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Abstrak

Model abakus telah digunakan secara meluas untuk mewakili pemetakan bagi sebarang
integer positif. Walau bagaimanapun, tiada kajian yang telah dilakukan untuk mem-
bangunkan manik abakus terkait dalam perwakilan bergraf bagi objek diskrit. Untuk
mengatasi masalah keterkaitan, kajian ini tertumpu kepada pencirian n-objek terkait
yang dikenali sebagai n-omino terkait, seterusnya menjana abakus rantai tersarang.
Selanjutnya, sifat konsep teori bagi abakus rantai tersarang dibangunkan. Di samping
itu, tiga jenis penjelmaan berbeza yang penting dalam pembinaan famili kelas turut di-
hasilkan. Fungsi penjana turut dirumuskan berdasarkan kelas ini dengan menggunakan
pengangkaan objek kombinatorik (ECO). Dalam kaedah ECO, setiap objek diperoleh
daripada objek yang lebih kecil dengan membuat pengembangan setempat. Pengem-
bangan setempat ini dihuraikan dengan cara yang mudah melalui petua turutan. Kemu-
dian petua turutan boleh diterjemahkan menjadi persamaan fungsian untuk fungsi pen-
jana. Kesimpulannya, kajian ini berjaya menghasilkan perwakilan bergraf baru bagi
abakus rantai tersarang yang dapat diaplikasikan dalam grid terhingga penjubinan.
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Abstract

Abacus model has been employed widely to represent partitions for any positive
integer. However, no study has been carried out to develop connected beads of
abacus in graphical representation for discrete objects. To resolve this connectedness
problem this study is oriented in characterising 7 - connected objects knows as n
connected ominoes, which then generate nested chain abacus. Furthermore, the
theoretical conceptual properties for the nested chain abacus are being formulated.
Along the construction, three different types of transformation are being created that
are essential in building a family of classes. To enhance further, based on theses
classes, generating functions are also being formulated by employing enumeration of
combinatorial objects (ECO). In ECO method, each object is obtained from smaller
object by making some local expansions. These local expansions are described in a
simple way by a succession rule which can be translated into a function equation for
the generating function. In summary, this stud has succeeded in producing novel

graphical representation of nested chain abacus, which can be applied in tiling finite
grid.

Keywords: abacus, partition, n-connected omnioes, generating function
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CHAPTER ONE
INTRODUCTION

1.1 Introduction

The theory of partition is a fundamental area of number theory, it is concerning the
representation of integer as sum of other integers. The theory of partition has been
applied in many different areas such as combinatorics, statistical and particle physic.
The partitions can be graphically represented with diagrams such as Ferrers diagram
and Young diagram. Agraphical representation of partition is important in the partition
theory because it can design and facilitate a visual structure of any shape in the form
of discrete object. Henceforth, this thesis focuses on the use of graphical illustration of
partition to develop a new design structure of connected ominoes. The beauty of this

construction is further extended to be used in tiling fnite grid.

1.2 Graphical Representation of Partition

Diagrams are used to represent a partition of any positive integer. Since 1800s, the
famous diagrams are the Ferrers diagram and the Young diagram (Benjamin & Quinn,
2003; Hardy & Wright, 1979). On the other hand, a James diagram or known as e-
abacus uses a B-number to represent a sequence of non-decreasing integer numbers
(Gyoja et al., 2010). Next, the concept of partition and graphical representation of the

partition are reviewed.

Definition 1.2.1. (Andrews, 1998) A partition of a positive integer, t, is a finite non-
n

increasing sequence of non-negative integers (L1, W,y Wn) Such that z w; = tand
i=1
n is the number of parts of any partition.

Example 1.2.2.(5,3,3,2,1),(5,5,2,2),(6,4,2,1,1),- -+ are partitions of t = 14.

Ifu=1(,,3,3,2,1), thenn = 5.
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APPENDIX A
GENERATING FUNCTION W.R.T CHAINS

Input Rows and columns

r=input(’ Input the number of rows:’);

e=input(’ Input the number of columns:’);

* Classify cases

* Case 1(If r <e and r is odd, then pl=e-r + 1 p2=2p1+6)

if r<e mod(r,2)==1

Pl=e-r+1;

P2=2*P1+6;

end * Case 2(If e <r and e is odd. then pl=r-e + 1 and p2 =2 pl + 6)
if e<r mod(e,2)=—=

Pl=r-etl;

P2=2*P1+6;

end * Case 3(If e <rand e is odd. then pl=r1-e + 1 and p2 =2 pl + 6)

if e==r mod(r,2)==1 mod(e,2)==1

P2=8;

end

* Case 4(If r <e and r is even then pl=2r + 2¢ - 4 ( 2¢- 1)=2r-2e+4, where c=1/2 and
p2=pl +8.)

if r<=e mod(r,2)==

P1=2%r-2*%e+4;

P2=P1+8;

end

* Case 5(If e <=r and e is even then p1=2r + 2¢ - 4 ( 2¢c- 1)=2e-2r+4, where c=¢/2
and p2 =pl +8)
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if e<=r mod(e,2)==0
P1=2%e-2*r+4
P2=P1+8

end

** Compute the generating function syms x

syms 'y

* f(x,y) fprintf(’ f(x,y) ")
fi(x,y)=-exp(1/(8*x*y®) * int(P2 — 9) *exp(—1/8 *x*)%), y)

- Generating function f(x)

fprint f((============ Generating function f (x) ==============.
)

f(x, 1)

- PolynomialFrom

frQ) = 1L£fQ2) = P2;

forn=3:10

ffn) =ff(n—1) * (P2 + 8);

end

* Writethisresult

fori=1:10
fprint f(f(=d) = *d,i, £0)
end
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APPENDIX B
TILLING ALGORITHM W.R.T ROW

theta.ol = 25;

theta,ow = 25;

Computetheuppero f's, st , st

sim = (ceil(theta,ow/r)) — 1;

sljim = (ceil((theta.ol —e)/H1))+ 3;
s2;im = ceil(theta.ol/H1);

Setcolors

color2 = [255,217,102]/255;

colorl = [131,59, 10]/255:

- Generatinginitialabacus

xtemp = ceil(rand(1, e) * (r —numpead + 1));
temp = [2,3,2,1,2];

rect = zeros(theta,ow,theta.ol);

fori=1:r

rect(i, temp(i) : temp(i)+ H1 —1) = 1;

end

Drawghape(rect, theta,ow, theta.ol, colorl, color2)
title(llnitialRectangleI)

H = max(temp);

L = temp(1, 1);

L1 = temp(1, end);

p = HI;
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pl =L1 —L;

-IfL1 > L, thenapplicatethemappinglandmapping?2, mapping3
ifL1 > L

form=1:r

forj=1:e

fors=1:sim

ifrect(m, j) == land(j + s * pl) > Oand(j + s * pl) <= theta.olandmod(s, 2)
lrectim +s *r, j +s * pl) = 0;

elseifrect(m, j) == 0and(j + s * pl1) > 0and(j + s * p1) <= thetaoland
mod(s,2) ==1

rectm +s *r, j +s * pl) = 1;

elseifrect(m, j) == land(j + s * pl) > 0and(j + s * p1) <= theta.oland
mod(s,2) == 0

rectim +s *r, j +s * pl) = 1;

elseifrect(m, j) == 0and(j + s * pl) > Oand(j + s * p1) <= theta.oland
mod(s,2) == 0

rectm +s *r, j +s * pl) = 0;

end

end

end

end

Drawghape(rect, theta,ow, theta.ol, colorl, color2)

title(IRectanglea f terMappinglI)

form=1:r

rectm +s *r, j +s * pl +s1 * p) = 1;

elsei frect(m, j) == Oand(m + s * pl + sl *x p) > Oand

(m + s * pl + sl *x p) <= theta.olandmod(s,2) == landmod(s1,2) == 1
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rectm +s *r, j +s * pl +sl1 * p) = 0;

end

end

end

end

end

Drawghape(rect, theta,ow, theta.ol, colorl, color2)

title(IRectanglea f terMapping2I)

end

ifL1> L

form=1:r

forj=1:e

fors =1:sim

ifrect(m, j) == land(j +s* pl) > 0and(j + s * pl) <= thetaoland
mod(s,2) == 1

rect(m +s *r, j +s * pl) = 0;

elseifrect(m, j) == 0and(j + s * pl) > 0and(j + s * p1) <= theta.oland
mod(s,2) ==1

rectm +s *r, j +s * pl) = 1;

elseifrect(m, j) == land(j + s * pl) > 0and(j + s * p1) <= thetaoland
mod(s,2) == 0

rectm +s *r, j +s * pl) = 1;

elseifrect(m, j) == 0and(j + s * pl1) > 0and(j + s * p1) <= thetaoland
mod(s,2) == 0

rectm +s *r, j +s * pl) = 0;

end

end
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end

end

Drawghape(rect, theta,ow, theta.ol, colorl, color2)

title('Rectanglea fterMapping1?)

form=1:r

forj=H:e

fors = 0:sjim

forsl = 1:sljim

ifrect(m, j) == land(m + s * pl +s1 * p) > 0and(m + s * pl + s1 * p) <= hagd
andmod(s, 2) == Oandmod(s1,2) == 1
recttim+s*r,j+s*xpl+sl*p)=0;

elsei frect(m, j) == Oand(m + s * pl + sl *x p) > Oand

(m + s * pl + sl *x p) <= theta.olandmod(s,2) == 0andmod(sl,2) == 1
rectm +s *r, j +s * pl +sl1 * p) = 1;

elsei frect(m, j) == land(m + s * pl + sl * p) > Oand

(m + s * pl + sl * p) <= theta.olandmod(s,2) == O0andmod(sl,2) == 0
rectm +s *r, j +s * pl +sl1 * p) = 1;

elsei frect(m, j) == Oand(m+sxpl+sl*p) > Oand (m+s*pl+sl*p) <
Oandmod(s1,2) ==

rectm +s *r, j +s * pl +s1 * p) = 0;

elsei frect(m, j) == land(m + s * pl + sl *x p) > Oand

(m + s * pl + sl * p) <= theta.olandmod(s,2) == landmod(s1,2) == 0
rectm +s *r, j +s * pl +sl1 * p) = 0;

elsei frect(m, j) == Oand(m + s * pl + sl *x p) > Oand

(m + s * pl + sl *x p) <= theta.olandmod(s,2) == landmod(sl,2) == 0
rectm +s *r, j +s * pl +s1 * p) = 1;

elsei frect(m, j) == land(m + s * pl + sl *x p) > Oand

211



(m + s * pl + sl *x p) <= theta.olandmod(s,2) == landmod(sl,2) ==
rectm +s *r, j +s * pl +s1 * p) = 1;

elsei frect(m, j) == Oand(m + s * pl + sl *x p) > Oand

(m + s * pl + sl *x p) <= theta.olandmod(s,2) == landmod(sl,2) == 1
rectm +s *r, j +s * pl +sl1 * p) = 0;

end

end

end

end

end

Drawghape(rect, theta,ow, theta.ol, colorl, color2)

title('Rectanglea f terMapping2?)

form=1:r

forj=1:HI

fors=1:slim

fors2 =1:52;im

forj=H:e

fors = 0:sim

forsl = 1:slim

ifrect(m, j) == land(m + s * pl +s1 * p) > 0and(m + s * pl + s1 * p) <= hagd
andmod(s, 2) == Oandmod(s1,2) ==
rectim+s*r,j+s*xpl+sl*p)=0;

elsei frect(m, j) == Oand(m + s * pl + sl *x p) > Oand

(m + s * pl + sl * p) <= theta.olandmod(s,2) == O0andmod(sl,2) ==
rectm +s *r, j +s * pl +sl1 * p) = 1;

elsei frect(m, j) == land(m + s * pl + sl *x p) > Oand

(m + s * pl + sl *x p) <= theta.olandmod(s,2) == O0andmod(s1,2) == 0
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rectm +s *r, j +s * pl +sl1 * p) = 1;

elsei frect(m, j) == Oand(m + s * pl + sl *x p) > Oand

(m + s * pl + sl *x p) <= theta.olandmod(s,2) == O0andmod(s1,2) == 0
rectm +s *r, j +s * pl +s1 * p) = 0;

elsei frect(m, j) == land(m + s * pl + sl *x p) > Oand

(m + s * pl + sl *x p) <= theta.olandmod(s,2) == landmod(s1,2) == 0
rectim +s *r, j +s * pl +sl1 * p) = 0;

elsei frect(m, j) == Oand(m + s * pl + sl *x p) > Oand

(m + s * pl + sl * p) <= theta.olandmod(s,2) == landmod(s1,2) == 0
rectm +s *r, j +s * pl +sl1 * p) = 1;

elsei frect(m, j) == land(m+s*xpl+sl*p) > Oand (m+s*pl+sl*xp) <
landmod(s1,2) == 1

rectm +s *r, j +s * pl +s1 * p) = 1;

elsei frect(m, j) == Oand(m + s * pl + sl * p) > Oand

(m + s * pl + sl * p) <= theta.olandmod(s,2) == landmod(sl,2) == 1
rectim +s *r, j +s * pl +sl1 * p) = 0;

end

end

end

end

end

Drawghape(rect, theta,ow, theta.ol, colorl, color2)

title(IRectanglea f terMapping2I)

form=1:r

forj=1:HI

fors =1:slim

fors2 =1:52;im
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functionDrawshape(M, a, b, color1, color2)

figure

axis([000a])

holdon

fori=1:a

forj=1:b

ifMG, j) == 1

rectangle(IPositionI, [j—1,a—i,1, 11,1 FaceColor, color); elsei fM(i, j) ==
rectangle(*Position’, [j—1,a—i, 1,1],"FaceColor, color2);
end

end

end

end

end
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APPENDIX C
TILLING ALGORITHM W.R.T COLUMN

Initial conditions theta.ol = 30;

theta,ow = 30;

sljim = ceil(theta.olfe) — 1;

sim = ceil((r —theta,ow)/dl);

s2;im = ceil(theta.ol/e) — 1;

colorl = [56,85,34]/255;

color2 = [156,194,228]/255;

temp =[2,1,2,3,2];

rect = zeros(theta,ow, theta.ol);
fori=1:e

rect(temp(i) : temp(i)+dl —1,i) = 1;
end

Drawshape(rect, theta,ow, theta.ol, colorl, color2)
title(IInitialRectangleI)

k = max(temp);

kl = temp(1, 1);

k2 = temp(1, end);

p=dl;
pl =k2 —kl;
ifk2 <=kl

form=1:r

forj=1:e
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forsl = 1:sljim

ifrect(m, j) == land(m + sl * pl) > Oand

(m + s1 x pl) <= theta,owandmod(sl,2) == 1
rect(m +s1 *x pl, j +s1 *e) = 0;

elsei frect(m, j) == Oand(m + s1 * pl) > 0

and(m + sl * pl) <= theta,owandmod(sl,2) == 1
rectim +s1 x pl, j +s1 *e) = 1;

elsei frect(m, j) == land(m + s1 x pl) > 0

and(m + s1 * pl) <= theta,owandmod(sl,2) ==
rect(m +s1 x pl, j +s1 *e) = 1;

elsei frect(m, j) == Oand(m + s1 x pl) > 0

and(m + sl * pl) <= theta,owandmod(s1,2) == 0
rectim +sl * pl, j +s1 *e) = 0;

end

end

end

end

Drawghape(rect, theta,ow, theta.ol, colorl, color2)
form=r—p+1:r

forj=1:e

fors=0:6

forsl =1:12

ifrect(m, j) == land(m + s * pl + sl * p) > 0
and(m+s* pl +s1 * p) <= theta.olandmod(s, 2) == Qad
mod(s1,2) == 1

rectm +s * pl +sl * p, j +5 *xe) = 0;

elsei frect(m, j) == Oand
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(m+s*pl+sl*p)>0andim+s*pl+sl*p) <= theaoland
mod(s,2) == 0andmod(s1,2) == 1

rectim +s * pl +s1 * p, j +s *xe) = 1;

elsei frect(m, j) == land
(m+s*pl+sl*p)>0andim+sx*pl+sl*p) <= thaoland
mod(s,2) == 0andmod(s1,2) == 0

rectm +s * pl +sl * p, j +5 *e) = 1;

elsei frect(m, j) == Oand
(m+s*pl+sl*p)>0andim+sx*pl+sl*p) <= thaaoland
mod(s,2) == 0andmod(s1,2) == 0

rectim +s * pl +sl * p, j +5 *e) = 0;

elsei frect(m, j) == land
(m+s*pl+sl*p)>0andim+s*pl+sl*p) <= theaoland
mod(s,2) == landmod(s1,2) == 0

rectim +s * pl +sl * p, j +5 *xe) = 0;

elsei frect(m, j) == Oand
(m+s*pl+sl*p)>0andim+sx*pl+sl*p) <= thaaoland
mod(s,2) == landmod(s1,2) == 0

rectm +s * pl +sl * p, j +5 *e) = 1;

elsei frect(m, j) == land
(m+s*pl+sl*p)>0andim+sx*pl+sl*p) <= thaoland
mod(s,2) == landmod(s1,2) == 1

rectim +s * pl +sl * p, j +5 *e) = 1;

elsei frect(m, j) == Oand
(m+s*pl+sl*p)>0andim+sx*pl+sl*p) <= thaaoland
mod(s,2) == landmod(s1,2) == 1

rectm +s * pl +sl * p, j +5 *e) = 0;
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end

end

end

end

end

Drawghape(rect, theta,ow, theta.ol, colorl, color2)
title(IRectanglea f terMapping2I)

end

ifk2 > kl

form=1:r

forj=1:e

forsl = 1:slim

ifrect(m, j) == land(m +s1 * p1) > 0and(m + s1 * p1) <= theta,ow
andmod(sl,2) == 1

rect(m +s1 *x pl, j +s1 *e) = 0;

elsei frect(m, j) == Oand(m + s1 x pl) > 0

and(m + sl * pl) <= theta,owandmod(sl,2) == 1
rectm +s1 x pl, j +s1 *xe) = 1;

elsei frect(m, j) == land(m + s1 x pl) > 0

and(m + s1 * pl) <= theta,owandmod(s1,2) == 0
rect(m +s1 *x pl, j +s1 *e) = 1;

elsei frect(m, j) == Oand(m + s1 * pl) > 0

and(m + sl * pl) <= theta,owandmod(sl,2) == 0
rect(m +s1 *x pl, j +s1 *e) = 0;

end

end

end
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end

Drawshape(rect, theta,ow, theta ol, colorl, color2)
form=r—p+1:r

forj=1:e

fors=0:6

forsl =1:12

i frect(m, j) == land(m + s * pl + sl * p) > Oand
(m+s*pl+sl*p) <=theta.olandmod(s,2) == Qutd
mod(s1,2) == 1

rectm +s * pl +sl * p, j +5 *e) = 0;

elsei frect(m, j) == Oand
(m+s*pl+sl*p)>0andim+sx*pl+sl*p) <= thaaoland
mod(s, 2) == Oandmod(sl,2) ==

rectm +s * pl +sl *x p, j +5 *xe) = 1;

elsei frect(m, j) == land
(m+s*pl+sl*p)>0andim+s*pl+sl*p) <= thaaoland
mod(s, 2) == Oandmod(s1,2) == 0

rectm +s * pl +sl * p, j +5 *xe) = 1;

elsei frect(m, j) == Oand
(m+s*pl+sl*p)>0andim+sx*pl+sl*p) <= thaoland
mod(s, 2) == Oandmod(s1,2) ==

rectm +s * pl +sl * p, j +5 *xe) = 0;

elsei frect(m, j) == land
(m+s*pl+sl*p)>0andim+sx*pl+sl*p) <= thaoland
mod(s,2) == landmod(s1,2) ==

rectm +s * pl +sl * p, j +5 *xe) = 0;

elsei frect(m, j) == Oand
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(m+s*pl+sl*p)>0andim+s*pl+sl*p) <= theiaoland

mod(s,2) == landmod(s1,2) == 0

rectm +s * pl +sl * p, j +5 *e) = 1;

elsei frect(m, j) == land
(m+s*pl+sl*p)>0andim+sx*pl+sl*p) <= thaoland

mod(s,2) == landmod(s1,2) == 1

rectm +s * pl +sl * p, j +5 *e) = 1;

elsei frect(m, j) == Oand
(m+s*pl+sl*p)>0andim+sx*pl+sl*p) <= thaaoland

mod(s,2) == landmod(s1,2) == 1

rectim +s * pl +sl * p, j +5 *e) = 0;

end

end

end

end

end

Drawshape(rect, theta,ow, theta.ol, colorl, color2)

title('Rectanglea f terMapping2?)

form=1:dl

forj=1:e

fors=0:6

fors2 =1:12

ifrect(m, j) == land(m+s* pl —s2 * p) > 0and(m + s * pl —s2 * p) <= theta.oland
mod(s,2) == 0andmod(s2,2) == lrect(m +s* pl —s2 *x p, j +s*e) = 0;
elsei frect(m, j) == Oand(m + s * pl —s2 * p) > Oand

(m + s * pl —s2 * p) <= theta.olandmod(s,2) == 0andmod(s2,2) == 1

rectim +s * pl —s2 * p, j +5 *e) = 1;
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elsei frect(m, j) == land(m + s * pl —s2 * p) > Oand

(m + s * pl —s2 * p) <= theta.olandmod(s,2) == 0andmod(s2,2) == 0
rectm +s * pl —s2 * p, j +s *xe) = 1;

elsei frect(m, j) == Oand(m + s * pl —s2 * p) > Oand

(m + s * pl —s2 * p) <= theta.olandmod(s,2) == O0andmod(s2,2) ==
rectm +s * pl —s2 * p, j +s xe) = 0;

elsei frect(m, j) == land(m + s * pl —s2 * p) > Oand

(m + s * pl —s2 * p) <= theta.olandmod(s,2) == landmod(s2,2) == 0
rectm +s * pl —s2 * p, j +s xe) = 0;

elsei frect(m, j) == Oand(m + s * pl —s2 * p) > Oand

(m + s * pl —s2 * p) <= theta.olandmod(s,2) == landmod(s2,2) == 0
rectm +s * pl —s2 * p, j +s xe) = 1;

elsei frect(m, j) == land(m + s * pl —s2 * p) > Oand

(m + s * pl —s2 * p) <= theta.olandmod(s,2) == landmod(s2,2) == 1
rectim +s * pl —s2 * p, j +s *xe) = 1;

elsei frect(m, j) == Oand(m + s * pl —s2 * p) > Oand

(m + s * pl —s2 * p) <= theta.olandmod(s,2) == landmod(s2,2) == 1
rectm +s * pl —s2 * p, j +s xe) = 0;

end

end

end

end

end

Drawshape(rect, theta,ow, theta.ol, colorl, color2)

title('Rectanglea f terMapping2?)

end

functionDrawshape(M, a, b, color1, color2)
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figure

axis([060a))

holdon

fori=1:a

forj=1:b

ifMG, j) ==1

rectangle(tPosition’, [j —1,a—i, 1,1],*FaceColor!, colorl);
elsei fM(i, j) == 0

rectangle(*Position’, [j—1,a—i, 1,1],"FaceColor, color2);
end

end

end

end

end
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APPENDIX D
GENERATING N¢c AND Nz NESTED CHAIN ABACUS

Code A

r=input(’Enter a number of rows:”);

e=input(’Enter a number of columns:”);

theta,ow = input(*Enteranumbero fcolmnso fonutputrectangle(r < theta,ow) :))
theta ol = input(IEnteranumbero fcolmnso fonutputrectangle(e < theta.ol) :I);
dl = input(Enterthesamenumbero f beadposition :);

con = Find.onnected,bacus(e,r—dl +1,r, e, dl ,IcolI); numnitialrect = size(con, 1)
i fnumnitialrect ==

error(IError : Thereisnoconnectedabacuse f orthesepammeters.I )

end

temp = con(randi([1, numnitialrect], 1), :)

rect = zeros(theta,ow, theta.ol);

fori=1:e

rect(temp(i)/2 + 1 : temp(i)/2 + d1,i) = 1,

end

sjim = ceil(theta,ow/r) — 1;

slim = ceil(theta.ol/e);

s2im = ceil(theta.ol/e);

scolorl = [56,85,341/255;

scolor2 = [156,194,228]/255;

k = min(temp);

k1l = temp(1, 1)

k2 = temp(1, end)

p=dl;

pl =k2 —kl;
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rect = zeros(theta,ow, theta.ol);
fori=1:e
rect(temp(i) : temp(i)+dl —1,i) = 1;

end

Drawghape(rect, theta,ow, theta.ol, colorl, color2)

title(llnitialRectangleI)

if k2>kl1

for m=1:r

for j=1:e

for s1=1:s1,im

ifrect(m, j) == land(m + sl * p1) > 0and(m + s1 * p1) <= theta,ow
andmod(sl,2) ==

rectm +s1 *x pl, j +s1 *e) = 0;

elsei frect(m, j) == Oand(m + s1 x pl) > 0

and(m + sl * pl) <= theta,owandmod(s1,2) == 1
rect(m +s1 x pl, j +s1 *e) = 1;

elsei frect(m, j) == land(m + s1 x pl) > 0

and(m + sl * pl) <= theta,owandmod(sl,2) == 0
rectim +s1 x pl, j +s1 *e) = 1;

elsei frect(m, j) == Oand(m + s1 x pl) > 0

and(m + s1 * pl) <= theta,owandmod(sl,2) == 0
rect(m +s1 *x pl, j +s1 *e) = 0;

end

end

end
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end

Drawshape(rect, theta,ow, theta ol, colorl, color2)
form=r—p+1:r

forj=1:e

fors=0:6

forsl =1:12

i frect(m, j) == land(m + s * pl + sl * p) > Oand
(m+s*pl+sl*p) <=theta.olandmod(s,2) == Qutd
mod(s1,2) == 1

rectm +s * pl +sl * p, j +5 *e) = 0;

elsei frect(m, j) == Oand
(m+s*pl+sl*p)>0andim+sx*pl+sl*p) <= thaaoland
mod(s, 2) == Oandmod(sl,2) ==

rectm +s * pl +sl *x p, j +5 *xe) = 1;

elsei frect(m, j) == land
(m+s*pl+sl*p)>0andim+s*pl+sl*p) <= thaaoland
mod(s, 2) == Oandmod(s1,2) == 0

rectm +s * pl +sl * p, j +5 *xe) = 1;

elsei frect(m, j) == Oand
(m+s*pl+sl*p)>0andim+sx*pl+sl*p) <= thaoland
mod(s, 2) == Oandmod(s1,2) ==

rectm +s * pl +sl * p, j +5 *xe) = 0;

elsei frect(m, j) == land
(m+s*pl+sl*p)>0andim+sx*pl+sl*p) <= thaoland
mod(s,2) == landmod(s1,2) ==

rectm +s * pl +sl * p, j +5 *xe) = 0;

elsei frect(m, j) == Oand

225



(m+s*pl+sl*p)>0andim+s*pl+sl*p) <= theiaoland

mod(s,2) == landmod(s1,2) == 0

rectm +s * pl +sl * p, j +5 *e) = 1;

elsei frect(m, j) == land
(m+s*pl+sl*p)>0andim+sx*pl+sl*p) <= thaoland

mod(s,2) == landmod(s1,2) == 1

rectm +s * pl +sl * p, j +5 *e) = 1;

elsei frect(m, j) == Oand
(m+s*pl+sl*p)>0andim+sx*pl+sl*p) <= thaaoland

mod(s,2) == landmod(s1,2) == 1

rectim +s * pl +sl * p, j +5 *e) = 0;

end

end

end

end

end

Drawshape(rect, theta,ow, theta.ol, colorl, color2)

title('Rectanglea f terMapping2?)

form=1:dl

forj=1:e

fors=0:6

fors2 =1:12

ifrect(m, j) == land(m+s* pl —s2 * p) > 0and(m + s * pl —s2 * p) <= theta.oland
mod(s,2) == 0andmod(s2,2) == lrect(m +s* pl —s2 *x p, j +s*e) = 0;
elsei frect(m, j) == Oand(m + s * pl —s2 * p) > Oand

(m + s * pl —s2 * p) <= theta.olandmod(s,2) == 0andmod(s2,2) == 1

rectim +s * pl —s2 * p, j +5 *e) = 1;
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elsei frect(m, j) == land(m + s * pl —s2 * p) > Oand

(m + s * pl —s2 * p) <= theta.olandmod(s,2) == 0andmod(s2,2) == 0
rectm +s * pl —s2 * p, j +s *xe) = 1;

elsei frect(m, j) == Oand(m + s * pl —s2 * p) > Oand

(m + s * pl —s2 * p) <= theta.olandmod(s,2) == O0andmod(s2,2) ==
rectm +s * pl —s2 * p, j +s xe) = 0;

elsei frect(m, j) == land(m + s * pl —s2 * p) > Oand

(m + s * pl —s2 * p) <= theta.olandmod(s,2) == landmod(s2,2) == 0
rectm +s * pl —s2 * p, j +s xe) = 0;

elsei frect(m, j) == Oand(m + s * pl —s2 * p) > Oand

(m + s * pl —s2 * p) <= theta.olandmod(s,2) == landmod(s2,2) == 0
rectm +s * pl —s2 * p, j +s xe) = 1;

elsei frect(m, j) == land(m + s * pl —s2 * p) > Oand

(m + s * pl —s2 * p) <= theta.olandmod(s,2) == landmod(s2,2) == 1
rectim +s * pl —s2 * p, j +s *xe) = 1;

elsei frect(m, j) == Oand(m + s * pl —s2 * p) > Oand

(m + s * pl —s2 * p) <= theta.olandmod(s,2) == landmod(s2,2) == 1
rectm +s * pl —s2 * p, j +s xe) = 0;

end

end

end

end

end

Drawshape(rect, theta,ow, theta.ol, colorl, color2)

title('Rectanglea f terMapping2?)

end

functionDrawshape(M, a, b, color1, color2)

227



figure

axis([060a))

holdon

fori=1:a

forj=1:b

ifMG, j) ==1

rectangle(tPosition’, [j —1,a—i, 1,1],*FaceColor!, colorl);
elsei fM(i, j) == 0

rectangle(*Position’, [j—1,a—i, 1,1],"FaceColor, color2);
end

end

end

end

end

Code B

r=input(’Enter a number of rows:”);

e=input(’Enter a number of columns:’);

theta,ow = input(IEnteranumbem fcolmnso f onutputrectangle(r < theta,ow) :I);
theta.ol = input(IEnteranumbem fcolmnso f onutputrectangle(e < theta.ol) :I);
H1 = input(CEnterthesamenumbero f beadposition :%);

con = Find.onnectedbacus(r,e—H1 +1,r,e, H1,"row));

numnitialrect = size(con, 1);

i fnumnitialrect ==

error(IError : Thereisnoconnectedabacuse f orthesepammeters.I )

end
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temp = con(randi([1, numnitialrect], 1), 3);
rect = zeros(theta,ow, theta.ol);
fori=1:r

rect(i, temp(i)/2 + 1 : temp(i)/2 + H1) = 1;
end

sim = ceil(theta,ow/r) — 1;

slim = ceil(theta.ol/e);

s2im = ceil(theta.ol/e);

scolorl = [131,59,10]/255;

scolor2 = [255,217,1021/255;

H = min(temp),

L = temp(1, 1);

L1 = temp(1, end);

p=e—H + 1;

pl = L—LI;

figure

Drawshape(rect, s.olorl, s.olor2)

title(llnitialRectangleI)

-1fL1 <= L,applicatethemappinglandmpping1

ifL1 > L
form=1:r

forj=1:e

fors =1:sjim

ifrect(m, j) == land(j +s* pl) > 0and(j + s * pl) <= theta.oland

mod(s, 2) == lrect(m +s*kr,j+s *pl) =0;

elseifrect(m, j) == 0and(j + s * pl) > 0and(j + s * p1) <= theta.oland

mod(s,2) == 1
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rectm +s *r, j +s * pl) = 1;

elseifrect(m, j) == land(j + s * p1) > 0and(j + s * p1) <= theta.oland
mod(s,2) == 0

rectm +s *r, j +s * pl) = 1;

elseifrect(m, j) == 0and(j + s * pl) > 0and(j + s * p1) <= theta.oland
mod(s,2) == 0

rectm +s *r, j +s * pl) = 0;

end

end

end

end

Drawshape(rect, theta,ow, theta.ol, colorl, color2)

title(IRectanglea Vi terMappinglI)

form=1:r

rectm +s *r, j +s * pl +sl1 * p) = 1;

elsei frect(m, j) == Oand(m + s * pl + sl *x p) > Oand

(m + s * pl + sl *x p) <= theta.olandmod(s,2) == landmod(sl,2) == 1
rectm +s *r, j +s * pl +sl1 * p) = 0;

end

end

end

end

end

Drawshape(rect, theta,ow, theta.ol, colorl, color2)

title(IRectanglea f terMapping2I)

end

ifL1>L
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form=1:r

forj=1:e

fors=1:sim

ifrect(m, j) == land(j + s * pl) > 0and(j + s * pl) <= theta.oland
mod(s,2) ==1

rectm +s *r, j +s * pl) = 0;

elseifrect(m, j) == 0and(j + s * pl1) > 0and(j + s * p1) <= thetaoland
mod(s,2) ==1

rectm +s *r, j +s * pl) = 1;

elseifrect(m, j) == land(j + s * pl) > 0and(j + s * p1) <= theta.oland
mod(s,2) == 0

rectm +s *r, j +s * pl) = 1;

elseifrect(m, j) == 0and(j + s * pl) > 0and(j + s * p1) <= theta.oland
mod(s,2) == 0

rectim +s *r, j +s * pl) = 0;

end

end

end

end

Drawghape(rect, theta,ow, theta.ol, colorl, color2)

title('Rectanglea fterMapping1?)

form=1:r

forj=H:e

fors = 0:sim

forsl = 1:sljim

ifrect(m, j) == land(m + s * pl +s1 * p) > 0and(m + s * pl + s1 * p) <= hagd

andmod(s, 2) == Oandmod(s1,2) == 1
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rectm +s *r, j +s * pl +sl1 * p) = 0;

elsei frect(m, j) == Oand(m + s * pl + sl *x p) > Oand

(m + s * pl + sl *x p) <= theta.olandmod(s,2) == O0andmod(sl,2) == 1
rectm +s *r, j +s * pl +s1 * p) = 1;

elsei frect(m, j) == land(m + s * pl + sl *x p) > Oand

(m + s * pl + sl *x p) <= theta.olandmod(s,2) == 0andmod(s1,2) == 0
rectm +s *r, j +s * pl +sl1 * p) = 1;

elsei frect(m, j) == Oand(m + s * pl + sl *x p) > Oand

(m + s * pl + sl *x p) <= theta.olandmod(s,2) == O0andmod(s1,2) == 0
rectm +s *r, j +s * pl +s1 * p) = 0;

elsei frect(m, j) == land(m + s * pl + sl *x p) > Oand

(m + s * pl + sl * p) <= theta.olandmod(s,2) == landmod(sl,2) ==
rectim +s *r, j +s * pl +sl1 * p) = 0;

elsei frect(m, j) == Oand(m + s * pl + sl *x p) > Oand

(m + s * pl + sl *x p) <= theta.olandmod(s,2) == landmod(sl,2) == 0
rectim +s *r, j +s * pl +sl * p) = 1;

elsei frect(m, j) == land(m + s * pl + sl *x p) > Oand

(m + s * pl + sl *x p) <= theta.olandmod(s,2) == landmod(sl,2) == 1
rectim +s *r, j +s * pl +s1 * p) = 1;

elsei frect(m, j) == Oand(m + s * pl + sl *x p) > Oand

(m + s * pl + sl *x p) <= theta.olandmod(s,2) == landmod(s1,2) == 1
rectm +s *r, j +s * pl +s1 * p) = 0;

end

end

end

end

end
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Drawghape(rect, theta,ow, theta.ol, colorl, color2)

title('Rectanglea f terMapping2")

form=1:r

forj=1:H1

fors =1:slim

fors2 =1:s2;im

forj=H:e

fors = 0:sjim

forsl = 1:sljim

ifrect(m, j) == land(m + s * pl +s1 * p) > 0and(m + s * pl + s1 * p) <= hagd
andmod(s, 2) == Oandmod(s1,2) == 1
rectm+s*r,j+s*xpl+sl*p)=0;

elsei frect(m, j) == Oand(m + s * pl + sl *x p) > Oand

(m + s * pl + sl *x p) <= theta.olandmod(s,2) == 0andmod(sl,2) == 1
rectim +s *r, j +s * pl +sl1 * p) = 1;

elsei frect(m, j) == land(m + s * pl + sl *x p) > Oand

(m + s * pl + sl *x p) <= theta.olandmod(s,2) == Oandmod(sl,2) ==
rectm +s *r, j +s * pl +s1 * p) = 1;

elsei frect(m, j) == Oand(m + s * pl + sl *x p) > Oand

(m + s * pl + sl * p) <= theta.olandmod(s,2) == O0andmod(sl,2) ==
rectm +s *r, j +s * pl +sl1 * p) = 0;

elsei frect(m, j) == land(m + s * pl + sl *x p) > Oand

(m + s * pl + sl *x p) <= theta.olandmod(s,2) == landmod(sl,2) == 0
rectm +s *r, j +s * pl +s1 * p) = 0;

elsei frect(m, j) == Oand(m + s * pl + sl *x p) > Oand

(m + s * pl + sl * p) <= theta.olandmod(s,2) == landmod(s1,2) == 0

rectim +s *r, j +s * pl +sl * p) = 1;
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elsei frect(m, j) == land(m+s*pl+sl*p) > Oand (m+s*pl+sl*xp) <=
landmod(s1,2) == 1

rectim +s *r, j +s * pl +sl1 * p) = 1;

elsei frect(m, j) == Oand(m + s * pl + sl *x p) > Oand

(m + s * pl + sl *x p) <= theta.olandmod(s,2) == landmod(sl,2) == 1
rectm +s *r, j +s * pl +s1 * p) = 0;

end

end

end

end

end

Drawshape(rect, theta,ow, theta.ol, colorl, color2)

title('Rectanglea f terMapping2?)

form=1:r

forj=1:Hl

fors = 1:slim

fors2 =1:52;im

functionDrawshape(M, a, b, color1, color2)

figure

axis([060a))

holdon

fori=1:a

forj=1:b

ifMG, j) == 1

rectangle(Position’, [ j —1,a—i, 1, 1],¥ FaceColor, colorl); elsei f M(i, j) == 0
rectangle(tPosition’, [j —1,a—i, 1,1],*FaceColor!, color2);

end
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end
end
end

end

Code C

function Drawshape(M, a, b, color1, color2)

figure

axis([0h0a])

holdon

fori=1:a

forj=1:b

ifMG, j) ==1

rectangle(‘Position’, [j —1,a—i, 1,1],"FaceColor!, color1);
elsei fM(i, j) == 0

rectangle(*Position’, [j—1,a—i, 1,1],"FaceColor, color2);
end

end

end

end

end

** Find all Initial rect
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function com=create.ombination(n, k)

fori=1:n
tmp = [];
forj=1:k

tmp = [tmp;ones(k(n—i), 1)*}
end

rr=[l;

forj=1:ki-1)

rr = [rr;tmp];

end

com(:, i) = rr;

end

com = com— 1

end

Code D

** Find the connected Abacus

function con=Find.onnected,bacus(n, k, r,e, H, str)
con = [];

- Findallpossibleinitialrects

all = createcombination(n, k);

- *Findtheconnectedabacus

- Algorithm forcolumn

i fstrcmp(str,lcolj )
fornn = 1 :size(all, 1)

temp = all(nn, :),
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Sflag =1;

rectisconnectedabacus)

rect = zeros(r, e);

fori=1:e

rect(temp(i)+ 1 : temp()+ H, i) = 1;

end
- * Testtheconnection

t= Sum(recr[);

fori=1:r

flag = flagx ((1,i) >=1);
end

fori=1:e—1

A = temp(i) : temp(Q)+ H — 1;

B =temp(i + 1) :temp(i + 1)+ H — 1,
C = intersect(4, B);

flag = flag* (_isempty(C));

end

ifflag ==

con = [con; temp];

end
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APPENDIX E
CHAIN TRANSFORMATION

File Number one

clc

kkk=0;

clear;

nt=0;

v=I;

global Tmat;

r = input(’ numbers of rows ’)

¢ = input(’ numbers of columns )
mat = ones(r,c);

Tmat=mat;

1,e

= size(mat) ;
ch=21;

path=0;

tn=0;

fl=[r,c] ;
tmpv=min(f1)/2;
tpnl=ceil(tmpv)
while path <tpnl
path=path+1
v=v-.15

si=path;sj=path;
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1=81;)=s];
vv=path;
n=0;
sti=2;
stj=2;
str=r-si-1");
nr=r-si;
nc=c-sj;
vs=1/ch;
vs=0;
nt=nt+1;

while 1

if (i==si ) (j==sj )( n>0)

break

end

n=n+1;

if ( tn>=totn)
break

end
mat(i,j)=v;
tn=tn+1;
pt(tn,4)=j;
pt(tn,3)=i;
pt(tn,1)=tn;
pt(tn,2)=path;
if ((i<nr+1)(sti>0))

i=i+1;
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else if((j<nc+1)(stj>0));
=L
sti=-1;

else

if (i>si)
1=i-1;
stj=-1;
else if (j>sj)
¥

if ((i==s1)(j==s))) sti=1;stj=1;
end

end

end

end

end

i;

Js

Al = path;
A2 =n;
end

end
s=size(pt);
c=s(1);

cp=1
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pathStart(1)=1;
fori=1:s

if (i>1)

if pt(i,2) =pt(i-1,2) k=k+1;
pathStart(k)=i;
end

end

end

k=k+1;
pathStart(k)=s(1)
k(1:tpnl)=0;

cle

p01=1

No=0;

pt(:,5)=1;

totalN ss

=size(pt)

tpn=max(pt(:,2))

for i=1:tpn

i

end

for p=1:length(pn)

for i=1:totalN
if(pt(1,2)==p)(k(p)<pn(p)) pt(1,5)=11;
k(p)=k(p)+1;

end
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1i=pt(i,3);
J=pt(i.4);
mat(ii,jj)= pt(i,5);
end

end

Ax=0

11=0;

Ji=0;
**cce=length(x1)
Ax(1:pathStart(2)-1,1:5,1:3) =-1
k=0

for i=1:tpn
il=pathStart(i)
ifi<s(1)

end

if (i==tpn)
12=pathStart(i+1)
else
12=pathStart(i+1)-1
end

* x1=pt(pathStart(1):pathStart(2)-1,:)
x=pt(il:i2,:)
k=k+1;
rrr=size(X)
pLk)=rrr(1)
Ax(1:pL(k),:,1)=x;

* Ax(1:length(x),:,1)=x;
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end

Ax(1:pL(i),:,1)

cle

% x1=Ax(1:pL(1),:,1);
#% x2=Ax(1:pL(2),:,2);
** x3=Ax(1:pL(3),:,3);

s=0

global Nx1
Nx1=0;
LoopF(i,Ax,pL,mat)

F3

File Number Two

global Nx1
global Tmat
for t=1:sxv
ii=xt(t,3);
J=xt(t,4);
tt=xt(t,5)
mat(ii,jj)= tt;

end
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mat

r,e

= size(mat) ;

if (isequal(mTem,mat))
dlmwrite(’Rtxt’,mat,’-append’,’delimiter’,” *,’roffset’,1);
sk sk sk sk sfe sk sk sk sk sk sk ske sk sl sk sk sk sk ske sk s sk sk sk sk sk sk sk st sk sk sk skeoske skl sk sk sk sk sk ko sk skeoske skeoskosieok skeoskoskoskoskokolkokoskoskokokokosk
imagesc((1:¢)+0.5,(1:r)+0.5,mat);

colormap(winter);

axis equal ;

N=N+1 ;

set(gca,” XTick’,1:(¢c),”YTick’,1:(1),...

"XLim’,[1 ¢+1],’YLim’,[1 r+1],...

’GridLineStyle’,’-’,’XGrid’,’on’,”YGrid’, on’);

rnddl =1
rmdd2 =1
Nx1=Nx1+1

Tmat(:,:,Nx1)=mat;
s=sprintf(’000
saveas(gcf,s);

******************************************************************end

mTem=mat;

File Number Three

abw
=size(Tmat)
Tmat2=Tmat(:,:,:)
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Tmat3=Tmat(:,:,1)
k=0;
ml1=Tmat(:,:,1);
m2=Tmat2(:,:,1);
kk=1

for i=1:w

t=1

t=0

for j=i+1:w
kk=kk+1
ml=Tmat(:,:,1);

m2=Tmat2(:,:,j);

if Tmat(:,:,1)== Tmat2(:,:,j)

t=1;

end

if k==150
nnn=2
end

end

if (t==0)

k=k+1

Tmat3(:,:, k)= Tmat(:,:,1)

File Number Four
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function it=LoopF(i,Ax,pL,mat)
global Nx1;

Nx1=Nx1*1

LpL=length(pL)

if i>LpL

return;

end

pLt=pL(i);

xt=Ax(1:pLt,:,1);
sx(1)=size(xt,1);

sxv=sx(1)

mTem=0;

N=0;

cle

for j=1:sxv

sh=1;

Y1 = circshift(xt(:,5),sh);
xt(:,5)=Y1;

F2

Ax(1:pL(i),5,1)=Y1;

s e e ks s e s s e ks s el s sl el st ks ekl st s skt okok f—q ot |
Ax2=Ax;pL2=pL;mat2=mat;
LoopF(tt,Ax2,pL2,mat2)

end

end
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APPENDIX F
GENERATING FUNCTION

clc;clear all;close all;
key=3;

tmp=key;

fprintf(’

for n=1:7

tmp1=[];

for i=1:size(tmp,2)
tmp1=[tmp1,ones(1,tmp(i)-1)*tmp(1),tmp(i)+2];
end

tmp=[];tmp=tmp1;

fn=size(tmp,2);

fprintf(’f

(end
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