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Abstract (English) 

 

A building is at a high risk of destruction if the compressive concrete strength does 

not meet the required specification. Thus, the prediction of compressive concrete 

strength has become an important research area. Previous prediction models are 

based on fix numbers of attributes. Consequently, when the number of attributes 

increase or decrease, the models could not be used. Thus, a compressive concrete 

strength prediction model which can work with different numbers of attribute is 

needed. The purpose of this study is to develop compressive concrete strength 

prediction models using different combinations of attributes. This study includes five 

stages: data collection, normalization, parameters identification, model construction 

and evaluation. The employed data set consists of nine attributes: water, cement, fine 

aggregate, coarse aggregate, age, fly ash, super plasticizer, blast furnace slag and 

compressive concrete strength. This study produced eight prediction models where 

each model has different combination of attributes. It also identified appropriate 

weights, learning rate, momentum and number of hidden nodes for each of the 

proposed model, and design a general artificial neural network (ANN) architecture.  

Model eight of the study produced a higher correlation coefficient (i.e., 0.973) than 

the existing study (i.e., 0.953). This study has successfully produced eight concrete 

strength prediction models with good coefficient correlation. The compressive 

strength prediction models would benefit civil engineers as they can use the models 

to identify the suitability of additional materials in concrete mix.   

 

Keywords: Compressive concrete strength, Different combinations of attributes, 

Artificial neural networks, Prediction models. 
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Abstrak (Bahasa malaysia) 

 

Sesebuah bangunan adalah berisiko tinggi untuk runtuh jika kekuatan mampatan 

konkrit tidak memenuhi spesifikasi yang dikehendaki. Oleh itu, ramalan kekuatan 

mampatan konkrit telah menjadi satu topik penyelidikan yang penting. Model 

ramalan sebelum ini adalah berasaskan kepada bilangan atribut yang tetap. Akibatnya, 

apabila berlaku peningkatan atau penurunan bilangan atribut, model tersebut tidak 

boleh digunakan. Oleh itu, model ramalan kekuatan mampatan konkrit yang boleh 

berfungsi dengan bilangan atribut yang berlainan adalah diperlukan. Tujuan kajian 

ini adalah untuk membangunkan model ramalan kekuatan mampatan konkrit yang 

menggunakan kombinasi atribut berlainan. Kajian ini merangkumi lima peringkat: 

pengumpulan data, penormalan, pengenalpastian parameter, pembinaan model dan 

penilaian. Data set yang digunakan terdiri daripada sembilan atribut:  air, simen, 

agregat halus, agregat kasar, usia, abu terbang, super plasticizer, sanga relau bagas 

dan kekuatan mampatan konkrit. Kajian ini menghasilkan lapan model ramalan yang 

mana setiap model mempunyai kombinasi atribut yang berbeza. Kajian itu juga 

mengenalpasti berat, kadar pembelajaran, momentum dan bilangan nod tersembunyi 

yang sesuai untuk setiap model ramalan yang dicadangkan, dan rekabentuk umum 

seni bina rangkaian neural buatan (ANN). Model lapan dalam kajian ini 

menghasilkan pekali korelasi yang lebih tinggi (0.973) daripada kajian yang sedia 

ada (0.953). Kajian ini telah berjaya menghasilkan lapan model ramalan kekuatan 

mampatan konkrit dengan pekali korelasi yang baik. Model ramalan kekuatan 

mampatan konkrit ini akan memberi manfaat kepada jurutera awam untuk mengenal 

pasti kesesuaian bahan tambahan untuk campuran konkrit. 

 

Kata Kunci: Kekuatan konkrit mampatan, Kombinasi sifat-sifat, Rangkaian neural 

buatan, Model ramalan. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background 

Concrete is one of the most indispensable building and engineering material in the 

world. It has been used for  more than 10 decades (Aggarwal, Kumar, Sharma, & 

Sharma, 2015). Concrete becomes more and more popular in the world because of its 

capabilities. For example, it can take up any shape before it becomes hard, and 

strengthens when it hardens. This construction material is widely used in buildings, 

bridges, roads, runways, docks, military engineering, nuclear power stations and so 

on (Wankhade & Kambekar, 2013). If there is a high quality building, it must have a 

strong compressive strength of concrete. Because of this, compressive concrete 

strength becomes an important element building construction. If the compressive 

concrete strength do not meet the required specification for a building then there will 

a high risk of destruction when unfortunate incidents happened such as natural 

disasters or damages caused by humans. For example on May 12, 2008, an 

earthquake of magnitude 7.9, struck western Sichuan province causing many 

buildings to be destroyed and casualties. Many experts agree that casualties and 

damages could have been avoided if the buildings were built using high quality 

components.  The question is, how quality is the buildings? Obviously, when such 

catastrophic incident occur, the buildings can said to be below the quality standard – 

that is, the compressive concrete strength was below than the standard 

procedure(Michele et al., 2010). Again on July28, 1976, the city of Tangshan, China 
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was struck by a 7.8magnitude earthquake. Many people were injured and buildings 

were severely destroyed (Huixian, Housner, Lili, & Duxin, 2002). Thus, these 

disasters have attracted many researchers, especially to predict concrete compressive 

strength so that new buildings are safe to withstand disasters such as earthquake or 

equivalent incidents. 

 

Over the last decade, artificial neural network (ANN), have become popular and 

have been used by many scholars to solve engineering related problems. The positive 

side of ANN is that there is no requirement for assuming a model form and do not 

need to make any specific equation form. ANN automatically handles the 

relationships among variables and adapt according to the data used for their training. 

So using a large number of experimental data, a model can be developed (Rasa, 

Ketabchi, & Afshar, 2009). According to Muthupriya, Subramanian, & Vishnuram 

(2011), ANN is like a powerful and useful weapon that can handle classification and 

able to learn based on samples or existing datasets well. 

 

In terms of prediction of compressive concrete strength, for instance, Vakhshouri & 

Nejadi (2015) constructed an Adaptive Neural-Fuzzy inference System incorporating 

both neural networks and fuzzy systems to predict compressive strength of concrete. 

In another study, Aggarwal et al (2015) used Multiple Regression to predict strength 

of concrete. Gilan, Ali, & Ramezanianpour (2011) used fuzzy function which based 

on support vector regression also to forecast compressive strength of concrete. 
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In terms of attributes used for prediction, different approaches were used. Since, the 

main attributes of concrete are cement, aggregate (sand, stone) and water; most 

researchers would use all of the attributes to make concrete (Ferraris, 1999). Others 

would add other attributes such as Blast Furnace Slag, Fly Ash, Super plasticizer, 

Coarse Aggregate, Fine Aggregate and Age (Wankhade & Kambekar, 2013). 

 

Based on the above discussion, it can be seen that previous prediction models are 

static. Static prediction models always focus on specified number of attributes. 

However, when the numbers of attributes increase or decrease, the models will not 

work anymore. This indicates that static models have a limitation – that is these 

models cannot work with different numbers of attributes. Thus, a compressive 

concrete strength model which can work with different combinations of attributes is 

needed. 

 

In this study, several different set of attributes were used. In total the number of 

attributes used was 9. Data for this study was taken from the University of California, 

Irvine (UCI)’s repository. The dataset consists of 9 attributes and 1030 instances. 

This dataset is the data that were used to perform prediction by Yeh (1998). The last 

attribute, compressive strength of concrete is the dependent attribute, while other 8 

attributes are the independent attributes. The following information describes the 

dataset in greater detail. Out of 9 attributes, five attributes are the basic attributes 

(cement, water, age, coarse aggregate and fine aggregate) and is shown in Table 2.1 
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and Table 2.2. Three attributes, fly ash, super plasticizer and blast furnace slag are 

additional attributes. The final attribute (compressive concrete strength) is the class 

or defendant attribute.  

 

1.2 Problem Statement 

Compressive strength of concrete is one of the most important and useful properties 

that is employed to resist compressive stresses. However, at locations where tensile 

strength or shear strength is of primary importance, the compressive strength is used 

to measure properties of hardened concrete (Gupta, 2007). Even though most of the 

existing studies obtain good accuracy on predicting compressive concrete strength, 

their models still have some weaknesses. In general, the problems relate to attributes. 

Specifically, previous researches only used specific attributes to predict compressive 

concrete strength.  

 

In civil engineering, engineers will not always use the same attributes to make 

concrete. In usual situation, engineers only use some main attributes to predict 

compressive concrete strength (Rasa, Ketabchi, & Afshar, 2009). But in other 

situations, civil engineers need to add extra materials (make the strength of concrete 

stronger) to predict the compressive concrete strength (Wankhade & Kambekar, 2013; 

Martinez-Molina et al., 2014; Nikoo, Torabian Moghadam, & Sadowski, 2015; De 

Melo & Banzhaf, 2016). 
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But existing models have not explored using basic attributes with additional 

attributes to predict compressive concrete strength. Because of this, a prediction 

model which can use the basic attributes and additional attributes for predicting 

compressive strength of concrete is needed (Rasa, Ketabchi, & Afshar, 2009;Deepa, 

Sathiya Kumari, & Pream Sudha, 2010; Alilou & Teshnehlab, 2010; Gilan et al., 

2011; Muthupriya et al., 2011; Kabir, Hasan, & Miah, 2012; Kabir, Hasan, & Miah, 

2013;Martinez-Molina et al., 2014; Nikoo, Torabian Moghadam, & Sadowski, 2015; 

De Melo & Banzhaf, 2016).  

 

1.3 Research Questions 

The main question is can a prediction model predict compressive concrete strength 

with good correlation coefficient when new materials are added to the basic 

prediction model? 

 

Specific question would be: 

1) What are the basic attributes for predicting compressive strength of concrete? 

2) What is the suitable technique for predicting concrete compressive strength? 

3) What are the suitable parameters for Weights, Learning Rate, Momentum, 

numbers of hidden layers and numbers of hidden nodes that can be used to construct 

a compressive concrete strength prediction model? 
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1.4 Research Objectives 

The main objective of this study is to construct a prediction model which could 

predict compressive concrete strength accurately using basic attributes with 

additional attributes. 

 

Specific objectives are: 

1) to identify the basic attributes that can predict compressive concrete strength with 

good correlation coefficient; 

2) to identify additional attributes that can be used to predict compressive concrete 

strength with good correlation coefficient; 

3) to determine suitable parameters for weights, learning rate, momentum and 

numbers of hidden nodes. 

4) to design a main ANN architecture for predicting compressive strength of concrete 

and construct a compressive concrete strength prediction model. 

 

1.5 Significance of the study 

The study will benefit civil engineers. This work supports the combinations of 

attributes (basic attributes + additional attributes) to predict compressive strength of 

concrete for civil engineers. It explores ANN architectures (it includes learning rate, 

momentum, number of hidden layer and number of hidden nodes) for prediction. So, 

civil engineers can use the ANN architectures to predict the compressive concrete 

strength. 
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1.6 Scope of this study 

This study used the secondary dataset from Yeh et al. (1998). The dataset contains 

1030 instances, and 9 attributes (age, water, cement, fine aggregate, coarse aggregate, 

super plasticizer, fly ash, blast furnace slag and compressive strength of concrete). 

The compressive concrete strength is the output (target). Based on the features and 

different combinations of attributes (5 basic attributes + 3 additional attributes), this 

secondary data set was separated into 8 sets of data (Table 3.2). 

 

1.7 Thesis organization 

This dissertation report is separated into six chapters. Chapter One is the background 

and introduction about concrete and compressive concrete strength. It also describes 

the problem statement, research questions, objectives, significance of the study, and 

scope of this study. Chapter Two presents the literature review which includes the 

information about compressive strength of concrete, attributes existing scholars used 

to predict compressive concrete strength, existing techniques for prediction, and 

artificial neural networks. Chapter Three discusses the methodology used in this 

study. The methodology consists of five main phases which are Data Collection, 

Normalization, Determine Parameters, Model Construction and Evaluations. Chapter 

Four presents the deliverables for objectives 1, 2, 3 and 4. Chapter Five discusses the 

evaluation results of 8 models, discussion, and comparison results between model 8 

and one existing compressive concrete strength prediction model. Chapter Six 

highlights the overall achievement, contributions and future works of this study. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Theoretical background 

This chapter includes three sections. Section 2.1.1 describes the background of 

concrete and the importance of concrete. Section 2.1.2 provides discussion on 

existing attributes used to predict compressive concrete strength and Section 2.1.3 

discusses on various existing techniques that have been used for prediction.  

 

2.1.1 Compressive strength of concrete 

Concrete is an important and most common building material of civil engineering. It 

has useful capabilities such as able to take any shape before it solidifies and hardens 

strongly, giving a good strength. This construction material is widely used in 

buildings, bridges, roads, runways, docks, military engineering, nuclear power 

stations (Wankhade & Kambekar, 2013). In addition,concrete is an artificial 

conglomerate stone. That is, it includes several basic elements such as cement, fine 

aggregate, coarse aggregate and water.Using different amounts of elements will 

contribute to different compressive concrete strength (Chou, Chiu, Farfoura, & 

Altaharwa, 2011). 

 

In the process of making concrete, civil engineers will add other materials, such as 

fly-ash, supper plasticizer and blast furnace slag to improve the property of concrete. 

In simple words, civil engineers will use other materials to make the compressive 
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strength of basic concrete stronger.Basic concrete in general consist of materials such 

as cement, fine aggregat, coarse aggregate and water ( Yeh et al., 2003). 

 

The issue of damages after an earthquake is serious and at most times frightening. 

People cannot stop earthquake, but people can avoid unnecessary losses. Therefore, 

compressive concrete strength plays an important role because buildings’ damages 

can be reduced if the compressive concrete strength can withstand strong earth 

movements. The series of earthquakes that happened for example in British (2008), 

Yu shu, China (2010), New Zealand (2013) and Nepal (2015) caused buildings to 

collapse and many casualties (Musson, 2008; Bray et al., 2013;Jordans, Kohrt, & Tol, 

2015). Thus, if concrete can be predicted for earthquake resistance, then buildings 

can be assured a safe place when such incidents happen. And according to Ghan, 

Peng, & Anson (1999), the high range of compressive concrete strength is between 

70 to 140 MPa at 28 to 91 days and high-early strength is between 20 to 28 MPa at 3 

to 12 hours or 1 to 3 days. 

 

2.1.2 Attributes 

Concrete consists of mixed materials. Some researchers defined the basic attributes 

such as water, fine aggregate and coarse aggregate (Ferraris, 1999). Others 

mentioned that it composed of  cement, sand, aggregate, water, mineral admixtures 

and chemical admixtures (Liu, Sue, & Kou, 2009). A mixture of different materials 

will make different properties of concrete and in turn results to a different 
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compressive concrete strength. 

 

Previous studies on predicting compressive concrete strength use different 

composition of attributes. Table 2.1shows the attributes that have been used to 

predict compressive concrete strength and  Table 2.2 shows the occurrences of the 

attributes in previous research works. 

 

Table 2.1  

Attributes used by existing researchers  

NO. AUTHORS INDEPENDENT 

VARIABLES 

DEPENDENT 

VARIABLES 

1 Yeh (1998) Cement, Blast Furnace 

Slag, Fly ash, Water, Super 

plasticizer, Coarse 

aggregate, Fine aggregate 

and age. 

Compressive 

strength of concrete 

2 Yeh (2003) Cement, Blast Furnace 

Slag (BFS), Fly ash, Water, 

Super plasticizer, Coarse 

aggregate and Fine 

aggregate. 

Compressive 

strength of concrete 

3 Yaqub et al. (2006) Water cement ratio, slump, 

cement content,  age 

(days). 

Compressive 

strength of concrete 

4 Tanyildizi and Coskun 

( 2007 ) 

Cement (C), Fly ash (Fa), 

Aggregate, water (W) and 

Compressive 

strength of concrete 
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super plasticizer (SP). 

5 Rasa et al. (2009) Water, Cement, Silica 

fume (SF), 

Super-plasticizer, Cement 

Type (CT). 

Density and 

compressive 

strength 

6 Bilim et al. (2009) Cement, aggregate, age, 

blast furnace slag and 

plasticizer. 

Compressive 

strength of concrete 

7 Deepa et al. (2010) Cement, Blast Furnace 

Slag, Fly ash, Water, Super 

plasticizer, Coarse 

aggregate , Fine aggregate 

and age. 

Compressive 

strength of concrete 

8 Atici (2011) Age, cement, Blast furnace 

slag and Fly ash, 

Compressive 

strength of concrete 

9 Hasan and Kabir (2011) Coarse aggregate, fine 

aggregate, cement, water, 

fineness modulus of sand 

and age (days). 

Compressive 

strength of concrete 

10 Muthupriya et al. (2011) Age, Cement, Silica fume, 

Fly-ash, Water, Sand, 

Aggregate, and Super 

plasticizer. 

Compressive 

strength of concrete 

11 Kabir et al. (2013) Coarse aggregate, Fine 

aggregate, Cement, Water, 

Age and W/C ratio 

(WCR). 

Compressive 

strength of concrete 

12 Wankhade and Kambekar 

(2013) 

Age, Water, Cement, Super 

plasticizer, Blast Furnace 

Compressive 

strength of concrete 
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Slag, Fly-Ash. Fine 

aggregate and Coarse 

Aggregate. 

13 Wilfridoet al. (2014) Cement, Sand (S), Gravel 

(G) and Water. 

Compressive 

strength of concrete 

14 Aggarwal et al. ( 2015 ) water, fine 

aggregate-binder ratio 

(FA), coarse 

aggregate-binder (CA) and 

binder content (BC). 

Compressive 

strength of concrete 

15 Melo and Banzhaf (2015) Cement, Blast Furnace 

Slag, Fly ash, Water, Super 

plasticizer, Coarse 

aggregate , Fine aggregate 

and age of testing. 

Compressive 

strength of concrete 

 

Table 2.2  

The occurrences of attributes from previous attributes 

Past 

Work 

C W 

 

Fa FA CA Age SP BF

S 

BC SF W

CR 

S G CT 

1 √ √ √ √ √  √        

2  √  √ √    √      

3 √ √     √   √    √ 

4 √ √ √ √ √  √ √       

5  √  √ √ √     √    

6 √ √          √ √  

7 √ √ √ √ √ √    √  √   

8 √ √ √ √ √ √ √ √       
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9 √ √ √ √ √ √ √ √       

10 √ √ √ √ √ √ √ √       

11 √ √ √ √ √ √ √ √       

12 √ √  √ √ √      √   

13 √     √     √ √   

14 √  √   √  √       

15 √   √ √ √ √ √       

Occurre

nces 

13 12 8 11 11 10 8 7 1 2 2 4 1 1 

 

Based on Table 2.1 and Table 2.2, it can be found that the common attributes are 

water, cement, fine aggregate, coarse aggregate and age (the occurrences are more 

than 10). These common attributes have been mentioned as the basic concrete 

components (Chou et al., 2011). Therefore, cement, water, coarse aggregate, fine 

aggregate and age were chosen as the basic attributes in this study.  According to 

Yeh (2006), fly ash, super plasticizer and blast furnace slag are mineral admixtures 

which can improve compressive concrete strength. Because of these, the three 

attributes were selected as three additional attributes in this study. 

 

2.1.3 Past studies on prediction techniques 

Prediction, as people understand, is considered as forecasting short-term changes of 

certain phenomena. Examples are predicting the temperature of tomorrow at a given 

location or forecasting which asset to best invest next year (Cesa-Bianchi & Lugosi, 

2006). In general, prediction is done based on precious experiences or historical data.  

Table 2.3 shows the various techniques used by previous researchers. 
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Table 2.3  

Various prediction techniques 

Techniques Authors Correlation 

Coefficient 

Root 

Mean 

Square 

Error 

Mean 

Absolute 

Error 

Support Vector 

Machine (SVM) 

Gupta (2007) 0.9910 0.9100  

Chou, Chiu, 

Farfoura and 

Taharwa (2011) 

0.9197 6.7248 14.9052 

Akande et al., 

(2014) 

0.9773 23.1400 4.8900 

Suhad and Abbas 

(2015) 

0.9900 -0.3208  

Genetic Operation 

Tree 

Yeh and Lien 

(2009) 

0.8669   

Multiple Statistical 

Regression 

Liu et al. (2009) 0.9622 24.0800 5.5000 

 

Levenberg 

-Marquardt 

Alilouand 

Teshnehlab (2010) 

0.9944  5.1080 

Chou, Chiu, 

Farfoura and 

Taharwa (2011) 

0.9428 7.0364 11.6444 

 

Multiple 

Regression 

Deepa et al. (2010) 0.7908 9.9054 7.6780 

Chou, Chiu, 

Farfoura and 

Taharwa (2011) 

0.6906 11.6391 36.6473 

Linear Regression Deepa et al. (2010) 0.7009 11.1066 8.8388 
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M5P Model Tree Deepa et al. (2010) 0.8872 7.1874 5.0080 

ANN 

(Back-Propagation) 

 

Yeh (2003) 0.9940   

Rasa et al. (2009) 0.9947 0.0348  

Yeh & Lien (2009) 0.9338   

Muthupriya et al. 

(2011) 

0.9724 2.3729 -1.1138 

Wankhade and  

Kambekar (2013) 

0.98 2.4500 1.8300 

 

Based on Table 2.3, it can be seen that the popular methods that have been used for 

prediction compressive concrete strengths are SVM (Suhad & Abbas, 2015), Genetic 

Operation Tree (Yeh & Lien, 2009), Multiple Statistical Regression (Liu et al., 2009), 

Levenberg-Marquardt (Alilou &Teshnehlab, 2010), Multiple Regression (Chou et al., 

2011), Linear Regression (Deepa et al., 2010), M5P Model Tree (Deepa et al., 2010), 

and Back Propagation (ANN) (Wankhade & Kambekar, 2013).   

 

Support Vector Machine (SVM) is one of the good techniques for prediction. It is a 

statistical learning algorithm that can be applied to both classification and regression 

problems (Akande et al., 2014). As Figure 2.1 shows, SVM fits a hyperplane or 

function between 2 different classes given a maximum margin parameter. This 

hyperplane attempts to separate the classes so that each falls on either side of the 

plane, and by a specified margin. There is a specific cost function for this kind of 

model which adjusts the plane until error is minimized (Kasi, 2015). 
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Figure 2.1: The general diagram of SVM  

(http://algoholic.eu/faster-dot-product-for-svm/) 

 

From Table 2.3, in the study of Akande et al., (2014), the researchers used SVM 

method to predict compressive concrete strength of concrete and used Coefficient of 

correlation (CC), root mean square error (RMSE) and absolute error (EA) to judge 

their model. The SVM method for predicting compressive concrete strength achieved 

good results which are 0.9773 (CC), 23.14 (RMSE) and 4.89 (EA). Therefore, the 

results proved that SVM is a good technique for prediction. In other studies from 

Suhad & Abbas (2015); Preetham, Shivaraj, Prema kumar, & Kumar (2014), SVM 

also showed good results. 

 

In 2007, Gupta used SVM to predict compressive concrete strength with small 

number of data. Gupta and Fred (2014) found that SVM achieved a better 

performance with smaller number of training data but requires a heuristic process. 

 

http://www.neuro.sfc.keio.ac.jp/~masato/study/SVM/


 

17 
 

Due to some limitations of SVM, several researchers such as researchers that Uppada, 

Balu, Gupta, & Dutta (2014); Betrie, Sadiq, Morin, & Tesfamariam (2014); and Sakr, 

Elhajj, & Mitri (2011) used ANN for compressive concrete strength prediction. ANN 

was found to perform better than SVM for prediction. 

 

For other techniques, Yeh & Lien (2009) applied genetic operation tree (GOT) in 

their study. GOT is a combination of an operation tree and a genetic algorithm to 

automatically produce self-organized formulas for predicting the compressive 

strength of high performance concrete. Comparison results indicated that GOT 

(R2=0.8669) obtained formulas that were more accurate than nonlinear regression 

formulas but less accurate than neural network models (R2=0.9338). 

 

Liu et al. (2009) estimated the strength of concrete by using multiple statistics 

regression with the nondestructive test (NDT) surface hardness rebound value. In 

their study, they used 146 examples for training, and 20 examples for testing. In 

addition, they used 10 attributes (cement, coarse aggregate, fine aggregate, slag, flay 

ash, chemical admixture, water, age, moisture content and rebound value) as inputs 

and one attribute (compressive strength) as output. In the result of this study, the 

correlation coefficient achieved was 0.9622.  

 

ANN models have been widely studied with the goal of achieving human-like 

performance, especially in the area of pattern recognition and system identification. 
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The networks are made of a number of nonlinear calculative units that manipulate in 

parallel and are arranged in a mode reminiscent of biological neural 

inter-connections (Alilou & Teshnehlab, 2010). 

 

 

Figure 2.2: Block diagram of an adaptive system  

Alilou (2010) 

 

In Figure 2.2, Alilou and Teshnehlab used five methods of ANN for predicting 

concrete compressive strength. The methods are Levenberg-Marquardt, 

Polak-Ribiere Conjugate Gradient, Fletcher-Powell Conjugate Gradient, Gradient 

Descent and Quasi-Newton. All five methods achieved good accuracy and 

Levenberg-Marquardt obtained the best correlation coefficient (99.436) and shortest 

time (7.7 ms). 

 

In the research of Rashid & Mansur (2009), they indicated that the significance of the 

composition materials to product high quality strength of concrete combined with the 

results of a previous study on finding nice quality value of compressive concrete 

strength. Chou, Chiu, Farfoura and Al-Taharwa (2011) used Data Mining method to 
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predict the compressive strength of concrete with good accuracy. The compressive 

strength of high performance concrete was the class (target) attribute. The 

independent attributes (inputs) were cement, fly ash, blast furnace slag, water, super 

plasticizer, age, and coarse and fine aggregate. Table 2.2 shows the five different 

methods of data mining that they used for quantitative analysis and these are artificial 

neural network, support vector machines (SVM), multiple regression (MR), multiple 

additive regression trees (MART) and bagging regression trees (BRT). The 

performance comparison of this prediction model was tested by cross-validation. It 

showed that MART had high workability in prediction correlation coefficient, avoid 

to over fitting, and made short training time. The result of this study also showed that 

multiple additive regression trees can also be used to predict high performance 

concrete with different ages. 

 

In 2011, Gilan et al. constructed a new fuzzy function model by using support vector 

regression to predict compressive strength of concrete and they called this model as 

evolutionary fuzzy function model (EFF-SVP). This model is a alteration of the 

fuzzy function (FF) models. For validation purpose, they examined the results based 

on several previous system modeling methods, artificial neural network (ANN) 

(Kosko, 1992), adaptive neural-fuzzy inference system (ANFIS) (Jang, 1993), fuzzy 

function with least squared estimation (FF-LSE) (Turksen, 2008), and enhanced FF 

with LSE (IFFLSE) (Celikyilmaz & Turksen, 2008). They also used eight 

independent attributes and one dependent attribute. 
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Table 2.4  

RMSE for several modeling methods  

Modeling 

Methods 

RMSE 

Train Validate Test All 

ANN-1 5.7507 6.9689 7.0205 6.1577 

ANN-2 4.6006 5.6884 5.9848 5.0091 

ANFIS 3.1172 14.8931 10.877 7.6109 

FF-LSE 4.9397 6.4908 8.9668 5.9609 

IFF-LSE 4.7435 6.8167 5.1823 5.1826 

EFF-SVR 3.6922 6.3789 5.0965 4.4221 

Saduf (2013) 

 

Based on Table 2.4, it indicates that EFF-SVR was the best modeling method for 

predicting compressive concrete strength as the method produced the lowest value of 

RMSE. 

 

Deepa et al. (2010) chose three data mining methods, Multiplayer perceptron, Linear 

regression and M5P model tree for predicting compressive concrete strength and 

compared with them. The target of this research was to find a good algorithm for 

prediction with shortest time. The independent attributes of this study were Cement, 

Blast Furnace Slag, Fly Ash, Water, Super plasticizer, Coarse aggregate, Fine 

aggregate and age. The result shown in Table 2.5 indicates that M5P model tree is the 

best algorithm for predicting compressive strength of concrete, although the taken 

time was not the shortest one. But it achieved the highest correlation and lowest Root 



 

21 
 

Mean Square Error (RMSE) and Mean Absolute Error (MAE). 

 

Table 2.5  

Prediction results for three algorithms  

Techniques Correlation RMSE MAE Time taken In 

(sec) 

Multilayer 

perceptron 

0.7908 9.9054 7.678 2.06 

Linear 

regression 

0.7009 11.1066 8.8388 0.02 

M5P model tree 0.8872 7.1874 5.008 0.41 

Deepa (2010) 

 

Another popular prediction method is the Bayesian network or Bayesian prediction.  

A Bayesian network is a graphical model that encodes probabilistic relationships 

among variables of interest. The model takes prior knowledge and data, and enables 

estimation of posterior probabilities of outcomes (Thomas, 2015).  For example, 

Vale (2014) used Bayesian prediction method to forecast the winds of winter and 

MacKay (1994) did a prediction of competition based on Bayesian non-linear model. 

 

In 2011, Pradhan & Kundu used Bayesian prediction to predict the two-parameter 

gamma distribution. Their result indicated that Bayesian estimates with 

non-informative priors behave like maximum likelihood estimates, but for 

informative priors the Bayesian estimates behave much better than maximum 
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likelihood estimates. They also found that Bayesian prediction is an method for 

prediction based on the data that are already known.  

 

Based on Table 2.3 and the discussion above, it is obvious that ANN is a much better 

technique for solving prediction problems. This is because ANN (using Back 

Propagation) obtained a high correlation coefficient (around 0.93-0.99) (Yeh & Lien, 

2009; Muthupriya et al., 2011;Yeh, 2003;Rasa et al., 2009;Wankhade & Kambekar, 

2013). Table 2.3 also shows that the average correlation coefficient (around 0.99) of 

back propagation is higher than the correlation coefficient average of other 

techniques (lower than 0.98).   

 

Therefore, ANN was used in this study for predicting compressive strength of 

concrete. Section 2.2 below describes ANN in more detail. 

 

2.2 ANN concepts and architecture 

ANN consists parallel architectures that are can learn and generalize from given 

datasets to produce meaningful solutions even when data contain errors and are 

incomplete. This makes ANN a powerful tool for handling complicated engineering 

problems. Basically, the process of a neural network is similar to the process of 

neurons in the brain.  
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The basic strategy for developing a neural network-based model for prediction a 

certain data is to train a neural network on the results of a series of experiments using 

that dataset. If the experimental results contain the relevant information about the data 

behaviour, then the trained neural network will contain sufficient information about 

data’s behaviour to qualify as a ANN model (Noorzaei, Hakim, Jaafar, & Thanoon, 

2007). A trained neural network not only can reproduce the experimental results, but 

also it can predict the results for other similar experiments based on its powerful 

capability. 

 

2.2.1 Construction of Neural Network Model and Parameters 

A neural network architecture talks about how many layers in a network, how many 

hidden layers, how many hidden nodes in hidden layers and the relationship between 

each unit. The best architecture is selected from several architectures that are 

developed through an iteration process. How to select a most suitable ANN 

architecture is an open problem of investigation and depends on the area of 

applications. It can be determined by training, testing and validating several networks 

having different conditions. Connecting such units in various ways leads to different 

architectures of neural networks. The ANN learns from existing examples which is 

the process to get the final weights that are adapted. The basic unit of all ANNs is the 

neuron. The basic scheme of the neuron is shown in Figure 2.3. This process is 

represented by a learning algorithm (Oravec, Petráš, & Pilka, 2008). 

 



 

24 
 

The basic neuron model is shown in Figure 2.3 below: 

 

Figure 2.3: Basic neuron model 

 

As shown in Figure 2.3, neural network models can be obtained by the number of 

hidden layers, number of hidden nodes in each hidden layer, type of activation 

function, value of learning rate and value of momentum term.  

 

Learning rate coefficient is one of the most significant elements in network 

development. Every time a pattern is presented to the network, the weights leading to a 

neuron are modified slightly during learning in the direction required to produce a 

smaller error at the outputs the next time the same pattern is presented. The amount of 

weight modification is proportional to the learning rate. The range of leaning rate is 

between 0 to 1. If the value of learning rate is close to 1, it means that important 

modification in weight is needed, but if a value is close to 0, it presents little 

modification is needed (Plagianakos, Magoulas, & Vrahatis, 2001). 
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However, the learning rate in a parameter is the one that determines the size of the 

weights adjustment each time the weights are changed during training. Small values of 

learning rate lead to small weight changes and large values lead to large changes. The 

most suitable learning rate for model cannot be found directly. If the value of 

learning rate is 0, the network will not learn. Therefore, the learning rate is very 

significant in identifying over-learning and when to stop training (Noorzaei et al., 

2007).  

 

2.2.2 A simple neural network model 

The simplest type of neural network feed forward network. It is a single-layer 

perceptron network that includes one single layer of output nodes, one layer of input 

nodes, and one layer of hidden layer nodes. The inputs are fed directly to the outputs 

via a series of weights. In this network, the information moves in only one direction, 

forward, from the input nodes, through the hidden nodes (if any) and to the output 

nodes. There are no cycles or loops in the network. Figure 2.4 shows the diagram. 

 

 

Figure 2.4: A simple neural network model 
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The operation of the network can be divided into two phases, learning phase, and 

classification phase.  The Back-propagation algorithm and Feed Forward are popular 

techniques that have been used to perform the learning process. Back-propagation is a 

training algorithm that includes of 2 steps: 1) Feed forward the input values, 2) 

calculate the error and propagate it back to the earlier layers. Both Feed Forward and 

Back-propagation algorithms are used in training neural network.   

In this research, Feed Forward and Back-propagation algorithms were used to 

develop the ANN model. 

 

2.3 Summary 

Several topics were investigated to determine the input, and techniques to be used in 

the study.  Basically, five basic attributes, cement, fine aggregate, coarse aggregate, 

water and age were chosen as input. Besides these, 3 other inputs (blast furnace slag, 

fly ash, and super plasticizer) were selected as additional attributes. 

Back-propagation algorithm was also selected to be used in the model development 

process. 
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CHAPTER THREE 

METHODOLOGY 

 

This chapter elaborates the process of achieving the objectives and constructing the 

compressive concrete strength prediction model. 

 

3.1 Research Process 

The general goal of this study is to construct a compressive concrete strength 

prediction model. Thus, the process of constructing the model involves five (5) 

phases: Data collection (data information), Normalization, Determine parameters, 

Prediction model construction (construct the main architecture), and  Evaluation. 

The flow diagram is shown in Figure 3.1: 
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Figure 3.1: The research process diagram 

 

3.1.1 Phase 1 Data Collection 

This study used a secondary dataset (Concrete Compressive Strength Data Set) that 

was taken from the UCI repository. The dataset was separated to 8 sub datasets 

(different combinations of attributes). Detailed information on the datasets is shown 

in Table 3. The sample of data are shown in Appendix A. 
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Table 3.1 

Inputs and output attributes 

No. of 

Datasets 

No. of input 

attributes 

Instances of Data Output attribute (units) 

1 5 209  

 

 

Compressive Strength of 

Concrete 

 

2 6 209 

3 6 209 

4 6 209 

5 7 209 

6 7 209 

7 7 209 

8 8 209 

 

Based on Table 3.1, Model 1 focused on 5 basic attributes (cement, water, age, fine 

aggregate and coarse aggregate), and the other models focused on different 

combinations of attributes (5 basic attributes + additional attributes). All 8 models 

have the same target which is compressive strength of concrete.  

 

The statistical descriptions of datasets for each model is specified in Table 3.2. 
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Table 3.2 (a)  

Statistical descriptions for Dataset 1 

Statistic Minimum Maximum Mean StdDev 

Attributes 

Cement 200 540 354.187 85.623 

Water 146 228 192.114 12.183 

Coarse Aggregate 838.4 1125 1018.21 72.394 

Fine Aggregate 594 945 773.097 81.492 

Age 1 365 61.995 90.721 

Concrete  

Compressive 

Strength 

 

6.27 

 

74.99 

 

29.806 

 

14.645 

 

Table 3.2 (b)  

Statistical descriptions for Dataset 2 

Statistic Minimum Maximum Mean StdDev 

Attributes 

Cement 165 540 349.823 89.144 

Fly Ash 0 143.6 3.0350 20.115 

Water 146 228 191.493 12.524 

Coarse 

Aggregate 

838.4 1125 1018.059 71.543 

Fine 

Aggregate 

594 945 776.54 82.784 

Age 1 365 59.871 87.88 

Concrete 

Compressive 

 

6.27 

 

74.99 

 

29.592 

 

14.551 
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Strength 

 

Table 3.2 (c)  

Statistical descriptions for Dataset 3 

Statistic Minimum Maximum Mean StdDev 

Attributes 

Cement 102 540 288.601 113.239 

Blast Furnace 

Slag 

0 359.400 81.596 98.380 

Water 146 228 194.971 14.116 

Coarse 

Aggregate 

879 1125 997.672 70.917 

Fine 

Aggregate 

594 945 760.491 91.398 

Age 1 365 55.024 84.969 

Concrete 

Compressive 

Strength 

 

3.32 

 

74.99 

 

28.438 

 

14.858 

 

Table 3.2 (d)  

Statistical descriptions for Dataset 4 

Statistic Minimum Maximum Mean StdDev 

Attributes 

Cement 200 540 368.285 92.462 

Water 140 228 189.562 15.813 

Super 

plasticizer 

0 28.2 1.171 4.621 
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Coarse 

Aggregate 

801 1125 1006.465 78.131 

Fine 

Aggregate 

594 945 773.194 82.984 

Age 1 365 56.254 85.553 

Concrete 

Compressive 

Strength 

 

6.27 

 

79.99 

 

32.157 

 

15.986 

 

Table 3.2 (e)  

Statistical descriptions for Dataset 5 

Statistic Minimum Maximum Mean StdDev 

Attributes 

Cement 102 540 277.976 104.788 

Blast Furnace 

Slag 

0 359.400 93.500 99.345 

Fly Ash 0 143.6 3.035 20.115 

Water 146 228 196.282 15.710 

Coarse 

Aggregate 

838.4 1145 988.485 67.078 

Fine 

Aggregate 

594 945 755.125 90.204 

Age 1 365 64.512 96.999 

Concrete 

Compressive 

Strength 

 

2.330 

 

74.99 

 

28.551 

 

14.809 

 

 



 

33 
 

Table 3.2 (f)  

Statistical descriptions for Dataset 6 

Statistic Minimum Maximum Mean StdDev 

Attributes 

Cement 144 540 308.598 103.055 

Fly Ash 0 194.9 59.576 62.872 

Water 141.8 228 182.451 17.650 

Super 

plasticizer 

0 28.2 4.921 5.670 

Coarse 

Aggregate 

801.1 1125 1002.633 68.539 

Fine 

Aggregate 

594 945 792.537 74.501 

Age 1 365 50.311 70.490 

Concrete 

Compressive 

Strength 

 

6.27 

 

79.99 

 

31.779 

 

13.693 

 

Table 3.2 (g)  

Statistical descriptions for Dataset 7 

Statistic Minimum Maximum Mean StdDev 

Attributes 

Cement 102 540 309.589 110.917 

Blast Furnace 

Slag 

0 359.400 91.553 96.363 

Water 127.3 228 189.148 20.771 

Super 

plasticizer 

0 32.200 2.925 5.782 
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Coarse 

Aggregate 

801 1134.3 978.956 73.776 

Fine 

Aggregate 

594 945 757.001 87.249 

Age 1 365 62.459 89.335 

Concrete 

Compressive 

Strength 

 

4.57 

 

82.600 

 

35.922 

 

18.436 

 

Table 3.2 (h)  

Statistical descriptions for Dataset 8 

Statistic Minimum Maximum Mean StdDev 

Attributes 

Cement 116 540 272.344 93.748 

Blast Furnace 

Slag 

0 305.300 86.481 92.614 

Fly Ash 0 193 50.236 62.300 

Water 121.800 228 184.844 24.122 

Super 

plasticizer 

0 32.200 5.869 5.728 

Coarse 

Aggregate 

822 1134.3 978.376 70.028 

Fine 

Aggregate 

594 945 762.811 85.395 

Age 1 365 59.847 85.491 

Concrete 

Compressive 

Strength 

 

4.83 

 

82.600 

 

36.695 

 

17.652 
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This dataset does not contain any missing values (using WEKA). In addition, 

concrete compressive strength is a highly nonlinear function of building materials 

(Chou et al., 2011).  

 

 

Figure 3.2: The scatter plot of dataset. 

 

Figure 3.2 shows the scatter plot of the dataset. Based on the figure, it can be seen 

that it is nonlinear and cannot be solved using a linear solving method such as 

regression. 
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3.1.2 Phase 2 Normalization 

This study used ANN method to do data training, so initially the dataset need to be 

normalized. Because that it is good for comparison between the results for the 

various sensory outputs, and it also can enhance the reliability of the trained network 

(Jayalakshmi & Santhakumaran, 2011). Min-Max normalization (Nayak, Misra, & 

Behera, 2014) was used. Normalization was done using WEKA 3.6, and the formula 

is shown below: 

V′ =
V−minA

maxA−minA
(new_maxA − new_minA) + new_minA     (3-1)            

Where,  V' is a new value 

        V is the original value 

        minA is the minimum value of the attributes 

        maxA is the maximum value of the attributes 

        new_ maxA is a maximum value of the new value 

        new_ minA is a minimum value of the new value 

 

The data was also set to two decimal places, and the samples of raw data and 

normalized data are shown in Table 3.3. 

 

Table 3.3  

Sample of raw data (before) and normalized data (after) 

Names: Cement BFS Fly 

Ash 

Water SP CA FA Age CS 

 213.70 98.10 24.50 181.70 6.90 1065.80 785.40 3 18.00 
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Raw  

Data  

213.70 98.10 24.50 181.70 6.90 1065.80 785.40 14 30.39 

213.70 98.10 24.50 181.70 6.90 1065.80 785.40 28 45.71 

213.70 98.10 24.50 181.70 6.90 1065.80 785.40 56 50.77 

213.70 98.10 24.50 181.70 6.9 1065.80 785.40 100 53.90 

Norma- 

-lized  

Data  

0.26 0.27 0.12 0.48 0.21 0.77 0.48 0.01 0.20 

0.26 0.27 0.12 0.48 0.21 0.77 0.48 0.04 0.35 

0.26 0.27 0.12 0.48 0.21 0.77 0.48 0.07 0.54 

0.26 0.27 0.12 0.48 0.21 0.77 0.48 0.15 0.60 

0.26 0.27 0.12 0.48 0.21 0.77 0.48 0.27 0.64 

 

3.1.3 Phase 3 Determine Parameters 

In this study, the value for four parameters (Weights, Learning Rate, Momentum 

factor and numbers of hidden nodes) were determined. The process is shown below 

(Figure 3.3): 

Figure 3.3: Eight situations of different combinations of attributes 

 

In Figure 3.3, because that there are five basic attributes (BAs) and three extra 
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attributes (EA1, EA2 and EA3), eight training models were considered. The five 

basic attributes creates the basic training model, while the three additional attributes 

were added to construct other training models. 

 

In total, there 8 prediction models were constructed. The following sub sections 

explains the process of determining the parameters. 

 

3.1.3.1 Determine Weights 

Eight sets of weights were determined based on different combinations of attributes. 

Back-Propagation algorithm (Makin, 2006) were used in data training, specifically 

for updating the weights. The formulas (for one hidden layer) are shown below:  

Feed-Forward: 

 

z_inj = v0j + ∑ xivij
n
i=1                       (3-2) 

zj = f(z_inj) = 1 (1 + exp(−z_inj))⁄           (3-3) 

Each hidden unit (zj, j = 1,2 … . p) sums its weighted input signals, applies its 

activation function to compute its output signal, and sends this signal to all units in 

the output layer. 

 

y_ink = w0k + ∑ zjwjk
p
j=1                    (3-4) 

yk = f(y_ink) = 1 (1 + exp(−y_ink))⁄         (3-5) 

Each output unit (yk, k = 1,2 … m) sums its weighted input signals, and applies its 
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activation function to compute its output signal. 

Back Propagation of Error: 

 

σk = (tk − yk)f(x)[1 − f(x)]                (3-6) 

∆wjk = αδkzj                            (3-7) 

∆w0k = αδk                             (3-8) 

Each of output units (yk, k = 1,2 … m) gets a target pattern corresponding to the 

input training pattern, calculates its error information term, computes its weight 

correction term (it will use for updating wjk), computes its bias correction term (it 

will use for updating w0k) and transfers σk to units in the layer below. 

σ_inj = ∑ σkwjk
m
k=1                        (3-9) 

σj = σinj
f (zinj

) [1 − f (zinj
)]              (3-10) 

∆vij = αδjxi                            (3-11) 

∆v0j = αδj                             (3-12) 

Each hidden unit (zj = 1,2, … p) adds delta inputs (from units in the layer above) 

multiplies by the derivative of its activation function to calculate its error information 

term, calculates its weight correction term (it will use for updating vij ), and  

computes its bias correction term (it will use for updating v0j). 

Update Weights and Biases: 

Each output unit (yk, k = 1,2, … m) updates its bias and weights (j=0,...p): 

wjk(new) = wjk(old) + ∆wjk            (3-13) 

Each hidden unit (zj, j = 1,2, … p) updates its bias and weights (i = 0,...n): 
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vij(new) = vij(old) + ∆vij               (3-14) 

 

3.1.3.2 Other Parameters 

In this part, several parameters were determined. The value of learning rate that 0.01, 

0.1, 0.3, 0.5 and 0.9 (Wankhade & Kambekar, 2013) were tested. The momentum 

factors which are 0.0, 0.25, 0.5 and 0.75 (Yeh, 2006;Wankhade & Kambekar, 

2013)also were tested in this study. The suitable learning rate and momentum which 

made the prediction model achieve best results were used to construct the prediction 

model for compressive concrete strength. Based on the study of Panchal, Ganatra, 

Kosta, & Panchal (2011), 1 hidden layer is sufficient for nearly all problems, and 2 

hidden layers are required for modeling data with discontinuities like a saw tooth 

wave pattern. As the result, all models of this study used one hidden layer but 

different hidden nodes. The testing parameters of each models were mentioned in 

Table 3.4. 
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Table 3.4  

Testing parameters 

No. of 

attributes 

5 6 7 8 

Attributes 

in each 

model 

M 1 M 2 M 3 M 4 M 5 M 6 M 7 M 8 

BVs BVs+

EV1 

BVs+ 

EV2 

BVs+EV3 BVs+EV1 

+EV2 

BVs+EV1 

+EV3 

BVs+ 

EV2+ 

EV3 

All  

Hidden 

layers 

1 1 1 1 1 1 1 1 

No. of 

hidden 

nodes 

 

2~6 

 

2~6 

 

2~6 

 

2~6 

 

2~6 

 

2~6 

 

2~6 

 

2~6 

Learning 

rate 

0.01, 0.1, 0.3, 0.5 and 0.9. 

Momentu

m 

0.0, 0.25, 0.5 and 0.75 

 

Table 3.4 shows the summary of values used to obtain the best parameters for 

learning rate, momentum, number of hidden layer and number of hidden nodes. For 

the hidden nodes, there is no formula or algorithm to figure out how many hidden 

nodes should be in a hidden layer. However, according to Doug (2016), the number 

of neurons in hidden layer is the mean of the neurons in the input and output layers. 

 

So in this study, the mean value of model 1 is 3 (i.e number of inputs plus the 
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number of outputs, then divide by 2); the mean value of model 2 to model 4 is 3.5; 

the mean value of model 5 to model 7 is 4; and the mean value of model 8 is 4.5. 

Based on the mean value of each model, this study tested (2~6) number of hidden 

nodes, which is approximate to the mean of inputs and output. In addition, values of 

parameters were measured by correlation coefficient (the higher, the better), mean 

absolute error (the lower, the better) and root mean square error (the lower, the 

better). 

 

3.1.4 Phase 4 Construct Prediction Model 

There are five basic independent attributes and three extra independent attributes in 

this study. In total, there are 8 independent attributes (inputs) and one dependent 

attribute (output). So considering all situations, it should have 8 prediction models 

(Table 3.5), each with different number of independent attributes. The general 

prediction model is shown in Figure 3.4. When users choose different number of 

independent attributes, the model will change. In other words, the parameters, "r", 

"weights"," and hidden nodes" will be changed. The best model chosen is the model 

that has the highest correlation coefficient, lowest Mean Absolute Error, and lowest 

Root Mean Square Error. The models are presented in Chapter 5. 
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Figure 3.3: The general model for compressive strength of concrete 

 

Table 3.5  

Models and Attributes 

No. of Models Attributes 

Model 1 5 basic attributes (cement, water, fine aggregate, coarse aggregate and 

age) 

Model 2 5 Basic attributes + Fly Ash (FA) 

Model 3 5 Basic attributes + Blast Furnace Slag (BFS) 

Model 4 5 Basic attributes + Super Plasticizer (SP) 

Model 5 5 Basic attributes + FA + BFS 

Model 6 5 Basic attributes + FA + SP 

Model 7 5 Basic attributes + BFS + SP 

Model 8 5 Basic attributes + FA + BFS + SP 
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3.1.5 Phase 5 Evaluation 

In this study, the percentage split method was used to evaluate all models. 

Specifically, 90% of the data was used for training and 10% was used for testing. The 

performance was measured based on correlation coefficient, root mean square error 

(RMSE) and mean absolute error (MAE) (Wankhade & Kambekar, 2013).  

 

3.1.5.1 Correlation coefficient 

Correlation coefficient tests the level of linear relation among the goal and the 

predicted result. It is a method to identify how far the tendency in predicted values 

follows those in real observed values. The value of R is numeric in the range of 

0-1.A high value of correlation coefficient shows that the model is good. The 

correlation coefficient (R) formula used is: 

R =
∑ (xi)(yi)n

i=1

√∑ (xi
2) ∑ (yi

2)n
i=1

n
i=1

                      (3-16) 

 

Where,  xi = Xi − X̅,                         yi = Yi − Y̅ 

        Xi = ith observed value,               X̅ = mean of X, 

        Yi = ith predicted value,               Y̅ = mean of Y, 

        n = number of observation of  Xi and Yi 

 

If correlation coefficient is equal to 1, it shows that the model is perfect. Values of 

correlation coefficient in the range of 0.9 to 0.99 show that the model performs well 

(good correlation coefficient). However, if the value of correlation coefficient is 
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between 0.8 and 0.89, the model is said to be satisfactory and can still be accepted. 

Any values of correlation coefficient that is less than 0.8 shows the model is not 

good (Wankhade & Kambekar, 2013). In this study, the value required is more than 

0.9. If the value of correlation coefficient cannot achieve 0.9, the prediction model 

was reconstructed. 

 

3.1.5.2 Root mean square error (RMSE) 

The root mean square error is suitable to iterative algorithms and is quite a good 

method for higher values. This is the formula for calculating RMSE as below: 

 

RMSE =  √
∑ (Xi−Yi)2n

i=1

n
                 (3-17) 

(Source from: https://www.kaggle.com/wiki/RootMeanSquaredError) 

 

It supports a general representation of the errors involved in the prediction. If the 

value of result is lower, it means that the result is better. 

 

3.1.5.3 Mean absolute error (MAE) 

The mean absolute error (MAE) is to measure how close forecasts or predictions are 

to the outcomes. The formula is: 

MAE =
∑ |Xi−Yi|n

i=1

n
                       (3-18) 

(Source from: https://www.kaggle.com/wiki/MeanAbsoluteError) 
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A lower MAE shows that the prediction is better.   

 

3.2 Summary 

This chapter describes the methodology of this study. Five phases were involved: 

Data collection (8 groups of data), Normalization, Determine parameters, Prediction 

model construction (it includes all the 8 prediction models), and Evaluation 

(correlation coefficient, mean absolute error and root mean square error were 

mentioned). 
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CHAPTER FOUR 

RESULTS 

This chapter presents deliverables for objective 1, objective 2, objective 3 and 

objective 4. 

 

4.1 Deliverables for objective 1 

As stated in Chapter One, the first objective of this study is to identify the basic 

attributes for prediction. 

 

The basic attributes have been obtained through examining past researches and have 

been presented in Table 2.1 (Chapter Two). In summary, the basic attributes are 

cement fine aggregate, coarse aggregate, water and age. Table 4.1 below shows the 

descriptions for each attribute: 

Table 4.1  

Description of basic attributes 

Basic attributes Description 

Cement A substance used in construction that sets and hardens and can 

bind other materials together. 

Water A colourless liquid that is used to mix with cement in making 

concrete. 

Fine aggregate Consist of natural sand or crushed stone with most particles 

passing through a 3/8-inch sieve. 

Coarse aggregate Particles that are greater than 0.19 inch, but generally range 

between 3/8 and 1.5 inches in diameter. 
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Age The days for making concrete become harden. 

 

4.2 Deliverables for objective 2 

The second objective of this study is to identify additional attributes that can be used 

to predict compressive concrete strength. 

 

The three additional attributes are fly ash, blast furnace slag and super plasticizer. 

Table 4.2 below shows the descriptions for each attribute: 

 

Table 4.2  

Description of additional attributes 

Basic attributes Description 

Fly Ash Finely divided residue that results from the combustion of 

pulverized coal and is transported from the combustion chamber 

by exhaust gases. 

Blast Furnace Slag Consists primarily of silicates, alumina silicates, and 

calcium-alumina-silicates. 

 

 

Super Plasticizer 

Chemical admixtures used where well-dispersed particle 

suspension is required. These polymers are used as dispersants to 

avoid particle segregation (gravel, coarse and fine sands), and to 

improve the flow characteristics (rheology) of suspensions such 

as in concrete applications. 

 

4.3 Deliverables for Objective 3 

As mentioned in Chapter 1, the third objective is to determine the parameters for 

https://en.wikipedia.org/wiki/Dispersant
https://en.wikipedia.org/wiki/Rheology
https://en.wikipedia.org/wiki/Concrete
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Weights, Learning Rate, Momentum, number of hidden nodes in hidden layer for 8 

prediction models. The models were: 

 

Model 1 (5 basic attributes (cement, water, fine aggregate, coarse aggregate and 

age)) 

Model 2 (5 Basic attributes + Fly Ash (FA)) 

Model 3 (5 Basic attributes + Blast Furnace Slag (BFS)) 

Model 4 (5 Basic attributes + Super Plasticizer (SP)) 

Model 5 (5 Basic attributes + FA + BFS) 

Model 6 (5 Basic attributes + FA + SP) 

Model 7 (5 Basic attributes + BFS + SP) 

Model 8 (5 Basic attributes + FA + BFS + SP) 

 

The parameters were obtained through several experimentation. The following 

sections explain the results for each model. 

 

4.3.1 Model 1 parameters: 

In this section, five learning rates that 0.01, 0.1, 0.3, 0.5 and 0.9 (Wankhade & 

Kambekar, 2013) were tested. The momentum values 0.0, 0.25, 0.5 and 0.75 (Yeh, 

2006;Wankhade & Kambekar, 2013) also were tested. 

For the number of hidden layers, according to the study of Panchal, Ganatra, Kosta, 

& Panchal (2011), one hidden layer is sufficient for nearly all problems, and two 
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hidden layers are required for modeling data with discontinuities like a saw tooth 

wave pattern. Therefore, all models of this study used one hidden layer but different 

hidden nodes. 

 

For the number of hidden nodes, too few hidden nodes in hidden layer will lead to 

the problem called under fitting, but too many hidden nodes will lead to over fitting 

and it will take longer training time (Panchal et al., 2011). Based on that, 2, 3, 4, 5 

and 6 hidden nodes were used for training and testing. 

 

Thus, considering all the parameters (learning rate, momentum and number of hidden 

nodes) in this study, a total of 100 different combinations of parameters (each set of 

parameters must includes learning rate, momentum and number of hidden nodes) for 

model 1 were tested (Figure 4.1).  

 

 

Figure 4.1: The combinations of parameters 

 

The model performance was measured using R, MAE, RMSE and Time taken. The 
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experiments used Percentage split of 90% for training and 10% for testing. The best 

values (i.e the highest value of R, lowest value of MAE and lowest value of RMSE) 

were chose as the final parameters for model 1. 

 

The detail of parameters tested (100 combinations of parameters) and results 

obtained are shown as follows: 

 

Table 4.3  

Experiments using 5 attributes 

Test 1: Hidden nodes= 2 and momentum =0 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.8804 0.9134 0.7869 0.7809 0.8019 

MAE 4.0947 3.9977 5.7728 5.9514 4.6447 

RMSE 6.4014 5.8833 8.1277 8.2254 7.975 

TT(s) 0.47 0.42 0.45 0.42 0.41 

 

Test 2: Hidden nodes= 2 and momentum =0.25 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.8893 0.9125 0.7829 0.7660 0.8428 

MAE 3.9685 4.1009 5.9431 6.2876 6.1876 

RMSE 6.1943 5.9870 8.1871 8.5692 7.8970 

TT(s) 0.48 0.44 0.43 0.45 0.44 
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Test 3: Hidden nodes= 2 and momentum =0.5 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9002 0.9103 0.7724 0.7457 0.7694 

MAE 3.8302 4.4744 6.2828 7.7918 18.8094 

RMSE 5.9326 6.3422 8.4906 10.5650 20.8214 

TT(s) 0.43 0.43 0.44 0.43 0.44 

 

Test 4: Hidden nodes= 2 and momentum =0.75 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9099 0.7846 0.8777 0.8778 0.8904 

MAE 3.7194 6.3157 4.6237 11.0227 10.6924 

RMSE 5.6839 8.7157 6.3087 12.5657 12.2117 

TT(s) 0.44 0.43 0.43 0.43 0.39 

 

Test 5: Hidden nodes= 3 and momentum =0 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9336 0.9590 0.9619 0.8181 0.8331 

MAE 3.1908 2.5046 3.1601 5.6332 4.9197 

RMSE 4.7421 3.8438 4.2815 7.6559 7.3802 

TT(s) 0.6 0.6 0.59 0.59 0.6 

 

Test 6: Hidden nodes= 3 and momentum =0.25 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9413 0.9594 0.9629 0.8073 0.8756 

MAE 2.9353 2.5231 2.8156 5.8294 7.0976 

RMSE 4.4682 3.8311 3.8196 7.7954 8.2749 

TT(s) 0.6 0.61 0.61 0.59 0.6 
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Test 7: Hidden nodes= 3 and momentum =0.5 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9485 0.9586 0.9626 0.7864 0.8791 

MAE 2.7192 2.6414 2.8974 6.2488 11.8380 

RMSE 4.1985 3.9793 3.9863 8.5837 12.8561 

TT(s) 0.6 0.61 0.6 0.59 0.6 

 

Test 8: Hidden nodes= 3 and momentum =0.75 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9510 0.9535 0.8718 0.8742 0.3354 

MAE 2.7822 3.3341 8.1529 8.8121 9.2185 

RMSE 4.0752 4.6930 9.7265 10.9323 13.2009 

TT(s) 0.6 0.59 0.6 0.6 0.6 

 

Test 9: Hidden nodes= 4 and momentum =0 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9129 0.9427 0.9460 0.9337 0.9290 

MAE 3.6862 2.9915 4.7634 5.3747 8.9899 

RMSE 5.4981 4.7114 6.3335 6.9037 10.2559 

TT(s) 0.75 0.78 0.76 0.76 0.74 

 

Test 10: Hidden nodes= 4 and momentum =0.25 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9056 0.9438 0.9658 0.9334 0.9330 

MAE 3.7392 2.8825 2.5220 5.7189 10.9118 

RMSE 5.8302 4.5740 3.6008 7.2815 12.1103 

TT(s) 0.74 0.75 0.75 0.74 0.76 
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Test 11: Hidden nodes= 4 and momentum =0.5 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9433 0.9463 0.9612 0.9386 0.9445 

MAE 2.8576 2.7670 3.1551 7.3113 14.8149 

RMSE 4.3924 4.4281 4.3184 8.7113 15.8161 

TT(s) 0.81 0.83 0.76 0.76 0.78 

 

Test 12: Hidden nodes= 4 and momentum =0.75 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9278 0.9196 0.9021 0.1812 -0.2787 

MAE 3.3279 3.8040 9.5353 25.9760 9.2175 

RMSE 5.0691 5.9779 11.165 27.3232 13.2046 

TT(s) 0.76 0.74 0.75 0.74 0.73 

 

Test 13: Hidden nodes= 5 and momentum =0 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9221 0.9423 0.9463 0.9396 0.9059 

MAE 3.5480 3.9592 3.6870 4.2475 8.5610 

RMSE 5.1594 5.4206 4.7616 5.2401 10.1191 

TT(s) 0.92 0.91 0.93 0.9 84.1585 

 

Test 14: Hidden nodes= 5 and momentum =0.25 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9268 0.9444 0.9452 0.9355 0.9323 

MAE 3.4002 3.8172 3.5581 4.1521 8.1561 

RMSE 5.0156 5.1465 4.6506 5.1889 9.4475 

TT(s) 0.9 0.92 0.9 0.93 0.91 
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Test 15: Hidden nodes= 5 and momentum =0.5 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.8815 0.9103 0.9429 0.9341 0.9186 

MAE 3.8284 4.8413 3.8406 5.8334 13.0642 

RMSE 6.5487 9.8674 4.9255 7.4281 14.1241 

TT(s) 0.9 0.93 0.9 0.92 0.9 

 

Test 16: Hidden nodes= 5 and momentum =0.75 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.5962 0.9658 0.9295 0.8157 -0.3745 

MAE 4.9869 2.4902 5.6578 5.9071 9.2174 

RMSE 10.6039 3.5597 6.6116 10.3654 13.2045 

TT(s) 0.92 0.9 0.92 0.91 0.84 

 

Test 17: Hidden nodes= 6 and momentum =0 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9303 0.9429 0.9479 0.9397 0.8424 

MAE 3.2577 3.9271 4.0513 5.0696 16.6086 

RMSE 4.8640 5.4865 5.1605 6.6148 18.3994 

TT(s) 1.07 1.06 1.08 1.1 1.09 

 

Test 18: Hidden nodes= 6 and momentum =0.25 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9364 0.9500 0.9444 0.9366 0.6845 

MAE 2.9223 3.4084 4.2300 5.3145 10.5619 

RMSE 4.6896 4.5527 5.4057 6.8506 12.5164 

TT(s) 1.11 1.08 1.09 1.07 1.07 
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Test 19: Hidden nodes= 6 and momentum =0.5 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9305 0.9259 0.9256 0.8430 0.5504 

MAE 3.0043 3.7053 4.8049 6.8165 18.3035 

RMSE 5.1360 5.5568 6.6059 8.6411 19.3555 

TT(s) 1.07 1.09 1.08 1.08 1.08 

 

Test 20: Hidden nodes= 6 and momentum =0.75 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9358 0.9112 0.8910 0.7303 -0.2282 

MAE 3.6943 5.4957 8.6233 31.3474 9.2175 

RMSE 5.9498 13.0798 10.1576 32.7483 13.2046 

TT(s) 1.11 1.09 1.09 1.06 1.12 

 

Table 4.3 shows all results using different combination of parameters for model 1. 

The best results were achieved from Test 16 which is learning rate = 0.1, momentum 

= 0.75 and the number of hidden nodes is 5. The results are: R achieved the highest 

value i.e0.9658, MAE achieved the lowest value i.e 2.4902 and RMSE also achieved 

the lowest value i.e 3.5597. 

 

The weights and thresholds parameters for model 1 is shown in Appendix J. 

 

4.3.2 Model 2 to Model 8 parameters 

In order to determine the best parameters to be used for models 2 to 8, several 

experiments were conducted using different learning rate, momentum, and hidden 
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nodes. The weights and threshold parameters for Model 2 to Model 8 are shown in 

Appendix J. Table 4.4 shows the values used for determining suitable parameters for 

model 2 to model 8. 

Table 4.4  

Values used for determining suitable parameter for Models 2 to 8 

Models Learning 

rate 

Momentum Hidden 

layer 

Hidden 

nodes 

Percentage 

Split 

Model 2 0.01, 0.1, 

0.3, 0.5 

&0.9 

0, 0.25, 0.5 

& 0.75 

1 2,3,4,5&6 90% 

Model 3 0.01, 0.1, 

0.3, 0.5 

&0.9 

0, 0.25, 0.5 

& 0.75 

1 2,3,4,5&6 90% 

Model 4 0.01, 0.1, 

0.3, 0.5 

&0.9 

0, 0.25, 0.5 

& 0.75 

1 2,3,4,5&6 90% 

Model 5 0.01, 0.1, 

0.3, 0.5 

&0.9 

0, 0.25, 0.5 

& 0.75 

1 2,3,4,5&6 90% 

Model 6 0.01, 0.1, 

0.3, 0.5 

&0.9 

0, 0.25, 0.5 

& 0.75 

1 2,3,4,5&6 90% 

Model 7 0.01, 0.1, 

0.3, 0.5 

&0.9 

0, 0.25, 0.5 

& 0.75 

1 2,3,4,5&6 90% 

Model 8 0.01, 0.1, 

0.3, 0.5 

&0.9 

0, 0.25, 0.5 

& 0.75 

1 2,3,4,5&6 90% 
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Based on the experiments, the suitable parameters for models 2 to 8 are presented in 

Table 4.5 below. And for the parameters testing for model 2 to model 8, each of 

mode also has 100 combinations of attributes need to test like Figure 4.1 shown. The 

experimental results (parameters testing) for Model 2 to Model 8 are shown in 

Appendix B to H. 

 

Table 4.5  

Best parameters for Models 2 to 8 

Models Learning 

rate 

Momentum Hidden layer Hidden nodes 

Model 2 

(6 attributes) 
0.1 0.75 1 5 

Model 3 

(6 attributes) 
0.5 0.25 1 5 

Model 4 

(6 attributes) 
0.01 0.75 1 5 

Model 5 

(7 attributes) 
0.01 0.25 1 3 

Model 6 

(7 attributes) 
0.01 0.5 1 4 

Model 7 

(7 attributes) 
0.1 0.75 1 5 

Model 8 

(8 attributes) 
0.1 0 1 6 
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4.4 Deliverables for objective 4 

The purpose of the fourth objective is to determine an ANN architecture.  

 

Figure 4.2 shows the main architecture. Based on the main architecture, 8 different 

architectures were obtained from using the combination of 5 basic attributes (cement, 

water, fine aggregate, coarse aggregate and age) with different additional attributes 

(fly ash, blast furnace slag or super plasticizer).  

 

 

Figure 4.2: The main architecture for the study 

 

From Figure 4.2, there are 8 attributes as inputs in total (5 are basic attributes and 3 

are additional attributes) for compressive concrete strength prediction. There are 6 

hidden nodes because the maximum number of hidden nodes is 6. It has 1 output 

which is the compressive strength of concrete.  
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Based on Table 4.3 and Table 4.5, the ANN architectures of all the 8 prediction 

models are shown as below (Figure 4.3 to Figure 4.10). 

 

 

Figure 4.3: The ANN architecture for Model 1 

 

In Figure 4.3, the parameters of model 1 are learning rate equal to 0.1 and 

momentum equal to 0.75. 
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Figure 4.4: The ANN architecture for Model 2 

 

In Figure 4.4, the parameters of model 2 are learning rate equal to 0.5 and 

momentum equal to 0.25. 

 

 

Figure 4.5: The ANN architecture of Model 3 

 

Figure 4.5 is the architecture of model 3, and the parameters that learning rate equal 

to 0.01 and momentum equal to 0.75. 
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Figure 4.6: The ANN architecture of Model 4 

 

Figure 4.6 shows the ANN architecture for model 4. The parameters in this 

architecture are learning rate 0.01 and momentum 0.25. 

 

 

Figure 4.7: The ANN architecture for Model 5 

 

In Figure 4.7, the parameters of model 5 are learning rate equal to 0.01 and 
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momentum equal to 0.5. 

 

 

Figure 4.8: The ANN architecture for Model 6 

Figure 4.8 gives the information about the ANN architecture of model 6. The 

parameters of model 6 are learning rate equal to 0.1 and 0.75. 

 

Figure 4.9: The ANN architecture for Model 7 

 

Figure 4.9 shows the ANN architecture of model 7, and the parameters in model 7 
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are learning rate equal to 0.1 and momentum equal to 0. 

 

 

Figure 4.10: The ANN architecture of model 8 

 

In Figure 4.10, it shows the ANN architecture for model 8. In model 8, the final 

parameters are learning rate equal to 0.1 and momentum equal to 0.5. 

 

4.5 Summary 

This chapter presents the deliverables for objective 1, 2, 3 and 4. The main output, 

which is the compressive concrete strength prediction model is presented in Chapter 

5. The performance evaluation results of the model is also shown in Chapter 5, 

section 5.2 and 5.3. 
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CHAPTER FIVE 

EVALUATION AND DISCUSSION 

 

This chapter consists of two parts. The first part presents the 8 prediction models 

while the second part shows the evaluation results and discussion.   

 

5.1 Prediction models 

 

As mentioned in Chapter 3, eight prediction models were constructed based on 8 

combinations of attributes. The models are listed in Table 5.1.The parameters that are 

suitable for each model are also shown in the Table 5.1: 

 

Table 5.1  

8 prediction models and parameters 

Models Learning rate Momentum Hidden layer Hidden nodes 

Model 1 

(5 attributes) 
0.1 0.75 1 5 

Model 2 

(6 attributes) 
0.5 0.25 1 5 

Model 3 

(6 attributes) 
0.01 0.75 1 5 

Model 4 

(6 attributes) 
0.01 0.25 1 3 

Model 5 

(7 attributes) 
0.01 0.5 1 4 
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Model 6 

(7 attributes) 
0.1 0.75 1 5 

Model 7 

(7 attributes) 
0.1 0 1 6 

Model 8 

(8 attributes) 
0.1 0.5 1 2 

 

5.2 Evaluation Results and Discussion 

The prediction models were evaluated based on correlation coefficient (R), mean 

absolute error (MAE) and root mean square error (RMSE). Table 5.2 shows the 

results: 

 

Table 5.2  

Evaluation results 

No. of Models R MAE RMSE TT 

Model 1 0.9658 2.4902 3.5597 0.90 

Model 2 0.9690 2.2398 2.8786 0.99 

Model 3 0.9655 2.6267 3.4045 1.01 

Model 4 0.9781 1.9613 2.5950 0.64 

Model 5 0.9585 3.2410 3.8710 0.86 

Model 6 0.9634 3.3257 3.9412 1.02 

Model 7 0.9414 4.7335 7.1735 1.21 

Model 8 0.9492 5.1556 6.1640 0.53 

 

Figure5 .1 shows the results in graphical form. 
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Figure 5.1: Correlation coefficient of 8 models 

 

Table 5.1 shows the most suitable sets of parameters for each of 8 prediction models, 

it includes learning rate, momentum and number of hidden nodes. The statistical 

performance measures of correlation coefficient, mean absolute error and root mean 

square error were used to judge the parameters in each of 8 models. Table 5.2 gives 

the best results (R, MAE and RMSE) of each model. It can be observed that ANN 

performs better with correlation coefficient in the range of 0.9414 to 0.9781, lower 

mean absolute error in the range of 1.9613 to 5.1556 Mpa and the lower root mean 

square error in the range of 2.5950 to 7.1735 Mpa. 

 

Table 5.2 and Figure 5.1 show the values of correlation coefficient for 8 models, and 

each model has different combinations of attributes. From these results, model 1, 

which used 5 basic attributes (cement, water, fine aggregate, coarse aggregate and 
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age) achieved quite good results (correlation coefficient equal to 0.9658). Model 2 

with 5 basic attributes + one additional attribute (fly ash) and model 4 with 5 basic 

attributes + one additional attribute (super plasticizer) obtained better results than 

model 1. This indicates that when additional attributes such as fly ash or super 

plasticizer were used to predict compressive concrete strength, the value of 

correlation coefficient increases.  

 

Model 4 achieved the best results (highest value of correlation coefficient) among the 

8 models. However, model 5 (5 basic attributes + two additional attributes fly ash 

and blast furnace slag), model 6 (5 basic attributes + two additional attributes fly ash 

and super plasticizer), model 7 (5 basic attributes + two additional attributes blast 

furnace slag and super plasticizer), and model 8 (5 basic attributes + three additional 

attributes fly ash, blast furnace slag and super plasticizer) obtained lower results than 

model 1. However, from the results, all values of correlation coefficient are more 

than 0.94. These models are considered as good and are acceptable because value of 

correlation coefficient that is more than 0.9, which means that the relationship 

between predict value and actual value are close (Wankhade & Kambekar, 2013).  

 

Model 7 obtained the lowest correlation coefficient (0.9414). For model 3 which 

used 5 basic attributes + one additional attribute blast furnace slag to predict 

compressive concrete strength, it achieved that the value of correlation coefficient 

equal to 0.9655, this result is near to the result of model 1 (R=0.9658).  
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For MAE and RMSE, the lower the values, the better is the result. According to 

Moriasi et al. (2007), if the value of MAE and RMSE is zero, it means that the result 

or work is perfect, the accuracy will be 100% and correlation coefficient will be1. 

 

 

Figure 5.2: MAE and RMSE of 8 models 

 

Figure 5.2 shows the bar chart for the mean absolute error (MAE) and root mean 

square error (RMSE) of each model. MAE and RMSE are another two statistical 

measures for judging these 8 prediction models. Based on Table 5.2 and Figure 5.2, 

two lowest MAE and RMSE values come from Model 2 and 4. The results of Model 

3 are close to Model 1. Model 5, 6, 7 and 8 obtained the higher MAE and RMSE 

values than the basic model. These two statistical performance measures also proved 

that when adding super plasticizer or fly ash into the basic model (model 1), the 

model could achieve better correlation coefficient.   
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According to Kattan (2011), a model can achieved achieved different results 

(correlation coefficient, mean absolute error and root mean square error) because of 

three possible reasons. First, the attributes are different from each model, thus giving 

different results. Second, for each model is different (different ANN architectures). 

Each model has a different learning rate, momentum and number of hidden nodes, 

recording to different results. Third, different training algorithms could also give 

different results. But, in this study, all of the 8 prediction models used the same 

training algorithm (Back propagation) and the same number of hidden layers (1). 

Thus, the main reasons influence the results of this study are different attributes of 

datasets and different ANN prediction architectures. 

 

Figure 5.3 to Figure 5.10 are line charts that compare predicted value with the actual 

value in this study. 

 

Figure 5.3: Comparison for Model 1 
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Figure 5.4: Comparison for Model 2 

 

 

Figure 5.5: Comparison for Model 3 
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Figure 5.6: Comparison for Model 4 

 

 

Figure 5.7: Comparison for Model 5 
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Figure 5.8: Comparison for Model 6 

 

 

Figure 5.9: Comparison for Model 7 
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Figure 5.10: Comparison for Model 8 

 

From these figures, it can be seen that the predicted values and the actual values are 

close together indicating that the models predicted well. The errors are close to 0 

which also indicates that the models are good.  

 

Based on the testing results and discussion above, predicting compressive concrete 

strength of concrete using different combinations of attributes (5 basic attributes + 

additional attributes) are acceptable. Even though each of these 8 models obtained 

different results, all the results are considered as good because the R values are more 

than 0.94. It also proved that the additional attributes (fly ash, super plasticizer and 

blast furnace slag) have some influence on the prediction models. In other words, the 

additional attributes can improve the values of correlation coefficient, and decrease 

the mean absolute error and root mean square error of the prediction models. 
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5.3 Comparison with past work 

 

Model 8 were compared with the model by Wankhade & Kambekar (2013). In their 

study, they used the same attributes (cement, water, age, fine aggregate, coarse 

aggregate, fly ash, super plasticizer and blast furnace slag) but with different 

parameters. The parameters used by them were 0.9 (learning rate), 0.01(momentum ), 

1 (hidden layer) and 17 (hidden nodes).  

 

Wankhade's work separated his dataset into 8 groups for different ages (days). In his 

work, he mentioned that prediction of compressive concrete strength at 28 days is 

more important for carrying out construction activities, thus, Wankhade used 28 days 

data to predict compressive concrete strength. This study only chose the data for 28 

days from Dataset 8 and used the same parameters of model 8 to compare with 

Wankhade's work. 

 

The comparison results are as shown in Table 5.3. 

 

 

 

 

 

 



 

76 
 

Table 5.3  

The comparison with past work for 28 days 

NAMES r m Hidden 

layer 

Hidden 

nodes 

Percentage 

Split 

R MAE RMSE 

Wankhade's 

Work 

0.9 0.01 1 17 90% 0.9526 4.1347 4.3864 

Model 8 in 

this study 

0.1 0.5 1 2 90% 0.9730 3.1417 3.4516 

 

Based on Table 5.3, the testing results of model 8 are better than Wankhade's work. 

This is because model 8 used different set of parameters which are learning rate = 0.1, 

momentum = 0.5 and hidden nodes = 2 for predicting compressive concrete strength. 

The work of Wankhade achieved 0.9526 for R, 4.1347for MAE and 4.3864 for 

RMSE. Model 8 achieved better results i.e R = 0.9730, MAE = 3.1417 and RMSE = 

3.4516. 

 

Therefore, Table 5.3 proved that the architecture (include parameters) of model 8 

could produce a better compressive concrete strength prediction model. It also 

proved that parameters are one of the most important elements for prediction; the 

reason is that different sets of parameters would achieve different results. 

 

5.3 Summary 

This chapter shows the evaluation results of all 8 compressive concrete strength 

prediction models. It also discusses reasons for obtaining such results. This study 
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also compared model 8 with an existing compressive concrete strength prediction 

work.  Model 8 of this study performed better than the existing work.   
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CHAPTER SIX 

CONCLUSION 

6.1 Work summary 

This study aims to construct a compressive concrete strength prediction model based 

on 8 selected attributes.  The attributes were cement fine aggregate, coarse 

aggregate, water, age, fly ash, blast furnace slag and super plasticizer. The objectives 

were to (i) identify the basic attributes that can predict compressive strength of 

concrete with good correlation coefficient; (ii) identify additional attributes that can 

be used to predict concrete strength with good correlation coefficient; (iii) determine 

the parameters for weights, learning rate, momentum factor and numbers of hidden 

nodes, and (iv) design a general ANN architecture for predicting compressive 

strength of concrete and construct a compressive concrete strength prediction model. 

 

The study has successfully accomplished all objectives. The summary of results is as 

follows: 

 

Objective 1:  Five basics attributes were identified and the attributes are presented 

in Chapter 4, section 4.1. 

Objective 2:  Three additional attributes were identified and shown in Chapter 4, 

section 4.2. 

Objective 3:  The parameters chosen for 8 different prediction models were 

obtained through several experiments. These parameters are presented in Chapter 4, 
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section 4.3. 

Objective 4:  The ANN architecture were produced and shown in Chapter 4, section 

4.4. The prediction models are constructed and presented in Chapter 5, section 5.1. 

Evaluation results are shown in Chapter 5, section 5.2 and 5.3.   

 

On overall, a prediction model from this study (model 8) was compared with an 

existing work by Wankhade & Kambekar (2013). The Model 8 produced by this 

study showed better results (prediction of compressive concrete strength at 28 days) 

than the model produced by Wankhade &Kambekar (2013). 

 

6.2 Contribution 

This study made several contributions: 

 Used additional prediction attributes:  Most study used five attributes to 

construct the compressive concrete strength prediction model.  However, 

this study attempted to include three more attributes in constructing the 

prediction model. Good results were obtained when these additional attributes 

were incorporated to the basic prediction model.   

 Parameters for learning rate, weights, momentum, hidden layer, and hidden 

nodes:  This study has successfully identified different parameters for each 

eight prediction models.  When tested using these parameters, good results 

were obtained. 

 Better prediction results: the prediction model (Model 8) showed better 
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results (prediction of compressive concrete strength at 28 days) than the 

model by Wankhade & Kambekar (2013). 

 

6.3 Future works 

This work determined 5 basic attributes and 3 additional attributes for predicting 

compressive concrete strength. In order to improve the work several suggestions are 

listed below: 

 

 Include more extra attributes so that the model can be more robust. 

 Develop new architectures and determine new parameters (learning rate, 

momentum etc.). 

 Implement the concrete strength prediction model using computer language such 

as C-sharp, Java or others so that the application can be used in many platforms. 
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APPENDICES 

Appendix A. Sample of Raw Dataset 

Table 8.1 50 Samples of Dataset 1 

Cement 

(component 

1)(kg in a m^3 

mixture) 

Water  

(component 

4)(kg in a m^3 

mixture) 

Coarse Aggregate  

(component 6)(kg 

in a m^3 mixture) 

Fine Aggregate 

(component 7)(kg 

in a m^3 mixture) 

Age 

(day) 

Concrete 

compressive 

strength(MPa, 

megapascals) 

475.0 228.0 932.0 594.0 28 39.29 

380.0 228.0 932.0 670.0 90 52.91 

475.0 228.0 932.0 594.0 180 42.62 

380.0 228.0 932.0 670.0 365 52.52 

380.0 228.0 932.0 670.0 270 53.30 

475.0 228.0 932.0 594.0 7 38.60 

475.0 228.0 932.0 594.0 270 42.13 

475.0 228.0 932.0 594.0 90 42.23 

380.0 228.0 932.0 670.0 180 53.10 

349.0 192.0 1047.0 806.9 3 15.05 

475.0 228.0 932.0 594.0 365 41.93 

310.0 192.0 971.0 850.6 3 9.87 

485.0 146.0 1120.0 800.0 28 71.99 

376.0 214.6 1003.5 762.4 3 16.28 

376.0 214.6 1003.5 762.4 14 25.62 

376.0 214.6 1003.5 762.4 28 31.97 

376.0 214.6 1003.5 762.4 56 36.30 

376.0 214.6 1003.5 762.4 100 43.06 

405.0 175.0 1120.0 695.0 28 52.30 

436.0 218.0 838.4 719.7 28 23.85 

289.0 192.0 913.2 895.3 90 32.07 

289.0 192.0 913.2 895.3 3 11.65 

393.0 192.0 940.6 785.6 3 19.20 
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393.0 192.0 940.6 785.6 90 48.85 

393.0 192.0 940.6 785.6 28 39.60 

480.0 192.0 936.2 712.2 28 43.94 

480.0 192.0 936.2 712.2 7 34.57 

480.0 192.0 936.2 712.2 90 54.32 

480.0 192.0 936.2 712.2 3 24.40 

333.0 192.0 931.2 842.6 3 15.62 

255.0 192.0 889.8 945.0 90 21.86 

255.0 192.0 889.8 945.0 7 10.22 

289.0 192.0 913.2 895.3 7 14.60 

255.0 192.0 889.8 945.0 28 18.75 

333.0 192.0 931.2 842.6 28 31.97 

333.0 192.0 931.2 842.6 7 23.40 

289.0 192.0 913.2 895.3 28 25.57 

333.0 192.0 931.2 842.6 90 41.68 

393.0 192.0 940.6 785.6 7 27.74 

255.0 192.0 889.8 945.0 3 8.20 

397.0 185.7 1040.6 734.3 28 33.08 

382.5 185.7 1047.8 739.3 7 24.07 

295.8 185.7 1091.4 769.3 7 14.84 

397.0 185.7 1040.6 734.3 7 25.45 

381.4 185.7 1104.6 784.3 28 22.49 

295.8 185.7 1091.4 769.3 28 25.22 

238.1 185.7 1118.8 789.3 28 17.58 

339.2 185.7 1069.2 754.3 7 21.18 

381.4 185.7 1104.6 784.3 7 14.54 

339.2 185.7 1069.2 754.3 28 31.90 
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Table 8.2 50 Samples of Dataset 2 

 

Cement 

(component 

1)(kg in a 

m^3 mixture) 

Fly Ash 

(component 

3)(kg in a 

m^3 mixture) 

Water  

(component 

4)(kg in a 

m^3 mixture) 

Coarse 

Aggregate  

(component 

6)(kg in a m^3 

mixture) 

Fine 

Aggregate 

(component 

7)(kg in a m^3 

mixture) 

Age 

(day) 

Concrete 

compressive 

strength(MPa, 

megapascals) 

475.0 0.0 228.0 932.0 594.0 28 39.29 

380.0 0.0 228.0 932.0 670.0 90 52.91 

475.0 0.0 228.0 932.0 594.0 180 42.62 

380.0 0.0 228.0 932.0 670.0 270 53.30 

475.0 0.0 228.0 932.0 594.0 7 38.60 

475.0 0.0 228.0 932.0 594.0 270 42.13 

475.0 0.0 228.0 932.0 594.0 90 42.23 

380.0 0.0 228.0 932.0 670.0 180 53.10 

349.0 0.0 192.0 1047.0 806.9 3 15.05 

475.0 0.0 228.0 932.0 594.0 365 41.93 

310.0 0.0 192.0 971.0 850.6 3 9.87 

485.0 0.0 146.0 1120.0 800.0 28 71.99 

376.0 0.0 214.6 1003.5 762.4 3 16.28 

376.0 0.0 214.6 1003.5 762.4 14 25.62 

376.0 0.0 214.6 1003.5 762.4 28 31.97 

376.0 0.0 214.6 1003.5 762.4 56 36.30 

376.0 0.0 214.6 1003.5 762.4 100 43.06 

505.0 60.0 195.0 1030.0 630.0 28 64.02 

405.0 0.0 175.0 1120.0 695.0 28 52.30 

165.0 143.6 163.8 1005.6 900.9 14 16.88 

165.0 143.6 163.8 1005.6 900.9 28 26.20 

165.0 143.6 163.8 1005.6 900.9 56 36.56 

165.0 143.6 163.8 1005.6 900.9 100 37.96 

436.0 0.0 218.0 838.4 719.7 28 23.85 
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289.0 0.0 192.0 913.2 895.3 90 32.07 

289.0 0.0 192.0 913.2 895.3 3 11.65 

393.0 0.0 192.0 940.6 785.6 3 19.20 

393.0 0.0 192.0 940.6 785.6 90 48.85 

393.0 0.0 192.0 940.6 785.6 28 39.60 

480.0 0.0 192.0 936.2 712.2 28 43.94 

480.0 0.0 192.0 936.2 712.2 7 34.57 

480.0 0.0 192.0 936.2 712.2 90 54.32 

480.0 0.0 192.0 936.2 712.2 3 24.40 

333.0 0.0 192.0 931.2 842.6 3 15.62 

255.0 0.0 192.0 889.8 945.0 90 21.86 

255.0 0.0 192.0 889.8 945.0 7 10.22 

289.0 0.0 192.0 913.2 895.3 7 14.60 

255.0 0.0 192.0 889.8 945.0 28 18.75 

333.0 0.0 192.0 931.2 842.6 28 31.97 

333.0 0.0 192.0 931.2 842.6 7 23.40 

289.0 0.0 192.0 913.2 895.3 28 25.57 

333.0 0.0 192.0 931.2 842.6 90 41.68 

393.0 0.0 192.0 940.6 785.6 7 27.74 

255.0 0.0 192.0 889.8 945.0 3 8.20 

397.0 0.0 185.7 1040.6 734.3 28 33.08 

382.5 0.0 185.7 1047.8 739.3 7 24.07 

295.8 0.0 185.7 1091.4 769.3 7 14.84 

397.0 0.0 185.7 1040.6 734.3 7 25.45 

381.4 0.0 185.7 1104.6 784.3 28 22.49 

295.8 0.0 185.7 1091.4 769.3 28 25.22 
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Table 8.3 50 Samples of Dataset 3 

Cement 

(component 

1)(kg in a 

m^3 mixture) 

Blast Furnace 

Slag 

(component 

2)(kg in a m^3 

mixture) 

Water  

(component 

4)(kg in a 

m^3 mixture) 

Coarse 

Aggregate  

(component 

6)(kg in a m^3 

mixture) 

Fine 

Aggregate 

(component 

7)(kg in a m^3 

mixture) 

Age 

(day) 

Concrete 

compressive 

strength(MPa, 

megapascals) 

332.5 142.5 228.0 932.0 594.0 270 40.27 

332.5 142.5 228.0 932.0 594.0 365 41.05 

198.6 132.4 192.0 978.4 825.5 360 44.30 

475.0 0.0 228.0 932.0 594.0 28 39.29 

198.6 132.4 192.0 978.4 825.5 90 38.07 

198.6 132.4 192.0 978.4 825.5 28 28.02 

427.5 47.5 228.0 932.0 594.0 270 43.01 

190.0 190.0 228.0 932.0 670.0 90 42.33 

304.0 76.0 228.0 932.0 670.0 28 47.81 

380.0 0.0 228.0 932.0 670.0 90 52.91 

266.0 114.0 228.0 932.0 670.0 365 52.91 

198.6 132.4 192.0 978.4 825.5 180 41.72 

475.0 0.0 228.0 932.0 594.0 270 42.13 

190.0 190.0 228.0 932.0 670.0 365 53.69 

237.5 237.5 228.0 932.0 594.0 270 38.41 

237.5 237.5 228.0 932.0 594.0 28 30.08 

427.5 47.5 228.0 932.0 594.0 7 35.08 

349.0 0.0 192.0 1047.0 806.9 3 15.05 

380.0 95.0 228.0 932.0 594.0 180 40.76 

237.5 237.5 228.0 932.0 594.0 7 26.26 

380.0 95.0 228.0 932.0 594.0 7 32.82 

332.5 142.5 228.0 932.0 594.0 180 39.78 

190.0 190.0 228.0 932.0 670.0 180 46.93 

237.5 237.5 228.0 932.0 594.0 90 33.12 

304.0 76.0 228.0 932.0 670.0 90 49.19 
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139.6 209.4 192.0 1047.0 806.9 7 14.59 

198.6 132.4 192.0 978.4 825.5 7 14.64 

475.0 0.0 228.0 932.0 594.0 365 41.93 

485.0 0.0 146.0 1120.0 800.0 28 71.99 

376.0 0.0 214.6 1003.5 762.4 100 43.06 

480.0 0.0 192.0 936.2 712.2 7 34.57 

480.0 0.0 192.0 936.2 712.2 90 54.32 

480.0 0.0 192.0 936.2 712.2 3 24.40 

333.0 0.0 192.0 931.2 842.6 3 15.62 

255.0 0.0 192.0 889.8 945.0 90 21.86 

255.0 0.0 192.0 889.8 945.0 7 10.22 

289.0 0.0 192.0 913.2 895.3 7 14.60 

255.0 0.0 192.0 889.8 945.0 28 18.75 

333.0 0.0 192.0 931.2 842.6 28 31.97 

333.0 0.0 192.0 931.2 842.6 7 23.40 

289.0 0.0 192.0 913.2 895.3 28 25.57 

333.0 0.0 192.0 931.2 842.6 90 41.68 

393.0 0.0 192.0 940.6 785.6 7 27.74 

255.0 0.0 192.0 889.8 945.0 3 8.20 

158.8 238.2 185.7 1040.6 734.3 7 9.62 

239.6 359.4 185.7 941.6 664.3 7 25.42 

238.2 158.8 185.7 1040.6 734.3 7 15.69 

239.6 359.4 185.7 941.6 664.3 28 39.44 

220.8 147.2 185.7 1055.0 744.3 28 25.75 

397.0 0.0 185.7 1040.6 734.3 28 33.08 
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Table 8.4 50 Samples of Dataset 4 

Cement 

(component 

1)(kg in a 

m^3 mixture) 

Water  

(component 

4)(kg in a 

m^3 mixture) 

Superplasticizer 

(component 5)(kg 

in a m^3 mixture) 

Coarse 

Aggregate  

(component 

6)(kg in a 

m^3 mixture) 

Fine 

Aggregate 

(component 

7)(kg in a 

m^3 mixture) 

Age 

(day) 

Concrete 

compressive 

strength(MPa, 

megapascals) 

540.0 162.0 2.5 1040.0 676.0 28 79.99 

540.0 162.0 2.5 1055.0 676.0 28 61.89 

475.0 228.0 0.0 932.0 594.0 28 39.29 

380.0 228.0 0.0 932.0 670.0 90 52.91 

475.0 228.0 0.0 932.0 594.0 180 42.62 

380.0 228.0 0.0 932.0 670.0 365 52.52 

380.0 228.0 0.0 932.0 670.0 270 53.30 

475.0 228.0 0.0 932.0 594.0 7 38.60 

475.0 228.0 0.0 932.0 594.0 270 42.13 

475.0 228.0 0.0 932.0 594.0 90 42.23 

380.0 228.0 0.0 932.0 670.0 180 53.10 

349.0 192.0 0.0 1047.0 806.9 3 15.05 

475.0 228.0 0.0 932.0 594.0 365 41.93 

310.0 192.0 0.0 971.0 850.6 3 9.87 

485.0 146.0 0.0 1120.0 800.0 28 71.99 

531.3 141.8 28.2 852.1 893.7 3 41.30 

531.3 141.8 28.2 852.1 893.7 7 46.90 

531.3 141.8 28.2 852.1 893.7 28 56.40 

531.3 141.8 28.2 852.1 893.7 56 58.80 

531.3 141.8 28.2 852.1 893.7 91 59.20 

376.0 214.6 0.0 1003.5 762.4 3 16.28 

376.0 214.6 0.0 1003.5 762.4 14 25.62 

376.0 214.6 0.0 1003.5 762.4 28 31.97 

376.0 214.6 0.0 1003.5 762.4 56 36.30 

376.0 214.6 0.0 1003.5 762.4 100 43.06 
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500.0 140.0 4.0 966.0 853.0 28 67.57 

451.0 165.0 11.3 1030.0 745.0 28 78.80 

516.0 162.0 8.2 801.0 802.0 28 41.37 

520.0 170.0 5.2 855.0 855.0 28 60.28 

528.0 185.0 6.9 920.0 720.0 28 56.83 

520.0 175.0 5.2 870.0 805.0 28 51.02 

500.1 200.0 3.0 1124.4 613.2 28 44.13 

405.0 175.0 0.0 1120.0 695.0 28 52.30 

516.0 162.0 8.3 801.0 802.0 28 41.37 

475.0 162.0 9.5 1044.0 662.0 28 58.52 

500.0 151.0 9.0 1033.0 655.0 28 69.84 

436.0 218.0 0.0 838.4 719.7 28 23.85 

289.0 192.0 0.0 913.2 895.3 90 32.07 

289.0 192.0 0.0 913.2 895.3 3 11.65 

393.0 192.0 0.0 940.6 785.6 3 19.20 

393.0 192.0 0.0 940.6 785.6 90 48.85 

393.0 192.0 0.0 940.6 785.6 28 39.60 

480.0 192.0 0.0 936.2 712.2 28 43.94 

480.0 192.0 0.0 936.2 712.2 7 34.57 

480.0 192.0 0.0 936.2 712.2 90 54.32 

480.0 192.0 0.0 936.2 712.2 3 24.40 

333.0 192.0 0.0 931.2 842.6 3 15.62 

255.0 192.0 0.0 889.8 945.0 90 21.86 

255.0 192.0 0.0 889.8 945.0 7 10.22 

289.0 192.0 0.0 913.2 895.3 7 14.60 
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Table 8.5 50 Samples of Dataset 5 

Cement 

(component 

1)(kg in a 

m^3 

mixture) 

Blast 

Furnace 

Slag 

(component 

2)(kg in a 

m^3 

mixture) 

Fly Ash 

(component 

3)(kg in a 

m^3 

mixture) 

Water  

(component 

4)(kg in a 

m^3 

mixture) 

Coarse 

Aggregate  

(component 

6)(kg in a 

m^3 

mixture) 

Fine 

Aggregate 

(component 

7)(kg in a 

m^3 

mixture) 

Age 

(day) 

Concrete 

compressive 

strength(MPa, 

megapascals) 

332.5  142.5  0.0  228.0  932.0  594.0  270  40.27  

332.5  142.5  0.0  228.0  932.0  594.0  365  41.05  

198.6  132.4  0.0  192.0  978.4  825.5  360  44.30  

266.0  114.0  0.0  228.0  932.0  670.0  90  47.03  

380.0  95.0  0.0  228.0  932.0  594.0  365  43.70  

380.0  95.0  0.0  228.0  932.0  594.0  28  36.45  

139.6  209.4  0.0  192.0  1047.0  806.9  90  39.36  

342.0  38.0  0.0  228.0  932.0  670.0  365  56.14  

380.0  95.0  0.0  228.0  932.0  594.0  90  40.56  

475.0  0.0  0.0  228.0  932.0  594.0  180  42.62  

427.5  47.5  0.0  228.0  932.0  594.0  28  37.43  

475.0  0.0  0.0  228.0  932.0  594.0  7  38.60  

304.0  76.0  0.0  228.0  932.0  670.0  365  55.26  

266.0  114.0  0.0  228.0  932.0  670.0  365  52.91  

198.6  132.4  0.0  192.0  978.4  825.5  180  41.72  

475.0  0.0  0.0  228.0  932.0  594.0  270  42.13  

190.0  190.0  0.0  228.0  932.0  670.0  365  53.69  

237.5  237.5  0.0  228.0  932.0  594.0  270  38.41  

237.5  237.5  0.0  228.0  932.0  594.0  28  30.08  

237.5  237.5  0.0  228.0  932.0  594.0  180  36.25  

342.0  38.0  0.0  228.0  932.0  670.0  90  50.46  

427.5  47.5  0.0  228.0  932.0  594.0  365  43.70  

237.5  237.5  0.0  228.0  932.0  594.0  365  39.00  

380.0  0.0  0.0  228.0  932.0  670.0  180  53.10  
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427.5  47.5  0.0  228.0  932.0  594.0  90  41.54  

139.6  209.4  0.0  192.0  1047.0  806.9  7  14.59  

198.6  132.4  0.0  192.0  978.4  825.5  7  14.64  

475.0  0.0  0.0  228.0  932.0  594.0  365  41.93  

198.6  132.4  0.0  192.0  978.4  825.5  3  9.13  

304.0  76.0  0.0  228.0  932.0  670.0  180  50.95  

332.5  142.5  0.0  228.0  932.0  594.0  28  33.02  

304.0  76.0  0.0  228.0  932.0  670.0  270  54.38  

266.0  114.0  0.0  228.0  932.0  670.0  270  51.73  

310.0  0.0  0.0  192.0  971.0  850.6  3  9.87  

190.0  190.0  0.0  228.0  932.0  670.0  270  50.66  

266.0  114.0  0.0  228.0  932.0  670.0  180  48.70  

342.0  38.0  0.0  228.0  932.0  670.0  270  55.06  

376.0  0.0  0.0  214.6  1003.5  762.4  100  43.06  

505.0  0.0  60.0  195.0  1030.0  630.0  28  64.02  

405.0  0.0  0.0  175.0  1120.0  695.0  28  52.30  

200.0  200.0  0.0  190.0  1145.0  660.0  28  49.25  

165.0  0.0  143.6  163.8  1005.6  900.9  14  16.88  

165.0  0.0  143.6  163.8  1005.6  900.9  28  26.20  

165.0  0.0  143.6  163.8  1005.6  900.9  56  36.56  

165.0  0.0  143.6  163.8  1005.6  900.9  100  37.96  

436.0  0.0  0.0  218.0  838.4  719.7  28  23.85  

289.0  0.0  0.0  192.0  913.2  895.3  90  32.07  

289.0  0.0  0.0  192.0  913.2  895.3  3  11.65  

393.0  0.0  0.0  192.0  940.6  785.6  3  19.20  

289.0  0.0  0.0  192.0  913.2  895.3  7  14.60  
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Table 8.6 50 Samples of Dataset 6 

Cement 

(componen

t 1)(kg in a 

m^3 

mixture) 

Fly Ash 

(componen

t 3)(kg in a 

m^3 

mixture) 

Water  

(componen

t 4)(kg in a 

m^3 

mixture) 

Superplasticize

r (component 

5)(kg in a m^3 

mixture) 

Coarse 

Aggregate  

(componen

t 6)(kg in a 

m^3 

mixture) 

Fine 

Aggregate 

(componen

t 7)(kg in a 

m^3 

mixture) 

Age 

(day

) 

Concrete 

compressive 

strength(MPa

, 

megapascals) 

540.0 0.0 162.0 2.5 1040.0 676.0 28 79.99 

540.0 0.0 162.0 2.5 1055.0 676.0 28 61.89 

475.0 0.0 228.0 0.0 932.0 594.0 28 39.29 

475.0 0.0 228.0 0.0 932.0 594.0 270 42.13 

475.0 0.0 228.0 0.0 932.0 594.0 90 42.23 

380.0 0.0 228.0 0.0 932.0 670.0 180 53.10 

349.0 0.0 192.0 0.0 1047.0 806.9 3 15.05 

475.0 0.0 228.0 0.0 932.0 594.0 365 41.93 

531.3 0.0 141.8 28.2 852.1 893.7 28 56.40 

531.3 0.0 141.8 28.2 852.1 893.7 56 58.80 

531.3 0.0 141.8 28.2 852.1 893.7 91 59.20 

222.4 96.7 189.3 4.5 967.1 870.3 3 11.58 

222.4 96.7 189.3 4.5 967.1 870.3 14 24.45 

222.4 96.7 189.3 4.5 967.1 870.3 28 24.89 

222.4 96.7 189.3 4.5 967.1 870.3 56 29.45 

194.7 100.5 165.6 7.5 1006.4 905.9 100 37.34 

190.7 125.4 162.1 7.8 1090.0 804.0 3 15.04 

212.1 121.6 180.3 5.7 1057.6 779.3 28 24.90 

212.1 121.6 180.3 5.7 1057.6 779.3 56 34.20 

212.1 121.6 180.3 5.7 1057.6 779.3 100 39.61 

230.0 118.3 195.5 4.6 1029.4 758.6 3 10.03 

230.0 118.3 195.5 4.6 1029.4 758.6 14 20.08 

230.0 118.3 195.5 4.6 1029.4 758.6 28 24.48 

230.0 118.3 195.5 4.6 1029.4 758.6 56 31.54 
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166.1 163.3 176.5 4.5 1058.6 780.1 3 10.76 

166.1 163.3 176.5 4.5 1058.6 780.1 14 25.48 

166.1 163.3 176.5 4.5 1058.6 780.1 28 21.54 

166.1 163.3 176.5 4.5 1058.6 780.1 56 28.63 

166.1 163.3 176.5 4.5 1058.6 780.1 100 33.54 

238.1 94.1 186.7 7.0 949.9 847.0 3 19.93 

238.1 94.1 186.7 7.0 949.9 847.0 14 25.69 

238.1 94.1 186.7 7.0 949.9 847.0 28 30.23 

238.1 94.1 186.7 7.0 949.9 847.0 56 39.59 

238.1 94.1 186.7 7.0 949.9 847.0 100 44.30 

250.0 95.7 187.4 5.5 956.9 861.2 3 13.82 

250.0 95.7 187.4 5.5 956.9 861.2 14 24.92 

250.0 95.7 187.4 5.5 956.9 861.2 28 29.22 

250.0 95.7 187.4 5.5 956.9 861.2 56 38.33 

250.0 95.7 187.4 5.5 956.9 861.2 100 42.35 

212.5 100.4 159.3 8.7 1007.8 903.6 3 13.54 

212.5 100.4 159.3 8.7 1007.8 903.6 14 26.31 

212.5 100.4 159.3 8.7 1007.8 903.6 28 31.64 

212.6 100.4 159.4 10.4 1003.8 903.8 100 47.74 

212.0 124.8 159.0 7.8 1085.4 799.5 3 19.52 

212.0 124.8 159.0 7.8 1085.4 799.5 14 31.35 

231.8 121.6 174.0 6.7 1056.4 778.5 14 26.77 

231.8 121.6 174.0 6.7 1056.4 778.5 28 33.73 

231.8 121.6 174.0 6.7 1056.4 778.5 56 42.70 

251.4 118.3 188.5 6.4 1028.4 757.7 56 36.64 

251.4 118.3 188.5 6.4 1028.4 757.7 100 44.21 
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Table 8.7 50 Samples of Dataset 7 

Cement 

(componen

t 1)(kg in a 

m^3 

mixture) 

Blast 

Furnace 

Slag 

(componen

t 2)(kg in a 

m^3 

mixture) 

Water  

(componen

t 4)(kg in a 

m^3 

mixture) 

Superplasticize

r (component 

5)(kg in a m^3 

mixture) 

Coarse 

Aggregate  

(componen

t 6)(kg in a 

m^3 

mixture) 

Fine 

Aggregate 

(componen

t 7)(kg in a 

m^3 

mixture) 

Age 

(day

) 

Concrete 

compressive 

strength(MPa

, 

megapascals) 

540.0  0.0  162.0  2.5  1040.0  676.0  28  79.99  

540.0  0.0  162.0  2.5  1055.0  676.0  28  61.89  

332.5  142.5  228.0  0.0  932.0  594.0  270  40.27  

332.5  142.5  228.0  0.0  932.0  594.0  365  41.05  

198.6  132.4  192.0  0.0  978.4  825.5  360  44.30  

266.0  114.0  228.0  0.0  932.0  670.0  90  47.03  

266.0  114.0  228.0  0.0  932.0  670.0  28  45.85  

475.0  0.0  228.0  0.0  932.0  594.0  28  39.29  

198.6  132.4  192.0  0.0  978.4  825.5  90  38.07  

198.6  132.4  192.0  0.0  978.4  825.5  28  28.02  

427.5  47.5  228.0  0.0  932.0  594.0  270  43.01  

190.0  190.0  228.0  0.0  932.0  670.0  90  42.33  

304.0  76.0  228.0  0.0  932.0  670.0  28  47.81  

342.0  38.0  228.0  0.0  932.0  670.0  365  56.14  

380.0  95.0  228.0  0.0  932.0  594.0  90  40.56  

475.0  0.0  228.0  0.0  932.0  594.0  180  42.62  

427.5  47.5  228.0  0.0  932.0  594.0  180  41.84  

198.6  132.4  192.0  0.0  978.4  825.5  180  41.72  

475.0  0.0  228.0  0.0  932.0  594.0  270  42.13  

190.0  190.0  228.0  0.0  932.0  670.0  365  53.69  

237.5  237.5  228.0  0.0  932.0  594.0  270  38.41  

237.5  237.5  228.0  0.0  932.0  594.0  28  30.08  

342.0  38.0  228.0  0.0  932.0  670.0  90  50.46  

427.5  47.5  228.0  0.0  932.0  594.0  365  43.70  
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237.5  237.5  228.0  0.0  932.0  594.0  365  39.00  

380.0  0.0  228.0  0.0  932.0  670.0  180  53.10  

332.5  142.5  228.0  0.0  932.0  594.0  180  39.78  

190.0  190.0  228.0  0.0  932.0  670.0  180  46.93  

237.5  237.5  228.0  0.0  932.0  594.0  90  33.12  

266.0  114.0  228.0  0.0  932.0  670.0  180  48.70  

342.0  38.0  228.0  0.0  932.0  670.0  270  55.06  

139.6  209.4  192.0  0.0  1047.0  806.9  360  44.70  

425.0  106.3  151.4  18.6  936.0  803.7  3  36.30  

286.3  200.9  144.7  11.2  1004.6  803.7  3  24.40  

475.0  118.8  181.1  8.9  852.1  781.5  7  55.60  

469.0  117.2  137.8  32.2  852.1  840.5  7  54.90  

425.0  106.3  153.5  16.5  852.1  887.1  7  49.20  

388.6  97.1  157.9  12.1  852.1  925.7  7  34.90  

531.3  0.0  141.8  28.2  852.1  893.7  7  46.90  

425.0  106.3  153.5  16.5  852.1  887.1  7  49.20  

439.0  177.0  186.0  11.1  884.9  707.9  7  56.10  

337.9  189.0  174.9  9.5  944.7  755.8  28  49.90  

388.6  97.1  157.9  12.1  852.1  925.7  56  55.20  

531.3  0.0  141.8  28.2  852.1  893.7  56  58.80  

425.0  106.3  153.5  16.5  852.1  887.1  56  64.30  

318.8  212.5  155.7  14.3  852.1  880.4  56  66.10  

401.8  94.7  147.4  11.4  946.8  852.1  56  73.70  

362.6  189.0  164.9  11.6  944.7  755.8  91  79.30  

379.5  151.2  153.9  15.9  1134.3  605.0  91  56.50  

362.6  189.0  164.9  11.6  944.7  755.8  91  79.30  

 

 

 

 



 

102 
 

Table 8.8 50 Samples of Dataset 8 

Cement 

(compone

nt 1)(kg 

in a m^3 

mixture) 

Blast 

Furnace 

Slag 

(compone

nt 2)(kg 

in a m^3 

mixture) 

Fly Ash 

(compone

nt 3)(kg 

in a m^3 

mixture) 

Water  

(compone

nt 4)(kg 

in a m^3 

mixture) 

Superplastici

zer 

(component 

5)(kg in a 

m^3 

mixture) 

Coarse 

Aggregat

e  

(compone

nt 6)(kg 

in a m^3 

mixture) 

Fine 

Aggregat

e 

(compone

nt 7)(kg 

in a m^3 

mixture) 

Age 

(da

y) 

Concrete 

compressiv

e 

strength(M

Pa, 

megapascal

s) 

540.0 0.0 0.0 162.0 2.5 1040.0 676.0 28 79.99 

540.0 0.0 0.0 162.0 2.5 1055.0 676.0 28 61.89 

332.5 142.5 0.0 228.0 0.0 932.0 594.0 
27

0 
40.27 

332.5 142.5 0.0 228.0 0.0 932.0 594.0 
36

5 
41.05 

198.6 132.4 0.0 192.0 0.0 978.4 825.5 
36

0 
44.30 

266.0 114.0 0.0 228.0 0.0 932.0 670.0 90 47.03 

304.0 76.0 0.0 228.0 0.0 932.0 670.0 28 47.81 

380.0 0.0 0.0 228.0 0.0 932.0 670.0 90 52.91 

139.6 209.4 0.0 192.0 0.0 1047.0 806.9 90 39.36 

342.0 38.0 0.0 228.0 0.0 932.0 670.0 
36

5 
56.14 

380.0 95.0 0.0 228.0 0.0 932.0 594.0 90 40.56 

139.6 209.4 0.0 192.0 0.0 1047.0 806.9 3 8.06 

139.6 209.4 0.0 192.0 0.0 1047.0 806.9 
18

0 
44.21 

380.0 0.0 0.0 228.0 0.0 932.0 670.0 
36

5 
52.52 

380.0 0.0 0.0 228.0 0.0 932.0 670.0 
27

0 
53.30 

475.0 0.0 0.0 228.0 0.0 932.0 594.0 7 38.60 

304.0 76.0 0.0 228.0 0.0 932.0 670.0 36 55.26 
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5 

266.0 114.0 0.0 228.0 0.0 932.0 670.0 
36

5 
52.91 

237.5 237.5 0.0 228.0 0.0 932.0 594.0 28 30.08 

332.5 142.5 0.0 228.0 0.0 932.0 594.0 90 37.72 

475.0 0.0 0.0 228.0 0.0 932.0 594.0 90 42.23 

237.5 237.5 0.0 228.0 0.0 932.0 594.0 
18

0 
36.25 

342.0 38.0 0.0 228.0 0.0 932.0 670.0 90 50.46 

427.5 47.5 0.0 228.0 0.0 932.0 594.0 
36

5 
43.70 

237.5 237.5 0.0 228.0 0.0 932.0 594.0 
36

5 
39.00 

380.0 0.0 0.0 228.0 0.0 932.0 670.0 
18

0 
53.10 

427.5 47.5 0.0 228.0 0.0 932.0 594.0 90 41.54 

427.5 47.5 0.0 228.0 0.0 932.0 594.0 7 35.08 

349.0 0.0 0.0 192.0 0.0 1047.0 806.9 3 15.05 

332.5 142.5 0.0 228.0 0.0 932.0 594.0 
18

0 
39.78 

139.6 209.4 0.0 192.0 0.0 1047.0 806.9 7 14.59 

198.6 132.4 0.0 192.0 0.0 978.4 825.5 7 14.64 

475.0 0.0 0.0 228.0 0.0 932.0 594.0 
36

5 
41.93 

198.6 132.4 0.0 192.0 0.0 978.4 825.5 3 9.13 

304.0 76.0 0.0 228.0 0.0 932.0 670.0 
18

0 
50.95 

332.5 142.5 0.0 228.0 0.0 932.0 594.0 28 33.02 

190.0 190.0 0.0 228.0 0.0 932.0 670.0 27 50.66 
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0 

266.0 114.0 0.0 228.0 0.0 932.0 670.0 
18

0 
48.70 

342.0 38.0 0.0 228.0 0.0 932.0 670.0 
27

0 
55.06 

139.6 209.4 0.0 192.0 0.0 1047.0 806.9 
36

0 
44.70 

332.5 142.5 0.0 228.0 0.0 932.0 594.0 7 30.28 

190.0 190.0 0.0 228.0 0.0 932.0 670.0 28 40.86 

485.0 0.0 0.0 146.0 0.0 1120.0 800.0 28 71.99 

374.0 189.2 0.0 170.1 10.1 926.1 756.7 3 34.40 

313.3 262.2 0.0 175.5 8.6 1046.9 611.8 3 28.80 

425.0 106.3 0.0 153.5 16.5 852.1 887.1 3 33.40 

425.0 106.3 0.0 151.4 18.6 936.0 803.7 3 36.30 

323.7 282.8 0.0 183.8 10.3 942.7 659.9 3 28.30 

379.5 151.2 0.0 153.9 15.9 1134.3 605.0 3 28.60 

362.6 189.0 0.0 164.9 11.6 944.7 755.8 3 35.30 

 

Appendix B. Tables of testing parameters for Model 2 

 

Table 8.9 Parameters testing for Model 2 

Test 1: Hidden nodes = 2, momentum = 0 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.8947 0.9150 0.8826 0.8697 0.8577 

MAE 3.5464 3.3398 4.2231 5.3121 4.7976 

RMSE 5.1782 4.7411 5.8403 6.4966 6.3011 

TT 0.52 0.49 0.48 0.52 0.47 
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Test 2: Hidden nodes = 2, momentum = 0.25 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9007 0.9124 0.9079 0.8584 0.7635 

MAE 3.4832 3.4796 4.3330 6.5025 18.5923 

RMSE 5.0419 4.8960 5.5677 7.4516 20.1191 

TT 0.5 0.47 0.5 0.5 0.47 

 

Test 3: Hidden nodes = 2, momentum = 0.5 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9089 0.9057 0.8422 0.8935 0.2831 

MAE 3.3303 3.8415 4.4651 5.3692 12.3925 

RMSE 4.8398 5.2725 6.1108 7.1294 15.7901 

TT 0.49 0.49 0.48 0.47 0.49 

 

Test 4: Hidden nodes = 2, momentum = 0.75 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9176 0.8870 0.8915 0.6960 -0.2305 

MAE 3.1583 4.7141 5.0371 8.2613 27.8475 

RMSE 4.5924 6.1993 6.7898 9.6591 29.8496 

TT 0.48 0.49 0.48 0.47 0.5 

 

Test 5: Hidden nodes = 3, momentum = 0 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.8913 0.9017 0.8927 0.8938 0.9198 

MAE 3.5292 3.1916 3.8185 4.2863 3.2708 

RMSE 4.9660 4.7875 5.1597 5.5334 4.4942 

TT 0.66 0.67 0.68 0.7 0.64 
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Test 6: Hidden nodes = 3, momentum = 0.25  

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.8983 0.9027 0.8880 0.8342 0.7390 

MAE 3.3525 3.2281 4.6016 5.5137 6.9621 

RMSE 4.8090 4.7752 5.7101 7.9303 8.5623 

TT 0.67 0.66 0.66 0.64 0.66 

 

Test 7: Hidden nodes = 3, momentum = 0.5 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9025 0.9022 0.9233 0.8944 0.3316 

MAE 3.2109 3.4393 4.8092 4.9529 13.6598 

RMSE 4.7310 4.9325 6.0267 6.4508 16.8670 

TT 0.66 0.78 0.66 0.65 0.61 

 

Test 8: Hidden nodes = 3, momentum: = 0.75 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.8969 0.8815 0.9061 0.7760 -0.2570 

MAE 3.4411 4.4859 3.8121 6.6068 27.8475 

RMSE 4.9512 5.9246 5.2742 8.5125 29.8496 

TT 0.65 0.66 0.65 0.65 0.75 

 

Test 9: Hidden nodes = 4, momentum = 0 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.8825 0.9131 0.9069 0.9268 0.9141 

MAE 3.6946 3.0150 3.1059 3.0362 3.8048 

RMSE 5.1191 4.3984 4.7484 4.1726 4.6344 

TT 0.84 0.82 0.84 0.83 0.83 
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Test 10: Hidden nodes = 4, momentum = 0.25 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.8872 0.9077 0.9098 0.8903 0.2517 

MAE 3.6694 3.0994 3.0434 3.8227 10.5972 

RMSE 5.0125 4.5330 4.6330 4.9612 14.0669 

TT 0.83 0.83 0.83 0.83 0.83 

 

Test 11: Hidden nodes = 4, momentum = 0.5 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.8925 0.8985 0.8810 0.7366 0.3270 

MAE 3.6291 3.2846 4.2166 4.5487 10.6464 

RMSE 4.9128 4.7511 5.4169 7.7206 13.5994 

TT 0.84 0.83 0.83 0.83 0.79 

 

Test 12: Hidden nodes = 4, momentum = 0.75 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9029 0.9098 0.9208 0.7440 0.6604 

MAE 3.4847 4.1681 5.2170 6.4193 10.1964 

RMSE 4.7988 5.2616 6.2178 8.3268 12.6584 

TT 0.84 0.83 0.84 0.81 0.83 

 

Test 13: Hidden nodes = 5, momentum = 0 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.8777 0.9177 0.8959 0.9367 0.8658 

MAE 3.8340 2.9101 3.1885 2.4528 5.9052 

RMSE 5.2092 4.3820 4.8062 3.8427 7.5386 

TT 1.02 1.0 1.0 1.0 0.99 
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Test 14: Hidden nodes = 5, momentum = 0.25 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.8808 0.9194 0.9039 0.9690 0.7505 

MAE 3.7043 2.9241 3.0469 2.2398 6.0634 

RMSE 5.1694 4.3037 4.8103 2.8786 7.1472 

TT 1.01 0.99 0.99 0.99 0.97 

 

Test 15: Hidden nodes = 5, momentum = 0.5 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.8919 0.9249 0.8652 0.9104 0.3953 

MAE 3.4900 2.8335 4.7548 3.3617 13.3152 

RMSE 4.9932 4.1170 6.5505 4.5772 16.4282 

TT 1.0 0.99 1.01 1.0 0.98 

 

Test 16: Hidden nodes = 5, momentum = 0.75 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9068 0.9018 0.9132 0.7007 0.9345 

MAE 3.3330 3.4350 3.4435 8.4421 3.3723 

RMSE 4.6744 4.8375 4.7545 9.8090 4.5616 

TT 0.99 0.99 1.0 0.98 1.04 

 

Test 17: Hidden nodes = 6, momentum = 0 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.8906 0.9515 0.9178 0.9252 0.9188 

MAE 3.5529 2.3292 2.5949 2.6494 4.2623 

RMSE 4.9651 3.4281 4.2953 4.1177 4.8560 

TT 1.16 1.18 1.17 1.17 1.18 
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Test 18: Hidden nodes = 6, momentum = 0.25 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.8968 0.9252 0.9096 0.8834 0.7435 

MAE 3.3850 3.6624 2.7204 2.9959 7.4641 

RMSE 4.8218 5.0171 4.7518 5.8951 9.1404 

TT 1.19 1.16 1.16 1.16 1.18 

 

Test 19: Hidden nodes = 6, momentum = 0.5 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.8941 0.9471 0.9263 0.8838 0.7080 

MAE 3.4880 2.4966 3.0064 4.1150 14.7202 

RMSE 4.8873 3.8466 4.1545 5.7991 23.2614 

TT 1.15 1.16 1.16 1.17 1.15 

 

Test 20: Hidden nodes = 6, momentum = 0.75 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9112 0.9391 0.9148 -0.1542 -0.2571 

MAE 3.4540 2.8646 3.3110 9.3124 27.8495 

RMSE 4.6221 3.9225 4.5223 10.7491 29.8520 

TT 1.17 1.18 1.16 1.25 1.16 

 

Appendix C. Tables of testing parameters for Model 3 

 

Table8.10 Parameters testing for Model 3 

Test 1: Hidden nodes = 2, momentum = 0 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9151 0.9246 0.9307 0.9296 0.7643 

MAE 3.5466 3.5531 3.5948 3.8443 6.3633 

RMSE 4.7266 4.4888 4.3155 4.4540 8.6636 
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TT 0.52 0.47 0.48 0.49 0.48 

 

Test 2: Hidden nodes = 2, momentum = 0.25 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9218 0.9258 0.9374 0.9319 0.7456 

MAE 3.4168 3.6132 3.6481 3.8109 6.0130 

RMSE 4.5471 4.4385 4.4238 4.4400 8.1793 

TT 0.49 0.48 0.48 0.49 0.47 

 

Test 3: Hidden nodes = 2, momentum = 0.5 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9296 0.9271 0.9323 0.8448 0.5902 

MAE 3.2731 3.7300 3.9023 5.2440 11.7961 

RMSE 4.3278 4.4310 4.5745 7.3838 13.0151 

TT 0.49 0.48 0.47 0.49 0.48 

 

Test 4: Hidden nodes = 2, momentum = 0.75 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9373 0.9290 0.9136 0.6983 0.7735 

MAE 3.1169 3.9145 5.1526 18.3598 6.7165 

RMSE 4.1095 4.6690 6.2908 20.6185 8.8574 

TT 0.48 0.47 0.47 0.47 0.48 

 

Test 5: Hidden nodes = 3, momentum = 0 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9489 0.9442 0.9510 0.9222 0.7258 

MAE 2.9444 3.2401 2.6804 3.8037 7.4728 

RMSE 3.7952 3.9513 3.7193 4.6948 10.4331 

TT 0.63 0.64 0.64 0.63 0.65 
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Test 6: Hidden nodes = 3, momentum = 0.25  

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9521 0.9465 0.9462 0.9214 0.7434 

MAE 2.8401 3.2394 2.8226 3.8426 8.0265 

RMSE 3.6813 3.8956 3.9359 4.5798 10.9608 

TT 0.64 0.65 0.65 0.65 0.64 

 

Test 7: Hidden nodes = 3, momentum = 0.5 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9517 0.9557 0.9273 0.9053 0.1108 

MAE 2.8363 3.0981 3.1598 4.2424 11.4559 

RMSE 3.6774 3.5982 4.5195 5.2560 12.8390 

TT 0.64 0.64 0.65 0.63 0.63 

 

Test 8: Hidden nodes = 3, momentum = 0.75 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9500 0.9532 0.9089 0.9081 0.1323 

MAE 2.7782 3.2728 5.2774 6.3514 10.9816 

RMSE 3.7160 4.4456 6.4441 8.0717 12.4565 

TT 0.65 0.64 0.64 0.65 0.88 

 

Test 9: Hidden nodes = 4, momentum = 0 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9567 0.9511 0.9447 0.9403 0.7480 

MAE 2.8985 3.0162 3.1622 3.5322 7.5967 

RMSE 3.6416 3.7193 3.9746 4.3621 10.2088 

TT 0.8 0.8 0.82 0.82 0.82 
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Test 10: Hidden nodes = 4, momentum = 0.25 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9591 0.9497 0.9457 0.9306 0.5899 

MAE 2.9777 3.0481 3.1997 3.3255 13.2838 

RMSE 3.5761 3.7672 4.0048 4.4270 15.5897 

TT 0.86 0.82 0.83 0.83 0.83 

 

Test 11: Hidden nodes = 4, momentum = 0.5 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9586 0.9499 0.9494 0.9072 0.4777 

MAE 2.9823 3.0414 3.2022 4.1238 13.0222 

RMSE 3.5564 3.7844 3.9592 4.9642 15.4492 

TT 0.84 0.82 0.85 0.82 0.83 

 

Test 12: Hidden nodes = 4, momentum = 0.75 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9571 0.9538 0.8933 0.4064 0.0851 

MAE 2.7769 3.1651 4.6102 10.3809 10.9806 

RMSE 3.5287 4.0106 6.1486 11.7422 12.4559 

TT 0.84 0.83 0.84 0.82 0.83 

 

Test 13: Hidden nodes = 5, momentum = 0 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9508 0.9537 0.9546 0.9529 0.8830 

MAE 2.8971 2.8208 3.1850 3.2522 6.3927 

RMSE 3.7293 3.6358 3.9366 4.0057 8.0838 

TT 1.01 1.0 1.0 1.02 1.13 
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Test 14: Hidden nodes = 5, momentum = 0.25 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9529 0.9615 0.9294 0.9346 0.5801 

MAE 2.8358 2.6309 3.8071 3.6343 13.6490 

RMSE 3.6478 3.3049 4.8424 4.3674 15.9199 

TT 1.0 1.01 1.0 1.01 0.99 

 

Test 15: Hidden nodes = 5, momentum = 0.5 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9545 0.9645 0.9543 0.9250 0.6598 

MAE 3.0450 2.5575 2.9682 3.7586 11.9497 

RMSE 3.6308 3.1981 3.9174 4.5314 14.0060 

TT 0.98 1.01 1.0 1.0 1.08 

 

Test 16: Hidden nodes = 5, momentum = 0.75 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9655 0.9611 0.8676 0.5661 0.0706 

MAE 2.6267 2.9401 4.6520 9.8602 10.9817 

RMSE 3.4045 3.5409 5.8971 11.0372 12.4566 

TT 1.01 1.0 0.99 1.01 0.96 

 

Test 17: Hidden nodes = 6, momentum = 0 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9531 0.9560 0.9520 0.9603 0.8680 

MAE 2.9268 2.8268 2.6708 3.2446 7.0010 

RMSE 3.6817 3.5989 3.6554 4.5406 8.9107 

TT 1.17 1.16 1.23 1.19 1.17 

 

 



 

114 
 

Test 18: Hidden nodes = 6, momentum = 0.25 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9550 0.9544 0.9117 0.9276 0.6584 

MAE 2.9188 2.8048 3.8237 3.5713 7.3742 

RMSE 3.6201 3.5982 5.0132 4.4116 9.3582 

TT 1.18 1.2 1.16 1.17 1.16 

 

Test 19: Hidden nodes = 6, momentum = 0.5 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9557 0.9583 0.9573 0.9181 0.4959 

MAE 3.0416 2.6842 2.7826 3.7402 13.4364 

RMSE 3.6436 3.4069 3.6411 4.6934 16.7401 

TT 1.19 1.19 1.17 1.21 1.19 

 

Test 20: Hidden nodes = 6, momentum = 0.75 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9616 0.9566 0.9201 0.8283 0.0361 

MAE 2.8569 2.5436 5.5999 13.4854 11.1547 

RMSE 3.4090 3.6608 7.0229 15.3210 12.5145 

TT 1.17 1.28 1.21 1.18 1.22 

 

Appendix D. Tables of testing parameters for Model 4 

 

Table 8.11 Parameters testing for Model 4 

Test 1: Hidden nodes = 2, momentum = 0 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9501 0.9503 0.9256 0.9389 0.5860 

MAE 3.2978 3.3307 3.9718 3.8876 10.9728 

RMSE 4.6596 4.2287 4.9127 4.9463 13.9705 
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TT 0.51 0.49 0.47 0.49 0.48 

 

Test 2: Hidden nodes = 2, momentum = 0.25 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9564 0.9487 0.9204 0.9154 0.5902 

MAE 3.0535 3.4415 3.9981 4.0901 11.5850 

RMSE 4.3711 4.3197 4.8395 4.9905 14.4911 

TT 0.48 0.5 0.47 0.47 0.49 

 

Test 3: Hidden nodes = 2, momentum = 0.5 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9645 0.9469 0.9147 0.9116 -0.7602 

MAE 2.9058 3.5141 4.1202 4.5584 15.9443 

RMSE 3.9480 4.4259 5.2062 5.8092 20.0409 

TT 0.48 0.47 0.49 0.48 0.47 

 

Test 4: Hidden nodes = 2, momentum = 0.75 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9690 0.9308 0.8880 -0.6791 0.2988 

MAE 2.7194 4.4427 8.4566 23.9399 13.8723 

RMSE 3.5144 6.2169 9.7962 26.8994 17.5802 

TT 0.48 0.5 0.47 0.47 0.75 

 

Test 5: Hidden nodes = 3, momentum = 0 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9766 0.9768 0.9730 0.7976 0.6584 

MAE 2.0385 2.2062 2.4698 5.3383 8.3082 

RMSE 2.7071 2.7737 3.2861 7.6283 10.9861 

TT 0.64 0.64 0.65 0.64 0.65 
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Test 6: Hidden nodes = 3, momentum = 0.25 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9781 0.9765 0.9724 0.9123 0.6020 

MAE 1.9613 2.1975 2.9105 4.8251 12.5916 

RMSE 2.5950 2.7839 3.5953 6.2733 15.7982 

TT 0.64 0.65 0.65 0.64 0.65 

 

Test 7: Hidden nodes = 3, momentum = 0.5 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9768 0.9759 0.9263 0.6221 -0.3783 

MAE 2.0695 2.1716 4.0993 13.1195 14.0251 

RMSE 2.6865 2.8140 5.2227 16.0562 17.8948 

TT 0.66 0.64 0.64 0.63 0.65 

Test 8: Hidden nodes = 3, momentum = 0.75 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9766 0.9751 0.6152 0.4660 0.7004 

MAE 2.2803 2.2523 18.8293 28.1950 26.7948 

RMSE 2.8351 3.1832 21.0878 30.1211 28.1307 

TT 0.65 0.64 0.64 0.64 0.59 

Test 9: Hidden nodes = 4, momentum = 0 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9724 0.9772 0.9738 0.9505 0.6923 

MAE 2.3641 1.6897 3.1766 3.6475 8.8520 

RMSE 3.1094 2.8513 3.8759 4.4735 11.3958 

TT 0.8 0.8 0.8 0.81 0.8 
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Test 10: Hidden nodes = 4, momentum = 0.25 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9725 0.9743 0.9414 0.9119 0.6617 

MAE 2.2560 2.4027 4.1267 4.2970 11.7568 

RMSE 3.1069 3.4733 5.3820 6.0037 14.4205 

TT 0.8 0.81 0.82 0.81 0.81 

 

Test 11: Hidden nodes = 4, momentum = 0.5 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9718 0.9587 0.9623 0.4477 0.6880 

MAE 1.8772 3.4735 4.2071 13.3164 14.6002 

RMSE 3.0441 4.3253 5.1727 16.7253 18.1973 

TT 0.83 0.82 0.81 0.81 0.8 

 

Test 12: Hidden nodes = 4, momentum = 0.75 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9721 0.9705 0.7211 0.2961 -0.3020 

MAE 1.9674 3.0409 7.4173 23.9827 17.5568 

RMSE 3.0315 4.1006 9.0921 28.3718 21.1437 

TT 0.8 0.82 0.81 0.8 0.78 

 

Test 13: Hidden nodes = 5, momentum = 0 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9735 0.9729 0.9636 0.9529 0.6831 

MAE 2.3642 2.6897 3.5331 3.3240 8.8941 

RMSE 3.0832 3.6155 4.6815 4.1103 11.4708 

TT 0.99 0.97 0.97 0.99 0.98 

 

 



 

118 
 

Test 14: Hidden nodes = 5, momentum = 0.25 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9734 0.9750 0.9487 0.9202 0.6973 

MAE 2.0556 2.7387 3.6038 5.3550 9.7953 

RMSE 3.0094 3.6035 4.5408 6.3894 12.4221 

TT 0.95 0.98 0.98 0.99 0.97 

Test 15: Hidden nodes = 5, momentum = 0.5 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9699 0.9613 0.9360 0.4710 0.3449 

MAE 1.9519 3.0474 3.9784 15.0775 18.2928 

RMSE 3.1454 3.9020 5.1468 18.4411 22.6824 

TT 0.97 0.96 0.97 0.97 0.97 

 

Test 16: Hidden nodes = 5, momentum = 0.75 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9688 0.9405 0.5507 0.3389 -0.3299 

MAE 2.3006 2.8463 11.4623 20.5887 13.8718 

RMSE 3.5111 5.1699 13.9899 23.8105 17.5797 

TT 0.96 0.97 0.97 0.97 0.99 

 

Test 17: Hidden nodes = 6, momentum = 0 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9737 0.9681 0.9474 0.9423 0.6707 

MAE 2.2819 3.3562 4.0780 3.8333 7.9855 

RMSE 2.8436 4.2279 5.4032 4.8021 10.7322 

TT 1.15 1.16 1.15 1.19 1.18 
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Test 18: Hidden nodes = 6, momentum = 0.25 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9659 0.9639 0.9524 0.9283 0.6717 

MAE 2.5462 2.9309 4.2239 4.4707 8.5818 

RMSE 3.4983 3.8627 5.3174 5.8097 11.4385 

TT 1.16 1.15 1.16 1.15 1.17 

 

Test 19: Hidden nodes = 6, momentum = 0.5 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9677 0.9725 0.9330 0.5587 0.7185 

MAE 2.5206 3.7362 5.4149 15.5499 10.9888 

RMSE 3.4519 4.7582 6.8245 18.4284 13.5023 

TT 1.15 1.16 1.15 1.16 1.13 

 

Test 20: Hidden nodes = 6, momentum = 0.75 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9657 0.9656 0.5731 0.2491 0.8615 

MAE 3.2144 3.8509 8.5282 19.3508 5.7945 

RMSE 3.8990 4.9530 10.1723 23.0435 7.8252 

TT 1.14 1.16 1.14 1.16 1.09 

 

Appendix E. Tables of testing parameters for Model 5 

 

Table 8.12 Parameters testing for Model 5 

 

Test 1: Hidden nodes = 2, momentum = 0 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.8096 0.8141 0.8765 0.8707 0.7047 

MAE 6.2356 6.0359 4.4321 4.8170 9.5024 
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RMSE 7.7398 7.6451 6.3900 6.7315 11.8038 

TT 0.52 0.49 0.48 0.5 0.49 

Test 2: Hidden nodes = 2, momentum = 0.25 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.8138 0.8136 0.8735 0.7840 0.4756 

MAE 6.1091 6.0508 4.3648 6.3427 12.3273 

RMSE 7.6541 7.6531 6.4159 8.2421 15.7636 

TT 0.49 0.5 0.5 0.49 0.49 

 

Test 3: Hidden nodes = 2, momentum = 0.5 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.8167 0.7855 0.8680 0.7822 0.6774 

MAE 5.9830 6.5691 4.3589 6.3765 8.3503 

RMSE 7.5834 8.2596 6.4993 8.1808 11.1784 

TT 0.51 0.51 0.49 0.5 0.49 

 

Test 4: Hidden nodes = 2, momentum = 0.75 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.8148 0.7782 0.7744 0.8044 0 

MAE 5.8962 6.5915 6.3397 6.4875 10.2658 

RMSE 7.6221 8.3898 8.3187 8.5646 13.0368 

TT 0.49 0.5 0.49 0.49 0.48 

 

Test 5: Hidden nodes = 3, momentum = 0 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.7936 0.8981 0.8766 0.7666 0.7359 

MAE 6.4639 4.5476 4.7942 6.9506 8.7035 

RMSE 8.0149 5.9798 6.6257 8.7013 10.9060 

TT 0.68 0.67 0.68 0.67 0.68 
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Test 6: Hidden nodes = 3, momentum = 0.25  

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.8007 0.8947 0.7709 0.7795 0.6108 

MAE 6.2720 4.6312 6.7763 6.5133 11.5276 

RMSE 7.8842 6.1337 8.5101 8.2534 14.3393 

TT 0.68 0.65 0.67 0.67 0.67 

 

Test 7: Hidden nodes = 3, momentum = 0.5 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.8061 0.8875 0.7683 0.7443 0.3567 

MAE 6.0787 4.8478 6.7155 6.5596 14.2846 

RMSE 7.7732 6.4284 8.5577 8.7634 21.4357 

TT 0.68 0.68 0.67 0.67 0.67 

 

Test 8: Hidden nodes = 3, momentum = 0.75 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.8246 0.7742 0.7325 0.6929 -0.1199 

MAE 5.7634 6.5514 6.6298 8.1063 10.2662 

RMSE 7.4202 8.4160 9.0082 11.4645 13.0367 

TT 0.66 0.68 0.67 0.66 0.68 

 

Test 9: Hidden nodes = 4, momentum = 0 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9226 0.8733 0.8680 0.8216 0.7328 

MAE 3.8278 4.5385 4.7283 6.0878 10.6927 

RMSE 5.1185 6.4369 6.7531 7.5806 12.9783 

TT 0.84 0.86 0.84 0.85 0.85 
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Test 10: Hidden nodes = 4, momentum = 0.25 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9429 0.8748 0.8606 0.8040 0.4098 

MAE 3.5619 4.5339 4.7990 6.2046 14.2449 

RMSE 4.4895 6.4078 6.8958 7.8210 20.6469 

TT 0.85 0.88 0.86 0.85 0.83 

 

Test 11: Hidden nodes = 4, momentum = 0.5 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9585 0.8778 0.8048 0.7794 0.4608 

MAE 3.2410 4.6053 6.3525 6.3117 9.4950 

RMSE 3.8710 6.4105 7.9052 8.2465 12.4485 

TT 0.86 0.84 0.85 0.84 0.84 

 

Test 12: Hidden nodes = 4, momentum = 0.75 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9178 0.9312 0.7778 0.7967 -0.3472 

MAE 3.9015 4.0666 6.5688 6.5621 10.2659 

RMSE 5.3043 4.8468 8.4065 8.6952 13.0368 

TT 0.85 0.86 0.84 0.86 0.76 

 

Test 13: Hidden nodes = 5, momentum = 0 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9071 0.9040 0.8362 0.8747 0.7331 

MAE 4.7154 4.0686 4.3722 5.0246 10.6622 

RMSE 5.7255 5.6363 7.1722 6.4781 12.9522 

TT 1.03 1.0 1.02 1.02 1.02 

 

 



 

123 
 

Test 14: Hidden nodes = 5, momentum = 0.25 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9250 0.8934 0.9003 0.9117 0.4768 

MAE 3.8654 4.1672 4.5094 4.7976 12.7833 

RMSE 5.1037 5.9035 5.7081 5.6554 17.0449 

TT 1.02 1.03 1.0 1.05 1.01 

 

Test 15: Hidden nodes = 5, momentum = 0.5 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9255 0.8573 0.8958 0.8466 -0.2458 

MAE 3.7282 4.2425 4.6545 5.0105 10.3851 

RMSE 5.0582 6.7560 5.8113 7.0351 13.3280 

TT 1.03 1.0 1.03 1.02 1.05 

 

Test 16: Hidden nodes = 5, momentum = 0.75 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9050 0.9129 0.8575 0.8549 -0.2894 

MAE 3.6332 4.1882 5.8669 5.8296 10.2659 

RMSE 5.6053 5.4076 7.2743 7.4809 13.0368 

TT 1.03 1.02 1.03 1.03 1.0 

Test 17: Hidden nodes = 6, momentum = 0 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9172 0.8703 0.8454 0.8536 0.7282 

MAE 3.9325 3.7351 4.5765 4.8584 10.6768 

RMSE 5.2640 6.4426 7.5966 6.9500 12.9362 

TT 1.21 1.23 1.22 1.21 1.2 

 

Test 18: Hidden nodes = 6, momentum = 0.25 

Learning Rate 0.01 0.1 0.3 0.5 0.9 
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R 0.9517 0.8824 0.8846 0.8661 0.3764 

MAE 3.1121 3.8645 4.4182 4.7802 15.5210 

RMSE 4.1199 6.1791 6.7168 6.7875 28.4648 

TT 1.21 1.22 1.21 1.25 1.2 

 

Test 19: Hidden nodes = 6, momentum = 0.5 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9525 0.8959 0.9416 0.8859 0.5094 

MAE 3.2125 4.4503 4.0269 4.9218 11.4662 

RMSE 4.0603 5.8701 4.6767 6.0510 14.4429 

TT 1.22 1.22 1.23 1.23 1.22 

 

Test 20: Hidden nodes = 6, momentum = 0.75 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9446 0.8543 0.8863 0.7978 -0.5126 

MAE 3.5552 4.3052 5.2195 6.4352 10.2658 

RMSE 4.3173 7.2242 6.1467 8.5849 13.0368 

TT 1.22 1.22 1.22 1.22 1.13 

 

Appendix F. Tables of testing parameters for Model 6 

 

Table 8.13 Parameters testing for Model 6 

 

Test 1: Hidden nodes = 2, momentum = 0 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.8999 0.9134 0.9159 0.9138 0.7531 

MAE 4.2599 3.8102 3.8276 5.1183 9.6898 

RMSE 6.1785 5.7194 6.1313 6.5152 12.8284 

TT 0.53 0.50 0.51 0.5 0.5 
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Test 2: Hidden nodes = 2, momentum = 0.25 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9028 0.9163 0.9157 0.9093 0.6171 

MAE 4.2869 3.7005 4.2436 4.6710 13.1674 

RMSE 6.0962 5.6323 6.5003 6.5262 15.5065 

TT 0.51 0.51 0.53 0.49 0.53 

 

Test 3: Hidden nodes = 2, momentum = 0.5 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9062 0.9196 0.9098 0.7992 0.6499 

MAE 4.3197 3.5213 5.2511 7.8003 22.2702 

RMSE 6.0137 5.5610 7.4600 8.8327 25.4132 

TT 0.52 0.51 0.52 0.49 0.5 

 

Test 4: Hidden nodes = 2, momentum = 0.75 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9101 0.9197 0.8087 0.9021 -0.0603 

MAE 4.2894 3.5117 7.9083 5.1321 21.1271 

RMSE 5.8859 5.9487 8.9816 5.9033 24.6844 

TT 0.49 0.48 0.49 0.48 0.49 

 

Test 5: Hidden nodes = 3, momentum = 0 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9245 0.8906 0.9160 0.9294 0.8502 

MAE 4.0029 4.7399 4.2092 4.1284 9.6358 

RMSE 5.4933 6.8146 6.1431 6.1030 11.9360 

TT 0.67 0.69 0.69 0.68 0.69 
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Test 6: Hidden nodes = 3, momentum = 0.25  

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9289 0.8893 0.9174 0.9199 0.7044 

MAE 3.9390 4.6641 5.1667 4.3078 10.8566 

RMSE 5.2802 6.7872 6.4960 5.6035 12.9670 

TT 0.69 0.67 0.71 0.69 0.69 

 

Test 7: Hidden nodes = 3, momentum = 0.5 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9351 0.8867 0.9048 0.8530 0.9376 

MAE 3.8631 4.4119 5.0045 5.8363 6.4969 

RMSE 5.0569 6.7426 6.1954 7.1089 8.0581 

TT 0.7 0.71 0.69 0.7 0.69 

 

Test 8: Hidden nodes = 3, momentum = 0.75 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9407 0.9149 0.8710 0.1943 -0.2007 

MAE 3.6495 4.7446 5.7616 10.7861 21.1334 

RMSE 4.7704 6.1029 7.3233 13.4138 24.6904 

TT 0.69 0.69 0.7 0.69 0.69 

 

Test 9: Hidden nodes = 4, momentum = 0 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9273 0.9394 0.9382 0.8874 0.8115 

MAE 4.0157 3.5695 3.5074 5.5720 8.0285 

RMSE 5.3385 5.0201 5.4281 6.5901 10.2811 

TT 0.86 0.85 0.85 0.86 0.86 
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Test 10: Hidden nodes = 4, momentum = 0.25 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9306 0.9486 0.9001 0.9096 0.2101 

MAE 3.9135 3.1400 4.5096 4.6544 18.1402 

RMSE 5.2053 4.6189 6.4577 6.1090 27.2915 

TT 0.87 0.86 0.87 0.86 0.85 

 

Test 11: Hidden nodes = 4, momentum = 0.5 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9339 0.9310 0.8930 0.8408 0.8800 

MAE 3.9176 3.5799 4.6833 6.2153 6.8425 

RMSE 5.1286 5.2667 7.0470 7.8165 9.2484 

TT 0.86 0.86 0.87 0.85 0.84 

 

Test 12: Hidden nodes = 4, momentum = 0.75 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9350 0.9216 0.8481 0.9163 0.7938 

MAE 3.9110 4.0854 6.0114 7.7080 10.48898 

RMSE 5.9110 5.5396 7.6114 8.8293 12.4944 

TT 0.87 0.87 0.87 0.87 0.78 

 

Test 13: Hidden nodes = 5, momentum = 0 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9292 0.9289 0.9332 0.9053 -0.0193 

MAE 3.9254 3.6010 3.5496 8.1110 13.6349 

RMSE 5.2617 5.1829 5.4374 9.7651 33.2809 

TT 1.04 1.04 1.06 1.04 1.04 

 

 



 

128 
 

Test 14: Hidden nodes = 5, momentum = 0.25 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9320 0.9350 0.9142 0.9048 0.0463 

MAE 3.8776 3.7283 4.0412 4.5978 11.4598 

RMSE 5.1502 4.8382 5.8728 6.0896 15.6676 

TT 1.04 1.05 1.03 1.02 1.04 

 

Test 15: Hidden nodes = 5, momentum = 0.5 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9342 0.9468 0.8560 -0.0688 0.9007 

MAE 3.9243 3.8452 4.5471 15.0498 10.7439 

RMSE 5.1102 4.6933 7.7163 33.6546 12.6483 

TT 1.04 1.03 1.03 1.04 1.01 

 

Test 16: Hidden nodes = 5, momentum = 0.75 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9300 0.9634 0.0230 0.7769 -0.1835 

MAE 3.9406 3.3257 12.7752 9.4989 21.1334 

RMSE 5.1685 3.9412 31.2413 14.4464 24.6904 

TT 1.07 1.02 1.05 1.02 1.06 

 

Test 17: Hidden nodes = 6, momentum = 0 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.8868 0.9269 0.9253 0.9110 0.7256 

MAE 5.2061 4.2748 3.2449 4.5067 6.7166 

RMSE 6.7959 5.4416 5.5111 5.7120 9.5143 

TT 1.2 1.21 1.21 1.22 1.22 
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Test 18: Hidden nodes = 6, momentum = 0.25 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9115 0.9212 0.9237 0.8888 0.5313 

MAE 4.7420 4.7557 3.8592 5.4334 14.4899 

RMSE 6.1880 5.7840 5.3766 6.9814 18.6597 

TT 1.21 1.22 1.2 1.22 1.2 

 

Test 19: Hidden nodes = 6, momentum = 0.5 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9231 0.9545 0.8627 -0.0668 0.8248 

MAE 4.3592 3.5705 4.3512 19.2055 13.5695 

RMSE 5.7389 4.4640 7.3810 48.0607 15.5826 

TT 1.21 1.22 1.2 1.22 1.21 

 

Test 20: Hidden nodes = 6, momentum = 0.75 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9308 0.9483 0.8700 0.8969 0.0824 

MAE 4.0454 3.6750 5.7146 5.5630 13.1281 

RMSE 5.4767 4.3429 7.1850 6.9425 16.4154 

TT 1.2 1.23 1.22 1.2 1.6 

 

Appendix G. Tables of testing parameters for Model 7 

 

Table 8.14 Parameters testing for Model 7 

 

Test 1: Hidden nodes = 2, momentum = 0 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.8663 0.8632 0.8407 0.8669 0.4452 

MAE 6.5435 7.7062 9.1377 8.5056 14.7507 
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RMSE 9.4690 9.9840 11.4269 10.5543 20.1099 

TT 0.54 0.52 0.49 0.49 0.49 

 

Test 2: Hidden nodes = 2, momentum = 0.25 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.8705 0.8531 0.8287 0.8634 0.6116 

MAE 6.4212 8.2826 9.8836 9.3066 13.4605 

RMSE 9.3246 10.6314 12.1728 11.3567 18.4477 

TT 0.5 0.5 0.49 0.48 0.5 

 

Test 3: Hidden nodes = 2, momentum = 0.5 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.8745 0.8364 0.8214 0.4862 0.5106 

MAE 6.3284 9.0401 10.2723 14.4228 20.9321 

RMSE 9.1988 11.4493 12.2873 18.9284 26.1692 

TT 0.5 0.5 0.5 0.5 0.5 

 

Test 4: Hidden nodes = 2, momentum = 0.75 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.8775 0.8245 0.7695 -0.2312 0 

MAE 6.2132 9.8627 13.5592 35.1924 18.3714 

RMSE 9.1043 12.1518 15.8166 39.9124 2.5908 

TT 0.5 0.49 0.53 0.47 0.49 

 

Test 5: Hidden nodes = 3, momentum = 0 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.8941 0.9175 0.8145 0.8566 0.6939 

MAE 5.3763 5.3408 7.6685 9.3407 11.7917 

RMSE 8.4875 7.6559 10.9428 11.6632 15.2666 
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TT 0.69 0.67 0.69 0.68 0.66 

 

Test 6: Hidden nodes = 3, momentum = 0.25  

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.8989 0.9094 0.8093 0.8547 0.6562 

MAE 5.2905 5.3242 8.2695 8.5628 14.6822 

RMSE 8.2923 7.8406 11.2557 10.9904 18.6647 

TT 0.69 0.68 0.68 0.68 0.69 

 

 

Test 7: Hidden nodes = 3, momentum = 0.5 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9031 0.9025 0.8475 0.6724 0.5462 

MAE 5.4004 5.3831 10.0832 12.7031 19.5521 

RMSE 8.1606 8.1766 12.2665 16.1073 24.2933 

TT 0.67 0.69 0.7 0.67 0.68 

 

Test 8: Hidden nodes = 3, momentum = 0.75 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9070 0.8089 0.6736 0.3676 0.2612 

MAE 5.6108 8.3362 16.1715 35.1915 18.3714 

RMSE 8.1116 11.1044 19.7993 39.9116 22.5908 

TT 0.68 0.68 0.68 0.68 0.59 

 

Test 9: Hidden nodes = 4, momentum = 0 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.8802 0.9292 0.8173 0.8434 0.8959 

MAE 6.7233 4.3526 7.7461 10.3520 7.2441 

RMSE 9.0381 7.1478 11.0485 12.9364 9.4350 
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TT 0.86 0.87 0.85 0.87 0.85 

 

Test 10: Hidden nodes = 4, momentum = 0.25 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.8855 0.9271 0.8856 0.8553 0.6306 

MAE 6.7923 5.7836 6.9340 8.5182 14.8972 

RMSE 8.8882 7.5860 8.9283 10.7720 19.1450 

TT 0.86 0.86 0.87 0.85 0.85 

 

Test 11: Hidden nodes = 4, momentum = 0.5 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.8957 0.9182 0.8516 0.8158 0.4180 

MAE 6.5143 5.1150 10.3250 11.2317 13.4139 

RMSE 8.5362 7.5181 12.7253 12.9002 19.9895 

TT 0.86 0.86 0.86 0.86 0.86 

 

Test 12: Hidden nodes = 4, momentum = 0.75 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9292 0.9172 0.7643 0.3893 -0.1656 

MAE 5.5589 5.5241 20.1682 35.0094 18.3714 

RMSE 7.1569 8.3330 23.8903 39.7511 22.5908 

TT 0.87 0.85 0.83 0.83 0.82 

 

Test 13: Hidden nodes = 5, momentum = 0 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.8737 0.9285 0.9065 0.8474 0.7914 

MAE 6.6971 4.4501 5.0780 7.9462 9.5235 

RMSE 9.2606 7.2295 8.4554 10.4424 12.5803 

TT 1.05 1.06 1.02 1.03 1.03 
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Test 14: Hidden nodes = 5, momentum = 0.25 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.8846 0.9261 0.9256 0.8546 0.5483 

MAE 6.2341 4.3783 6.2473 11.0514 16.4979 

RMSE 8.8991 7.3431 7.5795 13.6073 23.5646 

TT 1.05 1.03 1.04 1.05 10.5 

 

Test 15: Hidden nodes = 5, momentum = 0.5 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.8960 0.9215 0.8993 0.6467 -0.4137 

MAE 5.8733 4.3243 7.4489 14.3664 20.9094 

RMSE 8.5171 7.5190 9.5031 18.9885 26.5581 

TT 1.04 1.03 1.04 1.03 1.03 

 

Test 16: Hidden nodes = 5, momentum = 0.75 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9358 0.9083 0.7365 0.3386 0.4732 

MAE 4.8074 4.9094 10.8294 32.0173 17.7845 

RMSE 6.8124 8.2800 13.0404 36.6032 26.6810 

TT 1.03 1.05 1.03 1.04 1.03 

 

Test 17: Hidden nodes = 6, momentum = 0 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.8688 0.9414 0.8969 0.8552 0.8704 

MAE 6.9988 4.7335 5.7155 9.4612 9.8567 

RMSE 9.3909 7.1735 9.5908 12.3297 12.5975 

TT 1.21 1.21 1.21 1.22 1.21 
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Test 18: Hidden nodes = 6, momentum = 0.25 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.8685 0.9303 0.8846 0.8218 0.6968 

MAE 6.9137 4.6916 6.5631 13.7148 13.5069 

RMSE 9.4096 7.1683 9.2239 18.4869 15.9879 

TT 1.21 1.21 1.22 1.21 1.22 

 

Test 19: Hidden nodes = 6, momentum = 0.5 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.8728 0.9054 0.8396 0.7020 0.5001 

MAE 6.2113 5.2260 7.6254 13.5155 17.6964 

RMSE 9.2173 8.1436 11.6874 19.1017 22.1606 

TT 1.22 1.22 1.22 1.2 1.22 

 

Test 20: Hidden nodes = 6, momentum = 0.75 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.8810 0.9409 0.4827 0.1755 0.6334 

MAE 5.8973 4.609 11.8765 35.1921 15.8521 

RMSE 8.9722 6.406 21.1199 39.9122 23.0239 

TT 1.23 1.23 1.22 1.2 1.21 

 

Appendix H. Tables of testing parameters for Model 8 

 

Table 8.15 Parameters testing for Model 8 

 

Test 1: Hidden nodes = 2, momentum = 0 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.8882 0.9398 0.9448 0.9383 0.7413 

MAE 6.4816 5.2643 7.2302 10.1469 12.1841 
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RMSE 8.3473 6.5649 8.2841 11.1090 14.8746 

TT 0.57 0.55 0.57 0.55 0.56 

 

Test 2: Hidden nodes = 2, momentum = 0.25 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.8889 0.9447 0.9409 0.9323 0.8105 

MAE 6.4496 5.2124 7.2480 8.0459 8.7979 

RMSE 8.3263 6.3771 8.34 9.5155 10.6554 

TT 0.54 0.53 0.55 0.54 0.54 

 

Test 3:Hidden nodes = 2, momentum = 0.5 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.8958 0.9492 0.9297 0.8064 0.7993 

MAE 6.3123 5.1556 7.1186 9.5848 13.5152 

RMSE 8.0982 6.1640 8.3359 12.4395 15.9949 

TT 0.54 0.53 0.55 0.56 0.52 

 

Test 4: Hidden nodes = 2, momentum = 0.75 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9135 0.9236 0.8102 0.2781 0.4388 

MAE 5.9269 6.2665 7.2495 25.2034 20.5762 

RMSE 7.5071 7.1526 12.1197 32.4034 26.8507 

TT 0.57 0.59 0.6 0.76 0.57 

 

Test 5: Hidden nodes = 3, momentum = 0 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.8823 0.9198 0.9198 0.9318 0.6743 

MAE 7.2339 5.5125 5.6294 8.3501 11.2530 

RMSE 8.5695 7.1347 7.1374 9.5678 14.2259 
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TT 0.83 0.76 0.8 0.93 0.75 

 

Test 6: Hidden nodes = 3, momentum = 0.25  

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.8998 0.8980 0.9218 0.9239 0.7478 

MAE 6.7025 6.4824 5.7487 8.8003 12.5562 

RMSE 7.9704 8.0267 7.2286 10.4236 14.4120 

TT 0.95 1.05 0.82 0.82 0.8 

 

Test 7: Hidden nodes = 3, momentum = 0.5 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9057 0.8931 0.9099 0.7231 0.7377 

MAE 6.3963 6.6506 6.9624 11.9117 11.8853 

RMSE 7.8055 8.1900 8.7641 14.9117 14.2731 

TT 0.79 1.54 2.18 0.77 2.04 

 

Test 8: Hidden nodes = 3, momentum = 0.75 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9115 0.8775 0.4823 0.4671 0.5478 

MAE 6.1697 7.2378 14.5762 36.2297 20.5689 

RMSE 7.6366 8.7657 30.8547 40.2406 26.8334 

TT 1.09 0.79 0.84 0.8 0.75 

 

Test 9 : Hidden nodes = 4, momentum = 0 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9039 0.9358 0.9302 0.9368 0.5228 

MAE 6.7358 4.5262 5.0381 6.2262 12.4191 

RMSE 7.8593 6.4243 7.0244 7.2949 18.5592 

TT 1.43 2.3 1.0 2.23 1.0 
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Test 10: Hidden nodes = 4, momentum = 0.25 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9003 0.9340 0.8977 0.9247 0.7687 

MAE 6.8791 4.6258 6.3928 6.2689 18.9040 

RMSE 8.0136 6.5272 8.1072 7.8505 23.6058 

TT 1.03 0.99 2.22 1.41 1.54 

 

Test 11: Hidden nodes = 4, momentum = 0.5 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.8926 0.9284 0.9201 0.7511 0.7597 

MAE 6.8849 4.9773 6.5358 10.9946 12.384 

RMSE 8.4898 6.9172 7.7812 15.9441 15.7142 

TT 0.98 1.55 0.98 1.05 1.0 

 

Test 12: Hidden nodes = 4, momentum = 0.75 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.8727 0.8973 0.8160 0.5461 -0.2309 

MAE 7.7743 6.8302 10.1822 21.9670 20.5798 

RMSE 9.5415 8.6018 16.5148 28.3245 26.8554 

TT 1.18 48.1861 0.98 1.18 1.11 

 

Test 13: Hidden nodes = 5, momentum = 0 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9278 0.9073 0.9141 0.8885 0.5297 

MAE 5.4762 6.8374 6.6419 8.1484 17.2155 

RMSE 7.2763 8.2243 7.9177 9.9660 27.7915 

TT 1.26 1.56 1.54 1.82 2.19 
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Test 14: Hidden nodes = 5, momentum = 0.25 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9165 0.8529 0.9058 0.9230 0.7119 

MAE 6.1134 8.0845 7.1028 7.4972 16.2696 

RMSE 7.8977 10.5937 9.8251 9.5544 24.7129 

TT 2.05 1.17 1.55 2.7 1.99 

 

Test 15: Hidden nodes = 5, momentum = 0.5 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9352 0.9162 0.8483 0.8105 0.3348 

MAE 5.2283 6.1956 8.5487 12.2318 17.8194 

RMSE 6.9345 7.5026 10.5056 14.3665 24.1150 

TT 1.84 2.06 1.51 1.54 2.02 

 

Test 16: Hidden nodes = 5, momentum = 0.75 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9331 0.9033 0.8994 0.0506 0.1712 

MAE 5.6733 7.1383 9.1078 21.9733 20.5759 

RMSE 7.1627 8.7850 10.6120 28.3285 26.8501 

TT 1.97 1.16 1.76 1.22 1.68 

 

Test 17: Hidden nodes = 6, momentum = 0 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9069 0.9037 0.9282 0.8205 0.7443 

MAE 6.8073 7.0776 5.4681 9.6882 13.7753 

RMSE 8.1494 8.8066 6.8795 12.7525 24.2835 

TT 1.75 2.73 1.88 2.38 2.68 
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Test 18: Hidden nodes = 6, momentum = 0.25 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9161 0.8909 0.9164 0.8037 0.7300 

MAE 6.1609 7.6182 5.6651 8.6515 16.9769 

RMSE 7.6536 9.6269 7.6127 12.7291 23.0919 

TT 1.87 2.63 1.38 1.52 1.35 

 

Test 19: Hidden nodes = 6, momentum = 0.5 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.9306 0.8263 0.8878 0.5307 0.6410 

MAE 5.8139 8.5078 7.6299 13.2003 13.8648 

RMSE 7.0354 10.8618 10.3119 18.7043 17.5864 

TT 1.35 1.37 1.36 1.49 1.59 

 

Test 20: Hidden nodes = 6, momentum = 0.75 

Learning Rate 0.01 0.1 0.3 0.5 0.9 

R 0.8930 0.9428 0.8312 -0.5702 -0.3198 

MAE 7.8240 5.5061 18.2939 40.4560 20.5802 

RMSE 9.1551 6.4958 30.2939 48.3556 26.8555 

TT 1.39 1.39 1.55 1.55 1.44 

 

Appendix I. Table of information for and final results 

 

Table 8.16 Final parameters and evaluation results for each model 

No. of 

Models 

Learning 

Rate 

Momentum No. of 

hidden 

layers 

No. of 

hidden 

nodes 

R MAE RMSE TT 

Model 1 0.1 0.75 1 5 0.9658 2.4902 3.5597 0.90 

Model 2 0.5 0.25 1 5 0.9690 2.2398 2.8786 0.99 
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Model 3 0.01 0.75 1 5 0.9655 2.6267 3.4045 1.01 

Model 4 0.01 0.25 1 3 0.9781 1.9613 2.5950 0.64 

Model 5 0.01 0.5 1 4 0.9585 3.2410 3.8710 0.86 

Model 6 0.1 0.75 1 5 0.9634 3.3257 3.9412 1.02 

Model 7 0.1 0 1 6 0.9414 4.7335 7.1735 1.21 

Model 8 0.1 0.5 1 2 0.9492 5.1556 6.1640 0.53 

 

Appendix J. Figures of weights and threshold in each model 

 

 

Figure 8.1: Weights and threshold in Model 1 
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Figure8.2: Weights and threshold in Model 2 
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Figure 8.3: Weights and threshold in Model 3 
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Figure 8.4: Weights and threshold in Model 4 
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Figure 8.5: Weights and threshold in Model 5 
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Figure 8.6: Weights and threshold in Model 6 
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Figure 8.7: Weights and threshold in Model 7 
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Figure 8.8: Weights and threshold in Model 8 
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