
The copyright © of this thesis belongs to its rightful author and/or other copyright

owner. Copies can be accessed and downloaded for non-commercial or learning

purposes without any charge and permission. The thesis cannot be reproduced or

quoted as a whole without the permission from its rightful owner. No alteration or

changes in format is allowed without permission from its rightful owner.

AN ADAPTIVE TRUST BASED SERVICE QUALITY
MONITORING MECHANISM FOR CLOUD COMPUTING

MOHAMED FAZIL MOHAMED FIRDHOUS

DOCTOR OF PHILOSOPHY
UNIVERSITI UTARA MALAYSIA

2016

Permission to Use

In presenting this thesis in fulfillment of the requirements for a postgraduate degree

from Universiti Utara Malaysia, I agree that the University Library may make it

freely available for inspection. I further agree that permission for the copying of this

thesis in any manner, in whole or in part, for scholarly purpose may be granted by

my supervisor(s) or, in their absence, by the Dean of Awang Had Salleh Graduate

School of Arts and Sciences. It is understood that any copying or publication or use of

this thesis or parts thereof for financial gain shall not be allowed without my written

permission. It is also understood that due recognition shall be given to me and to

Universiti Utara Malaysia for any scholarly use which may be made of any material

from my thesis.

Requests for permission to copy or to make other use of materials in this thesis, in

whole or in part, should be addressed to:

Dean of Awang Had Salleh Graduate School of Arts and Sciences

UUM College of Arts and Sciences

Universiti Utara Malaysia

06010 UUM Sintok

ii

Abstrak

Pengkomputeran awan adalah paradigma terkini dalam pengkomputeran teragih
yang menyediakan sumber pengkomputeran melalui Internet sebagai perkhidmatan.
Oleh kerana daya tarikan pengkomputeran awan, pasaran kini dibanjiri oleh ramai
pembekal perkhidmatan. Ini mewujudkan keperluan pelanggan untuk mengenal
pasti pembekal perkhidmatan yang betul, yang akan memenuhi keperluan mereka
dari segi kualiti perkhidmatan. Pemantauan kualiti perkhidmatan pengkomputeran
awan sedia ada hanya terhad kepada pengukuran sahaja. Sebaliknya, peningkatan
berterusan dan taburan skor kualiti perkhidmatan telah dilaksanakan dalam
paradigma pengkomputeran teragih tetapi tidak khusus untuk pengkomputeran
awan. Penyelidikan ini mengkaji kaedah-kaedah serta mencadangkan mekanisma
untuk mengukur dan menentukan kedudukan kualiti perkhidmatan pembekal
perkhidmatan. Penyelesaian yang dicadangkan dalam tesis ini terdiri daripada
tiga mekanisma iaitu mekanisma perkhidmatan pemodelan kualiti, mekanisma
pengkomputeran penyesuaian kepercayaan dan mekanisma pengedaran kepercayaan
bagi pengkomputeran awan. Kaedah Penyelidikan Rekabentuk (KPR) telah diubah
suai dengan menambah fasa, cara dan kaedah, dan hasil kemungkinan. KPR yang
diubahsuai ini telah digunakan sepanjang kajian ini. Mekanisma ini telah dibangunkan
dan diuji secara beransur-ansur sehingga mencapai hasil yang diharapkan. Satu
set eksperimen yang menyeluruh telah dijalankan dalam persekitaran simulasi untuk
mengesahkan keberkesanannya. Penilaian telah dijalankan dengan membandingkan
prestasi mereka dengan gabungan model kepercayaan dan model kepercayaan QoS
bersama-sama dengan mekanisma pengiraan kepercayaan berasaskan teori logik fuzi
dan mekanisma pengagihan kepercayaan berasaskan konsep agen utama yang telah
dibangunkan untuk sistem teragih lain. Keputusan menunjukkan mekanisma yang
dicadangkan dalam tesis ini adalah lebih pantas dan stabil berbanding mekanisma
sedia ada dalam mencapai skor kepercayaan akhir menggunakan kriteria yang diuji.
Keputusan yang dibentangkan dalam tesis ini adalah penting dalam usaha untuk
membolehkan pengguna mengesahkan prestasi pembekal perkhidmatan sebelum
membuat pilihan yang tepat.

Kata kunci: Pengkomputeran awan, Pemantauan kualiti
perkhidmatan, Pengkuantitian kualiti perkhidmatan, Pengkomputeran kepercayaan,
Pengagihan kepercayaan

iii

Abstract

Cloud computing is the newest paradigm in distributed computing that delivers
computing resources over the Internet as services. Due to the attractiveness of
cloud computing, the market is currently flooded with many service providers. This
has necessitated the customers to identify the right one meeting their requirements
in terms of service quality. The existing monitoring of service quality has been
limited only to quantification in cloud computing. On the other hand, the continuous
improvement and distribution of service quality scores have been implemented in
other distributed computing paradigms but not specifically for cloud computing.
This research investigates the methods and proposes mechanisms for quantifying and
ranking the service quality of service providers. The solution proposed in this thesis
consists of three mechanisms, namely service quality modeling mechanism, adaptive
trust computing mechanism and trust distribution mechanism for cloud computing.
The Design Research Methodology (DRM) has been modified by adding phases,
means and methods, and probable outcomes. This modified DRM is used throughout
this study. The mechanisms were developed and tested gradually until the expected
outcome has been achieved. A comprehensive set of experiments were carried out
in a simulated environment to validate their effectiveness. The evaluation has been
carried out by comparing their performance against the combined trust model and
QoS trust model for cloud computing along with the adapted fuzzy theory based trust
computing mechanism and super-agent based trust distribution mechanism, which
were developed for other distributed systems. The results show that the mechanisms
are faster and more stable than the existing solutions in terms of reaching the final trust
scores on all three parameters tested. The results presented in this thesis are significant
in terms of making cloud computing acceptable to users in verifying the performance
of the service providers before making the selection.

Keywords: Cloud computing, Service quality monitoring, Service quality
quantification, Trust computing, Trust distribution

iv

Declaration

Some of the works presented in this thesis have been published or submitted as listed

below.

Book Chapters

[1] Mohamed Firdhous, Suhaidi Hassan, Osman Ghazali and Massudi Mahmuddin,

"Evaluating Cloud System Providers: Models, Methods and Applications" in "Cloud

Systems in Supply Chains" Chapter 7, Dr. Fawzy Soliman, Ed. (pp. 121-149).

Basingstoke, Hampshire, UK: Palgrave Macmillan, 2014 (ISBN – 978-1-13-732425-

2).

Journal Articles

[2] Mohamed Firdhous, Osman Ghazali, and Suhaidi Hassan, “A Mechanism for

Distribution and Sharing of Trust Scores among Cooperating Cloud Computing

Service Monitors”, Accepted for publication in Jurnal Teknologi (Sciences &

Engineering) (Special Issue on Current and Emerging Trends in Technology, Science

and Engineering), Scopus Indexed. (Won the best paper award at the Second AFAP

Conference on Current and Emerging Trends in Science and Engineering, Surabaya,

Indonesia 13/09/2014)

[3] Mohamed Firdhous, Osman Ghazali, and Suhaidi Hassan, “Modeling of Quality

of Service based Trust for Cloud Computing”, Accepted for publication in Jurnal

Teknologi (Sciences & Engineering) (Special Issue on Current and Emerging Trends

in Technology, Science and Engineering), Scopus Indexed.

[4] Mohamed Firdhous, Osman Ghazali, and Suhaidi Hassan, “Robust Multi-

Dimen-sional Trust Computing Mechanism for Cloud Computing”, Jurnal Teknologi

(Sciences & Engineering) (Special Issue on Current and Emerging Trends in

v

Technology, Science and Engineering Vol. 2), vol. 69, no. 2, July 2014, pp. 1-6.

Scopus Indexed.

[5] Mohamed Firdhous, Osman Ghazali, and Suhaidi Hassan, “Statistically

Controlled Robust Trust Computing Mechanism for Cloud Computing”, Journal of

Information and Communication Technology (JICT), vol. 13, 2014, pp. 23-39. Scopus

Indexed.

[6] Mohamed Firdhous, Suhaidi Hassan and Osman Ghazali, “Monitoring, Tracking

and Quantification of Quality of Service in Cloud Computing”, International Journal

of Scientific & Engineering Research (IJSER), vol. 04, no. 05, May, 2013, pp. 112 –

117.

[7] Mohamed Firdhous, Suhaidi Hassan and Osman Ghazali, “A Comprehensive

Survey on Quality of Service Implementations in Cloud Computing”, International

Journal of Scientific & Engineering Research (IJSER), vol. 04, no. 05, May, 2013, pp.

118 – 123.

[8] Mohamed Firdhous, Suhaidi Hassan and Osman Ghazali, “Statistically Enhanced

Multi-Dimensional Trust Computing Mechanism for Cloud Computing”, Journal of

Mobile Computing and Multimedia Communications (IJMCMC), vol. 05, no. 02,

April-June, 2013, pp. 1 – 17. Scopus Indexed.

[9] Mohamed Firdhous, Osman Ghazali, and Suhaidi Hassan, “Trust Management in

Cloud Computing – A Critical Review”, International Journal on Advances in ICT for

Emerging Regions (ICTer), vol. 04, no. 02, Sept. 2011, pp. 24 – 36.

vi

Conference Papers

[10] Mohamed Firdhous, Suhaidi Hassan and Osman Ghazali, “Monitoring,

Tracking and Quantification of Quality of Service in Cloud Computing” 3rd

Global Conference for Academic Research on Scientific and Emerging Technologies

(GCARSET), March 9–11, 2013, Kuala Lumpur, Malaysia, pp. 107-112.

[11] Mohamed Firdhous, Suhaidi Hassan and Osman Ghazali, “Quality of Service

in Cloud Computing – A Critical Review” 3rd Global Conference for Academic

Research on Scientific and Emerging Technologies (GCARSET), March 9–11, 2013,

Kuala Lumpur, Malaysia, pp. 113-118.

[12] Mohamed Firdhous, Suhaidi Hassan and Osman Ghazali, “Hysteresis

based Trust Computing Mechanism for Cloud Computing” 2012 IEEE Region 10

Conference (TENCON 2012), November 19–22, 2012, Cebu, Philippines, pp. 796-

801.

[13] Mohamed Firdhous, Suhaidi Hassan, Osman Ghazali, and Massudi Mahmuddin,

“Bio Inspired Trust Management in Distributed Systems - A Critical Review”,

2012 IEEE Conference on Open Systems (ICOS2012), October 21-24, 2012, Kuala

Lumpur, Malaysia,

[14] Mohamed Firdhous, Suhaidi Hassan and Osman Ghazali, “Multi-Dimensional

Trust Computing Mechanism for Cloud Computing” 3rd International Conference

on Network Applications, protocols and services (NetApps 2012), September 19-20,

2012, Sintok, Kedah Darul Aman, Malaysia, pp. 7-12.

[15] Mohamed Firdhous, Osman Ghazali, and Suhaidi Hassan, “A Memoryless Trust

Computing Mechanism for Cloud Computing", The Fourth International Conference

on Networked Digital Technologies (NDT’2012), April 24-26, 2012- Dubai, UAE,

pp.174-185, published in Communications in Computer and Information Science, R.

vii

Benlamri, Ed., Berlin Heidelberg, Germany: Springer-Verlag, 2012, Vol. 293, pp.

174–185. DOI: 10.1007/978-3-642-30507-8.

[16] Mohamed Firdhous, Osman Ghazali, and Suhaidi Hassan, "Applying Bees

Algorithm for Trust Management in Cloud Computing", 6th International ICST

Conference on Bio-Inspired Models of Network, Information, and Computing

Systems (BIONETICS 2011), December 5th - 7th, 2011 - York, England, published

in Lecture Notes on ICST (LNICST) E. Hart et al. Eds., Berlin Heidelberg, Germany:

Springer-Verlag, 2012, Vol. 103, pp. 224–229.

[17] Mohamed Firdhous, Osman Ghazali, and Suhaidi Hassan, "A trust computing

mechanism for cloud computing with multilevel thresholding", Sixth IEEE

International Conference on Industrial & Information Systems (ICIIS2011), August

16-19, 2011, Kandy, Sri Lanka, pp. 457-461.

[18] Mohamed Firdhous, Osman Ghazali, and Suhaidi Hassan, "A trust computing

mechanism for cloud computing", 4th ITU Kaleidoscope Academic Conference,

December 12–14, 2011, Cape Town, South Africa, pp. 199-205.

[19] Mohamed Firdhous, Osman Ghazali, Suhaidi Hassan, "Modeling of cloud

system using Erlang formulas", 17th Asia-Pacific Conference on Communications,

October 3-5, 2011, Kota Kinabalu, Sabah, Malaysia, pp. 411-416.

[20] Mohamed Firdhous, Osman Ghazali, Suhaidi Hassan, Nur Ziadah Harun and

Azizi Abas, “Honey Bee Based Trust Management System for Cloud Computing”,

3rd International Conference on Computing and Informatics (ICOCI2011), June 8-9,

2011 Bandung, Indonesia, pp. 327-332.

viii

Acknowledgments

In the name of Allah the Most Beneficent, the Most Merciful.

Studying towards a PhD, though it is very rewarding at the end, it is a very tedious

and challenging journey. I have almost reached the end of it with a lot of effort, blood,

sweat and tears. There are several people, who helped to reach this stage successfully.

I will fail in my duty, if I do not give them the credit that is rightfully due to them.

First and foremost, I must thank my supervisors Prof. Madya Dr. Osman Ghazali and

Prof. Dr. Suhaidi Hassan. It has been an honor to be a PhD student under them. I really

appreciate all their contributions in terms of advice, support, time and ideas that made

my PhD experience productive and stimulating. A special thanks for encouraging me

to write research articles and proceeding papers that helped me a lot in improving my

language skills and would go a long way in my career development as an academic.

I would like to extend my sincere gratitude to my former vice chancellor Prof. Malik

Ranasnghe at the University of Moratuwa, Sri Lanka. He not only encouraged me to

start my PhD, but also give the list of people who I should approach along with a strong

recommendation letter. He also approved my study leave at the shortest possible time.

Then I would like to thank my InterNetWoks research laboratory members both the

academic staff and students. They kept the environment very nice and stimulating

throughout my stay there.

Finally I would extend my gratitude to my family especially my wife Shamila. I

really appreciate her understanding and support. I really have to mention my daughter

Fathima Sameeha and son Mohamed Shabaz, though they missed me a lot during

this period, they gave me the reason and courage that I should finish this journey

successfully.

ix

Table of Contents

Permission to Use . ii

Abstrak . iii

Abstract . iv

Declaration . v

Acknowledgments . ix

Table of Contents . x

List of Tables . xiv

List of Figures . xv

List of Abbreviations . xviii

CHAPTER ONE OVERVIEW . 1

1.1 Introduction . 1

1.2 Background . 1

1.2.1 Cloud Computing . 2

1.3 Problems and Issues Pertaining to Cloud Computing 5

1.4 Research Motivation . 7

1.5 Problem Statement . 9

1.6 Research Questions . 11

1.7 Research Objectives . 11

1.8 Research Scope . 12

1.9 Significance of the Research and Expected Contributions 13

1.10 Organization of the Thesis . 14

CHAPTER TWO LITERATURE REVIEW 16

2.1 Introduction . 16

2.2 Cloud Computing . 16

2.2.1 Cloud Computing Service Offerings 18

2.2.2 Cloud Computing Deployment Models 21

2.3 Quality of Service in Cloud Computing 27

2.3.1 Service Quality Monitoring in Cloud Computing 34

x

2.3.2 Service Quality Parameters in Cloud Computing 39

2.3.3 Definition of Performance Metrics 42

2.4 Trust Computing and Management . 44

2.4.1 Trust Management in Cloud Computing 48

2.5 Summary . 61

CHAPTER THREE RESEARCH METHODOLOGY 62

3.1 Introduction . 62

3.2 Research Approach . 64

3.2.1 Analysis . 66

3.3 Design . 70

3.3.1 Model Development . 72

3.3.2 Model Implementation . 73

3.3.3 Model Validation . 74

3.4 Testing . 76

3.5 Evaluation . 79

3.5.1 Selecting the Evaluation Approach 79

3.5.2 CloudSim Simulation Suite . 86

3.5.3 Experiment Environment . 90

3.6 Summary . 97

CHAPTER FOUR SERVICE QUALITY MODELING MECHANISM

FOR CLOUD COMPUTING . 99

4.1 Introduction . 99

4.2 Normalizing of Performance Metrics . 100

4.3 Modeling of Service Quality of Cloud Providers 103

4.3.1 Single Parameter Service Quality Quantification Mechanism (SP-

SQQM) . 104

4.4 Multi-Parameter Service Quality Quantification Mechanism (MP-SQQM) 107

4.4.1 Computing Trust Score with Different Priorities 111

4.5 Functional Verification of MP-SQQM 112

4.6 Summary . 115

xi

CHAPTER FIVE ADAPTIVE TRUST COMPUTING MECHANISM

FOR CLOUD COMPUTING . 116

5.1 Introduction . 116

5.2 Trust Formation and Evolution . 117

5.3 Adaptive Continuous Trust Evolution Mechanism (ACTEM) 118

5.3.1 Functional Verification of ACTEM 120

5.4 Memoryless Trust Computing Mechanism (MemTrust) 122

5.4.1 Functional Verification of MemTrust 125

5.5 Hysteresis-based Trust Evolution Mechanism (HystTrust) 127

5.5.1 Hysteresis Function . 129

5.5.2 Pseudo Code of the Proposed Algorithm 130

5.5.3 Functional Verification of HystTrust 130

5.6 Robust Adaptive Trust Computing Mechanism (RATComM) 132

5.6.1 Functional Evaluation of RATComM 133

5.7 Multi-Dimensional Trust Computing Mechanism (MuDTComM) 136

5.7.1 Functional Evaluation of MuDTComM 139

5.8 Summary . 140

CHAPTER SIX PROBABILITY-BASED TRUST DISTRIBUTION

MECHANISM FOR CLOUD COMPUTING 141

6.1 Introduction . 141

6.2 Distribution of Trust Scores . 142

6.2.1 Trust Table Updating Process . 144

6.3 Probability-based Trust Distribution Mechanism (PTDiMech) 146

6.3.1 Functional Evaluation of PTDiMech 150

6.4 Summary . 151

CHAPTER SEVEN PERFORMANCE ANALYSIS OF TRUST

COMPUTING AND DISTRIBUTION MECHANISMS 153

7.1 Introduction . 153

7.2 Simulation Environment . 153

7.3 Performance Analysis of Service Quality Quantification Mechanisms . . . 156

7.3.1 Performance Analysis of SP-SQQM 157
xii

7.3.2 Performance Analysis of MP-SQQM 160

7.4 Performance Analysis of Trust Computing Mechanisms 162

7.4.1 Performance Analysis of Adaptive Continuous Trust Evolution

Mechanism . 164

7.4.2 Performance Analysis of MemTrust 167

7.4.3 Performance Analysis of HystTrust 168

7.4.4 Performance Analysis of RATComM 170

7.4.5 Performance Analysis of MuDTComM 171

7.5 Performance Analysis of Trust Distribution Mechanism 173

7.6 Summary . 179

CHAPTER EIGHT CONCLUSIONS AND FUTURE WORK 182

8.1 Introduction . 182

8.2 Summary of Research . 182

8.3 Research Contributions . 185

8.4 Research Limitations . 186

8.5 Recommendations for Future Work . 187

REFERENCES . 189

xiii

List of Tables

Table 2.1 Summary of Features of the Service Quality Monitoring Mechanisms 37

Table 2.2 Summary of Trust Computing Mechanisms for Cloud Computing . 58

Table 3.1 Comparison of Different Evaluation Approaches 80

Table 3.2 Comparison of Different Cloud Simulators 86

Table 3.3 Virtual Machine Mapping . 93

Table 3.4 Experiment Setup Attributes and Values 94

Table 4.1 Performance Table . 110

Table 4.2 Modified Performance Table . 112

Table 6.1 Sample Trust Table . 146

Table 6.2 Conditional Probability Table at NS for ND 149

Table 7.1 Specification of the Host Computer 154

Table 7.2 Experiment Setup Attributes for the Evaluation of SQQMs 156

Table 7.3 Service Quality Requirements for Service Quality Quantification

Mechanisms . 156

Table 7.4 Experiment Setup Attributes for the Evaluation of Trust Computing

Mechanisms . 163

Table 7.5 Service Quality Requirements for Trust Computing Mechanisms . . 163

Table 7.6 Experiment Setup Attributes for the Evaluation of Trust Distribution

Mechanism . 173

Table 7.7 Service Quality Requirements for Trust Distribution Mechanism . . 174

xiv

List of Figures

Figure 1.1 Capacity Utilization Curve . 3

Figure 2.1 Cloud Computing Service Offerings 19

Figure 2.2 Cloud Computing Deployment Models 22

Figure 3.1 Research Methodology . 63

Figure 3.2 Stages of Design Research Methodology 64

Figure 3.3 Research Approach . 66

Figure 3.4 Main Steps Involved in Research Clarification Stage 67

Figure 3.5 Main Steps in Descriptive Study - I 69

Figure 3.6 Conceptual Model . 70

Figure 3.7 Mechanism Development Process 71

Figure 3.8 Eclipse Integrated Development Environment for Java 77

Figure 3.9 QJ-Pro Code Analysis Window 78

Figure 3.10 CloudSim Layered Architecture 88

Figure 3.11 CloudSim Class Diagram . 89

Figure 3.12 Simulation Steps . 91

Figure 4.1 Change in Trust Scores . 105

Figure 4.2 Comparative Change in Trust Scores 106

Figure 4.3 Naive Bayesian Network . 109

Figure 4.4 Naive Bayesian Network for a Cloud Computing System 109

Figure 4.5 Trust Score Computed Using Two Input Parameters 113

Figure 4.6 Effect of Weights on Trust Scores Computed 114

Figure 4.7 Effect of Weights on Final Trust Score 114

Figure 5.1 Trust Management System . 119

Figure 5.2 Trust Scores due to Continuous Positive or Negative Feedbacks . . 121

Figure 5.3 Effect of Confidence Level on Trust Scores Computed 121

Figure 5.4 MemTrust Trust Evolution Unit 122

Figure 5.5 Sigmoid Function . 124

xv

Figure 5.6 Modified Sigmoid Function . 125

Figure 5.7 Trust Scores Computed for Constant Positive Responses 126

Figure 5.8 Trust Scores Computed for Constant Negative Responses 126

Figure 5.9 Trust Scores Computed for Random Response Time Requirement . 127

Figure 5.10 MemTrust Trust Evolution Unit 128

Figure 5.11 Sample Hysteresis Curve . 129

Figure 5.12 Comparison of Trust for Random Response Times 132

Figure 5.13 RATComM Trust Evolution Unit 133

Figure 5.14 Trust Scores with 90% Validated Inputs Vs. Non Validated Inputs . 135

Figure 5.15 Trust Scores with 95% Validated Inputs Vs. Non Validated Inputs . 135

Figure 5.16 Effect of Confidence Level on Trust Scores 136

Figure 5.17 MuDTComM Trust Evolution Unit 137

Figure 5.18 MuDTComM Trust Evolution Unit in Detail 137

Figure 5.19 Comparison of RATComM and MuDTComM Trust Evolution Units 139

Figure 5.20 The Effect of Weights and Confidence Level on Trust Scores . . . 140

Figure 6.1 High-Level Architecture of Trust Distribution System 143

Figure 6.2 Trust Administration Unit . 144

Figure 6.3 Trust Updating Process . 145

Figure 6.4 Bayesian Network for Node NS 148

Figure 6.5 Change of Trust Scores for CSP1 over a Period of Time 151

Figure 7.1 Eclipse IDE Loaded with CloudSim 154

Figure 7.2 A Typical CloudSim Life Cycle 155

Figure 7.3 SP-SQQM: Trust Scores Computed Using Response Time 158

Figure 7.4 SP-SQQM: Trust Scores Computed Using Service Time 159

Figure 7.5 SP-SQQM: Trust Scores Computed Using Availability 159

Figure 7.6 MP-SQQM: Trust Scores with Equal Weights 160

Figure 7.7 MP-SQQM: Trust Scores with Unequal Weights (Case I) 161

Figure 7.8 MP=SQQM: Trust Scores with Unequal Weights (Case II) 161

Figure 7.9 ACTEM: Trust Scores Computed based on Response Time 165

Figure 7.10 ACTEM: Trust Scores Computed based on Service Time 166

Figure 7.11 ACTEM: Trust Scores Computed based on Availability 166

xvi

Figure 7.12 MemTrust: Trust Scores Computed based on Response Time . . . 167

Figure 7.13 MemTrust: Trust Scores Computed based on Service Time 167

Figure 7.14 MemTrust: Trust Scores Computed based on Availability 168

Figure 7.15 HystTrust: Trust Scores Computed based on Response Time . . . 169

Figure 7.16 HystTrust: Trust Scores Computed based on Service Time 169

Figure 7.17 HystTrust: Trust Scores Computed based on Availability 169

Figure 7.18 RATComM: Trust Scores Computed based on Response Time . . . 170

Figure 7.19 RATComM: Trust Scores Computed based on Service Time 170

Figure 7.20 RATComM: Trust Scores Computed based on Availability 171

Figure 7.21 Trust Scores Computed by MuDTComM and Fuzzy Mechanisms . 172

Figure 7.22 Effect of Weights on Trust Scores - MuDTComM vs Fuzzy 172

Figure 7.23 PTDiMech: Trust Scores Computed based on Response Time . . . 176

Figure 7.24 PTDiMech: Trust Scores Computed based on Service Time 177

Figure 7.25 PTDiMech: Trust Scores Computed based on Availability 178

Figure 7.26 PTDiMech: Trust Scores Computed with Equal Weights 178

Figure 7.27 PTDiMech: Trust Scores Computed with Different Weights 179

xvii

List of Abbreviations

ACTEM Adaptive Continuous Trust Evolution Mechanism

API Application Programming Interface

AWS Amazon Web Services

CDO Cloud Deployment Options

CSP Cloud Service Provider

DRM Design Research Methodology

DS-I Descriptive Study I

DS-II Descriptive Study II

FBCT Family-gene Based model for Cloud Trust

FIFO First In First Out

GUT Graphical User interface

HystTrust Hysteresis-based Trust Evolution Mechanism

IaaS Infrastructure as a Service

IdP Identity Policy

IdPS Identity Practice Statement

IDE Integrated Development Environment

ISO International Standards Organization

JVM Java Virtual Machine

KPI Key Performance Indicators

MemTrust Memoryless Trust Computing Mechanism

MP-SQQM Multi-Parameter Service Quality Quantification Mechanism

MTCEM Multi-tenancy Trusted Computing Environment Model

MuDTComM Multi-Dimensional Trust Computing Mechanism

PaaS Platform as a Service

PERMIS PrivilEge and Role Management Infrastructure Standard

PS Prescriptive Study

PSO Particle Swarm Optimization

PTDiMech Probability-based Trust Distribution Mechanism

xviii

QoE Quality of Experience

QoS Quality of Service

RAM Random Access Memory

RATComM Robust Adaptive Trust Computing Mechanism

RC Research Clarification

S3 Simple Storage Service

SaaS Software as a Service

SLA Service Level Agreement

SMI Service Measurement Index

SP Service Policy

SPS Service Practice Statement

SP-SQQA Single Parameter Service Quality Quantification Algorithm

SP-SQQM Single Parameter Service Quality Quantification Mechanism

TSS Trusted Platform Software Stack

VM Virtual Machine

VMM Virtual Machine Manager

xix

CHAPTER ONE

OVERVIEW

1.1 Introduction

This chapter presents a brief introduction to the proposed research along with the

general background information on cloud computing in brief including its features,

advantages, disadvantages and issues. The chapter also outlines the problem statement

and research questions, research motivation, research objectives, research scope and

the significance of the research along with the contributions. Finally the outline of the

proposal is presented at the end.

1.2 Background

Cloud computing has become very popular among the computing community in

the recent years. It has already has earned the nickname the 5th utility due to its

versatile and economic way of making resources available over the Internet [1].

Utilities make the resources available to a wider clientèle and charge them only for

the usage. Electricity, water, gas and telephony are the four major utilities that have

been commonly used in this manner before the arrival of cloud computing. Prior to the

emergence of cloud computing in the latter part of the 1st decade of 2000s, computing

resources such as hardware including processor power, storage, networks bandwidth

were either purchased outright and installed in the data centers owned and operated

by end users themselves or leased from public data centers on fixed monthly or annual

charges [2]. The clients installed the operating systems, tools and applications of

their choice on these hardware dedicated only for their use. Once the hardware has

been purchased or leased in this manner, the capacity of these systems were fixed

irrespective of usage. The computing resources thus installed in clients’ data centers

are generally underutilized. Recent surveys have found that in many data centers the

1

server utilization has been between 10% and 30% of their available computing power

and less than 5% in desktop computers [3]. On the other hand, underspending on

computing resources would affect business performance especially during peak times

due to lack of resources [4]. Both under utilization as well as over exploitation result

in losses due to wastage and loss of business respectively. Hence an ideal solution

would be the right sizing of the required resources with the capability to expand and

shrink to suit the demand patterns. Cloud computing systems can closely follow the

demand patterns during both peak and off-peak hours [5]. Hence cloud computing

offers the right platform for clients to host their services as it provides them with the

right computing solution that responds to their performance requirements at the lowest

possible cost.

1.2.1 Cloud Computing

Cloud computing has transformed the computing market from a product based one to

a service oriented one. Under cloud computing, both hardware and software resources

including computing power, operating systems and development platforms and user

applications have been made available for customers over the Internet to access and

pay for only the services received [1]. Prior to the appearance of cloud computing,

customers either purchased the hardware and installed them in house or leased from

public data center operators at fixed charges. Thus the investment on computing

resources was considered capital expenditure that did not follow the real usage

patterns. Figure 1.1 shows the capacity vs utilization curve developed by Amazon

Web Services (AWS) for storage requirements under the traditional purchase/own or

lease and cloud computing models [6]. From Figure 1.1, it can be seen that the actual

utilization of resources undergo heavy fluctuations in short as well as in the longer

runs. The short term fluctuations represent the changes in demand due to time of

day variations, where the demand peaks during working hours, subsiding towards

2

evening and in the total idle state in the late hours such as nights. The long term

changes include the seasonal patterns and then the permanent increase and decrease in

demands. Traditional computing model are unable to follow these changing demand

patterns resulting in the investment on computing resources sub-optimal. On the

other hand, cloud hosted systems can follow the demand patterns very closely even

responding positively to the short or long term fluctuations.

Figure 1.1. Capacity Utilization Curve [6]

For both start up as well as established organizations, the investment in computing

resources up-front creates a burden by reducing the available financial capital that can

be invested in their core business activities. Due to this limitation they might either

reduce the size of their operations or the capacity of computing systems. Doing any

of the above would affect the performance of the business due to lack of resources.

Generally, businesses commencing afresh would start small and grow larger with time

[7]. The growth patterns of these businesses at the beginning are unpredictable due to

many reasons including the customer acceptance, competition from other businesses,

general economic conditions of the country etc. If all the computing requirements for

the business are purchased and hosted in public cloud services, the usage patterns as

3

well as the investment on them would be totally synchronized with the real resource

demands. Also, the capital expenditure on computing resources would be minimal

as the clients are required to pay for the usage only like in telecommunications,

electricity, gas and water. In short, through cloud computing, it is possible to achieve a

complete transformation the way computing resources are accessed and paid for. Since

capital expenditure on the computing resources have been eliminated, it is possible to

invest that money on other core business activities [8].

The underpinning technology that makes cloud computing possible is hardware

virtualization [9]. Cloud computing resources especially the hardware are hosted on

virtualized systems [10]. Hardware virtualization partitions the hardware resources

logically into several time-shared or space-multiplexed units [11, 12]. These logical

units are then presented to the customers as fully fledged systems that can mimic

the entire physical system providing controlled access to the physical and logical

resources.

Cloud service offerings are currently divided into three main groups, Infrastructure

as a Service (IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS)

[13]. The cloud service offerings are explained in detail in Chapter Two. In order

to make the different service offerings possible, there requires to certain underlying

physical infrastructure. This physical infrastructure is made up of the actual physical

computing hardware along with a virtualization software installed on it. The physical

hardware is the real workhorse that carries out the processing and other work such

as temporary and permanent storage of data and application code, communication

with other systems etc. The physical hardware is generally provided in the form

of computing clusters, grids or individual servers [14]. The virtualization software

commonly known as the Virtual Machine Manager (VMM) creates multiple on the fly

4

virtual computers on top of the same hardware [15]. The VMM provides the necessary

isolation and security between the multiple virtual machines running in parallel on a

single physical computer.

Thus cloud computing provides many advantages to both service providers and

customers [16]. From the service providers perspective, they can improve the utility

and productivity of their hardware resources. Improving the utility of the systems

results in increased profitability per system. On the customers side, they can drastically

reduce the cost of computing services. The customers are no longer require to invest on

the computing resources upfront. This makes the computing resources as operational

expenditure rather than a capital expenditure [17]. Also they are required to pay

only for the usage, this make the investment on computing optimal as there is no

waste of resources. Since the entire processing hardware and software are installed

and maintained at the service providers site, the cost of human resources required

for the management of these resources is also reduced to the minimum. Presently

the requirement of Computing professionals is limited to desktop support for helping

the users with simple day-to-day problems. High end professional services such as

installing and managing server level services will be taken care of by the cloud service

provider.

1.3 Problems and Issues Pertaining to Cloud Computing

Though cloud computing provides many advantages to both customers and service

providers in terms of cost savings and utilizations, it still needs to earn the confidence

of the customers in certain other aspects for it to become commonly deployed and

successful technology [18]. The dynamic nature of cloud computing as a result of

the creation and hosting of virtual systems on the fly makes the performance of cloud

systems unpredictable [19]. Many of the commercial applications including multi-

5

tiered business applications, scientific data processing, multimedia applications that

can benefit from cloud computing are highly sensitive to quality variations [20]. The

service quality requirements to be met by service providers along with the penalties

to be imposed, in case of violation are specified in Service Level Agreements (SLA)

signed by the parties [21]. An example SLA to be signed between Amazon Web

Services (AWS) a leading cloud provider and its customers who wish to use its

Amazon Simple Storage Service (S3) can be found in [22]. As per the SLA, the

AWS commits to take commercially reasonable efforts to maintain the availability

of Amazon S3 at least at 99.9 percent during any monthly billing cycle. The

compensation for failing to meet the above commitment is service credit, which is

also described in the SLA. There is no further commitment made on any other service

quality expectations.

From the above discussion, it can be seen that the commitments made by leading

cloud service providers at present are too simple and does not consider the complex

application specific requirements. This kind of SLAs may not be strong enough to

attract business customers whose applications are more sensitive to fluctuations in

service quality in more than one dimensions (parameters) [23]. The situation has been

more aggravated by the news item reported in the media about the high-profile crash

of Amazon EC2 cloud services in 2011 [24]. This service outage affected many high

profile businesses, who had hosted their services at AWS. Not only the site was down

for many days and but also some organizations lost their data permanently.

Hence the cloud service providers need to come up with innovative methods to provide

the service quality demanded by different types of applications and also to assure

them that these commitments will be maintained. Also there should be independent

monitoring and verification of the claims by service providers that they have met

6

commitments made to the customers satisfactorily. Only if the above can be provided,

customers will have confidence on the service providers and would readily move their

applications to cloud systems in order to reap the benefits of cloud computing. If

an independent mechanism has been developed and made available for customers to

check and verify the service quality of different cloud service providers based on

customers’ requirements and providers’ prior performance before signing the SLA,

the violations of the commitments by the service providers can be minimized.

1.4 Research Motivation

The cloud computing provides very attractive proposition for both service providers

and customers alike at the same time. But people will take sometimes before they

accept cloud computing as their primary choice for handling all their computing

needs [3]. Especially the business community needs to be sure of many things

including security, performance, reliability, availability etc., before outsourcing all

their computing needs to a public cloud service provider [25, 26]. The performance

of computers is a vital factor for operational sustainability as businesses become more

and more dependent on computers for reaching a larger customer base [27, 28]. This

is mainly due to the reason that the service quality parameter values are stochastic and

vary significantly due unpredictable workloads, hardware and software malfunction

etc. This necessitates the need for knowing the current status of the system in terms of

its capability to meet the required service quality targets [29].

Hence the businesses need to continuously monitor the performance of their

computing resources [30, 31]. When business applications are moved to the cloud,

the need for monitoring them becomes more critical than before as the systems are

hosted remotely in a data center owned and operated by a third party service provider.

Many leading researchers in this field have also expressed the same sentiments on this

7

issue. For example, Garg et al. in [32] state that an effective service quality monitoring

mechanism is essential for making cloud computing acceptable to wider spectrum of

users. Ward and Baker in [33] have observed that monitoring is an important aspect

of large scale distributed systems including cloud computing. Mohamaddiah et al.

have carried out a survey of resource allocation and monitoring techniques deployed in

cloud computing systems [34]. But the monitoring discussed in this article is limited to

that of the service providers monitoring themselves for efficient allocation of resources

to increase the productivity of their systems. The monitoring system proposed by

Brinkmann et al. concentrates on monitoring the clouds for the purpose of billing [35].

They mainly concentrate on monitoring the system logs for obtaining data for this

purpose. Suakanto et al. have carried out and experiment to measure service quality

of cloud hosted web applications [36]. The experiments have used two parameters

namely, response time and the number requests timed-out (availability) to understand

the performance of cloud systems under increasing number of users. They finally

conclude that as the number users (requests) increase the service quality decreases in

terms of response time and availability. Despite the widespread popularity enjoyed

by cloud computing, cloud monitoring has not been received much attention from the

research community [37, 33]. This leaves a big gap that needs the attention of the

research community urgently.

Many researchers have approached the service quality issue from the service providers

perspective. The proposed mechanisms mainly concentrate on optimum resource

allocation while meeting the SLA signed with the customer with the objective of

revenue maximization [21, 38, 39, 40, 41, 42]. On the other hand, monitoring

cloud services from customers’ perspectives is also important. The monitoring

mechanisms that have been currently used in the cloud computing arena have been

an ad hoc collection of data collection, analysis, reporting, automation and decision

8

making software developed for other distributed computing paradigms such as high

performance computing, grid computing and cluster computing [33]. Though there

are similarities between some of the previous distributed system paradigms and cloud

computing in terms of size and scale of operations and scalability, there are certain

features such as virtualization and elasticity are unique to cloud computing only

[43, 44].

The above mentioned reasons played the role of catalyst in motivating to start a

research for developing mechanisms that can be used for monitoring and ranking of

cloud service providers based on their service quality.

1.5 Problem Statement

Before cloud computing becomes the primary choice of users for all their computing

needs many issues need to be addressed and solved [45]. Some of these issues that

need the immediate attention of the researchers and developers include the assurance

of service quality, energy efficiency, security and trust. Computers have become a

strategic tool for many businesses [46]. Computers now control the core activities

of many businesses. Hence prior to these businesses outsource all their computing

requirements to public cloud services, they need to be satisfied by the service quality

they receive as it will decide the performance of the core business operations. Service

quality of a given cloud system is not static as it will change over time due to many

factors such as the installed capacity, number of concurrent users and the demand

placed by each user application on the system [38]. Hence, prior to entering into an

agreement with service providers, customers need to be satisfied with the ability of

the provider’s ability to meet their demands [47]. Thus monitoring of cloud systems

for the service quality from the customers’ perspectives become imperative. Users not

only need the ability to identify the service quality of service providers but also rank

9

them accordingly based on it [32]. Though the need for the independent monitoring

of cloud services has already been identified, it is still an under researched area [33].

The QoS trust model, combined trust model and FIFO trust model have recently been

proposed for monitoring and quantification of cloud service quality using trust as the

parameter [48, 49]. However, these mechanisms do not address the complete picture

of monitoring and quantifying large cloud services spread over a large geographical

area from an independent monitor’s perspective. Moreover, these mechanisms have

not taken the dynamic nature of cloud system performance into account when arriving

at the final trust scores computed using the service quality parameters. The current

trust computing mechanisms deployed in the distributed computing arena also suffer

from certain shortcomings. The trust computing mechanism proposed by Gu et al.

[50] for cloud computing does not take the dynamic nature of the cloud systems

into account. Due to the customers arriving and leaving dynamically at a cloud

system, the performance of the system may exhibit momentary fluctuations. If the

fluctuations are contained within predetermined limits, the performance may still be

considered acceptable. This criterion must be included when the trust of a dynamic

cloud system is to be computed. The monitoring and trust computing mechanisms

proposed by Manuel [49] and Gu et al. [50] have a very limited reach geographically

as they are not distributed in nature. The super agent based reputation management

system for decentralized systems proposed by Wang et al. in [51] does not include

a mechanism for identifying the performance differences experienced by customers

located in different geographical regions. This is an important factor that must be

taken into account in computing trust of systems that serves a large geographically

distributed set of clients.

Therefore developing a complete monitoring mechanism capable of monitoring,

10

tracking, quantifying and distributing the dynamic service quality of cloud providers

is of essence. Thence the overall aim of this research is to propose mechanisms that

can be used to monitor, track, quantify and distribute the dynamic service quality of

cloud providers from the customers’ perspective.

1.6 Research Questions

In order to achieve the said purpose, the work has been organized in such a manner to

find answers to the following research questions.

Q1: How the service qualities of different cloud service providers can be monitored,

quantified and ranked?

Q2: What are the methods that can be used for adjusting the service quality scores

dynamically to reflect the current performance of the service providers?

Q3: How can the monitoring mechanisms proposed in answering Q1 and Q2 be made

to cover a larger geographical area?

1.7 Research Objectives

The aim of this research is to come up with mechanisms to monitor, track, quantify and

distribute the dynamically changing the service quality of cloud service providers. The

proposed mechanisms must be able to track the performance in many dimensions using

multiple service quality parameters and quantify them in an easily understandable

form as a single score. In order to cover a large geographical area, the proposed

mechanisms must be capable of using multiple monitors and sharing the scores

between them. This aim could be further explained with the aid of the following

specific research objectives.

11

O1: To develop mechanisms for monitoring and quantifying the service quality

of cloud service providers based on either a single parameter or multiple

parameters.

O2: To propose mechanisms for adjusting the service quality scores known as the

trust scores in response to the continued changes in performance of the service

providers.

O3: To come up with a mechanism for distributing and sharing the trust scores

between cooperating monitors with the aim of covering a larger geographical

service area for including many service providers.

1.8 Research Scope

The overall goal of this research is to develop mechanisms for monitoring and

quantifying the service quality of cloud service providers. The proposed mechanism

must support any customer to identify the right service provider, who could meet their

service requirements and rank them based on their performance. The customers must

be able to provide the monitor with a set of service quality parameters and the expected

values for them. Then by using the mechanisms proposed in this research, the monitor

must be able to quantify the service quality of the service providers in the region and

rank them accordingly for the purpose of identifying the most suitable service provider

for the customer.

Further, when quantifying the service quality in this research, only the service quality

of the infrastructure providers has been considered. Thus, the mechanisms proposed in

this research are more suitable for monitoring infrastructure services. The monitoring

and quantification of other services such as PaaS and SaaS are left for future works.

It must also be mentioned that the scope of this work is limited to monitoring only. No

12

attempt has been made to improve the service quality of providers or come up with

mechanisms or algorithms that would help service providers to improve their services

nor meet the customers’ requirements.

1.9 Significance of the Research and Expected Contributions

This research presented several mechanisms that can be used to monitor, quantify,

adjust and distribute service quality score known as the trust score of cloud service

providers. The proposed mechanisms are capable of monitoring the performance of

cloud systems continuously and adjusting the service quality (trust) scores proactively

based on their most recent performance. The proposed mechanisms, if implemented

by independent cloud service intermediaries such as cloud service brokers can

help the prospective customers to identify right service providers based on their

service quality requirements. Cloud service providers can also benefit from these

mechanisms. if implemented internally by detecting the service quality degradations

and take the remedial actions long before they become serious problems. With the

aid of the probability-based trust distribution mechanisms, customers can identify

the right service providers operating in a different geographical area than that of

the customers. Thus, the mechanisms proposed in this research can help multiple

stake holders including customers, service providers and cloud intermediaries such as

brokers, exchange owners and clearing houses. The contributions of this research are

summarized as follows:

C1: Mechanisms for service quality quantification based on either a single parameter

or multiple parameters.

C2: Mechanisms for modifying the service quality scores known as the trust scores

based on the continued performance of the service providers.

C3: A mechanism for distributing and sharing the trust scores between cooperating
13

monitors to cover the wider service area.

1.10 Organization of the Thesis

This thesis has been organized into eight chapters. Chapter One provides an overview

of the overall work including the outlines of the research motivation, problem

statement and research questions, research objectives, scope of the research and the

significance of the research along with the contributions.

Chapter Two critically evaluates and summarizes the literature relevant to the topic of

the study. The chapter provides the background information on cloud computing along

with discussion on the recent published work. The chapter also includes an in depth

discussion on the service quality monitoring and implementations in cloud computing.

Finally an in depth analysis is presented on the trust computing mechanisms proposed

for distributed systems.

Chapter Three establishes the research methodology adopted in this research work.

The design research methodology has been adapted to suit the requirements of this

work. The details of every step along with different approaches used within those

steps have been explained in detail.

Chapter Four presents the service quality quantification mechanisms proposed in

this research. The chapter service quality of cloud computing in detail along with

mathematical equations for a selected set of parameters that are commonly used for

measuring service quality in real time systems. Then the chapter discusses how service

quality of cloud computing can be modeled from customers’ perspectives. Finally

the chapter describes two service quality quantifications named SP-SQQM and MP-

SQQM, which quantify service quality based on a single parameter and multiple

14

parameters respectively.

Chapter Five discusses the trust computing mechanisms proposed in this research

in detail. The chapter presents how the two main trust computing mechanisms

Robust Adaptive Trust Computing Mechanism (RATComM) and Multi-Dimensional

Trust Computing Mechanism (MuDTComM) have been designed in a step by step

fashion. All the intermediate mechanisms that contributed to the final contributions

were explain in detail in this chapter.

Chapter Six explains the probability-based Trust Distribution Mechanism that help

share trust scores between cooperating monitoring and quantification nodes. The

mechanism has been developed from basic principles of conditional probability and

based on Bayes’ Theorem as the basis for accounting for the differences between the

performance values received and the perceived quality received by users.

Chapter Seven is concerned about the performance evaluation of all the mechanisms

proposed in this research. The chapter discusses the simulation environment used for

the evaluation of the mechanisms along with the benchmarking mechanisms that have

been used for validating the proposed work.

Chapter Eight concludes this thesis by summarizing the research along with providing

an outline of the limitations of this work and some suggestions for future work based

on findings of the study.

15

CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

This chapter presents the summary of the in depth literature survey carried as part of

this research. The literature review has mainly focused on cloud computing, quality of

service in distributed system with special reference to cloud systems and trust and trust

management systems. The main objective of the literature review was to understand

cloud computing in detail with special reference to quality of service monitoring

and how to quantize it. Special attention was paid to the current implementation of

trust computing system in order to understand their design principles, strengths and

weaknesses for incorporating them into the cloud systems for monitoring the service

quality. The study highlights the drawbacks of existing mechanisms with a view of

improving them.

2.2 Cloud Computing

Cloud computing has been considered the new paradigm in distributed computing

as that has revolutionized the way hardware, software and other resources have

been implemented, accessed, used and paid for [1]. Computing resources including

hardware, operating system platforms, development tools and applications hosted in

data centers are made available over the Internet for end users to access. Clients who

access these resources would be required to pay only for the usage of the resources

accessed. Prior to the introduction of cloud computing, computer systems especially

servers were purchased in the form of hardware and hosted in client owned data centers

or leased from public data centers. The cloud computing systems relieve customers

from the burden of purchasing, installing and managing computer systems also reduces

the cost of using these systems dramatically. Figure 1.1 shows the Capacity Utilization

16

developed by the Amazon Web Services [6]. From Figure 1.1, it can be seen that

the demand for computing resources shown by the darker coloured erratic line are not

uniform and shows variations in the short run as well as long run. Short term variations

are mainly due to fluctuations on workload during a day and the week. Usually the

demand for computing resources is high during business or office hours and goes down

towards the end of the day and no demand at all during off hours. Similarly, there may

not be any demand for computing during weekends depending on the type of work.

Long term demand variations can occur due to seasonal patterns of work. The other

important information that can be gathered from Figure 1.1 is that the average demand

is showing a steady increase continuously. The increase in average demand is due to

the growth of operations over time.

The commitment of computing resources is shown by darker coloured stepwise

and lighter coloured erratic lines. The dark stepwise line shows the commitment

of computing resources by traditional methods acquiring computing power, either

through outright purchase or leasing from public data centers. The lighter coloured

erratic line is the commitment of resources by cloud systems. It is very clear from

the graphs that the traditional ways of acquiring computing resources do not follow

the actual demand patterns and waste resources. If the capacity of the computing

resources available is more than what is required, then the resources are underused;

therefore wasting the precious capital invested. If the capacity available is less than

demand, then customers would be frustrated making them leave for better services.

Hence both overspending and underspending will result in loss to a business. On the

hand, cloud computing commits resources exactly what is required, not less not more

following the demand patterns both in short term as well as long term. The customers

would be required to pay for only what is accessed or committed making the entire

investment on computing immediately realized.

17

The cloud computing provides the right solution for any new business venture

irrespective of type of the business. Usually, when a new business is started, the

business pattern cannot be precisely predicted. Hence the amount that must be spent

on computing resources may also not be known in advance. So, committing capital

resources on computing may not yield the expected results. But, if the computing

resources were purchased from public cloud services, the available computing power

and other resources would follow the demand pattern closely making the investment

fully worth. Also, using cloud computing makes the investment on computing an

operational expenditure as opposed to a capital expenditure releasing the capital for

the core activities of the business [4].

2.2.1 Cloud Computing Service Offerings

Cloud computing service offerings are currently made available in the market under

three main categories namely, Infrastructure as a Service (IaaS), Platform as a Service

(PaaS) and Software as a Service (SaaS) [13]. IaaS is the raw virtual machine that

has been created by the VMM installed on top of the physical hardware. Each created

virtual machine presents itself to the user with its own CPU, memory, storage etc.,

depending on the requirement. This gives the impression that every customer has

working on his own dedicated private system [52]. A virtual system based IaaS can

be purchased as full system containing all the resources or individual components

(such as virtual storage, virtual computing power etc.,) from different vendors and

aggregate them together to form a single unit. PaaS is the offering of a complete

development platform as a service on a pre-installed operating system [53]. Thus PaaS

includes all the tools required for the development, testing and deployment of web

applications such as programming languages, project management tools, application

testing tools, application integration tools, Application Programming Interface (API)

etc. SaaS is the offering of computer applications as a service over the Internet [54].

18

Under SaaS, the web based applications installed in the cloud specifically on top of

both IaaS and PaaS can be accessed by customers as if they are accessing the locally

installed software and pay only for the duration of access. In addition to these three

main services, service providers have come up with innovative ideas and products that

are hosted and delivered as services over the Internet [55]. Figure 2.1 shows these

cloud service offerings in a structured diagrammatic format.

Figure 2.1. Cloud Computing Service Offerings

2.2.1.1 Infrastructure as a Service

Infrastructure as a Service or IaaS in short is the provision of virtual hardware as

a service over the Internet to prospective customers [56]. Under IaaS, hardware

resources including CPU cycles, storage space, memory, data, network etc., are made

available on a virtualized system. The virtualization software installed and hosted

on the real hardware creates multiple virtual copies of the hardware and present to

the users as virtual systems. The virtualized systems thus marketed strictly resemble

real systems and can be treated as real systems for all the practical purposes. Clients

can install any operating system and application as if they have been installed on real

systems. Hence more than one operating systems and applications can run on a single

physical computer in parallel at any one time without interfering with each other. The

VMM provides necessary security and isolation for these systems from interfering

with each other.

19

2.2.1.2 Platform as a Service

Platform as a Service or PaaS is the provision of complete application development

platform on a virtual system as a service over the Internet [57]. PaaS is installed

on top of IaaS that provides the underlying infrastructure with the necessary access

to physical hardware along with the security, privacy and isolation required. PaaS

offerings usually include operating system, databases, development and testing

tools, project management and coordination tools, deployment, monitoring, and

management tools, API and infrastructure underneath them [58]. PaaS provides

several advantages to the application developers compared to traditional development

environments. These advantages include the elimination of the costs and efforts of

evaluating, purchasing, installing, configuring, and managing all the hardware and

software needed for enterprise applications, reachability of a larger customer base

across a wider geographical area and lower cost for maintaining and delivering the

applications over the Internet [58]. Due to all these advantages, the cloud market has

seen several PaaS vendors hosting their services on the Internet in the recent times.

2.2.1.3 Software as a Service

Software as a Service (SaaS) is the model of hosting and delivering computer

applications over the Internet on a utility basis. Web based applications that can be

accessed using any standard web browser requires only slight customization to suit the

individual requirements. SaaS eliminates the cumbersome operations of purchasing,

installing and configuring of software, thus saving time and money for customers [47].

SaaS also provides the additional advantages of being accessible through the Internet

from anywhere and anytime while eliminating the upfront costs and licensing costs.

SaaS also lowers the in-house installed hardware costs as even low end computers can

be used to access the cloud hosted applications. Cloud based SaaS applications are

more reliable and scalable as their requirements are handled by the service provider

20

who enjoys the economies of scale due to larger customer base. SaaS applications also

include many features in common including personalization and customization to suit

the specific requirements of individuals. The capability to personalize the software

provides the feeling that they have been exclusively accessed by users similar to the

ones installed locally [59].

2.2.2 Cloud Computing Deployment Models

Cloud systems are divided into four main categories based on their deployment

models. They are namely private clouds, public clouds, hybrid clouds and community

clouds [60]. In private cloud systems, the complete computing infrastructure including

the servers, networks and applications is implemented within the organization that

owns and operates it. Public clouds are implemented by an independent commercial

organization that sells its infrastructure to many organizations and individuals at a

certain fee. A hybrid cloud is formed when an organization shares its computing

demands between an in-house cloud system and a public cloud system. An

organization may choose to implement any of these models depending on its

requirements including economy of operations, security concerns, criticality of

operations, efficiency or organizational policy. In addition to these three commercial

cloud models, there is another model called community cloud model, where several

organizations share the common computing infrastructure. Figure 2.2 shows the cloud

computing deployment models in a graphical manner. The following subsections

provide a detailed discussion on each of them.

21

Figure 2.2. Cloud Computing Deployment Models

2.2.2.1 Private Cloud

When organization implements a cloud system including the servers, networks

and software within the organization for its own use, it is called a private cloud

system. They are also called internal clouds or enterprise clouds as the entire cloud

infrastructure is housed behind the corporate firewall of the organization implementing

it. The administration of such system is the responsibility of the organization and is

carried out by the internal staff themselves. The clients of such a system are the various

divisions, departments or units within the organization. Out of the three models,

a private cloud is the most expensive one to implement while providing the highest

security [61].

According to the Gartner Institute, a private cloud has five key elements, they are as

given below:

• Both hardware and software resources are delivered as services.

• Possesses the flexibility to meet the requirements of the internal clients.

22

• Only shares the resources within the internal users of the organization.

• Has the ability to allocate the cost based on actual use.

• Standard Internet technologies including protocols, application and tools are

used for resource delivery.

Organizations implement their own private cloud systems due to various reasons.

Some of the common reasons for selecting a private cloud implementation and the

advantages for the organization are given below:

• A private cloud can pool resources that are distributed across multiple

departments and divisions while maintaining separation between them. Pooling

resources help to consolidate resources at a single location enabling higher

priority tasks to be allocated with higher capacities when required and allocating

those resources to other lower priority tasks at other times.

• Ability to reduce the cost of computing by co-locating the entire computing

infrastructure a single data center and manage it as a single unit.

• Freedom to define their own security as single unit and to manage it effectively.

• May act as starting point in embracing the cloud technology with the objective

of moving to a private-public hybrid cloud on a later date.

2.2.2.2 Public Cloud

Similar to any other public infrastructure, public cloud systems are also setup, owned

and operated by commercial service providers. The public service providers has the

ability to draw benefits from economies of scale through the establishment of large

data centers and distributing that cost among a large number of customers [62]. The

business model adopted by the public cloud service providers is known as system

either pay-as-you-go or utility model [1]. Due to the larger capacity of the public
23

cloud system resources compared to their private cloud counterparts, they have the

capability of seamless on demand scalability for meeting customer demands. Also,

the public cloud service providers can implement redundant geographically distributed

data centers resulting in better robustness in times of disasters. One of the main

factors to note when procuring services from a public service provider is that the

same computing infrastructure with generic configuration, security protection, and

availability variances are provided to all the customers.

Advantages

The advantages of public cloud systems over their private cloud counterparts are

summarized below:

• Low capital investment: Generally no upfront implementation cost along with

pay as you go payment scheme.

• Better development/testing environment for applications those scale to many

servers.

• Improved robustness, scalability and resilience.

• Lower administrative cost.

• Better disaster mitigation capability.

Disadvantages

The public cloud systems have certain drawbacks too. They can be summarized as

follows:

• Multi-tenancy and transfer of date over the public Internet creates a security

threat.

24

• Reduced control over how the sensitive information is handled in a public data

center.

2.2.2.3 Hybrid Cloud

A hybrid cloud system is created by merging a private cloud system with that of a

public cloud system. In such a system, a portion of the workload is handled by the

private cloud owned and operated by the organization while the balance is transferred

to a public cloud over the Internet [2]. Generally, hybrid clouds are implemented for

optimizing the advantages of cloud computing while minimizing the threats. Hybrid

cloud systems enable the ability to draw the economic benefits of public clouds while

flexibility of defining their own security plans for the sensitive data stored within

the private cloud. Also the hybrid clouds improve the flexibility and scalability of

computing through handling the base load within the organization while transferring

the spikes to the external cloud system. Augmenting the private cloud with the

resources of the public cloud would help successfully handle the unexpected demand

surges.

The pros and cons of hybrid cloud systems can be listed as follows:

Benefits

• Flexibility: mission critical and secure applications and data can be run on

private cloud while the public cloud can be used for development/testing

purposes.

• Scalability: Peak and bursty workloads can be channeled to the public cloud

while the private cloud handling the fixed base demand.

25

Risks

• Hybrid clouds are yet to be tested in a real world environment; hence hidden

dangers may lurch there.

• Managing security in a public private shared interface may prove to be difficult:

An adversary may enter the private cloud through the public portion of the cloud.

2.2.2.4 Community Cloud

A community cloud is created by sharing a cloud computing infrastructure by

several organizations [60]. Generally, organizations sharing common requirements

and concerns including security plans, compliance to standards, jurisdiction etc get

together to establish a shared computing infrastructure based on cloud technology

[63]. A community cloud system may be considered as a smaller version of a public

cloud serving a limited clientele. The cost of operating a community cloud lies

between that of public cloud and private cloud as it is shared by a selected set of users

(organizations). A community cloud may be hosted in-house at a member organization

or off-premises at a third party [60].

Similar to the cost, the pluses and minuses of a community cloud also lies between

that of public and private cloud systems. The complexity of managing community

clouds also more than that of private clouds as it is necessary to meet the demands of

many customers (partners). Different organization may have their own requirements

that conflicts with that of another partner organization. Hence there are several issues

that need to be addressed before moving on to a community cloud system. Some of

the prominent issues that need to be dealt with are summarized below.

• How to share the common expenditures such as support/maintenance and
26

operational costs, infrastructure/capital costs.

• How to manage the availability and service levels across the entire community

cloud.

• How to manage the contractual and security implications of data spread across

multiple organizations and in multiple domains.

• How to handle the legal impact of a service outage along with the responsibility

for answering it.

2.3 Quality of Service in Cloud Computing

Cloud computing systems may host thousands of globally dispersed clients at any

given time. These clients may access different types of services that have varying

requirements depending on the type of clients, services and resources involved. In

order to meet the requirements of clients and services, it is necessary to provide

a certain level of service quality by the service providers. Nevertheless, providing

a guaranteed service quality in such a challenging environment is not an easy task

[64, 38]. Though it is a challenging task, several researchers have undertaken to

develop mechanisms, frameworks and systems which could guarantee the service

quality requirements of different services. These methods mainly concentrate on

how to optimize the use of available resources while meeting the requirements of the

customers. The following is a brief look at some of the mechanisms, frameworks and

systems proposed in this regard.

The optimal resource allocation model for revenue maximization proposed by Feng et

al.in [21] has been mathematically derived and tested using both synthetic and traced

datasets. The proposed model performs better than heuristic optimization of resources

in maximizing profits. But the application of this method is limited as it considers

only the mean response time as the QoS attribute to be satisfied. For customers who

27

require guaranteed performance or at least a commitment in terms of a confidence

level cannot be served through this model. Hence from the customers’ point of view,

the model has limited application and may serve only casual users. A framework

for SLA management with special reference to managing QoS requirements has been

in [38] by Buyya et al. This architecture successfully integrates the market based

resource provisioning with virtualization technologies for flexible resource allocations

to user applications. But the proposed architecture concentrates more on helping

the service providers to optimize their resource allocation than looking at the service

providers’ performance from a customer’s point of view. A standard QoS framework

for managing cloud workflow systems has been proposed by Liu et al in [65]. The

proposed framework covers all the four stages of cloud workflow namely, requirement

specification, service selection, consistency monitoring and violation handling. The

short-coming of this framework is that it does not specifically identify any QoS

parameters and also does not discuss how to differentiate clients requiring different

QoS levels. The workflow scheduling algorithm proposed by Chen and Zhang is based

on Particle Swarm Optimization (PSO) [39]. The proposed mechanism can optimize

up to seven parameters specified the users compared to traditional optimization

techniques that consider only the workflow execution time. The downside of the

proposed mechanism is that it lacks a monitoring scheme for catching QoS violations

or punishing the violators. The cloud workflow scheduling model presented Li et

al. is novel attempt in customizing the environment to suit individual requirements

as it incorporates trust and QoS targets into the model [66]. In order to analyze the

users requirements and design a customized schedule, the authors propose a two stage

workflow model where the macro multi-workflow stage is based on trust and micro

single workflow stage classifies workflows into time-sensitive and cost-sensitive based

on QoS demands. The classification of workflows has been carried out using fuzzy

clustering technique. The proposed model restricts the QoS parameters considered

28

to response time, bandwidth, storage, reliability and cost. Also the delivery of QoS

is confined only to average values and no guarantee of service delivery is provided

at least in terms of a predetermined confidence level. This is a strong limitation of

the proposed technique as the users do not have the freedom to select their own QoS

parameters and no guarantee of the QoS delivery at the least a statistical validation.

The set of heuristics for scheduling deadline-constrained applications in a hybrid

cloud system in a cost effective manner in [40] attempts to maximize the use of local

resources along with minimizing the use of external resources without compromising

the QoS requirements of the applications. The optimization heuristics takes the cost

of both computation and data transfer along with the estimated data transfer times.

The main criteria in optimization is the maximization of cost saving. The effect of

cost factors and workload patterns on the savings have been analyzed along with

the sensitivity of the results to the different runtime estimates. The advantage of

the proposed methodology is that it can select an optimized set of resources from

both private (in-house) and public cloud systems for meeting the QoS requirements.

But at the same time it suffers from certain weaknesses. Though it is concerned

only about the deadline concerned applications, it does not consider the failures that

may occur after the scheduling has been done. The failure will increase the cost of

execution and affect the application in terms of quality. The scheduling heuristic

proposed by Emeakaroha et al. considered multiple SLA parameters in selecting the

right environment before deploying applications in the Cloud [41]. The attributes

considered include CPU time, network bandwidth and storage capacity for deploying

applications. These parameters have limited application in real world systems as they

need to be considered only during deployment. Once the applications have been ready

for client access, the customers would be more interested in performance attributes

including response time, processing time and availability. Hence this heuristic may

29

not have much practical significance in real world business environments.

Mushtaq et al. have investigated the effect of different factors on the Quality of

Experience (QoE) of multimedia users in a cloud computing network [67]. The authors

of this paper have grouped the factors that affect the QoE into four groups. They

are namely network parameters, characteristics of videos, terminal characteristics and

types of users’ profiles. The data collected through different methods have been

classified using machine learning techniques such as Naive Bayes, support vector

machines, k-nearest neighbors, decision tree, random forest and neural networks. Out

of these methods they have determined the best method for QoS/QoE correlation

after evaluating them. Hence it can be concluded that this paper discusses more

about the capabilities of machine learning techniques than about QoS or QoE. The

QoS/QoE correlation is a case for evaluating the machine learning techniques. The

main advantage of the lightweight framework for monitoring public clouds in [68] is

its low loading on local resources. On the other hand, it does not monitor the QoS

parameters such as response time, processing time etc., which the customers may

be more interested in. Similarly, Zhu and Agrawal have presented a framework for

handling adaptive applications in cloud systems in [69]. The proposed framework is

based on multi-input multi-output feedback control model for resource allocation. But

the model is limited to memory and CPU performance only, hence the application may

be affected by the underperformance of other resources such as network, disk drives

etc.

The profit model based on response time yields different results than that obtained

using traditional metrics [70]. This model shows that both under as well as over

allocation of resources affect profits. The right allocation of resources depends on

many factors such as available resources, workload distribution, system configuration,

30

and profit model. This is an innovative method of analysis the effect of managing

QoS on resource utilization. The results only discuss the effect of managing QoS, how

to provide an optimal allocation is not discussed. The cloud resource pricing model

proposed by Sharma et al. in [71] balances the QoS requirements and profits. This

model uses the realistic valuation for underlying resources using the age of resources.

The proposed model does not include utilization in computing the cost. Hence it may

lead to inaccurate projections.

The distributed resource allocation algorithm proposed by Adami et al. can be used

for both cloud and grid systems [72]. The algorithm is also capable of handling

multiple resource requirements. The criteria for optimization applied in this algorithm

is a compromise between the execution time and economic cost along with system

and network performance parameters as additional factors. The proposed algorithm

successfully incorporates many system and network performance parameters but fails

to consider the failures that may arise after allocating resources. The failures arising

after the allocation increase the cost of computation as they would require more time

for execution. Hence the cost based optimization used in the proposed algorithm may

not be accurate due this shortcoming. [73] reports the results of the performance of

virtualized hardware of two IaaS providers. In this work, the Dwarf benchmarks for

measuring the performance of these cloud providers has been used. This work shows

that labeling the actual performance as small, medium or large does not actually reflect

the true nature of a system along with the fact that some applications may run better

on certain hardware than the other ones.

The extensible dynamic provisioning framework for multi tenant cloud system

proposed by Gohad et al. enables efficient mapping of resources based on QoS

requirements [74]. The proposed framework starts by defining a tenancy requirements

31

model for helping map provisioned resources. The other index called the health

grading model handles the QoS characteristics of tenants. Together both these indexes

permit dynamic reallocation for existing tenants depending on changing requirements

or predicted health ratings. The proposed framework is innovative in the dynamic

resource provisioning sense, but may not be suitable for applications that have bursty

requirements. Also the proposed framework is based on starts small and grows large

criterion. But when new tenants arrive, the allocated resources are not deallocated

from the existing tenants, this would starve the new tenants of resources. The Nash

and Raiffa have been combined in the bargaining solutions to arrive at an optimal

allocation strategy in the optimum resource allocation strategy for cloud infrastructure

based on bargaining [75]. The proposed strategy handles the dynamic nature of cloud

very well during run time but the system does not permit to manage resources from

multiple sources. Hence if a single service provider cannot meet all the requirements

of the customer, he will be required to settle for a sub optimal allocation of resources.

The expected future workload is an important parameter in optimum allocation of

resources to different applications. In this direction, Sanchez et al. have investigated

the capability of Markov arrival processes based queuing models to predict future

workload of cloud systems [76]. The main downside of this model being tested only

with numerical experiments. Hence the true capability of the model remains to be

evaluated with real data traces.

An optimization framework for cross layer cloud services has been proposed in [77]

by Kouki et al. The optimization across multiple layers has been carried out enforcing

the SLA dependencies between them. The frame-work is very suitable for vendors

marketing multitude of services and also takes the dynamic nature of cloud systems.

The propose system currently lacks the run time management of QoS performance.

Wu et al. in [78] have proposed some algorithms for resource allocation for SaaS

32

providers to balance the cost of hardware and SLA violations. This proposed algorithm

takes certain QoS parameters such as response time and service initiation time for

satisfying the customers while minimizing the use of hardware resources. Theses

algorithms propose to reuse the already created VMs in order to minimize cost, but

it may create security problems for customers as the residual information in the VMs

can be used against them.

Chauhan et al. present a process model for identifying a cloud service provider for

a given set of requirements by matching SLA parameters [79]. This process finds a

match by creating two models called the capability model and requirements model,

which are then then translated to graphs for evaluating the compatibility. Based on

the compatibility, each node pair is given a mark between 0 and 1 from which the

final score is computed by summing them all. This is a good effort for automating

the process of matching the customer’s requirements with the service provider’s

capabilities. But, it does not consider the dynamic nature of the cloud services. It only

matches the published capability of cloud providers with customers’ requirements.

This is a major shortcoming of this process.

From the above discussion, it can be seen that most of the mechanisms listed above

focus on managing cloud workflows for enhancing the resource utilization, while

maintaining the service quality. The main focus of this research is to monitor and

measure the service quality of cloud service providers from the customers’ perspective.

The next subsection takes an in depth look at the mechanism proposed in the area of

monitoring cloud services.

33

2.3.1 Service Quality Monitoring in Cloud Computing

For cloud computing to become the preferred choice of customers, they need to be

satisfied with services they receive on many aspects [32]. Service quality is one of the

main aspects that must be satisfied by cloud service providers [80]. As discussed in

Chapter One, if the customers do not receive the service quality they were promised

with, their entire business would suffer defeating the whole purpose of moving to the

cloud. Also due to the attractiveness of the cloud services, many service providers

have been offering their service to the prospective customers. This proliferation of

cloud providers in the market has created a dilemma for customers to select the right

service provider, who would meet their requirements including service quality [32].

Hence cloud service quality monitoring and quantification have become one of the

most important requirements today.

Though the importance of cloud monitoring has been understood, it has not been given

sufficient attention by researchers compared to other areas related to cloud computing

[33, 37]. This research aims to fill this gap developing a set of mechanisms for

effective cloud monitoring and quantification. In order to understand the current status

of cloud monitoring, a thorough analysis of the available literature has been carried

out. Following is the summary of the analysis carried out in this regard.

The importance of dynamically monitoring the QoS of virtualized services has

been outlined in [42]. This work further claim that the monitoring of the services

would help both the cloud providers and application developers to maximize the

return on their investments in terms of managing the services and applications at

peak efficiency, handling changes in service performance promptly, detecting SLA

violations, failures of cloud services and other dynamic configuration changes. The

researchers mainly concentrate on Simple Network Management Protocol (SNMP)

34

based QoS monitoring. Since this is a concept paper describing work in progress,

no concrete proposal is put forward or evaluated. A framework for QoS Monitoring

and Benchmarking for cloud computing is presented in a typical cloud Application

As-a-Service in [29]. This framework mainly concentrates on monitoring application

components rather than the service quality of the underlying infrastructure. Hence

the proposed cross-layer detection mechanism is very narrow in scope and cannot

be adapted to monitor IaaS services. On the other hand, the monitoring mechanism

for storage clouds in [81] could monitor only storage clouds and lacks the capability

for generic implementations. Thus this mechanism falls short of the requirement of

monitoring the cloud systems for the purpose of ranking any cloud system. On the

extreme side, the client application for monitoring cloud QoS for iOS5 proposed in

[82] can be used by clients to monitor the performance of their cloud provider. The

main shortcoming of this application has been its limitation applicability for general

implementation as its design focuses narrowly on the available transfer rate and one-

way delay.

The QoS architecture based framework for ranking of cloud services presents an

extensive set of QoS parameters along with simple mathematical formulas to compute

them [83]. In this framework, the cloud service ranking unit has been treated as

black box and no implementation detail is given. This paper also falls within the

category of concept papers rather than one that is presenting concrete mechanisms

or implementation. On the same lines, the framework for ranking cloud services

proposed in [32] also defines the common service quality attributes providing

mathematical equations . The paper also introduces a weighting scheme for the

different parameters based on the user preferences. But the proposed method uses

static values for computing the ranks and unable to continuously track the performance

of the cloud system. Similarly, the QoS based cloud service provider selection

35

framework proposed in [84] contains a module with a ranked list of cloud service

providers. But there is no information about how this ranking has been carried out nor

any mechanism presented. Hence this work can only be considered as a conceptual

idea identifying the importance of cloud monitoring from the customers’ perspective.

Deviating from all the above work, some researchers have proposed the novel idea

of bringing trust computing into monitoring QoS of cloud systems, which have

been hitherto treated as two different domains. The trust management system for

IaaS providers proposed in [48] presents the idea computing trust using service

quality parameters. Though this is a novel proposal, the paper stops short of

proposing any mechanism. Thus, this is only a concept proposed in the direction

of combining the service quality and trust. The work proposed in [49] puts forward

a method for aggregating multiple service quality parameter values into a single

trust score. It then explains how this single score can be used to rank different

service providers. The mechanism proposed is simple and can be implemented by an

independent cloud monitoring service, so that prospective customers could consult this

monitoring service for identifying a suitable service provider. The main shortcoming

of the proposed mechanism is the non consideration of the dynamic nature of cloud

computing. Also the proposed mechanism is a standalone one that can monitor only a

small set of cloud providers in a specific region only. Hence it would not be feasible

for such a system to identify a suitable provider, even if he is providing acceptable

services, if he is not within the reach of the monitor. On similar lines, the trust

computing and management model proposed in [85] is claimed to have used multiple

QoS attribute to compute the trust value, but there is no clear explanation how these

parameters are combined or how to prioritize one parameter over other ones depending

on the user requirements.

36

Table 2.1 summarizes the service quality monitoring mechanisms/ models discussed

above highlighting the strengths and weaknesses of each of them.

Table 2.1
Summary of Features of the Service Quality Monitoring Mechanisms

Work Model Comments
[42] SNMP-based QoS monitoring Only a concept paper and

no concrete mechanisms for
implementation is presented.
Generally SNMP information
is not available to 3rd

party monitors or clients.
Hence lacks the capability
of being implemented as
an independently deployed
monitoring tool.

[29] QoS monitoring and
Benchmarking as a Service

Concentrates solely on
monitoring application
components. Cannot monitor
the performance of underlying
infrastructure.

[81] Monitoring mechanism for
storage cloud

Can monitor only storage
systems. Lacks the capability
for monitoring generic cloud
services.

[82] Client application for
monitoring cloud QoS

Implemented on iOS5. Very
narrow implementation focus
with only two parameters;
available transfer rate and one-
way delay.

[83] QoS architecture based
framework for ranking cloud
services

An extensive set of QoS
parameters along with their
mathematical formulas. But
the proposed framework has
been treated as a black box,
no implementation details are
provided.

[32] Framework for ranking cloud
services

The framework introduces
a weighting scheme for
parameters. The proposed
framework lacks the capability
to continuously track the
performance of cloud systems.

37

Table 2.1 continued

[84] QoS based cloud service
provider selection framework

Contains a ranked list of
service providers. But lacks
in detail how this ranking has
been arrived at. Also no
mechanism has been presented
for preparing such a ranking.

[48] Trust management system for
IaaS providers

Proposes the novel trust
computing mechanism using
service quality as input. No
mechanism is presented only
an idea was proposed.

[49] Trust model based on QoS Introduces the notion of single
score for ranking different
cloud services. The proposed
mechanism does not take the
dynamic nature cloud system
performance into account.

[85] Trust computing and
management model

Claims to have used multiple
QoS attribute to compute
the trust value. No clear
explanation how these
parameters are combined
is provided.

From the above discussion, it can be observed that the mechanisms and frameworks

proposed in the literature suffer from several shortcomings. For example, the work

of Alhamazani et al. try the capture the QoS from the existing network services such

as SNMP for capturing the performance parameters of cloud services, the work of

Stoicuta et al. is to narrow to employ in a general setting and the work of Goyal

et al. is a good attempt at quantifying the QoS performance of cloud services but it

does not allow users to select the required parameters or prioritize them. This is a

major shortcoming as QoS demands of cloud services are broad and different from

one service to another. Though there are shortcomings, Manuel’s work is in the right

direction as it can be implemented by an independent monitor. This mechanism can be

further developed for a more complete one, if the dynamic nature of the cloud system

can be incorporated into it. In order to handle the scholastic nature of cloud service
38

quality parameter values, the researcher proposes to incorporate probability into it as

an enhancement. Also the enhanced mechanism must be capable of monitoring large

number of cloud systems that is distributed across a large geographical area.

2.3.2 Service Quality Parameters in Cloud Computing

Prior to developing any mechanism for the quantification of the service quality for

ranking service providers, it is necessary to identify the parameters, which can

differentiate the services in an objective manner. Cloud computing is the result of

successful integration of many technologies such as virtualization, web 2.0, service

oriented architecture, web services, utility computing, etc [86, 87, 88]. Thus the

performance of cloud computing depends on the performance of these individual

components as well as the integration between them. Hence the parameters to be

identified will come from many technologies but with the same focus on identifying

the performance quality.

Service quality can be categorized into two specific groups, such as service

performance in terms of customer expectations and service providers’ targets [89].

Customers expect better services at the lowest possible cost while the service providers

want to maximize their profits through optimum utilization of their resources. The

main objective of this research is to quantify the quality of service of cloud providers

from the customers’ point of view, so that the best service provider meeting their

requirements can be identified.

A high level set of parameters representing the business-relevant Key Performance

Indicators (KPI) for establishing a standard method for measuring and comparing

business services have been presented in [32]. These parameters include

accountability, agility, cost, performance, assurance, security and privacy and

39

usability. Within these broad set of parameters they have identified a further subset

of factors that make these broad parameters. Though this is a good effort identifying

the factors that would make cloud computing more acceptable to customers in terms

of providing them right information on the service providers, it fails to give specific

definitions and mathematical formulations of the metrics at narrowest levels. Hence,

it is necessary to consult studies on the quality of service of different but related

technologies that make cloud computing possible. On the same lines, Xiong and

Perros state that the QoS can be defined based on parameters such as response time,

network utilization and throughput In [27]. This work concentrates only on modeling

QoS using percentile response time. The main reason cited for considering only the

response time is that in their own opinion, response time plays a much more important

role in the user satisfaction than all the other QoS parameters. The same argument is

placed by Bochmann et al. as well in favor of response time for electronic commerce

applications [90].

Multiple QoS parameters contribute to the satisfactory performance of many Internet

based applications [91]. It has been noted that transactional applications such as

web services demand better response times and throughput guarantees while non-

interactive batch job are more concerned with performance in terms of job completion

time and accuracy. The same conclusions have been arrived at in [92] as well. It further

states that interactive applications, due to their inherent nature of having an overall

short duration, lend themselves to automation at short control cycles. On the other

hand non-interactive jobs generally require calculation of a schedule for an extended

period of time [92].

A comprehensive set of parameters that can be used for web service recommendations

has been listed in [93]. These parameters have been categorized into multiple groups

40

such as runtime related, transaction support related, configuration management & cost

related and security related QoS. The detailed set of parameters thus identified include,

Runtime related QoS: scalability, capacity, performance (response time, latency,

and throughput), reliability, availability, robustness/flexibility, exception handling

and accuracy; Transaction support related QoS: transaction integrity; Configuration

Management & Cost related QoS: regulatory, support standard, stability/change

cycle, cost and completeness; Security related QoS: authentication, authorization,

confidentiality, accountability, traceability and auditability, data encryption and non-

repudiation.

The factors that change dynamically are considered to be more important than the

static ones in determining the overall quality of cloud services. This is mainly due to

the reason that clients choose cloud computing for their capability of dynamically

adjusting the resource allocations [94, 95]. The dynamic behavior of distributed

systems such as cloud computing not only depends on the capacity of the system

but also the current loading of the systems as well [96]. Hence the performance of

the system may degrade even if the amount of capacity of the system is large but

also need to serve a large number of customers concurrently. Also the random arrival

of user requests at the cloud data center may make certain servers overloaded while

others idle, if the systems are not properly managed [96]. Hence from the customers’

point of view, dynamic performance of the systems play a greater role in meeting their

performance requirements than the static ones such as cost, regulatory compliance,

customer support etc.

Hence only a selected set of dynamic performance parameters has been selected for

further analysis in this research. The selected parameters include response time,

service time or job completion time, availability, reliability and integrity. Though

41

only a specific set of parameters have been considered in this work.

2.3.3 Definition of Performance Metrics

The definitions of the performance metrics identified in the previous subsection are

given below:

Response time: is defined as the total amount of time elapsed between a request made

by a client and the initial response received from the server [97]. Response time is

considered as one of the important parameters from the customers’ perspectives [90].

Generally the response time of a distributed system is a result of multiple delays such

as server delay, network delay, transmission delay, queuing delay at various points

etc. in cloud computing there are additional delays such as identifying the necessary

resources for launching a virtual system and the actual time taken for spawning the

virtual server adds to all these delays. Out of all these delays, the time taken for

launching the virtual servers has major impact on the performance of cloud systems

[98]. The response time of public cloud service providers are not constant and show

large variations even among large and established service providers [99]. Hence

response time is one of the important parameters for measuring the performance or

the service quality of the cloud computing service providers.

Service time or Job completion time: also known as processing time is the total time

taken for a process to complete from the time of submission to the time of delivery

of the completed results [100, 101]. Service time depends on many factors such as

number of subtasks in the request, whether these tasks can be executed in parallel or

need to be carried out in sequence etc. It also depends on the system parameters such

as speed of the CPU and/or percentage of CPU allocation and sometimes speed and

amount of memory available too [102]. Service time plays a major role in determining

42

the performance of a system as this is the period how long an application occupies the

system resources. When a service request is placed with a cloud system, that request

can either be successfully completed or fail due to some reason. If the request fails to

complete in the first attempt, that request can be reattempted using one of the four fault

tolerant techniques [103]. Irrespective of how the task is completed, once results have

been successfully delivered, it is considered a successful completion of a request. But

the total processing time will be different depending on how many times the task was

attempted or the type of fault-tolerance employed by the system. This would affect

the user perception of service quality as he has to wait for a long time to get the final

results. Hence service time is an important parameter in the performance of cloud

computing.

Availability: is the proportion of times, a system is up and ready to accept and process

jobs from clients immediately [104]. A system may become unavailable due to various

reasons such as systems failures, power outages, network availability, too busy to

serve or malicious attacks such as denial of service. Businesses heavily depend on

the computer systems for their profitability. They lose business as well as customers

during the non performance of their systems [105]. One of the main reasons for

businesses shifting their computing requirements to cloud is the expectation of better

availability and responsiveness [106].Thus availability becomes an important factor in

deciding the service quality of a cloud systems provider.

Reliability: is the percentage of successfully completed jobs in a given time [107].

Public cloud service providers manage large data centers with hundreds of thousands

of servers equipped with various kinds of hardware resources. Irrespective of type

of technology used for manufacturing these hardware components, they may fail

sometimes within their specified lifetime. The probability of failure increases with

43

the size of the cloud computing system as the number of components making such a

system also becomes large. A single failure may affect the operation of an entire active

application disrupting many users [108]. Since failures affect the customers directly,

they will have an adverse effect on the business performance. Hence cloud computing

reliability is an important factor of service quality that requires special attention of the

providers.

Integrity: is the assurance provided by the service provider that the job assigned

will be carried as expected and the results produced are authentic and reliable [109].

Integrity of the operations can be achieved through ensuring that the request is not

tampered with prior to or during execution by a rogue user or malicious software

agent [110]. Also it is necessary to ensure that the work is carried out in reliable and

trustworthy computers as malfunctions may also modify the information. Similarly

data integrity is also an important aspect in cloud computing as it needs to be protected

from unauthorized access and modifications [111]. Thus integrity is also an important

factor in the service providers’ service quality.

2.4 Trust Computing and Management

Since it has been proposed to monitor the cloud service quality and compute a single

quantity similar to a trust score, it would be pertinent to look into trust and trust

computing at some depth. Pioneering work in trust and reputation has been carried

out by the researchers in social sciences for understanding the character and conduct

of societies [112]. Trust is a topic that has been extensively studied by researchers

in many fields including psychology, political science, sociology, anthropology and

economics [113]. The main focus of the psychologists studying trust is the mental

attitude. They study the workings and behaviors of human mind during the times

when he trusts or distrusts someone [114]. Several cognitive trust models have been

44

developed based on this notion [115, 116, 117, 118]. Social relationship between

people has been the sociologists approach to trust. During social interactions people

develop various degrees of trust between each other and the trust thus developed

play a major role in their future dealings and outcomes. In the field of computing,

social context of trust has been exploited for successful implementation of multi agent

systems, e-commerce, social networks and other interactive systems [113, 119, 120].

The similarity between human social interactions and computer based systems include

how they collect, filter and disseminate data for creating useful information to suit the

situations. The value of trust depends on its utility for economists [121]. Computer

scientists commonly use Game theory a tool that studies the interactions involving

conflicts and cooperation between rational minds with the goal of increasing the

individual values. The different strategies adopted during these interactions create

different levels of trust based on the outcomes of the strategies and actions [122, 123].

Prisoner’s dilemma, diner’s dilemma, platonia’s dilemma and the tragedy of the

commons are commonly used for studying how and why different individuals behave

in a specific manner [124, 125].

All these studies have contributed positively to the field of computer science as they

help understand the workings of human mind the resulting behaviors of people at

different occasions

Researchers in computing and related fields could exploit the benefit of these

studies as they provide a critical perception into human behavior under different

circumstances [119, 126, 127]. Open and distributed systems including peer to peer

networks, client server networks, grid computing, cluster computing, semantic web,

ontological modeling, web services, mobile ad-hoc networks and e-commerce have

all employed trust and reputation based algorithms, mechanisms and techniques for

45

various operations [128, 129, 130, 131].

The diverse and rich literature available on trust and reputation has created a mixed

situation with both advantages and drawbacks. The main advantage of the availability

of the literature from multiple fields for the computer scientists is that it provides a

deep insight into the field so that these models can be readily implemented. On the

other hand, diverse notions of scientists from different fields on a single subject create

confusion due to non-agreement for a single definition of trust. So, presently trust

means different things for different people and they use terms like attitude, belief,

probability, expectation, honesty and so on to suit their requirement and situation.

Though there is no agreement among scientists from different domains on a common

definition of trust, some common key factors and attributes can be identified in almost

all the definitions. They are;

• Trust becomes important only during the uncertain and risky situations.

• Trust becomes the basis for many decisions made during critical situations.

• Prior knowledge and experience plays a major role in creating trust or distrust.

• Trust is subjective and may depend on an individual’s opinions and values.

• Trust is dynamic as recent experience and knowledge resulting from it has the

ability to dominate over the old experiences and knowledge.

• Trust is circumstantial.

• Trust has more than one dimension.

According to McKnight and Chervany, trust is an aggregation of 16 characteristics

which can be grouped into five categories [114]. The main categories and

characteristics under them are as follows:
46

Competence: capable, expert, active.

Predictability: certain.

Benevolence: moral, goodwill, caring, responsive.

Integrity: honest, credible, reliable, dependable.

Others: assailable, safe, shared agreement, personally appealing.

Trust relations can be grouped into three main categories as hierarchical trust, social

groups and social networks [132]. Hierarchical trust creates a tree structure of

relationships with nodes representing individuals and edges symbolizing the degree

of trust between them. This tree structure allows any two specific nodes to specify a

trust degree between them by transiting through intermediary nodes. Social groups

are bound together through common well identified goals and objectives. The

members of a group share common interest information by propagating them to all

the other members. Trust plays an important role in creating and maintaining the

cohesiveness of social groups. Social groups are represented using graphs, where

nodes are members and the edges are links between them. Social networks are

created by establishing relationships with other individuals in a community. The word

relationship in this context has been given a special meaning as to the interaction

between the individuals in a network depending on the mutual understandings. By

walking through a social network, it is possible to discover the relationship paths

between the individuals in a network.

The four types of trust identified in [133] by Zhang et al. are as follows:

• Subjective vs. objective

• Experience-based vs. opinion-based

• Global information-based vs. localized information-based

47

• Ranked vs. threshold-based

Objective trust is created when an entity’s trustworthiness is measured objectively

against a universal standard. On the other hand, if the trust measured depends on an

individual’s preferences and interests, it is known as subjective trust. Decisions made

based on the results of an individual’s interactions are known as transaction based trust

and the trust built from the mere opinions is the opinion based trust. If information

from each and every node in a system is collected before building trust, then it is

known as either global trust or complete trust. On the other hand, if the information is

collected only from one’s neighbors, it is called the localized information trust. When

the trust worthiness of an entity is ranked from the best to worst or vice versa, it is rank

based trust whereas if the trust is declared yes or no depending on a preset threshold

value it is known as threshold based trust.

2.4.1 Trust Management in Cloud Computing

The popularity of cloud computing and the importance of trust management in

distributed systems have attracted attention of researchers from both academia and

industry. They are actively involved in developing models, methods, mechanisms and

techniques to make cloud computing trustworthy and acceptable to majority of users.

In this section, special attention has been paid for scrutinizing and understanding

the recent developments in management of trust in cloud computing and organizing

them in a coherent way for easy reference. Tt has been identified that it is possible

to enhance the security and dependability of cloud systems by integrating a trust

computing module into the existing cloud systems [134, 135]. This conclusion has

been arrived at after an in depth analysis carried out by the authors on the security

of cloud computing environments. It has also been proposed that the cloud trust

module must be entrusted with ensuring the confidentiality and integrity in cloud

48

system through proper authentication techniques.

In order to understand trust management in cloud computing from a user’s point of

view, what a cloud user wants from their service providers with respect to data security

and privacy has been examined in [136]. For the purpose of answering the issues raised

by prospective customers, the strategies that can be adopted by service providers for

enhancing the trust of customers on service providers has also been highlighted in this

work. The main aspects that play a vital role on the level of trust customers place

on cloud services and service providers include control, ownership, and security. The

main issues identified by the researchers for reducing the trust of customers in terms

of security and privacy of data include diminished control over the data and lack of

transparency from the service providers side. The researchers of this work further

state that certain actions from the cloud service providers’ side may act positively to

enhance the trust of customers. The identified actions that could enhance the user level

trust on service providers include the provision of remote access control facilities to

personally customize the security of user resources, automatic tracing and auditing

features to enhance the transparency of service provider actions, independent third

party certification of cloud security properties and capabilities and the provision of

a security enclave where users can define their own policies and mechanisms that

govern the security of their resources. A combined security framework integrating

different modules for handling trust and security related matters has been proposed

in [137]. The main issues addressed by this framework include identity management,

access control, policy integration between different clouds, trust management between

service providers and customers and trust management between different service

providers. The three main stakeholders specifically identified this framework are

customers, service providers and service integrators. The service integrator acts as the

mediator bringing the service providers and customers together. In order to achieve his

49

main goal, the service integrator discovers the services provided by various providers,

negotiates with them and composes different service bundles by combining services

from collaborating providers with the objective of meeting customer requirements.

The trust between different parties in the system is also managed by the service

integrator. There are four main components in the service integrator for managing

security, trust, service and heterogeneity. Each unit is assigned with specific tasks

to handle especially the heterogeneity management module handles the diversity of

different service providers. Further to these, there are other minor units for handling

minor but important tasks. Though it is a comprehensive proposal, it lacks any proof

of concept in the form of a prototype implementation. In a similar work, Song et

al. has found that providing unrestricted access by a remotely installed application

to private data in SaaS creates several security related issues [138]. A mechanism

that can independently verify the security by separating the data from the application

while creating a trusted binding between them has been proposed for addressing these

issues. The proposed mechanism anticipates the collaboration of four independent

stakeholders for achieving the maximum security. They are namely, the providers of

hardware resources, the application and the data along with the coordinator. Generally

the providers of application and data are the owners of the respective resources,

the resource provider is responsible for the provision of ancillary services such as

searching and location of resources and the implementing a secure interface for data

processing using the application. The coordinator plays the role of a broker bringing

all the other parties together.

The proposed mechanism suggests the following steps for successful implementation

of security:

• The application and the data to be uploaded by the respective owners to an

50

independent resource provider. It is necessary to encrypt these resources prior

to uploading them to an accountability vault module provided by the resource

provider.

• With the aid of a coordinator, the data provider finds a suitable application and

executes it on his data.

• An execution identification tag is provided to the data provider when the

application begins its operation.

• Once the execution is completed, the results are dispatched to the data provider’s

interface. The results thus delivered can be displayed on screen, printed in a hard

copy format or downloaded as it is by the data owner.

The service charges paid by the data provider will be shared by the application

providers of resources (hardware and application) and the coordinator based on their

contributions. On the completion of the execution, an operation log is generated

and posted on the application provider’s interface giving the type and duration of

use of the application without disclosing the identity of the data provider and the

content for security purposes. This operation log helps the application provider to

keep track of the utilization of his application. This proposed mechanism suffers from

certain apparent shortcomings in terms of its claims. There is no guarantee that the

application will not make its own copy of the data processed. Usually application

providers furnish only a brief description of their software along with the algorithms

used. No source code or implementation details are made available to third parties

outside the development team for protecting the intellectual property rights. Hence it

is not possible to guarantee that the software is free from any malicious code. Also the

application enjoys complete control over data as it runs with data owner’s rights and

privileges. This kind of security threat cannot be prevented even with a detailed audit

trail as they are unable to detect them.

51

A cloud trust model based on social security for managing security and related issues

has been presented in [139]. This model classifies the specific cloud security issues

identified social insecurity problem. A three pronged approach has been proposed

to address the security issues by dividing the social insecurity problem into three sub

problems. The three sub problems thus identified are problem of multiple stakeholders,

problem of open space security, and problems associated with handling of mission

critical data. The problem of multiple stakeholders in cloud computing has been

identified to arise due to the interaction of many stakeholders including customers,

service providers and intermediaries. At the beginning of the contract, the customer

and the service provider sign a service level agreement. Based on the conditions

stipulated in the agreement, the customer transfers some of the some of the powers

or authorities on his resources to the service provider. Though the customer may like

have the same security policies applied to the cloud hosted resources that he would

apply on the in-house hosted resources, there may be differences due to providers’

limitations. A provider is required to serve multiple customers, hence he is unable

change his policies to meet the specific demands of a single customer. Also, only the

conditions stipulated in the SLA binds the service provider to the customer, hence the

policies controlling the resources may be more relaxed than what a customer would

like to have. The SLA plays an important role in these situations by acting as a

glue between the service provider’s delivery and the customer’s expectations. In the

authors’ opinion, the data hosted on the cloud becomes open and accessible to anybody

including third parties depending on the strength of the authentication process of the

service provider.

The problem of open space security arises due to the delegation of control over the

data to the service provider. The service provider practically decides where and how

the data is physically stored and managed. The advice of the authors in this regard

52

is to have the data encrypted prior to transferring over the Internet. Once the data

has been encrypted, the security issue takes a new turn from the data security to the

security of the cryptographic keys. The cryptographic keys that have been employed

in encryption and decryption must now be protected without compromising the three

pillars of security, confidentiality, integrity and availability of the data. The mission

critical data handling problem concentrates on the issues that may arise when the

administration of mission critical information has been transferred to a third party. The

solution proposed by the authors for handling this kind of issue is to maintain a hybrid

cloud computing system where only the less important data is hosted in the public

cloud while retaining the full control over the mission critical data in private portion

of the system. However this proposal may not be scalable to meet the requirements

of small and medium enterprises as setting up a private cloud may incur high costs.

The only way to overcome this issue is to enhance the security of the public cloud

system. In order to address the issues discussed above, a mechanism known as c̈loud

trust modelḧas been proposed in [139]. This model comprises of two additional layers

called internal trust layer and contracted trust layer in addition to the conventional

trust architecture. The internal trust layer installed within the customer premises on

systems owned and managed locally. The internal trust layer is the foundation on

which the entire trust architecture is built upon. The main function of the internal trust

layer is managing credentials and security keys. The mission critical data requiring

extra security is also stored under this layer. Contracted trust is enforced through

an agreement namely the service level agreement. The service provider affords trust

to the customer through the agreement signed between them. The contract usually

contains three main documents namely, the Service Policy/Service Practice Statement

(SP/SPS), the Identity Policy/Identity Practice Statement (IdP/IdPS) and the service

contract. The degree of trust preferred is negotiated by the parties based on the

security needs of the information. A cloud computing system protected through all

53

these policies and mechanisms is identified as a secure cloud system by the authors.

The domain-based trust model proposed in [140] ensures security and interoperability

of cloud and cross-cloud environments. The domain-based trust model incorporates a

security framework along with an independent trust management module built on top

of traditional security modules. In addition to the trust model, a trust based security

strategy for the safety of both customers and service providers has also been proposed

in the same work.

A fundamentally different trust model based on family gene technology has been

proposed in [141, 142]. This model deviates to a great extent from the traditional

trust models that rely on public key infrastructure for handling the authentication and

authorization processes. An in depth study on the basic operations of Authentication,

Authorization, Accounting and Auditing (AAAA) management processes along with

access control has been carried out and based on the findings, the authors have

proposed the Family-gene Based model for Cloud Trust (FBCT) that integrates all

these processes.

CARE resource broker is a framework for metascheduling of virtual grid resources

in an efficient manner [143]. This CARE resource broker has been integrated with

Kerberos and PERMIS (PrivilEge and Role Management Infrastructure Standard)

authorization standards for creating an enhanced resource broker in [144]. In this

enhanced trust model, the resource broker itself evaluates the trustworthiness of the

resources prior to selecting them. The proposed system can be used for computing

trust scores of both grid and cloud computing resources. The proposed model consists

of three primary units named security degree evaluation unit, feedback evaluation unit

and reputation trust evaluation unit for computing trust. The security degree evaluation

unit carries out an assessment of resources depending on authentication/authorization

54

mechanisms and self security capability mechanisms. The model has been designed in

such as manner that it supports different authentication and authorization mechanisms

along with self security assurance capabilities. The trust score thus computed depends

on the strength of individual mechanisms employed. The feedback evaluation unit

also has three distinct sub units known as feedback collection, feedback verification

and feedback updating units for aiding in the computation of its trust scores. The

reputation trust evaluator computes its own trust score based on the capabilities of the

resources accessed in terms of computational and network parameters. The final trust

scores is the arithmetic sum of all three individual scores computed.

The SLA based trust model proposed in [145] consists of many components including

SLA agents, consumer management module and services catalog. The SLA agents

are the primary units playing the main role in this model by grouping the customers

to classes depending on the needs, designing QoS parameters, negotiating with

and selecting the cloud providers based on the capabilities and non functional QoS

requirements and monitoring the activities on the customers’ behalf based on the

agreed upon QoS parameters. The main function of the consumer module is soliciting

and executing certain services outside the cloud system. Cloud service directory

is the common platform for providers and customers. Service providers advertise

their services on the directory giving all the details including type of services and

capabilities. Customers search the same directory for identifying the right service

provider who could meet their demands in terms of functional and non functional

requirements. The proposed model has not been implemented or tested for its

functionality and effectiveness. A fuzzy theory based trust model for cloud computing

is proposed in [50]. This trust mechanism considers response time as a basis for

computing trust. Thus, this mechanism lacks the support for including multiple service

quality parameters in its computation. The strength of thus mechanism lies on the fact

55

that it is based on strong theoretical foundation and has the capability to continuously

evolve the trust score based on performance.

The multi-tenancy trusted computing environment model (MTCEM) a two level

transitive trust computing mechanism delivers trusted IaaS services to customers

[146]. MTCEM also possesses the additional capability of security duty separation

between stakeholders. Cloud systems in the public domain include multiple

stakeholders including service providers, customers and intermediaries. Hence the

resources may at the same time be part of multiple security domains serving different

security specific functions. The objectives of the different stakeholder may be different

and demand radically opposite outcomes such as the best services by customers and

the maximum return on investments by the service provider. Both these demands

cannot be met at the same time without compromises. This requires the cloud system

to be capable of compartmentalizing the customers and service providers for the

purpose of separation of powers by clearly defining responsibility boundaries for

both parties. MTCEM adopts a two-level hierarchical transitive trust chain model

supporting separation of duty. MTCEM identifies and supports three distinct types of

stakeholders with specific functions and duties. They are service providers, customers

and auditors by name. The service provider ensures that the infrastructure maintained

by him is trustworthy while the customer responsibility begins at the guest operating

system installed on the service provider’s infrastructure. The duty of the auditor is

to monitor the services of the providers on customers’ behalf in order to ensure the

conditions stipulated in the service agreements are met. The prototype system has

been implemented as a proof of concept but lacks any performance evaluation.

The existence of firewalls in networks has been overlooked in many of the trust

models proposed in the literature [147]. This conclusion has been arrived at after

56

a comprehensive study of existing trust models and firewall technology. This has

been identified as a major shortcoming as firewalls are indispensable elements in any

corporate IT infrastructure. In order to overcome this shortcoming, a firewall-through

trust model based on cloud theory has been prposed in the same work. This model

proposes a dynamic trust computing mechanism that continuously updates the scores

based on the performance. Though this model has certain advantages, it has not yet

been implemented or tested. The advantages of this model over other ones include:

• It implements different security policies based on stakeholder domains and

requirements.

• The final trust score is computed considering the transaction context and the

historical data arriving at a value reflecting both.

• The trust model is consistent with local firewall control policies requiring no

changes.

A watermark-aware trusted application execution environment has the ability to

overcome the security issues in cloud computing [148]. Such a watermark-aware

environment can protect the applications from undeclared dangers hidden in the cloud

systems. Two main components namely, the administrative center and the cloud

server environment in the proposed model clearly separate the responsibilities and

the functions of the parties involved. The main function of the administrative center

is to embed a watermark for creating a customized Java Virtual Machine (JVM). The

collection of customized JVMs creates a trusted server system, where only complete

and specific Java programs are allowed. All the other non validated programs are

barred effectively eliminating all the malicious invasion applications

An identity management of cloud systems independent of any third party involvement
57

has been proposed in [149]. The proposed system uses predicates over encrypted data

enabling multi-party computing with both trusted and untrusted hosts in cloud system.

The proposed system is rugged in the face of correlation and side channel attacks due

to non involvement of third parties in the authentication process. But the system can

be affected by denial of service attacks due to the non execution of active bundle in

the remote host.

Table 2.2 presents the summary of all the trust computing mechanisms discussed

above.

Table 2.2
Summary of Trust Computing Mechanisms for Cloud Computing

Work Mechanism/Model Comments
[136] (No model is proposed in this

work)
This is only a discussion
on how to create trust on
service providers from the
users’ perspective.

[138] Trusted binding between data
and application

It discusses how to isolate the
data from applications and
to create a trusted binding
between them. Details of
the implementation is not
provided.

[139] Cloud trust model for
managing security related
issues

The model is based on social
security. A three pronged
approach has been proposed
to handle the security related
issues. Concentrates only
on security, no other issues
including performance has
been discussed.

[50] Fuzzy theory based trust model
for cloud computing

It supports only a single
parameter namely response
time for computing trust.
It lacks the capability
for incorporating multiple
parameters.

58

Table 2.2 continued

[140] Domain-based trust model Ensures security and
interoperability of cloud
systems. Mainly focuses on
security. No discussion on
quantifying user trust has been
carried out.

[141, 142] Trust model based on family
gene technology

This model concentrates on
integrating the AAAA process
rather than quantifying the user
trust on cloud systems.

[143] CARE based trust computing
mechanism

This mechanism integrates
CARE resource broker with
Kerberos and PERMIS for
creating an enhanced resource
broker. This mechanism also
concentrates on authentication
and authorization, rather than
on quantifying user trust based
on the performance of the
system.

[134, 135] Trust module for enhancing
security and dependability

A cloud middleware
named Trusted Platform
Software Stack has been
developed for enhancing two
pillars of security, namely
confidentiality and integrity.
This attempt also concentrates
on enhancing security of
the cloud system rather than
measuring the dependability
of the system from the
customers’ perspective.

[137] Security framework for
handling security and trust

The issues handled by the
framework include identity
management, access control
and policy integration between
two cloud systems. These
issues mainly concern the
service providers. Hence
this framework is also not
suitable for the identifying
the performance of service
providers from the customers’
perspectives

59

Table 2.2 continued

[145] SLA based trust model Discusses mainly the
importance of SLA in
matching the customers’
requirements to providers
capabilities. Though it has
several important modules
such as SLA agents, consumer
management module and
services catalog, it is not
possible to evaluate this model
as this system has not been
implemented. Hence this
proposal also falls under the
category of conceptual ideas
towards coming up with a trust
computing mechanism for
cloud computing.

[146] MTCEM This is two level transitive
trust computing mechanism
with the ability of security
duty separation. Though this
model is proposed to have
many positive things, it has not
been properly implemented
and evaluated. Hence this is
still a work in progress.

[147] Firewall-through trust model Intends to incorporate the
existence of firewalls in to
the trust model. Contains
a dynamic trust computing
module for updating trust
scores continuously. This
model is also yet to be
implemented or tested.

[148] Watermark-aware trusted
application extension
environment

This mechanism also
concentrates on security
of cloud systems rather than
performance. It tries to protect
the application from dangers.
Hence this mechanism is
suitable for service providers
rather than helping the
customers to identify the
suitable cloud provider.

60

Table 2.2 continued

[149] Identity management of cloud
systems

Uses encryption data
for enabling multi-party
communications that include
both trusted and untrusted
entities. This implementation
also looks at helping service
providers and hence cannot
be deployed for identifying
suitable service providers
based on their performance.

From the above discussion, it can be seen that the cloud trust management systems

are suffering from several shortcomings including the fact that many of the proposed

models lack prototype implementation for proof of concept. Many of the proposed

models are incomplete and do not meet all the requirements of a cloud systems. In

addition, except for the fuzzy theory based model proposed in [50], all the others lack

a firm theoretical foundation to base the implementation on solid footings. Thus, in

this research fuzzy theory based trust computing mechanism would be used as the

basis for developing an improved trust computing mechanism.

2.5 Summary

This chapter mainly concentrated on a critical analysis of published literature in the

broad areas of cloud computing, quality of service and trust computing. The main

purpose of this literature review is to understand the work already carried out in the

area and to find the research gap for formulating the guidelines for continuation of

the work. The chapter summarizes the entire literature review under various properly

selected sections and subsections for clarity.

61

CHAPTER THREE

RESEARCH METHODOLOGY

3.1 Introduction

The primary objective of this research project is to come up with an adaptive trust

based quality of service monitoring mechanism for cloud computing. The overall

design of the mechanism is expected to have three submodules meeting the objectives

presented in Chapter One. The mechanism developed as part of this project must

be evaluated with a view of verifying and validating its operation to ensure that it

achieves the objectives set out in Chapter One. It is important that the research project

has been carried out according to well defined plan, so that the methods adopted at

various stages of the project are scientifically valid and can be verified to produce

similar results, if repeated under same conditions. This chapter presents the research

methodology adopted in this work in order to achieve the said objectives in a valid

and verifiable way. The Design Research Methodology (DRM) [150] proposed by

Blessing and Chakrabarti provides the basis for the methodology presented in this

chapter. The proposed research methodology incorporates the modified or adapted

stages of the DRM in order to make them better suited for this research project. The

proposed research methodology consists of four phases as Analysis, Design, Testing,

and Evaluation as shown in Figure 3.1. The DRM, in its basic form also consists

of four main stages; research clarification, descriptive study I, prescriptive study and

descriptive study II. Figure 3.2 shows the stages of the Design Research Methodology

along with the relationship between the stages, the means adopted at each stage and

the main outcomes.

Section 3.1 discusses the overall research approach adopted in this research project

for achieving the research objectives formulated in Chapter One. Section 3.1

62

Figure 3.1. Research Methodology

further explains in depth how the DRM has been modified to suit the requirements

of this project along with specific approaches employed in each stage along with

the corresponding deliverables. Section 3.2 presents the first stage of the DRM

methodology namely, Research Clarification (RC), along with the modifications that

have been incorporated for the purpose of meeting the requirements of this research

project. The discussion centers on the aims of this stage, methods used in this stage and

the deliverables. Section 3.3 describes the adapted version of Descriptive Study I (DS-

I), the second stage of DRM with special emphasis on understanding the current status

of technology, design and propose a conceptual model based on the gap identified. The

methods adopted in designing the trust based quality of service monitoring mechanism

are presented in Section 3.4 under the Prescriptive Study (PS) phase of the DRM.

Section 3.5 highlights the performance evaluation methods employed in this project
63

Figure 3.2. Stages of Design Research Methodology [150]

along the discussion of metrics used. Finally, Section 3.6 concludes the chapter

providing a comprehensive summary of the chapter.

3.2 Research Approach

The main objective of this research project is to develop a quality of service monitoring

mechanism based on trust computing principles that can adapt itself to the changes in

the behavior of the service providers. By adapting to the changes in the behavior of

service providers, the monitoring mechanism will furnish the most recent and accurate

information on the ability of them to meet the demands of the customers. The research

approach adopted in this project must be scientific and comprehensive enough to guide

the entire process from the beginning until the end, so that the experiments conducted

and results produced are trustworthy and repeatable in comparable environments.

The methodology adopted in this research consists of four main phases. They are

namely analysis, design, testing and verification & validation. In order to make the

64

research approach scientifically strong and valid, it was decided to adopt features

from the well established and scientifically proven DRM into the proposed research

methodology [151, 152]. The DRM can be considered as an approach, guideline or a

framework of supporting methods that enables the design research to be more rigorous,

effective and efficient making the outcomes valuable both academically and practically

[150]. The main objectives of DRM are as follows:

• to provide a framework for researchers to conduct design research efficiently;

• to help researchers to identify research areas that are both academically and

practically challenging and useful;

• to enable researchers to select and combine more than one research methods

effectively; and

• to provide guidelines for rigorous and systematic research planning.

Figure 3.3 shows the different phases of the research methodology adopted in this

work in the light of DRM stages along with the methods used to achieve the objectives

of each phase/stage and the expected deliverables. The main phases of the research

methodology are analysis, design, testing, and verification and validation. The

corresponding DRM stages are research clarification, descriptive study I prescriptive

study and descriptive study II. The process flows between the stages are shown in

narrower arrows while the thicker arrows associate the methods used with the different

stages of the DRM to the deliverables at each stage. The following sections provide

brief explanations for each phase/stage in conjunction with the explanation of methods

and deliverables.

65

Figure 3.3. Research Approach

3.2.1 Analysis

The analysis phase of the research methodology is made up of the combination of

both clarification and descriptive study I of DRM as shown in Figure 3.3. This phase

mainly concerns with obtaining a clear understanding of the research project including

the background, research problem, gap, questions and objectives culminating with the

development of a conceptual model. The methods adopted at this phase include critical

review of existing literature and experimental analysis of existing mechanisms, in any.

Further details of this phase are discussed in the first two stages of DRM.

3.2.1.1 Research Clarification

It is necessary to obtain a clear understanding of the research to be conducted at

the beginning itself. By obtaining a clear and precise understanding of the current

status of research area selected, it would be possible to define the goals of the research

project with a challenging but realistic project plan. The research clarification stage

66

can be further divided into six steps as shown in Figure 3.4. These steps are inherently

iterative helping to improve the results towards the objective gradually.

Figure 3.4. Main Steps Involved in Research Clarification Stage

The method adopted at the research clarification stage is the analysis of the existing

published literature in the chosen area. At the end of this phase, the researcher would

have acquired a broad and in depth knowledge in the chosen field especially the

strengths and weaknesses of the current approaches and mechanisms. The weaknesses

of the current approaches will be exploited to identify the research gap and then

formulating research questions and objectives.
67

The main deliverable at the end of research clarification stage is Chapter One of the

thesis. In addition to the main deliverable, a research (survey) paper could also be

produced as subsidiary outcome. The research plan formulated at the conclusion of

this stage would include the following:

• research focus and motivation,

• research problem and questions,

• research objectives,

• areas to be studied in depth,

• research approach including type, scope, important milestones, methods to be

adopted and contributions.

3.2.1.2 Descriptive Study-I

The Descriptive Study I (DS-I) makes the second part of the analysis phase of

the research methodology. During the DS-I stage, the research area identified in

the RC stage would be further investigated with the view of obtaining an in depth

understanding of the current status of the specific area selected. The method adopted

at this stage would include critical review of the literature along with experimental

analysis of the existing approaches, where possible. During the course of this research,

an in depth study on the existing solutions was carried out [153, 154, 155, 156]. DS-I

is made up of five steps as shown in Figure 3.5, which must be applied recursively

improving the understanding of the process further and deeper. The conceptual model

to be developed as part of the DS-I stage will also be refined and improved at the

application of each step as the deeper understanding of the shortcomings of the current

techniques or mechanisms would work as a catalyst for developing better solutions.

The expected deliverables at the end of DS-I include:

68

Figure 3.5. Main Steps in Descriptive Study - I

• critical review of quality of service monitoring in cloud computing as presented

in Chapter Two and

• conceptual model for the proposed service quality monitoring mechanism.

Conceptual Model

In order to make cloud computing more useful and acceptable by customers, it is

necessary to increase the users’ confidence in the technology and the service providers.

Prior to adopting this technology as their primary mode to computing services, clients

are required to select the right service provider, who will meet their requirements in

terms of cost as well as performance [157]. Hence it is necessary to have a mechanism

that can effectively monitor the service quality of the providers and quantify it in such

a manner that users can select the most suitable cloud provider. In order to meet this

requirement, the overall objective of this research has been formulated as to develop

an effective service quality monitoring mechanism for cloud computing. Three sub-

objectives have then been identified with the aim of simplifying the tasks. The sub-

69

objectives being:

i. to develop a technique for modeling and quantifying service quality to a single

score,

ii. to formulate a mechanism to dynamically adjust the service quality score, and

iii. to devise a method for distributing the quantified service quality score between

cooperating monitors.

For the purpose of attaining the above said objectives, a conceptual model of the

research has been formulated. Figure 3.6 shows the conceptual model developed at

the end of Descriptive Study-I.

Figure 3.6. Conceptual Model

3.3 Design

Phase 2 or the design phase of the research methodology starts from the conceptual

idea formulated in Phase 1 for solving a research question and ends with the

development of technique or mechanism. Until the conceptual idea formed in Phase 1
70

matures to a complete mechanism that can be functional tested, the processes in this

phase must be repeated.

The design phase of the research methodology makes the upper part of the Prescriptive

Stage of the DRM as shown in Figure 3.3. For the purpose of this research, an iterative

model, design, test and integrate approach has been selected. Figure 3.7 shows the

steps involved in the mechanism development process.

Figure 3.7. Mechanism Development Process

The main steps of the design phase (prescriptive study stage) include the specification

of the proposed mechanisms, model development, model implementation and model

validation as shown in Figure 3.7. The model development process is generally a

complex operation with many sub-processes (sub-steps) that must traversed many

times iteratively. Many assumptions and simplifications may be made at this stage

depending on the complexity of the model in order to arrive at realistic design. Model

implementation is basically the integration of the sub-units as a single, large and self

contained unit that can carry out a defined task independently and testing for the overall

71

functionality. The model implementation involves coding and building (compiling and

linking) on the chosen simulation environment. The model validation is the integration

testing process that must be carried out to ensure the proposed mechanism fulfills the

intended objectives. Detailed discussion these sub-processes are given in the following

subsections.

Deliverables at the end of the design phase are:

• modeling of the proposed mechanisms,

• design, implementation and validation of the model,

• Chapters Four, Five and Six and

• several research papers.

3.3.1 Model Development

From Figure 3.7, it can be seen that the mechanism development process is essentially

an iterative process going through several refinements until a satisfactory mechanism

has been arrived at. At the beginning of this process, the conceptual idea must be

broken down into self contained functional units. These individual units must be

capable of accepting inputs, process them and produce outputs that can be further

processed by other downstream functional units. Each individual unit must be modeled

and designed using the most appropriate technique including mathematical, statistical,

iterative or any other. Once a functional unit has been fully modeled, it must be tested

for its operation. Operational testing of the units can be carried out either through a

manual or automated process. Manual testing of functional units is generally carried

out through a paper-pencil method, where the operation of the unit is computed using

user controlled inputs and results are generated. Manual testing of each unit for

the entire input range would be very tedious and very error prone. There is also a

72

chance of missing abnormal behavior of the units for certain specific input values

as the testing would only consider a sample of all the possible inputs. Automatic

testing of the functional units can be carried out by designing an appropriate computer

algorithm and implementing it using computer software. The automatic testing of the

units would be more comprehensive, accurate and efficient compared to the manual

testing as it is possible to consider the entire range of inputs in a shorter time. The

output can also be better visualized with the aid of graphical utilities such as Gnu

Plots with two or three dimensional plots. Presenting outputs in graphical formats

would help understand the operation easily and detect abnormal operations faster.

The downside of the computer based testing the difficulty of implementing complex

mathematical operations represented by differential equations, Fourier transforms etc.

This shortcoming can be overcome by using an advanced analysis software like Matlab

using built-in libraries [158]. The built-in libraries are more accurate and easier to

implement than functions implemented using general purpose computer languages.

The modeling, designing and testing of every functional unit must be carried iteratively

until the desired functionality is achieved. Whenever a functional unit does not

perform as expected throughout its input range, it must be troubleshot and fixed. This

must be continued until all the units are working the way expected.

3.3.2 Model Implementation

Once all the units are individually implemented and tested, they all must be integrated

into a single unit forming the fully functional mechanism. If the individual units

have been implemented in a modular fashion, it is possible to integrate them into a

single unit with little effort. Thus, it is very important from the beginning to follow

good programming practice as it will save a lot of time and effort towards the critical

stages of the research. Modules can be implemented as either functions or objects

73

(classes) depending on the type of programming language selected. Advantages

of modular programming include easy to write, understand, debug, maintain and

integrate them together to form a large complex program [159]. Also modular

programming facilitates code reuse, as a generic function can be called more than

once by passing attributes at run time. Once the program has been developed in a

modular fashion, the main program will look neat and organized containing only few

lines calling these modules.

In this research, modules were implemented as functions in Matlab. In Matlab

individual self contained units can be coded as modules and stored in separate M-files

[160]. Since Matlab is an interpreted language, it makes coding and debugging faster

compared a compiled language. The interpreted computer languages allow testing

of the program codes immediately without going through the steps of compiling and

linking for creating the executable code. The other advantages of Matlab include the

way it handles input and output. Input can be wither dynamically generated using a

function or stored in a text file and called at run time. Similarly the output can be

directed to a file stored in the permanent storage and/or displayed on screen as raw

data or graphically in the form of 2-D or 3-D plots using the integrated visualization

utilities. These graphs can be customized either interactively or programmatically.

The complete mechanisms were implemented in separate M-files, which in turn called

the individual functional units stored in separate M-files.

3.3.3 Model Validation

Model verification determines whether the model has been transformed from one form

to another with sufficient accuracy [161]. In other words, the model verification

process evaluates and verifies the accuracy of the porting of an application from a

pseudocode or flowchart to an executable computer program developed in a high level

74

language. Model validation is the process of determining the degree of consistency

of a computer model with respect to the real world phenomenon or application [162].

Model validation is a compulsory procedure required to be carried out in any research

project before conducting any substantial experiment using computer models in order

to ensure that the methods and mechanisms meet the intended requirements and the

results obtained are valid.

A mechanism must be considered as a single unit and tested again for the entire

input range. Though, the individual functional units have been tested and proven

to be working as expected, there can still be problems when they are integrated

together [163, 164]. The main issues that might arise at this stage include functional

mismatches between subunits (outputs to inputs), timing errors etc. These errors must

be caught and rectified through implementing check points at important places. Once

the check points established, testing the overall implementation must be carried out

using random inputs covering the entire range. If the final outputs along with the

readings at all check points are acceptable, then the mechanism can be concluded

to be working as planned. Otherwise, the entire process must be restarted from the

conceptual design itself.

In this project the modal validation (integration testing) is carried out at the end of

the integration of all the functional units into a single module. The initial test data

were created using simple mathematical functions to check the interoperability of the

functional units. The interfaces between the units were used as breakpoints to check

the integration between the units. The values at the breakpoints were checked and

verified using paper-pencil (manual) checking method for some specific input values.

This test has been repeated several times using different test cases in order to make sure

that all the submodules are working as intended and they interact properly through the

75

right interfaces.

3.4 Testing

Testing, the Phase 3 of the research methodology focuses on the verification and

validation of the mechanisms developed in Phase 2. The testing phase of the research

methodology makes the second half of the Prescriptive Study (PS) of the DRM as

shown in Figure 3.3. As shown in Figure 3.7, the comprehensive testing has been

carried out at the end of the model validation process. Since comprehensive testing

is strongly connected with the model development, implementation and validation

process, it has been drawn in the same diagram in Figure 3.7.

In order to test the operation of the mechanisms, they must be ported to an environment

that is close to the real world settings. Hence the mechanisms were ported to

CloudSim a popular simulation environment specifically designed for testing cloud

computing operations [165]. CloudSim has been selected for this purpose as it

provides a generalized and extensible simulation toolkit and application that enables

seamless modeling, simulation, and experimentation of emerging cloud computing

system, infrastructures and application environments for single and federated clouds

[166, 165]. Also CloudSim provides the best and the most sophisticated simulation

environment compared to many other cloud computing simulators in the market such

as CDOSim, TeachCloud, iCanCloud, SPECI, GroudSim, DCSim etc [167, 168, 169,

170, 171, 172, 173, 174]. Also the developers of CloudSim have developed two

more simulators based on CloudSim known as Network CloudSim and CloudAnalyst

enhancing the scope of cloud simulation [175, 176]. Thus CloudSim along with

CloudAnalyst and Network CloudSim provides a complete simulation environment,

where it is possible to focus on specific system design issues without getting concerned

about the low level details [175, 177]. Hence in this research CloudSim has been

76

selected as the simulator platform for analyzing of the mechanisms developed. The

details of CloudSim simulator will be discussed in Section 3.5.2.1.

The proposed mechanism were implemented in Java programming language as they

will be tested using the CloudSim simulation framework that has been implemented in

Java [165, 178]. In order to make sure that programs written are syntactically correct

and free of errors, the code must first be verified using an automated code verification

tool [179]. QJ-Pro has been used as the code analysis tool to verify that the computer

programs have been correctly coded and free of bugs in this research. Since the

CloudSim is implemented using individual files and libraries and lack an Integrated

Development Environment (IDE), the Eclipse IDE for Java Developers (Version: Mars

Release (4.5.0)) was used in this work. The IDE provides a complete development

environment comprising the code editor, debugger, launcher, parser, compiler and

linker in one single tool along with a user friendly interface. The possibility of

integrating QJ-Pro into the Eclipse IDE as a plugin is an added advantage. Figure

3.8 shows the Eclipse Integrated Development Environment for Java installed with

CloudSim package.

Figure 3.8. Eclipse Integrated Development Environment for Java

77

Code analysis with QJ-Pro provides many advantages over manual inspection of code

for errors. The QJ-Pro drastically reduces the code review time by automating the code

inspection and coding standard enforcement process. QJ-Pro provides the developers

with the ability to automatically evaluate the software on the basis of the advanced

software quality concepts such as reliability, maintainability and efficiency. Figure 3.9

shows the code analysis window of the QJ-Pro loaded with a sample file.

Figure 3.9. QJ-Pro Code Analysis Window

Verification and validation techniques can be divided into four groups as formal,

informal, static and dynamic [161]. The dynamic analysis is carried out to test the

physical behavior of the model to a set of time varying inputs. Hence the software

application must first be executed and the input fed to the model. The dynamic test is

capable of detecting potential software errors not found by static code analysis or any

other traditional testing methods [180]. Hence in this project, dynamic code analysis

was employed as the primary validation technique. Dynamic code analysis requires

well formed and defined input data for the analysis to work correctly. The dynamic

analysis include several functionalities including the analysis of execution trace, call

stack, allocation and deallocation of objects, cycle counts etc [180].

78

The dynamic analysis process generally goes through three specific steps for validating

the software code, namely instrumentation, execution and analysis of output [181].

Instrumentation of application refers to adding additional code into the program for

collecting information related to the model behavior during the execution. Code

execution is the actual running of the program with the dynamic input supplied. And

finally the output data is collected and analyzed by comparing it to the output of other

models. The last step is commonly known as benchmarking.

The main objective of this research is the development of mechanism for monitoring,

quantifying and distributing service quality of cloud service providers. The model

proposed in this chapter was used as the basis for the development of the mechanisms.

The mechanisms developed in this project were verified and validated using the

simulation implemented in CloudSim.

3.5 Evaluation

Evaluation is the last phase of the research methodology adopted in this research.

The main focus of this phase is the comprehensive evaluation of the mechanisms

developed. Performance evaluation is one of the most important steps in any research

project. The performance evaluation of QoS monitoring, quantifying and distribution

can be carried out using one of the three possible techniques as analytical modeling,

simulation or testbedding [182, 183, 184]. Evaluation phase encompasses the entire

Descriptive Study-II (DS-II) stage of the DRM as shown in Figure 3.3.

3.5.1 Selecting the Evaluation Approach

The selection of the appropriate evaluation approach is a crucial step in any research

project [185]. As part of this project, the different evaluation approaches have been

compared for their strengths and weaknesses along with their suitability for the

79

application in this work. Table 3.1 lists the strengths and weaknesses of each approach

with respect to the application in computer network research.

Table 3.1
Comparison of Different Evaluation Approaches Adapted from [185]

Criteria Analytical Simulation Test
modeling bedding

Time required Low Medium High
Accuracy Low Moderate Highest
Tools None Computer Software Real Equipments
Trade off evaluation Easy Moderate Difficult
Cost Lowest Moderate Highest

3.5.1.1 Analytical Modeling

Analytical modeling or commonly known as mathematical modeling is a set of

equations formulated using mathematical concepts to describe behavior of a physical

system [186, 187]. The mathematical model thus developed can be used to analyze

the performance of the system for various input conditions. The evaluation can be

done either manually or automatically using a computer. Manual analysis may be

cumbersome and take long time for some models depending on complexity of them.

Using computers has become the common practice for solving analytical models due

to the availability of advanced software packages equipped with libraries that can

solve complex mathematical equations and function with minimal effort and custom

configurations [188]. The results of an analytical model can be presented in many

forms including tables, graphs etc [189]. This makes visualization and comprehension

of the results easier. It is possible to adjust the condition of the system varying the

input or parameters with relative ease. This method is very suitable for studying the

behavior of dangerous and unsafe systems. This provides an opportunity to obtain an

initial view or understanding of a system before embarking on building a prototype for

further study or the complete system.

80

The main shortcoming of this method is its difficulty to build a complete system

with mathematical models alone when the system becomes more complex with many

interrelated units. Hence, when the complexity of a system increases it becomes

necessary to make simplifications and assumptions to focus only on certain aspects of

the system and to make the rest static. The advantages and disadvantages of analytical

modeling include low cost, easier trade-off evaluation and low cost [190]. However

analytical modeling accuracy is lower compared to other methods especially when the

system becomes more complex.

3.5.1.2 Testbedding

Testbedding is the method of implementing a prototype of an actual network at lower

complexity and scale with the objective of running tests and collecting results [191].

Testbeds can provide very accurate results as they mimic the real world scenarios using

real equipment, but they are more difficult and expensive to construct [192, 191]. Also

it is very unrealistic to build a cloud computing testbed with hundreds or thousands

of computing nodes and control them to obtain real world data. If the limited sized

testbed is built with few nodes, it would limit the scope of the experiments and the

results obtained would not be realistic. The repeatability of the experiments may

also be an issue with testbeds [165]. Commercial organizations such as Yahoo Inc.,

Intel Corporation and Hewlett Packard Limited have launched a cloud computing

testbed spread across the United States, Singapore and Germany called Open Cirrus

for conducting research in a real environment [165]. But, access to this infrastructure

is limited only to their member organizations. Building a cloud infrastructure of this

nature is beyond the scope of this research project.

81

3.5.1.3 Simulation

Simulation has been a widely used technique for analyzing the behavior of dynamic

systems lately [165]. Simulation is carrying out experiments using computer based

system models that have been developed using complex equations and algorithms.

Simulation provides a flexible environment for carrying out in-depth study on

protocols and mechanisms. The repeatability of experiments is very high with

simulation. Also, with simulation, it is possible to study the effect of specific

parameters on the output by changing only those parameters while keeping all the

others constant. This enables the analysis of the performance of protocols and

mechanisms in a scalable, controllable and repeatable environments [193]. Due to this

reason, simulation has been widely used in the performance evaluation and validation

of results in computer networking research [183, 165, 194]. Hence simulation has

been selected as the main evaluation technique in this research. The main advantages

of using cloud simulators for evaluation of results in research include their capability

for efficient modeling and simulation of [165, 195, 196, 197]:

• large scale Cloud computing data centers and federated clouds,

• virtualized server hosts, with customizable policies for provisioning host

resources to virtual machines,

• energy-aware computational resources,

• data center network topologies and message-passing applications,

• dynamic insertion of simulation elements, stop and resume of simulation, and

• user-defined policies for allocation of hosts to virtual machines and policies for

allocation of host resources to virtual machines.

82

3.5.1.4 Evaluation Environment

As simulation has been the primary evaluation technique in this research, it is

imperative to select the right simulation tool. There are many cloud computing

simulators in the market with different features and capabilities. Some of the

popular cloud computing simulators include CloudSim suite, CDOSim, TeachCloud,

iCanCloud, SPECI, GroudSim and DCSim [165, 169, 170, 172, 173, 174, 198]. Each

of these simulators has its own strengths and weaknesses. A critical study on literature

published about these tools was carried out in order to identify the right tool for this

research.

CDOSim [169] is a simulation tool for simulating the cost and performance of

Cloud Deployment Options (CDO) especially cloud service providers. CDOSim is

built extending the CloudSim simulator and integrated into another cloud migration

framework known as CloudMIG. CDOSim performs well in predicting the cost and

performance characteristics of CDOs when checked against both private as well

as public cloud computing environments. The main shortcoming of this simulator

is its inability to work as a general purpose cloud simulator accommodating other

parameters such as response time, job completion time etc.

TeachCloud [170] is a simulation tool developed specifically for teaching cloud

computing in a classroom environment. This tool provides an excellent environment

for creating and experimenting with various cloud computing components such

as processing elements, data centers, networking, SLA constraints, applications,

virtualization, management and automation, and business process management. But

the usefulness of this tool in research is limited as it lacks provision for modification

of the behavior of the basic modules.

83

iCanCloud [198] simulation platform has been designed with the objective of

predicting the trade-off between the cost and the performance of a specific cloud based

application in a given environment. It has been developed by extending the SIMCAN

simulation framework [199]. It is possible to develop applications in iCanCloud

using traces of real applications, state graphs and directly in the simulation platform.

However, it does not support importing existing applications directly and they must

be modeled manually. This is a simulation tool with very narrow scope concentrating

only on the application cost-performance trade off. Hence it is not suitable for this

research.

Simulation Program for Elastic Cloud Infrastructures or SPECI [172] in short is

capable of analyzing the different scalability and performance aspects of data centers.

When data centers grow with time, this growth happens in a non-linear fashion.

Hence it is necessary to analyze the behavior of such data centers. SPECI has

been specifically designed to simulate and predict the behavior of these growing

data centers, so that the service providers can plan their data center operations and

enhancements in advance. This simulation tool also developed targeting a specific

user group such as cloud service providers in order to help them plan and design their

data centers properly. This tool lacks many features making it unsuitable to be used

in general purpose cloud computing research. Hence this tool has not been selected in

this research.

GroudSim [173] simulation tool is capable of simulating both cloud and grid

environments. GroudSim provides a comprehensive set of features for extensive

simulation of scenarios from simple job execution on leased computing elements to

the calculation of cost and background load on those elements [200]. One of the main

features of the GroudSim is its ability to incorporate failures within the simulation.

84

Simulation environment can be parameterized and extended using probability

distribution packages for the inclusion of failures within cloud elements. GroudSim

has been designed specifically for modeling and testing scientific workloads. This

may be due to the influence of the grid computing elements implemented within

the simulator. This becomes the main shortcoming of the GroufSim package for

general purpose simulation implementations, where various different workloads with

competing requirements need to be tested.

A Data Center Simulation Tool for Evaluating Dynamic Virtualized Resource

Management, in short DCSim [174] is an extensible framework for simulating a multi-

tenant virtualized data centers. The main focus of this simulator is the data center

management techniques such as reallocation of virtual machines in order to optimize

the resource utilization and reduce overall cost. Though DCSim can simulate the

management of virtual machines within a data center effectively, it cannot simulate

federated cloud data centers where multiple geographically distributed data centers

operating collaboratively by coordinating resource allocations between them. Hence

CDSim is also not a suitable tool for this research, as it is necessary to evaluate the

distribution of trust scores among cooperating QoS monitoring and quantifying agents.

CloudSim suite [165, 175, 176, 201] is a collection of cloud computing simulation

tools that have been developed with the objective of evaluating different strategies,

mechanism, algorithms and protocols.

Table 3.2 shows a brief comparison of different open source cloud computing

simulators available in the market.

85

Table 3.2
Comparison of Different Cloud Simulators [202, 203, 167, 169, 170]

Simulator Programming Federation Simulation Comments
environment support time

CDOSim Java No Minutes Only cost and
performance
characteristics can
be simulated.

TeachCloud Java No Minutes Designed for teaching
purposes only.

iCanCloud Java No Minutes Only Amazon instance
types are supported

SPECI Java No Seconds Only single isolated
data centers can be
simulated

GroudSim Java No Seconds Specifically designed
simulating scientific
applications in cloud
and grid environments

DCSim Java No Minutes Only a data center
simulation tool

CloudSim Java Yes Seconds Complete suite with
a many facilities for
extensive simulation.

From Table 3.2, it can be seen that CloudSim would be the most suitable simulation

tool for studying the different aspects of large distributed cloud systems. Also

CloudSim has been considered as the most sophisticated cloud simulation tool

available in the market today [167]. CloudSim has also been used as the underlying

platform for many other cloud simulation tools such as SmartSim, CDOSim,

TeachCloud and EMUSIM [203, 202]. Hence CloudSim has been selected as the

simulation tool in this research.

3.5.2 CloudSim Simulation Suite

CloudSim simulation suite has been made up of several simulation tools that enable the

simulation of various aspects of large distributed cloud systems [177]. The following

subsections briefly look at each one of them individually.

86

3.5.2.1 CloudSim

CloudSim has been developed by one of the leading research groups in cloud

computing based at the University of Melbourne, Australia [197, 165]. It supports

the modeling and simulation of large cloud computing infrastructure with many data

centers on a single computer and Java virtual machine. It has the capability for

specifying many different cloud computing resources including users, data centers,

service brokers, scheduling and allocations policies. All these resources have been

implemented as Java classes that can be easily extended to suit different requirements.

These components can be arranged together making different architectures, where

users can evaluate new policies, algorithms, mechanisms and mapping before

deploying them in real world systems. It has the capability of putting together most of

the real world cloud scenarios by simply extending or replacing the classes and coding

the desired scenario. The main shortcoming of this simulator is its lack of a Graphical

User interface (GUI).

CloudSim Architecture

CloudSim has been designed in a modular fashion with a layered architecture

[197, 165]. Figure 3.10 shows the CloudSim layered architecture along with different

modules incorporated with the layers. The bottom two layers namely the SimJava

and GridSim layers provide the necessary core functionalities required by the upper

levels for implementing operations like queuing, processing of events, creation and

removal of system components, communication between components, managing the

simulation clock, creating and managing networks along with their traffic profiles.

The CloudSim layer programmatically extends the functionalities of GridSim for

enabling the modeling and simulation diverse cloud computing environments. This

layer is responsible for the creation and management of cloud computing resources

87

such as datacenters, hosts, virtual machines, applications etc. This layer has the

ability to instantiate thousands of components concurrently creating large scale cloud

systems.

Figure 3.10. CloudSim Layered Architecture [165, 166, 197]

The top-most layer holds the user code for creating and customizing the simulation

environment required by him. This layer allows users to manage the configuration

related functionalities for all the components including datacenters, hosts, virtual

machines, applications, user policies etc. The different components within CloudSim

communicate with each other by the way of message passing between themselves.

Figure 3.11 shows the CloudSim class diagram containing the fundamental classes

that make the building blocks of the simulator.

88

Figure 3.11. CloudSim Class Diagram [165, 166, 197]

Modeling Cloud Systems with CloudSim

Large federated cloud systems can be easily modeled with CloudSim by extending the

entities within the simulator programmatically. The infrastructure level service related

to the clouds can be modeled and simulated by extending the datacenter entity. The

datacenter entity manages and controls the host entities which are assigned with virtual

machines according to a predetermined policy. The assignment of virtual machines

to physical hosts needs to consider several factors such as availability of physical

resources, the demands of the virtual machines to be created, type of allocation (space

shared or time shared) etc. All these need to be carried out through extending the

VMMAllocationPolicy class. Similarly other core classes can be extended to create

the entities such as cloud market managing the cost-benefits of using different cloud

systems, network usage and behavior, dynamic workloads, power management etc.

3.5.2.2 CloudAnalyst

CloudAnalyst is an extension of CloudSim that has been specifically designed

for analyzing the cost and performance of geographically distributed data centers

[175]. CloudAnalyst has been provided with a GUI, where users can drag and

drop various components for building an extensive cloud system of his choice.

89

Hence experimenting with CloudAnalyst does not require an extensive programming

knowledge. It also enables a researcher to carry out a series of simulation experiments

with different parameters with relative ease.

3.5.2.3 Network CloudSim

Network CloudSim is an extension of CloudSim with scalable network and application

model [176]. This enables users to evaluate scheduling and resource provisioning

policies more accurately or optimizing the cloud system performance. Network

CloudSim supports the modeling and study of generalized network applications such

as distributed programming, high performance computing applications, workflows

and e-commerce. Network CloudSim uses Network Topology class that implements

the network layer in CloudSim, reads a BRITE file known as the topology file for

generating a topological network. The topology file contains nodes, number of entities

in the simulation that allows users to modify scale of simulation without changing the

topology file.

3.5.3 Experiment Environment

This section presents the details of the experiment environment employed as part of

the performance evaluation in this research. The description of experiments presented

in Chapters Four, Five and Six were carried out using GNU Octave version 3.6.3 and

CloudSim-3.0 on the Microsoft Windows 7 Professional Operating System installed

with Java version 7. Every experiment was conducted for a fixed duration of 1000

seconds and the simulation runs were repeated 10 times and the mean value was

considered to remove the temporary biases in the results [204]. The following sub

sections explain the experimental environment employed in this research in detail

90

3.5.3.1 Experiment Steps

In order to carry out the experiments in a methodical manner and to confirm the

repeatability of them, it is necessary to break or decompose the entire process into

specific steps. It has been found that irrespective of the type of problem or objective

of the study the process used for the simulation study is constant [205, 206, 207, 208].

The simulation process is generally divided into eight basic steps [209]. These steps

are grouped into pre-software and software stages as shown in Figure 3.12.

Figure 3.12. Simulation Steps (Adapted from [209])

The details of the steps are as follows:

i. The initial step involves clearly identifying the research problem to be

investigated along with defining the goals and objectives precisely. At this step,

care must be taken to identifying and selecting the most appropriate simulation

tool to be used.

ii. Once the objectives are clear, the network topology to be simulated must be

designed using paper-pencil method. The design should also include a suitable

set of parameters reflecting the valid real world scenarios.
91

iii. When the design is ready, the appropriate set of performance metrics must be

identified for evaluating the performance of the network.

iv. In order to compute the performance of the network, it is necessary to identify

the right output parameters. In this step, the appropriate set of output (variable)

parameters to be observed is established.

v. At this step, the network topology designed in Step 2 is implemented on the

simulation tool selected.

vi. Following the topology implementation, it needs to be configured with right

attributes for all the components to reflect the selected scenario to be tested.

vii. Once everything is in order, the simulation program must be executed for the

specified period and the output data for the selected variable (output) parameters

must be collected. It is necessary to conduct multiple simulation runs to make

sure that the results are free of bias.

viii. Finally the required performance metrics need to be computed using the output

data collected in Step 7 and presented in the most appropriate format such as

tables, graphs or charts along with an interpretation of them.

3.5.3.2 Experiment Setup

Data centers are the key components in cloud computing offering resources and

services to customers [210]. Data centers host servers and other equipment necessary

for providing a reliable service to customers. In the experiments conducted as part

of this research also data centers take the center-stage. In the experiments many

data centers were created with varying capacities and configurations to simulate a

competitive environment similar to the real world. Each data center thus created were

assumed to represent a different service provider (vendor). A federated cloud, where

a vendor maintains multiple data centers that cooperate with each other to provide

services to customers was taken into consideration in this research as it will complicate

92

the simulation process unnecessarily.

In order to achieve an experimental setup close to the real world environment, data

centers with physical machines resembling public service providers were simulated.

The configuration of some prominent public cloud service providers were obtained

from literature and service providers’ websites. A number of virtual machines of

different types are mapped to physical machines depending on the configuration

required. Three types of virtual machines such as small, medium and large as given in

Table 3.3 were defined in order to create an environment to accommodate users with

different requirements. This categorization has been based on the Microsoft Azure

business cloud recommendations available at [211].

Table 3.3
Virtual Machine Mapping

VM type Large Medium Small
CPU Cores 4 2 1
Memory 7GB 3.5GB 1.75GB
Data Storage 8TB 4TB 2TB
Max. IOPS 4000 2000 1000

A brief description on some of the key components used in simulation is given below:

Data center: is a collection of computers (servers) in homogeneous or heterogeneous

configurations that are grouped and working together for handling customer requests.

Virtual machine: is a temporary allocation of processor power, memory, storage, and

other resources based on a scheduling policy that can be used as if they are real. Virtual

machines are allocated and removed on the fly on a user request. Multiple virtual

machines can run on single hosts simultaneously and maintain processor sharing

policies.

93

Host: consists of one or more CPU cores and fixed amount of memory and storage

space that can be distributed to virtual machines based on a given allocation policy.

Thus hosts can organize sufficient memory and bandwidth to the process elements

to execute them inside virtual machines. Host is also responsible for creation and

destruction of virtual machines.

Cloudlet: an application component (job) in the CloudSim environment that is

responsible for delivering data in the cloud service model. Hence the length and output

file size parameters of Cloudlets must be greater than or equal to 1. It contains various

identities for data transfer and application hosting policy.

Table 3.4 shows the experiment setup attributes and the corresponding values.

Table 3.4
Experiment Setup Attributes and Values

Parameter Sub-Parameter Value
Response time 500 ms
Service time 10 minutes
Availability 100%
Computing Power Processor 2.27 GHz Clock speed

6 MB Cache
533 MHz Bus speed

Memory 2 GB
Storage 100 GB

Network Speed
Within data center Bandwidth 100 Mbps

Latency 3.33 ms
Between data center Bandwidth 4 Mbps
No. of data centers

Quantification Mech. 1
Trust Computing Mech. 1
Trust Distribution Mech. 10

Server per data center 1
No. of job submissions 10
Jobs per submission 1000
No. VMs per submission 1
No. cloudlets per job 1

94

3.5.3.3 Performance Metrics

Performance metrics is a set of attributes selected by researchers to measure and

evaluate the operation of a specific equipment, algorithm, mechanism or protocol

[212]. In order to assess the service quality and verify degree of fulfillment

performance guarantees, it is necessary that the users are able to access and exchange

performance metrics [213]. Thus the deployment of an appropriate monitoring

infrastructure and collection of specific measurement data becomes vital in any

public network including cloud computing systems. These performance metrics must

represent the expectations and requirements of both customers and providers. Garg

et al. in [32] have designed a set of Service Measurement Index (SMI) based on

the International Organization for Standardization (ISO) standards for providing a

standardized method for measuring and comparing public cloud services. The set of

attributes developed by Garg et al. are Accountability, Agility, Assurance of Service,

Cost, Performance, Security and Privacy and Usability [32]. Out of these broad

attributes, the performance related attributes or metrics have been selected in this

research for developing the service quality monitoring mechanism. The attributes that

are frequently used for measuring service quality include response time, service time,

accuracy, availability, integrity and reliability [32, 93, 110, 214]. Brief explanations

along with the mathematical definitions of these metrics are as follows:

Response time: defined as the time elapsed between a customer’s request and the

cloud system’s response [215, 210]. The apparent response time experienced by a

customer would generally depend on many factors such as server delay in spawning a

virtual machine, transmission delay and queuing delays at various points. Hence the

absolute value of the response time can vary widely. So it is necessary to develop a

normalized response time so that all the performance attributes are brought within the

same range. So, a normalized response time parameter known as the Response time

95

efficiency Rt is defined by:

Rt =
Rp

Ra
(3.1)

where, Rp is the promised response time and Ra is the actual response time.

Service time: is the total time taken for a process to complete from the time of

submission to the time of delivery of the completed results [93]. The normalized

processing time known as the Processing time efficiency Pt is defined by:

Pt =
Pp

Pa
(3.2)

where, Pp is the promised processing time and Pa is the actual processing time.

Availability: is the proportion of times, a system is up and ready to accept and process

jobs from clients immediately [214]. A system may become unable to accept job

requests for many reasons including being shutdown for maintenance or upgrading,

out of service due to failure of electricity or an external device such as networking

equipment that prevents the customer data from reaching the system, an active attack

on the system by a malicious intruder or being already overloaded [216]. Availability

(Av)can be expressed as a fraction given in the formula below:

Av =
Ak

Nk
(3.3)

96

where, Ak is the number jobs accepted for processing in a given in T and Nk is the total

number of jobs submitted over the same time.

3.5.3.4 Confidence Level of Simulation Results

The performance evaluation needs to be repeated several times in order to remove

the temporary biases in the results and to confirm the repeatability of them. Due

to the randomness of the operations within the simulation environment, the results

would also exhibit some random behavior within specific limits. Hence it is practically

impossible to obtain exact values for the performance metrics calculated using these

results. Therefore, mean values (u) of the experiment results are generally computed.

The values computed this way are commonly known as estimates and required to have

some kind of confidence level associated with them [217]. In this research, every

experiment was repeated 10 times and the statistical parameters were computed with

95 percent confidence level except for where it is specifically stated. The detailed steps

of computing statistics from random samples are given in [218].

3.6 Summary

This chapter presented on the research methodology adopted in conducting this

research. It consist of four phases namely, analysis, design, testing and evaluation.

In order to arrive at a scientifically valid and practically proven methodology, the

stages of the design research methodology haven been adapted and integrated into

the different phases of this methodology. It has been proposed to develop different

mechanisms for modeling quantifying and distributing of service quality in cloud

computing. The activities that will be carried out and the outcomes expected at

the end of reaching each milestone were highlighted in this chapter in the light of

different phases of the methodology and the stages of DRM. Phase 1 (Analysis) that

includes both Research Clarification and Descriptive Study-I stages of DRM focuses

97

on obtaining a clear understanding of the research. The main outcomes of this phase

include identification of research problem, objectives and research questions, and

development of a conceptual model of the research. The design and testing phases

of the methodology concentrates on how to develop and test the mechanisms for

their functionality. It has been highlighted the models developed to represent the

mechanisms will be tested and functionality validated. The functional testing will

be carried out using GNU Octave, an open source Matlab clone software. The last

activity in the proposed research is the evaluation of the mechanisms. This activity

will be carried out through extensive simulation with CloudSim, the most popular

cloud computing simulator used by the research community in this area today.

98

CHAPTER FOUR

SERVICE QUALITY MODELING MECHANISM FOR CLOUD

COMPUTING

4.1 Introduction

This chapter presents the proposed service quality modeling mechanism for cloud

computing based on the research methodology established in Chapter Three. The

proposed mechanism creates a single rating value known as the trust score using the

performance metrics discussed in Chapter Three. As the initial step at developing

the mechanism, the performance metrics were studied further detail with the aim

of arriving at an objective criterion for evaluating the performance of cloud service

providers based on these metrics. It has also been emphasized that the mechanism

developed as part of this research must be extensible to include other parameters as

well for meeting the requirements of a wide range of customers.

The organization of this chapter is as follows. Section 4.1 provides an introduction

to the chapter highlighting the importance of a single rating value for identifying

the service quality of cloud providers. Section 4.2 explains how the parameters are

normalized, so that all the parameter values are restricted to a single range between

0 and 1 included. Section 4.3 describes how the service quality of cloud service

providers can be quantified using the normalized parameters explained in Section

4.2. Sections 4.4 and 4.5 present the Multi-Parameter Service Quality Quantification

Mechanism, one of the main contributions of this research and its functional evaluation

respectively. Finally Section 4.6 concludes the chapter providing a brief summary of

the complete chapter.

99

4.2 Normalizing of Performance Metrics

The performance metrics defined in Chapter Two show different behaviors depending

on the type of parameter. Some parameters such as response time and service times

are continuous variables starting from 0 and grow to very large values and measured in

seconds or fractions of it. On the other hand, availability, reliability and integrity are

probability values which vary between 0 and 1 continuously. Also the response and

service time must be computed with respect to the required times and the decision

must be arrived as whether the service provider exceeds, meets or fails to meet

the expectation of the client. Thus these values must be positive, zero or negative

depending on the performance.

Since each parameter has a different behavior and range, it is not possible to compare

or combine parameters for the purpose of arriving at single objective metric that can

be used for ranking service providers. Thus, bringing them within a single range

is very important as more than one parameter, so that they all can be treated similarly

when qualifying the service quality of different service providers based on one of more

parameters. Bringing the parameter values to a single range is known as normalization

of parameter values. The performance parameters discussed in Subsection 2.3.3 have

been normalized as follows:

Response Time Factor (Rt): the normalized response time known as response time

factor (Rt) is computed as given by Equation 4.1:

Rt =

 0 : Ra ≥ 2Rp

(2Rp−Ra)
2Rp

: 0≤ Ra < 2Rp

(4.1)

100

where, Rp is the required response time and Ra is the actual response time.

From Equation 4.1, it can be seen that the value of Rt varies between 0 and +1. The

negative extreme value of Rt has been confined to 0 in order to limit the values of

response time factor within a specified range.

Service Time Factor (St): the normalized service time known as service time factor

(St) is computed as given by Equation 4.2:

St =

 0 : Sa ≥ 2Sp

(2Sp−Sa)
2Sp

: 0≤ Sa < 2Sp

(4.2)

where, Sp is the required service time and Sa is the actual service time.

It is clear Equation 4.2 that the value of St varies between 0 and +1. The negative

extreme value of St has been confined to 0 in order to limit the values of service time

factor given a specified range.

Availability Factor (Av): the normalized availability known as the availability factor

(Av) can be expressed as a fraction as given in Equation 4.3:

Av =
1
2

(
Ak−Rk

Nk
+1
)

(4.3)

where, Ak and Rk is the number jobs accepted and refused for processing in a given in

T while Nk is the total number of jobs submitted over the same time.

101

Also Rk = (Nk−Ak)

Thus Equation 4.3 can be simplified as:

Av =
1
2

(
2Ak−Nk

Nk
+1
)

(4.4)

Equations 4.3 and 4.4 take both the positive and negative responses of the in computing

the availability factor. This is slightly different from the generic availability rate

computed from only positive responses [104]. The advantage of the availability

factor introduced in this thesis is; it penalizes the misbehaving service providers who

continue to perform below the expectations of the customers. The factor given by

Equations 4.3 and 4.4 can also differentiate between a new service provider and a one

who always perform below the expectations. The value of Ak ranges between 0 and

+1, with 0.5 as the origin representing the newest system.

Reliability Factor (Re): the normalized reliability factor (Re) of the system is defined

as in Equation 4.5 :

Re =
1
2

(
2C j−N j

N j
+1
)

(4.5)

where, CJ is the number jobs successfully completed in a given within time T and N j

is the total number of jobs accepted for processing over the same time.

The range of Re is between 0 and +1 with 0.5 being the value given to a new service

102

provider.

Integrity Factor (I f): the normalized integrity factor I f is given by Equation 4.6 :

I f =
1
2

(
2Jo− Jt

Jt
+1
)

(4.6)

where, Jo is the number jobs completed preserving operational integrity in a given in

T and Jt is the total number of jobs processed over the same time.

Similar to other factors, the value of I f also lies between 0 and +1 with 0.5 assigned to

the service provider who just started offering his services.

It could be seen that the normalized performance factors defined above follow similar

pattern in computing the performance of the cloud computing based on different

metric. Also all the factors now behave like probabilities ranging between 0 and +1

included while them being random events. Hence probability theories can be easily

adopted in dealing with these factors. The same principle used for converting the

selected performance metrics into performance factors can be easily extended without

much difficulty to cover other performance metrics to cater to any user requirement or

future demand.

4.3 Modeling of Service Quality of Cloud Providers

Normalized performance metrics (performance factors) defined in 4.2 provide an

objective measure (trust score) for characterizing the performance of cloud service

providers. Although these factors could be used as an objective measure for comparing

different service providers based on their performance, this comparison will be limited
103

to a single parameter only. Also, there is another shortcoming in the above said

comparison. All but response time and the service time provide a direct probability

value of the performance of the service provider based on the selected parameter.

Hence they can be directly used to compare and rank the service providers. On the

other hand, the expectations of clients on their response times and service times may

differ from one customer to another. Hence, it is not practical to compute the response

or service time factors based on a single fixed value for these. Thus, Equations 4.1 and

4.2 must be applied independently to each customer separately.

4.3.1 Single Parameter Service Quality Quantification Mechanism (SP-SQQM)

In order to verify the functionality of the mechanism developed in Section 4.3, a

computer model was developed. The algorithm for single parameter service quality

quantification mechanism using response time as an example is given in Algorithm

4.1.

Algorithm 4.1: Single Parameter Service Quality Quantification Algorithm
required response time = τr
actual response time = τa

compute normalized parameter (δ) = |τr−τa|
τr

if (τa ≤ τr) then
if (Tn == 1) then

Tn+1 = Tn
else

Tn+1 = Tn +δ ∗Tn : T0 = a and n = 1,2, . . .
end if

else
if (Tn == 0) then

Tn+1 = Tn
else

Tn+1 = Tn−δ ∗Tn : T0 = a and n = 1,2, . . .
end if

end if

where, a – initial trust value

This algorithm was implemented using GNU Octave and executed under different

104

conditions to verify the behavior of the mechanism. A simple cloud environment with

one server and two clients was setup in order to carry out this experiment. The server

was configured in such as manner that it has a fixed response time of 500 ms for both

clients. The clients were configured to send requests at the regular intervals with the

expected response times of 300 ms and 700 ms respectively. The data for each client

was collected separately as they need to be analyzed independently. Figure 4.1 shows

the change in trust score due to continuously the performance of the system is better

or worse than the expected one.

Figure 4.1. Change in Trust Scores

From Figure 4.1, it can be seen that in both cases the trust scores were either

monotonously improving or diminishing due to continuous responses of the same kind.

Also, it could be observed that during both improvement as well as decrement phases,

the change is initially faster and then slowly and asymptotically approach the end

values such as perfect trust and no trust represented by +1 and 0 respectively.

The experiment was modified to verify the behavior of the mechanism under

competing demands from customers. The modified experiment environment was

designed with a single server capable of spawning four virtual machines to serve

four different customers with different response time requirements. The response
105

requirements were set up 100ms, 400ms, 700ms and 900ms respectively. These

are shown as 0.1, 0.4, 0.7 and 0.9 time units for convenience. The actual response

time of the cloud server was set to a range between 300ms and 500 ms. Figure 4.2

shows the change in trust scores experienced by customers with different performance

expectations.

Figure 4.2. Comparative Change in Trust Scores

From Figure 4.2, it can be seen that whenever a more stringent requirement has been

met, all the trust values of the relaxed requirements have also been improved. This

is due to the reason that, if the system could meet a stringent condition it could

easily meet relaxed requirements. This fact should reflect on the trust scores and

hence all the respective trust values have been positively updated. Conversely, when

a relaxed condition is not met, all the trust scores of the more stringent requirements

are reduced. This is due to the reason that the failure to meet a relaxed requirement

would necessarily an indication that more stringent performance requirements will not

be met.

Figure 4.2 also shows that the most stringent condition indicated by the requirement

of 0.1 (100ms) continues to decline. This is due to the reason that the negative

performance of the system for any requirement lower than this requirement would
106

affect this one. Hence, it is obvious from the results that it is very difficult to

meet strict performance requirements unless special attention has been paid to these

requirements. On the other hand, the trust score of the most relaxed performance

requirement designated by the response times of 0.7 (700ms) and 0.9 (900ms) show

continuous improvement. This is due to the collective improvement of all the more

stringent requirements. The other plot belonging to the customer requirement of 0.4

(400ms) show mixed results of trust score going up and down based on the actual

response time varying around the required response time.

4.4 Multi-Parameter Service Quality Quantification Mechanism (MP-SQQM)

Sub Section 4.3.1 presented the single parameter service quality quantification

mechanism that can quantify and rank the cloud computing providers based on the

performance. The shortcoming of the SP-SQQM has already been highlighted as it

depends only on one selected parameter. According to Carrera et al. [92] real-time

applications demand better response times and throughput as opposed to non real-

time batch jobs that are more concerned with accuracy and lower processing times.

Hence customers and applications will not be satisfied with single parameter based

ranking of service providers. In order to meet this requirement, it is necessary to have

a mechanism that can accept multiple parameters as inputs and compute the single

output score.

In this section, the SP-SQQM is extended to accommodate multiple parameters for

producing a trust score that can be used to compare and rank service providers. The

proposed mechanism is built on the probability of the expected outcomes represented

by a set of performance metrics. Bayes’ rule links the prior probabilities and

conditional probabilities to the posterior probability of an event [219].

107

Bayes’ rule for two related events may be expressed as [220]:

P(A|B) = P(A)P(B|A)
P(B)

(4.7)

where: A and B are two related events.

P(A) and P(B) are the probabilities of A and B occurring independently.

P(A|B) and P(B|A) are conditional probabilities that the probability of A

provided B is true and the probability of B given A has already occurred

respectively.

The Bayes Networks have been commonly used to represent probabilistic relationship

between causes and effects [221]. A Bayesian network is represented as a directed

acyclic graph with nodes representing variables and edges representing the conditional

dependencies. A conditional probability table giving the probability value of the

random variable represented by the node conditional on the parent is associated with

each node. The theoretical foundation for all the Bayesian networks is derived from

the Bayes’ rule [222].

A Naive Bayesian Network is a simple but powerful Bayesian network that assumes

that each parameter is independent of each other provided it has the class variable as

its unique parent [223, 224]. The advantages of Naive Bayesian Network over other

networks include its known structure and efficient classification process [225]. Both

these advantages are the result of the assumption that all the features are independent of

each other. Figure 4.3 shows the structure of a Naive Bayesian Network with the output

108

(Class) parameter at the top and the input parameters at the leaf nodes. The conditional

probabilities associated with each parameter would be given in a performance table.

Figure 4.3. Naive Bayesian Network

In order to compute the trust score of a cloud computing system, it is necessary to

represent the performance metrics in a Naive Bayes Network similar to Figure 4.3. In

such a network, the output node would represent the trust to be computed while the leaf

nodes would be the service quality metrics. The conditional probabilities associated

with the metrics will be used to create the performance table. Figure 4.4 and Table

4.1 show the directed graph and the associated performance table created for a generic

condition for a given cloud computing system respectively.

Figure 4.4. Naive Bayesian Network for a Cloud Computing System

where:

O = 1 represents the successful outcomes and O = 0 represents

unsuccessful outcomes.

109

Table 4.1
Performance Table

Metric No. of interactions with No. of interactions with
O=1 O=0

Metric1 s1 n1
Metric2 s2 n2
Metric3 s3 n3
Metricn sn nn

si and ni represents the number of times the Metrici is considered to

have met its requirements when the overall outcome is successful and

unsuccessful respectively.

From Table 4.1, it is possible compute all the required conditional and absolute

probabilities.

The trust score for the given cloud computing system for the given set of performance

metrics is given the joint probability in Equation 4.8.

T = p(O∩m1∩m2∩ . . .∩mn) (4.8)

where O and mi represent the outcome and ith metric, when all of them met and

final outcome is considered successful. The joint probability can be represented as

a conditional probability and simplified as given below using Bayes’ theorem.

T = p(O)(m1,m2, . . .mn|O)

and

T = p(O)p(m1|O)p(m2|O) . . . p(mn|O) (4.9)

provided the metrics (mi) are independent of each other.

110

Table 4.1 will be continuously updated by the trust provider, whenever a client

obtains the services from a given cloud computing node. Hence it must maintain

a performance table similar to Table 4.1 for each cloud computing node and

continuously update it. Whenever a client request the trust value of a node, it is

possible to compute it using Equation 4.9 based on any set of performance metrics

provided by the client.

4.4.1 Computing Trust Score with Different Priorities

It is also possible to compute the trust value using Equation 4.9, when a client has

different priorities for different metrics. When such a prioritization of metrics is

required, it will be given by metric weights as shown in Equation 4.10.

τ =
α1m1 +α2m2 . . .αnmn

α1 +α2 . . .αn
(4.10)

and

α1 +α2 . . .αn = 1

where mi is the ith parameter and αi is the weight applied to it.

For example, if a client who seeks a certain service with service quality requirements

on metrics m1, m3 and m7 with the priorities of α1, α3 and α7, then the performance

table would be modified as shown in Table 4.2.

The values in the modified columns will be used for computing the conditional

probabilities and the trust score for the node.

111

Table 4.2
Modified Performance Table

Metric Weight No. of interactions with No. of interactions with
O=1 O=0

Original Modified Original Modified
m1 α1 s1 α1s1 n1 α1n1
m3 α3 s3 α3s3 n3 α3n3
m7 α7 s7 α7s7 n7 α7n7

4.5 Functional Verification of MP-SQQM

The verification of the functionality of MP-SQQM was carried out using a computer

model developed using GNU Octave software two parameters, response time and

processing time. The verification was limited to two parameters as more than

independent variables cannot be plotted on a three dimensional graph and hence would

be difficult to visualize the performance. If the functionality can be verified for two

input parameters, the mechanism can be extended to include any number of parameters

as explained in Section 4.4. The pseudocode for the two parameter MP-SQQM is given

in Algorithm 4.2.

where:
SR and SP represent the number of times the customer requirements were

met successfully and NR and NP represent the number of times the system

failed to meet the customer requirements respectively.

The algorithm was tested extensively for functionality under different conditions.

Initially the experiment was carried for the condition when a user requires both the

conditions to be met. That is the user has equal priority for both parameters and hence

the weight is set to be α1 = α2 =
1
2 . Figure 4.5 show the variation in trust scores under

the above specified condition.

Figure 4.6 shows the effect of different weights on the final score. It can be observed

112

Algorithm 4.2: Multi Parameter Service Quality Quantification Algorithm
required response time = Rr
actual response time = Ra
required processing time = Pr
actual processing time = Pa

if (Ra ≤ Rr) then
SR = SR +1

else
NR = NR +1

end if

if (Pa ≤ Pr) then
SP = SP +1

else
NP = NP +1

end if

APPLY weighs α1 and α2
COMPUTE the joint probability (T) using individual probabilities

Trust Score = T

Figure 4.5. Trust Score Computed Using Two Input Parameters

from Figure 4.6 the final score computed is same irrespective of the scale that has been

used to specify the weights. That is when the equal weights are specked as α1 =α2 = 1

or α1 = α2 =
1
2 , the scores computed are same. This is due to the fact that the formula

itself computes the fractional weight while applying them to the probability values.

The effect of the weights applied on the individual trust scores on the final (or

combined) trust score were verified through another set of experiments. In these

113

Figure 4.6. Effect of Weights on Trust Scores Computed

experiments, the individual trust scores were fixed at t1 = 0.7 and t2 = 0.5 and then

the weight w1 applied to one input score namely t1 were changed progressively from

0 to 1 while maintaining the relationship w2 fixed at 0, 0.2, 0.4 and 0.5. The results

are shown in Figure 4.7 shows effect of weights on the final trust score clearly. The

value of the final trust score lies between the individual trust scores depending on the

weights applied. The effect of one input parameter on the final trust score can be

totally eliminated by applying a weight (w = 0). This fact is illustrated by the blue

line shown to lie at 0.7 from the beginning to end. When the effect of one parameter

is eliminated, the final (combined) trust score takes the value of the other parameter

automatically.

Figure 4.7. Effect of Weights on Final Trust Score

Figures 4.5, 4.6 and 4.7 show that the multiple input parameters can be successfully

114

combined into a single score for quantifying the service quality of cloud service

providers. Further, by applying weights to different service quality parameter, the

final trust score can be modified to reflect the requirements of different groups of

users. From Figure 4.7, it can be seen that the same cloud system with the same

performance may show different capabilities to different groups of users depending

on the their requirements reflected by the parameter weights. Thus the MP-SQQM

performs correctly as expected combining multiple parameters to a single trust score

based on user requirements.

4.6 Summary

This chapter presented the two service quality modeling mechanisms for cloud

computing developed as part of this research. The service quality modeling

mechanism were named Single Parameter Service Quality Quantification Mechanism

(SP-SQQM) and Multiple Parameter Service Quality Quantification Mechanism (MP-

SQQM) depending the number of inputs used. The proposed mechanisms were

tested for functionality under limited laboratory conditions using simulations. The

simulation results show that both mechanisms are functioning as expected. The

performance analysis of the mechanisms will be presented in Chapter Seven.

115

CHAPTER FIVE

ADAPTIVE TRUST COMPUTING MECHANISM FOR CLOUD

COMPUTING

5.1 Introduction

Chapter Four identified and presented a set of metrics that can be used in quantifying

the performance of cloud services. Further to presenting the metrics, Chapter Four

presented two specific algorithms that can be used for quantification of performance of

cloud services based on those metrics. These algorithms accepts performance attribute

values as inputs and convert them to a single score that can be used to compare and

rank different cloud providers. But the scores thus computed depends only on the

single performance values just entered and does not reflect the past performance of

the system. Hence the score is not really representative of the performance of the

system. In order to overcome this limitation, Chapter Five presents the adaptive trust

computing mechanism that can closely track the performance and compute a score

based on its past performance under similar requirements.

The organization of this chapter is as follows: Section 5.1 provides a brief introduction

of the chapter highlighting the importance of tracking performance of the system

and computing the trust score based on its long term process rather than using a

single instance. Section 5.2 presents the principles of trust formation at the inception

and evolution based on the performance of the system onwards. Sections 5.3 to

5.5 present the preliminary mechanisms developed in this research. Sections 5.6

and 5.7 present the main contributions of this chapter, namely the Robust Adaptive

Trust Computing Mechanism (RATComM) and Multi-Dimensional Trust Computing

Mechanism (MuDTComM). Both mechanisms combine the important features of the

algorithms described from Sections 5.3 to 5.5. Finally Section 5.8 concludes the

116

chapter by summarizing the main contributions of the chapter.

5.2 Trust Formation and Evolution

The management of trust is the process that goes through several distinct stages either

continuously improving or diminishing based on the experience of an individual [226].

During the life cycle of trust, it is possible to identify three distinct functions playing an

important role in trust management [227]. These functions are trust formation, trust

evolution and trust distribution. Trust formation is the initial idea formed of a new

object in terms of its trust worthiness. With respect to computing systems or service

providers who are new to the market will be required to create an initial impression

on the customers in terms of their capabilities. Hence the initial trust score given to a

new service provider can either take a neutral value or computed using the published

capacities of the resources. Taking the neutral score would be safer and easier as this

initial score would immediately be modified once the system starts interacting with

users. In this research, the initial score for any service provider is taken as the neutral

value (0.5) between the extreme values of most trustworthy (1) and least trustworthy

(0).

With time and more interactions with the other party, the value of trust changes either

positively or negatively becoming stronger or weaker respectively [228]. This is

commonly known as trust evolution. An adaptive trust evolution mechanism must

modify the trust scores continuously based on the performance of the system. When

the system meets or exceeds the performance demanded by the clients, the trust score

must be improved. On the other hand, if the system fails to meet the requirements, the

trust scores must be diminished accordingly.

This chapter presents several trust evolution algorithms developed as part of this

117

research. The adaptive trust computing mechanism presented towards the end of the

chapter is developed by taking a positive aspects of all the algorithms presented priorly.

Trust distribution is the exchange of trust information between cooperating nodes (trust

computing units) about a single service provider. This topic is discussed in detail in

Chapter Six.

5.3 Adaptive Continuous Trust Evolution Mechanism (ACTEM)

Public cloud computing systems are accessed by users with varying requirements

[229]. Some of the customers may be very strict on their requirements while on

the other extreme, some customers might tolerate a little more deviation from the

committed performance guarantees. Hence, based on general requirements, customers

can be grouped into three main categories. They are namely;

Type I - Customers who require a guaranteed level of service

Type II - Customers who require an average level of service

Type III - Customers who require basic level of service with no guarantees

The requirements of Type I customers are more stringent than Type II and III

customers as they demand a guarantee on the commitments of service quality. It

is impractical to provide an absolute guarantee that the required service quality

will always be met, unless dedicated systems with ample resources are permanently

allocated [230]. In such situations, the most practical way is to provide a statistical

guarantee within a specified confidence level. Depending on the stringency of

the requirements, users can demand different service levels specified by specific

confidence levels such as 90%, 95% etc. The charging scheme can also be adapted

to suit the service levels, where users are required to pay premium prices, if more

stringent service quality is demanded. This kind of differentiated charging scheme

118

can be easily justified, as the service providers are to reserve more resources to meet

the requirements of these customers. Hence the trust evolution mechanism must

be capable of distinguishing between different performance demands for the same

performance value.

In order to continuously modify the trust score based on the performance, it is

necessary to monitor the performance of the system in real time. We propose to have a

feedback mechanism that will continuously monitor and track the system performance

and supply the performance values to the trust evolution mechanism. Figure 5.1 shows

the block diagram of a trust management system comprising service monitor, trust

formulation and trust evolution units.

Figure 5.1. Trust Management System

The operation of the trust management system is as follows: the service monitor

receives its inputs from both the clients and the service provider. The clients send both

the required performance value for a given metric and the confidence interval. The

actual performance value is obtained from the service provider. The trust evolution

module computes the new trust score and updates the trust value based on the inputs

119

received. The Adaptive Continuous Trust Evolution Mechanism included in the trust

evolution module is given in Algorithm 5.1 using response time as the performance

metric.

Algorithm 5.1: Adaptive Continuous Trust Evolution Algorithm
required response time = τr
actual response time = τa
confidence level = 95%, 90% etc.,

compute the mean response time (τ̄) =

N
∑

i=1
(τa)i

N

compute confidence interval for mean response time = τ̄± t(α/2,N−1)s/
√

N

compute normalized parameter (δ) = |τr−τ̄|
τr

if (τ̄− t(α/2,N−1)s/
√

N ≤ τr ≤ τ̄ + t(α/2,N−1)s/
√

N) then
if (Tn == 1) then

Tn+1 = Tn
else

Tn+1 = (1−δ)∗Tn +δ : T0 = a and n = 1,2, . . .
end if

else
if (Tn == 0) then

Tn+1 = Tn
else

Tn+1 = (1−δ)∗Tn−δ : T0 = a and n = 1,2, . . .
end if

end if

where, a – initial trust value, N – No. of results in the buffer

5.3.1 Functional Verification of ACTEM

The proposed algorithm was functionally verified in a simulated environment.

The computer model for simulation was created using GNU Octave with a trust

management system that consisted of service monitor and trust evolution unit. The

simulation was limited to single performance metric, response time. In order to

simplify the tests, the required response time was fixed, while the actual response

time was allowed vary within two extreme values. Figure 5.2 shows the change in

trust score during continuous positive or negative feedbacks.

120

Figure 5.2. Trust Scores due to Continuous Positive or Negative Feedbacks

From Figure 5.2, it can be seen that the continuous reception of positive feedbacks

improves the trust scores towards the positive extreme 1 while the continuous negative

feedbacks diminishes the trust score towards 0 starting from the neutral value of 0.5.

In order to test the effect of confidence level on the trust score, the experiment was

slightly modified. The number of clients was increased to two one expecting the

response time to be within the expected limit with a confidence level of 90%, while

the other one to be a little bit more stringent with a confidence level of 95%. The

experiment was repeated several times, by fixing the actual response time to fall

between the two demands. Figure 5.3 shows the effect of confidence level on the

trust scores despite the response time being the same.

Figure 5.3. Effect of Confidence Level on Trust Scores Computed

121

Figure 5.3 shows the effect of the stringency of the client demand on the trust placed

on the service provider. Stronger the stringency, less the trust would be for the same

performance of the system. On the other hand, a less demanding client can be satisfied

with slightly lower performance that is required for a more demanding customer. Thus,

it can be concluded that the ACTEM can be used to check for the performance of a

cloud system by any client irrespective of his demand level by providing the required

parameter values.

5.4 Memoryless Trust Computing Mechanism (MemTrust)

Similar to ACTEM, MemTrust also receives the inputs from both the cloud system

and the clients based on which the trust scores for the system would be computed.

The inputs received from the client and the system are the required and the actual

performance values for any given metric respectively. The distinguishing feature of the

MemTrust is that the computed trust score does not depend on the past performance

of the system but the recent performance of the system and the shape of the Sigmoid

function used. Figure 5.4 shows the functional level detailed diagram of the MemTrust

trust evolution unit. The main functional components that make the trust evolution

unit include the performance value storage block, the summing point and the Sigmoid

function.

Figure 5.4. MemTrust Trust Evolution Unit

122

The operation of the trust evolution unit is as follows: the performance values for a

specific metric received by the monitoring unit are stored in the storage block on a

First In First Out (FIFO) basis. Depending on the capacity of the storage block, the

number of most recent performance values to be stored is predetermined and fixed.

From these stored values, the median performance value is computed. By taking the

median of the performance parameter eliminates the effects of momentary fluctuations

and provides somewhat a stable outlook for the system. Median has been selected

as the preferred statistic opposed to mean as it is least affected by outliers, though

both are commonly used to compute the central tendency of a particular attribute

[231]. The summer computes the difference between the required performance value

and the median performance value and then passes the result to the next stage. At

the next stage, the normalized difference (δ) in the required performance and actual

performance is computed and forwarded to the Sigmoid function as the input. The

Sigmoid function then computes the trust score based on this input. Since the Sigmoid

function directly computes the trust score using the normalized difference, it is not

necessary to save the past trust scores computed. Hence this method does not have the

memory of any previous trust scores. It is only necessary to track the actual response

times of the cloud provider in order to compute the normalization parameter (δ).

The Sigmoid function is used in this algorithm due to its special properties that are

suitable for this kind of operation. The special properties that can be useful for trust

management are [232]:

• Shape of the curve (S-shape)

• Linear operation in the middle region

• Large input range (from −∞ to +∞)

123

Figure 5.5 shows the shape of a Sigmoid curve. The nonlinear property of the Sigmoid

function makes it very difficult to push the scores towards extreme values both positive

and negative. The linear portion of the curve can be used to amplify the trust score

differences in that region as most of the customers could be expected to operate there.

The large input range makes the system robust as theoretically it would be impossible

to break the system using extreme values.

Figure 5.5. Sigmoid Function

The Sigmoid function needed to be modified to change its range from (-1, +1) to

(0, +1). This modification is required as the trust scores in this research has been

specifically restricted to be within the extreme values of 0 and +1. Figure 5.6 shows

the shape of the modified Sigmoid function used in this research.

Algorithm 5.2 lists the pseudo code of the algorithm used to implement the MemTrust.

Algorithm 5.2: MemTrust: Memoryless Trust Evolution Algorithm
required response time = τr
actual response time = τa
compute the median response time = τm
compute the difference in response time τd = (τr− τm)
compute the normalized response time δ = τd

τr
compute the trust score using the Sigmoid function (T) = Sigm(δ)

124

Figure 5.6. Modified Sigmoid Function

5.4.1 Functional Verification of MemTrust

The functionality of the MemTrust has been verified in a simulated environment build

using GNU Octave open source software. The Sigmoid function used in the simulation

has been designed using the logistic function given by Equation 5.1 [233].

Sigm(x) =
1

1+ e−x (5.1)

Response time has been identified as the sample performance metric used in the

simulation. The capacity of the temporary storage block for storing the recent

performance values has been decided to be of thirty samples. This number has

been decided based on the fact that the minimum number of samples required for

maintaining normal distribution is thirty (30) [234]. Hence the thirty most recent

response times have been stored on the FIFO basis by replacing the oldest sample

with the most recent response time. Since the only the last thirty response time to

compute the median response time, the trust score computed using this value would

reflect the current status of the cloud system.

125

In order to maintain a consistent simulation environment, the median response time

was artificially fixed during the entire duration of the simulation while the required

response time was allowed to vary within a fixed interval. The trust scores computed

using MemTrust was compared with that of multi-level thresholding trust computing

mechanism presented in [235].

Figures 5.7 and 5.8 show the trust scores computed with MemTrust and multi-level

thresholding trust computing mechanisms for constant positive and negative responses.

Figure 5.7. Trust Scores Computed for Constant Positive Responses

Figure 5.8. Trust Scores Computed for Constant Negative Responses

From Figures 5.7 and 5.8, it can be seen that when the constant response times were

observed, the trust scores computed with the multi-level thresholding trust computing

mechanism continuously adjusts the trust scores either towards 1 or 0, while the trust

scores computed with MemTrust stays fixed at the same value.
126

Figure 5.9 shows the trust scores computed when random response time requirement

was applied. Here the response times were randomly generated while maintaining

the required response time fixed artificially. As the Memoryless trust computing

mechanism depends only on the difference between the required response time and

the real response time to compute trust scores, it shows a linear relationship with the

required response time. On the other hand, the multi-level trust computing mechanism

uses both the difference between the required and real response times and the previous

trust scores computed for calculating the next trust score, it shows an erratic behavior.

The erratic behavior is mainly due to the fact the real response times were randomly

generated they occur at different times though they are shown linearly on the x-axis.

Figure 5.9. Trust Scores Computed for Random Response Time Requirement

Thus it can be observed that the MemTrust mechanism is shows stable behavior in

cases of repeated requests and the trust scores depend only on the current performance

of the system. Hence, it can be concluded that the MemTrust is working as per the

expectations of producing a stable output in times of random erratic behavior of the

system.

5.5 Hysteresis-based Trust Evolution Mechanism (HystTrust)

The HystTrust algorithm has been developed by combining the SP-SQQA and

MemTrust while replacing the Sigmoid function with a hysteresis loop. Figure 5.10
127

shows the detailed functional diagram with individual functional units.

Figure 5.10. MemTrust Trust Evolution Unit

HystTrust computes the trust score using the actual performance of the system and

the required performance as inputs with the aid of a hysteresis function. The

new trust value is computed based on the current trust rating of the system along

with the normalized service quality value (δ). HystTrust is essentially a nonlinear

trust evolution algorithm. The hysteresis function has several special features that

distinguish it from other nonlinear functions [236]. These features have been taken into

account in many other studies including economics, electronic commerce and wireless

communications [237, 238, 239]. Some of these features have been exploited in this

work in order to make the trust computing mechanism more rugged and representative

of the actual system performances. The special properties that are useful for trust

evolution include:

• Shape of the curve (SS-shape)

• Linear operation in the middle regions

• Large input range (from −∞ to +∞)

• Inherent memory in the function

128

5.5.1 Hysteresis Function

Figure 5.11 shows the shape of a hysteresis function. From this figure, it can be

seen that the output of the function not only depends on the current input but also

on the history. Hence to drive the output from one extreme to the other more

effort on the part of the input is required than what was required to bring it to

that state originally. Hysteresis has been associated with several natural phenomena

[240]. Magnetic/electrical hysteresis in ferromagnetic and ferroelectric materials,

deformation of rubber or alloys under applied force, spread of epidemics in a specific

geographical area and natural rate of unemployment in a given economy are few

examples that show hysteresis behavior in natural systems. In order to exploit

the beneficial effects of hysteresis, scientists have developed artificial systems with

hysteresis behavior in order to avoid the ill effects of rapid oscillations caused by

external interventions. Hysteresis based systems have been used in several engineering

domains including electronics, control systems, telecommunications, mechanical

engineering, software engineering etc [236]. In this research, the delayed response

of hysteresis has been exploited to create a stable trust computing algorithm for cloud

computing.

Figure 5.11. Sample Hysteresis Curve

129

5.5.2 Pseudo Code of the Proposed Algorithm

The pseudo code of the HystTrust algorithm is shown in under Algorithm 5.3.

Algorithm 5.3: HystTrust: Hysteresis-based Trust Evolution Algorithm
required response time = τr
actual response time = τa
compute the median response time = τm
compute the difference in response time τd = (τr− τm)

compute the normalized response time (δ) = ‖τd‖
τr

compute the trust score using the hysteresis function

if (τd > 0) then
Tn+1 = Tn + Hyst(δ) : T0 = a and n = 1,2 . . .

else
Tn+1 = Tn - Hyst(δ) : T0 = a and n = 1,2 . . .

end if

where a - initial trust score

5.5.3 Functional Verification of HystTrust

The operation of the proposed HystTrust has been functionally verified using

simulations. The simulation environment was setup using Octave, the open source

clone of Matlab. The hysteresis function was simulated using the Equation 5.2, which

was created by combining two horizontally shifted Sigmoid functions.

Hyst(δs) =

1

1+e−(δs−d) i f δ ≥ 0

1
1+e−(δs+d) i f δ < 0

(5.2)

where δs - cumulative response time

d - horizontal shift

In order to simplify the simulation environment, it was decided to verify the operation

using only a single performance attribute. Response time has been selected as the

130

attribute to be used as in the previous cases. The number of samples stored in the

temporary storage was limited to thirty for computing the median response time.

During the simulation, the median response time was artificially fixed and the required

response time was allowed to vary within predefined limits. Then the response times

of the system were measured and the trust scores were computed using HystTrust

algorithm. The trust scores thus computed are stored in a buffer as the next value

to be computed would either increment or decrement the previous value based on

the performance of the system. Only the last trust score needs to be stored in the

buffer reducing the storage requirements of the system. It is also possible to support

differentiated services with HystTrust with minor modification of the output stage. In

order to support differentiated services as in the cased of ACTEM, it would only be

necessary to maintain multiple buffers holding trust scores for each confidence level.

These trust scores corresponding to different levels of service requirements can be

modified independently as explained in Chapter Four based on the performance of the

system.

In order to verify the performance of the HystTrust against other algorithms, the same

performance values were used to compute the trust scores using MemTrust and multi-

level thresholding trust computing algorithm proposed in [235]. The results have been

plotted on the same diagram. Figure 5.12 shows the trust scores computed using all

four algorithms.

From Figure 5.12, it can be seen that the proposed HystTrust algorithm reduces the

impact of the transient behavior of the system on the trust score. This is due to

the combined effects of the statistical treatment of the input parameter through the

computation of the median values and the stable behavior of the hysteresis function

131

Figure 5.12. Comparison of Trust for Random Response Times

compared to the other mechanisms in the event of small fluctuations. This hysteresis

based trust evolution mechanism provides a better and stable out than the other two.

This proves that the HystTrust mechanism works as intended in improving the stability

of the computed trust scores in the face of temporary fluctuations.

5.6 Robust Adaptive Trust Computing Mechanism (RATComM)

Robust Adaptive Trust Computing Mechanism (RATComM) has been created by

combining positive aspects of the trust evolution algorithms described in Sections

5.3 and 5.5. The main components of the RATComM include the statistical

validation of the inputs, trust evolution using hysteresis function and input validation

controlled output enabler. The statistical validation is the process of checking if the

actual performance parameter value of the service provider falls within the required

confidence interval. If the actual performance (parameter value) falls within the

confidence interval computed using the standard deviation and the sample mean

values, the performance is considered acceptable. Otherwise, the performance of the

system is taken to be below the expectations of the customer. Figure 5.13 shows the

main functional units of the RATComM trust computing mechanism.

The brief operation of the RATComM is as follows: the client sends the service

requests along with the committed service quality levels and the confidence intervals.

132

The required (committed) service quality and the corresponding confidence level are

specified in the SLA signed between the service provider and the clients [241]. The

actual performance of the cloud system was tracked by the trust evolution unit and

the most recent performance values are stored in the temporary storage on a FIFO

basis, from which the confidence interval of the system performance is computed. The

observed (actual) performance is compared with the confidence interval computed to

check if it falls within it or not. If the observed performance falls within the confidence

interval, then the system performance is determined to be acceptable requiring no

changes to the trust scores. If the observed performance is outside the confidence

interval, then the trust score is modified accordingly and stored in the trust buffer using

the comparator as a switch. Algorithm 5.4 lists pseudo code of the trust evolution

algorithm employed in the RATComM mechanism.

Figure 5.13. RATComM Trust Evolution Unit

5.6.1 Functional Evaluation of RATComM

The RATComM mechanism was verified for the correctness of its functionality using

simulations. The simulation environment was setup using GNU Octave software.

Algorithm 5.4 was implemented in Octave using response time as the performance

parameter with the hysteresis function defined in Equation 5.2 to compute the final
133

Algorithm 5.4: RATComM Algorithm
Obtain required response time = τr
Obtain confidence level
Store actual response time = τa
Compute the confidence interval using the samples stored in the temporary storage
Compare the required response time with the confidence interval

if within then
NO CHANGE

else
Compute the difference in response time τd = (τr− τa)

Compute the normalized response time δ = ‖τd‖
τr

Compute the trust score using the hysteresis function with δ as input
Store the new trust score in the output buffer

end if

trust score. Thirty most recent response times were stored in the FIFO buffer

for computing the required statistics such as mean, median and variance values of

performance, which would be used for computing the confidence interval. In order to

simplify the environment and to create a set of consistent and repeatable experiments,

the required response time was fixed and the actual response time was allowed to vary

within limits to reflect the real world conditions.

Figures 5.14 and 5.15 show the trust scores computed using statistically validated

(@ 90 and 95 percent confidence levels) inputs against that of non-validated inputs,

which are the raw values that were not checked to fall within the confidence interval.

From these figures, it can be observed that the trust scores computed using statistically

validated inputs are more stable than that produced using non-validated inputs. In

Figure 5.14, the trust scores computed using the 90% validated inputs do not change

at all whereas the trust scores computed using the direct inputs fluctuate heavily.

From Figure 5.14, it is very clear that even when the confidence level is relaxed, trust

scores computed using validated inputs are more stable changing only when the inputs

fluctuate heavily but lesser than that due to non-validated inputs.

134

Figure 5.14. Trust Scores with 90% Validated Inputs Vs. Non Validated Inputs

Figure 5.15. Trust Scores with 95% Validated Inputs Vs. Non Validated Inputs

Figure 5.16 shows the effect of confidence level on the trust scores computed. When

the confidence level is set at 90% the fluctuation in the trust scores computed is totally

eliminated compared to when the confidence level is set at 95%. Hence it can be

seen that the more relaxed the requirements are more stable the trust score are even in

situations of intermittent fluctuations in response time. On the other hand, when the

customer demands are more stringent, the system performance must be very consistent

to meet those requirements. This is clearly reflected on the trust scores computed using

RATComM.

Based on the above results, it can be concluded that proposed mechanism works as

135

Figure 5.16. Effect of Confidence Level on Trust Scores

expected giving a stable output than that of HystTrust that does not carry out any input

validation prior to computing trust scores.

5.7 Multi-Dimensional Trust Computing Mechanism (MuDTComM)

Multi-Dimensional Trust Computing Mechanism (MuDTComM) is an extension of

the RATComM accepting multiple input parameters. The MuDTComM has multiple

input channels for receiving and processing multiple parameters as each individual

parameter needs to be differently. Figure 5.17 shows the high level design of the

mechanism showing the multiple input channels, parameter conversion and combining

unit and the trust computing unit in block diagrammatic format. Figure 5.18 is the

detailed diagram of the same mechanism showing finer information including the

buffers, statistics computing units, comparators, multiplexers, multipliers, summing

points, weight handling units and trust computing module.

The operation of the mechanism is as follows: a client requests for service, it supplies

the trust computing system with the required set of parameters and their required

values along with the confidence level committed by the service provider. The required

values are the ones committed to be met in the SLA signed between the service

provider and the client. The actual performance of the system is tracked and the

136

Figure 5.17. MuDTComM Trust Evolution Unit

Figure 5.18. MuDTComM Trust Evolution Unit in Detail

137

parameter values are stored in the respective FIFO buffers.

The confidence interval each parameter using its sample mean and standard deviation

will be computed using the values stored in the buffer. If the required value falls

within the interval, then the performance is considered acceptable and the performance

quantifier ρ is set to 1, otherwise to -1. Then the quantifiers will be weighted

and summed before supplying to the trust computing unit. Finally the trust score

will be computed using the hysteresis function. The pseudo code for implementing

MuDTComM is given in Algorithm 5.5.

Algorithm 5.5: MuDTComM Algorithm
Receive confidence level
FOR (each parameter)
{

Receive required value = τr
Receive weight = wi
Receive actual value = τa

Store τa in FIFO buffer
Compute mean (τ̄a) and std. deviation (σ) from sample
Compute confidence interval for the parameter

Check if, τa with the confidence interval
if within then

ρ = 1
else

ρ =−1
end if

Compute the normalized performance (δ)

δ= ‖ ¯τa−τr‖
τr

Compute δe = ρ ∗wi ∗δ

}
Compute δ s

e = Σ(δe)
Compute Trust Score T = Hysteresis (δ s

e)

138

5.7.1 Functional Evaluation of MuDTComM

Extensive simulations were carried out to verify the functionality of the MuDTComM

under controlled environments. The simulation environment was setup using

GNU Octave software with response time and processing time as the performance

parameters. Algorithm 5.5 was implemented in Octave in such a manner that it can

accept two inputs and process them. The values of input parameters, response time

and processing time were restricted to create a consistent and repeatable environment.

The results were compared with the trust scores computed using non-validated inputs

for the stability of outputs.

Figure 5.19 shows the trust scores computed using response time as the service quality

parameter by both RATComM and MuDTComM at 90% and 95% confidence levels

respectively. Both mechanisms follow the same pattern at both confidence levels. This

is expected as both mechanisms become same when only a single service quality

attribute is considered. These mechanisms differ only in the number of parameters

used for computing trust scores.

Figure 5.19. Comparison of RATComM and MuDTComM Trust Evolution Units

Figure 5.20 shows the trust scores computed using response time and service time as

input parameters with equal weights at different weights at 90 percent and 95 percent

confidence levels. During the 1st stage of the experiment, both response time and
139

service time were applied with equal weights, i.e w1 = w2 = 0.5. During the 2nd stage

the weights were modified as w1 = 0.9 and w2 = 0.1 for response time and service

time respectively.

Figure 5.20. The Effect of Weights and Confidence Level on Trust Scores

From Figure 5.20, it can be observed that the confidence level plays a major role

compared to the weights applied in the final trust scores computed irrespective of

the number of parameters used. On the other hand, the weights play a minor role

depending on the performance of the cloud system on specific parameters selected.

5.8 Summary

This chapter presented five different trust evaluation mechanisms known as ACTEM,

MemTrust, HystTrust, RATComM and MuDTComM developed part of this research.

These mechanisms were developed in an incremental fashion improving the process

from one mechanism to the next on a step by stem fashion. The RATComM

and MuDTComM were developed by combining the positive aspects of ACTEM,

MemTrust and HystTrust for computing the trust scores for accommodating a single

parameter and multiple parameters as inputs respectively. All the mechanisms were

evaluated for functionality under limited laboratory conditions using simulations.

The simulation results show that the mechanisms are functioning as expected. The

performance analysis of the algorithms will be presented in Chapter Seven.
140

CHAPTER SIX

PROBABILITY-BASED TRUST DISTRIBUTION MECHANISM

FOR CLOUD COMPUTING

6.1 Introduction

Chapter Five presented several trust evolution algorithms, which were finally

combined to form two adaptive trust computing mechanisms named RATComM and

MuDTComM. Though these mechanisms are sufficient for the quantification of the

performance of the cloud service providers and rank them accordingly, the application

of it will be limited to a small geographical area covered by single ranking unit. On the

other hand, cloud services may cover large geographic areas serving a large number

of customers. It is impractical to cover such a large system with a single monitoring

unit. Hence it would be required to have a system of monitoring and ranking units

that work together sharing the trust scores with each other. In order to facilitate the

cooperatively sharing of trust scores, a trust score distributing mechanism has been

developed. Chapter Six presents the reliable trust distribution mechanism that shares

the trust scores between cooperating monitors. The trust scores received from other

monitors are first checked for the reliability of the values based on the past experience

with that particular monitor. The trust scores are then adjusted before incorporating

them into the trust score table based on the past experience. This makes the trust scores

to be more realistic and reliable in the presence of noise and uncertainties.

This chapter has been divided into four sections and the organization of the chapter

is as follows: Section 6.1 provides a brief introduction of the chapter highlighting the

importance of distribution of trust scores among the cooperating monitors. Section 6.2

presents the principles of trust distribution along with the practical issues encountered

in such distribution. Section 6.3 introduces the main contribution of this chapter the

141

Probability-based Trust Distribution Mechanism and finally Section 6.4 summarizes

the chapter.

6.2 Distribution of Trust Scores

Public cloud computing system can be considered as a large distributed system as the

users and the service providers join the Internet from any location for providing as well

as consuming services [242, 243]. But there exist many significant differences between

traditional distributed systems and cloud computing. Under traditional definition, a

distributed system is defined as a system consisting of many autonomous computers

spread over a large geographical area that are working together and communicating

through a network [243]. On the other hand, a cloud computing system need not have

its nodes distributed over a large geographical area. The nodes of a cloud system can be

hosted within a single data center but can serve a large number of customers who may

be distributed over a wide geographical area [244]. Al-Roomi et al. [245] state that

one of the main objectives of cloud customers is to obtain the best services in terms of

service quality at a reasonable price. Hence customers may select any service provider

irrespective of its physical location provided it can meet their requirements. Hence the

users may be able to evaluate the service quality of any service provider irrespective

of its geographical location prior selecting them. Thus it requires an independent trust

management system to help customers identify the right service provider from any

part of the world. It would be impractical for a single trust computing unit cover the

entire Internet. A more suitable architecture would be distributed trust management

system, where the individual trust computing units cover a limited area but receive

and disseminate the trust computed by other units, so that the customers can get the

required performance information about any cloud service provider.

The main function of the trust distribution system is to exchange the trust scores

142

computed by the trust computing modules described in Chapter Five. The trust

distribution network proposed in this research is made of a collection of trust

distribution units spread over the Internet. In principle this would make a huge peer to

peer network of trust computing and distribution units.

A trust distribution unit can act as both a client as well as a server depending the

requirement and situation. A node plays the role of a client when it requests the

services from another node, while it would be a server, when it serves another node.

These two functions can be clearly distinguished and treated as separately. Figure 6.1

shows the high-level architecture of the proposed trust distribution system.

Figure 6.1. High-Level Architecture of Trust Distribution System

Figure 6.1 shows that the proposed trust distribution system has a flat architecture

with only peer-to-peer nodes. This kind of flat architecture makes the system more

robust and resilient against single points of failures and help system to grow and shrink

independently [246]. Every node in the system maintains a trust table containing

the information on the service quality of different cloud systems. These tables are

populated with values either self computed by the trust computing units or received

from other nodes. The single arrows running between the nodes indicate the data

transfer direction and two different are used here to show that they are independent

of each other. A node solicits trust scores only from its immediate neighbors and no

solicitation request will be forwarded by an intermediate node to another. This strict

rule is implemented in order to avoid the flooding of network with trust solicitation

143

messages. Figure 6.2 shows the block diagram of a trust administration unit that carries

out the trust solicitation, evaluation, updating and dissemination.

Figure 6.2. Trust Administration Unit

6.2.1 Trust Table Updating Process

The updating of the trust tables occurs under two conditions, namely the regular

updates and request driven updates. The regular updates are carried out on a

predetermined interval by every trust updating nodes. The request driven update is

carried out when a client requests for a certain cloud resource with a given trust level.

Figure 6.3 shows the trust update process in detail.

The request driven starts when a client requests for certain cloud services with specific

QoS requirements. Then the trust distribution node will check its trust table for a

system with the required performance characteristics (metrics). If found, the client will

be informed of the details of the system. If not, the node will issue a trust solicitation

notice using the flooding mechanism. When this solicitation message is received at a

neighboring node, it will reply back with its trust table containing only the trust values

computed by itself. The self computed trust scores are called primary scores while

the ones received from a neighbor are known as secondary scores. When these scores

are received at the requesting node, they will be multiplied by the trust index, which

is explained later in the paper of the sending node to compute the final scores. Then

the final scores are inserted into the trust table of the requester. When two or more

nodes sends the trust score of a single cloud system, the score reported by the trust

144

Figure 6.3. Trust Updating Process

distribution node with the highest trust index is taken for final computation.

A node sends only the primary scores as a response for score solicitation due to the

following reasons:

• The reliability of the secondary trust scores is lower.

• The final trust scores computed from secondary trust scores would be very small

as these scores have undergone multiple normalizations.

• If the cloud system of which the secondary information is omitted, is close to

145

the requesting node, there is a high chance that it will be reported as primary

score by another node in the neighborhood.

• Reduces the loading of the network as only small tables are exchanged over the

network.

• Limits the maximum reach of the trust scores as well as the cloud system within

a specific neighborhood.

Table 6.1 shows a sample trust table. The reporting node Self indicates that it was

computed by itself. Hence the trust index of the reporting node is taken as one (1) and

the type is indicated P (primary). Other trust scores shown in the table are all reported

by other nodes, hence the type is S (secondary). From Table 6.1, it can also be seen that

even when all the reported trust values are equal, in this case 0.8, the values installed

in the trust table varies depending on the reporting node’s trust index.

Table 6.1
Sample Trust Table

Cloud service Trust score Reporting node Reporting node’s Type
provider trust index

CSP1 0.80 Sel f 1 P
CSP2 0.64 N2 0.8 S
CSP3 0.72 N3 0.9 S
CSP4 0.59 N1 0.74 S

6.3 Probability-based Trust Distribution Mechanism (PTDiMech)

The perceived service quality received by a customer depends on the performance

of the service provider as well as that of the intermediate network [247]. Hence the

trust values received from the neighboring trust distribution nodes need to be adjusted

for differences experienced by customers. For example, when two neighboring

trust distributing nodes are located in two different parts of the Internet, they may

experience differing service qualities when accessing the same services from the

146

same service provider due to differences in the intermediate networks, devices and

systems. Some service providers may be located very close (few hops) to certain

trust distribution nodes while many hops away from the other ones. Similarly the

networks surrounding a trust distribution node may be more congested than the other

one. Hence, when these two trust distribution nodes share the service quality attributes

with each other, these external factors must be taken into account. Since, it is not

practical to evaluate all the factors that may play a role in the trust scores to be shared

between two nodes, it is proposed to compute a single factor known as the trust index

for a node with respect the other that can combine all these difference into one.

The trust index of a node compared to another depends on its past experiences in

providing performance attributes. Since a node provides the performance attributes

computed by it from the data received from clients accessing these systems. The

performance experienced by these clients will depend on many factors including the

capability of the system, workload of the system, performance of the network and

devices outside the system etc. These factors can be categorized into two groups as

internal factors and external factors. The capability of a system and loading can be

considered to be internal factors while the performance of the network and devices

between the system and the client would constitute the external factors. Hence a

system has been accessed by two clients for the same services with same performance

requirements from two different parts of the Internet, the perceived performance

received may differ due to the differences in the external factors. Also the perceived

performance will not be a fixed one as these factors are essentially dynamic in nature.

Hence the performance index of the systems needs to be computed using conditional

probability based on previous experience.

A naive Bayesian network [248] can be used to represent the trust between two

147

trust sharing nodes based on their previous interactions. A naive Bayesian network

represented by edges and vertices (nodes) is a statistical method for discovering hidden

patterns in data. A naive Bayesian network consists of one root (parent) node and

multiple child nodes, where the parent represent the hidden variable. The theoretical

foundation of the Bayesian networks is built on the Bayes’ rule for conditional

probabilities [219]. Every node in a Bayesian network maintains a conditional

probability table holding the relationship between the connected nodes. The naive

Bayesian network built for computing the trust between two trust distribution nodes

is given Figure 6.4. The parent node represents the trust (Trust Index) between the

nodes while the child node represents the performance of cloud service provider whose

performance parameters are reported by responding node.

Figure 6.4. Bayesian Network for Node NS

The root node Trust represents the confidence developed by a trust distributing node

(NS) on another trust distributing node (ND) in providing the right information on

the capabilities of cloud service providers. Each leaf node represents a cloud service

provider, about whose capability the two trust distribution nodes exchange. Since a

node can share the information on many cloud service providers with other nodes,

the overall trust developed between these two nodes depends on the information

exchanged between them and the actual performance received by a client. Based on

the previous interactions, a node develops a conditional probability table for each node

containing this information. Table 6.2 shows a sample conditional probability table for

the node NS developed for the node ND from which it receives the service provider trust

values.
148

Table 6.2
Conditional Probability Table at NS for ND

Cloud No of Probability of No of Probability of
service outcomes outcomes outcomes outcomes

provider with O = 1 O=1 with O = 0 O=0
CSP1 s1 P(CSP1|O = 1) = s1

S n1 P(CSP1|O = 0) =n1
N

CSP2 s2 P(CSP2|O = 1) = s2
S n2 P(CSP2|O = 0) =n2

N
CSPk sk P(CSPk|O = 1) = sk

S nk P(CSPk|O = 0) =nk
N

where si represents the positive outcomes (O=1) and ni represents the negative

outcomes (O=0) for given interaction between a cloud service provider and a client.

S - total number of positive outcomes for all the service providers.

N - total number of negative outcomes for all the service providers.

Table 6.2 contains the information on every cloud service provider informed by ND to

(NS) in the form of probabilities based on its own experience. Since a trust distributing

node does not interact with service providers directly, and only the clients interact

with the service providers based on the recommendation of the trust provider, the

performance information is obtained from the clients. When a client interacts with

a service provider, it informs the trust provider about the performance, it received

from the service provider. Based on this information, the performance attributes of

the services provider and the node are updated according to formula given in Equation

6.1.

perceived per f ormance =

satis f actory, sk
i = sk

i +1

Sk = Sk +1

unsatis f actory nk
i = nk

i +1

Nk = Nk +1

(6.1)

Overall rating (Trust Index - T ID,S) for node ND with respect to node NS is computed
149

by combining the performance of all service providers reported by ND. In this fashion,

a nodes trust on another node is built over time.

Similarly, every node maintains a table similar to Table 6.2 for every other node that

it is communicating with in the networks. Since the nodes are communicating only

with the neighbors that can be reached directly, there would not be many tables to be

maintained by a node.

6.3.1 Functional Evaluation of PTDiMech

The proposed trust distribution mechanism was tested using simulations. The

simulation environment was setup with CloudSim, a versatile cloud computing

simulation tool [197]. CloudSim provides the users with the facility to setup multiple

cloud systems with many data centers equipped with variety of computers and other

devices. With CloudSim, a researcher can design a simulation environment very

similar to a practical system with realistic equipment and environmental conditions.

Hence CloudSim has been selected as the simulation tool for testing the trust

distribution mechanism PTDiMech proposed in this research. The data collected from

the simulations were used to plot graphs using GNU Plot. Algorithm 6.1 shows the

algorithm used to verify the functionality of PTDiMech. The functionality was verified

only for one parameter, namely the response time. Though it was tested for one

parameter, the mechanism can accommodate any number of parameters with minor

modifications to the algorithm. The evaluation of the algorithm for its validity will be

carried out using more than one parameter in Chapter Seven.

Algorithm 6.1 was tested extensively for functionality under different conditions.

Figure 6.5 shows the change in trust scores over a period of time for a given cloud

service provider. The initial trust value was set at 0.8.

150

Algorithm 6.1: Probability-based Trust Distribution Algorithm
required response time = τr
required confidence level = Cr
receive the trust score (for the above given response time) = Tr
actual response time = τa
Compute confidence interval - CI
if (τa within CI) then

S = S + 1 : (increment S)
else

F = F + 1 : (increment F)
end if

Probability of Success Ps =
S

(S+F)

Compute the new trust value Tn
Tn = Ps ∗Tn−1 : T0 = Tr and n = 1,2, . . .
where, S – No. of successes and F - No. of failures

Figure 6.5. Change of Trust Scores for CSP1 over a Period of Time

From Figure 6.5, it can be seen that though the result scores show some fluctuations at

the beginning, it settles down at a fixed value in the long run. This is due to the stable

performance of the remote cloud system as the fraction of positive responses (meeting

the commitment for a given response time) stabilizes in the long run.

6.4 Summary

This chapter presented the probability-based trust distribution mechanism for cloud

computing developed as part of this research. The proposed mechanism was built

151

from basic principles using Bayes’ theorem. The functionality of the mechanism was

tested under limited laboratory conditions using simulations. The simulation results

show that the mechanism functions as expected. The performance analysis of the

mechanism will be presented in Chapter Seven.

152

CHAPTER SEVEN

PERFORMANCE ANALYSIS OF TRUST COMPUTING AND

DISTRIBUTION MECHANISMS

7.1 Introduction

Chapters Four, Five and Six presented the trust quantification, trust evolution and trust

distribution mechanisms that are the main contributions of this research. Combining

these three different mechanisms, it is possible to build a service quality quantification

system that can monitor and categorize (rank) cloud service providers according

to their performance. Chapter Seven presents the performance analysis of these

mechanisms along with the details of the experiments carried out. The performance of

each mechanism proposed in this research is compared against that of the mechanisms

proposed in the literature under similar conditions.

The organization of Chapter Seven is as follows: Section 7.1 provides a brief

introduction to the chapter along with the organization. Section 7.2 presents the

simulation environment in detail along a justification for using such an environment.

Sections 7.3, 7.4 and 7.5 explain the performance analysis of service quality

quantification, trust computing and trust distribution mechanisms respectively. Finally

Section 7.6 summarizes the chapter highlighting the important points discussed in

herein.

7.2 Simulation Environment

The main aim of the performance analysis stage is to build an environment similar

to that is encountered in the real world on the selected simulator and run the

predetermined scenarios. The results obtained from these experiments can be analyzed

to check the performance of the mechanism or model that has been under investigation.

153

This research is concerned about measuring and quantification of the service quality

of cloud service providers from the customers’ perspective and not to modify the

performance of the cloud services in any way. Hence the cloud systems used in

simulations were created similar to that are available in the market.

The simulator along with the required other software were downloaded and installed

on a computer with the specification and configuration given in Table 7.1.

Table 7.1
Specification of the Host Computer

Component Specification
Processor type and class Intel Core i3 M350 @ 2.27GHz
No. of cores 4 with hyper threading
Memory (RAM) 8 GB
Operating System Windows 7 Professional
Java version Standard Edition, Version 8 Update 25
IDE Eclipse IDE for Java Developers
IDE Version Mars Release (4.5.0)

The Eclipse Integrated Development Environment (IDE) was used as CloudSim lacks

the Graphical User Interface (GUI). Figure 7.1 shows the Eclipse IDE loaded with

CloudSim simulation environment.

Figure 7.1. Eclipse IDE Loaded with CloudSim

154

Once the CloudSim environment has been setup and tested, the individual

configurations suitable for each and every scenario need to be run. CloudSim

simulation goes through a specific set of specific stages known as the CloudSim life

cycle [249]. Figure 7.2 shows a typical CloudSim life cycle.

Figure 7.2. A Typical CloudSim Life Cycle

155

7.3 Performance Analysis of Service Quality Quantification Mechanisms

Under Service Quality Quantification Mechanisms, both SP-SQQA and MP-SQQA

were tested. For these experiments, a cloud data center was setup is given in Table 7.2.

Table 7.2
Experiment Setup Attributes for the Evaluation of Service Quality Quantification
Mechanisms

Attribute Sub-Attribute Value
No. of data centers 1
No. of servers 5
Server properties

Architecture x86
No. of processors 1 (Quad Core)
Memory (RAM) 8 GB
Storage 1 TB
Network bandwidth 1 Gbps

VM allocation policy Simple
VM scheduling method Time and space shared
Cost 0

The service quality requirements of the clients were then set based on the

predetermined parameters of response time, service time and availability and other

resources. Table 7.3 shows the service quality requirements set in for these

experiments.

Table 7.3
Service Quality Requirements for Service Quality Quantification Mechanisms

Parameter Sub-Parameter Value
Response time 500 ms
Service time 10 minutes
Availability 100%
Computing Power Processor 2.27 GHz Clock speed

6 MB Cache
533 MHz Bus speed

Memory 2 GB
Storage 100 GB

Network speed Bandwidth 100 Mbps
Latency 3.33 ms

156

7.3.1 Performance Analysis of SP-SQQM

The SP-SQQM has been tested and validated through a set of extensive experiments

carried out in a simulated environment. Validation of the results has been carried out

by comparing the results with that of Combined Trust Model and QoS Trust Model

proposed in [48] and [49] respectively.

Combined Trust Model proposed in [48] has been designed by combining three

different trust models such as Identity-based trust (TI), Capability-based trust (TC) and

Behavior-based trust (TB). They have been combined as shown in Equation 7.1.

CT = a∗TI +b∗TC + c∗TB (7.1)

where a, b and c are fractional weights with a + b + c = 1.

QoS Trust Model proposed in [49] is a method for combining different performance

parameter into a single quantity. The QoS Trust has been defined as shown in Equation

7.2.

QT = w1 ∗P1 +w2 ∗P2 +w3 ∗P3 +w4 ∗P4 (7.2)

where w1,w2,w3andw4 are fractional weights with w1+w2+w3+w4 = 1.

and

P1,P2,P3andP4 are different performance parameters.

Prior to collecting the data for analysis, the simulation was allowed to run freely for

about 10 minutes in order to let it become stable. By allowing the system to stabilize,

157

it would be possible to avoid temporary fluctuations and misleading results.

The experiment consisted of 10 job submissions starting with 1000 jobs for the first

submission and increasing the number of jobs per consecutive submission by another

1000 jobs. Thus the last job submission makes the total number of job submissions

to be 10,000 altogether cumulatively. Each job submission should create a single

virtual machine for every 1000 jobs and submit these jobs to that virtual machine.

The processing of the jobs is simulated by creating a cloudlet and running it for a

predetermined time of 10 minutes as stated above. Figures 7.3, 7.4 and 7.5 show

the trust scores computing using SP-SQQA, QoS Trust Model and Combined Trust

Model for response time, service time and availability respectively. Since a single

parameter was considered for computing the trust scores, the weights for the given

specific parameters were set to 1 and 0 for other two parameters in the QoS Trust

Model and Combined Trust Model in this experiment.

Figure 7.3. Trust Scores Computed Using Response Time

From Figures 7.3, 7.4 and 7.5, it can be seen that the trust scores computed using

the proposed SP-SQQM has stable performance compared to other two mechanisms

for all three performance parameters selected. One of the most important aspects to

note from the figures, is the absence of erratic behavior in the trust scores computed

by the proposed SP-SQQM. The trust scores improves initially and then either settles
158

Figure 7.4. Trust Scores Computed Using Service Time

Figure 7.5. Trust Scores Computed Using Availability

down or shows slowly dropping as the loading is increased. This is the expected

behavior as when the cloud system has sufficient resources to service the requests,

they can either meet or exceed the customers’ requirements. This should improve the

trust rating of the providers. On the other hand, both TCM and QoS models show

very erratic behavior throughout. The QoS trust model fluctuates around a trust score

without settling on that value due to instantaneous performance fluctuations and TCM

model continue to deteriorate without showing any stable performance. The stability

of the SP-SQQM results from the fact that the temporary service provider performance

fluctuations are suppressed through statistical validation process.

159

7.3.2 Performance Analysis of MP-SQQM

The performance of the MP-SQQM was also verified through extensive simulations

carried out using CloudSim. The experimental setup was similar to that of the SP-

SQQM but the multiple parameters were taken together for computing the trust scores.

The simulation results were validated by comparing them against the performance

of the QoS trust computing model and Combined Trust Model proposed by in [49]

and [48] respectively. Figure 7.6 shows the trust scores computed with equal weights

applied to all three selected service quality parameters, namely response time, service

time and availability.

Figure 7.6. Trust Scores with Equal Weights

From Figure 7.6, it can be seen that the trust scores computed using the proposed MP-

SQQM initially improves and settles down at the specific value. On the other hand,

the trust scores computed using other two mechanisms show erratic behavior at the

beginning and tend to settle down way below that of MP-SQQM.

Figures 7.7 and 7.8 show the trust scores computed using all three mechanisms using

different weights for the service quality parameters. Figure 7.7 is the result, when

the weights of 0.5, 0.25 and 0.25 were applied to response time, service time and

availability respectively. On the other hand, Figure 7.8 shows the outcome with

weights 0.2, 0.3 and 0.5 applied to response time, service time and availability
160

respectively.

Figure 7.7. Trust Scores with Unequal Weights (Case I)

Figure 7.8. Trust Scores with Unequal Weights (Case II)

From Figures 7.7 and 7.8, it could be observed that the trust scores computed using the

mechanism proposed in this research, that is MP-SQQM performs shows faster and

more stable performance than both QoS trust computing mechanism and Combined

Trust Computing mechanisms. Reaching the final trust score faster enables the

customers to identify the real capability of the systems in a short time. While the

stable trust scores create confidence in customers on the performance of the systems

as a one that can be trusted to give stable and consistent performance.

Most importantly, it must be noted that the proposed trust computing mechanism

improves the trust scores gradually and smoothly when the performance of the cloud

system is better than or equal to the expectations of the customer as specified in
161

the SLA. But the behavior of both QoS trust computing mechanism and that of the

combined trust computing mechanism are erratic in changing the trust scores. The

QoS trust computing mechanism increases the trust scores in an ad hoc manner and

then drops very fast to a value below the middle value of 0.5 giving the indication

that the system performance is unacceptable. The performance of the combined trust

computing mechanism is worse as it never improves the trust scores but continuously

diminished it from the beginning. This is against the expectation that the computer

system has acceptable performance at least at the beginning, with low loading.

Hence it can be concluded that the proposed trust computing mechanism performs

better that both QoS trust computing mechanism and combined trust computing

mechanism. This validates the performance of the MP-SQQM as the better mechanism

of all.

7.4 Performance Analysis of Trust Computing Mechanisms

Similar to performance quantification mechanisms, trust computing mechanisms were

also tested using simulations. The simulation environment was setup similar to that

of trust quantification mechanisms explained in Section 7.3 with one data center

containing only one cloud server. Only one server was installed as performances

of these mechanisms are required to be evaluated under different loading conditions.

Thus the configuration of the data center is given in Table 7.4.

The service quality requirements of the clients were then set based on the performance

parameters of response time, service time and availability and other resource

requirements. Table 7.5 shows the client requirements set in for these experiments.

162

Table 7.4
Experiment Setup Attributes for the Evaluation of Trust Computing Mechanisms

Attribute Sub-Attribute Value
No. of servers 1
Server properties

Architecture x86
No. of processors 1 (Quad Core)
Memory (RAM) 8 GB
Storage 1 TB
Network bandwidth 1 Gbps

VM allocation policy Simple
VM scheduling method Time and space shared
Cost 0

Table 7.5
Service Quality Requirements for Trust Computing Mechanisms

Parameter Sub-Parameter Value
Response time 500 ms
Service time 10 minutes
Availability 100%
Computing Power Processor 2.27 GHz Clock speed

6 MB Cache
533 MHz Bus speed

Memory 2 GB
Storage 100 GB

Network speed Bandwidth 100 Mbps
Latency 3.33 ms

Several rounds of experiments were carried out under different loading conditions

to test and validate the performance of the trust computing mechanisms proposed

in this research. The results were validated by comparing them with that of the

fuzzy theory based trust computing mechanism proposed by Gu et al. in [50].

The fuzzy theory based trust computing mechanism inquires other users and other

cloud service providers for information on the trustworthiness of the selected service

provider. Hence this is basically an opinion based trust computing mechanism. In

the experiments carried out in this research, fuzzy theory based mechanism has

been slightly modified. The experiments carried out in this research takes the past

163

performance values of the service providers in place of the opinions of others. This

way it is possible to avoid the misrepresentation of facts by rogue users and service

providers as well as the independence of the trust computing monitor nodes are

maintained. The other shortcoming of the model proposed by Gu et al. is the inability

to distinguish the service quality factors from the opinions. By considering the past

data stored in the monitor nodes, it is also possible to compute the trust scores based

on specific parameters.

Similar to the experiments carried out for testing the service quality quantification

mechanisms, these experiments also consisted of 10 job submissions starting with

1000 jobs for the first submission and increasing the number of jobs per consecutive

submission by another 1000 jobs. Thus the last job submission contained 10,000 jobs

altogether cumulatively. Each job submission should create a single virtual machine

for every 1000 jobs and submit these jobs to that virtual machine. The processing of

the jobs is simulated by creating a cloudlet and running it for a predetermined time of

10 minutes as stated above.

7.4.1 Performance Analysis of Adaptive Continuous Trust Evolution

Mechanism

The performance of the Adaptive Continuous Trust Evolution Mechanism (ACTEM)

was tested under different loading conditions as above. In order to obtain the right

performance values the cloud system under test was loaded to the predefined loading

levels and then the required service request was sent. Only the performance values

for the above specific service request were measured and plotted. As explained in

Chapter Three, only response time, service time and availability were measured in

these experiments.

164

Figure 7.9 shows the trust scores computed using response time as input. The initial

trust was assumed to be 0.5 to indicate a neutral value. ACTEM was used to compute

trust scores at 90, 95 and 99 percent confidence levels. The trust scores computed

using fuzzy theory is also plotted in the same graph for the comparison purposes.

Figure 7.9. Trust Scores Computed based on Response Time

From Figure 7.9, it can be seen that the trust scores computed using the proposed

mechanism show smooth improvement while fuzzy theory based trust scores shows

fluctuations. This is mainly due to validation and non-validation of inputs by the

respective methods. The confidence level also plays role in the final trust scores

computed as the interval for validation depends on it. Overall the proposed mechanism

performs better than the fuzzy theory based mechanism.

Figure 7.10 shows the trust scores computed using service time as input parameter.

Similar to the previous case, ACTEM was used to compute trust scores at 90, 95 and 99

percent confidence levels. The same plot shows the trust scores computed using fuzzy

theory too. From Figure 7.10, it can be seen that ACTEM performs better than fuzzy

theory based trust computing mechanism even for response time as input parameter.

Figure 7.11 shows the trust scores computed using availability as input parameter. The

same graph shows the plots of ACTEM computed trust scores at 90, 95 and 99 percent

confidence levels and that of fuzzy theory.
165

Figure 7.10. Trust Scores Computed based on Service Time

Figure 7.11. Trust Scores Computed based on Availability

From Figure7.11 show that the fuzzy theory based trust scores a little better

performance at the low loading levels. But this trend is not maintained when the

loading was increased. On the other hand the trust scores computed using ACTEM

show smooth performance throughout.

From the above observations, it can be concluded that the Adaptive Trust Computing

Mechanism performs better than the fuzzy theory based method. Also the ACTEM

provides the users the ability to state their requirements based on confidence level too.

This is more practical than computing a single score for all the users irrespective of

the stringency of the needs.

166

7.4.2 Performance Analysis of MemTrust

The Memoryless Trust Computing (MemTrust) was also tested under the same

conditions as ACTEM described in Sub Section 7.4.1. Figures 7.12, 7.13 and 7.14

show the trust scores computed using the proposed MemTrust and fuzzy theory based

mechanisms based on response time, service time and availability respectively.

Figure 7.12. Trust Scores Computed based on Response Time

Figure 7.13. Trust Scores Computed based on Service Time

From Figures 7.12, 7.13 and 7.14, it can be seen that the trust scores computed using

the proposed MemTrust mechanism always tend to stay close to the middle value of

0.5 while the fuzzy theory based trust computing mechanism updates the trust scores.

This is due to the reason that the MemTrust mechanism uses only the current value

to compute the trust scores. It does not take the previous performance into account
167

Figure 7.14. Trust Scores Computed based on Availability

to avoid itself from misrepresentation of performance information by adversaries or

malicious users. As the trust scores depends only on the current performance of the

cloud computing node, the trust scores cannot be forced towards extreme values by

repeated misrepresentation of performance information. However there is no reward

for well performing systems either. Though, the trust scores computed using this

mechanism does not represent the true behavior of the cloud systems, this mechanism

acts as the basis for the strong and stable trust computing mechanisms developed in

this research.

7.4.3 Performance Analysis of HystTrust

The same environment has been used to evaluate the Hysteresis-based Trust Evolution

Mechanism (HystTrust). Figures 7.15, 7.16 and 7.17 present the trust scores calculated

with the proposed HystTrust and fuzzy theory based mechanisms based on response

time, service time and availability respectively.

From the above figures, it can be seen that the proposed hysteresis-based trust

computing mechanism performs better than the fuzzy theory based trust computing

mechanism throughout. Also, it can be observed that the output of the HystTrust

mechanism is more stable in the face of small temporary fluctuations. This is mainly

168

Figure 7.15. Trust Scores Computed based on Response Time

Figure 7.16. Trust Scores Computed based on Service Time

Figure 7.17. Trust Scores Computed based on Availability

169

due to the inherent memory included within the hysteresis functions that avoids the

fluctuations of output for small changes in the input. Thus, it can be concluded that

the proposed hysteresis-based trust computing mechanism has better performance than

the fuzzy theory based trust computing mechanism and provides more stable output.

7.4.4 Performance Analysis of RATComM

The same environment has been used to evaluate the Robust Adaptive Trust

Computing Mechanism (RATComM). Figures 7.18, 7.19 and 7.20 present the trust

scores calculated with the proposed RATComM and fuzzy theory based mechanisms

based on response time, service time and availability respectively.

Figure 7.18. Trust Scores Computed based on Response Time

Figure 7.19. Trust Scores Computed based on Service Time

170

Figure 7.20. Trust Scores Computed based on Availability

The above figures show that the RATComM mechanism has better and stable

performance than the fuzzy theory based trust computing mechanism. This is mainly

due to the elimination of the effect of small fluctuations on the output through input

validation and stability of output provided by the hysteresis function.

7.4.5 Performance Analysis of MuDTComM

The same environment has been used to evaluate the Multi-Dimensional Trust

Computing Mechanism (MuDTComM). Figures 7.21 and 7.22 present the trust scores

calculated with the proposed MuDTComM and fuzzy theory based mechanisms

based on the combination of response time, service time and availability respectively.

Though the fuzzy theory based mechanism was originally proposed for a single input

function, it was slightly modified to accept multiple inputs. The inputs were combined

into a single factor as explained in Chapter Four, before applying them to the trust

computing mechanisms. This way both these mechanisms have been brought to the

similar experimental environments, so that the outputs can be compared.

Figure 7.21 shows the trust scores computed using MuDTComM against that of fuzzy

theory based trust computing mechanism. MuDTComM was used to compute trust

scores at 90% and 95% confidence levels and equal weights were applied to all three

171

performance parameters, namely response time, service time and availability.

Figure 7.21. Trust Scores Computed by MuDTComM and Fuzzy Mechanisms

The experiments were repeated using different weighting factors for the service quality

parameters. Figure 7.22 shows the trust scores computed using MuDTComM and

fuzzy theory based mechanisms when response time, service time and availability were

applied w1 = 0.5, w2 = 0.3 and w3 = 0.2 respectively.

Figure 7.22. Effect of Weights on Trust Scores - MuDTComM vs Fuzzy

From Figures 7.21 and 7.22, it can be observed that MuDTComM performs better than

fuzzy theory based mechanism for both cases of 90 percent and 95 percent confidence

levels. It should also be noted that the MuDTComM scores are more stable than

that of fuzzy theory based mechanism. This is mainly due to the reason that small

fluctuations in the performance is tolerated by the proposed MuDTComM as any value

falling within the confidence interval is taken as acceptable performance irrespective
172

of minor deviations in the actual values. On the other hand, fuzzy theory based

mechanism responds to even small changes in the performance modifying the trust

scores. Thus, it can be concluded that the proposed MuDTComM performs better than

fuzzy theory based mechanism and also gives the freedom for customers to select their

own confidence level for computing the trust scores. This enables the differentiation

of customers based on the stringency of their service quality requirements.

7.5 Performance Analysis of Trust Distribution Mechanism

The simulation environment was slightly modified for the verification of the trust

distribution mechanism. The simulation environment was setup to with ten data

centers at different locations geographically distributed. These data centers were

interconnected with each other using links with the speed of 4 Mbps. This

interconnection speed was selected based on the world wide average Internet

connection speed reported by OMICS International [250]. Each data center was

designed to have only one server with equal capabilities as the main objective of these

experiments was to compute the effect of the intermediate network on the trust scores.

The configuration of a data center is as given in Table 7.6.

Table 7.6
Experiment Setup Attributes for the Evaluation of Trust Distribution Mechanism

Attribute Sub-Attribute Value
No. of servers 1
Server properties

Architecture x86
No. of processors 1 (Quad Core)
Memory (RAM) 8 GB
Storage 1 TB
Network bandwidth 1 Gbps

VM allocation policy Simple
VM scheduling method Time and space shared
Cost 0

The performance requirements of the clients were then set on the service quality
173

parameters of response time, service time and availability and other resource

requirements. Table 7.7 shows the client requirements set in for these experiments.

Table 7.7
Service Quality Requirements for Trust Distribution Mechanism

Parameter Sub-Parameter Value
Response time 500 ms
Service time 10 minutes
Availability 100%
Computing Power Processor 2.27 GHz Clock speed

6 MB Cache
533 MHz Bus speed

Memory 2 GB
Storage 100 GB

Network speed Bandwidth 100 Mbps
Latency 3.33 ms

Each experiment was repeated ten (10) times to obtain stable results and their mean

values were considered for validation. The results were validated by comparing

them with that of the Super-Agent-based Framework for Reputation Management and

Community Formation in Decentralized Systems proposed by Wang et al. in [51].

The above mechanism consists of two types of agents known as consumer agents

and super agents for computing and interchanging reputation scores. The roles of

consumer agents and super agents are assigned considering the capabilities of the

hosts. The super agents have more capacity than consumer agents and they take

additional responsibilities too. The super agents compute the reputation scores and

share with other agents. Consumer agents use the reputation scores computed by super

agents.

Super agent based scheme computes the trustworthiness (reputation) of a services s as

given by Equation 7.4.

174

Rsp(s) =
∑

n
i=1 Tc(spi)Rspi

∑
n
i=1 Tc(spi)

(7.3)

where
Rsp(s) - reputation value for the service s

Tc(spi) - the consumer agent’s trust in the super-agent spi and

Rspi(s) - reputation opinion provided by spi

and updated after every interaction by

T́c(s) = αTc(s)+(1−α)e(s) (7.4)

where
Tc(s) and T́c(s) are the trust value of the service s before and after the update

respectively

α is the learning rate - a fraction in the range of (0,1) and

e(s) is the evaluation results of the interaction, where e(s) will take either 1

or 0 depending on "satisfactory" or "not satisfactory" respectively.

The experiments consisted of 10 job submissions starting with 1000 jobs for the

first submission and increasing the number of jobs per consecutive submission by

another 1000 jobs. Thus the final job submission contained 10,000 jobs altogether

cumulatively. Each job submission will create a single virtual machine and submit

all the 1000 jobs to that virtual machine. The processing of the jobs is simulated by

creating a cloudlet and running it for a predetermined time of 10 minutes as stated

above. The availability was measured using the statistic that how many cloudlet

instantiation succeeded on the first attempt itself.

175

An extensive set of experiments were carried out using response time as the service

quality parameter. The initial trust was assumed to be 0.8 a value that was approached

in the previous experiments as final score. The trust scores were then computed using

PTDiMech and super agent based mechanism for different loading conditions. Figure

7.23 shows the trust scores computed using response time as input.

Figure 7.23. Trust Scores Computed based on Response Time

From Figure 7.23, it could be observed that both PTDiMech and super agent based

mechanism settle down to a stable value. On the other hand, the proposed PTDiMech

reaches that value much faster than the super agent based mechanism. The approaches

taken by the respective mechanisms for adjusting the trust scores makes the difference

in the leading to the final stable value. PTDiMech approaches the final score faster

as from the beginning it computes the probability of meeting the service quality

commitments. Hence it decays faster at the beginning followed by a slower rate while

approaching the final score. On the other hand, the super-agent based mechanism

gives the higher weight for the opinion of the super agent from which it receives the

initial trust score. The opinion of the super agent stay stronger until the consumer

agent obtains sufficient experience. This results in the slower approach rate. Hence

the proposed PTDiMech works better and faster than the super agent based trust

distribution mechanism.

176

Figure 7.24 shows the trust scores computed using service time as the parameter.

Figure 7.24. Trust Scores Computed based on Service Time

Similar to the case of response time, the trust scores computed using service time

also shows similar trends. Figure 7.24 shows that the PTDiMech approaches the

final score much faster than the super agent based mechanism. In this case, the

super agent based mechanism acts comparatively very slowly. Obviously, the super

agent based mechanism has not reached the final score yet, while the PTDiMech has

already reached the stable final score. This is due to the reason that the service time is

generally independent of the network dynamics and depends mainly on the capabilities

of the server. Hence the opinion of the super agent supplying the initial trust score

influences the resulting trust score for a long time until the client (recipient monitor)

gains sufficient experience to modify the trust scores.

Figure 7.25 shows the trust scores computed using availability as input service

parameter. From this figure, it can be seen that the proposed PTDiMech approaches

the final score much faster than the super agent based mechanism.

177

Figure 7.25. Trust Scores Computed based on Availability

Figures 7.26 and 7.27 show the performance of PTDiMech against that of super

agent based mechanism for the combined trust scores based on multiple performance

parameters. Similar to other experiments, the combined trust scores were also

computed by combining the performance parameters response time, service time

and availability. Figure 7.26 shows the trust scores computed by combining the

performance parameters using equal weights.

Figure 7.26. Trust Scores Computed with Equal Weights to All Parameters

Figure 7.27 shows the trust scores computed by combining the performance

parameters using different weights. The weights applied to response time, service

time and availability are w1 = 0.5, w2 = 0.3 and w3 = 0.2 respectively.

From Figures 7.26 and 7.27, it can be seen that the PTDiMech reaches the final stable
178

Figure 7.27. Trust Scores Computed with Different Weights to Parameters

trust score for the remote system faster than super agent based mechanism for both

cases. This is similar to the performance of the trust distribution mechanisms,when

the different service quality parameters were considered separately to compute the

trust scores.

Under all the conditions, the PTDiMech mechanism proposed in this research reaches

the final stable trust score faster with fewer interactions than the super agent based

mechanism. This observation is true irrespective of the individual parameter selected

or they are combined together. Hence it can be concluded that the proposed PTDiMech

works better in distributing the trust scores among the cooperating trust monitors than

the super agent based mechanism. Hence the customers would be able to identify the

most suitable cloud service provider with relative ease with PTDiMech than the super

agent based mechanism. This would result in less SLA violations helping both the

service provider as well as the customers.

7.6 Summary

This chapter presented the performance evaluation and validation of the proposed

service quality quantification, trust computing and trust distribution mechanisms

proposed in Chapters Four, Five and Six. Extensive experiments were carried out in a

179

simulated environment built with the CloudSim software. The simulation results show

that the mechanisms proposed in this research work better than the mechanisms that

were used to validate them. The mechanisms used for validation were selected from

journal articles that were published recently. The following paragraphs summarize the

main contributions of this research presented in this chapter.

The two service quality quantification mechanisms proposed in this research are

SP-SQQM and MP-SQQM for computing the trust score using an identified single

service quality parameter and multiple service quality parameters combined based on

a predefined weighting scheme. These mechanisms were evaluated against Combined

Trust Model and QoS-based Trust Model proposed in [48] and [49] respectively. Both

the mechanisms proposed in this research outperform both CTM and QoS-based Trust

Models in reaching the final scores faster with fewer interactions and providing a stable

trust scores.

The two main trust computing mechanisms developed in this research are RATComM

and MuDTComM that monitor the performance of cloud systems continuously and

update the trust scores. These mechanisms were developed in step by step manner

starting from a simple adaptive continuous trust evolution mechanism (ACTEM)

proposed in the same research. Both RATComM and MuDTComM were evaluated

against the fuzzy theory based trust computing mechanism proposed in [50] under

rigorous conditions. Under all the conditions, both RATComM and MuDTComM

perform better than the fuzzy theory based mechanism in terms of reaching the final

score faster and providing a stable trust score.

Finally PTDiMech was proposed for distributing trust scores between cooperating

trust computing nodes. Distribution of trust is necessary as the cloud systems are

180

deployed throughout the Internet covering large geographical areas. A single trust

computing node cannot cover all the cloud systems distributed throughout the Internet.

So far no such trust distribution system has been proposed for cloud computing.

Hence the modified super agent based trust distribution mechanism proposed for

decentralized systems was selected for evaluating the performance of PTDiMech.

The experiments conducted for evaluating the trust distribution mechanisms show that

PTDiMech reaches the stable final trust score for the remote system faster than super

agent based mechanism.

181

CHAPTER EIGHT

CONCLUSIONS AND FUTURE WORK

8.1 Introduction

This research was aimed at developing an adaptive service quality measuring and

quantification mechanism for cloud computing. The previous chapters elaborated the

research conducted and the mechanisms developed in detail along with the detailed

description on the literature review carried out and the methodology adopted. This

chapter presents the conclusion of the research in terms of highlighting the important

points, contributions, limitations of the work and recommendations for future work.

The organization of this chapter is as follows. Section 8.1 provides the brief

introduction to the chapter along with its organization. Section 8.2 summarizes

the work carried out highlighting the important points. Section 8.3 presents the

contributions of this research, while Section 8.4 explains the limitations of the work.

Finally Section 8.5 offers some suggestion for future work that provides an indication

to the directions in which this work can be further developed.

8.2 Summary of Research

Cloud computing has been the newest paradigm in computing that delivers the

computing resources such as processing power, development platforms and software

applications over the Internet as services. Cloud computing benefits both the service

providers as well as customers at the same time. Service providers derive their benefits

through the improved utilization and productivity of the resources while the customers

benefits come from reduced cost and being charged for only the actual usage of

resources. When the computing requirements are outsourced to a cloud service, it has

the capability to closely follow the demands of the customers without over committing

182

nor under provisioning the required resources. This concept is commonly known as

the elastic property of cloud computing.

The enable technology of cloud computing is virtualization. Virtualization enables the

creation of temporary computers on the fly equipped with the right amount of hardware

resources such as computing power, memory, storage and network capacities. These

on the fly virtual computers are hosted on top of the real hardware only for the duration

of the use and then removed releasing all the resources for another virtual computer

that becomes active later. This provides the service providers the freedom of selling

the same resources to multiple customers increasing their utilization. Such increased

utilization of resources results in the reduction of per user cost benefiting both users

and providers.

The virtualization helps loading of multiple virtual machines concurrently on the same

hardware. The required isolation and security between the concurrently loaded virtual

machines is provided by the virtual machine manager. Though these virtual machines

are isolated from one another by the virtual machine manager, they have to share

many common resources such as the processing cores and system bus. This puts a

limitation on the number if virtual machines to be loaded on given system depending

on the capacity of real resources [165]. Loading beyond this number would degrade

performance of virtual machines affecting the all the customers.

The customers and service providers enter into a service level agreement at the

inception. This agreement stipulates all the conditions to be met by both parties

along with any penalties to paid, if any when these conditions are violated. Though

the service level agreement provides a written guarantee for the customers on the

performance of the service provider, it would be better for the customers to know

183

the capabilities of the providers given the requirements of the customers beforehand.

This research concentrates on filling this gap of monitoring the service quality of cloud

service providers and ranking them based on their performance. In this regard, this

research developed mechanisms that could objectively quantify the service quality

received by the customers. These mechanisms are categorized into three main

groups. They are namely, service quality quantification mechanisms, trust computing

mechanisms and trust distribution mechanism.

The service quality quantification mechanisms developed in this research are capable

of measuring the performance using either a single parameter or multiple parameters.

Though the mechanisms developed have been tested for a given set of parameters,

they can be applied with any parameter without modifications. Hence users not only

have the freedom to select the parameters but also can determine relative importance

of them too.

The trust computing mechanisms enable the monitor continuously track the

performance of the service provider and modify the performance score known as

the trust score adaptively. This exposes the actual performance level of the service

provider based on the actual loading of the system. The proposed mechanisms adjust

the trust scores proactively taking only the real changes in performance into account.

The temporary fluctuations in performances are identified and dealt with appropriately

through a statistical validation of inputs. This makes these mechanisms rugged in the

face of temporary fluctuations.

The third type of mechanism developed in this research exchanges the trust scored

between cooperating monitors. The exchange of trust scores between cooperating

184

monitors enable the system cover a large geographical area helping the customers

to identify suitable service providers from any part of the Internet. The proposed

decentralized architecture of the trust distribution mechanism makes the system

resilient avoiding single points of failures.

All the proposed mechanisms were tested for their functionality and validated by

comparing with other mechanisms proposed in the literature using simulations. The

simulation environment was setup in CloudSim, the most popular open source cloud

computing simulator in the market. The simulation environment was setup with single

or multiple data centers depending on the mechanism tested. The experiments carried

out show that the proposed mechanisms outperform all the other mechanisms proposed

in the literature.

Overall the proposed mechanisms would help the prospective cloud computing

customers identify the right service provider, who could meet their service

requirements. This will benefit both customers and service providers who can detect

the service level degradations long before they become critical issues.

8.3 Research Contributions

The overall contribution of this research is the development of service quality

monitoring, quantification and distribution mechanisms. The specific contributions

of this research are listed below:

1. Service quality quantification mechanisms for cloud computing.

a) The mathematical formulation of service quality parameters.

b) The incorporation of Bayes’ theorem into quantification of service quality.

185

c) The development of single parameter service quality quantification

mechanism.

d) The development of multi parameter service quality quantification

mechanism.

e) The devising a method for incorporation of different priorities into the

multi parameter service quality quantification mechanism.

2. Adaptive trust computing mechanisms for cloud computing.

a) The development of adaptive continuous trust evolution mechanism.

b) The development of memoryless trust computing mechanism.

c) The development of robust adaptive trust computing mechanism.

d) The development of multi-dimensional trust computing mechanism.

3. Trust distribution mechanism for cloud computing.

a) The incorporation of probability into computing the weighting factors for

received trust scores.

b) The development of probability-based trust distribution mechanism.

8.4 Research Limitations

Although this research has successfully developed, tested and evaluated several

mechanisms that can be collectively employed to track and quantify the service quality

of cloud computing systems, it has only been tested under simulated conditions.

Despite the simulation environment been setup to closely resemble with the real word

conditions, all the uncertainties that can be experienced in the real world cannot be

included into the simulation environment. Though it has theoretically been shown

that the proposed multi-dimensional mechanisms can incorporate any service quality

parameter, they have tested with only a few selected parameters. The real Internet

hosts many different types of services. The limited resources such as bandwidth of

186

links and processing power of networking devices need to be shared by cloud as well

as non cloud applications. In a simulated environment, it is not possible to measure the

effects of non cloud applications on the proposed mechanisms or cloud applications.

8.5 Recommendations for Future Work

The proposed mechanisms can effectively quantify the service quality of cloud

computing systems and rank them based on their performance. However there are

some limitations and pending work that can be carried out as future work. The

following are some suggestions that can be carried out in the future extending this

work.

1. Testing and evaluating the proposed mechanisms using testbeds and in the real

cloud systems.

The mechanisms were tested in a simulated environment only. This was also

highlighted as the one of the limitations of this work. Hence it is suggested that these

mechanisms must be tested in the real environment and their performance evaluated

on a future date.

2. Testing the mechanisms using some other service quality attributes.

The simulation was limited to testing the service quality of IaaS services in the cloud.

This is due to the limitations of the currently available cloud computing simulators.

As future work, they can be tested for measuring the service quality of PaaS as well as

SaaS services.

3. Monitoring the performance of a heterogeneous cloud computing systems.
187

The simulation environment was setup with only homogeneous cloud systems in order

to create repeatable experiments. It is suggested that the environment is modified to

include computing systems of different types in data center and the performance of the

proposed mechanism are tested as future work.

188

REFERENCES

[1] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud
computing and emerging IT platforms: Vision, hype, and reality for delivering
computing as the 5th utility,” Journal of Future Generation Computer Systems,
vol. 25, no. 6, pp. 599–616, June 2009.

[2] F. Hu, M. Qiu, J. Li, T. Grant, D. Tylor, S. McCaleb, L. Butler, and R. Hamner,
“A review on cloud computing: Design challenges in architecture and security,”
Journal of Computing and Information Technology, vol. 19, no. 1, pp. 25–55,
2011.

[3] S. Marston, Z. Li, S. Bandyopadhyay, J. Zhang, and A. Ghalsasi, “Cloud
computing - the business perspective,” Decision Support Systems, vol. 51, no. 1,
pp. 176–189, 2011.

[4] J. Jaatmaa, “Financial aspects of cloud computing business models,” Master’s
thesis, School of Economics, Aalto University, Finland, 2010.

[5] S. Islam, K. Lee, A. Fekete, and A. Liu, “How a consumer can measure
elasticity for cloud platforms,” in 3rd Joint WOSP/SIPEW International
Conference on Performance Engineering, Boston, MA, USA, 2012, pp. 85–96.

[6] AWS. (2012) Capacity utilization curve. AWS Economics Center. - Accessed
on 05/01/2012. [Online]. Available: http://aws.amazon.com/economics/

[7] K. Collins, Exploring Business. Hoboken, NJ: Prentice Hall, 2007.

[8] K. Rafique, A. W. Tareen, M. Saeed, J. Wu, and S. S. Qureshi, “Cloud
computing economics opportunities and challenges,” in 4th IEEE International
Conference on Broadband Network and Multimedia Technology (IC-BNMT),
Shenzhen, China, 2011, pp. 401–406.

[9] R. M. Sharma, “The impact of virtualization in cloud computing,” International
Journal of Recent Development in Engineering and Technology, vol. 3, no. 1,
pp. 197–202, 2014.

[10] S. Zaman and D. Grosu, “Combinatorial auction-based allocation of virtual
machine instances in clouds,” in Second IEEE International Conference on
Cloud Computing Technology and Science, Indianapolis, IN, USA, 2010, pp.
127–134.

[11] A. A. Semnanian, J. Pham, B. Englert, and X. Wu, “Virtualization technology
and its impact on computer hardware architecture,” in Eighth International
Conference on Information Technology: New Generations, Las Vegas, NV, USA,
2011, pp. 719–724.

[12] R. Y. Ameen and A. Y. Hamo, “Survey of server virtualization,” International
Journal of Computer Science and Information Security,, vol. 11, no. 3, pp. 1–10,
2013.

189

http://aws.amazon.com/economics/

[13] C. Vecchiola, S. Pandey, and R. Buyya, “High-performance cloud computing: A
view of scientific applications,” in 10th International Symposium on Pervasive
Systems, Algorithms, and Networks (ISPAN), Kaohsiung, Taiwan, 2009, pp. 4–
16.

[14] R. Buyya, A. Beloglazov, and J. Abawajy, “Energy-efficient management of
data center resources for cloud computing: A vision, architectural elements,
and open challenges,” in International Conference on Parallel and Distributed
Processing Techniques and Applications, Las Vegas, NV, 2010, pp. 6–20.

[15] Y. Li, W. Li, and C. Jiang, “A survey of virtual machine system: Current
technology and future trends,” in Third International Symposium on Electronic
Commerce and Security, Guangzhou, China, 2010, pp. 332–336.

[16] A. Apostu, F. Puican, G. Ularu, G. Suciu, and G. Todoran, Recent Advances
in Applied Computer Science and Digital Services. New York, NY: WSEAS
Press, 2013, ch. Study on Advantages and Disadvantages of Cloud Computing
- The Advantages of Telemetry Applications in the Cloud, pp. 118–123.

[17] A. Thilakarathne and J. I. Wijayanayake, “Security challenges of cloud
computing,” International Journal of Scientific and Technology Research,
vol. 3, no. 11, pp. 200–203, 2014.

[18] A. A. Omotunde, O. Awodele, S. O. Kuyoro, and C. Ajaegbu, “Survey of
cloud computing issues at implementation level,” Journal of Emerging Trends
in Computing and Information Sciences, vol. 4, no. 1, pp. 91–96, 2013.

[19] D. C. Marinescu, Cloud Computing: Theory and Practice, 1st ed. Morgan
Kaufmann, 2013.

[20] A. Iosup, S. Ostermann, M. N. Yigitbasi, R. Prodan, T. Fahringer, and D. H. J.
Epema, “Performance analysis of cloud computing services for many-tasks
scientific computing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 22, no. 6, pp. 931–945, 2011.

[21] G. Feng, S. Garg, R. Buyya, and W. Li, “Revenue maximization using adaptive
resource provisioning in cloud computing environments,” in 13th ACM/IEEE
International Conference on Grid Computing, Beijing, China, 2012, pp. 192–
200.

[22] Amazon S3 Service Level Agreement, accessed on February 07, 2013. [Online].
Available: http://aws.amazon.com/s3-sla/

[23] H. A. Akpan and B. R. J. Vadhanam, “A survey on quality of service in cloud
computing,” International Journal of Computer Trends and Technology, vol. 27,
no. 1, pp. 58–63, 2015.

[24] H. Blodget, Amazon’s Cloud Crash Disaster Permanently Destroyed Many
Customers’ Data, accessed on February 07, 2013. [Online]. Available:
http://www.businessinsider.com/amazon-lost-data-2011-4

190

http://aws.amazon.com/s3-sla/
http://www.businessinsider.com/amazon-lost-data-2011-4

[25] S. P. Ahuja and S. Mani, “Availability of services in the era of cloud computing,”
Network and Communication Technologies, vol. 1, no. 1, pp. 2–6, 2012.

[26] Y. Sun, J. Zhang, Y. Xiong, and G. Zhu, “Data security and privacy in cloud
computing,” International Journal of Distributed Sensor Networks, pp. 1–9,
2014.

[27] K. Xiong and H. Perros, “Service performance and analysis in cloud
computing,” in IEEE World Congress on Services, Los Angeles, CA, 2009, pp.
693–700.

[28] G. Singh and V. K. Sachdeva, “Impact and challenges of cloud computing in
current scenario,” International Journal of Social Science & Interdisciplinary
Research, vol. 1, no. 10, pp. 131–144, 2012.

[29] K. Alhamazani, R. Ranjan, P. P. Jayaraman, K. Mitra, C. Liu, F. Rabhi,
D. Georgakopoulos, and L. Wang, “Cross-layer multi-cloud real-time
application QoS monitoring and Benchmarking As-a-Service framework,”
IEEE Transactions on Cloud Computing, vol. PP, no. 99, pp. 1–13, 2015.

[30] P. A. Salz, “Monitoring mobile application performance,” Journal of Direct,
Data and Digital Marketing Practice, vol. 15, pp. 219–221, 2014.

[31] S. Bosse, C. Schulz, and K. Turowski, “Predicting availability and response
times of IT services,” in 22nd European Conference on Information Systems,
Tel Aviv, Israel, 2014, pp. 1–14.

[32] S. K. Garg, S. Versteeg, and R. Buyya, “A framework for ranking of cloud
computing services,” Future Generation Computer Systems, vol. 29, pp. 1012–
1023, 2013.

[33] J. S. Ward and A. Barker, “Observing the clouds: A survey and taxonomy
of cloud monitoring,” Journal of Cloud Computing: Advances, Systems and
Applications, vol. 3, no. 24, pp. 1–30, 2014.

[34] M. H. Mohamaddiah, A. Abdullah, S. Subramaniam, and M. Hussin, “A survey
on resource allocation and monitoring in cloud computing,” International
Journal of Machine Learning and Computing, Vol. 4, No. 1, February 2014,
vol. 4, no. 1, pp. 31–38, 2014.

[35] A. Brinkmann, C. Fiehe, A. Litvina, I. Luck, L. Nagel, K. Narayanan,
F. Ostermair, and W. Thronicke, “Scalable monitoring system for clouds,”
IEEE/ACM 6th International Conference on Utility and Cloud Computing,
Dresden, Germany, pp. 351–356, 2013.

[36] S. Suakanto, S. H. Supangkat, Suhardi, and R. Saragih, “Performance
measurement of cloud computing services,” International Journal on Cloud
Computing: Services and Architecture, vol. 2, no. 2, pp. 9–20, 2012.

[37] G. Aceto, A. Botta, W. de Donato, and A. Pescape, “Cloud monitoring:
Definitions, issues and future directions,” 1st IEEE International Conference
on Cloud Networking,Paris, France, pp. 63–67, 2012.

191

[38] R. Buyya, S. K. Garg, and R. N. Calheiros, “SLA-oriented resource
provisioning for cloud computing: Challenges, architecture, and solutions,” in
International Conference on Cloud and Service Computing, Hong Kong, 2011,
pp. 1–10.

[39] W. N. Chen and J. Zhang, “A set-based discrete pso for cloud workflow
scheduling with user-defined qos constraints,” in IEEE International
Conference on Systems, Man and Cybernetics, Seoul, Korea, 2012, pp. 773–
778.

[40] R. V. den Bossche, K. Vanmechelen, and J. Broeckhove, “Cost-efficient
scheduling heuristics for deadline constrained workloads on hybrid clouds,”
in Third IEEE International Conference on Coud Computing Technology and
Science (CloudCom), Athens, Greece, 2011, pp. 320–327.

[41] V. C. Emeakaroha, I. Brandic, M. Maurer, and I. Breskovic, “Sla-aware
application deployment and resource allocation in clouds,” in 35th IEEE Annual
Computer Software and Applications Conference Workshops (COMPSACW),,
2011, pp. 298–303.

[42] K. Alhamazani, R. Ranjan, F. Rabhi, L. Wang, and K. Mitra, “Cloud monitoring
for optimizing the QoS of hosted applications,” in 4th IEEE International
Conference on Cloud Computing Technology and Science, Taipei, Taiwan,
2012, pp. 765–770.

[43] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and grid computing
360-degree compared,” in Grid Computing Environments Workshop,Austin, TX,
2008, pp. 1–10.

[44] R. Kaur, “A review of computing technologies: Distributed, utility, cluster,
grid and cloud computing,” International Journal of Advanced Research in
Computer Science and Software Engineering, vol. 5, no. 2, pp. 144–148, 2015.

[45] R. Buyya, R. N. Calheiros, and X. Li, “Autonomic cloud computing: Open
challenges and architectural elements,” in 3rd International Conference on
Emerging Applications of Information Technology, Kolkata, India, 2012, pp.
3–10.

[46] S. Kermally, Management Ideas in Brief. Oxford, UK: Butterworth-
Heinemann, 1997.

[47] M. Boniface, B. Nasser, J. Papay, S. C. Phillips, A. Servin, X. Yang, Z. Zlatev,
S. V. Gogouvitis, G. Katsaros, K. Konstanteli, G. Kousiouris, A. Menychtas,
and D. Kyriazis, “Platform-as-a-Service architecture for real-time quality of
service management in clouds,” in Fifth International Conference on Internet
and Web Applications and Services, Barcelona, Spain, 2010, pp. 155–160.

[48] P. D. Manuel, S. T. Selvi, and M. I. Abd-El Barr, “A novel trust management
system for cloud computing - IaaS providers,” Journal of Combinatorial
Mathematics and Combinatorial Computing, vol. 79, pp. 3–22, 2011.

192

[49] P. Manuel, “A trust model of cloud computing based on quality of service,”
Annals of Operations Research, pp. 1–12, 2013.

[50] L. Gu, J. Zhong, C. Wang, Z. Ni, and Y. Zhang, “Trust model in cloud
computing environment based on fuzzy theory,” International Journal of
Computers Communications and Control, vol. 9, no. 5, pp. 570–583, 2014.

[51] Y. Wang, J. Zhang, and J. Vassileva, “Super agent based framework for
reputation management and community formation in decentralized systems,”
Computational Intelligence, pp. 1–26, 2014.

[52] R. Prodan and S. Ostermann, “A survey and taxonomy of Infrastructure as a
Service and web hosting cloud providers,” in 10th IEEE/ACM International
Conference on Grid Computing, Banff, Alberta, Canada, 2009, pp. 17–25.

[53] N. R. G. Charan, S. T. Rao, and P. V. S. Srinivas, “Deploying an application
on the cloud,” International Journal of Advanced Computer Science and
Applications, vol. 2, no. 5, pp. 119–125, 2011.

[54] J. Peng, X. Zhang, Z. Lei, B. Zhang, W. Zhang, and Q. Li, “Comparison of
several cloud computing platforms,” in Second International Symposium on
Information Science and Engineering, Beijing, China, 2009, pp. 23–27.

[55] M. Zhou, R. Zhang, D. Zeng, and W. Qian, “Services in the cloud computing
era: A survey,” in Fourth International Universal Communication Symposium,
Beijing, China, 2010, pp. 40–46.

[56] J. Dykstra and A. T. Sherman, “Acquiring forensic evidence from
Infrastructure-as-a-Service cloud computing: Exploring and evaluating tools,
trust, and techniques,” Digital Investigation, vol. 9, pp. S90–S98, 2012.

[57] K. Hashizume, E. B. Fernandez, and M. M. Larrondo-Petrie, “Cloud service
model patterns,” in 19th Conference Pattern Languages of Programs, Tucson,
AZ, USA, 2012.

[58] G. Kulkarni, P. Khatawkar, and J. Gambhir, “Cloud computing-platform as
service,” International Journal of Engineering and Advanced Technology,
vol. 1, no. 2, pp. 115–120, 2011.

[59] J. Kong, “Protecting the confidentiality of virtual machines against untrusted
host,” in International Symposium on Intelligence Information Processing and
Trusted Computing (IPTC), Huanggang, China, 2010, pp. 364–368.

[60] M. A. Bamiah and S. N. Brohi, “Exploring the cloud deployment and service
delivery models,” International Journal of Research and Reviews in Information
Sciences, vol. 1, no. 3, pp. 77–80, 2011.

[61] L. Savu, “Cloud computing: Deployment models, delivery models, risks
and research challenges,” in International Conference on Computer and
Management, Wuhan, China, 2011, pp. 1–4.

193

[62] L. Wang, J. Zhan, W. Shi, and Y. Liang, “In cloud, can scientific communities
benefit from the economies of scale?” IEEE Transactions on Parallel And
Distributed Systems, vol. 23, no. 2, pp. 296–303, 2012.

[63] D. Velev and P. Zlateva, Open Research Problems in Network Security, ser.
Lecture Notes in Computer Science. Berlin Heidelberg: Springer, 2011, vol.
6555, ch. Cloud Infrastructure Security, pp. 140–148.

[64] J. M. Pedersen, M. T. Riaz, J. C. Junior, B. Dubalski, D. Ledzinski, and A. Patel,
“Assessing measurements of QoS for global cloud computing services,” in
9th IEEE International Conference on Dependable, Autonomic and Secure
Computing, Sydney, Australia, 2011, pp. 682–689.

[65] X. Liu, Y. Yang, D. Yuan, G. Zhang, W. Li, and D. Cao, “A generic QoS
framework for cloud workflow systems,” in 9th IEEE International Conference
on Dependable, Autonomic and Secure Computing, Sydney, Australia, 2011, pp.
713–720.

[66] W. Li, Q. Zhang, J. Wu, J. Li, and H. Zhao, “Trust-based and QoS demand
clustering analysis customizable cloud workflow scheduling strategies,” in
IEEE International Conference on Cluster Computing Workshops, Beijing,
China, 2012, pp. 111–119.

[67] M. S. Mushtaq, B. Augustin, and A. Mellouk, “Empirical study based
on machine learning approach to assess the QoS/QoE correlation,” in 17th
European Conference on Networks and Optical Communications, Vilanova i
la Geltru, Spain, 2012, pp. 1–7.

[68] J. Ma, R. Sun, and A. Abraham, “Toward a lightweight framework
for monitoring public clouds,” in Fourth International Conference on
Computational Aspects of Social Networks, Sao Carlos, Brazil, 2012, pp. 361–
365.

[69] Q. Zhu and G. Agrawal, “Resource provisioning with budget constraints for
adaptive applications in cloud environments,” IEEE Transactions on Services
Computing, vol. 5, no. 4, pp. 497–511, 2012.

[70] J. Li, Q. Wang, D. Jayasinghe, S. Malkowski, P. Xiong, C. Pu, Y. Kanemasa,
and M. Kawaba, “Profit-based experimental analysis of iaas cloud performance:
Impact of software resource allocation,” in Ninth IEEE International
Conference on Services Computing, Honolulu, HI, USA, 2012, pp. 344–351.

[71] B. Sharma, R. K. Thulasiram, P. Thulasiraman, S. K. Garg, and R. Buyya,
“Pricing cloud compute commodities: A novel financial economic model,”
in 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, Ottawa, ON, Canada, 2012, pp. 451–457.

[72] D. Adami, C. Callegari, S. Giordano, and M. Pagano, “A hybrid
multidimensional algorithm for network-aware resource scheduling in clouds
and grids,” in IEEE International Conference on Communications, Ottawa, ON,
Canada, 2012, pp. 1297–1301.

194

[73] S. C. Phillips, V. Engen, and J. Papay, “Snow white clouds and the
seven dwarfs,” in Third IEEE International Conference on Cloud Computing
Technology and Science, Athens, Greece, 2011, pp. 738–745.

[74] A. Gohad, K. Ponnalagu, and N. C. Narendra, “Model driven provisioning
in multi-tenant clouds,” in Annual Service Research and Innovation Institute
Global Conference, 2012, pp. 11–20.

[75] G. N. Iyer and B. Veeravalli, “On the resource allocation and pricing strategies
in compute clouds using bargaining approaches,” in 17th IEEE International
Conference on Networks, Singapore, 2011, pp. 147–152.

[76] S. P. Sanchez, G. Casale, B. Scotney, S. McClean, G. Parr, and S. Dawson,
“Markovian workload characterization for QoS prediction in the cloud,” in
IEEE International Conference on Cloud Computing, Washington, DC, USA,
2011, pp. 147–154.

[77] Y. Kouki, T. Ledoux, and R. Sharrock, “Cross-layer SLA selection for cloud
services,” in First International Symposium on Network Cloud Computing and
Applications, Toulouse, France, 2011, pp. 143–147.

[78] L. Wu, S. K. Garg, and R. Buyya, “SLA-based resource allocation for Software
as a Service provider (SaaS) in cloud computing environments,” in 11th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,
Newport Beach, CA, USA, 2011, pp. 195–204.

[79] T. Chauhan, S. Chaudhary, V. Kumar, and M. Bhise, “Service level agreement
parameter matching in cloud computing,” in World Congress on Information
and Communication Technologies, Mumbai, India, 2011, pp. 564–570.

[80] R. S. Padilla, S. K. Milton, and L. W. Johnson, “Components of service value in
business-tobusiness cloud computing,” Journal of Cloud Computing: Advances,
Systems and Applications, vol. 4, no. 15, pp. 1–20, 2015.

[81] S. V. Gogouvitis, V. Alexandrou, N. Mavrogeorgi, S. Koutsoutos, D. Kyriazis,
and T. Varvarigou, “A monitoring mechanism for storage clouds,” in Second
International Conference on Cloud and Green Computing, Xiangtan, Hunan,
China, 2012, pp. 153–159.

[82] F. Stoicuta, I. Ivanciu, E. Minzat, A. B. Rus, and V. Dobrota, “An
opennetinf-based cloud computing solution for cross-layer qos: Monitoring
part using ios terminals,” in 10th International Symposium on Electronics and
Telecommunications, Timisoara, Romania, 2012, pp. 167–170.

[83] K. Saravanan and M. L. Kantham, “An enhanced QoS architecture based
framework for ranking of cloud services,” International Journal of Engineering
Trends and Technology, vol. 4, no. 4, pp. 1022–1031, 2013.

[84] N. Kumar and S. Agarwal, “QoS based cloud service provider selection
framework,” Research Journal of Recent Sciences, vol. 3, pp. 7–12, 2014.

195

[85] M. K. Goyal, A. Aggarwal, P. Gupta, and P. Kumar, “QoS based trust
management model for cloud IaaS,” in 2nd IEEE International Conference on
Parallel, Distributed and Grid Computing, Solan, India, 2012, pp. 843–847.

[86] R. F. AlCattan, “Integration of cloud computing and web 2.0 collaboration
technologies in e-learning,” International Journal of Computer Trends and
Technology, vol. 12, no. 1, pp. 46–55, 2014.

[87] N. Phaphoom, X. Wang, and P. Abrahamsson, “Foundations and technological
landscape of cloud computing,” ISRN Software Engineering, vol. 2013, pp. 1–
31, 2013.

[88] R. Kaur, “Cloud computing,” International Journal of Computer Science and
Technology, vol. 2, no. 3, pp. 373–381, 2011.

[89] A. Abdelmaboud, D. N. A. Jawawi, I. Ghani, A. Elsafi, and B. Kitchenham,
“Quality of service approaches in cloud computing,” Journal of Systems and
Software, vol. 101, no. C, pp. 159–179, 2015.

[90] G. V. Bochmann, B. Kerherve, H. Lutfiyya, M. V. M. Salem, and H. Ye,
“Introducing QoS to electronic commerce applications,” in 2nd International
Symposium on Electronic Commerce (ISEC), Hong Kong, 2001, pp. 138–147.

[91] S. K. Garg, S. K. Gopalaiyengar, and R. Buyya, “SLA-based resource
provisioning for heterogeneous workloads in a virtualized cloud datacenter,”
in 11th International Conference on Algorithms and Architectures for Parallel
Processing (ICA3PP 2011), Melbourne, Australia, ser. LNCS 7016, vol. I.
Springer, 2011, pp. 371–384.

[92] D. Carrera, M. Steinder, I. Whalley, J. Torres, and E. Ayguade, “Enabling
resource sharing between transactional and batch workloads using dynamic
application placement,” in 9th ACM/IFIP/USENIX International Conference on
Middleware. Leuven, Belgium, 2008, pp. 203–222.

[93] N. Thio and S. Karunasekera, “Automatic measurement of a QoS metric for
web service recommendation,” in Australian Software Engineering Conference,
Brisbane, Australia, 2005, pp. 202 –211.

[94] G. E. Goncalves, P. T. Endo, T. D. Cordeiro, A. V. de Almeida Palhares,
D. Sadok, J. Kelner, B. Melander, and J. E. Mangs, “Resource allocation in
clouds: Concepts, tools and research challenges,” in 29th Brazilian Symposium
on Computer Networks and Distributed Systems, Campo Grande, MS, Brazil,
2011, pp. 197–240.

[95] S. Mulay and S. Jain, “Enhanced equally distributed load balancing algorithm
for cloud computing,” International Journal of Research in Engineering and
Technology, vol. 2, no. 6, pp. 976–980, 2013.

[96] S. Begum and C. S. R. Prashanth, “Review of load balancing in cloud
computing,” International Journal of Computer Science Issues, vol. 10, no. 1,
pp. 343–352, 2013.

196

[97] T. K. Chiew and K. Renaud, “Disassembling web site response time,” in 12th
European Conference on Information Technology Evaluation, Turku, Finland,
2005, pp. 137–145.

[98] G. Wang and T. S. E. Ng, “The impact of virtualization on network performance
of Amazon EC2 data center,” in IEEE INFOCOM, San Diego, CA, 2010, pp. 1–
9.

[99] M. Alhamad, T. Dillon, C. Wu, and E. Chang, “Response time for cloud
computing providers,” in 12th International Conference on Information
Integration and Web-based Applications & Services, Paris, France, 2010, pp.
603–606.

[100] D. Ardagna, G. Casale, M. Ciavotta, J. F. Perez, and W. Wang, “Quality-
of-service in cloud computing: Modeling techniques and their applications,”
Journal of Internet Services and Applications, vol. 5, no. 11, pp. 1–17, 2014.

[101] P. Cremonesi, K. Dhyani, and A. Sansottera, “Service time estimation with
a refinement enhanced hybrid clustering algorithm,” in 17th International
Conference on Analytical and Stochastic Modeling Techniques and
Applications, Cardiff, UK, 2010, pp. 291–305.

[102] A. I. El-Nashar, “To parallelize or not to parallelize, speed up issue,”
International Journal of Distributed and Parallel Systems, vol. 2, no. 2, pp.
14–28, 2011.

[103] C. Wang, L. Xing, H. Wang, Z. Zhang, and Y. Dai, “Processing time analysis
of cloud services with retrying fault-tolerance technique,” in First IEEE
International Conference on Communications in China, Beijing, China, 2012,
pp. 63–67.

[104] F. S. Ahmed, A. Aslam, S. Ahmed, and M. A. Q. Bilal, “Comparative study of
scalability and availability in cloud and utility computing,” Journal of Emerging
Trends in Computing and Information Sciences, vol. 2, no. 12, pp. 705–713,
2011.

[105] L. Zhao and K. Sakurai, “Improving cost-efficiency through failure-aware
server management and scheduling in cloud,” in 2nd International Conference
on Cloud Computing and Services Science, Porto, Portugal, 2013, pp. 23–38.

[106] M. G. Avram, “Advantages and challenges of adopting cloud computing from
an enterprise perspective,” in 7th International Conference Interdisciplinarity
in Engineering, Mures, Romania, 2013, pp. 529–534.

[107] Y. S. Dai, B. Yang, J. Dongarra, and G. Zhang, “Cloud service reliability:
Modeling and analysis,” in 15th IEEE Pacific Rim International Symposium
on Dependable Computing, Shanghai, China, 2009, pp. 1–17.

[108] N. Yadav, V. B. Singh, and M. Kumari, “Generalized reliability model for cloud
computing,” International Journal of Computer Applications, vol. 88, no. 14,
pp. 13–16, 2014.

197

[109] T. Lynn, P. Healy, R. McClatchey, J. Morrison, C. Pahl, and B. Lee, “The case
for cloud service trustmarks and Assurance-as-a-Service,” in 3rd International
Conference on Cloud Computing and Services Science, Aachen, Germany,
2013, pp. 1–6.

[110] R. Scandariato, Y. Ofek, P. Falcarin, and M. Baldi, “Application-oriented trust
in distributed computing,” in Third International Conference on Availability,
Reliability and Security, Barcelona, Spain, 2008, pp. 434–439.

[111] N. A. Al-Saiyd and N. Sail, “Data integrity in cloud computing security,”
Journal of Theoretical and Applied Information Technology, vol. 58, no. 3, pp.
570–581, 2013.

[112] H. Yu, Z. Shen, C. Miao, C. Leung, and D. Niyato, “A survey of trust and
reputation management systems in wireless communications,” Proceedings of
the IEEE, vol. 98, no. 10, pp. 1755–1772, 2010.

[113] Z. Gan, J. He, and Q. Ding, “Trust relationship modelling in e-commerce-based
social network,” in International conference on computational intelligence and
security, Beijing, China, 2009, pp. 206–210.

[114] D. H. McKnight and N. L. Chervany, “Conceptualizing trust: A typology
and e-commerce customer relationships model,” in 34th Hawaii International
Conference on System Sciences, Island of Maui, HI, USA, 2001.

[115] W. Wang and G. S. Zeng, “Bayesian cognitive trust model based self-clustering
algorithm for MANETs,” Science China Information Sciences, vol. 53, no. 3,
pp. 494–505, 2010.

[116] M. Gomez, J. Carbo, and E. C. Benac, “A cognitive trust and reputation
model for the ART testbed,” Inteligencia Artificial. Revista Iberoamericana de
Inteligencia Artificial (in English), vol. 12, no. 39, pp. 29–40, 2008.

[117] H. Quan and J. Wu, “CATM: A cognitive-inspired agent-centric trust model
for online social networks,” in Ninth Annual IEEE International Conference on
Pervasive Computing and Communications, Seattle, WA, USA, 2011.

[118] C. Castelfranchi, R. Falcone, and G. Pezzulo, “Trust in information sources as
a source for trust: A fuzzy approach,” in Second International Joint Conference
on Autonomous Agents and Multiagent Systems, Melbourne, Australia, 2003,
pp. 89–96.

[119] S. de Paoli, G. R. Gangadharan, A. Kerr, V. D. Andrea, M. Serrano, and
D. Botvich, “Toward trust as result: An interdisciplinary approach,” Sprouts:
Working Papers on Information Systems, vol. 10, no. 8, pp. 1–6, 2010.

[120] M. Akhoondi, J. Habibi, and M. Sayyadi, “Towards a model for inferring trust
in heterogeneous social networks,” in Second Asia International Conference on
Modelling & Simulation, Kuala Lumpur, Malaysia, 2008, pp. 52–58.

[121] R. A. Menkes, “An economic analysis of trust, social capital and the legislation
of trust,” Master’s thesis, University of Ghent, Belgium, 2007.

198

[122] J. Zhang and R. Cohen, “Design of a mechanism for promoting honesty in e-
marketplaces,” in 22nd Conference on Artificial Intelligence, AI and the Web
Track, Vancouver, BC, Canada, 2007.

[123] J. Zhang, “Promoting honesty in electronic marketplaces: Combining trust
modeling and incentive mechanism design,” Ph.D. dissertation, University of
Waterloo, Canada, 2009.

[124] S. Mittal and K. Deb, “Optimal strategies of the iterated prisoner’s
dilemma problem for multiple conflicting objectives,” in IEEE Symposium on
Computational Intelligence and Games, Reno, NV, USA, 2006, pp. 197–204.

[125] J. Zhou, J. Wang, R. Liang, and Y. Zhang, “Flexible service analysis based on
the prisoner’s dilemma of service,” in 6th International Conference on Service
Systems and Service Management, Xiamen, china, 2009, pp. 434–437.

[126] H. Huang, G. Zhu, and S. Jin, “Revisiting trust and reputation in multi-agent
systems,” in ISECS International Colloquium on Computing, Communication,
Control and Management, Guangzhou, China, 2008, pp. 424–429.

[127] L. Mui, “Computational models of trust and reputation: Agents, evolutionary
games and social networks,” Ph.D. dissertation, Massachusetts Institute of
Technology, Boston, MA, USA, 2002.

[128] M. Momani and S. Challa, “Survey of trust models in different network
domains,” International Journal of Ad hoc, Sensor & Ubiquitous Computing,
vol. 1, no. 3, pp. 1–19, 2010.

[129] T. Y. Chuang, “Trust with social network learning in e-commerce,” in IEEE
International Conference on Communications Workshops (ICC), Capetown,
South Africa, 2010, pp. 1–6.

[130] M. Adamski, A. Arenas, A. Bilas, P. Fragopoulou, V. Georgiev, A. Hevia,
G. Jankowski, B. Matthews, N. Meyer, J. Platte, and M. Wilson, “Trust and
security in grids: A state of the art,” CoreGRID, European Union, Tech. Rep.
WHP-0001, 2008.

[131] A. Gouglidis and I. Mavridis, “A foundation for defining security requirements
in grid computing,” in 13th Panhellenic Conference on Informatics, Corfu,
Greece, 2009, pp. 180–184.

[132] L. B. de Oliveira and C. A. Maziero, “A trust model for a group of e-mail
servers,” CLEI Electronic Journal, vol. 11, no. 2, pp. 1–11, 2008.

[133] Q. Zhang, T. Yu, and K. Irwin, “A classification scheme for trust functions
in reputation-based trust management,” in International Workshop on Trust,
Security, and Reputation on the Semantic Web, Hiroshima, Japan, 2004.

[134] Z. Shen, L. Li, F. Yan, and X. Wu, “Cloud computing system based on trusted
computing platform,” in International Conference on Intelligent Computation
Technology and Automation (ICICTA), Changsha, China, vol. 1, 2010, pp. 942–
945.

199

[135] Z. Shen and Q. Tong, “The security of cloud computing system enabled by
trusted computing technology,” in 2nd International Conference on Signal
Processing Systems (ICSPS), Dalian, China, vol. 2, 2010, pp. 11–15.

[136] K. M. Khan and Q. Malluhi, “Establishing trust in cloud computing,” IEEE IT
Professional, vol. 12, no. 5, pp. 20–27, 2010.

[137] H. Takabi, J. B. D. Joshi, and G. J. Ahn, “Securecloud: Towards a
comprehensive security framework for cloud computing environments,” in 34th
Annual IEEE Computer Software and Applications Conference Workshops,
Seoul, South Korea, 2010, pp. 393–398.

[138] Z. Song, J. Molina, and C. Strong, “Trusted anonymous execution: A model to
raise trust in cloud,” in 9th International Conference on Grid and Cooperative
Computing (GCC), Nanjing, China, 2010, pp. 133–138.

[139] H. Sato, A. Kanai, and S. Tanimoto, “A cloud trust model in a security aware
cloud,” in 10th IEEE/IPSJ International Symposium on Applications and the
Internet, Seoul, South Korea, 2010, pp. 121–124.

[140] W. Li, L. Ping, and X. Pan, “Use trust management module to achieve effective
security mechanisms in cloud environment,” in International Conference on
Electronics and Information Engineering, Kyoto, Japan, 2010, pp. 14–19.

[141] T. F. Wang, B. S. Ye, Y. W. Li, and Y. Yang, “Family gene based cloud trust
model,” in International Conference on Educational and Network Technology,
Qinhuangdao, China, 2010, pp. 540–544.

[142] T. F. Wang, B. S. Ye, Y. W. Li, and L. S. Zhu, “Study on enhancing
performance of cloud trust model with family gene technology,” in 3rd IEEE
International Conference on Computer Science and Information Technology,
Chengdu, China, 2010, pp. 122–126.

[143] T. S. Somasundaram, B. R. Amarnath, R. Kumar, P. Balakrishnan, K. Rajendar,
R. Rajiv, K. Govindarajan, G. R. Britto, E. Mahendran, and B. Madusudhanan,
“CARE resource broker: A framework for scheduling and supporting virtual
resource management,” Future Generation Computer Systems, vol. 26, no. 3,
pp. 337–347, 2010.

[144] P. D. Manuel, T. Selve, and M. I. Abd-EI Barr, “Trust management system
for grid and cloud resources,” in First International Conference on Advanced
Computing (ICAC 2009), Chennai, India, 2009, pp. 176–181.

[145] M. Alhamad, T. Dillon, and E. Chang, “SLA-based trust model for cloud
computing,” in 13th International Conference on Network-Based Information
Systems, Takayama, Japan, 2010, pp. 321–324.

[146] X. Y. Li, L. T. Zhou, Y. Shi, and Y. Guo, “A trusted computing environment
model in cloud architecture,” in Ninth International Conference on Machine
Learning and Cybernetics, Qingdao, China, 2010, pp. 2843–2848.

200

[147] Z. Yang, L. Qiao, C. Liu, C. Yang, and G. Wan, “A collaborative trust model of
firewall-through based on cloud computing,” in 14th International Conference
on Computer Supported Cooperative Work in Design, Shanghai, China, 2010,
pp. 329–334.

[148] J. Fu, C. Wang, Z. Yu, J. Wang, and J. G. Sun, “A watermark-aware
trusted running environment for software clouds,” in Fifth Annual ChinaGrid
Conference, Guangzhou, China, 2010, pp. 144–151.

[149] R. Ranchal, B. Bhargava, L. B. Othmane, L. Lilien, A. Kim, M. Kang,
and M. Linderman, “Protection of identity information in cloud computing
without trusted third party,” in 29th IEEE International Symposium on Reliable
Distributed Systems, New Delhi, India, 2010, pp. 1060–9857.

[150] L. T. M. Blessing and A. Chakrabarti, DRM, A Design Research Methodology.
London, UK: Springer, 2009.

[151] H. Birkhofer, “Are we aware of what we are doing in design research?” in 3rd
International Conference on Design Engineering and Science, Pilsen, Czech
Republic, 2014, pp. 1–10.

[152] A. Wikstrom, “A design process based on visualization,” Licentiate Thesis,
Malardalen University, Sweden, 2010.

[153] M. Firdhous, O. Ghazali, and S. Hassan, “Trust management in cloud
computing - A critical review,” International Journal on Advances in ICT for
Emerging Regions (ICTer), vol. 4, no. 2, pp. 24–36, 2011.

[154] ——, “Trust and trust management in cloud computing - a survey,”
InterNetworks Research Lab, School of Computing, Universiti Utara Malaysia,
Sintok, Kedah, Malaysia, Tech. Rep. UUM/CAS/InterNetWorks/TR2011-01,
2011.

[155] M. Firdhous, S. Hassan, and O. Ghazali, “A comprehensive survey on quality
of service implementations in cloud computing,” International Journal of
Scientific & Engineering Research, vol. 4, no. 5, pp. 118–123, 2013.

[156] M. Firdhous, S. Hassan, O. Ghazali, and M. Mahmuddin, Cloud Systems in
Supply Chains. Hampshire, UK: Palgrave Macmillan, 2015, ch. Evaluating
Cloud System Providers: Models, Methods and Applications, pp. 121–149.

[157] N. A. Sultan, “Reaching for the cloud: How SMEs can manage,” International
Journal of Information Management, vol. 31, no. 3, pp. 272–278, 2011.

[158] G. Feng, “Applications of Matlab in mathematical analysis,” Journal of
Software, vol. 6, no. 7, pp. 1225–1229, 2011.

[159] R. Farrugia, “Modular programming - some lessons learned and benefits
gained,” in Computational Science Symposium, Brighton, England, 2011, pp.
1–6.

[160] W. J. Palm, Introduction to Matlab 7 for Engineers. New York: McGraw Hill,
2004.

201

[161] O. Balci, “Verification, validation and accreditation of simulation models,” in
29th conference on Winter simulation, Atlanta, GA, 1997, pp. 135–141.

[162] T. L. Paez, “Introduction to model validation,” in Conference & Exposition on
Structural Dynamics - Model Verification & Validation, Orlando, FL, 2009, pp.
1–11.

[163] K. Iwanicki, P. Horban, P. Glazar, and K. Strzelecki, “Bringing modern unit
testing techniques to sensornets,” ACM Transactions on Sensor Networks,
vol. 11, no. 2, pp. 1–37, 2015.

[164] L. Mariani, M. Pezze, and D. Willmor, Applying Formal Methods: Testing,
Performance, and M/E-Commerce. Berlin Heidelberg: Springer, 2004, ch.
Generation of Integration Tests for Self-Testing Components, pp. 337–350.

[165] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. de Rose, and R. Buyya,
“Cloudsim: A toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,” Software:
Practice and Experience, vol. 41, no. 1, pp. 23–50, 2011.

[166] R. Buyya, R. Ranjan, and R. N. Calheiros, “Modeling and simulation of
scalable cloud computing environments and the cloudsim toolkit: challenges
and opportunities,” in 7th High Performance Computing and Simulation
Conference,Leipzig, Germany, 2009, pp. 1–11.

[167] R. Malhotra and P. Jain, “Study and comparison of various cloud simulators
available in the cloud computing,” International Journal of Advanced Research
in Computer Science and Software Engineering, vol. 3, no. 9, pp. 347–350,
2013.

[168] W. Zhao, Y. Peng, F. Xie, and Z. Dai, “Modeling and simulation of cloud
computing: A review,” in IEEE Asia Pacific Cloud Computing Congress,
Shenzhen, China, 2012, pp. 20–24.

[169] F. Fittkau, S. Frey, and W. Hasselbring, “CDOSim: Simulating cloud
deployment options for software migration support,” in IEEE 6th International
Workshop on the Maintenance and Evolution of Service-Oriented and Cloud-
Based Systems, Trento, Italy, 2012, pp. 37–46.

[170] Y. Jararweh, Z. Alshara, M. Jarrah, M. Kharbutli, and M. N. Alsaleh,
“Teachcloud: A cloud computing educational toolkit,” International Journal
of Cloud Computing, vol. 2, no. 2/3, pp. 1–16, 2013.

[171] G. G. Castane, A. Nunez, and J. Carretero, “iCanCloud: A brief architecture
overview,” in 10th IEEE International Symposium on Parallel and Distributed
Processing with Applications, Madrid, Spain, 2012, pp. 853–854.

[172] I. Sriram, “SPECI, a simulation tool exploring cloud-scale data centres,” in First
International Conference on Cloud Computing, Beijing, China, 2009, pp. 381–
392.

202

[173] S. Ostermann, K. Plankensteiner, R. Prodan, and T. Fahringer, “GroudSim:
An event-based simulation framework for computational grids and clouds,” in
Euro-Par 2010 Parallel Processing Workshops, Ischia, Italy, 2010, pp. 305–
313.

[174] G. Keller, M. Tighe, H. Lutfiyya, and M. Bauer, “DCSim: A data centre
simulation tool,” in IFIP/IEEE International Symposium on Integrated Network
Management, Ghent, Belgium, 2013, pp. 1090–1091.

[175] B. Wickremasinghe, R. N. Calheiros, and R. Buyya, “Cloudanalyst: A
cloudsim-based visual modeller for analysing cloud computing environments
and applications,” in 24th International Conference on Advanced Information
Networking and Applications, Perth, Australia, 2010, pp. 446–452.

[176] S. K. Garg and R. Buyya, “Networkcloudsim: Modelling parallel applications
in cloud simulations,” in 4th IEEE/ACM International Conference on Utility
and Cloud Computing, Melbourne, Australia, 2011, pp. 105–113.

[177] R. Malhotra and P. Jain, “Study and comparison of CloudSim simulators in the
cloud computing,” SIJ Transactions on Computer Science Engineering & its
Applications, vol. 1, no. 4, pp. 111–115, 2013.

[178] A. Beloglazov and R. Buyya, “Optimal online deterministic algorithms and
adaptive heuristics for energy and performance efficient dynamic consolidation
of virtual machines in cloud data centers,” Concurrency and Computation:
Practice & Experience, vol. 24, no. 13, pp. 1397–1420, 2012.

[179] C. J. Roy, “Review of code and solution verification procedures for
computational simulation,” Journal of Computational Physics, vol. 205, no. 1,
pp. 131–156, 2005.

[180] J. Papcun, “Integrating static code analysis and defect tracking,” Master’s thesis,
Faculty of Informatics, Masaryk University, Brno, Czech Republic, 2014.

[181] T. Arnold, D. Hopton, A. Leonard, and M. Frost, Professional Software Testing
with Visual Studio 2005 Team System: Tools for Software Developers and Test
Engineers. Hoboken, NJ: Wiley, 2007.

[182] J. M. Kelif, “Analytical performance model for Poisson wireless networks with
pathloss and shadowing propagation,” in Globecom Workshops, Austin, TX,
2014, pp. 1528–1532.

[183] I. A. Lawal, A. M. Said, and A. A. Muazu, “Simulation model to improve QoS
performance over fixed WiMAX using OPNET,” Research Journal of Applied
Sciences, Engineering and Technology, vol. 6, no. 21, pp. 3933–3945, 2013.

[184] M. Ivanovich, P. Fitzpatrick, J. Li, M. Beresford, and A. Saliba, “Measuring
quality of service in an experimental wireless data network,” Australian
Telecommunications, Networks and Applications Conference, Perth, WA,
Australia, 2003.

203

[185] M. S. Obaidat and N. A. Boudriga, Fundamentals of Performance Evaluation
of Computer and Telecommunications Systems. Hoboken, NJ: Wiley, 2010.

[186] K. Velten, Mathematical Modeling and Simulation: Introduction for Scientists
and Engineers. Hoboken, NJ: Wiley, 2008.

[187] A. Doosti and A. M. Ashtiani, “Mathematical modeling: a new approach for
mathematics teaching in different levels,” in 2nd Meeting of the network of
teachers, researchers and undergraduate students of physics and mathematics,
Sao Carlos, Brazil, 2010, pp. 1–9.

[188] K. Soetaert, T. Petzoldt, and R. W. Setzer, “Solving differential equations in R,”
The R Journal, vol. 2, no. 2, pp. 5–15, 2010.

[189] J. A. Cabrera and J. P. T. Higgins, “Graphical displays for meta-analysis: An
overview with suggestions for practice,” Resaerch Synthesis Methods, vol. 1,
pp. 66–80, 2010.

[190] R. K. Jain, The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation, and Modeling. Wiley, 1991.

[191] R. Sherwood, G. Gibb, K. K. Yap, G. Appenzeller, M. Casado, N. McKeown,
and G. Parulkar, “Can the production network be the testbed?” in 9th USENIX
conference on Operating systems design and implementation, Vancouver, BC,
Canada, 2010, pp. 1–14.

[192] S. B. Lee, E. Bajaj, L. Breslau, D. Estrin, K. Fall, S. Floyd, P. Haldar,
H. Mark, A. Helmy, J. Heidemann, P. Huang, S. Kumar, S. Mccanne, and
H. Yu, “Improving simulation for network research,” Department of Computer
Science, University of Southern California, Los Angeles, CA, Technical Report
99-702, 1999.

[193] E. Weingartner, H. vom Lehn, and K. Wehrle, “A performance comparison
of recent network simulators,” in IEEE International Conference on
Communications, Dresden, Germany, 2009, pp. 1–5.

[194] M. N. Ismail and A. M. Zin, “Comparing the accuracy of network utilization
performance between real network and simulation model for Local Area
Network (LAN),” I. J. Communications, Network and System Sciences, vol. 4,
pp. 339–349, 2008.

[195] R. Shaikh and M. Sasikumar, “Cloud simulation tools: A comparative analysis,”
International Journal of Computer Applications, pp. 11–14, 2013.

[196] T. Goyal, A. Singh, and A. Agrawal, “Cloudsim: Simulator for cloud computing
infrastructure and modeling,” Procedia Engineering, vol. 38, pp. 3566–3572,
2008.

[197] R. N. Calheiros, R. Ranjan, C. A. F. De Rose, and R. Buyya, “Cloudsim:
A novel framework for modeling and simulation of cloud computing
infrastructures and services,” Grid Computing and Distributed Systems
Laboratory, The University of Melbourne, Australia, Technical Report GRIDS-
TR-2009-1, 2009.

204

[198] A. Nunez, J. L. V. Poletti, A. C. Caminero, G. G. Castane, J. Carretero, and I. M.
Llorente, “icancloud: A flexible and scalable cloud infrastructure simulator,”
Journal of Grid Computing, vol. 10, no. 1, pp. 185–209, 2012.

[199] A. Nunez, J. Fernandez, J. D. Garcia, L. Prada, and J. Carretero, “Simcan:
A simulator framework for computer architectures and storage networks,”
in 1st international conference on Simulation Tools and Techniques for
Communications, Networks and Systems, Marseille, France, 2008, pp. 1–8.

[200] B. Pranggono, D. Alboaneen, and H. Tianfield, Simulation Technologies in
Networking and Communications: Selecting the Best Tool for the Test. Boca
Raton, FL: CRC Press, 2014, ch. Simulation Tools for Cloud Computing, pp.
311–336.

[201] S. K. Garg, C. S. Yeo, and R. Buyya, “Green cloud framework for improving
carbon efficiency of clouds,” in 17th International European Conference on
Parallel and Distributed Computing, Bordeaux, France, 2011, pp. 491–502.

[202] R. Kaur and N. S. Ghumman, “A survey and comparison of various cloud
simulators available for cloud environment,” International Journal of Advanced
Research in Computer and Communication Engineering, vol. 4, no. 5, pp. 605–
608, 2015.

[203] U. Sinha and M. Shekhar, “Comparison of various cloud simulation tools
available in cloud computing,” International Journal of Advanced Research in
Computer and Communication Engineering, vol. 4, no. 3, pp. 171–176, 2015.

[204] C. G. Garino, C. Mateos, and E. Pacini, Cloud Computing and Big Data.
Amsterdam: IOS Press, 2013, ch. ACO-based Dynamic Job Scheduling
of Parametric Computational Mechanics Studies on Cloud Computing
Infrastructures, pp. 103–122.

[205] I. Lazar and J. Husar, “Validation of the serviceability of the manufacturing
system using simulation,” Journal on Efficiency and Responsibility in Education
and Science, vol. 5, no. 4, pp. 252–261, 2012.

[206] P. K. Suri and P. Ranjan, “Comparative analysis of software effort estimation
techniques,” International Journal of Computer Applications, vol. 48, no. 21,
pp. 12–19, 2012.

[207] V. Govindarajalu and V. S. S. Kumar, “Integration of simulation modeling and
comparison of scheduling methods to minimize the makespan in a printing
industry,” Advanced Materials Research, vol. 488-489, pp. 1119–1124, 2012.

[208] O. A. C. Mendoza, “A simulator prototype for an ERP system,” MSc
Thesis, Department of Applied Mathematics and Computer Science, Technical
University of Denmark, Denmark, 2005.

[209] M. Hassan and R. Jain, High Performance TCP/IP Networking: Concepts,
Issues and Solutions. Upper Saddle River, NJ: Prentice Hall, 2004.

205

[210] J. Singh, “Study study of response time in cloud computing response time in
cloud computing,” I.J. Information Engineering and Electronic Business, vol. 5,
pp. 36–43, 2014.

[211] K. Davies. (2013) Sizes for virtual machines. Microsoft Azure. -
Accessed on 05/10/2013. [Online]. Available: https://azure.microsoft.com/
en-us/documentation/articles/virtual-machines-size-specs/

[212] S. Frey, C. Luthje, and C. Reich, “Key performance indicators for cloud
computing SLAs,” in Fifth International Conference on Emerging Network
Intelligence, Porto, Portugal, 2013, pp. 60–64.

[213] A. Hanemann, A. Liakopoulos, M. Molina, and D. M. Swany, “A study
on network performance metrics and their composition,” Campus-Wide
Information Systems, vol. 23, no. 4, pp. 268–282, 2006.

[214] F. Sabahi, “Cloud computing reliability, availability and serviceability (RAS):
Issues and challenges,” International Journal on Advances in ICT for Emerging
Regions, vol. 4, no. 2, pp. 12–23, 2011.

[215] J. B. Villegas-Puyod, “Cost effective cloud computing for real-time
applications,” in Tenth International Conference on ICT and Knowledge
Engineering, Bangkok, Thailand, 2012, pp. 171–174.

[216] A. O. Afolabi and E. R. Adagunodo, “Analysis of robustness of a developed
e-learning system,” International Journal of Advanced Research in Computer
Science and Software Engineering, vol. 3, no. 8, pp. 23–31, 2013.

[217] H. N. Erb, “A statistical approach for calculating the minimum number of
animals needed in research,” Institute for Laboratory Animal Research Journal,
vol. 32, no. 1, pp. 11–16, 1990.

[218] J. S. Kim and R. J. Dailey, Biostatistics for Oral Healthcare. Oxford, UK:
Wiley-Blackwell, 2008, ch. Confidence Intervals and Sample Size, pp. 113–
126.

[219] T. Z. Fahidy, “Some applications of bayes’ rule in probability theory
to electrocatalytic reaction engineering,” International Journal of
Electrochemistry, vol. 2011, pp. 1–5, 2011.

[220] P. Damien, P. Dellaportas, N. G. Polson, and D. A. Stephens, Eds., Bayesian
Theory and Applications. Oxford, UK: Oxford University Press, 2013.

[221] K. S. Kim and Y. S. Choi, “Bayesian network approach to computerized
adaptive testing,” International Journal of Smart Home, vol. 6, no. 3, pp. 75–82,
2012.

[222] M. Y. Lin, “Bayesian statistics,” School of Public Health, Boston University,
Boston, MA, Tech. Rep., 2013.

[223] K. Huang, I. King, and M. R. Lyu, “Learning maximum likelihood semi-naive
bayesian network classifier,” in IEEE International Conference on Systems,
Man and Cybernetics, Yasmine Hammamet, Tunisia, 2002, pp. 1–6.

206

https://azure.microsoft.com/en-us/documentation/articles/virtual-machines-size-specs/
https://azure.microsoft.com/en-us/documentation/articles/virtual-machines-size-specs/

[224] A. M. Carvalho, A. L. Oliveira, and M. F. Sagot, “Efficient learning of bayesian
network classifiers: An extension to the TAN classifier,” in 20th Australian Joint
Conference on Artificial Intelligence, Gold Coast, Australia, 2007, pp. 16–25.

[225] Y. Jing, V. Pavlovic, and J. M. Rehg, “Boosted bayesian network classifiers,”
Machine Learning, vol. 73, no. 2, pp. 155–184, 2008.

[226] W. M. Grudzewski, I. K. Hejduk, A. Sankowska, and M. Wantuchowicz, Trust
Management in Virtual Work Environments: A Human Factors Perspective.
Boca Raton, FL: CRC Press, 2008.

[227] M. Carbone, M. Nielsen, and V. Sassone, “A formal model for trust in
dynamic networks,” in 1st International Conference on Software Engineering
and Formal Methods, Brisbane, Australia, 2003, pp. 54–61.

[228] B. S. Vanneste, P. Puranam, and T. Kretschmer, “Trust over time in exchange
relationships: Meta-analysis and theory,” Strategic Management Journal,
vol. 35, no. 12, pp. 1891–1902, 2014.

[229] A. Shawish and M. Salama, Inter-cooperative Collective Intelligence:
Techniques and Applications, Studies in Computational Intelligence. Berlin
Heidelberg: Springer, 2014, ch. Cloud Computing: Paradigms and
Technologies, pp. 39–67.

[230] M. Gabel, A. Schuster, and D. Keren, “Communication-efficient distributed
variance monitoring and outlier detection for multivariate time series,” in 28th
IEEE International Parallel & Distributed Processing Symposium, Phoenix,
AZ, 2014, pp. 37–47.

[231] L. M. Spizman, “Developing statistical based earnings estimates: Median
versus mean earnings,” Journal of Legal Economics, vol. 19, no. 2, pp. 77–82,
2013.

[232] B. Karlik and A. V. Olgac, “Performance analysis of various activation
functions in generalized mlp architectures of neural networks,” International
Journal of Artificial Intelligence And Expert Systems, vol. 1, no. 4, pp. 111–
122, 2010.

[233] A. Tsoularis and J. Wallace, “Analysis of logistic growth models,”
Mathematical Biosciences, vol. 179, no. 1, pp. 21–55, 2002.

[234] Y. Cai and D. Hames, “Minimum sample size determination for generalized
extreme value distribution,” Communications in Statistics - Simulation and
Computation, vol. 40, pp. 99–110, 2011.

[235] M. Firdhous, O. Ghazali, and S. Hassan, “A trust computing mechanism for
cloud computing with multilevel thresholding,” in 6th International Conference
on Industrial and Information Systems, Kandy, Sri Lanka, 2011, pp. 457–461.

[236] F. Ikhouane and J. Rodellar, Systems with Hysteresis: Analysis, Identification
and Control Using the Bouc-Wen Model. John Wiley & Sons, 2007.

207

[237] L. M. L. Ny and B. Tuffin, “Pricing a threshold-queue with hysteresis,” in 18th
IASTED International Conference on Modelling and Simulation (MS 2007),
Montreal, Canada, 2007.

[238] J. Urbano, A. P. Rocha, and E. Oliveira, “Trust evaluation for reliable electronic
transactions between business partners,” in Agent-Based Technologies and
Applications for Enterprise Interoperability, ser. Lecture Notes in Business
Information Processing, K. Fischer, J. Muller, and R. Levy, Eds. Berlin
Heidelberg: Springer, 2012, vol. 98, pp. 219–237.

[239] M. Zaki, “Handover in a wireless local area network (WLAN),” US Patent
7 164 915, January 16, 2007.

[240] R. Dhaouadi, F. H. Ghorbel, and P. S. Gandhi, “A new dynamic model of
hysteresis in harmonic drives,” IEEE Transactions on Industrial Electronics,
vol. 50, no. 6, pp. 1165–1171, 2003.

[241] E. Marilly, O. Martinot, S. B. Brezetz, and G. Delegue, “Requirements for
service level agreement management,” in IEEE Workshop on IP Operations and
Management, Dallas, TX, 2002, pp. 57–62.

[242] B. Kahanwal and T. P. Singh, “The distributed computing paradigms: P2p, grid,
cluster, cloud, and jungle,” International Journal of Latest Research in Science
and Technology, vol. 1, no. 2, pp. 183–187, 2012.

[243] P. V. Chauhan, “Cloud computing in distributed system,” International Journal
of Engineering Research & Technology, vol. 1, no. 10, pp. 1–8, 2012.

[244] I. Verma, “Cloud computing: A study of benefits and challenges,” International
Journal of advanced studies in Computer Science and Engineering, vol. 3, no. 7,
pp. 14–17, 2014.

[245] M. Al-Roomi, S. Al-Ebrahim, S. Buqrais, and I. Ahmad, “Cloud computing
pricing models: A survey,” International Journal of Grid and Distributed
Computing, vol. 6, no. 5, pp. 93–106, 2013.

[246] Z. Yao, “Understanding churn in decentralized peer-to-peer networks,” PhD
Thesis, Texas A&M University, USA, 2009.

[247] M. Koivisto and A. Urbaczewski, “The relationship between quality of service
perceived and delivered in mobile internet communications,” Information
Systems and e-Business Management, vol. 2, pp. 309–323, 2004.

[248] M. Kafai, B. Bhanu, and L. An, “Cluster-classification bayesian networks for
head pose estimation,” in 21st International Conference on Pattern Recognition,
Tsukuba, Japan, 2012, pp. 2869–2872.

[249] H. Amipara, “A survey on cloudsim toolkit for implementing cloud
infrastructure,” International Journal of Science Technology & Engineering,
vol. 1, no. 12, pp. 239–243, 2015.

208

[250] OMICS Internetaional. (2015) List of countries by Internet connection
speeds. Website. OMICS Internetaional. [Online]. Available: http://research.
omicsgroup.org/index.php/List_of_countries_by_Internet_connection_speeds

209

http://research.omicsgroup.org/index.php/List_of_countries_by_Internet_connection_speeds
http://research.omicsgroup.org/index.php/List_of_countries_by_Internet_connection_speeds

	Front Matter
	Permission to Use
	Abstrak
	Abstract
	Declaration
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations

	Main Chapters
	1 Overview
	1.1 Introduction
	1.2 Background
	1.2.1 Cloud Computing

	1.3 Problems and Issues Pertaining to Cloud Computing
	1.4 Research Motivation
	1.5 Problem Statement
	1.6 Research Questions
	1.7 Research Objectives
	1.8 Research Scope
	1.9 Significance of the Research and Expected Contributions
	1.10 Organization of the Thesis

	2 Literature Review
	2.1 Introduction
	2.2 Cloud Computing
	2.2.1 Cloud Computing Service Offerings
	2.2.1.1 Infrastructure as a Service
	2.2.1.2 Platform as a Service
	2.2.1.3 Software as a Service

	2.2.2 Cloud Computing Deployment Models
	2.2.2.1 Private Cloud
	2.2.2.2 Public Cloud
	2.2.2.3 Hybrid Cloud
	2.2.2.4 Community Cloud

	2.3 Quality of Service in Cloud Computing
	2.3.1 Service Quality Monitoring in Cloud Computing
	2.3.2 Service Quality Parameters in Cloud Computing
	2.3.3 Definition of Performance Metrics

	2.4 Trust Computing and Management
	2.4.1 Trust Management in Cloud Computing

	2.5 Summary

	3 Research Methodology
	3.1 Introduction
	3.2 Research Approach
	3.2.1 Analysis
	3.2.1.1 Research Clarification
	3.2.1.2 Descriptive Study-I

	3.3 Design
	3.3.1 Model Development
	3.3.2 Model Implementation
	3.3.3 Model Validation

	3.4 Testing
	3.5 Evaluation
	3.5.1 Selecting the Evaluation Approach
	3.5.1.1 Analytical Modeling
	3.5.1.2 Testbedding
	3.5.1.3 Simulation
	3.5.1.4 Evaluation Environment

	3.5.2 CloudSim Simulation Suite
	3.5.2.1 CloudSim
	3.5.2.2 CloudAnalyst
	3.5.2.3 Network CloudSim

	3.5.3 Experiment Environment
	3.5.3.1 Experiment Steps
	3.5.3.2 Experiment Setup
	3.5.3.3 Performance Metrics
	3.5.3.4 Confidence Level of Simulation Results

	3.6 Summary

	4 Service Quality Modeling Mechanism for Cloud Computing
	4.1 Introduction
	4.2 Normalizing of Performance Metrics
	4.3 Modeling of Service Quality of Cloud Providers
	4.3.1 Single Parameter Service Quality Quantification Mechanism (SP-SQQM)

	4.4 Multi-Parameter Service Quality Quantification Mechanism (MP-SQQM)
	4.4.1 Computing Trust Score with Different Priorities

	4.5 Functional Verification of MP-SQQM
	4.6 Summary

	5 Adaptive Trust Computing Mechanism for Cloud Computing
	5.1 Introduction
	5.2 Trust Formation and Evolution
	5.3 Adaptive Continuous Trust Evolution Mechanism (ACTEM)
	5.3.1 Functional Verification of ACTEM

	5.4 Memoryless Trust Computing Mechanism (MemTrust)
	5.4.1 Functional Verification of MemTrust

	5.5 Hysteresis-based Trust Evolution Mechanism (HystTrust)
	5.5.1 Hysteresis Function
	5.5.2 Pseudo Code of the Proposed Algorithm
	5.5.3 Functional Verification of HystTrust

	5.6 Robust Adaptive Trust Computing Mechanism (RATComM)
	5.6.1 Functional Evaluation of RATComM

	5.7 Multi-Dimensional Trust Computing Mechanism (MuDTComM)
	5.7.1 Functional Evaluation of MuDTComM

	5.8 Summary

	6 Probability-based Trust Distribution Mechanism for Cloud Computing
	6.1 Introduction
	6.2 Distribution of Trust Scores
	6.2.1 Trust Table Updating Process

	6.3 Probability-based Trust Distribution Mechanism (PTDiMech)
	6.3.1 Functional Evaluation of PTDiMech

	6.4 Summary

	7 Performance Analysis of Trust Computing and Distribution Mechanisms
	7.1 Introduction
	7.2 Simulation Environment
	7.3 Performance Analysis of Service Quality Quantification Mechanisms
	7.3.1 Performance Analysis of SP-SQQM
	7.3.2 Performance Analysis of MP-SQQM

	7.4 Performance Analysis of Trust Computing Mechanisms
	7.4.1 Performance Analysis of Adaptive Continuous Trust Evolution Mechanism
	7.4.2 Performance Analysis of MemTrust
	7.4.3 Performance Analysis of HystTrust
	7.4.4 Performance Analysis of RATComM
	7.4.5 Performance Analysis of MuDTComM

	7.5 Performance Analysis of Trust Distribution Mechanism
	7.6 Summary

	8 Conclusions and Future Work
	8.1 Introduction
	8.2 Summary of Research
	8.3 Research Contributions
	8.4 Research Limitations
	8.5 Recommendations for Future Work

	REFERENCES

