The copyright © of this thesis belongs to its rightful author and/or other copyright owner. Copies can be accessed and downloaded for non-commercial or learning purposes without any charge and permission. The thesis cannot be reproduced or quoted as a whole without the permission from its rightful owner. No alteration or changes in format is allowed without permission from its rightful owner.

MALAYSIAN FOOD INDUSTRY ACCEPTANCE OF GENETICALLY MODIFIED FOOD

MASTER OF SCIENCE Universiti Utara Malaysia August 2016

MALAYSIAN FOOD INDUSTRY ACCEPTANCE OF GENETICALLY

MODIFIED FOOD

Thesis submitted to Othman Yeop Abdullah Graduate School of Business, Universiti Utara Malaysia, in Partial Fulfillment of The Requirement for The Degree of Master

Kolej Perniagaan (College of Business) Universiti Utara Malaysia

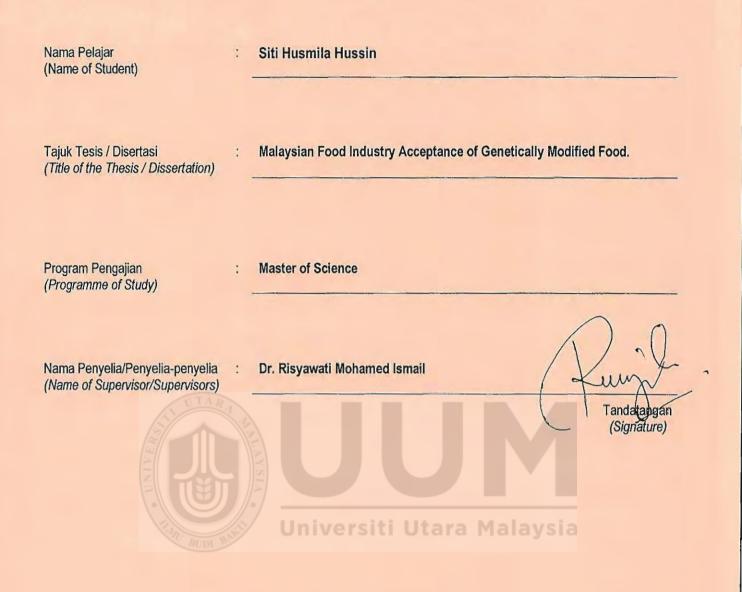
PERAKUAN KERJA TESIS / DISERTASI (Certification of thesis / dissertation)

Kami, yang bertandatangan, memperakukan bahawa (We, the undersigned, certify that)

SITI HUSMILA HUSSIN

calon untuk ljazah (candidate for the degree of) MASTER OF SCIENCE (TECHNOLOGY MANAGEMENT)

telah mengemukakan tesis / disertasi yang bertajuk: (has presented his/her thesis / dissertation of the following title):


MALAYSIAN FOOD INDUSTRY ACCEPTANCE OF GENETICALLY MODIFIED FOOD.

seperti yang tercatat di muka surat tajuk dan kulit tesis / disertasi. (as it appears on the title page and front cover of the thesis / dissertation).

Bahawa tesis/disertasi tersebut boleh diterima dari segi bentuk serta kandungan dan meliputi bidang ilmu dengan memuaskan, sebagaimana yang ditunjukkan oleh calon dalam ujian lisan yang diadakan pada: 24 Ogos 2016.

(That the said thesis/dissertation is acceptable in form and content and displays a satisfactory knowledge of the field of study as demonstrated by the candidate through an oral examination held on: **24 August 2016**).

Pengerusi Viva (Chairman for Viva)	:	Dr. Faizatul Akmar Abdul Nifa	Tandatangan (Signature)	fam
Pemeriksa Luar (External Examiner)	:	Assoc. Prof. Dr. Mohammad Ismail	 Tandatangan (Signature)	ans
Pemeriksa Dalam (Internal Examiner)	;	Dr. Santhirasegaran A/L S.R Nadarajan	 Tandatangan (Signature)	Segor
Tarikh: 24 Ogos 2016 (Date)	6			1 /J

Permission to Use

In presenting this thesis in fulfillment of the requirements for a Post Graduate degree from the Universiti Utara Malaysia (UUM), I agree that the Library of this university may make it freely available for inspection. I further agree that permission for copying this thesis in any manner, in whole or in part, for scholarly purposes may be granted by my supervisor(s) or in their absence, by the Dean of Othman Yeop Abdullah Graduate School of Business where I did my thesis. It is understood that any copying or publication or use of this thesis or parts of it for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the UUM in any scholarly use which may be made of any material in my thesis.

Request for permission to copy or to make other use of materials in this thesis in whole or in part should be addressed to:

Abstract

The acceptance of an industry towards new technology would help them to be remained in the current competitive global market. For instance, Genetically Modified Food (GMF) is a new technology in Malaysia, also known as food biotechnology which has been produced through the modern genetic engineering method. Through the acceptance for commercializing GMF in the food production, comes many advantages for the food industry. Unfortunately, acceptance of GMF itself is an issue as portion of the food industry still prefer to accept and use non-GMF rather than GMF in their food production process. This circumstance happens due to several elements such as the strategy of the industry itself, complexity or stringency of government's regulation as well as attitude shown by the stakeholders towards the usage of GMF. Although past studies indicated industry strategy, regulation and attitude are significant in influencing industry acceptance of GMF, there has been comparatively little research which examines the relationship between these variables. In order to fill this gap, a survey was conducted on 248 processed food industries throughout Malaysia in order to examine the relationship of industry strategy, regulation and attitude on industry acceptance of GMF. In regards to Pearson correlation, the acceptance of GMF in the Malaysian food industries inherently increased due to the implementation or support of proper strategy, systematic regulatory system and positive attitude's feedback or response gained from the food manufacturers. Consequently, GMF acceptance among food industries contributed to the enhancement and development of Malaysia's economy and performance.

Keywords: Genetically Modified Food, Genetic Engineering, Food Industry, Acceptance, Malaysia

Abstrak

Penerimaan teknologi baru merupakan pemangkin kepada sesebuah industri untuk terus kekal dalam pasaran global yang kompetitif pada masa kini. Sebagai tamsilnya, makanan terubahsuai genetik (GMF) merupakan teknologi baru di Malaysia. GMF ini juga dikenali sebagai makanan bioteknologi yang telah dihasilkan melalui kaedah kejuruteraan genetik moden. Terdapat pelbagai kelebihan terhadap industri makanan yang menunjukkan penerimaan untuk mengkomersilkan GMO dalam pengeluaran makanannya. Malangnya, penerimaan GMF itu sendiri telah mencetuskan isu kerana terdapat sebahagian industri makanan yang lebih cenderung untuk menerima dan menggunakan bahan bukan GMF berbanding GMF dalam proses pengeluaran makanan industri mereka. Situasi ini berlaku disebabkan oleh beberapa elemen. Antaranya, strategi industri itu sendiri, kerumitan atau kesulitan undang-undang kerajaan dan juga sikap yang ditunjukkan oleh pihak pengeluar makanan terhadap penggunaan GMF. Walaupun kajian lepas menunjukkan strategi industri, undang-undang dan sikap merupakan perkara penting yang mempengaruhi penerimaan GMF dalam sesebuah industri, namun jumlah penyelidikan yang mengkaji hubungan antara pemboleh ubah ini masih lagi terhad. Dalam usaha untuk mengisi jurang tersebut, kajian ini telah dilaksanakan terhadap 248 industri pemprosesan makanan di seluruh Malaysia yang bertujuan mengkaji hubungan antara strategi industri, undangundang dan sikap terhadap penerimaan GMF dalam sesebuah industri. Berdasarkan analisis korelasi Pearson, keputusan menunjukkan bahawa peningkatan penerimaan GMF dalam industri makanan di Malaysia adalah didorong oleh pelaksanaan atau sokongan daripada strategi yang bersesuaian, sistem perundangan secara sistematik dan maklum balas atau tindak balas positif yang diperolehi daripada pengeluar makanan. Oleh itu, penerimaan GMF dalam kalangan industri makanan menyumbang kepada peningkatan dan pembangunan ekonomi dan prestasi Malaysia.

Kata Kunci: Makanan Terubahsuai Genetik, Kejuruteraan Genetik, Industri Makanan, Penerimaan, Malaysia

Acknowledgement

In the name of Allah SWT, the Most Gracious and the Most Merciful, I am grateful for giving me the strength to complete this thesis. This thesis would not have been completed without the support and assistance of many people. First and foremost, my sincere gratitude and appreciation goes to my supervisor, Dr. Risyawati Mohamed Ismail for her constructive ideas, criticisms, guidance and patience throughout the duration of preparing this thesis. She has successfully guided me through some stressful times and were always willing to sharpen my understanding of this thesis and other academic writings. It was a great privilege to work under her supervision due to her professional expertise and many insightful comments had contributed tremendously in focusing my thoughts and ideas.

I would also like to thank the respondents from food companies for their invaluable help during data collection. Special thanks are extended to all the respondents who have given their cooperation in completing the survey. A note of thanks also goes to all my beloved friends : Sitti Aminah Baharudin, Lim Chang Hong, Hadiati Fitri and Monther Mohamed Youseff Aljarrah for their moral support, encouragement and great words of motivation when I seriously need someone to eat, laugh and listen on my story.

Finally and most importantly, I would like to extend my gratitude, appreciation and affection to my lovely father, Hussin Babu and my mother, Jamilah Said as well as my younger sisters, Angah, Kakak and Adik who have given me their prayers, encouragement, unfailing support, overwhelming patience and inspiration for me to go through this journey especially during the time when my health was in horrible and fully relied on my family. I am forever indebted to their never-ending love towards myself.

Table of Contents

Perm	nission to Use	. ii
Abst	ract	iii
Abst	rak	iv
Ackı	nowledgement	. v
Tabl	e of Contents	vi
	of Tables	
List	of Figuresx	iv
List	of Abbreviation	xv
CHA	APTER ONE INTRODUCTION	. 1
1.1	Background of the Study	. 1
1.2	Problem Statement	. 5
1.3	Research Questions	. 6
1.4	Research Objectives	. 7
1.5	Significance of the study	. 8
1.6	Scope of the Study	.9
1.7	Definitions of Key Terms	10
1.8	Organization of the Thesis	11

CH	APTER	TWO LITERATURE REVIEW	12
2.1	Introdu	iction	12
2.2	Import	ance of GMF to the Food Supply Chain	12
2.3	GMF A	And Malaysia's Context	13
2.4	Food I	ndustry In Malaysia	16
2.5	Definit	tion of Industry Acceptance (IA)	17
	2.5.1	Measurement of IA	18
2.6	Definit	tions of Industry Strategy (IS)	23
	2.6.1	Types of Strategy Used By GMF Manufacturers or Producers	24
	2.6.2	IS and GMF	27
	2.6.3	Measurement of IS	29
2.7	Definit	tion of Regulation	33
	2.7.1	Regulation of Food Manufacturers in Malaysia	33
	2.7.2	Regulation of GMF in Malaysia	35
	2.7.3	Regulation of GMF in Other Countries	37
	2.7.4	Measurement of Regulation	41
2.8	Definit	tion of Attitude	44
	2.8.1	Attitude of Stakeholders (Industries) and GMF	44
	2.8.2	Measurement of Attitude Towards GMF Usage and Commercialization	46
2.9	Gaps in	n the Literature	50

2.10	2.10 Underpinning Theory		
	2.10.1	Institutional Theory	52
CH	APTER '	THREE METHODOLOGY	56
3.1	Introdu	action	56
3.2	Resear	ch Framework	56
3.3	Hypotl	neses/Propositions Development	58
	3.3.1	The Relationship Between IS and IA	58
	3.3.2	The Relationship Between Regulation and IA	58
	3.3.3	The Relationship Between Attitude and IA	59
3.4	Resear	ch Design	60
3.5	Operat	ional Definition	60
	3.5.1	Dependent Variable	60
	3.5.2	Independent Variables	61
3.6	Measu	rement of Variables/Instrumentation	62
	3.6.1	Research Instrument	64
	3.6.1	.1 Industry Acceptance (IA)	64
	3.6.1	.2 Industry Strategy (IS)	67
	3.6.1	.3 Regulation of GMF	68
	3.6.1	.4 Attitude Towards GMF Usage	70
	3.6.1	.5 Demographic Information of The Industry And Respondent	72

3.7	Data C	ollection Procedures	. 72
3.8	Sampli	ng	. 73
	3.8.1	Population	. 74
	3.8.2	Sample Size	. 74
3.9	Pre-tes	t	. 75
3.10) Data S	creening	. 77
3.11	Techni	ques of Data Analysis	. 78
	3.11.1	Descriptive Analysis	. 78
	3.11.2	Factor Analysis	. 78
	3.11.3	Reliability Test	. 79
	3.11.4	Pearson's Correlation Analysis	. 79
3.12	2 Summ	ary	. 79
CH	APTER	FOUR RESEARCH FINDINGS	. 80
4.1	Introdu	iction	. 80
4.2	Data D	Description	. 80
4.3	Data S	creening	. 82
	4.3.1	Missing Data	. 83
	4.3.2	Detecting Outliers	. 83
	4.3.3	Test of Normality	. 85
4.4	Demog	graphic Information	. 86

	4.4.1	Job Designation/Position	
	4.4.2	Department Attach to the Selected Industries	88
	4.4.3	Tenure of Employment	89
	4.4.4	Education Level	91
	4.4.5	Industries Ownership	
	4.4.6	Location of Selected Industries	
	4.4.7	Number of Employees	94
	4.4.8	Profit Level	95
4.5	Descri	ptive Statistics of Variables	96
	4.5.1	Mean and Range Analysis for Industry Acceptance	97
	4.5.2	Mean and Range Analysis for Industry Strategy	100
	4.5.3	Mean and Range Analysis for Regulation	102
	4.5.4	Mean and Range Analysis for Attitude	104
4.6	Goodn	less of Measures	105
	4.6.1	Construct Validity	106
	4.6.2	Exploratory Factor Analysis (EFA)	106
	4.6.2	2.1 Factor Analysis of Industry Acceptance	109
	4.6.2	2.2 Factor Analysis of Industry Strategy	112
	4.6.2	2.3 Factor Analysis of Regulation	114
	4.6.2	2.4 Factor Analysis of Attitude	116

4.7	Reliability Analysis	118
4.8	Correlation Analysis	119
	4.8.1 The Relationship of GMF towards Industry Acceptance	121
4.9	Summary of Hypotheses Testing	123
4.10	Summary	124
CHA	APTER FIVE CONCLUSION AND RECOMMENDATION	125
5.1	Introduction	125
5.2	Recapitulation of the Study	125
5.3	Summary of Results	127
5.4	Discussion	129
5.5	Implication of the Study	134
	5.5.1 Theoretical Implication	134
	5.5.2 Practical Implication	135
5.6	Limitation of the Study	137
5.7	Suggestion for Future Research	138
5.8	Conclusion	140
Refe	prence	141
App	endices	161

List of Tables

Table 2.1 Various definitions of IA	
Table 2.2 Previous research on IA	20
Table 2.3 Various definitions of IS	23
Table 2.4 Previous research on IS	30
Table 2.5 Previous research on regulation	42
Table 2.6 Previous research on attitude to GMF	47
Table 3.1 Measures of variables	63
Table 3.2 Items constituting IA	65
Table 3.3 Items constituting IS	67
Table 3.4 Items constituting regulation	69
Table 3.5 Items constituting attitude to GMF	71
Table 3.6 Table for determining sample size for a given population	74
Table 3.7 Pre- test questions	77
Table 4.1 Response rate	82
Table 4.2 Summary of outliers (n=78)	84
Table 4.3 Normality test : Skewness and Kurtosis Statistic (n=75)	85
Table 4.4 Normality test : Shapiro-Wilk Values (n=75)	86
Table 4.5 Mean and Range Analysis for Industry Acceptance	
Table 4.6 Mean and Range Analysis for Industry Strategy	101
Table 4.7 Mean and Range Analysis for Regulation	102
Table 4.8 Mean and Range Analysis for Attitude	104
Table 4.9 Linearity Test	107

Table 4.10 Factor Analysis for Industry Acceptance	
Table 4.11 Factor Analysis for Industry Strategy	113
Table 4.12 Factor Analysis for Regulation	114
Table 4.13 Factor Analysis for Attitude	116
Table 4.14 Statistical Summary of Reliability Analysis	118
Table 4.15 Correlation Coefficient Strength	121
Table 4.16 Correlation of Industry Strategy	122
Table 4.17 Correlation of Regulation	
Table 4.18 Correlation of Attitude	123
Table 4.19 Result Summary of Hypotheses Testing	

List of Figures

Figure 3.1 Conceptual framework	57
Figure 4.1 Designation of Respondents	88
Figure 4.2 Department of Respondents	89
Figure 4.3 Respondents' Tenure of Employment	
Figure 4.4 Education Background of Respondents	
Figure 4.5 Type of Industries ownership	
Figure 4.6 Industry's Location	
Figure 4.7 Total of Employee According to the Selected Industries	
Figure 4.8 Profit Level of Industries	96

List of Abbreviation

GMF	Genetically Modified Food
GMO	Genetically Modified Organism
МОН	Ministry Of Health
JAKIM	Department of Islamic Development Malaysia
НАССР	Hazard Analysis Critical Control Point
GMP	Good Manufacturing Practice
MATRADE	Malaysian External Trade Development Corporation
MARDI	Malaysian Agricultural Research and Development Institute
NRE	Natural Resources and Environment
GMAC	Genetic Modification Advisory Committee
FSQD	Food Safety and Quality Division
who	World Health Organization
FAO	Food & Agriculture Organization
UN	United Nations
EU	European Union
HSE	Health and Safety Executive
FSANZ	Standard Australia New Zealand
GEAC	Genetic Engineering Approval Committee
AQIS	Australian Quarantine and Inspection Service
MAFF	Ministry of Agriculture, Forestry and Fisheries
ACNFP	Advisory Committee on Novel Food and Processors
HSNO	Hazardous Substance and New Organism

CHAPTER ONE INTRODUCTION

1.1 Background of the Study

The acceptance of new technology in Malaysian industry could lead them to be remained in the current competitive global market due to complexity and continually changing environment in those industries, market liberalization, globalization, dynamic and diverse customers demand as well as increased competition pressure among the industries (Rudder, 2001; Saguy & Sirotinskaya, 2014; Stronen, 2011). In the context of this research, the focus concerns on the industry acceptance towards Genetically Modified food (GMF) as portion of new technology in the Malaysian industry's sector for the purpose to retain the loyalty of the existing customers and creating differentiation of product.

Universiti Utara Malaysia

Simultaneously, the acceptance of new GMF technology among the industries would contribute to the development of Malaysia in several ways. Firstly, the industry acceptance towards GMF would help to increase the income of this nation. This circumstance happens because the industry is referred to the manufacturing sector which is being classified under one of the industry sectors that would contribute to boost up the Malaysia's income (Federation of Malaysian Manufacturers (FMM), 2014). As stated by the Economic Planning Unit of Prime Minister Department Malaysia and Department of Statistics Malaysia (2015), the manufacturing industry contributes 53.5 billion of sales revenue or 4 % annual percentage changes to Malaysia's gross domestic product (GDP) in 2014. In the same year, total merchandise export stated 58.9 billion and index of

industrial production Malaysia increased 5.2 percent. Secondly, as indicated by the Malaysian Biotechnology Information System, the industry acceptance of this new technology of GMF is not only crucial in improving Malaysia's sector of strength such as manufacturing industry. Yet, it would also enhance the new growth sector in term of medicine and food agriculture. To exemplify that, it is an ambition of Malaysia to ensure the manufacturing industry and petrochemical could be labelled as a domestic industrial base in 2015, which is directly becoming a stepping stone for Malaysia to develop the Malaysian health care sector that is aligned with the global healthcare standard (Ministry of Science Technology and Innovation (MOSTI), 2010; The National Biotechnology Division (BIOTEK), 2010). In fact, an industry acceptance towards this new technology of GMF would also beneficial to the food agriculture sector to adopt a high technology farming system and agronomic practice; which consist of proper fertilization management as well as reduce pest control utilization that may increase yield with a high of quality and profitability of the farm in food agriculture industry. Indirectly, this clearly shows that industry acceptance towards new technology of GMF will contribute to the development of various sectors in Malaysia.

In accordance with the aforementioned, an industry acceptance of GMF technology creates an opportunity for Malaysian food agriculture industry to be a potential dependence for future food security. Hence, this is matched to the aspiration of Malaysian Agriculture Ministry to enhance the food production into larger scale in order to cater with the domestic food demand and exportation purpose. Thus, this is also aligned with the vision of Prime Minister, Datuk Seri Najib Tun Razak as reported in Budget 2013. He was concerned about the manufacturing of food agriculture industry to

produce local food products without heavily relied on imported food from foreign countries (Azadi & Ho, 2010; Ernst & Young, 2011; Indrani, Siwar, Hossain, & Vijian, 2001; Kruft, 2001; Tengku Ahmad, 2015). Consequently, GMF acceptance among the food industries would help to reduce Malaysia's dependence towards external trade which will result in a decline in Malaysia's industrial production and manufacturing export.

Due to such a vital role, the industry acceptance remains as the major and imperative mechanism towards the Malaysian economy. In order to achieve a successful industry, many industries accept the new technology in their operation once they have seen the perceived benefits such as potential to be first-to-market or new-to-market in introducing the new technology instead of disseminate the value-added of new technology to the market. Hence, this circumstance could assist those industries to gain a high profit and able to survive in a long term period with another challenging industries. However, accepting new technology of GMF among the industries especially small and medium industry (SMI) tend to create a trouble due to the appearance of perceived risk such as lack of skilled-worker, insufficient financial as well as worrying about the possibility of low profit return in industry's business (Avermaete & Morgan, 2003; Avermaete, Viaene, Morgan, & Mahon, 2004; Nooteboom, 1994; Spielman, Kolady, Cavaleiri, & Rao, 2014). Thus, in order to avoid the failure cost of industry, the knowledge regarding new GMF technology should be obtained before it is being accepted by industry's operation itself. The industry should acquire the knowledge regarding customers' need, requirement and feedback, current situation and status of supplier and competitor, the capability of the

existing technology and equipment as well as profit, growth plan and production method of the industry. Besides, the acceptance of industry becomes complex due to all industries are not resemble in the aspect of ability to accept and exploit new technology in their industries (Hagedoorn, 2003; Henchion, McCarthy, Greehy, Williams, & Kavanagh, 2013; Rogers, 1995).

Moreover, the industry acceptance towards new technology such as GMF would also be complicated because of the industry itself does not have trust or belief to another related institutions. For instance, the industry hesitate or reluctant to accept and listen to the research or suggestion related to modern biotechnology of GMF provided by the university. Furthermore, while forming or conducting business through joint ventures or collaboration with other industries, the industry will not have a high level of trust and confidence to the new management, industry's operation and the practice or training provided for the existing employee by their new business partner. Nonetheless, the industry tend to show their low level of trust towards government and regulatory agencies about the source of information of accepting new technology because they did not know or notice to what extent those agencies have competency to make a right decision (Hobbs & Goddard, 2015; Lang, 2013; Sjoberg, 1999). The industry will question what is the positive respond towards their industry's value and benefit if they accept new technology of GMF?

Although there are lots of barriers would have to be faced by the industry in accepting new technology of GMF, many consensus exposed the industry acceptance could significantly associated and influenced by market dynamism which includes changes of technology, customer demand, practice of business, product advantage such as uniqueness, capability to meet market need, variety as well as positive reputation towards industry and also channel support such as cooperation from the supplier and related retailer. Nonetheless, by accepting new technology such GMF, the industry could be long lasting with another competitive market, increased market share and new customer (Cooper & Kleinschmidt, 1987; Cui, Griffith, & Cavusgil, 2005; Haines, 2007; Lin & Chang, 2012). Hence, a research focuses on industry acceptance of GMF is deemed necessary to be carried out.

1.2 Problem Statement

The acceptance of new GMF technology contains many benefits and known as an imperative application towards food industry such as enhancing nutritional and processing features of food, providing an extensive type of product in the food production, raising up an efficiency of the food supplies and producing lower cost product as well as establishing lower production cost and product development (Bredahl, 1999; Ceccoli & Hixon, 2011; Chi-Ham, Bennett, Barrows, Sexton, & Ziberman, 2013; Ellahi, 1994; Wesseler, Scatasta, & Fall, 2011; Zilberman & Wesseler, 2014). Unfortunately, an acceptance of GMF has triggered controversy among the food industries which lead them to be reluctant and unsure whether to accept or reject the GMF usage in their food production. Therefore, this study explores the acceptance of GMF among Malaysian food manufacturers.

Simultaneously, in the context of Malaysian stakeholders which is emphasized through food manufacturers, an acceptance of GMF is still in the early stage of introduction and development to the current Malaysian market where the Food Act and regulation of GMF were just amended and enforced by the Malaysian Ministry of Health (MOH) in the past few years (Fauziah, 2011; Lim, 2015). Scholars observing these challenges as caused by several reasons. First and foremost, the food industries prefer and are more acceptable to non-GMF rather than GMF due to negative attitude shown by the main player sectors such as food companies owners and top management. The acceptance of GMF among the food industries are also depending on the regulatory system such as obtaining licensing agreement and obey to the GMF procedures which has been regulated by the government. However, in order to meet those GMF regulations, the food manufacturers are facing with several risks and financial problem in formulating and restructuring their industry's strategy (Sung & Hwang, 2013). Thus, in accordance with that, it is apparent that there is a need for empirical research pertaining to GMF and Industry acceptance. To the best knowledge of the researcher, previous research on the subject, such as the acceptance behavior of an organization in regards to GMF usage is hardly ever to explore. This study looks to fill that gap in order to better explain the decision make by manufacturers in regards to GMF acceptance and usage.

1.3 Research Questions

As presented on the research background and problem statement, the main interest of this research is focused on " Is GMF accepted by the Malaysian food industry? Based on this statement, the following four research questions were enclosed to guide this research :

RQ1 – Does industry strategy have a relationship with the Malaysian food industry in accepting GMF?

RQ2 – Does regulation have a relationship with the Malaysian food industry in accepting GMF?

RQ3 – Does attitude have a relationship with the Malaysian food industry in accepting GMF?

1.4 Research Objectives

The intent of this research is to understand whether GMF is accepted by the Malaysian food industry, which is followed by aims to examine the relationship of the independent variables which consist of the attitude, industry strategy and regulation of GMF. In the context of the Malaysian industry sector, this research is conducted in order to achieve the following objectives:

i. To examine the relationship of industry strategy with industry acceptance towards GMF.

ii. To examine the relationship of regulation with industry acceptance towards GMF.

iii. To examine the relationship of attitude with industry acceptance towards GMF.

The information obtained from the Malaysian food industries was used to explain the research objectives in order to gain a deeper understanding of the research being investigated. Thus, respondents of this study were given a structured questionnaire to get their responses towards all the variables in this research.

1.5 Significance of the study

This research may have an impact on the society, economy and nation. One of the significances derived from the finding of this study is to provide in depth understanding of current manufacturers acceptance that may guide policy makers involvement related to the usage and commercialization of GMF in Malaysia. This is supported by Frewer et al. and Vermeulen (2004) which elucidated that research pertaining to GMF enables the decision makers of the industry and policy makers in the government institution in achieving the standards and requirements for introducing and commercializing GMF. Directly, this circumstance will lead the food industry and government authority to achieve an appropriate GMF market and strong strategies in the development of GMF.

Another significance that would appear from the finding of this research is to assist manufacturers which are involved in the food production to obtain proper understanding regarding the benefits in the production of GMF rather than simply apply it into the food industry (Rogers-Hayden, Mohr, & Pidgeon, 2007). Thus, based on the accurate information provided from this research, the food manufacturers could plan, execute, control and make a proper decision making related to the management of GMF in their industries. Thus, the food manufacturers will be able to handle GMF production systematically.

Furthermore, this research would also help manufacturers in the food industry to be concerned on the rules and guidelines related to GMF production that has been set up, especially for the foreign or local GMF commercialization activities (Rollin, Kennedy, & Wills, 2011). Consequently, the manufacturers manage to run the importation and exportation activities of GMF smoothly based on the rules and regulation which have been fixed; and this circumstance will lead to a better commercializing process of GMF in their industry.

By conducting this research, the actual knowledge regarding industry acceptance feedback related to GMF could be visualized. This will provide an information on how many food industries are willing to accept and reject GMF in their business operation. In fact, by conducting this research, information regarding the actual phenomenon or status of GMF in Malaysian food industry could be obtained. Lastly, this study contributed to the literature by :

- i. Providing an empirical evidence regarding the relationship between GMF and industry acceptance.
- ii. Examining the perspective and acceptance of Malaysian food industry towards GMF.

Universiti Utara Malaysia

1.6 Scope of the Study

The research analyzed the relationship of industry strategy, attitude and regulation on industry acceptance. Simultaneously, this research is confined in a developing country which is Malaysia. In addition, this research focused on the manufacturing sector which is emphasized on the food industries throughout Peninsular Malaysia due to its capability in providing a huge impact towards nation's economy. The chosen food industries in the context of this study comprised of all processed food industries in Malaysia. Moreover, this research also involved the manufacturers which include the managers of the food production for each of these food industries.

1.7 Definitions of Key Terms

The following terminology is adopted for this research :

- 1. Genetically Modified Food (GMF) in this research referred to any food which contained or produced through genetically engineered organism process by inserting a specific gene such as virus, bacteria, animal, or plant.
- 2. Industry Acceptance (IA) in the context of this research referred to the situation which is giving a feedback on how far the potential stakeholders are willing to adopt, accept or reject something or any new technology. The industry acceptance will be measured based on the perceived benefit, perceived risk, trust and knowledge.
- **3. Industry Strategy** (**IS**) is described as a determination of industry's future direction by setting out the long term method or plan to ensure the production of GMF may be able to achieve the target and goal of the industry.
- 4. **Regulation** for this study is referred to the laws, rules, procedures and guidelines regulated by the government and related authorities to ensure either the operation of business is carried out or stopped.

5. Attitude is defined as an inner assumption which elucidated based on the evaluation towards particular things, ideas, objects or situations with the degree level either positive or negative, supportive or opponent response such as approve or disapprove, like or dislike, approach or avoid, attract or averse.

1.8 Organization of the Thesis

This study focused on the acceptance of GMF among the food industries in Malaysia. Subsequently, this thesis comprised of 5 chapters. First chapter explains the background of the study, problem statement, research questions, research objectives, significance of the study, scope of the study and definition of key terms. Next, chapter two emphasized on the previous literature review which explained all variables, gap and also the underpinning theory involved in this study. Thoroughly explanation of research method exhibited in chapter 3, which separated into research framework, hypotheses development, design of research, operationalization of variable, measurement of variable, procedure of data collection, sampling frame, pre-test as well as data analysis techniques. This is followed by chapter 4 which comprises of steps taken in analyzing data and complete with the result of demographic data instead of statistical result derived from the collected data. At the end, a brief review related to findings of this study presented in chapter 5. It includes discussion of the objectives in this study, theoretical and practical contributions, limitations, recommendation for future study and conclusion of this study.

CHAPTER TWO LITERATURE REVIEW

2.1 Introduction

This research is aimed to investigate an acceptance among the Malaysian food industries towards GMF which is giving an opportunity for the food industry to be remain in the competitive market. This chapter presents a review of the relevant literature and leading to the development of the conceptual framework for this research. The focus of this review is on industry acceptance (IA), which is influenced by attitude, industry strategy (IS) as well as regulation of GMF. Moreover, previous empirical findings related to each variable will also be presented. Lastly, this chapter is concluded by the underpinning theory that matched as a foundation for this research.

🔹 Universiti Utara Malaysia

2.2 Importance of GMF to the Food Supply Chain

GMF plays an imperative role in the food supply chain. The introduction of GMF helps industries related in the food supply such as manufacturers, producers, processors, caterers and other food handlers to catch up with an ever increasing food demand especially from modern consumers that looking for specific health and nutritious foods (Christoph, Bruhn & Roosen, 2008; Opara, 2003). GMF was identified as the tool that enable the alleviation of inadequate food supply system which directly create the food crisis phenomena (Jaramillo, 2009). GMF not only increases the amount of food supplied to population, but at the same time introduce better crops which are not only resistant to

crop diseases but also has more enduring shelf life. One of GMF key characteristics is it resistance to longer time which directly highlighted the importance of GMF to the food supply chain (Habibi-Najafi, 2006). In addition to that, the price offers through GMF are always lower compared to the conventionally produced food varieties (Chen, 2011).

GMF brings imperative innovation in the food sector which is directly driving the importance of food supply chain, resulting in the rapid growing of GM crops all over the world (Rodríguez-Entrena & Salazar-Ordóñez, 2013). Such trend could be seen through the increase of planting area for GM crop all over the world. James (2010) reported since 1996, the area of GM crops plantation has widely increased by 87-fold from 1.7 to 148 million hectares inclusive of 29 countries which host half of the world's entire population. Such vastness of crop plantation further implied how GMF is taking a substantial portion in the food supply chain around the world. Food derived from GM crops has increased very fast. Therefore, many industries through their governments, biotechnology companies, scientists and 14 million farmers from 25 countries support the benefits rather than the risks of GMF (James, 2010b; Starr, 1969; Mather et al., 2012).

2.3 GMF And Malaysia's Context

GMF is a one of the products derived from the food biotechnology sector. In Malaysia, emphasized on GMF is in line with the establishment of National Biotechnology Policy (NBP) in 2005 which came in three different time related phases namely phase I (2005-2010), phase II (2011-2015) and phase III (2016-2020). In general, NBP covered nine thrusts namely healthcare, industrial, research and development (R&D), human capital development, financial infrastructure, legal and regulatory framework, strategic development government support and commitment as well as agricultural. In the agriculture sector the main focus is on the introduction and consumption of GMF. The main aim is to ensure that the agriculture sector in Malaysia especially related to the food production and food processing would improve significantly through advance biotechnology process. In addition, through such technology, lies also the enormous potential of food exportation to other countries, seen as a prime tool in boosting up the ambition of Malaysia to become an economically accomplished nation by the year 2020 (Malaysian Science and Technology Information Centre, 2014; Ahmad et al., 2008).

Why is GMF important for Malaysia? This is mainly due to the fact that GMF is one component which emerged from the agriculture sector. The Malaysian government has put a strong emphasized on biotechnology by allocating a huge financial support for the sector. Under the Ninth Malaysia Plan (9MP), more than RM 20000 million has been allocated in the biotechnology sector by the Malaysian government. Half of the total investment was placed on amenities and another RM 463 million was allocated for research and development activities. A further RM530 million was for the business development of biotechnology. The National Biotechnology Division (BIOTEK) under the Ministry of Science, Technology and Innovation (MOSTI) has been given important responsibility of monitoring and leading all agenda related to the biotechnology sector inclusion of technology development as well as promotion of biotechnology program. This massive investment is in parallel with the direction of the New Economic Model (NEM) in which the main aim was to turn Malaysia into a high-income nation with the capability to be market leader, equipped with well-governed agencies, regionally integrated, with high level of entrepreneurial and innovative abilities.

Moreover, in illustrating the status of GMF in Malaysia, the advancement of GMF in Malaysia and worldwide have been introduced since 1998 (Amin, Jahi, & Nor, 2010). Currently, although Malaysia does not developing the nutritional value enhancement of GM rice namely golden rice as developed by the Philippines, Vietnam, India, Bangladesh, China and Indonesia, but Malaysian Agricultural Research and Development Institute (MARDI) was paying attention on developing virus-resistant transgenic rice (Amin, Azlan, Ahmad, & Ibrahim, 2011; Mayer, 2005). Furthermore, since 2000, Malaysia enthusiastically focused on developing delayed ripening papaya, GM chilli, virus-resistant chilli pepper, passion fruits, GM pomelo, GM palm oil and GM pineapple with enhanced quality (Ellis, 2006). Unfortunately, most of the GMF is still under R&D process. For instance, until today the commercialization of GMF is confined to the delayed ripening papaya and rice that have been approved by Genetic Modification Advisory Committee (GMAC) (Abu Bakar, 2007; Amin, Hashim, Sidik, Zainol, & Nurina, 2011; Christoph et al., 2008; Ellis, 2006; Ismail et al., 2012). In addition, Malaysia has received importation of GMF from other countries such as GM soybean and GM corn since 2004 to be appeared into Malaysian market (Amin, Jahi, Nor, Osman, & Mahadi, 2008; Escaler, Teng, & Powel, 2011). This clearly shows that Malaysia is extensively struggling in introducing and developing GMF at this moment.

2.4 Food Industry In Malaysia

The Malaysian food industry can be broken down into two groups of manufacturers namely manufacturing or MNC and Small and Medium Industries (SMI) (Ministry of International Trade and Industry Malaysia, 2006). The total of SMI has dominated MNC which provide RM 25 million of annual sales turnover in Malaysia (Malaysian Investment Development Authority, 2014; MyGovernment, 2015). As strengthened by Jinap (2008), there are 5,565 food manufacturers available in the Malaysian food industries at this moment.

Furthermore, the food industry providing dynamic internal and external environment as well as beneficial nation's economy. For example, Malaysian Investment Development Authority (2014) revealed that processed foods from Malaysia is exported to more than 200 countries such producing an annual export value of more than RM 13 billion. Major export destinations were Singapore, Indonesia, the United States of America (USA), Thailand and Republic of China. This giving an impact that the contribution of the food industry to the total manufacturing output has increased 7.3 percent in this year as planned during the Third Industrial Master Plan (IMP3), 2006 to 2020 (Ministry of International Trade and Industry Malaysia, 2014). Moreover, the food industry augmented 8.4 percent and caused manufacturing sector contributed 5.2 percent to Malaysia's gross domestic product (GDP) in the third quarter of 2014 (Malaysian Department of Statistic, 2014). Meanwhile, total employment in food manufacturing sector stated 644,267 persons which directly contribute 9.4 percent to the total employment towards manufacturing sector in Malaysia due to the increment employment number of food technologist, chemists and skilled workers purposely to ensure food

safety and quality is in line with the international requirement (Federation of Malaysian Manufacturers, 2014). Thus, this shows that the growth of food industry contributed to the income and development of this nation. Besides, the growth of the food production, together with an expansion of the global food industry leading to greater synergy, in terms of value-added creation, product diversification and market expansion in Malaysia.

2.5 Definition of Industry Acceptance (IA)

There are various definitions to define the acceptance as shown in table 2.1. However, previous researchers (namely Adell, 2010; Regan, Mitsopoulos, Haworth, & Young, 2002) argued that there is no standardization and clear meaning of what acceptance is otherwise, it represents different meaning across the various studies. This circumstance resembles to the IA which is being exposed that there's no exact definition to describe or interpret the meaning of IA. For the purpose of this research, the IA is defined based on the previous works of scholars such as Ausserer and Risser (2005) as well as Chang, Hwang, and Li (2007). Thus, IA is defined as the situation which is giving a feedback on how far the potential stakeholders are willing to adopt, accept or reject something or any new technology.

Table 2.1Various definitions of IA

Author	Year	Definition
Pilgrim	1956	The consumption of object or thing which is influenced by the behaviour, criteria, reaction and assumption or perception.
Sheth	1973	The reaction or action of accepting either by passive reaction or real action to accept or reject.
Nielsen	1993	An acceptance described as a something or new technology which is adequate to fulfil the demand of the potential stakeholders.
Hosford-Dunn, Hush, & Sandlin,	2000	An acceptance derived from the term of 'accept' which is referred as a something to be accepted or rejected based on the satisfaction.
Ausserer & Risser; Chang, Hwang & Li	2005 & 2007	The situation which is giving a feedback on how far the potential stakeholders are willing to adopt, accept or reject something or any new technology.
	🧹 UI	niversiti Utara Malaysia

2.5.1 Measurement of IA

As depicted in Table 2.2 below, there are many ways to measure IA of GMF. While some researchers such as Frewer et al. (1997), Verdurme and Viaene (2003), Mucci et al. (2004), and Tait and Chataway (2007) measured IA by focusing on benefit and risk of GMF, there are also some researchers such as Chen and Li (2007), Rodríguez-Entrena and Salazar-Ordóñez, (2013), and Bredahl et al. (1998) were focused on perceived benefit and perceived risk whereas, Frewer et al. (2014), as well as Frewer, Howard, and Shepherd, (1996) exposed that IA could be measured based on the perception towards risk and benefit of GMF. Thus, in the context of this study, the perceived risk and

perceived benefit will be utilized as an element of industry acceptance. Perceived benefit and perceived risk are categorized as a strongest element to measure acceptance such being indicated by Siegrist (1999, 2000) and Tanaka (2004). This is supported by Sheth (1973) and Sternquist (1994) which stated that, in order to minimize the risk for the use of GMF in food production, the expert or people whom involved in the food industries such as food manufacturers are required to concentrate on perceived benefit such as quality and desirability of product while implementing an importation of GMF.

As explained by Morris ands Adley (2000), trust is known as a vital parameter in this research measurement. The main characteristic of trust namely truthfulness. In the industry, trust is divided into two categories such as the information and the sources of that particular information (Hunt & Frewer, 2001). Hence, the information and sources shall be valid and believable. However, trust requires to be obtained not to expect or ask for (Frewer, Scholderer, & Bredahl, 2003). For example, the manager of food industry is prohibited to hide something about the risks and problems of GMF products purposely to avoid any controversies emerge upon detected by internet and other social medium which directly may lead the industry's performance to fall down (Wartburg & Julian, 1999).

Besides, this research has utilized trust due to there is a numerous evidences proved in the previous empirical study which exposed that trust is correlated and found as a strong element to the acceptability of GMF (Bord & O'Connor, 1992; Flynn, Burns, Mertz, & Slovic, 1992; Freudenburg, 1993; Kasperson, Golding, & Kasperson, 1996; Pijawka & Mushkatel, 1991; Siegrist, Cvetkovic, & Roth, 2000; Siegrist, 1999).

In addition, IA is also measured by knowledge as revealed by the precedent studies whereby an acceptance of GMF is affected and determined based on the strongest knowledge element about science or specific technology such as being supported by the previous researchers namely Prati, Pietrantoni, and Zani (2012). Thus, knowledge is an imperative element to gain an acceptance of GMF among the food industries. Hence, in the context of this study, an IA is best measured by perceived benefit, perceived risk, trust and knowledge.

Author	Year	Measurement	Content
Kuznesof & Ritson	1996	1.GMF Attributes : Price, Quality and Food Purity	The research was done to identify the acceptability of GMF.
		2. Type of Product	
	Univ	3.Production Methods	alaysia
Bredahl, Grunert, & Frewer	1998	 1.Use of products 2.Perceived producer related benefit 3.Price Consciousness 4. Perceived increase product quality 5.Perceived purity of product 6.Perceived wholesomeness of the product 7.Type of Product 	The research was conducted to trace various factors on GMF acceptance.

Table 2.2 Previous research on IA

Amin, Jahi, Nor, Osman, & Mahadi	2008	 1.Awareness of benefits 2.Knowledge level 3.Confidence & Trust 	The research exposed that the detection of benefits and risks will determine an acceptance of GMF.
Stone, Stone-romero, & Lukaszewski,	2006	 1.Organization's value 2.Organization's goal 3.Organization's resource 4. organizational system and process 	The research was Concentrated on factors affecting IA.
Connor & Siegrist,	2010	 Role of Knowledge Health Expectation Naturalness Social Trust 	The research exposed factors influencing an acceptance of gene technology (GMF).
Frewer, Howard, & Shepherd	1996	Risk-Benefit perception	The research explained that the risks and benefits influenced the acceptance of GMF.
Frewer, Howard, & Shepherd	1997	1.Benefit 2.Risk 3.Ethics	An acceptance of genetic engineering related to the food, medicine and agricultural application.
Verdurme & Viaene	2003	1.Benefit 2.Risk 3.Trust 4.Knowledge	The research was implemented to trace the acceptance of GMF among enthusiasts, green opponents, balancers and half-hearted.
Knight & Paradkar	2008	Perceived Risk and Perceived benefit	The research was done to identify factors influencing an acceptance of GMF.
Tanaka	2004	 Perceived Risk Perceived Benefit Trust Sense of bioethics 	The research focuses on major psychological factors affecting acceptance of GMF.

Rodríguez-entrena & Salazar-ordóñez	2013	 Perceived Risk and Perceived benefit Knowledge 	Research was done to clarify factors influence an acceptance of GMF.
Siipi & Launis	2009	1. Production Procedure 2. Trust	Research was carried out to explain the opposition and acceptance between GMF and GM medicine.
Chen & Li	2007	 Trust Knowledge Perceived benefit Perceived Risk 	The research was highlighted that perception and acceptance of gene technology varied according to the type of its application.
Mucci, Hough, & Ziliani	2004	Benefits	An acceptance of GMF varies across the countries.
Tait & Chataway, 2007	2007 Univ	 Governance of corporations, Technological change Risk 	Identifying factors motivated Multinational company to accept GMF in their market.
Frewer, Coles, Houdebine, & Kleter	2014	 Benefits perception Risk Perception Trust 	The research exposed plant-related to the application of GMF is more acceptable rather than animal-related application of GMF.

2.6 Definitions of Industry Strategy (IS)

The following (Table 2.3) lists some definitions of IS by several distinguished researchers in the field. The synthesize definition of IS for this research is defined based on the precedent works by Ackoff (1990) and Zahra and Covin (1993) which interpreted the IS as setting out the long term method or plan, establishing policy and regulation to ensure the production of GMF may be able to achieve the target and goal of the industry in order to determine the future direction of the industry.

Author	Year	Definition
Mintzberg & McHugh	1985	The trend of the decisions and activities that have been planned.
Hofer & Schendel	1978	The trend of the decisions and list of activities that have been planned along with the features that enable the industry to cope with the environment and achieve its goal.
Ackoff	1990	Setting strategic decision of the overall industry's objective which is involving a long term goal, establishing policy and principle to regulate the goal that should be achieved.
Zahra & Covin	1993	Achieving goals and objectives of the industry is based on the long term action plan.
Rhodes	2012	The industry is supported and established by the intervention of government to enhance the performance of the industry.

Table 2.3Various definitions of IS

2.6.1 Types of Strategy Used By GMF Manufacturers or Producers

The strategies chosen by food manufacturers or producers can be grouped as follows :

i. Strategy of prior market research.

The market research is a major strategy which is need to be done by the food manufacturers or producers (Finucane & Holup, 2005; Moses, 1999). This strategy would help the company which having a small budget of financial to monitor and gain the information pertaining to the current situation of market before introducing GMF into the food industry (Baker & Burnham, 2001). This is for the purpose of making a differentiation between the characteristics of industry with GMF and without GMF in the existing market. Directly, this phenomenon would aid market research to be conducted within a budget and proper way (Shalhevet, Sason, Sherbo, & Sendler, 1988). Thus, this clearly indicates that prior market research is known as one of the strategies used by the food manufacturers in order to accept, use and commercialize GMF in their industry.

ii. Concentration on consumers who accept GMF.

Due to many consumers had rejected GMF, the food manufacturers need to detect the consumer with different characteristics such as identifying which consumers accept, consume and willing to pay for GMF because of its various benefits (Li, Curtis, McCluskey, & Wahl, 2002). In this connection, Mendenhall (2000) done the survey towards consumer who has rejected the GMF and the result showed that they were afraid of the health effects. Thus, the food manufacturers need to produce GMF which contains additional nutrients to overcome their fear of health effect (Grunert, Bredahl, & Scholderer, 2003). By way of contrast, this situation will benefit the consumers who inherently accept GMF because they could be attracted and interested to the new GMF products. For example, based on the Gallup survey which has been implemented, the consumers with a high income and education level as well as young age will have a high tendency to accept and consume GMF (Saad, 1999). Thus, this phenomenon creates a strategy to the food manufacturers which is directly help the industry to estimate the size of the market for GMF being accepted.

iii.

Partnership with intermediaries.

In order to boost up the profit of the industry which is adopting and practicing GMF, the food industry need to collaborate with the competitors to ensure the standardization of the industry. Therefore, the food industry can make a choice to collaborate with other third party such as non-government organizations (NGOs) for the purpose to acquire the certification as well as endorsement practice as stated and compulsory for the operation of industry (Ross, Pandey, & Ross, 2012). In addition, this strategy also stressing on partnership among multi-stakeholders such as combination of NGO and the government agencies in the industry's chain (Dentoni, Bitzer, & Pascucci, 2012). Besides, El Feki (2000) indicated that

cooperation between food industry and biotechnology industry could help the development of product to meet specification of the industry. For instance, in Germany, the food industry controls the two-third large supermarket by making direct agreement via food producers (Latacz-Lohmann & Foster, 1997; Vorley, 2007). Therefore, an adoption of partnership may be able to improve performance of the industry which is accepting the use of GMF in their production.

iv. Developing a large number of low-volume products and small market niches.

The strategy such establishing small and medium industry (SMI) will result in the excellent of industry at international level due to its ability to concentrate on focus, products, marketing as well as vast changes rather than straightly incepting a giant industries (Porter, 1990). For instance, Purcell (1999) & Turner (1999) indicated that an adoption the strategy of developing small industries only requires small budget to invest and also able to reduce the risk towards industry's business and operation rather that establishing the giant industries at the first stage. Simultaneously, GMF industry known as a heavy and risky business (Lusk & Coble, 2005; Vilella-Vila & Costa-Font, 2008; Wales & Mythen, 2002). Therefore, by developing and focusing to the SMI, it is easier to gain the investor attention because they prefer for the low-volume product (Edginton, 1999). Thus, this clearly shows that an establishment of SMI is much better compared to the appearance of giant industry in order to improve the utilization and commercialization of GMF in the food industry's production.

v. Government support

The support from government is a strategy that caused an increasing development of GMF industry as occurred in Germany (Withold, 1999). An example of government support may derived from university and other institutions regarding scientific research such as providing well-trained scientist (Jennings, 1998) as well as preparing the knowledge and major problem solving related to GMF such as GM process and regulatory system (Shoemaker, 2001). Nonetheless, another government support such as providing long-term financial investment and the necessary amenities are the best strategy could be employed by the food manufacturers (Lawler, Meer, & Viseur, 1998). In essence, government support also categorized as a strategy for GMF manufacturers to expand its industry's operation.

2.6.2 IS and GMF

Strategy is an indicator and tool for the industry clarifies opportunity and success of its business value, operation as well as performance (Normann & Ramirez, 1993). The competitive global industry at this moment has insisted industry to properly design its business strategy (Kaplan & Norton, 2001). Even though the strategy is a paramount

aspect in the industry, there will be a tough moment for industry while formulating or developing the strategy (Stalk & Evans-Clark, 1992). This is supported by Batie (2008) and Baudouin (2012) which explained that the industry needs to pay closer attention while establishing the strategy of business for GMF; due to several constraints such as dynamic complexity and the controversy among the stakeholders which comprised of food manufacturers in the industry. On the other hand, in order to formulate strategy for the industry's business, it is an inevitable for the industry to face the challenges such as maintaining the quality of its product, creating and update idea for the development of product innovation as well as ensuring that industry would be able to step further into new business instead of having an ability to compete with the existing market (Chin, Chan, & Lam, 2008; Dangayach & Deshmukh, 2001; Tummala, 2000). Definitely, this statement shows that, the GMF industry resembles as other industry which requires strategy for its business and facing with the various challenges while establishing the industry's strategy.

Besides, Porter (1990) explained that industry structure and strategy are the main factors to determine the success of the industry. This is in line with the previous researchers namely Brandys (1988) and Withold (1999) indicated that the use of GMF in food production requires financial aids, amenities, well-experienced employees, and R&D from the early until end of production processes. For instance, during 1996, the GMF industry which located in America had consumed money approximately \$16 million meanwhile, in Europe, \$ 6 million of financial has been utilized for the R&D of GM industries (Lavoie & Sheldon, 2000). Moreover, another strategy that supposed to be adopted in the GMF industry is through collaboration between GMF industry with the

academicians and scientists from the university (Henney, 1998; Jennings, 1998; Young, 2001). Hence, the GMF industry requires proper strategy implementation to survive among other competitive industries.

2.6.3 Measurement of IS

Based on the rigorous review of the previous literatures, an IS is measured by the managerial interpretation and risk propensity as presented in table 2.4. The strategy and action of industry are affected by the managerial interpretation (Daft & Weick, 1984). Managerial interpretation known as a process taken by the leader of an industry by ensuring the event and other information of its environmental industry is in relevant (Dutton, Fahey, & Narayanan, 1987). However, managerial interpretation consists of environmental perspective namely threat and opportunity (Dutton & Duncan, 1987; Jackson & Dutton, 1988; Sharma, Pablo, & Vredenburg, 1999; Sharma, 1997). In the context of this research, managerial interpretation is a strong element of measurement for IS as supported by Dentoni et al. (2012) which indicated that the potential strengths and weaknesses of the industry can be detected based on the evaluation towards threat and opportunity (managerial interpretation) element.

Moreover, the risk propensity is clarified as the inclination of industry's decision maker either to take or avoid the risk (Sitkin & Pablo, 1992). The risk propensity of decision maker in the industry will be influenced by the customer demand, current global market, price, quality, technology as well as retailer or supplier's commitment (Pablo, 1997; Sitkin & Pablo, 1992; Stearns, Carter, Reynolds, & Williams, 1995). Therefore, in the context of this research, IS is best measured by the risk propensity such as supported by the researchers namely Douglas and Wildavsky (1982) stated that the risk propensity is an important element to measure IS and as a prevention step for any incoming danger into industry. Hence, this study employs the managerial interpretation and risk propensity as a measurement for the IS.

Table 2.4 Previous research on IS

Author	Year	Measurement	Content	Method
Libby & Fishburn	1977	1. Risk propensity	The research was highlighted the risk propensity as a strategy that shall be taken care of in the industry for the purpose of making a decision.	Case study
Robert & Brockhaus	1980	1. Risk propensity Universiti	Risk propensity is a major determinant of strategies in small industry which emphasized on the entrepreneur.	Group study
Douglas & Wildavsky	1982	 Risk propensity Culture 	Risk propensity and culture of industry are the contribution in the new technological industry (GMF) to examine the hazard which may be appeared.	Case study

Daft & Weick	1984	Managerial interpretation : 1. Threat 2. Opportunity	The research was carried out to explain how the industry makes a decision by formulating the strategies whereby the external environment will affect the strategy of the industry.	Case study
March & Shapira	1987	1. Risk propensity	The research was done to detect the phenomenon of risk taking as a one element in the strategy of industry for a manager or leader make a proper decision.	Questionnaire
Jackson & Dutton	1988	1. Threat 2. Opportunity Universiti	Threat and opportunity known as strategy while implementing activities such as scanning of environmental issue for the purpose of decision making.	Interview
Pablo	1997	1. Risk Propensity comprised of risk averse and risk taking which should be faced by manager of the industry.	The leader of industry pays closer attention towards risk before proceed to the decision making stage.	Phone-interview

Sharmas	1997	1. Managerial interpretation	The research was implemented to establish and test the framework of the strategy that has been adopted by the industry and the factors influenced it.	Questionnaire based-mail survey
Sharma & Nguan	1999	An environmental perspective : 1. Managerial interpretation comprised of threat and opportunity 2. Risk propensity of the manager	The research was determined the factors influence the strategy of industry while making a good decision.	Questionnaire
Sung & Hwang	2013	Environment perspective (external stakeholder) : 1. Managerial interpretation which consists of threat and opportunity 2. Economic incentive 3. Political pressure	The research was done to explain the external stakeholders factor plays an imperative tool as the IS in GM field.	Questionnaire
Wesseler	2014	 Threat Opportunity 	The research was carried out to discuss the strategies were conducted by the food manufacturers and retailers.	Case study
Inghelbrecht, Dessein, & Huylenbroeck	2014	Environmental : 1. GMF as a marketing threat and opportunity	The research was done to expose the GM business strategy to handle the problem of business.	Semi-structured interview

Inghelbrecht, Dessein, & Huylenbroe	2015	 Perceived structuring arena Business environment : Social Economic Culture Threat Value Specific perceived rules (formal/informal) 	The research was carried out to explain the business strategy involve in GM business.	Interview
---	------	---	---	-----------

2.7 Definition of Regulation

Regulation is defined as a rule, guideline, law or process of daily operation which is regulated, monitored and controlled by the Authority (Oxford Dictionaries, 2015). Moreover, the regulation is an official procedure or guideline regulated by the government and related authorities; such defined by the authors namely (McIntosh & Turnbull, 2006). Meanwhile, the synthesize definition to represent regulation in the context of this study is based on Braitwaite and Peter (2000) which defined the regulation as a law, rules, concept and a basic tool to ensure either the operation of business can be carried out or stopped (pg. 9).

2.7.1 Regulation of Food Manufacturers in Malaysia

The food manufacturers play an imperative role in providing the food demand but at the same time, they are required to adhere with the regulation that has been set up by the government authorities (Stephensons & Arujanan, 2011). In Malaysia, the food manufacturing activities must be complied with the guideline stated by the Food Act

1983 and Food Regulation 1985 which enforced by the MOH and the Local Authorities whereby; the food manufacturers are urged to ensure that the foods are free from prohibited food additive and contamination, implementation of labeling for visualize the actual picture and content of food as well as adhering to the regulation and law that has been fixed during importation and exportation transaction. (The Canadian Trade Commissioner Service, 2015; Food Safety & Quality Division (MOH), 2015).

In fact, Malaysian food manufacturers have to obey with the standard requirement while implementing food processing which is known as an obligation imposed by the Malaysian External Trade Development Corporation (MATRADE) (Malaysian Biotechnology Corporation, 2010; Talib, Ali, & Jamaludin, 2008). In accordance with that, those standard requirements that must be complied by the food manufacturers in Malaysia are Good Manufacturing Practice (GMP) and Hazard Analysis Critical Control Point (HACCP) (MATRADE, 2015). GMP is a medium that provides regulation, code and guideline which properly handling the operational activity while producing food to ensure the whole food production is safe, ensuring the cleanliness and safety of the food at each stage of food production. Whereas, HACCP is under the purview of GMP which is functioned as a system that identifying, evaluating and controlling hazards to ensure the production of food is safe including processing, packaging, storage and distribution of food. (Department of Standard Malaysia, 2014). Those international standards of food quality practice were implemented to ensure Malaysia would retain as a competitive nation for the development of manufacturing activities as well as benefits the food industry in terms of enhancing the credibility and reputation of the food industry,

improving food manufacturers especially SMI which is very challenging due to intensifying global competitiveness.

2.7.2 Regulation of GMF in Malaysia

Regulatory system of GMF is an imperative mechanism that has to be monitored by the government (Vermeulen, 2004). GMF regulation which is related to the trade, manufacture and license are established and enforced purposely to ensure that the food manufacturers follow the regulation that has been designated (Shrestha & Shrestha, 2002). In Malaysia, modern biotechnology (GMF) is known as the most heavily regulated system that must be adhered by the food industry (Quah, 2007).

Therefore, all the activities which involved commencement, importation and exportation of GMF in Malaysia are placed under Biosafety Act 2007 which executed by the Ministry of Natural Resources and Environment (NRE) (Amin, Jahi, & Nor, 2013). In addition, regulation of GMF in Malaysia has been proposed and introduced by MOH. Any approval of GMF is analyzed based on the risk assessment approach that will be carried out by Genetic Modification Advisory Committee (GMAC). GMF product must be accessed and approved by GMAC before it is released and commercialized in Malaysian local market. However, before GMF being marketed, the Food Safety and Quality Division (FSQD) of the MOH will issue marketing approval once the food safety assessment of GMF has fulfilled the requirement that has been set up (Food Agriculture Organization (FAO), United Nation (UN), & World Health Organization (WHO), 2004).

Moreover, for the transaction related to GMF importation, the food manufacturers are required to obtain import permit from the Director General of Agriculture Department (Foster, Berry, & Hogan, 2003). Hence, this directly shows that there are specific authorities or departments in charge for each regulation that has been set by Malaysian government to ensure the transaction of GMF manufacturing is running systematically.

Nonetheless, labelling is another important part that was applied into regulation of GMF in Malaysia. However, an implementation of GMF labelling contains several importance as follows : (1) If the contamination of GMF happened, the traceability and efficient prevention step could be taken. (2) Labelling can avoid the prevalence of GMF from enter into nation that does not allow and accept GMF. (3) Labelling will reduce the heavy process while making separation of GMF and non-GMF into the exporting nation. (4) Implementation of labelling shows that Malaysia is supporting the stringent regulation of GMF due to its position at CODEX Committee (Arshad, 2011). Consequently, at the beginning 2004, the mandatory labelling of GMF has been introduced and that GMF labelling was handled by FSQD. Later on that, the MOH has announced the mandatory labelling regulation of GMF on July 8, 2010 and stated that the enforcement of GMF labelling supposed to be started on July 2012. This phenomenon has opened the eyes of food manufacturers and their suppliers from overseas.

Surprisingly, the implementation of labelling regulation towards GMF has been postponed due to several factors. Firstly, uncertainty to enforce the labelling regulation. Secondly, possibility of GMF products list to be excepted from labelling was not confirmed. Thirdly, there is no specific language and place have been determined in oder to run the labelling regulation (Langtree, 2014; Wahab, 2012). However, the situation becoming more surprised when the labelling of GMF that would be imposed in Malaysia is stated and mentioned as not mandatory. In fact, the MOH is still in the process of

reviewing the labelling process as being revealed by the previous researchers namely (Amin et al., 2013). Therefore, the inconsistency implementation of GMF labelling in Malaysia shows that the labelling is classified as a complex and the hardest regulatory system to be implemented by the Malaysian government.

In conclusion, all those aforementioned of GMF regulations were conducted in Malaysia. Thus, until this moment, there is no any new rules have been added pertaining to GMF regulation.

2.7.3 Regulation of GMF in Other Countries

Each country varies in terms of the regulatory system of GMF. This is being supported by precedent researchers which have made a comparison and interpretation regarding GMF from different nation namely (Flint, Gil, Verastegui, Irarrazabal, & Dellacha, 2000; Hokanson & Ferenczi, 2011; Jaffe, 2004; MacKenzie, 2000; McHugen & Smyth, 2008; Mclean, Frederick, Traynor, Cohen, & Komen, 2003; Nap, Metz, Escaler, & Conner, 2003; Ramessar, Capell, Twyman, Quemada, & Christou, 2009; Solleiro & Galvez, 2002).

To exemplify that, any activities related to GMF such as manufacturing, production and importation in Australia are based on the regulation of Australia's Gene Technology Act 2000. However, in the aspect of marketing approval, all GMF must undergoes pre market safety assessment that will be handled by Food Standard Australia New Zealand (FSANZ) to ensure the safety of GMF which being sold in Australian market (FSANZ, 2005) . On the other hand, importation of GMF in Australia is handled by the Australian Quarantine and Inspection Service (AQIS) which requires importers to fully state about

the features of GMF which have been used on the import permit. (Thomas, 1998). Besides, Australia applied mandatory labelling for its GMF regulation.

However, in China, the government of China was concerned and focused on the risk assessment and GMF labelling that will be monitored by the MOH of China (United States Department of Agriculture (USDA), 2015). Besides, in order to obtain an approval of imported GMF from MOH, the certification indicated that the GMF has been tested undoubtedly must be attached while implementing GMF importation. (Malaysian Biotechnology Corporation, 2010). Furthermore, China was imposed stringent GMF regulation for the food industry that export their GMF to China. That export industry must apply an interim certificate from the Agriculture GMO safety Administration Office and must be evaluated and validated by the safety agency of the export industry (Marchant et al., 2004).

Conversely, the government's regulations of GMF in India is not strict and complicated if making comparison between Australia and China. For instance, there is no stringent regulation while importing GMF from Iran and Canada to India (Jayaraman, 1999). This was proved by Knight and Paradkar (2008) which exposed that there is no GMF labelling has been imposed due to the government's misconception that the GMF was difficult to carry out. On the other hand, all commercialization and importation of GMF in India must obtain an approval from the Genetic Engineering Approval Committee (GEAC) which was located under Ministry of Environment and Forests (Chopra & Kamma, 2013; Food Safety & Standards Authority of India, 2008). However, this is totally different with the European Union (EU) and United States (US) whereby the regulation of GMF for both parties are remain complex. EU known as the most strict of GMF regulation. In EU, the GMF regulation has been regulated by EC Regulation 258/97 namely Novel Food Regulation which requires an expert (committee member) opinion to establish guideline of GMF instead of there was an exemption towards GMF labelling (Hodgson, 1999; Whitman, 2000). In fact, all commercialization and importation of GMF must be approved by the committee members of Novel Food Regulation before it is being placed into market (Vazquez-Salat, Salter, Smets, & Houdebine, 2012). In the same vein, the GMF regulation in USA was not stressed on the labelling system due to their law requirement only providing info about the details of GMF to the food manufacturers and not to consumers (Hamilton, 2001). The utilization and commercializing of GMF in the food industry must get an approval from the Food and Drug Administration to carry out the safety assessment towards GMF before it is being marketed (Nap et al., 2003). Consequently, this circumstance shows that although EU and US do not adopt labelling regulation towards GMF, but GMF regulation has remained complicated in both of that countries and will affect industry from other countries while doing the exportation or importation of their GMF into EU and US.

In addition, the regulation of GMF in UK requires industry to get the permission from the Health and Safety Executive (HSE) before using GM products or even ingredient contains GM (Halford & Shewry, 2000). In addition, the safety evaluation of GMF will be carried out by the UK Advisory Committee on Novel Food and Processors (ACNFP), specialists from other committee members, higher institutional such as the universities and research organizations. Thus, these committees will give permission before the use

and commercialization of GMF emerge in the chain of food industries due to their government extensively stressing on impractical method proposed by the World Health Organization that concern on the health and environment effect (Jonas & Kaferstein, 1995).

On the other hand, New Zealand does not apply the stringent regulation of GMF whereby there is no specific act or law has been fixed. New Zealand has followed the biosafety approach and placed the GMF under Hazardous Substance and New Organism Act (HSNO Act) (NEW ZELAND, 1993, 1996; Gardini, 2013). Meanwhile, Chile is another country that does not left behind in the aspect of strict regulation towards GMF usage and commercializing activities. All the foodstuffs consist of ingredients list, additives, date of product manufacturing and expiration, producer and importer's name as well as nutrition content must be labelled in Spanish before step into market of Chile while conducting GMF importation and exportation. (MATRADE, 2014). Thus, the mentioned GMF regulation in both New Zealand and Chile will cause other industries to get the actual picture regarding GMF regulation in making a preparation before execute the GMF importation and exportation with another country.

Furthermore, in Japan, before commercializing GMF into local market, the food manufacturers are required to obtain an approval from the Ministry of Agriculture, Forestry and Fisheries (MAFF) after the safety evaluation has been conducted by the Food Sanitation Law which is located under MOH, Labour and Welfare (MHLW) in order to achieve the requirement standards of the GMF safety (Uozum, 1999). The safety of imported GMF product will be tested by MAFF and MHLW. From the perspective of GMF labelling, Japan implemented mandatory labelling if GM ingredients are detected at

the finished product about 5 percent (Saegusa, 2000). This visualized that the labelling of GMF in Japan is based on the percentage of GM contain in the GMF product.

Last but not least, the regulation of GMF in Saudi Arabia is regulated, monitored and controlled by the Ministry of Commerce (MOC). The importation of GMF into Arab Saudi requires health certificate which indicated that an ingredient of GMF must be approved by the exported country (Hartmann, Khali, Bernet, Ghamdi, & Ruhland, 2012). Despite that, the Ministry of Agriculture has regulated that all imported and local GMF product requires labelling only upon the existence of GM into GMF product is 1 percent threshold otherwise, the labelling will not be imposed (Al-Saffy & Mousa, 2012; Australian Trade Commision, 2015).

2.7.4 Measurement of Regulation

As attached on the following (table 2.5), the regulation of GMF in the context of this study is best measured by approval process, risk assessment, labelling, traceability as proposed by Vigani and Olper (2013). These dimensions are measured to obtain the level restriction of GMF regulation (Vigani, 2010). Therefore, the approval process is a crucial in the GMF regulation because the introduction of GMF into countries may not happens without approval process (Vigani & Olper, 2013; Vigani, Raimond, & Opler, 2012). Hence, the approval process is a paramount element in measuring regulation because unapproved GMF in the market will lead to the difficulty of the industry to survive as revealed by researchers namely Kothamasi and Vermeylen (2011). On the other hand, the reason why risk assessment has been chosen as a dimension to measure the GMF regulation is because it holds a position as a strong element to measure regulation as

supported by Vigani and Olper (2013), Vigani et al. (2012), as well as Hood, Requensen, and Eversole (2012).

Moreover, as explained by Gruere, Carrer, and Farzin (2009) labelling is a strong element that suppose to be used as a measurement for GMF regulation. This is supported by Costanigro and Lusk (2014) which indicated the labelling plays an imperative role for the production, development and trade process of GMF in the industry to measure the stringency level of GMF. Besides, traceability is a vital element used by the industry to measure the stringency regulation of GMF as being elucidated by Schilter and Constable (2002), Vigani and Olper (2013), and Vigani et al. (2012) which had answered the question why traceability has been utilized to measure the GMF regulation. In conclusion, this study employed approval process, risk assessment, labelling, and traceability as an element to measure the regulation of GMF.

Table 2.5	Iniversiti	Utara	Malaysia
Previous research on regulation	on	orara	riarajora

Authors	Year	Measurement	Description
Caswell	1998	1. Labelling	Focusing on the safety of product by taking labelling approaches in the process of regulatory system.
Whitman	2000	 Labelling Risk Assessment 	Research was conducted to explain the regulation aspect involved in GMF such as safety of regulation and issue related to the labelling.
Halford & Shewry	2000	1. Risk Assessment	Elucidation on how the safety evaluation being done following step by step to fulfil the regulation that has been fixed.
Schilter & Constable	2002	 Risk Assessment Labelling Traceability 	Explaining the safety procedures of GMF.

Freese & Schubert	2004	1. Risk Assessment	The research was implemented to determine the factor influencing regulation of GMF in term of risk and safety assessment which emphasized on allerginicity.
Sanvido, Widmer, Winzeler, & Bigler	2005	 Approval process Risk Assessment 	The regulation of GMF consists of rigidity approval process.
Pelletier	2006	1. Risk Assessment	The risk assessment was carried out to ensure the safety control and regulatory system of GMF are following the procedures that has been fixed.
Martinez, Fearne, Caswell, & Henson	2007	1. Risk Assessment	Discussing the regulatory process of safety for the food by implementing an assessment of risk.
Kothamasi & Vermeyle	2011	1. Approval process	The research explained that one of difficulties in market is caused by unapproved GMF.
Adenle et al.	2013	1. Risk Assessment	The cost of regulation is a main factor leads to the delay in the process of regulatory approval.
Vigani, Raimond, & Opler	2012	 Approval process Risk Assessment Labelling Traceability Membership in the international 	International trade of import and export transaction contains stringent regulation of GMOs according to the countries of the particular GMF industry.
Vigani & Olper	2013	 Approval process Risk Assessment Labelling Traceability Membership in the international 	Research was implemented to determine the factors influence GMF regulatory according to 55 countries.
Jaupi, Marku, & Bajraktari	2014	1. Risk assessment	Explaining on the element involved in the regulation of GMF instead of focusing to the safety of food and food labelling.

Choudhary	2014	1. Risk Assessment	An assessment which is involved in the
, Gheysen,			regulation comprised of manufacturing,
Buysse,			use, import, storage and research of
Meer, &			GMF.
Burssens			

2.8 Definition of Attitude

An attitude is defined as an inner assumption which elucidated based on the evaluation towards particular things, ideas, objects or situations with the degree level either positive or negative, supportive or opponent response such as approve or disapprove, like or dislike, approach or avoid, attract or averse (Eagly & Chaiken, 1993; Liver, Pligt, & Wighboldus, 2005).

2.8.1 Attitude of Stakeholders (Industries) and GMF

GMF attitude is defined as a positive or negative response, either it is seen useful or scary condition (Frewer et al., 1997; Purchase, 2005). This has been strengthened by Cacioppo, Gardner, and Berntson (1997) whereby an attitude of GMF usage and commercialization are powerful to be explained by both positive and negative element separately. Therefore, many stakeholders which emphasized on the food manufacturers or producers in western countries such as Germany, Italy, Netherland and Greece directly involved in the import and export chain of GMF (Knight, Holdsworth, & Mather, 2008). However, when dealing with the commercialization of GMF products, the process involved is complicated which requires skill to ensure other stakeholders are giving a positive attitude towards GMF (Paarlberg, 2002; Subrahmanyan & Cheng, 2000). For instance, as supported by Henderson, Weaver, and Cheney (2007) as well as Kimenju et al. (2011),

the manager or leader in the food industry has a responsible to make an appropriate decision regarding purchasing, selling and utilizing of GMF in the industry's production; will be based on their positive attitude towards GMF by looking at the quality, safety and preferences of GMF.

Simultaneously, the positive and negative GMF attitude among the stakeholders can be visualized. In the aspect of negative GMF attitude, as being exposed by Reg-Garcia (2006), Bett et al. (2010) and Areal et al. (2011), the food manufacturers had negatively rejected GMF due to the technology complexity, unpredictable effect that will take longer period, unforeseeable economic condition, appearance of the health and environmental damage, negative response from the public consumers as well as the status of unnatural GMF which may impede the industry's operation. Consequently, the food manufacturers in UK have shown their negative attitude towards the use and commercialization of GMF once they had removed all the GM products from their market due to GMF were rejected and banned by the consumers (Brossard, Shanahan, & Nesbit, 2007; Salehuddin, Ahmad, & Kadir, 2014). Directly, this circumstance clearly shows that the aforementioned external factors have contributed to the skeptical GMF attitude among the stakeholders. Meanwhile, in the context of positive GMF attitude, Hoban (2004) revealed that most of the stakeholders (industries) from developing countries will tend to have a positive attitude towards GMF usage and commercialization. To exemplify this, Chinese industry have shown positive attitude towards GMF due to the availability of foods in the urgent situation, appearance of GMF to provide additional nutrient, potential of GMF to be placed into challenging market, confidence on government regulatory system, positive scientific exposure and also positive media factor (McCluskey, Grimsrud, & Wahl, 2006;

Rollin, Kennedy, & Wills, 2011). In addition, Taiwan also shown positive attitude towards GMF usage and commercialization because of the soybean and corn have been classified as a major item that contribute to the huge quantity of food importation in Taiwan (Chen, 2008). In fact, the industry that is coming from Philippines and Mexico have shown supportive attitude towards GMF due to the their stabilization political and culture condition (Sheikkha, Kalantar, & Vahidi, 2006). In summary, the stakeholders which are coming from the developing countries showed their positive attitude towards GMF.

2.8.2 Measurement of Attitude Towards GMF Usage and Commercialization

From the table 2.6, it can be summarized that although there are many variables to measure the attitude towards GMF usage and commercialization, previous researchers have shown highly tendency to use general attitude, familiarity, encouragement and moral or ethical concern as dimension to measure the attitude. As a corollary, this study employed those dimensions to measure the attitude towards GMF usage and commercialization.

This is being supported by Onyango, Govindasamy, Hallman, Jang, and Puduri (2004) as well as Amin, Azlan, Ahmad, and Ibrahim (2011) which justified that the moral concern has been used as a measurement of an attitude because it was found as a vital element or basically classified as a powerful that holds position as a supporter for the attitude of modern biotechnology or GMF. In fact, encouragement and familiarity is the second strongest element for measuring attitude after moral concern as being supported and indicated by Einsiedel (2000). Nonetheless, the general attitude being adapted for

measuring attitude in this research due to the reason explained by Bredahl (2001), Grunert et al. (2003) and Lahteenmaki et al. (2002) which exposed that general attitude known as the best element in measuring GMF attitude. In conclusion, measurement of attitude provided information for this research regarding what kind of attitude holds by the industry towards GMF usage and commercialization in their food production.

Table 2.6Previous research on attitude to GMF

Author	Year	Measurement	Content	Method
George et al.	2000	1. Moral Concern 2.Encouragement	Moral concern and encouragement are detected as the factors influence attitude in Europe.	Interview
Bredahl	2001	 Negative Attitude Positive Attitude 	The research was done to classified the major determinant of attitude on the GMF acceptance.	Interview
Lahteenmaki et al.	2002	 Negative Attitude Positive Attitude 	An attitude was determined by the positive and negative response.	Interview
Grunert et al.	2003	 Negative Attitude Positive Attitude 	The research was carried out to expose on how attitude affects GMF usage.	Interview

Frewer, Scholderer, & Bredahl	2003	 Negative Attitude Positive Attitude 	The research was conducted to expose the measurement of overall attitude among the stakeholders on the food production.	Experiment
Kimenju, De Groote, Karugia, Mbogoh & Poland	2005	 Moral Concern Equity concern 	The research was done to elucidate an awareness as well as attitude of stakeholders towards GMF production in Kenya.	Personal interview
Chen & Li	2007	 Negative Attitude Positive Attitude 	Based on the research, attitude determines an acceptance of GMF production among the stakeholders in Taiwan.	Questionnaire
Knight, Holdsworth, & Mather	2008	 General attitude towards the environmental, science and technology Food Neophobia Trust in regulators Price sensitivity 	An attitude of stakeholders from Europe, China and India have shown the various responses. Some were positive whereas some showed positive attitude.	Survey

Sorgot & Ambrozic- Dolinseks	2010	 Negative Attitude Positive Attitude 	The research was implemented and exposed that an attitude tend to be viewed as a negative and the stakeholders felt insecurity about the application of GM in various fields such as food, agricultural, education and so forth.	Questionnaire
Bett, Ouma Okura, & De Groote	2010	1. Moral concern	The industry was negatively shown sceptical attitude while embracing the commercialization of GMF	Questionnaire
Amin et al.	2011	 Encouragement Familiarity Moral concern General concern Engagement Religiosity 	The research was done to critically analyze the attitudinal factors towards modern biotechnology and the relationship among each others.	Questionnaire
Areal, Riesgo, & Rodrıguezs	2011	 Agronomic & economic performance Human health and environmental risk 	The research was conducted to clarify the factors influence attitude of the European stakeholders.	Face to face interview
Kikulwe, Wesseler, & Falck-zepedas	2011	1.General attitude	The stakeholders are willing to buy of and shows positive attitude towards GMF due to the price remains same as non-GMF.	Questionnaire

Costa-Font & Jose	2012	1.General attitude	General attitudes toward science and technology influenced the attitude towards GMF.	Questionnaire
Amin et al.	2013	 Familiarity Moral concern Encouragement 	The research was focused on stakeholder's attitude towards food and medicine.	Survey

2.9 Gaps in the Literature

Based on the literature review, several inferences are made regarding the research gap. In regards to all the chosen variables from the conceptual framework, namely IA, IS, regulation and attitude towards GMF production, the following gaps are noticed :

- As explained by the precedent literature, it is shown that there is a dearth of research on IA. Past studies tend to focus on end consumer acceptance. For example, many scholars exposed that the acceptance or rejection of GMF among the consumers from various countries was tremendously affected by the advantages or pitfalls of GMF consumption (House, Morrow, Lusk, & Moore, 2001). Hence, this is in parallel as indicated by Hornibrook and Fearne (2003) where there is a little research focusing on the food industry's research.
- 2. Furthermore, previous researchers concluded that the general result of GMF acceptance is complicated and the studies pertaining to GMF varied in the aspect of methodology and level of abstraction. For example, the specific perception

related to acceptance, attitude, and concentration of GMF have remained unclear and lack. (Bredahl et al., 1998).

- 3. Attitude is a one of the variables shown to have a relationship with the industry acceptance. Even though previous researchers suggesting the importance of attitude in influencing the acceptance of GMF among the industries, an empirical finding from the Kimenju, De Groote, Bett, and Wanyama (2011), Bett et al. (2010) and Woodside et al. (2005) stated that there is a dearth in research pertaining to attitude of stakeholders in determining the acceptance of GMF. This circumstance is supported by Areal, Riesgo, and Rodriguez (2011), and Bett, Ourma Okura, and De Groote, (2010) that critiqued research pertaining to the attitude gives a high concentration to the preference of public consumers rather than focusing on the attitude of stakeholders. Thus, in the context of this research, the industry as a stakeholders has fulfilled the gap.
- 4. In addition, an empirical research on how GMF regulation affects industry acceptance is relatively less discussed in Malaysia. Previous researchers only tend to focus and explain what are the government and some other authorities involvement in establishing and enforcing the GMF regulation as well as what are the GMF procedures need to be adhered of (Adenle et al., 2013; Aerni, 2005; Bett et al., 2010; (Amin et al., 2013; Vermeulan, Kirsten, Doyer, & Schonfeldt, 2005). Therefore, the gap in this research has been fulfilled by discussing on how

regulations influence the acceptance of GMF among the Malaysian food industries.

5. Moreover, most of the GMF researches are being carried out in developed countries such as US, Europe, China, Australia, UK as compared to Malaysia; whereby GMF study is a new topic in Malaysia and present at a low level but it is very important to be discussed (Daud, 2002; Ibrahim et al., 2013; Kamariah Ismail et al., 2012). Hence, an empirical research on GMF is deemed necessary to be carried out in Malaysia.

2.10 Underpinning Theory

There are number of different theories have been used to explain the industry acceptance of GMF. The literature indicates that previous scholars have used theory such as Technology Acceptance Model (TAM) (Davis, 1989), Theory Reason Action (TRA) (Ajzen & Fishbein, 1980; Fishbein & Ajzen, 1975) and Theory of Planned Behavior (TBP) (Ajzen, 1985, 1991) and some scholars have combined those theories to explain the relationship in their research. Even though previous researchers have used different theories, this research is matched and best explained by using the Institutional Theory.

2.10.1 Institutional Theory

The institutional theory is an eminent elaboration for the action of individual and industry (Tatania Kostova, Roth, & Dacin, 2008). Thus, this is matched to the IS of GMF in this research; whereby the IS is influenced by the external forces to determine the decision

making or action that shall be taken in the industry (Sung & Hwang, 2013). Exemplifying that, in European United (EU), the industry will take action to maintain its success based on the strategies and methods employed by the food producers and retailers in their industry's operation. One of the strategies or methods implemented by the food industry which using or commercializing GMF is 'virtually-GM free'. That strategy enables the food industry to use and commercialize GMF in their production without requiring labelling implementation. In addition, for the food industries that unwilling to take risk for their business operation will take an action by adopting the strategy namely GM-labelling-free or GM-free; which does not contain any GM ingredient while producing and selling foods or products in the industry (Inghelbrecht et al., 2015).

Nevertheless, institutional theory consists of industry practice which giving an impact toward the shared knowledge as well as industry competence whereby they tend to be accepted and approved by the management and employee on the method employed by the industry to run its business (Kogut, 1991; Kostava, 1999; Kostova et al., 2008; Kostova & Roth, 2002; Szulanski, 1996). Thus, in the context of this research, there are many industries especially giant industries have accepted GMF due to its benefits such as providing additional nutritional for foods, pest-resistant, longer shelf-life while placing in the market instead of providing cheaper price of GMF and it is inherently contrast with other conventional foods (Chen, 2011). On the other hand, about 31 percent of industries willing to use a GM product due to its related to their operation and 20 percent of industries willing to use GM ingredients based on the cost involved whereas, 47 percent of food industry accepts GMF product based on regulatory requirement that relevant to industry's environment (Woodside et al., 2005; Ellahi, 1996). Nonetheless, the industry

practice which has been adopted from the institutional theory comprised of the procedure pertaining to the benefit and method that should be employed to ensure it will be accepted by other stakeholders (Hofstede, 1991). Therefore, this is aligned with the benefits derived from GMF that is seen to influence GMF acceptance among the industries which is being discussed in this research.

Many of the previous scholars have utilized an institutional theory in the industry especially in the multinational companies (Dacin, Goodstein, & Scott, 2002) due to one of its abilities is to refine the regulation that fall apart in the operation and business of industry (Eden & Miller, 2004; Kostava, 1999; Kostova, 1997; Kostova & Roth, 2002; Xu & Shenker, 2002). In accordance with this circumstance, there are regulations that suppose to be adhered by the GMF industry such happened in Iran and Canada whereby there are no strict and complicated regulation of GMF have been imposed by their government while exporting GMF to India (Knight & Paradkar, 2008) meanwhile in China, certificate must be issued for all products contain GM Chinese rice to prove and ensure that those products has been tested according to the regulatory system of GMF that has been fixed by the committee of China's regulation (Malaysian Biotechnology Corporation, 2010).

As indicated by Oliver (1991), institutional theory also considered the perspective of active agency that will cause many responses from the subsidiaries of industry once the parent industry employed that particular practice. Therefore, Kostova and Roth (2002) explained that response could be divided into behavior and attitude aspects which are being discussed in the context of this study. To exemplify that, the food industry in the UK, France, Canada and US showed their negative attitude by approving and

commercializing their non-GMF products only (Giannakas & Fulton, 2002) whereas, the industries which located in the division of the North America have shown their positive attitude towards GMF by accepting and commercializing it into market (Chua, 2001).

Hence, this study employs institutional theory as a basis for explaining the relationship between the variables in this study, namely IS, regulation of GMF, IA and attitude towards GMF usage and commercialization.

CHAPTER THREE METHODOLOGY

3.1 Introduction

This chapter contains the research methodology used in this research. It provides details of the research design and method used for collection of data as well as statistical data analysis. The following section is devoted to explain the research framework, hypotheses development, research approach and research subjects. A questionnaire was utilized and the method of data collection was briefly explained.

3.2 Research Framework

The conceptual framework of this study was developed based on the views presented in the past literature review concerning on the IA of GMF. In essence, the framework postulates that IS has been suggested by previous researchers to be directly and positively associated with industry acceptance (Sung & Hwang, 2013). Further, the framework also postulated that regulation of GMF having a positive relationship with the industry acceptance (Mitra, Tait, & Wield, 2011). On the other hand, Costa-Font and Jose (2012) indicated that an attitude has positively affects IA.

The conceptual framework presented in the study comprised of the independent variables which consist of IS, regulation and attitude. An IS is a dependent variable of this study. A framework illustrating the relationship between IS, regulation and attitude on IA is presented schematically in figure 3.1 as follow :

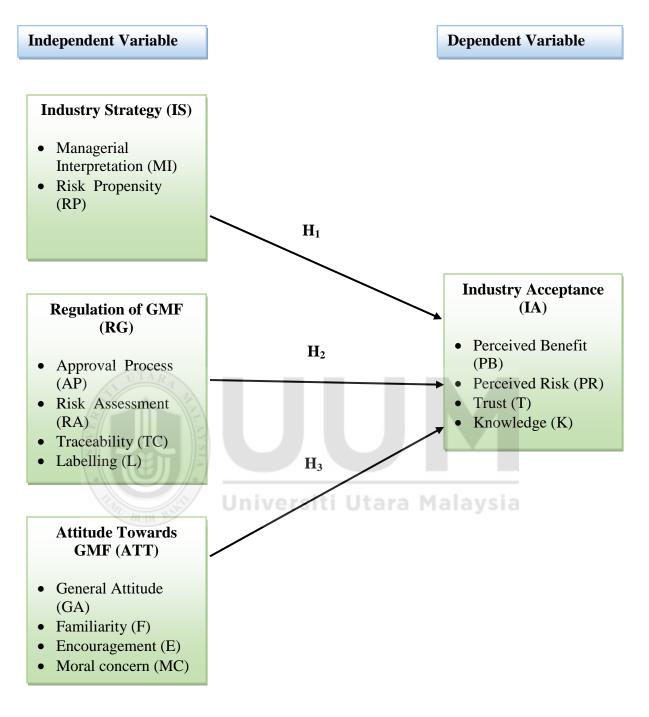


Figure 3.1 *Conceptual framework*

3.3 Hypotheses/Propositions Development

Below subsection mapped out the hypotheses development which has been tested in this research.

3.3.1 The Relationship Between IS and IA

Previous studies revealed that there is a relationship between IS and IA. The industry action and strategy are affected by the powerful antecedents namely managerial interpretation (Dutton & Duncan, 1987; Thomas & McDaniel, 1990). Therefore, there is a relationship between IS and IA. To exemplify in the context of this study, the higher tendency manager or leader of industry classified the GMF as an opportunity to the strategy of industry's business, there will be a higher acceptance of GMF in the industry (Sung & Hwang, 2013). This is also being supported by Mitra, Tait, and Wield, (2011) which exposed that an acceptance of GMF will be determined by the IS. Therefore, this study proposed that IS would directly and positively influence the IA. Accordingly, hypotheses 1 is presented.

 H_1 : There's an increase acceptance among the food industries through the implementation or support of proper strategy.

3.3.2 The Relationship Between Regulation and IA

Past studies have indicated that there is a relationship between regulation and IA. Finding from past studies suggested that regulation determines the acceptance of GMF in industries (Mitra et al., 2011). Hence, regulation framework in the aspect of approval process will influence an acceptance or rejection of GMF (Kothamasi & Vermeylen, 2011; Sanvido et al., 2005). For instance, during the approval process, if the GMF does not meet the standards and requirements in terms of quality, safety and efficacy as being set up by the regulatory system, that particular GMF will create a very long lead time of product development and cannot be marketed (Tait & Chataway, 2007; Tait & Williams, 1999). Hence, those complex and stringent regulations will inherently influence IA towards GMF. Therefore, the hypotheses 2 is presented :

 H_2 : There's an increase acceptance among the food industries through the implementation or support of systematic regulatory system.

3.3.3 The Relationship Between Attitude and IA

Differentiation of attitude leads to the unpredictable acceptance of GM technology around the world (Kimenju et al., 2005). The relationship of attitude and acceptance could be detected from this study. As an illustration, an attitude and acceptance shows strong correlation based on the derivation result from the precedent studies (Sorgot & Ambrozic-Dolinseks, 2010). Besides, Costa-Font and Jose (2012) indicated that general attitude of GMF may positively affect an acceptance of GM technology. Hence, with this elucidations hypotheses 3 is proposed :

 H_{3} : There's an increase acceptance among the food industries through the feedback or response of positive attitude.

3.4 Research Design

The research design for this study shows that data was collected cross-sectional which employed survey methodology and all variables were measured at a one or same point of time (Cooper & Schindler, 2003). This research is correlational due to the primary objective was to identify the variables that might affect the industry acceptance. Correlational analysis is used when attempts are made to study causal relationship between important variables (Sekaran & Bougie, 2009). For this study, the relationship between each dimensions of industry strategy, attitude, regulation and industry acceptance among Malaysia's food manufacturers are examined.

The following subsections are devoted to detailed elucidation of the research design, population, sampling procedure, data collection method, research instrument, pilot study and the statistical analysis used to test the hypotheses. The field study for this research was conducted by using self-administered questionnaire in collecting data on studied variables.

3.5 Operational Definition

The operational definition for this study is devoted into two subsections which comprised of dependent variable and independent variables. A thorough elucidation pertaining to these operational definitions can be viewed on the following subsection (3.5.1 and 3.5.2).

3.5.1 Dependent Variable

The dependent variable for this study is IA. Industry acceptance is defined as the situation which is giving a feedback on how far the potential stakeholders are willing to

adopt, accept or reject something or any new technology. This definition of IA is adopted based on the previous scholars (namely Ausserer & Risser, 2005; Chang et al., 2007). Therefore, the operationalization of IA was measured by perceived risk, perceived benefit, trust and knowledge. Thus, perceived risk in this research is defined as the degree of the industry views GMF as a risky and endangered condition towards production and operation of the industry.

Nonetheless, perceived benefit is clarified as the degree of the industry positively views GMF as a valuable, safe and beneficial for the operation and production of the industry. Meanwhile, trust is defined as the capability of the industry truly believe about the source of information pertaining to GMF which has been provided by other stakeholders or institutions.

In fact, an IA was also evaluated by the knowledge. In this research, knowledge is defined as a level of the industry in gaining facts, information, skill acquires through experience and theoretical or practical understanding of GMF.

3.5.2 Independent Variables

The independent variables of the present study are comprised of IS, regulation and attitude. The operationalization of IS in this study was based on the earlier work by Ackoff (1990) and Zahra and Covin (1993). These researchers defined IS as a determination of industry's future direction by setting out the long term method or plan to ensure the use and commercializing of GMF in the food production may able to achieve the target and goal of the industry.

Meanwhile, the operationalization of regulation for this study referred to the previous researchers (namely Braitwaite & Peter, 2000; McIntosh & Turnbull, 2006). They defined the regulation as laws, rules, procedures, guidelines regulated by the government and related authorities to ensure either the operation of business is carried out or stopped.

Attitude was further operationalized based on the precedent works done by Eagly and Chaiken (1993) as well as Liver, Pligt, and Wighboldus (2005). Therefore, in this research, attitude is defined as inner assumption which elucidated based on the evaluation towards particular things, ideas, objects or situations with the degree level either positive or negative, supportive or opponent response such as approve or disapprove, like or dislike, approach or avoid, attract or averse.

3.6 Measurement of Variables/Instrumentation

Measurement of independent variables and dependent variable of this research was carried out as follows. Details description of each measurement were discussed in chapter 2. All these measures were adapted from various sources, Table 3.1 summarized the measurement used in this study with its Cronbach Alpha and Coefficient Correlation.

Table 3.1 *Measures of variables*

Variable	Variable Measured	Source of Scale	No of item	Cronbach Alpha	Coefficient Correlation
DV	Industry Acceptance (IA) -Perceived Benefit -Perceived Risk -Trust - Knowledge	Amin et al. (2010) Chen & Li (2007) Prati et al. (2012b).	26	0.75-0.88	
IV	Industry Strategy (IS) -Managerial Interpretation -Risk Propensity	Sharma & Nguan (1999) Sung & Hwang (2013)	15	0.60-0.88	
IV	Attitude Towards GMF Production -General Attitude -Familiarity -Encouragement -Moral Concern	Amin et al. (2011, 2013) Frewer et al (2003) Grunert et al. (2003) Kimenju et al. (2005)	18 a Ma	0.72-0.88	
IV	Regulation of GMF - Approval Process - Risk Assessment - Labelling - Traceability	Vigani & Olper, (2013) Vigani et al. (2012)	18		0.66-0.89
Demographic and organizational information		Respondent's positio function, respondent' of education, type of of employees and ind	s length ownersh	of tenure, resp nip, state of inc	ondent's level

3.6.1 Research Instrument

This section describes the measure used in this study. The dependent variable for this study is industry acceptance. The independent variables proposed are industry strategy, regulation and attitude towards GMF usage. From the conceptual framework, the questionnaire was made up of five sections. Section A consisted of twenty six items measuring industry acceptance. Section B consisted of fifteen items measuring industry strategy, while section C contained eighteen items measuring regulation and follows by section D with seventeen items measuring attitude. Section F contains demographic-related items of respondent and the organizational information. The following subsections explained the items used in this study as a research questionnaire.

3.6.1.1 Industry Acceptance (IA)

The dependant variable for this study is IA. Therefore, in the context of this study, IA is measured by perceived benefit, perceived risk, trust and knowledge. There are twenty six items to measure IA. The four items of perceived benefit are adapted from Amin et al. (2011) whereas the balance of two items were adapted from Prati et al. (2012), using five-point Likert scales ranging from 1 = strongly disagree to 5 = strongly agree. The items of perceived risk is adapted from Amin et al. (2011), using five-point Likert scales ranging from 1 = very not worried and no harm to 5 = very worried and very harmful. Trust is adopted from Prati et al. (2012) by using five-point Likert scales ranging from 1 = completely distrust to 5 = completely trust. Meanwhile nine items for knowledge is adapted from Chen and Li (2007), were measured through five-point Likert scales ranging from 1 = strongly disagree to 5 = strongly agree to access the actual knowledge

of GMF (Lone Bredahl, 2001). Hence, the respondents were asked to rate their IA within

their industry's environment.

Question no	Code	Dimension	Item
1	IAPB 1	Perceived Benefit (PB)	In the long run, the use of GMF in the food industry would be a good contributor for the Malaysian economy and society
2	IAPB 2		The use of GMF in production would help to increase the productivity of food industry and will be a good contributor for the fight against Malaysian hunger
3	IAPB 3		The use of GMF in food production will increase food industry's performance
4	IAPB 4		The use of GMF in food production will enhance the quality of product in the food industry
5	IAPB 5		The use of GMF in food production would help food industry to be remained long lasting with another competitive industry
6	IAPB 6	Univ	An acceptance for the use of GMF in the food industry shows that benefits outweigh risks
7	IAPR 7	Perceived Risk (PR)	The use of GMF in food production creates the feeling of anxiety among the manufacturers in the food industry
8	IAPR 8		The use of GMF in food production will harm the performance of food industry
9	IAPR 9		The use of GMF in food production will lead to the long-term bad effect towards food industry
10	IAPR 10		The use of GMF in food production will lower the productivity of food industry
11	IAPR 11		The use of GMF in food production will impact the overall risk magnitude towards daily operation of food industry
12	IAT 12	Trust(T)	I would trust the government authorities or agencies in relation to communicate on the risk fo the use of GMF in the food production

Table 3.2 *Items constituting IA*

13	IAT 13	I would trust the Malaysian Ministry of Health in relation to communicate on the risk for the use of GMF in the food production
14	IAT 14	I would trust the Malaysian Agriculture Research and Development Institute (MARDI) in relation to communicate on the risk for the use of GMF in the food production
15	IAT 15	I would trust the Ministry of Natural Resources and Environment (NRE) in regards to communicate on the risk for the use of GMF in the food production
16	IAT 16	I would trust the Malaysian Islamic Development Department (JAKIM) in regards to communicate on the risk for the use of GMF in the food production
17	IAT 17	I would trust Malaysian Public Universities due to its responsibility to handle new research in regards to communicate on the risk for the use of GMF in the food production
18	IAK Knowledge 18 (K)	In the food industry, GMF is contrary to the conventional food because it contains genes
19	IAK 19	Enzymes are used in all foods
20		All bacteria found in food is harmful
21	IAK 21	Some protein found in foods can be toxic
22	IAK 22	Natural does not necessarily mean healthy
23	IAK 23	All processed foods in the food industry are made
2.4	23	by using GM products
24	IAK	Most of the customers eat DNA everyday
24 25		

Source : Chen and Li (2007); Amin et al. (2010) and Prati, Pietrantoni and Zani (2012).

3.6.1.2 Industry Strategy (IS)

A fifteen items measure taken from Sharma and Nguan (1999) and Sung and Hwang (2013) are used to measure IS. The questions measure two dimensions that contributing to form IS. These dimensions are (1) managerial interpretation and (2) risk propensity. IS is measured using five-point Likert scale, ranging from 1= strongly disagree to 5 = strongly agree. Fifteen measurements of IS are shown in Table 3.3 below. Respondents were asked to rate the IS according to their current management of their industry.

Table 3.3 *Items constituting IS*

	NTAD		
Question no.	Code	Dimension	Items
1AIND	ISMI 1	Managerial Interpretation (MI)	GMF is a key factor for the survival of food industry
2	ISMI 2	Universi	GMF represents a new opportunity for the business of food industry
3	ISMI 3		GMF is important to the development of food industry
4	ISMI 4		GMF would jeopardize the profits of food industry
5	ISMI 5		Investing in GMF can lead to competitive advantage in the food industry
6	ISRP 6	Risk Propensity (RP)	The use of GMF in production requires establishment of new strategies even they are risky for the food industry
7	ISRP 7		An implementation new strategies for the use of GMF in food industry are financially risky
8	ISRP 8		GMF usage in food production shows that food industry can quickly respond to the changes in customer demand

9	ISRP 9	GMF usage in food production shows that food industry can quickly expand into latest or global competitive market
10	ISRP 10	GMF represents lower product price in the food industry as a response to changes in competitor's price
11	ISRP 11	GMF usage requires food industry to develop and utilize new or advanced technology to produce faster production process
12	ISRP 12	GMF represents more contemporary and attractive product towards food industry
13	ISRP 13	The use of GMF in the food production shows that food industry can create product variety or differentiation
14	ISRP 14	Our major supplier can easily and positively respond towards GMF usage in increasing production volume in the food industry
15	ISRP 15 Universi	GMF represents food industry can quickly and easily switch to new supplier to produce lower production cost, better quality and improved delivery time

Source : Stearns, Reynolds and Williams (1995), Sharma and Nguan (1999), and Sung and Hwang (2013)

3.6.1.3 Regulation of GMF

Regulation is determined by using eighteen items measure, adapted from Vigani and Olper (2013) and Vigani et al. (2012). In this study, measurement of regulation is developed from its dimension namely approval process, risk assessment, labelling and traceability. Regulation is measured using five-point Likert scales, ranging from 1 = strongly disagree to 5 = strongly agree. The eighteen measurement of regulation towards

GMF production are shown in the table below. Respondents were asked to rate their regulation in accordance with their current regulation of industry and country.

	0 0		
Question no	Code	Dimension	Items
1	RGAP 1	Approval Process (AP)	The approval procedure of GMF regulation is not available in the food industry
2	RGAP 2		The regulation of GMF in the food industry is a mandatory approval process but no enforcement has been imposed until this moment
3	RGAP 3		The regulation of GMF in the food industry is a mandatory approval process that adopting substantial equivalence principle
4	RGAP 4	Universi	The regulation of GMF in the food industry is a mandatory approval process that adopting the precautionary principle
5	RGAP 5		The food industry does not involved in the approval process of GMF regulation due to GM free-country
6	RGRA 6	Risk Assessment (RA)	The risk analysis of GMF regulation is not available in the food industry
7	RGRA 7		In the food industry, the risk assessment has been proposed but no enforcement has been made until this moment
8	RGRA 8		In the food industry, the risk assessment is a mandatory
9	RGRA 9		The food industry does not implement risk assessment due to GM free-country
10	RGL 10	Labelling policies (L)	In the food industry, the labelling policies is not available
11	RGL 11		The food industry is adopting the voluntary GMO labelling

Table 3.4Items constituting regulation

12	RGL 12		The food industry is adopting the mandatory GM label with the threshold more than 1 percent
13	RGL 13		The food industry is adopting the mandatory GM label with the threshold equal or less than 1 percent
14	RGL 14		The food industry does not involved with labelling policies due to GM free-country
15	RGTC 15	Traceability (TC)	In the food industry, the traceability of GM is not available
16	RGTC 16		In the food industry, the traceability of GM is far from the enforcement or is in place of an IP
17	RGTC 17		In the food industry, the traceability of GM is a mandatory
18	RGTC 18		The food industry does not implement the traceability due to GM free-country

Source: Vigani and Olper (2013) and Vigani et al. (2012)

3.6.1.4 Attitude Towards GMF Usage

Attitude is determined by using seventeen items measure, adapted from Grunert, Bredahl and Scholderer (2003), Frewer, Scholderer and Bredahl (2003), Kimenju, De Groote, Karugia, Mbogoh and Poland (2005), Amin et al. (2011), and Amin, Jahi and Nor (2013). In this study, measure of attitude was developed from its dimension namely general attitude, familiarity, encouragement and moral concern. Attitude is measured using five-point Likert scales, ranging from 1 = strongly disagree to 5 = strongly agree. The seventeen measurement of attitude towards GMF production are shown in the table 3.5 below. Respondents were asked to rate their attitude within their industry.

Table 3.5Items constituting attitude to GMF

Question	Code	Dimension	Items
no			
1	ATGA 1	General Attitude (GA)	The application of genetic modification in the food production is extremely bad
2	ATGA 2		The application of genetic modification in the food production is extremely good
3	ATGA 3		The application of genetic modification in the food production is extremely foolish
4	ATGA 4		The application of genetic modification in the food production is extremely wise
5	ATGA 5		The food industry strongly accept for the application of GMF in the food production
6	ATGA 6		The food industry strongly reject for the application of GMF in the food production
7	ATF 7	Familiarity (F)	GMF is easy to be known by the manufacturer in the food industry
8	ATF 8	Universi	GMF is easy to be judged by the manufacturer in the food industry
9	ATF 9		GMF is difficult to be judged by the manufacturer in my industry
10	ATF 10		An effect of applying GMF in the food production was known by the food industry
11	ATF 11		The use of GMF in the food industry is controllable
12	ATE 12	Encouragement (E)	The use of GMF in the food industry requires more rigorous Research & Development (R&D)
13	ATE 13		GMF should be commercialized in the food industry

14	ATE 14		The use of GMF in the food industry should be given monetary support by the government
15	ATMC 15	Moral Concern (MC)	In the food industry, the use of GMF in food production is seen as an artificial or threaten natural order of things
16	ATMC 16		In the food industry, the use of GMF in food production is seen such leads to tamper with the nature
17	ATMC 17		In the food industry, GMF makers are seen as 'playing God'

Source : Grunert, Bredahl & Scholderer (2003); Frewer, Scholderer & Bredahl (2003); Kimenju, De Groote, Karugia, Mbogoh & Poland (2005); Amin et al (2011) and Amin, Jahi & Nor (2013)

3.6.1.5 Demographic Information of The Industry And Respondent

There are several questions regarding the respondents and organizations were collected and included as part of questionnaire in this research. The demographic information related to respondents consist of position, department or job function, level of education. In addition, among the industrial information asked were length of tenure, type of ownership, state of industry, number of employee as well as industry profit level.

3.7 Data Collection Procedures

Data for industry acceptance of GMF was collected using self-administered questionnaires. Postal and mail method were employed for this study. The questionnaire was sent out to the food industries accompanied by a cover letter, stating the purpose of the study and the assurance of confidentiality for the collected data.

Initially, a total of 248 questionnaires were posted to the managers of the food industries which are selected randomly from the list obtained from the FMM Directory, 2014. The rational of choosing these respondents from a manager level is because they are basically known as a person in charge or responsible to make a decision whether to accept or reject the product in their industry's production (Bukszar & Connolly, 1988; March & Shapira, 1987; Vaiman, Scullion, & Collings, 2012). Yet, they are also known as a person who directly related to the food operation of the industry as well as assigned to manage the importation and exportation of the food transaction in the industry. Absolutely, they have an ability to provide the trusted data on the acceptance of GMF instead of giving a correct answer to the questions and reliable feedback on any discrepancies that might be found in the questionnaire.

In order to distribute the questionnaire, respondents were contacted through email, face to face, and also by phone-called. The industries were given fourteen days to complete and return the answered questionnaire. During that period, the follow up was actively done upon distribution of questionnaire has reached on the respondents' hand. However, the second follow up had been done by telephone after four weeks according to the first distribution date of questionnaire as a reminder to unreturned questionnaire until an adequate number of responses had been received.

3.8 Sampling

The unit of analysis for this study was organizational level. The sampling frame is clarified as a list of all elements in a population of the study (Uma Sekaran & Bougie, 2009). The sampling frame for this study was food industries. On the other hand, the

sampling method used in this study was simple random sampling. Applying simple random sampling makes all the elements of population have a high possibility to be chosen into sample (Thiétart & Wauchope, 2001). Thus, this study is matched to use simple random sampling method because the population of this study contains all food industries in Malaysia which is not be divided or categorized into any section or group.

3.8.1 Population

The population of this study consists of the Malaysian food companies which is located throughout Peninsular Malaysia. The population for food industry in this research comprised of all processed food industries in Malaysia taken from the FMM Directory (2014). Based on this FMM directory, the total of food companies in Peninsular Malaysia is 656 industries.

3.8.2 Sample Size

Universiti Utara Malaysia

This study used simple random sampling. Based on Krejcie and Morgan (1970) table such indicated in the following table 3.6, for the population size between 650 to 700, the appropriate sample size is 248 food companies.

Table 3.6Table for determining sample size for a given population

N	S	Ν	S	N	S
10	10	220	140	1200	291
15	14	230	144	1300	297
20	19	240	148	1400	302
25	24	250	152	1500	306
30	28	260	155	1600	310
35	32	270	159	1700	313
40	36	280	162	1800	317
45	40	290	165	1900	320
50	44	300	169	2000	322
55	48	320	175	2200	327
60	52	340	181	2400	331
65	56	360	186	2600	335
70	59	380	191	2800	338
75	63	400	196	3000	341
80	66	420	201	3500	346
85	70	440	205	4000	351
90	73	460	210	4500	354
95	76	480	214	5000	357
100	AR 80	500	217	6000	361
110	86	550	226	7000	364
120	92	600	234	8000	367
130	97	650	242	9000	368
140	103	700	248	10000	370
150	108	750	254	15000	375
160	113	800	260	20000	377
170	118	Univ ₈₅₀ Sit	265	Ma 30000 Sia	379
180	123	900	269	40000	380
190	127	950	274	50000	381
200	132	1000	278	75000	382
210	136	1100	285	1000000	384

Note.—*N* is population size. *S* is sample size.

3.9 **Pre-test**

The pre-test is the small-scale versions of the study that collects data from respondents similar to the actual study which serves as guide to see whether the selected approach and method will work as intended or otherwise (William G. Zikmund, 2010). Doing a pre-test can expose problems in the research approaches. The problem can be dealt with before

the larger study is performed. The questionnaire used in this study was developed based on previous research and conceptual works. A pre-test was carried out to assess the validity and reliability of the measurement in the questionnaire. In addition, the pre-test was used to determine the clarity of item in the questionnaire.

Therefore, the pre-test of content validity in this research at the first stage was done by three academicians from Universiti Utara Malaysia (UUM). This is in line with Gay and Diehl (1996) suggested before the questionnaire being used in the actual study, pre-testing of the questionnaire by two or three people should be performed to detect any deficiencies and provide suggestion for improvement. Hence, the selection of academicians was based on their industrial experience in the food industry. The respondents were given a complete set of questionnaire to analyzed the items for readability, accuracy of words, clearness of questions as well as adequacy of the items used in the questionnaire. Furthermore, below questions (Table 3.7) were also enclosed and asked during the pre-test.

Questions

- 1. Which part of any sentence in the questionnaire that you find confusing?
- 2. Which part of the questionnaire that you felt difficult to understand?
- 3. Which words in the questionnaire that you do not understand?
- 4. Which sentences in the questionnaire that you are unsure of the meaning?
- 5. Which question that you feel like overlapping with one another?
- 6. For each section, do you clearly understand the focus of the questions?
- 7. Do you feel comfortable reading the questions in term of clarity of printed words?
- 8. Are the font used for the words is big enough to read?
- 9. Do you clearly understand the relationship to each question?
- 10. Do you find it difficult to move from one section of the questionnaire to another?
- 11. Is the structuring of the questionnaire convenience to read and to answer?

The above questions were inserted during face validity process. There were several changes made towards wording of questionnaire, structuring and rephrasing few questions as recommended and commented by the experts. Entirely, the experts understood the questionnaire which includes of clarity, readability, clearness of question and items adequacy utilized in measurement. The questionnaires were then allowed to be distributed to the targeted respondents.

3.10 Data Screening

Before statistical analysis implemented, all received questions were thoroughly screened. Questionnaire contains large proportion of missing data were discarded for further analysis (Hair, Money, Samouel, & Page, 2007). Data screening process plays crucial role in gaining useful, reliable as well as valid data.

3.11 Techniques of Data Analysis

Upon completing data collection process, the data analysis of this study was conducted by utilizing Statistical Package for the Social Science (SPSS) version 23. In providing the finding of this research, the following statistical techniques were implemented :

3.11.1 Descriptive Analysis

At the beginning stage of analysis, descriptive statistics which include background of the respondents, information of surveyed industry and variables of research were implemented in this study. It was then followed by the analysis of mean, range, maximum and minimum to describe the main characteristics of the sample in this study.

Universiti Utara Malaysia

3.11.2 Factor Analysis

Factor analysis provides an understanding of the dimension and relationship for each variables in the proposed framework (Nunnally, 1978). Through factor analysis, the interconnection between large number of studied variables could be seen and analyzed. This factor analysis also known as data reduction technique to the dimension of variables (Hair, Black, Babin, & Anderson, 2010)

3.11.3 Reliability Test

This test of reliability was implemented to examine the internal consistency for each item in the questionnaire through Cronbach alpha value. This analysis plays an imperative role in ensuring all the items stated in the questionnaire were measured precisely.

3.11.4 Pearson's Correlation Analysis

Pearson's correlation used to indicate the direction, strength and significance of all studied variables. This analysis was undertaken in the context of this study to examine the relationship and direction linear relation among two variables. Detail explanation related to this Pearson analysis posited in the section 4.8.

3.12 Summary

Last but not least, this chapter emphasizes on the conceptual framework and methodology that will be utilized in this research. It highlighted the hypotheses development, research approach, questionnaire/instrument, data collection method as well as statistical data analysis/method. The result of the analysis and finding were presented in the next chapter, chapter 4.

CHAPTER FOUR RESEARCH FINDINGS

4.1 Introduction

This chapter describes the vital part of this study which emphasized on the analysis undertaken and discloses the results of data analyses and hypotheses testing. Data were analyzed using SPSS software, version 23. This chapter starts with focusing on the response rate as being acquired based on the returned questionnaires to the researcher. This is followed by the data screening in order to obtain the information such as missing data, outliers as well as normality. Subsequently, this is followed by discussing on the respondents' profile in accordance with their demographic information. Next, the goodness of measurement part, in which the construct validity and internal consistency were tested and established. Later than that, the validation of hypotheses testing for this study were carried out by utilizing Pearson Correlation (r). Finally, a short summary of this chapter is provided.

4.2 Data Description

Referring to the explanation as indicated in the section 3.8.1, all the processed food industries in Malaysia are categorized as a population for this study. In accordance with the food industries listed by FMM directory 2014, stated that 656 food industries were constituted as population for this study. Out of that population sum, 248 food industries were distributed with the questionnaire through various mediums such as online survey (namely : Survey Monkey), email as well as self-administered to each of these food

industries that have been traced out. All those questionnaires were sent to the food industries starting on 2nd July, 2015 and it was over during 8th October 2015. After the duration of these three months of data collection, a total of 98 questionnaires were completed and returned to the researcher. This impacted to the response rate of 39.52 %.

Upon completion of the data collection stage, the obtained data were analysed by examining the data entry as well as handling the missing data. While reviewing or examining the completeness of the returned questionnaires, it was discovered that 20 questionnaires contained missing value, in which exceeding approximately 19.6 percents or more of the construct or variable measurement. As indicated by Hair, Money, Samouel and Page (2007), all questionnaires which comprised of the missing data with the proportion exceeded 10 % of the total response, requires to be eliminated. Thus, these cases of missing data were omitted from the preliminary analysis that will be conducted.

As a consequent, from the deletion or elimination of 20 cases of missing data, it was calculated that only 78 usable questionnaires or samples were remained in the SPSS database for further analysis. Apparently, the requirement of sample size has met the appropriateness to proceed with the analysis of this study. This is matched to the exposure of researcher namely Sekaran (2010) which indicated that the analysis is appropriate to be undertaken when the sample size is amounted larger than 30 and less than 500. Due to the effective or usable sample size for this study is 78, fortunately it is considered valid and satisfactory to implement this quantitative analysis.

Table 4.1 constitutes the response rate for this study.

Table 4.1 *Response rate*

Response	Frequency		
Number of distributed questionnaires	248		
Total returned questionnaire	98		
Response rate	39.52%		
Usable and completed questionnaires	78		
Effective response rate	31.45%		

In accordance with the respected Table 4.1, 39.52 percent is an effective response rate obtained from this study. As indicated by Anseel, Lievens, and Schollaert (2010), the respondent which being as a representative of the organization especially manager level would only manage to provide response rate below than 50%.

In fact, the food industry achieved response rate more than 50% when the questionnaire distributed more than one to the food industry due to their multiple department. Thus, this study distributed one questionnaire to the one food industry and the effective response rate of 39.52 is satisfactory.

4.3 Data Screening

Data screening involves a number of steps which comprised of the missing data, detection of outliers as well as normality test. This data screening plays an imperative role in order to ensure that any effect derived from the characteristic of data would not adversely affect the findings of this study. However, before implementing data screening process, all the items which contain negative statements in the questionnaires were being reversed coded.

4.3.1 Missing Data

Identifying missing data is an initial step in the data screening process. Unfortunately, obtaining a complete set of data for all cases or questionnaires is quite impossible (Coakes, 2013). This is mainly due to the missing data in any research which is being carried out known as a common phenomenon; whereby the valid values of one or more items in the scale are not available or missed out to be filled for data analysis (Hair, Black, Babin, & Anderson, 2010, p.42). Respondents' failure to answer one or more items in the questionnaire, in which leaving the items blank led to the occurrence of missing data (Uma Sekaran & Bougie, 2009). This circumstance of missing data was happened due to the respondents omitted or refused to answer certain question or lack of knowledge concerning certain questions in the questionnaire. However, in the context of this study, there were 20 cases or questionnaires declared as missing value which have directly reduced the usable cases from 98 to 78.

Universiti Utara Malaysia

4.3.2 Detecting Outliers

Detecting outliers were the second step implemented through the data screening process. Outliers known as an extreme case in the set of data that out of normal range and it may affect the findings or results of data analysis (Zikmund, Babin, Carr, & Griffin, 2010). In this study, the examination of outliers in the data set have been undertaken in order to avoid any adverse impact that may derived from the outliers. There are few ways to examine the presence of outliers as the following.

Firstly, the outliers will be screened by using the box plot in SPSS database. The cases will be defined as outliers when there are little circles with the attachment of the cases'

ID number appeared in the box plot (Pallant, 2011). However, in order to ensure these circles are exactly represent the outliers, it could be traced through the following methods. 1) If the cases has any extreme scores whereby it have three or more lengths from the upper or lower edge of the box, it will be indicated with an asterisk. 2) Cases with value between one and half as well as three box lengths from the upper or lower edge of the box are defined as outliers (Coakes & Ong, 2011; Coakes, 2013; Pallant, 2011). Hence, in the context of this study, no extreme scores have been found. Meanwhile, the details of the outliers presented as the following Table 4.2 :

Table 4.2 *Summary of outliers (n=78)*

Variable			Outlier Cases
Industry Acceptance			Q29, Q59, Q74
Industry Strategy			None
Regulation			None
Attitude	Universiti	Utara	Mal ^{Q74} sia

In addition, outliers could also be seen through standard score (z) (Kumar, Talib, & Ramayah, 2013, p.58; Meyers, Gamst, & Guarino, 2006, p.171). Cases exceeding range of \pm 2.5 considered as outliers for the sample size which is smaller or equal to 80 observations. Besides, for the sample size which is larger than 80 observations, cases will be interpreted as outliers when the z score is out of range between \pm 3.00. Thus, in this study, there are 3 cases namely Q29, Q59 and Q74 exceeded the range of \pm 2.5 z score. From the test that has been carried out, 3 out of total 78 cases were considered as outliers such being depicted in the Table 4.2. Therefore, all those outliers have been removed as recommended by Pallant (2011). Any extreme outliers requires deletion from the data

file in order to diminish adverse effect on the empirical findings or results of the analysis (Hair et al., 2010). Subsequently, 3 cases were deleted from the data set and leaving 75 valid cases that were satisfied for further analyses.

4.3.3 Test of Normality

Upon deletion three cases of the outliers, the usable of 75 cases have gone through the normality test by using SPSS software version 23. Normality test was conducted by evaluating the value of skewness, kurtosis as well as Shapiro-Wilk such shown in Appendix B. The acceptable values for both skewness and kurtosis considered be in the range of normal curve are between -1 and +1 (Meyers, Gamst, & Guarino, 2013, p.140-141). The following Table 4.3 exhibits the skewness and kurtosis values for this study.

Variable **Description of Distribution** Skewness **Kurtosis** Industry Acceptance -0.320 -0.471 Normal Distribution Industry Strategy -0.293 -0.325 Normal Distribution Regulation 0.151 -0.700 Normal Distribution Attitude -0.3420.062 Normal Distribution

Table 4.3Normality test : Skewness and Kurtosis Statistic (n=75)

With the reference to the above table (Table 4.3), it is indicated that the data was normally distributed. This is mainly due to none of the variables exceeded the values of kurtosis and skewness more than +/- 1. Upon completing the test of skewness and kurtosis value, the test of Shapiro-Wilk was implemented subsequently. This was strengthened by Coakes (2013) which implied that the Shapiro-Wilk test matches with

the small sample size of normality test. Shapiro-Wilk used for the sample size less than 100, which matched to 75 observations of this study. Beside that, this Shapiro-Wilk test tend to be more powerful and the best selection to assess normality's departure (Meyers et al., 2006). A distribution of this study is considered as normal when the significant value is more than 0.05 (sig>0.05). Therefore, the result of Shapiro-Wilk test exhibited as the following table 4.4.

Table 4.4

Normality test :	Shapiro-Wilk	Values $(n=75)$
------------------	--------------	-----------------

Variable	Shapi	iro-Wilk	Result
	Z	Significant	
Industry Acceptance	0.980	0.280	Normal
Industry Strategy	0.971	0.080	Normal
Regulation	0.975	0.151	Normal
Attitude	0.970	0.068	Normal

Universiti Utara Malaysia

In short, the above table 4.4 indicated that industry acceptance, industry strategy, regulation and attitude comprised of the significance values exceeded 0.05 (p>0.05), in which constituting data was normally distributed. Hence, this circumstance does not violate the assumption of normality and parametric test. Therefore, the hyphotheses test of this study were undertaken through parametric test.

4.4 Demographic Information

This section exposes information pertaining to the background of the respondents as well as details of the companies. However, the amount number of respondents involved in this research was 75. The details of respondents and company profile were analyzed by using frequency analysis to represent the finding or result. The frequency analysis was visualized through pie chart which has been labelled according to the percentage values. Thus, percentile data of demographic information for this research could be shown clearly. Consequently, the percentage data pertaining to the comparison of lowest and highest number of respondents answering the questions could be obtained.

4.4.1 Job Designation/Position

This section defines the designation of respondents involved in answering the distributed questions. The respondents came from various levels of designation in their companies. Some of them were from top management, middle management and bottom management. As depicted in figure 4.1, respondents who hold the position as senior manager was 29%. This is followed by the first line manager which amounted 27%. Subsequently, middle manager was recorded 24 %, meanwhile Executive was 16%. In addition, the respondents came from the designation of senior executive as well as clerk in the selected companies were 3% and 1%. Thus, this circumstance was matched to the target of researcher, in which expecting the distributed questions would be answered by the company's top management. They were selected because they have knowledge, experience as well as directly involved in the acceptance of GMF in their companies. Furthermore, the highest and lowest percentage responses derived from the respondents' designation were clearly shown as follows :

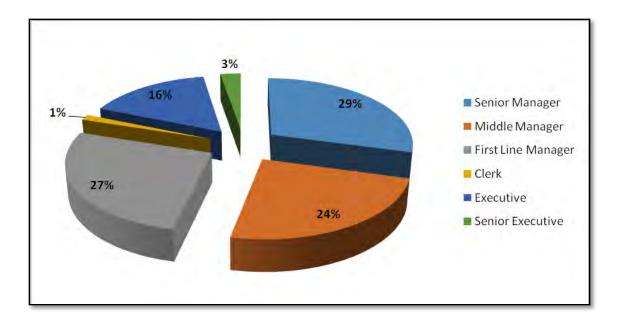


Figure 4.1 *Designation of Respondents*

4.4.2 Department Attach to the Selected Industries

In accordance with the figure 4.2 in this study, finding showed that the respondents who answer the questionnaires came from different department they being attached to in their companies. For instance, there were department of Information Technology (IT), Sales/Marketing, Finance/Accounting, Customer Service. Human Resources. Administrative, Operation, Quality as well as R &D. From this result, it could be seen that the highest respondent represented by the Operation department was 27%. This was followed by both departments of Sales/Marketing and Administrative/Owner which amounted the same 21% respondents. Besides, respondents came from Quality department was about 12%, in which contradicted only 1% with Human Resource Department (11%). Meanwhile, respondents came from the Department of Finance/Accounting were about 4%. Another 2% of the respondents were from IT

department. However, the lowest feedback provided by the respondents from two departments of Customer Service and R&D were respectively 1%. Obviously, the finding shown in the following pie chart indicated that the sent questions were answered by the respondents from targeted department namely operation department.

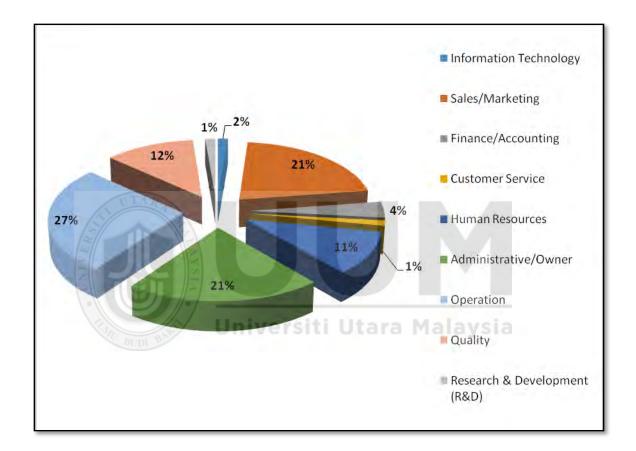


Figure 4.2 *Department of Respondents*

4.4.3 Tenure of Employment

Based on the findings shown in the figure 4.3, there were five categories of employment tenure among the respondents in this study. Majority of the respondents have been

working with the company more than 1 year and not exceeded than 3 years period which amounted 32%. On the other hand, 25% of the respondents have been working with the selected companies within 4 to 5 years. Next, there were 16% of the respondents worked with the period of 5 to 10 years. Last but not least, only 3% of the respondents were recorded working with the companies more than 10 years. Thus, as enumerated by the biggest percentage of respondents' year retention in the companies, it is revealed that most of the returned questionnaires were answered by the experienced respondents.

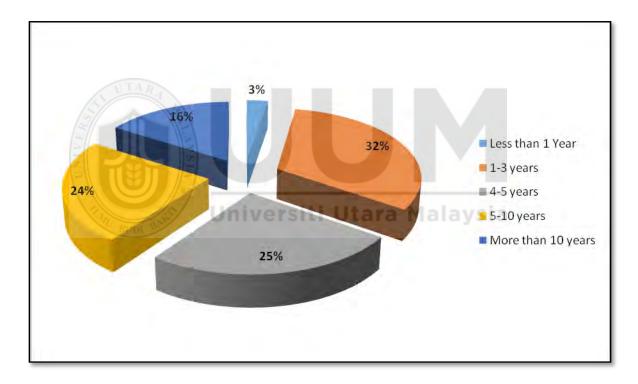


Figure 4.3 *Respondents' Tenure of Employment*

4.4.4 Education Level

As illustrated from the finding, it could be seen that there were two comparisons in terms of respondents' education background found in this study. For instance, 83% of the respondents who had finished their studies, graduated from the tertiary, college as well as a university, in which known as the highest percentage. This was contrary to the 17% of the respondents that only ended their education level at the secondary school. Therefore, the result derived from the figure 4.4 shown that this result have fulfilled the expectation of researcher, in which requiring questions should be answered by the respondents who have higher academic qualification. However, none of the completed questions for this research were answered by the respondents from primary school and informal education level such shown in the following figure :

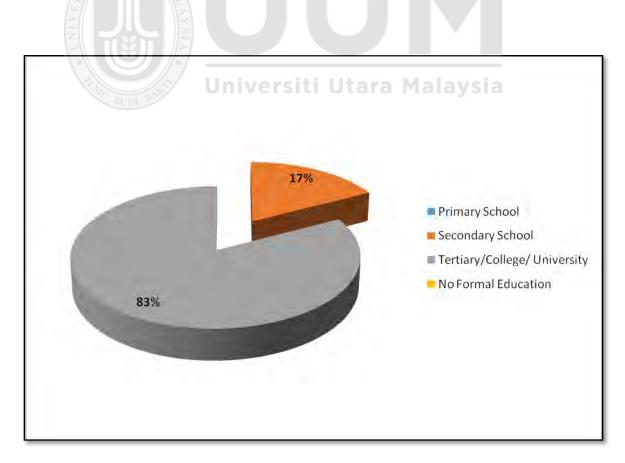
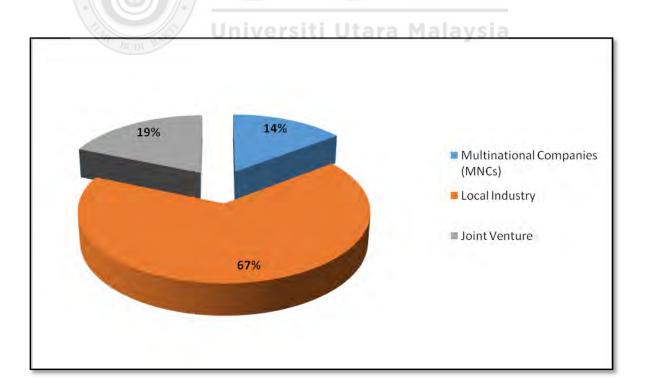
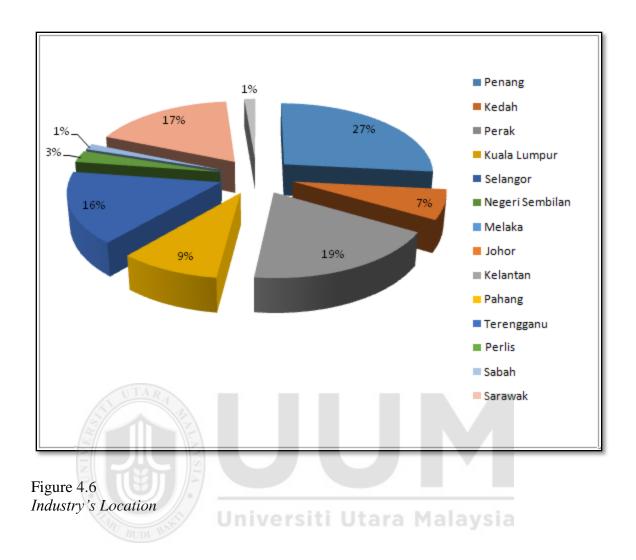



Figure 4.4 Education Background of Respondents


4.4.5 Industries Ownership

The data of the industry ownership are highlighted in this research. Among of them were MNCs, local industry and joint venture companies. As an overall, it is exposed that 67% of the respondents came from the local industry throughout Malaysia. Furthermore, it was followed by the 19% of the respondents allocated in joint venture companies. It is also exposed that the result were contributed by the respondents from MNCs. Simultaneously, the percentage amount of industry ownership from MNCs was about 14%. Hence, the following figure 4.5 shows the frequencies of the industries ownership obtained from this research.

4.4.6 Location of Selected Industries

According to the result provided by the respondents, all of selected food industries throughout 14 states of Malaysia were demanded to complete and return the questionnaire to the researcher. However, from the results scored, it was out of researcher expectation when the food industries from several states such as Pahang, Terengganu, Perlis, Sabah and Sarawak did not respond and return the completed questions. In accordance with the figure 4.6 below, fortunately, 27% of the food industries located in Penang were recognized as the highest state which contribute to this study. This was then followed by the food industries came from Perak which amounted 19% of the total percentage according to the location of selected industries. In addition, Johor was a third state which contributed 17% response or feedback towards this GMF survey. Fourth, 16% of the questions were completed and returned by the food industries from Selangor. Fifth, 9% were from Kuala Lumpur, while another 3% were from Negeri Sembilan. Meanwhile, the balance of 1% represented by both food industries from Kelantan and Melaka.

4.4.7 Number of Employees

As summarized by the figure 4.7, the number of employees was based on the selected food industries. Therefore, the size of the selected food industries in this research was determined by the number of employees employed in this research. Most of these food industries (40%) were large companies, employing more than 50 workers. 20% of the food industries employing not more than 20 workers whereas, another 14% industry comprised smaller or equal to 30 workers. In fact, there were 12% of the food industries known as small companies, in which employing less than 10 workers. Another 9% of the

food industries employing less than 41 workers (31-40 workers). The balance of 5% was the amount of food industries employing approximately 41 to 50 workers. Although there were several categories of the employee number in the food industries, the researcher sent only 1 question to each of the selected food industries.

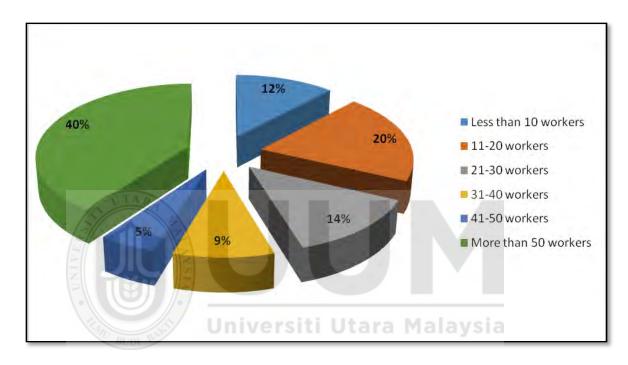
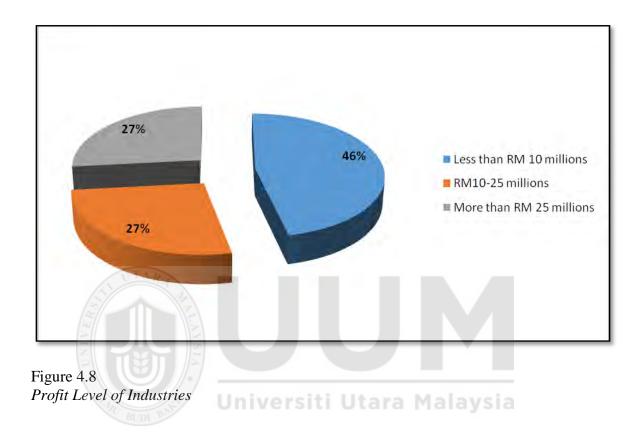



Figure 4.7 Total of Employee According to the Selected Industries

4.4.8 Profit Level

The respondents were also not exempted to reveal the profit level in their food industries. Referring to the figure 4.8, it is denoted that 46% of the selected food industries earning their profit less than 10 million according to their annual report. Furthermore, it was recorded that 27% food industries earning their profit in the range between RM 10 million to 25 million. Coincidentally, another balance of 27% food industries earned their profit more than RM25 million, in which summarizing these industries was collecting the highest income per annum.

4.5 Descriptive Statistics of Variables

This section explains the descriptive statistics pertaining to all variables of this research. Descriptive statistics are utilized to analyze, summarize and describe the characteristics of the collected data (Coakes, 2013; Pallant, 2011). Besides, this descriptive technique would also be used in measuring and explaining the central tendency and dispersion of those data studies. Since the data for this research was normally distributed, the best technique to explain the central tendency is by using mean. Mean is an average value from the entire set of data, which is most often utilized in calculating central tendency (Kumar et al., 2013, p.182).

The range was also be utilized in measuring the dispersion for this research. The range is the difference between the highest and lowest values within a set of data or number (Coakes, 2013). In addition, due to the collected data in this study was normally distributed, the inferential statistics could be performed to explain the data. Thus, the generalization of the population of this study from the obtained sample could be assumed. The following subsection portrayed the central tendency, dispersion, maximum and minimum value of the data obtained in this research.

4.5.1 Mean and Range Analysis for Industry Acceptance

Table 4.5 exposed twenty-six items for dependent variable namely industry acceptance, which were measured by using mean and range. Each of these items have different mean values. The highest mean value for industry acceptance was from item number two, with the value of 3.87. This clearly explained that most of the respondents have seen the benefits of GMF acceptance as improving industries' productivity as well as reducing food shortage. The lowest mean value was 2.39; in which emphasized on the item of 'All processed foods in the food industry are made by using GM products'. In the aspect of range, all the items contain the range values between 3 and 4. All the items share the maximum value of 5 except item number twenty-two with the value of 4. Meanwhile the minimum value for this industry acceptance ranging between 1 and 2.

Table 4.5Mean and Range Analysis for Industry Acceptance

No	Items	Range	Minimum	Maximum	Mean
1	In the long run, the use of GMF in the food industry would be a good contributor for the Malaysian economy and society	4	1	5	3.64
2	The use of GMF in food production would help to increase the productivity of food industry and will be a good contributor for the fight against food shortage	4	1	5	3.87
3	The use of GMF in food production will increase food industry's performance	4	1	5	3.64
4	The use of GMF in food production will enhance the quality of product in the food industry	4	1	5	3.67
5	The use of GMF in food production would help food industry to be remained long lasting with another competitive industry	sit ⁴ Ut	ara ¹ Mal	aysia	3.77
6	An acceptance for the use of GMF in the food industry shows that benefits outweigh risks	4	1	5	3.60
7	The use of GMF in food production creates the feeling of anxiety among the manufacturers in the food industry	4	1	5	2.77
8	The use of GMF in food production will harm the performance of food industry	4	1	5	3.35

- 9 The use of GMF in food production will lead to the long-term bad effect towards food industry
- 10 The use of GMF in food production will lower the productivity of food industry
- 11 The use of GMF in food production will impact the overall risk magnitude towards daily operation of food industry
- 12 I would trust the government authorities or agencies in relation to communicate on the risk for the use of GMF in the food production
- 13 I would trust the Malaysian Ministry of Health in relation to communicate on the risk for the use of GMF in the food production
- 14 I would trust the Malaysian Agriculture Research and Development Institute (MARDI) in relation to communicate on the risk for the use of GMF in the food production
- 15 I would trust the Ministry of Natural Resources and Environment (NRE) in regards to communicate on the risk for the use of GMF in the food production
- 16 I would trust the Malaysian Islamic Development Department (JAKIM) in regards to communicate on the risk for the use of GMF in the food production
- 17 I would trust Malaysian Public Universities due to its responsibility to handle new research in regards to communicate on the risk for

4	1	5	3.19
4	1	5	3.51
4	1	5	3.44
3	2	5	3.49
3	2	5	3.43
3	2	5	3.67
ti Uta	ra Mal	aysia	

4	1	5	3.43
4	1	5	3.33
4	1	5	5.55
3	2	5	3.75

the	use	of	GMF	in	the	food	
pro	ducti	on					

18	In the food industry, GMF is contrary to the conventional food because it contains genes	4	1	5	3.29
19	Enzymes are used in all foods	4	1	5	2.88
20	All bacteria found in food is harmful	4	1	5	3.65
21	Some protein found in foods can be toxic	4	1	5	2.72
22	Natural does not necessarily mean healthy	3	1	4	2.52
23	All processed foods in the food industry are made by using GM products	4	1	5	2.39
24	Most of the customers eat DNA everyday	4	1	5	2.96
25	To be healthy, food should be sterile before it is eaten	4	1	5	3.37
26	There is no laws or regulations on the use of GMF in the food industry	4	1	5	3.48
	ATETA				

Universiti Utara Malaysia

4.5.2 Mean and Range Analysis for Industry Strategy

Table 4.6 showed the result of mean and range analysis which represented the independent variable namely industry strategy. As indicated from the table below, the mean value of all items were not the same, in which ranging from the lowest value of 2.49 to the highest value of 3.93. In the meantime, each item did not share the same value of range, in which differ between 3 and 4. Besides, it is shown that the maximum value for all items of this independent variable was 5, except for the sixth item was not same with the value of 4. The minimum value of industry strategy was between 1 and 2.

Table 4.6Mean and Range Analysis for Industry Strategy

No	Items	Range	Minimum	Maximum	Mean
1	GMF is a key factor for the	4	1	5	3.29
	survival of food industry				
2	GMF represents a new	4	1	5	3.85
	opportunity for the business of				
	food industry				
3	GMF is important to the	4	1	5	3.73
	development of food industry				
4	GMF would jeopardize the	4	1	5	2.52
_	profits of food industry			_	
5	Investing in GMF can lead to	4	1	5	3.93
	competitive advantage in the				
	food industry	2	4		a 40
6	The use of GMF in the food	3	1	4	2.49
	production requires				
	establishment of new strategies				
	even they are risky for the food				
7	industry An implementation new	4	1	5	2.99
/	An implementation new strategies for the use of GMF	4	1	5	2.99
	in the food industry are				
	financially risky				
8	GMF usage in the food	4	1	5	3.33
0	production shows that food		tara Mal	U	5.55
	industry can quickly respond to			aysia	
	the changes in customer				
	demand				
9	GMF usage in the food	3	2	5	3.72
-	production shows that food	-	_	-	
	industry can quickly expand				
	into latest or global				
	competitive market				
10	GMF represents lower product	4	1	5	3.28
	price in the food industry as a				
	response to changes in				
	competitor's price				
11	GMF usage requires food	4	1	5	3.49
	industry to develop and utilize				
	new or advanced technology to				
	produce faster production				
	process				
12	GMF represents more	3	2	5	3.77
	contemporary and attractive				
	product towards food industry				

- 13 The use of GMF in the food production shows that food industry can create product variety or differentiation
- 14 Our major supplier can easily and positively respond towards GMF usage in increasing production volume in the food industry
- 15 GMF represents that food industry can quickly and easily switch to new supplier to produce lower production cost, better quality and improved delivery time
- 3
 2
 5
 3.80

 4
 1
 5
 3.37

 4
 1
 5
 3.08

4.5.3 Mean and Range Analysis for Regulation

This section elaborated the mean and range analysis of regulation. There were eighteen items have been analyzed. In accordance with the table 4.7, it can be concluded that the highest mean value came from item number ten, which was 3.65. Otherwise, the lowest mean value was 2.73, which derived from the item number eleven. Moreover, it is reported that all items contained the range value of 4 and this was excepted to the item number 5, which was 3. The maximum value of all items was the same, in which known as 5. It was also articulated that the minimum value for all of this regulation's item ranging between 1 and 2.

Table 4.7Mean and Range Analysis for Regulation

No	Items	Range	Minimum	Maximum	Mean
1	The approval procedure of GMF regulation is not available in the food industry	4	1	5	3.32

- 2 The regulation of GMF in the food industry is a mandatory approval process but no enforcement has been imposed until this moment
- 3 The regulation of GMF in the food industry is a mandatory approval process that adopting substantial equivalence principle
- 4 The regulation of GMF in the food industry is a mandatory approval process that adopting the precautionary principle
- 5 The food industry does not involved in the approval process of GMF regulation due to GM free-country
- 6 The risk analysis of GMF regulation is not available in the food industry

7 In the food industry, the risk assessment has been proposed but no enforcement has been made until this moment

- 8 In the food industry, the risk assessment is a mandatory
- 9 The food industry does not implement risk assessment due to Genetically Modified (GM) free-country
- 10 In the food industry, the labelling policies is not available
- 11 The food industry is adopting the voluntary GM labelling
- 12 The food industry is adopting the mandatory GM label with the threshold more than 1 percent
- 13 The food industry is adopting the mandatory GM label with the threshold equal or less than 1 percent
- 14 The food industry does not involved with labelling policies due to GM free-country
- 15 In the food industry, the traceability of GM is not

4	1	5	2.77
4	1	5	3.21
4	1	5	2.99
3	2	5	3.60
4	1	5	3.23
4	1	5	2.79
4	1	5	3.47
4 i4Utara		_	3.47 3.25
		_	
i4Utara	Malays	5	3.25
4 4	Malays	5	3.25 3.65
4 4	Malays	5 5 5	3.253.652.73
4 4 4 4	Malays 1 1 1 1	5 5 5	3.253.652.732.91

available

16	In the food industry, the traceability of GM is far from	4	1	5	3.04
	the enforcement				
17	In the food industry, the	4	1	5	3.21
	traceability of GM is a				
	mandatory				
18	The food industry does not	4	1	5	3.56
	implement the traceability due				
	to GM free-country				

4.5.4 Mean and Range Analysis for Attitude

Accordingly, seventeen items were analyzed for the independent variable of attitude. Each of these items were analyzed through mean and range with the different values. As depicted in Table 4.8, item number twelve known as the highest mean value of 3.91. In contrary, the eleventh item which indicated "the use of GMF in the food industry is controllable" was the lowest mean value of 2.95. Apart from that, nine items comprised the range value of 3 and another balance of eight items were 4. Besides, each item shares the same maximum value of 5 whereas the minimum value differs between 1 and 2.

No	Items	Range	Minimum	Maximum	Mean
1	The application of GM in the	4	1	5	3.60
	food production is extremely bad				
2	The application of GM in the	4	1	5	3.40
	food production is extremely				
	good				
3	The application of GM in the	3	2	5	3.71
	food production is extremely				
	foolish				
4	The application of GM in the	3	2	5	3.51
	food production is extremely				
	wise				
5	The food industry strongly accept	4	1	5	3.48
	for the application of GMF in the				

Table 4.8Mean and Range Analysis for Attitude

food production

6	The food industry strongly rejects for the application of GMF in the	3	2	5	3.48
7	food production GMF is easy to be known by the manufacturer in the food industry	3	2	5	3.32
8	GMF is easy to be judged by the manufacturer in the food industry	3	2	5	3.19
9	GMF is difficult to be judged by the manufacturer in the food industry	4	1	5	3.20
10	An effect of applying GMF in the food production was known by the food industry	3	2	5	3.12
11	The use of GMF in the food industry is controllable	4	1	5	2.95
12	The use of GMF in the food industry requires more rigorous	3	2	5	3.91
13	Research & Development (R&D) GMF should be commercialized in the food industry	3	2	5	3.53
14	The use of GMF in the food industry should be given monetary support by the	3	2	5	3.65
15	government In the food industry, the use of GMF in the food production is seen as an artificial or threaten	siti ₄ Utara	Malays	5	3.05
16	natural order of things In the food industry, the use of GMF in the food production is seen such leads to tamper with	4	1	5	3.08
17	the nature In the food industry, GMF makers are seen as 'playing God'	4	1	5	3.03

4.6 Goodness of Measures

As visualized in the chapter 3 in which concerning on the measures of variable, it is exposed that all measures were adapted from the previous researches or scholars. Although all the adapted measures had been well-validated, the efficiency and effectiveness of those measures towards this GMF study require to be tested and confirmed. Prior to this goodness of measures was an initial and crucial analysis, there were several procedures or steps need to be conducted. Thus, the validity test of construct was the main procedure need to be carried out. This construct validity was performed through factor analysis. This was followed by the reliability test of all items in this research.

4.6.1 Construct Validity

Validity of items known as the extent to which the wellness of the scale's instruments measure all the items as it required to measure (Svensson, 2013). Thus, in the context of this research, the constructs were valid. This was mainly due to all adapted items were thoroughly and rigorously selected either from the empirical researches or from the theoretical aspect. However, all the adapted items were tested in the perspective of western countries, which directly opposite in the context of Malaysian studies. Therefore, in order to ensure all measurements utilized contain construct validity, the exploratory factor analysis (EFA) was undertaken to all items which measuring the construct of industry acceptance, industry strategy, regulation and attitude.

4.6.2 Exploratory Factor Analysis (EFA)

EFA is defined as an investigation of the interconnection of each variables (Pallant, 2011). There are several steps need to be fulfilled before performing EFA. Firstly, the assumptions such as sample size, normality of data, outliers, number of variables and

linearity should be met (Pallant, 2011; Yong & Pearce, 2013). Hence, as indicated by De Winter, Dodou, and Wieringa, (2009) as well as Williams, Brown, and Onsman (2012), the minimum sample size required to conduct EFA is 50. Since the usable sample size of this study was 75, there was no violation of the assumption for the sample size. There was also no violation of the assumption for data normality and outliers due to the data of this study were normally distributed and removed all the outliers. Beside that, in performing EFA, it should have at least 3 variables (Tabachnick & Fidell, 2007). Due to this study was came out with 4 variables, it directly met the assumption of EFA. Moreover, the linearity among cases was shown in the following table :

Table 4.9 Linearity Test			
Variable	Deviation from	Result	
	Z	Significant	
Industry Strategy with Industry Acceptance	2.422	0.006	Non-linear
Regulation with Industry Acceptance	1.339	0.197	Linear
Attitude with Industry Acceptance	0.762	0.769	Linear

Based on the result gained through the table of linearity test (Table 4.9), it is shown that there were two variables namely regulation and attitude have linearity with industry acceptance whereby the significant value for each variables exceeded 0.05 (p>0.05). Otherwise, industry strategy has not had a linearity with industry acceptance as significant value less than 0.05 (p<0.05). This issue caused by two reasons. 1) Sample size affects linearity (Pallant, 2011). As explained by Hussin, Ali, and Noor (2014), the most preferable sample size to conduct EFA was 100 and above. However, in the context of this study, 75 sample size was achieved the minimum requirement but do not achieve the preferable amount of sample size. Thus, this led to the non-linear relationship between industry strategy and acceptance. 2) Despite all adapted items of industry strategy were validated by the previous researchers, GMF study was a new topic which limits the respondents to provide the exact answer. This was mainly due to the respondents were not have a lot of knowledge about the actual concept and development of modern biotechnology which emphasized on GMF (Amin et al., 2013). Consequently, non-linear relationship of industry strategy and industry acceptance was triggered. Hence, the EFA for this GMF study was proceeded to be performed such shown in the following subsection (4.6.2.1 to 4.4.2.4).

Secondly, instead of those aforementioned assumptions, there were several statistical assumptions in factor analysis taken into consideration before performing EFA in order to ensure the appropriateness of factor analysis. In accordance with that, Hair et al. (2010) exposed several steps involved. First, the value of a Measure of Sampling Adequacy (MSA) of each individual item should be more than 0.50. Second, the minimum acceptable value of Kaiser-Meyer Olkin (KMO) should be 0.50 and above. Third, in presenting the adequacy of correlations between variables as well as providing a reasonable basis of factor analysis, the value of Barlett test should be significant at (p<0.05). There were four factor analyses conducted separately for both independent and dependent variables in this study. Fourth, the significant value of Eigenvalue factor should be 1 or higher than 1. Fifth, the percentage of criterion variance shall be counted upon completion determining the Eigenvalue factor. Basically, the acceptable amount of total variance for the social science study is 60% and above. Sixth, in achieving a simple

structure and showing a meaningful factor pattern, the Varimax Rotation required to be performed for the purpose of extracting factor accounts of the variance. Seventh, the acceptable factor loading value to be assigned as significant is 0.50 (Hair, Black, Babin, Anderson, & Tatham, 2006). Therefore, the threshold value of factor loading for this study was 0.50.

4.6.2.1 Factor Analysis of Industry Acceptance

EFA was performed on twenty-six items measuring industry acceptance of this study. KMO value was 0.720, in which exceeding the acceptable value of 0.50. Bartlett Sphericity Test was reported to be significant (p=0.000).

Further, the test of the MSA for each item ranged between 0.506 to 0.890 as illustrated in Appendix D. However, two items (IA17 and IA25) have been deleted due to MSA values were not exceeded 0.50 whereas another two items (IA19 and IA23) have been removed due to factor loading values were less than 0.50. Consequently, as exhibited in table 4.10, the remaining items of significant factor loading ranged from 0.573 to 0.879.

Furthermore, the result of the Varimax Rotated Analysis showed the existence of four factors with Eigenvalue greater than 1, which explained by 74.03% of the variance in this data.

Table 4.10Factor Analysis for Industry Acceptance

No	Items		Factor Loadings
IAPB 2	The use of GMF in food	0.864	
	production would help to increase		
	the productivity of food industry		
	and will be a good contributor for		
	the fight against food shortage		
IAPB 5	The use of GMF in food	0.849	
	production would help food		
	industry to be remained long		
	lasting with another competitive		
	industry		
IAPB 3	The use of GMF in food	0.795	
	production will increase food		
	industry's performance		
IAPB 1	In the long run, the use of GMF in	0.789	
	the food industry would be a good		
	contributor for the Malaysian		
	economy and society		
IAPB 4	The use of GMF in food	0.714	
	production will enhance the quality		
	of product in the food industry		
IAPB 6	An acceptance for the use of GMF	0.699	
	in the food industry shows that		
	benefits outweigh risks	Utara	Malaysia
IAPR 8	The use of GMF in food		0.879
	production will harm the		
	performance of food industry		
IAPR 9	The use of GMF in food		0.840
	production will lead to the long-		
	term bad effect towards food		
	industry		
IAPR	The use of GMF in food		0.829
10	production will lower the		
	productivity of food industry		
IAPR	The use of GMF in food		0.738
11	production will impact the overall		
	risk magnitude towards daily		
	operation of food industry		
IAPR 7	The use of GMF in food		0.735
	production creates the feeling of		
	anxiety among the manufacturers		
	in the food industry		

IAT 15	I would trust the Ministry of Natural Resources and Environment (NRE) in regards to communicate on the risk for the	0.873	
IAT 13	use of GMF in the food production I would trust the Malaysian Ministry of Health in relation to communicate on the risk for the	0.852	
IAT 14	use of GMF in the food production I would trust the Malaysian Agriculture Research and Development Institute (MARDI) in relation to communicate on the risk for the use of GMF in the food production	0.805	
IAT 12	I would trust the government authorities or agencies in relation to communicate on the risk for the use of GMF in the food production	0.784	
IAT 16	I would trust the Malaysian Islamic Development Department (JAKIM) in regards to communicate on the risk for the use of GMF in the food production	0.640	
IAK 22	Natural does not necessarily mean healthy		0.783
IAK 21	Some protein found in foods can be toxic	Utara Malaysia	0.729
IAK 20	All bacteria found in food is harmful		0.700
IAK 18	In the food industry, GMF is contrary to the conventional food		0.747
IAK 26	because it contains genes There is no laws or regulations on the use of GMF in the food industry		0.721
IAK 24	Most of the customers eat DNA everyday		0.573
% of vari			74.03
	leyer-Olkin (KMO)		0.720
	Sphericity Test		1004.799
df			231
Sig			0.000
			· · · · ·

4.6.2.2 Factor Analysis of Industry Strategy

To examine the validity of industry strategy, an EFA through Principle Component and Varimax Rotation Analysis was carried out to all of 15 items. As visualized in the table 4.11 below, KMO value was 0.779. This was directly significant (p=0.000) to the value of Bartlett Sphericity Test.

In contrary, there were three items of industry strategy removed. This was mainly due to several reasons. Firstly, one item (IS7) was deleted due to MSA value not exceed than 0.50. Secondly, IS4 as well as 1S11 have been removed due to factor loading value lower than 0.50.

As a result, the remaining items comprised of the MSA value ranged between 0.641 to 0.897 as shown in the Appendix E. The result of factor analysis divided in two factors with Eigenvalue greater than 1, which exposed by 72.77% of the variance. In addition, the remaining items of significant factor loading of industry strategy ranged from 0.564 to 0.961.

No	Items	Factor I	Loading
ISMI 5	Investing in GMF can lead to competitive	0.885	
	advantage in the food industry		
ISMI 2	GMF represents a new opportunity for the	0.871	
	business of food industry		
ISMI 3	GMF is important to the development of food	0.843	
	industry		
ISMI 1	GMF is a key factor for the survival of food	0.961	
	industry		
ISRP 12	GMF represents more contemporary and		0.822
	attractive product towards food industry		
ISRP 13	The use of GMF in the food production shows		0.808
	that food industry can create product variety or		
	differentiation		
ISRP 8	GMF usage in the food production shows that		0.696
	food industry can quickly respond to the		
	changes in customer demand		
ISRP 9	GMF usage in the food production shows that		0.655
	food industry can quickly expand into latest or		
	global competitive market		
ISRP 15	GMF represents that food industry can quickly		0.869
	and easily switch to new supplier to produce		
	lower production cost, better quality and		
	improved delivery time	alavsia	
ISRP 14	Our major supplier can easily and positively		0.832
	respond towards GMF usage in increasing		
	production volume in the food industry		
ISRP 10	GMF represents lower product price in the food		0.564
	industry as a response to changes in		
	competitor's price		
ISRP 6	The use of GMF in the food production requires		0.819
	establishment of new strategies even they are		
	risky for the food industry		
% of varia	nce		72.7
Kaiser-Me	yer-Olkin (KMO)		0.77
	hericity Test		421.24
df			6
			0.000
Sig			0.00

Table 4.11Factor Analysis for Industry Strategy

4.6.2.3 Factor Analysis of Regulation

An EFA was implemented on eighteen items of regulation. Nevertheless, three items of RG11, RG12, RG13 were removed because of the factor loading value lower than 0.50. Therefore, it is shown that out of eighteen items, fifteen items has been retained as significant values.

Hence, the result shown in the following table 4.12 indicated that KMO value was 0.769. The Bartlett Sphericity Test was stated to be significant (p=0.000). Meanwhile, the MSA value for each regulation items was ranged from 0.533 to 0.880. The total variance explained by the construct was 66.01%, in which extracted factor's Eigenvalue of higher than 1.

Moreover, the factor analysis result explained by four factors which supported by the derivation of four factors in rotated components such shown in Appendix F. Besides, the SPSS output of factor loading below constituting the remaining items of regulation which ranging from 0.679 to 0.932.

Table 4.12Factor Analysis for Regulation

No	Items		Factor Loading
RGAP		0.932	
	The regulation of GMF in the food	0.952	
4	industry is a mandatory approval		
	process that adopting the		
	precautionary principle		
RGAP	The regulation of GMF in the food	0.762	
3	industry is a mandatory approval		
	process that adopting substantial		
	equivalence principle		
		0.010	
RGAP	The food industry does not involved	0.818	
5	in the approval process of GMF		
	regulation due to GM free-country		
	-		

RGAP 1	The approval procedure of GMF regulation is not available in the food	0.880		
RGAP 2	industry The regulation of GMF in the food industry is a mandatory approval process but no enforcement has been imposed until this moment	0.847		
RGRA 9	The food industry does not implement risk assessment due to Genetically Modified (GM)free- country	0.9	023	
RGRA 6	The risk analysis of GMF regulation is not available in the food industry	0.9	013	
RGRA 7	•	0.8	323	
RGRA	In the food industry, the risk	0.8	322	
8 RGL 14	assessment is a mandatory The food industry does not involved with labelling policies due to GM free-country		0.797	
RGL 10	In the food industry, the labelling policies is not available		0.679	
RGTC 17	In the food industry, the traceability of GM is a mandatory			0.899
RGTC 18	The food industry does not implement the traceability due to GM free-country	Jtara Mal	laysia	0.735
RGTC	In the food industry, the traceability			0.890
16	of GM is far from the enforcement			
RGTC 15	In the food industry, the traceability of GM is not available			0.711
% of var	iance			66.01
Kaiser-M	leyer-Olkin (KMO)			0.769
Bartlett S	Sphericity Test			657.462
df				105
Sig				0.000

4.6.2.4 Factor Analysis of Attitude

In examining the validity of attitude in this study, an EFA through a Principle Component with Varimax Rotation Analysis was undertaken on all of seventeen items. However, this analysis requires deletion of two items (AT6 and AT9) led by factor loading values smaller than 0.50.

Subsequently, as illustrated in Table 4.13, the KMO value was 0.754 which exceeding the acceptable value of 0.50. The Bartlett Sphericity Test was also found to be significant (p=0.000). In addition, the MSA value falls in the acceptable range between 0.603 to 0.889 as exhibited in Appendix G.

Further, the total variance explained by the construct of attitude was 71.05%, in which extracted by the four factors of Eigenvalue higher than 1. Hence, the following table showed that the remaining items of significant factor loading, ranging from 0.593 to 0.921.

No	Items	Factor Loading
ATGA 2	The application of GM in the food production is extremely good	0.872
ATGA 1	The application of GM in the food production is extremely bad	0.845
ATGA 5	The food industry strongly accept for the application of GMF in the food production	0.742
ATGA 3	The application of GM in the food production is extremely foolish	0.717

Table 4.13Factor Analysis for Attitude

ATGA 4	food production is extremely	0.716	
ATF 8	wise GMF is easy to be judged by the manufacturer in the food industry	0.814	
ATF 7	GMF is easy to be known by the manufacturer in the food industry	0.781	
ATF 11	The use of GMF in the food industry is controllable	0.880	
ATF 10	An effect of applying GMF in the food production was known by the food industry	0.668	
ATE 12	The use of GMF in the food industry requires more rigorous Research & Development (R&D)	0.742	
ATE 13	GMF should be commercialized in the food industry	0.599	
ATE 14	The use of GMF in the food industry should be given monetary support by the government	0.593	
ATMC 16		Utara Malaysia	0.921
ATMC 17	In the food industry, GMF makers are seen as 'playing God'		0.898
ATMC 15	In the food industry, the use of GMF in the food production is seen as an artificial or threaten natural order of things		0.865
% of vari	ance		71.05
Kaiser-M	leyer-Olkin (KMO)		0.754
	Sphericity Test		648.574
df			105
Sig			0.000

4.7 Reliability Analysis

In accordance with the result derived through factor analysis, the reliability analysis was carried out to determine the extent to which scale consistently reflects the construct it is measuring (Kumar et al., 2013). This scale reliability was measured by using Cronbach's alpha value in order to determine the internal consistency of each item (Hussin et al., 2014). The Cronbach's alpha value ranging from 0 to 1, in which resulting to higher internal consistency when the value of Cronbach's alpha closer to the 1 (Coakes, 2013; Sekaran, 2010).

Hence, it is indicated that there are three categories of Cronbach's alpha value has been utilized to describe the reliability of items. First, the Cronbach'alpha which exceeding 0.50 is claimed as acceptable value (Bowling, 2002; Streiner & Norman, 1995). Second, the Cronbach alpha value should be 0.7 or greater to indicate as strong internal consistency (Hair et al., 2010; Nunnally, 1978). However, Hair et al. (2010) elaborated that it is considered as a high level of redundancy for the item which came from the cronbach's alpha value of more than 0.90. Thus, the following Table 4.26 exhibited the result of reliability analysis for each factor in this study.

No	Variable	Number of Item	Cronbach's Alpha
1	Industry Acceptance	22	0.761
2	Industry Strategy	12	0.809
3	Regulation	15	0.696
4	Attitude	15	0.838

Table 4.14Statistical Summary of Reliability Analysis

Based on the result provided in table 4.15, industry acceptance, industry strategy as well as attitude were considered as having strong internal consistency with the Cronbach's alpha of 0.761, 0.809 and 0.838. Besides, the construct of regulation was 0.696, in which matching to the minimum value of reliability as recommended by the aforementioned author namely Bowling (2002) as well as Streiner and Norman (1995). Simultaneously, the reliability analysis implemented on all items exposed that all construct or measurement was inherently reliable and internally consistent.

4.8 Correlation Analysis

As explained by the scholars namely Sekaran and Bougie (2009), the direction, strength as well as significance of the relationship for each variable is best measured and explained by utilizing correlation analysis. Referring to the context of this study, in which the objective was focusing on the acceptance of GMF among the Malaysian food industries. Therefore, in accordance with the research questions and research objectives of this study (Chapter 1), the Pearson correlation is the best analysis to examine the hypotheses and achieve the objectives of this research.

Pearson correlation (r) or known as Pearson product-moment coefficient is a correlation statistics which commonly utilized for a normal distribution of data (Meyers et al., 2006). Besides, this (r) is designated to examine the relationship among variables instead of identify the relation of linear direction for two variables. This relationship is determined based on the correlation's significance as well as strength (Sekaran & Bougie, 2013). Therefore, the strength and the extent to which relationship of each variable is seen through (r) value. The closer (r) value to +1.00 resulting perfect or strong positive linear

relationship, whereas the value closer to -1.00 indicating strong negative linear relationship. Otherwise, (r) value of 0 considered as no relationship at all (Kumar et al., 2013). Hence, Corder and Foreman (2009) demonstrated the relationship between two variables either it is a high, moderate or low level of strength by using correlation coefficient as shown in the following Table 4.15.

Table 4.15Correlation Coefficient Strength

R	Strength of Relationship
r = 0.10 to 0.29 or $r = -0.10$ to -0.29	Low
r = 0.30 to 0.49 or $r = -0.30$ to -0.49	Moderate
r = 0.50 to 1.0 or $r = -0.50$ to -1.0	High

4.8.1 The Relationship of GMF towards Industry Acceptance

This subsection explained the hypotheses testing related to this study. Thus, the relationship of GMF which comprised of industry strategy, regulation and attitude towards industry acceptance were clearly elaborated through hypotheses testing in this study. Hence, (r) was utilized in formulating and interpreting three hypotheses as follows.

Hypothesis 1 : There's an increase acceptance among the food industries through the implementation or support of proper strategy

The above hypothesis indicated that industry strategy has a positive relationship with industry acceptance (Sung & Hwang, 2013). The relationship of industry strategy towards industry acceptance was tested by utilizing (r). As presented in Table 4.16, there was a weak positive correlation between industry strategy and industry acceptance, which was statistically positive significant of r = 0.277 and p = 0.01. Besides, the shared variance for both of these variables was 7.7 %. As a result, this hypothesis is supported.

		Industry Acceptance
Industry Strategy	Pearson Correlation (r)	0.277**
	Sig (1-Tailed)	0.008
	Variance	0.077
	Ν	75

** Correlation is significant at the 0.01 level (1-tailed)

Hypothesis 2 : There's an increase acceptance among the food industries through the implementation or support of systematic regulatory system

Hypothesis 2 explained that regulation has a positive relationship with industry acceptance such being supported by previous scholar namely (Mitra et al., 2011). The following table 4.17 indicated that correlation between regulation as well as industry acceptance, which was positively significant. The (r) value between these two variables was 0.249 resulting weak or low strength of relationship at p < 0.05. This circumstance directly supported the hypotheses. In fact, 6.2% of the variance derived from the regulation matched in explaining the score of respondents towards industry acceptance.

Table 4.17Correlation of Regulation

		Industry Acceptance
Regulation	Pearson Correlation	0.249^{*}
	Sig (1-Tailed)	0.015
	Variance	0.062
	Ν	75

* Correlation is significant at the 0.05 level (1-tailed)

Hypothesis 3 : There's an increase acceptance among the food industries through the feedback or response of positive attitude

This hypothesis 3 stated that attitude has a positive relationship with industry acceptance, in which aligned with the past scholar namely Costa-Font and Jose (2012). In accordance with the Table 4.18, there was a strong positive correlation between attitude and industry acceptance. The correlation for these two variables were 0.554 at p < 0.05. Moreover, the variance percentage for both variables was about 30.7. Thus, this clearly indicated that the hypothesis was supported.

Table 4.18Correlation of Attitude

S A		Industry Acceptance
Attitude	Pearson Correlation	0.554**
	Sig (1-Tailed)	0.000
	Variance N	0.307 Malaysia ₇₅

*Correlation is significant at the 0.05 level (1-tailed)

4.9 Summary of Hypotheses Testing

Hypotheses testing to all variables completely done. Therefore, the result visualized that most of the hypotheses of the studied variables were supported. In fact, none of the hypothesis was rejected. Further, the result or finding of the tested hypotheses shown in table 4.20 as follows :

Table 4.19Result Summary of Hypotheses Testing

No	Hypotheses	Findings
H ₁	There's an increase acceptance among the food industries through the implementation or support of proper strategy	Supported
H ₂	There's an increase acceptance among the food industries through the implementation or support of systematic regulatory system	Supported
H ₃	There's an increase acceptance among the food industries through the feedback or response of positive attitude	Supported

4.10 Summary

The result in this quantitative analysis showed that the manufacturers in the selected food industry aware of the GMF appearance in current competitive market. Therefore, the acceptance of GMF among the Malaysian food industries were examined by using Pearson correlation (r). The hypotheses testing with SPSS provided empirical evidence concerning the relationship between industry strategy, regulation as well as attitude on industry acceptance. The details of these findings are discussed in chapter 5 followed by implication of the study, possible direction for future research and conclusion.

CHAPTER FIVE CONCLUSION AND RECOMMENDATION

5.1 Introduction

This chapter elaborates the findings of the GMF acceptance towards food industry. It begins with a recapitulation of the study followed by a section on the summary of result. Next is section 5.4, which includes a discussion of the relationship among the research variables used to achieve the objective of this study. Subsequently, section 5.5 explains the implications of the study, which are separated into theoretical as well as practical implications. Then, section 5.6 presents the limitation of the study and followed by section 5.7, which elaborates suggestion or recommendation for future research. The conclusion is then discovered in section 5.8, which ended with the summarization of the entire chapters.

Universiti Utara Malaysia

5.2 Recapitulation of the Study

The main aim of this research was to gain a deeper understanding and clear picture pertaining to the question 'Will GMF be accepted by the Malaysian food industry?' The study was specifically or narrowed down to concentrate on the objectives of this study which was to examine the relationship of industry strategy, regulation and attitude on industry acceptance.

Before collected data were examined by utilizing SPSS software, the questionnaires were sent out to the managers of the chosen food companies around Malaysia. Those questionnaires were distributed through self-administered, postal and email.

Upon completion data collection stage, the hypotheses testing was then conducted on the dependent and independent variables of this study as postulated in the conceptual framework (Figure 3.1). The dependent variable of this study was industry acceptance, which was measured by the perceived benefit, perceived risk, trust and knowledge. The industry strategy, regulation and attitude were independent variable of this study. As exposed at the beginning chapter (chapter 1) of this study, the research finding will be focused mainly on achieving the following objectives :

- i. To examine the relationship of industry strategy on industry acceptance towards GMF.
- ii. To examine the relationship of regulation on industry acceptance towards GMF.
- iii. To examine the relationship of attitude on industry acceptance towards GMF.

5.3 Summary of Results

The main interest of this research was to examine the acceptance among the Malaysian food industries towards GMF, which gives an opportunity for the food industry to be remain in the competitive market. The result of this study exposed that industry acceptance towards GMF affected by the industry strategy, regulation and attitude. These result are aligned with the previous scholars namely Sung and Hwang (2013), Mitra et al. (2011) as well as Costa-Font & Gil (2012) who claimed that the increment of GMF acceptance among the food industries was relied on the implementation or support of proper strategy, systematic regulatory system and positive attitude.

This study found that the strategy of industry increases the acceptance of GMF among the food industries. This finding is in line with the past researchers which elaborated that the GMF will be highly accepted by the food industry when the managers or leaders on that particular industry seen GMF as one of the factors that may boost up the strategy in their business (Sung & Hwang, 2013). The strategy is a vital part in setting out the future path of the industry, which requires the establishment of long term plan, policy and procedure in order to achieve the aims and visions that have been drawn in the GMF production (Ackoff, 1990; Zahra & Covin, 1993). Besides, the implementation of well-structured strategies would drive the industry to be succeed in the aspect of its business values, operation and also performance (Normann & Ramirez, 1993).

The finding of this study also exposed that regulation was inherently able to increase industry acceptance towards GMF. This result is parallel with Kothamasi and Vermeylen, (2011) as well as Sanvido et al. (2005) who articulated that the approval processes and requirements of the regulation would determine whether the GMF be accepted or rejected in the production of food industry. All of food industries were tightened with the stringent and complex procedures or guidelines which have been regulated by the government or other authorities body (McIntosh & Turnbull, 2006). By meeting the specification of GMF production which includes quality, safety and efficacy, would caused the food industry to market its new product development smoothly and effectively (Tait & Chataway, 2007; Tait & Williams, 1999).

Attitude was empirically proven to cause an increment of industry acceptance towards GMF. This result is consistent with Kimenju et al. (2005) who claimed that positive attitude raised up the GMF acceptance among the food industries. It is seen when the stakeholders which emphasized on food manufacturers or producer positively accept the usage and commercialization of GMF in their industry's business and operation. Basically, the manufacturers or food producers who positively feedback and response to the acceptance of GMF came from the food industries which is located in the developing countries (Hoban, 2004).

5.4 Discussion

In accordance with the result, this research clearly explained that the acceptance of GMF in the Malaysian food industries inherently increased due to the implementation or support of proper strategy, systematic regulatory system as well as positive attitude's feedback or response gained from the stakeholders (manufacturers of food producer) in the food industry. As anticipated, this result associated with the previous scholars namely Rudder (2001) Saguy and Sirotinskaya (2014) as well as Stronen (2011) who enumerated that an acceptance of GMF affects the retention of Malaysian food industries in the challenging current market, which led by the continuous transformation or complexity derived from the food industry's environment.

Research Question 1 : Does industry strategy have a relationship with the Malaysian food industry in accepting GMF?

There are many advantages for the food industry which accept GMF in its production or operation. This phenomenon affects to the remaining of an existing customer loyalty instead of producing new product creation or development in their food industries. However, it has been a challenge or complicated circumstance for the food industry in accepting the commercialization and production of GMF. There are several risks encountered by the industry such as involvement of designing new technique as well as restructuring the whole management in the industry (Doubleday, 2005; Levidow & Bijman, 2002).

Consequently, an effective and efficient strategy concerning GMF is the crucial aspect in the Malaysian food industry while accepting GMF into their business. The manufacturers and food industry are urged to oversee the current environment of its competitor before step further into GMF production, which would avoid to the industry's financial loss especially to the small food industries. Instead of identifying the targeted and size of the market, the GMF would be highly accepted by Malaysian food industries through the implementation of strategy such collaboration with other related bodies.

In aiming to earn a high revenue, it is considered as an appropriate strategy when the food industry forming a partnership with the government or authority agencies. This is proven when the Malaysian government as being allocated in the ninth Malaysia Plan provided various incentives such as financial aids, facilities, R&D as well as providing support such as mentoring and promoting the programmes related to the food industry which accepts GMF in their production.

Universiti Utara Malaysia

Therefore, the food industry is also urged to properly design and develop its strategy by considering on the long term plan and the prediction of upcoming risks despite giving priority on retaining the quality of its existing product. Due to formulating or developing the strategy are critical and hardly ever to be undertaken in the industry, all the strategy will be designed and carried out by the top management of the industry. Similarly to this finding, the strategy and decision making regarding GMF production made by the high level people such as senior manager or owner of the industry in regards to their knowledge, experience and their capabilities in making the decision to the industry.

All strengths, opportunities, threats and weaknesses are the vital element required to be clarified by the industries while formulating their industry's strategy. Therefore, structured and proper strategy implementation contributed to the high acceptance of GMF among the Malaysian food industries.

Research Question 2 : Does regulation have a relationship with the Malaysian food industry in accepting GMF?

A study by Quah (2007) explained that one of the crucial causes led to the uncertainty of industry in accepting GMF into their production was due to the heavy and stringent regulatory system in Malaysia. This was mainly due to the regulation of GMF was fully monitored by the Malaysian governments and related authority agencies. Therefore, the food industry have to adhere to all rules, procedure as well as standard and requirements that have been regulated while implementing GMF commercialization.

In respect to the finding from this research, an establishment and endorsement of the systematic regulation in government institution related to the food sectors were reported to increase the acceptance of GMF among the Malaysian food industries. This is due to the fact that all GMF commercialization including internal operation and external trading which involved importation and exportation transactions could be smoothly implemented in the Malaysian food industry by complying to the fixed regulatory systems which comprised of trading, manufacturing as well as licensing.

Therefore, the manufacturers or food producers are needed to obey on the regulatory framework in Malaysia. Failure to adhere on those regulations lead to a very high cost and inherently risky condition for industry's business. In order to cope with the

stringency of government regulations such as obtaining licensing agreement, if the industry failed to meet the standard and requirement that has been regulated by the government and authority, that GMF product will be filtered out and tend to create a very long lead time of product development which may drag the duration of time for the product to be approved for another few years (Bauer & Gaskell, 1984; Jasanoff, 1995; Tait & Chataway, 2007; Tait & Williams, 1999).

In addition, the food industries would also have to be dealt with the challenges of regulatory system in Malaysia still at the infant stage. This was affected by few modifications of labelling regulation and the establishment of Food Act in just a few years back. However, the food industry have to comply with the regulation that has been set up. In fulfilling the strict regulations formulated by the government, the industry will work hard to produce GMF of a high quality which is accepted by the government authorities and another food industries.

Universiti Utara Malaysia

Therefore, the government agencies are suggested to provide the concrete and systematic regulation procedure includes providing guideline and current status of the rules and policy requirements related to operation and production of the food industry. This circumstance led the food industry especially food manufacturers of producers to understand the whole rules and regulations precisely and clearly which would match the government regulation and their industry's goal. As a result, the food industry would highly increase their acceptance towards GMF production and commercialization.

Research Question 3 : Does attitude have a relationship with the Malaysian food industry in accepting GMF?

Based on the explaination provided by Amin, Jahi, and Nor (2010) which their study concerning on GMF status in Malaysia indicated that GMF commercialization has been disseminated its introduction to all over the world including Malaysia since 1998. However, not all of food industry showed positive feedback or respond in accepting GMF into their industry's production.

The food industry especially MNCs were preferably showed their negative response towards GMF commercialization or acceptance; otherwise they tend to focus on selling non-GMF product due to the manufacturers or food producers in the industry worried and sensitive towards the uncertainty of benefits and risks that may badly affect the production distribution channel in their industry.

In addition, the food manufacturers or food producers often looking forward to the values, benefits and profits resulted by accepting the GMF into their production of industry. Due to such circumstance, the food industry have a high tendency of curiosity in believing and accepting the GMF commercialization even it has been encouraged or recommended by the government or related authority bodies. This could be seen when the food manufacturers or food producers lost their trustworthiness and confidence to the new improvement or modification of new management, operation followed by strategy while accepting GMF.

Although there were several barriers distort the positive acceptance of GMF throughout food industry, the industry from the developing country such Malaysia shown an increasing of industry acceptance through positive attitude or respond towards GMF production and commercialization; which resembles to the result of this research.

5.5 Implication of the Study

Based on the finding of this research, there were implications of the study which divided into theoretical and practical as discussed in the following section of 5.5.1 and 5.5.2.

5.5.1 Theoretical Implication

This study has impacted to the body of knowledge specifically on GMF and industry by using institutional theory in elaborating the relationship among the variables. The research has imparted an empirical evidence focusing on the relationship of industry strategy itself, systematic regulatory framework as well as attitude shown by the manufacturers or food producers towards commercialization and acceptance of GMF. In regards to the approach of industry practice which emphasized on knowledge transfer and competency of industry stressed on the employee, operation management, obligation towards regulation requirement and method or technique being employed in the industry while running routine of business. Consequently, this phenomenon led to the efficiency of industry performance as well as high acceptance of industry towards GMF.

Another theoretical contribution from this research is the support it provides an empirical evidence concerning industry acceptance towards GMF. Therefore, the result of this study has fulfilled the gap whereby previous scholars namely Bredahl et al. (1998) indicated that the result related to the acceptance of GMF was complicated in terms of

methodology and its abstraction level, which tremendously caused the lack of GMF acceptance.

Furthermore, the result of this study also provides further insight into theoretical contribution regarding the actual acceptance of GMF among the food industries in the Malaysian context. This was mainly due to the past studies tend to discuss the acceptance or rejection of GMF among the consumer's perspective throughout many western countries (House et al., 2001). Subsequently, this study has filled the gaps being exposed by Hornibrook and Fearne (2003) which claimed that research concerning on the food industry is still lacking. In fact, this study contributes a high significant impact to Malaysian context since the GMF study has been remarked as a new topic and present at a low level which is deemed important to be explained.

5.5.2 Practical Implication

The result of this study has imparted to the practical implication which plays a vital role towards the whole management and operation activities of the food industry in Malaysia. The results derived from this study assists the current food manufacturers or food producers to obtain a proper and in depth understanding related to GMF and to what extend the Malaysian food industry accept the GMF commercialization and production at this moment.

Moreover, the empirical finding of this research contributed to this practical implication by allocating the various benefits to the food industry especially food manufacturers or food producers if GMF being accepted, commercialized or utilized in their business operation. The finding of this research discovered that the acceptance of GMF contains many advantages to the Malaysian food industry. Among of them were the enhancement of food processing features, new product differentiation in production, efficient food supplies instead of low production cost and product development. Directly, the food industry which positively accept GMF commercialization contains a high possibility in earning high profit and remaining in the challenging current market.

Besides, the result of this study also impart the food manufacturers or food producers to be alerted on the policies and procedures that should be complied by the food industry while commercializing GMF (Rollin, Kennedy & Wills, 2011). This led food manufacturers or food producers to obey on the standards and requirements that have been governed by the authority bodies. In fact, by complying with those rules, the commercialization of GMF would be undertaken systematically and not only simply apply it in the business of Malaysian food industry.

Furthermore, based on the result provided in this research, attitude known as one of the contributors among industries to accept GMF. Thus, the higher positive feedback or response shows by the food manufacturers or food producers the higher food industry accepts GMF into its production activity. This finding is aligned with the previous scholars namely Hoban (2004) which indicated that most of GMF will be accepted in developing countries. Due to Malaysia recognized as one of the developing countries, the research of GMF acceptance among the Malaysian food industries has contributed to this practical implication. Hence, in regards to the empirical evidence on this practical contribution, it is hoped that the person involved in the food production such as managers, food manufacturers or food producers would be able to obtain the actual

knowledge, phenomenon and status of GMF in Malaysia while considering the acceptance, commercialization or utilization of GMF.

5.6 Limitation of the Study

There were several limitations found through this research. First and foremost, despite the postal method, data collection were also distributed through mail. However, the major limitation encountered in facilitating response from the food industry is difficulty to get a large number of food industry's participation. This study only managed to obtain 98 questionnaires from a total of 248 questionnaires that were distributed. Due to missing data exceeded 10%, another 20 questionnaires were discarded, leaving only 78 usable questionnaires (31.45%) which were deemed fit for further analysis. Besides, location of the respondent or food industry also contributed to the limitation of this study. Earlier in the chapter 1 which emphasized on scope of the study, the targeted respondents or food industries were chosen throughout Malaysia involving 14 states. However, only 9 states returned the complete questionnaires whereas the balance of 5 states namely Pahang, Terengganu, Perlis, Sabah and Sarawak did not even respond to the distributed question. These response rate limitations happened due to this GMF study was a new area for respondents, which limits them to completely answer the questionnaire.

Another limitation in this study is the process of classifying the food industry into GMF or non-GMF food manufacturers or producers. Thus, filter question has to be designed and inserted into the questionnaire in order to detect the use of GMF or GMO in food manufacturing industries. This is mainly due to lack of formal sources discussing GMF in the Malaysian food industry. For instance, there is a dearth of food industry information

provided by the government or non-government institutions. This caused the researcher to manually classify the type of food industry using the list provided by FMM and the development of sampling frame consumed a longer time. As a conclusion, the aforementioned limitations of this study provide the suggestion for future research that shall be undertaken such posited in the following section 5.7.

5.7 Suggestion for Future Research

This section recommends the additional investigation which related to the area of this study that could be taken for further improve the finding discovered in this topic. Due to several restrictions were faced by the researcher, the following recommendations which beneficial for future research could be carried out in demolishing those limitations arise from this study.

In regards to the limitation of cross-sectional study, the future research is suggested to apply longitudinal study in testing the causality of industry strategy, regulation, attitude as well as food industry acceptance over different periods of time, which would impart a better and deeper understanding regarding this issue of GMF acceptance. Future studies are recommended to employ mix method or qualitative technique for in depth understand pertaining to the Malaysian food industry acceptance towards GMF.

Furthermore, future researches are suggested to employ other variables that may affect the acceptance of GMF among the food industries. Due to the impossibility of researcher to measure all variables in this study, the future research shall consider other predictors. The incorporation of technological support and attitude towards innovation as independent variable should be considered by future studies. Besides, the moderating variable of GMF awareness should also be employed in the future studies.

On the other hand, more empirical researches are required to support the acceptance of GMF among the food industries. Due to the limitation in detecting which food industry is commercializing or utilizing GMF into their production, the future research should enlarge the scope of this study to increase the generalizability of research findings. The future research should widen the scope of study by inserting all food industries without distinguishing it into its business nature or type, which includes raw product of food industry, end product of food industry and not only processed food industry as conducted in this research.

In addition, this study is focused on the acceptance of GMF which based on one respondent as representative, came from the manager level for each food industry. Future studies can also examine the acceptance of GMF according each level of management which includes top, middle as well as bottom for to all food industries. Thus, a comparison pertaining to the GMF acceptance based on a different management level in the Malaysian food industry can be done. This comparative study can shed some lights to the different perspective of GMF acceptance according each level of food industry's management and operation.

In accordance with those suggestions recommended for future research, it is hoped that this study would encourage or at least stimulate interest towards future research in the similar area, as more research related to this subject is deemed necessary to widen the current knowledge especially in the Malaysian context.

5.8 Conclusion

This research has brought a contribution to the body of knowledge by providing empirical evidence regarding the relationship between GMF and industry acceptance. Although there were several limitations encountered, the hypotheses of this research have been successfully tested and interpreted. In regards to the aforementioned, this research also disclosed what are significant impacts led to the acceptance of GMF in the Malaysian food industry.

Therefore, the results of this study indicated that the strategy of the food industry itself, a proper implementation of the regulation governed by the authority bodies as well as positive attitude shown by the manufacturers were contributed to the food industry throughout Malaysia in accepting GMF into their production. Hence, this study also exposed that Malaysian food industries are positively accept GMF into their production and operation of business.

Findings derived from this study enumerated that the acceptance of GMF in the food industry would enhance the Malaysian development. This is aligned with the aspiration of Malaysian Prime Minister, Datuk Sri Najib Tun Razak in his speech during Budget 2013 indicated that the acceptance of GMF in the food industry would reduce Malaysia's dependency towards external trading instead of increasing the income of this nation.

Throughout this research, it could be seen that Malaysia has a heavy reliance on the food sectors. Due to the food industry contributed to this nation's GDP, GMF study is seen as a crucial mechanism in boosting up the Malaysia's economy and development to be aligned with nationwide.

Reference

- Abu Bakar, U. K. (2007). Commercialisation of Biotech Crop in Asia Course : Benefits to MARDI and Malaysia. Retrieved from Biotechnology Research Centre, MARDI, Malaysia
- Ackoff, R. L. (1990). Strategy. System Practice, 3(6), 521–524.
- Adell, E. (2010). Acceptance of driver support system. *Human Centred Design For Intelligent Transport System*, 475-486.
- Adenle, A. A., Morris, E. J., & Parayil, G. (2013). Status of development, regulation and adoption of GM agriculture in Africa : views and positions of stakeholder groups. *Food Policy*, 43, 159–166.
- Aerni, P. (2005). Stakeholder attitude towards the risks and benefits of genetically modified crops in South Africa. *Environmental Science & Policy*, 8, 464–476.
- Ahmad, A., Noor, N., Ridzwan, N. M., Noor, S. M., Sanip, N. M. A., & Bacheck, N. Z. (2008). *R&D biotechnology project monitoring report 2008*. Retrieved from www.mosti.gov.my
- Ajzen, I. (1985). "From intentions into actions. A theory of planned behaviour (Kuhl, J. B.). New York: Springer Verlag.
- Ajzen, I. (1991). The theory of planned behaviour. Organizational Behavior and Human Decision Processes, 50, 179–211.
- Ajzen, I., & Fishbein, M. (1980). Understanding attitudes and predicting social behavior. Englewood Cliffs, NJ: Prentice Hall.
- Al-Saffy, T., & Mousa, H. (2012). Agriculture biotechnology annual.
- Amin, L., Ahmad, J., Md. Jahi, J., Md. Nor, A. R., Osman, M., & Mahadi, N. M. (2010). Factors influencing Malaysian public attitude to agro-biotechnology. *Public Understanding Science*, 20(5), 674–689.
- Amin, L., Azlan, N. A. A., Ahmad, J., & Ibrahim, R. (2011). Public perception of the ethical aspects of golden rice in Malaysia. *Science in Society*, 2(3).
- Amin, L., Hashim, H., Sidik, N. M., Zainol, Z. A., & Nurina, A. (2011). Public attitudes towards modern biotechnology. *African Journal of Biotechnology*, 10(58), 12409– 12417. doi:10.5897/AJB11.1061
- Amin, L., Jahi, J. M., & Nor, A. R. M. (2010). Malaysian public awareness & knowledge on modern biotechnology. *Journal of General Studies*, 8.
- Amin, L., Jahi, J. M., & Nor, A. R. M. (2013). Stakeholders' attitude to genetically modified foods and medicine. *The Scientist World Journal*. doi:http://dx.doi.org/10.1155/2013/516742
- Amin, L., Jahi, J. M., Nor, A. R. M., Osman, M., & Mahadi, N. M. (2008). Malaysian

Public Attitude Towards Several Modern Biotechnology Applications. In 6th WSEAS Int. Conference on Environment, Ecosystems and development (EED '08) (pp. 54–62).

- Anseel, F., Lievens, F., & SchOllaert, E. (2010). Response Rates in Organizational Science, 1995-2008: A Meta-analytic Review and Guidelines for Survey Researchers.
- Areal, F. J., Riesgo, L., & Rodriguez, E. (2011). Attitudes of European farmers towards GM crop adoption. *Plant Biotechnology Journal*, 9, 945–957. doi:10.1111/j.1467-7652.2011.00651.x
- Arshad, F. (2011). Legislation of Genetically Modified Food. In MIFT Seminar.
- Ausserer, K., & Risser, R. (2005). Intelligent transport systems and services-chances and risk. In *Proceeding of 18th ICTCT-workshop Helsinki*.
- Australian Trade Commision. (2015). Tariffs and regulations Saudi Arabia. Retrieved March 1, 2015, from http://www.austrade.gov.au/Export/Export-Markets/Countries/Saudi-Arabia/Doing-business/Tariffs-andregulations#.VPKnsC5gGSo
- Avermaete, T., & Morgan, E. J. (2003). Determinants of innovation in small food firms, 6(1), 8–17. doi:10.1108/14601060310459163
- Avermaete, T., Viaene, J., Morgan, E. J., & Mahon, D. (2004). Determinants of product and process innovation in small food manufacturing, 15, 474–483. doi:10.1016/j.tifs.2004.04.005
- Azadi, H., & Ho, P. (2010). Genetically modified and organic crop in developing countries : A review of options for food security. *Biotechnology Advances*, 28, 160– 168.
- Baker, G. A., & Burnham, T. A. (2001). Consumer Response to Genetically Modified Foods: Market Segment Analysis and Implications for Producers and Policy Makers. *Journal of Agricultural and Resource Economics*, 26(2), 387–403.
- Batie, S. (2008). Wicked problems and applied economics. *Agro Economic*, 90, 1176–1191.
- Baudouin, K. (2012). Working with wicked problem. Retrieved February 3, 2015, from http://www.kbs-frb.be/publication.aspx?id=303257&langtype=1033
- Bauer, M., & Gaskell, G. (1984). Promise, Problems and Proxies: 25 Years of European Biotehnology Debate and Regulation (pp. 1–62).
- Bett, C., Ouma Okura, J., & De Groote, H. (2010). Perspectives of gatekeepers in the Kenyan food industry towards genetically modified. *Food Policy*, *35*, 332–340.
- Bord, R. J., & O'Connor, R. E. (1992). Determinants of risk perceptions of a hazardous waste site. *Risk Analysis*, 12(3).
- Bowling, A. (2002). Research Methods in Health. Investigating health and health services (Second.). Buckingham: Open University Press.
- Braitwaite, J., & Peter, D. (2000). *Global business regulation*. Cambridge, United Kingdom: Cambridge University Press.

- Brandys, P. (1988). Growing an international biotechnology. *National Biotechnology*, *16*, 5.
- Bredahl, L. (1999). Consumers' cognitions with regard to genetically modified foods. *Appetite*, *33*, 343–360.
- Bredahl, L. (2001). Determinants of consumer attitudes and purchase intentions with regard to genetically modified food–results of a cross-national survey. *Journal of Consumer Policy*. Retrieved from http://link.springer.com/article/10.1023/A:1010950406128
- Bredahl, L. (2001). Determinants of consumer attitudes and purchase intentions with regard to genetically modified foods- results of a cross-national survey. *Journal of Consumer Policy*, 24(1), 23–61.
- Bredahl, L., Grunert, K. G., & Frewer, L. J. (1998). Consumer attitudes and decisionmaking with regard to genetically engineered food products - A review of the literature and a presentation of models for future research. *Journal of Consumer Policy*, 21(3), 251.
- Brossard, D., Shanahan, J., & Nesbit, T. C. (2007). *The public, the media and agricultural biotechnology*. Cambridge: CABI International.
- Bukszar, E., & Connolly, T. (1988). Hindsight bias and strategic choice: some problems in learning from experience. *Academy of Management Journal*, *31*, 628–641.
- Cacioppo, J. T., Gardner, W. L., & Berntson, G. G. (1997). Beyond bipolar conceptualizations and measures: The case of attitudes and evaluative space. *Personality and Social Psychology Review*, 1, 3–25.
- Caswell, J. A. (1998). How labeling of safety and process attributes affects markets for food. *Agricultural and Resource Economic Review*.
- Ceccoli, S., & Hixon, W. (2011). Explaining attitudes toward genetically modified foods in the European Union. *International Political Science Review*, *33*(3), 301–319. doi:10.1177/0192512111418788
- Chang, I., Hwang, W., & Li, Y. (2007). Pysicians' acceptance of pharmacokinetics-based clinical decision support system. *Expert System with Applications*, *33*, 296–303.
- Chen, M. (2008). An integrated research framework to understand consumers attitude and purchase intentions towards genetically modified foods. *British Food Journal*, *110*(6), 559–579.
- Chen, M. (2011). The gender gap in food choice motives as determinants of consumers ' attitudes toward GM foods in Taiwan. *British Foof Journal*, *113*(6), 697–709. doi:10.1108/00070701111140052
- Chen, M., & Li, H. (2007). The consumer's attitude toward genetically modified foods in Taiwan. *Food Quality and Preference*, 18(40), 662–674. doi:10.1016/j.foodqual.2006.10.002
- Chi-Ham, C., Bennett, C., Barrows, G., Sexton, S., & Ziberman, D. (2013). Agricultural biotechnology: Economics, Environment, Ethics, and the Future. *The Annual Review* of Environment and Resources, 38, 249–279.

- Chin, K.-S., Chan, B. L., & Lam, P.-K. (2008). Identifying and prioritizing critical success factors for coopetition strategy. *Industrial Management & Data Systems*, 108(4), 437–454. doi:10.1108/02635570810868326
- Chopra, P., & Kamma, A. (2013). *Genetically Modified Crops in India- The current status of GM crops in India.* Retrieved from http://www.ifpri.org/sites/default/files/publications/ib80.pdf
- Choudhary, B., Gheysen, G., Buysse, J., Meer, P. V. D., & Burssens, S. (2014). Regulatory options for genetically modified crops in India. *Plant Biotechnology Journal*, 122, 135–146.
- Christoph, I. B., Bruhn, M., & Roosen, J. (2008). Knowledge, attitudes towards and acceptability of genetic modification in Germany. *Appetite*, *51*, 58–68. doi:10.1016/j.appet.2007.12.001
- Chua, J. (2001). Genetically modified foods: A primer. *CBC Consumer indepth- GM foods*. Retrieved February 9, 2015, from www.cbc.ca/consumers/indepth/gmos
- Coakes, S. J. (2013). SPSS: Analysis without anguish: version 20.0 for windows. Australia: John Wiley & Sons Australia, Ltd.
- Coakes, S. J., & Ong, C. (2011). SPSS: Analysis without anguish: Version 18 for windows (Version 18.). Australia: John Wiley & Sons Australia, Ltd.
- Connor, M., & Siegrist, M. (2010). Science Communication. *Science Communication*, 32(4), 514–538. doi:10.1177/1075547009358919
- Cooper, D. ., & Schindler, P. S. (2003). Business research methods. McGraw-Hill.
- Cooper, R. ., & Kleinschmidt, E. (1987). New products : what separates winners from losers? *Product Innovation Management*, 4(3), 169–184.
- Corder, G. W., & Foreman, D. I. (2009). *Nonparametric statistics for non-statisticians*. A *step by step approach*. Canada: John Wiley & Sons, Inc.
- Costa-Font, M., & Gil, J. M. (2012). Meta-attitudes and the local formation of consumer judgments towards genetically modified food. *British Food Journal*, 114(10), 1463– 1485. doi:10.1108/00070701211263028
- Costanigro, M., & Lusk, J. L. (2014). The signaling effect of mandatory labels on genetically engineered food. *Food Policy*, 49, 259–267. doi:10.1016/j.foodpol.2014.08.005
- Cui, A. ., Griffith, D. A., & Cavusgil, S. . (2005). The influence of competitive intensity and market dynamism on knowledge management capabilities of multinational corporation subsidiaries. *International Marketing*, *13*(3), 32–53.
- Dacin, M. T., Goodstein, J., & Scott, W. (2002). Institutional theory and institutional change: Introduction to the special research forum. Academy of Management Journal, 42(1), 95–125.
- Daft, R., & Weick, K. (1984). Toward a model of organizations and interpretation system. *Academy of Management Review*, *9*, 284–296.
- Dangayach, G. S., & Deshmukh, S. G. (2001). Manufacturing strategy: literature review and some issues. *International Journal of Operations & Production Management*,

21(7), 884–932.

- Daud, M. H. (2002). The current and future outlook of agricultural biotechnology in Malaysia. *Asian Biotechnology and Development Review.*, 5(1), 15 21.
- Davis, F. D. (1989). Perceived Usefulness, perceived ease of use and user acceptance of information technology. *MIS Quarterly*, *13*(3), 319–340.
- De Winter, J. C. F., Dodou, D., & Wieringa, P. A. (2009). Exploratory Factor Analysis With Small Sample Sizes. *Multivariate Behavioral Research*, 44(2), 147–181. doi:10.1080/00273170902794206
- Dentoni, D., Bitzer, V., & Pascucci, S. (2012). Cross-sector partnerships and the cocreation of dynamic capabilities for stakeholder orientation. *Journal of Business Ethics*.
- Department of Standard Malaysia. (2014). ACB-Good Manufacturing Practice for Food (GMP). Retrieved from http://www.standardsmalaysia.gov.my/documents/10179/25811/ACB-GMP, Issue 1, 18 June 2013.pdf
- Department of Statistics Malaysia. (2015). Manufacturing. Retrieved March 30, 2015, from http://www.statistics.gov.my/index.php?r=column/ctwoByCat&parent_id=89&men u_id=SjgwNXdiM0JIT3Q2TDBIWXdKdUVldz09
- Doubleday, R. (2005). Corporation, controversy, genetically modified food. University College London.
- Douglas, M., & Wildavsky, A. (1982). *Risk and culture*. Berkeley, CA: University of California Press.
- Dutton, J., & Duncan, R. (1987). The creation of momentum for change through the process of strategic issue diognosis. *Strategic Management Journal*, 8, 279–295.
- Dutton, J., Fahey, L., & Narayanan, U. (1987). Toward understanding strategic issue diognosis. *Strategic Management Journal*, 12, 76–90.
- Eagly, A. H., & Chaiken, S. (1993). *The psychology of attitudes*. Harcourt Brace Jovanovitch.
- Economic Planning Unit of Prime Minister Department Malaysia. (2015). GDP manufacturing industry in 2015. Retrieved March 30, 2015, from http://www.epu.gov.my/en/industrial-production-indicators;jsessionid=0CC10883D5578BDD84C190B6B9D9B645
- Eden, L., & Miller, S. (2004). *Distance matter: liability of foreigness, institutional distance and ownership strategy.* (M. Hitt & J. Cheng, Eds.) (Advances i.). New York: Elsevier.
- Edginton, S. (1999). A new model for bioentrepreneurship? *National Biotechnology*, *17*, 1.
- Einsiedel, E. F. (2000). Cloning and its discontents: A canadian perspective. *Nature Biotechnology*, *18*(9), 943–4.
- El Feki, S. (2000). Survey of agriculture and technology. *Economist*, 3-6.

- Ellahi, B. (1994). Genetic Engineering for Food Production What Is It All About? *Genetic Engineering for Food Production*, 96(8), 13–23.
- Ellahi, B. (1996). Genetic modification for the production of food : the food industry 's response. *British Food Journal*, *98*(4,5), 53–72.
- Ellis, G. C. (2006). Report on the Status of Agricultural Biotechnology, R & D and Intellectual Property in Malaysia and Thailand 2006. Davis, California.
- Ernst & Young. (2011). National innovation strategy-biotechnology.
- Escaler, M., Teng, P., & Powel, A. (2011). The need for new agriculture, biotechnology, biotechnology and bioscience entrepreneurship in the Asia-Pacific regions. *Technology Monitor*, 14–23.
- FAO, UN, & & WHO. (2004). Food safety legislation science and risk-based approaches to harmonization. Seremban, Malaysia.
- Fauziah, A. (2011). Legislation on genetically modified foods. *MIFT Seminarar* "Genetically Modified Foods."
- Federation of Malaysian Manufacturers. (2014). Malaysian Industries.
- Finucane, M. L., & Holup, J. L. (2005). Psychosocial and cultural factors affecting the perceived riskof genetically modified food: an overview of the literature. *Social Science & Medicine*, 60, 1603–1612. doi:10.1016/j.socscimed.2004.08.007
- Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention and behavior: an introduction to theory and research. Addison-Wesley.
- Flint, J., Gil, L., Verastegui, J., Irarrazabal, C., & Dellacha, J. (2000). Biosafety information management systems. A comparative analysis of the regulatory systems in Canada, Argentina, and Chile. *EJB Electronic Journal of Biotechnology*, *3*(1), 9–28.
- Flynn, J., Burns, W., Mertz, C. K., & Slovic, P. (1992). Trust as a determinant of opposition to a high-level radioactive waste repository: Analysis of a structural model. *Risk Analysis*, 12(3), 417–429.
- Food Safety & Quality Division (MOH). (2015). Food Act 1983 & Food Regulation1985.RetrievedFebruary27,2015,fromhttp://fsq.moh.gov.my/v4/index.php/perundangan2/food-act-1983
- Food Safety and Standards Authority of India. (2008). Operationalizing the Regulation of Genetically Modified Foods in India Food Safety and Standards Authority of India. Retrieved from http://www.fssai.gov.in/Portals/0/Pdf/fssa_interim_regulation_on_Operatonalising_ GM_Food_regulation_in_India.pdf
- Foster, M., Berry, P., & Hogan, J. (2003). Market access issues for GM products. Implications for Australia. Agriculture.
- Freese, W., & Schubert, D. (2004). Safety testing and regulation of genetically engineered foods. *Biotechnology and Genetic Engineering Review*, 21.
- Freudenburg, W. R. (1993). Risk and recreancy: Weber, the division of labour and the rationality of risk perceptions. *Journal of Social Issue*, 71(4), 909–932.

- Frewer, L. J., Coles, D., Houdebine, L.-M., & Kleter, G. A. (2014). Attitudes towards genetically modified animals in food production. *British Food Journal*, *116*(8), 1291–1313.
- Frewer, L. J., Howard, C., & Shepherd, R. (1996). The influence of realistic product exposure on attitude towards genetic engineering of food. *Food Quality and Preference*, 7(1), 61–67.
- Frewer, L. J., Howard, C., & Shepherd, R. (1996). The influence of realistic product exposure on attitudes towards genetic engineering of food. *Food Quality and Preference*, 7(1), 61–67.
- Frewer, L. J., Howard, C., & Shepherd, R. (1997). Public concerns in the United Kingdom about general and specific applications of genetic engineering: Risk benefit and ethics. *Science, Technology & Human Values*, 22, 98–124.
- Frewer, L. J., Howard, C., & Shepherd, R. (1997). Public Concerns in the United Kingdom about General and Specific Applications of Genetic Engineering: Risk, Benefit, and Ethics. *Science, Technology & Human Values*, 22(1), 98–124. doi:10.1177/016224399702200105
- Frewer, L. J., Scholderer, J., & Bredahl, L. (2003). Communicating about the risks and benefits of genetically modified foods: The mediating role of trust. *Risk Analysis*, 23(6).
- Frewer, L., Lassen, J., Kettlitz, B., Scholderer, J., Beekman, V., & Berdal, K. G. (2004). Societal aspects of genetically modified foods. *Food and Chemical Toxicology*, 42, 1181–1193.
- FSANZ. (2005). Safety assessment of genetically modified foods (Vol. 3). doi:10.1525/gfc.2003.3.3.89
- Gardini, M. A. F. (2013). Establishment of the Uruguayan biosafety framework and regulatory perspective of environmental risk assessment for transgenic crops engineered with complex traits.
- Gaskell, G., Allum, N., Bauer, M., Durant, J., Allansdottir, A., Bonfadelli, H., ... Wagner, W. (2000). Biotechnology and the European public, *18*(September).
- Gay, L. R., & Diehl, P. L. (1996). Research methods for business and management. (Simon & Schruster, Ed.) (Internatio.). Singapore: Asia Pte. Ltd.
- Giannakas, K., & Fulton, M. (2002). Consumption effects of Genetic Modification : What if consumers are right? *Agricultural Economics*, 27, 97–109.
- Gruere, G. ., Carrer, C. ., & Farzin, Y. . (2009). Explaining international differences in genetically modified food labelling regulation. *Review of International Economics*, 17(3), 393–408.
- Grunert, K. G., Bredahl, L., & Scholderer, J. (2003). Four questions on European consumers' attitudes toward the use of genetic modification in food production. *Innovative Food Science & Emerging Technologies*, 4(4), 435–445. doi:10.1016/S1466-8564(03)00035-3
- Habibi-najafi, M. B. (2006). Food Biotechnology and its Impact on Our Food Supply.

Biotechnology & Biochemistry, 1(1), 22–27.

- Hagedoorn, J. (2003). Sharing intellectual property rights an exploratory study of joint patenting amongst companies. *Industrial and Corporate Change*, *12*, 1035–1050.
- Haines, D. . (2007). Manufacturers and retailers power in retailer response to trade discounts. *Academy of Marketing Study Journal*, 11(2), 1–18.
- Hair, F. J., Black, W. ., Babin, B. ., Anderson, R. ., & Tatham, R. . (2006). *Multivariate Data Analysis* (6th ed.). United States: Prentice Hall.
- Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). *Multivariate Data Analysis: A Global Perspectives* ((7th Editi.). New Jersey: Pearson.
- Hair, J. F., Money, A. H., Samouel, P., & Page, M. (2007). Research methods for business. West Sussex: John Wiley & Sons.
- Halford, N. G., & Shewry, P. R. (2000). Genetically modified crops: methodology, benefits, regulation and public concerns. *British Medical Bulletin*, *56*(1), 62–73.
- Hamilton N. D. (2001). Legal Issues Shaping Society's Acceptance of Biotechnology and Genetically Modified Organisms. *Drake Journal of Agricultural Law*.
- Hartmann, M., Khali, S., Bernet, T., Ghamdi, A. Al, & Ruhland, F. (2012). Legal and institutional framework of Saudi Arabia's organic sector. Organic Agriculture in Saudi Arabia, 38–41. Retrieved from http://www.giz.de/en/downloads/giz2012organic-agriculture-saudi-arabia-en.pdf
- Henchion, M., McCarthy, M., Greehy, G., Williams, G., & Kavanagh, G. (2013). Irish consumer and industry acceptance of novel food technologies : research highlights, implications and Recommendations. Ashtown, Dublin.
- Henderson, A., Weaver, C. K., & Cheney, G. (2007). Talking "facts": identity and rationality in industry perspective on genetic modification. *Discourse Study*, 9(1), 9– 41. doi:10.1177/1461445607072105
- Henney, C. (1998). Scenes from an unlikely marriage: building a corporate culture in biotechnology. *National Biotechnology*, *16*, 43–44.
- Hoban, T. (2004). Agricultural Economics and development Division, Food and Agriculture Organization of the United Nations. Public attitudes towards agricultural biotechnology.
- Hobbs, J. E., & Goddard, E. (2015). Consumers and trust. *Food Policy*, 52, 71–74. doi:10.1016/j.foodpol.2014.10.017
- Hodgson, J. (1999). EC says 1% is acceptable GMO "contamination. *National Biotechnology*, *17*(12), 1155–1156.
- Hofer, C. W., & Schendel, D. (1978). *Strategy formulation, analytical concepts*. St. Paul, MN: West Publishing.
- Hofstede, G. (1991). Cultures and organizationa. New York: McGraw-Hill.
- Hokanson, K., & Ferenczi, A. (2011). Systems to regulate genetically engineered plants. Similarities and differences among countries. Environmental Safety of Genetically Engineered Crops. (G. Grumet, J. Hancock, K. Maredia, & C. Weebaddee, Eds.).

East Lansing, USA, Michigan State University.

- Hood, E. E., Requensen, D. V., & Eversole, K. A. (2012). The regulatory framework. In Regulatory issue of biotechnologically improved plants. doi:10.1.16/B978-0-12-381466-1
- Hornibrook, S. a., & Fearne, A. (2003). Managing perceived risk as a marketing strategy for beef in the UK foodservice industry. *International Food and Agribusiness Management Review*, 6(3), 70–93.
- Hosford-Dunn, H., Hush, J., & Sandlin, R. (2000). Acceptance benefit and satisfaction measures of hearing aid user attitudes. San Diego, California: Singular Publisher Group. Retrieved from http://books.google.co.in/books?hl=en&lr=&id=MZDu1Sti69kC&oi=fnd&pg=PA4 67&dq=Acceptance+benefit+and+satisfaction+measures+of+hearing+aid+user+attit udes&ots=8bloGQnWMv&sig=Fbr_uZey8IXBI7IxMqCgbvoHGnQ&redir_esc=y#v =onepage&q=Acceptance benefit and satisfact
- House, L., Morrow, B., Lusk, J., & Moore, M. (2001). Modelling consumer acceptance of and willingness to pay for genetically-modifed foods in the United States and the European Union. In *The World Food and Agribusiness Symposium*. Sydney, Australia.
- Hunt, S., & Frewer, L. J. (2001). Trust in sources of information about genetically modified food risks in the UK. *British Food Journal*, *103*(1), 46 62.
- Hussin, F., Ali, J., & Noor, M. S. Z. (2014). *Kaedah penyelidikan & analisis data SPSS*. Sintok: UUM Press.
- Ibrahim, B., Rezai, G., Mohamed, Z. A., & Sharifuddin, J. (2013). Malaysian consumer awareness and GM food : What are the factors influencing?
- Indrani, T., Siwar, C., Hossain, M. A., & Vijian, P. (2001). *Situation of Agriculture in Malaysia A cause for concern* (September .). Selangor: Education and Research Association for Consumers Malaysia (ERA Consumers Malaysia).
- Inghelbrecht, L., Dessein, J., & Huylenbroe, G. Van. (2015). Explaining the present GM business strategy on the EU food market: The gatekeepers' perspective. *New Biotechnology*, *32*(1).
- Inghelbrecht, L., Dessein, J., & Huylenbroeck. (2014). The non-GM crop regime in the EU : How do industries deal with this wicked problem. *Journal of Life Science*.
- Ismail, K., Azhar, T. N. T., Yong, C. Y., Aslan, a. S., Omar, W. Z., Majid, I., & Ajagbe, a. M. (2012). Problems on Commercialization of Genetically Modified Crops in Malaysia. *Procedia - Social and Behavioral Sciences*, 40, 353–357. doi:10.1016/j.sbspro.2012.03.199
- Ismail, K., Soehod, K., Vivishna, S., Khurram, W., Jafri, S. khuram A., & Ramily, M. K. (2012). Genetically modified food and consumer purchase intentions: A study in Johor Bharu. *International Journal of Business and Social Science*, 3(5), 197–208.
- Jackson, S. ., & Dutton, J. . (1988). Discerning threats and opportunities. *Administrative Science Quarterly*, *33*, 370–387.

- Jaffe, G. (2004). Regulating transgenic crops. A comparative analysis of different regulatory processes. *Transgen. Res.*, 13, 5–19.
- James, C. (2010a). Global status of commercialized biotech/GM crops : International service for the Acquisition of Agri-Biotech Applications. New York.
- James, C. (2010b). Global status of commercialized biotech/GM crops : International service for the Acquisition of Agri-Biotech Applications. New York.
- Jaramillo, paul E. (2009). Farmer's valuation and adoption of new genetically modified corn seeds : nitrogen-fertilizer saving and drought tolerance traits.
- Jasanoff, S. (1995). Product, Process or Programme: Three Cultures and the Regulation of Biotechnology. Resistance to New Technology. (M.Bauer, Ed.) (Nuclear po.). Cambridge University Press.
- Jaupi, A., Marku, S., & Bajraktari, E. (2014). Review of the regulatory framework on genetically modified food and feed in Albania : a policy perspective. *Agricultural Science*.
- Jayaraman, K. (1999). India intends to reap the full commercial benefits. *Nature*, 402, 342–343.
- Jennings, R. (1998). Cementing links between industry and the university. *National Biotechnology*, *16*, 35–36.
- Jinap, et al. (2008). Malaysia in pacific food system outlook.
- Jonas, D., & Kaferstein, F. (1995). Genetic modification and food safety. *Biotech Dev Monit*, 25, 11–2.
- Kaplan, R. S., & Norton, D. P. (2001). Principle 1: Translate Strategy into Operational Terms. In *The strategy-focused organization* (Vol. 23).
- Kasperson, R. ., Golding, D., & Kasperson, J. X. (1996). Credibility, information preferences and information interests. *Risk Analysis*, *16*(2), 251–261.
- Kikulwe, E. M., Wesseler, J., & Falck-zepeda, J. (2011). Attitudes, perceptions, and trust. Insights from a consumer survey regarding genetically modified banana in Uganda. *Appetite*, 57, 401–413. doi:10.1016/j.appet.2011.06.001
- Kimenju, S. C., De Groote, H., Bett, C., & Wanyama, J. (2011). Farmers, consumers, and gatekeepers and their attitude towards biotechnology. *African Journal of Biotechnology*, 10(23), 4767–4776.
- Kimenju, S. C., De Groote, H., Karugia, J., Mbogoh, S., & Poland, D. (2005). Consumer awareness and attitudes toward GM foods in Kenya. *African Journal of Biotechnology*, 4(10).
- Knight, J. G., Holdsworth, D. K., & Mather, D. W. (2008). Perspective GM food and neophobia: connecting with the gatekeepers of consumer choice. *Journal of the Science of Food and Agriculture*, 88, 739–744.
- Knight, J., & Paradkar, A. (2008). Acceptance of genetically modified food in India: perspectives of gatekeepers. *British Food Journal*, 110(10), 1019–1033. doi:10.1108/00070700810906633

- Kogut, B. (1991). Country capabilities and permeability of borders. *Strategic Management Journal*, *12*, 33–47.
- Kostava, T. (1999). Transnational transfer of strategic organizational practices: A contextual perspective. *Academy of Management Review*, 24, 308–324.
- Kostova, T. (1997). Country institutional profile. Academy of Management Best Paper Proceedings, 180–184.
- Kostova, T., & Roth, K. (2002). Adoption of an organizational practice by subsidiaries of multinational corporations: Institutional and relational effects. *The Academy of Management Journal*, 45(1), 215–233.
- Kostova, T., Roth, K., & Dacin, M. T. (2008). Theory in the study of multinational corporations : A critique and new directions. *The Academy of Management Review*, 33(4994-1006).
- Kothamasi, D., & Vermeylen, S. (2011). Genetically modified organism in agriculture : can regulation work? *Environment and Development Sustainable*, 13, 535–546.
- Krejcie, R. V, & Morgan, D. W. (1970). Determining sample size for research. *Educational and Psychological Measurement*, 30, 607–610.
- Kruft, D. (2001). Impact of Genetically-Modified Crops and Seeds on Farmers.
- Kumar, M., Talib, S. A., & Ramayah, T. (2013). *Business research methods*. Malaysia: Oxford University Press.
- Kuznesof, S., & Ritson, C. (1996). Consumer acceptability of genetically modified foods with special reference to farmed salmon. *British Food Journal*, 98(4/5), 39–47. doi:10.1108/00070709610119874
- Lahteenmaki, L., Grunert, K. G., Astrom, A., Uelond, O., Arvola, A., & Bech-Larsen, T. (2002). Acceptability of genetically modified vheese presented as real product alternative. *Food Quality and Preference*, 13, 523–534.
- Lang, J. T. (2013). Elements of public trust in the America food system: Expert, organization and genetically modified food. *Food Policy*, 41, 145–154.
- Langtree, L. (2014). GM food-GM food list and information. Retrieved from http://www.disabled-world.com/fitness/gm-foods.php
- Latacz-Lohmann, U., & Foster, C. (1997). From "niche" to "mainstream" strategies for marketing organic food in Germany and the UK. *British Food Journal*, 99(8), 275 – 282.
- Lavoie, B., & Sheldon, I. (2000). The comparative advantage of real options: an explaination for the US specialization in biotechnology. *AgBioForum*, *3*(1), 47–52. Retrieved from http://www.agbios.com/articles/2000215-A.htm
- Lawler, C., Meer, V. der R., & Viseur, J. (1998). Transferring EU-funded biotechnology research to European bioindustry. *National Biotechnology*, *16*, 494.
- Levidow, L., & Bijman, J. (2002). Farm Inputs under Pressure from the European Food Industry. *Food Policy*, 27(1), 31–45.
- Li, Q., Curtis, K., McCluskey, J., & Wahl, T. (2002). Consumer attitudes toward

genetically modified foods in Beijing, China. Agibioforum, 5, 145–152.

- Libby, R., & Fishburn, P. C. (1977). Behavioral Model of risk taking in business decisions: A survey and evaluation. *Journal of Accounting Research*, 15(2), 272–292.
- Lim, L. C. (2015, July). Malaysians have been eating frankenfoods. *Theantdaily*. Retrieved from http://www.theantdaily.com/Main/Malaysians-have-been-eating-Frankenfoods
- Lin, C., & Chang, Y.-C. (2012). Retailers' new product acceptance decisions: incorporating the buyer- supplier relationship perspective. *Business and Industrial Marketing*, 27(2), 89–99.
- Liver, Y. de, Pligt, van der, & Wighboldus, D. (2005). Unpacking attitudes towards genetically modified food. *Appetite*, 242–249.
- Lusk, J. L., & Coble, K. H. (2005). Risk Perceptions, Risk Preference, and Acceptance of Risky Food. American Journal of Agricultural Economics, 87(2), 393–405.
- MacKenzie, D. (2000). International comparison of regulatory frameworks for food products of biotechnology. Canadian Biotechnology Advisory Committee (CBAC).
- Malaysian Biotechnology Corporation. (2010). *Malaysian Biotechnology Country Report* 2009/2010.
- Malaysian Department of Statistic. (2014). Press Release Gross Domestic Product (GDP) Third Quarter of 2014. Retrieved from http://www.statistics.gov.my/portal/images/stories/files/LatestReleases/gdp/2014/G DP_PRESS_RELEASE_Q3_2014.pdf
- Malaysian Investment Development Authority. (2014). Food technology and sustainable resources. Retrieved from http://www.mida.gov.my/home/food-technology-and-sustainable-resources/posts/
- Malaysian Science and Technology Information Centre. (2014). National Biotechnology Policy. Retrieved from http://www.mastic.gov.my/en/web/guest/polisi-kebangsaanbioteknologi
- March, J. G., & Shapira, Z. (1987). Managerial Perspectives on risk and risk taking. *Management Science*, 33(11), 1404–1418.
- March, J. G., & Shapira, Z. (1987). Managerial perspectives on risk and risk taking. *Management Science*, 33, 1404–1418.
- Marchant et al. (2004). Issues on Adoption, Import Regulation, and Policies for Biotech Commodities in China with a Focus on Soybeans. *AgBioForum*, 5(4), 167–174. Retrieved from http://www.agbioforum.org/v5n4
- Martinez, M. G., Fearne, A., Caswell, J. A., & Henson, S. (2007). Co- regulation as a possible model for food safety governance: opportunities for public-private partnership. *Food Policy*, *32*, 299–314.
- Mather, D. W., Knight, J. G., Insch, A., Holdsworth, D. K., Ermen, F., & Breitbarth, T. (2012). Social stigma and consumer benefits : trade-offs in adoption of genetically modified foods. *Science Communication*, 34(4), 487–519.

doi:10.1177/1075547011428183

- MATRADE. (2014). Labelling requirement in Chile. Retrieved June 12, 2014, from url:http://www.matrade.gov.my/en/archive/archive-press-release-2013/2948-msian-food-a-beverages-companies-received-good-response-from-chiles-top-food-importers-4-july2013
- MATRADE. (2015). Malaysia halal directory. Retrieved February 28, 2015, from http://www.matrade.gov.my/en/foreign-buyers/find-malaysian-suppliers-a-service-providers/malaysian-halal-directory
- Mayer, J. E. (2005). Development and impact of golden rice. Washington, DC.
- McCluskey, J. ., Grimsrud, K. ., & Wahl, T, L. (2006). Comparison of consumer responses to genetically modified foods in Asia, North America and Europe. Natural resource management and policy (Vol. 30). US: Springer.
- McHugen, A., & Smyth, S. (2008). US regulatory system for genetically modified (genetically modified organism (GMO), rDNA or transgenic crop cultivars. *Plant Biotechnology Journal*, 6, 2–12.
- Mclean, M., Frederick, R., Traynor, P., Cohen, J., & Komen, J. (2003). A framework for biosafety implementation: report of a meeting. The Hague, The Netherlands: International Service for National Agriculture Research (ISNAR) Biotechnology Service, July.
- McIntosh, C., & Turnbull, J. (2006). Oxford advanced learner dictionary. International student edition (seventh.).
- Mendenhall, C. (2000). Willingness to pay a premium for non-genetically modified foods. In 4th ICABR International Conference on the Economics of Agricultural Biotechnology (pp. 934–965). Ravello, Italy.
- Meyers, L. S., Gamst, G. C., & Guarino, A. J. (2013). *Performing data analysis using IBM SPSS*. Canada: John Wiley & Sons, Inc.
- Meyers, L. S., Gamst, G., & Guarino, A. J. (2006). *Applied multivariate research. Design and interpretation.* London: SAGE Publications.
- Ministry of International Trade and Industry Malaysia. (2006). *Third Industrial Master Plan 2006-2020*.
- Ministry of International Trade and Industry Malaysia. (2014). Trade and investment in services. Retrieved from http://myservices.miti.gov.my/services-sector-may-contribute-more-to-malaysia-s-gdp-growth
- Ministry of Science Technology and Innovation (MOSTI). (2010). Malaysian biotechnology statistical indicator.
- Mintzberg, H., & McHugh, A. (1985). *Strategic formulation in an adhocracy*. *Administrative Science Quarterly*.
- Mitra, J., Tait, J., & Wield, D. (2011). From maturity to value-added innovation : lessons from the pharmaceutical and agro-biotechnology industries. *Journal Article*, 29(3), 105–109. doi:10.1016/j.tibtech.2010.11.004
- Morris, S. H., & Adley, C. C. (2000). Genetically modified food issues. British Food

Journal, 102(9), 669–691.

- Moses, V. (1999). Biotechnology products and European consumers. *Biotechnology* Advances, 17(8), 647–678.
- Mucci, A., Hough, G., & Ziliani, C. (2004). Factors that influence purchase intent and perceptions of genetically modified foods among Argentine consumers. *Food Quality and Preference*, *15*, 559–567. doi:10.1016/j.foodqual.2004.02.004
- MyGovernment. (2015). Small medium industries (SMI). Retrieved February 25, 2015, from http://mygov.malaysia.gov.my/EN/Relevant Topics/IndustryInMalaysia/Business/BusinessManufacturing/Pages/BusinessManufa cturing.aspx
- Nap, J., Metz, P., Escaler, M., & Conner, A. (2003). The release of genetically modified crops into the environment Part I. Overview of current status and regulations. *The Plant Journal*, *33*(1), 18.
- NEW ZELAND. (1993). Biosecurity Act.
- NEW ZELAND. (1996). Hazardous Substances and New Organisms Act (HSNO Act).
- Nielsen, J. (1993). Usability Engineering. San Diego, California: Academic Press.
- Nooteboom, B. (1994). Innovation and diffusion in small firms : theory and evidence. *Small Business Economics*, 6, 327–347.
- Normann, R., & Ramirez, R. (1993). From value chain to value constellation : designing interactive strategy. *Harvard Business Review*, 65–77.
- Nunnally, J. . (1978). Psychometric theory. New York: McGraw-Hill.
- Oliver, C. (1991). Strategic responses to institutional processes. Academy of Management *Review*, 16, 145–179.
- Onyango, B., Govindasamy, R., Hallman, W., Jang, H., & Puduri, V. (2004). Consumer acceptance of genetically modified foods in Korea: Factor and cluster analysis. In *Paper presented at northeast agricultural and resource economic association and canadian agricultural economics society annual meeting*. Halifax, Nova Scotic.
- Opara, L. U. (2003). Traceability in agriculture and food supply chain : A review of basic concepts, technological implications, and future prospects. *Food, Agricultural & Environment*, 1(1), 101–106.
- Oxford Dictionaries. (2015). Definition of regulation. Retrieved March 1, 2015, from http://www.oxforddictionaries.com/definition/english/regulation
- Paarlberg, R. . (2002). The real threat to GM crops in poor countries: consumer and policy resistance to GM foods in rich countries. *Food Policy*, 27(3), 247–50.
- Pablo, A. (1997). Reconciling predictions of decision making under risk : insights from a reconceptualized model of risk behaviour. *Journal of Managerial Psychology*, 1, 4– 20.
- Pallant, J. (2011). SPSS Survival Manual: A step by step guide to data analysis using SPSS for Windows (4th ed.). Sydney, Australia: Allen & Unwin.
- Pelletier, D. L. (2006). FDA's regulation of genetically engineered foods: Scientific,

legal and political dimensions. *Food Policy*, 31, 570–591.

- Pijawka, K. D., & Mushkatel, A. H. (1991). Public opposition to the siting of high-level nuclear waste repository: The importance of trust. *Policy Studies Review*, *10*(4), 180–194.
- Pilgrim, F. J. (1956). The Components of food acceptance and their measurement. *American Journal of Clinical Nutrition*, 5(2), 171–175.
- Porter, M. (1990). The competitive advantage of nations. *Harvard Business Review*, 68, 73–93.
- Prati, G., Pietrantoni, L., & Zani, B. (2012). The prediction of intention to consume genetically modified food : Test of an integrated psychosocial model. *Food Quality and Preference*, 25(2), 163–170. doi:10.1016/j.foodqual.2012.02.011
- Purcell, D. (1999). Financing biotechnology in an efficient market. *National Biotechnology*, *17*, 31–32.
- Purchase, I. F. H. (2005). What determines the acceptability of genetically modified that can improve human nutrition? *Toxicology and Applied Pharmacology*, 207, S19–s27.
- Quah, S.-C. (2007). Biotechnology in Malaysia : A current perspective. *Biotechnology in Malaysia and Thailand*, *11*(8), 457–463.
- Ramessar, K., Capell, T., Twyman, R., Quemada, H., & Christou, P. (2009). Calling the tunes on transgenic crops: the case for regulatory harmony. *Mol. Breeding*, 23, 99– 112.
- Regan, M. ., Mitsopoulos, E., Haworth, N., & Young, K. (2002). Acceptability of invehicle intelligent transport system to Victorian car drivers. Australia.
- Reg-Garcia, P. (2006). Directive 2001/18/EC on the deliberate relese into the environment of GMOs: an overview and the main provisions for placing on the market. *Journal European Environmental Plan*, *3*, 3–12.
- Rhodes, C. (2012). Industrial policy since 2010.
- Robert, H., & Brockhaus, S. (1980). Risk taking propensity of entrepreneurs. *The Academy of Management Journal*, 23(3), 509–520.
- Rodríguez-entrena, M., & Salazar-ordóñez, M. (2013). Influence of scientific technical literacy on consumers' behavioural intentions regarding new food, 60, 193–202. doi:10.1016/j.appet.2012.09.028
- Rogers, E. M. (1995). Diffusion of innovations ((4th ed.).). New York: Free Press.
- Rogers-Hayden, T., Mohr, A., & Pidgeon, N. (2007). Introduction: engaging with nanotechnologies engaging differently? *Nano- Ethics*, *1*, 123–130.
- Rollin, F., Kennedy, J., & Wills, J. (2011). Consumers and new food technologies. *Trends in Food Science and Technology*, 22(2-3), 99–111. doi:10.1016/j.tifs.2010.09.001
- Ross, R. ., Pandey, V., & Ross, K. . (2012). Sustainability and firm strategy in US agrifood companies: An overview of current approaches. Michigan State

University.

- Rudder, A. (2001). Case Study New food product development : strategies for success. *British Food Journal*, *103*(9), 657–670. doi:10.1108/00070700110407012
- Saad, L. (1999). What biotech food issue? Gallup new survey. Retrieved February 5, 2015, from http://www.gallup.com/poll/releases/pr991005.asp
- Saegusa, A. (2000). Japan steps up GMO tests. *Nature Biotechnology*, 18, 131.
- Saguy, I., & Sirotinskaya, V. (2014). Challenges in exploiting open innovation's full potential in the food industry with a focus on small and medium enterprises (SMEs). *Trends in Food Science & Technology*, 38(2), 136–148. doi:10.1016/j.tifs.2014.05.006
- Salehuddin, N., Ahmad, M., & Kadir, S. A. (2014). Struktur dan konsistensi sikap makanan terubah suai genetik pengguna muslim : cadangan kerangka konseptual. *Management Journal*, *41*(57-67).
- Sanvido, O., Widmer, F., Winzeler, M., & Bigler, F. (2005). A conceptual framework for the design of environmental post-market monitoring of genetically modified plant. *Environmental Biosafety*, 4, 13–27.
- Schilter, B., & Constable, A. (2002). Regulatory control of genetically modified (GM) foods : likely development. *Toxicology Letters*, 127, 341–349.
- Sekaran, U. (2010). *Research methods for business* (5th ed.). Hoboken, NJ: John Wiley & Sons.
- Sekaran, U., & Bougie, R. (2009). Research methods for business. A skill building approach (1st ed.). West Sussex, UK: John Wiley & Sons, Ltd, Publication.
- Sekaran, U., & Bougie, R. (2013). *Research methods for business* (sixth.). John Wiley & Sons, Inc.
- Shalhevet, S., Sason, N., Sherbo, A., & Sendler, I. (1988). Analyzing consumer preferences for low-fat olives. Israel : Tel, Aviv University: Faculty of Management.
- Sharma, S. (1997). A longitudinal investigation of corporate environmental responsiveness : antecedents and outcomes. In Academy of Management Best Paper proceedings (pp. 460–464). Boston, MA.
- Sharma, S., & Nguan, O. (1999). The biotechnology industry and strategies of biodiversity conservation: The influence of managerial interpretations and risk propensity. *Business Strategy and the Environment*, *8*, 46–61.
- Sharma, S., Pablo, A., & Vredenburg, H. (1999). Corporate environmental responsiveness strategies : the importance of issue interpretation and organizational context. *The Journal of Applied Behavioral Science*.
- Sheikkha, M. H., Kalantar, S. M., & Vahidi, A. R. (2006). Public knowledge and perceptions of biotechnology and genetically modified organisms in Iran. *Iranian Journal of Biotechnology*, 4(2).
- Sheth, J. (1973). A model of industrial buying behaviour. *Journal of Marketing*, 37(4), 50–60.

- Shoemaker, R. (2001). Economic issue in agriculture biotechnology. *Agriculture Information Bulletin*. Retrieved from http://www.ers.usda.gov/publications/aib762/762fm.pdf
- Shrestha, M. P., & Shrestha, I. (2002). Public Health Dimension of Food Security.
- Siegrist, M. (1999). A causal model explaining the perception and acceptance of gene technology. *Journal of Applied Social Psychology*, 29(10), 2093–2106.
- Siegrist, M. (2000). The influence of trust and perceptions of risk and benefit on the acceptance of gene technology. *Risk Analysis*, 20, 195–203.
- Siegrist, M., Cvetkovic, G. ., & Roth, C. (2000). Salient value similarity, social trust, and risk/benefit perception. *Risk Analysis*, 20(3), 353–362.
- Siipi, H., & Launis, V. (2009). Opposition and Acceptance of GM-food and GMmedicine. *The Open Ethics Journal*, 3, 97–103.
- Sitkin, S. B., & Pablo, A. L. (1992). Reconceptualizing the determinants of risk behaviours. *Academy of Management Review*, 17(1), 9–38.
- Sjoberg, L. (1999). Perceived competence and and motivation in industry and government as factor in risk perception. London: Earthscan publication.
- Solleiro, J., & Galvez, A. (2002). Latin American biosafety regulatory framework. *International Journal of Biotechnology*, 4, 306–320.
- Sorgot, A., & Ambrozic-Dolinseks, J. (2010). Knowledge of, attitudes toward, and acceptance of genetically modified organism among prospective teachers of biology, home economics, and grade school in Slovenia. *Biochemistry and Molegular Biology Education*, 38(3), 141–150.
- Spielman, D. J., Kolady, D. E., Cavaleiri, A., & Rao, C. N. (2014). The seed and agricultural biotechnology industries in India: An analysis of industry structure, competition and policy option. *Food Policy*, 45, 88–100.
- Stalk, J. G., & Evans-Clark, P. (1992). Competing on capabilities: The new rules of corporate strategy. *Harvard Business Review*, 70(2), 54.
- Starr, C. (1969). Social benefit versus technological risk. Science, 165, 1232–1238.
- Stearns, T. M., Carter, N. M., Reynolds, P. D., & Williams, M. L. (1995). New Firm Survival : industry, strategy and location. *Business Venturing*, 10(March 1993), 23– 42.
- Stephensons, M. C., & Arujanan, M. (2011). Communication: Addressing the Challenges in Communicating Agribiotechnology in Muslim Countries.
- Sternquist, B. (1994). No Title. International Review of Retail Distribution and Consumer Research, 4(2), 157–176.
- Stone, D. L., Stone-romero, E. F., & Lukaszewski, K. (2006). Factors affecting the acceptance and effectiveness of electronic human resource systems. *Human Resource Management Review*, 16, 229–244. doi:10.1016/j.hrmr.2006.03.010
- Streiner, D. L., & Norman, G. R. (1995). Health measurement scales. A practical guide to their development and use (Second.). New York: Oxford University Press.

- Stronen, T. H. F. H. (2011). Innovation, strategy, and identity : a case study from the food industry. *Innovation Management*, *14*(3), 345–363.
- Subrahmanyan, S., & Cheng, P. S. (2000). Perceptions and attitudes of singaporeans toward genetically modified food. *Journal of Consumer Affairs*, *34*(2), 269–90.
- Sung, B., & Hwang, K. (2013). Firm's intentions to use genetically modified organisms industrially: The influence of sociopolitical-economic forces and managerial interpretations in the Korean context. *Technological Forecasting & Social Change*, 80, 1387–1394.
- Svensson, E. D. (2013). Validity Scale. In International Encyclopedia of Statistical Science (pp. 1637–1639). Springer Berlin Heidelberg. doi:10.1007/978-3-642-04898-2_98
- Szulanski. (1996). Exploring internal stickiness: Impediment to the transfer of best practice within the firm. *Strategic Management Journal*, *17*, 27–43.
- Tabachnick, B. G., & Fidell, L. . (2007). Using multivariate statistics (5th ed.). Boston, MA: Allyn & Bacon.
- Tait, J., & Chataway, J. (2007). The governance of corporations, technological change, and risk: examining industrial perspectives on the development of genetically modified crops. *Environment and Planning C: Government and Policy*, 25(1), 21– 38. doi:10.1068/c0615j
- Tait, J., & Williams, R. (1999). Policy approaches to research and development: foresight, framework and competitiveness. *Science and Public Policy*, 26(2), 101– 112.
- Talib, H. @ H. A., Ali, K. A. M., & Jamaludin, K. R. (2008). Quality Assurance in Halal Food Manufacturing in Malaysia : A Preliminary Study. In *International Conference* on Mechanical & Manufacturing Engineering (pp. 1–5).
- Tanaka, Y. (2004). Major Psychological Factors Affecting Acceptance of Gene-Recombination Technology. *Risk Analysis*, 24(6).
- Tengku Ahmad, T. A. (2015). Dimensions of Food and Livelihood Security of Agricultural Trade: The Case of Malaysia. In *Emerging Economies* (pp. 113–132).
- The Canadian Trade Commissioner Service. (2015). Import Regulations Malaysia.
Retrieved February 28, 2015, from
http://www.tradecommissioner.gc.ca/eng/document.jsp?did=51956&cid=535&oid=
79
- The National Biotechnology Division (BIOTEK). (2010). *Malaysian biotechnology statistical indicator 2010*.
- Thiétart, R.-A., & Wauchope, S. (2001). Sampling method. In *Doing Management Research* (pp. 147–172). London: SAGE Publications Ltd. doi:http://dx.doi.org/10.4135/9781849208970.n8
- Thomas, I. (1998). Environmental impact assessment in Australia. Sydney, Australia.
- Thomas, R. ., & McDaniel, J. (1990). Intrepreting strategic issue : effects of strategy and the information-processing structure of top management team. Academy of

Management Journal, 33(2), 286–306.

- Tummala, V. M. R. et al. (2000). Strategic alliances of China and Hong Kong in manufacturing and their impact on global competitiveness of Hong Kong manufacturing industries. *Integrated Manufacturing Systems*, 11(6), 370–84.
- Turner, L. (1999). Building a better biotech company. National Biotechnology, 17, 5-6.
- Uozum, Y. (1999). Japan to bring in mandatory tests for GM food. Nature, 402, 846.
- USDA. (2015). People's Republic of China, Food and Agricultural Import Regulations and Standards Food Labeling Standard 200. Retrieved March 1, 2015, from http://www.fas.usda.gov/regions/china
- Vaiman, V., Scullion, H., & Collings, D. (2012). Talent management decision making. Management Decision, 50(5), 925–941. doi:10.1108/00251741211227663
- Vazquez-Salat, N., Salter, B., Smets, G., & Houdebine, L.-M. (2012). The current state of GMO governance: Are we ready for GM animals? *Biotechnology Advances*, 30, 1336–1343.
- Verdurme, A., & Viaene, J. (2003). Consumer beliefs and attitude towards genetically modified food: Basis for segmentation and implications for communication. *Agribusiness*, 19(1), 91–113. doi:10.1002/agr.10045
- Vermeulan, H., Kirsten, J. ., Doyer, T. ., & Schonfeldt, H. . (2005). Attitude and acceptance of South African urban consumers towards genetically modified white maize. Agrekon, 44, 118–137.
- Vermeulen, H. (2004). Genetically modified white maize in South Africa: consumer perceptions and market segmentation.
- Vigani, M. (2010). The political economy of food standards: GMOs regulation and trade. University Degli Scrudi, Milano.
- Vigani, M., & Olper, A. (2013). GMO standard, endogenous policy and the market for information. *Food Policy*, 43, 32–43.
- Vigani, M., Raimond, V., & Opler, A. (2012). International trade and endogeneous standards : the case of GMO regulations. *World Trade Review*, *11*(3), 415–437.
- Vilella-Vila, M., & Costa-Font, J. (2008). Press media reporting effects on risk perceptions and attitudes towards genetically modified (GM) food. *The Journal of Socio-Economics*, 37(5), 2095–2106. doi:10.1016/j.socec.2008.04.006
- Vorley, B. (2007). Supermarkets and Agri-Food Supply Chains in Europe: Partnership and Protest. In Burch and Lawrence (Ed.), *Supermarkets and Agri-Food Supply Chains: Transformations in the Production and Consumption of Foods.*
- Wahab, A. G. (2012). Malaysia agricultural biotechnology annual. Retrieved from http://gain.fas.usda.gov/Recent GAIN Publications/Agricultural Biotechnology Annual_Kuala Lumpur_Malaysia_8-24-2012.pdf
- Wales, C., & Mythen, G. (2002). Risky discourses: the politics of GM foods. *Environmental Politics*, 11(2), 121–144. doi:10.1080/714000604
- Wartburg, W. P. Von, & Julian, L. (1999). Gene Technology and Social Acceptance.

United States of America: University Press of America Inc. Retrieved from http://books.google.bg/books?hl=en&lr=&id=1LHIopelG1MC&oi=fnd&pg=PR7&d q=gene+technology+and+social+acceptance&ots=t5ZwqoggC_&sig=BXcCZqmcbtt C-H-MwnXOj2hiPcA&redir_esc=y#v=onepage&q=gene technology and social acceptance&f=false

- Wesseler, J. (2014). Biotechnologies and agrifood strategies : opportunities, threat and economic implication. *Bio-Based and Applied Economics*, *3*(3), 187–204.
- Wesseler, J., Scatasta, S., & Fall, E. (2011). The environmental benefits and costs of (GM) crops, in Colin. (I. S. A. Carter, GianCarlo Moschini, Ed.)Genetically Modified Food and Global Welfare (Frontiers of Economics and Globalization, 10, 173–199.
- Whitman, D. B. (2000). Genetically modified foods: Harmful or helpful. *Nature*, *399*(6733), 214.
- Williams, B., Brown, T., & Onsman, A. (2012). Exploratory factor analysis : A five-step guide for novices. *Australasian Journal of Paramadicine*, 8(3), 1–13. Retrieved from http://ro.ecu.edu.au/cgi/viewcontent.cgi?article=1373&context=jephc
- Withold, B. (1999). The European university as a startup generator. *National Biotechnology*, 17, 8.
- Woodside, F., Ogunmokun, G., & Brown, L. R. (2005). Measuring The Attitudes Of Australian Food Manufacturers Towards Genetically Modified (GM) Foods – A Pilot Study.
- Xu, D., & Shenker, O. (2002). Institutional distance and the multinational enterprise. *Academy of Management Review*, 27, 608–618.
- Yong, A. G., & Pearce, S. (2013). A beginner's guide to factor analysis: focusing on exploratory factor analysis. *Tutorials in Qualitative Methods for Psychology*, 9(2), 79–94.
- Young, R. (2001). Adventures in Wonderland. National Biotechnology, 19, 9–10.
- Zahra, S. A., & Covin, J. G. (1993). Business Strategy, Technology Policy and Firm Performance. *Strategic Management Journal*, 14(6), 451–478. doi:10.1002/smj.4250140605
- Zikmund, W. G. (2010). Business Research Methods.
- Zikmund, W. G., Babin, B. J., Carr, J. C., & Griffin, M. (2010). Business Research Methods. Canada: South-Western: Cengage Learning.
- Zilberman, D., & Wesseler, J. (2014). The impacts and acceptance of agricultural biotechnology: an introduction to the special issue. *Environment and Development Economics*, *19*, 669–675. doi:0.1017/S1355770X1400062X

Appendices

Appendix A : Questionnaire

SURVEY

GENETICALLY MODIFIED FOOD IN MALAYSIA : INDUSTRY ACCEPTANCE

COLLEGE OF BUSINESS UNIVERSITI UTARA MALAYSIA

Ref: Genetically Modified Food (GMF) In Malaysia : Industry Acceptance

Referring to the matter above, I would like to inform you that your esteem industry has been selected as one of the respondents for the above mentioned academic research. This study is mainly to establish a focus on industry acceptance of GMF in Malaysia. Your responses are crucial in helping us to understand on how and what are the main influences of GMF on Malaysian industry acceptance.

The questionnaire will take about 15-20 minutes to complete. We would appreciate it very much if you could complete the attached questionnaire and return it to us at your earliest possible.

Your answers to this questionnaire are STRICTLY CONFIDENTIAL and no individual answers can be linked back to you or your organization. The information will be used for academic purposes only.

Your participation is highly anticipated and crucial to the outcome of this study. I would also like to take this opportunity to thank you in advanced for your participation in this survey. If you have any question in respect to this study please do not hesitate to contact me at 010-2954963 or by email at husmila@gmail.com.

Universiti Utara Malaysia

Thank you very much for your time and cooperation.

Yours sincerely,

Siti Husmila Hussin Post Graduate (Master Student) (Matric No : 816713) College of Business Universiti Utara Malaysia 06010, Sintok, Kedah Phone Number : 010-2954963

Dr. Risyawati Mohamed Ismail (Supervisor) Senior Lecturer School of Technology Management and Logistic Block C, College of Business Universiti Utara Malaysia 06010 Sintok, Kedah Phone Number : 012-5858064

WHAT IS GENETICALLY MODIFIED FOOD (GMF)?

I. SURVEY INFORMATION

This study consists of five parts, which are:

PART A: The industry acceptance measurement

PART B: Assessment of industry strategy of GMF

PART C: Assessment of GMF regulation

PART D: Assessment of Attitude towards GMF usage

PART E : Demographic information of the company and respondent

II. BRIEF DESCRIPTION OF GMF AND INDUSTRY ACCEPTANCE

This research is aimed to investigate the relationship between an acceptance of GMF and food industry in Malaysia. This is mainly due to the current situation shows that there are many food industries from other country have started to accept and commercialize GMF in their local market. Simultaneously, by focusing on the food industry which is part of manufacturing sector, it is beneficial to the income and development of Malaysia as a developing country.

However, GMF is a new topic in the context of Malaysian food industries but very important to be discussed. Therefore, the mission of this study is to understand how and what are the influence contributes to the acceptance of GMF among the Malaysian Food industries.

Your response is highly important for the accuracy of this study. Kindly return the completed questionnaire at your earliest convenience. Should you have any enquiries, please do not hesitate to contact me at 010-2954963 or by email at <u>husmila@gmail.com</u>.

Thank you.

PART A: INDUSTRY ACCEPTANCE

The following questions are designed to measure the industry acceptance of GMF in the perspective of Malaysian food manufacturer. Based on the current operation and production of your industry, please indicate your opinion and understanding pertaining to industry acceptance of GMF by ticking $[\checkmark]$ on the answer of your choice.

PART 1 : PERCEIVED BENEFIT

		Strong Disagr							ngly ree
		1		2		3	4	4	5
1APB 1	In the long run, the use of GMF in the food industry would be a good contributor for the Malaysian economy and society								
1APB 2	The use of GMF in food production would help to increase the productivity of food industry and will be a good contributor for the fight against food shortage								
1APB 3	The use of GMF in food production will increase food industry's performance	siti	ta	ira i	ja	aysia			
1APB 4	The use of GMF in food production will enhance the quality of product in the food industry] [
1APB 5	The use of GMF in food production would help food industry to be remained long lasting with another competitive industry] [
1APB 6	An acceptance for the use of GMF in the food industry shows that benefits outweigh risks] [

PART 2 : PERCEIVED RISK

		Strongly Disagree					Strongly Agree
		1	2		3	4	5
APR 7	The use of GMF in food production creates the feeling of anxiety among the manufacturers in the food industry						
APR 8	The use of GMF in food production will harm the performance of food industry						
APR 9	The use of GMF in food production will lead to the long- term bad effect towards food industry						
1APR 10	The use of GMF in food production will lower the productivity of food industry] [
1APR 11	The use of GMF in food production will impact the overall risk magnitude towards daily operation of food industry	siti Uta	ara N	1ala	aysia		

PART 3 : TRUST

		Strongly Disagree				Strongly Agree
		1	2	3	4	5
AT 12	I would trust the government authorities or agencies in relation to communicate on the risk for the use of GMF in the food production					

IAT 13	I would trust the Malaysian Ministry of Health in relation to communicate on the risk for the use of GMF in the food production				
IAT 14	I would trust the Malaysian Agriculture Research and Development Institute (MARDI) in relation to communicate on the risk for the use of GMF in the food production				
1AT 15	I would trust the Ministry of Natural Resources and Environment (NRE) in regards to communicate on the risk for the use of GMF in the food production				
1AT 16	I would trust the Malaysian Islamic Development Department (JAKIM) in regards to communicate on the risk for the use of GMF in the food production	Ţ			
1AT 17	I would trust Malaysian Public Universities due to its responsibility to handle new research in regards to communicate on the risk for the use of GMF in the food production	<u>≰iti U</u> t	a <u>ra M</u> a	a <u>aysi</u> a	

PART 4 : KNOWLEDGE

		Strongly Disagree				Strongly Agree
		1	2	3	4	5
IAK 18	In the food industry, GMF is contrary to the conventional food because it contains genes					

IAK 19	Enzymes are used in all foods				
IAK 20	All bacteria found in food is harmful				
IAK 21	Some protein found in foods can be toxic				
IAK 22	Natural does not necessarily mean healthy				
IAK 23	All processed foods in the food industry are made by using GM products				
IAK 24	Most of the customers eat DNA everyday				
IAK 25	To be healthy, food should be sterile before it is eaten				
IAK 26	There are no laws or regulations on the use of GMF in the food industry	siti Ut	ara Ma	laysia	

PART B: INDUSTRY STRATEGY

The following questions are designed to evaluate the current strategy of your industry. Strongly disagree indicates your opinion is against the statement whereas strongly agree indicates your opinion is closest to the statement. Please tick $[\checkmark]$ on the answer of your choice to indicate the implementation of strategy in your industry.

PART 1 : MANAGERIAL INTERPRETATION

		Strongly Disagree				Strongly Agree
		1	2	3	4	5
ISMI 1	GMF is a key factor for the survival of food industry					
ISMI 2	GMF represents a new opportunity for the business of food industry					
ISMI 3	GMF is important to the development of food industry					
ISMI 4	GMF would jeopardize the profits of food industry					
ISMI 5	Investing in GMF can lead to competitive advantage in the food industry					
I	PART 2 : RISK PROPENSITY	Strongly Disagree	tara M	lalaysia		Strongly Agree
I	Unive		2	alaysia 3	4	
I ISRP 6	Unive	Disagree		alaysia 3	4	Agree
	The use of GMF in the food production requires establishment of new strategies even they are	Disagree		3 	4	Agree

ISRP 9	GMF usage in the food production shows that food industry can quickly expand into latest or global competitive market				
ISRP 10	GMF represents lower product price in the food industry as a response to changes in competitor's price				
ISRP 11	GMF usage requires food industry to develop and utilize new or advanced technology to produce faster production process				
ISRP 12	GMF represents more contemporary and attractive product towards food industry				
ISRP 13	The use of GMF in the food production shows that food industry can create product variety or differentiation				
ISRP 14	Our major supplier can easily and positively respond towards GMF usage in increasing production volume in the food industry	rsiti U	tara M	alaysia	
ISRP 15	GMF represents that food industry can quickly and easily switch to new supplier to produce lower production cost, better quality and improved delivery time				

PART C: REGULATION OF GMF

The following questions are designed to evaluate the regulation that has been fixed in your industry and country. Strongly disagree indicates your opinion is against the statement whereas strongly agree indicates your opinion is closest to the statement. Please tick $[\checkmark]$ to the given answer which represent the regulation that has been imposed towards your industry.

		Strongly Disagree					Strongly Agree
		1	2		3	4	5
RGAP 1	The approval procedure of GMF regulation is not available in the food industry						
RGAP 2	The regulation of GMF in the food industry is a mandatory approval process but no enforcement has been imposed until this moment						
RGAP 3	The regulation of GMF in the food industry is a mandatory approval process that adopting substantial equivalence principle] [
RGAP 4	The regulation of GMF in the food industry is a mandatory approval process that adopting the precautionary principle	Γ	J][
RGAP 5	The food industry does not involved in the approval process of GMF regulation due to GM free-country	rsiti Ut	tara I] [Ma	laysia		
RGRA 6	The risk analysis of GMF regulation is not available in the food industry						
RGRA 7	In the food industry, the risk assessment has been proposed but no enforcement has been made until this moment] [
RGRA 8	In the food industry, the risk assessment is a mandatory] [
RGRA 9	The food industry does not implement risk assessment due to Genetically Modified (GM)free- country						

RGL 10	In the food industry, the labelling policies is not available] [
RGL 11	The food industry is adopting the voluntary GM labelling] [
RGL 12	The food industry is adopting the mandatory GM label with the threshold more than 1 percent] [
RGL 13	The food industry is adopting the mandatory GM label with the threshold equal or less than 1 percent] [
RGL 14	The food industry does not involved with labelling policies due to GM free-country] [
RGTC 15	In the food industry, the traceability of GM is not available] [
RGTC 16	In the food industry, the traceability of GM is far from the enforcement	冖	-		\rightarrow	
RGTC 17	In the food industry, the traceability of GM is a mandatory	siti U	ara N	Ma	aysia	
RGTC 18	The food industry does not implement the traceability due to GM free-country] [

PART D: ATTITUDE TOWARDS GMF USAGE

_

The following questions are designed to evaluate the attitude of GMF usage. Strongly disagree indicates your opinion is absolutely against the statement whereas strongly agree indicates your opinion inherently closest to the statement. Please tick $[\checkmark]$ to the following answer that indicates your attitude towards GMF usage in your industry.

		Strongly Disagree				Strongly Agree
		1	2	3	4	5
ATGA 1	The application of GM in the food production is extremely bad					
ATGA 2	The application of GM in the food production is extremely good					
ATGA 3	The application of GM in the food production is extremely foolish					
ATGA 4	The application of GM in the food production is extremely wise					
ATGA 5	The food industry strongly accept for the application of GMF in the food production					
ATGA 6	The food industry strongly reject for the application of GMF in the food production		H			
ATF 7	GMF is easy to be known by the manufacturer in the food industry	siti IIt	ara M	alaysia		
ATF 8	GMF is easy to be judged by the manufacturer in the food industry					
ATF 9	GMF is difficult to be judged by the manufacturer in the food industry					
ATF 10	An effect of applying GMF in the food production was known by the food industry					
ATF 11	The use of GMF in the food industry is controllable					
ATE 12	The use of GMF in the food industry requires more rigorous Research & Development (R&D)					

ATE 13	GMF should be commercialized in
ATE 14	The use of GMF in the food
ATMC 15	In the food industry, the use of
ATMC 16	In the food industry, the use of
ATMC 17	In the food industry, GMF makers
PA	RT E : DEMOGRAPHIC INFORMATION
	I. What is your position in your company?
	First Line Others. Please State : Manager

2. What is your department/job function in the company?

Information Technology	Sales/Marketing	
Finance/Accounting	Customer Service	
Human Resources	Administration/ Owner	
Operation	Others. Please State	e:

3. How long have you been in the food industry?

	Less than 1 year		1-3 ye	ars]
	4-5 years		5-10 y	ears		
	More than 10 years			L		
4.	What is your highest edu	ucation?	vers	iti Uta	ra	Malaysia
	Primary School			Secondary School		
	Tertiary/College/Univers	sity		No Formal Education		

5. What type of ownership in your industry ?

Multinational Companies (MNCs)	Local Industry
Joint Venture	Others. Please State : -

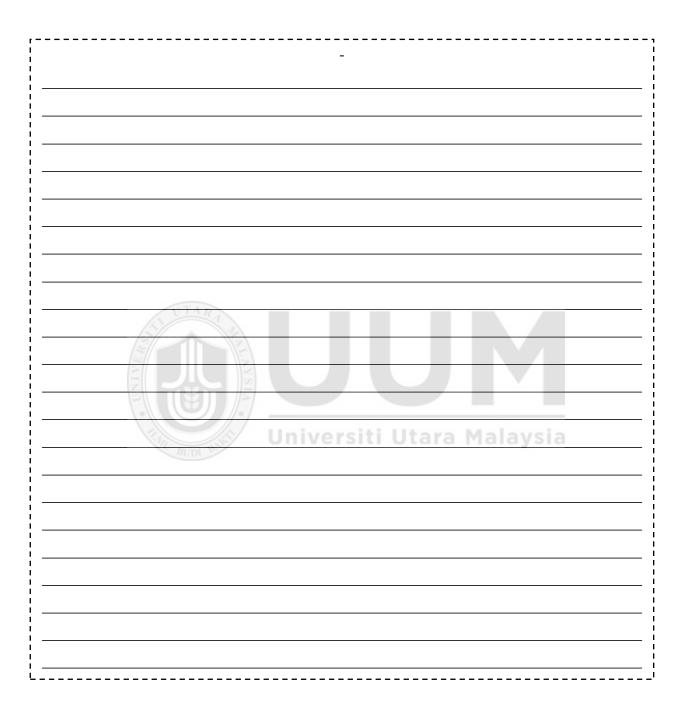
6. Where is your industry's location ?

Penang	Kuala Lumpur	Johor	
Kedah	Selangor	Pahang	
Perak	Negeri Sembilan	Terengganu	
Perlis	Melaka	Kelantan	
Sabah	Sarawak		

7. How many workers are in your company?

Less than 10 workers	31-40 workers	
11-20 workers	41-50 workers	
21-30 workers	More than 50 workers Universiti Utar	a Malaysia

8. What is average profit level of your industry?


Less than RM 10 millions	More than RM 25 millions	
RM 10 – RM 25 millions		

9. Do you know what GMF is ?

Yes

No

COMMENT AND SUGGESTION

THANK YOU VERY MUCH

Appendix B : Normality Test

	N	Mean	Std. Deviation	Skev	ness	Kur	tosis
	Statistic	Statistic	Statistic	Statistic	Std. Error	Statistic	Std. Error
IndustryAcceptance	75	3.3383	.31394	320	.277	471	.548
IndustryStrategy	75	3.3778	.37861	293	.277	325	.548
Regulation	75	3.1837	.29397	.151	.277	700	.548
Attitude	75	3.3647	.45007	342	.277	.062	.548
Valid N (listwise)	75						

Descriptive Statistics

Tests of Normality

	Kolmo	ogorov-Smir	nov ^a	Shapiro-Wilk								
NTA1	Statistic	df	Sig.	Statistic	df	Sig.						
IndustryAcceptance	.119	75	.010	.980	75	.280						
IndustryStrategy	.118	75	.012	.971	75	.080						
Regulation	.121	75	.009	.975	75	.151						
Attitude	.080	75	.200*	.970	75	.068						

*. This is a lower bound of the true significance.

a. Lilliefors Significance Correction

Appendix C : Mean and Range Analysis

1. Industry Acceptance

	Statistics																										
		IA1	IA2	IA3	IA4	IA5	IA6	IA7	IA8	IA9	IA10	IA11	IA12	IA13	IA14	IA15	IA16	IA17	IA18	IA19	IA20	IA21	IA22	IA23	IA24	IA25	IA26
Ν	Valid	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75
	Missing	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mean		3.64	3.87	3.64	3.67	3.77	3.60	2.77	3.35	3.19	3.51	3.44	3.49	3.43	3.67	3.43	3.33	3.75	3.29	2.88	3.65	2.72	2.52	2.39	2.96	3.37	3.48
Std. Devia	tion	.880	.949	.832	.963	.967	.838	1.008	1.020	1.159	1.045	1.093	.812	.791	.811	1.055	1.057	.807	.851	.885	.937	.863	.875	1.077	.951	.897	1.018
Range		4	4	4	4	4	4	4	4	4	4	4	3	3	3	4	4	3	4	4	4	4	3	4	4	4	4
Minimum		1	1	1	1	1	1	1	1	1	1	1	2	2	2	1	1	2	1	1	1	1	1	1	1	1	1
Maximum		5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	4	5	5	5	5

2. Industry Strategy

						S	tatist	ics								
	UTA	IS1	IS2	IS3	IS4	IS5	IS6	IS7	IS8	IS9	IS10	IS11	IS12	IS13	IS14	IS15
N	Valid	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75
	Missing	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mean	2	3.29	3.85	3.73	2.52	3.93	2.49	2.99	3.33	3.72	3.28	3.49	3.77	3.80	3.37	3.08
Std. Dev	viation	.997	.849	.963	.811	.920	.795	1.072	.827	.627	.763	.950	.815	.753	.897	.882
Range		4	4	4	4	4	3	4	4	3	4	4	3	3	4	4
Minimu	m	1	/ 1	1	1	1	1	1	1	2	1	1	2	2	1	1
Maximum		5	5	5	5	5	4	5	5	5	5	5	5	5	5	5

3. Regulation

									Statis	stics									
		RG1	RG2	RG3	RG4	RG5	RG6	RG7	RG8	RG9	RG10	RG11	RG12	RG13	RG14	RG15	RG16	RG17	RG18
N	Valid	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75
	Missing	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
Mean		3.32	2.77	3.21	2.99	3.60	3.23	2.79	3.47	3.25	3.65	2.73	2.91	2.88	3.43	3.27	3.04	3.21	3.56
Std. Dev	iation	1.067	.894	.934	.951	.959	1.158	.810	.811	1.116	.966	.920	.825	1.052	1.232	1.107	.979	.990	1.003
Range		4	4	4	4	3	4	4	4	4	4	4	4	4	4	4	4	4	4
Minimur	n	1	1	1	1	2	1	1	1	1	1	1	1	1	1	1	1	1	1
Maximum		5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5

4. Attitude

	Statistics																	
		AT1	AT2	AT3	AT4	AT5	AT6	AT7	AT8	AT9	AT10	AT11	AT12	AT13	AT14	AT15	AT16	AT17
N	Valid	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75
	Missing	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mean		3.60	3.40	3.71	3.51	3.48	3.48	3.32	3.19	3.20	3.12	2.95	3.91	3.53	3.65	3.05	3.08	3.03
Std. Deviat	ion	.986	.900	.693	.921	.921	.921	.720	.730	.870	.677	.914	.791	.777	.979	.943	.866	.854
Range		4	4	3	3	4	3	3	3	4	3	4	3	3	3	4	4	4
Minimum		1	1	2	2	1	2	2	2	1	2	1	2	2	2	1	1	1
Maximum		5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5

Appendix D : Factor Analysis of Industry Acceptance

KMO and Bartlett's Tes

Kaiser-Meyer-Olkin Measure	of Sampling Adequacy.	.720
Bartlett's Test of Sphericity	Approx. Chi-Square	1004.799
	df	231
	Sig.	.000

Communalities

	Initial	Extraction
IA1	1.000	.780
IA2	1.000	.727
IA3	1.000	.789
IA4	1.000	.743
IA5	1.000	.714
IA6	1.000	.541
IA7	1.000	.708
IA8	1.000	.797
IA9	1.000	.802
IA10	1.000	.796
IA11	1.000	.695
IA12	1.000	.709
IA13	1.000	.807
IA14	1.000	.749
IA15	1.000	.828
IA16	1.000	.674
IA18	1.000	.738
IA20	1.000	.776
IA21	1.000	.804
IA22	1.000	.760
IA24	1.000	.562
IA26	1.000	.863
Extraction	Mathod	Principal

Extraction Method: Principal Component Analysis.

Jniversiti Utara Malaysia

Anti-image Matrices

			-							Anu-	maye n	atrices		-									
		IA1	IA2	IA3	IA4	IA5	IA6	IA7	IA8	IA9	IA10	IA11	IA12	IA13	IA14	IA15	IA16	IA18	IA20	IA21	IA22	IA24	IA26
Anti-image	IA1	.190	083	078	030	.040	077	021	014	.024	080	.025	.002	.041	023	056	.057	019	.024	019	.007	006	.032
Covariance	IA2	083	.197	.025	024	124	.056	.007	003	.007	.008	.003	.046	.021	037	002	048	041	.057	.008	047	.036	074
	IA3	078	.025	.189	066	066	022	052	.014	036	.079	069	.065	.018	010	021	130	.088	.027	095	.027	.056	020
	IA4	030	024	066	.312	.005	028	.000	020	060	.035	.004	007	074	022	.036	.018	023	044	.010	.024	.074	016
	IA5	.040	124	066	.005	.197	054	.038	.011	033	014	.038	059	010	.081	.002	.091	062	029	.007	.053	040	.036
	IA6	077	.056	022	028	054	.444	064	.034	.013	.028	079	013	.029	115	.057	.007	.006	.010	.055	.033	010	.068
	IA7	021	.007	052	.000	.038	064	.355	086	050	006	.064	.010	067	.097	011	.085	.002	.007	.073	098	041	082
	IA8	014	003	.014	020	.011	.034	086	.268	070	029	110	.018	.003	008	015	008	017	.000	026	012	.062	074
	IA9	.024	.007	036	060	033	.013	050	070	.214	103	009	063	.017	011	.006	.023	027	.007	.014	038	072	.085
	IA10	080	.008	.079	.035	014	.028	006	029	103	.237	092	.056	018	.003	.015	062	.107	119	.017	.081	014	.018
	IA11	.025	.003	069	.004	.038	079	.064	110	009	092	.334	038	041	.062	.044	.069	091	.040	.041	011	036	031
	IA12	.002	.046	.065	007	059	013	.010	.018	063	.056	038	.280	.011	061	131	073	.092	.042	080	.000	.106	081
	IA13	.041	.021	.018	074	010	.029	067	.003	.017	018	041	.011	.240	090	099	103	.001	.013	101	.009	016	.040
	IA14	023	037	010	022	.081	115	.097	008	011	.003	.062	061	090	.333	027	006	065	034	017	.039	056	033
	IA15	056	002	021	.036	.002	.057	011	015	.006	.015	.044	131	099	027	.200	.045	007	020	.124	006	078	.009
	IA16	.057	048	130	.018	.091	.007	.085	008	.023	062	.069	073	103	006	.045	.399	115	063	.181	052	106	.047
	IA18	019	041	.088	023	062	.006	.002	017	027	.107	091	.092	.001	065	007	115	.387	095	007	.108	.040	.113
	IA20	.024	.057	.027	044	029	.010	.007	.000	.007	119	.040	.042	.013	034	020	063	095	.545	133	139	.100	158
	IA21 IA22	019 .007	.008 047	095 .027	.010 .024	.007 .053	.055 .033	.073 098	026 012	.014 038	.017 .081	.041 011	080 .000	101 .009	017 .039	.124 006	.181 052	007 .108	133 139	.459 125	125 .385	113 068	010 .149
	IAZZ	007	047	.027	.024	.055 040	010	098	.062	038	014	036	.000	016	056	008	1052	.108	.100	125	.365 068	068 .481	.149 116
	IA24	.032	074	020	016	.040	.068	082	074	.072	.014	030	081	.040	033	.009	.047	.113	158	010	.149	116	.671
Anti-image	IA1	.790 ^a	429	412	125	.208	266	083	064	.117	378	.099	.007	.192	091	285	.207	070	.075	066	.024	020	.089
Correlation	IA2	429	.763 ^a	.130	096	630	.188	.026	012	.034	.038	.000	.195	.098	142	008	171	148	.175	.026	171	.116	204
	IA3	412	.130	.699 ^a	272	340	078	199	.063	181	.373	273	.282	.087	039	105	475	.326	.083	322	.098	.185	057
	IA4	125	096	272	.890 ^a	.022	075	001	070	231	.128	.013	025	270	069	.145	.050	065	106	.026	.069	.192	035
	IA5	.208	630	340	.022	.727 ^a	184	.144	.049	162	064	.150	251	047	.317	.012	.325	225	089	.022	.194	131	.099
	IA6	266	.188	078	075	184	.833 ^a	161	.100	.042	.085	204	037	.089	299	.189	.017	.014	.020	.121	.079	022	.125
	IA7	083	.026	199	001	.144	161	.760 ^a	279	181	021	.187	.032	229	.283	041	.226	.005	.016	.181	265	098	169
	IA8	064	012	.063	070	.049	.100	279	.863 ^a	292	114	368	.067	.012	027	067	024	054	.000	075	037	.172	175
	IA9	.117	.034	181	231	162	.042	181	292	.808 ^a	459	035	258	.077	040	.031	.078	094	.020	.045	132	223	.225
	IA10	378	.038	.373	.128	064	.085	021	114	459	.642 ^a	327	.217	074	.012	.067	202	.353	331	.052	.267	041	.046
	IA11	.099	.013	273	.013	.150	204	.187	368	035	327	.774 ^a	125	146	.186	.169	.188	252	.094	.104	029	090	065
	IA12	.007	.195	.282	025	251	037	.032	.067	258	.217	125	.641 ^a	.043	200	552	219	.280	.107	224	.000	.288	187

	046 .100
IA15285008105 .145 .012 .189041067 .031 .067 .169552450106 .668 ^a .158024060 .410023	139069
	253 .024
IA16 .207171475 .050 .325 .017 .226024 .078202 .188219332017 .158 .532 ^a 293135 .423133	241 .090
IA18070148 .326065225 .014 .005054094 .353252 .280 .003181024293 .647 ^a 207017 .280 .	094 .221
IA20 .075 .175 .083106089 .020 .016 .000 .020331 .094 .107 .037079060135207 .585 ^a 266303 .	195262
IA21066 .026322 .026 .022 .121 .181075 .045 .052 .104224303044 .410 .423017266 .506 ^a 297	240018
IA22 .024171 .098 .069 .194 .079265037132 .267029 .000 .029 .109023133 .280303297 .711 ^a	158 .294
IA24020 .116 .185 .192131022098 .172223041090 .288046139253241 .094 .195240158 .7	707 ^a 204
IA26 .089204057035 .099 .125169175 .225 .046065187 .100069 .024 .090 .221262018 .294	204 .513 ^a

a. Measures of Sampling Adequacy(MSA)

					ce Explaine	и · г						
	Init	ial Eigenval			Loadings		Loadings					
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %			
1	2.744	12.474		2.744	12.474		3.579	16.268				
5	1.459	6.632	63.552	1.459	6.632		1.844	8.382	62.040			
3	1.459	5.702	69.254		5.702		-	6.724				
3 И	-			1.254			1.479	-	1			
5	1.051	4.777	74.031	1.051	4.777	74.031	1.159	5.267	74.03			
	.869	4.522	75.876									
6	.801	4.021	75.112									
/	.783	3.560	77.591									
8	.714	3.248	80.839									
9	.679	3.088	83.927									
10	.563	2.559	86.486									
11	.492	2.236	88.722									
12	.430	1.954	90.675									
13	.372	1.691	92.366									
14	.304	1.381	93.747									
15	.279	1.267	95.014									
16	.250	1.136	96.150									
17	.208	.944	97.094									
18	.190	.865	97.959									
19	.160	.728	98.687									
20	.113	.513	99.200									
21	.102	.463	99.664									
22	.074	.336	100.000									

Universiti Utara Malaysia

	Notatea	Componer			
		Com	ponent		
	1	2	3	4	-
IA2	.864				-
IA5	.849				
IA3	.795				
IA1	.789				
IA4	.714				
IA6	.699				
IA8		.879			
IA9		.840			
IA10		.829			
IA11		.738			
IA7		.735			
IA15	UTAI		.873		
IA13	AN CONTRACT		.852		
IA14			.805		
IA12			.784		
IA16		IS)	.640		
IA22				.783	
IA21				.729	
IA20	SAU BUDI	8.15	Unive	S.700	Utara Malaysia
IA18	oupr			.747	
IA26				.721	
IA24				.573	

Rotated Component Matrix^a

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization. a. Rotation converged in 4 iterations.

Appendix E : Factor Analysis of Industry Strategy

KMO and Bartlett's Test									
Kaiser-Meyer-Olkin Measure	of Sampling Adequacy.	.779							
Bartlett's Test of Sphericity	Approx. Chi-Square	421.243							
	df	66							
	Sig.	.000							

Communalities

	Initial	Extraction
IS1	1.000	.778
IS2	1.000	.868
IS3	1.000	.699
IS5	1.000	.825
IS6	1.000	.841
IS8	1.000	.710
IS9	1.000	.539
IS10	1.000	.507
IS12	1.000	.817
IS13	1.000	.690
IS14	1.000	.772
IS15	1.000	.806

Extraction Method: Principal Component Analysis.

						Anti-image I	Matrices						
		IS1	IS2	IS3	IS5	IS6	IS8	IS9	IS10	IS12	IS13	IS14	IS15
Anti-image	IS1	.540	110	074	024	175	026	059	.055	.087	.004	057	037
Covariance	IS2	110	.209	079	136	018	.030	.009	031	038	031	.097	023
	IS3	074	079	.355	033	.001	.008	.086	061	083	.037	104	.061
	IS5	024	136	033	.254	.119	027	090	009	.012	.019	050	005
	IS6	175	018	.001	.119	.678	182	.107	.073	.006	.020	.021	.006
	IS8	026	.030	.008	027	182	.671	133	057	142	.039	.024	.042
	IS9	059	.009	.086	090	.107	133	.644	.028	015	117	004	.002
	IS10	.055	031	061	009	.073	057	.028	.614	070	.025	.022	142
	IS12	.087	038	083	.012	.006	142	015	070	.260	186	043	005
	IS13	.004	031	.037	.019	.020	.039	117	.025	186	.404	044	.064
	IS14	057	.097	104	050	.021	.024	004	.022	043	044	.451	286
	IS15	037	023	.061	005	.006	.042	.002	142	005	.064	286	.513
Anti-image	IS1	.741 ^a	328	168	063	290	043	100	.095	.233	.009	115	070
Correlation	IS2	328	.780 ^a	291	589	049	.081	.025	087	164	107	.315	070
	IS3	168	291	.865 ^a	108	.003	.016	.180	130	272	.097	259	.142
	IS5	063	589	108	.823 ^a	.287	065	222	023	.047	.061	147	015
	IS6	290	049	.003	.287	.648 ^a	270	.162	.113	.015	.038	.038	.010
	IS8	043	.081	.016	065	270	.725 ^a	202	088	340	.075	.044	.071
	IS9	100	.025	.180	222	.162	202	.822 ^a	.045	036	229	008	.003
	IS10	.095	087	130	023	.113	088	.045	.897 ^a	174	.049	.042	254
	IS12	.233	164	272	.047	.015	340	036	174	.781 ^a	574	126	014
	IS13	.009	107	.097	.061	.038	.075	229	.049	574	.779 ^a	103	.140
	IS14	115	.315	259	147	.038	.044	008	.042	126	103	.658 ^a	594
	IS15	070	070	.142	015	.010	.071	.003	254	014	.140	594	.641

a. Measures of Sampling Adequacy(MSA)

Total Variance Explained

η.		nitial Eigenv	alues	Extrac	tion Sums of Loading		Rotation Sums of Squared Loadings			
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	
1	1.351	11.256	63.421	1.351	11.256	63.421	1.974	16.451	61.666	
2	1.122	9.347	72.768	1.122	9.347	72.768	1.332	11.102	72.768	
3	1.062	8.279	72.890							
4	.881	7.717	78.068							
5	.836	6.967	79.734							
6	.662	5.519	85.253							
7	.496	4.136	89.389							
8	.356	2.964	92.353							
9	.354	2.950	95.303							
10	.255	2.122	97.425							
11	.178	1.480	98.905							
12	.131	1.095	100.000							

Extraction Method: Principal Component Analysis.

Rotated C	Rotated Component Matrix ^a								
	Component								
	1	2							
IS5	.885								
IS2	.871								
IS3	.843								
IS1	.961								
IS12		.822							
IS13		.808							
IS8		.696							
IS9		.655							
IS15		.869							
IS14		.832							
IS10	UTARA	.564							
IS6		.819							

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 2 iterations.

Universiti Utara Malaysia

Appendix F : Factor Analysis of Regulation

KMO and Bartlett's Test							
Kaiser-Meyer-Olkin Measure of Sampling Adequacy769							
Bartlett's Test of Sphericity Approx. Chi-Square	657.462						
df	105						
Sig.	.000						

Communalities

	Initial	Extraction
RG1	1.000	.698
RG2	1.000	.651
RG3	1.000	.720
RG4	1.000	.594
RG5	1.000	.718
RG6	1.000	.823
RG7	1.000	.558
RG8	1.000	.599
RG9 🗦	1.000	.744
RG10	1.000	.694
RG14	1.000	.663
RG15	1.000	.697
RG16	1.000	.538
RG17	1.000	.517
RG18	1.000	.712

Extraction Method: Principal Component Analysis.

							Anti-ir	nage Matrie	ces							
		RG1	RG2	RG3	RG4	RG5	RG6	RG7	RG8	RG9	RG10	RG14	RG15	RG16	RG17	RG18
Anti-image	RG1	.263	037	.006	103	.030	114	.033	025	072	.006	052	.066	059	.071	.048
Covariance	RG2	037	.443	.114	028	068	049	102	.081	.017	001	.049	.030	030	.056	.044
	RG3	.006	.114	.332	161	072	029	122	009	.088	.028	.108	.014	.000	091	031
	RG4	103	028	161	.451	.060	.094	029	013	038	081	.067	011	008	086	030
	RG5	.030	068	072	.060	.281	031	.055	126	073	098	016	.038	094	079	104
	RG6	114	049	029	.094	031	.171	081	.024	043	015	006	074	.030	.005	004
	RG7	.033	102	122	029	.055	081	.580	.105	002	083	060	.005	.035	.010	.047
	RG8	025	.081	009	013	126	.024	.105	.391	.110	068	043	126	.220	.099	.085
	RG9	072	.017	.088	038	073	043	002	.110	.230	030	.002	005	.126	021	030
	RG10	.006	001	.028	081	098	015	083	068	030	.416	052	.004	129	.000	016
	RG14	052	.049	.108	.067	016	006	060	043	.002	052	.333	066	.002	136	086
	RG15	.066	.030	.014	011	.038	074	.005	126	005	.004	066	.364	158	002	098
	RG16	059	030	.000	008	094	.030	.035	.220	.126	129	.002	158	.461	012	.017
	RG17	.071	.056	091	086	079	.005	.010	.099	021	.000	136	002	012	.493	.189
	RG18	.048	.044	031	030	104	004	.047	.085	030	016	086	098	.017	.189	.268
Anti-image	RG1	.781 ^a	109	.021	298	.112	536	.085	078	292	.019	177	.212	171	.197	.180
Correlation	RG2	109	.859 ^a	.298	063	193	180	201	.194	.052	002	.128	.074	066	.120	.128
	RG3	.021	.298	.751ª	417	237	120	277	025	.318	.075	.325	.039	.000	226	102
	RG4	298	063	417	.735 ^a	.170	.338	057	032	117	188	.173	028	017	182	087
	RG5	.112	193	237	.170	.767 ^a	141	.136	380	288	286	053	.120	262	211	379
	RG6	536	180	120	.338	141	.838 ^a	258	.093	218	057	025	295	.107	.017	017
	RG7	.085	201	277	057	.136	258	.701 ^a	.220	007	169	137	.011	.068	.018	.120
	RG8	078	.194	025	032	380	.093	.220	.587ª	.367	168	118	334	.519	.226	.262
	RG9	292	.052	.318	117	288	218	007	.367	.826 ^a	097	.008	017	.386	062	122
	RG10	.019	002	.075	188	286	057	169	168	097	.880ª	139	.010	296	.001	046
	RG14	177	.128	.325	.173	053	025	137	118	.008	139	.854ª	189	.005	335	289
	RG15	.212	.074	.039	028	.120	295	.011	334	017	.010	189	.785 ^a	386	004	314
	RG16	171	066	.000	017	262	.107	.068	.519	.386	296	.005	386	.533ª	024	.048
	RG17	.197	.120	226	182	211	.017	.018	.226	062	.001	335	004	024	.638ª	.521
	RG18	.180	.128	102	087	379	017	.120	.262	122	046	289	314	.048	.521	.771 ^a

a. Measures of Sampling Adequacy(MSA)

		10	To	tal Variar	nce Explain	ed			
UN		nitial Eigenv	alues	Extrac	ction Sums of Loading	-	Rotation Sums of Squared Loadings		
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	5.789	38.594	38.594	5.789	38.594	38.594	3.749	24.993	24.993
2	2.132	53.290	53.290	2.132	53.290	53.290	1.602	40.048	40.048
3	2.428	16.184	54.777	2.428	16.184	54.777	3.213	21.421	46.414
4	1.684	11.228	66.005	1.684	11.228	66.005	2.939	19.591	66.005
5	.788	5.251	77.343						
6	.656	4.377	81.720						
7	.565	3.764	85.484						
8	.498	3.321	88.805						
9	.420	2.799	91.604						
10	.368	2.451	94.055						
11	.284	1.891	95.946						
12	.218	1.454	97.400						
13	.148	.985	98.385						
14	.129	.861	99.246						
15	113	754	100.000						

Total Variance Explained

15.113.754100.000Extraction Method: Principal Component Analysis.

		Component							
	1	2	3	4					
RG4	.932								
RG3	.762								
RG5	.818								
RG1	.880								
RG2	.847								
RG9		.923							
RG6		.913							
RG7		.823							
RG8		.822							
RG14			.797						
RG10			.679						
RG17				.899					
RG18				.735					
RG16				.890					
RG15	CARA			.711					

Rotated Component Matrix^a

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 4 iterations.

Universiti Utara Malaysia

Appendix G : Factor Analysis of Attitude

KMO and Bartlett's Test							
Kaiser-Meyer-Olkin Measure	.754						
Bartlett's Test of Sphericity	648.574						
	df	105					
	Sig.	.000					

Communalities

	Initial	Extraction
AT1	1.000	.800
AT2	1.000	.801
AT3	1.000	.529
AT4	1.000	.716
AT5	1.000	.687
AT7	1.000	.684
AT8	1.000	.725
AT10	1.000	.590
AT11	1.000	.793
AT12	1.000	.558
AT13	1.000	.560
AT14	1.000	.745
AT15	1.000	.754
AT16	1.000	.870
AT17	1.000	.844 Deie sie sl

Jniversiti Utara Malaysia

Extraction Method: Principal Component Analysis.

							Anti-ir	nage Matric	es							
		AT1	AT2	AT3	AT4	AT5	AT7	AT8	AT10	AT11	AT12	AT13	AT14	AT15	AT16	AT17
Anti-image	AT1	.301	091	195	101	002	036	.041	053	.079	.048	022	.054	.010	050	.0
Covariance	AT2	091	.249	013	085	081	.018	030	036	.015	.115	060	017	.074	.023	0
	AT3	195	013	.493	.036	.005	.023	020	.072	043	051	003	075	076	.002	.0
	AT4	101	085	.036	.358	057	.024	004	017	137	073	.077	072	007	.046	0
	AT5	002	081	.005	057	.361	064	009	.080	.023	.056	086	043	.052	027	.0
	AT7	036	.018	.023	.024	064	.292	206	023	.006	026	.017	017	051	.063	(
	AT8	.041	030	020	004	009	206	.282	038	.014	061	.056	040	.013	043	
	AT10	053	036	.072	017	.080	023	038	.656	197	025	055	031	015	039	
	AT11	.079	.015	043	137	.023	.006	.014	197	.680	.052	.058	073	.013	007	(
	AT12	.048	.115	051	073	.056	026	061	025	.052	.512	141	059	.147	063	(
	AT13	022	060	003	.077	086	.017	.056	055	.058	141	.340	146	060	.056)
	AT14	.054	017	075	072	043	017	040	031	073	059	146	.275	010	025	
	AT15	.010	.074	076	007	.052	051	.013	015	.013	.147	060	010	.377	086	
	AT16	050	.023	.002	.046	027	.063	043	039	007	063	.056	025	086	.186	
	AT17	.001	046	.054	023	.005	047	.024	.030	051	017	039	.052	063	136	1
Anti-image	AT1	.750 ^a	332	506	307	007	122	.142	119	.174	.121	069	.189	.029	213	
Correlation	AT2	332	.818 ^a	037	286	271	.065	113	090	.037	.323	206	065	.241	.108	
	AT3	506	037	.776 ^a	.086	.012	.060	055	.126	074	101	007	204	177	.008	
	AT4	307	286	.086	.828 ^a	158	.075	014	035	278	171	.221	229	019	.178	
	AT5	007	271	.012	158	.889 ^a	197	028	.164	.047	.131	245	138	.141	106	
	AT7	122	.065	.060	.075	197	.694 ^a	719	052	.014	068	.053	060	153	.271	
	AT8	.142	113	055	014	028	719	.708 ^a	089	.031	159	.180	142	.041	186	
	AT10	119	090	.126	035	.164	052	089	.845 ^a	295	043	117	072	030	112	
	AT11	.174	.037	074	278	.047	.014	.031	295	.691 ^a	.088	.121	168	.026	019	
	AT12	.121	.323	101	171	.131	068	159	043	.088	.603 ^a	339	157	.335	204	
	AT13	069	206	007	.221	245	.053	.180	117	.121	339	.743 ^a	478	169	.224	
	AT14	.189	065	204	229	138	060	142	072	168	157	478	.830 ^a	030	109	
	AT15	.029	.241	177	019	.141	153	.041	030	.026	.335	169	030	.715ª	325	
	AT16	213	.108	.008	.178	106	.271	186	112	019	204	.224	109	325	.613 ^a	
	AT17	.004	206	.172	085	.019	194	.099	.082	138	052	150	.219	228	702	.6

a. Measures of Sampling Adequacy(MSA)

Total Variance Explained

	Initial Eigenvalues			Extract	ion Sums o Loadings		Rotation Sums of Squared Loadings			
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	
1	5.047	33.650	33.650	5.047	33.650	33.650	3.832	25.549	25.549	
2	2.712	18.083	51.733	2.712	18.083	51.733	2.633	17.556	43.105	
3	1.773	11.823	63.556	1.773	11.823	63.556	2.618	17.456	60.560	
4	1.124	7.493	71.049	1.124	7.493	71.049	1.573	10.489	71.049	
5	.987	6.579	77.628							
6	.711	4.737	82.365							
7	.609	4.062	86.427							
8	.559	3.728	90.155							
9	.338	2.250	92.405							
10	.278	1.852	94.257							
11	.247	1.647	95.904							
12	.193	1.285	97.190							
13	.171	1.141	98.331							
14	.155	1.032	99.363							
15	.096	.637	100.000							

Extraction Method: Principal Component Analysis.

		Com	ponent	
	1	2	3	4
AT2	.872			
AT1	.845			
AT5	.742			
AT3	.717			
AT4	.716			
AT8		.814		
AT7		.781		
AT11		.880		
AT10		.668		
AT12			.742	
AT13			.599	
AT14			.593	
AT16	UTAL		_	.921
AT17		1		.898
AT15				.865
Extraction	Method: /lethod: Vari	Principal max with K	Component aiser Normal	.865 Analysis.

a. Rotation converged in 4 iterations.

Universiti Utara Malaysia

Appendix H : Reliability Analysis for Variables after Factor Analysis

1. Industry Acceptance

Reliability Statistics									
Cronbach's									
Alpha	N of Items								
.761	22								

Item Statistics				
	Mean	Std. Deviation	N	
IA1	3.64	.880	75	
IA2	3.87	.949	75	
IA3	3.64	.832	75	
IA4	3.67	.963	75	
IA5	3.77	.967	75	
IA6	3.60	.838	75	
IA7	2.77	1.008	75	
IA8	3.35	1.020	75	rsiti Utara Malays
IA9	3.19	1.159	75	
IA10	3.51	1.045	75	
IA11	3.44	1.093	75	
IA12	3.49	.812	75	
IA13	3.43	.791	75	
IA14	3.67	.811	75	
IA15	3.43	1.055	75	
IA16	3.33	1.057	75	
IA18	3.29	.851	75	
IA20	3.65	.937	75	
IA21	2.72	.863	75	
IA22	2.52	.875	75	
IA24	2.96	.951	75	
IA26	3.48	1.018	75	

	Item-Total Statistics								
	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Squared Multiple Correlation	Cronbach's Alpha if Item Deleted				
IA1	70.77	63.745	.573	.810	.736				
IA2	70.55	67.900	.241	.803	.757				
IA3	70.77	64.448	.556	.811	.738				
IA4	70.75	62.489	.601	.688	.732				
IA5	70.64	68.504	.196	.803	.760				
IA6	70.81	67.911	.286	.556	.754				
IA7	71.64	63.261	.517	.645	.737				
IA8	71.07	61.171	.649	.732	.727				
IA9	71.23	58.502	.718	.786	.718				
IA10	70.91	63.761	.463	.763	.741				
IA11	70.97	63.459	.454	.666	.741				
IA12	70.92	70.075	.135	.720	.763				
IA13	70.99	67.203	.365	.760	.750				
IA14	70.75	68.408	.261	.667	.755				
IA15	70.99	67.067	.254	.800	.757				
IA16	71.08	69.885	.089	.601	.769				
IA18	71.12	71.810	.003	.613	.770				
IA20	70.76	69.401	.147	.455	.763				
IA21	71.69	70.134	.117	.541	.764	Malavsia			
IA22	71.89	72.070	018	.615	.772	. ana yora			
IA24	71.45	69.603	.130	.519	.764				
IA26	70.93	70.441	.064	.329	.770				

2. Industry Strategy

Reliability Statistics

Cronbach's	
Alpha	N of Items
.809	12

Item Statistics								
	Std. Mean Deviation N							
IS1	3.29	.997	75					
IS2	3.85	.849	75					
IS3	3.73	.963	75					
IS5	3.93	.920	75					
IS6	2.49	.795	75					
IS8	3.33	.827	75					
IS9	3.72	.627	75					
IS10	3.28	.763	75					
IS12	3.77	.815	75					
IS13	3.80	.753	75					
IS14	3.37	.897	75					
IS15	3.08	.882	75					

	Item-Total Statistics								
	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Squared Multiple Correlation	Cronbach's Alpha if Item Deleted				
IS1	38.37	27.724	.435	.460	.798				
IS2	37.81	26.262	.723	ers .791	Jta .770	Malaysi			
IS3	37.93	25.495	.705	.645	.769				
IS5	37.73	25.955	.691	.746	.772				
IS6	39.17	34.983	248	.322	.850				
IS8	38.33	29.360	.361	.329	.804				
IS9	37.95	30.159	.396	.356	.801				
IS10	38.39	28.538	.510	.386	.791				
IS12	37.89	26.853	.682	.740	.775				
IS13	37.87	28.631	.506	.596	.792				
IS14	38.29	28.210	.448	.549	.796				
IS15	38.59	29.219	.344	.487	.806				

3. Regulation

Reliability Statistics

Cronbach's	
Alpha	N of Items
.696	15

	Item St	atistics		
	Mean	Std. Deviation	N	
RG1	3.32	1.067	75	
RG2	2.77	.894	75	
RG3	3.21	.934	75	
RG4	2.99	.951	75	
RG5	3.60	.959	75	
RG6	3.23	1.158	75	
RG7	2.79	.810	75	
RG8	3.47	.811	75	
RG9	3.25	1.116	75	
RG10 🧲	3.65	.966	75	
RG14	3.43	1.232	75	
RG15	3.27	1.107	75	rsiti Utara Malaysia
RG16	3.04	.979	75	orter of tarta interacyone
RG17	3.21	.990	75	
RG18	3.56	1.003	75	

198

	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Squared Multiple Correlation	Cronbach's Alpha if Item Deleted		
RG1	45.47	35.793	.495	.737	.655		
RG2	46.01	38.608	.346	.557	.676		
RG3	45.57	47.194	375	.668	.751		
RG4	45.80	46.216	299	.549	.745		
RG5	45.19	34.505	.695	.719	.633		
RG6	45.56	32.844	.683	.829	.624		
RG7	46.00	39.865	.267	.420	.685		
RG8	45.32	45.275	246	.609	.732		
RG9	45.53	34.793	.548	.770	.646		
RG10	45.13	34.333	.706	.584	.631		
RG14	45.36	33.288	.594	.667	.636		
RG15	45.52	35.415	.502	.636	.653		
RG16	45.75	37.678	.384	.539	.671		
RG17	45.57	45.815	264	.507	.744		
RG18	45.23	35.799	.537	.732	.651		

Item-Total Statistics

4. Attitude

Universiti Utara Malaysia

Reliability Statistics

Cronbach's	
Alpha	N of Items
.838	15

Item Statistics								
	Std. Mean Deviation N							
AT1	3.60	.986	75					
AT2	3.40	.900	75					
AT3	3.71	.693	75					
AT4	3.51	.921	75					
AT5	3.48	.921	75					
AT7	3.32	.720	75					
AT8	3.19	.730	75					
AT10	3.12	.677	75					
AT11	2.95	.914	75					
AT12	3.91	.791	75					
AT13	3.53	.777	75					
AT14	3.65	.979	75					
AT15	3.05	.943	75					
AT16	3.08	.866	75					
AT17	3.03	.854	75					

AT17	3.03	.854	75			
		Item-T	otal Statistics	5		
	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Squared Multiple Correlation	Cronbach's Alpha if Item Deleted	
AT1	46.92	41.723	.561	.699	.822	alaysia
AT2	47.12	42.107	.593	.751	.820	
AT3	46.81	44.965	.474	.507	.828	
AT4	47.01	41.878	.598	.642	.819	
AT5	47.04	41.904	.595	.639	.820	
AT7	47.20	44.297	.525	.708	.825	
AT8	47.33	44.279	.519	.718	.826	
AT10	47.40	44.946	.489	.344	.828	
AT11	47.57	45.005	.327	.320	.837	
AT12	46.61	46.186	.282	.488	.838	
AT13	46.99	43.716	.538	.660	.824	
AT14	46.87	41.036	.626	.725	.817	
AT15	47.47	46.901	.159	.623	.848	
AT16	47.44	45.277	.328	.814	.836	
AT17	47.49	44.659	.391	.799	.833	

Appendix I : Pearson Correlation Analysis

		Correlations			
		Industry	Industry		
		Acceptance	Strategy	Regulation	Attitude
Industry	Pearson Correlation	1	.277**	.249 [*]	.554**
Acceptance	Sig. (1-tailed)		.008	.015	.000
	Ν	75	75	75	75
Industry Strategy	Pearson Correlation	.277**	1	160	.496**
	Sig. (1-tailed)	.008		.085	.000
	Ν	75	75	75	75
Regulation	Pearson Correlation	.249 [*]	160	1	.322**
	Sig. (1-tailed)	.015	.085		.002
	Ν	75	75	75	75
Attitude	Pearson Correlation	.554**	.496**	.322**	1
10	Sig. (1-tailed)	.000	.000	.002	
3	N	75	75	75	75

**. Correlation is significant at the 0.01 level (1-tailed).

*. Correlation is significant at the 0.05 level (1-tailed).

Universiti Utara Malaysia