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Abstrak

Model abakus telah digunakan secara meluas untuk mewakili pemetakan bagi sebarang
integer positif. Walau bagaimanapun, tiada kajian yang telah dilakukan untuk mem-
bangunkan manik abakus terkait dalam perwakilan bergraf bagi objek diskrit. Untuk
mengatasi masalah keterkaitan, kajian ini tertumpu kepada pencirian n-objek terkait
yang dikenali sebagai n-omino terkait, seterusnya menjana abakus rantai tersarang.
Selanjutnya, sifat konsep teori bagi abakus rantai tersarang dibangunkan. Di samping
itu, tiga jenis penjelmaan berbeza yang penting dalam pembinaan famili kelas turut di-
hasilkan. Fungsi penjana turut dirumuskan berdasarkan kelas ini dengan menggunakan
pengangkaan objek kombinatorik (ECO). Dalam kaedah ECO, setiap objek diperoleh
daripada objek yang lebih kecil dengan membuat pengembangan setempat. Pengem-
bangan setempat ini dihuraikan dengan cara yang mudah melalui petua turutan. Kemu-
dian petua turutan boleh diterjemahkan menjadi persamaan fungsian untuk fungsi pen-
jana. Kesimpulannya, kajian ini berjaya menghasilkan perwakilan bergraf baru bagi
abakus rantai tersarang yang dapat diaplikasikan dalam grid terhingga penjubinan.
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Abacus  model  has  been  employed  widely  to  represent  partitions for any positive
integer.  However,  no  study  has  been carried  out  to develop  connected  beads  of 
abacus in graphical representation for discrete objects. To  resolve this connectedness
problem  this  study  is  oriented  in  characterising  n - connected objects knows as n 
connected  ominoes,  which  then  generate  nested  chain  abacus.  Furthermore,  the 
theoretical  conceptual  properties for  the  nested chain abacus  are being formulated.
Along the construction, three different types of transformation  are being created that
are  essential  in  building  a  family  of  classes. To enhance further,  based on theses 
classes, generating functions are also being formulated by employing enumeration of
combinatorial objects (ECO). In  ECO  method, each  object is obtained from smaller
object by  making  some  local  expansions. These local expansions are described in a
simple way by a  succession  rule which can be translated into a function equation for
the  generating  function. In  summary,  this  stud  has  succeeded  in producing novel
graphical representation of nested chain abacus, which can be applied in  tiling  finite
grid.
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1 

 

· · · 

CHAPTER ONE 

INTRODUCTION 

 

1.1 Introduction 

 
The theory of partition is a fundamental area of number theory, it is concerning the 

representation of integer as sum of other integers. The theory of partition has been 

applied in many different areas such as combinatorics, statistical and particle physic. 

The partitions can be graphically represented with diagrams such as Ferrers diagram 

and Young diagram. Agraphical representation of partition is important in the partition 

theory because it can design and facilitate a visual structure of any shape in the form 

of discrete object. Henceforth, this thesis focuses on the use of graphical illustration of 

partition to develop a new design structure of connected ominoes. The beauty of this 

construction is further extended to be used in tiling fnite grid. 

 
1.2 Graphical Representation of Partition 

 
Diagrams are used to represent a partition of any positive integer. Since 1800s, the 

famous diagrams are the Ferrers diagram and the Young diagram (Benjamin & Quinn, 

2003; Hardy & Wright, 1979). On the other hand, a James diagram or known as e- 

abacus uses a β-number to represent a sequence of non-decreasing integer numbers 

(Gyoja et al., 2010). Next, the concept of partition and graphical representation of the 

partition are reviewed. 

Definition 1.2.1. (Andrews, 1998) A partition of a positive integer, t, is a finite non- 
n 

increasing sequence of non-negative integers (µ1, µ2, , µn) such that ∑ µi = t and 
i=1 

n is the number of parts of any partition. 

 

Example 1.2.2. (5, 3, 3, 2, 1), (5, 5, 2, 2), (6, 4, 2, 1, 1),· · · are partitions of t = 14. 

If µ = (5, 3, 3, 2, 1), then n = 5. 



The contents of 

the thesis is for 

internal user 

only 
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APPENDIX  A 

GENERATING FUNCTION W.R.T CHAINS 

Input Rows and columns 

r=input(’Input the number of rows:’); 

e=input(’Input the number of columns:’); 

* Classify cases 

* Case 1(If r < e and r is odd, then p1=e-r + 1 p2=2p1+6) 

if r<e mod(r,2)==1 

P1=e-r+1; 

P2=2*P1+6; 

end * Case 2(If e < r and e is odd. then p1= r-e + 1 and p2 = 2 p1 + 6) 

if e<r mod(e,2)==1 

P1=r-e+1; 

P2=2*P1+6; 

end * Case 3(If e < r and e is odd. then p1= r-e + 1 and p2 = 2 p1 + 6) 

if e==r mod(r,2)==1 mod(e,2)==1 

P1=1; 

P2=8; 

end 

* Case 4(If r < e and r is even then p1= 2r + 2e - 4 ( 2c- 1)=2r-2e+4, where c= r/2 and 

p2=p1 + 8.) 

if r<=e mod(r,2)==0 

P1=2*r-2*e+4; 

P2=P1+8; 

end 

* Case 5(If e <= r and e is even then p1= 2r + 2e - 4 ( 2c- 1)=2e-2r+4, where c= e/2 

and p2 = p1 + 8) 
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if e<=r mod(e,2)==0 

P1=2*e-2*r+4 

P2=P1+8 

end 

** Compute the generating function syms x 

syms y 

* f(x,y) fprintf(’===============f(x,y)================’) 

f(x,y)=-exp(1/(8*x*y8)) ∗ int(y(P2 ­ 9) ∗exp(­1/8 ∗x∗y8), y) 

· Generating f unction f (x) 

f print f (
I
============ Generating f unction f (x) ================

I 

) 

f (x, 1) 

· PolynomialFrom 

f f (1) = 1; f f (2) = P2; 

f orn = 3 : 10 

f f (n) = f f (n­ 1) ∗ (P2 + 8); 

end 

∗W ritethisresult 

f ori = 1 : 10 

f print f (
I f (∗d) = ∗dI, i, f f (i)) 

end 
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APPENDIX B 

TILLING ALGORITHM W.R.T ROW 

 
thetacol = 25; 

thetarow = 25; 

H1 = 3; 

r = 5; 

e = 5; 

Computetheuppero f s, sI, sII 

slim = (ceil(thetarow/r)) ­ 1; 

s1lim = (ceil((thetacol ­e)/H1))+ 3; 

s2lim = ceil(thetacol/H1); 

Setcolors 

color2 = [255, 217, 102]/255; 

color1 = [131, 59, 10]/255; 

· Generatinginitialabacus 

∗temp = ceil(rand(1, e) ∗ (r ­numbead + 1)); 

temp = [2, 3, 2, 1, 2]; 

rect = zeros(thetarow, thetacol); 

f ori = 1 : r 

rect(i, temp(i) : temp(i)+ H1 ­ 1) = 1; 

end 

Drawshape(rect, thetarow, thetacol, color1, color2) 

title(
I
InitialRectangleI) 

H = max(temp); 

L = temp(1, 1); 

L1 = temp(1, end); 

p = H1; 
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p1 = L1 ­L; 

· I f L1 > L, thenapplicatethemapping1andmapping2, mapping3 

i f L1 > L 

f orm = 1 : r 

f or j = 1 : e 

f ors = 1 : slim 

i f rect(m, j) == 1and( j + s ∗ p1) > 0and( j + s ∗ p1) <= thetacolandmod(s, 2) == 

1rect(m + s ∗ r, j + s ∗ p1) = 0; 

elsei f rect(m, j) == 0and( j + s ∗ p1) > 0and( j + s ∗ p1) <= thetacoland 

mod(s, 2) == 1 

rect(m + s ∗ r, j + s ∗ p1) = 1; 

elsei f rect(m, j) == 1and( j + s ∗ p1) > 0and( j + s ∗ p1) <= thetacoland 

mod(s, 2) == 0 

rect(m + s ∗ r, j + s ∗ p1) = 1; 

elsei f rect(m, j) == 0and( j + s ∗ p1) > 0and( j + s ∗ p1) <= thetacoland 

mod(s, 2) == 0 

rect(m + s ∗ r, j + s ∗ p1) = 0; 

end 

end 

end 

end 

Drawshape(rect, thetarow, thetacol, color1, color2) 

title(
I
Rectanglea f terMapping1I) 

f orm = 1 : r 

rect(m + s ∗ r, j + s ∗ p1 + s1 ∗ p) = 1; 

elsei f rect(m, j) == 0and(m + s ∗ p1 + s1 ∗ p) > 0and 

(m + s ∗ p1 + s1 ∗ p) <= thetacolandmod(s, 2) == 1andmod(s1, 2) == 1 
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rect(m + s ∗ r, j + s ∗ p1 + s1 ∗ p) = 0; 

end 

end 

end 

end 

end 

Drawshape(rect, thetarow, thetacol, color1, color2) 

title(
I
Rectanglea f terMapping2I) 

end 

i f L1 > L 

f orm = 1 : r 

f or j = 1 : e 

f ors = 1 : slim 

i f rect(m, j) == 1and( j + s ∗ p1) > 0and( j + s ∗ p1) <= thetacoland 

mod(s, 2) == 1 

rect(m + s ∗ r, j + s ∗ p1) = 0; 

elsei f rect(m, j) == 0and( j + s ∗ p1) > 0and( j + s ∗ p1) <= thetacoland 

mod(s, 2) == 1 

rect(m + s ∗ r, j + s ∗ p1) = 1; 

elsei f rect(m, j) == 1and( j + s ∗ p1) > 0and( j + s ∗ p1) <= thetacoland 

mod(s, 2) == 0 

rect(m + s ∗ r, j + s ∗ p1) = 1; 

elsei f rect(m, j) == 0and( j + s ∗ p1) > 0and( j + s ∗ p1) <= thetacoland 

mod(s, 2) == 0 

rect(m + s ∗ r, j + s ∗ p1) = 0; 

end 

end 
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end 

end 

Drawshape(rect, thetarow, thetacol, color1, color2) 

title(
I
Rectanglea f terMapping1I) 

f orm = 1 : r 

f or j = H : e 

f ors = 0 : slim 

f ors1 = 1 : s1lim 

i f rect(m, j) == 1and(m + s ∗ p1 + s1 ∗ p) > 0and(m + s ∗ p1 + s1 ∗ p) <= thetacol 

andmod(s, 2) == 0andmod(s1, 2) == 1 

rect(m + s ∗ r, j + s ∗ p1 + s1 ∗ p) = 0; 

elsei f rect(m, j) == 0and(m + s ∗ p1 + s1 ∗ p) > 0and 

(m + s ∗ p1 + s1 ∗ p) <= thetacolandmod(s, 2) == 0andmod(s1, 2) == 1 

rect(m + s ∗ r, j + s ∗ p1 + s1 ∗ p) = 1; 

elsei f rect(m, j) == 1and(m + s ∗ p1 + s1 ∗ p) > 0and 

(m + s ∗ p1 + s1 ∗ p) <= thetacolandmod(s, 2) == 0andmod(s1, 2) == 0 

rect(m + s ∗ r, j + s ∗ p1 + s1 ∗ p) = 1; 

elsei f rect(m, j) == 0and(m+s∗p1+s1∗p) > 0and (m+s∗p1+s1∗p) < 

0andmod(s1, 2) == 0 

rect(m + s ∗ r, j + s ∗ p1 + s1 ∗ p) = 0; 

elsei f rect(m, j) == 1and(m + s ∗ p1 + s1 ∗ p) > 0and 

(m + s ∗ p1 + s1 ∗ p) <= thetacolandmod(s, 2) == 1andmod(s1, 2) == 0 

rect(m + s ∗ r, j + s ∗ p1 + s1 ∗ p) = 0; 

elsei f rect(m, j) == 0and(m + s ∗ p1 + s1 ∗ p) > 0and 

(m + s ∗ p1 + s1 ∗ p) <= thetacolandmod(s, 2) == 1andmod(s1, 2) == 0 

rect(m + s ∗ r, j + s ∗ p1 + s1 ∗ p) = 1; 

elsei f rect(m, j) == 1and(m + s ∗ p1 + s1 ∗ p) > 0and 
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(m + s ∗ p1 + s1 ∗ p) <= thetacolandmod(s, 2) == 1andmod(s1, 2) == 1 

rect(m + s ∗ r, j + s ∗ p1 + s1 ∗ p) = 1; 

elsei f rect(m, j) == 0and(m + s ∗ p1 + s1 ∗ p) > 0and 

(m + s ∗ p1 + s1 ∗ p) <= thetacolandmod(s, 2) == 1andmod(s1, 2) == 1 

rect(m + s ∗ r, j + s ∗ p1 + s1 ∗ p) = 0; 

end 

end 

end 

end 

end 

Drawshape(rect, thetarow, thetacol, color1, color2) 

title(
I
Rectanglea f terMapping2I) 

f orm = 1 : r 

f or j = 1 : H1 

f ors = 1 : s1lim 

f ors2 = 1 : s2lim 

f or j = H : e 

f ors = 0 : slim 

f ors1 = 1 : s1lim 

i f rect(m, j) == 1and(m + s ∗ p1 + s1 ∗ p) > 0and(m + s ∗ p1 + s1 ∗ p) <= thetacol 

andmod(s, 2) == 0andmod(s1, 2) == 1 

rect(m + s ∗ r, j + s ∗ p1 + s1 ∗ p) = 0; 

elsei f rect(m, j) == 0and(m + s ∗ p1 + s1 ∗ p) > 0and 

(m + s ∗ p1 + s1 ∗ p) <= thetacolandmod(s, 2) == 0andmod(s1, 2) == 1 

rect(m + s ∗ r, j + s ∗ p1 + s1 ∗ p) = 1; 

elsei f rect(m, j) == 1and(m + s ∗ p1 + s1 ∗ p) > 0and 

(m + s ∗ p1 + s1 ∗ p) <= thetacolandmod(s, 2) == 0andmod(s1, 2) == 0 
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rect(m + s ∗ r, j + s ∗ p1 + s1 ∗ p) = 1; 

elsei f rect(m, j) == 0and(m + s ∗ p1 + s1 ∗ p) > 0and 

(m + s ∗ p1 + s1 ∗ p) <= thetacolandmod(s, 2) == 0andmod(s1, 2) == 0 

rect(m + s ∗ r, j + s ∗ p1 + s1 ∗ p) = 0; 

elsei f rect(m, j) == 1and(m + s ∗ p1 + s1 ∗ p) > 0and 

(m + s ∗ p1 + s1 ∗ p) <= thetacolandmod(s, 2) == 1andmod(s1, 2) == 0 

rect(m + s ∗ r, j + s ∗ p1 + s1 ∗ p) = 0; 

elsei f rect(m, j) == 0and(m + s ∗ p1 + s1 ∗ p) > 0and 

(m + s ∗ p1 + s1 ∗ p) <= thetacolandmod(s, 2) == 1andmod(s1, 2) == 0 

rect(m + s ∗ r, j + s ∗ p1 + s1 ∗ p) = 1; 

elsei f rect(m, j) == 1and(m+s∗p1+s1∗p) > 0and (m+s∗p1+s1∗p) < 

1andmod(s1, 2) == 1 

rect(m + s ∗ r, j + s ∗ p1 + s1 ∗ p) = 1; 

elsei f rect(m, j) == 0and(m + s ∗ p1 + s1 ∗ p) > 0and 

(m + s ∗ p1 + s1 ∗ p) <= thetacolandmod(s, 2) == 1andmod(s1, 2) == 1 

rect(m + s ∗ r, j + s ∗ p1 + s1 ∗ p) = 0; 

end 

end 

end 

end 

end 

Drawshape(rect, thetarow, thetacol, color1, color2) 

title(
I
Rectanglea f terMapping2I) 

f orm = 1 : r 

f or j = 1 : H1 

f ors = 1 : s1lim 

f ors2 = 1 : s2lim 
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f unctionDrawshape(M, a, b, color1, color2) 

f igure 

axis([0b0a]) 

holdon 

f ori = 1 : a 

f or j = 1 : b 

i f M(i, j) == 1 

rectangle(
I
PositionI, [ j ­ 1, a­i, 1, 1],I FaceColorI, color1); elsei f M(i, j) == 0 

rectangle(
I
PositionI, [ j ­ 1, a­i, 1, 1],I FaceColorI, color2); 

end 

end 

end 

end 

end 
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APPENDIX C 

TILLING ALGORITHM W.R.T COLUMN 

 
Initial conditions thetacol = 30; 

thetarow = 30; 

d1 = 3; 

r = 5; 

e = 5; 

s1lim = ceil(thetacol/e) ­ 1; 

slim = ceil((r ­thetarow)/d1); 

s2lim = ceil(thetacol/e) ­ 1; 

color1 = [56, 85, 34]/255; 

color2 = [156, 194, 228]/255; 

temp = [2, 1, 2, 3, 2]; 

rect = zeros(thetarow, thetacol); 

f ori = 1 : e 

rect(temp(i) : temp(i)+ d1 ­ 1, i) = 1; 

end 

Drawshape(rect, thetarow, thetacol, color1, color2) 

title(
I
InitialRectangleI) 

k = max(temp); 

k1 = temp(1, 1); 

k2 = temp(1, end); 

p = d1; 

p1 = k2 ­k1; 

i f k2 <= k1 

f orm = 1 : r 

f or j = 1 : e 
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f ors1 = 1 : s1lim 

i f rect(m, j) == 1and(m + s1 ∗ p1) > 0and 

(m + s1 ∗ p1) <= thetarowandmod(s1, 2) == 1 

rect(m + s1 ∗ p1, j + s1 ∗e) = 0; 

elsei f rect(m, j) == 0and(m + s1 ∗ p1) > 0 

and(m + s1 ∗ p1) <= thetarowandmod(s1, 2) == 1 

rect(m + s1 ∗ p1, j + s1 ∗e) = 1; 

elsei f rect(m, j) == 1and(m + s1 ∗ p1) > 0 

and(m + s1 ∗ p1) <= thetarowandmod(s1, 2) == 0 

rect(m + s1 ∗ p1, j + s1 ∗e) = 1; 

elsei f rect(m, j) == 0and(m + s1 ∗ p1) > 0 

and(m + s1 ∗ p1) <= thetarowandmod(s1, 2) == 0 

rect(m + s1 ∗ p1, j + s1 ∗e) = 0; 

end 

end 

end 

end 

Drawshape(rect, thetarow, thetacol, color1, color2) 

f orm = r ­ p + 1 : r 

f or j = 1 : e 

f ors = 0 : 6 

f ors1 = 1 : 12 

i f rect(m, j) == 1and(m + s ∗ p1 + s1 ∗ p) > 0 

and(m + s ∗ p1 + s1 ∗ p) <= thetacolandmod(s, 2) == 0and 

mod(s1, 2) == 1 

rect(m + s ∗ p1 + s1 ∗ p, j + s ∗e) = 0; 

elsei f rect(m, j) == 0and 
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(m + s ∗ p1 + s1 ∗ p) > 0and(m + s ∗ p1 + s1 ∗ p) <= thetacoland 

mod(s, 2) == 0andmod(s1, 2) == 1 

rect(m + s ∗ p1 + s1 ∗ p, j + s ∗e) = 1; 

elsei f rect(m, j) == 1and 

(m + s ∗ p1 + s1 ∗ p) > 0and(m + s ∗ p1 + s1 ∗ p) <= thetacoland 

mod(s, 2) == 0andmod(s1, 2) == 0 

rect(m + s ∗ p1 + s1 ∗ p, j + s ∗e) = 1; 

elsei f rect(m, j) == 0and 

(m + s ∗ p1 + s1 ∗ p) > 0and(m + s ∗ p1 + s1 ∗ p) <= thetacoland 

mod(s, 2) == 0andmod(s1, 2) == 0 

rect(m + s ∗ p1 + s1 ∗ p, j + s ∗e) = 0; 

elsei f rect(m, j) == 1and 

(m + s ∗ p1 + s1 ∗ p) > 0and(m + s ∗ p1 + s1 ∗ p) <= thetacoland 

mod(s, 2) == 1andmod(s1, 2) == 0 

rect(m + s ∗ p1 + s1 ∗ p, j + s ∗e) = 0; 

elsei f rect(m, j) == 0and 

(m + s ∗ p1 + s1 ∗ p) > 0and(m + s ∗ p1 + s1 ∗ p) <= thetacoland 

mod(s, 2) == 1andmod(s1, 2) == 0 

rect(m + s ∗ p1 + s1 ∗ p, j + s ∗e) = 1; 

elsei f rect(m, j) == 1and 

(m + s ∗ p1 + s1 ∗ p) > 0and(m + s ∗ p1 + s1 ∗ p) <= thetacoland 

mod(s, 2) == 1andmod(s1, 2) == 1 

rect(m + s ∗ p1 + s1 ∗ p, j + s ∗e) = 1; 

elsei f rect(m, j) == 0and 

(m + s ∗ p1 + s1 ∗ p) > 0and(m + s ∗ p1 + s1 ∗ p) <= thetacoland 

mod(s, 2) == 1andmod(s1, 2) == 1 

rect(m + s ∗ p1 + s1 ∗ p, j + s ∗e) = 0; 
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end 

end 

end 

end 

end 

Drawshape(rect, thetarow, thetacol, color1, color2) 

title(
I
Rectanglea f terMapping2I) 

end 

i f k2 > k1 

f orm = 1 : r 

f or j = 1 : e 

f ors1 = 1 : s1lim 

i f rect(m, j) == 1and(m + s1 ∗ p1) > 0and(m + s1 ∗ p1) <= thetarow 

andmod(s1, 2) == 1 

rect(m + s1 ∗ p1, j + s1 ∗e) = 0; 

elsei f rect(m, j) == 0and(m + s1 ∗ p1) > 0 

and(m + s1 ∗ p1) <= thetarowandmod(s1, 2) == 1 

rect(m + s1 ∗ p1, j + s1 ∗e) = 1; 

elsei f rect(m, j) == 1and(m + s1 ∗ p1) > 0 

and(m + s1 ∗ p1) <= thetarowandmod(s1, 2) == 0 

rect(m + s1 ∗ p1, j + s1 ∗e) = 1; 

elsei f rect(m, j) == 0and(m + s1 ∗ p1) > 0 

and(m + s1 ∗ p1) <= thetarowandmod(s1, 2) == 0 

rect(m + s1 ∗ p1, j + s1 ∗e) = 0; 

end 

end 

end 
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end 

Drawshape(rect, thetarow, thetacol, color1, color2) 

f orm = r ­ p + 1 : r 

f or j = 1 : e 

f ors = 0 : 6 

f ors1 = 1 : 12 

i f rect(m, j) == 1and(m + s ∗ p1 + s1 ∗ p) > 0and 

(m + s ∗ p1 + s1 ∗ p) <= thetacolandmod(s, 2) == 0and 

mod(s1, 2) == 1 

rect(m + s ∗ p1 + s1 ∗ p, j + s ∗e) = 0; 

elsei f rect(m, j) == 0and 

(m + s ∗ p1 + s1 ∗ p) > 0and(m + s ∗ p1 + s1 ∗ p) <= thetacoland 

mod(s, 2) == 0andmod(s1, 2) == 1 

rect(m + s ∗ p1 + s1 ∗ p, j + s ∗e) = 1; 

elsei f rect(m, j) == 1and 

(m + s ∗ p1 + s1 ∗ p) > 0and(m + s ∗ p1 + s1 ∗ p) <= thetacoland 

mod(s, 2) == 0andmod(s1, 2) == 0 

rect(m + s ∗ p1 + s1 ∗ p, j + s ∗e) = 1; 

elsei f rect(m, j) == 0and 

(m + s ∗ p1 + s1 ∗ p) > 0and(m + s ∗ p1 + s1 ∗ p) <= thetacoland 

mod(s, 2) == 0andmod(s1, 2) == 0 

rect(m + s ∗ p1 + s1 ∗ p, j + s ∗e) = 0; 

elsei f rect(m, j) == 1and 

(m + s ∗ p1 + s1 ∗ p) > 0and(m + s ∗ p1 + s1 ∗ p) <= thetacoland 

mod(s, 2) == 1andmod(s1, 2) == 0 

rect(m + s ∗ p1 + s1 ∗ p, j + s ∗e) = 0; 

elsei f rect(m, j) == 0and 
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(m + s ∗ p1 + s1 ∗ p) > 0and(m + s ∗ p1 + s1 ∗ p) <= thetacoland 

mod(s, 2) == 1andmod(s1, 2) == 0 

rect(m + s ∗ p1 + s1 ∗ p, j + s ∗e) = 1; 

elsei f rect(m, j) == 1and 

(m + s ∗ p1 + s1 ∗ p) > 0and(m + s ∗ p1 + s1 ∗ p) <= thetacoland 

mod(s, 2) == 1andmod(s1, 2) == 1 

rect(m + s ∗ p1 + s1 ∗ p, j + s ∗e) = 1; 

elsei f rect(m, j) == 0and 

(m + s ∗ p1 + s1 ∗ p) > 0and(m + s ∗ p1 + s1 ∗ p) <= thetacoland 

mod(s, 2) == 1andmod(s1, 2) == 1 

rect(m + s ∗ p1 + s1 ∗ p, j + s ∗e) = 0; 

end 

end 

end 

end 

end 

Drawshape(rect, thetarow, thetacol, color1, color2) 

title(
I
Rectanglea f terMapping2I) 

f orm = 1 : d1 

f or j = 1 : e 

f ors = 0 : 6 

f ors2 = 1 : 12 

i f rect(m, j) == 1and(m + s∗ p1 ­s2 ∗ p) > 0and(m + s∗ p1 ­s2 ∗ p) <= thetacoland 

mod(s, 2) == 0andmod(s2, 2) == 1rect(m + s ∗ p1 ­s2 ∗ p, j + s ∗e) = 0; 

elsei f rect(m, j) == 0and(m + s ∗ p1 ­s2 ∗ p) > 0and 

(m + s ∗ p1 ­s2 ∗ p) <= thetacolandmod(s, 2) == 0andmod(s2, 2) == 1 

rect(m + s ∗ p1 ­s2 ∗ p, j + s ∗e) = 1; 
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elsei f rect(m, j) == 1and(m + s ∗ p1 ­s2 ∗ p) > 0and 

(m + s ∗ p1 ­s2 ∗ p) <= thetacolandmod(s, 2) == 0andmod(s2, 2) == 0 

rect(m + s ∗ p1 ­s2 ∗ p, j + s ∗e) = 1; 

elsei f rect(m, j) == 0and(m + s ∗ p1 ­s2 ∗ p) > 0and 

(m + s ∗ p1 ­s2 ∗ p) <= thetacolandmod(s, 2) == 0andmod(s2, 2) == 0 

rect(m + s ∗ p1 ­s2 ∗ p, j + s ∗e) = 0; 

elsei f rect(m, j) == 1and(m + s ∗ p1 ­s2 ∗ p) > 0and 

(m + s ∗ p1 ­s2 ∗ p) <= thetacolandmod(s, 2) == 1andmod(s2, 2) == 0 

rect(m + s ∗ p1 ­s2 ∗ p, j + s ∗e) = 0; 

elsei f rect(m, j) == 0and(m + s ∗ p1 ­s2 ∗ p) > 0and 

(m + s ∗ p1 ­s2 ∗ p) <= thetacolandmod(s, 2) == 1andmod(s2, 2) == 0 

rect(m + s ∗ p1 ­s2 ∗ p, j + s ∗e) = 1; 

elsei f rect(m, j) == 1and(m + s ∗ p1 ­s2 ∗ p) > 0and 

(m + s ∗ p1 ­s2 ∗ p) <= thetacolandmod(s, 2) == 1andmod(s2, 2) == 1 

rect(m + s ∗ p1 ­s2 ∗ p, j + s ∗e) = 1; 

elsei f rect(m, j) == 0and(m + s ∗ p1 ­s2 ∗ p) > 0and 

(m + s ∗ p1 ­s2 ∗ p) <= thetacolandmod(s, 2) == 1andmod(s2, 2) == 1 

rect(m + s ∗ p1 ­s2 ∗ p, j + s ∗e) = 0; 

end 

end 

end 

end 

end 

Drawshape(rect, thetarow, thetacol, color1, color2) 

title(
I
Rectanglea f terMapping2I) 

end 

f unctionDrawshape(M, a, b, color1, color2) 
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f igure 

axis([0b0a]) 

holdon 

f ori = 1 : a 

f or j = 1 : b 

i f M(i, j) == 1 

rectangle(
I
PositionI, [ j ­ 1, a­i, 1, 1],I FaceColorI, color1); 

elsei f M(i, j) == 0 

rectangle(
I
PositionI, [ j ­ 1, a­i, 1, 1],I FaceColorI, color2); 

end 

end 

end 

end 

end 
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APPENDIX D 

GENERATING NC AND NR NESTED CHAIN ABACUS 

 
Code A 

r=input(’Enter a number of rows:’); 

e=input(’Enter a number of columns:’); 

thetarow = input(
I
Enteranumbero f colmnso f onutputrectangle(r < thetarow) :I) 

thetacol = input(
I
Enteranumbero f colmnso f onutputrectangle(e < thetacol) :I); 

d1 = input(
I
Enterthesamenumbero f beadposition :I); 

con = Findconnectedabacus(e, r­d1 + 1, r, e, d1,I colI); numinitialrect = size(con, 1); 

i f numinitialrect == 0 

error(
I
Error : Thereisnoconnectedabacuse f ortheseparameters.I) 

end 

temp = con(randi([1, numinitialrect], 1), :) 

rect = zeros(thetarow, thetacol); 

f ori = 1 : e 

rect(temp(i)/2 + 1 : temp(i)/2 + d1, i) = 1; 

end 

slim = ceil(thetarow/r) ­ 1; 

s1lim = ceil(thetacol/e); 

s2lim = ceil(thetacol/e); 

scolor1 = [56, 85, 34]/255; 

scolor2 = [156, 194, 228]/255; 

k = min(temp); 

k1 = temp(1, 1) 

k2 = temp(1, end) 

p = d1; 

p1 = k2 ­k1; 
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rect = zeros(thetarow, thetacol); 

f ori = 1 : e 

rect(temp(i) : temp(i)+ d1 ­ 1, i) = 1; 

end 

Drawshape(rect, thetarow, thetacol, color1, color2) 

title(
I
InitialRectangleI) 

 

 
if k2>k1 

for m=1:r 

for j=1:e 

for s1=1:s1lim 

i f rect(m, j) == 1and(m + s1 ∗ p1) > 0and(m + s1 ∗ p1) <= thetarow 

andmod(s1, 2) == 1 

rect(m + s1 ∗ p1, j + s1 ∗e) = 0; 

elsei f rect(m, j) == 0and(m + s1 ∗ p1) > 0 

and(m + s1 ∗ p1) <= thetarowandmod(s1, 2) == 1 

rect(m + s1 ∗ p1, j + s1 ∗e) = 1; 

elsei f rect(m, j) == 1and(m + s1 ∗ p1) > 0 

and(m + s1 ∗ p1) <= thetarowandmod(s1, 2) == 0 

rect(m + s1 ∗ p1, j + s1 ∗e) = 1; 

elsei f rect(m, j) == 0and(m + s1 ∗ p1) > 0 

and(m + s1 ∗ p1) <= thetarowandmod(s1, 2) == 0 

rect(m + s1 ∗ p1, j + s1 ∗e) = 0; 

end 

end 

end 
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end 

Drawshape(rect, thetarow, thetacol, color1, color2) 

f orm = r ­ p + 1 : r 

f or j = 1 : e 

f ors = 0 : 6 

f ors1 = 1 : 12 

i f rect(m, j) == 1and(m + s ∗ p1 + s1 ∗ p) > 0and 

(m + s ∗ p1 + s1 ∗ p) <= thetacolandmod(s, 2) == 0and 

mod(s1, 2) == 1 

rect(m + s ∗ p1 + s1 ∗ p, j + s ∗e) = 0; 

elsei f rect(m, j) == 0and 

(m + s ∗ p1 + s1 ∗ p) > 0and(m + s ∗ p1 + s1 ∗ p) <= thetacoland 

mod(s, 2) == 0andmod(s1, 2) == 1 

rect(m + s ∗ p1 + s1 ∗ p, j + s ∗e) = 1; 

elsei f rect(m, j) == 1and 

(m + s ∗ p1 + s1 ∗ p) > 0and(m + s ∗ p1 + s1 ∗ p) <= thetacoland 

mod(s, 2) == 0andmod(s1, 2) == 0 

rect(m + s ∗ p1 + s1 ∗ p, j + s ∗e) = 1; 

elsei f rect(m, j) == 0and 

(m + s ∗ p1 + s1 ∗ p) > 0and(m + s ∗ p1 + s1 ∗ p) <= thetacoland 

mod(s, 2) == 0andmod(s1, 2) == 0 

rect(m + s ∗ p1 + s1 ∗ p, j + s ∗e) = 0; 

elsei f rect(m, j) == 1and 

(m + s ∗ p1 + s1 ∗ p) > 0and(m + s ∗ p1 + s1 ∗ p) <= thetacoland 

mod(s, 2) == 1andmod(s1, 2) == 0 

rect(m + s ∗ p1 + s1 ∗ p, j + s ∗e) = 0; 

elsei f rect(m, j) == 0and 
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(m + s ∗ p1 + s1 ∗ p) > 0and(m + s ∗ p1 + s1 ∗ p) <= thetacoland 

mod(s, 2) == 1andmod(s1, 2) == 0 

rect(m + s ∗ p1 + s1 ∗ p, j + s ∗e) = 1; 

elsei f rect(m, j) == 1and 

(m + s ∗ p1 + s1 ∗ p) > 0and(m + s ∗ p1 + s1 ∗ p) <= thetacoland 

mod(s, 2) == 1andmod(s1, 2) == 1 

rect(m + s ∗ p1 + s1 ∗ p, j + s ∗e) = 1; 

elsei f rect(m, j) == 0and 

(m + s ∗ p1 + s1 ∗ p) > 0and(m + s ∗ p1 + s1 ∗ p) <= thetacoland 

mod(s, 2) == 1andmod(s1, 2) == 1 

rect(m + s ∗ p1 + s1 ∗ p, j + s ∗e) = 0; 

end 

end 

end 

end 

end 

Drawshape(rect, thetarow, thetacol, color1, color2) 

title(
I
Rectanglea f terMapping2I) 

f orm = 1 : d1 

f or j = 1 : e 

f ors = 0 : 6 

f ors2 = 1 : 12 

i f rect(m, j) == 1and(m + s∗ p1 ­s2 ∗ p) > 0and(m + s∗ p1 ­s2 ∗ p) <= thetacoland 

mod(s, 2) == 0andmod(s2, 2) == 1rect(m + s ∗ p1 ­s2 ∗ p, j + s ∗e) = 0; 

elsei f rect(m, j) == 0and(m + s ∗ p1 ­s2 ∗ p) > 0and 

(m + s ∗ p1 ­s2 ∗ p) <= thetacolandmod(s, 2) == 0andmod(s2, 2) == 1 

rect(m + s ∗ p1 ­s2 ∗ p, j + s ∗e) = 1; 
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elsei f rect(m, j) == 1and(m + s ∗ p1 ­s2 ∗ p) > 0and 

(m + s ∗ p1 ­s2 ∗ p) <= thetacolandmod(s, 2) == 0andmod(s2, 2) == 0 

rect(m + s ∗ p1 ­s2 ∗ p, j + s ∗e) = 1; 

elsei f rect(m, j) == 0and(m + s ∗ p1 ­s2 ∗ p) > 0and 

(m + s ∗ p1 ­s2 ∗ p) <= thetacolandmod(s, 2) == 0andmod(s2, 2) == 0 

rect(m + s ∗ p1 ­s2 ∗ p, j + s ∗e) = 0; 

elsei f rect(m, j) == 1and(m + s ∗ p1 ­s2 ∗ p) > 0and 

(m + s ∗ p1 ­s2 ∗ p) <= thetacolandmod(s, 2) == 1andmod(s2, 2) == 0 

rect(m + s ∗ p1 ­s2 ∗ p, j + s ∗e) = 0; 

elsei f rect(m, j) == 0and(m + s ∗ p1 ­s2 ∗ p) > 0and 

(m + s ∗ p1 ­s2 ∗ p) <= thetacolandmod(s, 2) == 1andmod(s2, 2) == 0 

rect(m + s ∗ p1 ­s2 ∗ p, j + s ∗e) = 1; 

elsei f rect(m, j) == 1and(m + s ∗ p1 ­s2 ∗ p) > 0and 

(m + s ∗ p1 ­s2 ∗ p) <= thetacolandmod(s, 2) == 1andmod(s2, 2) == 1 

rect(m + s ∗ p1 ­s2 ∗ p, j + s ∗e) = 1; 

elsei f rect(m, j) == 0and(m + s ∗ p1 ­s2 ∗ p) > 0and 

(m + s ∗ p1 ­s2 ∗ p) <= thetacolandmod(s, 2) == 1andmod(s2, 2) == 1 

rect(m + s ∗ p1 ­s2 ∗ p, j + s ∗e) = 0; 

end 

end 

end 

end 

end 

Drawshape(rect, thetarow, thetacol, color1, color2) 

title(
I
Rectanglea f terMapping2I) 

end 

f unctionDrawshape(M, a, b, color1, color2) 
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f igure 

axis([0b0a]) 

holdon 

f ori = 1 : a 

f or j = 1 : b 

i f M(i, j) == 1 

rectangle(
I
PositionI, [ j ­ 1, a­i, 1, 1],I FaceColorI, color1); 

elsei f M(i, j) == 0 

rectangle(
I
PositionI, [ j ­ 1, a­i, 1, 1],I FaceColorI, color2); 

end 

end 

end 

end 

end 

 

 

 
Code B 

r=input(’Enter a number of rows:’); 

e=input(’Enter a number of columns:’); 

thetarow = input(
I
Enteranumbero f colmnso f onutputrectangle(r < thetarow) :I); 

thetacol = input(
I
Enteranumbero f colmnso f onutputrectangle(e < thetacol) :I); 

H1 = input(
I
Enterthesamenumbero f beadposition :I); 

con = Findconnectedabacus(r, e­H1 + 1, r, e, H1,I rowI); 

numinitialrect = size(con, 1); 

i f numinitialrect == 0 

error(
I
Error : Thereisnoconnectedabacuse f ortheseparameters.I) 

end 
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temp = con(randi([1, numinitialrect], 1), :); 

rect = zeros(thetarow, thetacol); 

f ori = 1 : r 

rect(i, temp(i)/2 + 1 : temp(i)/2 + H1) = 1; 

end 

slim = ceil(thetarow/r) ­ 1; 

s1lim = ceil(thetacol/e); 

s2lim = ceil(thetacol/e); 

scolor1 = [131, 59, 10]/255; 

scolor2 = [255, 217, 102]/255; 

H = min(temp); 

L = temp(1, 1); 

L1 = temp(1, end); 

p = e­H + 1; 

p1 = L­L1; 

f igure 

Drawshape(rect, scolor1, scolor2) 

title(
I
InitialRectangleI) 

· I f L1 <= L, applicatethemapping1andmpping1 

i f L1 > L 

f orm = 1 : r 

f or j = 1 : e 

f ors = 1 : slim 

i f rect(m, j) == 1and( j + s ∗ p1) > 0and( j + s ∗ p1) <= thetacoland 

mod(s, 2) == 1rect(m + s ∗ r, j + s ∗ p1) = 0; 

elsei f rect(m, j) == 0and( j + s ∗ p1) > 0and( j + s ∗ p1) <= thetacoland 

mod(s, 2) == 1 



230  

rect(m + s ∗ r, j + s ∗ p1) = 1; 

elsei f rect(m, j) == 1and( j + s ∗ p1) > 0and( j + s ∗ p1) <= thetacoland 

mod(s, 2) == 0 

rect(m + s ∗ r, j + s ∗ p1) = 1; 

elsei f rect(m, j) == 0and( j + s ∗ p1) > 0and( j + s ∗ p1) <= thetacoland 

mod(s, 2) == 0 

rect(m + s ∗ r, j + s ∗ p1) = 0; 

end 

end 

end 

end 

Drawshape(rect, thetarow, thetacol, color1, color2) 

title(
I
Rectanglea f terMapping1I) 

f orm = 1 : r 

rect(m + s ∗ r, j + s ∗ p1 + s1 ∗ p) = 1; 

elsei f rect(m, j) == 0and(m + s ∗ p1 + s1 ∗ p) > 0and 

(m + s ∗ p1 + s1 ∗ p) <= thetacolandmod(s, 2) == 1andmod(s1, 2) == 1 

rect(m + s ∗ r, j + s ∗ p1 + s1 ∗ p) = 0; 

end 

end 

end 

end 

end 

Drawshape(rect, thetarow, thetacol, color1, color2) 

title(
I
Rectanglea f terMapping2I) 

end 

i f L1 > L 
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f orm = 1 : r 

f or j = 1 : e 

f ors = 1 : slim 

i f rect(m, j) == 1and( j + s ∗ p1) > 0and( j + s ∗ p1) <= thetacoland 

mod(s, 2) == 1 

rect(m + s ∗ r, j + s ∗ p1) = 0; 

elsei f rect(m, j) == 0and( j + s ∗ p1) > 0and( j + s ∗ p1) <= thetacoland 

mod(s, 2) == 1 

rect(m + s ∗ r, j + s ∗ p1) = 1; 

elsei f rect(m, j) == 1and( j + s ∗ p1) > 0and( j + s ∗ p1) <= thetacoland 

mod(s, 2) == 0 

rect(m + s ∗ r, j + s ∗ p1) = 1; 

elsei f rect(m, j) == 0and( j + s ∗ p1) > 0and( j + s ∗ p1) <= thetacoland 

mod(s, 2) == 0 

rect(m + s ∗ r, j + s ∗ p1) = 0; 

end 

end 

end 

end 

Drawshape(rect, thetarow, thetacol, color1, color2) 

title(
I
Rectanglea f terMapping1I) 

f orm = 1 : r 

f or j = H : e 

f ors = 0 : slim 

f ors1 = 1 : s1lim 

i f rect(m, j) == 1and(m + s ∗ p1 + s1 ∗ p) > 0and(m + s ∗ p1 + s1 ∗ p) <= thetacol 

andmod(s, 2) == 0andmod(s1, 2) == 1 
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rect(m + s ∗ r, j + s ∗ p1 + s1 ∗ p) = 0; 

elsei f rect(m, j) == 0and(m + s ∗ p1 + s1 ∗ p) > 0and 

(m + s ∗ p1 + s1 ∗ p) <= thetacolandmod(s, 2) == 0andmod(s1, 2) == 1 

rect(m + s ∗ r, j + s ∗ p1 + s1 ∗ p) = 1; 

elsei f rect(m, j) == 1and(m + s ∗ p1 + s1 ∗ p) > 0and 

(m + s ∗ p1 + s1 ∗ p) <= thetacolandmod(s, 2) == 0andmod(s1, 2) == 0 

rect(m + s ∗ r, j + s ∗ p1 + s1 ∗ p) = 1; 

elsei f rect(m, j) == 0and(m + s ∗ p1 + s1 ∗ p) > 0and 

(m + s ∗ p1 + s1 ∗ p) <= thetacolandmod(s, 2) == 0andmod(s1, 2) == 0 

rect(m + s ∗ r, j + s ∗ p1 + s1 ∗ p) = 0; 

elsei f rect(m, j) == 1and(m + s ∗ p1 + s1 ∗ p) > 0and 

(m + s ∗ p1 + s1 ∗ p) <= thetacolandmod(s, 2) == 1andmod(s1, 2) == 0 

rect(m + s ∗ r, j + s ∗ p1 + s1 ∗ p) = 0; 

elsei f rect(m, j) == 0and(m + s ∗ p1 + s1 ∗ p) > 0and 

(m + s ∗ p1 + s1 ∗ p) <= thetacolandmod(s, 2) == 1andmod(s1, 2) == 0 

rect(m + s ∗ r, j + s ∗ p1 + s1 ∗ p) = 1; 

elsei f rect(m, j) == 1and(m + s ∗ p1 + s1 ∗ p) > 0and 

(m + s ∗ p1 + s1 ∗ p) <= thetacolandmod(s, 2) == 1andmod(s1, 2) == 1 

rect(m + s ∗ r, j + s ∗ p1 + s1 ∗ p) = 1; 

elsei f rect(m, j) == 0and(m + s ∗ p1 + s1 ∗ p) > 0and 

(m + s ∗ p1 + s1 ∗ p) <= thetacolandmod(s, 2) == 1andmod(s1, 2) == 1 

rect(m + s ∗ r, j + s ∗ p1 + s1 ∗ p) = 0; 

end 

end 

end 

end 

end 
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Drawshape(rect, thetarow, thetacol, color1, color2) 

title(
I
Rectanglea f terMapping2I) 

f orm = 1 : r 

f or j = 1 : H1 

f ors = 1 : s1lim 

f ors2 = 1 : s2lim 

f or j = H : e 

f ors = 0 : slim 

f ors1 = 1 : s1lim 

i f rect(m, j) == 1and(m + s ∗ p1 + s1 ∗ p) > 0and(m + s ∗ p1 + s1 ∗ p) <= thetacol 

andmod(s, 2) == 0andmod(s1, 2) == 1 

rect(m + s ∗ r, j + s ∗ p1 + s1 ∗ p) = 0; 

elsei f rect(m, j) == 0and(m + s ∗ p1 + s1 ∗ p) > 0and 

(m + s ∗ p1 + s1 ∗ p) <= thetacolandmod(s, 2) == 0andmod(s1, 2) == 1 

rect(m + s ∗ r, j + s ∗ p1 + s1 ∗ p) = 1; 

elsei f rect(m, j) == 1and(m + s ∗ p1 + s1 ∗ p) > 0and 

(m + s ∗ p1 + s1 ∗ p) <= thetacolandmod(s, 2) == 0andmod(s1, 2) == 0 

rect(m + s ∗ r, j + s ∗ p1 + s1 ∗ p) = 1; 

elsei f rect(m, j) == 0and(m + s ∗ p1 + s1 ∗ p) > 0and 

(m + s ∗ p1 + s1 ∗ p) <= thetacolandmod(s, 2) == 0andmod(s1, 2) == 0 

rect(m + s ∗ r, j + s ∗ p1 + s1 ∗ p) = 0; 

elsei f rect(m, j) == 1and(m + s ∗ p1 + s1 ∗ p) > 0and 

(m + s ∗ p1 + s1 ∗ p) <= thetacolandmod(s, 2) == 1andmod(s1, 2) == 0 

rect(m + s ∗ r, j + s ∗ p1 + s1 ∗ p) = 0; 

elsei f rect(m, j) == 0and(m + s ∗ p1 + s1 ∗ p) > 0and 

(m + s ∗ p1 + s1 ∗ p) <= thetacolandmod(s, 2) == 1andmod(s1, 2) == 0 

rect(m + s ∗ r, j + s ∗ p1 + s1 ∗ p) = 1; 
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elsei f rect(m, j) == 1and(m+s∗p1+s1∗p) > 0and (m+s∗p1+s1∗p) <= 

1andmod(s1, 2) == 1 

rect(m + s ∗ r, j + s ∗ p1 + s1 ∗ p) = 1; 

elsei f rect(m, j) == 0and(m + s ∗ p1 + s1 ∗ p) > 0and 

(m + s ∗ p1 + s1 ∗ p) <= thetacolandmod(s, 2) == 1andmod(s1, 2) == 1 

rect(m + s ∗ r, j + s ∗ p1 + s1 ∗ p) = 0; 

end 

end 

end 

end 

end 

Drawshape(rect, thetarow, thetacol, color1, color2) 

title(
I
Rectanglea f terMapping2I) 

f orm = 1 : r 

f or j = 1 : H1 

f ors = 1 : s1lim 

f ors2 = 1 : s2lim 

f unctionDrawshape(M, a, b, color1, color2) 

f igure 

axis([0b0a]) 

holdon 

f ori = 1 : a 

f or j = 1 : b 

i f M(i, j) == 1 

rectangle(
I
PositionI, [ j ­ 1, a­i, 1, 1],I FaceColorI, color1); elsei f M(i, j) == 0 

rectangle(
I
PositionI, [ j ­ 1, a­i, 1, 1],I FaceColorI, color2); 

end 
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end 

end 

end 

end 

 

 

 
Code C 

 

 

 
function Drawshape(M, a, b, color1, color2) 

f igure 

axis([0b0a]) 

holdon 

f ori = 1 : a 

f or j = 1 : b 

i f M(i, j) == 1 

rectangle(
I
PositionI, [ j ­ 1, a­i, 1, 1],I FaceColorI, color1); 

elsei f M(i, j) == 0 

rectangle(
I
PositionI, [ j ­ 1, a­i, 1, 1],I FaceColorI, color2); 

end 

end 

end 

end 

end 

 

 

 
** Find all Initial rect 
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function com=createcombination(n, k) 

f ori = 1 : n 

tmp = []; 

f or j = 1 : k 

tmp = [tmp; ones(k(n­i), 1) ∗ j]; 

end 

rr = []; 

f or j = 1 : k(i­ 1) 

rr = [rr; tmp]; 

end 

com(:, i) = rr; 

end 

com = com­ 1 

end 

 

 

 
 

Code D 

** Find the connected Abacus 

function con=Findconnectedabacus(n, k, r, e, H, str) 

con = []; 

· Findallpossibleinitialrects 

all = createcombination(n, k); 

· ∗Findtheconnectedabacus 

· Algorithm f orcolumn 

i f strcmp(str,I colI) 

f ornn = 1 : size(all, 1) 

temp = all(nn, :); 
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f lag = 1; 

rectisconnectedabacus) 

rect = zeros(r, e); 

f ori = 1 : e 

rect(temp(i)+ 1 : temp(i)+ H, i) = 1; 

end 

· ∗Testtheconnection 

t = sum(rectI); 

f ori = 1 : r 

f lag = f lag∗ (t(1, i) >= 1); 

end 

f ori = 1 : e­ 1 

A = temp(i) : temp(i)+ H ­ 1; 

B = temp(i + 1) : temp(i + 1)+ H ­ 1; 

C = intersect(A, B); 

f lag = f lag∗ ( isempty(C)); 

end 

i f f lag == 1 

con = [con; temp]; 

end 
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APPENDIX E 

CHAIN TRANSFORMATION 
 

 

File Number one 
 
 
 
 

clc 

kkk=0; 

clear; 

nt=0; 

v=1; 

global Tmat; 

r = input(’ numbers of rows ’) 

c = input(’ numbers of columns ’) 

mat = ones(r,c); 

Tmat=mat; 

 
r,c 

= size(mat) ; 

ch=21; 

path=0; 

tn=0; 

fl=[r,c] ; 

tmpv=min(fl)/2; 

tpn1=ceil(tmpv) 

while path <tpn1 

path=path+1 

v=v-.15 

si=path;sj=path; 
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i=si;j=sj; 

vv=path; 

n=0; 

sti=2; 

stj=2; 

str=(’r-si-1’); 

nr=r-si; 

nc=c-sj; 

vs=1/ch; 

vs=0; 

nt=nt+1; 

while 1 

if (i==si ) (j==sj )( n>0) 

break 

end 

n=n+1; 

if ( tn>=totn) 

break 

end 

mat(i,j)=v; 

tn=tn+1; 

pt(tn,4)=j; 

pt(tn,3)=i; 

pt(tn,1)=tn; 

pt(tn,2)=path; 

if ((i<nr+1)(sti>0)) 

i=i+1; 
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else if((j<nc+1)(stj>0)); 

j=j+1; 

sti=-1; 

else 

if (i>si) 

i=i-1; 

stj=-1; 

else if (j>sj) 

j=j-1; 

if ((i==si)(j==sj)) sti=1;stj=1; 

end 

end 

end 

end 

end 

i; 

j; 

A1 = path; 

A2 = n; 

end 

end 

s=size(pt); 

c=s(1); 

cp=1 

i=1; 

clc 

k=1; 
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pathStart(1)=1; 

for i=1:s 

if (i>1) 

if pt(i,2) =pt(i-1,2) k=k+1; 

pathStart(k)=i; 

end 

end 

end 

k=k+1; 

pathStart(k)=s(1) 

k(1:tpn1)=0; 

clc 

p01=1 

No=0; 

pt(:,5)=1; 

totalN ss 

=size(pt) 

tpn=max(pt(:,2)) 

for i=1:tpn 

i 

pn(i)=input(’ÚÏÏ ÇáÚäÇÕÑ ááãÓÇÑ ’) 

end 

for p=1:length(pn) 

for i=1:totalN 

if(pt(i,2)==p)(k(p)<pn(p)) pt(i,5)=11; 

k(p)=k(p)+1; 

end 
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ii=pt(i,3); 

jj=pt(i,4); 

mat(ii,jj)= pt(i,5); 

end 

end 

Ax=0 

ii=0; 

jj=0; 

**ccc=length(x1) 

Ax(1:pathStart(2)-1,1:5,1:3) =-1 

k=0 

for i=1:tpn 

i1=pathStart(i) 

if i<s(1) 

end 

if (i==tpn) 

i2=pathStart(i+1) 

else 

i2=pathStart(i+1)-1 

end 

* x1=pt(pathStart(1):pathStart(2)-1,:) 

x=pt(i1:i2,:) 

k=k+1; 

rrr=size(x) 

pL(k)=rrr(1) 

Ax(1:pL(k),:,i)=x; 

* Ax(1:length(x),:,i)=x; 
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end 

Ax(1:pL(i),:,i) 

clc 

** x1=Ax(1:pL(1),:,1); 

** x2=Ax(1:pL(2),:,2); 

** x3=Ax(1:pL(3),:,3); 

s=0 

N=0 

mTem=0 

i=1 

global Nx1 

Nx1=0; 

LoopF(i,Ax,pL,mat) 

F3 

 
 
 

File Number Two 
 
 
 
 

global Nx1 

global Tmat 

for t=1:sxv 

ii=xt(t,3); 

jj=xt(t,4); 

tt=xt(t,5) 

mat(ii,jj)= tt; 

end 



244  

mat 

 
r,c 

 
= size(mat) ; 

if (isequal(mTem,mat)) 

dlmwrite(’Rtxt’,mat,’-append’,’delimiter’,’ ’,’roffset’,1); 

***************************************************************** 

imagesc((1:c)+0.5,(1:r)+0.5,mat); 

colormap(winter); 

axis equal ; 

N=N+1 ; 

set(gca,’XTick’,1:(c),’YTick’,1:(r),... 

’XLim’,[1 c+1],’YLim’,[1 r+1],... 

’GridLineStyle’,’-’,’XGrid’,’on’,’YGrid’,’on’); 

rndd1 = 1 

rndd2 = 1 

Nx1=Nx1+1 

Tmat(:,:,Nx1)=mat; 

s=sprintf(’000 

saveas(gcf,s); 

****************************************************************** end 

mTem=mat; 

 
 

File Number Three 

a b w 

=size(Tmat) 

Tmat2=Tmat(:,:,:) 
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Tmat3=Tmat(:,:,1) 

k=0; 

m1=Tmat(:,:,1); 

m2=Tmat2(:,:,1); 

kk=1 

for i=1:w 

t=1 

t=0 

for j=i+1:w 

kk=kk+1 

m1=Tmat(:,:,i); 

m2=Tmat2(:,:,j); 

if Tmat(:,:,i)== Tmat2(:,:,j) 

t=1; 

end 

if k==150 

nnn=2 

end 

end 

if (t==0) 

k=k+1 

Tmat3(:,:,k)= Tmat(:,:,i) 
 
 
 
 

File Number Four 
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function it=LoopF(i,Ax,pL,mat) 

global Nx1; 

Nx1=Nx1*1 

LpL=length(pL) 

if i>LpL 

return; 

end 

pLt=pL(i); 

xt=Ax(1:pLt,:,i); 

sx(i)=size(xt,1); 

sxv=sx(i) 

mTem=0; 

N=0; 

clc 

for j=1:sxv 

sh=1; 

Y1 = circshift(xt(:,5),sh); 

xt(:,5)=Y1; 

F2 

Ax(1:pL(i),5,i)=Y1; 

**************************************************************** tt=i+1 

Ax2=Ax;pL2=pL;mat2=mat; 

LoopF(tt,Ax2,pL2,mat2) 

end 

end 
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APPENDIX F 

GENERATING FUNCTION 

clc;clear all;close all; 

key=3; 

tmp=key; 

fprintf(’=================================’) 

for n=1:7 

tmp1=[]; 

for i=1:size(tmp,2) 

tmp1=[tmp1,ones(1,tmp(i)-1)*tmp(i),tmp(i)+2]; 

end 

tmp=[];tmp=tmp1; 

fn=size(tmp,2); 

fprintf(’f 

(end 
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