
The copyright © of this thesis belongs to its rightful author and/or other copyright

owner. Copies can be accessed and downloaded for non-commercial or learning

purposes without any charge and permission. The thesis cannot be reproduced or

quoted as a whole without the permission from its rightful owner. No alteration or

changes in format is allowed without permission from its rightful owner.

TEST DATA GENERATION METHOD FOR DYNAMIC – STRUCTURAL

TESTING IN AUTOMATIC PROGRAMMING ASSESSMENT

MD. SHAHADATH SARKER

MASTER OF SCIENCE (INFORMATION TECHNOLOGY)

UNIVERSITI UTARA MALAYSIA

2016

i

Permission to Use

In presenting this thesis in full fulfillment of the requirements for a postgraduate degree from

Universiti Utara Malaysia, I agree that the University Library may make it freely available for

inspection. I further agree that permission for copying of this thesis in any manner, in whole or in

part, for scholarly purposes may be granted by my supervisor(s) or, in their absence, by the

Dean. It is understood that any copying or publication or use of this thesis or parts thereof for

financial gain shall not be allowed without my written permission. It is also understood that due

recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use which

may be made of any material from my thesis.

Requests for permission to copy or to make other use of materials in this thesis, in whole or in

part should be addressed to:

Dean of Awang Had Salleh Graduate School of Arts and Sciences

Universiti Utara Malaysia

06010 UUM Sintok

Kedah Darul Aman

Malaysia

ii

Declaration

I declare that this thesis is my own work and has not previously been submitted in any form for

another degree or diploma at any other university or other institute of tertiary education.

Information derived from the published and unpublished works of others have been

acknowledged in the text and a list of references is given.

Md. Shahadath sarker

2016

iii

Abstrak

Penaksiran Pengaturcaraan Automatik atau dikenali sebagai APA telah diketahui sebagai suatu

keadah yang berkesan dalam membantu para pensyarah untuk melaksanakan penaksiran dan

penggredan tugasan pengaturcaraan pelajar. Untuk melaksanakan pengujian dinamik dalam

APA, adalah menjadi suatu keperluan untuk menyediakan set data ujian melalui proses

penjanaan data ujian yang bersistematik. Sekiranya memfokus kepada bidang pengujian perisian,

pelbagai kaedah untuk mengautomasikan penjanaan data ujian telah

dicadangkan.Walaubagaimanapun, kaedah-kaedah ini jarang diguna pakai di dalam kajian

semasa APA. Terdapat kajian awalan yang cuba mengintegrasikan APA dan penjanaan data

ujian, tetapi masih terdapat jurang dari segi menerbitkan dan menjana data ujian untuk pegujian

dinamik-berstruktur. Untuk mengatasi jurang ini, kajian ini mencadangkan suatu kaedah

penjanaan data ujian untuk melaksanakan pengujian dinamik-berstruktur (atau dikenali sebagai

DyStruc-TDG).DyStruc-TDG direalisasikan sebagai alatan fizikal yang bertindak sebagai

penjana data ujian untuk menyokong fungsian APA.Dapatan daripada ekperimen kawalan yang

dilaksana berdasarkan reka bentuk one-group pre-test dan post-test mendapati bahawa DyStruc-

TDG memperbaiki kriteria kecukupan data ujian kebolehpercayaan (atau pengujian positif)

dalam penaksiran pengaturcaraan.Kaedah yang dicadangkan ini adalah dijangkakan dapat

membantu para pensyarah kursus pengaturcaraan awalan untuk menerbitkan dan menjana data

ujian dan kes ujian untuk melaksanakan penaksiran pengatucaraan automatik untuk pengujian

dinamik-berstruktur tanpa memerlukan pengetahuan khusus dalam reka bentuk kes ujian.Dengan

mengguna-pakai kaedah ini sebagai sebahagian APA, beban para penyarah secara tidak langsung

dapat dikurangkan secara berkesan oleh kerana penaksiran tipikal yang manual senantiasa

cenderung kepada ralat dan penyebab kepada ketidakseragaman.

Kata kunci: penjanaan data ujian, Penaksiran Pengaturcaraan Automatik, pengujian dinamik,
pengujian berstruktur, path coverage, Modified Condition/Decision Coverage.

iv

Abstract

Automatic Programming Assessment or so-called APA has being known as a significant method

in assisting lecturers to perform automated assessment and grading on students’ programming

assignments. Having to execute a dynamic testing in APA, it is necessary to prepare a set of test

data through a systematic test data generation process. Particularly focusing on the software

testing research area, various automated methods for test data generation have been proposed.

However, they are rarely being utilized in recent studies of APA. There have been limited early

attempts to integrate APA and test data generation, but there is still a lack of research in deriving

and generating test data for dynamic structural testing. To bridge the gap this study proposes a

method of test data generation for dynamic structural testing (or is called DyStruc-TDG).

DyStruc-TDG is realized as a tangible deliverable that acts as a test data generator to support

APA. The findings from conducted controlled experiment that is based on one-group pre-test and

post-test design depict that DyStruc-TDG improves the criteria of reliability (or called positive

testing) of test data adequacy in programming assessments. The proposed method is expectantly

to assist the lecturers who teach introductory programming courses to derive and generate test

data and test cases to perform automatic programming assessment regardless of having a

particular knowledge of test cases design in conducting a structural testing. By utilizing this

method as part of APA, the lecturers’ workload can be reduced effectively since the typical

manual assessments are always prone to errors and leading to inconsistency.

Keywords: test data generation, Automatic Programming Assessment, dynamic testing,
structural testing, path coverage, Modified Condition/Decision Coverage.

v

Acknowledgement

Firstly, it is my great pleasure to thank Allah (swt) that has given me opportunities to complete

this thesis. A billion thanks those, who directly or indirectly contributed in the development of

this work and who influenced my thinking, behavior, and acts throughout the study period.

I express my sincere gratitude to my supervisor Dr.Rohaida Binti Romli for her continuous

support, cooperation, valuable suggestions and motivation for completing the thesis and she

exchanged her interesting ideas, thoughts and made this thesis easy and accurate.

Lastly, I would like to thank all of my friends for their encouragement and valuable suggestions

during my study period.

vi

Table of Contents

Permission to Use..i

Declaration...ii

Abstrak..iii

Abstract ...iv

Acknowledgement…………...………………………………………..v

List of Tables ...x

List of Figures ..xiii

List of Abbreviations…………………………………………………………………………...xv

CHAPTER 1: INTRODUCTION ...1

1.1 Background of Study ..1

1.2 Problem Statement ..2

1.3 Research Questions ...4

1.4 Research Objectives ..4

1.5 Scope of the Study ..5

1.6 Contribution of the Study..6

1.7 Organization of the Thesis ………………………………………………………………..7

CHAPTER 2: LITERATURE REVIEW ………………………………………………...........8

2.1 Introduction to Software Testing …………………………………………………………8

2.2 Dynamic Structural Testing ………………………………………………………………9

2.3 Test Adequacy Criteria …………………………………………………………………...9

 2.3.1 Loop Coverage …………………………………………………………………..11

 2.3.2 Statement Coverage ……………………………………………………...……...14

 2.3.3 Path Coverage …………………………………………………………………...15

 2.3.4 Modified Condition/Decision Coverage ……………………………...................17

 2.3.5 Multiple Condition Coverage ……………………………………………...........19

vii

 2.3.6 Condition Coverage …………………………………………………….……….19

 2.3.7 Branch Coverage …………………………………………………………...........20

2.4 Comparison of Different Code Coverage ……………………………………………….20

2.5 Automatic Programming Assessment (APA) …………………………………………...22

2.6 Automatic Test Data Generation (ATDG) ………………………………………………24

2.7 Integration of APA and ATDG ………………………………………………………….24

2.8 Summary ………………………………………………………………………………...26

CHAPTER 3: METHODOLOGY ……………………………………………………………27

3.1 Research Procedure ………………………………………………………………...........27

3.1.1 Theoretical Study ………………………………………………………………..28

3.1.2 Construction of Method …………………………………………………………28

3.1.3 Development of Prototype ………………………………………………………30

3.1.4 Evaluation and Conclusion ………………………………………………...........30

 3.1.4.1 Controlled Experiment …………………………………………………30

 3.1.4.2 Procedures of Experiment ………………………………………...........30

 3.1.4.3 Subject of Experiment ………………………………………………….31

 3.1.4.4 Instrument of Data Collection ………………………………………….31

 3.1.4.5 Comparative Evaluation ………………………………………………..31

3.1.5 Threats to the Validity of the Experiments………………………………............32

 3.1.5.1 Internal Validity…………………………………………………...........32

 3.1.5.2 External Validity ……………………………………………………….32

 3.1.5.3 Construct Validity ………………………………………………...........33

3.2 Summary ………………………………………………………………………………...33

CHAPTER 4: PROPOSED METHOD (DyStruc-TDG) ………………..…………………...34

4.1 Structural Test Data Generation …………………………………………………………34

viii

4.1.1 Selection Control Structure (Path Coverage) ……………………………………34

4.1.2 Loop control Structure ((Path Coverage)………………………………………...39

4.1.3 Selection Control Structure (Modified Condition/Decision Coverage) …………40

4.1.4 Loop Control Structure (Modified Condition/Decision Coverage) ………...…...47

4.2 Structural Test Data Generation by Examples …………………………………………..50

 4.2.1 Selection Control Structure ……………………………………………………...50

 4.2.2 Loop Control Structure (Modified Condition/Decision Coverage) ……………..53

4.3 Implementation of DyStruc-TDG ……………………………………………………….54

4.4 Unit Testing ……………………………………………………………………………..57

4.5 Summary ………………………………………………..……………………………….57

CHAPTER 5: EVALUATION …………..………………………….………….……………..58

5.1 Descriptive Statistics …………………………………………………………………….58

5.1.1 Question (1): Current Method……………………………………………………58

5.1.2 Question (1): DyStruc-TDG Method…………………….………………………61

5.1.3 Question (2): Current Method……………………………………………………63

5.1.4 Question (2): DyStruc-TDG Method…………………….………………………65

5.1.5 Question (3): Current Method……………………………………………………67

5.1.6 Question (3): DyStruc-TDG Method…………………….………………………69

5.1.7 Question (4): Current Method……………………………………………………70

5.1.8 Question (4): DyStruc-TDG Method…………………….………………………73

5.2 Comparative Evaluation …………………………………………………………………75

5.3 Summary ………………………………………………………………………………...77

ix

CHAPTER 6: CONCLUSION ……………………………………..…………………………78

6.1 Revisit of Research Questions and Objectives…………………………………………..78

 6.1.1 Discussion on Research Question (1)……………………………………………79

 6.1.2 Discussion on Research Question (2) ...…………………………………………80

6.2 Contribution of the Study .……………………………………………………………….81

6.3 Limitations and Recommendations ……………………………………………………...81

6.4 Conclusion ……………………………………………………………………………….82

REFERENCES ……………………………………………………………………....................83

APPENDIX A: Experiment Assignments …………………………………………………….87

APPENDIX B: Pre-Test and Post-Test Questions …………………………………………...91

x

List of Tables

Table 2.1 Test cases for loop coverage ………………………………………………………….12

Table 2.2 Test cases for while loop coverage ……………………………………………………13

Table 2.3 Test cases for do…while coverage ……………………………………………………14

Table 2.4 Test cases for statement coverage …………………………………………………….15

Table 2.5 Test cases for path coverage ………………………………………………………….17

Table 2.6 Test cases for MC/DC coverage ……………………………………………………...18

Table 2.7 Formula obtained from MC/DC coverage ……………………………………………19

Table 2.8 Differences of code coverage based on coverage criteria (Hayhurst et al., 2001)……21

Table 2.9 Summary of the trends of APA (Rohaida, 2014) ……………………………………..23

Table 2.10 Integration of APA and ATDG (extended from Rohaida, 2014)……………………26

Table 3.1 Research Procedure …………………………………………………………………...27

Table 4.1 Generated test cases based on valid and invalid input conditions ……………………35

Table 4.2 Generated test cases based on valid input conditions ………………………………...36

Table 4.3 Test cases for valid input conditions ………………………………………………….37

Table 4.4 Test cases for invalid input conditions ……………………………………………….37

Table 4.5 Test cases for all input conditions for selection-nested ………………………………38

Table 4.6 Test cases for only valid input conditions for selection-nested ………………………39

Table 4.7 Test cases for valid and invalid input conditions for loop control structures ………...39

Table 4.8 Test cases for valid input for loop control structures …………………………………40

Table 4.9 Truth Table for one option ……………………………………………………………40

Table 4.10 Generated test cases for one option …………………………………………………41

Table 4.11 Truth table for two options ………………………………………………………….41

Table 4.12 Independently effect option (A) …………………………………………………….41

Table 4.13 Independently effect option (B) ……………………………………………………..42

Table 4.14 Independently effect option (A) and (B) ……………………………………………42

Table 4.15 Truth table for three options …………………………...……………………………42

xi

Table 4.16 Independently effect option (A) ……………………………………………………..43

Table 4.17 Independently effect option (B) ……………………………………………………..43

Table 4.18 Independently effect option (C) ……………………………………………………..43

Table 4.19 Independently effect option (A), (B) and (C) ……………………...………………..44

Table 4.20 Truth table for four options ………………...………………………………………..44

Table 4.21Independently effect option (A) ……………………………………………………..45

Table 4.22 Independently effect option (B) ……………………………………………………..45

Table 4.23 Independently effect option (C) ……………………………………………………..45

Table 4.24 Independently effect option (D) ……………………………………………………..46

Table 4.25 Independently effect option (A), (B), (C) and (D) …………………………………..46

Table 4.26 Truth Table for one option (loop) …………………………………………………...47

Table 4.27 Generated test cases for one option (loop) …………………………………………..48

Table 4.28 Truth table for two options (loop) ……………………...……………………………48

Table 4.29 Independently effect Option (X) …………………………………………………….49

Table 4.30 Independently effect option (Y) ……………………………………………………..49

Table 4.31 Independently effect option (X) and option (Y)……………………………………..49

Table 4.32 Illustration of sample program ………………………………………………………50

Table 4.33 Generated test cases for one options (MC/DC) ……………………………………..51

Table 4.34 Illustration of sample program for two options……………………………………...51

Table 4.35 Generated test cases for two options (MC/DC) ……………………………………..52

Table 4.36 Illustration of sample program for three options ……………………………………53

Table 4.37 Generated test cases for three options (MC/DC) ……………………………………53

Table 4.38 Illustration of sample program (loop) ……………………………………………….54

Table 4.39 Generated test cases for one option (loop) …………………………………………..54

Table 5.1 Number of paths for selection control structures ……………………………………..59

Table 5.2 Number of test cases to cover each path by current method for question (1) ………...60

Table 5.3 Total number of test cases by current method for question (1) ………………………60

xii

Table 5.4 Total number of test cases by DyStruc-TDG for question (1) ………………………..61

Table 5.5 Total number of test cases by DyStruc-TDG for question (1) ………………………..62

Table 5.6 Number of test cases to cover by current method for question (2) ….………………..64

Table 5.7 Total number of test cases by current method for question (2) ………………………65

Table 5.8 Number of test cases to cover by DyStruc-TDG method for question (2) …………...65

Table 5.9 Total number of test cases by DyStruc-TDG for question (2) ……………………….66

Table 5.10 Number of test cases to cover by current method for question (3) ………………....68

Table 5.11 Total number of test cases by DyStruc-TDG method for question (3) ……………..69

Table 5.12 Test data for sentinel loop in current method ……………………………………….70

Table 5.13 Number of paths for selection and repetition control structures ……………………71

Table 5.14 Number of test cases to cover by current method for question (4) ………………….72

Table 5.15 Total number of test cases by current method for question (4) ……………………..73

Table 5.16 Number of test cases to cover by DyStruc-TDG method for question (4) ………….74

Table 5.17 Total number of test cases by DyStruc-TDG method for question (4) ……………..74

Table 5.18 Comparison of three studies ………………………………………………………...76

xiii

List of Figures

Figure 2.1 Types of software testing techniques ………………………………………...............8

Figure 2.2 Ranking of code coverage based on survey (Abdurahim, 2014)…………………….10

Figure 2.3 Code segment for “for loop” control structures ……………………………………..11

Figure 2.4 Flow graph of code segment for loop control structures …………………………….11

Figure 2.5 Code segment for while loop coverage ……………………………………………...12

Figure 2.6 Flow graph of while loop coverage ………………………………………………….12

Figure 2.7 Code segment for statement coverage ……………………………………………….13

Figure 2.8 Flow graph of do…while loop ……………………………………………………….13

Figure 2.9 Code segment for statement coverage ……………………………………………….14

Figure 2.10 Flow graph of statement coverage ………………………………………………….14

Figure 2.11 Control flow graph ………………………………………………………………....15

Figure 2.12 Code segment for selection control structures ……………………………………..16

Figure 2.13 Code segment for selection control structures (MC/DC) …………………………..18

Figure 3.1 Flow chart of DyStruc-TDG method ………………………………………………..29

Figure 4.1 Example of tree structure for selection control structures …………………………...35

Figure 4.2 Example of tree structure for nested selection control structures………….………...36

Figure 4.3 Example of two selection control structures ………………………………………...38

Figure 4.4 Example of for loop control structure ……………………………………………….47

Figure 4.5 Example of do…while loop control structure …………………………………..........48

Figure 4.6 Sample of programming exercise with one option …………………………………..50

Figure 4.7 Sample of programming exercise with two options …………………………………51

Figure 4.8 Sample of programming exercise with three options ………………………………..52

Figure 4.9 Sample of programming exercise do…while loop with one option …………………53

Figure 4.10 Interface of generated test data (selection control structures) ……………………...55

Figure 4.11 Interface of generated test data (selection control structures) ……………………...55

Figure 4.12 Interface of generated test data (Selection and Loop control structures) …………..56

Figure 4.13 Interface of generated test data for MC/DC (selection and loop control structures) .56

xiv

Figure 5.1Control flow graph for selection control structure ………………………………..….59

Figure 5.2 Test cases coverage between Current Method and DyStruc-TDG for question (1) …63

Figure 5.3 Control flow graph for repetition (counter loop) …………………………………….63

Figure 5.4 Test cases coverage between Current Method and DyStruc-TDG for question (2) …67

Figure 5.5 Control flow graph for repetition (sentinel loop) ……………………………………68

Figure 5.6 Test cases coverage between Current Method and DyStruc-TDG for question (3) …70

Figure 5.7 Control flow graph for repetition and selection control structures …………………..71

Figure 5.8 Test cases coverage between Current Method and DyStruc-TDG for question (4) …75

Figure 5.9 Sample of programming exercise ……………………………………………………76

xv

List of Abbreviations

APA Automatic Programming Assessment

ATDG Automatic Test Data Generation

DyStruc-TDG Dynamic Structural- Test Data Generation

MC/DC Modified Condition/Decision Coverage

OOAD Object Oriented Analysis and Design

UML Unified Modeling Language

UUM Universiti Utara Malaysia

1

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Learning computer programming languages has become essential for students who pursue their

study in Information Technology, Computer Science and Software Engineering disciplines.

Computer introductory programming courses are commonly offered for the first year degree

students who pursue their study in these fields (Truong et al., 2005). Effective and good

programming skills are necessary for students in order to be a master in programming. Students

can be skilled in programming only through practices (Lahtinen et al., 2005). Computer

programming courses are normally designed with full of practical besides theory. The goal of

practical course is to develop student’s basic understanding of programming principles and

writing basic source code. Therefore, students are given many programming exercises as take

home assignments or hands on practice in the class in order to develop student’s programming

understanding and skill (Rohaida et al., 2010). If the assessment of programming exercises is

done by manually for a large number of students it leads to workload to lecturers and assessing

manually is really difficult task which cannot ensure the consistency and accuracy of the marking

scheme (Rohaida et al., 2010). Therefore, the concept of Automatic Programming Assessment

(APA) has become very important to assess students program for grading and providing

feedback (Saikkonen et al., 2001). Besides, APA can improve students marking assessment in

terms of consistency and thoroughness testing (Gupta et al., 2012).

According to Jackson (1996) APA is founded on software testing technique. The programming

assessment normally involves the measuring of the program quality. In order to achieve program

quality the program should be tested. Hence, through the software testing technique the quality

of the program can be measured (Rohaida et al., 2010). Software testing is a method for locating,

measuring, and disclosing errors that occurred in a program (Latiu, 2012). Software testing can

be categorized into two types: static analysis and dynamic testing, in which static testing is a test

that does not involve in the execution of the program (Zin et al., 1994). On the other hand,

dynamic testing requires a program execution with test data (Chu et al., 1997). Test data is data

which is developed as input in order to perform testing for any software program (Korel, 1990).

2

Furthermore, dynamic software testing can be classified into two main categories: black-box

testing and white-box testing (Sommerville, 2001). According to Gentiana (2012), black box

testing technique focuses program outputs and it does not need to access the source code of the

program. Besides, white box is a testing technique that refers to the structure of the internal

program (Varshney et al., 2013). Thus, in order to perform white box testing or so called

structural testing it is required to generate test data.

Test data generation in program testing refers to the process of identifying a set of test data,

which satisfies given testing criterion (Korel, 1990). On the other hand, it is also important to

select appropriate test data to cover good test coverage. Designing test data that is adequate in

testing is important to ensure that testing is done thoroughly enough. The main reason of

selecting appropriate test data is to overcome ambiguous feedbacks because it might interpret

wrong result for students programming assessment (Jackson, 2000). Generation of test data

manually is very difficult and time consuming. It is also costly, creates error, and

incomprehensive (Latiu et al., 2012). It is very hard and required much effort from human in

order to continue the process of generating test data smoothly (Monpratarnchai et al., 2014).

To date there have been limited studies attempted to integrate Automatic Test Data Generation

(ATDG) with APA (Malmi et al., 2004; Shukur et al., 2005;Ihantola, 2006; Tillman et al., 2013;

Hakulinen and Malmi, 2014). Their detailed studies will be further discussed in Chapter 2.

Based on previous study, there is a limitation of adopting structural code coverage in test data

generation for APA. Therefore, the attempt of generating automatic test data for structural code

coverage with integration in APA is still in preliminary stage.

1.2 Problem Statement

The goal of computer programming courses is to increase student’s knowledge of solving

programming problems and understanding the principles. This course is more practical that is

why students are given more exercises to practice. Due to a large number of students in the class,

it’s very hard to assess the programming exercises manually by the lecturers (Rohaida et al.,

2010). Manually assessing the students program it takes much effort and time consuming

(Jackson, 1996). It also may allow unintended biases and different standard of marking schemes

3

(Rohaida et al., 2010). Therefore, automatic programming assessment plays an important role

regarding assessing students programming exercises and providing feedback to them (Saikkonen

et al., 2001). Thus, there are several tools were developed to assess students programming

exercises automatically such as Assyst (Jackson and Usher, 1997), BOSS (Lucky and Joy, 1999),

TRAKLA2 (Malmi et al., 2004), PASS (Choy et al., 2005) and others. Unfortunately, most of

these automated tools do not provide the means of generating test data automatically.

APA involves a set of test data to execute dynamic testing on students program (Rohaida et al.,

2010). Manually test data generation is labour demanding, expensive and prone to errors.

Therefore, it is required to generate test data automatically for APA. To date, there are various

automated test data generations methods are available in industry (Clarke et al., 1976; Gupta et

al., 1998; Offutt et al., 2003; Zamli et al., 2007; Zidoune et al., 2012; Pargas et al., 1999).

Unfortunately, it appears in the recent studies on APA very few of them utilized these methods

(as stated in Section 1.1). Some studies such as Guo et al. (2010) and Cheng et al. (2011) have

used external automated test data generation tool which is either a product of past research

within the same institution or a commercialized product that incurs cost. Thus far, merely limited

studies (Ihantola, 2006; Tillman et al., 2013; Rohaida, 2014) that have attempted to integrate

APA and Automatic Test Data Generation (ATDG) for structural testing. Their detailed studies

will be further discussed in Chapter 2. In structural testing, path coverage criterion is most

popular in terms of generating test data for programming assessment. In order to cover more

thoroughness of testing and generating adequate test data, MC/DC coverage criterion is

integrated with path coverage.

In order to design test set or test data in a structural testing it is important to ensure that testing is

done thoroughly enough. This thoroughness will determine how adequate the testing is

(Hayhurst, 2001). Thus, adequate testing depends on test adequacy criteria. According to Zhu et

al., (1997) test data adequacy criteria can be categorized into two types: Specification based and

Program based. In program based which specifies the testing of the program under test and

decides if a test set is adequate according to whether the program has been thoroughly exercised.

The test adequacy criteria are very important because it distinguishes good test cases from bad

ones and determines whether the testing is sufficient or not (Zhu, 1995). Structural testing can be

described based on concept control flow graph model. This control flow graph model focuses on

4

code coverage in structural testing. The most common control flow coverage criteria are path

coverage, statement coverage, branch coverage, multiple condition coverage, condition/decision

coverage and Modified Condition/Decision Coverage (MC/DC) coverage (Kamran et al., 2009).

Some of the studies seemed adopting simple techniques to generate test data without focus on its

internal logic and its coverage such as JTst (Zamli et al., 2007). Besides, the studies have not

sufficiently included the ideal test criterion to derive adequate test data. Addressing these issues,

this study attempts to generate automatic test data for dynamic structural testing in APA that do

satisfy the test adequacy criteria for Path coverage and Modified Condition/Decision Coverage

(MC/DC).

1.3 Research Questions

The main research question of this study is formulated as “How to generate a set of test data

that do satisfy the test adequacy criteria to adhere the coverage of structural testing of a

program executed for APA”.

Based on the above main research question the following specific sub questions are identified:

1. How to construct a test data generation method to derive an adequate set of the test

data for dynamic structural testing in APA?(RQ-1)

2. How to measure the adequacy of test data as derived in (1) in the context of APA?

(RQ-2)

1.4 Research Objectives

The main goal of this study is to propose a test data generation method to perform a dynamic

structural testing for APA. This method is called DyStruc-TDG.

In order to achieve the main goal the following objectives are formulated:

1. To construct a test set which include an adequate of test data to represent DyStruc-TDG

(RO-1)

2. To measure the adequacy of test data derived from DyStruc-TDG in the context of

programming assessment(RO-2)

5

1.5 Scope of the Study

Automatic assessment and software testing are definitely involved broad topics. The scope of

the study includes:

i) Test Data Generation for APA

The study focuses only from the aspect of programming assessments in academic rather than in

the software testing industry. Programming assessment is considered as essential elements of

software engineering and computer science education. The major aim of this study is to

generating and deriving a set of test data which will be used for testing student’s program in

APA. The assessment will involve the process of judging certain software quality factors

included in each students programming solution. This particularly has a direct influence to a

concept of test adequacy criteria.

ii) Dynamic Structural Testing

Software testing is generally categorized as static and dynamic testing. Dynamic testing can be

divided into another two parts that are functional and structural testing respectively. Functional

testing is known as black box testing and, conversely, structural testing is known as white box or

glass box testing. This study focuses only dynamic structural testing and the criteria of reliability

(or so-called positive testing) of test data adequacy. The criterion of positive testing is with

regard “the program does what it is supposed to do” that is basically concerned with what

operations or/and conditions that a program intends to accomplish and to satisfy (IPL, 1997a;

Walkins and Mills, 2011). An integration of two prominent structural code coverage that are path

coverage and Modified Condition/Decision Coverage (MC/DC) has been proposed in this study

to derive and generate the required test data and test set for dynamic-structural testing.

iii) Quality factor of correctness

In software testing, there are many software quality factors are identified. Based on literature

review, most of the studies in APA focus on the quality of correctness rather other software

quality factors. Correctness is concerned with a quality attribute that can be defined as the degree

6

to which the program performs it intended functions (Burnstein, 2003). Thus, this study focuses

on this software quality factor.

iv) Introductory programming courses

Introductory programming courses are common for the first year degree students in IT or

computer science related area. Programming courses are designed with more practical rather than

theory. As a result students are given many exercises in order to excel in programming courses.

As nowadays Java is most common programming languages are taught in the universities, hence

this study focuses only the introductory programming course that utilises java as the

programming language.

1.6 Contribution of the Study

This study is an attempt to adapt existing test adequacy criteria applied in software testing field

as a test data generation method to perform a dynamic structural testing in APA. This study

contributes in terms of theoretical and practical context. In theoretical perspective, this study

enhances the existing researches in APA by providing the means of deriving and generating test

data automatically by integrating the path and MC/DC coverage. These two structural codes

coverage provide a significant impact in reducing the number of test cases required to test

students’ programming solutions in terms of the aspect of structural testing. In addition, a more

thorough testing aspect is considered as each individual condition has been a part of the means of

deriving the test cases.

On the other hand, in practical perspective, this study contributes a physical deliverable that is a

test data generator to provide a medium of generating test data automatically for the usage of

lecturers. Though this generator, it is able to assist the lecturers who teach programming courses

to generate test data and test cases to perform automatic programming assessment regardless of

having a particular knowledge of test cases design. Besides, indirectly the lecturers’ workload

can be reduced effectively since the typical manual assessments are always prone to errors.

7

1.7 Organization of the Thesis

This thesis is comprised of six chapters, namely introduction, literature review, methodology,

proposed work of DyStruc-TDG, evaluation and conclusion. The brief explanation of each

chapter is as follows:

Chapter 1 is the introductory part of this thesis. In this chapter it includes background of study,

problem statement, research questions, research objectives, scope of the study and finally

contribution of the study.

Chapter 2 reviews the existing work of this study. Mainly, most related contents are reviewed in

this chapter, namely software testing, APA, ATDG and integration of APA with ATDG. The

discussion has focused more on related work of automatic programming assessment and its

integration with test data generation.

Chapter 3 is about research methodology. This chapter explains in details the research

procedure which is carried out throughout the study. In summary, there are four phases included:

theoretical study, construction of method, development of prototype and finally evaluation and

conclusion. Each phase has its own activities and outcomes.

Chapter 4 provides the explanation of proposed work for the research in this study. The

proposed method is called DyStruc-TDG which includes an adequate set of test data to perform

dynamic structural testing of a program for APA. DyStruc-TDG covers both control structures

which are selection control structures and repetition control structures. The selected two test

adequacy criteria which are path coverage and Modified condition/Decision coverage (MC/DC)

also explained for both control structures.

Chapter 5 explains the evaluation process and analysis of the obtained results. The evaluation

process involves controlled experiment with pre-test and post-test questions and comparative

evaluation.

Chapter 6 is the last chapter that concludes the study. It includes the conclusion of

accomplishment each research objectives as well as future work.

8

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction to Software Testing

Software testing is an important technique in measuring the quality of software product

assurance (Wegener, 2001). Software testing is a continuous procedure where it compares the

actual result with expected result (Latiu, 2012). Software testing is a set of actions applied with

the aim of getting errors and also make sure that the system is running according to the provided

specification (Sapna, 2013). There are two aims of software testing such as fulfilling customer

requirements and reveal the bugs (Khan, 2011). Software testing is essential to ensure software

quality. Software testing is very expensive and it takes a lot of time to conduct (Tracey et al.,

1998). An important aspect of software testing is being able to decide when enough testing has

been performed (Zhu et al., 1993). The following Figure 2.1 shows the types of different

software testing techniques.

Figure 2.1 Types of software testing techniques

In software testing, static testing is done without execution of program. Static testing involves

manual or automated reviews of the project documents, software models and codes (Bertolino et

al., 2005). On the other hand, dynamic testing is one kind of technique where it is required to

execute the code in order to perform testing (Gupta et al., 2012). Thus, it is required to generate

9

test data to test the program. In this study, test data will be generated based on dynamic structural

testing. The next section will discuss about dynamic structural testing.

2.2 Dynamic Structural Testing

By default, test data generation plays an important role in software testing, particularly to

perform a dynamic testing. Test data generation techniques of dynamic structural are relied on

the execution. According to Korel (1990) these procedures might be classified into several types

such as random test data generation, structural or path-oriented test data generation, gold

oriented test data generation and data specifications test data generation.

Structural testing (or white-box testing) is a method of testing the internal structure of software

and programming applications and also known as clear box testing, glass box testing, transparent

box testing and structural testing (Latiu, 2012). In structural testing, the internal structure and its

behavior are inspected by executing the code.

In order to effective dynamic program analysis, it is required to execute the targeted program

with enough test data’s. Thus, an adequate set of test data will ensure how adequate the testing is

(Gupta et al., 2012). The next section will elaborate about test adequacy criteria.

2.3 Test Adequacy Criteria

According to Zhu (1995) the central problem of software testing is “What is test data adequacy

criterion?” Software test data adequacy criteria are rules that need to determine whether the

software has been tested sufficiently or not (Zhu, 1995). Good test cases and bad test cases can

be distinguished based on test adequacy criterion and can be determined when to finish the

testing process (Sapna, 2013). There are mainly two groups of adequacy criteria based on

program based structural test adequacy: Control Flow Adequacy and Data Flow Adequacy (Zhu

et al., 1997). However in this study only control flow adequacy criteria will be discussed because

the control flow graph model focuses on code coverage in structural testing. The most common

control flow coverage criteria are path coverage, statement coverage, branch coverage, multiple

condition coverage, condition/decision coverage and MC/DC coverage (Kamran et al., 2009). A

flow graph model is a directed graph which consists of nodes and edges (Zhu et al., 1997).

Nodes represent a linear sequence of computations and edges represents transfer of control in an

ordered pair of nodes. In order to know how adequate the testing is needs to test the coverage of

10

the program. Coverage is a measure and it refers to the extent to which a given verification

activity has satisfied its objectives (Hayhurst, 2001).

Goodenough and Gerhart’s (1975) pointed out that a software test adequacy criterion is a

predicate that defines “what properties of a program must be exercised to constitute a ‘thorough’

test, that is, one whose successful execution implies no errors in a tested program.” Thus, in

order to guarantee the correctness of adequately tested programs, they proposed reliability and

validity requirements of test criteria. Reliability requires that a test criterion always produce

consistent test results; where validity requires that the test always produce a meaningful result. In

this study, only reliability test adequacy criteria will be incorporated in deriving test data to cover

structural testing. However, in this study the terms of positive testing is also used as alternative

term for reliability test adequacy criteria.

Kamran (2009) reported the most common control flow coverage criteria are statement coverage,

path coverage, branch coverage, condition coverage, multiple condition coverage, modified

condition/decision coverage (MC/DC) and loop coverage. Based on the survey conducted the

ranking of importance code coverage for programming assessment is shown in Figure

2.2(Abdurahim, 2014)

Figure 2.2 Ranking of code coverage based on survey (Abdurahim, 2014)

The following section will describe about all code coverage metrics as well as the comparison of

the most applied coverage metrics in APA in order to adopt coverage metric for this study.

11

2.3.1 Loop Coverage

Loop coverage explains whether each loop counter flow program will zero again, once just once

or more than once in a row. One of the more useful suggests that a loop is covered if in at least

one test the body was executed exactly once, and if some test the body was executed more than

once. The loop path selection is one of the important processes and its result will directly affect

the accuracy of one path and then leads to the inaccurate generation of test cases (Qiang, 2013).

The following Figure 3.2 shows an example of loop coverage code segment.

In Java programming there are three types of loop statements: for loops, while loops and do-

while loops (Liang, 2009). The while loops and do-while loops are quite similar with each other

except execution behavior. The “for loop” is involved with counter value. The details

explanation of these three types of loops coverage is provided below.

(i) for loop

The following Figure 3.2 shows the code segment of “for loop” coverage in a program.

Figure 2.4 describes the flow graph of the above code segment for “for loop” coverage.

Figure 2.4 Flow graph of code segment for loop control structures

Start

End

Initialization

Increment

Code block

Condition

12

Based on the above Figure 2.3 the following Table 2.1 shows the number of test cases, sequence

of executed statements and times of loop execution.

Table 2.1 Test cases for loop coverage

Test Cases (TC) Sequence of executed statement(s) Loop execution

TC1 S1 Zero

TC2 S1,S2,S3,S1 Once

(ii) while loop

The following Figure 2.5 shows the code segment of “while loop” coverage in a program.

Figure 2.6 describes the flow graph of the above code segment for “while loop” coverage

Figure 2.6 Flow graph of while loop coverage

Start

End

Code block

Condition

13

Based on the above Figure 2.6, the following Table 3.3 shows the number of test cases, test data,

number of times loop execution and executed statements.

Table 2.2 Test cases for while loop coverage

Test Cases Test Data Loop execution Statements Execution

TC1 5 Once S1, S2,S3

TC2 0 Zero S1, S4

(iii) do… while loop

The following Figure 2.7 shows the code segment of do…while loop coverage in a program.

Figure 2.8 describes the flow graph of the above code segment for do…while loop coverage

Figure 2.8 Flow graph of do…while loop

Start

End

Code block

Condition

14

Based on the above Figure 2.8, the following Table 2.3 shows the number of test cases, test data,

number of times loop execution and executed statements.

Table 2.3 Test cases for do…while Coverage

Test Cases Test Data Loop execution Statements Execution
TC1 1 5 times S1, S2, S3, S4, S5

TC2 6 once S1, S2, S3, S4, S5

2.3.2 Statement Coverage

Statement coverage is one example of control flow based adequacy criteria and it needs each

statement in the program to go through and be implemented at least once (Zhu, 1995).Statement

coverage also called line coverage for structural testing. According to Myers (1979)"statement-

coverage criterion is so weak that it is generally considered useless." After execution it is

compared to a list of all execuTable statements. According to Joseph (2005) in statement

coverage all the test cases need to perform in a program. The following Figure 2.9 is one

example of code segment of statement coverage.

 Figure 2.10 Flow graph of statement coverage

1

2

6

3

4 5

7

15

Figure 2.10 shows the flow graph of statement coverage for the code segment of Figure 2.9.

Based on the code segment of Figure 2.9, the following Table 2.4 describes the number of test

cases, test data and the statement coverage.

Table 2.4 Test cases for Statement Coverage

Test Cases (TC) Test Data Statement Coverage

a b

TC 1 3 8 1, 2, 3, 4, 7

TC 2 -5 -6 1, 2, 3, 5, 6, 7

TC 3 0 0 1, 2, 3, 5, 7

2.3.3 Path Coverage

This testing is a kind of structural testing in which the source codes of the program to locate each

way possible each program through which it passes (Latiu, 2012). It is also one of the ways to

test the route to make sure it passes all the way at least once in the program. Furthermore, path

testing is also found in control flow structure. The method used to produce the test of the control

program is to select routes and how to determine the values of the input. The Figure 2.11 is an

example of control flow graph which shows possible paths from start node to end note.

Figure 2.11 Control flow graph

When the set of selected the path regularly and properly, this indicates that the access of

choosing the path is thoroughness (Beizer, 1990). The objective of the path testing is to ensure

that every path in the program travelled through programs executed at least once. In structural

16

test data generation, test cases are derived in such a way that every path is executed at least once

as path coverage. It ensures coverage of all the paths from start to end.

In order to derive test data for structural test data generation it relies on mainly two control

structures (Malik and Burton, 2009; Lewis et al., 2008) which are:

These two control structures consist of Boolean/logical expression, which is also called

condition. Each condition in the expression evaluates either true or false (Levis et al., 2008).

Based on Java programming, selection or conditional statements concern if, if…else and

switch…case decision making statements (Liang, 2009). The following section will describe path

coverage in details for Selection control structures and Loop control structures.

(i) Path coverage (Selection control structures)

The deriving of test cases of this type of decision making structure relies on the following

properties:

Example:

17

Table 2.5 Test cases for path coverage

Test Case (average>=90)

E1

(average<=100)

E2

E1&&E2

TC1 T T T

TC2 T F F

TC3 F T F

TC4 F F F

(ii) Path coverage (Loop control structures)

In Java programming there are three types of loop statements: while loops, for loops and do-

while loops (Liang, 2009). The while loops and do…while loops are quite similar with each

other. The for loop is involved with counter value. The Section 2.3.1 (loop coverage) has

described more about loop control structures.

The next section will describe about Modified Condition/Decision Coverage (MC/DC) test

adequacy coverage criteria.

2.3.4 Modified Condition/Decision Coverage (MC/DC)

The MC/DC is one of the structural coverage criteria that is used to assist in the assessment of

adequacy and also one of the criteria’s to explain that every condition separately change the

result (Hayhurst, 2001). The decision has taken all possible outcomes at least once and we also

say we cover both the true and the false branch. Every condition in then decision independently

affects the decision’s outcome. MC/DC is more practical criterion and typically a testing

requirement for vital systems which developed in the avionics field (Kamran, 2009). The

following section will describe the Modified Condition/Decision Coverage (MC/DC) in details

for Selection control structures and Loop control structures.

(i) Selection control structures (Modified Condition/Decision Coverage)

MC/DC coverage criteria are used in order to reduce the number of test cases and time. At the

same time, it makes sure the coverage of all statements. In order to derive test cases, MC/DC

depends on the following properties:

18

Example:

Table 2.6 Test cases for MC/DC coverage

Test Case X Y Z X&&Y =A A||Z

TC1 T T F T T
TC2 F T F F F
TC1 and TC2 show independence of X (covers X)
TC3 T T F T T
TC4 T F F F F
TC3 and TC4 show independence of Y (covers Y)
TC5 F F T F T
TC6 F F F F F
TC5 and TC6 show independence of Z (covers Z)

(ii) Loop control structures (Modified Condition/Decision Coverage)

According to Liang (2009) Java programming consists of three loops namely for loops, while

loops and do-while loops. The while loops are similar with do while loops. It is different only in

terms of execution. Besides, these two loops there is another loop called for loop. For loop is

used as a counter. In general, it is compulsory for each loop in a program to have a valid input

condition of the loop as one test case.

The MC/DC coverage criterion for Loop control structures also follows the same properties as

described in Section 2.3.4 (i) for selection control structures in terms of MC/DC coverage.

19

The important aspect of this criterion is the requirement that testing should demonstrate the

independent effect of atomic boolean conditions on the boolean expressions in which they occur

(Rayadurgam et al., 2003). Based on details explanation of MC/DC coverage criterion concept in

Chapter 4 the following Table 2.7 concludes the formula for generating test cases by applying

MC/DC coverage criterion.

Table 2.7 Formula obtained from MC/DC coverage

No of Options

(N)

Truth Table

(N2)

MC/DC

 (N+1)

1 1 2

2 4 3

3 9 4

4 16 5

5 32 6

2.3.5 Multiple Condition Coverage

Multiple condition coverage ensures that each possible combination of outcomes to a decision is

tested at least once (Hayhurst, 2001).Each possible outcome consists of only two values which

are true and false. In order to perform structural testing for multiple condition coverage it is

required 2n test cases where n is number of conditions in a decision.

2.3.6 Condition Coverage

This type of coverage is also one technique in software testing family. It is based on the logical

flow of control within a program (Jefferson, 1996). This condition coverage requires that the

assessment made available conditions. It goes through the path and stops on the conditional and

condition in which decisions are taken at least once, but not all decisions will be taken. Besides

that, condition coverage will include two criteria’s where each entry and exit points will be

conducted at least once (Hayhurst, 2001).

20

2.3.7 Branch Coverage

Branch coverage requires all branches and a decision which must be taken in the program. All

paths branch to be passed at least once (Zhu, 1995). Branch coverage achieved when every path

from a node is performed minimum one time. Example of branch coverage is if at least one true

and one false evaluation for each predicate. It is also widely used because of its ease of

implementation and it is low overhead on the execution of the program (Wei, 2012).

The above Section (2.3.1 to 2.3.7) has described about the code coverage criteria for structural

testing. Based on ranking of code coverage (Abdrahim, 2014) it shows the ranking of code

coverage from most important to least important in programming assessment. The most popular

coverage criterion is path coverage. This path coverage also includes all loop paths and

statements in a program. Thus, it is a strong coverage criterion in programming assessment. On

the other hand, MC/DC coverage criterion considers each condition individually in Boolean

expression which provides more thoroughness of testing and generates adequate test cases.

2.4 Comparison of Different Code Coverage

According to Hayhurst et al., (2001) the following Table 2.8 shows the differences of code

coverage based on their coverage criteria.

21

Table 2.8 Differences of code coverage based on coverage criteria (Hayhurst et al., 2001)

22

Based on the discussion, above Table 2.8 shows the differences of code coverage based on their

coverage criteria. As mentioned earlier that the thoroughness of testing determines adequate of

testing. According to Goodenough and Gerhart (1975) the term “thoroughness” testing refers to

successful execution without error in a tested program. In order to guarantee the correctness of

adequately tested program, they proposed two requirements of testing criteria: Reliability and

Validity test adequacy criteria. In this study, the reliability test adequacy criteria have been

focused in order to derive test data for structural testing.

From the Table 2.8 it shows that Path coverage and MC/DC coverage criteria fulfill the

maximum coverage of testing. Thus, the Path Coverage and Modified Condition/Decision

Coverage (MC/DC) has been adopted in this study. The next section will describe about

automatic programming assessment.

2.5 Automatic Programming Assessment (APA)

Automatic Programming Assessment (APA) is a great attraction in education domain. APA can

decrease the burden of teaching instructor and time consuming and it aims to overcome the

manual assessment. It is more convenient for students because they can get results as soon as

possible when they submit their assignment or exercises to APA system. Feedback from the

automatic programming assessment can help students learning process faster by getting their

result instant. In the research there are few automatic programming assessment systems give

critical, rich and timely feedback (Liang, 2009).

Furthermore, the instant formative feedback along with the results can significantly enhance

students learning. A few automated programming assessment systems provide critical, rich and

timely feedback which is of great enhancement for students in learning programming (Liang,

2009). The generation of test data process is an important part to carry out programming

assessment of students. Dynamic testing was focused in the recent studies comparing static

analysis for automated programming assessment (Jackson, 1996; Syukur, 1999; Shaffer, 2005).

There are number of automatic tools are developed to assist APA. Such as Assyst, BOSS,

GAME, TRAKLA2, PASS, ELP and others. (Jackson et al., 1997; Schreiber, 1995; Korhonen,

2003).

23

According to literature survey (Rohaida, 2014) of APA research trends, the following Table 2.9

summarizes the trends of APA.

Table 2.9 Summary of the trends of APA (Rohaida, 2014)

Criteria Testing Method Quality Factor Testing Category TDG Technique

Dynamic Testing Correctness Black-box Testing Manually

Description Based on

literature survey,

most of the

studies have

performed

dynamic testing

instead of static

analysis in APA.

Static analysis

mainly focuses on

syntax analysis

where dynamic

testing

concentrates on

test coverage.

Hence, Dynamic

testing is used in

APA.

Correctness is

the most popular

quality factor in

testing because it

provides

satisfaction to

the lectures in

terms of

assessing

students

program.

Black box testing is

used extensively in

APA rather than

white box testing.

Black box testing

also called as

functional testing

which identifies the

correctness factor

of a program.

In terms of
assessing students
programming
exercises most of
the studies derived
test data manually.
In some studies
proposed JUnit
testing framework
which is required
extensive technical
skill. However, in
order to generate
automated test data
two studies have
utilized external
tool (Goa et al.,
2010; Cheng et al.,
2011). Due to cost
and accessibility it
is difficult to utilize
external tools to
generate test data.

In conclusion, the purpose of developing APA is to provide the facilities to the lecturers in term

of reducing workload and time for assessing students programming assessment. As mentioned in

problem statement that there is a need to generate automatic test data for structural testing. The

next section will discuss about automatic test data generation.

24

2.6 Automatic Test Data Generation (ATDG)

Researches on automation of test data generation are commonly based on structural, functional

test data generation techniques. Automation of structural testing is based on either static or

dynamic testing criteria, and it has been widely investigated subject among researches.

According to Gentiana et al., (2012) test data pass through the intentional path for a given

problem which follows five steps. The five steps are construction of a control flow graph,

selection function construction, fitness function, program instrumentation, test data generation

and execution of instrumented program. In order to overcome path testing problem there are

different approaches of automated test data generation technique.

Edvardsson (1999) presented a test data generator system which comprises of three parts such as

a program analyzer, a path selector, and a test data generator. Based on program execution the

approaches were classified and determined the selection of test data for different level of

coverage. From the research it is found that test data generation mainly concentrates on structural

rather than functional (Deville, 2003; McMinn, 2004; Zhan, 2005).

Based on the survey (Rohaida, 2014) of automatic test data generation, it is found that most of

the test data generation is focused on the white box testing and the coverage metric was applied

for path coverage. In this study, the generated test data will cover for both coverage criteria

which are path coverage and Modified Condition/Decision Coverage (MC/DC).

The latest study was done by Monpratarchai et al. (2014) regarding to cover path coverage

metric using symbolic execution with JavaPathFinder (JPF). The following section will describe

the integration of APA and ATDG to support this study.

2.7 Integration of APA and ATDG

As stated in the problem statement section, there have been limited studies attempted to

incorporate both APA and ATDG. APA has gained more attentions from researchers in

education domain in order to assess students programming (Liang, 2009). In software testing

field, there have been various automated methods for test data generation. Unfortunately, APA

seldom adopts these methods. Structural test data can be generated using static methods or

25

dynamic methods. The techniques can be classified as random test data generation or path

oriented test data generation, goal oriented test data generation and data specifications test data

generation (Korel, 1990).

A study by Ihantola (2006) has been done in order to generate test data for structural testing in

APA. In this study, Java PathFinder (JPF) software model checker was used to get test data using

symbolic execution technique. Although, this proposed work integrated test data generation with

APA but did not focus on covering structural code coverage in terms of test adequacy coverage

criteria such as MC/DC.

Tillmann et al., (2013) has presented a study that helps introductory programming course as well

as software engineering courses for students based on interactive-gaming teaching and learning.

This study used dynamic symbolic execution technique in order to generate test data for

structural testing. This study, also utilized dynamic symbolic execution that is similar as

proposed by Ihantola (2006) but did not cover structural code coverage.

A study by Rohaida (2014) has proposed a test data generation framework for APA which

covered both testing category: functional and structural testing. In this study, positive testing and

negative testing technique has been used in order to generate test data. Although this study

focuses structural testing coverage but it has proposed only path coverage testing criteria.

As shown in Table 2.10, there are only three studies on test data generation in APA that focus on

structural testing.

26

Table 2.10 Integration of APA and ATDG (extended from Rohaida, 2014)

Based on the above discussion it is clear that to date only few studies have attempted to integrate

both APA and ATDG. In addition, the past studies merely used the technique that fully covers

test data adequacy criteria for student’s program assessment. The above past studies merely used

test adequacy criteria in structural code coverage for APA. Thus, in terms of covering structural

code coverage there are limitations in integration of ATDG with APA.

By addressing these gaps, this study proposes a method called DyStruc-TDG which included

path coverage and Modified Condition/Decision Coverage (MC/DC) criteria in order to generate

adequate test data to cover more thorough testing coverage that significantly contributes in

reducing lecturer’s workload.

2.8 Summary

This chapter has discussed the existing work which is related to this study. It reviewed in this

chapter, namely software testing, test adequacy criteria, APA, ATDG and integration of APA

and ATDG. In order to support this study all the necessary justification has been provided mainly

focused on automatic programming assessment and its integration with test data generation for

structural testing in academic.

27

CHAPTER 3

METHODOLOGY

This chapter explains the research methodology that has been used in this study in order to

achieve the research objectives and answer research questions which is formulated in Chapter 1.

This chapter presents the detail research procedures. This includes the steps taken and the

methods used to formulate research problem until evaluating the proposed work.

3.1 Research Procedures

This study is conducted guiding by the research procedure as shown Figure 3.1.This research

procedure consists of four phase’s namely theoretical study, construction of method,

development of prototype and evaluation and conclusion. It also describes the activity, methods

and expected outcome for each phases.

28

3.1.1 Theoretical Study

A theoretical study consists of concepts, together with their definitions and existing theories that

are used for particular study (Sekaran, 2003). Through theoretical study, it helps to understand

the problems and finally it directs to formulate research objectives and questions as well. The

method used in this phase is to review the literature survey that involves automatic programming

assessment, automatic test data generation and structural code coverage. The outcome of this

theoretical study is proposal.

3.1.2 Construction of Method

In this study, the method is constructed by translating the selected structural coverage criteria

into design of test cases. This method is verified in order to measure the test data adequacy

criteria by doing positive testing. The output of this phase is DyStruc-TDG. In this study, two

test adequacy coverage criteria have been adopted to construct the test data generation method

which is as follows:

1. Path coverage

2. Modified Condition/ Decision Coverage (MC/DC)

The following Figure 3.1 shows the process of DyStruc-TDG method which generates test data

for path coverage and MC/DC coverage criteria.

29

Figure 3.1 Flow chart of DyStruc-TDG method

Find loop control structures

Find selection and loop control structures

End

Generate test data for MC/DC coverage

Divide Boolean condition individually

Start

Read program

Find selection-consecutive

Find selection-nested
contstructures

Find do…while loop

Find for loop Find while loop

Find selection control structures

Extract Boolean condition

Generate test data for each individual condition

30

3.1.3 Development of Prototype

In this step a prototype has been developed to implement the test data generator method. The

technique is used here is the prototyping technique (Sommerville, 1995; Pressman, 1997). This

prototype will help the users to test the requirements. A unit testing has performed in this

prototype development phase in order to identify errors of the system. The output of this phase is

test data generator.

3.1.4 Evaluation and Conclusion

Evaluation and conclusion is the last phase of this study. It measures the test data generation

method whether or not it improves the completeness coverage of reliability - test data adequacy

criteria. The evaluation with regard to this aim is purposely to achieve the second research

objective (RO-2). The research in this study has divided into two parts: a Controlled experiment

and Comparative evaluation. The comparative evaluation is adopted from Rohaida (2014).

3.1.4.1 Controlled Experiment

A controlled experiment that utilizes the one-group pretest and post-test design is conducted in

this study. It is an experimental design in which a single group is measured or observed before

and after being exposed to a treatment (Fraenkel and Wallen, 2000). This experiment is designed

to the test data adequacy of DyStruc-TDG method.

3.1.4.2 Procedures of Experiment

Procedures of the controlled experiment are divided into two experiments namely pre-test and

post-test experiment.

(i) The procedures of pre-test experiment

In pre-test experiment, the subjects were explained around ten minutes regarding the experiment.

They were explained about the objective, tasks to do, and definition of technical terms. After

explanation they were provided a sample programming exercises and they required to view and

understand it. At the same time, they were given also solutions of sample programming

exercises. Finally, the test result was recorded in the provided pre-test question.

31

 (ii) The procedures of post-test experiment

This procedure was similar to pre-test experiment, except in post-test the DyStruc-TDG method

was used. Time and questions were same as pre-test experiment. The questions were distributed

to each subject and collected by hand.

3.1.4.3 Subject of Experiment

The subject of the controlled experiment was the lectures who have been teaching the

programming courses at least one semester at UUM. Due to different teaching schedules of the

lecturers the experiment is conducted as multi-shot sessions individually. The data is collected

from the subjects only at one time instead of collecting in several times. In this experiment, the

number of subjects was ten (10). In this study, the extent of researcher interference was minimal.

The subject system was the tool developed as a working application for DyStruc-TDG or test

data generator.

3.1.4.4 Instrument of Data Collection

The purpose of this study was to evaluate the completeness of coverage of DyStruc-TDG

method. The experiment consists of two sets of pre-test and post-test questions in order to collect

data. The aim was to test the correctness of test case coverage for structural test data generation

in APA. The experiment consists of pre-test and post-test questions (refer to Appendix B).

The set of pre-test and post-test questions are consisted of the same contents. Four samples of

programming exercises were used as the assignments which of covering the main two control

structures (selection and repetition) included in any of introductory programming courses. One

question to cover the selection, two questions with regard repetition (counter-loop and sentinel-

loop) and the remaining one is an integration of selection and repetition control structures. Each

exercise was provided with solution model (refer to Appendix A).

3.1.4.5 Comparative Evaluation

Comparative evaluation also presented in this study to compare in terms of test data adequacy for

structural testing. The comparison of DyStruc-TDG was done among three studies in structural

testing namely Ihantola (2006) and Tillmann et al., (2013); Rohaida (2014) and DyStruc-TDG. A

32

sample of programming exercise is used for this comparison. Their detailed of comparative

evaluation will be further discussed in Chapter 5.

3.1.5 Threats to the Validity of the Experiment

In order to ensure the adequate validity for the experiment it is required to design experiment

carefully to minimize the threats. There are several types of threats to the validity of experiment

in software engineering context (Wohlin et al., 2000). The related threats are discussed as below.

3.1.5.1 Internal Validity

3.1.5.2 External Validity

33

3.2 Summary

In summary, this chapter has explained in details the research procedures that carried out

throughout the study. The procedures have described about the four phase’s namely theoretical

study, construct method, prototype development and evaluation and conclusion. Besides, this

study also emphasizes more on controlled experiment which is consisted of pre-test and post-test

experiment.

34

CHAPTER 4

PROPOSED METHOD (DyStruc-TDG)

This chapter provides the explanation of the proposed work for this study which is so-called

DyStruc-TDG. DyStruc-TDG is a method to generate test data which includes an adequate set of

test data to perform the dynamic structural testing of a program for APA. DyStruc-TDG is

designed based on the result of the literature surveys and previous preliminary study.

4.1 Structural Test Data Generation

In the following section selection control structures and loop control structures will be described

in details. The discussion will also cover the path and Modified Condition/Decision Coverage

(MC/DC) coverage for both control structures.

4.1.1 Selection Control Structure (Path Coverage)

According to Liang (2009) Java programming consists of if, if…else and switch…case decision

making statements in selection control structures. Selection control structures involve

consecutive (sequential) or nested structure. In this study, the both control structures are covered.

The following section will describe the derived test cases for selection (consecutive and nested)

control structures.

 (i) Selection - consecutive (sequential)

In order to derive test cases for selection control structures, it depends on some properties (refer

to Chapter 3, Section 3.1.2 (i)). In this study option refers to condition in selection and loop

control structures.

Considering the tested program has two selection control structures (Selection 1 and Selection 2)

and selection 1 consists of 2 options and selection 2 consists of 3 options.

35

Figure 4.1 Example of tree structure for selection control structures

If a lecturer considers valid and invalid input conditions, then the Table 4.1 shows the number of

derived test cases.

Table 4.1 Generated test cases based on valid and invalid input conditions

Test Case Input Conditions

TC 1 Selection 1- Option 1-Valid

TC 2 Selection 1- Option 2-Valid

TC 3 Selection 1-Invalid

TC 4 Selection 2- Option 1-Valid

TC 5 Selection 2- Option 2-Valid

TC 6 Selection 2- Option 3-Valid

TC 7 Selection 2-Invalid

If a lecturer considers only valid input conditions, then the Table 4.2 shows the number of

derived test cases.

36

Table 4.2 Generated test cases based on valid input conditions

Test Case Input Conditions

TC 1 Selection 1- Option 1-Valid

TC 2 Selection 1- Option 2-Valid

TC 3 Selection 2- Option 1-Valid

TC 4 Selection 2- Option 2-Valid

TC 5 Selection 2- Option 3-Valid

(ii) Selection – Nested

In nested selection control structure, there is more than one selection control structure which

consists of parent selection control structures and inside child selection control structures. In

parent control structures and child control structures might have more than one option.

For example, if there is three selection control structures (Selection 1, Selection 2, and Selection

3) exist the tree can be visualized as follows:

Figure 4.2 Example of tree structure for nested selection control structures

37

Based on the above tree structures, Table 4.3 shows the following number of derived test cases

for all valid input conditions.

Table 4.3 Test cases for valid input conditions

Test Case Input Condition

TC 1 Selection 1-Option 1-Valid, Selection 2-Option 1-Valid, Selection 3-Option 1-Valid

TC 2 Selection 1-Option 1-Valid, Selection 2-Option 1-Valid, Selection 3-Option 2-Valid

TC 3 Selection 1-Option 1-Valid, Selection 2-Option 2-Valid

TC 4 Selection 1-Option 2-Valid

TC 5 Selection 1-Option 3-Valid

Based on the tree structures, Table 4.3 shows the generated five test cases for all valid input

conditions. However, in this study it includes one test case for invalid input condition. The

purpose of including one invalid input condition is to reduce the total number of generated test

cases. Based on the Figure 4.2, the generated test cases for invalid condition are shown in Table

4.4.

Table 4.4 Test cases for invalid input conditions

Test Case Input Condition

TC 1

Selection 1-invalid

Selection 2-invalid

Selection 3-invalid

Considering the tested program has two selection-control structures (Selection1 and Selection 2)

and each selection-control structure has three options (Option 1, Option 2 and Option 3), the

following Figure 4.3 describes the representation.

38

Figure 4.3 Example of two selection control structures

If a lecturer considers valid and invalid input conditions, then the Table 4.5 shows the number of

derived test cases.

Table 4.5 Test cases for all input conditions for selection-nested

Test Case Input Conditions

TC 1 Selection1-Option1-Valid, Selection2-Option1-Valid

TC 2 Selection1-Option1-Valid, Selection2-Option2-Valid

TC 3 Selection1-Option1-Valid, Selection2-Option3-Valid

TC 4 Selection1-Option2-Valid

TC 5 Selection1-Option3-Valid

TC 6 Selection1-Invalid, Selection2-Invalid

Based on Table 4.5 there are six generated test cases where five test cases are valid (TC1, TC2,

TC3, TC4, TC5) and one of them is invalid (TC6).

If a lecturer considers only valid input conditions, then the Table 4.6 shows the number of

derived test cases.

39

Table 4.6 Test cases for only valid input conditions for selection-nested

Test Case Input Conditions

TC 1 Selection1-Option1-Valid

TC 2 Selection1-Option2-Valid

TC 3 Selection1-Option3-Valid

TC 4 Selection2-Option1-Valid

TC 5 Selection2-Option2-Valid

TC 6 Selection2-Option3-Valid

Table 4.6 shows that there are six test cases are generated where invalid input conditions are

excluded.

4.1.2 Loop control Structure (Path Coverage)

According to Liang (2009) Java programming consists of three loops namely for loops, while

loops and do-while loops. The while loops are similar with do while loops. It is different only in

terms of execution. Besides, these two loops there is another loop called for loop. For loop is

used as a counter.

Considering three loops (Loop1, Loop 2 and Loop 3) for the program and including valid and

invalid input conditions, the following Table 4.7 shows the generated test cases.

Table 4.7 Test cases for valid and invalid input conditions for loop control structures

Test Case Input Conditions

TC 1 Loop1-Valid

TC 2 Loop1-Invalid

TC 3 Loop2-Valid

TC 4 Loop2-Invalid

TC 5 Loop3-Valid

TC 6 Loop3-Invalid

In terms of including only valid input conditions, the following Table 4.8 shows the generated

test cases.

40

Table 4.8 Test cases for valid input for loop control structures

Test Case Input Conditions

TC 1 Loop1-Valid

TC 2 Loop2- Valid

TC 3 Loop3-Valid

The next section will describe in details of the Modified Condition/Decision Coverage (MC/DC)

test adequacy coverage criteria for both control structures (Selection and Loop).

4.1.3 Selection Control Structure (Modified Condition/Decision Coverage)

In order to implement Modified Condition/Decision Coverage (MC/DC) test adequacy coverage

criteria first need to consider the possible outcome which is true and false for each option. In

order to derive test cases for MC/DC coverage it relies on some properties. The properties are

discussed in chapter 2, section 2.3.4. The explanation of the test cases design for MC/DC

coverage will be discussed in the following section.

(i) If a lecturer considers one (1) option, in one selection control structures; the formula of

the truth table is N2, where N is the number of option (N=1, 2, 3, 4, …, n). In this case, the

number of condition is one:

Table 4.9 Truth table for one option

Test Case Option (A)

TC 1 True

TC 2 False

Based on MC/DC test adequacy criteria concept, the following Table 4.10 shows the generated

test cases considering independently effect of one option.

41

Table 4.10 Generated test cases for one option

Option (A) Pattern

True 1

False 2

 (ii) If a lecturer considers two (2) options, in one selection control structure (Selection 1) and

this selection control structure consists of 2 options; the truth table for two options is as follows:

Table 4.11 Truth table for two options

Test Case Option (A) Option (B) Option (A&&B)

TC 1 True True True

TC 2 True False False

TC 3 False True False

TC 4 False False False

For the above two options truth table the generated test cases for MC/DC coverage is described

below. The following Tables will describe the generated test cases for independently effect of

each option.

In this case considering independently effect on Option (A), Table 4.12 shows the produced

result.

Table 4.12 Independently effect on option (A)

Option (A) Option(B) Option (A&&B) Pattern

True True True 1

False True False 2

In this case considering independently effect on Option (B), Table 4.13 shows the produced

result.

42

Table 4.13 Independently effect option (B)

Option (A) Option (B) Option (A&&B) Pattern

True True True 1

True False False 3

The following Table 4.14 produces the final result by combining the test cases from the above

both tables. In this case Option (A) and Option (B) are considered independently. Thus, applying

MC/DC coverage criteria concept it reduces the number of test cases from 4 (see Table 4.11) to

3.

Table 4.14 Independently effect option (A) and (B)

Option (A) Option(B) Option (A&&B) Pattern

True True True 1

False True False 2

True False False 3

(iii) If a lecturer considers three (3) options, in one selection control structure (Selection 1)

and it consists of 3 options; the Table 4.15 shows the truth table for three options is as follows:

Table 4.15 Truth table for three options

Test Case Option (A) Option (B) Option (C) Option (A&&B&&C)

TC 1 True True True True

TC 2 True True False False

TC 3 True False True False

TC 4 True False False False

TC 5 False True True False

TC 6 False True False False

TC 7 False False True False

TC 8 False False False False

43

For the above three options; Option (A), Option (B) and Option (C) from the truth table, the

generated test cases for MC/DC coverage is described below. The following Tables will describe

the generated test cases for independently effect of each option.

In this case considering independently effect on Option (A), Table 4.16 shows the produced

result.

Table 4.16 Independently effect option (A)

In this case considering independently effect on Option (B), Table 4.17 shows the produced

result.

Table 4.17 Independently effect option (B)

In this case considering independently effect on Option (C), Table 4.18 shows the produced

result.

Table 4.18Independently effect option (C)

The following Table 4.19 produces the final result by combining the test cases from the above

Tables. In this case Option (A), Option (B) and Option (C) are considered independently. Thus,

Test Case Option (A) Option (B) Option (C) Option(A&&B&&C)

TC 1 True True True True

TC 5 False True True False

Test Case Option (A) Option (B) Option (C) Option (A&&B&&C)

TC 1 True True True True

TC 3 True False True False

Test Case Option (A) Option (B) Option (C) Option (A&&B&&C)

TC 1 True True True True

TC 2 True True False False

44

applying MC/DC coverage criteria concept it reduces the number of test cases from 8 (Table

4.15) to 4.

Table 4.19Independently effect option (A), (B) and (C)

 (iv) If a lecturer considers four (4) options, in one selection control structure (Selection 1)

and if this selection control structure consists of 4 options Option (A), Option (B), Option (C)

and Option (D); the truth table for four options is as follows:

Table 4.20 Truth table for four options

Test Case Option (A) Option (B) Option (C) Option (D) Option (A&&B&&C&&D)

TC 1 True True True True True

TC 2 True True True False False

TC 3 True True False True False

TC 4 True True False False False

TC 5 True False True True False

TC 6 True False True False False

TC 7 True False False True False

TC 8 True False False False False

TC 9 False True True True False

TC 10 False True True False False

TC 11 False True False True False

TC 12 False True False False False

TC 13 False False True True False

Test Case Option (A) Option (B) Option (C) Option (A&&B&&C)

TC 1 True True True True

TC 5 False True True False

TC 3 True False True False

TC 2 True True False False

45

Test Case Option (A) Option (B) Option (C) Option (D) Option (A&&B&&C&&D)

TC 14 False False True False False

TC 15 False False False True False

TC 16 False False False False False

For the above four options; Option (A), Option (B), Option (C) and Option (D) from the truth

table, the generated test cases for MC/DC coverage is described below. The following Tables

will describe the generated test cases for independently effect of each option.

In this case considering independently effect on Option (A), Table 4.21 shows the produced

result.

Table 4.21 Independently effect ption (A)

In this case considering independently effect on Option (B), Table 4.22 shows the produced

result.

Table 4.22 Independently effect option (B)

In this case considering independently effect on Option (C), Table 4.23 shows the produced

result.

Table 4.23Independently effect option (C)

Test Case Option (A) Option (B) Option (C) Option (D) Option (A&&B&&C&&D)

TC 1 True True True True True

TC 9 False True True True False

Test Case Option (A) Option (B) Option (C) Option (D) Option (A&&B&&C&&D)

TC 1 True True True True True

TC 5 True False True True False

Test Case Option (A) Option (B) Option (C) Option (D) Option (A&&B&&C&&D)

TC 1 True True True True
True

TC 3 True True False True
False

46

In this case considering independently effect on Option (D), Table 4.24 shows the produced

result.

Table 4.24Independently effect option (D)

The following Table 4.25 produces the final result by combining the test cases from the above

Tables. In this case Option (A), Option (B), Option (C) and Option (D) are considered

independently. Thus, applying MC/DC coverage criteria concept it reduces the number of test

cases from 16 (see Table 4.20) to 5.

Table 4.25 Independently effect option (A), (B), (C) and (D)

Test Case Option (A) Option (B) Option (C) Option (D) Option (A&&B&&C&&D)

TC 1 True True True True True

TC 9 False True True True False

TC 5 True False True True False

TC 3 True True False True False

TC 2 True True True False False

The above Section 4.1.3 has explained in details about MC/DC coverage criterion for selection

control structures. In this case, four options have discussed in order to show the consistency of

generating test cases for MC/DC coverage criterion. The explanation shows from the truth table

that the number of test cases by applying MC/DC coverage criteria has reduced the number of

test cases. For one option it has only two values (true and false) so the number of test cases for

one option is 2. If there are two options the truth table shows 4 combinations of test cases; but

applying MC/DC coverage it reduces to 3 possible test cases, same applies to number of option

three and four. It generates number of test cases 4 and 5 respectively.

Finally, it concludes from the explanation above that the formula for generating test cases by

applying MC/DC test adequacy coverage criteria is (N+1) where N is the number of option. For

Test Case Option (A) Option (B) Option (C) Option (D) Option (A&&B&&C&&D)

TC 1 True True True True
True

TC 2 True True True False
False

47

example, if there is 2 conditions by applying MC/DC the number of generated test cases will be

(2+1)=3. The following Table 4.26 shows the formula for number of conditions involve in a

program.

4.1.4 Loop Control Structure (Modified Condition/Decision Coverage)

In this section will be discussed about three types of loop control structures as mentioned in

Chapter 3, Section 2.3.4(ii) for MC/DC coverage criterion.

If a lecturer considers for loop, in a program has one for loop control structure (loop 1) such as

below:

In this case, the number of option is one. The formula of truth table is N2, where N is the number

of option (N=1, 2, 3, 4….n). The truth table for one option is as follow:

Table 4.26 Truth table for one option (loop)

Test Case Option (A)

TC 1 True

TC 2 False

The following Table 4.27 shows the generated test cases considering independently effect of one

option. In this case, one option has only two values in a decision either true or false.

48

Table 4.27 Generated test cases for one option (loop)

Option (A) Pattern

True 1

False 2

 (ii) If a lecturer considers do…while loop, in this program has one do…while loop control

structure (loop 1); and it consist of 2 options (Option X and Option Y).

Figure 4.5 Example of do…while loop control structure

In this case, the number of option is two. The formula of truth Table is N2, where N is the number

of option (N=1, 2, 3, 4... n). The truth table for one option is as follows:

Table 4.28 Truth table for two options (loop)

Test Case Option (X) Option (Y) Option(X&&Y)

TC 1 True True True

TC 2 True False False

TC 3 False True False

TC 4 False False False

The following Tables show the generated test cases considering independently effect of each

option.

In this case considering independently effect on Option (X), Table 4.30 shows the produced

result.

do{
 //Some statements
}
while (x>20&&y<50);

49

Table 4.29 Independently effect option (X)

Option (X) Option (Y) Option(X&&Y) Pattern

True True True 1

False True False 2

In this case considering independently effect on Option (Y), Table 4.31 shows the produced

result.

Table 4.30 Independently effect option (Y)

Option (X) Option (Y) Option(X&&Y) Pattern

True True True 1

True False False 3

The following Table 4.31 produces the final result by combining the test cases from the above

Tables. In this case Option (X) and Option (Y)) are considered as independently. Thus, applying

MC/DC coverage criteria concept it reduces the number of test cases from 8 (Table 4.29) to 3.

Table 4.31Independently effect option (X) and option (Y)

Option (X) Option (Y) Option(X&&Y) Pattern

True True True 1

False True False 2

True False False 3

 (iii) If a lecturer considers while loop, in term condition for while loop is same as do…while

loop. This kind of loop structure is described in do…while loop.

The generated number of test cases for nested loop for MC/DC is also same as described above.

The next section will explain the generated test cases for MC/DC coverage criteria by using

programming example.

50

4.2 Structural Test Data Generation by Examples

In this section some example will be used in order to relate structural test data generation with

APA.

4.2.1 Selection Control Structure

(i) One (1) option: An example of programming exercise with one option (age>=20)

Table 4.25 illustrates the sample of programming exercise with its expression, option and true

false value.

Table 4.32 Illustration of sample program

Expression Option True Value False Value

age>=20 age 20 18

By applying MC/DC test adequacy coverage criteria it generates 2 (two) test cases which are

shown below:

51

Table 4.33 Generated test cases for one option (MC/DC)

Test Case Value

TC 1 True

20

TC 2 False

18

(ii) Two (2) options: An example of programming exercise with two options

(age>=20&&city=="kedah")

Table 4.34 illustrates the sample of programming exercise with its expression, option and true

false value.

Table 4.34 Illustration of sample program for two options

Expression Option True value False value

((age>=20) &&(city==”kedah”))

age 20 18

city "Kedah" "Anything"

52

(iii) MC/DC coverage: By applying MC/DC test adequacy coverage criterion it generates

three (3) test cases which are shown below:

Table 4.35 Generated test cases for two options (MC/DC)

Test Case Value

TC 1

True

20

True

"Kedah"

TC 2

False

18

True

"Kedah"

TC 3

True

20

False

"Anything"

An example of programming exercise with three options ((age>=20&&salary<

2000)&&(city=="kedah"))

Table 4.36 illustrates the sample of programming exercise with its expression, option and true

false value

53

Table 4.36 Illustration of sample program for three options

Expression Option True value False value

((age>=20) &&(salary<2000)&&(city

==”kedah”))

age 20 18

salary 1800 2200

city “Kedah” “Anything”

By applying MC/DC test adequacy coverage criteria it generates three (3) test cases which are

shown below

Table 4.37Generated test cases for three options (MC/DC)

Test Case (TC) Value

TC 1
True

20
True
1800

True
“Kedah”

TC 2

False
18

True
1800

True
“Kedah”

TC 3

True
20

False
2200

True
“Kedah”

TC 4

True
20

True
1800

False
“Anything”

4.2.2 Loop Control Structure (Modified Condition/Decision Coverage)

(i) do…while loop : An example of do…while loop programming exercise.

54

Table 4.38 illustrates the sample of programming exercise with its expression, option and true

false value

Table 4.38 Illustration of sample program (loop)

Expression Option True Value False Value

x<50 x 48 52

By applying MC/DC test adequacy coverage criteria it generates two (2) test cases which are

shown below:

 Table 4.39 Generated test cases for one option (loop)

Test Case Value

TC 1 True
48

TC 2 False
52

(ii) Generating test cases for while loop also same as described in do… while loop.

(iii) Generating test cases for for loop also same as described in do… while loop

In this study three types of loop control structure (do…while loop, while loop and for loop) has been

covered to generate test data.

4.3 Implementation of DyStruc-TDG

In this section, the implementation of the prototype will be described. In order to generate test

data a prototype is developed to test the DyStruc-TDG method for structural testing coverage.

The system specification for this prototype is used Ecilipse IDE version Juno. The method is

developed by using Java programming language. The following Figures will describe in details

of the implementation. The following Figure 4.10 shows an interface of running all selection

control structures. The program automatically extracts the conditions written in the program and

generates the test data (true and false) for each condition. Lecturer needs to click on “Open”

button in order to run the students program. After clicking the “Open” button the pop up window

will allow to select students program.

Figure 4.10 Interface of generated test data (selection control structures)

The Figure 4.11 shows the generated test cases by using the concept of coverage criteria

Modified Condition/ Decision Coverage (MC/DC). In this program there are three selection

control structures with two options. Based on description in section 4.4, the number of gener

test cases for MC/DC is 9, where each selection control structure with two options generated 3

test cases.

55

in order to run the students program. After clicking the “Open” button the pop up window

will allow to select students program.

Interface of generated test data (selection control structures)

shows the generated test cases by using the concept of coverage criteria

Modified Condition/ Decision Coverage (MC/DC). In this program there are three selection

control structures with two options. Based on description in section 4.4, the number of gener

test cases for MC/DC is 9, where each selection control structure with two options generated 3

in order to run the students program. After clicking the “Open” button the pop up window

Interface of generated test data (selection control structures)

shows the generated test cases by using the concept of coverage criteria

Modified Condition/ Decision Coverage (MC/DC). In this program there are three selection

control structures with two options. Based on description in section 4.4, the number of generated

test cases for MC/DC is 9, where each selection control structure with two options generated 3

56

The following Figure 4.12 is an interface of running all selection control structures and loop

control structures. The program automatically extracts the conditions for selection and loop

control structures. The number 1 to 3 is for selection control structures and number 4 is the

counter loop structures.

Figure 4.12 Interface of generated test data (Selection and Loop control structures)

The Figure 4.13 shows the generated test cases by using the concept of coverage criteria

Modified Condition/ Decision Coverage (MC/DC). In this program there are three selection

control structures with two options and one loop control structures. Based on description in

section 4.4, the number of generated test cases for selection control structure is 9 and loop

control structure is 2. Therefore, all together the number of generated test cases for MC/DC is

11.

57

The next section will describe regarding the unit testing for this implementation of DyStruc-

TDG.

4.4 Unit Testing

According to Tim Koomen and Martin Pol (1999) unit test is defined as a test which is executed

by the developer in a lab in order to meet the requirements of design specification. Unit testing

has been performed in this study in order to generate structural test data. Several programming

exercises were used to perform unit testing to test whether or not the prototype can generate

accurate test data. During unit testing the both control structures (selection and repetition) were

tested.

4.5 Summary

This chapter provides the explanation of proposed work for the research in this study. The

proposed method is called DyStruc-TDG which includes an adequate set of test data to perform

dynamic structural testing of a program for APA. DyStruc-TDG covers both control structures

which are selection control structures and loop control structures. The selected two test adequacy

criteria which are path coverage and Modified condition/Decision coverage (MC/DC) also

explained for both control structures. Besides, the implementation of DyStruc-TDG and unit

testing also presented in this chapter.

58

CHAPTER 5

EVALUATION

This chapter explains the details of procedures and results found from the conducted evaluation

to evaluate the DyStruc-TDG method. In this study, the evaluation consists of two parts namely

Controlled Experiment and Qualitative Comparison.

The first part involves a controlled experiment to measure the positive testing of test data

adequacy criteria of DyStruc-TDG. The findings of this controlled experiment will attempt to

answer the second sub-research question (RQ-2). The details of controlled experiment have been

discussed in Chapter 3 (Section 3.1.4.1). In this chapter the analysis and findings from the

conducted pre-test and post-test experiment will be reported.

The second part of this study explains the qualitative evaluation of DyStruc-TDG. It compares

the existing tool(s) in the same domain that worked on the integration of test data generation and

automatic programming assessment that focuses on the structural testing. The analysis of

findings of this evaluation will be reported as well.

5.1 Descriptive Statistics

The following section will describe the analysis and findings from the conducted pre-test and

post-test experiment. Based on conducted pre-test and post-test experiment, the following Tables

present the number of test cases derived by current method and DyStruc-TDG method to test

each programming exercises.

5.1.1 Question (1): Current method

The following Figure 5.1 shows the control flow graph of the selection control structure for

Question (1).

59

Figure 5.1 Control flow graph for selection control structure

Table 5.1 shows the paths for selection control structures which consisted of 3 paths (path 1, path

2 and path 3)

Table 5.1Number of paths for selection control structures

Path 1 Path 2 Path 3

(age>=21&& age <=200)

(age>=1&& age <=20)

(age<1&& age >200)

Based on conducted pre-test experiment, the following Table 5.2 shows the number of derived

test cases for current method. The question was about selection control structure which consisted

of three paths as shown in Table 5.1. The numbers are in the Table represents the derived test

cases by the each subject. The derived test cases are grouped based on the paths covered from the

pre-test experiment. For example, subject 1 derived total 6 test cases for question (1) where 2 test

cases covered path 1 and 4 test cases for path 2 but did not cover any test cases for path 3.

60

Table 5.2 Number of test cases to cover each path by current method for question (1)

Current method: Question (1)

Subjects Path 1(Test Cases) Path 2 (Test Cases) Path3 (Test Cases)

1 2 4 0

2 3 2 2

3 1 2 0

4 3 4 3

5 2 2 2

6 3 3 2

7 4 2 4

8 4 4 2

9 1 1 4

10 1 0 4

The following Table 5.3 shows the total number of test cases for current method derived by each

subject for question (1).

Table 5.3 Total number of test cases by current method for question (1)

Subjects Total Test Cases (Question 1)

1 6

2 7

3 3

4 10

5 6

6 8

7 10

8 10

9 6

10 5

61

5.1.2 Question (1): DyStruc-TDG Method

By using DyStruc-TDG method in post-test experiment the Table 5.4 shows the number of test

cases to cover 3 paths mentioned in Table 5.1 by each subject. In this case the DyStruc-TDG

method has generated test cases in a consistent way for each path and it considered each option

individually based on MC/DC coverage concept. For example, path 1 (age>=21&& age <=200)

has two options (age>=21) and (age <=200). According to MC/DC formula provided in Chapter

2 (see Table 2.7) the DyStruc-TDG method has generated 3 test cases. Thus, another 2 paths

(path 2 and path 3) also have 2 options. That is why the DyStruc-TDG method also has generated

3 test cases for each path.

Table 5.4 Number of test cases to cover by DyStruc-TDG method for question (1)

DyStruc-TDG Method: Question (1)

Subjects Path 1(Test Cases) Path 2 (Test Cases) Path3 (Test Cases)

1 3 3 3

2 3 3 3

3 3 3 3

4 3 3 3

5 3 3 3

6 3 3 3

7 3 3 3

8 3 3 3

9 3 3 3

10 3 3 3

62

The following Table 5.5 shows the total number of test cases is 9 which are generated by

DyStruc-TDG method for question (1).

Table 5.5 Total number of test cases by DyStruc-TDG for question (1)

Subjects Total Test Cases (Question 1)

1 9

2 9

3 9

4 9

5 9

6 9

7 9

8 9

9 9

10 9

The following line graph from Figure 5.2 shows the number of test cases coverage for current

method and DyStruc-TDG method. The DyStruc-TDG method generated test cases in a

consistent way and covered all the paths. For MC/DC coverage the DyStruc-TDG method

considered each option individually. On the other hand, the subjects of current method derived

test cases in an inconsistent way. Regarding the path coverage some subjects did not cover all the

paths (see Table 5.1). Based on their deriving test cases they did not consider each option

individually for MC/DC coverage.

From the line graph the subjects (4, 7, and 8) derived one extra test case than DyStruc-TDG

method. In this case DyStruc-TDG method reduces one test case. On the other hand, the other

subjects derived less test cases than DyStruc-TDG method. In this case, although the current

method reduces number of test cases but did not cover all the paths and each option individually

for selection control structures. Thus, current method did not derive consistent test cases to

provide thoroughness testing where DyStruc-TDG method covered all the paths and options

individually and provides the thoroughness of testing.

63

Figure 5.2 Test cases coverage between Current Method and DyStruc-TDG for question (1)

5.1.3 Question (2): Current method

The following Figure 5.3 shows the control flow graph of the repetition control structure for

Question (2).

Figure 5.3 Control flow graph for repetition (counter loop)

6
7

3

10

6

8

10 10

6
5

9 9 9 9 9 9 9 9 9 9

0

2

4

6

8

10

12

0 2 4 6 8 10 12

Te
st

 C
as

e
s

Subjects

Question (1)

Current Method

DyStruc‐TDG

64

The Table 5.6 shows the number of test cases for repetition control structure to cover 3 paths

(path 1, path 2 and path 3) mentioned in Table 5.1 by each subject. In this case the DyStruc-TDG

method has generated test cases in a consistent way for each path and it considered each option

individually based on MC/DC coverage concept. For example, path 1 (age>=21&& age <=200)

has two options (age>=21) and (age <=200). According to MC/DC formula in Chapter 2 (see

Table 2.7) the DyStruc-TDG method has generated 3 test cases. Thus, another 2 paths (path 2

and path 3) also have 2 options. That is why the DyStruc-TDG method has generated 3 test cases

for each path.

Table 5.6 Number of test cases to cover by current method for question (2)

Current method: Question (2)

Subjects Path 1 (Test Cases) Path 2 (Test Cases) Path3 (Test Cases)

1 3 3 0

2 2 1 0

3 2 1 0

4 2 2 3

5 2 2 1

6 3 3 2

7 3 2 3

8 4 6 3

9 2 2 6

10 1 0 2

65

The following Table 5.7 shows the total number of test cases for current method derived by each

subject for question (2).

Table 5.7 Total number of test cases by current method for question (2)

5.1.4 Question (2): DyStruc-TDG Method

Based on post-test experiment the Table 5.8 shows the number of test cases to cover 3 paths

mentioned in Table 5.1 by each subject. In this case the DyStruc-TDG method has generated test

cases in a consistent way for each path and it considered each option individually based on

MC/DC coverage concept. The example is same as provided for question (1).

Table 5.8 Number of test cases to cover by DyStruc-TDG method for question (2)

DyStruc-TDG Method: Question (2)

Subjects Path 1 Path 2 Path3

1 3 3 3

2 3 3 3

3 3 3 3

Subjects Total Test Cases (Question 2)

1 6

2 3

3 3

4 7

5 5

6 8

7 8

8 13

9 10

10 3

66

Subjects Path 1 Path 2 Path3

4 3 3 3

5 3 3 3

6 3 3 3

7 3 3 3

8 3 3 3

9 3 3 3

10 3 3 3

The following Table 5.9 shows the total number of test cases is 9 which are generated by

DyStruc-TDG method for question (2).

Table 5.9 Total number of test cases by DyStruc-TDG for question (2)

Subjects Total Test Cases (Question 2)

1 9

2 9

3 9

4 9

5 9

6 9

7 9

8 9

9 9

10 9

From Figure 5.4, the following line graph shows the number of test cases coverage for current

method and DyStruc-TDG method. The DyStruc-TDG method generated test cases in a

consistent way and covered all the paths. For MC/DC coverage the DyStruc-TDG method

considered each option individually. On the other hand, the subjects of current method derived

test cases in an inconsistent way. Regarding the path coverage some subjects did not cover all the

67

paths (see Table 5.1). Based on their deriving test cases they did not consider each option

individually for MC/DC coverage.

From the line graph the subjects (8 and 9) derived four and one extra test cases respectively than

DyStruc-TDG method. In this case DyStruc-TDG method reduces test cases than current

method. On the other hand, the other subjects derived less test cases than DyStruc-TDG method.

In this case, although the current method reduces number of test cases but did not cover all the

paths and each option individually for selection control structures. Thus, current method did not

derive consistent test cases to provide thoroughness testing where DyStruc-TDG method covered

all the paths and options individually and provides the thoroughness of testing.

Figure 5.4 Test cases coverage between Current Method and DyStruc-TDG for question (2)

5.1.5 Question (3): Current method

The following Figure 5.5 shows the control flow graph of the repetition control structure for

sentinel loop for Question (3).

6

3 3

7

5

8 8

13

10

3

9 9 9 9 9 9 9 9 9 9

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12

Te
st

 C
as

e
s

Subjects

Question (2)

Current Method

DyStruc‐TDG

68

Figure 5.5 Control flow graph for repetition (sentinel loop)

Based on conducted pre-test experiment, the following Table 5.10 shows the number of derived

test cases for current method. The question was about repetition control structure for sentinel

loop which consisted of one path (number = =0). The numbers are in the Table represents the

derived test cases by the each subject. The derived test cases are grouped based on the path

covered from the pre-test experiment. For example, subject 1 derived total (4) test cases for

question (3) where 4 test cases covered path 1.

Table 5.10 Number of test cases to cover by current method for question (3)

Current method: Question (3)

Subjects Path 1(Test Cases)

1 4

2 3

3 4

4 6

5 3

6 5

7 4

Start

End

Input number

Calculate
sum=sum+number

a

b3
Display sum

number==0

b1

b2

c

69

Subjects Path 1(Test Cases)

8 6

9 3

10 3

5.1.6 Question (3): DyStruc-TDG Method

By using DyStruc-TDG method in post-test experiment the Table 5.11 shows the number of test

cases to cover 1 path (number = =0). In this case the DyStruc-TDG method has generated test

cases in a consistent way for path 1 and it considered one option individually based on MC/DC

coverage concept.

For example, path 1 (number = =0) has one option. Based on MC/DC formula in Chapter 2 (see

Table 2.7) the DyStruc-TDG method has generated 2 test cases for one option.

Table 5.11 Total number of test cases by DyStruc-TDG method for question (3)

DyStruc-TDG: Question (3)

Subjects Path 1 (Test Cases)

1 2

2 2

3 2

4 2

5 2

6 2

7 2

8 2

9 2

10 2

70

The line graph generated in Figure 5.6 for question (3) shows the derived test cases by the

current method and DyStruc-TDG method. In this case the current method line is above than

DyStruc-TDG method. The reason of producing the line above is to deriving more test cases than

DyStruc-TDG method generated. The question is regarding sentinel loop where this type of loop

consists of two values either true or false. In current method, the subjects derived more test cases

for false value where only 1 value is sufficient to cover adequate testing.

Table 5.12 Test data for sentinel loop in current method

True value False value

0 1

 -1

Redundant
test cases

 1000

 20

 A

For instance, based on above Table 5.12 in current method subject (4) derived total 6 test cases

for true and false value where 1 test case is for true value and another 5 test cases for false value.

Thus, subject (6) derived 4 redundant test cases for false value where only 1 test case is enough

for false value regardless of any data type. On the other hand, the DyStruc-TDG method

generates only 2 test cases (see Table 5.11) for true and false value which is adequate for

thoroughness testing in path coverage and MC/DC coverage.

Figure 5.6 Test cases coverage between Current Method and DyStruc-TDG for question (3)

4

3

4

6

3

5

4

6

3 3

2 2 2 2 2 2 2 2 2 2

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12

Te
st

 C
as

e
s

Subjects

Question (3)

Current Method

DyStruc‐TDG

71

5.1.7 Question (4): Current method

The following Figure 5.7 shows the control flow graph of repetition and selection control

structures for Question (4).

Figure 5.7 Control flow graph for repetition and selection control structures

The Table 5.13 shows the number of paths for selection and repetition control structures which

consisted of 7 paths (path 1, path 2, path 3, path 4, path 5, path 6 and path 7) and Table 5.9

shows the number of test cases derived by ten subjects to cover the selection control structures

by using current method.

Table 5.13 Number of paths for selection and repetition control structures

Number of Paths Path Condition

Path1 (!studentID.equalsIgnoreCase("zzz"))

Path 2 (testScore>= 90 && testScore<= 100)

Path 3 testScore>= 80 && testScore< 90)

Path 4 (testScore>= 70 && testScore< 80)

Path 5 (testScore>= 60 && testScore< 70)

72

Number of Paths Path Condition

Path 6 (testScore>= 0 && testScore< 60)

Path 7 (testScore>100 && testScore<0)

Based on conducted pre-test experiment, the following Table 5.14 shows the number of derived

test cases for current method. The question was about repetition and selection control structure

which consisted of seven paths as shown in Table 5.12. The numbers are in the Table represents

the derived test cases by the each subject. The derived test cases are grouped based on the paths

covered from the pre-test experiment. For example, subject 1 derived total 13 test cases for

question (4) where 7 test cases covered path 1, 1 test case for path (2, 3, 6 and 7), 2 test cases

covered path 4 and 0 test case for path 5.

Table 5.14 Number of test cases to cover by current method for question (4)

Current method: Question (4)

Subjects Path1(TC) Path2(TC) Path3(TC) Path4(TC) Path5(TC) Path6(TC) Path7(TC)

1

7 1 1 2 0 1 1

2

0 3 3 3 3 3 2

3

5 0 1 0 1 1 0

4

11 1 0 1 1 3 2

5

0 0 2 1 0 0 1

6

5 3 2 2 2 2 1

7

2 4 4 2 5 2 2

8

18 4 2 3 4 2 0

9

7 1 1 1 1 1 3

10

9 2 0 1 1 1 3

73

The following Table 5.15 shows the total number of test cases for current method derived by

each subject for question (4).

Table 5.15 Total number of test cases by current method for question (4)

5.1.8 Question (4): DyStruc-TDGMethod

By using DyStruc-TDG method in post-test experiment the Table 5.16 shows the number of test

cases to cover 7 paths mentioned in Table 5.13 by each subject. In this case the DyStruc-TDG

method has generated test cases in a consistent way for each path and it considered each option

individually based on MC/DC coverage concept.

For example, path 1 (!studentID.equalsIgnoreCase("zzz")) has one option. By applying MC/DC

formula from Chapter 2 (see Table 2.7) the DyStruc-TDG method has generated 2 test cases for

one option. But, another 6 paths (path 2, path 3, path 4, path 5, path 6 and path 7) have 2 options.

That is why the DyStruc-TDG method has generated 3 test cases for each path.

Subjects Total Test Cases (Question 4)

1 13

2 17

3 8

4 19

5 4

6 17

7 21

8 33

9 15

10 17

74

Table 5.16 Number of test cases to cover by DyStruc-TDG method for question (4)

DyStruc-TDG Method: Question (4)

Subjects Path1(TC) Path2(TC) Path3(TC) Path4(TC) Path5(TC) Path6(TC) Path7(TC)

1 2 3 3 3 3 3 3

2 2 3 3 3 3 3 3

3 2 3 3 3 3 3 3

4 2 3 3 3 3 3 3

5 2 3 3 3 3 3 3

6 2 3 3 3 3 3 3

7 2 3 3 3 3 3 3

8 2 3 3 3 3 3 3

9 2 3 3 3 3 3 3

10 2 3 3 3 3 3 3

The following Table 5.17 shows the total number of test cases is 20 which are generated by

DyStruc-TDG method for question (4).

Table 5.17 Total number of test cases by DyStruc-TDG method for question (4)

Subjects Total Test Cases (Question 4)

1 20

2 20

3 20

4 20

5 20

6 20

7 20

8 20

9 20

10 20

75

From Figure 5.8 the following line graph shows the number of test cases coverage for current

method and DyStruc-TDG method. The DyStruc-TDG method generated test cases in a

consistent way and covered all the paths. For MC/DC coverage the DyStruc-TDG method

considered each option individually. On the other hand, the subjects of current method derived

test cases in an inconsistent way. Regarding the path coverage some subjects did not cover all the

paths (see Table 5.1). Based on their deriving test cases they did not consider each option

individually for MC/DC coverage.

From the line graph the subjects (7 and 8) derived one and thirteen extra test cases respectively

than DyStruc-TDG method. In this case DyStruc-TDG method reduces one and thirteen test

cases. On the other hand, the other subjects derived less test cases than DyStruc-TDG method. In

this case, although the current method reduces number of test cases but did not cover all the

paths and each option individually for selection control structures. Thus, current method did not

derive consistent test cases to provide thoroughness testing where DyStruc-TDG method covered

all the paths and options individually and provides the thoroughness of testing.

Figure 5.8 Test cases coverage between Current Method and DyStruc-TDG for question (4)

5.2 Comparative Evaluation

Qualitative evaluation also presented in this study to compare in terms of test data adequacy for

structural testing. The comparison was done among three studies in structural testing namely

Ihantola (2006) and Tillmann et al., (2013); Rohaida (2014) and DyStruc-TDG. A sample of

programming exercise is used for this comparison as shown in Figure 5.9.

13
17

8

19

4

17

21

33

15
17

20 20 20 20 20 20 20 20 20 20

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12

Te
st

 C
as

e
s

Subjects

Question (4)

Current Method

DyStruc‐TDG

76

Figure 5.9 Sample of programming exercise

The following Table 5.18 shows the comparison of three studies for structural testing.

Table 5.18 Comparison of three studies

Criteria of

comparison

Ihantola (2006) and

Tillmann et al., (2013)

Rohaida (2014) DyStruc-TDG

Number of test cases 4 5 9

Test data coverage 1. age>=21&& age

<=200

2. age>=1&& age

<=20

3. age<1

4. age >200

1. age>=21&& age

<=200

2. age>=1&& age

<=20

3. age<1

4. age >200

5. Illegal path

condition

1. age>=21&& age

<=200

2. age>=1&& age

<=20

3. age<1

4. age >200

Values of test data Input parameter based

on path condition

Lecturer need to

assign test data

Automated generated

77

Based on the comparison it shows that, Ihantola (2006) and Tillmann et al., (2013) and Rohaida

(2014) have derived respectively 4 and 5 test cases. On the other hand, DyStruc-TDG method

has derived 9 test cases. However, in terms of coverage structural testing DyStruc-TDG method

has used MC/DC coverage concept. DyStruc-TDG method has covered each option individually

as part of Boolean expression where it considered true and false value for each option

individually. In terms of performing structural testing proposed by Rohaida (2014) it is required

human involvement to assign test data where DyStruc-TDG methods generates test data

automatically.Thus, it concludes that DyStruc-TDG method has covered more thorough testing

than another two studies which are proposed by Tillmann et al., (2013) and Rohiada (2014) in

terms of path coverage and MC/DC coverage.

5.3 Summary

In summary, this chapter has explained the evaluation process into two parts namely controlled

experiment and qualitative evaluation. In controlled experiment has discussed about pre-test and

post-test experiment. The number of test cases derived through current method and DyStruc-

TDG method by the ten subjects was presented. Figure 5.5 to Figure 5.14 described the findings

of derived test cases in order to compare between current method and DyStruc-TDG method.

Finally, the second part involves the qualitative evaluation where two studies were presented in

order to compare with DyStruc-TDG by providing a sample of programming exercises.

78

CHAPTER 6

CONCLUSION

This study is with regard proposing a test data generation method for deriving and generating an

adequate set of test data to perform the dynamic structural testing in automatic programming

assessment (APA). Previous studies found some gaps and lacking of adequate coverage of test

data in testing of student’s program. Furthermore, the previous studies have presented many

methods in terms generating test data that fulfill some coverage of software testing criteria but

very few studies have integrated both in the context of APA. By having a test data generator to

represent the proposed method (DyStruc-TDG), it is able to assist lecturers of introductory

programming courses to prepare and generate adequate set of test data automatically regardless

of having the optimal knowledge in designing of test cases.

In order to formulating research problem and deciding the solution to the problem, this study

conducted a thorough literature review. Their findings have described in details in Chapter 2. It

covers the existing methods of test data generation in the context of software testing area and

integration of test data generation with APA. The next sections will discuss each of provided

solutions in order to answer research questions, contributions as well as overall conclusion

obtained within this study.

6.1 Revisit of Research Questions and Objectives

This section summarizes the identified research questions and research objectives which were

formulated in Chapter 1.

Based on literature review, this study identified the problem and formulated the main research

question as: “How to generate a set of test data that do satisfy the test adequacy criteria to

adhere the coverage of structural testing of a program executed for APA?”

Based on the above main research question, this study was conducted the following specific sub

questions:

79

1. How to construct a test data generation method to achieve the means of deriving an

adequacy set of the test data for dynamic structural testing in APA?(RQ-1)

2. How to measure the adequacy of test data as derived in (1) in the context of APA? (RQ-

2)

Based on research questions above, this study aims to achieve the following objectives:

1. To construct a test set which include an adequate of test data to represent DyStruc-TDG

(RO-1)

2. To measure the adequacy of test data derived from DyStruc-TDG in the context of

programming assessment(RO-2)

The next section will discuss the solutions in order to answer the provided research questions as

well as the overall conclusion obtained within this study.

6.1.1 Discussion on Research Question (1)

In order to answer this question, the related literature was reviewed where it’s mainly focused on

software testing adequate coverage criteria. In order to know how adequate the testing is, it is

required to test the coverage of the program. Based on the literature review, this study found the

ranking of code coverage which helps to derive an adequacy set of test data for dynamic

structural testing in APA. This study has adapted two test data adequacy coverage criteria which

are path and Modified Condition/Decision Coverage.

The objective of the path testing is to ensure that every path in the program travelled through

programs executed at least once. In structural test data generation, test cases are derived in such a

way that every path is executed at least once as path coverage. It ensures coverage of all the

paths from start to end.

Next, the Modified Condition/Decision Coverage is one of the structural coverage criteria that is

used to assist in the assessment of adequacy of test data generation. This coverage criterion

explains that every condition in the decision independently affects the decision’s outcome.

MC/DC coverage criterion reduces the number of test cases and generates adequate test data.

80

In overall, by adopting the path coverage and Modified Condition/Decision Coverage test

adequacy coverage criteria the DyStruc-TDG method has achieved the means of deriving an

adequacy set of test data for dynamic structural testing in APA.

6.1.2 Discussion on Research Question (2)

Evaluation process measures the test data generation method whether or not it improves the

completeness coverage of test data adequacy criteria of reliability issue. The evaluation with

regard to this aim is purposely to answer the second research question (RQ-2). To measure the

adequacy of test data a controlled experiment and qualitative evaluation has been carried out for

this study.

After constructing the method, it is important to test the method in order to measure the

adequacy of test data. Therefore, a prototype is developed. A controlled experiment is conducted

to evaluate the developed method called DyStruc-TDG. The controlled experiment consists of

pre-test and post-test experiment. By using current method in pre-test experiment subjects

derived test data for each question. Then, in post-test experiment DyStruc-TDG method was

used to generate test data for the same questions.

In pre-test experiment the numbers of deriving test cases by the subjects are not consistent and

did not cover all the paths. Some subjects derived more test cases than necessary which causes

more workload. On the other hand, DyStruc-TDG method generates adequate set of test cases in

a consistent way and covered all the paths and each option individually.

Qualitative evaluation also presented in this study to compare in terms of test data adequacy for

structural testing. The comparison of DyStruc-TDG was done among three studies in structural

testing. From the comparison of three studies it concludes that DyStruc-TDG method covers

more thorough testing and generates adequate set of test data for APA.

In conclusion, based on controlled experiment and qualitative evaluation the DyStruc-TDG

method generates adequate set of test data for path coverage and MC/DC coverage which covers

the thoroughness of testing.

81

6.2 Contribution of the Study

This study is an attempt to adapt existing test adequacy criteria applied in software testing field

as a test data generation method to perform dynamic structural testing for automatic

programming assessment. This study contributes in terms of theoretical and practical context for

APA. In theoretical perspective, this study enhances the existing researches in APA by providing

the means of deriving and generating test data automatically by integrating the path and MC/DC

coverage. These two structural codes coverage provide a significant impact in reducing the

number of test cases required to test students’ programming solutions in terms of the aspect of

structural testing. In addition, a more thorough testing aspect is considered as each individual

condition has been a part of the means of deriving the test cases.

On the other hand, in practical perspective, this study contributes a physical deliverable that is a

test data generator to provide a medium of generating test data automatically for the usage of

lecturers. Through this generator, it is able to assist the lecturers who teach programming courses

to generate test data and test cases to perform automatic programming assessment regardless of

having a particular knowledge of test cases design. Besides, indirectly the lecturers’ workload

can be reduced effectively since the typical manual assessments are always prone to errors.

6.3 Limitations and Recommendations

The limitations of this study and possible future recommendations are as follow:

(i) Negative Testing

This study does not cover the negative testing criterion in order to derive and generate test data.

Negative testing criterion provides the invalid test data as input into the program. This is to test

the application “does not do anything that it is not supposed to do”. By including the negative

testing, the ideal test criterion can be achieved. Thus, more through testing can be included. The

main concerned of excluding this criterion because the main concern of this study is to focus on

each individual condition as part of the Boolean expression consisted in each path to cover

MC/DC coverage. It is just enough to cover only true and false values for each condition.

However, in future recommendation, by including negative testing criterion it will resolve the

limitation in terms of achieving ideal test criterion.

82

(ii) Only Integer Value for Counter Loop

As a prototype was developed to generate test data for automatic programming assessment, there

is an implementation limitation of this prototype. In counter loop the value for comparison

variable must be an integer instead of assigning any referring variable. For example the counter

loop is: for (int i=0;i<5;i++). In this case, the value for comparison variable (i<5) must be an

integer which is 5. In this prototype any referring variable cannot be assigned such as (i<number)

where number is a referring a variable.

The limitation of this implementation can be resolved by providing in string data type for counter

loop. Thus, it will resolve the limitation of assigning string variable.

6.4 Conclusion

Automatic programming assessment plays a vital role in academic in order to assess students

program and marking their grade. At the same time, APA is assisting lecturers by reducing their

workload. In order to testing students program it is required to generate set of test data.

Therefore, in APA the generation of test data is very important. In software testing area, there are

many automated test data generation methods are available but very few studies on APA used it.

Integration of both test data generation and APA has only limited studies that provide testing

coverage for quality program.

 Therefore, this study proposed a method to derive and generate an adequate set of test data to

perform structural testing in APA or so called DyStruc-TDG. This method can assist lecturers to

generate an adequate set of test data for student’s program. This method reduces the workload

and time of lecturers as well as it assists them generating adequate test cases regardless of having

optimal expertise in the knowledge of designing of test cases.

83

REFERENCES

Bertolino, A., & Marchetti, E. (2005). A brief essay on software testing.Software Engineering,

3rd edn. Development process, 1, 393-411.

Blumenstein, M., Green, S., Nguyen, a., & Muthukkumarasamy, V. (2004). GAME: a Generic

Automated Marking Environment for programming assessment. International Conference

on Information Technology: Coding and Computing, 2004. Proceedings. ITCC 2004.,

212–216 Vol.1.

Burnstein, I. (2003). Practical Software Testing, Springer-Verlag, New York.

Cheng, Z., Monahan, R., & Mooney, A. (2011). nExaminer: A semi-automated computer

programming assignment assessment framework for Moodle.

Choy, M., Nazir, U., Poon, C. K., & Yu, Y. T. (2005). Experiences in using an automated system

for improving students’ learning of computer programming. In Advances in Web-Based

Learning–ICWL 2005 (pp. 267-272). Springer Berlin Heidelberg.

Chu, H. D. (1997). An evaluation scheme of software testing techniques (pp. 259-262). Springer

US.

Clarke, L. a. (1976). A System to Generate Test Data and Symbolically Execute Programs. IEEE

Transactions on Software Engineering, SE-2(3), 215–222.

Clarke, L. A. (1976). A system to generate test data and symbolically execute

programs. Software Engineering, IEEE Transactions on, (3), 215-222.

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of

information technology. MIS quarterly, 319-340.

Edvardsson, J. (1999, October). A survey on automatic test data generation. In Proceedings of

the 2nd Conference on Computer Science and Engineering (pp. 21-28).

Edvardsson, J. (1999, October). A survey on automatic test data generation. In Proceedings of

the 2nd Conference on Computer Science and Engineering(pp. 21-28).

Foong, O. M., Tran, Q. T., Yong, S. P., & Rais, H. M. (2014, June). Swarm inspired test case

generation for online C++ programming assessment. InComputer and Information

Sciences (ICCOINS), 2014 International Conference on (pp. 1-5). IEEE.

84

Fraenkel, J. R., & Wallen, N. E. (1993). How to design and evaluate research in education (Vol.

7). New York: McGraw-Hill.

Ghani, K., & Clark, J. A. (2009, September). Automatic test data generation for multiple

condition and MCDC coverage. In Software Engineering Advances, 2009. ICSEA'09.

Fourth International Conference on (pp. 152-157). IEEE.

Ghani, K., & Clark, J. A. (2009, September). Automatic test data generation for multiple

condition and MCDC coverage. In Software Engineering Advances, 2009. ICSEA'09.

Fourth International Conference on (pp. 152-157). IEEE.

Goodenough, J. B., & Gerhart, S. L. (1975). Toward a theory of test data selection. Software

Engineering, IEEE Transactions on, (2), 156-173.

Guo, M., Chai, T., & Qian, K. (2010, April). Design of Online Runtime and Testing

Environment for Instant Java Programming Assessment. InInformation Technology: New

Generations (ITNG), 2010 Seventh International Conference on (pp. 1102-1106). IEEE.

Gupta, N., Mathur, A. P., & Soffa, M. L. (1998). Automated test data generation using an

iterative relaxation method. ACM SIGSOFT Software Engineering Notes, 23(6), 231-244.

Gupta, S., & Dubey, S. K. (2012). Automatic Assessment of Programming assignment, 452003,

315–323.

Hakulinen, L., & Malmi, L. (2014, June). QR code programming tasks with automated

assessment. In Proceedings of the 2014 conference on Innovation & technology in

computer science education (pp. 177-182). ACM.

Hayhurst, K. J., Veerhusen, D. S., Chilenski, J. J., & Rierson, L. K. (2001). A practical tutorial

on modified condition/decision coverage.

Ihantola, P. (2006). Automatic test data generation for programming exercises with symbolic

execution and Java PathFinder. Master's thesis, Helsinki University of Technology,

Departement of Theoretical Computer Science.

IPL Information Processing Ltd. (197a). Designing Unit Test Cases. Available

http://www.ipl.com/pdf p0823.pdf. Retrieved on: 20 Feb 2009

Jackson, D. (2000). A semi-automated approach to online assessment. ACM SIGCSE

Bulletin, 32(3), 164-167.

Jackson, D., & Usher, M. (1997). Grading student programs using ASSYST. ACM SIGCSE

Bulletin, 29(1), 335–339.

http://www.ipl.com/pdf p0823.pdf

85

James, R., Ivar, J., & Grady, B. (1999). The unified modeling language reference

manual. Reading: Addison Wesley.

Koomen, T., & Pol, M. (1999). Test process improvement: a practical step-by-step guide to

structured testing. Addison-Wesley Longman Publishing Co., Inc.

Korel, B. (1990). Automated software test data generation. Software Engineering, IEEE

Transactions on, 16(8), 870-879.

Korel, B. (1996). Automated test data generation for programs with procedures. ACM SIGSOFT

Software Engineering Notes, 21(3), 209–215.

Lahtinen, E., Ala-Mutka, K., & Järvinen, H. M. (2005, June). A study of the difficulties of

novice programmers. In ACM SIGCSE Bulletin (Vol. 37, No. 3, pp. 14-18). ACM.

Latiu, G. I., Cret, O. A., & Vacariu, L. (2012). Automatic Test Data Generation for Software

Path Testing Using Evolutionary Algorithms. 2012 Third International Conference on

Emerging Intelligent Data and Web Technologies, 1–8.

Luck, M., & Joy, M. (1999). A secure on‐line submission system. Software: Practice and

Experience, 29(8), 721–740.

Malmi, L., Karavirta, V., Korhonen, A., Nikander, J., Seppälä, O., & Silvasti, P. (2004). Visual

Algorithm Simulation Exercise System with Automatic Assessment:

TRAKLA2. Informatics in education, 3(2), 267-288.

McMinn, P. (2004). Search-based software test data generation: A survey.Software Testing

Verification and Reliability, 14(2), 105-156.

Monpratarnchai, S., Fujiwara, S., Katayama, A., & Uehara, T. (2014). Automated testing for

Java programs using JPF-based test case generation.ACM SIGSOFT Software

Engineering Notes, 39(1), 1-5.

Offutt, J., Liu, S., Abdurazik, A., & Ammann, P. (2003). Generating test data from state-based

specifications. Software Testing, Verification and Reliability, 13(1), 25–53.

Pargas, R. P., Harrold, M. J., & Peck, R. R. (1999). Test-data generation using genetic

algorithms. Software Testing Verification and Reliability, 9(4), 263-282.

Pressman, R. S. (2005). Software engineering: a practitioner's approach. Palgrave Macmillan.

Rayadurgam, S., & Heimdahl, M. P. E. (2003, December). Generating MC/DC Adequate Test

Sequences Through Model Checking. In SEW (p. 91).

Romli, R. (2014). Test Data Generation Framework for Automatic Programming Assessment,

84–89.

86

Romli, R., Sulaiman, S., & Zamli, K. Z. (2010). Automatic Programming Assessment and Test

Data Generation, 00(c).

Romli, R., Sulaiman, S., & Zamli, K. Z. (2013). Designing a Test Set for Structural Testing in

Automatic Programming Assessment.

Rumbaugh, J. (2003). Object-oriented analysis and design (OOAD).

Saikkonen, R., Malmi, L., & Korhonen, A. (2001, June). Fully automatic assessment of

programming exercises. In ACM Sigcse Bulletin (Vol. 33, No. 3, pp. 133-136). ACM.

Sekaran, U. (2006). Research methods for business: A skill building approach. John Wiley &

Sons.

Tillmann, N., & Halleux, J. De. (2008). Pex – White Box Test Generation for . NET, 134–153.

Tillmann, N., De Halleux, J., Xie, T., Gulwani, S., & Bishop, J. (2013, May). Teaching and

learning programming and software engineering via interactive gaming. In Software

Engineering (ICSE), 2013 35th International Conference on (pp. 1117-1126). IEEE.

Truong, N., Bancroft, P., & Roe, P. (2005). Learning to program through the web. ACM

SIGCSE Bulletin, 37(3), 9.

Varshney, S., & Mehrotra, M. (2013). Search based software test data generation for structural

testing: a perspective. ACM SIGSOFT Software Engineering Notes, 38(4), 1-6.

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of

information technology: Toward a unified view. MIS quarterly, 425-478

Watkins, J., & Mills, S. (2010). Testing IT: an off-the-shelf software testing process. Cambridge

University Press.

Zamli, K. Z., Ashidi, N., Isa, M., Fadel, M., & Klaib, J. (2007). A Tool for Automated Test Data

Generation (and Execution) Based on Combinatorial Approach, 19–36.

Zhu, H., Hall, P. A., & May, J. H. (1997). Software unit test coverage and adequacy. Acm

computing surveys (csur), 29(4), 366-427.

Zidoune, W., & Benouhiba, T. (2012). Targeted adequacy criteria for search-based test data

generation.2012 International Conference on Information Technology and E-Services, 1-6.

87

Appendix A: Experiment Assignments

88

Question 1: Selection

Question:
Write a program that reads a value of integer, which is person_age. Then, the program should be able to print a
message of votingStatus that defines whether or not that person eligible for voting. The value of person_age should
be in the range of 1 to 200. It is given:
 person_age votingStatus
 1 – 20 “you are not eligible for voting”
 ≥ 21 “you are eligible for voting”
Functional specification:
Input – person_age is an integer
Output – votingStatus, which is a String
Functional process:
- If the input value of person_age is in the range of 1 to 200, then the program will return a message of votingStatus

“You are not eligible for voting” or “You are eligible for voting” which is a String.

- If the value is not in the given range, then the program will return a message “The input is out of the range”.

- Format of program input and output are as follows:

Input:
 Enter your age: 24
Output:
 You are eligible for voting

public class TestVoting {

public static void main(String[] arg) {

 Scanner scan = new Scanner(System.in);

int age;

System.out.println("Enter your age:");

age = scan.nextInt();

if(age>=21&& age <=200)

System.out.println("You are eligible for voting");

elseif(age>=1&& age <=20)

System.out.println("You are not eligible for voting");

elseif(age<1&& age >200)

System.out.println("The input is out of the range");}

}

Question 2: Repetition: Counter loop

Question:
Modify Question 1 so that it can process the same tasks for THREE (3)age values. The format of program input and
output are as follows:

Input and output:
Person 1:
Enter your age: 24
You are eligible for voting
Person 2:
Enter your age: 19
You are not eligible for voting
Person 3:
Enter your age: 60
You are not eligible for voting

89

public class TestVoting {
public static void main(String[] arg) {
 Scanner scan = new Scanner(System.in);
int age;
for (inti = 0; i< 3; i++) {
System.out.println("Person " + (i+1));
System.out.print("Enter your age:");
age = scan.nextInt();
if(age>=21&& age <=200)

System.out.println("You are eligible for voting");

elseif(age>=1&& age <=20)

System.out.println("You are not eligible for voting");

elseif(age<1|| age >200)

System.out.println("The input is out of the range");

 }
 }
}

Question 3: Repetition: Sentinel loop

Question:
Write a program that reads and calculates the sum of an unspecified number of integers (data). The input 0 signifies
the end of the input.
Functional specification:
Input – data, which is an integer data type
Output – sum, which is also an integer:
 Input:
 7
 Output:
 The sum is 7
Functional Process
- If data is an integer and is not 0, the program will keep on calculating sum.
- If data is an integer and is 0, the program will stop calculating the sum and return the sum value as the program
output.

public class TestSentinel {

public static void main(String[] arg) {
 Scanner scan = new Scanner(System.in);
int number, sum = 0;
System.out.print("Enter a number:");
number = scan.nextInt();
while (number!= 0) {
sum = sum + number;
System.out.print("Enter a number:");
number = scan.nextInt();
 }
System.out.print("Sum is " + sum);
 }

90

Question 4: Repetition + Selection

public class TestSelectionSentinel {
public static void main(String[] arg) {
 Scanner scan = new Scanner(System.in);
 String studentID, grade="";
doubletestScore;
System.out.print("Enter your ID:");
studentID = scan.next();
while (!studentID.equalsIgnoreCase("zzz")) {
System.out.println();
System.out.print("Enter your test score:");
testScore = scan.nextDouble();
if (testScore>= 90 &&testScore<= 100) {
grade = "A";
 } else if (testScore>= 80 &&testScore< 90) {
grade = "B";
 } else if (testScore>= 70 &&testScore< 80) {
grade = "C";
 } else if (testScore>= 60 &&testScore< 70) {
grade = "D";
 } else if (testScore>= 0 &&testScore< 60) {
grade = "F";
 }
System.out.print("Student Id = " + studentID + ",test score = " + testScore + " and grade = " + grade);
System.out.print("Enter your ID:");
studentID = scan.next(); }}}

Question:
Write a Java program that reads student IDs and their test scores. The input “ZZZ” for student ID signifies the
end of the input. For each student, the program outputs the student ID, test score and grade. The grade is
defined based on the following conditions:

test_score grade

90 test_score 100 A

80 test_score 90 B

70 test_score 80 C

60 test_score 70 D

0 test_score 60 F

The format of program input and output are as follow:
 Input and Output:
 S1111 student ID

 70 test score
 Student Id = S1111, test score = 70, and grade = D output
 ZZZ

Functional specification:
Input – student ID, which is a String data type

91

Appendix B: Pre-Test and Post-Test Questions

Pre-test Experiment– Test Data Adequacy of

Dear Evaluators,

This pre-test experiment intends to measure the degree of the current method used in preparing a set

of test data to perform the dynami

current method means the way of preparing test data based on individual user’s knowledge in a certain

test cases design. All responses from this pre

confidential.

Thank you for your kind co‐operation.

Kind Regards,
Md. Shahadath Sarker (816283)
MSc. IT (Course Work and Dissertation)

Supervisor:
Rohaida Romli (PhD)
SOC, UUM

92

Test Data Adequacy of Dynamic Structural Test Data Generation for

Programming Assessment

intends to measure the degree of the current method used in preparing a set

of test data to perform the dynamic structural testing in assessing students programming exercises. The

current method means the way of preparing test data based on individual user’s knowledge in a certain

. All responses from this pre‐test experiment are anonymous and wil

operation.

IT (Course Work and Dissertation)

Dynamic Structural Test Data Generation for

intends to measure the degree of the current method used in preparing a set

c structural testing in assessing students programming exercises. The

current method means the way of preparing test data based on individual user’s knowledge in a certain

test experiment are anonymous and will be strictly

93

 CORRECTNESS TESTING– Test Case Coverage for Structural Test Data Generation

Instruction: Fill in each row with the result collected from the testing.

A1: Question 1

Test Case (TC) Input Output Test Set Description

1

2

3

4

5

6

7

8

9

10

11

13

14

15

16

17

19

20

94

A2: Question 2

Test Case (TC) Input Output Test Set Description

1

2

3

4

5

6

7

8

9

10

11

13

14

15

16

17

19

20

95

A3: Question 3

Test Case (TC) Input Output Test Set Description

1

2

3

4

5

6

7

8

9

10

11

13

14

15

16

17

19

20

21

22

23

24

25

96

A4: Question 4

Test Case (TC) Input Output Test Set Description

1

2

3

4

5

6

7

8

9

10

11

13

14

15

16

17

19

20

21

22

23

24

25

26

27

28

29

30

31

33

34

35

Post-test Experiment– Test Data Adequacy of

Dear Evaluators,

This post-test experiment intends to measure the degree of

data to perform the dynamic stru

responses from this post‐test experiment are anonymous and will be strictly confidential.

Thank you for your kind co‐operation.

Kind Regards,
Md. Shahadath Sarker (816283)
MSc. IT (Course Work and Dissertation)

Supervisor:
Rohaida Romli (PhD)
SOC, UUM

97

Test Data Adequacy of Dynamic Structural Test Data Generation for

Programming Assessment

intends to measure the degree of DyStruc TDG used in preparing a set of test

data to perform the dynamic structural testing in assessing students programming exercises.

test experiment are anonymous and will be strictly confidential.

operation.

IT (Course Work and Dissertation)

Dynamic Structural Test Data Generation for

used in preparing a set of test

ctural testing in assessing students programming exercises. All

test experiment are anonymous and will be strictly confidential.

98

CORRECTNESS TESTING– Test Case Coverage for Structural Test Data Generation

Instruction: Fill in each row with the result collected from the testing.

A1: Question 1

Test Case (TC) Input Output Test Set Description

99

A2: Question 2

Test Case (TC) Input Output Test Set Description

100

A3: Question 3

Test Case (TC) Input Output Test Set Description

101

A4: Question 4

Test Case (TC) Input Output Test Set Description

	Copyright Page
	Title Page
	Permission to Use
	Declaration
	Abstrak
	Abstract
	Acknowledgement
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	CHAPTER 1: INTRODUCTION
	1.1 Background of Study
	1.2 Problem Statement
	1.3 Research Questions
	1.4 Research Objectives
	1.5 Scope of the Study
	1.6 Contribution of the Study
	1.7 Organization of the Thesis

	CHAPTER 2: LITERATURE REVIEW
	2.1 Introduction to Software Testing
	2.2 Dynamic Structural Testing
	2.3 Test Adequacy Criteria
	2.3.1 Loop Coverage
	2.3.2 Statement Coverage
	2.3.3 Path Coverage
	2.3.4 Modified Condition/Decision Coverage (MC/DC)
	2.3.5 Multiple Condition Coverage
	2.3.6 Condition Coverage
	2.3.7 Branch Coverage

	2.4 Comparison of Different Code Coverage
	2.5 Automatic Programming Assessment (APA)
	2.6 Automatic Test Data Generation (ATDG)
	2.7 Integration of APA and ATDG
	2.8 Summary

	CHAPTER 3: METHODOLOGY
	3.1 Research Procedures
	3.1.1 Theoretical Study
	3.1.2 Construction of Method
	3.1.3 Development of Prototype
	3.1.4 Evaluation and Conclusion
	3.1.4.1 Controlled Experiment
	3.1.4.2 Procedures of Experiment
	3.1.4.3 Subject of Experiment
	3.1.4.4 Instrument of Data Collection
	3.1.4.5 Comparative Evaluation
	3.1.5 Threats to the Validity of the Experiment
	3.1.5.1 Internal Validity
	3.1.5.2 External Validity

	3.2 Summary

	CHAPTER 4: PROPOSED METHOD (DyStruc-TDG)
	4.1 Structural Test Data Generation
	4.1.1 Selection Control Structure (Path Coverage)
	4.1.2 Loop control Structure (Path Coverage)
	4.1.3 Selection Control Structure (Modified Condition/Decision Coverage)
	4.1.4 Loop Control Structure (Modified Condition/Decision Coverage)

	4.2 Structural Test Data Generation by Examples
	4.2.1 Selection Control Structure
	4.2.2 Loop Control Structure (Modified Condition/Decision Coverage)

	4.3 Implementation of DyStruc-TDG
	4.4 Unit Testing
	4.5 Summary

	CHAPTER 5: EVALUATION
	5.1 Descriptive Statistics
	5.1.1 Question (1): Current method
	5.1.2 Question (1): DyStruc-TDG Method
	5.1.3 Question (2): Current method
	5.1.4 Question (2): DyStruc-TDG Method
	5.1.5 Question (3): Current method
	5.1.6 Question (3): DyStruc-TDG Method
	5.1.7 Question (4): Current method
	5.1.8 Question (4): DyStruc-TDGMethod

	5.2 Comparative Evaluation
	5.3 Summary

	CHAPTER 6: CONCLUSION
	6.1 Revisit of Research Questions and Objectives
	6.1.1 Discussion on Research Question (1)
	6.1.2 Discussion on Research Question (2)

	6.2 Contribution of the Study
	6.3 Limitations and Recommendations
	6.4 Conclusion

	REFERENCES
	Appendix

