The copyright © of this thesis belongs to its rightful author and/or other copyright owner. Copies can be accessed and downloaded for non-commercial or learning purposes without any charge and permission. The thesis cannot be reproduced or quoted as a whole without the permission from its rightful owner. No alteration or changes in format is allowed without permission from its rightful owner.

User Interface Factors that Influence the Adoption of "*Aplikasi Pangkalan Data Murid*"(APDM): A Case of Secondary Schools at Kubang Pasu Kedah.

MASTER OF SCIENCE (INFORMATION TECHNOLOGY) UNIVERSITI UTARA MALAYSIA 2017

Permission to Use

In presenting this thesis in fulfillment of the requirements for a postgraduate degree from Universiti Utara Malaysia, I agree that the Universiti Library may make it freely available for inspection. I further agree that permission for the copying of this thesis in any manner, in whole or in part, for scholarly purpose may be granted by my supervisor(s) or, in their absence, by the Dean of Awang Had Salleh Graduate School of Arts and Sciences. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use which may be made of any material from my thesis.

Requests for permission to copy or to make other use of materials in this thesis, in whole or in part, should be addressed to:

Dean of Awang Had Salleh Graduate School of Arts and Sciences UUMCollege of Arts and Sciences Universiti Utara Malaysia 06010 UUM Sintok

Abstrak

Pada masa kini, Sistem Maklumat Pelajar (SIS) atau dikenali sebagai Aplikasi Pangkalan Data Murid (APDM) telah digunakan secara meluas oleh sekolah serta mendapat perhatian para penyelidik dari pelbagai sudut dan isu. Sebelum menjalankan sebarang kajian mengenai penerima gunaan perisian terhadap pelaksanaan APDM, tindakan segera terhadap isu asas berkaitan dengan faktor yang mempengaruhi penggunaan APDM perlu dilakukan. Faktor penggunaan APDM yang sedia ada belum dibina dan diuji secara menyeluruh dalam perspektif teknikal (Antara Muka Pengguna: Skrin, Pembelajaran, Terminologi, Keupayaan Sistem), sosial (Tanggapan Kebergunaan, Tanggapan Kemudah gunaan), dan tingkah laku (Kepuasan Pengguna). Oleh itu, kajian ini bertujuan untuk mengenal pasti faktor penerima gunaan perisian yang mempengaruhi penerima gunaan APDM di sekolah menengah sekitar Kubang Pasu, Kedah. Satu tinjauan telah dijalankan ke atas 110 orang guru dari lima buah sekolah menengah yang berkenaan. Data dianalisis menggunakan ujian korelasi, analisis varian, dan regresi berganda. Dapatan kajian menunjukkan susun atur skrin APDM adalah faktor yang paling mempengaruhi Kebergunaan dan Tanggapan Kemudah secara signifikan ke atas Tanggapan gunaan. Tanggapan Kebergunaan juga adalah faktor yang paling tinggi mempengaruhi Kepuasan Pengguna terhadap APDM berbanding Tanggapan Kemudah gunaan. Kesimpulannya, para guru beranggapan bahawa susun atur skrin APDM adalah sangat berguna, mengandungi maklumat yang mencukupi, dan mudah untuk dikemudikan. Dapatan kajian ini boleh menyumbang kepada domain pendidikan dalam mengesyorkan kepada pembuat keputusan di Kementerian Pendidikan Malaysia (MOE) untuk penambahbaikan APDM pada masa akan datang.

Kata Kunci: Faktor Penggunaan Perisian, Antara Muka Pengguna, Tanggapan Kebergunaan, Tanggapan Kemudah gunaan, Kepuasan Pengguna

Abstract

Nowadays, Student Information System (SIS) also known as "Aplikasi Pangkalan Data Murid (APDM)" is widely used by many schools and getting attention by many researchers in various angles and issues. Before conducting any software adoption study on the implementation of APDM, an immediate action on the basic issues of the adoption factors that influence the APDM usage needs to be performed. The existing APDM adoption factors are not comprehensively constructed and tested in technical (User Interface: Screen, Terminology, Learning and System Capabilities), social (Perceived Usefulness, Perceived Ease of use), and behavioral (User Satisfaction) perspectives. Therefore, this study aims to identify the software adoption factors that influence the adoption of APDM in Kubang Pasu, Kedah secondary schools. A survey was conducted on 110 teachers from five secondary schools. Data were analyzed using correlation, analysis of variance and multiple regression tests. The findings show that the APDM screen layout is the most influential significant factor on Perceived Usefulness and Perceived Ease of Use. In addition, Perceived Usefulness is the most influential factor on User Satisfaction towards APDM as compared to Perceived Ease of Use. In sum, the teachers perceived that the APDM's screen layout was very helpful, contains adequate information, and easy to navigate. The findings may contribute to the educational domain particularly in recommending decision makers of the Ministry of Education Malaysia (MOE) for APDM future enhancement.

Keywords : Software Adoption Factors, User Interface, Perceived Usefulness, Perceived Ease of Use, User Satisfaction

Acknowledgement

First and foremost, my greatest gratitude goes to Allah for granting me the strength, perseverance, patience, confidence and wisdom to complete this study.

I would like to express my deepest appreciation to my Supervisor, Assoc. Prof. Dr. Haslina Mohd for her motivation, knowledge sharing and invaluable guidance during this study. I will always appreciate her help, time, contributions, and efforts towards the completion of this study.

Special thanks and gratitude to my family, especially for my mother, Jukira Baladan, my father, Yunus Abdul Guntur, as well as my brothers and sisters for their endless supports and sacrifices.Words cannot express how grateful I am.

My foremost appreciation goes to the Ministry of Education (MOE) Malaysia, Jabatan Pendidikan Negeri (JPN) Kedah, Awang Had Salleh Graduate School (AHSGS), School of Computing (SOC), my programme coordinator Dr. Norliza Katuk, and last but not least to SMK Bandar Baru Sintok, SMK Changlun, SMK Hosba, SMK Seri Mahawangsa, and SMK Paya Kemunting for their contributions. Without their supports, this study may not have been completed.

Finally, I would like to convey a special thanks to all my friends for their endless supports through out my study. I hope this study can be a helpful reference to others in the future.

Table of Contents

ii
iii
ivv
v
vvi
ix
xi
xixii
xixiii

CHAPTER ONE: INTRODUCTION

1
8
13
13
14
14
15
16
18

CHAPTER TWO: LITERATURE REVIEW

2.1 Introduction	.19
2.2 Information System (IS)	.19
2.3 Student Information System (SIS)	.21
2.4 School Management System	.23
2.5 Aplikasi Pangkalan Data Murid (APDM)	.27
2.6 Previous Study on SIS	.28
2.7 The Adoption Factors	.33
2.7.1 User Satisfaction (US)	.33
2.7.2 Perceived Usefulness (PU) and Perceived Ease of Use (PEOU)	.35

2.7.3 User Interface (UI)	36
2.8 Summary of the Chapter	36
CHAPTER THREE: METHDOLOGY	
3.1 Introduction	40
3.2 Methdology of the Study	40
3.3 Research Procedure	41
3.4 Research Design	42
3.5 Systematic Literature Review Methodology	42
3.6 Research Factors and Research Variables	45
3.7 Research Model	50
3.8 Research Hypothesis	52
3.9 Data Collection and Analysis	54
3.9.1 Instrument Design	54
3.9.2 Questionnaire Design	55
3.9.3 Discussion with ICT Teachers and Top Management	56
3.9.4 Sampling on Survey	56
3.9.5 Population and Sample	56
3.9.6 Pilot Study	57
3.10 Data Analysis Technique	59
3.10.1 Descriptive Statistic	59
3.10.2 Reliability Analysis	60
3.10.3 Factor Analysis	61
3.10.4 Pearson Correlation	61
3.10.5 Multiple Regression	62
3.11 Summary of the Chapter	62
CHAPTER FOUR: RESULTS	
4.1 Introduction	63
	~~~

4.1 Introduction	
4.2 Profile of Respondents	63
4.3 Data Screening	67
4.3.1 Normality Test	67
4.4 Reliability Test	69

4.5 Factor Analysis	70
4.6 Correlation Analysis	76
4.7 Descriptive Statistic	78
4.8 Analysis of Variance (ANOVA)	
4.9 Multiple Regression Analysis	
4.10 Summary of the Chapter	94

### **CHAPTER FIVE: DISCUSSION**

5.1 Overview	
5.2 Discussion of Respondents Profiles	
5.3 Discussion of the Results from Descriptive Statistic (Mean Values)	96
5.4 Discussion of the results from Hypothesis using ANOVA and	Multiple
Regression Analysis	
5.5 Revisiting the Research Model	
5.6 Conclusion	

# CHAPTER SIX: CONCLUSION

6.2 Discussion on the Achievement of Research Objectives	9
j	
6.2.1 Factors that Influence the APDM Adoption	0
6.2.2 The Relationships among the Factors	2
6.2.3 Strengths and Relationships among Factors	4
6.2.4 Issues Related to APDM11	4
6.3 Contribution of Study11	5
6.4 Limitations of the Study11	5
6.5 Future Research11	6
6.6 Conclusion11	6
REFERENCES11	8

## List of Tables

Table 1.1: Research Framework of this Study	15
Table 2.1: Factors and the Relationships with APDM	37
Table 2.2: Sub-factors and the Relationships with APDM	38
Table 3.1: Research Procedure.	41
Table 3.2 : Number of Journal Articles Selected at Each Stage of Review	43
Table 3.3: Breakdown of the Field of Study of Selected Articles	44
Table 3.4: Thematic Analysis of Articles Reviewed- key themes	44
Table 3.5: Summary of Research Factors and Variables	45
Table 3.6: Code and Factor Descriptions of Each Factor	47
Table 3.7: Research Prepositions with Dependent and Independent Variables	
Table 3.8: Case Processing Summary	58
Table 3.9: Reliability Statistics	58
Table 3.10: Mean Classification	60
Table 3.11: Coefficient of Cronbach's Alpha	60
Table 3.12: Scales of Pearson Correlation Matrix	61
Table 4.1: Respondent's Demographics Information	64
Table 4.2: Sub-Factors that do not Fall into the Normal Range	68
Table 4.3: Case Processing Summary	69
Table 4.4: Reliability Statistics	70
Table 4.5: KMO and Bartlett's Test	71
Table 4.6: Communalities	72
Table 4.7: Total Variance Explained	73
Table 4.8: Rotated Factor Matrix	75
Table 4.9: Factor Transformation Matrix	75
Table 4.10: Bivarite Pearson Product Moment Correlation	77
Table 4.11: Mean Values of the all Composite Factors	79
Table 4.12: Mean Values for US	
Table 4.13: Mean Values for PU	80
Table 4.14: Mean Values for PEOU.	81
Table 4.15:Mean Values for S	81
Table 4.16: Mean Values forT	
Table 4.17: Mean Values for L	

Universiti Utara Malaysia

# List of Figures

Figure 1.1: Multiple Perspectives of TAM (Haslina Mohd, 2009)	.16
Figure 1.2: Basic Theoretical Framework of SIS Adoption Factors	17
Figure 2.1: The aspects of the Educational Task	.22
Figure 2.2: Data Integration Architecture	.24
Figure 2.3: IS Success Model	.33
Figure 2.4: Technology Acceptance Model (TAM)	.35
Figure 3.1: Research Model	.50
Figure 3.2: Questionnaire Design Based on five Point Likert Scale	.55
Figure 5.1: MP-TAM adopted from Haslina Mohd (2009)	107



# List of Appendices

Appendix A : "Aplikasi Pangkalan Data Murid" (APDM)	125-134
Appendix B : Letter of Permissions	
Appendix C : Questionnaire Design	
Appendix D : Skewness and Kurtosis	143-159
Appendix E : Correlation Matrix	
Appendix F : Anti-Image Matrices	
Appendix G : Scatter Plot Graph	





# List of Abbreviations

APDM	Aplikasi Pangkalan Data Murid	
BPPDP	Bahagaian Perancangan dan Penyelidikan Dasar Pendidikan	
EG-HRMIS	Electronic Government Human Resources Management Information	
	System	
EMIS	Education Management Information System	
EMR	Electronic Medical Records	
E-SAS	Electronic Student Academic System	
GUI	Graphic User Interface	
ICT	Information and Communication Technology	
IM	Information Management	
IS	Information System	
ISIS	Integrated Student Information System	
IT	Information Technology	
JPA	Jabatan Perkhidmatan Awam Malaysia	
JPN	Jabatan Pendidikan Negeri	
LMS	Learning Management System	
MIS	Management Information System	
MOE	Ministry of Education Malaysia	
MP-TAM	Multiple Perspective Technology Acceptance Model	
PEOU	Perceived Ease of Use	
PG	Pengurusan Guru	
PM	Pengurusan Murid	
PPD	Pejabat Pelajaran Daerah	
PS	Pengurusan Sekolah	
PU	Perceived Usefulness	
SAPS	Sistem Analisis Peperiksaan Sekolah	
SIS	Student Information System	
SMG	Sistem Maklumat Guru	
SMIS	School Management Information System	
SMM	Sistem Maklumat Murid	
SMPP	Sistem Maklumat Pengurusan Pendidikan	
SPS	Sistem Pengurusan Sekolah	
SSDM	Sistem Salah Laku Disiplin Murid	
SSMS	Smart School Management System	
TAM	Technology Acceptance Model	
TRA	Theory of Reasoned Action	
UI	User Interface	
UTAUT	Unified Theory of Acceptance and Use of Technology	
QUIS	Questionnaire User Interface Interaction Satisfaction	
XML	Extensible Markup Language	

# CHAPTER ONE INTRODUCTION

#### **1.1 Overview and Motivation**

Nowadays, computer technology plays important roles in education worldwide. Habib Mat Som and Ahmad Kamaluddin Daud (2008) and Ohmae (1995) found that the development of Information Technology (IT) and globalization demolish the national borders in all sectors including education. Meanwhile, Adebayo and Fagbohun (2013) and Abolade and Yusuf (2005) have proven that Information and Communication Technology (ICT) leads as the fundamental tool in any educational system in the current century.

In addition, Mojgan Afshari, Kamariah Abu Bakar, Su, and Saedah Siraj (2012) have also proven that ICT influences the roles of transformational leadership in schools. Earlier, when technology was initially incorporated, Attaran and VanLaar (2001) discovered that school principals act as the technology leaders in influencing the use of presentation software, word processing, and spreadsheets in teaching and learning. The principals also make sure that they know the way to communicate with the broader community using internet applications. Hence, Felton (2006) and Mojgan Afshari et al. (2012) believe that school principals must possess computing capabilities to enable them to catch up with the dynamic progress of ICT in the digital era. In Malaysia, the government has been very encouraging and supportive in using ICT to support and facilitate routine activities. In fact, Ministry of Education Malaysia (MOE) has been very aggressive in introducing the use of technology in education. For example, due to the requirements of the 21st century learning environment, the MOE has come out with various policies and strategies to achieve the goals in ICT developments. Therefore, three waves of education development plan has been established for the achievement of the goals, which include the introduction of basic ICT (2013-2015), the introduction of innovation in ICT (2016-2020), and the maintenance of the innovative use of the whole systems (2021-2025).

The total number of schools in Malaysia as reported by EMIS (2014) is 10,154. Out of that, 2,394 are secondary schools while the remaining 7,760 are primary schools. Those schools locate 5,120,802 students, with 196,077 children in preschool, 2,704,046 children in primary schools, and another 2,220,679 in secondary schools. To ensure teaching and learning is smooth, a total of 419,820 teachers have been employed to teach in those schools, in which 238,073 are teaching in primary schools and 181,747 are teaching in secondary schools.

In Malaysia, there are two government management information systems. The systems assist the teaching and learning as well as the managerial aspects. One of the systems is referred as Electronic Government Human Resources Management Information System (EG-HRMIS/ HRMIS) (*Sistem Maklumat Pengurusan Sumber Manusia Kerajaan Elektronik*), while the other is Education Management Information System (EMIS/ SMPP) (*Sistem Maklumat Pengurusan Pendidikan*). The

HRMIS is managed by *Jabatan Perkhidmatan Awam* (JPA) and the EMIS is managed by the MOE (Nurhafizah Yaacob, 2009).

Besides those two systems, some schools are currently using *Sistem Maklumat Murid* (SMM) and *Aplikasi Pangkalan Data Murid* (APDM) for management purposes. Both SMM and APDM are Student Information Systems (SIS) that stored students' information for easy access, update, and delete. The SMM is an offline system while APDM works online. Among all systems, this study focuses on the implementation of theAPDM in five secondary schools in the Kubang Pasu District, namely Sekolah Menengah Kebangsaan (SMK) Bandar Baru Sintok, SMK Changlun, SMK Hosba, SMK Paya Kemunting, and SMK Seri Mahawangsa. From the five schools, 110 teachers involved in this study as respondents.

Information systems are normally developed to simplify complex works to support management (Saruvari, 2005; Bennet et al., 2002). As for the school, Saruvari (2005) and Pegler (1993) believe that such systems could satisfy the pitfalls, and make management tasks more efficient and effective besides being able to solve common problems. The systems are also able to provide integrated solutions for the schools management. However, Meng (2002) suggests that the information systems work more preciously when they are managed by the most appropriate person.

The educational information systems have also been used in higher learning institutions (Seyed Mohammadbagher, Suha Fouad, Mohaddece Sadat, and Sharif Omar, 2015) such as by Lim Kok Wing University of Creative Technology in Malaysia. When studying the learning management system (LMS) in higher learning institutions, Seyed Mohammadbagher et al., (2015) and Goyal and Purohit (2011) discover a positive relationship between LMS and user satisfaction, which determines student's achievement. User satisfaction characteristics have also been found positively affecting perceived usefulness. Besides that, Liaw (2008) indicates that the roles of readiness, system quality, and information quality are very important to increase perceived usefulness.

User interface (UI) is another factor that determines user experience. This is evidenced by the study done by Sedtanun, Nagul, and Suphakant (2012) and Hana Sadat, Fatemeh Orooji, and Fattaneh Taghiyareh (2012). The former study point out that user experience is influenced by screen design, whilst the later discover that it is enhanced by the quality of learning. Similarly, Pramudianto, Pulman, Jahn, Avila, and Jarke (2014) agree with both findings.

UI is defined as a discipline that focusses on the metaphor and design in the digital landscape (Zan Azma Nasruddin & Husnayati Hussin, 2013). Metaphor is the core idioms in Graphical User Interface (GUI), which plays an important role in helping users to interact with computer systems. Zhu, Miao, and Song (2009) reveal that UI design provides a great opportunity for improving user experience because it connects users and computers.

Recently, Faninda Purnama Sari and Noraidah Sahari (2015) revised one of the eight principles of UI design by Shneiderman and Plaisant (2004) by performing heuristic

evaluation to determine whether or not their SIS follows the standard and design principles found in the literatures. The eight principles include (1) Strive for consistency, (2) Enable frequent users use shortcuts, (3) Offer informative feedback, (4) Design dialogues to yield closure, (5) Offer error prevention and simple error handling, (6) Permit easy reversal of actions, (7) Support internal locus of control and (8) Reduce short term memory load. As a result, Faninda Purnama Sari and Noraidah Sahari (2015) findings are similar to those of Zan Azma Nasruddin and Husnayati Hussin (2013), which proved that UI does determine user experience.

Technically, the UI is composed of four variables; Screen, Terminology, Learning, and System Capabilities (Haslina Mohd, 2009; Shneiderman, 2004; Diehl, & Norman, 1988). Harper and Norman (1993) recommend that Questionnaire for User Interaction Satisfaction (QUIS) can be represented as a well-designed usability testing tool to determine the computer interface with computer user's subjective satisfaction. Relatively, the QUIS consists of satisfaction measures comprising of users demographic, and measures of user satisfaction in several aspects of interface such as screen, terminology, learning and system capabilities factors. Lin, Choong and Salvendy (1997) support Norman & Shneiderman (1989) that there are 21 out of 27 items that were closely related to interface features in QUIS. Haslina Mohd (2009) proposes a Multiple Perspectives Technology Acceptance Model (MP-TAM) for Electronic Medical Records (EMR). The testbeds used for the study were Putrajaya and Selayang Hospitals, which covered three perspectives; Technical, Social, and Behavioral. The technical perspective consists of System Capabilities, Information Quality, and User Interface factors. The social perspective includes Perceived Ease of Use and Perceived Usefulness, while the behavioral perspective contains User Satisfaction. In this study, the MP-TAM by Haslina Mohd (2009) is adapted, by focusing only on the User Interface factors (Screen, Terminology, Learning and System Capabilities) following the technical perspective as proposed by Shneiderman & Norman (1989). Other perspectives remain unchanged. Information Quality is omitted because this study only focuses on the User Interface factor. Originally, Haslina Mohd (2009) states that Technical Perspective has a significant relationship with Social Perspective, and that Social Perspective has a significant relationship to Behavioral Perspective.

The coherence of the interface (screen) has been famously studied in the field of GUI (Wangmi, 2015). For example,Gu,Wang, Zhai, Ma, and Lin (2015) reveal that the screen context of computer has been typically generated by textual graphics. Another study by Ahn, Song, Yang, and Choi (2015) a screen composition method is proposed specifically for mobile multi-display environment interactive systems. Earlier on, Feng (2008) and Zhang (2009) worked on terminologies for certain specific domains, because it is very significant for text organization, information extraction, machine translation, and text categorization. As for today, the works on user interface are more diverse due to the advancement of the technologies. Hence, Chwen Kuo and Syan Lin (2015) a learning community in online or virtual learning environment is established. Before this, Hana Sadat et al., (2012) has already ventured into mobile learning capabilities context awareness. It is then extended into system capabilities, which is important for an organization to manage, coordinate and deploy sources to generate value (Bezerra & Medeiros, 2013). The most recent

related work explores the relationship between healthcare quality performance with the synergy among (EMR) in hospitals (Yousra, Surendra & Cherie, 2016).

Once developed, technologies need to be adopted in appropriate domains. Adoption is usually determined by multiple factors such as the innovation ease-of-use and its relative advantage (Rogers, 1983). Technology adoption has been getting attention among researchers, especially in the IT communities (Muneer Abbad & Mohammad Fahd, 2011;Grandon & Pearson, 2004; Vailer et al., 2004). Technology adoption refers to the process of introducing a new technology in organizations (Bouwman et al., 2005). In the existing adoption models, various weaknesses have been discovered by Benbasat and Barki (2007) and Lawrence (2010). Therefore, various works have been carried out to improve the models. As an example, Osden Jokonya (2015) uses Technology Acceptance Model (TAM) by Davis (1986) to verify IT adoption in organizations. His findings show that ease of use and usefulness issues are among the main issues. Hence, Osden (2015) recommends that demographic characteristics should be considered when adopting new technologies.

Besides TAM, there are a few other models that are suitable for determining IT adoption (Muneer Abbad & Mohammad Fahd, 2011). Among others are theoretical extension of TAM or known as TAM2 (Venkatesh & Davis, 2000), MP-TAM by Haslina Mohd (2009) and Unified Theory of Acceptance and Use of Technology (UTAUT) (Venkatesh, Morris, Davis, & Davis, 2003).

#### **1.2 Problem Statement**

Seyed Mohammadbagher (2015) points out that LMS is less satisfied by students because the system contains some bias aspects. In addition, a big percentage of lecturers also do not use their LMS. Besides the initiative by Seyed Mohammadbagher (2015), there are many more works focusing on satisfaction. As an example, Mohd Hanif, Mahmuda Khatun, and Mohiuddin Ahmad (2015) use image processing to convert conventional screen to touch screen. To increase user satisfaction, they upgrade the system with multi touch and gesture-based interaction style. Another study conducted by Wiem Lahbib, Ibrahim Bounhas, and Yahya Slimani (2015) looks into the impact of terminology on Arabic enrichment and extraction approach. In the study, the user satisfaction is increased through the use of corpus structure and text mining. Sirait and Derlina (2015) indicate that teaching techniques should be made efficient to increase learner's satisfaction. Relating to that, applying learning model satisfies better than applying direct instructional model. A solution in wireless networks using link scheduling under the physical SINR interference model with interference cancellation capabilities is proposed by Long Qu, Jiaming He, and Chadi Assi (2010).

TAM is also used to determine factors that affect a recommender system (Armentano, Abalde, Schiaffino, & Amandi, 2014). In another study that uses TAM (Huang, 2014), it is found that student's personal innovative has positive influence over system's perceived ease of use and that there is no significant effect on system's perceived usefulness.

On top of those deliberated in the previous paragraphs, Yen et al. (2016) study shows that the indigenous learners were very satisfied with their usage of e-learning system. Factors that affect the usage of e-learning system in terms of interface usability are identified by employing standard and design principles to support user satisfaction (Fanindia Purnama Sari & Noraidah Sahari, 2015).

Even though, Rabin (1992) has outlined that human factors, UI design, information science, visual design, and instructional design can help in ensuring online systems work effectively, the weaknesses have to be consistently studied because of the continuous advancement in technologies whereby the interaction design is becoming more complex and dynamic (Brummermann et al., 2011; Sottet, Vagner,& Garcia Frey, 2015). Therefore, Haslina Mohd (2009) and Al-Gahtani (1999) recommend that design features should be investigated in online systems because a clearly delineated specific design features that influence the Perceived Usefulness (PU) and Perceived Ease of Use (PEOU) is not yet available.

Behavioral Intention towards LMS in public universities in Saudi Arabia is also studied using TAM (Alharbi & Drew, 2014) by taking into account the use of PU, PEOU, and Attitude toward Actual Usage. It is found that PU and PEOU are significant in determining the Actual Use. In fact, Surendran (2012) and the founder of TAM, Davis (1989) have earlier mentioned these relationships. Particularly, PU expresses users belief upon a system that it could enhance her or his job in carrying tasks, while PEOU expresses users belief that the system being used is easy. Hence, PU and PEOU always become the independent variables of User Satisfaction. Regarding the empirical test for UI satisfaction, the Questionnaire for User Interface Interaction Satisfaction (QUIS) can be utilized (Sittig, Kuperman, and Fiskio, 1999; Chin, Diehl, & Norman, 1988). The questionnaire was developed using the psychological test construction method. In 1988, researchers at the Universities of Maryland (Human Computer Interaction Laboratory) modified the QUIS to make it more generic so that it can be is standardized for interactive computer systems (Johnson, 2004). The QUIS consists of 11 dimensions, in which four dimensions are used in this study; Screen (S), Terminology (T), Learning (L), and System Capabilities (C). Haslina Mohd (2009) and Thong et al. (2000) recommend that UI is part of QUIS, which is independent from PU and PEOU. Particularly, Thong et al. (2000) classify S, T, L, and C as composite variables of UI. Hence, further research on UI factors that influence the PU and PEOU of computer systems should identify specific UI design that may influence the adoption of the system.

#### Universiti Utara Malaysia

UI is an interface between a computer and user, as the name implies. In any computer system, UI is constituted as the most vital part three simple goals of interface design; (1) to make working with computer easily, (2) productive and (3) enjoyable with (Galitz, 2007). In addition, UI design is classified as a part of Human Computer Interaction (HCI) field. The two main components of UI include input and output. Input refers to a user's desires in using computer or communicating based on his or her needs while output is how computer conveys the requirements and results of its computation to the user. The right UI design will produce a combination of well-designed input and output mechanism to meet the user's requirements, limitations and capabilities in the most effective way.

Similar to Galitz (2007), Marcus and Gould in year 2000 have already stated that a well-designed UI will improve the system capabilities and the appearance of the web, which will then help in exchanging the browsers between residents and customers. With regards to this, Wickens & Hollands (2000) examine the eight guidelines in gettinguser's attention; (1) high intensity in drawing intention, (2) marking, (3) size, (4) choice of fonts, (5) inverse video, (6) blinking, (7) color, and (8) audio. The display of data comprises of five levels, which include; (1) consistency of data display, (2) efficiency of users' information assimilation, (3) minimal memory loading by users, (4) compatibility of data display with entry and (5) flexibility of controlling data display by users (Smith & Mosier, 1986).

In her study on the implementation of "Sistem Maklumat Pelajar (SMP)" and "Aplikasi Pangkalan Data Murid (APDM)", Norin Farizah Mohd Nuin (2013) mentions that the use of ICT did not achieved the level of MOE's target in terms of quality or quantity as stated in the Laporan Awal-Pelan Strategik Pembangunan Pendidikan Malaysia; 2012-2025. The amount spent by MOE in providing ICT as an incentive educational program is about 6 billion. Every school is required to use ICT in order to make sure that the data are ready when the "Jabatan Pendaftaran Negara" (JPN), "Pejabat Pelajaran Daerah" (PPD) and MOE needs them (Norin Farizah Mohd Nuin, 2013; Rashid, 1987). Moreover, the validity of the data needs to be secured to avoid wrong decision making (Azmi, 2004). Effective data security and maintenance are made possible with the use of ICT (Norin Farizah Mohd Nuin, 2013; Murdick, 1977; Mohd Yusri Mahadi, 1996).Types of data to be stored in a database can be classified according to (1) schedule, (2) search, (3) form, (4) report, (5) macro and (6) field (Norin Farizah Mohd Nuin, 2013; Norasiah Abdullah, Rosnah Ahmad Zain, Mazilah Abdullah, 2011). In addition, the presence of Database Management System (DBMS) that consists of five components; (1) software, (2) hardware, (3) data, (4) procedure and (5) people, helps to store APDM data systematically, efficiently and securely.

Realizing the issues related to APDM implementation, particularly on the User Interface, another strategic plan has been initiated known as *Pelan Strategik: Bidang HEM: 2016-2020* to resolve the problem of incomplete information. The plan lists two strategies; (1) conducting workshops three times a year and (2) monitoring and providing information to teachers relating to the incomplete APDM information. Hopefully, this can help the ministry to achieve the objective of constantly updating the APDM data until completion by the year 2020.

The problems of developing a Student Information Management System, as identified by Mohd Nihra Haruzan Mohamad Said and Intan Marini Suhaimin (2010), include lack of coding expertise, lack of time and the inability to conduct the user interface testing among focus groups and students. Nevertheless, the authors suggest that the user interface of the system is simple and easy to use whereby the built-in buttons self-understood and very consistent.

From the above descriptions, it can be concluded that the existing APDM has never been evaluated especially problems related to the user interface. By identifying such problems, it may help to increase user satisfaction of the APDM system. Based on the literatures, this study will analyze seven factors related to user satisfaction; User satisfaction (US), Perceived Usefulness (PU), Perceived Ease of Use (PEOU), Screen (S), Terminology (T), Learning (L), and Capabilities (C).

#### **1.3 Research Questions**

Based on the current scenario as described in the earlier parts of this chapter, this study is going to provide answers to the following questions:

- What are the UI design factors that influence the adoption of Student Information System (SIS)?
- 2. What are the relationships between the UI design factors with Perceived Usefulness (PU), Perceived Ease of Use (PEOU), and User Satisfaction (US)?

## **1.4 Research Objectives**

This study aims to achieve the following objectives:

- 1. To identify the UI design factors that impact he APDM adoption from the behavioral perspectives.
- 2. To identify the relationships among the factors of the APDM adoption from the behavioral perspectives.
- 3. To validate the UI design factors that influence the APDM adoption from the behavioral perspectives using statistical analysis technique.

#### **1.5 Scope of the study**

The study focuses on the adoption factors of the *Aplikasi Pangkalan Data Murid* (APDM). The top management of five secondary schools in Kubang Pasu together with selected class teachers, who have access to the APDM are involved in this study. The five secondary schools is considered sufficient because the nature of the implementation of APDM is homogeneous. Data are gathered using survey technique.

#### **1.6 Significance of Study**

This study contributes to the field of Information System (IS) through the statistical evidence on the adoption the APDM, especially for an acknowledgement by the MOE. Technically, the findings conveythe satisfaction of the class teachers and top management on the use of APDM. Besides contributing to the body of knowledge, this study also will benefit other parties such as schools, MOE, class teachers, and system developers. Besides that, this study also contributes to the educational domain because APDM is part of the SIS that constitutes the main artifact.

## **1.7 Research Framework**

The descriptions of the research framework of this study in included in Table 1.1.

Phase	Activities	Outcomes
Phase 1	Reviewing literatures on SIS <ul> <li>Definition</li> <li>Characteristics</li> <li>Types of SIS</li> <li>Adoption models</li> <li>Vendors</li> <li>Benefits</li> </ul> <li>Reviewing literatures on Adoption theory <ul> <li>Definition</li> <li>Factors</li> <li>Implementation</li> <li>Challenges</li> </ul> </li>	A list of factors affecting APDM (Objective 1 achieved)
Phase 2	Identifying the relationship between UI factors, Perceived Usefulness (PU), Perceived Ease of Use (PEOU) and User Satisfaction	Relationship between factors. (Objective 2 achieved)
Phase 3	Verifying and validating using statistical analysis technique(SPSS 20.0)	Validated SIS adoption factors. (Objective 3 achieved)

## Table 1.1: Research Framework

#### **1.8 Theoretical Framework**

The basis of this study is based on the Haslina Mohd (2009) Multiple Perspectives Technology Acceptance Model (MP-TAM) as depicted in Figure 1.1. The research model was used to study the relationship between three different perspectives (technical, behavioral and social perspectives). The social perspective consists of Perceived Ease of Use (PEOU) and Perceived Usefulness (PU). PU is the model that acts as a faith in decision making or based on expectation theory as defined by Liao and Landry (2000). Meanwhile, PEOU determines a person's belief such as using a particular system would be free of efforts (Davis, 1989). As for the behavioral perspective, it consists of User Satisfaction (US), which refers to a user's feeling about how well a product after a certain range of usage over time in a specific activity and environment (Haslina Mohd, 2009).



Figure 1.1 MP-TAM adapted by Haslina Mohd (2009)

Figure 1.2 illustrates the initial research framework of this study based on the MP-TAM model adapted from Haslina Mohd (2009). There are seven factors included in the framewok; (US), (PU), (PEOU), Screen (S), Terminology (T), Learning (L), and Capabilities (C). The three perspectives in the MP-TAM (Haslina Mohd, 2009) correspond to those suggested by Bailey and Pearson (1983) and Schneiderman (2004). In this study, the technical perspective consists of four variables of User Interface factors; Screen (S), Terminology (T), Learning (L), and Capabilities (C) (Haslina Mohd, 2009; Shneiderman,2004; Chin et al.,1988).



Figure 1.2: Theoretical framework of SIS adoption factors

#### **1.9 Organization of the Study**

This thesis consists of five chapters. The discussions in each chapter are briefed in the following paragraphs.

Chapter One: This chapter establishes the overview and motivation of this study. More importantly, it discusses about the problem to be solved, addresses the research questions and objectives, formulates the research hypotheses, clarifies the scope, justifies the significance of the study as well as outlines the research and theoretical frameworks. Generally, this chapter forms the background of this study.

Chapter Two: This chapter reviews the literatures related to this study. Among the discussions are those emphasizing on previous models on user satisfaction. The discussions of the various models are very important to support this study to enable the suitability of adapating them.

### 🖉 Universiti Utara Malaysia

Chapter Three: Chapter three outlines the methodology used in this study. The chapter contains research procedure, research design, population and sample, pilot test, questionnaire design, data collection method, and data analysis techniques.

Chapter Four: Chapter four deliberates the data analysis including data screening, reliability test, factor analysis, correlation of the factors, one way ANOVA, and multiple regression analysis.

Chapter Five: Chapter five summarizes the whole study. The limitations and recommendations for future enhancement are also included.

# CHAPTER TWO LITERATURE REVIEW

#### **2.1 Introduction**

This chapter reviews the previous and existing works related to Student Information System (SIS) and factors of system adoption. The chapter begins by describing about information system (IS) and the various educational information systems followed by adoption factors and user interface. Finally the chapter ends with a summary.

#### 2.2 Information System (IS)

DeLone and McLean (1992) have created a phenomenon after they published their concepts of Information System (IS) usage. In the meantime, the IS usage has been a central of IS research practice (Qin & Xiao, 2008; Venkatesh & Davish, 2000). In fact, Qin and Xiao (2008) and Burton-Jones and Straub (2006) discovered that IS concepts has been viewed in many ways across the domain of IS Success, IS Acceptance, IS Implementation, and IS in decision making.

IS is defined as a set of interconnected components such as hardware, software, people, and network that collects, retrieves, processes, stores and distributes information to support organizational decision making (Atieno, 2013; Petter et al., 2008; Alter, 1979; McLeod, 1990). IS was first introduced in mid 1960s when most business schools began to develop the Management Information System (MIS) for the purpose of managing organizational data. In 1970s, the upper level of management started to recognized the usefulness of IS not only in the business

management and operations but also throughout the entire organization. Then, in 1980s, manufacturing companies started to utilize the IS in their operations activities such as taking orders, managing distributions, and forecasting. Eventually, in 1990s, it was discovered that corporations are expecting for a supply chain system that enable their businesses to be more efficient and effective. As for now, the Internet is the backbone of the IS that enables to businesses to compete in global markets.

The existence of internet technology has enable the creation of online system such as e-commerce. Having such system, businesses are able to create, classify, store, use, disseminate, retrieve, preserve, and dispose records easily in online environment, as opposed to the traditional landscape. The online system also can reduce the problem of delays significantly (Gemmel & Pagano, 2003).Therefore, Marcial (2012) and Craig et al. (2013) recommended that organizations have to formulate strategies related to the use of ICT to support their business processes. Similar to other IS, the online system also has some limitations. Among them are poor record management and lack of integration between businesses (Mohd Idzwan Mohd Salleh et al., 2010).

In the context of educational information system, In school context, Demir (2006) studied about School Management Information System (SMIS) in primary schools, as an extention to the works by Christopher (2003) and Selwood(2000). They found that IT and communalities lead the role in the school activities.

#### 2.3 Student Information System (SIS)

According to Sulaiman, Hasmat, Mat Yamin, and Mohd Noor (2008),Electronic Student Academic System (E-SAS), a computerized system that replaces the manual system, is one of the systems that facilitates the administrative and academic staffs in academic assessments and student profile management. Two types of assessment are included in the E-SAS such as final year test and mid-termtest. Users found that the E-SAS is capable of searching and displaying students' information. Furthermore, it can also produce and calculate the assessment reports for every test.

The Student Information Management System (SIMS), used by the Sekolah Menengah Kebangsaan Ayer Keroh, Melaka, aimed at assisting personnel in managing school activities (Yob, 2007). The usage of SIMS has somehow affected teaching folio because teachers, schools and administrators are bombarded with a large amount of information (Muhammad Musa Hayatu, 2011); Herman, 1988). Similar systems to the one used by the Sekolah Menengah Kebangsaan Ayer Keroh, Melaka were also developed by Rozana Mohd Amin (2010), Boutke, Rigby, and Burden (2000) and Meng (2002). These system were developed to provide the best quality of data.

On the other hand, Kannan and Bansal (2013) had different views of the SIS. For them, the system manages the administrative process in educational institutions including attendance, admissions, and housing. The LMS is viewed as an application for users, specifically the administrators, to access the data and information related to education management. It is very helpful for learning process and it can store quizzes, assignments, projects, and exams, which are parts of the 15 school administrative and management aspects (Crawford, 1997) as illustrated in Figure 2.1.



Figure 2.1: The aspects of the educational tasks

Besides the various benefits of SIS as discussed in the previous paragraphs, PriceWaterhouseCooper (2001) pointed out that the energy and time saved are also among the advantageous for students because the teachers will have a better plan, more time to guide them and prepare lessons.

Prior to the development of the systems discussed in the previous paragraphs, Manchandra and Mukherjee (2004) had studied and reviewed the success models of IS from studies between 1981 and 1987. They found a chronology in the IS evolution. First, Technology Acceptance Model (TAM) was developed by Davis (1989),which was based on the Theory of Reasoned Action (TRA). Then, they found 6 variables of IS Success model, which were underlined by DeLone and McLean (1992) with user satisfaction (US) as the dependent variable. Next, DeLone and McLean (2003) found that the process of combining and varying in the same model
is confusing. Gable et al. (2008) worked on the IS Impact model that measures the stream of benefits at a given point of time.

On the other hand, Habib Mat Som and Ahmad Kamaluddin Daud (2008) and Rahmad Sukor (2006) discovered that SMIS helps the school authorities to perform eleven related tasks. The first task related to the facilitation of the school administrators decision making. The second was the ability to improve the efficiency of the school management and administration. The third helped to reduce issues related to performing multi-tasking works. Increasing the efficiency of file management is handled by the fourth task, while the fifth task simplified and saved time in terms of collecting, processing, and storing data regarding student attendance reports. In the sixth task, the efficiency of preparing and handling grades and examination scores was increased, while the seventh task managed the placement of student in class, and the eighth task was on scheduling. The ninth task was to construct teachers' timetable and the tenth task was to handle material distribution such as textbooks. Finally, the eleventh controlled the inventory related issues.

#### 2.4 School Management System

According to MOE Education Technology Division (MOE, 2013), the School Management System or better known as *"Sistem Pengurusan Sekolah"* (SPS) costs about RM18, 388, 400.00. The system integrates data in multiple information systems. With that, it provides more educational operations with a duplicate key in common data, using the architecture illustrated in Figure 2.2. Initially, it was intended to create a web-based SPS, which automates two main fields; the management of teaching and learning and administrative works. In the beginning, it

increased teachers' workload. The management information value was only realized after its integration stage (Madiha Shah, 2013).



Figure 2.2: Data Integration Architecture

Referring to Figure 2.2, the legend contains Push Pull Data and Bridging, which refer to the Standard Operating Procedures (SOP) that map and link the related three databases; "*Aplikasi Pangkalan Data Murid*" (APDM) – online system or "*Sistem Maklumat Murid*" (SMM) – offline system, "*Sistem Maklumat Pengurusan Pendidikan* or Educational Management Information System(EMIS), and "*Sistem Maklumat Guru*" (SMG). Besides these three systems, others include "*Sistem Salah Laku Disiplin Murid*" (SSDM), "Integrated Student Information System" (ISIS), and "*Sistem Analisis Peperiksaan Sekolah*" (SAPS) that can also be integrated with the SPS.

Before the SPS was used, most schools were using the SMM to store student data. The system differs in each school. In terms of its operationalization, class teachers have to key in the data during school hour. This can cause data redundancy because other authorities cannot cope with the data center because of the difficulties to obtain the data.

SPS¹ aimed at increasing the service quality of the MOE. Hence, besides integrating a number of databases, it integrates also a few web services. The systems work seamlessly smooth on an interoperability platform using Extensible Markup Language (XML), as underlined by Mackiewicz (2006). When the integration works were accomplished, the other systems were terminated (Sufaat Tumin, 2014). Based on the SPS implementation guidelines, MOE (2014) stated that the web services facilitate teachers, students, and schools to only focus on the system. This was to prevent them from entering data repeatedly. The integrated system was found to contribute to the school community significantly, especially to the teaching and learning activities (Madiha Shah, 2013).

Apart from various functionalities, SPS was also designed as a dashboard application. SPS comprised of three modules; school management (*Pengurusan Sekolah* – (PS)), teacher management (*Pengurusan Guru*– (PG)); and student management (*Pengurusan Murid* – (PM)). PS contained registered information about educational institutions in Malaysia with a given code by "*Bahagian Perancangan dan Penyelidikan Dasar Pendidikan*" (BPPDP), MOE. Meanwhile, PG was used in

¹<u>https://sps1.moe.gov.my/</u>

various levels of management for producing reports and statistics for teachers, and PM located all student information starting from preschool until form 6 or college or matriculation (MOE, 2014).

While the intention is huge, MOE (2014) stated that there were some discrepancies in maintaining the SPS. The first was to determine the roles of managers for managing the system and its data. Second was to select the person to verify and validate the data and information. Third was to decide on the authorized person to verify the report and statistical analysis. Fourth was to identify the person to ensure that the profiles of students, teachers, schools and staffsare updated. Fifth, the person to provide and generate the output for data regarding students, teachers, schools and staffs based on the current needs for all management levels. Last but not least, to ensure that the implementation was always updated, verified, and performed by *"Jabatan Pendidikan Negeri"* (JPN) and *"Pejabat Pelajaran Daerah"* (PPD).

The advantages of using the APDM included the ability to avoid data redundancy and facilitate the authorized parties in accessing information (Badru Dija Khan, 2005; Conolly & Begg, 2002). APDM can also detect the presence of a student based on the available data. Besides teaching, class teachers were also responsible in keeping the data and information safely. The class teachers were required to update the student information system from time to time to ensure validity and reliability.

A Smart School Management System (SSMS) was developed to support the learning and teaching functions as well as to facilitate the management of contents and resources (Muhammad Shahbani Abu Bakar, 2006; Majid Konting et al., 2003). SSMS covers nine areas of school management. In addition, there was another known as "Sistem Maklumat Pengurusan Pendidikan" (SMPP) to support the data management at MOE (Muhammad Shahbani Abu Bakar, 2006; Azmi Zakaria, 1997). The SMPP had been installed in every school in Malaysia.

The implementation of the SPS satisfied many parties because every school was using the same system. As a web-based system, SPS could be accessed from anywhere. Having an integrated database, data input and access was more efficient, and the reports were standardized among various schools. SPS was also considered as a solution for reducing teachers'workload, whilst the integrated data can facilitate many parties and authorities in the education sector (MOE, 2013).

## 2.5 Aplikasi Pangkalan Data Murid (APDM)

"Aplikasi Pangkalan Data Murid" (APDM) was one of the SIS proposed by MOE in Malaysia. According to the Information Management Sector of the Johore Education Department (2013), there were four active modules of an APDM; student information (*Data pelajar*), primary school registration (*eDaftar Rendah*), secondary school registration (*eDaftar Menengah*), and student attendance (*eKehadiran*). The APDM comprised of seven levelsof access; Log in Johor's JPN, Log in Sector Management School, Data Entry Operator (DEO) Log in, Log in Schools, Log in Classes, Log in Governance School Assistant, and Log in Parents.

The users of the APDM application were the class teachers that had been registered by the respective schools administrators. As users, the class teachers were allowed to perform a number of operations such as deleting, updating, and transferring students' data, as well as registering new students. The SIS would eventually provides useful information to the MOE, JPN, PPD, and schools.

The APDM (showcased in Appendix A) was composed of two main menus; *Aplikasi* and *Utiliti*. The *Aplikasi* menu consisted of five options; Change Password, Student Data, Class Registration, Application, and Assessment, whilst the *Utiliti* menu consisted only two options; Home page and Logout options. All of these options were stated in Bahasa Melayu and the most frequently used options were Student Data and Class Registration. The Student Data option had three functions; delete, update, and add new data. The Application and Class Registration were the two most important options in SIS that enable users to add new class, update and delete existing class.

# 2.6 Previous Studies on SIS

Information Management (IM) had become a trend in providing and monitoring the facts, ideas, and data of an organization's key members that were used in its operation (Muhammad Musa Hayatu, 2011). In IM, information is regarded as a resource that need to be managed similar to other resources such as human being, material and money. IM does not only cover the system but also the management of document, record, web content, and learning management system in term of technology (Robertson, 2005). In this regard, Madiha Shah (2013) studied the impact of Management Information System (MIS) in school administration. She added that educational management of information was used to expand more than

just efficiency and effectiveness. In her study, she discovered that in the earlier stage of development, the main usage and purpose of MIS was to increase the efficiency of school activities. In short, Madiha Shah (2013) agreed with Telem (1999) and O'Brien (1999) that the MIS should support the schools' objectives and aims.

Having determined the organizational goal, the strategies for achieving it have to be formulated. Attaran and VanLaar (2001) proposed the following steps related to the formulation of strategies: (1) set proper strategy, (2) learn technology, (3) commit possible resources, (4) involve in other processes, (5) plan a tactical training program, especially for staff/teacher, (6) develop plans to overcome organizational anxiety, (7) rely on specialists and (8) manage legal liability.

In a school environment, most teachers are not aware of distress. As a consequence, the teachers are exposed to health problems and work performance issues. In handling these issues, Azizi Yahaya, Jamaludin Ramli and Mazeni Ismail (2010), Zakiah Arshad (2003), and Gold and Roth (1993) proposed to change the education policy. For instance, the MOE could take several preventive steps such as conducting seminars, workshops, and courses. These kind of trainings were found to be effective in helping teachers to use computers for finding and accessing information to gain new knowledge (Mojgan Afshari et al., 2012).

After an extensive review on previous studies related to Perceived Usefulness and Perceived Ease of Use, another feature that can be considered as very important for the APDM is the Screen Sub-factor (Alharbi & Drew,2014; Haslina Mohd, 2009; Thong, Wong & Tam,2002).Screen was found to have significant relationship to Perceived Usefulness and Perceived Ease of Use (Haslina Mohd, 2009; Thong et al., 2004, 2002; Rosenbaum& Crownover,1998).In addition, Haslina Mohd (2009) and Al-Gahtani (1999) recommended that the design features should be investigated in online systems because a very clear delineated specific design features that influence the (PU) and (PEOU) is still missing.

From this point of view, it can be concluded that Screen has significant effect on the APDM Perceived Ease of Use and Perceived Usefulness. (Hypothesis 1 and Hypothesis 2).

Besides Screen, another features that is very important for the APDM is the Terminology Sub-factor (Alharbi & Drew, 2014; Haslina Mohd, 2009; Thong, Wong & Tam, 2002). This sub-factor has a significant relationship to Perceived Usefulness and Perceived Ease of Use (Tsakonas & Papatheodorou, 2007; Adams, Stubbs & Woods, 2005; Lee et al., 2005; Thong et al., 2004, 2002). The UI factors that can be considered as having high quality for interactive systems should consist of four variables Screen, Terminology, Learning and Capabilities (Shneiderman, 2004; Chin et al., 1988). The UI is also appropriate for other types of non-educational websites (Sauro, 2015; Singh& Kumar, 2014; Aladwani & Palvia, 2002).

From this point of view, it can be concluded that Terminolgy has significant effect on the Perceived Ease of Use and Perceived Usefulness of APDM. (Hypothesis 3 and Hypothesis 4). The Learning Sub-factor is also identified as another very important feature for the APDM (Sotoca, Catalani, Ghoneem & Ameer, 2016; Alharbi & Drew, 2014; Manouseis, Drachlers, Verbert & Santos, 2010; Haslina Mohd,2009; Shneiderman, 2004; Thong, Wong & Tam, 2002; Chin et al., 1988; Davis, 1989). Learning has significant relationship to Perceived Usefulness and Perceived Ease of Use (Liaw & Huang, 2012; Liaw,2007; Ong, Lai & Wang,2003; Crownover,1998).

From this point of view, it can be concluded that Learning has significant effect on the Perceived Ease of Use and Perceived Usefulness of APDM. (Hypothesis 5 and Hypothesis 6).

Another feature found to be very important for the APDM is System Capabilities Sub-factor (Alharbi &Drew,2014; Hernandez, Ramirez & Gonzalez,2012; Tidwell, 2011; Shneiderman, 2004; Chin et al., 1988; Davis,1989;. System Capabilities has significant relationship to Perceived Usefulness and Perceived Ease of Use (Ramayah & Chiun Lu, 2017; Shneiderman, 2004; Liau & Landry, 2000; Igbaria&Iivari,1995). The System Capabilities factor is critical because if does not perform well, teachers would be having the problem of high workload (Azizi Yahaya, Jamaludin Ramli & Mazeni Ismail,2010; Zakiah Arshad, 2003; Gold & Roth,1993).

From this point of view, it can be concluded that System Capabilities has significant effect on the Perceived Ease of Use and Perceived Usefulness of APDM. (Hypothesis 7 and Hypothesis 8).

Most of the factors that may contribute to the User Satisfaction are influenced by the User Interface of the APDM (Seyed Mohammadbagher, 2015; Alharbi & Drew, 2014; Haslina Mohd, 2009; DeLone & McLean, 2003; Liau & Landry, 2000; Al-Gahtani, 1999;Venkatesh & Davis,1996; DeLone & McLean,1992; Davis, 1989; Ginzberg,1981). Many related studies had pointed out that the Perceived Ease of Use is important for User Satisfaction of the APDM purpose (Wixom & Todd, 2005; DeLone & McLean, 1992; Alharbi &Drew, 2014; Haslina Mohd, 2009 & Al-Gahtani, 1999; Hernandez et al., 2009; Singh & Kumar, 2014, Khawaja & Bokhari, 2010; Weir et al., 2000). However, others studies have used this factor namely as "Usability" (Rizavi et al., 2011; Sauro,2015; Barnes & Vidgen, 2006).

From this point of view, it can be concluded that Perceived Usefulness has significant effect on the User Satisfaction of APDM. (Hypothesis 9).

#### Universiti Utara Malavsia

After an extensive review on previous studies on User Satisfaction, we have concluded that there are a few factors that may contribute to User Satisfaction factor. Most of these factors influence by User Interface of the APDM. So many studies really agreed with the importance of Perceived Ease of Use for User Satisfaction of the APDM purpose (Wixom & Todd, 2005; DeLone & McLean ,1992; Alharbi & Drew,2014; Haslina Mohd, 2009 & Al-Gahtani,1999; Hernandez et al., 2009; Singh & Kumar, 2014, Khawaja & Bokhari, 2010; Weir et al., 2000). However, others studies have used this factor namely as "Usability" (Rizavi et al., 2011; Sauro,2015; Barnes & Vidgen, 2006).

From this point of view, we can conclude that Perceived Ease of Use has significant effect on the User Satisfaction of APDM. (Hypothesis 10)

#### **2.7 The Adoption Factors**

There are seven potential adoption factors to evaluate the SIS. These include User satisfaction (US), Perceived Usefulness (PU), Perceived Ease of Use (PEOU), Screen (S), Terminology (T), Learning (L), and Capabilities (C) as adapted from Haslina Mohd (2009). The adoption factors can evaluate the intention to use and the use of real time system (Karuppiah, 2010).

## 2.7.1 User Satisfaction (US)

Chen, Huang, and Hou (2009) when repeated the study done by DeLone and McLean (1992) found that IS success model would be a higher readiness or willingness to persist to use the system and to enhance the user satisfaction that would affect individual and organizational performance. Furthermore, it could improve the effectiveness of the organization if the usersare satisfied with the information and system quality. Such relationship is illustrated in Figure 2.3.



Figure 2.3: IS Success Model

Figure 2.3showcases that the model which is composed of five dimensions for assessing and measuring organizational performance. In this study, the User Satisfaction (US) dimension is selected to be a factor. According to Dai et al. (2011) based on the IS success model, the higher willingness of users to continuously use the system is obtained when they are satisfied with the information and system quality. Therefore, individual performance will be affected when user satisfaction is improved. Saruvari (2005) and Avison and Fitzgerald (1993) underlined that IS must aim at committing to relevant information, especially to be used in the right way, at the right time, in appropriate level, and accurate enough to present the information.

According to William, Weidong, and Torkzadeh (1994), DeLone and McLean (1992), and Ives and Olson (1984), User Satisfaction is the most important measures in examining the success of IS. It is also considered as an important theoretical issue of structure and dimensionality (Swanson, Larcher, & Lessig, 1982; Doll & Torkzadeh, 1988; Ives et al., 1983; Zmud, 1978). Besides, a few other researchers have also devoted a consciousness and took a serious attention about the User Satisfaction (e.g., Baroudi & Orlikowski, 1988; Goodhue, 1988;Bailey & Pearson, 1983; Jenkins & Ricketts, 1979).

After an extensive review on the previous studies on SIS, this study finds that there are factors contributing to the adoption of SIS. One of the factors is User Satisfaction (Au, Ngai & Cheng, 2008; Chen et al., 2006; Zviran, Guezer & Auni, 2005; Karimi, Somers & Gupta, 2004; Delone & McLean, 2003; Muylle, Moenaert & Despontin,

2003; Zviran & Erlich, 2003; Lee & Chin, 2000). User Satisfaction isalso a factor in term of Learning system (Liaw, 2008; Sun, Tsai, Finger, Chen, &Yen, 2006; Wang, 2003).

#### 2.7.2 Perceived Usefulness (PU) and Perceived Ease of Use (PEOU)

Yun et al. (2011) repeated a theory that was introduced by an American scholar, Davis (1989), which is composed of five dimensions called Technology Acceptance Model (TAM), shown in Figure 2.4.



With reference to Figure 2.4, Davis (1989) formulated that (PU) and (PEOU) have a significant impact on user's acceptance upon technology. Accordingly, both PU and PEOU are chosen to be part of the factors in this study. Chin, Han, and Yi (2011) reviewed 24 studies on TAM and found that the model has been proven to be very useful in explaining the attitude and behavior of the users.

#### 2.7.3 User Interface (UI)

Haslina Mohd and Sharifah Mastura (2005) and Shneiderman (2005) denoted that User Interface (UI) can be examined by QUIS, which only focuses on the technical part. Haslina Mohd and Sharifah Mastura (2005) and Slaughter, Norman and Sheinederman (1995) added that User Interface (UI) factors could be used for identifying the strength and weaknesses of a system. There are four factors making User Interface (UI); Screen (S), Terminology (T), Learning (L), and Capabilities (C), which are also adapted in this study.

According to Jang et al. (2012), interaction design is also needed when a screen displays high-quality images, which emphasizes on emotion and humane interaction beyond the mechanistic approach. According to Georgescu (2009), terminology is an important aspect in communication. Meanwhile, Zhu and Fang (2012) and McKay11 and Ellis (2014) adviced that team members of a project have to share what they have learned to maintain the friendship values.

#### 2.8 Summary of the Chapter

This chapter focuses on the identification of the factors adapted in this study. Literatures were reviewed, including the existing models that support the various system in the school environments. Others include the theories on performance. Accordingly, in this study, factors in developing a successful system for managing activities in learning and teaching are derived from both systems in schools and models measuring performance.

Factors	Variables	"Aplikasi Pangkalan Data Murid" (APDM) Mean Values	Comments
1.User Satisfaction (US)	<ol> <li>Prototype is very useful (US01)</li> <li>Satisfied with prototype system (US03)</li> <li>Prototype has adequate power (US04)</li> <li>Prototype system is simulating (US05)</li> <li>Prototype system is flexible (US06)</li> </ol>	3.363         3.327         3.309         3.345         3.354	<ul> <li>Based on the respondents' feedback, prototype of the system are not really encouraging to be satisfied. MOE have to run the strategic plan (2016-2025)effectively.</li> <li>On the other hand, most of the respondents agreed that APDM prototype is very useful in order to satisfy the user satisfaction.</li> </ul>
2.Perceived Usefulness (PU)	<ol> <li>Accomplish task more quickly (PU01)</li> <li>Enhances the quality of work (PU02)</li> <li>Make job easier (PU03)</li> <li>Increase productivity (PU05)</li> <li>Improve job performance (PU06)</li> </ol>	3.445         3.390         3.363         3.390         3.336	<ul> <li>This explains that the system is not able to improve users' performance to be more systematic.</li> <li>Based on the respondents' feedback, most of the respondents supportedthat tasks can be accomplished more quickly by using the APDM because it is DBMS oriented.</li> </ul>
3.Perceived Ease of Use (PEOU)	<ol> <li>Clear and understandable (PEOU02)</li> <li>Easy to become skillful (PEOU03)</li> <li>Easy to use (PEOU04)</li> </ol>	3.327         3.340         3.472	<ul> <li>This implied that the system is not very clear and not well understood.</li> <li>Based on the respondents' feedback, APDM is found to be easy to use but need time to becomeskillful.</li> </ul>

# Table 2.1 Factors and the relationships with APDM

C L E 4	<b>X</b> 7	(6 A 1°1 ·	Comments.
Sub Factors	Variables	"Aplikasi Pangkalan Data Murid" (APDM) Mean	Comments
		Values	
1.Screen (S)	<ul> <li>1.Screen layout very helpful (S01)</li> <li>2.The information on screen are adequate (S02)</li> <li>3.The information on screen is logical (S03)</li> <li>4.Sequences on next</li> </ul>	3.490 3.390 3.509 3.481	<ul> <li>This conveys that the onscreen information is not really adequate.</li> <li>(S) is the major strength of APDM. It is part of the UI factors. The highest mean is obtained by 'sequences on previous screen are possible' (2.518) and 'the information</li> </ul>
	screen are predictable		(3.518) and the information
STI UTAI	(S05) 5.Sequences on previous screen are	3.518	<ul> <li>On screen is logical' (3.509).</li> <li>This explains that participants are clear about the screen design and the paying tion</li> </ul>
	6.The progression of work clearly marked (S07)	3.472	<ul> <li>With that, it strongly contributes to the superiority of APDM.</li> <li>Accordingly, it is</li> </ul>
REATE BUDY	Univers	iti Utar	understandable that the participants are positive about the factor.
2.Terminology (T)	1.Terminology is on screen precise (T06)	3.473	• Terminology explains that the error messages are not helpful
	2.Consistent message on screen (T07)	3.482	<ul><li>enough for the users.</li><li>Based on that, it is deduced</li></ul>
	3.Prompt for input is clear (T09)	3.427	that all participants view the factor positively.
	4.Controlling of feedback is easy (T13)	3.382	• Based on the respondents' feedback,they classified that the occurrence of the Error
	5.Length of delay is acceptable (T14)	3.318	messagespromptwhen using APDM is not really helpful
	6.Error messages prompt is helpful (T15)	3.309	for the user.
	7.Error messages always clarify problem (T16)	3.327	

# Table 2.2 Sub Factor and the relationships with APDM

8.Phrasing of error messages is pleasant (T17)	3.372	
<ol> <li>Time to learn is fast (L03)</li> <li>Task performed in straight forward manner (L04)</li> <li>Number of steps is just right (L05)</li> <li>Complete task is logical sequence (L06)</li> <li>Feedback of completion is clear (L07)</li> </ol>	3.446 3.409 <b>3.336</b> 3.418 <b>3.436</b>	<ul> <li>This indicates that the number of steps is not efficient, more than expected</li> <li>Based on the means, the factor has been viewed by participants positively.</li> </ul>
1.Fast enough (C01) 2.Response time is fast enough (C02) 3.Rate displayed is fast enough (C03) 4.Reliable (C04) 5.System failure seldom occurred (C05) 6.System always warns about potential problem (C06)	2.963 2.981 3.109 3.290 3.090 3.109	<ul> <li>This conveys that the system is a little slow than expected.</li> <li>Based on the means, when compared with other factors, Capabilities (C) is quite low in general, but is still moderate</li> <li>In overall, the main issue of the factors is (C). However, it does not seriously affected because the mean values are not extremely different. It is because C has the lowest mean value among all, which are 'fast enough' (2.963) and 'response time is fast enough' (2.981).</li> <li>They convey that participants perceive the APDM and its response time as not fast enough. Those factors are influenced by the access time somehow, in which during peak hours and heavy access, the connection slows down. This affects the capability of the system</li> </ul>
	8.Phrasing of error messages is pleasant (T17) 1.Time to learn is fast (L03) 2.Task performed in straight forward manner (L04) 3.Number of steps is just right (L05) 4.Complete task is logical sequence (L06) 5.Feedback of completion is clear (L07) 1.Fast enough (C01) 2.Response time is fast enough (C02) 3.Rate displayed is fast enough (C03) 4.Reliable (C04) 5.System failure seldom occurred (C05) 6.System always warns about potential problem (C06)	8.Phrasing of error messages is pleasant (T17)3.3721.Time to learn is fast (L03)3.4462.Task performed in straight forward manner (L04)3.4093.Number of steps is just right (L05)3.3364.Complete task is logical sequence (L06)3.4185.Feedback of completion is clear (L07)3.4362.Response time is fast enough (C01)2.9632.Response time is fast enough (C02)3.1093.Rate displayed is fast enough (C03)3.1094.Reliable (C04)3.2905.System failure seldom occurred (C05)3.1096.System always warns about potential problem (C06)3.109

# CHAPTER THREE METHODOLOGY

#### **3.1 Introduction**

This chapter describes the processes that this study has gone through. All techniques and methods are ensured to be systematic, resulting in convincing results and discussion. Particularly, population and sampling, research procedure, research design, pilot test, questionnaire design, data collection technique, and data analysis are given attention to.

## 3.2 Methodology of the Study

This study gathers data from five secondary schools in Kubang Pasu, Kedah. Particularly, the top management and teachers, as the stakeholders of SIS in the schools answered the distributed questionnaire. On top of answering the questionnaire, they were also interviewed for additional qualitative elaboration. The data were analyzed using Linear Regression Technique in SPSS version 20.0.

The questionnaire technique is used based on some recommendations made by Vinothini Vasodavan (2011) and Kirakowski (1997) that questionnaire is more precise than interview because in questionnaire, the responses are gathered in a standardized way, making analyzing easier. Besides, the techniqueis cheap and relatively quick (FaridMuhammad, 2015; Sekaran&Bougie, 2013). On the other hand, research design acts as a master plan, showing the systematic process of data collection and data analysis (NibrasMosawi, 2015; ZikMund, 2003).

#### **3.3 Research Procedure**

As exhibited in Figure 3.1, this study commenced by reviewing the literatures on Student Information System (SIS) and the adoption of IS. Based on the review, this study identified the adoption factors and the relationship among the factors. Then, a questionnaire was designed and developed. It was then distributed to a sample of participants, involving five secondary schools in Kubang Pasu, Kedah. The gathered data were used to analyze the adoption factors of SIS, which were the User Satisfaction (US), Perceived Ease of Use (PEOU), Perceived Usefulness (PU), Screen (S), Terminology (T), Learning (L), and Capabilities (C). Eventually, the findings suggest that the user interface factors do influence the adoption of SIS in secondary schools.

	Activities	Objective Achievement
Phase 1	Literature Review	1.User Interface factors that may influence User Satisfaction of APDM: Screen Terminology Learning Capabilities
	Comparison Model of Adoption Model -TAM -IS Success Model -QUIS -MP-TAM	1.MP-TAM

Table 3.1: Research Procedure

Phase 2	-Construct adoption model of APDM -Formulate Hypothesis	<ul><li>1.Adapted from MP-TAM</li><li>2.User Interface Adoption Model of APDM</li></ul>
Phase 3	-Questionnaire Design -Identifying sampling -Pilot Study -Data collection -Data analysis using SPSS 20.0	<ul><li>1.Results of hypotheses testing</li><li>2.User satisfaction model generated from multiple regression analysis</li></ul>
Phase 4	Report Writing	1.Final Report

#### 3.4 Research Design

Zikmund (1988) as cited in Sivalingam (2015) stated that after formulating, the research problem, the research design should be developed. In addition to that, Mahmud (2008) claimed that selecting reliable sources and knowledge is one of the strategies in answering the research questions in research design. In regards to that, this study emphasizes on the relationship among the variables. In order to gather primary data, the best technique to be applied is survey because it could easily reach a large number of respondents (Juwita Mohd, 2014).

## 3.5 Systematic Literature Review Methodology

Philips, Lee, Ghobadian, O'regan, and James (2015) found an appropriate way to conduct a systematic literature review. In their recommendation, based on the literatures, this study should synthesize the dispersed findings into an analytical framework. Hence, the relevant articles were classified into four types; theoretical, conceptual, qualitative, and quantitative based on the definition of the article as outlined by Philips et al. (2015). Plilips et al. (2015) and Crossan and Apaydin (2010) classified the key element into two parts of comprehensive review, either descriptive or thematic analysis. Furthermore, it is to identify the most important factors to measure User Satisfaction.

#### (1) Descriptive Analysis

Based on Table 3.2, at the first stage of review, there were 760 articles found. Next, after doing inclusion and exclusion based on the applied criteria, the number of articles were reduced to 306. Further, after reviewing the abstract based on quality and relevance, 217 articles remained. Eventually, all duplications were cleared, leaving only 199 articles for further analysis.

Table 3.2: Adapted Table from Philips et al., (2015) and Crossan and Apaydin

Selection	Key Search Term					
Stage	SIS	UI	PU	PEOU	US	TOTAL
Original search	123	240	147	131	119	760
Post-	55	103	68	54	26	306
Abstract Analysis						
Post – Full	47	88	39	25	18	217
Article						
Analysis						
Total with	217					
duplicates						
Total	199					
excluding						
duplicates						

(2010)	Number	of J	ournal	Artic	cles se	elected	l at	each	stage	of	review	V
			111 V V			o ca			ara.		ALC: N	

Table 3.3 clearly listed that majority of the studies fall under the UI followed by SIS, PU, US and PEOU. Most of the articles are available in IEEE followed by Google scholar and ACM.

	Resources				
Field of Study	IEEE	ACM	Google Scholar	Total	
SIS	42	0	5	47	
UI	79	1	8	88	
PU	17	10	12	39	
PEOU	10	13	2	25	
US	14	1	3	18	
<b>Total Articles</b>	162	25	30	217	

Table 3.3 : Breakdown of the field of study of selected articles

(2) Thematic Analysis

Referring to Table 3.4, out of the total number of 217 articles, 62 are empirical and 155 are theoretical and conceptual studies.

Table 3.4: Adapted Table from Philips et al., (2015) and Crossan and Apaydin

Key Themes	Empirical Studies (no. of articles)	Thereotical/ Conceptual Studies	Total no. of articles
SIS	13	34	47
UI	18	70	88
PU	12	27	39
PEOU	14	11	25
US	5	13	18
TOTAI	62	155	217

(2010) Thematic Analysis of Articles Reviewed - key themes

# 3.6 Research Factors and Research Variables

The research factors and its variables that were adopted from Haslina Mohd (2009) are described in Table 3.5.

Authors	Factors	<b>Description of Variables</b>
Sheneiderman (2004) and Chin et al. (1989)	User Satisfaction (US)	US is connected to user's feeling and considers the whole system's usage
Davis (1989)	Perceived Usefulness (PU) Perceived Ease of Use (PEOU)	PU refers to the user's faith that would manage their task as needed by using the system in more efficient way PEOU is related to the user's trust in using the system effortlessly.
Sheneiderman (2004) and Chin et al. (1989)	User Interface (UI)	<ul> <li>UI consists of Screen (S),</li> <li>Terminology (T), Learning (L), and</li> <li>System Capabilities (C).</li> <li>S refers to system's screen design that includes: 1. Screen layout, 2. Information display, 3.</li> </ul>

Table 3.5:	Summary	of Research	Factors and	Variables
------------	---------	-------------	-------------	-----------



	the task.
	• C refers to the software and
	hardware of the system capabilities
	that included: 1. Speed, 2.
	Response time, 3. Display rate of
	information, 4. Reliability of the
	system, 5. System failure, and 6.
	System warning.

Based on the identified classifications in Table 3.5, the codes and descriptions of each factor as exhibited in Table 3.6 were determined. In the table, the variables for PU and PEOU were inherited from Haslina Mohd (2009) and Davis (1989). Furthermore, the variables for S, T, L and C and as well as the US factors were inherited from Haslina Mohd (2009) and Shneiderman (2004).

No	Factors	Variables		
110.		Code	Variables Description	
	User Satisfaction (US)	US01	1.The APDM prototype is very useful	
1		US02	2. The APDM prototype system is easy to use	
		US03	3.I am very satisfied with the APDM prototype system	
		US04	4.The APDM prototype system has adequate processing power	
		US05	5. The APDM prototype system is stimulated	

Table 3.6:Code and Factor Description for each factor

		US06	6.The APDM prototype system is flexible	
	Perceived Usefulness (PU)	PU01	1. Using APDM enables me to accomplish tasks more quickly	
		PU02	2. Using APDM enhances the quality of my work	
2		PU03	3. Using APDM makes it easier to do my work	
		PU04	4. I find the APDM useful in my work	
		PU05	5. Using APDM in my job would increase my productivity	
		PU06	6. Using APDM would improve my job performance	
	Perceived Ease of Use (PEOU)	PEOU01	1. Learning to use APDM is easy	
3		PEOU02	2. I find it easy to use APDM to do what I want to do	
		PEOU03	3. I find it is easy for me to become skillful in using APDM	
		PEOU04	4. I find the APDM is easy to use	
	Screen (S)	S01	1. Screen layouts are always helpful	
		S02	2. The amounts of information that can be displayed on the screen are adequate	
		\$03	3. The arrangement of information that can be displayed on	
4		Inive	the screen is logical	
4		S04	4. The arrangement of information that can be displayed on the screens is very clear	
		S05	5. The next screen in a sequence are predictable	
		S06	6.Going back to the previous screen is possible	
		S07	7. The progression of work related task is clearly marked	
	Terminology (T)	T01	1. The used of terms throughout APDM is consistence	
		T02	2. The work related terminology is consistent	
		T03	3. Computer Terminology used in the system is consistent	
5		T04	4.Terminology always relates well to the work you are doing	
		T05	5. Computer Terminology is used appropriately	
		T06	6. Terminology which appear on screen is precise	
		T07	7. Message which appear on the screen is consistent	
		T08	8. Position of instructions in the screen is consistent	

		1	• · · · ·
		T09	9. Prompt for input is clear
		T10	10. Instruction for commands or functions is clear
		T11	11. Instruction for correcting errors is clear
		T12	12. Computer always keeps you informed about what it is
		112	doing
		T13	13. Controlling amount of feedback is easy
		T14	14. Length of delay between operations is acceptable
		T15	15. Error messages prompt out on the screen is helpful
		T16	16. Error Messages are always clarifying problem
		T17	17. Phrasing of error messages is pleasant
6	Learning (L)	L01	1. Learning to operate in the APDM is easy
		L02	2.Getting started the APDM is easy
		L03	3. Time to learn to use the system is fast
		L04	4. Tasks can always be performed in a straight forward manner
		L05	5. Number of steps per task is not too many or just right
		L06	6. Steps to complete a task always follow a logical sequence
	· · · · · · · -		
		L07	7. Feedback on the completion of sequence of steps is clear
7	Capabilities (C)	C01	1. APDM speed is fast enough
		C02	2. Response time formost operations is fast enough
		C03	3. Rate of information displayed is fast enough
		C04	4. The APDM is always reliable
		C05	5. System failure seldom occurred
		C06	6. The system always warns you about potential problem
L		1	1

Based on Table 3.6, this study is interested in studying the different relationships of the four variables of UI as classified by Sheneiderman (2004) and Chin et al. (1989). Next, the relationships between Perceived Usefulness (PU): Screen, Terminology, Learning, and Capabilities and PEOU: Screen, Terminology, Learning, and Capabilities are decided. In the first place, if the UI variables are significant when tested as a single variable with PU and PEOU, then the variables are valid and accepted as a part of UI variables. In contrast, if not, the variable must be excluded from the UI factors because the aim is to validate either the relationship among the UI variables are significant or not before the variables are used.

#### 3.7 Research Model

Figure 3.1 shows the research model that contains the illustrative relationships between US with PU and PEOU, PU and PEOU with S, T, L, and C.



Figure 3.1: Initial research model of A Multiple Perspectives Acceptance Model adopted

from Haslina Mohd (2009)

As shown in Figure 3.1, there are 10 relationships in the model. The model is adopted from A Multiple Perspective Technology Acceptance Model (MP-TAM) by Haslina Mohd (2009). Literatures on user acceptance factors (Haslina Mohd, 2009; Premkumar & Bhattacherjee, 2006; Wixom & Todd, 2005; Andrew, 2003;Tsiknakis, 2002; Yeo & Aurum, 2002; Bhattacherjee, 2001;Murff & Kannry, 2001;Liao & Landry, 2000; Zhang et al., 1999; Patel & Kushniruk, 1998; Venkatesh & Davis, 1996;Szajna, 1994;Davis, 1989) show that the acceptance of Information Technology usage is influenced by three perspectives; technical, behavioral, and social. For the purpose of this study, the three perspectives are considered, deriving from Haslina Mohd (2009).

The research model is used to measure the relationships among the factors as well as the variables and also to test the hypotheses. If the relationships among factors are significantly positive and the hypotheses obtain positive results, then the relationships are valid (opined by Miles and Shevlin (2002)). The research model is required to show the independent and dependent relationships of variables. In the model, the arrows indicate the flow from independent to the dependent variables. Meanwhile, the relationships of variables are labeled with numbers 1 to 10 that convey the hypotheses.

Briefly, the research model of this study is composed of 10 hypotheses in one construct. Screen (S), Terminology (T), Learning (L), and Capabilities (C) factors are the independent variables of Perceived Ease of Use (PEOU) and Perceived Usefulness (PU), in which the PEOU and PU are the independent variables of User

Satisfaction (US) factor. This study is looking for the User Satisfaction of Student Information System.

# **3.8 Research Hypotheses**

Table 3.7 shows the relationship of independent and dependent variables exhibited in the research model. The relationships are then elaborated in the following paragraphs.

Table 3.7: Research propositions with independent and dependent variables

No.	Propositions	Independent Variables	Dependent Variables
1	(S) Screen has a relationship with Perceived Usefulness (PU)	S	PU
2	(S) Screen has a relationship with Perceived Ease of Use (PEOU)	S	PEOU
3	(T) Terminology has a relationship with Perceived Usefulness (PU)	Т	PU
4	<ul><li>(T) Terminology has a relationship</li><li>with Perceived Ease of Use</li><li>(PEOU)</li></ul>	Т	PEOU
5	(L) Learning has a relationship with Perceived Usefulness (PU)	L	PU
6	(L) Learning has a relationship	L	PEOU

	with Perceived Ease of Use		
	(PEOU)		
	(C) System Capabilities has a		
7	relationship with Perceived	С	PU
	Usefulness (PU)		
	(C) System Capabilities has a		
8	relationship with Perceived Ease of	С	PEOU
	Use (PEOU)		
	(PU) Perceived Usefulness has a		
9	relationship with User Satisfaction	PU	US
	(US)		
	(PEOU) Perceived Ease of Use has		
10	a relationship with User	PEOU	US
	Satisfaction (US)	i Utara Mala	iysia

The following hypotheses are further formulated:

- H₁: Screen has a relationship with Perceived Usefulness.
- H₂: Screen has a relationship with Perceived Ease of Use.
- H₃: Terminology has a relationship with Perceived Usefulness.
- H₄: Terminology has a relationship with Perceived Ease of Use.
- H₅: Learning has a relationship with Perceived Usefulness.
- H₆: Learning has a relationship with Perceived Ease of Use.
- H₇: System Capabilities have a relationship with Perceived Usefulness.
- H₈: System Capabilities have a relationship with Perceived Ease of Use.

- H₉: Perceived Usefulness has a relationship with User Satisfaction.
- H₁₀: Perceived Ease of Use has a relationship with User Satisfaction.

#### 3.9 Data Collection and Analysis

Data were collected after revising the questionnaire, which was adapted from (Haslina Mohd, 2009; Shneiderman, 2004; Davis, 1989; Bailey & Pearson, 1983). The questionnaires was distributed to five secondary schools in Kubang Pasu. On top of that, a series of interviews were also conducted to gather additional and richer data from class teachers and the top management of the schools, who are the direct users of SIS. Having analyzed the gathered data, the results from both the questionnaire and interview were found to complement each other. The results also clearly identify the factors that affect the adoption of SIS in secondary schools (objective 2). Finally, the relationships between factors were determined using the Linear Regression Technique (Objective 3).

#### **3.9.1 Instrument Design**

Questionnaire was the main instrument used in this study for collecting data. The data collection was conducted from 3rd of November 2014 to 6th of November 2014. Before the questionnaires were distributed to the participants, this study managed to obtain permissions from the Ministry of Education Malaysia (MOE), *Jabatan Pendidikan Negeri* (JPN), and *Pejabat Pelajaran Daerah* (PPD), as included in Appendix B.

#### **3.9.2** Questionnaire Design

The design of the questionnaire was constructed by taking into account the variables identified in the previous stage. Overall, there were 64 items including demographic profile. Specifically, the instrument contained 11 items for demographic characteristics, 6 items for measuring the User Satisfaction (US), 4 items for measuring Perceived Ease of Use (PEOU), 6 items for measuring Perceived Usefulness (PU), 7 items for measuring Screen (S), Terminology (T) and Learning (L), respectively, and 6 items for measuring Capabilities (C). The questionnaire was classified into three sections; Part A was about the demographic data of respondent, part B was about the variables or factors of the study, and part C gathered comments from the respondents. The measurement was based on the 5-point Likert scale, which was adapted from Gliem and Gliem (2013)as illustrated in Figure 3.2.



Figure 3.2 Questionnaire design based on the Five Point Likert Scale

#### 3.9.3 Discussion with ICT Teacher and Top Management

Besides obtaining data from the questionnaire, interview session was also carried out involving both the ICT teachers and top management of the participating schools. The interviews were carried out in just a short period of time. The session did not distort any of the research process since it was carried out while waiting for all data to be analyzed and findings to be obtained. The interviewees explained about the APDM and SMM as well as the workloads management.

#### **3.9.4 Sampling on Survey**

This study involved five secondary schools in Kubang Pasu for data collection. The participated respondents were the class teachers and top management of the schools.

Universiti Utara Malaysia

## 3.9.5 Population and Sample

Population indicates any elements, units, or individuals that meet the selected criteria for a group to be studied. From the total population, a part of representative sample is taken out for detailed examination (Siti Farah Syazana, 2015). The group of representative should share similar characteristics in certain particular context, which is within the interest of a study. Siti Farah Syazana (2015) also stated that sampling is the process that is used in statistical analysis and a number of observations would be taken out from a larger population. On the other hand, Zikmund (2003) explained that sampling allows for making a conclusion about the overall population.

For this study, the population was the five secondary schools in Kubang Pasu, which are SMK Bandar Baru Sintok, SMK Changlun, SMK Hosba, SMK Seri Mahawangsa, and SMK Paya Kemunting.Altogether, 150 questionnaires were distributed to the sample. The feedback were then gathered, in which14.5% were from SMK Bandar Baru Sintok, 30.9 % from SMK Changlun, 18.2% from SMK Hosba, 30.9% from SMK Seri Mahawangsa, and 5.5% from SMK Paya Kemunting.

#### 3.9.6 Pilot Study

Pilot test is required to ensure the questionnaire is ready to be used for data collection (Vasodavan, 2011; John, 2008; Sekaran, 2000). This is important to ensure that the respondents could understand the items in the questionnaire and could answer the questions completely based on the given estimated time. Another aim for piloting the questionnaire is to make sure that the questionnaire meets the goals and is understandable by the respondents, otherwise the result may appear differently (Hasna Lumpingan, 2015). By doing this, unsatisfactory items (Sekaran, 2003) can be removed, or questions can be amended or adjusted (Hasna Lumpingan, 2015; Lucky, 2011; McIntire& Miller, 2007).

In this study, 40 questionnaires were distributed to the real users of the system in SMK Changlun. However, only 34 responses were received. This number of reponses is sufficient because a pilot study could work perfectly with 30 datasets (Naidu, 2014). Reliability test was also performed on the dataset to determine the reliability of the questionnaire (Lucky, 2011) .Regarding the reliability test, Tuckman (1999) outlines that 0.50 could already be significant. However, Hair,

Money, Samouel, and Page (2009) and Sekaran (2006) underline that 0.7 is good. The results of the Cronbach's Alpha for this study is shown in Table 3.8 and Table 3.9.





Based on Tables 3.8 and 3.9, the Cronbach Alpha value is 0.976. Thus, it can be concluded that the instrument is reliable. Therefore there was no omission or addition or modification effort needed. This enables the questionnaire to collect real data.
#### **3.10 Data Analysis Techniques**

The gathered data were analyzed to determine the relationship of each variable or among the variables (Mohd Izwan, 2015; Neuman, 2010). For that purpose, the data were analyzed using the Social Package for Social Science (SPSS) version 20.0.

### **3.10.1 Descriptive Statistics**

Adibah Abdul Bari (2015) and Malin and Birch (1997) found that most studies compile and interpret raw data through data screening and descriptive statistics. Data screening is the process of checking data for errors, which is followed with certain actions to correct the error. In this study, it involved checking raw data, identifying outliers, inspecting missing data, and running normality test. Normality test is one of the inferential analysis prerequisites that ensures the gathered data are approximately or normality distributed classified (Adibah Abdul Bari, 2015; Halt, Babin, Anderson, & Tatham, 2007). Regarding that, Pallant (2013) suggested that Kurtosis shows the "peakness" of the distribution while Skewness shows the symmetricity of the distribution. On the hand, descriptive analysis deals with frequency, mean, and standard deviation. The analysis could explain various findings based on the gathered data. This study used the classification adapted from Mohd Izwan (2015) and Zikmun, Babin, Carr, and Griffin (2010), which is outlined in Table 3.10.

## Table 3.10: Mean classification

No.	Level	Mean
1	Low	1.00 to 2.33
2	Moderate	2.34 to 3.67
3	High	3.68 to 5.00

## **3.10.2 Reliability Analysis**

Reliability is a test measured through Cronbach's Alpha Coefficient. If the Cronbach Alpha value is 0.7 and greater, the data is concluded as reliable. There is a rule of thumb regarding this as outlined inTable 3.11(Hair, Money, Samouel, & Page, 2009; Sekaran, 2006).

Table 3.11: Coefficient of Cronbach's Alpha

Value	Level of Reliability
<0.6	Weak
0.6 to <0.7	Moderate/Received
0.7 to <0.8	Good
0.8 to < 0.9	Very Good
> 0.9	Strong

### **3.10.3 Factor Analysis**

Factor analysis is the measurement for checking the validity of variables. Kaiser-Meyer Olkin or better known as KMO is used to measure the sampling adequacy (Subramaniam, 2015).

### **3.10.4 Pearson Correlation**

Correlation is used to measure the relationship of two or more variables either in negative or positive directions (Sekaran, 2003). Hence, this study tested it on the stated hypotheses. David (1971) classified the scales used in interpreting the relationships among the variables as exhibited in Table 3.12.

Scales	Relationship
0.80 above	Very Strong
0.50 to 0.79	Strong
0.30 to 0.49	Moderate
0.10 to 0.29	Low
0.01 to 0.09	Very Low

Table 3.12: The Scales of Pearson Correlation Matrix less and the state of the second

10.00

## **3.10.5 Multiple Regression**

Gleaner and Morgan (2009) expressed that multiple regression analysis is extremely used in statistical data analysis that involved the dependent and independent variables. Further, Afidatul Asma Hassan (2015) described bi-variety correlation known as multiple regressions.

## 3.11 Summary of the Chapter

This chapter describes the methodology comprehensively. The whole process is described starting with identifying the solved problem until the analysis.Based on the descriptions on the previous chapters, all techniques are supported with a strong background.

Universiti Utara Malaysia

# CHAPTER FOUR RESULTS

### 4.1 Introduction

The purpose of this study is to identify the factors that influence the adoption of student information system (SIS) in the state of Kedah. In conjunction to that, this chapter discusses the techniques for analyzing data, which were successfully gathered in three days through questionnaire distribution. The analyzing tasks involved normality and reliability tests, factor analysis, correlation, and descriptive statistics. The hypotheses were tested using the analysis of variance (ANOVA) and multiple regression. The results of all tests that were performed are also been detailed out in the subsequent sections.

### **4.2 Profile of Respondents**

## Universiti Utara Malaysia

Demographic data convey descriptive information about people in terms of age, gender, and socioeconomic features (Vasodavan, 2011; Bernhardt, 1988). In this study, data were gathered from 110 class teachers in secondary schools in the Kubang Pasu District. Having analyzed the data, the results are detailed out in Table 4.1. The respondents are representatives from SMK Bandar Baru Sintok, SMK Changlun, SMK Hosba, SMK Seri Mahawangsa and SMK Paya Kemunting.

Variables		Frequency	Percentage
School Name			
	SMK Bandar Baru Sintok (SBBS)	16	14.5
	SMK Changlun (SC)	34	30.9
	SMK Hosba (SH)	20	18.2
Valid	SMK Seri Mahawangsa (SSM)	34	30.9
	SMK Paya Kemunting (SPK)	6	5.5
	Total	110	100.0
Missing	System	0	0
Total		110	100.0
Type of School			4
	1 – Rural School	103	93.6
Valid	2 – Urban School	1	.9
All Dennes Baller	^{Total} niversiti Utai	a M ¹⁰⁴ ays	94.5
Missing	System	6	5.5
Total		110	100.0
Gender			
	1 – Male	23	20.9
Valid	2 – Female	79	71.8
	Total	102	92.7
Missing	System	8	7.3
Total	1	110	100.0
Age			
	1-21 to 30 years old	5	4.5
	2-31 to 40 years old	37	33.6

Table 4.1: Respondent's demographics information

	3-41 to 50 years old	52	47.3
Valid	4-51 to 60 years old above	16	14.5
	Total	110	100.0
Missing	System	0	0
Total		110	100.0
Race			
	1 – Malay	108	98.2
	2 – Chinese	1	.9
	3 – Indian	0	0
Valid	4 – Others	1	.9
	Total	110	100.0
Missing	System	0	0
Total		110	100.0
Marital Status			
	1 – Single	4	3.6
	2 – Married	103	93.6
BUDI BUDI	3 – Others	3 Analays	2.7
Valid	Total	110	100.0
Missing	System	0	0
Total		110	100.0
Class Teacher			
	1 – Form 1	13	11.8
	2 – Form 2	18	16.4
	3 – Form 3	18	16.4
	4 – Form 4	10	9.1
X7.1'.1	5 – Form 5	14	12.7
v alid	6 – Form 6	8	7.3
	Total	81	73.6

Missing	System	29	26.4
Total		110	100.0
Experience of using	g APDM (Aplikasi Pangkalan Data		
Murid)			
	1 - < 1 year	8	7.3
	2-1 to 2 years	31	28.2
	3-3 to 4 years	37	33.6
Valid	4-5 to 6 years above	12	10.9
	Total	88	80.0
Missing	System	22	20.0
Total		110	100.0

Table 4.1 exhibits that most respondents are from SMK Changlun and SMK Seri Mahawangsa (30.9%), Females (71.8%) are more than males. This is not surprising because it is common nowadays that female is always more than male. Most of them are(47.3%)between 41 and 50 years old, with majority of them are married (93.6%) Malays (98.2%). The distribution among different forms is quite diverse but majority of them are class teachers of forms 2 and 3 (16.4% each). Most of them have been using *Aplikasi Pangkalan Data Murid*(APDM) within 3 to 4 years (33.6%).

Coakes (2013) recommendsto run data screeningto ensure that the data are correctly entered and free from error. If data are not normally distributed, they have to be transformed before further analysis (Sukhri, 2015). It is very important to ensure that the results are reliable.Three steps in data screening include (1) check the data set for any occurrence of error, (2) find out whether the errors occur in the data file, and (3) correct the error in the data file (Pallant, 2005). Outlier (out of range) values can be determined by using descriptive or frequency commands(Coakes, 2013).

### 4.3.1 Normality Test

In general, the inference of normality is essential for many statistical techniques. There are a few ways to test the assumption using graphical methods such as stemand-leaf plot, histogram, normal probability plot, and boxplot. There are also a number of non-graphical methods to test normality such as skewness, kurtosis and Kolmogorov-Smirnov (Paul, 2014). Normality test could also explore the characteristics ofvariable (Haslina Mohd, 2009) and it is a prequisite for most of the inferential techniques (Lumpingan, 2015; Nor Faezah, 2014; Coakes & Steed, 2007). In addition, Mosawi (2015), Pallant (2005), and Kline (1998) observe the skewness and kurtosis value of independent and dependent variables to determine the normal distribution of scores. There are various acceptable ranges when conducting skewness test. While Mosawi (2015) and Hair et al. (2006) believe in +1 to -1 range, Muhammad Firos (2014) uses +1.96 to -1.96. A positive skewness value denotes a positive skew (Nor Faezah, 2014; Coakes & Steed, 2007). This study applies the most common one, which is between +1 and -1.

The factors considered in this study are User Satisfaction (US), Perceived Usefulness (PU) and Perceived Ease of Use (PEOU), while the sub factors are Screen (S), Terminology (T), Learning (L) and Capabilities (C). The normality test has been carried out for all factors. The detailed results are available in Appendix D. It is observed that most variables are in the range of +1 and -1. However, there is a few sub factors which are not within the range as exhibited inTable 4.2. As a result, the variables are rejected and are not used for further analysis, leaving another 38 variables. For this study, it is sufficient to support the achievement of the objectives.

No.	Variables	Universiti U	Skewness	Kurtosis
1	PU04		-1.135	
2	PE01		-1.226	1.845
3	US02		-1.050	
4	S04		-1.118	-1.839
5	T01		1.062	1.069
6	T02			1.244
7	T03			1.348
8	T04		-1.009	1.739
9	T05		-1.146	1.708
10	T08			-1.251

Table 4.2: Sub factors that do not fall into the normal range (+1 to -1)

11	T10		-1.794
12	T11	-1.050	1.607
13	T12	-1.024	1.390
14	L01	-1.118	
15	L02	-1.067	1.067

### 4.4 Reliability Test

According to Sekaran (2003), reliability can be measured by testing the stability and consistency. Cronbach's Alpha is a correlation coefficientthat shows the average correlation of the items if all items are standardized. If the results of an instrument are consistent and close to 1, then it is demonstrated as a good reliability (Sau, 2015; Sekaran & Bougie, 2010). Generally, reliability greater than 0.8 is good, 0.7 is acceptable, and less than 0.6 is poor. Having carried out the test, the results are gathered and displayed in Tables 4.3 and 4.4.

 Table 4.3 Case Processing Summary

Case 2	Processi	ing S	Summary
--------	----------	-------	---------

		N	%
	Valid	109	98.2
Cases	Excluded ^a	2	1.8
	Total	111	100.0

a. Listwise deletion based on all

variables in the procedure.

Table 4.4 Reliability Statistics

Cronbach's	Cronbach's	N of
Alpha	Alpha Based	Items
	on	
	Standardized	
	Items	
0.985	0.986	38

Table 4.4 showcases that the reliability value is 0.985, implying that all composite variables are reliable.

4.5 Factor Analysis Universiti Utara Malaysia

Factor analysis refers to data reduction technique.Itsummarizes a set of variables in a structure. In fact, factor analysis is used to determine the validity of the items to measure the internal consistency. Kaiser Meyer Olkin (KMO) constitutes the fundamental for factor analysis. The factor analysis for this study has been tested and the details of the obtained results detailed are presented in Table 4.5 as well as the results of the Bartlett's Test.

Kaiser-Meyer-Olkin Measure	0.940	
	Approx. Chi-Square	5750.418
Bartlett's Test of Sphericity	df	703
	Sig.	0.000

Table 4.5 KMO and Bartlett's Test

Yee (2015), Coakes (2013), and Atyo, Adamson and Cant (2001) emphasize that the KMO and Bartlett's test are significant if the measure of sampling adequacy is greater than 0.6. Based on that, with reference to Table 4.5, the sample is this study is considered sufficient or adequate because the KMO value is 0.940, with significant value of 0.000. Therefore, all variables in the questionnaire are considered valid and acceptable. To begin with, Table 4.6 shows the Communalities of the study, Table 4.7 presents the Total Variance Explained, Table 4.8 reveals the Rotated Factor Matrix³, and Table 4.9 displays the Factor Transformation Matrix. On top of that, Appendix E and F provide the remaining tables such as Correlation Matrix and Anti Image Matrices accordingly.

## Table 4.6: Communalities

Countrols					-
	Initial	Extraction		Initiat	Extraction
(PU01) Accomplish task more quickly	.889	.798	(T13) Controlling of feedback is easy	854	.706
(PU02) Enhances the quality of work	.948	.850	(T14) Length of delay is acceptable	874	.761
(PU03) Make job easier	.919	.815	(T15) Error messages	866	.709
(PU05) Increase productivity	.936	.863	(T16) Error messages	.855	.709
PU06) Improve job performance	.939	.871	always clarify problem (T17) Phrasing of error	036	819
PEOU02) Clear and	886	.763	messages is pleasant		
understandable			(L03) Time to learn is fast	.835	.671
(PEOUD3) Easy to become skillful	.910	.743	(L04) Task performed in straight forward manner	870	.716
(PEOU04) Easy to use	899	.767	(L05) Number of steps is just right	839	.757
(US01) US01-Prototype is very useful	.842	.677	(L06) Complete task is	.899	.603
(US03) Satisfied with prototype system	916	817	(L07) Feedback of	.897	.770
(US04) Prototype has	928	.766	completion is clear		
adequate power			(Cot) Past enough	.699	.810
(US05) Prototype system is simulating	.931	.896	(C02) Response time is fast enough	.907	.802
(US06) Prototype system is flexible	855	.768	(C03) Rate displayed is fest enough	.896	.830
(S01) Screen layout very	.910	.791	(C04) Reliable	.883	.758
(S02) The of information	853	.684	(C05) System failure seldom occured	868	.755
on screen are adequate			(C06) System always	ASA	711
(S03) The of information on screen is logical	923	780	warns about potential problem	-	
(S05) Sequences on next screen are predictable	823	.688	Extraction Method: Principal	Axis Factori	ng.
(S06) Sequences on previous screen are possible	851	.770			
(S07) The progression of work clearly marked	.908	.791			
(T06) Terminology is on screen precise	.861	682			
(T07) Consistent message on screen	.905	.814			
(T09) Prompt for input is clear	.882	.781			

Referring toTable 4.6, (L03), "time to learn is fast", which is listed in the extraction column represents the lowest communality. In Table 4.7, the results of the Total Variance Explained are displayed in three stages. First, the initial eigenvalues explain the factors and its eigenvalues, whilethe percentage of variance at that initial

eigenvalues stage examines the cumulative percentages. For this reason, if the eigenvalues is greater than 1, this study would be expected to extract factor revised (Coakes, 2013). Thus, in this study, four factors were extracted because their eigenvalues are greater than 1 whilst 77% of the variance would be examined.

		Initial Eigenvalu	188	Extractio	Extraction Sums of Squared Loadings			Sums of Square	d Loadings
Factor	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	24.958	65.679	65.679	24.730	65.078	65.078	10.901	28.686	28.686
2	2.132	5.610	71.289	1.906	5.015	70.094	7.142	18.795	47.481
3	1.732	4.558	75.848	1.533	4.035	74.129	6.175	16.250	63.731
4	1.316	3.464	79.311	1.091	2.871	77.001	5.043	13.270	77.001
5	.827	2.177	81.488						
6	.722	1.899	83.387						
7	.620	1.632	85.019						
8	.562	1.479	86.498						
9	.503	1.323	87.821						
10	.422	1.112	88.933						
11	404	1.062	89.995						
12	.388	1.022	91.017						
13	<u> </u>	.920	91.937						
14	.314	.825	92.763						
15	.262	.689	93.452						
16	.244	.642	94.094	ivors	101.110	ara M	alay	sia	
17	.228	.600	94.694	IVCIA			aray	310	
18	.204	.536	95.230						
19	.201	.530	95.760						
20	.189	.498	96.258						
21	.174	.458	96.716						
22	.152	.399	97.115						
23	.145	.381	97.496						
24	.128	.337	97.833						
25	.108	.284	98.117						
26	.094	.248	98.365						
27	.086	.227	98.592						
28	.079	.207	98.800						
29	.072	.190	98.990						
30	.065	.172	99.162						
31	.055	.145	99.307						
32	.054	.142	99.449						
33	.049	.129	99.577						
34	.043	.113	99.690						
35	.037	.097	99.788						
36	.035	.091	99.879						
37	.023	.062	99.940						
38	.023	.060	100.000						the design of the second se

 Table 4.7: Total Variance Explained

Table 4.8 shows the Rotated factor Matrix³ or known as Varimax rotation. In this study, factor 1 consists of 34 factors loading with values ranging between 0.302 and 0.768. Factor 2 comprises of 26 factors loading with values ranging between 0.312 and 0.781. Factor 3 has 19 factors loading with values ranging between 0.308 and 0.824. Finally, factor 4 indicates 1 factor loading with values ranging between 0.324 and 0.737. Usually, rotation would improve the interpretation and could reduce a number of complex variables. If the items have more than one factor loading greater than 0.3, this itemcauses a simple structure that is not apparent and must be interpreted with caution (Coakes, 2013).



Table 4.8:Rotated Fac	tor Matrix ³
1 abic 7.0.1Colated 1 ac	tor matrix

Ro	tated Factor	Matrix ^a			Rotated Factor Matrix ^a				
		Fact	or				Fact	or	
	- 1	2	3	4		4	2	3	4
(L07) Feedback of completion is clear	.793		1.00		(PU06) Improve job performance		.752	1.1	.414
(S06) Sequences on previous screen are possible	.768			.329	(PU03) Make job easier (PU01) Accomplish task more quickly	.304 .307	.736	340	.335
(L05) Number of steps is just right	.711	.343		1.1	(PU05) Increase productivity	.329	,675		538
(L06) Complete task is logical sequence	.710	.367		.337	(PEOU02) Clear and understandable	396	.648	.400	
(S05) Sequences on next screen are predictable	705			.364	(PEOU03) Easy to become skillful	.455	.610		
(L04) Task performed in straight forward manner	.703		.363		(C01) Fast enough			824	
(S03) The of information	701			.444	(C05) System failure seldom occured			.788	
(113) Controlling of	693		325		(C02) Response time is fast enough	1.1		.783	
(T09) Prompt for input is clear	.685	460	.313		(C06) System always warns about potential problem	.324		733	
(PEOU04) Easy to use	673	.356		.374	(C03) Rate displayed is	.304	.312	732	324
(T17) Phrasing of error messages is pleasant	668	.385	.449		fast enough (C04) Reliable	467	443	593	1.0
(T07) Consistent message on screen	.657	486			(US05) Prototype system is simulating	.339	389		737
(L03) Time to learn is fast	629	.416			(US06) Prototype system	.335		393	.647
(S01) Screen layout very helpful	.628	.314		.484	is flexible (11804) Prototype has	386	307		630
(T16) Error messages always clarify problem	.604	.419	387		adequale power		200	200	.002
(S07) The progression of work clearly marked	601	400	316	S	prototype system	sia	307		.000
(T15) Error messages	586	427	.364		very useful	.4).4	.007	-	.2/9
(T06) Terminology is on screen precise	568	.447	.330		Extraction Method: Principal A Rotation Method: Varimax wit	xis Factoring h Kaiser Nor	nalization:		
(SD2) The of information on screen are adequate	.566			.521	a. Rotation converged in 8	iterations.			
(T14) Length of delay is acceptable	.524	.498	465						
(PU02) Enhances the quality of work	.302	.781	1						

# Table 4.9:Factor Transformation matrix

Factor Transformation Matrix							
Factor	1	2	3	4			
1	.632	.496	.436	.405			
2	- 566	.159	.792	165			
3	487	681	.408	365			
4	- 208	515	.125	.822			

Extraction Method: Principal Axis Factoring. Rotation Method: Varimax with Kaiser Normalization.

#### 4.6 Correlation Analysis

Correlation is to measure the level of relationship between two variables in a linear fashion. Sau (2015) and Cooper and Schindler (2003) state that when establishing the correlation between variables, there is no exact scale or absolute degree that has multicollinearity. Adibah (2015), Sau (2015), Hair, Money, Samouel and Page (2008),and Guilford (1956) have categorized the correlation based on statistical values, which implicates the relationship. The relationship is very weak for correlation below 0.20. Correlations between 0.20 and 0.40 indicate a weak relationship while between 0.40 and 0.70 makes a moderate relationship. When the correlation is between 0.70 and 0.90, the relationship is strong. The best is when the correlation is greater than 0.90 because it represents a very strong correlation relationship. In determining the correlation between independent and dependent variables, this study run Pearson's correlation as suggested by Abdi (2015).

Correlations										
	PU PEOU US S T L C									
PU	Pearson Correlation	1	.805	.784	.731	.778	.723	.669		
	Sig. (1-tailed)		.000	.000	.000	.000	.000	.000		
	Ν	110	110	110	110	110	110	110		
PEOU	Pearson Correlation	.805**	1	.773	.786	.866**	.786**	.695		
	Sig. (1-tailed)	.000		.000	.000	.000	.000	.000		
	Ν	110	110	110	110	110	110	110		
US	Pearson Correlation	.784**	.773	1	.812	.779	.748	.700		
	Sig. (1-tailed)	.000	.000		.000	.000	.000	.000		
	Ν	110	110	110	110	110	110	110		
S	Pearson Correlation	.731**	.786	.812	1	.843	.883	.665		
	Sig. (1-tailed)	.000	.000	.000		.000	.000	.000		
	Ν	110	110	110	110	110	110	110		
Т	Pearson Correlation	.778	.866	.779	.843	1	.887**	.765		
	Sig. (1-tailed)	.000	.000	.000	.000		.000	.000		
	Ν	110	110	110	110	110	110	110		
L	Pearson Correlation	.723	.786	.748	.883	.887	1	.686		
	Sig. (1-tailed)	.000	.000	.000	.000	.000		.000		
	Ν	110	110	110	110	110	110	110		
С	Pearson Correlation	.669**	.695	.700	.665	.765	.686	1		
	Sig. (1-tailed)	.000	.000	.000	.000	.000	.000			
	N	110	110	110	110	110	110	110		
**. C	orrelation is significant a	it the 0.01 lev	vel (1-tailed)							

Table 4.10: Bivariate Pearson Product Moment Correlation

Table 4.10 portrays the results of the Bivariate Pearson Product Moment Correlation test, which intends to interpret the correlation coefficient. The threshold is p < 0.05 as suggested byCoakes (2013). With reference to the table, all relationships among the composite factors are significantly positive. Particularly, PU and PEOU has a significant positive relationship (r = 0.805, p <0.05). The relationship between PU and US, PU and S, PU and T, PU and L, and PU and C are also significantly positive (r = 0.784, p <0.05; r = 0.731, p <0.05; r = 0.778, p <0.05; r = 0.723, p <0.05; and r = 0.669, p <0.05 respectively). Therefore, all relationships are correlated.

Similarly, all relationships with PEOU are correlated because they are all significant, particularly, PEOU and US, PEOU and S, PEOU and T, PEOU and L, and PEOU and C which have significant positive relationship (r = 0.773, p < 0.05; r = 0.786, p < 0.05; r = 0.786, p < 0.05; and r = 0.695, p < 0.05 respectively).

In addition, US and S, US and T, US and L, as well as US and C also have significant positive relationship. These are determined through their significant values (r = 0.812, p <0.05; r = 0.779, p <0.05; r = 0.748, p <0.05; and r = 0.700, p <0.05 respectively). Hence, all relationships involving US are correlated.

When S is observed, its relationships with T, L, and C are also found significantly positive. These are seen in their significant values (r = 0.843, p < 0.05; r = 0.883, p < 0.05; and r = 0.665, p < 0.05 respectively). Accordingly, all relationships are correlated. Similar results are obtained when analyzing T. Obviously all relationships through their significant values are significantly positive (r = 0.887, p < 0.05; r = 0.765, p < 0.05; and r = 0.686, p < 0.05 respectively).

### 4.7 Descriptive Statistics

Descriptive statistics is a pattern and commonly used in the data set. It is used to explore the collected data and to identify the overall range of answers for each construct. For instance, it may be useful if a study wanted to observe about certain data sets. Coakes (2013) outlines four main measures of variability, namely interquartile range, range, variance, and standard deviation. In addition, there are three main measures of central tendency; mean, mode, and median; which are suitable for interval or ratio data. Table 4.11 shows the mean values of the composite factors in the five secondary schools.

Statistics								
		US	PU	PEOU	S	Т	L	С
Ν	Valid	110	110	110	110	110	110	110
	Missing	0	0	0	0	0	0	0
Mean		3.3400	3.3855	3.4000	3.4773	3.3864	3.4091	3.0909
Median		3.4000	3.6000	3.6667	3.6667	3.5000	3.4000	3.0000
Mode		4.00	4.00	4.00	4.00	4.00	4.00	3.00 ^a
Std. Deviatio	n	.74664	.77942	.74986	.68680	.68141	.68074	.85927
Variance		.557	.607	.562	.472	.464	.463	.738
Percentiles	25	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	2.5000
a m	50	3.4000	3.6000	3.6667	3.6667	3.5000	3.4000	3.0000
1011	75	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000
a. Multiple	modes exi	st. The <b>sm</b> al	lest value is	shown				

Table 4.11: Mean values of the all composite factors in five secondary schools

US: User Satisfaction, PU: Perceived Usefulness, PEOU: Perceived Ease of Use, S: Screen, T: Terminology, L: Learning, C: Capabilities.

Measurement scale: 1- Strongly disagree, 2- Disagree, 3-Moderately disagree, 4- Agree, 5- Strongly agree

Based on Table 4.11, the mean values for all composite variables arecentral at a moderate level (around 3). Particularly, the lowest mean among the composite variables is C (3.0909) while the highest mean is S (3.4773).

## Table 4.12: Mean Values for US

	Ν	Minimum	Maximum	Mean	Std. Deviation
(US01) US01-Prototype is	110	1.00	5.00	3.3636	.78667
very useful	-			-	
(US03) Satisfied with	110	1 00	5.00	3 3273	81397
prototype system			0.00	0.02.0	
(US04) Prototype has	110	1.00	5.00	3 3091	83221
adequate power		1.00	0.00	0.0001	
(US05) Prototype system is	110	1.00	5.00	3 3/155	78327
simulating	110	1.00	0.00	0.0-00	.10021
(US06) Prototype system is	110	1.00	5.00	3 35/15	86206
flexible	110	1.00	0.00	0.00-0	.00230
Valid N (listwise)	110				

### **Descriptive Statistics**

# Table 4.13: Mean Values for PU

Dese	criptive Stat	istics		2VI	
011110			Ficilo	· y ~	

	Ν	Minimum	Maximum	Mean	Std. Deviation
(PU01) Accomplish task	110	1.00	5.00	3.4455	.85226
more quickly					
(PU02) Enhances the	110	1 00	5.00	3 3909	83606
quality of work	110	1.00	0.00	0.0000	.00000
(PU03) Make job easier	110	1.00	5.00	3.3636	.84297
(PU05) Increase productivity	110	1.00	5.00	3.3909	.82502
(PU06) Improve job	110	1.00	5.00	2 2 2 6 4	01507
performance	110	1.00	5.00	3.3304	.01307
Valid N (listwise)	110				

## Table 4.14: Mean Values for PEOU

	Ν	Minimum	Maximum	Mean	Std. Deviation
(PEOU02) Clear and	110	1.00	5.00	3.3273	.81397
understandable					
(PEOU03) Easy to become	110	1 00	5.00	3 4000	82618
skillful	110	1.00	5.00	3.4000	.02010
(PEOU04) Easy to use	110	1.00	5.00	3.4727	.78646
Valid N (listwise)	110				

### **Descriptive Statistics**

# Table 4.15: Mean Values for S

### **Descriptive Statistics**

a contraction of the second se	N	Minimum	Maximum	Mean	Std. Deviation
(S01) Screen layout very	110	1.00	5.00	3 / 909	77513
helpful		1.00	0.00	0.4000	
(S02) The of information on	110	1.00	5.00	2 2000	00500
screen are adequate	Unive	rsiti U	tara	3.3909	.82502 Ia
(S03) The information on	110	1.00	E 00	2 5001	77510
screen is logical	110	1.00	5.00	3.5091	.//013
(S05) Sequences on next	110	1.00	5.00	2 / 9 / 9	75002
screen are predictable	110	1.00	5.00	3.4010	.75092
(S06) Sequences on					
previous screen are	110	1.00	5.00	3.5182	.71333
possible					
(S07) The progression of	110	1.00	5.00	2 4727	70904
work clearly marked	110	1.00	5.00	5.4727	.79004
Valid N (listwise)	110				

## Table 4.16: MeanValues for T

	Ν	Minimum	Maximum	Mean	Std. Deviation
(T06) Terminology is on	110	1.00	5.00	3.4727	.67333
screen precise					
(T07) Consistent message	110	1 00	5.00	3 4818	70035
on screen			0.00	0.1010	
(T09) Prompt for input is	110	1 00	5.00	3 4273	77174
clear			0.00	0.1210	
(T13) Controlling of	110	1.00	5.00	3 3818	72923
feedback is easy	110	1.00	0.00	0.0010	
(T14) Length of delay is	110	1.00	5.00	3 3182	85598
acceptable			0.00	010102	
(T15) Error messages	110	1.00	5.00	3.3091	.79846
prompt is helpful			0.00	0.0001	
(T16) Error messages	110	1.00	5.00	3 3273	83621
always clarify problem			0.00	0.0210	
(T17) Phrasing of error	Uniya	rsiti _{1.00}	tara _{5.00}	3.3727	ia .81115
messages is pleasant			0.00	0.0.27	
Valid N (listwise)	110				

### **Descriptive Statistics**

## Table 4.17: Mean Values for L

### **Descriptive Statistics**

	Ν	Minimum	Maximum	Mean	Std. Deviation
(L03) Time to learn is fast	110	1.00	5.00	3.4455	.76129
(L04) Task performed in	110	1.00	5.00	3 /001	70770
straight forward manner	110	1.00	5.00	3.4031	.10110
(L05) Number of steps is	110	1.00	5.00	2 2 2 6 4	01507
just right	110	1.00	5.00	3.3304	.01307
(L06) Complete task is	110	1.00	E 00	2 44 9 2	74664
logical sequence	110	1.00	5.00	3.4102	.74004
(L07) Feedback of	110	1.00	E 00	2 4264	77055
completion is clear	110	1.00	5.00	3.4304	.77255
Valid N (listwise)	110				

# Table 4.18: Mean Values for C

## **Descriptive Statistics**

BUDI BUDI	Unive	Minimum	Maximum	Mean S	Std. Deviation
(C01) Fast enough	110	1.00	5.00	2.9636	1.03982
(C02) Response time is fast	110	1.00	5.00	2 9818	99523
enough	110	1.00	0.00	2.0010	.00020
(C03) Rate displayed is fast	110	1.00	5.00	3 1091	06113
enough	110	1.00	5.00	3.1031	.50115
(C04) Reliable	110	1.00	5.00	3.2909	.90204
(C05) System failure seldom	110	1 00	5.00	3 0909	98190
occured	110	1.00	0.00	0.0000	
(C06) System always warns	110	1.00	5.00	2 1001	02216
about potential problem	110	1.00	5.00	3.1091	.92210
Valid N (listwise)	110				

Table 4.11 to Table 4.18 presents the mean values for US, PU, PEOU, S, T, L, and C factors. The values are moderate, around 3.0. The lowest mean among the factors is C, through "APDM speed was not fast enough" (2.97) and "response time of APDM was not fast enough" (2.98). On the other hand, the highest mean is S through "sequences of previous screen were possible" (3.52) and "the information on screen is logical" (3.51).

#### 4.8 Analysis of Variance (ANOVA)

In general, multiple regression is continuation of bivariate correlation. The best conjectures of dependent from a few independent variables are based on the results of regression that represents the equation (Coakes, 2013). There are three main points of regression; standard or simultaneous, hierarchical, and stepwise regression. Nur Fatin Md Khalid (2015) uses multiple regression to test her hypotheses. Most compelling evidence is the use of ANOVA to test the one to one relationship between independent and dependent variables.Indeed, the multiple regression was used to test more than one independent variables to one dependent variable (Haslina Mohd, 2009; Sekaran, 2002; Coakes & Shevlin, 2001) to ensure the level of the observed variable. Nevertheless, in order to identify the relationship between variables, the normality among variables must be tested first. In regards to that, a scatter plot technique was used(See Appendix G)to verify either the normality can be tested using ANOVA between the observed variable.

The formulated hypotheses are:

H₁: Screen has significant relationship to Perceived Usefulness.

H₂: Screen has significant relationship to Perceived Ease of Use.

H₃: Terminology has significant relationship to Perceived Usefulness.

H₄: Terminology has significant relationship to Perceived Ease of Use.

H₅: Learning has significant relationship to Perceived Usefulness.

H₆: Learning has significant relationship to Perceived Ease of Use.

H₇: System Capabilities has significant relationship to Perceived Usefulness.

H₈: System Capabilities has significant relationship to Perceived Ease of Use.

H₉: Perceived Usefulness has significant relationship to User Satisfaction.

H₁₀: Perceived Ease of Use has significant relationship to User Satisfaction.

Among all hypotheses,  $H_1$  to  $H_8$  were tested using ANOVA while  $H_9$  and  $H_{10}$  using multiple regression because both  $H_9$  and  $H_{10}$  consist of composite factors. A hypothesis is accepted if (1) P isless than 0.01 or 0.05, at 95% confidence level (Sekaran, 2003) and (2) F value is greater than 5.45 at 0.01 significant level and F value is greater than 3.45 at 0.05 significant level (Ari et al., 2002). Having the data tested, results of  $H_1$  through  $H_8$  for SIS are presented in Table 4.19.

Hypothesis	R	R ²	F	Confidence Level at 95 % Significance	Hypothesis Reject/ Accept	Std. Error of Estimation
H ₁	0.731 ^a	0.534	123.659	0.000	Accept	0.535
H ₂	0.786 ^a	0.617	174.336	0.000	Accept	0.466
H ₃	0.778 ^a	0.605	165.700	0.000	Accept	0.492
$H_4$	0.866 ^a	0.751	324.923	0.000	Accept	0.376
H ₅	0.723 ^a	0.523	118.301	0.000	Accept	0.541
H ₆	0.786 ^a	0.618	174.585	0.000	Accept	0.466
H ₇	0.669 ^a	0.447	87.332	0.000	Accept	0.582
H ₈	0.695 ^a	0.483	101.085	0.000	Accept	0.541

Table 4.19: Summary of ANOVA

The hypotheses is acceptable if: The F value > 3.45 at 0.05 level, and F value > 5.45 at 0.01 level (Ari et al., 2002).

Table 4.19shows the results of the ANOVA tests. Since the significant values are very high (0.000), all hypotheses are accepted.

# 4.9 Multiple Regression Analysis

The tablesin this sectionshow the selected multiple regressions. Simultaneous regression analysis is the best model that fits this study.

Descriptive Statistics							
Mean Std. Deviation N							
US	3.3400	.74664	110				
PU	3.3855	.77942	110				
PEOU	3.4000	.74986	110				
s	3.4773	.68680	110				
Т	3.3864	.68141	110				
L	3.4091	.68074	110				
С	3.0909	.85927	110				

Table 4.20: Descriptive Statistics

Table 4.21: Correlations

	Correlations									
Contra and		US	PU	PEOU	S	Т	L	С		
Pearson Correlation	US	1.000	.784	.773	.812	.779	.748	.700		
SIA	PU	.784	1.000	.805	.731	.778	.723	.669		
	PEOU	.773	.805	1.000	.786	.866	.786	.695		
1A	s 😒	.812	.731	.786	1.000	.843	.883	.665		
	T	.779	.778	.866	.843	1.000	.887	.765		
	L // >/	.748	.723	.786	.883	.887	1.000	.686		
	0/0/	.700	.669	.695	.665	.765	.686	1.000		
Sig. (1-tailed)	US	Univ	.000	.000	.000	.000	.000	.000		
BUDI B	PU	.000		.000	.000	.000	.000	.000		
	PEOU	.000	.000		.000	.000	.000	.000		
	S	.000	.000	.000		.000	.000	.000		
	Т	.000	.000	.000	.000		.000	.000		
	L	.000	.000	.000	.000	.000		.000		
	С	.000	.000	.000	.000	.000	.000			
Ν	US	110	110	110	110	110	110	110		
	PU	110	110	110	110	110	110	110		
	PEOU	110	110	110	110	110	110	110		
	S	110	110	110	110	110	110	110		
	Т	110	110	110	110	110	110	110		
	L	110	110	110	110	110	110	110		
	С	110	110	110	110	110	110	110		

Pallant (2013) indicates that correlations exist inrelationship between independent and dependent variables of greater than 0.3. Based on that, by referring to Table 4.21, this study concludes that all variables are substantially correlated.

Table 4.22:Coefficients

	Coefficients ^a												
		Unstandardize	d Coefficients	Standardized Coefficients			95.0% Confiden	ce Interval for B	с	orrelations		Collinearity	Statistics
Model		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound	Zero-order	Partial	Part	Tolerance	VIF
1	(Constant)	.486	.198		2.455	.016	.094	.879					
	PU	.439	.090	.458	4.901	.000	.261	.617	.784	.428	.272	.351	2.846
	PEOU	.402	.093	.404	4.320	.000	.218	.587	.773	.385	.239	.351	2.846
2	(Constant)	.084	.196		.431	.667	304	.472					
	PU	.286	.084	.299	3.425	.001	.121	.452	.784	.320	.167	.311	3.217
	PEOU	.117	.108	.117	1.083	.281	097	.331	.773	.106	.053	.202	4.956
	S	.508	.121	.468	4.210	.000	.269	.748	.812	.383	.205	.192	5.206
	Т	.001	.154	.001	.006	.995	304	.306	.779	.001	.000	.120	8.310
	L	097	.138	089	703	.484	371	.177	.748	069	034	.149	6.699
	С	.145	.067	.167	2.178	.032	.013	.278	.700	.210	.106	.401	2.494
a. D	ependent Varia	able: US	14		3								



Universiti Utara Malaysia

	Collinearity Diagnostics ^a									
			Condition			Variar	nce Proporti	ons		
Model	Dimension	Eigenvalue	Index	(Constant)	PU	PEOU	S	Т	L	С
1	1	2.961	1.000	.00	.00	.00				
	2	.029	10.056	.98	.12	.07				
	3	.009	17.848	.01	.88	.92				
2	1	6.909	1.000	.00	.00	.00	.00	.00	.00	.00
	2	.037	13.631	.55	.01	.00	.00	.00	.00	.28
	3	.022	17.817	.34	.09	.04	.01	.00	.01	.62
	4	.015	21.426	.09	.52	.01	.08	.01	.08	.00
	5	.009	28.165	.01	.36	.64	.08	.02	.03	.01
	6	.005	36.922	.00	.02	.12	.67	.26	.19	.04
	7	.003	46.767	.00	.00	.18	.16	.71	.68	.04
a. De	ependent Varia	ble: US	S S S							

Table 4.23: Collinearity Diagnostics

Universiti Utara Malaysia

	Variables Entered/Removed ^a							
Variables Variables Model Entered Removed Method								
1 PU, PEOU ^b . Enter								
2	C, S, L, T ^b		Enter					
a. Dependent Variable: US								
b. All	requested variabl	es entered.						

# Table 4.25: Model Summary

Model Summary ^c									
Model         R         Adjusted R         Std. Error of           Model         R         R Square         Square         the Estimate									
1	.819 ^a	.671	.665	.43203					
2	.870 ^b	.756	.742	.37935					

a. Predictors: (Constant), PU, PEOU

b. Predictors: (Constant), PU, PEOU, C, S, L, T

c. Dependent Variable: US

# Table 4.26: Anova

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	40.793	2	20.396	109.276	.00
	Residual	19.971	107	.187		
	Total	60.764	109			
2	Regression	45.942	6	7.657	53.209	.00
	Residual	14.822	103	.144		
	Total	60.764	109			
a. C	) Dependent Variat	ile: US				
b. F	redictors: (Cons	tant), PU, PEOU				
c 19	redictors: (Const	ant) PLI PEOLL (	SIT			

Excluded Variables ^a									
					Collinearity Statistics				
Model	Beta In	t	Sig.	Partial Correlation	Tolerance	VIF	Minimum Tolerance		
1 S	.450 ^b	5.443	.000	.467	.355	2.814	.268		
Т	.312 ^b	2.789	.006	.261	.231	4.327	.206		
L	.277 ^b	3.116	.002	.290	.359	2.784	.264		
С	.233 ^b	3.030	.003	.282	.483	2.071	.307		
a. Dependent Variable: US									

b. Predictors in the Model: (Constant), PEOU, PU

#### Table 4.28: Casewise Diagnostics

	Casewise Diagnostics ^a						
Case Number	Std. Residual	US	Predicted Value	Residual			
94	3.067	3.60	2.4365	1.16346			
a. Dependent	Variable: US		_				
Tal	ble 4.29: Re	siduals S	tatistics				
	Residuals Statistics ^a						
JS Uni	Minimum	Maximum	C Mean C	Std. Deviation			
Predicted Value	1.0450	4.6940	3.3400	.64922			
Std. Predicted Value	-3.535	2.086	.000	1.000			
Standard Error of Predicted Value	.048	.226	.088	.037			
Adjusted Predicted Va	lue 1.0523	4.6614	3.3471	.64018			
Residual	-1.08259	1.16346	.00000	.36876			
Std. Residual	-2.854	3.067	.000	.972			
Stud. Residual	-3.556	3.222	008	1.043			
Deleted Residual	-1.68056	1.28398	00705	.42784			
Stud. Deleted Residua	al -3.778	3.381	011	1.068			
Mahal. Distance	.777	37.793	5.945	6.307			
Cook's Distance	.000	.998	.026	.114			
O O O K S DIStance		1	1				
Centered Leverage Va	ilue .007	.347	.055	.058			
Centered Leverage Va a. Dependent Varia	lue .007 ble: US	.347	.055	.05			

Haslina Mohd (2009) adds that multiple regression analysis would generate 1 or more models in identifying the relationship between the variance of independent and dependent variables. Otherwise, the selected model is the best amongst the models created. The power or beta value ( $\beta$ ) is very highwhen it is closed to 1.0 and minimum if the value is 0 (Haslina Mohd, 2009; Yong, 1997). To test this hypothesis, standard (simultaneous) regression analysis was carried out, as the most appropriate model for this study. Haslina Mohd (2009) supports the equation by Miles and Shevlin (2001), which is

 $Y = B_1 X_1 + B_2 X_2 + \ldots + Constant$ 

where Y is the dependent variables and X is the independent variables.

For this study, the mean values between 1 and 1.67 is considered as low, between 1.68 and 3.34 is moderate, and between 3.35 and 5.00 is considered high.

User Satisfaction Level can be determined through the following formula. Level of US

 $= (B_1PU_1) + (B_2PEOU_2) + (B_3S_3) + (B_4T_4) + (B_5L_5) + (B_6C_6) + \text{constant}$ = 0.286 (3.3855) + 0.117 (3.4) + 0.508 (3.4773) + 0.01 (3.3864) + -0.97 (3.4091) + 0.145 (3.0909) + 0.84

= 0.968253 + 0.3978 + 1.7664684 + 0.033864 + (-3.306827) + 0.4481805 + 0.84

= 1.15

Based on the calculation, the results show that US level in this study is 1.15, which indicates a low satisfaction. Therefore, this study concludes that the users of APDM are not satisfied because learning to operate the APDM is not easy, getting started the APDM is not easy, and time to learn to use the system is slow. Otherwise, in terms of system capabilities, the speed is average, sometimes slow, and responsetime fo rmost operations is not fast enough.Besides that, in terms of terminology, most of the users do not understand the terminologies related to the APDM.

The results of regressive analysis on the four independent variables towards User Satisfaction are shown inTables 4.22 through 4.29. The  $R^2(0.870^b)$  in the model summary (Table 4.25) shows the correlation of the independent variables PU, PEOU, S, L, T, and C with US as the dependent variable.

Similarly, the  $R^2(0.756)$  is used to describe variance. Therefore, the R square explained the  $R(0.870)^2$ . Based on theANOVA table, the F value of 53.209 is significant at the 0.000^b level. Given these points, F value is actually the first mean square (regression) divided by the second mean square (Residual) [(7.657) / (0.144) = F].

# Universiti Utara Malaysia

*df* represents the degree of freedom that corresponding to the first number, which explained the number of independent variables (6), the second number (103) explained the total number of complete responses. The total number of complete responses can be proved by (N-K-1)[(110)-(6)-1], which equal to the total number of completed responses(103).

(N) represents all variables in the equation and (K) represents the number of independent variables. Under those circumstances, coefficients table will classify which of the independent variables impact variance in US the most.

Therefore, in the coefficient table, the Beta's column under standardized coefficient shows the highest number of -0.089 for learning (L), which was significant at the  $0.000^{b}$  level.

## 4.10 Summary of the Chapter

This chapter describes the overall findings of this study based on the various data analyses.


# CHAPTER FIVE DISCUSSIONS

#### 5.1 Overview

This chapter discusses the findings presented in Chapter 4. The chapter begins by providing an overview of the respondents' profiles. This is followed by deliberating the discussions on the results of descriptive statistics, hypotheses testing using the Analysis of Variance (ANOVA), and multiple regression analysis which are related to the variables in the research model. The discussions regarding the mean values of the factors and the validation of the research model are also included.

## **5.2 Discussion of Respondents Profiles**

Table 4.1 in Chapter 4 shows that five secondary schools with 110 class teachers have involved in this study. Out of the 110 teachers, the lowest number of respondents is from SPK (6). The reason of the small number of participation is mainly due to their busy schedules in getting ready for the *"Sijil Peperiksaan Malaysia* (SPM)" that will start in two weeks. Therefore, most of the teachers in SPK are not available during the data collection period. Most of the participating schools (93.6%) are situated in the rural areas. Among all the participating class teachers, 71.8% of them are female, aged between 41 and 50 years old (47.3%) where 98.2% of them are Malays. Almost all of them (93.6%) are married. Most of the respondents are form 2 and form 3 class teachers (16.4%) with three to four years teaching experience.

## **5.3 Discussion of the results from Descriptive Statistics (Mean Values)**

Tables 5.1, 5.2, and 5.3 summarize the results of the mean values of the related factors in this study which are adapted from the Information Systems (IS) Success Model by DeLone and McLean (1992), Technology Acceptance Model (TAM) by Davis (1989), and Questionnaire User Interface Interaction Satisfaction (QUIS) by Shneiderman (2005).

Factors	Kubang Pasu Secondary	Comments
TI UTARA	School	
	Mean Values	
1. User Satisfaction (US)	3.340	The highest mean value is
2. Perceived Usefulness (PU)	3.386	Screen (S) (3.477).
3. Perceived Ease of Use	3.400	
(PEOU)		The lowest mean value is
4. Screen (S)	3.477	Capabilities (3.091).
5. Terminology (T)	3.386	
6. Learning (L)	3.409	
7. Capabilities (C)	3.091	

Table 5.1:Summary of the Mean Values for all factors

Measurement scale: 1-Strongly Disagree; 2-Disagree; 3-Moderately Disagree; 4-Agree; 5-Strongly Agree

Referring to Table 5.1, almost all factors score moderate mean values. The highest mean is Screen (S) factor (3.477) followed by Learning (L) (3.409) and Perceived Ease of Use (PEOU) (3.400). Next are Perceived Usefulness (PU) and Terminology

(T) (3.386). User Satisfaction (US) factor (3.340) is the second lowest while Capabilities (C) (33.091) is the lowest.

Table 5.2: Summary of User Satisfaction, Perceived Usefulness, and Perceived Ease

## of Use

Factors	Variables	Kubang Pasu	Comments
		Secondary	
		School	
		Mean Values	
1.User	1.Prototype is very	3.363	The lowest mean value in User
Satisfaction	useful (US01)		Satisfaction (US) is prototype has
(US)	2.Satisfied with	3.327	adequate power' (US04) (3.309).
	prototype system		
	(US03)	rsiti Utara	Malavsia
BUD BUD	3.Prototype has	3.309	The highest mean value in User
	adequate power		Satisfaction (US) is 'prototype is
	(US04)		very useful' (US01) (3.363).
	4. Prototype system	3.345	
	is simulating (US05)		
	5. Prototype system	3.354	
	is flexible (US06)		
2.Perceived	1.Accomplish task	3.445	The lowest mean value in Perceived
Usefulness	more quickly		Usefulness (PU) is 'improve job
(PU)	(PU01)		performance' (PU06)(3.336).

	2. Enhances the	3.390	
	quality of work		
	(PU02)		The highest mean value in Perceived
	3. Make job easier	3.363	Usefulness (PU) 'accomplish task
	(PU03)		more quickly' (PU01)(3.445).
	4. Increase	3.390	
	productivity (PU05)		
	5. Improve job	3.336	
	performance (PU06)		
3.Perceived	1. Clear and	3.327	The lowest mean value in Perceived
Ease of Use	understandable		Ease of Use (PEOU) is 'clear and
(PEOU)	(PEOU02)		understandable' (PEOU02)(3.327).
IAE .	2. Easy to become	3.340	
	skillful (PEOU03)		
dism.	3. Easy to use	3.472 Utara	The highest mean value in Perceived
BUI	(PEOU04)		Ease of Use (PEOU) is 'easy to use'
			(PEOU04) (3.472)

Measurement scale: 1-Strongly Disagree; 2-Disagree; 3-Moderately Disagree; 4-Agree; 5-Strongly Agree

Referring toTable 5.2, the highest mean value for User Satisfaction (US) factor is scored by prototype is very useful' (3.363). Thefollowing are as follows; 'prototype system is flexible' (3.354), 'prototype system is simulating' (3.345), 'satisfied with prototype system' (3.327). The lowest is 'prototype has adequate power' (3.309). In general, all US factors have moderate mean score.

The highest mean value for Perceived Usefulness (PU) factors is obtained by 'accomplish task more quickly' (3.445). The subsequent factors are 'enhances the quality of work' and 'increase productivity' (3.390). The second lowest is 'make job easier' (3.363) whilst the lowest is 'improve job performance' (3.336). The results indicate that the respondents accept those PU factors positively.

For the Perceived Ease of Use (PEOU) factors, the highest is scored by 'easy to use' (3.472), followed by 'easy to become skillful' (3.340) while the lowest is 'clear and understandable' (3.327). Similar to PU, the participants also view PEOU positively.

Sub Factors	Variables	Kubang Pasu Secondary	Comments
ilinit BUDI	Univers	Mean Values	lalaysia
1.Screen (S)	1.Screen layout very	3.490	The lowest mean value in
	helpful (S01)		Screen (S) is 'the information on
	2.The information on	3.390	screen are adequate'
	screen are adequate		(\$02)(3.390).
	(\$02)		
	3.The information on	3.509	
	screen is logical (S03)		The highest mean value in
	4.Sequences on next	3.481	Screen (S) is sequences on
	screen are predictable		previous screen are possible'

Table 5.3: Summary of Sub Factors Screen, Terminology, Learning and Capabilities

	(\$05)		(\$06)(3.518).
	5.Sequences on	3.518	
	previous screen are		
	nossible (S06)		
		0.170	
	6.The progression of	3.472	
	work clearly marked		
	(\$07)		
2.Terminology	1.Terminology is on	3.473	The lowest mean value in
(T)	screen precise (T06)		Terminology (T) is error
	2.Consistent message	3.482	messages prompt is helpful'
NTA	on screen (T07)		(T15)(3.309).
SI A	3.Prompt for input is	3.427	
VER	clear (T09)		
	4.Controlling of	3.382	The highest mean value in
	feedback is easy	iti Utara M	Terminology (T) is 'consistent
BUDI	(T13)		message on screen'
	5.Length of delay is	3.318	(T07)(3.482).
	acceptable (T14)		
	6.Error messages	3.309	
	prompt is helpful		
	(T15)		
	7.Error messages	3.327	
	always clarify problem		
	(T16)		
	8.Phrasing of error	3.372	

	messages is pleasant		
	(T17)		
3.Learning (L)	1.Time to learn is fast	3.446	The lowest mean value in
	(L03)		Learning (L) is 'number of steps
	2.Task performed in	3.409	is just right' (L05)(3.336).
	straight forward		
	manner (L04)		
	3.Number of steps is	3.336	
	just right (L05)		The highest mean value in
	4.Complete task is	3.418	Learning (L)is'time to learn is
NTA)	logical sequence (L06)		fast' (L03)(3.446).
SIA	5.Feedback of	3.436	
	completion is clear		
	(L07)		
4.Capabilities	1.Fast enough (C01)	2.963 tara M	The lowest mean value in
(C)	2.Response time is fast	2.981	Capabilities (C) 'fast enough'
	enough (C02)		(C01) (2.963).
	3.Rate displayed is	3.109	
	fast enough (C03)		
	4.Reliable (C04)	3.290	The highest mean value in
	5.System failure	3.090	Capabilities (C) is 'reliable'
	seldom occurred (C05)		(C04) (3.290).
	6.System always	3.109	
	warns about potential		
	problem (C06)		

Measurement scale: 1-Strongly Disagree; 2-Disagree; 3-Moderately Disagree; 4-Agree; 5-Strongly Agree

Table 5.3exhibits that the highest mean value of Screen (S) factor is 'sequences on previous screen are possible' (3.518). The second is 'the information on screen is logical' (3.509), followed by 'sequences on next screen are predictable' (3.481), 'screen layout very helpful' (3.490), and 'the progression of work clearly marked' (3.472). The lowest is 'the information on screen are adequate' (3.390). Again, the participants are being positive about the Screen (S) factor.

In terms of the Terminology (T) factor, 'consistent message on screen' is the highest (3.482), followed by 'terminology on screen is precise' (3.473), 'prompt for input is clear' (3.427), 'controlling of feedback is easy' (3.382), 'phrasing of error messages is pleasant' (3.372), 'error messages always clarify problem' (3.327), and 'length of delay is acceptable' (3.318). The 'error messages prompt is helpful' (3.309) is the lowest. Therefore, it can deduced that all participants view the factor positively.

The highest mean value of Learning (L) factor is 'time to learn is fast' (3.446), followed by 'feedback of completion is clear' (3.436), 'complete task is logical sequence' (mean value = 3.418), and 'task performed in straight forward manner' (3.409). The lowest is 'number of steps is just right' (3.336). Based on the meanscores, the Learning (L) factor has also been viewed by participants positively.

For the Capabilities (C) factor, the highest is scored by 'reliable' (3.290). This is followed by 'rate displayed is fast enough' and 'system always warns about potential problem'(3.109), 'system failure seldom occurred' (3.090), and 'response time is fast enough' (2.981).'Fast enough' is the lowest (2.963). Compared to the other factors,

the mean scores for all Capabilities (C) factors is quite low. Nevertheless, the scores can still be accepted as moderate.

User Satisfaction factor is determined based on the results of the Perceived Usefulness and Perceived Ease of Use factors. Under those circumstances, Screen, Terminology, Learning, and Capabilities are also relevant sub factors of Perceived Usefulness and Perceived Ease of Use. These factors are used to get an approximate findings of User Satisfaction factors that influence the adoption of Student Information System.

The only issue relating to the mean score is the low values obtained by the Capabilities (C) factors. However, it does not seriously affected because the mean values are not extremely differs. The only two lowest mean value of all factors are 'fast enough' (2.963) and 'response time is fast enough' (2.981). This conveys that the participants perceive the APDM and its response time as not fast enough. Those factors are somehow influenced by the access time, in which during peak hours and heavy access, the connection tends to slows down. This affects the capability of the system.

The major strength of APDM is Screen (S) which represent one of the User Interface factors. The highest means are obtained by 'sequences on previous screen are possible' (3.518) and 'the information on screen is logical' (3.509). This explains that participants are clear about the screen design and navigation. With that, it strongly contributes to the superiority of APDM.

Table 5.4:Weakest and Strongest items for User Satisfaction (US), Perceived Usefulness (PU), Perceived Ease of Use (PEOU), Screen (S), Terminology (T), Learning (L), and Capabilities (C).

Model	Factors	Kubang Pasu Secondary School		
		Weakest	Strongest	
IS Success	1. User Satisfaction	Prototype has	Prototype is very	
Model	(US)	adequate power	useful (US01)	
		(US04)		
ТАМ	2. Perceived Usefulness	Improve job	Accomplish task	
ATT A	(PU)	performance	more quickly	
		(PU06)	(PU01)	
IVE	3. Perceived Ease of	Clear and	Easy to use	
	Use (PEOU)	understandable	(PEOU04)	
LISTU BUTS	Universi	(PEOU02)	laysia	
QUIS	4. Screen (S)	The information on	Sequences on	
		screen are adequate	previous screen are	
		(S02)	possible (S06)	
	5. Terminology (T)	Error messages	Consistent message	
		prompt is helpful	on screen (T07)	
		(T15)		
	6. Learning (L)	Number of steps is	Time to learn is fast	
		just right (L05)	(L03)	
	7. Capabilities (C)	Fast enough (C01)	Reliable (C04)	

Table 5.4 depicts that the strongest item for User Satisfaction is 'the prototype is very useful' while the weakest is 'prototype has less adequate power'. Meanwhile, the strongest item for Perceived Usefulness is the system 'accomplishes tasks more quickly' while the weakest is 'improve the job performance'. This explains that the system is not able to improve users' performance to become more systematic. For Perceived Ease of Use, the strongest is 'the system is easy to use' while the weakest of the system is 'clear and understandable', which implies that the system is not very clear and not well understood. Regarding the Screen, the strongest is 'the sequences on previous screen is possible', while the weakest is 'the information on screen are adequate". This conveys that the on-screen information is not really adequate. In terms of the Terminology, 'messages are consistent on screen' is the strongest item, while the weakest is 'the error messages prompt is helpful', which explains that the error messages are not helpful enough for the users. For Learning, the strongest item is 'time to learn is fast' while the weakness is 'number of steps is just right'. This indicates that the number of steps is not efficient, therefore, more are expected. In terms of Capabilities, the strongest item is 'reliable' while the weakness is 'fast enough'. This conveys that the system is a little slower than expected.

# 5.4 Discussion of the results from Hypotheses testing using Analysis of Variance (ANOVA) and Multiple Regression Analysis

QUIS is composed of four variables; Screen (S), Terminology (T), Learning (L), and Capabilities (C), whilst the TAM model is composed two factors; (1) Perceived Usefulness (PU) and (2) Perceived Ease of Use (PEOU). The IS Success model is composed of one factor namely User Satisfaction (US). By merging the QUIS, 105

TAM, and IS Success models, 10 hypotheses have been formulated in this study. The results of the Simultaneous Regression Analysis is revealed in multiple regression analysis.

The results of the hypotheses tested between User Interface and System Capabilities and PU, as well as User Interface and System Capabilities and PEOU show a positive significant relationship. Similarly, the results of Entered Multiple Regression show a significant relationship between PU and US and PEOU and US.

## **5.5 Revisiting the Research Model**

The results of this study explain the real issues that influence the implementation of APDM in secondary schools in Kubang Pasu, Kedah as stated in Tables 5.3 and 5.4, in which the technical perspective consists of UI design and System Capabilities. Nevertheless, the findings of this research explain about the model constructed in this study, because all the factors have positive significant relationships. Therefore, the relationships between the factors remain as proposed in the earlier research model. All the relationships have been proven significant.



Figure 5.1: A Multiple Perspectives Acceptance Model adopted prepared by Haslina Mohd (2009) referring to Theoretical framework Figure 1.0 (page 26).

## **5.6 Conclusions**

Based on the results, it can be concluded that the factors which complement the APDM from the Technical Perspective include Screen, Learning, Terminology and System Capabilities; from the Social perspectives are PU and PEOU; and from the behavioral perspectives is User Satisfaction. The model used in this study has been adapted from MP-TAM by Haslina Mohd (2009).

# CHAPTER SIX CONCLUSION

## 6.1 Introduction

This chapter addresses the limitations of this study together with recommendations for future enhancement. This study is carried out to determine the User Interface factors that influence the adoption of APDM in secondary schools in Kubang Pasu, Kedah.

Based on the literatures, as discussed in lengthy in Chapter 2, there are seven potential factors that influence the implementation of APDM; Screen (S), Learning (L), Terminology (T), System Capabilities (C), Perceived Usefulness (PU), Perceived Ease of Use (PEOU), and User Satisfaction (US). This study develops a model by adapting the Multiple Perspectives Technology Acceptance Model (MP-TAM) by Haslina Mohd (2009). In the model, this study only focuses on the User Interface and System Capabilities factors under the technical perspective and the PU and PEOU, and US factors for the non-technical perspectives.

Data have been gathered from five secondary schools in Kubang Pasu, Kedah that are using APDM namely SMK Bandar Baru Sintok, SMK Changlun, SMK Hosba, SMK Mahawangsa, and SMK Paya Kamunting. Based on the results as presented in Chapter 4, this study finds that the model has been fully implemented in the schools. Hence, the class teachers from the five schools were employed as the respondents for this study. All data were analyzed together since the participating schools are using the same system which was installed by the same vendor, with same user interface, and targeted for the same target group. This study also defines the strongest and weakest items of each factor with regards to the APDM.

The model, as illustrated in Chapter 3, indicates the factors that influence the APDM. Based on the model, two research questions have been generated together with 10 hypotheses that test the relationships among the seven variables; Screen (S), Learning (L), Terminology (T), and System Capabilities (C), Perceived Usefulness (PU) and Perceived Ease of Use (PEOU) and User Satisfaction (US).

The survey was conducted in five secondary schools in Kubang Pasu, Kedah. This is to ensure that this study is able to identify the factors that influence the adoption of APDM, the relationships among factors, and the power of the relationships among the factors based on the beta value. The following sections discuss about the achievement of the outlined objectives, major findings, contribution and limitations of the study, as well as recommendations for future enhancement.

### 6.2 Discussion on Achievement of Research Objectives

This study attempts to answer two research questions:

1. What are the User Interface design factors that influence the adoption of Student Information System (SIS).

 What are the relationships among the User Interface design factors with Perceived Usefulness (PU), Perceived Ease of Use (PEOU), and User Satisfaction (US).

The objectives of this study are (1) to determine the user interface design factors that affect the APDM adoption from the behavioral perspective, (2) to identify the relationship among the adoption factors, and (3) to validate the User Interface design factors that influence the APDM adoption from the behavioral perspective using statistical analysis technique.

## 6.2.1 Factors that influence the APDM adoption

The factors in the model were adapted from the MP-TAM model by Haslina Mohd (2009). The identified factors and variables have been proven to have influence on the APDM adoption. Table 6.1 shows that Haslina Mohd (2009) classifies the factors into three perspectives: Technical, Social, and Behavioral. This study determines the relationship among those variables as illustrated in Figure 5.1.

Table 6.1: APDM factors in technical, Social and behavioral perspectives adapted

#### from Haslina Mohd (2009)

Factors	Variables	
Technical 1	Perspective	
User Interface factors (UI)	1.Screen (S)	

	2.Learning (T)
	3.Terminology (L)
	4.System Capabilities (C)
Social Pe	erspective
Perceived Usefulness (PU)	1.Accomplish task more quickly
	2.Improve job performance
	3.Increase productivity
	4.Enhance job effectiveness
	5.Make job easier
	6.Useful in job
Perceived Ease of Use (PEOU)	1.Easy to learn
NA A A	2.Easy to control
	3.Clear and understandable
Universit	4.Flexible in interaction
BUDI BAN	5.Easy to become skillful
	6.Easy to use
Behavioral	Perspective
User Satisfaction (US)	1.US-Helpful
	2.US-Easy
	3.US-Satisfying
	4.US-Adequate
	5.US-Stimulating
	6.US-Flexible

## **6.2.2** The Relationships among the Factors

The validation of the model was based on the relationships among the variables using Linear Regression and Multiple Regression Analysis. The relationships among the factors in the model are shown through 10 hypotheses, which are summarized in Table 6.2.

Table 6.2: Summary of the Accepted Hypotheses among the Factors based on the

Hypotheses	APDM
	Variance (R ² )
H ₁ : Screen has a relationship with Perceived Usefulness	0.534
H ₂ : Screen has a relationship with Perceived Ease of use	0.617
$H_3$ :Terminology has a relationship with Perceived Usefulness	0.605
H4: Terminology has a relationship with Perceived Ease of use	sia ^{0.751}
H ₅ :Learning has a relationship with Perceived Usefulness	0.523
$\mathbf{H}_{6}$ : Learning has a relationship with Perceived Ease of use	0.618
H7:SystemCapabilities has a relationship with Perceived	0.447
Usefulness	
H ₈ :System Capabilities has a relationship with Perceived Ease of	0.483
use	
H ₉ : Perceived Usefulness has a relationship with User Satisfaction	0.614
LUS = $\beta$ 1PU1 + $\beta$ 2PEOU2 + constant	
= (0.439*3.3855) + (0.402*3.4) + 0.486	

## Developed Model



## 6.2.3 Strengths and Relationships among Factors

Haslina Mohd (2009), Miles and Shevlin (2001), and Cohen et al.(1983), argue that the relationships among the factors can be measured through variance ( $\mathbb{R}^2$ ) and the beta value ( $\beta$ ) to identify how strongly the predictor variable influences the criterion variable. The results from the Entered Multiple Regression Analysis showcase that the User Satisfaction (US) level of APDM is 1.15, which is low. PU factor contributes about 61.4%, and PEOU contributes about 59.8% towards the level of User Satisfaction (US). Another, Screen (S) contributes about 53.4%, Terminology (T) contributes 60.5%, Learning (L) contributes 52.3%, and System Capabilities (C) contributes 44.7% towards PU. On the other hand, Screen (S) contributes 61.8%, and System Capabilities (C) contributes 75.1%, Learning (L) contributes 61.8%, and System Capabilities (C) contributes 48.3% towards PEOU. Therefore, it can be deduced that Terminology influences PEOU more compared to the other factors. Capabilities also contribute the lowest score towards PU, which indicates that PU is moderately influenced by System Capabilities.

## 6.2.4 Issues Related to APDM

The findings of this study address the issues in all factors; UI design, PU and PEOU, and US that influence the adoption of APDM in secondary schools. The findings also highlight the issues related to the User Interface and System Capabilities of the APDM used in the five secondary schools in Kubang Pasu, Kedah. Based on the results, the main issues related to System Capabilities, which obtains the lowest mean value of all factors are listed as follows:

- 1) The system was not fast enough
- 2) Response time was not fast enough
- 3) System failure seldom occurred

## 6.3 Contribution of the Study

Thisstudy contributes in many senses to various fields, including to the educational domain and decision makers of the Malaysia Ministry of Education (MOE). Currently, all schools that are registered with MOE (generally all government schools) are using the APDM, which could be accessed anywhere. APDM plays an important role in introducing SIS in the educational process. Hence, the results of this study, which are the factors that influence the adoption of APDM may benefit schools nationwide. While the research model is adapted from the MP TAM by Haslina Mohd (2009), the focus of this study is mainly on the User Interface design. In addition, the results mayhelp in guiding the development of the system, MOE as the contributor, schools, and teachers especially in order to justify the contributions of APDM to our country mainly in educational institutions.

### 6.4 Limitations of the Study

This study recognizes a few minor limitations along the process. However, these minor limitations do not affect the results of study. One of the limitations is that data regarding the APDM implementation were gathered from only five schools in Kubang Pasu. The location between each school covers quite a distance. Secondly,

this study have to get a permission from the MOE and Jabatan Pelajaran Negeri (JPN) Kedah for collecting data. This leads to a waste of time. Thirdly, only 110 usable questionnaires were successfully collected from the teachers because most of them were busy with their preparation for Sijil Pelajaran Malaysia (SPM) examination.

## **6.5 Future Research**

As a response to the limitations outlined in Section 6.4, this section recommends some actions for future enhancement. Firstly, the sample of schools can be increased, involving various other districts in Kedah, and also involve other states in Malaysia. On the other hand, the model could also be added with other factors such as Information Quality (IQ) as well as other suitable theories suitable for the purpose of conducting similar study so that richer findings can be achieved. Eventually, more parties can receive the benefits. However, this may require a bigger budget as this could lead to a policy in the national education system. Therefore, investments by the government are necessary.

## 6.6 Conclusion

This study determines the factors that influence the implementation of APDM among secondary school class teachers. The factors are User Satisfaction (US), Perceived Usefulness (PU), Perceived Ease of Use (PEOU), Screen (S), Learning (L), Terminology (T) and Capabilities (C). The findings are presented in details in Chapter 4 by describing significant influence of User Interface design towards the adoption of APDM from the behavioral perspectives. This study has also achieved its objective to determine the relationships among the adapted factors of APDM and validate the User Interface design factor from the behavioral perspectives based on the Multiple Perspectives Technology Acceptance Model (MP-TAM) adopted from Haslina Mohd (2009).



## REFERENCES

- Adibah Abdul Bari (2015). Factors Influencing Women Enterpreneurs Business Success of SMEs in Malaysia. (Masters Thesis, Universiti Utara Malaysia, Sintok, Kedah). Retrieved from http://etd.uum.edu.my/4676/2/s815727
- Afidatul Asma Hassan (2015). *Factors Affecting Career Choice Among Undegraduate Students in UUM Sintok, Kedah*.(Masters Thesis, Universiti Utara Malaysia, Sintok, Kedah).Retrieved from http://etd.uum.edu.my/4570/
- Ala Abdal-Gader Nemran Al-Dmour (2012). Web Based Student's Attendance System (WSAS).(Doctoral Dissertation, Universiti Utara Malaysia, Sintok, Kedah). Retrieved from http://etd.uum.edu.my/3303/2/ALA_ABDAL-GADER_NEMRAN_AL-DMOUR.pdf
- Al-Adwan, Al-Adwan and Smedley (2013). Exploring Student Acceptance of E-Learning Using Technology Acceptance Model in Jordanian Universities. International Journal of Education and Development using Information and Communicvation technology (IJEDICT), Vol, 9, No.2, PP 4-18, 2013.
- Alharbi and Drew (2014). Using Technology Acceptance Model in Understanding Academics' Behavioural Intention to Use Learning Management Systems.
  (IJACSA) international Journal of Advanced Computer Science and Application, Vol. 5, No.1, 2014.
- Attaran and VanLaar (2001). Managing The Use of School Technology: An Eight Steps Guide for Administrators. Journal of Management Development, vol. 20 Iss 5pp. 393-401.
- Ben. D. H & Kent L. N. (1993). Improving User Satisfaction: The Questionnaire for User Interaction Satisfaction version 5.5. University of Maryland, College Park. Retrieved from http://lap.umd.edu/lap/Papers/Tech_Reports/LAP1993TR02/hn.html
- Bisara, burgin, Ryan, Trummel (1986). A Case Study of Online Information: Second Generation Systems Design.IEEE Transactions on Professional Communications, Vol. PC 29, No. 4, December 1986.
- Chih. S. C., Han S. L., and Yi C. L. (2011). Recent Related research in Technology Acceptance Model A Lliterature Review. Australian Journal of Business and Management Research. Vol. 1, No. 9, [124-127], December 2011.

- Coakes S. (2013). Analysis Without Anguish SPSS version 20.0 for windows.Published by John Wiley & Sons Australia, Ltd., 42 McDougall Street, Milton. Qld 4064.
- Demir K. (2006). School Management Information System in Primary Schools. The Turkish Online journal of Educational Technology – TOJET ISSN:1303-6521, Vol. 5, No.2, Article 6, April 2006.
- Farid Muhammad (2015).Malaysian Muslim Consumer Credit Card Usage Behavior.(Masters Research Paper, Universiti Utara Malasyia, Sintok, Kedah). Retrieved from http://etd.uum.edu.my/5000/2/s816751_abstract.pdf
- Febbraro, A., D. & Sacone, S. (1997). An online Information System to Balance Traffic Flows in Urban Areas. Proceeding of the 36th Conference on Decision & Control San Diego, California USA. December 1997.
- Gable, Sedera and Chan (2008). *Re-conceptualizing Information System Success: The IS –Impact Measurement Model.* Journal of the Association fo Information Systems (JAIS).
- Gemmel and Pagano (2003). A Post Implementation Evaluation of a Student Information System in the UK Higher Education Sector. Electronic Journal of Information System Evaluation, Vol. 6, No.2, pp 95-106, 2003.
- Guo. S, Jiang. J, Zhang.J.(2010).Architecture Design of Campus Information Convergence System for E-Learning Based on Web Service Technology.Retrieved from https://www.holaportal.com/publication/architecture-design-of-campusinformation-convergence-system-for-e-learning-based-on-web-servicetechnology-44327/
- Gu. Y, Warren. J, Stanek. J, Suthers. G.(2006). A System Architecture Design for Management (KM)in Medical Genetic Testing (MGT)Laboratories. Proceeding of the 10th International Conference on Computer Supported Cooperative Work in Design.
- Gurunathan, P. Pandian. S.(2008). A New Tool for Web-based Educational System. Fourth International Conference on Natural Computation (ICNC) 2008,IEEE.Retrieved from http://ieeexplore.ieee.org/document/4667955/

- Haslina Mohd.(2009). A Multiple Perspectives Technology Acceptance Model For Electronic Medical Records. Universiti Sains Malaysia.
- Hasna Lumpingan Landasan (2015). Shariah Risk Management Practices of Islamic Banks in Malaysia. (Masters Research Paper, Universiti Utara Malaysia, Sintok, Kedah). Retrieved from http://etd.uum.edu.my/4686/2/s814593_abstract.pdf
- Muhammad Musa Hayatu (2005).Assessment of Information Management in Primary and secondary Schools Ahmadu Bello University, Zaria.(Master's thesis, Ahmadu Bello University, Zaria). Retrieved from http://kubanni.abu.edu.ng:8080/jspui/bitstream/123456789/2305/1/HAYATU, %20MUHAMMAD%20MUSA.pdf
- Norin Farizah Mohd Nuin (2013). *Pelaksanaan SMM dan APDM dalam Pengurusan Data Murid*.(Masters Thesis, Universiti Malaysia Sabah, Sabah). Retrieved from http://eprints.ums.edu.my/10734/1/mt000000582.pdf

Hayder Sabah Abdul Wahid (2015). *Requirements for Designing the Interface of Iraqi E-Governement Portal*.(Masters Thesis, Universiti Utara Malaysia, Sintok, Kedah). Retrieved from http://etd.uum.edu.my/4512/2/s812205_abstract.pdf

- Hema Subramaniam (2015). The Influence of Human Resource Management Practices and Proactive Personality on Job Performance among Commercial Bank Employees.(Masters Thesis, Universiti Utara Malaysia, Sintok, Kedah). Retrieved fromhttp://etd.uum.edu.my/4927/2/s816696_abstract.pdf
- Jiang, Y. and Wang. C.(2013).Flood Information System Architecture Research Based on Enterprise Architecture. 2013 International Conference on Information Technology and Applications.
- Kremelberg, D. (2011). Practical Statistics. SAGE Publications Ltd., United States of America
- Liu. Z, Wang. H, and Zan, H. (2010). Design and Implementation of Student Information System. 2010 International Symposium on Intelligence Information Processing and Trusted Computing.
- Lun. L, and Chi. X.(2010). On the Relation of Software Architecture Testing Criteria in the C2 Style.Advanced Computer Theory and Engineering (ICACTE),2010, IEEE.Retrieved from http://ieeexplore.ieee.org/document/5579050/

- Lu. X, Duan. H, Li. H, Zhao. C, and An. J.(2005). The Architecture of Enterprise Hospital Information System. Proceeding of the 2005 IEEE Engineering and Biology 27th Annual Conference Shanghai, China.
- Machanda and Mukherjee (2004). A Review of Information System Success Model. International Journal of Innovative Research in Technology and Science (IJIRIS). ISSN: 2321-1156.
- Madiha Shah (2013). Impact of Management Information System (MIS) on School Administration : What the Literature Says. 5th World Conference on Educational Sciences-WCES 2013.
- Marcial, D.E. (2012). Information System Strategic Planning in Higher Education Instituitions in the Philiphines. Paper presented at the 10th National Conference on IT Education, Northwestern University, Laoag City, Ilocos Norte.
- Mei, S.L.(2014). An Investigation on Factors of Work Stress Influence Job Performance: Moderating by Social Support. (Masters Thesis, Universiti Utara Malaysia, Sintok, Kedah). Retrieved from http://etd.uum.edu.my/4157/1/s814096.pdf
- Mei. S. J, Chang. L. Q, and Jing. L.(2012). The Designment of Student Information Management System Based on B/S Architecture. Consumer Electronics, Communications and Networks (CECNet), 2012 2nd International Conference on 2012, IEEE.
- Mesfin, W. F.(2012). Mobile Information Systems Architecture for Everyday Money Practice. MEDES'2012, October 28-31, 2012, Addis Ababa, Ethiopia, Copyright © 2012 ACM 978-1-4503-1755-9/10/10
- Mojgan Afshari, Kamariah Abu Bakar, Wong, S.L., & Saedah Siraj (2012). Factors Affecting the Transformational Leadership Role of Principals in Implementing ICT in Schools. The Turkish Online Journal of Educational Technology, Vol.11, No.4, October 2012.
- Mojgan Afshari, Kamariah Abu Bakar, Wong, S. L., Bahaman Abu Samah & Foo, S. F. (2008). School Leadership and Information Communication Technology. The Turkish Online Journal of Educational Technology – TOJET ISSN : 1303-6521, Vol. 7,No.4, Article 9, October 2008.
- Mohamed Farah Abdi (2015). Determinants of Customer's Intention to Use Islamic Pawn Broking (Ar-Rahnu)Scheme: A Case Study of (UPSB) StaffS in

*UUM*.(Masters Thesis, Universiti Utara Malaysia, Sintok, Kedah). Retrieved from http://etd.uum.edu.my/4921/2/s816860_abstract.pdf

- Mohd Izwan Mohd Azman (2015). Learning Organisation and Job Performance Among Uitm Perlis Staff. (Masters Thesis, Universiti Utara Malaysia, Sintok, Kedah). Retrieved from http://etd.uum.edu.my/4718/2/S812369_abstarct.pdf
- Mohd Idzwan Salleh et al. (2010). Design of Integrated Online Information System for E-Commerce Adoption an Efficient Records Management Among Malaysian Business. 2010 International Conference on Science and Social Research (CSSR 2010), December 5-7,2010, Kuala Lumpur Malaysia.
- Mosawi, N. (2015). Thirdparty Recognitions, Perceived Product Related Risk, and Perceived Ease of Use Among Online Consumer Trust. The Moderating Role of Internet Experience. Pakistan Journal of Commerce and Social Sciences 2016, vol. 10 (2), 239-256.
- Muhammad Firos Mustaffa (2014). Relationship Between Human Resources Practices on The Effectiveness Talent Management Programme Among Generation Y. (Masters Thesis, Universiti Utara Malaysia, Sintok, Kedah). Retrieved from http://etd.uum.edu.my/4166/
- Navasa, A., Perez, M.A., Murillo, J. M.(2009). Developing Aspect-Oriented Software Architectures: A Framework Definition. 2009 Fourth Conference on Software Engineering Advances.
- Ndede, A. (2013). Information Systems Education in Kenya: Students Specialization Choice Trends (A case study of Kenya Polytechnic university College). International Journal of Education and Development Using Information Technology (IJEDICT), Vol. 9, No.3, pp. 137-161, 2013.
- Noor Faezah Basary (2014). *The Acceptance of Waqf Instituitions Establishment in UUM*.(Masters Thesis, Universiti Utara Malaysia, Sintok, Kedah). Retrieved from http://etd.uum.edu.my/4685/2/s812880_abstract.pdf
- Nur Ain Saad (2015). Factors Influencing Workplace Deviance Behaviour Among Generation X and Y.(Masters Thesis, Universiti Utara Malaysia, Sintok, Kedah). Retrieved from http://etd.uum.edu.my/4615/2/s815294_abstract.pdf

- Nur Fatin Md Khalid (2015). Factors Influencing International Student's Decision to Study in UUM.(MastersThesis, Universiti Utara Malaysia, Sintok, Kedah). Retrieved from http://etd.uum.edu.my/4628/2/s812396_abstract.pdf
- Nur Hafizah Sukhri (2015). Examining the Relationship Between Job Demands, Job Resources and Work Engagement Among Academics in Malaysia. (Masters Thesis, Universiti Utara Malaysia, Sintok, Kedah). Retrieved from http://etd.uum.edu.my/4623/2/s813575_abstract.pdf
- Pallant, J. (2013). A step by step guide to data analysis using IBM SPSS. 5th Edition. Copyright Licensing Ltd of Saffron House, 6-10 Kirby Street, London, ECIN 8TS.
- Park, S. Y. (2009). An Analysis of the Technology Acceptance model in Understanding University Student's Behavioral Intention to Use E-Learning. Educational technology and Society, 12(3), 150-162.
- Rabin, M. (1992). Making Company Information Accesible: How to Develop An Online Information System.IEEE Transactional on Professional Communication. Vol. 35. No.1. March 1992.
- Sau, K. Y. (2015). A Study on the Factors That Influence Job Satisfaction Among Lectures in UUM. (Masters Thesis, Universiti Utara Malaysia, Sintok, Kedah). Retrieved from http://etd.uum.edu.my/4583/2/s813315_abstract.pdf
- Sekaran, U. (2003). *Research Methods For Business*. 4th Edition.Replika PressPvt. Ltd., Kundli 131028. India.
- Sittig, D. F., Kuperman, G. J, and Fiskio, J.(1999). Evaluating Physician Satisfaction Regarding User Interactions with an Electronic Medical Record System. Clinical Systems Research & Development, Partners Healthcare System, 850 Boylston Rd, Suite 202, Chestnut Hill, MA 02467. Retrieved from http://pubmedcentralcanada.ca/pmcc/articles/PMC2232602/pdf/procamiasymp 00004-0437.pdf
- Sivalingam (2015). Factor Influencing Postgraduate Student Satisfaction Towards Non Academic Staff Behaviour In UUM.(Masters Thesis, Universiti Utara Malaysia, Sintok, Kedah). Retrieved from http://etd.uum.edu.my/4614/7/s815501_abstract.pdf

- Song, H., Xiao, J., Su, D., Sun., W, X. Z.(2009). Design and Realizzation of Stock Information System Architecture Based on Business Intelligence. The 1st International Conference on Information Science and Engineering (ICISE2009).
- Sou, J. L. R.(2011). Information Systems Architecture Modeling Based on Loosely Coupled Structures: An E-Learning Use Case.ICETA 2011. 9th IEEE International Conference on Emerging eLearning Technologies and Applications.October 27-28,2011,Satra Lesna, The High Tatras, Slovakia.
- Subramaniam (2015). Embeddedness and Non Financial Performance Among Malaysian Indian Ethnic Entrepreneur in Selangor Klang Valley, Malaysia. (Masters Thesis, Universiti Utara Malaysia, Sintok, Kedah). http://etd.uum.edu.my/4622/
- Surendran (2012). Technology Accptance Model: A Survey of Literature.International Journal of Business and Social Research (IJBSR), Vol.2, No.4, August 2012.
- Tsadimas, A., Nikolaidu, M., Anagnostopoulos, D. (2010). Evaluating Software Architecture in a Model-Based Approach for Enterprise Information System Design. Proceeding SHARK'10, Proceedings of the 2010 ICSE Workshop on Sharing and Reusing Architectural Knowledge Pages 72-79. ACM.

## Appendix A

# "Aplikasi Pangkalan Data Murid" (APDM)





-		Pangkalan Data Murid KEMENTERIAN PELAJARAN MALAYSIA "SEKOLAH UNGGUL, PENJANA GENERASI GEMILANG"
	Aplikasi • Tukar Katalalua	WBA0068 SK COCHRAME
	* Data Murid	

Pendaftaran Kelas		la dite	Alteriality	Data Street Street	(
Pendaftaran Tahun 1		Darjan	Nama Kelas	Guru Kelas	Tambah Kelas
Permohonan	1	D2	1 CANNA		Kemasion Padam
Asrama 1 Malaysia	2	D2	1 INORA		Kemaskini Padam
Menengah	3	D2	1 JASMINE		Kemaskini Padam
entaksiran	4	D2	1LEY		Kemaskini Padam
rentaksnun	5	D2			Kemaskini, Padam
	6	D3	2 CANNA		Kemaskini Padam
		52	2 TVODA		Wanted to Barding

.

Nama Kelas	: CANNA		
Nama Guru Kelas	: ALI BIN AHMAD		
No. KP Guru Kelas	; 751012048827	Contoh: 751012048827	
1611	11-		
	Kemaskini) R	ESET	
	(Kemaskini) R	ESET	
# Darjah	(Kemaskini) R	ESET Guru Kelas	Tambah Kelas

No. KP Guru Kelas	751012048827	Contoh: 751012048827
Nama Guru Kelas	ALI BIN AHMAD	
Nama Kelas	CANNA	
Tingkatan / Tahun	TAHUN SATU	
Kelas		

Kelas				
Tingkatan / Tahun		TAHUN SATU		
Nama Kelas Nama Guru Kelas		CANNA ALI BIN AHMAD		
No. KP Guru Kelas	1	751012048827	Contoh: 751012048827	
Matanalatana	1		Rabara Danahastan	
Platapelajara	Matapelajaran		banasa rengnantar	
Sains	Bahasa Malaysia		Bahasa Inggeris	Dwi Bahasa
Matematik	C Bahasa M	alaysia	C Bahasa Inggeris	C Dwi Bahasa

Kemaskini Maklumat Kelas

#	Darjah	Nama Kelas	Guru Kelas	Tambah Kelas	
1	D1	CANNA	ALI BIN AHMAD	Kemaskini Padam	

9	Pangkalan KEMEN	Data Murid	PELAJAI	RAN MA	LAYSIA	A P
	"SEKOLAH UNG	GGUL, PENJANA GE	NERASI GEMILA	NG"		T AD
Aplikasi	HAS	LINDA BINTI KAMARUDD	IN			
Data Morid	UDI BAR	Unive	ersiti	Utara	Malay	sia
Utiliti						
Laman Utama						
Log Keluar						

Aplikasi	HASLINDA BINTI KAMARUDD	IN		
• Data Murid	Padam Murid			
telilei	No. Kad Pengenalan	051224050438	No. Sijil Lahir	BQ18539
Junici	Nama	AINUL HAZYAH BINTI NORHISHAML	JOIN	
Laman Utama	Sebab Padam	DTI TH SERAE DADAM		
Log Keluar		-PILIH SEBAB PADAM-		
	Padam Murid	Berhenti Sekolah Berpindah Ke Luar Negara Berpindah Ke Sekolah Agama Raky Berpindah Ke Sekolah Swasta Lapor Diri Meninggal Dunia Mohon Pertukaran Antara Negeri Mohon Pertukaran Dalam Negeri Tiada Maidumat Tidak Lapor Diri	at	

Aplikasi	HASLINDA BINTI KAMARUDDIN			
• Data Murid	Jumla	h Murid : 15		
	Kelas	:D1 GIGIH		
		No. KP	Nama	Daftar Murid
Itiliti	1	051224050438	AINUL HAZYAH BINTI NORHISHAMUDIN	Padam emaskini Kelas
Laman Utama	2	050113100709	AZ DANISH FARHANSHAH BIN ZAMRI	Padam Kemaskini Kelas
Log Keluar	8 3	051221030087	DANISH FIRDAUS BIN FARID	Padam Kemaskini Kelas
IS A	34	051109101359	FIZI PUTRA BIN AMIR	Padam Kemaskini Kelas
	5	050924101457	MEOR QARMEN AQIL BIN MUHAMMAD JOHAN HAIQAL LAMA	Padam Kemaskini Kelas
12	6	051103030641	MOHAMAD FAIZ SYAWAL BIN MOHAMAD ZAKI	Padam Kemaskini Kelas
	7	051230140181	MUHAMMAD AFIQ FARTHIN BIN NAZRI	Padam Kemaskini Kelas
	8	051027100619	MUHAMMAD AKMAL BIN AHMAD SHUKRI	Padam Kemaskini Kelas
	9	050918140193	MUHAMMAD SHAZRIL HAIKAL BIN SHAIFUL ANUAR	Padam Kemaskini Kelas
	10	050528100583	MUHAMMAD SYAKIR HARITH BIN SUGIMAN	Padam Kemaskini Kelas
	11	051218101470	NUR ALTAH ALLIN BINTI HAZWAN A MA AVS	Padam Kemaskini Kelas
	B. 12	050829100210	NUR AMIRA BALQIS BINTI SAZALI	Padam Kemaskini Kelas
	13	050205100888	SITI NURATIKAH BINTI FAUZUFUADI	Padam Kemaskini Kelas
	14	050719100703	SYAIFULLAH BIN SYAMSURI	Padam Kemaskini Kelas
	15	050927141593	WAN MUHAMMAD IZUAN AZRI BIN AZAM	Padam Kemaskini Kelas

Aplikasi	HASL	HASLINDA BINTI KAMARUDDIN				
Data Murid	Jumla	h Murid : 15				
	Kela	s:D1 GIGIH				
	#	No. KP	Nama	Daftar Murid		
Utiliti	1	051224050438	AINUL HAZYAH BINTI NORHISHAMUDIN	Padam Kemaskini Kelas		
Laman Utama	2	050113100709	AZ DANISH FARHANSHAH BIN ZAMRI	Padam Kemaskini Kelas		
Log Keluar	3	051221030087	DANISH FIRDAUS BIN FARID	Padar Kemaskini Kelas		
	4	051109101359	FIZI PUTRA BIN AMIR	Padam Kemaskini Kelas		

Aplikasi		
Data Murid	HASLINDA BINTI KAMARUDDIN	
	Kemaskini Kelas Murid	
Litiliti	Murid	AINUL HAZYAH BINTI NORHISHAMUDIN
o card	Kelas	D1 GIGIH
Laman Utama		
<ul> <li>Log Keluar</li> </ul>	Kemaskini Batal	

Aplikasi	HASL	HASLINDA BINTI KAMARUDDIN				
• Data Murid	Jumla	h Murid : 15				
	Kela	:D1 GIGIH				
		No. KP	Nama	Daftar Murid		
Utiliti	1	051224050438	AINUL HAZYAH BINTI NORHISHAMUDIN	Padam Kemaskini Kelas		
Laman Utama	2	050113100709	AZ DANISH FARHANSHAH BIN ZAMRI	Padam Kemaskini Kelas		
• Log Keluar	3	051221030087	DANISH FIRDAUS BIN FARID	Padam Kemaskini Kelas		
	4	051109101359	FIZI PUTRA BIN AMIR	Padam Kemaskini Kelas		

Aplikasi	HASLINDA BINTI KAMARUDDIN	
Data Murid		
	Mykid / No. KP	Pilihan carian data
	No. Siji Lahir	sedia ada
Juiliti and a second	C No. Pasport	
Laman Utama	CiTiada Dokumen Pilihan pengisian data ba	ru
Log Keluar	Teruskan	Malakiala

Aplikasi	HASLINDA BINTI KAMARUDDIN					
• Data Murid						
	MyKid / No. KP	051206102126				
	C No. Siji Lahir					
Utiliti	C No. Pasport					
Laman Utama	C Tiada Dokumen					
Log Keluar	Teruskan					
Aplikasi	HASANAH BINTI HAMID					
--------------------------------	--------------------------------------------------------------------------------------------------------	--	--	--	--	--
Data Murid						
	Murid AHMAD ASHRAF BIN AHMAD (No. KP:021112141591) sudah mendaftar di sekolah Tingkatan/Tahun D4 CANNA					
	C MyKid / No. KP					
Utiliti	C No. Sijil Lahir					
Laman Utama	C No. Pasport					
<ul> <li>Log Keluar</li> </ul>	C Tiada Dokumen					
	Teruskan					

	HASLINDA BINTI KA	AMARUDDIN					
Data Murid							
	No. Kad Pennenalan	051206102126		No Gill	ahir 8051348	_	
	Mana Alama						
tiliti	Tarib i shir	06/12/2005	C STHE LOAN	Jacina	DEDEMOLIAN		
	Tel Mol Les II	00/12/2005		Januna	PEREMPORIA		
Laman Utama	Kaum	INDIA		Agama	ISLAM		
Log Keluar	Warganegara	PILIH WARGANEGARA		Negara /	Asal TIADA		
	Alamat NO. 10 JA	LAN 1/8		OKU	TIADA		
	BANDAR 1	TEKNOLOGI					
	SEMENYIH	1					
	Poskad 43500			Negeri	SELANGOR		
	Seterusnya Batal						
Aplikasi Data Mund	HASLINDA BINITI K	AMARUDDIN Iri prasekolah pada 2011	Uta	ra M	alaysi	a	
Aplikasi Data Mund	HASLINDA BINTI K	AMARUDDIN Iri prasekolah pada 2011	Uta	ra M	alaysi	a	
Aplikasi • Data Murid Utiliti • Laman Utama	HASLINDA BINTI K Pernah menghadi Agensi Pelaksana Nama	AMARUDDIN Iri præsekoleh pada 2011	Uta	ra M SWASTA Tadika Tunas Bess	alaysi 	ia	
Aplikasi • Data Murid Utiliti • Laman Utama • Log Keluar	HASLINDA BINTI K Pernah menghad Agensi Pelaksana Nama Alamat	AMARUDDIN Iri prasekolah pada 2011	Uta	SWASTA Tadika Tunas Bess No. 2, Jalan 3/7, 43000	lalaysi 	1 <b>0</b>	
Aplikasi Data Mund Htiliti Laman Utama Log Keluar	HASLINDA BINITI K Pernah menghad Agensi Pelaksana Nama Alamat	AMARUDDIN Iri prasekolah pada 2011	Uta	TA M SWASTA Tadika Tunas Bes Yo. 2, Jalan 3/7, 43000	alaysi Tari IT Bandar Teknologi, Kajar	1 <b>a</b>	

HASLINDA BINTI KA	AMARUDDIN							
No. Kad Pengenalan	051206102126			No. Sij	il Lahir	BQ51348		
Nama	SHAVENIE ELYANA	BINTI MOHD S	HAHIDAN 6	BALAN ABDULI	AH			
Tarikh Lahir	06/12/2005			Jantin	a	PEREMPUAN		
Kaum	INDIA			Agama		ISLAM		
Warganegara	PILIH WARGANEGARA			Negara Asal		TIADA	_	
Alamat NO. 10 JA SEKSYEN BANDAR T SEMENYI	LAN 1/8 1 TEKNOLOGI H	-		OKU	TIADA			
Poskod 43500				Negeri	SELAN	IGOR		
	HASLINDA BINI I KA No. Kad Pengenalan Nama Tarikh Lahir Kaum Warganegara Alamat NO. 10 JA SEKSYEN BANDAR SEMENTD Poskod 43500	No. Kad Pengenalan 051206 102126 Nama SHAVENIE ELYANA 1 Tarikh Lahir 06/12/2005 Kaum INDIA WarganegaraPILIH WARGANEG Alamat NO. 10 JALAN 1/8 SEKSYEN 1 BANDAR TECNOLOGI SEMENYIH Poskod 43500	HASLINDA BINTI KAMARUDUIN         No. Kad Pengenalan       051206 102126         Nama       SHAVENIE ELYANA BINTI MOHO S         Tarikh Lahir       06/12/2005         Kaum       INDIA         Warganegara       -PILIH WARGANEGARA         Alamat       NO. 10 JALAN 1/8 SEKSYEN 1 BANDAR TECNOLOGI SEMENYIH         Poskod       43500	No. Kad Pengenalan 051205 102125 Nama SHAVENIE ELYANA BINTI MOHO SHAHIDAN F Tarikh Lahir 06/12/2005 Kaum INDIA • Warganegara •PILIH WARGANEGARA • Alamat NO. 10 JALAN 1/8 SEKSYEN 1 BANDAR TEKNOLOGI SEMENYIH •	HASLINDA BINTI KAMARUDDIN         No. Kad Pengenalan       051205 102126         Nama       SHAVENIE ELYANA BINTI MOHD SHAHIDAN BALAN ABDULI         Tarikh Lahir       06/12/2005         Jantini       Kaum         INDIA       Agama         Warganegara       -PILIH WARGANEGARA         Alamat       NO. 10 JALAN 1/8         SEKSYEN 1       BANDAR TEKNOLOGI         SEMENYIH       Poskod         Poskod       43500	No. Kad Pengenalan       051206 102125       No. Siji Lahir         Nama       SHAVENIE ELYANA BINTI MOHD SHAHIDAN BALAN ABDULLAH         Tarikh Lahir       06/12/2005       Jantina         Kaum       INDIA       Agama         Warganegara      PILIH WARGANEGARA       Negara Asal         Alamat       NO. 10 JALAN 1/8       OKU       TIADA         SEKSYEN 1       BANDAR TENNOLOGI       SEMENYIH       SELAN         Poskod       43500       Negeri       SELAN	HASLINDA BINTI KAMARUDDIN         No. Kad Pengenalan       051206 102125       No. Siji Lahir       BQ51348         Nama       SHAVENIE ELYANA BINTI MOHD SHAHIDAN BALAN ABDULLAH         Tarikh Lahir       06/12/2005       Jantina       PEREMPUAN         Kaum       INDIA       Agama       ISLAM         Warganegara       -PILIH WARGANEGARA       Negara Asal       TIADA         Alamat       NO. 10 JALAN 1/8       OKU       TIADA         SEMENYIH       Poskod       43500       Negeri       SELANGOR	HASLINDA BINTI KAMARUDDIN         No. Kad Pengenalan       051205 102125       No. Siji Lahir       BQ51348         Nama       SHAVENIE ELYANA BINTI MOHO SHAHIDAN BALAN ABDULLAH         Tarikh Lahir       06/12/2005       Jantina       PEREMPUAN         Kaum       INDIA       Agama       ISLAM         Warganegara       -PILIH WARGANEGARA       Negara Asal       TIADA         Alamat       NO. 10 JALAN 1/8       OKU       TIADA         SEMENYIH       BANDAR TENNOLOGI       SEMENYIH       Negeri       SELANGOR





Pangkalan Data Murid KEMENTERIAN PELAJARAN MALAYSIA "Sekolah Unggul, penjana generasi gemilang"

Data Hurid						
Cord Cloud						
	No. Kad Pengenalan			No. Siji Lahir		
	No. Daftar					
Utiliti	Nama					
Laman Utama	Tarikh Lahir			Jantina	-PILDH JANTINA-	
Log Keluar	Kaum	PILIH KAUM		Agama	PUAK/SUKU	
	Warganegara	WARGANEGARA		Negara Asal	TIADA	
	Alamat					
			-	THE		
			-			
	Poskod			NegeriPILI	INEGERI	

Aplikasi	HASL	INDA BINTI KAMAR	UDDIN	
Data Murid	Jumla	h Murid : 16		
	Kelas	:D1 GIGIH		
		No. KP	Nama	Daftar Murid
Utiliti	1	051224050438 <	AINUL HAZYAH BINTI NORHISHAMUDIN	Padam Kemaskini Kelas
Laman Utama	2	050113100709	AZ DANISH FARHANSHAH BIN ZAMRI	Padam Kemaskini Kelas
Log Keluar	3	051221030087	DANISH FIRDAUS BIN FARID	Padam Kemaskini Kelas
	4	051109101359	FIZI PUTRA BIN AMIR	Padam Kemaskini Kelas
	5	050924101457	MEOR OARMEN AQIL BIN MUHAMMAD JOHAN HAIQAL LAMA	Padam Kemaskini Kelas
	6	051103030641	MOHAMAD FAIZ SYAWAL BIN MOHAMAD ZAKI	Padam Kemaskini Kelas
	7	051230140181	MUHAMMAD AFIQ FARIHIN BIN NAZRI	Padam Kemaskini Kelas
	8	051027100519	MUHAMMAD AKMAL BIN AHMAD SHUKRI	Padam Kemaskini Kelas
	9	050918140193	MUHAMMAD SHAZRIL HAIKAL BIN SHAIFUL ANUAR	Padam Kemaskini Kelas
	10	050519100593	MI HAMMAD SYAVE HADTEN RIVISI ISTMAN	Darlam Kamarkini Kalar



Aplikasi	HASLINDA BINTI KA	MARUDDIN			
• Data Murid	No. Kad Pengenalan Nama	051224050438 ADNUL HAZYAH BINT	INORHISHAMUDIN		
	INFO MURID INF	O BAPA / PENJAGA UTAMA	BU / PENJAGA KEDUA		
Utiliti					
Laman Utama	Name Base (Designs		Delegion	Carton	
Log Keluar	Nama bapa / Penjaga	NORHISHAMUDIN BIN HASHIM	Pekerjadu	PENIAGA	
	No. Kad Pengenalan	770225055813	Nama Matikan	-	
	Status Bapa / Penjaga	BAPA	Alamat Majikan		
	Kaum	MELAYU	Poskod		
	Agama	ISLAM	Negeri	PILIH NEGERI	-
	Status Kewarganegaraan	WARGANEGARA			
	Negara asal	MALAYSIA	Pendapatan Sebulan (RM)		
	No. Telefon (HP)	0166251433	Tanggungan	5	
	No. Telefon Rumah	÷	No, Telefon Pejabat		
	Kemaskini Data Bapa				

Aplikasi	HASLINDA BINTI	KAMARUDDIN				
Data Murid	No. Kad Pengenalan Nama	0.51224050 AINUL HAZ	9438 YAH BINTI NORHISHAMUDIN			
	INFO MURID	INFO BAPA / PENJAGA UTAMA	INFO IBU / PENJAGA K	EDUA		
Utiliti						
Laman Utama     Log Kelvar	Nama Ibu / Penjaga Kedua	SITI MARLINA BINTI ZAKARIA	Pr	ekerjaan	TIDAK BEKERJA	
BUDI BY	No. Kad Pengenalan Status Bapa Penjaga Kaum Agama Status Kewarganegaraan Negara Asal No. Telefon (HP) No. Telefon Rumah	771211045862 IEU VETSILI MELAYU ISLAM WARGANEGARA TIADA 0163974220 -	PA PA PA PA PA PA PA PA PA PA	ama ajkan Jamat anjkan eseri endapatan ebulan (M) o. Telefon ejabat	-PILIH NEGERI	×

## **Appendix B**

### **Letter of Permissions**

BAHAGIAN PERANCANGAN DAN PENYELIDIKAN DASAR PENDIDIKAN KEMENTERIAN PENDIDIKAN MALAYSIA ARAS 1-4, BLOK E-8 Telefon : 03-88846591 Faks : 03-88846579 KOMPLEKS KERAJAAN PARCEL E PUSAT PENTADBIRAN KERAJAAN PERSEKUTUAN 62604 PUTRAJAYA Ruj. Kami : KP(8PPDP)603/5/JLD.10 (93) Tarikh : 23 Oktober 2014 Risniah binti Yunus **DPP** Tradewinds Universiti Utara Malaysia 06010 Sintok Kedah Tuan/Puan, Kelulusan Untuk Menjalankan Kajian Di Sekolah, Institut Pendidikan Guru, Jabatan Pendidikan Negeri Dan Bahagian-Bahagian Di Bawah Kementerian Pendidikan Malaysia Adalah saya dengan hormatnya diarah memaklumkan bahawa permohonan tuan /puan untuk menjalankan kajian bertajuk: "The Adoption Of Student Information System in Kedah (SIS)" diluluskan. Kelulusan ini adalah berdasarkan kepada cadangan penyelidikan dan instrumen kajlan yang 2. tuan/puan kemukakan ke Bahagian ini. Kebenaran bagi menggunakan sampel kajian perlu diperolehi dari Ketua Bahagian/Pengarah Pendidikan Negeri yang berkenaan. Sila tuan/puan kemukakan ke Bahagian ini senaskah laporan akhir kajian/laporan dalam 3. bentuk elektronik berformat Pdf di dalam CD bersama naskah hardcopy setelah selesal kelak. Tuan/Puan juga diingatkan supaya mendapat kebenaran terlebih dahulu daripada Bahagian ini sekirariya sebahagian atau sepenuhnya dapatan kajian tersebut hendak dibentangkan di manamana forum atau seminar atau diumumkan kepada media massa. Sekian untuk makluman dan tindakan tuan/puan selanjutnya. Terima kasih. "BERKHIDMAT UNTUK NEGARA" Saya yang menurut perintah, (DR. HJ. ZABANI BIN DARUS) Ketua Sektor Sektor Penyel akan dan Penilaian b.p. Pengarah Bahagian Perancangan dan Penyelidikan Dasar Pendidikan Kementerian Pendidikan Malaysia methodat kelukerari/14

	Dawn Wm	And a second sec
Rissiah tanti Vunus DPP Tradawinda Unweesii Ulara Malaysia Coolo Sintok Kedah Darul Aman TismPuan, Kelemaran Untuk Menjalankan Kajian/ Soal Selidi Pejabat Pendidikan Daerah dan Sekolah - Sekola Saya dengan hermatnya diarah merujuk keleda bert 2. Dimekkenkan bahawa permehonan luariyaa The Adoption Of Student Information System in Kod 3. Koutusan in soasah berdastarkan kepada s penjalatikan yang buantpuan kemulakan ke Kem dikebandaki mengemusikan senasikat lapotan s dingetan sugaya mendapat kebanara tenebu dingetan sugaya mendapat kebanara tenebu seminer sigunya mendapat kebanara tenebu Selam terma kash BERKHIDIKAN CEMERLANG KEDAH TERBILANG Salar terma kash Selam terma kash BERKHIDIKAN CEMERLANG KEDAH TERBILANG Saya yang mencerut pennitak	Ruj Kami JPK03-07/3212.1 Tarikh DF Oktober 2014 Ik di Jabatan Pendidikan Ne in di Negeri Kedah Darulami kara tersebut di atas an untuk menjalarikan kejeli s lah (205)" teleh dilufuskan sasa yang terkandung di casa tentesian Pendidikan Malaya akin kajan selelah selesa atan humuk dicemanasari di abujuan Pengatila sekoleh be	id 13 (991) geni ( in kang sertaju m cadanger i kang da ni sekitanya mona-mini kemuan dar

### Appendix C

## **Questionnaire Design**



Assalammualaikum dan selamat sejahtera,

Terima kasih kerana sudi mengambil bahagian didalam penyelidikan saya yang bertajuk "Factors Influencing the adoption of Student Information System in Kedah (SIS)". Tujuan Kajian ini dijalankan adalah untuk mendapatkan maklumbalas daripada pihak tuan/puan berkaitan dengan penggunaan Sistem Maklumat Pelajar (SMM) dan Aplikasi Pangkalan Data Murid (APDM) di sekolah menengah kawasan Kubang Pasu. Kajian ini telah mendapat kebenaran daripada Bahagian Perancangan dan Penyelidikan Dasar Pendidikan Kementerian Pendidikan Malaysia (Putrajaya), Jabatan Pendidikan Negeri Kedah (JPN), Awang Had Salleh Graduate School of Arts and Sciences dan penyelia saya Prof Madya Dr Haslina Mohd. Dengan itu, disertakan juga surat kebenaran kelulusan kajian dan pengumpulan data untuk perhatian tuan/puan. Kerjasama pihak tuan/puan didalam melengkapkan borang soal selidik ini amatlah diharapkan dan didahului dengan ucapan ribuan terima kasih.

Risniah Binti Yunus, Master of Science (Information Technology), School of Computing, UUM College of Arts and Sciences, Universiti Utara Malaysia. (014-5687496 / <u>nursyaniabalqish@ymail.com</u>)

#### <u>Abstract</u>

This study aims to identify the adoption of Student Information System in Kedah especially in Kubang Pasu District. This study seeks to understand the perceptions, readiness, strengths and weaknesses of the SIS for teachers in five secondary schools in Kubang Pasu District. There are fifty teachers involved which is the class teachers randomly selected to be used as the sample of the study. Before any further investigation on the SIS, immediate action on basic issue of the adoption factors that influence the SIS needs to be performed. Therefore, this study aims to identify the factors that may affect the SMM (Sistem Maklumat Murid offline) or known as APDM (Aplikasi Pangkalan Data Murid Online). The study will be conducted at 5 secondary schools in Kubang Pasu District. The respondents of the study are the stakeholders of the SIS: class teachers and the top management of the school. Survey and interview approaches will be conducted in identifying the adoption factors of the SIS and the relationships among factors. The results will contribute to the educational domain, and decision makers of the Ministry of Education for SIS enhancement in the future.

#### Abstrak

Matlamat utama kajian ini dijalankan adalah untuk mengenalpasti penggunaan Sistem Maklumat Murid di kedah terutamanya dikawasan daerah Kubang Pasu. Tujuan utama kajian ini dijalankan adalah untuk memahami persepsi, kesediaan, kelebihan dan kekurangan Sistem Maklumat Murid di lima buah sekolah menengah sekitar daerah Kubang Pasu. Terdapat 50 orang guru yang terlibat dan dipilih secara rawak untk dijadikan sampel kajian. Sebelum sebarang kajian dijalankan ke atas Sistem Maklumat Murid, kajian perlu dilakukan terhadap isu penggunaan Sistem Maklumat Murid. Oleh itu, matlamat kajian ini adalah untuk mengenalpasti faktor-faktor yang member kesan kepada Sistem Maklumat Murid (SMM) secara offline atau dikenali sebagai Aplikasi Pangkalan data Murid (APDM) secara online. Kajian ini akan dilaksanakan pada lima buah sekolah sekitar daerah Kubang Pasu. Responden kajian adalah pihak yang berkepentingan terhadap Sistem Maklumat Murid : guru kelas dan pihak atasan sekolah. Kaedah *Survey* dan *Interview* akan dijalankan untuk mengenal pasti penggunaan faktor-faktor dalam Sistem Maklumat Pelajar dan hubungan di antara faktor. Keputusan akan menyumbang kepada matlamat pendidikan dan pembuat keputusan Kementerian Pendidikan untuk penambahbaikan Sistem Maklumat Murid dimasa akan datang.



SECTION A: QUESTIONNAIRE CONSUMER BACKGROUND & INITIAL INVESTIGATION Please $(\checkmark)$ in the appropriate answer
1. School Name (Nama Sekolah):
2. Is it a rurat school (Sekolali Luar Bandar)?: [] Is it a urban school (Sekolali Dalali bandar)?: []
3. Gender(Jantina): Male (Lelaki) [] Female (wanita) []
4. Age (umur):
<ul> <li>[] 21-30 Years Old (Tahun)</li> <li>[] 31-40 Years Old (Tahun)</li> <li>[] 41-50 Years Old (Tahun)</li> <li>[] 51-60 Years Oldabove(Tahun)</li> </ul>
5. Race (Bangsa):          [] Malay       (Melayu)         [] Chinese       (Cina)         [] Indian       (India)         [] Others, Please specify (Lain-lain), Sila nyatakan
<ul> <li>6. Marital status teacher(Status Perkahwinan): <ul> <li>[] Single</li> <li>(Belum berkahwin)</li> <li>[] Married</li> <li>(Berkahwin)</li> <li>[] Others</li> <li>(Lain-lain)</li> </ul> </li> <li>7. Which class do you currently teach (Guru kelastingkatan)?: <ul> <li>[] form 1 (ting. 1) [] form 2 (ting. 2)</li> <li>[] form 3 (ting. 3) [] form 4 (ting. 4)</li> <li>[] form 5 (ting. 5) [] form 6 (ting. 6)</li> </ul> </li> </ul>
8. How long you been using SMM (Berapa lama anda menggunakan SMM?):       9. How long you been using APDM (Berapa lama anda menggunakan APDM?):         []] Not applicable (tidak pernah)       [] < 1 year
10. <i>How long be a class teacher</i> (Berapa lama anda menjadi [] < 1 <i>year</i> (Tahun) [] 2 - 4 <i>years</i> (Tahun) [] 5 - 7 <i>years</i> (Tahun) [] 8 - 10 <i>years</i> (Tahun) [] > 11 <i>years</i> (Tahun)

 11. Have you attended any technology related to courses / workshop (pernah menghadiri sebarang kursus mengenai technology – SMM atau APDM)? Yes (Ya) [ ] No(tidak)[ ]

#### APLIKASI PANGKALAN DATA MURID (APDM)

SECTION B: PERCEIVED USEFULNESS AND PERCEIVED EASE OF USE TOWARD APDM USAGE, USER SATISFACTION TO THE STUDENT INFORMATION SYSTEM, SCREEN, TERMINOLOGY AND STUDENT INFORMATION SYSTEM, LEARNING, AND STUDENT INFORMATION SYSTEM CAPABILITIES

SEKSYEN B : MANFAAT DAN TAHAP KEMUDAHAN PENGGUNAAN TERHADAP PENGGUNAAN APDM, KEPUASAN PENGGUNA KEPADA SISTEM MAKLUMAT PELAJAR, SKRIN, PERISTILAHAN DAN SISTEM MAKLUMAT PELAJAR, BELAJAR, DAN KEUPAYAAN SISTEM MAKLUMAT PELAJAR

Please rate the extent which you agree with each statement below (Sila beri penilaian berdasarkan setiap pilihan pernyataan yang anda persetujui dibawah)

Please circle the most appropriate option for each statement below (Sila bulatkan jawapan yang sesuai berdasarkan setiap pilihan pernyataan dibawah)





1:	Strongly	Disagree
----	----------	----------

2: Disagree

3: Moderately

4: Agree

5: Strongly Agree

5: Strongly Agree					
B1: PERCEIVED USEFULNESS ABOUT THE APDM USA	GE:				
1. Using APDM enables me to accomplish task more quickly	1	2	3	4	5
2. Using APDM enhances the quality of my work	1	2	3	4	5
3. Using APDM make it easier to do my work	1	2	3	4	5
4. I find the APDM useful in my work	1	2	3	4	5
5. Using APDM in my job would increase my productivity	1	2	3	4	5
6. Using APDM would improve my job performance	1	2	3	4	5
<b>B2: PERCEIVED EASE OF USE ABOUT THE APDM USA</b>	GE:				
1. Learning to use APDM is easy	1	2	3	4	5
2. I find it easy to use APDM to do what I want to do	1	2	3	4	5
3. I find it is easy for me to become skillful in using APDM	1	2	3	4	5
4. I find the APDM is easy to use	1	2	3	4	5
B3: USER SATISFACTIONTO THE STUDENT INFORMAT	ION SYST	TEM:			
1. The APDM prototype is very useful	1	2	3	4	5
2. The APDM prototype system is easy to use	1	2	3	4	5
3.I am very satisfied with the APDM prototype system	1	2	3	4	5
4. The APDM prototype system has adequate processing power	1	2	3	4	5
5. The APDM prototype system is stimulating	tara	2	3	4	5
6.The APDM prototype system is flexible	1	2	3	4	5
B4: SCREEN:					
1. Screen layouts were always helpful	1	2	3	4	5
2. The amounts of information that can be displayed on the	1	2	3	4	5
screen are adequate 3 The arrangement of information that can be displayed on the	1	2	2	4	5
screen is logical	1	2	5	4	3
4. The arrangement of information that can be displayed on the screens are very clear	1	2	3	4	5
5. The next screen in a sequence are predictable	1	2	3	4	5
6.Going back to the previous screen is possible	1	2	3	4	5
7. The progression of work related task is clearly marked	1	2	3	4	5
<b>B5: TERMINOLOGY AND STUDENT INFORMATION SYST</b>	EM:				
1. The used of terms throughout APDM are consistence	1	2	3	4	5
2.The work related terminology is consistent	1	2	3	4	5
3. Computer Terminology used in the system is consistent	1	2	3	4	5
4.Terminology always relates well to the work you are doing	1	2	3	4	5

5. Computer Terminology is used appropriately

6. Terminology is on screen precise

7. Message which appear on the screen is consistent	1	2	3	4	5
8. Position of instructions in the screen is consistent	1	2	3	4	5
9. Prompt for input is clear	1	2	3	4	5
10. Instruction for commands or functions is clear	1	2	3	4	5
11. Instruction for correcting errors is clear	1	2	3	4	5
12. Computer always keeps you informed about what is doing	1	2	3	4	5
13. Controlling amount of feedback is easy	1	2	3	4	5
14. Length of delay between operations is acceptable	1	2	3	4	5
15. Error messages prompt out on the screen is helpful	1	2	3	4	5
16. Error Messages are always clarify problem	1	2	3	4	5
17. Phrasing of error messages is pleasant	1	2	3	4	5
B6: LEARNING:	•				
1. Learning to operate in the APDM is easy	1	2	3	4	5
2. Getting started the APDM is easy	1	2	3	4	5
3. Time to learn to use the system is fast	1	2	3	4	5
4. Tasks can always be performed in a straight forward manner	1	2	3	4	5
5. Number of steps per task is not too many or just right	1	2	3	4	5
6. Step to complete a task always follows a logical sequence	1	2	3	4	5
7. Feedback on the completion of sequence of steps is clear	1	2	3	4	5
<b>B7: STUDENT INFORMATION SYSTEM CAPABILITIES:</b>					
1. APDM speed is fast enough	1	2	3	4	5
2. Response time for the most operations is fast enough	1	2	3	4	5
3. Rate information is displayed is fast enough	1	2	3	4	5
4. The APDM is always reliable	ana	2 3	3	4	5
5. System failure seldom occurred	1	2	3	4	5
6. The system always warns you about potential problem	1	2	3	4	5

#### SECTION C:

# IF YOU HAVE ANY SUGGESTION OR ADDITIONAL COMMENTS YOU WISH TO MAKE ABOUT APDM USAGE PLEASE ADD THEM HERE.

Thanks For Your Cooperation. You Give Me Your Time, The Most Thoughtful Gift Of All. I Can No Other Answer Make But, Thanks, And Thanks, And Ever Thanks.

## Appendix D

## Skewness and Kurtosis of the Variables

	Descriptives			
			Statistic	Std. Er
School Name	Mean		2.8182	.112
	95% Confidence Interval	Lower Bound	2.5948	
	for Mean	Upper Bound	3.0416	
	5% Trimmed Mean		2.7980	
	Median		3.0000	
	Variance		1.398	
	Std. Deviation		1.18230	
	Minimum		1.00	
	Maximum		5.00	
	Range		4.00	
	Interquartile Range		2.00	
	Skewness		.021	.2
	Kurtosis		-1.138	.4
(PU01) Accomplish task	Mean		3.4455	.081
more quickly	95% Confidence Interval	Lower Bound	3.2844	
	tor Mean	Upper Bound	3.6065	
	5% Trimmed Mean		3.4697	
	Median		4.0000	
	Variance		.726	
	Std. Deviation		.85226	
	Minimum		1.00	
	Maximum		5.00	
	Range		4.00	
	Interquartile Range		1.00	
	Skewness	tara M	732	/si.2
	Kurtosis		.533	.4

(PU02) Enhances the	Mean	3.3909	.07972
quality of work	95% Confidence Interval Lower Bound	3.2329	
	for Mean Upper Bound	3.5489	
	5% Trimmed Mean	3.4343	
	Median	4.0000	
	Variance	.699	
	Std. Deviation	.83606	
	Minimum	1.00	
	Maximum	5.00	
	Range	4.00	
	Interquartile Range	1.00	
	Skewness	846	.230
	Kurtosis	.394	.457
(PU03) Make job easier	Mean	3.3636	.08037
	95% Confidence Interval Lower Bound	3.2043	
	for Mean Upper Bound	3.5229	
	5% Trimmed Mean	3.3939	
	Median	3.5000	
	Variance	.711	
	Std. Deviation	.84297	
	Minimum	1.00	
	Maximum	5.00	
	Range	4.00	
	Interguartile Range	1.00	
	Skewness	683	
	Kurtosis	.300	.457
(PU04) Make useful work	Mean	3.4909	.07829
1-1-1-	95% Confidence Interval Lower Bound	3.3357	
	for Mean Upper Bound	3.6461	
	5% Trimmed Mean	3.5455	
	Median	4.0000	
	Variance	.674	
	Std. Deviation	.82111	
	Minimum	1.00	sla
	Maximum	5.00	
	Range	4.00	
	Interguartile Range	1.00	
	Skewness	-1.135	.230
	Kurtosis	.997	.457
(PU05) Increase	Mean	3.3909	.07866
productivity	95% Confidence Interval Lower Bound	3.2350	
	for Mean Upper Bound	3.5468	
	5% Trimmed Mean	3.4242	
	Median	4.0000	
	Variance	.681	
	Std. Deviation	.82502	
	Minimum	1 00	
	Maximum	5.00	
	Range	4 00	
	Interquartile Range	1.00	
	Skewness	- 742	230
	Kurtosis	056	457
	rear to or o	.000	.+37

(PU06) Improve job	Mean	3.3364	.0777
performance	95% Confidence Interval Lower Bound	3.1822	
	for Mean Upper Bound	3.4905	
	5% Trimmed Mean	3.3535	
	Median	3.0000	
	Variance	.666	
	Std. Deviation	.81587	
	Minimum	1.00	
	Maximum	5.00	
	Range	4.00	
	Interguartile Range	1.00	
	Skewness	489	.23
	Kurtosis	.078	.45
(PEOU01) Easy to learn	Mean	3.4909	.0716
	95% Confidence Interval Lower Bound	3.3490	
	for Mean Upper Bound	3.6328	
	5% Trimmed Mean	3 5556	
	Median	4.0000	
	Variance	.564	
	Std. Deviation	.75109	
	Minimum	1 00	
	Maximum	5.00	
	Range	4.00	
	Interquartile Range	1.00	
	Skowness	-1.00	
	Kurtosis	1.945	.23
(DEOLIO2) Clear and	Kuitosis	1.040	.40
understandable	Mean 059/ Confidence Interval	3.3273	.0776
	for Mean	3.1735	
	Opper Bound	3.4811	_
	5% Irimmed Mean	3.3838	_
	Median	3.5000	
	Variance	.663	
	Std. Deviation	.81397	sia
	Minimum	1.00	
	Maximum	5.00	
	Range	4.00	
	Interquartile Range	1.00	
	Skewness	880	.23
	Kurtosis	.245	.45
(PEOU03) Easy to	Mean	3.4000	.0787
become skillul	95% Confidence Interval Lower Bound	3.2439	
	Upper Bound	3.5561	
	5% Trimmed Mean	3.4444	
	Median	4.0000	
	Variance	.683	
	Std. Deviation	.82618	
	Minimum	1.00	
	Maximum	5.00	
	Range	4.00	
	Interquartile Range	1.00	
	Skewness	867	.23
		5.25	4.5

	(PEOU04) Easy to use	Mean	3.4727	.07499
		95% Confidence Interval Lower Bound	3.3241	
		for Mean Upper Bound	3.6213	
		5% Trimmed Mean	3.5152	
		Median	4.0000	
		Variance	.619	
		Std. Deviation	.78646	
		Minimum	1.00	
		Maximum	5.00	
		Range	4.00	
		Interquartile Range	1.00	
		Skewness	946	.230
		Kurtosis	.696	.457
	(US01) US01-Prototype is	Mean	3.3636	.07501
	very useful	95% Confidence Interval Lower Bound	3.2150	
		for Mean Upper Bound	3.5123	
		5% Trimmed Mean	3.4141	
		Median	3.0000	
		Variance	.619	
		Std. Deviation	.78667	
		Minimum	1.00	
		Maximum	5.00	
		Bange	4 00	
		Interquartile Range	1 00	
		Skewness	- 861	230
	U TAKA	Kurtosis	759	457
	(US02) Prototype is easy	Mean	3.3909	.07430
-//	to use	95% Confidence Interval   ower Bound	3 2436	
		for Mean Upper Bound	3 5382	
		5% Trimmed Mean	3 4545	
		Median	4.0000	
		Variance	607	
		Std Deviation	77927	
(A)		Minimum	1.00	sia
	BUDI BO	Maximum	5.00	
		Bange	4 00	
		Interquartile Bange	1.00	
		Skewness	-1 050	230
		Kurtosis	883	457
	(US03) Satisfied with	Mean	3 3273	07761
	prototype system	95% Confidence Interval Lower Bound	3 1 7 3 5	.07701
		for Mean Upper Bound	3 4811	
		5% Trimmed Mean	3 3838	
		Median	3,0000	
		Variance	663	
		Std Deviation	01207	
		Minimum	.01397	
		Maximum	5.00	
		Papao	3.00	
		Interquartile Dange	4.00	
		Revenues	1.00	220
		Vutorie	000	.230
		Nutrosis	.115	.407

	(US04) Prototype has	Mean	3.3091	.07935
	adequate power	95% Confidence Interval Lower Bound	3.1518	
		for Mean Upper Bound	3.4664	
		5% Trimmed Mean	3.3535	
		Median	3.0000	
		Variance	.693	
		Std. Deviation	.83221	
		Minimum	1.00	
		Maximum	5.00	
		Range	4.00	
		Interquartile Range	1.00	
		Skewness	734	.230
		Kurtosis	.102	.457
	(US05) Prototype system	Mean	3.3455	.07468
	is simulating	95% Confidence Interval Lower Bound	3.1974	
		for Mean Upper Bound	3.4935	
		5% Trimmed Mean	3.3939	
		Median	3.0000	
		Variance	.614	
		Std. Deviation	.78327	
		Minimum	1.00	
		Maximum	5.00	
		Range	4.00	
		Interquartile Range	1.00	
		Skewness	814	.230
12		Kurtosis	.737	.457
3//	(US06) Prototype system	Mean	3.3545	.08228
//	is flexible	95% Confidence Interval Lower Bound	3.1915	
		for Mean Upper Bound	3.5176	
		5% Trimmed Mean	3.3838	
		Median	3.0000	
		Variance	.745	
		Std. Deviation	.86296	color.
In	U Sale	Minimum	1.00	sid
	BUDI	Maximum	5.00	
		Range	4.00	
		Interquartile Range	1.00	
		Skewness	672	.230
		Kurtosis	.510	.457
	(S01) Screen layout very	Mean	3.4909	.07391
	helpful	95% Confidence Interval Lower Bound	3.3444	
		for Mean Upper Bound	3.6374	
		5% Trimmed Mean	3.5051	
		Median	4.0000	
		Variance	.601	
		Std. Deviation	.77513	
		Minimum	1.00	
		Maximum	5.00	
		Range	4.00	
		Interquartile Range	1.00	
		Skewness	631	.230
		Kurtosis	.264	.457

	(S02) The of information	Mean	3.3909	.07866
	on screen are adequate	95% Confidence Interval Lower Bound	3.2350	
		for Mean Upper Bound	3.5468	
		5% Trimmed Mean	3.4040	
		Median	3.5000	
		Variance	.681	
		Std. Deviation	.82502	
		Minimum	1.00	
		Maximum	5.00	
		Range	4.00	
		Interquartile Range	1.00	
		Skewness	542	.230
		Kurtosis	.166	.457
	(S03) The of information	Mean	3.5091	.07391
	on screen is logical	95% Confidence Interval Lower Bound	3.3626	
		for Mean Upper Bound	3.6556	
		5% Trimmed Mean	3.5253	
		Median	4.0000	
		Variance	.601	
		Std Deviation	77513	
		Minimum	1.00	
		Maximum	5.00	
		Range	4.00	
		Interquartile Range	1.00	
	TAD	Skowness	- 693	230
	UTARA	Kurtosis	328	457
	(S04) The information on	Mean	3 61 92	06325
	screen are very clear	95% Confidence Interval Lower Bound	3.0102	.00323
		for Mean	3.4320	
		5% Trimmed Mean	3.7433	
		Median	4.0000	
		Varianco	4.0000	
		Std Doviation	66225	
		Minimum	1.00	<del>(sia</del>
	BUDI BC	Maximum	5.00	
		Bango	4.00	
		Interquartile Papae	4.00	
		Skownoss	1 1 1 0	220
		Kutosis	-1.110	.230
	(SUE) Sociuoneos on port	Maan	1.039	.407
	screen are predictable	Mean 05% Confidence Interval	3.4818	.07160
		for Mean	3.3399	
		Opper Bound	3.6237	
		5% Irimmed Mean	3.5253	
		Median	4.0000	
		variance	.564	
		Std. Deviation	.75092	
		Minimum	1.00	
		Maximum	5.00	
		Range	4.00	
		Interquartile Range	1.00	
		Skewness	930	.230
		Kurtosis	.351	.457

	(0.0.0) 0		0.5100	00001
	(SUB) Sequences on previous screen are	Mean	3.5182	.06801
	possible	for Mean	3.3834	
		Upper Bound	3.6530	
		5% Trimmed Mean	3.5657	
		Median	4.0000	
		Variance	.509	
		Std. Deviation	.71333	
		Minimum	1.00	
		Maximum	5.00	
		Range	4.00	
		Interquartile Range	1.00	
		Skewness	992	.230
		Kurtosis	.793	.457
	(S07) The progression of	Mean	3.4727	.07609
	work cleany marked	95% Confidence Interval Lower Bound	3.3219	
		for Mean Upper Bound	3.6235	
		5% Trimmed Mean	3.4899	
		Median	4.0000	
		Variance	.637	
		Std. Deviation	.79804	
		Minimum	1.00	
		Maximum	5.00	
		Range	4.00	
		Interquartile Range	1.00	
	UTAR	Skewness	626	.230
		Kurtosis	.640	.457
SI	(T01) The used of terms	Mean	3 4818	07160
	(ioi) inclused of terms	in o an	0.4010	.07100
	are consistent	95% Confidence Interval Lower Bound	3.3399	.07100
	are consistent	95% Confidence Interval Lower Bound for Mean Upper Bound	3.3399 3.6237	.07100
	are consistent	95% Confidence Interval for Mean Upper Bound 5% Trimmed Mean	3.3399 3.6237 3.5354	
	are consistent	95% Confidence Interval Lower Bound for Mean Upper Bound 5% Trimmed Mean Median	3.3399 3.6237 3.5354 4.0000	
	are consistent	95% Confidence Interval Lower Bound for Mean Upper Bound 5% Trimmed Mean Median Variance	3.3399 3.6237 3.5354 4.0000 .564	
	are consistent	95% Confidence Interval Lower Bound for Mean Upper Bound 5% Trimmed Mean Median Variance Std. Deviation	3.3399 3.6237 3.5354 4.0000 .564 .75092	
	are consistent	95% Confidence Interval Lower Bound for Mean Upper Bound 5% Trimmed Mean Median Variance Std. Deviation Minimum	3.3399 3.6237 3.5354 4.0000 .564 .75092 1.00	rsia
	are consistent	95% Confidence Interval for Mean 5% Trimmed Mean Median Variance Std. Deviation Minimum Maximum	3.3399 3.6237 3.5354 4.0000 .564 .75092 1.00 5.00	
	are consistent	95% Confidence Interval Lower Bound for Mean Upper Bound 5% Trimmed Mean Median Variance Std. Deviation Minimum Maximum Range	3.3399 3.6237 3.5354 4.0000 .564 .75092 1.00 5.00 4.00	/sia
	are consistent	95% Confidence Interval for Mean 5% Trimmed Mean Median Variance Std. Deviation Minimum Maximum Range Interquartile Range	3.3399 3.6237 3.5354 4.0000 .564 .75092 1.00 5.00 4.00 1.00	rsia
	are consistent	95% Confidence Interval for Mean 5% Trimmed Mean Median Variance Std. Deviation Minimum Maximum Range Interquartile Range Skewness	3.3399 3.6237 3.5354 4.0000 .564 .75092 1.00 5.00 4.00 1.00 1.00 -1.062	.230
	are consistent	95% Confidence Interval Lower Bound for Mean Upper Bound 5% Trimmed Mean Median Variance Std. Deviation Minimum Maximum Range Interquartile Range Skewness Kurtosis	3.3399 3.6237 3.5354 4.0000 .564 .75092 1.00 5.00 4.00 1.00 -1.062 1.069	.230
	(TO2) Terminology is	95% Confidence Interval Lower Bound for Mean Upper Bound 5% Trimmed Mean Median Variance Std. Deviation Minimum Maximum Range Interquartile Range Skewness Kurtosis Mean	3.3399 3.6237 3.5354 4.0000 .564 .75092 1.00 5.00 4.00 1.00 -1.062 1.069 3.4545	.230
	(T02) Terminology is consistent	95% Confidence Interval Lower Bound for Mean Upper Bound 5% Trimmed Mean Median Variance Std. Deviation Minimum Maximum Range Interquartile Range Skewness Kurtosis Mean 95% Confidence Interval Lower Bound	3.3399 3.6237 3.5354 4.0000 .564 .75092 1.00 5.00 4.00 1.00 -1.062 1.069 3.4545 3.3176	.230 .457 .06911
	(T02) Terminology is consistent	95% Confidence Interval Lower Bound for Mean Upper Bound 5% Trimmed Mean Median Variance Std. Deviation Minimum Maximum Range Interquartile Range Skewness Kurtosis Mean 95% Confidence Interval Lower Bound for Mean Upper Bound	3.3399 3.6237 3.5354 4.0000 .564 .75092 1.00 5.00 4.00 1.00 -1.062 1.069 3.4545 3.3176 3.5915	.230 
	(T02) Terminology is consistent	95% Confidence Interval Lower Bound for Mean Upper Bound 5% Trimmed Mean Median Variance Std. Deviation Minimum Maximum Range Interquartile Range Skewness Kurtosis Mean 95% Confidence Interval Lower Bound for Mean Upper Bound 5% Trimmed Mean	3.3399 3.6237 3.5354 4.0000 .564 .75092 1.00 5.00 4.00 1.00 -1.062 1.069 3.4545 3.3176 3.5915 3.4949	.230 .06911
	(T02) Terminology is consistent	95% Confidence Interval Lower Bound for Mean Upper Bound 5% Trimmed Mean Median Variance Std. Deviation Minimum Maximum Range Interquartile Range Skewness Kurtosis Mean 95% Confidence Interval Lower Bound for Mean Upper Bound 5% Trimmed Mean Median	3.3399 3.6237 3.5354 4.0000 .564 .75092 1.00 5.00 4.00 1.00 -1.062 1.069 3.4545 3.3176 3.5915 3.4949 4.0000	.230 .06911
	(T02) Terminology is consistent	95% Confidence Interval for Mean Median Variance Std. Deviation Minimum Maximum Range Interquartile Range Skewness Kurtosis Mean 95% Confidence Interval for Mean S% Trimmed Mean Median Variance	3.3399 3.6237 3.5354 4.0000 .564 .75092 1.00 5.00 4.00 1.00 -1.062 1.069 3.4545 3.3176 3.5915 3.4949 4.0000 .525	.230 .06911
	(T02) Terminology is consistent	95% Confidence Interval for Mean Median Variance Std. Deviation Minimum Maximum Range Interquartile Range Skewness Kurtosis Mean 95% Confidence Interval for Mean S% Confidence Interval for Mean S% Trimmed Mean Median Variance Std. Deviation	3.3399 3.6237 3.5354 4.0000 .564 .75092 1.00 5.00 4.00 1.00 -1.062 1.069 3.4545 3.3176 3.5915 3.4949 4.0000 .525 .72487	.230
	(T02) Terminology is consistent	95% Confidence Interval for Mean Median Variance Std. Deviation Minimum Maximum Range Interquartile Range Skewness Kurtosis Mean 95% Confidence Interval for Mean 95% Confidence Interval for Mean Stall Lower Bound Upper Bound 5% Trimmed Mean Median Variance Std. Deviation Minimum	3.3399 3.6237 3.5354 4.0000 .564 .75092 1.00 5.00 4.00 1.00 -1.062 1.069 3.4545 3.3176 3.5915 3.4949 4.0000 .525 .72487 1.00	.230 .457 .06911
	(TO2) Terminology is consistent	95% Confidence Interval Lower Bound for Mean Upper Bound 5% Trimmed Mean Median Variance Std. Deviation Minimum Maximum Range Interquartile Range Skewness Kurtosis Mean 95% Confidence Interval Lower Bound for Mean Upper Bound 5% Trimmed Mean Median Variance Std. Deviation Minimum Maximum Range Std. Deviation Minimum Range Std. Deviation Maximum Range Std. Deviation Std. Deviation Minimum Range Std. Deviation Std. Deviation Minimum Range Std. Deviation Minimum Range Std. Deviation Minimum Range Std. Deviation Std. Deviation Minimum Range Std. Deviation Std. Deviat	3.3399 3.6237 3.5354 4.0000 .564 .75092 1.00 5.00 4.00 1.00 -1.062 1.069 3.4545 3.3176 3.5915 3.4949 4.0000 .525 .72487 1.00 5.00	.230 .457 .06911
	(T02) Terminology is consistent	95% Confidence Interval Lower Bound for Mean Upper Bound 5% Trimmed Mean Median Variance Std. Deviation Minimum Maximum Range Interquartile Range Skewness Kurtosis Mean 95% Confidence Interval Lower Bound for Mean Upper Bound 5% Trimmed Mean Median Variance Std. Deviation Minimum Maximum Range Std. Deviation Minimum Maximum Range	3.3399 3.6237 3.5354 4.0000 .564 .75092 1.00 5.00 4.00 1.00 -1.062 1.069 3.4545 3.3176 3.5915 3.4949 4.0000 .525 .72487 1.00 5.00 4.00	.230 .457 .06911
	(T02) Terminology is consistent	95% Confidence Interval for Mean       Lower Bound         5% Trimmed Mean       Median         Variance       Std. Deviation         Minimum       Maximum         Range       Interquartile Range         Interquartile Range       Lower Bound         95% Confidence Interval for Mean       Lower Bound         Std. Deviation       Lower Bound         Std. Deviation       Minimum         Median       Variance         Std. Deviation       Minimum         Maximum       Range         Interquartile Range       Interquartile Range	3.3399 3.6237 3.5354 4.0000 .564 .75092 1.00 5.00 4.00 1.00 -1.062 1.069 3.4545 3.3176 3.5915 3.4949 4.0000 .525 .72487 1.00 5.00 4.00 1.00	.230 .457 .06911
	(T02) Terminology is consistent	95% Confidence Interval for Mean       Lower Bound         95% Trimmed Mean       Median         Variance       Std. Deviation         Minimum       Maximum         Range       Interquartile Range         Interquartile Range       Skewness         Kurtosis       Lower Bound         95% Confidence Interval for Mean       Lower Bound         Std. Deviation       Minimum         Maximum       Range         Interquartile Range       Skewness         Skewness       Skewness	3.3399 3.6237 3.5354 4.0000 .564 .75092 1.00 5.00 4.00 1.00 -1.062 1.069 3.4545 3.3176 3.5915 3.4949 4.0000 .525 .72487 1.00 5.00 4.00 0.525	.230
	(T02) Terminology is consistent	95% Confidence Interval for Mean       Lower Bound         95% Trimmed Mean       Median         Variance       Std. Deviation         Minimum       Maximum         Range       Interquartile Range         Interquartile Range       Lower Bound         95% Confidence Interval for Mean       Lower Bound         Std. Deviation       Minimum         Maximum       Range         Interquartile Range       Skewness         Kurtosis       Kurtosis	3.3399 3.6237 3.5354 4.0000 .564 .75092 1.00 5.00 4.00 1.00 -1.062 1.069 3.4545 3.3176 3.5915 3.4949 4.0000 .525 .72487 1.00 5.00 4.00 1.00 -7.96 1.244	.230 .230 .457 .06911

Confidence Interval Lower Bound an Upper Bound immed Mean n ce eviation um ium	3.5091 3.3695 3.6487 3.5455 4.0000 .546 .73877 1.00 5.00	.07044
Confidence Interval Lower Bound an Upper Bound immed Mean n ce eviation um ium	3.3695           3.6487           3.5455           4.0000           .546           .73877           1.00           5.00	
an Upper Bound immed Mean n ice eviation um ium	3.6487 3.5455 4.0000 .546 .73877 1.00 5.00	
immed Mean n ice eviation um ium	3.5455 4.0000 .546 .73877 1.00 5.00	
n nce eviation um ium	4.0000 .546 .73877 1.00 5.00	
nce eviation um ium a	.546 .73877 1.00 5.00	
eviation um um 2	.73877 1.00 5.00	
um num	1.00 5.00	
num a	5.00	
3		
	4.00	
uartile Range	1.00	
ness	866	.230
sis	1.348	.457
	3.5000	.07277
Confidence Interval Lower Bound	3.3558	
an Upper Bound	3.6442	
immed Mean	3.5455	
n	4.0000	
ice	.583	
eviation	.76326	
um	1.00	
ium	5.00	
3	4.00	
uartile Range	1.00	
ness	-1.009	.230
	ness sis Confidence Interval Lower Bound iran Upper Bound immed Mean in nce leviation ium e uartile Range ness	ness        866           sis         1.348           3.5000         3.5000           Confidence Interval Lower Bound a.3558         3.6442           immed Mean         3.5455           in         4.0000           nce         .583           leviation         .76326           num         1.00           num         5.00           e         4.000           num         1.00           num         5.00           e         4.000

(T05) Computer	Mean		3.5182	.06801
terminology is used	95% Confidence Interval	Lower Bound	3.3834	/sia
appropriately	for Mean	Upper Bound	3.6530	
	5% Trimmed Mean		3.5758	
	Median		4.0000	
	Variance		.509	
	Std. Deviation		.71333	
	Minimum		1.00	
	Maximum		5.00	
	Range		4.00	
	Interquartile Range		1.00	
	Skewness		-1.146	.230
	Kurtosis		1.708	.457
(T06) Terminology is on	Mean		3.4727	.06420
screen precise	95% Confidence Interval	Lower Bound	3.3455	
	for Mean	Upper Bound	3.6000	
	5% Trimmed Mean		3.5152	
	Median		4.0000	
	Variance		.453	
	Std. Deviation		.67333	
	Minimum		1.00	
	Maximum		5.00	
	Range		4.00	
	Interquartile Range		1.00	
	Skewness		726	.230
	Kurtosis		.833	.457

	(T07) Consistent	Mean	3.4818	.06678
	message on screen	95% Confidence Interval Lower Bound	3.3495	
		for Mean Upper Bound	3.6142	
		5% Trimmed Mean	3.5253	
		Median	4.0000	
		Variance	.490	
		Std. Deviation	.70035	
		Minimum	1.00	
		Maximum	5.00	
		Range	4.00	
		Interquartile Range	1.00	
		Skewness	832	.230
		Kurtosis	.685	.457
	(T08) Position of	Mean	3.5545	.06404
	instructions is consistent	95% Confidence Interval Lower Bound	3.4276	
		for Mean Upper Bound	3.6815	
		5% Trimmed Mean	3.5960	
		Median	4.0000	
		Variance	.451	
		Std. Deviation	.67166	
		Minimum	1.00	
		Maximum	5.00	
		Range	4.00	
		Interquartile Range	1.00	
1	UTAR	Skewness	850	.230
ay		Kurtosis	1.251	.457
3//	(T09) Prompt for input is clear	Mean	3.4273	.07358
		95% Confidence Interval Lower Bound	3.2814	7
		for Mean Upper Bound	3.5731	
		5% Trimmed Mean	3.4545	
		Median	4.0000	
		Variance	.596	
2		Std. Deviation	.77174	(cia)
1	BUILD BALL	Minimum	1.00	310
	dubr -	Maximum	5.00	
		Range	4.00	
		Interquartile Range	1.00	
		Skewness	667	.230
		Kurtosis	.038	.457
	(T10) Instruction for	Mean	3.6273	.06309
	commands is clear	95% Confidence Interval Lower Bound	3.5022	
		for Mean Upper Bound	3.7523	
		5% Trimmed Mean	3.6616	
		Median	4.0000	
		Variance	.438	
		Std. Deviation	.66165	
		Minimum	1.00	
		Maximum	5.00	
		Range	4.00	
		Interquartile Range	1.00	
		Skewness	966	.230
		Kurtosis	1.794	.457

	(T11) Instruction for	Mean	3.5273	.06920
	correcting errors is clear	95% Confidence Interval Lower Bound	3.3901	
		for Mean Upper Bound	3.6644	
		5% Trimmed Mean	3.5758	
		Median	4.0000	
		Variance	.527	
		Std. Deviation	.72579	
		Minimum	1.00	
		Maximum	5.00	
		Range	4.00	
		Interquartile Range	1.00	
		Skewness	-1.050	.230
		Kurtosis	1.607	.457
	(T12) Computer always	Mean	3.4636	.07383
	informed about what is	95% Confidence Interval Lower Bound	3.3173	
	aoing	for Mean Upper Bound	3.6100	
		5% Trimmed Mean	3.5152	
		Median	4.0000	
		Variance	.600	
		Std. Deviation	.77433	
		Minimum	1.00	
		Maximum	5.00	
		Range	4.00	
		Interguartile Range	1.00	
	TAD	Skewness	-1.024	
		Kurtosis	1.390	.457
11	(T13) Controlling of	Mean	3,3818	.06953
// ==	feedback is easy	95% Confidence Interval Lower Bound	3.2440	
	3	for Mean Upper Bound	3.5196	
		5% Trimmed Mean	3 4242	
		Median	3.0000	
		Variance	.532	
11		Std. Deviation	.72923	
An		Minimum	1.00	/sta
	BUDI P	Maximum	5.00	
		Range	4.00	
		Interquartile Range	1.00	
		Skewness	735	.230
		Kurtosis	.877	.457
	(T14) Length of delay is	Mean	3.3182	.08161
	acceptable	95% Confidence Interval Lower Bound	3.1564	
		for Mean Upper Bound	3 4799	
		5% Trimmed Mean	3 3535	
		Median	3.0000	
		Variance	733	
		Std Deviation	85598	
		Minimum	1 00	
		Maximum	5.00	
		Range	4 00	
		Interguartile Range	1.00	
		Skewness	- 667	230
		Kurtosis	- 008	457

(T15) Error messages	Mean	3.3091	.07613
prompt is helpful	95% Confidence Interval Lower Bound	3.1582	
	for Mean Upper Bound	3.4600	
	5% Trimmed Mean	3.3636	
	Median	3.0000	
	Variance	.638	
	Std. Deviation	.79846	
	Minimum	1.00	
	Maximum	5.00	
	Range	4.00	
	Interquartile Range	1.00	
	Skewness	839	.230
	Kurtosis	.342	.457
(T16) Error messages	Mean	3.3273	.07973
always clarify problem	95% Confidence Interval Lower Bound	3.1693	
	for Mean Upper Bound	3.4853	
	5% Trimmed Mean	3.3333	
	Median	3.0000	
	Variance	.699	
	Std. Deviation	.83621	
	Minimum	1.00	
	Maximum	5.00	
	Range	4.00	
	Interguartile Range	1.00	
NTAD	Skewness	395	.230
	Kurtosis	030	.457
(T17) Phrasing of error	Mean	3.3727	.07734
messages is pleasant	95% Confidence Interval Lower Bound	3 2194	
3	for Mean Upper Bound	3 5260	
	5% Trimmed Mean	3.3838	
	Median	3.0000	
	Variance	.658	
	Std. Deviation	.81115	
Dest U	Minimum	1.00	<del>/sia</del>
BUDI D	Maximum	5.00	
	Range	4.00	
	Interguartile Range	1.00	
	Skewness	-,471	.230
	Kurtosis	.256	.457
(L01) Learning is easy	Mean	3.5455	.06911
(,,	95% Confidence Interval Lower Bound	3.4085	
	for Mean Upper Bound	3.6824	
	5% Trimmed Mean	3.5960	
	Median	4.0000	
	Variance	.525	
	Std Deviation	72487	
	Minimum	1 00	
	Maximum	5.00	
	Range	4 00	
	Interquartile Range	1.00	
	Skewness	-1 118	230
	Kurtosis		457
1		.000	

	(L02) Getting started is	Mean	3.5455	.06666
	easy	95% Confidence Interval Lower Bound	3.4133	
		for Mean Upper Bound	3.6776	
		5% Trimmed Mean	3.5960	
		Median	4.0000	
		Variance	.489	
		Std. Deviation	.69910	
		Minimum	1.00	
		Maximum	5.00	
		Range	4.00	
		Interquartile Range	1.00	
		Skewness	-1.067	.230
		Kurtosis	1.067	.457
	(L03) Time to learn is fast	Mean	3.4455	.07259
		95% Confidence Interval Lower Bound	3.3016	
		for Mean Upper Bound	3.5893	
		5% Trimmed Mean	3.4747	
		Median	4.0000	
		Variance	.580	
		Std. Deviation	.76129	
		Minimum	1.00	
		Maximum	5.00	
		Range	4.00	
		Interquartile Range	1.00	
1	UTAR	Skewness	702	.230
2		Kurtosis	.163	.457
11	(L04) Task performed in	Mean	3.4091	.06748
	straight forward manner	95% Confidence Interval Lower Bound	3.2754	
		for Mean Upper Bound	3.5428	
		5% Trimmed Mean	3.4242	
		Median	3.0000	
		Variance	.501	
11		Std. Deviation	.70770	colo.
In	Barrow UI	Minimum	1.00	Sid
	BUDI	Maximum	5.00	
		Range	4.00	
		Interquartile Range	1.00	
		Skewness	304	.230
		Kurtosis	.547	.457
	(L05) Number of steps is	Mean	3.3364	.07779
	just right	95% Confidence Interval Lower Bound	3.1822	
		for Mean Upper Bound	3.4905	
		5% Trimmed Mean	3.3636	
		Median	3.0000	
		Variance	.666	
		Std. Deviation	.81587	
		Minimum	1.00	
		Maximum	5.00	
		Range	4.00	
		Interquartile Range	1.00	
		Skewness	592	.230
		Kurtosis	008	.457

	(L06) Complete task is	Mean	3.4182	.07119
	logical sequence	95% Confidence Interval Lower Bound	3.2771	
		for Mean Upper Bound	3.5593	
		5% Trimmed Mean	3.4646	
		Median	4.0000	
		Variance	.557	
		Std. Deviation	.74664	
		Minimum	1.00	
		Maximum	5.00	
		Range	4.00	
		Interquartile Range	1.00	
		Skewness	859	.230
		Kurtosis	.812	.457
	(L07) Feedback of	Mean	3.4364	.07366
	completion is clear	95% Confidence Interval Lower Bound	3.2904	
		for Mean Upper Bound	3.5824	
		5% Trimmed Mean	3.4646	
		Median	4.0000	
		Variance	.597	
		Std. Deviation	.77255	
		Minimum	1.00	
		Maximum	5.00	
		Range	4.00	
		Interquartile Range	1.00	
1	UTAR	Skewness	695	.230
2		Kurtosis	.060	.457
5//	(C01) Fast enough	Mean	2.9636	.09914
		95% Confidence Interval Lower Bound	2.7671	
		Upper Bound	3.1601	
		5% Trimmed Mean	2.9646	
		Median	3.0000	
		Variance	1.081	
1		Std. Deviation	1.03982	n i n
m	Darman Balle	Minimum SILI OLATA N	1.00	SId
	BUDI	Maximum	5.00	
		Range	4.00	
		Interquartile Range	2.00	
		Skewness	226	.230
		Kurtosis	554	.457
	(C02) Response time is	Mean	2.9818	.09489
	lastenougn	95% Confidence Interval Lower Bound	2.7937	
		Upper Bound	3.1699	
		5% Trimmed Mean	2.9949	
		Median	3.0000	
		Variance	.990	
		Std. Deviation	.99523	
		Minimum	1.00	
		Maximum	5.00	
		Range	4.00	
		Interquartile Range	2.00	
		Skewness	304	.230
		Kurtosis	383	.457

(C03) Rate displayed is	Mean	3.1091	.09164
fast enough	95% Confidence Interval Lower Bound	2.9275	
	for Mean Upper Bound	3.2907	
	5% Trimmed Mean	3.1263	
	Median	3.0000	
	Variance	.924	
	Std. Deviation	.96113	
	Minimum	1.00	
	Maximum	5.00	
	Range	4.00	
	Interquartile Range	2.00	
	Skewness	285	.230
	Kurtosis	374	.457
(C04) Reliable	Mean	3.2909	.08601
	95% Confidence Interval Lower Bound	3.1204	
	Upper Bound	3.4614	
	5% Trimmed Mean	3.3131	
	Median	3.0000	
	Variance	.814	
	Std. Deviation	.90204	
	Minimum	1.00	
	Maximum	5.00	
	Range	4.00	
	Interquartile Range	1.00	
UTARA	Skewness	536	.230
(C05) System failure	Mean	3/3	.457
seldom occured	95% Confidence Interval Lower Bound	2.9054	
	for Mean Upper Bound	3.2765	
	5% Trimmed Mean	3.1364	
	Median	3.0000	
	Variance	.964	
	Std. Deviation	.98190	
	Minimum SILL Utara M	C 1.00	rsia
BUDI BO	Maximum	5.00	
	Range	4.00	
	Interquartile Range	1.00	
	Skewness	659	.230
	Kurtosis	279	.457
(C06) System always	Mean	3.1091	.08792
warns about potential	95% Confidence Interval Lower Bound	2.9348	
problem	for Mean Upper Bound	3.2834	
	5% Trimmed Mean	3.1465	
	Median	3.0000	
	Variance	.850	
	Std. Deviation	.92216	
	Minimum	1.00	
	Maximum	5.00	
	Range	4.00	
	Interquartile Range	1.00	
	Skewness	506	.230
1	Kurtosis	056	.457

_			
(rsOus) Rural or Urban	Mean	1.0096	.00962
School	95% Confidence Interval Lower Bound	.9905	
	for Mean Upper Bound	1.0287	
	5% Trimmed Mean	1.0000	
	Median	1.0000	
	Variance	.010	
	Std. Deviation	.09806	
	Minimum	1.00	
	Maximum	2.00	
	Range	1.00	
	Interquartile Range	.00	
	Skewness	10.198	.237
	Kurtosis	104.000	.469
Gender	Mean	1.7745	.04158
	95% Confidence Interval Lower Bound	1.6920	
	Tor Mean Upper Bound	1.8570	
	5% Trimmed Mean	1.8050	
	Median	2.0000	
	Variance	.176	
	Std. Deviation	.41997	
	Minimum	1.00	
	Maximum	2.00	
	Range	1.00	
	Interquartile Range	.00	
UTARA	Skewness	-1.333	.239
S - A	Kurtosis	227	.474
Age	Mean	2.7182	.07321
//	for Mean	2.5731	
	Opper Bound	2.8633	
	5% Trimmed Mean	2.7374	
	Median	3.0000	
	variance old Basistica	.590	
	Std. Deviation	./6/84	Isia
BUDI BISS	Minimum	1.00	510
	Maximum	4.00	
	Range	3.00	
		1.00	220
	Kutasia	087	.230
Bass	Maan	301	.407
Rate	95% Confidence Interval	0705	.02007
	for Mean	1.0022	
	5% Trimmed Mean	1.0932	
	5% mmmeu wean	1.0000	
	Verianee	1.0000	
	Std Deviation	20060	
	Std. Deviation	.30000	
	Maximum	1.00	
	Papaa	4.00	
	Interguartile Pange	3.00	
	Skowpass	0.00	220
I	ovewness	9.203	.230

Marital Status	Mean	1.9909	.02415
	95% Confidence Interval Lower Bound	1.9431	
	for Mean Upper Bound	2.0388	
	5% Trimmed Mean	2.0000	
	Median	2.0000	
	Variance	.064	
	Std. Deviation	.25325	
	Minimum	1.00	
	Maximum	3.00	
	Range	2.00	
	Interquartile Range	.00	
	Skewness	466	.230
	Kurtosis	13.334	.457
(CTeacher) Class	Mean	3.2222	.17743
Teachers	95% Confidence Interval Lower Bound	2.8691	
	for Mean Upper Bound	3.5753	
	5% Trimmed Mean	3.1914	
	Median	3.0000	
	Variance	2.550	
	Std. Deviation	1.59687	
	Minimum	1.00	
	Maximum	6.00	
	Range	5.00	
	Interquartile Range	3.00	
TTAP	Skewness	.249	.267
	Kurtosis	-1.091	.529
(Usmm) Usina SMM	Mean	3.7041	.10175
12	95% Confidence Interval Lower Bound	3,5021	
	for Mean Upper Bound	3,9060	
	5% Trimmed Mean	3,7721	
	Median	4.0000	
	Variance	1.015	
	Std. Deviation	1.00728	ala.
U Sea	Minimum	1.00	/sia
BUDI U	Maximum	5.00	
	Range	4.00	
	Interguartile Range	1.00	
	Skewness	670	.244
	Kurtosis	.373	.483
(Uapdm) Using APDM	Mean	2.6023	.08932
	95% Confidence Interval Lower Bound	2.4247	
	for Mean Upper Bound	2.7798	
	5% Trimmed Mean	2.6136	
	Median	3.0000	
	Variance	.702	
	Std. Deviation	.83789	
	Minimum	1.00	
	Maximum	4.00	
	Range	3.00	
	Interquartile Range	1.00	
	Skewness	092	.257
	Kurtosis	520	.508
-			

(BeenCT) Been Class	Mean		3.7500	.13295
Teacher	95% Confidence Interval	Lower Bound	3.4864	
	for Mean	Upper Bound	4.0136	
	5% Trimmed Mean		3.8333	
	Median		4.0000	
	Variance		1.909	
	Std. Deviation		1.38162	
	Minimum		1.00	
	Maximum		5.00	
	Range		4.00	
	Interquartile Range		2.00	
	Skewness		686	.233
	Kurtosis		927	.461
(Workshop) Attended	Mean		1.5714	.04853
Workshop	95% Confidence Interval	Lower Bound	1.4752	
	for Mean	Upper Bound	1.6677	
	5% Trimmed Mean		1.5794	
	Median		2.0000	
	Variance		.247	
	Std. Deviation		.49725	
	Minimum		1.00	
	Maximum		2.00	
	Range		1.00	
	Interquartile Range		1.00	
	Skewness		293	.236
	Kurtosis		-1.952	.467

Universiti Utara Malaysia

Appendix E Correlation Matrix



	PU01	PU02	PU03	PU05	PU06	PEOU2	PEOU3	PEOU4	<b>US01</b>	<b>US03</b>	US04	US05	US06	S01	S02	S03	S05	S06	S07
PU01	1.000	.874	.832	.794	.812	.727	.722	.641	.659	.687	.697	.702	.656	.610	.533	.542	.536	.537	.659
PU02	.874	1.000	.903	.801	.868	.727	.715	.595	.619	.660	.616	.674	.595	.636	.561	.525	.545	.565	.683
PU03	.832	.903	1.000	.770	.848	.761	.711	.610	.629	.627	.610	.669	.590	.679	.546	.585	.532	.523	.669
PU05	.794	.801	.770	1.000	.907	.696	.751	.674	.684	.750	.718	.783	.680	.701	.650	.633	.597	.619	.748
PU06	.812	.868	.848	.907	1.000	.744	.751	.622	.622	.717	.737	.764	.624	.665	.607	.612	.542	.596	.740
PEOU2	.727	.727	.761	.696	.744	1.000	.854	.716	.557	.668	.621	.627	.565	.674	.464	.606	.490	.527	.692
PEOU3	.722	.715	.711	.751	.751	.854	1.000	.794	.649	.731	.659	.663	.623	.736	.522	.553	.559	.626	.754
PEOU4	.641	.595	.610	.674	.622	.716	.794	1.000	.683	.731	.728	.671	.670	.835	.702	.760	.683	.737	.752
US01	.659	.619	.629	.684	.622	.557	.649	.683	1.000	.801	.696	.732	.727	.743	.613	.657	.570	.626	.703
US03	.687	.660	.627	.750	.717	.668	.731	.731	.801	1.000	.852	.857	.813	.732	.641	.693	.625	.637	.777
US04	.697	.616	.610	.718	.737	.621	.659	.728	.696	.852	1.000	.876	.779	.687	.651	.650	.552	.593	.690
US05	.702	.674	.669	.783	.764	.627	.663	.671	.732	.857	.876	1.000	.835	.731	.726	.690	.635	.629	.764
US06	.656	.595	.590	.680	.624	.565	.623	.670	.727	.813	.779	.835	1.000	.725	.667	.633	.541	.519	.687
S01	.610	.636	.679	.701	.665	.674	.736	.835	.743	.732	.687	.731	.725	1.000	.744	.817	.741	.764	.778
S02	.533	.561	.546	.650	.607	.464	.522	.702	.613	.641	.651	.726	.667	.744	1.000	.819	.671	.682	.692
S03	.542	.525	.585	.633	.612	.606	.553	.760	.657	.693	.650	.690	.633	.817	.819	1.000	.725	.763	.749
S05	.536	.545	.532	.597	.542	.490	.559	.683	.570	.625	.552	.635	.541	.741	.671	.725	1.000	.797	.719
S06	.537	.565	.523	.619	.596	.527	.626	.737	.626	.637	.593	.629	.519	.764	.682	.763	.797	1.000	.758
S07	.659	.683	.669	.748	.740	.692	.754	.752	.703	.777	.690	.764	.687	.778	692	.749	.719	.758	1.000
T06	.685	.647	.664	.606	.626	.719	.712	.770	.556	.703	.703	.644	.577	.659	.639	.695	.598	.631	.673
<b>T07</b>	.698	.725	.695	.671	.725	.751	.774	.765	.662	.751	.671	.681	.626	.760	.655	.761	.688	.763	.820
Т09	.615	.677	.647	.600	.658	.710	.679	.707	.543	.608	.550	.543	.514	.658	.629	.707	.576	.711	.682
T13	.565	.550	.563	.512	.553	.607	.643	.722	.619	.715	.620	.618	.628	.655	.634	.708	.633	.674	.649
T14	.672	.696	.703	.602	.660	.758	.739	.688	.603	.718	.646	.628	.653	.647	.524	.611	.530	.599	.758
T15	.645	.697	.690	.637	.670	.662	.701	.686	.667	.704	.587	.649	.598	.686	.567	.588	.683	.683	.791
T16	.643	.603	.650	.611	.631	.663	.672	.711	.543	.677	.605	.596	.575	.642	.531	.632	.609	.651	.728
T17	.673	.635	.645	.589	.613	.689	.720	.785	.576	.703	.657	.619	.648	.699	.644	.673	.621	.662	.788
L03	.667	.618	.646	.626	.643	.651	.633	.702	.508	.606	.664	.617	.595	.683	.597	.669	.616	.652	.632

L04	.562	.565	.579	.462	.490	.578	.596	.688	.620	.625	.547	.603	.617	.751	.635	.687	.662	.667	.662
L05	.640	.653	.621	.634	.655	.648	.656	.708	.580	.662	.575	.635	.572	.737	.648	.728	.751	.722	.768
L06	.699	.662	.645	.685	.656	.663	.693	.754	.676	.754	.661	.692	.679	.768	.656	.738	.734	.744	.820
L07	.524	.515	.501	.579	.551	.529	.586	.699	.582	.632	.545	.552	.536	.696	.666	.759	.757	.751	.719
C01	.505	.534	.591	.423	.523	.589	.530	.481	.420	.491	.522	.534	.515	.500	.498	.467	.422	.372	.552
C02	.572	.604	.631	.489	.539	.653	.623	.503	.548	.562	.483	.561	.606	.606	.512	.500	.466	.401	.577
C03	.623	.609	.641	.547	.631	.693	.649	.587	.578	.658	.657	.705	.672	.629	.594	.590	.511	.519	.686
C04	.665	.724	.692	.659	.701	.706	.680	.606	.651	.706	.649	.687	.668	.686	.573	.626	.563	.576	.725
C05	.543	.571	.547	.386	.488	.571	.475	.443	.456	.536	.515	.508	.590	.483	.454	.505	.351	.364	.530
C06	.475	.420	.491	.414	.439	.526	.496	.510	.501	.575	.506	.506	.550	.502	.498	.563	.493	.401	.615



Universiti Utara Malaysia

	T06	<b>T07</b>	Т09	T13	T14	T15	T16	T17	L03	L04	L05	L06	L07	C01	C02	C03	C04	C05	C06
PU01	.685	.698	.615	.565	.672	.645	.643	.673	.667	.562	.640	.699	.524	.505	.572	.623	.665	.543	.475
PU02	.647	.725	.677	.550	.696	.697	.603	.635	.618	.565	.653	.662	.515	.534	.604	.609	.724	.571	.420
PU03	.664	.695	.647	.563	.703	.690	.650	.645	.646	.579	.621	.645	.501	.591	.631	.641	.692	.547	.491
PU05	.606	.671	.600	.512	.602	.637	.611	.589	.626	.462	.634	.685	.579	.423	.489	.547	.659	.386	.414
PU06	.626	.725	.658	.553	.660	.670	.631	.613	.643	.490	.655	.656	.551	.523	.539	.631	.701	.488	.439
PEOU2	.719	.751	.710	.607	.758	.662	.663	.689	.651	.578	.648	.663	.529	.589	.653	.693	.706	.571	.526
PEOU3	.712	.774	.679	.643	.739	.701	.672	.720	.633	.596	.656	.693	.586	.530	.623	.649	.680	.475	.496
PEOU4	.770	.765	.707	.722	.688	.686	.711	.785	.702	.688	.708	.754	.699	.481	.503	.587	.606	.443	.510
US01	.556	.662	.543	.619	.603	.667	.543	.576	.508	.620	.580	.676	.582	.420	.548	.578	.651	.456	.501
US03	.703	.751	.608	.715	.718	.704	.677	.703	.606	.625	.662	.754	.632	.491	.562	.658	.706	.536	.575
US04	.703	.671	.550	.620	.646	.587	.605	.657	.664	.547	.575	.661	.545	.522	.483	.657	.649	.515	.506
US05	.644	.681	.543	.618	.628	.649	.596	.619	.617	.603	.635	.692	.552	.534	.561	.705	.687	.508	.506
US06	.577	.626	.514	.628	.653	.598	.575	.648	.595	.617	.572	.679	.536	.515	.606	.672	.668	.590	.550
S01	.659	.760	.658	.655	.647	.686	.642	.699	.683	.751	.737	.768	.696	.500	.606	.629	.686	.483	.502
S02	.639	.655	.629	.634	.524	.567	.531	.644	.597	.635	.648	.656	.666	.498	.512	.594	.573	.454	.498
S03	.695	.761	.707	.708	.611	.588	.632	.673	.669	.687	.728	.738	.759	.467	.500	.590	.626	.505	.563
S05	.598	.688	.576	.633	.530	.683	.609	.621	.616	.662	.751	.734	.757	.422	.466	.511	.563	.351	.493
S06	.631	.763	.711	.674	.599	.683	.651	.662	.652	.667	.722	.744	.751	.372	.401	.519	.576	.364	.401
S07	.673	.820	.682	.649	.758	.791	.728	.788	.632	.662	.768	.820	.719	.552	.577	.686	.725	.530	.615
T06	1.000	.816	.738	.694	.739	.613	.700	.783	.713	.649	.677	.680	.570	.575	.519	.628	.617	.531	.522
<b>T07</b>	.816	1.000	.838	.732	.767	.716	.715	.779	.712	.709	.757	.769	.676	.528	.566	.671	.720	.563	.500
Т09	.738	.838	1.000	.751	.751	.692	.720	.769	.735	.685	.731	.674	.700	.511	.536	.604	.756	.554	.475
T13	.694	.732	.751	1.000	.744	.678	.681	.719	.682	.743	.754	.715	.744	.527	.528	.595	.652	.476	.524
T14	.739	.767	.751	.744	1.000	.727	.763	.805	.653	.646	.699	.737	.607	.601	.621	.660	.806	.653	.595
T15	.613	.716	.692	.678	.727	1.000	.781	.798	.632	.667	.726	.751	.716	.566	.584	.661	.740	.526	.577
T16	.700	.715	.720	.681	.763	.781	1.000	.874	.706	.640	.657	.734	.643	.562	.558	.629	.700	.544	.596

T17	.783	.779	.769	.719	.805	.798	.874	1.000	.754	.755	.724	.801	.690	.604	.622	.712	.753	.602	.620
L03	.713	.712	.735	.682	.653	.632	.706	.754	1.000	.766	.702	.702	.680	.496	.507	.560	.665	.473	.427
L04	.649	.709	.685	.743	.646	.667	.640	.755	.766	1.000	.729	.767	.728	.519	.584	.608	.703	.527	.521
L05	.677	.757	.731	.754	.699	.726	.657	.724	.702	.729	1.000	.806	.798	.534	.561	.631	.714	.500	.512
L06	.680	.769	.674	.715	.737	.751	.734	.801	.702	.767	.806	1.000	.826	.433	.541	.601	.717	.473	.506
L07	.570	.676	.700	.744	.607	.716	.643	.690	.680	.728	.798	.826	1.000	.431	.488	.504	.672	.455	.564
C01	.575	.528	.511	.527	.601	.566	.562	.604	.496	.519	.534	.433	.431	1.000	.850	.849	.667	.740	.750
C02	.519	.566	.536	.528	.621	.584	.558	.622	.507	.584	.561	.541	.488	.850	1.000	.846	.711	.772	.702
C03	.628	.671	.604	.595	.660	.661	.629	.712	.560	.608	.631	.601	.504	.849	.846	1.000	.725	.738	.711
C04	.617	.720	.756	.652	.806	.740	.700	.753	.665	.703	.714	.717	.672	.667	.711	.725	1.000	.695	.634
C05	.531	.563	.554	.476	.653	.526	.544	.602	.473	.527	.500	.473	.455	.740	.772	.738	.695	1.000	.779
C06	.522	.500	.475	.524	.595	.577	.596	.620	.427	.521	.512	.506	.564	.750	.702	.711	.634	.779	1.000



Universiti Utara Malaysia

# Appendix F Anti Image Matrices



Anti Image Covariance
-----------------------

	PU01	PU02	PU03	PU05	PU06	PEOU2	PEOU3	PEOU4	<b>US01</b>	US03	<b>US04</b>	<b>US05</b>	US06	S01	S02	S03	S05	S06	S07
PU01	.111	036	1.345E-	013	.006	009	008	.006	039	.027	013	007	016	.018	.020	002	.000	.005	.022
			05																
PU02	036	.052	036	004	013	.000	.010	012	.017	018	.007	.009	.008	.006	023	.020	013	015	011
PU03	1.345E-	036	.081	.004	016	003	.000	.014	025	.022	.008	014	.005	025	.024	017	.001	.029	.014
	05																		
PU05	013	004	.004	.064	034	007	008	009	018	017	.022	009	020	002	018	.003	008	005	007
PU06	.006	013	016	034	.061	.001	014	.019	.018	.007	028	.005	.010	.004	001	011	.018	.002	003
PEOU2	009	.000	003	007	.001	.114	046	019	.033	001	002	001	.020	.006	.040	036	.008	.031	.002
PEOU3	008	.010	.000	008	014	046	.090	030	.001	006	.011	003	.006	020	003	.044	.014	020	011
PEOU4	.006	012	.014	009	.019	019	030	.101	023	.016	024	.005	010	028	002	012	005	.005	.008
<b>US01</b>	039	.017	025	018	.018	.033	.001	023	.158	027	023	.023	006	.004	003	015	.037	025	018
US03	.027	018	.022	017	.007	001	006	.016	027	.084	029	014	015	.001	.026	011	.008	.014	.008
<b>US04</b>	013	.007	.008	.022	028	002	.011	024	023	029	.072	033	.007	017	1.436E-	.016	008	001	.007
															05				
US05	007	.009	014	009	.005	001	003	.005	.023	014	033	.069	031	.018	029	006	011	010	025
<b>US06</b>	016	.008	.005	020	.010	.020	.006	010	006	015	.007	031	.145	031	007	.011	004	.036	.001
S01	.018	.006	025	002	.004	.006	020	028	.004	.001	017	.018	031	.090	011	026	009	024	002
S02	.020	023	.024	018	001	.040	003	002	003	.026	1.436E-	029	007	011	.147	044	.000	.015	.010
											05								
S03	002	.020	017	.003	011	036	.044	012	015	011	.016	006	.011	026	044	.077	005	018	013
S05	.000	013	.001	008	.018	.008	.014	005	.037	.008	008	011	004	009	.000	005	.177	056	.008
S06	.005	015	.029	005	.002	.031	020	.005	025	.014	001	010	.036	024	.015	018	056	.149	010
S07	.022	011	.014	007	003	.002	011	.008	018	.008	.007	025	.001	002	.010	013	.008	010	.092
T06	004	004	010	008	.022	006	018	001	.002	014	013	008	.022	.012	013	015	010	.005	.031
<b>T07</b>	009	001	.005	.018	014	.006	019	.006	009	017	.009	.010	002	004	.009	012	034	.003	033
Т09	.012	006	001	003	002	021	.013	012	.002	.008	.008	.008	.001	.011	024	.003	.030	031	.009
----------------------------------------	---------------------------------------------	-------------------------------------------	--------------------------------------------	-------------------------------------------	--------------------------------------------	------------------------------------------	-------------------------------------------	--------------------------------------------	-----------------------------------------------------	---------------------------------------------	-----------------------------------------	------------------------------------------	--------------------------------------------	--------------------------------------------	------------------------------------------	------------------------------------------	-------------------------------------------	------------------------------------------	--------------------------------------------
T13	.000	004	001	.022	005	.007	017	005	010	023	.000	003	031	.026	008	019	.005	005	.031
T14	.008	.005	021	.010	.003	018	005	.001	.004	002	005	.013	022	.009	002	.010	.007	019	032
T15	.017	011	007	.019	009	027	.009	.002	054	013	.028	020	.005	015	002	.034	031	004	009
T16	011	.018	010	009	011	.009	.009	009	.012	014	.018	015	.019	005	.033	004	011	019	.012
T17	014	.005	003	.003	.005	.018	005	019	.032	004	013	.025	008	.013	025	001	.011	.007	024
L03	016	.015	014	027	.007	009	.007	.011	.037	.020	040	.014	020	.009	.016	008	001	012	.004
L04	.006	010	.002	.034	005	009	.002	.002	040	006	.036	027	.005	032	007	.017	004	001	.006
L05	022	.001	.018	.003	016	.005	.012	008	.007	008	.028	008	.026	028	.013	.005	040	.023	021
L06	016	9.284E-	005	005	.006	018	.018	.002	.007	004	006	.004	013	.000	.000	.004	.006	011	015
		05																	
		00																	
L07	.001	.009	.000	009	.000	.022	018	007	.021	.002	015	.021	.007	.020	008	021	014	010	003
L07 C01	.001 .009	.009 .003	.000 011	009 004	.000 002	.022 .006	018 .017	007 018	.021 .029	.002 .018	015 019	.021	.007 .005	.020 .010	008 012	021 .011	014 .014	010 006	003 017
L07 C01 C02	.001 .009 .003	.009 .003 007	.000 011 .003	009 004 .004	.000 002 .005	.022 .006 011	018 .017 021	007 018 .017	.021 .029 037	.002 .018 014	015 019 .028	.021 .012 008	.007 .005 .004	.020 .010 023	008 012 007	021 .011 .006	014 .014 029	010 006 .022	003 017 .012
L07 C01 C02 C03	.001 .009 .003 007	.009 .003 007 .011	.000 011 .003 002	009 004 .004 .008	.000 002 .005 008	.022 .006 011 019	018 .017 021 .000	007 018 .017 .011	.021 .029 037 8.856E-	.002 .018 014 .006	015 019 .028 009	.021 .012 008 014	.007 .005 .004 014	.020 .010 023 .009	008 012 007 001	021 .011 .006 003	014 .014 029 .012	010 006 .022 026	003 017 .012 .005
L07 C01 C02 C03	.001 .009 .003 007	.009 .003 007 .011	.000 011 .003 002	009 004 .004 .008	.000 002 .005 008	.022 .006 011 019	018 .017 021 .000	007 018 .017 .011	.021 .029 037 8.856E- 05	.002 .018 014 .006	015 019 .028 009	.021 .012 008 014	.007 .005 .004 014	.020 .010 023 .009	008 012 007 001	021 .011 .006 003	014 .014 029 .012	010 006 .022 026	003 017 .012 .005
L07 C01 C02 C03 C04	.001 .009 .003 007 .019	.009 .003 007 .011 019	.000 011 .003 002 .024	009 004 .004 .008 014	.000 002 .005 008	.022 .006 011 019 003	018 .017 021 .000 005	007 018 .017 .011	.021 .029 037 8.856E- 05 030	.002 .018 014 .006	015 019 .028 009	.021 .012 008 014	.007 .005 .004 014 .007	.020 .010 023 .009 018	008 012 007 001 .029	021 .011 .006 003	014 .014 029 .012 002	010 006 .022 026	003 017 .012 .005 .024
L07 C01 C02 C03 C04 C05	.001 .009 .003 007 .019 .005	.009 .003 007 .011 019 032	.000 011 .003 002 .024 .023	009 004 .004 .008 014 .017	.000 002 .005 008 .005 .001	.022 .006 011 019 003 002	018 .017 021 .000 005 .011	007 018 .017 .011 .034 .005	.021 .029 037 8.856E- 05 030 .014	.002 .018 014 .006 .012 .012	015 019 .028 009 008 015	.021 .012 008 014 021 001	.007 .005 .004 014 .007 038	.020 .010 023 .009 018 .005	008 012 007 001 .029 .013	021 .011 .006 003 008 018	014 .014 029 .012 002 .048	010 006 .022 026 .028 014	003 017 .012 .005 .024 .019

	T06	T07	T09	T13	T14	T15	T16	T17	L03	L04	L05	L06	L07	C01	C02	C03	C04	C05	C06
PU01	004	009	.012	.000	.008	.017	011	014	016	.006	022	016	.001	.009	.003	007	.019	.005	026
PU02	004	001	006	004	.005	011	.018	.005	.015	010	.001	9.284E-	.009	.003	007	.011	019	032	.030
												05							
PU03	010	.005	001	001	021	007	010	003	014	.002	.018	005	.000	011	.003	002	.024	.023	023
PU05	008	.018	003	.022	.010	.019	009	.003	027	.034	.003	005	009	004	.004	.008	014	.017	004
PU06	.022	014	002	005	.003	009	011	.005	.007	005	016	.006	.000	002	.005	008	.005	.001	.002
PEOU2	006	.006	021	.007	018	027	.009	.018	009	009	.005	018	.022	.006	011	019	003	002	.000
PEOU3	018	019	.013	017	005	.009	.009	005	.007	.002	.012	.018	018	.017	021	.000	005	.011	009
PEOU4	001	.006	012	005	.001	.002	009	019	.011	.002	008	.002	007	018	.017	.011	.034	.005	004
<b>US01</b>	.002	009	.002	010	.004	054	.012	.032	.037	040	.007	.007	.021	.029	037	8.856E-	030	.014	004
																05			
US03	014	017	.008	023	002	013	014	004	.020	006	008	004	.002	.018	014	.006	.012	.012	027
US04	013	.009	.008	.000	005	.028	.018	013	040	.036	.028	006	015	019	.028	009	008	015	.007
<b>US05</b>	008	.010	.008	003	.013	020	015	.025	.014	027	008	.004	.021	.012	008	014	021	001	.019
US06	.022	002	.001	031	022	.005	.019	008	020	.005	.026	013	.007	.005	.004	014	.007	038	.007
S01	.012	004	.011	.026	.009	015	005	.013	.009	032	028	.000	.020	.010	023	.009	018	.005	.013
S02	013	.009	024	008	002	002	.033	025	.016	007	.013	.000	008	012	007	001	.029	.013	011
S03	015	012	.003	019	.010	.034	004	001	008	.017	.005	.004	021	.011	.006	003	008	018	005
S05	010	034	.030	.005	.007	031	011	.011	001	004	040	.006	014	.014	029	.012	002	.048	049
S06	.005	.003	031	005	019	004	019	.007	012	001	.023	011	010	006	.022	026	.028	014	.020
S07	.031	033	.009	.031	032	009	.012	024	.004	.006	021	015	003	017	.012	.005	.024	.019	036
T06	.139	035	012	.017	023	.014	.008	022	006	004	021	005	.014	036	.021	.014	.030	.002	006
<b>T07</b>	035	.095	039	004	.008	.009	.003	.006	006	.001	.015	009	.010	003	.012	012	002	022	.030

Т09	012	039	.118	027	.000	.000	013	006	017	.006	008	.028	017	.021	003	009	039	002	.003
T13	.017	004	027	.146	048	002	014	.006	.003	026	038	.010	025	022	.001	.004	.027	.038	005
T14	023	.008	.000	048	.126	.005	011	003	.003	.021	008	018	.022	.003	.001	.020	047	026	.007
T15	.014	.009	.000	002	.005	.134	023	030	011	.029	.002	.009	040	018	.031	012	.002	005	.004
T16	.008	.003	013	014	011	023	.145	044	015	.017	.023	014	.014	015	.001	.016	.003	011	009
T17	022	.006	006	.006	003	030	044	.064	008	022	.002	011	.015	.020	013	019	020	.004	.002
L03	006	006	017	.003	.003	011	015	008	.165	073	019	.023	011	-	019	.021	.008	.001	.025
														1.099E-					
														05					
L04	004	.001	.006	026	.021	.029	.017	022	073	.130	.009	025	013	010	.019	.000	018	005	011
L05	021	.015	008	038	008	.002	.023	.002	019	.009	.161	018	022	011	.016	024	009	018	.024
L06	005	009	.028	.010	018	.009	014	011	.023	025	018	.101	048	.022	013	007	001	.014	.016
L07	.014	.010	017	025	.022	040	.014	.015	011	013	022	048	.103	.006	013	.020	020	009	021
C01	036	003	.021	022	.003	018	015	.020	-1.099E-	010	011	.022	.006	.101	051	033	025	.008	031
									05										
C02	.021	.012	003	.001	.001	.031	.001	013	019	.019	.016	013	013	051	.093	030	.006	036	.017
C03	.014	012	009	.004	.020	012	.016	019	.021	.000	024	007	.020	033	030	.104	.004	.001	010
C04	.030	002	039	.027	047	.002	.003	020	.008	018	009	001	020	025	.006	.004	.117	.003	013
C05	.002	022	002	.038	026	005	011	.004	.001	005	018	.014	009	.008	036	.001	.003	.132	077
C06	006	.030	.003	005	.007	.004	009	.002	.025	011	.024	.016	021	031	.017	010	013	077	.144

	PU01	PU02	PU03	PU05	PU06	PEOU2	PEOU3	PEOU4	US01	US03	US04	US05	US06	S01	S02	S03	S05	S06	S07
PU01	.951 ^ª	469	.000	152	.072	078	076	.061	298	.279	151	074	126	.178	.153	026	002	.042	.214
PU02	469	.911ª	556	072	228	003	.153	172	.189	270	.111	.143	.086	.089	260	.318	131	174	161
PU03	.000	556	.934 ^a	.054	223	036	005	.151	222	.265	.105	189	.044	288	.223	218	.006	.260	.161
PU05	152	072	.054	.932ª	541	082	104	115	183	228	.324	137	209	021	182	.046	075	054	096
PU06	.072	228	223	541	.943 ^ª	.010	184	.243	.186	.104	424	.079	.111	.056	013	156	.179	.024	045
PEOU2	078	003	036	082	.010	.945ª	451	181	.243	010	021	013	.158	.060	.307	388	.057	.237	.020
PEOU3	076	.153	005	104	184	451	.938ª	311	.008	070	.131	044	.049	219	027	.528	.111	175	127
PEOU4	.061	172	.151	115	.243	181	311	.956ª	180	.178	278	.066	085	298	019	138	036	.037	.083
US01	298	.189	222	183	.186	.243	.008	180	.921 ^a	236	220	.221	041	.037	018	134	.219	161	149
US03	.279	270	.265	228	.104	010	070	.178	236	.946 ^a	379	183	139	.012	.237	133	.067	.124	.090
US04	151	.111	.105	.324	424	021	.131	278	220	379	.900 ^a	469	.069	207	.000	.217	070	012	.093
US05	074	.143	189	137	.079	013	044	.066	.221	183	469	.926 ^a	307	.226	291	080	102	100	310
US06	126	.086	.044	209	.111	.158	.049	085	041	139	.069	307	.957 ^a	272	045	.100	025	.244	.011
S01	.178	.089	288	021	.056	.060	219	298	.037	.012	207	.226	272	.945 ^ª	098	316	069	205	026
S02	.153	260	.223	182	013	.307	027	019	018	.237	.000	291	045	098	.941 ^ª	409	002	.101	.084
S03	026	.318	218	.046	156	388	.528	138	134	133	.217	080	.100	316	409	.921ª	044	165	154
S05	002	131	.006	075	.179	.057	.111	036	.219	.067	070	102	025	069	002	044	.947 ^ª	344	.060
S06	.042	174	.260	054	.024	.237	175	.037	161	.124	012	100	.244	205	.101	165	344	.949 ^a	086
S07	.214	161	.161	096	045	.020	127	.083	149	.090	.093	310	.011	026	.084	154	.060	086	.945 ^a
T06	034	048	095	083	.240	049	162	005	.013	126	126	078	.158	.111	092	145	061	.033	.273
T07	088	014	.062	.230	180	.053	202	.057	075	186	.110	.120	016	039	.074	135	260	.023	352
T09	.103	072	015	038	020	181	.130	114	.013	.083	.082	.086	.004	.103	178	.032	.209	234	.083
T13	.001	041	006	.230	050	.058	152	045	065	206	.005	026	213	.228	051	176	.030	036	.271

## Anti Image Correlation

T14	.064	.058	213	.111	.032	152	049	.012	.027	016	050	.138	160	.082	014	.098	.047	136	295
T15	.141	136	065	.208	103	217	.087	.016	374	120	.288	209	.034	135	012	.334	201	025	077
T16	089	.209	092	094	117	.067	.078	076	.078	130	.179	147	.130	044	.226	034	069	128	.108
T17	162	.090	048	.046	.086	.209	070	243	.317	056	190	.386	086	.171	260	015	.105	.076	319
L03	116	.160	122	261	.068	065	.058	.082	.227	.174	371	.128	131	.077	.106	069	003	075	.036
L04	.052	119	.015	.371	052	072	.014	.016	276	053	.373	290	.039	296	050	.166	029	011	.057
L05	164	.008	.160	.031	159	.035	.096	066	.047	069	.264	079	.172	233	.085	.041	236	.148	173
L06	150	.001	060	058	.079	168	.186	.019	.057	048	068	.052	109	001	.002	.044	.046	091	161
L07	.005	.127	.003	112	.003	.201	187	072	.161	.016	178	.250	.058	.208	066	239	107	084	029
C01	.086	.037	122	048	026	.060	.181	178	.229	.190	224	.149	.041	.102	101	.125	.108	048	180
C02	.025	102	.030	.052	.065	108	229	.180	303	153	.348	094	.032	246	063	.069	226	.183	.130
C03	064	.150	025	.103	094	173	.003	.107	.001	.060	107	169	116	.094	007	028	.092	209	.056
C04	.163	248	.246	166	.054	023	045	.313	221	.120	089	233	.054	172	.221	085	014	.215	.236
C05	.044	382	.222	.186	.010	016	.098	.046	.094	.111	159	008	276	.041	.095	183	.313	096	.175
C06	208	.343	215	043	.021	002	080	032	025	244	.067	.187	.047	.110	075	043	305	.133	311

RUDI BUDI

Universiti Utara Malaysia

	T06	<b>T07</b>	T09	T13	T14	T15	T16	T17	L03	L04	L05	L06	L07	C01	C02	C03	C04	C05	C06
PU01	034	088	.103	.001	.064	.141	089	162	116	.052	164	150	.005	.086	.025	064	.163	.044	208
PU02	048	014	072	041	.058	136	.209	.090	.160	119	.008	.001	.127	.037	102	.150	248	382	.343
PU03	095	.062	015	006	213	065	092	048	122	.015	.160	060	.003	122	.030	025	.246	.222	215
PU05	083	.230	038	.230	.111	.208	094	.046	261	.371	.031	058	112	048	.052	.103	166	.186	043
PU06	.240	180	020	050	.032	103	117	.086	.068	052	159	.079	.003	026	.065	094	.054	.010	.021
PEOU2	049	.053	181	.058	152	217	.067	.209	065	072	.035	168	.201	.060	108	173	023	016	002
PEOU3	162	202	.130	152	049	.087	.078	070	.058	.014	.096	.186	187	.181	229	.003	045	.098	080
PEOU4	005	.057	114	045	.012	.016	076	243	.082	.016	066	.019	072	178	.180	.107	.313	.046	032
US01	.013	075	.013	065	.027	374	.078	.317	.227	276	.047	.057	.161	.229	303	.001	221	.094	025
US03	126	186	.083	206	016	120	130	056	.174	053	069	048	.016	.190	153	.060	.120	.111	244
US04	126	.110	.082	.005	050	.288	.179	190	371	.373	.264	068	178	224	.348	107	089	159	.067
US05	078	.120	.086	026	.138	209	147	.386	.128	290	079	.052	.250	.149	094	169	233	008	.187
US06	.158	016	.004	213	160	.034	.130	086	131	.039	.172	109	.058	.041	.032	116	.054	276	.047
S01	.111	039	.103	.228	.082	135	044	.171	.077	296	233	001	.208	.102	246	.094	172	.041	.110
S02	092	.074	178	051	014	012	.226	260	.106	050	.085	.002	066	101	063	007	.221	.095	075
S03	145	135	.032	176	.098	.334	034	015	069	.166	.041	.044	239	.125	.069	028	085	183	043
S05	061	260	.209	.030	.047	201	069	.105	003	029	236	.046	107	.108	226	.092	014	.313	305
S06	.033	.023	234	036	136	025	128	.076	075	011	.148	091	084	048	.183	209	.215	096	.133
S07	.273	352	.083	.271	295	077	.108	319	.036	.057	173	161	029	180	.130	.056	.236	.175	311
T06	.956 ^ª	305	097	.117	177	.100	.060	238	041	029	139	045	.116	307	.182	.116	.232	.014	043
<b>T07</b>	305	.957 ^ª	365	030	.077	.076	.024	.071	044	.006	.124	092	.104	029	.123	125	017	192	.257
Т09	097	365	.957 ^a	205	.001	002	098	064	123	.051	058	.258	158	.190	029	080	335	015	.020
T13	.117	030	205	.949 ^a	352	016	098	.064	.019	189	250	.085	200	181	.010	.036	.207	.273	032

T14	177	.077	.001	352	.958 ^a	.036	079	032	.019	.167	058	158	.192	.025	.005	.173	388	199	.055
T15	.100	.076	002	016	.036	.941 ^ª	162	327	073	.217	.016	.079	341	153	.281	101	.013	041	.032
T16	.060	.024	098	098	079	162	.961 ^ª	454	100	.124	.147	120	.112	120	.012	.129	.021	078	064
T17	238	.071	064	.064	032	327	454	.930 ^ª	075	237	.017	141	.190	.245	165	229	233	.040	.023
L03	041	044	123	.019	.019	073	100	075	.948 ^ª	496	114	.181	087	-	156	.157	.057	.006	.160
														8.495E-					
														05					
L04	029	.006	.051	189	.167	.217	.124	237	496	.929 ^a	.060	219	112	090	.176	004	149	039	082
L05	139	.124	058	250	058	.016	.147	.017	114	.060	.962 ^ª	144	175	082	.127	183	067	120	.157
L06	045	092	.258	.085	158	.079	120	141	.181	219	144	.960 ^a	475	.218	134	072	013	.120	.137
L07	.116	.104	158	200	.192	341	.112	.190	087	112	175	475	.934 ^a	.054	135	.191	184	079	169
C01	307	029	.190	181	.025	153	120	.245	-	090	082	.218	.054	.907 ^a	530	322	232	.070	254
									8.495E-										
									05										
C02	.182	.123	029	.010	.005	.281	.012	165	156	.176	.127	134	135	530	.909 ^a	302	.053	320	.148
C03	.116	125	080	.036	.173	101	.129	229	.157	004	183	072	.191	322	302	.959 ^ª	.034	.008	080
C04	.232	017	335	.207	388	.013	.021	233	.057	149	067	013	184	232	.053	.034	.938 ^a	.021	098
C05	.014	192	015	.273	199	041	078	.040	.006	039	120	.120	079	.070	320	.008	.021	.905 ^ª	555
C06	043	.257	.020	032	.055	.032	064	.023	.160	082	.157	.137	169	254	.148	080	098	555	.907 ^a

Appendix G Scatter Plot Graph











