
The copyright © of this thesis belongs to its rightful author and/or other copyright

owner. Copies can be accessed and downloaded for non-commercial or learning

purposes without any charge and permission. The thesis cannot be reproduced or

quoted as a whole without the permission from its rightful owner. No alteration or

changes in format is allowed without permission from its rightful owner.

.

AN EVALUATION ON THE COMPREHENSIBILITY OF UML

ACTIVITY AND STATE CHART DIAGRAMS WITH REGARD

TO MANUAL TEST CASE GENERATION

HAITHAM RAED IBRAHIM

SUPERVISOR

DR. NOR LAILY BINTI HASHIM

MASTER OF SCIENCE (INFORMATION TECHNOLOGY)

UNIVERSITI UTARA MALAYSIA

2017

ii

AN EVALUATION ON THE COMPREHENSIBILITY OF UML

ACTIVITY AND STATE CHART DIAGRAMS WITH REGARD

TO MANUAL TEST CASE GENERATION

A dissertation submitted to Dean of Awang Had Salleh

Graduate School

in Partial Fulfillment of the required for

Master of Science (Information Technology)

University Utara Malaysia

By

Haitham Raed Ibrahim

iii

Permission to Use

In presenting this dissertation in partial fulfillment of the requirements for a

postgraduate degree from Universiti Utara Malaysia, I agree that the Universiti Library

may make it freely available for inspection. I further agree that permission for the

copying of this dissertation in any manner, in whole or in part, for the scholarly

purpose may be granted by my supervisor(s) or, in their absence, by the Dean of

Awang Had Salleh Graduate School of Arts and Sciences. It is understood that any

copying or publication or use of this dissertation or parts thereof for financial gain

shall not be allowed without my written permission. It is also understood that due

recognition shall be given to me and to Universiti Utara Malaysia for any scholarly

use which may be made of any material from my dissertation.

Requests for permission to copy or to make other use of materials in this project

dissertation, in whole or in part, should be addressed to:

Dean of Awang Had Salleh Graduate School of Arts and Sciences

UUM College of Arts and Sciences

 Universiti Utara Malaysia

06010 UUM Sintok

iv

Abstrak

Gambar rajah aktiviti dan statechart adalah gambar rajah UML yang paling kerap

digunakan untuk menguji sistem berdasarkan spesifikasinya. Salah satu ciri penting

gambar rajah UML adalah boleh difahami. Analisis kandungan kajian terdahulu

menekankan kekurangan penilaian pakar mengenai kefahaman gambar rajah aktiviti

dan statechart berkaitan dengan penjanaan kes ujian. Oleh itu, objektif utama kajian

ini adalah bagi menilai kefahaman pakar penguji perisian ke atas gambar rajah aktiviti

dan statechart UML dalam penjanaan kes ujian. Pertama, analisis kandungan telah

dilakukan untuk mengenal pasti kriteria boleh difahami. Kriteria tersebut adalah

berdasarkan kesukaran dan keyakinan subjektif. Seterusnya, satu set soalan penilaian

direka berdasarkan analisis kandungan yang telah dilakukan. Kemudian, kes ujian

dijana secara manual daripada gambar rajah aktiviti dan statechart satu kajian kes

yang telah disesuaikan. Temu bual telah dijalankan dengan lima pakar untuk

mengesahkan soalan penilaian yang dibentuk. Pakar tersebut menilai kefahaman ke

atas gambar rajah aktiviti dan statechart dengan menggunakan soalan-soalan penilaian

tersebut. Hasil kajian ini memberikan butiran khusus mengenai ciri yang berbeza

daripada gambar rajah aktiviti dan statechart. Selain itu, ia mencadangkan bahawa

gambar rajah aktiviti adalah lebih difahami daripada gambar rajah statechart dalam

aspek penjanaan kes ujian. Hasil kajian ini diharapkan dapat memudahkan para

penguji perisian untuk memilih satu daripada beberapa jenis gambar rajah pengujian

yang sedia ada.

v

Abstract

The activity and state chart diagrams are the most frequently used UML diagrams for

testing a system based on its specification. One of the key important qualities of the

UML diagrams is their comprehensibility. The content analysis of previous studies

highlighted the lack of experts’ evaluation of the comprehensibility of activity and

state chart diagrams with regard to test case generation. Thus, the main objective of

this study is to evaluate the comprehensibility of the UML activity and state chart

diagrams for test case generation. First, a content analysis was performed to identify

the comprehensibility criteria. The criteria are perceived difficulty and subjective

confidence. Next, a set of evaluation questions was designed based on the content

analysis. Then, test cases were generated from activity and state chart diagrams

manually of an adapted case study. An interview was conducted with five experts to

validate the evaluation questions. The experts evaluated the comprehensibility of the

activity and state chart diagrams by using the evaluation questions. The result of the

study provided specific details of the different characteristics of activity and state chart

diagrams. Further, it suggested that the activity diagram is more comprehensible than

the state chart diagram in the aspect of test case generation. The finding of this study

could assist software testers in choosing the appropriate UML diagrams for software

testing.

vi

Acknowledgement

All praises and thanks to the Almighty, Allah (SWT) for helping me to finish this

study. Allah gives me the opportunity, strength and the ability to complete my Master

degree after a long, continuous work. No volume of words is enough to express my

gratitude towards my guide, Dr. Nor Laily Binti Hashim; without her knowledge and

assistance plus her recommendations, this study would not have been successful. She

has helped me to explore the topic in an organised manner and provided me with all

the ideas on how to work towards a research-oriented endeavour.

It would not be possible for me to complete the study without the support and

encouragement from my family and friends. First and foremost, my gratitude goes to

my wife Maha for supporting and providing great inspiration for me to finish my

master’s study. May Allah bless her and my two lovely kids Ahmed and Dania.

Secondly, my father and mother and their prayers for me, my aunt Nadia Putrus, my

father-in-law and mother-in-law who motivated me and gave me their endless support.

Finally, to my dearest brother's soul (Ahmed). To my great friends, especially Dr.

Nassir Farhan; thanks for standing beside me and giving me support for all the periods

of my study.

Special thanks to all who have helped or contributed to making this study a success.

vii

Table of Contents

Permission to Use .. iii

Abstrak .. iv

Abstract .. v

Acknowledgement .. vi

Table of Contents ... vii

Last of Tables .. xi

List of Figures .. xii

List of Appendices ... xiii

List of Abbreviations .. xiv

CHAPTER ONE INTRODUCTION ... 1

1.1 Overview .. 1

1.2 Introduction .. 1

1.3 Statement of Problem ... 3

1.4 Research Questions .. 6

1.5 Research Objectives ... 7

1.6 Scope of Study ... 7

1.7 Significance of Study ... 8

1.7.1 Body of knowledge .. 8

1.7.2 The practical support ... 9

1.8 Organisation of the Study .. 10

1.9 Summary .. 10

CHAPTER TWO LITERATURE REVIEW .. 11

viii

2.1 Overview .. 11

2.2 Introduction to Software Testing ... 11

2.3 The Evaluation of Different Behavioural UML Diagrams With Regard to Test

Case Generation ... 13

2.4 The Comprehensibility Evaluation Criterion ... 20

2.4.1 Criteria in Evaluating Comprehensibility .. 32

2.5 Test Cases Generation from UML Diagrams .. 33

2.5.1 Test Case Generation from UML Activity Diagram 35

2.5.2 Test Cases Generation from State Chart Diagram 40

2.6 Summary of Chapter Two .. 46

CHAPTER THREE RESEARCH METHODOLOGY .. 51

3.1 Overview .. 51

3.2 Research Design ... 51

3.2.1 Phase One .. 53

3.2.1.1 Investigation of Previous Studies .. 53

3.2.2 Phase Two .. 56

3.2.2.1 Instrumentation Design ... 56

3.2.2.2 Generating Manual Test Cases from Activity and State chart

diagrams .. 64

3.2.2.3 Planning the One-to-One Interview... 75

3.2.2.4 Conducting the Interview .. 77

3.2.2.5 Profile of Experts ... 78

3.2.2.6 Data Analysis .. 79

3.3 Summary .. 81

ix

CHAPTER FOUR FINDINGS ... 82

4.1 Introduction .. 82

4.2 The Significant Findings from the Interview with the Experts 82

4.2.1 Evaluation Data from Open-Ended Questions ... 83

4.2.1.1 Perceived Difficulty of the UML Diagrams with regard to test case

generation .. 83

4.2.1.2 Subjective Confidence of the UML Diagrams with Regard to Test

Case Generation .. 90

4.2.2 Evaluation Data from Closed-Ended Questions .. 96

4.2.2.1 Perceived Difficulty of the UML Diagrams with Regard to Test Case

Generation ... 97

4.2.2.2 Subjective Confidence of the UML Diagrams with regard to test

case generation .. 100

4.3 Summary .. 104

CHAPTER FIVE DISCUSSION AND CONCLUSION 105

5.1 Introduction .. 105

5.2 Research Discussion .. 105

5.2.1 Achieving First Objective .. 105

5.2.2 Achieving Second Objective ... 108

5.3 Contribution of Study .. 111

5.3.1 Practical Contribution .. 112

5.3.2 Theoretical Contribution .. 113

5.4 Future Work ... 113

5.5 Limitation of the Study .. 114

x

5.6 Conclusion ... 114

REFERENCES ... 115

APPENDIX A .. 129

APPENDIX B .. 134

xi

Last of Tables

Table 2.1: Summaries of Previous Studies Related to the Test Case Generation from

Different Behavioural UML Diagrams .. 18

Table 2.2: Summaries of Previous Studies Related to the Comprehension of UML

Diagrams .. 28

Table 2.3: Summaries of Previous Studies Related to the Test Case Generation Based

on UML Activity Diagram ... 39

Table 2.4: Summaries of Previous Studies Related to the Test Case Generation Based

on UML State Chart Diagram .. 45

Table 3.1: The Closed-Ended Questions to Evaluate the Comprehensibility of UML

Diagrams with regard to test case generation .. 62

Table 3.2: The Open-Ended Questions to Evaluate the Comprehensibility of UML

Diagrams with regard to test case generation .. 63

Table 3.3: NDT for Activity Graph ... 68

Table 3.4: Test Cases from Activity Graph ... 69

Table 3.5: NDT for State Chart Graph ... 73

Table 3.6: Test Cases from State Chart Graph .. 74

Table 4.1: Experts’ Background .. 79

Table 4.2: The Experts’ Responses to Evaluate the Perceived Difficulty of UML

Activity and State Chart Diagrams with regard to test case generation

generation ... 97

Table 4.3: The Experts’ Responses to Evaluate the Subjective Confidence of UML

Activity and State Chart Diagrams with regard to test case generation

generation ... 101

xii

List of Figures

Figure 2.2.1: Software Testing Life Cycle ... 13

Figure 2.3.1: Overview of UML Diagrams.. 34

Figure 2.5.1: Activity Diagram for Gumball Machine .. 36

Figure 2.5.2: State Chart Diagram for Gumball Machine.. 41

Figure 3.1: The Steps of the Research Methodology ... 53

Figure 3.2: Gumball Machine Described as UML Activity Diagram 65

Figure 3.3: Activity Graph Obtained from the Activity Diagram of Gumball Machine

Machine .. 67

Figure 3.4: Gumball Machine Described as UML State Chart Diagram 70

Figure 3.5: State Chart Graph Obtained from State Chart Diagram of Gumball

Machine .. 72

Figure 3.6: NVivo Steps .. 81

Figure 4.1: NVivo Result of the Perceived Difficulty for Determining the Steps of

of Test Case Generation from Activity and State Chart UML Diagram. 86

Figure 4.2: NVivo Result of the Perceived Difficulty for Determining the Origin

Diagrams for the Generated Test Cases from Activity and State Chart

Chart Diagrams. .. 89

Figure 4.3: NVivo Result of the Experts’ Certainty of the Generated Test Cases

from Activity and State Chart Diagrams. ... 92

Figure 5.4 NVivo Result of Experts’ Evaluation for the Comprehensibility of of

Activity and State Chart Diagrams in Generating the Test Cases 94

xiii

List of Appendices

Appendix A: Questionnaire………………………………………………………129

Appendix B: Summaries Of the Interview Sessions with Experts……....……134

xiv

List of Abbreviations

MBT Model Base Testing

UML Unified Modelling Language

DFS Depth First Search

LR Literature Review

GA Genting Algorithm

OOAD Object-Oriented Analysis and Design

AOAD Aspect-Oriented Analysis and Design

IFD Interaction Flow Diagram

ADT Activity Dependency Table

AFG Activity Flow Graph

TFG Testing Flow Graph

ECFG Extended Control Flow Graph

EFSM Extended Finite State Machine

TeGeMiOOSc Test Generation and Minimization for OO software with State Charts

NDT Node Description Table

1

CHAPTER ONE

INTRODUCTION

1.1 Overview

This chapter provides an introduction to the study which begins with the background

of the study, followed by the discussion of the problem. Subsequently, research

questions are provided and used to construct the objectives. Finally, this chapter

presents the scope as well as the significance of the research. This chapter is concluded

with the summary of the main issue of this study.

1.2 Introduction

The software systems that exist throughout the world and their designs are rapidly

developing and becoming more complex, a trend which very likely will continue in the

near future (Meena, 2013). This development of complex software systems is a fault-

prone process and these incur a great loss of time and money if neglected (Mailewa,

Herath, & Herath, 2015). In this regard, Manaseer, Manaseer, Alshraideh, Abuhashish

and Adwan (2015) and Jain, Jain and Dhankar (2014) remarked that software testing

is the most widely used approach to ensure software quality that assists software faults

detection.

On the same note, Bansal (2014) and Vashishtha, Singla and Singh (2014) stated that

software testing typically consumes about 50% of the development effort, cost, and

time to achieve a higher level of quality. Consequently, to reduce test challenges,

2

Model Based Testing (MBT) offers various significant approaches (Schweighofer &

Hericko, 2014). Furthermore, Ingle and Mahamune (2015) and Singh (2014) asserted

that the main challenge in software testing can be reduced by generating test cases from

the Unified Modelling Language diagrams (UML), as one of the MBT approaches.

UML diagrams are the most commonly used diagrams in MBT to generate test cases

(Schweighofer & Hericko, 2014). Generating test cases are the most significant process

in software testing. It is a set of conditions under which a tester can determine whether

a software system is working as its proposed requirements (Pahwa & Solanki, 2014;

Gupta, 2014). A number of studies had generated test cases from different behavioural

UML diagrams: Patel and Patil, (2013) and Jena, Swain, and Mohapatra, (2014)

utilised activity diagram and Ali, Shaik, and Kumar, (2014) and Salman and Hashim,

(2016) employed state chart diagram. Other studies, as in the generation of test cases

from activity and sequence diagrams, used more than one diagrams (Tripathy & Mitra,

2013). These studies evaluated different UML diagrams with regard to test case

generation based on evaluation criteria such as testing coverage (Ali et al., 2014), fault

detection ability (Swain, Mohapatra, & Mall, 2010) and the comprehensibility

(Scanniello, Gravino, Risi, Tortora, & Dodero, 2015) of UML diagrams.

Based on the fact that there is no single superior diagram in all cases of test case

generation due to the different specifications of the diagrams, a tester must choose one

model from the various types of models available and this chosen model must be based

on the evaluation criteria (Nikfard, bin Ibrahim, Rohani & bin Selamatand Naz’ri,

2013).

3

The key quality of evaluating the UML diagrams is their comprehensibility, whereby if

designers of modelling languages intend to have their creations to be used in real

software projects, their modelling languages need to be evaluated based on

comprehension (Aranda, Ernst, Horkoff, & Easterbrook, 2007; Liebel & Tichy, 2015).

Furthermore, Budgen, Burn, Brereton, Kitchenham and Pretorius (2011) confirmed

that comprehensibility is considered to be the most quality attribute of UML models

that had been studied in the past. Comprehensibility should be considered in evaluating

test case generation.

In this regard, researchers stated that evaluating the UML diagrams must be conducted

based on their comprehensibility and this criterion is considered as one of the most

important quality attributes of UML models that had been studied earlier (Aranda,

Ernst, Horkoff, & Easterbrook, 2007; Budgen, Burn, Brereton, Kitchenham &

Pretorius, 2011). In detail, the comprehensibility of UML diagrams is the

understandability of users in generating the diagram of a software (Razali, Snook,

Poppleton, Garratt, & Walters, 2007). However, there is still a shortage of

comprehension evaluation with regard to test case generation despite the considerable

importance of these two diagrams (Felderer & Herrmann, 2015). Many researchers

inspected the comprehension of UML diagrams from the perspective of design and

perspective of requirement specification (Condori-Fernandez, Daneva, Sikkel, &

Herrmann, 2011) but not focusing on test case generation.

1.3 Statement of Problem

Software testing techniques are rapidly developing. Nevertheless, they are insufficient

(Choudhary & Kumar, 2011). This inadequacy can be solved by launching fundamental

4

research and by using development methods and tools that can improve software testing

methods (Verma, Yadav, & Tiwari, 2012; Lewis, 2016). Software testing encourages

the reuse of the system modelling diagrams for testing purpose to expedite the process

of software testing (Shirole & Kumar, 2013). Therefore, Shukla and Chandel (2012);

Mailewa (2015) and Crowder, Carbone and Demijohn (2016) assured that one of the

most used models of MBT is the UML that helps in reducing the challenges of software

development and increases the effectiveness of software testing by providing

generation of test cases in lesser time and effort. In this regard, Kansomkeat, Offutt,

and Abdurazikand Baldini, (2008); Kansomkeat et al. (2008); Utting and Legeard,

(2010); Kramer and Legeard (2016) affirmed that a tester must choose a model among

the various types of models based on the basis of evaluation data to evaluate the

effectiveness of testing models.

Research has shown that activity and state chart diagrams are the most frequently used

UML models for testing an entire system based on its specification (Felderer &

Herrmann, 2015). Moreover, Schweighofer and Hericko (2014) confirmed that there

are findings of which UML diagram is the most suitable for a specific type of testing.

The outcomes of their study revealed that there is a lack of research on the evaluation

of different UML diagrams in finding the appropriate model of test case generation.

Their study, therefore, aimed to ascertain which UML diagrams were the most

commonly used for test case generation. Schweighofer and Hericko evaluated activity

and state chart diagrams to test the software system using content analysis approach.

Henceforth, this study strives to produce a more detailed content analysis of test case

generation by focusing on these two diagrams.

5

Additionally, Felderer and Herrmann (2015) asserted that up to now these diagrams

have not been compared in terms of comprehensibility with regard to test case

generation. Based on the highlighted importance of these two diagrams and because of

the lack of comprehension evaluation of these two diagrams, they consequently

conducted an evaluation of the comprehensibility of these diagrams to find the

appropriate model of test case generation from the testers’ understanding. In this study,

they evaluated the comprehension of these diagrams through participants who were

undergraduate students. In their study, the reasons and specific characteristics that make

activity diagram to be perceived as more comprehensible than the state chart diagram

were not mentioned. Therefore, there is a need to conduct an additional evaluation to

identify possible reasons for the different comprehension level for both of these

diagrams.

From research point of view, replications research is one of the key mechanisms to

confirm previous experimental findings (Mendonca et al., 2008; Delanote, Van Baelen

Jose & Berbers, 2008; Robson & McCartan, 2016), and based on the issues

aforementioned that is the need of evaluation studies of the comprehensibility of UML

diagrams with regard to test case generation, the purpose of this study is to extend the

evaluation study of the Felderer and Herrmann (2015)’s on comprehensibility of

activity and state chart diagrams with regard to test case generation.

Moreover, this study aims to address the limitation that was mentioned by Felderer and

Herrmann (2015), where they used inexpert participants to evaluate the

comprehensibility of the UML diagrams with regard to manual test case generation.

The use of experts could have given a more accurate data (Creswell, 2012) and the

6

result can be used to complement the evaluation findings gathered by Felderer and

Herrmann (2015). Accordingly, this study aims to use a group of experts in software

testing who also have experiences in using UML diagrams for data collection. The

experts will undergo an interview, answer evaluations questions, assess the

comprehensibility of activity and state chart diagrams with regard to test case

generation by examining two comprehensibility’s variables (perceived difficulty and

confidence).

Condori-Fernández, Daneva, and Herrmann (2011) asserted that “there is a lack of

underlying theory in the formulation of comprehensibility questions”. This study,

therefore, attempts to improve the theoretical part of the comprehensibility instrument

of UML-based test case generation from the aforesaid content analysis that was

conducted by Agarwal, De, and Sinha, (1999) and Aranda et al., (2007). Precisely, the

study seeks to adapt evaluation questions of UML diagrams in terms of the

comprehension of test case generation to support the collection of data. The questions

strive to address the limitation of the study by Felderer and Herrmann (2015).

1.4 Research Questions

To resolve the issues that were discussed in the preceding section, this study puts forth

the following questions:

1- What are the comprehension evaluation issues related to the UML activity and

state chart diagrams with regard to manual test case generation?

2- How to evaluate the comprehensibility of the UML activity and state chart

diagrams with regard to manual test case generation?

7

1.5 Research Objectives

The main objective of this study is to evaluate the comprehensibility of activity and

state chart diagrams in terms of test case generation. The following specific objectives

have been outlined in order to achieve the main aim:

1- To identify the comprehension evaluation issues related to the UML activity

and state chart diagram with regard to manual test case generation using content

analysis.

2- To evaluate the comprehensibility of the UML activity and state chart diagrams

with regard to manual test case generation.

1.6 Scope of Study

The scope of this study can be classified under the field of the evaluation of the

comprehension of UML diagrams with regard to test case generation. The following

are further descriptions of the test case generation approaches and the evaluation

methods of UML in test cases generation.

 The test case generation from UML diagrams

There are various approaches to test case generation. This study only focuses on the

test case generation from UML activity and state chart diagrams which are

considered as the most widely used diagrams of MBT.

 The evaluation of activity and state chart diagrams by comparing their

comprehensibility of test case generation.

8

The two diagrams were evaluated using comprehensibility criterion through a set

of comprehension questions. The responses to these questions were collected during

One-to-One interview with the experts. Moreover, the interviews with software

engineering experts who are experienced in software testing help to collect accurate

evaluation data.

1.7 Significance of Study

This study focuses on the evaluation of two UML diagrams based on their

comprehensibility with regard to test case generation with the assistance of experts of

software testing and software engineering. The experts are intended to set the final

recommendation and provide further description and understanding of MBT. This study

also supports the body of knowledge as well as practice in several aspects. These are

discussed further subsequently.

1.7.1 Body of knowledge

A content analysis of MBT is achieved to help in determining the following issues:

1) Current trends of using UML diagrams with regard to test case generation

(Schweighofer & Hericko, 2014; Jena, Swain, & Mohapatra, 2014; Salman &

Hashim, 2016).

2) Current trends in comprehension evaluation on UML diagram (Aranda et al.,

2007; Budgen et al., 2011; Felderer & Herrmann, 2015).

3) The lack of evaluation studies for the comprehensibility of the UML activity

and state chart diagrams with regard to test case generation.

4) Proposal of an instrument for comprehension evaluation for the experts on the

two diagrams. From the existing study on comprehension evaluation, the

9

instrument formulated was adapted without much support from underlying

theory (Condori-Fernandez et al., 2011).

Additionally, this study aims to improve the field of evaluating UML diagrams with

regard to test case generation from both of the examined diagrams in terms of

comprehensibility as there have been limited studies in this field. Further, this content

analysis pursues more understanding of the different characteristics of activity and state

chart diagrams in more specific details. The previous study by Felderer and Herrmann

(2015) did not mention in detail the reasons and specific characteristics that make

activity diagram to be perceived as more comprehensible than the state chart diagram

with regard to manual test case generation. Moreover, the results obtained from this

study based on the experts’ evaluation can be used to complement the study conducted

by Felderer and Herrmann (2015) in proving that UML diagrams provide the best

comprehension with regard to test case generation.

1.7.2 The practical support

Testers must make practical efforts to choose among the various types of MBT

diagrams (Kansomkeat et al., 2008; Utting and Legeard, 2010 and Kramer and

Legeard, 2016). Therefore, evaluating the comprehensibility of UML activity and state

chart diagrams with regard to test case generation seeks to unite the practical efforts of

testers to determine their preference diagram for test case generation.

Testers’ practical efforts are crucial in making the choice for the right model from the

various types of MBT diagrams (Kansomkeat et al., 2008; Utting & Legeard, 2010;

Kramer & Legeard, 2016). Therefore, evaluating the comprehensibility of UML

10

activity and state chart diagrams with regard to test case generation seeks to unite the

practical efforts of testers to determine their preference diagram for test case generation.

1.8 Organisation of the Study

Chapter One, based on the background of the study, determines the research gap; hence

formulating the research problem, the research objectives and the research questions.

This chapter also describes the significance of the research and the scope of the current

study.

Chapter Two reviews the literature related to test case generation, MBT and on UML

activity diagram-based and state chart diagram-based generation of test cases, as well

as the evaluation and comparison studies of UML-based test case generation.

Chapter Three emphasizes on the research methodology, which is developed in stages

whereby problem identification, solution design, and finally, the collected data on the

evaluation of the two diagrams are presented therein.

1.9 Summary

In this chapter, a brief introduction to the main issue of this study has been illustrated,

that is the need for the evaluation of different UML diagrams in terms of

comprehensibility in software testing. Additionally, this study aims to provide effective

questions to evaluate the comprehensibility of these two diagrams.

11

CHAPTER TWO

LITERATURE REVIEW

2.1 Overview

This chapter describes software testing, the evaluation of different behavioural UML

diagrams with regard to test case generation, the comprehensibility evaluation criterion,

and test cases generation from UML diagrams. Section 2.2 gives an overview of

software testing within the life cycle of a software system. The most important part of

this chapter is the evolution of different behavioural UML diagrams with regard to test

case generation as explained in Section 2.3. The comprehensibility evaluation criterion

is explained in Section 2.4. UML-based test cases generation from activity and state

chart diagrams are explained in Section 2.5 by discussing the previous studies and

characteristics of the proposed diagrams as well as the differences between the

proposed diagrams in terms of test case generation. This chapter is concluded with the

summary in Section 2.6.

2.2 Introduction to Software Testing

With the development of technology, software becomes more advanced in code size

and thus, turns to be more complex. In order to manage this development effectively,

the modern process of this development is commonly proceeding in a particular

development sequence activities by considering testing events (Wang, 2015). One of

the challenges in the process of developing a large software system is the increasing

number of errors (Yu, Xu, & Liuand Sheng, 2012). It is a fact that errors may occur at

any stage of software development and these errors can incur great losses of time and

12

money if they are not identified and removed as soon as possible (Mailewa, 2015).

Software testing is a process of finding software errors in a program in order to achieve

a zero-defect software and obtain software quality (Garg, 2015). Software testing is a

major measurement factor in the process of development in any software system

(Dubey & Sharma, 2015; Gupta, & Yadavand Singh, 2016). Discovering all the

software errors in the early stage of the development process is a primary activity that

can be achieved through software testing; thereof reducing the challenges of software

development and increases software quality (Sharma & Vishawjyoti, 2013).

In addition, software testing approaches have two main goals; first, demonstrating that

the software meets its functional requirements, and second, to find the situations in

which the behaviour of the software is mistaken, unwanted, or does not conform to its

specifications (Sommerville, 2010). Software testing must be performed at several

levels, which are: unit testing, integration testing, system testing and acceptance testing

(Gulia & Chugh, 2015).

Software testing could be considered as an unavoidable part of any Software

Development Life Cycle (SDLC) (Gulia & Chugh, 2015). Consolidating various

studies on software testing leads to the categorization of software testing life cycle into

four main phases: test planning, test design, test execution and test review phases (Afzal

and Torkar, 2008). The categorization of software testing life cycle is summarised as in

Figure 2.1.

13

Figure 2.1: Software Testing Life Cycle

Source: (Chandu, 2015)

2.3 The Evaluation of Different Behavioural UML Diagrams With Regard to Test

Case Generation

In this part, the closest research to this study is explained. The evaluation of two

different UML diagrams based on evaluation criteria with regard to test case generation

has been shown in previous studies. On the other hand, there are studies that aimed to

enhance the efficiency of test case generation by combining more than one UML

diagrams, and evaluating the result of the new integrated UML diagrams by comparing

them with each single UML diagram. These details are explained in the following

paragraphs.

In this section, the evaluation criteria of different UML diagrams are explained and

discussed in the summary of the section to determine the evaluation criterion that is

used during the current study. Some researchers, as illustrated in the forthcoming

paragraphs, studied activity diagram, and others used state chart diagram. These two

diagrams are considered as the scope of this study.

Kansomkeat et al. (2008) evaluated the state chart and sequence diagrams based on the

number of generated test cases and the capabilities of fault detection belonging to test

sets by inserting the faults by hand and then detecting the faults. The results showed

14

that the sets of state chart test achieved maximal capability of detecting faults than the

sequence diagram sets within the unit testing level. On the other hand, the sets of

sequence diagram test achieved a better capability of detecting faults than the state chart

diagram sets within integration testing level. The results also showed that the state chart

generated more test cases than the sequence diagrams.

In another study, Swain et al. (2010) proposed a novel technique of software testing

through combined State-Activity Diagram (SAD) in order to examine the ability of fault

detection. The results show that the generated approach had outperformed both activity

path coverage and transition coverage used in this study. The manual selection of test

data for a huge number of test cases, which took a long process and exhausted time,

was mentioned as a limitation of this study.

In the same context, Tripathy and Mitra (2013) presented an approach to generate test

cases via combining activity and sequence diagrams, based on the capability of an

activity diagram having multiple paths and the feature of representing different

interactions between the objects during the operation of the sequence diagram. Each of

the diagrams used is transformed into a new graph, i.e., the Sequence Graph (SG) and

the Activity Graph (AG). The two graphs integrated into a System Graph (SYG) that is

used to generate the test cases. This study used a graph optimization technique, DFS,

as an optimization algorithm for graph traversal. The results showed that the generated

test cases via integrated method were optimized and were suitable for system testing as

well as for faults detection. Even with the achieved results, the limitation of this study

lies at the need to add one or more UML diagrams in the integrated approach.

15

Schweighofer and Hericko (2014) were concerned that “A lot of papers present

approaches for test case generation from different UML diagrams and researchers are

trying to find the most optimal one”. This study, therefore, presented the initial

outcomes of a Systematic Literature Review (SLR) to explore the most commonly

utilised UML diagrams to generate the test cases through different testing levels. The

results displayed that the state diagram, activity diagram, sequence diagram and the

integration of UML diagrams were considered as the most typically utilised diagrams

with regard to test case generation.

Oluwagbemi and Asmuni (2015) claimed that several UML-based testing approaches

are still suffering from inadequate criteria of test coverage and other limitations.

Therefore, the authors proposed full coverage criteria in order to validate or determine

the technique's performance of activity, sequence, use case, class, and state chart

diagrams within four various case studies. The two metrics that were used to evaluate

the techniques were, firstly, the correlations of the elements by measuring the quantity

of covered and uncovered nodes as well as edges, and secondly, by measuring the

coverage of the elements and nodes numbers across the mentioned UML diagrams.

However, this study did not mention the evaluation for each of the used UML diagrams

in terms of test case generation.

Felderer and Herrmann (2015) justified in the controlled experiment study that the

selection of the right model from UML types should take into account testing aspects.

They generated test cases from the two useful UML diagrams (activity and state chart)

in terms of manual test case generation considering that “activity diagrams and state

machines have not been compared so far”. Henceforth, their study evaluated the

16

comprehensibility of UML activity and state chart diagrams in the manual test case

generation. Their experiment contained the idea of asking comprehensibility questions

to a student group of 84 participants who were divided into three different groups, and

the number of questions that were answered correctly were then measured.

Subsequently, comprehensibility was evaluated based on four metrics: 1) the

correctness of understanding that helps a participant to answer correctly the questions

about the representation, 2) the measurement of the time required to understand the

representation, 3) the subjective confidence of participants about the representation

understanding and finally, 4) the subjective judgment of people regarding the ease to

obtain information through the representation. The experiment resulted in the activity

diagrams having easier Perceived difficulty as well as higher error proneness. However,

the authors saw that their approach was not a standard that could compare the two

diagrams when they anticipated that using more experienced testers could lead to fewer

errors as the sample of students were only having a short training period with regard to

test case generation. Moreover, the main aim of this study is observing the most

comprehensibility errors to happen, for example missing testing steps.

Khurana, Chhillar, and Chhillar (2016) in their technique, generated and optimized the

test cases by deriving the Use Case Diagram Graph (UCDG) from the use case diagram,

Activity Diagram Graph (ADG) from the activity diagram and the Sequence Diagram

Graph (SDG) from the sequence diagram. Then the three derived graphs were combined

to generate the System Test Graph (SYTG) that were optimized by using GA in order

to enhance the generation of test cases and faults detection. This study presented a new

proposed GA to generate the test cases by integrating three behavioural diagrams and

measured the results based on the maximum number of faults detection ability of the

17

newly generated approach. However, this study has recommended that future work

should automate this integration approach with different UML models.

18

Table 2.2:

Summaries of Previous Studies Related to the Test Case Generation from Different Behavioural UML Diagrams

Author(s) Year Objective Input Model Method (s) Evaluation criteria Outcome Limitation/ Future Work

Kansomkea

t, et al.
2008

evaluate UML diagrams

in different testing levels

-State chart

diagram

-Sequence diagram

Fault

injection

- Number of test cases

-Fault detection

- State charts generated

more test cases and have

better fault detection in unit

level, and Sequence

diagram has better

detection in integration

level

The study used only one project

that limits the general conclusions.

Swain, et

al.
2010

Compare fault detection

of UML diagrams with

their integration diagram

-State chart

diagram

-Activity diagram

Fault

injection

Transition coverage

and activity path

coverage.

The generated approach

had outperformed both

diagrams

Selection of huge number of test

cases was a boring process and time

exhaustion

Tripathy &

Mitra
2013

Compare test case

generation of UML

diagrams with their

integration diagram

-Sequence diagram

-Activity diagram

DFS

algorithm

Covering all

possibilities of the two

combined diagrams

- Optimized, test cases

suitable for system testing

and detect interact,

operational, scenario faults.

-There is a need to add one or more

UML diagrams

Schweighof

er &

Hericko

2014
Compare UML diagrams

systematically

-Activity

-State chart

-Sequence

- integration

diagrams

Systematic

literature

review

-Number of studies or

LR regarding UML

diagrams to generate

test cases

Activity, state chart,

sequence

and integration diagrams

are the most commonly

used with regard to test

case generation

Lack of empirical evaluation studies

Felderer,

Herrmann
2015

Compare the manual test

case generation of UML

diagrams

-State chart

diagram

 -Activity diagram

Experiment

study

-The

Comprehensibility

Activity diagrams have an

easier Perceived difficulty

as well as higher error

proneness

-This approach is not a standard to

compare the two diagrams

- need to use more experienced

testers.

Khurana,

Chhillar, &

Chhillar

2016

Compare the test case

generation of integrating

three UML diagrams

-Activity

-Sequence

-Use case diagrams

GA
Maximum number of

faults detection ability

- Presented a new derived

genetic Algorithm to

generate the test cases

-The future work will be by

automating this integration approach

with different UML models.

19

As a summary of this subsection, the illustrated studies highlighted the importance of

test case generation from different UML diagrams (Khurana, Chhillar, & Chhillar,

2016). The details have been demonstrated clearly in Table 2.1. On top of that, the

assessments of different UML diagrams regarding the test case generation that aim to

determine the choice for UML diagram should be achieved under specified evaluation

criteria. In more detail, this study focuses on the activity diagram and the state chart

diagram because of the lack of evaluation on the most frequently UML diagrams used

for designing software systems (Schweighofer & Hericko, 2014; Felderer & Herrmann,

2015).

Examples of the evaluation criteria that are used to evaluate different UML diagrams

are the percentage of coverage (Tripathy & Mitra, 2013), the maximum number of

faults detection ability (Swain et al., 2010) and the comprehensibility of the diagrams

with regard to manual test case generation (Felderer & Herrmann, 2015). Moreover, it

is worth to mention that the lack of evaluating activity and state chart based on the

comprehensibility criterion with regard to test case generation is highlighted in this

subsection.

Regarding the importance of activity and state chart diagrams mentioned above, there

were three assessment studies that evaluated both of these diagrams. In detail, the first

study was conducted by Swain et al. (2010). In their study, they combined activity and

state chart diagrams in one new proposed diagram and the proposed diagram was

20

compared with each single diagram based on the fault detection ability. However, they

did not compare the diagrams directly based on this criterion.

The second study by Schweighofer and Hericko (2014) evaluated the activity and state

chart diagrams based on the number of studies that were conducted using these

diagrams without using practical evaluation criteria. Ultimately, there was one study

highlighted by Felderer and Herrmann (2015) that evaluated the activity and state chart

diagrams based on comprehension with regard to test case generation. Their study had

a limitation whereby inexpert participants, who were undergraduate students, were

involved. They recommended experts as participants.

In this regard, the comprehensibility evaluation criterion and its related studies will be

explained in the subsequent session.

2.4 The Comprehensibility Evaluation Criterion

UML has been designed with the goal of unifying the best features of various existing

languages and notations. However, UML is not free of problems, and its efficacy to

support program comprehension within the comprehensibility of UML diagrams has

limitations. Therefore, several studies on evaluating the comprehensibility of UML

diagrams have been conducted (Byckling, Gerdt, & Kuzniarzand, 2006).

Regarding the importance of this criterion and based on the issue that was

aforementioned in Section 2.3, i.e., the lack of evaluation studies for UML activity and

state chart diagrams based on the comprehensibility criterion, this section explains

some of the previous studies that evaluated different UML diagrams based on

21

comprehensibility. These studies have provided foundations for the explanation and

definition of this criterion and its measurement variables.

Comprehensibility is also known as understandability, by which could be defined as

the degree to which information contained in representation can be easily understood

by a stakeholder (Condori-Fernandez et al., 2011). Xie, Kraemer, and Stirewalt (2007)

stated that the comprehensibility of UML diagrams is the search of determining the

complication that most participants encounter against the learning and understanding

of the represented diagrams, and that could be achieved through instructor interviews

and observational studies of users’ learning about the Diagram. Hadar and Hazzan

(2004) expressed the bottom line of the comprehensibility as "how well is the domain

knowledge that is captured and represented in a model communicated to different

stakeholders". Additionally, Budgen, Burn, Brereton, Kitchenham and Pretorius (2011)

confirmed that comprehensibility is considered as the most important quality attribute

of UML models that had been studied.

Anda and Sjøbergand (2001) evaluated comprehension of use case diagram through a

set of guidelines in a controlled experiment. Each participant group, which consisted of

139 undergraduate students of software development, used one out of the three sets of

guidelines when constructing a use case model from the requirement specification

aspect. After completing the use case model, they answered a questionnaire to reflect

their Correctness of Understanding. The results of the experiment indicated that

guidelines based on templates support the construction of use case models and are easier

to understand by the readers than guidelines without specific details on how to

document each use case. The guidelines based on templates are also considered as the

22

most useful when constructing use cases. The results further indicate that it may be

beneficial to combine the template guidelines with another set of guidelines that focus

on the documentation of the flow of events of each use case.

Cox, Phalp and Shepperd (2001) proposed simplified guidelines of the use case in terms

of comprehensibility of the use cases. They described a pilot experiment to explore

whether the simplifications result in any loss of use case quality. The collected data,

gained through a questionnaire answered by 24 postgraduate students of software

engineering covered correctness of understanding. The results showed that the simpler

guidelines had been performed at an acceptable comprehension level. Moreover, they

mentioned that industrial case studies must be used to confirm whether the simplified

approach warrants industrial adoption.

The empirical study of Otero and Dolado (2004) compared the semantic comprehension

of three different notations for representing the dynamic behaviour in unified modelling

language (UML): (a) sequence diagrams, (b) collaboration diagrams, and (c) state

diagrams using eighteen students. The data was gathered through 31 final year

undergraduate students of Computer Science. This study covered two variables of

comprehensibility, namely, the correctness of understanding and time required for

answering the questionnaire. The results showed that the software project design

written in the UML notation was more comprehensible when the dynamic behaviour

was modelled in a sequence diagram. Whilst if it was implemented using a

collaboration diagram, the design turned out to be less comprehensible as the

application domain, and consequently, the document became more complex. However,

23

more practical work with the models is needed in order to identify which diagrams

provide the most appropriate semantics for each domain.

On the comprehension of UML diagrams to a software system, Hadar and Hazzan

(2004) focused on the comprehension of use case, activity, class, sequence,

collaboration, and state chart diagrams. Data was gathered from an experiment study

on two groups of 55 senior computer science students by answering questions in which

they were asked to rank different types of UML diagrams according to their importance.

Results showed that the comprehension of the different UML diagrams varies among

different people. It was also found that, when taken together, no one diagram type was

globally less or more comprehension than the others. However, the differences in

preference between the various teams cancelled out each other.

Kuzniarz and Staronand (2004) proposed an empirical study on using stereotypes to

improve comprehension of UML models. This study elaborates this role of stereotypes

from the perspective of UML, clarifies the role and describes a controlled experiment

aimed at evaluation of the role in the context of model understanding. The experiment

results were gained through measuring the number of correct answers in the tests

checking the correctness of understanding and the required time to understand the

representation by nine students of the Information Systems Programme. The results of

the experiment support the claim that stereotypes with graphical icons for their

representation play a significant role in the comprehension of models and show the size

of the improvement.

In the same context, Razali, Snook, Poppleton, Garratt and Walters (2007) presented

an investigation of evaluation into the usability of the formal notation, namely, UML-

24

B which allows the system properties and behaviours to be illustrated using the class

and state chart diagrams. Usability in this context means the understandability,

comprehensibility, learnability, operability and attractiveness of the method using an

experiment that evaluates the comprehension of the produced model. The answered

questionnaire showed that the method was able to achieve a higher comprehension of

the participants who were ten Master’s students of Software Engineering. However, the

main objective was to help enhance the correctness of understanding of the method and

discover any other factors that affect its use in terms of software design without

referring to the software testing process.

Gravino, Scanniello and Tortora (2008), in a controlled experiment, reported the

abstraction of comprehension of software requirements abstracted using a behavioural

modelling approach. The subjects were 24 second year undergraduate students of

Computer Science. The subjects judged, through a survey questionnaire on the

correctness of understanding, the use of dynamic modelling as more useful to

comprehend and interpret software requirements. Conversely, the analysis of the factors

of interest revealed that there is no significant difference in the comprehension of

system requirements achieved either by using or not using dynamic modeling.

Cruz-Lemus et al. (2011) presented a family of experiments to investigate whether the

use of stereotypes improves the comprehension of UML sequence diagrams. The

experiments consisted of one experiment and two replications that were carried out with

143 computer science undergraduates. Data were gathered through a questionnaire

answered by the students who were divided into three groups. The statistical analysis

and meta-analysis of the data obtained from each experiment separately indicate that

25

the use of the proposed stereotypes helps to improve the comprehension of the

diagrams, especially when the subjects are not familiar with the domain. Introducing

these stereotypes both in academia and industry could be an interesting practice for

checking the validity of the results.

Shukla (2014) presented a comparative research of the effectiveness of UML AOAD

(Aspect-Oriented Analysis and Design) versus UML OOAD (Object Oriented Analysis

and Design), based on the comprehensibility of software systems. The class diagram

has been used as the O-O and aspect-oriented modelling. Data were collected by

measuring the correctness of understanding of the model and through the responses in

the questionnaires which were distributed to 10 participants. The results showed that

when the system is to be demonstrated to the end-user, OOAD artifacts would be more

useful. On the other hand, for explaining the system to the development team, AOAD

approach would be more useful and the degree of comprehensibility increases. This

study also indicated that the experiment set can be increased so that more generalized

conclusion can be offered.

Moreover, the comprehensibility of testing is used to evaluate a comparison of two or

more UML diagrams. Felderer and Herrmann (2015) evaluated the activity and state

chart diagrams through comprehensibility by measuring the correctness of

understanding with regard to manual test case generation by 84 undergraduate

participants. The required time to answer the questions was measured as the second

variable of comprehensibility, while the third variable was the perceived difficulty. This

study analyzed the manual test case generation from UML system models for the

purpose of understanding what errors are made and which differences there are between

26

UML activity and state machine diagrams. Participants of the study were inexpert

students. The result of this controlled experiment indicated that the activity diagrams

have the easier perceived difficulty than state chart diagrams. The participants

expressed that the UML activity diagrams were more comprehensible but also prone to

errors as compared to UML state machine diagram. In more detail, more errors occurred

when generating test cases from UML activity diagrams than from UML state machine

diagram during the case study. The authors justified that "These results could mean,

that the easier Perceived difficulty of activity diagrams led the participants to

underestimate the carefulness demanded to derive test cases, while state machines

demanded both, more care for comprehension and for test case derivation. Activity

diagrams, probably due to lower formality and less rigid semantics, are on the one

hand easier to understand than state machines, but on the other hand more ambiguous

which may induce errors when manually deriving test cases". It is worth to mention

that this study emphasized the use of experts in the evaluation of UML diagrams in

order to get more accurate evaluation data.

Scanniello, Gravino, Risi, Tortora and Dodero, (2015) evaluated the comprehensibility

of a family of a source-code using design pattern instances with UML class diagrams.

This study evaluated comprehensibility based on the four comprehensibility variables

aforementioned in the study by Felderer and Herrmann (2015). For the confidence

comprehension variable, the study measured the participants’ confidence regarding

their own understanding of the source code in the comprehension task through

indicating the “sure enough”, “sure”, and “very sure” as their own confidence level of

source code understanding. The results indicate that documenting design pattern

27

instances achieved an improvement in the comprehensibility of source code for those

participants with a sufficient level of experience.

28

Table 2.3

Summaries of Previous Studies Related to the Comprehension of UML Diagrams

Author Year Objective

Variables Measured

and Method for Data

Collection

Results Diagram Type Participant Type

Anda et al. 2001

Evaluate the

comprehension of use case

diagram through sets of

guidelines

Correctness of

Understanding through

answering

questionnaire

guidelines based on templates support

the construction of use case models that

are easier to understand for the readers,

than guidelines without specific details

on how to document each use case

Use Cases diagram for

requirement specification

139 undergraduate

students of software

development and

requirements

engineering

Cox et al. 2001

Proposed some simplified

Use Case guidelines in

terms of comprehensibility

of the use cases

Correctness of

Understanding through

answering

questionnaire

the conducted simpler guidelines had

been performed without significant

differences of the CREWS guideline

Use Cases diagram for

requirement specification

24 postgraduate students

in software engineering

course

Otero& olado 2004

Evaluate the

comprehension of the

collaboration, sequence and

state chart diagrams in

designing software

Correctness of

Understanding and

time required for

answering

questionnaire

-State chart is more comprehensible in

R.T.S

-Sequence is more comprehensible in

M.I.S

- Second study: by using the pair

Sequence–State they gained higher

comprehension.

collaboration, sequence and

state chart diagrams in

designing software for

software modelling

31 final year

undergraduates of BSc

in Computer Science

Hadar&Hazzan 2004

Comprehension of: use

case, activity, class,

sequence, collaboration and

state chart diagrams using

two groups of senior

computer science students

Answering

questionnaire

and retrieve

information from UML

diagram

Comprehension varies among different

people

use case, activity, class,

sequence, collaboration and

state chart diagrams for

software modelling

Group1:13 senior

computer science

students

Group 2: 42 senior

computer science

students

29

Author Year Objective

Variables Measured

and Method for Data

Collection

Results Diagram Type Participant Type

Kuzniarz 2004

an empirical study on using

stereotypes to improve

understanding of UML

models

Correctness of

understanding and

required time

through answering

questionnaire

the stereotypes with graphical icons for

their representation play a significant

role in the comprehension of models and

show the size of the improvement

stereotypes UML models of

the class diagram

Nine Information

Systems students

Razali et al. 2007

The study aims to enhance

the understanding of UML-

B method in terms of

software design,

Correctness of

Understanding to

answer questionnaire

The method is able to produce a

comprehensible model.

UML-B of state chart

diagram

Ten Masters’ students of

Software Engineering

Gravino et al. 2008

the comprehension of

dynamic models of system

requirement

Correctness of

Understanding to

answer questionnaire

-dynamic modelling is more useful to

comprehend and interpret software

requirements

- there is no significant difference in the

comprehension of system requirements

achieved by using or not using dynamic

modelling

class and object diagrams

represent the identified

problem domain. State

chart and sequence

diagrams used to represent

the behaviour of the

meaningful use cases

presented in the functional

models.

24 second year

Bachelor’s students of

Computer Science

Cruz-Lemus et

al.
2011

investigate whether the use

of stereotypes improves the

comprehension of UML

sequence diagrams

Understanding through

answering

questionnaire

the use of the proposed stereotypes helps

to improve the comprehension of the

diagrams, especially when the subjects

are not familiar with the domain

Stereotypes with sequence

diagram

78, 29, 36 Computer

Science undergraduates

Shukla 2014

Analyzing the

Comprehensibility of

Aspect-Oriented Modelling

and Design of Software

System. Using UML class

diagram firstly based on

OOAD, and secondly based

on AOSD

Understanding through

answering

questionnaire

OOAD artifacts would be more useful

and AOAD approach would be more

useful and comprehensible

Design level for class

diagrams of a software

system

10 participants

Felderer &

Herrmann
2015

evaluated the

comprehension between

activity and state chart

diagram with regard to

manual test case generation

Understanding, time

for understanding, and

perceived difficulty

through practical

questions

Activity diagrams have a higher

comprehensibility and error-proneness

than state chart diagrams with regard to

test case generation

from activity and state chart

diagrams with regard to test

case generation

84 students divided into

three groups at two

institutions of Business

Informatics and

Computer Science

30

Author Year Objective

Variables Measured

and Method for Data

Collection

Results Diagram Type Participant Type

Scanniello et

al.
2015

evaluated the

comprehensibility of

source-code using design

pattern instances with

UML class diagrams

Understanding, time

for understanding,

subjective confidence

and perceived

difficulty

through practical

questions

design pattern instances achieved an

improvement in the comprehensibility of

source code

source-code using design

pattern instances with UML

class diagrams

88 participants having

different experiences

(i.e., professionals,

Bachelor,

Master, and Ph.D.

students)

31

The discussed studies evaluated the various UML diagrams in different perspectives.

Most of the studies covered the aspect of designing level of a software (Otero & Dolado,

2004; Hadar & Hazzan, 2004; & Shukla, 2014). Some of the studies considered the

aspect of dynamic modelling (Gravino et al., 2008). Other studies investigated the

aspect of stereotypes with UML diagrams (Kuzniarz et al., 2004; Cruz-Lemus et al.

2011). The requirement specification aspects have been covered by Anda et al., (2001)

and Cox et al., (2001). It is worth to mention that only one study covered the aspect of

test case generation (Felderer & Herrmann, 2015). This particular study aims to

evaluate the comprehension of activity and state chart diagrams with the aspect of test

case generation as recommended by Felderer and Herrmann, (2015).

The results of the foregoing studies were different; some of these studies revealed that

one of the compared diagrams has more comprehension than the others whilst some of

them could not ascertain the comprehension because of the varying results. However,

the four variables of comprehensibility did not cover all of those mentioned by Aranda

et al. (2007) and Felderer and Herrmann (2015). The majority of studies illustrated

above covered the correctness of understanding (Anda et al., 2001; Cox et al., 2001;

Hadar & Hazzan, 2004; Gravino et al., 2008; Cruz-Lemus et al., 2011; Shukla, 2014).

Other researchers explored the correctness of understanding and the time required for

comprehensibility (Otero & Dolado, 2004; Kuzniarz et al., 2004). The perceived

difficulty as the third comprehension variable was researched by Felderer and

Herrmann (2015).

32

The majority of the abovementioned highlighted studies used inexpert participants,

undergraduate and postgraduate students. In addition, this plurality of studies collected

their data by using questionnaires to research one or two comprehension variables. This

lack of experts’ evaluation motivates this study to use experts of UML diagrams and

software testing. Therefore, data collection of this study was achieved through a

questionnaire containing a number of closed-ended and open-ended questions. These

evaluation questions were adapted from the foregoing studies.

In detail, the comprehensibility measuring variables will be explained particularly in

the next section.

2.4.1 Criteria in Evaluating Comprehensibility

According to Table 2.3, the criteria that were used to evaluate comprehensibility do not

exceed the main four metrics, which are: 1) correctness of understanding, 2) time

required to understand the representation, 3) subjective confidence of participants

regarding their own understanding of the representation, 4) the perceived difficulty of

the representation by the participants.

The following comprehensibility measuring variables are proposed by (Aranda et al.,

2007; Felderer & Herrmann, 2015; Scanniello et al., 2015):

1) The correctness of understanding: The degree to which participants can

answer questions about the representation correctly. This variable is more

suitably covered by participants’ generating test cases to reflect their

understanding (Anda et al., 2001).

33

2) Time: Time required to understand the representation. This variable must be

covered by measuring the time of answering understanding questions by

participants. However, this variable can only be captured when conducting

a case study and asking participants to design or generate the practical side

of the representation as what have been done by Razali, Snook, and

Poppleton (2007) and Felderer and Herrmann (2015) .

3) Confidence: The subjective confidence that participants display regarding

their own understanding of the representation (Scanniello et al., 2015).

4) Perceived Difficulty: The subjective judgement that participants display

regarding the ease to obtain information through the representation

(Scanniello et al., 2015).

Furthermore, the adopted comprehensibility variables will be used to evaluate the UML

activity and state chart diagrams with regard to the test case generation. The test case

generation from activity and state chart diagrams will be explained in the following

sections with summarizing the related previous studies.

2.5 Test Cases Generation from UML Diagrams

Software testing contains the implementation of the software on a group of test cases

and verifies the results with the expected results (Ali and Shaikand, 2014). The test case

is an explanation of how a test could be performed on required features that require the

System under Test (SUT) to confirm that it runs as expected to meet the particular

purpose of the system. The set of test cases is called the test suite in which the whole

scenario of the test could be elucidated, having pre and post conditions and the failing

and passing criteria (Lucantonio, 2015).

34

From the various techniques that are used in terms of test cases generation, some of

these methods are commonly used and depended upon more than others by experts

(Konka, 2012). One of the main approaches to software testing is the MBT which is

applied at the design phase of system process that provides the early faults detection

approach (Jena et al., 2014b). Generating a test case from design documents has the

significant feature of allowing test cases to be available early in the software

development life cycle and helps to minimize testing cost (Pandey & Mohapatra, 2012).

MBT case generation is more efficient and effective than the code-based test case

generation (Wang, Jiangand Shi, 2015). With the increasing use of the UML in Object-

Oriented systems, researchers have started the investigation on how the UML can be

used in the testing phase in the process of software development (McQuillan & Power,

2005).

Model-based approaches identify respective test cases for the software with respect to

the UML diagrams that can be categorized into two main types, behavioural diagrams

and structural diagrams (Gupta, 2014) as shown in Figure 2.1.

Figure 2.2: Overview of UML Diagrams

Source: (Gupta, 2014)

35

From Figure 2.2, two behavioural UML diagrams that are focused are activity and state

chart diagrams. These two diagrams are considered as the most frequently used UML

models for testing an entire system based on its specification (Felderer & Herrmann,

2015). Moreover, Schweighofer and Hericko (2014) confirmed that there are some

findings of which UML diagram is the most suitable for each type of testing. However,

Felderer and Herrmann (2015) highlighted the lack of evaluation studies for these two

diagrams with regard to manual test case generation. This study, therefore, focuses only

on these two diagrams as will be explained through the next coming Sections.

2.5.1 Test Case Generation from UML Activity Diagram

The UML activity diagram is used for describing behaviours of a software system by

modelling the sequence of activities in the process, generating the test cases and also

describing all possible flows of execution in a use case process (Jena et al., 2014;

Schweighofer & Hericko, 2014). The usage of an activity diagram and its graphs is a

good way to guarantee the production of the test cases (Hashim & Salman, 2011).

Activity diagrams are used to visualize the flow of controls in a system (Kaur & Bajaj,

2015). The flowchart of an activity diagram is a simple model that makes it very easy

to be understood and can be used as the initial diagram to study systems (Patil &

Ganeshwade, 2014). An activity diagram is normally used for generating test cases in

system testing level (Mussa et al., 2009). In addition, it can also be used to generate test

cases based on gray-box testing (Kundu et al., 2009).

Activity diagram consists of two main elements; activity and transition which could be

used to measure the coverage of testing as shown in Figure 2.3 (Khandai & Acharyaand,

2011b). There are several studies that focus on the generation of test cases based on

36

activity diagram in various methods and intermediate graphs as elucidated in the

following paragraphs and the main points of these studies are highlighted in Table 2.1.

Figure 2.3: Activity Diagram for Gumball Machine

Source: (Felderer & Herrmann, 2015)

Referring to Debasish Kundu and Debasis Samanta (2009) study, they presented a way

for creating test cases from an activity diagram via the activity path graph. They mainly

depended on activity path coverage criteria as test evaluation criteria. Primarily, their

approach aims to detect maximum errors and reduce testing efforts to enhance the

quality of SUT.

On the same content, Heinecke et al. (2010) proposed a mechanism of test case

generation based on the UML activity diagrams via the path coverage criteria by the

Interaction Flow Diagram (IFD). Subsequently, they examined the test steps on the

diagrams, accumulated the corresponding test plans and demonstrated the overall

possibility of the proposed approach and evaluated their results.

37

In another study, Hashim and Salman (2011) proposed an enhanced technique for

automatic generation of test cases directly from the UML activity diagram by the means

of activity graphs. The produced test cases are created automatically, which can be

compared to test cases that are generated manually so as to assess the usability and

reliability of the technique. Their produced results showed that the test cases created

automatically resemble those which are manually derived.

In the same context, Boghdady et al. (2011) proposed an automated mechanism to

generate test cases from the UML activity diagram, and then the activity of Dependency

Table (ADT) which is converted to a targeted graph, named activity dependency Graph

(ADG). The branch coverage criteria are utilized to cover the path, and Depth First

Search (DFS) navigation scheme is deployed on the graph to obtain all the possible test

ways.

Shukla and Chandel, (2012) presented an idea of making test cases from the activity

diagrams with the scope of use case and using path coverage criterion with the aim of

detecting more errors (e.g. synchronization errors and loop errors).

Patel and Patil (2013) generated test cases from the UML activity diagrams from use

case scope firstly, and automatic test case generation from the UML activity diagram

by means of activity path secondly. The test cases are produced through activity path

coverage criteria; such a path lies in the activity graph, enabling the discovery of errors

in the test.

Jena et al. (2014b) in the Novel Approach, generated test cases from a UML activity

diagram through a genetic algorithm that is used for early detection of errors. The

authors produce an activity Flow Table (AFT) and then convert it to activity Flow

38

Graph (AFG) with the help of activity coverage criteria. They pass through the AFG

and make test paths and finally, create the test cases from these paths by deploying their

genetic algorithm.

39

Table 2.4:

 Summaries of Previous Studies Related to the Test Case Generation Based on UML Activity Diagram

Author(s) Year Objective Method (s)
Intermediate

model
Outcomes

Kundu

and

Debasis

Samanta

2009

To increase faults

detection and reduce

testing efforts

Activity diagram

with use case scope
Activity graph

Detecting more faults and reducing

testing effort

Heinecke,

et al.
2010

To generate high-level

test plans automatically
Business process

Interaction Flow Diagram

(IFD).

Generating high-level test plans

automatically from business processes

Nor Laily

Hashim,

Yasir D.

Salman2

2011

To compare usability

and reliability of the

automatically and

manually generated test

cases

An improved algorithm Activity graph

The automatically generated test cases

are the same as the one manually

derived.

Boghdady

et al.
2011

To save testing time

and effort

Activity Dependency Table

(ADT)
Activity Dependency Graph Regression as well as integration testing

Shukla &

Singh
2012

To create early

detection of faults,

reduce testing time

Activity diagram

Activity graph

Detecting more faults like

synchronization faults, loop faults

Puneet

Patel &

Nitin Patel

2013

To automatically

generate test cases

Comparing two activity

diagram approaches

Executing loop from zero

time until n+1

For each increment or decrement,

operator of the loop is tested

Jena, et al. 2014

To create early

detection of faults,

reduce testing time,

cost and efforts

Activity diagram with

genetic algorithm
Activity Flow Graph (AFG)

Optimized generation of test cases from

the paths using Genetic Algorithm

40

As a summary of this section, and from Table 2.4 above, it can be clearly noticed that

past studies in the field of test cases generation from activity diagram shared some

objectives like reducing test efforts, time and cost. These objectives were achieved

through various methods, tools, and intermediate models. However, Heinecke et al.

(2010) and Hashim and Salman (2011) used the automatic methods.

Various methods and tools have been used to achieve these targets and one of the most

important ways is via an improved or genetic algorithms like the approaches of activity

diagram of Hashim and Salman (2011) and Jena, et al. (2014b). Most of the techniques

of these studies established an intermediate model such as generating the activity graph

from activity diagram to ensure that each one independent path in the program is

executed at least one time through the path coverage criterion. Some of the used

algorithms focus on covering specific criteria and cover the maximum number of faults.

The importance of using UML diagrams was reflected in the previously discussed

studies on the use of activity diagram.

2.5.2 Test Cases Generation from State Chart Diagram

UML state chart diagrams can be used to form a system's dynamic behavioural aspects

and it consists of states, transitions, actions and events (Rumbaugh & Jacobsonand,

2004). Furthermore, each diagram ensures the flow of control from one state to another

when each node represents the state and the arrow connecting the states representing

the transition as shown in Figure 2.4 (Ali, Shaik, & Kumar; 2014). The state chart

41

diagram takes the lead position in a number of selected primary studies based on UML

diagrams (Schweighofer & Hericko, 2014).

Figure 2.4: State Chart Diagram for Gumball Machine

Source: (Felderer & Herrmann, 2015)

State chart diagram is a suitable model for deriving test cases for unit testing level, and

transitions are considered as the main building blocks of the state diagram (Khandai &

Acharyaand, 2011a). However, system-level test cases can be generated initially from

use case models and is then refined using state chart diagrams (Boghdady, Badr, &

Hashemand, 2011b).This diagram results in large numbers of test cases, due to the

consideration of every state that an object undergoes during its operation (Khandai et

al., 2011b). Moreover, the state chart diagram has the state coverage, transition

coverage, and path coverage criteria (Al Dallal & Sorenson, 2006).

42

 State chart diagram is useful when the state of an object in its life cycle is important. It

defines the sequence of states an object goes through in response to events. Events are

external factors responsible for a state change (Kaur & Bajaj, 2015).

A state chart diagram is good at describing how the behaviour of an object changes

across several use case executions and how the state of object changes in its lifetime

(Mohanty & Acharyaand, 2011). There are several studies that focus on generating test

cases based on state chart diagram in various methods and intermediate graphs as

clarified in the following paragraphs and the main points of these studies were

highlighted in Table 2.4.

Kansomkeat and Rivepiboon (2003) designed a method of transformation from the state

chart diagram into an intermediary diagram to generate test cases automatically. The

test cases measured the efficiency of the test case creation when the all-state coverage

and all-transition coverage are used.

Doungsa-ard, Dahal, and Hossainand (2007) proposed a method for generating test

cases from state chart diagram with the help of a genetic algorithm that aims to

minimize the efforts of test case generation. In this method, each state comprises of a

state name and a transition when the name of a state is used for stipulating a specific

state. Their method of exploration for a transition and state coverage happens in an

order.

Reza and Ogaardand (2008) proposed a prototype-based software testing via state chart

diagram. They demonstrated how a model-based testing is utilized for the aim of

software testing. However, they have not yet discovered the clarifications on the

problem of concurrency modelling and the back-end modeling of web applications.

43

Kosindrdecha and Daengdeg (2010) proposed a novel scheme for generating test cases

based on state chart diagrams, named “TGfMMD” scheme which is designed to validate

the state chart diagrams prior to generating test cases from lengthy state chart diagrams.

Nonetheless, this scheme is still not verified yet with a compound state chart diagram.

Shirole, Suthar and Kumar (2011) offered an approach of test case generation via state

chart diagram using GA through the following steps: initially, converting the state chart

diagram to Extended Finite State Machine (EFSM). Next, converting the EFSM into

Extended Control Flow Graph (ECFG), and finally, with the help of GA, generating the

test cases through data flow methods. They focus on the state coverage, transition cover,

all definitions, and all du-paths coverage. However, all the routes coverage is not totally

found in this study.

Swain and Beheraand (2012), proposed test case generation using state chart diagram.

They changed the presented state chart diagram into state transition graph that is utilized

to shape test orders and generate all the achievable routes. In conclusion, they reduce a

group of test cases by computing node’s coverage for every order of test.

Ali, Shaik, and Kumar (2014) proposed a technique for test case creation, with the aims

of minimizing the time and enhancing the consistency of software testing by

transforming the state chart diagram to the finite state machine. In addition, the

suggested scheme achieves the adequate test coverage without enhancing the number

of test cases. Moreover, it can attain more significant coverage like transition coverage,

transition pair coverage, and offers state coverage.

Salman and Hashim (2014) in their research illustrated the use of state chart diagram

with path graph testing to generate test cases. The path graph is then converted to path

44

testing and is used for test case suites to minimize the created test paths. The test cases,

which are appropriate for program testing, are then created. Path testing is a structural

testing method traditionally followed in testing a system under test and the available

test paths could give an idea to the software developer that one must assure that those

paths are properly coded.

45

Table 2.5:

Summaries of Previous Studies Related to the Test Case Generation Based on UML State Chart Diagram

Author(s) Year Objective Method (s)
Intermediate

Model
Outcome

Kansomkeat,

et al.

2003

To make the midway

model TFG for test case

generation

- Parsing TFG, mutation

analysis

-Rational Rose tool

Testing Flow

Graph

(TFG)

Based on their error detection

capabilities, their test cases measure

the efficiency of the test case creation

Doungsa, et

al.
2007

To generate test data for

the state chart diagram
GA -

Useful tool for software to generate

test data from state diagram

Reza, et al. 2008
To propose model

based testing
Front end verifying links

Prototype based

software testing

Test the Front-end functionality of a

web application.

Kosindrdecha

, Daengdeg
2010

To reduce time and

cost to generate testing

TGfMMD

Method

Sketch Diagram

Generation of test case and test data

based on state chart diagrams

Shirole, et al. 2011

To generate test cases

that combine with

information from state

chart diagram

GA ECFG
Automatic generation of

feasible test paths and data

 Swain, et al.
2012

To minimize time and

cost for software testing

Test Generation and

Minimization

for O-O with State charts

(TeGeMiOOSc)

State graph
Optimize test coverage by

minimizing time and cost.

Azaharuddin

Ali et al
2014

To minimize the time

and enhance the

consistency of testing

Mined information, pre

and post condition to

build test case

Finite state

machine

Attainment of sufficient test coverage

without increasing the number of test

cases

Yasir

Dawood, Nor

Laily Hashim

2014

To enhance method and

reduce the test paths for

testing

Design specifications,

and present a path testing

for the test case.

-Path graph

-path testing

The generated test cases are suitable

for system testing and to detect

interaction and scenario faults.

46

To summarize this section, and from Table 2.5 above, most past studies of generating

tests from state chart diagram carry the same objectives which are reducing the efforts,

cost and time for test generation as well as increasing the ability of faults detection. On

top of that, various methods and tools have been applied in these studies, for instance,

an improved or genetic algorithms as the approach of state chart diagram of

Kosindrdecha and Daengdeg (2010); Shirole, et al. (2011) and Salman and Hashim,

(2014). However, these past studies gained their results through the use of state chart

diagram as a test case generation approach. As coverage criteria, there are several

studies which used different criteria like transition coverage, state coverage, and path

coverage. The path coverage was used by Shirole, et al. (2011); Swain and Beheraand

(2012) and Salman and Hashim (2014). The intermediate graphs that have been used

are Testing Flow Graph by Kansomkeat and Rivepiboon (2003) , state graph by Swain

and Beheraand (2012) and path graph by Salman and Hashim (2014).

The importance of using UML diagrams and state chart diagram was reflected in the

previously discussed studies as will be summarized in the subsequent paragraph.

2.6 Summary of Chapter Two

This chapter provides a review of past studies on software testing. Past studies on test

case generation methods based on UML diagrams have been presented in detail. The

focus of this chapter was on the two most widely used diagrams which are activity and

state chart. On top of that, the empirical evaluation of the two mentioned diagrams had

been discussed based on the proposed criteria.

47

The summary of section 2.3 and its subsections was on determining the gap in the

previous studies, which is the lack of evaluation study between activity and state chart

diagrams with regard to test case generation even though the importance of these two

diagrams in the behaviours of a software system and with regard to test case generation

were mentioned by past researchers. Moreover, these two diagrams consist of activity,

states, and transition which could be used to achieve the path and edge coverage of test

cases. However, the proposed solution of the expressed issue is elucidated in Chapter

Three.

It is important to mention that the coverage of test cases that are highlighted by the

aforementioned studies could be summarized as follows: (Zhu, Hall, & May, 1997)

1) Path coverage. The path coverage criterion requires that all the execution

paths from the program’s entry to its exit are executed during testing.

2) Branch coverage: All control transfers in the program under test are exercised

during testing.

3) State or node coverage: The shortest number of paths following which all the

nodes will be covered is determined.

The illustrated testing coverage types provide assistance in preparing the

comprehensibility evaluation questions. Testing coverage types reflect a practical guide

for comprehensibility measuring variables (the perceived difficulty) as was shown in

Chapter Three.

On the other hand, the focus of section 2.4 was on the importance of the

comprehensibility criterion to evaluate the UML diagrams. The main part of this

section referred to the importance of evaluating the comprehension of different UML

48

diagrams. It is interesting to note that Condori-Fernández, Daneva and Herrmann

(2011) asserted that there is a lack of underlying theory in the formulation of

comprehensibility questions.

In Summary, the analysis of the content of past studies that are related to the UML

activity and state chart diagrams helped in determining the following issues:

1) The importance of the UML activity and state chart diagrams with regard to

test case generation area (Schweighofer & Hericko, 2014; Jena, Swain &

Mohapatra, 2014; Salman & Hashim, 2016). From Table 2.4 that summarized

the past studies of test case generation from activity diagram, it can be clearly

noticed that most of the past discussed studies highlighted the importance of the

use of activity diagram as one of the most frequently used diagrams with regard

of test case generation. Moreover, most of these studies established an

intermediate model such as generating the activity graph from activity diagram

that will be adopted during this study.

2) The importance of comprehensibility criterion to evaluate the UML diagrams

(Aranda et al., 2007; Budgen et al., 2011). From Table 2.5 that summarized the

past studies of test case generation from state chart diagram, it can be clearly

noticed that most of the past discussed studies highlighted the importance of the

use of state chart diagram as one of the most frequently used diagrams with

regard of test case generation. Moreover, most of these studies established an

intermediate model such as generating the activity graph from state chart

diagram that will be adopted during this study.

49

3) The lack of evaluation studies for the comprehensibility of the UML activity

and state chart diagrams with regard to test case generation (Felderer &

Herrmann, 2015). From the discussed studies evaluated the various UML

diagrams in different perspectives and as summarized in Table 2.3. There was

only one particular study aims to evaluate the comprehension of activity and

state chart diagrams with the aspect of test case generation. The majority of

studies illustrated above covered the correctness of understanding as the most

important criterion to evaluate the UML diagrams. Additionally, the lack of

experts’ evaluation that highlighted from the past studies motivates this study

to use experts of UML diagrams and software testing.

4) The lack of underlying theory in the formulation of comprehensibility

questions was highlighted by Condori-Fernandez et al. (2011) within the

importance of this theory as highlighted by Agarwal, De, and Sinha, (1999) and

Aranda et al., (2007).

5) The need to conduct evaluation research on the comprehensibility of UML

activity and state chart diagrams with regard to test case generation by experts

(Felderer & Herrmann, 2015). This issue was highlighted from past studies that

summaries in Table 2.3.

Moreover, the evaluation questions will be adapted from the foregoing studies to collect

the data for this study in order to treat the aforementioned issues of evaluating the

comprehensibility of activity and state chart diagrams with regard to test case

generation.

50

Ultimately, the aforesaid issues are shown in Chapter 3 with reference to the method to

address the highlighted problem. The experts’ evaluation of the comprehensibility of

the UML activity and state chart diagrams with regard to test case generation are

elaborated in Chapter 4.

51

CHAPTER THREE

RESEARCH METHODOLOGY

3.1 Overview

This chapter focuses on the research methodology that is applied in this study. The

research methodology is a structured set of guidelines or activities to help in generating

a valid and reliable research results (Mingers, 2001). The preceding chapter provided a

review on the related studies. The analysis of the content of past studies offers the

understanding on the issues that are related to the area of the study. This chapter

discusses the method that have been utilised and the processes that are involved in

attempting to answer the research questions and achieve the research objectives as

illustrated in Chapter 1. Chapter Three presents the design of the research methodology

in Section 3.2, followed by the phases of the study in sub-sections 3.2.1 and 3.2.2 and

finally, Section 3.3 which summarizes the whole chapter.

3.2 Research Design

Research design provides plans and procedures for a research to address the research

problem. The strategies involved span from broad assumptions to detailed methods of

data collection and analysis (Creswell, 2012). There are three main approaches to data

collection and analysis of the data: qualitative, quantitative, and mix method. This study

attempts to investigate the comprehension of two behavioural UML diagrams during

their process of test case generation using the one-to-one interview in order to collect

data. The interview is a part of the qualitative method approach. Many common

52

qualitative research instruments can be used to collect qualitative data, including

participant observation, one-to-one interview, email-interview, and focus group

interviews. One-to-One interviews is useful for interviewing the experts who are

courageous talkers and who provide rich data straightforwardly (Creswell, 2012).

It is worth to mention that in order to collect qualitative data from interviews, Creswell

(2012) explained that “ you may ask some questions that are closed-ended and some

that are open ended. The advantage of this type of questioning is that your

predetermined closed-ended responses can net useful information to support theories

and concepts in the literature. The open-ended responses, however, permit you to

explore reasons for the closed-ended responses and identify any comments people

might have that are beyond the responses to the closed-ended questions”. Therefore,

groups of close-ended and open-ended questions are used in collecting the experts’

response as listed in Table 3.1 and 3.2. Moreover, the closed-ended questions are used

to evaluate the results of open-ended questions from the interviews sessions.

Furthermore, the methodology of this study is adapted from Hadar and Hazzan (2004)

which are divided into problem identification, solution design, data gathering and data

analyzing as described in Figure 3.1.

1) The problem identification: based on past studies.

2) The solution design: the experts’ evaluation are adopted to solve the

problem through evaluation questions.

3) Data gathering and analyzing: collecting the evaluation data through

interviewing experts. To analyze these qualitative data, NVivo is used.

53

Figure 3.1: The Steps of the Research Methodology

3.2.1 Phase One

In this phase, the first objective is realized through the following steps:

3.2.1.1 Investigation of Previous Studies

Past research were reviewed in order to identify the issues and gaps related to the

domain of the study. Consequently, the main ideas were gained through the literature

in both printed and online references. Among them are journals, proceeding papers, and

books. Based on the knowledge gained, the problem and scope of the study were

defined in Sections 1.3 and 1.6, of Chapter 1.

Phase

One

Investigation of Past

Studies

Achieving

First

Objective

Achieving

Second

Objective

Content

Analysis

Phase

Two

Validation

Identify Evaluation

Criterion & Variables

Identify Problem of

Study

Designing Evaluation

Questions

Results’

Report

Results’ Analysis Using

NVivo tool

Adapting Valid Activity

And State Chart

Diagrams

Generating Manual Test

Cases From The

Diagrams Adiagrams

Conducting Interview

with 5 Experts

54

One of the activities that was conducted was identifying the lack of evaluation studies

for the comprehensibility of activity and state chart diagrams in test cases generation.

The reviews on related work in Chapter Two have strengthened the need to propose a

solution to this issue.

i) Content Analysis

Content analysis involves discussion and summarisation of the outcomes of the

previous studies related to this research. According to Habib (2009), content analysis is

“a research technique for making replicative and valid inferences from data to their

context”.

In this regard, the outcomes of analyzing the content and results of the previous studies

are summarized and shown in Section 2.3 and its subsections 2.3.1 and 2.3.2, complete

with their summary tables in Table 2.1 and Table 2.2. In addition, Section 2.3.1 is

summarized as in Table 2.3 and Section 2.3.3 is summarized as in Table 2.4. Finally,

all the explained summaries emerged as the main issues of the study in Section 2.4.

Among the activities that were conducted is identifying the significance of using UML

diagrams in software testing in order to reduce the challenges of software testing’ for

example, reducing the costs and efforts (Ingle & Mahamune, 2015). Notwithstanding

the above, there are still needs for evaluation studies of UML diagrams, especially for

activity and state chart diagrams with regard of test case generation as asserted by

Felderer and Herrmann (2015).

Additionally, the comprehensibility evaluation criterion was described as the key

quality of UML diagrams by Aranda, Ernst, Horkoff, and Easterbrook (2007) and

55

Liebel and Tichy (2015). In this regard, Condori-Fernandez et al. (2011) noted that

there is a lack of underlying theory in the formulation of comprehensibility questions.

Subsequently, the current study strived to deal with these issues by adapting a number

of evaluation questions from past evaluation studies. The adapted questions took into

account the specific definitions of the used variables of comprehensibility that are listed

by Aranda et al. (2007) to be validated for use during the interview.

Ultimately, the collected data from the interview sessions will improve the content

analysis of this study through the discussion and the specific characteristics of the

evaluated diagrams.

ii) Problem Identification

The problem criteria are important in order to determine the research gaps (Macintosh

& Colemanand, 2009). There are two significant issues related to this area that have

been highlighted. Firstly, the need to collect experts’ evaluation results of the

comprehensibility of activity and state chart diagrams as asserted by Felderer and

Herrmann (2015). This is considered as the main focus of the current study. The second

important issue that is related to the initial study is the lack of underlying theory in the

formulation of comprehensibility questions (Condori-Fernandez et al., 2011).

iii) Identifying Evaluation Criterion and Variables

Previous studies have highlighted that the key quality of evaluating the UML diagrams

is their comprehensibility (Aranda, Ernst, Horkoff, & Easterbrook, 2007; Liebel &

Tichy, 2015). In addition, Budgen, Burn, Brereton, Kitchenham and Pretorius (2011)

confirmed that comprehensibility is considered as the most quality attribute of UML

56

models. Therefore, the assessment of activity and state chart diagrams are conducted

based on this comprehension criterion.

3.2.2 Phase Two

This phase provides the solution design of the evaluation study. The second phase is

regarded as the outset of the evaluation research. The evaluation study was conducted

by adapting a group of evaluation questions that were designed based on the

comprehensibility criterion. The case study was adapted from Felderer and Herrmann

(2015) and the test cases were generated from activity and state chart diagrams from

the adapted case study. Experts’ responses were gathered during the interview. The

illustrated steps are considered as the initiation of the second objective of this research.

During this phase, the assessment instrumentation was designed in order to collect

experts’ data to solve the aforementioned problem. Finally, one-to-one interview with

the experts were conducted, as explained in Section 3.2.2.2 and its subsections.

3.2.2.1 Instrumentation Design

Interview questions can be defined as a set of questions that are answered by the

respondents, whose responses are recorded (Sekaran & Bougie, 2010). During the

interview, the researcher asks a small number of common questions that elicit replies

from the participants. This study involved the administration of one-to-one interviews

with four experts (Creswell, 2012). The interview questions were prepared based on the

comprehensibility evaluation criterion that has been identified from the content analysis

in Section 2.4.1, which are 1) correctness of understanding, 2) time required to

understand the representation, 3) subjective confidence of participants regarding their

57

own understanding of the representation, 4) the perceived difficulty of the

representation by the participants.

Two of the four substantial variables were used for the interview questions in this study.

The variables are: 1) the subjective confidence and 2) the perceived difficulty. The

following points are the justifications for limiting to only two variables:

1) Aranda et al. (2007) confirmed that “there are many comprehensibility

variables to consider, and it may not be feasible to evaluate them all in a

single study. Thus, the choice of which of these should be addressed is up to

the researcher”. Therefore, the initial study will not choose all of the

elaborated variables.

2) Felderer and Herrmann (2015) in their evaluation study highlighted that the

participants had expressed that the activity diagram gives more

comprehension than state chart diagram with regard to manual test case

generation. On the contrary, the rates of errors as conveyed by the participants

of the case of study are higher in activity diagram. The authors believed that

the contrast in the results led the participants to pay less attention to the

generation of the test cases as compared to state chart diagram that needs more

attention because of its difficulty. However, this contradiction in the results

leads us to avoid falling into the same predicament of using a case of study

and measuring the correctness of generating the test cases by participants in

addition to the required time for that. Ultimately, this study used the subjective

confidence and the perceive difficulty as the comprehension measuring

variables.

58

In this regard, a group of questions was used to achieve the proposed evaluation. The

question form includes both closed-ended and open-ended questions. These questions

examined the practical understanding of the of test case generation between activity and

state chart diagrams. The closed-ended questions as in Table 3.1 are contained in

Section A whereby they evaluate the comprehension of the activity diagram; whilst

Section B evaluates the comprehension of state chart diagram. Each Section A and B

has two parts; the first part are three questions to evaluate the perceived difficulty of

the diagrams, and the second is for the subjective confidence of comprehension of the

diagram. The closed-ended questions are prepared based on an ordinal scale that

provided the respondents with five possible levels of answers from (-2) for Strongly

Disagree or very difficult to (2) for Strongly Agree or very easy. The sources of the

adapted closed-ended questions are listed in Table 3.1 and Table 3.2 is for open-ended

questions.

I. The Questions of Perceived Difficulty

The first comprehensibility variable of this study is perceived difficulty which is judged

by the participants based on the information related to the representation (Scanniello et

al., 2015). Moreover, to measure the perceived difficulty, participants were asked to

express their responses to the questions by explaining whether the representation was

easy or difficult (Figl & Laue, 2011). Additionally, this variable is checked with a

simple question: the researcher asked the participants to express their satisfaction with

the performance of the representation. This reflect their individual perceptions through

questions that examine their understandability of the information that they gained on

the practical execution of the representation (Ribiero & Yarnal, 2010).

59

The closed-ended and open-ended questions in Tables 3.1 and 3.2 respectively examine

the perceived difficulty of the participants when they generate test cases from the

activity and state chart diagrams. The closed-ended questions 1, 2, and 3 contain the

difficulty of learning the test case generation, the difficulty of comprehending the test

case generation and the difficulty of achieving different test coverage from the

examined UML diagrams.

The first closed-ended question asks about the degree of difficulty to learn the test case

generation from activity diagram or from state chart diagram (Siau & Cao, 2001;

Ribiero & Yarnal, 2010). The second checks on the degree of difficulty that is the

required tasks of test case generation from activity diagram or state chart diagram; this

is adapted from Razali et al. (2007) and Ribiero & Yarnal, (2010). The third question

aims to examine the level of difficulty to achieve different testing coverage when the

experts generate test cases from activity diagram or state chart diagram, which is

adapted from Felderer and Herrmann, (2015) and Ribiero and Yarnal (2010). These

three questions basically reflect the difficulty of understanding the process of test case

generation from the adapted UML diagrams, they simulate whether the representation

is easy or difficult (Figl & Laue, 2011). Essentially, these three closed-ended questions

support the two open-ended questions.

The first open-ended question examines the perceived difficulty of the participants

through the obtained information of test case generation steps from the evaluated UML

diagrams that was adapted from Razali et al., (2007), Felderer and Herrmann, (2015)

and Ribiero and Yarnal, (2010). In detail, the steps of test case generation are the input

data and the expected results that reflect the perceived difficulty. The second open-

60

ended question is to determine the origin of the generated test cases from activity or state

chart diagrams, as adapted from Razali et al., (2007) and Ribiero and Yarnal, (2010).

This question examines the perceived difficulty through the obtained information of the

practical process of test case generation from activity and state chart diagrams to reflect

the perceived difficulty (Aranda et al., 2007). Therefore, the three (3) closed-ended

questions in Section A1 for Table 3.1 match the first two (2) open-ended questions for

Table 3.2 in measuring the perceived difficulty of the examined diagrams with regard

to test case generation through asking about the information and process of test case

generation and test coverage.

II. The Questions of Subjective Confidence

The second comprehensibility variable of this study is the subjective confidence that

refers to the subjective confidence that people display regarding their own

understanding of the representation (Scanniello et al., 2015). The closed-ended and

open-ended questions in Tables 3.1 and 3.2 respectively examine the subjective

confidence of the participants when they generate the test cases from the activity and

state chart diagrams. In this regard, the first closed-ended question aims to examine the

degree of confidence of the experts regarding test case generation from activity diagram

or state chart diagram, if the experts get the task of explaining test case generation from

UML diagrams to others. This question was adapted from Shukla (2014), and Aranda

et al. (2007).

Koriat (2011) explained that the preferred choice (favoured choice) of the participant

reflects the subjective confidence on this choice (across a sample of representations of

the item) based on the participant’s understanding. In detail, the second closed-ended

61

question examines if the activity diagram or state chart diagram is the preferred choice

of an expert to conduct test case generation of a software system. This was adapted

from Shukla, (2014), and Koriat, (2011).

Additionally, this variable refers to the situations in which subjects have a high

awareness about the representation (Kouider, De Gardelle, Sackur, & Dupoux, 2010).

In this regard, the third closed-ended question investigates the agreement level of the

expert if that activity diagram or state chart diagram increases the degree of awareness

of test case generation, as adapted from Shukla (2014) and Kouider et al. (2010).

These three questions reflect the subjective confidence of the participants’

understanding of test case generation from the adapted UML diagrams. On the other

hand, the first open-ended question examines the degree of certainty (subjective

confidence) and the understanding of the participants regarding test case generation

from the proposed diagrams and their own understanding of the representation (Aranda

et al., 2007; Shukla, 2014). The fourth open-ended question examines the subjective

confidence of a tester to evaluate the test case generation from activity and state chart

diagrams based on the tester’s own understanding (Aranda et al., 2007) and referring to

the proffered choice (Koriat, 2011), as adapted by Hadar and Hazzan, (2004) and

Aranda et al., (2007). Therefore, the three (3) closed-ended questions in Section A2 for

Table 3.1 match the second two (2) open-ended questions for Table 3.2 in measuring

the subjective confidence of the examined diagrams with regard to test case generation

through asking the degree of confidence, awareness, and preferences.

62

Table 3.1

The Closed-Ended Questions to Evaluate the Comprehensibility of UML Diagrams

with regard to test case generation

A1) Evaluate the Perceived Difficulty Variable

of UML Activity Diagram/ State chart Diagram

Please tick (√)

Very

Difficult
Difficult

Neither

Agree

Nor

Disagree

Easy
Very

Easy

1) How difficult is it to learn the test case generation

from activity diagram / state chart diagram?

 Source: (Siau & Cao, 2001) ; (Ribiero & Yarnal, 2010)

2) How difficult are the required tasks of test case

generation from activity diagram / state chart diagram?

Source: (Razali et al., 2007); (Ribiero & Yarnal, 2010)

3) How difficult is it to achieve different testing coverage

when you are generating test cases from activity

diagram / state chart diagram?

Source: (Felderer & Herrmann, 2015); (Ribiero &

Yarnal, 2010)

A2) Evaluate the Subjective Confidence Variable of

UML Activity Diagram / State chart Diagram

Please tick (√)

Strongly

Disagree
Disagree

Neither

Agree

Nor

Disagree

Agree
Strongly

Agree

1) If you are in a task of explaining the test case

generation from UML diagrams to others, do you

agree that you will be more confident explaining test

case generation from activity diagram / state chart

diagram?

Source:(Shukla, 2014); (Aranda et al., 2007)

2) Do you agree that activity diagram / state chart

diagram is your preferred choice of test case

generation of a software system?

Source: (Shukla, 2014); (Koriat, 2011)

3) Do you agree that activity diagram / state chart

diagram increases your degree of awareness of test

case generation?

Source: (Shukla, 2014); (Kouider et al., 2010)

63

 Table 3.2

The Open-Ended Questions to Evaluate the Comprehensibility of UML Diagrams

with regard to test case generation

Open-Ended Questions to Evaluate the Comprehensibility of Activity and State

Chart Diagrams
Variables

1) Which UML diagram (activity diagram or state chart diagram) do you think is more

difficult for defining test case generation steps like input data and expected results?

Please explain your response in detail.

Source: (Razali et al., 2007); (Felderer & Herrmann, 2015); (Ribiero & Yarnal, 2010) P
er

ce
iv

ed
 d

if
fi

cu
lt

y

2) If you have test cases that are generated from both activity and state chart diagrams

for the same system, how difficult is it to determine the origin of the generated test

cases? Which diagram do the test cases belong to: activity or state chart diagram?

Please explain your response in detail.

Source: (Razali et al., 2007); (Ribiero & Yarnal, 2010)

P
er

ce
iv

ed
 d

if
fi

cu
lt

y

3) Which UML diagram (activity diagram or state chart diagram) increases your

certainty of the generated test cases?

Please explain your response in detail.

Source: (Shukla, 2014) ; (Aranda et al., 2007)

T
h
e

su
b
je

ct
iv

e

co
n
fi

d
en

ce

4) Based on your preference and your own understanding, please evaluate the

comprehensibility of activity and state chart diagrams in generating test cases?

 Please explain your response in detail, in terms of comprehensibility aspect.

Source: (Hadar & Hazzan, 2004) ; (Aranda et al., 2007)

T
h
e

su
b
je

ct
iv

e

co
n
fi

d
en

ce

Finally, to validate the instrument, a pre-test technique could be used, in which the

questions must be shown to a number of evaluators to check factors related to the

construct of writing strategies, and those related to the research instrument and

reliability check method (Alderson & Banerjee, 1996). Therefore, after making

amendments based on the evaluators’ comments, the adapted questions were verified

64

by three evaluators (one evaluator from the software engineering and software testing

domain, one evaluator from the information system domain and one from the English

language domain). The interview sessions were conducted only after the instruments

had been updated and verified by the three evaluators.

3.2.2.2 Generating Manual Test Cases from Activity and State chart diagrams

This phase contains the following steps: the generation of test cases through both

activity diagram and state chart diagrams separately. The test cases were used as a case

study during the interviews and discussion session to evaluate the comprehensibility of

the activity and state chart diagrams. However, the test cases were generated from

adapted diagram of activity and state chart diagrams of Gumball machine that was

prepared by Felderer and Herrmann, (2015).

The Gumball machine design is considered as a simple case because of the fewer

number of activities for activity diagram and fewer number of states for state chart

diagram. Adapting simple case study avoids reflecting the complexity of any difficult

case study.

Furthermore, the approach of generating test cases from activity diagram of Nayak and

Samanta (2011) was used whereas for state chart diagram, the approach by Salman and

Hashim (2014) was applied. As a justification, to evaluate the comprehensibility of the

two UML diagrams with the aspect of test case generation, this study intended to use

the same process of generating the test cases to ensure the same evaluation framework.

The second justification is because of the inherent feature of intermediate graphs-based

test case generation with the activity and state chart diagrams which is considered as

the most widely used approach for that purpose (Shirole & Kumar, 2013). In this regard,

65

the two adopted approaches of test cases for this study utilise the same main steps of

generating test cases from activity and state chart diagrams which are:

1) Creating the activity or state chart diagrams.

2) Deriving the activity graph from the activity diagram and deriving the state chart

graph from the state chart diagram.

3) Generating the test cases from the activity graph and state chart graph by

following all paths coverage.

i) Generating Test Case from Activity Diagram

The activity as shown in the Figure 3.2 expresses the Gumball machine design starting

from the first point which is inserting the coin until the final point which is ejecting the

gumball or rejecting the coin.

Figure 3.2: Gumball Machine Described as UML Activity Diagram

To generate the test cases from activity diagram, the process of generation are adapted

from Nayak and Samanta (2011). They generated test cases from activity diagram based

on three main steps:

66

1) Creating the activity diagram for the representation case.

2) Deriving the activity graph from the activity diagram using GA (Graph of

activity diagram).

3) Generating the test cases from the activity graph by following all paths

coverage.

The activity diagram of the adopted case study has been adapted from Felderer and

Herrmann (2015) to ensure the verification of the diagram. Secondly, the

transformation of the activity diagram into activity graph as shown in Figure 3.3

expresses the conversion of each element of activity diagram into a node of the graph.

The elements of the activity diagram in this case study are:

1) Initial node: Node with no incoming edge.

2) Flow final node: Node with no out coming edge.

3) Decision node: Node with one incoming edge and outgoing edges.

4) Guard condition node: Node that is associated with condition string. Its

parent node is the decision node.

67

Figure 3.3: Activity Graph Obtained from the Activity Diagram of Gumball Machine

The nodes of activity graph that is shown in Figure 3.3 are stored with their details in

Table 3.3. This table is called Node Description Table (NDT).

68

Table 3.3:

NDT for Activity Graph

Node Index Activity diagram components

1 Initial state

2 Insert coin

3 Condition

4 Coin inserted

5 Turn lever

6 Condition

7 Coin matching

8 Check coins’ number

9 Condition

10 Enough coins thrown in

11 Eject gumball

12 Final state

13 Coin not inserted

14 Coin not matching

15 Remove coin

16 Not enough coins thrown in

The activity path (P) is a path in an activity graph that is considered as the conduct

relations between the activities (Linzhang et al., 2004). The paths (Ps) are used to write

down the test cases based on the sequence of nodes in the activity graph as the

following:

P1: 1 2 3 4 5 6 7 8 9 10 11 12

P2: 1 2 3 13 2 3 4 5 6 7 8 9 10

 11 12

P3: 1 2 3 4 5 6 14 15 12

P4: 1 2 3 13 2 3 4 5 6 14 15 12

69

P5: 1 2 3 4 5 6 7 8 9 16 2 3 4

 5 6 7 8 9 10 11 12

P6: 1 2 3 13 2 3 4 5 6 7 8 9 16

 2 3 4 5 6 7 8 9 10 11 12

P7: 1 2 3 4 5 6 7 8 9 16 2 3 4

 5 6 14 15 12

P8: 1 2 3 13 2 3 4 5 6 7 8 9 16

 2 3 4 5 6 14 15 12

The test cases from activity diagram are listed in Table 3.4 based on the sequence of

activities, the sequence of branches as input data and the expected result for each case.

Table 3.4:

Test Cases from Activity Graph

T.C

No
Sequence of Activities Sequence of Branches

Expected

Result

1
Insert Coin, Turn Lever, Check Coin, Eject

Gumball

Coin Inserted, Coin Matching, Enough Coin

Thrown in

Eject

Gumball

2
Insert Coin, Turn Lever, Check Coin, Eject

Gumball

Coin Not inserted, Coin Inserted, Coin Matching,

Enough Coin Thrown in

Eject

Gumball

3 Insert Coin, Turn Lever, Remove Coin Coin Inserted, Coin Not Matching
Remove

Coin

4 Insert Coin, Turn Lever, Remove Coin
Coin Not inserted, Coin Inserted, Coin Not

Matching

Remove

Coin

5
Insert Coin, Turn Lever, Check Coin, Eject

Gumball

Coin Inserted, Coin Matching, Enough Coin

Thrown in

Eject

Gumball

6
Insert Coin, Turn Lever, Check Coin, Eject

Gumball

Coin Not Inserted, Coin Inserted, Coin Matching,

Enough Coin Thrown in

Eject

Gumball

7
Insert Coin, Turn Lever, Check Coin,

Remove Coin

Coin Inserted, Coin Matching, Not Enough Coin

Thrown in, Coin Not Matching,

Remove

Coin

8
Insert Coin, Turn Lever, Check Coin,

Remove Coin

Coin Not Inserted, Coin Inserted, Coin Matching,

Not Enough Coin Thrown in, Coin Not

Matching,

Remove

Coin

70

Table 3.4 explains the test cases with all possible cases in order to cover the whole test

cases for the adopted case study. Moreover, this table includes eight (8) test cases, four

(4) of the test cases are to reflect the ejection of Gumball. On the other hand, the rest

(4) test cases end with removing the coin. Finally, the generated test cases from the

activity diagram was evaluated by a specialist tester from UML diagrams. The expert

scrutinized the test cases and approved them.

ii) Generating Test Case from State Chart Diagram

The state chart diagram as shown in the Figure 3.4 expresses the Gumball machine

design starting from the first point which is inserting the coin until the final point which

is ejecting the gumball or rejecting the coin.

Figure 3.4: Gumball Machine Described as UML State Chart Diagram

71

To generate the test cases from state chart diagram, the process of generation are

adapted from Salman and Hashim (2014). They generated test cases from activity

diagram base on three main steps which are:

1) Creating the state chart diagram for the representation case.

2) Deriving the activity graph from the activity diagram.

3) Generating the test cases from the state chart graph by following all paths

coverage.

The state chart diagram of the adopted case study was adapted from Felderer and

Herrmann (2015) to ensure the verification of the diagram. Secondly, the

transformation of the state chart diagram into state chart graph as shown in Figure 3.5

expresses the conversion of each element of state chart diagram into a node of the graph.

The elements of state chart diagram in this case study are:

1) Initial node: Node with no incoming edge.

2) Flow final node: Node with no out coming edge.

3) Decision node: Node with one incoming edge and outgoing edges.

4) Guard condition node: Node that is associated with condition string. Its parent

node is the decision node.

72

Figure 3.5: State Chart Graph Obtained from State Chart Diagram of Gumball

Machine

The nodes of state chart graph that is shown in Figure 3.5 are stored with their details

in Table 3.5. This table is called Node Description Table (NDT).

73

Table 3.5

NDT or State Chart Graph

The state path (P) is a path in a state chart graph that is considered as the transitions to

match relations between the states and transitions (Linzhang et al., 2004). The paths

(Ps) are used to write down the test case based on the sequence of nodes in the state

chart graph as the following:

P1: 1 2 3 4 5

P2: 1 2 3 6 7 8 9 10 5

P3: 1 2 3 6 7 8 9 11 3 6 7 8 9

 10 5

P4: 1 2 3 6 7 8 9 11 3 4 5

P5: 1 2 12 3 4 5

P6: 1 2 12 6 7 8 9 10 5

Node Index state chart diagram components

1 Initial state

2 Standby state (insert coin)

3 Coin inserted transition

4
Turn lever/ coin not matching [remove

coin]

5 Final state

6 Turn lever [coin matching]

7 Coin thrown in state

8 Check coins’ number

9 Number of coins Checked state

10 Enough coins thrown in

11 Not Enough coins thrown in [insert coin]

12 Coin not inserted [insert coin]

74

P7: 1 2 12 6 7 8 9 11 3 6 7 8 9

 10 5

P8: 1 2 3 12 7 8 9 11 3 4 5

The test cases from state chart diagram are listed in Table 3.6 based on the sequence of

activities, the sequence of branches as input data and the expected result for each case.

Table 3.6

Test Cases from State Chart Graph

T.C

No
Sequence of States Sequence of Transitions

Expected

Result

1
Initial State, Stand by, Coin

Inserted, Final State

Coin inserted, Turn lever/ coin not

matching [remove coin]

Remove

Coin

2

Initial State, Stand by, Coin

Inserted, Coin Thrown in,

Number of Coins Checked,

Final State

Coin inserted, Turn lever [coin

matching], Check coin number,

Enough coins thrown in [Eject

Gumball]

Eject

Gumball

3

Initial State, Stand by, Coin

Inserted, Coin Thrown in,

Number of Coins Checked,

Final State

Coin inserted, Turn lever [coin

matching], Check coin number, Not

Enough coins thrown in, Enough

coins thrown in [Eject Gumball]

Eject

Gumball

4

Initial State, Stand by, Coin

Inserted, Coin Thrown in,

Number of Coins Checked,

Final State

Coin inserted, Turn lever [coin

matching], Check coin number, Not

enough coins thrown in, Turn lever/

coin not matching [remove coin]

Remove

Coin

5
Initial State, Stand by, Coin

Inserted, Final State

Coin not inserted, Coin inserted, Turn

lever/ coin not matching [remove

coin]

Remove

Coin

6

Initial State, Stand by, Coin

Inserted, Coin Thrown in,

Number of Coins Checked,

Final State

Coin not inserted, Coin inserted, Turn

lever [coin matching], Check coin

Number, Enough coins thrown in

[Eject Gumball]

Eject

Gumball

7

Initial State, Stand by, Coin

Inserted, Coin Thrown in,

Number of Coins Checked,

Final State

Coin not inserted, Coin inserted, Turn

lever [coin matching], Check coin

number, Not enough coins thrown in,

Enough coins thrown in [Eject

Gumball]

Eject

Gumball

8

Initial State, Stand by, Coin

Inserted, Coin Thrown in,

Number of Coins Checked,

Final State

Coin not inserted, Coin inserted, Turn

lever [coin matching], Check coin

number, Not Enough coins thrown in,

Turn lever/ coin not matching

[remove coin]

Remove

Coin

75

Table 3.6 explains the test cases with all possible cases in order to cover the whole test

cases for the adopted case study. Moreover, this table includes eight (8) test cases, four

(4) of the test cases are supposed to reflect the ejection of Gumball. On the other hand,

the rest (4) test cases end with rejecting the coin. Finally, the generated test cases from

activity diagram was evaluated by a specialist tester from UML diagrams. The expert

scrutinized the test cases and approved them.

3.2.2.3 Planning the One-to-One Interview

As mentioned earlier in Chapter 1, the second objective of this study is to collect the

experts’ responses in order to evaluate the UML activity and state chart diagrams based

on the comprehensibility regarding the test case generation. An expert review was

conducted to get valuable data. A thorough planning is needed to effectively implement

the interview. The interview planning involved four (4) activities: defining the

objectives, identifying the participants, scheduling the meeting, reminding the

participants and finally, preparing the materials for the interview. These activities are

further elaborated in the subsequent subsections.

Moreover, Chism, Douglas, and Hilson Jr. (2008) stated that “interview encounters

between a researcher and a respondent in which an individual is asked a series of

questions relevant to the subject of the research". The interview is one of the most

powerful and widely used tools of the qualitative researcher (Willig & Stainton-Rogers,

2007). Further, during the interview, the interviewer also has better control over the

types of information received, because the interviewer can ask specific questions to

elicit specific information (Creswell, 2012).

76

The data were collected through a group of questions, as shown in Tables 3.1 and 3.2.

The resources of the questions are also listed in these tables. Furthermore, the interview

contained questions in relation to the respondents’ experience in software testing with

UML diagrams.

i) Defining the Objectives of the Interview

Basically, the objective of the interview is to evaluate the comprehensibility of activity

and state chart diagrams with regard to testing case generation. In more detail, this study

aims to advance the evaluation study of Felderer and Herrmann (2015) and addresses

the limitation that is mentioned in their study; i.e., the use of inexpert participants to

evaluate the comprehensibility of the UML diagrams. Moreover, Felderer and

Herrmann (2015) asserted that the use of experts could give more accurate evaluation

data for these two diagrams with regard to manual test case generation.

Accordingly, through the interview, the experts evaluated the comprehensibility of

activity and state chart diagrams. The comprehensibility with regard to test case

generation was covered through answering the adapted evaluation questions about the

perceived difficulty and the subjective confidence as measurement variables.

ii) Identifying the Participants

The participants of the interview were chosen by using purposive sampling (Creswell,

2012). They were chosen based on their experience in software testing and UML

diagrams. Eight invitations were sent out but only five accepted the invitation and

completed the interview. This number, according to Shneiderman, (1992) and Creswell

(2012) is substantial. Board (2013) asserted that the expert in software testing is “… a

person with the special skills and knowledge representing mastery of a particular

77

testing subject. Being an expert means possessing and displaying special skills and

knowledge derived from training and experience”.

Invitations to become experts for the study were sent through e-mails. The related

documents were then sent to the experts who agreed to participate in this study.

Feedbacks were provided by the experts during the interview.

iii) Meeting Scheduling and Reminding

The interviews were scheduled by the experts. The meeting place was identified by the

expert for each interview. They were reminded about the meeting and their attendance

was confirmed one day before conducting the interviews. This was to ensure that they

would not miss the session as well as to make them feel important in attending the

session (Creswell, 2012).

iv) Preparation of the Interview Guide and Materials

Prior to conducting the interview, the materials that were used during the interview

session were prepared; namely the presentation slides and documents for the

participants. The interview was started with a general topic; the introduction to the

study followed by showing the test case generation from the UML activity and state

chart diagrams. Next in the interview agenda was to obtain the evaluation data

represented in the evaluation of the UML diagrams based on the proposed criterion.

3.2.2.4 Conducting the Interview

The interviews were conducted on the scheduled day and time. Five participants turned

up to attend the interviews. The experts were provided with the materials that were

needed for the interview. The participants were also reminded that the data gathered

78

from them will be confidential and will only be used strictly for the study purposes.

They were briefed about the objectives of the evaluation. They were encouraged to

express their experience and points of view freely and spontaneously. After the

discussion of each listed question, the experts filled the form containing the questions.

The answers were submitted by the experts to the researcher at the end of each

interview.

3.2.2.5 Profile of Experts

This section describes the demographic profiles of the respondents who participated in

the study. Prior to reporting the main findings of the survey, the demographic profiles

of the respondents must be identified. The demographic profiles include participants'

position, experience, field of expertise, years of experience in software testing and

UML diagrams.

Each expert represents different field of expertise: The first expert is a software analyst,

the second and third are experts in software development and the fourth is from the

field of web engineering. The fifth expert is a lecturer in software testing, who has been

involved in the field for more than 10 years. Their involvement in software testing

varies from 2 to 8 years, and their experience in UML diagrams varies from less than 1

year to 15 years.

79

Table 3.7

Experts’ Background

No Gender

Company/

Institution

Field of

expertise

Experience Years

in Software

Testing

Experience Years

in UML Diagrams

1 Female

Uniutama

Solution Sdn

Bhd

Software

analyst/

programmer

6 6

2 Male MST

Software

development

8 6

3 Male SOC.UUM

Commercial

Software

development

3 Less than 1 year

4 Female SOC.UUM Web engineer 2 15

5 Female UUM

1) S.W tester

2) Lecturer of

S. testing

10

More than 10

Years

3.2.2.6 Data Analysis

In this subsection, the second objective of this study was achieved; by documenting the

collected data of the interviews based on the adapted questions. This collected data

helped to get the final evaluation of the comprehension level of activity and state chart

diagrams.

80

Upon completion of data collection, the filled question forms and the recorded data

were transformed into textual data. Eventually, all data were entered into NVivo10 for

storing, analyzing, sorting, and representing or visualizing the data.

The QSR NVivo software program combines efficient management of non-numerical,

unstructured data with powerful processes of indexing, searching, and theorizing.

Designed for researchers making sense of complex data, NVivo offers a complete

toolkit for rapid coding, thorough exploration, and rigorous management and analysis.

Especially valuable is the ability of the program to create text data matrixes for

comparisons. It also provides visual mapping categories identified in the analysis

(Creswell, 2012; 2013).

i) QSR-NVivo

The advancement in computer technology has led to the development of a range of

software packages that assist in analyzing qualitative data. NVivo is the latest version

of the software by QSR International, which helps analyse, manage and shape

qualitative data (Creswell, 2013, Lewins & Silver, 2007). It provides security by storing

the database and files together in a single file.

NVivo software enables a researcher to use multiple languages. It has a merge function

for team research, and enables researchers to easily manipulate and search data (Lewins

and Silver, 2007). It can also facilitate the qualitative research process by making all

phases of investigations open to public inspection (Constas, 1992). It can be used to

support the analysis processes involved in a literature review (Di Gregorio, 2000;

Creswell, 2013). Besides, Bazeley and Jackson (2013) found that NVivo is

programmed with a high degree of flexibility; allowing visuals, Figures, or tables to be

81

analyzed (Creswell, 2009). Figure 3.6 highlights the steps for analysis via NVivo

software.

Figure 3.6: NVivo Steps

Based on those aspects of NVivo mentioned in the preceding paragraph, this study

utilises NVivo 10 for analyzing the data collected. This is also influenced by the fact

that NVivo can facilitate the qualitative research process by making all investigation

phases open to public inspection (Sinkovics & Alfoldi, 2012).

3.3 Summary

This chapter provided the methodology and research design of this study. In detail, this

chapter presented the steps that were used to evaluate the comprehensibility of test case

generation from activity diagram and state chart diagram by using qualitative

methodology. Analyzing the contents of past studies highlighted the main issues of this

study. The test cases are generated from the abovementioned diagrams. One-to-one

interview was the research instrument used to collect the evaluation data from the

experts. Furthermore, the NVivo data analysis tool was presented in this chapter and it

was used in chapter 4 to analyze the collected data.

82

CHAPTER FOUR

FINDINGS

4.1 Introduction

This chapter presents the results on the evaluation of the comprehension of UML

activity and state chart diagrams with regard to test case generation which were

gathered through the one-to-one interview. Subsequently, data analysis was carried out

to identify the strengths and weaknesses of the studied comprehension variables. NVivo

was used to analyse the data. The report on the sections that follow is based on the data

provided by the content analysis of past studies, and further data collected from the

experts during the interviews.

This chapter starts with the experts’ evaluation data that was collected through the

interviews in Section 4.3. The visible data and charts are presented in Section 4.4. This

chapter ends with a summary in Section 4.4.

4.2 The Significant Findings from the Interview with the Experts

This section describes the findings from the conducted interview. During the interview

sessions, the researcher briefly explained the background and the objectives of the study

to the participants. They were then introduced to the comprehension of UML diagrams

of software testing based on two examined variables (the perceived difficulty and the

subjective confidence). The main instrument used for this review are the closed-ended

and the open-ended questions (see appendix A) that were adapted from past research in

the field of evaluating the comprehensibility as described in Section 3.2.2.1. Next, the

experts were required to answer all the questions in the evaluation instrument. After

83

completing the interview sessions with the expert, the data obtained from the interviews

were explored (see appendix B) and then analyzed via NVivo and represented in charts.

The five interviewed experts agreed on the importance of activity and state chart

diagrams with regard to test case generation, even though the level of comprehensibility

among them differs as shown in Figures 4.1, 4.2, 4.3 and 4.4. The responses to the

evaluation questions enquired on the comprehensibility of activity and state chart

diagrams are presented in the forthcoming sections.

4.2.1 Evaluation Data from Open-Ended Questions

This section illustrates the evaluation data that were collected via the open-ended

questions from the interviews with the experts. Moreover, the representations of the

findings are shown in Figures 4.1, 4.2, 4.3 and 4.4. Qualitative studies often display

their findings visually (Miles & Huberman, 1994) by using figures or pictures that

augment the discussion.

4.2.1.1 Perceived Difficulty of the UML Diagrams with regard to test case

generation

The first open-ended question queries on the assessment of the perceived difficulty of

the diagrams with regard to test case generation. This question examines participants’

understandability of the information that they acquire from the practical execution of

the representation (Ribiero & Yarnal, 2010).

With regard to the first question of the interview, Expert 1 stated that the state chart

diagram is more difficult in determining input data and expected results. In addition,

84

Expert 1 also explained that the activity diagram is easier in determining test case

generation because of the easy process of activity diagram to generate the test cases.

Expert 1 also added that the second reason is because of the easiness of determining the

valid and invalid input and output data for each test case. Furthermore, Expert 1 added

that the consideration of the transitions between the system and the user (business aspect)

aspects increase the degree of easiness of listing the activities and the branches of activity

diagram, as well as the expected result for each test case. For this, Eriksson and Penker

(2000) confirmed that activity diagram is the most important UML diagram for business

aspect.

Expert 2 declared that the state chart diagram is more difficult, and this might lead to the

difficulty of determining the steps of test case generation. In addition, Expert 2

mentioned that the activity diagram is easier in determining test case generation steps

because of the clearness of the process of activity diagram in generating the test cases.

Expert 2 also indicated the ability of the activity diagram to represent more information

on the activities and to provide clear decision points together with the possibilities to be

used as a reference to test case generation steps. In this regard, Swain, Mohapatra, and

Mall (2010) asserted that “activity diagram presents the concept at a higher abstraction

level of the system”.

Contradicting the argument mentioned by Expert 1 and Expert 2, Expert 3 asserted that

state chart diagram is very simple when compared to the redundancy of information

captured by the activity diagram. Expert 3 clarified that activity diagram is more difficult

in determining the steps of test case generation since the activity diagram is dealing with

a wider process that includes business and system aspects. The second reason for the

85

difficulty of activity diagram is because of the variety of components of activity, for

example, initial node, decision node, guard condition node and flow final node. This is

in agreement with Yang, Yu, Sun and Qian (2010) claim that a tester needs to deal with

each node to generate test cases.

Expert 4 shared the same perspective as Expert 3 whereby she stated that the state chart

diagram is easier in determining the main building blocks of the test case generation (e.g.

inputs and the expected results). Expert 4 asserted that the minimization of steps of state

chart diagram makes it easier in listing the steps of generating test cases. Furthermore,

Expert 4 pointed out that activity diagram has many condition statements that cause

loops paths which creates difficulty in writing the test case steps. A large number of

components for activity diagram was also mentioned by Mingsong, Xiaokang, and

Xuandong (2006).

The last expert (Expert 5) stated that the activity diagram is easier in determining test

case generation. In addition, through the interview session, Expert 5 also explained that

the state chart diagram is more difficult in determining input data and expected results.

Expert 5 justified the easiness of activity diagram to the suitability of this diagram with

black box testing that makes the determining of test case generation easier. Having a

similar view is Linzhang et al. (2004) who stated that activity diagram is suitable for

black box testing. Figure 4.1, illustrated the outcome of the first interview question.

86

Figure 4.1: NVivo Result of the Perceived Difficulty for Determining the Steps of

Test Case Generation from Activity and State Chart UML Diagram.

The second question tries to examine the ability of these two UML diagrams to

determine the origin of the generated test cases to their UML diagrams from the

sequence of activities and states, as well as the transitions and branches that were used

to generate the test cases. The easiness of reading a test case and matching it to its

diagram reflects the easiness of the diagram in the same manner it refers to the obtained

information for the representation that was mentioned by Felderer and Herrmann (2015).

On the other hand, the difficulty reflects the perceived difficulty of the diagram.

Expert 1 stated that the activity diagram is easier in generating the test cases and the

generated test case is easier in determining its origin diagram. Expert 1 also mentioned

that this is due to the easiness of the process of generating the test case from the activity

diagram. Furthermore, this expert indicated that it is quite difficult for the state chart

87

diagram to determine its test case origin because of the difficulty in the process of

generating the test cases from this diagram. In this regard, Kundu and Samanta, (2009)

stated that the main reasons for using activity diagram for model-based testing are to

make it easier for software testers to better understand the system and find test

information.

In the same vein, Expert 2 stated that it would be easier to determine the origin of

generated test cases from activity diagram to their diagram because of the easiness of

determining the steps of generating the test case from activity diagram. Also, Expert 2

highlighted that the state chart diagram is quite difficult in this regard. In this aspect,

Shukla and Chandel (2012) explained that the benefits of using activity diagram in

model-based testing are to help software testers to better understand and to easily find

test information.

Expert 3 also supported the claimed stated by the other experts (Expert 1 and Expert 2)

when he stated that it would be easier to determine the generated test cases from activity

diagram to their origin diagram, since this test case reflects more information from the

view of business aspect, and that makes the test case easy to read and easy to match to

its diagram. In this regard, Kingston and Macintosh (2000) claimed that activity diagram

represents how business processes are performed and where communication occurs

between processes, and this multi aspect of UML diagrams are required to improve the

comprehensibility. Additionally, Expert 3 asserted that the test case that is generated

from state chart diagram reflects the developer’s perspective, and this makes the test

case to become more complex to determine its origin diagram. In this regard, Swain et

al. (2010) explained that the state chart diagram is difficult to be implemented in code

88

and the state chart-based faults are difficult to be detected from the software code.

Consequently, it is difficult for state chart to test based on code.

 Expert 4 indicated that the simplicity of tracking the events and states of state chart

diagram makes test cases easier to determine their origin from the diagram used. On the

other hand, this expert declared that testers must pay more attention to the generated

test cases from activity diagram since they take into account the perspective of the user

(business) within the perspective of the system. In addition, Expert 4 explained that the

higher the number of activities and condition of activity diagram, the harder it is to

generate test cases. Therefore, the test cases from activity diagram are difficult to match

with their origin diagram. In this respect, Eriksson and Penker (2000) explained that

activity diagram is the most important UML diagram for doing business aspect (user

aspect) in addition to the system aspect. Moreover, a large number of components for

activity diagram are also mentioned by Booch (2005).

Expert 5 stated that it would be harder to determine the origin diagram for the test cases

that are generated from activity diagram. Expert 5 explained that activity diagram shows

many components are involved in generating test cases. Furthermore, the expert showed

that the minimization process of generating test cases from state chart diagram makes it

quite easy to determine its test case. The minimization of test case generation refers to

using less number of components of state chart diagram, as indicated by Booch (2005).

Figure 4.2 summarises the outcome through NVivo.

89

Figure 4.2: NVivo Result of the Perceived Difficulty for Determining the Origin

Diagrams for the Generated Test Cases from Activity and State Chart

Diagrams.

The conclusion of this section will summarise the experts’ responses for the perceived

difficulty of the diagrams with regard to test case generation. Based on the responses to

the first question, three (3) experts assured that by presenting both system and business

aspects, activity diagram is easier in determining the test case generation steps because

of the clear vision of activity diagram. On the other hand, two (2) of the experts found

that state chart diagram is easier to determine test case generation steps because of the

minimization of steps against the wide process of activity diagram.

Based on the responses to the second question, three of the experts stated that activity

diagram is easier to trace back to its origin diagram as compared to state chart diagram,

while two (2) experts claimed the contrary. The three experts substantiated that it is

easier than state chart diagram due to the clear process of generating test cases from

activity diagram, which involves generating the activity diagram and transferring it to

90

activity graph and writing the specification of the test case, as mentioned by Kundu &

Samanta, (2009). Another reason is that activity diagram reflects more view of business

aspect, thus matching the test case to their origin diagram easier. Relatively, the second

question leads to the conclusion that the activity diagram is more comprehensible than

state chart diagram.

From the results elaborated above, in measuring comprehensibility between activity

and state chart diagram in generating test cases, state chart diagram can be perceived as

more difficult when compared to activity diagram. This is because state chart holds a

harder process in determining test case generation steps (e.g. data input and expected

results are easier when applied on activity diagram). It is also more difficult to determine

the origin of the generated test cases.

It is worth mentioning that the results of evaluating the perceived difficulty of the

activity and state chart diagrams with regard to manual test case generation matched

with what was mentioned by the Felderer and Herrmann (2015), where they claimed

that the activity diagram is perceive to be easier than state chart diagrams in the aspect

of test case generation.

4.2.1.2 Subjective Confidence of the UML Diagrams with Regard to Test Case

Generation

The third evaluation question of this study tests the subjective confidence as a

comprehensibility measuring variable. This question enquires about the certainty of the

tester towards the generated test cases. The question inspects if there is a difference in

the certainty level of the generated test cases from activity diagram and the generated

test cases from state chart diagram.

91

From the interview session, Expert 1 confirmed that the generated test cases from

activity diagram have higher certainty when compared to the test cases that were

generated from state chart diagram. This expert also indicated that confidence comes

from the ability of activity diagram to indicate the control flow of the system (Linzhang

et al., 2004), and the right flow of the system leads to the right test case generation.

Moreover, Expert 2 stated that the certainty of the generated test cases depends on the

clarity of the diagram. This expert mentioned that activity diagram gives a clear flow

of the system. Expert 2 further explained that the generated test cases from activity

diagram have higher certainty level than state chart diagram. In this concern, Swain et

al., (2010) specified that activity diagram represents concepts at a higher abstraction

level of the system.

Expert 3 asserted that the state chart diagram increases the certainty of the generated test

cases since it describes the dynamic behaviour of the system when software is executed.

Moreover, this expert added that state chart diagram describes how the system changes

if an appropriate trigger is applied to the system, thus the correct state chart can be

easily converted to code. However, Swain, Mohapatra and Mall (2010) refuted Expert

3 claimed by explaining that state chart diagram is difficult to implement in code.

Expert 4 asserted that the test cases that are generated from state chart diagram achieve

higher certainty than the test cases generated from activity diagram. This expert also

justified that higher test coverage of state chart diagram is obtained when generating

the test cases. However, Swain, Mohapatra, and Mall (2010) argued that “generating

test cases from state chart diagrams only deal with testing a single object and can be

used to easily achieve transition and state coverage for any single class”. Therefore,

92

the claim by Expert 4 contradicted with the claim by Swain et al (2010). This expert

also mentioned that the state chart achieves the goal of testing in a shorter time because

of the easiness of generating the test cases from state chart diagram.

Expert 5 confirmed that the generated test cases from activity diagram have higher

certainty when compared to test cases generated from state chart diagram. This expert

also specified that certainty comes from the ability of activity diagram to achieve high

testing coverage. On the other hand, the expert marked high coverage ability of state

chart diagram only in terms of unit testing. The higher level of testing coverage for

activity diagram was stated by Kim, Kang, Baik, and Ko (2007) and the high coverage

ability of state chart diagram was mentioned by Samuel, Mall, & Bothra (2008).

Figure 4.3: NVivo Result of the Experts’ Certainty of the Generated Test Cases

from Activity and State Chart Diagrams.

93

The fourth interview question aims to evaluate the subjective preference of the experts

to evaluate the comprehensibility (understandability) of the two examined UML

diagrams in generating test cases.

The activity diagram easiness of understanding the test case generation is stated by

Expert 1. Expert 1 justified that her confidence in choosing activity diagram in

generating test cases is due to the fact that this diagram is able to provide higher

understandability from business (user aspect) perspective. In addition, Expert 1 asserted

that the state chart diagram has less understandability with regard to test case generation

even though it is very important to represent programmer’s perspective (behaviour of

the system) as stated by Harel and Politi (1998).

Expert 2 preferred activity diagram to generate the test cases because of the higher

comprehensibility in generating the test cases. Expert 2 specifically mentioned that the

higher comprehensibility of activity diagram is due to the simplicity of activity diagram

as mentioned by Swain, Mohapatra and Mall (2010).

Expert 3 had also favoured activity diagram in generating test cases. This expert justified

his preference by stating that activity diagram possesses the ability of minimizing the

number of test cases, similar to the assertion made by Li, Li, He, and Xiong (2013) after

using the enhancement algorithms.

Expert 4 selected activity diagram in generating the test cases from activity diagram,

disregarding state chart diagram. This expert justified that this preference after taking

into consideration the importance of user aspect (business) in generating test cases from

activity diagram.

94

Lastly, Expert 5 preferred activity diagram in generating the test cases from activity

diagram more than state chart diagram based on the experts’ own opinion. The expert

indicated this preference and the higher subjective confidence due to the characteristics

of activity diagram which imitates the process flow of the system, similar to what has

been mentioned by Eriksson and Penker (2000). Figure 4.4 highlights the NVivo result

for question 4.

Figure 4.4 NVivo Result of Experts’ Evaluation for the Comprehensibility of

Activity and State Chart Diagrams in Generating the Test Cases

The conclusion of this sub-section will summarize the experts’ responses to the

subjective confidence of the diagrams with regard to test case generation. Based on the

responses on the first question, three (3) experts assured that activity diagram increases

the certainty of the test case generation because of the ability of activity diagram to

indicate the control flow of the system that leads to the right test case generation.

95

Additionally, one expert mentioned that the high test coverage of activity diagram in

generating the test cases also increases the certainty level of the generated test case.

On the other hand, two (2) of the experts found that state chart diagram increases the

certainty of test case generation because of the higher test coverage of state chart

diagram. Moreover, one expert stated that the ability of state chart diagram for describing

the dynamic behaviour of the system. He explained how the system changes if an

appropriate trigger is applied to the system; thus, the correct state chart diagram can be

easily converted to code and increases the certainty on the generated test cases.

Based on the responses on the second question, it is overwhelming to note that all of the

five (5) interviewed experts believed that the activity diagram is more comprehensible

in overall view of test case generation. The three experts substantiated that the ability

of activity diagram of taking the aspect of the business (user aspect) increases the higher

confidence of activity diagram with regard to test case generation. Moreover, the higher

subjective confidence is also due to the characteristic of the activity diagram that

imitates the process flow of the system. Additionally, the minimization ability of

activity diagram for a number of test cases is also one of the reasons stated by one the

experts. Finally, one expert confirmed that higher subjective preference diagram is

provided by the activity diagram because of its higher simplicity.

The inference of the experts, higher subjective confidence (certainty) of the test case

generation from activity diagram provides merit to the comprehensibility of the

diagram. The state chart diagram, on the other hand, do not seem to be comprehensible.

Felderer and Herrmann (2015) investigated the perceived difficulty comprehension

variable but their study did not encompass the subjective confidence comprehension

96

variable. In this study, it was found that the activity diagram achieved more subjective

confidence (certainty) with regard to test case generation than state chart diagram,

hence contributing to the body of knowledge regarding comprehensibility of activity

and state chart diagrams with regard to test case generation.

4.2.2 Evaluation Data from Closed-Ended Questions

The closed-ended questions were utilised to convey the experts’ assessment of the

comprehensibility of UML activity and state chart diagrams. The closed-ended

questions covered the two comprehensibility variables which are the perceived

difficulty and subjective confidence. The closed-ended questions that are shown in

Table 4.2 and Table 4.2 are divided into four (4) sections. Sections A1 and B1 include

the questions on the perceived difficulty and sections A2 and B2 include questions on

the subjective confidence. The results of the experts’ responses are presented in Table

4.2 and Table 4.3. Table 4.2 presents the evaluation on perceived difficulty of activity

and state chart diagrams while Table 4.3 presents the evaluation on the subjective

confidence of activity and state chart diagrams.

97

4.2.2.1 Perceived Difficulty of the UML Diagrams with Regard to Test Case

Generation

 Table 4.2

The Experts’ Responses to Evaluate the Perceived Difficulty of UML Activity and

State Chart Diagrams with regard to test case generation

A1) Evaluate the Perceived Difficulty

Variable of UML Activity Diagram

Frequency

Percent %

Very

Difficult
Difficult Neither Easy

Very

Easy

1) How difficult is it to learn the test case

generation from activity diagram?

- - 2
3

-

-

-

40%

60%

-

2) How difficult are the required

procedures of generating the test case

from activity diagram?

-

-

1

4 -

- - 20% 80% -

3-) How difficult is it to achieve higher

testing coverage when you are

generating test cases from activity

diagram?

- 1 1 3 -

- 20% 20% 60% -

B1) Evaluate the Perceived Difficulty

Variable of UML State Chart Diagram

Frequency

Percent %

Very

Difficult
Difficult Neither Easy

Very

Easy

1) How difficult is it to learn the test case

generation from state chart diagram?

- 3 - 2 -

- 60% - 40% -

2) How difficult are the required

procedures of generating the test case

from state chart diagram?

1 2 - 2 -

20% 40% 40% -

3) How difficult is it to achieve higher

testing coverage when you are

generating test cases from state chart

diagram?

- 1 2 2 -

- 20% 40% 40% -

98

Sections A1 and B1 contain the experts’ responses to the perceived difficulty of activity

and state chart diagrams with regard to test case generation through answering three (3)

questions for each diagram as shown in Table 4.2.

Based on the first question, the experts were asked about the difficulty of learning the

test case generation from activity diagram that reflects the perceived difficulty of the

diagram. The experts’ responses show that 2 experts (40%) responded Neither to the

perceived difficulty for activity diagram with regard to test case generation when 3

experts (60%) responded Easy. On the other hand, the perceived difficulty of state chart

diagram with regard to test case generation received difficult response from 3 experts

(60%) and Easy response from 2 experts (40%). Thus, it can be said that the majority

of the experts believe that it will be easier to learn the test case generation from activity

diagram.

Based on the second question, one expert (20%) responded Neither to the perceived

difficulty of the required procedure of generating the test case of activity diagram with

regard to test case generation while 4 experts responded Easy (80%). On the other hand,

the perceived difficulty of the required procedure of state chart diagram with regard to

test case generation obtained Very Difficult response from 1 expert (20%) and Difficult

response from 2 experts (40%) while 2 other experts (40%) responded Easy. This means

that the majority of experts find the procedure of test case generation from activity

diagram is easier than state chart diagram.

Based on the third question of the perceived difficulty, the result shows that the

perceived difficulty of activity diagram in achieving higher testing coverage when

performing test case generation received Easy response from three experts (60%) while

99

one expert responded Neither (20%) and one other expert responded Difficult (20%).

On the other hand, the perceived difficulty of state chart diagram in achieving higher

testing coverage when performing test case generation obtained Neither response from two

experts (40%) and Difficult response from one expert (20%) while two other experts

(40%) responded Neither. This means that the achievement of higher testing coverage

is easier than activity diagram.

From the data that aforementioned, regarding to the first closed-ended question, 60%

from the interviewed experts explained that activity diagram perceived easier while only

40% from the experts stated that for state chart diagram. According to the second closed-

ended question, 80% from the interviewed experts explained that activity diagram

perceived easier while only 40% from the experts stated that for state chart diagram.

Ultimately, based on the third closed-ended question, 60% from the interviewed experts

explained that activity diagram perceived easier while only 40% from the experts stated

that for state chart diagram.

The conclusion for the measurement of the comprehensibility between activity and state

chart diagram in generating test cases include the results of experts’ responses to the

closed-ended and the open-ended questions. Regarding the first comprehension

variable (the perceived difficulty), activity diagram can be perceived as more

comprehensible when compared to state chart diagram based on the open-ended

questions while the closed-ended questions confirmed these results and the details are

illustrated as follows:

 Activity diagram is more difficult to determine test case generation steps.

100

 The origin diagram of Activity diagram’s generated test case is easier to be

determined

 It will be easier to learn the test case generation from activity diagram.

 The required procedure of generating test case from activity diagram is easier.

 It will be easier to achieve higher testing coverage when one is generating test

cases from state chart diagram.

It is worthwhile to note that the results of evaluating the perceived difficulty of the

activity and state chart diagrams matched with what was mentioned by the Felderer and

Herrmann (2015), where they claimed that the activity diagram is perceived to be easier

than state chart diagrams for the understanding of the aspect of test case generation.

4.2.2.2 Subjective Confidence of the UML Diagrams with regard to test case

generation

Section A2 and B2 contain the experts’ responses to the subjective confidence of

activity and state chart diagrams with regard to test case generation through three (3)

questions for each diagram as shown in Table 4.3.

101

Table 4.3

The Experts’ Responses to Evaluate the Subjective Confidence of UML Activity and

State Chart Diagrams with regard to test case generation

A2) Evaluate the Subjective Confidence

Variable of UML Activity Diagram

Frequency

Percent %

Strongly

Disagree
Disagree Neither Agree

Strongly

Agree

1) If you are in the task of explaining the

generated test case from one of UML

diagrams to others, do you agree that you

will be more confident explaining test case

generation from activity diagram?

1 - 1 3 -

20% - 20% 60% -

2) Do you agree that activity diagram is your

preferred choice to generate the test case for

a project requirement or design?

- - - 5 -

- - - 100% -

3) Do you agree that generating test case from

activity diagram increases your degree of

awareness of UML test case generation?

- - 3 2 -

- - 60% 40% -

B2) Evaluate the Subjective Confidence

Variable of UML State Chart Diagram

Frequency

Percent %

Strongly

Disagree
Disagree Neither Agree

Strongly

Agree

1) If you are in the task of explaining the

generated test case from one of UML

diagrams to others, do you agree that you

will be more confident explaining test case

generation from state chart diagram?

- 1 1 3 -

- 20% 20% 60% -

2) Do you agree that state chart diagram is your

preferred choice to generate the test case for

a project requirement or design?

- 1 2 2 -

- 20% 40% 40% -

3) Do you agree that generating the test case

from state chart diagram increases your

degree of awareness of UML test case

generation?

- 1 3 1 -

- 20% 60% 20% -

102

Based on the first question of the subjective confidence of activity diagram with regard

to test case generation, the result shows that three experts (60%) responded Agree that

activity diagram has high subjective confidence with regard to test case generation,

while one expert (20%) responded Neither and one other expert (20%) responded

Strongly Disagree. On the other hand, the question of the subjective confidence of state

chart diagram with regard to test case generation shows that three experts (60%)

responded Agree that State chart diagram has high subjective confidence with regard

to test case generation, while one expert (20%) responded Disagree, and one other

expert (20%) responded Neither. This means that the state chart diagram outperforms

the activity diagram with the experts’ subjective confidence.

The second question of the subjective confidence of activity diagram with regard to test

case generation shows that the five interviewed experts (100%) responded Agree that

activity diagram has high subjective confidence. On the other hand, the question of the

subjective confidence of state chart diagram with regard to test case generation shows

that two experts (40%) responded Agree that activity diagram has high subjective

confidence with regard to test case generation, two other experts (40%) responded

Neither and one expert (20%) responded Disagree. This means that the teachers are

completely satisfied with the activity diagram for test case generation as their preferred

choice.

The third question of the subjective confidence of activity diagram with regard to test

case generation shows that two experts (40%) responded Agree that activity diagram

has high subjective confidence with regard to test case generation, while three other

experts (60%) responded Neither. On the other hand, the question of the subjective

103

confidence of state chart diagram with regard to test case generation shows that one

expert (20%) responded Agree that activity diagram has high subjective confidence

with regard to test case generation, while one other expert (20%) responded Disagree

and three experts (60%) responded Neither. This means that the activity diagram

increases the degree of experts’ awareness of UML test case generation.

The conclusion of measuring the comprehensibility between activity and state chart

diagram in generating test cases include the results of experts’ responses to the closed-

ended and the open-ended questions. Regarding the second comprehension variable

(the subjective confidence), activity diagram received more experts’ confidence

(certainty) when compared to state chart diagram based on the open-ended questions

while the closed-ended questions confirmed these results and the details are illustrated

as follows:

 Most of the interviewed experts agreed that activity diagram increases their

certainty of the generated test cases.

 Most of the interviewed experts agreed that activity diagram is more

comprehensible based on their own understanding and preference.

 Most of the interviewed experts preferred to generate test cases from activity

diagram.

 Most of the interviewed experts agreed that activity diagram increases their own

degree of awareness of UML test case generation.

This variable was not included during the only related study by Felderer and Herrmann

(2015). This study therefore has contributed to this comprehension variable to evaluate

the activity and state chart diagrams with regard to manual test case generation.

104

The results supported the claim whereby there are significant differences in the

comprehension between activity and state chart diagrams with regard to test case

generation. These results are consistent with the result obtained by Felderer and

Herrmann (2015) where activity diagram is more comprehensible than state chart

diagram with regard to manual test case generation.

4.3 Summary

This chapter described the evaluation interviews with the experts to evaluate the

comprehensibility of activity and state chart diagrams in the case of generating test

cases. The evaluation questions of the interview were constructed based on the

evaluation criterion of their variables. The experts’ evaluation data were analyzed by

using NVivo and descriptive analysis. Findings from the study revealed there are

significant differences in the comprehensibility of both of the proposed diagram with

regard to test case generation. Besides, the excellence of activity diagram with regards

to this study are disclosed as a consequence from evaluating the experts’ perceived

difficulty and the experts’ subjective confidence of this UML diagram. Accordingly,

these findings from the aforementioned interviews led to the consideration that the

activity diagram is more comprehensible than state chart diagram with regard to manual

test case.

105

CHAPTER FIVE

DISCUSSION AND CONCLUSION

5.1 Introduction

This chapter discusses results of the study depending on the outcome of the interview

which was conducted with academic and industrial experts. The analysis based on the

data gathered from the interviews and figures generated using NVivo10 were presented

in the preceding chapter. This chapter is divided into four sections; each respectively

discussing the achievement of the objectives, the contribution and the vision for future

work. The fourth section highlights the limitation of this study. The final section

concludes Chapter 5 and the current study.

5.2 Research Discussion

This study aimed to highlight the current issues related to the comprehensibility

evaluation of the UML activity and state chart diagram with regard to test case

generation using content analysis. In addition, the study also aimed to conduct experts’

evaluation of the comprehensibility of activity and state chart diagrams in terms of test

case generation. The following subsections discuss the achievement of the objectives.

5.2.1 Achieving First Objective

The first objective of this study aimed to highlight the comprehensibility evaluation

issues related to the UML activity and state chart diagram with regard to test case

generation based on the importance of these diagrams for test case generation by

analyzing the content of related past studies. The purpose of this objective is to improve

106

the field of evaluating UML diagrams with regard to test case generation from both of

the proposed diagrams in terms of comprehensibility. Furthermore, the content analysis

of past research indicated that there is a lack of evaluation studies for the

comprehensibility of the UML activity and state chart diagrams with regard to test case

generation. As highlighted in the problem statement section in Chapter 1, many existing

studies on comprehensibility evaluation on UML diagrams are more focused on the

aspect of system design.

Furthermore, the content analysis aimed to provide more understanding of the different

characteristics of activity and state chart diagrams in more specific detail. The study by

Felderer and Herrmann (2015) did not mention in detail the reasons and specific

characteristics that make activity diagram to be perceived as more comprehensible than

the state chart diagram. Therefore, the initial study provided elaborated details about

the evaluated diagrams and reasons that explained the different comprehension for the

diagrams from the collected evaluation data by specialist experts as explained in Secion

4.3.1.

The results of this objective are represented by prominent current trends with regard to

test case generation using UML diagrams that were emphasized by Schweighofer and

Hericko, (2014); Jena, Swain, and Mohapatra, (2014); Salman and Hashim, (2016). The

content analysis of past studies explained the importance of activity and state chart

diagrams respectively with regard to test case generation for reducing testing challenges

(e.g. efforts, time and cost) through different methods.

Moreover, the findings also highlighted the importance of comprehension evaluation

on UML diagrams as summarized in Table 2.4. Comprehensibility is the key quality

107

criterion to evaluate the UML diagrams as asserted by Aranda, Ernst, Horkoff, and

Easterbrook, (2007); Budgen et al., (2011); Reinhartz-Berger and Sturm, (2014) and

Liebel and Tichy, (2015). In addition, Budgen, Burn, Brereton, Kitchenham and

Pretorius (2011) confirmed that comprehensibility is considered the most important

quality attribute of UML models for had been studied.

Therefore, in order to achieve the evaluation for this study, the analysis of the content

of past studies helped in proposing an instrument for comprehension evaluation by the

experts on the two diagrams. The instrument, as illustrated in Table 3.1 was adapted

from the relevant past studies. Existing studies on the comprehensibility of these two

diagrams were designed to be used on inexpert participants (Felderer & Herrmann

(2015). Thus, the substance of this study is achieved by evaluating the examined

diagrams with regard to test case generation via the two determined measuring variables

of comprehensibility (perceived difficulty and subjective confidence) that were

illustrated by Aranda et al., (2007) and Felderer and Herrmann (2015). Aranda et al

(2007) in their studies had proposed these two comprehensibility measurement

variables when they created a flexible framework to evaluate the comprehensibility of

model languages. Their studies, however, has never undergone any evaluation process.

Felderer and Herrmann (2015) only evaluated perceived difficulty and not on subjective

confidence.

Further, this content analysis provided specific details of the different characteristics of

activity and state chart diagrams, in addition to the reasons of the different

comprehension levels for the examined diagrams from the collected evaluation data by

the specialist experts as discussed in the subsequent subsection. However, the study by

108

Felderer and Herrmann (2015) did not mention in detail the reasons and specific

characteristics that make activity diagram to be perceived more comprehensible than

the state chart diagram.

5.2.2 Achieving Second Objective

This section aimed to achieve the evaluation of comprehensibility for the UML activity

and state chart diagrams with regard to test case generation. The evaluation data were

conducted by experts in software testing and UML diagrams in order to conduct

accurate evaluation and at the same to complement the effort done by Felderer and

Herrmann (2015), who had conducted a similar study with inexpert participants. The

purpose of this objective is to unite the practical efforts of testers to choose among

various types of MBT diagrams.

The experts’ evaluation data were gathered using both closed-ended and open-ended

questions that aimed to address the highlighted issue of the lack of evaluation study

regarding to the comprehensibility of activity and state chart diagrams with aspect of

test case generation. In this regard, Creswell (2012) explained that the use of this type

of instrument in the interviews helps to collect useful information to support theories

and concepts in the literature, in addition to explaining responses, exploring more

detailed data supported by reasons by the open-ended questions. In evaluating the

comprehensibility of the UML diagrams, Razali, Snook and Poppleton (2007), Gravino

et al., (2008), Cruz-Lemus et al., (2011) and Shukla (2014) recommended using these

questions in the research instrument. Therefore, this study adapted questions from past

research to measure the comprehensibility for each diagram, albeit the lack of

109

underlying theory in the formulation of comprehensibility questions as highlighted by

Condori-Fernandez et al. (2011).

The test cases from activity and state chart diagrams were generated to help conduct

the evaluation of the examined diagrams with regard to test case generation as explained

in Section 3.2.2.2. Subsequently, the interview sessions were arranged with the five (5)

experts; the data were collected through filled forms and discussion notes were recorded

and analyzed by NVivo.

The results show that the experts interviewed highlighted the high comprehensibility

level for both activity and state chart diagrams with regard to test case generation, even

with the recorded superiority for the comprehensibility of activity diagram. However,

in detail, the experts marked more comprehensibility for activity diagram than

comprehensibility for state chart diagram with regard to test case generation.

Furthermore, the experts assured that activity diagram is perceived to be easier with

regard to test case generation. The experts justified that activity diagram is presentable

in both system and business aspect, and it has the ability to show the transitions between

the system and the user aspects. The experts also explained that these characteristics

clarify the determination of test case generation steps and the valid and invalid input

and output data for each test case. For this regard, Eriksson and Penker (2000)

confirmed that activity diagram is the most important UML diagram for business aspect

(user aspect), in addition to the system aspect. Moreover, its ability to present more

information on the activities and the clear decision points and the effects on the easiness

of test case generation steps was also mentioned by Mingsong, Xiaokang and Xuandong

(2006). The experts indicated the easiness of the process of generating the test case

110

from activity diagram, which include generating the activity diagram and transferring

it to activity graph and write the specification of the test case, similar to what was

mentioned by Kundu and Samanta (2009). One expert mentioned the easiness and

suitability of activity diagram to black box testing (Thanki & Shinde, 2014), making

determination of test case generation easier.

The experts found that state chart diagram perceived difficulty is easier to test case

generation steps because of the minimization of test case generation steps that contain

lesser number of components for state chart diagram against the wide number of

components for activity diagram. This argument is supported by Booch (2005).

However, the results of the Perceived difficulty of this study manifest the same results

as of Felderer and Herrmann (2015) i.e. the higher perceived comprehensibility of

activity diagram in comparison with state chart diagram.

In the discussion on the subjective confidence measuring variable, the two examined

diagrams with regard to the generated test cases have an uneven level of certainty based

on their special features as mentioned by the experts and explained in Section 4.3.1.

Through the interview session, the majority of experts preferred activity diagram with

regard to test case generation based on subjective confidence and their own

understanding. Also, most of the experts stated that activity diagram achieves a higher

level of certainty based on the high clarity of the diagram in generating test cases and

the ability of activity diagram to show the flow of the system, resembling the findings

of Eriksson and Penker (2000). On top of that, the experts highlighted significant

characteristics for activity diagram (e.g. the high simplicity and the ability to indicate

the process flow of a system) and the aspect of the user (business) to generate test cases

111

and the high level of testing coverage (Kim et al., 2007). On the other hand, the experts

gave a high level of certainty of generating test cases from state chart diagram based on

its high test coverage ability, in addition to the ability to describe the dynamic behaviour

of the system (Samuel et al., 2008).

In conclusion, the two questions for measuring the experts’ perceived difficulty of

the examined diagrams with regard to generation of test cases recorded higher

comprehensibility for activity diagram based on the lower rate of experts’ perceived

difficulty as explained in Section 4.3.1.1. Besides that, the two questions for

measuring the experts’ subjective confidence recorded higher comprehensibility

for activity diagram based on the higher rate of experts’ subjective confidence on

generating a test case from activity diagram. On the other hand, the state chart

diagram looked more difficult in generating test cases and it recorded less

comprehensibility. Also, the state chart diagram marked fewer experts’ subjective

confidence in generating test cases and that recorded less comprehensibility for

state chart diagram.

It deserves to be mentioned that the closed-ended questions support the outcomes

of the open-ended question. In detail, the overview of the experts’ responses via the

closed-ended questions highlighted that the activity diagram is more

comprehensible with regard to test case generation through both of the Subjective

confidence and the perceived difficulty comprehension’s variables.

5.3 Contribution of Study

This research investigated the current issues associated with the need to evaluate the

comprehensibility of the UML activity and state chart diagram with regard to test case

112

generation through the analysis of the content of past research related to the UML-based

test case generation. The evaluation data was gathered with the assistance of experts in

software testing who have experiences with the UML diagrams. This study supports the

body of knowledge as well as the practice in several aspects, which are explained

further subsequently.

5.3.1 Practical Contribution

Evaluating the comprehensibility of UML activity and state chart diagrams with regard

to test case generation aimed to unite the practical efforts of testers to determine their

preference diagram for test case generation from various types of MBT, as stated by

Kansomkeat et al., (2008) and Kramer and Legeard, (2016). Therefore, this study has

produced a comprehensibility instrument that contains evaluation questions even

though there is scarcity of underlying theory for comprehensibility. The test cases from

both activity and state chart diagrams were provided during this study to assist in

evaluating the comprehensibility of the UML diagrams. Moreover, the essential

contribution to this research is the evaluation of the UML diagrams by experts of

software testing who have experiences in using UML diagrams, which has overcome

the limitation highlighted by Felderer & Herrmann (2015).

Finally, the current study measured the subjective confidence comprehension’s variable

that has not been covered via the one and only evaluation study of Felderer and

Herrmann (2015).

113

5.3.2 Theoretical Contribution

The content analysis approach of UML-based test case generation, which was involved

in achieving the theoretical contribution of this study helps to determine the main issues

related to the UML-based test case generation. The current trends in comprehension

evaluation on UML diagrams highlighted the importance of comprehensibility as the

key quality criterion for UML diagrams (Liebel & Tichy, 2015). Moreover, the

necessity of evaluating the comprehensibility of the UML activity and state chart

diagram with regard to test case generation by experts was highlighted through the

analysis of the content of past studies related to the UML-based test case generation.

Therefore, this study aimed to improve the field of evaluating the UML diagrams with

regard to manual test case generation from both of the proposed diagrams in terms of

comprehensibility as there have been limited studies in this field (Felderer & Herrmann,

2015). Further, this content analysis has provided more understanding of the different

characteristics of activity and state chart diagrams in more specific details, enabling the

adaptation of the evaluation questions that are related to the comprehensibility of UML

diagrams even without substantial underlying theories. The experts’ discussion has also

provided insights into the different comprehension levels for the evaluated diagrams.

5.4 Future Work

The current study attempted to investigate the evaluation of behavioural UML diagrams

based on the comprehension with regard to test case generation. This study envisions

future work as follows:

1) Evaluate the comprehensibility of more than two behavioural UML

diagrams.

114

2) Compare the comprehensibility of designing aspect and the testing aspect for

both of the examined UML diagrams.

5.5 Limitation of the Study

Although this study provided an effective evaluation to represent comprehensibility of

UML activity and state chart diagrams with regard to test case generation, there are still

some limitations. The limits of this study are:

1) The limited number of diagrams that were examined during this study.

2) There is a need to compare the comprehensibility for the UML activity and

state chart diagrams with regard to test case generation aspect with their

comprehensibility in designing aspect.

5.6 Conclusion

This study, based on two comprehension variables (i.e. the perceived difficulty and the

subjective confidence) albeit the lack of evaluation studies for the comprehensibility of

the UML activity and state chart diagrams with regard to test case generation has

revealed that both activity and state chart diagrams marked high comprehensibility with

regard to test case generation despite the highlighted superiority for activity diagram.

The activity diagram, besides being more comprehensible, possesses more subjective

confidence in test cases generation.

115

REFERENCES

Afzal, W., & Torkar, R. (2008). Incorporating metrics in an organizational test strategy.

In Software Testing Verification and Validation Workshop, 2008. ICSTW’08.

IEEE International Conference on (pp. 304–315).

Agarwal, R., De, P., & Sinha, A. P. (1999). Comprehending object and process models:

An empirical study. IEEE Transactions on Software Engineering, 25(4), 541–556.

Al Dallal, J., & Sorenson, P. (2006). Generating class based test cases for interface

classes of object-oriented black box frameworks. Transactions on Engineering,

Computing and Technology, 16, 90–95.

Alderson, J. C., & Banerjee, J. (1996). How might impact study instruments be

validated. Unpublished Manuscript Commissioned by UCLES.

Ali, M. A., Shaik, K., & Kumar, S. (2014). Test Case Generation using UML State

Diagram and OCL Expression. International Journal of Computer Applications,

95(12)1-6.

Anda, B., Sjoberg, D., & Jorgensen, M. (2001). Quality and understandability of use

case models. In European Conference on Object-Oriented Programming (pp.

402–428).

Aranda, J., Ernst, N., Horkoff, J., & Easterbrook, S. (2007). A framework for empirical

evaluation of model comprehensibility. In Proceedings of the International

Workshop on Modeling in Software Engineering (p. 7-12).

Bansal, A. (2014). A Comparative Study of Software Testing Techniques. International

Journal of Computer Science and Mobile Computing., 3, 579–584.

Board, Q. (2013). Certified Tester Expert Level Modules Overview. International

Software Testing Qualifications Board, Version 1.

116

Boghdady, P. N., Badr, N. L., Hashem, M., & Tolba, M. F. (2011a). A proposed test

case generation technique based on activity diagrams. International Journal of

Engineering & Technology IJET-IJENS, 11(3)92-97.

Boghdady, P. N., Badr, N. L., Hashem, M., & Tolba, M. F. (2011b). Test case

generation and test data extraction techniques. Inter. J. Electr. Comput. Sci, 11(3),

87–94.

Booch, G. (2005). The unified modeling language user guide. Pearson Education: India.

Budgen, D., Burn, A. J., Brereton, O. P., Kitchenham, B. A., & Pretorius, R. (2011).

Empirical evidence about the UML: a systematic literature review. Software:

Practice and Experience, 41(4), 363–392.

Byckling, P., Gerdt, P., Kuzniarz, L., & Sajaniemi, J. (2006). Increasing

comprehensibility of object models: Making the roles of attributes explicit in UML

diagrams. Nordic Journal of Computing, 13(3), 149-161.

Chandu, P. (2015). An Analytical Way to Improvise Test Execution and Review of

Software Metrics for The Software Quality. Journal of Theoretical and Applied

Information Technology, 73(1)1-6.

Chism, N. V. N., Douglas, E., & Hilson Jr, W. J. (2008). Qualitative research basics: A

guide for engineering educators. Rigorous Research in Engineering Education

NSF DUE-0341127.

Choudhary, D., & Kumar, V. (2011). Software testing. Journal of Computational

Simulation and Modeling, 1(1), 1-5.

Condori-Fernandez, N., Daneva, M., Sikkel, K., & Herrmann, A. (2011). Practical

relevance of experiments in comprehensibility of requirements specifications. In

Workshop on Empirical Requirements Engineering (EmpiRE 2011) (pp. 21–28).

117

Cox, K., Phalp, K., & Shepperd, M. (2001). Comparing use case writing guidelines. In

7th International Workshop on Requirements Engineering: Foundation for

Software Quality, Interlaken, Switzerland (Vol. 45, p. 101-112).

Creswell. (2012). Educational Research Planning, Conducting, and Evaluating

Quantitative and Qualitative Research. Sage.

Crowder, J. A., Carbone, J. N., & Demijohn, R. (2016). Systems Engineering Tools and

Practices. In Multidisciplinary Systems Engineering (pp. 89–103). Springer.

Cruz-Lemus, J. A., Genero, M., Caivano, D., Abrahão, S., Insfrán, E., & Cars’\i, J. A.

(2011). Assessing the influence of stereotypes on the comprehension of UML

sequence diagrams: A family of experiments. Information and Software

Technology, 53(12), 1391–1403.

Delanote, D., Van Baelen, S., Joosen, W., & Berbers, Y. (2008). An automatic test data

generation from UML state diagram using genetic algorithm. 2008 13th IEEE

International Conference on Engineering of Complex Computer Systems.

Doungsa-ard, C., Dahal, K. P., Hossain, M. A., & Suwannasart, T. (2007). An automatic

test data generation from UML state diagram using genetic algorithm. The

University of Bradford Institutional Repository, (http://bradscholars.brad.ac.uk).

Dubey, S. K., & Sharma, D. (2015). Software Quality Appraisal Using Multi-Criteria

Decision Approach. I.J. Information Engineering and Electronic Business, 1530-

1362/04.

Eriksson, H.-E., & Penker, M. (2000). Business modeling with UML. Business Patterns

at Work, John Wiley & Sons: New York, USA.

Felderer, M., Büchler, M., Johns, M., Brucker, A. D., Breu, R., & Pretschner, A. (2015).

Security Testing: A Survey. Advances in Computers.

118

Felderer, M., & Herrmann, A. (2015). Manual test case derivation from UML activity

diagrams and state machines: A controlled experiment. Information and Software

Technology, 61, 1–15, 61, 1–15.

Figl, K., & Laue, R. (2011). Cognitive complexity in business process modeling. In

International Conference on Advanced Information Systems Engineering (pp.

452–466).

Garg, P. (2015). Role of Testing Strategies in Improving Quality of Software.

International Journal of Research, 2(12), 800–805.

Gravino, C., Scanniello, G., & Tortora, G. (2008). An empirical investigation on

dynamic modeling in requirements engineering. In International Conference on

Model Driven Engineering Languages and Systems (pp. 615–629).

Gulia, P., & Chugh, J. (2015). Comparative Analysis of Traditional and Object-

Oriented Software Testing. ACM SIGSOFT Software Engineering Notes, 40(2),

1–4.

Gupta, J. (2014). An Investigation of Test Cases Generation from Activity Diagram.

Thesis. Thapar University Patiala.

Gupta, N., Yadav, V., & Singh, M. (2016). A Review on Automated Regression

Testing. International Journal of Engineering Technology Science and Research,

3, 46–50.

Habib, Z. (2009). The critical success factors in implementation of software process

improvement efforts: CSFs, motivators & obstacles. University of Gothenburg.

Hadar, I., & Hazzan, O. (2004). On the contribution of UML diagrams to software

system comprehension. Journal of Object Technology, 3(1), 143–156.

119

Harel, D., & Politi, M. (1998). Modeling reactive systems with statecharts: the

STATEMATE approach. McGraw-Hill, Inc.

Hashim, N. L., & Salman, Y. D. (2011). An Improved Algorithm With regard to test

case generation From Uml Activity Diagram Using Activity Path. In Proceedings

of the 3rd International Conference on Computing and Informatics, ICOCI.

Heinecke, A., Bruckmann, T., Griebe, T., & Gruhn, V. (2010). Generating test plans

for acceptance tests from uml activity diagrams. In Engineering of Computer

Based Systems (ECBS), 2010 17th IEEE International Conference and Workshops

on (pp. 57–66).

Ingle, S. E., & Mahamune, M. R. (2015). An UML Based software Automatic Test

Case Generation: Survey. International Research Journal of Engineering and

Technology, 2, 971–973.

Jain, A., Jain, M., & Dhankar, S. (2014). A Comparison of RANOREX and QTP

Automated Testing Tools and their impact on Software Testing. Nternational

Journal of Engineering, Management & Sciences (IJEMS) ISSN-2348, 1(1), 8–12.

Jena, A. K., Swain, S. K., & Mohapatra, D. P. (2014a). ? In Issues and Challenges in

Intelligent Computing Techniques (ICICT), 2014 International Conference on (pp.

621–629).

Jena, Swain, & Mohapatra. (2014b). A novel approach for test case generation from

UML International Conference on activity diagram. In (ICICT), (pp. 621–629).

Kansomkeat, S., Offutt, J., Abdurazik, A., & Baldini, A. (2008). A comparative

evaluation of tests generated from different UML diagrams. International

Conference on Software Engineering, Artificial Intelligence, Networking, and

Parallel/Distributed Computing, 2008. SNPD’08. Ninth ACIS (pp. 867–872).

120

Kansomkeat, S., & Rivepiboon, W. (2003). Automated-generating test case using UML

statechart diagrams. In Proceedings of the 2003 annual research conference of the

South African institute of computer scientists and information technologists on

Enablement through technology (pp. 296–300).

Kaur, G., & Bajaj, A. (2015). A Notation of Unified Modeling Language in various

Areas. Asian Journal of Research in Social Sciences and Humanities, 5(3), 195–

205.

Khandai, M., Acharya, A. A., & Mohapatra, D. P. (2011a). A novel approach of test

case generation for concurrent systems using UML Sequence Diagram. In

Electronics Computer Technology (ICECT), 2011 3rd International Conference

on (Vol. 1, pp. 157–161).

Khandai, M., Acharya, A. A., & Mohapatra, D. P. (2011b). Test case generation for

concurrent system using UML combinational diagram. International Journal of

Computer Science and Information Technologies, IJCSIT, 2-11-18.

Khurana, N., Chhillar, R. S., & Chhillar, U. (2016). A Novel Technique for Generation

and Optimization of Test Cases Using Use Case, Sequence, Activity Diagram and

Genetic Algorithm. Journal of Software, 11, 242–250.

Kim, H., Kang, S., Baik, J., & Ko, I. (2007). Test cases generation from UML activity

diagrams. In Software Engineering, Artificial Intelligence, Networking, and

Parallel/Distributed Computing, 2007. SNPD 2007. Eighth ACIS International

Conference on (Vol. 3, pp. 556–561).

Kingston, J., & Macintosh, A. (2000). Knowledge management through multi-

perspective modelling: representing and distributing organizational memory.

Knowledge-Based Systems, 13(2), 121–131.

121

Konka, B. B. (2012). A case study on Software Testing Methods and Tools. University

of Gothenburg.

Koriat, A. (2011). Subjective confidence in perceptual judgments: a test of the self-

consistency model. Journal of Experimental Psychology: General, 140(1), 117.

Kosindrdecha, N., & Daengdeg, J. (2010). A test generation method based on state

diagram. Journal of Theoretical and Applied Information Technology, 28–44.

Kouider, S., De Gardelle, V., Sackur, J., & Dupoux, E. (2010). How rich is

consciousness? The partial awareness hypothesis. Trends in Cognitive Sciences,

14(7), 301–307.

Kramer, A., & Legeard, B. (2016). Model-Based Testing Essentials-Guide to the ISTQB

Certified Model-Based Tester-Foundation Level. John Wiley & Sons.

Kundu, D., & Samanta, D. (2009). A Novel Approach to Generate Test Cases from

UML Activity Diagrams. Journal of Object Technology, 8(3), 65–83.

Kundu, D., Sarma, M., Samanta, D., & Mall, R. (2009). System testing for object-

oriented systems with test case prioritization. Software Testing, Verification and

Reliability, 19(4), 297–333.

Kuzniarz, L., Staron, M., & Wohlin, C. (2004). An empirical study on using stereotypes

to improve understanding of UML models. In Program Comprehension, 2004.

Proceedings. 12th IEEE International Workshop on (pp. 14–23).

Lewins, A., & Silver, C. (2007). Using Software for Qualitative Data Analysis: A Step-

by-Step Guide. Thousand Oaks, Calif.: Sage.

Lewis, W. E. (2016). Software testing and continuous quality improvement. CRC press.

Li, L., Li, X., He, T., & Xiong, J. (2013). Extenics-based test case generation for UML

activity diagram. Procedia Computer Science, 17, 1186–1193.

122

Liebel, M. T. G., & Tichy, M. (2015). Comparing Comprehensibility of Modelling

Languages for Specifying Behavioural Requirements. In First International

Workshop on Human Factors in Modeling (HuFaMo 2015). CEUR-WS (pp. 17–

24).

Linzhang, W., Jiesong, Y., Xiaofeng, Y., Jun, H., Xuandong, L., & Guoliang, Z. (2004).

Generating test cases from UML activity diagram based on gray-box method.

Software Engineering Conference, 2004. 11th Asia-Pacific, 284–291.

Lucantonio, V. (2015). Enanching the consistency between requirements and test cases

through the definition of a Controlled Natural Language. Digital Vetenskapliga

Arkivet.

Macintosh, A., Coleman, S., & Schneeberger, A. (2009). eParticipation: The research

gaps. In Electronic participation (pp. 1–11). Springer.

Mailewa, A. B. (2015). Reducing Software Testing Time with Combinatorial Testing

and Test Automation. St. Cloud State University the Repository at St. Cloud State.

Mailewa, A., Herath, J., & Herath, S. (2015). A Survey of Effective and Efficient

Software Testing. Micsymposium.org. Retrieved from

http://www.micsymposium.org

Manaseer, S., Manaseer, W., Alshraideh, M., Abuhashish, N., & Adwan, O. (2015).

Automatic Test Data Generation for Java Card Applications Using Genetic

Algorithm. Journal of Software Engineering and Applications, 8(12), 603-609.

McQuillan, J. A., & Power, J. F. (2005). A survey of UML-based coverage criteria for

software testing. Department of Computer Science. NUI Maynooth, Co. Kildare,

Ireland.

123

Meena, D. K. (2013). Test Case Generation From UML Interaction Overview Diagram

and Sequence Diagram. National Institute of Technology Rourkela.

Mendonca, M. G., Maldonado, J. C., De Oliveira, M. C. F., Carver, J., Fabbri, S. C. P.

F., Shull, F., … Basili, V. R. (2008). A framework for software engineering

experimental replications. In Engineering of Complex Computer Systems, 2008.

ICECCS 2008. 13th IEEE International Conference on (pp. 203–212).

Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded

sourcebook. Sage.

Mingers, J. (2001). Combining IS research methods: towards a pluralist methodology.

Information Systems Research, 12(3), 240–259.

Mingsong, C., Xiaokang, Q., & Xuandong, L. (2006). Automatic test case generation

for UML activity diagrams. In Proceedings of the 2006 international workshop on

Automation of software test (pp. 2–8).

Mohanty, S., Acharya, A. A., & Mohapatra, D. P. (2011). A model based prioritization

technique for component based software retesting using uml state chart diagram.

In Electronics Computer Technology (ICECT), 2011 3rd International Conference

on (Vol. 2, pp. 364–368).

Mussa, M., Ouchani, S., Al Sammane, W., & Hamou-Lhadj, A. (2009). A survey of

model-driven testing techniques. In Quality Software, 2009. QSIC’09. 9th

International Conference on (pp. 167–172).

Nayak, A., & Samanta, D. (2011). Synthesis of test scenarios using UML activity

diagrams. Software & Systems Modeling, 10(1), 63–89.

124

Nikfard, P., bin Ibrahim, S., Rohani, B. D., bin Selamat, H., & Naz’ri, M. (2013). An

Evaluation for Model Testability approaches. International Journal Of Computers

& Technology, 9(1), 938–947.

Oluwagbemi, O., & Asmuni, H. (2015). An Approach for Automatic Generation of Test

Cases from UML Diagrams. International Journal of Software Engineering and

Its Applications, 9(8), 87–106.

Otero, M. C., & Dolado, J. J. (2004). Evaluation of the comprehension of the dynamic

modeling in UML. Information and Software Technology, 46(1), 35–53.

Pahwa, N., & Solanki, K. (2014). UML based test case generation methods: A review.

International Journal of Computer Applications, 95(20)311-316.

Pandey, N., & Mohapatra, D. P. (2012). Test Case Generation from UML Interaction

Diagrams. In International Conference on Computing (p. 17-24).

Patel, P. E., & Patil, N. N. (2013). Testcases Formation using UML Activity Diagram.

In Communication Systems and Network Technologies (CSNT), 2013

International Conference on (pp. 884–889).

Patil, K., & Ganeshwade, M. M. (2014). Generating Automated Test Cases using Model

Based Testing. International Journal of Enhanced Research in Science

Technology & Engineering, 3, 18–24.

Razali, R., Snook, C. F., & Poppleton, M. R. (2007). Comprehensibility of uml-based

formal model: A series of controlled experiments. In Proceedings of the 1st ACM

international workshop on empirical assessment of software engineering

languages and technologies: Held in conjunction with the 22nd IEEE/ACM

international conference on automated software engineering (ASE) 2007 (pp. 25–

30).

125

Razali, R., Snook, C., Poppleton, M., Garratt, P., & Walters, R. (2007). Usability

assessment of a UML-based formal modelling method. In 19th Annual Psychology

of Programming Workshop (PPIG’07) (pp. 56–71).

Reza, H., Ogaard, K., & Malge, A. (2008). A model based testing technique to test web

applications using statecharts. In Fifth International Conference on Information

Technology: New Generations (pp. 183–188).

Ribiero, N. F., & Yarnal, C. M. (2010). The Perceived Difficulty Assessment

Questionnaire (PDAQ): Methodology and Applications for Leisure Educators and

Practitioners. Schole, 25.

Robson, C., & McCartan, K. (2016). Real world research. John Wiley & Sons.

Rumbaugh, J., Jacobson, I., & Booch, G. (2004). Unified Modeling Language

Reference Manual. Pearson Higher Education.

Salman, Y. D., & Hashim, N. L. (2014). An Improved Method of Obtaining Basic Path

Testing for Test Case Based On UML State Chart. Science International, 26(4)1-

8.

Salman, Y. D., & Hashim, N. L. (2016). Automatic Test Case Generation from UML

State Chart Diagram: A Survey. In Advanced Computer and Communication

Engineering Technology (pp. 123–134). Springer.

Samuel, P., Mall, R., & Bothra, A. K. (2008). Automatic test case generation using

unified modeling language (UML) state diagrams. IET Software, 2(2), 79–93.

Scanniello, G., Gravino, C., Risi, M., Tortora, G., & Dodero, G. (2015). Documenting

design-pattern instances: a family of experiments on source-code

comprehensibility. ACM Transactions on Software Engineering and Methodology

(TOSEM), 24(3), 14.

126

Schweighofer, T., & Hericko, M. (2014). Approaches for Test Case Generation from

UML Diagrams. In SQAMIA (pp. 91–98).

Sekaran, U., & Bougie, R. (2010). Research Design. JW Ltd, Research Methods for

Business-, 110.

Sharma, S., & Vishawjyoti, M. (2013). Study And Analysis Of Automation Testing

Techniques. Journal of Global Research in Computer Science, 3(12), 36–43.

Shirole, M., & Kumar, R. (2013). UML behavioral model based test case generation: a

survey. ACM SIGSOFT Software Engineering Notes, 38(4), 1–13.

Shirole, M., Suthar, A., & Kumar, R. (2011). Generation of improved test cases from

UML state diagram using genetic algorithm. In Proceedings of the 4th India

Software Engineering Conference (pp. 125–134).

Shneiderman, B. (1992). Designing the user interface: strategies for effective human-

computer interaction, 2nd edn. Addison. Reading, MA.

Shukla, D. (2014). Analyzing the Comprehensibility of Aspect-Oriented Modelling and

Design of Software System. International Journal of Computer Applications,

95(21).

Shukla, & Chandel. (2012). A Systematic Approach for Generate Test Cases Using

UML Activity Diagrams. International Journal of Research in Management &

Technology (IJRMT), ISSN: 2249-9563, 2, 469–475.

Siau, K., & Cao, Q. (2001). Unified modeling language: A complexity analysis. Journal

of Database Management (JDM), 12(1), 26–34.

Sinkovics, R. R., & Alfoldi, E. A. (2012). Progressive focusing and trustworthiness in

qualitative research. Management International Review, 52(6), 817–845.

127

Sommerville, I. (2010). Software testing. Ian Sommerville 2004, Software Engineering,

7th Edition, Prechelt@inf.fu-Berlin.de, 7.

Swain, R. K., Behera, P. K., & Mohapatra, D. P. (2012). Minimal TestCase Generation

for Object-Oriented Software with State Charts. arXiv Preprint arXiv:1208.2265.

Swain, S. K., Mohapatra, D. P., & Mall, R. (2010). Test Case Generation Based on

State and Activity Models. Journal of Object Technology, 9(5), 1–27.

Thanki, M. H. J., & Shinde, S. M. (2014). Test case generation using UML activity

diagram-A survey, 3, 292–300.

Tripathy, A., & Mitra, A. (2013). Test Case Generation Using Activity Diagram and

Sequence Diagram. In Proceedings of International Conference on Advances in

Computing (pp. 121–129).

Utting, M., & Legeard, B. (2010). Practical model-based testing: a tools approach.

Morgan Kaufmann.

Vashishtha, V., Singla, T., & Singh, S. (2014). Software Testing. International Journal

of Research, 1(8), 1258–1264.

Verma, S., Yadav, K. P., & Tiwari, U. K. (2012). Software Testing Techniques for

Finding Errors. International Journal of Research Review in Engineering Science

and Technology, 2, 433–439.

Wang, L. (2015). GUI test automation for Qt application. Digital Vetenskapliga

Arkivet.

Wang, X., Jiang, X., & Shi, H. (2015). Prioritization of test scenarios using hybrid

genetic algorithm based on UML activity diagram. In Software Engineering and

Service Science (ICSESS), 2015 6th IEEE International Conference on (pp. 854–

857).

128

Willig, C., & Stainton-Rogers, W. (2007). The SAGE handbook of qualitative research

in psychology. Sage.

Xie, S., Kraemer, E., & Stirewalt, R. E. K. (2007). Empirical evaluation of a UML

sequence diagram with adornments to support understanding of thread

interactions. In 15th IEEE International Conference on Program Comprehension

(ICPC’07) (pp. 123–134).

Yang, N., Yu, H., Sun, H., & Qian, Z. (2010). Mapping uml activity diagrams to

analyzable petri net models. In 2010 10th International Conference on Quality

Software (pp. 369–372).

Yu, L., Xu, X., Liu, C., & Sheng, B. (2012). Using grounded theory to understand

testing engineers’ soft skills of third-party software testing centers. In Software

Engineering and Service Science (ICSESS), 2012 IEEE 3rd International

Conference on (pp. 403–406).

Zhu, H., Hall, P. A. V, & May, J. H. R. (1997). Software unit test coverage and

adequacy. Acm Computing Surveys (Csur), 29(4), 366–427.

129

APPENDIX A

 QUESTIONNAIRE

130

131

132

133

134

APPENDIX B

SUMMARIES OF THE INTERVIEW SESSIONS WITH EXPERTS

Parti-

cipant

Question1 Question2 Question3 Question4

Expert1 Activity diagram has more Perceived

comprehensibility (less perceived difficulty) in test

case generation because of:

1) the easiness of determining the valid and invalid

input and output data for each test case.

2) the ability to show the transitions between the

system and the user aspects.

Activity diagram has more

Perceived comprehensibility (less

perceived difficulty) in determining

the origin of the generated test case

because of:

- the easiness of the process of

generating the test case from

activity diagram.

Activity diagram has more Subjective

confidence (certainty) in test case

generation because of:

- the ability of activity diagram to

indicate the control flow of the system

and the right flow of the system that

leads to the right test case generation.

Activity diagram has more Subjective

confidence based on experts’ preference

and own understanding in test case

generation because of:

- the ability of activity diagram taking the

aspect of business (user aspect) that

increases the higher confidence of

activity diagram in test case generation.

Expert2

Activity diagram has more Perceived

comprehensibility (less perceived difficulty) in

determining test case generation steps because of:

1) the clarity of the steps of generating the test cases

from activity diagram.

Activity diagram has more Perceived

comprehensibility (less perceived

difficulty) in determining the origin

of the generated test case because of:

- the easiness of the process of

generating the test case from activity

diagram.

Activity diagram has more Subjective

confidence (certainty) in test case

generation because of:

- the ability of activity diagram in

showing a clear flow of the system that

reflects high certainty on the generated

test case.

Activity diagram has more Subjective

confidence based on experts’ preference

and own understanding in test case

generation because of:

- the higher comprehensibility of activity

diagram due to the simplicity of activity

diagram.

135

2) the ability to present more information on the

activities and the clear decision points and the

effects on the easiness of test case generation steps.

Expert3

State chart diagram has more Perceived

comprehensibility (less perceived difficulty) in

determining test case generation steps because of:

- the less number of components of state chart

diagram.

Activity diagram has more Perceived

comprehensibility (less perceived

difficulty) in determining the origin

of the generated test case because of:

- activity diagram reflects more view

of business aspect that makes the test

case easy to read and easy to match to

their diagram.

State chart diagram has more Subjective

confidence (certainty) in test case

generation because of:

- the ability of state chart diagram in

describing the dynamic behaviour of the

system that explains how the system

changes if an appropriate trigger is

applied to the system, thus, the correct

state chart can be easily converted to

code.

Activity diagram has more Subjective

confidence based on experts’ preference

and own understanding in test case

generation because of:

- the minimization ability of activity

diagram in test case generation

Expert4

State chart diagram has more Perceived

comprehensibility (less perceived difficulty) in

determining test case generation steps because of:

- the minimization of steps of state chart diagram

makes it easier in listing the steps of generating the

test cases.

State chart diagram has more

Perceived comprehensibility (less

perceived difficulty) in determining

the origin of the generated test case

because of:

- the simplicity of tracking the events

and states of state chart diagram

which make their test cases easier to

determine their origin diagram.

State chart diagram has more Subjective

confidence (certainty) in test case

generation because of:

- the high-test coverage of state chart

diagram in generating the test cases.

Activity diagram has more Subjective

confidence based on experts’ preference

and own understanding in test case

generation because of:

- the higher subjective confidence

believing on the importance of taking the

aspect of user (business) to generate test

cases from activity diagram.

136

Expert5 Activity diagram has more Perceived

comprehensibility (less perceived difficulty) in

determining test case generation steps because of:

- the suitability of this diagram with black box

testing that makes the determining of test case

generation easier.

State chart diagram has more

Perceived comprehensibility (less

perceived difficulty) in determining

the origin of the generated test case

because of:

- the minimization of this diagram.

Activity diagram has more Subjective

confidence (certainty) in test case

generation because of:

- the high-test coverage of activity

diagram in generating the test cases.

Activity diagram has more Subjective

confidence based on experts’ preference

and own understanding in test case

generation because of:

- The higher subjective confidence

believing on the characteristic of the

diagram that imitates the process flow of

the system.

	Copyright Page
	Title Page
	Permission to Use
	Abstrak
	Abstract
	Acknowledgement
	Table of Contents
	Last of Tables
	List of Figures
	List of Appendices
	List of Abbreviations
	CHAPTER ONE: INTRODUCTION
	1.1 Overview
	1.2 Introduction
	1.3 Statement of Problem
	1.4 Research Questions
	1.5 Research Objectives
	1.6 Scope of Study
	1.7 Significance of Study
	1.7.1 Body of knowledge
	1.7.2 The practical support

	1.8 Organisation of the Study
	1.9 Summary

	CHAPTER TWO: LITERATURE REVIEW
	2.1 Overview
	2.2 Introduction to Software Testing
	2.3 The Evaluation of Different Behavioural UML Diagrams With Regard to TestCase Generation
	2.4 The Comprehensibility Evaluation Criterion
	2.4.1 Criteria in Evaluating Comprehen

	2.5 Test Cases Generation from UML Diagrams
	2.5.1 Test Case Generation from UML Activity Diagram
	2.5.2 Test Cases Generation from State Chart Diagram

	2.6 Summary of Chapter Two

	CHAPTER THREE: RESEARCH METHODOLOGY
	3.1 Overview
	3.2 Research Design
	3.2.1 Phase One
	3.2.1.1 Investigation of Previous Studies

	3.2.2 Phase Two
	3.2.2.1 Instrumentation Design
	3.2.2.2 Generating Manual Test Cases from Activity and State chart diagrams
	3.2.2.3 Planning the One-to-One Interview
	3.2.2.4 Conducting the Interview
	3.2.2.5 Profile of Experts
	3.2.2.6 Data Analysis

	3.3 Summary

	CHAPTER FOUR: FINDINGS
	4.1 Introduction
	4.2 The Significant Findings from the Interview with the Experts
	4.2.1 Evaluation Data from Open-Ended Questions
	4.2.1.1 Perceived Difficulty of the UML Diagrams with regard to test casegeneration
	4.2.1.2 Subjective Confidence of the UML Diagrams with Regard to Test CaseGeneration

	4.2.2 Evaluation Data from Closed-Ended Questions
	4.2.2.1 Perceived Difficulty of the UML Diagrams with Regard to Test CaseGeneration
	4.2.2.2 Subjective Confidence of the UML Diagrams with regard to test casegeneration

	4.3 Summary

	CHAPTER FIVE: DISCUSSION AND CONCLUSION
	5.1 Introduction
	5.2 Research Discussion
	5.2.1 Achieving First Objective
	5.2.2 Achieving Second Objective

	5.3 Contribution of Study
	5.3.1 Practical Contribution
	5.3.2 Theoretical Contribution

	5.4 Future Work
	5.5 Limitation of the Study
	5.6 Conclusion

	REFERENCES
	APPENDIX

