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Abstrak 

Industri kelapa sawit di Malaysia sedang menghadapi perkembangan yang statik dalam 

pengeluaran minyak sawit mentah jika dibandingkan dengan Indonesia disebabkan tiga 

isu iaitu; (i) kekurangan kawasan tanaman; (ii) buruh yang terhad; dan (iii) peningkatan 

permintaan daripada industri biodiesel berasaskan minyak sawit. Dengan 

mengfokuskan isu tersebut, kajian terdahulu telah menggunakan pelbagai pendekatan. 

Walaubagaimanapun, penggunaan metod tanpa hibrid ini mempunyai beberapa 

kekurangan dan boleh ditambah baik dengan kaedah hibrid. Oleh itu, objektif kajian ini 

adalah untuk menentu pilihan polisi yang optimum bagi meningkatkan pengeluaran 

minyak sawit mentah di Malaysia. Dalam kajian ini, sebuah model hibrid sistem 

dinamik dan algoritma genetik telah dibangunkan untuk menentu polisi yang optimum 

bagi meningkatkan pengeluaran minyak sawit mentah di Malaysia. Lima 

pembolehubah polisi iaitu kadar penggunaan mesin, purata penanaman semula, mandat 

biodiesel di sektor pengangkutan, industri, dan 4 sektor yang relevan bagi 

mengenalpasti nilai polisi yang optimum. Lima pembolehubah polisi ini diuji dalam 

tiga scenario:  tahun 2017, tahun 2020, dan berfasa sehingga tahun 2050. Daripada 

semua senario, optimisasi secara berfasa didapati paling berkesan dalam menghasilkan 

nilai pembolehubah polisi yang sesuai untuk mendapatkan pengeluaran minyak sawit 

mentah yang terbaik pada tahun 2050 setakat 20 larian populasi GA. Hybrid SD-GA 

melalui optimisasi secara berfasa mampu untuk mencadangkan polisi yang meyakinkan 

untuk dilaksana bagi mengelakkan kejutan yang tidak diingini kepada industri. 

Tambahan lagi, model hibrid ini juga berupaya untuk mengenalpasti pembolehubah 

polisi yang berkaitan dengan fungsi objektif pada sesuatu tempoh masa yang spesifik. 

Daripada perspektif pengurusan, kajian ini boleh membantu pihak pemegang taruh 

dalam industri minyak sawit ke arah pembuatan keputusan pelaburan yang lebih baik. 

 

Kata kunci: Pengeluaran minyak sawit mentah, Sistem dinamik, Algoritma genetik, 

model hibrid SD-GA, polisi minyak sawit mentah 
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Abstract 

Palm oil industry in Malaysia is facing a stagnant growth in terms of crude palm oil 

(CPO) production as compared to Indonesia due to three issues namely (i) the scarcity 

of plantation area, (ii) labour shortage, and (iii) the rising demand from palm-based 

biodiesel industry. Focusing on these issues, previous studies have been adopted 

various approaches. However, these non-hybridized methods have some shortcomings 

and can be improved by hybridization method. Hence, the objective of this research is 

to determine the optimal policy options to increase CPO production in Malaysia. In this 

research, a hybrid model of system dynamics (SD) and genetic algorithm (GA) was 

developed to determine the optimal policy in increasing the CPO production in 

Malaysia. Five policy variables namely mechanization adoption rate, average 

replanting, biodiesel mandates in transportation, industrial and 4 other relevant sectors 

were examined to determine optimal policy values. These five policy variables were 

tested in three scenarios:  year 2017, year 2020, and in phases until 2050. From all the 

scenarios, the phase optimization emerged as the most effective in producing suitable 

policy variable values in order to obtain the best possible value of CPO production in 

year 2050 up to 20 GA population runs. The hybrid of SD-GA through phase 

optimization process is capable to recommend policies that are plausible to be 

implemented to avoid unwarranted shock to the industry. Furthermore, the hybrid 

model provides the ability of identifying the policy variables related to the objective 

function at any specific time line. From the managerial perspectives, this research helps 

the stakeholders in palm oil industry towards making a better future investment 

decision.  

 

Keywords: Crude palm oil production, System dynamics, Genetic algorithm, SD-GA 

hybrid model, CPO policy 

 

 

 

 

 

  



 

 v 

Acknowledgment 

In the name of Allah, the most merciful.  

 

First and foremost, I would like to express my sincere thanks to my supervisors Dr. 

Norhaslinda Zainal Abidin and Assoc. Prof. Dr. Shri Dewi Applanaidu for the 

continuous support during my Ph.D. study.  Their patience, motivation, enthusiasm, 

and knowledge guided me throughout my research work. I thus would like to thank 

them for their guidance and timely feedbacks during my Ph.D. study. 

 

My unlimited thanks go to all friends during my Ph.D. for their pleasant company, help, 

guidance and friendship.  

 

Finally, I would like to thank my immediate family; my mother and father, for their 

prayers and encouragement, my wife, for being patient, and my two sons, whose 

smiling face and playful nature made me forget my tiredness. 

 

  



 

 vi 

Table of Contents 

Permission to Use ...................................................................................................................... ii 

Abstrak ...................................................................................................................................... iii 

Abstract ..................................................................................................................................... iv 

Acknowledgment ....................................................................................................................... v 

Table of Contents ...................................................................................................................... vi 

List of Tables ............................................................................................................................. x 

List of Figures .......................................................................................................................... xii 

List of Appendices ................................................................................................................... xv 

List of Abbreviations .............................................................................................................. xvi 

Publications ........................................................................................................................... xviii 

CHAPTER ONE INTRODUCTION ....................................................................... 1 

1.1 Palm Oil Industry in Malaysia at a Glance ............................................................ 1 

1.1.1 Palm Oil Industry Issues in Malaysia .......................................................... 3 

1.1.1.1 Scarcity of Plantation Land ............................................................. 5 

1.1.1.2 Labour Shortage .............................................................................. 6 

1.1.1.3 Demand Surge from Palm-based Biodiesel Sector ......................... 7 

1.1.2 Future Direction of Palm Oil Industry in Malaysia ..................................... 8 

1.2 Issues Related to Modeling Approaches in Palm Oil Studies.............................. 11 

1.3 Problem Statement ............................................................................................... 12 

1.4 Research Questions .............................................................................................. 14 

1.5 Research Objectives ............................................................................................. 15 

1.6 Scope of Research ................................................................................................ 15 

1.7 Significance of the Research ................................................................................ 16 

1.7.1 Methodological Contribution ..................................................................... 17 

1.7.2 Managerial Contribution ............................................................................ 18 

1.8 Organization of Thesis ......................................................................................... 19 

CHAPTER TWO LITERATURE REVIEW ........................................................ 21 

2.1 Key Components of Palm Oil Industry ................................................................ 21 

2.1.1 Supply ........................................................................................................ 22 

2.1.2 Demand ...................................................................................................... 22 

2.1.3 Price ........................................................................................................... 23 

2.2 Factors Influencing the Supply and Demand of Crude Palm Oil ........................ 23 



 

 vii 

2.2.1 Plantation Area .......................................................................................... 24 

2.2.2 Labour ........................................................................................................ 25 

2.2.3 Palm-based Biodiesel Demand .................................................................. 27 

2.3 Review of Modeling Approaches in Palm Oil Studies ........................................ 29 

2.3.1 Econometrics ............................................................................................. 29 

2.3.2 Simulation Model ...................................................................................... 36 

2.3.2.1 Discrete Event Simulation ............................................................. 37 

2.3.2.2 System Dynamics .......................................................................... 38 

2.3.2.3 Agent-Based Modeling.................................................................. 42 

2.3.3 Summary of Modeling Approaches in Palm Oil Studies ........................... 44 

2.4 Review of the Optimal Solution Search Method in Palm Oil Domain ................ 45 

2.4.1 Linear programming .................................................................................. 47 

2.4.2 Non-linear Programming ........................................................................... 50 

2.4.3 Stochastic Programming ............................................................................ 50 

2.4.4 Dynamic Programming .............................................................................. 51 

2.4.5 Metaheuristics ............................................................................................ 51 

2.4.6 Summary of Optimal Solution Search Method in Palm Oil Domain ........ 52 

2.5 Potential Metaheuristics Methods to Solve Palm Oil Optimal problem .............. 53 

2.5.1 Tabu Search ............................................................................................... 54 

2.5.2 Simulated Annealing.................................................................................. 56 

2.5.3 Genetic Algorithm ..................................................................................... 57 

2.5.4 Comparison of Tabu Search, Simulated Annealing and Genetic Algorithm

 ............................................................................................................................ 63 

2.5.5 Summary of the Potential Metaheuristics Method .................................... 64 

2.6 System Dynamics and Optimization .................................................................... 65 

2.6.1 System Dynamics with Search Methods ................................................... 66 

2.6.2 System Dynamics Integration with Genetic Algorithm ............................. 68 

2.6.3 Summary of System Dynamics and Genetic Optimization Integration ..... 75 

2.7 The Advantages of Integrating SD and GA in this Research Context ................. 76 

2.8 Key Papers in Modeling Palm Oil Industry ......................................................... 80 

2.9 Summary .............................................................................................................. 81 

CHAPTER THREE RESEARCH METHODOLOGY ........................................ 83 

3.1 Research Design................................................................................................... 83 



 

 viii 

3.2 Research Process .................................................................................................. 84 

3.3 System Dynamics Modeling Process ................................................................... 86 

3.3.1 Model Conceptualization ........................................................................... 86 

3.3.1.1 Define the purpose of the model ................................................... 87 

3.3.1.2 Determination of model boundaries and key variables ................. 87 

3.3.1.3 Reference mode of the key variables ............................................ 89 

3.3.1.4 Initial model diagram .................................................................... 91 

3.3.2 Primary and Secondary Data Collection .................................................... 94 

3.3.3 The Development of Stock and Flow Diagram ......................................... 96 

3.3.3.1 Palm Oil Supply and Demand Sub-model .................................... 99 

3.3.3.2 Oil Palm Plantation Sub-model ................................................... 111 

3.3.3.3 Palm-based Biodiesel Sub-model ................................................ 117 

3.3.3.4 Labour Sub-model ....................................................................... 120 

3.3.4 Model Validation ..................................................................................... 123 

3.3.4.1 Structural and parameter assessments ......................................... 124 

3.3.4.2 Dimensional Consistency Test .................................................... 124 

3.3.4.3 Extreme Condition Test............................................................... 125 

3.3.4.4 Integration Error Test .................................................................. 126 

3.3.4.5 Sensitivity test ............................................................................. 127 

3.3.4.6 Behaviour Validity Test .............................................................. 128 

3.3.5 Simulation run.......................................................................................... 130 

3.3.5.1 Base run ....................................................................................... 130 

3.3.5.2 Scenario setting run ..................................................................... 131 

3.4 Genetic Algorithm as Search Algorithm............................................................ 133 

3.4.1 Working Procedure of Genetic Algorithm............................................... 136 

3.5 Searching for Optimal Policy Options ............................................................... 145 

3.5.1 Optimization 1 ......................................................................................... 146 

3.5.2 Optimization 2 ......................................................................................... 147 

3.5.3 Optimization 3 ......................................................................................... 148 

3.6 Model evaluation ............................................................................................... 150 

3.7 Summary ............................................................................................................ 150 

CHAPTER FOUR RESULTS AND DISCUSSIONS ......................................... 151 

4.1 Model Validation ............................................................................................... 151 



 

 ix 

4.1.1 Structural and parameter assessments...................................................... 151 

4.1.2 Dimensional consistency test ................................................................... 153 

4.1.3 Extreme condition test ............................................................................. 155 

4.1.4 Integration error test................................................................................. 159 

4.1.5 Sensitivity test .......................................................................................... 160 

4.1.6 Behaviour validity test ............................................................................. 162 

4.2 Identification of Parameters Value for Genetic Algorithm................................ 167 

4.3 Output from the Run of Simulation Model ........................................................ 169 

4.3.1 Base run ................................................................................................... 169 

4.3.2 Scenario setting run ................................................................................. 174 

4.4 Searching for Optimal Policy Options ............................................................... 181 

4.4.1 Optimization 1: Maximizing CPO production in year 2050 by changing 

policy variables in year 2017 ............................................................................ 181 

4.4.2 Optimization 2: Maximizing CPO production in year 2050 by changing 

policy variables in year 2020 ............................................................................ 185 

4.4.3 Optimization 3: Phased optimization process .......................................... 188 

4.4.4 Evaluation of all policy optimization....................................................... 194 

4.5 Discussions ........................................................................................................ 201 

4.6 Summary ............................................................................................................ 205 

CHAPTER FIVE CONCLUSIONS AND RECOMMENDATIONS................ 207 

5.1 Conclusions ........................................................................................................ 207 

5.2 Policy Recommendations................................................................................... 211 

5.3 Research contributions ....................................................................................... 212 

5.3.1 Body of knowledge contribution ............................................................. 212 

5.3.2 Managerial contribution ........................................................................... 214 

5.4 Limitations of the research ................................................................................. 215 

5.5 Recommendations for future work .................................................................... 215 

REFERENCES ....................................................................................................... 217 

APPENDIX ............................................................................................................. 234 

  



 

 x 

List of Tables 

Table 1.1  Entry Point Projects Under Palm Oil National Key Economic Areas in 2014 

(Source: PEMANDU, 2015). ..................................................................................................... 9 

Table 2.1  The Characteristics of the Three Simulation Methods ............................................ 43 

Table 2.2  The Compilation of Reviewed Literature on Modeling Approaches Adopted in 

Malaysian Palm Oil Industry ................................................................................................... 45 

Table 2.3  The Review of Optimization Technique in Palm Oil Related Studies.................... 53 

Table 2.4   Published Literature on the Integration of System Dynamics and Genetic 

Algorithm ................................................................................................................................. 71 

Table 2.5  Published Literature on the Application of Hybrid Model of System Dynamics and 

Genetic Algorithm in Various Field of Studies ....................................................................... 75 

Table 2.6  The Functionality of System Dynamics and Genetic Algorithm Towards Achieving 

the Research Objectives ........................................................................................................... 77 

Table 2.7  Key Papers in This Study ........................................................................................ 81 

Table 3.1  Initial Component List of Malaysian Palm Oil Industry ......................................... 89 

Table 3.2  Type of Data and Its Source.................................................................................... 95 

Table 3.3  Interview Session with Industry Players ................................................................. 96 

Table 3.4  Basic Building Blocks Used in System Dynamics ................................................. 98 

Table 3.5  Parameters and Assumptions Used in Palm Oil Supply Demand Sub-Model ...... 111 

Table 3.6  Parameters and Assumptions Used in Oil Palm Plantation Sub-Model ............... 117 

Table 3.7  Parameters and Assumptions Used in Palm-Based Biodiesel Sub-Model ............ 119 

Table 3.8  Parameters and Assumptions Used in Labour Sub-Model ................................... 123 

Table 3.9  Selected Variables for Extreme Condition Test and the Expected Outcome ........ 126 

Table 3.10  Sensitivity Analysis Parameter Setting ............................................................... 128 

Table 3.11  Control Variable Used in the Base Run .............................................................. 130 

Table 3.12  The Description of Policy Variables ................................................................... 134 

Table 3.13  Genetic Algorithm Operator Used in this Study ................................................. 138 

Table 3.14  Policy Variables code ......................................................................................... 139 

Table 3.15  Parameter Setting for Policy Variables Tested in Optimization 1 ...................... 146 

Table 3.16  Parameter Setting for Policy Variables in Optimization 2 .................................. 147 

Table 3.17  The Parameter Setting in Phase Optimization Process ....................................... 149 

Table 4.1 ................................................................................................................................ 152 

Model Validation Process with Expert in the Industry .......................................................... 152 

Table 4.2  Dimensional Consistency of Selected Equations from Each Sub-Models............ 154 

Table 4.2  Extreme Condition Test of the Model .................................................................. 156 



 

 xi 

Table 4.3  Parameter Estimation Results ............................................................................... 162 

Table 4.4  Statistical Error Analysis of Selected Variables ................................................... 165 

Table 4.5  Parameters Value for Generation and Population Number ................................... 167 

Table 4.6  Results of Experimentations with Various Population Number ........................... 168 

Table 4.7  Summary of Output from All Scenario Run ......................................................... 180 

Table 4.8  Top Five Best Solution from Optimization 1........................................................ 182 

Table 4.9  Comparison between Base Run and the Best Solution of Optimization 1 ............ 182 

Table 4.10  The Top Five Best Solution from Optimization 2 .............................................. 185 

Table 4.11  Comparison between Base Run and the Best Solution from Optimization 2 ..... 185 

Table 4.12  Top Five Best Solutions for Each Phase from Optimization 3 ........................... 189 

Table 4.13  Comparison between Base Run and Best Solution from Optimization 3 ........... 189 

Table 4.14  Summary of the Solutions from Optimization 3 ................................................. 192 

Table 4.15  Summary of Output from All Optimization ........................................................ 200 

 

  



 

 xii 

List of Figures 

Figure 1.1. Malaysia and Indonesia crude palm oil production from 1990 – 2015 (source: 

MPOB, 2016) ............................................................................................................................. 4 

Figure 1.2. Malaysian oil plantation area growth rate (Source: MPOB, 2016) ......................... 6 

Figure 2.1. The generic algorithm for Tabu Search (adapted from Glover, 1993) .................. 55 

Figure 2.2. Generic algorithm for Simulated Annealing (adapted from Du & Swamy, 2016) 57 

Figure 2.3. Gene in a chromosome .......................................................................................... 58 

Figure 2.4. Genetic algorithm pseudo-code (Source: Rahman, 2014) ..................................... 59 

Figure 2.5. The generic structure of genetic algorithm (Source: Rahman, 2014) .................... 60 

Figure 2.6. Example of single point crossover......................................................................... 61 

Figure 2.7. Example of multi-point crossover ......................................................................... 61 

Figure 2.8. Time line of system dynamics and optimization works ........................................ 66 

Figure 3.1. Structure of the research ........................................................................................ 84 

Figure 3.2. Research activities ................................................................................................. 85 

Figure 3.3. Four steps in model conceptualization process ..................................................... 86 

Figure 3.4. The input and output of the research ..................................................................... 87 

Figure 3.5. Malaysia and Indonesia CPO production projection until 2020 ............................ 90 

Figure 3.6. Initial causal loop diagram of Malaysia crude palm oil production ...................... 92 

Figure 3.7. Example of stock and flow diagram ...................................................................... 97 

Figure 3.8. The CPO supply demand segment from palm oil supply demand sub-model ..... 100 

Figure 3.9. Lookup function for effect of CPO price on CPO export demand ...................... 102 

Figure 3.10. Lookup function for CPO tax structure ............................................................. 103 

Figure 3.11. The PPO demand segment from palm oil supply demand sub-model ............... 105 

Figure 3.12. Lookup function for effect of PPO prices on PPO local demand ...................... 106 

Figure 3.13. Lookup function for effect of PPO prices on PPO export demand ................... 107 

Figure 3.14. CPO and PPO price setting mechanism from the palm oil supply and demand 

sub-model ............................................................................................................................... 108 

Figure 3.15. Lookup function for effect of CPO supply demand ratio on CPO price ........... 109 

Figure 3.16. The oil palm plantation sub-model .................................................................... 112 

Figure 3.17. Lookup function for effect of land availability on expansion plan.................... 113 

Figure 3.18. Lookup function for CPO price effect on replanting ......................................... 113 

Figure 3.19. The palm-based biodiesel sub-model ................................................................ 117 

Figure 3.20. The labour sub-model ........................................................................................ 120 

Figure 3.21. Graph lookup function for effect of labour on FFB yield ................................. 121 

Figure 3.22. The relationship mapping between input and output of optimization module .. 134 



 

 xiii 

Figure 3.23. Workflow of the genetic algorithm on visual basic platform in Microsoft Excel 

2013 ....................................................................................................................................... 137 

Figure 3.24. Pseudo-code for generating initial population ................................................... 139 

Figure 3.25. Solution representation structure ....................................................................... 139 

Figure 3.26. The pseudo-code for fitness value evaluation ................................................... 140 

Figure 3.27. The pseudo-code for roulette wheel selection ................................................... 141 

Figure 3.28. Example of single point crossover ..................................................................... 142 

Figure 3.29. One point crossover pseudo-code ...................................................................... 142 

Figure 3.30. Pseudo-code for mutation process ..................................................................... 143 

Figure 3.31. The pseudo-code for elitism mechanism. .......................................................... 144 

Figure 3.32. The system interface. ......................................................................................... 145 

Figure 4.1. Successful unit test performed in Vensim ........................................................... 155 

Figure 4.2. Behaviour of CPO production for extreme condition test ................................... 157 

Figure 4.3. Behaviour of all plantation area for extreme condition test................................. 158 

Figure 4.4. Behaviour of biodiesel demand for extreme condition test ................................. 158 

Figure 4.5. The behaviour of labour productivity for extreme condition test ........................ 159 

Figure 4.6. CPO production in different delta time (dt) for integration error test ................. 160 

Figure 4.7. CPO price in different delta time (dt) for integration error test ........................... 160 

Figure 4.8. CPO production in multi-variate sensitivity analysis .......................................... 161 

Figure 4.9. CPO price in multi-variate sensitivity analysis ................................................... 161 

Figure 4.10. Total plantation area simulation result against historical data ........................... 162 

Figure 4.11. CPO production simulation result against historical data .................................. 163 

Figure 4.12. CPO price simulation result against historical data ........................................... 163 

Figure 4.13. CPO export demand simulation result against historical data ........................... 164 

Figure 4.14. PPO local demand simulation result against historical data .............................. 164 

Figure 4.15. PPO export demand simulation result against historical data ........................... 165 

Figure 4.16. The behaviour trend of CPO production for base run ....................................... 169 

Figure 4.17. The behaviour trend of oil palm plantation area for base run ............................ 170 

Figure 4.18. The behaviour of replanting against CPO price for base run ............................ 171 

Figure 4.19. The behaviour trend of CPO price against supply and demand for the base run

 ............................................................................................................................................... 173 

Figure 4.20. The behaviour trend of labour against attractiveness of Indonesia palm oil 

industry for the base run ........................................................................................................ 173 

Figure 4.21. Behaviour trends of CPO production for scenario 1 ......................................... 175 

Figure 4.22. Behaviour trends of FFB yield per hectare for scenario 1 ................................. 175 

Figure 4.23. Behaviour trend of oil palm plantation area for scenario 1 ............................... 175 

Figure 4.24. Behaviour trend of CPO price for scenario 1 .................................................... 176 



 

 xiv 

Figure 4.25. Behaviour trend of CPO production for scenario 2 ........................................... 177 

Figure 4.26. Behaviour trend of labour stock for scenario 2 compared to base run .............. 178 

Figure 4.27. Behaviour trend of FFB yield per hectare for scenario 2 compared to base run 178 

Figure 4.28. Behaviour trend of CPO production for scenario 3 compared to base run ........ 179 

Figure 4.29. Behaviour trend of CPO price for scenario 3 compared to base run ................. 180 

Figure 4.30. Behaviour trend of CPO production for optimization 1 compared to base run . 183 

Figure 4.31. Behaviour trend of CPO price for optimization 1 compared to base run .......... 183 

Figure 4.32. Behaviour trend of mature and ageing area for optimization 1 compared to base 

run .......................................................................................................................................... 184 

Figure 4.33. CPO production for optimization 2 against base run ......................................... 186 

Figure 4.34. CPO price for optimization 2 against base run .................................................. 187 

Figure 4.35. Plantation area from optimization 2 against base run ........................................ 188 

Figure 4.36. CPO production for optimization 3 against base run ......................................... 190 

Figure 4.37. CPO prices from optimization 3 against base run ............................................. 191 

Figure 4.38 Plantation area for optimization 3 against base run ............................................ 193 

Figure 4.39. FFB yield per hectare for optimization 3 against base run ................................ 194 

Figure 4.40. CPO production for all optimization ................................................................. 195 

Figure 4.41. Mechanization adoption rate for all optimization .............................................. 196 

Figure 4.42. Replanting rate for all optimization ................................................................... 197 

Figure 4.43. Biodiesel mandate for transportation sector in all optimization ........................ 198 

Figure 4.44. Biodiesel mandate for industrial sector in all optimization ............................... 198 

Figure 4.45. Biodiesel mandate for other sector in all optimization ...................................... 199 

 

  



 

 xv 

List of Appendices 

APPENDIX A: Palm Oil Supply Sub-Model Equations ..................................................... 234 

APPENDIX B: Oil Palm Plantation Sub-Model Equations ................................................. 241 

APPENDIX C: Palm-Based Biodiesel Sub-Model Equations ............................................. 245 

APPENDIX D: Labour Sub-Model Equations .................................................................... 247 

 

 

 

  



 

 xvi 

List of Abbreviations 

2SLS Two Stage Least Squares 

ABM Agent-Based Modeling 

AIDS Acquired Immune Deficiency Syndrome 

ARDL Auto Regressive Distribution Lag 

ARIMA Auto Regressive Moving Average 

CPO Crude Palm Oil 

DES Discrete Event Simulation 

DO Dynamic Optimization 

DSS Decision Support System 

EPP Entry Point Project 

ETP Economic Transformation Program 

GA Genetic Algorithm 

GHG Green-House Gasses 

GNI Gross National Income 

ISIS Information Society Integrated System 

MAPA Malayan Agricultural Producers Association 

MOO Multiple Objective Optimization 

MPOB Malaysian Palm Oil Board 

MSPO Malaysian Sustainable Palm Oil 

MyGAP Malaysian Good Agricultural Practices 

N2SLS Nonlinear Two Stage Least Squares 

NKEA National Key Economic Area 

OLS Ordinary Least Squares 

PPO Processed Palm Oil 

PRN Partial Recurrent Network 

RNN Recurrent Neural Network 

SCOR Supply Chain Operational Reference 

SD System Dynamics 

TOPSIS Technique for Order of Preference by Similarity to Ideal 

Solution 



 

 xvii 

VB Visual Basics 

VensimDLL Vensim Direct Link Library 

 

 

 

 

 

 

  



 

 xviii 

Publications 

1. Shri-Dewi, A., Abidin, N. Z., Sapiri, H., & Zabid, M. F. M. (2015). Impact of various 

palm-based biodiesel blend mandates on Malaysian crude palm oil stock and price: a 

system dynamics approach. Asian Social Sciences, 11 (25), 190-203. 

2. Zabid, M. F. M., & Abidin, N. Z. (2015). Palm oil industry: a review of the literature 

on the modelling approaches and potential solution. In AIP Conference Proceedings 

(pp. 030004). AIP Publishing. 

3. Zabid, M. F. M., Abidin, N. Z., & Shri-Dewi, A. (2017). Palm-based biodiesel blend 

mandate increase on the biodiesel industry growth in Malaysia: evidence from causal 

loop diagram. Manuscript submitted for publication. 

4. Zabid, M. F. M., Abidin, N. Z., & Shri-Dewi, A. (2017). Towards improving oil palm 

fresh fruit bunches yield in Malaysia: a system dynamics approach. Accepted for 

publication in International Journal of Simulation and Process Modelling. 

5. Zabid, M. F. M., Abidin, N. Z., Shri-Dewi, A. (2017). MYPOBDEX: an interactive 

decision support system for palm-based biodiesel investors. International Journal of 

Economic Perspectives, 11 (1), 260-272. 

6. Zabid, M. F. M., Abidin, N. Z., Shri-Dewi, A. (2017). Palm oil supply demand 

characteristics and behaviour: a system dynamics approach. Accepted for publication 

in Journal on Food, Agriculture and Society, Vol. 6 (2). 

 



 

 1 

CHAPTER ONE 

INTRODUCTION 

Vegetable oils have been an important commodity in the world oils and fats market. In 

the recent decade, it has become the main substitutes of animal fats as the source of 

cooking oils and fats. Among the seven highly traded vegetable oil in the world market, 

palm oil has been significantly increased in terms of its production and consumption. 

This is hugely attributing to its economic viability in oil palm plantation and palm oil 

production vis-à-vis other vegetable oil. Currently, the world largest producer of palm 

oil is Indonesia followed by Malaysia, with the combination of these two countries the 

total production of palm oil contributes approximately eighty percent of the world palm 

oil production (MPOB, 2016; GAPKI, 2016). 

1.1 Palm Oil Industry in Malaysia at a Glance 

The important role of palm oil as one of the Malaysia’s main economic contributor 

cannot be denied, as this industry has been studied from many perspectives. For 

instance in the general economic perspective (Shamsudin, Mohamed, & Arshad, 1988; 

Shamsudin, Arshad, Mohammad, & Rahman, 1995; Mohammad, Mohd Fauzi, & 

Ramli, 1999); palm-based biodiesel industry (Yahaya, Sabri, & Kennedy, 2006; Shri 

Dewi, Ali, & Alias,  2014; Azadeh, Arani, & Dashti, 2014); production planning (Tan 

& Fong, 1998; Nwawe, Akintola, Ikpi, & Rahji, 2008; Banitalebi, Aziz, Aziz, & Nasir, 

2016); and environment (Diban, Aziz, Foo, Jia, Li, & Tan, 2016). Palm oil also is an 

important economic stimulus as there are many affiliates industries such as food, 

cosmetics and alternative fuel that also contribute to the economic growth in Malaysia. 

In 2016, a total of RM41.44 billion of export value was contributed by palm oil industry 

which accounts for 5.3 percent of total Malaysia’s export value (MATRADE, 2017). 
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Thus, it is very important for Malaysia to retain a vigorous palm oil industry with 

promising growth prospect in long term future, particularly the supply and demand 

sector. 

Palm oil industry not only produce crude palm oil (CPO) as main product, but also other 

palm oil products such as palm kernel oil, palm kernel cake, oleo chemicals, finished 

products and biodiesel. Among this, biodiesel is the latest rising prospect as palm oil 

affiliated industry in energy sector. This is particularly because it plays an important 

role in supporting the green environment campaign promoted by the government 

through the international treaties on environment such as Kyoto Protocol (Shri Dewi, 

Arshad, Shamsudin & Yusop, 2009; Yusoff, Abdullah, Sultana, & Ahmad, 2013). 

Kyoto Protocol is an international legal binding treaty between participating countries 

in an effort to reduce the greenhouse gas (GHG) emission. Furthermore, in the period 

of high fossil fuel price, the demand for biofuel significantly increase as the world is 

looking for alternative fuel. This is true especially when the price of CPO is sufficiently 

low and opens the opportunity for producer to utilize the excess CPO stock as palm-

based biodiesel feedstock (Yahaya et al., 2006). Even though in 2016 the world was 

suffering with low crude oil price due to the glutting supplies, expert has found this as 

the end of the fossil fuel era particularly with the participation of 200 countries in 

signing the Paris Climate Summit 2016 (The Guardian, 2015). This has been non-other 

a signal for biofuel to prevail as greener and renewable alternative fuel. 

Malaysia has launched the National Biofuel Policy in 2006, aimed to stimulate the 

biofuel industry growth in Malaysia. The policy mission includes the promotion of 

palm-based biodiesel usage in Malaysia industrial sector to reduce the high 

dependability on fossil fuel. The implementation of biodiesel blend mandate worked as 
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a stimulus for palm-based biodiesel demand (Yahaya et al., 2006). This program 

regulated the blending of certain percentage of palm oil with petrol diesel to produce 

palm-based biodiesel. Malaysia has launched B5 in 2011 and B7 programme in 2014 

(Yusoff et al., 2013). In the latest announcement in 2016, government has launched 

B10 for transportation sector and B7 for industrial sector (Adnan, 2016). Apart from 

that, the palm biodiesel industry is aimed to utilize the palm oil excess stock and help 

to mitigate palm oil price (Yahaya et al., 2006; Shri Dewi et al., 2009; Yusoff et al., 

2013). This highlights the importance interdependencies between the industry and its 

biodiesel sector as price stabilizing mechanism. 

1.1.1 Palm Oil Industry Issues in Malaysia 

Malaysia was once the largest producer of CPO followed by its neighbour Indonesia. 

However, starting from 2004 Indonesia’s CPO production has surpassed Malaysia as 

shown in Figure 1.1. Further, by looking at the CPO production pattern, Malaysia 

exhibit a stagnant growth as compared to vibrant growth of Indonesia. Malaysia has 

since been left behind Indonesia and yet to recover due to several issues. In the long 

term, this could jeopardize Malaysia’s position in world palm oil market. Vigorous 

CPO production is needed for Malaysia to secure its export revenue and also fulfilling 

increasing demand of palm oil both locally and globally in the future (Adnan, 2016; 

PEMANDU 2016; Oil World, 2017). 
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Figure 1.1. Malaysia and Indonesia crude palm oil production from 1990 – 2015 

(source: MPOB, 2016) 

There are several issues related to palm oil industry in Malaysia that contribute to the 

stagnant growth in CPO production. These include the land constraint, labour shortage, 

demand surge from energy sector, adverse weather, and uncertainty in world economics 

trend as addressed by the director General of Malaysia Palm Oil Board (MPOB) and 

other renowned analyst in Palm Oil Economic Review Seminar in Kuala Lumpur on 

17th January 2017. In fact, the same issue has been reiterated by experts in every 

economic conferences related to palm oil like the annual Palm Economic Review and 

Outlook Seminar (PALMEROS) and bi-annual International Palm Oil Congress and 

Exhibition (PIPOC) organized by MPOB (MPOB, 2016). As the adverse weather and 

the world economic trends are external factors which are deemed incontrollable, this 

research however will weigh it focus on three compounding issues which are the land 

constraint, labour shortage and demand surge from energy sector. 
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1.1.1.1 Scarcity of Plantation Land 

The first issue in Malaysia palm oil industry is the scarcity of plantation land. History 

has recorded that in 1960, total oil palm plantation area was only 55,000 hectares 

(MPOB, 2016). Then, under the government’s agricultural diversification programs, 

there were rapid expansion of the oil palm plantation area where it has been recorded 

of approximately 1 million hectares of oil palm plantation land in 1980. However, the 

oil palm plantation area expansion has been growing at slower rate and plummeting in 

year 2000 as shown in Figure 1.2. This statistic suggests the fact that Malaysia palm oil 

industry has started to face land constraint as there are lesser land available for oil palm 

plantation expansion1. Another reason for the low plantation area growth rate is due to 

the competition faced by oil palm with other crops for the balance of agriculture land 

in Malaysia, and also due to the industrial or residential areas where land converted to 

these purposes (Abdullah & Wahid, 2011). There lies the option for land expansion 

abroad but these involve substantial monetary cost and conscientious geo-political 

issues. Sufficient plantation area is critical to establish a production capable of coping 

with the growing demand in the future.  

                                                      
1 Anonymous informational interview with Malaysian palm oil research body. 
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Figure 1.2. Malaysian oil plantation area growth rate (Source: MPOB, 2016) 

1.1.1.2 Labour Shortage 

The second issue in palm oil industry in Malaysia is labour shortage. As a highly labour-

intensive industry, shortage of labours will significantly affect the performance of the 

industry, as palm oil estates rely heavily on immigrant Indonesian workers. Skilled 

labour shortages have plagued some regions, reducing harvest activity by fifty percent 

and leaving ripe but unharvested fruit rotting on the plantation (Amatzin, 2006; 

Abdullah, Ismail, & Rahman, 2011; Koswanage, 2011). At the same time, robust 

growth in Indonesia are creating lots of jobs for skilled plantation workers. This caused 

acute competition for the labour which resorted into a lower application from 

Indonesian to become part of the workforce in Malaysia oil palm plantations (Raghu, 

2014). Wage pressure is reportedly hitting oil palm plantations in Malaysia as they 

compete for needed manpower. Given future growth prospects in the palm oil industry 

in Indonesia, this problem will continue for Malaysian producers unless wages and 

benefits rise significantly (Hai, 2000; MPOC, 2015). 
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1.1.1.3 Demand Surge from Palm-based Biodiesel Sector 

Besides land constraint and labour shortage, there is also factor from the demand side 

which affecting palm oil industry in Malaysia. The demand for CPO to produce palm-

based biodiesel pressures Malaysia for the need of having better supply of palm oil in 

the future. The implementation of B5 programme in 2011 for transportation sector by 

government has stimulated the palm oil demand as main feedstock for palm biodiesel 

production. It is estimated that 0.5 million tonne of CPO is needed as biodiesel 

feedstock with the implementation of B5 program (Yahaya et al., 2006, Wahid, 

Abdullah, & Shariff, 2010). The implementation of B5 program is aimed to utilize the 

excess stock of palm oil (Yahaya et al., 2006; Shri Dewi et al., 2009; Yusoff et al., 

2013). Later, the blend mandates programme has been increased to B7 in 2014 and 

recently in 2016, government has announced the latest mandate with B10 increased for 

transportation sector and the introduction of B7 in industrial sector (Adnan, 2016). The 

increase of blend mandate will further demand for higher consumption of CPO as its 

feedstock. Moreover, the biodiesel programme is a long term commitment by the 

government to reduce dependency on fossil fuel, thus further increase of blend 

mandates in the future is anticipated. Further, there is an emerging market of palm-

based biodiesel in India as the country started to venture into biodiesel sector as 

reported by Malaysia Performance Management and Delivery Unit (PEMANDU) 

director in his address during Palm Oil Trade Seminar (POTS) 2016 in Kuala Lumpur. 

(PEMANDU, 2016). This emerging biodiesel market further urge the need for our palm 

oil industry to secure strong CPO production in the future. 

Leading palm oil analyst, Thomas Mielke, in his address in Price Outlook Conference 

held in Kuala Lumpur in March 2017, reported that it is forecasted that the world will 

need additional 25 tonne of palm oil annually for another 10 years which signal the 
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global dependence on palm oil will continue to rise (Oil World, 2017). On this account, 

it is possible that Malaysia will face supply shortage with the current production rate, 

exacerbated by the latest increasing palm oil demand from biodiesel industry. This 

situation will only lead to CPO price surge which in turn lowering the motivation for 

replanting the highly productive oil palm tree (replacing the less productive ageing tree) 

due to the short term profit target, especially among the smallholders (PEMANDU, 

2015). Hence, the palm oil industry will be trapped in a stagnant growth feedback loop 

when the majority of oil palm plantation becomes ageing area and poses a negative 

impact on CPO production (Wahid & Simeh, 2010).  This pressures Malaysia’s palm 

oil industry to ensure the supply in the future can meet the growing world demand 

including the demand from biodiesel industry.  

These three issues are currently at the alarming rate and without proper action will 

disrupt the track record performance of the industry on the nation economy. 

Fortunately, the Economic Transformation Programme (ETP) under the Malaysian 

Tenth Plan has been announced by the government in September 2010 as the potential 

resolving action for these issues. 

1.1.2 Future Direction of Palm Oil Industry in Malaysia 

The arising issues highlighted need urgent actions by government to avoid unfavourable 

outcome in the future. Hence, under the Tenth Malaysia Plan (RMK10), the government 

has announced the ETP on 25 September 2010 which was formulated as part of 

Malaysia National Transformation Programme. ETP supports the government effort to 

move Malaysia to developed nation status by 2020 with Gross National Income (GNI) 

per capita of US$15,000 (PEMANDU, 2010). This target will be realized through the 

implementation of twelve National Key Economic Areas (NKEAs) representing 
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economic sectors which accredit for significant contributions to GNI. These NKEAs 

will receive prioritized government support including funding, top talent and prime 

ministerial attention (PEMANDU, 2010). 

Palm oil is indexed at number three (alongside rubber) as one of NKEAs and is targeted 

to generate RM 178 billion in GNI by year 2020. To achieve the target, ETP has 

outlined eight entry point projects (EPP) every year to measure the palm oil industry 

performance as highlighted in the Table 1.1. EPPs explore new growth area and 

business opportunities that will enable palm oil sector to move further (PEMANDU, 

2010). 

Table 1.1 

 

Entry Point Projects Under Palm Oil National Key Economic Areas in 2014 (Source: 

PEMANDU, 2015). 

EPP number Key Performance Indicator 

EPP 1 
Area of replanting and new planting by independent smallholders (ha) - 

land preparation completed 

EPP 2 

Number of new smallholders cooperatives (launched) 

New area of plantation/smallholders complying with 

COP/NSAP/RSPO/best practice - (ha) 

Increase in national average yield (mt/ha/year) 

EPP 3 Number of Cantas taken up by plantations and smallholders 

EPP 4 

Number of new palm oil mills certified by MPOB for Code of Practice 

and other international certification 

Oil extraction rate 

EPP 5 
Number of new mills built with biogas facility 

Number of new mills connected to national grid 

EPP 6 Take-up rate for the oleo derivatives and bio-based acquisition funds 

EPP 7 Commercializing second generation biofuels 

EPP 8 Take-up of funds for food and health based products (RM mil) 
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Among eight EPPs listed in Table 1.1, four of them are the closest possible solutions 

for the arising issues in Malaysian palm oil industry which has been highlighted in 

previous section. EPP 1 emphasized on accelerating the replanting and new planting of 

oil palm. It aims to replace 449,415 hectares of low yield old trees with high yielding 

seedlings. This is one potential solution to increase palm oil production with the scarcity 

of available land for oil palm plantation expansion. Next, EPP 2 stressed the target to 

achieve the increment of national average yield to 5 percent. This is towards the target 

annual yields of 26.2 tonne per hectare by 2020 for national average across all 

plantation owners (PEMANDU, 2015). Then, EPP 3 focused on the productivity in 

terms of plantation workers. It targeted to achieve the usage of 1500 mechanical 

harvesting tools Cantas to increase worker productivity and aimed to resolve the labour 

shortage issues which currently beleaguering the palm oil industry. Finally, EPP 4 sets 

the target to increase the oil extraction rate (OER) to 23 per cent by year 2020. This is 

crucial as OER is the main indicator for palm oil production performance. Note that all 

four EPPs mentioned are set towards strengthening the production of palm oil in the 

future to cater the surge of demand including from the alternative energy sector. 

Under the latest Malaysia Eleventh Plan (RMK11) announced in 2015, government has 

continued its commitment in palm oil sector aligned with the previous plan. One main 

point captured in RMK11 involving palm oil NKEA is under Focus Area E Strategy 

Number E3 where current biodiesel mandate programme is scheduled to be increased 

further to B15 in all sectors by 2020 (Economic Planning Unit, 2015). In addition, under 

Focus Area C Strategy Number C7, government is implementing incentive schemes to 

encourage the certification of Malaysia Good Agricultural Practices (MyGAP) and 

Malaysia Sustainable Palm Oil (MSPO) particularly among smallholders which will 

ultimately help to improve the quality of FFB yield (Economic Planning Unit, 2015).  
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In conclusion, ETP through palm oil NKEA translates the government commitment to 

maintain Malaysia’s position as the world’s leading downstream palm oil player and 

sustain its status-quo in the world market (PEMANDU, 2010). Successful EPPs 

execution may help the industry to eliminate the arising issues in Malaysian palm oil 

industry highlighted before. 

1.2 Issues Related to Modeling Approaches in Palm Oil Studies 

Previous researches had been adopting various modeling approaches in studying the 

economic variables in palm oil domain. One of the widely used modeling approach is 

econometrics that is prevalence in palm oil market studies. Econometrics has its strong 

attribute in modeling the palm oil market particularly of its statistical properties 

including unbiasedness, efficiency and consistency. This can be seen in the previous 

studies (Shamsudin et al., 1988; Mohammad et al., 1999; Talib & Darawi, 2002; 

Rahman et al., 2011; Arshad & Hameed, 2012; Shri Dewi et al., 2011a, 2011b, 2011c, 

2014). However, despite of these advantages, econometrics fail to feature the feedback 

structure which is prevalent in any complex system like palm oil industry. Generally, 

econometrics lauds precision but depends heavily on extensive data thus make it less 

effective for long term policy design process (Meadows, 1980). It is also difficult to 

incorporate soft elements of a system such as human perception or management 

biasness into the econometrics model. To overcome this shortcoming, simulation 

method which is functioning to imitate real world situation mathematically then to 

study its properties, and finally to draw conclusion and make decision based on the 

result is needed for the effective modeling ability (Render, Stair, & Hanna, 2011). 

As alternatives to econometrics, simulation modeling methods like discrete event 

simulation (DES), system dynamics (SD) and agent-based modeling (ABM) become a 
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preference for modeling a complex system. However, DES is more suitable for 

modeling the process in the system, while ABM looks at a system at the micro-level of 

its constituent units which may involve extremely computer intensive and time 

consuming modeling process for a huge system (Bonabeau, 2001). On the other hand, 

SD is effective for modeling a system at a strategic level issue. Studies that applied SD 

method are prevalence in the palm oil studies such as in Yahaya et al. (2006), Shri 

Dewi, Arshad, Shamsudin, and Yusop (2010); Abdulla, Arshad, Bala, Noh, and Tasrif 

(2014); and Mohammadi, Arshad, and Abdulla (2016). However, although these studies 

were able to incorporate feedback processes and found effective for long term policy 

analysis, their contribution was limited to only highlighting the findings that exist in 

the system and less emphasizing on finding optimal solutions to improve the model. To 

supplement this need, in the operation research field, various optimization methods are 

available from the simplest linear programming to the complex metaheuristics such as 

simulated annealing and genetic algorithm. Given the complexity of palm oil industry, 

the high order approximation method may be needed as offered by metaheuristics 

family. 

1.3 Problem Statement 

Palm oil industry in Malaysia is one of the nation’s economy backbone for several 

decades. It also has a huge social contribution by offering abundance of jobs in its 

upstream, downstream, and affiliating sector.  

However, the major arising issues in palm oil industry including the labour shortage, 

plantation land scarcity and uncertain production to cater for future palm oil demand 

especially from emerging palm-based biodiesel industry may obstruct the industry to 

maintain its status quo and hinder the prospect of its growth. As mentioned earlier, 
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Malaysia has been lagging behind Indonesia in terms of its CPO production growth and 

the aforementioned issues may be the source of this problem. The government 

embarked on ETP and identified the key economic area involving eight EPPs to 

improve the performance of palm oil industry. Four out of the eight EPPs may 

potentially be the solution to the arising issues mentioned. EPP 3 is targeted to decrease 

the dependability on human labour by focusing on mechanization whereas EPP 1, EPP 

2, and EPP 4 are targeted to increase the national yield and palm oil production with 

effective replanting scheme and improved oil extraction rate. The EPPs under ETP 

translate the government commitment to preserve and improvise the palm oil industry 

for long term future especially the CPO production. 

However, what is the optimal mix of policy implementation capable to increase CPO 

production? To answer these questions, an appropriate modeling approach is needed to 

facilitate the analysis of variable relationships in palm oil industry and gather all the 

key players in a holistic system rather than looking at separate model at a time. 

Furthermore, the method also must be able to offer a platform to evaluate and 

experiment existing and new policy scenarios to improve the future CPO production 

strategies in Malaysia. This is highly important in order to reduce the post-policy-

implementation financial as well as social cost (Ghaffarzadegan, Lyneis, & Richardson, 

2011).  

In the current practice, modeler’s intuition and expert opinion has always been used as 

the base test and recommendation to improve a model as adapted in studies by Yahaya 

et al. (2006), Shri Dewi et al. (2010), Abdulla et al. (2014), Mohammadi et al. (2016). 

In these studies, none of the analytical method was found to help the existing method 

to find sufficiently good solutions for model improvement except experts’ 
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recommendation. Albeit expert recommendations are reliable in certain context, human 

intuitions are found to be limited, bias and may be misleading (Duggan, 2008). To 

resolve this, method from metaheuristics family offer ways to analytically self-

recommend a good policy based on the system constraints and desired target. In 

addition, combination of search method and simulation modeling allow the 

experimentation of policy interventions under various scenarios while helping to find 

best policy option to improve the system.  

Taking into consideration the limitation of the discussed method, this research proposed 

a hybrid of SD-GA model to search for sufficiently good solutions in policy design 

process towards increasing CPO production in Malaysia. By integrating methods, the 

appropriate changes of policy variables to improve CPO production can be possibly 

obtained. The proposed SD-GA model in this research provide the leverage to set 

control variables and objective function at any point of timeline, which has not been 

featured in existing model such as in Grossman (2002), Duggan (2008), Alborzi (2008), 

Chen, Tu, and Jeng (2011). This feature allows the finding of optimal policy option 

being done in phases for better policy design process. 

1.4 Research Questions 

1) What are the factors that influence the CPO production in Malaysia? 

2) What are the appropriate value of parameters in order to assess CPO production 

in a dynamic environment?  

3) How will the proposed hybrid model be evaluated? 
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1.5 Research Objectives 

The general objective of the research is to determine the optimal policy options to 

increase CPO production in Malaysia. To answer the related research questions, 

specific objectives are: 

1) to determine the factors that influence CPO production in Malaysian palm oil 

industry; 

2) to optimize parameters for assessing CPO production in a dynamic 

environment; and 

3) to evaluate the proposed hybrid model for assessing CPO production in 

Malaysia. 

1.6 Scope of Research 

The scope of the research is described to declare any limitation that may exist in the 

course of the research. The scope of the research includes: 

1) Malaysian palm oil industry is used as a base case where the proposed 

methodology is applied to demonstrate its capability in policy design process. 

2) The past studies focused in optimizing chemical formulations related to palm 

oil are not covered in the literature review in Chapter 2 due to its irrelevancy 

with our research objective. 

3) In terms of the model components, three main factors have been chosen for its 

impact assessment towards the industry. The variables are plantation area, 
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labour availability and biodiesel demand referring to the arising issues as been 

highlighted in the previous section. Plantation area and labour availability are 

chosen based on their important role in the performance target aligned under 

EPP. Further, biodiesel demand is chosen due to the foreseen impact on the 

demand of the future palm oil where strong palm oil production is important as 

targeted under EPPs. 

4) The historical data used in this research were taken in the period of 15 years 

which is from 2000 to 2015. This is mainly due to the availability of data. 

Moreover, the chosen period is deemed appropriate because the analysis can be 

done for pre- and post-biodiesel policy implementation in year 2011. This 

permeates the behavioural study of the economic variables in different policy 

implementations scenario. 

5) The research did not incorporate the cost analysis in the model. Even though 

considering the cost element is of important when trying to improve CPO 

production, this research puts the main focus on the factors that affect CPO 

production and how the changes of these factors can help improving CPO 

production. Furthermore, the incorporation of cost element requires the 

expansion of the model to a whole new level of complexity. 

1.7 Significance of the Research 

The research will contribute in terms of managerial aspect through the application of 

the proposed method. More importantly, this research may contribute to the body of 

knowledge with the proposed hybrid of SD-GA model which is considered new where 
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the simulation and search method has been combined. Conclusively, this research is 

expected to contribute in methodological and managerial aspect as highlighted below. 

1.7.1 Methodological Contribution 

The proposed hybrid SD-GA model in this research offers added flexibility in finding 

sufficiently good solution for policy design process which has not been featured in the 

hybrid SD-GA model in the study by Grossman (2002); Duggan (2008); Alborzi 

(2008); and Cheng, Tu, and Jeng (2011). The integration of GA with SD in this research 

allows an optimization capability to set a time-sensitive objective function. That is, the 

objective function in the proposed hybrid SD-GA model can be set to be achieved at 

any point of the model time line. Whereas in contrary with previous hybrid SD-GA 

model, objective function is set to only improve the overall behaviour SD model at the 

end of the simulation. Further, this integration also permeate the setting of policy 

variables in a time sensitive manners, which mean the policy variables’ value required 

to achieve objective function can be set to be searched at any point of time in the model 

time line. If successfully done this will greatly help in policy designing process where 

certain policy target may be subjected to be achieved at specific time with policy 

changes set to happen at a specific time in the time line. In conjunction with this, the 

search for optimal policy can be done in phases for more effective policy design 

process. This is demonstrated in Chapter 4. 

Finally, this study proposed an alternative method of solving time-dependant dynamic 

optimization (DO) problem using the combination of traditional GA and SD. In time 

dependant DO problem, time is one of the dynamic element where the movement of 

time in each change occurs in other element is considered in solving the problem 

(Branke, 2000).  In evolutionary computing field, solving DO problem requires the 
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exploitation of GA code to adapt the dynamic nature of a system (Branke, 1999). 

However in the proposed hybrid of SD-GA model, the dynamic part of the system will 

be handled by SD modeling thus only traditional static-based GA is sufficient for 

resolving a time-dependant DO problem. 

1.7.2 Managerial Contribution 

This research introduces a structured policy design framework applicable in palm oil 

industry context. This framework offers a platform to evaluate, to experiment and to 

design new policies related to palm oil industry. To the best of our knowledge, no 

previous study has been found proposing a structured policy design framework for palm 

oil industry. Thus this research will contribute in the growing literature on palm oil 

industry studies. Furthermore, with appropriate parameter and minor modification this 

framework can be generalized for assisting the policy design process in other 

commodity industries such as rice, cocoa and coconut. 

Although there are many studies adopted modeling approaches in the past, none of them 

has employed optimization method to assist in policy design process. Thus, this 

research can shed a light of possible changes to be implemented for improving CPO 

production. Specifically, this research will help: 

1) The government to assess the effectiveness of ETP toward strengthening palm 

oil industry in Malaysia. 

2) Malaysian Palm Oil Board (MPOB) in evaluating the current policy impact on 

Malaysia palm oil industry. As the authority in the industry, MPOB can test new 
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policy options before its implementation to avoid costly consequences in the 

long term. 

3) Industry members to evaluate their current strategy and design new strategy to 

stay competitive in palm oil industry. This includes the planters, palm oil 

producers and palm oil traders.  

1.8 Organization of Thesis 

The thesis has been organized into five chapters. Chapter one described the background 

of the problem and presented the significance of the research. Furthermore, this chapter 

discussed the contribution of the research towards the body of knowledge, especially in 

the palm oil market modeling problem domain. 

Chapter two provides the theoretical reviews on modeling approaches used in palm oil 

industry studies and the empirical reviews of previous Malaysian palm oil industry 

studies that adopt modeling approaches. These reviews lead to the identification of 

research gaps. 

Chapter three describes the methodology used in this research and the research 

processes to achieve the objectives as described in chapter one. This chapter explains 

the process involves in the development of dynamic simulation model, followed by the 

development of search algorithm, and the integration mechanism of these two methods. 

Chapter four present the results obtained in this research. These include the result of 

several validation tests on the SD model, parameter searching for GA operators, and 

the experimentations performed to search for optimal policy options using hybrid SD-
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GA model towards improving CPO production. The experimentation results are 

discussed in detail. 

Finally, in chapter five a conclusion of the thesis is presented. This is followed by the 

summary of the proposed methodology and the successful accomplishment of research 

objectives. This chapter ended with the declaration of research limitations and some 

recommendations for the future work. 
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CHAPTER TWO 

LITERATURE REVIEW 

In this chapter, the characteristics of key components in palm oil industry are described. 

This is followed by the review of approaches used in modeling palm oil industry which 

include econometrics and simulation model. Further, optimization method used in palm 

oil as well as agriculture related researches are reviewed. Then, the review of several 

potential metaheuristic methods are presented. Research gaps identified through the 

literature review process that result to a contribution to the knowledge in the relevant 

field is also highlighted. 

2.1 Key Components of Palm Oil Industry 

Modeling acts as a tool to assemble variables to assist the analysis of their inter-

relationship in the studied system. In the earlier stage of modeling process, it is 

important to identify the components especially the key variables that influence 

performance of the system. Hence, this section proceeds with the explanation of key 

variables and main factors that influence the palm oil industry in this research context. 

Generally, palm oil industry is comprised of three core components, which are supply 

(consist of its production, import and end-stock), demand and price. This is aligned 

with the generic commodity model as proposed by Meadows (1970). As mentioned 

earlier, Malaysia has been surpassed by Indonesia of its CPO production since 2004. 

The reason for this stagnant growth may come from several factors within the vast 

system of interrelated network in palm oil industry. By looking at the palm oil industry 

in a systematic view, the factors that influence CPO production comes from the supply 

and demand sector. Furthermore, CPO supply and demand relation has been found to 
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have a strong connection with its price as suggested by traditional economic supply and 

demand theory. On the other hand, the price also is found to be affected by CPO 

production which illustrates the existence of feedback processes in the palm oil industry 

(Asari, Rahman, Razak, Ahmad, Harun, & Jusoff, 2011). The strong interdependency 

and non-linear relationship of these three main components exhibit the complexity of 

the industry (Shri Dewi, 2010; Abdulla et al., 2014; Mohammadi et al. 2016). Hence, 

the model of the industry has to be done holistically considering all the feedback 

process among variables for effective analysis. 

2.1.1 Supply 

Palm oil stock consists of CPO and processed palm oil (PPO) that includes all amount 

in the mills, refineries, bulking installations and oleo chemical plants (Nordin & Simeh, 

2009). CPO is palm oil in its raw form whereas PPO is a product after further processing 

of CPO. At the end of each year, the net palm oil stock is called end-stock and it is 

highly depending on production and export, while import and local consumption play 

minor role (Shamsudin et al., 1995). However, recently the amount of imported CPO is 

increasing and has becoming important element in palm oil supply sector. Thus, 

incorporating it in market analysis is essential in the current state of industry (Nordin 

& Simeh, 2009).  

2.1.2 Demand 

Similarly, palm oil demand constitutes various sources of demand. In the pre-biodiesel 

mandate implementation period, the variables that constitute total CPO demand include 

the CPO demand for export, PPO demand for export, PPO demand for local 

consumption, and PPO demand for further processing (Nordin & Simeh, 2009).  
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However starting from 2011, incorporation of the demand from biodiesel industry is 

important as significant demand from this industry has been recorded due to the 

implementation of B5 mandate programme (Yusoff et al., 2013). 

2.1.3 Price 

Palm oil price is heavily dependent on its supply and demand factor (Shamsudin et al., 

1988; Rahman, Balu, & Shariff, 2013). A study by Nordin and Simeh (2009) stated that 

palm oil stock is a strong indicator of its price. The negative relationship between palm 

oil price and its stock actually has long been endorsed by Shamsudin et al. (1988). The 

study concluded that palm oil prices is highly sensitive to change in stock levels. It has 

also stated that changes in prices determined by the stock disequilibrium, and the speed 

of price adjustment towards equilibrium is generally faster for agriculture commodities. 

Arshad and Hameed (2012) further the study by incorporating crude oil price as 

determinant of the stock level and palm oil price. In their analysis, they concluded that 

crude oil price plays significant role in determining the stock equilibrium and 

subsequently affects palm oil price. The palm oil price also is influenced by its closest 

substitute’s price, the soybean oil. Studies by Senteri (1988), Shri Dewi, Arshad, 

Shamsudin, and Hameed (2011a), and Arshad and Hameed (2012) supported this fact 

where high positive correlation between soybean oil prices with palm oil prices was 

shown in their analysis. 

2.2 Factors Influencing the Supply and Demand of Crude Palm Oil 

Palm oil supply and demand are the core components of palm oil industry model where 

the interplays determine the price. Next, we elaborate the factors that have been 
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identified bringing huge influence on palm oil supply and demand namely the 

plantation area, labour and palm-based biodiesel demand. 

2.2.1 Plantation Area 

Plantation area is considered as the variable that directly influences the palm oil supply 

particularly the CPO production. Plantation area refers to an area in which the oil palm 

trees are being cultivated. It is one of the important components because wider 

plantation area result to physically higher fresh fruit bunch (FFB) yield rate. Plantation 

area can be categorized into three main areas called premature, mature and ageing area 

(Wahid & Simeh, 2010; Abdullah, 2012). By definition, pre-mature area consist of 

young tree with the age range of zero to three years. Turning to four years, the trees will 

start to produce its first yield and continue its productivity up to the age of 25 years old. 

A mature area reaches at this age and it is considered as the most productive period for 

an oil palm tree. However, ageing more than 25 years makes the tree less productive 

and this can be categorised as ageing area (Abdullah, 2012). Malaysia has recorded 

approximately 5.6 million hectares of plantation area with 18.48 tonne per hectare of 

FFB yield in year 2015 (MPOB, 2016). Roughly, there are only approximately 1 million 

hectare potential land suitable to be converted into oil palm plantation which signal a 

significantly low domestic expansion opportunity2. 

When the plantation area reached more than 25 years old, replanting should take place 

to replace the old oil palm trees. Replanting will then make the area lagged 3 years 

before the area can become productive again. This leads to the cyclical pattern in the 

palm oil production (Abdullah, 2012). Thus a well-planned replanting program by 

                                                      
2 Anonymous informational interview with Malaysia palm oil research body 
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narrowing the yield gap of the low productive trees and using new higher yielding 

planting materials are essentials to avoid unwanted sudden palm oil supply interruption 

(Wahid & Simeh, 2010). 

Developing new oil palm plantation area is difficult not only because of the scarcity of 

the potential area and rising in cost of input, but also to meet the sustainable issue raised 

by the environmentalist group which need to be considered (Yean & Zhidong, 2014; 

Shri Dewi et al., 2011a). As such, some companies in Malaysia has opted to expand 

their plantation area offshore, in Indonesia and certain African country where all the 

mentioned hindrance at its lowest level (Shri Dewi et al., 2011a). 

With limited land for plantation area, the way forward is to make full use of the existing 

palm oil plantation by boosting the productivity measured by FFB yield per hectare 

(Wahid & Simeh, 2010). 

2.2.2 Labour 

Labour is another important factor to be considered in having influence on CPO 

production. This is because labour can be assumed as the ‘main’ mover in every work 

sector in palm oil industry, from the oil palm planting, nurturing, harvesting and 

transporting to the palm oil processing mills. Palm oil industry can thus be considered 

as labour intensive industry, especially in the oil palm plantation sector (Abdullah et 

al., 2011; Ismail, Ahmad, & Sharudin, 2015; MPOB, 2016). 

In Malaysia, 70 percent of the workforce in plantation area specifically are foreign 

workers and most of them are Indonesians (Ismail et al., 2015; MPOB, 2016). This is 

due to the lack of interest of locals to do the critical and labour intensive plantation jobs 
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like harvesting, collecting fruits and weeding (Wahid & Simeh, 2010). Another reason 

that makes this kind of job not locally popular is the increasing level of education 

among local young generations (Abdullah et al., 2011; Ismail, 2013). With increasing 

education level, the job at plantation which they termed as “3D” or “Dirty, Dangerous, 

and Difficult” become the lesser choice as a career among local youth.  

However, high dependability on foreign workers has resulted into major crisis in recent 

years as workers have low interest to work in Malaysian oil palm plantation. Apart from 

rigid Malaysian foreign labour policy which hardened the hiring process of foreign 

labour (Hai, 2000; Abdullah et al., 2011), much of the labour crisis sources come from 

the rapid growth of Indonesia palm oil industry as our counterpart guarantee better 

working environment at home country with competitive salary as compared to Malaysia 

(Hai, 2000). Even though the average wages in Indonesia oil palm plantation is reported 

at three times lower than that in Malaysia, it is relatively higher compared to Malaysia 

considering the living cost and working environment in their own home-country 

(Cramb & McCarthy, 2016). However, with higher agriculture sector growth at 3.4 

percent as compared to Malaysia at 0.8 percent, it is anticipated that the wages as well 

as working environment will improve overtime which increase the attractiveness for 

immigrant Indonesia workers in Malaysia to go back to their home country (Cramb & 

McCarthy, 2016). 

Labour shortages is critical to the industry in the long term. The low interest of 

Indonesian to work in Malaysian palm oil industry is inevitable due to Indonesian palm 

oil industry growth. The way forward is thus by increasing the labour productivity 

(measure by labour per plantation area) through the adoption of mechanization in the 

industry. As mechanization adoption is capable to boost up to double of the productivity 
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of labour, this can be the direct resolution for the worrying labour crisis (Jelani, Hitam, 

Jamak, Noor, Gono, & Ariffin, 2008). MPOB has initiated the international competition 

on palm oil mechanization organized every year with astounding price up to RM 1 

million for the winner (MPOB, 2016). This is done to entice interest from all parties 

including academicians and private sector to develop new technology to facilitate oil 

palm activities. 

2.2.3 Palm-based Biodiesel Demand 

Increasing demand from the palm oil-based biodiesel sector has become a contributing 

factor that determines CPO stock. To produce it, CPO or PPO is processed to obtain 

Palm Methyl Esther (PME), a substance capable to be used as vehicle engine fuel and 

categorized as biodiesel. In 2006, government has launched the National Biofuel Policy 

(NBP), affirming the government effort towards the development of greener fuel and 

lower dependency on fossil fuel (MPIC, 2006). Not limited to that, palm biodiesel 

industry also is aimed to utilize the excess palm oil stock and help to mitigate the palm 

oil price. This is relevant on the account of study by Shamsudin et al. (1988) which 

stated that palm oil stock have negative relationship with its price, that the lower the 

stock level will boost the price up. 

Malaysia has launched the first biodiesel blend mandate in 2011 in an effort to stimulate 

biodiesel industry growth. However, it has also put the industry as the mandate driven 

industry, where at the current state the industry is sustained with the support of 

government. The biodiesel blend mandate denotes the blending of certain percentage 

of PME with certain percentage of petrol diesel. For instance, B5 mandate programme 

indicates the blending of 5 percent of PME with 95 percent of petrol diesel. With the 

introduction of B5 mandate programme for transportation sector in 2011, Malaysia has 



                                                                 

 28 

boosted its domestic biodiesel consumption to approximately 0.5 million tonne per year 

(Adnan, 2016).  Further, in 2014 the government increased the mandate to B7 for 

transportation sector and the consumption of biodiesel rose to approximately 0.7 

million tonne year (Adnan, 2016). As the trend of diesel consumption is increasing, the 

demand on palm oil for palm biodiesel production will also increase in the future. 

Furthermore, the further increase of biodiesel blend mandate is capable to increase the 

palm oil demand (Wahid, Abdullah, & Shariff, 2010; Yusoff et al., 2013). This is true 

where experts had anticipated the local consumption of approximately 1 million tonne 

of biodiesel with the latest launching of B10 and B7 for transportation and industrial 

sector respectively (Adnan, 2016). There is a high hope that the launch of new mandate 

of B10 for transportation sector and the introduction of B7 for industrial sector will lift 

the national biofuel industry to a new high level3. Moreover, the successful 

implementation of the new blend mandates will put Malaysia at par with other biofuel 

producing countries like the U.S. with B10 and Indonesia with B20 (Adnan, 2016). 

Nevertheless, palm-based biodiesel industry has become increasingly important in 

influencing the dynamicity of palm oil industry especially its price. Particularly, the 

biodiesel programme is a long term commitment aligned under NBP and the 

commitment has been strengthen under Eleventh Malaysia Plan (RMK11) announced 

in 2015. This highlight the possibility of further increase in biodiesel blend mandate in 

the future, thus incorporating biodiesel sector in the analysis is evidently crucial. 

                                                      
3 The new B10 and B7 mandate has been officially launched in March 2016. However, after few month 

of postponement due to several issues, it is targeted to be implemented somewhere in 2017 (Adnan, 

2016). 
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2.3 Review of Modeling Approaches in Palm Oil Studies 

A modeling process can be described as a tool for approximating real life behaviour 

and testing scenarios (Maidstone, 2012). When it comes to modeling a system, there 

are plethora of modeling methods available from various disciplines designed to 

achieve their own distinctive objective. In palm oil industry domain, econometrics and 

simulation model have been widely used to study the economic variables and their 

relationships. 

2.3.1 Econometrics 

Researchers in economics have extensively used econometrics method for analysing 

economics model. By definition, econometrics is the application of mathematics and 

statistical methods to analyse economics variables (Geweke, Horowitz, & Pesaran, 

2008). In theory, econometricians are searching for estimators that have desirable 

statistical properties including unbiasedness, efficiency and consistency. In application, 

econometrics uses theoretical econometrics and actual data for testing economics 

theories, developing models, analysing economic trend, and for the forecast purpose 

(Granger, 2008). Generally, econometricians adopt various statistical methods in their 

analysis which include Two Stage Least Squares (2SLS) (Shamsudin et al., 1988), Non-

linear Two Stage Least Squares (N2SLS) (Mohammad et al., 1999), Autoregressive 

Distributed Lag (ARDL) (Arshad & Hameed, 2012), and Ordinary Least Squares (OLS) 

(Rahman, Abdullah, Simeh, Shariff, & Jaafar, 2011). 

Modern econometrics also include simulation process called counter-factual analysis. 

Pesaran and Smith (2012) termed counterfactual in econometrics as “what would have 

occurred if some observed characteristics or aspects of the processes under 

consideration were different from those prevailing at the time”. In econometrics 
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counterfactuals analysis are used in policy evaluations (Heckman, 2008, 2010; Shri 

Dewi et al., 2009). 

Several studies have been found in the literature using econometrics approach in the 

context of Malaysian palm oil industry. For instance, Shamsudin et al. (1988) found a 

negative relationship between palm oil price and palm oil stock level using 2SLS 

technique. This is among the earliest economics studies that empirically confirm the 

effect of stock level on palm oil price, where one percent increase in stock is expected 

to decrease palm oil price by 1.41 percent. However, the equations in the econometrics 

model has not included the actual causal of variables’ inter-relationship, in which 

feedback process was absent. This practice is common in econometrics where the 

relationship between variables are established based on the coefficient value (Geweke 

et al. 2008). This on the other hand may not reflect the true relationship between 

variables as compared to relationship constructed using feedback-based modeling as 

argued by Olaya (2015). In the study by Shamsudin et al. (1988) for instance, CPO 

production relationship with its prices was constructed by multiplying CPO prices with 

its coefficient. This was straight forward relationship which may also suggest a 

correlation instead of causal relationship. There was certainly one missing variable in 

the equation (that is demand) because in reality, the demand response based on the 

price, which in turn affect CPO production. This kind of process constitute feedback 

loops in the model and econometrics method fails to incorporate it. 

In another study, Mohammad et al. (1999) uses N2SLS method to examine the impact 

of liberalization of palm oil import from Indonesia to examine the excess capacity 

issues in refining facilities in Malaysia. In this study, CPO price has been found to 

decrease by 1.7 percent with the increase of CPO import.  In addition, this study has 
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incorporated labour factor in the form of wage rate in the model and highlighted the 

negative impact of labour shortage on palm oil production. The equations used in this 

study also posed similar problems with causal and correlation relationship. For instance, 

the study related the mature oil palm plantation area with CPO prices and natural rubber 

prices. These were correlation rather than causality, because both CPO and natural 

rubber prices are supposed to indirectly affect mature area. There were clearly some 

missing variables, for example CPO prices supposed to influence the ‘motivation of 

planting’ among planters, and this motivation on the other hand will influence the 

planting works in premature area before it effects the mature area. Again, this kind of 

feedback processes cannot be captured effectively using econometrics method. Further, 

econometrics method also cannot incorporate soft-variable (the variable which involve 

human judgment or biasness) like ‘motivation of planting’ given in the previous 

example. 

Econometrics analysis by Talib and Darawi (2002) applied 2SLS suggested that palm 

oil price also being influenced by plantation area but with low price-elasticity of 0.055 

and 0.291 in short and long run respectively. These show that the change in total 

planting area is not a strong factor to determine palm oil price due to the existence of 

land constraint. In addition, palm oil price also has been found to have effect the palm 

oil export along with world population, soybean price and exchange rate. This means 

that when palm oil prices are lower relatively compared to soybean oil prices, palm oil 

export is expected to increase. Similar with Mohammad et al. (1999), this study assume 

the direct relationship between oil palm plantation area with palm oil and natural rubber 

prices in equation, which was arguably missing some variables critical to establish the 

actual feedback process in palm oil industry. 
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In June 2006, the palm-based biodiesel industry has been introduced in Malaysia. Since 

then, researcher has been incorporating the demand from this emerging industry into 

their model development. The impact of biodiesel demand on palm oil price was further 

investigated by Ramli, Abas, and Rahman (2007) using Auto-Regressive Moving 

Average (ARIMA) and they had projected the increment of CPO price between seven 

and 28 percent in 2008 from 2007 due to the increase CPO demand for biodiesel. The 

assumption of relationship between biodiesel demand and CPO prices were made using 

the trend from historical data. This assumption may be accepted considering there is no 

shock or uncertainties in the future trend for example like sudden increase in biodiesel 

demand or deep plunging of palm oil export. There is a serious shortcoming on 

econometrics method which is over-reliant on historical data when it comes to 

uncertainties as highlighted by Giraldo et al. (2008). Econometrics tend to forecast the 

future trend based on past trend using coefficients value rather than representing the 

actual system based on actual feedback process that caused the change in the system 

(Giraldo et al., 2008; Olaya, 2015). Thus, misleading analysis may occur without 

anticipation of uncertainties in the future market scenario. 

Furthermore, the studies on the impact of rising biodiesel demand on Malaysia palm oil 

industry was extended by Shri Dewi et al. (2009). In this study, the counter-factual 

analysis was conducted with 70 percent sustained increased of biodiesel demand 

scenario. The simulation resulted in CPO stock expected to decrease by 142.6 percent 

while CPO supply and CPO price expected to increase by 21.86 percent and 109.74 

percent respectively. The simulation done through counterfactual analysis managed to 

simulate the sudden shock in the biodiesel demand. However, the equation relating 

biodiesel demand and CPO prices posed the typical econometrics method shortcoming, 

which is failing to capture the feedback processes in the system. For instance, in 
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connecting CPO production and its prices, the equation divest demand which play 

critical role in affecting CPO production and determining CPO prices. This feedback 

loop is important in depicting the dynamicity of palm oil industry, but failed to be 

captured by econometrics method. 

Biodiesel blending mandate was launched in 2011 in the federal administration capital 

of Putrajaya. The mandate requires the blending of 95 percent of petrodiesel and 5 

percent of palm oil. In their econometrics model, Rahman et al. (2011) used OLS to 

examine the impact of the biodiesel mandate program on CPO prices. The result shows 

that the implementation of biodiesel mandate has contributed to the total palm oil 

demand, where one percent increase of the mandate will lead to 0.14 percent increase 

of CPO price. In addition, crude oil price also is found to affect CPO price where one 

percent increase will lead to 0.14 percent increase of CPO price. The equation denoting 

CPO prices in this study did incorporate the supply and demand, including the demand 

from biodiesel sector. However, the equations of econometrics model in this study still 

lack of feedback process, for instance, CPO prices did influenced by supply and demand 

but the price on the hand should also influence demand, which constitute a feedback 

loop.  

Arshad and Hameed (2012) has incorporated crude oil in their econometrics model to 

investigate its influence on Malaysia palm oil market especially palm oil price and stock 

using ARDL. The study found that in the short run, price-elasticity for crude oil is 

inelastic (value of 0.0378) compared to long run (value of 1.456). This suggest the high 

sensitivity of palm oil price to the movement of crude oil price over time. Palm oil price 

is also found to be highly sensitive with the level of palm oil stock with the price-

elasticity of 1.4284 in the long run compared to the short run (-0.0584). A typical 
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econometrics shortcoming was shown by the econometrics model in this study. The 

CPO prices equation was constructed by multiplying the coefficients with crude oil 

price and palm oil ending stock, denoting the direct correlation between these variables. 

Important variables were missing from the equation to effectively explain how the 

crude oil prices and palm oil ending stock actually effect CPO prices. The missing 

variables may include, for example, the biodiesel demand (where high crude oil prices 

will increase biodiesel demand thus reducing the palm oil stock and subsequently 

increase CPO prices). This kind of feedback process cannot be captured by 

econometrics model. 

Rahman et al. (2013) incorporated all the supply and demand factors as well as market 

sentiment factor in palm oil econometrics model using multiple regression technique to 

examine its impact on the CPO prices. The factors include palm oil demand, soybean 

price and crude oil price. The results had shown that with one percent increase in palm 

oil demand, soybean price and crude oil price, CPO price is expected to increase by 

0.15 percent, 0.55 percent and 0.04 percent respectively. The equations of econometrics 

model in this study have similar shortcoming as in Rahman et al. (2011). There was 

lack of feedback processes incorporated in the equation. For instance, CPO prices was 

modelled by equating it with CPO production, CPO export and soybean oil prices. This 

equation supposed to construct a feedback loop, where the demand (CPO export) should 

be influencing the CPO stock, which disrupt the supply and demand ratio, and 

subsequently impose an impact to CPO price. Again, econometrics method failed to 

capture this. 

The implementation of B5 mandate program has been found to create additional 

demand for palm oil which further increase the palm oil price. This study has been done 
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by Shri Dewi et al. (2014) where they have specifically investigated the effect of B5 

mandate program on Malaysian palm oil market using 2SLS in econometrics. The study 

has proven that the implementation of B5 mandate program is expected to increase 

domestic palm oil demand by 1.0771 percent. Similar with Shamsudin et al. (1988), the 

equations of econometrics model in this study assume the direct relationship between 

CPO prices and palm oil stock multiplied with the coefficient. Variables like supply 

and demand were missing, which are considered critical to establish the actual feedback 

process in the palm oil industry. 

Conclusively, despite its widely use in palm oil industry domain, the econometrics 

modeling has its downturn as follows:  

1) Econometrics is not effective in capturing the actual feedback process in a 

system. Thus, an econometrics model may not representing the real situation of 

a system in the real world (Olaya, 2015). Furthermore, econometrics also is not 

capable to incorporate soft variables (e.g. human judgement, decision biasness) 

in their modeling process, which is important to depict real system based on its 

feedback processes (Meadows, 1980; Olaya, 2015). 

2) Econometrics is heavily reliant on huge historical dataset to construct the model.  

According to the review by Meadows (1980), each element in an econometric 

model must be observable and sufficient historic observation is essential to 

permit precise estimation of its quantitative relationship to other variables. 

Thus, the problem with less data is not appropriate to apply econometrics 

approach. 
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3) With the sufficient data available, econometrics can provide very precise 

information about a system. On that account, econometric models are mostly 

short term prediction of aggregate economic variables, thus are least applicable 

to policy question that range over long time horizon, or into circumstances that 

has not been historically observed (Meadows, 1980). 

4)  It can be concluded that econometric models are developed when the changes 

to the system has been made. That is, the modeler focus on enhancing the ability 

of the model to reproduce the real behaviour of the system in the past rather than 

the representation of the actual structure of the system (Giraldo et al., 2008). 

Conclusively, econometrics approach is effective when the problem is enriched with 

data and mostly appropriate for short term analysis. Moreover, the analysis process 

using econometrics may be limited within the person that profess with the method itself. 

Non-expert may find it difficult to conduct and comprehend econometrics analysis 

process. 

2.3.2 Simulation Model 

In Operation Research (OR) field, a model can be defined as a collection of logical and 

mathematical relationships that represents aspects of the situation under study (Jensen, 

2004). Simulation model is one of the preferable methods for complex system analysis 

where they can mimic the behaviour of a system in real life. There are three main 

methods categorized under simulation, which are Discrete Event Simulation (DES), 

System Dynamics (SD), and Agent-Based Modeling (ABM). If econometrics method 

required extensive data and profound mathematical skills, simulation model offers a 

more user-friendly platform. One characteristic that these three methods share in 



                                                                 

 37 

common is they offer a user-friendly visual interface rather than plain mathematical 

formulas. This facilitate the experimentation process for non-expert personnel. 

2.3.2.1 Discrete Event Simulation 

In general, DES works by modeling a process as a series of discrete events. This method 

has been widely used in operation research field for over forty years (Siebers, Macal, 

Garnett, Buxton, & Pidd, 2010). The first work on DES was introduced in 1962 by 

Lackner (1962). By definition, DES highlights the sequences of each event in a discrete 

time at a certain point of changes where entities enter the system and visit some of the 

states before leaving the system (Majid, Aickelin, & Siebers, 2009). Typically, DES is 

thought of as network of servers and queues (Maidstone, 2012). The method has been 

widely used in an area of operational or tactical level focusing on the process in an 

organization such as production of products. However, the major downturn of DES is 

that it is not suitable to model the complex system behaviour at strategic level, as the 

core strength of DES focuses on the process in the system (Siebers et al., 2010). 

There are few studies being conducted using DES in the palm oil modeling literature. 

This includes study by Lestari, Ismail, Hamid, Supriyanto, Yanti, and Sutupo (2014) 

which developed a combination of DES with supply chain operational reference 

(SCOR) model to measure the value added of CPO processed by palm oil downstream 

industry.  In this study, the palm oil mills production process was simulated using DES 

where simulation is built on relationships between suppliers, manufacturing and 

customer. This study found that the highest value added will be obtained when the 

downstream sector produce finished products for end-customer. On another account, 

Fazeeda and Razman (2012) had evaluated the current capacity of the palm oil 

processing mill using DES. In this study, DES is used to simulate the effect of 
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underutilized capacity on the production cost of a mill. The study found that with 60 

percent increase in machine utilization will result into 10 hours of effective working 

time instead of 16 hours per day. This may lower the production cost due to increase 

efficiency. In addition, study by Lair, Chan, Chua, and Liew (2012) had demonstrated 

the use of DES to find the way to improve palm oil mill performance. This study 

compared the simulation outcome of existing and improved palm oil mill and found 

that 19.54 percent improvement can be made in palm oil mill performance in terms of 

its throughput. 

2.3.2.2 System Dynamics 

SD rooted from the invention of industrial dynamics by Forrester in 1950s to analyse 

complex behaviours in social sciences through computer simulations (Forrester, 1961). 

As one of the prominent methods in system thinking approach, SD has evolved over 

time and termed as interdisciplinary approach. The need for developing the concept was 

due to the situation in which decisions made to tackle a problem resulted in unexpected 

outcomes (Sterman, 2000). In practice, SD is a powerful dynamic simulation modeling 

tools which able to mimic behaviour characteristics of complex real problem and 

incorporating the feedback processes within. Furthermore, SD also grounded in the 

theory of non-linear dynamics and feedback control which can be found in 

mathematics, physics and engineering (Sterman, 2000). This compelling traits make 

SD an effective approach for policy design process. 

The word “system” as defined by Maani and Cavana (2000) is a collection of parts 

which act together and function as a whole. Therefore, the system will always be bigger 

than its part. Furthermore, the word “dynamic” in SD indicates the continuous change 

of state overtime or corresponds to the changes of the part of the system. Thus, SD can 
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be defined as the combination of system components to solve equations in a dynamic 

environment and correspond to the changes of the part of the system (Doebelin, 1972). 

Presently, SD as defined by the International System Dynamics Society “… is a 

computer-aided approach to policy analysis and design. It applies to dynamic problems 

arising in complex social, managerial, economic, or ecological systems – literally any 

dynamic systems characterized by interdependence, mutual interaction, information 

feedback, and circular causality”. 

SD is different from DES as it focuses more on flows around network compared to the 

individual behaviour of entities (Maidstone, 2012). Generally, SD highlight the 

feedback structure within which permit a holistic analysis of the system. Hence, SD is 

best in facilitating the process of understanding the complex system in order to find 

opportunity to improve weaknesses. Another ability of SD is that it helps the modeler 

to identify and to understand the key factors that influence the system behaviour. The 

identified key factors will then assist the modeler in experimenting different type of 

interaction against the system. Due to this reason, it has been extensively used by the 

policy designer to develop or to improve the public policy by identifying the common 

question that might appears in an organization (Ghaffarzadegan et al., 2011). 

In palm oil studies, several researchers have adopted SD as modeling approach. For 

instance, Yahaya et al. (2006) adopted SD method to investigate the impact of biodiesel 

demand on Malaysian palm oil industry. In their simulation of crude oil price shock 

scenarios, the increase of crude oil price has been found to increase the biodiesel 

demand thus encouraging plantation expansion. On the other hand, the decrease of 

crude oil price will lower the biodiesel demand and resulted in the decrement of CPO 
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price due to high stock level and subsequently discourage plantation expansion. The 

SD model in this study used the simulation time interval of one month which is useful 

in the study context in building up the CPO price setting mechanism. However, using 

one month as simulation time interval is rather short for effectively incorporating the 

planting phases in palm oil industry. Furthermore, the model did not incorporate labour 

as one of the factor that influence CPO production.  

Shri Dewi et al. (2010) then used the combination of econometrics and SD to simulate 

the impact of increase in biodiesel demand on this industry. The reason of using SD is 

to capture the feedback process which is lacking in econometrics method. The 

simulation of 30 percent increase in biodiesel demand has resulted to small increment 

of CPO price by 0.0004 percent and decrease of CPO stock by 0.7728 percent. The 

findings were contradict with the previous study by Shri Dewi et al. (2009) that was 

conducted without SD where the impact of increasing biodiesel demand on CPO price 

was only modest. These illustrate that by adopting SD, the analysis has captured the 

feedback process in palm oil industry which may discount the effect of biodiesel 

demand on CPO price and stock as compared to previous study. 

Shri Dewi, Abidin, Sapiri, and Zabid (2015) also conducted a scenario simulation to 

examine the rationality of increasing blending mandates using SD. With B10 mandate 

being implemented, the CPO demand for biodiesel is expected to increase up to 100 

percent, followed by the increase of CPO price by 0.075 percent. The study conclude 

that increasing the blending mandate is a counter-intuitive policy because the increase 

of CPO demand for biodiesel will further increase CPO price as main feedstock which 

is a huge disadvantage for biodiesel producer. However technically, the scope of the 

model was limited to the perspective of cost-profit of biodiesel production only which 
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resulted into unfair analysis. The element of labour also has not been included as one 

of the critical factor influencing the CPO production. On the contrary, the model should 

expand its scope by considering the impact wide-economic perspective that will allow 

a multi-perspective analysis to avoid bias conclusion on Malaysia biodiesel industry. 

Latest study by Mohammadi et al. (2016) simulated the scenario of increasing the palm 

oil-based biodiesel blend mandate in their study. It is found that by increasing the 

mandate to B10 and B15, CPO demand is expected to increase by 49 percent and 66 

percent respectively. The authors suggested that the increase CPO demand has to be 

supported by steady production which can be achieved through mechanization and high 

quality crops. The SD model in this study assumes that replanting is based on the 

percentage of decay rate of ageing trees. However, this does not reflect the real life 

dynamic of oil palm plantation. It is more appropriate to include the replanting rate to 

depict the changing phase between ageing tree and young tree to effectively observe 

the fluctuation of FFB yield. Moreover, the model also did not include the labour 

element as the critical factor influencing CPO production, even though the author 

admitted the important of increasing labour productivity through mechanization.  

Finally, the study did not conclude the practicability of increasing blend mandate even 

though the analysis shows the need of improving the industry related policy. 

Although SD is effective to be used for modeling complex systems, concerns arise 

where the modeler has to clearly define the problem to avoid over-simplification and 

misleading analysis. Another limitation of SD is that the modeling process may become 

over complicated when trying to model huge system with too many complex scenarios 

(Sterman, 2000). 
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2.3.2.3 Agent-Based Modeling 

The first ABM concept was introduced in 1971 by Thomas Schelling through his 

segregation model, in which agent-based models as autonomous agents interacting in a 

shared environment with an observed aggregate, emergent outcome (Schelling, 1971). 

Compared to DES and SD, ABM is the most recent simulation method, particularly 

useful in modeling the system behaviour with autonomous and interactive abilities 

(Bonabeau, 2001; Macal & North, 2008). In ABM, the model is being made up of 

autonomous agents which follow a series of predefined rules to achieve their objectives 

whilst interacting with each other and their environment (Maidstone, 2012). Agents 

could represents anything relevant to the system, from people in an organization to cells 

in a body. ABM has been used in various field of studies including agriculture (Cheng, 

Lim, & Liu, 2009; Acosta, Rounsevell, Bakker, Doorn, Gómez-Delgado, & Delgado, 

2014), business (Xie & Peng, 2012; Baptista, Martinho, Lima, Santos, & Predinger, 

2014) and healthcare (Barnes, Golden, & Price, 2013; Das & Hanaoka, 2014). 

Likewise, ABM also facing one major practical issue where it looks at a system at the 

micro-level of its constituent units. Thus, when the process involve modeling a huge 

system, simulating all units can be extremely computer intensive and time consuming 

(Bonabeau, 2001). 

Review of literature found only one study that specifically employed ABM in palm oil 

industry studies. A study by Choong and McKay (2014) focuses on the sustainability 

issues in Malaysian palm oil industry where a priority of eco-labelling was highlighted. 

The study concluded that in order to deliver eco-labelling, pertinent information from 

different tiers of the supply chain has to be gathered. Thus, ABM was found to be 

effective to capture the interaction between all supply networks in order to find the area 

of improvement.  
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In a wider scope, an application of ABM in other agriculture sector has been 

demonstrated by Balmann, Happe, Kellerman, and Kleingarn (2002). In this study, the 

authors used ABM to investigate the impact of financial support on agriculture policy 

in Hohenlohe region of Germany. Result shows that monetary support bring about 

production efficiency and increase average farm size as well as farmers’ income. 

Moreover, Schreinemachers, Berger, Sirijinda, and Praneetvatakul (2009) used ABM 

to study the diffusion of greenhouse agriculture in a watershed in the northern uplands 

of Thailand. The simulation results found that limited access to credit has become a 

major constraint for the farm household from adopting the new innovation of greater 

irrigation water system. 

General comparison of the three methods reveal the suitability of SD method to be used 

for macro-level policy evaluation and experimentation due to its characteristic. This 

includes homogenous entities and feedback process offered in SD which allowed the 

analysis of a system to be done at strategic level. On the contrary, DES and ABM are 

more suitable to be used for micro-level policy analysis where there is a need of distinct 

treatment on each entities. The summary of the characteristics of the three methods are 

listed in Table 2.1 below. 

Table 2.1 

 

The Characteristics of the Three Simulation Methods 

System dynamics Discrete event simulation Agent-based modeling 

System-oriented; Focus on the 

flow of the network. 

Process oriented; Shows on the 

sequences on each event in a 

discrete time. 

 

Individual oriented; Focus is on 

modeling the entities and 

interactions between them. 
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Homogeneous entities where 

each entities are similar at all 

level. 

 

Heterogeneous entities where 

each entities has its own 

distinctive attributes. 

Heterogeneous entities where 

each entities has its own 

distinctive attributes. 

Representation of entities at 

macro level. 

 

Representation of entities at 

micro level (passive entities). 

Representation of entities at 

micro level (active entities). 

Driver for dynamic behaviour of 

system us “feedback loops”. 

Driver for dynamic behaviour of 

system is “event occurrence”. 

Driver for dynamic behaviour of 

systems is “agent’s decisions 

and interactions”. 

 LIMITATIONS  

Modeler has to clearly define the 

problem to avoid over-

simplification and misleading 

analysis of the model. 

Not suitable to model the 

complex system behaviour in a 

wider perspective, as the core 

strength of DES focuses on the 

process in the system. 

When attempts to model a huge 

system, simulating all units can 

be extremely computer-

intensive and time-consuming. 

2.3.3 Summary of Modeling Approaches in Palm Oil Studies 

The summary of studies using various modeling approaches in Malaysian palm oil 

industry is provided in Table 2.2. It can be concluded that majority of studies has been 

using econometrics method that exclude the feedback process in the model. This 

explains a huge difference in the results obtained from the same variables using 

econometrics and SD, exemplified in the study by Shri Dewi et al. (2009) and Shri 

Dewi et al. (2010). Thus, for effective modeling of palm oil industry, a method with 

holistic and feedback enriched process like SD is essential. Furthermore, most studies 

adopt single modeling approach, with the exception to Shri Dewi et al. (2009), Lestari 

et al. (2014) and Choong and McKay (2014). Using single modeling approach may be 

effective for the study’s context, however further analysis of the model may require the 

combination with other method. Finally, based on the review of modeling approaches, 

all studies only highlighted the relationship between variables that exist in the system 

but less emphasizing on finding sufficiently good solution to improve the system. On 
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that account, there is a need of complementary structured analytical tools to assist the 

search for optimal solution as policy option to improve the model. 

Table 2.2 

 

The Compilation of Reviewed Literature on Modeling Approaches Adopted in 

Malaysian Palm Oil Industry 

 

2.4 Review of the Optimal Solution Search Method in Palm Oil Domain 

Modeling approaches has been proven of its effectiveness in evaluating policy options. 

However, there is a time when the search for optimal policy parameter is essential to 

make an appropriate decision within certain constraints. Optimization can be used to 
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search for optimal solution. It can be defined as the process of attempting to find the 

best possible solution amongst all those available as stated by Burke and Kendall 

(2005). Further, optimization also can be defined as the process of finding the right 

design parameters (Beyer & Sendhoff, 2007). However, Sterman (1996) referred 

optimization as a model that does not tell what will happen in certain situation, but 

instead telling what to do in order to make the best out of situation. Nevertheless, it can 

be concluded that optimization is a method that search for best solutions within given 

set of constraints. 

Traditionally, optimization can be done manually through testing on different 

parameter values or broadly termed as “trial-and-error”. However, suitability of this 

approach is limited only when it involves a small model. As the model becomes more 

complex, the search for global optimal values can be difficult (Grossman, 2002). Hence, 

the need for appropriate optimization method is crucial to help the finding of optimal 

values in a complex problem. 

In operation research field, there are several optimization technique like linear 

programming, non-linear programming, integer programming, mixed-integer 

programming, stochastic programming, and heuristics (INFORMS Computing Society, 

2013). This section highlights past studies that have been done for optimal solution 

search which focus in palm oil industry domain. The review classifies the research 

context based on the technique used for searching the optimal solutions and the level of 

analysis.  

Based on the review, this research categorizes the literature into three type of level of 

analysis namely operation level, supply chain level, and broad-economic level. 
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Operation level analysis refers to the optimization process that was carried out in 

particular process of an operation, for instance the production in a palm oil mill or crops 

cultivation at plantation. On the other hand, supply chain level involves optimization 

works in a supply chain network. Compared to operation level, supply chain level has 

a broader scope. Finally, broad-economic level consider inter-relationship of variables 

in a bigger perspective as being focused in this research. This mainly involve 

optimization of economic variables such as export, import, total production and world 

demand. In a nutshell, it can be concluded that the analysis at operation level is 

conducted at the smallest scope whereas broad-economic level is done at the biggest 

scope, while supply chain level is in the middle of the two level. 

2.4.1 Linear programming 

Linear Programming (LP) was first proposed by Leonid Kantorovich, a Russian 

economist in 1939 (Schrijver, 1998). It is a mathematical technique used for 

optimization (Taylor, 2007). Theoretically, LP consists of objective function, decision 

variables and constraints. As its name suggest, LP assumes the relationship between 

variables as linear. The standard form of LP is shown by Equation 2.1 as adapted from 

Luenberger and Yinyu (2008), where bi, ci, and aij are fixed real constants, and the xi 

are real numbers to be determined. 

                                𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑐1𝑥1 + 𝑐2𝑥2 + ⋯ + 𝑐𝑛𝑥𝑛  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑛𝑥𝑛 = 𝑏1  

                                                     𝑎21𝑥1 + 𝑎22𝑥2 + ⋯ + 𝑎2𝑛𝑥𝑛 = 𝑏2  

                                               :                                                : (2.1) 

                                                     𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + ⋯ + 𝑎𝑚𝑛𝑥𝑛 = 𝑏𝑚  

                                           𝑎𝑛𝑑 𝑥1 ≥ 0, 𝑥2 ≥ 0, … , 𝑥𝑛 ≥ 0,  
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In general, LP has been used to solve the management and operation problem in palm 

oil industry. In 1998, Tan and Fong (1998) employed LP programming to model 

strategic decision in Malaysia palm oil plantation. The objective of the model is to 

maximize the revenue in a risky condition done by penalizing negative returns. In this 

model, under a certain price condition an optimum crop production combination for a 

perennial plantation is identified. Another study by Murugan, Choo, and Sihombing 

(2013) designed LP model for palm oil mill processing to optimize the production 

planning and minimize production cost. Simplex method was used to solve the linear 

equations. The research has thought to be successfully replicating the real palm oil mill 

processing system. However, the author admitted that the inclusion of stochastic 

element from the actual oil and kernel extraction rate are important but cannot be 

captured using LP. In another case, Valizadeh et al. (2014) uses LP for optimal planning 

of biofuel supply chain in order to minimize the total operational cost for the production 

of biodiesel from palm oil and jatropha in Malaysia. Although the optimal cost has been 

successfully found, one of the limitation of the study is that the model did not 

incorporate uncertainties from feedstock, demand and price which may result into better 

analysis. 

LP has also specifically been used to maximize the profit by holding onto set of limited 

resources in palm oil plantation. For instance, Nwawe et al. (2008) used LP to find 

optimum planning for palm oil and its combination inputs including capital and labour 

in regions of Nigeria. This is to guide farmers in Nigeria with economic rationale for 

the choice of food crops and oil palm. In similar fashion, Suksaard and Raweewan 

(2013a) used LP to maximize profit of entire palm oil supply chain. However, they 

optimize the demand size of CPO and crude palm kernel as well as palm oil product for 

achieving maximum profit. Another research with profit maximization is by Silvia et 
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al. (2016) that applied LP on Output Unit Price Cobb-Douglass Profit Function to 

maximize profits with limited resources available in smallholder palm oil farm in Aceh 

province Indonesia. The resources include the availability of plantation area although 

they had excluded the importance of incorporating old plantation area as one of the 

constraint. 

Apart of maximizing profit, LP also has been used for minimizing total cost associated 

with transportation in palm oil industry. As an example, Nwauwa (2012) found an 

optimal transportation scheme that can satisfy regional demands in Nigeria while 

minimizing total cost of transportation. The author states the usefulness of LP for 

analysing economics related problem in palm oil industry. Further, in 2016 the author 

complement their method with Ravallion model and spatial equilibrium model for 

finding the market integration of palm oil market and determine values for price, 

quantities and trade flows between spatially separated regions and markets in Nigeria 

(Nwauwa, Adenegan, Rahji, & Awoyemi, 2016a; Nwauwa, Adenegan, Rahji, & 

Olaniyi, 2016b). In another study, Suksaard and Raweewan (2013b) uses LP to find 

optimal land allocation for plantation in each region and to specify distribution route 

moving FFB to mills. The objective of the model in this study is to minimize cost of 

management in CPO and crude palm kernel production. 

Based on the review made, it is found that one of the major limitation of LP is that the 

assumption of linearity among variables in the problem domain. Real world application 

however prove that most of the time the relationship involves non-linear and stochastic 

elements. 
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2.4.2 Non-linear Programming 

To cater the nonlinearity problem, nonlinear programming (NLP) was introduced in 

1951 by Kuhn and Tucker (1951). Unlike LP, NLP is the process of solving an 

optimization problem where some of the constraints or objective function are nonlinear 

(Bertsekas, 1999). In the palm oil study, not many research has been found adopting 

NLP. For instance, Banitalebi et al. (2016) employed NLP to minimize the total 

operational cost in palm oil plantation management. In this study, the author has 

considered two state variables as the density of the young palm oil trees and the part of 

biomass that can produce oil. Furthermore, the author has also demonstrated a 

numerical simulations with two situation where optimal control being applied and not 

being applied. The application of NLP is technically appropriate due to the presence of 

nonlinearity element of the mathematical model. However, one of the challenges in 

dealing with nonlinear problems even with the used of NLP is the high probability of 

getting stuck in local optimum (Chinneck, 2006). 

2.4.3 Stochastic Programming 

Stochastic programming (SP) is a method of solving optimization problem involving 

uncertainties. SP is the extension of LP and NLP to decision models where coefficients 

(parameters) are not known with certainty and have been given a probabilistic 

representation. In limited palm oil research adopting SP, Azadeh, et al. (2014) applied 

SP to optimize tactical decision in the biofuel supply chain network. In this study, 

biofuel demand and price are the main sources of uncertainties that affect the operations 

of the biofuel supply chain and modeled using scenario-based approach. In addition, 

Geometric Brownian motion was used for dependent price formulation. 
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As SP is the extension of LP and NLP with probabilistic representation, the common 

problem with local optima in nonlinear problem is expected with the adoption of SP 

(Hannah, 2015). 

2.4.4 Dynamic Programming 

Dynamic programming (DP) was first introduced by Richard Ernest Bellman in 1953. 

The main attribute of DP is that it divides a problem into a number of sub-problems 

where a stage wise solutions starts with the smallest sub-problem (Bhowmik, 2010). 

For instance, in finding optimal replanting policy that has minimum carbon dioxide 

emission, Diban et al. (2016) employed DP over a finite time horizon for commercial 

agriculture plantations in Malaysia. The advantages of using DP is that it consider all 

possibilities in reaching optimal value including non-economical solution of replanting 

the trees at early ages. However, in this study some modification are required for DP in 

order to exclude unfavourable alternatives. Bhowmik (2010) highlight that among 

limitation of DP is that it is only highly effective on object which are linearly ordered 

and cannot be rearranged such as characters in string. Furthermore, it is difficult to write 

code that evaluates sub-problems in the most efficient order (Wagner, 1995). 

2.4.5 Metaheuristics 

Metaheuristics is a technique applied to find the best-so-far solution in a feasible region. 

To the best of our knowledge, only one research has been found applying metaheuristic 

method for finding optimal solution in palm oil studies. Study by Utama, Djatna, 

Hambali, Marimin, and Kusdiana (2012) had used Ant Colony Optimization (ACO) to 

search the most optimum path of palm oil based bioenergy supply chain. In this 

research, ACO has been improved for the usage in multi objectives supply path 
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problem. However, one of the limitation of ACO is that the convergence time is 

uncertain which makes the use of ACO is experimental and non-practical (Selvi & 

Umarani, 2010). 

2.4.6 Summary of Optimal Solution Search Method in Palm Oil Domain 

The whole range of techniques used in palm oil industry domain is listed in Table 2.3. 

To conclude, optimization technique reviewed in this section has been widely employed 

for both operation and supply chain level analysis. However, no studies has been found 

using optimization technique for broad-economic level analysis. Furthermore, most of 

the optimization study has utilized traditional mathematical optimization method. The 

major limitation of the traditional optimization method employed is that its 

effectiveness in static and non-dynamic environment only. Further, as the dimension of 

the problem increase (complexity arise), the search for optimal solution can be drifted 

beyond infinite time and becomes impractical in terms of process time. This is true for 

a non-deterministic polynomial (NP) problem. On that account, an alternative method 

like metaheuristics offers the capability to find nearly optimal solution in reasonable 

time frame by streamlining certain process and executing search effort from predefined 

feasible area. Although the use of metaheuristics are increasingly prevalence in other 

problem domain, only limited study has been found adopting the method in palm oil 

industry domain. Next section is a review of several metaheuristic methods which are 

effective for optimal solution search on palm oil problem domain. 
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Table 2.3 

 

The Review of Optimization Technique in Palm Oil Related Studies 

Type of optimization 

method 

Analysis level Reference 

Linear programming Operation Tan & Fong (1988); Murugan et al. 

(2013); 

 

Supply chain Nwawe et al. (2008); Nwauwa (2012); 

Suksaard & Raweewan (2013a); Suksaard 

& Raweewan (2013b); Valizadeh et al. 

(2014); Nwauwa et al. (2016a); Nwauwa 

et al. (2016b); Silvia et al. (2016) 

 

Broad-economic - 

 

Non-linear 

programming 

Operation - 

 

Supply chain Banitalebi et al. (2016) 

 

Broad-economic - 

 

Stochastic 

programming 

Operation - 

 

Supply chain Azadeh et al. (2014) 

 

Broad-economic - 

 

Dynamic 

programming 

Operation - 

 

Supply chain Diban et al. (2016) 

 

Broad-economic - 

 

Metaheuristics Operation - 

 

Supply chain Utama et al. (2012) 

 

Broad-economic - 

 

 

2.5 Potential Metaheuristics Methods to Solve Palm Oil Optimal problem 

Metaheuristics is a higher level procedure designed to find heuristics that may provide 

sufficiently good solution to optimization problem (Bianchi, Dorigo, Gambardella, & 

Gutjahr, 2009). In combinatorial optimization, metaheuristics can often find good 
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solutions with less computational effort by searching over large set of feasible solutions 

compared to other optimization method. According to Blum & Roli (2003), most 

metaheuristics shared the similar attributes such as: 

1. A form of strategies to guide search process; 

2. Objective to efficiently explore the search space in order to find near-optimal 

solutions; 

3. Metaheuristics are approximate method and usually non-deterministic; and 

4. Metaheuristics are not problem-specific. 

Unfortunately, limited studies have been found applying metaheuristic method in palm 

oil industry domain. There is a plethora of metaheuristics methods available in the 

literature. However, this research only focuses on the attributes of three metaheuristics 

method namely Tabu Search (SA), Simulated Annealing (SA) and Genetic Algorithm 

(GA), and their limitations. This is towards consideration of suitable metaheuristics 

method to be applied in this research. 

2.5.1 Tabu Search 

Tabu search (TS) was introduced by Fred W. Glover in 1989, employing local search 

methods used for mathematical optimization (Glover, 1989, 1990a). The name Tabu is 

originated from the word Taboo means something that is non-usual. Conceptually, in 

TS process the previously visited search spaces are marked as ‘tabu’ and the search 

process is forbid to re-visit this space due to the presence of local optima solution 

(Mayer, 1998). Thus, the search process eventually is expected to obtain a global 
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optimal solution. TS recorded the visited search space in what is called ‘tabu list’. One 

of the most important controlled element in TS is thus the length and method of 

maintaining the tabu list (Glover, 1990b). There is an improved TS which employed a 

number of advanced strategies for dynamically managing the tabu list called the 

reactive tabu search strategy (Battiti & Tecchiolli, 1994). 

TS can be viewed as an iterative technique which explores a set of problem solutions, 

X, by repeatedly making moves from one solution s to another solution s’ located in the 

neighbourhood N(s,k) of s with k as the number of iteration (Glover, 1993). The tabu 

list is memorized in N(s,k). These moves are performed with the aim of efficiently 

reaching a solution that qualifies as good by the evaluation of some objective function 

f(s) to be minimized.  The generic algorithm for TS is shown in Figure 2.1. 

 

Figure 2.1. The generic algorithm for Tabu Search (adapted from Glover, 1993) 
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Though TS has been employed in various problem domain, researchers has argued of 

its effectiveness in a larger application (Mayer, 1998). One of the major limitation is 

the difficulty of Tabu search to maintain an adequate length of the memorised tabu list 

(Glover, 1990b). Larger list are needed to prevent the process from cycling back to sub-

optimal solutions (Glover, Taillard, & Werra, 1993).  

2.5.2 Simulated Annealing 

Simulated Annealing (SA) is a heuristic method based on the cooling process in 

metallurgy developed to solve deterministic combinatorial optimization problems 

(Kirkpatrick et al., 1983). SA was first formulated by Khachaturyan, Semenovskaya, 

and Vainshtein (1979) using computer simulation to mimic annealing and cooling of 

such a system to find its global minimum. SA search process involves a slow and 

thorough search in order to find the global optimum solutions, albeit there is no 

guarantee that global optimum solutions will be obtained (Ingber, 1993). In SA, the 

challenging part is to control the rate of cooling, where fast cooling rate prevent the 

convergence to global optimal solutions whilst slow cooling rate consume longer time. 

SA has been widely used in various problem domain including groundwater 

management (Kuo, Michel, & Gray, 1992), forestry (Lockwood & Moore, 1993), and 

dairy farming (Mayer, Belward, Burrage, & Stuart, 1995).  

The generic SA algorithm is shown in Figure 2.2. The basic SA algorithm is known as 

Boltzman annealing (Du & Swamy, 2016).  T is a control parameter which controls the 

magnitude of the perturbations of the energy function E(x). The cooling schedule for T 

is critical for efficiency in SA procedure. At high T, the system ignores small changes 

in the energy and approaches thermal equilibrium rapidly, that is, it performs a coarse 

search of the space of global states and finds a good minimum (Du & Swamy, 2016). 



                                                                 

 57 

As T is lowered, the system responds to small changes in the energy, and performs a 

fine search in the neighbourhood of the already determined minimum and finds a better 

minimum (Du & Swamy, 2016).    

 

Figure 2.2. Generic algorithm for Simulated Annealing (adapted from Du & Swamy, 

2016) 

Even though SA is effective search method in certain problem domain, it mainly has 

been criticised on its slow process particularly in order to find satisfied global optimum 

solutions. To overcome this issue, Ingber (1993) demonstrate a modified SA called 

Simulated Quenching (SQ) which at least in some cases can perform faster than SA 

with at par accuracy. 

2.5.3 Genetic Algorithm 

In evolutionary computation (EC) field, optimization problem is often solved using 

heuristic approach. A heuristic optimization is also known as an approximation method 

due to the concept of randomness in order to search for the optimal solution (Das, 

Abraham, & Konar, 2009). One of the popular heuristics approach in EC field is 
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Evolutionary Algorithm (EA) which falls under the population-based evolutionary 

computing techniques from the big heuristics method family. EA consist of GA, 

Evolutionary Programming, Evolution Strategy, Genetic Programming and hybrid of 

any of EAs technique. Among all EA method, GA is the most commonly used due to 

its successful achievement when applied to the real world problems (McCall, 2005). 

GA were first introduced by John Holland in 1975 and was then being further developed 

by David Goldberg (Goldberg, 1989; Mitchell, 1996). 

GA basically depicts the biological evolution process, in which the individual in GA 

processed undergoing reproduction is named as chromosomes. Each basic unit of a 

chromosome is named a gene. A chromosomes can be defined as a vector or string 

where each of its component is a possible form a possible set of values as shown in 

Figure 2.3. The gene value in a particular chromosome is called as allele. The allele can 

be in the form of binary coded, real (decimal) coded or string. 

 

Figure 2.3. Gene in a chromosome 

A group of this vectors combined make up the population. Number of population 

(denoted as N) is generated as an initial population for the GA operation. Small 

population size may decrease the effectiveness of exploring the search space, whereas 

population that is too large may substantially increase the time to obtain good solutions. 

There was research that relates the population size to the string length (Reeves & Rowe, 

2003). However in many cases, the population size of 50 is sufficient as suggested by 
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Reeves and Rowe (2003). A pseudo-code for a common version of the algorithm is as 

shown in Figure 2.4 below. 

 

Figure 2.4. Genetic algorithm pseudo-code (Source: Rahman, 2014) 

Each of the steps as implied by the pseudo-code can be done with different operators, 

functions, or values. There are many elements in GA that provide flexibility in coming 

up with an appropriate algorithm for the search space, which makes GA more 

complicated compare to neighbourhood search method. The general GA process is 

shown in Figure 2.5. 
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Figure 2.5. The generic structure of genetic algorithm (Source: Rahman, 2014) 

GA function by reproducing the population to gain a better chromosomes. A common 

GA that produces good results in many practical problems is composed of three 

operators namely selection, crossover and mutation (Goldberg, 1989).  

Selection operators: Selection plays a very important role in GA process. The widely 

used method of selection is roulette-wheel where individuals are given a part of the 

wheel proportional to their probabilities obtained by scaling. Then, the wheel is spun n 

times where n denotes the number of individuals or parents needed for reproduction. 

The fittest individual will have higher probability to be chosen. More effective way to 

choose individuals from the wheels is to create one random number and the increment 

of equal size (1/n) is continued. Another method of selection is tournament, where τ 

chromosomes are selected randomly and the fittest is chosen among the τ. This 

procedure will be repeated n times. Sometimes there will be variations of this 

tournament where the best string does not always win but wins with a chance of p < 1. 

These are called soft tournaments whereas the former type is called strict tournament 

(Reeves & Rowe, 2003).  

Crossover operator: Process of combination or ‘mating’ is the next process to produce 

an offspring in GA process and is called crossover. The most basic crossover type is 

single point crossover as shown in Figure 2.6. In the chromosomes, the position of gene 

that will undergo crossover is fixed or determined randomly. Then, the new offspring 

are created by swapping all genes after that point (Booker et al., 2000). 
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Figure 2.6. Example of single point crossover 

Another type of crossover is multipoint crossover which is the extension of the single 

point crossover. In this crossover type, two or more points are randomly chosen from 

two parents and swapping the corresponding segments as illustrated in Figure 2.7. 

However, multi-point crossover is not suitable for problems with short structure as the 

population may become homogenous after many generations (Spears & De Jong, 1990). 

 

Figure 2.7. Example of multi-point crossover 

Mutation operator: Mutation is also a process where the gene in a chromosome is 

changed or altered. But unlike crossover, the mutation operator is simply changing the 

value of gene randomly in one chosen chromosome. Mutation process prevents the 

population from becoming too identical each other to avoid local minima in the 

evolution process (Eshelman, 2000). There are two widely used type of mutations 

which are Uniform Mutation (Michalewicz, 1994) and Power Mutation (Deep & 
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Thakur, 2007). Uniform mutation replace gene with a random value between the 

constraints’ lower and upper bounds. On the other hand, power mutation is the 

enhancement of uniform mutation that is controlled by its index, where a small index 

value produces less perturbance in the solution whilst large index values achieve large 

diversity (Rahman, 2014).  

In GA process, the crossover and mutation can both or either one being applied (Reeves 

& Rowe, 2003). The selection of probabilities of implementing crossover and mutation 

is a strategy in the GA process. In this case, both crossover and mutation can be applied 

to obtain offspring for next generation, or neither of them is used where parent’s gene 

is copied to become the offspring of next generation without any alteration. Strategy to 

apply either of them could be chosen where at least one of the two is applied. This 

would mean a certain part of the population is created by using crossover and the rest 

using mutation (Reeves & Rowe, 2003). 

Elitism: To retain the high quality chromosome, elitism concept is featured, where the 

fittest chromosome is forwarded to next generation without undergoing crossover and 

mutation process. In GA process, reproduction of population may result to the next 

generation contain or not contain the best individual from the previous generation. 

Losing the best individual cannot be tolerate in the works of optimization. Thus, to deter 

this problem, born the idea of elites (De Jong, 1975). Elites or elitism, is the concept 

where the best individuals from previous population are allowed to pass on to the next 

generation to avoid losing best solution (López-Pujalte, Bote, & Anegon, 2002; Sharief, 

Eldho, & Rastogi, 2008). Elitism helps in obtaining near optimal solution by avoiding 

unnecessary gene modification (through crossover and mutation) which ‘kill’ the fittest 

chromosome during mid-optimization process. 
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A complex problem in real world often involve dynamic elements thus in this case the 

algorithm in GA is manipulated to expand its ability in dynamic environment (Branke, 

1999). Basically, there are several GA-based optimization method designed to solve 

dynamic optimization (DO) problem in EC fields (Branke, 1999). There are method 

like hypermutation (Cobb, 1990), variable local search (Vavak, Jukes, & Fogarty, 

1997), thermodynamical GA (Mori, Kita, & Nishikawa, 1996), multinational 

evolutionary algorithm (Ursem, 1999), forking GA (Tsutsui, Fujimoto, & Ghosh, 1997) 

and shifting balance GA (Oppacher & Wineberg, 1999). These variance method of GA 

were designed to deal with DO problems by exploiting the search population or 

instilling the memory in the search population.  

In general, solving a DO problem in evolutionary computation field using GA requires 

the modification of its algorithm to cater the need of the dynamic environment. 

Compare to hybrid method, altering the algorithm in GA is much more difficult and it 

requires profound programming skill. 

2.5.4 Comparison of Tabu Search, Simulated Annealing and Genetic Algorithm 

As all the aforementioned metaheuristic methods have their distinctive traits, 

researchers had been comparing the effectiveness of TS, SA, and GA in solving a 

combinatorial optimization problem. For instance, Mayer compared the performance 

of SA and GA in a complex dairy farms problem (Mayer et al., 1995). The authors had 

concluded that SA is more reliable method for optimising simulation models especially 

via its more efficient modification of QS but with critical control of the temperature 

decline rate. GA on the other hand had shown a good rate of convergence but not as 

effective as SA in terms of final solutions. However, the authors argued that GA may 
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overcome SA in higher dimensional problems because SA may be facing inefficiencies 

issues in terms of having the right cooling schedule to produce optimum solution. 

In further research, Mayer, Belward, & Burrage (1998) had used the same dairy farm 

model to include TS in the previous comparison test between SA and GA. The results 

found TS may be effective for discrete allocation-type problems but not as effective for 

optimizing models with continuous variables and higher dimensionality. The authors 

conclude that in a typical agricultural models, both SA and GA appear to be efficient 

and effective in identifying the global optimal solutions as compared to TS.  

There is also an attempt to integrate the main features of TS, SA and GA as being done 

by Thamilselvan and Balasubramanie (2012). Based mainly on GA, TS method is used 

to generate new members in GA population while SA helps in accelerating the 

convergence by GA. The integrated method was applied to the job shop scheduling 

problem and has been found to increase the speed of the convergence of the optimal 

solutions. The effectiveness of the integrated method however has not being tested in 

highly complex problem such as agricultural system. 

2.5.5 Summary of the Potential Metaheuristics Method 

Nevertheless, individually TS is not suitable to solve high dimension optimization 

problem as compared to SA and GA. The integration of the three methods may also be 

possible to increase the effectiveness of the method in solving optimization problem 

but the effectiveness has not being tested in typical agricultural system. Direct 

comparison between SA and GA in agricultural system has also been tested and 

generally both method are effective at least at some extent to be used in high dimension 

optimization problem like in palm oil industry. However, as highlighted in the previous 
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studies, GA may perform better than SA in highly complex model. Furthermore, as 

compared to GA, obtaining sufficiently good solution using SA is more difficult 

because the need of having right scheduling of T, or else there will be inefficiency 

issues in term of acceptable length of time versus good enough solution (Mayer et al., 

1995). On that account, GA has been deemed to be more suitable to be hybrid with SD 

in achieving the research objective in this study. 

In next section we explore the integration of SD and optimization method done in 

previous researches. This is followed by the review of the research development on SD 

and GA integration throughout the time gathered from past researches. 

2.6 System Dynamics and Optimization 

Generally, improvement of the system behaviour is the paramount goal need to be 

achieved in any of SD study. SD has been striving to be effective on the use of 

optimization tools even though it provide efficiency and improvements during the 

model building and policy design process. With the growing of quantitative data and 

trend towards the aspiration for quantified results, abundant use of optimization tools 

in SD methodology is inevitable (Graham & Ariza, 2003). Figure 2.8 illustrate the time 

line of SD and optimization works for the past 40 years. 
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Figure 2.8. Time line of system dynamics and optimization works 

Initially, traditional approach of trial-and-error was used for policy design process, the 

informal process where the modeller applies parametric or structural changes to the 

model on a trial-and-error basis (Coyle, 1977). However, intuitive ability of modeller 

to produce an acceptable policy options bound the traditional approach. Hence, more 

analytic and structured approach to replace the traditional trial-and-error approach 

should be developed (Porter, 1969). 

2.6.1 System Dynamics with Search Methods 

Structured approach of policy design process in SD has utilized two main optimization 

tools from control theory (optimal control) and search algorithms. In the early edition 

of “System Dynamics Review” journal, there has been a lot of interest to apply control 

theory methods to policy design process. The used of control theory in SD was mainly 

due to the reason to understand and to provide policies that manage the system 

according to certain goal. Some of the pioneer studies of modal control theory method 

in SD are done by Mohapatra and Sharma (1985) and Özveren and Sterman (1989). 
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There was also combination of optimal control and modal control method as proposed 

by Macedo (1989). However, these methods were criticized because they were difficult 

to be employed and the modeler should have a good mathematical background. 

The incompatibility of control theory and SD can be explained from the type of problem 

that they are focused in. In SD, model development is very critical and it creates a 

critical thinking environment based on the feedback received from the other variables 

in the model. In comparison, control theory basically assumes model as black box or 

set of dynamic equations that creates outputs based on given inputs. As such, unlike 

control theory, SD offers more flexibility for policy design process. Furthermore, SD 

has the ability to deal with uncertain behaviour because the model parameters and 

structures can be changed according to the modeling purpose. There were few studies 

like Wolstenholme (1986) and Yasarcan (2003) that proposed a generic structural 

changes leveraging the flexibility in SD method.  

There is also other wing of optimization in SD by using heuristic proposed by past 

studies. Pioneer of this method, Keloharju (1977) used heuristic to optimize parameter 

values according to a certain objective function and has introduced the optimization 

package called Dynamic System Model Optimizer and Developer (DYSMOD). As 

stated by Keloharju, the optimization process should be seen as simulation through 

repeated optimization instead of optimization via repeated simulation. Then, he 

combined control theory rules of thumb with Keloharju’s method (Coyle, 1985). Other 

researchers have followed in employing simulation-based algorithmic search. For 

instance, Wolstenholem and Al-Alusi (1987) has used DYSMOD package in an army 

defence model to optimize the army strategy. Furthermore, Dangerfield and Roberts 

(1999) has used hill-climbing method to fit model to AIDS data to obtain the 



                                                                 

 68 

distribution incubation period. Graham and Ariza (2003) on the other hand used SA to 

present the application of policy design by parameter optimization. 

SD optimization has evolved from the traditional trial-and-error practice to the more 

structured optimization with the application of control theory and search algorithm like 

heuristics method. Due to the complexity and non-compatibility of control theory with 

SD, heuristic method is deemed to more suitable to complement SD for optimization 

purpose. This is due to its flexibility and compatibility of heuristic method to be used 

as third-party method. 

2.6.2 System Dynamics Integration with Genetic Algorithm 

GA has been potentially an effective algorithm for highly non-linear solution spaces 

due to its ability of avoiding being trapped in local optima. Thus, various studies has 

been found in literature experimenting the possible integration between SD and GA. 

Grossman (2002) employed GA optimization in SD on the Information Society 

Integrated System (ISIS) model for policy optimization purpose. Interestingly, the 

author used the matrix tool to compare the distance of optimized parameters between 

several objective functions to facilitate the process of choosing the best policy. There 

are five distinct objective functions which are aimed to be optimized individually. Then, 

the correlation among objective functions were calculated to find the best combination 

of policy variables in order to equally satisfy all objectives function. These study 

demonstrate the use of hybrid SD-GA model to solve multi-objective optimization 

problem. However, the process was complicated in terms of SD and GA integration. 

That is, SD model which was developed using Stella has to be converted into C++ 

programming code before integrating with GA. These hectic process will be a major 

hindrance for highly complex SD model with countless variables and feedback loops.  
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Similar with Grossman, Duggan (2008) introduce Multiple Objective Optimization 

(MOO) framework which employed SD and GA that is promising in solving multiple 

objective function in two agent beer game model. In this study, there are two objective 

functions which are to minimize retailer cost and wholesaler cost. The author used the 

‘dominate and non-dominate’ concept to obtain the best solution among two conflicting 

objective function. He also expressed the importance of human intervention or known 

as ‘higher order information’ approach in the final stage of decision making process. 

Although the use of SD-GA is effective, the change in policy variables were only done 

at the beginning of the simulation where optimal parameter was searched and fixed in 

the model to be used for the rest of the simulation. In certain problem domain like palm 

oil industry for instance, the policy variables may be needed to be changed in specific 

point in the model time line. 

Similarly, Alborzi (2008) employed SD and GA integration with Technique for Order 

of Preference by Similarity to Ideal Solution (TOPSIS) ranking system to solve the 

multiple objective function in production and inventory model. The optimization 

process starts with GA generating all the possible solution and TOPSIS helps in ranking 

the solution. Then, the best ranked solutions were used in SD model for simulation. The 

integration of SD and GA in this study however was difficult as the model need to be 

run manually for each chromosomes produced by GA. The limitation of this study is 

similar as in previous studies, where the changes of policies were fixed into the model 

at the beginning of the simulation. 

In another study, Eksin (2008) had used SD and GA to meet multiple goals in the 

behaviour of dynamic parameters. The author demonstrated the hybrid model on 

electric circuit model and the generic stock management model. In each of the problem, 
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the multiple objective functions were set by using different weight. This study 

emphasize the important role of time horizon for a simulation based optimization. 

However, the limitation of this study is similar with previous studies, where the change 

of policy variables were fixed into the model at the beginning of the simulation. 

On the other hand, study by Chen and Jeng (2004) transformed SD model into a 

specially designed neural network. Next, they used GA to generate policies by fitting 

the desired system behaviour to patterns established in the neural network. The author 

claim that this approach is flexible where it is capable of finding policies for a variety 

of behaviour patterns including stable trajectories. However the modeler have to 

convert SD to partial recurrent network (PRN) before integrating the model with GA, 

which may become difficult when the SD model increase in complexity . This approach 

has been further explored by Yucel and Barlas (2007) which also introduce a pattern 

recognition algorithm together with SD and GA in the pattern-based system 

optimization. However, the pattern recognition algorithm are lacking of numeric 

features of the desired pattern in the objective function in the search algorithm. Instead, 

this approach only focus on pattern seeking rather than numerical values where some 

policies may require a numerical-oriented policy target and changes. 

Finally, instead of using PRN, Chen, Tu, and Jeng (2011) extended their study by using 

recurrent neural network (RNN) to be integrated with SD and GA. Contrary with PRN, 

RNN has state units added to the input layer and are connected by the outputs units 

directly. RNN is closely equivalent to a traditional stock and flow diagram in SD. 

Nevertheless, there is still the need of converting SD model to RNN model.  
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The key studies related to the experimentation of integration between SD and GA 

published in journals and conference proceedings is summarized in Table 2.4 below. 

Table 2.4  

 

Published Literature on the Integration of System Dynamics and Genetic Algorithm 

Reference Type of model Description Main limitations 

Grossman  

(2002) 

System dynamics 

and genetic 

algorithm 

Demonstrate the use of 

genetic algorithm with 

system dynamics 

models. 

The process of transforming 

STELLA models to C++ code 

is hard and tedious. Need an 

expert in programming. 

 

Chen & Jeng 

(2004) 

System dynamics 

and genetic 

algorithm with 

partial recurrent 

network 

 

Proposes a policy 

design method for 

system dynamics based 

on neural network and 

genetic algorithm 

approaches. 

 

The SD model has to be 

converted to neural network 

model before integrating with 

genetic algorithm. 

 

Yucel & 

Barlas (2007) 

System dynamics 

and genetic 

algorithm with 2D 

pattern algorithm 

Develop support tool 

that can be used for 

pattern-based parameter 

search, which may be 

utilized in model 

identification, 

validation and policy 

analysis stages. 

 

Lack of numeric features of the 

desired pattern in the objective 

function of the search 

algorithm. Only focus on 

pattern seeking rather than 

numerical values. 

 

Eksin (2008) System dynamics 

and genetic 

algorithm 

Demonstrate the use of 

parameter search to 

meet multiple goals in 

the behaviour of 

dynamic system. 

The search for optimal policy 

variables were meant to be 

fixed in the model in the 

beginning of the simulation. 

 

    

Duggan 

(2008) 

System dynamics 

and genetic 

algorithm 

Propose the synthesis of 

two analytical 

approaches to support 

decision making in 

complex systems. 

 

The search for optimal policy 

variables were meant to be 

fixed in the model in the 

beginning of the simulation. 

 

Alborzi 

(2008) 

System dynamics 

and genetic 

algorithm with 

TOPSIS 

Propose the integration 

of system dynamics and 

genetic algorithm with 

the help of multi criteria 

objective function 

evaluator. 

 

The integration of system 

dynamics and genetic 

algorithm is difficult, where 

some process has to be done 

manually 

 

Chen, Tu, & 

Jeng (2011) 

System dynamics 

and genetic 

algorithm with 

neural network. 

Propose a policy design 

method for SD models 

based on recurrent 

neural networks. 

The SD model has to be 

converted to recurrent neural 

network model before 

integrating with genetic 

algorithm 
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The integration between SD and GA shows a huge potential to be used in decision 

making process. Hence, there are several studies found employing the hybrid model of 

SD and GA in a real case from various problem domains.  

Satsangi, Mishra, Gaur, Singh, & Jain (2003) had developed a SD model to analyse 

dynamics of system behaviour in urban management model. This study trained ANN 

with SD model for fast feature extraction of the dynamics of the integrated urban model. 

Then, GA was used to optimise simulation trajectories for alternative policy scenario 

of input variables. The author conclude that the hybrid model of SD and GA has been 

effective in providing quick response in solving the city problem in a dynamic 

integrated urban system. 

Pereira and Saraiva (2011) had used hybrid model of SD and GA with two module to 

solve the generation expansion planning problem in electrical sector. The first module 

uses SD to capture the electricity demand and market price of the different generation 

technologies while the second module used GA to solve the individual investment 

problem for each generation. In the optimization process, first the information regarding 

the behaviour of electricity prices and demand were captured using SD. Then, GA used 

this information to produce the individual expansion plans for each generation agents. 

These become the input for simulating SD model again to update the evolution of price, 

demand and the capacity factors. The author conclude the hybrid model has been a great 

help in assisting the investment plans due to its capability in getting more insight on the 

problem and taking more robust solutions.  

Akopov (2012) on the other hand integrate SD and GA in order to obtain solution that 

can maximize shareholder value in an oil company. This study uses GA optimization 
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algorithm with fading selection due to the complex procedures in the problem is 

stipulated by non-linear dependence which is classed as NP-complete problems of high 

dimensionality. The author claimed that the proposed SD-GA model has helped in 

providing an efficient search procedure of suboptimal investment decisions as 

compared to the traditional economic model. 

In another study, Yu and Wei (2012) proposed a hybrid model based on GA and SD for 

coal production environmental pollution control in China. The used of GA with SD in 

this study was an attempt by the author to reduce the subjectivity derives from human-

sketched lookup function as in previous study using SD in energy problem domain.  

From the results, it was shown that GA performs well in optimizing the desired 

parameters of SD model, as well as in simulating the historical data with high degree 

of accuracy through model calibration. GA has been found to successfully solve the 

subjectivity of artificial parameters setting and lookup function extensive used in SD 

modeling. 

In another problem domain, Hussein and El-Nasr (2013) applied SD and GA to 

optimize budget distribution in the quality education assessment model. In this study, 

the hybrid model was used to give an idea to the quality management planers on the 

impact of possible policy by optimizing the solution to achieve maximum education 

quality. SD model was developed to capture the complex relations that effect behaviour 

of the education quality model while GA helps in finding the best possible budget 

distribution while be able to provide the best quality of education. In addition, the 

author highlighted the importance of having robust SD model by involving all the 

related experts before the process of policy designing using GA optimization to achieve 

advance level of prediction. 
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On the other hand, Jahanpour, Afshar, and Alimohammadi (2013) uses SD and GA to 

solve conjunctive water use problem of a cyclic storage system in Kineh Vars Reservoir 

in Iran. The objective function of the study was to minimize the present value of costs 

of the conjunction water management at the reservoir. The author highlight the novel 

combination of SD methodology (as the simulation module) with GA (as the 

optimization module) to form a hybrid model. The developed hybrid model is capable 

of minimizing the total system cost while fulfilling the predefined water demands and 

satisfying all of the system constraints. The author stated that previous studies using 

SD in water management domain were limited to running a few simulation scenarios to 

find a setting of model parameter to achieve a better solutions. By using hybrid SD-GA 

model, this limitation has been removed by helping SD model to find the optimal 

solution to solve optimization problem. 

Finally, latest study by Skraba, Stanovov, Semenkin, and Kofjac (2016) uses SD and 

GA to search for appropriate transition strategies in the human resources management 

model. The structure of the organizational human resource system was developed using 

SD with GA developed to optimize the larger number of transitions, fluctuations, and 

recruitment coefficients in the SD model. In this study, the developed hybrid model was 

able to obtain optimal transition and recruitment coefficients without the undesired 

oscillations in the transitions between classes and in the shortest possible time. 

However, one of the challenge highlighted in this study is the possibility to provide two 

equally good strategies with different control vectors. 

Summary of the application of the hybrid model of SD and GA in various problem 

domains are shown in Table 2.5 below. 
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Table 2.5 

 

Published Literature on the Application of Hybrid Model of System Dynamics and 

Genetic Algorithm in Various Field of Studies 

Reference Problem domain Research objective 

Satsangi et al. (2003) Urban management To analyse dynamics of system 

behaviour in terms of various 

performance indicators representing 

city problems. 

 

Pereira & Saraiva 

(2011) 

 

Electrical sector To solve the generation expansion 

planning problem in competitive 

electricity markets. 

 

Yu & Wei (2012) 

 

Environmental control Proposes a hybrid model based on GA 

and SD for coal production–

environmental pollution load in China. 

 

Akopov (2012) Business and investment To maximize the shareholder value of 

an oil company 

 

Hussein & El-Nasr 

(2013) 

Education To optimize the budget distribution in 

the education quality model. 

 

Jahanpour et al. (2013) Water management To solve conjunctive water use 

problem of a cyclic storage system in a 

water reservoir. 

 

Skraba et al. (2016) Human resource 

management 

To search for appropriate transition 

strategies in the human resources 

model 

 

2.6.3 Summary of System Dynamics and Genetic Optimization Integration 

Past studies that combined SD and GA has become the subject of researches and shows 

promising outcome in returning the optimal solutions thus make it suitable for decision 

making process. However, some shortcomings have been spotted from their studies as 

follows: 

1) There is a need of converting the SD model into other programming code like 

C++ programming or neural network model to integrate the model with GA. 

This can be complicated and time consuming process especially for huge and 

complex problem. 
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2) The combination of SD-GA model were used for searching the optimal policy 

variables in which will be fixed into the model at the beginning of the 

simulation. However in a real case, policy maker may want to design a policy 

which is set to be implemented at specific point of time while achieving the 

desired target at another specific point of time. To address this issue, 

optimization model that capable of changing policy variable value at varying 

point of time while achieving the objective function is required. 

There are huge potential of SD and GA integration as the approach capable to solve 

dynamic optimization problem. This is possible because the dynamic nature of SD 

modeling when combined with the optimization ability of GA, may produce an 

effective dynamic optimization tool. However, the published of SD and GA studies 

reveals some shortcomings. Therefore, new variant of SD and GA integration model 

has to be further explored that can improve the capability and technical aspect of the 

methods. 

2.7 The Advantages of Integrating SD and GA in this Research Context 

This chapter has presented the prevalence used of econometrics and simulation 

modeling in the studies related to Malaysian palm oil industry. The review of literatures 

has accentuated the appropriateness of modeling approaches to facilitate the analysis 

related to the context of their study. However, there are very limited studies that put 

emphasis on finding optimal solutions to improve the model especially as long term 

policy option. 

In general, the need of capable method to capture the dynamic nature and underlying 

feedback process among the variables in the model is required in order to achieve our 
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research objectives. Furthermore, the method also has to acquire an effective 

optimization mechanism which needed to search for appropriate policy option. Hence, 

based on the review of literature, one of the suitable approach to be applied in this 

research is the combination of SD and GA optimization approach. Table 2.6 compiled 

the reason of integrating both methods towards achieving the research objectives. 

Table 2.6 

 

The Functionality of System Dynamics and Genetic Algorithm Towards Achieving the 

Research Objectives 

 Requirement of  research 
Methods 

System dynamics Genetic algorithm 

Process of identifying and evaluating 

the factor that influence palm oil 

industry behavior. 

SD model focus on feedback 

process in the system which 

covers related variables 

depending on the model 

context. 

 - 

Policy design process by looking 

from the wide perspective of the 

industry. 

SD offers analysis at macro-

level. 

 - 

Treat palm oil as the entities which 

moves around the system network. 

SD model a system with 

homogenous entities 

(similar at all level). 

 - 

Optimal solution needed in 

designing policies in complex 

system. 

 - GA optimization return 

sufficiently good solution 

and less likely to be stuck in 

local optima. 

Inter-operability between model and 

optimization tools.  

 - GA is compatible for 

integration with third party 

method. 

Optimal policy search in palm oil 

industry which is a dynamic complex 

system. 

SD is a dynamic-based 

modeling method. 

GA is a meta-heuristic 

optimization method. 
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The need of policy scenario 

evaluation and experimentation to 

improve the model. 

SD offers a platform to test 

several scenarios on key 

variables. 

GA optimization helps in 

optimizing the parameters 

within given constraints to 

achieve desired target. 

 

In principle, SD and GA seems to be a mutual-complementary method due to their 

individual criteria. As compared to econometrics method, SD is notable for 

incorporating the feedback process in a complex system. Besides, SD is suitable for 

modeling from macro perspective at strategic level where policy option is assumed to 

have comprehensive effects on the system behaviour. In addition, unlike ABM and DES 

where each entity or agent in a model is treat distinctively, SD model a system with 

homogenous entities as being deemed for palm oil in the industry model. 

In addition to the reason put forward above, other reason that makes SD suitable to be 

adopted in this study is discussed with regards to its capability as follows: 

(i) During intervention process, SD provides control on the studied system by 

maintaining other factors unmodified while modifying one factor, which allow 

the observation of the effect of the modification on the system (Sterman, 2000). 

In this study, variety of factors that influenced CPO production are incorporated. 

By controlling these factors, the policy maker can observe the impact on the 

whole system before any real world implementation. 

(ii) SD model have an advantage in dealing with a system where continuous change 

occurred over time (Ossimitz & Mrotzek, 2008). In this study, variables like 

CPO production, demand and prices are changing over time thus its impact on 

palm oil industry can be effectively captured using SD. 
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(iii) SD has the ability to represent non-linear relationship between variables using 

lookup table function. In this study, there are numbers of situations with non-

linear relationship and feedback process appears in the palm oil industry model. 

For instance, the function relating CPO price influence on CPO demand which 

is better represented with s-shape relationship. Lookup table function is found 

to be effective in realizing this kind of relationship. 

(iv)  It is widely accepted that SD offers an approach where it is possible to look at 

the system as a whole and not isolation. On that account, in this study SD allows 

the consideration of factors from oil palm plantation, labour and palm-based 

biodiesel sector in one model. 

On the other hand, GA is needed in helping to find sufficiently good solution in the 

complex palm oil model mainly because the problem itself is a NP-hard problem 

considering the nature of interdependencies between small sub-systems in the industry. 

The model consist of many inter-connected variables, where changes in each variable 

will influence change in other variables. These dynamicity makes finding optimal 

policy to increase CPO production in palm oil industry as a complex or NP-hard 

problem. 

Furthermore, GA is selected over other aforementioned optimization methods mainly 

because of its capability in returning sufficiently good solution with less likely to be 

stuck in local optima. Furthermore, GA is a highly flexible optimization algorithm with 

compatibility of integration with third party method.  

In theory, the integration of SD and GA is seen to be capable of solving a dynamic 

optimization problem in a complex system like palm oil industry. This is because, SD 
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is a dynamic-based modeling method, whereas GA is a metaheuristic optimization 

method. Thus the combination of these two methods are expected to complement each 

other. Moreover, this research involves policy scenario evaluation and experimentation 

in dynamic environment. While SD offers the platform to evaluate and test policy 

options, integration with GA will facilitate the process of searching sufficiently good 

solutions in order to achieve desired policy target. 

2.8 Key Papers in Modeling Palm Oil Industry 

This section lists a few studies that used SD to model palm oil industry. The differences 

of each model are discussed to help in explaining the contribution of our research 

model. The summary of each paper are listed in Table 2.7.  

In conclusion, none of the studies have the objective similar with this study. All of the 

studies focus on CPO prices and biodiesel sector. In terms of modeling scope, our 

research incorporate more variables in several sub-models combined into a holistic 

model. The four models (as in Yahaya et al., 2006; Shri Dewi et al., 2010; and Shri 

Dewi et al., 2015; Mohammadi et al., 2016) on the other hand limit their scope by not 

incorporating the labour factor. Furthermore, all four models were ended with analysis 

on the behaviour of the model after policy intervention. In comparison, our research 

extent the policy designing capability of SD by using embedded GA in order to find 

optimal policy.  

For methodological comparison, the study by Grossman (2002) and Duggan (2008) are 

referred. The main limitations of these studies are the optimization capability of GA 

when combining with SD model, where the change applied on the policy variables is 

done at the beginning of the simulation and were fixed for overall model improvement. 
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For policy design process that required policy changes and target in varying point of 

time, these SD-GA model may be a major shortcoming. On the contrary, we propose 

improved SD-GA model with the capability of setting the objective function and policy 

variables at specific point of time, for further effective optimal policy search. 

Finally, to the best of our knowledge no study in palm oil industry has been found that 

integrate SD and GA in the Malaysia context. On that account, this study is expected to 

be the reference for further exploration on the potential of SD and GA in facilitating the 

policy design process particularly in palm oil industry. 

Table 2.7 

 

Key Papers in This Study 

Criteria 

Palm Oil Problem Domain Methodological 

Yahaya et al. 

(2006) 

Shri-Dewi et 

al.  (2010) 

Shri-Dewi et 

al. (2015) 

Mohammadi 

et al. (2016) 

Grossman 

(2002) 

Duggan (2008) 

Objective To investigate 

the impact of 
biodiesel 

demand on 

Malaysian 
palm oil 

industry. 

To simulate 

the impact of 
increase in 

biodiesel 

demand on 

this industry. 

To investigate 

the rationality 
of increasing 

blending 

mandates. 

To investigate 

the impact of 
increasing 

blending 

mandates. 

Demonstrate the 

use of genetic 
algorithm with 

system 

dynamics 

models. 

The search for 

optimal policy 
variables were 

meant to be 

fixed in the 
model in the 

beginning of the 

simulation. 

Method SD SD and 

econometrics 
SD SD SD and GA SD and GA 

 

2.9 Summary 

Palm oil industry is certainly a complex system consisting many interrelated 

components that regulate the industry behaviour. Issues in palm oil industry required 

urgent response of improvement as delay in action will result to disastrous 

consequences on CPO production. The issues include the scarcity of plantation area, 

labour shortage and the demand surge from palm-based biodiesel industry. Modeling 
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methods like econometrics and simulation model has been empirically proven of its 

application in facilitating the understanding of a complex system. These methods were 

also being combined with the other method to achieve the objective setting in solving 

a complex problem. One of the combinatorial method with huge potential is 

optimization method which has been widely used in solving static and dynamic 

optimization problem. Furthermore, optimization has been empirically reported of its 

potential in assisting SD for finding optimal solution in policy design process. This 

includes the usage of metaheuristics optimization method like ANN, SA, and GA.  

Further exploration on the integration of SD and GA have to be done to overcome the 

shortcoming found in the past studies. This include the need of having the intermediate 

platform between SD and GA as found in previous studies employing SD-GA model. 

The new integration of SD and GA should be able to set the objective function and 

control variables at specific point of time for effective policy design process. Finally, 

the GA-based dynamic optimization method offered in EC field required altering of the 

algorithm which is difficult in order to solve a dynamic optimization problem. 

Alternatively, a more straightforward method by integrating SD and traditional static 

GA have the potential to solve the dynamic optimization problem which is prevalent in 

palm oil industry. Next chapter will elaborate in details about the concept of SD and 

GA as our research methodology. 



                                                                 

 83 

CHAPTER THREE 

RESEARCH METHODOLOGY  

In this chapter, the explanations on the concepts of the methodologies used in this 

research are presented. It begins with the explanation on the principles of system 

dynamics (SD) followed by the concept of genetic algorithm (GA). Next, the 

explanations on research design research process are presented. Then, in-depth 

explanation of the research process is presented. Finally, summary of the content close 

this chapter. 

3.1 Research Design 

The aim of this research is to develop a hybrid of SD-GA model towards improving the 

CPO production in Malaysia. This research will be conducted through two phases. The 

first phase is about SD model development whereas the second phase is about the 

development of hybrid of SD-GA. 

Malaysian palm oil industry has been chosen as the domain where the hybrid model is 

adopted to search for the policy option towards improving CPO production.  Primary 

data were collected from the interview with palm oil industry members and secondary 

data were collected from review of literature and palm oil statistic reports. Then, the 

hybrid model of SD-GA is developed with the incorporation of policy variables namely 

plantation area, labours, and biodiesel demand. Following through, the optimal result 

of CPO production obtained from the optimization process will be interpreted for policy 

recommendation. The final stage of the research is to evaluate the model by comparing 

its results from all optimization in terms of their suitability to be implemented in the 

real world. 
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3.2 Research Process 

The process for this research is presented in Figure 3.1. This process is adapted and 

modified based on the four modeling stages presented by Randers (1980).  

 

Figure 3.1. Structure of the research 
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Each stage of the research process was designed to achieve the research objectives as 

illustrated in Figure 3.2. Generally, the research process is divided into two main 

phases. The first phase consists of four stages which involves the development of the 

dynamic model. Following through, second phase consist of four stages, including the 

GA optimization setup, the hybridization of SD and GA model, policy 

recommendation, and model evaluation. The figure also highlights the linkage of each 

phases in achieving the research objectives. The following section focuses on the 

elaboration of the SD model formulation stages and the development of GA codes.  

 

Figure 3.2. Research activities 
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3.3 System Dynamics Modeling Process 

In SD, the modeling process emphasizes on: (i) putting a boundary around the studied 

system; (ii) identifying feedbacks among different variables of the studied system; and 

(iii) exploring and analysing the dynamics exhibited by the studied system to various 

structural and parametric changes. The SD model is developed to achieve the second 

research objective which is to optimize parameters for assessing CPO production in a 

dynamic environment. Next, the discussions on the step based on research process in 

Figure 3.2 are presented in detail. 

3.3.1 Model Conceptualization  

In SD model development, the process starts with model conceptualization. Model 

conceptualization is the initial stage where modeler must determine the purpose of the 

model, the model boundary, the shape of the reference modes and the basics mechanism 

of the studied system through a casual network or a cognitive map (Albin, 1997; Eden, 

1994; Groesser & Schaffernicht, 2012). The four important steps in model 

conceptualization stage are shown in Figure 3.3. 

 

Figure 3.3. Four steps in model conceptualization process 
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3.3.1.1 Define the purpose of the model 

The first step is to focus on the problem in the studied system and stating the purpose 

of the model. The general objective of this research is to develop a hybrid model of SD 

and GA towards improving CPO production in Malaysia. To answer the related 

research questions, specific objectives are developed as described in Chapter 1 Section 

1.5. 

To summarize, plantation area, labours and biodiesel demand are used as the input 

whereas CPO production will be measured as the output of the research as illustrated 

in Figure 3.4. The plantation area, labours, and biodiesel demand were all features as 

the main factors affecting CPO production, as explained in Chapter 2. As such, these 

factors were explicitly modeled as a sub-model. Variables in these sub-models will be 

optimized simultaneously in order to achieve maximum CPO production. 

 

Figure 3.4. The input and output of the research 

3.3.1.2 Determination of model boundaries and key variables 

Model boundaries can be defined as a closed boundary where the behaviour of interest 

is generated in a feedback system (Albin, 1997). In creating a SD model, the model 

boundary has to be clearly defined which include determining all components deem 
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necessary for creating a model. Then, the initial component list has to be generated. The 

rule of thumb is that nothing excluded from the model is necessary to generate and 

properly represent the behaviour of interest as set by the model purpose (Forrester, 

1980). The variables in a system are categorized based on its type namely endogenous 

and exogenous. Endogenous variables involve in feedback loops of the system while 

exogenous variables are components whose values are not directly affected by the 

system (Morecroft, 2007).  

Based on the review of published literature and the Malaysian palm oil statistics annual 

report, it has led to the initial list of variables categorized by endogenous and exogenous 

as shown in Table 3.1. CPO stock, CPO price and all the demand are the main 

components that constitute the supply and demand of palm oil industry. Then, 

plantation area and labour availability variables are representing the related EPPs under 

ETP to improve the palm oil industry performance. We also include biodiesel demand 

in the list to represent the biodiesel sector. On the other hand, exogenous variable which 

are modeled as constant value or taken from the historical data are functioning to 

determine the rules function of the endogenous variables. Finally, the initial component 

list also contains the excluded variable. Note that we decided to include adverse weather 

effect due to its huge effect on oil palm plantation4 (Rahman et al., 2012; 2013). 

However, the incorporation of the adverse weather is done exogenously with pre-set 

parameter. The reason of such simplistic assumption is that the level of intricacy needed 

in incorporating meteorological influence will result in a highly complex model. In 

addition, studying the effect of adverse weather on oil palm plantation is beyond the 

scope of this research. 

                                                      
4 Adverse weather include the excessive rainfall caused by La-Niña and dryness caused by El-Niño. 
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Table 3.1 

 

Initial Component List of Malaysian Palm Oil Industry 

Endogenous Exogenous 

CPO stock Oil extraction rate 

CPO price Soybean oil price 

CPO local demand Crude oil price 

CPO export demand Export tax 

PPO local demand Currency rate 

PPO export demand Biodiesel mandate 

Plantation area CPO import 

Labours availability Adverse weather 

Biodiesel demand  

 

There are other possible factors that may influence the industry. However, setting the 

boundaries of the model is to ensure the modeler is on track subsequently avoiding the 

overly complex model and futile analysis. As such, the initial components as listed were 

chosen based on its high relativity in resolving the research question. However, the final 

SD model may differ as compared to the initial list. The addition and deletion of 

components may be realized in the later stage of model development. Hence the list 

acts only as a guideline to facilitate the model development process. 

3.3.1.3 Reference mode of the key variables 

Reference mode is a graph plot of the key variables in a system over time. This graph 

helps to capture the mental models and give guidance to appropriate model structure 

(Albin, 1997; Sterman, 2000). Generally, the common practice is using the historical 

reference mode. For this research, Figure 3.5 shows the CPO production projection 

made for Malaysia and Indonesia until 2020. Indonesia CPO production is assumed to 

retain its growth and achieve the production at approximately 40 million tonne in year 
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2020. Making this as benchmark, this research will address the question on what, why 

and how Malaysia can catch up the same CPO production growth pace as Indonesia by 

year 2020. Depending on the policy option made, there are three possible projections 

for Malaysia towards year 2020, whether it will be able to expedite its CPO production 

growth, become stagnant, or decline. 

 

Figure 3.5. Malaysia and Indonesia CPO production projection until 2020 

Apart from the determination of reference mode, the selection of an appropriate time 

horizon is also crucial. In this research, the selected time horizon for the model 

development is 15 years which is between 2000 until 2015. The availability of data is 

the main reason for the selection. In addition, the selected period is appropriate for this 

analysis as the model will be able to show the transitional phase in the Malaysian palm 

oil industry from pre-biodiesel mandate (before year 2011) and post-biodiesel mandate 

implementation (after year 2011). As for the simulation purpose, the model will be 

simulated until year 2050. The reason of choosing long simulation period is because 

the delay involves in oil palm plantation sub-model are more than 25 years for the 
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planting phases. Choosing long simulation period will allow the observation of the 

model behaviour stem from the changes in oil palm plantation sub-model. 

3.3.1.4 Initial model diagram 

The final step in model conceptualization stage is deciding on the basic mechanism of 

the studied system. Particularly, a system’s basic mechanism is the feedback loops in 

the model drawn in an initial diagram using causal loop diagram (CLD). CLD is a visual 

model which graphically represents a working mechanism of the system. It is drawn to 

capture the qualitative model at the beginning of the process and helps in projecting the 

cause and effect relationship and feedback processes among variables. The CLD also 

represents the model in a way that emphasizes feedback loops and delays (Sterman, 

2000; Lane, 2008).  In CLD, the variables are linked by arrows based on their 

relationship and show the direction of influence. The arrow also accompanied by 

polarity depicting the effect of influence either positive for direct and negative for 

inverse influence. These polarities helps in capturing the feedback process in the 

system. On the other hand, delays are represented by a double line orthogonal to a 

causal link.  

Feedback is one of the important traits of SD where the systems stock and flow are part 

of feedback loops. Feedback loops enable a model system to endogenously represent 

dynamic aspects of a system (Richardson, 1999). It also known as cause-and-effect 

chain which act as a closed-loop structure that return result from previous action back 

to control next action in the system. Positive feedback, also called self-reinforcing loop 

function to initiate growth in reinforcing pattern. On the other hand, negative feedback, 

also called self-correcting loop, on the other hand function to control a loop by 

introducing a balancing mode. In other words, the negative loop balance or adjust the 
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system to a certain level to ensure the stability of the system (Sterman, 2000). 

Conclusively, to represent significant delays, feedback loops, and feedback loop 

polarity, a CLD has advantages, since it explicitly address all three components in an 

aggregated form to improve comprehensibility (Groesser & Schaffernicht, 2012). 

The initial diagram modeled using CLD shows the basic mechanism of Malaysia palm 

oil industry as illustrated in Figure 3.6. Overall, there are four balancing loops (labelled 

with ‘B’) and one reinforcing loop (labelled with ‘R’) that representing the main 

feedback loops in Malaysia palm oil industry. 

 

Figure 3.6. Initial causal loop diagram of Malaysia crude palm oil production 

In loop R1, it depicts the plantation sector with non-effective replanting scheme. In this 

loop, due to the absence of effective replanting scheme the ageing area will be 

accumulated. Due to lower productivity as compared to mature area, FFB yield per 

hectare will be affected thus lowering the CPO production. On the contrary, with 

effective replanting scheme in loop B1, old trees are systematically replaced and lead 

to smaller ageing area but wider mature area, subsequently ensure the nearly consistent 

optimal FFB yield per hectare. This loop also highlights the inverse relationship of CPO 
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price and replanting. When CPO price is high, the planters (particularly smallholders) 

tend to delay their replanting plan to reap as high profit as they can get. On the other 

hand, low CPO price will increase the motivation in replanting (Wahid & Simeh, 2010).  

Aside of replanting, new planting also contribute to the increase of premature area, 

which means the increase of total plantation area. However, this is subject to the 

availability of potential land to be converted into oil palm plantation. In Malaysia 

context, we are facing a scarcity of plantation land where new domestic plantation 

expansion can be assumed currently at very low rate5. This is also the reason why there 

is no relationship drawn connecting CPO price (deemed as long-term profit) with oil 

palm plantation new expansion plan even though it is prevalent in previous study like 

Yahaya et al. (2006), Abdulla et al. (2014), and Mohammadi et al. (2016). 

Note also the influence brought by labour on FFB yield. As plantation is a labour 

intensive sector, failing to supply adequate labour will affect the labour productivity 

per hectare. However, sufficient mechanization adoption will help in increasing the 

labour productivity per hectare thus increasing the FFB yield. 

On the demand side, loop B2 represent the negative relationship of CPO price with 

CPO export demand, whereas loop B3 represent the negative relationship with CPO 

local demand. It is understandable when CPO price is high that both overseas and local 

demand becomes low albeit some delay. Note that the role of CPO export tax in 

influencing both export and local demand are also incorporated in these loops. CPO 

export tax is known as one of the means for the government to control the CPO export 

(The Star, 2015; 2016a). In addition, soybean oil has been incorporated as influencing 

                                                      
5 Anonymous informational interview session with a Malaysia palm oil research body. 
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factor of PPO export demand. As supported by Senteri (1988), Shri Dewi et al. (2011a), 

and Arshad and Hameed (2012), soybean oil price has positive relationship with PPO 

export demand. 

Finally, loop B4 representing the effect of biodiesel blend mandate on CPO supply 

demand ratio thus affecting CPO price. With increase biodiesel blend mandate there 

will be more CPO demand for biodiesel production, disrupting the CPO supply ratio 

thus increasing the prices. Note the relationship of crude oil and CPO price on biodiesel 

blend mandate incorporated in this loop. This relationship is actually the informational 

relationship rather than physical. The level of crude oil and CPO price hugely affect the 

decision of increasing the mandate. This is true where the ministry has decided to delay 

the implementation of B10 from March 2016 to January 2017 by taking into the 

consideration the difference between CPO and crude oil prices in the current volatile 

market (The Star, 2016b). 

The CLD is a sketch of mental model for the real system and taken as the conceptual 

model of Malaysia palm oil industry in this study. CLD in Figure 3.6 serve to give 

initial idea on the relationship between components and how they collectively constitute 

the underlying feedback processes in the model. However, CLD is not adequate to be 

taken as a final model diagram because the modeler cannot conduct any policy analysis, 

locate leverage points, or tell which loop is dominant with just causal loop diagram 

(Albin, 1997; Sterman, 2000). This leads to the development of stock and flow diagram. 

3.3.2 Primary and Secondary Data Collection 

Two types of data are needed for this research. The first type is the primary data. 

Primary data are collected from meetings and discussions with industry players. 
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Industry players include the oil palm planters, palm oil producer, palm oil related 

association members like Malaysian Biodiesel Association (MBA), and the research 

body like Malaysian Palm Oil Board (MPOB). The primary data include the industry 

player’s view and on-the-field experience of the past as well as current situation of 

Malaysian palm oil industry. This is important to ensure that the model adhere with 

Baker’s criterion which stated that the model should be developed based on the decision 

maker bounded rationality and avoiding the modeler’s cognitive bias (Sterman, 2000; 

Morecroft, 2007). 

The second type is the secondary data. These data are collected from publicly opened 

source like MPOB websites, Department of Statistics Malaysia, and other published 

sources from the internet. Keeping up to date with the current situation of Malaysia 

palm oil industry through updated newsletter and conference also are a crucial part of 

secondary data collection process. The desired period of data is fifteen years, starting 

from year 2000 until 2015. The type of data and its source used in this research are 

compiled in Table 3.2 below. On the other hand, Table 3.3 detail out the informational 

interview session with industry member. 

Table 3.2 

 

Type of Data and Its Source 

Data type Description Source Year 

Primary data Overview on the past and current 

situation of Malaysia palm oil 

industry. 

• Meeting with industry member 

• Attending palm oil related 

conference 

 

2000 - 2016 

Secondary 

data 

Historical time series data on palm oil 

market (e.g. production, prices, 

export, and consumption) 

 

MPOB website 2000 - 2016 

Latest data on palm oil market 

including palm oil production, prices, 

export, and consumption. 

 

• MPOB website 

• Newsletter from MPOB 

• Annual report from MPOB 

2016 

* MPOB = Malaysian Palm Oil Board   
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Table 3.3 

 

Interview Session with Industry Players 

Interviewee Affiliation Venue Date and Time 

1. Deputy President Malaysian Biodiesel 

Association (MBA) 

Biodiesel Mills, Pulau 

Carey, Selangor. 

 

9 September 2016, 

10.00am – 12.00pm 

2. Director Malaysian Palm Oil Board 

(MPOB) 

MPOB head office, 

Menara Sawit, Kelana 

Jaya, Selangor. 

 

14 September 2016, 

10.00am – 12.00pm 

3. Manager Performance Management 

and Delivery Unit 

(PEMANDU) 

 

PEMANDU Satellite 

Office, KL Sentral 

7 October 2016,   

3.00pm – 5.00pm 

4. Director Ministry of Plantation 

Industries and Commodities 

(MPIC) 

MPIC Office, Putrajaya 10 October 2016, 

3.00pm – 5.00pm 

 

3.3.3 The Development of Stock and Flow Diagram 

Stock and flow diagram (SFD) is a representation of a CLD. Constructing the SFD will 

complement the system interpretation by CLD, as causal loop diagram is not capable 

of calculating the exact performance of the system with regard to time-dependent 

variations (Sterman, 2000). Furthermore, the strength of the link polarity is difficult to 

determine with CLD (Morecroft, 2007). SFD on the other hand, conjure the actual 

dynamic of the system by quantifying the relationships among variables in the form of 

stock and flow. Basically, a SFD consist of four basic components: stock, flow, 

auxiliary, and link as illustrated in Figure 3.7. 
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Figure 3.7. Example of stock and flow diagram  

A stock is also known as accumulation or state or level. A stock shows the state of the 

system at one particular time. The value in a stock will accumulate overtime, meaning 

that the value at any time depend on the value they had previous times. This is shown 

in equation below. 

𝑆𝑡𝑜𝑐𝑘𝑡 = ∫ 𝑓𝑙𝑜𝑤𝑡 𝑑𝑡
𝑡

𝑡𝑜

+ 𝑆𝑡𝑜𝑐𝑘𝑡𝑜 (3.1) 

 

where Stockto is the initial value of the stock. 

Due to their link with flow variables, stocks can change overtime. Stock also can be 

categorized into tangible and intangible stock. Tangible or physical stock includes 

natural stocks, capital or goods while intangible stock can be information, 

psychological or any indexed value (Sterman, 2000). On the other hand, flow variables 

determine the level of stock. Also known as rates, it can be divided into inflow and 

outflow. Inflow will increase the stock whereas outflows will deplete the stock. As 

such, Equation (3.1) can also be written as 

Stock

Flow

Auxiliary

variable
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𝑆𝑡𝑜𝑐𝑘𝑡 = ∫ (𝑖𝑛𝑓𝑙𝑜𝑤 − 𝑜𝑢𝑡𝑓𝑙𝑜𝑤)
𝑡

𝑡𝑜

𝑑𝑡 + 𝑆𝑡𝑜𝑐𝑘𝑡𝑜 (3.2) 

 

Auxiliary variables are calculated from other variables within the system and can be 

divided into endogenous and exogenous. There are equations in an auxiliary variables 

that specifies the decision rules in which information is carried between the system 

components. With the auxiliary variables, full logic of causal loop model can be 

presented. The connections between the variables are established through links. Links 

act as connector in the form of arrow defining the connection and control between the 

variables in the system. Table 3.4 summarize the building blocks of an SD model. 

Table 3.4 

 

Basic Building Blocks Used in System Dynamics 

Building block Symbol Description 

Stock (level) 
 

Shows an accumulation of any quantity. 

 

Flow (rate) 

 

Alters stock level by an inflow or an outflow. Attached 

to a stock. 

 

Connector 
 

Link different building blocks and showing causality. 

 

 

The conceptual model built using CLD in the previous sub-section is converted into 

SFD to allow more thorough analysis of Malaysia palm oil industry behaviour. The 

development of SFD is closely referred to the conceptual model built with CLD in 

Figure 3.6. Vensim DSS version 6.2c software is used for the modeling process. In this 

research, the final model is comprised the combination of four sub-models namely palm 

oil supply and demand, oil palm plantation, palm-based biodiesel, and labour. In each 
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of sub-model, there are control variables and non-control variables. Control variables 

are the policy variables which will be manipulated during the simulation and 

optimization process at the later stage. On the other hand, non-control variables are the 

exogenous variable in which the parameter value are either set and assumed based on 

the credible sources, or determined through parameter assessment process elaborate in 

sub-chapter 4.1.6.   

3.3.3.1 Palm Oil Supply and Demand Sub-model 

Palm oil supply and demand sub-model is modeled referring to the generic commodity 

market model as proposed by Meadows (1970). Some modification has been done 

however to suit the modeling objectives in this research. The sub-model consist the 

representation of several segments namely (i) CPO supply and demand; (ii) PPO supply 

and demand; and (iii) CPO and PPO price setting mechanism. Figure 3.8 shows the 

CPO supply demand segment of the sub-model. 
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Figure 3.8. The CPO supply demand segment from palm oil supply demand sub-

model 

 In this segment, there are two stocks representing CPO supply side namely CPO 

production and CPO import. CPO production (CPOp, in tonne) represents production 

of CPO from FFB. The size of CPO production is determined by the net CPO 

production rate (rCPOp, in tonne/year). The CPO production rate is depending on CPO 

production which calculated by multiplying average oil extraction rate (OER, 

dimensionless) with total FFB yield (FFBYT, in tonne) divided by the time to adjust 

CPO production (tCPOp, in year). All equations in the model will be simulated from t  = 

0 to t = 50 years. Equation 3.3 and 3.4 show the mathematical equation in CPO supply 

and demand segment. 
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𝐶𝑃𝑂𝑝(𝑡) = ∫ 𝑟𝐶𝑃𝑂𝑝 𝑑𝑡 + 𝐶𝑃𝑂𝑝(𝑡𝑜)

𝑡

𝑡𝑜

 (3.3) 

  

𝑟𝐶𝑃𝑂𝑝 = (𝑂𝐸𝑅 × 𝐹𝐹𝐵𝑌𝑇)/𝑡𝐶𝑃𝑂𝑝 (3.4) 

 

Another stock is CPO import (CPOi, in tonne). The net input of CPO import is the CPO 

import change (rCPOi, in tonne/year). CPO import change is derived from base CPO 

import (Base CPOi, in tonne) influenced by the soybean oil price. Base CPO import is 

modeled using RAMP function to depict the historical data of CPO import. The 

influence of soybean oil price is formulated using power function as suggested by 

Sterman (2000) to portray exogenous influence on a variable. Thus the effect of 

soybean oil price on CPO import (fPSBO,CPOi, dimensionless) is obtained by multiplying 

relative soybean oil price (Relative PSBO, dimensionless) with the sensitivity of soybean 

oil price on CPO imports (sPSBO,CPOi, dimensionless) as power function. The usage of 

power function to determine the effect between variables has been demonstrated by 

Sterman (2000). Relative soybean oil price is the ratio between soybean historical prices 

(PSBOh, in USD/tonne) and reference soybean oil price (PSBOr, in USD/tonne). The 

mathematical formulations relating to CPO import are shown in Equation 3.5 – 3.8. 

𝐶𝑃𝑂𝑖(𝑡) = ∫ 𝑟𝐶𝑃𝑂𝑖 𝑑𝑡 + 𝐶𝑃𝑂𝑖(𝑡𝑜)

𝑡

𝑡𝑜

 (3.5) 

  

𝑟𝐶𝑃𝑂𝑖 = 𝐵𝑎𝑠𝑒 𝐶𝑃𝑂𝑖 × 𝑓𝑃𝑆𝐵𝑂,𝐶𝑃𝑂𝑖 (3.6) 

  

𝑓𝑃𝑆𝐵𝑂,𝐶𝑃𝑂𝑖 = (𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑃𝑆𝐵𝑂)𝑠𝑃𝑆𝐵𝑂,𝐶𝑃𝑂𝑖 (3.7) 

  

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑃𝑆𝐵𝑂 = 𝑃𝑆𝐵𝑂ℎ 𝑃𝑆𝐵𝑂𝑟⁄  (3.8) 
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On the demand side, a stock of CPO export demand (SCPOx, in tonne) is included in this 

segment. This stock level is determined by the net CPO export demand change (rCPOx, 

in tonne). The CPO export demand change is determined by CPO export demand 

growth (gCPOx, dimensionless) influenced by CPO price, soybean oil price and CPO 

export tax. CPO price influence on CPO export demand (fPCPO,CPOx, dimensionless) is 

formulated using lookup function with relative CPO price (Relative PCPO, 

dimensionless) as the input. Relative CPO price is the ratio between CPO price (PCPO, 

in RM) and reference CPO price (PCPOr, in RM). Lookup function depict the non-linear 

relationship between CPO price and CPO export demand as illustrated in Figure 3.9. 

As the CPO price increase relative to the reference CPO price, the CPO export demand 

tend to reduce. On the other hand, with decrease CPO price, CPO export demand is 

prone to increase. 

 

Figure 3.9. Lookup function for effect of CPO price on CPO export demand 

The soybean oil price influence on CPO export demand (fPSBO, CPOx, in USD) is also 

formulated using power function. Further, CPO export also being influenced by CPO 

export tax (fCPOtax, CPOx, dmnl). Similarly, the effect of CPO tax on demand is modeled 
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using lookup function with the basic CPO export tax structure based on the current 

structure provided by MPOB (MPOB, 2016) as illustrated in Figure 3.10. The CPO 

export taxes are imposed based on the current CPO prices. 

 

Figure 3.10. Lookup function for CPO tax structure 

The mathematical equations in CPO export demand segment are shown in Equation 3.9 

– 3.15. 

𝐶𝑃𝑂𝑥(𝑡) = ∫ 𝑟𝐶𝑃𝑂𝑥 𝑑𝑡 + 𝐶𝑃𝑂𝑥(𝑡𝑜)

𝑡

𝑡𝑜

 
(3.9) 

 

𝑟𝐶𝑃𝑂𝑥 = 𝑔𝐶𝑃𝑂𝑥 (3.10) 

  

𝑔𝐶𝑃𝑂𝑥 = 𝑓𝑃𝐶𝑃𝑂,𝐶𝑃𝑂𝑥 × 𝑓𝑃𝑆𝐵𝑂,𝐶𝑃𝑂𝑥 × 𝑓𝐶𝑃𝑂𝑡𝑎𝑥,𝐶𝑃𝑂𝑥 (3.11) 

 

𝑓𝑃𝐶𝑃𝑂,𝐶𝑃𝑂𝑥 = 𝐿𝑜𝑜𝑘𝑢𝑝𝑃𝐶𝑃𝑂,𝐶𝑃𝑂𝑥(𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑃𝐶𝑃𝑂) (3.12) 

  

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑃𝐶𝑃𝑂 = 𝑃𝐶𝑃𝑂 𝑃𝐶𝑃𝑂𝑟⁄  (3.13) 

 

𝑓𝑃𝑆𝐵𝑂,𝐶𝑃𝑂𝑥 = (𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑃𝑆𝐵𝑂)𝑠𝑃𝑆𝐵𝑂,𝐶𝑃𝑂𝑥 (3.14) 

  

𝑓𝐶𝑃𝑂𝑡𝑎𝑥,𝐶𝑃𝑂𝑥 = 𝐿𝑜𝑜𝑘𝑢𝑝𝐶𝑃𝑂𝑡𝑎𝑥,𝐶𝑃𝑂𝑥(𝐶𝑃𝑂𝑡𝑎𝑥 𝐶𝑃𝑂𝑡𝑎𝑥𝑟⁄ ) (3.15) 
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Aside from CPO export demand, there are demand for CPO for PPO (CPOPPO, in tonne) 

and palm-based biodiesel sector (CPOB, in tonne) but both are modeled with high detail 

in separate sub-model to affectively depict their role on the dynamic of the model. 

These demand made up the total CPO demand (TDCPO, in tonne) while total CPO supply 

(TSCPO, in tonne) is consist of CPO production and CPO import as shown by Equation 

3.16 and 3.17. 

𝑇𝐷𝐶𝑃𝑂 = 𝐶𝑃𝑂𝑥 + 𝐶𝑃𝑂𝐵 + 𝐶𝑃𝑂𝑃𝑃𝑂 (3.16) 

  

𝑇𝑆𝐶𝑃𝑂 = 𝐶𝑃𝑂𝑝 + 𝐶𝑃𝑂𝑖 (3.17) 

  

Next segment in palm oil supply demand sub-model is PPO demand segment as shown 

in Figure 3.11.  
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Figure 3.11. The PPO demand segment from palm oil supply demand sub-model 

There are two stocks namely PPO export demand and PPO local demand. Soybean price 

play its role in influencing the level of PPO demand because of its reputation as the 

closest substitutes to palm oil. The first demand is PPO local demand (PPOl, tonne) 

which represents domestic consumption of PPO. The net input is PPO local demand 

change (rPPOl, in tonne/year) and determined by its growth (gPPOl, dimensionless) and 

influenced by factor affecting PPO local demand (fPPOl, dimensionless). Factor 

affecting PPO local demand constitute from soybean price and PPO price. The 

influence of soybean price on PPO local demand (fPSBO,PPOl, dimensionless) is modeled 
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as power function with sensitivity parameter (sPSBO,PPOl, dimensionless) while the 

influence of PPO price on PPO local demand (fPPPO,PPOl, dimensionless) is modeled 

using lookup function as illustrated in Figure 3.12. As the PPO prices decrease, the PPO 

local demand will increase sharply, whereas high PPO price will lower the PPO local 

demand. 

 

Figure 3.12. Lookup function for effect of PPO prices on PPO local demand 

The lists of equations related to PPO local demand are shown in Equation 3.18 – 3.22. 

𝑃𝑃𝑂𝑙(𝑡) = ∫ 𝑟𝑃𝑃𝑂𝑙  𝑑𝑡 + 𝑃𝑃𝑂𝑙(𝑡𝑜)

𝑡

𝑡𝑜

 (3.18) 

  

𝑟𝑃𝑃𝑂𝑙 = 𝑔𝑃𝑃𝑂𝑙 × 𝑃𝑃𝑂𝑙 × 𝑓𝑃𝑃𝑂𝑙 (3.19) 

  

𝑓𝑃𝑃𝑂𝑙 = 𝑓𝑃𝑆𝐵𝑂,𝑃𝑃𝑂𝑙 × 𝑓𝑃𝑃𝑃𝑂,𝑃𝑃𝑂𝑙 (3.20) 

  

𝑓𝑃𝑆𝐵𝑂,𝑃𝑃𝑂𝑙 = (𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑃𝑆𝐵𝑂)𝑠𝑃𝑆𝐵𝑂,𝑃𝑃𝑂𝑙 (3.21) 

  

𝑓𝑃𝑃𝑃𝑂,𝑃𝑃𝑂𝑙 = 𝐿𝑂𝑂𝐾𝑈𝑃𝑃𝑃𝑃𝑂,𝑃𝑃𝑂𝑙(𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑃𝑃𝑃𝑂) (3.22) 
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The final stock in PPO demand segment is PPO export demand (SPPOx, in tonne). The 

modeling structure of PPO export demand is similar with PPO local demand. The net 

input of PPO export demand is PPO export demand change (rPPOx, in tonne/year) which 

is determined by its growth (gPPOx, dimensionless) with influence from factor affecting 

PPO export demand (fPPOx, dimensionless). Factor affecting PPO export demand is 

constitute from soybean oil price and PPO price. Likewise, the influence of soybean oil 

price on PPO export demand (fPSBO,PPOx, dimensionless) is modeled using power 

function with sensitivity parameter (sPSBO,PPOx, dimensionless) while the influence of 

PPO price on PPO export demand (fPPPO,PPOx, dimensionless) is modeled using lookup 

function as illustrated in Figure 3.13. The non-linear relationship between PPO prices 

and PPO export demand shows that high PPO prices will lower PPO export demand 

whereas low PPO prices boosted PPO export demand sharply. 

 

Figure 3.13. Lookup function for effect of PPO prices on PPO export demand 

Equation 3.23 – 3.27 listed the equation related to PPO export demand. 

𝑃𝑃𝑂𝑥(𝑡) = ∫ 𝑟𝑃𝑃𝑂𝑥 𝑑𝑡 + 𝑃𝑃𝑂𝑥(𝑡𝑜)

𝑡

𝑡𝑜

 (3.23) 
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𝑟𝑃𝑃𝑂𝑥 = 𝑔𝑃𝑃𝑂𝑥 × 𝑃𝑃𝑂𝑥 × 𝑓𝑃𝑃𝑂𝑥 (3.24) 

  

𝑓𝑃𝑃𝑂𝑥 = 𝑓𝑃𝑆𝐵𝑂,𝑃𝑃𝑂𝑥 × 𝑓𝑃𝑃𝑃𝑂,𝑃𝑃𝑂𝑥 (3.25) 

  

𝑓𝑃𝑆𝐵𝑂,𝑃𝑃𝑂𝑥 = (𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑃𝑆𝐵𝑂)𝑠𝑃𝑆𝐵𝑂,𝑃𝑃𝑂𝑥  (3.26) 

  

𝑓𝑃𝑃𝑃𝑂,𝑃𝑃𝑂𝑥 = 𝐿𝑂𝑂𝐾𝑈𝑃𝑃𝑃𝑃𝑂,𝑃𝑃𝑂𝑥(𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑃𝑃𝑃𝑂) (3.27) 

  

Both PPO export demand and local demand made up the total PPO demand (TDPPO, in 

tonne). The mathematical equations are shown as in Equation 3.28. 

𝑇𝐷𝑃𝑃𝑂 = 𝑃𝑃𝑂𝑙 + 𝑃𝑃𝑂𝑥 (3.28) 

 

The final segment, CPO price setting mechanism illustrated in Figure 3.14 is constituted 

from CPO demand ratio derived from the previous two segments.  

 

Figure 3.14. CPO and PPO price setting mechanism from the palm oil supply and 

demand sub-model 
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CPO price is modeled in a stock form with CPO price change (rPCPO, in RM/year) as 

its net input. CPO price change is determined by the indicated CPO price (Indicated 

PCPO, in RM) with the time for CPO price adjustment (TPCPO, in year). Indicated CPO 

price is used to incorporate the effect of CPO supply demand ratio (fratioSDCPO,PCPO, in 

RM) on CPO price. Influence of CPO supply demand ratio is modeled using lookup 

function with relative CPO supply demand ratio (Relative ratio SDCPO, dimensionless) 

as its input as illustrated in Figure 3.15. Relative supply demand ratio is equal to CPO 

supply demand ratio (Ratio SDCPO, dimensionless) divided by reference CPO supply 

demand ratio (Ratio SDCPOr, dimensionless). CPO supply demand ratio as the name 

suggest is computed by dividing total CPO supply over total CPO demand. The lookup 

function shows that sudden decrease in CPO supply demand ratio will abruptly increase 

CPO price and vice-versa. A decrease in CPO supply-demand ratio signals the low 

supply of CPO relative to its demand whereas an increase CPO supply-demand ratio 

signals the excess CPO supply. 

 

Figure 3.15. Lookup function for effect of CPO supply demand ratio on CPO price 



                                                                 

 110 

As for PPO price, according to the statistic by MPOB (2016), PPO price in average is 

3 percent higher than CPO price, thus PPO price (PPPO, in RM) is computed by simply 

multiplying CPO prices with 1.03. Equation 3.29 – 3.35 shows the equation relating to 

CPO and PPO price setting mechanism segment. 

𝑃𝐶𝑃𝑂(𝑡) = ∫ 𝑟𝑃𝐶𝑃𝑂 𝑑𝑡 + 𝑃𝐶𝑃𝑂(𝑡𝑜)

𝑡

𝑡𝑜

 (3.29) 

  

𝑟𝑃𝐶𝑃𝑂 = 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑑 𝑃𝐶𝑃𝑂 𝑇𝑃𝐶𝑃𝑂⁄  (3.30) 

  

𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑑 𝑃𝐶𝑃𝑂 = 𝑓𝑟𝑎𝑡𝑖𝑜 𝑆𝐷𝐶𝑃𝑂,𝑃𝐶𝑃𝑂 (3.31) 

  

𝑓𝑟𝑎𝑡𝑖𝑜 𝑆𝐷𝐶𝑃𝑂,𝑃𝐶𝑃𝑂 = 𝐿𝑂𝑂𝐾𝑈𝑃𝑟𝑎𝑡𝑖𝑜 𝑆𝐷𝐶𝑃𝑂,𝑃𝐶𝑃𝑂(𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑖𝑜 𝑆𝐷𝐶𝑃𝑂) (3.32) 

  

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑖𝑜 𝑆𝐷𝐶𝑃𝑂 = 𝑅𝑎𝑡𝑖𝑜 𝑆𝐷𝐶𝑃𝑂 𝑅𝑎𝑡𝑖𝑜 𝑆𝐷𝐶𝑃𝑂𝑟⁄  (3.33) 

  

𝑅𝑎𝑡𝑖𝑜 𝑆𝐷𝐶𝑃𝑂 = 𝑇𝑆𝐶𝑃𝑂 𝑇𝐷𝐶𝑃𝑂⁄  (3.34) 

  

𝑃𝑃𝑃𝑂 = 1.03 × 𝑃𝐶𝑃𝑂 (3.35) 

 

The parameters and assumption used in palm oil supply demand sub-model are 

presented in Table 3.5.  One of important assumption made in this sub-model is that 

soybean oil price is constant at approximately 670 USD per tonne. In this sub-model, 

there is no policy variable. The parameter estimation process in the model is explained 

in detail in sub-chapter 4.16. All the equations for this sub-model are available in 

APPENDIX A. 
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Table 3.5 

 

Parameters and Assumptions Used in Palm Oil Supply Demand Sub-Model 

Parameters Value/Assumptions Unit Sources 

Average OER 0.22 dmnl MPOB, 2016 

Sensitivity of soybean oil 

price on CPO import 

0.1 dmnl 

 

Parameter 

estimation 

Base CPO import 50,000 tonne/year MPOB, 2016 

Base CPO export demand 

growth 

2.586 1/year Parameter 

estimation 

Base PPO export demand 

growth 

0.201 1/year Parameter 

estimation 

Sensitivity of soybean oil 

price on PPO export demand 

0.004 dmnl Parameter 

estimation 

Base PPO local demand 

growth 

0.155 1/year Parameter 

estimation 

Sensitivity of soybean oil 

price on PPO local demand 

0.479 dmnl Parameter 

estimation 

Time for CPO price 

adjustment 

2 year Parameter 

estimation 

Soybean oil price Smoothed historical 

data from year 2000 

– 2015, then constant 

at $670 

USD/tonne World bank (2016) 

3.3.3.2 Oil Palm Plantation Sub-model 

Oil palm plantation sub-model depicts the underlying dynamic in the plantation sector 

as shown in Figure 3.16.  
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Figure 3.16. The oil palm plantation sub-model 

The centre of the sub-model is the various phases involved in plantation area namely 

premature, mature and ageing area which are modeled in stock form. The rate of each 

phases are modeled using DELAY FIXED function to closely depict the dynamic of oil 

palm planting. Starting with premature area (Apre, in hectare), the input is the planting 

rate (rplant, in hectare/year) with maturity rate as its output (rmat, in hectare/year). 

Planting rate is equal to the sum of new planting (NP, in hectare/year) and replanting 

(RP, in hectare/year). New planting is dependant to the vacant land (VL, in hectare) 

available for oil palm planting and average new planting (NPavg, in hectare/year) 

influenced by the effect of land availability on expansion plan (fVL,exp, dimensionless) 

modeled using LOOKUP function. The purpose is to depict the expansion plan 

behaviour in real life where the degree of expansion is high when a lot of land available 

and become low as the land is scarcely available as illustrated in Figure 3.17.  
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Figure 3.17. Lookup function for effect of land availability on expansion plan  

Replanting on the other hand is determined by the motivation to replant (MTR, 

dimensionless) and replanting rate (rRP, in hectare/year). Motivation to replant depict 

the role of CPO prices in influencing planters to replant (fPCPO,RP, dmnl) which comes 

from the CPO price effect on replanting and is modeled using LOOKUP function as 

illustrated in Figure 3.18. The lookup function shows that CPO price decrease will 

increase the replanting rate while higher CPO price will give less incentive for planter 

to replant. 

 

Figure 3.18. Lookup function for CPO price effect on replanting 
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Replanting rate is determined by the average replanting (rRPavg, in hectare). Maturity 

rate is equal to the fraction of maturity rate (frmat, in hectare/year) formulated using 

DELAY FIXED function with mature period (Tmat, in year) as its time delay. The time 

for premature area becoming mature area is named as mature period, which is equal to 

3 years (Wahid & Simeh, 2010). Equation 3.36 – 3.45 shows the Vensim equation 

relating to premature area. 

𝐴𝑝𝑟𝑒(𝑡) = ∫ 𝑟𝑝𝑙𝑎𝑛𝑡 − 𝑟𝑚𝑎𝑡 𝑑𝑡 + 𝐴𝑝𝑟𝑒(𝑡𝑜)

𝑡

𝑡𝑜

 (3.36) 

  

𝑟𝑝𝑙𝑎𝑛𝑡 = 𝑅𝑃 + 𝑁𝑃 (3.37) 

  

𝑁𝑃 = 𝑀𝐼𝑁(𝑁𝑃𝑎𝑣𝑔 × 𝑓𝑉𝐿,𝑒𝑥𝑝, 𝑉𝐿) (3.38) 

  

𝑓𝑉𝐿,𝑒𝑥𝑝 = 𝐿𝑂𝑂𝐾𝑈𝑃𝑉𝐿,𝑒𝑥𝑝(𝑅𝑎𝑡𝑖𝑜𝑉𝐿) (3.39) 

  

𝑅𝑃 = 𝑀𝑇𝑅 × 𝑟𝑅𝑃𝑎𝑣𝑔 (3.40) 

  

𝑀𝑇𝑅 = 𝑓𝑃𝐶𝑃𝑂,𝑅𝑃 (3.41) 

 

𝑓𝑃𝐶𝑃𝑂,𝑅𝑃 = 𝐿𝑂𝑂𝐾𝑈𝑃𝑃𝐶𝑃𝑂,𝑅𝑃(𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑃𝐶𝑃𝑂) (3.42) 

  

𝑟𝑅𝑃𝑎𝑣𝑔 = 𝑟𝑅𝑃𝑎𝑣𝑔 (3.43) 

  

𝑟𝑚𝑎𝑡 = 𝑓𝑟𝑚𝑎𝑡 (3.44) 

  

𝑓𝑟𝑚𝑎𝑡 = 𝐷𝐸𝐿𝐴𝑌 𝐹𝐼𝑋𝐸𝐷(𝑟𝑝𝑙𝑎𝑛𝑡, 𝑇𝑚𝑎𝑡 , 0) (3.45) 

  

Maturity rate, output from premature area become the input for mature area (Amat, in 

hectare) with ageing rate (rage, in hectare/year) as its output. Likewise, ageing rate is 

formulated using DELAY FIXED function with ageing period (Tage, year) as its time 

delay. Equation 3.46 – 3.48 shows the Vensim equation relating to mature area. 
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𝐴𝑚𝑎𝑡(𝑡) = ∫ 𝑟𝑚𝑎𝑡 − 𝑟𝑎𝑔𝑒 𝑑𝑡 + 𝐴𝑚𝑎𝑡(𝑡𝑜)

𝑡

𝑡𝑜

 (3.46) 

  

𝑟𝑎𝑔𝑒 = 𝑓𝑟𝑎𝑔𝑒 (3.47) 

  

𝑓𝑟𝑎𝑔𝑒 = 𝐷𝐸𝐿𝐴𝑌 𝐹𝐼𝑋𝐸𝐷(𝑟𝑚𝑎𝑡 , 𝑇𝑎𝑔𝑒, 0) (3.48) 

 

In ageing area (Aage, in hectar), ageing rate become the input while cutting rate (rcut, in 

hectare/year) is the output of the stock. Cutting rate is determined by the frequency of 

replanting work. To avoid stock negativity, cutting rate is modeled using MIN function 

with ageing area as the minimum area available to be cut. The ageing period is equal to 

25 years, denoting the time taken for mature area becoming ageing area (Wahid & 

Simeh, 2010). Equation 3.49 and 3.50 shows the mathematical equation related to 

ageing area. 

𝐴𝑎𝑔𝑒(𝑡) = ∫ 𝑟𝑎𝑔𝑒 − 𝑟𝑐𝑢𝑡 𝑑𝑡 + 𝐴𝑎𝑔𝑒(𝑡𝑜)

𝑡

𝑡𝑜

 (3.49) 

  

𝑟𝑐𝑢𝑡 = 𝑀𝐼𝑁(𝑅𝑃, 𝐴𝑎𝑔𝑒) (3.50) 

  

Total FFB yield (TFFBY, in tonne) is the sum of FFB yield in mature area (FFBYmat, in 

tonne) and ageing area (FFBYage, in tonne), influenced by two factors namely the effect 

of adverse weather (fweather,FFBY, dimensionless) and effect of labour (fL,FFBY, 

dimensionless). FFB yield in mature area is calculated by multiplying the mature area 

with average yield per hectare in mature area (FFBYavg,mat, in tonne/hectare). Average 

yield per hectare in mature area is equal to 25 tonne per hectare (Wahid & Simeh, 2010). 

Likewise, FFB yield in ageing area is calculated by multiplying the ageing area with 

average yield per ha in ageing area (FFBYavg,age, in tonne/hectare). Average yield per 
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hectare is equal to 19 tonne per hectare (Wahid & Simeh, 2010). The effect of adverse 

weather on FFB yield is modeled exogenously with the assumption that the CPO 

production will be reduced to 10% annually when the year is hit with excessive rain 

and dryness (Chidambar, 2016). On the other hand, effect of labour on FFB yield will 

be elaborated in labour sub-model. Equation 3.51 – 3.53 shows the Vensim equation 

relating to FFB yield. 

𝑇𝐹𝐹𝐵𝑌 = (𝐹𝐹𝐵𝑌𝑚𝑎𝑡 + 𝐹𝐹𝐵𝑌𝑎𝑔𝑒) × 𝑓𝑤𝑒𝑎𝑡ℎ𝑒𝑟,𝐹𝐹𝐵𝑌 × 𝑓𝐿,𝐹𝐹𝐵𝑌 (3.51) 

  

𝐹𝐹𝐵𝑌𝑚𝑎𝑡 = 𝐹𝐹𝐵𝑌𝑎𝑣𝑔,𝑚𝑎𝑡 × 𝐴𝑚𝑎𝑡 (3.52) 

  

𝐹𝐹𝐵𝑌𝑎𝑔𝑒 = 𝐹𝐹𝐵𝑌𝑎𝑣𝑔,𝑎𝑔𝑒 × 𝐴𝑎𝑔𝑒 (3.53) 

 

The parameters and assumption used in oil palm plantation sub-model are presented in 

Table 3.6. In this sub-model, there is one control variable namely average replanting. 

One important assumptions made in this sub-model is regarding adverse weather effect 

on FFB yield. It is assumed that the adverse weather hit every 4 years interval based on 

historical data, with the reduction of 15 percent output in corresponding year. All 

equations for this sub-model are available in APPENDIX B. 
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Table 3.6 

 

Parameters and Assumptions Used in Oil Palm Plantation Sub-Model 

Parameters Value/Assumptions Unit Sources 

Average yield per hectare for 

ageing area 

25 tonne/ha Wahid & Simeh 

(2010) 

Average yield per hectare for 

mature area 

19 tonne/ha Wahid & Simeh 

(2010) 

Average new planting 150,000 ha MPOB (2016) 

Max land available 6,000,000 ha Anonymous 

interview with palm 

oil research body 

Ageing period 25 years Wahid & Simeh 

(2010) 

Maturity period 3 years Wahid & Simeh 

(2010) 

Effect of adverse weather on 

FFB yield 

-10% with 4 years 

interval 

dmnl MPOB (2016) 

3.3.3.3 Palm-based Biodiesel Sub-model 

Palm-based biodiesel sub-model in Figure 3.19 represents the biodiesel sector in 

Malaysia palm oil industry.  

 

Figure 3.19. The palm-based biodiesel sub-model 
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The biodiesel production capacity (Bp, in tonne) is modeled in stock form. Its net input, 

biodiesel production rate (rBp, in tonne/year) is determined by the total biodiesel 

demand (TDB, in tonne) from local as well as abroad. Equation 3.54 and 3.55 shows the 

Vensim equation relating to biodiesel production. 

𝐵𝑝(𝑡) = ∫ 𝑟𝐵𝑝 𝑑𝑡 + 𝐵𝑝(𝑡𝑜)

𝑡

𝑡𝑜

 (3.54) 

  

𝑟𝐵𝑝 = 𝑇𝐷𝐵 (3.55) 

 

Total demand for biodiesel comes from domestic and abroad. There are five sectors 

identified to be the largest consumption of diesel in Malaysia. The sectors are 

transportation, industrial, agriculture, construction and mining, and shipping and rail 

(USDA, 2015). Current mandate is targeted for transportation and industrial sector, thus 

we group the remaining sector under ‘other sector’. Biodiesel demand in transportation 

(DBtrans, in tonne), industrial (DBind, in tonne) and other sector (DBother, in tonne) is 

calculated by multiplying total diesel consumption in the sector (DCtrans, in tonne; 

DCind, in tonne; DCother, in tonne) with corresponding biodiesel mandate (Mtrans, 

dimensionless; Mind, dimensionless; Mother, dimensionless). Equation 3.56 – 3.59 shows 

Vensim equation relating to biodiesel demand. 

𝑇𝐷𝐵 = 𝐷𝐵𝑡𝑟𝑎𝑛𝑠 + 𝐷𝐵𝑖𝑛𝑑 + 𝐷𝐵𝑜𝑡ℎ𝑒𝑟 (3.56) 

  

𝐷𝐵𝑡𝑟𝑎𝑛𝑠 = 𝑀𝑡𝑟𝑎𝑛𝑠 × 𝐷𝐶𝑡𝑟𝑎𝑛𝑠 (3.57) 

  

𝐷𝐵𝑖𝑛𝑑 = 𝑀𝑖𝑛𝑑 × 𝐷𝐶𝑖𝑛𝑑 (3.58) 

  

𝐷𝐵𝑜𝑡ℎ𝑒𝑟 = 𝑀𝑜𝑡ℎ𝑒𝑟 × 𝐷𝐶𝑜𝑡ℎ𝑒𝑟 (3.59) 
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The parameters and assumption used in the palm-based biodiesel sub-model are 

presented in Table 3.7.  In this sub-model, there are three control variable namely 

current biodiesel mandate for transportation sector, current biodiesel mandate for 

industrial sector and current biodiesel mandate for other sector. All the equations for 

this sub-model are available in APPENDIX C. 

Table 3.7 

 

Parameters and Assumptions Used in Palm-Based Biodiesel Sub-Model 

Parameters Value/Assumptions Unit Sources 

Biodiesel export 100,000 tonne MPOB (2016) 

Total diesel use in 

transportation sector 

Data projection tonne USDA (2015) 

Total diesel use in 

industrial sector 

Data projection tonne USDA (2015) 

Total diesel use in 

agricultural sector 

Data projection tonne USDA (2015) 

Total diesel use in 

construction and 

mining sector 

Data projection tonne USDA (2015) 

Total diesel use in 

shipping and rail 

sector 

Data projection tonne USDA (2015) 
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3.3.3.4 Labour Sub-model 

Figure 3.20 shows the labour sub-model.  

 

Figure 3.20. The labour sub-model 
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as mechanization rate increase and labour improve, the FFB yield will increased until 

it achieve the equilibrium value at one. 

 

Figure 3.21. Graph lookup function for effect of labour on FFB yield 

Relative labour land ratio is equal to actual labour land ratio (RatioLA, in labour/hectare) 

over optimal labour land ratio time the effect of mechanization on labour. 

Mechanization is incorporated in this sub-model so that it would help in improving 

relative land and labour ratio. Labour usage can be reduced as low as 50 percent with 

the adoption of mechanization (Ismail, 2003; Ismail et al., 2015). The effect of 

mechanization on labour (fMech,L, dimensionless) is modeled as direct function to 

relative land labour ratio. Equation 3.60 – 3.65 shows the mathematical equation 

relating to labour and labour taking rate. 

𝐿(𝑡) = ∫ 𝑟𝐿𝑖𝑛 − 𝑟𝐿𝑜𝑢𝑡 𝑑𝑡 + 𝐿(𝑡𝑜)

𝑡

𝑡𝑜

 (3.60) 

  

𝑟𝐿𝑖𝑛 = 𝑓𝑟𝐿𝑖𝑛 × 𝐿𝑔𝑎𝑝 (3.61) 

  

𝐿𝑔𝑎𝑝 = 𝐿′ − 𝐿 (3.62) 
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𝐿′ = 𝑅𝑎𝑡𝑖𝑜𝐿𝐴𝑜𝑝𝑡𝑖 × 𝑇𝐴 (3.63) 

  

𝑓𝐿,𝐹𝐹𝐵𝑌 = 𝐿𝑂𝑂𝐾𝑈𝑃𝐿,𝐹𝐹𝐵𝑌(𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑖𝑜𝐿𝐴) (3.64) 

  

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑖𝑜𝐿𝐴 = 𝑅𝑎𝑡𝑖𝑜𝐿𝐴 (𝑅𝑎𝑡𝑖𝑜𝐿𝐴𝑜𝑝𝑡𝑖⁄ ∙ (𝑓𝑀𝑒𝑐ℎ,𝐿)) (3.65) 

 

Labour off rate is computed by dividing the stock of labour with the contract duration 

(Tcontract, in year) influenced by the factor affecting labour off rate (fLout, dimensionless). 

While there are various factors attracting labours to work in plantation industry, the 

main factor would be the wages and the growth of the industry (Ayob et al., 2016). 

Thus, the main factor affecting labour off rate is the attractiveness of Indonesia palm 

oil industry (AttractivenessIPO, dimensionless) which are measured based on the 

Indonesia’s wage rate (WIPO, in RM) over Malaysia’s (WMPO, in RM), and the growth 

rate of Indonesia palm oil industry (gIPO, dimensionless) over the growth rate of 

Malaysia palm oil industry (gMPO, dimensionless). The Indonesia wage rate is modeled 

in stock with the growth rate based on its current inflation rate. This is similar with 

Malaysia wage rate. The sum of the two factors constitutes the attractiveness of 

Indonesia palm oil industry. Equation 3.66 – 3.70 shows the mathematical equation 

relating to labour off rate. 

𝑟𝐿𝑜𝑢𝑡 = 𝑓𝐿𝑜𝑢𝑡 × 𝐿 𝑇𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡⁄  (3.66) 

  

𝑓𝐿𝑜𝑢𝑡 = 𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝐿𝑜𝑢𝑡 (3.67) 

  

𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝐿𝑜𝑢𝑡 = 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑊𝐼𝑃𝑂 + 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑔𝐼𝑃𝑂 (3.68) 

  

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑊𝐼𝑃𝑂 = 𝑊𝐼𝑃𝑂 𝑊𝑀𝑃𝑂⁄  (3.69) 
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𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑔𝐼𝑃𝑂 = 𝑔𝐼𝑃𝑂 𝑔𝑀𝑃𝑂⁄  (3.70) 

The parameters and assumption used in the labour sub-model are presented in Table 

3.8.  In this sub-model, there is one control variable namely the mechanization adoption 

rate. All equations for this sub-model are available in APPENDIX D. 

Table 3.8 

 

Parameters and Assumptions Used in Labour Sub-Model 

Parameters Value/Assumptions Unit Sources 

Contract duration 5 year MPOB (2016) 

Fraction of labour 

taking 

0.25 1/year Parameter 

estimation 

Indonesia palm oil 

industry growth 

3.4% dmnl Cramb & McCarthy 

(2016) 

Malaysia palm oil 

industry growth 

0.8% dmnl Cramb & McCarthy 

(2016) 

Indonesia wage 

growth 

4.0% 1/year Bank Indonesia 

(2016) 

Malaysia wage 

growth 

1.8% 1/year Department of 

Statistics Malaysia 

(2016) 

 

3.3.4 Model Validation 

Model validation is the work of approving the worthiness of a model. The purpose of 

validation in SD model is to uncover flaws and errors so the modeler can understand 

the model limitations, improve it, and ultimately produce the best available model to 

assist in important decisions (Sterman, 2000). Past researchers have developed a wide 

variety of specific tests to validate an SD model. As suggested by Sterman (2000) and 

Forrester and Senge (1980), validation test must be done to both structure and behaviour 

of the model. As such, there are two types of validation test in SD modeling which are 

structural and behavioural test. Structural test is conducted to check the model’s internal 

consistency while behavioural test examine the comparability of the model with real 
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system behaviour. Six tests had been conducted covering the structural and behavioural 

test critical to an SD model. These tests are structural assessment, dimensional 

consistency, extreme condition, integration error, sensitivity analysis test, and 

behavioural validity test. 

3.3.4.1 Structural and parameter assessments 

Structure assessment is the test to validate the structure of the developed model. It is 

conducted basically to determine whether the model is consistent with knowledge of 

the real system relevant to the purpose and focuses on the level of aggregation, the 

conformance of the model to basic physical realities and the realism of the decision 

rules for the agent (Sterman, 2000). 

In this study, structural assessment test is done by examining the boundary adequacy of 

the model and check the appropriateness of variables in order to achieve the modeling 

objective. This is done initially by having a close look on causal loop diagram (CLD). 

Further, parameter assessment test is done by referring the model parameter from 

previous studies and published reports on Malaysia palm oil statistics, as well as 

verification with the industry players through interview session. 

3.3.4.2 Dimensional Consistency Test 

Dimensional consistency test also known as unit test is conducted to identify any 

inconsistency in the units of measure for each variables (Sterman, 2000). This test is 

one of the most basic test and should be done along the process of building the model. 

This test not only reveal the typographical error, inverted ratio, or missing time 

constant, it also more often reveals the unit error which is the important flaws in 
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understanding the structure or decision process of the developed model (Sterman, 

2000). This test may be the first critical indication of an erroneous model. 

In this study, dimensional consistency test is done by checking both hand sides of 

selected equations in the model. For complete test on all equations, the built-in 

dimensional consistency test module in Vensim has been performed. 

3.3.4.3 Extreme Condition Test 

By definition, robustness is the culmination point which is measured in term of quality 

of a model. Under extreme condition, the model should behave in a realistic fashion 

and adhered to its physical limits no matter how extreme the inputs or policies that 

being imposed to the model. As proposed by Sterman (2000), extreme condition test 

can be conducted through direct inspection of model equations and simulation. 

In this study, selected variables from each sub-models were observed while changing 

the correspondent parameters to extreme value. The variables were selected based on 

their critical role influencing the behaviour of each sub-model and also their role 

representing the main factors (scarcity of plantation area, labour shortage and biodiesel 

demand) that influence CPO production in this research. They are oil extraction rate, 

average replanting, biodiesel mandate for transportation, industrial and other sector, 

and mechanization adoption rate.  Table 3.9 listed the selected variable for extreme 

condition test and the expected outcome. 
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Table 3.9 

 

Selected Variables for Extreme Condition Test and the Expected Outcome 

Sub-model Variables Extreme test Expected outcome 

Palm oil supply 

demand 

Oil extraction rate  

 

From 0.22 to 0 CPO production 

become zero 

 

Oil palm 

plantation 

Replanting rate become 

extremely low at zero. 

From 50,000 

hectare to 0 

hectare 

Premature and mature 

area become zero; 

Ageing area equal to 

total planting area. 

 

Palm-based 

biodiesel 

Biodiesel mandate for: 

(i) transportation 

(ii) industrial 

(iii) other sectors 

 

 

From 0.10 to 1 

From 0.07 to 1 

From 0 to 1 

 

Biodiesel demand 

increase. 

Labour Mechanization adoption 

rate 

From 0.22 to 1 Labour productivity 

increase. 

 

 

3.3.4.4 Integration Error Test 

To test whether the model is sensitive to the choice of time step or integration method, 

integration error test is conducted. By definition, a good model will have a time step 

that yields an approximation of the underlying continuous dynamic with high accuracy 

to the modeling objective. According to Sterman (2000), integration test can be done 

by cutting the time step (dt) in half and running the model again. It is expected that the 

stock variables in the model behave in the same manner and project insignificant change 

regardless the time step. Any changes of result occur in ways that matter indicate that 

the time step is too large. The process is continued until the results are no longer 

sensitive to the choice of time step. 
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In this study, three values of time step namely 0.25, 0.125 and 0.0625 were chosen and 

the main stock variables from each sub-model are observed. 

3.3.4.5 Sensitivity test 

Sensitivity analysis is a test used to check whether the conclusions change in ways 

important to the model purpose when assumptions are varied over the plausible range 

(Sterman, 2000). This test develops a level of confidence in model structure as model 

output variations or dynamic behaviour is within acceptable form as parameter value 

change over some ranges. In this research, our main concern is the behaviour 

sensitivity. A wider range of parameters will be set to test the sensitivity of the certain 

variables to the model behaviour. If the result produced is beyond the logical 

expectation of the system, the model has to be re-checked of its structure validity. 

In this study, at least one exogenous variable had to be chosen from each sub-model for 

its sensitivity test towards CPO production. The average oil extraction rate (OER) has 

been chosen from palm oil supply and demand sub-model to observe its changes on the 

CPO production and prices. The rest of the variables chosen from each sub-model are 

the policy variables which impact on CPO production and prices are expected. The 

range of parameters are varied between -20% and +20% of the values which are used 

in base run (Hekimoglu and Barlas, 2010). Further, multi-variate sensitivity analysis is 

conducted where all variables are simultaneously changed. A total of 50 simulation runs 

has been performed using sensitivity analysis module embedded in Vensim. The 

parameter range from corresponded sub-model is listed in Table 3.10. 
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Table 3.10 

 

Sensitivity Analysis Parameter Setting 

Sub-model Variable Parameter range Unit 

palm oil supply and 

demand 

Average OER 0.17 – 0.26 dmnl 

Oil palm plantation Average replanting 40,000 – 60,000 hectare 

Palm-based biodiesel Biodiesel mandate for 

transportation sector 

0.08 – 0.12 dmnl 

Biodiesel mandate for 

industrial sector 

0.06 – 0.08 dmnl 

Biodiesel mandate for  

other sector 

0 – 0.02 dmnl 

Labour Mechanization adoption rate 0.16 – 0.24 1/year 

 

3.3.4.6 Behaviour Validity Test 

In this test, the simulation output is compared with historical data. The comparison is 

made by quantifying the mean error between simulation and historical data. The time 

period for data comparison is subject to data availability. The historical fit test was used 

to estimate model parameter by minimizing the weighted sum of the squared error 

between the model and the historical data simultaneously. 

In this study, statistical error analysis using Root Mean Square Percent Error (RMSPE) 

and Theil’s inequality coefficient has been conducted for validation purpose on selected 

variables Sterman (1984). The RMSPE provides a normalized measure of the 

magnitude of the error. Theil’s inequality coefficient on the other hand consist of UM, 

US, and UC which reflect the fraction of the mean-square-error due to bias, unequal 

variance, and unequal covariance respectively (Sterman, 1984; 2000). Equation 3.71 to 

3.74 shows the RMSPE and Theil’s inequality coefficient formula used in this study. 
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𝑅𝑀𝑆𝑃𝐸 = √
1

𝑛
∑ [

(𝑆𝑡 − 𝐴𝑡)

𝐴𝑡
]

2𝑛

𝑡=1

 (3.71) 

  

𝑈𝑀 =
(𝑆̅ − �̅�)2

1
𝑛

∑(𝑆𝑡 − 𝐴𝑡)2
 (3.72) 

  

𝑈𝑆 =
(𝑆𝑆 − 𝑆𝐴)2

1
𝑛

∑(𝑆𝑡 − 𝐴𝑡)2
 (3.73) 

  

𝑈𝐶 =
2(1 − 𝑟)𝑆𝑆𝑆𝐴

1
𝑛

∑(𝑆𝑡 − 𝐴𝑡)2
 (3.74) 

 

Where, 

n = Number of observations (t = 1, … n) 

St = Simulated value at time t 

At = Actual value at time t 

𝑆̅= Mean of S 

�̅� = Mean of A 

SS = Standard deviation of S 

SA = Standard deviation of A 

Total plantation area, CPO production, CPO price, CPO export demand, PPO local 

demand and PPO export demand are the chosen variables for the test. Total plantation 
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area is chosen because any discrepancies produced indicate erroneous behaviour 

modeling of oil palm planting phases. Whereas CPO production is chosen because it is 

the main output investigated in this research. On the other hand, CPO prices are selected 

due to its importance in connecting CPO production and CPO demand. Finally, three 

source of demands namely CPO export, PPO local and PPO export demand are included 

in the test as their output influence the CPO prices. 

3.3.5 Simulation run 

A base run and three scenario setting runs are performed to obtain the idea on the 

feedback process and mechanism of the model component, particularly the CPO 

production.  

3.3.5.1 Base run 

The first simulation run is a base run, which represents the ‘business as usual’ scenario 

of Malaysia palm oil industry. In other words, all the policies currently in effect are 

remained with the assumption of no change take place in the future. Table 3.11 shows 

the control variable and its corresponding value used in the base run. 

Table 3.11 

 

Control Variable Used in the Base Run 

Codes Variables Value Unit 

a Mechanization adoption rate 20% dmnl 

b Average replanting 50,000 hectare 

c Current biodiesel mandate in transportation sector 0.10 dmnl 

d Current biodiesel mandate in industrial sector 0.07 dmnl 

e Current biodiesel mandate in other sector 0 dmnl 
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3.3.5.2 Scenario setting run 

One of SD main attribute is providing a platform to do experimentation of various 

scenarios on the developed model. Through various scenario experimentation, the 

impact of policies implementation in the future can be evaluated effortlessly without 

involving serious post-policy implementation cost. Three different scenarios of 

simulation have been conducted. Each scenario is crafted representing all policy 

variables and their influence towards CPO production. 

SCENARIO 1: Pushing to replant 

Due to the scarcity of potential plantation land, it is important for our industry to 

increase the productivity that refer to productivity per hectare or the number of FFB 

yield per hectare. This also has long been targeted in the ETP under EPP number 2. 

EPP 2 set to achieve average 25 tonne/ha FFB across all plantation owner by 2020 

(PEMANDU, 2010). In order to increase FFB yield given a limited plantation area, the 

replanting rate has to be increased due to the huge difference of FFB yield per hectare 

in mature and ageing area. 

Scenario where replanting is at higher level is simulated and the behaviour of CPO 

production as well as other important variables were observed. It is assumed that 

government has managed to find a way to convince plantation company and 

smallholders to perform aggressive replanting programme. In this scenario, the average 

replanting is set from 50,000 hectare to 300,000 hectare per year. The new replanting 

programme is set to start in 2017. 
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SCENARIO 2: Expanding the mechanization adoption rate 

Another way to increase FFB yield per hectare is to ensure that we get the most yield 

out of every tree. This include ensuring sufficient nurturing (the quality fruit can be 

produced) and complete harvesting (minimizing loose fruit). To achieve this we have 

to supply optimal number of labour in the industry. However, the depleting labour 

particularly from Indonesia is inevitable because theoretically we cannot stop the 

growth of Indonesian plantation. As labour shortage is bound to happen, adopting 

mechanization is a way forward to sustain and increase productivity. However, current 

mechanization adoption is at unsatisfying level due to various factors including 

inadequate technology development on mechanization and high initial adoption cost. 

A scenario where mechanization adoption is at satisfying high level was simulated. It 

is assumed that government has come out with appropriate scheme to convince both 

plantation company and smallholder to adopt mechanization. The mechanization 

adoption rate was increased from 20 percent to 100 percent. The new adoption rate is 

set to start in year 2017. 

SCENARIO 3: Progressing the biodiesel programme 

The need of increasing palm oil output is of essence due to the advancement of biodiesel 

programme. The current blend mandates may be increased in the future as part of the 

government commitment in stimulating biodiesel industry growth set under the 

National Biofuel Policy (NBP). With increase blend mandates, this means high demand 

of CPO will take place and supress the supply resulting to high CPO price. Similar 

things happen if government decides to widen the implementation of blend mandates 
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in other sector aside of transportation and industrial sector. The sufficient palm oil 

output will help in stabilizing the high CPO price stem from blend mandate increase. 

A scenario was simulated where the parameter of biodiesel blend mandate in 

transportation, industrial and other sector were increased starting year 2020 (four years 

after the latest announcement of new blend mandate in 2016). In transportation sector 

the mandate will be increase from 0.10 to 0.15, industrial sector from 0.07 to 0.10, and 

other sector from 0 to 0.05. This scenario also indicates the government has started to 

enforce biodiesel blend mandates into the other sector. 

3.4 Genetic Algorithm as Search Algorithm 

Developing GA is the second phase of the research methodology, which is also part of 

the process to achieve the second research objective. As aligned by Duggan (2008), a 

process of searching optimal solutions in an SD model using any search method 

fundamentally has to involve some essential steps, which include: 

1) SFD must be completed and robust. 

2) The policy variables have to be selected. 

3) The upper and lower bound for each policy variables has to be defined. 

4) The output which serve as the payoff have to be identified to serve as objective 

function. 

In reference to this guideline, an SD model of Malaysia palm oil industry has been 

developed and various test has been performed to validate its robustness as presented 
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in Chapter 4.1. Further, the policy variables were selected based on the main factor that 

influence CPO production which has been identified previously as illustrated in Figure 

3.27. The determination of policy variables were done according to their impact on 

CPO production and validated by the expert opinion. The respective upper and lower 

bound for each policy variables has been defined as presented in Chapter 4.4. Finally, 

CPO production is chosen as the payoff or objective function in this research. Table 

3.22 explains the description of each policy variables. 

 

Figure 3.22. The relationship mapping between input and output of optimization 

module 

Table 3.12 

 

The Description of Policy Variables 

Variables Sub-model Description 

Mechanization adoption 

rate 

Labour The rate of all plantation in Malaysia adopting 

mechanized equipment to assist plantation 

activities 

Average replanting Oil palm plantation 

sector 

Average replanting works done in all plantation in 

Malaysia per annum. 
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Biodiesel mandate in 

transportation sector 

Biodiesel The biodiesel mandate launched by the 

government targeting transportation sector. 

Biodiesel mandate in 

industrial sector 

Biodiesel The biodiesel mandate launched by the 

government targeting industrial sector. 

Biodiesel mandate in 

other sector 

Biodiesel The biodiesel mandate launched by the 

government targeting sector other than 

transportation and industrial. 

 

In this research, as GA is integrated with SD model, the model allows autonomous 

control of the policy variable constraint. This comes from the feedback structure in SD 

model. For instance one of the policy variables - the average replanting rate - has to be 

capped by the current ageing area. The structure of the SD model has already captured 

the feedback process between these variables and autonomously refrain average 

replanting rate from exceeding current ageing area. On that account, there is no need in 

using penalty as adopted in other studies with GA only method. 

The objective behind developing the SD-GA model is to find the sufficiently good 

solution for the set of aforementioned policy variables in order to achieve the desired 

CPO production level in certain year. Thus the objective function is to minimize the 

absolute value between the CPO production and its desired level in a desired time in 

the model time line as shown in Equation 3.75. 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑀𝐼𝑁|𝐶𝑃𝑂𝑝(𝑡) − 𝐶𝑃𝑂𝑝(𝑡)
∗| (3.75) 

 

Where  

CPOp(t) is the CPO production at time t 

CPOp(t)* is the target CPO production at time t 
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The following sub-sections explain the working steps of the developed algorithm, the 

corresponded GA operator used, and the integration mechanism with Malaysia palm oil 

SD model. 

3.4.1 Working Procedure of Genetic Algorithm 

The sequential steps involved in the development of GA in this research are illustrated 

by flowchart as in Figure 3.23. The development of the algorithm is done on visual 

basics platform in Microsoft Excel 2013. Microsoft Excel 2013 was chosen because it 

offers the spreadsheet layout that is helpful for tabulating all the genes of chromosome 

in the population. Furthermore, the underlying visual basics (VB) programming in 

Microsoft Excel 2013 helps in coding the GA and the system interface, and the output 

from GA can be tabulated using the spreadsheet in Microsoft Excel 2013. Moreover, 

Vensim Dynamic Link Library (DLL) provides the leverage to integrate with Microsoft 

Excel thus facilitating the integration between SD and GA. 
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Figure 3.23. Workflow of the genetic algorithm on visual basic platform in Microsoft 

Excel 2013 

STEP 1. Read the control input: The first step in the algorithm is reading the value range 

for policy variables. The value and range has to be defined before starting the algorithm. 

Table 3.13 compiles the value for number of population, number of generation and 

number of run. The number of generation is set as the stopping criterion for the 

optimization process, in which in this model the process will be stopped after the 

generation reach 30. This is based on the experimentation results done with various 
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number of generation as presented in Chapter 4.2. The results show that at the 30th 

generation, sufficiently good solution has been produced with acceptable amount of 

time. As for the population number, 20 has been chosen as appropriate population size. 

A number of experiment has been done to decide the best generation and population 

number which produce the best solution in the shortest possible time as presented in 

Chapter 4.2. Finally, number of run is simply the number of running the optimization 

process and 30 is deemed sufficient for comparison purpose in this research. 

Table 3.13 

 

Genetic Algorithm Operator Used in this Study 

GA operator Value 

Number of generation 30 

Number of population 20 

Number of run 30 

 

STEP 2. Initialize the population: The algorithm generate an initial population in semi-

random operation based on pre-defined upper and lower bound of policy variables as 

shown by the pseudo-code in Figure 3.21. The number of solutions (or chromosomes) 

in the population is based on the population number set during the coding process. The 

solution is represented by an array of 1x5 encoded real values which correspond to the 

five policy variables. Figure 3.24 shows the steps to generate the initial solution. Table 

3.14 listed the policy variables and their respective code with representation of solution 

illustrated in Figure 3.25. The number of solutions in the population remains the same 

until the stopping criteria is met. 
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Figure 3.24. Pseudo-code for generating initial population 

Table 3.14 

 

Policy Variables code 

Variables Codes 

Mechanization adoption rate a 

Average replanting b 

Current biodiesel mandate for transportation sector c 

Current biodiesel mandate for industrial sector d 

Current biodiesel mandate for other sector e 

 

 

Figure 3.25. Solution representation structure 

STEP 3. Fitness evaluation and new population generation: Next is the sub-steps which 

are performed on the population of each generation until a specified number of run are 

performed. 

1) The generated solutions are exported to Vensim DSS using Vensim Dynamic 

Link Library (VensimDLL). Vensim DSS will run the simulation using these 

values and produce the CPO production value in desired year as simulation 

output. The output is then imported by GA and evaluated of its fitness. The 
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fitness of a chromosome is measured by its corresponded CPO production 

value. Fitness of each chromosome is calculated following computation as 

shown by the pseudo-code in Figure 3.26. The code calculate the difference 

between the target CPO production and the current generation chromosome 

fitness. The calculation is expected to return between 0 and 1, where highest 

value denotes as the fittest chromosome.  

 

Figure 3.26. The pseudo-code for fitness value evaluation 

2) Then, the fittest chromosomes will be selected as parents to produce new 

offspring for next generation. The selection is done using the roulette wheel 

selection process. The idea is to select chromosomes with a probability of 

selection proportional to the chromosomes’ fitness scores. Chromosomes with 

the highest fitness scores have greater probabilities of being selected, while 

chromosomes with lower scores have lower probabilities of being selected. The 

pseudo-code of roulette wheel selection is shown in Figure 3.27 as adapted from 

Bourg (2006). In this research, roulette wheel selection operator selects parents 

from population based on crossover probability rate dependent on the number 

of solutions which has been selected as elitist. Elitist is selected based on elitism 

mechanism.  
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Figure 3.27. The pseudo-code for roulette wheel selection 

3) Selected chromosomes become the parents needed for mating or crossover 

process. The probability of crossover, Pc is equal to 0.95. This means that all 

offspring except one elitist from previous generation is made by crossover to 

ensure the diversity of the population. Crossover process is done using a simple 

single point crossover because the chromosome have a short structure with only 

five genes. The usage of multipoint crossover on the other hand will result into 

population become homogenous after many generations as stated by Spears and 

De Jong (1990). The cutting point is in the ratio of 2:3 as illustrated in Figure 

3.28. The logic behind this cutting point is that the last three genes are of same 

category which is the biodiesel mandates. Thus, retaining or changing the last 

three genes is for the purpose of maintaining the properties of the chromosome. 

Figure 3.29 shows the pseudo-code for the single point crossover process. 
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Figure 3.28. Example of single point crossover 

 

Figure 3.29. One point crossover pseudo-code 

4) After crossover process, the new chromosomes will undergo mutation process. 

Mutation process is done using uniform mutation. That is, each gene has equal 

opportunity to be mutated based on random value between the constrain range 

(Michalewicz ,1994). The reason of using uniform mutation is that all gene in 

the chromosome in this research are assumed to have similar weigh to be 

mutated. Hence, there is no need of having index controlled mutation as offered 

by power mutation.  Firstly, a random number is generated between 0 and 1. If 

the random number is less than the mutation probability rate, the mutation 

process is performed. The mutation probability used in this study is 0.01. 

Otherwise, the solution will not be mutated. The purpose of using low mutation 
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rate is to limit the number of mutated chromosome. If the mutation is performed, 

a random number between 0 and 1 is generated again. If the random number fall 

in the specific range, the correspondent gene is mutated. This scheme gives each 

gene a 20 percent chance of being mutated. The gene is mutated by generating 

random number within the lower and upper bound again. The mutation 

algorithm is illustrated in Figure 3.30 as adapted from Bourg (2006). 

 

Figure 3.30. Pseudo-code for mutation process 

5) In this research, elitism mechanism is used to select the best solutions from the 

current population to be forwarded to next generation without undergoing 

crossover and mutation process. The mechanism select one solution with the 

highest fitness score from current population and bring it to the next generation 

without any gene modification. The remaining population in the next generation 

will be formed through the selection, crossover and mutation process using 

current population. The elitism mechanism is illustrated in Figure 3.31. 
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Figure 3.31. The pseudo-code for elitism mechanism. 

STEP 4. Process repeating: After all the generation has been evaluated, next run will 

be performed. In this research, the number of run is 30. The number of run is deemed 

sufficient for comparison purpose in this research. Furthermore, performing several 

runs are important as GA is stochastic in nature thus repeating the whole process will 

increase the chances of getting the best of the best solution. 

STEP 5. Displaying the result: When all run has been performed, the system will 

compile all the best solutions (chromosomes) from each run in Microsoft Excel 2013 

interface for comparison and interpretation purpose. 

The interface is developed on Microsoft Excel spreadsheet to allow the input of GA 

setting including the number of generation, number of population, and mutation rate as 

shown in Figure 3.32. Furthermore, it allows the input of policy variables’ lower and 

upper boundary. On the left side of the interface, the list of genes of all chromosomes 

in all population are displayed in list. By checking the ‘show progress’ button, the 

system will show updated list from each generation throughout the optimization 

process. However, user may choose to uncheck the ‘show progress’ button which will 

render the system to only display the list of genes of chromosomes in the final 

generation. For reference, the system also display the total execution time of the whole 

optimization process. 
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Figure 3.32. The system interface. 

3.5 Searching for Optimal Policy Options 

To achieve our research objective of improving CPO production, the policy variables 

has to be optimized. Performing optimization for multiple variables manually using SD 

alone can be time-consuming. Furthermore, successful optimization process may result 

into better result for searching the optimal policy options. Thus we seek the helps from 

GA from metaheuristics family by integrating it with SD. In optimization process, there 

is an objective function, the constraints and the results. In this study, the objective 

function is to minimize the absolute value between the targeted CPO production and 

simulated CPO production. By achieving this objective function, CPO production can 

be improved to the desired level. The constraints are lower and upper bound of five 

policy variables namely mechanization adoption rate, average replanting, biodiesel 

mandated for transportation sector, biodiesel mandate for industrial sector, and 

biodiesel mandate for other sector. Each optimization process will be performed in 30 

runs where the best result will be chosen for policy interpretation.   



                                                                 

 146 

There are three optimization process performed using SD-GA model where each are 

conducted with exclusive objective function. The optimization process was done as part 

of the requirement to achieve the second research objective. The best solution from 

each optimization is meticulously interpreted for possible real life policy 

implementation. 

3.5.1 Optimization 1 

In optimization 1, the absolute value of the difference between CPO production in 2050 

(CPOP(t=2050))and maximum value CPO production in 2050 (Max CPOP(t=2050))  by 

searching for appropriate values of each policy variables (Equation 3.76). Table 3.15 

list the parameter range for all policy variables. All policy variables will be the genes 

in the chromosome with the correspondent value as the gene’s allele. At the end of 

optimization, the best chromosome will be the best so far solution. After 30 run, these 

best so far solution will be compared to choose the best solution. 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑀𝐼𝑁 |(𝐶𝑃𝑂𝑃 (𝑡=2050)) − (𝑀𝑎𝑥 𝐶𝑃𝑂𝑃 (𝑡=2050))| (3.76) 

Table 3.15 

 

Parameter Setting for Policy Variables Tested in Optimization 1 

Code Policy variable Range Starting 

year 

Description 

a Mechanization adoption 

rate 

0.2 – 1 2017 The adoption of mechanization is in the 

range of 20% to 100%. 

 

b Average replanting 50,000 – 

300,000 

2017 The minimum replanting rate is the 

current replanting rate (50,000 ha) and 

maximum is at 300,000 ha. 

 

c Blend mandate for 

transportation 

0.10 – 0.20 *2020 New mandate start at year 2020 with the 

range of B10 to B20. 

 

d Blend mandate for 

industrial 

0.07 – 0.20 *2020 New mandate start at year 2020 with the 

range of B7 to B20. 

 

e Blend mandate for other 

sector 

0 – 0.20 *2020 New mandate start at year 2020 with the 

range of 0 to B20. 
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*Because latest mandates has been announced in 2016 and scheduled to be implemented in 2017, the starting 

point for all new mandates implementation are in 2020. 

 

3.5.2 Optimization 2 

In optimization 2, assuming that it is hard to implement new policies in 2017 due to 

time constraint, therefore the new policies are planned to be implemented in year 2020 

(4 year’s time frame). Equation 3.77 shows the objective function for optimization 2. 

Note that the objective function is similar with that of optimization 1. The difference of 

these two optimization however is the year of policy variable changes. The input and 

control parameter are listed in Table 3.16. 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑀𝐼𝑁 |(𝐶𝑃𝑂𝑃 (𝑡=2050)) − (𝑀𝑎𝑥 𝐶𝑃𝑂𝑃 (𝑡=2050))| (3.77) 

 

Table 3.16 

 

Parameter Setting for Policy Variables in Optimization 2 

Code Policy variable Parameter

/Range 

Starting 

year 

Description 

a Mechanization adoption 

rate 

0.2 – 1 2020 The adoption of mechanization is in the 

range of 20% to 100%. 

 

b Average replanting 50,000 – 

300,000 

2020 The minimum replanting rate is the 

current replanting rate (50,000 ha) and 

maximum is at 300,000 ha. 

 

c Blend mandate for 

transportation 

0.10 – 0.20 2020 New mandate start at year 2020 with the 

range of B10 to B20. 

 

d Blend mandate for 

industrial 

0.07 – 0.20 2020 New mandate start at year 2020 with the 

range of B7 to B20. 

 

e Blend mandate for other 

sector 

0 – 0.20 2020 New mandate start at year 2020 with the 

range of 0 to B20. 
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3.5.3 Optimization 3 

Optimization 3 takes a different approach in utilizing SD-GA model as compared to 

optimization 1 and 2. While trying to maintain the progress of policy variables, 

however, the solution produced in both optimization 1 and 2 may not be sensible in the 

real world policy implementation. In a nutshell, any improvement on the policy has to 

be done in phases to ensure the participation of the industry players as well as deterring 

any unwarranted shock in the industry. On this account, the capability of the SD-GA 

model in setting the policy variables in any desired years can be utilized in order to 

perform phase optimization process. Say the policy makers are not planning to 

maximize the CPO production through one shot policy changes. However, they prefer 

to disaggregate the path to achieve the goal and set specific value to be achieved in 

certain year. This is important in helping the policy maker to formulate a realistic and 

achievable goal. 

By using the hybrid SD-GA model, the ‘phased optimization processes’ where policy 

changes are done phase by phase to achieve desired CPO production has been 

introduced. Each phase has individually tailored objective function and parameter range 

for policy variables formulated in continuum as illustrated in Table 3.17. The time 

interval between the phases is five years where the process start in year 2017 and ended 

in year 2050. The target for CPO production in year 2020 is increased by 4 percent of 

CPO production in year 20176. Next, CPO production target in year 2025 is increased 

by 4 percent of CPO production target in 2020. Then, the following five years interval 

will have CPO production target of 26 million tonne without any increment from the 

                                                      
6 The reason we increase 4% instead of finding the maximum CPO production at the particular year is 

to avoid the sudden high increase in policy variables, which will defeat the very purpose of phase 

optimization process. 



                                                                 

 149 

previous target. This is due to the physical limitation of the model, where the highest 

CPO production achievable is at 26 million tonne. Finally, the target CPO production 

will remain until year 2050, or in other words the maximum CPO production is targeted 

until year 2050. Equation 3.78 shows the objective function for optimization 3. 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑡=𝑛) = 𝑀𝐼𝑁 |(𝐶𝑃𝑂𝑃 (𝑡=𝑛+1)) − (𝐶𝑃𝑂𝑃 (𝑡=𝑛+1)
∗)| (3.78) 

  

Where, 

n = number of phase (n = 1,…, 7) 

Table 3.17 

 

The Parameter Setting in Phase Optimization Process 

Policy 

variable 

Phase 1 

2017-2020 

Phase 2 

2020-2025 

Phase 3 

2025-2030 

Phase 4 

2030-2035 

Phase 5 

2035-2040 

Phase 6 

2040-2045 

Phase 7 

2045-2050 

Mechanization 

adoption rate 

 

0.2 – 0.3 0.3 – 0.5 0.5 – 0.7 0.7 - 0.8 0.8 - 0.9 0.9 - 1.0 0.99 – 1 

Average 

replanting 

 

50,000 – 

100,000 

100,000 – 

150,000 

150,000 – 

200,000 

200,000 – 

300,000 

200,000 –

300,000 

200,000 –

300,000 

200,000 –

300,000 

Biodiesel 

mandate in 

transport 

 

0.10 – 0.10 0.10 – 0.15 0.13 – 0.2 0.17 – 0.25 0.18 – 0.3 0.24 - 0.35 0.33 – 0.4 

Biodiesel 

mandate in 

industrial 

 

0.07 – 0.07 0.07 – 0.10 0.08 – 0.15 0.14 – 0.2 0.18 – 0.25 0.18 – 0.3 0.23 – 0.35 

Biodiesel 

mandate in 

other 

 

0 - 0 0 – 0.05 0.02 – 0.10 0.04 – 0.15 0.08 – 0.2 0.08 – 0.25 0.22 – 0.3 

TARGET 

CPO 

production 

(Year) 

 

25,000,000 

(2020) 

26,000,000 

(2025) 

*26,000,000 

(2030) 

*26,000,000 

(2035) 

*26,000,000 

(2040) 

*26,000,000 

(2045) 

*26,000,000 

(2050) 

Increment 

from previous 

target 

 

+ 4% + 4% 0 0 0 0 0 

* CPO production cannot be increased further than 26,000,000 tonne due to physical limitation of the model. 
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Through phased optimization processes, it helps to identify the room for gradual policy 

implementation and avoid post-policy implementation shock to the industry. 

3.6 Model evaluation 

For evaluation purpose, all optimization results are compiled and compared. The 

evaluation is based on the CPO production produced as well as the appropriateness of 

the solution to be implemented in the real world situation. Further, the discussions will 

involve the findings comparison with previous studies. This is done as the requirement 

to achieve the third research objective, which is to evaluate the propose hybrid model 

for assessing CPO production in Malaysia. 

3.7 Summary 

In this chapter, research design and process are explained in detail. This includes the 

SD model development process and GA working procedure. Both SD and GA area 

integrated using user interface developed in Ms Excel 2013. The best solution from 

each run is compiled at the end of the process for comparison purpose. Next chapter 

present the results of experimentation and analysis derived from this research using the 

propose SD-GA model. 
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CHAPTER FOUR 

RESULTS AND DISCUSSIONS 

This chapter starts with the presentation of the outcome of various validation tests. 

Then, the simulation results from the model under various policy interventions are 

presented. Next, the results for several SD-GA optimization to find the optimal policy 

options are presented. Finally, the obtained optimal policy options from all optimization 

were compared to select the best policy appropriate for real world implementation. The 

chapter ends with the conclusion. 

4.1 Model Validation 

4.1.1 Structural and parameter assessments 

In structural assessment test, the boundary adequacy of the model the appropriateness 

of variables were examined, which was initially done by having a close look on causal 

loop diagram (CLD). The CLD capture the main component in Malaysia palm oil 

market including palm oil supply and demand, plantation sector, labour availability, 

and palm-based biodiesel sector. The main components of CLD were referred from key 

papers as were in Yahaya et al. (2006), Shri Dewi et al. (2010), Shri Dewi et al. (2015), 

and Mohammadi et al. (2016). 

The next process involved with the conversion of CLD into stock and flow diagram 

(SFD). In this process, the main component were modeled in individual sub-model and 

eventually combined into a main model. Again, the fundamental structure and 

behaviour of SFD were referred from key papers as in Yahaya et al. (2006), Shri Dewi 

et al. (2010), Shri Dewi et al. (2015), and Mohammadi et al. (2016). Modification has 

been made however for the model to achieve the research objective. The non-linear 
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relationship was also being incorporated using system dynamics lookup function to 

permeate higher accuracy in depicting the real industry situation. Further, both CLD 

and SFD mechanism and feedback process were validated by expert opinion through 

interview session with industry members. Table 4.1 shows the process involve in 

validation process with the expert in the industry. Conclusively, after the validation 

process it was found that the fundamental structure and feedback process of both CLD 

and SFD were closely conformed to the previous studies and in-line with expert 

opinion. 

Table 4.1 

Model Validation Process with Expert in the Industry 

Date Experts rank and 

affiliation 

Process Action taken 

9  

September 

2016 

Deputy President, 

Malaysia Biodiesel 

Association 

• Defining the reference 

mode 

• CLD structure and 

feedback checking 

• SFD structure and 

feedback checking 

• Policy analysis 

 

• CLD structure and 

feedback loops were 

accepted. 

• Biodiesel sub-model in 

SFD has been improved 

in terms of mandate 

impact on CPO demand. 

• Policy changes on 

mandate and its impact 

on model behaviour was 

accepted. 

 

14 

September 

2016 

Director, 

Malaysian Palm Oil 

Board 

• Defining the reference 

mode 

• CLD structure and 

feedback checking 

• SFD structure and 

feedback checking 

• Policy analysis 

• CLD structure was 

corrected in terms of 

CPO prices, supply and 

demand relationship. 

• CPO price setting 

mechanism in SFD has 

been corrected. 

• Policy changes on 

replanting rate and 

mechanization and their 

impact on model 

behaviour were accepted. 

 

7  

October 

2016 

Manager, 

Performance 

Management and 

Delivery Unit 

• Defining the reference 

mode 

• CLD structure and 

feedback checking 

• SFD structure and 

feedback checking 

• Policy analysis 

• CLD structure and 

feedback loops were 

accepted. 

• SFD structure and 

behaviour were accepted. 

• Policy changes on all 

policy variables and their 
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impact on model 

behaviour were accepted. 

 

10  

October 

2016 

Director, 

Ministry of 

Plantation Industries 

and Commodities  

• Defining the reference 

mode 

• CLD structure and 

feedback checking 

• SFD structure and 

feedback checking 

• Policy analysis 

• CLD structure and 

feedback loops were 

accepted. 

• SFD structure and 

behaviour were accepted. 

• Policy changes on all 

policy variables and their 

impact on model 

behaviour were accepted. 

 
*CLD = Causal Loop Diagram; SFD = Stock and Flow Diagram 

 

Next, for parameter assessment test, sub-chapter 3.33 can be referred for detailed 

explanation on the source of parameter as well as reasons behind the assumptions made 

in each sub-model. Conclusively, all variables and assumptions were taken from 

published literature, government bodies, and interview with industry members. 

4.1.2 Dimensional consistency test 

Dimensional consistency test is done by checking both hand sides of equations in the 

model. For better understanding, Table 4.2 presents the dimensional consistency 

analysis of main equation from each sub-models. Furthermore, the built-in dimensional 

consistency test provided in Vensim has been performed and the result shows all unit 

are consistence as demonstrated in Figure 4.1.  
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Table 4.2 

 

Dimensional Consistency of Selected Equations from Each Sub-Models 

Sub-

model 

Equation 

number 

Equation Dimensional analysis 

Palm oil 

supply and 

demand 

3.3 𝐶𝑃𝑂𝑝(𝑡) = ∫ 𝑟𝐶𝑃𝑂𝑝  𝑑𝑡 + 𝐶𝑃𝑂𝑝(𝑡𝑜)

𝑡

𝑡𝑜

 
[tonne] = 

[tonne/year]*[year]+[tonne] 

3.4 𝑟𝐶𝑃𝑂𝑝 = (𝑂𝐸𝑅 × 𝐹𝐹𝐵𝑌𝑇)/𝑡𝐶𝑃𝑂𝑝 
[tonne/year] = 

[dmnl]*[tonne]/[year] 

3.5 𝐶𝑃𝑂𝑖(𝑡) = ∫ 𝑟𝐶𝑃𝑂𝑖  𝑑𝑡 + 𝐶𝑃𝑂𝑖(𝑡𝑜)

𝑡

𝑡𝑜

 
[tonne] = 

[tonne/year]*[year]+[tonne] 

3.9 𝐶𝑃𝑂𝑥(𝑡) = ∫ 𝑟𝐶𝑃𝑂𝑥  𝑑𝑡 + 𝐶𝑃𝑂𝑥(𝑡𝑜)

𝑡

𝑡𝑜

 
[tonne] = 

[tonne/year]*[year]+[tonne] 

3.16 𝑇𝐷𝐶𝑃𝑂 = 𝐶𝑃𝑂𝑥 + 𝐶𝑃𝑂𝐵 + 𝐶𝑃𝑂𝑃𝑃𝑂 
[tonne] = 

[tonne]+[tonne]+[tonne] 

3.18 𝑃𝑃𝑂𝑙(𝑡) = ∫ 𝑟𝑃𝑃𝑂𝑙  𝑑𝑡 + 𝑃𝑃𝑂𝑙(𝑡𝑜)

𝑡

𝑡𝑜

 
[tonne] = 

[tonne/year]*[year]+[tonne] 

3.23 𝑃𝑃𝑂𝑥(𝑡) = ∫ 𝑟𝑃𝑃𝑂𝑥  𝑑𝑡 + 𝑃𝑃𝑂𝑥(𝑡𝑜)

𝑡

𝑡𝑜

 
[tonne] = 

[tonne/year]*[year]+[tonne] 

3.28 𝑇𝐷𝑃𝑃𝑂 = 𝑃𝑃𝑂𝑙 + 𝑃𝑃𝑂𝑥 Total PPO demand 

3.29 𝑃𝐶𝑃𝑂(𝑡) = ∫ 𝑟𝑃𝐶𝑃𝑂 𝑑𝑡 + 𝑃𝐶𝑃𝑂(𝑡𝑜)

𝑡

𝑡𝑜

 
[RM] = 

[RM/year]*[year]+[RM] 

Oil palm 

plantation 3.36 
𝐴𝑝𝑟𝑒(𝑡) = ∫ 𝑟𝑝𝑙𝑎𝑛𝑡 − 𝑟𝑚𝑎𝑡  𝑑𝑡

𝑡

𝑡𝑜

+ 𝐴𝑝𝑟𝑒(𝑡𝑜) 

[hectare] = ([hectare/year]-

[hectare/year])*year+[hectare] 

3.46 
𝐴𝑚𝑎𝑡(𝑡) = ∫ 𝑟𝑚𝑎𝑡 − 𝑟𝑎𝑔𝑒  𝑑𝑡

𝑡

𝑡𝑜

+ 𝐴𝑚𝑎𝑡(𝑡𝑜) 

[hectare] = ([hectare/year]-

[hectare/year])*year+[hectare] 

3.49 
𝐴𝑎𝑔𝑒(𝑡) = ∫ 𝑟𝑎𝑔𝑒 − 𝑟𝑐𝑢𝑡  𝑑𝑡

𝑡

𝑡𝑜

+ 𝐴𝑎𝑔𝑒(𝑡𝑜) 

[hectare] = ([hectare/year]-

[hectare/year])*[year]+[hectare] 

3.51 

𝑇𝐹𝐹𝐵𝑌 = (𝐹𝐹𝐵𝑌𝑚𝑎𝑡 + 𝐹𝐹𝐵𝑌𝑎𝑔𝑒)

× 𝑓𝑤𝑒𝑎𝑡ℎ𝑒𝑟,𝐹𝐹𝐵𝑌

× 𝑓𝐿,𝐹𝐹𝐵𝑌 

[tonne] = 

([tonne]+[tonne])*dmnl*dmnl 

3.52 𝐹𝐹𝐵𝑌𝑚𝑎𝑡 = 𝐹𝐹𝐵𝑌𝑎𝑣𝑔,𝑚𝑎𝑡 × 𝐴𝑚𝑎𝑡 
[tonne] = 

[tonne/hectare]*[hectare] 

3.53 𝐹𝐹𝐵𝑌𝑎𝑔𝑒 = 𝐹𝐹𝐵𝑌𝑎𝑣𝑔,𝑎𝑔𝑒 × 𝐴𝑎𝑔𝑒 
[tonne] = 

[tonne/hectare]*[hectare] 

Biodiesel 
3.54 𝐵𝑝(𝑡) = ∫ 𝑟𝐵𝑝 𝑑𝑡 + 𝐵𝑝(𝑡𝑜)

𝑡

𝑡𝑜

 
[tonne] = 

[tonne/year]*[year]+[tonne] 

3.55 𝑟𝐵𝑝 = 𝑇𝐷𝐵 [tonne] = [tonne] 

3.56 
𝑇𝐷𝐵 = 𝐷𝐵𝑡𝑟𝑎𝑛𝑠 + 𝐷𝐵𝑖𝑛𝑑

+ 𝐷𝐵𝑜𝑡ℎ𝑒𝑟 

[tonne] = 

[tonne]+[tonne]+[tonne] 

Labour 

3.60 
𝐿(𝑡) = ∫ 𝑟𝐿𝑖𝑛 − 𝑟𝐿𝑜𝑢𝑡 𝑑𝑡

𝑡

𝑡𝑜

+ 𝐿(𝑡𝑜) 

[labour] = ([labour/year]-

[labour/year])*[year]+[labour] 
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3.61 𝑟𝐿𝑖𝑛 = 𝑓𝑟𝐿𝑖𝑛 × 𝐿𝑔𝑎𝑝 
[labour/year] = 

[1/year]*[labour] 

3.66 𝑟𝐿𝑜𝑢𝑡 = 𝑓𝐿𝑜𝑢𝑡 × 𝐿 𝑇𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡⁄  
[labour/year] = 

[dmnl]*[labour]/[year] 

 

 

Figure 4.1. Successful unit test performed in Vensim 

4.1.3 Extreme condition test 

The trend for selected variables from each sub-models were observed while changing 

the correspondent parameters to extreme value. Table 4.2 shows the extreme condition 

test setup, expected outcome and the results of the test. All the expected outcome 

realized in each sub-model after the test is illustrated in Figure 4.2 until Figure 4.3. As 

a conclusion, result obtained from the test indicates that the model has passed the 

extreme condition test. 
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Table 4.2 

 

Extreme Condition Test of the Model 

Sub-model Test Value Expected outcome Illustration 

1. Palm oil 

supply demand 

Oil extraction rate 

become extremely 

low at zero. 

 

0 CPO production become 

zero 

 

Figure 4.1 

2. Oil palm 

plantation 

Replanting rate 

become extremely 

low at zero. 

0 Premature and mature 

area become zero; 

Ageing area equal to total 

planting area. 

 

Figure 4.2 

3. Palm-based 

biodiesel 

Biodiesel mandate 

for each sector 

become maximum 

at 100 percent. 

 

1 Biodiesel demand 

increase. 

Figure 4.3 

4. Labour Mechanization 

adoption rate 

become maximum 

at 100 percent 

 

1 Labour productivity 

increase. 

Figure 4.4 

 

For the first test, when oil extraction rate become zero (for instance when there is no 

mills to process FFB), this means that there will be no oil extracted from FFB. Even 

though the FFB yield is at very high level, without mills to process the CPO production 

will become zero as illustrated in Figure 4.2. 
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Figure 4.2. Behaviour of CPO production for extreme condition test 

For the second test, Replanting rate set at zero means there is no replanting works done 

in the oil palm plantation sector. When this happen, there will be no premature area 

because no new replanting at the end of simulation. The mature area also become zero 

at the end of the simulation as all area become ageing area. Eventually, ageing area will 

be equal to total plantation area, which means all planted area in the beginning of the 

simulation has become ageing area due to no replanting works to replace ageing trees 

as shown in Figure 4.3. 
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Figure 4.3. Behaviour of all plantation area for extreme condition test 

For the third test, when biodiesel mandates in all sector become maximum (or become 

B100), biodiesel demand will be significantly increase due to demand from biodiesel 

producer to fulfill the mandate requirement as illustrated in Figure 4.4. This also means 

that all petrol diesel usage has been completely replaced by the used of pure biodiesel 

or B100. 

 

Figure 4.4. Behaviour of biodiesel demand for extreme condition test 
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Finally, in the fourth test, when all plantation sector has adopted mechanization (where 

mechanization adoption rate become 100 percent), the productivity of labour will 

significantly increase and boosted the FFB yield and CPO production as shown in 

Figure 4.5. 

 

Figure 4.5. The behaviour of labour productivity for extreme condition test 

4.1.4 Integration error test 

For integration error test, three values of time step namely 0.25, 0.125 and 0.0625 were 

chosen and the main stock variable from each sub-model were observed. As Figure 4.6 

and 4.7 shows insignificant change in behaviour, it can be concluded that the model has 

passed the integration error test. 
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Figure 4.6. CPO production in different delta time (dt) for integration error test 

 

Figure 4.7. CPO price in different delta time (dt) for integration error test 

4.1.5 Sensitivity test 

For sensitivity test, six policy variables from each sub-model were chosen namely 

average oil extraction rate, average replanting, and biodiesel mandate for transportation, 

industrial and other sector. The result from sensitivity analysis illustrated in Figure 4.8 

and 4.9. The figure show that the pattern of CPO production and CPO prices 
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respectively has similar range of values with no irregular pattern was observed from the 

pattern. Towards the end of the simulation, CPO production and CPO prices move to 

the attainment of equilibrium. It can be explained that the overall pattern consistency is 

of critical as compared to numerical values as argued by Hekimoglu and Barlas (2010). 

On that ground, we concluded that the model has passed the sensitivity analysis test.  

 

Figure 4.8. CPO production in multi-variate sensitivity analysis 

 

Figure 4.9. CPO price in multi-variate sensitivity analysis 
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4.1.6 Behaviour validity test 

The behaviour validity test is executed using the calibration module provided in 

Vensim. Table 4.3 compile the value derived from parameter estimation process for all 

non-control variables in the model. The value has resulted into better fit of simulation 

result against historical data as shown in Figure 4.10 to 4.15. 

Table 4.3 

 

Parameter Estimation Results 

Variables Values 

Base CPO export demand growth 3.00 

Base PPO export demand growth 0.201 

Base PPO local demand growth 0.155 

Fraction of labour taking rate 0.250 

Sensitivity of soybean prices on PPO local demand 0.479 

Sensitivity of soybean oil price on CPO export 0.001 

Sensitivity of soybean oil price on CPO import 0.100 

Sensitivity of soybean oil price on PPO export demand 0.004 

Time for CPO price adjustment 2.000 

 

 

Figure 4.10. Total plantation area simulation result against historical data 
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Figure 4.11. CPO production simulation result against historical data 

 

Figure 4.12. CPO price simulation result against historical data 
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Figure 4.13. CPO export demand simulation result against historical data 

 

Figure 4.14. PPO local demand simulation result against historical data 
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Figure 4.15. PPO export demand simulation result against historical data 

The results of statistical analysis test are compiled in Table 4.4. The RMSPE are below 

ten percent with the exception of CPO price, CPO export demand and PPO local 

demand. The small total errors for total plantation area, CPO production, and PPO 

export demand show the model adequately tracks the major variables. 

Table 4.4 

 

Statistical Error Analysis of Selected Variables 

Variable RMSPE (%) Theil’s Inequality Coefficients 

UM US UC 

Total plantation area 1.28 0.41 0.01 0.59 

CPO production 7.75 0.44 0.11 0.45 

CPO price 25.59 0.06 0.37 0.58 

CPO export demand 29.81 0.09 0.11 0.80 

PPO local demand 24.48 0.12 0.75 0.13 

PPO export demand 9.84 0.13 0.45 0.43 
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However, there are explanations on large errors on the variables. According to Sterman 

(2000), the larger error often leads to questions about the assumption of the model. 

Consider the CPO price with RMSPE of 25.59 percent. Plotting the simulated and 

actual data in Figure 4.12 reveals that the model does not capture the short-term 

fluctuation in CPO price. The reason can be traced from the difficulty of depicting the 

CPO supply and demand imbalance. As the demand comes from several sources 

including CPO export and PPO local demand (which also have high RMSPE) this has 

highly the chance to be the reason why CPO price RMSPE produce a high value. 

Other than CPO price, both CPO export and PPO local demand are influenced by the 

soybean oil price. The soybean oil price is the closest substitutes of palm oil and may 

be the choice for importing countries in the midst of low CPO demand. The short term 

demand from major importing country like China, India and the European Union 

contribute to the short term fluctuation of demand. This normally caused by market 

sentiment like forecasted adverse weather or exporting tax bill that affects both CPO 

production and demand. In this study however, the demand fluctuation based on market 

sentiment is not captured due to the difficulty of incorporating them in the model. 

Another main reason why the CPO price simulated trend missed some turning point as 

compared to the actual data is due to the simulation time. The change of CPO price in 

this study were done per year, while in reality the annual CPO price published in palm 

oil statistic report were the average price for 12 month in a year. As the demand and 

market sentiment changes every month, the model in this study is unable to capture the 

monthly variation in demand which shaped the fluctuation in real data. On that account, 

because the model in this study uses longer time (of annually rather than monthly), it 
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inevitably introduce delays that cause the simulated trend miss key turning points and 

shifts in growth rate (Sterman, 2000). 

Nevertheless, the inequality coefficient shows low value indicating that for all tested 

variables, the simulated trend is vary point-by-point but following the behaviour of the 

actual data (Sterman, 1989). Fitting the historical data alone does not necessarily prove 

that a model is correct and simply shows the replicability of behaviour in the real world 

(Morecroft, 2007; Olaya, 2014). Thus, as the model in this study has the purpose of 

studying the long term behaviour of CPO production and policy analysis as opposed to 

short term point-by-point forecasting, the large RMSPE error for some variables did 

not compromise the conclusions of this study (Sterman, 1984; 2000).  

4.2 Identification of Parameters Value for Genetic Algorithm 

The number of generation and population were identified through various numbers of 

experimentation. In this research, the best values were determined based on the quality 

of desired output and time taken for best solutions to converge. Table 4.5 list the 

parameters used in this research determined from series of experimentation. 

Table 4.5 

 

Parameters Value for Generation and Population Number 

Properties Value 

Generation number 30 

Population number 20 

 

The population number has to be large enough to support sufficient genetic variations 

(Chinneck, 2006). However, having extremely large population will lead to intolerable 

long running time. The criteria for choosing the most appropriate population and 
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generation number in this research is based on the best fitness score under the shortage 

running time for the output to converge. Experiments with various population number 

were run with the result listed in Table 4.6. 

Table 4.6 

 

Results of Experimentations with Various Population Number 

Population 

number 

Average run time 

[minute] 

Latest converging point 

[Generation] 

Best fitness score 

10 4.50 G36 0.999612 

20 9.78 G27 0.999998 

30 14.23 G24 0.999997 

40 18.21 G24 0.999992 

50 21.94 G23 0.999994 

 

Each experiment of correspondent population number is done in 30 run. The first 

column is the population number. Second column is the average run time of the process. 

The third column denotes the latest point where the best output converge. Finally in the 

fourth column, best fitness score obtained from the 30 run is selected. Except for 

population 10, all populations produced a sufficiently high best fitness score. As the 

population increase, the output converge in the earlier generation but with increase run 

time. This indicates that the higher the population, the earlier the output tend to 

converge but with longer run time. From this result, it is thus acceptable to choose 

population number of 20 which consume the shortest run time in obtaining the best 

solution. Further, because all populations tested converged at generation below than 30 

(accept for population number of 10), it is thus acceptable to cap the generation at 30 

which will help in further reducing the run time.  
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4.3 Output from the Run of Simulation Model 

With the model being validated in the previous section, a sufficient level of confidence 

has been instilled in the model. This permeates its usage for simulation in an attempt to 

achieve our research objective. There are two simulation run conducted namely base 

run and scenario setting run.  

4.3.1 Base run 

The base run for CPO production until year 2050 is presented in Figure 4.16. CPO 

production achieve its maximum value by year 2024 at around 25.6 million tonne. 

However, it started to decline and settle at around 23.3 million tonne until 2050. As 

compared to Indonesia (in 2015 at approximately 34 million tonne), our production is 

far-fetched. The reason of such a low production can be traced from various sources by 

examining each sub-model. 

 

Figure 4.16. The behaviour trend of CPO production for base run 
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First, we look at the oil palm plantation sub-model as it is known that FFB yield exert 

direct impact on CPO production. One of the determinants of FFB yield is the area of 

mature and ageing area. Figure 4.17 shows the output for all plantation area including 

premature, mature and ageing area. Note that the assumption made in this study where 

our plantation land is at maximum 6 million hectare due to scarcity of potential land 

available. At average 50,000 hectare of replanting every year, mature area achieve its 

peak at 4.11 million hectare in 2022 before declining and settle at 1.18 million hectare. 

On the contrary, ageing area steeply increase starting 2022, and settle at much higher 

level of 4.64 million hectare. FFB yield for mature and ageing area difference diverge 

as much as 20% which explain the low CPO production. It will be good if the replanting 

rate can be sufficiently increased to sustain high mature area while reducing the 

accumulation of ageing area thus increasing the CPO production by 2050. 

 

Figure 4.17. The behaviour trend of oil palm plantation area for base run 
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owned). The former may aware the need of vigorous replanting for sustainable high 

yield. The latter on the other hand act in different way and anchoring their response for 

replanting based on CPO price. The smallholder tends to delay their replanting plan 

during high CPO price to reap as much profit they can get regardless the mature or 

premature area (Wahid & Simeh, 2010; PEMANDU, 2010). They also tend to avoid 

replanting because newly planted area is not productive for at least three years and 

during this transition period, they may suffer loss. Moreover, the replanting takes 

extensive works and high cost.  The run from simulation capture this dynamic where 

the low replanting rate below average in the high CPO price period is observed as in 

Figure 4.18. The government has launched one-off replanting scheme to stimulate 

replanting among smallholders but these has not given huge impact on replanting rate 

(Wahid & Simeh, 2010). 

 

Figure 4.18. The behaviour of replanting against CPO price for base run 
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this has pushed the CPO price up as illustrated in Figure 4.19. Although CPO 

consumption from biodiesel sector is comparatively modest as compared to non-

biodiesel sector, additional demand from biodiesel sector has played some part in 

further suppressing CPO supply. Low supply relative to its demand will increase CPO 

price. With the assumption of no market intervention in the future, the CPO price will 

fluctuate around RM2,500 per tonne by 2050. High CPO price will discount the CPO 

demand from other sector which will end up decreasing the price. However, the reduce 

of CPO demand is modest due to the facts that CPO is a commodity and long-term high 

CPO price will gradually be accepted by importer as other substitutes also increase in 

price when they shift their purchase towards substitutes. When CPO and its substitute’s 

purchasing power are level, their price will settle at higher level pegging new 

benchmark price for the commodity. If government continue increasing the mandate in 

the future, it is possible that CPO price will go even higher. Unless there is huge market 

intervention (e.g. abrupt demand shortage that resort into sudden supply glut) will there 

be significant drop in CPO price. 
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Figure 4.19. The behaviour trend of CPO price against supply and demand for the 

base run 

Another factor affecting FFB yield is the number of labour. Even though the effect is 

modest, our palm oil industry is moving towards serious labour shortage. The model 

capture the dynamic of losing the labour due to the increase attractiveness of Indonesia 

palm oil industry as illustrated in Figure 4.20. As the attractiveness of Indonesia palm 

oil industry increase due to the rapid industry growth which enhance the wage and 

working condition, Indonesian worker will prefer to work in their home country. 

However, the shortage of labour can possibly be resolved with the increase usage of 

mechanization. The current mechanization usage of 20 percent seems too low to help 

in increasing the labour productivity especially in the labour-intensive oil palm 

plantation sector. Government has to boost their effort to promote the usage of 

mechanization as well as offering financial assistance scheme especially for 

smallholder to overcome the substantial cost of mechanization adoption. 

 

Figure 4.20. The behaviour trend of labour against attractiveness of Indonesia palm 

oil industry for the base run 
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4.3.2 Scenario setting run 

SCENARIO 1: Pushing to replant  

In scenario 1, the average replanting was increased from 50,000 hectare to 300,000 

hectare per year. Figure 4.17 shows the simulated CPO production for scenario 1. Note 

that in the period of 2000 to 2016, the trend is similar to that of base run as the changes 

only made starting in 2017. Starting in 2017, CPO production is lower than that of base 

run. This is due to the new replanting programme taken place where 300,000 hectare of 

ageing area been cleared for replanting. With sustain 300,000 hectare replanting every 

year, CPO production settle at around 8.27 percent higher as compared to base run. This 

can also be observed from the increase of FFB yield per hectare as in Figure 4.21. The 

cause of this can be sourced from the high mature area and low ageing area at the end 

of simulation as illustrated in Figure 4.22. With wider productive area, the FFB yield 

per hectare increase as shown in Figure 4.23, thus increasing the CPO production. As 

CPO supply increase relative to its demand, this has caused CPO price to become lower 

as compared to the base run as shown in Figure 4.24. 

 

30 M

22.5 M

15 M

7.5 M

0

2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050

Years

T
o
n
n
e

Scenario 1 Base run



                                                                 

 175 

Figure 4.21. Behaviour trends of CPO production for scenario 1 

 

Figure 4.22. Behaviour trends of FFB yield per hectare for scenario 1 

 

Figure 4.23. Behaviour trend of oil palm plantation area for scenario 1 
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Figure 4.24. Behaviour trend of CPO price for scenario 1 
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1.40 percent with high mechanization adoption rate as compared to the base run. 

Observation on labour stock in Figure 4.26 shows no visible change on the labour stock 

with high mechanization adoption rate. This is because the sole purpose of 

mechanization is not to remove or deny the need of labour but rather to increase the 

productivity per hectare of labour due to critical labour shortage. Labour is very much 

important as they are still needed to operate the machine for daily plantation-related 

task. High mechanization adoption thus increases labour productivity per hectare and 

resulting into increase FFB yield per hectare as in Figure 4.27. 

 

Figure 4.25. Behaviour trend of CPO production for scenario 2 
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Figure 4.26. Behaviour trend of labour stock for scenario 2 compared to base run 

 

Figure 4.27. Behaviour trend of FFB yield per hectare for scenario 2 compared to 

base run 
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adoption rate is still very low thus sudden enforcement on high adoption rate will be 

hardly possible. 

SCENARIO 3: Progressing the biodiesel programme 

In scenario 3, the biodiesel mandate in transportation sector was increased from 0.10 to 

0.15, industrial sector from 0.07 to 0.10, and other sector from 0 to 0.05. Figure 4.28 

shows the output from CPO production for scenario 3. The change in CPO production 

is hardly observable at 0.013% increase due to the total consumption of CPO from 

biodiesel sector is relatively small as compared to non-biodiesel sector. However, the 

implementation of new mandate did slightly increase CPO price as can be seen in 

Figure 4.29. 

 

Figure 4.28. Behaviour trend of CPO production for scenario 3 compared to base run 
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Figure 4.29. Behaviour trend of CPO price for scenario 3 compared to base run 
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Base run 0.20 50,000 0.10 0.07 0.00 23,457,100 

1 0.20 300,000 0.10 0.07 0.00 25,397,600 

2 1.00 50,000 0.10 0.07 0.00 23,786,000 

3 0.20 50,000 0.15 0.10 0.05 23,460,100 

 

As explained previously, even though CPO production from Scenario 1 recorded the 

highest value as compared to other scenario, the sudden increase in replanting rates may 

not be plausible to be implemented in reality. This is also applied to other policy 

variable changes in Scenario 2 and Scenario 3. On that account, the search for the right 

value of policy variables can be done by using GA. 

4.4 Searching for Optimal Policy Options 

From the base run and scenarios setting run, the means of increasing productivity per 

hectare so that CPO production can be boosted has been identified. It is also known that 

the labour shortage issue pose a serious threat to our plantation sector and has to be 

resolved to avoid degrading the productivity per hectare. Further, the government will 

continue the biodiesel mandate programme in the future which will boost demand and 

impact CPO price. In a nutshell, while putting an effort to improve CPO production, it 

is important to take into account of the progression of policies. 

4.4.1 Optimization 1: Maximizing CPO production in year 2050 by changing 

policy variables in year 2017 

The top five best solutions from the run of optimization 1 can be obtained from Table 

4.8, while Table 4.9 compile the comparison between base run and the best solution. 

From the simulation run, it is found that the maximum CPO production value retrieved 

in year 2050 was at 26,293,476 tonne.  
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Table 4.8 

 

Top Five Best Solution from Optimization 1  

Run a b c d e Fitness 

score 

CPO 

production 

1 0.88 254170.9  0.17  0.1 0.17 0.999980  26,293,476  

2 0.74 249449.1  0.16  0.15 0.12 0.999970  26,293,214  

3 0.72 250540.5  0.19  0.15 0.05 0.999961  26,292,968  

4 0.6 254152.3  0.19  0.15 0.1 0.999794  26,288,584  

5 0.84 244910.2  0.18  0.11 0.19 0.999598  26,283,440  

Table 4.9 

 

Comparison between Base Run and the Best Solution of Optimization 1 

Run 

Mechanization 

adoption rate, 

a 

Average 

replanting, 

b 

Blend  

mandate for 

transportation, 

c 

Blend 

mandate for 

industrial,  

d 

Blend 

mandate for 

other,  

e 

CPO 

production 

in 2050 

Base run 0.2 50,000 0.10 0.07 0 23,457,078 

Optimization 1 0.88 254,170.9  0.17  0.1 0.17 26,293,476 

+/-change +0.68 +408.34% +0.07 +0.03 +0.17 +12.09% 

 

CPO production has recorded an increase of 12.09% as compared to the base run as 

illustrated in Figure 4.30. This is huge improvement as it translates to approximately 

2.8 million of extra CPO production in 2050. However, due to high replanting rate, 

there is a disruption in CPO supply during the transition period of replanting (from 2017 

to 2030. This is in accordance with the feedback loops in the SD model which 

incorporate the delays in planting phases. The supply disruption unfortunately can 

cause a potential substantial loss of revenue from sales and taxes. 
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Figure 4.30. Behaviour trend of CPO production for optimization 1 compared to base 

run 

Figure 4.31 shows the impact of the new policy on CPO price. Starting 2017, CPO price 

has increased which is caused by interruption in CPO supply due to sudden high 
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lower) as compared to the base run. 

 

Figure 4.31. Behaviour trend of CPO price for optimization 1 compared to base run 
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Looking at the policy variable, both blending mandate for transportation and industrial 

sector were increased from the previous value. In addition, the increase of blend 

mandate for other sector to 0.17 indicate the expandability of biodiesel usage aside of 

in transportation and industrial sector. However, the huge increase in mechanization 

adoption rate may seems implausible to be achieved in a short time frame, particularly 

the advancement in mechanization technology in plantation is still at low pace 

technology- and cost-wise.  

On the other hand, Figure 4.32 shows the changing trend in plantation area from 

optimization 1. High replanting rate has effectively lowered the accumulation of ageing 

area while increasing the mature area. In reality, the sudden increase of replanting rate 

may be hardly possible to be enforced in such a short time frame giving the current low 

replanting rate as highlighted in the latest ETP report by PEMANDU (2015). 

 

Figure 4.32. Behaviour trend of mature and ageing area for optimization 1 compared 

to base run 
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4.4.2 Optimization 2: Maximizing CPO production in year 2050 by changing 

policy variables in year 2020 

The top five best solutions from the run of optimization 2 can be obtained from Table 

4.10, while 4.11 compile the comparison between base run and the best solution. From 

the simulation run, it was found that the maximum CPO production value retrieved in 

year 2050 was at 26,328,130 tonne. 

Table 4.10 

 

The Top Five Best Solution from Optimization 2 

Run a b c d e Fitness 

score 

CPO 

production 

1 0.69 254363.6  0.19  0.14 0.18 0.999997  26,328,130  

2 0.62 250672.3  0.17  0.06 0.14 0.999718  26,320,772  

3 0.99 250286.6  0.20  0.12 0.06 0.999455  26,313,862  

4 0.72 253956.4  0.16  0.08 0.17 0.999192  26,306,918  

5 0.6 254373.4  0.16  0.18 0.13 0.998621  26,291,890  

Table 4.11 

 

Comparison between Base Run and the Best Solution from Optimization 2 

Run 
Mechanization 

adoption rate, 

a 

Average 

replanting, 

b 

Blend  

mandate for 

transportation, 

c 

Blend 

mandate for 

industrial,  

d 

Blend 

mandate for 

other,  

e 

CPO 

production in 

2050 

Base run 0.2 50,000 0.10 0.07 0 23,457,078 

Optimization 2 0.69 254,363.6  0.19  0.14 0.18  26,328,130  

+/- change +0.49 +408.73% +0.09 +0.07 +0.18 +12.24% 

 

From the analysis, it is found that CPO production recorded a 12.24% increase in year 

2050 as compared to the base run, which translates to around 2.9 million tonne of 

increase in CPO production as illustrated in Figure 4.33. Moreover, a sustained high 

CPO production has been produced in comparison with the base run but with steeper 
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decline during the transition period of replanting. Again, there is a disruption in supply 

and may cause substantial loss to the industry. 

 

Figure 4.33. CPO production for optimization 2 against base run 

CPO prices comparison in Figure 4.34 shows an increase after 3 years of policy 
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Figure 4.34. CPO price for optimization 2 against base run 

As for the policy variables, the solution suggest the increase of biodiesel blend 

mandates in all sector, which is good for the growth of biodiesel industry. As for the 

mechanization adoption rate, a huge increase in 2020 from 2017 may seem a doable 

(but still difficult) effort because of the longer time frame (as opposed to optimization 

1) to new policy implementation. High mechanization adoption rate will be a direct 

solution to labour shortage in the industry but giving the current sluggish development 

in mechanization technology development as reported in ETP by PEMANDU (2015), 

reaching high mechanization adoption rate in three years can still be considered as 

technically ambiguous. 

Finally, the solution suggest huge increase of annual replanting from the base run which 

will be more than enough in reducing the ageing plantation area as shown Figure 4.35. 

Nevertheless, enforcing very high replanting rate can be highly challenging in reality 

especially on the smallholders similar to findings in optimization 1. 
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Figure 4.35. Plantation area from optimization 2 against base run 

Optimization 1 and 2 has successfully demonstrated the usage of SD-GA model for 

searching optimal policy options in dynamic environment. That is, the parameter to be 

optimized can be set in year 2017 or 2020, or even any year. The findings obtained 

from the two optimization exhibit a rather similar outcome which suggest that any 

improvement attempted through one time policy changes will only produce sudden 

increase of policy variables’ parameters. While this seems like a good policy option in 

theory, enforcing them in reality is highly challenging and hardly possible. 

4.4.3 Optimization 3: Phased optimization process 

The top five best solutions of each phase from the run of optimization 3 can be obtained 

from Table 4.12, while Table 4.13 compare the output from optimization 3 against the 

base run. From the simulation run, it was found that the maximum CPO production 

value retrieved in year 2050 was at 25,796,430 tonne.  
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Table 4.12 

 

Top Five Best Solutions for Each Phase from Optimization 3 

Phase Run a b c d e Fitness 

score 

CPO 

production 

1 1 0.2 99482.9  0.10  0.05 0 0.999765  25,005,870  

2 0.2 98175.4  0.10  0.05 0 0.999393  25,015,186  

3 0.22 96694.8  0.10  0.05 0 0.998276  25,043,170  

4 0.21 95581.6  0.10  0.05 0 0.998307  25,042,388  

5 0.2 99145.7  0.10  0.05 0 0.999669  25,008,274  

2 1 0.38 165875.1  0.11  0.08 0 0.999792  26,005,420  

2 0.45 176717.1  0.15  0.09 0.04 0.999398  25,984,342  

3 0.39 167373.2  0.11  0.07 0.01 0.999946  26,001,408  

4 0.33 160478.1  0.10  0.09 0.01 0.999600  26,010,392  

5 0.49 177772.8  0.14  0.08 0 0.999987  26,000,330  

3 1 0.6 202954  0.19  0.11 0.09 0.980777  25,500,204  

2 0.63 202392.8  0.20  0.14 0.07 0.981021  25,506,540  

3 0.59 200276.7  0.20  0.13 0.1 0.981994  25,531,838  

4 0.67 200726.4  0.19  0.14 0.09 0.981599  25,521,584  

5 0.57 204020.4  0.18  0.13 0.09 0.980247  25,486,422  

4 1 0.76 251244.3  0.24  0.2 0.15 0.969410  25,204,664  

2 0.74 252208.7  0.24  0.15 0.15 0.969024  25,194,616  

3 0.7 250169.4  0.25  0.17 0.13 0.969740  25,213,232  

4 0.89 252064.9  0.25  0.19 0.14 0.969254  25,200,606  

5 0.8 250217.3  0.24  0.19 0.14 0.969625  25,210,254  

5 1 1 202091.7  0.29  0.24 0.2 0.984801  25,604,820  

2 0.97 200160.8  0.30  0.22 0.2 0.985650  25,626,908  

3 0.96 200670.5  0.30  0.21 0.18 0.985281  25,617,294  

4 0.94 203510.4  0.30  0.24 0.19 0.984408  25,594,614  

5 0.95 200416.2  0.30  0.24 0.19 0.985494  25,622,854  

6 1 1 200678.9  0.34  0.28 0.25 0.988662  25,705,208  

2 0.97 200863.5  0.35  0.29 0.24 0.988714  25,706,570  

3 0.97 200143.4  0.35  0.3 0.24 0.988984  25,713,576  

4 0.98 200015.1  0.34  0.27 0.25 0.988888  25,711,084  

5 1 201120.1  0.34  0.28 0.2 0.988040  25,689,032  

7 1 0.99 203038  0.38  0.35 0.26 0.990527  25,753,710  

2 0.98 201378.4  0.39  0.35 0.29 0.991607  25,781,784  

3 1 200273  0.38  0.3 0.3 0.991830  25,787,572  

4 0.99 200017.6  0.39  0.34 0.3 0.992170  25,796,430  

5 0.98 202031.2  0.40  0.3 0.3 0.991612  25,781,916  

 

Table 4.13 

 

Comparison between Base Run and Best Solution from Optimization 3 

Run 
Mechanization 

adoption rate, 

a 

Average 

replanting, 

b 

Blend  

mandate for 

transportation, 

c 

Blend 

mandate for 

industrial,  

d 

Blend 

mandate for 

other,  

e 

CPO 

production 

in 2050 

Base run 0.2 50,000 0.10 0.07 0 23,457,078 

Optimization 3 0.99 200017.6 0.39 0.34 0.3 25,796,430 

+/- change +0.79 +408.73% +0.09 +0.07 +0.18 +9.97% 

 

Optimization 3 shows 9.97% increase of CPO production in 2050 than that of the base 

run as illustrated in Figure 4.36. Similarly important, the CPO production trend is much 
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more stable than that of base run. The CPO production cannot go any higher than this 

(with current policy variables parameters) due to the physical limitation of the model. 

Close inspection on the model has concluded that in order for CPO production to go 

any higher, the industry has to break the ‘plantation land’ limitation and expand the oil 

palm plantation area beyond 6 million hectare7. Still, the CPO production settle at 

higher level as compared to the base run. 

 

Figure 4.36. CPO production for optimization 3 against base run 

Figure 4.37 shows the CPO prices from optimization 3. It is interesting to observe only 

slight increase of magnitude and similar pattern with the base run. Lower price is 

observed in optimization 1 and 2 in 2050 even though optimization 1, 2 and 3 produced 

high CPO production in 2050. The reason behind this behaviour is due to the existence 

of feedback loops between CPO supply and demand which influence the CPO price 

setting. Due to the fact that optimization 3 changes its policy variables in phases (every 

                                                      
7 6 million hectare is the maximum limit for available potential land to be converted to oil palm 

plantation assumed in this study.  
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five years), this also has influenced the demand reaction to the changes of prices in each 

phase.  

The feedback structure in SD model dictate that every change in CPO supply demand 

ratio will inversely affect CPO price. After some delay, these changes in price will 

influence the purchase of CPO (the demand). When policy changes are done using the 

same rate of policy variables through the period as demonstrated in optimization 1 and 

2, this has caused a sudden change of CPO supply thus changing its price, which causes 

demand to react in inverse way. On the other hand, in the case of optimization 3, 

because policy changes were implemented in phases, the supply and demand reaction 

loop change in each phase, where in every phase the ratio changes and produce new 

price resulting to high CPO price at the end of the process. From another perspective, 

high CPO prices in 2050 is good in the sense of it gives higher revenue to the palm oil 

industry. 

 

Figure 4.37. CPO prices from optimization 3 against base run 
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Although the changes for all policy variables are high, note that the policy variables has 

undergone gradual changes as oppose to drastic single change in optimization 1 and 2. 

The summary of the policy variable changes are compiled in Table 4.14. 

Table 4.14 

 

Summary of the Solutions from Optimization 3 

Year of 

implemen_

tation 

Mechanization 

adoption rate, a 

Average 

replanting, b 

Biodiesel 

mandate for 

transportation, c 

Biodiesel 

mandate for 

industrial, d 

Biodiesel 

mandate for 

other, e 

2017 0.2 99482.9  0.10  0.05 0 

2020 0.49 177772.8  0.14  0.08 0 

2025 0.59 200276.7  0.20  0.13 0.1 

2030 0.7 250169.4  0.25  0.17 0.13 

2035 0.97 200160.8  0.30  0.22 0.2 

2040 0.97 200143.4  0.35  0.3 0.24 

2045 0.99 200017.6  0.39  0.34 0.3 

 

Mechanization adoption rate for instance was increased from 0.2 to 0.99 gradually in 

the period of 28 years (sufficient for any enforcement effort to achieve the adoption 

rate). This is also true for biodiesel mandates in the transportation, industrial and other 

sector. Although the increment of each mandate in reality is subject to the development 

of research and engine compatibility, optimization 3 at the least level is capable of 

mapping the pathway for the mandates to be implemented in the plausible time frame. 

Finally, the solution suggest the replanting to be increased gradually until it reach 

around 250,000 hectare in 2030, before being lowered down to around 200,000 per 

hectare until the end of the simulation. This can be pictured as one of the systematic 

replanting scheme which avoid rush replanting and align a doable replanting campaign. 

Notice that the solution in the end suggest an optimal 200,000 hectare replanting that is 

higher in comparison with the recommendation by Wahid & Simeh (2010) of 150,000 
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hectare. Higher average replanting means less accumulation of ageing area. With 

gradual increment of replanting along an acceptable time frame, the participation from 

the planters can be highly anticipated, as well as it gives the government ample time to 

formulate and plan their compensation scheme. 

One of the largest contributors to high CPO production equilibrium is the high 

productive plantation area. As shown in Figure 4.38, ageing area has been reduced 

significantly whilst mature area has been hugely increased as compared to the base run. 

Further, both ageing and mature area has been successfully sustained both at low and 

high level respectively. This contributes to a higher FFB yield per hectare shown in 

Figure 4.39. 

 

Figure 4.38 Plantation area for optimization 3 against base run 
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Figure 4.39. FFB yield per hectare for optimization 3 against base run 

Optimization 3 produce rather satisfying result compared to base run in terms of CPO 

production. Furthermore, this has been achieved by gradually progress the policy 

variables. In next section, the comparison between all optimization are presented where 

ultimate verdict on the best solution to be converted into policy is discussed. 

4.4.4 Evaluation of all policy optimization 

Figure 4.40 shows that the highest CPO production in 2050 is produced by optimization 

1 and 2. However, there is a long period of production disruption in optimization 1 

(even longer in optimization 2) before it bounce back higher (than base run) until 2050. 

These period exhibits the substantial loss of opportunity cost (as compared to base run) 

for a longer time. Even though meticulous cost-benefit analysis may be required, it is 

suffice at this level to conclude that loss of opportunity cost will claim its toll through 

lower taxes collection and backlashes government revenue from oil palm industry. On 

the other hand, CPO production produced by optimization 3 is equally stable with only 

slight disruption on CPO production with higher equilibrium level than base run. As 

30

25

20

15

10

2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050

Years

T
o

n
n
e/

H
ec

ta
re

Optimization 3 Base run



                                                                 

 195 

conclusion, with minimal disruption in supply, it can be concluded that CPO production 

produced by optimization 3 is the most favourable. 

 

Figure 4.40. CPO production for all optimization 

Further analysis has to be made in terms of the policy variables changes in each 

optimization. Not only optimization 3 produced favourable CPO production, it has also 

progressed all policy variables in a sensible manner. Firstly, looking at mechanization 

adoption, the rate has been successfully increased to maximum by year 2045 with stages 

of implementation as illustrated in Figure 4.41. It is always great to have high adoption 

rate as soon as possible (as in optimization 1 and 2) but in reality, such implementation 

necessitates sufficient time frame particularly with currently low adoption largely due 

to costly purchase and maintenance of the machine, not to mention the sluggish 

development of mechanization technology. Having the target adoption rate increase 

every 5 years will give ample time for the enforcer to materialize their strategy to 

increase adoption rate as well as pushing forward the research and development on 

mechanization technology. 
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Figure 4.41. Mechanization adoption rate for all optimization 

Similarly, enforcing a sudden high replanting rate also bring a huge shock to the 

industry as exemplified by optimization 1 and 2 in Figure 4.42. The most challenging 

part is to enforce the high replanting rate among the planters especially independent 

smallholders. In principal, to do this, certain compensation package has to be taken into 

consideration to convince planters to enter into replanting phase. Rush replanting (as 

termed by Wahid & Simeh, 2010) thus will result into high compensation package and 

disrupt the palm oil supply for some period of time (as illustrated by CPO production 

in Figure 4.41). However, gradual increase in replanting rate (exemplified by 

optimization 3 in Figure 4.43) reduce the degree of shock in the industry and gives 

ample time for the enforcer to launch the replanting campaign among planters. 

Moreover, gradual change will not financially burden the government if somehow they 

agree to release some compensation package to planters during the non-productive 

replanting period. This also minimizes the disruption in palm oil supply resorted from 

rush replanting effect. Figure 4.43 captures this dynamic comparison between all the 

three optimization runs. 
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Figure 4.42. Replanting rate for all optimization 

The final policy variable is the biodiesel blend mandates in all sector. As explained in 

chapter 1, biodiesel is a very important emerging sector where government has aligned 

its commitment to develop this industry through NBP (2006), continuing in Malaysia’s 

Tenth Plan and Malaysia’s Eleventh Plan. Thus, ensuring the increase of the mandate 

programme will warrant the progress of this industry. As shown in Figure 4.43 – Figure 

4.45, optimization 3 keeps the increment of biodiesel in all sector in check, where 

highest achievable mandate is at B39 by year 2050 in transportation sector. Depending 

on the interpretation, 30 years for B39 may seem a slow progress but notice that the 

mandate is reviewed every 5 years by assuming that 5 years is the time taken for the 

implementation being fully accepted. This assumption is rather fair because it has come 

to our knowledge that even current B10 mandate implementation is bombarded with 

resistance from automakers and has resulted into several delays of implementation by 

the government. While looking onto optimization 1 and 2, one time huge increase not 

only being non-sensible for real world implementation, but also hinders the growth and 

development of biodiesel sector. 
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Figure 4.43. Biodiesel mandate for transportation sector in all optimization 

 

Figure 4.44. Biodiesel mandate for industrial sector in all optimization 
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Figure 4.45. Biodiesel mandate for other sector in all optimization 

From the comparison, it can be concluded that in order to improve the CPO production, 

implementation of policies in phases are the most effective means (exemplified by 

optimization 3). One time policy implementation is not effective for long term CPO 

production particularly due to the shock it may impose to the industry and shorter time 

frame that is deemed not plausible for implementation in the real world (exemplified 

by optimization 1 and 2). 

Table 4.15 summarizes the parameter value for each policy variables and CPO 

production in seven phases from 2017 until 2050 from all optimization. 
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Table 4.15 

 

Summary of Output from All Optimization 

 

Variables Run 2017 2020 2025 2030 2035 2040 2045 2050 

Mechanization 

adoption rate, a 

Base run  0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20  

Optimization 1  0.88   0.88   0.88   0.88   0.88   0.88   0.88   0.88  

Optimization 2  0.20   0.69   0.69   0.69   0.69   0.69   0.69   0.69  

Optimization 3  0.20   0.49   0.59   0.70   0.97   0.97   0.99   0.99  

Average 

replanting, b 

Base run  50,000   50,000   50,000   50,000   50,000   50,000   50,000   50,000  

Optimization 1  254,171   254,171   254,171   254,171   254,171   254,171   254,171   254,171  

Optimization 2  50,000   254,364   254,364   254,364   254,364   254,364   254,364   254,364  

Optimization 3  99,483   177,773   200,277   250,169   200,161   200,143   200,018   200,018  

Biodiesel 

mandate in 

transportation 

sector, c 

Base run  0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10  

Optimization 1  0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17  

Optimization 2  0.10   0.19   0.19   0.19   0.19   0.19   0.19   0.19  

Optimization 3  0.10   0.14   0.20   0.25   0.30   0.35   0.39   0.39  

Biodiesel 

mandate in 

industrial sector, 

d 

Base run  0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07  

Optimization 1  0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10  

Optimization 2  0.07   0.14   0.14   0.14   0.14   0.14   0.14   0.14  

Optimization 3  0.05   0.08   0.13   0.17   0.22   0.30   0.34   0.34  

Biodiesel 

mandate in other 

sector, e 

Base run 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Optimization 1  0.17   0.17   0.17   0.17   0.17   0.17   0.17   0.17  

Optimization 2 0.00  18.00   18.00   18.00   18.00   18.00   18.00   18.00  

Optimization 3 0.00 0.00  0.10   0.13   0.20   0.24   0.30   0.30  

CPO production Base run  23,438,702   25,674,296   26,826,812   25,806,422   24,937,752   23,913,356   23,510,624   23,457,078  

Optimization 1  23,438,700   24,544,000   25,882,300   25,757,800   26,234,000   26,515,000   26,329,000   26,415,900  

Optimization 2  23,438,700   25,674,300   25,213,200   25,295,400   25,504,500   25,699,300   26,333,800   26,416,900  

Optimization 3  23,438,700   25,327,700   26,007,700   25,582,000   25,221,600   25,639,400   25,774,100   25,850,200  



 

 201 

4.5 Discussions 

In Chapter 2, the need of a dynamic model to assist in finding optimal policy options to 

improve CPO production in palm oil industry was highlighted. In the context of 

Malaysia, reviewed of past studies mostly focus on the modeling of palm oil industry 

with less emphasizing in finding optimal solutions to improve the model as in Yahaya 

et al. (2006), Shri Dewi et al. (2010), Shri Dewi et al. (2015), and Mohammadi et al. 

(2016). It is admittedly that past studies had successfully model palm oil industry and 

understand the underlying mechanism in the system. However, the analysis mostly 

stopped at the simulation of related policies scenarios in order to improve the model. 

Further, based on the review made, it is found that there was no analytical method 

adopted to find the best policy option to improve the model. On the other hand, policies 

to improve the model were recommended based on the simulation outcome and backed 

with the expert opinions. 

In this study, a SD-GA hybrid model was found to be capable of modeling the palm oil 

industry and searching for optimal policy options. The scenario simulation was initially 

done to understand the impact of imposed policy variables on the CPO production. 

From the simulation outcome, GA helps the SD model to find the best parameters for 

policy variables in order to achieve maximum CPO production in the long term 

investment planning.  

On the other hand, review of past studies that adopt hybrid SD-GA model found that 

the integration process of the two methods was done by totally converting the SD model 

to other programming language before being integrated with GA code as in Grossman 
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(2002) and Duggan (2008). This process is found to be inefficient and impractical 

especially for a highly complex model like palm oil industry. Furthermore, SD-GA 

model in past studies has had only one change made in the policy variable done at the 

beginning of the simulation (Grossman, 2002; Duggan, 2008). This has been argued in 

this research of non-practicality and implausibility to be implemented in reality.  

To address this limitation, this study proposed a hybrid SD-GA model that integrates 

SD and GA in a different platform (Vensim for SD model and Visual basics for GA 

code) that facilitate the process even for highly complex model like palm oil industry. 

Moreover, the propose hybrid SD-GA model are able to set the objective function as 

well as the policy variables at any point of the model timeline. This is very effective in 

designing time sensitive policies and has not been featured in the past studies. In 

addition, this feature has been utilized for phase optimization process in which the 

process of finding best solution were done in seven phases along the simulation 

timeline. As a result, the phase optimization process has become the best way to 

maximize CPO production in a long term, by gradually progressing all policy variables 

and making sure that the implementation is technically plausible in reality. 

The output from this research were compared with the study by Mohammadi et al. 

(2016). The author simulated the increase of biodiesel mandate in 2014 to B15. Note 

that these were solely based on the author assumption in an attempt to observe the 

dynamic behaviour of the palm oil industry model. Only one policy variable were 

changed (that is biodiesel mandate) and no optimization method involve to find optimal 

solution. The findings suggest that CPO production were expected to increase to 27.8 

million tonne in year 2025 by increasing biodiesel mandate to B15. On the contrary, 
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through phase optimization, this research found that by 2025, biodiesel mandate will 

be increased to B20 (for transportation sector), B13 (for transportation sector), and B10 

(for other sector). The CPO production was expected to increase to 25.5 million tonne 

in 2025 (8 percent lower than that of Mohammadi et al., 2016). The difference of CPO 

production in 2025 are due to several reasons. Firstly, the assumption made in the 

model. Mohammadi et al. (2016) assumed that maximum land available for oil palm 

plantation at more than 6 million hectares, whereas in this research, it assumed that the 

maximum land is at 6 million hectares. Higher plantation land will surely result into 

higher FFB yield and more CPO production.  

Secondly, Mohammadi et al. (2016) did not take replanting rate as one of the policy 

variable, but instead assumed that the replanting rate as fix at certain percentage of 

decay rate. On the other hand, this research had explicitly modeled oil palm plantation 

phases with replanting rate as one of policy variables and modeled using batch function 

(that render more realistic planting phases rather than using decay rate. More 

explanation in Sub-chapter 3.3.3.2). Thus, the CPO production projected in 

Mohammadi et al. (2016) may not be accurate as the model did not represent the actual 

dynamic behaviour in oil palm plantation sector. 

Thirdly, Mohammadi et al. (2016) had only one policy variable change (that is biodiesel 

mandate) in their simulation. Thus, higher CPO production were expected because the 

model did not take into account the changes in other policy variables. In contrary, this 

research considered five policy variables which are average replanting rate, 

mechanization adoption rate (labour factor), and biodiesel mandates (which also being 

further disaggregated based on transportation, industrial and other sector, as oppose to 
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Mohammadi et al. (2016) without aggregation of biodiesel usage in various sectors). 

The optimization method in this research simulate and change all five policy variables 

simultaneously while finding best solution for CPO production. Hence, the finding of 

this research is far more comprehensive as compared to that of Mohammadi et al. 

(2016). 

And finally, Mohammadi et al. (2016) simulate their model based on assumption and 

with only one time increment of policy variable. This research on the other hand used 

third party method (that is GA) to help in finding best solution to improve CPO 

production. Furthermore, as argued previously, one time policy variable change may 

not be sensible for real world implementation. This explains the high CPO production 

in 2025 in Mohammadi et al. (2016). As a matter of facts, one time policy variables 

change exemplified by optimization 1 and 2 (refer Sub-chapter 4.4.1 and 4.4.2) also 

showed higher CPO production at the end of the simulation. However, the question is 

whether it is relevant for real world implementation, given that optimization 1 and 2 

suggest sudden drastic one time increase of policy variables. On this account, the 

finding from phase optimization was the most sensible for real world policy 

implementation with its gradual change of policy variables. 

Conclusively, the phase optimization process using the proposed SD-GA model has 

found that: 

• The best way to have maximum CPO production (with current plantation area) 

in Malaysia is by increasing the policy variables namely mechanization 

adoption rate, replanting rate and biodiesel mandate in transportation, industrial 
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and the other sector in seven phases (where each phase consist of five years 

interval) until 2050. 

• The gradual increase of all policy variables in phases can possibly be 

implemented in reality because the five years interval in each phase will give 

ample of time for strategy planning and execution. Further, the gradual policy 

variables progression will avoid unwarranted shock in the palm oil industry as 

opposed to the sudden high increase of policy variables. As example, this has 

been shown in the report by PEMANDU (2015) which shown very low 

replanting rate and mechanization adoption rate despite many campaigns were 

launched by the government to increase both rates. 

• Through the phase optimization process, CPO production can be maximized to 

satisfied level while ensuring all policy variables to progress simultaneously.  

4.6 Summary 

Generally, the model has been structural and behavioural validated as explained at the 

beginning of the chapter. With high confidence in the model, base and scenario setting 

simulation run has been conducted. The simulation found the importance of policy 

variables namely mechanization adoption rate, average replanting and biodiesel 

mandates in improving CPO production. Using the SD-GA hybrid model, optimization 

process is performed to find the optimal parameter for the policy variables. Three 

optimization concluded that phase optimization is the best mean to improve CPO 

production in the long run in terms of the logic of policy implementation in the real 

world as well as avoiding unnecessary shock in the industry. 
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Question may arise on the appropriateness of policy designing based on the reliance on 

numerical orientated solution derived from SD-GA model optimization process. The 

most appropriate answer for that question is that although the optimal parameter 

obtained seems too simplistic of an assumption for possible system improving effort, 

the SD-GA model proposed in this study is (at the least level) capable of highlighting 

the impact of existing policy changes (under various economic scenarios) on CPO 

production in the future. This can serve as scientifically supported evidence in assisting 

policy designing process relating to palm oil industry. 
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

This chapter presents the summary of the research findings and evaluates the 

contributions of the study where policy implication has been derived. Furthermore, the 

chapter highlights some limitation of the study and finally offer some recommendations 

for future research. 

5.1 Conclusions 

Malaysia palm oil industry at the current state is facing a stagnant CPO production 

growth compared to Indonesia. This shows that Malaysia’s CPO production is lagging 

behind. There are various factors that cause the slow growth. This study focuses on 

three main factors namely the scarcity of plantation area, the shortage of labour and the 

rapid development of palm-based biodiesel industry. Contrary with Indonesia, the 

available land for plantation area is limited thus the productivity of the plantation sector 

(measure by FFB yield per hectare) has to be increased as the mean to improve CPO 

production. Labour shortage on the other hand is inevitable because in the future the 

number of workers from Indonesia is reducing due to vigorous growth of Indonesia 

palm oil industry. Low labour plantation ratio negatively effects the FFB yield (due to 

poor agro-management) thus to overcome this the labour productivity (measure by 

plantation area per labour) can be increased through the adoption of mechanization. 

Finally, the progress of biodiesel programme cannot be stopped as it is part of 

government commitment underlined in the National Biofuel Policy and continued in 

Malaysian Tenth Plan and Malaysian Eleventh Plan. The increment of biodiesel 

mandate in the future will require strong CPO production to avoid supply disruption. 
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There are three specific objectives in this study. The first objective is to determine the 

factors that influence CPO production in Malaysia palm oil industry. The factors had 

been determined through the review of literature which include published studies and 

reports from Malaysian Palm Oil Board (MPOB). Further, the latest updates on the 

current situation of Malaysian palm oil industry were obtained by attending the related 

conferences and conducting informational interviews with the industry members. Three 

main factors influencing CPO production has been identified namely the scarcity of 

plantation area, labour shortage, and demand surge from palm-based biodiesel sector. 

The second objective is to optimize parameters for assessing CPO production in a 

dynamic environment. SD was applied to understand, evaluate, and model the 

Malaysian palm oil industry. The development of SD model starts with model 

conceptualization (further explanation can be referred to sub-chapter 3.3). A conceptual 

model was produced using causal loop diagram (CLD) which capture the main 

component of Malaysian palm oil industry, their inter-relationships and underlying 

feedback processes. Referring to CLD, the next stage is the development of stock and 

flow diagram (SFD) was constructed to quantify these inter-relationships in the form of 

stock and flow. The SFD consist of four sub-models namely palm oil supply and 

demand, oil palm plantation sector, palm-based biodiesel sector, and labour. The final 

model has passed six validation tests which include structural and parameter test, 

dimensional consistency test, extreme condition test, integration error test, sensitivity 

test, and behavioural validity test. Five policy variables were identified in the model 

which are mechanization rate (from labour sub-model), replanting rate (from oil palm 

plantation sector sub-model), and biodiesel mandate for transportation, biodiesel 
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mandate for industrial and biodiesel mandated for other sector (from palm-based 

biodiesel sector sub-model). Next, a base run and three simulations setting run had been 

conducted to observe the impact of these policy variables on CPO production. The 

simulation period were from year 2000 until 2050. Findings from simulation suggest 

the change of the policy variables exert some impacts on CPO production. 

Following through, GA code was developed to be integrated with SD model (further 

explanation can be referred to sub-chapter 3.4). A generation and population of 30 and 

20 respectively were chosen through several experimentations based on the best output 

quality and shortest running time. Furthermore, roulette wheel selection was chosen for 

selection method with single point crossover and uniform mutation. The integration of 

SD and GA were performed in different platform behind a user interfaces which act as 

control panel for the integration. The upper and lower bound for each policy variables 

were set as the input with objective function to minimize the absolute value between 

simulated CPO production and desired CPO production. Firstly, a semi-random 

population is produced by GA which will be fed into SD model for simulation. The 

output from the simulation (the CPO production) is imported by GA and will be 

computed of its fitness score. Then, new population will be generated via selection, 

crossover and mutation process, which will be fed again to SD model. The process is 

repeated until the stopping criterion (number of generation) is met. The whole process 

is performed for 30 runs. The best output from the 30 runs are compiled and the best 

output with lowest fitness score will be chosen. 

Three optimization processes were performed towards achieving this objective. 

Optimization 1 maximises CPO production in 2050 by changing the policy variables in 
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2017 (current year). The final output found that CPO production has been increased to 

12.09% from base run. However, mechanization adoption rate and average replanting 

has to be drastically increased from 22% to 88% and from 50,000 hectare to 254,170.90 

respectively. The drastic increase was deemed impossible to be achieved in one year. 

Next, optimization 2 maximize CPO production in 2050 by changing policy variables 

in 2020 (four years from current year). The final output found that CPO production has 

been increased to 12.24% from base run. Similarly, both mechanization adoption rate 

has to be drastically increased from 20% to 69% and 50,000 hectare to 254,363.60 

hectare respectively. It is a challenging move and Malaysia can hardly implement the 

optimization in four years time. 

On the other hand, optimization 3 maximize CPO production in 2050 by changing 

policy variables in phases. There are seven phases of implementation year which are 

2017-2020, 2020-2025, 2025-2030, 2030-2035, 2035-2040, 2040-2045, and 2045-2050 

has been conducted. The best policy options were searched in current phase and revised 

in the following phase. The phases optimization process leverage the ability of the 

proposed SD-GA model which is able to set policy variables and objective function at 

any specific time in the simulation timeline (further explanation is in sub-chapter 3.5.3). 

The final output found that CPO production has been increased to 9.97% from base run. 

Even though the increment of CPO production is lower than that of optimization 1 and 

2, it was  found that the implementation of policy in optimization 3 were more realistic 

and plausible in real world due to implementation in phases. Furthermore, another 

advantage of policy implementation in phases is that it avoids unwarranted shock to the 

industry. 
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The third and final objective is to evaluate the proposed hybrid SD-GA model for 

assessing CPO production in Malaysia. Optimization 1, 2, and 3 were compared in 

terms of their output in maximizing CPO production in Malaysia palm oil industry 

(further explanation in sub-chapter 4.4.4). It is found that although optimization 1 and 

2 were capable of increasing CPO production higher than that of optimization 3, but 

they are not suitable for real world policy implementation. This is due to the drastic 

increase of policy variables which is deemed impossible to be done in such a short time 

frame. On the other hand, progressing the policy variables in phases through 

optimization 3 is more suitable for real world policy implementation. 

5.2 Policy Recommendations 

From the results, the output were analysed for policy interpretation, which led to policy 

recommendations. It is concluded that to improve CPO production in the long run, the 

best mean is through progressing the policy variables in phases. For instance, 

mechanization adoption rate is currently low in the palm oil industry due to technology 

and cost constraints. On that account, sudden increase of mechanization adoption rate 

is hardly possible to be implemented thus having the target revised in phase (every five 

years) provides sufficient time for research and development of mechanize equipment. 

Further, implementing sudden increase in replanting rate may also become highly 

challenging especially among smallholders given the current low replanting rate in the 

industry. This also may resort into sudden shock in the industry and backlashing 

Malaysian revenue from palm oil sector due to interruption on palm oil supply. On that 

account, it is recommended to increase replanting rate in phase since it gives an ample 
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time to gain participation from planters as well as avoiding the unwarranted shock in 

the industry. In addition to increasing replanting rate, there is a need of educating 

smallholders on the importance of replanting because without awareness among 

planters, any replanting campaign is hardly to be successful. Alternatively, government 

may offer some financial assistance to compensate the loss during the replanting period 

as the mean of encouraging the planters to participate in replanting campaign. 

Finally, implementing policy in phases is a good option for progression of biodiesel 

industry. As the commitment of the government to uphold biodiesel industry were 

showed through National Biofuel Policy (NBP), having revised target in phases to 

increase biodiesel mandates in every sector will greatly help the policy maker in 

mapping the roadmap of biodiesel industry and anticipate its impact on CPO production 

in the future. 

5.3 Research contributions 

This study contributes to the body of knowledge and managerial aspects as explained 

below. 

5.3.1 Body of knowledge contribution 

The concept of methodology is the centre for contribution to the body of knowledge. 

This study proposed an improved version of hybrid of SD and GA model as proposed 

by previous studies the like of Grossman (2002); Duggan (2008); Alborzi (2008); and 

Cheng, Tu and Jeng (2011). The integration of SD and GA proposed in this study offers 
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an optimization capability where its objective function can be set to be achieved in a 

desired time in the model time line as needed by policy requirement. 

In addition, the model optimization process permeate the setting of policy variables in 

any desired time in the model time line which added further flexibility in policy 

designing process. As illustrated in sub-chapter 4.3, the policy maker is capable of 

finding the variable parameters of optimal policy in any desired year such as in year 

2020 and 2035. Moreover, objective function can also be formulated to be achieved, 

for instance, in year 2040 or 2045 or in any desired year. 

Next, through the usage of the SD-GA hybrid model this study has proposed the phase 

optimization process that utilizes the flexibility of the model (i.e. to set policy variables 

and objective function in any time period) for effective long term improvement of CPO 

production. This method successfully found the sufficiently good solution value needed 

for policy variables (in every time interval) in order to achieve desired objective 

function.  

The SD-GA hybrid model proposed in this study also provides alternative method of 

solving the problem of time-dependant dynamic optimization (DO) using the 

combination of traditional GA and SD. In evolutionary computing field, solving DO 

problem requires the exploitation of GA code to adapt the dynamic nature of a system 

(Branke, 1999). However in the proposed hybrid of SD and GA model, traditional static 

GA is used where its integration with SD allowed the hybrid model to solve 

optimization problem in the dynamic environment. 
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5.3.2 Managerial contribution 

For managerial contribution, this study focuses on the application of SD-GA hybrid 

model for real world policy design process. Previous studies has been found limited to 

the modeling of palm oil industry with less emphasizing on the searching of optimal 

policies to improve the model. The development of SD-GA hybrid model in this study 

addresses this need and offers a platform to evaluate, experiment and design new 

policies towards the achievement in the improvement of CPO production. This study 

can thus shed a light of possible changes to be implemented for improving CPO 

production. Specifically, this research will help: 

1) The government to assess the effectiveness of ETP toward strengthening palm 

oil industry in Malaysia. 

2) Malaysian Palm Oil Board (MPOB) in evaluating the impact of current policy 

on the palm oil industry. As the authority in the industry, MPOB can used the 

developed model to test new policy options before its implementation to avoid 

costly consequences in the long term. 

3) Industry members to evaluate their current strategy on CPO production 

improvement and designing new strategy to stay competitive in palm oil 

industry such as planters, palm oil producers and traders. 

Finally, with appropriate parameter and minor modification this framework can also be 

used for assisting the policy design process in other commodity industries such as 

cocoa, coconut and rice. 
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5.4 Limitations of the research 

There are some limitations in this study as listed below. 

1) This study did not explicitly model the influence of soybean oil on the CPO 

production. It would be better if soybean oil can be modeled endogenously 

where it will exhibit its role as the main substitutes for palm oil and influence 

the model dynamic. However, modeling endogenous soybean oil price will 

resort into highly detailed and complex model.  

2) Similarly, the influence of adverse weather on FFB yield also was modeled as 

exogenous. Although the weather effect has become a critical issue recently in 

determining palm oil output, it is found to be an incontrollable variable and 

modeling it in high detail will make the model become overly complex. 

5.5 Recommendations for future work 

The SD-GA hybrid model developed in this study has demonstrated its capability in 

searching for optimal policy to improve CPO production in Malaysia. Further 

exploration can be made to make the system dynamic model more realistic. 

1) The addition of more factors influencing Malaysian palm oil industry in the 

model will expand the understanding of the dynamic of the industry. For 

instance, the incorporation of world CPO supply and demand as well as 

Indonesia palm oil industry may add further element in the dynamic of palm oil 

world market. In addition, the dynamic of soybean oil supply and demand can 

be explored to capture its influence on Malaysia palm oil industry. Moreover, 
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the influence of adverse weather can be included as endogenous weather for 

better capturing its influence on FFB yield. 

2) The proposed SD-GA hybrid model may be effective for searching optimal 

policy that lead to the improvement in CPO production, however its potential 

can only be realized by the experts in modeling. In the future, the proposed 

model can be converted into interactive user interface to allow the non-expert 

to operate the model. This can be done through the development of micromodel 

or using commercial programming language like visual basics or C++.  
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APPENDIX 

APPENDIX A: Palm Oil Supply Demand Sub-Model Equations 

Average OER= 0.22 

Units: Dmnl 

 

Base CPO export demand growth= 3 

Units: 1/Year 

 

Base CPO import= 

 60000+RAMP(200000,0,3)+RAMP(80000,3,5)+RAMP(500,5,8)+RAMP(400000,8,1

1)+RAMP(5000,11,70) 

Units: Tonne/Year 

 

Base PPO export demand growth= 0.201 

Units: 1/Year 

 

Base PPO local demand growth= 0.155 

Units: 1/Year 

 

Biodiesel production= INTEG (Biodiesel production rate, 0) 

Units: Tonne 

 

CPO demand for biodiesel= Biodiesel production 

Units: Tonne 

 

CPO demand for PPO=Total PPO demand 

Units: Tonne 

 

CPO excess stock=Total CPO supply-Total CPO demand 

Units: Tonne 

 

CPO export demand= INTEG (CPO export demand change,400000) 

Units: Tonne 

 

CPO export demand change= 

 CPO export demand*Base CPO export demand growth*Factor affecting CPO export 

demand 

Units: Tonne/Year 

 

CPO export tax= 

 STEP(Lookup for CPO tax structure(CPO price),13) 

Units: Dmnl 

 

CPO import= INTEG (CPO import change, 46000) 

Units: Tonne 

 

CPO import change= Base CPO import*Effect of SB price on CPO import-CPO import 

Units: Tonne/Year 
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CPO price= INTEG (CPO price change, 990) 

Units: RM 

 

CPO price change= Indicated CPO price/Time for CPO price adjustment 

Units: RM/Year 

 

CPO price influence on CPO export demand= 

 Lookup for effect of CPO price on CPO export demand (Relative CPO price on export 

demand) 

Units: Dmnl 

 

CPO production= INTEG (CPO production rate, 1e+007) 

Units: Tonne 

 

CPO production rate= 

 (Average OER*Total FFB yield-CPO production)/Time to adjust CPO production 

Units: Tonne/Year 

 

CPO supply demand ratio= Total CPO supply/Total CPO demand 

Units: Dmnl 

 

Effect of CPO export tax on demand= 

 1+STEP(-1+Lookup for effect of CPO export tax on CPO export(CPO export tax 

/Reference CPO export tax),13) 

Units: Dmnl 

 

Effect of CPO supply demand ratio on CPO price= 

 Lookup for effect of CPO SD on CPO price(Relative SD ratio) 

Units: RM 

 

Effect of SB price on CPO import= 

 (Soybean oil price/Reference soybean oil price)^Sensitivity of soybean oil price on 

CPO import 

Units: Dmnl 

 

Factor affecting CPO export demand= 

 CPO price influence on CPO export demand*Soybean oil price influence on CPO 

export demand*Effect of CPO export tax on demand 

Units: Dmnl 

 

Factor affecting PPO export demand= 

 PPO price influence on PPO export demand*Soybean oil price influence on PPO export 

Units: Dmnl 

 

Factor affecting PPO local demand= 

 PPO price influence on PPO local demand*SBO price influence on PPO local demand 

Units: Dmnl 

 

Historical soybean oil prices= Lookup for historical SBO prices (Time) 

Units: USD/Tonne 

 

Indicated CPO price= Effect of CPO supply demand ratio on CPO price 
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Units: RM 

 

Initial CPO price references on CPO export demand= 3500 

Units: RM 

 

Initial PPO prices on PPO export demand= 3500 

Units: RM 

 

Initial reference CPO SD ratio= 1.5 

Units: Dmnl 

 

Initial reference PPO price on PPO local demand= 3500 

Units: Dmnl 

 

Lookup for CPO tax structure( 

 [(0,0)-(4000,0.09)],(0,0),(2249,0),(2250,0.045),(2400,0.045),(2401,0.05),( 

2550,0.05),(2551,0.055),(2700,0.055),(2701,0.06),(2850,0.06),(2851,0.065),( 

3000,0.065),(3001,0.07),(3150,0.07),(3151,0.075),(3300,0.075),(3301,0.08),( 

3450,0.08),(3451,0.085),(4000,0.085)) 

Units: Dmnl 

 

 
 

Lookup for effect of CPO export tax on CPO export( 

 [(0,0.9)-(1,2)],(0,1.05),(1,1)) 

Units: Dmnl 

 

 
 

Lookup for effect of CPO price on CPO export demand( 
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 [(0,-0.4)-(5,0.08)],(0,0.08),(0.489297,0.0715789),(0.810398,0.0610526),(1.1,0), 

(1.29969,-0.0694737),(1.65138,-0.128421),(2.15596,-0.1589),(3.08869,-0.1863),(5,-0.2)) 

Units: Dmnl 

 
 

Lookup for effect of CPO SD on CPO price( 

 [(0,-1)-(2,1),(0,1),(1,0),(2,-1)],(0,1),(0.293578,0.938596),(0.513761,0.903509), 

(0.721713,0.842105),(0.874618,0.719298),(0.954128,0.412281),(1,0),(1.07645,0.175439), 

(1.23547,-0.403509),(1.43119,-0.605263),(1.65749,-0.807018),(1.7737,-0.903509),(2,-1)) 

Units: Dmnl 

 

 
 

Lookup for effect of PPO prices on PPO export demand( 

 [(0,-0.3)-(5,0.5)],(0,0.331579),(0.366972,0.307018),(0.550459,0.282456),(0.87156 

,0.198246),(1.1,0),(1.29969,-0.0694737),(1.65138,-0.128421),(2.15596,-0.1589),(3.08869,    -

0.1863),(5,-0.2)) 

Units: Dmnl 
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Lookup for effect of PPO prices on PPO local demand( 

 [(0,-0.3)-(5,0.5)],(0,0.4),(0.565749,0.331579),(0.902141,0.240351),(1.1,0) 

,(1.29969,-0.0694737),(1.65138,-0.128421),(2.15596,-0.1589),(3.08869,-0.1863),(5,-0.2)) 

Units: Dmnl 

 
 

PPO export demand= INTEG (PPO export demand change, 9e+006) 

Units: Tonne 

 

PPO export demand change= 

 Factor affecting PPO export demand*Base PPO export demand growth*PPO export 

demand 

Units: Tonne/Year 

 

PPO local demand= INTEG (PPO local demand change, 1.2e+006) 

Units: Tonne 

 

PPO local demand change= 

 Factor affecting PPO local demand*Base PPO local demand growth*PPO local 

demand 

Units: Tonne/Year 

 

PPO price= 1.03*CPO price 

Units: RM 

 

PPO price influence on PPO export demand= 

 Lookup for effect of PPO prices on PPO export demand (Relative PPO prices on export 

demand) 

Units: Dmnl 

 

PPO price influence on PPO local demand= 

 Lookup for effect of PPO prices on PPO local demand (Relative PPO prices on local 

demand) 

Units: Dmnl 

 

Reference CPO export tax= 0.045 

Units: Dmnl 

 

Reference CPO price on CPO export demand= 
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 SMOOTH3I(CPO price,Time for CPO price references on CPO export demand,Initial 

CPO price references on CPO export demand) 

Units: RM 

 

Reference CPO SD ratio= 

 SMOOTH3I(CPO supply demand ratio, Time to perceived CPO SD ratio, Initial 

reference CPO SD ratio) 

Units: Dmnl 

 

Reference PPO price on PPO export demand= 

 SMOOTH3I(PPO price,Time for PPO price references on PPO export demand,Initial 

PPO prices on PPO export demand) 

Units: RM 

 

Reference PPO price on PPO local demand= 

 SMOOTH3I(PPO price,Time for PPO price references on PPO local demand,Initial 

reference PPO price on PPO local demand) 

Units: RM 

 

Reference soybean oil price= 980 

Units: USD/Tonne 

 

Relative CPO price on export demand= 

 CPO price/Reference CPO price on CPO export demand 

Units: Dmnl 

 

Relative PPO prices on export demand= 

 PPO price/Reference PPO price on PPO export demand 

Units: Dmnl 

 

Relative PPO prices on local demand= 

 PPO price/Reference PPO price on PPO local demand 

Units: Dmnl 

 

Relative SD ratio= 

 CPO supply demand ratio/Reference CPO SD ratio 

Units: Dmnl 

 

SBO price influence on PPO local demand= 

 (Soybean oil price/Reference soybean oil price)^Sensitivity of SBO prices on PPO 

local demand 

Units: Dmnl 

 

Sensitivity of SBO prices on PPO local demand= 0.479 

Units: Dmnl 

 

Sensitivity of soybean oil price on CPO import= 0.1 

Units: Dmnl 

 

Sensitivity of soybean oil price on PPO export demand= 0.004 

Units: Dmnl 
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Sensitivity of soybean oil prices on CPO export demand= 0.9 

Units: Dmnl 

0.001 

 

Soybean oil price= DELAY3(Historical soybean oil prices, 3 ) 

Units: USD/Tonne 

 

Soybean oil price influence on CPO export demand= 

 (Soybean oil price/Reference soybean oil price)^Sensitivity of soybean oil prices on 

CPO export demand 

Units: Dmnl 

 

Soybean oil price influence on PPO export= 

 (Soybean oil price/Reference soybean oil price)^Sensitivity of soybean oil price on 

PPO export demand 

Units: Dmnl 

 

Time for CPO price adjustment= 2 

Units: Year 

 

Time for CPO price references on CPO export demand= 5 

Units: Year 

 

Time for PPO price references on PPO export demand= 5 

Units: Year 

 

Time for PPO price references on PPO local demand= 5 

Units: Year 

 

Time to adjust CPO production= 1 

Units: Year 

 

Time to perceived CPO SD ratio= 5 

Units: Year 

 

Total CPO demand= CPO demand for PPO+CPO export demand + CPO demand for biodiesel 

Units: Tonne 

 

Total CPO supply= CPO production + CPO import 

Units: Tonne 

 

Total FFB yield= 

 Effect of labour on FFB yield*SMOOTH (Effect of adverse weather on FFB yield 4) 

*(Mature area yield + Ageing area yield) 

Units: Tonne 

 

Total PPO demand= PPO export demand + PPO local demand 

Units: Tonne  
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APPENDIX B: Oil Palm Plantation Sub-Model Equations 

Ageing area= INTEG (Ageing rate-Cutting rate, 1e+006) 

Units: Hectare 

  

Ageing area yield= Ageing area*Avg yield per ha for ageing area 

Units: Tonne 

 

Ageing period= 20 

Units: Year 

 

Ageing rate= 

 Fraction of ageing rate + (Initial mature area/Ageing period)*PULSE(0,20) 

Units: Hectare/Year 

 

Avg new planting= 150000 

Units: Hectare 

 

Avg replanting= 50000 

Units: Hectare 

 

Avg yield per ha for ageing area= 19 

Units: Tonne/Hectare 

 

Avg yield per ha for mature area= 25 

Units: Tonne/Hectare 

 

CPO price effect on replanting= 

 Lookup for CPO price effect on replanting (Relative CPO price on replanting) 

Units: Dmnl 

 

Cutting rate= MIN(Ageing area, Replanting)/Time for cutting 

Units: Hectare/Year 

 

Effect of adverse weather on FFB yield= 

 1+(-0.1*PULSE(0, 1 ))+(-0.1*PULSE(4, 1 ))+(-0.1*PULSE(8, 1 ))+(-0.1*PULSE( 

12, 1 ))+(-0.1*PULSE(16, 1 ))+(-0.1*PULSE(20, 1 ))+(-0.1*PULSE(24, 1 ))+(-0.1 

*PULSE(28, 1 ))+(-0.1*PULSE(32, 1 ))+(-0.1*PULSE(36, 1 ))+(-0.1*PULSE(40, 1 

 ))+(-0.1*PULSE(44, 1 ))+(-0.1*PULSE(48, 1 ))+(-0.1*PULSE(52, 1 ))+(-0.1*PULSE 

(56, 1 ))+(-0.1*PULSE(60, 1 ))+(-0.1*PULSE(64, 1 )) 

Units: Dmnl 

 

Effect of labour on FFB yield= 

 Lookup for effect of labour on FFB yield(Relative labour land ratio) 

Units: Dmnl 

 

Effect of land availability on expansion plan= 

 Lookup for effect of land availability on expansion plan(Ratio of potential land for oil 

palm plantation) 

Units: Dmnl 

 

FFB yield per ha= Total FFB yield/Total plantation area 
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Units: Tonne/Hectare 

 

Fraction of ageing rate= DELAY FIXED(Maturity rate, Ageing period , 0) 

Units: Hectare/Year 

 

Fraction of maturity rate= DELAY FIXED(Planting rate, Maturity period , 0 ) 

Units: Hectare/Year 

 

Initial CPO price references on replanting= 

 5000 

Units: Tonne 

 

Initial mature area= 2e+006 

Units: Hectare 

 

Initial premature area= 300000 

Units: Hectare 

 

Lookup for CPO price effect on replanting ( 

 [(0,0)-(2,2)],(0,2),(0.0733945,1.65789),(0.189602,1.30702),(0.525994,1.07018), 

(1,1),(1.61468,0.929825),(1.79817,0.903509),(1.92661,0.754386),(2,0)) 

Units: Dmnl 

 
 

Lookup for effect of land availability on expansion plan( 

 [(0,0)-(1,1)],(0,1),(0.95,0.98),(0.98,0.97),(0.99,0.95),(1,0)) 

Units: Dmnl 
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Mature area= INTEG (Maturity rate-Ageing rate, Initial mature area) 

Units: Hectare 

 

Mature area yield= Mature area*Avg yield per ha for mature area 

Units: Tonne 

 

Maturity period=3 

Units: Year 

 

Maturity rate= 

 Fraction of maturity rate+(Initial premature area/Maturity period)*PULSE(0,3) 

Units: Hectare/Year 

 

Max land available= 6e+006 

Units: Hectare 

 

Motivation to replant= CPO price effect on replanting 

Units: Dmnl 

 

New planting= 

 MIN(Effect of land availability on expansion plan*Avg new planting, Vacant land) 

Units: Hectare 

 

Planting rate= (New planting + Replanting)/Time for planting 

Units: Hectare/Year 

 

Premature area= INTEG (Planting rate-Maturity rate,Initial premature area) 

Units: Hectare 

 

Ratio of potential land for oil palm plantation= Total plantation area/Max land available 

Units: Dmnl 

 

Reference CPO price on replanting= 

 SMOOTH3I(CPO price, Time for CPO price references on replanting, Initial CPO 

price references on replanting) 

Units: RM 

 

Relative CPO price on replanting= CPO price/Reference CPO price on replanting 

Units: Dmnl 

 

Replanting= MIN(Motivation to replant*Replanting rate, Ageing area) 

Units: Hectare 

 

Replanting rate= 

 50000+STEP(Avg replanting-50000,Year of replanting change-2000) 

Units: Hectare 

 

Time for CPO price references on replanting= 5 

Units: Year 

 

Time for cutting= 1 

Units: Year 
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Time for planting= 1 

Units: Year 

 

Total FFB yield= 

 Effect of labour on FFB yield*SMOOTH(Effect of adverse weather on FFB yield, 

4)*(Mature area yield + Ageing area yield) 

Units: Tonne 

 

Total plantation area= Premature area + Mature area + Ageing area 

Units: Hectare 

 

Total productive area= Mature area + Ageing area 

Units: Hectare 

 

Vacant land= MAX(Max land available-Total plantation area,0) 

Units: Hectare 

 

Year of replanting change= 2017 

Units: Year 
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APPENDIX C: Palm-Based Biodiesel Sub-Model Equations 

Biodiesel demand in industrial sector= 

 Total diesel use in industrial sector*Biodiesel mandate for industrial sector 

 *STEP(1,16) 

Units: Tonne 

  

Biodiesel demand in other sector= 

 Total diesel use in other sector*Biodiesel mandate for other sector 

Units: Tonne 

 

Biodiesel demand in transport sector= 

 Biodiesel mandate for transport sector*Total diesel use on road 

Units: Tonne 

 

Biodiesel export= 100000 

Units: Tonne 

 

Biodiesel mandate for industrial sector= 

 STEP(0.07,16)+ STEP(Current biodiesel mandate for industrial sector-0.07,  

Year of biodiesel mandate for industrial sector implementation-2000) 

Units: Dmnl 

 

Biodiesel mandate for other sector= 

STEP(Current biodiesel mandate for other sector, Year of biodiesel mandate for other 

sector implementation-2000) 

Units: Dmnl 

 

Biodiesel mandate for transport sector= 

 STEP(0.05,11)+STEP(0.07-0.05,14)+STEP(0.1-0.07,16)+STEP(Current biodiesel 

mandate for transport sector-0.1, Year of biodiesel mandate for transport sector 

implementation-2000) 

Units: Dmnl 

 

Biodiesel production= INTEG (Biodiesel production rate, 0) 

Units: Tonne 

 

Biodiesel production rate= 

 (Total biodiesel demand-Biodiesel production)/Time to adjust biodiesel production 

Units: Tonne/Year 

 

Current biodiesel mandate for industrial sector= 0.07 

Units: Dmnl 

 

Current biodiesel mandate for other sector= 0 

Units: Dmnl 

 

Current biodiesel mandate for transport sector= 0.39 

Units: Dmnl 

 

Time to adjust biodiesel production= 1 

Units: Year 
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Total biodiesel demand= 

 STEP(1, 0 )+Biodiesel demand in transport sector + Biodiesel demand in industrial 

sector + Biodiesel export + Biodiesel demand in other sector 

Units: Tonne 

 

TOTAL diesel consumption in all sector= 

 Total diesel use on road + Total diesel use in agriculture sector + Total diesel use in 

construction and mining sector + Total diesel use in industrial sector + Total diesel use in 

shipping and rail sector 

Units: Tonne 

 

Total diesel use in agriculture sector= 26803*Time+550316 

Units: Tonne 

 

Total diesel use in construction and mining sector= 10309*Time + 211659 

Units: Tonne 

 

Total diesel use in industrial sector= 8247.2*Time + 169327 

Units: Tonne 

 

Total diesel use in other sector= 

 Total diesel use in agriculture sector + Total diesel use in construction and mining 

sector + Total diesel use in shipping and rail sector 

Units: Tonne 

 

Total diesel use in shipping and rail sector= 26803*Time + 550316 

Units: Tonne 

 

Total diesel use on road= 134016*Time + 3e+006 

Units: Tonne 

 

Year of biodiesel mandate for industrial sector implementation= 2020 

Units: Year 

 

Year of biodiesel mandate for other sector implementation= 2020 

Units: Year 

 

Year of biodiesel mandate for transport sector implementation= 2020 

Units: Year 
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APPENDIX D: Labour Sub-Model Equations 

Actual labour land ratio= Labour stock/Total plantation area 

Units: Labour/Hectare 

  

Attractiveness of Indonesia palm oil industry= 

 1 + (0.3*Relative Indonesia palm oil growth+0.7*Relative wage rate) 

Units: Dmnl 

 

Contract duration= 5 

Units: Year 

 

Desired labour= 

 Total plantation area*Optimal labour land ratio 

Units: Labour 

 

Effect of labour on FFB yield= 

 Lookup for effect of labour on FFB yield (Relative labour land ratio) 

Units: Dmnl 

 

Effect of mechanization on labour= 

 0.2 + STEP(Mechanization adoption rate-0.2,Year of mechanization use change-

2000) 

Units: Dmnl 

 

Factor affecting labour off rate= Attractiveness of Indonesia palm oil industry 

Units: Dmnl 

 

Fraction of labour taking= 0.25 

Units: 1/Year 

 

Gap of labour= Desired labour-Labour stock 

Units: Labour 

 

Indonesia palm oil industry growth= 3.4 

Units: Dmnl 

 

Indonesia wage= INTEG (Indonesia wage change, 300) 

Units: RM 

 

Indonesia wage change= Indonesia wage*Indonesia wage rate growth 

Units: RM/Year 

 

Indonesia wage rate growth= 0.04 

Units: 1/Year 

 

Labour off rate= 

 Factor affecting labour off rate*Labour stock/Contract duration*Year of contract 

duration change 

Units: Labour/Year 
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Labour stock= INTEG (Labour taking rate-Labour off rate, 250000) 

Units: Labour 

 

Labour taking rate= Fraction of labour taking*Gap of labour 

Units: Labour/Year 

 

Lookup for effect of labour on FFB yield ( 

 [(0,0)-(2,1),(0,0),(1,1),(2,1)],(0,0),(0.122324,0.688596),(0.183486,0.837719 

),(0.318043,0.907895),(0.48318,0.925439),(0.672783,0.925439),(0.856269,0.925439 

),(1.07645,0.929825),(1.36391,0.929825),(1.70642,0.934211),(1.98165,0.934211)) 

Units: Dmnl 

 
 

Malaysia palm oil industry growth= 0.8 

Units: Dmnl 

 

Malaysia wage= INTEG (Malaysia wage change, 600) 

Units: RM 

 

Malaysia wage change= Malaysia wage*Malaysia wage rate growth 

Units: RM/Year 

 

Malaysia wage rate growth= 0.028 

Units: 1/Year 

 

Mechanization adoption rate= 0.2 

Units: Dmnl 

 

Optimal labour land ratio= 0.167 

Units: Labour/Hectare 

 

Relative Indonesia palm oil growth= 

 Indonesia palm oil industry growth/Malaysia palm oil industry growth 

Units: Dmnl 

 

Relative labour land ratio= 

 Actual labour land ratio/(Optimal labour land ratio/(1+Effect of mechanization on 

labour)) 

Units: Dmnl 
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Relative wage rate= Indonesia wage/Malaysia wage 

Units: Dmnl 

 

Total plantation area= Premature area + Mature area + Ageing area 

Units: Hectare 

 

Year of contract duration change= 1 

Units: Dmnl 

 

Year of mechanization use change=2017 

Units: Year 
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