
The copyright © of this thesis belongs to its rightful author and/or other copyright

owner. Copies can be accessed and downloaded for non-commercial or learning

purposes without any charge and permission. The thesis cannot be reproduced or

quoted as a whole without the permission from its rightful owner. No alteration or

changes in format is allowed without permission from its rightful owner.

TEST DATA GENERATION METHOD FOR DYNAMIC – STRUCTURAL

TESTING IN AUTOMATIC PROGRAMMING ASSESSMENT

MD. SHAHADATH SARKER

MASTER OF SCIENCE (INFORMATION TECHNOLOGY)

UNIVERSITI UTARA MALAYSIA

2016

i

Permission to Use

In presenting this thesis in full fulfillment of the requirements for a postgraduate degree from

Universiti Utara Malaysia, I agree that the University Library may make it freely available for

inspection. I further agree that permission for copying of this thesis in any manner, in whole or in

part, for scholarly purposes may be granted by my supervisor(s) or, in their absence, by the

Dean. It is understood that any copying or publication or use of this thesis or parts thereof for

financial gain shall not be allowed without my written permission. It is also understood that due

recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use which

may be made of any material from my thesis.

Requests for permission to copy or to make other use of materials in this thesis, in whole or in

part should be addressed to:

Dean of Awang Had Salleh Graduate School of Arts and Sciences

Universiti Utara Malaysia

06010 UUM Sintok

Kedah Darul Aman

Malaysia

ii

Declaration

I declare that this thesis is my own work and has not previously been submitted in any form for

another degree or diploma at any other university or other institute of tertiary education.

Information derived from the published and unpublished works of others have been

acknowledged in the text and a list of references is given.

Md. Shahadath sarker

2016

iii

Abstrak

Penaksiran Pengaturcaraan Automatik atau dikenali sebagai APA telah diketahui sebagai suatu

keadah yang berkesan dalam membantu para pensyarah untuk melaksanakan penaksiran dan

penggredan tugasan pengaturcaraan pelajar. Untuk melaksanakan pengujian dinamik dalam

APA, adalah menjadi suatu keperluan untuk menyediakan set data ujian melalui proses

penjanaan data ujian yang bersistematik. Sekiranya memfokus kepada bidang pengujian perisian,

pelbagai kaedah untuk mengautomasikan penjanaan data ujian telah

dicadangkan.Walaubagaimanapun, kaedah-kaedah ini jarang diguna pakai di dalam kajian

semasa APA. Terdapat kajian awalan yang cuba mengintegrasikan APA dan penjanaan data

ujian, tetapi masih terdapat jurang dari segi menerbitkan dan menjana data ujian untuk pegujian

dinamik-berstruktur. Untuk mengatasi jurang ini, kajian ini mencadangkan suatu kaedah

penjanaan data ujian untuk melaksanakan pengujian dinamik-berstruktur (atau dikenali sebagai

DyStruc-TDG).DyStruc-TDG direalisasikan sebagai alatan fizikal yang bertindak sebagai

penjana data ujian untuk menyokong fungsian APA.Dapatan daripada ekperimen kawalan yang

dilaksana berdasarkan reka bentuk one-group pre-test dan post-test mendapati bahawa DyStruc-

TDG memperbaiki kriteria kecukupan data ujian kebolehpercayaan (atau pengujian positif)

dalam penaksiran pengaturcaraan.Kaedah yang dicadangkan ini adalah dijangkakan dapat

membantu para pensyarah kursus pengaturcaraan awalan untuk menerbitkan dan menjana data

ujian dan kes ujian untuk melaksanakan penaksiran pengatucaraan automatik untuk pengujian

dinamik-berstruktur tanpa memerlukan pengetahuan khusus dalam reka bentuk kes ujian.Dengan

mengguna-pakai kaedah ini sebagai sebahagian APA, beban para penyarah secara tidak langsung

dapat dikurangkan secara berkesan oleh kerana penaksiran tipikal yang manual senantiasa

cenderung kepada ralat dan penyebab kepada ketidakseragaman.

Kata kunci: penjanaan data ujian, Penaksiran Pengaturcaraan Automatik, pengujian dinamik,
pengujian berstruktur, path coverage, Modified Condition/Decision Coverage.

iv

Abstract

Automatic Programming Assessment or so-called APA has being known as a significant method

in assisting lecturers to perform automated assessment and grading on students’ programming

assignments. Having to execute a dynamic testing in APA, it is necessary to prepare a set of test

data through a systematic test data generation process. Particularly focusing on the software

testing research area, various automated methods for test data generation have been proposed.

However, they are rarely being utilized in recent studies of APA. There have been limited early

attempts to integrate APA and test data generation, but there is still a lack of research in deriving

and generating test data for dynamic structural testing. To bridge the gap this study proposes a

method of test data generation for dynamic structural testing (or is called DyStruc-TDG).

DyStruc-TDG is realized as a tangible deliverable that acts as a test data generator to support

APA. The findings from conducted controlled experiment that is based on one-group pre-test and

post-test design depict that DyStruc-TDG improves the criteria of reliability (or called positive

testing) of test data adequacy in programming assessments. The proposed method is expectantly

to assist the lecturers who teach introductory programming courses to derive and generate test

data and test cases to perform automatic programming assessment regardless of having a

particular knowledge of test cases design in conducting a structural testing. By utilizing this

method as part of APA, the lecturers’ workload can be reduced effectively since the typical

manual assessments are always prone to errors and leading to inconsistency.

Keywords: test data generation, Automatic Programming Assessment, dynamic testing,
structural testing, path coverage, Modified Condition/Decision Coverage.

v

Acknowledgement

Firstly, it is my great pleasure to thank Allah (swt) that has given me opportunities to complete

this thesis. A billion thanks those, who directly or indirectly contributed in the development of

this work and who influenced my thinking, behavior, and acts throughout the study period.

I express my sincere gratitude to my supervisor Dr.Rohaida Binti Romli for her continuous

support, cooperation, valuable suggestions and motivation for completing the thesis and she

exchanged her interesting ideas, thoughts and made this thesis easy and accurate.

Lastly, I would like to thank all of my friends for their encouragement and valuable suggestions

during my study period.

vi

Table of Contents

Permission to Use..i

Declaration...ii

Abstrak..iii

Abstract ...iv

Acknowledgement…………...………………………………………..v

List of Tables ...x

List of Figures ..xiii

List of Abbreviations…………………………………………………………………………...xv

CHAPTER 1: INTRODUCTION ...1

1.1 Background of Study ..1

1.2 Problem Statement ..2

1.3 Research Questions ...4

1.4 Research Objectives ..4

1.5 Scope of the Study ..5

1.6 Contribution of the Study..6

1.7 Organization of the Thesis ………………………………………………………………..7

CHAPTER 2: LITERATURE REVIEW ………………………………………………...........8

2.1 Introduction to Software Testing …………………………………………………………8

2.2 Dynamic Structural Testing ………………………………………………………………9

2.3 Test Adequacy Criteria …………………………………………………………………...9

 2.3.1 Loop Coverage …………………………………………………………………..11

 2.3.2 Statement Coverage ……………………………………………………...……...14

 2.3.3 Path Coverage …………………………………………………………………...15

 2.3.4 Modified Condition/Decision Coverage ……………………………...................17

 2.3.5 Multiple Condition Coverage ……………………………………………...........19

vii

 2.3.6 Condition Coverage …………………………………………………….……….19

 2.3.7 Branch Coverage …………………………………………………………...........20

2.4 Comparison of Different Code Coverage ……………………………………………….20

2.5 Automatic Programming Assessment (APA) …………………………………………...22

2.6 Automatic Test Data Generation (ATDG) ………………………………………………24

2.7 Integration of APA and ATDG ………………………………………………………….24

2.8 Summary ………………………………………………………………………………...26

CHAPTER 3: METHODOLOGY ……………………………………………………………27

3.1 Research Procedure ………………………………………………………………...........27

3.1.1 Theoretical Study ………………………………………………………………..28

3.1.2 Construction of Method …………………………………………………………28

3.1.3 Development of Prototype ………………………………………………………30

3.1.4 Evaluation and Conclusion ………………………………………………...........30

 3.1.4.1 Controlled Experiment …………………………………………………30

 3.1.4.2 Procedures of Experiment ………………………………………...........30

 3.1.4.3 Subject of Experiment ………………………………………………….31

 3.1.4.4 Instrument of Data Collection ………………………………………….31

 3.1.4.5 Comparative Evaluation ………………………………………………..31

3.1.5 Threats to the Validity of the Experiments………………………………............32

 3.1.5.1 Internal Validity…………………………………………………...........32

 3.1.5.2 External Validity ……………………………………………………….32

 3.1.5.3 Construct Validity ………………………………………………...........33

3.2 Summary ………………………………………………………………………………...33

CHAPTER 4: PROPOSED METHOD (DyStruc-TDG) ………………..…………………...34

4.1 Structural Test Data Generation …………………………………………………………34

viii

4.1.1 Selection Control Structure (Path Coverage) ……………………………………34

4.1.2 Loop control Structure ((Path Coverage)………………………………………...39

4.1.3 Selection Control Structure (Modified Condition/Decision Coverage) …………40

4.1.4 Loop Control Structure (Modified Condition/Decision Coverage) ………...…...47

4.2 Structural Test Data Generation by Examples …………………………………………..50

 4.2.1 Selection Control Structure ……………………………………………………...50

 4.2.2 Loop Control Structure (Modified Condition/Decision Coverage) ……………..53

4.3 Implementation of DyStruc-TDG ……………………………………………………….54

4.4 Unit Testing ……………………………………………………………………………..57

4.5 Summary ………………………………………………..……………………………….57

CHAPTER 5: EVALUATION …………..………………………….………….……………..58

5.1 Descriptive Statistics …………………………………………………………………….58

5.1.1 Question (1): Current Method……………………………………………………58

5.1.2 Question (1): DyStruc-TDG Method…………………….………………………61

5.1.3 Question (2): Current Method……………………………………………………63

5.1.4 Question (2): DyStruc-TDG Method…………………….………………………65

5.1.5 Question (3): Current Method……………………………………………………67

5.1.6 Question (3): DyStruc-TDG Method…………………….………………………69

5.1.7 Question (4): Current Method……………………………………………………70

5.1.8 Question (4): DyStruc-TDG Method…………………….………………………73

5.2 Comparative Evaluation …………………………………………………………………75

5.3 Summary ………………………………………………………………………………...77

ix

CHAPTER 6: CONCLUSION ……………………………………..…………………………78

6.1 Revisit of Research Questions and Objectives…………………………………………..78

 6.1.1 Discussion on Research Question (1)……………………………………………79

 6.1.2 Discussion on Research Question (2) ...…………………………………………80

6.2 Contribution of the Study .……………………………………………………………….81

6.3 Limitations and Recommendations ……………………………………………………...81

6.4 Conclusion ……………………………………………………………………………….82

REFERENCES ……………………………………………………………………....................83

APPENDIX A: Experiment Assignments …………………………………………………….87

APPENDIX B: Pre-Test and Post-Test Questions …………………………………………...91

x

List of Tables

Table 2.1 Test cases for loop coverage ………………………………………………………….12

Table 2.2 Test cases for while loop coverage ……………………………………………………13

Table 2.3 Test cases for do…while coverage ……………………………………………………14

Table 2.4 Test cases for statement coverage …………………………………………………….15

Table 2.5 Test cases for path coverage ………………………………………………………….17

Table 2.6 Test cases for MC/DC coverage ……………………………………………………...18

Table 2.7 Formula obtained from MC/DC coverage ……………………………………………19

Table 2.8 Differences of code coverage based on coverage criteria (Hayhurst et al., 2001)……21

Table 2.9 Summary of the trends of APA (Rohaida, 2014) ……………………………………..23

Table 2.10 Integration of APA and ATDG (extended from Rohaida, 2014)……………………26

Table 3.1 Research Procedure …………………………………………………………………...27

Table 4.1 Generated test cases based on valid and invalid input conditions ……………………35

Table 4.2 Generated test cases based on valid input conditions ………………………………...36

Table 4.3 Test cases for valid input conditions ………………………………………………….37

Table 4.4 Test cases for invalid input conditions ……………………………………………….37

Table 4.5 Test cases for all input conditions for selection-nested ………………………………38

Table 4.6 Test cases for only valid input conditions for selection-nested ………………………39

Table 4.7 Test cases for valid and invalid input conditions for loop control structures ………...39

Table 4.8 Test cases for valid input for loop control structures …………………………………40

Table 4.9 Truth Table for one option ……………………………………………………………40

Table 4.10 Generated test cases for one option …………………………………………………41

Table 4.11 Truth table for two options ………………………………………………………….41

Table 4.12 Independently effect option (A) …………………………………………………….41

Table 4.13 Independently effect option (B) ……………………………………………………..42

Table 4.14 Independently effect option (A) and (B) ……………………………………………42

Table 4.15 Truth table for three options …………………………...……………………………42

xi

Table 4.16 Independently effect option (A) ……………………………………………………..43

Table 4.17 Independently effect option (B) ……………………………………………………..43

Table 4.18 Independently effect option (C) ……………………………………………………..43

Table 4.19 Independently effect option (A), (B) and (C) ……………………...………………..44

Table 4.20 Truth table for four options ………………...………………………………………..44

Table 4.21Independently effect option (A) ……………………………………………………..45

Table 4.22 Independently effect option (B) ……………………………………………………..45

Table 4.23 Independently effect option (C) ……………………………………………………..45

Table 4.24 Independently effect option (D) ……………………………………………………..46

Table 4.25 Independently effect option (A), (B), (C) and (D) …………………………………..46

Table 4.26 Truth Table for one option (loop) …………………………………………………...47

Table 4.27 Generated test cases for one option (loop) …………………………………………..48

Table 4.28 Truth table for two options (loop) ……………………...……………………………48

Table 4.29 Independently effect Option (X) …………………………………………………….49

Table 4.30 Independently effect option (Y) ……………………………………………………..49

Table 4.31 Independently effect option (X) and option (Y)……………………………………..49

Table 4.32 Illustration of sample program ………………………………………………………50

Table 4.33 Generated test cases for one options (MC/DC) ……………………………………..51

Table 4.34 Illustration of sample program for two options……………………………………...51

Table 4.35 Generated test cases for two options (MC/DC) ……………………………………..52

Table 4.36 Illustration of sample program for three options ……………………………………53

Table 4.37 Generated test cases for three options (MC/DC) ……………………………………53

Table 4.38 Illustration of sample program (loop) ……………………………………………….54

Table 4.39 Generated test cases for one option (loop) …………………………………………..54

Table 5.1 Number of paths for selection control structures ……………………………………..59

Table 5.2 Number of test cases to cover each path by current method for question (1) ………...60

Table 5.3 Total number of test cases by current method for question (1) ………………………60

xii

Table 5.4 Total number of test cases by DyStruc-TDG for question (1) ………………………..61

Table 5.5 Total number of test cases by DyStruc-TDG for question (1) ………………………..62

Table 5.6 Number of test cases to cover by current method for question (2) ….………………..64

Table 5.7 Total number of test cases by current method for question (2) ………………………65

Table 5.8 Number of test cases to cover by DyStruc-TDG method for question (2) …………...65

Table 5.9 Total number of test cases by DyStruc-TDG for question (2) ……………………….66

Table 5.10 Number of test cases to cover by current method for question (3) ………………....68

Table 5.11 Total number of test cases by DyStruc-TDG method for question (3) ……………..69

Table 5.12 Test data for sentinel loop in current method ……………………………………….70

Table 5.13 Number of paths for selection and repetition control structures ……………………71

Table 5.14 Number of test cases to cover by current method for question (4) ………………….72

Table 5.15 Total number of test cases by current method for question (4) ……………………..73

Table 5.16 Number of test cases to cover by DyStruc-TDG method for question (4) ………….74

Table 5.17 Total number of test cases by DyStruc-TDG method for question (4) ……………..74

Table 5.18 Comparison of three studies ………………………………………………………...76

xiii

List of Figures

Figure 2.1 Types of software testing techniques ………………………………………...............8

Figure 2.2 Ranking of code coverage based on survey (Abdurahim, 2014)…………………….10

Figure 2.3 Code segment for “for loop” control structures ……………………………………..11

Figure 2.4 Flow graph of code segment for loop control structures …………………………….11

Figure 2.5 Code segment for while loop coverage ……………………………………………...12

Figure 2.6 Flow graph of while loop coverage ………………………………………………….12

Figure 2.7 Code segment for statement coverage ……………………………………………….13

Figure 2.8 Flow graph of do…while loop ……………………………………………………….13

Figure 2.9 Code segment for statement coverage ……………………………………………….14

Figure 2.10 Flow graph of statement coverage ………………………………………………….14

Figure 2.11 Control flow graph ………………………………………………………………....15

Figure 2.12 Code segment for selection control structures ……………………………………..16

Figure 2.13 Code segment for selection control structures (MC/DC) …………………………..18

Figure 3.1 Flow chart of DyStruc-TDG method ………………………………………………..29

Figure 4.1 Example of tree structure for selection control structures …………………………...35

Figure 4.2 Example of tree structure for nested selection control structures………….………...36

Figure 4.3 Example of two selection control structures ………………………………………...38

Figure 4.4 Example of for loop control structure ……………………………………………….47

Figure 4.5 Example of do…while loop control structure …………………………………..........48

Figure 4.6 Sample of programming exercise with one option …………………………………..50

Figure 4.7 Sample of programming exercise with two options …………………………………51

Figure 4.8 Sample of programming exercise with three options ………………………………..52

Figure 4.9 Sample of programming exercise do…while loop with one option …………………53

Figure 4.10 Interface of generated test data (selection control structures) ……………………...55

Figure 4.11 Interface of generated test data (selection control structures) ……………………...55

Figure 4.12 Interface of generated test data (Selection and Loop control structures) …………..56

Figure 4.13 Interface of generated test data for MC/DC (selection and loop control structures) .56

xiv

Figure 5.1Control flow graph for selection control structure ………………………………..….59

Figure 5.2 Test cases coverage between Current Method and DyStruc-TDG for question (1) …63

Figure 5.3 Control flow graph for repetition (counter loop) …………………………………….63

Figure 5.4 Test cases coverage between Current Method and DyStruc-TDG for question (2) …67

Figure 5.5 Control flow graph for repetition (sentinel loop) ……………………………………68

Figure 5.6 Test cases coverage between Current Method and DyStruc-TDG for question (3) …70

Figure 5.7 Control flow graph for repetition and selection control structures …………………..71

Figure 5.8 Test cases coverage between Current Method and DyStruc-TDG for question (4) …75

Figure 5.9 Sample of programming exercise ……………………………………………………76

xv

List of Abbreviations

APA Automatic Programming Assessment

ATDG Automatic Test Data Generation

DyStruc-TDG Dynamic Structural- Test Data Generation

MC/DC Modified Condition/Decision Coverage

OOAD Object Oriented Analysis and Design

UML Unified Modeling Language

UUM Universiti Utara Malaysia

1

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Learning computer programming languages has become essential for students who pursue their

study in Information Technology, Computer Science and Software Engineering disciplines.

Computer introductory programming courses are commonly offered for the first year degree

students who pursue their study in these fields (Truong et al., 2005). Effective and good

programming skills are necessary for students in order to be a master in programming. Students

can be skilled in programming only through practices (Lahtinen et al., 2005). Computer

programming courses are normally designed with full of practical besides theory. The goal of

practical course is to develop student’s basic understanding of programming principles and

writing basic source code. Therefore, students are given many programming exercises as take

home assignments or hands on practice in the class in order to develop student’s programming

understanding and skill (Rohaida et al., 2010). If the assessment of programming exercises is

done by manually for a large number of students it leads to workload to lecturers and assessing

manually is really difficult task which cannot ensure the consistency and accuracy of the marking

scheme (Rohaida et al., 2010). Therefore, the concept of Automatic Programming Assessment

(APA) has become very important to assess students program for grading and providing

feedback (Saikkonen et al., 2001). Besides, APA can improve students marking assessment in

terms of consistency and thoroughness testing (Gupta et al., 2012).

According to Jackson (1996) APA is founded on software testing technique. The programming

assessment normally involves the measuring of the program quality. In order to achieve program

quality the program should be tested. Hence, through the software testing technique the quality

of the program can be measured (Rohaida et al., 2010). Software testing is a method for locating,

measuring, and disclosing errors that occurred in a program (Latiu, 2012). Software testing can

be categorized into two types: static analysis and dynamic testing, in which static testing is a test

that does not involve in the execution of the program (Zin et al., 1994). On the other hand,

dynamic testing requires a program execution with test data (Chu et al., 1997). Test data is data

which is developed as input in order to perform testing for any software program (Korel, 1990).

The contents of

the thesis is for

internal user

only

83

REFERENCES

Bertolino, A., & Marchetti, E. (2005). A brief essay on software testing.Software Engineering,

3rd edn. Development process, 1, 393-411.

Blumenstein, M., Green, S., Nguyen, a., & Muthukkumarasamy, V. (2004). GAME: a Generic

Automated Marking Environment for programming assessment. International Conference

on Information Technology: Coding and Computing, 2004. Proceedings. ITCC 2004.,

212–216 Vol.1.

Burnstein, I. (2003). Practical Software Testing, Springer-Verlag, New York.

Cheng, Z., Monahan, R., & Mooney, A. (2011). nExaminer: A semi-automated computer

programming assignment assessment framework for Moodle.

Choy, M., Nazir, U., Poon, C. K., & Yu, Y. T. (2005). Experiences in using an automated system

for improving students’ learning of computer programming. In Advances in Web-Based

Learning–ICWL 2005 (pp. 267-272). Springer Berlin Heidelberg.

Chu, H. D. (1997). An evaluation scheme of software testing techniques (pp. 259-262). Springer

US.

Clarke, L. a. (1976). A System to Generate Test Data and Symbolically Execute Programs. IEEE

Transactions on Software Engineering, SE-2(3), 215–222.

Clarke, L. A. (1976). A system to generate test data and symbolically execute

programs. Software Engineering, IEEE Transactions on, (3), 215-222.

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of

information technology. MIS quarterly, 319-340.

Edvardsson, J. (1999, October). A survey on automatic test data generation. In Proceedings of

the 2nd Conference on Computer Science and Engineering (pp. 21-28).

Edvardsson, J. (1999, October). A survey on automatic test data generation. In Proceedings of

the 2nd Conference on Computer Science and Engineering(pp. 21-28).

Foong, O. M., Tran, Q. T., Yong, S. P., & Rais, H. M. (2014, June). Swarm inspired test case

generation for online C++ programming assessment. InComputer and Information

Sciences (ICCOINS), 2014 International Conference on (pp. 1-5). IEEE.

84

Fraenkel, J. R., & Wallen, N. E. (1993). How to design and evaluate research in education (Vol.

7). New York: McGraw-Hill.

Ghani, K., & Clark, J. A. (2009, September). Automatic test data generation for multiple

condition and MCDC coverage. In Software Engineering Advances, 2009. ICSEA'09.

Fourth International Conference on (pp. 152-157). IEEE.

Ghani, K., & Clark, J. A. (2009, September). Automatic test data generation for multiple

condition and MCDC coverage. In Software Engineering Advances, 2009. ICSEA'09.

Fourth International Conference on (pp. 152-157). IEEE.

Goodenough, J. B., & Gerhart, S. L. (1975). Toward a theory of test data selection. Software

Engineering, IEEE Transactions on, (2), 156-173.

Guo, M., Chai, T., & Qian, K. (2010, April). Design of Online Runtime and Testing

Environment for Instant Java Programming Assessment. InInformation Technology: New

Generations (ITNG), 2010 Seventh International Conference on (pp. 1102-1106). IEEE.

Gupta, N., Mathur, A. P., & Soffa, M. L. (1998). Automated test data generation using an

iterative relaxation method. ACM SIGSOFT Software Engineering Notes, 23(6), 231-244.

Gupta, S., & Dubey, S. K. (2012). Automatic Assessment of Programming assignment, 452003,

315–323.

Hakulinen, L., & Malmi, L. (2014, June). QR code programming tasks with automated

assessment. In Proceedings of the 2014 conference on Innovation & technology in

computer science education (pp. 177-182). ACM.

Hayhurst, K. J., Veerhusen, D. S., Chilenski, J. J., & Rierson, L. K. (2001). A practical tutorial

on modified condition/decision coverage.

Ihantola, P. (2006). Automatic test data generation for programming exercises with symbolic

execution and Java PathFinder. Master's thesis, Helsinki University of Technology,

Departement of Theoretical Computer Science.

IPL Information Processing Ltd. (197a). Designing Unit Test Cases. Available

http://www.ipl.com/pdf p0823.pdf. Retrieved on: 20 Feb 2009

Jackson, D. (2000). A semi-automated approach to online assessment. ACM SIGCSE

Bulletin, 32(3), 164-167.

Jackson, D., & Usher, M. (1997). Grading student programs using ASSYST. ACM SIGCSE

Bulletin, 29(1), 335–339.

http://www.ipl.com/pdf p0823.pdf

85

James, R., Ivar, J., & Grady, B. (1999). The unified modeling language reference

manual. Reading: Addison Wesley.

Koomen, T., & Pol, M. (1999). Test process improvement: a practical step-by-step guide to

structured testing. Addison-Wesley Longman Publishing Co., Inc.

Korel, B. (1990). Automated software test data generation. Software Engineering, IEEE

Transactions on, 16(8), 870-879.

Korel, B. (1996). Automated test data generation for programs with procedures. ACM SIGSOFT

Software Engineering Notes, 21(3), 209–215.

Lahtinen, E., Ala-Mutka, K., & Järvinen, H. M. (2005, June). A study of the difficulties of

novice programmers. In ACM SIGCSE Bulletin (Vol. 37, No. 3, pp. 14-18). ACM.

Latiu, G. I., Cret, O. A., & Vacariu, L. (2012). Automatic Test Data Generation for Software

Path Testing Using Evolutionary Algorithms. 2012 Third International Conference on

Emerging Intelligent Data and Web Technologies, 1–8.

Luck, M., & Joy, M. (1999). A secure on‐line submission system. Software: Practice and

Experience, 29(8), 721–740.

Malmi, L., Karavirta, V., Korhonen, A., Nikander, J., Seppälä, O., & Silvasti, P. (2004). Visual

Algorithm Simulation Exercise System with Automatic Assessment:

TRAKLA2. Informatics in education, 3(2), 267-288.

McMinn, P. (2004). Search-based software test data generation: A survey.Software Testing

Verification and Reliability, 14(2), 105-156.

Monpratarnchai, S., Fujiwara, S., Katayama, A., & Uehara, T. (2014). Automated testing for

Java programs using JPF-based test case generation.ACM SIGSOFT Software

Engineering Notes, 39(1), 1-5.

Offutt, J., Liu, S., Abdurazik, A., & Ammann, P. (2003). Generating test data from state-based

specifications. Software Testing, Verification and Reliability, 13(1), 25–53.

Pargas, R. P., Harrold, M. J., & Peck, R. R. (1999). Test-data generation using genetic

algorithms. Software Testing Verification and Reliability, 9(4), 263-282.

Pressman, R. S. (2005). Software engineering: a practitioner's approach. Palgrave Macmillan.

Rayadurgam, S., & Heimdahl, M. P. E. (2003, December). Generating MC/DC Adequate Test

Sequences Through Model Checking. In SEW (p. 91).

Romli, R. (2014). Test Data Generation Framework for Automatic Programming Assessment,

84–89.

86

Romli, R., Sulaiman, S., & Zamli, K. Z. (2010). Automatic Programming Assessment and Test

Data Generation, 00(c).

Romli, R., Sulaiman, S., & Zamli, K. Z. (2013). Designing a Test Set for Structural Testing in

Automatic Programming Assessment.

Rumbaugh, J. (2003). Object-oriented analysis and design (OOAD).

Saikkonen, R., Malmi, L., & Korhonen, A. (2001, June). Fully automatic assessment of

programming exercises. In ACM Sigcse Bulletin (Vol. 33, No. 3, pp. 133-136). ACM.

Sekaran, U. (2006). Research methods for business: A skill building approach. John Wiley &

Sons.

Tillmann, N., & Halleux, J. De. (2008). Pex – White Box Test Generation for . NET, 134–153.

Tillmann, N., De Halleux, J., Xie, T., Gulwani, S., & Bishop, J. (2013, May). Teaching and

learning programming and software engineering via interactive gaming. In Software

Engineering (ICSE), 2013 35th International Conference on (pp. 1117-1126). IEEE.

Truong, N., Bancroft, P., & Roe, P. (2005). Learning to program through the web. ACM

SIGCSE Bulletin, 37(3), 9.

Varshney, S., & Mehrotra, M. (2013). Search based software test data generation for structural

testing: a perspective. ACM SIGSOFT Software Engineering Notes, 38(4), 1-6.

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of

information technology: Toward a unified view. MIS quarterly, 425-478

Watkins, J., & Mills, S. (2010). Testing IT: an off-the-shelf software testing process. Cambridge

University Press.

Zamli, K. Z., Ashidi, N., Isa, M., Fadel, M., & Klaib, J. (2007). A Tool for Automated Test Data

Generation (and Execution) Based on Combinatorial Approach, 19–36.

Zhu, H., Hall, P. A., & May, J. H. (1997). Software unit test coverage and adequacy. Acm

computing surveys (csur), 29(4), 366-427.

Zidoune, W., & Benouhiba, T. (2012). Targeted adequacy criteria for search-based test data

generation.2012 International Conference on Information Technology and E-Services, 1-6.

	Copyright Page
	Title Page
	Permission to Use
	Declaration
	Abstrak
	Abstract
	Acknowledgement
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	CHAPTER 1: INTRODUCTION
	1.1 Background of Study

	REFERENCES

