

graphically, exploring six different types of cumulative distribution functions of the 

survival mixture model. Also, Jiang and Kececioglu (1992b) proposed a new 

procedure to estimate the parameters of a two components parametric survival 

mixture model of Weibull distribution through EM with censoring data. Another 

graphical approach for estimating parameters of parametric survival mixture model 

of the Weibull distribution was proposed by Jiang and Murthy (1995), where they 

compared their results with that of an earlier published paper by Jiang and 

Kececioglu (1992a) and pointed out some errors in the previously published work. 

Jaheen (2005) proposed a parametric survival mixture of Exponential distributions to 

compare two different methods of parameter estimation, where the Bayesian and ML 

methods were compared. A parametric survival mixture model of two inverse 

Weibull distributions (MTIWD) was proposed by Sultan et al. (2007) where the 

properties of the parametric survival mixture were investigated and the parameters 

were estimated. Razli and Salih (2009) proposed a parametric survival mixture of 

two Weibull distributions: the first component with two parameters Weibull 

distribution and the second component with three parameters Weibull distribution, to 

model survival data with multiple modes of failure.  They employed ML method to 
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estimate the parameter and found that the mixing probability affects the parameter 

estimates. 

It is observed that most of the parametric survival mixture models employed the 

same distribution in a two component mixture model. It would have been better to 

use different distributions to model such heterogeneous survival data in some 

instances. A parametric survival mixture model of Gompertz distribution was 

proposed by Al-Hussaini et al. (2000), to model heterogeneous survival data based 

on type I and type II censored samples, where they compared the Bayesian and ML 

estimation techniques and concluded that, the Bayesian estimates of the parameters 

of the parametric survival mixture model are generally better than those of the ML. 

Another study comparing the parameter estimates of ML and Bayesian method was 

conducted by Leng and Khalid (2010), where they employed a parametric survival 

mixture model of long-term survivors, which allowed for a cure fraction and frailty 

at the same time, and the baseline survival function was assumed to follow a Weibull 

distribution. They concluded that the ML estimators performed better than the 

Bayesian estimators. 

A parametric survival mixture model of mixed distributions was proposed by 

Erisoglu and Erol (2010), to model heterogeneous survival time data, where they 

employed a two component parametric survival mixture model of the Extended 

Exponential-Geometric (EEG) distribution, and they used a real survival data to 

estimate the parameters of the survival mixture model. Very recently, Erisoglu et al. 

(2012) employed two components parametric survival mixture models of Weibull, 

Gamma and Lognormal to model heterogeneous survival time data; the parameters 
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of the model were estimated using the EM Algorithm. They employed the Akaike 

Information Criterion (AIC) to test the best fit distribution (Akaike, 1974). Their 

models were applied to real data. This work is among the few that treated parametric 

mixture model of the Gamma distribution.  

 Erisoglu and Erol (2010) and Erisoglu et al. (2012) employed two components 

parametric survival mixture model of  same distribution. In some situations, it would 

have been appropriate to use three components parametric survival mixture models 

of the same distributions to model such heterogeneous survival data. The study by 

Erisoglu et al. (2012) that considered the Gamma distribution could be extended to a 

three components parametric survival mixture model of the Gamma distribution 

which did not get thorough attention. Also, in some case parametric survival mixture 

models of different distribution may be more suitable. As an extension of Ersioglu et 

al. (2011) which considered a two components parametric survival mixture model of 

different distributions, a three components parametric survival mixture model could 

be considered. 

2.6 Three Components Parametric Survival Mixture Models of Same 

Distribution 

Many research works have been done on parametric survival mixture models of a 

same distribution, and various distributions were used for that purpose. However, 

most of the works concerned two components parametric survival mixture models 

(Cheng & Fu, 1982; Jiang & Kececioglu, 1992a; Jiang & Kececioglu, 1992b; Zhang, 

2008; Erisoglu & Erol, 2010; Farcomeni & Nardi, 2010; Erisoglu, Erisoglu & Erol, 

2011; Zang, Wang & Lu, 2011; Erisoglu, Erisoglu & Erol, 2012). Very little has 
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been done concerning parametric survival mixture models of same distribution with 

three components. For example, mixture model of three components Weibull 

distributions were employed to model data with three subpopulation categorized as 

strong, freak and infant mortality (Jensen & Petersen, 1982; Moltoft, 1983). Jiang 

and Kececioglu (1992) used simulation to model mixed- Weibull distribution. They 

proposed two, three and five component mixture model all with complete data using 

EM to estimate the parameters of the models. Jiang and Murthy (1996) used weibull 

mixture model of three components with the shape parameters and mixing 

probabilities arranged in ascending order. Marin, et al. (2005) proposed a parametric 

survival mixture model of three components of the Weibull distribution where they 

employed Bayesian method to estimate the parameters of the model. Moreover, a 

very important distribution like the Gamma distribution received very little attention 

in parametric survival mixture models. Erisoglu, et al. (2012) employed two 

components parametric survival mixture model of the Gamma distribution. Hanson 

(2006) used the Bayesian method to analyse lifetime censored data by employing 

three components mixture model of Gamma distributions. The study treated the 

survival distributions as a Dirichlet process mixture of Gamma distributions. There is 

a need to investigate a three component parametric survival mixture model of the 

Gamma distribution.  

2.7 Three Components Parametric Survival Mixture Model of Different 

Distributions 

In the literature, most of the parametric survival mixture models employed mixtures 

of the same parametric distributions. There are very few cases where parametric 
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survival mixtures of different parametric distributions are investigated. Chang (1998) 

employed parametric statistical model to analyse mortality structure in Taiwan, 

where he used a mixture of three different distributions; Weibull, Inverse Weibull 

and Gompertz distributions. The study was of life table of Taiwan between 1926 and 

1991. A parametric survival mixture model of two components of different 

distributions was proposed by Abu-Zinadah (2010), where Exponentiated pareto and 

Exponential distributions were used to model survival data, and the Bayesian and 

ML methods of estimation were employed and compared. They concluded that, 

generally, the performance of the ML was found to be better than that of the 

Bayesian estimates. Also, Erisoglu et al. (2011) proposed a parametric survival 

mixture model of two components of different distributions to model heterogeneous 

survival time data, where they employed parametric survival mixtures of 

Exponential-Gamma, Exponential-Weibull and Gamma-Weibull to estimate the 

parameters of the models.  

Finite mixture models are capable of capturing unobserved heterogeneity in survival 

time data, which make them extremely flexible in representing the density of various 

k-components of mixture models. That makes them a very good choice for 

modelling heterogeneous survival data, which arise in real life (Fruhwirth-Schnatter, 

2006).  

Blackstone, et al. (1986) classified the death after surgery, in the case of open-heart 

surgery, into three overlapping phases, which could be modelled by a three 

component parametric mixture model (Ng, McLachlan, Yau, & Lee, 2004;  Philips, 

Coldman & McBride, 2002). In such a situation where different modes of hazard are 
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identified, a parametric survival mixture model of different distributions could be a 

good choice of modelling such survival data. 

Considerable research works have been done on parametric survival mixture models 

of  same distribution, and various distributions were used for that purpose. However, 

very little has been done concerning parametric survival mixture models of different 

distributions in terms of estimating the parameters of the survival mixture models 

and investigating their suitability and appropriateness. Consequently, parametric 

survival mixture models of different distributions could be a better choice to model 

such heterogeneous survival time data. 

2.8 Summary 

Parametric survival mixture model is the preferred choice for modelling 

heterogeneous survival data over the pure classical parametric survival model. Many 

studies considered the parametric survival mixture model and most of the studies 

focused on the two components parametric survival mixture models of the same 

distribution. The Gamma distribution received less attention compared to the other 

distributions, and there was no study that investigated the three components 

parametric survival mixture model of the Gamma distribution. However, very few 

studies considered two component parametric survival mixture model of different 

distribution. No study considered a three components parametric survival mixture 

model of Exponential, Gamma and Weibull distributions.  

This study is aimed at filling the gap in the literature by proposing a parametric 

survival mixture model of three components, where a three components parametric 
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survival mixture model of the Gamma distributions (Model 1) and a three 

components parametric survival mixture of the Exponential, Gamma and Weibull 

distributions (Model 2) were considered. The EM was employed in the estimation of 

the ML parameters of the models.   
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CHAPTER THREE 

METHODOLOGY 

3.1 Introduction 

This chapter is to outline the methodology employed in realizing the objectives of 

the study. First objective is to develop three components parametric survival mixture 

model of the Gamma distributions (Model 1). The second objective is to develop 

three components parametric survival mixture model of the Exponential, Gamma 

and Weibull distributions (Model 2). The third objective is to employ simulated data 

to evaluate the performance of the models with different sample sizes, different 

censoring percentages and different mixing probabilities. The fourth is to investigate 

the effect of different censoring percentages on the hazard function of the models 

using simulated data. The fifth objective is to evaluate the performance of the 

estimate of the models by investigating the survival function of the models using real 

data and compare it with the K-M empirical survival function of the real data.  

Figure 3.1 and Figure 3.2 outline the methodology framework for both Model 1 and 

Model 2 respectively. Expectation Maximization (EM) was used to estimate of the 

two models. Simulation study was used and the performance of Model 1 and Model 

2 was investigated using three different sample sizes, three different censoring 

percentages and two sets of three different mixing probabilities.  
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Figure 3.1.Methodology Frameworks of Model 1 

Model 1: 

Parametric survival mixture model of the Gamma distributions (G1_G2_G3) 

estimated by EM 

Simulated data Real data 

 Simulated data employed to evaluate and 

assess the performance of Model 1 with  

 

 Three different samples of sizes 

100, 200 and 500 observations. 

 Three different censoring 

percentages (10%, 20% and 40% 

censored observations). 

 Three different mixing 

probabilities employed in 

ascending (10%, 40% and 50%) 

and descending (50%, 30% and 

20%) order. 

 

Model 1 

Versus 

Pure classical parametric survival model 

of the Gamma distributions 

 G1_G2_G3 versus G0 

 G1_G2_G3 versus G1 

 G1_G2_G3 versus G2 

 G1_G2_G3 versus G3 

K-M empirical survival function and the 

survival function of pure classical 

survival model.  

Two and four components parametric 

survival mixture model of the Gamma 

distributions 

 G1_G2_G3 vs G1_G2 and 

G1_G2_G3_G4 

 

Special cases of Model 1  

 Case 1: Gamma 
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Figure 3.2.Methodology Frameworks of Model 2 

Model 2: 

Parametric survival mixture model of the Exponential, Gamma and Weibull 

distributions (E_G_W) estimated by EM 

Simulated data Real data 

Simulated data employed to evaluate and 

assess the performance of Model 1 with  

 

 Three different samples of sizes 

100, 200 and 500 observations. 

 Three different censoring 

percentages (10%, 20% and 40% 

censored observations). 

 Two sets of three different mixing 

probabilities employed in 

ascending (10%, 40% and 50%) 

and descending (50%, 30% and 

20%) order. 

 

Model 2 

Versus 

Three components parametric survival 

mixture models of the Exponential, 

Gamma and Weibull distributions 

 E_G_W versus E1_E2_E3 

 E_G_W versus G1_G2_G3 

 E_G_W versus W1_W2_W3 

 E_G_W versus E1, E2, E3 & 

E1_E2_E3 

 E_G_W versus G1, G2, G3 & 

G1_G2_G3 

 E_G_W versus W1, W2, W3 & 

W1_W2_W3 

 K-M empirical survival function and the 

survival function of pure classical 

survival Model. 
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The simulated data were employed to investigate the effect of the different censoring 

percentages on the hazard function of both of Model 1 and Model 2 respectively. 

Empirical study was conducted to validate Model 1 and Model 2 using real data. 

Graphical, Log Likelihood (LL), Akaike Information Criterion (AIC), Mean Square 

Error (MSE), Root Mean Square Error (RMSE), Kolmogorov-Smirnov test (K-S) 

and the mean survival time E(t) were employed in the validation the model.  

The properties of Model 1 and Model 2 were investigated by comparing the K-M 

empirical survival function of the real data with the survival function of Model 1 and 

Model 2 evaluated using real data. Model 1 was compared with pure classical 

parametric survival models, two and four components parametric survival mixture 

model of the Gamma distributions respectively. A special case for using Model 1 

was also investigated. 

Model 2 was compared with pure classical parametric survival models and three 

components parametric survival mixture models of the Exponential, Gamma and 

Weibull distributions respectively.  

3.2 Development of Model 1 and Model 2 

In this section a three components parametric survival mixture model of the Gamma 

distributions (Model 1) and a three components parametric survival mixture model 

of the Exponential, Gamma and Weibull distributions (Model 2) were developed to 

model heterogeneous survival data. EM was employed to estimate the parameters of 

the two models. The two models consist of three mixing probabilities to connect the 
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three components corresponding to each of the three distributions. Note that the 

mixing probabilities sum up to one. The procedures of employing simulated and real 

data in estimating the parameters of Model 1 and Model 2 were explained in 

Chapters Four and Five respectively. Empirical study was employed using real data 

to compare Model 1 and Model 2 with pure classical survival models and validate 

the two models.   

3.2.1 Validating the Performance of the Models Using Simulated Data  

To evaluate the performance of the two models, data were generated based on three 

different sample sizes. The samples were categorized into small sample (100 

observations or less), medium sample (200 observations) and large sample (500 

observations or more). Each of these three samples consists of three different 

censoring percentage (10%, 20% and 40% censored observations) and two different 

sets mixing probabilities. The two different sets of mixing probabilities were 

arranged in ascending order (10%, 40% and 50%) and descending order (50%, 30% 

and 20%). Based on this simulation study, eighteen (18) different random samples of 

survival data were generated from a population of three components parametric 

survival mixture model each for Model 1 and Model 2. The data were generated 

based on random censoring procedure which was explained in section 4.2.2 of 

Chapter Four. 

The choice of the three different sample sizes, the three different censoring 

percentages and the three mixing probabilities were based on some previous 

simulation and real data applications as summarized in Table 3.1.  
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Table 3.1  

Some Previous Simulation and Real Data Applications 

No Author/s 

simulation Real data 

Sample 

size 

Mixing 

probabilities 

Censored 

Items 

Sample 

size 

Mixing 

probabilities 
censored 

1 
Marin et al. 

(2005) 
150 

60%, 30%  

and 10%  
10% 87 - 40% 

2 
Larson and Dinse 

(1985) 
   65  37% 

3 
Zhang and Wang 

(2011) 

50 

100 

150 

200 

60% and 40%  20%    

4 
Erisoglu and 

Hamza (2010) 
500 

- 70% and 30% 

- 65% and 35%  

- 85% and 15% 

- 80% and 20%  

- 50 46% and 54%  - 

5 
Siyuan Jiang and 

Kececioglu 

200 

500 

 10%, 40% 

and 50%  
-    

6 Zhang (2008) 500 
40% and 60% 

 
20% 51 18% and 82%  

7 
Erisoglu et al. 

(2011) 
100 

- 60% and40% 

-80%  and20%  

-30% and 70% 

-  

71% and 29% 

66% and 44% 

65% and 45% 

 

8 
Wiper, et al. 

(2001) 
400 

20%, 60% and 

20% 
- 203 -  

9 Moltoft (1983) - - - - 

2%, 10% and 

88%  

 

 

 

Sample sizes employed in simulation studies ranged between 50 - 500 observations. 

Marin et al. (2005) employed sample size of 150 observations in the simulating 

survival data for three component survival mixture model of Weibull distribution via 

Bayesian method. Zhang and wang (2011) simulated survival data to estimate the 

parameters of a two component Mixed Weibull Distributions. They used samples of 

sizes 50, 100, 150 and 200 observations. Three and five components survival 

mixture model of Weibull distribution of complete data was simulated with sample 

size of 200 and 500 observations respectively (Siyuan Jiang and Kececioglu, 1992).  
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McGilchrist and Aisbett, (1991) used the Kidney catheter data which consist of 76 

observations in their work. Marin et al., (2005) analyzed the Lupus nephritis survival 

data which include 87 individuals. The Bone Marrow transplant data used by Kersey, 

et al., (1987) consist of 91 observations. The lung cancer data consist of 137 

observations and the Heart transplant data consist of 184 observations (Kalbfleisch 

and Prentice, 2002). 

Based on the simulation studies and real data employed in some research works, this 

study considers three different sample sizes (small, moderate and large), for 

simulating survival data. The sample size of 100 observations which cover 

observation less than or equal to 100 was considered as small sample size. The 

sample size of 200 observations was considered as moderate sample size. The 

sample size of 500 observations which covers observations greater than or equal to 

500 was considered as large sample size. 

Different censoring percentages were considered in simulating data of survival 

mixture models. Marin, et al. (2005) simulated survival data of three components 

Weibull distribution with 10% censored observations. In other research works, 20% 

censored observations was considered (Zhang and Wang, 2011; Zhang 2008). 

In real survival data, the Lung Cancer data consist of 9 censored observations out of 

137 individuals, which make the censoring about 7% of the data (Kalbfleisch and 

Prentice, 2002).  In vaginal cancer data, four out of the forty observations (10% 

censoring) were censored (Kalbfleisch and Prentice, 2002). Twenty four percent of 

the Kidney catheter data are censored (McGilchrist and Aisbett, 1991). The real data 
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employed by Marin et al. (2005), Larson and Dinse (1985) and Stanford heart 

transplant data have 40%, 37% and 38% censored observations respectively. 

Therefore, since the most frequently encountered censoring percentage were between 

10 to 40 percent. The censoring percentages considered in this simulation were 10%, 

20% and 40%. 

Mixing probabilities specify the proportion of the observation that belongs to each 

component of the survival mixture model. Most of the simulation studies considered 

unequal mixing probability either in ascending or descending order. Zhang (2008) 

simulated data with mixing probability of 40% for component one and 60% for 

component two of a survival mixture of Weibull distribution. Erisoglu et al. (2011) 

simulated data with 30% and 70% mixing probability for mixture of Gamma-

Weibull distribution and 60% and 40% for Exponential and Weibull distributions. 

Zhang and Wang (2011) used 60% and 40% for a survival mixture model of Weibull 

distributions. In the simulation of three components mixture model of Weibull 

distribution, 60%, 40% and 10% was used for mixing probabilities (Marin et al, 

2005). Also, Siyuan Jiang and Kececioglu (1992) simulate survival data with 10%, 

40% and 50% mixing probabilities. In real data application, the Kidney catheter data 

were used to model a three components survival mixture mode of Exponential, 

Gamma and Weibll distribution with 52%, 29% and 19% mixing probabilities. 

Therefore, this study will adapt the mixing probabilities 10% 40% and 50% for 

ascending order and 50%, 30% and 20% for descending order. 

EM was employed to estimate the ML estimators of the parameters of the postulated 

parametric survival mixture models. The EM has been efficiently applied in cases of 
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data with missing or unobserved observations. The EM can be traced back to the 

famous work presented by Dempster, Laird and Rubin (1977), where they gave the 

general formulation of the EM. Subsequently, its application continued to expand 

and develop (McLachlan & Krishnan, 2008).   

The EM is an iterative procedure of computing ML estimators when observations are 

viewed as incomplete in the presence of missing or hidden data. The iteration 

consists of two processes, namely, the Expectation step or the E-step and the 

Maximization step or the M-step. In the Expectation step, the missing data are 

estimated given the observed data and the current estimate of the model parameters. 

This is achieved using the conditional expectations. In the Maximization step, the 

likelihood function is maximized under the assumption that the missing data are 

known. The estimates of the missing data from the Expectation step are used instead 

of the actual data. The convergence is assured since the EM is guaranteed to increase 

the value of the likelihood at the end of each of the iterations (Dempster, Laird & 

Rubin, 1977; McLachlan & Krishnan, 2008).  

The parameter estimates of the postulated Model 1 and Model 2 were evaluated 

using the EM and the estimated values were compared with the true values used in 

the simulation of the data.  

To investigate the consistency and stability of the EM in estimating the parameters 

of Model 1 and Model 2, the data regeneration was repeated 300 times for each set 

of data. The parameters of the postulated Model 1 and Model 2 were estimated. The 
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averages of the estimated parameters along with the mean square errors (MSE) and 

root mean square errors (RMSE) were reported. 

3.2.2 Validating the Models Using Real Data  

Three sets of real data were involved in the empirical study to validate Model 1 and 

Model 2. The set of survival real data include the Bone Marrow Transplant data, the 

Vaginal Cancer data and the Kidney Catheter data. 

The first set of data is the Bone Marrow Transplant. The data are among the sets of 

data included in the smcure package developed by Cai, et al. (2012) of R statistical 

software (Team, 2005). The set of data were originally used in the study for the 

refractory acute lymphoblastic leukaemia patient (Kersey, et al., 1987). The data 

consist of 91 observations with 21 censored observations (approximately 23% 

censoring). 

The second set of data is the Kidney Catheter data. The data are included as one of 

the data set in the famous survival package developed by Therneau (1999) of the R 

statistical software (Team, 2005). This data were studied originally by McGilchrist 

and Aisbett (1991). The data give the recurrence times to infection, at the point of 

insertion of catheters, of kidney patients using portable dialysis equipment. It 

consists of 76 observations and 7 variables as presented in Appendix B. The data 

constitute of 18 censored observations which makes the censoring percentage 

approximately 24%. 
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The third set of data is the Vaginal Cancer data. The data give the time to death of 

vaginal cancer of some rats as a result of insult with the carcinogen (Kalbfleisch & 

Prentice, 2002). The data constitute of 40 observations of survival time of two 

groups of rats distinguished by a pre-treatment regiment; there are four censored 

observations which make the censoring percentage approximately 10%. See 

Appendix B. 

The first and third sets of the data were employed in validating Model 1 and the 

second set of the data were used to validate both Model 1 and Model 2 respectively.  

For the validation of the models several graphical representations were employed. 

The probability density function of Model 1 and Model 2, the probability density 

function of the pure classical survival model corresponding to component evaluated 

using the real data and the histogram of the real data was presented. Also the K-M 

empirical survival function of the real data were presented graphically together with 

the survival function of the two models and the survival function of the pure classical 

survival model corresponding to each component. 

For graphical comparison of Model 2 with E1_E2_E3 and W1_W2_W3 survival 

mixture models, the graph of the probability density functions of Model 2, the 

probability density function of E1_E2_E3, the probability density function of 

W1_W2_W3 and the histogram of the Kidney Catheter data was presented.  

Model 2 was compared, on separate graphs, with the parametric survival mixture 

models of E1_E2_E3, W1_W2_W3; each evaluated using the real data together with 
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their pure classical survival parametric models corresponding to each component of 

the mixture models and the histogram of the Kidney Catheter data. 

To validate the models the LL values of each model were evaluated and compared 

with the LL values corresponding to the pure classical survival models 

corresponding to each component of the mixture models. 

The most frequently used method in model selection, the AIC recommended by 

Akaike (1974) is employed in the model selection. 

The AIC criterion is defined by  

    2log 2AIC L d             (3.1) 

where d is the number of free parameters in the finite parametric survival mixture 

model. The Bayesian Information Criterion (BIC) may be used for model selection 

(Fraley and Raftery, 2002). However, Burnham and Anderson (2002, 2004) pointed 

out that the AIC has theoretical advantage over the BIC. To investigate the 

appropriateness of Model 1 and Model 2 compared to the pure classical survival 

models and the other survival mixture model the AIC value were evaluated. 

In many instances, the Mean Square error (MSE) has been used as one of the 

methods of quantifying the difference between an estimator and the true value of the 

quantity being estimated. MSE is obtained with 
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where )4.0/()3.0()(  nitEmp i  for ni ,...,2,1  is the empirical distribution, p is the 

number of free parameters in the distribution and )( itF is the theoretical distribution 

function (Erisoglu et al., 2011). The MSE values of Model 1 and Model 2 were 

evaluated and employed in comparing the models with the pure classical survival 

models corresponding to each distribution. The RMSE values which are defined as 

the square root of the MSE were also evaluated.   

The Kolmogorov-Smirnov (K-S) test is frequently employed to test whether the 

cumulative distribution of set of data comes for a particular parametric distribution. 

The K-S test was employed to test the fitness of Model 1 and Model 2 compared to 

the pure classical survival models corresponding to each component. 

The mean survival time E(t) was evaluated for both Model 1 and Model 2 and 

compared with those of the pure classical survival models corresponding to the each 

component. The mean survival time E(t) was defined in  Chapter Two, Table 2.1 (p. 

17). 

Everitt and Hand, (1981) considered investigating the histogram of set of data to 

decide whether a mixture model structure is more appropriate than a pure classical 

model. The histogram shows the sign of multimodality in the data which suggests the 

appropriateness of mixture model with subpopulation. To decide the number of 
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components which indicates the sup-population in the set of data, model selection 

method AIC is used to decide the number of sup-population appropriate to the data 

(McLachlan and Peel, 2004; Fruhwirth-Schnatter, 2006; Erisoglu et al., 2012). Based 

on this model selection were performed by evaluating the values of LL and AIC to 

show that the three component sub-population is the most appropriate to represent 

the real data for Model 1. 

Model selection was also employed to select the model that represents the Kidney 

Catheter data better among Model 2, the parametric survival mixture model of the 

Exponential distributions (E1_E2_E3) and the parametric survival mixture model of 

the Weibull distributions (W1_W2_W3) respectively. The LL and the AIC values 

were computed and used for the model selection. 

3.3 Summary 

In this chapter the procedure of employing Model 1 and Model 2 to model 

heterogeneous survival data was explained. The EM was used in the estimation of 

the parameters of the two models. The performance of the two models was 

investigated via simulation and empirical studies. 

Simulation study showed the procedure used to evaluate the two models by 

generating three different samples of size (100, 200 and 500) observations. Each 

sample constituted of three different censoring percentages (10%, 20% and 40%) and 

two sets of three different mixing probabilities. The first set of the mixing 

probabilities was arranged in ascending order (10%, 40% and 50%) and the second 

set was in descending order (50%, 30% and 20%). The simulations were repeated 
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300 times where the MSE and RMSE were estimated. The simulated data were used 

to investigate the effect of the different censoring percentages on the nature of the 

hazard function of the two models. The simulation study was explained in detail for 

Model 1 and Model 2 in Chapters Four and Five respectively. 

Empirical study carried out to validate the performance of the two models using 

three sets of real data was explained. The empirical study considered the estimation 

of the parameters of the model. Graphical representation were used as well as the 

LL, AIC, MSE, RMSE, K-S and E(t) to evaluate the performance of the models.  

The K-M empirical survival function was used to evaluate the fitness the two 

models. The K-M of the real data was compared with the survival function of the 

two models and that of the pure classical survival model corresponding to each 

distribution graphically. The empirical study was presented in detail for both of 

Model 1 and Model 2 in Chapter Four and Five respectively. 
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CHAPTER FOUR 

THREE COMPONENTS PARAMETRIC SURVIVAL MIXTURE 

MODEL OF THE GAMMA DISTRIBUTIONS  

4.1 Introduction 

This chapter is dedicated to develop a three components parametric survival mixture 

model of Gamma distributions (G1_G2_G3, noted as Model 1). The outlines of the 

chapter are as follows. The first section highlighted the theoretical development of 

Model 1 by applying the Expectation Maximization (EM). The section also includes 

the explanation regarding the algorithm transformation to computer coding. The next 

two sections are validation of Model 1 conducted based on simulated and real data 

respectively. The last section summarized the outcomes and findings of this chapter. 

4.2 Theoretical Development of Model 1  

Since the first objective of this study proposes a three components parametric 

survival mixture model of the Gamma distributions (Model 1), then Model 1 can be 

expressed as follows 

𝑓𝐺1_𝐺2_𝐺3(𝑡; Θ) = 𝜋1𝑓𝐺1(𝑡; 𝛼1, 𝛽1) + 𝜋2𝑓𝐺2(𝑡; 𝛼2, 𝛽2) + 𝜋3𝑓𝐺3(𝑡; 𝛼3, 𝛽3) ,        (4.1) 

where 𝜋𝑖 are the mixing probability and ∑ 𝜋𝑖
3
𝑖=1 = 1. The functions 𝑓𝐺1, 𝑓𝐺2 and 𝑓𝐺3 

are the probability density functions of the Gamma distributions corresponding to 

each component of Model 1. The EM employed to estimate the ML estimates of the 

parameters of the Model 1 proceeds by considering the survival mixture model of 

Gamma distribution. To explain the derivation of the parameters of the mixture 
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model, the general formulation of three component parameteric survival mixture 

model was highlighted in the next subsection. 

4.2.1 General Formulation of Three Component Parametric Survival Mixture 

Model 

The general formulation of a three components parametric survival mixture model 

which is assumed to consist of three subpopulations; each subpopulation corresponds 

to a component in the parametric survival mixture model, can be expressed as 

follows 

  𝑓𝑋,𝑌,𝑄(𝑡; Θ) = 𝜋1𝑓𝑋(𝑡; 𝜃𝑋) + 𝜋2𝑓𝑌(𝑡; 𝜃𝑌) + 𝜋3𝑓𝑄(𝑡; 𝜃𝑄) ,            (4.2) 

where the vector Θ = ( 𝜋1, 𝜋2, 𝜃𝑋 , 𝜃𝑌 , 𝜃𝑄), contains all the unknown parameters in 

the parametric survival mixture model. The functions 𝑓𝑋(𝑡; 𝜃𝑋), 𝑓𝑌(𝑡; 𝜃𝑌)and 

𝑓𝑄(𝑡; 𝜃𝑄) are known as the probability density functions corresponding to each 

component of the parametric survival mixture model for some parameters 𝜃𝑋 , 𝜃𝑌and 

𝜃𝑄 respectively.  The 𝜋𝑖 are the mixing probability of the survival mixture mode and  

∑ 𝜋𝑖
3
𝑖=1 = 1. 

To highlight the derivation of the parameters of survival mixture model in (4.2), 

there is a need to highlight the development of the EM and its implementation in the 

estimation of the parameters of survival mixture model with censored observations. 

Consider the random variable nTTT ,...,, 21  of size n observations to represent survival 

data of some n objects or individuals, where jT denotes the survival time of the thj  
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object or individual. The probability density function )(tf  of  jT  is assumed to be a 

linear mixture denoted by 

                         




k

i

iii tftf

1

);()(                 (4.3) 

where );( ii tf   is the probability density function of the thi   component of the 

mixture, i  represents the parameters corresponding to the thi  density and i ’s are  

the mixing probabilities corresponding to each component of the mixture and satisfy 

the  condition,  

      




k

i

i

1

1   and 10  i   ),...,2,1( ki                 (4.4) 

The mixture (4.3) is considered a density function since );(),...,;(),;( 2211 kk tftftf 

are probability density function corresponding to the k-components. 

The survival function of random variable jT  can be expressed as a linear mixture of 

the survival function corresponding to the k-components and is denoted by,  

      




k

i

iii tStS

1

);()(                      (4.5) 

where );( ii tS   is the survival function of the thi  component. 
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4.2.2 Estimation of Parameters Using the EM 

Assume the density of a k-component mixture of a random variable Y is defined by 

   

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iii yfyf

1

);();(                       (4.6) 

where '''
2

'
1121 ),...,,,,...,,( kk   is the vector of the unknown parameters of the 

mixture model. Consider the vector '
21 ),...,,( k  to be the vector of mixing 

probabilities which sum up to one. Assuming the vector  nyyy ,..., 21  is a vector of an 

observed sample of size n then the likelihood for  can be expressed as  
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);(                           (4.7) 

It is difficult to computationally estimate maximum likelihood of mixture model 

using classical method, that is, by taking derivative with respect to each parameter. 

This difficulty has been simplified considerably by the use of EM introduced by 

Dempster, Laird, and Rubin (1977). The estimation is simplified by considering the 

data to be incomplete data (McLachlan 2000). In order to pose this problem as an 

incomplete-data, assume that the vector '''
2

'
1 ),...,,( nyyyy  , denotes the observed 

random sample obtained from the mixture density (4.6).  Now a vector of an 

unobservable or missing data is introduced, 
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     '''
2

'
1 ),...,,( kZZZZ                           (4.8) 

 

where jZ , nj ,...,2,1  is k-dimensional component-label vector. 

In mixture models, the EM framework considers the observed values '''
2

'
1 ),...,,( nyyyy    

to be the incomplete data and latent class variables in (4.8) to be the missing data, 

where 𝑧𝑗𝑖 = 𝑧𝑗(𝑦𝑖) = 1 if observation 𝑦𝑖 belongs to 𝑗th
 class and 0 otherwise for 

𝑗 = 1,2, … , 𝑘 and 𝑖 = 1,2, … , 𝑛. Thus jZ  is distributed according to a multinomial 

distribution consisting of one draw on k categories with probabilities k ,...,, 21 ; that 

is kj
k

zz

jj
jjzZP  ,...,,)( 21

21 . This can be written as 
dii

nZZ
..

1 ~,..., Multk ),1(  . 

Suppose the density of an observation iy  given 1ijZ  is )( ji yf  and the 

unconditional density of jy  is )( jyf . Since the thi  mixing probabilities i  can be 

viewed as the prior probability that the entity belongs to the thi  component of the 

mixture, the posterior probability that the entity belongs to the thi  component with jy  

having been observed on it, can be written as  
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)(
)|1(

j
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jij

yf

yf
yZP


                      (4.9) 

Therefore the complete data vector can be written as 
''' ),( zyyc  . Thus the complete 

data likelihood function for  can be expressed as 
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From (4.10) the log-likelihood can be expressed as,  
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The EM algorithm is employed in solving this problem by treating ijz  as 

unobservable or missing data. It proceeds in two iterative steps, E (for expectation) 

and M (for maximization). The addition of the unobservable data to the problem is 

handled by E-step, which takes the conditional expectation of the complete data log-

likelihood, )(log cL , given the observed data y , using the current fit for  . 

To be specific, on the thg  iteration, the E-step requires the calculation of the 

conditional expectation of )(log cL  given y  , which is given by 

 )|(log);( )(
)( yLEQ c

g
g 


            (4.12) 

The expectation operator E  has the subscript )(g  to explicitly convey that this 

expectation is being applied using )(g for  , where )(g  is the current fit of the 

parameters from the previous M-step. As the complete-data log-likelihood is linear 

in the unobservable data ijz , the E-step simply requires to calculate the current 

conditional expectation of ijZ  given the observed data y , 

      )();(|1)|( )()(
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 from (4.9),  
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for 𝑖 = 1,2, … , 𝑘; nj ,...,2,1 . The quantity );( )(g
ji y  is the posterior probability 

that the j
th

 member of the sample with observed value jy  belongs to the i
th

 

component of the mixture. Using (4.14) the conditional expectation of the complete-

data log-likelihood given the observed data y is 

   );(loglog);();( )()(
ijii

g
ji

g yfyQ            (4.15) 

The M-step on the (g+1)
th

 iteration requires the global maximization of (4.15) with 

respect to  , to give the updated estimate )1(  g . For the mixture model, the updated 

estimates )1( g
i of the mixing probabilities i ’s  are calculated independently of the 

updated estimates )1( g
i of the parameter vector i containing the unknown 

parameters in the i
th

 component density.  

If the ijz  were observable, then the complete data maximum likelihood estimate of 

i  would be given by  
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As the E-step simply involves replacing each ijz  with its current conditional 

expectation );( )(g
ji y   in the complete-data log-likelihood, the updated estimate of

i  is given by replacing each ijz  in (4.16) by );( )(g
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Thus in forming the estimate of i  on the (g+1)
th

 iteration, there is a contribution 

from each observation jy  equal to its posterior probability of membership of the i
th

 

component of the mixture model. 

Next, we can estimate the model parameters i  by maximizing the log likelihood 

(4.15) with respect to the model parameters i .  

The EM algorithm iterates between the E-step and the M-step until the difference 

    )()( )()1( gg LL                (4.18) 

changes by an arbitrarily small amount in the case of convergence of the sequence of 

likelihood values  )( )(gL   (McLachlan & Krishnan, 2008).  

 



 

 66 

4.2.3 EM for Parametric Survival Mixture Model  

EM is frequently been employed in solving complicated maximum likelihood 

estimation problem in mixture model. The presence of censored observations in 

survival analysis makes it more complicated. Therefore, there is a need to make 

arrangement to accommodate censoring problem when applying the EM to the 

mixture model estimation in survival analysis. In this derivation, random censoring 

procedure was considered.  In this type of censoring, it is assumed that each object or 

individual has survival time T and censoring time C, where T and C are independent 

continuous random variables. The survival function corresponding to both T and C 

are S(t) and G(t) respectively. The survival time and the censoring time are assumed 

to be independent. The survival time ti  of each individual is given by tj =min(Tj,Cj) 

and j  = 1 if jj CT   and i =0 if jj CT  . then the data from observations on n 

individuals is assumed to consist of the pair ),( jjt   for j=1,….,n. Given the 

probability density function and the survival function of the survival time and 

censoring time, the likelihood function can be expressed as 
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For implementing the EM on survival data with censored observations, let 

nTTT ,...,, 21 be n independent random variables, where jT  is the survival time of the j
th

 

subject. We assume that the probability density function )(tf  and survival function

)(tS  of jT  are defined in (4.3) and (4.5).  
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Let ),(),...,,(),,( 2211 nnttt   be n pairs of survival time and censoring indicator 

observed. The likelihood function is expressed as  
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The unobservable vector Z  can be defined as in (4.8) where jZ  is a variable that 

indicates whether jT came or did not come from the i
th

 component of the mixture. 

The observable vector ),( jjt   together with the unobservable jz  are considered as 

the complete data. The likelihood function for the complete-data is expressed as  
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and the log-likelihood function can be written as,  
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Since the Gamma distribution was considered for Model 1, the derivation of the 

parameters of this mixture model was explained as follows. 

Survival Mixture of the Gamma Distribution 

 The Gamma distribution is one of the frequently used probability distributions in 

modelling survival data. The Gamma mixture model is defined as 
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where ),;( iii tf   represent the density function of Gamma distribution as in Table 

2.1 with unknown parameters ii  , , with 0i 0, i . 

From (4.22), the log-likelihood function of the complete-data is  
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The EM algorithm starts with the E-step. After the g
th

 iteration, )(g
ijz  is the conditional 

expectation of ijZ  given the observed data, as defined in (4.13) and (4.14). Then the 

current conditional expectation of the complete-data log-likelihood is given by  
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The M-step on the (g+1)
th

 iteration requires the global maximization of (4.25) with 

respect to ii  , and i . The mixing probabilities i  can be updated by
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)()1( ,/̂ ki ,...,1 . In order to get the updated maximum likelihood 

estimate of the component model parameters ii  , , the partial differentiation of  

equation (4.25) was taken with respect to the parameters the ii  , , thus 

 






n

j

jiij
g

ij
i

tz
Q

1

)(
log)(log 


       

           
 




















n

j

iji
iiji

ij
g

ij t
t

z

1

)(
)/,(

)/,(

1
log)1( 


   (4.26) 


 

























n

j

iji
iiji

j

i

i

i

i
j

g
ij

i

t
t

t
z

Q

1
2

)(
)/,(

)/,(

)1(
)( 











                   (4.27) 

Now, the upper incomplete gamma function can be differentiated with respect to i  

using Leibnitz’s rule, and we then obtain from (4.27)  that 
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The RHS of (4.28) can be evaluated at the current parameter value to obtain the 

updated parameter estimate )1( g
i . 

Upon expanding the incomplete gamma function as an infinite series, then 

differentiating and simplifying the expression, (4.26) can be expressed as 
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Equating (4.29) to zero, the equation can be solved iteratively for i  to obtain the 

current estimate 
)1( g

i by using )1( g
i for i . 

The E-step on the (g+1)
th

 iteration is to update the current conditional expectation of 

ijZ , given the observed data, using the current model parameters fit, 
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The E-step and M-step iterate alternatively till the convergence criterion is met. 

The EM procedure outlined was employed on both of the simulated and real data to 

evaluate the parameters of Model 1. These derivations and equations were 

transformed into computer coding. The R statistical software (Team, 2005) was 

employed to develop functions to generate survival data used for the simulated data. 
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EM functions were developed to estimate the parameters of the Model 1. The R 

functions regarding the estimation were presented in Appendix C. All the 

computations were performed using R statistical software version 3.0.2 (2013-09-

25). Also, among the R statistical software packages used are package survival 

developed by Therneau (1999), package Mixtools developed by Young, et al. (2007), 

and package Smcure developed by Cai, et al. (2012). 

4.3 Validation of the performance of Model 1 Using Simulated Data   

In this section two sets of mixing probabilities were considered for the validation of 

Model 1 using simulated data. The two sets were arranged in ascending order (10%, 

20% and 40%) and descending order (50%, 30% and 20%). The performance of 

Model 1 (G1_G2_G3) was validated by simulating data with three different sample 

sizes (100, 200 and 500) and three different censoring percentages. 

4.3.1 Model 1 with Mixing Probabilities in Ascending Order  

In this section survival data for Model 1 were generated based on mixture model of 

three well separated components of Gamma distribution. The parameters of the first 

component Gamma distribution (G1) are (𝛼1 = 40, 𝛽1 = 20) respectively, the 

parameters for the second component Gamma distribution (G2) are (𝛼2 = 6 , 𝛽2 =

1)  and the parameters of the third component Gamma distribution (G3) are (𝛼3 =

200, 𝛽3 = 20). Wiper, Insua and Ruggeeri (2001) employed the Bayesian estimation 

method to analyse the mixture model of Gamma distribution with those parameters.   

Based on these three components Gamma distribution, survival data were generated 

for the three different sample sizes (100, 200 and 500) each with three different 
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censoring percentages (10%, 20% and 40%). The mixing probabilities employed 

were in the ascending order (10%, 40% and 50%). Three sets of survival data of 

sample size of 100 observations each. The same samples size were generated from 

the Exponential distribution for the censored time C with (b), where the value of b 

depends solely of the percentage of the observations that are censored. In this study 

10%, 20% and 40% censoring observations were considered for each of the sample 

generated. tj =min(Tj,Cj) was taken as the minimum of the survival time and the 

censored time of the observed time T where  
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The postulated Model 1 can be formed by substituting the values of the parameters in 

equation (4.1), which is expressed as 

𝑓(𝑡) = 0.1 ∗ 𝑓𝐺(𝑡; 𝛼1 = 40, 𝛽1 = 20) + 0.4 ∗ 𝑓𝐺(𝑡; 𝛼2 = 6, 𝛽2 = 1) + 0.5 ∗ 𝑓𝐺(𝑡; 𝛼3 = 200, 𝛽3 = 20) (4.34) 

where the density function fG  represents the Gamma distribution probability density 

functions corresponding to each component of Model 1.  

4.3.1.1 Sample of Size 100 Observations 

The simulated data for samples of size 100 observations with 10%, 20% and 40% 

censored observations were used to estimate the parameters of the postulated Model 

1 by employing the EM. The estimates of the parameters together with the 

parameters of the postulated models were reported. Figures 4.1, 4.2 and 4.3 display 
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the probability density function of  simulated data of Model 1, with 100 observations 

and 10%, 20% 40%  censoring percentages respectively, and the probability density 

functions of pure classical parametric survival models (G1, G2 and G3) 

corresponding to each component of Model 1. 

 

Figure 4.1 Probability Density Function of the Simulated Data of Model 1 with 100 

Observations and 10% Censoring. 

 

Figure 4.2 Probability Density Function of the Simulated Data of Model 1 with 100 

Observations and 20% Censoring. 
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Figure 4.3 Probability Density Function of the Simulated Data of Model 1 with 100 

Observations and 40% Censoring. 

It can be seen that Model 1 fits the simulated data better than the individual pure 

classical parametric survival models which indicates that the simulated data is better 

modelled by Model 1 than the pure classical parametric survival model. 

 

 The estimated parameters of the sample of size 100 with 10% 20% and 40% 

censoring percentages are displayed in Table 4.1. 

 

 

 



 

 75 

Table 4.1 

 The Estimated Parameters the Simulated Data of Postulated Model 1 with 10%, 

20% and 40% Censoring Observations  

Model 1 with sample size 100 observations and 10% censoring 

Parameter 𝜋1 𝜋2 𝛼1 𝛼2 𝛼3 𝛽1 𝛽2 𝛽3 

Postulate  0.10 0.40 40 6 200 20 1 20 

Estimates 0.12 0.39 40.00 5.99 200.00 21.60 1.05 19.71 

Model 1 with sample size 100 observations and 20% censoring 

Parameter 𝜋1 𝜋2 𝛼1 𝛼2 𝛼3 𝛽1 𝛽2 𝛽3 

Postulate  0.10 0.40 40 6 200 20 1 20 

Estimates 0.10 0.40 40.00 6.01 200.00 20.03 0.98 19.27 

Model 1 with sample size 100 observations and 40% censoring 

Parameter 𝜋1 𝜋2 𝛼1 𝛼2 𝛼3 𝛽1 𝛽2 𝛽3 

Postulate  0.10 0.40 40 6 200 20 1 20 

Estimates 0.11 0.38 40.05 5.64 199.99 20.04 0.89 18.62 

 

The estimated parameters of the three set of the simulated data are all close to the 

postulated parameters used in the data generation. From Table 4.1 it can be observed 

that the parameter for the simulated set of data with 10%  and 20% censored 

observations are closer to the true parameters compared to that of the 40% censored 

observations.  

The hazard functions of the three simulated data corresponding to the 10%, 20% and 

40% censoring were presented in Figure 4.4. 
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Figure 4.4 The Hazard Functions of the Simulated Data of Model 1 Corresponding 

to 10%, 20% and 40% Censored Observation. 

The hazard function of simulated data of size 100 observations with 10% of the 

observations censored is higher than that of 20% and 40% censoring. As the number 

of censored observations increases the hazard tends to be lower and lower. 

The simulation of the three sets of generated data were repeated 300 times to check 

the consistency and stability of the EM in estimating the model parameters. The 

averages, the mean square errors and root mean square error of estimated parameters 

of the postulated Model 1 are listed in Table 4.2. 
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Table 4.2 

The Repeated Simulation of Set of 100 Observations  

Model 1 with sample size 100 and 10% censoring  

parameters 1  2  1  2  3  1  2  3  

Postulates 0.10 0.40 40 6 200 20 1 20 

Estimates 0.10 0.39 41.51 5.60 197.88 20.76 0.91 19.62 

MSE 6.00e-07 1.95e-06 7.35e-02 2.65e-4 3.46e-02 1.82e-02 6.82e-05 3.87e-4 

RMSE 8.00e-4 0.0014 0.2711 0.0162 0.1860 0.1349 0.0083 1.69e-2 

Model 1 with sample size 100 and 20% censoring   

parameters 1  2  1  2  3  1  2  3  

postulated 0.10 0.40 40 6 200 20 1 20 

Estimates 0.10 0.38 42.74 5.76 198.88 21.35 0.95 19.72 

MSE 8.11e-7 3.85e-5 5.72e-1 2.33e-3 3.11e-1 1.35e-1 7.67e-5 3.22e-3 

RMSE 9.01e-4 1.96e-3 7.56e-1 4.83e-2 5.58e-1 3.67e-1 8.75e-3 5.67e-2 

Model 1 with sample size 100 and 40% censoring  

Parameters 1  2  1  2  3  1  2  3  

Postulated 0.10 0.40 40 6 200 20 1 20 

Estimates 0.09 0.36 43.02 5.31 196.96 21.63 0.85 19.37 

MSE 8.42e-7 3.91e-6 7.53e-1 2.84e-3 3.31e-1 2.11e-1 9.22e-5 3.32e-3 

RMSE 9.18e-4 1.98e-3 8.68e-1 5.33e-2 5.75e-1 4.59e-1 9.60e-3 5.76e-2 

 

The averages of the parameters are close to the parameters of the postulated 

parametric survival mixture model with mean square errors and root mean square 

relatively small, which suggests that, the EM performed consistently in estimating 

the parameters. The MSE corresponding to the mixing probabilities are relatively 

smaller for the 10% censoring as compared to the 20% and 40% censoring.  
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4.3.1.2 Sample of Size 200 Observations 

Three sets of survival data of size 200 observations with 10%, 20% and 40% 

censored observations, respectively, were generated and employed to estimate the 

parameters of the postulated Model 1 by the EM. The estimated parameters 

corresponding to each set of data and the true parameters of the postulated models 

were reported. The probability density function of simulated data of size 200 

observations and 10%, 20% and 40% censored observations were presented in 

Figures 4.5, 4.6 and 4.7 respectively. The graphs also display the probability density 

functions of pure classical parametric survival models (G1, G2 and G3) 

corresponding to each component of Model 1.  

 

Figure 4.5 Probability Density Function of the Simulated Data of Size 200 

Observations and 10% Censoring 
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Figure 4.6 Probability Density Function of the Simulated Data of Size 200 and 20% 

Censored Observations. 

 

Figure 4.7 Probability Density Function of the Simulated Data of Size 200 

Observations and 40% Censoring. 
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It can be seen that Model 1 fits the simulated data better than the individual pure 

classical parametric survival models which indicates that the simulated data is better 

modelled by Model 1 than the pure classical parametric survival model. 

The estimated parameters of the set of simulated data of size 200 with 10%, 20% and 

40% censored observations were presented in Table 4.3 together with true 

parameters of Model 1. 

Table 4.3 

 The Estimated Parameters the Simulated Data of size 200 with 10% Censoring 

Observations  

Model 1 with sample size 200 observations and 10% censoring 

Parameter 𝜋1 𝜋2 𝛼1 𝛼2 𝛼3 𝛽1 𝛽2 𝛽3 

Postulate  0.10 0.40 40 6 200 20 1 20 

Estimates 0.09 0.41 40.00 6.01 200.00 19.72 0.96 19.77 

Model 1 with sample size 200 observations and 20% censoring 

Parameter 𝜋1 𝜋2 𝛼1 𝛼2 𝛼3 𝛽1 𝛽2 𝛽3 

Postulate  0.10 0.40 40 6 200 20 1 20 

Estimates 0.09 0.39 40.00 6.01 200.00 19.70 0.95 19.83 

Model 1 with sample size 200 observations and 40% censoring 

Parameter 𝜋1 𝜋2 𝛼1 𝛼2 𝛼3 𝛽1 𝛽2 𝛽3 

Postulate  0.10 0.40 40 6 200 20 1 20 

Estimates 0.11 0.38 40.05 5.64 199.99 20.04 0.89 18.62 

  

The estimated parameters of the three set of the simulated data are all close to the 

postulated parameters used in the data generation. From Table 4.3, it can be observed 

that the parameter for the simulated set of data with 10% censoring are more closer 

the true parameters compared to that of the 20% and 40% censoring observations. 
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The estimation of the mixing probabilities was more accurate in sample with 10% 

censoring. It can be observed that the estimation of the mixing probabilities is better 

compared to that of the sample with 100 observations. 

The hazard functions of the three simulated data of size 200 observations 

corresponding to the 10%, 20% and 40% censoring percentages were presented in 

Figure 4.8. 

 

Figure 4.8 The Hazard Functions of the Simulated Data of Size 200 Corresponding 

to 10%, 20% and 40% Censored Observation. 

The hazard function of simulated data of size 200 observations with 10% of the 

observations censored is higher than that of 20% and 40% censoring.  

The simulation of the three set of generated data of 200 observations with 10%, 20% 

and 40% censoring observations were repeated 300 times to check the consistency 

and stability of the EM in estimating the model parameters. The averages, the mean 
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square errors and root mean square error of estimated parameters of the postulated 

Model 1 are listed in Table 4.4. 

Table 4.4 

The Repeated Simulation of Set of 200 Observations  

Model 1 with sample size 200 and 10% censoring  

Parameters 1  2  1  2  3  1  2  3  

Postulates 0.10 0.40 40 6 200 20 1 20 

Estimates 0.10 0.38 42.33 5.60 198.19 21.16 0.91 19.67 

MSE 3.89e-7 1.86e-7 2.62e-1 1.06e-3 2.44e-1 6.28e-2 3.88e-5 2.59e-3 

RMSE 6.24e-4 1.36e-3 5.13e-1 3.26e-2 4.94e-1 2.51e-1 6.23e-3 5.08e-2 

Model 1 with sample size 200 and 20% censoring   

parameters 1  2  1  2  3  1  2  3  

postulated 0.10 0.40 40 6 200 20 1 20 

Estimates 0.09 0.37 42.21 5.25 195.44 21.10 0.84 19.26 

MSE 3.8e-6 2.2e-06 2.82e-1 2.00e-3 4.55e-1 6.9e-2 5.4e-05 4.6e-3 

RMSE 6.5e-4 1.40e-1 5.31e-1 4.0e-2 6.71e-1 2.64e-1 7.00e-3 6.8e-2 

Model 1 with sample size 200 and 40% censoring  

Parameters 1  2  1  2  3  1  2  3  

Postulated 0.10 0.40 40 6 200 20 1 20 

Estimates 0.09 0.33 42.22 4.46 194.26 21.16 0.68 18.80 

MSE 5.19e-7 2.42e-6 3.67e-1 1.64e-3 6.64e-1 8.91e-2 5.76e-5 6.44e-3 

RMSE 7.21e-4 1.56e-3 6.05e-1 4.05e-2 8.15e-1 2.30e-1 7.59e-3 8.02e-2 

 

The averages of the parameters are close to the true values of the parameters of 

parametric survival mixture model with mean square errors relatively small, which 

suggests that, the EM performed consistently in estimating the parameters.  For the 

small censoring percentage (10%) the values of the MSE tend to be smaller than that 

of the 20% and 40% censoring percentages. Also, it can be observed that, the mixing 
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probabilities tend to be closer to the true value with the smaller censoring percentage 

(10%).  

4.3.1.3 Sample of Size 500 observations 

Three sets of survival data of size 500 observations with 10%, 20% and 40% 

censored observations, respectively, were generated and employed to estimate the 

parameters of the postulated Model 1 by using the EM.  The estimated parameters of 

corresponding to each set of data and the parameters of the postulated models were 

reported. The probability density function of simulated data of size 500 with 10%, 

20% and 40% censored observations were presented in Figures 4.9, 4.10 and 4.11 

respectively. The graph also, displays the probability density functions of pure 

classical parametric survival models (G1, G2 and G3) corresponding to each 

component of Model 1.  

 

Figure 4.9 Probability Density Function of the Simulated Data of Size 500 

Observations and 10% Censoring. 
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Figure 4.10 Probability Density Function of the Simulated Data of Size 500 

Observations and 20% Censoring. 

 

Figure 4.11 Probability Density Function of the Simulated Data of Size 500 

Observations and 40% Censoring. 
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It can be seen that Model 1 fits the simulated data better than the individual pure 

classical parametric survival models which indicates that the simulated data is better 

modelled by Model 1 than the pure classical parametric survival model. 

The estimated parameters of the set of simulated data of size 200 with 10%, 20% and 

40% censored observations were presented in Table 4.5. The estimated parameters 

are close to the values of the parameters of the postulated model. It can be observed 

that the parameter for the simulated set of data with 10% censoring are more closer 

the postulated parameters compared to that of the 20% and 40% censoring 

observations. 

Table 4.5 

 The Estimated Parameters the Simulated Data of size 500 with 10% Censoring 

Observations  

Model 1 with sample size 500 observations and 10% censoring 

Parameter 𝜋1 𝜋2 𝛼1 𝛼2 𝛼3 𝛽1 𝛽2 𝛽3 

Postulate  0.10 0.40 40 6 200 20 1 20 

Estimates 0.09 0.38 40.00 6.00 200.00 19.52 0.96 19.91 

Model 1 with sample size 500 observations and 20% censoring 

Parameter 𝜋1 𝜋2 𝛼1 𝛼2 𝛼3 𝛽1 𝛽2 𝛽3 

Postulate  0.10 0.40 40 6 200 20 1 20 

Estimates 0.09 0.37 40.00 6.01 200.00 19.60 0.94 19.74 

Model 1 with sample size 500 observations and 40% censoring 

Parameter 𝜋1 𝜋2 𝛼1 𝛼2 𝛼3 𝛽1 𝛽2 𝛽3 

Postulate  0.10 0.40 40 6 200 20 1 20 

Estimates 0.08 0.32 40.06 4.79 199.96 19.59 0.71 19.36 
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The hazard functions of the three simulated data of size 500 observations 

corresponding to the 10%, 20% and 40% censoring percentages were presented in 

Figure 4.12. 

 

Figure 4.12 The Hazard Functions of the Simulated Data of Size 500 Corresponding 

to 10%, 20% and 40% Censored Observation. 

The hazard function of simulated data of size 500 observations with 10% of the 

observations censored is higher than that of 20% and 40% censoring. As the number 

of censored observations increases the hazard tends to be lower and lower. 

The simulation of the three sets of generated data of 500 observations with 10%, 

20% and 40% censoring observations were repeated 300 times to check the 

consistency and stability of the EM in estimating the model parameters. The 

averages, the mean square errors and root mean square error of estimated parameters 

of the postulated Model 1 are listed in Table 4.6. 
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Table 4.6 

The Repeated Simulation of Set of 500 Observations  

Model 1 with sample size 500 and 10% censoring  

parameters 1  2  1  2  3  1  2  3  

Postulates 0.10 0.40 40 6 200 20 1 20 

Estimates 0.10 0.38 40.59 5.61 198.89 20.27 0.92 19.75 

MSE 1.44e-7 5.57e-7 7.40e-02 5.91e-4 9.01e-2 1.74e-2 2.05e-5 9.16e-4 

RMSE 3.80e-4 7.46e-4 0.27298 0.02430 0.30013 0.13190 0.00453 0.03026 

Model 1 with sample size 500 and 20% censoring   

parameters 1  2  1  2  3  1  2  3  

postulated 0.10 0.40 40 6 200 20 1 20 

Estimates 0.10 0.37 41.40 5.18 195.67 20.68 0.83 19.29 

MSE 1.43e-7 6.23e-7 1.53e-1 6.32e-4 3.40e-1 3.63e-2 2.15e-5 3.37e-3 

RMSE 3.79e-4 7.89e-4 3.91e-01 2.51e-2 5.83e-1 1.91e-1 4.64e-3 5.80e-2 

Model 1 with sample size 500 and 40% censoring  

parameters 1  2  1  2  3  1  2  3  

postulated 0.10 0.40 40 6 200 20 1 20 

estimates 0.08 0.34 40.86 4.29 194.03 20.45 0.65 18.81 

MSE 1.53e-7 8.23e-7 1.56e-1 6.23e-4 8.50e-1 3.85e-2 1.85e-4 8.12e-3 

RMSE 3.91e-4 9.01e-4 3.94e-1 2.29e-2 9.22e-1 1.96e-01 1.36e-2 9.01e-2 

 

The averages of the parameters are close to the parameters of the postulated 

parametric survival mixture model with MSE relatively small, which suggests that, 

the EM performed consistently in estimating the parameters. It can be observed that 

the estimation of the parameters were closer to the true parameters as the sample size 

increases from 100 to 500 observations for the three censoring percentages. Also, the 

estimation of the mixing probabilities were closer to the true values when the 

censoring percentages get smaller and smaller. 
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Generally, the MSE for the sample with 10% censoring are smaller than that of the 

samples with 20% and 40% which shows that the parameters are better estimated 

with smaller censoring percentages. The estimation of the mixing probabilities get 

distorted with the increase in the censoring percentages of the samples. Observing 

Tables 4.3, 4.4 and 4.5 the parameter estimation improve with the increase in the 

sample size of the simulated data.  

4.3.2 Model 1 with Mixing Probabilities in Descending Order  

Survival data for Model 1 were generated based on mixture model of three well 

separated components of Gamma distribution as described in section 4.4.1. In this 

section the mixing probabilities were arranged in descending order. The mixing 

probabilities employed were 50%, 30% and 20% for the first, second and third 

components respectively.  The same parameters of the three components gamma 

distribution used earlier in section 4.4.1 were employed to generate survival data for 

the three different sample sizes (100, 200 and 500) each with three different 

censoring proportions (10%, 20% and 40% censored observations). The mixing 

probabilities employed were in the descending order. The postulated Model 1 was 

formed by substituting the values of the parameters as in equation (4.44). 

4.3.2.1 Sample of Size 100 observations 

Data of size 100 with 10%, 20% and 40% censored observations were generated and 

used to estimate the parameters of the postulated Model 1 by employing the EM.  

The estimates of the parameters together with the true parameters of the postulated 

models were reported. 
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Figures 4.13, 4.14 and 4.15 display the probability density function of simulated data 

of Model 1, with 100 observations and 10%, 20% and 40% censoring percentages. 

The probability density functions of pure classical parametric survival models (G1, 

G2 and G3) corresponding to each component of Model 1 were also presented in the 

same graph.  

 

 

Figure 4.13 Probability Density Function of the Simulated Data of Model 1 with 100 

Observations and 10% Censoring. 
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Figure 4.14 Probability Density Function of the Simulated Data of Model 1 with 100 

Observations and 20% Censoring. 

 

Figure 4.15 Probability Density Function of the Simulated Data of Model 1 with 100 

Observations and 40% Censoring 
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It can be observed that Model 1 fits the simulated data better than the individual pure 

classical parametric survival models which indicate that the simulated data is better 

modelled by Model 1 than the pure classical parametric survival model. 

The parameters of simulated data consisting of 100 observations with 10%, 20% and 

40% censored observations were evaluated. Table 4.7 displays these estimates 

together with the true parameters used in generating the data. 

Table 4.7 

 The Estimated Parameters the Simulated Data of Postulated Model 1 with 10% 

Censoring Observations  

Model 1 with sample size 100 observations and 10% censoring 

Parameter 𝜋1 𝜋2 𝛼1 𝛼2 𝛼3 𝛽1 𝛽2 𝛽3 

Postulate  0.50 0.30 40 6 200 20 1 20 

Estimates 0.49 0.27 40.07 5.41 199.98 19.51 1.00 19.47 

Model 1 with sample size 100 observations and 20% censoring 

Parameter 𝜋1 𝜋2 𝛼1 𝛼2 𝛼3 𝛽1 𝛽2 𝛽3 

Postulate  0.50 0.30 40 6 200 20 1 20 

Estimates 0.46 0.27 40.14 5.05 199.98 19.35 0.87 19.18 

Model 1 with sample size 100 observations and 40% censoring 

Parameter 𝜋1 𝜋2 𝛼1 𝛼2 𝛼3 𝛽1 𝛽2 𝛽3 

Postulate  0.50 0.30 40 6 200 20 1 20 

Estimates 0.39 0.30 40.30 5.37 199.91 20.13 0.80 19.44 

 

The estimated parameters of the three set of the simulated data are all close to the 

postulated parameters used in the data generation. From Table 4.7 it can be observed 

that the parameter for the simulated set of data with 10% censoring are more closer 
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the postulated parameters compared to that of the 20% and 40% censoring 

observations. The mixing probabilities were estimated more accurately estimated 

with lower number of censored observations.  

To investigate the effect of changing censoring percentage on the Model 1, the 

hazard functions of the three simulated data corresponding to the 10%, 20% and 40% 

censoring were evaluated and presented in Figure 4.16. 

 

Figure 4.16 the Hazard Functions of the Simulated Data of Size 100 Corresponding 

to 10%, 20% and 40% Censored Observations. 

The hazard function of simulated data of size 100 observations with 10% of the 

observations censored is higher than that of 20% and 40% censoring. As the number 

of censored observations increases the hazard tends to be lower and lower. 

The simulation of the three set of generated data were repeated 300 time to check the 

consistency and stability of the EM in estimating the model parameters. The 
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averages, the mean square errors and root mean square error of estimated parameters 

of the postulated Model 1 are listed in Table 4.8. 

The averages of the parameters are close to the parameters of the postulated 

parametric survival mixture model with mean square errors and root mean square 

relatively small, which suggests that, the EM performed consistently in estimating 

the parameters. 

Table 4.8 

The Repeated Simulation of Set of 100 Observations  

Model 1 with sample size 100 and 10% censoring  

Parameters 1  2  1  2  3  1  2  3  

Postulates 0.50 0.30 40 6 200 20 1 20 

Estimates 0.48 0.28 42.21 5.41 198.49 21.11 0.87 19.54 

MSE 1.23e-6 3.31e-6 1.82e-1 3.10e-4 2.30e-1 4.55e-2 1.16e-4 2.56e-3 

RMSE 1.11e-3 1.82e-3 4.26e-1 1.76e-2 4.79e-1 2.13e-1 1.08e-2 5.06e-2 

Model 1 with sample size 100 and 20% censoring   

Parameters 1  2  1  2  3  1  2  3  

Postulated 0.50 0.30 40 6 200 20 1 20 

Estimates 0.46 0.27 42.58 4.80 197.07 21.29 0.75 19.11 

MSE 1.73e-6 4.06e-6 2.12e-1 3.53e-3 6.12e-1 5.34e-2 1.37e-4 6.57e-3 

RMSE 1.31e-3 2.01e-3 4.61e-1 5.95e-2 7.82e-1 2.31e-1 1.17e-2 8.10e-2 

Model 1 with sample size 100 and 40% censoring  

Parameters 1  2  1  2  3  1  2  3  

Postulated 0.50 0.30 40 6 200 20 1 20 

Estimates 0.42 0.26 42.34 4.01 193.60 21.12 0.58 18.26 

MSE 3.18e-6 5.59e-6 2.08e-1 2.90e-3 1.23e+00 5.25e-2 1.15e-3 1.20e-2 

RMSE 1.78e-3 2.36e-3 4.56e-1 5.38e-2 1.11e+00 2.29e-1 3.39e-2 1.10e-1 
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The MSE corresponding to the mixing probabilities are relatively smaller for the 

10% censoring as compared to the 40% censoring. Also the MSE for the parameters 

of the components are smaller for the 10% censoring compared to that of the 40% 

with exception of the third component. Generally, the estimation of the mixing 

probabilities and the parameters seemed to be closer to the true value with smaller 

censoring percentage 10% than with 40%.  

4.3.2.2 Sample of Size 200 observations 

Three sets of survival data of size 200 observations with 10%, 20% and 40% 

censored observations, respectively, were generated and employed to estimate the 

true parameters of the postulated Model 1 by using the EM.  The estimated 

parameters of corresponding to each set of data and the true parameters of the 

postulated models were reported. 

The probability density function of simulated data of size 200 observations with 

10%, 20% and 40% censored observations was presented in Figures 4.17, 4.18 and 

4.19 respectively. The graphs also, display the probability density functions of pure 

classical parametric survival models (G1, G2 and G3) corresponding to each 

component of Model 1.  
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Figure 4.17 Probability Density Function of the Simulated Data of Size 200 

Observations and 10% Censoring. 

 

Figure 4.18 Probability Density Function of the Simulated Data of Size 200 

Observations and 20% Censoring. 
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Figure 4.19 Probability Density Function of the Simulated Data of Size 200 

Observations and 40% Censoring. 

It can be seen that Model 1 fits the simulated data better than the individual pure 

classical parametric survival models which indicates that the simulated data is better 

modelled by Model 1 than the pure classical parametric survival model. 

 

The parameters of the set of simulated data of size 200 observations with 10%, 20% 

and 40% censored observations were estimated and the values together with the true 

parameters of the postulated Model 1 were presented in Table 4.9. 
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Table 4.9 

 The Estimated Parameters the Simulated Data of size 200 with 10% Censoring 

Observations  

Model 1 with sample size 200 observations and 10% censoring 

Parameter 𝝅𝟏 𝝅𝟐 𝜶𝟏 𝜶𝟐 𝜶𝟑 𝜷𝟏 𝜷𝟐 𝜷𝟑 

Postulate  0.50 0.30 40 6 200 20 1 20 

Estimates 0.49 0.29 40.00 6.00 200.00 20.01 1.00 19.41 

Model 1 with sample size 200 observations and 20% censoring 

Parameter 𝝅𝟏 𝝅𝟐 𝜶𝟏 𝜶𝟐 𝜶𝟑 𝜷𝟏 𝜷𝟐 𝜷𝟑 

Postulate  0.50 0.30 40 6 200 20 1 20 

Estimates 0.47 0.28 40.05 5.69 199.99 20.0 0.91 19.25 

Model 1 with sample size 200 observations and 40% censoring 

Parameter 𝝅𝟏 𝝅𝟐 𝜶𝟏 𝜶𝟐 𝜶𝟑 𝜷𝟏 𝜷𝟐 𝜷𝟑 

Postulate  0.50 0.30 40 6 200 20 1 20 

Estimates 0.41 0.23 40.09 4.80 199.95 20.15 0.74 19.19 

 

The estimated parameters of the three set of the simulated data are all close to the 

postulated parameters used in the data generation. From Table 4.9 it can be observed 

that the parameter for the simulated set of data with 10% censoring are more closer 

the postulated parameters compared to that of the 20% and 40% censoring 

observations. The mixing probabilities were estimated more accurately estimated 

with lower number of censored observations. 

To investigate the effect of changing censoring percentage on the Model 1, the 

hazard functions of the three simulated data of size 200 observations corresponding 

to the 10%, 20% and 40% censoring percentages were presented in Figure 4.20. 
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Figure 4.20 The Hazard Functions of the Simulated Data of Size 200 Corresponding 

to 10%, 20% and 40% Censored Observation. 

The hazard function of simulated data of size 200 observations with 10% of the 

observations censored is higher than that of 20% and 40% censoring. As the number 

of censored observations increases the hazard tends to be lower and lower. 

The simulation of the three set of generated data of 200 observations with 10%, 20% 

and 40% censoring observations were repeated 300 times to check the consistency 

and stability of the EM in estimating the model parameters. The averages, the mean 

square errors and root mean square error of estimated parameters of the postulated 

Model 1 are listed in Table 4.10. 
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Table 4.10 

The Repeated Simulation of Set of 200 Observations  

Model 1 with sample size 200 and 10% censoring  

Parameters 1  2  1  2  3  1  2  3  

Postulates 0.50 0.30 40 6 200 20 1 20 

Estimates 0.48 0.29 40.61 5.38 199.28 20.32 0.87 19.65 

MSE 5.68e-7 1.63e-6 6.28e-2 1.48e-4 1.70e-1 1.59e-2 5.63e-5 1.90e-3 

RMSE 7.53e-4 1.28e-3 2.51e-1 1.21e-2 4.12e-1 1.26e-1 7.51e-3 4.36e-2 

Model 1 with sample size 200 and 20% censoring   

Parameters 1  2  1  2  3  1  2  3  

Postulated 0.50 0.30 40 6 200 20 1 20 

Estimates 0.45 0.27 40.50 4.34 196.87 20.25 0.65 18.93 

MSE 1.09e-6 1.97e-6 8.30e-2 1.64e-3 5.08e-1 2.07e-2 6.57e-5 5.03e-3 

RMSE 1.04e-3 1.40e-3 2.87e-1 4.05e-2 7.13e-1 1.44e-1 8.11e-3 7.09e-2 

Model 1 with sample size 200 and 40% censoring  

Parameters 1  2  1  2  3  1  2  3  

Postulated 0.50 0.30 40 6 200 20 1 20 

Estimates 0.41 0.26 41.13 3.68 195.98 20.56 0.52 18.40 

MSE 1.55e-6 2.45e-6 7.81e-2 1.61e-3 6.71e-1 1.98e-2 5.72e-5 6.36e-3 

RMSE 1.24e-3 1.57e-3 2.80e-1 3.75e-2 8.19e-1 1.41e-1 7.57e-3 7.97e-2 

 

The averages of the parameters are close to the parameters of the postulated 

parametric survival mixture model with MSE and RMSE relatively small, which 

suggests that, the EM performed consistently in estimating the parameters. The MSE 

corresponding to the mixing probabilities are relatively smaller for the 10% 

censoring as compared to the 40% censoring. Also the MSE for the parameters of the 

components are smaller for the 10% censoring compared to that of the 40% with 

exception of the third component. Generally, the estimation of the mixing 
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probabilities and the parameters are seemed to be closer to the true value with 

smaller censoring percentage 10% than with 40%.  

4.3.2.3 Sample of Size 500 observations 

Three sets of survival data of size 500 observations with 10%, 20% and 40% 

censored observations, respectively, were generated and employed to estimate the 

parameters of the postulated Model 1 by using the EM.  The estimated parameters of 

corresponding to each set of data and the parameters of the postulated models were 

reported. The probability density function of simulated data of size 500 observations 

with 10%, 20% and 40% censored observations were presented in Figures 4.21, 4.22 

and 4.23 respectively. The graphs also, display the probability density functions of 

pure classical parametric survival models (G1, G2 and G3) corresponding to each 

component of Model 1.  

 

Figure 4.21 Probability Density Function of the Simulated Data of Size 500 

Observations and10% Censoring. 
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Figure 4.22 Probability Density Function of the Simulated Data of Size 500 

Observations and 20% Censoring. 

 

Figure 4.23 Probability Density Function of the Simulated Data of Size 500 

Observations and 40% Censoring. 
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It can be seen that Model 1 fits the simulated data better than the individual pure 

classical parametric survival models which indicates that the simulated data is better 

modelled by Model 1 than the pure classical parametric survival model. 

 

The estimated parameters of the set of simulated data of size 500 with 10%, 20% and 

40% censored observations were presented in Table 4.11. The estimated parameters 

are close to the values of the parameters of the postulated model.  

Table 4.11 

 The Estimated Parameters the Simulated Data of size 500 with 10% Censoring 

Observations  

Model 1 with sample size 500 observations and 10% censoring 

Parameter 𝜋1 𝜋2 𝛼1 𝛼2 𝛼3 𝛽1 𝛽2 𝛽3 

Postulate  0.50 0.30 40 6 200 20 1 20 

Estimates 0.48 0.30 40.00 6.00 200.00 20.05 1.00 19.70 

Model 1 with sample size 500 observations and 20% censoring 

Parameter 𝜋1 𝜋2 𝛼1 𝛼2 𝛼3 𝛽1 𝛽2 𝛽3 

Postulate  0.50 0.30 40 6 200 20 1 20 

Estimates 0.46 0.28 40.00 6.00 200.00 19.63 1.00 19.64 

Model 1 with sample size 500 observations and 40% censoring 

Parameter 𝜋1 𝜋2 𝛼1 𝛼2 𝛼3 𝛽1 𝛽2 𝛽3 

Postulate  0.50 0.30 40 6 200 20 1 20 

Estimates 0.43 0.26 40.01 4.48 199.96 20.17 0.68 19.16 

 

The estimated parameters of the three set of the simulated data are all close to the 

postulated parameters used in the data generation. From Table 4.11 it can be 

observed that the parameter for the simulated set of data with 10% censoring are 
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more closer the postulated parameters compared to that of the 20% and 40% 

censoring observations.  

The hazard functions of the three simulated data of size 500 observations 

corresponding to the 10%, 20% and 40% censoring percentages were presented in 

Figure 4.24. 

 

Figure 4.24 The Hazard Functions of the Simulated Data of Size 500 Corresponding 

to 10%, 20% and 40% Censored Observations. 

The hazard function of simulated data of size 500 observations with 10% of the 

observations censored is higher than that of 20% and 40% censoring. As the number 

of censored observations increases the hazard tends to be lower and lower. 

The simulation of the three set of generated data of 500 observations with 10%, 20% 

and 40% censoring observations were repeated 300 times to check the consistency 

and stability of the EM in estimating the model parameters. The averages, the mean 
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square errors and root mean square error of estimated parameters of the postulated 

Model 1 are listed in Table 4.12. 

Table 4.12 

The Repeated Simulation of Set of 500 Observations  

Model 1 with sample size 500 and 10% censoring  

Parameters 1  2  1  2  3  1  2  3  

Postulates 0.50 0.30 40 6 200 20 1 20 

Estimates 0.48 0.29 40.37 5.46 199.49 20.18 0.88 19.74 

MSE 2.29e-7 5.68e-7 2.17e-2 7.47e-4 4.77e-2 5.33e-3 2.75e-6 5.44e-4 

RMSE 4.79e-4 7.54e-4 1.47e-01 2.73e-2 2.18e-1 7.30e-2 1.66e-3 2.33e-2 

Model 1 with sample size 500 and 20% censoring   

Parameters 1  2  1  2  3  1  2  3  

Postulated 0.50 0.30 40 6 200 20 1 20 

Estimates 0.47 0.29 40.25 4.6 198.39 20.11 0.71 19.38 

MSE 2.62e-7 3.84e-6 2.35e-2 6.15e-3 2.27e-1 5.73e-3 2.08e-5 2.24e-3 

RMSE 5.12e-4 1.96e-4 1.53e-1 2.48e-2 4.77e1 7.57e-2 4.56e-3 4.73e-2 

Model 1 with sample size 500 and 40% censoring  

Parameters 1  2  1  2  3  1  2  3  

Postulated 0.50 0.30 40 6 200 20 1 20 

Estimates 0.43 0.26 39.99 3.79 196.18 20.01 0.54 18.63 

MSE 5.25e-7 9.56e-7 3.14e-2 5.96e-3 5.75e-1 7.68e-3 2.31e-5 5.36e-3 

RMSE 7.24e-4 9.78e-4 1.77e-1 2.44e-2 7.58e-1 8.77e-2 4.80e-3 7.32e-2 

 

The averages of the parameters are close to the true parameters of the postulated 

parametric survival mixture model with mean square errors relatively small, which 

suggests that, the EM performed consistently in estimating the parameters. 
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The estimation of the parameters of the model was successful for both the ascending 

and descending order of the mixing probabilities. The estimated parameters were 

closer the true postulate parameters as the sample size increases from 100 to 500 

observations for both the ascending and descending order mixing probabilities. It is 

also observed that the estimates of the parameters were much better for small 

censoring percentages. The mixing probabilities were better estimated for small 

number of censored observation. It could be due to the fact that with the increase in 

number of censored observation considerable amount of information were lost. 

Generally, the mixing probabilities for the ascending order have smaller MSE value 

corresponding to the estimates of the parameters which shows that they were better 

than the parameters estimated with the descending order, especially with the increase 

in the censoring percentages. In general, it is observed that the mixing probabilities 

of ascending order performed better than the descending order. 

4.3.3 Special Case of Model 1 

The pure classical parametric survival model of Gamma distribution can be looked at 

as a special case of Model 1 by setting the number of components of the parametric 

survival mixture model of the Gamma distributions equals to one as was shown in 

Figure 3.1. Pure classical parametric survival model of the Gamma distribution has 

been simulated. The predetermined parameters of pure classical parametric survival 

model of the Gamma distribution is given by 

  𝑓(𝑡) = 𝑓𝐺(𝑡; 𝛼1 = 20, 𝛽1 = 6)                                                       (4.2) 
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The simulated data were used to estimate the parameters of the pure classical 

parametric survival model of the Gamma distribution and the parameter estimates 

are reported. 

The probability density function of the estimated pure classical parametric survival 

model of the Gamma was plotted together with the histogram of the simulated data 

in Figure 4.25. The density function plotted indicates that the model fits the data 

well. 

 

Figure 4.25The Density Functions of Pure Classical Parametric Survival Model of 

the Gamma Distribution 

Table 4.13 displays the result of the estimates of the parameters of the simulated data 

of the pure classical parametric survival model of the Gamma distribution. The 

results show that the estimates of the parameters are close to the original parameters 

of the postulated pure classical parametric survival model. 
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Table 4.13 

The Estimated Parameters of Simulated Data of the Pure Classical Survival Model 

of Gamma Distribution 

Parameter 𝜶 𝜷 

Postulate model  20 6 

Estimates 19.29 6.54 

 

4.4 Validating Model 1 Using Real Data 

This section is devoted to the application of Model 1 on real data. The parameters of 

such data were estimated using the EM. Also the graphical representations of the 

probability density function of the parametric survival mixture models were 

presented together with the probability density function of the pure classical survival 

models of each component. The survival function of Model 1 was compared with the 

K-M empirical survival function to validate the model. The estimated parameters 

were presented together with the LL, AIC, MSE, RMSE, Kolmogorov- Simonov test 

(K-S) and the mean survival time E(t) values. The pure classical parametric survival 

model of the Gamma distribution was presented as a special case when the number 

of components of the proposed parametric survival mixture model is set to one.  

4.4.1 Bone Marrow Transplant Data 

The Bone Marrow Transplant data had been used as real data. The three components 

parametric survival mixture model of the Gamma distributions (Model 1) were 

applied on the Marrow Transplant Study data. 
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The probability density function of Model 1 and the probability density function of 

the pure classical survival models of the Gamma distribution (G1, G2 and G3) 

corresponding to each of the components of Model 1 were plotted together with the 

histogram of the Marrow Transplant data in Figure 4.26. The graph indicates that 

Model 1 fits the data better than the individual pure classical survival models of the 

Gamma distributions corresponding to each component. 

 

Figure 4.26  probability density function of Model 1 using Bone Marrow Transplant 

Data 

The values of estimated parameters of Model 1of the Marrow Transplant data were 

displayed in Table 4.14. 

 Table 4.14 

The Estimated Parameters of Model 1 of Marrow Transplant Data 

Parameter 𝝅𝟏 𝝅𝟐 𝜶𝟏 𝜶𝟐 𝜶𝟑 𝜷𝟏 𝜷𝟐 𝜷𝟑 

Estimates 0.37 0.38 5.81 2.43 18.06 11.39 134.25 77.42 
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The probability density function of Model 1 and the probability density function of 

the pure classical survival model of the Gamma distribution (G0) evaluated using the 

Marrow Transplant data, were plotted together with the histogram of the Marrow 

Transplant data in Figure 4.27. The graph indicates that Model 1 fits the data better 

than the pure classical survival model of the Gamma distribution (G0). 

 

Figure 4.27.Model 1 vs the Pure Classical Survival Model of the Gamma 

Distribution (G0) Using Bone Marrow Transplant Data 

The parameters, LL, AIC, MSE, RMSE, Kolmogorov-Smirnov K-S test and the 

mean survival time E(t) values were estimated and reported. Table 4.15 shows that, 

Model 1 scored higher value for the LL (-493.01) than the values (-501.13) scored by 

the pure classical survival parametric model of the Gamma distribution (G0). Also, 

the AIC value (1002.02) of Model 1 was smaller compared to corresponding value 

(1006.26) of the pure classical parametric survival model of the Gamma distribution 

(G0). The MSE of the fitted Model 1 (0.0016) is smaller than that of the pure 
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classical model (0.0117). This result indicates that the Marrow Transplant Study data 

seem to be appropriately fitted by Model 1. 

Table 4.15  

The Estimated Parameters of Model 1 for Bone Marrow Transplant Data 

Model Estimates LL AIC MSE RMSE K-S E(T) 

G0 𝛼̂ = 0.57, 𝛽̂ = 1243.48 -501.13 1006.26 0.0117 0.1082 
0.02 

(0.05) 
708.78 

Model 1 

𝛼̂1=5.81, 𝛽̂1= 11.39 

𝛼̂2 = 2.43, 𝛽̂2= 134.25  

𝛼̂3 = 18.06, 𝛽̂3= 77.42 

𝜋̂1 = 0.37, 𝜋̂2= 0.38 

-493.01 1002.02 0.0016 0.0400 
0.09 

(0.87) 
504.42 

 

The K-S test statistic of Model 1 (0.09) with the p-value in bracket shows that Model 

1 fits the data better than the pure classical survival distribution.  

The survival function graph of the fitted Bone Marrow Transplant data used to 

validate the fit of Model 1. The survival function graph was compared with the K-M 

empirical survival function of the real data to investigate the fit of Model 1. The 

survival function of Model 1 and the K-M empirical survival function were 

presented in Figure 4.28. 
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Figure 4.28 K-M, the Survival function of Model 1 and the Pure Survival Model 

In Figure 4.28 the K-M empirical survival function is in solid black, the survival 

function of Model 1 is in dark blue, the pure classical survival model of the Gamma 

distribution is in red. From the Figure it can be observed that the survival function of 

Model 1 is in full agreement with the K-M empirical survival function and much 

better than the pure classical survival model. 

Model selection was performed among Model 1, the two components parametric 

survival mixture models of the Gamma distributions (G1_G2) and the four 

components parametric survival mixture models of the Gamma distributions 

(G1_G2_G3_G4) to select the model that represents the Bone Marrow Transplant 
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Study data better by applying the LL and AIC criterion. The estimates of the 

parameters of (G1_G2) are presented in Table 4.16. 

 Table 4.16 

The Estimated Parameters of (G1_G2) of the Bone Marrow Transplant Data 

Parameter 𝝅𝟏 𝜶𝟏 𝜶𝟐 𝜷𝟏 𝜷𝟐 

Estimates 0.80 0.71 186.86 446.08 8.95 

 

Also the estimates of the parameters of the (G1_G2_G3_G4) are presented in Table 

4.17.  

Table 4.17 

The Estimated Parameters of (G1_G2_G3_G4) of the Bone Marrow Transplant 

Data 

Parameter 𝝅𝟏 𝝅𝟐 𝝅𝟑 𝜶𝟏 𝜶𝟐 𝜶𝟑 𝜶𝟒 𝜷𝟏 𝜷𝟐 𝜷𝟑 𝜷𝟑 

Estimates 0.23 0.23 0.26 6.10 13.13 4.52 10.85 8.06 8.48 71.94 118.55 

 

Table 4.18 Gives the LL and the AIC corresponding to each parametric survival 

mixture models of the Gamma distributions. The LL value of Model 1 (-493.01) is 

higher than that of the two, four components parametric survival mixture model of 

the Gamma distributions (-497.41), (-494.39) respectively. The AIC criterion value 

of Model 1 (1002.02) is smaller than that of the two and four components parametric 

survival mixture model of the Gamma distributions respectively.  
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Table 4.18 

The LL and AIC Values of the Parametric Survival Mixture Models of the Gamma 

Distribution 

Number of 

components 

2    

(G1_G2) 

3  

(Model 1: 

G1_G2_G3) 

4    

(G1_G2_G3_G4) 

Mixture of 

Gamma 

LL -497.41 -493.01 -494.39 

AIC 1004.82 1002.02 1010.77 

 

The result shows that both the LL and AIC are in support of Model 1. Three sub-

populations fit the Bone Marrow data much better than the two, four sub-populations 

survival mixture model and the pure classical survival model. 

4.4.2 Kidney Catheter Data 

The set of real data analysed in this section is the Kidney Catheter data which is 

included as one of the data set in the famous survival package developed by 

Therneau (1999) of the R statistical software (Team, 2005). This data were studied 

originally by McGilchrist and Aisbett (1991). The data give the recurrence times to 

infection, at the point of insertion of catheters, of kidney patients using portable 

dialysis equipment. It consists of 76 observations and 7 variables as presented in 

Appendix B. The data constitutes of 18 censored observations which makes the 

censoring percentage approximately 24%. The data were used to fit Model 1. 

The probability density function of Model 1 and the probability density function of 

the pure classical survival models of the Gamma distribution (G1, G2 and G3) 
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corresponding to each of the components of Model 1 were plotted together with the 

histogram of the Kidney Catheter data in Figure 4.29. The graph indicates that 

Model 1 fits the data better than the individual pure classical survival models of the 

Gamma distributions corresponding to each component. 

 

Figure 4.29 the probability density function of Model 1 using Kidney Catheter Data 

The values of estimated parameters of Model 1of the Kidney Catheter data were 

displayed in Table 4.19. 

 Table 4.19 

The Estimated Parameters of Model 1 of Kidney Catheter Data 

Parameter 𝝅𝟏 𝝅𝟐 𝜶𝟏 𝜶𝟐 𝜶𝟑 𝜷𝟏 𝜷𝟐 𝜷𝟑 

Estimates 0.53 0.29 2.06 21.97 13.05 14.75 7.14 31.28 
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The probability density function of Model 1 and the probability density function of 

the pure classical survival model of the Gamma distribution (G0) evaluated using the 

Kidney Catheter data; were plotted together with the histogram of the Kidney 

Catheter data in Figure 4.30. The graph indicates that Model 1 fits the data better 

than the pure classical survival model of the Gamma distribution (G0). 

 

Figure 4.30.Model 1 vs the Pure Classical Survival Model of the Gamma 

Distribution (G0) Using Kidney Catheter Data 

The parameters, LL, AIC, MSE, RMSE, Kolmogorov-Smirnov K-S test and the 

mean survival time E(t) values were estimated and reported. Table 4.20 shows that, 

Model 1 scored higher value for the LL (-331.57) than the values (-341.20) scored by 

the pure classical survival parametric model of the Gamma distribution (G0). Also, 

the AIC value (679.13) of Model 1 was smaller compared to corresponding value 

(686.40) of the pure classical parametric survival model of the Gamma distribution 

(G0). The MSE of the fitted Model 1 (0.0108) is smaller than that of the pure 
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classical model (0.0194). This result indicates that the Kidney Catheter data seem to 

be appropriately fitted by Model 1. 

Table 4.20  

The Estimated Parameters of Model 1 for Kidney Catheter Data 

Model Estimates LL AIC MSE RMSE K-S E(T) 

G0 𝛼̂ = 0.89, 𝛽̂ = 156.96 -341.20 686.40 0.0194 0.1392 
0.25 

(0.02) 
139.69 

Model 1 

𝛼̂1=2.06, 𝛽̂1= 14.75 

𝛼̂2 = 21.97, 𝛽̂2= 7.14  

𝛼̂3 = 13.05, 𝛽̂3= 31.28 

𝜋̂1 = 0.53, 𝜋̂2= 0.29 

-331.57 679.13 0.0108 0.1038 
0.16 

(0.30) 
137.00 

 

The K-S test statistic of Model 1 (0.16) with the p-value in bracket shows that Model 

1 fits the data better than the pure classical survival distribution.  

The survival function graph of the fitted Kidney Catheter data used to validate the fit 

of Model 1. The survival function graph was compared with the K-M empirical 

survival function of the real data to investigate the fit of Model 1. The survival 

function of Model 1 and the K-M empirical survival function were presented in 

Figure 4.31. 
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Figure 4.31 K-M, the Survival function of Model 1 and the Pure Survival Model 

In Figure 4.31 the K-M empirical survival function is in solid black, the survival 

function of Model 1 is in dark blue, the pure classical survival model of the Gamma 

distribution is in red. Form the Figure it can be observed that the survival function of 

Model 1 is in full agreement with the K-M empirical survival function much better 

than the pure classical survival model. 

The histogram of the Kidney Catheter data shows that mixture structure is 

appropriate for the data; hence the AIC model selection was used to determine the 

sub-population that fits the data. The Kidney Catheter data were used to model a two 

components parametric survival mixture model of the Gamma distributions (G1_G2) 

and four components parametric survival mixture model of the Gamma distributions 
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(G1_G2_G3_G4). The estimates of the parameters of (G1_G2) are presented in 

Table 4.21. 

 Table 4.21 

The Estimated Parameters of (G1_G2) of the Kidney Catheter Data 

Parameter 𝝅𝟏 𝜶𝟏 𝜶𝟐 𝜷𝟏 𝜷𝟐 

Estimates 0.44 2.41 2.30 10.29 98.26 

 

Also the estimates of the parameters of the (G1_G2_G3_G4) are presented in Table 

4.22.  

Table 4.22 

The Estimated Parameters of of (G1_G2_G3_G4) of the Kidney Catheter Data 

Parameter 𝝅𝟏 𝝅𝟐 𝝅𝟑 𝜶𝟏 𝜶𝟐 𝜶𝟑 𝜶𝟒 𝜷𝟏 𝜷𝟐 𝜷𝟑 𝜷𝟑 

Estimates 0.16 0.24 0.18 5.21 17.82 5.60 3.97 1.81 1.48 15.27 69.48 

 

 Model selection was performed among Model 1, the two components parametric 

survival mixture models of the Gamma distributions (G1_G2) and the four 

components parametric survival mixture models of the Gamma distributions 

(G1_G2_G3_G4) to select the model that represents Kidney Catheter Study data 

better by applying the LL and AIC criterion. 

Table 4.23 gives the LL and the AIC corresponding to each parametric survival 

mixture model of the Gamma distributions. The LL value of Model 1 (-331.57) is 

higher than that of the two, four components parametric survival mixture model of 
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the Gamma distributions (-334.90), (-336.88) respectively. The AIC criterion value 

of Model 1 (679.13) is smaller than that of the two and four components parametric 

survival mixture model of the Gamma distributions respectively.  

Table 4.23 

The LL and AIC Values of the Parametric Survival Mixture Models of the Gamma 

Distribution 

Number of 

components 

2    

(G1_G2) 

3  

(Model 1: 

G1_G2_G3) 

4    

(G1_G2_G3_G4) 

Mixture of 

Gamma 

LL -334.90 -331.57 -336.88 

AIC 681.80 679.13 695.76 

The result shows that both the LL and AIC are in support of Model 1. Three sub-

populations fit the Kidney Catheter data much better than the two, four sub-

populations survival mixture model and the pure classical survival model. 

As a special case of the parametric survival mixture model of the Gamma 

distributions, the pure classical parametric survival model of the Gamma distribution 

has been used to model Vaginal Cancer data in the next sub-section. 

4.4.3 The Special Case of Model 1 

The pure classical parametric survival model of the Gamma distribution was applied 

to the Vaginal Cancer data by setting the number of components of Model 1 to one. 

The Vaginal Cancer data set is one of the data sets included in survival package 

developed by Therneau (1999) which is one of the packages of the R statistical 

software (Team, 2005).  
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Figure 4.32 The Pure Classical Parametric Survival Model of the Gamma 

Distribution for Vaginal Cancer Data 

The probability density function of the pure classical parametric survival model of 

the Gamma distribution was plotted together with the histogram of the Vaginal 

Cancer data in Figure 4.32. The density function plotted indicates that the model fits 

the data well. 

The estimated parameters of the pure classical parametric survival Gamma 

distribution model are shown in Table 4.24 along with the LL value. 

Table 4.24 

The Estimated Parameters of Vaginal Cancer Data of the Pure Classical Gamma 

Distribution 

Parameter 𝜶 𝜷 

Estimates 24.22 9.47 

LL -191.68  
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4.5 Summary   

This chapter discussed the development of a three components parametric survival 

mixture model of the Gamma distributions (Model 1). The EM, the model derivation 

and the estimation of the parameters of Model 1 were highlighted.  

Simulation study was carried out to investigate and validate the performance of 

Model 1. The simulated data constituted of the three different samples of size 100, 

200 and 500 observations respectively. Each of the samples was based on three 

different censoring percentages. Also the generated samples were based on two sets 

of different mixing probabilities arranged in ascending and descending order. 

Simulated data of 18 different samples were generated from the parametric survival 

mixture model of Gamma distribution. The EM was employed in estimating the 

parameters of Model 1 and the consistency and stability of EM was investigated by 

repeating the simulation 300 times. 

Generally, the parameters estimated from the data were closed to the true parameters 

used in the simulation of the data. The simulation was repeated 300 times and the 

MSE and RMSE were obtained. Validating the performance of Model 1 using the 

three different sample sizes showed that the estimation of the parameters was better 

as the sample size increases. Comparing the three censoring percentages showed that 

the parameter estimation of the Model 1 was better with smaller censoring 

percentages for both the ascending and descending order of the mixing probabilities. 

However, the performance of Model 1 with the mixing probabilities in ascending 

order was better than that of the mixing probabilities in descending order. The hazard 

functions for different samples of Model 1 with different censoring percentages were 
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investigated and the graphical representations were provided. Generally, it was found 

that the hazard function tends to be higher with small censoring percentage. As the 

censoring percentage increases more individual or items survive which reduce the 

value of the hazard function. 

Empirical study was also employed to validate Model 1. The parameters of Model 1 

were estimated and reported. Model 1 was compared with pure classical parametric 

survival model of Gamma distribution (G0) evaluated using real data and pure 

classical parametric survival model of Gamma distribution (G1, G2 and G3) 

corresponding to the distribution to each component of Model 1 graphically. To 

validate Model 1, the LL, AIC, MSE, RMSE, K-S test and E(t) were evaluated and 

compared with those of the pure classical Gamma distribution. The K-M empirical 

survival function was better represented by the survival function of Model 1 

compared to the pure classical survival model. 

Model 1 was also compared with the two and four components parametric survival 

mixture model of the Gamma distributions using LL and AIC values to select the 

number of component that better represents the real data. The comparison showed 

that real data were better modelled with three component mixture model, and the 

data constitute of three sub-populations. Model 1 was used to evaluate the pure 

classical parametric survival model of the Gamma distribution when the number of 

components of Model 1 set to one.  The application of the simulation and empirical 

studies showed that Model 1 is preferred over the pure classical survival models in 

modelling survival data when the data seem to come from population of 

heterogeneous nature. 
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CHAPTER FIVE 

THREE COMPONENTS PARAMETRIC SURVIVAL MIXTURE 

MODEL OF THE EXPONENTIAL, GAMMA AND WEIBULL 

DISTRIBUTIONS 

5.1 Introduction 

A three components parametric survival mixture model of the Exponential, Gamma 

and Weibull distributions (E_G_W, referred to as Model 2) was developed. The 

chapter was arranged as follows. The first section highlighted the implementation of 

EM in the theoretical development of Model 2. The section also includes the 

explanation regarding the algorithm transformation to computer coding. The next 

two sections are validation of Model 2 based on simulated and real data respectively. 

The last section summarized the outcomes and findings of this chapter. 

5.2 Theoretical Development of Model 2 

The second objective of the study is about developing a three components parametric 

survival mixture model of the Exponential, Gamma and Weibull distributions 

(Model 2). The implementation of the EM for estimating the parameters of the model 

was based on random censoring procedure. The general formulation of a three 

components parametric survival mixture model which is assumed to consist of three 

sub-populations; each sub-population corresponds to a component in the parametric 

survival mixture model, as was highlighted in section 4.2.1 in Chapter Four. 
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Since the second objective proposes a three components parametric survival mixture 

model of the Exponential, Gamma and Weibull distributions (Model 2), then Model 

2 can be expressed as follows 

 𝑓𝐸_𝐺_𝑊(𝑡; Θ) = 𝜋1𝑓𝐸(𝑡; 𝜆) + 𝜋2𝑓𝐺(𝑡; 𝛼1, 𝛽1) + 𝜋3𝑓𝑊(𝑡; 𝛼2, 𝛽2),         (5.1) 

where 𝜋𝑖’s are the mixing proportion or mixing probability and ∑ 𝜋𝑖
3
𝑖=1 = 1. The 

functions 𝑓𝐸  ,𝑓𝐺  and 𝑓𝑊 are the probability density functions of the Exponential, the 

Gamma and the Weibull distributions respectively corresponding to the components 

of Model 2. The EM employed to estimate the parameters of Model 2 proceeds as 

mentioned earlier in section 4.2.1 of Chapter Four. Since Model 2 consists of 

different distribution, the estimation procedure consider the Exponential distribution, 

the Gamma distribution and the Weibull distribution for the first, second and third 

component respectively. The derivation of the parameters of mixture of the survival 

model the Exponential, Gamma and Weibull distribution are given below. 

The probability density function of the mixture of Exponential, Gamma and Weibull 

is as given in equation (5.1), where 𝑓𝐸(𝑡; 𝜆) with unknown parameter 𝜆,  

𝑓𝐺(𝑡; 𝛼1, 𝛽1) with unknown parameters 𝛼1, 𝛽1 and 𝑓𝑊(𝑡; 𝛼2, 𝛽2) with unknown 

parameters 𝛼2, 𝛽2 are the Exponential, Gamma and Weibull distributions density 

functions as in Table 2.1. The parameters satisfy the conditions  𝜆 > 0 , 𝛼1 >

0, 𝛽1 > 0, 𝛼2 > 0, 𝛽2 > 0. 

From (4.22), the log-likelihood function of the complete-data of the mixture of the 

Exponential, Gamma and Weibull distributions is  
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The EM algorithm starts with the E-step. After the g
th

 iteration, 
)(g

ijz  is the conditional 

expectation of ijZ  given the observed data, as defined in (4.13) and (4.14). Then the 

current conditional expectation of the complete-data log-likelihood is given by 
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The M-step on the (g+1)
th

 iteration requires the global maximization of (5.3) with 

respect to 2211 ,,,,  and i . The mixing probabilities i  can be updated by
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)()1( ,/̂ 3,2,1i . In order to get the updated maximum likelihood estimate 

of the component model parameters 2211 ,,,,  , equation (5.3) will be 

differentiated with respect to each of the parameters.  

Now, differentiating equation (5.3) with respect to the parameter   the updated 

maximum likelihood estimate of the component model parameter can be obtained in 

closed form  
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This completes the M-step. The E-step on the (g+1)
th

 iteration is to update the 

current conditional expectation of jZ1 , given the observed data, using the current 

model parameters fit, 
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Again, differentiating equation (5.3) with respect to the parameter 11,  yields 
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Now, the incomplete gamma function can be differentiated with respect to 1  using 

Leibnitz’s rule, and we then obtain from (5.7)  that 
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The RHS of (5.8) can be evaluated at the current parameter value to obtain the 

updated parameter estimate )1( g
i . 
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Upon expanding the incomplete gamma function as an infinite series, then 

differentiating and simplifying the expression, (5.6) can be expressed as  
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Equating (5.9) to zero, the equation can be solved numerically for i  to obtain the 

current estimate 
)1(

1
g

 by using )1(
1

g for 
1 . 

The E-step on the (g+1)
th

 iteration is to update the current conditional expectation of 

ijZ , given the observed data, using the current model parameters fit, 
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Again, differentiating equation (5.3) with respect to the parameters 22 ,  yields 
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should be solved for the values of the parameters 2 and 2  . 

The system of equations (5.12) can be written as 
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Plug equations (5.13) back to (5.11) to obtain  
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Then equations (5.14) can be solved to obtain the estimates for 2 . Plug the estimates 

of 2  back to equations (5.13) to obtain the estimates for 2 . This completes the M-

step. The E-step on the (g+1)
th

 iteration is to update the current conditional 

expectation of jZ 3 , given the observed data, using the current model parameters fit, 
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The M-step and E-step iterate alternatively till the convergence criterion is met. 

The EM procedure outlined earlier was employed on both of the simulated and real 

data to evaluate the parameters of Model 2. These derivations and equations were 

transformed into computer coding. The R statistical software (Team, 2005) was 

employed to develop functions to generate survival data of the parametric mixture 

model of Exponential, Gamma and Weibull distributions. EM functions were 

developed to estimate the parameters of the Model 2. The R functions regarding the 

estimation are presented in Appendix C. All the computations were performed using 

R statistical software version 3.0.2 (2013-09-25). Also among the R statistical 

software packages used are package survival developed by (Therneau ,1999) and 

package Mixtools developed by (Young, et al. ,2007). 
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5.3 Validation of the performance of Model 2 Using Simulated Data  

Survival data of three component parametric survival mixture model of the 

Exponential, Gamma and Weibull distributions were generated to represent Model 2. 

Two validation procedures were considered to analyse the simulated data. The first 

was to validate the performance of Model 2 (E_G_W) using simulated data from 

three different sample sizes, three different censoring percentages and three mixing 

probabilities in ascending order. The second was to validate the performance of 

Model 2 (E_G_W), by simulating data from three different samples, three different 

censoring percentages and three mixing probabilities in descending order. The three 

sample sizes, the three censoring percentages and the mixing proportions employed 

in section 4.3 of Chapter Four were used to simulate the survival data for Model 2. 

5.3.1 Model 2 with Mixing Probabilities in Ascending Order  

Survival data for Model 2 were generated based on mixture model of three 

components of mixture model of the Exponential, Gamma and Weibull distributions. 

The parameters of the first component of Exponential distribution are 𝜆 = 1.5, the 

parameters for the second component of Gamma distribution are (𝛼1 = 5 , 𝛽1 = 2)  

and the parameters of the third component of Weibull distribution are (𝛼2 = 9, 

𝛽2 = 10). Based on these three components of the Exponential, Gamma and Weibull 

distributions, survival data were generated for the three different sample sizes (100, 

200 and 500) each with three different censoring percentages (10%, 20% and 40%). 

The mixing probabilities employed were in the ascending order (10%, 20% and 

50%). 
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Three sets of survival data of sample size of 100, 200 and 500 observations each. 

The same samples size were generated from the Uniform distribution for the 

censored time C with (0,b), where the value of b depends solely on the percentage of 

the observations that are censored. In this study 10%, 20% and 40% censoring 

observations were considered for each of the sample generated. tj =min(Tj,Cj) was 

taken as the minimum of the survival time and the censored time of the observed 

time T where is as in (4.33). The postulated Model 2 was formed by substituting the 

values of the parameters in equation (5.1), which is expressed as 

𝑓(𝑡) = 0.1 × 𝑓𝐸(𝑡; 𝜆 = 1.5) + 0.4 × 𝑓𝐺(𝑡; 𝛼1 = 5, 𝛽1 = 2) + 0.5 × 𝑓𝑊(𝑡; 𝛼2 = 9, 𝛽2 = 10) ,     (5.2) 

where the density functions fE, fG and fW   represent the Exponential, the Gamma and 

the Weibull probability density functions respectively.  

5.3.1.1 Sample of Size 100 observations 

Survival data of size 100 with 10%, 20% and 40% censoring observations were 

generated and used to estimate the parameters of the postulated Model 2 by 

employing the EM.  The estimates of the parameters together with the parameters of 

the postulated models were reported. 

Figures 5.1, 5.2 and 5.3 display the probability density function of  simulated data of 

Model 2, with 100 observations and 10%, 20% and 40% censored observations 

respectively, and the probability density functions of pure classical parametric 

survival models (E, G and W) corresponding to each component of Model 2.  
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Figure 5.1 Probability Density Function of the Simulated Data of Model 2 with 100 

Observations and 10% Censoring. 

 

Figure 5.2 Probability Density Function of the Simulated Data of Model 2 with 100 

Observations and 20% Censored Observations. 
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Figure 5.3 Probability Function of the Simulated Data of Model 2 of size 100 

Observations and 40% Censored Observations. 

It can be seen that Model 2 fits the simulated data better than the individual pure 

classical parametric survival models which indicates that the simulated data is better 

modelled by Model 2 than the pure classical parametric survival model. 

 

Table 5.1 displays the result of the estimated parameters of the simulated data of 100 

observations with 10%, 20% and 40% censored observations respectively. 
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Table 5.1 

 The Estimated Parameters of the Simulated Data of Postulated Model 2 with 10% 

Censoring Observations  

Model 2 with sample size 100 observations and 10% censoring 

Parameter 𝜋1 𝜋2 𝜆 𝛼1 𝛼2 𝛽1 𝛽2 

Postulate  0.10 0.40 1.5 5 9 2 10 

Estimates 0.12 0.39 1.44 4.40 9.00 1.95 10.28 

Model 2 with sample size 100 observations and 20% censoring 

Parameter 𝜋1 𝜋2 𝜆 𝛼1 𝛼2 𝛽1 𝛽2 

Postulate  0.10 0.40 1.5 5 9 2 10 

Estimates 0.10 0.40 1.51 4.47 9.00 1.77 10.05 

Model 2 with sample size 100 observations and 40% censoring 

Parameter 𝜋1 𝜋2 𝜆 𝛼1 𝛼2 𝛽1 𝛽2 

Postulate  0.10 0.40 1.5 5 9 2 10 

Estimates 0.10 0.31 1.55 5.21 9.00 2.10 9.87 

 

The parameters of the three sets of the simulated data of size 100 observations were 

all estimated successfully. The values of the parameter were close to the postulated 

parameters used in the data generation.  

The hazard functions of the three simulated data corresponding to the 10%, 20% and 

40% censoring were presented in Figure 5.4. 
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Figure 5.4 The Hazard Functions of the Simulated Data of Size 100 Corresponding 

to 10%, 20% and 40% Censored Observations. 

The hazard function of simulated data of size 100 observations with 10% of the 

observations censored is higher than that of 20% and 40% censoring. As the number 

of censored observations increases the hazard tends to be lower and lower. 

The simulation of the three set of generated data were repeated 300 time to check the 

consistency and stability of the EM in estimating the model parameters. The 

averages, the MSE and RMSE of estimated parameters of the postulated Model 1 are 

listed in Table 5.2. 
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Table 5.2 

The Repeated Simulation of Set of 100 Observations  

Model 1 with sample size 100 and 10% censoring 

Parameters 1  2    2  3  1  2  

Postulates 0.1 0.4 1.5 5 9 2 10 

Estimates 0.11 0.40 1.39 4.97 9.00 1.98 10.27 

MSE 9.56e-8 1.25e-6 1.04e-5 1.60e-3 0.00e+0 2.49e-6 1.62e-4 

RMSE 3.09e-4 1.12e-3 1.02e-3 4.00e-2 0.00e+0 1.58e-3 1.27e-2 

Model 1 with sample size 100 and 20% censoring   

parameters 1  2    2  3  1  2  

postulated 0.1 0.4 1.5 5 9 2 10 

Estimates 0.11 0.40 1.33 5.03 9.00 2.00 10.00 

MSE 8.92e-7 1.00e-5 9.03e-5 1.79e-3 0.00e+0 3.14e-6 8.30e-4 

RMSE 9.44e-4 3.16e-3 9.50e-3 4.24e-2 0.00e+0 1.77e-3 9.11e-3 

Model 1 with sample size 100 and 40% censoring 

Parameters 1  2    2  3  1  2  

Postulated 0.1 0.4 1.5 5 9 2 10 

Estimates 0.11 0.37 1.31 4.74 9.00 2.07 10.41 

MSE 7.61e-7 1.88e-6 9.29e-5 5.71e-3 0.00e+0 4.67e-6 1.77e-4 

RMSE 8.72e-4 1.37e-3 9.64e-3 7.55e-2 0.00e+0 2.16e-3 1.33e-2 

 

The averages of the parameters are close to the parameters of the postulated 

parametric survival mixture model with MSE and RMSE relatively small, which 

suggests that, the EM performed consistently in estimating the parameters. 

Generally, the value of MSE for the 10% censoring tend to be smaller than that of 

20% and 40% which shows that the parameters were estimated better with 10% 

censored observation. The estimation of the mixing probabilities seems to be better 

with small censoring percentage. 
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5.3.1.2 Sample of Size 200 observations 

Three sets of survival data of size 200 observations with 10%, 20% and 40% 

censored observations, respectively, were generated. The data were used to estimate 

the parameters of the postulated Model 2 by the EM. The estimated parameters 

corresponding to each set of data and the true parameters of the postulated models 

were reported. 

The probability density function of simulated data of sample of size 200 observations 

with 10%, 20% and 40% censored observations was presented in Figure 5.5, 5.6 and 

5.7 respectively. The graphs also, display the probability density functions of pure 

classical parametric survival models E, G and W corresponding to each component 

of Model 2.  

 

Figure 5.5 Probability Density Function of the Simulated Data of Size 200 

Observations and 10% Censoring. 



 

 139 

 

Figure 5.6 Probability Density Function of the Simulated Data of Size 200 and 20% 

Censored Observations. 

 

Figure 5.7 Probability Density Function of the Simulated Data of Size 200 

Observations and 40% Censoring. 
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It can be seen that Model 2 fits the simulated data better than the individual pure 

classical parametric survival models which indicates that the simulated data is better 

modelled by Model 2 than the pure classical parametric survival model. 

The estimated parameters of the set of simulated data of sample of size 200 with 

10%, 20% and 40% censored observations respectively were presented in Table 5.3. 

Table 5.3 

 The Estimated Parameters the Simulated Data of size 200 with 10% Censoring 

Observations  

Model 2 with sample size 200 observations and 10% censoring 

Parameter 𝜋1 𝜋2 𝜆 𝛼1 𝛼2 𝛽1 𝛽2 

Postulate  0.10 0.40 1.5 5 9 2 10 

Estimates 0.11 0.40 1.43 4.92 9.00 1.83 10.01 

Model 2 with sample size 200 observations and 20% censoring 

Parameter 𝜋1 𝜋2 𝜆 𝛼1 𝛼2 𝛽1 𝛽2 

Postulate  0.10 0.40 1.5 5 9 2 10 

Estimates 0.11 0.40 1.47 4.75 9.00 1.80 9.98 

Model 2 with sample size 500 observations and 40% censoring 

Parameter 𝜋1 𝜋2 𝜆 𝛼1 𝛼2 𝛽1 𝛽2 

Postulate  0.10 0.40 1.5 5 9 2 10 

Estimates 0.10 0.35 1.56 4.76 9.00 2.02 9.89 

 

The estimated parameters of the three set of the simulated data are all close to the 

postulated parameters used in the data generation. From Table 5.5 it can be observed 

that the parameter for the simulated set of data with 10% censoring are more closer 

the postulated parameters compared to that of the 20% and 40% censoring 

observations. 
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The hazard functions of the three simulated data of size 200 observations 

corresponding to the 10%, 20% and 40% censoring percentages were presented in 

Figure 5.8. 

 

Figure 5.8 The Hazard Functions of the Simulated Data of Size 200 Corresponding 

to 10%, 20% and 40% Censored Observation. 

The hazard function of the set of simulated data consisting of 200 observations with 

10% censoring observation is higher when compared with that of 20% and 40% 

censoring. As the number of censored observations increases the hazard tends to be 

lower and lower. 

The simulation of the three set of generated data of 200 observations with 10%, 20% 

and 40% censoring observations were repeated 300 times to check the consistency 

and stability of the EM in estimating the model parameters. The averages, the mean 
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square errors and root mean square error of estimated parameters of the postulated 

Model 2 are listed in Table 5.4. 

Table 5.4 

The Repeated Simulation of Set of 200 Observations  

Model 2 with sample size 200 and 10% censoring 

parameters 1  2    2  3  1  2  

Postulates 0.1 0.4 1.5 5 9 2 10 

Estimates 0.11 0.40 1.33 4.98 9.00 1.99 10.08 

MSE 4.29e-7 4.94e-7 3.56e-5 8.58e-4 0.00e+0 1.30e-6 3.44e-5 

RMSE 6.55e-4 7.03e-4 5.96e-3 2.92e-2 0.00e+0 1.14e-3 5.87e-3 

Model 2 with sample size 200 and 20% censoring   

parameters 1  2    2  3  1  2  

postulated 0.1 0.4 1.5 5 9 2 10 

Estimates 0.11 0.40 1.34 4.94 9.00 2.00 10.02 

MSE 4.55e-7 5.67e-7 4.47e-5 1.18e-3 0.00e+0 1.48e-6 4.48e-5 

RMSE 6.75e-4 7.53e-4 6.68e-3 3.43e-2 0.00e+0 1.22e-3 6.69e-3 

Model 2 with sample size 200 and 40% censoring 

parameters 1  2    2  3  1  2  

postulated 0.1 0.4 1.5 5 9 2 10 

estimates 0.10 0.37 1.44 5.17 9.00 2.16 9.96 

MSE 4.49e-7 8.50e-7 6.72e-5 1.18e-3 0.00e+0 1.14e-5 4.19e-5 

RMSE 6.70e-4 9.22e-4 8.20e-3 3.43e-2 0.00e+0 3.38e-3 6.47e-3 

 

The averages of the parameters are close to the parameters of the postulated 

parametric survival mixture model with mean square errors relatively small, which 

suggests that, the EM performed consistently in estimating the parameters.  The 

MSE value of the sample with 10% censoring were smaller than that of 20% and 

40% censoring. The estimation of the parameter was better with small censoring 
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percentage. Also, the mixing probabilities were better estimated using samples with 

smaller censoring percentage (10%). 

5.3.1.3 Sample of Size 500 observations 

Three sets of survival data of size 500 observations with 10%, 20% and 40% 

censored observations, respectively, were generated and employed to estimate the 

parameters of the postulated Model 2 by using the EM. The estimated parameters of 

corresponding to each set of data and the parameters of the postulated models were 

reported. The probability density function of simulated data of sample size 500 

observations with 10%, 20% and 40% censored observations were presented in 

Figure 5.9, 5.10 and 5.11 respectively. The graphs also, display the probability 

density functions of pure classical parametric survival models E, G and W 

corresponding to each component of Model 2.  

 

Figure 5.9 Probability Density Function of the Simulated Data of Size 500 

Observations and 10% Censoring. 
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Figure 5.10 Probability Density Function of the Simulated Data of Size 500 

Observations and 20% Censoring. 

 

Figure 5.11 Probability Density Function of the Simulated Data of Size 500 

Observations and 40% Censoring. 
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It can be seen that Model 2 fits the simulated data better than the individual pure 

classical parametric survival models which indicates that the simulated data is better 

modelled by Model 2 than the pure classical parametric survival model. 

The estimated parameters of the set of simulated data of sample of size 500 with 

10%, 20% and 40% censored observations were presented in Table 5.5. The 

estimated parameters are close to the values of the parameters of the postulated 

model.  

Table 5.5 

 The Estimated Parameters the Simulated Data of size 500 with 10% Censoring 

Observations  

Model 2 with sample size 500 observations and 10% censoring 

Parameter 𝜋1 𝜋2 𝜆 𝛼1 𝛼2 𝛽1 𝛽2 

Postulate  0.10 0.40 1.50 5 9 2 10 

Estimates 0.11 0.40 1.52 5.25 9.00 2.03 10.02 

Model 2 with sample size 500 observations and 20% censoring 

Parameter 𝜋1 𝜋2 𝜆 𝛼1 𝛼2 𝛽1 𝛽2 

Postulate  0.10 0.40 1.50 5 9 2 10 

Estimates 0.10 0.40 1.49 4.81 9.00 2.04 10.00 

Model 2 with sample size 500 observations and 40% censoring 

Parameter 𝜋1 𝜋2 𝜆 𝛼1 𝛼2 𝛽1 𝛽2 

Postulate  0.10 0.40 1.50 5 9 2 10 

Estimates 0.10 0.39 1.48 4.84 9.00 1.99 9.94 

 

It can be seen that the estimation of the parameters improved with the increase in the 

sample size from 100 through to 500 observations. 
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The hazard functions of the three simulated data of size 500 observations 

corresponding to the 10%, 20% and 40% censoring percentages were presented in 

Figure 5.12. 

 

Figure 5.12 The Hazard Functions of the Simulated Data of Size 500 Corresponding 

to 10%, 20% and 40% Censored Observation. 

The hazard function of the set of simulated data consisting of 500 observations with 

10% censoring observation is higher when compared with that of 20% and 40% 

censoring. As the number of censored observations increases the hazard tends to be 

lower and lower. 

The simulation of the three set of generated data of 500 observations with 10%, 20% 

and 40% censoring observations were repeated 300 times to check the consistency 

and stability of the EM in estimating the model parameters. The averages, the mean 

square errors and root mean square error of estimated parameters of the postulated 

Model 2 are listed in Table 5.6. 
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Table 5.6 

The Repeated Simulation of Set of 500 Observations  

Model 2 with sample size 500 and 10% censoring 

parameters 1  2    2  3  1  2  

Postulates 0.1 0.4 1.5 5 9 2 10 

Estimates 0.11 0.40 1.45 4.90 9.00 2.00 10.01 

MSE 1.84e-7 2.27e-8 2.34e-5 3.82e-4 0.00e+0 5.51e-7 1.50e-5 

RMSE 4.30e-4 1.51e-4 4.48e-3 3.82e-4 0.00e+0 7.42e-4 3.87e-3 

Model 2 with sample size 500 and 20% censoring   

parameters 1  2    2  3  1  2  

postulated 0.1 0.4 1.5 5 9 2 10 

Estimates 0.10 0.40 1.44 4.69 9.00 2.01 9.99 

MSE 1.99e-7 1.78e-7 2.56e-5 4.22e-4 0.00e+0 5.80e-7 1.50e-5 

RMSE 4.46e-4 4.21e-4 5.06e-3 2.05e-2 0.00e+0 7.61e-4 3.87e-3 

Model 2 with sample size 500 and 40% censoring 

parameters 1  2    2  3  1  2  

postulated 0.1 0.4 1.5 5 9 2 10 

estimates 0.09 0.39 1.36 4.64 9.00 2.04 9.96 

MSE 2.01e-7 1.31e-7 2.38e-5 5.21e-4 0.00e+0 6.19e-7 1.50e-5 

RMSE 4.49e-4 3.62e-4 4.88e-3 2.28e-2 0.00e+0 7.87e-4 3.88e-3 

 

The averages of the parameters are close to the parameters of the postulated 

parametric survival mixture model with mean square errors relatively small, which 

suggests that, the EM performed consistently in estimating the parameters. 

Generally, the estimated parameter for Model 2 with ascending order mixing 

probabilities were successfully estimated. It can be observed that the estimated 

parameter were better as the sample size increases. The mixing probabilities for the 
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three sample sizes were closer to the true values of the postulated parameters when 

the censoring percentages were smaller. 

5.3.2 Model 2 with Mixing Probabilities in Descending Order  

The parameters of the components of the survival mixture employed in the 

simulation in section 5.3.1 were used to generate Survival data for Model 2. The data 

were generated based on the three different samples of sizes (100, 200 and 500 

observations) each with three different censoring percentages (10%, 20% and 40%). 

The mixing probabilities employed were in the descending order (50%, 30% and 

20%). The postulated Model 2 can be formed by substituting the values parameters 

in equation (5.1). The estimations of the parameters were discussed in next 

subsection. 

5.3.2.1 Sample of Size 100 observations 

Data of size 100 with 10%, 20% and 40% censoring observations were generated 

and used to estimate the parameters of the postulated Model 2 by employing the EM.  

The estimates of the parameters together with the parameters of the postulated 

models were reported. 

Figure 5.13, 5.14 and 5.15 display the probability density function of simulated data 

of Model 2 respectively, with 100 observations and 10%, 20% and 40% censored 

observations. The probability density functions of pure classical parametric survival 

models (E, G and W) corresponding to each component of Model 2 were also 

presented in the same graph.   
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Figure 5.13 Probability Density Function of the Simulated Data of Model 2 with 100 

and 10% Censored Observations. 

 

Figure 5.14 Probability Density Function of the Simulated Data of Model 2 with 100 

Observations and 20% Censoring. 
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Figure 5.15 Probability Density Function of the Simulated Data of Model 2 with 100 

and 40% Censored Observations. 

It can be seen that Model 2 fits the simulated data better than the individual pure 

classical parametric survival models which indicates that the simulated data is better 

modelled by Model 2 than the pure classical parametric survival model. 

 

Table 5.7 shows the values of estimated parameter corresponding to the simulated 

data of 100 observations with 10%, 20% and 40% censored observations 

respectively and the true parameters of the postulated model used in generating the 

data set. 
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Table 5.7 

The Estimated Parameters the Simulated Data of size 100 with 10% Censored 

Observations 

Model 2 with sample size 100 observations and 10% censoring 

Parameter 𝜋1 𝜋2 𝜆 𝛼1 𝛼2 𝛽1 𝛽2 

Postulate  0.50 0.30 1.5 5 9 2 10 

Estimates 0.48 0.30 1.46 4.50 9.00 2.03 10.01 

Model 2 with sample size 100 observations and 20% censoring 

Parameter 𝜋1 𝜋2 𝜆 𝛼1 𝛼2 𝛽1 𝛽2 

Postulate  0.50 0.30 1.5 5 9 2 10 

Estimates 0.49 0.27 1.34 4.90 9.00 2.28 9.84 

Model 2 with sample size 100 observations and 40% censoring 

Parameter 𝜋1 𝜋2 𝜆 𝛼1 𝛼2 𝛽1 𝛽2 

Postulate  0.50 0.30 1.5 5 9 2 10 

Estimates 0.45 0.23 1.60 4.78 9.00 2.53 9.59 

 

From Table 5.7 it can be observed that the estimates of the mixing probabilities were 

much distorted when the censoring percentage increases. 

The hazard functions of the three simulated data corresponding to the 10%, 20% and 

40% censoring were presented in Figure 5.16. 

The hazard function of simulated data of size 100 observations with 10% of the 

observations censored is higher than that of 20% and 40% censoring. As the number 

of censored observations increases the hazard tends to be lower and lower. 
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Figure 5.16 The Hazard Functions of the Simulated Data of Size 100 Corresponding 

to 10%, 20% and 40% Censored Observation. 

The simulations of the three sets of generated data were repeated 300 times to check 

the consistency and stability of the EM in estimating the model parameters. The 

averages, the mean square errors and root mean square error of estimated parameters 

of the postulated Model 2 are listed in Table 5.8. 
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Table 5.8 

The Repeated Simulation of Set of 100 Observations  

Model 2 with sample size 100 and 10% censoring 

parameters 1  2    2  3  1  2  

Postulates 0.50 0.30 1.5 5 9 2 10 

Estimates 0.49 0.29 1.48 4.23 9.00 2.06 9.88 

MSE 1.95e-6 1.57e-7 3.41e-5 3.10e-3 0.00e+0 2.89e-6 2.24e-4 

RMSE 1.40e-3 3.96e-4 5.58e-3 5.57e-2 0.00e+0 1.70e-3 1.50e-2 

Model 2 with sample size 100 and 20% censoring   

parameters 1  2    2  3  1  2  

postulated 0.50 0.30 1.5 5 9 2 10 

Estimates 0.49 0.27 1.53 5.41 9.00 2.13 9.78 

MSE 2.40e-6 1.53e-5 4.91e-5 3.63e-3 0.00e+0 3.17e-6 1.58e-2 

RMSE 1.55e-3 3.91e-3 7.03e-3 6.02e-2 0.00e+0 1.78e-3 1.58e-2 

Model 2 with sample size 100 and 40% censoring 

parameters 1  2    2  3  1  2  

postulated 0.50 0.30 1.5 5 9 2 10 

estimates 0.45 0.23 1.60 4.22 9.00 2.62 9.44 

MSE 1.99e-6 1.45e-4 6.41e-5 7.05e-3 0.00e+0 1.42e-5 2.01e-2 

RMSE 1.41e-3 1.20e-2 8.01e-3 8.39e-2 0.00e+0 3.77e-3 1.42e-1 

 

The averages of the parameters are close to the parameters of the postulated 

parametric survival mixture model with mean square errors and root mean square 

relatively small, which suggests that, the EM performed consistently in estimating 

the parameters. The MSE value of the mixing probabilities for sample with 10% 

censored observations was smaller compared to samples with 20% 40% censored 

observations. This shows that the model performed better with sample with smaller 

censoring percentage. 
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5.3.2.2 Sample of Size 200 observations 

Three sets of survival data of size 200 observations with 10%, 20% and 40% 

censored observations, respectively, were generated. The data were employed to 

estimate the parameters of the postulated Model 2 by using the EM.  The estimated 

parameters of corresponding to each set of data and the parameters of the postulated 

models were reported. 

The probability density function of simulated data of sample of size 200 observations 

with 10%, 20% and 40% censored observations were presented in Figures 5.17, 5.18 

and 5.19 respectively. The graphs also, display the probability density functions of 

pure classical parametric survival models E, G and W corresponding to each 

component of Model 2.  

 

Figure 5.17 Probability Density Function of the Simulated Data of Size 200 and 10% 

Censored Observations. 
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Figure 5.18 Probability Density Function of the Simulated Data of Size 200 and 20% 

Censored Observations. 

 

Figure 5.19 Probability Density Function of the Simulated Data of Size 200 and 40% 

Censored Observations. 
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It can be seen that Model 2 fits the simulated data better than the individual pure 

classical parametric survival models which indicates that the simulated data is better 

modelled by Model 2 than the pure classical parametric survival model. 

The estimated parameters of the set of simulated data of sample of size 200 

observations with 10%, 20% and 40% censored observations were presented in 

Table 5.9. 

Table 5.9 

 The Estimated Parameters the Simulated Data of size 200 with 10% Censoring 

Observations  

Model 2 with sample size 200 observations and 10% censoring 

Parameter 𝜋1 𝜋2 𝜆 𝛼1 𝛼2 𝛽1 𝛽2 

Postulate  0.50 0.30 1.5 5 9 2 10 

Estimates 0.48 0.27 1.60 4.53 9.00 2.03 9.63 

Model 2 with sample size 200 observations and 20% censoring 

Parameter 𝜋1 𝜋2 𝜆 𝛼1 𝛼2 𝛽1 𝛽2 

Postulate  0.50 0.30 1.5 5 9 2 10 

Estimates 0.48 0.26 1.46 4.40 9.00 2.20 9.71 

Model 2 with sample size 200 observations and 40% censoring 

Parameter 𝜋1 𝜋2 𝜆 𝛼1 𝛼2 𝛽1 𝛽2 

Postulate  0.50 0.30 1.5 5 9 2 10 

Estimates 0.46 0.18 1.55 4.63 9.00 2.66 9.30 
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The hazard functions of the three simulated data of size 200 observations 

corresponding to the 10%, 20% and 40% censoring percentages were presented in 

Figure 5.20. 

 

Figure 5.20 The Hazard Functions of the Simulated Data of Size 200 Corresponding 

to 10%, 20% and 40% Censored Observation. 

The hazard function of the set of simulated data consisting of 200 observations with 

10% censoring observation is higher when compared with that of 20% and 40% 

censoring. As the number of censored observations increases the hazard tends to be 

slightly lower and lower. 

The simulation of the three set of generated data of 200 observations with 10%, 20% 

and 40% censoring observations were repeated 300 times to check the consistency 

and stability of the EM in estimating the model parameters. The averages, the mean 

square errors and root mean square error of estimated parameters of the postulated 

Model 2 are listed in Table 5.10. 
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Table 5.10 

The Repeated Simulation of Set of 200 Observations  

Model 2 with sample size 200 and 10% censoring 

parameters 1  2    2  3  1  2  

Postulates 0.50 0.30 1.5 5 9 2 10 

Estimates 0.48 0.28 1.50 4.40 9.00 2.02 9.77 

MSE 1.40e-7 8.11e-8 2.21e-5 1.41e-3 0.00e+0 1.37e-6 1.09e-4 

RMSE 3.74e-4 2.85e-4 4.70e-3 3.75e-2 0.00e+0 1.17e-3 1.05e-2 

Model 2 with sample size 200 and 20% censoring   

parameters 1  2    2  3  1  2  

postulated 0.50 0.30 1.5 5 9 2 10 

Estimates 0.48 0.26 1.42 3.851 9.00 2.040 9.70 

MSE 1.14e-6 6.01e-7 1.61e-6 1.86e-3 0.00e+0 1.55e-6 1.13e-4 

RMSE 1.07e-3 7.75e-4 1.37e-3 4.31e-2 0.00e+0 1.25e-3 1.06e-2 

Model 2 with sample size 200 and 40% censoring 

parameters 1  2    2  3  1  2  

postulated 0.50 0.30 1.5 5 9 2 10 

estimates 0.47 0.18 1.53 4.50 9.00 2.61 9.39 

MSE 1.28e-6 6.05e-7 2.87e-6 2.69e-3 0.00e+0 9.38e-6 9.91e-3 

RMSE 1.13e-3 7.78e-4 1.69e-3 5.19e-2 0.00e+0 3.06e-3 9.95e-2 

 

The averages of the parameters are close to the parameters of the postulated 

parametric survival mixture model with mean square errors relatively small, which 

suggests that, the EM performed consistently in estimating the parameters. The 

Mixing probabilities were distorted as the censoring percentage increases with MSE 

values relatively high. 
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5.3.2.3 Sample of Size 500 observations 

Three sets of survival data of size 500 observations with 10%, 20% and 40% 

censored observations, respectively, were generated and employed to estimate the 

parameters of the postulated Model 2 by using the EM.  The estimated parameters of 

corresponding to each set of data and the parameters of the postulated models were 

reported. 

The probability density function of simulated data of sample of size 500 observations 

with 10%, 20% and 40% censored observations were presented in Figures 5.21, 5.22 

and 5.23 respectively. The graphs also, display the probability density functions of 

pure classical parametric survival models E, G and W corresponding to each 

component of Model 2.  

 

Figure 5.21 Probability Density Function of the Simulated Data of Size 500 and 10% 

Censored Observations. 
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Figure 5.22 Probability Density Function of the Simulated Data of Size 500 and 20% 

Censored Observations. 

 

Figure 5.23 Probability Density Function of the Simulated Data of Size 500 

Observations and 40% Censoring. 
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It can be seen that Model 2 fits the simulated data better than the individual pure 

classical parametric survival models which indicates that the simulated data is better 

modelled by Model 2 than the pure classical parametric survival model. 

The estimated parameters of the set of simulated data of size 200 with 10%, 20% and 

40% censored observations were presented in Table 5.11. The estimated parameters 

are close to the values of the parameters of the postulated model.  

Table 5.11 

 The Estimated Parameters the Simulated Data of size 500 with 10% Censoring 

Observations  

Model 2 with sample size 500 observations and 10% censoring 

Parameter 𝜋1 𝜋2 𝜆 𝛼1 𝛼2 𝛽1 𝛽2 

Postulate  0.50 0.30 1.5 5 9 2 10 

Estimates 0.51 0.25 1.50 4.63 9.00 2.02 9.81 

Model 2 with sample size 500 observations and 20% censoring 

Parameter 𝜋1 𝜋2 𝜆 𝛼1 𝛼2 𝛽1 𝛽2 

Postulate  0.50 0.30 1.5 5 9 2 10 

Estimates 0.47 0.29 1.52 4.52 9.00 2.03 9.85 

Model 2 with sample size 500 observations and 40% censoring 

Parameter 𝜋1 𝜋2 𝜆 𝛼1 𝛼2 𝛽1 𝛽2 

Postulate  0.50 0.30 1.5 5 9 2 10 

Estimates 0.46 0.17 1.56 4.50 9.00 2.65 9.42 
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The hazard functions of the three simulated data of size 500 observations 

corresponding to the 10%, 20% and 40% censoring percentages were presented in 

Figure 5.24. 

 

Figure 5.24 The Hazard Functions of the Simulated Data of Size 500 Corresponding 

to 10%, 20% and 40% Censored Observation. 

The parameters of the three sets of the simulated data of size 500 observations were 

all estimated successfully. The values of the parameter were close to the postulated 

parameters used in the data generation. Comparing the results in Tables 5.11 showed 

that, the estimated parameters of the simulated set of data with 10% censoring are 

closer to the postulated parameters compared to that of the 20% and 40% censoring 

observations. The hazard function of the set of simulated data consisting of 500 

observations with 10% censoring observation is higher when compared with that of 

20% and 40% censoring. As the number of censored observations increases the 

hazard tends to be lower and lower. 
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The simulation of the three set of generated data of 500 observations with 10%, 20% 

and 40% censoring observations were repeated 300 times to check the consistency 

and stability of the EM in estimating the model parameters. The averages, the mean 

square errors and root mean square error of estimated parameters of the postulated 

Model 2 are listed in Table 5.12 

Table 5.12 

The Repeated Simulation of Set of 500 Observations  

Model 1 with sample size 500 and 10% censoring 

parameters 1  2    2  3  1  2  

Postulates 0.50 0.30 1.5 5 9 2 10 

Estimates 0.50 0.26 1.41 4.56 9.00 2.00 9.80 

MSE 3.29e-7 2.41e-7 6.63e-6 5.16e-4 0.00e+0 5.34e-7 3.91e-5 

RMSE 5.73e-4 4.91e-4 2.57e-3 2.27e-2 0.00+0 7.31e-4 6.25e-3 

Model 1 with sample size 500 and 20% censoring   

parameters 1  2    2  3  1  2  

postulated 0.50 0.30 1.5 5 9 2 10 

Estimates 0.48 0.27 1.49 4.38 9.00 2.03 9.79 

MSE 4.26e-7 2.63e-7 7.48e-6 5.44e-4 0.00e+0 6.65e-7 4.37e-5 

RMSE 6.52e-4 5.12e-4 2.74e-3 2.33e-2 0.00e+0 8.15e-4 6.61e-3 

Model 1 with sample size 500 and 40% censoring 

parameters 1  2    2  3  1  2  

postulated 0.50 0.30 1.5 5 9 2 10 

estimates 0.47 0.17 1.53 4.46 9.00 2.60 9.39 

MSE 5.75e-7 2.73e-7 1.28e-5 9.72e-4 0.00e+0 3.75e-6 4.10e-5 

RMSE 7.58e-4 5.22e-4 3.58e-3 3.12e-2 0.00e+0 1.93e-3 6.40e-3 
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The averages of the parameters are close to the parameters of the postulated 

parametric survival mixture model with MSE relatively small, which suggests that, 

the EM performed consistently in estimating the parameters. 

The estimation of the parameters of the model was successful for both the ascending 

and descending order of the mixing probabilities. For both the sets of mixing 

probabilities the estimation of parameters were closer the true postulate parameters 

as the sample size increases from 100 to 500 observations. It is also observed that the 

estimates of the parameters were much better for small censoring percentages. The 

estimation of the mixing probabilities for the ascending order was better than that of 

the descending with relatively small value for MSE. In general, it is observed that the 

mixing probabilities of ascending order performed better than the descending order.  

5.4 Kidney Catheter Data  

The set of real data analysed in this section is the Kidney Catheter data which were 

employed for Model1 in Chapter Four were used for Model 2. The estimate and the 

graphs were presented.  

5.4.1 Model 2 versus the Pure Classical Parametric Survival Models  

The Kidney Catheter data were modelled by Model 2 and also by the pure classical 

parametric survival model of the Exponential distribution (E0), the pure classical 

parametric survival model of the Gamma distribution (G0) and the pure classical 

parametric survival model of the Weibull distribution (W0) respectively.   
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Figure 5.25 display the probability density functions of Model 2 and the probability 

density functions of the pure classical parametric survival models of Exponential, 

Gamma and Weibull distributions (E1, G2, and W3) corresponding to each 

component of Model 2 along with the histogram of the Kidney Catheter data. 

It can be seen that Model 2 fits the Kidney Catheter data better than the pure 

classical parametric survival models. This shows that, the Kidney Catheter data were 

better modelled by the parametric survival mixture model of Exponential, Gamma 

and Weibull distributions (Model 2) instead of the pure classical parametric survival 

model of Exponential, Gamma and Weibull distributions respectively. 

 

Figure 4.25.Model 2 vs the Pure Classical Parametric Survival Models (E, G and W) 

for the Kidney Catheter Data 

The estimated parameters of Model 2 were presented in Table 5.13.  
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Table 5.13 

The Estimated Parameters of Model 2 Using Kidney Catheter Data 

Parameter 𝝅𝟏 𝝅𝟐 𝝀 𝜶𝟏 𝜶𝟐 𝜷𝟏 𝜷𝟐 

Estimates 0.52 0.29 32.79 20.38 3.91 7.73 441.56 

 

Figure 5.26 shows the probability density function of Model 2 and the pure classical 

parametric survival model of the Exponential distribution (E0), the pure classical 

parametric survival model of the Gamma distribution (G0) and the pure classical 

parametric survival model of the Weibull distribution (W0) together with the 

histogram of the Kidney Catheter data. The graph indicates that the Kidney Catheter 

data fit Model 2 better than the pure classical parametric survival models. 

 

Figure 4.26.Model 2 vs the Pure Classical Parametric Survival Models (E0, G0 and 

W0) for the Kidney Catheter Data 
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The parameters, the LL, AIC, MSE, RMSE, K-S and E(t) values were estimated and 

presented in Table 5.14. The estimated result shows that, Model 2 has higher LL 

value (-331.50) compared to the values of the LL of the individual pure classical 

survival parametric model of the Exponential, Gamma and Weibull distributions (E0, 

G0 and W0) respectively. Also, the estimated values of the AIC (677.01) support the 

selection of Model 2 as the model of that better represents the Kidney Catheter data 

more than the pure classical parametric survival models. 

Table 5.14 

The LL and AIC Values for the Kidney Catheter Data 

Model Estimates LL AIC MSE RMSE K-S E(T) 

E0 𝜆̂ = 132.95 -341.70 685.40 0.0211 0.1454 
0.26 

(0.01) 
132.95 

G0 𝛼̂ = 0.89, 𝛽̂ = 156.96 -341.20 686.40 0.0194 0.1392 
0.25 

(0.02) 
139.69 

W0 𝛼̂ = 0.86, 𝛽̂ = 128.00 -340.90 685.80 0.0137 0.1171 
0.21 

(0.04) 
138.26 

Model 2 

𝜆̂  = 32.79, 

𝛼̂1 = 20.38, 𝛽̂1=  7.73, 

𝛼̂2 = 3.91, 𝛽̂2= 441.56, 

𝜋̂1 = 0.52, 𝜋̂2= 0.29 

-331.50 677.01 0.0109 0.1046 
0.16 

(0.30) 
137.25 

 

The MSE and RMSE values for Model 2 (0.0109), (0.1046) respectively show that 

Model 2 fit the data better than the pure classical survival model of the Exponential, 

Gamma and Weibull distributions. The K-S test statistic value for model 2 (0.16) 
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with the p-value of 0.30 shows that the model is adequately represented by the data. 

Comparing the Model 1 and Model 2 for the Kidney Catheter data shows that the 

data were slightly better represented by Model 2 with LL (-331.50) and AIC 

(677.01) compared to Model 1 with LL (-331.57) and AIC (679.13). 

The survival function graph of the fitted read data was used to validate the fit of 

Model 2. The survival function graph was compared with the K-M empirical 

survival function of the real data to investigate the fit of Model 2. The survival 

function and the K-M graph of Model 2 were presented in the Figure 5.27. 

 

Figure 5.27 K-M, the Survival function of Model 2 and the Pure Survival Models 

Corresponding to Each Component  

In Figure 5.27 the K-M empirical survival function is in solid black, the survival 

function of Model 2 is in dark blue, the pure classical survival model of the 
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Exponential in red, the pure classical survival model of the Gamma distribution is in 

green and the pure classical survival model of the Weibull in light blue. Form the 

Figure it can be observed that the survival function of Model 2 is in full agreement 

with the K-M empirical survival function much better than the three other pure 

classical survival models. 

5.4.2 Model 2 versus Three Components Parametric Survival Mixture Models 

of the Same Distributions 

The Kidney Catheter data were used to estimate the parameters of a parametric 

survival mixture model of the Exponential distributions (E1_E2_E3) and a 

parametric a parametric survival mixture model of the Weibull distributions 

(W1_W2_W3).  

The probability density functions of Model 2, the parametric survival mixture model 

of the Exponential distributions and the parametric survival mixture model of the 

Weibull distributions are plotted graphically along with the histogram of the Kidney 

Catheter data. Figure 5.28 displays the graphical comparison of the probability 

density functions of Model 2, the parametric survival mixture model of the 

Exponential distribution and the parametric survival mixture model of the Weibull 

distributions. It can be seen that Model 2 represents the Kidney Catheter data much 

better than the remaining two parametric survival mixture models of Exponential and 

Weibull respectively. 
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Figure 5.28.Model 2 vs the Parametric Survival Mixture Models Corresponding to 

Each Component Model 2 

Model selection was performed to select the model that represents the Kidney 

Catheter data best among Model 2 and the two parametric survival models of the 

E1_E2_E3 and W1_W2_W3 and Model 2. Table 5.15 displays the parameters of the 

fitted parametric survival mixture models along with the LL and AIC values. Model 

2 scored the highest value of LL compared to the other parametric survival mixture 

models. The values of AIC of the two parametric survival mixture models of 

E1_E2_E3 and W1_W2_W3 are bigger than the value scored by the Model 2. This 

suggests that, Model 2 represents the Kidney Catheter data better the other three 

parametric survival mixture models of E1_E2_E3 and W1_W2_W3 models. 
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Table 5.15 

Parameters, LL and AIC of Model 2 and Parametric Survival Mixture Models 

Corresponding to Each Component of Model 2 

 Model 2  E1_E2_E3  W1_W2_W3 

𝝅𝟏 0.52 𝝅𝟏 0.26 𝝅𝟏 0.41 

𝝅𝟐 0.29 𝝅𝟐 0.22 𝝅𝟐 0.53 

𝝀 32.79 𝝀𝟏 0.04 𝜶𝟏 1.82 

𝜶𝟏 20.38 𝝀𝟐 0.01 𝜶𝟐 1.69 

𝜶𝟐 3.91 𝝀𝟑 0.01 𝜶𝟑 26.56 

𝜷𝟏 7.73   𝜷𝟏 26.19 

𝜷𝟐 441.56   𝜷𝟐 202.39 

    𝜷𝟑 545.34 

LL -331.50 LL -339.46 LL -331.91 

AIC 677.01 AIC 682.91 AIC 679.83 

 

The Kidney Catheter data were used to model the parametric survival mixture 

models; E1_E2_E3 and W1_W2_W3 corresponding to each component of Model 2. 

Model 2 has been plotted with each of the parametric survival mixture model of 

E1_E2_E3 and W1_W2_W3 and their pure classical parametric survival models 

graphically. In Figure 5.29 Model 2 and the parametric survival mixture model of the 

Exponential distributions (E1_E2_E3) were plotted together with the pure classical 

parametric survival model of the Exponential distributions (E1, E2 and E3) 

corresponding to each component. The graph shows that Model 2 fits the Kidney 

Catheter data better than the parametric survival mixture model of Exponential 

distribution and the pure classical survival Exponential models corresponding to 

each component.   
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Figure 5.30 displays probability density functions of Model 2 and the parametric 

survival mixture model of the Weibull distributions (W1_W2_W3) along with the 

pure classical parametric survival models of the Weibull distribution (W1, W2 and 

W3). The graph shows that the Kidney Catheter data were better modelled by Model 

2 than by the parametric survival mixture model of the Weibull distribution and the 

pure classical parametric survival models of the Weibull distribution corresponding 

to each of the components of the parametric survival mixture model of the Weibull 

distributions (W1_W2_W3).  

The Kidney Catheter data showed that the developed EM estimated the parameters 

of Model 2 successfully and the model selection revealed that Model 2 represents the 

Kidney Catheter data better than the pure classical parametric survival models 

corresponding to each component of Model 2, the parametric survival mixture model 

of the Exponential distributions and the parametric survival mixture model of the 

Weibull distributions. 
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Figure 5.29.Model 2 vs the Parametric Survival Mixture of Exponential and the Pure 

Classical Distribution of Each Component  

 

Figure 5.31.Model 2 vs the Parametric Survival Mixture of Weibull and the Pure 

Classical Distribution of Each Component 
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5.5 Summary 

The development of a three components parametric survival mixture model of the 

Exponential, Gamma and Weibull distributions (Model 2) was discussed in this 

chapter. The implementation of EM in survival mixture model and  the derivation of 

the parameters of Model 2 was highlighted.  

Simulated survival data were used to validate the performance of Model 2 by 

generating 18 different samples from the parametric survival mixture model of the 

Exponential, Gamma and Weibull distributions. The generated data constitute of the 

three different samples of size 100, 200 and 500 observations. Each of the samples 

was generated based on three different censoring percentages. Also the generated 

samples were based on two different mixing probabilities arranged in ascending and 

descending order. The parameters of Model 2 were estimated by employing the EM 

and the consistency and stability of EM was investigated by repeating the simulation 

300 times. 

Generally, the parameters estimated from the data were closed to the true parameters 

used in the simulation of the data. Validating the performance of Model 2 using the 

three different sample sizes showed that the estimation of the parameters was better 

as the sample size increases. The comparison of the three censoring percentages 

showed that the Model 2 performed better with smaller censoring percentages for 

both the ascending and descending order of the mixing probabilities. However, the 

performance of Model 2 with the mixing probabilities in ascending order was better 

than that of the mixing probabilities in descending order. Graphical representations 

of the hazard functions for different samples of Model 2 with different censoring 
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percentages were investigated. Generally, it was found that the hazard function tends 

to be higher with small censoring percentage. As the censoring percentage increases 

more individual or items survive which reduce the value of the hazard function. 

Model 2 was validated by employing empirical study. The parameters of Model 2 

were estimated and reported. Model 2 was compared with pure classical parametric 

survival distributions corresponding to the distribution of each component 

graphically. To validate Model 2, the LL, AIC, MSE, RMSE, K-S test and E(t) were 

computed and compared with those of the pure classical Gamma distribution.  

 The K-M empirical survival function of the real data was compared with the 

survival function of Model 2 graphically to evaluate the fitness of the model. The 

graph showed that Model 2 fit the data better the pure classical parametric survival 

models. Model 2 was also compared with the E1_E2_E3 and W1_W2_W3 survival 

mixture models corresponding to distribution of each of the components of Model 2. 

The simulation and the empirical study showed that Model 2 is preferred over the 

pure classical survival models in modelling survival data when the data seem to 

come from population of heterogeneous nature. 
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CHAPTER SIX 

CONCLUSION 

6.1 Summary 

The pure classical parametric survival models are the conventional method for 

analysing survival data when the data are believed to be homogeneous and follow 

some particular parametric probability distribution. In some situations the survival 

data come from populations that are believed to be heterogeneous in nature. This 

thesis proposed parametric survival mixture model of three components as a useful 

and flexible tool for analysing survival data of heterogeneous nature, instead of the 

pure classical parametric survival models. The study proposed two models; the first 

one is a parametric survival mixture model of the Gamma distributions referred to as 

Model 1. The second is a parametric survival mixture model of  the Exponential, 

Gamma and Weibull distributions referred to as Model 2. 

Simulation study was employed to validate performance of the two models with 

three different samples sizes, three different censoring percentages and two sets of 

mixing probabilities arranged in ascending and descending orders. The simulation 

study performed well in validating the performance of the models. Both models 

perfomed well with large sample compared to small sample. Also, the models 

performed better with small censoring percentages. The mixing probabilities were 

better estimated with small censoring percentage compared to the samples with large 

censoring. The hazard function of both models was investigated using different 

censoring percentages and represented graphically. It was found that the hazard 

function tends to decrease with the increase in the censoring percentage of the data. 
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Empirical study was carried out to validate the two models. Graphical 

representations were used where the probability densities of the models were plotted 

together with the pure classical parametric survival models, parametric survival 

mixture models and the histogram of the real data. To compare the performance of 

the two models with the pure classical survival models and parametric survival 

mixture models the LL, AIC, MSE, RMSE, K-S test and E(t) were provided. The 

comparison showed that Model 1 and Model 2 fit the real data better than the other 

models. The K-M empirical survival function was compared with the survival 

function of both Model 1 and Model 2 graphically. The graphs showed that the two 

models fit the real data better than the pure classical survival models corresponding 

to each component of the survival mixture models. 

In conclusion, the simulated and real data application of Model 1 and Model 2 

demonstrated that the parametric survival mixture models are flexible tools and 

maintain the feature of the classical parametric survival distribution. This result 

shows that the three components parametric survival mixture model is an appropriate 

alternative for modelling heterogeneous survival data. 

6.2 Problems and Limitations 

The main problem with the EM is the problem of the starting or initial point. The 

Algorithm is very sensitive to starting point. In the case of the parametric survival 

mixture model of different distributions (the Exponential, the Gamma and the 

Weibull) one has to have a very good guess of the starting point. So the problem will 

still be how to get a very good convenient starting point. The researcher needs to 
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specify the mixing probabilities together with the initial points of the parameters of 

each component of the parametric survival mixture model. Unlike the case of the 

parametric survival mixture model of Gamma distribution which consists of same 

distribution, the EM can be modified to generate the set of initial starting point by 

the method of moments. The researcher has the option of specifying the number of 

components or he/she may just allow the EM to generate the initial or starting point 

of both the mixing probabilities and parameters of distribution of the components. 

Also, among the problems and limitations is obtaining real data that can be used for 

applications. It is a very difficult task to obtain convenient real data for survival 

analysis. Most of the published researches do not provide the data used to validate 

their work. Very few authors respond to request for some data they used in their 

research. The main sources are published text books, some statistical software, and 

very few websites where they make set of data available.  

6.3 Future Research 

In the concluding chapter there is needed to point out some areas that require some 

further research in the future. Chapter Four discussed a three component parametric 

survival mixture model of same distribution with a particular reference to the 

Gamma distribution. There are some other important distributions that have not been 

addressed in the literature. Three components parametric survival mixture models of 

some important distributions such as Lognormal, Logistic and Gompertz to mention 

a few could be investigated in future research. 
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In Chapter Five a parametric survival mixture model of Exponential, Gamma and 

Weibull distributions was discussed. The survival data analysis is not limited to only 

these distributions discussed in this thesis; they are many other important 

distributions. There is need to extend the idea of three components parametric 

survival mixture model of different distributions to some other distribution, such as 

Lognormal, Logistic, Log logistic to mention a few which could be a good and 

effective tool for modelling heterogeneous survival data 

Also, in many instances, survival data are collected together with some covariates 

that are believed to influence the survival time of the observation, such as age, 

treatments, gender and race to mention a few. Model 1 and Model 2 did not consider 

covariates in the analysis. Further research needs to include the covariates in the 

analysis to assess their effect on the survival time of the observations. 
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