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Abstrak

Kajian yang lepas menunjukkan model kemandirian campuran dua komponen
mencatatkan prestasi yang lebih baik berbanding model kemandirian berparameter
klasik tulen. Namun terdapat juga keperluan yang penting bagi model kemandirian
campuran tiga komponen kerana tingkah laku data kemandirian heterogen yang
lazimnya merangkumi lebih dari dua taburan. Oleh itu dalam kajian ini dua model
bagi tiga komponen telah dibina. Model 1 adalah model kemandirian campuran
berparameter tiga komponen bertaburan Gamma dan Model 2 adalah model
kemandirian campuran berparameter tiga komponen bertaburan Eksponen, Gamma
dan Weibull. Kedua-dua model telah dianggar menggunakan Pemaksimuman
jangkaan (EM) dan pengesahan prestasi model melalui kajian simulasi dan
empirikal. Simulasi telah diulang 300 kali dengan mengambil Kira tiga saiz sampel
berbeza: 100, 200, 500; tiga peratus penapisan yang berbeza: 10%, 20%, 40%; dan
dua set kebarangkalian bercampur secara: menaik (10%, 40%, 50%) dan secara
menurun (50%, 30%, 20%). Beberapa set data sebenar telah digunakan dalam kajian
empirikal dan perbandingan model-model telah dilaksanakan. Model 1 telah
dibandingkan dengan model kemandirian berparameter klasik tulen, model
kemandirian berparameter campuran dua dan empat komponen bertaburan Gamma.
Model 2 telah dibandingkan dengan model kemandirian berparameter klasik tulen
dan model kemandirian berparameter campuran tiga komponen bertaburan sama.
Persembahan grafik, log likelihood (LL), Kriteria Maklumat Akaike (AIC), Min
Ralat Kuasa Dua (MSE) dan Punca Min Ralat Kuasa Dua (RMSE) telah digunakan
bagi menilai prestasi. Dapatan simulasi menunjukkan bahawa kedua-dua model
mencatatkan prestasi yang baik pada saiz sampel yang besar, peratus tertapis yang
kecil dan pada kebarangkalian bercampur secara menaik. Kedua-dua model
menghasilkan ralat yang kecil berbanding dengan model kemandirian jenis lain
dalam kajian empirikal. Ini menunjukkan bahawa kedua-dua model yang dibina
adalah lebih tepat dan merupakan pilihan yang lebih baik untuk menganalisis data
kemandirian heterogen.

Kata kunci: data survival, heterogen, tiga komponen, eksponen, Gamma, Weibull,
Pengmaksimuman Jangkaan



Abstract

Previous studies showed that two components of survival mixture model performed
better than pure classical parametric survival model. However there are crucial needs
for three components of survival mixture model due to the behaviour of
heterogeneous survival data which commonly comprises of more than two
distributions. Therefore in this study two models of three components of survival
mixture model were developed. Model 1 is three components of parametric survival
mixture model of Gamma distributions and Model 2 is three components of
parametric survival mixture model of Exponential, Gamma and Weibull
distributions. Both models were estimated using the Expectation Maximization (EM)
and validated via simulation and empirical studies. The simulation was repeated 300
times by incorporating three different sample sizes: 100, 200, 500; three different
censoring percentages: 10%, 20%, 40%; and two different sets of mixing
probabilities: ascending (10%, 40%, 50%) and descending (50%, 30%, 20%).
Several sets of real data were used in the empirical study and models comparisons
were implemented. Model 1 was compared with pure classical parametric survival
model, two and four components parametric survival mixture models of Gamma
distribution, respectively. Model 2 was compared with pure classical parametric
survival models and three components parametric survival mixture models of the
same distribution. Graphical presentations, log likelihood (LL), Akaike Information
Criterion (AIC), Mean Square Error (MSE) and Root Mean Square Error (RMSE)
were used to evaluate the performance. Simulation findings revealed that both
models performed well at large sample size, small percentage of censoring and
ascending mixing probabilities. Both models also produced smaller errors compared
to other type of survival models in the empirical study. These indicate that both of
the developed models are more accurate and provide better option to analyse

heterogeneous survival data.

Keywords: survival data, heterogeneous, three components, Exponential, Gamma,
Weibull, Expectation Maximization.
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CHAPTER ONE
INTRODUCTION

1.1 Background of the Study

Survival data analysis is the analysis of time to occurrence of a particular event of
interest. The data are usually related to clinical studies of human, or laboratory
studies of animal, or studies to test the life time of some devices. Major applications
are in the areas of human clinical studies and industrial life testing (Kalbfleisch &

Prentice, 2002).

The event of interest in clinical studies could be death, remission, or some other
clinical events. The event of interest could be time taken to learning a new skill, exit
from unemployment, divorce of a couple or failure of a device, to mention a few.
The variable of interest, the time to occurrence of particular event T, which is a
positive random variable, should clearly be defined in the study at hand. The start
and end with the length of the time period in-between corresponding to T, should

also be clearly defined prior to the commencement of the study (Lee & Wang, 2003).

Generally, in survival analysis, some individuals or objects do not experience the
event of interest for one reason or the other, either they are lost to follow up during
the period of the study or they do not experience the event until the end of the study.
In such situation, the information about this particular individual will not be exactly
known, and such individuals are referred to as censored observations or censored

times.



The contents of
the thesis is for
internal user
only



REFERENCES

Abu Bakar, M. Z., Daud, I, & lbrahim, N. A. (2006). Estimating a logistic Weibull mixture
models with long-Term survivors. Jurnal Tecknologi, 45(C) , 57-66.

Abu -Zinadah, H. H. (2010). A study on mixture of exponentiated pareto and exponential
distributions. Journal of Applied Sciences Research, 6(4), 358-376.

Akaike, H. (1974). A new look at the statistical model identification. Automatic Control,
IEEE Transactions on, 19(6), 716-723.

Al-Hussaini, E. K., Al-Dayian, G. R., & Adham, S. A. (2000). On finite mixture of two-
component Gompertz lifetime model. Journal of Statistical Computation and
Simulation, 67(1), 1-20.

Birnbaun, Z. W. & Saunders S. C. (1958).”“A statistical model for life-length of materials”.
Journal of the American Statistical Association. 53, 151-160.

Blackstone, E. H., Naftel, D. C., & Turner, M. E. Jr. (1986). The decomposition of time-
varying hazard into phases, each incorporating a separate stream of concomitant
information. Journal of the American Statistical Association, 81(395), 615-624.

Bohning, D., & Seidel, W. (2003). Editorial: recent developments in mixture models.
Computational Statistics &amp; Data Analysis, 41(3-4), 349-357.

Brown, G. W., & Flood, M. M. (1947). Tumbler mortality. Journal of the American
Statistical Association. 42, 562-574.

Burnham, K. P.;"& Anderson, D. R. (2002). Model selection and multimodel inference: a
practical information-theoretic approach. Springer.

Burnham, K. P., & Anderson, D. R. (2004). Multimodel inference understanding AIC and
BIC in model selection. Sociological methods & research, 33(2), 261-304.

Cai, C., Zou, Y., Peng, Y., Zhang, J., & Cai, M. C. (2012). Package ‘smcure’.

Chang, S. C. (1998). Using parametric statistical models to estimate mortality structure: The
case of Taiwan. Journal of Actuarial Practice, 6(1).

Cheng, S. W., & Fu, J. C. (1982). Estimation of mixed Weibull parameters in life testing.
Reliability, IEEE Transactions on, R-31(4), 377-381.

Cohen, A. C., Jr. (1951). Estimating parameters of logarithmic-normal distributions by
maximum likelihood. Journal of the American Statistical Association, 46(254), 206-
212.

Copas, J. B., & Heydari, F. (1997). Estimating the risk of reoffending by using exponential
mixture models. Journal of the Royal Statistical Society. Series A (Statistics in
Society), 160(2), 237-252.

Davis, D. J. (1952). An analysis of some failure data. Journal of the American Statistical
Association, 47(258), 113-150.

180



Dempster, A. P. Laird, N. M., & Rubin, D. B.(1977). Maximum likelihood estimation from
incomplete data via the EM algorithm (with discussion)”. Journal of Royal
Statistical Society. Series B, 39, 1-38.

Epstein, B. & Sobel, M. (1953). Life testing. Journal of the American Statistical
Association, 48, 486-502.

Erisoglu, U., Erisoglu, M. & Erol, H. (2011). A mixture model of two different distributions
approach to the analysis of heterogeneous survival data. International Journal of
Computational and Mathematical Sciences 5(2).

Erisoglu, U., Erisoglu, M., & Erol, H. (2012). Mixture model approach to the analysis of
heterogeneous survival data. Pakistan Journal of Statistics 28(1), 115-130.

Erisoglu, U., & Erol, H. (2010). Modelling heterogeneous survival data using mixture of
extended exponential-geometric distributions. Communications in Statistics -
Simulation and Computation, 39(10), 1939-1952.

Escobar, L. A., & Meeker, W. Q., Jr. (1992). Assessing Influence in Regression Analysis
with Censored Data. Biometrics, 48(2), 507-528. doi: 10.2307/2532306.

Everitt, B. S., & Hand, D. J., (1981). Finite mixture distributions. Chapman and Hall Inc.
New York

Farcomeni, A., & Nardi, A. (2010). A two-component Weibull mixture to model early and
late mortality in a Bayesian framework. Computational Statistics & amp; Data
Analysis, 54(2), 416-428.

Farewell, V. T. (1982). The use of mixture models for the analysis of survival data with
long-term survivors. Biometrics, 38(4), 1041-1046.

Fraley, C., & Raftery, A. E. (2002). Model-based clustering, discriminant analysis, and
density estimation. Journal of the American Statistical Association, 97(458), 611-
631.

Fruhwirth-Schnatter, S. (2006). Finite mixture and markovs switching models. New York:
Springer.

Harter, H. L., & Moore, A. H. (1966). Local-maximum-likelihood estimation of the
parameters of three-parameter Lognormal populations from complete and censored
samples. Journal of the American Statistical Association, 61(315), 842-851.

Ibrahim, J. G., Chen, M. H., & Sinha, D. (2001). Bayesian survival analysis. New York:
Springer-verlag.

Jaheen, Z. (2005). On record Statistics from a mixture of two exponential distributions.
Journal of Statistical Computation & Simulation, 75(1), 1-11.

Jensen, J. & Petersen, N. E. (1982). Burn-in: an engineering approach to the design and
analysis of burn-in procedures, wiley , New york.

181



Jewell, N. P. (1982). Mixtures of exponential distributions. The Annals of Statistics, 10(2),
479-484.

Jiang, S. & Kececioglu, D (1992a). Graphical representation of two mixed-Weibull
distributions. IEEE Transaction on Reliability, vol. 41,241-247.

Jiang, S. & Kececioglu, D (1992b). Maximum likelihood estimates, from censored data, for
mixed-Weibull distributions. IEEE Transaction on Reliability, vol. 41,248-255.

Jiang, R., & Murthy, D. N. P. (1995). modelling failure-data by mixture of 2 Weibull
distributions: a graphical approach. Reliability, IEEE Transactions on, 44(3), 477-
488.

Jiang, R., & Murthy, D. N. P. A mixture model involving three weibull distributions,
Proceedings of the Second Australia-Japan Workshop on Stochastic Models in
Engineering. Technology and Management (Gold Coast, Australia).

Kalbfleisch J. D. & Prentice R. L. (2002). The statistical analysis of failure time data
(second ed.), John Wiley & Sons, Inc. Hoboken, New Jersey.

Kaplan, E. L., & Meier, P. (1958). Nonparametric estimation from incomplete observations.
Journal of the American Statistical Association, 53(282), 457-481.

Kersey, J. H., Weisdorf, D., Nesbit, M. E., LeBien, T. W., Woods, W. G., McGlave, P. B, . .
. Bostrom, B. (1987). Comparison of autologous and allogeneic bone marrow
transplantation for treatment of high-risk refractory acute lymphoblastic leukemia.
New England Journal of Medicine, 317(8), 461-467.

Khalid, Z. M. & Morgan, J. T.(2008). Cross-sectional and longitudinal approaches in a
survival mixture model, Matematika, VVol. 24, 231-242.

Koti, K. M. (2001). Failure-time mixture models: yet another way to establish efficacy.
Drug Information Journal, 35(4), 1253-1260.

Kouassi, D. A. & Singh J. (1997). A semi-parametric approach to hazard estimation with
randomly censored observations. Journal of American Statistical Association 92,
pp.1351-1355.

Kuk, A. Y. C., & Chen, C.-H. (1992). A mixture model combining logistic regression with
proportional hazards regression. Biometrika, 79(3), 531-541.

Larson, M. G., & Dinse, G. E. (1985). A mixture model for the regression analysis of
competing risks data. Journal of the Royal Statistical Society. Series C (Applied
Statistics), 34(3), 201-211.

Lawless J. F. (2003). Statistical models and methods of lifetime data, (2nd ed.) John Wiley
and Sons, Inc. Hoboken, New Jersey.

Lee, E. T. & Wang, J. W.(2003). Statistical methods for survival data analysis (3rd ed.).
John Wiley & son.

182



Leisch, F. (2004). Exploring the structure of mixture model components. In J Antoch (ed.),
“Compstat 2004- proceedings in Computational Statistics”, pp. 1405-1412. Physica
Verlag, Heidelberg. ISBN 3-7908-1554-3.

Leng, O. Y., & Khalid, Z. M. (2010). A comparative study of maximum likelihood and
Bayesian estimation approaches in estimating frailty mixture survival model
parameters. Paper presented at the Proceedings of the 6th IMT-GT Conference on
Mathematics, Statistics and its Applications (ICMSA2010), Universiti Tunku Abdul
Rahman, Kuala Lumpur, Malaysia.

Li, L., & Choe, M. K. (1997). A mixture model for duration data: analysis of second births
in China. Demography, 34(2), 189-197.

Ling, D., Huang, H.-Z., & Liu, Y. (26, 26-29 Jan. 2009). A method for parameter estimation
of mixed Weibull distribution. Paper presented at the Reliability and Maintainability
Symposium, 2009. RAMS 2009. Annual.

Marin, J. M., Rodriguez-Bernal, M. T., & Wiper, M. P. (2005). Using Weibull mixture
distributions to model heterogeneous survival data. Communications in Statistics:
Simulation and Computation, 34(3), 673-684.

McGilchrist, C. A., & Aisbett, C. W. (1991). Regression with frailty in survival analysis.
Biometrics, 47, 461-466.

McLachlan, G. J., & Peel, D. (2000). Finite mixture models: John Wiley & Sons, Inc.

McLachlan, G. J.;, & Krishnan, T. (2008). The EM algorithm and extensions (Second ed.).
Hoboken New Jersey: John Wiley & Sons, Inc.

Moltoft, J. (1983). Behind the “bathtub” curve, a new model and its consequences,
Microeclectonics & Reliability, 23, 489-500.

Murthy D. N. P., Xie, M. & Jiang, R. (2004). Weibull models. John Wiley & son.
Ng, A. S. K., McLachlan, G. J., Yau, K. K. W., & Lee, A. H. (2004). Modelling the
distribution of ischaemic stroke-specific survival time using an EM-based mixture

approach with random effects adjustment. Statistics in Medicine, 23(17), 2729-2744.

Olkin, 1., & Spiegelman, C. H.(1987). A semi-parametric approach to density estimation,
Journal of the American Statistical Association, 82, 858-865.

Othus, M. Li, Y & Tiwari, R. C. (2009). A class of semi-paramertic mixture cure survival
models with dependent censoring. Journal of American Statistical Association,
104(487). 1241-1250.

Phillips, N., Coldman, A., & McBride, M. L. (2002). Estimating cancer prevalence using
mixture models for cancer survival. Statistics in Medicine, 21(9), 1257-1270.

Razali, A. M., & Salih, A. A. (2009). Combining two Weibull distributions using a mixing
parameter. European Journal of Scientific Research, 31(2), 296-305.

183



Rider, P. R. (1961). The method of moments applied to a mixture of two exponential
distributions. The Annals of Mathematical Statistics, 32(1), 143-147.

Seppa, K. Hakulinen, T., Kim, J. J. & Laara, E. (2010). Cure fraction model with random
effects for regional variation in cancer survival. Statistics in Medicine, 29. 2781-
2793.

Sultan, K. S., Ismail, M. A., & Al-Moisheer, A. S. (2007). Mixture of two inverse Weibull
distributions: properties and estimation. Computational Statistics &amp; Data
Analysis, 51(11), 5377-5387.

Sun, J. (2006). The statistical analysis of interval-cencored failure time data. New York:
Springer Science, Business Media.

Tableman, M., & Kim, J. S. (2004). Survival analysis using S: analysis of time- to-event
data: Chapman & Hall/CRC.

Taylor, J. M. G. (1995). Semi-parametric estimation in failure time mixture models.
Biometrics, 51(3), 899-907.

Team, R. C. (2005). R: A language and environment for statistical computing: ISBN 3-
900051-07-0. R Foundation for Statistical Computing. Vienna, Austria, 2013. url:
http://Awww. R-project. org.

Therneau, T. (2013). A Package for Survival Analysis in S. R package version 2.37-4.
Retrieved from http://CRAN.R-project.org/package=survival

Tukey, J. W. (1977) Explanatory data analysis. Addison Wesley publishing company Inc.
Philippines.

Vernic, R., Teodorescu, S., & Pelican, E. (2009). Two Lognormal models for real data.
Annals of Statistics Ovidius Constanta, 17(3), 263-279.

Weibull, W. (1939). A statistical theory of strength of materials. Ingeniorsvetens
Kapsakadeniens Handlingar.

Weibull, & W. (1951). A statistical distribution function for wide applicability. Journal of
Applied Mathematics(18), 293-297.

Wiper, M., Insua, D. R., & Ruggeri, F. (2001). Mixtures of gamma distributions with
applications. Journal of Computational and Graphical Statistics, 10(3).

Young, D. S., Benaglia, T., Chauveau, D., Hunter, D. R., EImore, R. T., Xuan, F., ... &
Thomas, H. (2007). The mixtools package: tools for mixture models. R Package
Version 0.2. 0.

Yu, B., & Peng, Y. (2008). “Mixture cure models for multivariate survival time data”
Computational Statistics & Data Analysis, 52, 1524-1532.

Zelen, M. (1966). Application of exponential models to problems in cancer research. Journal
of the Royal Statistical Society. Series A (General), 129(3), 368-398.

184


http://cran.r-project.org/package=survival

Zhang Y. (2008). Parametric mixture models in survival analysis with application, (Doctoral
Dissertation) UMI Number: 3300387, Graduate School, Temple University.

Zhang, X., Wang, Y., & Lu, D. (2011, 26-28 July 2011). A new algorithm for parameters
estimations of multivariate mixed Weibull distributions with censoring data. Paper
presented at the 2011 International Conference on Multimedia Technology, ICMT
2011.

185



	Copyright
	Title Page
	Permission to Use
	Abstrak
	Abstract
	Acknowledgement
	Table of Contents
	List of Tables
	List of Figures
	List of Appendices
	Glossary of Terms
	List of Abbreviations
	CHAPTER ONE: INTRODUCTION
	1.1 Background of the Study
	1.2 Problem Statement
	1.3 Objectives of the Study
	1.4 Significance of the Study
	1.5 Outline and Summary of the Thesis

	CHAPTER TWO: REVIEW OF THE LITERATURE
	2.1 Introduction
	2.2 Censoring
	2.3 Parametric Methods in Survival Analysis
	2.4 Non-Parametric Methods in Survival Analysis
	2.5 Mixture Models
	2.6 Three Components Parametric Survival Mixture Models of SameDistribution
	2.7 Three Components Parametric Survival Mixture Model of DifferentDistributions
	2.8 Summary

	CHAPTER THREE: METHODOLOGY
	3.1 Introduction
	3.2 Development of Model 1 and Model 2
	3.3 Summary

	CHAPTER FOUR: THREE COMPONENTS PARAMETRIC SURVIVAL MIXTURE MODEL OF THE GAMMA DISTRIBUTIONS
	4.1 Introduction
	4.2 Theoretical Development of Model 1
	4.3 Validation of the performance of Model 1 Using Simulated Data
	4.4 Validating Model 1 Using Real Data
	4.5 Summary

	CHAPTER FIVE: THREE COMPONENTS PARAMETRIC SURVIVAL MIXTURE MODEL OF THE EXPONENTIAL, GAMMA  AND WEIBULL DISTRIBUTIONS
	5.1 Introduction
	5.2 Theoretical Development of Model 2
	5.3 Validation of the performance of Model 2 Using Simulated Data
	5.4 Kidney Catheter Data
	5.5 Summary

	CHAPTER SIX: CONCLUSION
	6.1 Summary
	6.2 Problems and Limitations
	6.3 Future Research

	REFERENCES



