
The copyright © of this thesis belongs to its rightful author and/or other copyright 

owner.  Copies can be accessed and downloaded for non-commercial or learning 

purposes without any charge and permission.  The thesis cannot be reproduced or 

quoted as a whole without the permission from its rightful owner.  No alteration or 

changes in format is allowed without permission from its rightful owner. 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

JASIM MOHAMMED DAHR 

  

AN INVESTIGATION OF REQUIREMENTS TRACEABILITY 

PRACTICES IN SOFTWARE COMPANIES IN MALAYSIA 

 

MASTER OF SCIENCE (INFORMATION TECHNOLOGY) 

SCHOOL OF COMPUTING 

UUM COLLEGE OF ARTS AND SCIENCES 

UNIVERSITI UTARA MALAYSIA 

2016 



 

ii 
 

Permission to Use 

In presenting this dissertation in fulfilment of the requirements for a postgraduate 

degree from Universiti Utara Malaysia, I agree that the Universiti Library may make it 

freely available for inspection. I further agree that permission for the copying of this 

thesis in any manner, in whole or in part, for scholarly purpose may be granted by my 

supervisor(s) or, in their absence, by the Dean of Awang Had Salleh Graduate School of 

Arts and Sciences. It is understood that any copying or publication or use of this thesis 

or parts thereof for financial gain shall not be allowed without my written permission. It 

is also understood that due recognition shall be given to me and to Universiti Utara 

Malaysia for any scholarly use which may be made of any material from my thesis. 

Requests for permission to copy or to make other use of materials in this thesis, in 

whole or in part, should be addressed to: 

 

Dean of Awang Had Salleh Graduate School of Arts and Sciences 

UUM College of Arts and Sciences 

Universiti Utara Malaysia 

06010 UUM Sintok 

 

 

 

 

 

 

 



 

iii 
 

Abstrak 

Keupayaan mengesan keperluan (RT) merupakan salah satu aktiviti yang kritikal dalam 

menguruskan keperluan dengan baik dan bahagian yang penting dalam pembangunan 

projek. Pada masa yang sama, RT dapat meningkatkan kualiti produk perisian. Walau 

bagaimanapun, pengamal industri sukar melaksanakannya memandangkan kekurangan 

garis panduan atau hasil yang dapat memberi panduan kepada mereka dalam 

melaksanakan RT dalam projek mereka secara berkesan. Ini menunjukkan pengamal 

industri kekurangan maklumat tentang cara yang terbaik atau paling berkesan dalam 

melaksanakan tugasan mereka, seperti di syarikat perisian. Walaupun begitu, terdapat 

beberapa amalan umum yang diterima pakai yang dapat memberi panduan kepada 

pengamal industri dalam menjejaki keperluan projek mereka. Kajian ini bertujuan untuk 

menentukan amalan RT melalui sorotan kajian sistematik. Selain itu, kajian ini telah 

menjalankan soal selidik untuk mengkaji penggunaan amalan RT di syarikat-syarikat 

perisian di kawasan utara Malaysia. Akhir sekali, satu siri temu bual dengan pengamal 

industri telah dijalankan untuk mengetahui sebab-sebab yang mempengaruhi kepada 

penggunaan amalan  ini dalam pembangunan perisian. Dapatan kajian menunjukkan 

bahawa majoriti syarikat perisian tidak menggunakan amalan RT untuk mengesan 

keperluan kerana isu kewangan dan kekurangan pengetahuan tentang amalan RT ini. 

Kajian ini membentangkan bukti empirikal berkaitan penggunaan amalan RT antara 

syarikat perisian. Di samping itu, kajian ini membolehkan pengamal industri untuk 

mencari kaedah yang sesuai untuk mengesan keperluan, dan juga membolehkan 

penyelidik untuk mencari jurang dan petunjuk untuk kajian masa hadapan dalam kajian 

domain ini.  

Kata kunci: Amalan Keupayaan Mengesan Keperluan, Teknik Keupayaan Mengesan, 

Alatan Keupayaan Mengesan, Sorotan Kajian Sistematik 

 

 

 

 



 

iv 
 

Abstract 

Requirement traceability (RT) is one of the critical activity of good requirements 

management and an important part of development projects. At the same time, it 

improves the quality of software products. Nevertheless, industrial practitioners are 

challenged by this lack of guidance or results which serve as a rule or guide in 

establishing effective traceability in their projects. The outcome of this is that 

practitioners are ill-informed as to the best or most efficient means of accomplishing 

their tasks, such as found in software companies. Notwithstanding the lack of guidance, 

there are a number of commonly accepted practices which can guide industrial 

practitioners with respect to trace the requirements in their projects. This study aims to 

determine the practices of RT through conducting a systematic literature review. Also, 

this study conducted a survey for investigating the use of RT practices in the software 

companies at northern region of Malaysia. Finally, a series of interviews with 

practitioners were carried out to know the reasons that influence on the use of these 

practices in software development. The findings showed that majority software 

companies do not use traceability practices for tracing requirements due to financial 

issues and the lack of knowledge of these practices. This study presented empirical 

evidence about the use of RT practices among software companies. Thus, the findings 

of this study can assist practitioners to select RT practices, and also enables researchers 

to find gaps and pointers for future study in this study domain. 

Keywords: Requirements Traceability Practices, Traceability Techniques, Traceability 

tools, Systematic Literature Review 

 

 

 

 

 

 

 

 



 

v 
 

Acknowledgement 

In the Name of Allah, the Most Gracious and Most Merciful. First of all, I would like to 

thank Allah (SWT), for having made everything possible by giving me strength, 

confidence, and courage to accomplish my study for a Master degree after a long time 

of continuous work. I am truly indebted and do appreciate many persons that have 

encouraged me through this hard yet challenging journey. Whilst being grateful to all of 

them, I must register my gratefulness to some particular individuals. 

I would like to express my appreciation and deepest gratitude to my extraordinary 

supervisor Dr. Mazni Omar who advised, supported, and assisted me during all stages 

of this research. Without her ideas and comments, the accomplishment of my research 

would have been more difficult. She has always been there when I needed her 

invaluable feedback and everything related to accomplish this journey. It is an honor to 

be one of their students. 

My deepest respect and thanks goes to my parents, my father Mohammed Dahr and my 

beloved mother Ameena Younis for their sacrifices, unconditional love and 

encouragement through their prayers. I value their endless efforts which made me who I 

am. A very special appreciation and sincere gratitude goes to my beloved wife (Israa 

Sabri) and my dear son (Ali) who were the biggest motivation for me to complete my 

study. Furthermore, I would like to thank my brothers and sisters for their 

encouragement, support and patience that keep me moving forward in completing this 

study as without them, I could not have completed this study. 

I would like to extend my sincere thanks to my best friend (Nafea Raheem), who did not 

forget me during period of study and all time remind me. Further, words cannot express 

my gratitude to my friends, who always gave me the encouragement and help to 

complete this work. I will be forever thankful, grateful, and indebted to them 

I express my deepest thanks to Ministry of Education in Iraq for helping and supporting 

me and giving necessary advices and guidance and arranged all facilities to make my 

study (Master Information and Technology) easier. Finally, special thanks goes to all 

staff of College of Arts and Science, University Utara Malaysia and those that 

contributed indirectly towards the success of my study. 

Thank you UUM 



 

vi 
 

Table of Content 

 

Permission to Use .............................................................................................................. ii 

Abstrak ............................................................................................................................. iii 

Abstract ............................................................................................................................ iv 

Acknowledgement............................................................................................................. v 

Table of Content ............................................................................................................... vi 

List of Tables.................................................................................................................... ix 

List of Figures ................................................................................................................... x 

List of Appendices ........................................................................................................... xi 

CHAPTER ONE: INTRODUCTION  .......................................................................... 1 

1.1  Introduction ................................................................................................................ 1 

1.2  Background of the Study ............................................................................................ 1 

1.3  Problem Statement ..................................................................................................... 3 

1.4  Research Questions .................................................................................................... 6 

1.5  Research Objectives ................................................................................................... 6 

1.6  Significant of Research .............................................................................................. 7 

1.7  Research Scope .......................................................................................................... 8 

1.8  Organization of the Thesis ......................................................................................... 8 

1.9  Summary of Chapter ................................................................................................ 10 

CHAPTER TWO: LITERATURE REVIEW ............................................................ 11 

2.1  Introduction .............................................................................................................. 11 

2.2  Requirements Engineering ....................................................................................... 11 

2.2.1  Requirements Development ................................................................................... 13 

2.2.1.1  Requirements Elicitation Phase ....................................................................... 14 

2.2.1.2  Requirements Analysis Phase .......................................................................... 17 

2.2.1.3  Requirements Specification Phase ................................................................... 18 

2.2.1.4  Requirements Validation Phase ....................................................................... 20 

2.2.2  Requirements Management ................................................................................... 21 

2.2.2.1  Requirements Change Management ................................................................. 23 

2.3  Requirements Traceability ....................................................................................... 24 

2.3.1  Requirement Traceability Techniques .................................................................... 26 

2.3.2  Requirement Traceability Tools ............................................................................. 28 

2.3.3 Factors in Selection of Requirement Traceability Practices ....................................... 30 

2.3.4  Related Works ...................................................................................................... 33 



 

vii 
 

2.4  Summary of Chapter ................................................................................................ 37 

CHAPTER THREE: RESEARCH METHODOLOGY ........................................... 38 

3.1  Introduction .............................................................................................................. 38 

3.2  Research Procedure .................................................................................................. 38 

3.3  Systematic Literature Review (SLR) ....................................................................... 41 

3.3.1  Formulating the Research Question ........................................................................ 42 

3.3.2  Constructing the Search ......................................................................................... 43 

3.3.3  Study Selection ..................................................................................................... 44 

3.3.4  Data Extraction ..................................................................................................... 45 

3.3.5  Synthesis of the Extracted Data .............................................................................. 45 

3.4  Quantitative Approach ............................................................................................. 46 

3.4.1  Populations and Sampling ..................................................................................... 46 

3.4.2  Data collection Instrument ..................................................................................... 47 

3.4.3  Data Analysis ....................................................................................................... 49 

3.4.4  Validation ............................................................................................................ 50 

3.4.5  Reliability Analysis ............................................................................................... 50 

3.5  Qualitative Approach ............................................................................................... 51 

3.5.1  Interview .............................................................................................................. 52 

1.5.2 Data Analysis….. ................................................................................................... 53 

3.6  Summary of Chapter ................................................................................................ 54 

CHAPTER FOUR: RESULTS OF SYSTEMATIC LITERATURE REVIEW ..... 55 

4.1  Introduction .............................................................................................................. 55 

4.2  Conducting the Review ............................................................................................ 55 

4.3  Result of SLR ........................................................................................................... 56 

4.3.1  Requirement Traceability Techniques .................................................................... 58 

4.3.2  Requirement Traceability Tools ............................................................................. 69 

4.3.3  Comparison between RT practices ......................................................................... 73 

4.4 Discussion ................................................................................................................. 85 

4.5  Summary of Chapter ................................................................................................ 89 

CHAPTER FIVE: RESULTS OF SURVEY AND INTERVIEW ............................ 91 

5.1  Introduction .............................................................................................................. 91 

5.2  Results of the Use of Traceability Practices ............................................................ 91 

5.2.1  Demographic Characteristics of Respondents .......................................................... 91 

5.2.2  Use of Requirements Traceability Tools ................................................................. 94 

5.2.3  Use of Requirements Traceability Techniques ........................................................ 95 



 

viii 
 

5.3  Reliability For Use of Traceability Practices ........................................................... 97 

5.4  Descriptive Statistics ................................................................................................ 97 

5.5  Analysis of Interviews.............................................................................................. 98 

5.6  Discussion .............................................................................................................. 103 

5.7  Summary of Chapter .............................................................................................. 104 

CHAPTER SIX: CONCLUSION AND RECOMMENDATIONS......................... 105 

6.1  Introduction ............................................................................................................ 105 

6.2  Objectives Achievement ........................................................................................ 105 

6.3  Contribution of the Research ................................................................................. 107 

6.4  Limitation of the Study .......................................................................................... 109 

6.5  Conclusion and Future Works ................................................................................ 109 

REFERENCES .............................................................................................................. 111 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

ix 
 

List of Tables 

 

Table 2.1: Requirements elicitation techniques. ............................................................. 15 

Table 2.2: Specification techniques. ............................................................................... 19 

Table 2.3: Requirements management tools. .................................................................. 22 

Table 2.4: Requirement traceability techniques .............................................................. 27 

Table 2.5: Requirements traceability tools...................................................................... 29 

Table 2.6: Summaries the prior studies related to RT practices ..................................... 36 

Table 3.1: The sections of questionnaire and the sources of the adapted questionnaires.

 ......................................................................................................................................... 48 

Table 3.2: Pilot test Cronbach‟s Alpha ........................................................................... 51 

Table 3.3: Differences between quantitative and qualitative approach .......................... 52 

Table 4.1: Factors that help software companies to select the appropriate RT practices.

 ......................................................................................................................................... 77 

Table 4.2: Matching between the tools and techniques of traceability and the tools price

 ......................................................................................................................................... 84 

Table 5.1: Distribution of respondents ............................................................................ 92 

Table 5.2: Reliability Result ........................................................................................... 97 

Table 5.3: Descriptive Statistics ...................................................................................... 98 

Table 5.4: Participant's Information ................................................................................ 99 

 

 

 

 

 

 

 

 

 

 



 

x 
 

List of Figures 

Figure 2.1: The Major Activities of Requirements Engineering..................................... 12 

Figure 2.2: Requirements Elicitation Process ................................................................. 15 

Figure 3.1: Proposed Research Framework .................................................................... 40 

Figure 3.2: Systematic Review Guideline Process ......................................................... 41 

Figure 4.1. Studies Selected of Digital Libraries ............................................................ 56 

Figure 4.2: RT Techniques for Tracing Requirements ................................................... 57 

Figure 4.3: RT Tools for Tracing Requirements ............................................................. 58 

Figure 5.1: Use of Traceability Tools in Software Companies ....................................... 49 

Figure 5.2: Use of Traceability Techniques in Software Companies ............................. 96 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 



 

xi 
 

List of Appendices 

 

APPENDIX A: Questionnaire........................................................................................... 134 

APPENDIX B: Expert Reviewer....................................................................................... 139 

APPENDIX C: List of Software Companies ...................................................................... 140 

APPENDIX D: Interview Questions ................................................................................. 141 

APPENDIX E: Studies Selected of Systematic Literature Review ....................................... 142 

 

 

 

 



 

1 
 

CHAPTER ONE 

INTRODUCTION 

 

1.1  Introduction  

This chapter starts by explaining the background of traceability. It then highlights the 

problem statement related to the study. The research objectives, research question, 

scope of the study, as well as the significance of the research, are also highlighted. 

1.2  Background of the Study 

Lately, there is a rising interest in software systems which are capable of adapting to 

modifications in their  requirements for the purpose of continuity in fulfilling their 

software's goals (Silva Souza, Lapouchnian, Robinson & Mylopoulos, 2011). According 

to Zainol and Mansoor (2011), requirements have a propensity to be modified during 

software development and these modifications must be managed. Also, according to the 

study‟s by Attarha and Modiri (2011), requirements are regarded as a challenging part 

in the software project because the requirements accurately determine what is to be 

produced. Requirements as defined by Zhou (2014), is a statement that recognizes a 

process or product‟s functional, operational, or design characteristic or limitations, 

which is unambiguous, measurable or testable, and mandatory for a process or product‟s 

acceptability by consumers or internal quality assurance guidelines. Similarly, Wen, 

Luo and Liang (2012) defined requirements as formal pronouncement of user‟s needs. 

The root of requirements traceability is requirements engineering (RE). RE is 

considered as the initial phase of software engineering. According to Attarha and 

Modiri (2011), RE is a method for defining, modeling, recognizing, linking, 

documenting and maintaining or preserving software requirements in software life cycle 



 

2 
 

which gives a better understanding of the problem. In a nutshell, accomplishment of 

each software project is evaluated by putting the level of project's goals fulfillment into 

consideration. Hence, RE is a process of realizing these goals which is accomplished by 

identifying stakeholder and their needs, as well as documenting these needs in ways that 

responds to analysis, which communications and implementation of them in the future 

(Attarha & Modiri, 2011). However, the process of RE involves a large amount of data 

and inconstant requirements. Therefore, Requirements  Management (RM) tools have 

been designed for the management of these changes (Zainol & Mansoor, 2011). RM 

manages modifications in the requirements all through RE procedure and development. 

Naz, Motla, Asghar, Abbas and Khatoon (2013) stated that RM involves activities 

associated with  change identification, change maintenance, traceability and 

management of requirements changes (or change management). Furthermore, RM 

handles modifications to approve requirements while managing the relationship 

between requirements. In addition, dependency between requirement records or 

document, and other records produced all through the software engineering processes 

are also managed (Naz et al., 2013).  

These types of problem can be addressed by a process of requirements management 

known as Traceability (Bashir & Qadir, 2006). Requirements Traceability (RT), is 

defined as (Gotel & Finkelstein, 1994): 

 “the ability to follow the life of a requirement, in both a backward and 

forward direction” (p.1) 

Mader et al., (2013) defined RT practices as a set of steps or strategies prepared by 

project managers in the early stages of the project, and all information which must be 

documented using a traceability information model. Likewise, Cleland-Huang (2006) 

reported in their study that traceability practices consist of tools or methods that are 



 

3 
 

utilized in the implementation and maintenance of traceability links. Also, Katta and 

Stålhane (2014) elaborated that RT practices refer to tools and techniques used in 

tracing requirements during software development processes. In this study, RT practices 

refer to techniques and tools that are used in tracing requirements in the different stages 

of project development, to ensure that all requirements are fulfilled in the final project. 

Traceability establishes a logical association between objects of the software 

development process (Gotel & Finkelstein, 1994). As an important process in 

modification management tasks, traceability provides relevant information on the 

potential penalties of a changing requirement (Mäder & Gotel, 2012). In spite of all 

these advantages, knowledge on the practical use of traceability in development projects 

is still lacking (Schwarz, Ebert, & Winter, 2010a). Given the merits of traceability 

requirement in company projects and products quality, this study focuses on RT 

practices in software companies in Malaysia. The major issues related to this 

phenomena are highlighted in the next section. 

1.3  Problem Statement  

The requirements are the base of a software project development (Zaib, Chauhan, & 

Sirshar, 2015). Therefore, missing important requirements or capturing irrelevant 

requirements are the main causes of product failure (Khan et al., 2011). This is also 

supported by Khan, Khalid and ul Haq (2013), who asserted that the foremost reason of 

project failure is due to employing bad requirements  practices. More precisely, 

according to Shubhamangala, Rao, Dakshinamurthy and Singh (2012), software 

projects usually fail due to poor requirements management. This issue is also discussed 

by Pandey and Suman (2012). In the same context, Marnewick (2014) stated that if a 

project begins with good requirements, success will be attained in terms of quality, cost 

and schedule. Thus, RM is very important or crucial for the success of any organization 



 

4 
 

or company. Rikhari and Kumar (2012) declared that poor requirement management 

leads to; poor quality software, rework, very low customer satisfaction, financial 

problem, delay in the delivery of the software, high cost, and low market value. All 

these problems result in software failure.  

On the other aspect, traceability is one of the decisive activities of good requirements 

management. Traceability allows fast assessment of the impact when a change occurs 

(Ooi, Lim, & Lim, 2014). RT is an important part of development projects (Bouillon, 

Mäder, & Philippow, 2013; Mäder & Egyed, 2014). Therefore, researchers have shown 

that RT influences positively on the quality of software products (Cleland-huang et al., 

2014; Spanoudakis & Zisman, 2005; Winkler & Pilgrim, 2010). In addition, Kirova, 

Kirby, Kothari and Childress (2008) explained that the direct benefits of traceability are 

an improved product quality, controlled requirements and effective response to changes. 

In the same vein, numerous studies also pointed out that the use of requirement 

traceability in a development project is frequently hindered by challenges in its 

execution and application, such as, insufficient tool support and ad-hoc traceability 

without strategy (Aizenbud-Reshef, Nolan, Rubin, & Shaham-Gafni, 2006; Gotel & 

Finkelstein, 1994; Ramesh, Stubbs, Powers, & Edwards, 1997; Schwarz, Ebert, & 

Winter, 2010b). 

RT is considered as the heart of requirement management process. Despite the fact that 

RT is an area of much interest  and concern in development projects (Mäder, Gotel, & 

Philippow, 2009a; Rempel, Mäder & Kuschke , 2013), surprisingly, it is rarely used 

(Ahmad & Ghazali, 2007; Arkley, Mason, & Riddle, 2002; Klimpke & Hildenbrand, 

2009). Also, Regan, McCaffery, McDaid and Flood (2012) stated that most companies 

are either not implementing it, or they are lacking of guidance on how to implement 

effective traceability. In addition, there is a lack of empirical studies related to trace 



 

5 
 

requirements despite the availability of tools and techniques that support the tracing of 

requirement. Besides, prior studies still concentrated on the requirement traceability in 

general (Bouillon et al., 2013), where a few of the previous studies focused on stages of 

traceability, specifically in Malaysia. The aforementioned arguments encouraged the 

researcher to focus on RT.  

Particularly, Bouillon et al., (2013) found out that the usage of RT is less common in 

development projects. The study by Solemon, Sahibuddin and Ghani (2010) shared this 

opinion and reported that less companies in Malaysia define traceability policies or 

maintain traceability manual in their projects. Saiedian, Kannenberg and Morozov 

(2013) pointed out that manual traceability methods are prone to errors and also time-

consuming. They are also difficult to manage (Han, Youn, & Cho, 2014). Mäder and 

Egyed (2014) confirmed that, it is vital and essential to investigate whether utilization 

of RT can considerably support development activities. 

According to (Cleland-Huang et al., 2011), for several research domains, open source 

projects may provide a wealth of useful data, this is not normally the case for 

traceability, and open source projects in this domain do not include any significant 

information about traceability. Therefore, identify factors for the selection of 

traceability practices will help companies assign the appropriate practice of their work. 

In addition to the aforementioned arguments, Casey and Mc Caffery (2011) stated, there 

is a lack of guidance is available for practitioners to help them establish effective 

traceability in their projects. As a result of this, practitioners are ill-informed as to how 

best to accomplish this task, such as found in software companies. This opinion is 

supported by Regan, McCaffery, McDaid and Flood (2014). Notwithstanding the lack 

of guidance, there are a number of commonly accepted practices which can direct 

practitioners regarding the implementation and maintenance of traceability (Han et al., 



 

6 
 

2014). In the same context, software companies‟ requirements are the greatest challenge 

to handle (Rosmadi, Ahmad, & Abdullah, 2015), due to constant modification. 

Therefore, this study aims at examining the practices of requirement traceability to 

software companies as well as to aid software companies in the selection of a suitable 

traceability practices for their work by identifying the RT practices factors. This study 

strives to assist software companies in addressing the lack of guidance on how to 

implement effective requirement traceability. 

1.4  Research Questions 

Based on the problem discussed in the previous section, this study aims at answering the 

following research questions: 

1. What are the requirement traceability practices that have been used within 

software companies and factors that help these companies to select appropriate 

practices? 

2. What are the current practices of requirement traceability that applied within 

software companies of Malaysia? 

3. How to verify the requirement traceability practices used by the software 

companies? 

1.5  Research Objectives 

In order to minimise the gap in the literature review and also, to highlight of a suitable 

RT practices for software companies the following objectives are posed to achieve this 

purpose: 

1. To identify RT practices within software companies and factors that help these 

companies to select appropriate practices using systematic literature review. 



 

7 
 

2. To investigate the current practices of requirement traceability applied among 

software companies in Malaysia quantitatively. 

3. To verify the requirement traceability practices used qualitatively with industrial 

experts. 

1.6  Significant of Research 

The significance of the study to requirement traceability is outlined below: 

i. This study seeks to enrich information about requirement traceability in 

literature, because there is a few studies focuses on this field.  

ii. As well as, in the systematic review section, the researcher also strive to shed 

light the various RT practices that are used to track requirements. Thus, this 

study will motivate the new researchers to further research based on these issues.  

iii. Shedding light on factors that facilitates the selection of RT practices by 

software companies. 

iv. There is paucity of the empirical study on the software companies related on the 

requirement traceability, therefore this study highlight the current practices used 

by software companies in northern region of Malaysia. 

v. The study also sheds light on the reasons that make software companies less 

attention in using RT practices in software development processes. 

vi. Lastly, in Malaysia particular, there is still lack of research on requirements 

traceability practices among software companies. 

In a nutshell, the outcomes of this study is to fulfill the gap of the lack of the empirical 

evidence related to requirements traceability practices used by the software companies 

in Malaysia.  



 

8 
 

1.7  Research Scope 

RT is a part of the requirements management that used to increase the quality of the 

product during the software development life cycle (SDLC). With regards to that, this 

study looks into the requirements traceability and identify practices used to it. In terms 

of the users, Sekaran and Bougie (2010) stated, in research involving a wide range of 

elements, it is practically impossible collect data from, or test or examination of each 

element. Even if it were possible it would be high-priced in terms of cost and need a 

long time as well as other human resources. Therefore, data was gathered from 

practitioners in software companies in various parts of the northern of Malaysia and 

previous studies conducted on the requirements traceability in literature. In addition, the 

northern region was selected because of the availability of software companies that fit 

into this study.   

This study used a snowball sampling method for determining the sample of study 

because of the desired sample characteristic is rare as well as the number of software 

companies in northern region is not constant. Snowball sampling is a special non-

probability method used when the desired sample characteristic is rare (Aartsengel & 

Kurtoglu, 2013). In snowball method, the researcher asks participants to identify others 

to become members of the sample (Creswell, 2012). This method is suitable for the 

study for the following reasons; identify participants in the study by people with 

experience in this area, reduce the cost and time required for data collection, and this 

method is optimal to get to the hidden populations. 

1.8  Organization of the Thesis 

This thesis is organized in six chapters. The following is an outline of the main contents 

of each chapter: 



 

9 
 

i. Chapter 1: Introduction 

This chapter explains the overview of requirements traceability as well as an 

outline of the most important studies in this domain. Based on these studies, the 

problem statement had been formulated, research questions, objectives and 

scope of the study. The last section of the chapter explains the significance of the 

study. 

ii. Chapter 2:  Literature Review 

This chapter reviews the most important studies that are relevant to requirements 

engineering and its branches. Meanwhile, this chapter also covers the 

information sharing studies related to requirements traceability as well as the 

techniques and tools that are used to track requirements. Also, it includes 

challenges that hinder the implementation of traceability and related works in 

this area. 

iii. Chapter 3: Research Methodology 

Chapter 3 focuses on the methods used to solve the identified problem and 

achieve the objectives of this study. It includes details and justifications about 

research methodology used as well as explain steps of data collection and 

analysis. 

iv. Chapter 4: Results of Systematic Literature Review 

This chapter presents the findings and analysis of systematic literature review 

about requirement traceability practices. Additionally, factors of RT practices 

extracted from studies that are enable companies to choose the appropriate 



 

10 
 

practice of company's work. In the end, discuss the results of a systematic 

literature review 

v. Chapter 5: Results of Survey And Interview 

Chapter 5 presents the results of a questionnaire on use RT practices in software 

companies as well as results of interviews about reasons that are prevent 

software companies from use RT practices. the final section of this chapter 

discusses the results of questionnaire and interviews. 

vi. Chapter 6: Conclusion and Recommendations 

Finally, the thesis ends with a discussion of the objectives achievement, 

limitations of the study and contribution as well as conclusion and future works. 

1.9  Summary of Chapter 

This chapter illustrates the importance of RT of the software, and the motivation for this 

study. As well as, the importance of requirements engineering and requirements 

management. This will serve as an introduction into the topic of discussion. The 

problem statement of this study is also clearly elaborated, coupled with the research 

questions of this study and its objectives. In addition, the significance of the study for 

researchers and practitioners and research scope. 

 

 

 

 



 

11 
 

CHAPTER TWO 

LITERATURE REVIEW 

 

2.1  Introduction 

This chapter presents a set of studies and research that are relevant to this study. It starts 

with requirements engineering which is the root of the requirements traceability, and its 

branches. In addition, the chapter discusses vividly the importance of requirement 

traceability in more detail, challenges impeding the implementation of traceability and 

previous works that are related to the research topic. 

2.2  Requirements Engineering 

Requirement Engineering (RE) as a field, plays an important part over the entire process 

of product development (Pandey, Suman, & Ramani, 2010). The method of integrating 

RE in the product development cycle is largely affected by the acceptance and 

performance of a product in a market (Anitha & Prabhu, 2012). RE is considered as the 

most significant section of software engineering and perhaps of the whole software life 

cycle. This is because, mistakes made at this stage, can be very costly if  doesn‟t 

manifest till a later stage of the software development. Otherwise, if the requirement 

specifications are identified correctly, there will be minimum error at the later stage 

(Chakraborty, Baowaly, Arefin, & Bahar, 2012).  

RE is the initial and decisive phase of software engineering. According to Mohebzada, 

Ruhe and Eberlein (2012) elaborated that the specification of requirements evolves over 

time, reflecting the realities of the project. Hence, it is not a one-time task. This creates 

a more challenging task, as incomplete or untrue, leading to the main causes of the 

project failures. Companies differ in their need for requirements engineering. Haron et 



 

12 
 

al., (2012) stated that, the success of a software project is due to the application of RE in 

their development process. RE is a name for a structured set of activity that helps to 

develop the understanding and documentation of system specification for IT personnel's 

and stakeholders involved in the system development. In the same vein, the techniques 

are used in gathering to develop a system which performs tasks usually conducted by 

human experts.  

RE is the discipline of analysing, determining, documenting, pruning, and validating the 

needs and requirements of stakeholders at specific system (Agarwal & Gael, 2014). 

Jiang et al., (2008) stated that project failures are contributed by bad requirement 

engineering. Therefore, appropriate techniques should be utilized, preventing wastage of 

time and cost, thus, avoiding a redo of the system development. Fig. 2.1 illustrates the 

main activities of requirements engineering.    

Figure 2.1: The Major Activities of Requirements Engineering (Soonsongtanee & 

Limpiyakorn, 2010; Wiegers, 2000) 

Requirements 
Engineering (RE) 

Requirements 
Development (RD) 

Elicitation 

Analysis 

Specification 

Validation 

Requirements 
Management (RM)  

Change 
Management 

Traceability 



 

13 
 

Requirement engineering comprises of two main types of activities. The first is 

requirements development and the second is requirements management. For 

requirements development, it includes four activities are elicitation, analysis, 

specification and validation. Requirements management has two activities are change 

management and traceability. The next sub-section will discuss in details related RE 

activities and requirements development. 

2.2.1  Requirements Development 

Requirements development (RD) is an activity of comprehending, eliciting and 

analysing clients‟ or customers‟ expectations (Zhang, 2007). During this phase, the 

development team sits alongside the product owners, in order to identify their needs or 

requests by listing the features required for the system. The team gathers much needed 

information from the product owners for the purpose of understanding their needs. The 

information gathered will be further analysed to acquire the user requirement (Sarkan, 

Ahmad, & Bakar, 2011). In the same manner, Diev (2007) stated that, requirements 

development as a design activity involves breaking the system into sub-systems, and 

establishing how these subsystems should interact. It also involves specifying 

requirements for subsystems. 

Khan et al., (2013) pointed out that, every requirement has a life span starting from its 

origin to implementation. A single requirement is also capable of affecting other 

requirements in a positive or negative manner. Requirements development passes 

through the following phases: requirements elicitation phase, requirements analysis 

phase, requirements specification phase and requirements validation phase (Khan et al., 

2013). The following section will discuss the requirements elicitation , which is the first 

stage of the requirements development. 



 

14 
 

2.2.1.1  Requirements Elicitation Phase 

Requirements elicitation phase is collecting information properly, to achieve it, must 

have a clear understanding of the requirements and determine its value for software. In 

addition, Yozgyur (2014) defined the requirements elicitation as a stage of RE where 

the required information is extracted and collected from the stakeholders like customers, 

users etc. Sutcliffe and Sawyer (2013) stated, elicitation still remains problematic; 

missing or mistaken requirements still delay projects and cause cost overruns. 

In addition, Sharma and Pandey (2014) found out that, various errors related to 

requirements are avoided to the later or final phases of the development life cycle. 

Correcting these errors after or during the execution of the software, increase efforts and 

cost unnecessarily. This point strengthens the fact that additional attention should be 

given to requirements elicitation since receiving imprecise requirements from users can 

result in wrong designing or may be difficult to resolve at the later stage. 

According to Sadiq and Jain (2014), a successful software system is a system that 

completes on time, within budget and meets customer requirements. In addition, the 

authors have identified some of the primary causes that lead to the software failure, such 

as lack of user involvement, incomplete requirements and lack of executive 

management support. Moreover, they stated that it can‟t elicit a full set of requirements 

unless it‟s determined by the stakeholders in the requirements elicitation process.  

Burnay, Jureta and Faulkner (2015) stated that, the lack of eliciting completeness of the 

information is common and has been recognized as a major challenge in RE. Fig. 2.2  

illustrates the phases of requirements elicitation process. 

 



 

15 
 

 

Figure 2.2: Requirements Elicitation Process  (Sharma & Pandey, 2014) 

There are many techniques used to elicit information from stakeholders or the user. 

Table 2.1 shows  a set of  elicitation techniques. 

Table 2.1   

Requirements elicitation techniques (Fricker, Grau, & Zwingli, 2015). 

Technique Description 

Archaeology             Analysis of current systems to comprehend their quality, 

functionality, and usage. 

Creativity                The selection and generation of concepts to innovate or solve a 

challenging problem. 

Data mining Searching and filtering of requirements databases to detect 

significant knowledge about the needs of stakeholder. 



 

16 
 

Interview Meetings between stakeholders and requirements engineers to 

discuss important issues for the system. 

Introspection Use of domain knowledge merged with empathy and reflection to 

base requirements on experience. 

Observation Study of use of system, by real users and probably in the target 

environment, to comprehend processes, usage, strengths, and 

weaknesses of the existing system. 

Questionnaire 

based survey 

Electronic or paper form with questions and space or options for 

feedbacks, distributed to stakeholders to acquire stakeholder 

opinion through an overview. 

Reuse Use of existing or current specifications to evade reinvention of 

requirements that are adequate already. 

Workshop Meeting between stakeholders and a requirements engineer to 

come to an agreement between the workshop participants. 

 

Elicitation is the first phase of the requirements development. According to Sharma and 

Pandey (2014), the major aim of this stage is to categorize the system limits and specify 

the communicative and efficient characteristics of a system and the accomplishment of 

this process according to the recognition of the appropriate stakeholders from various 

background and identifying their requirements. In general, requirements elicitation 

approaches or techniques that can't possibly be suitable for every project. The choice of 

approaches to be includes is based on the particular environment of the project and 

chosen of the  techniques based on analyst perspective or determined by a particular 

methodology. Requirements analysis phase starts when this phase is completed. 



 

17 
 

2.2.1.2  Requirements Analysis Phase 

Requirement analysis phase involves refining the requirements to confirm that all the 

stakeholders apprehend them, and also inspecting them for errors, omissions or 

oversights, and other deficiencies. Furthermore, requirement analysis involves 

disintegrating high-level requirements into the right level of details, constructing 

prototypes, evaluating feasibility, and negotiating priorities (Wiegers & Beatty, 2013). 

Requirements that do not meet the perspective of stakeholders may have caused the 

failure of the software. This is shown by Chaos (2014), who confirmed that, data from 

the Chaos Report of the Standish Group indicates that the failure rate of software 

projects were two in three projects. One of the major causes of this is unsatisfied 

stakeholders and customers. Hence, the analysis of those requirements becomes 

important, where it should be taken into account, that these requirements meet most of 

the views of stakeholders, whereas, these requirements can be completed without 

exceeded the time limit for the software as well as taking into account the cost of the 

project.  

Most studies on requirements analysis concentrate on novel or improved procedures for 

evaluating the quality of documented requirements. A number of analyses search for 

well-formedness errors in the requirements, where an error can be inconsistency, 

incompleteness, or ambiguity. Other analyses search for anomalies, such as unidentified 

interactions among requirements, potential obstacles to the satisfaction of requirements, 

or missing assumptions. Both categories of analyses disclose misunderstandings or 

questions pertaining to the requirements that usually calls for further elicitation. 

Requirements analysis also includes procedures, such as risk and impact analysis, which 

gives specifiers a better understanding of the requirements, their potential consequences, 

and their interrelationships, enabling the specifiers to make more-informed decisions 



 

18 
 

(Cheng & Atlee, 2007). In fact, requirements analysis is not merely a specification of 

the system, but is a private specifications of the final product. The following section 

explains the third phase of the requirements development which is the requirements 

specification phase.  

2.2.1.3  Requirements Specification Phase 

Requirements specification phase which is sometimes called software requirements 

specification or system requirements specification (SRS), is a document that explains 

multiple technical issues of a software system (da Silva, 2014; Elliott Sr & Allen, 2013). 

In addition, Juergens et al., (2010) explained that SRS are the basis of many software 

development projects. They have a strong influence on the quality of the developed 

product and also on the effort put in development, which is as a result of their pivotal 

role in the software development process. Besides, they are normally the central, and 

often only, communication artefact utilized between customers and contractors. 

Therefore, the quality of SRS is of utmost importance to the achievement of a 

successful software development project. The specification process still includes 

significant human-centered efforts, consisting of inconsistency-prone and notably error. 

Varying phases of the process, may contain error; from the requirements specification 

phase, to the design, actual specification, and the implementation of the software 

models.  

When inconsistencies or specification errors are detected, current tools provide partial 

information about the rectification to be applied on the system being developed (Borges, 

Garcez, Lamb, & Nuseibeh, 2011). The most important techniques that are used for the 

specify of requirements that have been analysed in the previous phase are shown in 

Table 2.2. 



 

19 
 

Table 2.2  

Specification techniques (Fricker et al., 2015). 

Technique Description 

 

Natural 

language 

Specifying requirement or needs with words/sentences to obtain 

flexibility, specification, and understandability. The use of 

language templates can be applied to enhance precision. 

 

Structured 

Analaysis  

Diagrams 

Specifying functions, structure, processes, and behavior with one 

of the graphical notations projected by structured analysis to make 

structure visible and obtain precision. 

Tables Specifying concepts to comprehend the rules or terminology for 

how conditions influence the behavior of a system. 

 

UML 

Diagrams 

Specifying functions, processes, scenarios, relations, rules, 

behavior, and deployment with graphical notations from the  

Unified Modeling Language to show structure and advance 

precision. 

User 

screens 

Specifying the user interface with paper or tool-based mock-ups  

increase the tangible and the authenticity of the planned system. 

 

According to Fatwanto (2013), it is common for requirements are specified by using 

natural language (NL), that to be easy to understanding between stakeholders or 

potential users and developers  due to natural language flexibility and simplicity, and 

must both parties have to share their internal view regarding the system under 

consideration in order to obtain a common understanding. 



 

20 
 

Furthermore, Sharma, Bhatia and Biswas (2014) confirmed that, NL is the most popular 

and the most desired forms of requirements expression for an envisioned software 

system. NL is a suitable choice for requirement specification documenting, because it is 

comprehensible by all the stakeholders participating in software development, and is 

also quite expressive. The final phase of the development requirements will be 

discussed in the next section. 

2.2.1.4  Requirements Validation Phase 

Requirement Validation Phase is a method of determining if the specification is a 

precise representation of the customers' need. Validation responds to the question, "Am 

I building the right product?" (Laplante, 2013). According to Raja (2009), the process of 

requirement validation confirms that, the requirements in SRS are complete and 

consistent. The process attempts to detect the errors in SRS, prior to being used as a 

foundation for further system development. Furthermore, Yousuf, Zaman and Ikram 

(2008) explained that the aim of requirements validation is not to ascertain the 

correctness of the requirement, but to detect and correct all errors (inconsistencies, 

incorrect information, and omissions). 

Furthermore, Felderer and Beer (2013) stated that, great significance can be achieved 

from the quality of requirements for the software development lifecycle, since in affects 

every step in software development. Validation techniques are practiced to assure 

completeness of requirements and their quality features such as traceability or 

verifiability and comprehensibility. These are the main challenges in software 

development lifecycle. Requirements validation approached are one of the most 

efficient approaches for guaranteeing a successful software development. There are 

many techniques that used to verify the requirements to ensure there are no errors, 

ambiguities and so on. The most commonly used techniques are prototypes, animation, 



 

21 
 

inspection, review, natural language paraphrasing and expert system approaches 

(Yousuf et al., 2008). The second major phase of requirements engineering is 

requirements management that will be discussed in the next section. 

2.2.2  Requirements Management 

Requirements Management represent a description what should be done by the system 

(Ferreira & da Silva, 2008). At the beginning of any software development process, 

information will be collected depending on the customer's need or user, and this 

information is analysed to extract requirements. According to Alghazzawi, Siddiqui, 

Bokhari and Hamatta (2014), the whole requirement being analysed should be managed 

appropriately for a successful project to be achieved.  

The management of multiple thousands of requirements, can be a tough task that 

requires more than just a spreadsheet. Requirement management executes a vital role in 

the achievement of a successful software project, as a business depends very much on 

software for efficient conduct and mission-critical functions. 

Requirements management includes those tasks that documents and maintain the 

progressing requirements, associated context, and historical information, from the 

requirements engineering activities. Furthermore, RM also establishes techniques for 

defining, controlling, and publishing baseline requirements used by all levels of the 

system-of-interest (Stallinger, Neumann, Schossleitner, & Zeilinger, 2011).  

The practice of managing requirement is a challenging task, especially when the amount 

of requirements are in thousands and the changes are many. RM tools cannot increase 

the quality of requirement gathering. Rather, it eases practice implementation  and  

increases their efficiencies for project managers and business analysts. Over the past 

few decades, a number of RM tools have been developed and made available in the 



 

22 
 

market for varying projects. The tools, manage the relationship between business 

requirement, functional requirement and technical specification. Many tools are used in 

requirements management, such as Rational RequisitePro, CaliberRM, and DOORS 

(Alghazzawi et al., 2014). Tools that are used to manage  requirements is many and 

varied. Table 2.3 shows the most important tools used in this area. 

Table 2.3   

Requirements management tools (Shahid, Ibrahim, & Mahrin, 2011). 

Tool Description 

DOORS Doors are a RM tool designed by Telelogic. After that IBM 

acquired in 2008. It provides easy and flexible method to 

generate and traverse the associations between several 

requirements. 

Rational 

RequisitePro 

It is also a tool for managing requirements produced by IBM. It 

supports manage of requirements by project teams to attain better 

traceability, write decent use cases, decrease project redo, and 

promote collaboration as well as quality. 

XTie-RT It is a potent RM and analysis tool used in the management of 

critical programs. 

CaliberRM It is a tool designed by Borland for RM. It captures and manages 

business, functional, technical, and operational requirements. 

TopTeam 

Analyst 

It is a thorough solution for gathering and management of 

requirements. It supports use cases and test cases to preserve the 

SRS process. 



 

23 
 

ReMa This is an acronym for requirements manager. It is a systematic 

and significant tool, that assists project managers in tracking 

requirements, as well as managing them through the entire 

software life cycle. 

 

There are many RM tools which are obtainable in literatures and on the Internet, 

commercially or the laboratory version. Each tool is designed for a particular purpose 

and within a particular field. For example, Shahid et al., (2011) explains that, DOORS 

helps to decrease costs, increase efficiency, and improve quality by enabling the 

optimization of requirements communication, collaboration and verification. Shahid et 

al., (2011) also explains that CaliberRM allows stakeholders across the organization to 

cooperate effectively, promoting timely delivery of project, and within budget and 

specification as well. The first part of the requirements management that will be 

discussed in the next section is requirements change management. 

2.2.2.1  Requirements Change Management 

Recently, software systems get more and more complex. Following the evolution of the 

business needs, the software system requirements change constantly and new 

requirements arise frequently. The addition of the new and/ or reformed requirements 

with the existing ones, comes with the need for adapting the architecture and source 

code(s) of the software system and to satisfy the new sets of requirements. The 

incorporation of the new/modified requirements and the adaptations to the software 

system, is known as change management. The complexity and size of the software 

systems make change management time consuming and costly (Goknil, Kurtev, van den 

Berg, & Spijkerman, 2014).  



 

24 
 

According to Khan, Khalid and ul Haq (2013), changes to requirements are very critical 

steps in any of the software development process. Requirements change management 

has been an open issue in the literature for several decades and numerous requirements 

change methods have been suggested, but none completely copes with it.  

Requirements changing has been considered a challenging area of research or study. It 

has been noted that requirements changes during various phases of the SDLC plays an 

important role in the success or failure of any project. As a matter of fact, over half of 

the system‟s requirements will eventually be modified before the actual system 

deployment. Many reasons can be related to requirement change such as user 

preferences, ever changing environment, and change in technology. These causes can 

arise during any phase of SDLC which in turn, leads to changes in the system‟s overall 

requirements (Bano, Imtiaz, Ikram, Niazi, & Usman, 2012; Manapian & Prompoon, 

2014).  

Kang, Kim, Kang and Eom (2014) explained that traceability allows the developer to 

keep track of changes or modifications in software development projects. In line with 

this, Kirova et al., (2008) pointed out that requirements changes are unavoidable during 

the product development. Thus, RT practices can be used in order to track the 

requirements changes. the next section will discuss in details about requirement 

traceability. 

2.3  Requirements Traceability 

Most of the disciplines in requirements management focus on traceability, which is the 

ability to trace requirements as they are converted from customer needs to design 

specifications, via the layers of design. Efficient tracing relies on requirements being 

expressed as singular, concise, and unambiguous statements suitable to their level of 



 

25 
 

abstraction (Dick, 2012). According to Kang et al., (2014), traceability is an association 

between the product features, and the set of product requirements. It is denoted as a set 

of mappings where each mapping possesses a characteristic of the source element, and 

also a set of requirements for the target element.  

The importance of traceability has been widely recognized, and it is a practice 

prescribed in many development standards (Nair, De La Vara, & Sen, 2013). In the 

same vein, RT is very important in the RM, where Zhou (2014) pointed out that, RT is 

the heart of the requirements management. Lago, Muccini and van Vliet (2009) stated, 

RT (or traceability for short) is a significant mechanism for the managing and auditing 

of the entire software development process. Furthermore, Kong and Yuan (2009) stated, 

RT is considered to be the key factor of a highly effective software engineering 

management, and an improved quality of software system. Also, Ramesh and Jarke 

(2001) stated that, traceability provides visibility into the required aspects of software 

and systems development process. This gives a better comprehension of the software 

system under development.  

In the same context, Kirova et al., (2008) explained that the direct benefits of 

traceability to the product organization as well as the end customers, are an improved 

product quality, controlled requirements, effective response to changes, and product 

churn, which is as a result of minimizing the product implementation interval. Many 

agencies, customers, standards, and quality frameworks, need requirements traceability, 

while a few define how the implementation of the traceability. This leads to an 

extensive range of variability in the benefits and implementations of traceability. The 

benefits can be abundant when a product organization utilizes a comprehensive 

requirements traceability process which is tailored to its needs and characteristics.  



 

26 
 

Furthermore, Gotel and Finkelstein (1994) discovered that, traceability failures 

primarily happen due to a breakdown of communication among developers, inadequate 

scheduling time, shortage of support tools, and an opinion from the product team that 

the effort needed in maintaining traceability was excessive. The cost of implementation 

against the benefit of effective traceability can be enhanced by choosing an appropriate 

implementation strategy for the product team. In addition, Nair et al., (2013) found, a 

few studies on traceability practices compared with the importance of traceability in 

software development. In this study, RT practices refers to RT techniques and tools 

used to track requirements. The next sub-sections will discuss further of RT techniques 

and tools. 

2.3.1  Requirement Traceability Techniques 

Traceability relates the requirements of a system, and system comprehension efforts are 

minimized with the help of its source code. It is also necessary to ensure that a system‟s 

source code always suits its requirements and that only the identified requirements have 

been implemented by the developers. Yet, in the course of software evolution and 

maintenance, as developers remove, add, or modify features in general, requirement 

traceability links become outdated because developers do not or cannot put in an effort 

to update them. Hence, recovering these traceability links afterwards, is a daunting and 

expensive task for developers. Therefore, techniques have been developed for the 

purpose of recovering these links semi-automatically or automatically (Ali, Gueneuc, & 

Antoniol, 2013). Table 2.4 shows a set of the techniques used in requirements 

traceability. 

 

 



 

27 
 

Table 2.4   

Requirement traceability techniques 

Technique Description 

Information Retrieval 

(IR) 

IR is a technique used to create traceability link between 

requirements documents and source code, and developers 

can be automatically advised which source code documents 

to edit to address (Thomas, Adams, Hassan, & Blostein, 

2014). 

Event-based (EB) EB is a technique used for updating and preserving 

traceability relationships. When change occurs in 

requirements, the dependent artifacts are notified and 

subsequently proper action can be taken (Rochimah, Wan 

Kadir, & Abdullah, 2007). 

Rule-based (RB) Rule- based is one of the wide-spread techniques for 

maintenance of post-requirements traceability relations. RB 

is a technique which anchors the automatic maintenance of 

traceability links between analysis, requirements, and design 

models of software systems. This technique is based on 

rules which permit recognition of development tasks within 

a flow of elementary modification events. These rules make 

a directive available for updating traceability relations or 

links in predefined manners (Mäder, Gotel, & Philippow, 

2008). 

Value-based (VB) This approach offers technical support to carry out 



 

28 
 

requirements tracing in addition to taking cost and value 

considerations into account. As a result, it delivers an 

economic model and a technical model for requirement 

tracing based on certain criteria (Heindl & Biffl, 2005). 

Scenario-based (SB) SB technique utilizes a hypothesized trace information 

which must be entered manually. Then, it create trace links 

using runtime information. Test case scenarios are 

implemented on a running system and implementation 

information is acquired with the help of a monitoring tool. 

This information is merged with the hypothesized trace 

information, resulting in a footprint graph. The relationship 

between artifacts in the system is displayed on the graph. 

The traceability links are automatically created, nonetheless, 

the hypothesized trace information must be entered 

manually (Rochimah et al., 2007). 

 

Table 2.4 illustrates several techniques used to trace RT during software development. 

There is a difference in the use of traceability techniques in terms of the type of 

requirements that will be tracked. Some of techniques are used to follow the functional 

requirements, while there are techniques used to follow the non-functional 

requirements, and there are techniques for the purpose of tracing both types as well. 

2.3.2  Requirement Traceability Tools 

Common requirements for the management of tools address traceability problems by 

offering support links between levels of requirements and permitting the storage of 

pointers to other artefacts that are related to requirements (normally as attributes to the 



 

29 
 

requirements). In a single-vendor environment, incorporation with other tools is 

sometimes available, adding extra flexibility to the whole traceability solution. In a 

mixed environment, components for integration are often developed for the importation 

of traceability information into the requirements management tool. This is a cost-

effective and viable solution for organizations and projects where access to the 

requirements management tools, is always available to every participant in the 

development lifespan, and where forward traceability and navigation are more 

significant, and the constrictions and predefined traceability semantics that come along 

with the tools, are appropriate for the projects‟ needs. In addition, if the tools are open 

and accessible, they can function as the basis for the development of an advanced and 

even more flexible traceability environments most especially for mid-size organizations 

and projects (Kirova et al., 2008; Ramesh et al., 1997). Table 2.5 illustrate some of the 

tools used in the trace of requirements. 

 

Table 2.5  

Requirements traceability tools (Mäder et al., 2008; Shahid et al., 2011) 

Tool Description 

DesignTrack DesignTrack is a prototype tool for RT support. It offers 

traceability between architectural design and requirements. 

RETRO Requirements tracing on-target (RETRO) is an tool for RT that 

facilitates the  automated generation of RT matrices. It uses an 

information retrieval (IR) approach and possesses a GUI front-

end. 

DevComplete DevComplete is an RT tool designed by SmartBear software. It 



 

30 
 

offers full or complete traceability among project tasks, 

requirements tracking, and defects to improve team agility. 

traceMAINTAINER This is a tool for RT which preserves post-requirements 

traceability amongst the features of structural UML models. 

 

Some of these tools are designed for the purpose of traceability, whereas other tools 

created to manage of requirements but also support tracing of requirements. For 

example, Shahid et al., (2011) stated that, Design Track is a tool used in RT to provide a 

navigation environment for complex or multiplex design information spaces through the 

supporting of requirement traceability. In addition, it assesses the drawbacks, power, 

and applicability of the requirement traceability enabled computer-aided design.  

2.3.3 Factors in Selection of Requirement Traceability Practices 

Literatures have identified the merits of requirement traceability in requirements 

management. Zhou (2014) stated that, requirement traceability is considered the heart of 

the requirement management process. RT does not only offer a significant support for 

system developers through the entire SDLC, it is also an essential requirement for the 

certification process. Requirements tracing can be of benefit in executing change impact 

analysis, criticality analysis, risk analysis, and regression testing; though, it is not 

limited to any of these (Zhou, 2014). Furthermore, traceability assists software 

engineers in the effective development and management of software systems (Hassnain, 

2015). Lack of traceability results in budget overruns and project failures, which leads 

to poor software maintenance.   

Practitioners face numerous challenges when implementing effective traceability in 

their projects. Zhou (2014) pointed out that the issues consist of technical challenges 



 

31 
 

associated with physically creating, maintaining, recovering, and utilizing thousands of 

relatively vulnerable and interrelated traceability links. Again, Cleland-Huang, Chang 

and Christensen (2003) explained in their study that the various challenges faced while 

implementing traceability are the cost and time for tracing requirements, insufficient 

resources, lack of RT practices training, and lack of coordination between people which 

were responsible for different traceable artifacts. 

The main challenges that facing traceability are financial issues and, the lack of 

knowledge or prevalence traceability practices. Jaber, Sharif and Liu (2013) reported 

that additional training on the use of traceability tools has helped in overcoming some 

challenges in software development such as time and effort, but this of course, requires 

much funding. In the same context, Winkler and Pilgrim (2010) elaborated that the core 

challenge in RT is the economics behind implementing traceability practices. If this 

factor is overlooked, it is obvious that the best traceability could be attained by taking 

record of any trace to the highest extent possible. 

Furthermore, there is insufficient knowledge or the prevalence of practices that are 

implemented in trace requirements. Despite the availability of numerous techniques and 

tools that support the tracing of requirement, there is still insufficient empirical studies 

showing if and how the practice is put in actualization in the development process ( 

Blaauboer, Sikkel, & Aydin, 2007). More so, a greater number of reports are being 

published by practitioners, covering wider experience or information on traceability for 

use by the wider traceability community. Though, the problem of confidentiality which 

restricts progress still remains. When organizations perform traceability methods and 

techniques which does not operate as intended, the results are not always published, 

posing a challenge for the traceability community to learn what does and does not work 

or operate with time (Gotel et al., 2012). The study by Cleland-Huang et al., (2011) 



 

32 
 

shows that a primary limitation to benchmarking and standardization in the traceability 

community, is the issue of obtaining non-trivial datasets. Although industries 

occasionally make data available or grant limited data access to individual research 

groups, sharing is always done under a non-disclosure agreement. Consequently, the 

practitioners have no knowledge of the techniques and tools used in implementing 

effective traceability in development projects. Thus, more research related to trace 

requirements in the domain of software industry is required to ensure increase 

percentage of the project's success and increase product quality as well.  

There are a range of factors that can help in the selection of RT practices such as: 

identify practices that operate automated, semi-automatic and manual, identify type of 

requirements that are tracked by these practices, as well as identify the processes taking 

place on traceability links like creation, maintenance and updating these links, and size 

of projects. Ali, Sharafi, Guéhéneuc, and Antoniol (2015) stated, the process of create 

traceability links is a laborious task and take more time and effort by developers during 

development project. In addition, Blaauboer (2006) pointed out, most of the changes in 

requirements occur during software maintenance process, especially when using an 

iterative development methodology. Therefore, identifying RT practices used to create, 

maintain and update traceability links in addition to the method of work these practices 

can help in the selection of practice required by the software companies. 

According to Cleland-Huang et al., (2011), complex systems are most in need of 

traceability to ensure the success of the project by tracing requirements and artifacts, 

especially large systems. Moreover, Requirement traceability is an important and 

critical activity, especially for medium and large software projects (Cleland-Huang & 

Schmelzer, 2003). It is very important to trace the functional and non-functional 

requirements, to ensure that the project meets all the views of the stakeholders. 



 

33 
 

Therefore, Identify practices that are used to trace the functional and non-functional 

requirements as well as the size of the project, it will help to choose the appropriate 

practices. In the following section, the related studies about requirements traceability 

practice will be discussed. 

2.3.4  Related Works 

During previous studies of RT practices, authors have pointed out that the practice is a 

tool used to trace requirements and used to determine if the system code cover all 

system requirements. Whereas, others said that practice is a technique used to ensure 

that all the requirements that have been extracted, analyzed, and verified that have been 

included in the software and there is no ambiguity or loss of those requirements (Katta 

& Stålhane, 2014; Winkler & Pilgrim, 2010). 

In this study, requirements traceability practice refer tools and techniques that used for 

tracing requirement during software development processes. Gotel and Finkelstein 

(1994) describe the results of empirical studies into traceability, that was conducted in 

1992 and lasted throughout one year. About one hundred software development 

practitioners with approximately 30 years of experience holding diverse position, in a 

large organization, were involved in the study. Five focus group sessions were held and 

attended by thirty-seven (37) practitioners for the consolidation of data and for 

independent observation of the process of gathering requirements. Also, a 

comprehensive questionnaire was issued, and development workshops were held. They 

found multiple perspectives on the expectations from traceability, problems 

encountered, and conflicts evident between parties in charge of producing traceability 

and the users of traceability. Furthermore, the authors found that the pre-requirements 

traceability (pre-requirement traceability refers to the source and origin  of a 

requirements, while post-requirement traceability refers to those aspects of a 



 

34 
 

requirement's life that result from inclusion in the requirement specification.) need more 

attention, so the need to merge a wider set of data in traceability, such as the people 

involved in the project and source material. 

Research by Ramesh and Jarke (2001) was on a large practitioner study of traceability, 

which took over three years for data collection in the 1990‟s. Fifty-eight (58) students of 

masters in information technology were included in a pilot study to produce an opening 

traceability meta-model and document the scheme and achievements of the work. Thirty 

(30) focus group discussions consisting of five (5) people (each from twenty six 

companies) made up the main study. Their main emphasis was the kind of traceability 

link that was utilized in ideal and current practices. The results indicated that 

traceability links must be strong and clear to avoid semantic misinterpretation. As a 

result, the authors proposed for practitioners a traceability reference models and meta-

model to assist them in traceability. The use of a traceability information model as a 

necessary condition to employ traceability is advocated. 

According to Ahmad and Ghazali (2007) study, their study was conducted on fifteen 

practitioners and three IT companies. The practitioners, who develop small projects 

with practical experience of 6 – 10 years, were interviewed. Also, the project 

documentation of the companies was analysed. The result of their findings is that 

subjects viewed pre-requirements traceability as being more useful than post-

requirements traceability. The researchers failed to expose the importance or advantages 

of traceability to their topics in details.  

Mäder and Egyed (2012) performed a controlled experiment consisting of fifty-two (52) 

subjects conducting three hundred and fifteen actual maintenance jobs on two third (2/3) 

party development projects. Half of them with and the other half without traceability. 

Their discovery was that the performance of those with traceability was twenty one 



 

35 
 

percent (21%) quicker with tasks and generated sixty percent (60%) more accurate 

solutions. The result of traceability corresponds to the type of task performed. 

Particularly, the gain in correctness differed strongly between tasks. Furthermore, 

indications from the data shows that the gain of correctness via traceability is minimized 

after performance of the first activity or task. Subjects that did not use traceability 

produce more accurate results next to the main task, while subjects that utilized 

traceability performed excellently right from the start. The researchers target was an 

initial cost-benefit estimation, and setting the time reductions measured by using 

traceability in as related with the initial costs of setting-up traceability for the evaluated 

systems.  

The study by Bouillon, Mäder and Philippow (2013) described the design of a survey to 

gather information on the use of requirements traceability by practitioners in 

development projects. The researchers collected 29 constantly cited usage scenarios of 

traceability based on a literature study. The study reported that 56 participants that 

applied practical requirements traceability used 42% of the 29 scenarios constantly. The 

operations of every scenario were analysed and the result was that requirements 

management and engineering, compliance demonstration, and project management are 

the domains in which traceability is mostly applied. The study also discovered that the 

use of traceability during design, implementation, evolution, and software maintenance 

is not common. In a nutshell, practitioners account their challenges with bad cost-

benefit ratio, using their traceability. The solution to this difficulty is by using additional 

integrated tool support and method. Table 2.5 show in briefly studies that are related on 

RT in practices. 



 

36 
 

Table 2.6   

Summaries the prior studies related to RT practices 

No Authors Year Finding Limitation 

1 Gotel and Finkelstein 1994 Multiple perspectives were on the expectations from traceability, 

problems encountered, and conflicts evident between parties in 

charge of establishing traceability and those using it. 

There was no report to their subjects on the 

actual benefits of traceability. 

2 Ramesh and Jarke 2001 An agreement on a traceability meta-model, and also on 

establishing reference models for other practitioners‟ use. 

There was no exposure or documentation 

of the genuine benefits of traceability to 

the subjects. 

3 Ahmad and Ghazali 2007 The result of the findings was that subjects consider pre-

requirements traceability to be more useful than post-

requirements traceability. 

The researchers did not examine the 

benefits of traceability to their subjects in 

full detail. 

4 Mäder and Egyed 2012 Their finding was that the performance of task on development 

projects with traceability was 21% quicker with task and 

generated 60% more accurate results or solutions. 

The  costs of using with and without  

traceability is not mentioned. 

5 Bouillon, Mäder and 

Philippow   

2013 Usage of Scenarios for RT in practice and provides insights on 

practitioner‟s traceability practices. 

The researcher did not refer to some of the 

tools and methods that can support 

traceability. 



 

37 
 

Indeed, this study addressed the subject of traceability of several aspects. Firstly, the 

study reviewed a range of traceability practices in more details, rather than focusing on 

a specific technique or tool. Secondly, identified the factors that enable software 

companies to select a practice that fit with their work, and this is not found in previous 

studies. Thirdly, provided empirical evidence on the use of a set of tools and techniques 

in traceability software companies, where there is a lack in this area. Finally, to find out 

the challenges facing traceability and confirm the results of empirical evidence, the 

researcher conducted a series of interviews with industrial experts in this domain.  

2.4  Summary of Chapter 

In this chapter, the explanations and details on requirements traceability are elaborated 

in particular, and requirements engineering in general. It also discussed the activities of 

requirements engineering, some of the techniques used for these activities and the 

importance of each activity in software development processes. In addition, the 

importance of requirements traceability to improve software quality, tools  and 

techniques that used in RT, details on the challenges that facing of traceability, and prior 

studies related to RT practices. 

 

 

 

 

 

 

 

 



 

38 
 

CHAPTER THREE 

RESEARCH METHODOLOGY 

 

3.1  Introduction  

Chapter three presents the steps and procedures used in achieving the objectives of this 

study. It defines the research methods that were used and how it helped in answering the 

posed research questions as stated in Chapter one. 

3.2  Research Procedure   

Initially, to understand the fact that studies on the specific topic does not exist in 

literatures, or to establish the fact that there is scarcity of research on this topic, two 

methods were used: appraising available primary studies and conducting a systematic 

literature review SLR (Khalid Khan, Kunz, Kleijnen, & Antes, 2011). Therefore, to 

attain the aims of this study, three approaches were adopted; systematic literature 

review, quantitative approach and qualitative approach. 

The first is the use of a systematic review approach in the study to highlight the 

practices used within the software companies and extraction of the factors that enable 

companies to select traceability practices that are compatible with their work (in 

achieving the first objective). In addition, as mentioned in Section 1.3, there is scarcity 

of the literature that classified or gathered the traceability practices that may be used 

within software companies. This phase is deemed essential in this study due to fact that 

most of the companies in Malaysia are neglecting the traceability (Solemon et al., 

2010). Thus, the systematic review concentrated on most of the practices or tools (also 

called “techniques”) harness for traceability within various companies in the previous 

empirical studies.  



 

39 
 

The second is, to determine the current practices that may be harnessed within the 

software companies in Northern Malaysia (second objective, see Section 1.5), the 

quantitative approach and more specifically, the online questionnaires were distributed 

to the employees of these companies. The selection of these instruments was supported 

by the study by Noor (2011), where an assertion was made that the most common 

method needed for quantitative research is a questionnaire survey. Afterwards, collected 

data were analyzed using Statistical Package for Social Science (SPSS) version 20.0. 

Indeed, these approaches are considered the practices suited to meet the objectives of 

this study.  

The third is, to clarify and discovered the reasons which prevent software companies 

from implement traceability in projects development processes. The qualitative approach  

and more specifically, data were collected through interviews with developers who work 

at the software companies. Interview  is one of the most widely used and powerful tools of 

qualitative researchers (Willig & Stainton-Rogers, 2007) In order to get a deeper 

understanding. Figure 3.1 summarizes the significant procedures followed to attain the 

aims of this study. 

  

 

 

 

 

 

 



 

40 
 

 

Figure 3.1.  Proposed Research Framework 

In general, this chapter starts by discussing the systematic literature review in more 

details and afterwards, quantitative approach, population and study sample as data 

collection and discussed. Lastly, qualitative approach, and method to collect and 

analysis of data are further explained. 



 

41 
 

3.3  Systematic Literature Review (SLR) 

Systematic reviews are deemed as a method of making sense of large bodies of 

information, and a means of contributing to the answers to questions about what works 

and what does not, and also to many types of questions (Petticrew & Roberts, 2008). 

According to many of the researchers who asserted that, the systematic literature review 

is a secondary study method that has gotten much attention lately in many disciplines, 

such as in the studies by (Dybä, Kitchenham, & Jorgensen, 2005; Hannay, Sjøberg, & 

Dybå, 2007; B. A. Kitchenham, Dyba, & Jorgensen, 2004). In addition, O‟Connor, 

Anderson, Goodell and Sargeant (2014) stated that, systematic reviews should always 

have a protocol. Thus, to conduct the systematic review, the researcher in this study 

adopted a specific protocol that was carried out based on the steps defined by 

Kitchenham and Charters (2007). Figure 3.2 depict the major steps of systematic review 

that was adopted to achieve the first objective of this study “To identify RT practices 

within software companies and factors that help these companies to select appropriate 

practices using systematic literature review”. 

 

Figure 3.2.  Systematic Review Guideline Process (Kitchenham & Charters, 2007) 



 

42 
 

3.3.1  Formulating the Research Question 

Formulating the research questions which will be addressed by a systematic review is 

the first step in the review process, as reported by Kitchenham and Charters (2007). 

Hence, in this study, to enquire the traceability practices that have been used within 

software companies in general and factors of select these practices, the researcher 

formulated the following research question as mentioned in Section 1.4. 

What are the requirement traceability practices that have been used within 

software companies and factors that help these companies to select 

appropriate practices? 

In fact, systematic reviews aim to answer specific questions, rather than present general 

summaries of the literature on a topic of interest (Gough, Oliver, & Thomas, 2012). 

Thus, the research question above was formulated based on the problem statement and 

the PICO attributes (population, intervention, comparison, outcomes). However, since 

the focus of this systematic review is not to compare interventions (practices), the 

comparison attribute was not utilized and hence only the population, intervention and 

outcome (PIO) attributes of the research question were highlighted in this study. The 

study did not consider the comparison applied by many researchers such as Azhar, 

Mendes and Riddle (2012). The population of this study involves the software 

companies in general (public and private) which agrees with the study by Kitchenham 

and Charters (2007). Their study pointed out that in software engineering, the 

populations might be any of the following: telecommunications companies or small IT 

companies. 

With regards to intervention, it is considered as the practices of the traceability that is 

harnessed within software companies. The characteristics used in describing 



 

43 
 

Intervention, were adopted from Kitchenham and Charters (2007) who defined 

intervention as “the software methodology/tool/technique/procedure that addresses a 

specific issue” (p.11). Finally, the outcome was discussed to shed light on the RT 

practices. 

3.3.2  Constructing the Search 

For the purpose of performing the search and selection of research studies related to this 

area, this study defined the tactic according to the date, digital libraries, and keyword to 

answer the research question aforementioned in the previous step. The following 

explains the components of this phase from the systematic review procedures:  

i. Search Process. In this Systematic review, the researcher concentrated on 

specific digital libraries available to students in University Utara Malaysia, 

which are: 

a) ACM Digital Library (portal.acm.org/dl.cfm); 

b) Elsevier Science Direct (www.sciencedirect.com); 

c) IEEE Electronic Library (ieeexplore.ieee.org); 

d) SpringerLink (www.springerlink.com);  

e) In addition, the researcher also searched in the most popular search 

engine used for academic purposes known as Google scholar search 

engine (http://scholar.google.com.my). 

ii. Terminology: For the purpose of performing the automatic search of the selected 

digital libraries above, the researcher concentrated on the keywords (search 

terms) connected to this research to answer the research questions and the 

problem statement. The keywords in this study defined the following basic 

search strings: 



 

44 
 

a) Requirement management practices OR requirement management tools 

OR requirement management technique; 

b) Requirement development practices OR requirement development tools 

OR requirement development technique; 

c) Requirement engineering practices OR requirement engineering tools 

OR requirement engineering technique; 

d) Requirement traceability practices OR requirement traceability tools 

OR requirement traceability technique; 

e) Software companies OR Software Company OR IT companies OR IT 

Company. 

f) Best practice of requirement traceability. 

g) Factors of select the RT practices OR Factors of select traceability 

techniques Or Factors of select traceability tools 

3.3.3  Study Selection 

Various criteria were utilized in this systematic review to establish which literature will 

be inclusion or exclusion. The points listed below illustrate exclusion criteria:  

i. Studies that are irrelevant to the research questions; 

ii. Studies outside the indicated time period, the time span from 2008 to 2015 for 

systematic review of this study is considered a complement study for the prior 

literature. Where the latest study was in 2007, there are important new tools for 

traceability. These new techniques would enhance the performance and products 

for companies or organizations. Hence, highlighting new tools and techniques 

are crucial for this study. This systematic review specifically focused on the 

practices (referred to as techniques or tools in some studies, practice will be used 

as a term throughout the research). In fact, the main question for the systematic 



 

45 
 

review for this study is to identify the practices of RT, while previous studies 

mainly concentrated on the challenges; 

iii. Studies that do not determine or specify the practices, tools, or techniques; 

iv. Studies lacking empirical basis for their findings; 

v. Duplicate studies from varying sources; and 

vi. Studies not reported in English. 

3.3.4  Data Extraction 

The objective of this step is to create data extraction forms to accurately document the 

information obtained by the researcher from the primary studies. Data extraction also 

involves presenting a detailed table which describes all  the study that is reviewed in 

detail (not every study that was located in the review, only studies meeting all the 

inclusion criteria that will be highlight in previous step) (Petticrew & Roberts, 2008). In 

most cases, data extraction define a set of numerical values that should be extracted for 

each study. However, numerical data are important for any attempt to summarise the 

results of a set of primary. This study strived to adopt data extraction strategy from 

Salvador, Nakasone and Pow-Sang (2014). In brief, the content of the data extraction 

form included the following information: (a) Study title, (b) Author (s), (c) type of 

publication, (d) extraction date, and (2) database in which the study was found. 

3.3.5  Synthesis of the Extracted Data 

The last step from the systematic reviews strategies is called “Synthesis”. This step 

involves collating and summarizing the results of the included primary studies. 

Generally, the systematic review was harnessed to support the problem statement, due 

to the lack of discussions on traceability in specific, and also to understand the current 

practices that has been used within the companies whether in public or private sectors. 



 

46 
 

3.4  Quantitative Approach 

The literature has identified the quantitative approach as the most suitable approach for 

investigating the individual opinions and the motives behind the actions, behavior, and 

attitudes of respondents. According to the study by Smith (2012), the quantitative 

research approach can validate the conclusion of the study by verifying the established 

concept and by proving or disproving a proposed concept. In the same context, Kumar 

(2011) and Atieno (2009) also identified the quantitative research approach as the best 

scientific research method given its precise measurements via deductive approach and 

its employment of measurable data collection tools. This study employed this approach 

as a method of gathering the data to attain the second research question: 

What are the current practices of requirement traceability that applied within 

software companies of Malaysia? 

3.4.1  Populations and Sampling 

Muijs (2010) defines the population as the group of people we want to generalize to. In 

the same vein, Balvanes and Caputi (2001) stated that populations must be accessible 

and quantifiable and related to the purpose of the research. This study, as referred in the 

problem statement section, concentrates on the requirement traceability practices, 

especially the software companies in the northern region of Malaysia. Thus, population 

is defined according to the objectives of the study.   

With regards to sample, there is in general no correct sample in the absolute sense of the 

matter. Some researchers suggest that larger samples are always preferable (Charreire & 

Durieux, 2001). Others, however, argue that a large sample is no guarantee of accuracy 

(Balvanes & Caputi, 2001). This is also asserted by the study by Noor (2011), where it 

is stated that:  



 

47 
 

“There are no strict rules to follow [mean for sampling], and the 

researcher must rely on logic and judgment” (p.177) 

In general, this study adopted the snowball sampling method, since the number of 

software companies in the northern region of Malaysia is not fixed. Snowball sampling 

is a special non-probability method used when the desired sample characteristic is rare 

(Aartsengel & Kurtoglu, 2013). In snowball sampling, the researcher identifies one or 

more key individuals who name others that might be candidates for the specific research 

(Creswell, 2012). In this study, snowball sampling is more appropriate because it 

reduces cost dramatically. Also, it is often embraced as the only way to reach hidden 

populations, and attain more accurate and credible results as a result of the participants 

being identified by people who have the experience and knowledge. Actually, 

snowballing is considered a useful technique in sampling which has been adopted by 

many researchers in industry/company‟s studies (Bonaccorsi, Giannangeli, & Rossi, 

2006).  

Likewise, Creswell (2012) stated that when selecting participants for a study, it is 

important to determine the size that will be needed by the sample researchers. 

Therefore, the sample size for this study is determined through the rule of thumb, which 

states that the sample must include between 30 to 500 respondents (Sekaran & Bougie, 

2010). In this study, data was collected from (31) practitioners in software companies 

from different parts of the northern region of Malaysia (Please refer to Appendix C). 

3.4.2  Data collection Instrument 

Probably the most popular (quantitative) research design in the social sciences is survey 

research (Muijs, 2010). Also, Smith (2012) reported that questionnaires are better than 

most data collection instruments because of their inexpensiveness and anonymity. In 



 

48 
 

addition, according to Harfoushi et al. (2012), questionnaire is an efficient way to 

collect data in scientific researches because it is an easy, effective and inexpensive 

method. Therefore, this study used the online questionnaire based on previous studies 

and according to the results from the systematic review, to elicit the current practices 

that are used within the software companies in Malaysia.  

In this study, the questionnaire consists of three parts. The first part is about 

participant's background such as company name, position, email, age, gender, 

educational level, organization  level, sector of the software company, the number of 

years in experience, number of employees in the company, and the number of projects 

involved in. The second and third parts of the questionnaire consists of a set of 

questions on the use of tools and techniques to trace requirements respectively. 

Meanwhile, the second and third sections contains 14 questions adapted from Rochimah 

et al., (2007), Shahid et al., (2011), Winkler and Pilgrim (2010), Cleland-Huang (2005) , 

Mäder et al., (2008), and Cleland-huang et al., (2009) to collect data on the use of 

traceability practices for tracing requirements in software projects. For every question, a 

scale between 1 and 5 is created as responses with 1 = Never , 2 = Rarely , 3 = 

Sometimes , 4 = Often,  and 5 = Always, which is based on the study by (Vagias, 2006). 

Table 3.1 illustrates the questionnaire sections and its sources (Please refer to Appendix 

A). 

Table 3.1 

The sections of questionnaire and the sources of the adapted questionnaires. 

Section No. of Questions Code References 

Demographic 

Information 

 

12 

Q1 

Q2 

Q3 

Q4 

Q5 

Literature Review 



 

49 
 

Q6 

Q7 

Q8 

Q9 

Q10 

Q11 

Q12 

Requirements 

Traceability Tools 
5 

Q13 

Q14 

Q15 

Q16 

Q17 

(Cleland-Huang, 2005; 

Mäder et al., 2008; 

Muhammad Shahid et al., 

2011) 

Requirements 

Traceability 

Techniques 

9 

Q18 

Q19 

Q20 

Q21 

Q22 

Q23 

Q24 

Q25 

Q26 

(Cleland-huang et al., 2009; 

Rochimah et al., 2007; 

Winkler & von Pilgrim, 

2010) 

 

3.4.3  Data Analysis 

After data was collected from a representative sample of the population, the next step 

was to analyze this raw data to attain the objective of this study. Indeed, this study does 

not focus on variables or hypothesis, or also the relationship. It used the advanced 

statistic software to analyze the raw data. Generally, the study strived to utilize 

descriptive statistics. Descriptive statistics is particularly useful in communicating the 

results of experiments and research. Moreover, Abdalla, Bourse, De Caro and 

Pointcheval (2015) stated in their study that, descriptive statistics is the discipline of 

quantitatively describing the main features of a collection of information.  



 

50 
 

3.4.4  Validation 

With regards to validation, this study harnessed the content validation where the 

instruments were distributed to three experts (Please refer to Appendix B). Face validity 

assured that these instruments provides adequate coverage for a topic. This was 

suggested by (Noor, 2011; Sekaran & Bougie, 2010), who pointed out that expert 

opinions help to establish content validity. Their feedbacks were documented. They 

suggested just a few minor changes or corrections on terminologies, coordination of 

questions, and editorial works. Therefore, all recommendations were performed. 

3.4.5  Reliability Analysis 

Before gathering the actual data from the respondents, a pilot test was conducted for the 

data collection tools and procedures. The benefits of conducting a pilot test includes the 

identification of errors, testing how long it takes to complete, to check that the questions 

are not ambiguous, to check that the instruments are clear, and to make corrections to 

the questionnaire. Malhotra (2008) indicated that the least number of respondents that 

are appropriate for a pilot test to validate the questionnaire ranges from 15 to 30 

respondents. In the same vein,  Hill (1998) suggested 10 to 30 participants for pilots in a 

survey research. Hence, this study used 15 participants from some software companies 

and UUMIT for the pilot test. This pilot test was distributed in mid-January 2016.  

The reliability of this study was conducted after the pilot study, to ensure the 

questionnaires will function effectively (Noor, 2012; Kothari, 2009).  According to 

Sekaran and Bougie (2010), the reliability test is established by testing for both 

consistency and stability. The consistency test shows how well the items measure 

concepts together as a set. Cronbach's alpha that generates from this test is a reliability 

coefficient which indicates how well the items in a set are positively correlated to one 



 

51 
 

another. The Cronbach's alpha is computed in terms of the average inter correlations 

among the items measuring the concept. Based on Table 3.2, the result shows that the 

alpha value in this study is 0.980, which is considered as very good. 

Table 3.2   

Pilot test Cronbach’s Alpha 

Cronbach's Alpha N of Items 

.980 14 

 

Furthermore, Sekaran and Bougie (2010) stated that reliabilities less than 0.60 are 

considered to be poor, those in the 0.7 range are acceptable, and those over 0.8 are 

considered good. In addition, Coakes and Steed (2009) reported that alpha more than 7, 

is very reliable. 

3.5  Qualitative Approach 

Qualitative research explores a wider scope where modification occurs and is capable of 

capturing the complete set of factors perceived by participants as a contribution to 

outcome or change (Bauer & Gaskell, 2000). It is mostly utilized for depth than breadth 

of information (Chisaka & Vakalisa, 2000). It is a method for learning and knowing 

about varying experiences or practices from the view of the people involved. 

Additionally, Creswell (2012) identified that in qualitative research, the objective is to 

look deeper into the complex set of elements around the core phenomenon and bring 

forth the different meanings or views that participants have. Hence, qualitative research 

permits researchers to look into social phenomenon and what it means in everyday life 

(Burns & Grove, 2003; Speziale & Carpenter, 2003) as compared or related to the 

quantitative approach described in Table 3.3. 



 

52 
 

Table 3.3   

Differences between quantitative and qualitative approach  (Bauer & Gaskell, 2000) 

 Qualitative Quantitative 

Data Texts Numbers 

Analysis Interpretation Statistics 

Prototype Depth interviewing  Opinion polling 

Quality Soft Hard 

 

In addition, Richards and Morse (2012) recommend the use of the qualitative approach 

in their statement “if the purpose is to understand an area where little is known or 

where previously offered understanding appears inadequate, you need qualitative 

method that will help you see the subject anew and will offer surprises”. The purpose of 

qualitative approach is to verify and reconfirm the outcomes of survey by conducting a 

series of interviews with experts in this field. In other words, to understand the reasons 

behind less use of the RT practices among the software companies, this study utilized 

this approach as a method of gathering the data to achieve the third research question: 

How to verify the requirement traceability practices used by the software 

companies? 

3.5.1  Interview 

In this study, the gathering of data was done by interviewing developers who work at 

the software companies (these individuals have good experience in this domain) as 

suggested by some related studies (Fontana & Frey, 2005; Marshall & Rossman, 1999). 

Technically, Ackroyd (1992)  reported that “interview encounters between a researcher 

and a respondent in which an individual is asked a series of questions relevant to the 



 

53 
 

subject of the research". That is to say, a qualitative interview happens when researchers 

ask a number of participants open-ended, general questions and take their feedbacks 

into record (Creswell, 2012). This is one of the most widely used and powerful tools of 

qualitative researchers (Willig & Stainton-Rogers, 2007). Furthermore, during 

interviews, better control is assumed by the interviewer over the nature of information 

received as a result of the interviewer being able to make specific queries to bring about 

specific information (Creswell, 2012). Also, majority of the questions for interviews in 

this study have been adapted based on previous studies, and according to the results 

from the systematic literature review (e.g. Egyed, Grünbacher, Heindl, & Biffl, 2009) 

and   (Please refer to Appendix D). 

Additionally, the interview questions were designed to lead the interviewees towards a 

goal of helping the researcher to identify the answers to the research question as well as 

to confirm the results of questionnaire (The second objective). The first question is a 

general question to explore whether traceability practices applied in the software 

development projects at software companies or not. Meanwhile the remaining contains 

questions that highlight the issues or challenges faced by practitioners in applying 

traceability practices, in addition to details about the importance of traceability 

practices, as well as the participants' recommendations. After discuss the interview 

questions with the supervisor,  the questions were validated by experts in qualitative 

research (Dr. Nassir Jabir Farhan) to strengthen the structure of the questions and 

understand how to extract rich data from participants. 

1.5.2 Data Analysis 

The purpose of the interviews is to find out the reasons for the weakness of the use of 

traceability practices in software development processes by the viewpoint of those 

experiencing it. For the analysis of data, this study used the coding method to analysis 



 

54 
 

of interviews data. Coding is one of the numerous techniques in increasing knowledge 

about data  in a form of words or few words phrases which symbolically allocates a 

salient, summative, evocative, and/or essence-capturing feature for a percentage of 

visual data or language-based (Saldaña, 2015).  In general, this study was coded the 

short phrase of the interview transcripts based on the ended-open questions. In addition, 

Miles and Huberman (1994) referred that, the majority of qualitative researchers will 

code their data both during and after collection as an analytic tactic, for coding is 

analysis. This argument also mentioned by Basit (2003), who stated that, coding and 

analysis are not synonymous, though coding is a crucial aspect of analysis. However, in 

the present study the researcher used the questions as a code. This manner for coding 

the raw of the data recommended by Auerbach and Silverstein (2003), they said that " 

you <researcher> keep a copy of your research concern, theoretical framework, central 

research question. goals of the study, and other major issues on one page in front of you 

to keep you focused and allay your anxieties because the page focuses your coding 

decisions" (p.44), as well as this recommended agreed by (Saldaña, 2015). 

3.6  Summary of Chapter 

The methodology of the research is presented in this chapter. Several procedures and 

justifications are incorporated in the methodology to fulfill the objectives and to answer 

the questions of the research. The research framework is also presented in this chapter. 

To attain the objectives of this study, three approaches were adopted for this purpose; 

systematic literature reviews, quantitative and qualitative approach which are sufficient 

for gathering rich data to achieve the objectives discussed previously. 

 

 

 



 

55 
 

CHAPTER FOUR 

RESULTS OF SYSTEMATIC LITERATURE REVIEW  

 

4.1  Introduction 

This chapter presents results of systematic literature review that includes traceability 

practices used by software companies. It includes the techniques and tools used to 

support requirements traceability during software development. All results were based 

on the methodology or the steps that have been discussed in the previous chapter. 

4.2  Conducting the Review 

This section focuses on conducting the review by implementing the SLR protocol 

planned and discussed in chapter three. To generate the first pool of articles, citation 

search was done with the exclusion of additional constraints. Identification of the 

overall 209 citations have been realized in this initial step via the search strategy. 

Subsequently, each of the citations were reviewed by the researcher and a set of 

citations that could be significant by reading the abstracts, introductions, and 

conclusions, were selected. The results from this round was 95 studies. More 

specifically, after reading all 95 studies to identify practices of RT, the inclusion criteria 

(for this stage) was met by 37 of 92 studies. The details concerning the amount of 

selected studies discovered while conducting the search, are presented on Figure 4.1, 

and the complete number of selected studies is shown in Appendix D. 



 

56 
 

 

Figure 4.1. Studies Selected of Digital Libraries 

Figure 4.1 shows the studies that have been selected from the digital libraries. The total 

number of selected studies is 37 from various digital libraries. 15 studies were taken 

from Springer, while 10 and 8 studies were taken from IEEE and ACM respectively. 3 

studies were obtained from Google scholar, and only one study from ScienceDirect. 

4.3  Result Of SLR 

To understand what are the practices used to trace requirements during software 

development life cycle, SLR questions were established to identify the techniques and 

tools used in RT. The research questions were answered by examining the literature on 

RT. Based on the results from the SLR process, the following techniques were used 

with requirement traceability according to included criteria: Rule-Based (RB), Value-

Based (VB), Information Retrieval (IR), Scenario-Based (SB), Event-Based (EB), 

Hypertext-Based (HTB), ArchTrace, Model-Based (MB) and Goal-Centric (GC), as 

depicted in Figure 4.2.  



 

57 
 

 

Figure 4.2. RT Techniques for Tracing Requirements 

With regards to RT techniques, the majority of the studies were about IR technique 

which included 15 studies. 7 studies contained information about the rules-based 

technique. As for the other techniques, information pertaining to them were taken from 

studies within the range of 2 to 4 studies. In addition, the researcher found the following 

traceability tools during the review of the literature: Requirement Traceability Matrix 

(RTM), RETRO, traceMAINTAINER, DesignTrack and DevComplete, as depicted in 

Figure 4.3. 



 

58 
 

 

Figure 4.3. RT Tools for Tracing Requirements 

Figure 4.3 above shows the number of studies that contained information about 

requirements traceability tools. 6 studies included information on traceMAINTAINER 

tool. While 4 studies included information on RETRO, 3 studies contained details on 

RTM tool. Finally, only one study covered DesignTrack, and a similar result was 

obtained for DevComplete as well. 

4.3.1  Requirement Traceability Techniques 

This section explains each of the RT technique identified during the SLR. 

a) Rule-Based (RB) 

Spanoudakis et al., (2004) presented a RB technique used in extracting traceability links 

between requirement statement document, analysis object models, and use case 

documents. They used mainly two rules, i.e. inter-requirement (IREQ) and requirement-

to-object model (RTOM).  



 

59 
 

RTOM rules are used in tracing syntactically related terms (or words) in the textual part 

of requirement statement document and use case documents to an analysis object model. 

When RTOM rule matches are found, a rule specified type traceability link is created. 

The syntactic traces are described as patterns of terms having specific grammatical roles 

in a piece of text. These grammatical roles are set by probabilistic grammatical tagging 

methods. IREQ rules are utilized when tracing between use case documents and 

requirement statement documents. These traces are called derived traceability since they 

are created between parts of the use case documents and the requirement statement 

document. They will only be generated, if the parts have been traced to elements of 

analysis object models by RTOM traceability link (Ali, Guéhéneuc, & Antoniol, 2012; 

Ali, 2010). 

RB technique requires the export of all supported artifacts into the eXtensible Markup 

Language (XML) format, and the rules generate traceability relations for the exported 

state of the models (Zisman, 2012). RB traceability comprises of four stages (Ali, 

2010): 

i. The grammatical tagging of use case document and requirement statement 

document using CLAW; CLAW is a form of grammatical tagging used in 

tagging the 100-million-word British National Corpus (BNC) of which 70 

million words were tagged at the time of writing. 

ii. The conversion of use case document, requirement statement document, and 

analysis object models into XML representation. 

iii. The generation of traceability links between use case document, analysis object 

models, and requirement statement document. And, 

iv. The production of traceability relations or associations between varying parts of 

the use case documents and the requirement statement.  



 

60 
 

RB technique does not support partial generation for artifacts evolution. If change has 

been applied to a certain artifact, then traces will be re-generate by RB technique as it 

produces links for the first time (Mäder et al., 2008).  

b) Value-Based (VB) 

Heindl and Biffl (2005) proposed a VB technique for RT. This technique provides an 

economic model and a technical model for requirements tracing. It is a framework for 

accessing or measuring the worth that requirement traceability can deliver to a company 

or an organization for the purpose of supporting decisions associated to the 

implementation of requirement traceability. VB approach considers an economical and 

a technical model built on a number of criteria such as number of requirements, risk of 

requirements, value of requirements, number of artefacts, precision of traces, number of 

traces, effort of trace maintenance and identification, cost, size of artefacts, and value of 

traces (Heindl & Biffl, 2005). 

The value based approach integrates a semi-automated and a manual method in 

attaining the traceability link, and also in executing an alteration in the software 

artefacts (Ali, 2010). Again, the VB technique offers traceability analysis in addition to 

change impact analysis for supporting software evaluation. Furthermore, this technique 

can determine requirements that are very important to trace, and also requirements that 

are less valuable to trace (Egyed et al., 2009). VB consist of five processes (Ali, 2010): 

i. Requirement definition: requirement engineer or project manager analyze each 

requirement and assign a unique identifier to create a requirement list with id. 

ii. Requirement prioritization: all stakeholders asses the requirement and divide 

them on three priority levels based on effort, risk and value of each requirement. 



 

61 
 

iii. Requirement packaging: identification of requirement cluster to define and 

refine the architecture from a specific set of requirements. 

iv. Requirement linking: project team set traceability link between requirements and 

varying software artefacts. (Significant requirements are traced in detail whereas 

less significant requirements are traced with less details in order to create the 

overall traceability plan) 

v. Evaluation: project manager use traces in estimating the impact or effect of 

requirements change. 

c) Information Retrieval (IR) 

Many researchers have tried to use IR technique to establish traceability link between 

different software artefacts (Gotel & Finkelstein, 1994; Lin et al., 2006). IR technique 

concentrates on automating the creation of traceability link using comparison based on 

similarity between two (2) types of artifacts (Ali, Sharafi, Guéhéneuc, & Antoniol, 

2015). This technique is normally based on natural language text documents and 

independent of structural properties. It uses an indexing process on the collection of pre-

processed documents (corpus) (Ali, 2010). This is done in the following steps (De 

Lucia, Marcus, Oliveto, & Poshyvanyk, 2012): 

i. Extracting all the terms from corpus; 

ii. Removing stop words and stemming; 

iii. Developing a dictionary of all the terms and number of times it occurred in 

that document; 

iv. Calculating term frequency at document level; 

v. Calculating inverse document frequency to reduce the weight of most 

frequent words, at the corpus level; 



 

62 
 

vi. Developing (calculating terms frequency and calculating inverse document 

frequency) weight matrix; and  

vii. Computing similarity between document and query to retrieve a ranked list 

of matched documents. 

The user can utilize the ranking to understand the relationship between artifacts and 

even requirements in order to validate the links generated by the IR technique. This is 

achieved by reviewing each link in order to accept or reject; an activity which remains a 

manual task that cannot be automated (Ali, 2010). The most commonly used IR models 

applied to traceability are: Latent Semantic Indexing (LSI), Probabilistic Model (PM), 

and Vector Space Model (VSM) (Chen, Hosking, & Grundy, 2011). 

The efficiency of IR technique is computed using two main metrics: precision and 

recall. For a given query, recall is the percentage of actual retrieved links and precision 

is the percentage of correct links as a ratio to the total number of traces retrieved. One of 

the disadvantages of using IR is the human intervention for low precision queries 

(Bacchelli, Lanza, & Robbes, 2010). IR have been implemented on different tools, with 

RETRO as an example of such tools (Cuddeback, Dekhtyar, & Hayes, 2010; 

Pandanaboyana et al., 2013). The scope of tracing covers almost all artifacts including 

high-level and low-level requirements, design elements, manual documents, source 

code, and test cases (Zou, Settimi, & Cleland-Huang, 2010).  

d) Scenario-Based (SB) 

Egyed and Grunbacher (2002) proposed a SB approach. SB uses an assumed trace 

information that has to be entered manually. After this, it utilizes runtime information to 

generate trace links. SB has three pre-requisite in order to create traceability link 

between artefacts. Firstly, there must be an executable or simulate-able software system 



 

63 
 

which can be either partial implementation or incremental prototype. Secondly, a 

software model must be available for the system. Finally, there must be executed test 

cases or scenarios (Ali, 2010). 

Even though the traceability links are generated automatically, the hypothesized trace 

information must be entered manually (semi-automatic). Using this technique (SB), the 

creation of traceability links can only be done with an available running system (Ali, 

2010). 

SB technique can be used in validating the four types of traces; traces between model 

elements and system, traces between scenarios and system, traces between models 

element, and traces between scenarios and model elements (Ali et al., 2012). SB can 

help to minimize ambiguity in manual links by establishing dynamic verification in 

large systems. Furthermore, SB is a feasible solution for requirements modification 

management activities in addition to impact analysis of changing requirements (Ali, 

2010). 

e) Event-Based (EB) 

Cleland-Huang et al., (2002) proposed the EB approach for managing and maintaining 

traceability between requirements and UML along with test cases. EB is a semi-

automated procedure for gathering requirement traceability (RT) links for relating 

developers and code artefacts to use cases. The production of trace links were done by 

monitoring events started by a developer operating in the context of a use case, on a 

code artefact (Omoronyia, Sindre, Biffl, & Stålhane, 2011). Compulsory inputs to this 

technique include: requirements, UML artifacts, and test cases (Ali et al., 2012). 

EB technique supports two type of changes namely, functional and contextual change. 

If a quantitative change occurs in existing requirements, it is referred to as contextual 



 

64 
 

change. The contextual changes update the EB system and conduct automated re-

execution of significant performance models with the new values from the modification. 

It enables project managers to decide on whether new changes should be implemented 

or not, and also helps developers to understand change effects. Functional changes 

occur when a new requirement is added in the system. it involves the functionality and 

performance which makes them hard to predict (Ali, 2010). 

EB technique involves three main components: (a) Requirement manager, (b) Event 

server, and (c) Subscriber manager. When a change occurs in requirements (like 

refinement, replacement, abandonment, or merge), an event notification message is 

published. The event server receives event notification and forwards to every dependent 

artefacts. It is the responsibility of the subscriber manager to listen to all incoming event 

notification for a set of similarity typed artefacts on behalf of the subscribers which it 

oversees or manages the event notification sent by the event server. In certain cases, the 

managed object may be automatically updated by the event manager, while in other 

cases, the event message must be deposited or stored in an event log until manual 

intervention occurs (Ali, 2010; Mäder & Gotel, 2012). The main merit of EB is that 

when modifications are introduced into the system, they can be efficiently disseminated 

throughout the system of artefacts (Ali, 2010). 

f) Hypertext-Based (HTB) 

Maletic et al., (2003) proposed the hypertext-based for traceability between different 

artefacts. HTB is a technique used for traceability link generation using open 

hypermedia and information integration (Sherba, Anderson, & Faisal, 2003). This 

technique is semi-automated, hence, user input is necessary for different tasks 

(documents, selecting source code, selecting dimensionality subspace of LSI, and 

determine threshold value for traceability) during the HTB process (Ali et al., 2012). 



 

65 
 

Each file is treated as a document in this technique, and if the size of the files are too 

large, it fragments into parts which are roughly the size of an average document in the 

corpus (Ali, 2010). 

The HTB technique uses XML as the key tool for the representation of created links and 

models. The documents are generally categorized into two: conformance and non-

conformance. Conformance category is further divided into two types; the first type is 

causal conformance and the second is non-causal conformance. The causal relationship 

carry signified logical ordering or arrangement of documents involved, while a non-

causal conformance relationship occurs when the documents or some parts of the 

documents must conform with each other. In non-causal relations, the causality cannot 

be distinctly recognized. The non-conformance links are meant to anchor organizational 

and navigational associations that have little or no significance to the determination of 

agreements between documents (Ali, 2010). 

g) ArchTrace  

Murta, Van Der Hoek, and Werner (2006) presented the ArchTrace technique for the 

advancement of traceability connections between the architecture and implementation. 

This technique delivers tool support for versioning the relationships between a 

component-and-connector architecture and its execution as the architecture or code 

evolves with time (Murta, van der Hoek, & Werner, 2008).  

 In ArchTrace, this technique provides a policy-based infrastructural to perform 

automatic update between traceability link architectural and implementation.  

ArchTrace differentiates itself by frequently updating traceability relations or links from 

architectural elements to code elements via a policy-based extensible infrastructure 

which permits developers or a group of developers to choose a set of traceability 



 

66 
 

management policies that is suitable for their situational needs and working styles 

(Hong, Kim, & Lee, 2010).  

ArchTrace can be characterize as an immediate update which depends on two critical 

observations: The first is, rather than regenerate traceability links following the passage 

of a significant amount of time, a constant update of the links is performed in reaction to 

every modification made by a user. The second observation is that the precise update 

that will be performed is decided by a keenly identified group of policies for traceability 

management. The outcome is a technique which can be customized to varying user 

practices, taking advantage of the information encrypted in the policies concerning 

source code and architectural evolution, and also considering the addition of new 

policies (Murta et al., 2008). 

h) Model-Based (MB) 

Cleland-Huang, Hayes, and Domel (2009) proposed a MB techniques for RT. Various 

organizations spend significant effort and cost in constructing traceability matrices that 

fulfill the process improvement initiatives or regulatory requirements. Unfortunately, 

the constructed matrices are often left out of use and project stakeholders keep 

executing serious of software engineering activities like requirements satisfaction 

assessment or modification impact analysis without the advantages of the established 

traces. This is as a result of the absence of a process framework and related tools to back 

the utilization of these trace matrices in a tactical manner. 

The purpose of the MB technique is to determine artifact granularity suitable for 

traceability and to extract all candidate traceability links in order to achieve a recall rate 

of 100% (Ohashi, Kurihara, Tananaka, & Yamamoto, 2011). Model-based techniques 

are developed to assist organizations obtain complete advantage from the traces 



 

67 
 

constructed and to permit the project stakeholders to plan and produce trace schemes, 

and to execute them in a modeling environment which is in a graphical form. MB 

approach consists of a standard notation for presenting strategic traceability resolutions 

in a graphical form, and also notation for presenting reusable trace query modeling via 

sequence diagrams which have been augmented. XML is used in representing project 

specific data and every other model elements. There are four different base layers in 

MB technique (Cleland-Huang et al., 2009): 

i. The strategic layer: This layer presents the artifacts and related traceability links 

in a model called the strategic traceability graph. The graph assumes the 

structure of a traceability metagraph that determines what kind of artifact should 

be traced, and identifies link types with more information regarding users of the 

link, where data is stored, and when the link will be used. The aim of strategic 

traceability graph, is to come up with decisions as to the amount of traceability 

their project requires, and to survey the aim and estimated merits of their 

traceability plan. 

ii. The document management layer: In this layer, the locations and names of every 

traceability matrices and project level software artifacts, are recorded. These 

constituents are denoted as XML documents in the initial stages of the approach. 

iii. The stored query layer: The stored query layer determines a group of queries 

which are aided by the document management and the lower-level strategic 

layers. The queries are developed by a requirements analyst or project manager 

and utilized by the other stakeholders during their usual software engineering 

activities. 

iv. The executable layer: This layer is in charge of interpretation of the queries in 

the stored query layer. It is also in charge of transforming the queries into 



 

68 
 

executable codes and then invoking them when needed. Visualization or 

reporting of results are also performed in this layer. 

The proposed technique needs additional effort beyond and above the significant effort 

already required to build and preserve traceability links. Though, its advantages are 

appreciated with traceability queries made more available to additional stakeholders, 

and also when the queries as well as related strategic traceability graphs are used again 

in successive models. MB possess the prospective to considerably increase the merits 

which can be obtained by creating traceability matrices for projects (Abbors, Trusçan, & 

Lilius, 2009; Cleland-Huang et al., 2009). 

i) Goal-Centric (GC) 

Cleland-Huang et al., (2005) proposed the GC approach for trace non-functional 

requirements (NFRs). It provides traceability anchorage for maintaining and managing 

(NFRs), and associated quality concerns through the long life span of a software 

intensive system.  

GC supports two precise traceability activities. The first includes recognizing the initial 

impact of a modification on the GC model. For instance, if a segment of the code is 

changed by a developer, or a change is made in a certain UML model by an architect, 

traceability is utilized to identify or recognize possible operationalization (design 

solutions) or related goals in the goal model. This initial trace can be performed using 

either automatically generated or manually created traces. The second traceability 

activity is activated immediately the first impact point is found. The Goal-Centric 

framework consist of (Mirakhorli & Cleland-Huang, 2012): 

i. A goal model which encompasses stakeholders quality or value concerns and 

their compromises; 



 

69 
 

ii. A set or group of QAMs designed to assess the degree to which the identified 

quality goals have been satisfied by the architecture; 

iii. A traceability infrastructure which is used in connecting goals to QAMs; 

iv. GC algorithms which controls the propagation of modification through the goal 

hierarchy and the automated impact analysis; and 

v. An impact documentation or report that explains the possible effect of a 

modification on the general quality goals. 

The advantages of this technique are that they deliver greater degrees of automation for 

utilizing and comprehending traceability links, and in certain cases are developed 

precisely with maintainability in mind (Mirakhorli & Cleland-Huang, 2012). 

4.3.2  Requirement Traceability Tools 

This section will cover the RT tools that were identified during the review of literature. 

a) Requirement Traceability Matrix (RTM) 

RTM are mostly utilized in industries to determine the relationships between 

requirements and other kinds of artifacts such as test cases, code modules, and design 

(Cuddeback et al., 2010). More specifically, it is a document that links requirements 

with the conforming test cases. Each of the requirements are itemized in a matrix row, 

and the matrix column are used to locate where and how each of the requirements have 

been addressed. It is also utilized in the management of modifications and as the base 

for test planning. Preparing traceability matrix ensures that every functionalities 

required of the application in the test cases has been covered. A good traceability matrix 

also provides ease in track changes. Hence, the quality of a system is improved (Athira 

& Samuel, 2011). 



 

70 
 

RTM comes with ease of comprehension and can be utilized in simple scenarios (even 

by non-technical users), such as checking if single links exist between artifacts, or 

taking record. Though for projects based on real-world cases, traceability matrices may 

become very enormous and hence, unreadable. The content of each artifact is normally 

concealed in the matrix, but referenced with unique identifiers. This distinction of the 

grid‟s two-dimensional nature, makes it challenging to track links across numerous 

artifacts recursively. Lastly, it is nearly not possible to represent n-ary links on a 

traceability matrix of two-dimensions in a comprehendible manner (Winkler & von 

Pilgrim, 2010). RTM is an approach used in validating a product‟s compliance with the 

product‟s requirements (Athira & Samuel, 2011). 

b) RETRO 

Tracing requirements has been a significant process of the software development life 

cycle. For instance, it is important to know if all the requirements for the product 

developed have been satisfied. Again, traceability information is needed for the 

performance of impact analysis on all projected modifications (Pandanaboyana et al., 

2013). However, requirements tracing by manual traceability methods are prone to 

errors and also time-consuming (Cuddeback et al., 2010). Requirements tracing on-

target (RETRO) is an RT tool presented by Hayes et al., (2007) to ease the automatic 

creation of requirements traceability matrices (RTM). RETRO utilizes IR and text 

mining methods to construct candidate traces. Result revealed that RETRO discovered 

considerably more accurate links than manual tracing (RTM) and used only one third of 

the usual time to do so (Shahid et al., 2011).  

Where there occurs a great difference in the documents to be traced because they have 

been developed by different organizations, utilization of the thesaurus offers a more 

efficient tracing method. For instance, an organization may use the term „failure‟ in the 



 

71 
 

stance where another organization will use the term „error‟. These two words will not be 

related by IR technique to be having similar context. The thesaurus option, provided by 

RETRO, is used in overcoming this issue (Pandanaboyana et al., 2013). 

c) traceMAINTAINER 

traceMAINTAINER is a prototype tool which anchors the semi-automated update of 

traceability connections between analysis, requirements, and design models of the 

software systems which are expressed in UML (Mäder, Gotel, & Philippow, 2009c). It 

is a tool that supports a technique for preserving post-requirements traceability 

connections or relations after modifications have been applied to the traced model 

elements (Mäder, Gotel, & Philippow, 2009b). Preservation of traceability relations is 

founded on predefined rules. A development activity is recognized by each rule, which 

is applied to a model element (Mäder et al., 2008). traceMAINTAINER allows the 

update of traceability relations by developers, with little manual effort (Mäder et al., 

2008; Mäder et al., 2009c). 

Microsoft Visual Studio.Net has implemented the traceMAINTAINER software which 

supports the following common scenarios: the examination of events change flows 

based on a set of rules which are predefined and imported from an XML rule catalog; 

the implementation of essential traceability updates following the recognition of 

development tasks; and the validation and edition of already existing or current rules 

alongside the establishment of new rules (Mäder et al., 2009c). 

The drawback of this tool is that only activities that have been predefined can be 

recognized at the moment. This does not reflect all the approaches for possible 

developments, hence, it makes rules customization essential to project specifics. While 

an initial cost exist in the identification of development activities and rules formulation, 



 

72 
 

the set of rules has proven to be reusable in the regulated domain of UML-based object-

oriented software engineering. Future work is to obtain additional statistical data on the 

benefit/cost trade-off, benefits with regards to the time minimized on manual 

maintenance through all projects utilizing the rules, and costs with regards to the initial 

definition of the rules (Mäder et al., 2008). 

d) DesignTrack 

DesignTrack as a traceability tool is a prototype tool which provides an incorporated 

design environment for form exploration and requirement specification in one design 

session (Ozkaya & Akin, 2007). It offers an environment for the navigation of intricate 

design information spaces through supporting requirement traceability. It also calculates 

the power, applicability, and limitations of computer-aided designs which are enabled 

by requirement traceability. In addition, this tool can be utilized in the management of 

design requirements issues. Shahid, Ibrahim and Mahrin (2011) stated that, this tool has 

not been evaluated experimentally yet. 

e) DevComplete 

DevComplete is a traceability tool designed by SmartBear software. It offers a complete 

traceability for project tasks, requirements tracking, and flaws for team agility 

improvement. Using a clear and comprehensible map which presents the requirements, 

defects, and project tasks, it can execute the workflow to prevent requirements from 

being modified after base-lined and approved. DevComplete permits freedom to 

implement requirement modifications according to current demands. It also detects the 

effects of additional software requirements (Shahid et al., 2011).  

In addition, the tool is capable of enforcing the creation and modification of a specific 

traceability link. If any alteration occurs on a requirement, the traceability information 



 

73 
 

may remain constant. Furthermore, the tool reads requirements, and then imports them 

from requirement specification documents generated outside the tool, while supporting 

the generation of descriptive documents for the requirements within the tool (Shahid et 

al., 2011).  

4.3.3  Comparison between RT practices 

Systematic review includes a highlight on the practices that are used in RT, due to its 

great importance in the requirements management (Zhou, 2014), controlled 

requirements, increased product quality, and monitoring the changes in requirements 

during SDLC (Kirova et al., 2008). The findings of the systematic review reveals the 

existence of a set of practices that are used to trace requirements, where the general 

trend of these practices are either automatic or semi-automatic rather than manual 

methods. They are beneficial in order to reduce the efforts in creating, maintaining and 

updating links and relationships of traceability (Huang, Berenbach, & Clark, 2007), 

reduce the time and efforts required to follow the requirements (De Lucia, Fasano, & 

Oliveto, 2008; Egyed et al., 2009), overrun the mistakes that occur if tracing manually 

(Cuddeback et al., 2010), as well as difficulties of traceability in large projects that 

contain a large number of requirements (Cleland-Huang et al., 2011). 

There are varying levels of automation between the traceability techniques and tools. In 

regards to this, this study found three main levels of the automation; manual, semi-

automatic, and automatic. Manual level refers to practices that require human efforts to 

establish and maintain traceability relations. Meanwhile, semi-automatic level refers to 

automatic methods that still need human activities to monitor the results produced by 

automated methods and to provide feedback and retrace. In contrast, automated level 

refers to practices that generate traceability relations as a result of the software 

development process. 



 

74 
 

RTM is an example of the manual level, used to define the relationship between 

requirements and other artifacts like design modules, code modules and test cases 

(Cuddeback et al., 2010). It creates a link between requirements and other artifacts 

manually improved (Athira & Samuel, 2011), therefore, they suffer from several 

problems, e.g. more prone to errors and also time-consuming (Saiedian, Kannenberg & 

Morozov, 2013). With regards to the automatic level, this group of automatic 

traceability practices generate traceability relations as a result of the software 

development process, and include both information retrieval, rule-based and Retro 

(Hayes et al., 2007; Ali, Sharafi, Guéhéneuc, & Antoniol, 2015; Spanoudakis et al., 

2004). In the same context, most of the RT practices provided by the SLR are semi-

automatic level. The practices that are semi-automatic requires manual effort (human 

analysts) to monitor the results produced by these methods (Javed & Zdun, 2014). 

These practices include: value-based, scenario-based, hypertext-based, event-based, 

ArchTrace, goal-centric, model-based, and traceMAINTAINER. For both DevComplete 

and DesignTrack, literature does not specify the level of automation and with any 

technique used (Shahid et al., 2011). 

The main purpose of the IR and RB is to automate the generation of traceability link. 

Particularly, RB uses rules for that (Spanoudakis et al., 2004), while IR depends on the 

comparison of the similarity and the probability values of two artifacts (Ali, 2010). 

Meanwhile, RETRO uses IR methods for requirements tracing (Pandanaboyana et al., 

2013). In the same context, the HTB is used for generating traceability links between 

different artifacts using open hypermedia and information integration (Sherba et al., 

2003). Meanwhile, VB is used to differentiate between important requirements and least 

important. Therefore, it could reduce the efforts and time by focusing on important 

requirements as compared to full traceability (Egyed et al., 2009). As for SB technique, 



 

75 
 

it used to model system functionality and to generate functional test cases (Egyed & 

Grunbacher, 2002). 

With regard to EB and GC, the main purpose of EB is to provide maintenance of 

traceability relationships (Cleland-Huang et al., 2002), while GC facilitates the 

management of the impact of functional change upon the non-functional requirements 

(Cleland-Huang et al., 2005). traceMAINTAINER is used to maintain post-

requirements traceability amongst the elements of structural UML models (Mäder et al., 

2009b). ArchTrace is a technique used to support the advancement of traceability links 

between architecture and implementation (Murta, Van Der Hoek, & Werner, 2006). 

Lastly, MB helps organizations and companies to get complete advantage from the 

traces constructed and to permit the project stakeholders to plan and produce trace 

schemes, and to execute them in a modeling environment which is in a graphical form 

(Cleland-Huang, Hayes & Domel, 2009). 

On the basis of the extracted information from the systematic review and as discussed in 

this section, the techniques can be classified according to the type of requirements that 

are tracked: functional requirements, non-functional requirements and other both. 

Particularly, VB is used to trace the functional requirement Heindl and Biffl (2005), 

while ArchTrace and GC are used to trace the non-functional requirements (Murta, van 

der Hoek, & Werner, 2008; Cleland-Huang et al., 2005). As for the rest of the 

techniques, they trace both functional and non-functional requirements. Table 4.1 

illustrates factors that help software companies to select the appropriate practices in 

their software development. 

The functions of requirement traceability practices are the creation, maintenance, and 

update of traceability links (traceability relations) between artifacts such as requirement, 

test cases, source code, design documents, etc. Creation of traceability links is the act of 



 

76 
 

creating or defining traceability relations between artifacts to keep track of links, and to 

establish knowledge behind the existence of links. Some changes occur on traceability 

links while undergoing product development processes such as deleting or adding a 

link, known as maintenance traceability link. Where only edit processes are applied on a 

traceability link without deleting or adding, such processes are known as updates. The 

following table presents a set of RT practices used for these processes. 

 

  



 

77 
 

Table 4.1 

Factors that help software companies to select the appropriate RT practices (For references, please refer to Appendix F). 

RT Practices 

Automatio

n 

Type of 

Req. 

Traceabilit

y links 

Size of 

Project 

Benefits Conclusions 

A
u
to

m
atic 

S
em

i-A
u
to

m
atic 

M
an

u
al 

F
u
n
ctio

n
al 

N
o
n
-F

u
n
ctio

n
al 

C
reatio

n
 

M
ain

ten
an

ce
 

U
p
d
ate

 

S
m

all 

M
ed

ian
 

L
arg

e 

Rule-Based (RB) √   √ √ √ √ 

   

√ 
 Reduce effort. 

 Support full generation 

for artifacts evolution. 

 The main aim of the RB technique is to 

automatically generate RT links using rules and 

maintenance traceability link. 

 The rules used in this technique are IREQ and 

RTOM.  

 Rules in this technique is used on the following 

documents; requirement statement document, 

analysis object models and use case documents. 

Value-Based (VB)  √  √  √ √ 

   

√ 

 Reduce time. 

 Reduce effort. 

 Focus on the important 

requirements to trace. 

 Economic technique. 

 

 The traceability efforts are reduced by focusing 

on most important requirements as compared to 

full tracing. 

 The prioritization step of VB identifies 

important requirements to be traced in more 

detail than others. 

 In VB, important requirements are identified 



 

78 
 

RT Practices 

Automatio

n 

Type of 

Req. 

Traceabilit

y links 

Size of 

Project 

Benefits Conclusions 

A
u
to

m
atic 

S
em

i-A
u
to

m
atic 

M
an

u
al 

F
u
n
ctio

n
al 

N
o
n
-F

u
n
ctio

n
al 

C
reatio

n
 

M
ain

ten
an

ce
 

U
p
d
ate

 

S
m

all 

M
ed

ian
 

L
arg

e 

based on parameters stakeholder value, 

requirements risk/volatility and tracing costs. 

Information 

Retrieval (IR) 
√   √ √ √ 

    

√ 

 Reduce time. 

 Reduce effort. 

 based on natural 

language text. 

 Can reviewing each RT 

link in order to accept 

or reject. 

 It is very hard to maintain links in constantly 

evolving systems (IR methods facilitate dynamic 

link generation). 

 IR provides a practicable solution to the problem 

of semi-automatically recovering traceability 

links between code and documentation 

Scenario-Based 

(SB) 
 √  √ √ √ 

   

√ 

  Can help to minimize 

ambiguity in manual 

links. 

 Reduce time. 

 Reduce effort. 

 A feasible solution for 

requirements 

modification 

management activities. 

 Impact analysis of 

changing requirements. 

 Scenarios are used to model system functionality 

and to generate functional test cases. 

 Scenario-based test cases create a mapping 

between requirements and other artifacts like 

design and code. 

 SB can help to minimize ambiguity in manual 

links by establishing dynamic verification in 

large systems. 

 SB is a feasible solution for requirements 

modification management activities in addition 



 

79 
 

RT Practices 

Automatio

n 

Type of 

Req. 

Traceabilit

y links 

Size of 

Project 

Benefits Conclusions 

A
u
to

m
atic 

S
em

i-A
u
to

m
atic 

M
an

u
al 

F
u
n
ctio

n
al 

N
o
n
-F

u
n
ctio

n
al 

C
reatio

n
 

M
ain

ten
an

ce
 

U
p
d
ate

 

S
m

all 

M
ed

ian
 

L
arg

e 

to impact analysis of changing requirements. 

Event-Based (EB)  √  √ √ 

 

√ 

  

√ 

  When modifications 

occur, it can be 

efficiently disseminated 

throughout the system 

of artifacts. 

 Helps developers to 

understand change 

effects. 

 Enables project 

managers to decide on 

whether new changes 

should be implemented 

or not. 

 The basic purpose of the RB technique is to 

manage and maintain traceability relationships 

between requirements and UML along with test 

cases.  

  In EB, when change occurs in requirements, an 

event message is published, which is then 

notified to all dependent objects. 

Hypertext-Based 

(HTB) 
 √  √ √ √ 

   

√ 

  Reduce effort. 

 Tracing between 

different artifacts. 

 Reduce time. 

 The HTB technique is used for traceability 

between different artefacts. 

 HTB is a technique used for traceability link 

generation using open hypermedia and 



 

80 
 

RT Practices 

Automatio

n 

Type of 

Req. 

Traceabilit

y links 

Size of 

Project 

Benefits Conclusions 

A
u
to

m
atic 

S
em

i-A
u
to

m
atic 

M
an

u
al 

F
u
n
ctio

n
al 

N
o
n
-F

u
n
ctio

n
al 

C
reatio

n
 

M
ain

ten
an

ce
 

U
p
d
ate

 

S
m

all 

M
ed

ian
 

L
arg

e 

 information integration. 

ArchTrace   √   √ 

 

√ √ 

 

√ 

  Support for versioning 

the relationships 

between architecture 

and implementation as 

the architecture or code 

evolves with time. 

 Provides a policy-based 

infrastructural to 

perform automatic 

update. 

 Can add a new policies. 

 The main objective of ArchTrace technique is to 

the advancement of traceability relationships 

between the architecture and implementation. 

 ArchTrace differentiates itself by updating 

traceability links from architectural elements to 

code elements. 

 This technique permits developers choose a set 

of traceability management policies that is 

suitable for their situational needs and working 

styles. 

Model-Based (MB)  √  √ √ √ √ 

  

√ 

  Reduce cost of creating 

and maintenance of RT 

links. 

 Obtain complete 

advantage from the 

traces constructed. 

 The purpose of the MB technique is to 

determine artifact granularity suitable for 

traceability and to extract all candidate 

traceability links in order to achieve a recall rate 

of 100%. 



 

81 
 

RT Practices 

Automatio

n 

Type of 

Req. 

Traceabilit

y links 

Size of 

Project 

Benefits Conclusions 

A
u
to

m
atic 

S
em

i-A
u
to

m
atic 

M
an

u
al 

F
u
n
ctio

n
al 

N
o
n
-F

u
n
ctio

n
al 

C
reatio

n
 

M
ain

ten
an

ce
 

U
p
d
ate

 

S
m

all 

M
ed

ian
 

L
arg

e 

 Help to plan and 

produce trace schemes. 

 

 To assist companies obtain complete advantage 

from the traces constructed and to permit the 

project stakeholders to plan and produce trace 

schemes, to execute them in a modeling 

environment which is in a graphical form. 

Goal-Centric (GC)  √   √ 

 

√ √ 

 

√ 

  Recognizing the initial 

impact of a 

modification  

 Increase a quality of 

system. 

 Deliver greater degrees 

of automation for 

utilizing and 

comprehending 

traceability links. 

 GC facilitates to manage impact of functional 

change upon the non-functional requirements. 

 GC helps to manage critical system qualities 

such as safety, security, reliability, usability and 

performance. 

RTM   √ √ √ √ √ √ √ 

   Easy to use and apply. 

 Easy to understand. 

 Used to manage 

modifications. 

 Used as base for test 

 RTM is used to identify the traceability 

relationships between requirements and other 

kinds of artifacts. 

 It is utilized in the management of modifications 



 

82 
 

RT Practices 

Automatio

n 

Type of 

Req. 

Traceabilit

y links 

Size of 

Project 

Benefits Conclusions 

A
u
to

m
atic 

S
em

i-A
u
to

m
atic 

M
an

u
al 

F
u
n
ctio

n
al 

N
o
n
-F

u
n
ctio

n
al 

C
reatio

n
 

M
ain

ten
an

ce
 

U
p
d
ate

 

S
m

all 

M
ed

ian
 

L
arg

e 

planning. 

 Provides ease in track 

changes. 

and as the base for test planning. 

 Preparing traceability matrix ensures that every 

functionalities required of the application in the 

test cases has been covered. 

 RTM needs to a long time to create and prone to 

mistakes because it manual method. 

traceMAINTAINER  √  √ √  √ √ 

 

√ 

 

 Reduce effort. 

 Reduce time. 

 

 traceMAINTAINER is used to update of 

traceability relationships between analysis 

models, requirements, and design models of the 

software systems which are expressed in UML. 

 traceMAINTAINER allows the update of 

traceability relations by developers, with little 

manual effort.  

Retro √   √ √ √ 

    

√ 

 Reduce effort. 

 Reduce time. 

 To overcome the 

manual traceability 

problems. 

 

 RETRO is used to ease the automatic creation of 

requirements traceability matrices (RTM). 

 RETRO utilizes IR and text mining methods to 

construct candidate traces. 

 Create  traceability links more accurate than 



 

83 
 

RT Practices 

Automatio

n 

Type of 

Req. 

Traceabilit

y links 

Size of 

Project 

Benefits Conclusions 

A
u
to

m
atic 

S
em

i-A
u
to

m
atic 

M
an

u
al 

F
u
n
ctio

n
al 

N
o
n
-F

u
n
ctio

n
al 

C
reatio

n
 

M
ain

ten
an

ce
 

U
p
d
ate

 

S
m

all 

M
ed

ian
 

L
arg

e 

 Easily create 

traceability matrix. 

 

manual methods and used only one-third of the 

usual time to do so. 

DevComplete    √ √ √ √ √ − − − 

 Provide full 

traceability. 

 Capable of enforcing 

the creation and 

modification of a 

specific traceability 

link. 

 It offers a complete traceability for project tasks, 

requirements tracking, and flaws for team agility 

improvement. 

 DevComplete permits freedom to implement 

requirement modifications according to current 

demands. 

DesignTrack    √ √ √ √ 

 

− − − 

 Can be utilized in the 

management of design 

requirements issues. 

 Offers an environment 

for the navigation of 

intricate design 

information spaces 

through supporting RT. 

 It provides traceability between requirements 

and architectural design. 

 This tool also provide an integrated environment 

for designers to manage requirements 

information along with exploration. 

 

 



 

84 
 

Indeed, systematic literature review showed that information retrieval is a technique the 

most commonly used among RT practices to trace requirements. The selected studies in 

SLR shows that 15 studies are used or contains information about information retrieval. 

Indeed, this is due to several reasons; information retrieval  is an automatic method to 

create traceability links between two types of artifacts, another big advantage is that 

used to trace the functional and non-functional requirements, and additional advantages 

are that information retrieval reduces the time and effort to create traceability links 

between artifacts. IR technique have been implemented on RETRO tools 

(Pandanaboyana et al., 2013). Table 4.2 illustrates the traceability techniques that used 

with traceability tools. 

Table 4.2 

Matching between the tools and techniques of traceability and the tools price 

RT Tool RT Technique Price/Cost References 

RTM It is a manual tool that 

can be applied on form 

of a table or any of 

spreadsheet programs 

(such as Microsoft 

office excel). 

Free (Athira & Samuel, 

2011) 

traceMAINTAINER It is a tool that 

supports a techniques 

for post-requirement 

traceability relations. 

As result of this, this 

tool supports all the 

techniques mentioned 

in this study. 

 

 

N/A (Mäder et al., 2009b) 



 

85 
 

 

4.4 Discussion  

The concept of RT is a mechanism which serves as a guide for the auditing of 

traceability relationships or links between requirements and artifacts. It is essential for 

software development because a great amount of information is produced and used, 

which should be kept related (traceable). When systems are being developed (especially 

large systems), it is difficult or impossible to recall all links that were made to relate 

information. For this reason, RT represents an important stage in development projects 

(Pinheiro, 2004).  

Some advantages of RT can be discerned. Firstly, traceability provides requirements 

verification. During this process, a comparison is made between the requirements 

specification and the system to verify the fulfillment of demands (Blaauboer, 2006). 

Secondly, a software which has undergone complete traceability allows for a lot easier 

analysis of the impact of modifications or changes. The consequences or results of a 

modification can be traced from requirement to design, code and test cases, which 

RETRO Information Retrieval 

(IR) 

Commercial (Cuddeback, 

Dekhtyar, & Hayes, 

2010; 

Pandanaboyana et 

al., 2013;  Shahid, 

Ibrahim, & Mahrin, 

2011) 

DevComplete The literature did not 

identify technique 

used with this tool. 

Commercial 

- 

DesignTrack This tool has not been 

evaluated 

experimentally yet. 

N/A (Shahid, Ibrahim, & 

Mahrin, 2011) 



 

86 
 

significantly shortens and improves the process (Arkley & Riddle, 2005). Changes 

occur during software development, mostly in the maintenance stage. The effort needed 

for the preservation of this change, depends on the complexity and size of its 

environment. The use of traceability in minimizing this complexity can mitigate costs as 

a result of impact analysis. This (impact analysis) is often easier than the entire change 

effort (Blaauboer, 2006; Niessink & Vliet, 1998). 

Thirdly, RT is a criterion for consistent change integration and effective system 

maintenance. In addition, the use of traceability in software systems results in an 

increase in software qualities, whereas overlooking or not using traceability brings 

about negative effects to a project. An instance of such negative effects is a decrease in 

system quality which results in revisions, and hence, increases project time and cost 

(Morckos, 2011).  

Finally, traceability ensures customer satisfaction which is one of the main benefits 

acquired from it. Traceability enables customers to follow up and monitor the software 

development process according to their requirement. RT offers a guarantee that all 

requirements are implemented, which benefits product managers and requirements 

engineers (Torkar et al., 2012). 

Indeed, the main purpose of this study is to explore the RT practices that assist software 

companies to trace requirements during software development process and also help 

companies in determining the appropriate method for their work by identifying a set of 

factors of each practice. 

As aforementioned, this study explored the most traceability practices adopted and used 

by previous related works. The researcher conducted intensive literature review 

(Systemic literature review). According to Ramesh and Jarke (2001), every traceability 

link costs money to create and maintain, and it has also been determined that not all 



 

87 
 

requirements are equally critical and not all should be traced. In fact, systematic review 

presented a technique called the value-based (VB) technique. This technique can 

determine requirements that are very important to trace, and also those that are less 

valuable to trace. Thus, it provides an economic and a technical model to software 

companies for tracing requirements.  

Cleland-Huang et al., (2011) explained that creating a traceability link and maintaining 

it between different artifacts, takes a lot of time and effort in addition to it being prone 

to errors. Their study provides a technique for the purpose of reducing the time and 

effort utilized in the creation and maintenance of traceability links. The technique was 

termed the event-based (EB) technique. It creates links between software artifacts after 

a change request is executed, and alleviates the coordination efforts required for 

maintaining software artifacts. In other words, the technique does not create a 

traceability link until a change occurs in the requirements such as refinement, 

replacement, abandonment, or merge. In addition, the study also reviewed two 

techniques; information retrieval (IR) and rule based (RB) techniques. The IR technique 

concentrates on automating the creation of traceability links using comparison based on 

similarity between two types of artifacts. This serves to reduce the time and effort spent 

on practitioners because it works automatically. In the same vein, traceability links are 

generated automatically using the rule-based (RB) technique. The RB technique does 

not support partial generation for artifacts evolution. If change has been applied to a 

certain artifact, then traces will be re-generated by the RB technique as it produces links 

for the first time. 

The studies by Cysneiros, (2007) and Mahmoud (2015) discussed that NFRs are hard to 

trace along the different phases of the software development process. Similarly, the 

rationale on how to cope with the needs of NFRs, is hard to trace. Indeed, the findings 



 

88 
 

from the systematic review revealed that there are two practices or methods used to 

trace non-functional requirements. These practices are called ArchTrace and Goal-

Centric. Goal-Centric provides traceability anchorage for maintaining and managing 

(NFRs), and associated quality concerns through the long life span of a software 

intensive system. As for the ArchTrace, it provides a tool support for versioning the 

relationships between a component-and-connector architecture, and its execution as the 

architecture or code evolves with time. Both of these practices are used to trace non-

functional requirements only. Additionally, systematic review also provides a set of RT 

practices are used to trace functional and non-functional requirements such as RB, IR, 

SB, EB, MB and HTB. 

With regards to traceability tools, one of the challenges facing the execution and 

application of traceability requirements in project development is the lack of sufficient 

tools for this purpose (Aizenbud-Reshef et al, 2006; Schwarz, Ebert, & Winter, 2010). 

This study also provides a group of traceability tools that assist in the implementation of 

requirement traceability in project development such as RTM, Retro, 

traceMAINTAINER, DevComplete, and DesignTrack. The RTM is mostly utilized in 

industries to determine the relationships between requirements and other kinds of 

artifacts such as test cases, code modules, and design. It is also used in defining the 

relationship between requirements and other artifacts such as design modules, code 

modules, and test cases. Another use of this tool is in the management of modifications 

and as the base for test planning. Preparing traceability matrix ensures that every 

functionalities required of the application in the test cases has been covered. Although 

traceability matrix is easy to understand by practitioners, it is a manual tool that requires 

time and effort to create. 



 

89 
 

Requirements tracing by manual traceability methods are prone to errors and also time-

consuming (Cuddeback et al., 2010). Systematic review includes a tool called Retro, 

which is a traceability tool for the automated creation of traceability matrix. Thus, it 

facilitates the production of traceability matrix and does not require the time and effort 

spent in the case of manual methods. The traceMAINTAINER is another tool which 

anchors the semi-automated update of traceability connections between analysis, 

requirements, and design models of the software systems expressed in UML. This tool 

allows for the update of traceability relations by developers, with little manual effort. 

According to Bouillon et al., (2013), the usage of RT is less common in  development 

projects. Therefore, systematic review provides a set of traceability practices that are 

used for different purposes such as creating, maintaining, updating, and evaluating of 

traceability links during the stages of project development. 

This study also reviewed two tools for the purpose of traceability; the DevComplete and 

the DesignTrack. The DesignTrack offers an environment for the navigation of intricate 

design information spaces through supporting requirement traceability (Ozkaya & Akin, 

2007). It also calculates the power, applicability, and the limitations of computer-aided 

designs which are enabled by requirement traceability. In addition, it can be utilized in 

the management of design requirements issues. The DevComplete on the other hand, 

offers a complete traceability for project tasks, requirements tracking, and flaws 

detection for team agility improvement. This tool permits freedom to implement 

requirement modifications according to current demands. It also detects the effects of 

additional software requirement (Shahid et al., 2011). 

4.5  Summary of Chapter 

This chapter presents a systematic literature review of requirements traceability 

practices over the period from 2008 to 2015. Results shows a set of techniques and tools 



 

90 
 

used to trace requirements during the software development life cycle. It also identifies 

the purpose of each method and its use in tracing any kind of requirements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

91 
 

CHAPTER FIVE 

RESULTS OF SURVEY AND INTERVIEW 

 

5.1  Introduction 

This chapter elaborates the data obtained from the respondents. It reflects the use of the 

software companies to requirements traceability practices in their software development 

tasks. Further, the results of interviews with some of the practitioners about the use of 

traceability practices in the software companies. 

5.2  Results of the Use of Traceability Practices 

The questionnaire contains three sections.  First, it asks about the demographic details 

of the participants. Then, it asks about the use of RT tools, which is followed with the 

use of RT techniques. Altogether, 31 software companies located in the northern region 

of Malaysia participate in this study. It is sufficient for this study, as recommended by 

Sekaran and Bougie (2010). Engaging software companies is a tough job. Various 

techniques were used for that, including phone calls, email, and personal networking 

through snowballing technique.  

5.2.1  Demographic Characteristics of Respondents 

The respondents participating in this study consist of software developers, requirement 

analysts, project managers, designers, and testers who work in software companies in 

the northern region of Malaysia. They have been very experienced in their field. The 

distribution is diverse, as detailed in Table 5.1. 

 

 



 

92 
 

Table 5.1  

Distribution of respondents 

No Demographic profile  Frequency  Percentage 

1 
 

 

 

Gender 

  Male 

  Female 

 

 

11 

20 

 

35.5 

64.5 

2 Age 

  18-24 

  25-34 

  35-44 

  45-50 

   

 

1 

23 

6 

1 

 

 

3.2 

74.2 

19.4 

3.2 

 

3 Education Level 

  Bachelor degree 

  Master degree 

  Other 

  

 

23 

7 

1 

 

74.2 

22.6 

3.2 

4 Organization Level (team 

role) 

  Project manager 

  Requirement analyst 

  Designer 

  Developer 

  Tester 

  Other 

 

 

2 

5 

3 

19 

1 

1 

 

 

 

6.5 

16.1 

9.7 

61.3 

3.2 

3.2 

 

5 Sector of the Software 

Company 

  Communication 

  Financial 

  Commercial 

  Other 

 

 

3 

1 

14 

13 

 

 

 

9.7 

3.2 

45.2 

41.9 

 

6 Years of Experience 

  Less than 5 years 

  5-10 years 

  More than 10 years 

 

 

11 

16 

4 

 

35.5 

51.6 

12.9 

 

7  No. of Employees in the 

Company 

  5-10 people 

  10-50 people 

  More than 50 people 

 

 

 

6 

14 

11 

 

 

19.4 

45.2 

35.5 

8 Number of Software Projects 

involved in 

  Less than 10 projects 

  10-20 projects 

  More than 20 projects 

 

 

14 

14 

3 

 

 

45.2 

45.2 

9.7 



 

93 
 

Table 5.1 shows that out of the 31 respondents, 11 (35.5%) of them are male, while 20 

(64.5%) are female. Most of them (23 (74.2%)) are between 25 and 34 years. The rest 

are between 35 and 44 years old (6 (19.4%)), one person (3.2%) between 18 and 24 

years old, and one person (3.2%) is between 44 and 50 years.  Most of them (74.2%) 

have a bachelor degree. Besides, 22.6% have a master degree, while 3.2% have another 

certificates. Since most of them have a bachelor degree, majority of them are developers 

(61.3%).  However, 16.1% are requirements analysts, which is quite high. Besides, there 

are also designers (9.7%), project managers (6.5), and testers and other roles (3.2% 

respectively).  The respondents represent companies in various business sectors.  Most 

of them (14 (45.2%)) are in commercial software sector. Not many of the companies are 

venturing in communication (9.7%) and finance (3.2%), because many of them (13 

(41.9%)) are venturing in various other sectors.   

Among the participants, 45.2% of them work in medium-sized companies (between 10 

and 50 employees).  Mostly (35.5%) work in large companies, with more than 50 

employees.  Meanwhile, the rest 19.4% work in small companies with 5 to 10 

employees.  In the companies where they are currently serving, more than half of them 

(51.6%) have been in there between 5 and 10 years.  Majority of them (35.5%) are still 

new with the companies (less than 5 years), while the rest (12.9%) have already served 

for more than 10 years.  

Most of the participants have involved in not more than 20 projects. In detail, 45.2% of 

them have participated in less than 10 software projects and another 45.2% between 10 

and 20 projects. The other 9.7% have participated in more than 20 projects. 



 

94 
 

5.2.2  Use of Requirements Traceability Tools 

From the analysis of the requirements traceability tools, the rates of use of each tool are 

grouped into „Never‟, „Rarely‟, „Sometimes‟, „Often‟, and „Always‟, as illustrated in 

Figure 5.1. Five (5) tools were analyzed namely RTM, traceMAINTAINER, 

DesignTrack, Retro, and DevComplete. Referring to Figure 5.1, it is clear that the trend 

for all five tools is similar.  Basically, most of the participants have never used the tools. 

 

Figure 5.1: Use of Traceability Tools in Software Companies 

In detail, it is seen that 51.6% have never used RTM for tracking requirements. 

Meanwhile, 19.4% of them have rarely or sometimes used it. However, 6.5% of them 

have used it often, and 3.2% has always used it in tracking requirements.  For 

traceMAINTAINER, 64.5% of the participants have never used, while the other 12.9% 

Never Rarely Sometimes Often Always

RTM 51.6 19.4 19.4 6.5 3.2

traceMAINTAINER 64.5 12.9 12.9 3.2 6.5

DesignTrack 67.7 9.7 12.9 3.2 6.5

RETRO 71.0 0 16.1 12.9 0

DevComplete 67.7 3.2 16.1 12.9 0

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

P
e

rc
e

n
t 



 

95 
 

have either rarely or sometimes used.  But, it has often been used by 3.2%, and always 

used by 6.5% of the participants.  The percentage of last three categories are shared with 

DesignTrack.  However, there are more participants (67.7%) never used DesignTrack 

than that for traceMAINTAINER, leaving only 9.7% rarely used. 

RETRO and DevComplete have often been used by 12.9% of the participants, but no 

one has always used them.  The other 16.1% have sometimes used them, while 71% 

have never used RETRO.  It is different with DevComplete, where 67.7% have never 

used, while the other 3.2% have rarely used.  

5.2.3  Use of Requirements Traceability Techniques 

Similar to the analysis of the requirements traceability tools, the rate of use were 

grouped into „Never‟, „Rarely‟, „Sometimes‟, „Often‟, and „Always‟, for the analysis of 

the requirements traceability techniques (refer to Figure 5.2). Nine techniques were 

analyzed namely EB, IR, RB, ArchTrace, VB, SB, HTB, GC, and MB. Similar with the 

findings on the tools, most of the participants have never used the techniques.  Only few 

of them have either often or always used them. This is detailed in the subsequent 

paragraphs. 



 

96 
 

 

Figure 5.2: Use of Traceability Techniques in Software Companies 

Figure 5.2 exhibits that between 61.3% and 74.2% of the participants have never used 

the techniques.  In contrast, only between 3.2% and 6.5% of the participants have 

always used them, and between 3.2% and 12.9% have often used. The rest have either 

rarely used (between 3.2% and 12.9%) or sometimes used (between 9.7% and 25.8%). 

In detail, ArchTrace has never been used by 74.2% of the participants, the highest.  At 

the same time, it has always been used by 3.2% of the participants, the lowest. In 

contrast, IR and MB have often and always been used by 12.9 % and 3.2% of the 

participants.  At the same time, only 61.3% of the participants have never used them.  

Between these two, IR is better because only 6.5% of the participants rarely used it, 

compared to MB (9.7%).  VB is the worst because no participant have either often or 

always used. 

Never Rarely Sometimes Often Always

EB 64.5 12.9 12.9 3.2 6.5

IR 61.3 6.5 16.1 12.9 3.2

RB 71.0 6.5 9.7 9.7 3.2

ArchTrace 74.2 3.2 12.9 6.5 3.2

VB 71.0 3.2 25.8 0 0

SB 64.5 9.7 12.9 9.7 3.2

HTB 67.7 3.2 19.4 3.2 6.5

GC 67.7 3.2 19.4 3.2 6.5

MB 61.3 9.7 12.9 12.9 3.2

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

P
e

rc
e

n
t 



 

97 
 

5.3  Reliability For Use of Traceability Practices  

Reliability is the amount of which an experiment, test or even measurement process, is 

expected to yield the same outcome on a recurrent trial (Sekaran & Bougie, 2010). 

According to Zikmund (2003), reliability simply means the extent to which 

measurement tools are free from error and, therefore, produce a consistent result. Based 

on that, this study has carried out reliability tests, to ensure results are free of doubt.  

The result of the test is exhibited in Table 5.2. 

Table 5.2   

Reliability Result 

Cronbach's Alpha N of Items 

0.987 14 

 

Regarding the reliability, Sekaran and Bougie (2010) underline that alpha values less 

than 0.60 are considered poor, while those between 0.6 and 0.8 are acceptable.  Further, 

values greater than 0.8 are considered good. Based on such classification, with reference 

to Table 5.2, the alpha value for this study (0.987) is very high.  This explains that the 

tool is reliable in gathering data it should gather, and that the results are free of doubt. 

5.4  Descriptive Statistics 

Table 5.3 details the results on the use of traceability practices in software companies 

during software development.  They answer 14 items with answers from 1 (never) to 5 

(always).  Referring to the table, the mean for all items is less than 2.  This explains that 

the participants have never or rarely used it during software development. 

 

 



 

98 
 

Table 5.3   

Descriptive Statistics  

 N Minimum Maximum Mean Std. Deviation 

Q1 31 1 5 1.90 1.136 

Q2 31 1 5 1.74 1.210 

Q3 31 1 5 1.71 1.216 

Q4 31 1 4 1.71 1.160 

Q5 31 1 4 1.74 1.154 

Q6 31 1 5 1.74 1.210 

Q7 31 1 5 1.90 1.274 

Q8 31 1 5 1.68 1.194 

Q9 31 1 5 1.61 1.145 

Q10 31 1 3 1.55 .888 

Q11 31 1 5 1.77 1.203 

Q12 31 1 4 1.58 .923 

Q13 31 1 5 1.77 1.257 

Q14 31 1 5 1.87 1.258 

Valid N 

(listwise) 
31     

 

5.5  Analysis of Interviews 

Having analyzed the feedback in the questionnaire, the norm is clear that the 

participants never use traceability practice in developing software.  It is in interesting 

finding, and invokes interest to discover richer information, especially the reasons 

leading to it.  Accordingly, this study carried out an interview with two persons who 

have good experience with software development, particularly in Malaysia companies.  

Since interview is a techniques that could discover rich information, involving two 

subjects is enough, as recommended by Clark and Creswell (2014). Interviews with 

practitioners have been recorded. The demographic details of the participants in the 

interviews are provided in Table 5.4. 



 

99 
 

Table 5.4   

Participant's Information 

No. Property Participant 1 Participant 2 

1  Gender Male Female 

2 Qualification Master degree Master degree 

3 Experience More than 4 years More than 4 years 

4 Org. level (team role) Software Developer Software Developer 

5 No. of Projects involved  More than 10 projects More than 10 projects 

 

Indeed, the interview session includes several open-ended questions pertaining to RT 

practices. The first question posted to the interviewees was aimed at clarifying whether 

their companies use RT practices or not in their software development process. Both of 

the participants stated that most of the software companies do not implement any of the 

RT practices throughout the software lifecycle. With regard to why the companies do 

not apply such practices through the work process, Participant 1 indicates that: 

"I think the main reason is the lack of knowledge on these practices, as 

well as the unclear benefits of them and their significance. 

Additionally, the cost for adopting the practices in the software 

development process also determines". 

Similarly, Participant 2 highlight: 

"This is due to several reasons such as the companies do not know the 

benefits of RT practices, or there is no knowledge about traceability 

practices.  Also, the cost may be one of the reasons". 

Their answers reflect that lack of knowledge on RT practices and its benefits is 

considered as an important reason that discards the implement of its practice in software 



 

100 
 

companies. Nevertheless, the financial and training constraints, as well as personal 

experience are the barriers to implement the RT practices. Regarding to the 

implementation of RT practices, this study raised a question on whether RT practice 

will help software companies produce high-quality software. The answer from 

Participant 1 sounds: 

"…it helps to manage requirements and their effects, and know that 

requirements gathering is very important. So, if the use of this practice 

helps maintaining requirements and follow their changes, therefore, it 

will help to present a good software". 

Participant 2 agrees by adding something when saying: 

"..used of techniques and tools to follow requirements will greatly 

facilitate the software development process, because this method will 

ensure all requirements gathered from stakeholders or customers will 

appear in the final product, and any change in requirements during the 

design of the software will be easily detected". 

In general, the purpose of using these practices help companies to trace requirements, 

maintain, and update changes.  Thus, this ensures no loss of requirements and ensures 

their presence in the final product.  As a result of implementing this practice will lead to 

high quality software that embed all requirements and characteristics that have been 

extracted during requirements development phase. In terms of the kinds of requirements 

that are most preferred by software companies to apply RT practices, Participant 1 

responded: 

 

 



 

101 
 

 

"Both the functional and non-functional requirements are important to 

trace and must be preserved and maintained during the software 

development process. This is an essential task, especially in large 

projects that consist of a large number of requirements". 

Participant 2 confirmed what participant 1 said, by saying: 

"All kinds of requirements are necessary for the success of the project 

requirements. With this, traceability must be applied on both". 

Both participants are aware that the main reasons for the success of any project is to 

keep and maintain requirements during the product development. Tracing functional 

and non-functional requirements is necessary to increase product quality and prevent re-

work. As for the software development stage that requires extensive traceability 

application, Participant 1 replies: 

"The requirements evolve and undergo many changes during the 

development process. Therefore, maintenance is one of the most 

important stages that require the application of traceability after every 

change in requirements". 

Participant 2 believes that traceability in all stages of software development is required, 

in his words: 

" Applying RT practices is important in managing requirements during 

all phases of project development ". 

It is understandable that applying traceability in all phases of the software development 

is important. Tracing requirements from the source to the final project is essential to 



 

102 
 

ensure the success of the project, by maintaining the existence of requirements without 

change in the final product. This is most important in the maintenance phase, in order to 

trace changes in the traceability links, and maintain it. 

Lastly, the participants were asked on their recommendations for companies that still do 

not use the RT practice, and how they can be applied. Participant 1 suggested that: 

"If the traceability practices are very beneficial, I think we need to 

expose them about these practices. When they know the importance of 

these practices, then they will be interested to apply the techniques in 

their software development". 

Participant 2 adds: 

"Depending on the benefits of those techniques and tools, it will be 

easy to follow requirements that will later become system 

specifications, my suggestion for companies to consider these practices 

because the requirements gathering process and control takes a long 

time and effort. The practices help make the process much easier" 

As a recommendation, companies must consider the practices for their benefits, which 

is also significant in preventing failures in the program. Besides, it helps saving time 

and effort in following the changes in the requirements that occur during the software 

development life cycle. All these benefits help in managing requirements and that they 

can be easily controlled and thus facilitate software development process. 

Based on the answers also, it is noticed that both of the participants realize the 

importance of the RT practices in supporting the development efforts. However, in 

common situation, due to the deadline stated by the users to deliver the software, the 

practitioners do not have enough time to learn or apply RT practices. In addition, 



 

103 
 

software companies need to invest a suitable practice to support the software 

development task. When these could be done, it could lead to a high quality product that 

meets all the necessary requirements for the end user. 

5.6  Discussion 

This empirical study provides evidence that there is insufficient use of requirement 

traceability practices during projects development in software companies. Also, it 

clarified and discovered the reasons why most software companies in Malaysia pay less 

attention to traceability requirement. 

To investigate the current RT practices applied among software companies in Malaysia, 

the study distributed a series of questionnaires to a set of software companies located in 

the northern region of Malaysia. It was strategized and accelerated to discover the 

traceability practices used by those companies. The questionnaires were distributed by 

email and the period of data collection was approximately thirty days. The results 

revealed that majority of software companies do not use RT practices in project 

development processes. Consequently, this study provides empirical evidence on the 

usage of traceability practices during project development in software companies. 

Finally, the study aims at finding out the barriers that prevent software companies or 

practitioners in Malaysia who work in it from applying RT practices. A series of 

interviews were conducted with experts in the field to find out the reasons. It was 

discovered that the reasons include lack of knowledge or the prevalence of these 

practices, as well as financial issues for purchasing or training for the purpose of RT 

practices. These discoveries (results from this study), conforms to the results of 

previous studies (Cleland-Huang, Chang, & Christensen, 2003; Jaber, Sharif, & Liu, 

2013; Winkler & Pilgrim, 2010).  



 

104 
 

5.7  Summary of Chapter 

This chapter explains the findings of this study through a survey on the use of 

requirements traceability practices among software companies. Also, an interview was 

conducted with two practitioners to find out the reasons behind the lack of application 

of these practices in the companies and their recommendations for applying of these 

practices. Further, the next chapter elaborates the contributions, limitations of this study, 

and recommendations for future work.  

 

 

 

 

 

 

 

 

 

 

 

 



 

105 
 

CHAPTER SIX 

CONCLUSION AND RECOMMENDATIONS 

 

6.1  Introduction 

This study focuses on the practices of RT as an important and decisive part in software 

development. This chapter discusses the results that have been obtained through a 

systematic literature review, the results of the questionnaire and interview, as well as the 

achievement of objectives stated in Chapter 1. Also, this chapter highlights the 

contributions and limitations of this study. Finally, the chapter concludes the work 

being carried out and recommends some future works to enhance this study. 

6.2  Objectives Achievement 

Having performed the activities outlined in Chapter 3 and discussed in Chapters 4 and 

5, the study has achieved all the stated objectives in Chapter 1. In aggregation, they are 

discussed as follows: 

Objective 1 – To identify RT practices within software companies and factors that help 

these companies to select appropriate practices using systematic literature review. 

The first objective of this study is to identify the practices of requirements traceability 

and a set of factors that assist software companies to select a suitable RT practices in 

their work. Depending on the protocol of systematic literature review in Chapter 3, a set 

of techniques and tools used in tracing requirements have been extracted from the 

literature (in works from 2008 to 2015). The traceability practices (techniques) that 

were extracted from systematic literature review are; Rule-Based, Value-Based, 

Information Retrieval, Scenario-Based, Event-Based, Hypertext-Based, ArchTrace, 

Model-Based, Goal-Centric. Whereas traceability practices (tools) are; Requirement 



 

106 
 

Traceability Matrix, traceMAINTAINER, Retro, DevComplete, and DesignTrack.  

Some of these practices are used in tracing the functional requirements of the system, 

and others are used in tracing non-functional requirements, while there are also the 

practices used for both. In addition, the practices are divided into three methods in order 

to trace requirements; manual, semi-automatic, and automatic. Furthermore, there are a 

variety of factors extracted through conducted a systematic literature review. These 

factors represent features of RT practices that enables software companies in 

determining which practices are appropriate for their work. These factors included 

automation of practices, type of requirement, processes of traceability links and size of 

projects. These results have been discussed in Chapter 4. 

Objective 2 – To investigate the current practices of requirement traceability applied 

among software companies in Malaysia quantitatively. 

The second objective of this study is to investigate the current RT techniques and tools 

used in software companies. To achieve this objective, a set of questionnaire has been 

distributed to a set of software companies located in the northern region of Malaysia. It 

was strategized and accelerated to discover the traceability practices used by those 

companies. The questionnaire was distributed by email and the period of data collection 

were thirty days approximately. The results as discussed in Chapter 5 show that most 

companies do not use these practices when developing software. Where data collected 

from software companies indicated that around 64.5 percent have never used 

traceability tools, and around 67 percent have never used traceability techniques. The 

remaining of percentage is distributed between use rarely, sometimes, in addition to 

often and always. The findings point out that there is lack of interest in in the 

requirement management in general, and requirement traceability in particular. 



 

107 
 

Objective 3  – To verify the requirement traceability practices used qualitatively with 

industrial experts. 

The third objective of this study aimed at finding out the barriers that prevent 

companies from applying RT practices in addition to re-check and confirm the results of 

the second objective of this research. For that, this study conducted a series of 

interviews with practitioners who work in software companies and have experience in 

that domain. Interviews confirmed that the participants realize the importance of the RT 

practices in supporting the software development processes. The outcome of interviews 

illustrates that the reasons include lack of knowledge or the prevalence of these 

practices, as well as financial issues for purchasing and training. 

6.3  Contribution of the Research 

This study has several theoretical implications and contributions to software 

engineering and requirement management. More precisely, this study includes valuable 

information about requirement traceability and practices used to it, because there is lack 

of studies in this area.  

Firstly, this study has reviewed a set of RT practices that are used to trace requirements 

from their sources until the final product is completed. By using SLR, the results of this 

systematic review pointed to factors that can help software companies or practitioners to 

select the appropriate practices for their work and better understand of RT practices. 

These factors included automation of practices, type of requirement, processes of 

traceability links and size of projects. Factors have been discussed in Table 4.1. In the 

same vein, this study also highlights the various issues faced by the companies and 

organizations related to the requirements traceability aspect, such as time and effort 

required to create and maintain traceability link and find a suitable practices for that 



 

108 
 

purpose. Consequently, the outcome from this theoretical review may motivate new 

researchers to focus on these particular issues and thus assist the organizations or 

companies (practitioners in particular) to enhance their current software development 

processes. 

Secondly, requirement traceability is very important and crucial for the success of 

software companies. But, unfortunate the prior studies give little attention to this 

phenomenon. Thus, this study provided knowledge in details about the RT practices 

which can be used for the software companies in various levels of traceability links  

such as create, update, maintain traceability links between requirements and different 

artifacts. 

Thirdly, the practical side is very crucial to prove the theoretical arguments.  However, 

there is paucity of the empirical evidence on the software companies related to 

requirement traceability. Therefore, this study also provides empirical evidence on the 

use of traceability practices through conducted survey within software companies in the 

northern part of Malaysia, which highlight the most practices used within these selected 

companies. Results of empirical evidence indicates that the majority of software 

companies do not use traceability practices in the development of software projects. As 

a result, there is a weakness in the tracing requirements in the projects in particular, in 

addition to lack of managing requirements in general.  

Finally, in Malaysia particularly, there is no empirical evidence on the current RT 

practices used. Thus, the current study will add valuable of knowledge in this context. 

In addition, this study discovered reasons the lack of use RT practices among software 

companies in the software development processes, by conducted interviews with 

industrial experts of this field. 



 

109 
 

6.4  Limitation of the Study 

The key purpose of this study to explore the main practices used among software 

companies. As of every study, this study has several limitations that should be noted. 

First, the respondents of this study are limited to software companies in the northern 

part of Malaysia only, thus limiting the generalization of the findings. Second, as any 

survey study there are several limitations due to the financial and unwilling from some 

of the companies to conduct the survey or the interview. This study carried out the 

survey only with thirty-one companies. As for the interview, only two experts accepted 

to be interviewed. Nevertheless, the results of this study could be generalized for 

software companies, because the majority of  the companies included in this study are 

the branches for companies located in Kuala Lumpur and other major areas in Malaysia. 

6.5  Conclusion and Future Works 

This study could be improved in future research through more empirical research with 

different levels of projects development and increase sizes of respondents. It could also 

involve other parts in Malaysia through cross-country studies. In a nutshell, this study is 

conducted to identify the traceability practices based on the literatures as well as focus 

on factors which assist software companies to select the RT practices to be a suitable for 

their development processes. The discussion highlight the practices of requirements 

traceability, which affect the quality of the product effectively, control of requirements, 

and detection of changes that occur upon it.  Also, this study conducted an empirical 

study to determine whether companies apply these practices or not, as well as the 

reasons that lead to the non-use of these practices in companies.  

Overall, this study was carried out to investigate the current RT practices used by 

software companies, and extracting  a set of techniques and tools that can assist them to 



 

110 
 

accomplish their task. More research in the RT area is required in order to enhance the 

understanding of the impact RT practices on software development. By doing this, it 

can help researchers and even software practitioners to plan and make right decision to 

select appropriate RT practices which can improve quality of software product.         

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

111 
 

REFERENCES  

Aartsengel, A. Van, Kurtoglu, S., Lean, T., Sigma, S., & Methodology, S. (2013). 

Handbook on Continuous Improvement Transformation. 

http://doi.org/10.1007/978-3-642-35901-9 

Abbors, F., Trusçan, D., & Lilius, J. (2009). Tracing requirements in a model-based 

testing approach. In Advances in System Testing and Validation Lifecycle, 2009. 

VALID’09. First International Conference on (pp. 123–128). IEEE. 

Abdalla, M., Bourse, F., De Caro, A., & Pointcheval, D. (2015). Simple functional 

encryption schemes for inner products. In Public-Key Cryptography--PKC 2015 

(pp. 733–751). Springer. 

Ackroyd, S. (1992). Data collection in context. Longman Group United Kingdom. 

Agarwal, M., & Gael, S. (2014). Expert System and it ‟ s Requirement Engineering 

Process. 

Ahmad, A., & Ghazali, M. A. (2007). Documenting requirements traceability 

information for small projects. In Multitopic Conference, 2007. INMIC 2007. IEEE 

International (pp. 1–5). IEEE. 

Aizenbud-Reshef, N., Nolan, B. T., Rubin, J., & Shaham-Gafni, Y. (2006). Model 

traceability. IBM Systems Journal, 45(3), 515–526. 

Alghazzawi, D. M., Siddiqui, S. T., Bokhari, M. U., & Hamatta, H. S. A. (2014). 

Selecting Appropriate Requirements Management Tool for Developing Secure 

Enterprises Software. International Journal of Information Technology and 

Computer Science, 6(4), 49–55. http://doi.org/10.5815/ijitcs.2014.04.06 

Ali, N. (2010). Traceability Improvement for Software Miniaturization. 

Ali, N., Guéhéneuc, Y.-G., & Antoniol, G. (2012). Factors impacting the inputs of 



 

112 
 

traceability recovery approaches. In Software and Systems Traceability (pp. 99–

127). Springer. 

Ali, N., Gueneuc, Y.-G., & Antoniol, G. (2013). Trustrace: Mining software repositories 

to improve the accuracy of requirement traceability links. Software Engineering, 

IEEE Transactions on, 39(5), 725–741. 

Ali, N., Sharafi, Z., Guéhéneuc, Y.-G., & Antoniol, G. (2015). An empirical study on 

the importance of source code entities for requirements traceability. Empirical 

Software Engineering, 20(2), 442–478. 

Arkley, P., Mason, P., & Riddle, S. (2002). Position paper: Enabling traceability. In 

Proceedings of the 1st International Workshop on Traceability in Emerging Forms 

of Software Engineering, Edinburgh, Scotland (September 2002) (pp. 61–65). 

Citeseer. 

Arkley, P., & Riddle, S. (2005). Overcoming the traceability benefit problem. In 13th 

IEEE International Conference on Requirements Engineering (RE’05) (pp. 385–

389). IEEE. 

Athira, B., & Samuel, P. (2011). Traceability Matrix for Regression Testing in 

Distributed Software Development. In Advances in Computing and 

Communications (pp. 80–87). Springer. 

Atieno, O. (2009). An analysis of the strengths and limitations of qualitative and 

quantitative research paradigms. Problems of Education in the 21st Century, 13(1), 

13–38. 

Attarha, M., & Modiri, N. (2011). Focusing on the importance and the role of 

requirement engineering. The 4th International Conference on Interaction 

Sciences, 181–184. 

Auerbach, C., & Silverstein, L. B. (2003). Qualitative data: An introduction to coding 



 

113 
 

and analysis. NYU press. 

Azhar, D., Mendes, E., & Riddle, P. (2012). A systematic review of web resource 

estimation. In Proceedings of the 8th International Conference on Predictive 

Models in Software Engineering (pp. 49–58). ACM. 

Bacchelli, A., Lanza, M., & Robbes, R. (2010). Linking e-mails and source code 

artifacts. In Proceedings of the 32nd ACM/IEEE International Conference on 

Software Engineering-Volume 1 (pp. 375–384). ACM. 

Balvanes, M., & Caputi, P. (2001). Introduction to quantitative research methods. 

London: Sage Publications. 

Bano, M., Imtiaz, S., Ikram, N., Niazi, M., & Usman, M. (2012). Causes of 

Requirement Change – A Systematic Literature Review, 22–31. 

Bashir, M. F., & Qadir, M. A. (2006). Traceability techniques: A critical study. 10th 

IEEE International Multitopic Conference 2006, INMIC, 265–268. 

http://doi.org/10.1109/INMIC.2006.358175 

Basit, T. (2003). Manual or electronic? The role of coding in qualitative data analysis. 

Educational Research, 45(2), 143–154. 

Bauer, M. W., & Gaskell, G. (2000). Qualitative researching with text, image and 

sound: A practical handbook for social research. Sage. 

Blaauboer, F. A. (2006). Deciding to adopt traceability in practice: influencing this 

decision. 

Blaauboer, F., Sikkel, K., & Aydin, M. N. (2007). Deciding to adopt requirements 

traceability in practice. Lecture Notes in Computer Science (including Subseries 

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 4495 

LNCS, 294–308. Retrieved from http://www.scopus.com/inward/record.url?eid=2-

s2.0-38149045785&partnerID=tZOtx3y1 



 

114 
 

Bonaccorsi, A., Giannangeli, S., & Rossi, C. (2006). Entry strategies under competing 

standards: Hybrid business models in the open source software industry. 

Management Science, 52(7), 1085–1098. 

Borges, R. V., Garcez, A. d‟Avila, Lamb, L. C., & Nuseibeh, B. (2011). Learning to 

adapt requirements specifications of evolving systems: (NIER track). 2011 33rd 

International Conference on Software Engineering (ICSE), 856–859. 

http://doi.org/10.1145/1985793.1985924 

Bouillon, E., Mäder, P., & Philippow, I. (2013). A survey on usage scenarios for 

requirements traceability in practice. In Requirements Engineering: Foundation for 

Software Quality (pp. 158–173). Springer. 

Burnay, C., Jureta, I., & Faulkner, S. (2015). Towards a Model of Topic Relevance 

during requirements elicitation-Preliminary results. In Research Challenges in 

Information Science (RCIS), 2015 IEEE 9th International Conference on (pp. 151–

158). IEEE. 

Burns, N., & Grove, S. K. (2003). Understanding nursing research (3rd Ed.). 

Philadelphia. Saunders. 

Casey, V., & Mc Caffery, F. (2011). Med-Trace: traceability assessment method for 

medical device software development. 

Chakraborty, A., Baowaly, M. K., Arefin, A., & Bahar, A. N. (2012). The role of 

requirement engineering in software development life cycle. Journal of Emerging 

Trends in Computing and Information Sciences, 3(5), 723–729. 

Chaos, E. (2001). The Standish Group International. Inc. 

Charreire, S., & Durieux, F. (2001). Exploring and testing. RA. Thietart et Al.(a Cura 

Di), Doing Management Research: A Comprehensive Guide, London: Sage. 

Chen, X., Hosking, J., & Grundy, J. (2011). A combination approach for enhancing 



 

115 
 

automated traceability:(NIER track). In Software Engineering (ICSE), 2011 33rd 

International Conference on (pp. 912–915). IEEE. 

Cheng, B. H. C., & Atlee, J. M. (2007). Research directions in requirements 

engineering. In 2007 Future of Software Engineering (pp. 285–303). IEEE 

Computer Society. 

Chisaka, C., & Vakalisa, N. C. G. (2000). Gathering and analysis of data using 

qualitative methods in Education. Gauteng: Rand Afrikaans University. 

Clark, V. L. P., & Creswell, J. W. (2014). Understanding research: A consumer’s 

guide. Pearson Higher Ed. 

Cleland-Huang, J. (2005). Toward improved traceability of non-functional 

requirements. In Proceedings of the 3rd international workshop on Traceability in 

emerging forms of software engineering (pp. 14–19). ACM. 

Cleland-Huang, J. (2006). Just enough requirements traceability. In Computer Software 

and Applications Conference, 2006. COMPSAC’06. 30th Annual International 

(Vol. 1, pp. 41–42). IEEE. 

Cleland-Huang, J., Chang, C. K., & Christensen, M. (2003). Event-based traceability for 

managing evolutionary change. Software Engineering, IEEE Transactions on, 

29(9), 796–810. 

Cleland-Huang, J., Chang, C. K., Sethi, G., Javvaji, K., Hu, H., & Xia, J. (2002). 

Automating speculative queries through event-based requirements traceability. In 

Requirements Engineering, 2002. Proceedings. IEEE Joint International 

Conference on (pp. 289–296). IEEE. 

Cleland-Huang, J., Czauderna, A., Dekhtyar, A., Gotel, O., Hayes, J. H., Keenan, E., … 

Shin, Y. (2011). Grand challenges, benchmarks, and TraceLab: developing 

infrastructure for the software traceability research community. In Proceedings of 



 

116 
 

the 6th international workshop on traceability in emerging forms of software 

engineering (pp. 17–23). ACM. 

Cleland-huang, J., Gotel, O., Hayes, J. H., Mäder, P., Zisman, A., & Keyes, M. (2014). 

Software Traceability : Trends and Future Directions. Proceedings of the on Future 

of Software Engineering (FOSE’14), 55–69. 

Cleland-Huang, J., Hayes, J. H., & Domel, J. M. (2009). Model-based traceability. In 

Proceedings of the 2009 ICSE Workshop on Traceability in Emerging Forms of 

Software Engineering (pp. 6–10). IEEE Computer Society. 

Cleland-huang, J., Hayes, J. H., & Domel, J. M. (2009). Model-Based Traceability 

School of Computing. Management, Copyright, 6–10. 

http://doi.org/10.1109/TEFSE.2009.5069575 

Cleland-Huang, J., & Schmelzer, D. (2003). Dynamically tracing non-functional 

requirements through design pattern invariants. In Workshop on Traceability in 

Emerging Forms of Software Engineering, in conjunction with IEEE International 

Conference on Automated Software Engineering (Vol. 10). 

Cleland-Huang, J., Settimi, R., BenKhadra, O., Berezhanskaya, E., & Christina, S. 

(2005). Goal-centric traceability for managing non-functional requirements. In 

Proceedings of the 27th international conference on Software engineering (pp. 

362–371). ACM. 

Coakes, S. J., & Steed, L. (2009). SPSS: Analysis without anguish using SPSS version 

14.0 for Windows. John Wiley & Sons, Inc. 

Creswell, J. W. (2013). Research design: Qualitative, quantitative, and mixed methods 

approaches. Sage publications. 

Cuddeback, D., Dekhtyar, A., & Hayes, J. H. (2010). Automated requirements 

traceability: The study of human analysts. In Requirements Engineering 



 

117 
 

Conference (RE), 2010 18th IEEE International (pp. 231–240). IEEE. 

Cysneiros, L. M. (2007). Evaluating the Effectiveness of Using Catalogues to Elicit 

Non-Functional Requirements. In WER (pp. 107–115). 

da Silva, A. R. (2014). Quality of requirements specifications: a preliminary overview 

of an automatic validation approach. In Proceedings of the 29th Annual ACM 

Symposium on Applied Computing (pp. 1021–1022). ACM. 

De Lucia, A., Fasano, F., & Oliveto, R. (2008). Traceability management for impact 

analysis. In Frontiers of Software Maintenance, 2008. FoSM 2008. (pp. 21–30). 

IEEE. 

De Lucia, A., Marcus, A., Oliveto, R., & Poshyvanyk, D. (2012). Information retrieval 

methods for automated traceability recovery. In Software and systems traceability 

(pp. 71–98). Springer. 

Dick,  a J. J. (2012). Evidence-based development - coupling structured argumentation 

with requirements development. System Safety, Incorporating the Cyber Security 

Conference 2012, 7th IET International Conference on, 1–5. 

http://doi.org/10.1049/cp.2012.1498 

Diev, S. (2007). Requirements development as a modeling activity. ACM SIGSOFT 

Software Engineering Notes, 32(2), 1–3. 

Dybä, T., Kitchenham, B., & Jorgensen, M. (2005). Evidence-based software 

engineering for practitioners. Software, IEEE, 22(1), 58–65. 

Egyed, A., & Grunbacher, P. (2002). Automating requirements traceability: Beyond the 

record & replay paradigm. In Automated Software Engineering, 2002. 

Proceedings. ASE 2002. 17th IEEE International Conference on (pp. 163–171). 

IEEE. 

Egyed, A., Grünbacher, P., Heindl, M., & Biffl, S. (2009). Value-based requirements 



 

118 
 

traceability: Lessons learned. In Design requirements engineering: a ten-year 

perspective (pp. 240–257). Springer. 

Elliott Sr, R. A., & Allen, E. B. (2013). A methodology for creating an IEEE standard 

830-1998 software requirements specification document. Journal of Computing 

Sciences in Colleges, 29(2), 123–131. 

Fatwanto, A. (2013). Software requirements specification analysis using natural 

language processing technique. 2013 International Conference on QiR, 105–110. 

http://doi.org/10.1109/QiR.2013.6632546 

Felderer, M., & Beer, A. (2013). Using defect taxonomies for requirements validation in 

industrial projects. 2013 21st IEEE International Requirements Engineering 

Conference, RE 2013 - Proceedings, 296–301. 

http://doi.org/10.1109/RE.2013.6636733 

Ferreira, D., & da Silva, A. R. (2008). A requirements specification case study with 

ProjectIT-studio/requirements. In Proceedings of the 2008 ACM symposium on 

Applied computing (pp. 656–657). ACM. 

Fontana, A., & Frey, J. H. (2005). The Interview: From Neutral Stance To Political 

Involvement. In the book of The Sage of Handbook of Qualitative Research. 

United Kingdom: Sage Publications, Inc. 

Fricker, S. A., Grau, R., & Zwingli, A. (2015). Requirements Engineering : Best 

Practice Requirements Engineering State-of-Art. 

Goknil, A., Kurtev, I., van den Berg, K., & Spijkerman, W. (2014). Change impact 

analysis for requirements: A metamodeling approach. Information and Software 

Technology, 56(8), 950–972. http://doi.org/10.1016/j.infsof.2014.03.002 

Gotel, O. C., & Finkelstein, A. C. W. (1994). An Analysis of the Requirements 

Traceability Problem Imperial College of Science , Technology & Medicine 



 

119 
 

Department of Computing , 180 Queen ‟ s Gate, 94–101. 

Gotel, O. C. Z., & Finkelstein, A. C. W. (1994). An analysis of the requirements 

traceability problem. In Requirements Engineering, 1994., Proceedings of the First 

International Conference on (pp. 94–101). IEEE. 

Gotel, O., Cleland-Huang, J., Hayes, J. H., Zisman, A., Egyed, A., Grünbacher, P., … 

Maletic, J. (2012). The grand challenge of traceability (v1. 0). In Software and 

Systems Traceability (pp. 343–409). Springer. 

Gough, D., Oliver, S., & Thomas, J. (2012). An introduction to systematic reviews. 

Sage. 

Han, K., Youn, J., & Cho, J. (2014). A Functional Requirement Traceability 

Management Methodology for Model-based Testing Framework of Automotive 

Embedded System, (c), 46–51. 

Hannay, J. E., Sjøberg, D. I. K., & Dybå, T. (2007). A systematic review of theory use 

in software engineering experiments. Software Engineering, IEEE Transactions 

on, 33(2), 87–107. 

Harfoushi, O., Fawwaz, B. A., Obiedat, R., Faris, H., & Al-Sayyed, R. (2012). Usability 

Assessment of the Government Web Services in the Hashemite Kingdom of 

Jordan. Journal of American Science, 8(12), 12. 

Haron, A. (2012). Understanding the Requirement Engineering for Organization : The 

Challenges, 561–567. 

Hassnain, M. (2015). A Comparative Study on Traceability Approaches in Software 

development Life Cycle. ITEE Journal Information Technology & Electrical 

Engineering, (2), 4. 

Hayes, J. H., Dekhtyar, A., Sundaram, S. K., Holbrook, E. A., Vadlamudi, S., & April, 

A. (2007). REquirements TRacing On target (RETRO): improving software 



 

120 
 

maintenance through traceability recovery. Innovations in Systems and Software 

Engineering, 3(3), 193–202. 

Heindl, M., & Biffl, S. (2005). A case study on value-based requirements tracing. In 

Proceedings of the 10th European software engineering conference held jointly 

with 13th ACM SIGSOFT international symposium on Foundations of software 

engineering (pp. 60–69). ACM. 

Hill, R. (1998). What sample size is “enough” in internet survey research. Interpersonal 

Computing and Technology: An Electronic Journal for the 21st Century, 6(3-4), 1–

12. 

Hong, Y., Kim, M., & Lee, S.-W. (2010). Requirements management tool with evolving 

traceability for heterogeneous artifacts in the entire life cycle. In Software 

Engineering Research, Management and Applications (SERA), 2010 Eighth ACIS 

International Conference on (pp. 248–255). IEEE. 

Huang, R., Berenbach, B., & Clark, S. (2007). Best practices for automated traceability. 

Jaber, K., Sharif, B., & Liu, C. (2013). A study on the effect of traceability links in 

software maintenance. Access, IEEE, 1, 726–741. 

Javed, M. A., & Zdun, U. (2014). A systematic literature review of traceability 

approaches between software architecture and source code. In Proceedings of the 

18th International Conference on Evaluation and Assessment in Software 

Engineering (p. 16). ACM. 

Jiang, L., Eberlein, A., Far, B. H., & Mousavi, M. (2008). A methodology for the 

selection of requirements engineering techniques. Software & Systems Modeling, 

7(3), 303–328. 

Juergens, E., Deissenboeck, F., Feilkas, M., Hummel, B., Schaetz, B., Wagner, S., … 

Streit, J. (2010). Can clone detection support quality assessments of requirements 



 

121 
 

specifications? In Proceedings of the 32nd ACM/IEEE International Conference 

on Software Engineering-Volume 2 (pp. 79–88). ACM. 

Kang, S., Kim, J., Kang, S., & Eom, S. (2014). A Formal Representation of Platform 

Feature-to-Requirement Traceability for Software Product Line Development. 

2014 IEEE 38th Annual Computer Software and Applications Conference, 211–

218. http://doi.org/10.1109/COMPSAC.2014.29 

Katta, V., & Stålhane, T. (2014). Survey Protocol : Traceability during Development of 

Systems with Safety and Security Implications - Importance , Tools , and 

Challenges. 

Khan, K., Kumar, P. V. V., Ahmad, A., Riaz, T., Anwer, W., Suleman, M., … 

Chaitanya,  a. V. K. (2011). Requirement Development Life Cycle: The Industry 

Practices. 2011 Ninth International Conference on Software Engineering 

Research, Management and Applications, 12–16. 

http://doi.org/10.1109/SERA.2011.38 

Khan, K., Kunz, R., Kleijnen, J., & Antes, G. (2011). Systematic reviews to support 

evidence-based medicine. CRC Press. 

Khan, M. N. A., Khalid, M., & ul Haq, S. (2013). Review of requirements management 

issues in software development. International Journal of Modern Education and 

Computer Science (IJMECS), 5(1), 21. 

Kirova, V., Kirby, N., Kothari, D., & Childress, G. (2008). Effective requirements 

traceability: Models, tools, and practices. Bell Labs Technical Journal, 12(4), 143–

157. 

Kitchenham, B. A., Dyba, T., & Jorgensen, M. (2004). Evidence-based software 

engineering. In Proceedings of the 26th international conference on software 

engineering (pp. 273–281). IEEE Computer Society. 



 

122 
 

Kitchenham, B., & Charters, S. (n.d.). Guidelines for performing systematic literature 

reviews in software engineering. 2007. URL Http://www. Dur. Ac. 

uk/ebse/resources/Systematic-Reviews-5-8. Pdf. 

Klimpke, L., & Hildenbrand, T. (2009). Towards end-to-end traceability: Insights and 

implications from five case studies. In Software Engineering Advances, 2009. 

ICSEA’09. Fourth International Conference on (pp. 465–470). IEEE. 

Kong, L., & Yuan, T. (2009). Extension Features-Driven Use Case Model for 

requirement traceability. In Computer Science & Education, 2009. ICCSE’09. 4th 

International Conference on (pp. 866–870). IEEE. 

Kothari, C. R. (2009). Research methodology: Methods and techniques New Delhi: New 

Age International Publishers. ISBN 978-81-224-15222-3. 

Kumar, R. (2011). Research methodology: A step-by-step guide for Beginners (3rd ed.). 

Lago, P., Muccini, H., & van Vliet, H. (2009). A scoped approach to traceability 

management. Journal of Systems and Software, 82(1), 168–182. 

http://doi.org/10.1016/j.jss.2008.08.026 

Laplante, P. A. (2013). Requirements engineering for software and systems. CRC Press. 

Lin, J., Lin, C. C., Cleland-Huang, J., Settimi, R., Amaya, J., Bedford, G., … Zou, X. 

(2006). Poirot: A distributed tool supporting enterprise-wide automated 

traceability. In Requirements Engineering, 14th IEEE International Conference 

(pp. 363–364). IEEE. 

Mader, P., & Egyed, A. (2012). Assessing the effect of requirements traceability for 

software maintenance. In Software Maintenance (ICSM), 2012 28th IEEE 

International Conference on (pp. 171–180). IEEE. 

Mäder, P., & Egyed, A. (2014). Do developers benefit from requirements traceability 

when evolving and maintaining a software system? Empirical Software 



 

123 
 

Engineering, 1–29. 

Mäder, P., & Gotel, O. (2012). Towards automated traceability maintenance. Journal of 

Systems and Software, 85(10), 2205–2227. 

Mäder, P., Gotel, O., Kuschke, T., & Philippow, I. (2008). traceMaintainer-Automated 

Traceability Maintenance. In International Requirements Engineering, 2008. 

RE’08. 16th IEEE (pp. 329–330). IEEE. 

Mader, P., Gotel, O., & Philippow, I. (2008). Rule-based maintenance of post-

requirements traceability relations. In International Requirements Engineering, 

2008. RE’08. 16th IEEE (pp. 23–32). IEEE. 

Mäder, P., Gotel, O., & Philippow, I. (2009a). Motivation matters in the traceability 

trenches. In Requirements Engineering Conference, 2009. RE’09. 17th IEEE 

International (pp. 143–148). IEEE. 

Mäder, P., Gotel, O., & Philippow, I. (2009b). Semi-automated traceability 

maintenance: An architectural overview of traceMAINTAINER. In Software 

Engineering-Companion Volume, 2009. ICSE-Companion 2009. 31st International 

Conference on (pp. 425–426). IEEE. 

Mäder, P., Gotel, O., & Philippow, I. (2009c). traceMAINTAINER: A Tool for the 

Semi-automated Maintenance of Model Traceability. Submitted), Enschede, 

Netherlands (June 2009). 

Mader, P., Jones, P. L., Zhang, Y., & Cleland-Huang, J. (2013). Strategic traceability 

for safety-critical projects. Software, IEEE, 30(3), 58–66. 

Mahmoud, A. (2015). An information theoretic approach for extracting and tracing non-

functional requirements. In Requirements Engineering Conference (RE), 2015 

IEEE 23rd International (pp. 36–45). IEEE. 

Maletic, J. I., Munson, E. V, Marcus, A., & Nguyen, T. N. (2003). Using a hypertext 



 

124 
 

model for traceability link conformance analysis. In Proc. of the Int. Workshop on 

Traceability in Emerging Forms of Software Engineering (pp. 47–54). 

Malhotra, N. K. (2008). Marketing research: An applied orientation, 5/e. Pearson 

Education India. 

Manapian, A., & Prompoon, N. (2014). Software time estimation model for 

requirements change based on software prototype profiles using an analogy 

estimation method. In Computer Science and Engineering Conference (ICSEC), 

2014 International (pp. 366–371). IEEE. 

Marnewick, A. (2014). The effect of requirements engineering on the success of system 

implementation: a comparative case study. 

Marshall, C., & Rossman, G. B. (1999). Designing qualitative research. Sage 

publications. 

Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded 

sourcebook. Sage. 

Mirakhorli, M., & Cleland-Huang, J. (2012). Tracing non-functional requirements. In 

Software and Systems Traceability (pp. 299–320). Springer. 

Mohebzada, J. G., Ruhe, G., & Eberlein, A. (2012). Systematic Mapping of 

Recommendation Systems for Requirements Engineering, 200–209. 

Morckos, M. (2011). Requirements Traceability. Report for School of Computer 

Science, University of Waterloo, Waterloo. 

Muijs, D. (2010). Doing quantitative research in education with SPSS. Sage. 

Murta, L. G. P., Van Der Hoek, A., & Werner, C. M. L. (2006). ArchTrace: policy-

based support for managing evolving architecture-to-implementation traceability 

links. In Automated Software Engineering, 2006. ASE’06. 21st IEEE/ACM 



 

125 
 

International Conference on (pp. 135–144). IEEE. 

Murta, L. G. P., van der Hoek, A., & Werner, C. M. L. (2008). Continuous and 

automated evolution of architecture-to-implementation traceability links. 

Automated Software Engineering, 15(1), 75–107. 

Nair, S., De La Vara, J. L., & Sen, S. (2013). A review of traceability research at the 

requirements engineering conferencere@21. 2013 21st IEEE International 

Requirements Engineering Conference, RE 2013 - Proceedings, 222–229. 

http://doi.org/10.1109/RE.2013.6636722 

Naz, H., Motla, Y. H., Asghar, S., Abbas, M. A., & Khatoon, A. (2013). Effective usage 

of AI technique for requirement change management practices. 2013 5th 

International Conference on Computer Science and Information Technology, CSIT 

2013 - Proceedings, 121–125. http://doi.org/10.1109/CSIT.2013.6588769 

Niessink, F., & Van Vliet, H. (1998). Two case studies in measuring software 

maintenance effort. In Software Maintenance, 1998. Proceedings., International 

Conference on (pp. 76–85). IEEE. 

Noor, N. M. (2011). Writing Research and Thesis Proposals: Guidelines and Examples. 

Pusat Penerbitan Universiti Teknologi Mara. 

O‟Connor, A. M., Anderson, K. M., Goodell, C. K., & Sargeant, J. M. (2014). 

Conducting systematic reviews of intervention questions I: Writing the review 

protocol, formulating the question and searching the literature. Zoonoses and 

Public Health, 61(S1), 28–38. 

Ohashi, K., Kurihara, H., Tananaka, Y., & Yamamoto, R. (2011). A means of 

establishing traceability based on a UML model in business application 

development. In Requirements Engineering Conference (RE), 2011 19th IEEE 

International (pp. 279–284). IEEE. 



 

126 
 

Omoronyia, I., Sindre, G., Biffl, S., & Stålhane, T. (2011). Understanding Architectural 

Elements from Requirements Traceability Networks. In Relating Software 

Requirements and Architectures (pp. 61–83). Springer. 

Ooi, S. M., Lim, R., & Lim, C. C. (2014). An integrated system for end-to-end 

traceability and requirements test coverage. In Software Engineering and Service 

Science (ICSESS), 2014 5th IEEE International Conference on (pp. 45–48). IEEE. 

Ozkaya, I., & Akin, Ö. (2007). Tool support for computer-aided requirement 

traceability in architectural design: The case of DesignTrack. Automation in 

Construction, 16(5), 674–684. 

Pandanaboyana, S., Sridharan, S., Yannelli, J., & Hayes, J. H. (2013). REquirements 

TRacing On target (RETRO) enhanced with an automated thesaurus builder: An 

empirical study. In Traceability in Emerging Forms of Software Engineering 

(TEFSE), 2013 International Workshop on (pp. 61–67). IEEE. 

Pandey, D., & Suman, U. (2012). The Usefulness of RE Practices in S/W Development. 

Journal of Global Research in Computer Science, 3(9), 56–69. 

Pandey, D., Suman, U., & Ramani, A. K. (2010). An effective requirement engineering 

process model for software development and requirements management. In 

Advances in Recent Technologies in Communication and Computing (ARTCom), 

2010 International Conference on (pp. 287–291). IEEE. 

PC, A., & Prabhu, B. (2012). Integrating Requirements Engineering and User 

Experience Design in Product Life Cycle Management, 12–17. 

Petticrew, M., & Roberts, H. (2008). Systematic reviews in the social sciences: A 

practical guide. John Wiley & Sons. 

Pinheiro, F. A. C. (2004). Requirements traceability. In Perspectives on software 

requirements (pp. 91–113). Springer. 



 

127 
 

Raja, U. A. (2009). Empirical studies of requirements validation techniques. 2009 2nd 

International Conference on Computer, Control and Communication, IC4 2009. 

http://doi.org/10.1109/IC4.2009.4909209 

Ramesh, B., & Jarke, M. (2001). Toward reference models for requirements traceability. 

Software Engineering, IEEE Transactions on, 27(1), 58–93. 

Ramesh, B., Stubbs, C., Powers, T., & Edwards, M. (1997). Requirements traceability : 

Theory and practice, 3, 397–415. 

Regan, G., McCaffery, F., McDaid, K., & Flood, D. (2012). The barriers to traceability 

and their potential solutions: towards a reference framework. In Software 

Engineering and Advanced Applications (SEAA), 2012 38th EUROMICRO 

Conference on (pp. 319–322). IEEE. 

Regan, G., McCaffery, F., McDaid, K., & Flood, D. (2014). The Development and 

Validation of a Traceability Assessment Model. In Software Process Improvement 

and Capability Determination (pp. 72–83). Springer. 

Rempel, P., Mader, P., & Kuschke, T. (2013). An empirical study on project-specific 

traceability strategies. 2013 21st IEEE International Requirements Engineering 

Conference, RE 2013 - Proceedings, 195–204. 

http://doi.org/10.1109/RE.2013.6636719 

Richards, L., & Morse, J. M. (2012). Readme first for a user’s guide to qualitative 

methods. Sage. 

Rikhari, P., & Kumar, A. (2012). Validating the Change Management Process for 

Managing Changing Requirements with the help of a Real Life Project. 

International Journal of Computer Applications, 58(7). 

Rochimah, S., Wan Kadir, W. M. N., & Abdullah, A. H. (2007). An Evaluation of 

Traceability Approaches to Support Software Evolution. International Conference 



 

128 
 

on Software Engineering Advances (ICSEA 2007), (October), 19–19. 

http://doi.org/10.1109/ICSEA.2007.17 

Rosmadi, N. A., Ahmad, S., & Abdullah, N. (2015). The Relevance of Software 

Requirement Defect Management to Improve Requirements and Product Quality: 

A Systematic Literature Review. In Pattern Analysis, Intelligent Security and the 

Internet of Things (pp. 95–106). Springer. 

Sadiq, M., & Jain, S. K. (2014). Stakeholder identification method in goal oriented 

requirements elicitation process. In Requirements Prioritization and 

Communication (RePriCo), 2014 IEEE 5th International Workshop on (pp. 25–

33). IEEE. 

Saiedian, H., Kannenberg, A., & Morozov, S. (2013). A streamlined, cost-effective 

database approach to manage requirements traceability. Software Quality Journal, 

21(1), 23–38. 

Saldaña, J. (2015). The coding manual for qualitative researchers. Sage. 

Salvador, C., Nakasone, A., & Pow-Sang, J. A. (2014). A systematic review of usability 

techniques in agile methodologies. In Proceedings of the 7th Euro American 

Conference on Telematics and Information Systems (p. 17). ACM. 

Sarkan, H. M., Ahmad, T. P. S., & Bakar, A. A. (2011). Using JIRA and Redmine in 

requirement development for agile methodology. In Software Engineering 

(MySEC), 2011 5th Malaysian Conference in (pp. 408–413). IEEE. 

Schwarz, H., Ebert, J., & Winter, A. (2010a). Graph-based traceability: A 

comprehensive approach. Software and Systems Modeling, 9(4), 473–492. 

http://doi.org/10.1007/s10270-009-0141-4 

Schwarz, H., Ebert, J., & Winter, A. (2010b). Graph-based traceability: a 

comprehensive approach. Software & Systems Modeling, 9(4), 473–492. 



 

129 
 

Sekaran, U., & Bougie, R. (2010). Research methods for business: A skill building 

approach. Wiley. London. 

Shahid, M., Ibrahim, S., & Mahrin, M. N. (2011). An evaluation of requirements 

management and traceability tools. World Academy of Science, Engineering and 

Technology, 78(6), 596–601. Retrieved from 

http://www.scopus.com/inward/record.url?eid=2-s2.0-

84855217455&partnerID=40&md5=63ec72af99df5960c8e026199d2ddf0f 

Shahid, M., Ibrahim, S., & Mahrin, M. N. (2011). An Evaluation of Requirements 

Management and Traceability Tools. World Academy of Science, Engineering and 

Technology, WASET. 

Sharma, R., Bhatia, J., & Biswas, K. K. (2014). Machine learning for constituency test 

of coordinating conjunctions in requirements specifications. Proceedings of the 3rd 

International Workshop on Realizing Artificial Intelligence Synergies in Software 

Engineering - RAISE 2014, 25–31. http://doi.org/10.1145/2593801.2593806 

Sharma, S., & Pandey, S. K. (2014). Requirements elicitation: Issues and challenges. In 

Computing for Sustainable Global Development (INDIACom), 2014 International 

Conference on (pp. 151–155). IEEE. 

Sherba, S. A., Anderson, K. M., & Faisal, M. (2003). A framework for mapping 

traceability relationships. In Proceedings of the 2nd International Workshop on 

Traceability in Emerging Forms of Software Engineering (pp. 32–39). 

Shubhamangala, B. R., Rao, L. M., Dakshinamurthy, A., & Singh, C. G. L. (2012). 

Ability based domain specific training: a pragmatic solution to poor requirement 

engineering in CMM level 5 companies. In Computer Science and Automation 

Engineering (CSAE), 2012 IEEE International Conference on (Vol. 3, pp. 459–

464). IEEE. 



 

130 
 

Silva Souza, V. E., Lapouchnian, A., Robinson, W. N., & Mylopoulos, J. (2011). 

Awareness requirements for adaptive systems. In Proceedings of the 6th 

international symposium on Software engineering for adaptive and self-managing 

systems (pp. 60–69). ACM. 

Smith, A. M. (2012). Research Methodology: A Step-by-step Guide for Beginners. 

Churchill Livingstone. 

Solemon, B., Sahibuddin, S., & Ghani, A. A. A. (2010). Adoption of requirements 

engineering practices in Malaysian software development companies. In Advances 

in Software Engineering (pp. 141–150). Springer. 

Soonsongtanee, S., & Limpiyakorn, Y. (2010). Enhancement of requirements 

traceability with state diagrams. In Computer Engineering and Technology 

(ICCET), 2010 2nd International Conference on (Vol. 2, pp. V2–248). IEEE. 

Spanoudakis, G., & Zisman, A. (2005). Software traceability: a roadmap. Handbook of 

Software Engineering and Knowledge Engineering, 3, 395–428. 

Spanoudakis, G., Zisman, A., Pérez-Minana, E., & Krause, P. (2004). Rule-based 

generation of requirements traceability relations. Journal of Systems and Software, 

72(2), 105–127. 

Speziale, H., & Carpenter, D. R. (2003). Qualitative research in nursing: Advancing the 

humanistic imperative. New York. Harper and Row. 

Stallinger, F., Neumann, R., Schossleitner, R., & Zeilinger, R. (2011). Linking software 

life cycle activities with product strategy and economics: Extending ISO/IEC 

12207 with product management best practices. In Software Process Improvement 

and Capability Determination (pp. 157–168). Springer. 

Sutcliffe, A., & Sawyer, P. (2013). Requirements elicitation: Towards the unknown 

unknowns. 2013 21st IEEE International Requirements Engineering Conference, 



 

131 
 

RE 2013 - Proceedings, 92–104. http://doi.org/10.1109/RE.2013.6636709 

Thomas, S. W., Adams, B., Hassan, A. E., & Blostein, D. (2014). Studying software 

evolution using topic models. Science of Computer Programming, 80, 457–479. 

Torkar, R., Gorschek, T., Feldt, R., Svahnberg, M., Raja, U. A., & Kamran, K. (2012). 

Requirements traceability: a systematic review and industry case study. 

International Journal of Software Engineering and Knowledge Engineering, 

22(03), 385–433. 

Vagias, W. M. (2006). Likert-type scale response anchors. Clemson International 

Institute for Tourism & Research Development, Department of Parks, Recreation 

and Tourism Management. Clemson University. 

Wen, B., Luo, Z., & Liang, P. (2012). Distributed and Collaborative Requirements 

Elicitation based on Social Intelligence. In Web Information Systems and 

Applications Conference (WISA), 2012 Ninth (pp. 127–130). IEEE. 

Wiegers, K., & Beatty, J. (2013). Software requirements. Pearson Education. 

Wiegers, K. E. (2000). When Telepathy Won‟t Do: Requirements Engineering Key 

Practices. Cutter IT Journal, 13(5), 9–15. 

Willig, C., & Stainton-Rogers, W. (2007). The SAGE handbook of qualitative research 

in psychology. Sage. 

Winkler, S., & Pilgrim, J. (2010). A survey of traceability in requirements engineering 

and model-driven development. Software and Systems Modeling (SoSyM), 9(4), 

529–565. 

Winkler, S., & von Pilgrim, J. (2010). A survey of traceability in requirements 

engineering and model-driven development. Software & Systems Modeling, 9(4), 

529–565. http://doi.org/10.1007/s10270-009-0145-0 



 

132 
 

Yousuf, F., Zaman, Z., & Ikram, N. (2008). Requirements validation techniques in 

GSD: A survey. IEEE INMIC 2008: 12th IEEE International Multitopic 

Conference - Conference Proceedings, 553–557. 

http://doi.org/10.1109/INMIC.2008.4777800 

Yozgyur, K. (2014). A proposal for a requirements elicitation tool to increase 

stakeholder involvement. In Software Engineering and Service Science (ICSESS), 

2014 5th IEEE International Conference on (pp. 145–148). IEEE. 

Zaib, A., Chauhan, M., & Sirshar, M. (2015). A Review Analysis on Non-Functional 

Requirements and Causes of Failure of Projects. 

Zainol, A., & Mansoor, S. (2011). An investigation of a requirements management tool 

elements. 2011 IEEE Conference on Open Systems, ICOS 2011, 59–64. 

http://doi.org/10.1109/ICOS.2011.6079304 

Zhang, Z. (2007). Effective requirements development-A comparison of requirements 

elicitation techniques. Software Quality Management XV: Software Quality in the 

Knowledge Society, E. Berki, J. Nummenmaa, I. Sunley, M. Ross and G. Staples 

(Ed.) British Computer Society, 225–240. 

Zhou, J. (2014a). Requirements Development and Management of Embedded Real-

Time Systems, 479–484. 

Zhou, J. (2014b). Requirements development and management of embedded real-time 

systems. In Requirements Engineering Conference (RE), 2014 IEEE 22nd 

International (pp. 479–484). IEEE. 

Zikmund, W. G. (2003). Sample designs and sampling procedures. Business Research 

Methods, 7, 368–400. 

Zisman, A. (2012). Using rules for traceability creation. In Software and Systems 

Traceability (pp. 147–170). Springer. 



 

133 
 

Zou, X., Settimi, R., & Cleland-Huang, J. (2010). Improving automated requirements 

trace retrieval: a study of term-based enhancement methods. Empirical Software 

Engineering, 15(2), 119–146. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

134 
 

APPENDIX A: Questionnaire 

 College of 

Arts and Sciences (CAS) 

University Utara Malaysia  (UUM) 

 

 

AN INVESTIGATION OF REQUIREMENTS TRACEABILITY 

PRACTICES IN SOFTWARE COMPANIES 

Preface 

Requirements Traceability (RT) is the ability to follow requirements and detect changes 

during the software development life cycle. These changes can be made by updating and 

maintaining of requirements traceability links. RT is a critical element of software 

development process. 

This document contains questionnaire to seek requirements traceability practices in your 

company. The questionnaire is divided into three sections; the first section asks about 

participant's background, the second section asks about requirements traceability tools 

and the third section is interested in requirements traceability techniques. Please answer 

all the questions based on your knowledge, skills, and your position in your company. 

The questionnaire aims to investigate the requirements traceability practice in your 

company. 

To help us better interpret your answers to the questions about software process in your 

company, this document begins with questions about your background in the software 

company. Please carefully read and answer all of the questions. 

 Thank you very much for your cooperation 

 



 

135 
 

Name: Jasim Mohammed Dahr 

Programme: Master of Science (Information Technology) 

College: College of Arts and Sciences 

Email: J_M_D86@yahoo.com 

Note: This questionnaire is directed to software companies for collecting data on 

Requirements Traceability Practices as a part of my master‟s dissertation. 

 

Please record an answer to each question with one of five possible responses:  

1 = Never, 2 = Rarely, 3 = Sometimes, 4 = Often, 5 = Always. 

1. Record Never when: 

The practice is not used or uncertain about how to answer the question. 

2. Record Rarely when: 

The practice rarely used. 

3. Record Sometimes when: 

The practice may be performed sometimes or omit under difficult 

circumstances. 

4. Record Often when: 

The practice often established but not always.  

5. Record Always when: 

The practice is well established and consistently performed.   

SECTION A: PARTICIPANT’S BACKGROUND  

The section aims to obtain your demographic information.  Please answer all questions 

by placing a check () in the appropriate box: 

Q1. Software Company Name : ________________________________________. 

Q2. Your position : __________________________. 

Q3. Email (optional): _____________________________________________. 

Q4. Date : _______________________________________. 

Q5. Age: 

 

mailto:J_M_D86@yahoo.com


 

136 
 

Q6. Gender: 

 

Q7. Education Level: 

 

Q8. Organization Level  (team role): 

 

Q9. Sector of the software company: 

 

Q10. Years of experience in software development projects: 

 

Q11. Number of employees in the company: 

 

Q12. Number of software projects involved in: 

 

 

 

 



 

137 
 

SECTION B: REQUIREMENTS TRACEABILITY TOOLS 

The following questions aim to obtain answers about tools of requirements traceability 

that are used in practice. Please answer by placing a check () in the suitable choices 

below: 

 

Comment: 

______________________________________________________________________

______________________________________________________________________

______________________________________________________________________

_______________________. 

 

SECTION C: REQUIREMENTS TRACEABILITY TECHNIQUES 

The following questions aim to obtain answers about techniques of requirements 

traceability that are used in practice. Please answer by placing a check () in the 

suitable choices below: 

 



 

138 
 

 

Comment: 

______________________________________________________________________

______________________________________________________________________

______________________________________________________________________

_________________________. 

 

 

 

 

 

 

 

 

 

 

 

 



 

139 
 

APPENDIX B: Expert Reviewer 

Dr. Mazni Omar is a senior lecturer at the School of Computing, College of Arts and 

Sciences, Universiti Utara Malaysia. She received the BSc. degree (with honors) in 

information technology from Universiti Utara Malaysia, in 2000, the MSc. degree in 

software engineering from Universiti Teknologi Malaysia, in 2002, and the Ph.D. 

degree in information technology and quantitative sciences from Universiti Teknologi 

MARA, Malaysia, in 2012. Her current research interests include agile software 

development, empirical software engineering, software quality and data mining.  She 

has been actively teaching and conducting research for the last 15 years in the area of 

software engineering. 

Dr. Nor Azliana Akmal Jamaludin is a Senior Lecturer at Universiti Selangor. Her 

Doctoral of Philosophy (PhD) in Computer Science, specialize in Software Engineering 

at UTM. She is a member of Malaysian Software Engineering Interest Group, Malaysia. 

Her field of expertise is in software requirement, requirement engineering, analysis, 

system integration, e-learning, software maintenance and Software Engineering 

Education. Her current research interest is on techniques that can enhance skill among 

Software Engineering undergraduate of higher institutions using eLearning. She has 

been very active in scholarly journals writing and publishing citation index/impact 

factor journal papers. 

Dr. MAZIDA AHMAD  is  a  Senior  Lecturer  at  the School of Computing, Universiti 

Utara Malaysia (UUM).  She received the BMIS degree from International Islamic 

Universiti of Malaysia, in 2001, the MSc. degree in Software Engineering from 

Universiti Teknologi Malaysia, in 2003, and the Ph.D. degree in Knowledge 

Management from Universiti Sains Malaysia, in 2010. She has taught a variety of 

courses in  management information system, knowledge management, system analysis 

and design and information system development at  undergraduate  and  postgraduate  

levels.  Her current research interests include knowledge management, information 

system development and software engineering education. 

 

 

 



 

140 
 

APPENDIX C: List of Software Companies 

No. Software Company Name No. Software Company Name 

1 
Pentech Solution Sdn Bhd 

17 
eNCoral Digital Solutions 

2 
Exact 

18 
SYN System Solutions 

3 
ES&S MSC Sdn Bhd 

19 
Maple software creation 

4 
st jude medical 

20 
Encelabs 

5 
Siemens Industry Software Sdn. Bhd 

21 
GracusSoft Solutions 

6 
brady co. 

22 
eSource Technology 

7 
MIMOS 

23 
Bogus company 

8 
Osram 

24 
Qubit Enterprise 

9 
e-Business Sdn. Bhd. 

25 
Inari Technology 

10 
Intel Microelectronics Sdn. Bhd. 

26 
Operion Ecommerce & Software 

Sdn Bhd 

11 
PriceWaterhouseCoopers Malaysia 

27 
FLEX software consulting Sdn Bhd 

12 
Eframe Solutions Sdn Bhd 

28 
ABS Software International 

13 
CSG international 

29 
Software Depot Sdn Bhd 

14 
Terato Tech Sdn Bhd 

30 
PS TECH 

15 
Profitera Corporation Sdn. Bhd 

31 
My Software Solutions 

16 
Heitech Padu 

  

 

 

 

 

 

 

 



 

141 
 

APPENDIX D: Interview Questions 

Q1: Based on your experience, how your company applied/ exploited traceability 

practices? 

Q2: Why the company did not use the requirements traceability practices? 

Q3: Do you think that RT practices can help company to produce high quality software? 

Q4: What kind of types of requirements that you prefer to apply the RT practices 

(functional, non-functional) and why? 

Q5: At any stage of software development is required to apply traceability more than 

the others? 

Q6: What are your recommendation for the companies that still not use these practices, 

and how can implement? 

  



 

142 
 

APPENDIX E: Studies Selected of Systematic Literature Review 

No. Study title Author(s) Year Type of publication Extraction Data Database 

1 

IR-based Traceability Recovery 

Processes: an Empirical Comparison of 

“One-Shot” and Incremental Processes 

Lucia, Oliveto and 

Tortora 
2008 

ASE Automated Software 

Engineering 
IR ACM 

2 

How Do We Trace Requirements: An 

Initial Study of Analyst Behavior in Trace 

Validation Tasks 

Kong, Hayes, 

Dekhtyar and Holden 
2011 

ICSE International 

Conference on Software 

Engineering 

RETRO ACM 

3 

Extraction and Visualization of 

Traceability Relationships between 

Documents and Source Code  

Chen 2010 
ASE Automated Software 

Engineering 
IR ACM 

4 
Traceability and Completeness Checking 

for AgentOriented Systems  
Cysneiros and Zisman  2008 

SAC Symposium on 

Applied Computing 
RB ACM 

5 Model-Based Traceability 
Cleland-Huang, 

Hayes  and Domel 
2009 

IEEE Computer Society 

Washington, DC, USA 
MB ACM 

6 
ADAMS Re-Trace: Traceability Link 

Recovery via Latent Semantic Indexing 

Lucia, Oliveto and  

Tortora 
2008 

ICSE International 

Conference on Software 

Engineering 

IR ACM 

7 
Linking E-Mails and Source Code 

Artifacts 

Bacchelli, Lanza and 

Robbes 
2010 

ICSE International 

Conference on Software 

Engineering 

IR ACM 

http://dl.acm.org/event.cfm?id=RE228&CFID=581149171&CFTOKEN=31469981
http://dl.acm.org/event.cfm?id=RE228&CFID=581149171&CFTOKEN=31469981
http://dl.acm.org/event.cfm?id=RE228&CFID=581149171&CFTOKEN=31469981


 

143 
 

No. Study title Author(s) Year Type of publication Extraction Data Database 

8 

A survey of traceability in requirements 

engineering and model-driven 

development 

Winkler and Pilgrim 2010 

Chapter book-Software and 

Systems Modeling 

(SoSyM) 

RTM ACM 

9 
Traceability Improvement For Software 

Miniaturization 
Ali 2010 Chapter book 

IR, EB, HTB, RB, 

SB and VB 

Google 

scholar 

10 
An Evaluation of Requirements 

Management and Traceability Tools 

Shahid, Ibrahim and 

Mahrin 
2011 

World Academy of 

Science, Engineering and 

Technology, WASET 

Retro, 

DevComplete and 

DesignTrack 

Google 

scholar 

11 

traceMAINTAINER: A Tool for the 

Semi-automated Maintenance of Model 

Traceability 

Mader, Gotel and 

Philippow 
2009 

Enschede, Netherlands 

(June 2009). 2009. 
traceMAINTAINER 

Google 

scholar 

12 
Rule-Based Maintenance of Post-

Requirements Traceability Relations 

Mader, Gotel and  

Philippow 
2008 

International requirements 

Engineering, 2008. RE '08. 

16th IEEE 

RB and 

traceMAINTAINER 
IEEE 

13 

Requirements Management Tool with 

Evolving Traceability for Heterogeneous 

Artifacts in the Entire Life Cycle 

Hong, Kim and Lee 2010 

Software Engineering 

Research, Management and 

Applications (SERA) 

ArchTrace  IEEE 

14 
Tracing Requirements In A Model-Based 

Testing Approach 

Abbors, Trusçan  

and Lilius 
2009 

Advances in System 

Testing and Validation 

Lifecycle, 2009. 

MB IEEE 

15 

A means of establishing traceability based 

on a UML model in business application 

development 

Ohashi, Kurihara, 

Tananaka and 

Yamamoto 

2011 

Requirements Engineering 

Conference (RE), 2011 

19th IEEE International 

MB IEEE 

http://ezproxy.um.edu.my:2100/xpl/mostRecentIssue.jsp?punumber=5279389
http://ezproxy.um.edu.my:2100/xpl/mostRecentIssue.jsp?punumber=5279389
http://ezproxy.um.edu.my:2100/xpl/mostRecentIssue.jsp?punumber=5279389
http://ezproxy.um.edu.my:2100/xpl/mostRecentIssue.jsp?punumber=6036256
http://ezproxy.um.edu.my:2100/xpl/mostRecentIssue.jsp?punumber=6036256
http://ezproxy.um.edu.my:2100/xpl/mostRecentIssue.jsp?punumber=6036256


 

144 
 

No. Study title Author(s) Year Type of publication Extraction Data Database 

16 
A Combination Approach for Enhancing 

Automated Traceability (NIER Track) 

Chen,  Hosking and  

Grundy 
2011 

Software Engineering 

(ICSE), 2011 33rd 

International Conference 

IR IEEE 

17 

Goal-Centric Traceability: Using Virtual 

Plumblines to Maintain Critical Systemic 

Qualities 

Cleland-Huang, 

Marrero and 

Berenbach 

2008 
Software Engineering, 

IEEE Transactions 

GC 

  
IEEE 

18 

REquirements TRacing On target 

(RETRO) Enhanced with an Automated 

Thesaurus Builder: An Empirical Study 

Pandanaboyana, 

Sridharan, Yannelli 

and Hayes 

2013 

Traceability in Emerging 

Forms of Software 

Engineering (TEFSE), 

2013 International 

Workshop 

RETRO and IR IEEE 

19 
Automated Requirements Traceability: 

the Study of Human Analysts 

Cuddeback, Dekhtyar  

and Hayes 
2010 

Requirements Engineering 

Conference (RE), 2010 

18th IEEE International 

RTM, Retro and IR IEEE 

20 
traceMaintainer – Automated Traceability 

Maintenance 

Mäder, Gotel, 

Kuschke and 

Philippow 

2008 

16th IEEE International 

Requirements Engineering 

Conference 

traceMAINTAINER IEEE 

21 

Semi-automated Traceability 

Maintenance: An Architectural Overview 

of traceMaintainer 

Mäder, Gotel and  

Philippow 
2009 

Software Engineering-

Companion Volume, 2009. 

ICSE-Companion 2009. 

31st International 

Conference on (pp. 425-

426). 

traceMAINTAINER IEEE 

22 
Towards automated traceability 

maintenance 
Mäder and Gotel 2012 

The Journal of Systems  

and Software 

EB, RB and  

traceMAINTAINER 
ScienceDirect 

http://ezproxy.um.edu.my:2100/xpl/mostRecentIssue.jsp?punumber=6032121
http://ezproxy.um.edu.my:2100/xpl/mostRecentIssue.jsp?punumber=6032121
http://ezproxy.um.edu.my:2100/xpl/mostRecentIssue.jsp?punumber=6032121
http://ezproxy.um.edu.my:2100/xpl/RecentIssue.jsp?punumber=32
http://ezproxy.um.edu.my:2100/xpl/RecentIssue.jsp?punumber=32
http://ezproxy.um.edu.my:2100/xpl/mostRecentIssue.jsp?punumber=5634607
http://ezproxy.um.edu.my:2100/xpl/mostRecentIssue.jsp?punumber=5634607
http://ezproxy.um.edu.my:2100/xpl/mostRecentIssue.jsp?punumber=5634607


 

145 
 

No. Study title Author(s) Year Type of publication Extraction Data Database 

23 
Information Retrieval Methods for 

Automated Traceability Recovery 

Lucia, Marcus, 

Oliveto and 

Poshyvanyk 

2012 
Chapter book- Software 

and Systems Traceability 
IR Springer 

24 

Continuous and automated evolution of 

architecture-to-implementation 

traceability links 

Murta, van der Hoek  

and Werner 
2008 

Journal- Automated 

Software Engineering 
ArchTrace  Springer 

25 
Value-Based Requirements Traceability: 

Lessons Learned 

Egyed, Grünbacher,  

Heindl and Biffl 
2009 

Chapter book- Design 

Requirements Engineering: 

A Ten-Year Perspective 

VB  Springer 

26 
Understanding Architectural Elements 

from Requirements Traceability Networks 

Omoronyia,Sindre,  

Biffl and stalhane 
2011 

Chapter book- Relating 

Software Requirements 

and Architectures 

EB Springer 

27 
XTraQue: traceability for product line 

systems 

Jirapanthong and 

Zisman 
2009 

Software & Systems 

Modeling 8, no. 1 (2009): 

117-144. 

RB Springer 

28 
Assessing IR-based traceability recovery 

tools through controlled experiments 

Lucia, Oliveto and 

Tortora 
2009 

 Empirical Software 

Engineering 14, no. 1 

(2009): 57-92. 

IR Springer 

29 
Supporting requirements to code 

traceability through refactoring 
Mahmoud and Niu 2014 

Requirements Engineering. 

2014 Sep 1;19(3):309-29. 
IR Springer 

30 

An empirical study on the importance of 

source code entities for requirements 

traceability 

Ali, Sharafi, 

Guéhéneuc and 

Antoniol 

2015 
Journal-Empirical  

Software Engineering 
IR Springer 



 

146 
 

No. Study title Author(s) Year Type of publication Extraction Data Database 

31 
Factors Impacting the Inputs of 

Traceability Recovery Approaches 

Ali, Guéhéneuc, and  

Antoniol 
2012 

Chapter book- Software 

and Systems Traceability 

SB, RB, 

EB, HTB and IR 
Springer 

32 

Improving automated requirements trace 

retrieval: a study of term-based 

enhancement methods 

Zou, Settimi and  

Cleland-Huang 
2010 

Empirical Software 

Engineering, 15(2), 

pp.119-146. 

IR Springer 

33 Using Rules for Traceability Creation Zisman 2012 

Chapter book,  In Software 

and Systems Traceability, 

pp. 147-170. Springer 

London, 2012. 

RB Springer 

34 Tracing Non-Functional Requirements 
Mirakhorli and  

Cleland-Huang 
2012 

Chapter book- Software 

and Systems Traceability 

GC 

  
Springer 

35 

Traceability Matrix for Regression 

Testing in Distributed Software 

Development  

Athira  and Samuel 2011 

Chapter book- Advances in 

Computing and 

Communications 

RTM Springer 

36 

Recovering Traceability Links between 

Business Activities and Software 

Components  

Aversano, Marulli 

and  Tortorella  
2010 

Chapter book- 

ENTERprise Information 

Systems 

IR Springer 

37 

Enabling automated traceability 

maintenance through the upkeep of 

traceability relations 

Mader, Gotel and 

Philippow 
2009 

Chapter book- Model 

Driven Architecture - 

Foundations and 

Applications 

traceMAINTAINER Springer 

 

http://link.springer.com/chapter/10.1007/978-3-642-02674-4_13
http://link.springer.com/chapter/10.1007/978-3-642-02674-4_13
http://link.springer.com/chapter/10.1007/978-3-642-02674-4_13

	COPYRIGHT PAGE
	TITLE PAGE
	Permission to Use
	Abstrak
	Abstract
	Acknowledgement
	Table of Content
	List of Tables
	List of Figures
	List of Appendices
	CHAPTER ONE: INTRODUCTION
	1.1 Introduction
	1.2 Background of the Study
	1.3 Problem Statement
	1.4 Research Questions
	1.5 Research Objectives
	1.6 Significant of Research
	1.7 Research Scope
	1.8 Organization of the Thesis
	1.9 Summary of Chapter

	CHAPTER TWO: LITERATURE REVIEW
	2.1 Introduction
	2.2 Requirements Engineering
	2.3 Requirements Traceability
	2.4 Summary of Chapter

	CHAPTER THREE: RESEARCH METHODOLOGY
	3.1 Introduction
	3.2 Research Procedure
	3.3 Systematic Literature Review (SLR)
	3.4 Quantitative Approach
	3.5 Qualitative Approach
	3.6 Summary of Chapter

	CHAPTER FOUR: RESULTS OF SYSTEMATIC LITERATURE REVIEW
	4.1 Introduction
	4.2 Conducting the Review
	4.3 Result Of SLR
	4.4 Discussion
	4.5 Summary of Chapter

	CHAPTER FIVE: RESULTS OF SURVEY AND INTERVIEW
	5.1 Introduction
	5.2 Results of the Use of Traceability Practices
	5.3 Reliability For Use of Traceability Practices
	5.4 Descriptive Statistics
	5.5 Analysis of Interviews
	5.6 Discussion
	5.7 Summary of Chapter

	CHAPTER SIX: CONCLUSION AND RECOMMENDATIONS
	6.1 Introduction
	6.2 Objectives Achievement
	6.3 Contribution of the Research
	6.4 Limitation of the Study
	6.5 Conclusion and Future Works

	REFERENCES
	APPENDIX

