
The copyright © of this thesis belongs to its rightful author and/or other copyright

owner. Copies can be accessed and downloaded for non-commercial or learning

purposes without any charge and permission. The thesis cannot be reproduced or

quoted as a whole without the permission from its rightful owner. No alteration or

changes in format is allowed without permission from its rightful owner.

AN IMPROVED LEVENSHTEIN ALGORITHM FOR SPELLING

CORRECTION WORD CANDIDATE LIST GENERATION

HANAN NAJM ABDULKHUDHUR

COLLEGE OF ARTS AND SCIENCE

UNIVERSITI UTARA MALAYSIA

2016

i

Permission to Use

In presenting this dissertation in fulfillment of the requirements for a postgraduate

degree from Universiti Utara Malaysia, I agree that the Universiti Library may make

it freely available for inspection. I further agree that permission for the copying of

this dissertation in any manner, in whole or in part, for the scholarly purpose may be

granted by my supervisor(s) or, in their absence, by the Dean of Awang Had Salleh

Graduate School of Arts and Sciences. It is understood that any copying or

publication or use of this dissertation or parts thereof for financial gain shall not be

allowed without my written permission. It is also understood that due recognition

shall be given to me and to Universiti Utara Malaysia for any scholarly use which

may be made of any material from my dissertation.

Requests for permission to copy or to make other use of materials in this dissertation,

in whole or in part should be addressed to:

Dean of Awang Had Salleh Graduate School of Arts and Sciences

UUM College of Arts and Sciences

Universiti Utara Malaysia

06010 UUM Sintok

ii

Abstrak

Senarai calon terhasil dalam pembetulan ejaan adalah satu proses untuk mencari

kata-kata dari leksikon yang hampir sama dengan perkataan yang tidak tepat.

Algoritma paling banyak digunakan untuk menjana senarai calon untuk kata-kata

yang tidak tepat adalah berdasarkan jarak Levenshtein. Walau bagaimanapun,

algoritma ini mengambil masa yang terlalu lama apabila terdapat bilangan besar

kesilapan ejaan. Sebabnya ialah bahawa pengiraan algoritma Levenshtein termasuk

operasi yang menghasilkan jajaran dan pengisian sel-sel jajaran dengan

membandingkan huruf-huruf perkataan yang tidak betul dengan huruf-huruf

perkataan dari leksikon. Oleh kerana kebanyakan leksikon mengandungi berjuta-juta

perkataan, maka operasi ini akan diulang berjuta-juta kali bagi setiap perkataan tidak

tepat untuk menjana senarai calonnya. Kajian ini men ambahbaikkan algoritma

Levenshtein dengan merekabentuk teknik operasi yang telah dimasukkan dalam

algoritma ini. Teknik operasi yang dicadangkan meningkatkan algoritma Levenshtein

dari segi masa pemprosesan perlaksanaannya tanpa menjejaskan ketepatannya. Ia

mengurangkan langkah operasi yang diperlukan untuk mengukur nilai sel-sel dalam

baris dan lajur pertama, baris dan lajur kedua serta baris dan lajur ketiga dalam

jajaran Levenshtein. Algoritma Levenshtein yang telah tingkatkan telah

dibandingkan dengan algoritma asal. Hasil kajian menunjukkan bahawa prestasi

algoritma yang dicadangkan melebihi prestasi algoritma Levenshtein asal dari segi

masa pemprosesan, iaitu sebanyak 36.45% manakala ketepatan kedua-dua algoritma

adalah masih sama.

Kata Kunci: Algoritma Levenshtein, Masa pemprosesan, Penghasilan senarai calon,

Pmbetulan Kesilapan.

iii

Abstract

Candidates’ list generation in spelling correction is a process of finding words from a

lexicon that should be close to the incorrect word. The most widely used algorithm

for generating candidates’ list for incorrect words is based on Levenshtein distance.

However, this algorithm takes too much time when there is a large number of

spelling errors. The reason is that calculating Levenshtein algorithm includes

operations that create an array and fill the cells of this array by comparing the

characters of an incorrect word with the characters of a word from a lexicon. Since

most lexicons contain millions of words, then these operations will be repeated

millions of times for each incorrect word to generate its candidates list. This

dissertation improved Levenshtein algorithm by designing an operational technique

that has been included in this algorithm. The proposed operational technique

enhances Levenshtein algorithm in terms of the processing time of its executing

without affecting its accuracy. It reduces the operations required to measure cells’

values in the first row, first column, second row, second column, third row, and third

column in Levenshtein array. The improved Levenshtein algorithm was evaluated

against the original algorithm. Experimental results show that the proposed algorithm

outperforms Levenshtein algorithm in terms of the processing time by 36.45% while

the accuracy of both algorithms is still the same.

Keywords: Levenshtein Algorithm, Processing time, Candidates’ list generation,

Errors correction.

iv

Acknowledgement

Each part of this dissertation is guided, inspired, and supported by many people.

Firstly, I would like to thank all the members of my family especially my husband

and my parents for their unconditional support. My goal would not be achieved

without them. The most important support and guidance were from my research

supervisors Dr. Shahrul Azmi Mohd Yusof and Prof. Madya Dr. Yuhanis Yusof.

Thank you very much for your great help and support. It is an honor for me to do a

research under your supervisions. I would like to thank all the academic and

technical staff in School of Computing of Utara Universiti Malaysia for their help in

the study process and providing all the excellent facilities. Finally, I would like to

thank all my friends for their support.

v

Table of Contents

Permission to Use .. i

Abstrak ... ii

Abstract .. iii

Acknowledgement... iv

Table of Contents ... v

List of Tables.. viii

List of Figures ... ix

List of Appendices ... x

List of Abbreviations... xi

CHAPTER ONE INTRODUCTION ... 1

1.1 Background .. 1

1.2 Problem Statement ... 4

1.3 Research Questions .. 6

1.4 Research Objectives ... 6

1.5 Significance of the Dissertation ... 6

1.6 Scope of the Dissertation .. 7

1.7 Organization of the Dissertation .. 8

CHAPTER TWO LITERATURE REVIEW .. 9

2.1 Introduction .. 9

2.2 Spelling Correction Stages ... 9

 2.2.1 Error Detection Stage .. 9

 2.2.2 Candidates List Generation Stage ... 10

 2.2.3 Error Correction Stage .. 11

2.3 Techniques of Candidates List Generation Based on Edit Distance 11

 2.3.1 Levenshtein Distance .. 12

 2.3.2 Hamming Distance .. 16

 2.3.3 Damerau-Levenshtein Distance .. 17

 2.3.4 Longest Common Subsequence Distance ... 17

 2.5.5 Threshold Levenshtein Distance ... 18

 2.5.6 Levenshtein Automata Distance ... 18

2.4 Other Techniques of Candidates List Generation .. 20

 2.4.1 N-gram Distance ... 20

vi

 2.4.2 Bag Distance ... 21

 2.4.3 N-gram language Model ... 21

 2.4.4 Topic Model .. 22

2.5 Evaluation Measurement .. 23

2.6 Summary .. 25

CHAPTER THREE RESEARCH METHODOLOGY .. 26

3.1 Introduction .. 26

3.2 Research Phases ... 26

3.3 Theoretical Study ... 27

3.4 Design Phase .. 28

3.5 Development Phase .. 30

3.6 Evaluation .. 30

 3.6.1 Experimental Design ... 30

 3.6.1.1 How to Measure Processing Time ... 31

 3.6.1.2 How to Measure Accuracy .. 33

 3.6.1.3 Statistical Test .. 35

 3.6.2 Testing Dataset .. 36

3.7 Summary ... 38

CHAPTER FOUR PROPOSED DIFFERENTIATION TECHNIQUE 39

4.1 Introduction .. 39

4.2 ILA-OT Steps ... 39

 4.2.1 First Step ... 40

 4.2.2 Second Step ... 41

 4.2.3 Third Step .. 45

4.3 Comparison between operations of LA and ILA-OT .. 49

4.4 ILA-OT Algorithm .. 55

4.5 Summary .. 60

CHAPTER FIVE EXPERIMENTAL RESULTS AND DISCUSSION 62

5.1 Introduction .. 62

5.2 Processing Time ... 62

5.3 Accuracy .. 66

5.4 Statistical Test .. 67

5.5 Results Discussion ... 68

vii

5.6 Summary .. 69

CHAPTER SIX CONCLUSION AND FUTURE WORK 70

6.1 Introduction .. 70

6.2 Research Summary... 70

6.3 Research Contributions .. 71

6.4 Recommendation for Future Work .. 73

6.5 Summary .. 74

REFERENCES ... 75

APPENDICES .. 80

viii

 List of Tables

Table 3.1 Main variables resulted from t-test. .. 36

Table 3.2 Characteristics of the testing dataset. .. 37

Table 4.1 Theoretical comparison between operations of LA and ILA-OT. 52

Table 4.2 Practical comparison between LA and ILA-OT. .. 54

Table 5.1 A sample of the processing time values of both algorithms 62

Table 5.2 Processing times of both algorithms LA and ILA-OT. 64

Table 5.3 A sample of the distances of both algorithms for several words. 66

Table 5.4 T-test results between LA and ILA-OT. ... 67

ix

List of Figures

Figure 1.1. The scope of this research. .. 7

Figure 2.1. Levenshtein distance example ... 13

Figure 2.2. Bigram distance example. .. 20

Figure 3.1. Research phases. .. 27

Figure 4.1. Levenshtein array before and after applying the first step. 40

Figure 4.2. The second step examples for the first row. .. 42

Figure 4.3. The second step examples for the first column. 44

Figure 4.4. Third step examples for the second row .. 46

Figure 4.5. The third step examples for the second column. 48

Figure 4.6. Cells affected by three steps proposed for this dissertation. 54

Figure 5.1. Line graph for the processing time values listed in Table 5.2. 65

x

List of Appendices

Appendix A Sample of Output Results of Word Length 3. 80

Appendix B Sample of Output Results of Word Length 4. 81

Appendix C Sample of Output Results of Word Length 5. 82

Appendix D Sample of Output Results of Word Length 6. 83

Appendix E Sample of Output Results of Word Length 7. 84

Appendix F Sample of Output Results of Word Length 8. .. 85

Appendix G Sample of Output Results of Word Length 9. 86

Appendix H Sample of Output Results of Word Length 10. 87

Appendix I Sample of Output Results of Word Length 11. 88

Appendix J Sample of Output Results of Word Length 12. 89

xi

List of Abbreviations

LA Levenshtein algorithm

HD Hamming distance

DD Damerau distance

LCS Longest common subsequence

OT Operational technique

ILA-OT Improved Levenshtein algorithm by using the proposed OT

MVFRFC Measure values of the first row and first column

MVSRSC Measure values of the second row and second column

PT Processing time

PD Percentage decrease

1

CHAPTER ONE

INTRODUCTION

 Background 1.1

Spelling correction is the process of detecting and repairing spelling errors in a text.

Research in spelling correction is not new; it started in the mid of 1960, and many

algorithms for spelling correction have been suggested since then (Mahdi, 2012).

Spelling correction can be either manual or automatic. The first type allows

intervention of humans in the correction process. The second type, a system will

decide the correction to replace an incorrect word by choosing the best candidate

word without human's intervention (Bassil & Alwani, 2012b).

Most methods of automatic spelling correction have three functions: error detection,

generation of candidates, and error correction (Naseem & Hussain, 2007). The first

function is to find incorrect words in the output text. The second function is to

generate candidate words from a lexicon for each of the incorrect words. Candidate

list generation is a process of finding words from a lexicon that should be close to the

incorrect word. For example, the candidates’ list generated from a lexicon for the

incorrect word “czp” are “cup”, “cap”, and “cop”. The last function is to correct all

incorrect words by selecting the best candidate to replace with each incorrect word.

The process of generating candidates list can be achieved by using a specific

algorithm. An algorithm is a set of operations that will be performed on some data to

solve a specific problem. In general, algorithms can be classified according to their

optimal solution into two categories: exact and approximate. In execution, exact

algorithms will reach an optimal solution while approximation algorithms can be

2

used to find a solution close to the optimal solution. Approximation algorithms are

used in cases where finding the optimal solution is impractical, or when exact

algorithms take too much time in execution (Sheng, Tao, & Li, 2012).

Candidates’ list generation requires too much time when there is a large number of

spelling errors (Al-Bakry & Al-Rikaby, 2015; Al-Masoudi & Al-Obeidi, 2015; Al-

Zaydi & Salam, 2015). For example, the OCR error rate can reach up to 60% for

noisy images (Lund, 2014; Ma & Agam, 2013). Therefore, a normal book with

100,000 words will require 60,000 corrections, which indicate that any improvement

in processing time of generating candidates’ list for each error can increase the

performance of these systems.

Levenshtein algorithm is one of the exact algorithms, and many researchers used it to

generate a list of candidates for incorrect words from language resources (Adhitama,

Kim, & Na, 2014; Al-Zaydi & Salam, 2015; Daðason, 2012). In general, Levenshtein

distance is designed for measuring the difference between any two strings. In other

words, it counts the minimum number of operations required to transform one string

to another (Levenshtein, 1966; Lounis, Guermeche, Eddine, Saoudi, & Benaicha,

2014).

The operations of Levenshtein distance are performed on a single symbol, and they

consist from insertion, deletion, and substitution. The term “symbol” represents the

smallest meaningful unit in a writing system, such as character, number, comma,

punctuation, signs, etc. Each operation of a single symbol is considered as a single

edit (Navarro, 2001). For example, "Michccl" is a non-word in English, because it

does not exist in this language. It requires two substitutions to become "Michael" that

3

is considered a correct word in English (Grzebala, 2016). Levenshtein algorithm is

used in many applications. However, this dissertation focuses on improving

Levenshtein edits distance when it used in candidate list generation.

To generate candidates’ list by using Levenshtein algorithm, it requires creating a

two-dimensional array and fills each cell in this array by comparing characters of an

incorrect word with characters of a word from a lexicon (Phillips, 2015).

Furthermore, Levenshtein algorithm needs to calculate million times for each

incorrect word because most lexicons contain millions of words (Bassil & Alwani,

2012b). Each cell value in Levenshtein array needs almost eight operations: three

comparing, three adding and two assigning (Al-Bakry & Al-Rikaby, 2015).

Operations of each cell in Levenshtein array include two parts. The first part is used

to measure a variable value named cost. This will be done by one comparing

operation, to check if there is a match between a character in an incorrect word and a

character of a word in a lexicon and one assigning operation to set the value of the

variable cost. The value of cost is 0 if both characters are match and 1 otherwise. The

second part includes six operations: three adding, two comparing, and one assigning.

The adding operations are one to increase the value of left cell by one and another

adding operation to increase the value of an upper cell by one, and the last adding is

to increase the value of a diagonal previous cell by the value of cost. The comparing

operations are two to find minimum value among three cells: diagonal previous cell,

left’s cell, and upper’s cell. The assigning operation includes storing the resulted

value in a related cell of Levenshtein array (Adhitama et al., 2014; Haldar &

Mukhopadhyay, 2011; Lounis et al., 2014). The eight operations required to measure

each cell value multiplied by the number of cells in Levenshtein array will be

4

repeated for all words listed in a lexicon to generate candidates’ list for a single

incorrect word.

 Problem Statement 1.2

Several solutions have been proposed to solve the processing time problem of

generating candidates list for a large number of errors, but most of them are based on

using approximate distances such as n-gram distance (Bassil & Alwani, 2012b). The

approximate distance may sometimes produce incorrect candidates list. They are

used when a correction process allows a tolerance of some error to correct a large

number of errors quickly. Other solutions are based on using exact algorithms.

However, each algorithm suffers different limitation, and selecting the appropriate

algorithm depends on where it will be used (Gomaa & Fahmy, 2013; Vargas, 2008).

For example, longest common subsequence (LCS) algorithm did not result in a very

relevant match for the incorrect word in most cases as more than one word have the

same distance by the LCS (Gupta, Bhatt, & Mittal, 2016)

Levenshtein algorithm is widely used in finding the nearest correct words from a

lexicon to the incorrect word due to its accuracy (Adhitama et al., 2014; Al-Zaydi &

Salam, 2015; Daðason, 2012). However, using Levenshtein algorithm requires too

much time when there is a large number of spelling errors (Al-Bakry & Al-Rikaby,

2015; Al-Masoudi & Al-Obeidi, 2015; Al-Zaydi & Salam, 2015). For example, the

processing time to generate candidates list for incorrect words “affort” and “usre”

from a lexicon, which contains 500k words, using Levenshtein algorithm are 19.1

and 17.2 seconds respectively (Al-Bakry & Al-Rikaby, 2015). This means the

processing time to generate candidates list for 100 incorrect words is almost (17.2 *

100=1720 seconds=28.6 minutes).

5

The processing time of Levenshtein algorithm is large because calculating it requires

operations to create an array and to fill each cell in this array by comparing

characters of an incorrect word with characters of a word from a lexicon (Al-Bakry

& Al-Rikaby, 2015; Lounis et al., 2014; Phillips, 2015). Several works have been

done on Levenshtein algorithm to be reliable for specific purposes. However, some

of these works make Levenshtein algorithm approximate in order to be executed

quickly, such as the work proposed by (Andoni & Krauthgamer, 2012; Andoni &

Onak, 2012). Unfortunately, no experiments are performed to measure how much the

accuracy is dropped or how much the processing time is increased. Navarro,

Grabowski, Mäkinen, and Deorowicz (2005) improved Levenshtein algorithm to be

faster for music information retrieval by ignoring deletion and insertion operations

from the calculation. The author only considers transposition operation because of

characteristics of music pieces. The improved Levenshtein algorithm becomes faster

and reliable only for measuring the difference between two pieces of music.

However, it is unreliable for spelling correction due to the deletion and insertion

occurred in incorrect words. Other works make Levenshtein algorithm able to

perform additional tasks in addition to its original task, such as the work proposed by

(Pal & Rajasekaran, 2015) but it becomes slower than the original due to the

additional code added to it.

To conclude, it is a need to design a technique that can help Levenshtein algorithm in

reducing the operations needed to measure values of each cell in the Levenshtein

array without affecting its accuracy.

6

 Research Questions 1.3

In order to reduce computational cost of the Levenshtein algorithm for generating

candidate words for spelling errors, the following questions need to be addressed:

i. How to shorten the operations needed to measure values of the cells in

Levenshtein algorithm array without affecting its accuracy?

ii. How to develop and evaluate the improved Levenshtein algorithm?

 Research Objectives 1.4

The goal of this dissertation is to develop an improved Levenshtein algorithm that

speeds up the process of generating candidate words for spelling correction. The

specific objectives are:

i. To design an operational technique to shorten the operations of the cells in the

Levenshtein array without affecting its accuracy.

ii. To develop and evaluate the improved Levenshtein algorithm that includes

the proposed operational technique.

 Significant of the Dissertation 1.5

As a theoretical effect of this dissertation, an improved Levenshtein algorithm has

been designed. The improved algorithm reduces the processing time required to

generate candidate words for spelling errors. The improved algorithm includes the

proposed operational technique that decreases operations required to measure each

cell value in Levenshtein array. Furthermore, the proposed operational technique is

7

new, and it is not adopted from other topics. Therefore, it may be considered as a

guideline for researchers to suggest or improve this technique in similar work in

other topics.

As a practical effect of this dissertation, many applications such as DNA searching,

sequences' alignment, word-processing programs, speech processing systems, and

optical character recognition systems use Levenshtein edit distance algorithm in their

components. Therefore, any improvement in this algorithm can contribute to these

applications. The aim is to reduce the processing time of the execution of these

applications.

 Scope of the Dissertation 1.6

The scope of this dissertation is shown in Figure 1.1.

Figure 1.1. The scope of this dissertation

8

Figure 1.1 shows that this dissertation has been performed under the category of

automatic spelling correction. Furthermore, it only deals with generating of

candidates list from this category. In addition to that, Levenshtein algorithm, which

is an exact algorithm, is selected to be improved in terms of its processing time. The

proposed Levenshtein algorithm has been tested only for the English language.

 Organization of the Dissertation 1.7

The dissertation report contains six chapters. Chapter one includes the introduction,

problem statement, and necessary information to understand the concepts that can be

used in the later chapters. Chapter two discussed the literature review with a

description of the different aspects relating to the research area. Chapter three

focuses on a methodology that was used in the research. Chapter four presents the

design of the improved Levenshtein algorithm while chapter five shows the

experimental results of the proposed algorithm. Finally, chapter six presents the

conclusion and future work of this dissertation.

9

CHAPTER TWO

LITERATURE REVIEW

 Introduction 2.1

This chapter presents the review of previous studies that have been done to speed up

the processing time of generating candidates’ list in spelling correction. Many studies

try to solve this problem using different techniques and algorithms. This chapter

reviews some of these studies and points out how they evolved and developed. In

addition, their limits and gaps have been highlighted. A literature review is based

primarily on recently published work of articles in journals, conferences, reports,

books, and thesis.

This chapter organized into six main sections. Spelling correction stages are given in

Section 2.2. The candidates list generation techniques that based on edit distance are

discussed in Section 2.3 while other techniques for candidates’ list generation are

explained in Section 2.4. The evaluation measurements used by other researchers are

presented in Section 2.5. At the end of this chapter, a summary is shown in Section

2.6.

 Spelling Correction Stages 2.2

This section discusses stages of spelling correction, which are error detection,

candidates’ list generation, and error correction.

2.2.1 Error Detection Stage

The error detection is usually classified into two categories: isolated word-based

detection, and context-based detection (Formiga Fanals & Rodríguez Fonollosa,

10

2012). In the first category, the process of detection is based only on an incorrect

word itself. An incorrect word is processed in isolation without giving any attention

to the context. This category can detect only non-word errors. Non-word errors occur

when the word produced from a human writing or from a program execution, does

not exist in the language resource, such as the word "foed". In the second category,

the process of detection is based on incorrect word and the context of the sentence. It

is used to detect real word error and non-word errors. The real word error occurs

when the word produced from a human writing or from a program execution, exists

in the language resource, but it does not match with the source text, such as the word

"too" in the sentence "I want too eat" (Habeeb, Yusof, & Ahmad, 2014).

2.2.2 Candidates List Generation Stage

Candidates’ list generation are usually classified into two categories: character-based

generation, and word-based generation (Vargas, 2008). In the first category, the

process of generating candidates list is based on the characters of the words. This

category is slow in computing, but it does not require predefined rules or large

training corpus. In the second category, the process of generating candidates list is

based only on the words without giving any attention to their characters. This

category is fast in computing, but it requires predefined rules or large training corpus

(Bassil & Alwani, 2012b).

Most techniques used in generating candidates list are based on string distance

algorithms (Polyanovsky, Roytberg, & Tumanyan, 2011). As mentioned previously,

the term “distance” means the different between two strings. Some candidates’ list

techniques are fast, but they are approximate, i.e, they may not find the best solution,

such as heuristic techniques or probabilistic techniques (Cooper & Cooper, 1981).

11

Other techniques are accurate, but they are slow, such as those based on dynamic

programming approach (Al-Bakry & Al-Rikaby, 2015). Approximate techniques are

proposed for online search engines, where they do not ensure that the research results

represent an exact match (Polyanovsky et al., 2011). All main techniques used in

candidates’ list generation are discussed in detail in Section 2.3 and Section 2.4.

2.2.3 Error Correction Stage

The input to this stage is a candidates list. It uses a procedure to select the best

suggestion from the candidates list to replace with an incorrect word. This process

will be repeated until all incorrect words are corrected. When the auto correction is

implemented, the incorrect word is automatically replaced by the first ranking word

in an ordered candidates' list (Naseem & Hussain, 2007).

The choice of the appropriate technique for ranking is very important. The reason is

that it may replace the incorrect word with another word that can be found in the

language resource, but it is unsuitable for the sentence, resulting the desired goal of

correction is to be unachieved. Error correction stage usually contains two

techniques, one to correct non-word error and the other to correct real word error

(Bassil & Alwani, 2012a; Daðason, 2012).

 Techniques of Candidates List Generation Based on Edit Distance 2.3

As mentioned in chapter one, the term “edit distance” is used for calculating the

difference between two strings. The operations are performed on a single symbol,

and they consist from insertion, deletion, transposition, or substitution (Lu, Du,

Hadjieleftheriou, & Ooi, 2014). The description of four edit distance operations is

illustrated below:

12

 Insertion of a single symbol: if a string is equal to the “xy”, then inserting

the symbol z in this string will produce “xzy”.

 Deletion of a single symbol: if a string is equal to the “xy”, then deleting

the symbol y in this string will produce “x”.

 Substitution of a single symbol: if a string is equal to the “xy”, then

substituting the symbol y by z in this string will produce “xz”.

 Transposition of a single symbol: if a string is equal to the “xy”, then

transposition these symbols in this string will produce “yx”.

Main algorithms that based on edit distance to generate candidates’ list are explained

in next sections.

2.3.1 Levenshtein Distance

Levenshtein distance was proposed by the Russian scientist Vladimir Levenshtein

(Levenshtein, 1966). The definition of Levenshtein distance between two tokens or

two sequences is “the minimum number of insertions, deletions or substitutions

needed to change one token or one sequence into the other”. Levenshtein distance

can deal with three edit operations: insertions, deletions, and substitutions (Attia,

Pecina, Samih, Shaalan, & van Genabith, 2012; Phillips, 2015). Figure 2.1 shows an

example of how to calculate Levenshtein edit distance between two tokens

"CLARKE" and "CLERK".

13

Figure 2.1 illustrates that it is a need for two edit operations to convert the token

“CLARKE” to the token “CLERK” or vice versa as shown in the last cell in the array

of this figure. Figure 2.1 also shows that an array is initialized to measure edit

distance between the tokens. The array can be filled from the upper left to the lower

right corner. Each jump horizontally or vertically corresponds to an insert or a delete,

respectively. The cost is normally set to 1 for each of the operations. The diagonal

jump can cost either one if the two characters in the row and column do not match or

0 if they do. Each cell always minimizes the cost locally. This way the number in the

lower right corner is the Levenshtein distance between both tokens. The pseudo-code

used to implement Levenshtein edit distance, programmatically, is presented in

Algorithm 2.1 (Lounis et al., 2014).

 C L A R K E

0 1 2 3 4 5 6

C 1 0 1 2 3 4 5

L 2 1 0 1 2 3 4

E 3 2 1 1 2 3 3

R 4 3 2 2 1 2 3

K 5 4 3 3 2 1 2

Figure 2.1. Levenshtein distance example, (Source: Phillips, 2015)

14

Algorithm 2.1: Levenshtein algorithm, Source: (Lounis et al., 2014)

1 integer DistanceOfLevenshtein (string chaine1, string chaine2)

chaine2)
 // i and j iterate over chaine1 and chaine2

2 Integer i, j, cost, lengthChaine1, lengthChaine2

3 lengthChaine1:= length(Chaine1)

4 lengthChaine2 := length(Chaine2)

 // d is a table of lengthChaine1 + 1 rows and lengthChaine2 + 1 columns

lengthChaine2 +1 columns
5 Integer d[0..lengthChaine1, 0..lengthChaine2]

6 for i from 0 to lengthChaine1

7 d[i, 0] := i

8 for j from 0 to lengthrChaine2

9 d[0, j] := j

10 for i from 1to lengthChaine1

11 for j from 1to lengthChaine2

12 if chaine1[i - 1] = chaine2[j - 1] then cost := 0

13 else cost := 1

14

 d[i, j] := minimum(

 d[i-1, j] + 1, // deletion

 d[i, j-1] + 1, // insertion

 d[i-1, j-1] + cost // substitution

)

15 return d[lengthrChaine1, lengthChaine2]

The Levenshtein algorithm receives two strings as inputs: “chaine1” and “chaine2”.

A two-dimensional array named “d” is created as shown in step 5. This array has

been used to measure edit distance between “chaine1” and “chaine2”. To refer to

any cell in “d” array, two variables are used named “i” and “j”. The variable “i”

refers to the position of a row in “d” array while variable “j” refers to the position of

a column in the “d” array. After that, Algorithm 2.1 show that cells values of the first

row and first column will be measured by using counter while other cells values in

other rows and columns will be measured by using two loops. Each cell in

15

Levenshtein array includes measuring the value of a variable called cost as shown in

steps 12 and 13. This will be done by checking if there is a match between a

character in first string and a character of the second string. The value of cost is 0 if

both characters are match and 1 otherwise. The next step is to find minimum value

among three cells: diagonal previous cell left the cell, and upper cell (Lounis et al.,

2014). After that, the edit distance between “chaine1” and “chaine2” will be in the

last cell in the “d” array, which is d[lengthrChaine1, lengthChaine2].

Several researchers have been improved Levenshtein algorithm to be reliable for

specific purposes. For example, Pal and Rajasekaran (2015) improved Levenshtein

algorithm to find motif in a set of biological strings. The motif is a substring that

appears in a set of input biological strings. The characters in motif can be not

neighbored. For example, the string “GT***G” is a motif. The symbol “*” can be

referred to any character in sequence. However, other characters should appear in all

input strings with the same context. This improvement makes Levenshtein algorithm

suitable for finding motif in biological strings. However, it becomes slower than the

original due to the additional code added to it. Unfortunately, experimental results

have been done without comparing with original Levenshtein algorithm. Therefore, it

is difficult to measure the difference in terms of processing time of both algorithms.

Navarro et al. (2005) improved Levenshtein algorithm to be faster for music

information retrieval by ignoring deleting and inserting operations from the

calculation. The author only considers transposition operation because of

characteristics of music pieces. These characteristics do not allow deleting and

inserting operations in music pieces. Therefore, the author ignores them from the

calculation. The improved Levenshtein algorithm becomes faster and reliable only

16

for measuring the difference between two pieces of music. However, it is unreliable

for spelling correction due to the deletion and insertion occurred in incorrect words.

Other improvements in Levenshtein algorithm includes making it approximate in

order to be executed quickly, such as the works done in (Andoni & Krauthgamer,

2012; Andoni & Onak, 2012; Burkhardt & Kärkkäinen, 2002; Huldén, 2009; Mihov

& Schulz, 2004). As mentioned previously, the approximate algorithms may

sometimes produce incorrect candidates list while the goal of this dissertation is to

improve Levenshtein algorithm in terms of processing time without affecting its

accuracy.

2.3.2 Hamming Distance (HD)

Hamming distance was proposed by the scientist Richard Hamming. It uses to

measure the difference between two tokens. It is applied only if the two tokens have

an equal number of symbols. Otherwise, it cannot be calculated if the two tokens

have a different number of symbols (Singh et al., 2015). The reason is that it

measures only substitution operation in the same position in both tokens, and it

ignores other operations of edit distance. In other words, it calculates the minimum

number of substitutions needed to change one token into the other (Ruoro, 2009;

Singh et al., 2015).

Hamming distance is faster than Levenshtein distance because it only deals with

substitution operation from four edit distance operations. However, Levenshtein

distance is better than Hamming distance because it can deal with two tokens having

different lengths.

17

2.3.3 Damerau-Levenshtein Distance

This distance is similar to the standard Levenshtein distance. However, the difference

between them is that Damerau-Levenshtein distance can deal with four primitive

editing distance instead of three in the standard Levenshtein distance (Li, Zhang,

Zhu, & Zhou, 2006). The definition of Damerau distance between two tokens or two

sequences is “the minimum number of insertions, deletions, substitutions or

transposition needed to change one token or one sequence into the other”. In other

words, this distance added transposition edit operation to the standard Levenshtein

distance (Bard, 2007). Damerau-Levenshtein distance is slower than Levenshtein

distance due to the additional code required to measure transposition edit operation

(Al-Bakry & Al-Rikaby, 2015).

2.3.4 Longest Common Subsequence Distance

Longest common subsequence (LCS) distance can only deal with insertion and

deletion operations from four primitive edit distance operations. It is used to find the

longest common subsequence between two tokens (Bergroth, Hakonen, & Raita,

2000). A subsequence that appears in two tokens is considered as a common

subsequence of these two tokens. In other words, an LCS is a common subsequence

having a maximum length of shared symbols.

Levenshtein distance is better than LCS distance because LCS can produce in some

cases wrong results. For example, the distances between the string “cluless” and

three other strings (“colourless”, “cluelessness”, and “cloudless”) using LCS are 7, 7,

and 7 respectively (Gupta et al., 2016) while they are 3, 5, and 2 respectively by

using Levenshtein distance. Therefore, it can select the string “cloudless” as the

18

nearest word to the string “cluless” if Levenshtein distance is used. In contrast, it is

difficult to select the nearest word to the string “cluless” if LCS is used due to the

similar results.

2.3.5 Threshold Levenshtein Distance

The speed of standard Levenshtein distance was improved by the scientist Esko

Ukkonen. He makes Levenshtein distance takes two strings and a variable called

threshold. Next, the difference between them is measured with a condition that the

difference should be less or equal to the threshold. In other words, it does not need to

complete any extra comparison between two strings if the difference exceeds the

value of the threshold. This will speed up generating candidates list for any incorrect

word (Mihov & Schulz, 2004; Ukkonen, 1985). However, this distance will be

restricted by a threshold (Mihov & Schulz, 2004).

2.3.6 Levenshtein Automata Distance

Levenshtein automata distance is depending on finite state theory. It is proposed to

avoid calculating of Levenshtein edit distance so that process of generating of

candidates list becoming fast (Hassan, Noeman, & Hassan, 2008). Using finite state

theory in generating candidates list is performed by using two steps. The first step

will replace each character in misspelled word with all characters of the specific

language. Therefore, a temporary list of candidates will be produced. However, the

resulted candidates list may contain incorrect words, and this will lead to the step

two.

In step two, a procedure will be performed to filter temporary candidates list with all

words in a lexicon. Any word in temporary candidates' list does not exist in a lexicon

19

will be excluded in order to produce final candidates list (Huldén, 2009; Mihov &

Schulz, 2004). In other words, this technique takes the time to compute Levenshtein

automata for the wrong word to generate a temporary set of candidates (V). Then it

takes the time to parallel or filter V with all words in the lexicon (W). Filter means

comparing each word in V with each word in W.

For example, by assuming alphabet has only 30 symbols and there is a single

incorrect word containing 10 characters, then using finite state theory will generate

temporary candidates list of 639 tokens if distance is one, about 400,000 tokens if

distance is two, and about 260,000,000 tokens if distance is three (Mihov & Schulz,

2004). Therefore, generating temporary candidates list using finite state theory is

only tested with misspelled word having one or two errors. This is because filtering

639 tokens or 400,000 tokens with all words in a lexicon are different than filtering

260,000,000 tokens with the same number of words in a lexicon. The English

language contains 26 small characters and 26 capital characters. Therefore,

generating temporary candidates list using Levenshtein automata distance for

incorrect words having more than two errors takes long processing time.

The advantage of the Levenshtein automata distance is: it avoids calculating

Levenshtein edit distance in order to generate of candidates list quickly. However,

the disadvantage is: it is only tested with misspelled word having one or two errors

(Hassan et al., 2008; Huldén, 2009; Mihov & Schulz, 2004; Vargas, 2008).

Therefore, it needs to test with tokens having three errors or more because each extra

error will increase temporary candidates list that needs to be filtered with all words in

a lexicon to produce final candidates list. Furthermore, this distance is not reliable for

20

some language, such as Han Chinese because it contains 70,000 Unicode Han

characters (Ahmed, 2015).

 Other Techniques of Candidates List Generation 2.4

2.4.1 N-gram Distance

N-gram distance is an approximate distance using to measure the similarity between

two sequences of strings. The value of the first character in term "N-gram" can be 1,

2, 3, 4,..., n. The term itself represents a sequence of N neighboring symbols in a

token. N-gram is called unigram when N=1, bigram when N=2, trigram when N=3,

and so on. The accuracy of similarity increases when the value of N is high and vice

versa. The similarity is measured by dividing the number of shared N-grams of the

two sequences by the total number of N-grams in same two sequences. Figure 2.2

shows an example of how can calculate the similarity between two tokens "went"

and "want" using bigrams distance (Bassil & Alwani, 2012a; Naseem, 2004).

Figure 2.2. Bigram distance example, (Source: Bassil & Alwani, 2012b)

21

The accuracy of Levenshtein distance is better than N-gram distance. This is because

N-gram distance does not show good accuracy on short strings (Naseem, 2004). For

example, trigram distance will not give any similarity if two strings have length

three, and there are one or two different symbols between them. For instance, despite

the presence of two letters are similar between tokens “crp” and “cup”, trigram will

not show any similarity between them.

2.4.2 Bag Distance

Bag distance is an approximation to the edit distance. It does not give accuracy as

Levenshtein distance. However, it is faster than Levenshtein distance (Vargas, 2008).

The term bag represents a token or a sequence. For example, by assuming two strings

named S1 and S2 and S1=“abcd” and S2=“abcxz”, then bag distance is the characters

“xz”. The reason is that the bag distance technique first removed common characters

from S1 and S2, and this will result in two new sequences named S3=“d” and

S4=“xz”. After that, the bag distance will become equal to the sequence S4 because

S4 has a number of characters greater than S3.

The advantage of the bag distance is that it is faster than Levenshtein distance.

However, it is less performance than edit-distance family because it is similar to the

N-gram distance does not take into consideration the importance of the positions of

characters in both tokens (Vargas, 2008).

2.4.3 N-gram language Model

N-grams language model is a statistical model. It used to provide a probability for a

sequence of words (Jurafsky & Martin, 2009). A probability depended on the

frequency of words or frequency of sentences in a large corpus. The language model

22

can be used to detect and correct incorrect words or only to generate candidates list

(Habeeb et al., 2014). Potential incorrect word error will happen if the probability of

sentence provided by the language model is almost zero. A correction of this error is

based on the high probability of other sentences. The most important point in this

approach is that large corpus is needed in order to build an accurate language model.

A major problem facing N-gram language model is that it depends on the finite

training corpus. Therefore, some tokens will be missed from the corpus. They are

called unknown tokens. If any N-gram is missing, then the language model will give

a probability of zero to it, and no candidates' list will be generated. (Jurafsky &

Martin, 2009).

2.4.4 Topic Model

The idea of a topic model is based on creating multiple dictionaries from a corpus or

from the web. Each one belongs to specific topics, such as medical, sports, etc

(Wick, Ross, & Learned-Miller, 2007). In spelling correction, every document

needed to be checked for errors is classified according to its topic. After that,

candidates' list is generated for each incorrect word from a dictionary that has the

same topic.

The advantage of the topic model is: it is fast in generating candidates list. However,

the disadvantage is: it has the same problem of an N-gram language model, which is

it needs a very large corpus for each topic. Furthermore, it is difficult to identify a

topic type for missing words in the corpus. For example, if the document needed to

be check belongs to the sports topic. Therefore, all candidates list will be generated

from the dictionary of the same topic. This will lead to the problem of missing some

23

words from sports dictionary because they are not appearing in a web or in a corpus

when creating a sports dictionary. However, they could exist in other dictionaries of

other topics (Wick et al., 2007).

 Evaluation Measurement 2.5

This section discusses the evaluation measurements used by other researchers in this

kind of domain, especially for Levenshtein algorithm. In automatic spelling

correction, evaluation measurements used by most researchers are based mainly on

two metrics: accuracy and processing time of errors correction. Some researchers

used only one of these metrics, such as accuracy (Mainsah, Morton, Collins, Sellers,

& Throckmorton, 2015; Siklósi, Novák, & Prószéky, 2016) or processing time (Al-

Bakry & Al-Rikaby, 2015) and others used both metrics in their work (Popescu &

Vo, 2014).

As mentioned previously, Levenshtein algorithm can produce candidates’ list for

incorrect word accurately because it is not an approximate algorithm. Therefore, the

accuracy metric in automatic spelling correction is not based on generating

candidates’ list performed by Levenshtein algorithm but on algorithms combined

with it to detect and correct errors in a text. In other words, if there is an algorithm to

detect the errors, Levenshtein algorithm to generate candidates’ list, and algorithm to

correct the error by selecting the best candidate and replaces it with the incorrect

word, then the accuracy metric will be based on detection algorithm and correction

algorithm. For previous reason, it is better to evaluate Levenshtein algorithm

separately.

24

Since Levenshtein algorithm can measure the distance between any two strings

accurately. Therefore, there is a little work on this algorithm in terms of accuracy. In

the following sentences and paragraphs, this dissertation has been described some

works done by other researchers that related to the Levenshtein algorithm. Al-Bakry

and Al-Rikaby (2015) compared between three algorithms, which are Levenshtein

algorithm, Damerau-Levenshtein algorithm and enhanced Damerau-Levenshtein

algorithm using only processing time as metric. The experimental results show that

processing time of Levenshtein algorithm is almost the same to the processing time

of enhanced Damerau-Levenshtein algorithm. Since the output of Levenshtein

algorithm is different than outputs of other algorithms used in the evaluation, then, it

is difficult to measure the accuracy among them.

Maarif, Akmeliawati, Htike, and Gunawan (2014) also compared between five

algorithms, which are Levenshtein algorithm, N-gram algorithm, Soundex algorithm,

Mahalanobis algorithm and Jaro-Wrinkler algorithm using only processing time as

metric. The experimental results show that the processing time of N-gram algorithm

is the best among other algorithms. However, as mentioned previously, N-gram

algorithm is approximate algorithm while Levenshtein algorithm is an exact

algorithm. The accuracy metric is not considered in the evaluation process due to the

different output of each algorithm.

Rieck and Wressnegger (2016) developed a tool called “Harry” for measuring the

similarity between strings. The tool “Harry” can measure the similarity using one of

many algorithms including Levenshtein algorithm. In addition to measure the

similarity between strings, it can calculate run-time of each algorithm, which means

25

processing time, with a different number of available CPU cores. This tool also

cannot measure the accuracy due to the different output of each algorithm.

Pradhan, Gyanchandani, and Wadhvani (2015) presented a review on text similarity

techniques used in information retrieval and its applications. Authors claimed that

this review represents the most popular text similarity techniques. The review

compares between nine algorithms including Levenshtein algorithm. Unfortunately,

the comparison does not use the metrics of processing time and accuracy but it was

performed based on the work of each algorithm.

To conclude, Levenshtein algorithm cannot be compared with other algorithms in

terms of accuracy due to the different output (distance) for each algorithm. The

evaluation metrics used by this dissertation has been described in Section 3.6.1.

 Summary 2.6

This chapter began with explaining spelling correction stages that were explored by

researchers in this field. The Levenshtein algorithm example, its pseudo-code, and

improvement by other researchers were presented and discussed. Other techniques

that were particularly used for candidates list generation was presented and discussed

in detail. This is to give a glance of the problem and nature of solutions that are

presented in this dissertation. As can be seen in this chapter the topic of candidates

list generation has been discussed by various researchers for different purposes. This

gives a clear picture of the importance of this topic. The last section of this chapter is

a discussion on evaluation measurements used by other researchers in this kind of

domain, especially for Levenshtein algorithm.

26

CHAPTER THREE

RESEARCH METHODOLOGY

3.1 Introduction

Research methodology is used to explain the steps needed to achieve objectives of

the specific study. Existing techniques that use in generating candidates list for

spelling correction are developed based on experimental approach (Navarro, 2001).

Therefore, this dissertation followed the same approach in developing improved

Levenshtein algorithm. Chapter three includes Section 3.2 that explains the research

phases. This is followed by Section 3.3 that presents the theoretical study of this

dissertation. Section 3.4 presents the design of the improved Levenshtein algorithm

while the development of this algorithm is explained in Section 3.5. The last phase

undertakes evaluation as discussed in Section 3.6. Finally, a summary of chapter

three is presented in Section 3.7.

3.2 Research Phases

Figure 3.1 shows that this research consists of four phases. They are the theoretical

study, design, development, and evaluation. These phases have been adopted from

(Alobaedy, 2015). Figure 3.1 also shows the main activities involved in each phase

required for achieving research objectives and the outcome of each activity. Overall,

objective one has been achieved by finding a solution that can shorten the operations

required to measure values of some cells in the Levenshtein array without affecting

its accuracy. Then, a technique has been designed based on this solution. The detail

of this technique is explained in Section 3.3. On the other hand, objective two has

been achieved by developing and evaluating the improved Levenshtein algorithm.

27

The evaluation process includes designing and implementing a prototype for testing

the proposed algorithm, experimental design, testing dataset, data analysis and

reporting final results. Next sections describe the details of each research phase.

3.3 Theoretical Study

The initial step in this dissertation was the theoretical study. In this step, two

directions are used in analyzing the research problem. The first direction focuses on

the state of the art in generating candidates list for spelling correction. This

information is extracted from literature obtained from different types of publications;

conference proceedings, technical reports, books, thesis, and journals, with a focus

on recent publications. The purpose of this information is to identify the problem

Figure 3.1. Research phases

 Theoretical

Study

 Design

Development

 Review previous and current

literature.

 Problem formulation

 Comparison study

 Summary of literature

 Evaluation

 Design an operational technique

to shorten the operations

required to measure values of

some cells in the Levenshtein

array without affecting its

accuracy.

 The design documentation of

the proposed algorithm (1
st

objective)

 Develop a prototype to test the

improved Levenshtein

algorithm.
 Prototype

 Select testing dataset

 Select metrics

 Conduct experiments

 Analysis testing results

 Evaluation of improved

Levenshtein algorithm (2
nd

objective)

Research

sPhase

Research

Steps

Research

Outcomes

28

statement, research questions, research objectives, research significance, and

research scope.

The second direction focuses on studying in depth the techniques used in generating

candidates list for spelling correction, especially about Levenshtein distance. This

direction includes several steps: identifying weakness and strength of these

techniques, selecting the best among them, and make a critical review, which means

comparing them and summarize the results. The information resulted from this

direction is important because if these techniques and their limitations are

understood, then there is a chance to improve one of them.

3.4 Design Phase

This dissertation refers to the improved Levenshtein algorithm as ILA-OT. The term

ILA-OT means improved Levenshtein algorithm by using the proposed operational

technique. As mentioned previously, this technique reduces the operations required

to measure cells’ values in Levenshtein array. The ILA-OT algorithm is based on the

idea that it can remove first row and first column from LA array. Furthermore, it can

predict cells’ values in a second row, second column, third row, and third column in

LA array without needed a traditional way. This is because there is a context to

measure cells values in these rows and columns until finding a shared character in

them. After finding a shared character, the context will be changed, therefore, it can

measure cells values in these rows and columns based on the new context. Lastly, the

context will only be changed once, and it will not change if there is an additional

shared character in them.

29

Since an average word length for The English language is 5 characters (Lund, 2014),

then Levenshtein array will be 36 cells (6 rows * 6 columns). Thereby, operations of

3 rows from six and operations of 3 columns from six will be affected by the ILA-

OT idea. In other words, operations of 27 cells will be decreased from 36 in

Levenshtein array. This certainly leads to reduce the processing time of Levenshtein

algorithm execution. Three steps have been derived from the ILA-OT idea.

The first step removes first row and first column from Levenshtein array. This is

because values of the first row and first column are used in measuring values of

second row and second column. Therefore, measuring values of the second row and

the second column directly will lead ignoring them from Levenshtein array.

Measuring values of the second row and the second column has been done by the

second step. This dissertation finds a context in measuring values of second row and

second column. This context requires fewer operations to measure values of second

row and second column. This context has been formulated as the equation for step

two.

The third step also finds a context in measuring values of third row and third column.

However, the context of the second step is different from the context of the third

step. The context of the third step needs values of second row and the second column

to measure values of third row and third column while the context of the second step

does not require values from any row or column. This context of the third step has

also been formulated as the equation for the third step. Expected processing time of

Levenshtein algorithm has been decreased if the proposed three steps of this

dissertation are performed. This is because filling of Levenshtein array becomes

requiring fewer operations.

30

Lastly, since the design of the proposed steps and their contributions required

pseudo-code of proposed algorithm, examples, and descriptions to explain them. A

separate chapter (i.e. chapter four) is presented.

3.5 Development Phase

This stage developed a prototype for measuring the processing time and accuracy for

the original and improved Levenshtein algorithm. This development includes

choosing a programming language, selecting a testing dataset, and an operating

environment. The prototype has been developed using the followings:

 Visual studio Express 2012 technology, using VB.Net language. It can be

downloaded free from Microsoft website.

 Microsoft windows seven 64 bits for an operating environment.

 Personal laptop HP has CPU of type Intel (TM) with 2400GHz while the

RAM of the laptop is 8GB.

3.6 Evaluation

An evaluation process of improved Levenshtein algorithm includes experimental

design, measurements, and testing dataset. Each part has been described in the

following subsections.

 Experimental Design 3.6.1

Experimental approach includes experimental design, measurement, and reporting.

Experimental design defines the goals of tests and how they are achieved. A

measurement focuses on what metrics are used in the evaluation process. Reporting

31

focused on how can represent the results, for example, by using tables, graphs, etc

(Rardin & Uzsoy, 2001).

Experiments of this dissertation have been conducted to achieve one goal. The goal

is to reduce the processing time of the LA without affecting its accuracy. To achieve

this goal, this dissertation compares the accuracy and processing time of the ILA-OT

with accuracy and processing time of the LA. Hence, two metrics have been used in

comparison: processing time and the accuracy.

In addition to both metrics used in the evaluation of ILA-OT, this dissertation

conducted a statistical test to show if the improvement in the terms of the processing

time of the ILA-OT is significant or not. A statistical test of the difference has been

measured using t-test. This test is a statistical method of comparing two samples in

terms of their values. It shows the mean of each group and the average difference

between the groups. It also shows whether this difference is statistically significant or

due to chance and other circumstances. Next sub-sections show how each metric is

measured and how the statistical test is conducted.

3.6.1.1 How to Measure Processing Time

In each experiment, the time before and after executing each algorithm have been

measured. Furthermore, the processing time has been measured using a built-in class

named “Stopwatch” in visual basic.net programming language. This class receives

two times and measures the difference (period) in time between them. In addition to

that, it produces the time in minutes, seconds or milliseconds according to the user's

desire. Algorithm 3.1 shows the steps used to measure processing time of both LA

and ILA-OT.

32

Algorithm 3.1: Steps to Measure Processing Time

1 Define array called “PT_LA” that uses to store processing times of LA

2 Define array called “PT_ILA_OT” that uses to store processing times of ILA-

OT

3 Read testing dataset file

4 Define array called “W” that uses to store words resulted from splitting

dataset text file into words

5 Define sum and period as double variables

 // the array “W” contains 10001 words and numbers of tests are 10000

6 For i from 0 to (W.length-2) do

 // measuring processing time of LA

7 sum=0

8 For j from 0 to 4 do // repeat 5 times

9 Record start time

10 LA (W[i], W[i+1]) // Execute LA algorithm

11 Record stop time

12 period=the time between stop time and start time as double value

13 sum=sum + period

14 Next j

15 PT_LA[i]= sum / 5 // take average value

 // measuring processing time of ILA-OT

16 sum=0

17 For j from 0 to 4 do // repeat 5 times

18 Record start time

19 ILA_OT (W[i], W[i+1]) // Execute ILA_OT algorithm

20 Record stop time

21 period=the time between stop time and start time as double value

22 sum=sum + period

23 Next j

24 PT_ILA_OT[i]= sum / 5 // take average

value
25 Next i

26 Write PT_LA array values to the excel file

27 Write PT_ILA_OT array values to the excel file

28 End

33

Algorithm 3.1 shows that the processing time of each algorithm has been measured

individually but for the same input words. It shows that a list of words was read from

dataset file. Next, a word W(i) from this list and next word W(i+1) from the same list

are sent firstly to the LA, and then to the ILA-OT for measuring processing time of

each algorithm. The variable “i” represents the position of a word in the testing

dataset while the term “W(i)” represents a word at position “i”. Algorithm 3.1 also

shows that the processing time of each input, which represents two different words,

was measured five times as presented in steps 7 to 14 and the average are taken to

represent the processing time as presented in step 15. The last steps in Algorithm 3.1

are to write the processing time values of both LA and ILA-OT to the excel file.

The percentage decrease (PD) in processing time has been calculated using Equation

3.1 (Lund, 2014).

100*
PT(LA)

OT)-PT(ILA -PT(LA)
PTin decrease Percentage

Where the term “PT(LA)” represents the average processing time of LA for all word

lengths (10000 values) while the term “PT(ILA-OT)” represents the average

processing time of ILA-OT for all word lengths (10000 values). Furthermore, the

percentage decrease in processing time for each word length (1000 values) has been

also calculated using same equation. The calculation of percentage decrease has been

performed using Microsoft Excel 2010.

3.6.1.2 How to Measure Accuracy

Algorithm 3.2 shows the steps used to measure the accuracy between LA and ILA-

OT.

(3.1)

34

Algorithm 3.2: Steps to Measure Accuracy

1 Define array called “distanceLA” that uses to store the outputs (distances) of

LA

2 Define array called “distanceILA_OT” that uses to store the outputs

(distances) of ILA-OT

3 Define a variable called “count_equal_distance” that uses to count how many

both algorithms have the same output (distance)

4 Set count_equal_distance=0

5 Read testing dataset file

6 Define array called “W” that uses to store words resulted from splitting

dataset text file into words

 // the array “W” contains 10001 words and numbers of tests are 10000

5 For i from 0 to (W.length-2) do

6 distanceLA [i]=LA(W[i], W[i+1]) // measure LA distance

7 distanceILA_OT [i]= ILA_OT(W[i], W[i+1]) // measure ILA_OT distance

8 If distanceLA [i]= distanceILA_OT [i]

9 count_equal_distance = count_equal_distance + 1

10 End if

11 Next i

12 Write distanceLA array values to the excel file

13 Write distanceILA_OT array values to the excel file

14 Write count_equal_distance value to the excel file

15 End

Algorithm 3.2 has some similar steps as Algorithm 3.1. It shows that a list of words

was read from dataset file in the first step. Next, a word W(i) from this list and next

word W(i+1) from the same list are sent firstly to the LA, and then to the ILA-OT for

measuring the distance of each algorithm for these words. The variable “i” represents

the position of a word in the testing dataset while the term “W(i)” represents a word

at position “i”. Algorithm 3.2 also shows that if the values of outputs (distances) for

both algorithms are equal, then a variable named “count_equal_distance” will be

35

increased by one while if both algorithms have different distance, then this will

consider an error. After that, the processes of measuring the distance of LA and

measuring the distance of ILA-OT have been repeated for all words in this list. The

last steps in Algorithm 3.2 are to write the distances values of both LA and ILA-OT

and “count_equal_distance” value to the excel file.

The accuracy has been measured using Equation 3.2 (Batawi & Abulnaja, 2012) .

100*
 outputs Total

 outputsCorrect
Accuracy

Where the variable “Correct outputs” represents the number of equal distances

between LA and ILA-OT algorithms. In other words, its value is equal to the value of

variable “count_equal_distance” in Algorithm 3.2. The variable “Total output”

represents the total number of comparisons between LA and ILA-OT, which is

10000 comparisons.

3.6.1.3 Statistical Test

As mentioned previously, a statistical test for the obtained results has been performed

using t-test. This dissertation uses Microsoft Excel 2010 to analysis data, and to

perform a t-test. Table 3.1 shows the main variables resulted from t-test with a

description for each one.

(3.2)

36

Table 3.1

Main variables resulted from t-test

No. Variables

Description

1 Mean Mean of a set

2 Variance Variance of the difference between the two means

3 Observations Number of items in a set

4 t Stat The t value that needs to be greater than t critical in order

for the difference between the means to be significant

5 P(T<=t) two-tail
p-value: the probability that the difference between two

means is real and not due to chance

6 t Critical two-tail
The value that needs to exceed by (t-Stat) in order for the

difference between the means to be significant at the 5%

level

Table 3.1 shows that the most important variables are p-value in row 5, and “t

Critical” in row 6. P-value means the probability that the difference between two

means is real and not due to chance. “t Critical” in row 6 is a value that needs to

exceed by “t-Stat” in row 4. P-value should be less than 0.05, and “t Stat” value

should be greater than t-critical in order for the difference between the means to be

significant. Otherwise, it is not true and it is not real (Crumrine, Ritschel, & White,

2014; Musa, Opara, Shayib, & Oliver, 2016).

 Testing Dataset 3.6.2

Most researchers use different sizes and types of the testing dataset in spelling

correction (Navarro, 2001). However, Google recently has provided unigram files to

be downloaded (Google, 2015). Therefore, this dissertation used these unigram files

37

to test the improved Levenshtein algorithm. They have been used in many topics,

such as spelling correction (Bassil & Alwani, 2012a; Islam & Inkpen, 2009) and

machine translation (Federico & Cettolo, 2007). The words in Google unigram files

are the most frequently used in the English language. Google unigram files are large

and contain millions of words. Therefore, this dissertation followed the scenario

proposed by (Hassan et al., 2008) in arranging the testing dataset. The characteristics

of the testing dataset are shown in Table 3.2.

Table 3.2 shows that this dissertation used single testing dataset containing 10000

words. Furthermore, the words in the testing dataset have 10 different word lengths,

from 3 to 12, and each length contains 1000 words. The reason for the dataset

Table 3.2

Characteristics of the testing dataset

Word length Number of words in each length

3 1000

4 1000

5 1000

6 1000

7 1000

8 1000

9 1000

10 1000

11 1000

12 1000

Total words in the testing dataset

(from 3-to-12)
10000

38

contains different word length is to analysis the impact of improved Levenshtein

algorithm for each length of words.

3.7 Summary

This chapter provided a detailed description of the research methodology of this

dissertation. This dissertation follows a methodology that is used in developing the

most successful algorithms, which known as an experimental methodology. This

kind of methodology can accept the feedback when some modifications are needed.

The chapter began with a description of the research phases. The discussions on

theoretical study, design phase, and development phase were presented. This is

followed by explaining evaluation process. The explanation includes a discussion on

evaluation measures and experimental settings. Statistical significance testing was

suggested as well to ensure the results are statistically significant.

39

CHAPTER FOUR

IMPROVED LEVENSHTEIN ALGORITHM

4.1 Introduction

As was pointed out in previously, the improved Levenshtein algorithm is referred as

ILA-OT. This chapter discussed the details of the ILA-OT algorithm. The chapter

begins with introducing the steps of ILA-OT which is the core of the algorithm

proposed in this dissertation. An example is provided for each step to show how

ILA-OT measures cells values in its array. The comparison between LA and ILA-OT

regarding the operations required to measure each cell value in their arrays is

presented. The chapter continues with a discussion on the algorithms to implement

ILA-OT. Finally, the chapter ends with a summary.

4.2 ILA-OT Steps

In this section, the details of the steps of the ILA-OT algorithm are explained. As

mentioned previously, the ILA-OT algorithm is based on the idea that it can remove

first row and first column from LA array. Furthermore, it can predict cells values in a

second row, second column, third row, and third column in LA array without needed

traditional way. This is because there is a context to measure cells values in these

rows and columns until finding a shared character in them. After finding a shared

character, the context will be changed, therefore, it can measure cells values in these

rows and columns based on the new context. Lastly, the context will only be changed

once, and it will not change if there is an additional shared character in them.

Based on the ILA-OT idea mentioned above, the proposed algorithm designs three

steps. The first step deals with the first row and first column in LA array while the

40

second step deals with the second row and second column in LA array. Lastly, the

third step deals with a third row and third column in LA array. The result of

combining these three steps is the ILA-OT algorithm. As compared to the LA, the

proposed algorithm in this work eliminates first row and first column of the LA

array. Furthermore, it measures values of the second row, second column, third row,

and the third column with fewer operations. The three proposed steps are described

in the following subsections.

4.2.1 First Step

Figure 4.1 shows Levenshtein array before and after applying the first step.

 b a c k

0 1 2 3 4

b 1 0 1 2 3

o 2 1 1 2 3

o 3 2 2 2 3

k 4 3 3 3 2

 b a c k

b

0 1 2 3

o 1 1 2 3

o 2 2 2 3

k 3 3 3 2

A: Before applying the first step B: After applying the first step

Figure 4.1. Levenshtein array before and after applying the first step

Figure 4.1 shows an example of how to calculate the distance between two words

“back” and “book” using LA. It shows that first step of the proposed operational

technique removes first row and first column from Levenshtein array as presented in

part B. This is because values of the first row and first column are used to measure

values of second row and second column in Levenshtein array. Therefore, measuring

41

values of second row and second column directly without needed to the values of the

first row and the first column leads ignoring them in Levenshtein array. Figure 4.1

also shows that number of cells in LA array before applying the first rule is 25 and

after applying this rule is 16. The percentage decrease in a number of cells of LA

array is 36%. The percentage decrease has been calculated using Equation 4.1 (Lund,

2014).

100*
 valueOld

 valuenew - valueOld
 decrease Percentage

Where the term “old value” represents a number of cells before applying the first

step, which is 25, while the term “new value” represents the number of cells after

applying the first step, which is 16. Another example, if a number of characters of

input two words to the LA is 5 and 6, then number of cells in LA array is 42 ((5+1) *

(6+1)) while after applying the first step is only 30 (5 * 6). The percentage decrease

in a number of cells of LA array for the second example is 28.57%.

4.2.2 Second Step

Starting from this section, this study has been referred to the second row and second

column as the first row and first column in the ILA-OT array. This is due to the

removing first row and first column from Levenshtein array after applying the first

step as shown in Figure 4.1. The second step of the proposed operational technique

can be applied to measure cells values of the first row in the ILA-OT array (second

row in LA array) and first column in the ILA-OT array (second column in LA array).

This step requires fewer operations than others performing in LA. Figure 4.2 shows

(4.1)

42

four examples that explain second step implementation by comparing values of the

second row in LA array with values of the first row in ILA-OT array.

This dissertation uses the term d(i, j) to refer to any cell in ILA-OT array, where the

character “i” represents the position of a row in ILA-OT array and in the same time it

represents the position of each character in second word “t”, while the character “j”

 b c a k s

0 1 2 3 4 5

x 1 1 2 3 4 5

 b c a k s

x 1 2 3 4 5

First example: the second row in LA array means the first row in ILA-OT array

 b c a k s

0 1 2 3 4 5

a 1 1 2 2 3 4

 b c a k s

a 1 2 2 3 4

Second example

 a c a k s

0 1 2 3 4 5

a 1 0 1 2 3 4

 a c a k s

a 0 1 2 3 4

Third example

 a c a k a

0 1 2 3 4 5

a 1 0 1 2 3 4

 a c a k a

a 0 1 2 3 4

Fourth example

Figure 4.2. Examples of the second step for the first row

43

represents the position of a column in ILA-OT array and in the same time it

represents the position of each character in first word “s”. The first example in

Figure 4.2 shows that if there is no shared character between characters of first-word

“s(j)” and the first character in second-word t(0), then all cells of the first row will

take the values of the context (1+j) in the ILA-OT array. Note the order of characters

in any string is 0 for the first character, 1 for the second character, 2 for the third

character, and so on. The examples of second, third, and fourth show that if there is a

shared character, then all cells values of the first row in the ILA-OT array, starting

from the cell that has shared a character, will take the value of “j” until the last cell in

the first row without needed to extra comparing. This is because first shared

character will make shared cell value equal to the “j” instead of (j+1). Furthermore,

the context will be constant and it will not be changed if there is an additional shared

character in the same row.

Figure 4.2 also shows that if the proposed second step is performed, the values of the

second row in LA array are matched with the values of the first row in ILA-OT array

as shown in all examples in this figure. However, the operations required to measure

cells values in the first row of ILA-OT is less than operations required to measure

cells values in the second row in LA for the reasons mentioned in Section 4.3. The

second step of the proposed operational technique can also be applied to measure

cells values of the first column in the ILA-OT array (second column in LA array)

with a simple modification. The modification is to replace “j” by “i” as shown in the

examples of Figure 4.3.

44

 x

0 1

b
1 1

c 2 2

a 3 3

k 4 4

s 5 5

 x

b

1

c 2

a 3

k 4

s 5

First example: the second column in LA array means the first column in ILA-OT array

 a

0 1

b
1 1

c 2 2

a 3 2

k 4 3

s 5 4

 a

b

1

c 2

a 2

k 3

s 4

Second example

 a

0 1

a
1 0

c 2 1

a 3 2

k 4 3

s 5 4

 a

a

0

c 1

a 2

k 3

s 4

Third example

 a

0 1

a
1 0

c 2 1

a 3 2

k 4 3

a 5 4

 a

a

0

c 1

a 2

k 3

a 4

Fourth example

Figure 4.3. Examples of the second step for the first column

45

The mathematical expressions of the second step of the proposed operational

technique for both first row and first column in the ILA-OT array are discussed in

Section 4.3. Furthermore, the details of implementing the second step are presented

as an algorithm in Section 4.4. Finally, the second step of the proposed operational

technique can be summarized as two sentences are written below:

1) Each cell in the first row of ILA-OT array will take the value of the

context (1+j) until finding shared character. Starting from the cell that has

shared character until the last cell in the first row, the cell value will

become j without needed to extra compare.

2) Each cell in the first column of ILA-OT array will take the value of the

context (1+i) until finding shared character. Starting from the cell that has

shared character until the last cell in the first column, the cell value will

become “i” without needed to extra comparing.

4.2.3 Third Step

This step can be applied to measure cells values of the second row in ILA-OT array

(third row in LA array) and second column in the ILA-OT array (third column in LA

array). The third step also finds a context in measuring values of second row and

second column in ILA-OT array. However, the context of the second step is different

from the context of the third step. The context of the third step needs values of first

row and first column to measure values of second row and second column while the

context of the second step does not need values from any row or column. The third

step also requires fewer operations than others performing in original LA for the

reasons mentioned in Section 4.3. Figure 4.4 shows five examples that explain third

46

step implementation by comparing values of the third row in LA array with values of

the second row in ILA-OT array.

 b c a k s

 0 1 2 3 4 5

x 1 1 2 3 4 5

z 2 2 2 3 4 5

 b c a k s

x 1 2 3 4 5

z 2 2 3 4 5

First example: the third row in LA array means the second row in ILA-OT array

 b c a k s

 0 1 2 3 4 5

a 1 1 2 2 3 4

z 2 2 2 3 3 4

 b c a k s

a 1 2 2 3 4

z 2 2 3 3 4

Second example

 b c a k s

 0 1 2 3 4 5

a 1 1 2 2 3 4

a 2 2 2 2 3 4

 b c a k s

a 1 2 2 3 4

a 2 2 2 3 4

Third example

 a c a k s

 0 1 2 3 4 5

a 1 0 1 2 3 4

a 2 1 1 1 2 3

 a c a k s

a 0 1 2 3 4

a 1 1 1 2 3

Fourth example

 a a a k a

 0 1 2 3 4 5

a 1 0 1 2 3 4

a 2 1 0 1 2 3

 a a a k a

a 0 1 2 3 4

a 1 0 1 2 3

Fifth example

Figure 4.4. Examples of the third step for the second row

47

Examples one and two in Figure 4.4 shows that if there is no shared character

between characters of first token “s(i)” and second character in second token t(1),

then all values of the second row will take the values of the context: (1+d(0, j-1)).

The examples of third, fourth, and five show that if there is a shared character, then

the shared cell will takes the value of d(0, j-1), while all cells values of the second

row, starting from the cell that follows shared cell, will take the value of (1+d(1, j-1))

until the last cell in the second row without needed to extra comparing. Note the

context (1+d(1, j-1)) will be constant and it will not be changed if there is an

additional shared character in the same row.

Figure 4.4 also shows that if the third step of the proposed operational technique is

performed, the values of the third row in LA array are matched with the values of the

second row in ILA-OT array. However, the operations required to measure cells

values in the second row of ILA-OT is less than operations required to measure cells

values in the third row in LA for the reasons mentioned in Section 4.3. The details of

implementing the third step are presented as an algorithm in Section 4.4.

The third step of the proposed operational technique can also be applied to measure

cells values of the second column in the ILA-OT array (third column in LA array)

with a simple modification. The modification is to replace “j” by “i” as shown in the

examples of Figure 4.5.

48

The mathematical expressions of the third step for both second row and second

column in the ILA-OT array are discussed in Section 4.3. Finally, the third step can

be summarized as two sentences are written below:

 x z

b

1 2

c 2 2

a 3 3

k 4 4

s 5 5

 a z

b

1 2

c 2 2

a 2 3

k 3 3

s 4 4

First example (No shared character) Second example (No shared character)

 a a

b

1 2

c 2 2

a 2 2

k 3 3

s 4 4

 a a

a

0 1

c 1 1

a 2 1

k 3 2

s 4 3

Third example (one shared character) Fourth example (one shared character)

 a a

a

0 1

a 1 0

a 2 1

k 3 2

a 4 3

Fifth example (three shared characters)

Figure 4.5. Examples of the third step for the second column

49

1) Each cell in the second row of ILA-OT array will take the value of the

context (1+d(0, j-1)) until finding shared character. The shared cell will

take the value of d(0, j-1), while all cells values of the second row, starting

from the cell that follows shared cell, will take the value of (1+d(1, j-1))

without needed to extra comparing.

2) Each cell in the second column of ILA-OT array will take the value of the

context (1+d(i-1,0)) until finding shared character. The shared cell will

take the value of d(i-1,0), while all cells values of the second column,

starting from the cell that follows shared cell, will take the value of (1+d(i-

1, 1)) without needed to extra compare.

4.3 Comparison between operations of LA and ILA-OT

In this section, a comparison between LA and ILA-OT regarding the operations

required to measure each cell value in their arrays is presented. The comparison is

based on mathematical expression of both LA and ILA-OT. Equation 4.2, Equation

4.3, Equation 4.4, and Equation 4.5 shows the mathematical expression of LA, which

have been extracted from LA algorithm presented in (Lounis et al., 2014).

LAfor jj) ,0(d

ALfor i0) ,i(d

s(j) t(i)if , 1

 s(j) t(i)if , 0
tcos

 1)-j 1,-d(i cost

 j) 1,-d(i1

 1)-j d(i, 1

minLAfor j) ,i(d

(4.2)

(4.3)

(4.4)

(4.5)

50

Where the term d(i, j) represents the array required to measure edit distance, while

the symbol “i” represents the position of a row in LA array and in the same time it

represents the position of each character in second word “t”, while the character “j”

represents the position of a column in LA array and in the same time it represents the

position of each character in first word “s”. Equation 4.2 and Equation 4.3 show how

can measure each cell value in the first row and first column respectively for LA

array while Equation 4.4 and Equation 4.5 show how can measure each cell value for

other rows and columns in LA array.

Equation 4.6, Equation 4.7, Equation 4.8 and Equation 4.9 show how can measure

each cell value in the first row, first column, second row, and second column

respectively for the ILA-OT array.

 condition after thisor s(j) t(0)if , j

 s(j) t(0)before , 1j
 j) ,0(d

 condition after thisor s(0) t(i)if , i

 s(0) t(i)before , 1i
0) ,i(d

 s(j) after t(1), 1) - j d(1, 1

 s(j) t(1)if , 1) - j d(0,

 s(j) t(1)before , 1) - j d(0, 1

j) ,1(d

 s(1) after t(i), 1) 1,-d(i 1

 s(1) t(i)if , 0) 1,-d(i

 s(1) t(i)before , 0) 1,-d(i 1

1) ,i(d

Where the term d(i, j) represents the array required to measure edit distance, while

the symbol “i” represents the position of a row in ILA-OT array and in the same

time it represents the position of each character in second word “t”, while the

character “j” represents the position of a column in ILA-OT array and in the same

(4.6)

(4.7)

(4.8)

(4.9)

51

time it represents the position of each character in first word “s”. Also, as mentioned

previously, second row and second column in LA array mean first row and first

column in ILA-OT array, while third row and third column in LA array mean second

row and second column in the ILA-OT array. This is due to the removing first row

and first column from the ILA-OT array as described in Section 4.2.1.

Before comparing the operations of both algorithms LA and ILA-OT, this

dissertation ignores increasing operations required to increase “i” and “j” from the

calculation because they are almost same for ILA-OT array and LA array.

Furthermore, it ignores any single operation does not require a loop to measure it in

order to make the comparison of operations easier.

Equation 4.2 and Equation 4.3 show that it needs one assigning operation to fill each

cell value in the first row and first column of LA array. To fill other rows and

columns in LA array, it requires measuring equation 4.4 and equation 4.5. To

identify the value of cost in equation 4.4, it needs two operations: one comparing

operation and one assigning operation, while to identify the value of d(i, j) in

equation 4.5, it needs six operations: three summing operations, two comparing

operations and one assigning operation. The total number of operations is 8 for each

cell in LA array excluding first row and first column.

On the other hand, Equation 4.6 and Equation 4.7 show that each cell value in the

first row and first column in the ILA-OT array (second row and second column in

LA array) requires three operations: one summing operation, one comparing

operation and one assigning operation. Furthermore, it requires fewer operations if

there is a shared character between characters of first token “s(j)” and the first

52

character in second token t(0). This means the proposed technique decreases 5

operations from 8 operations needed in a normal way to measure each cell value in

the first row and first column.

On the other hand, Equation 4.8 and Equation 4.9 show that each cell in the second

row and second column in the ILA-OT array (third row and third column in LA

array), also requires three operations: one summing operation, one comparing

operation and one assigning operation. Furthermore, it also requires fewer operations

if there is a shared character between characters of first token “s(j)” and second

character in second token t(1). This means the proposed technique will also decrease

5 operations from 8 operations needed in a normal way to measure each cell value in

the second row and second column. Table 4.1 shows the operations needed to fill

both ILA-OT array and LA array.

Table 4.1

Theoretical comparison between operations of LA and ILA-OT

 Cell operations in LA array

Cell operations in ILA-OT

array

First row 1 * (number of cells in the first

row)

0 because the first row is

deleted

First column 1 * (number of cells in the first

column)

0 because the first column is

deleted

Second row 8 * (number of cells in the

second row)

3 or less * (number of cells

in the first row)

Second

column

8 * (number of cells in the

second column)

3 or less * (number of cells

in the first column)

53

Third row 8 * (number of cells in the third

row)

3 or less * (number of cells

in the second row)

Third column 8 * (number of cells in the third

column)

3 or less * (number of cells

in the second column)

Other rows

and columns

Same operations Same operations

From Table 4.1, it can be seen that ILA-OT decreases the operations of cells in LA

array in six positions. The first position is to remove all cells of the first row in LA

array with their operations while the second position is to remove all cells of the first

column in LA array with their operations. The third position is to decrease operations

of the second row in LA array by almost (5 * number of cells in the second row)

while the fourth position is to decrease operations of the second column in LA array

by almost (5 * number of cells in the second column). The fifth position is to

decrease operations of the third row in LA array by almost (5 * number of cells in the

third row) while the sixth position is to decrease operations of the third column in LA

array by almost (5 * number of cells in the third column).

As a practical example, if the number of characters in the first and second words is 5,

then a number of cells in LA array is 6*6=36 while in ILA-OT array is 5*5=25.

Furthermore, the approximate number of operations of LA array and ILA-OT array

are shown in Table 4.2 on the next page.

54

Table 4.2

Practical comparison between LA and ILA-OT

 Cell operations in LA

array

Cell operations in

ILA-OT array

First row 1 * 6=6 0

First column 1 * 6=6 0

Second row 8 * 5=40 3 or less * 5=15 or less

Second column 8 * 5=40 3 or less * 5=15 or less

Third row 8 * 4=32 3 or less * 4=12 or less

Third column 8 * 4=32 3 or less * 4=12 or less

Other rows and columns Same operations Same operations

The comparisons in Table 4.1 and Table 4.2 show that the operations needed to fill

ILA-OT array are less than operations needed to fill LA array. Finally, since an

average word length for the English language is 5 characters (Lund, 2014), and by

assuming the symbols c1, c2, c3, c4, and c5 refer to the characters in English word.

Then 27 cells from 36 cells will be affected by three steps proposed by this study as

shown in Figure 4.6. Note gray cells in Figure 4.6 refer to the cells that will be

affected by three steps proposed by this study while white cells will be measured

normally.

 c1 c2 c3 c4 c5

c1

c2

c3

c4

c5

Figure 4.6. Cells affected by three steps proposed of this study

55

4.4 ILA-OT Algorithm

Algorithm 4.1 shows the pseudo-code of the improved Levenshtein algorithm (ILA-

OT).

Algorithm 4.1: Improved Levenshtein algorithm (ILA-OT)

1 integer ILA-OT (string t, string s)

 // i and j iterate over t and s

2 Integer i, j, cost, n, m

3 n= length(t)

4 m= length(s)

 // First Step: remove a single row and single column from

ILA-OT array

Proposed

operational

technique

(OT)

5 n=n-1

6 m=m-1

 // d is an array of (n+1) rows and (m+1) columns

7 Integer d[0..n, 0..m]

// Second Step: measure values of the first row and first

column using sub-algorithm named “MVFRFC”. The

algorithm is described in Algorithm 4.2

8 d = MVFRFC (d, t, s, n, m)

// Third Step: measure values of the second row and second

column using sub-algorithm named “MVSRSC”. The

algorithm is described in Algorithm 4.3

9 d = MVSRSC (d, t, s, n, m)

 // Other rows and columns: Measure values of other rows and other

columns in the ILA-OT array

10 for i from 2 to n:

11 for j from 2 to m:

12 if t[i] = s[j] then cost=0

13 else cost := 1

14

 d[i, j] = minimum(

 d[i-1, j] + 1, // deletion

 d[i, j-1] + 1, // insertion

 d[i-1, j-1] + cost // substitution

)

15 next j

56

16 next i

17 return d[n, m]

19 End

To make Algorithm 4.1 easier to understand, this dissertation refers to the string

“chaine1”, string “chaine2”, variable “lengthChaine1”, and variable “lengthChaine2”

in Algorithm 2.1 of LA as “t”, “s”, “n”, “m” in Algorithm 4.1 of ILA-OT

respectively. The ILA-OT algorithm receives two strings as inputs “s” and “t”. The

variables m and n hold lengths of s and t respectively. The first step in the proposed

operational technique (OT) is to decrease both m and n each by one. This is because

proposed operational technique (OT) of ILA-OT algorithm removes a single row and

single column from ILA-OT array as described in Section 4.2.1. Next, a two-

dimensional array named “d” is created. This array has been used to measure edit

distance between “s” and “t”.

After that, the second step in the OT is performed. This step measures cells’ values

of the first row and first column using sub-algorithm named “MVFRFC”. The

pseudo-code of the MVFRFC algorithm was presented in the Algorithm 4.2. The

third step in the OT is to measure cells’ values of the second row and the second

column using another sub-algorithm named “MVSRSC”. The pseudo-code of the

MVSRSC algorithm was presented in the Algorithm 4.3. Both sub-algorithms

MVFRFC and MVSRSC receive five parameters: d, t, s, n, and m. These parameters

have been defined in the Algorithm 4.1.

To refer to any cell in the d array, two variables are used named “i” and “j”. The

variable “i” refers to the position of the row in d array while variable “j” refers to the

position of the column in the d array. Furthermore, the variable “j” also represents

57

the position of each character in the first string “s”, while the variable “i” also

represents the position of each character in the second string “t”. The last step in the

ILA-OT algorithm is to fill other cells values in d array by using two loops. After

that, the edit distance between strings “s” and “t” is located in the last cell in the d

array, which is represented by d (n, m). Return to the sub-algorithm MVFRFC, the

pseudo-code of it is shown in Algorithm 4.2 below.

Algorithm 4.2: MVFRFC

1 Input: d, t, s, n, m // these inputs are taken from main Algorithm 4.1

 // Output: d

 // First part (S1): measure values of the first row

2 for j from 0 to m:

3 if s[j] = t[0]

4 for k from j to m:

5 d(0, k) = k

6 next k

7 goto step 12

8 else

9 d(0, j) = j+1

10 end if

11 next j

 // Second part (S2): measure values of first column

12 for i from 0 to n:

13 if s[0] = t[i]

14 for k from i to m:

15 d(k, 0) = k

16 next k

17 goto step 22

18 else

19 d(i, 0) = i+1

20 end if

21 next i

58

22 Return d

23 End

Algorithm 4.2 contains two parts S1 and S2. The part S1 uses to measure each cell

value in the first row of array d while part S2 uses to measure each cell value in the

first column of array d. In part S1, the MVFRFC algorithm starts by assigning 0 to

the variable “j”. Next, one of the two cases will occur based on specific condition.

The condition will examine if there is a shared character between characters of first

string “s(j)” and the first character in second string t(0). If there is no shared

character, then MVFRFC algorithm assigns for each cell value in the first row the

context (j+1) until the last cell in the first row.

Otherwise, if a shared character is found, then all cells values of the first row,

starting from the cell that has shared a character, take the value of “j” until the last

cell in the first row without needed to the extra compare operation. Note the variable

“j” is replaced by the variable “k” because it cannot use two counters with the same

name in nested two loops in the same algorithm. In part S2, the MVFRFC algorithm

applies same steps performed in S1 to measure cells values of the first column in the

ILA-OT array with a simple modification. The modification is to replace “j” by “i” in

order to refer to the cell in the first column instead of the first row.

Return to the sub-algorithm MVSRSC, the pseudo-code of it is shown in Algorithm

4.3.

Algorithm 4.3: MVSRSC

1 Input: d, t, s, n, m // these inputs are taken from main Algorithm 4.1

 // Output: d

59

 // First part (X1): measure values of the second row

2 for j from 1 to m:

3 if s[j] = t[1]

4 d(1, j) = d(0, j-1)

5 for k from (j+1) to m:

6 d(1, k) = 1+ d(1, k-1)

7 next k

8 goto step 13

9 else

10 d(1, j) = 1+ d(0, j-1)

11 end if

12 next j

 // Second part (X2): measure values of second column

13 for i from 1 to n:

14 if s[1] = t[i]

15 d(i, 1) = d(i-1, 0)

16 for k from (i+1) to n:

17 d(k, 1) = 1+d(k-1, 1)

18 next k

19 goto step 24

20 else

21 d(i, 1) = 1+d(i-1, 0)

22 end if

23 next i

24 Return d

25 End

Algorithm 4.3 also contains two parts called X1 and X2. The part X1 uses to measure

each cell value in the second row of array d while part X2 uses to measure each cell

value in the second column of array d. In part X1, the MVSRSC algorithm starts by

60

assigning 1 to the variable “j”. Next, one of the two cases will occur based on

specific condition. The condition will examine if there is a shared character between

characters of second string “s(j)” and the second character in second string t(1). If

there is no shared character, then MVSRSC algorithm assigns for each cell value in

the second row the context (1+ d(0, j-1)) until the last cell in the second row.

Otherwise, if a shared character is found between both strings, then the shared cell

takes the value of d(0, j-1), while other cells values of the second row, starting from

the cell that follows the shared cell, take the value of (1+ d(1, j-1)) until the last cell

in the second row without needed to extra compare operation. In part X2, the

MVSRSC algorithm applies same steps performed in X1 to measure cells values of

the second column in an ILA-OT array with a simple modification. The modification

is to replace “j” by “i” in order to refer to the cell in the second column instead of the

second row. Lastly, as mentioned in Algorithm 4.2, the variable “j” is also replaced

by the variable “k” because it cannot use two counters with the same name in nested

two loops in the same algorithm.

4.5 Summary

In this chapter the detail regarding the improved Levenshtein algorithm i.e. the ILA-

OT is presented and discussed in detail. The discussion begins with the steps and

notation of proposed operational technique which is the core of the algorithm

proposed in this dissertation. Examples are provided for each step to show how ILA-

OT measures cells values in its array. This is followed by algorithms to implement

ILA-OT. The comparison between LA and ILA-OT regarding the operations

required to measure each cell value in their arrays is presented. Furthermore, a

practical example of the comparison process has also been presented. As can be seen

61

in this chapter the proposed operational technique is based on the idea of finding a

context to measure cells values in LA with fewer operations than what required in

the traditional way.

62

CHAPTER FIVE

EXPERIMENTAL RESULTS AND DISCUSSION

5.1 Introduction

This chapter discussed the experimental results of the improved Levenshtein

algorithm (ILA-OT) using single testing dataset containing various word lengths.

The experimental design, evaluation measurements, and testing dataset were

explained in Chapter Three. Six sections have been included in this chapter. Section

5.2 presents the experimental results that related to the processing time. This is

followed by Section 5.3 that presents the experimental results that related to the

accuracy. Section 5.4 shows the results of the statistical test conducted on processing

time values of both LA and ILA-OT. A discussion on results obtained by this chapter

is explained in Section 5.5. Finally, a summary of chapter five is presented in Section

5.6

5.2 Processing Time

Table 5.1 below presents a sample of the processing time values of both algorithms

for several words.

Table 5.1

A sample of the processing time values of both algorithms for several words

Word

length

Number

of tests

Input Output

Word1 Word2

Average

processing

time in

microsecond

 (LA)

Average

processing

time in

microsecond

(ILA-OT)

3 5 cab bad 0.72 0.48

63

4 5 cozy zyme 1.14 0.72

5 5 abase abash 1.54 1.06

6 5 abacus abaist 2.20 1.46

7 5 aaronic abacist 2.70 2.04

8 5 aalsmeer aaltonen 3.44 2.46

9 5 abanooneo abarbanel 4.18 3.02

10 5 abandonmen abatements 5.16 3.76

11 5 abbotsholme abbreviated 6.06 4.50

12 5 abbreviatons abbreviators 6.88 5.16

Table 5.1 shows that this dissertation conducted five tests for each input. The input

of each algorithm is two words and the five tests have the same input words. After

that, the average processing time for five tests has been measured. Average

processing time for LA has been measured using the step 7 to step 15 in Algorithm

3.1 while average processing time for ILA-OT has been measured using the step 16

to step 24 in the same algorithm. Table 5.1 also shows that the processing time

values of both algorithms are different for the words used in this table. Furthermore,

it shows that the processing time values of ILA-OT are less than processing time

values of LA for all lengths.

Appendix A to Appendix J presents samples of the processing time values of both

algorithms for each word length. Table 5.2 presents the experimental results of both

algorithms LA and ILA-OT in terms of processing time for all words in the testing

dataset.

64

Table 5.2

Processing times of both algorithms LA and ILA-OT

Word length
Number

of tests

Average processing

time in

microsecond

 (LA)

Average processing

time in

microsecond

(ILA-OT)

Percentage

decrease

(PD)

3 1000 0.82 0.47 42.35%

4 1000 1.10 0.68 38.07%

5 1000 1.57 0.99 36.45%

6 1000 2.17 1.41 35.12%

7 1000 2.72 1.82 33.17%

8 1000 3.49 2.44 29.90%

9 1000 4.25 3.03 28.60%

10 1000 5.14 3.79 26.21%

11 1000 6.18 4.63 25.13%

12 1000 7.42 5.64 23.91%

All words

(From 3 to 12)
10000 3.48 2.49 28.50%

Table 5.2 shows that this dissertation conducted 10000 tests for the words in the

testing dataset (i.e. 1000 tests for each word length). In each test, the input to both

algorithms is two words each time and the output is the processing time of execution

of each algorithm. The inputs and outputs of all test are stored in excel file as

explained in Algorithm 3.1. After that, average processing time values have been

measured automatically for each length using Microsoft Excel 2010. Furthermore,

average processing time for all lengths together has also been measured using

Microsoft Excel 2010.

65

Table 5.2 also shows that the proposed algorithm ILA-OT has a percentage decrease

for all word lengths. The average percentage decrease has been calculated using

Equation 3.1 after implement it using Microsoft Excel 2010. The average percentage

decrease obtained by the proposed algorithm for all lengths is 28.50% and for length

5, which represents average word length for the English language, is 36.45%. In

addition to that, the experimental results also show that the impact of the proposed

algorithm increases for short strings as presented in length 3, and it decreases for

long strings as presented in length 12. Figure 5.1 shows the Line graph for the

processing time values listed in this table.

Word length

Figure 5.1. Line graph for the processing time values listed in Table 5.2

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

3 4 5 6 7 8 9 10 11 12 From 3

to 12

Average processing time (LA)

Average processing time (ILA-OT)
Micro

seconds

66

Figure 5.1 shows that the proposed algorithm ILA-OT outperformed the LA

algorithm in terms of processing time for all lengths. However, the value of

processing time for each length is different from the others due to the different

number of characters in words used. Figure 5.1 also shows that the last values in Line

graph are different from the others. This is because last values in the Line graph

represent word lengths from length 3 to length 12. Lastly, as mentioned previously,

since an average word length for the English language is 5 characters, then the

proposed algorithm still has a significant decrease in processing time.

5.3 Accuracy

Most steps used to measure the accuracy are similar to the steps used in measuring

processing time, which is conducting 10000 tests for the words in the testing dataset.

However, the input to both algorithms is two words each time but the output is a

distance of each algorithm. Table 5.3 below presents a sample of the input and output

of both algorithms for several words.

Table 5.3

A sample of the distances of both algorithms for several words

Word

length

example

Input Output

Word1 Word2
Distance

(LA)

Distance

(ILA-OT)

3 aba baa 2 2

4 cozy zyme 4 4

5 abase abash 1 1

6 abacus abaist 3 3

7 abidjan abierta 4 4

8 abdovcit abducens 5 5

67

9 aboutthis abplanalp 7 7

10 abtificial abundances 8 8

11 adversarial adversaries 2 2

12 adventurists adversatives 6 6

Table 5.3 shows that the outputs of both algorithms are equal for the words used in

this table. Furthermore, for 10000 tests used in this experiment, the outputs also

match. In addition to that, this dissertation performs additional 50000 tests and the

outputs also same. Therefore, after applying Equation 3.2, the results indicates that

the accuracy between both algorithms is 100% because the number of tests having

equal distances between both algorithms is identical to the total number of the tests.

Appendix A to Appendix J presents samples of the distance values of both

algorithms for each word length.

5.4 Statistical Test

As mentioned previously, this dissertation performed a statistical method using a t-

test to show if the improvement in processing time of the ILA-OT is significant or

not. Table 5.4 below shows t-test results between LA and ILA-OT.

Table 5.4

T-test results between LA and ILA-OT

No. Main Variables LA ILA-OT

1 Mean 3.48 2.49

2 Variance 7.04 3.29

3 Observations 10000 10000

68

4 t Stat 55.18

5 P(T<=t) two-tail 0.0

6 t Critical two-tail 1.96

Table 5.4 shows that the number of tests of each algorithm is 10000 for the words in

the testing dataset, which represented a number of observations in t-test as shown in

row 3. Table 5.4 also shows that the mean of ILA-OT is better than LA as is clear in

row 1. Furthermore, it shows that the p-value is 0.0 as presented in row 5, which is less

than 0.05, and the value of “t-Stat” is 55.18 as presented in row 4, which is much larger

than the value of “t-critical” (1.96) in row 6. This indicates that the difference in means

between LA and ILA-OT is real and not due to chance. Therefore, ILA-OT is better

than LA in terms of processing time metric.

5.5 Results Discussion

The experimental results of this study show that the proposed algorithm ILA-OT

outperformed the LA algorithm in terms of processing time for all word lengths.

However, the processing time of both algorithms for each length is different from the

others due to the different number of characters in words used. The experimental

results also show that the impact of the proposed algorithm has been increased for

short strings, and it has been decreased for long strings. However, as mentioned

previously, since an average word length for the English language is 5 characters,

then the proposed algorithm still has a significant decrease in processing time.

The average percentage decrease obtained by the proposed algorithm for all lengths

is 28.50% and for length 5, which represents average word length for the English

69

language, is 36.45%. For the accuracy metric, the results show that in all tests, which

are 10000 comparisons, the number of tests having equal distances between both

algorithms is identical to the total number of the tests. Therefore, the accuracy

between both algorithms is 100% for all word lengths. Lastly, the experimental

results of this chapter indicate that the objective one and two of this study have been

achieved.

5.6 Summary

The goal of this chapter is to evaluate the proposed algorithm ILA-OT by comparing

it with LA algorithm using two metrics, processing time and accuracy. Therefore, in

this chapter, the details of experimental results are presented and discussed. The

study conducted 10000 tests to evaluate this algorithm using 10 different word

lengths. Furthermore, this dissertation conducted a statistical test to show if the

improvement of the ILA-OT is significant or not. A statistical test of this dissertation

has been measured using t-test. The results of the evaluation process are presented in

detail. The experimental results are very encouraging. The proposed algorithm

outperforms LA algorithm in terms of processing time without affecting its accuracy.

70

CHAPTER SIX

CONCLUSION AND FUTURE WORK

6.1 Introduction

This chapter finishes up the dissertation by making the conclusion for all chapters

included in this research. The chapter begins with the research summary in Section

6.2 and then presents the main research contributions in Section 6.3. After that, the

future directions of this work are provided in Section 6.4. Lastly, the chapter ends

with a summary of this chapter in Section 6.5.

6.2 Research Summary

Similar to any other natural language processing problems, candidates’ list

generation in spelling correction is a real challenging problem which is very hard to

tackle. These types of problems required exact and high-speed algorithms to achieve

the intended goal. Each algorithm of candidates’ list generation shows good

performance for a specific purpose. Since the most widely used technique for

generating candidates list for incorrect words is based on the Levenshtein algorithm,

then this study has been focused on improving its processing time without affecting

its accuracy.

The first step in developing improved algorithm is to design an operational technique

to reduce the operations required to measure cells’ values in Levenshtein array. This

technique is based on the idea that it can remove first row and first column from LA

array. Furthermore, it can predict cells’ values in a second row, second column, third

row, and third column in LA array without needed a traditional way. This is because

there is a context to measure cells values in these rows and columns until finding a

71

shared character in them. After finding a shared character, the context will be

changed, therefore, it can measure cells values in these rows and columns based on

the new context. Lastly, the context will only be changed once, and it will not change

if there is an additional shared character in them.

Experiments were conducted to illustrate how the proposed improved Levenshtein

algorithm can be employed to yield a promising result. The evaluation process

includes comparing the proposed algorithm with LA algorithm using two metrics.

The proposed algorithm has significantly reduced the processing time of measuring

edit distance between any two strings compared to the current algorithm.

Furthermore, the testing dataset that contains 10000 words used in the evaluation

process proved its ability to not change the accuracy of the current algorithm. This is

because both ILA-OT and LA produce same distance for all words in the testing

dataset.

6.3 Research Contributions

This section summarizes the main contributions of the research by referring to the

study objectives stated in Section 1.4 of Chapter one. The objectives are:

a. To design an operational technique to shorten the operations of the cells

in the Levenshtein array without affecting its accuracy.

The first objective is to design an operational technique that decreases the

operations required to measure each cell value in Levenshtein array without

affecting its accuracy. Therefore, this research proposes an improved

Levenshtein algorithm which is called ILA-OT (refer to the Algorithm 4.1, page

55) that contains the operational technique. The proposed technique (refer to the

72

pages 39-49) is based on three steps. The first step removes first row and first

column from LA array. Since an average word length for the English language is

5 characters, then the first step has a percentage decrease in a number of cells of

LA array by 30.55% (refer to the page 40). The second and third steps can

predict cells values in a second row, second column, third row, and third column

in LA array with fewer operations than what required in a traditional way (refer

to the page 49).

The second and third steps have decreases the operations of cells in LA array in

four positions (refer to the Table 4.1, page 52). The first position is to decrease

operations of the second row in LA array by almost (5 * number of cells in the

second row) while the second position is to decrease operations of the second

column in LA array by almost (5 * number of cells in the second column). The

third position is to decrease operations of the third row in LA array by almost (5

* number of cells in the third row) while the fourth position is to decrease

operations of the third column in LA array by almost (5 * number of cells in the

third column).

b. To develop and evaluate the improved Levenshtein algorithm that

includes the proposed operational technique.

The second objective has been achieved by developing and evaluating the

proposed ILA-OT. This has been done by implementing it using VB.NET

programming language and comparing it with LA algorithm using two metrics.

Details of the experiments were presented and discussed in Chapter 5. The study

conducted experiments to evaluate this algorithm using 10 different word

lengths. The proposed algorithm outperforms LA algorithm in terms of

73

processing time without affecting its accuracy. In terms of processing time

value, the proposed algorithm ILA-OT enhanced over LA algorithm by 36.45%.

In terms of accuracy value, both ILA-OT and LA produce same distance for any

two strings. The accuracy between both algorithms is 100% for all words in the

testing dataset.

6.4 Recommendation for Future Work

During the process of this research, several directions arose, which are considered as

good seeds for future research. The following points highlight the promising

directions found by this research:

i. The proposed algorithm ILA-OT has only decreased the operations of the

first row, first column, second row, second column, third row, and third

column in LA array. Therefore, it needs to include other rows and columns in

LA array.

ii. The proposed algorithm ILA-OT could be explored in other applications that

initially utilized Levenshtein algorithm and this includes DNA searching,

sequences' alignment, word-processing programs, speech processing systems,

and optical character recognition systems.

iii. Further research can be done to improve the proposed algorithm by designing

a pre-processing technique that can help ILA-OT in filtering lexicon words.

iv. Finally, the hybridization between two or more edit distance algorithms may

achieve better processing time than what is obtained in individual algorithm

alone.

74

6.5 Summary

As a conclusion for this dissertation, this chapter has discussed and concluded the

research summary, the contributions of the research. At the end of the discussion, the

recommendations for further research were outlined. Overall, this dissertation has

been achieved its main goal, which is to improve Levenshtein algorithm by reducing

its processing time in generating candidates’ list for spelling correction. Therefore,

this study has designed an ILA-OT algorithm, which is based on the concept of

finding patterns to use in predicting the cells’ values in LA array instead of

measuring values of them by using the traditional way of LA.

75

REFERENCES

Adhitama, P., Kim, S. H., & Na, I. S. (2014). Lexicon-Driven Word Recognition

Based on Levenshtein Distance. International Journal of Software Engineering

and Its Applications, 8(2), 11-20.

Ahmed, B. (2015). Lexical Normalisation of Twitter Data. Paper presented at the

Science and Information Conference (SAI), 2015.

Al-Bakry, A. M., & Al-Rikaby, M. K. (2015). Enhanced Levenshtein Edit Distance

Method functioning as a String-to-String Similarity Measure. Paper presented

at the Proceedings of the Networks Security and Distributed Systems

(NSDS'2015).

Al-Masoudi, A. F. R., & Al-Obeidi, H. S. R. (2015). Smoothing Techniques

Evaluation of N-gram Language Model for Arabic OCR Post-processing.

Journal of Theoretical and Applied Information Technology, 82(3), 432-439.

Al-Zaydi, Z. Q., & Salam, H. (2015). Multiple Outputs Techniques Evaluation for

Arabic Character Recognition. International Journal of Computer Techniques

(IJCT), 2(5), 1-7.

Alobaedy, M. M. T. (2015). Hybrid Ant Colony System Algorithm For Static And

Dynamic Job Scheduling In Grid Computing. (PhD thesis, Universiti Utara

Malaysia, Kedah, Malaysia). Retrieved from

http://etd.uum.edu.my/id/eprint/5382

Andoni, A., & Krauthgamer, R. (2012). The smoothed complexity of edit distance.

ACM Transactions on Algorithms (TALG), 8(4), 44.

Andoni, A., & Onak, K. (2012). Approximating edit distance in near-linear time.

SIAM Journal on Computing, 41(6), 1635-1648.

Attia, M., Pecina, P., Samih, Y., Shaalan, K. F., & van Genabith, J. (2012). Improved

Spelling Error Detection and Correction for Arabic. Paper presented at the

International Conference on Computational Linguistics (COLING), Mumbai,

India.

Bard, G. V. (2007). Spelling-error tolerant, order-independent pass-phrases via the

Damerau-Levenshtein string-edit distance metric. Paper presented at the

Proceedings of the fifth Australasian symposium on ACSW frontiers-Volume

68.

Bassil, Y., & Alwani, M. (2012a). Context-sensitive Spelling Correction Using

Google Web 1T 5-Gram Information. Computer and Information Science, 5(3),

37-48.

76

Bassil, Y., & Alwani, M. (2012b). Ocr post-processing error correction algorithm

using google online spelling suggestion. Journal of Emerging Trends in

Computing and Information Sciences, 3(1), 90-99.

Batawi, Y., & Abulnaja, O. (2012). Accuracy Evaluation of Arabic Optical Character

Recognition Voting Technique: Experimental Study. IJECS: International

Journal of Electrical & Computer Sciences, 12(1), 29-33.

Bergroth, L., Hakonen, H., & Raita, T. (2000). A survey of longest common

subsequence algorithms. Paper presented at the Proceedings of the Seventh

International Symposium on String Processing Information Retrieval

(SPIRE'00).

Burkhardt, S., & Kärkkäinen, J. (2002). One-gapped q-gram filters for Levenshtein

distance. Paper presented at the Proceedings of the Combinatorial Pattern

Matching.

Cooper, L., & Cooper, M. W. (1981). Introduction to dynamic programming:

Pergamon Press New York.

Crumrine, K. T., Ritschel, J. D., & White, E. (2014). Earned Schedule 10 Years Later

Analyzing Military Programs: DTIC Document.

Daðason, J. F. (2012). Post-Correction of Icelandic OCR Text. (Master's thesis),

University of Iceland, Reykjavik, Iceland.

Federico, M., & Cettolo, M. (2007). Efficient handling of n-gram language models

for statistical machine translation. Paper presented at the Proceedings of the

Second Workshop on Statistical Machine Translation.

Formiga Fanals, L., & Rodríguez Fonollosa, J. A. (2012). Dealing with input noise in

statistical machine translation. Paper presented at the International Conference

on Computational Linguistics (COLING), Mumbai, India.

Gomaa, W. H., & Fahmy, A. A. (2013). A survey of text similarity approaches.

International Journal of Computer Applications, 68(13).

Google. (2015). Google Ngram Retrieved september 05, 2015, from

http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

Grzebala, P. B. (2016). Private Record Linkage: A Comparison of Selected

Techniques for Name Matching. Master thesis, Wright State University, Ohio,

United States.

Gupta, B., Bhatt, G., & Mittal, A. (2016). Language Identification and

Disambiguation in Indian Mixed-Script. Distributed Computing and Internet

Technology (pp. 113-121): Springer.

77

Habeeb, I. Q., Yusof, S. A., & Ahmad, F. B. (2014). Two Bigrams Based Language

Model for Auto Correction of Arabic OCR Errors. International Journal of

Digital Content Technology and its Applications, 8(1), 72 - 80.

Haldar, R., & Mukhopadhyay, D. (2011). Levenshtein distance technique in

dictionary lookup methods: An improved approach. arXiv preprint

arXiv:1101.1232.

Hassan, A., Noeman, S., & Hassan, H. (2008). Language Independent Text

Correction using Finite State Automata. Paper presented at the Third

International Joint Conference on Natural Language Processing (IJCNLP),

Hyderabad, India.

Huldén, M. (2009). Fast approximate string matching with finite automata.

Procesamiento del lenguaje natural, 43, 57-64.

Islam, A., & Inkpen, D. (2009). Real-word spelling correction using Google Web 1T

n-gram with backoff. Paper presented at the International Conference on

Natural Language Processing and Knowledge Engineering.

Jurafsky, D., & Martin, J. H. (2009). Speech and language processing: An

introduction to natural language processing, computational linguistics, and

speech recognition (2nd ed.): Pearson Education India.

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions

and reversals. Paper presented at the Soviet physics doklady.

Li, M., Zhang, Y., Zhu, M., & Zhou, M. (2006). Exploring distributional similarity

based models for query spelling correction. Paper presented at the Proceedings

of the 21st International Conference on Computational Linguistics and the 44th

annual meeting of the Association for Computational Linguistics.

Lounis, O., Guermeche, B., Eddine, S., Saoudi, L., & Benaicha, S. E. (2014). A new

algorithm for detecting SQL injection attack in Web application. Paper

presented at the Science and Information Conference (SAI), 2014.

Lu, W., Du, X., Hadjieleftheriou, M., & Ooi, B. C. (2014). Efficiently Supporting

Edit Distance based String Similarity Search Using B-trees. IEEE Transactions

on Knowledge and Data Engineering, 26(12), 2983-2996.

Lund, W. B. (2014). Ensemble Methods for Historical Machine-Printed Document

Recognition. (PhD dissertation, Brigham Young University, Utah, United

States).

Ma, D., & Agam, G. (2013). A super resolution framework for low resolution

document image OCR. Paper presented at the IS&T/SPIE Electronic Imaging.

Maarif, H., Akmeliawati, R., Htike, Z., & Gunawan, T. S. (2014). Complexity

Algorithm Analysis for Edit Distance. Paper presented at the International

Conference on Computer and Communication Engineering (ICCCE), 2014

78

Mahdi, A. A. M. (2012). Spell checking and correction for Arabic text recognition.

(Master thesis), King Fahd university of petroleum and minerals, Saudi Srabia.

Mainsah, B. O., Morton, K. D., Collins, L. M., Sellers, E. W., & Throckmorton, C. S.

(2015). Moving away from error-related potentials to achieve spelling

correction in P300 spellers. IEEE Transactions on Neural Systems and

Rehabilitation Engineering, 23(5), 737-743.

Mihov, S., & Schulz, K. U. (2004). Fast approximate search in large dictionaries.

Computational Linguistics, 30(4), 451-477.

Musa, S. M., Opara, E. U., Shayib, M. A., & Oliver, J. (2016). Measurement and

Test Performance for Integrated Digital Loop Carrier for White Noise

Impairment Using Interleaved Mode. Communications of the IIMA, 14(3), 4.

Naseem, T. (2004). A Hybrid Approach for Urdu Spell Checking. (Master thesis),

National University of Computer & Emerging Sciences, Islamabad, Pakistan.

Naseem, T., & Hussain, S. (2007). A novel approach for ranking spelling error

corrections for Urdu. Language Resources and Evaluation, 41(2), 117-128. doi:

10.1007/s10579-007-9028-6

Navarro, G. (2001). A Guided tour to approximate string matching. ACM Computing

Surveys (CSUR), 33(1), 31-88.

Navarro, G., Grabowski, S., Mäkinen, V., & Deorowicz, S. (2005). Improved time

and space complexities for transposition invariant string matching Technical

Report TR/DCC-2005-4, Department of Computer Science: University of Chile.

Pal, S., & Rajasekaran, S. (2015). Improved algorithms for finding edit distance

based motifs. Paper presented at the IEEE International Conference on

Bioinformatics and Biomedicine (BIBM), 2015.

Phillips, C. R. (2015). Employing an Efficient and Scalable Implementation of the

Cost Sensitive Alternating Decision Tree Algorithm to Efficiently Link Person

Records. Master thesis, Texas State University, San Marcos, United States.

Polyanovsky, V., Roytberg, M. A., & Tumanyan, V. G. (2011). Comparative

analysis of the quality of a global algorithm and a local algorithm for alignment

of two sequences. Algorithms for Molecular Biology, 6, 25.

Popescu, O., & Vo, N. P. A. (2014). Fast and Accurate Misspelling Correction in

Large Corpora. Paper presented at the Conference on Empirical Methods in

Natural Language Processing (EMNLP).

Pradhan, N., Gyanchandani, M., & Wadhvani, R. (2015). A Review on Text

Similarity Technique used in IR and its Application. International Journal of

Computer Applications, 120(9).

79

Rardin, R. L., & Uzsoy, R. (2001). Experimental evaluation of heuristic optimization

algorithms: A tutorial. Journal of Heuristics, 7(3), 261-304.

Rieck, K., & Wressnegger, C. (2016). Harry: A Tool for Measuring String Similarity.

Journal of Machine Learning Research, 17(9), 1-5.

Ruoro, S. W. (2009). A Parallel Corpus Based Translation Using Sentence

Similarity. PhD dissertation, University of Nairobi, Nairobi, Kenya.

Sheng, C., Tao, Y., & Li, J. (2012). Exact and approximate algorithms for the most

connected vertex problem. ACM Transactions on Database Systems (TODS),

37(2), 12.

Siklósi, B., Novák, A., & Prószéky, G. (2016). Context-aware correction of spelling

errors in Hungarian medical documents. Computer Speech & Language, 35,

219-233.

Singh, S. P., Kumar, A., Darbari, H., Chauhan, S., Srivastava, N., & Singh, P.

(2015). Evaluation of Similarity metrics for translation retrieval in the Hindi-

English Translation Memory. International Journal of Advanced Research in

Computer and Communication Engineering, 4(8).

Ukkonen, E. (1985). Finding approximate patterns in strings. Journal of algorithms,

6(1), 132-137.

Vargas, S. G. J. (2008). A Knowledge-Based information Extraction Prototype for

Data-Rich Documents in the Information Technology Domain. (Master

dissertation), National University of Colombia, Bogotá, Colombia.

Wick, M. L., Ross, M. G., & Learned-Miller, E. G. (2007). Context-sensitive error

correction: Using topic models to improve OCR. Paper presented at the Ninth

International Conference on Document Analysis and Recognition (ICDAR).

80

Appendix A

A Sample of Output Results of Word Length 3

Input Output

Word1 Word2

Processing

time (LA) in

microsecond

Processing

time (ILA-

OT) in

microsecond

Distance

(LA)

Distance

(ILA-OT)

aba baa 1.54 0.90 2 2

baa cab 0.72 0.56 2 2

cab bad 0.72 0.48 2 2

bad dab 0.82 0.48 2 2

dab bag 0.64 0.48 2 2

bag gab 0.64 0.56 2 2

gab bah 0.72 0.56 2 2

bah jab 0.72 0.48 2 2

jab kab 0.64 0.56 1 1

kab alb 0.72 0.56 2 2

alb bal 0.82 0.56 2 2

bal lab 0.72 0.64 2 2

lab bam 0.64 0.56 2 2

bam ban 0.72 0.48 1 1

ban nab 0.72 0.48 2 2

nab abo 0.72 0.56 2 2

abo boa 0.72 0.56 2 2

boa bap 0.72 0.48 2 2

bap arb 0.72 0.56 3 3

arb bar 0.72 0.56 2 2

bar bra 0.82 0.48 2 2

81

Appendix B

A Sample of Output Results of Word Length 4

Input Output

Word1 Word2

Processing

time (LA) in

microsecond

Processing

time (ILA-

OT) in

microsecond

Distance

(LA)

Distance

(ILA-OT)

book jock 1.14 0.82 2 2

jock jivy 1.14 0.72 3 3

jivy jamb 1.14 0.72 3 3

jamb juku 1.14 0.72 3 3

juku jack 1.14 0.72 3 3

jack joky 1.14 0.72 3 3

joky junk 1.14 0.72 3 3

junk jiff 1.06 0.72 3 3

jiff jimp 1.14 0.82 2 2

jimp jauk 1.14 0.72 3 3

jauk phiz 1.22 0.82 4 4

phiz zouk 1.14 0.72 4 4

zouk jibb 1.06 0.72 4 4

jibb zonk 1.14 0.72 4 4

zonk juke 1.14 0.72 4 4

juke cozy 1.22 0.72 4 4

cozy zyme 1.14 0.72 4 4

zyme mazy 1.06 0.72 4 4

mazy jouk 1.06 0.82 4 4

jouk qoph 1.14 0.82 3 3

qoph jink 1.06 0.72 4 4

82

Appendix C

A Sample of Output Results of Word Length 5

Input Output

Word1 Word2

Processing

time (LA) in

microsecond

Processing

time (ILA-

OT) in

microsecond

Distance

(LA)

Distance

(ILA-OT)

aahed abaca 1.96 1.06 4 4

abaca abaci 1.64 1.06 1 1

abaci aback 1.64 0.98 1 1

aback abada 1.54 0.98 2 2

abada abaft 1.54 1.06 2 2

abaft aband 1.64 0.98 2 2

aband abase 1.46 0.98 2 2

abase abash 1.54 1.06 1 1

abash abate 1.64 0.98 2 2

abate abbes 1.64 0.98 3 3

abbes abbey 1.72 0.98 1 1

abbey abbot 1.54 0.98 2 2

abbot abdal 1.54 0.98 3 3

abdal abeam 1.64 1.06 2 2

abeam abear 1.54 0.98 1 1

abear abele 1.72 1.06 2 2

abele aberr 1.46 0.98 2 2

aberr abets 1.54 0.98 2 2

abets abhal 1.64 1.06 3 3

abhal abhor 1.54 0.98 2 2

abhor abide 1.54 0.98 3 3

83

Appendix D

A Sample of Output Results of Word Length 6

Input Output

Word1 Word2

Processing

time (LA) in

microsecond

Processing

time (ILA-

OT) in

microsecond

Distance

(LA)

Distance

(ILA-OT)

aahing abacus 2.38 1.54 5 5

abacus abaist 2.20 1.46 3 3

abaist abanet 2.20 1.38 2 2

abanet abanga 2.12 1.54 2 2

abanga abased 2.12 1.38 3 3

abased abaser 2.04 1.46 1 1

abaser abases 2.04 1.46 1 1

abases abasia 2.20 1.38 2 2

abasia abassi 2.12 1.38 2 2

abassi abated 2.12 1.38 3 3

abated abater 2.12 1.46 1 1

abater abates 2.28 1.46 1 1

abates abatis 2.12 1.54 1 1

abatis abator 2.12 1.46 2 2

abator abawed 2.12 1.38 3 3

abawed abbacy 2.38 1.54 4 4

abbacy abbess 2.20 1.30 3 3

abbess abbeys 2.12 1.46 1 1

abbeys abbots 2.12 1.30 2 2

abbots abbott 2.20 1.46 1 1

abbott abbrev 2.04 1.38 3 3

84

Appendix E

A Sample of Output Results of Word Length 7

Input Output

Word1 Word2

Processing

time (LA) in

microsecond

Processing

time (ILA-

OT) in

microsecond

Distance

(LA)

Distance

(ILA-OT)

aaronic abacist 2.70 2.04 6 6

abacist abactor 2.70 1.88 3 3

abactor abaculi 2.62 1.80 3 3

abaculi abaddon 2.62 1.96 4 4

abaddon abaiser 2.62 1.72 4 4

abaiser abalone 2.62 1.72 4 4

abalone abandon 2.62 2.12 3 3

abandon abandum 2.62 1.80 2 2

abandum abasers 2.62 1.80 4 4

abasers abashed 2.62 1.96 3 3

abashed abashes 2.62 1.80 1 1

abashes abasing 2.62 1.88 3 3

abasing abassis 2.62 1.96 3 3

abassis abaters 2.70 1.80 3 3

abaters abating 2.62 1.88 3 3

abating abattis 2.54 1.88 3 3

abattis abature 2.62 1.72 3 3

abature abaxial 2.62 1.80 4 4

abaxial abaxile 2.62 1.96 2 2

abaxile abbotcy 2.70 1.72 5 5

abbotcy abdomen 2.62 1.80 4 4

85

Appendix F

A Sample of Output Results of Word Length 8

Input Output

Word1 Word2

Processing

time (LA) in

microsecond

Processing

time (ILA-

OT) in

microsecond

Distance

(LA)

Distance

(ILA-OT)

children aaaaaaaa 3.28 2.62 8 8

aaaaaaaa aaaaaaah 3.28 2.28 1 1

aaaaaaah aaaaahhh 3.36 2.28 2 2

aaaaahhh aaaabbbb 3.52 2.38 4 4

aaaabbbb aaaahhhh 3.28 2.28 4 4

aaaahhhh aaahhhhh 3.52 2.38 1 1

aaahhhhh aabbaabb 3.36 2.38 6 6

aabbaabb aabbccdd 3.44 2.46 4 4

aabbccdd aabbddrr 3.36 2.38 4 4

aabbddrr aachener 3.28 2.20 5 5

aachener aaddison 3.36 2.38 6 6

aaddison aaheeric 3.28 2.28 6 6

aaheeric aahesgit 3.36 2.46 3 3

aahesgit aalaadin 3.36 2.20 5 5

aalaadin aalenian 3.52 2.46 4 4

aalenian aalesund 3.52 2.38 4 4

aalesund aalsmeer 3.36 2.38 5 5

aalsmeer aaltonen 3.44 2.46 4 4

aaltonen aanderaa 3.44 2.38 6 6

aanderaa aapianoc 3.44 2.28 6 6

aapianoc aardvark 3.52 2.28 6 6

86

Appendix G

A Sample of Output Results of Word Length 9

Input Output

Word1 Word2

Processing

time (LA) in

microsecond

Processing

time (ILA-

OT) in

microsecond

Distance

(LA)

Distance

(ILA-OT)

maximizer aaaaaaaaa 4.26 3.02 9 9

aaaaaaaaa aaaaaaaah 4.10 3.02 1 1

aaaaaaaah aaaaahhhh 4.26 2.94 3 3

aaaaahhhh aaaahhhhh 4.26 3.10 1 1

aaaahhhhh aaabbbccc 4.26 2.94 6 6

aaabbbccc aabbaccdd 4.42 2.94 4 4

aabbaccdd aardvarks 4.42 3.02 7 7

aardvarks aarestrup 4.26 3.02 5 5

aarestrup aaronsohn 4.34 2.86 6 6

aaronsohn ababababa 4.26 2.94 8 8

ababababa ababbcbcc 4.42 3.02 4 4

ababbcbcc ababcbcac 4.26 3.10 2 2

ababcbcac abacadaea 4.34 2.94 5 5

abacadaea abadinsky 4.18 2.86 6 6

abadinsky abakaliki 4.42 3.02 5 5

abakaliki abandoned 4.18 2.94 6 6

abandoned abanooneo 4.34 2.94 2 2

abanooneo abarbanel 4.18 3.02 4 4

abarbanel abasement 4.26 2.94 6 6

abasement abashidze 4.10 3.02 5 5

abashidze abassides 4.26 3.02 3 3

87

Appendix H

A Sample of Output Results of Word Length 10

Input Output

Word1 Word2

Processing

time (LA) in

microsecond

Processing

time (ILA-

OT) in

microsecond

Distance

(LA)

Distance

(ILA-OT)

complexify aaaaaaaaaa 5.08 3.76 10 10

aaaaaaaaaa aaaaabbbbb 5.00 3.76 5 5

aaaaabbbbb aaaaahhhhh 5.08 3.76 5 5

aaaaahhhhh aaaaattttt 5.00 3.60 5 5

aaaaattttt aaaterials 4.92 3.68 7 7

aaaterials aabbccddee 5.24 3.52 8 8

aabbccddee aabboouutt 5.00 3.60 6 6

aabboouutt aaeeanapoy 5.00 3.60 8 8

aaeeanapoy aaehanapot 5.24 3.68 2 2

aaehanapot aaehanapoy 4.92 3.68 1 1

aaehanapoy aaesanapoy 5.16 3.52 1 1

aaesanapoy aaezanapoy 5.00 3.76 1 1

aaezanapoy aardenburg 5.08 3.76 7 7

aardenburg aartolahti 5.00 3.68 7 7

aartolahti ababababab 5.16 3.84 8 8

ababababab abacterial 5.24 3.68 6 6

abacterial abandoning 5.16 3.76 6 6

abandoning abandonmen 5.08 3.68 3 3

abandonmen abatements 5.16 3.76 6 6

abatements abatzoglou 4.92 3.68 6 6

abatzoglou abbaaccddc 5.08 3.68 8 8

88

Appendix I

A Sample of Output Results of Word Length 11

Input Output

Word1 Word2

Processing

time (LA) in

microsecond

Processing

time (ILA-

OT) in

microsecond

Distance

(LA)

Distance

(ILA-OT)

environment aaaaaaaaaaa 5.98 4.66 11 11

aaaaaaaaaaa aaanagement 6.06 4.42 7 7

aaanagement aaronovitch 6.22 4.50 9 9

aaronovitch abakanowicz 6.06 4.42 6 6

abakanowicz abandonment 6.14 4.58 8 8

abandonment abbandonata 6.06 4.58 5 5

abbandonata abbangement 6.22 4.58 6 6

abbangement abberations 6.14 4.66 7 7

abberations abbevillian 6.06 4.58 6 6

abbevillian abbildungen 6.06 4.42 7 7

abbildungen abbitbation 6.06 4.66 6 6

abbitbation abbonamenti 6.14 4.58 8 8

abbonamenti abbonamento 5.90 4.50 1 1

abbonamento abbotsholme 6.14 4.50 7 7

abbotsholme abbreviated 6.06 4.50 8 8

abbreviated abbreviatio 5.90 4.76 2 2

abbreviatio abcabcbacba 6.32 4.66 8 8

abcabcbacba abcdefghijk 5.98 4.42 8 8

abcdefghijk abcdefghjkl 5.82 4.42 2 2

abcdefghjkl abcdehijklm 5.98 4.58 4 4

abcdehijklm abdelrahman 6.14 4.58 8 8

89

Appendix J

A Sample of Output Results of Word Length 12

Input Output

Word1 Word2

Processing

time (LA) in

microsecond

Processing

time (ILA-

OT) in

microsecond

Distance

(LA)

Distance

(ILA-OT)

adversatives aaaaaaaaaaaa 6.96 5.40 12 12

aaaaaaaaaaaa abababababab 6.96 5.58 6 6

abababababab abandonments 7.14 5.40 9 9

abandonments abbangements 7.30 5.40 4 4

abbangements abbrevations 7.22 5.24 8 8

abbrevations abbreviating 7.06 5.08 3 3

abbreviating abbreviation 7.06 5.40 2 2

abbreviation abbreviatons 6.88 5.58 2 2

abbreviatons abbreviators 6.88 5.16 1 1

abbreviators abcabcabcabc 7.38 5.50 10 10

abcabcabcabc abcdabcdabcd 7.22 5.50 5 5

abcdabcdabcd abcdefghijkl 7.14 5.32 8 8

abcdefghijkl abcdefghiklm 6.80 5.32 2 2

abcdefghiklm abchitectube 7.30 5.40 9 9

abchitectube abchitecture 6.96 5.50 1 1

abchitecture abderrahmane 7.30 5.40 9 9

abderrahmane abencerrages 7.54 5.50 8 8

abencerrages aberbrothick 7.30 5.40 9 9

aberbrothick aberbrothock 6.96 5.24 1 1

aberbrothock aberdonensis 7.06 5.32 8 8

aberdonensis abhandlungen 7.22 5.40 9 9

	Copyright Page
	Title Page
	Permission to Use
	Abstrak
	Abstract
	Acknowledgement
	Table of Contents
	List of Tables
	List of Figures
	List of Appendices
	List of Abbreviations
	CHAPTER ONE: INTRODUCTION
	1.1 Background
	1.2 Problem Statement
	1.3 Research Questions
	1.4 Research Objectives
	1.5 Significant of the Dissertation
	1.6 Scope of the Dissertation
	1.7 Organization of the Dissertation

	CHAPTER TWO: LITERATURE REVIEW
	2.1 Introduction
	2.2 Spelling Correction Stages
	2.2.1 Error Detection Stage
	2.2.2 Candidates List Generation Stage
	2.2.3 Error Correction Stage

	2.3 Techniques of Candidates List Generation Based on Edit Distance
	2.3.1 Levenshtein Distance
	2.3.2 Hamming Distance (HD)
	2.3.3 Damerau-Levenshtein Distance
	2.3.4 Longest Common Subsequence Distance
	2.3.5 Threshold Levenshtein Distance
	2.3.6 Levenshtein Automata Distance

	2.4 Other Techniques of Candidates List Generation
	2.4.1 N-gram Distance
	2.4.2 Bag Distance
	2.4.3 N-gram language Model
	2.4.4 Topic Model

	2.5 Evaluation Measurement
	2.6 Summary

	CHAPTER THREE: RESEARCH METHODOLOGY
	3.1 Introduction
	3.2 Research Phases
	3.3 Theoretical Study
	3.4 Design Phase
	3.5 Development Phase
	3.6 Evaluation
	3.6.1 Experimental Design
	3.6.1.1 How to Measure Processing Time
	3.6.1.2 How to Measure Accuracy
	3.6.1.3 Statistical Test

	3.6.2 Testing Dataset

	3.7 Summary

	CHAPTER FOUR: IMPROVED LEVENSHTEIN ALGORITHM
	4.1 Introduction
	4.2 ILA-OT Steps
	4.2.1 First Step
	4.2.2 Second Step
	4.2.3 Third Step

	4.3 Comparison between operations of LA and ILA-OT
	4.4 ILA-OT Algorithm
	4.5 Summary

	CHAPTER FIVE: EXPERIMENTAL RESULTS AND DISCUSSION
	5.1 Introduction
	5.2 Processing Time
	5.3 Accuracy
	5.4 Statistical Test
	5.5 Results Discussion
	5.6 Summary

	CHAPTER SIX: CONCLUSION AND FUTURE WORK
	6.1 Introduction
	6.2 Research Summary
	6.3 Research Contributions
	6.4 Recommendation for Future Work
	6.5 Summary

	REFERENCES
	Appendix

