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Abstract (English)

A building is at a high risk of destruction if the compressive concrete strength does
not meet the required specification. Thus, the prediction of compressive concrete
strength has become an important research area. Previous prediction models are
based on fix numbers of attributes. Consequently, when the number of attributes
increase or decrease, the models could not be used. Thus, a compressive concrete
strength prediction model which can work with different numbers of attribute is
needed. The purpose of this study is to develop compressive concrete strength
prediction models using different combinations of attributes. This study includes five
stages: data collection, normalization, parameters identification, model construction
and evaluation. The employed data set consists of nine attributes: water, cement, fine
aggregate, coarse aggregate, age, fly ash, super plasticizer, blast furnace slag and
compressive concrete strength. This study produced eight prediction models where
each model has different combination of attributes. It also identified appropriate
weights, learning rate, momentum and number of hidden nodes for each of the
proposed model, and design a general artificial neural network (ANN) architecture.
Model eight of the study produced a higher correlation coefficient (i.e., 0.973) than
the existing study (i.e., 0.953). This study has successfully produced eight concrete
strength prediction models with good coefficient correlation. The compressive
strength prediction models would benefit civil engineers as they can use the models
to identify the suitability of additional materials in concrete mix.

Keywords: Compressive concrete strength, Different combinations of attributes,
Artificial neural networks, Prediction models.



Abstrak (Bahasa malaysia)

Sesebuah bangunan adalah berisiko tinggi untuk runtuh jika kekuatan mampatan
konkrit tidak memenuhi spesifikasi yang dikehendaki. Oleh itu, ramalan kekuatan
mampatan konkrit telah menjadi satu topik penyelidikan yang penting. Model
ramalan sebelum ini adalah berasaskan kepada bilangan atribut yang tetap. Akibatnya,
apabila berlaku peningkatan atau penurunan bilangan atribut, model tersebut tidak
boleh digunakan. Oleh itu, model ramalan kekuatan mampatan konkrit yang boleh
berfungsi dengan bilangan atribut yang berlainan adalah diperlukan. Tujuan kajian
ini adalah untuk membangunkan model ramalan kekuatan mampatan konkrit yang
menggunakan kombinasi atribut berlainan. Kajian ini merangkumi lima peringkat:
pengumpulan data, penormalan, pengenalpastian parameter, pembinaan model dan
penilaian. Data set yang digunakan terdiri daripada sembilan atribut: air, simen,
agregat halus, agregat kasar, usia, abu terbang, super plasticizer, sanga relau bagas
dan kekuatan mampatan konkrit. Kajian ini menghasilkan lapan model ramalan yang
mana setiap model mempunyai kombinasi atribut yang berbeza. Kajian itu juga
mengenalpasti berat, kadar pembelajaran, momentum dan bilangan nod tersembunyi
yang sesuai untuk setiap model ramalan yang dicadangkan, dan rekabentuk umum
seni bina rangkaian neural buatan (ANN). Model lapan dalam kajian ini
menghasilkan pekali korelasi yang lebih tinggi (0.973) daripada kajian yang sedia
ada (0.953). Kajian ini telah berjaya menghasilkan lapan model ramalan kekuatan
mampatan konkrit dengan pekali korelasi yang baik. Model ramalan kekuatan
mampatan konkrit ini akan memberi manfaat kepada jurutera awam untuk mengenal
pasti kesesuaian bahan tambahan untuk campuran konkrit.

Kata Kunci: Kekuatan konkrit mampatan, Kombinasi sifat-sifat, Rangkaian neural
buatan, Model ramalan.
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CHAPTER ONE
INTRODUCTION

1.1 Background

Concrete is one of the most indispensable building and engineering material in the
world. It has been used for more than 10 decades (Aggarwal, Kumar, Sharma, &
Sharma, 2015). Concrete becomes more and more popular in the world because of its
capabilities. For example, it can take up any shape before it becomes hard, and
strengthens when it hardens. This construction material is widely used in buildings,
bridges, roads, runways, docks, military engineering, nuclear power stations and so
on (Wankhade & Kambekar, 2013). If there is a high quality building, it must have a
strong compressive strength of concrete. Because of this, compressive concrete
strength becomes an important element building construction. If the compressive
concrete strength do not meet the required specification for a building then there will
a high risk of destruction when unfortunate incidents happened such as natural
disasters or damages caused by humans. For example on May 12, 2008, an
earthquake of magnitude 7.9, struck western Sichuan province causing many
buildings to be destroyed and casualties. Many experts agree that casualties and
damages could have been avoided if the buildings were built using high quality
components. The question is, how quality is the buildings? Obviously, when such
catastrophic incident occur, the buildings can said to be below the quality standard —
that is, the compressive concrete strength was below than the standard

procedure(Michele et al., 2010). Again on July28, 1976, the city of Tangshan, China



was struck by a 7.8magnitude earthquake. Many people were injured and buildings
were severely destroyed (Huixian, Housner, Lili, & Duxin, 2002). Thus, these
disasters have attracted many researchers, especially to predict concrete compressive
strength so that new buildings are safe to withstand disasters such as earthquake or

equivalent incidents.

Over the last decade, artificial neural network (ANN), have become popular and
have been used by many scholars to solve engineering related problems. The positive
side of ANN is that there is no requirement for assuming a model form and do not
need to make any specific equation form. ANN automatically handles the
relationships among variables and adapt according to the data used for their training.
So using a large number of experimental data, a model can be developed (Rasa,
Ketabchi, & Afshar, 2009). According to Muthupriya, Subramanian, & Vishnuram
(2011), ANN is like a powerful and useful weapon that can handle classification and

able to learn based on samples or existing datasets well.

In terms of prediction of compressive concrete strength, for instance, Vakhshouri &
Nejadi (2015) constructed an Adaptive Neural-Fuzzy inference System incorporating
both neural networks and fuzzy systems to predict compressive strength of concrete.
In another study, Aggarwal et al (2015) used Multiple Regression to predict strength
of concrete. Gilan, Ali, & Ramezanianpour (2011) used fuzzy function which based

on support vector regression also to forecast compressive strength of concrete.



In terms of attributes used for prediction, different approaches were used. Since, the
main attributes of concrete are cement, aggregate (sand, stone) and water; most
researchers would use all of the attributes to make concrete (Ferraris, 1999). Others
would add other attributes such as Blast Furnace Slag, Fly Ash, Super plasticizer,

Coarse Aggregate, Fine Aggregate and Age (Wankhade & Kambekar, 2013).

Based on the above discussion, it can be seen that previous prediction models are
static. Static prediction models always focus on specified number of attributes.
However, when the numbers of attributes increase or decrease, the models will not
work anymore. This indicates that static models have a limitation — that is these
models cannot work with different numbers of attributes. Thus, a compressive
concrete strength model which can work with different combinations of attributes is

needed.

In this study, several different set of attributes were used. In total the number of
attributes used was 9. Data for this study was taken from the University of California,
Irvine (UCI)’s repository. The dataset consists of 9 attributes and 1030 instances.
This dataset is the data that were used to perform prediction by Yeh (1998). The last
attribute, compressive strength of concrete is the dependent attribute, while other 8
attributes are the independent attributes. The following information describes the
dataset in greater detail. Out of 9 attributes, five attributes are the basic attributes

(cement, water, age, coarse aggregate and fine aggregate) and is shown in Table 2.1



and Table 2.2. Three attributes, fly ash, super plasticizer and blast furnace slag are
additional attributes. The final attribute (compressive concrete strength) is the class

or defendant attribute.

1.2 Problem Statement

Compressive strength of concrete is one of the most important and useful properties
that is employed to resist compressive stresses. However, at locations where tensile
strength or shear strength is of primary importance, the compressive strength is used
to measure properties of hardened concrete (Gupta, 2007). Even though most of the
existing studies obtain good accuracy on predicting compressive concrete strength,
their models still have some weaknesses. In general, the problems relate to attributes.
Specifically, previous researches only used specific attributes to predict compressive

concrete strength.

In civil engineering, engineers will not always use the same attributes to make
concrete. In usual situation, engineers only use some main attributes to predict
compressive concrete strength (Rasa, Ketabchi, & Afshar, 2009). But in other
situations, civil engineers need to add extra materials (make the strength of concrete
stronger) to predict the compressive concrete strength (Wankhade & Kambekar, 2013;
Martinez-Molina et al., 2014; Nikoo, Torabian Moghadam, & Sadowski, 2015; De

Melo & Banzhaf, 2016).



But existing models have not explored using basic attributes with additional
attributes to predict compressive concrete strength. Because of this, a prediction
model which can use the basic attributes and additional attributes for predicting
compressive strength of concrete is needed (Rasa, Ketabchi, & Afshar, 2009;Deepa,
Sathiya Kumari, & Pream Sudha, 2010; Alilou & Teshnehlab, 2010; Gilan et al.,
2011; Muthupriya et al., 2011; Kabir, Hasan, & Miah, 2012; Kabir, Hasan, & Miah,
2013;Martinez-Molina et al., 2014; Nikoo, Torabian Moghadam, & Sadowski, 2015;

De Melo & Banzhaf, 2016).

1.3 Research Questions
The main question is can a prediction model predict compressive concrete strength
with good correlation coefficient when new materials are added to the basic

prediction model?

Specific question would be:

1) What are the basic attributes for predicting compressive strength of concrete?

2) What is the suitable technique for predicting concrete compressive strength?

3) What are the suitable parameters for Weights, Learning Rate, Momentum,
numbers of hidden layers and numbers of hidden nodes that can be used to construct

a compressive concrete strength prediction model?



1.4 Research Objectives
The main objective of this study is to construct a prediction model which could
predict compressive concrete strength accurately using basic attributes with

additional attributes.

Specific objectives are:

1) to identify the basic attributes that can predict compressive concrete strength with
good correlation coefficient;

2) to identify additional attributes that can be used to predict compressive concrete
strength with good correlation coefficient;

3) to determine suitable parameters for weights, learning rate, momentum and
numbers of hidden nodes.

4) to design a main ANN architecture for predicting compressive strength of concrete

and construct a compressive concrete strength prediction model.

1.5 Significance of the study

The study will benefit civil engineers. This work supports the combinations of
attributes (basic attributes + additional attributes) to predict compressive strength of
concrete for civil engineers. It explores ANN architectures (it includes learning rate,
momentum, number of hidden layer and number of hidden nodes) for prediction. So,
civil engineers can use the ANN architectures to predict the compressive concrete

strength.



1.6 Scope of this study

This study used the secondary dataset from Yeh et al. (1998). The dataset contains
1030 instances, and 9 attributes (age, water, cement, fine aggregate, coarse aggregate,
super plasticizer, fly ash, blast furnace slag and compressive strength of concrete).
The compressive concrete strength is the output (target). Based on the features and
different combinations of attributes (5 basic attributes + 3 additional attributes), this

secondary data set was separated into 8 sets of data (Table 3.2).

1.7 Thesis organization

This dissertation report is separated into six chapters. Chapter One is the background
and introduction about concrete and compressive concrete strength. It also describes
the problem statement, research questions, objectives, significance of the study, and
scope of this study. Chapter Two presents the literature review which includes the
information about compressive strength of concrete, attributes existing scholars used
to predict compressive concrete strength, existing techniques for prediction, and
artificial neural networks. Chapter Three discusses the methodology used in this
study. The methodology consists of five main phases which are Data Collection,
Normalization, Determine Parameters, Model Construction and Evaluations. Chapter
Four presents the deliverables for objectives 1, 2, 3 and 4. Chapter Five discusses the
evaluation results of 8 models, discussion, and comparison results between model 8
and one existing compressive concrete strength prediction model. Chapter Six

highlights the overall achievement, contributions and future works of this study.



CHAPTER TWO
LITERATURE REVIEW
2.1 Theoretical background
This chapter includes three sections. Section 2.1.1 describes the background of
concrete and the importance of concrete. Section 2.1.2 provides discussion on
existing attributes used to predict compressive concrete strength and Section 2.1.3

discusses on various existing techniques that have been used for prediction.

2.1.1 Compressive strength of concrete

Concrete is an important and most common building material of civil engineering. It
has useful capabilities such as able to take any shape before it solidifies and hardens
strongly, giving a good strength. This construction material is widely used in
buildings, bridges, roads, runways, docks, military engineering, nuclear power
stations (Wankhade & Kambekar, 2013). In addition,concrete is an artificial
conglomerate stone. That is, it includes several basic elements such as cement, fine
aggregate, coarse aggregate and water.Using different amounts of elements will
contribute to different compressive concrete strength (Chou, Chiu, Farfoura, &

Altaharwa, 2011).

In the process of making concrete, civil engineers will add other materials, such as
fly-ash, supper plasticizer and blast furnace slag to improve the property of concrete.

In simple words, civil engineers will use other materials to make the compressive



strength of basic concrete stronger.Basic concrete in general consist of materials such

as cement, fine aggregat, coarse aggregate and water ( Yeh et al., 2003).

The issue of damages after an earthquake is serious and at most times frightening.
People cannot stop earthquake, but people can avoid unnecessary losses. Therefore,
compressive concrete strength plays an important role because buildings’ damages
can be reduced if the compressive concrete strength can withstand strong earth
movements. The series of earthquakes that happened for example in British (2008),
Yu shu, China (2010), New Zealand (2013) and Nepal (2015) caused buildings to
collapse and many casualties (Musson, 2008; Bray et al., 2013;Jordans, Kohrt, & Tol,
2015). Thus, if concrete can be predicted for earthquake resistance, then buildings
can be assured a safe place when such incidents happen. And according to Ghan,
Peng, & Anson (1999), the high range of compressive concrete strength is between
70 to 140 MPa at 28 to 91 days and high-early strength is between 20 to 28 MPa at 3

to 12 hours or 1 to 3 days.

2.1.2 Attributes

Concrete consists of mixed materials. Some researchers defined the basic attributes
such as water, fine aggregate and coarse aggregate (Ferraris, 1999). Others
mentioned that it composed of cement, sand, aggregate, water, mineral admixtures
and chemical admixtures (Liu, Sue, & Kou, 2009). A mixture of different materials

will make different properties of concrete and in turn results to a different



compressive concrete strength.

Previous studies on predicting compressive concrete strength use different
composition of attributes. Table 2.1shows the attributes that have been used to
predict compressive concrete strength and Table 2.2 shows the occurrences of the

attributes in previous research works.

Table 2.1

Attributes used by existing researchers

NO. AUTHORS INDEPENDENT DEPENDENT
VARIABLES VARIABLES
1 Yeh (1998) Cement, Blast Furnace Compressive

Slag, Fly ash, Water, Super  strength of concrete
plasticizer, Coarse
aggregate, Fine aggregate
and age.

2 Yeh (2003) Cement, Blast Furnace Compressive
Slag (BFS), Fly ash, Water, strength of concrete
Super plasticizer, Coarse

aggregate and Fine

aggregate.

3 Yaqub et al. (2006) Water cement ratio, slump, Compressive
cement content, age strength of concrete
(days).

4 Tanyildizi and Coskun Cement (C), Fly ash (Fa), = Compressive

(2007) Aggregate, water (W) and  strength of concrete

10



super plasticizer (SP).
Rasa et al. (2009) Water, Cement, Silica Density and
fume (SF), compressive

Super-plasticizer, Cement  strength

Type (CT).

Bilim et al. (2009) Cement, aggregate, age, Compressive
blast furnace slag and strength of concrete
plasticizer.

Deepa et al. (2010) Cement, Blast Furnace Compressive

Slag, Fly ash, Water, Super strength of concrete
plasticizer, Coarse

aggregate , Fine aggregate

and age.
Atici (2011) Age, cement, Blast furnace Compressive

slag and Fly ash, strength of concrete
Hasan and Kabir (2011) Coarse aggregate, fine Compressive

aggregate, cement, water,  strength of concrete
fineness modulus of sand
and age (days).

Muthupriya et al. (2011) Age, Cement, Silica fume, Compressive
Fly-ash, Water, Sand, strength of concrete
Aggregate, and Super
plasticizer.

Kabir et al. (2013) Coarse aggregate, Fine Compressive
aggregate, Cement, Water,  strength of concrete
Age and W/C ratio
(WCR).

Wankhade and Kambekar ~ Age, Water, Cement, Super Compressive

(2013) plasticizer, Blast Furnace strength of concrete
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Slag, Fly-Ash. Fine

aggregate and Coarse

Aggregate.
13 Wilfridoet al. (2014) Cement, Sand (S), Gravel =~ Compressive
(G) and Water. strength of concrete
14  Aggarwal et al. (2015) water, fine Compressive
aggregate-binder ratio strength of concrete

(FA), coarse
aggregate-binder (CA) and
binder content (BC).
15  Melo and Banzhaf (2015)  Cement, Blast Furnace Compressive
Slag, Fly ash, Water, Super strength of concrete
plasticizer, Coarse
aggregate , Fine aggregate

and age of testing.

Table 2.2

The occurrences of attributes from previous attributes

Past C W Fa FA CA Age SP BF BC SF W S GCT
Work S CR

o N oo o A W N P
2

A N U O O N
<
<
<
<
L
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9 N N N

10 N

11 N N N

12 N NV J
13 J J VA
14 J J v v

15 J N AN

Occurre |13 12 8 11 11 10 8 7 1 2 2 411
nces

Based on Table 2.1 and Table 2.2, it can be found that the common attributes are
water, cement, fine aggregate, coarse aggregate and age (the occurrences are more
than 10). These common attributes have been mentioned as the basic concrete
components (Chou et al., 2011). Therefore, cement, water, coarse aggregate, fine
aggregate and age were chosen as the basic attributes in this study. According to
Yeh (2006), fly ash, super plasticizer and blast furnace slag are mineral admixtures
which can improve compressive concrete strength. Because of these, the three

attributes were selected as three additional attributes in this study.

2.1.3 Past studies on prediction techniques

Prediction, as people understand, is considered as forecasting short-term changes of
certain phenomena. Examples are predicting the temperature of tomorrow at a given
location or forecasting which asset to best invest next year (Cesa-Bianchi & Lugosi,
2006). In general, prediction is done based on precious experiences or historical data.

Table 2.3 shows the various techniques used by previous researchers.
13



Table 2.3

Various prediction techniques

Techniques Authors Correlation Root Mean
Coefficient Mean Absolute
Square Error
Error
Support Vector Gupta (2007) 0.9910 0.9100
Machine (SVM) Chou, Chiu, 0.9197 6.7248 14.9052
Farfoura and
Taharwa (2011)
Akande et al., 0.9773 23.1400 4.8900
(2014)
Suhad and Abbas 0.9900 -0.3208
(2015)
Genetic Operation  Yeh and Lien 0.8669
Tree (2009)
Multiple Statistical  Liu et al. (2009) 0.9622 24.0800  5.5000
Regression
Alilouand 0.9944 5.1080
Levenberg Teshnehlab (2010)
-Marquardt Chou, Chiu, 0.9428 7.0364 11.6444
Farfoura and
Taharwa (2011)
Deepaetal. (2010)  0.7908 9.9054 7.6780
Multiple Chou, Chiu, 0.6906 11.6391  36.6473
Regression Farfoura and
Taharwa (2011)
Linear Regression  Deepaetal. (2010) 0.7009 11.1066 8.8388

14



M5P Model Tree Deepaetal. (2010) 0.8872 7.1874 5.0080

ANN Yeh (2003) 0.9940
(Back-Propagation) Rasa et al. (2009) 0.9947 0.0348
Yeh & Lien (2009)  0.9338
Muthupriya et al. 0.9724 2.3729 -1.1138
(2011)
Wankhade and 0.98 2.4500 1.8300

Kambekar (2013)

Based on Table 2.3, it can be seen that the popular methods that have been used for
prediction compressive concrete strengths are SVM (Suhad & Abbas, 2015), Genetic
Operation Tree (Yeh & Lien, 2009), Multiple Statistical Regression (Liu et al., 2009),
Levenberg-Marquardt (Alilou &Teshnehlab, 2010), Multiple Regression (Chou et al.,
2011), Linear Regression (Deepa et al., 2010), M5P Model Tree (Deepa et al., 2010),

and Back Propagation (ANN) (Wankhade & Kambekar, 2013).

Support Vector Machine (SVM) is one of the good techniques for prediction. It is a
statistical learning algorithm that can be applied to both classification and regression
problems (Akande et al., 2014). As Figure 2.1 shows, SVM fits a hyperplane or
function between 2 different classes given a maximum margin parameter. This
hyperplane attempts to separate the classes so that each falls on either side of the
plane, and by a specified margin. There is a specific cost function for this kind of

model which adjusts the plane until error is minimized (Kasi, 2015).
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Figure 2.1: The general diagram of SVM
(http://algoholic.eu/faster-dot-product-for-svm/)

From Table 2.3, in the study of Akande et al., (2014), the researchers used SVM
method to predict compressive concrete strength of concrete and used Coefficient of
correlation (CC), root mean square error (RMSE) and absolute error (EA) to judge
their model. The SVM method for predicting compressive concrete strength achieved
good results which are 0.9773 (CC), 23.14 (RMSE) and 4.89 (EA). Therefore, the
results proved that SVM is a good technique for prediction. In other studies from
Suhad & Abbas (2015); Preetham, Shivaraj, Prema kumar, & Kumar (2014), SVM

also showed good results.

In 2007, Gupta used SVM to predict compressive concrete strength with small
number of data. Gupta and Fred (2014) found that SVM achieved a better

performance with smaller number of training data but requires a heuristic process.
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Due to some limitations of SVM, several researchers such as researchers that Uppada,
Balu, Gupta, & Dutta (2014); Betrie, Sadiq, Morin, & Tesfamariam (2014); and Sakt,
Elhajj, & Mitri (2011) used ANN for compressive concrete strength prediction. ANN

was found to perform better than SVM for prediction.

For other techniques, Yeh & Lien (2009) applied genetic operation tree (GOT) in
their study. GOT is a combination of an operation tree and a genetic algorithm to
automatically produce self-organized formulas for predicting the compressive
strength of high performance concrete. Comparison results indicated that GOT
(R?=0.8669) obtained formulas that were more accurate than nonlinear regression

formulas but less accurate than neural network models (R?=0.9338).

Liu et al. (2009) estimated the strength of concrete by using multiple statistics
regression with the nondestructive test (NDT) surface hardness rebound value. In
their study, they used 146 examples for training, and 20 examples for testing. In
addition, they used 10 attributes (cement, coarse aggregate, fine aggregate, slag, flay
ash, chemical admixture, water, age, moisture content and rebound value) as inputs
and one attribute (compressive strength) as output. In the result of this study, the

correlation coefficient achieved was 0.9622.

ANN models have been widely studied with the goal of achieving human-like

performance, especially in the area of pattern recognition and system identification.
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The networks are made of a number of nonlinear calculative units that manipulate in
parallel and are arranged in a mode reminiscent of biological neural

inter-connections (Alilou & Teshnehlab, 2010).

- - - - - -7 1

| Va |

| _JADAPTIVE SYSTEM
INPUT *  sTRUCTURE DESIRED
SIGNAL | | sieNaL

T .

| I

CONTROL
| ALGORITHM [ ERROR |
e g ]

Figure 2.2: Block diagram of an adaptive system

Alilou (2010)

In Figure 2.2, Alilou and Teshnehlab used five methods of ANN for predicting
concrete compressive strength. The methods are Levenberg-Marquardt,
Polak-Ribiere Conjugate Gradient, Fletcher-Powell Conjugate Gradient, Gradient
Descent and Quasi-Newton. All five methods achieved good accuracy and
Levenberg-Marquardt obtained the best correlation coefficient (99.436) and shortest

time (7.7 ms).

In the research of Rashid & Mansur (2009), they indicated that the significance of the
composition materials to product high quality strength of concrete combined with the
results of a previous study on finding nice quality value of compressive concrete

strength. Chou, Chiu, Farfoura and Al-Taharwa (2011) used Data Mining method to
18



predict the compressive strength of concrete with good accuracy. The compressive
strength of high performance concrete was the class (target) attribute. The
independent attributes (inputs) were cement, fly ash, blast furnace slag, water, super
plasticizer, age, and coarse and fine aggregate. Table 2.2 shows the five different
methods of data mining that they used for quantitative analysis and these are artificial
neural network, support vector machines (SVM), multiple regression (MR), multiple
additive regression trees (MART) and bagging regression trees (BRT). The
performance comparison of this prediction model was tested by cross-validation. It
showed that MART had high workability in prediction correlation coefficient, avoid
to over fitting, and made short training time. The result of this study also showed that
multiple additive regression trees can also be used to predict high performance

concrete with different ages.

In 2011, Gilan et al. constructed a new fuzzy function model by using support vector
regression to predict compressive strength of concrete and they called this model as
evolutionary fuzzy function model (EFF-SVP). This model is a alteration of the
fuzzy function (FF) models. For validation purpose, they examined the results based
on several previous system modeling methods, artificial neural network (ANN)
(Kosko, 1992), adaptive neural-fuzzy inference system (ANFIS) (Jang, 1993), fuzzy
function with least squared estimation (FF-LSE) (Turksen, 2008), and enhanced FF
with LSE (IFFLSE) (Celikyilmaz & Turksen, 2008). They also used eight

independent attributes and one dependent attribute.
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Table 2.4

RMSE for several modeling methods

Modeling RMSE

Methods  Trajn Validate Test All

ANN-1 5.7507 6.9689 7.0205 6.1577
ANN-2 4.6006 5.6884 5.9848 5.0091
ANFIS 3.1172 14.8931 10.877 7.6109
FF-LSE 4.9397 6.4908 8.9668 5.9609
IFF-LSE 4.7435 6.8167 5.1823 5.1826
EFF-SVR  3.6922 6.3789 5.0965 44221
Saduf (2013)

Based on Table 2.4, it indicates that EFF-SVR was the best modeling method for
predicting compressive concrete strength as the method produced the lowest value of

RMSE.

Deepa et al. (2010) chose three data mining methods, Multiplayer perceptron, Linear
regression and M5P model tree for predicting compressive concrete strength and
compared with them. The target of this research was to find a good algorithm for
prediction with shortest time. The independent attributes of this study were Cement,
Blast Furnace Slag, Fly Ash, Water, Super plasticizer, Coarse aggregate, Fine
aggregate and age. The result shown in Table 2.5 indicates that M5P model tree is the
best algorithm for predicting compressive strength of concrete, although the taken

time was not the shortest one. But it achieved the highest correlation and lowest Root
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Mean Square Error (RMSE) and Mean Absolute Error (MAE).

Table 2.5

Prediction results for three algorithms

Techniques Correlation RMSE MAE Time taken In
(sec)

Multilayer 0.7908 9.9054 7.678 2.06

perceptron

Linear 0.7009 11.1066 8.8388 0.02

regression

M5P model tree 0.8872 7.1874 5.008 0.41

Deepa (2010)

Another popular prediction method is the Bayesian network or Bayesian prediction.
A Bayesian network is a graphical model that encodes probabilistic relationships
among variables of interest. The model takes prior knowledge and data, and enables
estimation of posterior probabilities of outcomes (Thomas, 2015). For example,
Vale (2014) used Bayesian prediction method to forecast the winds of winter and

MacKay (1994) did a prediction of competition based on Bayesian non-linear model.

In 2011, Pradhan & Kundu used Bayesian prediction to predict the two-parameter
gamma distribution. Their result indicated that Bayesian estimates with
non-informative priors behave like maximum likelihood estimates, but for

informative priors the Bayesian estimates behave much better than maximum
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likelihood estimates. They also found that Bayesian prediction is an method for

prediction based on the data that are already known.

Based on Table 2.3 and the discussion above, it is obvious that ANN is a much better
technique for solving prediction problems. This is because ANN (using Back
Propagation) obtained a high correlation coefficient (around 0.93-0.99) (Yeh & Lien,
2009; Muthupriya et al., 2011;Yeh, 2003;Rasa et al., 2009;Wankhade & Kambekar,
2013). Table 2.3 also shows that the average correlation coefficient (around 0.99) of
back propagation is higher than the correlation coefficient average of other

techniques (lower than 0.98).

Therefore, ANN was used in this study for predicting compressive strength of

concrete. Section 2.2 below describes ANN in more detail.

2.2 ANN concepts and architecture

ANN consists parallel architectures that are can learn and generalize from given
datasets to produce meaningful solutions even when data contain errors and are
incomplete. This makes ANN a powerful tool for handling complicated engineering
problems. Basically, the process of a neural network is similar to the process of

neurons in the brain.
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The basic strategy for developing a neural network-based model for prediction a
certain data is to train a neural network on the results of a series of experiments using
that dataset. If the experimental results contain the relevant information about the data
behaviour, then the trained neural network will contain sufficient information about
data’s behaviour to qualify as a ANN model (Noorzaei, Hakim, Jaafar, & Thanoon,
2007). A trained neural network not only can reproduce the experimental results, but
also it can predict the results for other similar experiments based on its powerful

capability.

2.2.1 Construction of Neural Network Model and Parameters

A neural network architecture talks about how many layers in a network, how many
hidden layers, how many hidden nodes in hidden layers and the relationship between
each unit. The best architecture is selected from several architectures that are
developed through an iteration process. How to select a most suitable ANN
architecture is an open problem of investigation and depends on the area of
applications. It can be determined by training, testing and validating several networks
having different conditions. Connecting such units in various ways leads to different
architectures of neural networks. The ANN learns from existing examples which is
the process to get the final weights that are adapted. The basic unit of all ANNSs is the
neuron. The basic scheme of the neuron is shown in Figure 2.3. This process is

represented by a learning algorithm (Oravec, Petras, & Pilka, 2008).
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The basic neuron model is shown in Figure 2.3 below:

Weights

X1

Activation function

Xz
. Vk

o) —>yk

I Output

Input vector Ok
Bias

Summation

Figure 2.3: Basic neuron model

As shown in Figure 2.3, neural network models can be obtained by the number of
hidden layers, number of hidden nodes in each hidden layer, type of activation

function, value of learning rate and value of momentum term.

Learning rate coefficient is one of the most significant elements in network
development. Every time a pattern is presented to the network, the weights leading to a
neuron are modified slightly during learning in the direction required to produce a
smaller error at the outputs the next time the same pattern is presented. The amount of
weight modification is proportional to the learning rate. The range of leaning rate is
between O to 1. If the value of learning rate is close to 1, it means that important
modification in weight is needed, but if a value is close to O, it presents little

modification is needed (Plagianakos, Magoulas, & Vrahatis, 2001).

24



However, the learning rate in a parameter is the one that determines the size of the
weights adjustment each time the weights are changed during training. Small values of
learning rate lead to small weight changes and large values lead to large changes. The
most suitable learning rate for model cannot be found directly. If the value of
learning rate is O, the network will not learn. Therefore, the learning rate is very
significant in identifying over-learning and when to stop training (Noorzaei et al.,

2007).

2.2.2 A simple neural network model

The simplest type of neural network feed forward network. It is a single-layer
perceptron network that includes one single layer of output nodes, one layer of input
nodes, and one layer of hidden layer nodes. The inputs are fed directly to the outputs
via a series of weights. In this network, the information moves in only one direction,
forward, from the input nodes, through the hidden nodes (if any) and to the output

nodes. There are no cycles or loops in the network. Figure 2.4 shows the diagram.

|11

Input Layer
Hidden Layer

Output Layer

Figure 2.4: A simple neural network model
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The operation of the network can be divided into two phases, learning phase, and
classification phase. The Back-propagation algorithm and Feed Forward are popular
techniques that have been used to perform the learning process. Back-propagation is a
training algorithm that includes of 2 steps: 1) Feed forward the input values, 2)
calculate the error and propagate it back to the earlier layers. Both Feed Forward and

Back-propagation algorithms are used in training neural network.

In this research, Feed Forward and Back-propagation algorithms were used to

develop the ANN model.

2.3 Summary

Several topics were investigated to determine the input, and techniques to be used in
the study. Basically, five basic attributes, cement, fine aggregate, coarse aggregate,
water and age were chosen as input. Besides these, 3 other inputs (blast furnace slag,
fly ash, and super plasticizer) were selected as additional attributes.
Back-propagation algorithm was also selected to be used in the model development

process.
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CHAPTER THREE

METHODOLOGY

This chapter elaborates the process of achieving the objectives and constructing the

compressive concrete strength prediction model.

3.1 Research Process

The general goal of this study is to construct a compressive concrete strength
prediction model. Thus, the process of constructing the model involves five (5)
phases: Data collection (data information), Normalization, Determine parameters,
Prediction model construction (construct the main architecture), and Evaluation.

The flow diagram is shown in Figure 3.1:
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Figure 3.1: The research process diagram

3.1.1 Phase 1 Data Collection

This study used a secondary dataset (Concrete Compressive Strength Data Set) that
was taken from the UCI repository. The dataset was separated to 8 sub datasets
(different combinations of attributes). Detailed information on the datasets is shown

in Table 3. The sample of data are shown in Appendix A.
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Table 3.1

Inputs and output attributes

No. of No. of input Instancesof Data Output attribute (units)

Datasets attributes

1 5 209

2 6 209

3 6 209

4 6 209 Compressive Strength of
5 7 209 Concrete

6 7 209

7 7 209

8 8 209

Based on Table 3.1, Model 1 focused on 5 basic attributes (cement, water, age, fine
aggregate and coarse aggregate), and the other models focused on different
combinations of attributes (5 basic attributes + additional attributes). All 8 models

have the same target which is compressive strength of concrete.

The statistical descriptions of datasets for each model is specified in Table 3.2.
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Table 3.2 (a)

Statistical descriptions for Dataset 1

Statistic Minimum Maximum  Mean StdDev
Attributes

Cement 200 540 354.187 85.623
Water 146 228 192.114 12.183
Coarse Aggregate 838.4 1125 1018.21 72.394
Fine Aggregate 594 945 773.097 81.492
Age 1 365 61.995 90.721
Concrete

Compressive 6.27 74.99 29.806 14.645
Strength

Table 3.2 (b)

Statistical descriptions for Dataset 2

Statistic Minimum Maximum Mean StdDev
Attributes

Cement 165 540 349.823 89.144
Fly Ash 0 143.6 3.0350 20.115
Water 146 228 191.493 12.524
Coarse 838.4 1125 1018.059 71.543
Aggregate

Fine 594 945 776.54 82.784
Aggregate

Age 1 365 59.871 87.88
Concrete

Compressive 6.27 74.99 29.592 14.551
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Strength

Table 3.2 (¢)

Statistical descriptions for Dataset 3

Statistic Minimum Maximum Mean StdDev
Attributes
Cement 102 540 288.601 113.239
Blast Furnace 0 359.400 81.596 98.380
Slag
Water 146 228 194.971 14.116
Coarse 879 1125 997.672 70.917
Aggregate

Fine 594 945 760.491 91.398
Aggregate
Age i 365 55.024 84.969
Concrete

Compressive 3.32 74.99 28.438 14.858
Strength

Table 3.2 (d)

Statistical descriptions for Dataset 4

Statistic Minimum Maximum Mean StdDev
Attributes

Cement 200 540 368.285 92.462
Water 140 228 189.562 15.813
Super 0 28.2 1.171 4.621

plasticizer




Coarse 801 1125 1006.465 78.131
Aggregate

Fine 594 945 773.194 82.984
Aggregate
Age 1 365 56.254 85.553
Concrete

Compressive 6.27 79.99 32.157 15.986
Strength

Table 3.2 (e)

Statistical descriptions for Dataset 5

Statistic Minimum Maximum Mean StdDev
Attributes

Cement 102 540 277.976 104.788
Blast Furnace 0 359.400 93.500 99.345
Slag

Fly Ash 0 143.6 3.035 20.115
Water 146 228 196.282 15.710
Coarse 838.4 1145 988.485 67.078
Aggregate

Fine 594 945 755.125 90.204
Aggregate

Age 1 365 64.512 96.999
Concrete

Compressive  2.330 74.99 28.551 14.809

Strength
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Table 3.2 (f)

Statistical descriptions for Dataset 6

Statistic Minimum Maximum Mean StdDev
Attributes

Cement 144 540 308.598 103.055
Fly Ash 0 194.9 59.576 62.872
Water 141.8 228 182.451 17.650
Super 0 28.2 4921 5.670
plasticizer

Coarse 801.1 1125 1002.633 68.539
Aggregate

Fine 594 945 792.537 74.501
Aggregate
Age 1 365 50.311 70.490
Concrete

Compressive 6.27 79.99 31.779 13.693
Strength

Table 3.2 ()

Statistical descriptions for Dataset 7

Statistic Minimum Maximum Mean StdDev
Attributes

Cement 102 540 309.589 110.917
Blast Furnace 0 359.400 91.553 96.363
Slag

Water 127.3 228 189.148 20.771
Super 0 32.200 2.925 5.782

plasticizer
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Coarse 801 1134.3 978.956 73.776
Aggregate

Fine 594 945 757.001 87.249
Aggregate
Age 1 365 62.459 89.335
Concrete

Compressive 4.57 82.600 35.922 18.436
Strength

Table 3.2 (h)

Statistical descriptions for Dataset 8

Statistic Minimum Maximum Mean StdDev
Attributes

Cement 116 540 272.344 93.748
Blast Furnace 0 305.300 86.481 92.614
Slag

Fly Ash 0 193 50.236 62.300
Water 121.800 228 184.844 24.122
Super 0 32.200 5.869 5.728
plasticizer

Coarse 822 1134.3 978.376 70.028
Aggregate

Fine 594 945 762.811 85.395
Aggregate

Age 1 365 59.847 85.491
Concrete

Compressive 4.83 82.600 36.695 17.652

Strength
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This dataset does not contain any missing values (using WEKA). In addition,
concrete compressive strength is a highly nonlinear function of building materials

(Chou et al., 2011).
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Figure 3.2: The scatter plot of dataset.

Figure 3.2 shows the scatter plot of the dataset. Based on the figure, it can be seen

that it is nonlinear and cannot be solved using a linear solving method such as

regression.
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3.1.2 Phase 2 Normalization

This study used ANN method to do data training, so initially the dataset need to be
normalized. Because that it is good for comparison between the results for the
various sensory outputs, and it also can enhance the reliability of the trained network
(Jayalakshmi & Santhakumaran, 2011). Min-Max normalization (Nayak, Misra, &

Behera, 2014) was used. Normalization was done using WEKA 3.6, and the formula

is shown below:

V—-minA

- maxA—minA (new_maxA - new_mmA) + new_mlnA (3'1)

Where, V'is anew value
V is the original value
minA is the minimum value of the attributes
maxA is the maximum value of the attributes
new_ maxA is a maximum value of the new value

new_ minA is a minimum value of the new value

The data was also set to two decimal places, and the samples of raw data and

normalized data are shown in Table 3.3.

Table 3.3

Sample of raw data (before) and normalized data (after)

Names: | Cement BFS Fly Water SP CA FA Age CS
Ash

213.70  98.10 2450 181.70 6.90 1065.80 78540 3 18.00
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Raw 213.70 98.10 2450 181.70 6.90 1065.80 78540 14  30.39
Data 213.70  98.10 2450 181.70 6.90 1065.80 78540 28 45.71
213.70  98.10 2450 181.70 6.90 1065.80 78540 56  50.77
213.70 98.10 2450 181.70 6.9 1065.80 785.40 100 53.90

Norma- | 0.26 027 012 048 021 0.77 048  0.01 0.20
-lized | 0.26 027 012 048 021 0.77 048  0.04 0.35
Data 0.26 027 012 048 021 0.77 048  0.07 054
0.26 027 012 048 021 0.77 048  0.15 0.60
0.26 027 012 048 021 0.77 048 027 0.64

3.1.3 Phase 3 Determine Parameters
In this study, the value for four parameters (Weights, Learning Rate, Momentum
factor and numbers of hidden nodes) were determined. The process is shown below

(Figure 3.3):

Situation 1: BA(S)

Situation 2: BA(S)+ EALl

Situation 3: BA(S)+ EA2

Situation 4: BA(S)+ EA3

Situation 5: BA(S)+ EAl + EA2

Situation 6: BA(S)+ EA1 + EA3 BA(S): Basic Attributes
Situation 7: BA(S)+ EA2 + EA3 EA: Extra Attributes
Situation 8: BA(S)+ EAl1 + EA2 + EAJ3

Figure 3.3: Eight situations of different combinations of attributes

In Figure 3.3, because that there are five basic attributes (BAs) and three extra
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attributes (EA1, EA2 and EA3), eight training models were considered. The five
basic attributes creates the basic training model, while the three additional attributes

were added to construct other training models.

In total, there 8 prediction models were constructed. The following sub sections

explains the process of determining the parameters.

3.1.3.1 Determine Weights

Eight sets of weights were determined based on different combinations of attributes.
Back-Propagation algorithm (Makin, 2006) were used in data training, specifically
for updating the weights. The formulas (for one hidden layer) are shown below:

Feed-Forward:

zZ_inj; = vy + XL XjVjj (3-2)
zj = f(z_inj) =1/(1+ exp(—z_inj)) (3-3)
Each hidden unit (z,j=1,2...p) sums its weighted input signals, applies its
activation function to compute its output signal, and sends this signal to all units in

the output layer.

y_il’lk = Wok + ijzl Z]'W]'k (3-4)
yk = f(y_ini) = 1/(1 + exp(—y_iny)) (3-9)
Each output unit (yy, k = 1,2...m) sums its weighted input signals, and applies its
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activation function to compute its output signal.

Back Propagation of Error:

o = (tx — yi)f[1 — fX)] (3-6)
Awjk = adz; (3-7)
Awok = U.Bk (3'8)

Each of output units (yx, k = 1,2...m) gets a target pattern corresponding to the
input training pattern, calculates its error information term, computes its weight
correction term (it will use for updating wjx), computes its bias correction term (it

will use for updating wy) and transfers o, to units in the layer below.

o_inj = YL, OxWik (3-9)
6; = Ginf (Zin; ) [1 = £ (2in; )] (3-10)
Avy; = a6;; (3-11)
Avy; = ag; (3-12)

Each hidden unit (z; = 1,2, ... p) adds delta inputs (from units in the layer above)
multiplies by the derivative of its activation function to calculate its error information
term, calculates its weight correction term (it will use for updating vj;), and
computes its bias correction term (it will use for updating vy;).
Update Weights and Biases:
Each output unit (yy, k = 1,2, ...m) updates its bias and weights (j=0,...p):

wik (new) = wii(old) + Awjy (3-13)
Each hidden unit (z;,j = 1,2, ... p) updates its bias and weights (i = 0,...n):
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Vij (neW) = Vjj (Old) + AVij (3'14)

3.1.3.2 Other Parameters

In this part, several parameters were determined. The value of learning rate that 0.01,
0.1, 0.3, 0.5 and 0.9 (Wankhade & Kambekar, 2013) were tested. The momentum
factors which are 0.0, 0.25, 0.5 and 0.75 (Yeh, 2006;Wankhade & Kambekar,
2013)also were tested in this study. The suitable learning rate and momentum which
made the prediction model achieve best results were used to construct the prediction
model for compressive concrete strength. Based on the study of Panchal, Ganatra,
Kosta, & Panchal (2011), 1 hidden layer is sufficient for nearly all problems, and 2
hidden layers are required for modeling data with discontinuities like a saw tooth
wave pattern. As the result, all models of this study used one hidden layer but
different hidden nodes. The testing parameters of each models were mentioned in

Table 3.4.
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Table 3.4

Testing parameters

No. of 5 6 7 8
attributes
Attributes M1 M2 M3 M 4 M5 M 6 M7 M 8
in each BVs BVs+ BVs+ BVs+EV3 BVS+EV1 BVs+EV1 BVs+ All
model EV1 EV2 +EV2 +EV3 EV2+

EV3
Hidden 1 1 1 1 1 1 1 1
layers
No. of
hidden 2~6 2~6 2~6 2~6 2~6 2~6 2~6 2~6

nodes

Learning 0.01,0.1,0.3,0.5and 0.9.

rate

Momentu 0.0, 0.25, 0.5 and 0.75

m

Table 3.4 shows the summary of values used to obtain the best parameters for

learning rate, momentum, number of hidden layer and number of hidden nodes. For

the hidden nodes, there is no formula or algorithm to figure out how many hidden

nodes should be in a hidden layer. However, according to Doug (2016), the number

of neurons in hidden layer is the mean of the neurons in the input and output layers.

So in this study, the mean value of model 1 is 3 (i.e number of inputs plus the
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number of outputs, then divide by 2); the mean value of model 2 to model 4 is 3.5;
the mean value of model 5 to model 7 is 4; and the mean value of model 8 is 4.5.
Based on the mean value of each model, this study tested (2~6) number of hidden
nodes, which is approximate to the mean of inputs and output. In addition, values of
parameters were measured by correlation coefficient (the higher, the better), mean
absolute error (the lower, the better) and root mean square error (the lower, the

better).

3.1.4 Phase 4 Construct Prediction Model

There are five basic independent attributes and three extra independent attributes in
this study. In total, there are 8 independent attributes (inputs) and one dependent
attribute (output). So considering all situations, it should have 8 prediction models
(Table 3.5), each with different number of independent attributes. The general
prediction model is shown in Figure 3.4. When users choose different number of
independent attributes, the model will change. In other words, the parameters, "r",
"weights"," and hidden nodes™ will be changed. The best model chosen is the model
that has the highest correlation coefficient, lowest Mean Absolute Error, and lowest

Root Mean Square Error. The models are presented in Chapter 5.
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Inputs Layer Hidden Layer Output Layer

Cement

Age

Water

Coarse Aggregate

Fine Aggregate

Fly Ash

Blast Furnace Slag

Super plasticizer

Figure 3.3: The general model for compressive strength of concrete

Table 3.5

Models and Attributes

No. of Models Attributes

Model 1 5 basic attributes (cement, water, fine aggregate, coarse aggregate and
age)

Model 2 5 Basic attributes + Fly Ash (FA)

Model 3 5 Basic attributes + Blast Furnace Slag (BFS)

Model 4 5 Basic attributes + Super Plasticizer (SP)

Model 5 5 Basic attributes + FA + BFS

Model 6 5 Basic attributes + FA + SP

Model 7 5 Basic attributes + BFS + SP

Model 8 5 Basic attributes + FA + BFS + SP
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3.1.5 Phase 5 Evaluation

In this study, the percentage split method was used to evaluate all models.
Specifically, 90% of the data was used for training and 10% was used for testing. The
performance was measured based on correlation coefficient, root mean square error

(RMSE) and mean absolute error (MAE) (Wankhade & Kambekar, 2013).

3.1.5.1 Correlation coefficient

Correlation coefficient tests the level of linear relation among the goal and the
predicted result. It is a method to identify how far the tendency in predicted values
follows those in real observed values. The value of R is numeric in the range of
0-1.A high value of correlation coefficient shows that the model is good. The

correlation coefficient (R) formula used is:

R £ Zin=1(xi)(Yi) (3'16)

IS G I, )

Where, Xj = Xi - X, yi = Yi - ?
X; = i observed value, X = mean of X,
Y, = it" predicted value, Y = mean of Y,

n = number of observation of X;andY;

If correlation coefficient is equal to 1, it shows that the model is perfect. Values of
correlation coefficient in the range of 0.9 to 0.99 show that the model performs well

(good correlation coefficient). However, if the value of correlation coefficient is
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between 0.8 and 0.89, the model is said to be satisfactory and can still be accepted.
Any values of correlation coefficient that is less than 0.8 shows the model is not
good (Wankhade & Kambekar, 2013). In this study, the value required is more than
0.9. If the value of correlation coefficient cannot achieve 0.9, the prediction model

was reconstructed.

3.1.5.2 Root mean square error (RMSE)
The root mean square error is suitable to iterative algorithms and is quite a good

method for higher values. This is the formula for calculating RMSE as below:

RMSE = /%‘Y)Z (3-17)

(Source from: https://www.kaggle.com/wiki/RootMeanSquaredError)

It supports a general representation of the errors involved in the prediction. If the

value of result is lower, it means that the result is better.

3.1.5.3 Mean absolute error (MAE)
The mean absolute error (MAE) is to measure how close forecasts or predictions are
to the outcomes. The formula is:

MAE = ZE1 X (3-18)

(Source from: https://www.kaggle.com/wiki/MeanAbsoluteError)

45



A lower MAE shows that the prediction is better.

3.2 Summary

This chapter describes the methodology of this study. Five phases were involved:
Data collection (8 groups of data), Normalization, Determine parameters, Prediction
model construction (it includes all the 8 prediction models), and Evaluation
(correlation coefficient, mean absolute error and root mean square error were

mentioned).
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CHAPTER FOUR

RESULTS

This chapter presents deliverables for objective 1, objective 2, objective 3 and

objective 4.

4.1 Deliverables for objective 1

As stated in Chapter One, the first objective of this study is to identify the basic

attributes for prediction.

The basic attributes have been obtained through examining past researches and have

been presented in Table 2.1 (Chapter Two). In summary, the basic attributes are

cement fine aggregate, coarse aggregate, water and age. Table 4.1 below shows the

descriptions for each attribute:

Table 4.1

Description of basic attributes

Basic attributes

Description

Cement

Water

Fine aggregate

Coarse aggregate

A substance used in construction that sets and hardens and can
bind other materials together.

A colourless liquid that is used to mix with cement in making
concrete.

Consist of natural sand or crushed stone with most particles
passing through a 3/8-inch sieve.

Particles that are greater than 0.19 inch, but generally range

between 3/8 and 1.5 inches in diameter.
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Age

The days for making concrete become harden.

4.2 Deliverables for objective 2

The second objective of this study is to identify additional attributes that can be used

to predict compressive concrete strength.

The three additional attributes are fly ash, blast furnace slag and super plasticizer.

Table 4.2 below shows the descriptions for each attribute:

Table 4.2

Description of additional attributes

Basic attributes

Description

Fly Ash

Blast Furnace Slag

Super Plasticizer

Finely divided residue that results from the combustion of
pulverized coal and is transported from the combustion chamber
by exhaust gases.

Consists primarily of silicates, alumina silicates, and
calcium-alumina-silicates.

Chemical admixtures used where well-dispersed particle
suspension is required. These polymers are used as dispersants to
avoid particle segregation (gravel, coarse and fine sands), and to
improve the flow characteristics (rheology) of suspensions such

as in concrete applications.

4.3 Deliverables for Objective 3

As mentioned in Chapter 1, the third objective is to determine the parameters for
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Weights, Learning Rate, Momentum, number of hidden nodes in hidden layer for 8

prediction models. The models were:

Model 1 (5 basic attributes (cement, water, fine aggregate, coarse aggregate and
age))

Model 2 (5 Basic attributes + Fly Ash (FA))

Model 3 (5 Basic attributes + Blast Furnace Slag (BFS))

Model 4 (5 Basic attributes + Super Plasticizer (SP))

Model 5 (5 Basic attributes + FA + BFS)

Model 6 (5 Basic attributes + FA + SP)

Model 7 (5 Basic attributes + BFS + SP)

Model 8 (5 Basic attributes + FA + BFS + SP)

The parameters were obtained through several experimentation. The following

sections explain the results for each model.

4.3.1 Model 1 parameters:

In this section, five learning rates that 0.01, 0.1, 0.3, 0.5 and 0.9 (Wankhade &
Kambekar, 2013) were tested. The momentum values 0.0, 0.25, 0.5 and 0.75 (Yeh,
2006;Wankhade & Kambekar, 2013) also were tested.

For the number of hidden layers, according to the study of Panchal, Ganatra, Kosta,

& Panchal (2011), one hidden layer is sufficient for nearly all problems, and two
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hidden layers are required for modeling data with discontinuities like a saw tooth
wave pattern. Therefore, all models of this study used one hidden layer but different

hidden nodes.

For the number of hidden nodes, too few hidden nodes in hidden layer will lead to
the problem called under fitting, but too many hidden nodes will lead to over fitting
and it will take longer training time (Panchal et al., 2011). Based on that, 2, 3, 4, 5

and 6 hidden nodes were used for training and testing.

Thus, considering all the parameters (learning rate, momentum and number of hidden
nodes) in this study, a total of 100 different combinations of parameters (each set of
parameters must includes learning rate, momentum and number of hidden nodes) for

model 1 were tested (Figure 4.1).

Testing lcarning rate:

Testing momentum:

Testing hidden nodes:

Figure 4.1: The combinations of parameters

The model performance was measured using R, MAE, RMSE and Time taken. The
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experiments used Percentage split of 90% for training and 10% for testing. The best

values (i.e the highest value of R, lowest value of MAE and lowest value of RMSE)

were chose as the final parameters for model 1.

The detail of parameters tested (100 combinations of parameters) and results

obtained are shown as follows:

Table 4.3
Experiments using 5 attributes

Test 1: Hidden nodes= 2 and momentum =0

Learning Rate  0.01 0.1 0.3 0.5 0.9

R 0.8804 0.9134 0.7869 0.7809 0.8019
MAE 4.0947 3.9977 5.7728 5.9514 4.6447
RMSE 6.4014 5.8833 8.1277 8.2254 7.975
TT(s) 0.47 0.42 0.45 0.42 0.41
Test 2: Hidden nodes= 2 and momentum =0.25

Learning Rate  0.01 0.1 0.3 0.5 0.9

R 0.8893 0.9125 0.7829 0.7660 0.8428
MAE 3.9685 4.1009 5.9431 6.2876 6.1876
RMSE 6.1943 5.9870 8.1871 8.5692 7.8970
TT(s) 0.48 0.44 0.43 0.45 0.44
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Test 3: Hidden nodes= 2 and momentum =0.5

Learning Rate  0.01 0.1 0.3 0.5 0.9

R 0.9002 0.9103 0.7724 0.7457 0.7694
MAE 3.8302 4.4744 6.2828 7.7918 18.8094
RMSE 5.9326 6.3422 8.4906 10.5650 20.8214
TT(s) 0.43 0.43 0.44 0.43 0.44
Test 4: Hidden nodes= 2 and momentum =0.75

Learning Rate 0.01 0.1 0.3 0.5 0.9

R 0.9099 0.7846 0.8777 0.8778 0.8904
MAE 3.7194 6.3157 4.6237 11.0227 10.6924
RMSE 5.6839 8.7157 6.3087 12.5657 12.2117
TT(s) 0.44 0.43 0.43 0.43 0.39
Test 5: Hidden nodes= 3 and momentum =0

Learning Rate  0.01 0.1 0.3 0.5 0.9

R 0.9336 0.9590 0.9619 0.8181 0.8331
MAE 3.1908 2.5046 3.1601 5.6332 4.9197
RMSE 4.7421 3.8438 4.2815 7.6559 7.3802
TT(s) 0.6 0.6 0.59 0.59 0.6
Test 6: Hidden nodes= 3 and momentum =0.25

Learning Rate  0.01 0.1 0.3 0.5 0.9

R 0.9413 0.9594 0.9629 0.8073 0.8756
MAE 2.9353 2.5231 2.8156 5.8294 7.0976
RMSE 4.4682 3.8311 3.8196 7.7954 8.2749

TT(s) 0.6 0.61 0.61 0.59 0.6
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Test 7: Hidden nodes= 3 and momentum =0.5

Learning Rate  0.01 0.1 0.3 0.5 0.9

R 0.9485 0.9586 0.9626 0.7864 0.8791
MAE 2.7192 2.6414 2.8974 6.2488 11.8380
RMSE 4.1985 3.9793 3.9863 8.5837 12.8561
TT(s) 0.6 0.61 0.6 0.59 0.6
Test 8: Hidden nodes= 3 and momentum =0.75

Learning Rate  0.01 0.1 0.3 0.5 0.9

R 0.9510 0.9535 0.8718 0.8742 0.3354
MAE 2.7822 3.3341 8.1529 8.8121 9.2185
RMSE 4.0752 4.6930 9.7265 10.9323 13.2009
TT(s) 0.6 0.59 0.6 0.6 0.6
Test 9: Hidden nodes= 4 and momentum =0

Learning Rate  0.01 0.1 0.3 0.5 0.9

R 0.9129 0.9427 0.9460 0.9337 0.9290
MAE 3.6862 2.9915 4.7634 5.3747 8.9899
RMSE 5.4981 4.7114 6.3335 6.9037 10.2559
TT(s) 0.75 0.78 0.76 0.76 0.74
Test 10: Hidden nodes= 4 and momentum =0.25

Learning Rate  0.01 0.1 0.3 0.5 0.9

R 0.9056 0.9438 0.9658 0.9334 0.9330
MAE 3.7392 2.8825 2.5220 5.7189 10.9118
RMSE 5.8302 4.5740 3.6008 7.2815 12.1103
TT(s) 0.74 0.75 0.75 0.74 0.76
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Test 11: Hidden nodes= 4 and momentum =0.5

Learning Rate  0.01 0.1 0.3 0.5 0.9

R 0.9433 0.9463 0.9612 0.9386 0.9445
MAE 2.8576 2.7670 3.1551 7.3113 14.8149
RMSE 4.3924 4.4281 4.3184 8.7113 15.8161
TT(s) 0.81 0.83 0.76 0.76 0.78
Test 12: Hidden nodes= 4 and momentum =0.75

Learning Rate  0.01 0.1 0.3 0.5 0.9

R 0.9278 0.9196 0.9021 0.1812 -0.2787
MAE 3.3279 3.8040 9.5353 25.9760 9.2175
RMSE 5.0691 5.9779 11.165 27.3232 13.2046
TT(s) 0.76 0.74 0.75 0.74 0.73
Test 13: Hidden nodes= 5 and momentum =0

Learning Rate  0.01 0.1 0.3 0.5 0.9

R 0.9221 0.9423 0.9463 0.9396 0.9059
MAE 3.5480 3.9592 3.6870 4.2475 8.5610
RMSE 5.1594 5.4206 4.7616 5.2401 10.1191

TT(s) 0.92 0.91 0.93 0.9 84.1585
Test 14: Hidden nodes= 5 and momentum =0.25

Learning Rate  0.01 0.1 0.3 0.5 0.9

R 0.9268 0.9444 0.9452 0.9355 0.9323
MAE 3.4002 3.8172 3.5581 4.1521 8.1561
RMSE 5.0156 5.1465 4.6506 5.1889 9.4475

TT(s) 0.9 0.92 0.9 0.93 0.91
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Test 15: Hidden nodes= 5 and momentum =0.5

Learning Rate  0.01 0.1 0.3 0.5 0.9

R 0.8815 0.9103 0.9429 0.9341 0.9186
MAE 3.8284 4.8413 3.8406 5.8334 13.0642
RMSE 6.5487 9.8674 4.9255 7.4281 14.1241
TT(s) 0.9 0.93 0.9 0.92 0.9
Test 16: Hidden nodes= 5 and momentum =0.75

Learning Rate 0.01 0.1 0.3 0.5 0.9

R 0.5962 0.9658 0.9295 0.8157 -0.3745
MAE 4.9869 2.4902 5.6578 5.9071 9.2174
RMSE 10.6039 3.5597 6.6116 10.3654 13.2045
TT(s) 0.92 0.9 0.92 0.91 0.84
Test 17: Hidden nodes= 6 and momentum =0

Learning Rate  0.01 0.1 0.3 0.5 0.9

R 0.9303 0.9429 0.9479 0.9397 0.8424
MAE 3.2577 3.9271 4.0513 5.0696 16.6086
RMSE 4.8640 5.4865 5.1605 6.6148 18.3994
TT(s) 1.07 1.06 1.08 1.1 1.09
Test 18: Hidden nodes= 6 and momentum =0.25

Learning Rate  0.01 0.1 0.3 0.5 0.9

R 0.9364 0.9500 0.9444 0.9366 0.6845
MAE 2.9223 3.4084 4.2300 5.3145 10.5619
RMSE 4.6896 4.5527 5.4057 6.8506 12.5164
TT(s) 1.11 1.08 1.09 1.07 1.07
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Test 19: Hidden nodes= 6 and momentum =0.5

Learning Rate  0.01 0.1 0.3 0.5 0.9

R 0.9305 0.9259 0.9256 0.8430 0.5504
MAE 3.0043 3.7053 4.8049 6.8165 18.3035
RMSE 5.1360 5.5568 6.6059 8.6411 19.3555
TT(s) 1.07 1.09 1.08 1.08 1.08
Test 20: Hidden nodes= 6 and momentum =0.75

Learning Rate  0.01 0.1 0.3 0.5 0.9

R 0.9358 0.9112 0.8910 0.7303 -0.2282
MAE 3.6943 5.4957 8.6233 31.3474 9.2175
RMSE 5.9498 13.0798 10.1576 32.7483 13.2046
TT(s) 111 1.09 1.09 1.06 1.12

Table 4.3 shows all results using different combination of parameters for model 1.
The best results were achieved from Test 16 which is learning rate = 0.1, momentum
= 0.75 and the number of hidden nodes is 5. The results are: R achieved the highest

value i.e0.9658, MAE achieved the lowest value i.e 2.4902 and RMSE also achieved

the lowest value i.e 3.5597.

The weights and thresholds parameters for model 1 is shown in Appendix J.

4.3.2 Model 2 to Model 8 parameters

In order to determine the best parameters to be used for models 2 to 8, several

experiments were conducted using different learning rate, momentum, and hidden
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nodes. The weights and threshold parameters for Model 2 to Model 8 are shown in
Appendix J. Table 4.4 shows the values used for determining suitable parameters for
model 2 to model 8.

Table 4.4

Values used for determining suitable parameter for Models 2 to 8

Models Learning Momentum Hidden Hidden Percentage
rate layer nodes Split
Model 2 0.01, 0.1, 0, 025 05 1 2,345&6 90%

0.3, 0.5 &0.75
&0.9

Model 3 0.01, 0.1, 0, 025 05 1 2,3,4,5&6 90%
0.3, 0.5 &0.75
&0.9

Model 4 0.01, 01, 0, 025 05 1 2,3,45&6 90%
0.3, 0.5 &0.75
&0.9

Model 5 0.01, 0.1, 0, 025 05 1 2,3,4,5&6 90%
0.3, 0.5 &0.75
&0.9

Model 6 0.01, 01, 0, 025 05 1 2,3,45&6 90%
0.3, 0.5 &0.75
&0.9

Model 7 0.01, 0.1, 0, 025 05 1 2,3,4,5&6 90%
0.3, 0.5 &0.75
&0.9

Model 8 0.01, 01, 0, 025 05 1 2,3,45&6 90%
0.3, 0.5 &0.75
&0.9
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Based on the experiments, the suitable parameters for models 2 to 8 are presented in

Table 4.5 below. And for the parameters testing for model 2 to model 8, each of

mode also has 100 combinations of attributes need to test like Figure 4.1 shown. The

experimental results (parameters testing) for Model 2 to Model 8 are shown in

Appendix B to H.

Table 4.5

Best parameters for Models 2 to 8

Models Learning Momentum Hidden layer Hidden nodes
rate
Model 2
0.1 0.75 1 5
(6 attributes)
Model 3
0.5 0.25 1 5
(6 attributes)
Model 4
0.01 0.75 1 5
(6 attributes)
Model 5
0.01 0.25 1 3
(7 attributes)
Model 6
0.01 0.5 1 4
(7 attributes)
Model 7
0.1 0.75 1 5
(7 attributes)
Model 8
0.1 0 1 6

(8 attributes)
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4.4 Deliverables for objective 4

The purpose of the fourth objective is to determine an ANN architecture.

Figure 4.2 shows the main architecture. Based on the main architecture, 8 different
architectures were obtained from using the combination of 5 basic attributes (cement,
water, fine aggregate, coarse aggregate and age) with different additional attributes

(fly ash, blast furnace slag or super plasticizer).

Inputs Layer Hidden Layer Output Layer

Cement

Age
Witer ’ .
P t’.‘o-prn@fcﬂ;5
Conrse Aggmregate =
=" strength  of
=1 o Concrete

Fine Aggregate

Fly Ash

Blast Furnace Skag

Super plasticizer

Figure 4.2: The main architecture for the study

From Figure 4.2, there are 8 attributes as inputs in total (5 are basic attributes and 3
are additional attributes) for compressive concrete strength prediction. There are 6
hidden nodes because the maximum number of hidden nodes is 6. It has 1 output

which is the compressive strength of concrete.
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Based on Table 4.3 and Table 4.5, the ANN architectures of all the 8 prediction

models are shown as below (Figure 4.3 to Figure 4.10).

Inputs Layer Hidden Layer Output Layer
Cement
Age
Water

Coarse Aggregate

Fine Aggregate

Figure 4.3: The ANN architecture for Model 1

In Figure 4.3, the parameters of model 1 are learning rate equal to 0.1 and

momentum equal to 0.75.

Inputs Layer Hidden Layer Output Layer
Cement
Age

Water

Coarse Aggregate

Fine Aggregate

Fly Ash
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Figure 4.4: The ANN architecture for Model 2

In Figure 4.4, the parameters of model 2 are learning rate equal to 0.5 and

momentum equal to 0.25.

Inputs Layer Hidden Layer Output Layer
Cement
Age

Water

Comrse Aggregate

Fine Aggvegate

Blast Furnace Slag

Figure 4.5: The ANN architecture of Model 3

Figure 4.5 is the architecture of model 3, and the parameters that learning rate equal

to 0.01 and momentum equal to 0.75.
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Inputs Layer Hidden Layer Output Layer

Cement

Age

Water

Coarse Aggregate

Fine Aggregate

Super Plasticizer

Figure 4.6: The ANN architecture of Model 4

Figure 4.6 shows the ANN architecture for model 4. The parameters in this

architecture are learning rate 0.01 and momentum 0.25.

Inputs Laver Hidden Layer Output Layer
Cement
Age
Water
Coarse Aggregate
Fine Aggregate

Fly Ash

Blast Furnace Slag

Figure 4.7: The ANN architecture for Model 5

In Figure 4.7, the parameters of model 5 are learning rate equal to 0.01 and
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momentum equal to 0.5.

Output Layer

Cement

Age

Water

Coarse Aggregate \_/
Fine Aggregate
Fly Ash

Super Plasticizer

Figure 4.8: The ANN architecture for Model 6
Figure 4.8 gives the information about the ANN architecture of model 6. The
parameters of model 6 are learning rate equal to 0.1 and 0.75.

Inputs Laver Hidden Layer Output Layer
Cement
Age
Water
Comse Aggregate
Fine Aggregate
Blast Furmace Slag

Super Plasticizer

Figure 4.9: The ANN architecture for Model 7

Figure 4.9 shows the ANN architecture of model 7, and the parameters in model 7
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are learning rate equal to 0.1 and momentum equal to O.

Inputs Layer Hidden Laver Output Layer
- 9
Age . J
Water .-—-"Aﬂ"'__ ; 4 e
Coarse Aggregate .‘ < '-' - swength  of
Fine Aggregate ‘ -

Fly Ash
Blast Fuirnace Slag

Super Plasticizer

Figure 4.10: The ANN architecture of model 8

In Figure 4.10, it shows the ANN architecture for model 8. In model 8, the final

parameters are learning rate equal to 0.1 and momentum equal to 0.5.

4.5 Summary

This chapter presents the deliverables for objective 1, 2, 3 and 4. The main output,
which is the compressive concrete strength prediction model is presented in Chapter
5. The performance evaluation results of the model is also shown in Chapter 5,

section 5.2 and 5.3.
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CHAPTER FIVE

EVALUATION AND DISCUSSION

This chapter consists of two parts. The first part presents the 8 prediction models

while the second part shows the evaluation results and discussion.

5.1 Prediction models

As mentioned in Chapter 3, eight prediction models were constructed based on 8
combinations of attributes. The models are listed in Table 5.1.The parameters that are

suitable for each model are also shown in the Table 5.1:

Table 5.1

8 prediction models and parameters

Models Learning rate Momentum Hidden layer  Hidden nodes
Model 1

0.1 0.75 1 5
(5 attributes)
Model 2

0.5 0.25 1 5
(6 attributes)
Model 3

0.01 0.75 1 5
(6 attributes)
Model 4

0.01 0.25 1 3
(6 attributes)
Model 5

0.01 0.5 1 4

(7 attributes)
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Model 6

0.1 0.75 1 5
(7 attributes)
Model 7

0.1 0 1 6
(7 attributes)
Model 8

0.1 0.5 1 2

(8 attributes)

5.2 Evaluation Results and Discussion
The prediction models were evaluated based on correlation coefficient (R), mean
absolute error (MAE) and root mean square error (RMSE). Table 5.2 shows the

results:

Table 5.2

Evaluation results

No. of Models R MAE RMSE 1T

Model 1 0.9658 2.4902 3.5597 0.90
Model 2 0.9690 2.2398 2.8786 0.99
Model 3 0.9655 2.6267 3.4045 1.01
Model 4 0.9781 1.9613 2.5950 0.64
Model 5 0.9585 3.2410 3.8710 0.86
Model 6 0.9634 3.3257 3.9412 1.02
Model 7 0.9414 4.7335 7.1735 1.21
Model 8 0.9492 5.1556 6.1640 0.53

Figure5 .1 shows the results in graphical form.
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Figure 5.1: Correlation coefficient of 8 models

Table 5.1 shows the most suitable sets of parameters for each of 8 prediction models,
it includes learning rate, momentum and number of hidden nodes. The statistical
performance measures of correlation coefficient, mean absolute error and root mean
square error were used to judge the parameters in each of 8 models. Table 5.2 gives
the best results (R, MAE and RMSE) of each model. It can be observed that ANN
performs better with correlation coefficient in the range of 0.9414 to 0.9781, lower
mean absolute error in the range of 1.9613 to 5.1556 Mpa and the lower root mean

square error in the range of 2.5950 to 7.1735 Mpa.

Table 5.2 and Figure 5.1 show the values of correlation coefficient for 8 models, and
each model has different combinations of attributes. From these results, model 1,

which used 5 basic attributes (cement, water, fine aggregate, coarse aggregate and
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age) achieved quite good results (correlation coefficient equal to 0.9658). Model 2
with 5 basic attributes + one additional attribute (fly ash) and model 4 with 5 basic
attributes + one additional attribute (super plasticizer) obtained better results than
model 1. This indicates that when additional attributes such as fly ash or super
plasticizer were used to predict compressive concrete strength, the value of

correlation coefficient increases.

Model 4 achieved the best results (highest value of correlation coefficient) among the
8 models. However, model 5 (5 basic attributes + two additional attributes fly ash
and blast furnace slag), model 6 (5 basic attributes + two additional attributes fly ash
and super plasticizer), model 7 (5 basic attributes + two additional attributes blast
furnace slag and super plasticizer), and model 8 (5 basic attributes + three additional
attributes fly ash, blast furnace slag and super plasticizer) obtained lower results than
model 1. However, from the results, all values of correlation coefficient are more
than 0.94. These models are considered as good and are acceptable because value of
correlation coefficient that is more than 0.9, which means that the relationship

between predict value and actual value are close (Wankhade & Kambekar, 2013).

Model 7 obtained the lowest correlation coefficient (0.9414). For model 3 which
used 5 basic attributes + one additional attribute blast furnace slag to predict
compressive concrete strength, it achieved that the value of correlation coefficient

equal to 0.9655, this result is near to the result of model 1 (R=0.9658).
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For MAE and RMSE, the lower the values, the better is the result. According to
Moriasi et al. (2007), if the value of MAE and RMSE is zero, it means that the result

or work is perfect, the accuracy will be 100% and correlation coefficient will bel.

B MAE # RMSE

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

Figure 5.2: MAE and RMSE of 8 models

Figure 5.2 shows the bar chart for the mean absolute error (MAE) and root mean
square error (RMSE) of each model. MAE and RMSE are another two statistical
measures for judging these 8 prediction models. Based on Table 5.2 and Figure 5.2,
two lowest MAE and RMSE values come from Model 2 and 4. The results of Model
3 are close to Model 1. Model 5, 6, 7 and 8 obtained the higher MAE and RMSE
values than the basic model. These two statistical performance measures also proved
that when adding super plasticizer or fly ash into the basic model (model 1), the

model could achieve better correlation coefficient.
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According to Kattan (2011), a model can achieved achieved different results
(correlation coefficient, mean absolute error and root mean square error) because of
three possible reasons. First, the attributes are different from each model, thus giving
different results. Second, for each model is different (different ANN architectures).
Each model has a different learning rate, momentum and number of hidden nodes,
recording to different results. Third, different training algorithms could also give
different results. But, in this study, all of the 8 prediction models used the same
training algorithm (Back propagation) and the same number of hidden layers (1).
Thus, the main reasons influence the results of this study are different attributes of

datasets and different ANN prediction architectures.

Figure 5.3 to Figure 5.10 are line charts that compare predicted value with the actual
value in this study.
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Figure 5.5: Comparison for Model 3
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Figure 5.6: Comparison for Model 4
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Figure 5.7: Comparison for Model 5
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Figure 5.10: Comparison for Model 8

From these figures, it can be seen that the predicted values and the actual values are
close together indicating that the models predicted well. The errors are close to 0

which also indicates that the models are good.

Based on the testing results and discussion above, predicting compressive concrete
strength of concrete using different combinations of attributes (5 basic attributes +
additional attributes) are acceptable. Even though each of these 8 models obtained
different results, all the results are considered as good because the R values are more
than 0.94. It also proved that the additional attributes (fly ash, super plasticizer and
blast furnace slag) have some influence on the prediction models. In other words, the
additional attributes can improve the values of correlation coefficient, and decrease

the mean absolute error and root mean square error of the prediction models.
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5.3 Comparison with past work

Model 8 were compared with the model by Wankhade & Kambekar (2013). In their
study, they used the same attributes (cement, water, age, fine aggregate, coarse
aggregate, fly ash, super plasticizer and blast furnace slag) but with different
parameters. The parameters used by them were 0.9 (learning rate), 0.01(momentum ),

1 (hidden layer) and 17 (hidden nodes).

Wankhade's work separated his dataset into 8 groups for different ages (days). In his
work, he mentioned that prediction of compressive concrete strength at 28 days is
more important for carrying out construction activities, thus, Wankhade used 28 days
data to predict compressive concrete strength. This study only chose the data for 28
days from Dataset 8 and used the same parameters of model 8 to compare with

Wankhade's work.

The comparison results are as shown in Table 5.3.
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Table 5.3

The comparison with past work for 28 days

NAMES r m Hidden Hidden Percentage R MAE RMSE

layer nodes Split

Wankhade's 0.9 0.01 1 17 90% 0.9526 4.1347 4.3864
Work

Model 8 in 0.1 05 1 2 90% 0.9730 3.1417 3.4516
this study

Based on Table 5.3, the testing results of model 8 are better than Wankhade's work.
This is because model 8 used different set of parameters which are learning rate = 0.1,
momentum = 0.5 and hidden nodes = 2 for predicting compressive concrete strength.
The work of Wankhade achieved 0.9526 for R, 4.1347for MAE and 4.3864 for
RMSE. Model 8 achieved better results i.e R = 0.9730, MAE = 3.1417 and RMSE =

3.4516.

Therefore, Table 5.3 proved that the architecture (include parameters) of model 8
could produce a better compressive concrete strength prediction model. It also
proved that parameters are one of the most important elements for prediction; the

reason is that different sets of parameters would achieve different results.

5.3 Summary
This chapter shows the evaluation results of all 8 compressive concrete strength

prediction models. It also discusses reasons for obtaining such results. This study
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also compared model 8 with an existing compressive concrete strength prediction

work. Model 8 of this study performed better than the existing work.
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CHAPTER SIX

CONCLUSION
6.1 Work summary
This study aims to construct a compressive concrete strength prediction model based
on 8 selected attributes. The attributes were cement fine aggregate, coarse
aggregate, water, age, fly ash, blast furnace slag and super plasticizer. The objectives
were to (i) identify the basic attributes that can predict compressive strength of
concrete with good correlation coefficient; (ii) identify additional attributes that can
be used to predict concrete strength with good correlation coefficient; (iii) determine
the parameters for weights, learning rate, momentum factor and numbers of hidden
nodes, and (iv) design a general ANN architecture for predicting compressive

strength of concrete and construct a compressive concrete strength prediction model.

The study has successfully accomplished all objectives. The summary of results is as

follows:

Objective 1: Five basics attributes were identified and the attributes are presented
in Chapter 4, section 4.1.

Objective 2: Three additional attributes were identified and shown in Chapter 4,
section 4.2.

Objective 3: The parameters chosen for 8 different prediction models were

obtained through several experiments. These parameters are presented in Chapter 4,
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section 4.3.
Objective 4:  The ANN architecture were produced and shown in Chapter 4, section
4.4. The prediction models are constructed and presented in Chapter 5, section 5.1.

Evaluation results are shown in Chapter 5, section 5.2 and 5.3.

On overall, a prediction model from this study (model 8) was compared with an
existing work by Wankhade & Kambekar (2013). The Model 8 produced by this
study showed better results (prediction of compressive concrete strength at 28 days)

than the model produced by Wankhade &Kambekar (2013).

6.2 Contribution

This study made several contributions:

o Used additional prediction attributes: Most study used five attributes to
construct the compressive concrete strength prediction model. However,
this study attempted to include three more attributes in constructing the
prediction model. Good results were obtained when these additional attributes
were incorporated to the basic prediction model.

o Parameters for learning rate, weights, momentum, hidden layer, and hidden
nodes: This study has successfully identified different parameters for each
eight prediction models. When tested using these parameters, good results
were obtained.

o Better prediction results: the prediction model (Model 8) showed better
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results (prediction of compressive concrete strength at 28 days) than the

model by Wankhade & Kambekar (2013).

6.3 Future works
This work determined 5 basic attributes and 3 additional attributes for predicting
compressive concrete strength. In order to improve the work several suggestions are

listed below:

¢ Include more extra attributes so that the model can be more robust.

e Develop new architectures and determine new parameters (learning rate,
momentum etc.).

¢ Implement the concrete strength prediction model using computer language such

as C-sharp, Java or others so that the application can be used in many platforms.
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Appendix A. Sample of Raw Dataset

APPENDICES

Table 8.1 50 Samples of Dataset 1

Cement Water Coarse Aggregate Fine  Aggregate Age  Concrete
(component (component (component 6)(kg (component 7)(kg (day) compressive
I)(kg in a M3 4)(kg in a M3 inam~3mixture)  in a m"3 mixture) strength(MPa,
mixture) mixture) megapascals)
475.0 228.0 932.0 594.0 28  39.29
380.0 228.0 932.0 670.0 90 5291
475.0 228.0 932.0 594.0 180 42.62
380.0 228.0 932.0 670.0 365 52.52
380.0 228.0 932.0 670.0 270 53.30
475.0 228.0 932.0 594.0 7 38.60
475.0 228.0 932.0 594.0 270 42.13
475.0 228.0 932.0 594.0 90 42.23
380.0 228.0 932.0 670.0 180 53.10
349.0 192.0 1047.0 806.9 3 15.05
475.0 228.0 932.0 594.0 365 41.93
310.0 192.0 971.0 850.6 3 9.87
485.0 146.0 1120.0 800.0 28 7199
376.0 214.6 1003.5 762.4 3 16.28
376.0 214.6 1003.5 762.4 14  25.62
376.0 214.6 1003.5 762.4 28  31.97
376.0 214.6 1003.5 762.4 56  36.30
376.0 214.6 1003.5 762.4 100 43.06
405.0 175.0 1120.0 695.0 28 52.30
436.0 218.0 838.4 719.7 28 23.85
289.0 192.0 913.2 895.3 90 32.07
289.0 192.0 913.2 895.3 3 11.65
393.0 192.0 940.6 785.6 3 19.20
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393.0
393.0
480.0
480.0
480.0
480.0
333.0
255.0
255.0
289.0
255.0
333.0
333.0
289.0
333.0
393.0
255.0
397.0
382.5
295.8
397.0
381.4
295.8
238.1
339.2
381.4
339.2

192.0
192.0
192.0
192.0
192.0
192.0
192.0
192.0
192.0
192.0
192.0
192.0
192.0
192.0
192.0
192.0
192.0
185.7
185.7
185.7
185.7
185.7
185.7
185.7
185.7
185.7
185.7

940.6
940.6
936.2
936.2
936.2
936.2
931.2
889.8
889.8
913.2
889.8
931.2
931.2
913.2
931.2
940.6
889.8
1040.6
1047.8
1091.4
1040.6
1104.6
1091.4
1118.8
1069.2
1104.6
1069.2

785.6
785.6
712.2
712.2
712.2
712.2
842.6
945.0
945.0
895.3
945.0
842.6
842.6
895.3
842.6
785.6
945.0
734.3
739.3
769.3
734.3
784.3
769.3
789.3
754.3
784.3
754.3

28
28
28

28

48.85
39.60
43.94
34.57
54.32
24.40
15.62
21.86
10.22
14.60
18.75
31.97
23.40
25.57
41.68
27.74
8.20

33.08
24.07
14.84
25.45
22.49
25.22
17.58
21.18
14.54
31.90
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Table 8.2 50 Samples of Dataset 2

Cement Fly — Ash  Water Coarse Fine Age  Concrete
(component  (component  (component  Aggregate Aggregate (day)  compressive
(kg in a 3)(kg in a 4)kg in a (component  (component strength(MPa,
mA3 mixture) M3 mixture)  MA3 mixture)  6)(kg in a M3 7)(kg in a m"3 megapascals)
mixture) mixture)
475.0 0.0 228.0 932.0 594.0 28  39.29
380.0 0.0 228.0 932.0 670.0 90 5291
475.0 0.0 228.0 932.0 594.0 180 42.62
380.0 0.0 228.0 932.0 670.0 270 53.30
475.0 0.0 228.0 932.0 594.0 7 38.60
475.0 0.0 228.0 932.0 594.0 270 42.13
475.0 0.0 228.0 932.0 594.0 90 42.23
380.0 0.0 228.0 932.0 670.0 180 53.10
349.0 0.0 192.0 1047.0 806.9 3 15.05
475.0 0.0 228.0 932.0 594.0 365 41.93
310.0 0.0 192.0 971.0 850.6 3 9.87
485.0 0.0 146.0 1120.0 800.0 28 ; ~71.99
376.0 0.0 214.6 1003.5 762.4 3 16.28
376.0 0.0 214.6 1003.5 762.4 14  25.62
376.0 0.0 214.6 1003.5 762.4 28 3197
376.0 0.0 214.6 1003.5 762.4 56  36.30
376.0 0.0 214.6 1003.5 762.4 100 43.06
505.0 60.0 195.0 1030.0 630.0 28 64.02
405.0 0.0 175.0 1120.0 695.0 28 52.30
165.0 143.6 163.8 1005.6 900.9 14 16.88
165.0 143.6 163.8 1005.6 900.9 28  26.20
165.0 143.6 163.8 1005.6 900.9 56  36.56
165.0 143.6 163.8 1005.6 900.9 100 37.96
436.0 0.0 218.0 838.4 719.7 28  23.85
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289.0
289.0
393.0
393.0
393.0
480.0
480.0
480.0
480.0
333.0
255.0
255.0
289.0
255.0
333.0
333.0
289.0
333.0
393.0
255.0
397.0
382.5
295.8
397.0
381.4
295.8

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

192.0
192.0
192.0
192.0
192.0
192.0
192.0
192.0
192.0
192.0
192.0
192.0
192.0
192.0
192.0
192.0
192.0
192.0
192.0
192.0
185.7
185.7
185.7
185.7
185.7
185.7

913.2
913.2
940.6
940.6
940.6
936.2
936.2
936.2
936.2
931.2
889.8
889.8
913.2
889.8
931.2
931.2
913.2
931.2
940.6
889.8
1040.6
1047.8
1091.4
1040.6
1104.6
1091.4

895.3
895.3
785.6
785.6
785.6
712.2
712.2
712.2
712.2
842.6
945.0
945.0
895.3
945.0
842.6
842.6
895.3
842.6
785.6
945.0
734.3
739.3
769.3
734.3
784.3
769.3

28
28

32.07
11.65
19.20
48.85
39.60
43.94
34.57
54.32
24.40
15.62
21.86
10.22
14.60
18.75
31.97
23.40
25.57
41.68
27.74
8.20

33.08
24.07
14.84
25.45
22.49
25.22
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Table 8.3 50 Samples of Dataset 3

Cement Blast Furnace Water Coarse Fine Age  Concrete
(component  Slag (component  Aggregate Aggregate (day) ~compressive
(kg in a (component  4)(kg in a (component  (component strength(MPa,
mA3 mixture)  2)(kg inamr3  mA3mixture)  6)(kg inamA3  7)(kg inam’3 megapascals)
mixture) mixture) mixture)
332.5 142.5 228.0 932.0 594.0 270 40.27
332.5 142.5 228.0 932.0 594.0 365 41.05
198.6 1324 192.0 978.4 825.5 360 44.30
475.0 0.0 228.0 932.0 594.0 28  39.29
198.6 132.4 192.0 978.4 825.5 90  38.07
198.6 132.4 192.0 978.4 825.5 28  28.02
427.5 47.5 228.0 932.0 594.0 270 43.01
190.0 190.0 228.0 932.0 670.0 90 4233
304.0 76.0 228.0 932.0 670.0 28 4781
380.0 0.0 228.0 932.0 670.0 90 52091
266.0 114.0 228.0 932.0 670.0 365 5291
198.6 132.4 192.0 978.4 825.5 180 41.72
475.0 0.0 228.0 932.0 594.0 270 42.13
190.0 190.0 228.0 932.0 670.0 365 53.69
237.5 237.5 228.0 932.0 594.0 270 3841
237.5 237.5 228.0 932.0 594.0 28  30.08
427.5 47.5 228.0 932.0 594.0 7 35.08
349.0 0.0 192.0 1047.0 806.9 3 15.05
380.0 95.0 228.0 932.0 594.0 180 40.76
237.5 237.5 228.0 932.0 594.0 7 26.26
380.0 95.0 228.0 932.0 594.0 7 32.82
332.5 142.5 228.0 932.0 594.0 180 39.78
190.0 190.0 228.0 932.0 670.0 180 46.93
237.5 237.5 228.0 932.0 594.0 90 33.12
304.0 76.0 228.0 932.0 670.0 90 49.19
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139.6
198.6
475.0
485.0
376.0
480.0
480.0
480.0
333.0
255.0
255.0
289.0
255.0
333.0
333.0
289.0
333.0
393.0
255.0
158.8
239.6
238.2
239.6
220.8
397.0

209.4
132.4
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
238.2
359.4
158.8
359.4
147.2
0.0

192.0
192.0
228.0
146.0
214.6
192.0
192.0
192.0
192.0
192.0
192.0
192.0
192.0
192.0
192.0
192.0
192.0
192.0
192.0
185.7
185.7
185.7
185.7
185.7
185.7

1047.0
978.4
932.0
1120.0
1003.5
936.2
936.2
936.2
931.2
889.8
889.8
913.2
889.8
931.2
931.2
913.2
931.2
940.6
889.8
1040.6
941.6
1040.6
941.6
1055.0
1040.6

806.9
825.5
594.0
800.0
762.4
712.2
712.2
712.2
842.6
945.0
945.0
895.3
945.0
842.6
842.6
895.3
842.6
785.6
945.0
734.3
664.3
734.3
664.3
744.3
734.3

365
28
100

14.59
14.64
41.93
71.99
43.06
34.57
54.32
24.40
15.62
21.86
10.22
14.60
18.75
31.97
23.40
25.57
41.68
27.74
8.20

9.62

25.42
15.69
39.44
25.75
33.08
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Table 8.4 50 Samples of Dataset 4

Cement Water Superplasticizer Coarse Fine Age  Concrete
(component (component (component 5)(kg  Aggregate Aggregate (day) compressive
(kg in a 4)kg in a inam"3mixture) (component (component strength(MPa,
m”3 mixture)  m"3 mixture) 6)kg in a T7)kg in a megapascals)

m”3 mixture)  m"3 mixture)

540.0 162.0 2.5 1040.0 676.0 28 79.99
540.0 162.0 2.5 1055.0 676.0 28 61.89
475.0 228.0 0.0 932.0 594.0 28  39.29
380.0 228.0 0.0 932.0 670.0 90 5291
475.0 228.0 0.0 932.0 594.0 180 42.62
380.0 228.0 0.0 932.0 670.0 365 52.52
380.0 228.0 0.0 932.0 670.0 270 53.30
475.0 228.0 0.0 932.0 594.0 7 38.60
475.0 228.0 0.0 932.0 594.0 270 42.13
475.0 228.0 0.0 932.0 594.0 90 42.23
380.0 228.0 0.0 932.0 670.0 180 53.10
349.0 192.0 0.0 1047.0 806.9 3 15.05
475.0 228.0 0.0 932.0 594.0 365 41.93
310.0 192.0 0.0 971.0 850.6 3 9.87

485.0 146.0 0.0 1120.0 800.0 28 71.99
531.3 141.8 28.2 852.1 893.7 3 41.30
531.3 141.8 28.2 852.1 893.7 7 46.90
531.3 141.8 28.2 852.1 893.7 28  56.40
531.3 141.8 28.2 852.1 893.7 56  58.80
531.3 141.8 28.2 852.1 893.7 91 59.20
376.0 214.6 0.0 1003.5 762.4 3 16.28
376.0 214.6 0.0 1003.5 762.4 14 25.62
376.0 214.6 0.0 1003.5 762.4 28 31.97
376.0 214.6 0.0 1003.5 762.4 56 36.30

376.0 214.6 0.0 1003.5 762.4 100 43.06
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500.0
451.0
516.0
520.0
528.0
520.0
500.1
405.0
516.0
475.0
500.0
436.0
289.0
289.0
393.0
393.0
393.0
480.0
480.0
480.0
480.0
333.0
255.0
255.0
289.0

140.0
165.0
162.0
170.0
185.0
175.0
200.0
175.0
162.0
162.0
151.0
218.0
192.0
192.0
192.0
192.0
192.0
192.0
192.0
192.0
192.0
192.0
192.0
192.0
192.0

4.0
11.3
8.2
5.2
6.9
5.2
3.0
0.0
8.3
9.5
9.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

966.0
1030.0
801.0
855.0
920.0
870.0
1124.4
1120.0
801.0
1044.0
1033.0
838.4
913.2
913.2
940.6
940.6
940.6
936.2
936.2
936.2
936.2
931.2
889.8
889.8
913.2

853.0
745.0
802.0
855.0
720.0
805.0
613.2
695.0
802.0
662.0
655.0
719.7
895.3
895.3
785.6
785.6
785.6
712.2
712.2
712.2
712.2
842.6
945.0
945.0
895.3

67.57
78.80
41.37
60.28
56.83
51.02
44.13
52.30
41.37
58.52
69.84
23.85
32.07
11.65
19.20
48.85
39.60
43.94
34.57
54.32
24.40
15.62
21.86
10.22
14.60

95



Table 8.5 50 Samples of Dataset 5

Cement Blast Fly — Ash Water Coarse Fine Age  Concrete
(component  Furnace (component  (component ~ Aggregate  Aggregate  (day) compressive
1)(kg in a Slag 3)(kg in a 4)(kg in a (component (component strength(MPa,
mA3 (component  m"3 mA3 6)(kg in a T7)(kg in a megapascals)
mixture)  2)(kg in a mixture)  mixture)  mMA3 mn3
mn3 mixture)  mixture)
mixture)

332.5 142.5 0.0 228.0 932.0 594.0 270 40.27
332.5 142.5 0.0 228.0 932.0 594.0 365 41.05
198.6 132.4 0.0 192.0 978.4 825.5 360 44.30
266.0 114.0 0.0 228.0 932.0 670.0 90 47.03
380.0 95.0 0.0 228.0 932.0 594.0 365 43.70
380.0 95.0 0.0 228.0 932.0 594.0 28 36.45
139.6 209.4 0.0 192.0 1047.0 806.9 90 39.36
342.0 38.0 0.0 228.0 932.0 670.0 365 56.14
380.0 95.0 0.0 228.0 932.0 594.0 90 40.56
475.0 0.0 0.0 228.0 932.0 594.0 180 42.62
427.5 47.5 0.0 228.0 932.0 594.0 28 3743
475.0 0.0 0.0 228.0 932.0 594.0 7 38.60
304.0 76.0 0.0 228.0 932.0 670.0 365 55.26
266.0 114.0 0.0 228.0 932.0 670.0 365 52.91
198.6 132.4 0.0 192.0 978.4 825.5 180 41.72
475.0 0.0 0.0 228.0 932.0 594.0 270 42.13
190.0 190.0 0.0 228.0 932.0 670.0 365 53.69
237.5 237.5 0.0 228.0 932.0 594.0 270 3841
237.5 237.5 0.0 228.0 932.0 594.0 28 30.08
237.5 237.5 0.0 228.0 932.0 594.0 180 36.25
342.0 38.0 0.0 228.0 932.0 670.0 90 50.46
427.5 47.5 0.0 228.0 932.0 594.0 365 43.70
237.5 237.5 0.0 228.0 932.0 594.0 365 39.00
380.0 0.0 0.0 228.0 932.0 670.0 180 53.10

96



4275
139.6
198.6
475.0
198.6
304.0
3325
304.0
266.0
310.0
190.0
266.0
342.0
376.0
505.0
405.0
200.0
165.0
165.0
165.0
165.0
436.0
289.0
289.0
393.0
289.0

47.5
209.4
132.4
0.0
132.4
76.0
142.5
76.0
114.0
0.0
190.0
114.0
38.0
0.0
0.0
0.0
200.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
60.0
0.0
0.0
143.6
143.6
143.6
143.6
0.0
0.0
0.0
0.0
0.0

228.0
192.0
192.0
228.0
192.0
228.0
228.0
228.0
228.0
192.0
228.0
228.0
228.0
214.6
195.0
175.0
190.0
163.8
163.8
163.8
163.8
218.0
192.0
192.0
192.0
192.0

932.0
1047.0
978.4
932.0
978.4
932.0
932.0
932.0
932.0
971.0
932.0
932.0
932.0
1003.5
1030.0
1120.0
1145.0
1005.6
1005.6
1005.6
1005.6
838.4
913.2
913.2
940.6
913.2

594.0
806.9
825.5
594.0
825.5
670.0
594.0
670.0
670.0
850.6
670.0
670.0
670.0
762.4
630.0
695.0
660.0
900.9
900.9
900.9
900.9
719.7
895.3
895.3
785.6
895.3

90

365

180
28

270
270

270
180
270
100
28
28
28
14
28
56
100
28
90

41.54
14.59
14.64
41.93
9.13

50.95
33.02
54.38
51.73
9.87

50.66
48.70
55.06
43.06
64.02
52.30
49.25
16.88
26.20
36.56
37.96
23.85
32.07
11.65
19.20
14.60
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Table 8.6 50 Samples of Dataset 6

Cement Fly ~ Ash Water Superplasticize ~ Coarse Fine Age  Concrete

(componen  (componen  (componen r (component Aggregate  Aggregate  (day compressive

tl)kgina t3)(kgina t4)(kgina 5)(kginamr3 (componen (componen ) strength(MPa
mA3 mA3 mn3 mixture) t6)kgina t7)(kgina

mixture)  mixture)  mixture) mn3 mn3 megapascals)

mixture)  mixture)

540.0 0.0 162.0 2.5 1040.0 676.0 28 79.99
540.0 0.0 162.0 2.5 1055.0 676.0 28 61.89
475.0 0.0 228.0 0.0 932.0 594.0 28 39.29
475.0 0.0 228.0 0.0 932.0 594.0 270 42.13
475.0 0.0 228.0 0.0 932.0 594.0 90 42.23
380.0 0.0 228.0 0.0 932.0 670.0 180 53.10
349.0 0.0 192.0 0.0 1047.0  806.9 3 15.05
475.0 0.0 228.0 0.0 932.0 594.0 365 41.93
531.3 0.0 141.8 28.2 852.1 893.7 28 56.40
531.3 0.0 141.8 28.2 852.1 893.7 56 58.80
531.3 0.0 141.8 28.2 852.1 893.7 91 59.20
222.4 96.7 189.3 4.5 967.1 870.3 3 11.58
222.4 96.7 189.3 4.5 967.1 870.3 14 24.45
222.4 96.7 189.3 4.5 967.1 870.3 28 24.89
222.4 96.7 189.3 4.5 967.1 870.3 56  29.45
194.7 100.5 165.6 7.5 1006.4  905.9 100 37.34
190.7 125.4 162.1 7.8 1090.0 804.0 3 15.04
212.1 121.6 180.3 5.7 10576  779.3 28 24.90
212.1 121.6 180.3 5.7 10576  779.3 56  34.20
212.1 121.6 180.3 5.7 10576  779.3 100 39.61
230.0 118.3 195.5 4.6 1029.4  758.6 3 10.03
230.0 118.3 195.5 4.6 1029.4  758.6 14 20.08
230.0 118.3 195.5 4.6 1029.4  758.6 28 24.48

230.0 118.3 195.5 4.6 1029.4  758.6 56 3154
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166.1
166.1
166.1
166.1
166.1
238.1
238.1
238.1
238.1
238.1
250.0
250.0
250.0
250.0
250.0
212.5
212.5
212.5
212.6
212.0
212.0
231.8
231.8
231.8
251.4
251.4

163.3
163.3
163.3
163.3
163.3
941
94.1
941
94.1
941
95.7
95.7
957,
95¢¢
95.7
100.4
100.4
100.4
100.4
124.8
124.8
121.6
121.6
121.6
118.3
118.3

176.5
176.5
176.5
176.5
176.5
186.7
186.7
186.7
186.7
186.7
187.4
187.4
187.4
187.4
187.4
159.3
159.3
159.3
159.4
159.0
159.0
174.0
174.0
174.0
188.5
188.5

4.5
4.5
4.5
4.5
4.5
7.0
7.0
7.0
7.0
7.0
5.5
5.5
5.5
5.5
5.5
8.7
8.7
8.7
10.4
7.8
7.8
6.7
6.7
6.7
6.4
6.4

1058.6
1058.6
1058.6
1058.6
1058.6
949.9
949.9
949.9
949.9
949.9
956.9
956.9
956.9
956.9
956.9
1007.8
1007.8
1007.8
1003.8
1085.4
1085.4
1056.4
1056.4
1056.4
1028.4
1028.4

780.1
780.1
780.1
780.1
780.1
847.0
847.0
847.0
847.0
847.0
861.2
861.2
861.2
861.2
861.2
903.6
903.6
903.6
903.8
799.5
799.5
778.5
778.5
778.5
757.7
757.7

14
28
56
100

14
28
56
100

14
28
56
100

14
28
100

14
14
28
56
56
100

10.76
25.48
21.54
28.63
33.54
19.93
25.69
30.23
39.59
44.30
13.82
24.92
29.22
38.33
42.35
13.54
26.31
31.64
47.74
19.52
31.35
26.77
33.73
42.70
36.64
4421
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Table 8.7 50 Samples of Dataset 7

Cement  Blast Water Superplasticize ~ Coarse Fine Age  Concrete
(componen  Furnace ~ (componen r (component Aggregate  Aggregate  (day  compressive
tl)kgina Slag t4)kgina 5)(kginamr3 (componen (componen ) strength(MPa
mA3 (componen  m"3 mixture) t6)kgina t7)(kgina
mixture)  t2)(kgina mixture) mn3 mn3 megapascals)

mA3 mixture)  mixture)

mixture)
540.0 0.0 162.0 2.5 1040.0 676.0 28 79.99
540.0 0.0 162.0 2.5 1055.0 676.0 28 61.89
332.5 142.5 228.0 0.0 932.0 594.0 270 40.27
332.5 142.5 228.0 0.0 932.0 594.0 365 41.05
198.6 132.4 192.0 0.0 978.4 825.5 360 44.30
266.0 114.0 228.0 0.0 932.0 670.0 90 47.03
266.0 114.0 228.0 0.0 932.0 670.0 28 45.85
475.0 0.0 228.0 0.0 932.0 594.0 28 39.29
198.6 132.4 192.0 0.0 978.4 825.5 90 38.07
198.6 132.4 192.0 0.0 978.4 825.5 28 28.02
427.5 47.5 228.0 0.0 932.0 594.0 270 43.01
190.0 190.0 228.0 0.0 932.0 670.0 90 42.33
304.0 76.0 228.0 0.0 932.0 670.0 28 47.81
342.0 38.0 228.0 0.0 932.0 670.0 365 56.14
380.0 95.0 228.0 0.0 932.0 594.0 90 40.56
475.0 0.0 228.0 0.0 932.0 594.0 180 42.62
427.5 47.5 228.0 0.0 932.0 594.0 180 41.84
198.6 132.4 192.0 0.0 978.4 825.5 180 41.72
475.0 0.0 228.0 0.0 932.0 594.0 270 42.13
190.0 190.0 228.0 0.0 932.0 670.0 365 53.69
237.5 237.5 228.0 0.0 932.0 594.0 270 38.41
237.5 237.5 228.0 0.0 932.0 594.0 28 30.08
342.0 38.0 228.0 0.0 932.0 670.0 90 50.46
427.5 47.5 228.0 0.0 932.0 594.0 365 43.70
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237.5
380.0
3325
190.0
237.5
266.0
342.0
139.6
425.0
286.3
475.0
469.0
425.0
388.6
531.3
425.0
439.0
337.9
388.6
531.3
425.0
318.8
401.8
362.6
379.5
362.6

237.5
0.0
142.5
190.0
237.5
114.0
38.0
209.4
106.3
200.9
118.8
117.2
106.3
9
0.0
106.3
D
189.0
97.1
0.0
106.3
212.5
94.7
189.0
151.2
189.0

228.0
228.0
228.0
228.0
228.0
228.0
228.0
192.0
151.4
144.7
181.1
137.8
153.5
157.9
141.8
153.5
186.0
174.9
157.9
141.8
153.5
155.7
147.4
164.9
153.9
164.9

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
18.6
11.2
8.9
32.2
16.5
12.1
28.2
16.5
111
9.5
12.1
28.2
16.5
14.3
114
11.6
15.9
11.6

932.0
932.0
932.0
932.0
932.0
932.0
932.0
1047.0
936.0
1004.6
852.1
852.1
852.1
852.1
852.1
852.1
884.9
944.7
852.1
852.1
852.1
852.1
946.8
944.7
1134.3
944.7

594.0
670.0
594.0
670.0
594.0
670.0
670.0
806.9
803.7
803.7
781.5
840.5
887.1
925.7
893.7
887.1
707.9
755.8
925.7
893.7
887.1
880.4
852.1
755.8
605.0
755.8

365
180
180
180
90

180
270
360

N NN NN NN W ow
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39.00
53.10
39.78
46.93
33.12
48.70
55.06
44.70
36.30
24.40
55.60
54.90
49.20
34.90
46.90
49.20
56.10
49.90
55.20
58.80
64.30
66.10
73.70
79.30
56.50
79.30
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Table 8.8 50 Samples of Dataset 8

Cement Blast Fly Ash Water Superplastici  Coarse Fine Age Concrete
(compone  Furnace (compone  (compone  zer Aggregat  Aggregat (da  compressiv
nt 1)(kg Slag nt 3)(kg nt 4)kg (component e e y) e
inam*3 (compone inam*3 inam*3 5)kg in a (compone (compone strength(M
mixture) nt 2)(kg mixture) mixture) m”3 nt 6)(kg nt 7)kg Pa,
in a m3 mixture) inam3 inam3 megapascal
mixture) mixture) mixture) S)
540.0 0.0 0.0 162.0 25 1040.0 676.0 28 79.99
540.0 0.0 0.0 162.0 25 1055.0 676.0 28 61.89
27
3325 1425 0.0 2280 0.0 932.0 594.0 40.27
0
36
3325 1425 0.0 2280 0.0 932.0 594.0 41.05
5
36
198.6 1324 & >-0.0 1920 0.0 978.4 8255 44.30
0
266.0 1140 0.0 2280 0.0 932.0 670.0 90 47.03
3040 76.0 0.0 2280 0.0 9320 670.0 28 4781
380.0 0.0 0.0 228.0 0.0 9320 670.0 90 52.91
139.6 2094 0.0 1920 0.0 1047.0 8069 90 39.36
36
3420 38.0 0.0 2280 0.0 932.0 670.0 56.14
5
380.0 95.0 0.0 2280 0.0 932.0 5940 90 40.56
139.6 2094 0.0 1920 0.0 1047.0 8069 3 8.06
18
139.6 2094 0.0 1920 0.0 1047.0 806.9 4421
0
36
380.0 0.0 0.0 2280 0.0 932.0 670.0 52.52
5
27
380.0 0.0 0.0 2280 0.0 932.0 670.0 53.30
0
475.0 0.0 0.0 2280 0.0 932.0 5940 7 38.60

3040 76.0 0.0 2280 0.0 9320 6700 36 55.26
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266.0

237.5
3325
475.0

237.5

342.0

427.5

237.5

380.0

427.5
427.5
349.0

3325

139.6
198.6

475.0

198.6

304.0

332.5
190.0

114.0

237.5
142.5
0.0

237.5

38.0

47.5

237.5

0.0

47.5
47.5
0.0

142.5

209.4
132.4

0.0

132.4

76.0

142.5
190.0

0.0

0.0
0.0
0.0

0.0

0.0

0.0

0.0

0.0

0.0
0.0
0.0

0.0

0.0
0.0

0.0

0.0

0.0

0.0
0.0

228.0

228.0
228.0
228.0

228.0

228.0

228.0

228.0

228.0

228.0
228.0
192.0

228.0

192.0
192.0

228.0

192.0

228.0

228.0
228.0

0.0

0.0
0.0
0.0

0.0

0.0

0.0

0.0

0.0

0.0
0.0
0.0

0.0

0.0
0.0

0.0

0.0

0.0

0.0
0.0

932.0

932.0
932.0
932.0

932.0

932.0

932.0

932.0

932.0

932.0
932.0
1047.0

932.0

1047.0
978.4

932.0

978.4

932.0

932.0
932.0

670.0

594.0
594.0
594.0

594.0

670.0

594.0

594.0

670.0

594.0
594.0
806.9

594.0

806.9
825.5

594.0

825.5

670.0

594.0
670.0

52.91

30.08
37.72
42.23

36.25

50.46

43.70

39.00

53.10

41.54
35.08
15.05

39.78

14.59
14.64

41.93

9.13

50.95

33.02
50.66
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266.0 1140 0.0 228.0 0.0 932.0 670.0 (1)8 48.70
27
3420 38.0 0.0 2280 0.0 932.0 670.0 . 55.06
36
1396 2094 0.0 1920 0.0 1047.0 806.9 0 44.70
3325 1425 0.0 2280 0.0 9320 5940 7 30.28
190.0 190.0 0.0 2280 0.0 9320 670.0 28 40.86
485.0 0.0 0.0 146.0 0.0 1120.0 800.0 28 71.99
3740 189.2 0.0 170.1 101 926.1 756.7 3 34.40
313.3 2622 0.0 1755 8.6 1046.9 611.8 3 28.80
425.0 106.3 0.0 1535 16.5 8521 8871 3 33.40
4250 1063 0.0 151.4 186 936.0 8037 3 36.30
323.7 2828 0.0 183.8  10.3 9427 6599 3 28.30
3795 1512 0.0 153.9 159 11343 6050 3  28.60
362.6 189.0 0.0 1649 116 9447 ~ 7558 = 3 35.30
Appendix B. Tables of testing parameters for Model 2
Table 8.9 Parameters testing for Model 2
Test 1: Hidden nodes = 2, momentum =0
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.8947 0.9150 0.8826 0.8697 0.8577
MAE 3.5464 3.3398 4.2231 5.3121 4.7976
RMSE 5.1782 4.7411 5.8403 6.4966 6.3011
TT 0.52 0.49 0.48 0.52 0.47
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Test 2: Hidden nodes = 2, momentum = 0.25

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9007 0.9124 0.9079 0.8584 0.7635
MAE 3.4832 3.4796 4.3330 6.5025 18.5923
RMSE 5.0419 4.8960 5.5677 7.4516 20.1191

TT 0.5 0.47 0.5 0.5 0.47

Test 3: Hidden nodes = 2, momentum = 0.5

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9089 0.9057 0.8422 0.8935 0.2831
MAE 3.3303 3.8415 4.4651 5.3692 12.3925
RMSE 4.8398 5.2725 6.1108 7.1294 15.7901

TT 0.49 0.49 0.48 0.47 0.49

Test 4: Hidden nodes = 2, momentum = 0.75

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9176 0.8870 0.8915 0.6960 -0.2305
MAE 3.1583 47141 5.0371 8.2613 27.8475
RMSE 4.5924 6.1993 6.7898 9.6591 29.8496

TT 0.48 0.49 0.48 0.47 0.5

Test 5: Hidden nodes = 3, momentum =0

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.8913 0.9017 0.8927 0.8938 0.9198
MAE 3.5292 3.1916 3.8185 4.2863 3.2708
RMSE 4.9660 4.7875 5.1597 5.5334 4.4942

TT 0.66 0.67 0.68 0.7 0.64
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Test 6: Hidden nodes = 3, momentum = 0.25

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.8983 0.9027 0.8880 0.8342 0.7390
MAE 3.3525 3.2281 4.6016 5.5137 6.9621
RMSE 4.8090 4.7752 5.7101 7.9303 8.5623
TT 0.67 0.66 0.66 0.64 0.66
Test 7: Hidden nodes = 3, momentum = 0.5
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9025 0.9022 0.9233 0.8944 0.3316
MAE 3.2109 3.4393 4.8092 4.9529 13.6598
RMSE 4.7310 4.9325 6.0267 6.4508 16.8670
TT 0.66 0.78 0.66 0.65 0.61
Test 8: Hidden nodes = 3, momentum: = 0.75
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.8969 0.8815 0.9061 0.7760 -0.2570
MAE 3.4411 4.4859 3.8121 6.6068 27.8475
RMSE 4.9512 5.9246 5.2742 8.5125 29.8496
TT 0.65 0.66 0.65 0.65 0.75
Test 9: Hidden nodes = 4, momentum =0
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.8825 0.9131 0.9069 0.9268 0.9141
MAE 3.6946 3.0150 3.1059 3.0362 3.8048
RMSE 5.1191 4.3984 4.7484 4.1726 4.6344
TT 0.84 0.82 0.84 0.83 0.83
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Test 10: Hidden nodes = 4, momentum = 0.25

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.8872 0.9077 0.9098 0.8903 0.2517
MAE 3.6694 3.0994 3.0434 3.8227 10.5972
RMSE 5.0125 4.5330 4.6330 4.9612 14.0669

TT 0.83 0.83 0.83 0.83 0.83

Test 11: Hidden nodes = 4, momentum = 0.5

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.8925 0.8985 0.8810 0.7366 0.3270
MAE 3.6291 3.2846 4.2166 4.5487 10.6464
RMSE 4.9128 4.7511 5.4169 7.7206 13.5994

TT 0.84 0.83 0.83 0.83 0.79

Test 12: Hidden nodes = 4, momentum = 0.75

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9029 0.9098 0.9208 0.7440 0.6604
MAE 3.4847 4.1681 5.2170 6.4193 10.1964
RMSE 4.7988 5.2616 6.2178 8.3268 12.6584

TT 0.84 0.83 0.84 0.81 0.83

Test 13: Hidden nodes = 5, momentum =0

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.8777 0.9177 0.8959 0.9367 0.8658
MAE 3.8340 2.9101 3.1885 2.4528 5.9052
RMSE 5.2092 4.3820 4.8062 3.8427 7.5386

TT 1.02 1.0 1.0 1.0 0.99
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Test 14: Hidden nodes = 5, momentum = 0.25

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.8808 0.9194 0.9039 0.9690 0.7505
MAE 3.7043 2.9241 3.0469 2.2398 6.0634
RMSE 5.1694 4.3037 4.8103 2.8786 7.1472

TT 1.01 0.99 0.99 0.99 0.97

Test 15: Hidden nodes = 5, momentum = 0.5

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.8919 0.9249 0.8652 0.9104 0.3953
MAE 3.4900 2.8335 4.7548 3.3617 13.3152
RMSE 4.9932 4.1170 6.5505 45772 16.4282

TT 1.0 0.99 1.01 1.0 0.98

Test 16: Hidden nodes = 5, momentum = 0.75

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9068 0.9018 0.9132 0.7007 0.9345
MAE 3.3330 3.4350 3.4435 8.4421 3.3723
RMSE 4.6744 4.8375 4.7545 9.8090 4.5616

TT 0.99 0.99 1.0 0.98 1.04

Test 17: Hidden nodes = 6, momentum =0

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.8906 0.9515 0.9178 0.9252 0.9188
MAE 3.5529 2.3292 2.5949 2.6494 4.2623
RMSE 4.9651 3.4281 4.2953 41177 4.8560

TT 1.16 1.18 1.17 1.17 1.18
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Test 18: Hidden nodes = 6, momentum = 0.25

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.8968 0.9252 0.9096 0.8834 0.7435
MAE 3.3850 3.6624 2.7204 2.9959 7.4641
RMSE 4.8218 5.0171 4.7518 5.8951 9.1404

TT 1.19 1.16 1.16 1.16 1.18

Test 19: Hidden nodes = 6, momentum = 0.5

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.8941 0.9471 0.9263 0.8838 0.7080
MAE 3.4880 2.4966 3.0064 4.1150 14.7202
RMSE 4.8873 3.8466 4.1545 5.7991 23.2614

80 1.15 1.16 1.16 1.17 1.15

Test 20: Hidden nodes = 6, momentum = 0.75

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9112 0.9391 0.9148 -0.1542 -0.2571
MAE 3.4540 2.8646 3.3110 9.3124 27.8495
RMSE 4.6221 3.9225 4.5223 10.7491 29.8520

TT 1.17 1.18 1.16 1.25 1.16

Appendix C. Tables of testing parameters for Model 3
Table8.10 Parameters testing for Model 3
Test 1: Hidden nodes = 2, momentum =0

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9151 0.9246 0.9307 0.9296 0.7643
MAE 3.5466 3.5531 3.5948 3.8443 6.3633
RMSE 4.7266 4.4888 4.3155 4.4540 8.6636
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TT 0.52 0.47 0.48 0.49 0.48
Test 2: Hidden nodes = 2, momentum = 0.25
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9218 0.9258 0.9374 0.9319 0.7456
MAE 3.4168 3.6132 3.6481 3.8109 6.0130
RMSE 45471 4.4385 4.4238 4.4400 8.1793
TT 0.49 0.48 0.48 0.49 0.47
Test 3: Hidden nodes = 2, momentum = 0.5
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9296 0.9271 0.9323 0.8448 0.5902
MAE 3.2731 3.7300 3.9023 5.2440 11.7961
RMSE 4.3278 4.4310 4.5745 7.3838 13.0151
TT 0.49 0.48 0.47 0.49 0.48
Test 4: Hidden nodes = 2, momentum = 0.75
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9373 0.9290 0.9136 0.6983 0.7735
MAE 3.1169 3.9145 5.1526 18.3598 6.7165
RMSE 4.1095 4.6690 6.2908 20.6185 8.8574
TT 0.48 0.47 0.47 0.47 0.48
Test 5: Hidden nodes = 3, momentum =0
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9489 0.9442 0.9510 0.9222 0.7258
MAE 2.9444 3.2401 2.6804 3.8037 7.4728
RMSE 3.7952 3.9513 3.7193 4.6948 10.4331
TT 0.63 0.64 0.64 0.63 0.65
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Test 6: Hidden nodes = 3, momentum = 0.25

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9521 0.9465 0.9462 0.9214 0.7434
MAE 2.8401 3.239%4 2.8226 3.8426 8.0265
RMSE 3.6813 3.8956 3.9359 4.5798 10.9608
TT 0.64 0.65 0.65 0.65 0.64

Test 7: Hidden nodes = 3, momentum = 0.5

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9517 0.9557 0.9273 0.9053 0.1108
MAE 2.8363 3.0081 3.1598 4.2424 11.4559
RMSE 3.6774 3.5982 4.5195 5.2560 12.8390
TT 0.64 0.64 0.65 0.63 0.63

Test 8: Hidden nodes = 3, momentum = 0.75

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9500 0.9532 0.9089 0.9081 0.1323
MAE 2.7782 3.2728 5.2774 6.3514 10.9816
RMSE 3.7160 4.4456 6.4441 8.0717 12.4565
TT 0.65 0.64 0.64 0.65 0.88

Test 9: Hidden nodes = 4, momentum =0

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9567 0.9511 0.9447 0.9403 0.7480
MAE 2.8985 3.0162 3.1622 3.5322 7.5967
RMSE 3.6416 3.7193 3.9746 4.3621 10.2088

TT 0.8 0.8 0.82 0.82 0.82
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Test 10: Hidden nodes = 4, momentum = 0.25

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9591 0.9497 0.9457 0.9306 0.5899
MAE 2.9777 3.0481 3.1997 3.3255 13.2838
RMSE 3.5761 3.7672 4.0048 4.4270 15.5897
TT 0.86 0.82 0.83 0.83 0.83
Test 11: Hidden nodes = 4, momentum = 0.5
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9586 0.9499 0.9494 0.9072 0.4777
MAE 2.9823 3.0414 3.2022 4.1238 13.0222
RMSE 3.5564 3.7844 3.9592 4.9642 15.4492
80 0.84 0.82 0.85 0.82 0.83
Test 12: Hidden nodes = 4, momentum = 0.75
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9571 0.9538 0.8933 0.4064 0.0851
MAE 2.7769 3.1651 4.6102 10.3809 10.9806
RMSE 3.5287 4.0106 6.1486 11.7422 12.4559
TT 0.84 0.83 0.84 0.82 0.83
Test 13: Hidden nodes = 5, momentum =0
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9508 0.9537 0.9546 0.9529 0.8830
MAE 2.8971 2.8208 3.1850 3.2522 6.3927
RMSE 3.7293 3.6358 3.9366 4.0057 8.0838
TT 1.01 1.0 1.0 1.02 1.13
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Test 14: Hidden nodes = 5, momentum = 0.25

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9529 0.9615 0.9294 0.9346 0.5801
MAE 2.8358 2.6309 3.8071 3.6343 13.6490
RMSE 3.6478 3.3049 4.8424 4.3674 15.9199
TT 1.0 1.01 1.0 1.01 0.99
Test 15: Hidden nodes = 5, momentum = 0.5
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9545 0.9645 0.9543 0.9250 0.6598
MAE 3.0450 2.5575 2.9682 3.7586 11.9497
RMSE 3.6308 3.1981 3.9174 4.5314 14.0060
80 0.98 1.01 1.0 1.0 1.08
Test 16: Hidden nodes = 5, momentum = 0.75
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9655 0.9611 0.8676 0.5661 0.0706
MAE 2.6267 2.9401 4.6520 9.8602 10.9817
RMSE 3.4045 3.5409 5.8971 11.0372 12.4566
TT 1.01 1.0 0.99 1.01 0.96
Test 17: Hidden nodes = 6, momentum =0
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9531 0.9560 0.9520 0.9603 0.8680
MAE 2.9268 2.8268 2.6708 3.2446 7.0010
RMSE 3.6817 3.5989 3.6554 4.5406 8.9107
TT 117 1.16 1.23 1.19 1.17
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Test 18: Hidden nodes = 6, momentum = 0.25

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9550 0.9544 0.9117 0.9276 0.6584
MAE 2.9188 2.8048 3.8237 3.5713 7.3742
RMSE 3.6201 3.5982 5.0132 4.4116 9.3582

TT 1.18 12 1.16 1.17 1.16

Test 19: Hidden nodes = 6, momentum = 0.5

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9557 0.9583 0.9573 0.9181 0.4959
MAE 3.0416 2.6842 2.7826 3.7402 13.4364
RMSE 3.6436 3.4069 3.6411 4.6934 16.7401

80 1.19 1.19 1.17 121 1.19

Test 20: Hidden nodes = 6, momentum = 0.75

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9616 0.9566 0.9201 0.8283 0.0361
MAE 2.8569 2.5436 5.5999 13.4854 11.1547
RMSE 3.4090 3.6608 7.0229 15.3210 12.5145

TT 1.17 1.28 1.21 1.18 1.22

Appendix D. Tables of testing parameters for Model 4
Table 8.11 Parameters testing for Model 4
Test 1: Hidden nodes = 2, momentum =0

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9501 0.9503 0.9256 0.9389 0.5860
MAE 3.2978 3.3307 3.9718 3.8876 10.9728
RMSE 4.6596 4.2287 49127 4.9463 13.9705
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TT 0.51 0.49 0.47 0.49 0.48
Test 2: Hidden nodes = 2, momentum = 0.25
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9564 0.9487 0.9204 0.9154 0.5902
MAE 3.0535 3.4415 3.9981 4.0901 11.5850
RMSE 43711 4.3197 4.8395 4.9905 14.4911
TT 0.48 0.5 0.47 0.47 0.49
Test 3: Hidden nodes = 2, momentum = 0.5
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9645 0.9469 0.9147 0.9116 -0.7602
MAE 2.9058 3.5141 4.1202 4.5584 15.9443
RMSE 3.9480 4.4259 5.2062 5.8092 20.0409
TT 0.48 0.47 0.49 0.48 0.47
Test 4: Hidden nodes = 2, momentum = 0.75
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9690 0.9308 0.8880 -0.6791 0.2988
MAE 2.7194 4.4427 8.4566 23.9399 13.8723
RMSE 3.5144 6.2169 9.7962 26.8994 17.5802
TT 0.48 0.5 0.47 0.47 0.75
Test 5: Hidden nodes = 3, momentum =0
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9766 0.9768 0.9730 0.7976 0.6584
MAE 2.0385 2.2062 2.4698 5.3383 8.3082
RMSE 2.7071 2.7737 3.2861 7.6283 10.9861
TT 0.64 0.64 0.65 0.64 0.65
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Test 6: Hidden nodes = 3, momentum = 0.25

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9781 0.9765 0.9724 0.9123 0.6020
MAE 1.9613 2.1975 2.9105 4.8251 12.5916
RMSE 2.5950 2.7839 3.5953 6.2733 15.7982

TT 0.64 0.65 0.65 0.64 0.65

Test 7: Hidden nodes = 3, momentum = 0.5

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9768 0.9759 0.9263 0.6221 -0.3783
MAE 2.0695 2.1716 4.0993 13.1195 14.0251
RMSE 2.6865 2.8140 5.2227 16.0562 17.8948

TT 0.66 0.64 0.64 0.63 0.65

Test 8: Hidden nodes = 3, momentum = 0.75

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9766 0.9751 0.6152 0.4660 0.7004
MAE 2.2803 2.2523 18.8293 28.1950 26.7948
RMSE 2.8351 3.1832 21.0878 30.1211 28.1307

TT 0.65 0.64 0.64 0.64 0.59

Test 9: Hidden nodes = 4, momentum =0

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9724 0.9772 0.9738 0.9505 0.6923
MAE 2.3641 1.6897 3.1766 3.6475 8.8520
RMSE 3.1094 2.8513 3.8759 4.4735 11.3958

TT 0.8 0.8 0.8 0.81 0.8
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Test 10: Hidden nodes = 4, momentum = 0.25

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9725 0.9743 0.9414 0.9119 0.6617
MAE 2.2560 2.4027 4.1267 4.2970 11.7568
RMSE 3.1069 3.4733 5.3820 6.0037 14.4205

TT 0.8 0.81 0.82 0.81 0.81

Test 11: Hidden nodes = 4, momentum = 0.5

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9718 0.9587 0.9623 0.4477 0.6880
MAE 1.8772 3.4735 4.2071 13.3164 14.6002
RMSE 3.0441 4.3253 5.1727 16.7253 18.1973

TT 0.83 0.82 0.81 0.81 0.8

Test 12: Hidden nodes = 4, momentum = 0.75

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9721 0.9705 0.7211 0.2961 -0.3020
MAE 1.9674 3.0409 7.4173 23.9827 17.5568
RMSE 3.0315 4.1006 9.0921 28.3718 21.1437

TT 0.8 0.82 0.81 0.8 0.78

Test 13: Hidden nodes = 5, momentum =0

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9735 0.9729 0.9636 0.9529 0.6831
MAE 2.3642 2.6897 3.56331 3.3240 8.8941
RMSE 3.0832 3.6155 4.6815 4.1103 11.4708

TT 0.99 0.97 0.97 0.99 0.98
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Test 14: Hidden nodes = 5, momentum = 0.25

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9734 0.9750 0.9487 0.9202 0.6973
MAE 2.0556 2.7387 3.6038 5.3550 9.7953
RMSE 3.0094 3.6035 4.5408 6.3894 12.4221
TT 0.95 0.98 0.98 0.99 0.97
Test 15: Hidden nodes = 5, momentum = 0.5
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9699 0.9613 0.9360 0.4710 0.3449
MAE 1.9519 3.0474 3.9784 15.0775 18.2928
RMSE 3.1454 3.9020 5.1468 18.4411 22.6824
TT 0.97 0.96 0.97 0.97 0.97
Test 16: Hidden nodes = 5, momentum = 0.75
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9688 0.9405 0.5507 0.3389 -0.3299
MAE 2.3006 2.8463 11.4623 20.5887 13.8718
RMSE 3.5111 5.1699 13.9899 23.8105 17.5797
TT 0.96 0.97 0.97 0.97 0.99
Test 17: Hidden nodes = 6, momentum =0
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9737 0.9681 0.9474 0.9423 0.6707
MAE 2.2819 3.3562 4.0780 3.8333 7.9855
RMSE 2.8436 4.2279 5.4032 4.8021 10.7322
TT 1.15 1.16 1.15 1.19 1.18
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Test 18: Hidden nodes = 6, momentum = 0.25

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9659 0.9639 0.9524 0.9283 0.6717
MAE 2.5462 2.9309 4.2239 4.4707 8.5818
RMSE 3.4983 3.8627 5.3174 5.8097 11.4385

TT 1.16 1.15 1.16 1.15 1.17

Test 19: Hidden nodes = 6, momentum = 0.5

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9677 0.9725 0.9330 0.5587 0.7185
MAE 2.5206 3.7362 5.4149 15.5499 10.9888
RMSE 3.4519 4.7582 6.8245 18.4284 13.5023

TT 1.15 1.16 1.15 1.16 1.13

Test 20: Hidden nodes = 6, momentum = 0.75

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9657 0.9656 0.5731 0.2491 0.8615
MAE 3.2144 3.8509 8.5282 19.3508 5.7945
RMSE 3.8990 4.9530 10.1723 23.0435 7.8252

TT 1.14 1.16 1.14 1.16 1.09

Appendix E. Tables of testing parameters for Model 5
Table 8.12 Parameters testing for Model 5
Test 1: Hidden nodes = 2, momentum =0

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.8096 0.8141 0.8765 0.8707 0.7047
MAE 6.2356 6.0359 44321 4.8170 9.5024
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RMSE 7.7398 7.6451 6.3900 6.7315 11.8038
TT 0.52 0.49 0.48 0.5 0.49
Test 2: Hidden nodes = 2, momentum = 0.25
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.8138 0.8136 0.8735 0.7840 0.4756
MAE 6.1091 6.0508 4.3648 6.3427 12.3273
RMSE 7.6541 7.6531 6.4159 8.2421 15.7636
TT 0.49 0.5 0.5 0.49 0.49
Test 3: Hidden nodes = 2, momentum = 0.5
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.8167 0.7855 0.8680 0.7822 0.6774
MAE 5.9830 6.5691 4.3589 6.3765 8.3503
RMSE 7.5834 8.2596 6.4993 8.1808 11.1784
TT 0.51 0.51 0.49 0.5 0.49
Test 4: Hidden nodes = 2, momentum = 0.75
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.8148 0.7782 0.7744 0.8044 0
MAE 5.8962 6.5915 6.3397 6.4875 10.2658
RMSE 7.6221 8.3898 8.3187 8.5646 13.0368
TT 0.49 0.5 0.49 0.49 0.48
Test 5: Hidden nodes = 3, momentum =0
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.7936 0.8981 0.8766 0.7666 0.7359
MAE 6.4639 4.5476 4.7942 6.9506 8.7035
RMSE 8.0149 5.9798 6.6257 8.7013 10.9060
TT 0.68 0.67 0.68 0.67 0.68
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Test 6: Hidden nodes = 3, momentum = 0.25

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.8007 0.8947 0.7709 0.7795 0.6108
MAE 6.2720 4.6312 6.7763 6.5133 11.5276
RMSE 7.8842 6.1337 8.5101 8.2534 14.3393
TT 0.68 0.65 0.67 0.67 0.67
Test 7: Hidden nodes = 3, momentum = 0.5
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.8061 0.8875 0.7683 0.7443 0.3567
MAE 6.0787 4.8478 6.7155 6.5596 14.2846
RMSE 7.7732 6.4284 8.5577 8.7634 21.4357
80 0.68 0.68 0.67 0.67 0.67
Test 8: Hidden nodes = 3, momentum = 0.75
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.8246 0.7742 0.7325 0.6929 -0.1199
MAE 5.7634 6.5514 6.6298 8.1063 10.2662
RMSE 7.4202 8.4160 9.0082 11.4645 13.0367
TT 0.66 0.68 0.67 0.66 0.68
Test 9: Hidden nodes = 4, momentum =0
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9226 0.8733 0.8680 0.8216 0.7328
MAE 3.8278 4.5385 4.7283 6.0878 10.6927
RMSE 5.1185 6.4369 6.7531 7.5806 12.9783
TT 0.84 0.86 0.84 0.85 0.85
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Test 10: Hidden nodes = 4, momentum = 0.25

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9429 0.8748 0.8606 0.8040 0.4098
MAE 3.5619 4.5339 4.7990 6.2046 14.2449
RMSE 4.4895 6.4078 6.8958 7.8210 20.6469

TT 0.85 0.88 0.86 0.85 0.83

Test 11: Hidden nodes = 4, momentum = 0.5

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9585 0.8778 0.8048 0.7794 0.4608
MAE 3.2410 4.6053 6.3525 6.3117 9.4950
RMSE 3.8710 6.4105 7.9052 8.2465 12.4485

80 0.86 0.84 0.85 0.84 0.84

Test 12: Hidden nodes = 4, momentum = 0.75

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9178 0.9312 0.7778 0.7967 -0.3472
MAE 3.9015 4.0666 6.5688 6.5621 10.2659
RMSE 5.3043 4.8468 8.4065 8.6952 13.0368

TT 0.85 0.86 0.84 0.86 0.76

Test 13: Hidden nodes = 5, momentum =0

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9071 0.9040 0.8362 0.8747 0.7331
MAE 47154 4.0686 4.3722 5.0246 10.6622
RMSE 5.7255 5.6363 7.1722 6.4781 12.9522

TT 1.03 1.0 1.02 1.02 1.02
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Test 14: Hidden nodes = 5, momentum = 0.25

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9250 0.8934 0.9003 0.9117 0.4768
MAE 3.8654 4.1672 4.5094 4.7976 12.7833
RMSE 5.1037 5.9035 5.7081 5.6554 17.0449
TT 1.02 1.03 1.0 1.05 1.01

Test 15: Hidden nodes = 5, momentum = 0.5

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9255 0.8573 0.8958 0.8466 -0.2458
MAE 3.7282 4.2425 4.6545 5.0105 10.3851
RMSE 5.0582 6.7560 5.8113 7.0351 13.3280

TT 1.03 1.0 1.03 1.02 1.05

Test 16: Hidden nodes =5, momentum = 0.75

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9050 0.9129 0.8575 0.8549 -0.2894
MAE 3.6332 4.1882 5.8669 5.8296 10.2659
RMSE 5.6053 5.4076 7.2743 7.4809 13.0368

TT 1.03 1.02 1.03 1.03 1.0

Test 17: Hidden nodes = 6, momentum =0

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9172 0.8703 0.8454 0.8536 0.7282
MAE 3.9325 3.7351 4.5765 4.8584 10.6768
RMSE 5.2640 6.4426 7.5966 6.9500 12.9362
TT 1.21 1.23 1.22 121 12

Test 18: Hidden nodes = 6, momentum = 0.25

Learning Rate 0.01 0.1 0.3 0.5 0.9
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R 0.9517 0.8824 0.8846 0.8661 0.3764
MAE 3.1121 3.8645 4.4182 4.7802 15.5210
RMSE 4.1199 6.1791 6.7168 6.7875 28.4648

TT 121 1.22 1.21 1.25 12

Test 19: Hidden nodes = 6, momentum = 0.5

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9525 0.8959 0.9416 0.8859 0.5094
MAE 3.2125 4.4503 4.0269 4.9218 11.4662
RMSE 4.0603 5.8701 4.6767 6.0510 14.4429

TT 1.22 1.22 1.23 1.23 1.22

Test 20: Hidden nodes = 6, momentum = 0.75

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9446 0.8543 0.8863 0.7978 -0.5126
MAE 3.5552 4.3052 5.2195 6.4352 10.2658
RMSE 4.3173 7.2242 6.1467 8.5849 13.0368

TT 122 1.22 1.22 1.22 1.13

Appendix F. Tables of testing parameters for Model 6
Table 8.13 Parameters testing for Model 6
Test 1: Hidden nodes = 2, momentum =0

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.8999 0.9134 0.9159 0.9138 0.7531
MAE 4.2599 3.8102 3.8276 5.1183 9.6898
RMSE 6.1785 5.7194 6.1313 6.5152 12.8284

TT 0.53 0.50 0.51 0.5 0.5
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Test 2: Hidden nodes = 2, momentum = 0.25

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9028 0.9163 0.9157 0.9093 0.6171
MAE 4.2869 3.7005 4.2436 4.6710 13.1674
RMSE 6.0962 5.6323 6.5003 6.5262 15.5065

TT 0.51 0.51 0.53 0.49 0.53

Test 3: Hidden nodes = 2, momentum = 0.5

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9062 0.9196 0.9098 0.7992 0.6499
MAE 4.3197 3.5213 5.2511 7.8003 22.2702
RMSE 6.0137 5.5610 7.4600 8.8327 25.4132
TT 0.52 0.51 0.52 0.49 0.5

Test 4: Hidden nodes = 2, momentum = 0.75

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9101 0.9197 0.8087 0.9021 -0.0603
MAE 4.2894 3.5117 7.9083 5.1321 21.1271
RMSE 5.8859 5.9487 8.9816 5.9033 24.6844
TT 0.49 0.48 0.49 0.48 0.49

Test 5: Hidden nodes = 3, momentum =0

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9245 0.8906 0.9160 0.9294 0.8502
MAE 4.0029 4.7399 4.2092 4.1284 9.6358
RMSE 5.4933 6.8146 6.1431 6.1030 11.9360
TT 0.67 0.69 0.69 0.68 0.69
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Test 6: Hidden nodes = 3, momentum = 0.25

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9289 0.8893 0.9174 0.9199 0.7044
MAE 3.9390 4.6641 5.1667 4.3078 10.8566
RMSE 5.2802 6.7872 6.4960 5.6035 12.9670
TT 0.69 0.67 0.71 0.69 0.69
Test 7: Hidden nodes = 3, momentum = 0.5
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9351 0.8867 0.9048 0.8530 0.9376
MAE 3.8631 4.4119 5.0045 5.8363 6.4969
RMSE 5.0569 6.7426 6.1954 7.1089 8.0581
TT 0.7 0.71 0.69 0.7 0.69
Test 8: Hidden nodes = 3, momentum = 0.75
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9407 0.9149 0.8710 0.1943 -0.2007
MAE 3.6495 4.7446 5.7616 10.7861 21.1334
RMSE 4.7704 6.1029 7.3233 13.4138 24.6904
TT 0.69 0.69 0.7 0.69 0.69
Test 9: Hidden nodes = 4, momentum =0
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9273 0.9394 0.9382 0.8874 0.8115
MAE 4.0157 3.5695 3.5074 5.5720 8.0285
RMSE 5.3385 5.0201 5.4281 6.5901 10.2811
TT 0.86 0.85 0.85 0.86 0.86
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Test 10: Hidden nodes = 4, momentum = 0.25

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9306 0.9486 0.9001 0.9096 0.2101
MAE 3.9135 3.1400 4.5096 4.6544 18.1402
RMSE 5.2053 4.6189 6.4577 6.1090 27.2915
TT 0.87 0.86 0.87 0.86 0.85
Test 11: Hidden nodes = 4, momentum = 0.5
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9339 0.9310 0.8930 0.8408 0.8800
MAE 3.9176 3.5799 4.6833 6.2153 6.8425
RMSE 5.1286 5.2667 7.0470 7.8165 9.2484
TT 0.86 0.86 0.87 0.85 0.84
Test 12: Hidden nodes = 4, momentum = 0.75
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9350 0.9216 0.8481 0.9163 0.7938
MAE 3.9110 4.0854 6.0114 7.7080 10.48898
RMSE 5.9110 5.5396 7.6114 8.8293 12.4944
TT 0.87 0.87 0.87 0.87 0.78
Test 13: Hidden nodes = 5, momentum =0
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9292 0.9289 0.9332 0.9053 -0.0193
MAE 3.9254 3.6010 3.5496 8.1110 13.6349
RMSE 5.2617 5.1829 5.4374 9.7651 33.2809
TT 1.04 1.04 1.06 1.04 1.04
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Test 14: Hidden nodes = 5, momentum = 0.25

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9320 0.9350 0.9142 0.9048 0.0463
MAE 3.8776 3.7283 4.0412 4.5978 11.4598
RMSE 5.1502 4.8382 5.8728 6.0896 15.6676
TT 1.04 1.05 1.03 1.02 1.04
Test 15: Hidden nodes = 5, momentum = 0.5
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9342 0.9468 0.8560 -0.0688 0.9007
MAE 3.9243 3.8452 4.5471 15.0498 10.7439
RMSE 5.1102 4.6933 7.7163 33.6546 12.6483
TT 1.04 1.03 1.03 1.04 1.01
Test 16: Hidden nodes = 5, momentum = 0.75
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9300 0.9634 0.0230 0.7769 -0.1835
MAE 3.9406 3.3257 12.7752 9.4989 21.1334
RMSE 5.1685 3.9412 31.2413 14.4464 24.6904
TT 1.07 1.02 1.05 1.02 1.06
Test 17: Hidden nodes = 6, momentum =0
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.8868 0.9269 0.9253 0.9110 0.7256
MAE 5.2061 4.2748 3.2449 4.5067 6.7166
RMSE 6.7959 5.4416 5.5111 5.7120 9.5143
TT 1.2 1.21 1.21 1.22 1.22
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Test 18: Hidden nodes = 6, momentum = 0.25

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9115 0.9212 0.9237 0.8888 0.5313
MAE 4.7420 4.7557 3.8592 5.4334 14.4899
RMSE 6.1880 5.7840 5.3766 6.9814 18.6597

TT 1.21 1.22 12 1.22 12

Test 19: Hidden nodes = 6, momentum = 0.5

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9231 0.9545 0.8627 -0.0668 0.8248
MAE 4.3592 3.5705 4.3512 19.2055 13.5695
RMSE 5.7389 4.4640 7.3810 48.0607 15.5826

TT 1.21 1.22 1.2 1.22 121

Test 20: Hidden nodes = 6, momentum = 0.75

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9308 0.9483 0.8700 0.8969 0.0824
MAE 4.0454 3.6750 5.7146 5.5630 13.1281
RMSE 5.4767 4.3429 7.1850 6.9425 16.4154

TT 1.2 1.23 1.22 1.2 1.6

Appendix G. Tables of testing parameters for Model 7
Table 8.14 Parameters testing for Model 7
Test 1: Hidden nodes = 2, momentum =0

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.8663 0.8632 0.8407 0.8669 0.4452
MAE 6.5435 7.7062 9.1377 8.5056 14.7507
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RMSE 9.4690 9.9840 11.4269 10.5543 20.1099
TT 0.54 0.52 0.49 0.49 0.49
Test 2: Hidden nodes = 2, momentum = 0.25
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.8705 0.8531 0.8287 0.8634 0.6116
MAE 6.4212 8.2826 9.8836 9.3066 13.4605
RMSE 9.3246 10.6314 12.1728 11.3567 18.4477
TT 0.5 0.5 0.49 0.48 0.5
Test 3: Hidden nodes = 2, momentum = 0.5
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.8745 0.8364 0.8214 0.4862 0.5106
MAE 6.3284 9.0401 10.2723 14.4228 20.9321
RMSE 9.1988 11.4493 12.2873 18.9284 26.1692
TT 0.5 0.5 05 0.5 0.5
Test 4: Hidden nodes = 2, momentum = 0.75
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.8775 0.8245 0.7695 -0.2312 0
MAE 6.2132 9.8627 13.5592 35.1924 18.3714
RMSE 9.1043 12.1518 15.8166 39.9124 2.5908
TT 0.5 0.49 0.53 0.47 0.49
Test 5: Hidden nodes = 3, momentum =0
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.8941 0.9175 0.8145 0.8566 0.6939
MAE 5.3763 5.3408 7.6685 9.3407 11.7917
RMSE 8.4875 7.6559 10.9428 11.6632 15.2666
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TT 0.69 0.67 0.69 0.68 0.66
Test 6: Hidden nodes = 3, momentum = 0.25
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.8989 0.9094 0.8093 0.8547 0.6562
MAE 5.2905 5.3242 8.2695 8.5628 14.6822
RMSE 8.2923 7.8406 11.2557 10.9904 18.6647
TT 0.69 0.68 0.68 0.68 0.69
Test 7: Hidden nodes = 3, momentum = 0.5
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9031 0.9025 0.8475 0.6724 0.5462
MAE 5.4004 5.3831 10.0832 12.7031 19.5521
RMSE 8.1606 8.1766 12.2665 16.1073 24.2933
TT 0.67 0.69 0.7 0.67 0.68
Test 8: Hidden nodes = 3, momentum = 0.75
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9070 0.8089 0.6736 0.3676 0.2612
MAE 5.6108 8.3362 16.1715 35.1915 18.3714
RMSE 8.1116 11.1044 19.7993 39.9116 22.5908
TT 0.68 0.68 0.68 0.68 0.59
Test 9: Hidden nodes = 4, momentum =0
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.8802 0.9292 0.8173 0.8434 0.8959
MAE 6.7233 4.3526 7.7461 10.3520 7.2441
RMSE 9.0381 7.1478 11.0485 12.9364 9.4350
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TT 0.86 0.87 0.85 0.87 0.85
Test 10: Hidden nodes = 4, momentum = 0.25
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.8855 0.9271 0.8856 0.8553 0.6306
MAE 6.7923 5.7836 6.9340 8.5182 14.8972
RMSE 8.8882 7.5860 8.9283 10.7720 19.1450
TT 0.86 0.86 0.87 0.85 0.85
Test 11: Hidden nodes = 4, momentum = 0.5
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.8957 0.9182 0.8516 0.8158 0.4180
MAE 6.5143 5.1150 10.3250 11.2317 13.4139
RMSE 8.5362 7.5181 12.7253 12.9002 19.9895
TT 0.86 0.86 0.86 0.86 0.86
Test 12: Hidden nodes = 4, momentum = 0.75
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9292 0.9172 0.7643 0.3893 -0.1656
MAE 5.5589 5.5241 20.1682 35.0094 18.3714
RMSE 7.1569 8.3330 23.8903 39.7511 22.5908
TT 0.87 0.85 0.83 0.83 0.82
Test 13: Hidden nodes = 5, momentum =0
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.8737 0.9285 0.9065 0.8474 0.7914
MAE 6.6971 4.4501 5.0780 7.9462 9.5235
RMSE 9.2606 7.2295 8.4554 10.4424 12.5803
TT 1.05 1.06 1.02 1.03 1.03
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Test 14: Hidden nodes = 5, momentum = 0.25

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.8846 0.9261 0.9256 0.8546 0.5483
MAE 6.2341 4.3783 6.2473 11.0514 16.4979
RMSE 8.8991 7.3431 7.5795 13.6073 23.5646
TT 1.05 1.03 1.04 1.05 10.5
Test 15: Hidden nodes = 5, momentum = 0.5
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.8960 0.9215 0.8993 0.6467 -0.4137
MAE 5.8733 4.3243 7.4489 14.3664 20.9094
RMSE 8.5171 7.5190 9.5031 18.9885 26.5581
TT 1.04 1.03 1.04 1.03 1.03
Test 16: Hidden nodes = 5, momentum = 0.75
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9358 0.9083 0.7365 0.3386 0.4732
MAE 4.8074 4.9094 10.8294 32.0173 17.7845
RMSE 6.8124 8.2800 13.0404 36.6032 26.6810
TT 1.03 1.05 1.03 1.04 1.03
Test 17: Hidden nodes = 6, momentum =0
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.8688 0.9414 0.8969 0.8552 0.8704
MAE 6.9988 4.7335 5.7155 9.4612 9.8567
RMSE 9.3909 7.1735 9.5908 12.3297 12.5975
TT 1.21 1.21 1.21 1.22 121

133




Test 18: Hidden nodes = 6, momentum = 0.25

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.8685 0.9303 0.8846 0.8218 0.6968
MAE 6.9137 4.6916 6.5631 13.7148 13.5069
RMSE 9.4096 7.1683 9.2239 18.4869 15.9879

TT 121 1.21 1.22 121 1.22

Test 19: Hidden nodes = 6, momentum = 0.5

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.8728 0.9054 0.8396 0.7020 0.5001
MAE 6.2113 5.2260 7.6254 13.5155 17.6964
RMSE 9.2173 8.1436 11.6874 19.1017 22.1606

TT 1.22 1.22 1.22 1.2 1.22

Test 20: Hidden nodes = 6, momentum = 0.75

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.8810 0.9409 0.4827 0.1755 0.6334
MAE 5.8973 4.609 11.8765 35.1921 15.8521
RMSE 8.9722 6.406 21.1199 39.9122 23.0239

TT 1.23 1.23 1.22 1.2 121

Appendix H. Tables of testing parameters for Model 8
Table 8.15 Parameters testing for Model 8
Test 1: Hidden nodes = 2, momentum =0

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.8882 0.9398 0.9448 0.9383 0.7413
MAE 6.4816 5.2643 7.2302 10.1469 12.1841
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RMSE 8.3473 6.5649 8.2841 11.1090 14.8746

TT 0.57 0.55 0.57 0.55 0.56

Test 2: Hidden nodes = 2, momentum = 0.25

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.8889 0.9447 0.9409 0.9323 0.8105
MAE 6.4496 5.2124 7.2480 8.0459 8.7979
RMSE 8.3263 6.3771 8.34 9.5155 10.6554

TT 0.54 0.53 0.55 0.54 0.54

Test 3:Hidden nodes = 2, momentum = 0.5

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.8958 0.9492 0.9297 0.8064 0.7993
MAE 6.3123 5.1556 7.1186 9.5848 13.5152
RMSE 8.0982 6.1640 8.3359 12.4395 15.9949

TT 0.54 0.53 0.55 0.56 0.52

Test 4: Hidden nodes = 2, momentum = 0.75

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9135 0.9236 0.8102 0.2781 0.4388
MAE 5.9269 6.2665 7.2495 25.2034 20.5762
RMSE 7.5071 7.1526 12.1197 32.4034 26.8507

TT 0.57 0.59 0.6 0.76 0.57

Test 5: Hidden nodes = 3, momentum =0

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.8823 0.9198 0.9198 0.9318 0.6743
MAE 7.2339 5.5125 5.6294 8.3501 11.2530
RMSE 8.5695 7.1347 7.1374 9.5678 14.2259
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TT 0.83 0.76 0.8 0.93 0.75
Test 6: Hidden nodes = 3, momentum = 0.25
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.8998 0.8980 0.9218 0.9239 0.7478
MAE 6.7025 6.4824 5.7487 8.8003 12.5562
RMSE 7.9704 8.0267 7.2286 10.4236 14.4120
TT 0.95 1.05 0.82 0.82 0.8
Test 7: Hidden nodes = 3, momentum = 0.5
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9057 0.8931 0.9099 0.7231 0.7377
MAE 6.3963 6.6506 6.9624 11.9117 11.8853
RMSE 7.8055 8.1900 8.7641 14.9117 14.2731
TT 0.79 1.54 2.18 0.77 2.04
Test 8: Hidden nodes = 3, momentum =0.75
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9115 0.8775 0.4823 0.4671 0.5478
MAE 6.1697 7.2378 14.5762 36.2297 20.5689
RMSE 7.6366 8.7657 30.8547 40.2406 26.8334
TT 1.09 0.79 0.84 0.8 0.75
Test 9 : Hidden nodes = 4, momentum =0
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9039 0.9358 0.9302 0.9368 0.5228
MAE 6.7358 4.5262 5.0381 6.2262 12.4191
RMSE 7.8593 6.4243 7.0244 7.2949 18.5592
TT 143 2.3 1.0 2.23 1.0
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Test 10: Hidden nodes = 4, momentum = 0.25

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9003 0.9340 0.8977 0.9247 0.7687
MAE 6.8791 4.6258 6.3928 6.2689 18.9040
RMSE 8.0136 6.5272 8.1072 7.8505 23.6058
TT 1.03 0.99 2.22 141 1.54
Test 11: Hidden nodes = 4, momentum = 0.5
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.8926 0.9284 0.9201 0.7511 0.7597
MAE 6.8849 49773 6.5358 10.9946 12.384
RMSE 8.4898 6.9172 7.7812 15.9441 15.7142
TT 0.98 1.55 0.98 1.05 1.0
Test 12: Hidden nodes = 4, momentum = 0.75
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.8727 0.8973 0.8160 0.5461 -0.2309
MAE 7.7743 6.8302 10.1822 21.9670 20.5798
RMSE 9.5415 8.6018 16.5148 28.3245 26.8554
TT 1.18 48.1861 0.98 1.18 111
Test 13: Hidden nodes = 5, momentum =0
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9278 0.9073 0.9141 0.8885 0.5297
MAE 5.4762 6.8374 6.6419 8.1484 17.2155
RMSE 7.2763 8.2243 7.9177 9.9660 27.7915
TT 1.26 1.56 1.54 1.82 2.19
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Test 14: Hidden nodes = 5, momentum = 0.25

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9165 0.8529 0.9058 0.9230 0.7119
MAE 6.1134 8.0845 7.1028 7.4972 16.2696
RMSE 7.8977 10.5937 9.8251 9.5544 24,7129
TT 2.05 1.17 1.55 2.7 1.99
Test 15: Hidden nodes = 5, momentum = 0.5
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9352 0.9162 0.8483 0.8105 0.3348
MAE 5.2283 6.1956 8.5487 12.2318 17.8194
RMSE 6.9345 7.5026 10.5056 14.3665 24.1150
1ET 1.84 2.06 1.51 1.54 2.02
Test 16: Hidden nodes = 5, momentum = 0.75
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9331 0.9033 0.8994 0.0506 0.1712
MAE 5.6733 7.1383 9.1078 21.9733 20.5759
RMSE 7.1627 8.7850 10.6120 28.3285 26.8501
TT 1.97 1.16 1.76 1.22 1.68
Test 17: Hidden nodes = 6, momentum =0
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9069 0.9037 0.9282 0.8205 0.7443
MAE 6.8073 7.0776 5.4681 9.6882 13.7753
RMSE 8.1494 8.8066 6.8795 12.7525 24.2835
TT 1.75 2.73 1.88 2.38 2.68
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Test 18: Hidden nodes = 6, momentum = 0.25

Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9161 0.8909 0.9164 0.8037 0.7300
MAE 6.1609 7.6182 5.6651 8.6515 16.9769
RMSE 7.6536 9.6269 7.6127 12.7291 23.0919
TT 1.87 2.63 1.38 1.52 1.35
Test 19: Hidden nodes = 6, momentum = 0.5
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.9306 0.8263 0.8878 0.5307 0.6410
MAE 5.8139 8.5078 7.6299 13.2003 13.8648
RMSE 7.0354 10.8618 10.3119 18.7043 17.5864
TT 1.35 1.37 1.36 1.49 1.59
Test 20: Hidden nodes = 6, momentum = 0.75
Learning Rate 0.01 0.1 0.3 0.5 0.9
R 0.8930 0.9428 0.8312 -0.5702 -0.3198
MAE 7.8240 5.5061 18.2939 40.4560 20.5802
RMSE 9.1551 6.4958 30.2939 48.3556 26.8555
TT 1.39 1.39 1.55 1.55 1.44
Appendix |. Table of information for and final results
Table 8.16 Final parameters and evaluation results for each model
No. of Learning Momentum No. of No. of R MAE RMSE TT
Models Rate hidden  hidden
layers  nodes
Model 1 0.1 0.75 1 5 0.9658 2.4902 3.5597 0.90
Model 2 0.5 0.25 1 5 0.9690 2.2398 2.8786 0.99
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Model 3

Model 4

Model 5

Model 6

Model 7

Model 8

0.01

0.01

0.01

0.1

0.1

0.1

0.75 1 5 0.9655
0.25 1 3 0.9781
0.5 1 4 0.9585
0.75 1 5 0.9634
0 1 6 0.9414
0.5 1 2 0.9492

2.6267

1.9613

3.2410

3.3257

4.7335

5.1556

3.4045

2.5950

3.8710

3.9412

7.1735

6.1640

1.01

0.64

0.86

1.02

121

0.53

Appendix J. Figures of weights and threshold in each model

Linear Node O
Inputs Weights

Threshold -0.0014189132871085808
Node 1 -1.7154657036500796
Hode 2 1.59256176235670357
Hode 3 -2.28895604220632584
Node 4 -0.8935955823217944

Node 5 1.8531395672677068
Sigmoid Node 1
Inputs Weights

Threshold -5.0702727684076025
Attrik Cement {componentl) 3.2229644872584636
Attrib Water ({component2) -0.712578765513904
Attrik Coarse-Rggregate (component3) -1.7090670899024003
Attribk Fine-RAggregate (componentd) —-5.7602428658034724
Attrib Age (components) 2.0458047745270225
Sigmoid Node 2
Inputs Weights
Threshold -4.803724899829724
Attrib Cement {componentl) -6.3046403743595105
Attrib Water (component?2) -0.9883703391780873
Attribk Coarse-RAggregate (component3) -1.084020679386968
Attrib Fine-Aggregate (componentd) -11.931958466894198
Attrib Age (component5) 1.110637820935358425
Sigmoid Node 3
Inputs Weights
Threshold -14.033154617473892
Attrib Cement {componentl) 1.7396776059664942
Attrib Water {component2) -0.253359419055631619
Attrib Coarse-Rggregate (component3) 0.7103815499681973
LAttrib Fine-Rggregate (componentd) 1.6662027295697497
Attrib Age (components) -12.973985493300917
Sigmoid Neode 4
Inputs Weights
Threshold -1.9843546524646128
Attribk Cement {componentl) -6.189666938580757
Attrib Water (componentl) 0.8497002783452134
Attrib Coarse-Rggregate (component3) -1.5564094152769656
Attribk Fine-Rggregate (componentd) -3.676161719311089
Attrib Age (components) -0.8390319884287402
Sigmoid Node 5
Inputs Weights
Threshold -3.4765325697463396
Attrib Cement {componentl) 3.9740569515631177
Attrib Water (component?2) -5.378175185900631
Attribk Coarse-RAggregate (component3) -0.9398574228668345
Attrib Fine-Aggregate (componentd) -2.664894057277998
Attrib Age (component5) 0.9269341234056888

Figure 8.1: Weights and threshold in Model 1
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Linear Node 0
Inputs Weights
Threshold 0.0548941539353541165
Hode 1 1.8086536637531119

Hode 2 -1.8840475716159008&
Hode 3 -0.9250905633393068
Hode 4 -1.5322436575357284

Hode 5 0.8451120772517112
Sigmoid Node 1
Inputs Weights
Threshold 2.8325652700525343
Attrib Cement (componentl) 5.173024672454119
Attrib Fly-Ash(component2) 6.839896091970756
Attrib Water {component3) -2.7821210152098356
Attrib Coarse-Aggregate (componentd) -2.464419339707945
Attrib Fine-Rggregate (component5) 3.9830273256431763
Attrib Age (componenté) 0.58659100322630668
Sigmoid Node 2
Inputs Weights
Threshold -1.0378168396942262
Attrib Cement (componentl) -1.613423206446127
Attrib Fly-Ash (componentl) 0.9905173552214117
Attrib Water{component3) -1.3494521211889074
Attrib Coarse-Rggregate (componentd) -2.070156319804114¢
Attrib Fine-Rggregate (components) 9.95092693902368E-4
Attrib Age (componenté) 0.1063257755718064
Sigmoid Node 3
Inputs Weights

Threshold -6.28175619104408

Attrib Cement (componentl) -2.1517506251431304

Attrib Fly-Ash (componentd) 0.43328963512285434

Attrib Water (componentd) 2.20584593485328308

Attrib Coarse-Aggregate (componentd) 2.7058669355304574
Attrib Fine-Rggregate (componentS) 0.5872539238293014
Attrib Age {componenté) -5.3912194120031005

Sigmoid Node 4
Inputs Weights

Threshold -15.624618689595371

Attrib Cement (componentl) 1.1277311422384677

Attrib Fly-Ash (component2) 6.8758733721249792

Attrib Water (component3) -1.32450951451281

Attrib Ceoarse-Aggregate (componentd) -0.6633154557019605
Attrib Fine-RAggregate (component3d) 0.11581485114002819
Attrib Age (componentf) -22.12281144541191

Sigmoid Neode 5
Inputs Weights
Threshold -0.16805645359000324
Attrib Cement (componentl) -5.235792632930763
Attrib Fly-Ash(component2) 3.245610235029983
Attrib Water {component3) -8.21628858672327
Attrib Coarse-Aggregate (componentd) -1.0441697046986793
Attrib Fine-Rggregate (component5) -11.47878002562719
Attrib Age (componenté) 0.7075973856789589

Figure8.2: Weights and threshold in Model 2
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Linear Hode 0
Inputs Weights

Threshold -0.16014382923185963
Node 1 3.617964995451901

Node 2 -1.0221240641796911
Node 3 -1.8050718281187204
liode 4 -3.463917568816838

Node 5 1.170175686325494
Sigmoid Neode 1

Inputs Weights

Threshold -0.4629809574517697¢

LAttrik Cement ({componentl) 1.10&5722893791305

Attrib Blast-Furnace-5lag (componentd)

0.8289619231142987

Attrib Water (component3) -0.9660037041994028

Attrib Coarse-Rggregate (componentd) 0.420495051625895245
Attrib Fine-Aggregate (componentd) 0.3107435019284669
Attrib Age (componenté) -0.22708600128415155

Sigmoid Node 2
Inputs Weights

Threshold -0.1437763811383905%9

Attrib Cement (componentl) 1.2586297379859819

Attrib Blast-Furnace-5lag (component2)

Attrib Water (component3) -0.70660212104580348

LAttrib Coarse-Rggregate (componentd) 0.41262954815231
Attrib Fine-RAggregate (componentd) -2.2788669421829955
Attrib RAge (componenté) -1.0679366129024135

Sigmoid Node 3
Inputs Weights

Threshold -1.2561781456852452
Attrib Cement (componentl) -0.9787601471671572
Attrib Blast-Furnace-Slag (component?)
Attrib Water (component3) 0.9667538137885255
Attrib Coarse-Rggregate (componentd) 0.7222965299542229
Attrib Fine-RAggregate (component5) 2.324205927857906
Attrib Age (componentéd) -0.5470524404466595
Sigmoid Node 4
Inputs Weights
Threshold -9.2198457572843
Attrib Cement (componentl) 0.7474385497
Attrib Blast-Furnace-5lag (componentd)
Attrib Water {component3) -0.28397616993395274
Attrib Coarse-Rggregate (componentd) 0.017110550
Artrib Fine-Rggregate (component5) 0.40911381635924204
Attrib Age (componentf) -2.497046043846906
Sigmoid Node 5
Inputs Weights
Threshold -1.4071683631497527
Attrik Cement (componentl) -1.137801857293191
Attrib Blast-Furnace-5lag (componentd)
Attrib Water (component3) 2.125143020560837
Attrib Coarse-Rggregate (componentd) -0.49540202945829398
Attrib Fine-Aggregate (componentd) 0.5647023184716973
Attrib Age (componenté) -1.0777493682831407
Class
Input
Hode 0O

Figure 8.3: Weights and threshold in Model 3
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Linear Node 0
Inputs Weights
Threshold 2.127445842331551

Node 1 -3.959250002697399¢6
Node 2 -2.159892384502291
Hode 3 -1.97854245795949136

Sigmoid Neode 1
Inputs Weights

Threshold -7.419457371486786

Attrib Cement (componentl) 0.6409881271184251

Attrib Water{componentl) 0.3722035471528739

Attribk Superplasticizer (component3) -0.2027243168122589
Attrib Coarse-Rggregate (componentd) 0.5855583674512059
Attrib Fine-Rggregate (component5S) 0.8247999986376342
Attrib Age (componenté) -5.5450894E87745404

A

Sigmoid Node 2
Inputs Weights

Threshold -0.37365531199117596
Attrib Cement (componentl) -1.4647505607738727
Attrib Water {componentd) -1.5595108269127853
Attrib Superplasticizer (component3) 1.074283500524466
Attrib Coarse-Rggregate (componentd) -0.5732510221886931
Attrib Fine-Rggregate (componentS) -0.3911842598063993
Attrib Age (componenté) 0.022012667715312063

Sigmoid Node 3
Inputs Weights
Threshold 1.0201775157310085
Attrib Cement ({componentl) -1.2422200045952034
Attrib Water (componentl) 1.8041088321543215
Attrib Superplasticizer (component3) -1.55730276065407
Attribk Coarse-Rggregate (componentd) -1.23902612384522
Attrib Fine-Rggregate (components) -0.8169898437568693
Attrib Age ({componenté) 0.7241850018412982

Class
Input
Hode 0

Figure 8.4: Weights and threshold in Model 4
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Linear Node 0

Inputs

Threshold

Hode 1
Node 2
Node 3
Hode 4

Weights
-0.47459835316232807
1.7715942091939398
-1.9809223252973827
-3.25466544379295
3.352000226955241

Sigmoid Neode 1

Inputs

Threshold

Attrib
Attrib
Aterib
Attrib
Attrib

Weights

1.01201145901324173
Cement {componentl) -1.221204834078431
Blast-Furnace-5lag (componentd) -1.52745239241854612
Fly-RAsh {component3) 0.12592980863573283
Water (componentd) -0.15611816844410378

Coarse-Lggregate (components) 0.902213239866004

Attrib Fine-Rggregate (componenté) 1.652524552405703
Attrib Age (component7) -0.1365100586899701
Sigmoid Node 2
Inputs Weights
Threshold -0.9646811244386393
Attrib Cement (componentl) -0.5277804106869897

Attrib
Attrib
Attrib

Blast-Furnace-5lag (component?) -1.1478561185838108
Fly-Ash({corponent3) -1.6079894314524584
Water (componentd) -1.9059649348947058

LAttrib Coarse-Rggregate (component5) 0.03161937371235206
Attrib Fine-Rggregate (componentd) 1.4985980690503544
Attrib Age (component7) -0.9583341161346174

Sigmoid Node 3
Inputs Weights
Threshold -4.091237011567978
Attrib Cement (componentl) 0.3936753655137853
Attrib Blast-Furnace-Slag (component?) 0.6326688560629284
Attrib Fly-Ash({component3) 3.253848145786897
Attrib Water{componentd) -1.0779717211725108

kttrib
Attrib
Attrib

Coarse-Lggregate {component5) 0.015108234885585967
Fine-Rggregate (componenta) 0.07997894957976837
Lge (componentT) —6.962636754E76101

Sigmoid Node 4

Inputs Weights
Threshold 2.0685522024062573
Attrib Cement (componentl) 1.1229799171473497

Attrib
Attrib
Attrib
Attrib
Attrib
Attrib
Class
Input
Node 0

Blast-Furnace-5lag {component2) 0.7768995984435983
Fly-Ash{component3) 2.795304232064349

Water (componentd) -2.0491947064317544
Coarse-hAggregate (component5) -0.42413386785578083
Fine-Rggregate {componentf) -0.16070672941159314
Age (componentT) -0.53405125076359

Figure 8.5: Weights and threshold in Model 5
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Linear Node 0
Inputs
Threshold
Hode 1
Node 2
Node 3
Hode 4
Node 5

Sigmoid Node 1

Weights
-0.5921461281472398
1.68024194858286984
-1.6674065820233863
-1.3536645174947695
1.01230170526215814
0.638490442389993

Inputs
Threshold
Attrib Cement (componentl)
Attrib Fly-Ash{component2)
Attrib Water(component3)
Attrib
Atcrib
Attrib
Attrib Age (componentT)
Sigmoid Node 2
Inputs
Threshold
Attrib Cement (componentl)
Attrib Fly-Ash({component?)
Attrib Water(component3)
Attrib
Atcrib
Attrib
Attrib Age (componentT)
Sigmoid Node 3
Inputs
Threshold
Lttrik Cement ({componentl)
Attrib Fly-Ash(componentl)
Attrib Water(component3)

Weights

Weights

Weights

Superplasticizer (componentd)
Coarse-Rggregate (components)
Fine-Rggregate (componenté)

Superplasticizer (componentd)
Coarse-Aggregate (components)
Fine-Lggregate (componenté)

-1.3257957252478219

0.29927672153949114
-1.9548476098306817
1.3637173390394175
6.9088809118003995
-0.4117155430572222
2.8527817030116646
0.29182610458761546

-15.80178451266743

1.3658929198415284
0.9400250162158087
0.6918996714118768
-0.68154163496544653
0.3411691608814988
0.9241016840815122
-15.068068397249043

-4.0194009951902565

0.5116520207092253
1.8705867355512864
-0.18054473640841442

Attrib Superplasticizer (componentd)
Attrib Coarse-Rggregate (components)
Attrib Fine-Rggregate (componentéd)
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Figure 8.6: Weights and threshold in Model 6
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Figure 8.7: Weights and threshold in Model 7
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Figure 8.8: Weights and threshold in Model 8
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