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Abstrak

Model abakus telah digunakan secara meluas untuk mewakili pemetakan bagi sebarang
integer positif. Walau bagaimanapun, tiada kajian yang telah dilakukan untuk mem-
bangunkan manik abakus terkait dalam perwakilan bergraf bagi objek diskrit. Untuk
mengatasi masalah keterkaitan, kajian ini tertumpu kepada pencirian n-objek terkait
yang dikenali sebagai n-omino terkait, seterusnya menjana abakus rantai tersarang.
Selanjutnya, sifat konsep teori bagi abakus rantai tersarang dibangunkan. Di samping
itu, tiga jenis penjelmaan berbeza yang penting dalam pembinaan famili kelas turut di-
hasilkan. Fungsi penjana turut dirumuskan berdasarkan kelas ini dengan menggunakan
pengangkaan objek kombinatorik (ECO). Dalam kaedah ECO, setiap objek diperoleh
daripada objek yang lebih kecil dengan membuat pengembangan setempat. Pengem-
bangan setempat ini dihuraikan dengan cara yang mudah melalui petua turutan. Kemu-
dian petua turutan boleh diterjemahkan menjadi persamaan fungsian untuk fungsi pen-
jana. Kesimpulannya, kajian ini berjaya menghasilkan perwakilan bergraf baru bagi
abakus rantai tersarang yang dapat diaplikasikan dalam grid terhingga penjubinan.
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Abstract

Abacus model has been employed widely to represent partitions for any positive
integer. However, no study has been carried out to develop connected beads of
abacus in graphical representation for discrete objects. To resolve this connectedness
problem this study is oriented in characterising 7 - connected objects knows as n
connected ominoes, which then generate nested chain abacus. Furthermore, the
theoretical conceptual properties for the nested chain abacus are being formulated.
Along the construction, three different types of transformation are being created that
are essential in building a family of classes. To enhance further, based on theses
classes, generating functions are also being formulated by employing enumeration of
combinatorial objects (ECO). In ECO method, each object is obtained from smaller
object by making some local expansions. These local expansions are described in a
simple way by a succession rule which can be translated into a function equation for
the generating function. In summary, this stud has succeeded in producing novel

graphical representation of nested chain abacus, which can be applied in tiling finite
grid.

Keywords: abacus, partition, n-connected omnioes, generating function
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CHAPTER ONE
INTRODUCTION

1.1 Introduction

The theory of partition is a fundamental area of number theory, it is concerning the
representation of integer as sum of other integers. The theory of partition has been
applied in many different areas such as combinatorics, statistical and particle physic.
The partitions can be graphically represented with diagrams such as Ferrers diagram
and Young diagram. Agraphical representation of partition is important in the partition
theory because it can design and facilitate a visual structure of any shape in the form
of discrete object. Henceforth, this thesis focuses on the use of graphical illustration of
partition to develop a new design structure of connected ominoes. The beauty of this

construction is further extended to be used in tiling fnite grid.

1.2 Graphical Representation of Partition

Diagrams are used to represent a partition of any positive integer. Since 1800s, the
famous diagrams are the Ferrers diagram and the Young diagram (Benjamin & Quinn,
2003; Hardy & Wright, 1979). On the other hand, a James diagram or known as e-
abacus uses a B-number to represent a sequence of non-decreasing integer numbers
(Gyoja et al., 2010). Next, the concept of partition and graphical representation of the

partition are reviewed.

Definition 1.2.1. (Andrews, 1998) A partition of a positive integer, t, is a finite non-
n

increasing sequence of non-negative integers (L1, W,y Wn) Such that z w; = tand
i=1
n is the number of parts of any partition.

Example 1.2.2.(5,3,3,2,1),(5,5,2,2),(6,4,2,1,1),- -+ are partitions of t = 14.

Ifu=1(,,3,3,2,1), thenn = 5.



Normally, for repeating parts in a partition of the integers number exponent is used.
So, (5,3,3,2, 1) can be written as (5, 32,2, 1).
Partitions can be represented graphically in several ways, such as: Ferrers diagram,

Young diagram and abacus.

1. Ferrers Diagram: named after a 19 century British mathematician, Ferrers

(Carroll, 1867). This diagram represents a partition as patterns of dots, with the

h

m" rows having the same number of dots as the m" terms in the partition. The

graphical representation of the partition (5, 3, 3, 2, 1) is shown in Figurel.1.

Figure 1.1. Partition u = (5,3, 3,2, 1) in Ferrers diagram

2. Young Diagram An alternative visual representation of an integer partition,

named after a 20" century British mathematician, Alfred Young (Young, 1934).
Rather than representing a partition with dots, as in a Ferrers diagram, a Young

diagram uses boxes or squares to represent graphically the partition. An example

for the partition (5, 3, 3,2, 1) is shown in Figure 1.2.

Figure 1.2. Partition u = (5,3, 3,2, 1) in Young diagram



A Young diagram is also known the Ferrers diagram, particularly when representing
using dots (Stanton & White, 1986; Abramovich, 2012). Thus, these two diagrams
are always known as the Ferrers-Young diagram or as the Young-Ferrers diagram.
Young diagram plays an important role in the drafting of the first step of many types of
algebras particularly significant role in classifying the block of g-schur algebra and
specific composition of positive integer numbers in which the sum is a non nega-
tive integer called z. Furthermore, Young diagram can represent the conjugate of the
partition in a simple way. The conjugate of a partition is the partition that one obtains
by merely changing the rows with columns of diagram (De Hoyos, 1990). Consider

Example 1.2.1, the conjugate of the partition of u = (5,3,3,2, 1)isp* =(5,4,3,1, 1),
which is illustrated by the following Figure 1.3.

Figure 1.3. The conjugate of the partition of u = (5,3, 3,2, 1)

In addition, Young diagram provides a shortcut to find hook length p ; of column &
and row j from the diagram where

W ; = the number of the boxes that are in row j to the right of n; ; + the number of the
boxes in column & below p; ; + 1.

While the hook length formal is

W=k, —k+ =+ 1



where ¢” is a conjugate of partition ¢ and

Mg o= {0 >k}

for 1 & k £ b (Mathas, 1999),
Consider Examnple 1.2.1 Table 1.1 illustrates how to find the hook length p; of first

column using the Young diagram and the hook length formal t;; =7..



Table 1.1

Hook length ny j of first column

Partition

Young diagram

Formal

Without zero
(4,3,L,1)

With zero
(4,3,1,1,0)

|

The hook length of first
column
7[ ]

5
12|
|1]

M1 = {M11, M21, U316
M1}

={7,5,2,1}.

1

The hook length of first
column

‘l—“N (S2RIRN]

k1 = {H11, H21, U31,
Ma1}

={7,52,1}.

0" = (42.2,1).
2-pikr = {M11, H21, U315 Hax)
={7,5,2,1},
where
i = —1+pui—-1+1=7,
H1 = H2 —1+puj—2+1=05,

‘U31=ﬂ3_1+‘ui—3+1:2,

1
Usn=psa—1+pu—4+1=1.

1-p"= (5,32,2,1).
2-p1 = {M11, U21, U31, Ma1, Ms1}
={8,6,3,2,0},
where
pu=m —1+p—1+1=3,
o1 =M —1+pi—2+1=6,
pzr =p3 —1+p;—3+1=3,
Har = —1+py—4+1= 2,

Ms1 =pus —1+puy—5+1=0.

Based on the Table 1.1 the Young diagram can not be used to represent the conjugate of
the partition with one or more zeros then, it is necessary to extend represents partition

idea to the case where partition any positive number has some zero parts. A new model
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called James abacus was constructed by using the theory of abaci (James, 1978).

1.2.1 James Abacus

At first, James depended on Young diagram to obtain abacus diagrm. To understand

how James derived abacus diagram, the concept of rim shall be explained.

Definition 1.2.3. (Fulton, 1997) A rim hook is a connected series of boxes of a Young
diagram which located on the lower-right edge of a partition which produces a valid

Young diagram when removed.

In Figurel .4, the boxes marked with stars are a rim.

il

Figure 1.4. Rim location in Young diagram where p = (5,3,3,2,1)

By examining the Young diagram, James (1978) introduced a diagram with non -
increasing positive integer numbers of which its sum is a positive integer number.
In the beginning James employed the rim hook idea for the construction of abacus
diagram. The representation of partition p in the James abacus can be obtained by
considering the partition p in a Young diagram and starting from the south-west
corner with ’-” along its rim hook, towards the north-east corner. As the rim goes
up pot o’ and goes right, ’-’ is placed (James, 1987).

Thus, using the ’o’ for bead position and ’-’ for empty bead position, Figure 1.4 can

be transferred as seen in Figure 1.5. In order to find the James diagram of the partition



(5,3,3,2,1), arim hook in the Young diagram needs to be found as observed in Figure

1.5.

o|-[-]

Figure 1.5. Transformation of the rim location to bead and empty bead positions in
the Young diagram where p = (5,3,3,2,1)

Then, by taking rim hook from the bottom to the up and right of the corner, a sequence
of bead and empty bead positions is obtained. After that, 0o’ must be put at the end of
the sequence as depicted as follows:

-0-0-00--0.

James introduced an additional property when there exists e, where e is the number
of the abacus columns. Initially, James consider e as a prime number and then Fayers
assume e as any positive integer number greater than or equal to 2 (Fayers, 2007). For
instance, if we arrange the above sequence into two columns, it is represented as shown

below.

1
© © O

Figure 1.6. James diagram when u = (5,3,3,2,1),e = 2

If the Figure 1.6 is rearranged in 13 columns, then the diagram will consist of one row
and is represented by

-0-0-00--0.



Later, James found a quick way to construct his abacus using a set of decreasing
numbers called Beta numbers (B-number). Therefore, a set for a new abacus is

defined in next section.

1.2.2 Beta Number

James found another way to represent abacus diagram by placing a bead at position of

-number.

Definition 1.2.4. (Littlewood, 1951) A set of non-increasing of positive integers

{B1, P2, B3, * -, Bt is called P -number such that p; = w; + b — i where 1 < i < b

and b is greater than or equal to the number of the parts of |.

Example 1.2.5. Consider u = (5, 3, 3, 2,1) in Example 1.2.2 then, B - numbers of u
are given as follows.

Bi=w+b—1=5+5-1=9,

=M +b—2=3+5-2=6,

By = 3+ h=32=3+5-3=5

Ba=patb—4=2+5-4=3

Bs=us+b—5=1+5-5=1,

then B -number is {9,6,5,3,1}.

Different B -number generates different abacus.

There is a suitable way of arranging -numbers to each partition as an abacus with
e columns such that e @ 2. Therefore, the definition of abacus will be given as a

preliminary step towards the James abacus.

An abacus refers to a counting frame that has been in use since centuries before the

modern numeral system was adopted as a calculating tool. Aabacus are usually built



as a bamboo frame with beads sliding on wires. It manually enhances the calculation

consisting of up-down movable beads on sticks, as demonstrated Figure 1.7.

Bead position

Empty bead‘@on

(1]
>
®

Figure 1.7. Abacus

We can associate to each partition an abacus diagram, this consist of columns which

equal to e, numbered from left to right 0, 1, 2, - - - e— 1 and positions on the abacus are

numbered from right to left, working from top row to down, starting with 0, as shown

in Figure 1.8.

0 1 e— 1
e e+ 1 2e—1
2e 2e+1 3e—1
3e 3e+1 4e—1

Figure 1.8. Abacus diagram

Figurel.9 gives an example of a James abacus when e = 3 and e = 4.

AN LW O
NCRN NG
®© L N

0 1 2
4 5 6
g8 9 10

3

11

Figure 1.9. Abacus diagram fore = 3 and e = 4

The next step is to place the beads on the abacus in the corresponding positions where

any B-number will represent a bead. Consider Example 1.2.5 where B-numbers are

9



{9, 6, 5, 3, 1} so the position 1, 3, 5, 6,9 are bead positions. Any bead can be

represented as (0), while another empty bead position can be represented as (-).

1
© © O

© © o !
! ]

1 1

Figure 1.10. James abacus for partitioned u = (5,32,2, 1) when (a) e =2 and (b) e =3

The total elements of any non-increasing sequential of positive integers is a positive
integer that does not change when a zero or any number of zeros is added to the
sequence, but the B-number of any sequence will change when a zero or more is added.
Thus, every partition can be represented by finite in a James abacus by adding zeros in

the partition (James et al., 2006). Consider Example 1.2.5, then

e Ifp=1(5,3,3,2,1) then p is a partition of 14 of b; = n = 5 where - number
={9,6,5,3, 1}.

e Ifu=24(53,3,2,1,0) then p is a partition of 14 of b, = b+ 1 = 6 where p -
number = {10,7,6,4,2,0}.

e Ifpn=2(53,3,2,1,0,0) then u is a partition of 14 of b3 = b+ 2 = 7 where B -
number = {11,8,7,5,3,1,0}.

The idea of a James abacus was based on the idea of an abacus which can easily
distinguish the change of the places of the beads’ position to which they belong and
also the possibility of changing the order of the columns of the abacus. This feature

has attracted many researchers to apply some of the beads’ move.

10



1.2.3 James Abacus Development

About 20 years after James abacus was introduced, (James et al., 2006) established
the abacus by adding one empty column to the James abacus called (e + 1)-abacus. It
was proven in a theorem related to the determination of the decomposition numbers
for any e where e is a prime positive integer greater than or equal to 2. James and
Mathas investigated several relationships between the original and the new partition.
Fayers (2007) contracted a similar theorem but different weight of partition by adding
full column to the James abacus. Furthermore, a procedure was described to remove a

column from the James abacus to find a new abacus.

The parallelism idea of the previous theorem was used by considering of a finit
composition of weight of the partition (Fayers, 2009). Fayers (2010) expands the use
of the James abacus to compute the e-regularisation of a partition by implementating
another movement. This movement is considered to be more complicated than the
previous movement. A bead moving from b; to by—. and a bead from S;—. to by,
k=1, ..., ¢, where positions b;_. and S are empty beads while positions b;—, and Sy
are beads as long as the volume 1, ..., c is in order. The literature on James abacus
shows the construction of a variety of diagrams based on the movement of the bead
positions of James abacus, such as a work by Wildon (2008) how discovered a new
way to find the conjugate of any partition by reflecting James abacus in its leading

diagonal.

Afterwards Loehr (2010) constructed diagram W™ via move a set of beads which called
scan movement. In this movement the beads will be moving one step to the right,
then either a bead collides with another bead or no bead collision occurs. In case no
bead collision occurs Abacus W™ used to proof the three pieri rules. Scan movement

was the development in the case the bead jumps & positions to the right, which used

11



to prove the combinatorial definition of Schur polynomials equivalent the algebraic
definition of Schur polynomials (Loehr, 2011). Another movement of the bead to give
a combinatorial proof of a plethstic generalization of the Murnaghan-Nakayama rule
called single-step bead move. In this movement, all bead positions will be changing
locations from position 8 to position 8 — e above it in the same column such that

B —e < 0and B — e is empty bead position (Wildon, 2014).

Tingley (2008) place all beads on the horizontal axis and then moves one bead exactly
steps to the right in the corresponding row of beads, possibly jumping over other beads.

Then, he put the beads into groups and rotating each group 90 degrees anticlockwise.

Meanwhile, Mahmood (201 1) defined the main diagrams from a James abacus which
give a new direction of study on James abacus. The work of Mahmood has been an
eye opener for researchers to find main diagrams by applying movement in - number

in several translations in the James abacus beads to establish a new abacus.

The first of the translation is Upside Down. In this translation, the diagram is reflected
in the line x and denoted as A". The order of the James abacus rows will change as
follows:

Rows numbered j in the original diagram become rows numbered (m — j4 1) in new
abacus diagram while rows numbered (m — j+ 1) in the original abacus diagram
become rows numbered j in new abacus diagram. If r is odd, then rows numbered

r+1 . - . F-1
in the original abacus diagram become rows numbered

in the new abacus

diagram (Mahmood & Ali, 2013a) where r is the number of the abacus diagram rows

and m=1,2,....r such that

(-

if riseven,

| b =

m=
|

r

125

5 if risodd.
12



0 1 A

e €+1 . . ; Ze_l

2e 2e+1 e s 3e—1

me me +1 o |
James diagram

me me+1 - - - pre—1

2e 2e+1 '

€ . . . 36_1

e e+ 1 |

0 1 e— 1
DiagramAI

Figure 1.11. Upside down

The second translation is right side-left. In this translation, the abacus diagram will

be reflected in the line y and denoted as A" The order of the column in the original
abacus diagram will changed as follows:

Column numbered  in the original abacus diagram becomes column numbered

(e —r+1) in new abacus diagram, where e 22 andr = 1,2, .., (e — 1) (Mahmood &

Ali, 2013c).

13



0 1 e-2 e-1 e-1 e-2 1 0
e e+l. 2e-2 2e-1 2e-1 202 e+l e
2e 2e+1 . 3e-2 3e-1 3e-1 3e-2 De +1 2e
3¢ 3e+1 . 4e-2 4e-1 de-1 de-2 3¢ +1 3e
me me+1 . (m+1)e-2 (m+1)e-1 (m+De-1 (m+1)e=2 . . metl me
James diagram K Diagram 4’
Reflected in the line y

Figure 1.12. Right side-left

The third translation involves the direct rotation of - number by considering different
degrees, namely 90°, 180 and 270° on the original James abacus. For 90°, the new
abacus diagram is denoted by 4°°, for 180° the new abacus diagram is denoted as 4'%°

and for 270°, the new abacus diagram is denoted as A27O, as follows:

e Diagram 4°° is achieved by rotating the James abacus 90 degrees anticlockwise.
In this case, the positions in the column /4 and row £ in the James abacus become
the positions in row (#—/% + 1) and column & in diagram 4°° where h = 1,2, - -, e
andk=1,2,---,r.

o Diagram A'®" is achieved by rotating the James abacus anticlockwise 180
degrees. In this case the positions in row y and column w in the James
abacus become positions in row ¥ — y + 1 and column (e — w + 1) in the

A180

Diagram wherew=1,2,..,eandy = 1,2,..,r.

¢ Diagram A%% is achieved by rotating the James abacus anticlockwise 270
degrees. In this case, the positions in row y and column w in original abacus

14



diagram become positions in row y and column (e—w + 1) in the Diagram 4>7°

wherew = 1,2,..,eandy=1,2,..,r.

S
¢ e+l .. . 2e—1
e Zet L 3em
re re+1
re—1
James diagram
e—1 .o : re—1 0 . . - e—1
. 1 ) . - re+1
; ' 1
0 - @ Ce =l re=
Diagram 4 Diagram 4
re— 1 re+1 re
3e=1 2e+1 C 3e-1
2e. 1 e4+1 _ ' 2e 1
e—1 , , , 1 0
. 270
Diagram 4

Figure 1.13. Direct rotation

Fourthly, the upside down and direct rotation translations are found in three abacus
diagrams 4!, 42 and 4> this translation is composed of upside down and direct rotation

applications of three different degrees namely, 90°, 180°, 270° as follows:

1 th 0
e Diagram A4 , is achieved by applyingthe 4 translation in 90 anticlockwise, in

which the position in row p and column L in the original abacus diagram become

15



row L and column p in abacus diagram A" where p=1,2,,eandL =1,2,---,r.

e Diagram A? is achieved by applying the 4™ translation in 180° anticlockwise;

in this case, column number p in the James abacus is converted into column

number e— p + 1 in abacus diagramA2 wherep=1,2,---,eandL=1,2,---,r.

e Diagram A% is achieved by applying the 4™ translation of 270° anticlockwise.

In this case, all positions located in row number s and column number c in the
original abacus diagram are converted into column numbered (e—s + 1) and row

(r— ¢+ 1) in abacus diagram 4> wheres = 1,2, .., randc = 1,2, , e (Mahmood

& Ali, 2013b).

The fifth movement will be exchanged with the rows by a fixed value y, respectively,

to find diagram A, . This moment is applied if y = 1,2, 3, ... (Sami, 2014).
King (2014) found a new diagram by applying Brauer algebra on James abacus along

with consideration of the Temperley-Lieb algebra. A summary of the James abacus

development is presented in Table 1.2
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Table 1.2

A summary of the James abacus digram development by applying several movement

Author- Movement Name of di- Advantage
year agram

1 James et Addempty col- etl-abacus Determination of decompositio
al-2006 umn number for any e in weight three.

2 Fayers- Add full column  etk-abacus The decomposition number for an
2007 e in weight four are determined.

3 Wildon- Reflecting inits ~ Conjugate = The conjugate of any partition wa:
2008 leading diagonal  diagram found.

4  Fayers- Removing a col- k- abacus  Determined the decompositio
2009 umn numbers for any e with infinit

composition of weight.

5 Wildon- single-step Give combinatorial proof of
2014 plethystic generalization of tt

MurnaghanNakayama rule.

6 (Mahmood, Upside down Diagram A" The James diagram of b, was
2013) proved and this played a major rol

to find all guides partition.

7 Mabh- Right side Left Diagram A" Proof James diagram of b, and th:
mood& played a vital role to finding all
Ali-2013 guides partition.

8 Mah- Direct rotation in Diagram James diagram of b; was prove
mood& line x by 90 Al 4% 43 and advantageous in finding a
Ali-2013 180°, 270° guides partition.

9 Mah- Directrotation in Diagram James diagram of b, played a majc
mood& line y by 90°, 4%, A" roleto find all guides partition.
Ali-2013 180°, 270° A*70

10 Mah- Change rows Diagram 4, Help the managers to program th
mood& distribution of workers during a
Ali-2014 limited time.

11 King-2014

Brauer algebra

Find the number of permutation.

17



1.2.4 Advantages of James Abacus

The advantages of James diagram compared to a Young and Ferrers diagrams are as

follows:

e [t gives the quickest way of finding the first column hook lengths. In addition,
every partition can be represented by infinite abacus diagrams (James, 1978).

e Useful to draw e-core of a partition. Furthermore, can be displayed to find
addable and removable beads position (Fayers, 2007).

¢ Can be used to classify blocks of Iwahori-Hecke algebras(James et al., 2006).
¢ Provide a quicker method of regularising a partition (Fayers, 2010).

¢ Every partition can be represented by infinite diagrams, e of this diagram are
different (Mohammad, 2008).

e Represent conjugate to partition with zero.

¢ Played a major role in facilitating the understanding of many the concepts such
as:

— e- regular of any partition.
— e- restricted of any partition.

— e-hook of any partition.

The James abacus diagram is used widely in partition theory, graph theory and combi-
natorial to represent discrete objects which can be counted or be classified. In addition,
it allows us to introduce different representations of a partition by employing different
transformations in the abacus diagram. In this work, we will construct a new abacus
with connected beads depending on James’ abacus idea to represent discrete objects

known as n-connected ominoes.
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1.3 »n-Connected Ominoes

An n-connected ominoes is a plane figure consisting of » ominoes connected from
edge to edge. The n-connected ominoes have been utilized as a part of mainstream
riddles since no less than 1907, and the identification of pentominoes (5-omenoes) is
dated to antiquity (Surhone et al., 2010). Many results with the bits of 1 to 6 ominoes
were initially distributed in Fairy Chess Review between the years 1937 to 1954 under
the name of "dissection issues" (Golomb, 1954; Aval et al., 2014). Golomb (1954),
proposed a connection of n squares adjacent edge to edge with a connected internal as
polyominoes as well as a unit square as ominoes. In advancing in this field, Klarner
(1966) defines a connectivity of finite number of unit square devoid of cut point as n-
ominoes. This thesis considers the n-connected ominoes designed for finite connection
of the unit square adjacent edge to edge with connected internal or with internal holes.
The n-connected ominoes is an object of many combinatorial problems.

The two basic categories of these problems with n-connected ominoes are plane-tiling
and enumeration. The first problem concerns, which figures can tile a plane, or
rectangle, or parts of on plane (Beauquier & Nivat, 1990; Beauquier et al., 1995).
The second category contains the problems on how to enumerate all n-connected
ominoes or how many figures can n unit squares form. It is still an open question, but
mathematicians tried to restrict on more special classes and so they were able to
answer the question partially. The n-connected ominoes constitute one of the most
popular subject in mathematical with long history starting of the 19th century. It have
been studied for a long time in combinatorics, but they have also drawn the attention
of physicists and chemists. The former in particular established a relationship with z-
connected ominoes by defining equivalent objects named animals (Rechnitzer, 2001),
obtained by taking the canter of the cells of a n-connected ominoes. These models al-
lowed to simplify the description of phenomena like phase transitions (Barcucci et al.,

2005) or percolation (Barequet et al., 2016), Ising model (Cipra, 1987) and polymer
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model (Gao & Wang, 2014).

1.3.1 The Representation of n-Connected Ominoes

The n-connected ominoes are classified according to the number of ominoes they have
up to n = 12 (Golomb, 1954). In Table 1.3, represents the number of n-connected
ominoes in each family (Redelmeier, 1981).

Table 1.3

Family of n-connected ominoes and the numbers in each family forn =1,2,...,12

n Family Number in family
1 monomino 1
2 domino 2
3 tromino 6
4 tetromino 19
5 pentomino 63
6 hexomino 216
7 heptomino 760
8 octomino 2725
9 nonomino 9910
10 decomino 36446
11 undecomino 135268
12 dodecomino 505861

However, for each n > 1 there exists many different shapes of n-connected ominoes

that are associated with it. For example, for n = 4, the 4-connected ominoes has 4

different shapes as shown in Figure 1.14.
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Figure 1.14. Family of tetromino (4-connected ominoes)

Table 1.3 displays the number of n-connected ominoes in each family. Since there are
at least two different shapes in each family of n-connected ominoes for n > 1, another
form of representation has been established in order to give a more specific expression
to any form of n-connected ominoes by associating some shapes of the n-connected

ominoes with letters as shown in Figure 1.15 (Berlekamp et al., 2003).

FILNPTUV WX

[l %

Figure 1.15. A 5-connected square in different shapes

Figure 1.15 shows 5-connected ominoes in different shapes, each represented as a
letter of the English alphabet. However, not all shapes of the n-connected ominoes
can be associated with letters. In Figure 1.16, the 11-connected ominoes cannot be

represented as a letter.

21



L]

Figure 1.16. An 11-connected ominoes

A new form of representation describing n-connected ominoes using contour words
has also been established (Berstel, 1985). A contour word is a finite set of ordered
alphabets where each alphabet indicates a direction of either right-ward, left-ward,
up-ward or down-ward. The contour word is used to describe a walk along the outline
of the n-connected ominoes. The 11-connected ominoes in Figure 1.17 is represented

by the contour word with four direction where x right, X left, y up and yI down.

I 111 1111
XXXXY XXXYYX XY XX X Y XX

Figure 1.17. An 11-connected ominoes

However, there exists many contour words that can represent one n-connected

ominoes. The 11-connected ominoes in Figure 1.17 can also be represented by

I 111 1111 I
XXXX PXXX PYXX PXX X P XX XXXXYXX XYYXX

and by

I 11 1111 I I
PXX XY XX XXXXYXX XPYXX XXXX YXXX YYXX .
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Therefore, there is no one to one mapping between the sets of n-connected ominoes
and their contour words because there exist many contour words that can represent one
shape of n-connected ominoes. Furthermore, since every n-connected ominoes has to
be represented by at least one alphabet, the contour word will become very long if n
is large. For example, the contour word for 35-connected ominoes in Figure 1.18 is
represented by

I I I ITIITIIIIIIII I II
XYXYXYXYXYXYX YX YXYXY XY XY XY XY XY XY XYY .

Figure 1.18. A 35-connected ominoes

The contour word has provided a better representation for each n-connected ominoes.
However, we cannot use a contour word to represent the n-connected ominoes that

contains at least one hole such as the 26-connected ominoes shown in Figure 1.19.

Figure 1.19. A 26-connected ominoes with two hole
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The geometric properties which used to represent the n-connected ominoes are called
column-convex if every intersection of the n-connected ominoes is connected with a
vertical line is , and are called row-convex if every intersection of the n-connected
ominoes with a horizontal line is connected. The n-connected ominoes are called
convex if they are both column-convex and row-convex (Bender, 1974; Barcucci et al.,
1997; Del Lungo et al., 2004; Guttmann & Enting, 1988). In addition, the n-connected
ominoes is a directed if there exists a cell, called the root or source, from which all
other cells can be reach by a path (Barcucci et al., 1996, 2005; Castiglione & Restivo,
2003; Duchi et al., 2008).

Further, Chow & Ruskey (2009) used Gray codes to represent a family of column-

convex as shown in Figure 1.20.

(0,0,0) (1,0,0) (2,0,0) (2,0,1) (1,0,1)
] ] =
|| | - F | ‘
L L | | - L1 L
(0,1,1) (1,1,1) (2,1,1) (2,1,0) (1,1,0)

Figure 1.20. Twelve [3,1,2,1]-ominoes and their Gray codes

The concept of partition as a mathematical expression for n-connected omenoies has
been used in a Young diagram (Rechnitzer, 2001). However, it has only been used for a
special type for n-connected omenoies. The Young diagram refers to the arrangement

of n-connected omenoies in left justified rows with lengths in non-increasing order as

1 Previous studies on connected ominoes
/

shown in Figure 1.21 for the partition a 4.3(2
have managed to give
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Figure 1.21. Young diagram of partition p = (5,4, 3%, 1)

Previous studies on different shapes of connected ominoes have managed to give
representation to some classes of n-connected ominoes. Some studies have even

managed to give representation to specific class of n-connected ominoes. However,

the representation for each and every shape of n-connected ominoes remains unknown.

1.4 Research Motivation

James abacus was used as a graphical representation for any partition of positive
integers. It was able to represent partitions in simple ways and can illustrate the finding
of'addable and removable bead positions. The idea of the abacus has been used widely
to solve several problems which cannot be solved using Young or Ferrers diagrams

such as:

e To give a graphical representation in cases that do not need arrangements for a
non-increasing order.

¢ Torepresent the partition in cases p has some zero parts.

¢ Todisplay to find addable and removable bead position.
However, Beta numbers in James abacus are not necessary to be connected since it
may have empty columns and rows. Moreover, adding one or more columns (rows)
will make each partition have many representations. Henceforth, this work focuses on
the development of n-connected ominoes. Hence to the best of our knowledge, no one
used n-connected omines to give a mathematical model of an abacus. Thus, this study

amalgamated the concept of abacus and n-connected ominoes to fill in the gap of the
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aforementioned scenario in the James abacus model. The newly proposed diagram can

then hopefully answer the following questions:

1. How will newly proposed abacus represent n-connected ominoes?

2. What are the classes for newly proposed abacus diagrams based on the
formulated properties?

3. How will the structure in newly proposed abacus be employed to construct
generating functions?

4. How will the newly proposed abacus be used in related applications?

Thus, an extension of interest to determines n-connected ominoes in James’ abacus

diagram is deemed significant to visualize the idea.

1.5 Research Objectives

The main objective of this study is to develop a new abacus to represent the n-connected
ominoes, which will be called nested chain abacus, and consider the problem of
constructing and enumerating a family of classes of n-connected ominoes. In order

to accomplish the main objective, the following sub-objectives must befulfilled:

1. To establish and prove a conceptual framework for the new abacus, including
definitions and theories.

2. To construct a new algorithm for the nested chain abacus.

3. To formulate and prove a conceptual framework for nested chain abacus
transformation, including definitions and theories.

4. To construct a family of classes associated with transformations in (3) and
partition properties.

5. Todevelop a generating function of n-connected ominoes as represented in (4).

6. To apply the newly constructed abacus in tiling field.
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1.6 Scope of Study

This study focuses on developing a mathematical model of an abacus and using the
structure of the new developments to propose three different types of transformation.
In addition, a families of classes for the nested chain abacus are also being proposed.
Subsequently, formulas for generating function of classes of nested chain abacus are

developed.

1.7 Thesis Outline

This thesis contains seven chapters, the contribution of this thesis is presented in
Chapter Two. We beginning with Chapter One which provides the overview of this
study including the introduction, research background, research motivation, research

of study, scope of study and thesis outline.

Next, in Chapter Two a new algorithm to represent abacus, called nested chain abacus
using n-connected ominoes is constructed. First, we established a graphical form of
n-connected ominoes. Then, we used the new development to propose representation
of n-connected ominoes. In addition, we developed the properties of the nested chain
abacus, such as how the beads are connected and the formation of the chain structures.
The design structures of nested chain abacus are also represented. Finally, two different
types of sequences related to the different design structures of the nested chain abacus

were developed.

In Chapter Three we focus on the constructing an algorithm for the nested chain
abacus transformation which is fundamental for enumerating classes of the nested
chain abacus that will be presented in Chapter Four. Therefore, three different types of
transformations in the chains are formulated in rectangle chain, path chain and in

singleton chain. This is followed by the development of three types of nested chain
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abacus transformation: single nested chain abacus transformation, stratum nested chain

abacus transformation and multi nested chain abacus transformation.

Chapter Four presents types of nested chain abacus defined with respect to chains and
to formulation new classes. In addition the chain concept and two families of sequences

presented in Chapter Two will be used to obtain the generating function.

The family of classes of nested chain abacus are developed in Chapter Five by using
two methods, namely e-core and spinal design. In this chapter, we develop a formula

to obtain generating functions.
In Chapter Six, we consider the problem of tiling in finite region using the nested chain
abacus. Two algorithms for tiling in a finite region using two classes of nested chain

abacus with respect to columns and rows are developed.

Lastly, Chapter Seven summarizes the study and provides some suggestions for future

work. The framework of this study is presented in Figure 1.22
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CHAPTER TWO
NESTED CHAIN ABACUS

2.1 Introduction

In this chapter, a new abacus called nested chain abacus is constructed using
combinatorial analysis. First, we established a graphical form of n-connected
ominoes in a minimal frame. Then, we represented a connected partition for the nested
chain abacus where the concept of the partition is to provide a representation for each
n-connected ominoes. In addition, we developed the properties of the nested chain
abacus such as how the beads are connected and the formation of the chain structures.
We then construct a rectangular, rectangle-path and singleton nested chain abacus as
well as its various properties. Finally, we generated a family of sequences related to
the different design structures of the nested chain abacus. This chapter focuses on the
fundamental concept of the nested chain abacus to establish a family of classes in the

following chapters.

We begin by providing some basic definitions used in Section 2.2. In Section 2.3 the
algorithm of the nested chain abacus constructed is presented; then, the theoretical
concept of the uniqueness of the nested chain abacus is formulated and then proven.
Meanwhile, in Section 2.4 we present the definitions on the connectedness of the nested
chain abacus with respect to the rows and columns. In addition, in Section 2.5, the
design structure of the nested chain abacus is presented. Then, results from the design

structure are developed.

2.2 Definition and Terminologies

This section provides the definitions needed to develop the nested chain abacus.

Definition 2.2.1. An n-connected ominoes is a plane geometric figure formed by one
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or more ominoes, such that there exisis a path from one ominces to another for any

pair of ominoces.

Figure 2.1 illustrates Definition 2.2.1 for 7-connected ominoes

Figure 2], A 7-connected ominoes

For the remained of this section, we construct the definitions needed to develop the
graphical form of n-connected ominoes and graphical examples are given to
demonstrate the definitions. We start by defining a minimal frame of n-connected

ominoes.

Definition 2.2.2. A minimal frame is a minimal rectangle containing the n-connected
ominoes itself, such thai there is at least one omino in each column and each row where

n & re

Consider Figure 2.1 where the minimal frame of 7-connected ominoes is as illustrated

in Figure 2.2
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Figure 2.2. A 7-connected ominoes in a minimal frame

Definition 2.2.3. Let n-connected ominoes in a minimal frame have e columns and r
rows. The function f(m, j) : Z X Z — Z such that, if location (m, j) in the minimal

frame contains an ominoes, then

wie=flm, j) =(m—1)e+(—1)

fork =1, 2, , n where e and r refer to the number of the rows and columns of the

minimal frame respectively, for 1 ¢ j @ eand 1 ¢ m ¢ r.

Definition 2.2.4. A nested chain abacus is an abacus with e columns, r rows and n of

connected bead positions which satisfy the following conditions:

1. The columns are labelled from left to right as 0,1,...,e— 1.
2. The rows are labelled from up to downas 0,1,...,r— 1.
3. The connected bead locations are labelled with numbers0,1,...,er— 1 across the

rows from left to right beginning from the number 0 in the top-leftmost location

until the number er — 1 is in the bottom-rightmost location.

4. Each column and row has at least one bead position.
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Table 2.1 corresponding placement of position numbers on the nested chain abacus

with e columns number from 0 to e — 1 and r rows number from 0 to r — 1.
Table 2.1

Placement of position numbers on the nested chain abacus with e X r positions

col.0 col.1 col.2 .. col.e—1
0 | 2 e-1
e e+l e+2 2e-1

€r-2)  e(r-2+] e(r-2)+2
e(r-1)-1
e(r-1)  e(r-1)+1  e(r-1)+2 .. re-1

Definition 2.2.5. A connected partition p'") is a sequence of non-increasing positive
integer numbers ([, 12, ..., Uy ) such that |, represents to a connected bead positions

with e columns and r rows, where 1 < b < n.

Repeated entries of partition (u), iy, ..., iy } can be combined and exponents are used to
represent the partition of positive integer numbers. So, (', t57,..., i,") is a partition

b
such that E 7,; = n. Next, we will construct an algorithm for the connectedness of

b=1
bead positions in nested chain abacus.

2.3 Nested Chain Abacus

This section provides a graphical form of nested chain abacus and a unique connected
partition ;t“") for any n-connected ominoes.

We begin by discussing the graphical form of n-connected ominoes with respect to
a minimal frame, which enables us to define ominoe positions and empty positions
in terms of rows and columns of the minimal frame. Then, we redefine ominoe
positions and empty ominoe positions as bead positions and empty bead positions,

respectively, which enables us to apply the concept of beads on an abacus to represent
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the n-connected ominoes on a nested chain abacus. This is followed by the theoretical
discussion on the concept of partition representation for the nested chain abacus for

n-c onnected ominoes. For the following, we use n = 7 to explain the algorithm for

nested chain abacus.

Step 1: Establishing a graphical form of n-connected ominoes

1. Form a graph of n-connected ominoes.

2. Identify the first column (leftmost row), last column (rightmost row), first row
(topmost column) and last row (bottommost column) with at least one ominoe
as a minimal frame. We numbered the columns from the leftmost, working from
left to right 1,2,...,e and numbered the rows from topmost to bottommost 1,2,. ,»

in the minimal frame where » and e number of rows and columns respectively.

Consider Figure 2.1 for the 7-connected ominoes in a minimal frame with 3 rows and

3 columns as shown in Figure 2.2.

Step 2: Creating a direction:

In this step, we created a direction to obtain a nested chain abacus with respect to the
minimal frame.

Identify the first omino which located in the top-leftmost, from left to right, working
down from the top-leftmost ominoe to the bottom in the minimal frame.

Consider the Figure 2.3 of 7-connected ominoes, beginning from bead position A
which located in row 1 and column 1, then bead position B in row 1 and column
2. The third, fourth,.... positions for the minimal frame for 7-connected ominoes are
substituted with the remaining positions C, D, E, F and G. Subsequently, we can also
observe that there are two empty positions: The first empty position is in row 1 and

column 3, and the second in row 2 and column 3.
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Figure 2.3. Direction of 7-connected ominoes

Step 3: Creating connected bead positions

In this step, we followed Definition 2.2.3 to create bead positions on the nested chain
abacus. According to Step 2, we begin at the top-leftmost ominoe of the minimal frame
and the rest of the ominoes.

Consider 7-connected ominoes in Figure 2.3, for finding wy for £ =1, in which we
inspected the location in row 1 and column 1. Since this location contains omino A,

we calculate w; by applying the function f where m =1 and j =1. Then,

wi=f1,1D=(1-1)3+(—-1)=0. (2.1)

After that, we increment & by 1 so that the next application of the function f'would
yield w, where

wr=f(1,2)=(1-1)3+Q2—-1)=1. (2.2)
The inspection process is continued in the same manner and subsequently, function
fwould only be applied accordingly to obtain w3 = 3, wy = 4, ws = 6, wg = 7 and
w7 = 8. Consider Definition 2.2.4 in which the positions of the 7 beads in the nested

chain abacus is as shown in Figure 2.4.
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D l:>

Figure 2.4. Nested chain abacus with 7-connected beads

Step 4: Constructing a connected partition of the nested chain abacus

Using the w;’'s obtained from Step 3, we produce a partition called connected partition

which represents the nested chain abacus with n beads, ¢ columns and r rows for

k=1,2,...,n. The transformation process of the w;’s into connected partition ,u(""")

1s as follows:

Hn = Wi, HUpeg = Wil =W+ Uy o111 where I'<g<n—1.

Then, p(”} = (,u] g .“2  orees ,u;”) is a connected partition with e columns and r rows
b

where uy 2z 2 ... 2 g and Z fy =n.
Consider Figure 2.4 where frorbrllzf‘:teps 1, 2 and 3 we found that
{w1, wa, wa, wa, ws, we, w7} ={0, 1, 3,4,6,7, 8},
we find connected partition u(3=3) is as follows

U7 =wy =0,

He=wo—wi+ 7 —1=0,

Hs =w3—wa+lg—1=1,
Ha=wq—wiytls—1=1,
Hy=ws—wat+pq—1=2,

Hp =we—ws+lU3—1=2,
Hi=wi—we+p—1=2.

Then, the connected partition representing to 7-connected ominoes in Figure 2.1 is
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wuB3=(2,2,2,1, 1,0, 0). Repeated entries can be combined and exponents are used

to represent partition of positive integer numbers. So, 3 = 27 1207

Based on the algorithm discussed earlier, we present a unique expression for n-connected
omenoes as shown in Theorem 2.3.3. To prove it, we need Proposition 2.3.1 and

Lemma 2.3.2,

Proposition 2.3.1. Let f: Z x Z — Z be defined by f(m,j) = e(m—1}+(j—1).
Function f is an injective function where e and r are positive integers for 1 <m<r

andl1 € j<e.

4 4 - .. * ! -r o
Proof. Let (m, j) and (m , j ) be ominoes positions where i, j, m and j are positive

!

integers for 1 < m' < rand 1 < j < e. Suppose that f(m, j)=f(nm ,j ).

Case one: I m=m, f(m, j)=Flm,j) then e(m—1)+(j— 1)= e(m — 1)+ (j —1).
Since m = m then, (j—1)= (' —1). Thus, j = j .

Case two: If j = jl, S(m, j)= f(mf,jr) thene(m—1)+(j—1})= e(m' — 1)+ (j’ —1).

Since j = j’, then,e(m—1) = e(m’ —1}. Thus, m = n .

Case three: If m #mr and J # jr, then e = - J, < jr or J. This contradiction because
m—m

I<j<eand 1 < j’ < e. Therefore, (m, j) = (m’,j’). Cl

Lemma 2.3.2. For every nested chain abacus N with set S of beads, e columns and r

rows, there exists a unique connected partition representing N where S = {w,wa,...,Wn}.

Proof. Suppose that 1£¢7) and A7) are two connected partitions representing M with
set S, e columns and » rows. Based on nested chain abacus algorithm Step 4, for each
set of n-connected beads {w,w,...,w, }, then

Mp=wyand Uy e =we | —wg+ Uy gy —1where 1 < g<n—1.
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Since A&} = (A1,A2,...,A,) is a connected partition with e columns and r rows
representing 91, then,

An=wiand Ay, =wey1 —we+A, oy —Iwherel <g<n—1.

Such that,
Wi =pn:)vns
Moy =wyr—wi+ly—1=wr—wi+A— 1= A,
Hn—2 =wy—wWot 1 —l=wiz—wp+A, ) —1=24,1,
1 =Wn_Wn—I+.u2_lzwrz*wn—]JFAZ_l:llv

Hence, i1, = A, and subsequently () and 44" are connected partitions represent-
ing the same nested chain abacus with e columns, r rows and set § where 1 < b < n.

Hence, 91 is an associator with exactly one connected partition. O

Theorem 2.3.3. For any form of n-connected ominoes, there exists a unique connected

)

partition, ,u( . representing it with r rows and e columns.

Proof. On the contrary, suppose that 9, and N, are two nested chain abacus with e
columns, r rows and n beads representing one form of n-connected ominoes. Based on
the algorithm of representing nested chain abacus in Step 2, thereexist f: ZxZ — Z
such that

flm,j)=elm—1)+(—1)
where ¢ 2 j. ¢ > 0 and mj < er. Since O, represents a n-connected ominoes with

respect to the minimal frame with e columns and r rows so

f(!ﬂ,j) = Wg.
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Meanwhile, 1, represents a n-connected ominoes with respect to minimal frame with
e columns and r rows. Then

f(m,j) = Wl.

where (m, j) is a location in the minimal frame containing an ominoe, 1 < m < r and
1< j<efork=1,2,..,n Based on Proposition 2.3.1 w; = w’k.

Thus, any form of n-connected ominoes is represented by exactly one nested chain
abacus 91. Based on Lemma 2.3.2, there exists a unique connected partition rep-
resented by M. Thus, there exists a unique connected partition that represents n-

connected ominoes. O

Previous researches, have shown that the four shapes of 4-connected ominoes in Figure
2.5(a) are known as tetrominos. Based on the algorithm discussed earlier, we can
associate each of the four shapes with a unique connected partition as shown in Figure

2.5,
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(1,1)

(1,3)
(1,4)
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o

(1,1)
(2,1)
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u2¥=(2%,1,0)

] 2] (1,3) QO u32=(14)
il e ] 00

(2,2)

‘ ’ (1,1)] (1,2)] (1,3) QOO u(3,2)=(1, 03)

Figure 2.5. Representation of the 4 shapes of family of tetromino (a) A 4-connected
ominoes (b) A 4-connected ominoes w.r.t minimal frame (c) Nested chain abacus (d)
Connected partition

The next remark demonstrates the development of the nested chain abacus from a

connected partition.

Remark 2.3.4. Let u(e’r )=( Wi, W2, ..., Wa) be a connected partition of a nested chain
abacus with e columns and r rows. Then, we can develop the nested chain abacus as

follows:
W1 = Un

, Wg = Wp—g+1 — Hn—g+2 + Wg—1 + 1. Example 2.3.5 and Figure 2.6 are given to

illustrate Remark 2.3.4.

Example 2.3.5. Let the connected partition be u(4’4) = (6,4,4,3,3,3,3,1). The 8-

connected ominoes which correspond to a nested chain abacus with 8 beads, 4 columns
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and 4 rows will be as follows.

wi=ug =1,

Wy = Ug—2+1 — Mg—22+t wi+ 1= —pug+w + 1 =4
W3 = Ug—3+1 —Mg—3+2+Wr+ 1l =ps—p7+wr+1=3,

W4 = Ug—4+1 —Ug—4+2 t W3+ 1 =ps—pug+ws +1=06,

Ws = Hg—s+1 —Mg—s5+2 twst+ 1l =pa—pus+ws+1=7,

W = Hg—6+1 —Mg—6+2 Tt Ws+ 1 =3 —ug+ws+1=9,

W7 = Ug—7+1 — Hg—74+2 + Ws + 1 =po — 3 +ws + 1 =10,

Wg = Hg—g+1 —Mg—s+2+ w7t 1l =p —pr+w;+1=13.

= 54131 ﬁ.:‘ =

Figure 2.6. (a) Connected partition with 4 columns and 4 rows (b) Nested chain
abacus (c) 8-connected omenoes

Next, we will develop the properties of the connected beads of the nested chain abacus.

2.4 The Connectedness of Beads in the Nested Chain Abacus

In Definition 2.4.1, we describe the connectedness of two bead positions ws and w1

in nested chain abacus such that w; and w1 are adjacent.
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Definition 2.4.1. Ler ws and wg be two bead positions in the nested chain abacus
with e columns and r rows. ws and wg are adjacent if one of the following conditions

are satisfied:

o |ws— w5r| = e if ws and wg are located in one column.

o |ws—wg|=1 ifwsandwg are located in one row.

Based on Definition 2.4.1 and considering Figure 2.4, since wy - wp = [0— 1| =1, then,
w) and w; are adjacent. In addition, w; — w3 = |0 — 3| =3 = e, thus, w; and wj are
also adjacent.

Definition 2.4.1 describes the connectedness of any adjacent bead positions. To provide
a general meaning for the connectedness of 3 or more bead positions, we define the

connectedness of beads with respect to rows and columns.

2.4.1 Connectedness of Beads with Respect to the Rows in Nested Chain Abacus
In this section, we will discuss the connectedness of beads in the same row.

Definition 2.4.2. A sequence of bead positions, called a set-row of connected beads is

denoted by SR if the bead positions are adjacent and belong 1o the same row.

Lemma 2.4.3. Let A = {w,ws,...,w,} be a set-row. Then, wp, —wp_1 = 1, where

2<p<qgandl<g<n

Proof. Suppose w, and w,_| belong to A, then, based on Definition 2.4.2, the bead
positions are adjacent and belong to the same row. Thus, based on Definition 2.4.1,

Wp~wp_1 =1, Vwpw,_ | €ESR. ]

Based on Lemma 2.4.3 and Definition 2.4.2, the bead positions located in the same

row are connected if they belong to one set-row, as shown in the following example.
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Example 2.4.4. Let {w, wy, ..., wis} be a set of bead positions in a nested chain

abacus which are represented by connected partition u(6'3 ) = 23, 1'% 0% as shown

in Figure 2.7.

Figure 2.7. Nested chain abacus of 16-connected beads with 6 columns and 3 rows

Based on the Figure 2.7 wy = 0, w, = 1, w3 = 2wy = 4, ws = 5, wg = 6, w7 =7,
wg = 8, W9 = 9, W10 = 10, Wil = 11,W12 = 12, Wiz = 13, Wi4 = 15, Wis = 16 and
wie = 17. From Lemma 2.4.3, the sequences of the first set-rows of the 16-connected

beads is given as follows:

SR = {wi,wy, w3} = {0,1,2}, so w;, w, and ws are connected.

For the rest of this section, we discuss the connectedness of any two bead positions
located in different rows.
Let us suppose that w;s and wy 1be are two bead positions belonging to SR, and SR 1,

. . I
respectively, such that SR, and SR 1 are two set-rows located in row a.and o .

) ) I )
First, we define the connectedness between w; and wy1if m and m are consecutive

numbers.

Definition 2.4.5. Let SR, and SR of be set-rows of connected beads located in rows

I I
m and m , respectively, in a nested chain abacus such that m = m + 1. Then, SR, is
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connected with SR 1 if at least one of the beads in SR, is adjacent to a bead in SR [ .

Lemma 2.4.6. Two set-rows belonging to rows m and m + 1 are connected if

3 w, € SRy and 3 wy € SR 1such that |w, —wy| = e.

Proof. The two set-rows belong to two consecutive rows and so by Definition 2.4.5 w,

and w,, are adjacent. Based on Definition 2.4.1, we obtain

Wy, —Wp| = e

where w, € SR, and w, € SR 1 ]

Based on Lemma 2.4.6, w;s and w1 are connected if SR, and SR 1 are connected.

Consider Example 2.4.4, and based on Lemma 2.4.6 SR; and SR; are connected

because |0 —6| = 6 = e where SR; = {0,1,2} and SR; = {6,7,8,9,10,11}.
Table 2.2 shows set-rows sequences that are connected, and those not connected, in

the nested chain abacus of 16-connected beads in Figure 2.7 where Yes-connected and

No-not connected.

Table 2.2

Connectedness sequence of set-columns in the 16-connected beads

SR, SR, SR; SRs SR;s
SRi Yes Yes No No No
SRy No Yes Yes No No
SR; No Yes Yes Yes Yes
SRy, No No Yes Yes No
SRs No No Yes No Yes

) I )
Next, we define the connectedness between ws and wyl if m and m are not consecutive

numbers.
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Definition 2.4.7. Let SRy and SR be two set-rows of connected beads located in rows
m and m, respectively, in the nested chain abacus such that m > m + 1. Then, SRy
is connected with SR if there exists SRy, SRy, .....SRy. which satisfy the following

conditions:

1. SRq is connected with SRy,

2. SRy_is connected with SR =

where SRy, set-rows of connected beads and SRy, is connected with SR*’J., for

/ .
1<z €z-1andk),ka,....k. are consecutive numbers.

Recall Example 2.4.4, and based on Definition 2.4.7 SR and SR4 are connected
because there exists SR3 such that SR; connected with SR; and SR; connected with

SR, as shown in Figure 2.8.

Figure 2.8. Nested chain abacus of 16-connected beads with 6 columns and 3 rows

Next, we will focus on connectedness of the bead positions with respect to columns
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2.4.2 Connectedness of Beads with Respect to the Columns in Nested Chain

Abacus

In this section, we introduce definitions of the of connectedness of bead positions with
respect to columns as illustrated by some examples. We begin by introducing the

definition of the connected beads located in the same column.

Definition 2.4.8. A sequence {wy,,wy,,...,w, } of bead positions in the nested chain
abacus with e columns and r rows is called set-column of connected beads and denoted
by SC if they belong to the same column and every two consecutive elements in the

sequence are adjacent.

Lemma 2.4.9. Let the sequence of set-columns be wy, < wy, < ...<wy then, we have

wa, —wy, =..=wy  —wy=ewherel <bsn

Proof. Since the sequence wy, < wy, < ... < wy, is belonging to one column and
from Definition 2.4.8, every two consecutive elements are adjacent, therefore, from

Definition 2.4.1, wy, —wy, = ...=wy  —wy =ewhere ] <b<n. 0

Based on Definition 2.4.8, the bead positions located in same column are connected if
they belong to one set-column. Based on Example 2.4.4, we explain Definition 2.4.8
as follows:

SCy = {wy,ws,wi2} = {0,6,12}, since 6 - 0 = 12 - 6 = 6, then, w),wg and w1y are
connected.

Similarly, the beads are connected in the 5C;,5C3,5C4,5Cs and SCg where
SC; = {wy,w7, w13}, SC3 = {w3,wg}, SCs = {wy,w s}, SCs = {wa,wig, Wi},

SCs = {ws, w1, wig} as shown in Figure 2.9.
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Figure 2.9. Nested chain abacus of 16-connected beads with 6 columns and 3 rows

In the rest of this section, we discuss the connectedness of any two bead positions
located in different columns. Let us suppose that ws and wg are two bead positions
belonging to SC¢ and SC £ respectively, such that SC¢ and SCE are two set-columns
located 1n column j and j' respectively. First, we define the connectedness between w

- - -’ -
and w if jand j are consecutive numbers,

Definition 2.4.10. Ler SCg and SCyr be set-columns of connected beads located in
columns j and jr, respectively, in the nested chain abacus such that j = j’ + 1. Then,
SCe is connected with SC % if at least one of the beads in SC¢ is adjacent to a bead in

SCér.

Lemma 2.4.11. Let SC§: and SC % be set-columns of connected beads located in
columns j and j+ 1, respectively, in the nested chain abacus. Then, SC,, SC&' are

connected if |wy — wp| = 1 where 3w, € SC¢ and 3wy € SC Iz

Proof. The two set-columns belong to two consecutive columns and from Definition
2.4.10, 3w, € SC¢ and dw;, € SC&' are adjacent; therefore, from Definition 2.4.2, we

get |wg —wp| = 1. C
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Based on Definition 2.4.10, then wg and w 5 are connected if SC@ and SC g are
connected. We explain Definition 2.4.10 based on Example 2.4.4 and Figure 2.9.
Compare the element in SC and SC,: Since 3 7 € SC, and 6 € 5C; such that

|7—6| = 1, then, SC| is connected with SC;.

Table 2.3 shows sequences that are connected-Yes, and not connected-No in the nested

chain abacus in Figure 2.7.

Table 2.3

Sequence of set-columns in the 16-connected beads

SC, SC; SC3 8C4 SCs SCg
SC; Yes Yes No No No No
S5C, Yes Yes Yes No No No
SC; No Yes Yes Yes No No
SCs No No Yes Yes Yes No
SCs No No No Yes Yes Yes
SCs No No No No Yes Yes

- . ," -
Next, we define the connectedness between ws and wg if jand j are not consecutive

numbers.

Definition 2.4.12. Ler SC¢ and SCE be two set-columns of connected beads located
in columns j and jl, respectively, in the nested chain abacus such that j > jr + 1. SC¢
is connected with SC&' if there exists SCy,,5Cy,, .....SCy, which satisfy the following

conditions:

1. SCg is connected with SCy,

2. 8Cy, is connected with SC&"

where SCy, set-columns of connected beads and SCy, is directly linked to SCk_,“ for

1]
| <z €z—1andk.ka,....,k; — | are consecutive numbers.

Consider Figure 2.9 and Table 2.3, where from Definition 2.4.12 there exists
connectedness between SC; and SC4 because there exist set-columns $C», SCy such that
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SCy is connected with 5C;, SC; with SC; and SC3 with SCy4 respectively. In the next
definition, we discuss the connectedness of wg and w s if one is located in a set-column

and another is located 1n a set-row.

Definition 2.4.13. Ler SC 3 and SR 3 be a set-column and set-row, respectively, in the
nested chain abacus. Then the set-row and set-column are connected if at least one

bead from SCy and another bead from SR g are adjacent.

Lemma 2.4.14. If SCg and SR g are set-column and set-row, respectively, in the nested

chain abacus such that wg € SCg and w g € SRgr are adjacent, then

|ws —wgr | ={1,e} and ws # wg.

Proof. Based on Definition 2.4.2, if two beads are adjacent, then |ws — wg| = {1,¢}

for ws € SCg and wy € SR‘:r respectively. 0

From Definitions 2.4.5, 2.4.7, 2.4.10 and 2.4.12, the connectedness of bead positions
with respect to the sequence of bead positions is provide by the following Theorem

2.4.15.

Theorem 2.4.15. Bead positions wg and wy, in the nested chain abacus are

connected [f there exists a sequence of bead positions {Wu, Wa,, Wa,, ..., wp} such that

{Wa, — Wa,Way — Wq,,...} € {1,€}.

Proof. Two beads w, and w, in the nested chain abacus are connected if the
set-columns, or set-rows, or both in which they belong to are connected. Then, S(R/C),

and S(R/C); must be connected and thus there exists at least a sequence of set-row, or
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set-column, or both i.e. the sequence,

{S(R/Clays S(R/Cayssns s S(RICli}

such that S(R/C)g, is connected with S(R/C), and S(R/C),, is connected with S(R/C),.
Beginning from w,, we have a sequence of connected beads to the adjacent beads,
|we —wp| = 1. connecting S(R/C), and S(R/C),, since S(R/C), is a connected set-
row or set-column. From the adjacent beads we can follow the same procedure for

each elements in the sequence

{S(R/C)a;;S(R/C)ay,.-, S(R/C)a, }

and finally reach w;, with the sequence

{Wa — Wa,Wa, — Ways..} €41,€}

where w, € S(R/C), and wy, € S§(R/C)y. (|

Definition 2.4.16. A partition, U, for a nested chain abacus with n beads, e columnns

and r rows is a connected partiftion p(”) if every pair of beads is connected.

We attempt to view the abacus for n-connected beads in terms of nested chains. The
following section describes the design structure of the constructed nested chain abacus
which is fundamental for developing chain move transformation that will be presented

in chapter three.

2.5 Design Structure of Nested Chain Abacus

In this sections we will use matrix form to the abacus to give the detail description of

the design structure of the nested chain abacus as shown in next lemma.
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Lemma 2.5.1. Suppose that {wi,wy,...,w,} is a set of bead positions given by a
connected partition u'" = (1,402, ... ta). Then, every location in the nested chain

abacus with e columns and r rows can be converted to an element in a matrix A<, by

me+ J = ayy 1)(j+1)

forO<m<r—land0< j<e— 1.

Proof. In nested chain abacus, the bead positions in column j and row m are numbered
as (me+ j). The row numbers are from 0 to » — 1 and column numbers are from O to
e — 1 while every matrix A«, consists of r rows from | to r and e columns from | to
€; SO any position me + j in the nested chain abacus is an element a1y 1) in the
matrix (7 X e). Then

me + J = Ay 1)(j+1)

forl<m<r—landl £ j<e—1. O

The general conversion of the nested chain abacus with ¢ columns and r rows into

matrix form is illustrated in Figure 2.10.
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Figure 2.10. Conversion of the nested chain abacus in to matrix

Remark 2.5.2. In this work, nested chain abacus positions is depicted as a union of
nested disjoint chains of bead and empty bead positions.

A chain starting from the i'" column will start at the "™ row because rows I to (i—1)
will be covered by the chains starting from rows 1, 2,....,(i— 1). After the starting point
we will come down along the same column so the row numbers will be changing and
will come down till the " row from the end so that it will be the (r —i+1)" row from
the beginning. Now in the i row we go to the (e — i+ 1)" column and then we should
cover the chain by coming down till the (r—i+ l)’h, so two vertical columns have been
covered. Now from the starting point in the i'" row we should cover up the chain on
the right of it on that row till the (e — i+ 1)'" column; so then the row will remain fixed
and the columns will vary till we reach (e —i+1)" column in the i row and cover
the chains in the (r — i+ 1) row by keeping the row fixed and varying the columns
from i to (e —i+ 1). Each chain covers two rows and two columns the i"" column and
the (e — i+ 1)"™ column and for the chain the i’ column and the (e — i+ 1) column
becomes the same and thus we get; i = e— i+ 1, so the chain will be in column. In
another hand, the " rows and the (r—i+ l)”’ rows becomes the same and thus we
get; i =r—i+ 1, so the chain will be in row. In addition, we can get i" column and

the (e — i+ 1)" column becomes the same and thus we get i = e —i+ 1 and. i’ row
52



and the (r — i+ 1)'" yow becomes the same and thus we get i=r —i+ 1.
A chain has rectangular form if the chain derived by two columns and two rows, while
a chain has path form if the chain derived by a column or a row. This is basically how

it is done;
1. aj— Afr—it1)i and then Aife—ir1) — A(r—iz))(e—i+1) and then to cover the rest;
dii = j(e—it1) and Ay 1)i 7 Olr—it 1Y (e—i+1)- In this case we have two chooses:
o [(r—i+Ne+il—[ie+i] >[ie+(e—i+1)]—[ie+1i].
o [(r—i+Ne+i]l—[iet+i] <lie+ (e—i+1)]—[ie+1].
2. [(r—i+1De+i]—[ie+i]=0o0r[ied(e—i+1)]~ [fle+ ] =0.

3. [r—i4+1)e+i]—lie+il=0and [ie+ (e—i+ 1) —[ie+i]=0.

Based on three types of chains there are three design structures of the nested chain
abacus: rectangular, rectangle-path and singleton nested chain abacus we begin by

discussing the construction of rectangular nested chain abacus.

2.5.1 Rectangular Nested Chain Abacus

The rectangular nested chain abacus consists of rectangular chains. Definition 2.5.3

clarify the constructing of rectangular chain in nested chain abacus

Definition 2.5.3. Let there v x e matrix A represents bead positions and empty bead

positions in the nested chain abacus with e columns, r rows and ¢ chains. Then,

1. A vertical rectangular chain is an arrangement of the bead positions and empty
bead positions in a vertical rectangular format in the nested chain abacus such

that [(r—i+ e-+i]—[ie+i] > lie+ (e —i+ 1)] — [ie+i] and the element chain

{a,m.}am(‘,_,-H),a,-j,a(,._jﬂ)j li<m<(r—i4l),i<j<(e—i+1)}
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where e is even number and e < rfor1 <i<c.

2. A horizontal rectangular chain is an arrangement of the bead positions and
empty bead positions in a horizontal rectangular format in the nested chain
abacus such that [(r —i+ 1)e +i| — ie+ ] < [ie+ (e — i+ 1}] — [ie +i] and the

elements in chain
{amham(efiJr])Jaij:a(r—-i-J‘-l}j | isms< (f’—i-l— I): ISj< (e_ i+ ])}

where r is even number andr < e for 1 <i<c.

Based on Definition 2.5.3 there are two designs structure of nested chains abacus. Next

we define the first design structure of the nested chain abacus.

Definition 2.5.4, Vertical rectangular nested chain abacus is a nested chain abacus

with e columns,r rows and c vertical rectangular chains where e < r and e even.

Example 2.5.5 provide the illustration of the vertical rectangular design structure.

Example 2.5.5. Let u(4*6)=(82,63,5,43,32, 15) be a connected partition for a nested
chain abacus with 4 columns and 6 rows that represents in Figure 2.11(a). Based on
Definition 2.5.3 the nested chain abacus created from two vertical rectangular chains

as illustrated in Figure 2.11(b) and Figure 2.11(c).
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Figure 2.11. (a) Nested chain abacus of pt!*%=(8? 6°,5,4% 32 1) where ¢ — 2 (b)
Outer vertical rectangular chain (c) Inner vertical rectangular chain

From Figure 2.11, we observe that yhe nested chain abacus construct from vertical
rectangular chains where

chain I = {@m;@m6,a15,06j: 1 Sm<6:1<j<4} and

chain 2 = {a,p,am3 1 2< m <5},

Based on Definition 2.5.3(2) The horizontal rectangular nested chain abacus structure

as given by the next definition

Definition 2.5.6. Horizontal rectangular nested chain abacus is a nested chain abacus

with ¢ horizontal rectangular chains, e columns and r rows where r < e and r even.
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Figure 2.12. (a) Nested chain abacus of 11'%%=(8,5,7°,47,2*) where ¢ = 2 (b) Outer
horizontal rectangular chain (c) Inner horizontal rectangular chain

From Figure 2.12, we observe that nested chain abacus construct from two horizontal
rectangular chains where
chain 1 = {a,,,l,am6,a1j,a4j: I<m<4,1<j< 6} and

chain 2 = {ay;,a3;: 2 < j< 5}.

Lemma 2.5.7. Let nested chain abacus be rectangular design structure then

fi)i<e—i+landi<r—i+1.
(i) 1 < i< cand cis apositive integer.
(iii) Every chain is derived from rwo columns columnsiand e — i+ 1 and two rows :

fand r—i+1.
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(iv) The last chain is derived from two consecutive columns if nested chain abacus
be vertical rectangular design structure and the last chain is derived from two

consecutive rows if nested chain abacus be horizontal rectangular structure.

Proof.

(i) The i column is where the rectangular design structure starts and in column
(e—i + 1) the rectangular design structure ends and thus i < e—i + 1. Similarity,
i<r—i-+1

(i1) Let i denotes the value from 1 to the i column (respectively the i row) where
the vertical rectangular design structure ends, based on Remark 2.5.2 the
maximum number of chains formed will be the last value of i taken to form
the chains and thus we have 1 @ i ¢ ¢ and c is the number of chains.

(ii1) As we discussed the formation of the structures of the chains at the end of the
proof of Definition 2.5.3 and see we have that every chain is derived from two
columns: columns i and e—i + 1 and tworowsiand r —i + 1.

(iv) Since e is an even number and each vertical rectangular nested chain covers two

columns so the last chain is derived from two consecutive columns.

The number of chains in vertical and horizontal rectangular nested chain abacus are

determined by Lemma 2.5.8.

Lemma 2.5.8. The number of chains in nested chain abacus N is

(i)
(i)

if N is vertical rectangular nested chain abacus.

if N is horizontal rectangular nested chain abacus.

N SN

where e and r are the number of columns and rows respectively.
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Proof.

(1) Based on Lemma 2.5.7(3), every vertical rectangular chain is derived from two
columns, which are columns i and e—i + 1. Since the last chain is derived from

two consecutive columns, the difference between these two consecutive column

numbers is
(e—i +1)—i=1.
Thus,
. e
i= _.
2
(i1) Similar to proof (i) Lemma 2.5.8. [

Referring to Example 2.5.5 where n*9=(82, 63, 5,4%,3%,1°) and ¢ = 4 then by Lemma

2.5.8 we have two chains as has been shown in Figure 2.11.

The next theorem shows that the number of positions in any vertical (respectively

horizontal) rectangular chain is 2r + 2e—4(2i—1).

Theorem 2.5.9. The number of bead and empty bead positions in each rectangular

chains i in nested chain abacus is

2r + 2e—4Qi—1)

where e and r are the number of columns and rows respectively.

Proof. Since each chain i form a rectangle, based on Lemma 2.5.7 the length,

r—i+1) —i=r—2i+ 1.
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Based on Lemma 2.5.7 the width of chain i is
(e—i+1)—i=e—2i+ 1.

Therefore, the perimeter of chain i is given by
20(r — 2i + 1)+ (e=2i + )] = 2r + 2e—4Q2i— 1), .

Example 2.5.10. Let u(4’5 ) = (8%,6,3,2, 1*) be connected partition. Based on Lemma

2.5.8, the nested chain abacus has two chains. By Theorem 2.5.9 the first chain (chain

1) has 14 positions while the second chain (chain 2) has 6 positions.

Next theorem is a result of Definition 2.5.3, Lemma 2.5.8 and Theorem 2.5.9

Theorem 2.5.11. Let N be nested chain abacus with e columns and r rows and ¢ chain
then, <V;> =<V, V5, V3, -+ ,V.>is a arithmetic sequence with common difference

of successive is —8.

Proof. Let V;+) and V; represent the number of positions in chain i + 1 and chain i

respectively where i = 1,2,---,cand ¢ = ) if the nested chain abacus is a vertical

r

nested chain abacus and ¢ = 5 if the nested chain abacus is a horizontal nested chain

abacus by Theorem 2.5.8. Thus,

[2r + 2e—4QG + 1) = 1)] — [2r + 2¢—4Qi—1)] = =8.

2.5.2 Rectangle-Path Nested Chain Abacus

The rectangle-path nested chain abacus consists of rectangular chains and one path
chain. Definition 2.5.12 clarify the constructing of rectangle-path chain in nested chain

abacus
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Definition 2.5.12. Ler the marrix A,«. represent bead positions and empty bead

positions in the nested chain abacus with e columns and r rows. Then

o Vertical-path chain is an arrangement of bead and empty bead positions in

1
column <=~ in the nested chain abacus such that [(r—i+1e+i]—[ie+i]=0

and the elements in

. fe+] e—1 2r—e+3
chain (T) = {am{%) P <mg T}

where ¢ < r, e is odd and c is a positive integer.

e Horizontal-path chain is an arrangement of bead and empty bead positions in

]
row """ in the nested.chain abacus such that lie4{e—i+1)]—|ie+i) =0and

the elements in

Ar 4 r—1 2e—r+3
cham( > )={a(,-+2|)j. > QmQT}

where r < e, r is odd and c is a positive integer.

Based on Definition 2.5.12 there are two designs structure of the rectangle-path nested

chains abacus.

Definition 2.5.13. The verrical rectangle-path nested chains abacus is a nested chain
abacus with e columns, r rows, c¢ vertical rectangular chains and one vertical-path

chain where ¢ < r and e odd.

Example 2.5.14 provides the illustration of this design structure.

Example 2.5.14. Let #(3,7}: (4%,3,1%) be a connected partition with e = 3 where the

corresponding nested chain abacus that represents the 17-connected beuads is as in
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Figure 2.13(a). It follows that the nested chain abacus has one vertical rectangular

chain and one vertical path chain as illustrated in Figure 2.13(b) and Figure 2.13(c).
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Figure 2.13. (a) The nested chain abacus where ¢ = 2 (b) Outer vertical chain and (c)
Vertical path chain

From Figure 2.13, we observe that if ¢ = 3 the vertical rectangle-path nested chain
abacus has one vertical rectangular chain and one vertical path chain where

chain 1 = {aml,a,,,g,,au,a-yj 1€<mgT,1€j< 3},

chain2={ayy :2< m < 6}.

Notice that chain 2 is a vertical path chain.

In the next definition we proposed the horizontal rectangle-path nested chain abacus

Definition 2.5.15. The horizontal rectangle-path nested chain abacus is a nested chain
abacus with e columns, r rows, ¢ — 1 horizontal rectangular chains and one horizontal

path chain where r < e and r odd.

The number of chains constructed in the vertical (respectively horizontal) rectangle-

path nested chain abacus determined by the following lemma,
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Lemma 2.5.16. The number of chains in nested chain abacus N is

+L . ; . .
(i) ¢ 5 if MNisvertical rectangle-path nested chain abacus.
Lo r+l ) . .
(ii) ! 2 if N is horizontal rectangle-path nested chain abacus.
Proof.

(1) Given that e is odd, then ¢ = 2v+ 1 where v is a positive integer. By LLemma
2.5.7(3) every rectangle chain is derived from two columns then there are

e—1

2

Y =

vertical rectangular chains and one vertical path chain. Hence, the vertical
e+ 1

2
(ii) Given that r is odd, then r = 2v+ 1 where v is a positive integer. By Lemma

chains derived from one column.

rectangular nested chains abacus has

2.5.7(3) the rectangular chain is derived from two rows so the nested chain

: , i
abacus with 2v + 1 rows have v rectangular chains. Then, v = rectangle
chain. Thus, the horizontal rectangular chain has

r—1 r+1 )

3 +1= = chains.

The number of positions either in the vertical path chain or in the horizontal path chain
constructed in the horizontal rectangle-path nested chain abacus or vertical rectangle-

path nested chain abacus respectively is determined by the following theorem.

Theorem 2.5.17. The number of positions in the path chain in the rectangle-path

nested chain abacus with e colurmns and r rows is

c—1
re—(c—1)(2r+2e)— ) 4(2i—1).
@



Proof. Let k be the number of positions in the path chain and i the chain number. By

Theorem 2.5.9 every rectangular chain has
2e+2r—4(2i—-1)

positions. For the nested chain abacus with ¢ — | rectangular chains and one path chain,

the number of positions in the ¢ — 1 chains is

c—1

(c—1)2e+2r— Y 4(2i - 1).

i=1
Since the number of positions in the nested chain abacus is er, then,

¢—1
er = (e=i1) (2e $2r) ) 4(2i =) + ks

i=1
Thus,
c=1
k=er—(c—1)(2e—2r) +Y 4(2i— 1),
=]

where k is the number of positions in chain c. U

In the next section we proposed the last structure in nested chain abacus

2.5.3 Singleton Nested Chain Abacus

The singleton nested chain abacus consists of rectangular chains and a singleton chain.

Definition 2.5.18 clarify the constructing of singleton chain in nested chain abacus.

and

e+ 1
Definition 2.5.18. A singleton chain is a position @, e51) located in column s

e+1

row such that [(r—i+ 1)e+i]—[ie+i] = [ie+ (e—i+1)] - [ie+i] =0.

Beset on Definition 2.5.3 and Definition 2.5.18, we developed a singleton nested chain
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abacus.

Definition 2.5.19. The singleton rectangular nested chain abacus is a nested chain

abacus with ¢ — 1 rectangular chains and one singleton chain where e = r and e odd.

Example 2.5.20 provide the illustration of the design structure for singleton nested

chain abacus.

Example 2.5.20. Let p(3’3)= (22,1%) be a connected partition where the singleton
nested chain abacus is as in Figure 2.14(a). Based on Definition 2.5.3 and Definition
2.5.18 the nested chain abacus created from one rectangular chains and one singleton

chain as illustrated in Figure 2.14(b) and Figure2.14(c).

Figure 2.14. (a) Nested chain abacus where ¢ = 2, (b) Outer chain and (c) Singleton

chain

From Figure 2.14, we observe that nested chain abacus construct from rectangular

chains and singleton where

Chain 1 = {a,.,,],a,,,g,alj,agj: l<m<3, 1< j<3 },

Chain 2 = {a2;}

Notice that chain 2 is a singleton chain.
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The number of chains in the singleton nested chain abacus is determined in the next

theorem.

o . . . e+1
Lemma 2.5.21. The number of chains in the singleton nested chain abacus is
where e is the number of columns and r is the number of rows.
Proof. The proof is similar to the proof of Lemma 2.5.16. O

From the previous structures with respect to columns we can establish the e-nested

chain abacus sequence as shows in Remark 2.5.22

Remark 2.5.22. Let e < rand F, be a function F, : N — N such that

e . .

—  if eiseven,
=< 7

e

y.

1

if eisodd

Table 2.4 gives the number of chains for different values of e.

Table 2.4

The number of chains for different values of r =1,2,...,12ande =1,2,...,8

o0
O
o
—
(3]

3
]
BRo1 11
2

BB = =

S N R S R

(TSR TSI S T S I
EES PSRRI S S |

F o S TSI P G T N

B S S R S T N
S U T S T NG Y NG TS R,
S N P SR FCTN NG T (6 SN .
EE LS RS I N T o e W

Based on Table 2.4 and Remark 2.5.22 we can summarize the values as presented

below
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r:qm
NI
N
| Ln
W
&=
| e
Lh O
Lh| —

The e-nested chain abacus sequence is a series of number {F,},_, based on Remark
2.5.22 where

FotFoy1 =Foey| = Faega

with /;, = 1 and F5 = 2. The e-nested chain abacus sequence is 1,2,2,3,3, ... for
e=2,3,4,56,.... Similarly, from the previous structures with respect to rows, we can

establish the r-nested chain abacus sequence as shows in Remark 2.5.23

Remark 2.5.23. Ler r < e and F; be a function F, : N — N such that

if riseven number,

.
= 2
= r+1
2

if risoddnumber.

Similar, the r-nested chain abacus sequence is a series of number {F.},”, get by
Remark 2.5.23

F+Fi1 =Py = Bryo

with F; = 1 and F; = 2. The r-nested chain abacus sequence is 1,2,2,3,3,... for

r=2,3,4,56,.... The result follows from Lemma 2.5.7, Lemma 2.5.8 Theorem 2.5.9,
Theorem 2.5.11, 2.5.16 and Theorem 2.5.17 , two sequences Pg"C’P and Pff“‘ for
rectangle path nested chain abacus and rectangular nested chain abacus respectively
can be obtained from the number of positions in each chain. In Theorem 2.5.24 we

developed the first sequence with rectangle-path nested chain abacus.

Theorem 2.5.24. Let N be the rectangle-path nested chain abacus with e column, r

rows and ¢ chains.
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(i) If e <rthen,

r—e+1 if

©
f

PfeeP=qapRe-P 6 if p=2,

| PR P48 if p

A\
W

(i) If r < e then,

et

e—r+1 if p

PRt =cophe-Pug i p=2,

| PFP+8 if p23.

where P.,f""_P be the number of positions in chaimiandp =c—i+1for1 <i<e

Proof.
(i) Based on Theorem 2.5.17, the number of position in chain ¢ is

re—c(2r+2e)+ i4(2i— 1).

|
Since ¢ = %, then,

1 c—1|

l‘_

i=1 i=l
c—1 e— 1
—re—e*—e—ertr+8 i+4T.

i=1

e— 1 £

2

4

k =re— (2r+2e)+8
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k =e—r+1.

Thus,
P]REC*P =r—e+1.

Since chain ¢ — 1 is a rectangular chain then by Lemma 2.5.16 and Theorem

2.5.9 the number of positions in chain ¢ — 1 is

2r—2e48=2(r—e+1)+6=2P""" 16

Based on Theorem 2.5.11 the different between two rectangular chains in N is 8

then
%d | Tletvosdits Gtara Mala
P;?ec—P_PzRef—P — Pfe'(‘—P- P;?E’C—P S o S B
Hence
—P __ pRec—FP
e ¥ = PY"+8.4
(i1) Follow directly by proof 1 of Theorem 2.5.24. a

Next, we developed the second sequence with rectangular nested chain.

Theorem 2.5.25. Let N be the rectangular nested chain abacus with e column, r rows

and c chains.

(i) If e < r then,
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2r—2e+1 if p=1,

Rece _
Pp =
PF9+8 if p22.
(ii) If r < e then,
2e-2r+1 if p=1,
Reo
Pp‘—

PR +8 if p22.

where Pg"" be the number of positions inchainiand p =c—i+1for 1 <i<c.

Proof.

(i) Since M is a rectangular nested chain abacus then, by Lemma 2.5.7 chain ¢
derived by two consecutive columns. Based on Theorem 2.5.9 and I.emme 2.5.8,

the number of position in chain 7 is
2e+2r—4(2r—1),
and ¢ = g, respectively. Thus,
Ze+2r—4(2§ ~1)
and

PR — 2p—2e+4 1.

By Theorem 2.5.11 there is arithmetical sequence for the number of positions in
the chains with common difference of succession equal to (-8). So,
Py = P;‘)f‘i 4+ 8wherep > 2.

(ii) See Proof (i) Theorem 2.5.25. O
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2.6 Conclusion

In this chapter, a new combinatorial interpretation called nested chain abacus for n-
connected ominoes is presented. Furthermore, a new partition for every n-connected
ominoes is developed. Then, we formulate and prove the uniqueness of nested chain
abacus. In addition, we formulate the definition of connected bead positions in the
nested chain abacus that will be fundamental in constructing a design structure for
the nested chain abacus. Then, two different types of sequences were developed and
proved. Based on the constructed design structure of the nested chain abacus, three
transformations will be developed in Chapter Three.

Bellow is the summary of Chapter Two.

n-connected ominoes Abacus

\ J
f

Nested chain abacus

\
[ |

Structure design of nested Construct new ConcePt of
chain abacus the connectedness using

| new development

[ \

Rectangular nested Rectangle-path Singleton nested
chain abacus nested chain abacus chain abacus

Figure 2.15. The structure of nested chain abacus.
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CHAPTER THREE
NESTED CHAIN ABACUS TRANSFORMATION

3.1 Introduction

In this chapter, an algorithm for the nested chain abacus transformation is constructed,
which is fundamental for constructing classes of the nested chain abacus that will be
presented in chapter 4. First, related terminologies are formulated. Then. different
types of transformation in the chains are formulated in rectangle chain, path chain
and singleton chain. This is followed by the development of three different types
of nested chain abacus transformation: Single nested chain abacus transformation
with ¢ = 2 (SNC2-Transformation), stratum nested chain abacus transformation with
e > 2 (SNC-Transformation) and multiple nested chain abacus transformation (MNC-

Transformation).

This chapter begins with the introduction. The necessary definitions and terminologies
are defined in Section 3.2. The transformation in the chains with the three types are
formulated in Section 3.3. Then, the nested chain abacus transformation algorithms

are constructed based on chain transformation in Section 3.4.

3.2 Definition and Terminologies

Some terminologies that are needed in the nested chain abacus transformation

constructed.

Definition 3.2.1. Chain transformation (Ch) is a moving transformation when

_ (m—1le+(j+d—1), deZ,
Gicim—=1 e i 1=
(m+k—1e+(j—1) keZ
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which is in anticlockwise direction for all bead positions in chain i in the nested chain

abacus with e columns and rrows where 0 S m<r—land0 < jge |,

Remark 3.2.2. In the chain transformation the beads will move by a specific distance.
A bead located in the chain i and in the column i will move to the downwards if cis a
positive integer. While, a bead located in the row r— i + 1 will move 1o the righrwards
if d is a positive imteger. Meanwhile, the bead located in the column ¢ — i+ 1 will move
te the upwards if ¢ is a negative integer. Finally, the bead located in row i will move ro

the lefrwards if d is a positive integer, as show in Figure 3.1,

Column s . ‘
N Row i .
. I -
\ \\' ! e
\ P ———
", ~
It AN e Celpmn
* A
w7 el
- A
A — it
- ; e
- *
I; \&
+ Row r-[ +1 ~

Figure 3.1. Chain transformation’ direction

Remark 3.2.3, Ler anj be an element of a matrix Arxe with e colwmns and r rows which
represents the bead positions and empty bead pasitions in the nested chain abacus M
with ¢ chains. Based on Definition3.2.1 gnd Lemma 2.5.1, then,

Ch g s —y & Gmlvd) deZ,
U

Aimak) e keZ,
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whick is in anticlockwise direction for all bead positions in chain i in the nested chain

abacus with ¢ colwmns and r rows where | S m<Srand 1 < j< e

1n our transformation we select one position in the chain as the initial point. When this
point is moved rotationally anticlockwise to a new location, all other positions in the

rectangle chain will move rotationally to a new location accordingly.

Definition 3.2.4. Nested chain abacus transformation is a chain transformation in one

or more chain in the nested chain abacus,

Next, we construct the chain transformation of the bead positions inside the chains.

Lemma 3.2.5 provides the basic concept for bead position movernents.

Lemma 3.2.5. Let ay,; be an elerment of a matrix A, . which represents the bead
positions and empty bead positions in the nested chain abacus M with e columns, r

rows and ¢ chains, Then,

(i) the bead positions in the rectangle chain i are located in columns {ig €—i—+ 1}
and rows {i, r—i+1}.

(ii} the direction of the positions are such that

.

aji through ag._; . |y; is downwards.

[

a(rm,;éu]}‘; 2‘;’5?{3‘!{3;’1 a(,,,zur%}{‘gm“mtj is righrwam’s‘,

¢ O iy Y e—it) TrONGH @y _pyqy s upwards.

»

Qjtoiry) through ay; is leftwards.
Proof.

(1) Based on Definition 2.5.3 the elements of the rectangle chain are

{amiam{e-wi%i}aija(z’mr'mkl)j iEms (?Wl'"i- l}f’g BN (f.’wf*’{" 1}}
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Thus, the bead positions of the rectangle chain ¢ are located in columns
{i,e—i-+1} and rows {i, r—i+1}.

(ii) Since the chain transformation is in anticlockwise direction for all bead positions
in chain 7 in the nested chain abacus and based on Dehnttion 3.2.1, Remark 3.2.2

and Remark 3.2.3 then,
o Chlay) — agypyine- ChB_ i) = i

and the positions will move downward.

& Ch(ar_iy130) = Qr—is Disdys C G i ye—1y) = Blr—in Dye—in 1)
and the positions will move rightwards. x

o Ch{ag iy tyie—it1)) == it ike—i+ oo CPAG D e 1)) = Agiy(e—in1)
and the positions will move upwards,

o Ch{ai,_ii1)) = Qiteicridye OBy} = aii

and the position will move leftwards.

Where 4 and & are positive integer. [

Definition 3.2.6. The fuil chain is a chain in the nested chain abacus with e colhomns

and r rows such that all positions are beads.

Since all the positions are beads the form of chain will not change. The full chain with
2 columns and 6 rows as shown in Figure 3.2 (a) the chain transformation in full chain

as in Figore 3.2 (b) and Figare 3.2 (c).
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Select initial point  Initial point New location the initial point

\ \é\
R
Yaind

: )
)

&

g

)

a b C

Figure 3.2. (a) Full chain, (b) Arrow indicating one step full chain transformation and
(c) The new location of the initial point after transformation

3.3 Transformation in Chains

There are three cases of transformation based on three types of chains: transformation
in rectangle chain, transformation in path chain and transformation in singleton chain.

Each transformation is design details in the following subsections.

3.3.1 Transformation in Rectangle Chain

The transformation in rectangle chain is a chain transformation (Ch) employs in
rectangle chain. First, we construct the transformation (Ch) if the beads skip one

position anticlockwise in rectangle chain {b,k} = %1 (see Definition 3.2.1)

Lemma 3.3.1. Let a;,; be an element in matrix A,x. which represents bead and empry
bead positions in rectangle chain with e columns and r rows. Then, the transformation

chain of a,; is



dp-1y; if iF1€m<{r—it+]l}, j=e—it+],

i
Ch{ap )}~ ¢ Gy I iSm<{r-i), =4
i j

Um(j- 1) if m=Li+l<jge—i+]1,

(ampjeny I m=(r—i+t1}i<j<e—1,

where 1 €1 € e

Proof. By Lemma 3.2.5(1) the position in the rectangle chain / location in two colummns
{i, e — i+ 1} and two rows {r, r — i+ 1}. Based on Definition 3.2.1 and {a,b} = %1

then the bead position in column ¢ will skip one position downward so

where 1 < m < r. Since the direction of the positions movement anticlockwise then
the positions ag,;,y); Will skip to a(,_; 3y ¢y one position where i € j < e—i+ 1.
Since the direction of the positions move anticlockwise then the bead position location
dpmj On the column e -/ + 1 will skip 10 ay,,._1;; one position where | <m < r.

If pj € {amsim=14,i < j<e—i+1}then

y j P Oy 1}

Example 3.3.2 illustrates the transformation in rectangle chains.

Example 3.3.2, Ler ﬂ{é’?) = (10,8%,5,2,0%) be connected partition represents to N
for 15-connected beads as shown in Figure 3.4 (a). Based Definition 2.5.3 and Lemma

2.5.8 the nested chain abacus consists of two rectangle chains.
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First, for detail explanation we will show single movement for the Example 3.3.2. The
bead position 19 which location in row 5 and column 4 (as4) will be moved to the
position 15 (a44). The bead position 21 which location in row 6 and column 2 (ag>)

will be moved to the position 22 (ag3) as shown in Figure 3.3.

12
16 | 17
20 | 21
24

Figure 3.3. Single movement for 7 = (10,8%.5,2,0°)

The transformation in rectangle chain clarify in Figure 3.4 (b) and Figure 3.4 (¢) where

{b,k} = %1,
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0 1 2 0 1 2 3
4 4
[t} 1 2 3 § ' 8 ¥
i o 12 S
n = 16 19 16 19
1'2- 3 20 5 20\
16 |17 18 | 19 24 1 25 A I
- b
20 | 21 =
24 i [oeeees’
Gz 9
a — “\ 14
21 % 21 Y 29
3 o

Figure 3.4. (a) Nested chain abacus of,u(4=7) = (10, 86?532, 06) with 2 rectangle
chains, (b) Rectangle chain transformation applied to the outer rectangle chains and
(¢) Rectangle chain transformation applied to the inner rectangle chain

The algorithm constructed to generate classes of nested chain abacus with ¢ chains
depended on the chain transformation. The fundamentals of the transformation in
rectangle chains are constructed in Lemma 3.3.1 where each beads in chain i skip one
position where 1 < i < c.

In the following theorem, we establish the maximal x number of transformation (C/")

in rectangle chain.

Theorem 3.3.3. Let N be a nested chain abacus with e columns, r rows and ¢ chains.

Then, the maximal number of transformation in rectangle chain is
2e4+2r—8i+3

where 1 £i< e

Proof. Let a,,; be an initial position in rectangle chain i for the nested chain abacus

with ¢ columns, i rows and ¢ chains. Based on Lemma 3.2.5, a,j can be moved
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downwards, upwards, rightwards or leftwards dependimgonmand jwhere I Sm<r
and 1  j < e. Based on Definition 2.5.3 and Lemma 3.2.5, if j = { then the initial

position will be moved downwards along the column i until location a(,...;, ); after

skipping

r—i+l-—m

positions. Then, the position a;,_;_ y; will move from left to the right where the last

location of the initial position is a;,....13r.- ;1) @fter skipping

e—2i-+1

positions. 8ince ag,_;y 1y7e—i+q) M column ¢ — i+ 1 then the position @, ;. y(perte)
will move up and skip

F—2i]

positions to get to the position gj,_;;1y. Furthermore, the initial position will move

from right to the left and there are sKip

e 2041

positions until it reach location a;;. Finally, the initial positions «;; skip m — { positions

to return back. Thus the initial position a,,; will skip

2e+2r—4

positions to move and to retumn to its original position. The same applies if the initial

POSIION 1§ &g, 1y; OF Gpip 51y OF &4 Hence,

2 2r-- 8i+3
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is the maximum of chain transformation for each position in the rectangle chain. 0O

The following corollary describes the number of possible transformations for a

positions in outer chain,

Corolary 3.3.4. Let N be the nested chain abacus with e columns, v rows and ¢ chains.

Then, the maximum number of transformation in the outer chain is

2e+2r--5.

Proof. From Theorem 3.3.3, the maximal number of transformation in a rectangle
chain is

2e 4 2r— &+ 3.

Since the outer chain is chain | in the nested chain abacus then the maximal number

of transformation in the outer chain is

2e+2r —35.

Not: Notation a,, Yy means am; will skip y positions

We formulated Theorem 3.3.5 to find the transformation in rectangle chain (Ch') if
the beads skips x positions in four cases depending on the location of the beads in the
rectangle chain where 1 € x < 2e + 2r — 8+ 3 . First, we will describe the location of
the bead positions in each case which are 71, T3, T3 and Ty where
Nh={amli<m<r—i+1},

L={ag ppjli€i<e~i+l1}

T3 = {amff’—-fﬁ"‘l)zi 5;‘ W< ?‘—?"‘ §} aﬁé
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Figures 3.5 until 3.8 provide an indication to determine the location of the positions in

the sets 71, 75, T and 74

i LN Gifi12) Ai{i+3) T Gile—it1)
ity . . . T Qi) {e—it)
Ay . . . T AR e—it))
a3y . . . T B 3) e—i+1)

A pili . . - B Ple-id 1)
Qr—itl)i Br—i+1MiH1) Fr—i 00+ Co—iv 1343 7 Hr—igie-ivl)

Figure 3.5, Elements for T

aj; i1y @itii2) (i3 U Biemit )

Aeigiyi ) - - B N IR SR §:
iy . - - U B{ile~it )
ey : : : et
Aiyei)i . . . B eir )

Alrmig 1) Afpmie 148 Gr—ie 1)G4+2) FHr—it 1343 70 Br—it Ule—i+1}

Figure 3.6, Elements for T

@i ilit1) Ai(i+2) ai(i+3) Al e-it 1)
iy . . . U i e—it )
Giivsyi - . - U A3 e—i+ 1)
iy iii . - - o Eip iy (e—it1)

Hreivlli i3y Q-2 132y Hr—i2 {3 7 =i Dfe—i+1)

Figure 3.7, Elements for 73
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djf itir 1y @i(i42) i) T e 1)

a(i. 1)t : . . B D et 1)
ISR : . : A D e—i+ 1)
i3 . . : T Biis3Ye~it])
Qi il . . . T e 1)
B ie W Yr i1 i) Freide IHi42) Frmie i3 0 Greid De—i41)

Figure 3.8. Elements for Ty

Theorem 3.3.5. Let a,,; be an element in a rectangle chain in the nested chain abacus
N with e columns and r rows represented by matrix A, .. Then, the transformation of

Gmj IS

Case one

ra

Aimixyi if i<mAx<r—i+l,
Qi 1){xr 1 Zitm—1 if r—i+tt<mbx<rte-3i+2,

Dpi =3 4 A2 x—mie—dit3)o—irty U e+r—3+2<m+x <2r--e— 5043,

Gi{2e42r—mx—6i+4) if 2rtbe-543sm4x<2r+2e-Ti+4,

\a{rwgruzfﬂ,_é_m_‘.ggmﬂi ?f 2r-2e—Ti 44 S m4x < 3r+-2¢ -9+ S,

ifan; €T where T) = {@pj|j =il <m< —i+1}.

Case two
’am{j{»x; if {(j+x)<e—i+1,
Biryetimrjidife—ivly f e—i+1<j+x<etr—3i+2,
Gy — T Aj(Qetrdimx—j43) if ebr=3it+2<jtxs2e+r-5i43,
Qlx 2o pabicej-3}i if 2etr-=543«jra<2et2r—7Ti+4,
| G f(x20-2r 18I j4) if 2et2r-Ti+4<n+x<3e-+2r—9 45,
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if amj € Tr where T) :{a,,,j|m=r—i+1,i:§j<efi+l},

Case three

Am-x}(e—i+1) if m—x2zi,

i(mte—2i—x=1} ff Ji—e—12m—x2i,

i j > 4 a(.\-+4;_mﬁe,1),' lf 51‘—6’*1'—22”’1—){23!.—6— 1,
it 1) {x—m—e—rt6i-2) if 7Ti-2¢e—r—3z2m-xz25i—e—-r-12,

if 9%—-2e-2r—4>2m-—x27i—2e—r-3,

L (2r4-2e - Bi—x+4+m) (e—i+1)

if amj € Ts where T3 = {amjlj=e—i+1i<m<r—i+1},

Case four:
di( j—x) if joxzi
A(y— j42i)i if i»j—x23i-r—1,
Amj =7 Qr—is Y(x—jridi-1) if 3i—r—1>j—x25—-e—r—2,

A jxtrrtre—6it3)(e—it1} Lf Si—e—r—2>n—x2z Fi—e—2r—3,

| Bi(j—xt2r+2e-8it4) if Ti—e—2r—3>n—x29—2e¢ - 2r—4,
if amj € Ty where Ty :{a,,,jiigjge—i+l,m=i},f0r1 <i<cand

| <x<2e+2r—8i+3.

Froof.

Case one:

Wy Ifmtx<<r—i+1.

Based on Lemma 3.2.5(2) a,,; will move downwards and skip x positions. Since
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(1)

(1)

x < r—i+1—mthen Chia,;) € T) and

Ch: ami 2 Qpmaz)i-

Hr—i+l<m+x<rte—3+4+2
Based on Definition 2.5.3 and Lemma 3.2.5 a,y; will move downwards from a,,;

through ay,_;yy. Since x > r—i+ 1 —mand ap; € T1 then, a,,; will skip

r—i—m+1

positions and then move rightwards to a new Jocation after skipping

Xx—r+it+m—1

positions (See Lemma 3.2.5). Thus

Chami = Qpr i Y- ri2i0m—1}

Hetr—3i4+2<mtx<2rte—~5+3.
Based on Definition 2.5.3 and Lemma 3.2.5 apm; will move downwards to ag_ .55
Since x > (r —i+ | —m) + (e —2i+ 1) then the new location is € T3. Thus, a,,;

will move rightwards until a(,_;y|y.—+1y and then upward. Based on Lemma

331,
Fofun gyt
Ch: am; Y Q)
Ch - e—2i+1
LR S Qp—it1Ye—i+1)
and

Ch: Armiplife-i+l) 7 Qiei2romex—dit3)
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Thus,

Chiaw — ifea2rmpex—di 13}

(V) HW2r+e—5i+3<m+x L 2r+2¢—Ti+ 4
Since

x> (r—itl—m+(e—2i+ 1)+ (r—2i+1)

and Based on Definition 2.5.3 and Lemma 3.2.5, then, the new location € Ty,

Based on Lemmsa 3.3.1,

Foefomgigd |
Ch: ap m—y Qe fa 1

e=2i+1
Chiap.ivyi —  Qrisl(e-it1)}

Then,
‘ (r=2i+1}
Ch: Qi 1) e it 13} P e 2rom-5i+3)s
and
Ch- 2w 2peepf Sidm—3
Viljjpdzrem-5i+3) T $2rile—x—6i—m+4)i
Thus,

Chity —  QQrizex—bi-mid)i°

(v) If2r—2¢e~Ti+4 < m+x<3r+2e—9i+5.
Since x > {r—i+1-—m)+{e~2i+ 1)+ {r—2i-+ 1)+ (e~ 2i+ 1) and based
on Definition 2.5.3 and Lemma 3.2,5, the new location 13 € T5. Thus a,,; will
be moved downwards to ag, ;o) and from ag, .y through a; iy
rightwards and then upwards until @y, 1y. From ay, ;) through ay; the bead
positions will move leftwards, and at @y the bead position will move

downward. Based on Lemma 3.3.1,
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|
Chiami — Q@ i+

and,
e—di+1 _ ‘
_iriyi 7 Qi Y e—i 1))

Thus

Ch: Arait Dfe—i+1)) F— 2i+ ]; Ailes Zrom—3it3)

Ch- e—2f+ |

Fies2r ome 5i-3) [ — A 2{r—e)rursTi- )i
f

Ch. Al w2 Ppbmy -+ T 3)i - 29 2e-rm+Bi-d)i

Hence

Chiam — GG2r-2emi8i-4) -

The proof for case two, three and four are similar as case one.

Corollary 3.3.6. Let an; be an element in a rectangle chain in the nested chain
abacus N with 2 columns and r rows represented by marrix Ay«z. Then, the x of CH*

transformation of anj is

Tt} if j=lm+xsr

a{m—x}Z if Jﬁ 2}??3 —x=1,
Ay 1)l if j=21-r<m—-x<1,
ﬁ;yj' ey B4

E2r—x+m)2 if j=2,1-Zr€m—x< —r,

Giarmx—m=112 if j=Lr<m4xg 2

\ BlsZrdm) ) if J=L2r<mix<x-2r—1,

where | Sx < 2e+2r—8i+3forl<m<rand j=1, 2¢

Proof. 1t follows immediately from the proof in Theorem 3.3.5. 0
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Example 3.3.7 illustrates a chain transformation in the nested chain abacus where

e=2.

Example 3.3.7. Let (37,2,1)%% be a connected partition representing nested chain
abacus N for 9-connected beads as shown in Table 3.1 and Figure 3.9. For example
position 1 or (a12) move by Chto 0 or (ayy).

Table 3.1

Original and new location of bead positions where e = 2,

m?2 —% CH (amZ)
l1(aiz) — 0(aiy)
3 (ax) —= 1( as)
5(azp) — 3(az)
6(as)) — 8 (asy)
T(apn) — 5(az)
8(as)) — 10(ag)
9(asy) — T(aw)
10(ag;) — 11 (ag)
11 (ags) = | B llasm)
Select initial point Initial point New location the initial
| 3 ":::-:::“ o o
“::=-=::; = Q 3N e |
: E’ ‘::.. 5 ’:";,..;::‘ P : |
I .“_1.--.-:_'_: Sl -
. 6 y A 9 , S - =
; ~ - 6 7 7
8 9 L
s 8 ' 9 8 (9
10 §( 11 == - : -
10 11 10 11
L/
a b c

Figure 3.9. (a) Selected initial point in a rectangle chain with 9 bead positions and 3
empty bead positions, (b) Arrows indicating rectangle chain transformation and (c)
The result of chain transformation
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31.3.2 Transformation in Path Chain

Transformation in Path Chain is a chain transformation where o = 0. Based on Chapter
two there are two designs of path chain, Thus there are two types of transformation
in path chain; First, we construct the transformation in vertical path chain (Ch) if the

beads skip one position anticlockwise as shown in Lemma 3.3.8.

Lemma 33.8. Let a,; be an element in a vertical-path chain in the nested chain
abacus I with e columns, r rows and ¢ chains represented by matrix A, ... Then, (Ch)

transformation of ay; is

1)) if e S = 3

a;g}“ R

Proof. Based on Definition 2.5.12, 7, 1s a set of positions of the vertical-path chain ¢

where T = {dee, e 1yer oo+ @ip—pa1)e ) and

such that

Gty = Qyp—p 4] e-+ iy
)5

Since a;; s a bead position in the path chain and the bead movement is anticlockwise

then, bead positions {ace, ..., a(—c).} will be skip one position downwards and

dyj — A 1)

€8



Thus,

) EEE)

2r—e+1 e+ 1
<m<———andj= .
m 5 and j 3

e
where

Figure3.10 illustrates the Lemma 3.3.8.

Initial position Initial position
I;"""“.'. ’,"'--"‘\‘<\
0
| 7 > > 1 : |
2 2 ) ’
: LB "B e .
2
= |
a b e

Figure 3.10. (a) Selected initial point in a path chain with 4 bead positions, (b)
Arrows indicating x-steps path chain transformation for x = 1 and (c) The result of
chain transformation for x = 1

The fundamentals of the transformation in the vertical-path chain is constructed in
Lemma 3.3.8 where each bead in path chain skips one position anticlockwise.
In Theorem 3.3.9 we determine the maximal number of transformations in the vertical-

path chain.

Theorem 3.3.9. Let ay,; be an element in the vertical-path chain in the nested chain
abacus N with e columns and r rows. Then, the maximal number of the vertical-path
transformations (Ch) is

r—e-+1.
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Proof. Let a,,; be a position in the vertical-path chain for the nested chain abacus with
e columns, r rows and ¢ chains. Based on Lemma 3.2.5, ay,; can be moved downwards
and upwards where

e+ 1 < 2r—e+1

Ty ——T,.]=C.

Therefore

) =FIET )

and

Aror—e+1\fe+1\ e+ 1\ fe+1Y"
2 ) 2 2 2
Thus ay,; will skip

2r—et 1l e+41

2 7 +l=r—-etl

positions to return to its original location. ]

In Theorem 3.3.10 we observe that all transformations are in the vertical-path chain

(CH") if the beads skips x positions.

Theorem 3.3.10. Let ay,j be an element in the vertical-path chain in the nested chain
abacus N with e columns, r rows and ¢ chains represented by the matrix A,x.. Then,

transformation Ch*

, 2r—e+1 . e+l
At x)] Jombxs Tl =y

Qmj —* 4

. 2r—e+1 . e+1
a(Zx—2r+26+2m—2)(e+l) if mix>—— =y
X 2 2

where l <x<r—e+1.
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Proof. Based on Definition 2,5.12, T, is a set of the positions of vertical-path in
chain ¢ for Tp = {@ees Gieq 1yer s Q(rmcyrie ) a0d € = %{ where x refers to the num-
ber of positions that the bead positions will skip to get to the new location. Based
on Lemma 3.3.8 the direction of bead position movement is downwards, upwards and
downwards. If m+x € T, then the bead positions will move downwards and skip x

positions. Then

2

1
Umj) P A ey T a(wl\lf‘gf;i
=) =) (57)
and
(2.x—2r+e—é~2m---~3)
: 2
Grod I\ fet ] YAy 2rd2e+2m—=2Nfe-+ 1Y
TIN5 Es VvV IR
Thus,
2x=2r+e-+2m-—3
{ i
2
Bim 3 P Aoy —2r+2e+2m—2\je+1
( 2 ( 2 )
where m+x ¢ T, :"1

Next, we construct the horizontal-path chain transformation in the chain. Firstly, the

chain transformation is formulated when the position skip for one time.

Lemma 3.3.11. Lef a,y,; be an element in the horizontal-path chain in the nested chain
abacus N with e columns, r rows and ¢ chains represented by matrix A, «.. Then,

transformation Ch:

G1



Gl j+1) if = Si< g mE
&;;zj“? . ,._}_] ) 2€_r+1
artl rtl if m=——j="
2 "2

Proof. Suppose T, 18 a set of the positions of chain ¢, Since the nested chain abacus is

horizontal rectangle-path structure and based on Definition 2.5.12, then

T, = {Q€€zgc(c+§}z '“;a{f{ewc%]}}*

Based on Lemma 2.5.16{2) then

““‘:“(!%i (ﬁii '
=)

and

ac{eﬁc%i}ga r+1 2e —r+1
()=

r+1 . . T : .
where ¢ = 5 Since ap; is a bead position in the path chain and the bead movement

1s anticlockwise, then bead positions

{ac{cw}ml}: '--ﬁac(emcw!ml)}

will skip one position rightwards and

Aigj — G( 1) Poc — Gefe—c+1)

where ?’—52—3 £j< 2e_rt] and m = ¢. U

In the following theorem we will determine the number of possible transformations in
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the horizontal-path cham.

Theorem 3.3.12. Ler ay,; be an element in the horizontal-path chain in the nested chain
abacus N with e columns, r rows and ¢ chains represented by matrix A, c.. Then, the

fotal number of movenent of each position in the path-chain is

Pl o o

Proof. Let a,,; be a position in the horizontal-path for nested chain abacus with ¢
columns, » rows and ¢ chains. From Definition 2.5.12 and Lemma 3.2.5, a;; ¢an be

moved rightwards and leftwards depending on m. Therefore

HE)EHE)TEES

Then
QrradyfZe—r+ 1\ 779 r+1y /r+1
(=) =) (7))
1 2e -r+1
where igw Sms —e—m—m;mand J = c. Thus a,,; will be move
2e—r+1
e zr—i- mr;1~+~lme*r+l
steps to return to its original location. a

Next, we develop transformation Cli* where the beads will skip x positions.
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Theorem 3.3.13. Let a,,; be an element in matrix A,., which represents the bead
and empty bead positions in the horizontal-rectangie path chain with e cotumns and v

rows. Then, the chain transformation Ci' is:

r+1 < i 2e—r+1 ﬂ3"+3

p j+4) if '_2_ 1< 5 i 5
Pinj —* ¢
. r+1 . Z2e—r+1
4 rox— Qe+ 2r+2m~2 (r-H if me= o,
()R
where l Sxse—r-1.
Proaf. It follows immediately from Theorem 3.3.10 and Lemma 3.3.11 O

3.3.3 ’I‘ransfermati{}ﬁ in Singleton Chain

Now we construct a transformation in singleton chain.

Lemma 3.3.14. Let ay; be an element in matrix Ay, which represents the bead
positions and empry bead positions in the singleton nested chain abacus R with r rows,

e columns and ¢ chains such that the bead position @ is located in singleton-chain.

. , r41 r+1
Then, transformation Ch . ¢y j — Gyj where th = —— 1=

27 2

Proof. Based on Definition 2.5.18, the singleton chain consists of one position located

. 1 e 1
in column % and row % then dp; — amy. U

Figure 3.11 illustrates the rectangle chain transformation and singleton chain

fransformation.

94



0 1 2 ) 0 1 5
oY 1y 2 -
b
N — | 4 — 4
£ Mg 3 @
a

Figure 3.11. (a) Nested chain abacus with one rectangle chain and one singleton
chain, (b) Rectangle chain transformation applied to the outer rectangle chain and (c)
Singleton chain transformation applied as the singleton chain

In the next section, a new algorithm called nested chain abacus transformation is

constructed.

3.4 Nested Chain Abacus Transformation Algorithm

This is followed by the development of three different types of nested chain
abacus transformation which are single nested chain abacus transformation with ¢ = 2
{SNC2-Transformation), stratum nested chain abacus transformation with ¢ > 2 (SNC-

Transformation) and multiple chain transformation (MNC-Transformation).

3.4.1 SNC2-Transformation

A transformation of a nested chain abacus with a chain is called SNC2-Transformation
construction. We use n = 7 to explain the algorithm for SNC2-Transformation

Step 1: Convert the nested chain abacus with n connected beads and one chain into
Aya.

Consider Figure 3.12(a) for a nested chain abacus with one chain and 7-beads
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(2,5)

represented by connected partition u = (35,2: 1). The nested chain abacus is then

converted in to Asy» as shown in Figure 3.12(b).

a1 Qpz
3 Ay Gy
a a
5 31 32
Q41 Qg
6 7
@51 GQsz

Figure 3.12. Nested chain abacus converted into matrix

Step 2: Select ay,; as an initial point where a,,,; is an element in the » x e matrix.
Consider Figure 3.12(b) in which a4, is selected as an initial point.

Step 3: Generate different of nested chain abacus 91 with one chain by employing CA*
with 2 columns (see Corollary 3.3.6), based on Theorem 3.3.3 withe =2, 1 < x < 2r.
Consider Figure 3.12(b) of 7 connected beads where we employ the transformation in
rectangle chain Ch", where x = 9. Based on Corollary 3.3.6, Table 3.2 show the new
Jocation of beads. For example a4y move by Ch to as;, by Ch* 10 asa, by Ch? 1o ag,
by Ch* to asy, by CIP to azy, by Ch® to aiy, by Ch' 1o ary, by Cchd to asy and by Cch’ to

asy, similar for the rest.
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Table 3.2

New location of the positions in the nested chain abacus by SNC2-Transformation

Ch Ch* Ccr® Cch cr ch® cn’ cn® cr’®

A j 4

a4 —+ ds] dsy a4 Az dzp Az a1 41 43
asy  — dsp a4  ap  dxp 412 dip d21 a3 a4
ajp —F 4yl dp| 4zl a4 a5 dsy a4y  dyp  dp
az; —r djz dj] 41 4d3; a4 dsy  dsp  d4p A3
ayp —» dz a4 an  dz 43 44  ds]p  asy 44
dsp — 4z d;p a2 djl 41 4z a4 ds) 4s;
dsp; —» Q42 a3z  dpp dpp  djl dy1 431 4zl 4s)

Figure below illustrates the result of the SNC2-Transformation algorithm.

- 0 ]
N\ 4 s
rd % 8t
6 7 - i
8 9 ’:8 9

Figure 3.13. Nested chain abacus with one chain in (a) and the result of applying Ch'
in (b)

3.4.2 SNC-Transformation

A transformation of a nested chain abacus with ¢ chains is called SNC-Transformation
construction. In SNC-Transformation, we employ the chain transformation in only one
chain. We use n = 19 to explain the algorithm for SNC-Transformation employed in
chain 2.

Step 1: Convert the nested chain abacus into A,....
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Consider Figure 3.14(a) for a nested chain abacus with two chains and 19 beads
represented by connected partition p{5=4) = (1'%.0%). The nested chain abacus is

converted into A4y 5 as shown in Figure 3.14(b).

Qz1 Qzz Qzz A4 Qg

Qz; Qzz Qzz Q34 d3s

Qg1 Qg3 Qa3 Qae Qus

Figure 3.14. Nested chain abacus in (a) and convert into matrix in (b)

Step 2: Select the chain i and then «,,; as an initial point where i < j < e—i+1 and
iKmLr—i+1.

Consider Figure 3.14(b) where i = 2 and a3y are selected as number of chain and an
initial point respectively.

Step 3: Generate different of nested chain abacus 91 with ¢ chain by employing

Theorem 3.3.5 to find the transformation C/* in chain 7 if chain i is rectangle

chain, based on Theorem 3.3.3, 1 < x < 2e+2r—8i+3 or,

e Theorem 3.3.10 to find the transformation C#* in chain c¢ if chain ¢ is vertical-
path chain, based on Theorem 3.3.9, 1 <x<r—e+1 or,

e Theorem 3.3.13 to find the transformation Ch" in chain ¢ if chain ¢ is horizontal-
path chain, based on Theorem 3.3.12, 1 <x < e—r+1 or,

e Lemma 3.3.14 to find the transformation Ch" in chain ¢ if chain ¢ is singleton

chain.
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Consider Figure 3.14(b) of 19 connected beads in which we employ transformation
in rectangle chain CA* where x = 5. Table 3.3 show the original and new location of
beads.

Table 3.3

New location of the positions in the nested chain abacus by SNC-Transformation

Ch Ch* CW Ch CK

Amj —

d3p —» a33 d3zq a4 A3 AR
dzz —> Q34 dz4 a3 dyp 43
a4 —r dp4 dp3  dpy d3 433
a4 — O3 d2 43y 433 d34
ayy —v Az a4z diyg a4

Make SNC-Transformation Ch® in chain 2 as illustrated in Figure 3.15.

Figure 3.15. (a) Nested chain abacus of p{5=4) (b) Nested chain abacus of ;.L+3(5’4)

3.4.3 MNC-Transformation

A transformation of a nested chain abacus with ¢ chains called MNC-Transformation
construction. In MNC-Transformation we employ transformation in all chains. We
use n = 10 to explain the algorithm for MNC-Transformation for chain 1, chain 2 and
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chain 3.

Step 1: Converted the nested chain abacus into A, ..

Consider Figure 3.16 (a) for a nested chain abacus with two chains and 10 beads
represented by connected partition p{3'4) = (2,1°,0%). The nested chain abacus is

then converted into A3 as shown in Figure 3.16 (b).

| Q11 ap; a;3
Qz; az2 Q3
az; Qzp Q33

Qg Q42 Q43

Qsq Qsz Qg3

Figure 3.16. Nested chain abacus converted into matrix

Step 2: Select ¢ element in ¢ chains as an initial point where:
Consider Figure 3.16(b) in which 2 initial points a;; and a3y are selected, where aj;
and ai3o are elements in the 4 x 3 matrix.

Step 3: Generate different of nested chain abacus 91 with ¢ chain by employing

e Theorem 3.3.5 to find the transformation C/" in all chains if 91 is rectangular
nested chain abacus, based on Theorem 3.3.3, 1 <x < 2e+2r—8i+3 or,

e Theorem 3.3.5 to find the transformation CH" in chain i where 1 < i < ¢, based on
Theorem 3.3.3 1 €< x € 2e+ 2r— 8i+ 3. In addition, employ Theorem 3.3.10 to
find the transformation Ch”* in chain ¢, based on Theorem 3391 <x<r—e+1,
if 91 is vertical rectangle-path nested chain abacus or,

e Theorem 3.3.5 to find the transformation Ch" in chain i where 1 < i < ¢, based
on Theorem 3.3.3 1 < x < 2e +2r — 8i -+ 3. In addition, employ Theorem 3.3.13

to find the transformation Ch" in chain ¢, based on Theorem 3.3.12
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1 < x < e—r+1,if Nis horizontal-path rectangle nested chain abacus or,
e Theorem 3.3.5 to find the transformation Ch* in chain i where 1 < i < ¢, based
on Theorem 3.3.3 1 < x < 2¢ + 2r — 8i + 3. In addition, employ Theorem 3.3.14

to find the transformation Ch" in chain ¢ if 91 is singleton nested chain abacus.

Consider Figure 3.16(b) of 10 connected beads where we employ transformation Ch’
chain 1 and transformation Ch' in chain 2, as described in Theorem 3.3.5 and Theorem
3.3.10 respectively. Table 3.4 and Table 3.5 show the the original and new location of
beads is as shown in .

Table 3.4

New location of the positions in the nested chain abacus by MNC-Transformation

Ch CH cn cH* ch ch® ch cn® ci®

G j —

ajy  ——¢ 4 a2 a1 431 431 a4) 44 d4 442
a1 — d21 d3 a3l a4 Q41 a4 a4 d43 443
azl  —» d31 441 a4) d4p G4 d43  a43  d3z d33
aq) > d4] d42 a4z d43 443 d33 43z dz23 d23
a43  —» @43 433 dzy dzz @y 413 413 a4y Qg2
a3y —» a3z dpp 4y a3 a4z diz app  dip 4
dz  — g3 @13 d13 . djz  d)p o a4y 4y azp o 4y
@13 —> 4dj3 az 4z 4ap)  a)  dzp a1 a4z
dip  —+ di12 a1 dil dz21 G143 A3y d4)  d4)
d3) — Qyp A3p dpy A3 Ay A3y Ay 43y 4

Table 3.5

New location of the positions in the nested chain abacus by MNC-Transformation

ch® en't an? c® ' e e’ o’ on® cp®?
43 aqs3 asz3 €133 a33 aszs a3 13 a2 a2
33 a3z 2k 23 )3 a3 apz o2 ap daj

azs any a3 a13 an ann an ai az] aszj
13 as apz apn ar ap as) ani ass ans
aj) ap) 7] az] a3z as| a4y dyq) 43 a4p
az| ] t3) asz] ag) dq a4 aq a43 a43
asy as| a4 a4 a4 a4 a43 aq3 as3 as3
aq) (4] (25 %] aqp a43 €143 €33 ass ass ass

a42 asn a43 a43 a3 as3 az3 a3 a13 ars
asn an? as2 ano a32 azz a3z az? asz azz
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Make MNC-Transformation Ch° in nested chain abacus with 10-beads as illustrated in

Figure 3.17.

U/

a b

Figure 3.17. (a) Nested chain abacus and (b) Nested chain abacus after employ cr’

3.5 Conclusion

This chapter presented and formulated three types of transformations based on these
transformations, algorithms for SNC2-Transformation, SNC-Transformation and MNC-

Transformation are developed as presented in Figure 3.18.

Transformation in
Chain

[ |

Transformation in Transformation in Path Transformation in
Rectangle Chain Chain Singleton Chain
1 ]
|

<
SNC2- SNC-
Transformation Transformation

S
| MNC-
| Transformation

Figure 3.18. Transformations in nested chain abacus

These transformations are needed to formulate a family of classes for the nested chain

abacus that will be developed in chapter 4.
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CHAPTER FOUR
CLASSES OF NESTED CHAIN ABACUS WITH RESPECT TO

CHAINS

4.1  Introduction

In this chapter we employ a sets of transformations to construct classes of nested chain
abacus. In addition, a new method is presented to obtain the generating functions by
building the nested chain abacus from the lower order with respect to chains, where

order is simply the number of chains.

This chapler begins with the introduction. The necessary definitions for classes in
nested chain abacus are defined in Section 4.2. Then in Section 4.3, classes of nested
chain abacus based on SNC2-Transformation is developed. Meanwhile in Section
4.4, classes of nested chain abacus based on SNC-Transformation are presented. In
addition in Section 4.5, classes of nested chain abacus based on MNC-Transformation

are presented. Finally, a new method to calculate generating functions is developed.

4,2 Definitions for classes in nested chain abacus

We provide some basic definitions that are needed for the rest of the chapter.

Definition 4.2.1. (Martinez & Molinero, 2001) A class is a countable family of
mathematical objects with respect to some characterizations such as geometrical

constraints or combinatorial properties.

Definition 4.2.2. (Goulden & Jackson, 2004} Let (ay) be a sequence of numbers where

Definition 4.2.3. (Apostol, 2013} A point lattice is a regularly spaced array of poinis,

th whick often the array is called a grid.
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Remark 4.2.4. Since the plan lattice points are the vertices of unit squares, then nested
- . . - - - - ! !
chain abacus N is inscribed in the grid with e columns and r rows such that each

position in the nested chain abacus is a point latfice.

Figure 4.1 Illustrates the lattice nested chain abacus in the grid.

a b

Figure 4.1. (a) Nested chain abacus for 15-connected beads and (b) The nested chain
abacus for 15-connected beads embedded in square lattice

Now, we define two cases of nested chain abacus with four definitions based on the

beads and empty beads locations with respect to chains.

Case one: Nested chain abacus with ¢ — 1 full chains.

Definition 4.2.5. D, is a nested chain abacus with one chain which has at most a
sequence of connected beads, that is, there exists {ay, a,....ax : |ay —ay || €{1,e}}
where ay is a positive integer corresponding to connected bead positions and

1<k <k for1 <k<2r

Based on Remark 4.2.4 Figure 4.2 (a) 1s Dgng nested chain abacus representing

connected partition is ”(2,5) = (24, I¢03) while Figure 4.2 (b) is a case where the
connected partition u(z,s) = (24, ]3:0) nested chain abacus not Dgng1.
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0]1 0
2 P ]
4 4
6|7 6|7
819 819
a b
|

Figure 4.2. (a) A D ing nested chain abacus and (b) nested chain abacus but not D g,

Definition 4.2.6. © ... is a vertical (respectively, vertical-path) rectangle nested chain
abacus with ¢ chains, ¢ > 1 and all inner chains are full chains and empty bead posi-

- - .
tions b is in the outer chain for the following:

(i) Douter i Douter—1 If the outer chain has g, sets of connected bead positions.
(1) B putsels B—2D5ees If WK b < e and the empty bead positions b are
consecutive positions.
(iii) Douter 15 Douter—3 if € & b < edr—3 and the empty bead positions b are
consecutive positions.

f

Definition 4.2.7. © .. is a horizontal (respectively, horizontal path) rectangle nested
chain abacus with ¢ chains, ¢ > 1 and all inner chains are full chains and empty bead

positions b located in the outer chain for the following;

. ! - ! - . .-
(1) Dyuter 18 Douter—, If the outer chain has g, sets of connected bead positions.
.. % . ! - ! - - ! .
(1) Douger 15 Dougee—s if 1 £ b < r and empty bead positions b are consecutive
positions.
’

R . ! + g ! . f
(if]) Doyter 15 Doyger—y f ¥ £ b < r+e—3 and the empty bead positions b are

consecutive positions.
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The number of elements in set g, is denoted by #g, such that #g, > 1 where

gp = {anaz,.oal, lag,, —ay| € {le} and 1 < k < k-1
P

for 1 < ) #g,<2r+2¢e—4and 1 <k<2e+2r—4

p’fl

Figure 4.3(a). (b) and (c) illustrate Doyter—1. Douter—2 and Doyter—3 While (d) is not

Qoutcr-
o| 4ls] o i |als 5 21 1 |5

1
6|17|8]9]10j11 6|7|8]9]10]11 71819 j10]12 6|7)18]9|10f11
1314151617 [14)23)14]15] 16|17 13|14f15416117 12 14)15|16

19|20)21422123| |20]19)20}21)22)23 20{19120] 212223 18 20121)22

24125126427 28]259| {24]25)26]027]28]29 24l2s5|26027128]29 24 2612728

Figure 4.3. (a) A Douter—15 (b) Doyter—a, (€) gomet—; and (d) not D yer

Definition 4.2.8. D;,,..._; is a nested chain abacus with ¢ chains and all chains are a

Jull chain except chain i with empty bead positions b:- where 1 <i< c.

Case two: The empty bead positions are located in at least two chains.

Definition 4.2.9.

1. Dinner 15 a vertical (respectively horizontal) rectangle nested chain abacus which

satisfies the following conditions:

(i) bis1+12b;if 1 < biyy < e—2i
(respectively, 1 < by <r—2i)
(i) bi1+3 = bjife—2i < bis1 < r-+e—6i
(respectively, r—2i < b < r+e—06i)
(iii) bis1+52 by if r+e—6i < biyy < 2e+r—8i

(respectively, r+e —6i < b;. 1 < 2r+e— 2i)
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fiv) &5?1%723’:‘5}?33;41 = 2e+r—8i

frespectively, by 2 2r+ e — 81}

H . - *

such that by and b; are bead and empty bead paositions, respectively, in chain i
where 1 < i<

2. Dypnee 18 @ vertical (respectively, horizontal)-parh rectanglie nested chain abacus

with ¢ chains and satisfies the following conditions:

(i) bior+ 128, if 1 S by < e—2i
(respectively, (r —2i}}
(if) byt +3 > b, ife—2i
frespectively (r—2i)) < by <r+e—6i
(iii) by +5 2 by ifr+e—6i < by < 2e+r—8i
(respectively, {2r 4 ¢ — 2i))
{iv) bipy +7 2 b ifbiyy 2 2e+r—8i
(respectively, (2r+ ¢ —8i)}
{v) Satisfy one of the following conditions:
 Chain %—3 fs full columns

t
* brzm] “{‘:\4
gl

# # . - ¥ >
such that by and b; are bead and empty bead positions, respectively, in chain

where 1 €71 < ¢

Based on Definitions 4.25, 4.2.6, 4.2.8 and 4.2.9 and SNC2-Transformation, SNC-
Transformation and MNC-Transformation respectively, we will now define the classes

of nested chain abacus.

Note that, all formulas formulated in the remaining of this chapter have been verified

with computer programs according to Appendix E.
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4.3 Single Transformation Class

A new class of nested chain abacus with a chain is generated by employing SNC2-

Transformation in Dy

(z,v)

Note, D ging with ¢ columns and r rows are denoted by ’D&m{.

(2.5}

singt N fixed # (number of beads).

The next lemma provides the method of generating D

3

In addition, the ’Dif{; ol elements are enumerated.

Lemma 4.3.1. Let b be the number of empty bead positions. For fixed b \the mumber
of Z)g:{z, generated by employing SNC2-Transformation is 2r.

(2,7}

singl® Based on Lemma 3.2.5, ay; can be

Proof. Let a;; be an initial position in 3
moved downwards, upwards, rightwards or leftwards depending on m and j where
l€m« rand 1 € j< 2. Based on Definition 2.5.3 and Lemma 3.2.5, if j =1 then
the initial position will be moved downwards along the column 1 until location axy
after skipping r — m locations. Then, the position of location a,) will move from left
to the right from a,| 0 a,; after skipping one location. Afterwards, the initial position
will move up and skip » — 1 locations to arrive at location a;;. Furthermore, the initial

position will move from right to left and skip one location. Finally, a1) will skipm — |

locations downwards (o return back. Thus, the initial position a,,; will skip

r—m4+1l4r—14+m—-1=2r-1

locations 10 move and return to its original place. The same applies if the initial
position 1s a,z. Since each move generates a new nested chain abacus, then the class

of Dyingt generated by SNC2-Transformation consists of 2r elements. O

Example 4.3.2 illustrates Lemma 4.3.1,
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Example 4.3.2. Let u(4’5) = (24: 1.,03) be a connected partition where b =?2. Based

on Lemma 4.3.1, the number of D g with 8 beads is 10 as shown in Figure 4.4.

0 1 TV SR P 3 1 0 1
[] 1 ] 1 1
1 1 1 1 1
2 : ' 2 | 3 £ 3 ; 3
1 1 1 1
1] 1 1 1
" . 4 | s a4 | s Y 3 5
j = = e o]
6 7 5§ | 7 5 | 7 6 | 7 i 6 | 7
8 9 F g 3 9 3 9 8 9
H\'?..S}:{zq’ i: D!:I 11*1(2,5!:{25’ 1,0) I“-'-?.t'Z_'SJ:{OSJ '”1'-3| Z'S’ZI:Z?, 1} 1 I[;Z'MZ,S'I:{I;' 1,07
0 1 0 1 0 1 0 1 0 i
2 3 2 3 2 3 2 3 2 | 3
|
P . 4 T | T o, ) D 5 5 .
1
6 "'g 5 & llaz 7 L
1 1 n
8 9 8 ! F 9 8 9
H i
e e
H’W EZ,SJ:(ZI’ 23 05} JJ_“‘?“S}:I: 1, 0?} .ﬁ"-'- '.’..5:-2{08} 11‘012.5_';;(2' i D!’J .u"fiz,SJ:[zJ’ 1, 04} .

Figure 4.4. Nested chain abacus of class Disingt

Figure 4.4 illustrates the generation of D 4 nested chain abacus class by employing

SNC2-Transformation where u(z,s ) = (24,1,0%) and then
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C&(ggz,ig) -y +1H2.5) = (26‘ i@:},
Ciz{;z“{z*g-}} :‘Hi 225 _ (@3}’

Ch! (}J 5—2{255}) - ‘u-é 325 . (21 §}§
Chf (’u+3{2§)) — 3*4{2;,&] - {Eﬁg § $§E)§
Chl (Ju +4{2,5)) = ﬁ%-ﬁ{zss} - {23§ §‘@4)3

CH (uH09) =609 (21,09,
CH (o) = 728 = (o),
Chl(u* 7@y = u ¥ = (1,07),

C}Sl(ﬁ+8(2’5}) ;g-%?(ﬁ,ﬁ} :(2}3?1!05)_

Theorem 4.3.3 is a generalization of Lemma 4.3.1.

Theorem 4.3.3. The nmanber of ’332;3{ generared by emploving SNC2-Transformation
is

E{r— 132r+ 1.

P-4

Proof. Since 9N is D,y then there 1s b consecutive bead positions and the number of

beads in Doy are {r+1,7+2,...,2r}. Thus, there are
2r—(r+1j)

of i)gf;}; nested chain abacus. Based on Lemma 4.3.1, for a fixed number of b and r,

there exist 2r of ﬁjig Thus, there exist

(r—1)2r

118



of ﬁiig with fixed r, In addition, there is a ’i}iig with full chain. Hence, there exist

{ex}

of ’I{)(z'ﬂ[ with fixed » where I € b < ». Since r = 2,3,4, ... then, the number of E)ﬁiﬁg[

stng

generated by employing SNC2-Transformation is

Y (r-1)2r+ 1 -

f2=yi

(2.1}

cingl class.

Next, we will find the generating function of ©

Theorem 4.3.4. For ¢ = 2, The generating function for the numbers @i‘;g‘; has the

Joliowing rational form:

20y o ) 5]

= + -1,
T=vy =12 " 1—y

Proaf. Based on Theorem 4.3.3, for ¢ = 2 the number of nested chain abacus in class

@ii;; generated by employing SNC2-Transformation is

(r—1)2r+1.

Based on the ordinary form of the generating function

S o ((r—172r+1)x%"
=2 ra(} g2zl
=7 z x2y -2 Z rdy 4 Z K2y
rede=? 22 e=2 rod ey
=+ 1 Xty 1
w020y, ) . 1 -
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4.4 Stratum Transformation Class

Stratum transformation class is class of nested chain abacus generated by employing
?
a SNC-Transformation in Daueer, Dovter and Dippecns. The Doygee and Dy nested

. . fer) e} ex
chain abacus with ¢ columns and r rows are denoted by @;ﬁéi, @j;éz; and @;{nhiq.

. - * !
Case one: Nested chain abacus is 3)5,;&“ cand b < e.

e

{ , ‘
(5,0 (respectively, ‘Da(nmm}_) generated by

pufer—2

Lemma 4.4.1. The number of D

employing SNC-Transformation is

e g |

o p—}
2 2(28—2—2?—4}(6— Vi (respectively, Z £(2ﬁ+2r—4){r-~ 1.
re=fe=—}i

gy ]

(e}

outer—

@;{‘ R3

Proof. Since the nested chain abacus 15 © , {respectively, © ..} then the inner

chains are full. For fixed };:, based on SNC-Transformation and Corollary 3.3.4 where

{e,¢]

cufee- 2

(respectively, D 7)) that can be obtained by

stiler—2

i = 1 the different shapes of D

employing rectangle chain tansfonmation on outer chain is
2¢+2r—4.
Since the empty bead positions are consecutive and
1<b < elrespectively, | < V< r},

then there exist

of E(B’t} Thus, there exist

oufer—z-

oulgr—2

(e—1){(2e+2r—4) Do (r@p&(ﬁtivei}g (r=132e+2r—4; ’;9;{;:5_2) .
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Since ¢ < rand r > 1, then,

1y oo e—|

(2¢+2r—4)(e— 1)(respectively, Z Z(Qe+2r—4)(r— 1)).

e=1 e=1r=1

13

r

Example 4.4.2. Let u*3) = (3'%,0) be a connected partition ofiD 45)  \ith 3 empty

auter—
I
bead positions. Based on Lemma 4.4.1 the number of nested chain abacus
generated by employing SNC-Transformation on @E,um_z of 17-connected bead

positions is represented by u'*3) = (31°,0).

0 3 25 s B EE ] EASES e
4 |5 |6 |7 2 e | Seal-eas i S GE S o
8§ |9 (1ot |8 [9o [0 |11 |8 |9 [to]ir || |9 |10 |1l 9 |10 |11
12 (13 (14 (15 [12 (13 (14 [15 [ |12 |13 |14 |15 12 |1 3s) | 13 |14 |15
16 |17 (18 119 | |16 |17 (18 (19 | |16 [17 |18 |19 16 |17 [18 [19 16 NS LS |19

o [U=2EE | ol 2 [ 0 [ (S0 [z & T P E
4 |5 lelTd ™% 5 |3 2 a2l 5w s |7 4 |5 Je |7
8 (9 [1of1r][8 [9 Tio |11 | [8 |9 [10 |11 |[8T [o [10 |11 9 10 [11
12 [137]14 12 |13 |14 [15 | [12 |13 |14 |15 13 [14_[15 13 |14 [15
16 (17 16 19 18 [19 17 [18 |19
Bl i [0 [ 1

s el 5 E 4 [5 |6 | | 4 |5 |6

8 [9 [10 TR . g [9 |10 9 |10 |11

12 |13 [14 12 [13 |14 12 [13 [14 [15 ] [12 [13 |14 |15

16 [17 |18 16 |17 [18 19|‘ 16 [17 [18 [19 | [16 [17 |18 |9|

(4.5)

ontec—o tor 17-connected beads where b =3

Figure 4.5. Fourteen of ©

Based on SNC-Transformation, the following lemma provides the way to generate

(et}
outer—3

53(rr

b=y & Doum_ ) class. In addition, the ©

( ’Doum ;) elements are

enumerated. Case two: If nested chain abacus is Df,ufgl_ andb =e=r,
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1] r
Lemma 4.4.3. Let b be the number of empty bead positions. For fixed b =e=r,
the number of nested chain abacus generated by employing SNC-Transformation in

/D(f )

outer— 3

(I) Two Ofgﬂtl:l‘t l 2

.. C—l.t
{ii) Two of’i)aum_2

(iii) 4e —8 of DLV

outer—3

with b empty bead positions where e 2 2 and r 2 2.

Proof. Let S be a set of empty bead positions in Doygee— 5, then,
S={am; & <k+b -1, .je{l.e}}, or

S={a,,,j:kr JSk+b~lm€{1 r}}, or
S={amj:r—ki<m<rj=1}U{ay:1<j<k,m=r}, or

S:{a,nj:€~k|

/AN

i<em=r}U{ayj:r—ky<m<rj=e}, or
S:{amj:e_klg.]<eam—l}u{am] gmgkg,j:e},or
S={amf=1€1<k1 m=1}U{an;: 1<m<ky,j=1}

Since class D is generated by employing SNC-Transformation and b =e=r

nutcr 3

then I3{x|,x2} such that
Ch'(S) ={am;: 1< j<em=1}and C (S} = {a,;: 1 <J <e,m=r} where

1<x <2r+2e—5and 1 <xy <2r+2—Sforl <k<e—b +1,

(e,e—1}

oitee— - In addition, 3{x3,x4}

1 gk' <e— b +1and ki +k2—b Then, there are two D
such that Ch*(S) = {ap;: 1 <m<rj=1} and CH(S) = {am : 1 < m < nn=e}
where | £ x3 £ 2r+2e—>5and 1 € x4 € 2r+2e — 5. Then, there are two :Df,j,;;i)l.

Based on Corollary 3.3.4, the maximal number of nested chain abacus generated by

SNC-Transformation is

2e+2r—>5

{c.x)

in addition the original one; therefore, the number of nested chain abacus in D,
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is
Ze+2r—4

= Her—13e . . ;
such that two of them are @;ﬁ;;ﬁi ( ’f)n‘:;;fi} with full chains and another two are

it Heoq . . .
Dty (HL10y Hence, the number of nested chain abacus in Douter—y With ¢

columns and r rows is

2e+2r —8.

Since e == r, then, the number of nested chain abacus in Dy y with € columns and

FOWS 18

de — 8.

{(7{}

outer—; TOpresents the connected

Consider Lemma 4.4.3 where the number of @

partition p(*% = (3% 2). There are four @iiéi_i and two D33 as well as two

{32 , "
@;i;i-; as shown in Figure 4.6.
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2 o1 7
4153 3|4 3t4}3
: |
6|78 617 61718
Hy Hz iy
o]1r]2 112 gl1iz2
4] s i 413 3i4t5
8 718
}"‘3 #6 #8
g1 2
ij4
&
Hg !
g
34
61718
Hy
a b c
Figure 4.6. Eight nested chain abacus, (a) four @iﬁ;ﬁi_ 5 (b) two @iigz__ , and (¢} two
(3.2}
leiﬂ'—l

. . . £
In the next theorem we will found a generating function of K}i;f;,{, , class

Theorem 4.4.4. Let b be the number of empty bead positions. The generating function

I . .
or the number o ptes) _, has the following ardinary form:
outer—3 4 w

r
where b =r=e.
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Proof. Based on Lemma 4.4.3, the number of nested chain abacus in @;;fjr_j isde - 8.
Since e > 2, then, 4,8,12,... = 4{1,2,3,...}. The ordinary generating function for the
infinite sequence {1,2,3,...} is the power series: 1 + 3x% +5x° + ... where {1,3,5, ..}

2
whose term # is the binomial coefficient 4 (n; ) - Since
N
o n-+2 _ 3 4 2 5 XB
E("3 )= G G G

Then, the ordinary generating function is
o (nt2 4
4 = -
ye("; )"‘” 1=y O

Case three: If nested chain abacus is Diy, . and e <& < e+r—3.

Lemma 4.4.5, For fived ¢ < b <« e - r 3, the number of nested chain abacus

generated by emploving SNC-Transformation in @iﬁgt_ 3 is

(i) 206 ~e+ DY i p oy

oufer—3

(i) 206 ~e+ 1) DD and 26 — r + ) DE2T B > 1

auter—3 ouler—31

(if) (2e+2r—4)-2(' —e+1) - 206 —r+ 1) D™,

where b be the number of empty bead positions.

Proof.

(1} Suppose that S 1s set of empty bead positions. Since B < r then 2 xy,x2} such

that
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ChY (’S) = {aEE 18120y e B2y ~'-1a(bi—~e-i"”€}s

CHITIHS) = {ﬁzi36115312:~~=ﬂie10'2e,~-~aﬁ1’-(g,'.ue)(,}
?
Ch“““f”b et (S) == {a{_bjmg..;. §}l?a{b!+€}i seenn b, 12, '“salé}
anel
Ch? (S) mr {6{-r_bf"‘:h6}} ’a{fw&;—;»e—j-i}% Y/ M7 2 B ...?él‘w}

4
Tyh b et | NN |
Ch (5} = {grlaaa*}‘,a“-sg;‘eaﬁ(r—i}eaH-:a{,.,;j_g_g'je

(2,0—1}

Thus, there are 2(b —e+ 1) Doter—3°

{in) Suppose that § is set of empty bead positions. Since b < rthen 3{x3,x4} such

that
Chjw”(S) = {al{b’mrmin!)’ai(b’mrmi}’ O SR T 75 S TN+ P },
Crs ! (S) = {al{b’w-rmlj’&I(bt—r—%* 11,8215 81,852 )

! in
C}?X?,%i? - i{S} = {alizagggm;ag;,ﬁgz;,k,_s{:srig_mr"éml}},

and
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Xy -
Ch (3) - {aw(ewb’mi«r)’ar(c«mb’ﬁ r+137 2 @rerGirmten a""}’

s+ oy e .
CH*TH(S) = {00 12 Gt =3y DresBpjes s Bles @i ey 1

Chxﬁ_b i (S:} = {a;ma{r—}}m e 8ie Afen ) ‘Hiai{{fm,%}f-?"!')}’

Thus, there are

28 7+ 1)

of DITE ‘i Since e < r then and based on 1 there are

206 —e+1)

of DAY

aufer—3°

(iii) Based on Corollary 3.3.4, there is
(2e+2r—4)=2(b — e+ 1) —2(8 —r+1)

of i)i%;gthi where 1 v < (r42e -5 + 1}, -

Lemma 4.4.6. Let b be the number of empty bead positions. The number of nested

{ y
chain abacus generated by employing SNC-Transformation in in;":i_m I8

(i) 206 —r+ 1) DEEY b <o

(i) 206 — e+ ) DS and 26 - r 4 1) DS ifh > e
{t—1.1)

(1) (2e-+2r—4) - 26 —e+1}- 2b —r+ 1) D guter-s

where r < b £ e+r—3.

Proof. See Lemma 4.4.3 0
19



Theorem 4.4.7. Let b be the number of empty bead positions and e < b <e+r—3.

The number of nested chain abacus generated by employing SNC-Transformation in

(e,T) .
fDoutc1:—3 LS
!
b &t {e,v—1}
(i) 2 E d QOL;tcT
d=1
B —r+l

{e—1.1)

(i) 2 ) d Dyyeer
4=l
b —etl vt
(i) (2e+2r—4)-2 Y d-2 Y d D)
=0 d'=l

wherebl—e=0#b’§eand622-

Proof.

(i) We will prove the above theorem by induction.

Basic step: When b = 1, then, the number of nested chain abacus generated by

employing SNC-Transformation in @gz’gr_ ;18 (2e+2r—4) .
b —e+tl ,
Induction step: Let k € Z¥ and suppose 2 ) d is true for b = k. If we add
a=0
one empty bead position in outer chain then,

k—et1 k—et2
k—e+2+ Y d= Y d=1+2+.+(k—e+1)+(k—e+2)
d=1 d=0
(i1) See Proof (i) Theorem 4.4.7.

(i1ii) Based on Corollary 3.3.4, there is 2e 4+ 2r — 4 nested chain abacus generated by

employing SNC-Transformation. Thus, there is

k—e+1 k—r+1
2e+2r—4-2 Y d- ) d
d=0 d'=0

o Dy .

The next example is illustrated according to Theorem 4.4.7 if b =3.
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Example 4.4.8. Let p®% = (1,0%) be a connected partition of @ﬁi}:ﬂ_j with 3

consecutive empty bead positions. Based on Theorem 4.4.7, the number of nested chain

abacus generated by employing SNC- Transformational in @fj’{ﬂ_3 is 8 and two

9{3_-.3}

puter—2z*

0 1 2 0 1 2 0|1 1]
3 4 5 3 4 3 4 3 4q 3 4 5
6 7 6|7 6 7 6 7 8 6 7 8
9 9 |10 9 |10 |11 9 10|11 9110|11
e u+l(3, 4) u+2{3. 4) u+3(3, 4) u*“(i 4)
2 1 2 (1] 1 2 0 1 2 1] 1 2
4 5 A 155 4 5 3 aq 5 3 415
6 7 8 7| 8 71| 8 7 B8 6 7 B
9 |10 11 9 11011 10 | 11 11
; 5(3, 4 +6(3. 4)
pr>E4a i u+?l3, 4) L83 4) “+9(3, 4)

Figure 4.7. Eight 3% __ and two D32

outer—3 outer—2

The enumeration of nested chain abacus generated by employing SNC
Transformation in Dyyec—r 18 similar to the enumeration of vested chain
abacus generated by employing SNC-Transformation in D gyger—; and D gyqer—3 eXcept
if #g) =#gp, = ... = #g,, and #0) = #op = ... = #o, where g, and o, are the sets of
connected bead and empty bead positions in the outer chain, respectively, such that #
denotes to the number of elements in the set as shown in Example 4.4.9 and Theorem

4.4.10, respectively.

Example 4.4.9. let u = (3,26) be a connected partition of Douter—1 nested chain

abacus of 7-connected beads with two sets of bead positions {g1,g2} where g| =
121



{1,2} and g» = {3,6,9}. By using SNC-Transformation, there exists 8 @ﬁiél_l and 2

Bk
2 1 2 ) | 0
5 &[5 4 |5 4 3 |4
B | g |7 |8 7 7 |8
9 R R R 9 |10 |11 10 |11
p(3,4) Ch(u(34)) Chz(ll(34)) C‘h3(u(34))
(4 e 1 |2 2
4 4 |5 4 |5 514 |5
7 7 (S G [
10 |11 A G 9 11
Ch(uG9) Cho(ue9) Ché(ue9) Chi(uB)
0 |1 0
e ERRTT
7 |8 G |
11
Chi{u4) Cho(u@9)

Figure 4.8. Ten nested chain abacus

Theorem 4.4.10. Let #g, and #a, be the number of the bead and empty bead
positions in the sets g and o, respectively. Then, there exists L of Douter—1
(respectively, @;um_l), where L=%#g| +#0, #g1 =#g2 = ... = #g, and #oy =#op =

r

o=Hop, for1 <1< pand1 <1 <p.

Proof. Since the nested chain abacus 91 15 a Dgyec—y (respectively, @;um_l), then
#g) =#gy = ... =#g,, #ay = #op = ... = #a, and #g, > 1 where g, = {0l il ]
and 1 éz; <zand 1€z p #g1+oyp =%+ 0 =..=#g,+ap =L since

Cht (@) = Ch(am;) 0 Ch(amj) o -+ 0 Ch(an;) then ChM(dh ) =d” ;| and Chy(dl)) =

L3

L—time

d' where 1 < p < p. Thus, u % =p ) 5o there exist L of D guter—s (respectively,

B o) WhEAR 152 sl O



Example 4.4.11 illustrates Theorem 4.4.10.

Example 4.4.11. Let g,t(3‘4) = (4,26,0) be a connected partition of D gytec—1 Nested
chain abacus of 7-connected beads with two sets of bead positions {g1.g2} where
g1 ={1,2} and g, = {9, 10} such that o; = 2 and o = 2. Based on Theorem 4.4.10,
the number of nested chain abacus generated by employing SNC-Transformation in

Douter—1 15 3 as shown in Figure 4.9.

0
) O 3,4 +5(3,4 i
A p P EH IR
7 T 11
5 2
3 [Tati s
4
Z 7 - #+1(3,4) #+6(3‘4) 6 | 78
0 9
' G B
FT 4 5
I 4 5 +7(3,4)
7 §t2Es [z s 17
9 [ 10 9 |10
0 1 > 0 1 2
4 +8(3.4) :
- pt3Ga putee -
9 1 1 9 10 | 11
011 1
3 4 3 4
& 8 ”+4(3,4) ‘u+9(3,4} 7 g
10 |11 10 | 11

Figure 4.9. Ten p 3:4)
oute

. for 8-connected beads

Previously, the SNC-Transformation was applied in chain 1 (outer chain). In the next

theorem, the SNC-Transformation will be employed in chain / where 1 <i < c.
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Lemma 4.4.12. Let b’ be the number of empty bead positions. For fixed number of bﬁ,

{e.r)

the number of DY ; generated by employing SNC-Transformation in Dmn ori 15

2????8!‘

(i} 2r+2e—4(2i — 1) nested chain abacus if Dmmm ; is rectangular nested chain
abacus where 1 < i £ ¢ (respectively, rectangle-path nested chain abacus where
1<i<eh

(i} ¥ — e+ 1 nested chain abacus if Dmm}r . is vertical rectangle-path nested chain
abacus where i = ¢

{iii} e—r-+ 1 nested chain abacus {fﬁf ) is horizontal rectangle-path nested chain

inner i

abuacus where i = ¢.

FProof.

(i) Since the SNC-Transformation algorithim, then, the chain transformation is
emploved in one chain (chain with empty bead positions). Based on Theorem

3.3.3, the number of nested chain abacus in class D77 s
2r+2e—d(i~1)

if chain 7 is rectangular design.

(ii) See proof (/) Lemma 4.4.12 .

(1i1y Based on Theorem 3.3.10 (respectively, Theorem 3.3.13), the number of nested
chain abacus generated by employing SNC-Transformation in chain ¢ with b;
empty bead position is

r—e+ 1{respectively.e —r-+1), piert

inner—i

{(1v) See Proof (+ii} in Theorem 4.4.12.
1



Theorem 4.4.13. Let b be the number of empty bead positions.  For fixed b, the

#F . . . M
number of Dim{,),.w ; hested chain abacus with ¢ chains is

(i} 4r% +4e? + Ber — 8rk — 8rk — dek — 27 — 2e + 2k + 4k D7)
if M isarectangular design structure where | < i< cand k=4{2i - 1}.
(ii) 4r% + 462+ Ser - 8rk — 87k — dek — 2r = De + 2k + 4% D)
if N is a rectangle-parh design structure where 1 < i < ¢~ 1
(ifi) P4 e 2er+r—e D,(,f,:(};mf
if N is a vertical rectangle-path design structure where i = ¢.
(v} ¥t +e—2er—r+e D

nner—i

i N is a horizontal rectangle-path design structure where { = ¢.

Proof.

(i) Since the number of nested chain abacus in class DI s

Zr+2e - 42— 1)

if chain ¢ is rectangle design and the beads are of consecutive positions in chain

i, then, we have

Ze42r—4{2i— 1)1

with i different sequences of bead positions, such that sequence H has H beads

where H =1,2,..., 2¢+2r —4{2i— 1} — 1. Thus, there are

e+2r—42i— 11 (2e+2r—42i— 1)~ 1)
= 4% 4 4e% + Ber — Brk — Srk — dek — 2r — Qe+ 2+ M 4@t ~2er b r—e

nested chain abacus in class D{;"-’r) -with H sets of beads where 1 < i< .

mney-—t
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(i1} See Proof () in Theorem 4.4.

(i) Since the nested chain abacus of vertical rectangle-path design structure and
¢~ 1 chains are full chains and chain ¢, which is a path chain, is not full a chain,
based on Theorem 3.3.9, path chain transformation of chain ¢ with fixed number

of empty bead position will generate

r—e+1

different chains. Since the beads are consecutive positions in chain ¢, then, we
have H different sequences with & bead positions such thatd =1,2,..., r—e.
Thus, there are

{s;}

(r—e+N(r—e)= rPet—2er+r—e Dipner i’

(iv) See Proof (iif) n Theorem 4.4,

fex
{ex) class

In the next theorem we will found a generating function of ©; " °

Theorem 4.4.14. Let Q?Z;?;wi be nested chain abacus with e colurmms and r rows. The

generating funciion for the number i}fin?w i tas the following rational form

: (“jﬂz) (' “1*:?“}) 2 ((Ej;f)z) (1 -l-x”“ ’; ”4((1_—3%1@)'

Froof.
2.3 1
Yo =x+xtaxtel o=
ral I—x
’ d |
erx'*i w1203 m”x*( W;)
rzl dx\1—x
----- X
(1-x?
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Thus

Similarity

1\

R :‘V((zuy)?} (1:(1)'

Since # 1s the number of chain with empty position then,

Yoy =
BRI T sy

rezl

Based on Theorem there is 2r + 2e — 4(2i — 1} DY

inner—i

- Thus, the the generating

- : (e t] :
function for D, ° s

" & - P11 = _.mz...}:‘)..:.m W_‘zw
X Cre e Gy z(cf—xf(i—my})“({mﬁgw))

(81 +4)xy

4.5 Muiti Transformation Classes

Multi wansformation classes are classes of nested chain abacus generated by

employving a MNC-Transformation in Dinnee (respectively, "}Z)iwt) nested chain

! [} .
abacus. The Djup,, and D, nested chain abacus with ¢ columns and r rows are

denoted by 9:: ; (respectively, 3}5;2) we would like to point out that, for any nested

chain abacus M in Dignee then CAO) in Dinpee:

(e,7} (3),(“"“),) nested chain abacus in

The next lemma provides the way to generate D, 0 (D, -
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different cases. In addition, the Ef;:i {’D;i;,g} eclements are enumerated.

Case one: 1f bll < ¢ (respectively, b’} < r).

Lemma 4.5.1. Ler i}ii be the number of empty bead positions in chain 1. For fixed

E
b, < e, then, there exist

(i) ]‘[ (2r +2e— 4(2i — 1))

of Z‘D r&z:‘faﬁgle nested chain abacus.

iney

e
(i) (r—e+1]]2r+2e-4(2i-1))
i=1

of 331;;; vertical rectangle-path nested chain abacus.

e
(iii} (e —r+ 3}H(2r+2e—4(25— 1))

fuz]

of DY is horizontal rectangle-path nested chain abacus.

lﬁ%!ﬁt

generated by emploving MNC-Transformation.
Proof.

{i) Based on MNC-Transformation algorithm in 9;{;:2: 3Ch{i) in this case the chain

transformation application in the chaing one by one such that each chain will be

move 2¢-+2r —4(2i — 1) then, Ch{i) : Z — Z such that

Ay tye—rsryy 1 T<mgnj=e—it],

A+ 1)i if Ysm<rnj=Ii

mj = § ajj-1) if m=ii<jge—i+l,
@iy f m=r—i+ligj<e-it],

Gy if j#E{ie—i+1}andms {i,r—i+1},

where 1 <i<e.

Based on Theorem 3.3.3, the maximal number of nested chain abacus can be
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(e,6)

generated by employing MNC-Transformation in D 1s

2r+2e—4(2i —1)
for each rectangle chain, Then, there exist
(2r +2¢ 402 x 1= 1))(2r4+2¢ - 42 x 2~ 11}...(2r+2¢ - 4(2x ¢~ 1))

{e,5) i
of D, " - Thus, there is

[y fa
I—!{Z?” 242 1N DI
fr

(ii) Based on MNC-Transformation algorithm in ©. 5% then 3 Ch(i} 1 Z — Z

inngy

4

Bim—ie-toty f 1<msrj=e—i+],
Qa1 if l<m<rj=i,
Gmj = G- if m=ii<j<e~i+1,

a{?—l-‘-n{j‘?g}} ff m:rmi%‘§§f€j{i€“l"§-i,

I if jE{fe—i+1}andms {ir—i+ 1}
e+1 e+ r—2e+1
Fons 1)( L) if j= T3S <ms T
. e+l e+ 1
amjm? 4 Q(-r 221'+J;i{§§“{} if i= ‘"m‘“é’"“???':-“ 5 y
.., e+l e+1 r—2e+1
\amj if j# 3 ym | 5 2 i

Based on Theorem 3.3.12 and Theorem 3.3.10, there exist
r—e+ lrespectively,e — r+ 1)

ditferent transformations for a rectangle-path chain, and each transformation
. . . ! - -
will generate a nested chain abacus.  Since Diye (e} consists of ¢ - 1

rectangle nested chain, and a vertical-path (respectively, horizontal-path) chain,



then, there exist

o1
{f" — 6 + g ) (H 2? + 26 - 4(25 - g )) @gnggeg{?’f}
=1
respectively,

c—1
(e—r+1) (]‘[ Dr+2e — 4(26 — ;}‘;) Dinner &7
=1

Case two:lf ¢ < b;; £ e+r—3and by < e~ 2 (respectively, r < b; Letr-3,

by < r—12).

Theorem 4.5.2, Let b!l be the number of empty bead positions in chain 1. For fixed
bl e+ r—3 and by < e —2 (respectively, r b; set+r—3 by<r—2) The
number of Dianee With ¢ chains and e < r (respecrively, r < e) generated by MNC-

Transformation is
-
(i) 2{by—e+1) H(2r+26 —4(2i — 1))1}::“:“1} if b <r (respectively, if b < é).
::2

(i) 2y r+ i)l‘[(f%rﬁr?e%(zf DD
(iii) 2(b, -e+1;ﬂ(2r+2e— a(2i— 1)@,

i=2
< el '
(iv) []2r+2e—4(2i— 1)) — [2(by — e+ 1) [ [ 27 +2¢ — 4(2 — 1) +-2(by —r + 1)
=1 i=1
g §

[]2r+2¢—4(2i - )0

inner’
=1

Proof. Suppose P = {v;}yg?.,.}y‘,}; } is a set of consecutive empty bead positions in
chain 1 such that v,y — vi| € {1,e} and each position in P is an element in matrix
A, . after converting the nested chain abacus to matrix where 1 < A < gl» Since Diamer
class is generated by employing MNC-Transformation which works in anticlockwise
direction, then, there exist rectangle chain transformations

CH'{P), CR"7Y{(P),.... CH*™" ”“"E(P} employed in chain 1 such that
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Ch“(P) =(a;: 1< j<e}U{am:2<m< b —et1},

Ch! (P = {ag }U{a);: | <j< ey U{am:2<m< b —e),

Ch!lf_‘bl—e+l(P):{ajrzl :2gm$bll *L’*l‘]}U{aUZ 1 S]Qe},

Thus, row 1 is an empty row in bfl — e+ 1 nested chain abacus where
1<u<(2e+2r—5)—(b —e+1).
A similar case can be applied if

CHY(P) = {ar;: 1 <j< e} U{am : (r—1)— (b —e) <m<r—1}.

Thus, the number of Di(;;\:l) is

[
2(by—e+ D] ](2r +2e—4(2i - 1)).
i=2
Since r < e +r, then, there exist rectangle chain transformations

CR(P),CHYI(P),....CR 01—+ 1(p)

employed in chain 1 such that
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Ch'(P) m{a,,,lzlémsgr}u{alj:z‘-gjggb’!_,.}E

Ch (P ={ap i {am 1 €m<riU{a;12€ € by—r—1},

CH o Py={ap : 1S m<ryU a1 2 j < b — 1}
Thus, column 1 15 an empty row in f:;; — r-+ 1 nested chain abacus where
1< v (2e+2r—5)— (b —r+1).

Based on Lemma 4.5.1 the number of D59 js

inney

2by — r4 E)ﬁ(23*+ 2¢ - 4(2i—1)).
i=2

Based on Lemma 4.5.1, the number of nested chain abacus generated by employing

MNC-Transformation in @” C)

mncr

[]2r+ 2~ 42i - 1)),

{=1

Based on 1 and 2 as previously mention in Theorem 4.5.2, then, there is

£ c—}
[H2r+2e-a(2i— 1))~ 205 — e+ 1) [ [2r+ 26 —4(2i = 1)} 4 2(b = r+ 1)
i

[T@r+2¢—4(2i = 1)) of D& 0

inner’
i=1

Corollary 4.5.3. Let 5; be the number of empty bead positions in chain 1. For fixed
b; e+ r—3and b < e -2 {respectively, r < bl e+r—73and b* < r—2),

the number of nested chain abacus with ¢ chains generated by MNC-Transfermation
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JCRI

1?! :{jim‘&er
s o]
(i) 2(b —e+1)(r—e+ 1)H2r+2e—z—s(zs— 1),
[

(respectively, 2{3;; —e+ 1){e—r+ I)Hg, +2e—4(2i - §)@(er 1))

mney

i=
‘ el '
(i) 2by—r+ 1)(r—e+ )] 2r+2e—4(20 1) ifby 2 r
]
o—| .
{respecrively, 2{by —r+ 1){e—r+ 1)11:21' +2e—~4{2i—1}Yifb) 2 eD, f:m: :}3

(iii) ﬁ2r+26—-4(2i-—i}r[2(é; et IHr—e+1)+2(b, — r+1){r—e+1)]
==
e |

J12r+2e—4(2i-1),
=2
(respectively, [ [2r+2¢ —4(2i—1) - 206, e+ (e —r+1)]

(£33

-1 -1 '
H2r+ 2e —4(2i — 1) + 2(by —r4 1)(e — r+ D[] 2r + 2e —4(2i - D] D50
= =

Proof. See Proof of Theorem 4.5.2. 0

Case three: ife+2£~§b’§ Setr—73, b; ;e-zandb; < ¢ —4.

Corollary 4,54, Ler b:- be the nmumber of empty bead positions in chain i, For fixed

e+ 2« b}l s edr-3 b; —2 and b3 < ¢ — 4, the number of’i} genemred by

inner
employ MNC-Transformation is
[
(i) (by—e+1)(3e+2r—b - 15)[[(2r+2e —4(2i- 1)) @f,i;‘; if
=3

4 #
by <r—2andb) <r.
©

(i) (b) —e+ 1){by—e— )] (2420~ 4020~ 13) DL if
=3
f?;<rm2artdb;<r,
[
(iii) T](2r +2¢—4(2i~ 1)} [(b; ~ e+ 1)(3e 4 2r~b) — 15) - (by — e+ 1)

fum |
(blzwe—I)]ﬁ(Er%wa 4(2i— 1)) @{"f)

inner
=3

b; <rw2mm‘b} <r.
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{iv} (E};-r+3j{2£ + 3y — b;—?S;H{zr%% 4(2i ~ 1)) i1 if

inngr
i=3

by 2randby 2 r—2.
&

(v) (by —e+ 1)(by— e~ 1) [[(2r+2e—~a(2i - 1)) D2 iy

1HNET
i3
¥
E;] randb, zr—2

{vi} H(Ermém’?e 4(2i—1)) - (b, | —e+1)(3e+2r - bf]wlﬁ)‘(bf]weviw]){b;_wewl)

By~ r 1) (2e+ 378, - 15)- (b) — et 1) (by—e— D] [ [ 2r+2¢ —4(20 — 1)

=

Lad

b, zrandby zr-—2

Proof. Based on Definition 4.2.9, there are sets P and K with b; and f;; empty bead
positions 1n chains ] and 2, respectively, where b; e and bz e — 2. Suppose that

rectangle chain transformation number « in chain 1 for set P is (Ch{{P)) then,

Chi(F) ={a§jifQf%é}iﬁ{ﬁmerzgmgéémg%i}§
Chllt"H(P) =fapJUi{a;: 1€ )< el U{ame :2 gmg,&; — &},
(Jh;wé;—e 2(?): {aze}U{:?;; 1 gg}u{gmi 2 m gg;l me},
CPNPY = {am2<met et DU{ay 1 < j<e)

Hence, Chy will produce,

. (b} — ¢+ 1} chain 1 with {ay; : 1 € j < ¢} (row 1) empty bead positions

. {b} ~¢—1) chain | with {a;;: 1 € j < e} U{a21,42.} empty bead positions,
Similarly, Chy will produce,

. (bf] — e+ 1) chain 1 with {&,; 1 I < j < ¢} (row r) emply bead positions
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* (b, —e—1) chain | with {arj: 1€ j < et U{ay. 131.0p-1).} emply bead posi-

tons.

Based on Coroliary 3.3.4 the number of transformation in chain [ is 2¢ + 2r -5, then,
1< ug 2e+2r-5)— (b; —e+1).

Since the MNC-Transformation employ in all chains and b; =z e— 2, then,

3 Chy{K) such that

Chi (P) = a2 j € e~ 11U Gemyy 12 €m < by — e +4},

Chi" (K} ={am}U{ay 1 2< j Se— 1 U{tne-ny s 2 S m < by —e+3},
r4byer3 ' , o

Ch, (K=lam:3<m<h—e+4}Ufa;:2< j< e~ 1},

Hence, Ch; will produce {b; ~ e+ 3) chain 2 with {az; 12 € j € ¢~ 1} empty bead
positions,

Similarly, Chy will produce (b, — e+ 3} of chain 2 with {ag.nj:2€ j<e—1} empty
bead positions. Based on Theorem 3.3.3 the number of transformation in chain two is

2e +2r— 13, then, Cha will produce
(2e-+2r~12) —{by—e+3) =3e+2r — by — 15
of chain 2 with {a(,..;);: 2 < j < e — I} not empty bead positions where
1< v 3e+2r— 16— by
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Since MNC-Transformation will employ in all chins then, the pumber of @fi;: is

(b~ e+ 1)(3e+2r by~ 15) [ [(2r +2¢ — 4(2i — 1))
=3

and the nomber of TQ& N

Hilil1}
(by — e+ 1)(by —e+3) [[(2r +2¢ —4(2i — 1))
=3
Based on Lemma 4.5, 1{1) MNC-Transformation generated
<
HQr +2e—4(2i—1)
=1

nested chain abacus. Thus there 1s

i £ £ £
1—[(2r+2€m4(2£m )= (by~e+1)3ei2r—b;~ 15}~ (by —e+1){by—e+3)
=1

<
H2r+ 2¢ —4(2i~ 1) @f::gr
i=3

Similarly, we can prove that, the number of i),fml:; ) if b; <p—218

(B — r 4+ 1)(2e 4+ 3r— by —15) [ [ (2r + 2¢ ~ 4(2i — 1))
=3

with ¢ — | columns and r rows if b, > r and 332 -2

(bz —e-f 1)(1;; ——e-~§m3)ﬁ(2r+28wﬁi(2£— 1})
i=3

with ¢ — 2 columns and 7 rows if b’l 2 rand b,, r — 2. Thus, the number of Q‘nm)t

[T@r+2e—4(2i=1)) =(by — e+ 1)(3¢ 4+ 2r b} — 15) - (b, — e+ 1){by — e +3) -
£=1

¢
(&E M?+}}{2€‘§‘ 3?"“"‘“3); — 35) - {b; — - i}{&g - 6%3}]:[{2?'%—26—4{2{— i}}. I
i=3

Corollary 4.5.5, Let b{ be the number of empry bead positions in chain (. For fixed

e+ 2% b; Setr—3, b2 ze--2and i?; < ¢ — 4, then, the number ofD;‘lmg generated
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by emploving MNC-Transformation is

[ 2
(i) (by—e+1)(3e-+2r— by — 15} (r—e+ )] {2r+2e - 4(2i - 1}) @i;‘,i;“” if
j=4

# i
b, <randby <r—2

(ii) (b —e+ E)(biq“e—l)(r-—ne-anl}ﬁ(zwzeuai(zim1))3:31{1';;;%}
f;t < rand b; < pe 2. i

(iii) (b’lmr~§-i}(2€+3rmfp1-E5}{r-~e»-é~£)ﬁ(2r-+w2e—-4{2£—}))3‘3;“;;‘}{{
by 2randby > r—12. =

(iv) iblwe+1}(bizw€“1)(r-~wi)ﬁ(2;~+2e-4{2f—1)) Dl a gy
brl Bra}za’b; zr—2. -

(v} {r—e-+ 1)ﬁ(2r—é—2€«««4(2iw 1})- (b; -4 lj(3e‘+2r-—b; —15)r—e-+1) -

fom 2
{5} —e+ 1}(b;w€ml)(r~€w%~ 1) - (bll —r 1{2e+ 3rmb; -~ 15}

(r—e+1)- (b —e+ Uj{by—e~1)(r—e+1) []2r+2¢e—402i— 1)) D
fzud

Proof, 1t follows immediately from Theorem 4.5.4. ]

Case four: 1fe-;-25:\:bfl se+r-3, b};& e—2{i—1)where2 <i<c.

+ * I3 4
Theorem 4.5.6. Let @i;;i be nested chain abecus with ¢ chains and b; the number

;
of empty bead positions in chain i such that e < by, < e+ r—3. Then, the number of

nested chain abacus generated by employing MNC-Transformation in :91(::;;}; is

(i) ﬁ (b:»-w (e~ 2{i=1))— (2k—2(i— D)+ 1) (2e+2r — 42k +1} 1))
Fol

= (b = (e=2) +1) ._[:12 (Ze+2r—4(2i— 1) DTV ir
By < €= 2k. o
fiij ﬁ(b;m{fwif(i 1)) - (2k— 2(i— l))m) (Ze+2r —4(2{k+ 1) = 1))
=
- (b;w —{r—2k)+ 1) Iiz(Ee-}-Zrm 4{2i — 1)} with @;{::ci’r) if
by < r—2k -
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o

(iiy T](2e+2r—4(2i - 1))
f=1

""ﬁ (5}:‘"' (€20 — 1))+ @k =20 — 1))+ 1) (2e+2r —4(2(k+ 1)~ 1))

f ]
:

[(b}wl-—{e—%}-ﬂ) ] (2e+2r—4(2i—1))
i=k=2
+ (b}ﬁ = (r—2ky+ ;) [T Ge+2r—ai2i- 1))1 qf@i(;fst where k 2 2.
[N §

FProof.

{1) We will proof the above theorem by induction.
Basic step:

When & = 2. Based on Theorem 4.5.2 then, the number of nested chain abacus is

ot
(by—e+ 1) ]](2e+2r—4(2i 1),
i=1
Induction step:

! 0 E »; 1 13
We suppose its true for { =i, we proof 1 is rue if / =i+ 1, since we can add

chain in the outer such that e = b L e+ r—3, then,
k
by —{e+2)+1) (H (b,-* (e—=2{i— 1)) = (2k=20i— 1)} + 1))
foxd

-»-(z(mz}w1))H(b}mm{egzk+z)+1) ﬁ (2e+2r—4(2i — 1)).
I ]

T%](i‘:n

ﬂ(b;-_m (e=2(i= 1)) - (%2~ 1) +1)

i—=i

_ (2(3@«2) 1)) = (b s (e—2k~+~2)+}) H (2e +2r—4(2i=1)).
f=k 43

Wheree =e-+1,7 =r+2andk = k+ 1.

(ii) See proof (i) Theorem 4.5.6.

(iii) Based on Lemma 4.5.1(1) MNC-Transformation generated
{. -
TH2e+2r—4(2i -1}
FEE3 ]

nested chain abacus with r columns and r rows. Based on Theorem 4.5.6(/)(i?),
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there is

ﬁ(2é+2rw4(25-3)}
sy
—kl_ll( —(e—=20- 1)+ (2k - 2(zm1}}+1)(Qew'r~2r—é§(2{k-{~l)—i))

=1
{<b; p - em2§z}-z-}) ﬁ (2¢+2r —4{2i - 1))
L k42

+ (s~ (r—26) 41 ) H2(Ze+2r"—4(23m1})] of Dif), where k>2.
&

==

i=

Corollary 4.5.7. Let Qia cj be vertical-path rectangle nested chain abacus with ¢

¥ ’ [ » - - /
chains and b; empty bead positions in chain { such that e < b) < e+r—3. Then,
the number of nested chain abacus generated by emploving MNC-Transformation in

’Df{t ) is

Hiiiiee

mﬂ( ~ (e 2(i= 1)) - (2k = 2(i= 1))+ 1) [2e+ 2r— 4{2(k = 1) ~ )]

£l

(b,Hl {e— Zk}wéwl)(r—g%l} I,;Iz 2e+2r~4(2:—l))§}1;‘;§:¥§f
...iw

f:

bk [ A 2k.
f”JH( r—2(f—~E))—(2k—2{i-f))+l)(2e+2r—4(2(1c+1)—;))

e | e—be
(b,‘.é - (r—2k)+ ]) {r—e+1) H (2¢ +2r —4(2i — 1)) with T!Di;;f:' Vi
i=k+2
by y < r—2k.

nnegr

£
(iii) T](2e+2r 42— 1)) —1-2 D where k » 2.
=1

Proof. This follows immediately from 3.3.9 and Theorem 4.5.6 O

v fz be forizontal-path rectangle nested chain abacus with ¢

Coroliary 4.5.8. Let ;

¢
chains and b; the number of empty bead positions in chain i. Then, the number of
ex) oo

nested chain abacus generated by employing MNC-Transformation in © | i

(;)1’]( (e—2(i~ 1))~ (2k— 2(rw1))+i){2€+2r—4(2(3€w1)~*l))

o1
m(b,l_,_‘,ﬁ(emz;c)a)(emwz) [T @e+2r—a(i—1)) DL i
i=k+42
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by < €= 2k

(if) ﬁ(bg—(rwsz- i}))w{Ek—Z(im D+ (2e+2r—402(k+1) - 1))

(B~ =20 +1) e r 1) T et 2r—4(2i- 1) with D5t f
i—k+2
b“, < -2k

(iii) H(Ze~4-2rw4{25--—1)) ~2, D g s

mmner

where e < f}; Le+r—3
Proof. This follows immediately from Theorem 3.3.12 and Theorem 4.5.6 0

The generating function of nested chain abacus of connected beads according to
various parameters was studied {Redelmeier, 1981; Goupil et al., 2013; James, 1987}
In next theorem we used the (Goupil et al., 2010} methodology for establishing a re~
currence relation for which we can deduce the number of nested chain abacus having

¢ chain.

Theorem 4.5.9. Ler i)lflmz be nested chain abacus with e colwmns and r rows. The

number of ’,i'} havmg b; bead positions and b empty beads satisfies the following

inner

recurrence relation

Proaf. A nested chain abacus having #; beads and b, empty bead positions is obtained
B fi 4 P

by joining i chains where 1 < i < ¢ and b:x < by, There is
(b + b;)
\ &
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of chain i. Based on Lemma 4.5.1 the number of D, et generaled by employ MNC-

BT

transformation depended on beads and empty bead positions is

4

[Tt +#)

=1

"(o1)

Based on the ordinary form the generating function of D" - is

Z gl}:H{x) !};H .

Thus the generating function of B (5] by adding chain with beads and empty bead

mner

positions and employing MNC-transformation is

¥ b+ B)xy

Based on {(Barequet et al., 2016)

1

b+ by = .
Lbi+biey = b

Hence,

¢ u

an + byxly! ”MH_—““I v

=3

Based on Theorem 2.5.24 and Theorem 2.5.24, in the next section we will develop the
generated function with respect 1o chains to count the number of nested chain abacus

with a-connected beads.
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4.6 Generating Function with Respect to Chains

This section employs the design structure of nested chain abacus based on
Theorem 2.5.24 and Theorem 2.5.25 to construct a succession rule. Furthermore, based

on this rule, generating function will be developed.

4.6.1 Succession Rule

A succession rule, . is a system ({@}; &), consisting of an axiom {a) and a set, &2,

of productions or rewriting OF rules defined on a set of labels M C N7,

a-{" (.1)
N G0N C S HEE) IR 3) N

where ¢ € M is a constant and the ¢; are functions M -+ M (Ferrari et al., 2003).
One of the main properties of a succession rule is the consistency principle, i.e. each
label {k) must produce exactly k elements. A succession rule induces, and is suitably
represented by, a generating tree whose root is labelled by the axiom (a), and a node
labelled (k) produces at the next Jevel £ sons labelled by {ey(k},....ce(k}) respectively
(which in turn will produce {¢({k}, ..., c;(k)) sons, etc.). The succession rule produces
a sequence, {f,}.. of positive integers, where f, is the number of nodes at level # of
the generating tree and its generating function is denoted by f = Z Fux" (Bacchelli
et al., 2010). "
We will construct our succession rule starting from a single chain, which will grow step

by step by adding C; beads, where C; is the number of positions in chain { as shown in

Figure 4,10 which illustrates the number of nested chain abacus in levels 1 and 2.
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Figure 4.10. First levels of the generating tree of € if the first chain consists of one
position

Based on the Figure 4.10, we constructed the generating tree where L, corresponds to

the number of nested chain abacus at level n forn > 0.

Lemma 4.6.1. The number of nested chain abacus in the generating tree is done by

adding one chain at level N where ] < N < nis

;

Ly=1
Li=h

Ly=Py(P,+8)

{ Ly =B (P+8) (P +16) (4.2)
Ly =Py (P +8)(Po+16) (P, +24)

n—1

L,=[]®+8k)
\ k=0

where Ly, is the number of nested chain abacus in level n and n = Q.
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Proof. Since we are starting from single chain, then, there is a nested chain abacus in
Ly. Next, we will add full chain with P; beads where the number of the beads in the
second chain depends on the structure of the nested chain abacus (see Theorems 2.5.24
and 2.5.25). Thus, there are P> of the nested chain abacus in L. Continue to add full

chain with P3 beads where P; = P, + 8 (see Theorem 2.5.25). Thus, there are

Py (P, +8)
nested chain abacus. Hence, there are
n—1
H (P2 + 8k)
k=0
nested chain abacus at level n. i

Figure 4.11 illustrates to Lemma 4.6.1.

P> +8 P,+8 o o0 P>+8

AN /AN

P,+16 P2+16e e e P2+16 P2+16 P;+16® ® @P,+16  p,+16 P.+16 P2+16

i P2+24 Po+24 P +24 P,+24 P,+24 P2+24

Figure 4.11. Number of nested chain abacus at level N where N = 0
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The formal of the generating tree can be sketched using the following succession rule

Q= P 4.3)

P8k [Pa+8(k+1)7 T3,

4,6.2 Generating Function

A succession rule, 2, defines a sequence of positive integers f,. » = 0, f, being the
number of the nodes at level n in the generating tree. In succession equation (4.3}, all

elements are changed following to (P ++ 8k). Thus,

1wzl

falxy) = Fur ¥ (4.4)
(il

Using this suceession rule (where power notation denotes the repeating number of
levels), since f, 4 = 0, k 5 Py + 8n (1 2 0). Since the starting number of the tree is P,

the first term is x“yp—’ we can transfer (4.4} as shown below
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faley)= Y, fomewn

nazbiz0

8k
9%+ Y fomes YT
nzlAiz0

P8k
~

; " P Bk+1 +8{k+1
X fn.fﬁé&i Xn }; 2+ i } _% e _é—}f? { }
aalLisl

i
ot

+8{E+1
= y" +x S i (P + 8 YTEEHID
nzliz0

=yt Y fumen (P 8R)TIED

Foyoge X' (Py + 8k).y 2 78

Byx o {xy) (4.5)

Thus,

dfalr,y) 1 _ y? -9
WQ}* —;}ﬁ;"fﬁfi‘%}’}_“ " ) (4.6)

The solution of ?{' 4 g(xjy=0x}isy=¢e" Tatxddege o / O(x)el #9954,
: A
¥

i 9
Let g(y) = —EgQ(y} = — , then,
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falxy)= el ~lo’dy (c»’r/w}ﬁl —Z,! Elgd}‘d r)
) X
I : :
— P9, 8xy® gy
S | [yTe Ty 47
X
A
Je Sy

im fo{x1)= lim e8x
0}

— 8x
= fim 8% | e— lim &
Ay EA} 0 X
\
= ¢ X{c—0)
= 1}, 4.8
1
Leiz = ;,x - 40,z — oo,
I
8x
lim = bim ze?
R L § Z—++toe
= lm —
gothee @F
- tim 2
e (&)
I
= Hm -
A4 ec
=0, (4.9)
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Thus,

1
1 o
lim falx,1)= lim ¢8% | c— fim ¢
ij};EG Qb ﬁx—)—i—i} -+ X
1
=1 Rx e
Ai‘i[gﬁg {¢ g}
=" % (¢~ 0)=0. (4.10)
So from this, =0 and
I s
| —3 P9, 80y
faley)= 80 | o IXTE — @

X

| ]
L EF | D% ey
X

From this equation, we can find the generating functions such as fp{x) = fo{x. 1}

Example 4.6.2. Suppose that Py =6, P, = 14 and Ps = P, +8 = 22, ... By employing
programming code in Appendix A, Thus, the generating function is

Fx) = 1+ 14x + 308x° + 67762° + O(x)-

47 Conclusion

The crux of this chapter is to generate classes of nested chain abacus based on three
types of transformations: SNC2-Transformation, SNC-Transformation and
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MNC-Transformation. Furthermore, generating function with respect to chain is pro-
posed.

Figure 4.12 presents the classes from three different types of transformation.

Gererating
function [ I
. ; D D]
{ s}"gﬁ“i} Poute { ﬁgmsmrws } { ﬁ!xaﬂq { tner [ Jnngr}

Singie Traasformalion Class Hrakim Trangiommalion Multi Transformaton Clagses
Ginsses

Nm—

{

Figure 4.12. Nested chain abacus with respect to chains

In chapter 5, we will provide other classes of nested chain abacus with respect to

columns using the connectedness and use the property of e-core.
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CHAPTER FIVE
CLASSES OF NESTED CHAIN ABACUS WITH RESPECT TO

THE COLUMNS

5.1 Introduction

In this chapter, we develop classes of nested chain abacus using two methods, namely
e-core and spinal design. These two methods focus on the case with columns. Then,
generating function are formulated using enumeration of combinatorial object (ECO)
method.

This chapter begins with some definitions and related result required for this chapter
in Section 5.2, In section 5.3, the e-convex class developments is presented. Then, the
generating function of the class of e-convex is developed in Section 5.4. Moreover,
in Section 5.5, the spinal design developments with one class of nested chain abacus

which is the M2

5.2 Definition and Related result

This section provides definitions and related resulis necessary in building a class of

nested cham abacus.

Definition 5.2.1. (Fayers, 2008) An e-core partition is representiation to an abacus
configuration by sliding all of the beads on each column to their highest passible
positions. The partition which corresponds to this new abacus configuration is the

ecare partition.

The following theorems are hold in (Andrews, 1998).

Theorem 5.2.2. The number of partitions of the integer, n, with distinct parts is the
coefficient of X" in (1 —x2)(1 - &)1 = X).
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Theorem 5.2.3. The number of partitions of the integer, n, with paris are < k

f
(1 =x)(1 =21 = x2)un (T =25}

Theorem 5.2.4. The number of partitions of the integer, n, with exactly k parts is

o
(1 —x}{1 =x)(1 —x3} {1 —xF)

Next, we will define the ECO method and explain how it is developed.
Enumeration of Combinatorial Obijects (ECO) is a method for the enumeration of a

class of combinatorial objects (Duchi, 2003; Barcucci et al., 2005).

Proposition 5.2.5. Barcucci et al. (1999) Let & be an operator of €. If ¥ saiisfies the

Jollowing conditions:

{i) for each o e &\, there exists O € €, such that = S(0}.

(i} for each 0,0 € O, such that O # O, then ${(0)[8(0) = &.

This method has been successfully applied to the enumeration of various classes of
mathematical objects such as walks, permutations, and n-connected ominoes.
Further details, theorems, proofs, and definitions can be found in (Pergola, 1999). The
recursive construction determined by © can be described through a generating tree, i.c.
a rooted tree whose vertices are objects of ©. The objects having the same value of the
parameter, p, are at the same level, and the sons of an object are the objects produced
through ¥. A formal system for the description of the generating tree is the succession
rule {Castiglione et al., 2005},

Next, we will define the class of nested chain abacus namely e-convex.



5.3 e-convex

In this section we develop e-convex class of nested chain abacus based on the
connectedness in chapter two and combining the two notations of the e-core and

convexity.

Definition 5.3.1. A nested chain abacus is called column convex if each column has

exactly one set-column sequence of connected beads.

Diefinition 8.3.2. e-convex class is a nested chain abacus with exactly one set-cofumn

incolumn jfor0< j€e~ 1.

In the next two examples, the case of the first exarnple is the connected partition ;,2{4'53

which is an e-convex while the case of the second example is the connected partition

143 which is not e-convex,

Example 5.3.3. Ler 1'% = (9,6,3,2,1°,0" ) be a connected partition of the nested
chain abacus with e = 4 and r = 5. Based on Definition 2.4.8, 5C; = {0},5C; =
{1.5,9}. 8C3 = {2,6} and SC4 = {3,7,11,15,19}. From Definition 5.3.2, Figure

S.H{a} is an e-convex nested chain abacus.

Example 53,4, Let ;1{"‘5} = (6254522} is,(} ) be a connected partition of the nesred
chain abacus with e = 4 and r = 5. Since | & 5C; and based on Definition 5.3.2,

Figure 5.1(b} is not e-convex nested chain abacus.
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Figure 5.1. (a) Nested chain abacus of e-core connected partition and (b) Nested
chain abacus of connected partition

For the rest of this section we enumerating the e-core class which consider one of the

important properties for the discrete objects (objects that can be count and classified).

We will find:

1. The number of e-convex class in closed form.

2. Generating function of e-convex using ECO construction.

Case one: The number of e-convex produce from a partition of n into e parts.

The next lemma provides the solution to the problem of enumerating the e-convex

class, with f columns having the same number of beads and fixed {e,r}.

Lemma 5.3.5. The number of e-convex with one partition of n into e columns and r

FOWS 18
e!

where f is the number of columns that have the same number of beads.

Proof. Suppose 91 is a nested chain abacus with e columns and r rows, based on
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Definition 5.3.2, the n beads will be distributed into e columns with the two following

conditions:

(1) No column can be left empty.
{(ii) f of ¢ columns have the same number of beads and the remaining columns have

a different number of beads, where 0 € f < e.

Since the n beads is distributed into e columns, then there are ¢! ways 1o order the ¢
columns where each way will produce a nested chain abacus of e-convex. Thus, there
is #! nested chain abacus of e-convex. Since f of the e columns have the same number
of beads, then, we have f! same nested chain abacus. Thus, we have overcounted 5!

nested chain abacus of ¢!, Thus, there are

el

f1
different ways to distribute n beads into e columns. O
In the following lemma, we enumerated class e-convex as having er positions and fixed
number of beads in g sets of columns such that each set has columns with the same

number of beads.

Lemma 5.3.0. Let nested chain abacus be e-convex with ¢ columns and r rows, such
that there are g sets of columns and that each set has columns with the same number of

beads. Then, the number of e-convex with the same partition of r into e columns and r

FOWS is
e!
]
) K,
v |
where
z
): Al<e

columns that have the same number of beads. Based on Lemma 5.2.5 the number of
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e-convex with one partition of n inte e columns have one set that have same beads is

e
K

For the inductive step, consider adding K, columns with the same number of beads

to e-convex. Thus, we will overcount K, | ! from e!. Hence, there are

el ¢!

;i . gl
Kot LK Y K

ve=1 ve=

3

of e-convex.

In Theorem 5.3.7, we enumerate the class of e-convex as having fixed » bead positions

while the number of beads in the rows has be extendable and has to be minimized.

Theorem 5.3.7. For fixed ¢, let O1 be e-convex with e columns and r rows such that
there are g sets of columns with equal number of beads 1Ky, K3, ..., K, }. Then, there

exist
e =K e—K} "'Kg ?’”"KI*KE"“’“WK?“Z

LY X - ¥

8
Kl=2K2w2 !(«322 Kg‘zi ZK"?2

e!

v |

g z
of e-convex for }: Kgf % e and E K g’bg’ = n where bgr is the number of bead
»‘=i

7
g =l
positions in ng columns.

Proof. Based on Lemma 5.3.6, for fixed e and g sets of columns with same number of

beads there are

[

g
): K

yea |
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of e-convex. Since the number of rows can be changed such that each row has at
least one bead, then, the number of beads in the columns can be extendable and has
be to minimized. Thus, the number of sets with the same beads will be changed,

subsequently changing the number of beads 5;?{ in set g;‘ Hence, the number of e-

convex is
e e-Koe-K—K e K~—K-. K. el
Ei=2Ky=2 Ky=2 KE'I i
= HwE 17 R;:.:M K!
"
=1
where ¢ is fixed number. 0

Case two: The number of nested chain abacus of e-convex produced with different

partitions of i,

The previocus discussion focused on the enumeration of class e-convex within the same
¢ columns. We can extend the enumeration problem in a case where the number of

columns are expendable and has to be minimized.

Theorem 5.3.8. For fixed n and e, the number of nested chain abacus of e-convex with

different partitions of n is
2!
[

Y K

y |

J

X
(=01 =1 =23).(1 — )

where J is the coefficient of x" in forn>1.

Proof. Based on Theorem 5.2.4, the number of partitions of »# beads into ¢ columns is

the coefficient of A7 in
xs
(1—x)(1~x*)(1 —x3)...(1 —x)

such that each partition i8 associate with a e-convex. Based on Lemma 5.3.6, the



number of e-convex produced from a partition of n beads into ¢ columns is

N . o for L 0
where J is the coefficient of " in BN T or n >

Theorem 5.3.9, For fixed n, the number of nested chain abacus of e-convex with

different partitions is
2!

_ !
Y K
v=}

F

]

(T —x){(1 =21 —2%)...(1 —2%) forn > 1.

where F is the coefficient of X" in

FProof. Based on Theorem 5.2.3, the number of partitions of # beads in different columns

is the coefficient of ¥ in

1
(1—x}{1—x2)(1 =x%)..(1—x%)

such that each partition is associated with a e-convex. Based on Lemma 5.3.6, the

g
number of e-convex produced from a partition of n beads into ¢ columns is Z K.i<e
v=]

Hence, the number of e-convex is
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|
where F is the coefficient of X7 in 0=x0 Y B W gy forn> 1. 1

3 ~§-€i}’

: . . !
—— — 1 of e-convex with e
1341 le'!

Theorem 8.3.10. For any n, r and € there exist

4

i ¥ £
columns and o; rowswhere 1 <oy <r, 1 e <eand 1 <r Sesuchthatn = oy +e

for n,e and r positive integers.

. . . oy - é! v !
Proaf. We will prove through induction that %{"?{}_ istrue forall 1 € <e.
1€ 10

Basie step: When € =1

(C!l—{—l)gmlmt Gf[](a]*?*})g
ol o tl!

so there are oy of e-convex with one column and o rows,
F
x . #  +e ! 5 H H
Induetion step: For given ¢ , suppose that %)m ~ 1 is true for ¢ =e. Then,
1 HZEM

from the induction hypothesis, we have

(on+eWMonve +1)

o le" (e +1)
Thus,
(e + 1)t
iy ?{eﬁ B §)*
L. . . {EX} e é”}g . #
From the principle of induction, =i — | istrug forall 1 £ ¢ < e, tJ

(24] §€f§

In previous work, we obtained the number of e-convex class of nested chain abacus
with a fixed number of beuds, 1. Since the nested chain abacus of connected beads
has application in physics, especially in the movement of fluids where such movement
causes the increase the number of connected beads, Next, we examine the increment
of the number of connected beads by adding columns. A new nested chain abacus

that satisfies the definition of e-convex by adding a sequence of set-column (SC) of
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connected bead positions (adding column with connected bead positions) 1s obtained

through Fayers’s method.

Fayers (2007) suggested a simple way to insert one column or more in the abacus by
putting the number of beads in consideration, such that the last bead position in this
column does not exceed the position of the last bead, w,, but with an empty bead
position in between. Otherwise, if this bead position exceeds the last bead positions
without having an empty bead position in between, this case will be enumerated by
using Fayers’ work.

Given a partition, A, and a positive integer, k, we construct a new partition, A ™, as
follows.

Step one: Take b > the parts of A, where b is the number of bead positions and
construct the abacus display for 4.

Step two: Add a column to the abacus immediately to the left of column 4 where
bt+k=cet+dwithO<d<e—1.

Step three: Place ¢ beads on this new column at the top ¢ positions where & = O that
is the positions labelled d, d +e+1,...and d+ (c— 1} (e + 1).

Then, the new abacus represents partition A ™. Since the ¢ beads in the new columns
will be placed in the top ¢ positions, then the nested chain abacus of A1 is a e-convex

L
and e-convex which is a configuration of connected partition ATHer)

For A2%) = (3,2,1,0%), we can construct cases of AT034) 4184 2+5035) for

class e-convex as shown in the next figure.
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1369=(3,22,12,0%

129 =(3,2,1,0%)

3t 0(3,4):(5,3, 1 2,03) }»+4(3'4]:(33,22, 1 2:03)

A lD 1”0

. At 5(3,5}=(33}22, 1 2’04)

11269=(4,22,12,0°)

Figure 5.2. (a) A e-convex with 2 columns and 4 rows, (b) e-convex of k = 0, (¢)
e-convex of k = 1, (d) e-convex of k = 2, (e) e-convex of k = 3, (f) e-convex of k =4
and (g) e-convex of k=5
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Theorem 5.3.11, Ler N be e-convex and let N as a nested chain abacus for (n +c)-
connecied beads with e columns be e-convex such that n+k = ce +-d where k 2 O and

1€ d s e— 1. Then, there exist

Fuegipi-]
f?mdf%»eg?wé»im Z Iy if ngr,Ce%C,_,,

==}
Ftgil

é’"‘ff%ég“‘i’“g— Z ?"1.‘ i:f Cg:r§C€:CgJ=

¥=1

4 . eﬁ—-}e—d;
2e—d +ep—j+1- Y n if Ci=nle#e,
k=]
, eg%gw{f’
2e~d +ep—j— Y n if Ci=rle=aq,
| k=1

n—d . . .
of e-convex where ¢\ = ——, C. is the number of bead positions in column e,
£

; . n+k—dy
p = r—cy and r,. is the number of columns with ¢, = ——-»»;;mj beads for 1 <

jge~landv> |

Proof. Let 11" be a connected partition of a e-convex with r rows and ¢ columns,
Then @744 is a connected partition of e-convex after adding one column with ¢,
beads immediately to the leftof , where n +k =ce +d and 0 € ¢ < r+ 1. Firstly, we
add ¢, in column & such that ¢; = b%f, and since 0 < d<e— | wecanadde—d
columns with ¢; beads. Secondly, we can add e columns with ¢; + 1 beads. The latter
is repeated ¢ = r resulting in e —d + ep of e-convex, Then, we observe the following

cases.
Case one: C, = r, C, # ¢,

The number of beads in consideration is such that the last bead position in these
columns do not exceed the position of w, but with an empty bead position in be-
tween them. Otherwise, if this bead position exceeds w,, without having an empty bead

positions in between them, then there is a e-convex with ¢+ 1 and €, = r+ L.
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. .. #mtk—d .
Since there are r, columns of the nested chain with ———— beads and there is 2
&
. nt+k—d )
column, 4, which also has T beads then there are r, + 1 of the same forms or

shapes of nested chain abacus. This means that we overcounted
of e-convex, Hence, there are

of e-convex.,
Casetwo: C.=r,C, =0, .

The number of beads under consideration is such that the last bead position in these
columns do not exceed the position of w, but with an empty bead position in be-
tween them. Otherwise, if this bead position exceeds w, without having an empty bead
positions in between them, then there is a e-convex with e+ 1 and € = r+ 1. Since
there are r,. columns of the nested chain with W beads and there is a column o
which also has W beads then there are r, + 1 of the same forms or shapes of

nested chain abacus and G, = C, for | £d < ¢— 1. Thus, we have overcounted
Pyt
( Z ?‘;«. - 2
v=}

r—gy-+l

e—~d +ep+2— ): 7y

pe=]

of e-convex. Hence, there are

of e~convex.

Casethree: C; = 1. C, # ¢,
162



The number of beads under consideration is such that the last bead position in these
columns do not exceed the position of w, but with an empty bead position in be-
tween them. Otherwise, if this bead position exceeds w, without having an empty bead
positions in between them, then we have overcounted

e’,{?“%‘f’—ff’

Y n|+iti-e
A=}

of e-convex where wy, 1s located in column j. Thus, there are

fp%ev——fif

2e—d +ep—j-1- Y n
k=1

of e-convex.
Case four: C; = r, Co = ¢,

Since C.  r and the number of beads under consideration is such that the last bead
position in these columns do not exceed the position of w, but with an empty bead
position in between them. Otherwise, if this bead position exceeds w, without having
an empty bead positions in between them, then we have overcounted

i’
ep+e—d

Y nm|+jtl-e
k=1

of e-convex where wy, is located in column . Thus, there are

) epte—d
2¢e~d Jep—j-1-— E o
ko=t

of e-convex. Ul



54 ECO Method for the ¢-Convex Class

In this secticn we employ the ECO method to enumerate the e-convex class of nested

chain abacus.

In this scclion, we define an ECO operation for the recursive construction of the set
of the generation of e-convex 10 perform local expansicons. Based on the five design

structures of nested chain abacus, we partition the set of e-convex into five subsets

H PV PH

denoted by e’ -COnvex, ¢ -convex, ¢ ~-convex and € ' -Convex:

s 2'-convex subclass is a vertical rectangular nested chain abacus {(see Figure 5.3(a)).

"V -convex subclass is a vertical rectangle-path nested chain abacus (see Figure

5.3(bY.
e ¢ -convex subclass is a horizontal rectangular nested chain abacus (see Figure

5.3(d)).

o ¢ _convex subclass is a horizontal rectangle-path nested chain abacus (see
Figure 5.3{c)).

&> -convex subclass is a singleton nested chain abacus (see Figure 5.3(f}).

Figure 5.3 illustrates the 5 disjointed subsets of e-convex.
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Figure 5.3. (a) A ¢" -convex, (b) ¢V -convex, (¢) ¢’ -convex, (d) ”-convex and (f)
(:'“S-COI']\’EX

We now define an ECO operator called ¥ which forms the following local expansions:

e For any L = 1,2,...,r the operator ¥ glues a column with L beads to the right-
most and leftmost column of nested chain abacus; this can be done in 2r ways.
Therefore ¥ produces r of e-convex class.

e One e-convex by adding an entire row.

Thus, the operator ¥ produced 2r+ 1 of e-convex which have e+ r+ 1 semi-perimeter.
- Y

Moreover, the operator performs some other transformations on e-convex of classes e’-

convex, e’V-convex, e’"-convex, e”-convex and e’-convex, according to the

respective classes:

1. If the nested chain abacus belongs to the class ¢°-convex, then the operator 9

produces
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e 2r of ¢ -convex with e + | columns and r rows by adding & cells in the
rightmost and leftmost of ¢>-convex where 1 < h < r.
e One of e"¥-convex with e columns and »+ 1 rows by adding one row in the

topmost of ¢°-convex with ¢ columns and r rows.

PH

2. If M belongs to the class ¢ **-convex, then the operator ¥ produces

o 2r of ¢ by adding h cells in the rightmost and leftmost of e -convex
where Il < h < r.
e One of
— ¢"-convex by adding one row in the topmost of ¢-convex if e = r+ 1,
or

- ¢ -convex by adding one row in the topmost of ¢ -convex if e > r+1.

1

3. If 9 belongs to the class ¢ -convex, then the operator 1 produces

e 2r of ¢'-convex by adding k cells in the rightmost and leftmost of gt
convex where 1 < h < r.

e One of ¢'¥-convex by adding one row in the topmost of ¢P_convex.

4. If N belongs to the class ¢ -convex, then the operator ¥ produces
e 2r of ¢ -convex by adding £ cells in the rightmost and leftmost of ¢ -convex
where l < h < r,
e One of
— ¢*-convex by adding one row in the topmost of ¢/’ -convex if r = ¢~ 1
and e 1s odd, or
- ¢™ _convex by adding one row in the topmost of ¢ -convex if e > r— 1.
5. If 91 belong to the class ¢¥-convex, then the operator ¥ produces
e 2rof
— ¢>-convex by adding column in the rightmost and leftmost of " -convex

with s beads ife=r— 1.
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— ¢"Y_convex by adding column in the rightmost and leftmost of ¢” -convex

with A beadsife > r— 1 where 1 <h < r.

7.3 & o . '}
o ¢"-convex by adding one row with ¢ beads in the topmost of ¢"-convex.

Since

1. for any 91 € e-convex, all the nested chain in ¥ (e-convex) also e-convex.

2. all the produced e-convex have semi-perimeter 7+ 1.

The operator, 99, satisfies the conditions 1 and 2 of the ECO method as show in Figure

5.4 and Figure 5.5.

Figure 5.4 illustrates ECO method applied in classes e’-convex and ¢ -convex.

| DPH DPH DPH
———
|
D.S' Bl === |
DPH DPH DPH
DPV

S

Figure 5.4. The 9 operator applied to 91 nested chain abacus in class e _convex
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——
DPH DPH DPH
B
. OPH OPH
DV

Figure 5.5. 1 operator applied to ¢"-convex nested chain abacus

The next step consists of translating the previous construction into a set of equations
whose solution is the generating function for e-convex. To achieve this purpose, we

must introduce the concept of succession rule.

5.4.1 The Succession Rule Associated with %

Translating the construction of the operator ¥ onto the framework of succession rule
means to label with k, k € N for each nested chain abacus that produces exactly k
beads, and then represent the performance of the operator with a set of productions.
Actually, it is easy to recognize that each nested chain abacus of class ¥ -convex,
e’ V—convex, i -convex, e -convex and e5-convex has label 2r + 1 where r is the
number of rows. Previously, we had sketched the performance of the ECO operator

on a generic nested chain abacus. Let us take as an example the nested chain abacus

in Figure 5.4 producing seven nested chain abacus and each of the new nested chain
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abacus will preduce seven nested chain abacus except for the last which preduce (9)
nested chain abacus. The root of the tree is (3), which is the label of the nested chain
abacus with one bead position.

Generically, the succession rule with the ECO method can be presented as

3
Q:

2rk1 (2rDP R4, F>0

where the power notation is used to express repetitions, that is (2r+ 1), which stands

for 2r+1),---,(2r+1).

"

2rtimes

Figure 5.6 illustrates the first three levels of the generating tree of Q.

|
/ 5 %\ 7 Ks 3 5 ;
ESESTESESTE555785557 7177 7778 3 35 $355556 7 335335 5557

Figure 5.6. Generating tree of

5.4.2 The Generating Function in Level N

Based on the result of €2, we obtain the local expansions of the class e-convex with e
columns and r rows according to the growth of the number of bead positions by adding

1 bead positions on the leftmost, and rightmost and e bead positions on the up-most
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where 1 < h < ». Based on the operator, ¥, each e-convex will produce 2r + 1 then.
Level 0: The number of e-convex with r rows is 2r + 1 such that 27 of them with »
rows 2nd | with r+ 1 rows

Level 1: The number of e-convex with r rows is
(20r+ 1)+ 1)+ 2r(2r+1).
Level 2: The number of e-convex with r rows 1s
2r+ D20+ L+ D+ 0+ 2+ D 12[272r+ D+ 20+ 134+ 11

Level 3: The number of e-convex with » rows is

QU+ IR+ D+ D420+ DR+ + D) 4200+ D20 +2) + 1)

R+ D E202)22r + D 2rQ20r 4+ 1) D4 202260+ D) 1 1)

+(2(r +2)+ 1))

= 2{r + D2+ D)+ 1) H20+ D4 2(r 202k + )+ D+ 20+ 3) + 1)
+2{@2N22r+ D+ 2r+ 20D Q0+ 1D+ D+ QU+ 2) + 1.

Since we begin with r == 1, then, the number of class e-convex computing is as follows:
Level 0: The number of e-convex is 3.

Level 1: The number of e-convex is
1{5)+2(3).
Level 2: The number of e-convex 18

4(5)+ 1(7) +2[2(3) + 1(5)).
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Level 3: The number of e-convex is
A(5)+ (44 6)7 +1{9)+212°(3) + (2+4)(5) + 7).

Level 4: The number of e~convex is

P+ A+ A6 +6%)T+ (4 +6+8)9+ 11+

2[22(3)+ (22 +4x 2+4H)(5)+ (2+4+6)7+ 1 x 9]

Level 5: The number of e-convex is

445y + (47 + 42 x 644 %67+ 6] T+

4 +4' %8 + 42 x 6+ 6 x8+87+ 679+ 4+6+8+10] 11413,

We have the formula forL=0, 1, 2, 3 and we want to generalize it for level n (L = n).
We divide the general formula of the number of class of e-convex into two parts and
generalize them by analysing each part within it. Finally combine the generalizations
for both parts to arrive at the generalized formula for L = n.

Part 1:

The first term contains one term and the second term contains two terms, and thus, the
k' term contains k terms. The first term had 2, then, second term had 2 and 4, then the
third term had 2, 4 and 6 so the £ term contains 2, 4, 6,... till (2&). The constant term
muluphed with each term starting from 3 and increases by 2 for the next term.

So, the 4™ term of the formula for the second part is;

K" term 279 part equal o

n~k ) . )
203 2" x4 x 67 xLLx (20" 3420k — 1)),
i}

such that
S
Z ij=nk
J=1

and for n 2 3.
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Part 2:

The first term contains one term and the second term contains two terms, and thus,
the kth term contains & terms. The first term had 4, then the second term had 4 and 6,
then the third term had 4, 6 and § so the & term contains 4, 6, 8,... till (24 +2). The
constant term multiptied with each term starts from 5 and increases by 2 for the next
term.

So the ¥ term of the formula for the first part is

K7 term 1% part is

n—i A |
¥ (4D x 62 <85 x L x (2k42)%)) (5 2(k— 1)),
l‘j-”n"-ﬂ

such that

k
Zi}mf€~k
F=1

and for n = 3.

So, we can take the &' " term of the whole formula as

Kthterm is
stk i i X )
Z (47 x 67 x 8% x Lx 264204 (54 20k— 1)) +
it
n—-k ' . .
21 Y (2" x4 %65 x x (2k)) (3+2(k - 1))) :
i)
such that

£
Y ij=nk
j=1

and forn 22 3,

n o on—k ! ‘ )
VY (47 %67 x 8% x . x 2k 4+ 2)*H5+2(k— 1))
b | [ e}
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# Ak ) . .
+2 Y Y 2l xdt 6t kL x (2K B3 2(k- 1)),
kel ip=0

such that

k
Y ij=nk
i=1

and forn 2 3.

5.4.3 The Generating Function of a Succession Rule

In order to find generating function. First, we have found the function fo(x,y) and

substituted y = 1 to find the generating function fo(x}. The given succession rule is:

3
0
2r4+1 (2r+ D72+ 114 1), r >0

where power notation denotes the repeat number of level. Then

fﬂ(") = nxﬂa
nal
fﬁ(xa}") = Z f:rzjf X”}'k
nz(hz1
fﬁ(-xﬁy) = Z ﬁr,%%i—rﬂ}’zk*vio
n20.kzt
From the succession rule £, since foo = 0, fuoc = 0, where & = 0,1,..., we
deduce that

5\ 4
falxy) = ¥ fuze 9%
nalkzi
0.3 241
=30+ Y faee XY

maeidzl
2k

S I S T (T BT e S P
2041

_ }:3 +x .3‘;;,2k+§ xzr(%_}gkfi W{m},Zk-{*B).
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Since the starting number of the tree is 3, so the first term s X0y

Falxy) = Z fngzkaxnyszi

nzE0 kL

=y +x 3 Fugirr (2T 470

nz0k=l

k43 w2l
s Y2 b X Fezm DV 0x Y fra X2ky
malizl nz0421

9, 2 241
=y 4y Y fezke oy x Y funs X2k
o A0k

R k]

We can transfer the third 1erm as follows:

Form differentiability per each term of power series,

x Y Foaps| 2hTyEH

1uz0k1
= x ¥ fageer 2k 1= 1)yt
nzG k21
= WX Szt (2k 4 Dx" —x Suakr XyHE
:gf;ﬁ,kyi nzlkz]
= x)’g—y( Y fezen ¥ < xfolx,y)
mzlkzl
d falx,y)
= xy— —— —xfalyy).
b ()
Hence,
falxy) =y +0 falxy) +xy M— xfalx,y)
falay) (1 hx-x) =5+ w,»&f—g‘;ﬂfﬁ
dfalx, 1 4x— 1 y*
a{ D _ ol (2 =
X
The solution of g}j +p(xly=0x)isy=e" Fplodx (c~+- / Q(x)ef P(")"“'dx)
1 4x = xy? 12
where p{y) = - ? Oly) = . where we can see that x is constant,

Thus,
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et X 2 e ,
falny) =e' " w @ (6 + / Lo =5 ‘f}d)’)

A
I+x }’2 I :,:2
falxy) =y x 62;/y162d%

By employing programming code in Appendix ¥, the generating function is

FOO = 14 304+ 11x3% 44957 4+ 0%,

The final equation is the expansion of the generating function which is

fi=Lfa=3fi=110=49,..

where f, denotes the number of nodes at level # of the generating tree and from the

definition of succession rule, f,.; denotes the sum of the numbers at level n.

Next, we construct a class of nested chain abacus with respect to columns.

5.5 Spinal Design Approach

Based on chapter Two, Section 2.4.2 we construct a class of nested chain abacus with
two columns knows as 912, In the rest of this scction we discuss the construct of class
in Definition 5.5.1 and then one of the important properties for the discrete objects

(objects can be count and classified).

Definition 5.5.1, A nested chain abacus is knows as if

1. consists of row columns

2. column I (respectively, column 2) with at most two SC sequences of adjacent
beads.

3. colwnn 2 {vespectively, column 1) with at least one SC sequence of adjacent

beads.
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4. all SC sequences are connected.

beads. 5.7.

Figure 5.7 illustrate the construction the the nested chain abacus of M? for 4-connected

B e

=(1,0%) o=(1%0) pe=(2%1,0) 1e=(2,2,0%) ps=(2.2%) ps=(2%1) ps=(0%)

t__]__]

Figure 5.7. The 7 distinct forms of M for 4-connected squares

Consider Figure 5.7 there are 7 distinct forms of 12, the number of nested chain abacus

of M? with one SC in Theorem 5.5.2 where (z) =0ifb>a

Theorem 5.5.2. Let M be nested chain abacus with n beads and two columns such
that column 1 (respectively, column 2) with one SC sequence of adjacent beads and r

beads. Then, the number of N is

5 /. k=1 -

2 411

E() 2z ()
s=1k=1

where k is the number of beads in column 2 (respectively, column 1) and k < r.

)
+2 ) k—4+1
k=4

Proof. Since k < r then

if n1s even number,
1

o
Il
| o1 =

if n is odd number.

2

k—1

¥
Case 1 to prove 2 .
prove2 3 (k)

o
In this case we have bijection from column 1 (respectively, column 2) with r beads

to column 2 (respectively, column 1) with k beads. Since k < r then, k beads will
k 8 :
connected with r beads in (;{) different ways. Since 1 < k < & then, there is Z (;{)

k=1
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different ways to connecled column 1 with column 2. Based on Definition 5.5.1 the

)

F i 7 3

number of 9% is Z ( ) Now, if column 2 with r and based on previous result the
k=1

3
number of 912 is 2 r) .
L

Case 2 to prove 4

1+z£:1 (”:1)}

In this case the r beads in column 1 will connected with § beads incolumn 2 and &k — S

beads connected with columns 1 by bead ¢+ 1 or r+ 1 as shown in next figure,

Empty position 0™ Empty position 0
[ ]
—
e [ k-S
beads
Bead position g
= r beads —
o S beads
LSS
e o Bead position r
- e e L o
q S beads "
[
— beads
Bead position r-g+1

Figure 5.8

where 1 < S < k— 1. First, if {g+1,g— 1,g— 3,...} are beads positions as shown in

above figure,

e 5= 0 then, there is one way to connected column 1 with column 2. Thus there is
a nested chain abacus.

e S=1, Since k — s beads connected with column 1 by a bead then, there is (r; ])
way to connected column 1 with column 2.

e §S=2, Since k — s beads connected with column 1 by a bead then, there is (r; l)

way to connected column 1 with column 2.
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. fr . .
Thus there is ( ) way to connected colormn 1 with column 2, Since | € S< k1
5

and 1 € k < & there is
k=1 & /)
R
s=tk=] N 5

ways to connected column 1 with column 2. Based on Definition 5.5.3 the is

-1 & 1
=y (7
g ] ko)
of nested chain abacus of 912, Second, if {r+1,r+3,r+35, ...} are beads positions as
shown in above figure. then there is
£l 8
— 1
B
=1 k=] i
ways to connected column | with column 2. Similarity |, if the » beads in column 2,

Thus the number of nested chain abacus of 97° is
=1 8 r—1
=Y ¥ ( ) ,
g ] = | s

&
Case3toprove2 ) k-4+1,
k=4
In this case column 2 with two set-sequences {SC|,SCq} satisfies the following

conditions:

{1y 8¢, and SC; have at least two beads.
(i) 5C| connected only with the first beads in column 1 and SC; connected only with

the last beads in column 1.

Such that,



I. If k = 4, based on the previcus two condition there is only one 912 in this case.

2. If k = 5, based on previous two condition

* SC| has two beads and 5 has three heads,

o SC} has three beads and 85 has two beads.

3. I column 2 with & beads, based on previous two condition

o SCy has 2 beads and SC; has k — 2 beads.

o SC; has 3 beads and 5C; has & — 3 beads.

s SCr_» has 2 beads and $C; has 2 beads.

Thus there is & ~ 3 nested chain abacus, based on Definition 5.5.3 there is & — 3 of M~

Since I < k < & then, the number of 27 is

Based on Cases 1,2.3 the number of M is

2§ (;)+4[1w§f§i(rgl)]a&iik—d%i‘ _

g b fe |

Theorem 5.5.3. Let MZ be nested chain abacus with p beads and tweo columns such

that column I (respectively, column 2) with two SC sequence of adjacent beads and r
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beads, Then, the number of M2 is

AR50 330 (i

M=0a=0g=3h=1k=3

¢ k—p—ak—-g k r—1 & h—2 b
2y S ry Ty () n )
=} N={} g=0g=3h=3k=3

Proof. We will prove the above theorem by induction.
Basic step:

When » =1, since k£ < r, then, k= 1. Thus, the number of 912 is 1. Induction step: We

suppose s true for r = =r, Then,

a k—g & 2 & sf n g Stleg k2 gt

JRES 5035397031 (AR EED o WO WM ()
E}Cl—ﬁg-E;fE"fi’m%

+zi§:2i?£€@ﬁf§”)

=0 N=G g=0 3 el
i

@ Gti-g—a 8+i-g 8+ B f’wﬁ“i\‘f
2 g CV) )

2L EEREACOCEY

kg
2y 1LY
M=0 a=0 g=3 h=1 k=
4 Ek-g-g k-g k

ﬁzzzzzifﬁgx“jﬂ.

M=0 N=0 a=Dg—3 h=3 k=3 J

M .
[ alt
R
<
R

5.6 Conclusion

This chapter is devoted to generate classes of nested chain abacus by using using two
methods, namely e-core and spinat design. Further, we determine generating function
of the e-convex class with respect to the semi-perimeter, as application of the ECO

method. In addition, property of the classes are proposed.
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Structure design of nested

chain abacus

1
4 ]
R&ctanguia ﬁgctangie_ Singlaton
rnested Path nested nested

%

1

{ Nested Chain ]

A

f \

f e-core method [ Spinal design method ]

{ Succession Rule ]

[ Generating function ]

A ¥

e-convex class
i B¥-glass l

Figure 5.9. Methods to development classes in nested chain abacus and generating

function




CHAPTER SIX
TILING WITH NESTED CHAIN ABACUS

6.1 Introdaction

This chapter is devoted to apply classes of nested chain abacus of tiling in finite regions.
Several mapping notations for generating two algorithms are presented. The mapping
notations are nsed to move subsets of bead positions as well as empty bead positions

after embedding the class of nested chain abacus in finite grid for tiling a rectangle.

This chapter begins with some definitions required for this chapter in Section 6.2.
Next, in Section 6.3, two algorithms are derived for tiling a rectangle for the nested
chain abacus. Finally, some theoretical results are proposed formulated and proved in

section 6.4,

6.2 Fundamental Definitions in Tiling

In this section we presented remark and some fundamental definitions for constructing

tiling atgorithm.

Remark 6.2.1. Based on Definition 4.2.3 and Remark 4.2.4 the nested chain abacus
is considered as a picture with rectangular forms, and the bead as well as empty bead
positions are considered as squares in two colors where the bead positions constitiie
the image of the picture and the empty bead positions constitute the background. In
this chapter, we consider the nested chain abacus with e columns and r rows as riles
used in tiling « finite region of grid with ¢ columns and ¥ rows forlt€eg ¢ and

¥

t<r<r,

Figure 6.1(a) illustrated an original nested chain abacus with bead and empty bead

poritions, colored in gray and blue respectively while Figure 6.1(b) illustrate the nested
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chain abacus embedded in a finite grid.

a b

Figure 6.1. (a) Nested chain abacus for 15-connected beads and (b) The nested chain
abacus for 15-connected beads embedded in a finite grid

fi
Definition 6.2.2. Let SR = {me+ j, me+ j+ 1,...,me+ j+ j } be a set-row sequence
of connected bead positions in the nested chain abacus with e columns and r rows.
me—+ j is a head row bead of the set-row sequence where 0 < m < r— 1 and

0<j<e—1for0<j <e—j.

Definition 6.2.3. Let SC = {me + j, (m+ 1)e+ j,..., (m+ r?f)e + j} be a set-column
sequence of connected bead positions in the nested chain abacus with e columns and
r rows. me—+ j is a head column bead of the set-column where 0 < m < r—1 and

Ugjge—lfbrogm’gr—m.

Figure 6.2 illustrates the head column beads and head row beads.



Head set-row Head set-column

W /
e \/ \ ﬁ /_\\} .
/ "

,Hh j(/

Figure 6.2. Head column beads and head row beads in nested chain abacus

Based on the connectedness in chapter two and chapter five, two families of nested
chain abacus with respect to columns and rows are established in the following

definition.

Definition 6.2.4. An equivalent columns-convex nested chain abacus class (M.) is a
set of nested chain abacus with one set-column such that Co =C) = ... = Co—| and

r = 2C; where C is the number of the beads in column jand 0 < j < e— 1.

Definition 6.2.5. An equivalent rows-convex nested chain abacus class (N,) is a set of
nested chain abacus with one set-row in each row such that Ry =R = ... = R,_| and

r = 2R, where Ry, is the number of the beads in row mand 0 <m<r—1.

Depending on the geometric characteristics of the nested chain abacus in Definition
6.2.4 and Definition 6.2.5, next we construct two algorithms for the tiling of a finite

grid by translating the subset of positions.
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6.3 Tiling Algorithm

In this section, we attempt to solve the problem of tiling in a finite region with 31, and

1, nested chain abacus. Next, two algorithms are proposed to tiling a finite region.

6.3.1 Algorithm with 21,

A class of nested chain abacus called 1. with ¢ colunms and » rows will be used for

o . . . . ¢ 4
titing in 3 finite region with ¢ columns and » rows:

Step 1: Creating 91, nested chain abacus

1. Letset S = [re,&] be an initial parameter such that each are the numbers of rows,
columns and number of bead positions in column j where 0 € j € e— 1.

2. ldemify the head column beads in column f by employing programming code in
Appendix D, Code C and Code D.
Consider S = [4,5,3] be an initial parameter, the head column beads for all M, as
shown in Table 6.1.

3. ldentify the first and last head column beads, k’,kﬂ soch that
{0,0), ( +1,0%, ..., (K +k.0)} is set-column sequence in the first column,
{(k”,ew 1, (K +1,e—1},...,(k +k,e—1)} is set-column sequence in the last
colupm,

4. Calculate p where p = K-k,
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Table 6.1

Head column bead position of nested chain abacus withe = 5, r =4 and k = 3

Nested chain Headin  Headin Headin Headin  Headin
abacus number colunm ! column?2 column3 column4  column S

| 0 I 2 3 9
2 0 I 2 8 4
3 0 I 2 8 9
4 0 I 7 4 4
5 0 I 7 8 4
6 0 i 7 g 9
7 0 6 2 8 4
8 0 6 2 4 9
9 0 6 2 8 4
10 0 | 7 3 4
i1 ¢ 6 2 & 9
12 0 6 7 3 9
13 0 6 7 3 9
14 0 6 7 & 4
15 0 6 7 8 9
16 5 I p 3 4
17 3 1 2 3 9
18 5 I 2 8 4
19 5 1 7/ 3 9
20 5 1 7 3 4
21 5 | 7 3 9
22 5 1 7 g 4
23 3 i 2 8 9
24 5 1 2 3 4
25 5 6 2 3 9
26 5 6 2 8 4
27 5 6 2 8 9
28 5 6 7 3 4
25 3 6 7 3 9
30 5 6 7 8 4

Step 2: Finding the mapping

Propagate the nested chain abacus with e columns and r rows of class 9. within the
finite region with ¢ columns and r rows for 1 Le< ¢ and | Sr s ¥ by applying

three mapping notations.
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1. T’} is mapping notation: Zx Z — Zx Z soch that
I (mefv%«j) — (m—%sp)e, + {(j+s¢e)

whcre@émgr~l,oﬁji§€_la“‘”é‘”{[iﬂm}'

2. Tz is a mapping notation: Zx Z — Zx Z, such that ¥ s 3. Then,

Ta(me + ) = {m+sp + s ke + (j+ se)

H

whemrwkgmgr—i,(}gj&e~landﬂ&is&:{f—]—i,1Qslg{i}—l.
e r

3. I'z{m, j} is mapping notation Z x Z -+ Zx Z, such that. Then,

Us{me -+ j) = (m-4-5p)e + (j -+ es)

i r

where()gmgr——f?ﬁgjée—]andl%sg[%Llﬁgs;é[%E‘

4. T4(m, ) is mapping notation Zx % — Zx 7. such that ¥ s 5. Then,

Ts{me + j) = (m+sp—s k)e +(j +es)

' ;

€ r

where0Sm<h—1LO0< j€e—Tand 1 s =, 1<y & [~].
e r

Remark 6.3.1. Lef the nested chain abacus be a class of W and ler

Du(ra, j): Ex 2 — Zx Z be the mapping notation. Then,

LI K" <K then we apply two mapping notations 1"y and Ty.

2.If K' >k then we apply three mapping notations ', I's and Ty,

3. T.{position with color gray (respectively, blue)) — (bead position with color gray
{respectively, blue}} if s+ s 45 € Z7.

4. T(bead position with color gray (respectively, blue)) ~» (bead position with color

blue (respectively, gray) if s+s+s" € Z,, where | v <3
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The result of the process of tiling rectangle by using 1, is demonstrated by the follow-

ing example.

Example 6.3.2. Consider nested chain abacus number 20 in Table 6.1 where

Ir, & k] = |4, 5, 3|, by employing programming code in Appendix C with head column
beads {5,1,7,3,4} then,

in column 1, positions 5, 10, 15 are bead positions while position O is empty bead
position,

in column 2, positions 1, 6, 11 are bead positions while position 16 is empry bead
position,

in column 3, positions 7, 12, 17 are bead positions while position 2 is empty bead
position,

in column 4, positions 3, 8, 13 are bead positions while position 18 is empty bead
position and

in cohwmn 5, positions 4, 9, 14 are bead positions while position 19 is empty bead

position, as shown in Figure 6.3.



Figure 6.3. (a) Nested chain abacus where e =4, r=4 k=3 (b) I'; where s=1 (¢) I'}
where s= 1,2 (d) I'y where s =1,2and I, where s=0 and S =1 (e) I') where s =1, 2
and I where s =0, land § =1, 1
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6.3.2 Algorithm with %,

* » . gy - 3 - - / 4
In this section, a new algorithm for tiling in a finite region with e columns and r rows

is proposed using M, with ¢ columns and r rows as follows:
prop B

Step 1: Creating 71, nested chain abacus

1. Letset §= [r,e, L] be an initia} parameter such that each are the numbers of rows,
columns and bead positions inrow m where 0 K m < r— 1.

2. Identify the head row beads in row j by employing programming code in Ap-
pendix C, Code C and Code D.
Consider § = [4,4,3] be an initial parameter, the head row beads for all 9, nested
chain abacus can be create as shown in Table 6.2.

3. Identify the first and last head row beads, L{, L such that
{{0, L’), {0, L+ ol ., (O,L’ + L1} is set-row sequence in the first row,
{(r=1,L. e =1L +1), .. (r— 1,L" +L}} is sel-row sequence in the last row.

4. Calculate the £ where € = A



Table 6.2

Head column bead position of nested chain abacus withe =4, r = 4and k = 3

Nested chain Head in Head in Headin Headin
abacus number column 1 column?2 column 3  column 4
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Step 2: Finding the mapping

Propagate the nested chain abacus of class 91, with ¢ columns and r rows within the

. . N Ea 4 I t
finite grid with e columnsand r rowsfor I € ee and 1 < r<r.

1. 7 18 mapping notation Zx Z — Zx Z, such that
tlme + ) = (m+srle +(j+s€)

where 0 Sm<r—1,0€j<e—land 1 <5< [‘j—_}—l.

2. 7 is mapping notation Zx Z -+ Zx Z such that ¥ s 3s. Then

Tlme + j) — (m+sr)e +(j+se +5k)

H

where()gmsrmi,}%m}s;:jggmlandf}gsg[fm] ----- §,§g£g|‘§]—§,
IS
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3. 77 is mapping notation Zx Z — Zx Z such that ¥ s 35 Then
T3 (mei + /Y= (m+ .w*)e' +{j+s€)

where 0 m<r—1,0€ j<e—1and0<s< [%1—1.

4, is mapping notation Zx Z - Zx Z such that Vs 3s. Then

Ty(me + j) - (m dsrie 4 (j+se—s k)

7
#

Wheref)s:‘;ms;rwl,{}gjfiem}andi}gssii;{ff}vi,ls\is,
&

Remark 6.3.3. Let the nested chain abacus be g class of 91, and let

i and T

2If I > L, then we will apply three mapping notations T, 7y and 1.

The result of the process of tiling rectangle by using 91, is demonstrated by the

following exampie.

Example 6.3.4. Consider nested chain abacus monber 12 in Table 6.2 where

[r. e k] = [4, 4, 3], by emploving programming code in Appendix B with head row
beads {1,5,8,12} then,

inrow 1, positions 1, 2, 3 are bead positions while position 0 is empty bead position,
row 2, positions 5, 6, 7 are bead positions while position 4 is empty bead position,
row 3, positions 8, 9, 10 are bead positions while position 11 is empty bead position
and

row 4, positions 12, 13, 14 are bead positions while position 15 is empty bead position,

as shown in Figure 6.4.
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Figure 6.4. (a) Nested chain abacus where e =4, r=4 k=3 (b) 7y wheres=1 (¢) 7y
where s= 1,2 (d) T» where s =1, 2 and 7, where s =0 and § =1 (e) 7; where s =1, 2
and 7 where s =0, 1and § =1, 1



Consider Figure 6.3 and Figure 6.4, if the position is marked with color gray (R) then
the translation of 1 with color blue {Rf} is as shown in Table 6.3,

Table 6.3

¥
Translation color R 1o color R

s 0 1 2 3 4 5

~

oo
e

=N
I
=

N =l
R

E I
oo

6.4 Theoretical Result

Theorem 6.4.1. Let C; be the number of beads in columnj. The number of 0 of

nested chain abacus with a C; beads j is

]

fiec-n

=1

where SC; is the number of beads in column j.

Proaf.

Basic step:

If ¢ == I then the nested chain abacus with | column. Hence, there is only one nested
chain abacus.

Inductive step:

consider adding a column with C; beads to the right of column e. Then, there are
2C; — 1 ways to connect column e — I with column e, Thus, the number of nested

chain abacus with a SC; beads in column j is
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e—1

¢~ nTIec-1).

=1

Thus,

ﬁ(zﬁ}- —1).
=1

In the next theorem we will found a generating function of T, class

Theorem 6.4.2. Let b be the number of empty bead positions. The generating function

Jor the number of N, has the following ordinary form:

xy(2n— 1}
(1 =x(2n—1)){1 )

Proof. Based on Definition 6.2.4 the number of beads in e columns are equal, If e == |
then the # beads location in one column. Since the grows of Y, nested chain abacus
by adding one column and one row with n beads then, the number of beads in column

7 (8C)) is equal to n where | € j < e. Based on Theorem 6.4.1 the number of 91, is

e—1

[1(2¢-1)

=1
where C; = n. Based on the the ordinary form the generating function of 91, is

E (2!1— !)gmjxf}z’“ = Xy Z {(2n— l)eﬂ~lxeml})rm3€

erzl erzl

Since



Then,

A e — xy(@n—-1)
oY Qn-1 eV = - %
22 D TR .
Theorem 6.4.3. Let Ry, be the number of beads in row m . Then, the number of 0N, of

nested chain abacus is

ro |

1 (2Rw—1)-

Ryl

Proof. See proof Theorem 6.4.1 0

Theorem 6.4.4. Let b be the number of empty bead positions. The generating function

Jor the number of N, has the following ordinary form:

xy(2n—~ 1}

(I—x(2a—13(1=y)

Proof. see the proof of Theorem 6.4.2. .

Theorem 6.4.5. Let D1 be a class of N, with e columns and v rows where 1. and L are
the head row beads in row I and row r respectively for 1. < L. Then, the number of

! L
nested chain abacus needed for titing a rectangle with area e x r are

g'mé 7 ef—ergisl‘ “r:_r“'“
+ ———— H S B
1_{H]+g);lw 7 Joes
{ p s
- i 3““6"’"5‘8' r gr r’---r
1 e | = Y] = L)1 T >
i i e R R S
P
%’?zereum[ 5 \‘,8 =[ —L
rle’)
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Proof.

roe-r
Caseone: g < | ——r |
Suppose that H is the number of bead positiens in each row. Based on mapping no-
tation 7' where only one nested chain abacus with » rows and e — g 18" columns will
be translated where | € g < «. Based on mapping notation 72 the nested chain abacus

with r rows and H columns well be translated. Since 7° depends on the mapping 7l

Thus, there is

nested chain abacus to be translated.

Casetwor lfg 2 ;M} .

Since the mapping notation 718} out the region then, using 12 the number of nested

i+

Thus, the number of nested chain abacus for tifing in a finite region with class 91, is

€ —e X e ”"“H”gg‘ggr r ¢
1 " —| —e+1|T5]
+{ = 12% + % o et | T5]

chain abacus is

(]

Theorem 6.4.6. Let nested chain abacus be a class of N, with e columns and r rows
and k < k' such that (k,d) is the lower head column bead position, (ic': 1) and (ﬁfﬁ,f}
are the head column beads in columns 1 and e respectively. Then, the number of 91,

it
which can be used for tiling a rectangle with area e r s

k

e el 1N ‘.
r-r e g 1 if
I+;V - -‘+Zi+ - + - r+1 [gl if B> 7]

' v r;—r%fz|§}il ‘..
E+|fmw§ +Y | —— if ne |88
A=l

fi=1
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where p == ruic?p’ —k —kander<er.

Proof. Similar proof of Theorem 6.4.6 I

6.5 Conclusion

In this chapter, we apply classes of nested chain abacus in developing algorithm for

tiling.

THing with Nested Chain Abacus

{ Teansformation } [ Nested Chain Abacus ]

A | i
| | 1

I
[ Mapping notation }[ Mapping notation }@ D
F £
i

[ Algosithm to tiling finite. |
f region

Figure 6.5. Tiling with nested chain abacus
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CHAPTER SEVEN
CONCLUSION

In this chapter, we highlight research contributions which were developed and proven.

7.1 Research contributions

¢ Constructing new abacus:

In Section 2.3, we develop an algorithm to construct a new representation for n-
connected ominoes called nested chain abacus. We also show that the new
development provides a direct representation to the n-connected ominoes and
associated each form of n-connected ominoes with a partition called connected
partition.
¢ Uniqueness of the n-connected ominoes’ representation:

Theorem 2.3.3 showed that the connected partition is a unique representation to
n-connected ominoes by using a nested chain abacus.

¢ Connectedness:

In Section 2.4, we formulated the connectedness of the beads with respect to
columns and rows. The condition of connecting beads is achieved in Lemma
2.4.6, Lemma 2.4.9, Lemma 2.4.11, Lemma 2.4.14 and Theorem 2.4.15.
¢ Topological structure of nested chain abacus:

We established five different structures of nested chain abacus based on three
types of chains which are

(1) vertical rectangular nested chain abacus, (ii) horizontal rectangular nested
chain abacus, (iii) vertical rectangle-path nested chain abacus, (iv) horizontal
rectangle-path nested chain abacus and (v) singleton nested chain abacus. Based

on these structures, we produced the following:

(1) the number of chains in each structural design of nested chain abacus (see in

Lemma 2.5.7, Lemma 2.5.15 and Lemma 2.5.20)
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(i1) the number of positions in the three type of chains (see in Theorem 2.5.8 and
Theorem 2.5.16).

(ii1) a series of sequence for n-connected ominoes (see in Theorem 2.5.10, Theo-

rem 2.5.23 and

Theorem 2.5.24).

Transformation of nested chain abacus:

In Chapter Three, we develop three different types of chain transformations which
are SNC2-Transformation, SNC-Transformation, and MNC-Transformation (see
Lemma 3.3.1, Theorem 3.3.3, Corollary 3.3.4, Theorem 3.3.5,Corollary 3.3.6,
Lemma 3.3.8, Theorem 3.3.9, Theorem 3.3.10, Lemma 3.3.11, Theorem 3.3.12,

Theorem 3.3.13 and Lemma 3.3.14).

Construction of classes of nested chain abacus based on:

(i) Transformation: (in Lemma 4.3.1, Theorem 4.3.3, Theorem 4.3.4, Lemma
4.4.1, Theorem 4.4.2, Lemma 4.4.4, Theorem 4.4.5, Lemma 4.4.6, Theorem
4.4.7, Theorem 4.4.10, Lemma 4.4.12, Theorem 4.4.13, Lemma 4.5.1, The-
orem 4.5.2, Corollary 4.5.3, Theorem 4.5.4, Corollary 4.5.5, Corollary 4.5.6
and Theorem 4.5.7).

(i1) e-core method: (in Lemma 5.3.6, Lemma 5.3.7, Theorem 5.3.8, Theorem
5.3.9, Theorem 5.3.10, Theorem 5.3.11, Theorem 5.3.12)

(ii1) Spinal Design: (in Theorem 5.5.2 and Theorem 5.5.3).

Generating functions:

We constructed two generating functions based on chain concept and class of
e-convex nested chain abacus.

Application of the nested chain abacus:

In Chapter Six, we apply the nested chain abacus for tiling in a finite region (see

in Theorem 6.4.1, Theorem 6.4.3, Theorem 6.4.5 and Theorem 6.4.6).
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7.2

Future Work

Developing new algorithms to represent n-connected hexagon (polyhex) using
nested chain abacus.

Developing new algorithms to represent n-connected triakis (polykite) using nested
chain abacus.

Developing new algorithms to represent n-connected triangle (polyiamond) using
nested chain abacus.

Construct other classes of nested chain abacus such as where e > 2 or parallel
classes.

Developed the idea for three dimensional objects. Also we can form chains which
may not be rectangular in shape and can start from any place and make sure that

all the chains will not intersect each other.

Used two different nested chain abacus to tilling infinite region.

Used factorization method to translate classes of nested chain abacus to tiling the
finite grid depended only on the beads positions.

Apply nested chain abacus to solve conjecture related with Tangle series

Conjecture:
Let Tanglegram configuration be an element in a class, then the element in a class

from a cyclic class.
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APPENDIX A
GENERATING FUNCTION W.R.T CHAINS

Input Rows and columns

r=input(’ Input the number of rows:’);

e=input(’ Input the number of columns:’);

* Classify cases

* Case 1(If r <e and r is odd, then pl=e-r + 1 p2=2p1+6)

if r<e mod(r,2)==1

Pl=e-r+1;

P2=2*P1+6;

end * Case 2(If e <r and e is odd. then pl=r-e + 1 and p2 =2 pl + 6)
if e<r mod(e,2)=—=

Pl=r-etl;

P2=2*P1+6;

end * Case 3(If e <rand e is odd. then pl=r1-e + 1 and p2 =2 pl + 6)

if e==r mod(r,2)==1 mod(e,2)==1

P2=8;

end

* Case 4(If r <e and r is even then pl=2r + 2¢ - 4 ( 2¢- 1)=2r-2e+4, where c=1/2 and
p2=pl +8.)

if r<=e mod(r,2)==

P1=2%r-2*%e+4;

P2=P1+8;

end

* Case 5(If e <=r and e is even then p1=2r + 2¢ - 4 ( 2¢c- 1)=2e-2r+4, where c=¢/2
and p2 =pl +8)
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if e<=r mod(e,2)==0
P1=2%e-2*r+4
P2=P1+8

end

** Compute the generating function syms x

syms 'y

* f(x,y) fprintf(’ f(x,y) ")
fi(x,y)=-exp(1/(8*x*y®) * int(P2 — 9) *exp(—1/8 *x*)%), y)

- Generating function f(x)

fprint f((============ Generating function f (x) ==============.
)

f(x, 1)

- PolynomialFrom

frQ) = 1L£fQ2) = P2;

forn=3:10

ffn) =ff(n—1) * (P2 + 8);

end

* Writethisresult

fori=1:10
fprint f(f(=d) = *d,i, £0)
end
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APPENDIX B
TILLING ALGORITHM W.R.T ROW

theta.ol = 25;

theta,ow = 25;

Computetheuppero f's, st , st

sim = (ceil(theta,ow/r)) — 1;

sljim = (ceil((theta.ol —e)/H1))+ 3;
s2;im = ceil(theta.ol/H1);

Setcolors

color2 = [255,217,102]/255;

colorl = [131,59, 10]/255:

- Generatinginitialabacus

xtemp = ceil(rand(1, e) * (r —numpead + 1));
temp = [2,3,2,1,2];

rect = zeros(theta,ow,theta.ol);

fori=1:r

rect(i, temp(i) : temp(i)+ H1 —1) = 1;

end

Drawghape(rect, theta,ow, theta.ol, colorl, color2)
title(llnitialRectangleI)

H = max(temp);

L = temp(1, 1);

L1 = temp(1, end);

p = HI;
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pl =L1 —L;

-IfL1 > L, thenapplicatethemappinglandmapping?2, mapping3
ifL1 > L

form=1:r

forj=1:e

fors=1:sim

ifrect(m, j) == land(j + s * pl) > Oand(j + s * pl) <= theta.olandmod(s, 2)
lrectim +s *r, j +s * pl) = 0;

elseifrect(m, j) == 0and(j + s * pl1) > 0and(j + s * p1) <= thetaoland
mod(s,2) ==1

rectm +s *r, j +s * pl) = 1;

elseifrect(m, j) == land(j + s * pl) > 0and(j + s * p1) <= theta.oland
mod(s,2) == 0

rectim +s *r, j +s * pl) = 1;

elseifrect(m, j) == 0and(j + s * pl) > Oand(j + s * p1) <= theta.oland
mod(s,2) == 0

rectm +s *r, j +s * pl) = 0;

end

end

end

end

Drawghape(rect, theta,ow, theta.ol, colorl, color2)

title(IRectanglea f terMappinglI)

form=1:r

rectm +s *r, j +s * pl +s1 * p) = 1;

elsei frect(m, j) == Oand(m + s * pl + sl *x p) > Oand

(m + s * pl + sl *x p) <= theta.olandmod(s,2) == landmod(s1,2) == 1
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rectm +s *r, j +s * pl +sl1 * p) = 0;

end

end

end

end

end

Drawghape(rect, theta,ow, theta.ol, colorl, color2)

title(IRectanglea f terMapping2I)

end

ifL1> L

form=1:r

forj=1:e

fors =1:sim

ifrect(m, j) == land(j +s* pl) > 0and(j + s * pl) <= thetaoland
mod(s,2) == 1

rect(m +s *r, j +s * pl) = 0;

elseifrect(m, j) == 0and(j + s * pl) > 0and(j + s * p1) <= theta.oland
mod(s,2) ==1

rectm +s *r, j +s * pl) = 1;

elseifrect(m, j) == land(j + s * pl) > 0and(j + s * p1) <= thetaoland
mod(s,2) == 0

rectm +s *r, j +s * pl) = 1;

elseifrect(m, j) == 0and(j + s * pl1) > 0and(j + s * p1) <= thetaoland
mod(s,2) == 0

rectm +s *r, j +s * pl) = 0;

end

end
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end

end

Drawghape(rect, theta,ow, theta.ol, colorl, color2)

title('Rectanglea fterMapping1?)

form=1:r

forj=H:e

fors = 0:sjim

forsl = 1:sljim

ifrect(m, j) == land(m + s * pl +s1 * p) > 0and(m + s * pl + s1 * p) <= hagd
andmod(s, 2) == Oandmod(s1,2) == 1
recttim+s*r,j+s*xpl+sl*p)=0;

elsei frect(m, j) == Oand(m + s * pl + sl *x p) > Oand

(m + s * pl + sl *x p) <= theta.olandmod(s,2) == 0andmod(sl,2) == 1
rectm +s *r, j +s * pl +sl1 * p) = 1;

elsei frect(m, j) == land(m + s * pl + sl * p) > Oand

(m + s * pl + sl * p) <= theta.olandmod(s,2) == O0andmod(sl,2) == 0
rectm +s *r, j +s * pl +sl1 * p) = 1;

elsei frect(m, j) == Oand(m+sxpl+sl*p) > Oand (m+s*pl+sl*p) <
Oandmod(s1,2) ==

rectm +s *r, j +s * pl +s1 * p) = 0;

elsei frect(m, j) == land(m + s * pl + sl *x p) > Oand

(m + s * pl + sl * p) <= theta.olandmod(s,2) == landmod(s1,2) == 0
rectm +s *r, j +s * pl +sl1 * p) = 0;

elsei frect(m, j) == Oand(m + s * pl + sl *x p) > Oand

(m + s * pl + sl *x p) <= theta.olandmod(s,2) == landmod(sl,2) == 0
rectm +s *r, j +s * pl +s1 * p) = 1;

elsei frect(m, j) == land(m + s * pl + sl *x p) > Oand
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(m + s * pl + sl *x p) <= theta.olandmod(s,2) == landmod(sl,2) ==
rectm +s *r, j +s * pl +s1 * p) = 1;

elsei frect(m, j) == Oand(m + s * pl + sl *x p) > Oand

(m + s * pl + sl *x p) <= theta.olandmod(s,2) == landmod(sl,2) == 1
rectm +s *r, j +s * pl +sl1 * p) = 0;

end

end

end

end

end

Drawghape(rect, theta,ow, theta.ol, colorl, color2)

title('Rectanglea f terMapping2?)

form=1:r

forj=1:HI

fors=1:slim

fors2 =1:52;im

forj=H:e

fors = 0:sim

forsl = 1:slim

ifrect(m, j) == land(m + s * pl +s1 * p) > 0and(m + s * pl + s1 * p) <= hagd
andmod(s, 2) == Oandmod(s1,2) ==
rectim+s*r,j+s*xpl+sl*p)=0;

elsei frect(m, j) == Oand(m + s * pl + sl *x p) > Oand

(m + s * pl + sl * p) <= theta.olandmod(s,2) == O0andmod(sl,2) ==
rectm +s *r, j +s * pl +sl1 * p) = 1;

elsei frect(m, j) == land(m + s * pl + sl *x p) > Oand

(m + s * pl + sl *x p) <= theta.olandmod(s,2) == O0andmod(s1,2) == 0
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rectm +s *r, j +s * pl +sl1 * p) = 1;

elsei frect(m, j) == Oand(m + s * pl + sl *x p) > Oand

(m + s * pl + sl *x p) <= theta.olandmod(s,2) == O0andmod(s1,2) == 0
rectm +s *r, j +s * pl +s1 * p) = 0;

elsei frect(m, j) == land(m + s * pl + sl *x p) > Oand

(m + s * pl + sl *x p) <= theta.olandmod(s,2) == landmod(s1,2) == 0
rectim +s *r, j +s * pl +sl1 * p) = 0;

elsei frect(m, j) == Oand(m + s * pl + sl *x p) > Oand

(m + s * pl + sl * p) <= theta.olandmod(s,2) == landmod(s1,2) == 0
rectm +s *r, j +s * pl +sl1 * p) = 1;

elsei frect(m, j) == land(m+s*xpl+sl*p) > Oand (m+s*pl+sl*xp) <
landmod(s1,2) == 1

rectm +s *r, j +s * pl +s1 * p) = 1;

elsei frect(m, j) == Oand(m + s * pl + sl * p) > Oand

(m + s * pl + sl * p) <= theta.olandmod(s,2) == landmod(sl,2) == 1
rectim +s *r, j +s * pl +sl1 * p) = 0;

end

end

end

end

end

Drawghape(rect, theta,ow, theta.ol, colorl, color2)

title(IRectanglea f terMapping2I)

form=1:r

forj=1:HI

fors =1:slim

fors2 =1:52;im
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functionDrawshape(M, a, b, color1, color2)

figure

axis([000a])

holdon

fori=1:a

forj=1:b

ifMG, j) == 1

rectangle(IPositionI, [j—1,a—i,1, 11,1 FaceColor, color); elsei fM(i, j) ==
rectangle(*Position’, [j—1,a—i, 1,1],"FaceColor, color2);
end

end

end

end

end

214



APPENDIX C
TILLING ALGORITHM W.R.T COLUMN

Initial conditions theta.ol = 30;

theta,ow = 30;

sljim = ceil(theta.olfe) — 1;

sim = ceil((r —theta,ow)/dl);

s2;im = ceil(theta.ol/e) — 1;

colorl = [56,85,34]/255;

color2 = [156,194,228]/255;

temp =[2,1,2,3,2];

rect = zeros(theta,ow, theta.ol);
fori=1:e

rect(temp(i) : temp(i)+dl —1,i) = 1;
end

Drawshape(rect, theta,ow, theta.ol, colorl, color2)
title(IInitialRectangleI)

k = max(temp);

kl = temp(1, 1);

k2 = temp(1, end);

p=dl;
pl =k2 —kl;
ifk2 <=kl

form=1:r

forj=1:e
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forsl = 1:sljim

ifrect(m, j) == land(m + sl * pl) > Oand

(m + s1 x pl) <= theta,owandmod(sl,2) == 1
rect(m +s1 *x pl, j +s1 *e) = 0;

elsei frect(m, j) == Oand(m + s1 * pl) > 0

and(m + sl * pl) <= theta,owandmod(sl,2) == 1
rectim +s1 x pl, j +s1 *e) = 1;

elsei frect(m, j) == land(m + s1 x pl) > 0

and(m + s1 * pl) <= theta,owandmod(sl,2) ==
rect(m +s1 x pl, j +s1 *e) = 1;

elsei frect(m, j) == Oand(m + s1 x pl) > 0

and(m + sl * pl) <= theta,owandmod(s1,2) == 0
rectim +sl * pl, j +s1 *e) = 0;

end

end

end

end

Drawghape(rect, theta,ow, theta.ol, colorl, color2)
form=r—p+1:r

forj=1:e

fors=0:6

forsl =1:12

ifrect(m, j) == land(m + s * pl + sl * p) > 0
and(m+s* pl +s1 * p) <= theta.olandmod(s, 2) == Qad
mod(s1,2) == 1

rectm +s * pl +sl * p, j +5 *xe) = 0;

elsei frect(m, j) == Oand
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(m+s*pl+sl*p)>0andim+s*pl+sl*p) <= theaoland
mod(s,2) == 0andmod(s1,2) == 1

rectim +s * pl +s1 * p, j +s *xe) = 1;

elsei frect(m, j) == land
(m+s*pl+sl*p)>0andim+sx*pl+sl*p) <= thaoland
mod(s,2) == 0andmod(s1,2) == 0

rectm +s * pl +sl * p, j +5 *e) = 1;

elsei frect(m, j) == Oand
(m+s*pl+sl*p)>0andim+sx*pl+sl*p) <= thaaoland
mod(s,2) == 0andmod(s1,2) == 0

rectim +s * pl +sl * p, j +5 *e) = 0;

elsei frect(m, j) == land
(m+s*pl+sl*p)>0andim+s*pl+sl*p) <= theaoland
mod(s,2) == landmod(s1,2) == 0

rectim +s * pl +sl * p, j +5 *xe) = 0;

elsei frect(m, j) == Oand
(m+s*pl+sl*p)>0andim+sx*pl+sl*p) <= thaaoland
mod(s,2) == landmod(s1,2) == 0

rectm +s * pl +sl * p, j +5 *e) = 1;

elsei frect(m, j) == land
(m+s*pl+sl*p)>0andim+sx*pl+sl*p) <= thaoland
mod(s,2) == landmod(s1,2) == 1

rectim +s * pl +sl * p, j +5 *e) = 1;

elsei frect(m, j) == Oand
(m+s*pl+sl*p)>0andim+sx*pl+sl*p) <= thaaoland
mod(s,2) == landmod(s1,2) == 1

rectm +s * pl +sl * p, j +5 *e) = 0;
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end

end

end

end

end

Drawghape(rect, theta,ow, theta.ol, colorl, color2)
title(IRectanglea f terMapping2I)

end

ifk2 > kl

form=1:r

forj=1:e

forsl = 1:slim

ifrect(m, j) == land(m +s1 * p1) > 0and(m + s1 * p1) <= theta,ow
andmod(sl,2) == 1

rect(m +s1 *x pl, j +s1 *e) = 0;

elsei frect(m, j) == Oand(m + s1 x pl) > 0

and(m + sl * pl) <= theta,owandmod(sl,2) == 1
rectm +s1 x pl, j +s1 *xe) = 1;

elsei frect(m, j) == land(m + s1 x pl) > 0

and(m + s1 * pl) <= theta,owandmod(s1,2) == 0
rect(m +s1 *x pl, j +s1 *e) = 1;

elsei frect(m, j) == Oand(m + s1 * pl) > 0

and(m + sl * pl) <= theta,owandmod(sl,2) == 0
rect(m +s1 *x pl, j +s1 *e) = 0;

end

end

end
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end

Drawshape(rect, theta,ow, theta ol, colorl, color2)
form=r—p+1:r

forj=1:e

fors=0:6

forsl =1:12

i frect(m, j) == land(m + s * pl + sl * p) > Oand
(m+s*pl+sl*p) <=theta.olandmod(s,2) == Qutd
mod(s1,2) == 1

rectm +s * pl +sl * p, j +5 *e) = 0;

elsei frect(m, j) == Oand
(m+s*pl+sl*p)>0andim+sx*pl+sl*p) <= thaaoland
mod(s, 2) == Oandmod(sl,2) ==

rectm +s * pl +sl *x p, j +5 *xe) = 1;

elsei frect(m, j) == land
(m+s*pl+sl*p)>0andim+s*pl+sl*p) <= thaaoland
mod(s, 2) == Oandmod(s1,2) == 0

rectm +s * pl +sl * p, j +5 *xe) = 1;

elsei frect(m, j) == Oand
(m+s*pl+sl*p)>0andim+sx*pl+sl*p) <= thaoland
mod(s, 2) == Oandmod(s1,2) ==

rectm +s * pl +sl * p, j +5 *xe) = 0;

elsei frect(m, j) == land
(m+s*pl+sl*p)>0andim+sx*pl+sl*p) <= thaoland
mod(s,2) == landmod(s1,2) ==

rectm +s * pl +sl * p, j +5 *xe) = 0;

elsei frect(m, j) == Oand
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(m+s*pl+sl*p)>0andim+s*pl+sl*p) <= theiaoland

mod(s,2) == landmod(s1,2) == 0

rectm +s * pl +sl * p, j +5 *e) = 1;

elsei frect(m, j) == land
(m+s*pl+sl*p)>0andim+sx*pl+sl*p) <= thaoland

mod(s,2) == landmod(s1,2) == 1

rectm +s * pl +sl * p, j +5 *e) = 1;

elsei frect(m, j) == Oand
(m+s*pl+sl*p)>0andim+sx*pl+sl*p) <= thaaoland

mod(s,2) == landmod(s1,2) == 1

rectim +s * pl +sl * p, j +5 *e) = 0;

end

end

end

end

end

Drawshape(rect, theta,ow, theta.ol, colorl, color2)

title('Rectanglea f terMapping2?)

form=1:dl

forj=1:e

fors=0:6

fors2 =1:12

ifrect(m, j) == land(m+s* pl —s2 * p) > 0and(m + s * pl —s2 * p) <= theta.oland
mod(s,2) == 0andmod(s2,2) == lrect(m +s* pl —s2 *x p, j +s*e) = 0;
elsei frect(m, j) == Oand(m + s * pl —s2 * p) > Oand

(m + s * pl —s2 * p) <= theta.olandmod(s,2) == 0andmod(s2,2) == 1

rectim +s * pl —s2 * p, j +5 *e) = 1;
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elsei frect(m, j) == land(m + s * pl —s2 * p) > Oand

(m + s * pl —s2 * p) <= theta.olandmod(s,2) == 0andmod(s2,2) == 0
rectm +s * pl —s2 * p, j +s *xe) = 1;

elsei frect(m, j) == Oand(m + s * pl —s2 * p) > Oand

(m + s * pl —s2 * p) <= theta.olandmod(s,2) == O0andmod(s2,2) ==
rectm +s * pl —s2 * p, j +s xe) = 0;

elsei frect(m, j) == land(m + s * pl —s2 * p) > Oand

(m + s * pl —s2 * p) <= theta.olandmod(s,2) == landmod(s2,2) == 0
rectm +s * pl —s2 * p, j +s xe) = 0;

elsei frect(m, j) == Oand(m + s * pl —s2 * p) > Oand

(m + s * pl —s2 * p) <= theta.olandmod(s,2) == landmod(s2,2) == 0
rectm +s * pl —s2 * p, j +s xe) = 1;

elsei frect(m, j) == land(m + s * pl —s2 * p) > Oand

(m + s * pl —s2 * p) <= theta.olandmod(s,2) == landmod(s2,2) == 1
rectim +s * pl —s2 * p, j +s *xe) = 1;

elsei frect(m, j) == Oand(m + s * pl —s2 * p) > Oand

(m + s * pl —s2 * p) <= theta.olandmod(s,2) == landmod(s2,2) == 1
rectm +s * pl —s2 * p, j +s xe) = 0;

end

end

end

end

end

Drawshape(rect, theta,ow, theta.ol, colorl, color2)

title('Rectanglea f terMapping2?)

end

functionDrawshape(M, a, b, color1, color2)
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figure

axis([060a))

holdon

fori=1:a

forj=1:b

ifMG, j) ==1

rectangle(tPosition’, [j —1,a—i, 1,1],*FaceColor!, colorl);
elsei fM(i, j) == 0

rectangle(*Position’, [j—1,a—i, 1,1],"FaceColor, color2);
end

end

end

end

end
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APPENDIX D
GENERATING N¢c AND Nz NESTED CHAIN ABACUS

Code A

r=input(’Enter a number of rows:”);

e=input(’Enter a number of columns:”);

theta,ow = input(*Enteranumbero fcolmnso fonutputrectangle(r < theta,ow) :))
theta ol = input(IEnteranumbero fcolmnso fonutputrectangle(e < theta.ol) :I);
dl = input(Enterthesamenumbero f beadposition :);

con = Find.onnected,bacus(e,r—dl +1,r, e, dl ,IcolI); numnitialrect = size(con, 1)
i fnumnitialrect ==

error(IError : Thereisnoconnectedabacuse f orthesepammeters.I )

end

temp = con(randi([1, numnitialrect], 1), :)

rect = zeros(theta,ow, theta.ol);

fori=1:e

rect(temp(i)/2 + 1 : temp(i)/2 + d1,i) = 1,

end

sjim = ceil(theta,ow/r) — 1;

slim = ceil(theta.ol/e);

s2im = ceil(theta.ol/e);

scolorl = [56,85,341/255;

scolor2 = [156,194,228]/255;

k = min(temp);

k1l = temp(1, 1)

k2 = temp(1, end)

p=dl;

pl =k2 —kl;

223

2



rect = zeros(theta,ow, theta.ol);
fori=1:e
rect(temp(i) : temp(i)+dl —1,i) = 1;

end

Drawghape(rect, theta,ow, theta.ol, colorl, color2)

title(llnitialRectangleI)

if k2>kl1

for m=1:r

for j=1:e

for s1=1:s1,im

ifrect(m, j) == land(m + sl * p1) > 0and(m + s1 * p1) <= theta,ow
andmod(sl,2) ==

rectm +s1 *x pl, j +s1 *e) = 0;

elsei frect(m, j) == Oand(m + s1 x pl) > 0

and(m + sl * pl) <= theta,owandmod(s1,2) == 1
rect(m +s1 x pl, j +s1 *e) = 1;

elsei frect(m, j) == land(m + s1 x pl) > 0

and(m + sl * pl) <= theta,owandmod(sl,2) == 0
rectim +s1 x pl, j +s1 *e) = 1;

elsei frect(m, j) == Oand(m + s1 x pl) > 0

and(m + s1 * pl) <= theta,owandmod(sl,2) == 0
rect(m +s1 *x pl, j +s1 *e) = 0;

end

end

end
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end

Drawshape(rect, theta,ow, theta ol, colorl, color2)
form=r—p+1:r

forj=1:e

fors=0:6

forsl =1:12

i frect(m, j) == land(m + s * pl + sl * p) > Oand
(m+s*pl+sl*p) <=theta.olandmod(s,2) == Qutd
mod(s1,2) == 1

rectm +s * pl +sl * p, j +5 *e) = 0;

elsei frect(m, j) == Oand
(m+s*pl+sl*p)>0andim+sx*pl+sl*p) <= thaaoland
mod(s, 2) == Oandmod(sl,2) ==

rectm +s * pl +sl *x p, j +5 *xe) = 1;

elsei frect(m, j) == land
(m+s*pl+sl*p)>0andim+s*pl+sl*p) <= thaaoland
mod(s, 2) == Oandmod(s1,2) == 0

rectm +s * pl +sl * p, j +5 *xe) = 1;

elsei frect(m, j) == Oand
(m+s*pl+sl*p)>0andim+sx*pl+sl*p) <= thaoland
mod(s, 2) == Oandmod(s1,2) ==

rectm +s * pl +sl * p, j +5 *xe) = 0;

elsei frect(m, j) == land
(m+s*pl+sl*p)>0andim+sx*pl+sl*p) <= thaoland
mod(s,2) == landmod(s1,2) ==

rectm +s * pl +sl * p, j +5 *xe) = 0;

elsei frect(m, j) == Oand
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(m+s*pl+sl*p)>0andim+s*pl+sl*p) <= theiaoland

mod(s,2) == landmod(s1,2) == 0

rectm +s * pl +sl * p, j +5 *e) = 1;

elsei frect(m, j) == land
(m+s*pl+sl*p)>0andim+sx*pl+sl*p) <= thaoland

mod(s,2) == landmod(s1,2) == 1

rectm +s * pl +sl * p, j +5 *e) = 1;

elsei frect(m, j) == Oand
(m+s*pl+sl*p)>0andim+sx*pl+sl*p) <= thaaoland

mod(s,2) == landmod(s1,2) == 1

rectim +s * pl +sl * p, j +5 *e) = 0;

end

end

end

end

end

Drawshape(rect, theta,ow, theta.ol, colorl, color2)

title('Rectanglea f terMapping2?)

form=1:dl

forj=1:e

fors=0:6

fors2 =1:12

ifrect(m, j) == land(m+s* pl —s2 * p) > 0and(m + s * pl —s2 * p) <= theta.oland
mod(s,2) == 0andmod(s2,2) == lrect(m +s* pl —s2 *x p, j +s*e) = 0;
elsei frect(m, j) == Oand(m + s * pl —s2 * p) > Oand

(m + s * pl —s2 * p) <= theta.olandmod(s,2) == 0andmod(s2,2) == 1

rectim +s * pl —s2 * p, j +5 *e) = 1;
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elsei frect(m, j) == land(m + s * pl —s2 * p) > Oand

(m + s * pl —s2 * p) <= theta.olandmod(s,2) == 0andmod(s2,2) == 0
rectm +s * pl —s2 * p, j +s *xe) = 1;

elsei frect(m, j) == Oand(m + s * pl —s2 * p) > Oand

(m + s * pl —s2 * p) <= theta.olandmod(s,2) == O0andmod(s2,2) ==
rectm +s * pl —s2 * p, j +s xe) = 0;

elsei frect(m, j) == land(m + s * pl —s2 * p) > Oand

(m + s * pl —s2 * p) <= theta.olandmod(s,2) == landmod(s2,2) == 0
rectm +s * pl —s2 * p, j +s xe) = 0;

elsei frect(m, j) == Oand(m + s * pl —s2 * p) > Oand

(m + s * pl —s2 * p) <= theta.olandmod(s,2) == landmod(s2,2) == 0
rectm +s * pl —s2 * p, j +s xe) = 1;

elsei frect(m, j) == land(m + s * pl —s2 * p) > Oand

(m + s * pl —s2 * p) <= theta.olandmod(s,2) == landmod(s2,2) == 1
rectim +s * pl —s2 * p, j +s *xe) = 1;

elsei frect(m, j) == Oand(m + s * pl —s2 * p) > Oand

(m + s * pl —s2 * p) <= theta.olandmod(s,2) == landmod(s2,2) == 1
rectm +s * pl —s2 * p, j +s xe) = 0;

end

end

end

end

end

Drawshape(rect, theta,ow, theta.ol, colorl, color2)

title('Rectanglea f terMapping2?)

end

functionDrawshape(M, a, b, color1, color2)
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figure

axis([060a))

holdon

fori=1:a

forj=1:b

ifMG, j) ==1

rectangle(tPosition’, [j —1,a—i, 1,1],*FaceColor!, colorl);
elsei fM(i, j) == 0

rectangle(*Position’, [j—1,a—i, 1,1],"FaceColor, color2);
end

end

end

end

end

Code B

r=input(’Enter a number of rows:”);

e=input(’Enter a number of columns:’);

theta,ow = input(IEnteranumbem fcolmnso f onutputrectangle(r < theta,ow) :I);
theta.ol = input(IEnteranumbem fcolmnso f onutputrectangle(e < theta.ol) :I);
H1 = input(CEnterthesamenumbero f beadposition :%);

con = Find.onnectedbacus(r,e—H1 +1,r,e, H1,"row));

numnitialrect = size(con, 1);

i fnumnitialrect ==

error(IError : Thereisnoconnectedabacuse f orthesepammeters.I )

end
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temp = con(randi([1, numnitialrect], 1), 3);
rect = zeros(theta,ow, theta.ol);
fori=1:r

rect(i, temp(i)/2 + 1 : temp(i)/2 + H1) = 1;
end

sim = ceil(theta,ow/r) — 1;

slim = ceil(theta.ol/e);

s2im = ceil(theta.ol/e);

scolorl = [131,59,10]/255;

scolor2 = [255,217,1021/255;

H = min(temp),

L = temp(1, 1);

L1 = temp(1, end);

p=e—H + 1;

pl = L—LI;

figure

Drawshape(rect, s.olorl, s.olor2)

title(llnitialRectangleI)

-1fL1 <= L,applicatethemappinglandmpping1

ifL1 > L
form=1:r

forj=1:e

fors =1:sjim

ifrect(m, j) == land(j +s* pl) > 0and(j + s * pl) <= theta.oland

mod(s, 2) == lrect(m +s*kr,j+s *pl) =0;

elseifrect(m, j) == 0and(j + s * pl) > 0and(j + s * p1) <= theta.oland

mod(s,2) == 1
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rectm +s *r, j +s * pl) = 1;

elseifrect(m, j) == land(j + s * p1) > 0and(j + s * p1) <= theta.oland
mod(s,2) == 0

rectm +s *r, j +s * pl) = 1;

elseifrect(m, j) == 0and(j + s * pl) > 0and(j + s * p1) <= theta.oland
mod(s,2) == 0

rectm +s *r, j +s * pl) = 0;

end

end

end

end

Drawshape(rect, theta,ow, theta.ol, colorl, color2)

title(IRectanglea Vi terMappinglI)

form=1:r

rectm +s *r, j +s * pl +sl1 * p) = 1;

elsei frect(m, j) == Oand(m + s * pl + sl *x p) > Oand

(m + s * pl + sl *x p) <= theta.olandmod(s,2) == landmod(sl,2) == 1
rectm +s *r, j +s * pl +sl1 * p) = 0;

end

end

end

end

end

Drawshape(rect, theta,ow, theta.ol, colorl, color2)

title(IRectanglea f terMapping2I)

end

ifL1>L
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form=1:r

forj=1:e

fors=1:sim

ifrect(m, j) == land(j + s * pl) > 0and(j + s * pl) <= theta.oland
mod(s,2) ==1

rectm +s *r, j +s * pl) = 0;

elseifrect(m, j) == 0and(j + s * pl1) > 0and(j + s * p1) <= thetaoland
mod(s,2) ==1

rectm +s *r, j +s * pl) = 1;

elseifrect(m, j) == land(j + s * pl) > 0and(j + s * p1) <= theta.oland
mod(s,2) == 0

rectm +s *r, j +s * pl) = 1;

elseifrect(m, j) == 0and(j + s * pl) > 0and(j + s * p1) <= theta.oland
mod(s,2) == 0

rectim +s *r, j +s * pl) = 0;

end

end

end

end

Drawghape(rect, theta,ow, theta.ol, colorl, color2)

title('Rectanglea fterMapping1?)

form=1:r

forj=H:e

fors = 0:sim

forsl = 1:sljim

ifrect(m, j) == land(m + s * pl +s1 * p) > 0and(m + s * pl + s1 * p) <= hagd

andmod(s, 2) == Oandmod(s1,2) == 1
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rectm +s *r, j +s * pl +sl1 * p) = 0;

elsei frect(m, j) == Oand(m + s * pl + sl *x p) > Oand

(m + s * pl + sl *x p) <= theta.olandmod(s,2) == O0andmod(sl,2) == 1
rectm +s *r, j +s * pl +s1 * p) = 1;

elsei frect(m, j) == land(m + s * pl + sl *x p) > Oand

(m + s * pl + sl *x p) <= theta.olandmod(s,2) == 0andmod(s1,2) == 0
rectm +s *r, j +s * pl +sl1 * p) = 1;

elsei frect(m, j) == Oand(m + s * pl + sl *x p) > Oand

(m + s * pl + sl *x p) <= theta.olandmod(s,2) == O0andmod(s1,2) == 0
rectm +s *r, j +s * pl +s1 * p) = 0;

elsei frect(m, j) == land(m + s * pl + sl *x p) > Oand

(m + s * pl + sl * p) <= theta.olandmod(s,2) == landmod(sl,2) ==
rectim +s *r, j +s * pl +sl1 * p) = 0;

elsei frect(m, j) == Oand(m + s * pl + sl *x p) > Oand

(m + s * pl + sl *x p) <= theta.olandmod(s,2) == landmod(sl,2) == 0
rectim +s *r, j +s * pl +sl * p) = 1;

elsei frect(m, j) == land(m + s * pl + sl *x p) > Oand

(m + s * pl + sl *x p) <= theta.olandmod(s,2) == landmod(sl,2) == 1
rectim +s *r, j +s * pl +s1 * p) = 1;

elsei frect(m, j) == Oand(m + s * pl + sl *x p) > Oand

(m + s * pl + sl *x p) <= theta.olandmod(s,2) == landmod(s1,2) == 1
rectm +s *r, j +s * pl +s1 * p) = 0;

end

end

end

end

end

232



Drawghape(rect, theta,ow, theta.ol, colorl, color2)

title('Rectanglea f terMapping2")

form=1:r

forj=1:H1

fors =1:slim

fors2 =1:s2;im

forj=H:e

fors = 0:sjim

forsl = 1:sljim

ifrect(m, j) == land(m + s * pl +s1 * p) > 0and(m + s * pl + s1 * p) <= hagd
andmod(s, 2) == Oandmod(s1,2) == 1
rectm+s*r,j+s*xpl+sl*p)=0;

elsei frect(m, j) == Oand(m + s * pl + sl *x p) > Oand

(m + s * pl + sl *x p) <= theta.olandmod(s,2) == 0andmod(sl,2) == 1
rectim +s *r, j +s * pl +sl1 * p) = 1;

elsei frect(m, j) == land(m + s * pl + sl *x p) > Oand

(m + s * pl + sl *x p) <= theta.olandmod(s,2) == Oandmod(sl,2) ==
rectm +s *r, j +s * pl +s1 * p) = 1;

elsei frect(m, j) == Oand(m + s * pl + sl *x p) > Oand

(m + s * pl + sl * p) <= theta.olandmod(s,2) == O0andmod(sl,2) ==
rectm +s *r, j +s * pl +sl1 * p) = 0;

elsei frect(m, j) == land(m + s * pl + sl *x p) > Oand

(m + s * pl + sl *x p) <= theta.olandmod(s,2) == landmod(sl,2) == 0
rectm +s *r, j +s * pl +s1 * p) = 0;

elsei frect(m, j) == Oand(m + s * pl + sl *x p) > Oand

(m + s * pl + sl * p) <= theta.olandmod(s,2) == landmod(s1,2) == 0

rectim +s *r, j +s * pl +sl * p) = 1;
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elsei frect(m, j) == land(m+s*pl+sl*p) > Oand (m+s*pl+sl*xp) <=
landmod(s1,2) == 1

rectim +s *r, j +s * pl +sl1 * p) = 1;

elsei frect(m, j) == Oand(m + s * pl + sl *x p) > Oand

(m + s * pl + sl *x p) <= theta.olandmod(s,2) == landmod(sl,2) == 1
rectm +s *r, j +s * pl +s1 * p) = 0;

end

end

end

end

end

Drawshape(rect, theta,ow, theta.ol, colorl, color2)

title('Rectanglea f terMapping2?)

form=1:r

forj=1:Hl

fors = 1:slim

fors2 =1:52;im

functionDrawshape(M, a, b, color1, color2)

figure

axis([060a))

holdon

fori=1:a

forj=1:b

ifMG, j) == 1

rectangle(Position’, [ j —1,a—i, 1, 1],¥ FaceColor, colorl); elsei f M(i, j) == 0
rectangle(tPosition’, [j —1,a—i, 1,1],*FaceColor!, color2);

end
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end
end
end

end

Code C

function Drawshape(M, a, b, color1, color2)

figure

axis([0h0a])

holdon

fori=1:a

forj=1:b

ifMG, j) ==1

rectangle(‘Position’, [j —1,a—i, 1,1],"FaceColor!, color1);
elsei fM(i, j) == 0

rectangle(*Position’, [j—1,a—i, 1,1],"FaceColor, color2);
end

end

end

end

end

** Find all Initial rect
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function com=create.ombination(n, k)

fori=1:n
tmp = [];
forj=1:k

tmp = [tmp;ones(k(n—i), 1)*}
end

rr=[l;

forj=1:ki-1)

rr = [rr;tmp];

end

com(:, i) = rr;

end

com = com— 1

end

Code D

** Find the connected Abacus

function con=Find.onnected,bacus(n, k, r,e, H, str)
con = [];

- Findallpossibleinitialrects

all = createcombination(n, k);

- *Findtheconnectedabacus

- Algorithm forcolumn

i fstrcmp(str,lcolj )
fornn = 1 :size(all, 1)

temp = all(nn, :),
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Sflag =1;

rectisconnectedabacus)

rect = zeros(r, e);

fori=1:e

rect(temp(i)+ 1 : temp()+ H, i) = 1;

end
- * Testtheconnection

t= Sum(recr[);

fori=1:r

flag = flagx ((1,i) >=1);
end

fori=1:e—1

A = temp(i) : temp(Q)+ H — 1;

B =temp(i + 1) :temp(i + 1)+ H — 1,
C = intersect(4, B);

flag = flag* (_isempty(C));

end

ifflag ==

con = [con; temp];

end
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APPENDIX E
CHAIN TRANSFORMATION

File Number one

clc

kkk=0;

clear;

nt=0;

v=I;

global Tmat;

r = input(’ numbers of rows ’)

¢ = input(’ numbers of columns )
mat = ones(r,c);

Tmat=mat;

1,e

= size(mat) ;
ch=21;

path=0;

tn=0;

fl=[r,c] ;
tmpv=min(f1)/2;
tpnl=ceil(tmpv)
while path <tpnl
path=path+1
v=v-.15

si=path;sj=path;
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1=81;)=s];
vv=path;
n=0;
sti=2;
stj=2;
str=r-si-1");
nr=r-si;
nc=c-sj;
vs=1/ch;
vs=0;
nt=nt+1;

while 1

if (i==si ) (j==sj )( n>0)

break

end

n=n+1;

if ( tn>=totn)
break

end
mat(i,j)=v;
tn=tn+1;
pt(tn,4)=j;
pt(tn,3)=i;
pt(tn,1)=tn;
pt(tn,2)=path;
if ((i<nr+1)(sti>0))

i=i+1;
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else if((j<nc+1)(stj>0));
=L
sti=-1;

else

if (i>si)
1=i-1;
stj=-1;
else if (j>sj)
¥

if ((i==s1)(j==s))) sti=1;stj=1;
end

end

end

end

end

i;

Js

Al = path;
A2 =n;
end

end
s=size(pt);
c=s(1);

cp=1
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pathStart(1)=1;
fori=1:s

if (i>1)

if pt(i,2) =pt(i-1,2) k=k+1;
pathStart(k)=i;
end

end

end

k=k+1;
pathStart(k)=s(1)
k(1:tpnl)=0;

cle

p01=1

No=0;

pt(:,5)=1;

totalN ss

=size(pt)

tpn=max(pt(:,2))

for i=1:tpn

i

end

for p=1:length(pn)

for i=1:totalN
if(pt(1,2)==p)(k(p)<pn(p)) pt(1,5)=11;
k(p)=k(p)+1;

end
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1i=pt(i,3);
J=pt(i.4);
mat(ii,jj)= pt(i,5);
end

end

Ax=0

11=0;

Ji=0;
**cce=length(x1)
Ax(1:pathStart(2)-1,1:5,1:3) =-1
k=0

for i=1:tpn
il=pathStart(i)
ifi<s(1)

end

if (i==tpn)
12=pathStart(i+1)
else
12=pathStart(i+1)-1
end

* x1=pt(pathStart(1):pathStart(2)-1,:)
x=pt(il:i2,:)
k=k+1;
rrr=size(X)
pLk)=rrr(1)
Ax(1:pL(k),:,1)=x;

* Ax(1:length(x),:,1)=x;

242



end

Ax(1:pL(i),:,1)

cle

% x1=Ax(1:pL(1),:,1);
#% x2=Ax(1:pL(2),:,2);
** x3=Ax(1:pL(3),:,3);

s=0

global Nx1
Nx1=0;
LoopF(i,Ax,pL,mat)

F3

File Number Two

global Nx1
global Tmat
for t=1:sxv
ii=xt(t,3);
J=xt(t,4);
tt=xt(t,5)
mat(ii,jj)= tt;

end
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mat

r,e

= size(mat) ;

if (isequal(mTem,mat))
dlmwrite(’Rtxt’,mat,’-append’,’delimiter’,” *,’roffset’,1);
sk sk sk sk sfe sk sk sk sk sk sk ske sk sl sk sk sk sk ske sk s sk sk sk sk sk sk sk st sk sk sk skeoske skl sk sk sk sk sk ko sk skeoske skeoskosieok skeoskoskoskoskokolkokoskoskokokokosk
imagesc((1:¢)+0.5,(1:r)+0.5,mat);

colormap(winter);

axis equal ;

N=N+1 ;

set(gca,” XTick’,1:(¢c),”YTick’,1:(1),...

"XLim’,[1 ¢+1],’YLim’,[1 r+1],...

’GridLineStyle’,’-’,’XGrid’,’on’,”YGrid’, on’);

rnddl =1
rmdd2 =1
Nx1=Nx1+1

Tmat(:,:,Nx1)=mat;
s=sprintf(’000
saveas(gcf,s);

******************************************************************end

mTem=mat;

File Number Three

abw
=size(Tmat)
Tmat2=Tmat(:,:,:)
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Tmat3=Tmat(:,:,1)
k=0;
ml1=Tmat(:,:,1);
m2=Tmat2(:,:,1);
kk=1

for i=1:w

t=1

t=0

for j=i+1:w
kk=kk+1
ml=Tmat(:,:,1);

m2=Tmat2(:,:,j);

if Tmat(:,:,1)== Tmat2(:,:,j)

t=1;

end

if k==150
nnn=2
end

end

if (t==0)

k=k+1

Tmat3(:,:, k)= Tmat(:,:,1)

File Number Four
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function it=LoopF(i,Ax,pL,mat)
global Nx1;

Nx1=Nx1*1

LpL=length(pL)

if i>LpL

return;

end

pLt=pL(i);

xt=Ax(1:pLt,:,1);
sx(1)=size(xt,1);

sxv=sx(1)

mTem=0;

N=0;

cle

for j=1:sxv

sh=1;

Y1 = circshift(xt(:,5),sh);
xt(:,5)=Y1;

F2

Ax(1:pL(i),5,1)=Y1;

s e e ks s e s s e ks s el s sl el st ks ekl st s skt okok f—q ot |
Ax2=Ax;pL2=pL;mat2=mat;
LoopF(tt,Ax2,pL2,mat2)

end

end

246



APPENDIX F
GENERATING FUNCTION

clc;clear all;close all;
key=3;

tmp=key;

fprintf(’

for n=1:7

tmp1=[];

for i=1:size(tmp,2)
tmp1=[tmp1,ones(1,tmp(i)-1)*tmp(1),tmp(i)+2];
end

tmp=[];tmp=tmp1;

fn=size(tmp,2);

fprintf(’f

(end
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