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Abstract (English)

A building is at a high risk of destruction if the compressive concrete strength does
not meet the required specification. Thus, the prediction of compressive concrete
strength has become an important research area. Previous prediction models are
based on fix numbers of attributes. Consequently, when the number of attributes
increase or decrease, the models could not be used. Thus, a compressive concrete
strength prediction model which can work with different numbers of attribute is
needed. The purpose of this study is to develop compressive concrete strength
prediction models using different combinations of attributes. This study includes five
stages: data collection, normalization, parameters identification, model construction
and evaluation. The employed data set consists of nine attributes: water, cement, fine
aggregate, coarse aggregate, age, fly ash, super plasticizer, blast furnace slag and
compressive concrete strength. This study produced eight prediction models where
each model has different combination of attributes. It also identified appropriate
weights, learning rate, momentum and number of hidden nodes for each of the
proposed model, and design a general artificial neural network (ANN) architecture.
Model eight of the study produced a higher correlation coefficient (i.e., 0.973) than
the existing study (i.e., 0.953). This study has successfully produced eight concrete
strength prediction models with good coefficient correlation. The compressive
strength prediction models would benefit civil engineers as they can use the models
to identify the suitability of additional materials in concrete mix.

Keywords: Compressive concrete strength, Different combinations of attributes,
Artificial neural networks, Prediction models.



Abstrak (Bahasa malaysia)

Sesebuah bangunan adalah berisiko tinggi untuk runtuh jika kekuatan mampatan
konkrit tidak memenuhi spesifikasi yang dikehendaki. Oleh itu, ramalan kekuatan
mampatan konkrit telah menjadi satu topik penyelidikan yang penting. Model
ramalan sebelum ini adalah berasaskan kepada bilangan atribut yang tetap. Akibatnya,
apabila berlaku peningkatan atau penurunan bilangan atribut, model tersebut tidak
boleh digunakan. Oleh itu, model ramalan kekuatan mampatan konkrit yang boleh
berfungsi dengan bilangan atribut yang berlainan adalah diperlukan. Tujuan kajian
ini adalah untuk membangunkan model ramalan kekuatan mampatan konkrit yang
menggunakan kombinasi atribut berlainan. Kajian ini merangkumi lima peringkat:
pengumpulan data, penormalan, pengenalpastian parameter, pembinaan model dan
penilaian. Data set yang digunakan terdiri daripada sembilan atribut: air, simen,
agregat halus, agregat kasar, usia, abu terbang, super plasticizer, sanga relau bagas
dan kekuatan mampatan konkrit. Kajian ini menghasilkan lapan model ramalan yang
mana setiap model mempunyai kombinasi atribut yang berbeza. Kajian itu juga
mengenalpasti berat, kadar pembelajaran, momentum dan bilangan nod tersembunyi
yang sesuai untuk setiap model ramalan yang dicadangkan, dan rekabentuk umum
seni bina rangkaian neural buatan (ANN). Model lapan dalam kajian ini
menghasilkan pekali korelasi yang lebih tinggi (0.973) daripada kajian yang sedia
ada (0.953). Kajian ini telah berjaya menghasilkan lapan model ramalan kekuatan
mampatan konkrit dengan pekali korelasi yang baik. Model ramalan kekuatan
mampatan konkrit ini akan memberi manfaat kepada jurutera awam untuk mengenal
pasti kesesuaian bahan tambahan untuk campuran konkrit.

Kata Kunci: Kekuatan konkrit mampatan, Kombinasi sifat-sifat, Rangkaian neural
buatan, Model ramalan.
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CHAPTER ONE
INTRODUCTION

1.1 Background

Concrete is one of the most indispensable building and engineering material in the
world. It has been used for more than 10 decades (Aggarwal, Kumar, Sharma, &
Sharma, 2015). Concrete becomes more and more popular in the world because of its
capabilities. For example, it can take up any shape before it becomes hard, and
strengthens when it hardens. This construction material is widely used in buildings,
bridges, roads, runways, docks, military engineering, nuclear power stations and so
on (Wankhade & Kambekar, 2013). If there is a high quality building, it must have a
strong compressive strength of concrete. Because of this, compressive concrete
strength becomes an important element building construction. If the compressive
concrete strength do not meet the required specification for a building then there will
a high risk of destruction when unfortunate incidents happened such as natural
disasters or damages caused by humans. For example on May 12, 2008, an
earthquake of magnitude 7.9, struck western Sichuan province causing many
buildings to be destroyed and casualties. Many experts agree that casualties and
damages could have been avoided if the buildings were built using high quality
components. The question is, how quality is the buildings? Obviously, when such
catastrophic incident occur, the buildings can said to be below the quality standard —
that is, the compressive concrete strength was below than the standard

procedure(Michele et al., 2010). Again on July28, 1976, the city of Tangshan, China
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