The copyright © of this thesis belongs to its rightful author and/or other copyright owner. Copies can be accessed and downloaded for non-commercial or learning purposes without any charge and permission. The thesis cannot be reproduced or quoted as a whole without the permission from its rightful owner. No alteration or changes in format is allowed without permission from its rightful owner.
AN ADAPTIVE TRUST BASED SERVICE QUALITY MONITORING MECHANISM FOR CLOUD COMPUTING

MOHAMED FAZIL MOHAMED FIRDHOUS

DOCTOR OF PHILOSOPHY
UNIVERSITI UTARA MALAYSIA
2016
Permission to Use

In presenting this thesis in fulfillment of the requirements for a postgraduate degree from Universiti Utara Malaysia, I agree that the University Library may make it freely available for inspection. I further agree that permission for the copying of this thesis in any manner, in whole or in part, for scholarly purpose may be granted by my supervisor(s) or, in their absence, by the Dean of Awang Had Salleh Graduate School of Arts and Sciences. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use which may be made of any material from my thesis.

Requests for permission to copy or to make other use of materials in this thesis, in whole or in part, should be addressed to:

Dean of Awang Had Salleh Graduate School of Arts and Sciences
UUM College of Arts and Sciences
Universiti Utara Malaysia
06010 UUM Sintok
Abstrak

Kata kunci: Pengkomputeran awan, Pemantauan kualiti perkhidmatan, Pengkuantitian kualiti perkhidmatan, Pengkomputeran kepercayaan, Pengagihan kepercayaan
Abstract

Cloud computing is the newest paradigm in distributed computing that delivers computing resources over the Internet as services. Due to the attractiveness of cloud computing, the market is currently flooded with many service providers. This has necessitated the customers to identify the right one meeting their requirements in terms of service quality. The existing monitoring of service quality has been limited only to quantification in cloud computing. On the other hand, the continuous improvement and distribution of service quality scores have been implemented in other distributed computing paradigms but not specifically for cloud computing. This research investigates the methods and proposes mechanisms for quantifying and ranking the service quality of service providers. The solution proposed in this thesis consists of three mechanisms, namely service quality modeling mechanism, adaptive trust computing mechanism and trust distribution mechanism for cloud computing. The Design Research Methodology (DRM) has been modified by adding phases, means and methods, and probable outcomes. This modified DRM is used throughout this study. The mechanisms were developed and tested gradually until the expected outcome has been achieved. A comprehensive set of experiments were carried out in a simulated environment to validate their effectiveness. The evaluation has been carried out by comparing their performance against the combined trust model and QoS trust model for cloud computing along with the adapted fuzzy theory based trust computing mechanism and super-agent based trust distribution mechanism, which were developed for other distributed systems. The results show that the mechanisms are faster and more stable than the existing solutions in terms of reaching the final trust scores on all three parameters tested. The results presented in this thesis are significant in terms of making cloud computing acceptable to users in verifying the performance of the service providers before making the selection.

Keywords: Cloud computing, Service quality monitoring, Service quality quantification, Trust computing, Trust distribution
Declaration

Some of the works presented in this thesis have been published or submitted as listed below.

Book Chapters

Journal Articles

Conference Papers

Acknowledgments

In the name of Allah the Most Beneficent, the Most Merciful.

Studying towards a PhD, though it is very rewarding at the end, it is a very tedious and challenging journey. I have almost reached the end of it with a lot of effort, blood, sweat and tears. There are several people, who helped to reach this stage successfully. I will fail in my duty, if I do not give them the credit that is rightfully due to them.

First and foremost, I must thank my supervisors Prof. Madya Dr. Osman Ghazali and Prof. Dr. Suhaidi Hassan. It has been an honor to be a PhD student under them. I really appreciate all their contributions in terms of advice, support, time and ideas that made my PhD experience productive and stimulating. A special thanks for encouraging me to write research articles and proceeding papers that helped me a lot in improving my language skills and would go a long way in my career development as an academic.

I would like to extend my sincere gratitude to my former vice chancellor Prof. Malik Ranasnghe at the University of Moratuwa, Sri Lanka. He not only encouraged me to start my PhD, but also give the list of people who I should approach along with a strong recommendation letter. He also approved my study leave at the shortest possible time.

Then I would like to thank my InterNetWoks research laboratory members both the academic staff and students. They kept the environment very nice and stimulating throughout my stay there.

Finally I would extend my gratitude to my family especially my wife Shamila. I really appreciate her understanding and support. I really have to mention my daughter Fathima Sameeha and son Mohamed Shabaz, though they missed me a lot during this period, they gave me the reason and courage that I should finish this journey successfully.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permission to Use</td>
<td>ii</td>
</tr>
<tr>
<td>Abstrak</td>
<td>iii</td>
</tr>
<tr>
<td>Abstract</td>
<td>iv</td>
</tr>
<tr>
<td>Declaration</td>
<td>v</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>ix</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>x</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xiv</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xv</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>xviii</td>
</tr>
<tr>
<td>CHAPTER ONE OVERVIEW</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2.1 Cloud Computing</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Problems and Issues Pertaining to Cloud Computing</td>
<td>5</td>
</tr>
<tr>
<td>1.4 Research Motivation</td>
<td>7</td>
</tr>
<tr>
<td>1.5 Problem Statement</td>
<td>9</td>
</tr>
<tr>
<td>1.6 Research Questions</td>
<td>11</td>
</tr>
<tr>
<td>1.7 Research Objectives</td>
<td>11</td>
</tr>
<tr>
<td>1.8 Research Scope</td>
<td>12</td>
</tr>
<tr>
<td>1.9 Significance of the Research and Expected Contributions</td>
<td>13</td>
</tr>
<tr>
<td>1.10 Organization of the Thesis</td>
<td>14</td>
</tr>
<tr>
<td>CHAPTER TWO LITERATURE REVIEW</td>
<td>16</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>16</td>
</tr>
<tr>
<td>2.2 Cloud Computing</td>
<td>16</td>
</tr>
<tr>
<td>2.2.1 Cloud Computing Service Offerings</td>
<td>18</td>
</tr>
<tr>
<td>2.2.2 Cloud Computing Deployment Models</td>
<td>21</td>
</tr>
<tr>
<td>2.3 Quality of Service in Cloud Computing</td>
<td>27</td>
</tr>
<tr>
<td>2.3.1 Service Quality Monitoring in Cloud Computing</td>
<td>34</td>
</tr>
</tbody>
</table>
CHAPTER FIVE ADAPTIVE TRUST COMPUTING MECHANISM
FOR CLOUD COMPUTING 116
5.1 Introduction ... 116
5.2 Trust Formation and Evolution 117
5.3 Adaptive Continuous Trust Evolution Mechanism (ACTEM) 118
 5.3.1 Functional Verification of ACTEM 120
5.4 Memoryless Trust Computing Mechanism (MemTrust) 122
 5.4.1 Functional Verification of MemTrust 125
5.5 Hysteresis-based Trust Evolution Mechanism (HystTrust) 127
 5.5.1 Hysteresis Function 129
 5.5.2 Pseudo Code of the Proposed Algorithm 130
 5.5.3 Functional Verification of HystTrust 130
5.6 Robust Adaptive Trust Computing Mechanism (RATComM) 132
 5.6.1 Functional Evaluation of RATComM 133
5.7 Multi-Dimensional Trust Computing Mechanism (MuDTComM) ... 136
 5.7.1 Functional Evaluation of MuDTComM 139
5.8 Summary ... 140

CHAPTER SIX PROBABILITY-BASED TRUST DISTRIBUTION
MECHANISM FOR CLOUD COMPUTING 141
6.1 Introduction ... 141
6.2 Distribution of Trust Scores 142
 6.2.1 Trust Table Updating Process 144
6.3 Probability-based Trust Distribution Mechanism (PTDiMech) 146
 6.3.1 Functional Evaluation of PTDiMech 150
6.4 Summary ... 151

CHAPTER SEVEN PERFORMANCE ANALYSIS OF TRUST
COMPUTING AND DISTRIBUTION MECHANISMS 153
7.1 Introduction ... 153
7.2 Simulation Environment 153
7.3 Performance Analysis of Service Quality Quantification Mechanisms ... 156
 7.3.1 Performance Analysis of SP-SQQM 157
List of Tables

Table 2.1 Summary of Features of the Service Quality Monitoring Mechanisms 37
Table 2.2 Summary of Trust Computing Mechanisms for Cloud Computing 58
Table 3.1 Comparison of Different Evaluation Approaches 80
Table 3.2 Comparison of Different Cloud Simulators 86
Table 3.3 Virtual Machine Mapping 93
Table 3.4 Experiment Setup Attributes and Values 94
Table 4.1 Performance Table 110
Table 4.2 Modified Performance Table 112
Table 6.1 Sample Trust Table 146
Table 6.2 Conditional Probability Table at N_S for N_D 149
Table 7.1 Specification of the Host Computer 154
Table 7.2 Experiment Setup Attributes for the Evaluation of SQQMs 156
Table 7.3 Service Quality Requirements for Service Quality Quantification Mechanisms 156
Table 7.4 Experiment Setup Attributes for the Evaluation of Trust Computing Mechanisms 163
Table 7.5 Service Quality Requirements for Trust Computing Mechanisms 163
Table 7.6 Experiment Setup Attributes for the Evaluation of Trust Distribution Mechanism 173
Table 7.7 Service Quality Requirements for Trust Distribution Mechanism 174
List of Figures

Figure 1.1 Capacity Utilization Curve .. 3
Figure 2.1 Cloud Computing Service Offerings 19
Figure 2.2 Cloud Computing Deployment Models 22
Figure 3.1 Research Methodology ... 63
Figure 3.2 Stages of Design Research Methodology 64
Figure 3.3 Research Approach ... 66
Figure 3.4 Main Steps Involved in Research Clarification Stage 67
Figure 3.5 Main Steps in Descriptive Study - I 69
Figure 3.6 Conceptual Model ... 70
Figure 3.7 Mechanism Development Process 71
Figure 3.8 Eclipse Integrated Development Environment for Java 77
Figure 3.9 QI-Pro Code Analysis Window ... 78
Figure 3.10 CloudSim Layered Architecture 88
Figure 3.11 CloudSim Class Diagram ... 89
Figure 3.12 Simulation Steps .. 91
Figure 4.1 Change in Trust Scores .. 105
Figure 4.2 Comparative Change in Trust Scores 106
Figure 4.3 Naive Bayesian Network .. 109
Figure 4.4 Naive Bayesian Network for a Cloud Computing System 109
Figure 4.5 Trust Score Computed Using Two Input Parameters 113
Figure 4.6 Effect of Weights on Trust Scores Computed 114
Figure 4.7 Effect of Weights on Final Trust Score 114
Figure 5.1 Trust Management System ... 119
Figure 5.2 Trust Scores due to Continuous Positive or Negative Feedbacks 121
Figure 5.3 Effect of Confidence Level on Trust Scores Computed 121
Figure 5.4 MemTrust Trust Evolution Unit 122
Figure 5.5 Sigmoid Function ... 124
Figure 7.12 MemTrust: Trust Scores Computed based on Response Time . . . 167
Figure 7.13 MemTrust: Trust Scores Computed based on Service Time . . . 167
Figure 7.14 MemTrust: Trust Scores Computed based on Availability 168
Figure 7.15 HystTrust: Trust Scores Computed based on Response Time . . . 169
Figure 7.16 HystTrust: Trust Scores Computed based on Service Time 169
Figure 7.17 HystTrust: Trust Scores Computed based on Availability 169
Figure 7.18 RATComM: Trust Scores Computed based on Response Time . . . 170
Figure 7.19 RATComM: Trust Scores Computed based on Service Time 170
Figure 7.20 RATComM: Trust Scores Computed based on Availability 171
Figure 7.21 Trust Scores Computed by MuDTComM and Fuzzy Mechanisms . 172
Figure 7.22 Effect of Weights on Trust Scores - MuDTComM vs Fuzzy 172
Figure 7.23 PTDiMech: Trust Scores Computed based on Response Time . . . 176
Figure 7.24 PTDiMech: Trust Scores Computed based on Service Time 177
Figure 7.25 PTDiMech: Trust Scores Computed based on Availability 178
Figure 7.26 PTDiMech: Trust Scores Computed with Equal Weights 178
Figure 7.27 PTDiMech: Trust Scores Computed with Different Weights 179
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTEM</td>
<td>Adaptive Continuous Trust Evolution Mechanism</td>
</tr>
<tr>
<td>API</td>
<td>Application Programming Interface</td>
</tr>
<tr>
<td>AWS</td>
<td>Amazon Web Services</td>
</tr>
<tr>
<td>CDO</td>
<td>Cloud Deployment Options</td>
</tr>
<tr>
<td>CSP</td>
<td>Cloud Service Provider</td>
</tr>
<tr>
<td>DRM</td>
<td>Design Research Methodology</td>
</tr>
<tr>
<td>DS-I</td>
<td>Descriptive Study I</td>
</tr>
<tr>
<td>DS-II</td>
<td>Descriptive Study II</td>
</tr>
<tr>
<td>FBCT</td>
<td>Family-gene Based model for Cloud Trust</td>
</tr>
<tr>
<td>FIFO</td>
<td>First In First Out</td>
</tr>
<tr>
<td>GUT</td>
<td>Graphical User interface</td>
</tr>
<tr>
<td>HystTrust</td>
<td>Hysteresis-based Trust Evolution Mechanism</td>
</tr>
<tr>
<td>IaaS</td>
<td>Infrastructure as a Service</td>
</tr>
<tr>
<td>IdP</td>
<td>Identity Policy</td>
</tr>
<tr>
<td>IdPS</td>
<td>Identity Practice Statement</td>
</tr>
<tr>
<td>IDE</td>
<td>Integrated Development Environment</td>
</tr>
<tr>
<td>ISO</td>
<td>International Standards Organization</td>
</tr>
<tr>
<td>JVM</td>
<td>Java Virtual Machine</td>
</tr>
<tr>
<td>KPI</td>
<td>Key Performance Indicators</td>
</tr>
<tr>
<td>MemTrust</td>
<td>Memoryless Trust Computing Mechanism</td>
</tr>
<tr>
<td>MP-SQQM</td>
<td>Multi-Parameter Service Quality Quantification Mechanism</td>
</tr>
<tr>
<td>MTCEM</td>
<td>Multi-tenancy Trusted Computing Environment Model</td>
</tr>
<tr>
<td>MuDTComM</td>
<td>Multi-Dimensional Trust Computing Mechanism</td>
</tr>
<tr>
<td>PaaS</td>
<td>Platform as a Service</td>
</tr>
<tr>
<td>PERMIS</td>
<td>PrivilEge and Role Management Infrastructure Standard</td>
</tr>
<tr>
<td>PS</td>
<td>Prescriptive Study</td>
</tr>
<tr>
<td>PSO</td>
<td>Particle Swarm Optimization</td>
</tr>
<tr>
<td>PTDiMech</td>
<td>Probability-based Trust Distribution Mechanism</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>QoE</td>
<td>Quality of Experience</td>
</tr>
<tr>
<td>QoS</td>
<td>Quality of Service</td>
</tr>
<tr>
<td>RAM</td>
<td>Random Access Memory</td>
</tr>
<tr>
<td>RATComM</td>
<td>Robust Adaptive Trust Computing Mechanism</td>
</tr>
<tr>
<td>RC</td>
<td>Research Clarification</td>
</tr>
<tr>
<td>S3</td>
<td>Simple Storage Service</td>
</tr>
<tr>
<td>SaaS</td>
<td>Software as a Service</td>
</tr>
<tr>
<td>SLA</td>
<td>Service Level Agreement</td>
</tr>
<tr>
<td>SMI</td>
<td>Service Measurement Index</td>
</tr>
<tr>
<td>SP</td>
<td>Service Policy</td>
</tr>
<tr>
<td>SPS</td>
<td>Service Practice Statement</td>
</tr>
<tr>
<td>SP-SQQA</td>
<td>Single Parameter Service Quality Quantification Algorithm</td>
</tr>
<tr>
<td>SP-SQQM</td>
<td>Single Parameter Service Quality Quantification Mechanism</td>
</tr>
<tr>
<td>TSS</td>
<td>Trusted Platform Software Stack</td>
</tr>
<tr>
<td>VM</td>
<td>Virtual Machine</td>
</tr>
<tr>
<td>VMM</td>
<td>Virtual Machine Manager</td>
</tr>
</tbody>
</table>
CHAPTER ONE
OVERVIEW

1.1 Introduction

This chapter presents a brief introduction to the proposed research along with the general background information on cloud computing in brief including its features, advantages, disadvantages and issues. The chapter also outlines the problem statement and research questions, research motivation, research objectives, research scope and the significance of the research along with the contributions. Finally the outline of the proposal is presented at the end.

1.2 Background

Cloud computing has become very popular among the computing community in the recent years. It has already has earned the nickname the 5th utility due to its versatile and economic way of making resources available over the Internet [1]. Utilities make the resources available to a wider clientele and charge them only for the usage. Electricity, water, gas and telephony are the four major utilities that have been commonly used in this manner before the arrival of cloud computing. Prior to the emergence of cloud computing in the latter part of the 1st decade of 2000s, computing resources such as hardware including processor power, storage, networks bandwidth were either purchased outright and installed in the data centers owned and operated by end users themselves or leased from public data centers on fixed monthly or annual charges [2]. The clients installed the operating systems, tools and applications of their choice on these hardware dedicated only for their use. Once the hardware has been purchased or leased in this manner, the capacity of these systems were fixed irrespective of usage. The computing resources thus installed in clients’ data centers are generally underutilized. Recent surveys have found that in many data centers the
The contents of the thesis is for internal user only
REFERENCES

