The copyright © of this thesis belongs to its rightful author and/or other copyright owner. Copies can be accessed and downloaded for non-commercial or learning purposes without any charge and permission. The thesis cannot be reproduced or quoted as a whole without the permission from its rightful owner. No alteration or changes in format is allowed without permission from its rightful owner.
TOTAL FACTOR PRODUCTIVITY, TECHNOLOGY TRANSFER AND ABSORPTIVE CAPACITY IN DEVELOPING ASIAN COUNTRIES

By

CHUAH SOO CHENG

Thesis Submitted to
School of Economics, Finance and Banking,
Universiti Utara Malaysia,
Fulfillment of the Requirement for the Degree of Doctor of Philosophy
PERMISSION TO USE

In presenting this thesis in fulfillment of the requirements for a Post Graduate degree from the Universiti Utara Malaysia (UUM), I agree that the Library of this university may make it freely available for inspection. I further agree that permission for copying this thesis in any manner, in whole or in part, for scholarly purposes may be granted by my supervisor(s) or in their absence, by the Dean of Othman Yeop Abdullah Graduate School of Business where I did my thesis. It is understood that any copying or publication or use of this thesis or parts of it for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the UUM in any scholarly use which may be made of any material in my thesis.

Request for permission to copy or to make other use of materials in this thesis in whole or in part should be addressed to:

Dean of School of Economics, Finance and Banking
Universiti Utara Malaysia
06010 UUM Sintok
Kedah Darul Aman
ABSTRACT

Technological progress or total factor productivity (TFP) is the main factor in sustaining economic growth in the long run. As technological follower, technology transfer is the main source of technology progress in developing Asian countries. Effectiveness of technology transfer requires adequate human capabilities to absorb and adapt foreign technological knowledge. This study attempts to study the relative contribution of TFP growth to economic growth and technological absorption of human capital in the technology transfer process by looking into gender aspect at different levels of education. Solow neoclassical growth accounting method is applied to investigate the contribution of TFP growth to economic growth. The logistic technology diffusion model is used to determine the impact of human capital gender on TFP growth through dual dimensions – innovation and technology transfer for a sample of 12 developing Asian countries over the period of 1970 -2009 by using panel data pooled Ordinary Least Square (OLS), fixed/ random effects model. The growth accounting estimation supports the assimilation views that TFP growth has significantly contributed to the output growth of developing Asian countries. The empirical results indicated that the aggregate of female and male educations is significant in the technology transfer process. In terms of gender disaggregate educational levels, female and male tertiary education showed higher absorptive capacity in facilitating technology transfer. The results also showed that autonomous technology transfer has significant impact on TFP growth. This study shows the absorptive capacity of female and higher education in the technology transfer in enhancing the growth of productivity. As such, several policies may be implemented to enhance the effectiveness of technology transfer process by augmenting tertiary education, reducing the gender education disparity, enhancing the rate of female participation in labour force. Sustaining the economic growth which is based on productivity is important at accelerating the economic development of Asian developing countries.

Keywords: total factor productivity, human capital, technology transfer, absorptive capacity
ABSTRAK

Kata Kunci: produktiviti faktor keseluruhan, modal insan, pemindahan teknologi, kapasiti penyerapan
ACKNOWLEDGEMENT

I would like to convey great appreciation and gratitude for the following persons that have contributed to this study. Foremost, I would like to express my deepest gratitude to my supervisor, Dr. Nor Azam bin Abdul Razak for his supervision, patience and knowledge sharing. His guidance helped me a lot in the completion of this study.

I would like to thank my co-supervisor, Associate Professor Dr. Hussin bin Abdullah for his support and encouragement. My sincere thank also go to Associate Professor Dr. Sallahuddin bin Hassan for his suggestions and comments on the proposal of this study and special thanks to Associate Professor Liew Mee Lin for her comments.

My appreciation goes to Kementrian Pendidikan Malaysia and Universiti Teknologi MARA for the sponsorship of my study, Othman Yeop Abdullah Graduate School of Business, Universiti Utara Malaysia and school of Economics, Finance and Banking, University Utara Malaysia for their co-operations and assistance.

Finally, I would like to thank my husband, children and parents for their support, understanding and encouragement during my study years.
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
</tr>
<tr>
<td>CERTIFICATION OF THESIS WORK</td>
</tr>
<tr>
<td>PERMISSION TO USE</td>
</tr>
<tr>
<td>ABSTRACT</td>
</tr>
<tr>
<td>ABSTRAK</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
</tr>
<tr>
<td>TABLE OF CONTENT</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
</tr>
</tbody>
</table>

CHAPTER ONE: INTRODUCTION

1.1 Background of Study .. 1
1.2 A Glance at Developing Asian Countries 8
1.3 Problem Statement .. 22
1.4 Research Questions .. 25
1.5 Objectives of the Study .. 26
1.6 Scope of the Study ... 27
1.7 Significance of the Study ... 27
1.8 Organisation of the Study ... 30

CHAPTER TWO: LITERATURE REVIEW

2.1 Introduction ... 31
2.2 TFP and Economic Growth ... 31
2.3 Human Capital and Economic Growth 34
 2.3.1 Human Capital Role in Theoretical Model of Economic Growth 35
 2.3.1.1 Main Characteristics of the Solow Model .. 36
 2.3.1.2 Exogenous Growth Model – The Human Capital Augmented Solow Model .. 37
 2.3.1.3 Endogenous Growth Model – Human Capital Accumulation 38
 2.3.1.4 Endogenous Growth Model – Stock of Human Capital and Technological Progress .. 39
2.4 Theoretical Framework .. 42
 2.4.1 The Standard Growth Accounting Framework 42
 2.4.2 Technological Catch-up Model 43
 2.4.3 Confined Exponential Technology Diffusion Model 45
 2.4.4 Logistic Model of Technology Diffusion 46
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>Returns to Education by Gender</td>
<td>8</td>
</tr>
<tr>
<td>Table 1.2</td>
<td>FDI Inflow in Developing Asian Countries, 1970–2009 (US dollar in current prices)</td>
<td>11</td>
</tr>
<tr>
<td>Table 1.3</td>
<td>Imports of Machineries and Equipments in Developing Asian Countries, 1990–2009</td>
<td>12</td>
</tr>
<tr>
<td>Table 1.4</td>
<td>Government Spending on Education as % of GDP in Developing Asian Countries, 1970–2010</td>
<td>13</td>
</tr>
<tr>
<td>Table 1.5</td>
<td>Educational Attainment of the Total Population 15 Year and Above: Developing Asian Countries, Advanced Countries and Developing Countries, 1970–2010</td>
<td>15</td>
</tr>
<tr>
<td>Table 1.6</td>
<td>Educational Attainment Trends of the Total, Female and Male Population Aged 15 Years and Above: Developing Asian Countries: 1970–2010</td>
<td>18</td>
</tr>
<tr>
<td>Table 2.1</td>
<td>Studies on Absorptive Capacity and Technology Transfer (Based on Aggregate Data)</td>
<td>82</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Descriptive Statistics, 1970–2009</td>
<td>110</td>
</tr>
<tr>
<td>Table 4.2(a)</td>
<td>Correlation Matrix: Aggregate Human Capital Level Specification</td>
<td>111</td>
</tr>
<tr>
<td>Table 4.2(b)</td>
<td>Correlation Matrix: Aggregate Gender-Separate Human Capital Level Specification</td>
<td>111</td>
</tr>
<tr>
<td>Table 4.2(c)</td>
<td>Correlation Matrix: Female Human Capital Composition Level Specification</td>
<td>112</td>
</tr>
<tr>
<td>Table 4.2(d)</td>
<td>Correlation Matrix: Male Human Capital Composition Level Specification</td>
<td>112</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>TFP Growth Estimation of Aggregate Human Capital Based Absorptive Capacity, 1970–2009</td>
<td>115</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>TFP Growth Estimation of Female and Male Human Capital Based Absorptive Capacity, 1970–2009</td>
<td>120</td>
</tr>
<tr>
<td>Table 4.5(a)</td>
<td>TFP Growth Estimation of Female Primary Education Based Absorptive Capacity, 1970–2009</td>
<td>125</td>
</tr>
</tbody>
</table>
Table 4.5(b) TFP Growth Estimation of Female Secondary Education Based Absorptive Capacity, 1970–2009……………………………………127

Table 4.5(c) TFP Growth Estimation of Female Tertiary Education Based Absorptive Capacity, 1970–2009……………………………………129

Table 4.6(a) TFP Growth Estimation of Male Primary Education Based Absorptive Capacity: 1970–2009……………………………………132

Table 4.6(b) TFP Growth Estimation of Male Secondary Education Based Absorptive Capacity, 1970–2009……………………………………134

Table 4.6(b) TFP Growth Estimation of Male Tertiary Education Based Absorptive Capacity, 1970–2009……………………………………135

Table 4.7 Durbin-Wu-Hausman Test for the Endogeneity of Human Capital…………………………………………………………………..140

Table 4.8 TFP Growth Estimation of Aggregate Human Capital Based Absorptive Capacity, 1970–2009……………………………………142

Table 4.9 TFP Growth Estimation of Female and Male Human Capital Based Absorptive Capacity, 1970–2009……………………………143

Table 4.10(a) TFP Growth Estimation of Female Primary Education Based Absorptive Capacity, 1970–2009………………………………145

Table 4.10(b) TFP Growth Estimation of Female Secondary Education Based Absorptive Capacity, 1970–2009…………………………146

Table 4.10(c) TFP Growth Estimation of Female Tertiary Education Based Absorptive Capacity, 1970–2009……………………………147

Table 4.11(a) TFP Growth Estimation of Male Primary Education Based Absorptive Capacity, 1970–2009………………………………148

Table 4.11(b) TFP Growth Estimation of Male Secondary Education Based Absorptive Capacity, 1970–2009…………………………149

Table 4.11(c) TFP Growth Estimation of Male Tertiary Education Based Absorptive Capacity, 1970–2009………………………………150

Table 4.12 TFP Growth Estimation of Aggregate Human Capital Based Absorptive Capacity, 1970–2009………………………………152

Table 4.13 TFP Growth Estimation of Female and Male Human Capital Based Absorptive Capacity, 1970–2009…………………………153
Table 4.14(a) TFP Growth Estimation of Female Primary Education Based Absorptive Capacity, 1970–2009…………………………155

Table 4.14(b) TFP Growth Estimation of Female Secondary Education Based Absorptive Capacity, 1970–2009…………………………156

Table 4.14(c) TFP Growth Estimation of Female Tertiary Education Based Absorptive Capacity, 1970–2009…………………………157

Table 4.15(a) TFP Growth Estimation of Male Primary Education Based Absorptive Capacity, 1970–2009…………………………158

Table 4.15(b) TFP Growth Estimation of Male Secondary Education Based Absorptive Capacity, 1970–2009…………………………159

Table 4.15(c) TFP Growth Estimation of Male Tertiary Education based Absorptive Capacity: 1970–2009…………………………160
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Regional Total R&D Expenditure (GRED) as Percentage of World R&D Expenditure, 2002, 2007 and</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Developing Asia’s Share of World GDP and Exports, (1980 – 2010)</td>
<td>10</td>
</tr>
<tr>
<td>Figure 1.3</td>
<td>GDP per Capita, Developing Asian Economies versus Industrial Economies</td>
<td>14</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>A Monotonic Technology Model (Rogers, 2004)</td>
<td>45</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Contribution Shares of Economic Growth, 1970–2009</td>
<td>106</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Individual Countries’ Average Annual TFP Growth, 1970–2009 (percent)</td>
<td>107</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>TFP</td>
<td>Total Factor Productivity</td>
<td></td>
</tr>
<tr>
<td>FDI</td>
<td>Foreign Direct Investment</td>
<td></td>
</tr>
<tr>
<td>NIEs</td>
<td>Newly Industrialised Economies</td>
<td></td>
</tr>
<tr>
<td>ASEAN</td>
<td>Association of Southeast Asian Nations</td>
<td></td>
</tr>
<tr>
<td>GDP</td>
<td>Gross Domestic Product</td>
<td></td>
</tr>
<tr>
<td>ADB</td>
<td>Asian Development Bank</td>
<td></td>
</tr>
<tr>
<td>APO</td>
<td>Asian Productivity Organisation</td>
<td></td>
</tr>
<tr>
<td>ICT</td>
<td>Information and Communication Technology</td>
<td></td>
</tr>
<tr>
<td>UNESCO</td>
<td>United Nations Educational, Scientific and Cultural Organization</td>
<td></td>
</tr>
<tr>
<td>R&D</td>
<td>Research and Development</td>
<td></td>
</tr>
<tr>
<td>OLS</td>
<td>Ordinary Least Square</td>
<td></td>
</tr>
<tr>
<td>FEM</td>
<td>Fixed Effects Model</td>
<td></td>
</tr>
<tr>
<td>REM</td>
<td>Random Effects Model</td>
<td></td>
</tr>
<tr>
<td>LSDV</td>
<td>Least Square Dummy Variable</td>
<td></td>
</tr>
<tr>
<td>VIF</td>
<td>Variance Inflation Factor</td>
<td></td>
</tr>
<tr>
<td>PWT</td>
<td>Penn World Table</td>
<td></td>
</tr>
<tr>
<td>UNCTAD</td>
<td>United Nations Conference on Trade and Development</td>
<td></td>
</tr>
<tr>
<td>IIASA</td>
<td>International Institute for Applies Systems</td>
<td></td>
</tr>
<tr>
<td>VID</td>
<td>Vienna Institute of Demography</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER ONE
INTRODUCTION

1.1 Background of Study

One of the overriding objectives of a nation is to achieve sustained economic growth because it enables the nation to enjoy greater economic prosperity over time which, in turn, elevates the standard of living of its population. If this is the case, then what does it take to attain sustained economic growth? In the past, nations have competed with each other primarily through the political means (i.e. through the colonial power). In the modern world, however, nations choose to compete with each other mainly through the economic means (i.e. through growth-oriented policy). Smith (1776) once posed the question “what determines long-term economic growth rate and hence the prosperity of nations?” Since then, the search for the fundamental determinants of growth has become a continuing research theme.

Basically, a country’s economy grows with the combination of factors of production such as capital, labour, land and natural resources. However, economic growth is not just determined by factor accumulation alone, but also by total factor productivity (TFP) which represents the relative efficiency of a country to produce goods and services. TFP is commonly referred so as a measure for technological progress. It incorporates the impact of technological change and other factors that rise further than the quantified contribution of factor accumulation (Solow, 1957).

TFP growth is crucial for sustaining an economy’s long-run growth. A country could not sustain its growth by relying on factor accumulation alone because it is subject to diminishing marginal returns. The law of diminishing marginal returns
The contents of the thesis is for internal user only
REFERENCES

Bascavusoglu, E. (2004). *Patterns of technology transfer to the developing countries: differentiating between embodied and disembodied knowledge*. Harvard University, mimeo.

Easterly, W., & Levine, R. (2001). It’s not factor accumulation: Stylized facts and

Eaton, J., & Kortum, S. (1999). International patenting and technology diffusion:

Elborgh-Woytek, K., Newiak, M., Kochhar, K., Fabrizio, S., Kpodar, K., Wingender,
gains from gender equity. IMF Staff Discussion Note SDN/13/10. Retrieved

Engelbrecht, H. J. (1997). International R&D spillovers, human capital and
productivity in OECD economies: An empirical investigation. *European

Engelbrecht, H. J. (2002). Human capital and international knowledge spillovers in
TFP growth of a sample of developing countries: An exploration of alternative

and technology. *Journal of International Affairs, 64*(1), 83–89.

Journal of Economic Literature, XXXII, S1147–S1175.

Asian Development Bank Paper, no. 65. Retrieved from
https://ideas.repec.org/p/fth/asdbed/65.html

