The copyright © of this thesis belongs to its rightful author and/or other copyright
owner. Copies can be accessed and downloaded for non-commercial or learning
purposes without any charge and permission. The thesis cannot be reproduced or
quoted as a whole without the permission from its rightful owner. No alteration or

changes in format is allowed without permission from its rightful owner.



ONE STEP HYBRID BLOCK METHODS WITH GENERALISED
OFF-STEP POINTS FOR SOLVING DIRECTLY HIGHER
ORDER ORDINARY DIFFERENTIAL EQUATIONS.

RA'FT ABDELMA JID ABDEL-RAHIM

DOCTOR OF PHILOSOPHY
UNIVERSITY UTARA MALAYSIA
2016



Permission to Use

In presenting this thesis in fulfilment of the requirements for a postgraduate degree
from Universiti Utara Malaysia, I agree that the Universiti Library may make it freely
available for inspection. I further agree that permission for the copying of this thesis in
any manner, in whole or in part, for scholarly purpose may be granted by my supervisor
or, in their absence, by the Dean of Awang Had Salleh Graduate School of Arts and
Sciences. It is understood that any copying or publication or use of this thesis or parts
thereof for financial gain shall not be allowed without my written permission. It is also
understood that due recognition shall be given to me and to Universiti Utara Malaysia

for any scholarly use which may be made of any material from my thesis.

Requests for permission to copy or to make other use of materials in this thesis, in

whole or in part, should be addressed to:

Dean of Awang Had Salleh Graduate School of Arts and Sciences
UUM College of Arts and Sciences
Universiti Utara Malaysia

06010 UUM Sintok



Abstrak

Permasalahan kehidupan nyata terutamanya dalam sains dan kejuruteraan boleh
diungkapkan dalam persamaan pembeza untuk tujuan menganalisis dan memahami
fenomena fizikal. Persamaan pembeza ini melibatkan kadar perubahan satu atau
lebih pembolehubah tak bersandar. Masalah nilai awal persamaan pembeza biasa
peringkat tinggi diselesaikan secara konvensional dengan menukarkan persamaan
tersebut ke sistem persamaan pembeza biasa peringkat pertama yang setara terlebih
dahulu. Kaedah berangka bersesuaian yang sedia ada kemudiannya digunakan untuk
menyelesai persamaan yang terhasil. Walau bagaimanapun, pendekatan ini akan
menambah bilangan persamaan. Akibatnya,  kekompleksan pengiraan akan
bertambah dan ianya boleh menjejaskan kejituan penyelesaian. Bagi mengatasi
kelemahan ini, kaedah langsung digunakan. Namun, kebanyakan kaedah ini
menganggar penyelesaian berangka pada satu titik pada satu masa. Oleh itu,
beberapa kaedah blok diperkenalkan bertujuan untuk menganggar penyelesaian
berangka pada beberapa titik serentak. Seterusnya, kaedah blok hibrid
diperkenalkan bagi mengatasi sawar kestabilan-sifar yang berlaku dalam kaedah
blok. Walau bagaimanapun, kaedah blok hibrid satu langkah sedia ada hanya
tertumpu kepada titik pinggir-langkah yang spesifik. Oleh yang demikian, kajian ini
mencadangkan beberapa kaedah blok hibrid satu langkah dengan titik pinggir-
langkah teritlak bagi menyelesaikan persamaan pembeza biasa peringkat tinggi
secara langsung. Dalam pembangunan kaedah ini, siri kuasa telah digunakan sebagai
penyelesaian hampir kepada permasalahan persamaan pembeza biasa peringkat v.
Siri kuasa diinterpolasi pada v titik sementara terbitannya yang tertinggi dikolokasi
pada semua titik dalam selang terpilih. Sifat bagi kaedah baharu seperti peringkat,
pemalar ralat, kestabilan-sifar, ketekalan, penumpuan dan rantau kestabilan mutlak
juga turut dikaji. Beberapa masalah nilai awal persamaan pembeza biasa peringkat
tinggi kemudiannya diselesaikan dengan menggunakan kaedah baharu yang telah
dibangunkan. Keputusan berangka mendedahkan kaedah baharu menghasilkan
penyelesaian yang lebih jitu berbanding dengan kaedah yang sedia ada apabila
menyelesaikan masalah yang sama. Oleh itu, kaedah baharu adalah alternatif
berdaya saing dalam menyelesaikan masalah nilai awal persamaan pembeza biasa
peringkat tinggi secara langsung.

Kata kunci: Interpolasi, kolokasi, kaedah blok hibrid satu langkah, penyelesaian
langsung masalah nilai awal peringkat tinggi, titik pinggir-langkah teritlak.



Abstract

Real life problems particularly in sciences and engineering can be expressed in dif-
ferential equations in order to analyse and understand the physical phenomena. These
differential equations involve rates of change of one or more independent variables.
Initial value problems of higher order ordinary differential equations are convention-
ally solved by first converting them into their equivalent systems of first order ordinary
differential equations. Appropriate existing numerical methods will then be employed
to solve the resulting equations. However, this approach will enlarge the number of
equations. Consequently, the computational complexity will increase and thus may
jeopardise the accuracy of the solution. In order to overcome these setbacks, direct
methods were employed. Nevertheless, most of these methods approximate numerical
solutions at one point at a time. Therefore, block methods were then introduced with
the aim of approximating numerical solutions at many points simultaneously. Subse-
quently, hybrid block methods were introduced to overcome the zero-stability barrier
occurred in the block methods. However, the existing one step hybrid block methods
only focus on the specific off-step point(s). Hence, this study proposed new one step
hybrid block methods with generalised off-step point(s) for solving higher order ordi-
nary differential equations. In developing these methods, a power series was used as
an approximate solution to the problems of ordinary differential equations of order y.
The power series was interpolated at y points while its highest derivative was collo-
cated at all points in the selected interval. The properties of the new methods such as
order, error constant, zero-stability, consistency, convergence and region of absolute
stability were also investigated. Several initial value problems of higher order ordinary
differential equations were then solved using the new developed methods. The numer-
ical results revealed that the new methods produced more accurate solutions than the
existing methods when solving the same problems. Hence, the new methods are vi-
able alternatives for solving initial value problems of higher order ordinary differential
equations directly.

Keywords: Interpolation, collocation, one step hybrid block method, direct solution,
higher order initial value problems, generalised off-step point(s).
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CHAPTER ONE
INTRODUCTION

1.1 Background of the Study

Mathematicians develop mathematical models to help them understanding the physical
phenomena in real life problems. These models frequently lead to equations involv-
ing some derivatives of an unknown function of single or several variables, which
are called differential equations. Differential equations have vast application in many
fields such as engineering, medicine, economics, operation research, psychology and

anthropology.

There are two types of differential equation namely Ordinary Differential Equation
(ODE) and Partial Differential Equation (PDE). ODE is a differential equation that
has single independent variable, while PDE is differential equation with two or more
variables (Omar & Suleiman, 1999). The general form of ODE on the interval [a, ] is

denoted as

V= fayyy ey, (1.1)
In order to solve the equation (I.1)), the conditions stated below need to be imposed.

y@) =m0, y(a)=n1,....y" (@) =1y (1.2)
Equation (I.I) and equation ( [I.2) are called initial value problem(IVP). If there is
another condition at the different value of x such as b, then it is called boundary value

problem(BVP) (Lambert, [1973).
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