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Abstrak 

Penaksiran Pengaturcaraan Automatik atau dikenali sebagai APA telah diketahui sebagai suatu 

keadah yang berkesan dalam membantu para pensyarah untuk melaksanakan penaksiran dan 

penggredan tugasan pengaturcaraan pelajar. Untuk melaksanakan pengujian dinamik dalam 

APA, adalah menjadi suatu keperluan untuk menyediakan  set data ujian melalui proses 

penjanaan data ujian yang bersistematik. Sekiranya memfokus kepada bidang pengujian perisian, 

pelbagai kaedah untuk mengautomasikan penjanaan data ujian telah 

dicadangkan.Walaubagaimanapun, kaedah-kaedah ini jarang diguna pakai di dalam kajian 

semasa APA. Terdapat kajian awalan yang cuba mengintegrasikan APA dan penjanaan data 

ujian, tetapi masih terdapat jurang dari segi menerbitkan dan menjana data ujian untuk pegujian 

dinamik-berstruktur. Untuk mengatasi jurang ini, kajian ini mencadangkan suatu kaedah 

penjanaan data ujian untuk melaksanakan pengujian dinamik-berstruktur (atau dikenali sebagai 

DyStruc-TDG).DyStruc-TDG direalisasikan sebagai alatan fizikal yang bertindak sebagai 

penjana data ujian untuk menyokong fungsian APA.Dapatan daripada ekperimen kawalan yang 

dilaksana berdasarkan reka bentuk one-group pre-test dan post-test mendapati bahawa DyStruc-

TDG memperbaiki kriteria kecukupan data ujian kebolehpercayaan (atau pengujian positif) 

dalam penaksiran pengaturcaraan.Kaedah yang dicadangkan ini adalah dijangkakan dapat 

membantu para pensyarah kursus pengaturcaraan awalan untuk menerbitkan dan menjana data 

ujian dan kes ujian untuk melaksanakan penaksiran pengatucaraan automatik untuk pengujian 

dinamik-berstruktur tanpa memerlukan pengetahuan khusus dalam reka bentuk kes ujian.Dengan 

mengguna-pakai kaedah ini sebagai sebahagian APA, beban para penyarah secara tidak langsung 

dapat dikurangkan secara berkesan oleh kerana penaksiran tipikal yang manual senantiasa 

cenderung kepada ralat dan penyebab kepada ketidakseragaman. 

 

Kata kunci: penjanaan data ujian, Penaksiran Pengaturcaraan Automatik, pengujian dinamik, 
pengujian berstruktur, path coverage, Modified Condition/Decision Coverage. 
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Abstract 

Automatic Programming Assessment or so-called APA has being known as a significant method 

in assisting lecturers to perform automated assessment and grading on students’ programming 

assignments. Having to execute a dynamic testing in APA, it is necessary to prepare a set of test 

data through a systematic test data generation process. Particularly focusing on the software 

testing research area, various automated methods for test data generation have been proposed. 

However, they are rarely being utilized in recent studies of APA. There have been limited early 

attempts to integrate APA and test data generation, but there is still a lack of research in deriving 

and generating test data for dynamic structural testing. To bridge the gap this study proposes a 

method of test data generation for dynamic structural testing (or is called DyStruc-TDG). 

DyStruc-TDG is realized as a tangible deliverable that acts as a test data generator to support 

APA. The findings from conducted controlled experiment that is based on one-group pre-test and 

post-test design depict that DyStruc-TDG improves the criteria of reliability (or called positive 

testing) of test data adequacy in programming assessments. The proposed method is expectantly 

to assist the lecturers who teach introductory programming courses to derive and generate test 

data and test cases to perform automatic programming assessment regardless of having a 

particular knowledge of test cases design in conducting a structural testing. By utilizing this 

method as part of APA, the lecturers’ workload can be reduced effectively since the typical 

manual assessments are always prone to errors and leading to inconsistency. 

 

Keywords: test data generation, Automatic Programming Assessment, dynamic testing, 
structural testing, path coverage, Modified Condition/Decision Coverage. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background of Study 

Learning computer programming languages has become essential for students who pursue their 

study in Information Technology, Computer Science and Software Engineering disciplines. 

Computer introductory programming courses are commonly offered for the first year degree 

students who pursue their study in these fields (Truong et al., 2005). Effective and good 

programming skills are necessary for students in order to be a master in programming. Students 

can be skilled in programming only through practices (Lahtinen et al., 2005). Computer 

programming courses are normally designed with full of practical besides theory. The goal of 

practical course is to develop student’s basic understanding of programming principles and 

writing basic source code. Therefore, students are given many programming exercises as take 

home assignments or hands on practice in the class in order to develop student’s programming 

understanding and skill (Rohaida et al., 2010). If the assessment of programming exercises is 

done by manually for a large number of students it leads to workload to lecturers and assessing 

manually is really difficult task which cannot ensure the consistency and accuracy of the marking 

scheme (Rohaida et al., 2010). Therefore, the concept of Automatic Programming Assessment 

(APA) has become very important to assess students program for grading and providing 

feedback (Saikkonen et al., 2001). Besides, APA can improve students marking assessment in 

terms of consistency and thoroughness testing (Gupta et al., 2012). 

According to Jackson (1996) APA is founded on software testing technique. The programming 

assessment normally involves the measuring of the program quality. In order to achieve program 

quality the program should be tested. Hence, through the software testing technique the quality 

of the program can be measured (Rohaida et al., 2010). Software testing is a method for locating, 

measuring, and disclosing errors that occurred in a program (Latiu, 2012). Software testing can 

be categorized into two types: static analysis and dynamic testing, in which static testing is a test 

that does not involve in the execution of the program (Zin et al., 1994). On the other hand, 

dynamic testing requires a program execution with test data (Chu et al., 1997). Test data is data 

which is developed as input in order to perform testing for any software program (Korel, 1990). 
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