
The copyright © of this thesis belongs to its rightful author and/or other copyright

owner. Copies can be accessed and downloaded for non-commercial or learning

purposes without any charge and permission. The thesis cannot be reproduced or

quoted as a whole without the permission from its rightful owner. No alteration or

changes in format is allowed without permission from its rightful owner.

CONTROLLER PLACEMENT MECHANISM IN SOFTWARE

DEFINED NETWORK USING K-MEDIAN ALGORITHM

NOOR SAAD FAHAD

MASTER OF SCIENCE INFORMATION TECHNOLOGY

UNIVERSITI UTARA MALAYSIA

2016

ii

Permission to Use

In presenting this thesis in fulfilment of the requirements for a postgraduate degree from

Universiti Utara Malaysia, I agree that the Universiti Library may make it freely

available for inspection. I further agree that permission for the copying of this thesis in

any manner, in whole or in part, for scholarly purpose may be granted by my

supervisor(s) or, in their absence, by the Dean of Awang Had Salleh Graduate School

of Arts and Sciences. It is understood that any copying or publication or use of this

thesis or parts thereof for financial gain shall not be allowed without my written

permission. It is also understood that due recognition shall be given to me and to

Universiti Utara Malaysia for any scholarly use which may be made of any material

from my thesis.

Requests for permission to copy or to make other use of materials in this thesis, in whole

or in part, should be addressed to:

Dean of Awang Had Salleh Graduate School of Arts and Sciences

UUM College of Arts and Sciences

Universiti Utara Malaysia

06010 UUM Sintok

iii

Abstrak

SDN memisahkan satah kawalan dengan sata data melalui pemindahan satah kawalan

ke entity lain. Pemisahan ini menimbulkan beberapa masalah, antaranya penempatan

pengawal dalam rangkaian. Kajian ini bertujuan untuk mengkaji penempatan node

kawalan dalam SDN. Kadeah k-median digunakan untuk menentukan kududukan nod

pengawal, dan nod pengawal dengan purata kependaman terendah akan dipilih. Penentu

kedudukan ini akan membandingkan algoritma greedy yang mengira kombinasi

berdasarkan kedudukan nod dan mengira nilai terbaik untuk setiap turutan. Kajian ini

turut menbandingkan kombinasi keputusan melalui kedudukan nod tertentu, dan

keputusan menunjukkan kaedah k-median memberikan nilai yang lebih tinggi. Tiga

nod pengawal dipilih sebagai bilangan nod minima and dinilai dari segi kelewatan dan

beban, dan keputusan menunjukkan tiga nod memadai sekiranya tiada kelewatan atau

bebenan dalam rangkaian.

Kata kunci: SDN; Pengawal; Penempatan; Purata Kependaman; K-median

iv

Abstract

Software Defined Network (SDN) decouples the control plane and the data plane, and

moves the control plane to an external entity. The decoupling raises many challenges,

and one of these is the placement of the controller in the network. This study aims to

address controller placement problem in SDN. k-median is used to determine the

placement of the controllers, and the placement with the lowest value of average

propagation latency will be chosen. The placement compares two resulted placements.

First, comparing to greedy algorithm that computes the combinations according to the

order of the nodes and calculates the best values at each step, and the results were

identical. The second comparison was with the combinations results from considering

the placement from specific nodes, and the results showed that it gives higher results

than depending on the lowest values resulted from the k-median. Finally, three

controllers are chosen as the minimum number of controllers, they were evaluated in

terms of delay and load, and as results it was found that three controllers are suitable

number of controllers as long as there is no delay or load in the network. Combining

the two algorithms for finding the placement and the number results in Controller

Placement Mechanism (CPM)

Keywords: SDN; Controllers; Placement; Average propagation latency; K-median

v

Acknowledgement

In the name of ALLAH, Most Gracious, Most merciful

All thanks and praises to Allah (SWT) for the blessings of life and for guiding me

through studies and life.

My sincere appreciation goes to my supervisors, Dr. Adib Habbal and Mr. Suwannit

Chareen Chit, for your patient guidance and encouragement through this research,

without your valuable support, this research will not be possible, Thank you.

To my parents, without your love and support I would not be able to continue my

studying, I’m so grateful for always believing in me, encouraging me, and never let me

doubt myself, I love you, may ALLAH continue to bestow his blessings on you.

To the examiners committee, I’m grateful for your guidance and remarks to make this

research better.

To UNIVERSITI UTARA MALAYSIA for giving the opportunity to further my study,

and to make my master journey enjoyable and memorable, you have my sincere

gratitude.

To my family and friends, thank you for all your support and praying.

vi

Dedication

To my family.

vii

Table of Content

PERMISSION TO USE .. II

ABSTRAK ... III

ABSTRACT ... IV

ACKNOWLEDGEMENT ..V

TABLE OF CONTENT ... VII

LIST OF FIGURES ... IX

LIST OF TABLES ...X

LIST OF ABBREVIATIONS ... XI

CHAPTER ONE INTRODUCTION ... 1

1.1 OVERVIEW ... 1

1.2 PROBLEM STATEMENT ... 3

1.3 RESEARCH QUESTIONS ... 4

1.4 RESEARCH OBJECTIVES .. 4

1.5 SIGNIFICANT OF RESEARCH .. 4

1.6 SCOPE OF THE RESEARCH ... 5

1.7 RESEARCH OUTCOMES ... 5

1.8 ORGANIZATION OF THE STUDY... 5

CHAPTER TWO LITERATURE REVIEW .. 7

2.1 SOFTWARE DEFINED NETWORK ... 8

2.1.1 Software Defined Network Layers ... 8

2.1.2 Software Defined Network Advantages .. 10

2.1.3 Software Defined Network Challenges ... 11

2.2 RELATED WORK ... 12

2.2.1 Related Work Based on k-center problem ... 12

2.2.2 Related Work Based on Different Algorithms .. 17

2.2.3 Related Work of Distributed Controllers ... 22

2.3 SUMMARY .. 25

CHAPTER THREE METHODOLOGY ... 27

3.1 INTRODUCTION ... 27

viii

3.2 AWARENESS OF PROBLEM .. 28

3.3 THE PROPOSED CONTROLLER PLACEMENT MECHANISM DESIGN 28

3.4 DEVELOPMENT OF PROPOSED MECHANISM .. 30

3.4.1 k-median .. 30

3.4.2 Simulation and Development Tools .. 31

3.5 PERFORMANCE EVALUATION ... 32

3.6 SUMMARY .. 34

CHAPTER FOUR CONTROLLER PLACEMENT MECHANISM 35

4.1 THE PROPOSED CONTROLLER PLACEMENT MECHANISM 35

4.2 IMPLEMENTATION TOOLS ... 37

4.3 IMPLEMENTATION STEPS .. 38

4.4 THE PLACEMENT VALIDATION ... 45

4.5 EVALUATION OF PERFORMANCE .. 48

4.6 RESULTS AND DISCUSSION ... 53

4.7 SUMMARY .. 60

CHAPTER FIVE CONCLUSION ... 61

5.1 CONTRIBUTION... 61

5.2 LIMITATION .. 62

5.3 FUTURE WORK ... 62

5.4 CONCLUSION .. 62

REFERENCES ... 64

APPENDIX ... 67

ix

List of Figures

FIGURE 1: TRADITIONAL SCHEME (A) SDN ARCHITECTURE (B) 2

FIGURE 2 SDN ARCHITECTURE (KREUTZ ET AL.,2015) .. 10

FIGURE 3 THE RESEARCH METHODOLOGY FRAMEWORK ... 27

FIGURE 4: THE DESIGN OF CONTROLLER PLACEMENT MECHANISM 29

FIGURE 5 THE NETWORK TOPOLOGY OF CORE NETWORK .. 32

FIGURE 6 NETWORK BORDER ROUTER ... 33

FIGURE 7 CONTROLLER PLACEMENT MECHANISM ... 36

FIGURE 8 MYREN TOPOLOGY .. 40

FIGURE 9 THE CODE FOR CREATING WEIGHTED GRAPH ... 41

FIGURE 10 CONTROLLER PLACEMENT .. 44

FIGURE 11 PLACEMENT FUNCTIONS .. 45

FIGURE 12 HIGHEST, LOWEST AVERAGE PROPAGATION LATENCY 46

FIGURE 13 K-MEDIAN AND GREEDY ALGORITHM .. 50

FIGURE 14 SHOWS AVERAGE PROPAGATION LATENCY FOR BOTH METHODS............... 52

FIGURE 15 COMPARING ALL METHODS .. 53

FIGURE 16 THE PLACEMENT OF THREE CONTROLLERS ... 54

FIGURE 17 CHECKING THE RESPONSE TIME .. 57

FIGURE 18 BEFORE CHANGING THE THRESHOLD .. 58

FIGURE 19 THE RESULTS BEFORE THE CHANGE ... 59

FIGURE 20 AFTER THE CHANGE ... 59

FIGURE 21 THE FIRST ADD AFTER THE CHANGE .. 59

FIGURE 22 THE SECOND ADD AFTER THE CHANGE .. 59

FIGURE 23 THE FIRST REMOVE AFTER CHANGING BACK ... 60

FIGURE 24 THE SECOND REMOVE AFTER CHANGING BACK ... 60

FIGURE 25 THE FINAL RUN ... 60

x

List of Tables

TABLE 1 RELATED WORK OF K-CENTER ... 15

TABLE 2 RELATED WORK OF DIFFERENT ALGORITHMS .. 20

TABLE 3 RELATED WORK OF DISTRIBUTED CONTROLLERS .. 24

TABLE 5 THE PLACEMENT OF THE CONTROLLERS .. 46

TABLE 6 THE PLACEMENT CALCULATED AND GREEDY CALCULATIONS 49

TABLE 7 COMPARING THE RESULTS OF EACH PLACEMENT ... 51

TABLE 8 THE RESULTS OF THE RESPONSE TIME ... 55

xi

List of Abbreviations

SDN - Software Defined Network

CPM - Controller Placement Mechanism

NOS - Network Operating System

FD - Forwarding Devices

DP - Data Plane

SI - Southbound Interface

CP - Control Plane

NI - Northbound Interface

MP - Management Plane

API - Application Program Interface

CPP - Controller Placement Problem

CCPP - Capacitated Controller Placement Problem

RCP - Reliability aware Controller Placement

SA - Simulated Annealing

POCO - Pareto-based Optimal COntroller placement

PSA - Pareto Simulated Annealing

GreCo - GREEN CENTRALIZED CONTROLLER

BIP - Binary Integer Program

MC - Main Controllers

SC - Slave Controllers

AVL - Average Propagation latency

MyREN - Malaysian Research & Education Network

MoE - Ministry of Education

MDeC - Multimedia Development Coperation

UITM - Universiti Teknologi MARA

xii

UTP - Universiti Teknologi Petronas

UUM - Universiti Utara Malaysia

UM - University of Malaya

UNIMAS - Universiti Malaysia Sarawak

UMS - Universiti Malaysia Sabah

IUM - International Islamic University Malaysia

UPSI - Sultan Idris Education University

UPM - Universiti Putra Malaysia

UTHM - Universiti Tun Hussein Onn Malaysia

UTM - University of Technology, Malaysia

UMT - Universiti Malaysia Terengganu

UMK - Universiti Malaysia Kelantan

UDM - Universiti Darul Iman Malaysia

UMP - Universiti Malaysia Pahang

UPNIM - National Defence University of Malaysia

UTEM - Universiti Teknikal Malaysia Melaka

NOC - Network Operation Center

UKM - National University of Malaysia

MMU - Multimedia University

USIM - Universiti Sains Islam Malaysia

UNITEN - Universiti Tenaga Nasional

MIMOS - Malaysia's national R&D centre in ICT

TMRND - Telekom Research & Development

MOHE - Ministry of Higher Education

USM - Universiti Sains Malaysia

UNIMAP - Universiti Malaysia Perlis

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&sqi=2&ved=0ahUKEwic2fau0IjNAhXMPo8KHaWnDPMQFggcMAA&url=http%3A%2F%2Fwww.unimas.my%2F&usg=AFQjCNHNnxFk5ZTHx1lHRyJg9QyDzuX5_w&bvm=bv.123664746,d.c2I
http://www.udm.edu.my/

1

CHAPTER ONE

INTRODUCTION

1.1 Overview

The current network schemes are complex and very difficult to manage. Predefined

policies make the network difficult to be configured and also very hard to reconfigured

so that it can respond to the load, faults and changes in the network (Open Networking

Foundation, 2012). Current networks are integrated vertically where the control plane

(that decides how to handle the traffic), and the data plane (that forwards the traffic

based on the decision of the control plane) are coupled together which lead to the

reduction of the flexibility as well as holding back the innovation and the network

infrastructure evolution.

Software Defined Network (SDN) has gotten a lot of attention recently as a solution to

overcome the limitations of the current network schemes. According to the Open

Networking Foundation, “ the SDN architecture, the control and data planes are

decoupled, network intelligence and state are logically centralized, and the underlying

network infrastructure is abstracted from the applications” (Open Networking

Foundation, 2012). Based on this definition (Sezer et al., (2013)) extracted four features

which are: the control plane and the data plane are separated, interfaces are open

between the data plane and the control plane, the controller is centralized, and the

network programmability by external applications.

 Kreutz et al., (2015) defined SDN as an architecture for the network that has four

pillars: First, the separation of the control plane and the data plane. The controller

2

operations are removed from the network devices, which will have only the function of

forwarding the packets. Second, the decisions for forwarding are flow-based and not

destination based. In SDN the flow is defined as the sequence of packets between the

source and the destination. All of the flow packets receive identical polices of service

at the forwarding devices, which will behave in a unified manner regardless their type.

Third, the control logic is moved to an external entity, the one that is called the

controller, or the Network Operating System (NOS). It is logically centralized and it

has the responsibility of providing resources and the abstractions to simplify the

programming of the network devices. Fourth, the network can be programmed by

software applications, which run on the top of the NOS that interacts with the data plane

that form the underlying layer. Figure 1 shows SDN architecture in comparison to the

current network scheme.

Figure 1: Traditional Scheme (a) SDN Architecture (b)

Due to the separation of the control plane and the data plane, many challenges such as

the ability to handle high security, high touch and high performance of the packet

3

processing that flows efficiently that must be addressed. Also, several other aspects

such as the scalability of the network, which can be split into scalability of the controller

and scalability of the network node, the security and protecting the network against

attacks, interoperability which is the transition from traditional networks to SDN

require great attention.

One of the key challenges is the controller placement, which is the main focus of this

research. Many researchers have attempted to address this problem by proposing

different solutions. Heller et al., (2012) considered the first to analyse the controller

placement problem that becomes a motivation for a lot of researchers like Yao et al.,

(2014). This study is motivated by the work presented by Heller. k-median algorithm

will be used to find the placement of the controllers. k-median is a well-known

algorithm that is used for the purpose of finding k-center locations for instance

(warehouses) through minimizing the sum of the distance of the desired points.

1.2 Problem Statement

The key problems in SDN is the controller placement problem (Yao, Bi, Li, & Guo,

2014). Every aspects of the decoupled control plane are affected by the controller

placement problem like fault tolerance, state distribution and network performance. The

location and the number of the controllers determine the performance of the network

(Jiménez, Cervelló-Pastor, & García, 2014), as poor placement will affect the

robustness of the network, which in return affect the operation of the network, for

instance the long time to recover after failure.

Heller et al., (2012) pointed to the rising concerns about the availability, performance

and scalability, also how the controller placement problem will affect the aspects of the

4

control plane that decoupled from the data plane in the network. The load on the

controllers should also be considered for designing the controller placement due three

reasons: failure, the limitation of the server capacity and message processing latency.

1.3 Research Questions

1. How to determine the placement of the controllers across the network?

2. What is the impact of the proposed controller placement on SDN performance?

1.4 Research Objectives

The main aim of this study is to propose controller placement mechanism to achieve

the following objectives:

1. To design a controller placement mechanism using the k - median algorithm as a

solution for the controller placement problem in SDN.

2. To evaluate the proposed controller placement mechanism in terms of delay and

the load on the controllers.

1.5 Significant of Research

SDN is a network architecture that is considered as the future of the Internet due to the

limitation of the traditional networks scheme. It decouples the control and the data

plane, which leads to simplified the management of the network and speed up the

innovations (Yannan et al.,2014). The challenge is how to place the controllers across

the network.

5

By proposing a solution for the controller placement, it will provide better performance

of the network, which will have an impact on the user. The propagation latency will be

reduced, which will provide faster response time. The network will be easy to monitor

and managed by the network administrator.

1.6 Scope of the Research

This study focused on the controller placement in SDN at the control plane layer. K-

median algorithm will be used to find the placement of the controllers. The proposed

mechanism will be designed using Python programming language. The proposed

mechanism will be evaluated by the metrics of delay, and the load on the controllers

across the network.

1.7 Research Outcomes

The outcome of this research will be as follows:

1. Controller placement mechanism, which the location of the controllers will be

known.

2. The optimal number of controllers will be chosen based on evaluating the

placement using delay and load algorithm.

1.8 Organization of the Study

The study is organized as follows:

Chapter one is the introduction of this study including the problem statement, research

questions, research objectives, significance, scope and the outcome. Chapter two is

6

literature review of the work about SDN and the work related to the problem of this

research, as well as summary of the related work. Chapter three explains the

methodology. Chapter four describe the implementation of the mechanism, the tools

that been used, and the formulas. Chapter five will include the contribution, future

work, limitation and conclusion.

7

CHAPTER TWO

LITERATURE REVIEW

This chapter reviews the literature about SDN. The first section will be about the SDN

in general; reviewing its layers and, its advantages, and challenges. The second section

will be about the related work, which researches the controller placement problem, and

the controllers’ distribution. The third section will be presenting this research

mechanism in terms of the work it based on. The final section will be summary of this

chapter.

Current network faces the problem of being limited under the high network traffic,

which in terms will have effect on the network performance. Other issues like the high

demand for security, scalability, reliability, and the speed of the network can severely

block the performance of the network devices, because of the increasing traffic of the

network. The networks which are the backbone of the Internet must have the ability to

adapt to the changes without causing huge labor intensive in terms of software and

hardware modification. However, the traditional network cannot be re-tasked or

reprogrammed easily.

One of the possible solutions to overcome the limitation is by implementing the rules

of the data handling as software modules instead of including them in the hardware.

This method will enable the administrators of the network to have more control over

the traffic of the network, which will lead to great potential to improve the network’s

performance greatly in terms of using the resources of the network efficiently. Such

solution is represented by the technology of SDN (Hu, Hao, & Bao, 2014).

8

2.1 Software Defined Network

SDN is a network architecture that separates the control and the data plane, and moved

the control plane to external entity called the control layer. Kreutz et al., (2015) defined

the SDN as the architecture that defined by four major features: the separation of the

data plane and the control plane, the decisions are flow based not destination based,

moving the control logic to an external entity, and finally the programmability of the

network.

2.1.1 Software Defined Network Layers

SDN consist of three layers, namely the infrastructure layer (data plane), the control

layer (control plane), and the application layer (management plane). These three layers

as well as the interfaces can be defined as following (Kreutz et al., 2015)

Forwarding Devices (FD): are data plane software or hardware based devices that can

perform a group of elementary operations. They have an instruction sets that used to

take an actions on the incoming packets, the Southbound Interface (SI) define the

instructions, the SDN controllers install the instructions in forwarding devices and also

implementing the protocols for the southbound.

Data Plane (DP): the forwarding devices are interconnected by wireless radio channels

or wired cables. The data plane is represented through the network infrastructure that

is consisting of interconnected forwarding devices.

Southbound Interface (SI): consists of southbound (API) that defines the sets of the

instruction of the forwarding devices, it also defines the protocol for communication

9

between the control plane and forwarding devices elements. The protocol formalizes

the interaction between the data plane and the control plane.

Control Plane (CP): it program the forwarding devices through the well-defined

southbound interface. It can be known as the network brain and all the control logic

reside in the controllers and applications forming the control plane.

Northbound Interface (NI): the Network Operation System (NOS) offers an Application

Program Interface (API) to the developers of the application. The northbound interface

is represented by this API, the northbound interface is common interface that use for

developing applications and also it abstracts the sets of the low level instruction that are

used by the southbound interfaces that used to program the forwarding devices.

Management Plane (MP): is the set of the applications that affect the functions that are

offered by the northbound interface for the implementation of the operation logic and

the network control. The applications are monitoring, firewalls, load balancers, routing,

and so forth. The policies that will be translated later to the southbound instructions that

are used to program the forwarding devices behavior, these policies are defined by the

management application. Figure 2 shows SDN architecture and the open interfaces of

between the layers.

10

Figure 2 SDN Architecture (Kreutz et al.,2015)

2.1.2 Software Defined Network Advantages

SDN has four major advantages (Hu et al., 2014). Firstly, SDN possesses speed and

intelligence: SDN has an ability of optimizing the distribution of workload through the

control panel, which leads to transmit in high speed and use the resources in most

efficient way. Secondly, SDN allows easy management of the network: the network is

controlled remotely by the administrators and also changes the network’s

characteristics like the services and the connectivity that is based on the patterns of the

workload. This will lead to enable the administrators to access the configuration

modifications efficiently and instantly.

Thirdly, multi tenancy: the SDN has the ability to be expanded over the multiple

partitions of the network like data clouds and data centers. Forthly virtual application

11

networks: it uses the network resources’ virtualization to keep the low level physical

details hidden from the applications of the users.

2.1.3 Software Defined Network Challenges

As SDN still in its infancy it has so many challenges that need to be addressed and

discussed. Sezer et al., 2013 presented four challenges in SDN in terms of questions

that discuss performance, scalability, security, and interoperability.

Performance vs. flexibility: “How can the programmable switch be achieved?” One of

SDN challenges is the ability to handle high security, high touch and high performance

for the packet processing that flows efficiently. The two main elements that should be

considered are the performance and the programmability or flexibility. The

performance means network node’s processing speed putting into consideration the

throughput and latency. Programmability refers to the ability of changing and / or

accepting a new instructions set and that to change the functional behavior. Flexibility

means the capability to adapt systems in order to support new unexpected features.

Scalability: “How to enable the controller to provide a global network view?” Another

issue of SDN is scalability; it can be split into scalability of the controller and the

scalability of the network node. As the scalability of the controller is the main focus

three challenges can be specified. First the latency that occurs due to the exchange of

network information between a single controller and multiple nodes. Second is how the

communication among controllers carried out using APIs of the east and westbound.

Third is the controller back end database size and operation.

12

Security “How can the SDN be protected from malicious attack?” Fundamental

challenge in SDN is the security challenge and protecting the network against attacks.

At the level of the controller application many questions about authorization and

authentication mechanisms have been raised to give multiple organizations the ability

to have an access to the resources of the network and provide a protection for the

resources. The same network privilege is not required for all the applications and the

model of the security must be in a place to support the protection of the network and to

isolate the applications.

 Interoperability “How can SDN solutions be integrated into existing network?” This

means the transition from traditional networks to SDN. For this all the devices and all

the elements needed to be SDN enabled. The simplest transition to a new network is

not possible but it is suited for campus network and data centers.

2.2 Related Work

This section presents the related work in three categories, each category will be

summarized in a table represents all the work under that category. The first category

(A) examines the research papers that used k-center problem as the solution to finds the

placement of the controllers. The second category (B) examines the researchers that

used different solutions for the controller placement. Finally, (C) is about the work that

researched the controllers’ distribution in SDN.

2.2.1 Related Work Based on k-center problem

Heller et al., (2012) is considered as the first to search the controller placement problem

in SDN. They focused in their research on finding answers to two main questions as a

13

solution to the controller placement problem which are how many controllers are

needed in the network? They also attempted to answer where to place these controllers?

To find the answers they chose the propagation latency as the metric divided into

average case latency and worst case latency. Finding the optimal minimum latency was

not their main aim, but analyzing the problem of the controller placement. As for the

topology they chose Internet2 OS3E topology and over 100 topologies for WAN from

Internet topology zoo.

They found that for Internet2 OS3E topology the quality of placement is varying. Some

are bad, most are mediocre and only a small percentage is optimal. As for the number

of the controllers needed it differs depending on whether to optimize the average case

latency or the worst case latency since one must be traded for the other. The Internet2

operators suggest that the number of the controllers should be plus one as the extra

controller would be for fault tolerance. As for the other topologies they found that the

larger the topology becomes more controllers will be needed to reduce the same amount

of latency in the small ones. In most topologies one metric should be traded off for the

other, while a quarter of the topologies have one solution to optimize both of the

metrics. They conclude that the number of the controllers and where to place them

depend on the metrics chosen, the topology of the network, and the desired reaction

bound.

Yao et al., (2014) introduced the Capacitated Controller Placement Problem (CCPP)

that corresponds to the capacitated k-center problem to reduce the load on the

controllers. k-center is also used to reduce the radius that they defined as the maximum

distance or latency between the controller and the switches related to it. They provided

14

three reasons on why the load on the controllers should be considered which are

failures, the limitation of the server capacity and message processing latency. They also

defined the four components that form the load of the controllers in SDN. First the

processing of PACKET_IN events and the delivery of these events to the applications.

Second the view maintaining of the partition of the local network. Third, forming the

global view by communication with other controllers, and finally, install the flows entry

that are generated by the applications.

The authors pointed that the first component is the most significant part when it comes

to the total load. When there is large quantity of messages that will arrive at the

controller, there is possibility of bottlenecks for the controller memory, bandwidth and

processor. The processing of events plays a major role in determining the availability

and the efficiency of the SDN. As a result, they found that capacitated k-center strategy

will reduce the number of the controllers that are required in the network to avoid the

overload on the controllers, reduce the load on the heaviest load controller and finally

reduce the radius of the network.

Jimenez et al., (2014) defined the principles of designing scalable control layer for

SDN. They showed the characteristics of the controller that can optimize the network’s

management. The principles were addressed in term of the controller placement

problem. They considered the control layer to be virtual overlay network above of the

underlying physical network. The nodes are connected to the controller associated with

them in tree form where the controller is the root of the tree.

The authors pointed that to design the control layer, the placement of the controllers

and their number must be taken into consideration because good controller placement

15

will lead to balancing the load among the controllers and minimize the communication

time. At first they used two algorithms; the first is k-median that was used for the

purpose of minimizing the average propagation latency between the controllers and the

nodes, and then they used the k-center problem to minimize the furthest distance of the

nodes to the closet controller to them. For the controller placement problem, they used

k-critical that can find controllers’ location and minimum number in order to create

robust control topology that can deal with the failure robustly and would be balancing

the load among the controllers.

After analyzing, evaluating and comparing to other solutions for the controller

placement problem they found that the k-critical gave the best result and achieved its

purpose. Also the performance of the network is determined by the number of the

controllers as well as their location. If the controllers were more than the optimal

number it will be unfit and costly, and bad placement will affect the performance of the

network.

Table 1 Related Work of K-center

Author Metrics Algorithms Contribution Challenges

Heller

et al.,

(2012)

Propagation

latency

(average

case latency,

worst case

latency)

k-center

problem

They found that

the number of the

controllers and

their placement

depend on the

metrics that have

been chosen, the

topologies and the

Their main goal was

not to minimize the

latency or to find the

optimal placement but

to analyze the

problem. In this

article they found

most of the time one

16

Author Metrics Algorithms Contribution Challenges

desired reaction

bound.

of the metrics should

be traded off for the

other.

Yao et

al.,

(2014)

The load of

the

controllers

and the

radius of the

network

Capacitated

k-center

problem

They were able to

reduce the number

of controllers, the

load on the

controllers and the

radius of the

network.

Jimenez

et al.,

(2014)

Latency,

distance and

failure

k-median, k-

center and k-

critical

algorithms

Create robust

control layer that

deal with failure

robustly and

balance the load

Building tree

topology from

selected controllers

considered different

performance metrics

and defining load

migration mechanism

among the controllers

17

2.2.2 Related Work Based on Different Algorithms

Yannan et al., (2014) proposed Reliability aware Controller Placement (RCP) problem

that will decide the placement of the controllers as well as the switches assigned to the

controller. Their purpose is to maximize the reliability of the network by minimizing

the novel matric that they proposed, which is the expected percentage of the control

path loss. They defined the control paths to be the route set that are used as

communication mean between the controllers and the switches associated with them

and among the controllers themselves. The control path loss was defined as the number

of control paths that are broken because of the network failures.

The authors run simulation on real topologies which are Internet2 OS3E topology and

Rocketfuel topologies. They evaluated the work using two algorithms, namely the l-w-

greedy and the Simulated Annealing (SA). They compared both algorithms with the

random placement algorithm. They also examined how the reliability is affected by the

number of the controllers and the tradeoff between the latency and the reliability.

The authors found that the SA algorithm gives the best performance while the random

placement algorithm was the worst. As for the number of the controllers they found that

it is depend on the topology of the network but all the topologies showed that too many

controllers or too less will lead to reduction of the reliability of the network. Finally,

they found that they were able to improve the reliability without causing unacceptable

latencies.

Sallahi &St-Hilaire (2015) proposed mathematical model that can determine the

optimal number of controllers as well as their location, the controllers’ type and the

interconnection between all the elements of the network. The main goal of the model is

18

to minimize the network’s cost taking into consideration the various constraints like the

controller capacity and the path setup latency.

The authors made an assumption that the following information are known: the

switches’ location in the network and the amount of traffic that goes from the switch to

the controller. The bandwidth length that available for different links type that connect

the controllers and the switches. The cost of the controllers and the number of the

available physical ports. The maximum number of requests that the controller can

handle per second. The number of the controllers that available from each type. Finally,

the maximum latency of the link setup that is allowed for the communication between

the controller and the switch.

As a result, they found that the model is suitable for planning small scale SDN. For

larger problem instances, the solver will take much time and the memory will run out.

They set the time limit to 30 hours and after the simulation ended, they found only the

settings with small size can be optimized in reasonable time amount and 10% of the

problems cannot be solved within the 30 hours.

Lange et al., (2015) presented POCO, a framework based on MATLAB that has the

ability to compute the resiliency of Pareto-based Optimal COntroller placement. While

POCO is workable and appropriate for small scale and medium scale networks they

wanted to evaluated it in large scale network, the metrics that they chose for this purpose

are the latency between the nodes and the controller they assigned to as well as the

latency among the controllers themselves, balancing the load among the controllers,

and the resiliency against the failure of the links and the nodes. They also analyzed the

tradeoff between accuracy and time.

19

For evaluating the framework on large scale network they extended POCO toolset by

adding heuristic approach called Pareto Simulated Annealing (PSA) for its ability to be

implemented in MATLAB and providing set of solutions at any time. They ran an

exhaustive evaluation on number of topologies from Internet zoo topology and they

examined different number of solutions for the controller placement problem.

After the evaluation they found that the heuristic approach that had been added made

POCO suitable for large scale networks and provided different solutions for the

controller placement problem with respect to the four metrics. They left the choice to

the decision makers to choose the solution that suitable for their desired requirement

and to determine the metrics they want to tradeoff since some of these metrics compete

with each other. They also found that the (PSA) is less accurate but it has fast

computational time and the accuracy is acceptable. Finally, they found that this

approach is suitable for evaluating large problem instances that due to the massive

memory requirements cannot be computed.

Ruiz-Rivera et al., (2015) introduced (GreCo) the GREEN CENTRALIZED

CONTROLLER algorithm that aim to reduce the consumption of energy in SDN by

switching off the maximum number of links in terms of latency, controller load and

link utilization. They also developed the Binary Integer Program (BIP) for the purpose

of deriving the optimal solution for the problem.

The authors considered the possibility of shutting the links with the shortest path

between the controller and the switches which might make the controller search for

alternative path. They did not consider the possibility of shutting the switches off, due

to the reason of to respond to the network’s events that the controller might need to

20

access the switches related to it. GreCo makes sure that all of the controllers have

similar number of the switches which is defined as the optimal number. If the number

was more than the optimal number, the algorithm will check the possibility of moving

the switches to another controller that has the lowest delay. If there were not such

controller then the switches remain with their original controller, then they will examine

the link utilization and the load balancing among the controllers. They used different

kinds of topologies as well as Yen’s algorithm for the purpose of finding the demand’s

path.

After the evaluation and comparing GreCo to BIP they found that they were able to

save up to 55% of the energy during the off peak times and it used 20% more links in

comparison with the optimal solution. They also found that shutting off too many links

will cause higher load on the remaining links and it will lead to higher consumption of

energy in comparing to the time when the links were active.

Table 2 Related Work of Different Algorithms

Author Metrics Algorithms Contribution Challenges

Yannan

et al.,

(2014)

The expected

percentage of

control path

loss

l-w greedy,

Simulated

Annealing

(SA) and

random

placement

Minimizing the

expected percentage

of control path loss

and improve the

reliability without

unacceptable

latencies.

Improving the

reliability of the

control network

itself

Sallahi

& St-

The cost of

network

Mathematical

model

Reduce the cost and

find the optimal

Suitable for small

scale SDN, for

21

Author Metrics Algorithms Contribution Challenges

Hilaire ,

(2015)

number of

controllers, their

location, type and

interconnection

between network

elements

larger it will

consume time and

memory

Lange

et al.,

(2015)

Latency

between the

controller

and between

the

controllers

and switches,

balancing the

load on the

controllers,

resiliency

against

failure

Pareto

Simulated

Annealing

(PSA)

They presented

POCO a framework

that has the ability to

fined Pareto optimal

placement

considering the

different

performance

metrics

The framework

has acceptable

accuracy but fast

computational

time also for the

optimal placement

some metrics

needed to be

treaded off depend

on the decision

makers

Ruiz-

Rivera

et al.,

(2015)

To reduce the

energy

consumption,

delay,

controllers

GreCo , BIP

and Yen

algorithm

They were able save

the energy up to

55% with respect to

the metrics

Considering other

model for energy

consumption

where the rate of

the energy

22

Author Metrics Algorithms Contribution Challenges

load and link

utilization

consumption of

links is

proportional to the

links utilization

2.2.3 Related Work of Distributed Controllers

Dixit et al., (2014) proposed ElastiCon which is elastic distributed controller

architecture that can dynamically make the controller pool shrunk or grown depending

on the conditions of the traffic. It can also balance the load among the controllers which

lead to better performance at all times regardless of the dynamics of the traffic. They

proposed 4-phase protocol for switch migration from one controller to the other to

balance the load. They designed the protocol to ensure liveness where at least one

controller will be active for a switch at all times. Safety where the switch’s

asynchronous messages processed by exactly one controller, and finally serializability

where the events that are transmitted by the switch processed by the controller in the

same order.

The authors also proposed three algorithms for the ElastiCon. First the load adaptation

algorithm is used to determine whether the current controller pool can handle the

current load of the network or not. Second, the rebalancing algorithm that tries to

balance the controllers’ average utilization. Third, the resizing algorithm that tries to

keep the controller utilization between the two presets high and low thresholds. The

load was measured by reporting the CPU utilization and the rates of I/O at the controller.

After implementing and evaluating the ElastiCon they found that the design achieve it

23

purpose of balancing the load automatically and the controller pool can shrink or grown

dynamically depending on the conditions of the traffic.

Santos et al., (2015) proposed framework called D-SDN which is a decentralization

SDN framework that enables the controllers to be distributed physically as well as

logically in the network in hierarchy form with security as integral part of the

framework. The controllers are divided into master or Main Controllers (MCs) and

slave or Secondary Controllers (SCs). The slave controllers do not receive messages

from the switches, the authors envision the roles of the slave controllers as the one who

responsible of managing the switches in sub domain that placed within the master

controllers’ domain. The slave controllers can be changed into master controllers upon

sending request to the master controllers who have the final word in this matter, when

the master controllers agree they delegate the slave controllers to act like masters, the

communication between the master and the slave controllers is conducted within the

same administrative domain. The communication among the slave controllers

themselves in designed to be fault tolerance.

In the experiment four controllers were used, one switch with only one node that acted

as the master. They all were configured in a wireless ad hoc network and Paxos election

protocol was integrated in the framework. After evaluating they found that the

framework achieved it purpose of distributing the controllers and it was able to detect

failure in optimal time.

24

Table 3 Related Work of Distributed Controllers

Author Metrics Algorithms Contribution Challenges

Dixit et

al.,

(2014)

Balancing the

load among

the controllers

4-phase

migration

protocol, load

adaption

algorithm,

rebalancing

algorithm and

resizing

algorithm

ElastiCon was

able to balance

the load

automatically

and the

controller pool

shrunk or grown

dynamically

depending on

the condition of

the traffic.

They did not

consider the factor

of controller

placement and

controller

performance in a

multi-tenant data

centers

Santos

et al.,

(2015)

Fault

tolerance

D-SDN Distribute the

controllers not

only physically

but also

logically with

the ability to

detect failure in

optimal time

Balancing the load

among the

controllers and inter

domain routing

The controller placement mechanism proposed in this research is based on the work

proposed by Heller et al., 2012, and Dixit et al., 2014. The mechanism is consisting of

two algorithms. The first algorithm is k-median to find the placement of the controllers.

25

This part of the mechanism is based on Heller et al., 2012, where they used k-median

to find the placement of the controllers with lowest average propagation latencies. They

also used k-center to find the placement of the controllers with lowest worst case

latencies. The number of the controllers were chosen solely on propagation latencies,

they decided that the number of the controllers should be where the reduction of both

propagation latencies reached half.

The topology they used for their research is OS3E topology which is USA based

topology, and some other topologies which were also based on the USA. This research

topology is MyREN which is Malaysian topology that will explained in more details in

chapter 3. In addition, k-median is used only to find the placement of the controllers,

after finding the placement the second algorithm will be used to find the number of the

controllers.

The second algorithm is delay and load algorithm to evaluate the performance of the

network as well as decide the optimal number of controllers. This part of the mechanism

is based on Dixit et al., 2014, where the refer that the most direct way to sample if there

is load in the network is by sampling the response time. This way was used in this

research, also the threshold was set to three seconds which the same as Dixit. They

proposed an architecture for controllers’ distribution without considering the placement

of the controllers.

2.3 Summary

This chapter presented the literature related to SDN. The first section was look through

SDN in general, the definition of the network as well as the main features, the layers,

the advantages, and the challenges. The second section was about the work related to

26

controller placement, which is divided into three categories based on the algorithm

chosen for that work, each category is summarized in table presenting the work belong

to that category.

27

CHAPTER THREE

METHODOLOGY

3.1 Introduction

The process of this research will be conducted as the following (Vaishnavi, V. K., &

Kuechler, W. (2015)): first, the awareness of the problem that focus on the problem

conducted in this research. Second, the suggestion step that examines the design. Third

step is the development which includes the approaches that will be used to find the

controller placement using k-median algorithm. Then the evaluation step that will

evaluate the proposed placement in terms of the delay and the load on the controllers,

which also determine the number of controllers. The final step is the conclusion that

will include the final results which is the Controller Placement Mechanism (CPM).

Figure 3 shows the methodology framework of this research.

Figure 3 The Research Methodology Framework

28

3.2 Awareness of Problem

The controller placement problem is one of the main issues in SDN. The aspects of the

network will be affected by the controller placement. Through good placement, the

network’s performance, scalability, and reliability can be improved, depending on the

metrics chosen for the placement. The placement is also determined by other two

factors, which are the topology and the reaction bound (Heller, Sherwood, &

McKeown, 2012).

This study aims to find solution for the controller placement problem in SDN and

evaluate the proposed solution in terms of delay and load on the controllers. This work

is based on the work proposed by Heller et al., (2012) to find the placement of the

controllers. The delay and load algorithm is used to find the optimal number of

controller by setting the threshold of response time to three seconds based on Dixit et

al., (2014).

3.3 The Proposed Controller Placement Mechanism Design

Heller et al., (2012) is recognized as the first paper to search the controller placement

problem with propagation latency as their main metric. Their main objective was to

analyse the problem and present their analysis for further studying, which many

researchers did at later time where they considered this paper as their main reference or

one of the main for instance Yao et al., (2014).

This controller placement mechanism is designed as following: first setting the

topology (MyREN), followed by creating graphs of the network. k-median algorithm

will be used to calculate average propagation latency for all the possible placements in

the network. The resulted combinations of the placement will be compared to greedy

29

algorithm, then to placement from specific node. After the comparison, the performance

will be evaluated in terms of delay and load by following delay and load algorithm, and

as a result the number of controllers suitable for the network will be decided. Figure 4

shows the design of this work.

Figure 4: The Design of Controller Placement Mechanism

30

3.4 Development of Proposed Mechanism

The work is developed using Python Programming Language. The work is based on the

work proposed be Heller et al., (2012), who found the placement according to k-median

algorithm which finds the average propagation latency, and k-center which finds the

worst case latency. This work uses only k-median algorithm that explained in the

section 3.4.1. Section 3.4.2 is about simulation and development.

3.4.1 k-median

k-median is an algorithm that used to find k places based on the distances among the

points, it will calculate the total length of the shortest distance between two given

points, and divided on the total number of the points. In this research, k-median is used

to find the average propagation latency according to the formula below.

For network graph 𝐺 (𝑉,𝐸)

𝑉 Presents the nodes, 𝐸 is the edge weights that present propagation latency

𝐿𝑎𝑣𝑔(S´) = 1

𝑛
 ∑ min

𝑠∈𝑆´
𝑑(𝑣, 𝑠)𝑣∈𝑉 ………………………………………………… (1)

 𝑑(𝑣, 𝑠) Is the shortest path from the node 𝑣 ∈ 𝑉 to 𝑠 ∈ 𝑉

 The number of the nodes 𝑛 = |𝑉|

 S´ is the placement from all the possible set of placement S, |S´ | = 𝑘 the number of

controllers

𝐿𝑎𝑣𝑔 (S´) is minimum, which only the placement with lowest average propagation

latency will be chosen.

31

3.4.2 Simulation and Development Tools

Anaconda 2, Spyder, and Python are used for the purpose of developing and evaluating

the controller placement mechanism. Number of Python packages are used for this

purpose, some of them will be explained in the next two chapters.

1. Anaconda 2

It is a free distribution for Python programming language that developed by

Continuum analytics “Anaconda @ continuum.io,” n.d.). It contains over 400

python packages, and provide a system for package management called Conda,

which through any package needed can be installed simply by writing:

Conda install ‘package name’

2. Spyder

It is a scientific environment for developing python (“Spyder @

pythonhosted.org,” n.d.). It is can be used through Anaconda, and it supports

the use of multiple consoles for python and Ipython and its include number of

the important libraries for python, like numby, matplotlib, scipy.

3. Python

Python is an open source, high level and structured programming language

(“Python @ python.org,” n.d.). It is created in the early 1990s by Guido Van

Rossum after the comedy program of Monty Python's Flying Circus. It has been

growing steadily over the years, as the interest in the language rise for its ability

to perform large variety of programming tasks. Python can be used on any

operating system; it also has large number of libraries that provides different

services. It is powerful ,fast, friendly and easy to learn.

32

3.5 Performance Evaluation

The topology used in this research is MyREN (Malaysian Research & Education

Network) topology which is an inter-institution network that connects researchers,

academicians, and scientists across Malaysia through high-speed backbone network

(“MyREN @ Myren.net.my,” n.d.). It was launched first at March 2005, under

the governance of Ministry of Education (MoE) and management of Multimedia

Development Corporation (MDeC). The network is telco-neutral and operates on dual

stack (IPv4/IPv6) environment. It consists of 37 nodes and 39 edges. Figure 5 shows

the network topology of the core network, and Figure 6 shows the border router of the

network.

Figure 5 The Network Topology of Core Network

33

Figure 6 Network Border Router

The performance is evaluated in terms of delay, and load which will be examined

according to response time from the controllers. Dixit et al., (2014) pointed that the

most direct way to examine the load is by sampling the response time from the

controllers, if there is delay in the response, then it is mean there is load on the

controller. They set the threshold to sampling the response time to 3 seconds, if it passes

this threshold then there is delay and in return there is load.

This work adapts this idea and examined the response time from the controllers, to

evaluate the performance of the network, as well as to determine the number of the

34

controllers in the network. The thresholds are high threshold and lower threshold, the

high threshold is 3 seconds, if the response time pass it then a new controller will be

added to the network. The lower threshold is set to 1.5 seconds, if the response time is

less than that, then there is no need to an extra controller as long as the minimum

number of the controllers is three controllers. If it passes 1.5 seconds threshold then

there is delay and possibility of load, in this case no changes will added to the network.

3.6 Summary

This chapter presented the methodology of this research in details. First section was

about the steps of the methodology and the results of each step. The second section was

about the problem that this research focus on. The third section presented the design of

this research. The fourth section about the development, which presented the algorithm,

and the tools. The tools are used for implementation and evaluation. The fifth section

explained the topology used in this research, and the evaluation of the performance of

the network and how the optimal number of controllers will be chosen.

35

CHAPTER FOUR

CONTROLLER PLACEMENT MECHANISM

This chapter explains the controller placement mechanism conducted in this research.

First, it will explain the mechanism as whole, then the tolls used, after that

implementation steps to find the placement. The resulted placement will be explained

after that, followed by comparison of the placements, then evaluation of the

performance that will decide the number of the controllers. Finally, the summary of this

chapter.

4.1 The Proposed Controller Placement Mechanism

The controller placement mechanism proposed in this research consists of two

algorithms. The first one is k-median to find all possible placements of controllers in

the network. The placements will be decided by calculating the average propagation

latency for any placement, then the placements with the lowest values will be chosen.

This step will be explained in details through this chapter.

The second algorithm is the delay and load algorithm that sample the response time to

determine if there is a delay and load in the network. This algorithm will be used for

evaluating the performance as well as determined the optimal number of the controllers,

by adding and removing controllers following the algorithm. Figure 7 shows the

controller placement mechanism and its two algorithms.

36

Figure 7 Controller Placement Mechanism

37

4.2 Implementation Tools

The implementation was carried on Linux mint 17.3 Rosa Cinnamon 32-bit operating

system. The controller placement approach is coded using Python 2.7 through Spyder

program as part of Anaconda 2 distribution, below are some of the main packages used

for developing the mechanism.

a. Networkx

Is one of Python packages that used for creating, studying, and manipulating the

structure, functions, and dynamics of complex networks(“networkx @

networkx.github.io,” n.d.). In this study, it is used to create the graph of the

topology, and to find the nodes and the edges of the topology, and the total

number of each.

b. Multiprocessing

It is Python packages that are used for generating a number of processes, its

offers concurrency both locally and remotely (“multiprocessing @

docs.python.org,” n.d.). in this study, this package is used for the purpose of

finding all the possible combination in the network.

c. Time

This package provides all the functions that are related to time(“time @

docs.python.org” n.d.). In this study, the package has been used to calculate the

duration for creating all the possible combination of the controller placement. It

also used for calculating the duration of sending and receiving from the

controller to examine the delay and the load on the controller, and in this case,

it was used with socket package.

38

d. Geo

This package works with the function for geographic coordination. It was

included as part of the code and it was used to read the longitude and latitude of

each node in the network for the purpose of finding the distance between them.

4.3 Implementation Steps

This section explains the implementation steps that had been taken in order to find the

placement of the controllers in SDN. The first step is to choose the topology and coding

it. Second is to find the distances between the nodes. In third step k-median is used to

find the all possible combinations of the controllers.

1. The Topology

MyREN is the topology chosen for this research, it is Malaysian-based topology

that consists of 37 nodes and 39 edges. Two of the nodes were removed from

the calculation because they were external nodes that connect the nodes in

Malaysia to other countries. The topology had been coded in a class called

zoo_myren using the data set of the topology from Internet Topology Zoo, some

of the coordinations of the nodes were missing, but were able to obtain from

google map, and by contacting the administer of the topology. They were added

manually to create the graph. The nodes, the edges, as well as figure 8 showing

the graph of the topology, are showing bellow:

Nodes: 35 nodes

[“uitm”, “utp”, "uum" ,"um", "unimas", "ums", "ium", "upsi", "nottingham

malaysia", "upm", "uthm", "utm", "umt", "umk", "udm", "ump", "upnim",

39

"utem", "noc", "ukm", "mmu", "usim", "uniten", "mimos", "monash malaysia",

"tmrnd", "mohe", "usm", "unimap", "cyberjaya pop", "border_router", "south

pop", "east coast pop", "north pop", "kl pop"]

Edges: 37 edges

[(“east coast pop”, “umt”), (“east coast pop”, “ump”), (“east coast pop”,

“cyberjaya pop”), (“east coast pop”, “kl pop”), (“east coast pop”, “umk”), (“east

coast pop”, “udm”), (“south pop”, “uthm”), (“south pop”, “kl pop”), (“south

pop”, “utem”), (“south pop”, “cyberjaya pop”), (“south pop”, “utm”),

(“unimas”, “kl pop”), (“unimap”, “north pop”), (“mohe”, “cyberjaya pop”),

(“north pop”, “uum”), (“north pop”, “usm”), (“north pop”, “kl pop”), (“north

pop”, “cyberjaya pop”), (“upsi”, “kl pop”), (“ums”, “kl pop”), (“uniten”,

“cyberjaya pop”), (“uitm”, “kl pop”), (“usim”, “cyberjaya pop”), (“monash

malaysia”, “cyberjaya pop”), (“ukm”, “cyberjaya pop”), (“ium”, “kl pop”),

(“tmrnd”, “cyberjaya pop”), (“mm”, “cyberjaya pop”), (“noc”, “cyberjaya

pop”), (“kl pop”, “upnim”), (“kl pop”, “cyberjaya pop”), (“kl pop”, “um”), (“kl

pop”, “utp”), (“border_router”, “cyberjaya pop”), (“upm”, “cyberjaya pop”),

(“cyberjaya pop”, “mimos”), (“cyberjaya pop”, “nottingham malaysia”)]

40

Figure 8 MyREN Topology

41

2. Calculating distances

For this purpose, the longitude and the latitude of each node must be used, so

(.json) file was created containing each node and its longitude and latitude.

Figure 9 shows the code for calculating the distances and creating a weighted

graph.

Figure 9 The Code for Creating Weighted graph

The function MyRENweighted() is the main function, which will read the file

that contains all the node coordination of latitude and longitude. Then it will call

dist_in_miles()function that calculates the distance from one node to another in

the edge in order to create a weighted graph, it calls lat_long_pair() function

which returns the latitude and longitude of each node. The function uses geo

package to read the coordination of the source, and target nodes in the edges,

then return the distances in miles. The graph used in MyRENweighted is the

topology graph created in zoo_myren class.

42

3. Finding the Placement

For this purpose, two classes were created where each contains a number of

functions to find all the possible combinations of the placement. Each

combination is formed by considering each node as a possible placement for the

controller. The total path length of that node will be calculated, and the average

propagation latency will be calculated using k-median, which divided the total

path length on the number of the nodes. Then all combinations resulted of the

same combo size will be compared to each other to get the highest combination

with the highest average propagation latency, lowest combination with the

lowest propagation latency, the mean which presents the average, the sum of all

the average propagation latencies calculated, and the number of how many

combinations was calculated for that specific combo size.

The first class metrics_MR is the main class that contains get_controllers()

function, it decides how many possible placement should be calculated. This

function is called through other function called do_metrics(), which can be

considered as the main function. It calculates apsp which is the shortest path

length in the graph that calculated using networkx package, and apsp_paths is

the same as apsp but here it calculated for weighted graph. After that it call

run_all_combos() function.

run_all_combos() is included in another class called metrics_mrlib, which can

be considered as the place where all the calculations done. The class contain

number of functions, that run_all_combos call to calculate. This function use

multiprocessing package to calculate all the possible combinations of

43

controllers’ placement for any given size. It first calls handle_combo_all()

function. This function in return calls three important functions. First

init_metric_data(), which contains the intial values for the metric.

The second one is get_latency() which calculates the average propagation

latency according to k-median algorithm. It gets the total path length from

another function, which in returns examining the closest nodes to the one that

considered to place the contollers at. After the calculations are finished it will

return the values calculated to handle_all_combo.

The returned values will be handled by process_results() function which is

responsible for comparing the lowest and highest values of average propagation

latency, as well as the placements. It will also calculate the summation of all

propagation latencies in that given combo size, and how many combinations of

placements were calculated. All calculations will be returned to

run_all_combos()

run_all_combos() will call function called merge_data_metric. It is responsible

of merging the results of calculations and create a list of all possible placements

of any given size, and returned the values to run_all_combos().

run_all_combos() will calculates the average of each placements and ruturns all

the calculation as well as the average to do_metrics in the first class.

Upon receiving all the calculations from run_all_combos(), do_metrics will first

print the reults showing all the information of each placements size. The

44

information is: combo size, lowest latency, lowest combos, highest latency,

highest combos, mean, sum, and the number. Then all of these information will

be stored in (.json) file. Figure 10 shows the placement of controllers of any

given size. Figure 11 shows the functions used and their sequence to find the

placement.

Figure 10 Controller Placement

45

Figure 11 Placement Functions

4.4 The Placement Validation

This section shows the combinations of the controller placement resulted from using

the k-median. Figure 12 shows the highest and lowest average propagation latencies up

to eight controllers. As it is shown in the figure, the lowest average propagation latency

decrease from (169.66714220977224) for one controller to (34.93987130148739) for

eight controllers, which show decrement by 79.41%. The highest propagation latency

decreases from (1121.4315981719635) for one controller to (253.61243087710884) for

eight controllers, which show decrement by 77.38%. The highest propagation latency

46

showed dramatic decrement up to four controllers, then it starts to decrease by small

amount. As for the lowest propagation latency it showed steadily decrement all the time.

The controllers’ placement with the lowest average propagation latency is selected as

the suitable placement for the controllers. Table 5 shows the details of the placements

up to eight controllers. The number of the controllers will be chosen through evaluating

the controllers in terms of examining the response time it takes to send and receive from

the controller to see if there are delay and load on the controller.

Figure 12 Highest, Lowest Average Propagation Latency

Table 4 The Placement of The Controllers

No.

Cont

Highest lowest

Placement Average propagation

latency

Placement Average propagation

latency

1 [“ums”] 1121.4315981719635 [“ mmu”] 169.66714220977224

2 [“ums”,

“mimos”]

831.2908626063158 [“ums”,

“mmu”]

140.39145153399411

3 [“unimas”,

“ums”,

“mimos”]

656.3246572463133 [“north

pop”,

“ums”,

“mmu”]

118.15887780498913

4 [“unimas”,

“ums”,

327.7288161485884 [“north

pop”,

96.5682712089791

47

No.

Cont

Highest lowest

Placement Average propagation

latency

Placement Average propagation

latency

“umk”,

“mimos”]

“ums”,

“mmu”,

“mimos”]

5 [“unimas”,

“umt”,

“umk”,

“udm”,

“mimos”]

291.83801473983556 [“south

pop”,

“north

pop”,

“ums”,

“mmu”,

“mimos”]

76.39367758375272

6 [“unimas”,

“uthm”,

“umt”,

“umk”,

“utem”,

“udm”]

266.7339794730244 ["east coast

pop",

"south

pop",

"north

pop",

"ums",

"mmu",

"mimos"]

57.777374010703646

7 [“unimap”,

“north

pop”,

“umt”,

“usm”,

“umk”,

“uum”,

“udm”]

258.4214674790002 ["east coast

pop",

"south

pop",

"unimas",

"north

pop",

"ums",

"mmu",

"mimos"]

40.00358982434542

8 [“south

pop”,

“unimap”,

“uthm”,

“north

pop”,

“usm”,

“utem”,

“uum”,

“utm”]

253.61243087710884 ["east coast

pop",

"south

pop",

"unimas",

"north

pop",

"ums",

"umk",

"mmu",

"mimos"]

34.93987130148739

The table above showing the placement of the highest and lowest average propagation

latency and the values of each placement. As it shows the placement of one controllers

48

for the highest average propagation latency is at (“ums”) with value of

(1121.4315981719635), while for the lowest average propagation latency is at (“mmu”)

with value of (169.66714220977224). The values of both of highest and lowest average

propagation latencies decreased as the number of controllers increased.

4.5 Evaluation of Performance

This research is based on the work proposed by Heller et al., (2012). It calculates both

of average propagation latency using k-median algorithm, and worst case latency using

k-center problem. In this research, the controller placement was found using k-median

only. The resulted placement will be compared to two possible placements. First the

placement resulted will be compared to greedy algorithm that consider the ordering of

the nodes, the greedy algorithm calculates only the best values at each step. The other

comparison will be with the placement resulted from using (“nx.closeness_centrality”),

which is part of networkx package that had been explained in chapter four. It considers

the placement from specific node at the center of the topology. The detail of each

comparison will be shown below.

To confirm the results of the placement in MyREN topology, a greedy algorithm was

used to compute the ordering of the nodes. It also calculates the average propagation

latency using k-median and the total path length, but its only calculates the best values

for the placement at each step. The results of the greedy algorithm were identical to the

controller placement as shown in the table below. Figure 13 shows the lowest and

greedy algorithm average propagation latency.

49

Table 5 The Placement Calculated and Greedy Calculations

No Placement using k-median algorithm Greedy algorithm

Combo Latency Combo Latency

1 [“ mmu”] 169.66714220977224 [“ mmu”] 169.66714221

2 [“ums”, “mmu”] 140.39145153399411 [“mmu”,

“ums”]

140.391451534

3 [“north pop”,

“ums”, “mmu”]

118.15887780498913 [“mmu”,

“ums”, “north

pop”]

118.158877805

4 [“north pop”,

“ums”, “mmu”,

“mimos”]

96.5682712089791 [“mmu”,

“ums”, “north

popo”,

“mimos”]

96.568271209

5 [“south pop”,

“north pop”,

“ums”, “mmu”,

“mimos”]

76.39367758375272 [“mmu”,

“usm”, “north

pop”, “mimos”,

“south pop”]

76.3936775838

6 ["east coast pop",

"south pop",

"north pop",

"ums", "mmu",

"mimos"]

57.777374010703646 [“mmu”,

“ums”, “north

pop”, “mimos”,

“south pop”,

“east coast

pop”]

57.7773740107

7 ["east coast pop",

"south pop",

"unimas", "north

pop", "ums",

"mmu",

"mimos"]

40.00358982434542 [“mmu”,

“ums”, “north

pop”, “mimos”,

“south pop”,

“east coast

pop”,

“unimas”]

40.0035898243

8 ["east coast pop",

"south pop",

"unimas", "north

pop", "ums",

"umk", "mmu",

"mimos"]

34.93987130148739 [“mmu”,

“ums”, “north

pop”, “mimos”,

“south pop”,

“east coast

pop”,

“unimas”,

“umk”]

34.9398713015

50

Figure 13 K-Median and Greedy Algorithm

The second comparison was to the placement resulted from using

(“nx.closeness_centrality") which calculates the shortest distances to certain nodes, and

the propagation latency once again was calculated by the k-median algorithm. The

average propagation latency resulted from the algorithm is less than using this method

by 65.15% up to eight controllers. Table 7 and Figure 14 show the comparison.

51

Table 6 Comparing the Results of Each Placement

No Placement using k-median algorithm nx.closeness_centrality

Combo Latency Combo Latency

1 [“ mmu”] 169.66714220977224 [“cyberjaya

pop”]

169.66714221

2 [“ums”, “mmu”] 140.39145153399411 [“cyberjaya

pop”, “kl pop”]

163.183031736

3 [“north pop”,

“ums”, “mmu”]

118.15887780498913 [“'cyberjaya

pop”, “kl pop”,

“east coast

pop”]

145.744941782

4 [“north pop”,

“ums”, “mmu”,

“mimos”]

96.5682712089791 [“'cyberjaya

pop”, “kl pop”,

“east coast

pop”, “south

pop”]

125.570348157

5 [“south pop”,

“north pop”,

“ums”, “mmu”,

“mimos”]

76.39367758375272 [“'cyberjaya

pop”, “kl pop”,

“east coast

pop”, “south

pop”, “north

pop”]

104.729396369

6 ["east coast

pop", "south

pop", "north

pop", "ums",

"mmu",

"mimos"]

57.777374010703646 [“cyberjaya

pop”, “kl pop”,

“east coast

pop”, “south

pop", “north

pop”, “mohe”]

104.673148327

7 ["east coast

pop", "south

pop", "unimas",

"north pop",

"ums", "mmu",

"mimos"]

40.00358982434542 [“cyberjaya

pop”, “kl pop”,

“east coast

pop”, “south

pop”, “north

pop”, “mohe”,

“uniten”]

100.949887613

8 ["east coast

pop", "south

pop", "unimas",

"north pop",

"ums", "umk",

"mmu",

"mimos"]

34.93987130148739 [“cyberjaya

pop”, “kl pop”,

“east coast

pop”, “south

pop”, “north

pop”, “mohe”,

“uniten”,

“usim”]

100.270240595

52

Figure 14 Shows Average Propagation Latency for Both Methods

The figure above shows that the average propagation latency resulted from the

algorithm continue to decrease widely, while using (“nx.closeness_centrality”) shows

wide decreasing up to five controllers, then it starts to decrease in very small amounts

that can be shown as straight line between (5-6) and (7-8). Figure 15 shows all of the

comparisons.

53

Figure 15 Comparing All Methods

4.6 Results and Discussion

To evaluate the placement of the controllers in MyREN topology, three controllers were

chosen as start, because although one controller might be enough according to Heller

et al., (2012), but in case of failure the whole network is down, and in case of two

controllers and one of them was down the remaining one will have all the load, so three

controllers were chosen for fault tolerance reasons.

The placement of the three controllers is (“north pop”, “mmu”, “ums”) as it shown in

Figure 14. This research assuming that the switch assigned to the controller at “mmu”

is “cyberjaya pop”. For the controller at “ums” the switch will be “kl pop”. As for the

controller at “north pop” it connected to two nodes “cyberjaya pop” and “kl pop”, the

switch will be “cyberjaya pop” because it has more nodes connected to it, so assuming

that the nodes will be divided between the two controllers. The communication to

54

calculate based on the response time between the controller and the switch assigned to

it, regardless of which node send it.

Figure 16 The Placement of Three Controllers

In this step socket package was used for the network communication over TCP/IP, at

first, 100 messages were sent to each controller and the time was calculated using time

package, then 1000 messages were sent, and finally 10000 messages were sent. Table

8 shows the maximum, minimum, and total response time results of each time.

55

Table 7 The Results of The Response Time

 100 1000 10000

C1 Maximum

Delay:0.0278768539429

Minimum

Delay:0.000993967056274

Total:0.248062849045

Maximum

Delay:0.0278980731964

Minimum

Delay:0.00096607208252

Total:4.29643654823

Maximum

Delay:0.061882019043

Minimum

Delay:0.000959873199463

Total:43.1862213612

C2 Maximum

Delay:0.0258641242981

Minimum

Delay:0.0012309551239

Total:0.567728281021

Maximum

Delay:0.023885011673

Minimum

Delay:0.00095009803772

Total:3.82639598846

Maximum

Delay:0.0357580184937

Minimum

Delay:0.000944137573242

Total:42.5973906517

C3 Maximum

Delay:0.0195109844208

Minimum

Delay:0.000967025756836

Total:0.272239685059

Maximum

Delay:0.0301787853241

Minimum

Delay:0.000960826873779

Total:4.25423502922

Maximum

Delay:0.0385489463806

Minimum

Delay:0.00092887878418

Total:42.2689399719

 To examine if there is load on the controllers the compassion was set according to the

algorithm showing in figure 17 If the response time was over 3 seconds according to

Dixit et al., (2014) then there is a delay which equals to the response time and in turn,

56

there is load and new controller must be added. If it is between 1.5 to 3 seconds then

there is a possibility of loading, less than that remove a controller as along as the

minimum controller’s number is equal to three. Figure 17 shows the evaluation of the

placement in terms of delay and load by sampling the response time to determine the

suitable number of controllers.

Delay and Load Algorithm

while True do

 check res_time

 if res_time > 3 then

 add controller

 else

 if 1.5 <= res_time <= 3 then

 do nothing

 else

 if res_time > 1.5 then

 check controllers

 if controllers = 3 then

 do nothing

 else

 remove controller

 end if

 end if

 end if

 end if

end while

57

Figure 17 Checking the Response Time

The evaluation shows that there is no delay more than 3 seconds, so the number of the

controllers is set to three controllers. As long as there no delay more than 3 seconds or

load on the controllers, there is no need to add controllers to get better performance of

the network.

58

Then the algorithm was tested in case of delay and load by changing the threshold. At

first the code ran the same as it is to find the maximum delay, then the higher threshold

was changed from 3 seconds to the maximum delay of the pervious step. It was noticed

that every time the code is run a new controller is added based on the placement that is

already found. Then the high threshold was changed once again to 3 seconds, and every

time the code is run the controllers that were added are removed until it reached three

controllers, which is the minimum number and stopped the changing. Figure 18 shows

the code without changing the high threshold. It provided the results showing in Figure

19. The change is showing in Figure 20, and the results are showing in Figure 21 for

the first run, and 22 for the second. After changing the threshold back to 3 seconds, the

results are showing in Figure 23,24,25 in sequence.

Figure 18 Before Changing the Threshold

59

Figure 19 The Results Before The Change

Figure 20 After The Change

Figure 21 The First Add After The Change

Figure 22 The Second Add After The Change

60

Figure 23 The First Remove After Changing Back

Figure 24 The Second Remove After Changing Back

Figure 25 The Final Run

4.7 Summary

This chapter presented the controller placement mechanism development. First section

explained the mechanism as whole, and the algorithms combined to create the

mechanism. The second section was about the tools. Third section was about the

implementation steps to find the placement. The fourth section presented the placement

resulted from using k-median. The fifth section compared the placement to another two

possible placements. The sixth section was about evaluation of the placement to decide

the optimal number of controllers.

61

CHAPTER FIVE

CONCLUSION

This chapter evaluates the proposed controller placement mechanism in terms of

response time delay and load on the controllers. The first section will the contribution

of this research. The second section will be about the limitation of this research. The

third section will be future work, and finally the conclusion.

5.1 Contribution

SDN controller placement is one of the main challenges in SDN network for its ability

to affect the performance of the network. By finding an appropriate placement for the

controllers will ensure that the performance of the network will be in a good state. In

this research MyREN topology was set, and the placement of the controllers were

chosen through the use of k-median algorithm, which calculate the average propagation

latency by dividing the total path length on the number of the nodes in the network.

The resulted placement were compared to greedy algorithm that consider the order of

the nodes, and calculate the best values at each step, it was found that the results are

identical, then the resulted placement were compared to (“nx.closeness_centrality”)

which consider the placement from specific node in the network, it was found that not

only the placement results from k-median provides better results, but it also showed

that as the number of the controllers increase the average propagation latency resulted

from this method decrease in very small amounts that are hardly noticed.

62

Later, the resulted placements were examined in terms of delay and load, which is done

through sampling the response time, and it was found that three controllers that were

set as the minimum number of the controllers in the network, is suitable as long as there

is no delay or load in the network, since in that case it will require more controllers.

5.2 Limitation

The load on the controllers in this research was just examined through the response

time. If there is a delay means there is a load on the controllers, but the actual level of

the load was not calculated. Also, the delay and the load were considered only to

evaluate the placement of the controllers, and to determine the number of the controller

suitable for the network, but they were not part of finding the placement of the

controllers. The placement combinations were find using only k-median algorithm.

5.3 Future Work

For future work, the limitations of this research will be considered, as well as taking

the placement of switches and how many nodes assign to each switch into consideration

of the controller placement, through customizing the topology itself to achieve that.

Also, other metrics should be taking into considerations like reliability, scalability,

throughput, fault tolerance... etc.

5.4 Conclusion

This study searched the problem of the controller placement in SDN using k-median

algorithm for searching the placement, and MyREN topology to find the placement for

63

the controllers. The number of the controllers was decided be following the delay and

load algorithm, which is three controllers. The number of the controllers should be

suitable for the network, to ensure that the performance of the network is acceptable. If

the number of the controllers were less than acceptable, then the performance of the

network will be bad, and there is a great possibility of delay and load. In a case of too

many controllers, the performance will be better, but it is on the expenses on the

physical cost, and there will be a number of controllers that will not be needed since

the performance can be good without the unnecessary numbers of the controllers. To

find locations and the number of the controllers the topology chosen must be

considered, the metrics chosen for achieving that because different metrics and different

topologies give different results.

64

REFERENCES

1. Dixit, A. A., Hao, F., Mukherjee, S., Lakshman, T. V., & Kompella, R. (2014,

October). ElastiCon: an elastic distributed sdn controller. In Proceedings of the

tenth ACM/IEEE symposium on Architectures for networking and

communications systems (pp. 17-28). ACM.

2. Heller, B., Sherwood, R., & McKeown, N. (2012). The controller placement

problem. ACM SIGCOMM Computer Communication Review, 42(4), 473.

doi:10.1145/2377677.2377767

3. Hu, F., Hao, Q., & Bao, K. (2014). A Survey on SDNing (SDN) and OpenFlow:

From Concept to Implementation. IEEE Communications Surveys & Tutorials,

16(c), 1–1. doi:10.1109/COMST.2014.2326417

4. Hu, Y., Wendong, W., & Gong, X. (2013). Reliability-aware controller placement

for Software-Defined Networks. Integrated Network Management (IM 2013),

2013 IFIP/IEEE International Symposium on , vol., no., pp.672-675, 27-31

5. Introduction-to-Mininet @ github.com. (n.d.). Retrieved from

https://github.com/mininet/mininet/wiki/Introduction-to-Mininet

6. Jiménez, Y., Cervelló-Pastor, C., & García, A. J. (2014). On the controller

placement for designing a distributed SDN control layer. 2014 IFIP Networking

Conference, IFIP Networking 2014. doi:10.1109/IFIPNetworking.2014.6857117

7. Kreutz, D., Rothenberg, C. E., Ieee, M., Azodolmolky, S., Ieee, S. M., Uhlig, S.,

& Ieee, M. (2015). Software-Defined Networking : A Comprehensive Survey,

103(1). doi:10.1109/JPROC.2014.2371999

8. Lange, S., Gebert, S., Zinner, T., Tran-gia, P., Hock, D., Jarschel, M., &

Hoffmann, M. (2015). Heuristic Approaches to the Controller Placement Problem

in Large Scale SDN Networks, 12(1), 4–17.

https://github.com/mininet/mininet/wiki/Introduction-to-Mininet

65

9. Open Networking Foundation. (2012). Software-Defined Networking: The New

Norm for Networks [white paper]. ONF White Paper, 1–12.

10. Pinheiro, R. S., Pinheirot, B. A., Jorge, A., & Abelem, G. (2014). Model of

Organization and Distribution of Applications for SDNs : SDNrepo, 188–193.

11. Ruiz-rivera, A., Chin, K., & Soh, S. (2015). GreCo : An Energy Aware Controller

Association Algorithm for SDNs. IEEE Communication Letters, 19(4), 541–544.

12. Sallahi, A., & St-hilaire, M. (2015). Optimal Model for the Controller Placement

Problem in SDNs, 19(1), 30–33.

13. Santos, M. a S., Nunes, B. a a, Obraczka, K., & Turletti, T. (2014). Decentralizing

SDN ’ s Control Plane, 1–4.

14. Sezer, S., Scott-Hayward, S., Chouhan, P., Fraser, B., Lake, D., Finnegan, J., …

Rao, N. (2013). Are we ready for SDN? Implementation challenges for software-

defined networks. IEEE Communications Magazine, 51(7), 36–43.

doi:10.1109/MCOM.2013.6553676

15. Vazirani, V. V. (2001). Approximation Algorithms. Approximation Algorithms,

94(2), xx+378. doi:10.1002/rsa.10038

16. Vaishnavi, V. K., & Kuechler, W. (2015). Design science research methods and

patterns: innovating information and communication technology. Crc Press.

17. Wang, H. (2014). Authentic and Confidential Policy Distribution in Software

Defined Wireless Network, 1167–1171.

18. Xia, W., Wen, Y., Member, S., Heng Foh, C., Niyato, D., & Xie, H. (2015). A

Survey on Software-Defined Networking. IEEE Communication Surveys &

Tutorials, 17(1), 27–51. doi:10.1109/COMST.2014.2330903

66

19. Yannan, H. U., Wendong, W., Xiangyang, G., Xirong, Q. U. E., & Shiduan, C.

(2014). On Reliability-optimized Controller Placement for Software-Defined

Networks, (February), 38–54.

20. Yao, G., Bi, J., & Guo, L. (2013). On the cascading failures of multi-controllers

in SDNs. Proceedings - International Conference on Network Protocols, ICNP,

(1), 3–4. doi:10.1109/ICNP.2013.6733624

21. Yao, G., Bi, J., Li, Y., & Guo, L. (2014a). On the Capacitated Controller

Placement Problem in SDNs. IEEE Communications Letters, 18(August), 1339–

1342. doi:10.1109/LCOMM.2014.2332341

22. Anaconda. https://www.continuum.io.

23. Spyder. https://pythonhosted.org.

24. Python. https://www.Python.org.

25. MyREN. https://www.myren.net.my.

26. Networkx. https://networkx.githup.io.

27. Multiprocessing. https://docs.python.org

28. Time. https://docs.python.org.

29. Google Maps. https://maps.google.com

30. Google Earth. https://earth.google.com

https://www.continuum.io/
https://pythonhosted.org/
https://www.python.org/
https://networkx.githup.io/
https://docs.python.org/
https://docs.python.org/
https://maps.google.com/
https://earth.google.com/

67

APPENDIX

The following code is the main page that call all the other class to find the placement

of the controllers:

1. COMBOS_FILE = 'data_out/myren_combos.json'

2. import logging

3. import os

4. import time

5.

6. import networkx as nx

7.

8.

9. from file_libs import write_json_file, read_json_file

10. import metrics_mrlib as metrics

11. from myren_weighted import myrenweighted

12. from lib.options import parse_args

13. import json

14.
15. logging.basicConfig(level=logging.DEBUG)

16.
17.
18.
19. def get_controllers(g, options):

20.
21. controllers = []

22. if options.controllers:

23. controllers = options.controllers

24.
25. else:

26. # Controller numbers to compute data for.

27. controllers = []

28.
29. # Eventually expand this to n.

30. if options.compute_start:

31. controllers += range(1, options.from_start + 1)

32. if options.compute_end:

33. controllers += (range(g.number_of_nodes() - options.from_end + 1, g.

number_of_nodes() + 1))

34. print controllers

35. return controllers

36.
37.
38.
39. def do_metrics(options, topo, g):

40.

68

41. print "computing metricss for topo: %s" % topo

42. controllers = get_controllers(g, options)

43. data = {} # See top for data schema details.

44. apsp = nx.all_pairs_dijkstra_path_length(g)

45. apsp_paths = nx.all_pairs_dijkstra_path(g)

46. start = time.time()

47. weighted = True

48. metrics.run_all_combos(options.metrics, g, controllers, data, apsp,

49. apsp_paths, weighted, options.write_dist,

50. options.write_combos, options.processes,

51. options.multiprocess, options.chunksize, options.median)

52. total_duration = time.time() - start

53. print "the total duration for all the combos:"

54. print "%0.6f" % total_duration

55.
56.
57. print "**

***********"

58.
59. write_json_file('data_out/myren_combos' + '.json', data)

60. return data

61.
62. def opt_metric(options, topo, g):

63.
64.
65. apsp = nx.all_pairs_dijkstra_path_length(g)

66. apsp_paths = nx.all_pairs_dijkstra_path(g)

67. with open(COMBOS_FILE) as data_file:

68. data = json.load(data_file)

69. metrics.run_greedy_informed(data, g, apsp, True)

70. metrics.run_greedy_alg_dict(data, g, 'greed_cc', 'latency', nx.closeness_c

entrality(g), apsp, True)

71.
72. if __name__ == '__main__':

73. options = parse_args()

74. topo = options.topo

75. g = myrenweighted()

76. do_metrics(options, topo, g)

77. opt_metric(options, topo, g)

	COPYRIGHT PAGE
	TITLE PAGE
	Permission to Use
	Abstrak
	Abstract
	Acknowledgement
	Table of Content
	List of Figures
	List of Tables
	List of Abbreviations
	CHAPTER ONE: INTRODUCTION
	1.1 Overview
	1.2 Problem Statement
	1.3 Research Questions
	1.4 Research Objectives
	1.5 Significant of Research
	1.6 Scope of the Research
	1.7 Research Outcomes
	1.8 Organization of the Study

	CHAPTER TWO: LITERATURE REVIEW
	2.1 Software Defined Network
	2.2 Related Work
	2.3 Summary

	CHAPTER THREE: METHODOLOGY
	3.1 Introduction
	3.2 Awareness of Problem
	3.3 The Proposed Controller Placement Mechanism Des
	3.4 Development of Proposed Mechanism
	3.5 Performance Evaluation
	3.6 Summary

	CHAPTER FOUR: CONTROLLER PLACEMENT MECHANISM
	4.1 The Proposed Controller Placement Mechanism
	4.2 Implementation Tools
	4.3 Implementation Steps
	4.4 The Placement Validation
	4.5 Evaluation of Performance
	4.6 Results and Discussion
	4.7 Summary

	CHAPTER FIVE: CONCLUSION
	5.1 Contribution
	5.2 Limitation
	5.3 Future Work
	5.4 Conclusion

	REFERENCES
	APPENDIX

