The copyright © of this thesis belongs to its rightful author and/or other copyright owner. Copies can be accessed and downloaded for non-commercial or learning purposes without any charge and permission. The thesis cannot be reproduced or quoted as a whole without the permission from its rightful owner. No alteration or changes in format is allowed without permission from its rightful owner.
ONE STEP HYBRID BLOCK METHODS WITH GENERALISED OFF-STEP POINTS FOR SOLVING DIRECTLY HIGHER ORDER ORDINARY DIFFERENTIAL EQUATIONS.

RAFT ABDELMAJID ABDEL-RAHIM

DOCTOR OF PHILOSOPHY
UNIVERSITY UTARA MALAYSIA
2016
Permission to Use

In presenting this thesis in fulfilment of the requirements for a postgraduate degree from Universiti Utara Malaysia, I agree that the Universiti Library may make it freely available for inspection. I further agree that permission for the copying of this thesis in any manner, in whole or in part, for scholarly purpose may be granted by my supervisor or, in their absence, by the Dean of Awang Had Salleh Graduate School of Arts and Sciences. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use which may be made of any material from my thesis.

Requests for permission to copy or to make other use of materials in this thesis, in whole or in part, should be addressed to:

Dean of Awang Had Salleh Graduate School of Arts and Sciences
UUM College of Arts and Sciences
Universiti Utara Malaysia
06010 UUM Sintok
Abstrak

Kata kunci: Interpolasi, kolokasi, kaedah blok hibrid satu langkah, penyeleasaian langsung masalah nilai awal peringkat tinggi, titik pinggir-langkah teritlak.
Abstract

Real life problems particularly in sciences and engineering can be expressed in differential equations in order to analyse and understand the physical phenomena. These differential equations involve rates of change of one or more independent variables. Initial value problems of higher order ordinary differential equations are conventionally solved by first converting them into their equivalent systems of first order ordinary differential equations. Appropriate existing numerical methods will then be employed to solve the resulting equations. However, this approach will enlarge the number of equations. Consequently, the computational complexity will increase and thus may jeopardise the accuracy of the solution. In order to overcome these setbacks, direct methods were employed. Nevertheless, most of these methods approximate numerical solutions at one point at a time. Therefore, block methods were then introduced with the aim of approximating numerical solutions at many points simultaneously. Subsequently, hybrid block methods were introduced to overcome the zero-stability barrier occurred in the block methods. However, the existing one step hybrid block methods only focus on the specific off-step point(s). Hence, this study proposed new one step hybrid block methods with generalised off-step point(s) for solving higher order ordinary differential equations. In developing these methods, a power series was used as an approximate solution to the problems of ordinary differential equations of order γ. The power series was interpolated at γ points while its highest derivative was collocated at all points in the selected interval. The properties of the new methods such as order, error constant, zero-stability, consistency, convergence and region of absolute stability were also investigated. Several initial value problems of higher order ordinary differential equations were then solved using the new developed methods. The numerical results revealed that the new methods produced more accurate solutions than the existing methods when solving the same problems. Hence, the new methods are viable alternatives for solving initial value problems of higher order ordinary differential equations directly.

Keywords: Interpolation, collocation, one step hybrid block method, direct solution, higher order initial value problems, generalised off-step point(s).
Acknowledgements

I wish to express my gratitude to Almighty Allah the most beneficent, and most merciful, for giving me the strength to pursue this academic thesis to a successful conclusion. My profound appreciation goes to my supervisor, Prof. Dr. Zumi Omar for the remarkable guidance despite all his tight schedule, he sacrifice and solidify his valuable time to me in the process of conducting this research.

I must be loyal to my beloved and deceased mother whose loved, affection and support has made me what I am today. And indeed, my father, my wife, my daughter, brothers and sisters who contributed greatly for their prayers, patience and encouragement always and tirelessly for my success up to the completion of this research. It is also important, to thank all my friends for their supports in one way or the other to the attainment of this research and particularly, Rami Abdelrahim, Raed, Rabah and John Kuboye.

My profound gratitude goes to the great organization that agreed to guarantee access and provided available information in conducting this research, especially to all the staffs in Awang Had Salleh Graduate School and in School of Quantitative Sciences, UUM. I am also thankful to the entire Muslim Ummah, hoping the research will be of immense impact to them. Finally, I give all my thanks to Almighty Allah for giving me the ability to carry out this research successfully. Thank you to all.

Ra’ft Abdelrahim

February, 2016.
Table of Contents

Permission to Use ... i
Abstrak ... ii
Abstract ... iii
Acknowledgements ... iv
Table of Contents ... v
List of Tables ... x
List of Figures ... xii
List of Appendices ... xiii

CHAPTER ONE INTRODUCTION ... 1
1.1 Background of the Study ... 1
1.2 Uniqueness and Existence Theorem ... 2
1.3 Single Step Method ... 6
1.4 Multistep Method ... 7
1.5 Block Method ... 8
1.6 Hybrid Method ... 9
1.7 Problem Statement ... 9
1.8 Objectives of the Research ... 11
1.9 Significance of the Study ... 11
1.10 Limitation of the Study ... 12

CHAPTER TWO LITERATURE REVIEW 13
2.1 Block Methods for Second Order ODEs ... 14
2.2 Block Methods for Third Order ODEs ... 15
2.3 Block Methods for Fourth Order ODEs ... 16

CHAPTER THREE ONE STEP HYBRID BLOCK METHODS FOR SOLVING SECOND ORDER ODEs DIRECTLY 25
3.1 Derivation of One Step Hybrid Block Method with Generalised One Off-Step Points for Second Order ODEs ... 26
3.1.1 Establishing Properties of One Step Hybrid Block Method with Generalised One Off-Step Point for Second Order ODEs

3.1.1.1 Order of One Step Hybrid Block Method with Generalised One Off-Step Point for Second Order ODEs

3.1.1.2 Zero Stability of One Step Hybrid Block Method with Generalised One Off-Step Point for Second Order ODEs

3.1.1.3 Consistency and Convergent of One Step Hybrid Block Method with Generalised One Off-Step Point for Second Order ODEs

3.1.1.4 Region of Absolute Stability One Step Hybrid Block Method with Generalised One Off-Step Point for Second Order ODEs

3.2 Derivation of One Step Hybrid Block Method with Generalised Two Off-Step Points for Second Order ODEs

3.2.1 Establishing Properties of One Step Hybrid Block Method with Generalised Two Off-Step Points for Second Order ODEs

3.2.1.1 Order of One Step Hybrid Block Method with Generalised Two Off-Step Points for Second Order ODEs

3.2.1.2 Zero Stability of One Step Hybrid Block Method with Generalised Two Off-Step Points for Second Order ODEs

3.2.1.3 Consistency and Convergent of One Step Hybrid Block Method with Generalised Two Off-Step Points for Second Order ODEs

3.2.1.4 Region of Absolute Stability One Step Hybrid Block Method with Generalised Two Off-Step Points for Second Order ODEs

3.3 Derivation of One Step Hybrid Block Method with Generalised Three Off-Step Points for Second Order ODEs

3.3.1 Establishing Properties of One Step Hybrid Block Method with Generalised Three Off-Step Points for Second Order ODEs

3.3.1.1 Order of One Step Hybrid Block Method with Generalised Three Off-Step Points for Second Order ODEs

vii
3.3.1.2 Zero Stability of One Step Hybrid Block Method with Generalised Three Off-Step Points for Second Order ODEs 90

3.3.1.3 Consistency and Convergent of One Step Hybrid Block Method with Generalised Three Off-Step Points for Second Order ODEs 91

3.3.1.4 Region of Absolute Stability of One Step Hybrid Block Method with Generalised Three Off-Step Points for Second Order ODEs 91

3.4 Numerical Results for Solving Second Order ODEs 92

3.4.1 Implementation of Method 99

3.5 Comments on the Results 110

3.6 Conclusion 110

CHAPTER FOUR ONE STEP HYBRID BLOCK METHODS FOR SOLVING THIRD ORDER ODEs DIRECTLY 111

4.1 Derivation of One Step Hybrid Block Method with Generalised Two Off-Step Points for Third Order ODEs 112

4.1.1 Establishing Properties of One Step Hybrid Block Method with Generalised Two Off-Step Points for Third Order ODEs 125

4.1.1.1 Order of One Step Hybrid Block Method with Generalised Two Off-Step Points for Third Order ODEs 126

4.1.1.2 Zero Stability of One Step Hybrid Block Method with Generalised Two Off-Step Points for Third Order ODEs 132

4.1.1.3 Consistency and Convergent of One Step Hybrid Block Method with Generalised Two Off-Step Points for Third Order ODEs 133

4.1.1.4 Region of Absolute Stability of One Step Hybrid Block Method with Generalised Two Off-Step Points for Third Order ODEs 134

4.2 Derivation of One Step Hybrid Block Method with Generalised Three Off-Step Points for Third Order ODEs 135

4.2.1 Establishing the Properties of One Step Hybrid Block Method with Generalised Three Off-Step Points for Third Order ODEs 163
4.2.1.1 Order of One Step Hybrid Block Method with Three
Generalised Off-Step Points for Third Order ODEs . . 163
4.2.1.2 Zero Stability of One Step Hybrid Block Method with
Generalised Three Off-Step Points for Third Order ODEs 188
4.2.1.3 Consistency and Convergent of One Step Hybrid Block
Method with Generalised Three Off-Step Points for Third
Order ODEs .. 189
4.2.1.4 Region of Absolute Stability of One Step Block Method
with Generalised Three Off-Step Points for Third Order
ODEs .. 189
4.3 Numerical Results for Solving Third Order ODEs 191
4.4 Comments on the Results 211
4.5 Conclusion .. 211

CHAPTER FIVE ONE STEP HYBRID BLOCK METHODS FOR SOLVING FOURTH ORDER ODEs DIRECTLY 212
5.1 Derivation of One Step Hybrid Block Method with Generalised Three Off-Step Points for Fourth Order ODEs ... 213
5.1.1 Establishing of the Properties of One Step Hybrid Block Method with Generalised Three Off-Step Points for Fourth Order ODEs ... 266
5.1.1.1 Order of One Step Hybrid Block Method with Generalised Three Off-Step for Fourth Order ODEs 266
5.1.1.2 Zero Stability of One Step Hybrid Block Method with Generalised Three Off-Step Points for Fourth Order ODEs 300
5.1.1.3 Consistency and Convergent of One Step Hybrid Block Method with Generalised Three Off-Step Points for Fourth Order ODEs ... 301
5.1.1.4 Region of Absolute Stability of One Step Hybrid Block Method with Generalised Three Off-Step Points for Fourth Order ODEs ... 302
5.2 Numerical Results for Solving Fourth Order ODEs 303
5.3 Comments on the Results 313
5.4 Conclusion .. 313
List of Tables

Table 2.1 Highlight of Literature Review on Block Collocation Method for Second Order ODEs 19
Table 2.2 Highlight of Literature Review on Block Collocation Method for Third Order ODES. 21
Table 2.3 Highlight of Literature Review on Block Collocation Method for Fourth Order ODES. 23

Table 3.1 Comparison of the New Methods with Two Step Hybrid Block Method (Adesanya et al., 2014) for Solving Problem 1 where $h = \frac{1}{100}$. 102
Table 3.2 Comparison of the New Methods with One Step Hybrid Block Method (Anake, 2011) for Solving Problem 2 where $h = \frac{1}{320}$. 103
Table 3.3 Comparison of the New Methods with Three Step Hybrid Block Method (Yahaya et al., 2013) for Solving Problem 3 where $h = \frac{1}{10}$. 104
Table 3.4 Comparison of the New Methods with One Step Hybrid Block Method (Adeniyi and Adeyefa, 2013) for Solving Problem 4 where $h = \frac{1}{100}$. 105
Table 3.5 Comparison of the New Methods with Two Step Hybrid Block Method (Kayode and Adeyeye, 2013) for Solving Problem 5 where $h = \frac{1}{1000}$. 106
Table 3.6 Comparison of the New Methods with Four Step Linear Multistep Method (Jator, 2009) for Solving Problem 6 where $h = \frac{1}{100}$. 107
Table 3.7 Comparison of the New Methods with Three Step Hybrid Block Method (Sagir, 2012) for Solving Problem 7 where $h = \frac{1}{10}$. 108
Table 3.8 Comparison of the New Methods with Three Step Hybrid Method (Kayode and Obarhua, 2015) for Solving Problem 1 where $h = \frac{1}{1000}$. 109

Table 4.1 Comparison of the New Method with both Seven Step Block Method (Kuboye and Omar, 2015b) and Five Step Block Method (Omar and Kuboye, 2015) for Solving Problem 8 where $h = \frac{1}{10}$ 201
Table 4.2 Comparison of the New Method with Five Step Block Method (Olabode, 2009) and Six Step Block Method (Olabode, 2014) for Solving Problem 9 where $h = \frac{1}{10}$. 202
Table 4.3 Comparison of the new method with Five Step Block Method (Anake et al., 2013) for Solving Problem 10 where $h = \frac{1}{10}$

Table 4.4 Comparison of the New Method with Three Step Hybrid Block Method (Gbenga et al., 2015) for Solving Problem 11 where $h = \frac{1}{100}$

Table 4.5 Comparison of the New Methods with Four Step Linear Multistep (Awoyemi et al., 2014) for Solving Problem 12 where $h = \frac{1}{10}$

Table 4.6 Comparison of the New Methods with Three step hybrid Method (Mohammed and Adeniyi, 2014) and Four Step Linear Multistep (Awoyemi et al, 2014) for Solving Problem 13 where $h = \frac{1}{10}$

Table 4.7 Comparison of the New Methods with Seven Step Block Method (Kuboye and Omar, 2015b) and Three Step Block Method (Olabode and Yusuph, 2009) for Solving Problem 14 where $h = \frac{1}{10}$

Table 4.8 Comparison of the New Methods with Three Step Predictor-Corrector Method (Awoyemi, 2005) for Solving Problem 15

Table 4.9 Comparison of the new methods with Three step hybrid Method (Mohammed and Adeniyi, 2014) for solving Problem 16 where $h = \frac{1}{100}$

Table 4.10 Comparison of the New Methods with Four Step Block Method (Adesanya et al., 2012) for Solving Problem 9 where $h = \frac{1}{100}$

Table 5.1 Comparison of the New Method with One Step Hybrid Block Method (Kayode et al., 2014) and Six Step Block Method (Olabode, 2009) for Solving Problem 17 where $h = \frac{1}{10}$

Table 5.2 Comparison of the new method with One and Two Hybrid Block Method (Olabode and Omole, 2015) for Solving Problem 18 where $h = \frac{1}{320}$

Table 5.3 Comparison of the New Method with Six Step Block Method (Kuboye and Omar, 2015) for Solving Problem 19 where $h = \frac{1}{100}$

Table 5.4 Comparison of the New Method with Five Step Predictor-Corrector Method (Kayode, 2008b) and Five Step Block Method (Kayode, 2008a) for Solving Problem 19 where $h = \frac{1}{320}$

Table 5.5 Comparison of the New Method with Six Step Multistep Method (Awoyemi et al., 2015) for Solving Problem 20 where $h = \frac{1}{320}$
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>One step hybrid block method with generalised one off-step point for solving second ODEs.</td>
<td>26</td>
</tr>
<tr>
<td>3.2</td>
<td>One step hybrid block method with generalised two off-step points for solving second order ODEs.</td>
<td>39</td>
</tr>
<tr>
<td>3.3</td>
<td>One step hybrid block method with generalised three off-step points for solving second order ODEs.</td>
<td>54</td>
</tr>
<tr>
<td>3.4</td>
<td>Region stability of one step hybrid block method with one off-step point $s = \frac{1}{3}$ for second order ODEs.</td>
<td>94</td>
</tr>
<tr>
<td>3.5</td>
<td>Region stability of one step hybrid block method with two off-step points $s = \frac{1}{10}$ and $r = \frac{1}{5}$ for second order ODEs.</td>
<td>96</td>
</tr>
<tr>
<td>3.6</td>
<td>Region stability of one step hybrid block method with three off-step points $s_1 = \frac{1}{8}$, $s_2 = \frac{1}{4}$ and $s_3 = \frac{1}{2}$ for second order ODEs.</td>
<td>99</td>
</tr>
<tr>
<td>4.1</td>
<td>One step hybrid block method with generalised two off-step points for solving third order ODEs.</td>
<td>112</td>
</tr>
<tr>
<td>4.2</td>
<td>One step hybrid block method with generalised three off-step points for solving third order ODEs.</td>
<td>135</td>
</tr>
<tr>
<td>4.3</td>
<td>Region stability of one step hybrid block method with two off-step points $s = \frac{1}{6}$ and $r = \frac{3}{5}$ for third order ODEs.</td>
<td>193</td>
</tr>
<tr>
<td>4.4</td>
<td>Region stability of one step hybrid block method with three off step points $s_1 = \frac{1}{12}$, $s_2 = \frac{2}{5}$ and $s_3 = \frac{9}{10}$ for third order ODEs.</td>
<td>198</td>
</tr>
<tr>
<td>5.1</td>
<td>One step hybrid block method with generalised three off-step points for solving fourth order ODEs.</td>
<td>213</td>
</tr>
<tr>
<td>5.2</td>
<td>Region stability of one step hybrid block method with three off-step points $s_1 = \frac{1}{4}$, $s_2 = \frac{1}{2}$ and $s_3 = \frac{3}{4}$ for fourth order ODEs.</td>
<td>306</td>
</tr>
</tbody>
</table>
List of Appendices

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Matlab Code of the New Method with Generalised One Off-Step Point for Solving Second Order ODE</th>
<th>322</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A</td>
<td>Matlab Code of the New Method with Generalised Two Off-Step Point for Solving Second Order ODE</td>
<td>324</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Matlab Code of the New Method with Generalised Three Off-Step Point for Solving Second Order ODE</td>
<td>327</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Matlab Code of the New Method with Generalised Two Off-Step Point for Solving Third Order ODE</td>
<td>333</td>
</tr>
<tr>
<td>Appendix D</td>
<td>Matlab Code of the New Method with Generalised Three Off-Step Point for Solving Third Order ODE</td>
<td>336</td>
</tr>
<tr>
<td>Appendix E</td>
<td>Matlab Code of the New Method with Generalised Three Off-Step Point for Solving Fourth Order ODE</td>
<td>343</td>
</tr>
</tbody>
</table>
CHAPTER ONE
INTRODUCTION

1.1 Background of the Study

Mathematicians develop mathematical models to help them understanding the physical phenomena in real life problems. These models frequently lead to equations involving some derivatives of an unknown function of single or several variables, which are called differential equations. Differential equations have vast application in many fields such as engineering, medicine, economics, operation research, psychology and anthropology.

There are two types of differential equation namely Ordinary Differential Equation (ODE) and Partial Differential Equation (PDE). ODE is a differential equation that has single independent variable, while PDE is differential equation with two or more variables (Omar & Suleiman, 1999). The general form of ODE on the interval \([a, b]\) is denoted as

\[
y^{(\gamma)} = f(x, y, y', y'', \ldots, y^{(\gamma-1)}).
\]

In order to solve the equation (1.1), the conditions stated below need to be imposed.

\[
y(a) = \eta_0, \quad y'(a) = \eta_1, \ldots, y^{(\gamma-1)}(a) = \eta_{\gamma-1} \quad (1.2)
\]

Equation (1.1) and equation (1.2) are called initial value problem (IVP). If there is another condition at the different value of \(x\) such as \(b\), then it is called boundary value problem (BVP) (Lambert, 1973).
The contents of the thesis is for internal user only
REFERENCES

