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Abstrak 

Pembelajaran Mesin merupakan pembinaan model yang boleh mempelajari dan 

membuat ramalan berasaskan data. Pengekstrakan peraturan dari dunia data sebenar, 

kebiasaannya dicemari oleh bunyi, kekaburan dan ketidakpastian. Sistem Neuro-

Kabur (NFS) yang diketahui dalam meramal prestasi, mempunyai kesukaran dalam 

menentukan bilangan peraturan yang sesuai dan bilangan fungsi  keahlian bagi setiap 

peraturan. Penambahbaikan hibrid Algoritma Genetik Pengkelasan Bayesian Kabur 

(GA-FBC) dicadangkan untuk membantu NFS dalam mengekstrak peraturan. 

Pemilihan ciri dilakukan di dalam tahap peraturan bagi menyelesaikan masalah FBC 

yang bergantung pada kekerapam ciri yang terarah pada pengabaian corak kelas kecil. 

Dalam keadaan dunia sebenar masalah multi-objektif seperti ramalan nisbah Udara / 

Minyak (AFR) telah diguna pakai. GA-FBC menggunakan maklumat bersama 

entropi, yang mengambilkira perkaitan di antara sifat-sifat ciri dan sifat-sifat kelas. 

Fungsi kecergasan adalah dicadangkan untuk menangani masalah pelbagai objektif 

tanpa pemberat dengan menggunakan kaedah komposisi baru. Model ini telah dibuat 

perbandingan dengan algoritma pembelajaran yang lain seperti algoritma 

Pengelompokan Kabur C-Min, (FCM) dan algoritma Pecahan Grid. Ketepatan 

ramalan dan kerumitan dalam Sistem Kabur Berasaskan Peraturan (FRBS) termasuk 

bilangan peraturan dan bilangan syarat pada setiap peraturan telah diambilkira sebagai 

syarat penilaian. Perbandingkan juga dibuat dengan GA-FBC yang asal bergantung 

kepada kekerapan yang tiada dalam Maklumat Bersama (MI). Keputusan pengujian 

menggunakan set data AFR menunjukkan bahawa model baharu ini dapat membawa 

kepada penurunan bilangan atribut dalam peraturan dan boleh meningkatkan prestasi 

berbanding model lain. Kajian ini membolehkan berlakunya penjanaan sendiri FRBS 

daripada data sebenar. GA-FBC boleh digunakan sebagai satu arah baru dalam 

penyelidikan pembelajaran mesin. Kajian ini menyumbang dalam mengawal 

pelepasan asap kenderaan bagi membantu mengurangkan punca pencemaran untuk 

menghasilkan persekitaran yang lebih hijau. 

 

Kata kunci: Algoritma Genetik, Pengkelasan Bayesian Kabur, Pemilihan ciri, 

Pengekstrakan peraturan, Maklumat Bersama Entropi 
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Abstract 

Machine Learning is concerned in constructing models which can learn and make 

predictions based on data. Rule extraction from real world data that are usually tainted 

with noise, ambiguity, and uncertainty, automatically requires feature selection. 

Neuro-Fuzzy system (NFS) which is known with its prediction performance has the 

difficulty in determining the proper number of rules and the number of membership 

functions for each rule. An enhanced hybrid Genetic Algorithm based Fuzzy Bayesian 

classifier (GA-FBC) was proposed to help the NFS in the rule extraction. Feature 

selection was performed in the rule level overcoming the problems of the FBC which 

depends on the frequency of the features leading to ignore the patterns of small 

classes. As dealing with a real world problem such as the Air/Fuel Ratio (AFR) 

prediction, a multi-objective problem is adopted. The GA-FBC uses mutual 

information entropy, which considers the relevance between feature attributes and 

class attributes. A fitness function is proposed to deal with multi-objective problem 

without weight using a new composition method. The model was compared to other 

learning algorithms for NFS such as Fuzzy c-means (FCM) and grid partition 

algorithm. Predictive accuracy and the complexity of the Fuzzy Rule Base System 

(FRBS) including number of rules and number of terms in each rule were taken as 

terms of evaluation. It was also compared to the original GA-FBC depending on the 

frequency not on Mutual Information (MI). Experimental results using Air/Fuel Ratio 

(AFR) data sets show that the new model participates in decreasing the average 

number of attributes in the rule and sometimes in increasing the average performance 

compared to other models. This work facilitates in achieving a self-generating FRBS 

from real data. The GA-FBC can be used as a new direction in machine learning 

research. This research contributes in controlling automobile emissions in helping the 

reduction of one of the most causes of pollution to produce greener environment. 

 

Keywords: Genetic Algorithms, Fuzzy Bayesian classifier, Rule extraction, Feature 

selection, Mutual Information Entropy. 
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CHAPTER ONE 

INTRODUCTION 

Developing systems or computer programs with self-learning capabilities is one of the 

most difficult feats in the field of computer science. Machine learning focuses on the 

development of computer programs that can teach themselves to grow and change 

when exposed to new data. 

Machine learning is not only based on algorithms which enable programs or machines 

to analyse data and learn from it but is also influenced by the representation of 

knowledge obtained in the learning process. A learning system is usually capable of 

informing its user of the learning it has acquired. Therefore, a user, in addition to 

learning about the problem of interest, can also ascertain if the representation of 

knowledge within the learning system is accurate and credible. 

Induction is a frequently used methodology for learning systems. This implies that a 

learning algorithm processes samples that can lead to an accurate output for any set of 

input data. Learning algorithm samples that are based on real life data are generally 

corrupted with noise, indistinctness, imprecision, uncertainty, incompleteness, or 

vagueness. 

Many a time, it is necessary that the learning model is readable by humans. Rule sets 

are one of the most understandable kinds of models in this regard. In this thesis, the 

different learning models in the form of rule sets are discussed. 

Linguistic rules or fuzzy rules are defined as ―if-then‖ rules that use linguistic 

expressions (for example, ―if x is small, then y is approximately zero‖). Fuzzy 
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systems (FS) are learning systems that are based on fuzzy rules or linguistic rules. 

Fuzzy controllers are FSs that are prevalently used in control engineering. The term 

―fuzzy logic‖ is extensively used to refer to the various types of implementation of 

FSs. 

The term soft computing, coined by Zadeh, refers to the methods of human logic and 

reasoning, which purposely uses human acceptance of uncertainty and vagueness to 

achieve easy-to-handle economical solutions to problems. Besides FSs, soft 

computing also includes evolutionary computation, neural networks (NNs), and 

probabilistic reasoning, and their combinations. As these soft computing methods are 

all mathematical methods, these can also be incorporated under the subject of 

computational intelligence. At present, other than control applications, FSs are also 

used to solve data analysis problems such as data classification, time series prediction, 

or function estimation. The benefits of using FS include development of 

uncomplicated instinctive models for data interpretation and prediction. Fuzzy rules 

also enable easy integration of preceding knowledge. To use FSs in data analysis, 

there must be a provision for the FS to learn from examples. 

It is crucial to create data models that have the capability to generalise data to explain 

a process with accurateness, in spite of the nonlinearity and intricacies in place. 

Different methods such as NNs, vector machines, and FS have been developed by the 

machine learning groups to support nonlinear function approximation. 

Nevertheless, the research on FS has revealed that membership and probability are 

two entirely different concepts. In this study, the relation of FS to function 

approximation and probabilistic uncertainty in data is considered, within the context 
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of probabilistic FS that explicitly and concurrently deal with two complementary 

uncertainties (fuzziness or linguistic uncertainty and probabilistic uncertainty) that 

depend on probability measures of fuzzy events. The two key innate properties of 

modelling real-world applications comprise uncertainty and impression, and it is 

important that these be integrated into the learning algorithms. 

Characteristically, real-world models are built using training examples to enable 

dependable predictions. This approach of making predictions is very different from 

the one that uses a set of predefined rules. Consequently, machine learning enables a 

machine to learn from its own experience with its own capability without the 

intervention of any human expert, which is impossible to achieve for real world or 

large systems. These real world systems pose various insurmountable problems such 

as large dimensions, time-varying properties, huge volumes of data and noisy 

measurements, and the necessity for interpretation of the resulting model.  

Minimising the magnitude of air pollution, caused by automobile engine exhausts and 

emissions, which leads to close to 50% of air pollution (Mahajan, 2013; Wargo, 

Wargo, & Alderman, 2006), is one of the most challenging real world problems that 

researchers are trying to mitigate. The emissions from automobiles contain carbon 

monoxide, hydrocarbons, NOx, etc., and are usually attributed to control problems in 

the automobile engines. The highly common automobile engine issue that leads to 

emissions is air/fuel ratio (Barghi & Safavi, 2012; Ebrahimi et al., 2012) prediction 

and lack of control in an electronic fuel injection engine. This is a nonlinear problem 

that has a huge search space. 
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1.1 Problem Statement 

Decision rules are devised using a set of training data in a rule extraction or induction 

system. The functioning of a classifier that utilises the rules to categorise unseen 

objects is ascertained by a set of decision rules. Hence, it is of utmost importance that 

a rule abstraction system creates decision rules with high predictability. 

Using FS is a simple and effective approach for domain experts to design systems for 

modelling. The subjective approach of designing a fuzzy system can be adopted to 

represent domain knowledge of experts. Nevertheless, domain experts do not organise 

their decision-making process in a formal way. Consequently, the process of 

transmitting expert knowledge to a knowledge base (KB) where it is rendered usable is 

laborious and nontrivial. Additionally, absolute reliability on human knowledge and 

experience may lead to certain serious problems, as even human knowledge is often 

inadequate and intermittent, instead of being systematic. (L. Wang & Fu, 2006; 

Zarandi, Mohammadhasan, & Bastani, 2012). 

There is an improvement in the computational efficacy of the models due to the 

combined usage of FS and NNs. The Neuro-fuzzy system (NFS) unites the linguistic 

rule analysis of fuzzy inference systems (FIS) with the learning abilities of NNs. NNs 

integrate nonlinear permutations of data set elements into their results. The 

computational power of NNs is largely steered by the immensely parallel distributed 

structure of NNs and their capacity to learn and generalise. Even though NFSs have a 

great generative ability for tuning fuzzy rules, they are not capable to automatically 

produce fuzzy rules from data.  As an application in this work, the air/fuel ratio 

problem, there were a number of researchers that participated in this area using 
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various models as FSs and NFSs (Bose & Kumar, 2007; Cao, Du, Peng, & Yin, 2006; 

Ghaffari, Shamekhi, Saki, & Kamrani, 2008; S. H. Lee, Howlett, & Walters, 2004; 

Liu & Zhou, 2010; Wong, Wong, Vong, & Wong, 2016). They are share that the 

models are not self-learning and the rules are gathered from the domain experts. 

There a number of algorithms for the self-learning of NFS as clustering and grid 

partition, but they usually have either lack of the interpretability of the fuzzy rules or 

curse of dimensionality (Jin, 2012; Lakhmi & Lim, 2010; Qin, Langari, & Gu, 2015; 

Rigatos, 2011). 

The creation of a fuzzy rule base (RB) comprises the number of antecedents in the 

condition part of every rule, the number of fuzzy rules, and the rule class in the 

consequent part of each rule, which in turn can lead to an increase in complexity and 

inaccuracy of the end system. Conventionally, models with high syntactic complexity 

tend to be highly accurate, while models with low syntactic complexity tend to be low 

on accuracy. Striking a trade-off between the complexity of the fuzzy RB and the 

accurateness of the end system will lead to a multi-objective assessment problem, 

where most of the work in this field will be managed with an aggregate method 

known as weighted sum (Dehuri, Patnaik, Ghosh, & Mall, 2008; Gacto, Alcalá, & 

Herrera, 2010; Ishibuchi, Nakashima, & Murata, 2001; Ishibuchi & Nojima, 2007; 

Ishibuchi & Yamamoto, 2004). But there is one inevitable problem of this approach 

and that is the generation of a set of weights which correctly measures the objectives 

when nothing is known about the problem, which might be difficult if the number of 

objectives is high (Mandal & Pal, 2011; Xu & Zhou, 2011). These weights are 

generally identified using a trial and error method. 



 

 6 

For real-world problems that allow multiple inputs, data fusion is implemented to 

merge the data and information from various sources including sensors. The methods 

of probabilistic data fusion are usually based on Bayes‘ rule for uniting prior and 

present observation information. Bayesian statistics offer a spontaneous manner to 

merge observations from various sensors (Khaleghi, Khamis, Karray, & Razavi, 2013; 

Koch, 2010). The consequent part of a rule is determined using Bayesian classifier. 

This leads to a high-speed, precise, and almost optimal method that can speed up rule 

generation 

Bayesian classification is based on Bayes‘ theory that is governed by the prior 

probability P(H), and likelihood ratio P(e/H), to calculate the posterior probability 

(H/e), where H is the hypothesis and e is the event. In Fuzzy Bayesian classifier 

(FBC), the event is the fuzzy set (antecedent part) that uses the fuzzy membership 

grades and the hypothesis is the rule consequent (class). The conditional probabilities 

between the events and the hypothesis determine the functioning of the Bayesian 

classifier, and the rule class that has the highest posterior probability is identified as 

the predicted class of that rule.  

The conditional probability that is computed from the frequency of events, without 

any information pertaining to the extent of uncertainty or dependency between the 

events and hypothesis, Bayesian classifier will have a tendency to put all patterns of 

the smaller class to error, which represents that no information is derived from 

classifiers. This information might result in the improvement of mapping between the 

fuzzy sets and the rule class in the rule extraction problem, which may lead to an 

increase in accuracy (Hu, 2014, 2015; X. Zhang & Hu, 2014).  
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Mutual information (MI), as a concept in information and probability theories, explores 

the quantitative relation between arbitrary variables, i.e. what information one 

contains about another and how it is dependent on it respectively. The mutual 

information also relates to the attribute significance by its success or deterioration in 

estimating data advancement. Namely the attribute in question can be regarded as the 

fuzzy sets antecedent when it comes to the fuzzy rule classification area.  

Information theoretic concepts can provide explanation for multiple Bayesian 

quantities through the application of evidential entropy analogy. The Bayesian 

classifier (BC) can be enhanced through the mutual information as a likelihood ratio. 

In addition to that, the complicatedness of each rule can be simplified by reducing the 

antecedent choices for the rule by increasing the informational value of the variable 

relations and the data load they carry, thus providing additional informative attributes. 

Mutual and Bayesian information classifiers can in fact operate together towards 

problem solving in the field of classification and machine learning, and should be 

regarded as interconnected methods instead of opposing ones (Hu, 2014, 2015). 

1.2  Research Questions 

 How to collect the data. 

 How to initialize the FRBS parameters. 

 How to enhance the feature selection and rule extraction approach. 

 How to improve the evaluation function for the optimization of fuzzy 

rules. 

 How to evaluate the NFS based the generated fuzzy RB. 
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1.3 Research Objectives 

One of the main objectives of this research is to develop an enhanced NFS to achieve 

a high accuracy without increasing the complexity of the system. The other objective 

is constructing the FRBS for the NFS automatically without the need of expert. The 

specific objectives of the research are: 

 To collect the data using a test engine. 

 To initialize the FRBS parameters using the FCM. 

 To enhance the feature selection and rule extraction approach by applying 

them simultaneously using FBC based MI. 

 To improve the evaluation function by reducing its complexity through 

discarding the weights via Composition method. 

 To evaluate the NFS based generated fuzzy RB in terms of accuracy and 

complexity. 

1.4 Significance of the Research  

The design of the information concerning prediction problems in the vast majority of 

the real world is the product of either sensor measurement or human calculations. The 

human aspect, however, presents more of a difficulty since nobody has so far 

succeeded in establishing a relevant mathematical model for such an operation, which 

causes the necessity of a fuzzy rule introduction to an intricate but wholesome 

generation system.  
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The research aims at involving the fuzzy rule-based system in the operation of more 

advanced systems (ex. automobile engines) through the application of soft calculation 

approaches, which may result in several major improvements in the field, such as:  

 Building a fuzzy rule based system for the purpose of predicting air fuel 

ratio; 

 Environmental protection through more efficient control of automobile gas 

emissions, enhancement of the fuel economy through fuel efficiency 

stimulation, and boosting engine capabilities towards engines‘ top 

performance – all accomplished with the help of precise fuzzy forecasts. 

 No expertise requirement, where a machine learning approach is applied. 

 Simplicity during building fuzzy inference system and reducing the 

computational complexity. 

1.5 Research Scope and Limitations 

The effectiveness of the proposed approach is demonstrated in nonlinear system 

prediction and complex system with uncertainty. 

In this thesis, the proposed approach works only on the rule base generation of fuzzy 

rules. 

Only MISO (multiple inputs, single output) can be classified with the current 

algorithm system. The time for forecasts and training is not taken into consideration in 

the application of the algorithm defended in the current thesis. 
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1.6 Thesis Structure 

The current research is divided into a total of six chapters. The first chapter presents 

the study‘s introduction. In it, the authors defend their reasoning behind the choice of 

precisely the NFS for their operational method for data modelling and forecast.  

Chapter Two is further broken down into four sub-chapters: 1) The machine learning 

process – rule formation and learning plus choice of relevant features; 2) Algorithms 

for soft calculations and their application in the current methodology; 3) Research 

introduction; and 4) Relevant literature pertaining to the present study. 

In Chapter Three, the technique for reaching the study‘s end goal is discussed in detail 

and therefore the chapter is also divided into several parts. The thesis behaviour and 

the research‘s general framework are discussed in the first part, the ways to get hold 

of relevant data sets – in the second, and the final assessment of the proposed model – 

in the third. 

Chapter Four focuses on the data gathering stage, including details on the 

characteristics of the data and preprocessing. 

Chapter Five focuses on how exactly the proposed model can be executed, namely the 

whole process of applying Genetic algorithm FBC for Adaptive Network – based 

Fuzzy Inference System (ANFIS) modelling and the derivation of fuzzy rules. It also 

includes the methodology of how to extract the algorithms in question and to select 

the proper features for their application. 

The results of the study are presented in Chapter Six.  
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The research concludes with Chapter Seven, which acts as a summary of the whole 

study, demonstrating in short its objectives, methods, results, limitations and 

possibilities for additional examination of the subject. 
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CHAPTER TWO 

LITERATURE REVIEW 

This chapter is made up of four sections. The first section talks about the fundamental 

ideas of machine learning, such as rule learning and feature selection. The next 

section depicts concepts pertaining to soft computing algorithms. The third section 

initiates a discussion on the research applications. The following section sheds light 

on prior studies pertaining to the area of research in this thesis. 

2.1 Machine Learning  

The arena of machine learning pertains to the means which can learn from experience 

on their own without the need for a human intervention or support (Grosan & 

Abraham, 2011). The experience is typically rendered as learning examples based on 

which the machine learning methods can learn a model on their own. From time to 

time, it is quite vital that humans are able to read the learned model. One such most 

comprehensible kind of models is rule sets. 

Machine learning evolves from the processes and conceptions from domains, such as 

statistics, artificial intelligence, and information theory. These algorithms function by 

constructing a model derived from example inputs and deploying it for making 

decisions or estimations. Machine learning is quite related to and frequently overlaps 

computational statistics, which is also an area specialising in making predictions. 

Among the tasks of machine learning, an important one is classification task. This 

task involves estimating the value of a nominal variable with more than two probable 
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values. Models tackling such tasks could take various forms, including logic programs 

and linear equations. Two most common models deployed are rules (Flach, 2012) and 

decision trees (Quinlan, 2014). These models are comprehensible and humans can 

read and interpret them effortlessly. Rules and decision trees split the space of 

examples into subspaces. For every subspace, they offer a straightforward estimation 

or a predictive sub-model. This thesis focuses on the means for learning models 

through rule sets. 

A conventional domain of machine learning is supervised learning or predictive 

modelling (Hastie et al., 2009). The task associated with this area is as follows. A set 

of inputs is presented, which is presumed to exert a certain impact on an output. 

Besides, a set of training or learning examples is provided, wherein every example 

associates a particular instantiation of the inputs to the respective output values. The 

objective here is to capitalise on the stated examples of learning to learn a predictive 

model which estimates the output based on the inputs. 

The above mentioned task holds practical importance for several fields, such as the 

social sciences, medicines as well as different spheres of engineering. The task can 

typically be construed in two manners. The first construal is common in the system‘s 

theory and is alike what is mentioned above. The inputs are deemed as stimuli of the 

environs to the system and an account of the state of the system. The outputs signify 

the system response. Learning examples are deemed as input and output measures 

under various circumstances such as the environment‘s statuses, influences, and 

system responses. The task is to build a system model which estimates the system 

response, on the basis of environmental impacts and the system‘s internal position. In 
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case of the second construal, each example of learning is deemed as a description of 

an object. The inputs represent a description of an object, while the outputs are the 

properties of certain object in which we are interested. The model thus built has to be 

in a position to estimate the properties of the object based on its description. Both 

construals are indeed alike, and the choice depends on the problem area as well as 

individual taste. Yet, the second construal is more commonplace, and hence is 

deployed in this thesis. 

2.1.1 Feature Selection 

In the world of data mining and machine learning, feature selection has been 

extensively scrutinised. In this regard, an aspect known as variable or attribute 

signifies a property of a system or practice which has been quantified or built based 

on the actual input variables. Feature selection aims to choose the smallest feature 

subset in view of a particular generalisation error, or otherwise determining the best 

feature subset with k features, which generate the least generalisation error. Other 

aims of feature selection are: (i) offer a better generalisation and a faster response 

with unseen data; (ii) attain an improved and effortless understanding of the process 

which produces the data (Guyon & Elisseeff, 2003; Karegowda, Jayaram, & 

Manjunath, 2010); (iii) enhance the generalisation performance in terms of the model 

constructed using the entire set of features (Mansoori, Zolghadri, & Katebi, 2007). 

Under feature selection, we endeavour to avoid choosing excess or minimal features 

than required. In case inadequate features are chosen, the information content to 

maintain the data concept is debased. In case excess features are chosen, which also 



 

 15 

include irrelevant or redundent features, the classification accurateness might be 

lower owing to the intrusion of irrelevent information. In applications of data mining, 

the elimination of irrelevant features is vital for revealing concealed relationships 

between features, as well as between features and class targets of patterns. 

Inappropriate diminution of data dimensionality causes information loss and might 

debase the quality of data mining tasks, including the classification task. 

Feature selection is deployed as a pre-processing step or along with a learning 

machine for the purpose of regression or classification. Methods of feature selection 

methods (Guyon, 2006) are typically categorised into three key groups: 

1. Filter methods: Filters choose features purely on the basis of statistics only. 

These are basically pre-processing methods, which try to evaluate the virtues 

of features from the data, disregarding the impacts of the chosen feature subset 

on the learning algorithm‘s performance. These methods can be divided into 

two: ones which assess all features in one pass and ones which assess 

manifold proposed feature-subsets along with an heuristic search. 

2. Wrapper methods: As the name suggests, wrappers ―wrap around‖ the 

induction algorithm which is deployed for the final classifier. The method 

involves an heuristic search wherein the induction algorithm is the heuristic. 

Needless to say, this method can be quite costly. It typically comprises K-fold 

cross-validation on the training data. However, there are certain benefits as 

well. The method assesses the variable set chosen and not merely one at a 

time. Thus, redundent variables can be eliminated, and variables which are 
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strictly useful can be determined. The method also determines variables which 

may be especially helpful with the recommended induction algorithm. 

Figure 2.1 depicts a general framework for the wrapper method of classification. 

 

Figure 2.1. General framework for the wrapper method  

3. Embedded methods: These methods integrate knowledge pertaining to the 

particular setup structure of the class of functions utilised by a specific 

learning machine. The methods carry out feature selection as an element of the 

learning process and are typically peculiar to the given learning machines.  

Even though embedded methods are typically less computationally costly than 

wrappers, they are much slower when compared to the filter approaches. Furthermore, 

the features chosen depend on the learning machine. Filter methods presume total 

independence between the data and the learning machine, and hence utilise a metric 
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independent of the induction learning algorithm so as to evaluate feature subsets. 

Moreover, these methods are comparatively stronger against over fitting; however, 

they might fail to choose the best feature subset for the purpose of regression or 

classification.  

2.1.1.1 Objectives of Feature Selection 

Various feature selection algorithms might have different objectives to accomplish. 

Here is a list of the frequent objectives cited by researchers (Kumar & Minz, 2014; 

Navot, 2006): 

1. Determine the minimally sized feature subset which is essential and enough 

for the target concept. 

2. Choose a subset of N features from a set of M features, N < M, such that the 

criterion function‘s value is optimised over all subsets of size N. 

3. Select a features subset for better precision in prediction or reducing the 

structure size without decreasing prediction accuracy of the classifier 

constructed using purely the chosen features. 

4. Choose a small subset so that the resultant class distribution, in view of only 

the values for the chosen features, is as close as possible to the actual class 

distribution, taking into consideration all feature values. 

Mining on the reduced features set aids in making the patterns simpler to comprehend, 

besides decreasing the time taken for computation. This work proposes the wrapper 

approach for feature selection. As part of the feature selection process, a wrapper 

approach with genetic algorithm was deployed as a random search technique for 
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subset generation, wrapped with induction algorithm, i.e. the Bayesian inference 

mechanism as a subset assessing mechanism for choosing relevant features 

automatically.  

2.1.2 Rule Extraction 

The rule extraction (RE) procedure could be deemed as a transformation of 

continuous, symbolic, or distinct knowledge from a dataset into beneficial, 

representative propositional logical rules which elaborate the knowledge embedded in 

datasets with adequate precision. The rules, or knowledge, mined during the course of 

knowledge discovery has to follow the criteria mentioned below:  

 Rules have to be brief, uncomplicated, clear, and crisp  

 Rules have to be understandable 

 Duplication of rules must be avoided  

 Rules have to be precise in outlining the data from which they were mined 

 Knowledge compressed within the rules must be beneficial. Data mining is a 

process wherein valid as well as beneficial rules (i.e. knowledge) are mined 

from big databases through a classification method 

In several classification problems, there are no explicit rules; however, examples can 

be acquired. A classifier, which is a function that outputs a class label for every input 

object, cannot be built from identified rules. Hence, in machine learning, one 

endeavours to deduce a classifier from a narrow set of training examples. The usage 

of examples raises the need to clearly mention the classification rules. The objective is 
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to attain models and learning rules to learn from the examples and estimate the labels 

of prospective objects. 

For the majority of real-world control issues, the information pertaining to the design 

arrives from sensor measurements or an experienced human controller. In case the 

environs facing a human controller are so complex that there is no relevant 

mathematical model, then the task is to devise a fuzzy rule generation system as a 

substitute for the human controller. 

A characteristic of fuzzy logic is that it permits nonlinear input/output relationships to 

be articulated through a suite of qualitative ―if-then‖ rules. Nonlinear control/decision 

surfaces, pattern classifiers, and process models might be articulated as fuzzy rules. A 

human expert hand-crafts the majority of FS so as to capture certain intended 

input/output relationships which the expert is aiming for. However, sometimes the 

expert is not able to express his knowledge in an explicit manner. In fact, for several 

applications, such an expert might not even be existent. Therefore, a significant 

interest exists in being able to mine fuzzy rules from experimental input/output data 

automatically.  

Model structure as FRBSs comprises an extension to conventional rule-based 

systems, as they deal with ‗‗IF-THEN‘‘ rules. However, its antecedents and 

consequents comprise fuzzy logic statements rather than classical ones. Furthermore, 

with regards to fuzzy sets with linguistic labels, the output system demonstrates a 

higher level of interpretability for the expert to comprehend the former‘s working 

procedure, and the inner particulars of the problem characteristics (Fernández, López, 

del Jesus, & Herrera, 2015; Gacto, Alcalá, & Herrera, 2011). 
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A fuzzy RB includes several rules stated as:  

                 R: IF 𝐱 is Ai , THEN 𝐲 is 𝐵𝑖  

where 𝐴𝑖 = { 𝐴𝑖1 , 𝐴𝑖2 , … , 𝐴𝑖𝑛 }, 𝐵𝑖 = 𝐵𝑖1 ,𝐵𝑖2 , … , 𝐵𝑖𝑚 , and 𝐴𝑖𝑗 and 𝐵𝑖𝑘 are, 

respectively, fuzzy sets which outline an input and output space partitioning, x is the 

input, and y is the output. The condition, also known as premise, comprises several 

antecedents which are combined by various operators like AND or OR computed with 

𝑡-norms. 

2.1.2.1 Assessment Criteria for Rule Extraction 

There are three measurements that are typically employed to assess rule extraction 

(Huysmans, Baesens, & Vanthienen, 2006; Huysmans, Dejaeger, Mues, Vanthienen, 

& Baesens, 2011). These measurements are as follows: 

1. Predictive accuracy. The induction of a rule possessing a considerably high 

degree of predictive accuracy is a primary consideration in rule inductive 

learning. For this reason, the capability of the extracted or refined rule sets 

derived by using the relevant techniques to make accurate predictions on new 

and unique cases should be assessed. 

2. Comprehensibility. Another important aspect that should be taken into 

consideration is the comprehensibility of learned rule sets. To determine 

comprehensibility, it should be identified whether the extracted (or refined) 

rule sets could be inspected and elucidated by domain experts. The 

measurement of the comprehensibility of learned rule sets presents challenges. 
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An underlying assumption of the performed experiments is that syntactic 

complexity is directly and positively related to comprehensibility. In this 

thesis, syntactic complexity is evaluated by using measures that assess the 

comprehensibility of rule sets: the number of rules in the rule set and the 

average number of antecedents for each rule. Attempting to achieve high 

levels of both predictive accuracy and comprehensibility is contradictory 

because one tends to dominate the other. That is, significantly accurate models 

tend to exhibit high syntactic complexity, whereas those having low syntactic 

complexity exhibit low accuracy. 

3. Consistency. The assessment of consistency is likewise related to the rules 

generated from a learning model. An extracted rule set is found consistent if 

rule sets that generate the same classification of unseen examples are derived 

from a learning model, even in different training sessions. 

Rule extraction also has the objective of deriving a subset of interesting rules from all 

those that were identified. Numerous data mining algorithms were designed to 

identify accurate, comprehensible, and consistent rules, but most of them fail to 

identify interesting rules, which is a more difficult and challenging task. Approaches 

to the identification of interesting rules can generally be classified into subjective and 

objective methods. The former can be described as driven by users and dependent on 

domains. For example, the user could identify rule templates and indicate the 

combination of attributes that should occur for a rule to be found interesting. Another 

subjective method is one in which a user can provide the system with a general 

description of previous knowledge regarding the domain, such that the system can 
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identify only the discovered rules that point to knowledge previously unknown to the 

user. On the other hand, objective methods are driven by data and independent of the 

domain. A number of these approaches compare a discovered rule with other rules 

instead of user beliefs. Thus, the underlying principle is that a rule‘s level of being 

interesting relies on both its quality and like comparability to other rules.  

This thesis employed objective approaches to identify interesting rules as the measure 

for assessing discovered rules. 

2.2 Soft Computing-based Techniques 

The implementation of soft-computing practices has evolved as a viable option in 

numerous situations to solve extremely intricate, non-linear, and stochastic problems 

that cannot be solved by conventional methods (K. Gopalakrishnan, Ceylan, & Attoh-

Okine, 2009). Soft computing involves intelligent and efficient processing methods 

that are very different from the complicated and long processing techniques of 

conventional hard computing.  

There are three categories of soft computing: evolutionary computation, FS, and 

artificial neural computing, with the latter including machine learning (ML), 

probabilistic reasoning (PR), expert system (ES), etc. as depicted in Figure 2.2. 

While each one has its own set of strengths and capabilities, these computational 

techniques when used in combination (hybrid), along with their balancing attributes, 

become a robust alternative to solve complicated problems that cannot be solved 

using traditional mathematical methods. 
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Figure 2.2. Soft Computing Techniques 

Table 2.1   

Advantages and Limitations of Principle Constituents of SC 

Constituents 

of SC 

Advantages Limitations 

GA Natural progression and 

optimization 

Inability to handle 

imprecision 

FL Approximation reasoning, 

imprecision 

Inability to learn 

NN  

Learning and implicit knowledge 

representation 

 

Inability to optimize 

PR Indecision Inability to learn 

 

In this chapter, the different soft computing techniques are thoroughly reviewed as the 

focus of this study is to implement soft computing techniques for modeling a real 

world application that can predict future values, while making use of the advantages 

of the techniques and avoiding the limitations as exhibited in Table 2.1. The hybrid 

model of using soft computing techniques that lets individual techniques overcome 
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their limitations and creates a fused system to achieve greater efficiency and effectiveness 

through collaboration will also be discussed. 

2.2.1 FS 

Lotfi Zadeh designed fuzzy logic in the 1960s. Fuzzy logic is a soft computing 

technique that simulates the learning capability of the human mind and makes logical 

decisions in an uncertain and imprecise situation. It can be implemented to solve very 

complex problems that a mathematical model cannot solve because of the non-linear, 

time varying behaviour and imprecise characteristics of the problem.  

FS can be beneficial in two situations: when a very complicated problem whose 

behaviour cannot be comprehended needs to be solved, and secondly when a fast 

fairly accurate solution is required (Ross, 2013). FS may be very useful to understand 

complex systems with no clear models because it can effectually handle indefinable 

and uncertain information. 

The prime objective in using FS is to keep the human aspect under consideration. It is 

helpful in involving a human expert in the modeling or validation process to ensure 

that the fuzzy learning is justified. It is extremely convenient for human experts to 

express their knowledge through linguistic rules than through mathematical forms. 

Fuzzy learning enables the merging of specialised human knowledge with 

experimental information through measurement points. Fuzzy logic can be used to 

integrate the knowledge of human experts with the information from databanks to 

recreate a more specialised KB. 
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2.2.1.1 Linguistic Variable 

The quantification and reasoning applied to ambiguous or fuzzy terms contained 

within our natural language are referred to as fuzzy logic. Vague or fuzzy terms are 

called linguistic or fuzzy variables. 

2.2.1.2 Fuzzy Set and Membership 

Uncertainty is rooted in inprecision measurements attributable to the unreliability of 

tools or other factors. It can also be attributed to vagueness language. Linguistic 

variables are frequently employed to describe and characterise physical objects and 

situations.  

Therefore, rather than defining crisp sets, where elements are either in or out of the set 

with absolute certainty, Zadeh posited the idea of a MF instead of defining crisp sets 

with elements that are either absolutely in or out of such sets.  

Figure 2.3 shows how fuzzy sets could represent the idea of vehicle speed. The figure 

also illustrates how we can differentiate between the concepts of high and very high in 

order to establish a model that is more reliable than the classical set theory. 
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Figure 2.3. Fuzzy set representation 

2.2.1.3 Types of MFs 

Actual data must be converted into fuzzy data according to specific MFs to be able to 

handle the fuzzy data. MFs are selected depending on the application. Such functions 

assume varying shapes, including triangular, trapezoidal, Gaussian, and bell-shaped. 

           

Figure 2.4. Gaussian MF 
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Figure 2.4 shows the symmetric Gaussian MF used in this work (Ishibuchi, 

Nakashima, & Morisawa). This MF is expressed as  

   (     )   
 (   ) 

                                                                           (2.1) 

where parameter c determines the distance from the origin, whereas ζ stands for the 

width of the curve. Gaussian MFs are characterised as smooth and non-zero at all 

points. 

2.2.1.4 Fuzzy Logic System Methodology 

Figure 2.5 reveals the three phases comprising the fuzzy logic system methodology 

(Negnevitsky, 2005; Ross, 2013): 

 

Figure 2.5. Fuzzy logic methodology 

1. Fuzzification is a process that refers to the change in input variables from 

being crisp to being linguistic.  
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The following are the steps in the fuzzification process: 

 Identify a universe of discourse, 

 Determine and characterise the linguistic variables, 

 Identify the MFs for each linguistic variable within the universe of 

discourse, and 

 Graphically illustrate the MFs graphically using relevant MFs. 

2. Fuzzy inference maps use linguistic variables as input for output linguistic 

variables based on a system of fuzzy rules of the type ―IF A THEN B.‖ Given 

that input linguistic variables are weighted, output linguistic variables are also 

derived as weighted. In this phase, the rule outputs are aggregated, which 

refers to the unification of all rule outputs. 

3. In the defuzzification phase, the weighted values of the output linguistic 

variables obtained through fuzzy inference are changed to become crisp 

variables on the basis of on MFs. Defuzzification can be achieved using the 

following main methods: 

 First is the maximum defuzzification method in which process an output value 

is identified using the linguistic variable with the highest weight; 

 Second is the centroid calculation defuzzification method that identifies an 

output value based on the weighted influence of all active output membership              

functions.  
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2.2.1.5 Fuzzy System Variants 

Chiefly, FS are of three varieties: 

 Mamdani fuzzy system: This is also called the linguistic fuzzy system. 

 Singleton fuzzy system: The intricacy of defuzzification of a linguistic fuzzy 

system can be made simpler by limiting the output to a singleton MF. With no 

assimilation being carried out in a numerical manner, there is a decrease in the 

computational demand for the learning and assessment of the fuzzy system. 

Hence, this system is the most commonly used in the industry. 

 Takagi-Sugeno fuzzy system: This can be said as an extension of the above 

mentioned system, wherein the function f is not considered as a fuzzy set. 

However, the basic premise of this system is linguistically explainable. 

Models based on the Takagi-Sugeno system present a good interpretation for a 

dynamic process modelling. A singleton fuzzy system could be retrieved from 

a Takagi-Sugeno fuzzy system if the function f is taken as a constant. As the 

constant could also be deemed as a zeroth order, the Taylor series expansion 

of the function f is also known as the zeroth order Takagi-Sugeno fuzzy 

system.  

2.2.2 NNs 

Drawing inspiration from the biological nervous system, neural networks function 

according to the principle of mostly interrelated simple elements functioning as a 

network function. In this process, there is no assumption of prior knowledge; 

however, records data, observations, and measurements are taken into consideration. 



 

 30 

NN research is based on the fact of learning from data so as to mimic the biological 

ability of linear as well as nonlinear problem solving. Typically, the NNs can be 

devised and trained for addressing those issues that are tough to resolve for humans or 

the regular computational algorithms. 

The training‘s computational meaning amounts to the adjustments of specific weights 

that are the main aspects of the NNs.  

A typical NN is made from different simple components known as neurons. Every 

neuron is associated with few of the other components. The transmission of 

information takes place by means of these connections or links. A neuron comprises 

input as well as output parameters, besides an activation function. Every connection is 

characterised by a specific weight. The input parameters are multiplied with the 

weight of the connection; the parameters are then summed. This outcome is then 

subjected to the activation function that provides a specific output. The activation 

function has to signify the nonlinear operation as performed in the brain, wherein it 

transmutes a unit‘s (neuron) activation level into an output signal (Ukil, 2007; 

Zilouchian & Jamshidi, 2000). Figure 2.6 depicts an example of a neuron. 

 

Figure 2.6. Example of a Neuron 
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Based on Figure 2.6, the sum and output can be computed as: 

    ∑     
 
                                                                                 (2.2)            

       (  )                                                                                   (2.3) 

Where, 

j: Neuron j, 

i: Index of the inputs, 

n: Number of the inputs, 

Xi: Input i, 

Wi: Weight of the input Xi, 

Sj: Sum of the weighted inputs for neuron j, 

Tj(S): Transfer function, and 

Oj: Output of neuron j  

2.2.2.1 Basic NNs Structure  

NNs stem from the interconnections of multiple unit neurons or nodes. Typically, as a 

rule, the neuron layers mentioned below are utilised in the artificial networks  (Ukil, 

2007; Vancoillie, 2003). 

 Input layer: The number of neurons corresponds with the number of inputs 

to the neuronal network. This layer comprises passive nodes—the ones 

that do not take part in the actual process of signal modification—and 

simply transfers the signal to the next layer. 
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 Hidden layer: Here there are a random number of layers along with 

random number of neurons. The nodes take part in the process of signal 

modification, and therefore are deemed active. 

 Output layer: In this case, the number of neurons corresponds with the 

NN‘s output values, and the nodes are active. 

Figure 2.7 depicts the basic structure of the artificial NN. 

            

Figure 2.7. Basic structure of the Artificial NN 

2.2.2.2 Learning Algorithm 

Training an NN to obtain the targeted result entails choosing a model which reduces a 

criterion cost, learning from its environs and bettering performance (Amakali, 2008; 

Zilouchian & Jamshidi, 2000). Presented below are few of the learning algorithms: 

 Supervised Learning 

Here, the NNs absorb knowledge from examples. A set of inputs is entered into the 

neural network and the outcome is compared with the intended output (i.e. the outputs 
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conforming to the inputs). The network parameters are adjusted one by one based on 

the error signal acquired from the difference between the outputs and the intended 

output.  

 Unsupervised Learning 

In this case, a measure that is ‗task-independent‘ is utilised to distinguish, which is an 

intended or unnecessary network representation. The parameters are adjusted in 

accordance with this measure. In the absence of an external teacher, the system should 

systematise itself by the internal norms and local information that is designed into the 

network. Unsupervised learning is also called as self-organising learning; in other 

words, learning to categorise without being trained. Here, just the input samples are 

available and the network categorises the input patterns into various groups.  

 Backpropagation Algorithm 

This algorithm, created by David Rumelhart, Geoff Hinton, and R. J. Williams in 

1986 (Rumelhart, Hinton, & Williams, 1988), is among the renowned algorithms for 

computing the weights of the NN.  

Oj stands for the output values of a given input pattern Xi. These values do not always 

correspond with the predetermined values Rj. Ej is the error resulting from the 

difference of Rj and Oj. This error is minimised by the changes in weight. This is 

achieved by propagating the error originating at the output backwards towards the 

hidden layers. In other words, the error is considered and back-calculated to determine 

the correct solution, which is the principle behind the backpropagation algorithm. 

That is, error is propagated in a backward direction. 
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The error of a neuron j in the output layer is given below when the energy analogy is 

considered: 

    
 

 
(        )                                                                        (2.4) 

E is the total error of the output layer and is given by 

   ∑     
 

 
(        )                                                       (2.5) 

The error E has to be minimised while accounting for the changes in weight (Rezaee, 

Goedhart, Lelieveldt, & Reiber). Through the delta rule, the learning rate α is 

incorporated, and the weight change method is selected based on the gradient descent 

algorithm (Alsmadi, Omar, & Noah, 2009). 

2.2.3 NFS s 

A NFS combines techniques from FS and NNs. However, this does not mean that both 

are used in any actual combination. Rather, a fuzzy system is augmented by a NN to 

improve few of its characteristics such as speed, flexibility, and adaptableness. A NFS 

is devised to accomplish the process of fuzzy reasoning, wherein the connection 

weights of the network embody the parameters of fuzzy reasoning (Abraham, 2005; 

DD Nauck & Nurnberger, 2005) 

2.2.3.1 Comparison between FSs and NNs 

There are noteworthy similaritiess between NNs and FSs. From the mathematical 

perspective, both are dynamic, parallel processing systems which estimate input-



 

 35 

output functions. Furthermore, both are both universal approximators which can 

assess a function devoid of any mathematical model and draw learnings from 

experience with sample data. From a practical perspective, both attempt to model 

expert behaviour while addressing complex issues. 

Table 2.2  

Comparison between FSs and NNs 

 Skills FSs NNs 

Knowledge 

acquisition 

Inputs Human experts Sample sets 

Tools Interaction Algorithms 

Uncertainty Information Quantitative/Qualitative Quantitative 

Cognition Decision making Perception 

Reasoning 
Mechanism Heuristic search Parallel 

computation 

Speed Low High 

Adaptation Fault-tolerant Low Very high 

Learning Induction Adjusting 

weights 

Neural 

Language 

Implementation Explicit Implicit 

Flexibility High Low 

 

Yet, the two tactics show some extreme differences as well. Table 2.2 shows in brief 

these differences from various angles (Abraham, 2004; Grosan & Abraham, 2011). 

NNs and fuzzy systems can be combined to capitalise on their benefits and overpower 

their respective drawbacks. Neural fuzzy systems are typically utilised in function 

approximation and control issues, particularly in the engineering arena where classical 

approaches do not supply straightforward and precise solutions. 
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2.2.3.2 Adaptive Network based Fuzzy Inference System 

ANFIS is a simple data learning technique which utilises a FIS model to transform a 

crisp input into a target output by creating MFs for every input. 

The fundamental notion behind such Neuro-adaptive learning methods is to offer a 

technique for the fuzzy modeling procedure to study information about a data set, so 

as to automatically calculate the MF parameters which best enable the associated FIS 

to trace the given input/output data.  

This method enjoys an advantage over the pure fuzzy paradigm, as the need for a 

human operator to adjust the system by adjusting the MFs‘ bounds is no longer there. 

This this chose ANFIS as a control tactic due to its uncomplicated structure and the 

benefits it offers of fuzzy logic as well as adaptive NNs. Adaptive NNs enjoy the 

benefit of having the ability to learn and adjust to the system. 

The ANFIS is able to sharpen up the fuzzy ‗if-then‘ rules and MFs so as to outline the 

input/output behaviour of an intricate system. In practical uses, the Takagi-Sugeno 

type of FISs (Gorrostieta & Pedraza, 2006) are deemed more apt for building fuzzy 

models owing to their more compacted and computationally-effective representation 

of data compared to the Mamdani fuzzy systems. A usual zero-order Takagi-Sugeno 

fuzzy system has the following form: 

If x is A and y is B then z = c 
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where A and B are fuzzy sets and z is a crisply defined function. To cater to the 

requirements of a particular problem, a singleton spike is most of the time totally  

adequate . A zero-order Takagi-Sugeno FIS is utilised in this study. 

       

Figure 2.8. ANFIS Takagi-Sugeno fuzzy system 

As can be seen in Figure 2.8, ANFIS is made up of five layers. The first concealed 

layer is accountable for the mapping of the input variable fairly to every MF. The 

operator T-norm is used in the second concealed layer to compute the antecedents of 

the rules. The third concealed layer normalises the rules‘ strengths, which is followed 

by the next concealed layer in which the rules‘ consequents are ascertained. The 

output layer computes the global output as the aggregate of all signals which arrive to 

this layer.   

2.2.4 Genetic Algorithms 

These are based on the notions of the evolution theory (Holland, 1975), with the key 

principle being: only the fittest objects prevail (Reid, 2000; Sivanandam & Deepa, 

2007). A genetic algorithm can be split into many sub-parts which are utilised in this 
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algorithm: fitness function evaluation, representation, selection, initialisation, 

recombination (crossover and mutation), and termination. Figure 2.9 outlines the 

entire process of a genetic algorithm.  

                   

Figure 2.9. GA algorithm flowchart 

2.2.4.1 Representation 

In this study, real coded strings, which employ a real number are used because they 

are suitable for optimisation problems in the continuous domain. In real-coded GAs, 

the chromosome is a vector of floating point numbers, Ci = (x
i
1,..., x

i
n), the size n of 

which corresponds to the dimension of the continuous search space, such that each 

gene x
i
j corresponds to a specific problem parameter. 
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2.2.4.2 Population and Initialisation 

In case of initialisation, the initial chromosomes set, also known as the initial 

population, is formed. The initial population‘s size is crucial for the overall genetic 

algorithm. A small size could help find only a local optimum, whereas a larger size 

offers a greater prospect that the global optimum will be located; notably, the 

computation time rises (Reid, 2000).  

2.2.4.3 Evaluation and Selection for Reproduction 

The selection operator is utilised to determine chromosomes that would be used in 

reproduction and would live on until the next generation. Various methods can be 

deployed in selection operators. Typically though, a natural selection process is 

simulated, wherein individuals who are the ―strongest‖ are used in reproduction. 

Tournament selection is used in this study.  

2.2.4.4 Recombination 

Recombination operators are a key component of the genetic algorithm. The crossover 

operator mimics the reproduction between two individuals, wherein the offsprings 

produced inherit certain traits from parent individuals. There are several mutation and 

crossover operators which function with a chromosome encoded as a literal line of 

numbers or symbols.  
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Here is a list of some common crossovers:   

 Ordered crossover, 

 Cycle crossover, 

 Single-point crossover, 

 Uniform crossover, 

 Two-point crossover 

The above mentioned crossovers generate an encoded chromosome or chromosomes 

as a consequence, which have to be decoded for the purpose of assessment. 

 

 

 

 

 

   Figure 2.10. Uniform order crossover 

The uniform crossover operator is perhaps the strongest of its kind as it enables the 

offspring chromosomes to look for all prospects of re-combining those various genes 

in parents. Uniform crossover has emerged as the most commonly utilised crossover 

operator (Picek & Golub, 2010).  

Figure 2.10 demonstrates a uniform order crossover. 

Binary string: 0 1 1 0 1 1 0 0 

1st parent: 1 2 3 4 5 6 7 8 

2nd parent: 3 5 1 8 4 7 2 6 

Intermediate offsprings 

1st offspring: – 5 1 – 4 7 – – 

2nd offspring: 1 – – 4 – – 7 8 

Generated offsprings: 

1st offspring 2 5 1 3 4 7 6 8 

2nd offspring 1 3 5 4 2 6 7 8 
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A mutation operator is utilised so as to avoid getting trapped in the local optimum and 

raise the possibility of locating the global optimum (Hong, Wang, Lin, & Lee, 2002). 

In case of the mutation operator, a new offspring is generated from a single solution. 

This is accomplished by altering few intrinsic characteristics. For a genetic algorithm, 

crossover and mutation operators are deployed by a predefined probability. 

2.2.4.5 Termination 

GAs are stochastic techniques which can go on endlessly if there is no termination 

criterion. Maximum calculation time, maximum iteration number, or iterations which 

are counted from the last successful enhancement of the best individual constitute the 

simple stopping criteria (Hong et al., 2002; Reid, 2000). The prospect to improve the 

best individual reduces proportionately to the calculation time. Thus, the number of 

iterations without improvement is directly proportional to the prospect of 

improvement. A bigger value will raise the computation time and a better solution 

might be discovered. Likewise, a low value will cause an early stop and a substandard 

solution. 

2.2.4.6 Genetic Algorithm for Rule Extraction 

A particular kind of optimisation problem is the knowledge discovery process from 

databases, also called as rule extraction (RE). Rule mining is deemed as a usable 

mining method technique of mining so as to gain valuable knowledge from data 

stored in database systems. 
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The process aims to mine a minimal set of simple rules which classifies (covers) with 

the best probable examples of accuracy in the particular database (dataset). There are 

many global search algorithms in the evolutionary algorithms (EA) paradigm that 

effectually categorise huge datasets without carrying out an exhaustive search.  Few 

examples of application of EA for classification and optimisation problems are as 

follows: geometric programing  (Boyd, Kim, Vandenberghe, & Hassibi, 2007), GA 

(Holland, 1975; Knowles & Corne, 2000), evolution strategy (ES) (Coello, 2005), and 

evolutionary programming (EP) (Fogel & Fogel, 1996). This paper emphasises on 

genetic algorithm for feature selection as well as rule extraction in data mining. 

The key drive behind using GA in the detection of high-level prediction rules is to 

carry out a global search and deal with attribute interaction in a better manner. 

This study principally aims that the function of rule extraction is carried out 

automatically. It is evident that the automated knowledge discovery process enjoys 

certain benefits over the conventional kind of analysis carried out by humans. These 

are as follows:  

 More adaptable and dynamic to changes in parameter and attribute 

 Reduced time to solution (classification) period 

 Cost-effective and more steady performers compared to human classifiers  

 Better precision in solutions (classifications)    

 Multi-purpose  

 Hardly any proficiency required to carry out analysis  
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In the domain of evolutionary algorithms, there are two key approaches for 

developing these kind of rule systems: the Pittsburgh approach and the Michigan 

approach (Michalewicz, 2013). The iterative rule learning (IRL) approach is a method 

that has been recommended recently, especially for fuzzy modeling (Triantaphyllou & 

Felici, 2006). 

 The above mentioned approaches are described below (Peña-Reyes, 2004). 

 The Pittsburgh approach. The evolutionary algorithm keeps a populace of 

candidate fuzzy systems, with every individual standing for an entire fuzzy 

system. Genetic and selection operators are utilised to generate new 

generations of fuzzy systems. 

The problem of credit assignment is avoided as evaluation is applicable to the 

total system. This approach allows for inclusion of additional optimisation 

criteria within the fitness function, and hence multi-objective optimisation can 

be implemented. The main shortcoming of this approach is its computational 

cost, since a population of full-fledged fuzzy systems has to be evaluated each 

generation. 

 The Michigan approach: Every individual is a representative of a single rule. 

The FIS is a representative of the total populace. As many rules partake in the 

inference process, these rules are continually competing for the best action to 

be recommended, and liaise to create an effective fuzzy system. The method‘s 

cooperative-competitive nature makes it tough to determine which rules are 

eventually responsible for good system conduct. This calls for an effectual 

credit-assignment policy to attribute individual rules with fitness values. 
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  The IRL approach: One of the main disadvantages of the above two 

approaches is the using up of considerable computer memory for scouting 

various fuzzy rules. To tackle this issue, the IRL approach was developed. 

Here as well, every individual encodes a single rule. An evolutionary 

algorithm is deployed to determine a single rule, therefore offering a partial 

solution. Then the evolutionary algorithm is deployed iteratively for 

discovering new rules till a proper RB is constructed. A penalisation scheme is 

used every time there is an addition of a new rule. This is to stop the process 

from determining rules that are redundent – in other words, rules involving the 

same input subspace. This approach gels the Pittsburgh approach‘s simplicity 

of fitness evaluation with the pace of the Michigan approach. This paper has 

taken up this learning approach. 

The IRL offers several benefits: 

1. IRL curtails the search space. This is because in every sequence of 

iterations, the learning method simply looks for a single best rule rather 

than the entire RB. 

2. The Michigan approach offers online learning for non-inductive 

learning concerns, while IRL aids in offline inductive learning issues. 

2.2.4.7 Multi-objective Genetic Algorithms 

Multi-objective designs are realistic models for several intricate engineering 

optimisation issues. In several real-life issues, objectives under consideration clash 

against each other. Optimising a specific solution with regards to a single objective 
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could lead to undesirable outcomes in terms of other objectives. A rational resolution 

to a multi-objective issue is to study a set of solutions, with each of it fulfilling the 

goals at a satisfactory level without being dominated by any other resolution. GA are a 

common meta-heuristic especially compatible with these kind of problems. 

Traditional GA are tailored to accommodate multi-objective issues by utilising 

specialised fitness functions and launching methods to endorse solution diversity. 

2.2.5 GFS 

 FSs can be automatically designed, and this approach can be considered as an 

optimisation or search process on the potential solution space. GAs are the more 

popular and widely used global search methods for their capability to explore and 

exploit a given operating space with the use of available performance measures. A 

priori knowledge, which include linguistic variables, fuzzy rules, fuzzy MF 

parameters, and number of rules, could be easily integrated into the genetic design 

process. GAs have a generic code structure and independent performance features that 

are suitable for a priori knowledge incorporation. These features have expanded the 

use of GAs in developing of a wide range of methods for fuzzy system design.  

Genetic fuzzy inference systems are the most common kind of GFSs. In this case, GA 

are utilised for optimising the various constituents of the FIS.  

2.2.5.1 Taxonomy of GFSs 

The first thing to do while devising a GFS is to make a decision as to which parts of 

the fuzzy systems need to be optimised. The next step is coding them into 

chromosomes which need be optimised by genetic algorithm.  
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GFS approaches are split into two groups: tuning and learning. The first crucial factor 

for making a choice between them is whether an initial KB exists or not. By taking 

into consideration database and RB, the GFS framework is outlined in brief as 

follows: 

 Genetic tuning: In case there is a KB, genetic tuning would be deployed for 

system upgrade such that the RB stays the same; however, the FRBS 

parameters would be adjusted. 

 Genetic learning: This is one more complex method of optimising only the RB 

or the entire KB. It does not require predefined rules. Furthermore, the RB 

would be developed during genetic learning (Cordón, Herrera, Gomide, 

Hoffman, & Magdalena, 2004). 
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Given below Figure 2.11, is the taxonomy as per the stated points (Herrera, 2008). 

 

        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11. GFS taxonomy  
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2.2.5.2  Genetic Tuning 

After the design of the RB, a number of approaches can be used for the effective 

implementation of FRBS. To achieve this, the initial database definition or the 

inference engine parameters are redefined. 

 Tuning can be conducted in three ways on the basis of sub-tree under genetic tuning: 

1. Genetic tuning of KB parameters.  This approach is employed to modify MF 

parameters. The learning process merely modifies the shape of the MFs, but not the 

length of chromosomes (Casillas, Cordón, Del Jesus, & Herrera, 2005). 

2. Genetic adaptive inference systems. This approach applies parameterised 

expressions to inference systems called Adaptive Inference Systems to enhance more 

cooperation in fuzzy rules and to design more accurate fuzzy models (Alcalá‐Fdez, 

Herrera, Márquez, & Peregrín, 2007). 

3. Genetic adaptive defuzzification. Defuzzification interfaces are important 

components of a fuzzy interference system. This approach uses a GA for optimising 

the defuzzification unit of fuzzy inference RB systems. 

2.2.5.3 Genetic KB Learning 

Another field in GFSs is genetic learning. It is much more complex in comparison to 

genetic tuning. The method can comprise learning of only the RB or learning of the 

entire KB (Cordón, Herrera, Hoffmann, & Magdalena, 2001; Mumford, 2009). Here 

are the four approaches outlined for genetic learning: 

1. Genetic rule learning: The majority of the methodologies that have 

recommended to automatically learn about the KB from numerical infomation 
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emphasise on RB learning by deploying a predefined database (Del Jesus et 

al., 2007; Herrera, 2008). Figure 2.12 depicts this in a clear manner. 

                  

   Figure 2.12. Genetic rule learning process 

2. Genetic rule selection: Data mining methods, on some occasions, 

create a large number of rules, making it tough to comprehend the conduct of 

FISs. Few of the rules are redundant, unrelated, erroneous and conflictive. To 

prevent such a scenario, one can deploy a genetic rule selection process so as 

to secure an optimised abstract of rules (Alcalá et al., 2007; Casillas et al., 

2005). Figure 2.13 below explains this. 

                   

   Figure 2.13. Genetic rule selection process 
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Furthermore, rule selection can be blended with tuning methods, which aids in 

obtaining a robust rule set supplemented with a tuned suite of parameters (Herrera, 

2008). 

3. Genetic database learning: This approach optimises the entire KB in two 

steps, such that every time a database is mined by the process of database 

definition, the rules will be extracted by deploying the RB generation process 

(Cordon et al., 2001; Herrera, 2008). Then the entire KB is substantiated. 

These conceptions are depicted in Figure 2.14. 

       

           Figure 2.14. Genetic database learning 

4. Simultaneous genetic learning of KB components: As the name suggests, this 

approach attempts to learn the two constituents of KB simultaneously. The 

benefit is that better definitions are generated, while the drawback is that it 

entails tackling a larger search space, which might make the learning 

progression sluggish and complex (Fazzolari, Alcala, Nojima, Ishibuchi, & 

Herrera, 2013; Herrera, 2008).This is shown in Figure 2.15. 
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            Figure 2.15. Genetic KB Learning 

2.2.5.4 Multi-Objective Evolutionary Fuzzy Systems (MOEFS) 

An instinctive approach to FRBS design is to extract the knowledge from a human 

expert and to organise this knowledge in the DB (Ishida, Pozo, Goldbarg, & 

Goldbarg, 2009) and rule base (RB) and of the FRBS. In few of the application areas, 

this knowledge could be limited. This could be because of that domain complexity, 

hence rendering this natural approach unfeasible. To get past this issue, there have 

been certain methods recommended in prior studies so as to create the DB and RB by 

mining this knowledge from available information, such as experimental samples. 

Initially, thus type of generation was usually carried out with the distinct goal of 

boosting the precision; however, soon the academics came to know that these 

precision-driven approaches usually generate FRBSs characterised by a great number 

of rules and by linguistic fuzzy partitions having a low comprehensibility level, hence 

squandering that feature that has made FRBSs the preferred choice compared to other 

methodologies in real applications, i.e. interpretability. To tackle this issue, during the 

last ten years, new approaches have been recommended to generate FRBSs by 

considering precision as well as interpretability of rule and databases and other 
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criteria of assessment. Therefore, the creation of FRBSs entails resolving a multi-

objective optimisation problem. 

In this framework, multi-objective evolutionary algorithms (MOEAs) have been 

utilised. MOEFSs has been created to determine the hybridisation of FRBSs with 

MOEAs, which are used to obtain FRBSs with different trade-offs between different 

evaluation criteria. This is achieved by learning the overall RB or by choosing subsets 

of rules from heuristically determined initial RBs, as well as by learning the overall 

DB or by tuning a DB put forward by the experts. This study uses MOEAs to choose 

a subset of rules according to different evaluation criteria. 

2.2.6 Probabilistic Reasoning 

Taking a theoretical perspective, the classical probability and Fuzzy set theories are 

complemented to develop a hybrid formalism to model the complex uncertainty that 

characterise real-world systems. 

Conventionally, uncertainty in the real life is addressed mainly by the probability 

theory. However, in real-world applications, randomness is just one of the several 

sources of uncertainty. Ambiguity is another key source.  Ambiguity directly arises 

from the concept of set membership. In this instance, membership is represented by a 

continuous function that can take the form of any real number on the closed interval 

[0,1] rather than 0 or 1 alone. Fuzzy set theory uses this highly generalizable idea of 

membership to model the ambiguity of real-world systems. The new idea is that set 

membership is crucial to decision making in the presence of uncertainty. 
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2.2.6.1 Bayesian Statistics 

Bayesian inference is a statistical inference approach that uses Bayes' rule to update a 

probability estimate for a hypothesis as additional evidence is acquired. Bayesian 

inference is applied to a wide scope of fields, including science, medicine and 

engineering. This approach calculates the probabilities according to Bayes' rule:  

 (   )  
 (   )  ( )  

 ( )
                                                                                          (2.6) 

Where, 

P(x\z): called posterior. 

P(x): called prior, belief before seeing the evidence. 

P(z\x): likelihood of seeing evidence if the hypotheses is correct. 

P(z): hypotheses of evidence under a considering status. 

Bayesian theorem proposes a simple process to identify the hypothesis with the 

maximum probability without relying on search methods. 

Prior probabilities for categories and attributed values based on categories are 

estimated derived from frequency counts calculated from the training data.  

2.2.6.2 Mutual Information 

MI is defined as a measure of statistical dependence characterised by two main 

properties. The first property is the capability to measure any type of relationship, 

including nonlinear relationships, between random variables (Cover & Thomas, 

2012). The second is that MI remains invariant despite invertible and differentiable 
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feature space transformations, such as rotations, translations or any other 

transformation that preserves the order of the feature vectors‘ original elements. 

The statistical dependence between two variables can be detected by using 

information theoretic techniques, which are thus intuitively applied in the design of 

fuzzy partitions. The replacement of a continuous variable with a linguistic variable 

results in information loss. In this context, the best discretisation will be one that 

maximises the MI between input and output. 

MI is commonly employed to measure the relevance between features and decisions. 

However, the relevance between continuous or fuzzy features is difficult to calculate 

using MI. To calculate the relevance between numerical or fuzzy features and 

decisions, fuzzy information entropy and fuzzy MI are adopted. 

MI can be alternatively defined in terms of entropies and conditional entropies as 

follows:  

Let X be a random variable having a finite set of MX possible states Xi with i ε 

{1,…,MX} and with a probability distribution PX , and Shannon entropy of X. H(X) or 

H(PX) is expressed as follows:  

 ( )   ∑ 𝑝( 𝑖)    (𝑝( 𝑖))
  

   
                                                        (2.7) 

where p(Xi) refers to the probability of the state Xi, whereas the Shannon entropy 

measures how evenly the states of X are distributed. 

The conditional entropy H(X|Y) stands for the uncertainty of X given Y and is 

expressed as follows:  
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  (   𝑗)   ∑ 𝑝( 𝑖  𝑗)    (𝑝( 𝑖  𝑗))
  

   
                                     (2.8) 

  (   )   ∑ 𝑝( 𝑗) (   𝑗)
  

   
                                                    (2.9) 

Thus, the MI I(X;Y) can be given by:               

 I(X;Y)   ( )   (   )                                                                    (2.10) 

     or                       

  (   )   ( )   ( )   (   )                                                   (2.11) 

  (   )   ∑∑ 𝑝(   )    
 (   )

 ( ) ( )
                                                  (2.12) 

2.3 Air/Fuel Ratio 

The new trend is to develop control strategies in the engine that operate within highly 

accurate values. This situation will facilitate a decrease in fuel composition and 

emissions, thereby maintaining optimum engine performance.  

In electronic fuel injection engines, when the fuel enters the vehicle engine (internal 

combustion engine) it will be burned, so there is a need for air in the combustion 

chamber. This procedure happens in the fuel injection system such that mixes fuel 

with air in an internal combustion engine with a certain amount. There is a ratio must 

be adhered to between the air-fuel mixture called the perfect or stoichiometric ratio 

(Kamat, Javaherian, Diwanji, Smith, & Madhavan, 2006). 
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In this regard, such factors as engine speed, spark timing, fuel injection timing, engine 

torque, air intake and AFR must be controlled (Ebrahimi et al., 2012). Among these 

factors, the AFR has the most important influence on fuel effectiveness and emission 

reduction.   

To compose an ideal engine control system, it is necessary to achieve an accurate 

prediction of the AFR. The AFR must be controlled in both the transient and steady 

engine operation states. This can easily be achieved in steady-state operation because 

fuel dynamics and air-induction are eliminated at the steady state. By contrast, the 

value is hard to control in transient state when the engine is in the throttle position 

because engine speed and intake air pressure instantaneously change (Garcia, 2013). 

Accurate control of the AFR requires predetermination of the physical effects that can 

result in AFR transitions. Following the determination, such effects can be mitigated 

by constructing a control strategy (Ghaffari A. & others, 2008). 

The AFR ratio is plagued with various engine-related factors that may influence its 

value. Some of these factors include spark timing, throttle position (TPS), engine 

torque, fuel injection timing, air intake, engine speed (RPM), manifold air pressure 

(MAP) and manifold air temperature (MAT). 

The AFR can also be expressed with lambda (λ), which for a certain mixture may 

imply the ratio between the actual AFR and the stoichiometric AFR (Howlett, Zoysa, 

Walters, 2000). For a stoichiometry mixture, the value of λ is 1.0. Similarly, for rich 

mixtures, the value is less than 1.0 and for lean mixtures, it is greater than 1.0. The 

computation of λ involves dividing the AFR by the stoichiometric AFR for a specific 
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fuel (different fuels have different stoichiometric AFR), which can be expressed as 

follows: 

  
   

         
                                                                                           (2.13)      

14.7:1 is considered the perfect ratio (based on the amount of hydrogen and carbon 

present in a given quantity of fuel, as perfect ratios vary with different fuels). 

A rich mixture is obtained when the quantity of air is less than the perfect ratio, while 

a lean mixture is obtained when the quantity of air is more than the perfect ratio. 

A rich mixture contains fuel that is left over after combustion, which results in: 

- Increase in the car‘s power. 

- Diminution in the fuel economy. 

- Increment in CO and hydrocarbon emissions in the air. 

- Overheating of the catalytic converter, a device that reduces the toxic emissions 

from internal combustion engines. Overheating may sometimes result in melting 

of the catalyst, which may result in complete or partial blockage inside it. This 

could result in a considerable decline in the performance on highways or 

hindering the motion due to the back pressure created in the exhaust system. 

A lean mixture contains redundant oxygen that may result in the following: 

- Increase in the fuel efficiency; 

- Increment in the emissions of nitrogen oxide; 

- Engine damage; 

- Decrease in the performance. 
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The air–fuel mixture is regulated by the oxygen sensor (O2 sensor) by sending the 

feedback to an electronic control system (ECU) to control the air–fuel ratio. 

Three main parts are included in the electronic control system (Thomas & Sharma, 

2007; Fleming, 2008): 

(a) Sensors that can measure and control the main characteristics. These sensors allow 

converting physical characteristics into electric signals.  

b) The measured data is processed by an electronic control unit (ECU) that employs a 

microprocessor. Integrated computer programs backed by a database can be used to 

compute several major characteristics. This database contains crucial information for 

operating the engine. 

c) The output electric signals are translated into mechanical characteristics by 

actuators. 

 

 

  

 

 

 

 

 

Figure 2.16.  Engine Emission Control System 
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As presented in Figure 2.16, control strategies are employed by the ECU to gain high 

output power and optimum efficiency based on requirements, while simultaneously 

maintaining low emission levels. In a gasoline or spark-ignition engine, the engine 

must be operated by the ECU in a favourable region that allows functioning of a 

three-way catalytic converter. This helps in reducing the harmful content of the 

exhaust further.  

The ECU employs three-dimensional mappings (3-D maps) in the form of look-up 

tables to signify non-linear conduct of the engine in real time. A major disadvantage 

of this method is the need to achieve optimal engine operation in the required time for 

determining the values. This process is also referred as the ECU calibration (Lee, 

Howlett & Walters, 2004). Optimised functions and data tables stored in the ECU 

help in calibrating the engine. The calibration process aims at determining the best 

settings suitable for an engine as well as ensuring that the process can be executed as 

quickly as possible with the minimum cost. However, the process is iterative and time 

consuming as it involves multiple cycles of engine measurements. For both tuning 

and calibration, the process of building the table is difficult. Techniques that can 

reduce both the effort and time of the whole calibration process are the need of the 

hour. 

In the electronic control system, the O2 sensor forms a part of the many sensors. 

Figure 2.17 shows a zirconium ceramic bulb, which acts as a sensing element that is 

coated with a thin layer of platinum on both sides. The bulb‘s outer casing is exposed 

to hot exhaust gases while the inside portion is connected to the ambient air or passed 

through the sensor.  
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Figure 2.17. Oxygen sensor  

As presented in Figure 2.18, a voltage is produced by the O2 sensor on detecting a 

difference in the oxygen levels. Typically, the voltage range lies from 0.8 to 0.9 volts 

when the air–fuel is rich and the exhaust contains little oxygen. However, when the 

air–fuel mixture is lean and the exhaust contains large quantities of oxygen, the output 

voltage of the sensor drops to 0.1–0.3 volts. For a perfectly balanced and regulated 

air–fuel mixture, the output voltage of the sensor is around 0.45 volts (Cesario, 

Lavorgna & Pirozzi, 2005), as presented in Figure 2.19. 

 

          

       Figure 2.18. Oxygen sensor waveforms 
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    Figure 2.19. Oxygen sensor switching voltage 

As illustrated in Figure 2.20, the O2 sensor is a part of the emissions control system 

and is responsible for feeding the data in the form of a voltage to the ECU. As the O2 

sensor and the ECU work in a consentient manner, it is also known as a closed loop. 

The O2 sensor‘s goal is to help engine to run efficiently in the best possible manner 

by emitting minimum emissions (Howlett, Zoysa, & Walters, 2000). The sensor is 

mounted on the exhaust pipe to identify rich and lean mixture. The sensor operates in 

a mechanism where a chemical reaction produces a voltage to adjust the fuel quantity 

entering the engine. This, however, is based on the lean or rich characteristics of the 

mixture. 
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Figure 2.20. Fuel Injection System 

The engine needs an O2 sensor as its capacity to pull in oxygen, which is the relative 

leanness or richness of the fuel mixture, relies on a lot of factors, including engine 

coolant temperature, air temperature, throttle position, barometric pressure, engine 

load, airflow, etc. Also, another major reason would be the inability of the ECU to 

measure and compensate for every possible factor.  

Apart from this, the O2 sensor itself has its own problems. One such problem is the 

longer time taken to transport exhaust gases to the O2 sensor, which leads to delay in 

transporting the voltage to the ECU as well. Rapid fluctuation in the air–fuel ratio is 

caused by this extended time delay between the measurement of the O2 sensor and the 

controlling on the ECU‘s action. This also has an impact on the air–fuel ratio control 

loop‘s performance, on top of the time processing of the ECU, as shown in Figure 

2.21. 
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Figure 2.21. Time Delays 

Another issue would be the O2 sensor becoming less active because of the pollutants 

from oil ash as well as normal combustion. Some of the other problems that may arise 

are: 

1. The formation of deposits on the element sensing portion of the sensor, which 

leads to decrease in the ability of the sensor to function and response quickly 

to changes in the fuel or air mixture. Thus, gradually, the sensor‘s functions 

start to diminish and behave as a laggard. 

2. If the output voltage of the sensor is not high enough as was previously, the 

system may perceive that the air–fuel mixture is leaner than it is actually. This 

results in the computer giving the signal to send in more fuel to the engine, 

which can lead to a richer air–fuel mixture. Should the O2 sensors fail, the 

computer keeps guessing and may result in utilisation of more fuel than the 

required amount, which will affect the fuel economy. In such a condition, 

there is no data transfer to the ECU from the O2 sensor and it ends in guessing 

the air–fuel ratio, which is known as the open loop.  

 

O2 Sensor ECU 

transportation 

time delay 

processing 

time delay 

Command  

Or 

 Action 



 

 64 

The O2 sensor issue can be dealt with by developing a virtual sensor. The virtual 

sensor data can be utilised for monitoring performance and making smart decisions 

pertaining to engine control. The key benefit of utilising a virtual sensor is that it 

offers dependable estimated measurements that were not hitherto available. 

Furthermore, virtual sensors do not consume much space or payload in comparison to 

the hardware which would be required to offer equivalent measurements. Moreover, 

their maintenance is less arduous compared to that for hardware. The virtual sensors 

can be constructed using artificial intelligence techniques for developing intelligent 

engine control prototypes, capitalising on the used methods to overpower the sensor 

issues and aiding the ECU in its processing for executing control actions.  

2.3.1 Literature Review for AFR 

Numerous studies have used classical and modern methods to assess AFR control in 

both the steady and transient engine operation states. 

Richter, Oliveira, and da Silva (2010) studied the use artificial NNs to predict oxygen 

sensor values. They employed the multi-layer perceptron (MLP) neural network that 

used 42 factors as training data for the network. These factors include torque, air flow 

rate, engine speed, and oxygen sensor. The whole universe of data and their subsets 

were used to train over 2,300 topologies of MLP neural networks. Through this 

process, almost 350 out of 792 topologies achieved a mean relative error of less than 

1%. With subset training, over 600 topologies achieved a mean relative error of less 

than 0.5%. The same datasets were used to train all topologies, and the same data 

were used for all tests. 
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Ghaffari et al. (2008) presented a control method using adaptive fuzzy control for the 

AFR of a vehicle spark-ignition engine. A proportional integral-derivative (PID) 

tuning method that uses an adaptive fuzzy system designed to determine the 

correlation between controller gains and target output response was also discussed. 

The fuzzy-PID controller employed a Mamdani-type FIS. 

Cao et al. (2006) proposed a gas heating furnace intelligent control algorithm to 

achieve the optimum control of the A/F ratio. This algorithm was derived from the 

fuzzy NN. The project reveals that the control algorithm has high accuracy and 

reliability, rapid inference, satisfactory tracking, strong disturbance, feasibility, and 

usability, as well as suitability for project application compared with classical 

algorithms such as the PID. 

Liu and Zhou (2010) likewise proposed a fuzzy NN to control the AFR. This network 

employs the backpropagation learning algorithm and defines the target function as the 

sum of square errors between the stoichiometric and actual AFRs, which were 

simulated under transient conditions. Simulation results showed that when the throttle 

degree was considerably changed without the presence of a controller, the AFR errors 

were greater than 10.9%. Meanwhile, with the use of the fuzzy NN controller, the 

errors were controlled to a narrow range and had values greater than 1.8%. The 

system also has a shorter adjustment time.  

NNs are highly suitable for real-time systems because of their immediate response 

and rapid computational times attributable to their parallel architecture. However, 

despite these advantages, a number of disadvantages can be noted, particularly in 

terms of their dependence on data-intensive training algorithms and the difficulty in 
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integrating available discrete knowledge. Owing to this condition, local culmination 

easily occurs. An important disadvantage is the difficulty in explaining NN behaviour 

owing to the representation of distributed knowledge. The knowledge can only be 

represented by revealing the responses to a certain input. In addition, MLP networks 

can be considered as a type of black-box model that may be difficult to debug. 

Previous researchers failed to extract the rules from the NFS data. Such system 

exhibited advantages in dealing with real-world problems, particularly nonlinear 

problems. A drawback is its dependence on experts. 

2.4 Learning Algorithms for NFSs 

A fuzzy system designer specifies the distinguished points of an assumed underlying 

function by encoding such points as simple fuzzy rules. Except for these characteristic 

points, the function is unknown. The fuzzy sets employed to describe such points 

linguistically reveal the degree of indistinguishability of the points that are in close 

proximity to one another. Fuzzy rules can be conveniently derived from the data using 

different learning algorithms for the components of the function with unknown 

characteristic points but with available training data. 

A fuzzy system has a structure that is based on its rules and data space granularity, 

which refers to the number of fuzzy sets used to partition each variable. Fuzzy system 

parameters refer to the MFs‘ shapes and locations. FS also have the benefit of 

enabling the use of expert knowledge to create a RB. However, expert knowledge is 

only partially available or unavailable in most applications. In such cases, a RB that 

performs well on a given data set must be created from scratch. 
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2.4.1 Cluster-Oriented Fuzzy Rule Learning 

Cluster-oriented methods attempt to group training data into clusters that are used for 

rule creation. Soft (fuzzy) clustering is a clustering algorithm and a powerful 

unsupervised method for data analysis and model construction. FCM algorithm is one 

of the most widely used approached. Joe Dunn first developed FCM in 1973, and Jim 

Bezdek further improved it in 1981 (Bezdek, 1981; Dunn, 1973). This clustering 

method uses fuzzy partitioning to enable a data point to belong to all groups at 

different membership grades ranging from 0 to 1. The pseudocode of FCM is as in 

Figure 2.22. 

 

 

 

 

 

 

Figure 2.22. Pseudocode for FCM 

where m is any real number greater than 1, uij refers to the degree of membership of 

xi in the cluster j, xi is the ith of d-dimensional measured data, cj is the d-dimension 

centre of the cluster, and dij  is the objective function. 

Algorithm 2.1: Fuzzy c-means 

1. Initialise U={ug} matrix, U
(0) 

2. At k-step: calculate the centres of vectors C
(k)

 = [cj] 

with U
(k)  

3. Update U
(k) 

, U
(k+1) 

4.
 

                 dij =
    ∑ (𝑥𝑖  𝑐𝑗)𝑛

𝑖  
    

 …….. (2.4) 

           uij = 
 

  
𝑑𝑖𝑗

𝑑𝑘𝑗
 

𝑐

𝑘=1

 /(𝑚 1)    ……….(2.5) 

5. If || U
(k + 1)

 – U(k) || < ε then STOP; otherwise return 

to stop 2.
 

end-algorithm
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This algorithm assigns membership to each data point that corresponds to each cluster 

centre according to the distance between the cluster centre and the data point. When 

the data is nearer the cluster centre, its membership degree is higher towards this 

particular cluster centre. Obviously, the summation of membership of each data point 

should be equal to one. Membership and cluster centres must be updated according to 

the formula following each iteration. 

The subtractive clustering algorithm is another fuzzy cluster algorithm that identifies 

cluster centres through subtractive clustering (Chiu, 1994). 

FCM can not identify the number of clusters or fuzzy sets for each data point. 

Subtractive clustering helps to identify the number of clusters. 

2.4.2 Structure-Oriented Fuzzy Rule Learning 

Structure-oriented approaches can be considered as special cases of hyperbox 

approaches that do not search for clusters in the data space but rather choose 

hyperboxes from a grid structure. The data space is structured by overlapping 

hyperboxes by providing (initial) fuzzy sets for each variable. This method of learning 

fuzzy rules was suggested by Wang and Mendel (L.-X. Wang & Mendel, 1992). 

Multi-dimensional fuzzy sets with hyperbox as support are overlapped to partition the 

feature space. Rules are created by selecting those hyperboxes that contain data.  

In the process of partitioning the universe of discourse towards becoming grid-like 

sections, the primary disadvantage is related to the number of fuzzy rules. Juang, Lin, 
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and Lin (2000) used GA and noted that all chromosome length grows exponentially as 

the fuzzy variables‘ dimension increases.  

In 1996, (Nozaki, Ishibuchi, & Tanaka) came up with a proposal of using a simple 

grid-based fuzzy system of classification. This approach makes automatic adjustment 

to the fuzzy rules‘ grades of certainty; however, the dimensionality cruise cannot be 

ignored. 

Riza, Bergmeir, Herrera, and Benítez Sánchez (2015) used a grid-type fuzzy partition 

for determining the antecedents parts of the fuzzy rules.  

2.4.3 Evolutionary Fuzzy Rule Learning 

A number of studies propose the use of automatic methods for fuzzy rule learning 

with different algorithms, such as GA, along with different classifiers. GAs are 

mainly used in discovering high-level prediction rules to perform a global search and 

better address attribute interaction than greedy rule induction algorithms frequently 

used for data mining. This section provides a brief overview on a few representative 

works that contributed to the application of GA or other algorithms to data mining and 

machine learning fuzzy classification rule creation.  

Feature selection and rule extraction approaches are required by a rule-based fuzzy 

generation system. Feature selection is developed by some models as a pre-processing 

approach, whereas other models apply both approaches simultaneously. 
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2.4.3.1 Feature Selection 

The problem of feature selection can easily be positioned as an optimisation problem 

where the objective is to choose a subset of features based on some optimised feature-

subset assessment criterion. Consequently, genetic and other evolutionary algorithms 

have been extensively utilised to solve the problem of feature selection. The 

evolutionary algorithms for feature selection methods usually follow a wrapper 

approach wherein a subset of features is encrypted in a chromosome and a feature 

assessment criterion is employed as the fitness function. The feature subsets are 

analysed based on the efficiency with which the selected features classify (for the 

supervised case) or cluster (for the unsupervised case) the dataset. However, 

assessment of chosen features based on a single criterion is not equally applicable for 

all datasets. Thus, the requirement of simultaneously optimising multiple such criteria 

came into being. The robustness of the feature selection techniques is also enhanced 

with the use of multi-objective feature selection. 

Included in the fuzzy researchers‘ concern is the NNs approach, with MLP being its 

most popular method. Features are frequently chosen through the evaluation of the 

link‘s weights between the features and the hidden layer. If the weight‘s absolute 

values for a number of features are near zero, it can then be taken away from the 

feature set. Mitra and Hayashi (2000) provides an example for this method. A good 

number of these methods involve certain kinds of regularisation. Oftentimes, a three-

layer NN is employed for feature selection: when a penalty term is added to the error 

function, relevant connections are made distinguishable from redundant ones with 

small weights.  
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Since proposals have been made in a number of researches, particularly by Ichihashi, 

Shirai, Nagasaka, and Miyoshi (1996), Rudas and Kaynak (1998), and H.-M. Lee, 

Chen, Chen, and Jou (2001), the concept of utilising entropy measures in guiding rule 

extraction and feature selection is not really new. In 2001, Lee et al. attempted to 

simplify fuzzy rules using an explicit feature elimination step. They employed a 

measure of fuzzy entropy along with the backward elimination method in order to 

select useful features. Stopping the feature elimination process is dependent on the 

classifier error rate. Because this is an incremental process, possible nonlinear 

interaction, which may be present between features, may not be accounted for.  

Here, the process begins with a fuzzy rule-based system. The authors then introduce a 

measure of information within a fuzzy model, using it towards the quantification of 

the available information in the fuzzy model. This is done both before and after a 

specific input feature is utilised for classification. The information gain related to this 

input variable is signified by the difference between these two information measures. 

Along the associated input feature, this is considered as a discriminability measure 

between output classes. Silipo & Berthold‘s approach is towards the simplification of 

a fuzzy rule-based system; this is only applicable after the identification of a fuzzy 

system. 

MI for fuzzy random variables was defined in a study by Sánchez, Suárez, Villar, and 

Couso (2008). Here, the entropy is employed in estimating the MI. Conventional 

feature selection approaches that use MI focus on the dependence between variables, 

which is computed before they are fuzzified. These authors maintain, however, that 

the shape of the MFs defined on them may influence the dependence. Thus, they 
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provided a definition to MI for fuzzy random variables, which they utilised for fuzzy 

rules feature selection.  

For Battiti (1994), the feature reduction problem is defined as the process of choosing, 

from an initial set of n features, the most relevant ones. He proposed a greedy 

selection method as a solution. The problem can be solved, ideally, by maximising 

I(C;S), which is the joint MI between the class variable C and S  which is the subset 

of selected features. Computing Shannon‘s MI between high-dimensional vectors, 

however, has been proven to be impractical since the required number of samples, as 

well as the central processing unit (CPU) time is prohibitive. In order to prevail over 

these limitations, Battiti adopted a heuristic criterion to approximate the ideal 

solution. In the computation, he only used I(C;fi) and I(fi;fj) where fi and fj are 

individual features, instead of calculating the joint MI between the selected feature set 

and the class variable. His mutual information feature selector (MIFS) chooses the 

feature which maximises the information about the class, correcting this through the 

subtraction of a quantity that is proportional to the average MI with the features that 

were previously selected. 

A unifying framework for methods of information-theoretic feature selection was 

proposed by Brown, Pocock, Zhao, and Luján (2012). Posing the problem of feature 

selection as a conditional likelihood of the class labels, the authors provided several 

features. With the filter assumption, conditional likelihood is considered as an 

equivalent to conditional MI (CMI). Formulating the feature selection task as a 

conditional likelihood problem, it is referred to as a feature scoring criterion: ‗MIM‘, 

meaning Mutual Information Maximisation. The model likelihood is utilised as the 
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loss function, which therefore, seeks to maximise the likelihood. The likelihood is 

iteratively maximised through the selection (or removal) of features greedily. The 

feature that maximises or minimises the conditional MI between that feature and the 

class label can then be chosen. This is conditioned upon the chosen feature set along 

with the prior term for the current feature set. In the iterative updates, it must be noted 

that the prior term is a ratio; thus, if an uninformative prior is employed, the prior 

term gets cancelled. This brings about a maximum likelihood update rule based 

entirely on the conditional MI. Examples of each type of feature selection methods are 

the Relief and the SSGA Integer k-nearest neighbour classifier (KNN) method.   

The Relief method is a filter method which employs the KNN algorithm and the 

information gain to choose the feature subset, according to Kira and Rendell (1992). 

Notwithstanding the target concept to be learned, this method requires linear time in 

terms of the number of given features and training instances. It is not necessary that 

the algorithm should find the smallest subset of features since the size has the 

tendency to be small due to the fact that only statistically relevant features are chosen. 

The Relief method only applies to the problem of two-class classification; it does not 

deal with problems on continuous value prediction. Insufficient training instances 

pose a problem for this method. 

The SSGA Integer knn method, according to Casillas, Cordón, Del Jesus, and Herrera 

(2001), is a wrapper method that employs a filter feature selection method, followed 

by a wrapper feature selection method in order to obtain a fuzzy rule based classifier. 

This wrapper utilises a genetic algorithm in order to generate a feature subset that is 

then evaluated by means of a knn classifier. A wrapper can likewise be utilised as a 
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filter, in any case, as demonstrated by Ravi and Zimmermann (2000). Their study 

provides a predefined number of features. An optimisation algorithm is employed in 

searching for the combination of features which gives the best classification error rate. 

A distance measure, which gives a certainty assessment with which an object is 

assigned to a class, sorts two subsets of features with the same classification error 

rate.  

C. K. Zhang and Hu (2005) put forward the proposal of a new scheme of feature 

selection for ANNs via genetic algorithm utilising MI. Here, MI between input and 

output is used in mutation in GA so as to guide the evolutionary search direction 

purposively based on certain criteria that can make the search process faster and get 

better performance. In its examination of the forecasting at the Australian Bureau of 

Meteorology, the study noted that the simulation of three different feature selection 

methods demonstrates that the proposed method can lead to the reduction of the 

dimensionality of inputs, a speeding up of the network training and the achievement 

of a better performance. 

The feature selection can be classified to: the class-independent and the class-

dependent techniques. 

In class-independent feature selection, chosen features are common to all classes, 

while in class-dependent feature selection, different feature sets are chosen for 

different classes. In class-independent feature selection, there is an assumption that all 

features chosen equally discriminate each class from the others. This hides the 

following possibility: different groups of features might possess different capabilities 

in discriminating classes.  
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This thesis is based on the selection of a subset of features that can distinguish one 

class from another. This aspect of features that enables class discrimination forms the 

basis of class dependent feature selection techniques. 

Bailey (2001) defined class-dependent features as features whose differentiation 

ability varies considerably based on the classes that are required to be discriminated.  

A method for class-dependent features selection and construction of a novel RBF 

classifier was described by L. Wang and Fu (2006) based on class-dependent features. 

Diverse feature subsets are chosen as inputs for diverse groups of obscure units 

corresponding to diverse classes in RBFN. For all classes, the ideal feature masks are 

searched using GAs. When selecting class-dependent features only a single RBF 

network is needed for a multi-class problem, instead of multiple MLPs.  

Although there are different methods discussed in the study in relation to feature 

selection, it is important to note that feature selection results greatly vary depending 

on the classification algorithm that is adopted as the wrapper. In addition to this, the 

final selection of feature subset is significantly impacted by the type and number of 

objective functions. 

2.4.3.2 Rule Extraction 

In relation to fuzzy rule extraction, there are many articles available on dimensionality 

reduction or feature exclusion (that is the objective of feature selection). There are 

multiple manners to extract useful rules from a training dataset (X, Y). There are two 

key methods to fuzzy rule extraction. A static partition of the input space is used to 
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create fuzzy rules in one family of methods, while clustering is used in the other 

family of methods to arrive at useful rules.  

The partition-based approach is used by a number of papers (Alcala-Fdez, Alcala, & 

Herrera, 2011; Alcalá, Gacto, & Herrera, 2011; Gacto et al., 2010; Ishibuchi & 

Nojima, 2007; Ishibuchi & Yamamoto, 2004; Ishibuchi, Yamamoto, & Nakashima, 

2005; Mansoori, Zolghadri, & Katebi, 2008), where a search algorithm is generally 

utilised to derive the necessary rule set. In these methods, there is an exponential 

growth of the search space with respect to the dimensionality of the dataset and 

evolutionary algorithms are usually employed for selection of rules. A number of 

these methods intrinsically accomplish feature selection at the rule level. To state it 

differently, a specific feature may not be used by a rule, and hence a feature that is not 

used by any rules, can be dropped. The application of fixed fuzzy partition has made 

it simple to interpret the rules. 

On the other hand, clustering-based methods cluster the dataset and then render each 

cluster into a fuzzy rule (Lughofer & Kindermann, 2010; Pal & Saha, 2008). 

From the observational data, Setnes and Roubos (2000) assessed the GA-fuzzy 

modeling. In this model, fuzzy clustering is employed to derive a primary condensed 

rule-based model. This model is then augmented by a real-coded GA, considering the 

constraints that support the semantic properties of the rules. A great number of work 

based on fuzzy clustering algorithms has been attempted to initialise the fuzzy model, 

where the objective was to decrease the intricacy of the fuzzy model and attain a 

compact and interpretable fuzzy classification technique. 
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Pomares, Rojas, Ortega, Gonzalez, and Prieto (2000) a plan for the self-generation of 

a fuzzy RB was proposed. Initially, in this scheme, the authors begin by using a 

simple rule-based system. Afterwards, through an analysis of the approximation error, 

the system‘s structure automatically undergoes modification. Along with the rule 

consequents, the location and the number of MFs on each input variable are made 

optimal by this method. However, the problem of feature selection is not addressed by 

this approach.  

Sarkar, Sana, and Chaudhuri (2012) proposed a GA-based rule extraction system to 

enhance prediction accuracy for any classification problem regardless of domain, size, 

dimensionality, and class distribution. An accuracy-based learning system called 

decision tree and genetic algorithm (DTGA), which improves prediction accuracy, is 

introduced. In particular, the proposed system has two rule-inducing phases. In the 

first phase, a base classifier called C4.5 (a decision tree-based rule inducer) is 

employed to generate rules from the training data set, whereas the GA in the next 

phase refines these rules to provide more accurate and high-performance prediction 

rules. 

Detlef Nauck and Kruse (1997) put forward a learning method for fuzzy classification 

rules based on NEFCLASS or Neuro-Fuzzy Classification. NEFCLASS is employed 

towards deriving fuzzy classification rules and learning the MFs‘ shape based on a 

data set that can be segregated in different crisp classes. Gliwa and Byrski (2011), 

however, note that the NEFCLASS model‘s orientation is towards interpretability, not 

accuracy. As NFSs for building rule-based FS is adversely affected by conflicting 

rules, these have to be eliminated through a little post-processing after the initial 
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system‘s extraction. Another primary disadvantage with such a system applies even in 

the case of moderately high-dimensional data: the very rapid growth of the network 

size renders such a Neuro fuzzy system less useful when applied to many practical 

problems. Thus, Neuro-fuzzy models, as it relates to fuzzy rules, are only effective for 

tuning or choosing rules, not at extracting or constructing them. 

It was previously stated that creating a rule-based fuzzy system is a classification 

problem that needs approaches to select the consequent class in the fuzzy rule which 

best fits the rule‘s antecedent. Probabilistic classification, a common subclass of 

algorithm classification, utilises statistical inference in finding the best class for a 

given instance. Other algorithms simply output a ―best‖ class, while probabilistic 

algorithms generate all the probabilities of an instance to be a member of each of the 

possible classes. The one with the highest probability is then chosen as the best class. 

While such an algorithm possesses an edge over non-probabilistic classifiers, the 

latter can be more effectual when it is incorporated into larger machine learning tasks, 

partially or entirely avoiding the problem of error propagation. 

V. Gopalakrishnan, Lustgarten, Visweswaran, and Cooper (2010)  used the Bayesian 

network (BN) approach to rule learning—evaluating the rules using Bayesian scores 

and translating them into rules. A rule model is defined as a set of rules that, taken 

together, make up a classifier which is applicable to new data in order to predict the 

target. This model‘s primary contribution lies in its ability to quantify uncertainty 

about the validity of a rule model with the use of a Bayesian score for model 

selection. The data enables this algorithm to learn BN models, which then gets 

translated into a set of rules complete with associated statistics. Since these rules are 
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mutually exclusive and exhaustive when it comes to the values of the predictor 

variables, therefore, inference that uses these sets of rules becomes trivial. The rule 

that matches the values for the predictor variables, in the case of a new test case, is 

employed in inferring the target variable‘s value. The research of V. Gopalakrishnan, 

et al have demonstrated that, in generating rule models, the use of a BN approach not 

only produces a more parsimonious model when it comes to the number of variables; 

it also produces outputs that are, statistically, significantly superior to the usual rule 

learning methods. Probabilistic rules which are optimised on the rule model level are 

also created in lieu of the current evaluation per rule method. As a generating model, 

BN presents a coherent method that incorporates different types of prior information 

and updates the rule model. 

Tang and Sun (2004) provided a gradient-based method for the identification of a new 

fuzzy classification system from observation data. In such a fuzzy classifier, which 

can be described as a mixture model of classical fuzzy classifiers, each fuzzy rule 

stands for a probability distribution of class labels (i.e. a special belief structure). This 

fuzzy classifier is made up of rules with each one representing more than one class 

consisting of different conditional probabilities.  

Lv, Zhu, and Tang (2007) likewise presented a similar gradient-based method with 

practically the same objectives as well as rule characteristics, constitution, and 

representation. Identifying the proposed fuzzy classifier involve working out a 

gradient-based method through the optimisation of an objective function that is based 

on the posterior probabilities of classes with certain predictive features. An alternating 

optimisation process is undertaken in the proposed identification method. The training 



 

 80 

data and parameters of the fuzzy sets in the antecedents are used to calculate the class 

conditional probabilities that are associated with each fuzzy rule. Then, from the class 

conditional probabilities and the training data, a computation of the gradient of the 

fuzzy set‘s parameters in the fuzzy model is made. 

A model using Bayesian reliability estimation under fuzzy environments was 

proposed by Wu (2004). Invoking Resolution Identity in the fuzzy set theory, it 

created the fuzzy Bayes point estimator of reliability. It is hard to get a fitting prior 

probability in many practical situations. Because of this, it was assumed by most 

researches that prior probability requires a specific kind of distribution, using 

complicated testing and advanced statistical techniques in estimating the selected 

distribution‘s parameters. Wu‘s paper considered non-repairable multi-state element 

with this assumption: the failure rates are fuzzy triangular fuzzy function. Towards 

developing posterior fuzzy reliability with fuzzy probabilities, the traditional Bayesian 

formula is used in Bayesian inference with fuzzy probabilities. Lastly, the evaluation 

of the posterior fuzzy reliability is done with the use of Genetic Algorithm (GA), an 

optimisation technique. The illustrative example section primarily shows the results 

from experiments where the likelihood probability is set as constant; inappropriate 

posterior probability may result from this.  

A presentation involving a Fuzzy Bayesian Classifier (FBC) over LR-type fuzzy 

numbers with an unknown conditional probability density function was presented by 

Sadoghi Yazdi and Vahedian Mazloum (2009). A new version of the KNN method 

was employed in estimating the likelihood density function.  
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Saxena and Pratap (2012) presented a Genetic Algorithm Based Bayesian 

Classification Algorithm. Depending on the conditional probability counted from the 

frequency of the events.  The proposed GA based classifier on the basis of learning 

data has predicted the grade of given test data. The algorithm attempted to minimize 

the response time and improve the classification accuracy.  

In the context of fuzzy rule extraction, feature selection is sometimes done in a 

separate phase. On the other hand, some methods factor in the learning machines, but 

usually removing, stepwise, one feature (or a set of features) at a time. There is a 

possibility, therefore, that the chosen features might not be the best set for the current 

problem since, one, a set of features can have interactions between themselves, and 

two, a feature can have an interaction with the tool which utilised to address the 

problem. Moreover, methods of feature selection frequently ignore the subtle 

nonlinear interaction which can occur between the features and the learning system. 

On top of the additional time for learning, the search for relevant features‘ subset 

introduces another layer of complexity in the task of modeling.   

2.4.3.3 Feature Selection and Rule Extraction Together 

Towards addressing this problem, an integrated method is utilised in finding the 

features simultaneously during its search for the rules in the data for FS. The 

nonlinear interactions possibly present between the features and the fuzzy rule-based 

systems can be considered in this integrated learning mechanism. Therefore, a small 

set of useful features can be picked up by this mechanism; it could also lead towards 

generating useful rules for the current problem. Since it is not iterative in nature, 

unlike the forward or backward selection approaches, this integrated approach is 
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computationally very attractive. Described below are some researches that applied the 

rule extraction for FS and the feature selection simultaneously.  

Gonzalez and Perez (2001) used a MI criterion as well as a GA for feature selection 

and fuzzy rule induction. SLAVE, their learning algorithm, chooses features for each 

particular rule. Consequently, each rule may obtain a different subset of variables in 

identifying the class. A genetic learning algorithm, SLAVE utilises the iterative 

approach to generate an FRB. Chromosomes normally represent individual rules in 

this iterative approach; a single rule is chosen at each GA iteration. The model‘s RB is 

formed by the set of selected rules. With SLAVE‘s embedded feature selection 

process, the pre-selection of attributes minimises the problems brought on by large 

search spaces (i.e. excessive execution time), while it improves the generated models‘ 

interpretability. Reducing the original problem of getting an entire set of rules into a 

simpler problem consisting of obtaining only one rule at a time: this is the primary 

concept behind SLAVE. A single rule is represented by each chromosome of the 

population in this approach. However, in each iteration, only the best individual is 

considered, while the remaining chromosomes are being discarded. The feature 

selection process that is adopted by SLAVE explores the set of possible variables 

dynamically so as to find the rule that is most useful, as well as to locate the most 

relevant variables for this rule. Therefore, the implementation of this feature selection 

process is for each single rule and not for the complete set of rules. The process‘ basic 

schema consists of the modification of the rule representation in the search 

mechanism of SLAVE. This is to allow the learning algorithm to look for, not only 

for the best rule, but also for the best set of variables for every rule. The definition of 
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the best rule here is the one which has the highest degrees of consistency and 

completeness simultaneously, while combining both factors with the use of a product 

operator. SLAVE likewise generates rules with different weights.  

Jin (2000) initially identified an initial RB with the use of a training data set that is 

consequently simplified based on a fuzzy similarity measure. The fuzzy system‘s 

structure and parameters are then optimised using GAs and gradient-based methods. 

This process results in a more interpretable fuzzy system, in which different rules 

involve different numbers of input variables. This approach may fail to eliminate any 

input variable unless such variable is not involved in any rule. 

Another proposal involves an approach to extract rough set rule from a decision 

system with the use of conditional information entropy presented by Zhao and Sun 

(2012). This paper presents a new perspective on conditional information entropy. It 

employs a heuristic approach for rule extraction that is based on conditional 

information entropy in mining classification rules. With a feature selection approach, 

removing redundant features without any classification information loss is first 

undertaken to reduce a decision system. After this, with the use of the rule extraction 

approach, classification rules are mined from the reduced decision system. Zhao and 

Sun‘s paper initially proposed an efficient feature significance measure of information 

entropy towards improving the classification accuracy of rule extraction algorithm 

from the decision system. Here the feature selection and rule extraction are at two 

levels.  
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An integrated mechanism to simultaneously extract fuzzy rules and to select useful 

features was presented by Chen, Pal, and Chung (2012). The method employs a 

single-pass gradient-based search technique as well as a clustering approach.  

The research work of Rawat and Burse ( 2013) involves the design of a framework 

incorporating genetic algorithm with Neuro-fuzzy for the purpose of feature selection 

and classification on the training dataset. This research‘s objective is towards the 

simultaneous optimisation of the parameters and feature subset without degrading the 

accuracy of the ANFIS classification. The feature selection serves as a pre-processing 

for the ANFIS classifier, which was evaluated in terms of the training performance 

and classification accuracy. Accuracy is also the reason why the wrapper approach in 

featuring subset selection is utilised in this paper. The evaluation of the overall fitness 

function is done by getting the weighted sum of the match score of all of the correct 

recognitions and the incorrect recognitions, and then subtracting the latter from the 

former. The experts provided the fuzzy rules.  

Chakraborty and Pal (2004) made a proposal about a new scheme to design fuzzy rule 

based classifier in a Neuro-fuzzy framework. The system is considered novel because 

the network can choose good features alongside relevant rules in an integrated 

manner. The initial step consists of the network learning about the relevant features 

and the classification rules. Later, the network is pruned in order to obtain the best 

architecture representing an optimal set of rules. This is done by removing redundant 

nodes, as well as incompatible and not-used rules. The final step involves tuning the 

final rules‘ MFs for improved performance. This therefore results in a smaller 
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architecture of the final network; this will now have a lower running time compared to 

the initial network. 

Another integrated system was proposed in 2008, this time by N. R. Pal & Saha. This 

system, which can choose the useful features as it designs the RB for approximating 

function in the TS framework, uses a feature modulator that is a monotonic 

differentiable function with the range [0,1]. Eliminating poor/bad features which can 

be unpredictable and problematic during system identification is the main objective in 

proposing this system. Towards its realisation, membership values are modulated: 

setting it to a high negative value if the feature is bad; to a high positive value, if the 

feature is considered important for the discrimination task.  

In 2003, (Y. Wang, Chang, Wang, & Li) presented a method for input selection that is 

based on fuzzy clustering, as well as for rule generation that is based on genetic 

algorithm (GA). This was set in an ANFIS that is used to model protein secondary 

structure prediction. The model utilised a two-phase process. During the first phase, 

choosing the number and position of the fuzzy sets of the initial input variables is 

done by using a fuzzy clustering algorithm, During the second phase, an iterative GA 

updating algorithm is utilised to achieve the ANFIS rule-base‘s more accurate 

structural identification and optimal parameters.   

2.4.3.4 Multi-objective evolutionary algorithm for Fuzzy Rule Learning 

The aim of the previous mentioned works is to decrease in the number of fuzzy rules 

and/or the number of features but this mostly creates a negative effect on the 

exactness of the RB, affecting the interpretability of the system. A typical rule 
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creation process where two objectives are contradictory in nature, involves a multi-

objective optimisation approach where there is maximisation of accuracy and 

minimisation of complexity with reduction in the number of rules and/or reduction in 

the total length of the RB. Classification accuracy is based on how good the rules are. 

Thus, many attempts have been made to produce rules that best fit the data. For 

instance, Abadeh, Habibi, and Lucas (2007) count the number of patterns that fall 

within the coverage area of the rules and use this measure as a fitness function. In 

(2002), (Carvalho & Freitas) introduced a hybrid system to identify and address rules 

that cover a small number of training examples by using a decision-tree/algorithm 

approach. It was highlighted by the authors that if the extraction algorithm rule 

negates the sets of small number of training examples, the classification accuracy is 

significantly degraded.  

According to (Gliwa & Byrski) in 2011, decrease in the number of features sometimes 

improves the accurateness of classification, since a vast number of features can 

override the learning data and escape the simplification. Also Antonelli, Ducange, and 

Marcelloni (2012) outlined accuracy and the total number of attributes (conditions) as 

the two objectives.  

There are numerous approaches to sort out the issue of accuracy-

complexity/interpretability in the evolutionary algorithm domain.  

Ishibuchi et al. (2001)  proposed a plan for coherent rule creation through a three-

objective optimization approach. In this approach, it was attempted to increase the 

classifier performance, and decrease the number of fuzzy rules and number of 

antecedent clauses in the antecedent of the fuzzy rules. A modified multi-objective 
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genetic algorithm (MOGA) and a hybrid fuzzy genetic-based machine learning 

(GBML) was used to create non-dominated rule sets. 

The interpretability-accuracy trade-off for fuzzy rule-based classifiers was explored 

by Ishibuchi and Nojima (2007) using three-objective optimisation problems based on 

their GBML algorithm. Three different formulations for each multi-objective and 

single-objective optimisation problem were adopted based on several different 

considerations. A clear trade-off structure was reportedly visualised for each 

considered dataset. On the other hand, a clear trade-off structure cannot always be 

obtained for test patterns due to the possibility of overfitting within the duration of the 

training. 

The generalisation ability of such systems has been the focus of a number of 

researchers. Mansoori et al. (2008) have put forward the proposal of extracting a 

compact set of good fuzzy rules from numerical data through a steady-state genetic 

algorithm, which begins with a particular fuzzy partition of the feature space. 

Enabling the search to go faster, this approach uses fitness function measure, which 

tends to discard rules with longer antecedent parts. Characteristically more specific 

than shorter rules, these ones have the tendency of over fitting the classifier. This is 

done by locating lonely instances that fall into covering area of generated rules. 

For supervised cases, it is presumed that there exists a training set of objects with 

known class labels. Hence, in these cases, some classification algorithms are generally 

employed to determine the effectiveness of the selected feature subset. The efficiency 

of the feature subset is ascertained based on how well it can classify the training 

objects with a certain classifier. The functioning of the feature subset is assessed 
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through some classification implementation metrics. One of the founding studies in 

this regard is Emmanouilidis, Hunter, and MacIntyre (2000), which analysed how two 

objective functions correspond to the rate of misclassification and the number of 

features. Both the objective functions make use of a minimum set of features with the 

intent to reduce the rate of misclassification as much as possible.  

For interestings rules, little explored in this field for its‘ difficulity. But they are 

adopted in this thesis for its importance especially in real world applications. Some of 

the work related to this subject: 

Noda, Freitas, and Lopes (1999) promoted a GA approach intended to identify 

interesting rules in line with the situation that most data mining jobs focus on 

predictive comprehensibility and accuracy. The fitness function is made of two parts. 

The first part measures the level of interestingness of the rule, whereas the other part 

measures predictive accuracy. The calculation of the degree of interestingness is 

based on the following indications: the bigger the relative frequency (in the training 

set) of the amount being projected by the consequent, the less interesting it becomes. 

Therefore, when the value of the goal attribute is less common, the rule prediction 

becomes more interesting.  

An other work related to our work was proposed by Noda, Freitas, and Yamakami 

(2003). A GA which searches for rules that are interesting and accurate at the same 

time, depending on a certain rule-interestingness measure. The work is applied by 

following an objective approach for discovering interesting rules. 
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Dehuri et al. (2008) employed a Michigan approach with the objective functions 

being predictive accuracy, comprehensibility, and interestingness. The function of the 

number of attributes in that rule that has to be minimised is called comprehensibility, 

whereas the information gained to quantify how interesting the rule is called 

interestingness. Predictive accuracy is calculated with the use of the objects covered 

by such rule.  

Most of other work, Ishibuchi et al. (2001) apply a subjective approach depending on 

the user or expert to evaluate the interesting rules rather thn discovering them from 

the experimental data. In real world applications such as AFR prediction, is very 

difficult for the expert to discover interesting rules. 

Most of the work in the field of multi-objective evaluation problem will be managed 

by an aggregate method calle the weighed sum. 

In Dehuri et al. (2008), Gacto et al. (2010), Ishibuchi et al. (2001), Ishibuchi and 

Nojima (2007), and Ishibuchi and Yamamoto (2004) the weighted sum was used to 

solve the multi-objective evaluation. But there is one inevitable problem of this 

approach and that is the generation of a set of weights which correctly measures the 

objectives when nothing is known about the problem, which might be difficult if the 

number of objectives is high (Mandal & Pal, 2011; Xu & Zhou, 2011). These weights 

are generally identified using a trial and error method. 

In this thesis a new Composition method will be used to solve this problem. 
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2.5 Summary 

This chapter provides a presentation of the literature review. The discussion consists 

of basic concepts of soft computing methods, rule extraction approaches, feature 

selection, as well as past works about the learning of NFSs including several 

approaches. As a conclusion for this chapter, the following points can be detected: 

 No machine learning model in previous work for AFR. 

 For reducing the time of learning and complexity of modeling, it is important 

for the feature selection and rule extraction to be in the same level. Inorder to 

address the nonlinear interactions between the features. 

 Addressing both the probabilistic (randomness) and possibilistic (imprecise) 

uncertainty when dealing with real world systems, they complete each other. 

 Tradeoff of accuracy and interpretability is very important. Adding the 

interestingness is benefit and so important in real world applications to 

discover hidden rules and information. 
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CHAPTER THREE 

RESEARCH FRAMEWORK AND METHODOLOGY 

3.1 Introduction 

This chapter presents the framework and methodology of this research. It starts with 

Section 3.2 that depicts the research framework and the methods used to achieve the 

objectives of the research. Based on the research objectives, the proposed methods are 

presented in Section 3.3, which briefly explains the roles of each method and the 

experimental design and the selected benchmarks for evaluating the whole approach. 

Finally, this chapter is summarized in Section 3.4. 

3.2 The Research Framework 

The high-level focus of this research is to elaborate on the methodology for data set 

classification to be later applied to ANFIS. Figure 3.1 presents the various research 

phases step by step, including data collection, construction of the rule classification 

algorithm, and evaluation of the constructed model with the derived approach. 
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Figure 3.1. High-level Research Framework 

The first step is applying data gathering. The basis of the data collection for the 

research is the data fusion technology – a reliable method for precise problem 

evaluation and in-depth problem analysis for the purpose of further threat 

identification, based on validating knowledge from different sensors (Durrant-Whyte 

& Henderson, 2008; Ma, 2001; Mitchell, 2007). The technology is relatively 

innovative and focuses on improved data collection efficiency due to the application 

of data and information derived by multiple instead of single sensors, which 

intensifies the inference and results in more accurate outcomes. This improve 
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efficiency is to a large extent due to the fact that when a singular sensor is concerned, 

its precision may be affected by external factors like thermal and system noise, which 

in turn may cause functionality deterioration. 

The present sensor technology specifications obstruct the automation systems‘ 

synergy with their environment. This is one of the reasons a single sensor cannot 

provide the accurate results needed for any automation function due to its limited 

dependability and efficiency, which is why the sensor combination approach is 

necessary to counterbalance the negative acting forces and to increase data validation 

accuracy. In this way, should a singular sensor be affected in a detrimental way by an 

external factor, the rest of the sensor can compensate for the disintegration of 

knowledge. In the case of deriving information from multiple source types, the end 

result becomes even richer in meaning and precision. Sensor combination also 

presents a solution for the occasional inefficient use of information, as the sensor 

should in general convey a fast, brief decision. The more information is available on a 

topic, the more time it will take the system to analyse it and present a viable solution 

to a problem, while in the case of multiple sensors, even though the data load is 

higher, the intelligence is more systemised and follows easier interpretation. Multiple 

sensors provide measurements from various environmental aspects which enhances 

the overall structure of the mechanism. The proper application of sensor combination 

can diminish the disadvantages of singular sensors and grow into one big reliable 

source which can be trusted to act accurately and in a timely manner.  

The second step is the formation of the rule extraction and feature selection algorithm. 

A hybrid algorithm was formulated in the current research, aiming at creating a 
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forecast about the AFR ratio using directly the provided data. The GA-ANFIS 

algorithm (Rawat & Burse, 2013; Y. Wang et al., 2003), which is in essence the 

already mentioned hybrid algorithm, is constructed in two phases: 1) FIS extraction 

from the data with no expert intervention, and 2) ANFIS modelling. 

The third step is the model evaluation. The layered tenfold cross-validation method is 

applied in the current research for the purpose of classifier performance assessment as 

a step to achieve the last objective of this study.  

The ultimate goal of diversity strategies in this research is to improve algorithm 

performance. Figure 3.2 extends the aforementioned steps in detail and gives a 

conceptual view about the proposed approach.  
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 Figure 3.2. Low-level Research Framework 
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3.3 Research Methods 

This section presents the proposed methods and draws the roadmap for understanding 

the proposed approach. The data gathering method is presented in Subsection 3.3.1. 

The formulation of algorithm and the model evaluation methods are highlighted in 

Subsection 3.3.2 and Subsection 3.3.3 respectively. 

3.3.1 Data Gathering 

For the purposes of this research, a test engine was used to obtain a huge engine 

information load. Out of the multiple factors singled out for the collection, 

measurement, and analysis of air fuel ratio data, six were selected as the ones having 

the greatest impact on the end result –TPS, Pulse Width-Injection Opening Time 

(PW), MAP, Coolant Engine Temperature (CLT), MAT), and RPM. The data 

gathering concerns the first objective in this research. More information about the 

data will be discussed in chapter four. 

3.3.2 Formation of the Algorithm 

The way this research has constructed the algorithm is presented in Figure 3.2.  The 

main objective is creating a rule-based FIS, distinguished by functional simplicity and 

solid level of intelligibility from all points of attribute and rule numbers, as well as by 

exceptional overall system precision, involves the design of appropriate rules and a 

relevant factor choice in order to be able to account for any possible non-linear 

synergies between the fuzzy rule bases systems and the features. The current research 

has applied a method which can extract both the rules and the features from the 

provided data at the same time (Chen et al., 2012; Pal & Saha, 2008). The method 
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can, therefore, be relied on for the determining of an efficient feature set which can 

create appropriate rules for the given issue. 

Two possible titles can be assigned to the mentioned algorithm concering the feature 

selection and RB extraction. 

3.3.2.1 Optimisation based Genetic Algorithm 

A steady state genetic algorithm is selected for the determination of the best feature 

set since the feature choice itself is in essence a search issue involving a decision 

towards the most reliable input subset (Oh, Lee, & Moon, 2004; C. K. Zhang & Hu, 

2005). 

The stages of designing the GA are as following: 

1. Initial Designing  

Standing for the second objective, the initial construction is performed with the use of 

FCM clustering because of its prior utilisation in a wide range of operations like 

pattern recognition, classification, modelling, and identification. 

2. Rule Extraction & Feature Selection 

As for achieving the second and third objective, on the basis of the first constructed 

RB, a calculation of the rule output values was performed, involving the Bayes 

inference rule for all relevant training data points.  

From here on, a remodelling of the intial RB should be executed through the 

application of any of the evolutionary algorithms. For the purposes of the current 

research, a genetic algorithm of real value has been applied, namely the Iterative 
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Approach, in which each rule is represented by a chromosome. A single rule is 

derived by the use of the genetic algorithm with iterative. 

As previously described by (Durrant-Whyte & Henderson, 2008), processes and 

examinations of probabilistic characteristics have been used for the enhancement of 

the current research‘s sensor fusion, in addition to Bayes‘ rule for data fusion which 

again is inspirational for the probabilistic information combination methods. Bayes‘ 

rule is proven to have an exceptionally efficient combinatory quality when it comes to 

sensor evaluation. This is why it is believed that the Bayesian concept is among the 

most widely used approaches on the second level of sensor data fusion (Dailey, Harn, 

& Lin, 1996; Mitchell, 2007). More than one sensor in data fusion projects can, 

however, have serious disadvantages besides the multiple benefits. Among them are 

conflicting data which can be detrimental for the whole project. Regardless of this 

threat, in most cases, the Bayesian theory application has turned out to produce highly 

successful results. The utilisation of probabilistic functions towards the unknown state 

design leads to an accurate system outcome, providing all the correct action sets. 

Despite the fact that a single sensor may not be reliable enough a source, a sensor 

fusion binds the sensor decisions together and analyses them against a threshold 

which has been established prior to the experiment. As stated by Hu (2014), Bayesian 

classifiers‘ major advantage lies in the practical application of the generic analysis 

approach, not in their theoretical problem-solving characteristics. 

The objective of rule derivation and feature choice is presented as a problem of 

conditional likelihood. Consequently, the research has been able to accurately connect 

the dots between the previously approved statistical structure of probabilities and the 
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factor choice made on the level of joined criteria for the combined sensors (Brown et 

al., 2012). MIM is the active norm selected for the study. The likelihood is ensured by 

the model likelihood applied as the loss function. At this stage, the study is yet to see 

the selection of the feature which will influence the data flow between that same 

feature and the class label most, which will become the base for the singling and 

leaving out of the available features.  

3. Fitness Function 

Where the fitness function is concerned, a 3-objective Genetic algorithm is applied in 

order to achieve top efficiency of the rule database. It does so by employing a 

composition method for designing the fitness function using the three appointed 

targets. The objectives themselves include interpretability level, interestingness level, 

and quality of the rule (Dehuri et al., 2008; Noda et al., 1999; Noda et al., 2003). 

The GA discovers the rules, which were subject to evaluation according to three 

criteria, namely: 

(a) Rule’s Quality.  

This represents the calculation of the rule quality  

  
  

     
 

  

     
                                                                             (3.1)     

Where,  

 TP stands for the number of examples that are covered by the rule and 

has the same class from the class that is predicted by the rule,  



 

 100 

 FP stands for the number of examples that is covered by the rule and 

has a different class from the class that is predicted by the rule,  

 FN is the number of examples that is not covered by the rule, but has 

the same class with the class that is predicted by the rule, and   

 TN is the number of examples that is not covered by the rule, and has a 

different class with the class that is predicted by the rule.  

(b) Degree of Interpretability (Rule’s Complexity) 

A value (K) stands for a number of rules and the number of these rules‘ 

conditions can be considered for its comprehensibility characteristic. (K) is an 

inversely proportional value that is relative to the number of conditions N(X) 

in X, the rule‘s antecedent. Whether a rule can have a minimum of M 

conditions, the comprehensibility can thus be defined as: 

    ( ( )  ⁄ )                                                                           (3.2) 

(c) Degree of interestingness (Surprisingness)  

In data mining, a key factor is concerned with the discovered knowledge and 

that it should somehow be interesting; here, the term ―interestingness‖ is 

arguably related with ―surprisingness‖ (unexpectedness), novelty, and 

usefulness. To date, there are a number of objective criteria proposed in the 

measurement of the interestingness of rule. Frietas (1999) proposed one of 

these criteria based on information theory. 

Interestingness = ( /(∑  𝑛 𝑜 𝐴𝑖𝑛(𝐴𝑖))/𝑘)
 

   
                             (3.3) 
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Where, InfoGain(Ai) is the information gain (MI) of the ith attribute occurring in the 

rule antecedent and k the number of attributes occurring in the rule antecedent. 

The purpose of the three objectives here is towards maximising the rule‘s quality, 

maximising the degree of interpretability, and maximising the degree of 

interestingness, as illustrated in Figure 3.3. A Composition Function method is used 

to aggregate the three objectives without requiring weights in order to generate a 

fitness function which best stands for the desirability of the chromosome (or FIS). 

                            

 

 

  

    Figure 3.3. Composition Function of three objectives 

 

A number of the composition functions are used in this work, as,  

 min (max (Quality, Interpretability), Interestingness) 

 probor (min (Quality, Interpretability), Interestingness) 

 Probor (max (Quality, Interpretability), Interestingness) 

Where min stands for the operator (AND) between two values as it takes always the 

minimum between them, max stands for the operator (OR) between two values as it 

     Rule‘s Quality                                       Interpretability               Interestingness 
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takes always the maximum , Avg stands for the average, and Probor stands for 

probabilistic OR. 

Figures 3.4, 3.5, and 3.6 illustrates the probor, max, and min function respectively. 

Where, y1, y2 are the variables and yy stand for the function concerned. 

                      

Figure 3.4. Probor Function 

  

                      

Figure 3.5. Max Function 
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      Figure 3.6. Min Function 

3.3.2.2 ANFIS Modelling 

The rules already devised and improved by the genetic algorithm will consequently be 

employed for the purpose of AFR ratio forecast by the ANFIS, which will in turn 

upgrade the MFs – the result of the clustering of the FCM.  

3.3.3 Model Validation  

Figure 3.7 depicts the layered tenfold cross-validation method applied in the current 

research for the purpose of classifier performance assessment as a step to achieve the 

last objective of this study. Kohavi (1995) describes cross validation as an approach 

for evaluating classifier performance in the presence of new data. It is based on 

informational set classifications of ten-fold sets. The i-th set should be regarded as the 

test set, while all other sets – as the training ones, in order for accurate classifier 

assessment to be performed.  
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 Figure 3.7. k-fold Cross Validation Procedure 

The AFR proportion forecast was appraised through the use of Root Mean Square 

Error (RMSE) by correlating the test AFR from the experiments and the ANFIS 

model. As shown in the equation below, the average predictive accuracy is reached by 

dividing the sum of the predictive accuracies by the total set count. Average 

predictive accuracy (RMSE) =  
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In the equation above, n stands for the data number, y stands for the actual output, and 

y’– for the conjectured one. 

The pseudocode for Creating Training Set and Test Set in K-Fold Cross Validation is 

showed in Figure 3.8. 

 

 

 

Figure 3.8. Pseudocode for K-Fold Cross Validation 

The evaluation of the presented model will additionally take into account the median 

rule count and the number of attributes assigned to the rules. 

Therefore, there are numerous algorithms that can be used for understanding of the 

NFS. This study thus relates the performance of the proposed algorithm with our 

learning algorithms, which include FCM clustering and grid partition. In addition, the 

proposed algorithm performance is related to the GA-Bayesian classifier, the 

possibility of which depends on the frequency.  

3.4 Summary 

In this chapter, the methodology used for the study is explained further. The 

methodology comprises three phases: data collection, formulation of algorithm, and 

validation of rule. Data collection shows how to gather data. The formulation of 

algorithm has two stages, which are FIS building and ANFIS modelling. It is 

Algorithm 3.1: K-Fold Cross Validation 

1 SplitLists: List of k sets created by splitting the DataSet  

2 FOREACH SplitSet Si in SplitLists  

    2.1  SET TestSet = Si 

    2.2 SET TrainingSet = Remaining sets merged  

3 END 

end-algorithm 
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important to identify the best feature selection models for the purpose of 

dimensionality reduction, which is an approach used in optimising the rules built by 

the model. 
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CHAPTER FOUR                                                                             

DATA COLLECTION AND EMPLOYED INSTRUMENTS 

4.1 Introduction 

This chapter presents a discussion about the data used in the research. It starts with 

Section 4.2 that depicts the data characteristics of the experiments. In Section 4.3 

briefly explains the instrument used to collect the data. Section 4.4 discusses the data 

collection and the methods used. Finally, this chapter is summarized in Section 4.5. 

4.2 Data characteristics 

The data was collected from University Science Malaysia engines laboratory using a 

CB 125cc air cooled 4-stroke engine from Taiwan manufacturer ‗Adly‘ equipped with 

a Euro-3 compliant Focus Applied Technologies gasoline EFI system and 3-way 

catalyst. The lab is illustrated in Figure 4.1. 

 

 

 

 

 

Figure 4.1.  Test Engine in University Science Malaysia engines laboratory 
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The AFR data sets are a total of three data sets which are used for the research. This 

number includes engine operation of 15,182 samples selected from the chosen 

dataset‘s testing and training information for the purpose of achieving firm temporary 

states. 

The scope of the data factors is as follows: MAP [0 - 1.05] bar, TPS [0% - 194.49%], 

RPM [0 - 8900] revolution per minute, MAT [26.7C° - 34.4 C°], CLT [29 C° - 141 

C°], and PW [0.6ms – 7.9ms]. Table 4.1 depicts he characteristics of the experimental 

data sets. Figure 4.2, 4.3, 4.4 illustrates samples from Data Set1, Data Set2, and Data 

Set3 respectively. 

Table 4.1  

Characteristics of the Experimental Data Sets   

 

       Data Sets                     Number of Examples                 Number of Factors 

 

      Data Set1                                    3500                                                 6  

      Data Set2                                    5776                                                 6  

      Data Set3                                    5906                                                 6  
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    Figure 4.2. Sample of Data Set1 

 

 

 

 

 

 

Time MAP   TPS RPM/100       MAT         CLT         PW      O2 

0 0.421 2.8 14 30 34.4 1.7 0.824 

0.2 0.421 2.8 15 30 34.4 1.7 0.824 

0.4 0.421 2.8 14 30 34.4 1.7 0.843 

0.6 0.421 2.8 14 30 34.4 1.7 0.824 

0.8 0.421 2.8 14 30 34.4 1.7 0.843 

1 0.421 2.8 15 30 34.4 1.7 0.843 

1.2 0.421 2.8 14 30 34.4 1.7 0.843 

1.4 0.421 2.8 14 30 34.4 1.7 0.843 

1.6 0.421 2.8 15 30 34.4 1.6 0.843 

1.8 0.421 2.8 14 30 34.4 1.7 0.843 

2 0.421 2.8 14 30 34.4 1.7 0.843 

2.2 0.421 2.8 14 30 34.4 1.7 0.843 

2.4 0.421 2.8 14 30 34.4 1.7 0.843 

2.6 0.421 2.8 14 30 34.4 1.7 0.843 

2.8 0.421 2.8 14 30 34.4 1.7 0.843 

3 0.421 2.8 14 30 34.4 1.7 0.843 

3.2 0.421 2.8 14 30 34.4 1.7 0.843 

3.4 0.421 2.8 14 30 34.4 1.7 0.843 

3.6 0.421 2.8 14 30 34.4 1.7 0.843 

3.8 0.421 2.8 15 30 34.4 1.7 0.843 

4 0.421 2.8 14 30 34.4 1.7 0.843 

4.2 0.421 2.8 14 30 34.4 1.7 0.843 

4.4 0.421 2.8 14 30 34.4 1.7 0.843 

4.6 0.421 2.8 15 30 35 1.7 0.843 

4.8 0.421 2.8 15 30 35 1.7 0.843 

5 0.421 2.8 14 30 35 1.7 0.843 

5.2 0.421 2.8 14 30 35 1.7 0.843 

5.4 0.421 2.8 14 30 35 1.7 0.843 

5.6 0.421 2.8 15 30 35 1.7 0.843 
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   Figure 4.3. Sample of Data Set2 

 

 

     Time      MAP         TPS RPM/100      MAT        CLT 
            
PW         O2 

9 0.5 3.7 18 29.4 30 1.9 0.02 

9.2 0.5 4.6 18 29.4 30 1.9 0.02 

9.4 0.521 4.6 17 29.4 30 2 0.02 

9.6 0.508 4.6 18 29.4 30 2.1 0.02 

9.8 0.483 7.3 17 29.4 30 1.9 0.02 

10 0.658 13.8 28 29.4 30 3.4 0.039 

10.2 0.913 28.4 4 29.4 30 4.9 0.02 

10.4 0.913 6.4 0 29.4 30 6 0.039 

10.6 0.913 3.7 0 29.4 30 6 0.039 

10.8 1.025 3.7 6 29.4 30 6 0.059 

11 1.025 4.6 12 29.4 30 6 0.059 

11.2 0.508 3.7 20 29.4 30 3 0.078 

11.4 0.492 8.3 18 29.4 30 4.6 0.078 

11.6 0.413 21.1 53 29.4 30 0.6 0.686 

11.8 0.238 9.2 50 29.4 30 0.6 0.686 

12 0.229 4.6 46 29.4 30 0.7 0.627 

12.2 0.233 5.5 45 29.4 30 0.6 0.627 

12.4 0.238 5.5 43 29.4 30 0.7 0.686 

12.6 0.238 5.5 38 29.4 30 0.6 0.686 

12.8 0.283 5.5 31 29.4 30 0.7 0.647 

13 0.354 6.4 30 29.4 30 1.2 0.588 

13.2 0.413 10.1 31 29.4 30 1.4 0.549 

13.4 0.429 10.1 31 29.4 30 1.5 0.529 

13.6 0.425 10.1 30 29.4 30 1.5 0.608 

13.8 0.421 10.1 31 29.4 30 1.5 0.627 

14 0.421 10.1 30 29.4 30 1.5 0.667 

14.2 0.421 10.1 31 29.4 30 1.5 0.667 

14.4 0.479 16.5 29 29.4 30 1.8 0.608 

14.6 0.496 17.4 28 29.4 30 2 0.549 

14.8 0.513 18.3 27 29.4 30 2.1 0.51 

15 0.621 30.3 26 29.4 30 3 0.49 

15.2 0.725 37.6 25 29.4 30 3.9 0.471 

15.4 0.867 53.2 24 29.4 30 4.6 0.451 
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      Figure 4.4. Sample of Data Set3 

  

Time MAP TPS RPM MAT CLT PW O2 

28.8 0.525 3.7 17 27.2 29 2 0.98 

29 0.521 3.7 18 27.2 29 2 0.961 

29.2 0.521 3.7 18 27.2 29 2 0.98 

29.4 0.525 3.7 17 27.2 29 2.1 0.98 

29.6 0.521 3.7 18 27.2 29 2 0.98 

29.8 0.521 3.7 18 27.2 29 2 1 

30 0.521 3.7 18 27.2 29 2 1 

30.2 0.521 3.7 18 27.2 29 2.1 1 

30.4 0.525 3.7 17 27.2 30 2 1 

30.6 0.529 3.7 17 27.2 30 2 1 

30.8 0.525 3.7 17 27.2 30 2 1 

31 0.525 3.7 18 27.2 30 2.1 1 

31.2 0.529 3.7 17 27.2 30 2 1 

31.4 0.529 3.7 17 27.2 30 2 1 

31.6 0.525 3.7 17 27.2 30 2 1 

31.8 0.525 3.7 17 27.2 30 2 1 

32 0.525 3.7 17 27.2 30 2 0.98 

32.2 0.529 3.7 18 27.2 30 2.1 1 

32.4 0.529 3.7 17 27.2 30 2 1 

32.6 0.525 3.7 17 27.2 30 2.1 1 

32.8 0.529 3.7 17 27.2 30 2 1 

33 0.529 3.7 17 27.2 30 2.1 1 

33.2 0.525 3.7 17 27.2 30 2 0.98 

33.4 0.525 3.7 17 27.2 30 2.1 1 

33.6 0.529 3.7 17 27.2 30 2.1 0.98 

33.8 0.525 3.7 18 27.2 30 2.1 1 

34 0.529 3.7 17 27.2 30 2.1 1 

34.2 0.529 3.7 17 27.2 30 2.1 1 

34.4 0.525 3.7 17 27.2 30 2 1 

34.6 0.525 3.7 17 27.2 30 2 0.98 

34.8 0.529 3.7 17 27.2 30 2.1 1 

35 0.529 3.7 17 27.2 30 2.1 0.98 

35.2 0.529 3.7 17 27.2 30 2.1 1 

35.4 0.529 3.7 17 27.2 30 2.1 1 

35.6 0.529 3.7 16 27.2 30 2 1 

35.8 0.525 3.7 17 27.2 30 2 0.98 

36 0.529 3.7 17 27.2 30 2.1 1 
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4.3 Test Engine  

The instrument used in collecting the data is the test engine as illustrated in Figure 

4.5.  

       

   Figure 4.5. Test Engine 

A test engine is a facility applied to characterize, develop and test engines, which 

permits engine operation to operate in various operating regimes and provides 

different physical variables measurement associated with the engine operation. Engine 

testing consists of collecting huge amounts of data from different types of tests. 

Applying a test engine in data collection decreases the cost and also provides 

situations were it is difficult to apply from vehicles on road such as very high speed or 

very high load or even very high tempreture. High load here is about applying heavy 

load such as climbing a mountain. Very high speed such as reaching 8900 revolution 
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per minute is not applicable in real world and even though it can be reached it will be 

very harmful to the engine, the same thing for high tempreture. 

4.4 Data collection 

In order to benefit from using multi-inputs without discarding the nonlinear 

interactions, multi-sensor data fusion technology is used in this study. In Figure 4.1, 

the Bayes rule helped to indicate this condition. 

The Bayes‘ rule necessitates that the relationship between x and z be encoded as a 

joint probability or joint probability distribution P(x, z) for continuous and discrete 

variables, respectively. The chain rule of conditional probabilities can be used to 

broaden the joint probability in two ways.  

P(x, y) = P(x | y)P(y) = P(y| x)P(x)                                              (4.1) 

Through reorganisation in terms of one of the conditionals, the Bayes‘ rule is obtained 

as: 

P(x | y) = 
 (    ) ( )

 ( )
                                                                       (4.2)        

The result value depends on the interpretation of the probabilities P(x | y), P(y | x), 

and P(x).  

It is very important to conclude the likelihood of various values of an unidentified 

state x. Prior beliefs regarding what values of x can be expected are encoded in the 

form of relative likelihoods in the prior probability P(x). Observation z is made to 

acquire more information about the state x. Such observations are modelled in the 
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form of conditional probability P(y | x), which describes the probability that the 

observation z will be made for each fixed state x, similar to the probability of y given 

x, for example. New possibilities associated with the state x are calculated from the 

result of the original prior information and the information obtained via observation. 

This is programmed in the posterior probability P(x | y), which defines the probability 

associated with x given the observation y. The marginal probability is used to 

normalise the posterior and is generally not calculated in this fusion process. The 

marginal P(y) serves an important function in model validation or data association 

because it provides a measurement of how successful the observation is foreseen by 

the prior because P(y) = ʃ P(y | x)P(x)dx. 

 

 

 

 

 

    Figure 4.6. Sensor data fusion 

A total of six factors (features) have been selected as the most influential. These are 

TPS, MAP, CLT, MAT, RPM, and PW.  

Figures 4.7, 4.8, and 4.9 reveal the behaviour of datasets 1, 2, and 3, respectively. 
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     Figure 4.7. Data Set1 

        

     Figure 4.8. Data Set2 
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     Figure 4.9. Data Set3 

From the figures above, it can be noticed that the same cycle is repeated on and on but 

there are different responses depending on the circumstances faced by the 

experiments such as the tempreture, load, and others. This is the reason for chosing 

three data sets not more. These data sets are enough for the model constructed to 

achieve its aim in trying in discovering hidden information from the experiment data. 

4.4 Summary 

As a real world application, the data collection is critical and important to achieve the 

aims of the research. 

In this chapter, the data used in the experiments, producing the data sets for the 

research concerned in the prediction of the AFR, is clarified and explained. The 

instruments and methods used are also discussed.  
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CHAPTER FIVE 

FEATURE SELECTION AND RULE EXTRACTION 

ALGORITHM FORMULATION 

5.1 Introduction  

The construction of a feature selection, as well as the rule extraction algorithm for 

establishing rule-based fuzzy rules for ANFIS modelling using a GA based Fuzzy 

Bayesian Classifier (GA-FBC) developed based on the methodology explained in 

Chapter Three, will be demonstrated in this chapter. The objective of the reseach 

which is the data collection method used is presented in chapter four. On the other 

hand, the process of how the algorithm is established and the methods used is 

discussed in Section 5.2.  

5.2 Algorithm Formulation 

A number of rules provided in the form comprise a fuzzy rule 

 R : IF 𝐱 is 𝐴𝑖 , THEN 𝐲 is C𝑖  

for 𝑖 = 1, … ,  r , where 𝐴𝑖 = { 𝐴𝑖1 , 𝐴𝑖2 , … , 𝐴𝑖𝑛 }, C𝑖 = C𝑖1 ,C𝑖2 , … , C𝑖𝑚 , and 𝐴𝑖𝑗 and 

C𝑖𝑘 are the respective fuzzy sets that define input and output space partitioning. This 

condition, which is also termed as a premise, comprises a number of antecedents 

combined by different operators, including AND and OR. C stands for the consequent 

of the rule. 

A zero-order Takagi-Sugeno fuzzy system is used in this study and takes the 

following form: 
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              If x is Ai and y is Bi then z = c 

where Ai and Bi are defined as fuzzy, whereas z is a crisply defined function. 

Often, feature selection or structure identification is performed in the context of fuzzy 

rule extraction in a separate phase. Meanwhile, several methods consider the learning 

machines but typically eliminate one feature (or a set of features) at a time in a 

stepwise fashion. Thus, the selected feature set may not be the best for the considered 

problem because a features set can interact among themselves. Moreover, a feature 

can interact with the tool used to solve the problem. In other words, the best feature 

set for a NN may not necessarily be the best for either a support vector machine or a 

fuzzy ruled-based system. In principle, employing an exhaustive search with a 

machine learning tool used to design the final system can address the problem. 

Feature selection methods sometimes disregard the subtle nonlinear interaction that 

occurs between learning system and the features. 

In this study, feature selection is applied at the rule level for Takagi-Sugeno-type FS 

to address the issue of structure identification. This approach is an integrated learning 

mechanism that can consider the nonlinear interactions that may occur among features 

and between features and fuzzy rule-based systems. A feature can be eliminated only 

if no rule uses this feature, such that not all features exist in one rule. This condition 

will decrease the number of rule attributes and will facilitate dimensionality reduction 

and rule interpretability. 

FRBS building is a classification problem that requires a strategy that selects the class 

that best fits the rule antecedent as a consequent in the fuzzy rule. 
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The formulation of the algorithm of feature selection and rule extraction at one level 

inorder for the prediction of the AFR consists of two phases as mentioned below. 

5.2.1 Genetic Algorithm Optimization 

A genetic fuzzy rule-based system decreases the amount of knowledge and effort 

required from an expert in designing the inference system design. Evolutionary 

computation automates the design steps of the FRBS through rule learning. The GA 

here is the machine learning tool. The pseudocode of GA is illustrated in Figure 5.1. 

 

 

 

 

 

 

 

 

    Figure 5.1. Pseudocode for GA  

The subsequent sections explain the RB extraction steps.  

Algorithm 5.1: Genetic Algorithm 

1: Randomly generate an initial population of individuals 

of the training data. 

2: Compute the fitness of each individual  

3: repeat  

4: Select two individuals based on fitness  

5: Apply genetic operators to selected individuals, 

creating new individuals  

6: Compute fitness of each of the new individuals  

7: Update the current population (new individuals replace 

old individuals)  

8: until (stopping criteria) 

end- algorithm 
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5.2.1.1 Initial construction  

This study employs the FCM clustering algorithm to initialise MFs. Meanwhile, 

subtractive clustering is applied to identify the number of clusters for the FCM 

clustering algorithm. This operation is a preprocessing for the GA, generating the 

MFs inorder to determine the final number of varibles in the premise part of the fuzzy 

rule. This is a prelude for the chromosome encoding. The data set was used as input to 

the clustering algorithm. The initial number of clusters was set to be relatively high, 

whereas the cluster merging threshold was set using trial and error. The objective is a 

minimised function, which approaches zero.  

 Gaussian MFs are fitted to the clusters using equation (2.1). 

     (     )    𝑝   
(   ) 

   
                                                          

Where, c is the centre of Gaussian MFs and    refers to the cluster standard deviation.  

5.2.1.2 Rule Extraction and Feature Selection Model 

Several steps is used to guide in building a fuzzy RB by using an evolutionary 

algorithm as a genetic algorithm based and a probabilistic classifier as Bayesian. Both 

feature and rule extraction methods are simultaneously applied for the learning 

algorithm to be able to search for the best rule and the best set of variables for each 

rule, as illustrated in Figure 5.2 This work is based on the selection of a subset of 

features that can distinguish one class from another. This aspect of features that 

enables class discrimination forms the basis of class dependent feature selection 

techniques (Bailey, 2001). 
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Figure 5.2.  Flowchart of Proposed Rule-Based Fuzzy Extraction 

The GA is developed employing an IRL approach with a variable length depending 

on the number of clusters from the initialization stage, but is fixed for each data set. 
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Each individual in a population contains a certain number of rules between 1 and max, 

where max is determined by a decision maker. The ANFIS here is the decision maker.  

This work applies an iterative approach to reduce the search space for possible 

solutions. Although each individual represents a single rule, only the best individuals 

are selected as solutions. Therefore, the GA provides a partial solution to the learning 

problem in the iterative model. 

Step 1: Fuzzy knowledge initialisation 

The initial fuzzy rules should be produced to generate a FIS. The initial fuzzy KB can 

be produced either automatically with the use of a training dataset or non-

automatically through expert knowledge. This study derives initial fuzzy rules from 

training data. The initialisation of the premise part of the rule is irrelevant here. This 

process is randomly performed by the GA. The rule consequent is not explicitly 

encoded in the string. By contrast, this value is given based on the FBC, which selects 

the class as a consequent in the fuzzy rule that best fits the rule antecedent. Each 

fuzzy rule represents a chromosome in the GA. 

Step 2: Encoding  

Encoding refers to the method of revealing a single gene in the genetic space. To 

optimise the continuous domain, genes should be directly represented as real 

numbers, such that a chromosome is a vector of floating point numbers especially if 

the data is aleady a real value. The chromosome size is kept constant depending on 

the vector length, which is the solution to the problem. Thus, each gene represents a 

problem variable. 
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This study employs value encoding. Each input Xi is encoded by n clusters. Owing to 

the continuous nature of MFs, a real-coded GA is selected to represent each cluster‘s 

membership grade [0,1]. The final chromosome has six inputs and has a length of 

6*n, as shown in Figure 5.3. 

 

 

 

 

 

 

 

   Figure 5.3. Chromosome Encoding Using Clustering 

Step 3: Consequent Calculation 

The fuzzy rule consequent or class is computed using Bayes‘ rule (5.3) according to 

the fuzzy rule premise randomly generated by the GA.  

The Bayes‘ rule is important because it provides a principled way of combining 

observed information with prior beliefs about the state of the world. 

Given that this work uses multi-sensors, the Bayes‘ rule comes in the following form: 

P(y1, ・ ・ ・ , yn \ x ) = P(y1\ x) ・ ・ ・ P(yn \ x) 

X1 X2 X3 X4 X5 X6 

1 … n  1 … n 1 … n 1   … n 1 … n 1 … n 

      Inputs (Factors) 
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                          =  ( )∏  (      ) 
                                            (5.1) 

The Bayes‘ rule is used to identify the consequent (class) of the fuzzy rule.  

 For instance, the f : xp → C is a function that maps xp to C. xp is a training pattern, 

whereas C is a set of classes of training patterns. Aiming to determine the class of 

pattern xtest using the Bayes‘ rule: 

 Cxtest     𝑚   *  (𝐶𝑗)∏  ( 𝑖   ) 𝐶𝑗+ 
                                            (5.2) 

Using the maximum posterior (MAP) model to maximise the posterior probability, 

determing the best class (the consequent of the fuzzy rule) being related to the 

maximum posterior probability. 

The prior probability P(Cj) value can be computed by counting the number of 

instances that belong to class Cj and dividing this value with the training set 

cardinality. The P (ai = v| Cj) value can be computed in the same way. The number of 

instances belonging to class Cj is computed, such that the value of the i`th attribute is 

equal to v. Then, this is divided by the cardinality of instances of class Cj. Or they can 

be computed using the uniform distribution as in equation (5.3), were gives equal 

weights for each class.  

These probabilities for a dataset having discrete features can be computed by counting 

the relevant feature values for each class. However, a dataset with continuous features 

should first be discretised. No explicit discretisation phase exists in this work. Instead, 

we use MFs as discretised features. This process involves the replacement of each 

feature value with a relevant MF. 
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Membership values for different classes are not normalised and not disjoint, such that 

the probabilities do not have a sum of one. Therefore, actual probabilities should be 

normalised (Raitamäki, 2003) using equation (5.3)      

     ∑  ( 𝑖)     ,   ( )  
 ( )

∑  (  ) 
                                                              (5.3) 

The likelihood of the Bayes‘ rule is computed using MI criteria without considering 

frequency. The criterion ‗MIM‘ is employed to choose the features and classes with 

the most information. The feature that maximises the MI between such feature and the 

class label will be chosen to construct the rule. Only features that contribute to this 

rule will remain, whereas others will be removed. This method estimates entropies 

directly from data samples depending on the probabilities.   

A measure of the value of information that one random variable has about another 

variable is MI. This meaning is helpful within the context of feature selection because 

it provides means to quantify the importance of a feature subset with respect to the 

output vector. This criterion (5.4) will be used to determine the features and to select 

the best class that fits such features, given that rule extraction and feature selection are 

done simultaneously.   

P(Y\X) = argmax{I(X;Y)} 

P(Y\X) = argmax{∑  𝑝(   )    
 (   )

 ( ) ( )

  

   

  

   

}                                  (5.4) 

The pseudocode for Bayesian based MI aalgorithm is shown in Figure 5.4. 
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   Figure 5.4. Pseudocode for Bayesian based MI algorithm 

Step 4: Fitness Function 

The fitness function, also known as the objective function, gives the measurement of 

the chromosome‘s ability to meet the desired criteria and is employed in global and 

local search methods.  

Using 3-objective fitness function will improve the optimization process. The 

objectives are the rule‘s quality, degree of interpretability, and degree of 

interestingness. As a multi-objective problem, conjucting these objectives together 

has the obstacle of using the weights in a weighted sum approach. This research 

proposed a Composition method to overcome this problem: 

 min (max (Quality, Interpretability), Interestingness) 

 probor (min (Quality, Interpretability), Interestingness) 

 probor (max (Quality, Interpretability), Interestingness) 

Algorithm 5.2: Bayesian based Mutual Information  

1: Calculate Prior Probabilities  

     

2: Normilize the Probabilities    

     ∑ 𝑃(𝑥𝑖)𝑖     ,  𝑃(𝑥)  
𝑃(𝑥)

∑ 𝑃(𝑥𝑖)𝑖
                                                               

3: Calculate Conditional Probabilities for Feature Values 

     P(Y\X) = argmax{I(X;Y)} 
 
4: Calculate Posterior Probabilities for Each Class 

     Cxtest  𝑎𝑟𝑔𝑚𝑎𝑥 * 𝑃(𝐶𝑗)∏ 𝑃(𝑎𝑖  𝑣) 𝐶𝑗+𝑛
𝑖      

5: Classify 

end-algorithm 
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In Table 5.1, 5.2, 5.3 are some examples to show these functions work: 

Assuming A= Rule Quality, B= Rule interpretability, C= Rule interestness 

Table 5.1 

min(max(A,B),C)  Examples 

A        B       C       min(A,B)       max(A,B)       min(max(A,B),C)    

0.6       0.5     0.3          0.5                   0.6                    0.3 

0.6       0.5     0.9          0.5                   0.6                    0.6 

0.6       0.3     0.3          0.3                   0.6                    0.3 

0.6       0.3     0.5           0.3                  0.6                    0.5 

0.6      0.6      0.4           0.6                  0.6                    0.4 

0.6      0.2      0.6            0.2                 0.6                    0.6 

0.3      0.9     0.1             0.3                 0.9                    0.1 

0.3      0.9     0.9             0.3                 0.9                    0.9 

0.3     0.9     0.5             0.3                  0.9                    0.5 

0.3     0.1     0.9             0.1                 0.3                     0.3  

0.9     0.7    0.3              0.7                0.9                      0.3 

0.9     0.5    0.1             0.5                 0.9                      0.1 

0.4    0.8    0.5              0.4                 0.8                      0.5 

0.2    0.3   0.5               0.2                 0.3                      0.3 
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Table 5.2 

 probor(min(A,B),C)  Examples 

A           B         C      min(A,B)      max(A,B)      probor(min(A,B),C 

0.6        0.5      0.3           0.5                   0.6                  0.65                         

0.6        0.5      0.9           0.5                   0.6                  0.95 

0.6        0.3      0.3           0.3                   0.6                  0.51    

0.6        0.3      0.5            0.3                  0.6                  0.65 

0.6        0.6       0.4           0.6                  0.6                  0.76 

0.6        0.2       0.6           0.2                 0.6                   0.68 

0.3        0.9       0.1           0.3                 0.9                   0.37 

0.3        0.9       0.9           0.3                 0.9                   0.93 

0.3       0.9       0.5            0.3                 0.9                   0.65 

0.3       0.1       0.9            0.1                 0.3                   0.91 

0.9       0.7      0.3             0.7                0.9                    0.79 

0.9       0.5      0.1             0.5                 0.9                   0.1 

0.4      0.8       0.5             0.4                 0.8                   0.7 

0.2      0.3      0.5              0.2                 0.3                   0.6 
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Table 5.3 

 probor(max(A,B),C)  Examples 

A         B        C      min(A,B)      max(A,B)       probor(max(A,B),C) 

0.6       0.5      0.3          0.5                   0.6                  0.72 

0.6       0.5      0.9          0.5                   0.6                  0.96 

0.6       0.3      0.3          0.3                   0.6                  0.72 

0.6       0.3      0.5           0.3                  0.6                  0.8 

0.6       0.6      0.4           0.6                  0.6                  0.76 

0.6       0.2      0.6            0.2                 0.6                  0.84 

0.3       0.9      0.1            0.3                 0.9                  0.91 

0.3       0.9      0.9            0.3                 0.9                  0.99 

0.3       0.9      0.5            0.3                 0.9                  0.95 

0.3       0.1      0.9            0.1                 0.3                  0.93 

0.9       0.7      0.3            0.7                 0.9                  0.93 

0.9       0.5      0.1            0.5                 0.9                  0.91 

0.4       0.8      0.5            0.4                 0.8                  0.9 

0.2       0.3      0.5            0.2                 0.3                  0.65 
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Considering the above tables, can notice the following: 

 min(max(A,B),C): does not take in account the interestingness. 

 probor(min(A,B),C): takes the less value between rule quality and rule 

interpretability but may ignore any of the values, and also takes in account the 

interestingness. 

 probor(max(A,B),C): takes the highest value between rule quality and rule 

interpretability but will not ignore any of the values, and also takes in account 

the interestingness. When a rule has a good interestingness value, it‘s fitness 

value will arise. 

The probor(min(A,B),C) has the best effect on the fitness function, so this research 

adopted this function as a fitness function for the GA. 

The pseudocode for 3-objective fitness computation algorithm is displayed in Figure 

5.5. 

 

 

 

 

   

   Figure 5.5. Pseudocode of Fitness Compution based Composition Method 

 

Algorithm 5.3: Fitness Compution based Composition Method 

1: For each chromosome in the population do 

1.1 Compute A= Rule’s Quality 

1.2 Compute B= Rule’s Interpretability 

1.3 Compute C= Rule’s Interestingness 

1.4 Compute min(A,B) 

1.5 Compute fitness = probor([min(A,B);C]) 

2:End 

end-algorithm 
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Step 5: Selection 

The selection pattern is developed with care to make sure that better chromosomes are 

selected as parents. Thus, the best chromosomes remain in place. 

The selection operator, tournament selection, obtains two individuals needed for 

generating four offspring. The better individuals among the set of offspring replace 

the two inferior individuals in the population.  

Step 6: Crossover 

Crossover is defined as the genetic operation that creates two new chromosomes from 

two parent chromosomes (of the previous generation) by trading some of the 

parameters or genes. A uniform crossover is used in this study because it allows the 

offspring chromosomes to look for all possibilities of re-combining the different 

genes in the parents. The value of crossover probability is 1. 

Step 7: Mutation 

The mutation stage selects a number n of genes for changing, in this algorithm is 1. These 

bits are randomly selected with a mutation probability of 0.1. The selected gene value 

will be changed using a complementary operation to achieve diversity. This process 

will make sure that the value of the gene is retained in the membership range [0,1] 

and can be changed into another membership set. 

As an example, if the number of the membership sets = 2 (low, high), having 6-inputs, 

the chromosome will be of length = 12.  If the gene‘s value is 0.7 (high), it will 

become 0.3 (1 - 0.7); changing from high to low as shown in Figure 5.6. 
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    Figure 5.6. Complementary Mutation 

The weakness of the complementary mutation is when the gene‘s value is equal to 

medium range of membership [0,1], resulting in no modification.  

Step 8: Module of Example Elimination - The Concept of Covering 

In this study, as noted by several researchers (Gonzblez & Pérez, 1999; Ishida et al., 

2009), the algorithm looks for the best rule on each iteration and takes away all the 

examples that are covered by said rule from the data set. The process is then repeated 

using the remaining examples. The process is continued till all the examples have 

been covered or when some stop criterion has been reached. Through this process, a 

new rule is discovered in every iteration. 

Step 9: Termination Condition 

The Genetic Algorithm (GA) concludes by returning the population‘s best rule if one 

of these following criteria is verified: 

 The number of iterations is bigger than a fixed limit; 

 The examples are all covered. 

0.2 0.5 0.8 0.8 0.1 0.3 0.7 0.3 0.3 0.1 0.2 0.1 

0.2 0.5 0.8 0.8 0.1 0.3 0.3 0.3 0.3 0.1 0.2 0.1 
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The final number of rules will be decided by the ANFIS depending on the predictive 

accuracy of network for the AFR prediction after applying the rules generated from 

the GA-FBC algorithm. 

5.2.2 ANFIS Modelling 

The ANFIS can refine the fuzzy ‗if-then‘ rules and MFs towards describing a 

complex nonlinear system‘s input/output behaviour. Because of their representation of 

data, which is compact and computationally-efficient, Sugeno type FISs are 

considered more suitable in constructing fuzzy models in practical applications. What 

has been used here is a zero-order Takagi-Sugeno fuzzy system. Many times, a 

singleton spike is totally sufficient towards satisfying the needs of a given problem.  

In this study, ANFIS is selected as a control strategy because of its simple structure, 

taking advantage of both the fuzzy logic and adaptive NNs. It has also been known to 

be more advantageous than the pure fuzzy paradigm, where, in order to make 

adjustments on the bounds of the MFs to tune the system, the need for a human 

operator is removed.  The pseudocode of ANFIS is in Figure 5.7. 

 

 

 

 

   Figure 5.7. Pseudocode of ANFIS 

Algorithm 5.4: ANFIS 

1: Given n candidate inputs, a subset of “ k ” inputs is selected as an input 

to the ANFIS for training.  

2: Normalized train and test data.  

3: The ANFIS model is constructed.  

4: ANFIS model is trained by training data.  

5: Evaluation with test data. 

end-algorithm  
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Towards achieving a low training error for the engine AFR prediction, ANFIS used 

the training data set as well as the fuzzy rules constructed by the GA-based FBC. 

5.3 Summary 

The methodology, which is described previously and applied in this chapter, 

comprises three phases. Initially, it shows the behaviour of the data collection and 

selection. Next, it clarifies the algorithm formulation steps to enable feature selection 

and rule extraction. Lastly, it demonstrates the verification of the model‘s 

effectiveness. 

 



 

 135 

CHAPTER SIX 

EXPERIMENTAL RESULTS AND EVALUATION 

6.1 Introduction 

This chapter is divided into four parts. This first part discusses the gathering of the 

data. The second part addresses the steps in constructing the proposed algorithm to 

perform the required target. Thereafter the experimental results will be clarified. The 

last part will discuss the evaluation of the proposed algorithm with other algorithms 

used in the same field. A working example is provided to explain the sequence of the 

algorithm. 

6.2 Data Gathering 

As a step for gathering the data and also as a preprocessing step for the validation of 

the group of data used, an ANFIS was used to train each combination of factors for 

one epoch to display the most influential factors with the lowest testing and training 

errors as the pre-processing procedure. It is illustrated in Figure 6.1 that different 

combinations that include all these factors resulted in close results that have the 

lowest testing and training errors. The checking and training errors are comparable, 

which means that there is no over fitting and that all of the factors have roughly the 

same effect on the AFR.  
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   Figure 6.1. Most Influence Factors                                                                                                 

The data distribution for the Data Set1, Data Set2, and Data Set3 are illustrated in Figure 6.2, 

6.3, 6.4 respectively. 

 

 

 

 

 

      

 

    Figure 6.2. Data Distribution of Data Set1 
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    Figure 6.3. Data Distribution of Data Set2 

 

 

 

 

 

 

 

    Figure 6.4. Data Distribution of Data Set3 
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6.3 Algorithm Construction 

To build a FRBS consisting of n rules each having m inputs as shown in Figure 6.5,  the 

feature selection and rule extraction is applied at the same time. Noticing that, the number of 

inputs is not fixed to a specific number is variable m. 

 

                      

                             

                                                                  

  

                                                       

    

    Figure 6.5. FRBS of n rules 

The construction of the proposed algorithm involves two stages: 

1. Rule based FIS extraction, and 

2. ANFIS modeling for the prediction of the AFR. 

A hybrid GA-ANFIS algorithm is used to achieve the two stages. 

6.3.1 Genetic Algorithm for Optimization 

In this work, a new GA-based method is implemented to generate satisfying fuzzy 

rules for the control a nonlinear system. The following sections explain the steps done 

to reach this target. 

Rule 1 

 

Rule 2 

 

 

 Rule n 

1 ……….. m 

2    ……….. m 

N ……….. m 

. 

. 

. 
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6.3.1.1 Initial designing 

The first objective of this work, the initialization of the fuzzy sets of the rules is 

applied using FCM algorithm, given the initial values of the membership, clarifying 

the number of clusters for each fuzzy set. The subtractive clustering is used here to 

determine the number of clusters while the FCM is doing the clustering, taking only 

the initial values given by this algorithm including the membership function ranges 

for each cluster.  

For example, taking the Data Set1 from AFR data set, containing of six factors and 

one output, the minimization of the objective function as in equation (2.4) reached the 

value zero in two iterations. 

Iteration count = 1, obj. fcn = 0.000000 

Iteration count = 2, obj. fcn = 0.000000 

For Data Set2, 

Iteration count = 1, obj. fcn = 0.001419 

Iteration count = 2, obj. fcn = 0.000000 

For Data Set3, 

Iteration count = 1, obj. fcn = 0.015112 

Iteration count = 2, obj. fcn = 0.000000 

Iteration count = 3, obj. fcn = 0.000000 

Iteration count = 1, obj. fcn = 0.000002 

Iteration count = 2, obj. fcn = 0.000000 
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The number of clusters are set to 17, 9, 8 by the FCM for each data set respectively, 

given the memberships‘ ranges for each cluster. The ranges for inputs and output of 

each data set, are illustrated in table 6.1, 6.2, 6.3 respectively. 

Table 6.1 

Data Set1 Input and Output range 

Input / Output                     Min                        Max 

         Input1                                 0.413                     0.425                

         Input2                                 1.8349                   92.6606 

         Input3                                 0                            63 

         Input4                                 30                          34.4 

         Input5                                 34.4                       95 

         Input6                                 0.9                         7.9   

        Output                                 0                             0.961 

 

Table 6.2  

Data Set2 Input and Output range 

Input / Output                     Min                        Max 

         Input1                                0                            1.025                

         Input2                                2.7523                   88.9908 

         Input3                                0                            62 

         Input4                                7.2                         33.3  

         Input5                                29                          96 

         Input6                                0.6                         6 

         Output                               0                            0.98 
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Table 6.3  

Data Set3 Input and Output range 

Input / Output                     Min                        Max 

         Input1                                0.163                      1.05                

         Input2                                 0                            141.28 

         Input3                                 0                            80 

         Input4                                 26.7                       33.3 

         Input5                                 29                          98 

         Input6                                 0.6                          6   

         Output                                0                             1 

 

In Figures 6.6, 6.7, 6.8 displays the membership sets values for Data Set1, Data Set2, 

and Data Set3 respectively. 

 

 

 

 

 

 

 

 

   

   Figure 6.6. Data Set1 Membership Sets 
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     Figure 6.7. Data Set2 Membership sets                         

 

 

 

 

 

 

 

 

 

 

      Figure 6.8. Data Set3 Membership sets 
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6.3.1.2 Rule Extraction and Feature Selection Model  

In order to manage the learning algorithm to reach not only the best rule but the best 

selection of features also, a GA based FBC is used to apply the feature selection and 

rule extraction at the same level. 

For the beginning of GA, we do not need to initialize the rules‘ number, the positions 

of the premise and the consequent fuzzy sets. The only thing need to do, is the setting 

of the length and the structure of the chromosome. With the specific structure of the 

chromosome, the crossover and special mutation operation and the appropriate fitness 

function, GA will produce the fuzzy rule base naturally which has small number of 

rules, arranges the adequate placement of the premise‘s fuzzy sets and choose the 

proper location of the consequent singletons.  

Using the IRL approach as in Figure 6.2, each population contains a variable number 

of rules but produces only one rule, which should be the best rule depending of the 

fitness function. The number of the final rules of the FRBS is decided by the ANFIS 

depending on the predictive accuracy leading in a kind of cooperative rules rather 

than evaluating each rule by itself that is done already in the GA learning stage. 

There are a number of steps need to be followed to apply the evolutionary algorithm 

as explained in the following sections. 

Step1: Encoding 

As the aim of this work, is automatically extracting the rules from the experimental 

data. The GA takes its values of genes from the data sets directly. But while we are 

using fuzzy logic as a way of dealing with uncertainty of the sensors producing the 
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data, the encoding of the individual of GA is applied using the membership function 

for each fuzzy set. As the inputs are represented by more than one fuzzy set, the FCM 

decides the number of fuzzy sets where each cluster stands for a fuzzy set that are 

overlapped by the fuzzy nature. So each input can be represented by n of membership 

grades produced by applying the Gaussian membership function. Depending on 

equation (2.1), need to find the center c and standard deviation δ of the clusters. 

 c =(b-a)/2                                                                                    (6.1)                                                                         

 δ = ((((b-c)^2)+((a-c)^2))/2)
2                                                                                

(6.2)
    

 

 

Where, a and b are the membership range of the fuzzy set.                 

For example, if we have the following inputs from the Data Set3 which is collected 

from the sensors at the same time: 

Input1= 0.492, Input2 = 0.9174, Input3 = 15, Input4 = 32.8, Input5 = 96, Input6=1.3. 

As noticed from table 6.3, different inputs have different ranges. Converting the real 

data value to the membership grade value gives a benefit of the ability in dealing with 

different forms of numbers with different ranges ( as in real data)  that can in this 

method be represented in one range [0,1].  

The variables are encoded using continuous values in the range of [0,1], by assuming 

the number of fuzzy sets is 8 (from Data set 3), as Figure 6.9. Data Set3 is chosen for 

the simplicity, encoded by only 8 clusters. 
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 Figure 6.9. Chromosome Encoding 

The chromosome will be of length 48 gene. As noticed from Figure 6.6, in Input1 the 

features 1,4,6, and 7 are not included for this input. Also to that, Input 2, Input 4, and 

Input 5 are their values are zero meaning that these inputs are not included in this rule, 

as each chromosome represents a rule.  

The output is classified into the cluster with the highest degree of membership as in 

Figure 6.10. It is not included in the chromosome. 

 

 

 

 

 

 

 

Figure 6.10. Pseudocode for Output Classification   

         Input 1 0 0.5812 0.6741 0 0.539 0 0 0.5456 

         Input 2 0  0 0 0 0 0 0 0 

         Input 3 0.901 0.9956 0.998 0.9713 0.7835 0.9944 0.9487 0.677 

         Input 4 0 0 0 0 0 0 0 0 

         Input 5 0 0 0 0 0 0 0 0 

         Input 6 0.561 0.6799 0.8439 0.5606 0.5241 0.6119 0.559 0.5004 

Algorithm 6.1: Pseudocode for Output Classification  

1: Count membership grade matrix U 

2: Find the highest membership for each output  

for i=1to length of output 
   maxU=U(1,i); 
    for j=1to number of clusters 
      if maxU < U(j,i) 
          maxU = U(j,i); 
          class1(i)=j; 
      end 
    end 
  end 

3:end algorithm 
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For example, five values from output matrix. Each output has eight clusters. 

For output values matrix = [0.8040  0.8430  0.8820  0.9020  0.2550]. 

Membership grade (U) for output1 = [0.1268  0.1250  0.1356  0.1185  0.1401  0.1183  

0.1099  0.1253]. 

Membership grade (U) for output2 = [0.1269  0.1256  0.1328  0.1203 0.1353 0.1201 

0.1128  0.1258]. 

Membership grade (U) for output3 = [0.1268  0.1257  0.1312  0.1213  0.1330  0.1212  

0.1146  0.1259]. 

Membership grade (U) for output4 = [0.1267  0.1257  0.1306  0.1217  0.1321  0.1215  

0.1153  0.1259]. 

Membership grade (U) for output5 = [0.1230  0.1235  0.1215  0.1260  0.1211  0.1262  

0.1349  0.1234]. 

Each output value will be classified with the highest value from U matrix. 

Output class = [ 5   5   5   5   7].  

The first four values have near values so they are classified to the same class. 

Step2: Consequent Calculation 

BC is employed in the prediction of the consequent class of data instances in 

classification problems, here we utilize this type of classifier to specify the 

consequent class of rules. This leads to an accurate, fast and maybe optimal method 

which accelerates rule generation methods. Here the BC, uses the MAP model that 

maximizes the posterior probability where the best class is with the maximum 

posterior probability as in equation (5.2). 
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Another goodness of the BC is its ability in dealing with the collection of data from 

different sources as engine sensors in this work. It can apply the multi-data sensor 

fusion technology, especially in the case of the work for calculating the consequent of 

a rule which depends on the states of the all the antecedent considered in the same 

rule, taking in account the nonlinear interaction between the variables. Making it 

possible, to reach to an accurate rule consequent. In this work, we used a FBC for this 

need. Depending on Equation (5.2), the rule consequent is computed according to the 

steps: 

1. The probability is represented by the membership grades encoded in the 

chromosome. Due to the fact that membership values for different classes   

and inputs are not normalized, it is possible that probabilities do not sum to 

one. Therefore the actual probabilities must be normalized depending on the 

equation (5.3). 

This can be illustrated through the last example, as shown in Figure (6.6):  

For example, for the second membership grade for Input 1, its probability is: 

      

                                  
 

       

      
            

For the third membership grade for Input 1, its probability is: 

       

      
           

For the fifth membership grade for Input 1, its probability is: 
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For the eighth membership grade for Input 1, its probability is: 

       

      
          

And so on for the other inputs as shown in Figure 6.11. 

 

 

 

 

 

 

 

 

        Figure 6.11. Probability Calculation for Chromosome 

2. Calculating the probability of the class, P(Cj).  Which is equal to, how many 

times each class is exists in the output divided by the sum of all classes. In this 

work, the classes of the output will be as the same number of clusters of the 

input. Also the algorithm will not fix the class for the rule but will leave the 

FBC decide which one is the best class. 

3. Calculating the likelihood or conditional probability of the Bayes rule, 

 ( 𝑖   ) 𝐶𝑗). It can be calculated by the same way as P(Cj). In this work, 

         Input 1 0 0.2483 0.288 0 0.2303 0 0 0.2331 

         Input 2 0  0 0 0 0 0 0 0 

         Input 3 0.1239 0.1369 0.1372 0.1336 0.1077 0.1367 0.1305 0.0931 

         Input 4 0 0 0 0 0 0 0 0 

         Input 5 0 0 0 0 0 0 0 0 

         Input 6 0.1158 0.1404 0.1743 0.1158 0.1082 0.1264 0.1154 0.1033 
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the conditional probability is calculated using MI, not depending on the 

frequency. Depending on Equation (5.4), we calculate the conditional 

probability. In this work, MI will be used to select the features and chose the 

best class that fits those features by giving more information about the 

interaction between the class and feature and also participate in the relation 

between the features. As the Bayesian have a tendency to put all patterns of 

the smaller class to error which represents that no information is obtained from 

classifiers (Hu, 2014).  

This approach applies the concept of class-dependent feature selection method 

which is likely to be more computationally expensive than other conventional 

feature selection methods. However, the extra computational cost may be 

worthwhile in certain applications where improvements of accuracy or 

reduction of data dimensionality are very important and meaningful especially 

in real world applications.  

Calculating the conditional probability with MI, requires first finding the 

entropies that are estimated directly from the data samples that are represented 

here by the membership grade that already have calculated its probability.  

For example, for 6 inputs each with 8 clusters. Each input will have 8 terms (v1….v8).  

For class1 (C1) and term1 or feature1 (v1) for input1: 

P(input 1 = v1\C1) 
 (      )     ( ((   )   )

 (  )  (  )
 

Each term here represents a membership grade. As illustrated in Figure (6.12). 



 

 150 

 

 

 

 

 

 

 

 

Figure 6.12. Results of Likelihood Probability 

 

 

 

 

 

 

 

 

 

 

 

 

       Cluster1            Cluster2         Cluster3        Cluster4         Cluster5         Cluster6         Cluster7        Cluster8 

1      0.09068            0.08610           0.07896           0.07923           0.08689           0.0829             0.07564         0.07336 

2      0.07971            0.07431           0.06744           0.0727              0.07438          0.0646             0.0702           0.0656 

3      0.04487           0.02860     0.0247           0.0324             0.0285            0.0297             0.0372           0.0317 

4      0.0381             0.0200     0.0213              0.0263             0.02271          0.0245             0.0282          0.0228 

5      0.0505             0.0379    0.0358              0.0372             0.0361            0.034 1            0.0447           0.0370 

6      0.0508             0.0382       0.0360           0.0374             0.03638          0.0343             0.0450           0.0373 

7      0.1088             0.1073    0.1029              0.1070             0.1108            0.1073             0.0985           0.0955 

8      0.0792             0.0739     0.0670           0.0723             0.0739    0.06427           0.0698           0.0652 

9      0               0                       0            0                 0    0          0              0 

10    0.0218             0.0044    0.0046              0.0059             0.0048            0.0079          0.0134           0.0042 

11    0.0308             0.0266    0.0191           0.0305             0.0195    0.0212          0.0395           0.0290 

12    0.0191             0.0080     0.0071           0.0087             0.0055    0.0084          0.0226           0.0113 

13    0.0167             0.0029       0.0039           0.0049             0.0030    0.0055          0.0082           0.0028 

14    0.0189             0.0079    0.0070              0.0086             0.0055    0.0083          0.0223           0.0112 

15    0.0531             0.0627      0.0652              0.0549             0.0612            0.0529          0.0642           0.0542 

16    0236               0.0052      0.0047             0.0060           0.0058    0.0084          0.0166           0.0068 

17    0               0                      0            0                 0    0          0              0 

18    0               0                      0            0                 0    0          0              0 
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Figure 6.12. Continued   

 

 

 

 

 

      Cluster1      Cluster2      Cluster3     Cluster4      Cluster5      Cluster6      Cluster7    Cluster8 

19        0.1656      0.1376          0.1397         0.1409           0.1489      0.1466       0.1738        0.1266 

20        0.1304      0.1144          0.1170         0.1154   0.1243      0.1226        0.1426         0.1009 

21        0             0                  0                  0                   0                   0                   0                0  

22        0             0                  0                  0                   0      0         0         0 

23        0.3429      0.2991         0.3091           0.2823   0.3134      0.2981         0.3496        0.2796 

24        0             0              0                   0   0                   0         0         0 

25        0             0              0                   0                  0      0         0         0 

26        0             0                  0                   0                 0      0         0         0 

27        0.1335       0.1420        0.1468 0.1193        0.1542      0.1454          0.1529       0.1428 

28        0.1341       0.1427        0.1475 0.1199   0.1549          0.1461         0.1537       0.1435 

29        0.1324       0.1409        0.1457            0.1184   0.1530          0.1443          0.1517        0.1417 

30        0             0              0                     0            0       0         0                 0 

31        0.1309       0.1392        0.1440            0.1170   0.1512           0.14264       0.14999      0.1401 

32        0             0              0                     0   0                    0          0          0 

33        0             0              0                   0   0       0          0                0 

34        0                0              0                   0   0       0          0          0 

35        0             0              0                   0   0       0          0          0 

36        0             0              0                   0   0       0          0          0 

37        0             0              0                   0   0       0          0          0 

38        0             0              0                   0   0       0          0          0 

39        0             0              0                   0   0       0          0          0 

40        0             0              0                   0   0       0          0          0 

41        0.0695      0.0646         0.0628 0.0694   0.06549         0.0671          0.0580       0.0586 

42        0.0864      0.0823          0.0868 0.0802    0.0869       0.0838          0.0731       0.0737 

43        0.0806      0.0768          0.0810           0.0748   0.0811           0.07825        0.0683       0.0688 

44        0.0654      0.0608          0.0591           0.0653   0.0616           0.0631          0.0547       0.0552 

45        0.0670      0.0622          0.0605           0.0668   0.0631           0.06462        0.0559       0.0565 

46        0.0874      0.0833          0.0878           0.0811   0.0879           0.0847          0.07403     0.0745 

47        0.1095      0.1046          0.1106 0.1038   0.1114           0.1108          0.0984       0.0932 

48        0.09145    0.0871          0.0918           0.0848   0.0919        0.0886        0.0774       0.0779 
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For class (C1) with all terms of input1 (v1….v8): 

P(input1\C1)=  

 (     )     ( ((  )   )

 (  )  (  )
 

 (     )     ( ((  )   )

 (  )  (  )
   

 (     )     ( ((  )   )

 (  )  (  )
     

After implementing the likelihood probability for the other classes (C2…C8), we can 

get the output class (consequent) with the highest posterior probability depending on 

Equation 5.2.  

Posterior probability= [0.0060   0.0016  0.0003  0.0001  0.0009  0.0006  0.0071  0.00019]. 

So the consequent for the first chromosome (rule) is 7. And so on for the other chromosomes. 

Step3: Fitness Function 

The fitness function for each rule is evaluated using Equation (3.1), (3.2), (3.3) for the 

rule quality, rule interpretability, and rule interestingness respectively. 

In this work, for a multi-objective fitness function, we used a composition function to 

aggregate the objectives without the need for weights. The objectives are conflicting 

in nature such as the accuracy and interpretability. Trying to avoid this problem, we 

took the inverse of the interpretability value in Equation (3.2). The function tries to 

make a trade-off between the objectives. 

Table (5.1), (5.2), (5.3) displays examples of different composition functions. In this 

research we used the probor(min) to apply the fitness function. 

We can notice that depending on the first part from of the function, the second part 

gives an importance to the interestingness which we require. The fitness of a rule with 
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low interestingness, though it has high quality or interpretability, it will be weaken 

depending on the degree of interestingness of the rule. But if it has high 

interestingness, the fitness of the rule will be supported. Probor function is the most 

that supports this theory. 

6.3.2 ANFIS Modeling 

After applying a GA based FBC with a population= 500, Tournament crossover was 

used with Probability= 1. The Complementary Mutation was implemented with 

probability= 0.1. 

The FRBS generated will be used by ANFIS. A zero-order Takagi-Sugeno fuzzy 

system is used with 6-inputs and one output for the prediction of AFR. The ANFIS 

will help in the membership tuning and in selecting the number of rules generated by 

GA-FBC depending on the predictive accuracy of the network. 

6.4 Experiment and Results 

This chapter tested the proposed algorithm on 3 AFR data sets as illustrated in 

Chapter Four, using a ten-fold cross-validation technique (Kohavi, 1995). Each data 

set is randomly split into ten approximately equally sized subsets. First, the 

experiment takes one subset as the testing set, while the rest subsets become the 

training set. After the proposed algorithm trained the training set, the proposed 

algorithm evaluated the discovered rules against the test subset. The experiment 

repeats this processes ten times, producing ten individual sets of performance 

statistics, such as predictive accuracy, number of rules and number of terms in the 

rules. Finally, the experiment averages these performance statistics.  
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The model will be compared to other learning algorithms for NFS such as fuzzy 

clustering using FCM, grid partition algorithm. It also will be compared to the 

original GA-FBC depending on the frequency not on MI taking in account the 

complexity of the FRBS, number of rules and number of terms in each rule. 

 Comparing the behavior of the proposed model output with the output of the real 

model (experimental data), showing how close does the model represent the data 

(prediction error).  

Figure 6.13, 6.14, 6.15 presents examples of the fuzzy rules resulted from applying 

the Original algorithm were the FBC depends on the frequency for Data Set1, Data 

Set2, and Data Set3 respectively.  
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   Figure 6.13. Fuzzy Rules of Original Algorithm for Data Set1 

 

 

 

 

 

 

 

Rule1: If (in1 is in1cluster2) and (in2 is in2cluster6) and (in3 is in3cluster6) and (in4 is 

in4cluster11) and (in5 is in5cluster10) and (in6 is in6cluster6) then (out1 is out1cluster4)  

Rule2: If (in2 is in2cluster12) and (in3 is in3cluster12) and (in4 is in4cluster11) and (in5 is 

in5cluster11) and (in6 is in6cluster6) then (out1 is out1cluster4)  

Rule3: If (in2 is in2cluster16) and (in3 is in3cluster8) and (in4 is in4cluster2) and (in5 is 

in5cluster2) and (in6 is in6cluster4) then (out1 is out1cluster3)  

Rule4: If (in1 is in1cluster4) and (in2 is in2cluster4) and (in3 is in3cluster4) and (in4 is 

in4cluster2) and (in5 is in5cluster2) then (out1 is out1cluster3)  

Rule5: If (in1 is in1cluster3) and (in2 is in2cluster2) and (in3 is in3cluster1) and (in4 is 

in4cluster9) and (in5 is in5cluster1) then (out1 is out1cluster5)  

Rule6: If (in2 is in2cluster15) and (in3 is in3cluster8) and (in4 is in4cluster2) and (in5 is 

in5cluster2) and (in6 is in6cluster4) then (out1 is out1cluster5)  

Rule7: If (in1 is in1cluster17) and (in3 is in3cluster17) and (in4 is in4cluster8) and (in5 is 

in5cluster8) then (out1 is out1cluster6)  

Rule8: If (in2 is in2cluster2) and (in3 is in3cluster2) and (in4 is in4cluster16) and (in5 is 

in5cluster1) and (in6 is in6cluster12) then (out1 is out1cluster17)  

Rule9: If (in2 is in2cluster12) and (in3 is in3cluster12) and (in4 is in4cluster5) and (in5 is 

in5cluster15) then (out1 is out1cluster6)  

Rule10: If (in1 is in1cluster5) and (in2 is in2cluster15) and (in3 is in3cluster15) and (in4 is 

in4cluster8) and (in5 is in5cluster8) then (out1 is out1cluster8)  

Rule11: If (in1 is in1cluster8) and (in2 is in2cluster8) and (in3 is in3cluster8) and (in4 is 

in4cluster15) and (in5 is in5cluster15) then (out1 is out1cluster17) 

Rule12: If (in1 is in1cluster13) and (in2 is in2cluster1) and (in3 is in3cluster1) and (in4 is 

in4cluster3) and (in5 is in5cluster3) and (in6 is in6cluster1) then (out1 is out1cluster15)  

Rule13: If (in1 is in1cluster3) and (in2 is in2cluster7) and (in3 is in3cluster1) and (in4 is 

in4cluster2) and (in5 is in5cluster2) and (in6 is in6cluster7) then (out1 is out1cluster8)  
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Figure 6.14. Fuzzy Rules of Original Algorithm for Data Set2 

 

 

 

 

 

 

  

   Figure 6.15. Fuzzy Rules of Original Algorithm for Data Set3 

Rule1: If (in1 is in1cluster9) and (in3 is in3cluster9) and (in4 is in4cluster2) and (in5 is 

in5cluster4) then (out1 is out1cluster4)  

Rule2: If (in1 is in1cluster8) and (in2 is in2cluster8) and (in4 is in4cluster8) and (in5 is 

in5cluster8) then (out1 is out1cluster3)  

Rule3: If (in1 is in1cluster8) and (in2 is in2cluster8) and (in3 is in3cluster1) and (in4 is 

in4cluster8) and (in5 is in5cluster8) then (out1 is out1cluster6)  

Rule4: If (in1 is in1cluster2) and (in2 is in2cluster2) and (in3 is in3cluster3) and (in4 is 

in4cluster8) and (in5 is in5cluster4) then (out1 is out1cluster7)  

Rule5: If (in1 is in1cluster8) and (in2 is in2cluster8) and (in4 is in4cluster4) and (in5 is 

in5cluster2) and (in6 is in6cluster1) then (out1 is out1cluster6)  

Rule6: If (in1 is in1cluster6) and (in3 is in3cluster8) and (in4 is in4cluster1) and (in5 is 

in5cluster3) and (in6 is in6cluster9) then (out1 is out1cluster3)  

Rule7: If (in1 is in1cluster2) and (in3 is in3cluster7) and (in4 is in4cluster5) and (in5 is 

in5cluster9) then (out1 is out1cluster4)  

Rule8: If (in1 is in1cluster5) and (in2 is in2cluster5) and (in3 is in3cluster5) and (in4 is 

in4cluster5) and (in6 is in6cluster4) then (out1 is out1cluster8)  

Rule9: If (in1 is in1cluster8) and (in2 is in2cluster1) and (in3 is in3cluster2) and (in4 is 

in4cluster6) and (in5 is in5cluster8) then (out1 is out1cluster9)  

Rule10: If (in1 is in1cluster6) and (in3 is in3cluster3) and (in4 is in4cluster7) and (in5 is 

in5cluster3) then (out1 is out1cluster5)  

Rule11: If (in1 is in1cluster1) and (in2 is in2cluster9) and (in3 is in3cluster9) and (in4 is 

in4cluster6) and (in5 is in5cluster1) and (in6 is in6cluster8) then (out1 is out1cluster2)  

Rule12: 12. If (in1 is in1cluster8) and (in2 is in2cluster8) and (in3 is in3cluster8) and (in4 is 

in4cluster5) and (in5 is in5cluster5) and (in6 is in6cluster8) then (out1 is out1cluster1)  

 

Rule1: If (input1 is mf4) and (input3 is mf4) and (input4 is mf6) and (input5 is mf8) then 

(output1 is mf2)  

Rule2: If (input1 is mf6) and (input2 is mf4) and (input3 is mf2) and (input4 is mf7) and 

(input5 is mf7) and (input6 is mf4) then (output1 is mf5)  

Rule3: If (input1 is mf3) and (input2 is mf3) and (input3 is mf3) and (input4 is mf8) and 

(input5 is mf1) then (output1 is mf5)  

Rule4: If (input1 is mf5) and (input3 is mf5) and (input4 is mf1) and (input5 is mf4) then 

(output1 is mf4)  

Rule5: If (input3 is mf5) and (input4 is mf3) and (input5 is mf6) then (output1 is mf3)  

Rule6: If (input1 is mf4) and (input3 is mf5) and (input4 is mf2) and (input5 is mf7) then 

(output1 is mf6)  

Rule7: 7. If (input1 is mf7) and (input2 is mf7) and (input3 is mf7) and (input4 is mf4) and 

(input5 is mf7) then (output1 is mf7)  

Rule8: If (input1 is mf2) and (input2 is mf3) and (input3 is mf4) and (input4 is mf7) and 

(input5 is mf7) then (output1 is mf8)  

Rule9: If (input1 is mf4) and (input2 is mf4) and (input4 is mf3) and (input5 is mf2) then 

(output1 is mf1)  

Rule10: If (input1 is mf4) and (input4 is mf4) and (input5 is mf6) and (input6 is mf7) then 

(output1 is mf2)  

Rule11: If (input1 is mf1) and (input2 is mf6) and (input3 is mf6) and (input4 is mf8) and 

(input5 is mf5) and (input6 is mf3) then (output1 is mf8)  
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Figure 6.16, 6.17, 6.18 present examples of the fuzzy rules resulted from applying the 

Proposed algorithm on the Data Set1, Data Set2, and Data Set3 respectively. 

 

 

 

 

 

 

 

 

 

  Figure 6.16. Fuzzy Rules of Proposed Algorithm for Data Set1 

 

 

 

 

Rule1: If (in1 is in1cluster4) and (in2 is in2cluster11) and (in6 is in6cluster15) then (out1 is 

out1cluster10)  

Rule2: If (in1 is in1cluster4) and (in2 is in2cluster9) and (in6 is in6cluster15) then (out1 is 

out1cluster12)  

Rule3: If (in2 is in2cluster9) and (in4 is in4cluster6) and (in5 is in5cluster17) then (out1 is 

out1cluster12)  

Rule4: If (in4 is in4cluster14) and (in5 is in5cluster13) then (out1 is out1cluster5)  

Rule5: If (in1 is in1cluster17) and (in2 is in2cluster10) and (in3 is in3cluster16) then (out1 is 

out1cluster4)  

Rule6: If (in1 is in1cluster2) and (in2 is in2cluster16) and (in4 is in4cluster14) and (in5 is 

in5cluster5) then (out1 is out1cluster4)  

Rule7: If (in1 is in1cluster3) and (in2 is in2cluster4) and (in6 is in6cluster2) then (out1 is 

out1cluster13)  

Rule8: If (in1 is in1cluster5) and (in3 is in3cluster15) and (in4 is in4cluster8) and (in5 is 

in5cluster8) then (out1 is out1cluster8)  

Rule9: If (in2 is in2cluster5) and (in4 is in4cluster7) and (in6 is in6cluster5) then (out1 is 

out1cluster7)  

Rule10: If (in1 is in1cluster17) and (in2 is in2cluster1) then (out1 is out1cluster7)  

Rule11: If (in4 is in4cluster7) and (in5 is in5cluster5) and (in6 is in6cluster2) then (out1 is 

out1cluster16)  

Rule12: If (in1 is in1cluster5) and (in2 is in2cluster12) and (in6 is in6cluster3) then (out1 is 

out1cluster11)  

Rule13: If (in1 is in1cluster11) and (in3 is in3cluster3) and (in4 is in4cluster1) and (in5 is 

in5cluster7) and (in6 is in6cluster9) then (out1 is out1cluster2)  

Rule14: If (in1 is in1cluster2) and (in5 is in5cluster13) and (in6 is in6cluster11) then (out1 is 

out1cluster9)  

Rule15: If (in2 is in2cluster5) and (in4 is in4cluster1) and (in5 is in5cluster11) then (out1 is 

out1cluster7)   

Rule16:  If (in2 is in2cluster17) and (in4 is in4cluster1) and (in5 is in5cluster2) then (out1 is 

out1cluster14)  

Rule17: If (in1 is in1cluster11) and (in2 is in2cluster17) and (in3 is in3cluster2) then (out1 is 

out1cluster10)  

Rule18: If (in1 is in1cluster15) and (in2 is in2cluster14) and (in3 is in3cluster1) then (out1 is 

out1cluster8)  
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    Figure 6.17. Fuzzy Rules of Proposed Algorithm for Data Set2 

 

 

 

 

 

    Figure 6.18. Fuzzy Rules of Proposed Algorithm for Data Set3 

The Average number of rules and terms for each of the Original algorithm and 

Proposed algorithm is presented in table 6.4 and 6.5. 

 

Rule1: If (input1 is mf1) and (input2 is mf1) then (output1 is mf4)  

Rule2: If (input3 is mf5) and (input4 is mf3) and (input5 is mf6) then (output1 is mf3)  

Rule3: If (input3 is mf2) and (input4 is mf4) and (input5 is mf5) then (output1 is mf6)  

Rule4: If (input3 is mf6) and (input4 is mf5) and (input5 is mf1) then (output1 is mf1)  

Rule5: If (input1 is mf4) and (input3 is mf4) and (input4 is mf7) and (input5 is mf6) then 

(output1 is mf7)  

Rule6: If (input2 is mf4) and (input3 is mf4) and (input4 is mf7) and (input5 is mf8) then 

(output1 is mf7)  

Rule7: If (input3 is mf6) and (input4 is mf4) and (input5 is mf3) then (output1 is mf4)  

Rule8: If (input1 is mf5) and (input2 is mf5) then (output1 is mf2)  

Rule9: If (input1 is mf3) and (input3 is mf6) and (input4 is mf4) and (input5 is mf6) then 

(output1 is mf1)  

Rule10: If (input3 is mf1) and (input4 is mf1) and (input5 is mf5) then (output1 is mf2)  

Rule11: If (input2 is mf4) and (input3 is mf1) and (input4 is mf1) then (output1 is mf7)  

Rule12: If (input1 is mf5) and (input4 is mf7) and (input5 is mf2) then (output1 is mf6)  

Rule13: If (input3 is mf1) and (input4 is mf5) and (input5 is mf7) then (output1 is mf5)  

Rule1: If (in1 is in1cluster9) and (in2 is in2cluster9) and (in3 is in3cluster3) then (out1 is 

out1cluster4)  

Rule2: If (in2 is in2cluster9) and (in3 is in3cluster1) and (in6 is in6cluster3) then (out1 is 

out1cluster4) 

Rule3: If (in3 is in3cluster3) and (in4 is in4cluster5) and (in5 is in5cluster7) then (out1 is 

out1cluster5) 

Rule4: If (in1 is in1cluster2) and (in4 is in4cluster2) and (in5 is in5cluster9) then (out1 is 

out1cluster9)  

Rule5: If (in1 is in1cluster8) and (in4 is in4cluster4) and (in5 is in5cluster2) and (in6 is 

in6cluster1) then (out1 is out1cluster6)  

Rule6: If (in2 is in2cluster6) and (in3 is in3cluster6) and (in6 is in6cluster2) then (out1 is 

out1cluster3)  

Rule7: If (in3 is in3cluster1) and (in4 is in4cluster8) and (in6 is in6cluster9) then (out1 is 

out1cluster8)  

Rule8: If (in2 is in2cluster3) and (in3 is in3cluster3) and (in5 is in5cluster4) then (out1 is 

out1cluster2)  

Rule9: If (in3 is in3cluster2) and (in4 is in4cluster6) then (out1 is out1cluster8) (1)  

Rule10: If (in1 is in1cluster5) and (in2 is in2cluster5) and (in4 is in4cluster4) and (in5 is 

in5cluster2) then (out1 is out1cluster7)  

Rule11: If (in1 is in1cluster9) and (in3 is in3cluster1) and (in4 is in4cluster2) and (in5 is 

in5cluster7) then (out1 is out1cluster6) 

Rule12: If (in1 is in1cluster6) and (in2 is in2cluster6) then (out1 is out1cluster5)   
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Table 6.4 

 Average number of rules of Original algorithm and Proposed Algorithm  

  Data Sets                         Original Algorithm                        Proposed Algorithm  

  Data Set1                                    13                                                    18 

  Data Set2                                    12                                                     14 

  Data Set3                                    12                                                     13            

  

Table 6.5 

Average number of Terms of Original algorithm and Proposed Algorithm  

  Data Sets                         Original Algorithm                        Proposed Algorithm  

  Data Set1                                 68                                                       56 

  Data Set2                                 55                                                       42 

  Data Set3                                 52                                                       40 

  

Noticing from the above tables, the average number of rules for the Proposed 

algorithm is higher than the Original algorithm. But at the same time, the average 

number of terms in each rule is lesser in the model using the proposed algorithm 

which depends on the mutual information that provides more information about the 

interactions among the features and between the features and classes, Figure 6.19, 

6.20 illustrates that. 
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 Figure 6.19. Comparison of Average Number of Rules between Proposed and       

Original Algorithms 

     

Figure 6.20. Comparison of Average Number of Terms between Proposed and 

Original Algorithms 
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For the average predictive accuracy, Table 6.6 illustrates the average predictive 

accuracy of ANFIS with the Original algorithm and Proposed algorithm, using fuzzy 

sets of 17-cluster for Data Set1, 9-cluster for Data Set2, and 8-cluster for Data Set3. 

Table 6.6  

Average Predictive Accuracy of ANFIS with Original Algorithm and Proposed 

Algorithm  

  Data Sets             Original Algorithm (%)                      Proposed Algorithm (%) 

  Data Set1                              66                                                   70 

  Data Set2                              75                                                   75 

  Data Set3                              76                                                   78    

The comparison of the average predictive for the two algorithms is presented in 

Figure 6.21.  

      

Figure 6.21. Comparison of Average Predictive Accuracy between Proposed and 

Original Algorithms 
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As illustrated in table 6.6 and figure 6.21, the average predictive accuracy of the 

algorithms are convergent, especially for Data Set2. For the complexity including he 

number of rules and terms as illustrated in table 6.4 and 6.5, and Figure 6.19 and 6.20, 

the Proposed algorithm has lesser terms in the rules than the other which means its 

interpretability is higher, whereas the Original algorithm has lessr number of rules 

than the other. 

For the comparison of the Proposed algorithm to other learning algorithms for NFS such as 

fuzzy clustering using FCM, grid partition algorithm. Figure 6.22, 6.23, 6.24 presents 

examples of fuzzy rules generated by the FCM algorithm for Data Set1, Data Set2, and Data 

Set3 respectively. 

 

 

 

 

 

 

 

 

 

 

Figure 6.22. Fuzzy Rules of FCM Algorithm for Data Set1 

Rule1: If (in1 is in1cluster1) and (in2 is in2cluster1) and (in3 is in3cluster1) and (in4 is in4cluster1) and 

(in5 is in5cluster1) and (in6 is in6cluster1) then (out1 is out1cluster1) 

Rule2: If (in1 is in1cluster2) and (in2 is in2cluster2) and (in3 is in3cluster2) and (in4 is in4cluster2) and 

(in5 is in5cluster2) and (in6 is in6cluster2) then (out1 is out1cluster2)  

Rule3: If (in1 is in1cluster3) and (in2 is in2cluster3) and (in3 is in3cluster3) and (in4 is in4cluster3) and 

(in5 is in5cluster3) and (in6 is in6cluster3) then (out1 is out1cluster3)  

Rule4: If (in1 is in1cluster4) and (in2 is in2cluster4) and (in3 is in3cluster4) and (in4 is in4cluster4) and 

(in5 is in5cluster4) and (in6 is in6cluster4) then (out1 is out1cluster4)  

Rule5: If (in1 is in1cluster5) and (in2 is in2cluster5) and (in3 is in3cluster5) and (in4 is in4cluster5) and 

(in5 is in5cluster5) and (in6 is in6cluster5) then (out1 is out1cluster5)  

Rule6: If (in1 is in1cluster6) and (in2 is in2cluster6) and (in3 is in3cluster6) and (in4 is in4cluster6) and 

(in5 is in5cluster6) and (in6 is in6cluster6) then (out1 is out1cluster6)  

Rule7: If (in1 is in1cluster7) and (in2 is in2cluster7) and (in3 is in3cluster7) and (in4 is in4cluster7) and 

(in5 is in5cluster7) and (in6 is in6cluster7) then (out1 is out1cluster7)  

Rule8: If (in1 is in1cluster8) and (in2 is in2cluster8) and (in3 is in3cluster8) and (in4 is in4cluster8) and 

(in5 is in5cluster8) and (in6 is in6cluster8) then (out1 is out1cluster8)  

Rule9: If (in1 is in1cluster9) and (in2 is in2cluster9) and (in3 is in3cluster9) and (in4 is in4cluster9) and 

(in5 is in5cluster9) and (in6 is in6cluster9) then (out1 is out1cluster9)  

Rule10: If (in1 is in1cluster10) and (in2 is in2cluster10) and (in3 is in3cluster10) and (in4 is 

in4cluster10) and (in5 is in5cluster10) and (in6 is in6cluster10) then (out1 is out1cluster10)  

Rule11: If (in1 is in1cluster11) and (in2 is in2cluster11) and (in3 is in3cluster11) and (in4 is 

in4cluster11) and (in5 is in5cluster11) and (in6 is in6cluster11) then (out1 is out1cluster11)  

Rule12: If (in1 is in1cluster12) and (in2 is in2cluster12) and (in3 is in3cluster12) and (in4 is 

in4cluster12) and (in5 is in5cluster12) and (in6 is in6cluster12) then (out1 is out1cluster12)  

Rule13:  If (in1 is in1cluster13) and (in2 is in2cluster13) and (in3 is in3cluster13) and (in4 is 

in4cluster13) and (in5 is in5cluster13) and (in6 is in6cluster13) then (out1 is out1cluster13)  

Rule14:  If (in1 is in1cluster14) and (in2 is in2cluster14) and (in3 is in3cluster14) and (in4 is 

in4cluster14) and (in5 is in5cluster14) and (in6 is in6cluster14) then (out1 is out1cluster14)  

Rule15:  If (in1 is in1cluster15) and (in2 is in2cluster15) and (in3 is in3cluster15) and (in4 is 

in4cluster15) and (in5 is in5cluster15) and (in6 is in6cluster15) then (out1 is out1cluster15)  

Rule16:  If (in1 is in1cluster16) and (in2 is in2cluster16) and (in3 is in3cluster16) and (in4 is 

in4cluster16) and (in5 is in5cluster16) and (in6 is in6cluster16) then (out1 is out1cluster16)  

Rule17:  If (in1 is in1cluster17) and (in2 is in2cluster17) and (in3 is in3cluster17) and (in4 is 

in4cluster17) and (in5 is in5cluster17) and (in6 is in6cluster17) then (out1 is out1cluster17)  
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Figure 6.23. Fuzzy Rules of FCM Algorithm for Data Set2 

 

 

 

 

 

 

Figure 6.24. Fuzzy Rules of FCM Algorithm for Data Set3 

The FCM algorithm has an acceptable number of rules but has low interpretability, 

were all the features and terms are included in each rule. 

For another method, Grid partitioning is a subjective approach, where the number of 

clusters into variable is segmented, is initially selected by the user. The number of 

Rule1: If (in1 is in1cluster1) and (in2 is in2cluster1) and (in3 is in3cluster1) and (in4 is 

in4cluster1) and (in5 is in5cluster1) and (in6 is in6cluster1) then (out1 is out1cluster1)  

Rule2: If (in1 is in1cluster2) and (in2 is in2cluster2) and (in3 is in3cluster2) and (in4 is 

in4cluster2) and (in5 is in5cluster2) and (in6 is in6cluster2) then (out1 is out1cluster2)  

Rule3: If (in1 is in1cluster3) and (in2 is in2cluster3) and (in3 is in3cluster3) and (in4 is 

in4cluster3) and (in5 is in5cluster3) and (in6 is in6cluster3) then (out1 is out1cluster3)  

Rule4: If (in1 is in1cluster4) and (in2 is in2cluster4) and (in3 is in3cluster4) and (in4 is 

in4cluster4) and (in5 is in5cluster4) and (in6 is in6cluster4) then (out1 is out1cluster4)  

Rule5: If (in1 is in1cluster5) and (in2 is in2cluster5) and (in3 is in3cluster5) and (in4 is 

in4cluster5) and (in5 is in5cluster5) and (in6 is in6cluster5) then (out1 is out1cluster5)  

Rule6: If (in1 is in1cluster6) and (in2 is in2cluster6) and (in3 is in3cluster6) and (in4 is 

in4cluster6) and (in5 is in5cluster6) and (in6 is in6cluster6) then (out1 is out1cluster6)  

Rule7: If (in1 is in1cluster7) and (in2 is in2cluster7) and (in3 is in3cluster7) and (in4 is 

in4cluster7) and (in5 is in5cluster7) and (in6 is in6cluster7) then (out1 is out1cluster7)  

Rule8: If (in1 is in1cluster8) and (in2 is in2cluster8) and (in3 is in3cluster8) and (in4 is 

in4cluster8) and (in5 is in5cluster8) and (in6 is in6cluster8) then (out1 is out1cluster8)  

Rule9: If (in1 is in1cluster9) and (in2 is in2cluster9) and (in3 is in3cluster9) and (in4 is 

in4cluster9) and (in5 is in5cluster9) and (in6 is in6cluster9) then (out1 is out1cluster9)  

Rule1: If (in1 is in1cluster1) and (in2 is in2cluster1) and (in3 is in3cluster1) and (in4 is 

in4cluster1) and (in5 is in5cluster1) and (in6 is in6cluster1) then (out1 is out1cluster1)  

Rule2: If (in1 is in1cluster2) and (in2 is in2cluster2) and (in3 is in3cluster2) and (in4 is 

in4cluster2) and (in5 is in5cluster2) and (in6 is in6cluster2) then (out1 is out1cluster2)   

Rule3: If (in1 is in1cluster3) and (in2 is in2cluster3) and (in3 is in3cluster3) and (in4 is 

in4cluster3) and (in5 is in5cluster3) and (in6 is in6cluster3) then (out1 is out1cluster3)   

Rule4: If (in1 is in1cluster4) and (in2 is in2cluster4) and (in3 is in3cluster4) and (in4 is 

in4cluster4) and (in5 is in5cluster4) and (in6 is in6cluster4) then (out1 is out1cluster4)  

Rule5: If (in1 is in1cluster5) and (in2 is in2cluster5) and (in3 is in3cluster5) and (in4 is 

in4cluster5) and (in5 is in5cluster5) and (in6 is in6cluster5) then (out1 is out1cluster5)  

Rule6: If (in1 is in1cluster6) and (in2 is in2cluster6) and (in3 is in3cluster6) and (in4 is 

in4cluster6) and (in5 is in5cluster6) and (in6 is in6cluster6) then (out1 is out1cluster6)  

Rule7: If (in1 is in1cluster7) and (in2 is in2cluster7) and (in3 is in3cluster7) and (in4 is 

in4cluster7) and (in5 is in5cluster7) and (in6 is in6cluster7) then (out1 is out1cluster7)  

Rule8: If (in1 is in1cluster8) and (in2 is in2cluster8) and (in3 is in3cluster8) and (in4 is 

in4cluster8) and (in5 is in5cluster8) and (in6 is in6cluster8) then (out1 is out1cluster8)  
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rules is determined by multiplying the number of clusters of each input variable. This 

introduces a dimensionality problem, as the number of variables increases the number 

of rules also increases, as real world classification problems usually involve many 

attributes. When we use K antecedent fuzzy sets for each attribute of an n dimensional 

classification problem, the total number of possible fuzzy if-then rules is K
n
, which is 

huge for a large value of n (Ishibuchi, Nakashima, & Morisawa, 1997). 

The grid partition provides the ANFIS with the fuzzy rules and membership 

functions, which the number of both should be determined by the user previously. 

Figure 6.25, 6.26, 6.27 presents examples of fuzzy rules generated by the Grid 

partition algorithm for Data Set1, Data Set2, and Data Set3 respectively. 

 

 

 

 

 

 

 

 

Figure 6.25. Fuzzy Rules of Grid partition Algorithm for Data Set1 

 

Rule1: If (input1 is in1mf1) and (input2 is in2mf1) and (input3 is in3mf1) and (input4 is 

in4mf1) and (input5 is in5mf1) and (input6 is in6mf1) then (output is out1mf1)   

Rule2: If (input1 is in1mf1) and (input2 is in2mf1) and (input3 is in3mf1) and (input4 is 

in4mf1) and (input5 is in5mf1) and (input6 is in6mf2) then (output is out1mf2)   

Rule3: If (input1 is in1mf1) and (input2 is in2mf1) and (input3 is in3mf1) and (input4 is 

in4mf1) and (input5 is in5mf2) and (input6 is in6mf1) then (output is out1mf3)   

Rule4: If (input1 is in1mf1) and (input2 is in2mf1) and (input3 is in3mf1) and (input4 is 

in4mf1) and (input5 is in5mf2) and (input6 is in6mf2) then (output is out1mf4)   

Rule5: If (input1 is in1mf1) and (input2 is in2mf1) and (input3 is in3mf1) and (input4 is 

in4mf2) and (input5 is in5mf1) and (input6 is in6mf1) then (output is out1mf5)   

Rule6: If (input1 is in1mf1) and (input2 is in2mf1) and (input3 is in3mf1) and (input4 is 

in4mf2) and (input5 is in5mf1) and (input6 is in6mf2) then (output is out1mf6)   

Rule7: If (input1 is in1mf1) and (input2 is in2mf1) and (input3 is in3mf1) and (input4 is 

in4mf2) and (input5 is in5mf2) and (input6 is in6mf1) then (output is out1mf7)   

Rule8: If (input1 is in1mf1) and (input2 is in2mf1) and (input3 is in3mf1) and (input4 is 

in4mf2) and (input5 is in5mf2) and (input6 is in6mf2) then (output is out1mf8)   

Rule9: If (input1 is in1mf1) and (input2 is in2mf1) and (input3 is in3mf2) and (input4 is 

in4mf1) and (input5 is in5mf1) and (input6 is in6mf1) then (output is out1mf9)  

  

  

  

Rule24137569: If (input1 is in1mf17) and (input2 is in2mf17) and (input3 is in3mf17) and 

(input4 is in4mf17) and (input5 is in5mf17) and (input6 is in6mf17) then (output is 

out1mf24137569)  
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   Figure 6.26. Fuzzy Rules of Grid partition Algorithm for Data Set2 

 

 

 

 

 

 

 

   Figure 6.27. Fuzzy Rules of Grid partition Algorithm for Data Set3 

Rule1: If (input1 is in1mf1) and (input2 is in2mf1) and (input3 is in3mf1) and (input4 is in4mf1) 

and (input5 is in5mf1) and (input6 is in6mf1) then (output is out1mf1)   

Rule2: If (input1 is in1mf1) and (input2 is in2mf1) and (input3 is in3mf1) and (input4 is in4mf1) 

and (input5 is in5mf1) and (input6 is in6mf2) then (output is out1mf2)   

Rule3: If (input1 is in1mf1) and (input2 is in2mf1) and (input3 is in3mf1) and (input4 is in4mf1) 

and (input5 is in5mf2) and (input6 is in6mf1) then (output is out1mf3)   

Rule4: If (input1 is in1mf1) and (input2 is in2mf1) and (input3 is in3mf1) and (input4 is in4mf1) 

and (input5 is in5mf2) and (input6 is in6mf2) then (output is out1mf4)   

Rule5: If (input1 is in1mf1) and (input2 is in2mf1) and (input3 is in3mf1) and (input4 is in4mf2) 

and (input5 is in5mf1) and (input6 is in6mf1) then (output is out1mf5)   

Rule6: If (input1 is in1mf1) and (input2 is in2mf1) and (input3 is in3mf1) and (input4 is in4mf2) 

and (input5 is in5mf1) and (input6 is in6mf2) then (output is out1mf6)   

Rule7: If (input1 is in1mf1) and (input2 is in2mf1) and (input3 is in3mf1) and (input4 is in4mf2) 

and (input5 is in5mf2) and (input6 is in6mf1) then (output is out1mf7)   

Rule8: If (input1 is in1mf1) and (input2 is in2mf1) and (input3 is in3mf1) and (input4 is in4mf2) 

and (input5 is in5mf2) and (input6 is in6mf2) then (output is out1mf8)   

Rule9: If (input1 is in1mf1) and (input2 is in2mf1) and (input3 is in3mf2) and (input4 is in4mf1) 

and (input5 is in5mf1) and (input6 is in6mf1) then (output is out1mf9)  

  

  

  

Rule531441: If (input1 is in1mf9) and (input2 is in2mf9) and (input3 is in3mf9) and (input4 is 

in4mf9) and (input5 is in5mf9) and (input6 is in6mf9) then (output is out1mf531441)  

 

Rule1: If (input1 is in1mf1) and (input2 is in2mf1) and (input3 is in3mf1) and (input4 is 

in4mf1) and (input5 is in5mf1) and (input6 is in6mf1) then (output is out1mf1)   

Rule2: If (input1 is in1mf1) and (input2 is in2mf1) and (input3 is in3mf1) and (input4 is 

in4mf1) and (input5 is in5mf1) and (input6 is in6mf2) then (output is out1mf2)   

Rule3: If (input1 is in1mf1) and (input2 is in2mf1) and (input3 is in3mf1) and (input4 is 

in4mf1) and (input5 is in5mf2) and (input6 is in6mf1) then (output is out1mf3)   

Rule4: If (input1 is in1mf1) and (input2 is in2mf1) and (input3 is in3mf1) and (input4 is 

in4mf1) and (input5 is in5mf2) and (input6 is in6mf2) then (output is out1mf4)   

Rule5: If (input1 is in1mf1) and (input2 is in2mf1) and (input3 is in3mf1) and (input4 is 

in4mf2) and (input5 is in5mf1) and (input6 is in6mf1) then (output is out1mf5)   

Rule6: If (input1 is in1mf1) and (input2 is in2mf1) and (input3 is in3mf1) and (input4 is 

in4mf2) and (input5 is in5mf1) and (input6 is in6mf2) then (output is out1mf6)   

Rule7: If (input1 is in1mf1) and (input2 is in2mf1) and (input3 is in3mf1) and (input4 is 

in4mf2) and (input5 is in5mf2) and (input6 is in6mf1) then (output is out1mf7)   

Rule8: If (input1 is in1mf1) and (input2 is in2mf1) and (input3 is in3mf1) and (input4 is 

in4mf2) and (input5 is in5mf2) and (input6 is in6mf2) then (output is out1mf8)   

Rule9: If (input1 is in1mf1) and (input2 is in2mf1) and (input3 is in3mf2) and (input4 is 

in4mf1) and (input5 is in5mf1) and (input6 is in6mf1) then (output is out1mf9)  

  

  

  

Rule262144: If (input1 is in1mf8) and (input2 is in2mf8) and (input3 is in3mf8) and (input4 is 

in4mf8) and (input5 is in5mf8) and (input6 is in6mf8) then (output is out1mf262144)  
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The Grid partition algorithm takes in its rules all the possible conditions but at the 

expense of its simplicity and interpretability.  

Table 6.7, 6.8 shows the average number of rules of the Proposed algorithm and each 

of the Grid partition and FCM algorithm respectively. 

Table 6.7 

Average Number of Rules of Grid Partition and Proposed Algorithm  

  Data Sets                         Grid partition                        Proposed Algorithm  

  Data Set1                            24,137,569                                       18 

  Data Set2                            531,441                                            14 

  Data Set3                            262,144                                            13  

  

Table 6.8 

 Average Number of Rules of FCM and Proposed Algorithm  

  Data Sets                            FCM                        Proposed Algorithm  

  Data Set1                             17                                     18 

  Data Set2                              9                                       14 

  Data Set3                              8                                       13 

  

The below Figure 6.28 shows a comparison between the four algorithms including the 

average number of rules for the 3 data sets. For a more clear comparison, the Figure 

6.29 compares between the three algorithms without the Grid Partition Algorithm.          
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Figure 6.28. Comparison of Average Number of Rules for Four Algorithms 

    

Figure 6.29. Comparison of Average Number of Rules for Three Algorithms 

Table 6.9, 6.10 shows the average number of terms in the rules of the proposed 

algorithm and each of the Grid partition, and FCM algorithms respectively. 
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Table 6.9 

Average Number of Terms of Grid partition and Proposed Algorithm  

  Data Sets                         Grid partition                        Proposed Algorithm  

  Data Set1                            410,338,639    56 

  Data Set2                            4,782,969    42 

  Data Set3                            2,097,152    40 

  

Table 6.10 

 Average Number of Terms of FCM and Proposed Algorithm  

  Data Sets                              FCM                        Proposed Algorithm  

  Data Set1                               289                                      56 

  Data Set2                                81                                      42  

  Data Set3                                64                                       40 

  

Figure 6.30 shows a comparison between the three algorithms including the average 

number of terms for the 3 data sets. For a more clear comparison, Figure 6.31 

compares between the Proposed algorithm and the FCM algorithm. 
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  Figure 6.30. Comparison of Average Number of Terms for Four Algorithms 

   

   Figure 6.31. Comparison of Average Number of Terms for Three Algorithms 

From the above tables and figures, we can notice that the proposed algorithm has 

number of rules higher than other algorithms except for the grid partition algorithm, 

but it has less attributes from all of them even though if not that difference except for 

grid partition algorithm. 
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Table 6.11 illustrates the average predictive accuracy of ANFIS with Grid partition 

and proposed algorithm, using fuzzy sets of 17-cluster for Data Set1, 9-cluster for 

Data Set2, and 8-cluster for Data Set3. 

Table 6.11  

Average Predictive Accuracy of ANFIS with Grid Partition and Proposed Algorithm  

  Data Sets                     Grid Partition (%)                      Proposed Algorithm (%) 

  Data set1                                  78                                                      70 

  Data set2                                  80                                                      75       

  Data set3                                  85                                                      78 

 

Table 6.12 illustrates the average predictive accuracy of ANFIS with FCM and 

proposed algorithm, using fuzzy sets of 17-cluster for data Set1, 9-cluster for data 

Set2, and 8-cluster for Data Set3. 

Table 6.12  

Average Predictive Accuracy of ANFIS with FCM and Proposed Algorithm  

  Data Sets                         FCM (%)                        Proposed Algorithm (%) 

  Data et1                               69                                           70 

  Data set2                               73                                           75 

  Data set3                               74                                           78 
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Figure 6.32 presents the average predictive accuracy of the four algorithms for the 

three data sets. 

    

Figure 6.32. Comparison of Average Predictive Accuracy for Four Algorithms 

According to the above tables, we notice that the average predictive accuracy of the 

proposed algorithm is higher than the FCM and Original algorithm, but less than the 

grid partition algorithm. The grid partition usually gives higher accuracy than other 

algorithms because it takes in its rules all the possible conditions but at the expense of 

its simplicity and interpretability where can be noticed from table (6.7) and table 

(6.9), the huge number of rules and terms. 

It is a matter of trade-off between the accuracy and interpretability of the models. 
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6.5 Summary 

This chapter had proposed a hybrid algorithm based on GA based FBC with MI to 

discover classification rules from data in order to build the FIS for the ANFIS. The 

GA acts as a local search algorithm in order to discover a good quality rule.  

This chapter uses GA as the Learn-One-Rule function to extract rules from data sets. 

In order to improve the rule‘s quality, the proposed algorithm uses FBC with MI for 

terms selection while building the rule. The proposed algorithm used a simple 

heuristic that takes the relationship between terms into account, while selecting terms 

for growing a rule. Moreover, this chapter also proposed a fitness function to evaluate 

the rule from various criteria. Besides, the proposed algorithm will not fix the class 

before selecting terms in order to improve the rule's predictive accuracy. 

This chapter compares the performance of the proposed algorithm to the original GA 

based FBC, fuzzy clustering with FCM, and grid partition algorithm concerning the 

predictive accuracy, and found to be competitive with them. Moreover, the 

experiments in this chapter found that the rules discovered by the proposed algorithm 

were simpler that the compared algorithms. Therefore, MI is able to help FBC 

produce simpler rules by aiding in the feature selection and rule extraction and 

performing it in a simpler way by applying simultaneously, even though the 

predictive accuracy is only at par with other algorithms compared with.  
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CHAPTER SEVEN 

CONCLUSION AND PERSPECTIVES 

 

7.1 General Discussion 

This research workout on the limitation of constructing FRBS from human expert, 

employing the expert knowledge to describe variables that are the most influential, 

and utilising them in a few basic rules. The methodology was found unsuitable for 

dealing with intricate systems in cases where the expert knowledge is inadequate. It is 

difficult for an expert to formalise the interaction among many variables.   

Generally, the main objective of the research is towards designing a feature selection 

and rule extraction algorithm that is based on a Genetic Algorithm-Based Approach 

using information theoretic properties. These important requirements should be 

satisfied by the new algorithm: one, reduction of the complexity of FRBS by reducing 

fuzzy rules as well as rule attributes, and two, increase of FBRS‘ predictive accuracy. 

In coming up with the new algorithm, these particular objectives should be reached:  

 simultaneous application of feature selection and rule extraction;  

 design of a FBC classifier-based MI;  

 generation of a multi-objective evaluation function and the reduction of its 

complexity.  

The evaluation of the new algorithm‘s strength was made through a verification of 

NFS using engine AFR prediction data.  
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This research study‘s methodology has three phases:  

 data gathering; 

 formulation of algorithm for rule extraction and feature selection; and 

 model evaluation.  

7.2 Research Achievement 

Summarised below are all the study objectives, which have been achieved 

successfully:  

 Objective 1: To produce fuzzy rules from data without the need of expert.  

The use of multi-objective GFS for this study has been suggested. Executing 

this objective generated the search space for constructing the FRBS from 

sensor data. The results are duly presented in Chapter 6.  

 Objective 2: To enhance the feature selection and rule extraction approach.  

A simultaneous application of the feature selection and rule extraction 

algorithms using Bayesian classifier-based MI was conducted and described in 

Chapter 5.  The results are presented in detail in Chapter 6. 

 Objective 3: To improve the evaluation function by reducing its intricacy.  

 Using the Composition method, the evaluation function was developed 

successfully. By discarding the weights, its complexity was reduced. The 

algorithm is shown in Chapter 5 while the execution results are presented in 

Chapter 6. 

 Objective 4: To assess the NFS -based generated fuzzy RB. 
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The final system summarised in the NFS underwent evaluation for its 

complexity and accuracy using the engine AFR ratio data. The results can be 

seen in Chapter 6. 

7.3 Contributions  

This research has three key contributions. First is, for the AFR ratio prediction 

problem, the automatic extraction of fuzzy rules from the sensor data without using 

the help of experts. This contributed in the prediction of a complex system (i.e. as 

automobile engines). This, in turn, generates a number of achievements, such as 

precise predictions which will help in controlling automobile emissions and in 

reducing one of the causes of pollution; minimisation of the risk of expensive engine 

damage and ensuring peak engine performance; and improvement of fuel efficiency 

and contributing in fuel economy. 

The second contribution lies not only in finding an optimal rule for classification but 

in selecting a set of useful features which may provide the solution to the 

classification problem. For this, we offered an integrated mechanism for the purpose 

of simultaneously extracting fuzzy rules and selecting useful features.  

The third contribution is towards building a minimal set of rules with a similarly 

minimal set of terms (i.e. fuzzified variables) towards classifying the observations. 

Decreasing the number of rules is intended to increase the FIS‘ generalisation ability, 

while, at the same time, keeping the FIS compact. 

An additional contribution is the use of the complement mutation scheme with the 

uniform crossover; this seems to minimise the errors during a best-case scenario. This 
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scheme maintains adequate genetic diversity within the population towards exploring 

the universe of discourse, while, at the same time, entirely utilising the local search so 

as to make a convergence on the optimal solution. 

7.4 Limitation 

The study has been undertaken in order to address the problems of accuracy and 

complexity. While the question of speed has not been addressed, this will be the focus 

of a future project. 

7.5 Recommendations for Future Work 

In this study‘s conclusion, several recommendations for future work are presented. 

Although this research has demonstrated that the proposed algorithm can reduce the 

intricacy and enhance the fuzzy rule-based system‘s predictive accuracy, further 

research needs to be conducted towards enhancing or supporting the proposed 

algorithm. Suggestions include the following:  

 The use of the multi-objective cooperation-co-evolutionary techniques. 

These techniques are founded on the observation that dividing intricate 

tasks into subtasks may be helpful towards concentrating the search space 

exploration around useful niches and towards preventing loss of diversity 

in the population. Because the cooperative co-evolutionary approach 

designates an isolated species to each subtask, the division or splitting 

should take care of the existing dependencies that occur among the 

subtasks. Such dependencies are typically critical to fitness assessment. A 
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problem is provided with complete solutions through coupling individuals 

from different species. Therefore, during the evolution, cooperation among 

the species is achieved through representatives that are used in assessing 

the fitness of complete solutions. At the algorithm‘s conclusion, a set of 

FRBSs with different trade-offs between the different objectives is 

obtained by a combination of all possible RBs. 

 Different partitioning of each input attribute to enhance the concept of 

interpretability. Using the same number of clusters for all the inputs will 

increase the dimensionality which increases the complexity and decreases 

the interpretability.  
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