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Abstrak 

Statistik Jennrich adalah salah satu statistik sedia ada yang digunakan untuk menguji 

kesamaan bagi beberapa sampel bebas matriks korelasi. Statistik tersebut semakin 

mendapat perhatian dalam beberapa bidang ekonomi dan pasaran kewangan.Dalam 

bidang penyelidikan ini, kebiasaannya bilangan pemboleh ubah, p, lebih besar 

daripada saiz sampel, n, yang dikenali sebagai data berdimensi tinggi. Selanjutnya, 

penganggaran pekali penentu bagi matrik korelasi dan kovarians akan mengalami 

kegagalan akibat daripada masalah kesingularan. Apabila ini berlaku, statistik 

Jennrich tidak  akan berfungsi kerana pengiraannya melibatkan songsangan matrik 

korelasi. Oleh itu, bagi mengatasi kelemahan tersebut, kajian ini membangunkan satu 

statistik alternatif untuk menguji kesamaan matriks korelasi bagi beberapa sampel 

bebas dalam data berdimensi tinggi. Untuk tujuan itu, pendekatan aljabar 

berdasarkan operator vec, matriks komutasi dan elemen norma Frobenius keluar-

pepenjuru-atas digunakan untuk menerbitkan taburan asimptotik baharu bagi statistik 

alternatif, yang dikenali sebagai statistik *Z . Kajian simulasi dilakukan dengan 

mengambil kira bilangan pembolehubah, saiz sampel, dan anjakan korelasi yang 

berbeza untuk menilai prestasi statistik baharu. Sebagai tambahan, data sebenar bagi 

struktur mata wang Asia Pasifik semasa gempa bumi Tohoku digunakan untuk 

mengesahkan statistik *Z baharu. Kuasa bagi statistik *Z  dibandingkan dengan 

statistik Jennrich dan juga statistik *T  yang sedia ada melalui kajian simulasi. 

Hasilnya, kuasa statistik *Z  mendominasi kuasa statistik Jennrich dan statistik *T  

dalam semua keadaan, terutamanya, apabila perubahan dalam matrik korelasi adalah 

sekurang-kurangnya 0.3. Kesimpulannya, hasil dari segi teori ataupun simulasi 

menunjukkan keputusan yang mantap disokong oleh kuasa ujian yang diperlukan. 

Manakala, kajian terhadap data sebenar menunjukkan statistik alternatif baharu boleh 

memenuhi kondisi data berdimensi tinggi. 

Kata kunci:. Matrik korelasi, Operator vec, Matrik komutasi, Norma Frobenius. 
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Abstract 

Jennrich Jennrich statistic is one of the existing statistics which is used for testing the 

equality of several independent samples of correlation matrices. The statistic is 

gaining considerable importance in several areas of economics and financial markets. 

In these research areas, the number of variables, p, is usually larger than the sample 

size, n, which is known as high dimension data p > n. Subsequently, the estimation of 

correlation and covariance determinant will breakdown due to singularity problem. 

When this happens, Jennrich statistic is unable to function as the calculation involves 

the inversion of correlation matrix. Therefore, to resolve the aforementioned 

problem, this study develops an alternative statistic for testing several independent 

samples of correlation matrices in high dimension data. For this reason, the algebraic 

approach on the basis of vec operator, commutation matrix and Frobenius norm of 

upper-off-diagonal elements are used to derive the new asymptotic distribution for 

the new alternative statistic, namely *Z statistic. Simulation study was conducted by 

considering different number of variables, sample sizes, and correlation shifts to 

evaluate the performance of the new statistic. In addition, real data on Asia Pacific 

currencies structure during the Tohoku earthquake were applied to validate the new 
*Z  statistic. The power of the *Z  statistic is compared with the existing Jennrich 

statistic, and *T  statistic through simulation study. As a result, the power of *Z  

statistic dominates the power of Jennrich statistic and *T statistic in all conditions, 

especially, when the shift in correlation matrix is at least 0.3 As a conclusion, the 

theoretical and simulation results are established and supported by desirable power of 

test. Meanwhile, investigation on real data indicates that the new alternative statistic 

can accommodate high dimension data.  

Keywords: Correlation matrix, Vec operator, Commutation matrix, Frobenius norm. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background of Study  

Recently, testing the equality of several correlation matrices has become an 

important subject in the economic and financial industry research areas. Various 

researchers have implemented this test for diagnosing the structure of several 

independent samples of correlation matrices.  

Applications have been found in equity markets, asset businesses, stock markets, real 

estate analysis, risk management, portfolio analysis and financial markets. However, 

when dealing with a large number of variables in real cases, understanding all their 

interrelationships simultaneously is a difficult job. Therefore, the correlation 

structure analysis it becomes very important when dealing with related variables 

where the number of variables is large.   

Several researchers have studied the equality of several correlation matrices, 

including, for example, Cho and Taylor (1987), Tang (1995), Meric and Meric 

(1997), Lee (1998), Tang (1998) and Da Costa Jr, Nunes, Ceretta, and Da Silva 

(2005). All these researchers studied stability in stock returns to understand the 

behavior of a sequence of the correlation structures based on independent samples in 

certain time periods by applying Box’s M statistic proposed by Box (1949) and 

Jennrich’s statistic proposed by Jennrich (1970). Furthermore, Deblauwe and Le 

(2000) studied risk credit and portfolio analysis using the same analysis of 
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correlation structures. Another example is that of Annaert, De Ceuster, and Claes 

(2003) who focused their study on the stability of covariance structures and 

correlation based on small samples. 

In testing the equality of a correlation matrix, the earliest development was in 1898 

by Pearson and Filon who obtained the asymptotic derivation for a covariance matrix 

of a set of correlations (Steiger, 1980). Following this line of logic, several other 

studies have tested correlation matrices from time to time. These include Hotelling 

(1940), Box (1949), Bartlett and Rajalakshman (1953), Lawley (1963), Kullback 

(1967), Aitkin, Nelson, and Reinfurt (1968), and Jennrich (1970).  

Therefore, in the next section, we discussed the overview of Jennrich statistic for 

details.  

1.2 Overview of Jennrich Statistic  

There are many statistics that can be used for testing the equality of correlation 

matrices. The latest statistic was introduced by Jennrich (1970). Jennrich presented a 

counter example where Kullback's assertion fails and showed that this assertion was 

incorrect because the asymptotic distribution under the null hypothesis is in reality a 

linear combination of independent Chi-square variates with the weights depending 

on an unknown value of common correlation matrix. Furthermore, Jennrich’s 

statistic has much better properties than Kullback’s statistic in terms of 

computational and distributional properties.  
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Specifically, Jennrich’s statistic is used to test the equality of 𝑚 independent sample 

of correlation matrices. The null hypothesis is   0 1 2 0: mH ...       versus 

the alternative hypothesis is 1 : i jH    for at least one ),( ji is different. The 

independent m samples of size 1 2 mn ,n , ..., n  is drawn from 𝑝-variate normal 

distribution      1 1 2 2p p p m mN , , N , , ..., N ,      and i denotes the covariance 

matrix of the 𝑖-th population where 1 2i , , ..., m . The Jennrich statistic is as 

follows: 

    













m

i

d

t

di ZWZZTrJ
1

12

2

1
 (1.1) 

where: 

)(12

1

pipii RRRnZ  
 

          iR  is the i- th sample correlation 

          pR is the average of all sample correlation matrices 

          
1 ppp RRIW the * is Hadamard product of two matrices 

          dZ  is a diagonal of iZ   

          pI is the identity matrix of size  p p  

J is asymptotically distributed as 
2 with )1()1(

2

1
 ppmdf degrees of freedom 

where p is the number of variables (dimensions). The null hypothesis is rejected at a 

level of significance   if 
2

df,J   at the  th1 quantile of Chi-square 

distribution.  
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Jennrich’s statistic was basically developed for a large sample test. Therefore, the 

statistic performs poorly for a small sample size (Larntz & Perlman, 1985). 

Furthermore, Jennrich’s statistic was developed based on a likelihood ratio test 

(LRT) approach.  

Equation (1.4) clearly shows that the Jennrich statistic involves the inversion of the 

correlation matrix. Under this condition, the correlation matrix will be singular if the 

number of variables is larger than the sample size  p n  (Eichholtz, 1996; Gande 

& Parsley, 2005) 

Schott (1996) and Schott (2007a) also constructed tests based on the same approach. 

A LRT is sensitive to non-normality but is also impossible to use when the number 

of variables is larger than the sample size (Anderson, 2006; Herdiani & Djauhari, 

2012; Schott, 1996). Besides that, LRT is unsuitable for use if the number of the 

variables is much larger than
2

in
 (Schott, 2007a) and requires more time to calculate 

(Sul, Han, & Eskin, 2011). . 

In multivariate setting, testing the correlation matrix with a high dimensional data is 

very difficult and challenging. However, some efforts have been undertaken to 

improve the problem of singularity that Jennrich faced. More than three decades 

after Jennrich had proposed his statistic, Djauhari and Herdiani (2008) introduced 

the vector variance standardized variable test. This statistic was developed based on 

the vector variance (VV) approach to increase computational efficiency, and this 

approach is very promising particularly when dealing with a high number of 
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dimensions. Another advantage of the VV approach is the simplicity of its 

computation. The computation is based on the Frobenius norm, which is equal of the 

sum of all the square elements. 

A few years later, Sharif and Djauhari (2014) presented the *T statistic in. This 

statistic is used from a different approach which is the upper-off-diagonal elements 

to overcome the problems of singularity. The upper-off-diagonal elements of the 

correlation matrix approach were used in the derivation of the *T statistic. From the 

power of test analysis, generally, this statistic is more sensitive than Jennrich’s 

statistic. However, room for improvement still exists because the results of 

sensitivity analysis are inconsistent. 

1.3 Problem Statement 

Nowadays, data with a high number of dimensions is collected routinely in finance, 

genomics, biomedical imaging and tomography (Pourahmadi, 2013). Let X be an  

𝑛 × 𝑝 data matrix where n is the sample size, and p  is the number of variables. In a 

high dimensional data, n p , any statistical method that relies on the inversion of 

correlation matrix will be singular or not well conditioned because the sample 

correlation is not full rank (Djauhari & Herdiani, 2008; Pourahmadi, 2013). The 

inversion matrix is also negligible and sparse for very large correlation matrices and 

is a poor estimator when p n (Djauhari & Gan, 2014; Khare, Oh, & Rajaratnam, 

2015). In this case, the use of Jennrich’s statistic is not appropriate anymore for 

testing the correlation matrix. When p is large, the computation of this statistic is 

tedious because the computational efficiency of the determinant and the inverse of 
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the matrix is low. The larger the value of p , the higher the costs to compute the 

determinant and the inverse of covariance or correlation matrix. This is the first 

problem that arises in using Jennrich’s statistic when involving high dimensional 

data. 

Moreover, Jennrich’s statistic was developed based on likelihood ratio test (LRT) for 

testing the equality of two correlation matrices (Jennrich, 1970). This statistic is 

theoretically and asymptotically derived under Chi-square distribution and its 

distributional behavior totally fails when normality assumptions cannot be met 

(Aslam & Rocke, 2005). The complexity of the computing methods for LRT are 

higher when more and more variables are involved. This is because this method 

involves the inversion of the correlation matrix. 

For this reason and to overcome the drawbacks of singularity problem, the algebraic 

approach was investigated. The combination of the upper-off-diagonal elements 

approach (Sharif, 2013; Sharif & Djauhari, 2014) and the VV approach (Djauhari & 

Herdiani, 2008), which is called Frobenius norm of upper-off-diagonal elements, is 

expected to produce better alternative statistics than the existing statistics. 

Therefore, the aim of this research is to focus on how to handle the drawbacks of 

Jennrich’s statistic as well as the *T statistic. Later, a statistical test for testing the 

equality of several independent samples of correlation matrices is derived to satisfy 

instances in which a high number of dimensions are present. The derivation is based 

on the condition that the samples are independent and identically distributed (i.i.d.).  
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1.4 Objectives of the Study 

The main objective of this study is to propose an alternative statistical test for testing 

the equality of several independent samples of correlation matrices in the case of 

high number of dimensions. The sub-objectives of the study are as follows: 

i. To derive new statistical test *Z for testing the equality of several 

independent samples of correlation matrices in cases that have a high number 

of dimensions; 

ii. To evaluate and compare the performance of the new alternative statistic 

based on the power of the test by using simulation study; and  

iii. To validate the performance of the new alternative statistic by using real data 

from Asia Pacific currencies; two independent samples of correlation 

matrices and several independent samples of correlation matrices. 

1.5 Limitation of the study 

The main assumption in this study is that all random samples are drawn from a 

multivariate normal distribution. The sampling distributions are derived based on 

that assumption. Hence, all the results of this study are valid only under multivariate 

normal distribution. The second limitations of this study is the application of new 

statistic is applied using one set of financial data only. Thus, the ability of the real 

data performance is limited. However, it does not means that the statistic is not 

suitable for other case of data. 
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1.6 Significance of the Study 

This study contributes towards knowledge development in multivariate hypothesis 

testing especially in the derivation of a correlation test in the cases that have a high 

number of dimensions. For example, a financial analyst could use this alternative 

statistic to validate a global financial crisis in a short period of time while including a 

large number of variables in the analysis. Moreover, the alternative test offers some 

improvement in the power of the test. 

As is well known, data that fulfill all the assumption of the Jennrich's statistic are 

difficult to find. The benefit of this study is the development of an alternative 

statistic that can tolerate the condition of p n . Additionally, researchers will not 

be constrained by n p  as required by Jennrich’s statistic.  

1.7 Thesis Organization 

This thesis contains five chapters. Chapter One covers a general introduction of the 

study. This chapter, presents the background of this study, problem statements, 

objectives of the study, limitation of the study, significance of the study and thesis 

organization. 

The reminder of the thesis organized as follows. Chapter Two, the literature review 

this chapter start with introduction and correlation matrix then we focus on some 

methodologies for testing the equality of correlation matrices and some of the 

applications and then we discuss methods used to overcome the drawback when the 

number of variables are larger than the sample size, then we presents vector operator, 
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commutation matrix and power of statistical test. Later in this chapter we present *T

statistic. 

In Chapter Three, we discuss the methodology and the theory used to achieve the 

objective of the study. This chapter, presents mathematical derivation of asymptotic 

distribution and discuss variables manipulated, significance level and performance 

evaluation based on simulation study. In the last of this chapter, we discusses 

validation of Tohoku earthquake on Asia Pacific currencies by using correlation 

structure. For that purpose we used 23 currencies from Asia Pacific countries. 

Chapter Four presents the derivation of the new altrnative statistic and its asymptotic 

distribution and the computation of the covariance of correlation matrix. Then, we 

discusses the analysis power of test of the new alternative statistical test *Z , 

Jennrich statistic and *T statistic. In the last of this chapter we presents of real 

application by using two approaches for propose of validation.  

Finally, this thesis closes with the conclusions and some suggestions for future 

research in Chapter Five.  
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CHAPTER TWO 

LITERATURE REVIEW  

2.1 Introduction 

This study, inspires to propose the alternative statistical test which is used for testing 

the equality independent sample of the correlation matrices. This test can be used 

when the number of variables is small. Interestingly, the new test is able to overcome 

the drawback of Jennrich statistic. 

This chapter reviews some of the literatures to have a better understanding on testing 

the equality of correlation matrices. We start this chapter by introducing the 

correlation matrix, then we presented some of methodologies used for improvement 

of the theoretical of testing the equality of correlation matrices and introduced some 

of previous application on testing the equality of correlation matrices. The next 

section, aims to introduce some of methods used to overcome the drawback the case 

where number of variables are larger than the sample size, such as banding, tapering, 

thresholding and Frobenius norm of upper-off-diagonal elements. In section five and 

six, vector operator and commutation matrix are discussed, respectively. Next, the 

power of statistical test is elaborated. Finally, the details of *T  statistic presented in 

the last section close this chapter.  

2.2 Correlation Matrix  

Correlation is the most commonly used measure for describing the linear relationship  
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between two variables (Sang, Dang, & Sang, 2016). The correlation coefficient, ij  

between two random variables of X say the i-th and j-th is, 

 
jjii

ij

ij



   for all p,...,,j,i   2 1  (2.1) 

Where ii  and jj are the standard deviations, and ij is the covariance. When the 

covariance is divided by the two standard deviations, the range of the covariance is 

rescaled to the interval between -1 and +1. Therefore, correlation is a scaled version 

of covariance (El Karoui, 2007). The computation is simple and how well variables 

correlate with each other is quickly noticed. The correlation efficiency gives 

information on the degree of the relationship as well as its direction. 

The coefficient of correlation that equals ij    is present if and only if the two 

variables are perfectly related, while 0ij   is present if the two variables are 

perfectly unrelated. When the coefficient has a negative value, it implies a negative 

linear relationship between the 𝑖-th and 𝑗-th variables. In addition, when the 

coefficient has a positive value, it implies a positive linear relationship between the 

𝑖-th and 𝑗-th variables. 

Consequently, the sample correlation coefficient between the i-th and j-th variables 

is,  

 

jjii

ij

ij
ss

s
r   

(2.2) 

where the ijr is the maximum likelihood estimate of ij under the multivariate 

normality assumption (Muirhead, 1982).  
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Furthermore, the correlation coefficient can be used to evaluate whether a linear 

relationship exists in the population. The null hypothesis for testing the bivariate 

correlation is 0 : 0ijH   , and three different hypotheses alternatives must be 

chosen from. These are 1 : 0ijH   (two-tailed), 1 : 0ijH   (one-tailed), or

1 : 0ijH   (one-tailed). Next, the statistical test is computed using the following 

formula, .
1

2

2

ij

ij

r

nr
t




  The null hypothesis is rejected if 

df,
2

t|t|   (two-tailed) or 

df,t|t|  (one-tailed), with 2df n   degrees of freedom. 

In recent years, more than two variables is often have been considered in the 

analysis. To estimate the correlation between all possible pairs of variables calls for 

a correlation matrix. The correlation matrix is a symmetric matrix in which the 

correlation between iX and jX is equal to jX and iX . The main advantage of using 

a correlation matrix is the ability to visualize all coefficients for a large number of 

variables in the same window. Interpretation is easy because the correlation matrix is 

a symmetric positive semi-definite matrix (Cui, 2010). 

In the matrix form, the population and sample correlation matrices are denoted by 
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, respectively.  
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The correlation matrix can be obtained from the covariance matrix (Rencher, 2003), 

let    11 22 1 2diag diagd pp p,  ,  ...,  ,  ,  ...,           the population 

correlation matrix is 
1 1

2 2
d d   
 

    and let  ppd sssS  ..., , ,diag 2211

 
psss  ..., , ,diag 21  the sample correlation matrix is 

1 1
2 2

d dR S S S
 

     where dΣ  

and dS  are the diagonal elements of Σ and S , respectively. Thus, the correlation 

matrix   and R  is, 
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Therefore, the correlation matrix is equivalent to the covariance matrix of the 

standardized random variables. Under the multivariate normality assumption, the 

correlation coefficient is formally regarded as a measure of the linear dependence 

between those variables (Muirhead, 1982).  
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Since the 1970’s, many studies involving correlation analysis can be found in 

various literatures. These began with simple correlation analysis, continuing with 

more advanced analysis such as correlation matrix analysis. This includes the 

research work of Makridakis and Wheelwright (1974), Watson (1980), Philippatos, 

Christofi, and Christofi (1983). For example, Maldonado and Saunders (1981) used 

correlation analysis for hypothesis testing related to bivariate correlation. They 

examined the inter-temporal stability of international return correlations over a 22-

year period. The data included monthly returns on a United States stock index and 

four foreign stock market indices (Japan, Germany, Canada, and the United 

Kingdom). The results showed that in the short term of up to two quarters of a 

period, a comparatively predictable relationship existed between inter-country 

correlations, which is a very short-term strategy a good news for investors. Next, we 

discuss some methodologies for testing the equality of correlation matrices.  

2.3 Some Methodologies for Testing the Equality of Correlation Matrices 

Before Jennrich(1970) presented his test, testing the equality of correlation matrices 

had a long history. Nowadays, Jennrich’s statistic has been widely used by 

researchers such as Deblauwe and Le (2000), Annaert et al. (2003) and Gan, 

Djauhari, and Ismail (2014) to examine the equality of correlation matrices.  

From time to time, research on the correlation matrix test have been developed by 

scholars to overcome the problems encountered when using existing statistics. 

Generally, the three main problems that inspired researchers to enhance existing tests 

have been to: (1) accomplish non-normality distribution (2) overcome the drawbacks 

of LRT, and (3) solve the singularity problem of a covariance determinant matrix. 
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First, to handle the problem of non-normal distribution, Browne and Shapiro (1986) 

and Neudecker and Wesselman (1990) derive a general matrix expression for the 

asymptotic covariance matrix of correlation coefficients by using a linearization 

theorem with some matrix notation and its properties. In their research only requires 

that the observation vector are i.i.d. according to multivariate distribution with finite 

fourth moments.   

Next, the asymptotic of covariance matrix and Wald statistic theorem were enhanced 

by Schott (2001) to derive a more general Wald statistic. This test was constructed 

under the assumption of elliptical distributions and compared with LRT. Analysis 

has shown that the LRT is conservative where the value of type I error is smaller 

than 0.025 with negative kurtosis for non-normal elliptical populations and, liberal 

where the value of Type I error is larger than 0.075 with positive kurtosis for non-

normal elliptical populations. For that reason, the Wald statistic has been found to be 

asymptotically equivalent to the likelihood ratio criterion. This test is not appropriate 

unless the sample size is very large and number of variables is small.  

In Schott (2007b) study, partitioning the correlation matrix into a submatrix is 

implemented to obtain Wald statistics under the assumption of multivariate 

normality as well as extensions that apply to elliptical distributions. The Wald tests 

produces sensible significance levels, except if the number of the variables is large 

and the number of groups is small. In this study the Schott construct his test for 

testing the equality of several dependent samples correlation matrices.  



 

  

16 

 

The next problem is to overcome the LRT drawback. The LRT approach is very 

sensitive to non-normal distribution. By using LRT, it is very difficult to use when 

𝑝 > 𝑛 and it requires more time to calculate. For example, Schott (1996) derived a 

Wald statistic for testing the equality of correlation matrices for several independent 

samples from a normal distribution for small sample size. Then, the estimated 

significance levels of the alternative statistic are compared with LRT. The simulation 

results indicate that in most cases that involve small sample sizes the Wald statistic 

yields actual significance levels closer to the nominal level than LRT does. In 

addition, the computation of the Wald statistic has advantages over LRT, it is easy to 

calculate (Sabharwal & Potter, 2002).  

Last is the singularity of covariance determinant matrix problem. In order to solve 

this problem, Larntz and Perlman (1985) suggested a new procedure for small 

sample size and the singular matrix, through the application of the Fisher z-

transformation formula to each sample coefficient. The result showed that the 

procedure has numerous advantages over the Jennrich statistic for a small sample 

size and is still valid when one or more correlation matrices are singular. This 

procedure is easily computed by a hand calculator. Additionally, this test is more 

sensitive than Jennrich’s statistic and is asymptotically consistent as n  goes to 

infinity. However, this test is not preferable to large sample size (Olkin, Lou, Stokes, 

& Cao, 2015). 

In addition, Goetzmann, Li, and Rouwenhorst (2005) investigated the correlation 

structure of the main world equity markets over 150 years. They discovered that 

international equity correlation changes vary over time and are highest during of 
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periods of financial and economic integration. Further, they also examined the 

derivation of asymptotic distribution of a correlation matrix that Browne and Shapiro 

(1986) and Neudecker and Wesselman (1990) introduced. The upper-off-diagonal 

elements approach is integrated into the asymptotic distribution to avoid the 

singularity problem. To achieve the best results, the validity of the asymptotic 

distribution requires that the observation vectors are i.i.d. according to a multivariate 

distribution with finite fourth moments. 

Furthermore, Schott (2005) proposed a simple statistic for testing the complete 

independence of random variables in instances in which the variables have a 

multivariate normal distribution. This statistic is designed for a sample correlation 

matrix test in instances with a high number of data dimensions. To derive the 

statistic, the sum of squared of sample correlation coefficient approach is employed. 

This test was compared with LRT, and the simulation results of significance levels 

showed that the Chi-square approximation is particularly poor  if p n . For fixed p

, the performance of the statistic improves as the sample size n  increases, but the 

rate of improvement decreases as p  increases. Based on the power of the test, the 

results showed that the power increases as the sample size n  increases and increases 

as p  increases. Additionally, the result showed that the distribution was asymptotic 

normal as number of variables and sample size tend to infinity. 

In another study, Schott (2007a) suggested a simple statistic for testing the equality 

of covariance matrices for several multivariate normal populations when the number 

of dimensions is large relative to the sample size based on the Frobenius norm 

approach. The result showed that, when the sample size was small, the empirical 
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results of the test were not close to the nominal level. The values are lower than the 

nominal level and they converged to the nominal level when the sample size and p

are increased.  

After the development of theoretical, some applications began testing correlation 

matrices. For example, Tang (1995) provided an extension of the theoretical for  

Box’s M so it could be used for testing the correlation matrices directly, provided 

that the data were standardized in the first stage. In doing so, this study investigated 

the stability of correlation matrix of stock markets. The results showed that the 

correlation structure is very stable even when the holding interval varied among 12 

stock markets. Furthermore, the results showed that the correlation matrix of returns 

was sensibly stable over time when short time periods are considered. While, the 

variance-covariance structure of stock returns is less stable that was empirically 

supported by the literature in this study by many researchers. When p is large the use 

of this procedure is cumbersome.  

In addition, Kaplanis (1988) investigated the stability of the correlation and 

covariance matrices of monthly returns and compared the matrices estimated through 

sub periods by using Jennrich’s statistic. The result discovered that the covariance 

was less stable than the correlation matrix, which becomes stable over time. 

In another study, Deblauwe and Le (2000) used Jennrich’s statistic based on a 

pairwise test to investigate the stability of correlation matrices for market risk and 

credit over different periods of time. The results showed that a pair-wise test for log 

returns calculated on a monthly basis was more stable than log returns calculated on 
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a daily or weekly basis. Furthermore, the test pointed out that holding periods over 

one month were more stable than 2 or 4 month holding periods. Additionally, the 

researchers applied the Jennrich's statistic to determine stability of daily, weekly, and 

monthly log returns for holdout periods ranging from 1-12 months. The use of the 

Jennrich statistic confirmed the non-homogeneity of correlation matrices for all 

holding periods and all data frequency.  

Similarly, Chesnay and Jondeau (2001) used weekly stocks returns series for the 

S&P, the DAX, and the FTSE over the period from 1988 to 1999 and found that 

international correlations significantly increased during high turbulent periods. 

Interestingly, Ragea (2003), who studied emerging markets in Europe (Czech 

Republic, Hungary, Poland, Russia, and Turkey) and counterparts from established 

markets in Europe and North America), found that the null hypothesis of constant 

correlation could not be rejected. 

In contrast, Annaert et al. (2003) studied the inter-temporal stability of correlation 

and covariance matrices using the Jennrich statistic for small samples with normal 

distributions. The result showed that, for small sample sizes, the test was not well 

specified when the assumption of normality was relaxed. In other research, Annaert, 

Claes, and De Ceuster (2006) studied the intertemporal stability of the covariance 

and correlation matrices of credit spread changes on weekly data based on the EMU 

Broad Market indices. The Jennrich statistic was used for the equality of correlation 

matrices and Box M statistic was used for the equality of covariance matrices. A 

bootstrap-based statistical inference provided evidence that correlations and 
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covariances between various (investment grade) credit spread changes were unstable 

over the 1998-2003 period.  

Two years later, Djauhari and Herdiani (2008) reported that neither the instability 

nor the stability of the correlation structure accounted for either the instability or 

stability of the covariance structure. Therefore, the researchers used the multivariate 

statistical process control (MSPC) approach to eliminate the obstacles that the 

Jennrich statistic faces when 𝑝 is large. This was implemented by using VV as a 

multivariate dispersion measure to overcome the limitations. In this study, the 

researchers used real data and compared the proposed method with Box’s M statistic 

and Jennrich’s statistic. The results for Box’s M statistic and Jennrich’s statistic were 

the same; however, the result given by the proposed multivariate statistical process 

control approach using vector variance as multivariate dispersion measure was 

different. The difference in the result was not surprising because the two statistics 

and the proposed approach used different measures of multivariate dispersion. Based 

on the simulation experiment, the result showed that, in general, vector variance 

standardized variables (VVSV) were better than Jennrich’s statistic and more 

sensitive to the shift of the correlation structure. Moreover, the notion of MSPC used 

to monitor the stability of the correlation structure was equivalent to reduplicating 

the tests of significance of the hypothesis.  

In brief, the Jennrich statistic as shown in equation (1.4) contains the inversion of 

pooled correlation matrix. In practice, however, it is not infrequent that the number 

of variables p  is large. Consequently, when p  is large the computation of this 
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statistic is uninteresting because the computational efficiency is very low and makes 

the correlation matrix singular.  

In the next section, some of the methods used to handle the drawback of n < p are 

discussed. 

2.4 Methods to Overcome the Drawback of n p  

When the number of variables is larger than the sample size the correlation matrix is 

not of full of rank so the inverse of the matrix will not exist (Bai & Shi, 2011). 

However, the data collected routinely in scientific investigations often have a high 

number of dimensions. For example, these studies include web-search problems, 

climate studies, gene expression arrays, risk management, and functional magnetic 

resonance (Cai, Zhang, & Zhou, 2010). Regularization methods that were originally 

developed for nonparametric estimation functions have been applied recently to 

estimate large covariance matrices. However, these matrices will have many 

elements of zero that are sparse. To overcome this problem, methods such as 

banding, tapering, thresholding, and upper-off-diagonal elements can be applied to 

estimate the covariance matrix.  

2.4.1 Banding 

Large covariance matrices are bound to have many elements with either zeros or 

small entries, which denote as a sparse, estimating or regularization the small entries 

by zeros appears like a natural thing to do. The banding of covariance matrix arises 
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when the variables are ordered and serially dependent as in the data of climatology, 

time series or spectroscopy (Choi, Lim, Roy, & Park, 2016). 

Banding is a simple and systematic way for estimating a large covariance matrix 

because for high dimension data the sample covariance matrix is singular 

Pourahmadi (2013). Banding starts by estimating the covariance matrix by a 

diagonal and then consecutively adds the other subdiagonals by estimating the first, 

second,…, th subdiagonals, if warranted by the data or the application area. In 

implementing the banding method, the main thing is how to choose the tuning or the 

banding parameter  . Banding is a simple approach to obtain nonsingular estimator 

and a well-conditioned estimator.  

Let  ijS s  a sample covariance matrix of size pp and any integer 0, p  , 

its   banded version (Bickel & Levina, 2008b; Pourahmadi, 2013; Tulic, 2010) 

which is defined by, 

       jisSB ij1  (2.3) 

can serve as an estimator for Σ. The estimate matrix  pp,
ˆBˆ     for some .  

This regularization is perfect when the indices or the variables can be arranged so 

that items of the covariance matrix are farther away from the main diagonal are 

negligible  

 0ji ij    (2.4) 
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if Σ is covariance matrix for  1 2

t

pX X ,  X ,  ...,  X where 
1 2 pX ,  X ,  ...,  X are 

defined by the moving average process 






1j

jjt,t , where 
j  are i.i.d. with the mean 

equal to 0 and finite inverse. The performance of the estimator depends on the 

optimal choice of the banding parameter. The method usually used for the choice is a 

cross validation method because banding an arbitrary covariance matrix does not 

assure positive definiteness (Bickel & Levina, 2008b). 

In cases in which asymptotic analysis for banded estimators n ,  and p are large, 

Pourahmadi (2013) suggested using the class of bandable covariance matrix  

      








  

i

ij
j

Cji;  max :,    (2.5) 

where     1

pminp 0:    is the set of well-conditioned of 

covariance matrix and .0C   The parameter   controls the average of decay of the 

entries of the covariance matrix as one move away from the main diagonal. In 

addition, the optimal rate of the convergence of estimating a covariance matrix from 

this class depends critically on  . The  -banded is not necessarily positive definite. 

The idea of banding and regularizing the lower triangular matrix of the Cholesky 

decomposition of the inverse of covariance matrix has been studied by Wu and 

Pourahmadi (2003). In the next section, tapering is introduced as another method of 

regularization in estimation of the covariance matrices in instances of a high number 

of dimensions. In some cases, tapering is beneficial in including the positive 

definiteness.  



 

  

24 

 

2.4.2 Tapering  

Tapering has a long history and has been used in time series analysis. Recently, it 

has been used to develop the performance of linear discriminant analysis (Bickel & 

Levina, 2004; Da Rocha, 2008). When the researchers used the banding of the 

covariance matrix the problem that is faced is the lack of assured positive 

definiteness (Bickel & Levina, 2008b). Therefore, Furrer and Bengtsson (2007) 

found that the positive definiteness can be protected by tapering the covariance 

matrix. A tapered estimator of the covariance matrix to a tapering matrix ijW w  

replaces S  by 

 
ijijW wsWSS   (2.6) 

where (∗) is the Schur matrix multiplication. If W is a positive definite symmetric 

matrix, then WS  is ensured to be positive definite (Pourahmadi, 2013). The choice of 

W  a smoother positive definite tapering with off diagonals elements progressively 

decaying to zero to ensure the positive definiteness (Pourahmadi, 2013; Xue & Zou, 

2014). The tapering weights can be written as follows:  
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(2.7)     

where  is a tapering parameter with 
2

k  . The tapering estimator for any even 

integer   with 1 p  , is defined in equation (2.4). The tapering estimator can be 
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written as a sum of several small block matrices along the diagonal (Cai & Zhou, 

2012). Tapering is different from banding, and the difference is how it progressively 

shrinks the off-diagonal entries on the band to zero (Chen, Wang, & McKeown, 

2012). Originally, tapering was proposed by Cai et al. (2010). A simulation study 

was conducted to compare the performance of banding and tapering estimator. The 

simulation results showed that the tapering estimator is usually better than the 

banding estimator and has a good numerical performance. However, the suggested 

tapering estimator does not develop the bound under the Frobenius norm, so under 

this norm, the banding estimator performs as well as tapering (Pourahmadi, 2013). 

2.4.3 Thresholding  

It is reasonable in instances of a high number of dimensions that many of the entries 

of the covariance population matrix could be small, and thus the  could be sparse. 

Therefore, the development of an estimator other than S that can deal with 

additional information is needed.  

Thresholding was developed in nonparametric function estimation. It has been used 

for the estimation of the large covariance matrices (Karoui, 2008; Rothman, Levina, 

& Zhu, 2009). As example, thresholding of the sample covariance matrix is used in 

time series (Song, 2011). This estimator does not require the variables to be ordered 

in sequence; therefore, the estimator is invariant to the permutation of the variables 

(Pourahmadi, 2013). For the details, a thresholding operator   for an 0  for the 

sample covariance matrix is defined as follows:  
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    1ij ijS s s   
 

 (2.8) 

thus thresholding S at  amounts are replaced by zeros in all elements with an 

absolute value less than .  Thresholding under the permutation of the variables 

labels maintains symmetry and is invariant. However, it does not necessarily 

maintain positive definiteness. Moreover, it is simplistic as it carries no main 

computational encumbrances compared to its competitors methods except for cross 

validation for the tuning parameter, and hard thresholding tends to do worse than 

more flexible estimators (Bickel & Levina, 2008a; Pourahmadi, 2013; Rothman et 

al., 2009). In practice, the choice of a threshold parameter is an important step in 

applying this procedure. Threshold selection is difficult to deal with analytically. 

Bickel and Levina (2008a) used the Frobenius norm to partially analyze numerical 

and theatrical performance. Thresholding has good properties in estimating large 

sparse covariance matrix but it frequently has negative eigenvalues in real data 

analysis (Xue, Ma, & Zou, 2012). 

In addition, Bickel and Levina (2008b) suggested a regularization method by 

thresholding to estimate large covariance matrices. However, the major advantage is 

its simplicity, and hard thresholding carries no computational burdens, unlike several 

methods for covariance regularization (Rothman et al., 2009). A possible 

disadvantage is the loss of positive definiteness, but for appropriately sparse classes 

of matrices the estimators are consistent as long as they preserve the positive definite 

with the probability as it tends to one.  
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2.4.4  Frobenius Norm of Upper-off-Diagonal Elements 

The upper off-diagonal elements can help to overcome the problem of singularity 

and reduce the computational complexity (Goetzmann et al., 2005). Goetzmann 

derived the statistic on the basis of the Wald test. This test allows the relaxation of 

restrictive assumptions on the correlation matrices. This test has advantages over the 

covariance matrix. It can work directly with correlation matrices and easily 

improved according to different hypotheses. Consequently, the upper-off-diagonal 

elements was used by Sharif (2013)  and Sharif and Djauhari (2014) to derive the 

asymptotic distribution for testing several independent samples of correlation 

matrices. The development of the *T statistic is based on vec operator and 

commutation matrix. This statistic shows that the singularity problem when high 

dimension data is solved. However, computation is very challenging.  

In reducing the computational complexity, Djauhari and Herdiani (2008) 

implemented the VV approach as a measure of dispersion in developing VVSV. This 

measure is derived for testing the equality of several correlation matrices. Based on 

the MSPC approach, it also can be used to monitor the stability of correlation 

matrices using a control chart.  

From the simulation results, it has been proven that the statistic can handle the 

singularity problem in cases in which the number of variables is larger than the 

sample size. The development of this statistic is also based on the commutation 

matrix and vec operator. However, it is different from the *T statistic in terms of the 

correlation estimator. 
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The singularity problem can be avoided by examining the algebraic approach. As 

mentioned in Chapter One using the Frobenius norm of the upper-off-diagonal 

elements approach to derive alternative statistical test is expected to produce a test 

having better properties than the existing tests.   

The following matrices show how to calculate Frobenius norm of the upper-off-

diagonal elements of R . 

Let 3p  , therefore, the correlation matrix of size 33 as follows: 



















1

1

1

2331

2321

1312

rr

rr

rr

R  

and the upper-off-diagonal element of R  is 

12 13

21 23

31 32

1

1

1

U

r r

R r r

r r

 
 

  
 
 

 

The Frobenius norm of the upper-off-diagonal elements of R is 

2

23

2

13

2

12

2
rrrRU  . 

The development of the new alternative statistic test is also based on the 

commutation matrix and vec operator. Next, we illustrate the vec operator and the 

commutation matrix.  



 

  

29 

 

2.5 Vector operator  

The technique of vector operator is very simple and it can be applied to a matrix for 

any order. There are situations in which it is very useful to transform a matrix to a 

vec one of such situation in statistics involves the study of the distribution of the 

sample covariance matrix (Schott, 1997). It is usually more convenient 

mathematically in distribution theory to express density functions and moments of 

jointly distributed random variables in terms of the vector with these random 

variables as its components (Schott, 2016). The vector operator alters a matrix into a 

vector by adding the columns of the matrix one underneath the other. The vec is 

defined for any matrix, not only for square matrix.  

Let B be an p p matrix and 
ijb its j-th column, then  vec B  is the 1p  vector  

 

1

2

p

b

b
vec B

b

 
 
 
 
  
 

 

Let further F be a matrix; then the Kronecker product FB   can be defined as  

 FbFB ij  

In certain case, the matrix algebra associated with the utilize of the vec operator and 

Kronecker product can be facilitated over the use of commutation matrix (Schott, 

2003). Next, we deliver the discussion on the commutation matrix.  

2.6 Commutation matrix  

The commutation matrix is used in multivariate statistical analysis. This matrix is 

very useful when computing the moments of the multivariate normal and related 

file:///C:/Users/Tareq%20Ahmed/Desktop/Commutation%20matrix.docx%23_ENREF_2
file:///C:/Users/Tareq%20Ahmed/Desktop/Commutation%20matrix.docx%23_ENREF_2
file:///C:/Users/Tareq%20Ahmed/Desktop/Commutation%20matrix.docx%23_ENREF_1
file:///C:/Users/Tareq%20Ahmed/Desktop/Commutation%20matrix.docx%23_ENREF_1
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distributions (Schott, 1997). Commutation matrix K is a square matrix containing 

only zeros and ones. The main property of the commutation matrix is that it 

transforms  vec R  into  
t

vec R . The commutation matrix can be used for reversing 

the order of a Kronecker product (Magnus & Neudecker, 1980). This property 

indicates that there is important relationship with vec operator and Kronecker 

product (Schott, 1997) . Also, this property is very useful in the calculation of matrix 

derivatives.   

Let 
ijG  be a matrix of pp  that has its nonzero element, a one, in the  j,i -th 

position. Then the pppp  commutation matrix, denoted by ,K pp
as follows,  

t

ij

m

i

n

j

ijpp GGK 
 


1 1

 

where 
ijG  is a matrix of size  p p  having all elements are equal 0  except it is 

 ji, -th element equals 1.  

Next, we illustrate how to obtain the commutation matrix 
ppK  for 2p  , and in 

Table 4.1, show the commutation matrix 
ppK  for 2 3p ,   and 4. 

Let 2p  , the commutation matrix 
 


p

i

p

j

t

ijijpp GGK
1 1

 of size 

     2 2 2 22 2 4 4p p       

Then . 
10

00
 ,

01

00
 ,

00

10
 ,

00

01
22211211 



































 GGGG 
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Table 2.1 

Commutation Matrix K , for the Case 2 3p ,   and 4  

p  K  

2 





















1000

0010

0100

0001

 

3 



































100000000

000100000

000000100

010000000

000010000

000000010

001000000

000001000

000000001

 

 4 

























































1000000000000000

0000100000000000

0000000010000000

0000000000001000

0100000000000000

0000010000000000

0000000001000000

0000000000000100

0010000000000000

0000001000000000

0000000000100000

0000000000000010

0001000000000000

0000000100000000

0000000000010000

0000000000000001
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To simplify the mathematical derivation of the asymptotic distribution of the test the 

vec operator and commutation matrix are used. Since the exact distribution is 

impractical to use, an asymptotic distribution is our concern.  

2.7 Power of statistical test  

Power of statistical test is defined as 1 , where   is the Type II error. The Type 

II error is the probability of failing to reject the null hypothesis. As power of 

statistical test increase, the probability of a Type II error decreases, and vice versa.  

The minimum value of the power of statistical test is zero while the maximum value 

is one.  

The power of a test is useful in research design and interpretation. During the design 

of research, the power test provides the ability to determine whether the study has a 

sensible chance of obtaining statistically significant results (Cohen, 1977). 

Therefore, it is important to consider the power of test when designing experiments, 

and the power of a test contributes to a more efficient research design that results in 

the saving of time, money and effort (Aktas, 2013; Baroudi & Orlikowski, 1989). 

The power analysis in the research enables a highly reliable and valid study and 

guarantees the validity and sensibility of the results in that research Sawyer (1982). 

It is also used to assess to what degree the decisions obtained as a result of a 

statistical test are reliable and valid in terms of probability values (Sullivan & Feinn, 

2012).  

It has been found the power of a test has not been accounted for by several 

researchers, and accordingly, their results run a high risk of Type II errors (Clark‐

file:///D:/phd/last%20thesis%2024-4-2017/after%20submit/after_viva_22_8_2017.docx%23_ENREF_29
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Carter, 1997). Most research studying the power of tests deals with the computation 

of the power statistics where normality assumptions are required use of the most 

powerful test but this power may not be provided when assumptions have been 

violated. In most parametric tools, the assumption of normality plays an important 

role, and, when these approaches are used for non-normal data, results are unreliable 

and inferences have low power (Gali, 2015).  

A simulation study is a technique for conducting experiments on the computer that 

involves random sampling from the probability of distributions. Gilbert and 

Troitzsch (2005) stated that a simulation study can be used for getting a better 

understanding of a phenomenon of interest and for the purposes of prediction. In 

addition, they claimed that a simulation is worthy for social science as a tool for 

formalizing theory.  

First, this current study generated data from multivariate normal distribution (MVN) 

to examine the performance of the three statistical tests. The data was generated as 

follows: 

  
pp I,MVN   (2.9) 

where 0  is the mean vector and pI  is the identity of the covariance matrix. A 

simulation study is conducted for 10000 iterations to got best result Sharif, (2013) 

from the standard multivariate normal distribution  pp I,MVN 0 . To test the 

hypothesis 0 0: iH    versus 1 0: iH   . Next paragraph, the power of 

statistical test is discuss to compare the three statistical test.  
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The power of a test was used to compare the three different statistical tests, and the 

most powerful statistical test was defined as that which had the higher percentage of 

rejecting the null hypotheses. Thus, the power of a test can be defined as the 

probability of rejecting 0H  when it is false (Cohen, 1990) and quantifies the chance 

that the 0H  will be rejected when it is actually false. Therefore, the power of a test 

is the ability of a test to correctly reject 0H . It is known as 1 , where   is the 

Type II error that is defined as the probability of failing to reject the null hypothesis 

0H when it is false. If the power of statistical test is low, then a good possibility 

exists that the test will be indecisive (Syed-Yahaya, 2005).  

In evaluating the performance of a test the power of that test must be large to ensure 

that shifts in the process can be detected. The power of the test gives a signal for the 

ability of the test to detect a shift in the correlation matrices. The closer the value of 

the test to the 100% the better is the performance of that test. The sensitivity of the 

test to the shifts in correlation structures increase as the power of the test increases. 

This means that a powerful test will be very sensitive to a shift in correlation 

structure. For example, if the power of the test reaches 100%, this would indicate 

that the test detected all shifts. However, in general, the minimum accepted level for 

the power of a test should be 0 8.  or above to be considered suitable (McCrum-

Gardner, 2010; Murphy, Myors, & Wolach, 2014). 

Therefore, to evaluate the performance of a specific test, data are generated from a 

standard normal distribution with shifts in correlation matrix. A good statistic test 



 

  

36 

 

should have strong power. As for the power of the test, the higher the percentage, the 

better the statistical test.  

In this current study, simulations were run by using MATLAB (2016a) for the 

alternative statistic, the Jennrich's statistic and the  
*T statistic to evaluate the power 

of each test. The power of statistical test was calculated for the three statistical test. 

In this study, critical value is determined by using simulation method. A total of 

10000 statstical values is generated for that purpose (Sharif, 2013) and then all the 

values is arranged in ascending order. Since, the hypothesis testing is implemented at 

the 5% significance level, the value at 95% is considered as critical value. This 

value is used to decide whether to reject or fail to reject the null hypothesis. 

Therefore, the 9500th value  10000 95% represents the simulated critical value. 

The process is run repeatedly for all combinations of p and n . 

In the next section, we discussed the 
*T statistic which introduced by Sharif and 

Djauhari (2014). 

2.8 *
T Statistic  

Testing the equality of a correlation structure has become a vital subject because the 

Jennrich statistic can only solve a problem when np  . Because of the Jennrich 

statistic involving inversion of correlation matrix, this test cannot handle the case 

when p > n. Sharif and Djauhari (2014) proposed the *T statistic constructed based 
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on upper-off-diagonal elements to overcome the difficulty of the existing statistical 

test. 

For testing the hypotheses 0 0: iH    for all 𝑖, versus 1 0: iH     for at least 

one i , where mi  ..., ,2 ,1  the test is as follows: 

                                 UU

*t

UU

* VRVVRVnT   1  (2.10) 

where 

3221 VVVV t   

    ppp
KIV 21  

     
dpppp KIIV2

 

         ppdppdpppp IIKKIIV
2

1
3  


 


p

i

p

j

t

ijijpp GGK
1 1

is the commutation matrix of size  2 2p p   

ijG  is a matrix of size  p p where all elements equal 0 except if 

  thji , elements equals 1. 

 UV R  and  UV   are  T vec R  and  T vec  , are the upper-off-

diagonal for the matrix R and   respectively.  

tTT 
 

   t
qppppU r ..., ,r ,r ,r ..., ,r ,r ,r ,r ,r ,rRV 321342414231312  

Such that .pq 11   
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 1
1 if   1

2

0 otherwise

a

ij

p p
     i , j ap b

t

    

 
   

 



 

The transformation T  is presented in matrix form as a block matrix 

  T ... T T T p11  of size  2k p  partitioned into p blocks where 
 

2

1


pp
k . 

 a

a i , jT t each of size  k p where 1T  is zero matrix, where 

.1 11 ab;pa   

Under the null hypothesis, Sharif shows that 2d*

vT   where v  is the degree of 

freedom  1
2

1
 ppv . Therefore, at level of significance   the statistic is rejected 

if 2

,V

*T


  at the  1
th

 quantile of chi-square distribution with v  degrees of 

freedom.  

Sharif (2013) found that the power of the  *T  statistic for a small sample size and 

when the number of variables was small 3 4p ,   and 5  are excellent only for a 

large shift of correlation matrices. On the other hand, the Jennrich statistic is 

dominate over the *T statistic for a small shift of correlation matrices. When the 

sample size is large and 3p  , the *T  statistic is better than the Jennrich statistic. 

On the other hand for 5p  , the Jennrich statistic is better than the *T statistic for a 

moderate shift. In cases in which 10p   and 12 , the *T statistic dominates the 

Jennrich statistic only for a large shift in correlation matrices. When the number of 

variables is 15  and 20  the Jennrich statistic is dominate over the *T statistic for 
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small and moderate shifts. But, for a large shift in correlation matrices, the value of 

the power of the *T  statistic is better than the Jennrich statistic. For a large number 

of variables, the *T statistic is better than the Jennrich statistic except for a 

moderate shift. From the results of the simulation study, the conclusion can be 

made that the sensitivity analysis is not consistent.  

In what follows, the new altrnative statistical test *Z  is proposed based on linear 

transformation. Using that linear transformation, the correlation matrix is changed 

into a vector where its elements are the upper-off-diagonal of the correlation matrix. 

This transformation can help to ensure the non-singularity of the matrix. The 

alternative asymptotic distribution has been derived based on the commutation 

matrix and notation of the vector operator.  
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CHAPTER THREE 

METHODOLOGY 

3.1 Introduction 

The purpose of this research is to derive the new alternative statistical test *Z , to be 

used in testing correlation matrices. This test should be approparite for either when 

the number of dimension are low or high, the new alternative statistical test is *Z  

expacted to have better performance than the Jennrich statistic test and *T  statistic 

test. 

This chapter outlines the methodology to achieve the objective of the study. We 

beginning this chapter, firstly, we discuss the method to propose new alternative 

statistical test, which is constructed on vec operator, the commutation matrix and 

Forbenius norm of upper-off-diagonal elements. In order to assess the performance 

of the alternative statistical test, various conditions they are created by manipulating 

the number of dimensions (𝑝), the number of observations (𝑛), and shift in 

correlation matrix (𝜌) and we illustrate the significance level. The performance of 

the alternative statistical test is assessed based on the assumption that there is a 

change (or shift) in elements of the correlation matrix. The performance evaluation is 

measured by power of test which represents the probability of not committing a Type 

II error. The value of power should be large enough to ensure that the statistical test 

can promptly detect and strongly sensitive to the change (or shift) in the correlation 

matrix. The power of the test, means that the sensitivity is high and the probability 

that it will reject a false null hypothesis is large.   
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This chapter begins with discuss the mathematical derivation of asymptotic 

distribution. In the next section, we introduce distribution of  vec R . The variables 

manipulated will be explained in section four. In section five we introduce the 

significance level. In the next section, we introduce the performance evaluation of 

the statistical test based on simulation study. In the last section we discuss the 

validation of Tohoku earthquake on Asia Pacific currencies using the correlation 

structure.  

3.2 Mathematical Derivation of Asymptotic Distribution 

As mentioned in previous chapters, the Jennrich statistical test is the most frequently 

test used for testing the hypotheses of a correlation structure. It plays an important 

role in testing the stability of correlation structures (Deblauwe & Le, 2000). Indeed, 

this test has become a standard test in financial market analysis (Annaert et al., 2006; 

Ragea, 2003). However, this test is not free from drawbacks. To overcome the 

drawbacks researchers are focusing on improving this test.  

The sample correlation is approximate by Wishart distribution (Kollo & Ruul, 2003). 

Wishart distribution is impractical (Sheppard, 2008). Due this limit the 

approximation of the distribution is needed. 

In this study, new alternative statistical test is derived for testing the equality of 

several correlation matrices by using the notion of vec operator and the commutation 

matrix. To derive this test, first we have to derive the asymptotic distribution of 

sample correlation matrix. Therefore, in what follows, we derive the asymptotic 

distribution of sample correlation matrix. Then, based on that asymptotic distribution 
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of sample correlation matrix we derive the asymptotic distribution of upper-off-

diagonal elements. Then, we derive the asymptotic distribution of Frobenius norm of 

upper-off-diagonal elements. Based on that asymptotic distribution we derive the 

asymptotic distribution of the proposed test. To investigate the asymptotic 

distribution Frobenius norm of upper-off-diagonal elements we used Theorem 3.1 

from Schott (2007b). To be formulated in next section, and the asymptotic 

distribution of  vec R  developed by Browne and Shapiro (1986), and Neudecker 

and Wesselman (1990). This current study used Theorem 4.2.3 that is presented in 

Anderson (2003, p. 132) for finding the asymptotic of  Uv R  to be formulated in 

next section. 

3.3 Distribution of  vec R  

Let 1 2 nZ , Z ,..., Z be a random sample of size 𝑛 having covariance matrix,  . The 

covariance matrix   of Z is so called correlation matrix of X . If R is a sample 

correlation matrix, then we call  vec R as the representation of R in vector form. 

This vector is obtained from R by arranging columns, one on top of other. the 

asymptotic distribution of the  vec R  is stated by Browne and Shapiro (1986), 

Neudecker and Wesselman (1990), and Schott (2007b) as follows: 

Theorem 3.1 (Schott, 2007b) 

Let 1 2 nX , X , ..., X be a random vector drawn from 𝑝-varite normal distribution of 

size n then  

     1 0dn vec R vec N ,         
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where   
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 is the commutation matrix of size  22
pp    

ijG  is a matrix of size  p p having all elements are equal 0 except it is 

 i , j -th element equals 1. 

pi

t

ii

p

1i

t

iip I   -i  h   , hhhhΛ ofcolumn   th theiswhere


. 

In this current study, the asymptotic distribution of  vec R  will be examined from a 

particular case that is 2p   to a general case where 2p  . For that purpose, a 

multivariate approach is used, and the basic tool utilized is the following Theorem 

3.2 to identify the asymptotic distribution. Theorem 3.2 is presented in Anderson 

(2003, p. 132).  

Theorem 3.2 ( Anderson, 2003, p. 132) 

Let   U n be a sequence of p-component random vectors and b  a fixed vector such 

that    0dn U n b N ,     as n  . Let  f u  be a vector valued 

function of u such that each component  jf u   satisfies 
 

0
j

i u b

f u

u






. If 
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 j

i u b

f u

u





is the  thji  ,  component of  . Then 

      0d tn f U n f b N ,     .  

Besides Theorem 3.1 and Theorem 3.2, another essential point is the integration 

method, i.e., the upper-off-diagonal element (Schott, 1997; Sharif & Djauhari, 2014) 

and the Frobenius norm (Djauhari & Herdiani, 2008). The Frobenius norm of upper-

off-diagonal element is implemented to derive the alternative statistical test.  

The following section will discuss the variables manipulated, which are used to 

calculate the power of test for the alternative statistic, the 𝑇∗statistic, and the 

Jennrich statistic.  

3.4 Variables Manipulated 

In this research, three variables are manipulated to investigate the strengths of the 

statistical tests: (1) the variables are the number of variables (𝑝), (2) sample size 

(𝑛), and (3) the shift in correlation matrix (𝜌). The selection of variables was based 

on previous research from Sharif, (2013), Djauhari and Herdiani (2008), Mason, 

Chou, and Young (2009) and Alfaro and Ortega (2009) who utilized these variables 

in their research.  

3.4.1 Number of Variables  p  and Sample Size  n   

In multivariate problems, sample size determination has always been slightly 

subjective and relies on the statistical instrument being used. Generally, when the 
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sample size is large it is expected that it produce better estimation, the large sample 

size a rise the accuracy of the estimators (Chou, Mason, & Young, 2001). This 

current study considers different samples sizes including 50 30 20 10 5 31 ,,,,,n   and 

100, the number variables 3 4 5 10 15 20p , , , , ,  and 30 . The choice of the sample 

size and the number of variables are listed in Table 3.1 below 

             Table 3.1 

             The values of p and n  

 

 

 

 

  

 

 

 

The sample size n and number of variables p , namely small no. of. variable             

( 3 4p ,  and 5 ), medium no. of. variable ( 10p   and 15 ) and large no. of 

variables  ( 20p  and 30 ) in Table 3.1 are considered for calculating the power to 

evaluate the performance of the three statistical tests.  Jennrich’s statistic cannot be 

perform when p n because of singularity. So, that, in this study, the Jennrich 

statistic is calculated when n p . 

Classification p n 

Small no. of. variable 3 3, 5, 10, 20, 30, 50, 100 

 4 3, 5, 10, 20, 30, 50, 100 

 5 3, 5, 10, 20, 30, 50, 100 

Medium  no. of. variable 10 3, 5, 10, 20, 30, 50, 100 

 15 3, 5, 10, 20, 30, 50, 100 

Large  no. of. variable 20 3, 5, 10, 20, 30, 50, 100 

, 

 

 30 3, 5, 10, 20, 30, 50, 100 
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3.4.2 Shift in Correlation Matrices m   

The power of test is used to assess the performance of the test. A simulation study 

will be focus on 0 0: mH    versus 1 0: mH    where 0 pI  and m is 

asymmetric matrix of size  p p with diagonal elements are 1’s and all off the 

diagonal elements are from 80100 . ..., ,. ,  with increments of 0 1. . Thus, the 

values of the  are specified in the range of values from no correlation to high 

correlation.  

For example, for 3p   and 10.  the correlation matrix 1 , as follows: 



















11010

10110

10101

1

..

..

..

 .  

To obtain the best results, the study simulates 10000 datasets (Atiany & Sharif, 

2016; Barnett & Onnela, 2016; Sharif, 2013) for different sample sizes 𝑛, and 

number of variables p in Table 3.1 by using Matlab (2016a) to calculate the power 

of the test. 

3.5 Significance Level 

In hypothesis testing, the significance level is also denoted as alpha  , is the 

criterion used for rejecting the null hypothesis and is defined as the probability of 

rejecting the null hypothesis when it is true. When the significance level 050.  this 

indicates a %5  risk of concluding that a difference happens when no actual 

difference exists. To check the performance of the statistical tests, significance level 

0 05.   was used. 
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To evaluating the performance of the proposed statistic test, the power of the test is 

calculated by using a simulation study, and the statistical test with a higher value of 

power is the better statistical test. Next, details of the performance evaluation are 

discussed in the following section. 

3.6 Performance Evaluation Based on Simulation Study 

To analyze the performance of the alternative statistical test, a simulation study was 

conducted. This study was designed to include two conditions: (1) to examine the 

weaknesses and strengths of the statistical test and (2) to evaluate the performance of 

the test. To illustrate the performance of the statistical test, a better understanding of 

its distribution is required to achieve the appropriateness of the statistical test. Thus, 

a simulation study was conducted to estimate the quantiles of the statistic. This 

study, focuses on the values of the sample size, n , the number of variables, p  and 

correlation shift .  

Based on Theorem 3.1, an asymptotic distribution is implemented in derivation of 

new statistic. It means that, when the sample size is large, the statistic is 

asymptotically distributed to normal distribution. Therefore, CV=1.96 is used for 

large sample size, and the simulated CV is used for small sample size. Next, 

Algorithm 3.1 is presented to illustrate on how to determine the simulated critical 

value (CV). The value is identified before performing Algorithm 3.2 which 

identifying the power of test via simulation study (Sharif,; 2013; Haddad, 2013)  
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Algorithm 3.1 

To compute the CV: 

i. Set a variable, count = 0. 

ii. Generate sample data related to condition to reflect the 0H ( )050. . 

iii. Let the correlation shift 𝜌 is equal zero, calculate the statistical test. 

iv. Repeat step i to iii 10000 times.  

v. Sort the 10000 values of statistical test. 

vi. Identify simulated CV based on 95%. 

 

Algorithm 3.2 

To compute a power of test : 

i. Generate sample data related to condition to reflect the 0H ( 0 05).  . 

ii. Change the correlation shift 𝜌 to 0.1, calculate the statistical test. 

iii. If the value of the statistic is larger than CV, then increase the count by 

one (count = count+1). 

iv. Calculate the power of test by dividing the number of count with the 

number of replications.  

v. Change the shift in correlation matrix 𝜌 from 0.1 to 0.8 and repeat from 

step (i) to step (iv). 
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Based on Algorithm 3.2, all statistics; (1) the new alternative statistic, (2) the 

Jennrich statistic, and (3) the 𝑇∗ statistic are computed. To illustrate the power of the 

test computational process for all statistics, Figure 3.1 is presented as follows. 
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Figure 3.1. The flowchart for power of test 
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3.7 Validation of the Impact of Tohoku Earthquake on Asia Pacific Currencies 

Using Correlation Structure  

The validation of the method is essential to determine that the method is fit for the 

proposed statistic and to ensure that the results are acceptable (Nickisch, 

Nockemann, Tillack, Murphy, & Sturges, 1997). To validate the alternative 

statistical test, the currencies from Asia Pacific countries were employed to analyze 

the differences in correlation matrices between before and after Tohoku earthquake 

incident.  

The Tohoku earthquake ripped apart the seafloor on 11 March 2011, with a 

magnitude of 9.0. The earthquake shocked the Pacific coast of the northeastern part 

of Japan and included Miyagi, Fukushima, Ibaragi and Sanriku (Imamura & Anawat, 

2011). It was very powerful and separated Japan by 8 feet from mainland Asia. The 

earthquake had a severe impact on the people of Japan. The number of deaths 

reached 15,883 and 2,671 were reported missing (Hood, Kamesaka, Nofsinger, & 

Tamura, 2013). The main cause of death was a tsunami and 57% of the deaths 

happened in Tohoku in Miyagi state, 33% in Iwate state and 9% in Fukushima state 

(Mori, Takahashi, Yasuda, & Yanagisawa, 2011). The early estimates of the insured 

losses were around 25 billion US dollars, and the total estimated economic lost 

exceeded 200 billion US dollars. The greatest damage was done to the three nuclear 

reactors that had failed and exploded. The waves of the tsunami spread throughout 

the Pacific and destroyed many port and harbor areas in Hawaii, Oregon and 

California and buildings along the coasts of Guam and Chile. However, the greatest 

devastation happened in Japan (Satake, 2013).  
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With respect to the Japanese economy, the earthquake also affected the Tokyo 

exchange, one of the biggest stock exchanges in the world. The everyday average 

market is 20 billion dollars, and the stock market felt of the influence of the 

earthquake and tsunami when trading opened (Hood et al., 2013). The earthquake 

not only affected stocks, but also the Japanese Yen (JPY) that is the national 

currency of Japan, which is the third largest economy in the world (Botman, de 

Carvalho Filho, & Lam, 2013; Cooper, Donnelly, & Johnson, 2011). Overall, the 

impact of the Tohoku earthquake reduced the value of JPY against the major 

currencies of the world and produced changes in stock market (Atiany & Sharif, 

2015; Cooper et al., 2011). 

Generally, a currency is used for payments of transactions within a country, and the 

exchange from one currency to another currency is needed for conducting business 

abroad or engaging in financial transactions with residents and businesses in other 

countries. So the exchange rates have direct impact on all markets because the price 

of any asset is expressed in terms of a currency (Górski, Drozdz, & Kwapien, 2008). 

The foreign exchange rate is considered to be a measure of the economic balance of 

a country and reflects the whole economic status of a country (Mizuno, Takayasu, & 

Takayasu, 2006). Therefore, the currency exchange rate plays an important role in 

economic growth.  

This study focuses on the currencies of the Asia Pacific because they are nearest to 

Japan and the impact of Tohoku earthquake was felt in all countries in this region. In 

addition, the economy of each Asian country is considered to be part of the general 

economy of Asia region (Nguyen, 2012).  
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3.7.1 Data Preparation for the Case Study  

Generally, financial data and currency exchange rate in particular is time series data 

that is dependent and autocorrelated (Sewell, 2011). For that reason, the tests were 

not performed on the original data but on the change of the data to logarithms of the 

price of currency, j. Mantegna and Stanley (2000) calculated the variable of interest 

as follows: 

     p,...,,j,tPlntPlnY jj 211   (3.2 ) 

where  

jY  is the daily change of the of the price of currency j at time t.  

 tPj
 is the dialy closure price of currency j at time t. 

 p is the number of variables (currencies). 

The change of data to the logarithm price of the currencies as in (3.2) makes that 

data independent and stable (Fama, 1965).  

In this example, the correlation matrices of exchange rate were analysed for 23 of the 

Asia Pacific exchange currencies 23p  ; the data retrieved comprised daily data 

from January 1, 2010 to December 31, 2011. The data was downloaded from the 

University of British Columbia, Sauder School of Business (2011) Pacific Exchange 

Rate Service (http://fx.sauder.ubc.ca/data.html). Those currencies are listed in Table 

3.2, and the study gathered two samples, one after and one before the Tohoku 

earthquake in March 2011. For the base currency, precious metal such as gold, silver 

and platinum can be used (Mizuno et al., 2006) because precious metals have been 

http://fx.sauder.ubc.ca/data.html
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proven to offer a safe haven and are utilized to preserve fortunes and add safety to 

otherwise uncertain financial futures.  

Furthermore, Jang, Lee, and Chang (2011) suggested using the Special Drawing 

Right (SDR) as a base, which is usable freely on the currencies of international 

monetary system. Therefore, the SDR is used as a base in this research. In general,  

the data for currency exchange rates around 5  trading days per week, the data is 

monthly we have 24 samples. Equation 3.2 was used to change the data to the 

logarithm of the price. Table 3.2 below illustrates the Asia Pacific currencies used in 

validation the tests. 
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Table 3.2 

 Asia Pacific Currencies 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

No. Currency 

1 AUD Australia Dollar 

2 CAD Canadian Dollar 

3 CNY Chinese Yen  

4 COP Colombian Peso 

5 FJD Fijian Dollar 

6 XPF French- Pacific Francs 

7 GHS Ghanaian Cedis  

8 HKD Hong Kong Dollars 

9 INR Indian Rupiah 

10 IDR Indonesian Rupiah 

11 JPY Japanese Yen 

12 MYR Malaysian Ringgit 

13 NZD New Zealand Dollar 

14 PKR Pakistani Rupees  

15 PEN Peruvian Sol  

16 PHP Philippines Pesos 

17 RUB Russian Rubles  

18 SGD Singapore Dollars  

19 LKR Sir Lank Rupees 

20 KRW South Korean Won 

21 THB Thai Baht 

22 USD  United States Dollar  

23 VND Vietnamese Dong 
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3.7.2 Testing the Currencies Correlation Matrices of Asia Pacific Currencies 

This section presents two different approach validation of the new alternative 

statistic *Z  and the 𝑇∗statistic. This is as follows:  

i. Testing two independent samples of correlation matrices; comparing before 

and after Tohoku earthquake. Specifically, February and April 2011 represent 

the periods before and after the Tohoku earthquake, respectively; and 

ii. Testing several independent samples of correlation matrices using a control 

chart; comparing i-th sample and reference sample, 𝑖 = 1, 2, … , 𝑚.  

The hypothesis statement of the first approach is,  

afterbeforeH  :0
 versus  

afterbeforeH  :1
. 

The hypothesis statement of the second approach is, 

00 :  iH  versus  

01 :  iH  

The second approach is known as the MSPC approach. However, by using this 

approach the stability is equivalent to testing the hypothesis of the similarity of the 

two correlation (or covariance) matrices done repeatedly that the approach 

correlation matrix is equal to a particular matrix of constants. Assume m independent 

samples are available, each of size 1 2 mn , n , ..., n drawn from a p -variate normal 

distribution with positive definite covariance matrix. To test the hypothesis 0H

versus 1H (Montgomery, 2005) stated that testing the stability of approach 

correlation structure, 0H versus 1H  is equivalent is equivalent to a repeated the tests 
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of the hypothesis of correlation matrix is equal to a particular matrix of constants. In 

this approach i  is the i-th monthly sample of correlation of size p p ; from 

January 2010 until December 2011. Meanwhile, 0  is the reference correlation 

sample that refer to the pooled correlation sample.  

However, before the hypothesis testing is performed , Q-Q plot is presented in order 

to check the normality assumption of *Z statistic. It is because *Z statistic is 

developed on the basis of mutlivarite normal distribution. To confirm that, we test 

the hypothesis that the data are normally distributed. Therefore, the hypothesis are 

0H : The data follow normal distribution versus 1H : The data do not follow normal 

distribution. Anderson-Darling (A-D) test is implemented to achieve the target. The 

test is used for checking the multivariate normality assumption (Rahman, Pearson, & 

Heien, 2006) as required by *Z statistic. 
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CHAPTER FOUR 

RESULTS AND ANALYSIS 

4.1 Introduction 

This chapter presents the results of analysis on the new alternative statistical test 

*Z ,  which constructed based on vec operator, commutation matrix, and Forbenius 

norm of upper-off-diagonal elements. The search for alternative statistical test is 

justified by transforming the sample correlation matrix into vector of correlation 

where its elements is the upper-off-diagonal elements only which is called  Uv R . 

The upper-off-diagonal elements is used to ensure the non-singularity problem 

Sharif, (2013) since the sample correlation matrix is a symmetric matrix and having 

many redundant elements (Schott, 1997). Futhermore, the commutation matrix can 

help to simplify the investigation of parameters (Djauhari & Herdiani, 2008). 

To verify the claim, firstly, we derive the formulation of alternative statistical test 

using a theorem and asymptotic distribution. Next, in order to achieve the objective, 

the power of test is conducted for comparing three different statistics which are 

alternative statistical test, Jennrich statistic, and *T statistic. The real data on 

financial study is used to validate the performance of the alternative statistic. Two 

different conditions of samples which are two independent samples of correlation 

matrices, and several independent samples of correlation matrices are presented at 

the end of this chapter. 
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4.2 Asymptotic Distribution of Correlation Matrix when p 2   

Findings are elaborated based on the asymptotic distribution of R investigated from 

particular case where 2p    to general case where 2p  . To construct the new 

alternative statistical test *Z , the asymptotic distribution of the correlation matrix 

developed by Browne and Shapiro (1986), and Neudecker and Wesselman (1990) 

are used.  

Let 1 2 nX , X , ..., X be a random sample drawn from 𝑝-variate normal distribution 

 N ,  of size 𝑛 with mean vector 𝜇 and positive definite covariance matrix Σ . 

The sample mean vector and covariance matrix are respectively as follows, 





n

i

iX
n

X
1

1
 and  B

n
S

1

1


  where   

1

n
t

i i

i

B X X X X .


    

In this section, the asymptotic distributions of correlation matrix is examined from 

2p  .  

Firstly, the investigation on the asymptotic distribution for the correlation matrix R  

of size 22  is presented using a multivariate process approach and Theorem 3.2. 

When 2p , we denote 









2

1

i

i

i
X

X
X  for bivariate normal distribution, assume that 

 4E 1 2ijX ,  i ,  ,  ...,  n ,     and .2 ,1j  Without loss of generality, assume that 

 E 0ijX  . Therefore, to derive the asymptotic distribution of the sample 

correlation ,
2211

12

ss

s
r   let consider the distribution of the next random vector, 
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(4.1) 

Then, 222
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Moreover, since r depends on 11M , 22M and 12M the we define function from 
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According to Sharif (2013), by using the delta then, 

 







,Nd

M

M

M

n 0

12

22

11

12

22

11




















































 , 

where   

 









































































2121

2

221

2

121

21

2

2

2

2

2

2

2

1

2

2

21

2

1

2

2

2

1

2

1

2

1

XX,XXCovX,XXCovX,XXCov

XX,XCovX,XCovX,XCov

XX,XCovX,XCovX,XCov

  



 

  

62 

 

By using Theorem 3.2, the vector   bnUn   has normal distribution with mean 0 

and covariance matrix , where  
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Which implies that     






22
-1 0  ,Nrn d . Next, we derive the asymptotic 

distribution of correlation matrix when 2p  . 

4.3 Asymptotic Distribution of Correlation Matrix When 2p   

We presented the methodology for 2p   in the previous section. The correlation 

matrix when 2p   of size 2 2 , is as follows,  
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21
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r
R

r

 
  
 

 

The matrix is transforms to 12r which is the upper-off-diagonal element. The 

generalization of this transformation matrix is a part of our contribution in this study. 

To simplify the sample correlation matrix into vector correlation, the notion of vec 

operator and commutation matrix are used. Following, we formulated the asymptotic 

distribution of R based on Theorem 3.1. 
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Theorem 3.1 (Schott, 2007b) 

Let nXXX ,...,, 21  be a random vector drawn from 𝑝-varite normal distribution of 

size n then       Γ,NvecRvecn
p

d 01 2  , where 
pp MM  2 . 

However, before performing the derivation of new statistic, the proving of 

covariance of vec( S) is shown in the next section 

4.3.1 Covariance of  vec S   

The exact distribution of S under the normality is Wishart distribution. From   

Anderson (2003) we can write 
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When 1p  , Wishart reduces to a central Chi-square distribution with (n-1) degrees 

of freedom (Kollo & Von Rosen, 2006). Conversely, when number of variables is 

larger than two, Wishart distribution is impractical (Sheppard, 2008). Due to this 

limitation, the distribution of S will be approximated.  

When n  the distribution of S is approximated by using multivariate central 

limit theorem. The asymptotic distribution of S is given in Proposition 4.1.  
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Proposition 4.1(Kollo & Von Rosen, 2006) 

If n , according to central limit theorem, the asymptotic distribution of  S is 

equal to     Svar,NΣSvecn p

d  0 1  where the covariance of 
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KISvec 2 . 
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(ii) Now we prove   .SE   

From Rencher (2003) suppose that B
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Since    
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i
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i
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i
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n

X ,XXXX
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1
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


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i

iXXn
1
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0
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 


XnXnXX
n

i

n

i

i  

        tt

i

n

i

i

t

i

n

i

i XXnXXXXXX   
 11

hence 

        tt

i

n

i

i

t

i

n

i

i XXnXXXXXX   
 11

 

Therefore,         t
n

i

t

ii XXnEXXEBE  







 

1

  

 
1

1n n n
n

      , so the    BE
n

SE
1

1


  

   


 1
1

1
n

n
. 

(iii) According to Anderson (2003) from Theorem 3.4.4 the variance of S  

   ij kl ik jl il jkvar S Cov s ,s        for kji  , , and pl ..., ,2 ,1 .  

, where the









2221

1211

ss

ss
Sand  
















2221

1211




Σlet   2pNow for  
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   11 21 12 22vec S s s s s and 

  

11 11 11 21 11 12 11 22

21 11 21 21 21 12 21 22

12 11 12 21 12 12 12 22

22 11 22 21 22 12 22 22

s s s s s s s s

s s s s s s s s
Cov vec S

s s s s s s s s

s s s s s s s s

 
 
 
 
 
 

 then, 




















2221

1211

2221

1211








  























2222212222212121

1222112212211121

2212211222112111

1212111212111111









 

Let,























1000

0010

0100

0001

pp
K  and 























1000

0100

0010

0001

2p
I  























2000

0110

0110

0002

2 ppp
KItherefore 

  













































2222212222212121

1222112212211121

2212211222112111

1212111212111111

2000

0110

0110

0002

2









ppp
KI

.




























2222212222212121

12222212112221121221221111212111

12222212112221121221221111212111

1212111212111111

2222

2222








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       

       

       

       

11 11 11 21 11 12 11 22

21 11 21 21 21 12 21 22

12 11 12 21 12 12 12 22

22 11 22 21 22 12 22 22

var s s Cov s s Cov s s Cov s s

Cov s s var s s Cov s s Cov s s

Cov s s Cov s s var s s Cov s s

Cov s s Cov s s Cov s s var s s

 
 
 
 
 
 
 

 

Now, for 2p  , it is showed that    ij kl ik jl il jkvar S Cov s ,s       . The 

proving process for the case 2p  , is similar. In the next example, we want to 

illustrate how to calculate the covariance of     ΣΣKISecv pp
p

 2 .  

Example 4.1 

For 2p  , let 









34

42
Σ  and    11 21 12 22

t
vec S s s s s   

    

11 11 11 21 11 12 11 22

21 11 21 21 21 12 21 22

12 11 12 21 12 12 12 22

22 11 22 21 22 12 22 22

s s s s s s s s

s s s s s s s s
var S Cov vec S

s s s s s s s s

s s s s s s s s

 
 
  
 
 
 

 

Then,  

 

               
               
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



























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4334234444322442

442242422222
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
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





SvecCov
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and ,

18242432

24222216

24222216

3216168

                       



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








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
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


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








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KI . Therefore, 
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




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










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
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







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

















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








18242432

24222216
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KI

 

Hence     
2 pp

p

I K Σ Σ Cov vec S .
 

    
 

 From (i), (ii) and (iii) since, 

 t

nn

tt ZZ...ZZZZ
-n

B
-n

S 112211
1

1

1

1
  this implies  

       
1 1

1 1
1 1

B E B B n n S
n n

       
 

. 

The asymptotic distribution of S  based on central limit theorem, is 

    Svar,NSn p

d 01   . We proved that covariance of 
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    2 ppp
vec S I K ,    thus        1 0d

pn vec S vec N ,var S    

where covariance of     2 ppp
vec S I K     .  

Next, we illustrate how to find the two parameters mean and variance in the 

distribution, based on the results of correlation matrix for R. To prove the covariance 

of   vec R  is equal to 
2

1
p pM M

n



 we use the following Proposition 4.2, from 

Schott (1997, p. 362) and Herdiani (2008). 

4.3.2 Covariance of  vec R   

In this section, we illustrate how to proof the covariance of vector of correlation 

matrix  
2

1
p pvec R M M

n



. By using the following Proposition 4.2. 

Proposition 4.2 

If  *SA  where *S a covariance matrix of ,Z,...,Z,Z n21 , and suppose    is the 

corresponding population covariance matrix, has each of diagonal elements equal 1. 

  is the population matrix. Then, R it can be approximated by first order 

approximation as the following values  

 .DDAR AA  
2

1
  

Where  11 22diagA ppD a ,a ,...,a . 

Proof: 

By using Proposition 4.2, an approach is attained for  vec R  as follows,  
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   1

2 A A
vec R vec A  D D  

 
    

 
 

     

        

1

2

1

2

A A

A A

            vec vec A vec  D D

            vec vec A vec  D vec D

  

  

   

   

 

          
1

2
A p A pvec vec A vec D I vec D  I       

 

        

            

          

1

2

1

2

1

2

A
A p p

p A p A

A
p p

  vec vec A vec  D I vec D  I

  vec vec A I vec D I vec D

  vec vec A I I vec D

  

  

  

   

     

     

 

Now  Avec D . For 



p

i

t

iiiiA hahD
1

where ih is the i -th column of .I  

    


p

i

t

iiiiA hAhhhD
1

, i

t

iii Ahha   

     t

ii

p

i

t

ii hhAhh



1

 

  


p

i
iiii AHH

1

where 
t

iiii hhH   

Therefore,    
1

p

A ii ii
i

vec D vec H AH


    

 
1

p
t

ii ii
i

H H vec( A ),


  since iiH  is symmetric 

   
1

p
t

p p ii ii

i

Λ vec A ,  Λ H H


    
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Therefore, 

         

   is constatnt matrix

* *

*

var vec A var vec S - var vec S vec

                   var vec S  ,   

 



    
 



 

 

 

 

 

1 1 1 1
- - - -
2 2 2 2

1 1 1 1
- - - -
2 2 2 2

1 1 1 1
- - - -
2 2 2 2

  Σ Σ Σ Σ

t

Σ Σ Σ Σ

Σ Σ Σ Σ

var vec D SD var D D vec S

  E D D vec( S ) D D vec S

             E D D vec( S ) E D D vec S

      
           

      

     
          

     

    
      

    

t
 
  
 

 

    

     

1 1 1 1
- - - -
2 2 2 2

1 1 1 1
- - - -
2 2 2 2

t

t

Σ Σ Σ Σ

t

t

Σ Σ Σ Σ

D D E vec S vec S D D

            D D E vec S E vec S D D

    
       
     

   
    

   

 

     

     

1 1 1 1 1 1

2 2 2 2 2 2

1 1

2 2

t

t

Σ Σ Σ Σ Σ Σ

t

t

Σ Σ

D D E vec S vec S D D D D

       E vec S E vec S     D D

     

 

     
         
     

 
 

 

  

           
1 1

2 2

1 1

2 2

t t

Σ Σ

t

Σ Σ

D D E vec S vec S E vec S E vec S

    D D

 

 

           

 
 

 

 

   
1 1 1 1

2 2 2 2

t

Σ Σ Σ ΣD D var vec S D D
      

     
   

. 
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 From above the covariance matrix of  Svec  is equal to 

     2

1

1
ppp

var vec S I K Σ Σ
n

  


.  

      

 

2

2

1 1 1 1

2 2 2 2

1 1 1 1 1 1

2 2 2 2 2 2

1

1

1

1

t

Σ Σ pp Σ Σp

t

Σ Σ Σ Σ pp Σ Σp

var vec A D D I K Σ Σ D D
n

                    D D I D D K Σ Σ D D
n

   

     

   
       

    

      
                   

 

Note 






























2

1

2

1

2

1

2

1

22 ΣΣppΣΣ DDIIDD  and 
































2

1

2

1

2

1

2

1

ΣΣppppΣΣ DDKKDD  

      2

1 1 1 1

2 2 2 2
1

1

t

pp Σ Σ Σ Σp
var vec A I K D D Σ Σ D D

n

      
       

    
 

now











































































2

1

2

1

2

1

2

1

2

1

2

1

ΣΣ

t

Σ

t

Σ

t

ΣΣ DDDDDD  

      
1 1 1 1

2 2 2 2
2

1

1
pp Σ Σ Σ Σp

var vec A I K D D Σ Σ D D
n

      
       

    
 

From Schott (1997) 

 





























































2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

ΣΣΣΣΣΣΣΣ DDDDDDΣΣDD   

    


































2

1

2

1

2

1

2

1

2
1

1
ΣΣΣΣppp

DΣDDΣDKI
n

Avecvar , 


2

1

2

1

ΣΣ DΣD  

file:///C:/Users/Tareq%20Ahmed/Downloads/after_viva_23_10_2017%20-ch4%20and%205_edited.docx%23_ENREF_89
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      


 ppp
KI

n
Avecvar 2

1

1
since  pppp KIM  2

2

1
  

then  pppp KIM  22  

Based on commutation matrix as reported by Schott (1997, p. 403) 

          
2

1

pM
var vec A

n
  


. 

According to Herdiani and Djauhari (2012)     ppp MMM   ,  then  

   
2

1 p p
var vec( A ) M M

n
  


 

By using the value approach for R  from Proposition 4.2, to find the mean and 

variance for  vec R . 

In next section, we used Proposition 4.2 to determine the mean of  vec R   

Proof:  

Suppose that  
1

2
A AR A D D       from proposition 4.2 then using the 

procedures of vec, we set  

          
1

2
A Avec R vec vec A vec D vec D       

          
1

2
p p A            vec vec A I I vec D         

         1

2 p p A
vec vec A I I vec D         

 
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       
2

1

2 p p p
p

vec I I I vec A   
               

 

          2

1

2
p p pp

vec I I I vec A   
 

      
 

 

Now  

          

          2

2

1

2

1

2

p p p
p

p p pp

                E vec R  E vec I I I vec A

                                    E vec E I I I vec A

   

   

                   

 
      

 

Since   is constant     E vec vec  . 

               2

1

2
p p pp

E vec R vec I I I E vec A   
 

      
 

 

  

       

  

2

1

2
p p pp

*

vec I I I

    E vec S

   



 
       

 



 

  

       

      

2

1

2
p p pp

*

vec I I I

      E vec S E vec

   



 
       

 



 

      

 

1

2
2 p P pp

1 1

2 2
Σ Σ

vec I I I Λ

       E vec D SD   vec

  


 

 
       

 

   
     

   

 

      

 

1

2
2 p P pp

1 1

2 2
Σ Σ

vec I I I Λ

      E vec D SD   vec 

  


 

 
       

 

   
     

   
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      

   

2

1 1

2 2

1

2
p p pp

vec I I I

     E D D vec S vec 

   


 

 
       

 

   
      

   

 

      

    

2

1 1

2 2

1

2
p p pp

vec I I I

     D D E vec S vec 

   


 

 
       

 

  
    

  

 

      

   

2

1 1

2 2

1

2
p p pp

vec I I I

     D D vec vec 

   

 
 

 
       

 

  
    

  

 

      

 

2

1 1

2 2

1

2
p p pp

vec I I I

     vec D D vec 

   

 
 

 
       

 

   
     

   

 

      

 

2

1 1

2 2

1

2
p p pp

vec I I I

     vec D D vec 

   

 
 

 
       

 

  
   

  

 

           2

1

2
p p pp

vec I I I vec vec     
 

       
 

  

Therefore,      0vec vec .    

Thus we obtain     E vec R vec  . 

By using the value of R , the variance of  vec R  is obtained. 
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          2

1

2
p p pp

vec R vec I I I vec A   
 

      
 

 

           

      

1

2

1

2

2

2

p p pp

p p pp

var vec R var vec I I I Λ vec A

                     var I I I Λ vec A

  

 

  
       

  

  
      

  

 

 

      

    

1

2

1

2

2

2

p p pp

t

p p pp

                I I I Λ var vec A

                          I I I Λ

 

 

 
      
 

 
    

 

 

    

    
t

pppp

pppppp

ΛIII  

MM
n

ΛIII

2

2




























2

1

1

2

2

1
                  

                       

 

Since         ppppppppp
IIMMIII  








 22

2

1
 and 

pM  is 

symmetric matrix (Schott, 1997) then, 

      

    












































t

ppppp

ppppp

IIIM

MIII
n





2

1
      

2

1

1

2

2

2

 

    

    
t

ppppp

pppp

MIII

IIM
n




























2

1
      

 
1

2

2

2
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    

    
t

ppppp

pppp

IIIM

IIM
n




























2

1
      

 
1

2

2

2

 

       p

t

ppppppp MIIIIM
n

 


 22

1

2
 

Note,        pppp

t

pppp MIIIIM   22  

       pppppp MIIIIM
n

 


 22

1

2
. 

However, based on Theorem 3.1,         pp
p

pp
p

IIII 22  

then, 

   
2

1
p pvar vec R M M

n



 

Thus, we prove the covariance matrix of vector of correlation matrix R  is  

.MM
n

pp
1

2


 

The next example to illustrate how to calculate 
pp MM  2 , for 2 3p ,  .  

Example 4.2 

(1) Let 









140

401

.

.
   

To calculate   we want to calculate pM  and    
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i.  ,
2

1
2 pppp KIM  from Table 4.1,























1000

0010

0100

0001

ppK . The identity matrix 

of size  22 pp  , 























1000

0100

0010

0001

2p
I  and 























1000

0000

0000

0001

pΛ  

 Therefore, 























































































1000

050.050.00

050.050.00

0001

1000

0010

0100

0001

1000

0100

0010

0001

2

1
pM  

ii.       ΩIΛIΛII pppppp
 22   

We start calculate   by calculating the kronecker product for    

 








































1400400160

4001160400

4001601400

1604004001

140

401

140

401
       a)

...

...

...

...

.

.

.

.
  

 and thus   


















140

401

10

01

.

.
I p 





















10.4000

0.40100

0010.40

000.401
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 

. 

0000

0.40100

0010.40

0000

                                            

1000

0000

0000

0001

10.4000

0.40100

0010.40

000.401

-

1000

0100

0010

0001

-          b)






















































































 pp2
p

ΛII 

 

 

. 

00.40-00

0100

0010

000.40-0

                                          

10.4000

0.40100

0010.40

000.401

1000

0000

0000

0001

1000

0100

0010

0001

          c) 2





















































































 ΩIΛI pp
p

 

Therefore, from a, b and c we calculate    



































































00.40-00

0100

0010

000.40-0

10.400.400.16

0.4010.160.40

0.400.1610.40

0.160.400.401

0000

0.40-100

0010.40-

0000



 

  























00.400.400

00.840  0.134-0

00.134-0.840  0

00.4001

 

Consequently,  
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




































































0000

00.500.500

00.500.500

0001

                                     

0000

00.840   0.1340

00.1340.840   0

0000

0000

00.500.500

00.500.500

0001

2 2
pp

MM 

 

 























0000

00.7060.7060

00.7060.7060

0000

  

2) Suppose 


















10.30.3

0.310.3

0.30.31

  then     is equal 

 





































10.300.300.300.090.090.300.090.09

0.3010.300.090.300.090.090.300.09

0.300.3010.090.090.300.090.090.30

0.300.090.0910.300.300.300.090.09

0.090.300.090.3010.300.090.300.09

0.090.090.300.300.3010.090.090.30

0.300.090.090.300.090.0910.300.30

0.090.300.090.090.300.090.3010.30

0.090.090.300.090.090.300.300.301

  

On the other hand, the commutation matrix for 3p   from Table 2.1, ppK  is  



 

  

84 

 



































100000000

000100000

000000100

010000000

000010000

000000010

001000000

000001000

000000001

 and thus pM  is 







































000000000

00.500.500000

000.50000.500

00.500.500000

000010000

000000.500.50

000.50000.500

000000.500.50

000000001

p
M  

In addition,   is equal to 

  







































40.6000.6000.573-00.063  0.573-0.063- 0

0.600  20.6000.172-00.019-0.109-0.254  0

0.600  0.600  20.109-00.254  0.172-0.019-0

0.573-0.172-0.019-1.910  00.210  0.554  0.019-0

000000000

0.063-0.019-0.254  0.21000.910  0.019-0.082-0

0.573-0.109-0.172-0.55400.019-1.910  0.210  0

0.630-0.254-0.019-0.019-00.082-0.210  0.910  0

000000000

 

 

Consequently, 
pp MMΓ 2   
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





































000000000

05.005.000000

005.00005.000

05.005.000000

000010000

000005.005.00

005.00005.000

000005.005.00

000000001

2Γ  























































4600.0600.0573.00063.0573.0063.00

600.02600.0172.00019.0109.0254.00

600.0600.02109.00254.0172.0019.00

573.0172.0109.0910.10210.0554.0019.00

000000000

063.0019.0254.0210.00910.0019.0082.00

573.0109.0172.0554.00019.0910.1210.00

63.0254.0019.0019.00082.0210.0910.00

000000000

 



































000000000

05.005.000000

005.00005.000

05.005.000000

000010000

000005.005.00

005.00005.000

000005.005.00

000000001
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













































8027.0027.0027.00126.0027.0126.00

027.0783.1468.0783.10213.0468.0213.00

027.0468.0783.1468.00213.0783.1213.00

027.0783.1468.0783.10213.0468.0213.00

000000000

126.0213.0213.0213.00828.0213.0828.00

027.0   468.0783.1468.00213.0783.1214.00

126.0213.0213.0213.00828.0213.0828.00

000000000

Γ  

In this section, we proved two mathematical formulation which are the covariance of 

      ppp
KISvec 2 , and the asymptotic distribution of correlation matrix is 

normally distributed with variance .MM
n

pp
1

2


 

4.4 Asymptotic Distribution of   Uv R   

The correlation matrix is a symmetric and having some redundant elements. To 

eliminate those elements, we consider only the upper-off-diagonal elements in the 

correlation matrix, which is denoted  Uv R .  

For that purpose, we generalized the linear transformation matrix, which is denote by 

T in this study in order to remove the non-random elements in the correlation matrix

R , by consider 32  ,p   and 4. 

i. Let 2p  , and 










2221

1211

rr

rr
R .  



 

  

87 

 

Therefore, the   21

12

1

1

r
vec R

r

 
 
 
 
 
 

, where  0100T . 

 So that       21

12

12

1

0 0 1 0

1

U

r
v R T vec R r

r

 
 
     
 
 
 

. 

ii.  Let 3p  , and 

12 13

21 23

31 32

1

1

1

r r

R r r

r r

 
 

  
 
 

. 

Therefore,    21 31 12 32 13 231 1 1
t

vec R r r r r r r  so that  

   Uv R T vec R ,  where 

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

T     

 
 

  
 
 

 

So that    12 13 23

t

Uv R r r r . 

iii. Let 4p  , and 























1

1

1

1

434241

343231

242321

141312

rrr

rrr

rrr

rrr

R .  
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Therefore,

   21 31 41 12 32 42 13 23 43 14 24 341 1 1 1
t

vec  R r r r r r r r r r r r r

Consequently, 





























0100

0010

0001

0000

0000

0000

   

0000

0000

0000

0010

0001

0000

   

0000

0000

0000

0000

0000

0001

    

0000

0000

0000

0000

0000

0000

T  

So that      12 13 23 14 24 34

t

Uv R T vec R r r r r r r .    

Therefore, the transformation matrix T can be presented in the matrix form as a 

block matrix  
pT ... T TT 21 , of size  2k p  partitioned into p blocks where 

   a
jia tT

pp
k ,  .

2

1



 , each of size  k p , 1T is zero matrix, where 

2 3a , , ..., p.   

   21 1 for

0 otherwise

a

a
t
i , j

;  i,j C a b ,b   b 1, 2, ..., a-1

;  

     
 


 

Where 
a

C2  is the number of combinations of 2 out of C objects. This transformation 

matrix is done by modification of transformation that has been used by (Sharif, Ismail, 

Omar, & Theng, 2016).  Subsequently, we illustrate on how to generalize the 

transformation matrix T. 

i. Let 2p  ,  

T partitioned into 2 blocks  21 TTT  , where  1 0 0T   is zero matrix, the 

size 
   

212
2

122

2

1






 p

pp
pk , and  2 1 0T  .  
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The entrance of matrix 2T , 2a , and 1b   

 1 11112
2

2
,, 






















, then  2 1 0T  . 

ii. Let 3p  so that 3 2,a   and 2 1,b    

1 2  b,a  then  1,11 ,1112
2

2























 

1 ,3  ba  then  1 212113
2

3
,, 






















  

2 3  b,a  then  2 323123
2

3
,, 






















  



















010

001

000

 

000

000

001

 

000

000

000

T ,  

 

000

000

001

 ,

000

000

000

21


































 TT and 


















010

001

000

3T . 

iii. Let 4p , so that 3 2,a   and 4, 2 1,b   and 3  

1 2  b,a  then  1 11 112
2

2
,, 






















 

1 3  b,a  then  1 21 2113
2

3
,, 






















 

2 3  b,a  then  2 32 3123
2

3
,, 






















 

1 4  b,a  then  1 41 4114
2

4
,, 






















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2 4  b,a  then  2 52 5124
2

4
,, 






















 

3 4  b,a  then  3 63 6134
2

4
,, 






















 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

T    

 
 
 
 

  
 
 
 
 
 

 





























0000

0000

0000

0000

0000

0000

1T  

and 

0000

0000

0000

0010

0001

0000

 

0000

0000

0000

0000

0000

0001

3

2

,T

,T
























































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



























0100

0010

0001

0000

0000

0000

4T . 

The summary of linear transformation matrix T, for 2 3 4p , ,  and 5 is summarized 

in Table 4.1. 
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Table 4.1 

Linear Transformation T for 2 3 4p , ,   and 5  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒑 𝑻 

𝟐   0100   

𝟑 

















010000000

001000000

000001000

 

𝟒 



























0100000000000000

0010000000000000

0001000000000000

0000001000000000

0000000100000000

0000000000010000

 

  5 


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































0100000000000000000000000

0010000000000000000000000

0001000000000000000000000

0000100000000000000000000

0000000100000000000000000

0000000010000000000000000

0000000001000000000000000

0000000000000100000000000

0000000000000010000000000

0000000000000000000100000
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The following proposition is derived by Herdiani and Djauhari (2012) 

Proposition 4.3 

Let nX ,...,X,X 21  is a random sample of size n from  2 ,N p . If   is correlation 

matrix then,      21 d

U Un v R v N ,       .  

    2 4
t t

U Uv T T v     

    8
t t

U p p U v  T  M     M  T  v    

Where    Uv T vec     and    Uv R T vec R  .  

Based on Theorem 3.2 we have the following corollary 4.1. The proof on how to 

find the variance of  Uv R  is delivered. 

Corollary 4.1  

Let   u vec R  a real value function of  vec R and u exists and    0u' vec R   

for all R  in the neighborhood of  . Therefore, 

      21 0dn u vec R vec N ,       

where, 

  
 

  
  


























Rvec

vec

Rvec

vec
t







2  

file:///C:/Users/Tareq%20Ahmed/Downloads/after_viva_23_10_2017%20-ch4%20and%205_edited.docx%23_ENREF_50
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Based on corollary 4.1, define that     
2

u vec R vec R ,  then the following 

proposition is produced. 

Proposition 4.4 

Let nX,...,X,X 21  is a random sample of size n from  2
  ,N . If   is population 

correlation matrix then,  
   

2 2
2 2

d

vec R vec R
vec R N , 

 
  

 
. 

With 
 

 2

2

 vec R
vec  and 

 
    2

2 8

1

t

p pvec R
vec M   M vec .

n
   


  

Proof:  

Note that     
2

u vec R vec R and 'u exist   0*u R   for all *R  in the 

environment  . For ij

p

ijr  , for all pji ..., ,2 ,1,  and  

   
2

1

d

p pvec R N vec , M M
n

 
 

  
 

, then 

    
    2 2

2 2d

vec R vec R
u vec R vec R N ,    

where  

            2
 vecvecuERvecuE

Rvec
  

 

  
 

  
  




























Rvec

vecu
MM

Rvec

vecu

n
pp

t

Rvec







1

22

2 .  
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Then, 

  
 

  
 

    
2

8
1

t

t

p p p p

u vec u vec
M M vec M M vec

n vec R vec R

 
   

    
   

     
   

. 

Therefore, 

 
    2

2 8
t

p pvec R
vec M M vec     

The two parameters mean and variance in the above proposition derived directly 

based on description of Taylor real valued vector function as set out in Herdiani 

(2008). Taylor description     
2

RvecRvecu  . 

     
  
 

    

t

R

u vec R
u vec R u vec vec R vec

vec R


 



 
   
 
 

 

Therefore,  

a) Mean of   u vec R   is 

     
  
 

    
2

t

R

u vec R
E u vec R E vec vec R vec

vec R


 



      
     
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  
  
 

    
2

2

t

R

vec R
                    E vec E vec R vec

vec R


 



  
  

      
  

 

So, 
  
 

    
2

0

t

R

vec R
E vec R vec

vec R






  
  

    
  

 

Then,        
22

vecRvecERvecu p   

b) Variance   u vec R   

     
 

 
    

2

2

t

R

vec R
var u vec R var vec vec R vec

vec R


 



        
   

 

 

 
    

2
t

R

vec R
var vec R vec

vec R






       
   

, 

 
2

 vec  is constant 

 

 
    

 

 
    

 

 
    

 

 

    

2 2

2 2

tt t

R

t

R R

t

vec R vec R
E vec R vec vec R vec

vec R vec R

vec R vec R
      E vec R vec E

vec R vec R

         vec R vec



 

 







 

                            

                               


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The second term in the right side is equal 0 because 

     
2

E u vec R vec  . 

Therefore,  

   
 

 
    

    
 

 

2

2

t

p

R

t

R

vec R
var u vec R E vec  R vec

vec R

vec R
                                               vec R vec

vec R













 
   
 
 

 
 
 
 

 

   
 

 
         

 

 

2

2

t

t
p

R

R

vec R
var u vec R E vec R vec vec R vec

vec R

vec R
                                               

vec R





  





 
  
 
 

 
 
 
 

 

 

 

 

2 2

1

t

R R

vec R vec RΓ
n-vec R vec R

  

    
   
    
   

 

 

 

 

 

2 2

2
1

t

p p

R R

vec R vec R
M  M

n-vec R vec R
 



 

    
   
    
   

, from Theorem 3.1 

pp  M2MΓ  therefore, 
 

 

 

 

2 2

2
1

t

p p

R R

vec R vec R
M   M

n- vec R vec R
 



 

    
   
    
   

. 
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But 
  
 

u

vec R




 is vector dimensionless 

2p  where it is element is  

. ..., 2, 1,eachfor 1 1

2

pji, 
r

r

ijijr

ij

p

i

p

i

ij








 





 

   
ij

ij

ijij

r
ij

ij

r

ij

p

i

p

i

ij

ijijrijij

ijij

r

rr

r

r

r

r







2
22

1 1

2




















 


. 

  
 

 

1 1

1 2

1

1

2

2 2

,

,

, p

p ,

p ,

p ,p

u v
v Ω

v R















 
 
 
 
 
 
 
  

  
 
 
 
 
 
 
 

. 

So, 

  
 

  
 

     

2

1

2
2 2

1

t

p p

t

p p

u vec u vec
M M

n vec R vec R

vec M M vec
n

 


  

    
   
     
   



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Variance       
2 8

1

t

p pvec R vec M M vec
n

  


. 

In this study, the upper-of-diagonal elements is used since the matrix is symmetric 

and have redundant elements. In the next proposition, by using corollary 4.1 and 

Proposition 4.4 we have the following proposition. 

 

Proposition 4.5 

Let 1 2 nX , X , ..., X  is a random sample of size n from  N ,   . If   is correlation 

matrix then,       
2 2 21 d

U Un v R v N ,       .  

         2 4 8
t tt t

U U U p p Uv T  Γ  T  v v T  M    M  T  v        

Where    Uv T vec     and    Uv R T vec R  . 

In the next section, the proof on how to find the variance of  Uv R  is derived. 

4.4.1 Mean and Variance of  Uv R   

We used Proposition 4.2 to found the mean  Uv R   

 
1

2
A AR A D D       
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   

     

        

        

            

1

2

1

2

1

2

1

2

1

2

A A

A A

A A

A p A p

p A p A

vec R vec A D D

            vec vec A vec D D

            vec vec A vec D vec D

            vec vec A vec D I vec D I

            vec vec A I vec D I vec D

            v

  

  

  

  

  

 
    

 

   

   

   

     

           
1

2
p p Aec vec A I I vec D      

 

Now, 

          
1

2
2 p pp

E T vec R E T vec I (I ) ( I) Λ T vec A  
 

         
 

 

       
1

2
2 p pp

                      E T vec E I I I Λ T vec(A)  
  

         
  

 

         
1

2
2

*

U p pp
    v I I I Λ E T vec A ,A S -      

 
        

 
 

         

  

1

2
2

*

U p pp
                       v I I I Λ E T vec S

                            E T vec

  



 
       

 

 

      

  

1 1

2 2
1

2
2U p p Σ Σp

U

                       v I I I Λ E T vec D SD   

                          E v

  



    
               


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     

    
1 1

2 2

1

2U 2 p p p
p

Σ Σ U

                      v I I I Λ

                           E T  D D vec S    v  

  



 

           
   

  
  

    
  

  

 

     

    

1 1

2 2
1

2
Σ Σ

U 2 p p p
p

U

                         v I I I Λ T  D D

                             E vec S    v   

  



                 
     



  

 

     

 

U 2 p p p
p

U

1
  v I I I Λ

2

1 1

2 2      T vec D ΣD v  
Σ Σ

  



          
   

   
  

   
  

  

 

      
UUppp2

p
U

 vvΛII
2

1
Iv  


























 





   

Noted that 

    0U Uv v     then,   00 







 ppp

ΛI)()(I
2

1
I 2   

We prove mean of    U Uv R v  . 

By using the corollary 4.1and the Proposition 4.5 arrive to the following Proposition 

about the asymptotic distribution of  Uv R . 
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Proposition 4.6 

Let 1 2 nX ,  X ,  ...,  X is a random sample of size n from  2N ,    . If  is 

correlation matrix then,  
  2 2

2 2

U U

d

U R v R
v R N ,    

with 
 

 2

2

U
Uv R

v  and 

 
    U

t

pp

t

URv
vTMTMv

nU


1

82

2


   

Proof: 

Note that     
2

U Uu v R v R and 'u exist   0
*

R'u for all *R in the environment 

 .  

For ij

p

ijr  , for all pji ..., ,2 ,1,  and    
 

 2
2

URvU

d

U ,vNRv  , then 

    
    2 2

2 2

U U

d

U U v R v R
u v R v R N ,   , where  

 
         2

2

U
U U Uv R

E u v R E u v v      

 

  
 

  
 

2 2

1U

t

U Ut

p pv R

U U

u v u v
TM M T

n v R v R

 
 

    
    

     
   

. Then,  

  
 

  
 

    
2

8
1

t

tU Ut t

p p U p p U

U U

u v u v
TM M T v TM M T v

n v R v R

 
   

    
   

     
   
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Therefore, 
 

    2

2 8
U

t t

U p p Uv R
v TM M T v    . 

The two parameters mean and variance in the proposition 4.6 derived directly based 

on description of Taylor real valued vector function as set out in Herdiani (2008). 

Taylor description     
2

U Uu v R v R  

     
  
      

t

U

U U U
U

U
R

u v
u v R u v v R v

v R



 



 
  
 
 

. 

Therefore,   

a) Mean of   Uu v R  is 

     
 

 
    

2

2

t

U

U U U

U
R

v R
E u v R E v v R v

v R


 



        
   

 

  
  
      

2

2

t

U

U U
U

U

R

v R
                   E v E v R v

v R


 



  
  

      
  

 

So, 
  
      

2

0

t

U

U
U

U

R Ω

v R
E v R v

v R




  
  

    
  
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Then,        
2 2p

U U Uu v R E v R v   . 

b) Variance of   URvu   

     
 

 
    

 

 
      

2

2

2

2

is constant

t

U

U U U U

U
R

t

U

U U U

U
R

v R
var u v R var v v R v

v R

v R
                       var v R v ,  v  

v R





 

 





        
   

       
   

 

 

 
    

 

 
    

 

 
    

 

 
    

2 2

2 2

t
t t

U U

U U U U

U U
R R

t
t

t t

U U

U U U U

U U
R R

v R vv R
   E v R v v R v

v R v R

v R v R
        E v R v E v R v .

v R v R

 

 

 

 

 

 

                    
       

                               

 

The second term in the right side is equal 0 because      
2

UU vRvuE  . 

Therefore,  

   
 

           
 

 

2 2
t

t
U Up

U U U
U U

U U
R R

v R v R
var u v R E v R v v R v

v R v R
 

  

 

    
   
    
   

 

   
 

 

 

 

2 2

1

t

*U Up

U

U U
R R

v R v RΓ
     var u v R

n-v R v R
  

    
   
    
   
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   
 

 

 

 

2 2

2
1

t

U Up t

U p p

U U
R R

v R v R
var u v R TM M T  ,

n-v R v R
 



 

    
   
    
   

2* t

p pTM M T  ,therefore

 

 

 

 

2 2

2

1

t

U Ut

p p

U U
R R

v v
TM M T

n v R v R
 

 


 

    
   
     
   

. 

But 
  
 

 2
U

U

U

u v
v

v R








 

 

 

 

 

   

   

2 2

2

1

2
2 2

1

8

1

t

U Ut

p p

U U
R R

t t

U p p U

t t

U p p U

v v
TM M T

n v R v R

v TM M T v
n

v TM M T v
n

 

 


  

  

 

    
   
     
   







 

Variance       
2 8

1

t t

U U p p Uv R v TM M T v
n

  


. 

Proposition 4.7 

If variance       
2 8

1

t t

U U p p Uv R v TM M T v
n

  


 then 
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           

         

2

2 2

1
2 2 4

4

4 2

t t t t

U p p Uv TM M T v Tr Tr Tr  D

                 Tr  D Tr D  D Tr D Tr D



    

        

     

  


   


 

Proof: 

To prove Proposition 4.7, the left side      
t t

U p p Uv TM M T v    

Where  pppp KIM  2

2

1
 and         pppppp

IIII 22   

t

ij

p

i

p

j

ijpp GGK 
 1 1

 is the commutation matrix of size  2 2p p   

ijG  is a matrix of size  p p having all elements are equal 0 except it is  ji, -th 

element equals 1. 

t

ii

t

i

p

i

ip hhhhΛ 
1

 where, ih  is the i -th column of pI . 

            

        

2 2

2 2

1

2

1

2

t tt

U p p U U pp p pp p

t

p p pp Up p

v TM M T v v T I K I I

                                              I I I K T v

     

    

      

      
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           

          

2

2 2 2

1

4

t t tt

U p p U U U ppp

t

p p p p pp Up p p

v TM M T v v T I v T K

                  I I I I  I K T v

    

      

      


       


              

          

2 2

2 2 2

1

4

t t tt

U p p U U U pp P Pp p

t t

p U pp Up p p

v TM M T v v T I v T K I I Λ  

                                              I Λ I  I T v K T v .

     

    

        


     


Since          
t t

p pp U U U pp UT I T ,  K v v , v K v          then  

              

         

2

2 2

1

4

t t tt

U p p U U U pp p pp

t t

p p U pp Up p

v TM M T v v T v T K I I Λ  

                                           I Λ I I T v K T v  .

     

    

        


       


 

Corollary 4.2 

Let   a matrix of size  p p  that  

   tv T T vec     

Then by using the corollary 4.2 we have the following 

               

       

2

2

1

4

tt tt t

U p p U p pp

t

p pp

v TM M T v v v I I

                                                        I I v v

        

   


    

  


                  

            

2 2

2 2

1

4

t tt tt t

p p p pp p

t t

p p p pp p

v I v I v I Λ v I Λ  

         I v I v Λ I v Λ I v

       

     


      

    

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                

             

1

4

t tt tt t

p p p p

t t

p p p p

v v v I Λ v I Λ

           v v Λ I v Λ I v

     

       


      

     


 

  

we define 𝐷𝑊 as a matrix the diagonal elements are the diagonal elements of 𝑊. 

Now from Theorem 7.30 (Schott, 1997). 

             and 
tt tt

p p  p pv I Λ v D    v I Λ v D           

                

        

1

4

tt t tt

t

v v v D v D

       v v v D v D

 

 

         

 

       


  


 

                 

                 

                 

                 

                

   

1

4

tt tt

tt t t t t

t t tt t

t t t tt

t tt t

t

v v v v v D v

   v D v v v v v

   v D v v D v v v D

   v v D v D v D v D v D

   v v D v v D v D v D

   v D





  

    

   



          

          

        

      

       

 

      


     

     

     

     

  v D



 

Note 

             

             

tt t t

t tt t

v v v v , 

v v v v ,

       

       

  

  
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                

                

                 and 

t t t t

t t t t

t t tt

v D v v D v v v D ,

v D v v D v v v D

v v D  v D v D v D v D

  

  

    

        

        

      

    

     

   

Now by using Theorem 7.15, 7.16 and 7.17 from (Schott, 1997) and Proposition 

1.3.14. from Kollo and Von Rosen (2006) we have the following  

          

     22

2

        

2 4422
4

1









DTrDTr

DDTrDTrDTrTrTr
tt





           

         

2

2 2

1
2 2 4

4

4

t t t t

U p p Uv TM M T v Tr Tr Tr D

         Tr D 2Tr D D Tr D Tr D



    

        

     

  


   


 

Now,     8
t t

U p p Uv TM M T v     

          

     .DTrDTr

DDTrDTrDTrTrTr
tt

22

2

        

2 4422
4

1
8













 

Thus the variance of  Uv R  is  

          

     22

2

        

2 44222









DTrDTr

DDTrDTrDTrTrTr
tt




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Corollary 4.3 

Under 0H , then       
2 2

2

01 0d

i ,U ,Un v R v N ,     

Where:  

U,i
R  and 

U,0
 are the upper-off-diagonal elements of iR  and 0 , respectively. 

 

        

       

0 0

0 0 0 0

22

0 0 0 0 0 0 0

2 2

0 0 0 0

2 2 2 4 4

2

t tTr Tr Tr D Tr D

         Tr D D Tr D Tr D





 

    

         

   

    


 


 

  a matrix of size  p p such that    tv T T vec    .   

We define 
0

D 
, 

0
D

 as a matrix the diagonal elements are the diagonal elements 

of 0   and 0 ,  recpectively.  

However, when 
0

  is unknown is commonly exist in real application, it must be 

estimated from m independent random samples. We presented it in Proposition 4.8. 

Prpoposition 4.8 

If 0 is unknown, under the null hypothesis 0H , then we have 

     
22

2

01 0d

i ,U ,U
ˆn v R v N ,   

 
  

  
 

where: 

i ,UR  and 0 ,U̂  are the upper-off-diagonal elements of iR  and 0̂ , respectively 
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        

       2

0

2

000

0000

2

000

2

0000

00

2         

44222









ˆDTrˆDTrˆDˆDTr

ˆDˆTrˆDˆTrˆTrˆˆTr

ˆˆˆˆ

ˆˆ

tt





 

0
ˆ R   is the avarge of correlation matrices of 1 2 mR ,  R ,  ...,  R   

  a matrix of size  p p   such that    0

t ˆv T T vec    . 

We define
0

ˆD
 

, 
0

ˆD


 as a matrix the diagonal elements are the diagonal elements of 

0̂  and 0
ˆ  recpectively.  

4.4.2 Computation the Variance of  URv   

The computation of variance of  Uv R  is complexs. It contains the application of 

Kronecker product and commutation matrix. However, it can be easily performed by 

using software. We illustrate the computation of covariance matrix for case 2p 

 and 3p   in next example for elaboration. 

Example 4.3 

i. Suppose 









140

401

.

.
  

Now, we want to identify     vecTTv t  . Based on Table 4.2, linear 

transformation matrix is  0100T . Thus,  
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   

0 1

0 0 4
0 0 1 0

1 0 4

0 1

0

0

0 4

0

.
vec

.

            
.



   
   
   
   
   
   

 
 
 
 
 
 

 

Then, 

,
00

400










.
 D is  a matrix where the  diagonal  elements of the matrix are 

the  diagonal elements  of ,  

 then
1600

400
          

00

400

140

401

,
.

.

.

.

.





























  











1600

00
 

.
D   

D  is a matrix the diagonal elements are the diagonal elements of  , 











00

0160.
D  thus, 

        

       

0 0

0 0 0 0

22

0 0 0 0 0 0 0

2 2

0 0 0 0

2 2 2 4 4

2

t tTr Tr Tr D Tr D

         Tr D D Tr D Tr D





 

    

         

   

    


 


 

 =0.4516  
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 ii.  Suppose


















13030

30130

30301

..

..

..

   

Based on Table 4.2, linear transformation matrix is,  



















010000000

001000000

000001000

T  , then 

   

0 0 0 1

0 0 0 0 3

0 0 0 0 3

0 0 0 1 0 0 0 0 01 0 0 0 3

0 0 0 0 0 0 1 0 00 0 0 1

0 0 0 0 0 0 0 1 00 0 0 0 3

0 1 0 0 3

0 0 1 0 3

0 0 0 1

t

.

.

.

v T T vec

.

.

.

 

   
   
   
   
   

    
              

    
   
   
   
   
   

 

0

0

0

0 3

0

0

0 3

0 3

0

.

                                      

.

.

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Then, 



















000

3.000

3.03.00

 and 
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




















































1800900

3900900

390300

          

000

3000

30300

13030

30130

30301

..

..

..

.

..

..

..

..



 

Thus,  



















18000

00900

000

 

.

.D   and 


















000

00900

00180

.

.

D   

Consequently,  

        

       

0 0

0 0 0 0

22

0 0 0 0 0 0 0

2 2

0 0 0 0

2

2 2 2 4 4

2

1 355

t tTr Tr Tr D Tr D

         Tr D D Tr D Tr D

. .





 

    

         

   



    


 




 

4.5 New Alternative Test *
Z  Statistic 

By using the repeated tests as introduced by Montgomery (2005), the hypothesis is

00 :  iH  for all 𝑖 where m...,,,i   2 1  versus 01 :  iH  for at least one 𝑖 

where 0 is the reference matrix. In this study, the main assumption is that the data 

is drawn from multivariate normal distribution.  

Under the null hypothesis 𝐻0 the asymptotic distribution of new statistical test is, 

     
2 2 21 0d

iU iUn v R v N ,      
  

, 

file:///C:/Users/Tareq%20Ahmed/Downloads/after_viva_23_10_2017%20-ch4%20and%205_edited.docx%23_ENREF_71
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Therefore, the new alternative statistical test can be represented as follows, 

   

    
 

2 2

2

0 1
1

1

iU iU d*

i

v R v
Z N ,

n






 



 

(4.2) 

        

       

22

2 2

2 2 2 4 4

2

t tTr Tr Tr D Tr D

         Tr D D Tr D Tr D





 

   

        

   

    


 


 

In testing the equality of several independent samples of correlation matrices, the 

null hypothesis 𝐻0 will be rejected at the significance level 𝛼 when |𝑍∗| > 𝑧𝛼/2 with 

(1 − 𝛼/2)𝑡ℎ quantile of standard normal distribution. However, in the case of

unknown, the value must be estimated from independent random sample ̂  where 

Rˆ   the average of correlation matrices of 1 2 mR ,  R ,  ...,  R .  

4.6 Analysis Power of Test 

In this section, we investigate the evaluating of the sensitivity analysis between 

Jennrich test, *T statistic and *Z  statistic based on power of test.  

The power of test is defined as the probability of the test which leads to the rejection 

of the null hypothesis when it is false (Cohen, 1977). Power of test is used to 

measure the sensitivity of the test to identify a real difference in parameter if one 

actually exists as we mentioned in section 2.7 the power of test 1  where   is 

the Type II error, as the Type II error decrease the power increase, and vice versa. In 
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general, the power value is between 0 to1. The minimum accepted value of the 

power of the test is greater than 0 5.  (Murphy et al., 2014), while the value smaller 

than 0 5.  indicate the power is to be unexceptional. Otherwise, the test indicate to be 

unexceptional. When the power of the test is close to 1, the test is will be considered 

to have high power (Syed-Yahaya, 2005). In this study, if the test is able to detect 

small effect, that test is more sensitive to the others.  

The results of the investigation are presented in Table 4.2 to 4.8. Each table represent 

the ascending number of variables which are namely small ( 43  ,p  and 5 ), medium 

( 10p and 15 ) and large number of variables ( 20p and 30 ) with significance 

level 0 05.  .  The first column in each table shows the shift in the matrix  where 

its diagonal elements equal to 1 the shift from 0 to 0 8. with 0.1 increment. The 

following three columns presented the power of test for the three statistical test: 

Jennrich statistic, *Z statistic, and *T statistic, respectively. This analysis is 

conducting repeatedly for various sample size.  

4.6.1 Power of theTest for a Small Number of Variables (  p 4 3, and  5 )  

Table 4.2, 4.3 and 4.4 display the power of the statistical tests for a small number of 

variables, which are 43  ,p   and 5 .  

According to the Table 4.2 for each sample size (n = 3, 5,10, 20, 30, 50 and 100), the 

value of the power for the two statistical tests (the Jennrich statistic and the *T

statistic) are always smaller than the *Z  statistic. In details, when 3n  and 10 all 

the statistical tests, the Jennrich statistic, the *T statistic and the *Z statistic, are 
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power when the shift of correlation matrix is 60.  and above. While, when the 

sample size 5n  the values of the power within the interval of power when the 

shifts are 0.7 and 0.8. In addition, as the sample size increase to 20, 30, 50 and 100 

all the statistical tests, the Jennrich statistic, the *T statistic and the *Z statistic are 

mostly preduce high power with a small and large shift, from 30.  and above. 

Afterwards, mostly the Jennrich statistic possesses a smaller value of power. 

Subsequently, in Table 4.3, when the sample size 3n  the values of the power of 

the *T statistic, fall within the interval when the shift of correlation matrix are 0.4 

and above. While, the *Z statistic, the values fall within the interval when the shift is 

0.2 and above. In this case we can not calculate Jennrich statistic because the number 

of variables is larger than the sample size. While, for sample size 5n  and 10 the 

value of power for the Jennrich statistic and the *T statistic fall within the interval 

when the shift is 0.6 and above. Meanwhile, the value of the power of the *Z statistic 

are mostly sensitive in detecting the effect (power) at 0.2 and above. In addition, as 

we move to n=20 the value of the power for the Jennrich statistic and the *T statistic 

fall within the interval when the shift in correlation matrix is 0.4 and above. While, 

the power value of the *
Z statistic fall within the interval when the shift is 0.3 and 

above. When the sample size 30 all the values of the of Jennrich statistic, the *T

statistic and the *Z statistic are within the interval of power when the shift of 

correlation matrix is 0.3 and above. In addition, as the sample size increase to 50 the 

Jennrich statistic, the *T statistic and the *Z statistic  are power at 20.   and 

above. While, when the sample size 100 the *Z statistic at 10.  and above. 
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In, Table 4.4, when the sample size 3n , the values of the power for the *T statistic 

are power when the shift in correlation matrix 40.  and above. When the sample 

increase to 5, 10 and 20 the two satistic the Jennrich statistic and the *T statistic are 

power at 0.5 shift in correlation matrix and above. Meanwhile, the *Z statistic at 0.2 

and above when the sample size are 3, 5, 10 and 20. In addition, as the sample 

increase to 30, 50 and 100, majority of the values are power when 30. and 

above. 

Drawing from Tables 4.2, 4.3 and 4.4, the conclusion can be made that the larger 

sample size the values of the power of statistical tests fall within the interval of the 

power. When the sample sizes are 3 5 10 20 30 50n , , , , ,   and 100  there are 38, 38, 

43, 56, 56, 61 and 65 out of the 549, values of the power fall within the interval of 

the power respectively. Thus, the conclusion can be made from the results that, when 

the sample size is small, the value of the power of the statistical tests fall within the 

interval power with a large shift of the correlation matrix. Meanwhile, when the 

sample size is large, the values of the power for all the statistical tests fall within the 

interval of power from 0.3 shift in correlation matrix and above. In brief, the *Z  

statistic dominates the Jennrich statistic and *T statistic.  
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Table 4.2 

Power of test for 3p    

  
3n  5n  10n  20n  30n  50n  100n  

𝐽 𝑇∗ 𝑍∗ 𝐽 𝑇∗ 𝑍∗ 𝐽 𝑇∗ 𝑍∗ 𝐽 𝑇∗ 𝑍∗ 𝐽 𝑇∗ 𝑍∗ 𝐽 𝑇∗ 𝑍∗ 𝐽 𝑇∗ 𝑍∗ 

0.0 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.000 0.050 0.050 0.000 0.050 0.050 0.000 

0.1 0.057 0.104 0.079 0.068 0.083 0.158 0.061 0.062 0.342 0.076 0.074 0.579 0.099 0.091 0.029 0.127 0.141 0.078 0.240 0.245 0.232 

0.2 0.074 0.316 0.356 0.110 0.124 0.496 0.093 0.099 0.755 0.159 0.158 0.920 0.251 0.245 0.304 0.409 0.450 0.503 0.765 0.772 0.812 

0.3 0.101 0.441 0.730 0.166 0.186 0.787 0.158 0.164 0.937 0.325 0.529 0.990 0.525 0.511 0.648 0.783 0.802 0.853 0.986 0.999 0.999 

0.4 0.162 0.518 0.904 0.234 0.247 0.928 0.252 0.262 0.983 0.558 0.557 0.999 0.800 0.794 0.878 0.972 0.969 0.982 1 0.987 1 

0.5 0.378 0.553 0.920 0.312 0.317 0.959 0.392 0.412 0.996 0.787 0.927 0.880 0.956 0.994 0.979 0.998 0.999 0.999 1 1 1 

0.6 0.508 0.572 0.941 0.401 0.398 0.983 0.562 0.999 0.999 0.941 0.982 1 0.997 0.999 0.999 0.999 1 1 1 1 1 

0.7 0.676 0.608 0.960 0.504 0.500 0.994 0.754 0.742 0.999 0.993 1 1 0.999 1 1 1 1 1 1 1 1 

0.8 0.819 0.653 0.812 0.622 0.615 0.999 0.910 0.873 1 1 1 1 1 1 1 1 1 1 1 1 1 

1
1
9
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Table 4.3  

Power of test for 4p    

 3n  5n  10n  20n  30n  50n  100n  


 

𝑇∗ 𝑍∗ 𝐽 𝑇∗ 𝑍∗ 𝐽 𝑇∗ 𝑍∗ 𝐽 𝑇∗ 𝑍∗ 𝐽 𝑇∗ 𝑍∗ 𝐽 𝑇∗ 𝑍∗ 𝐽 𝑇∗ 𝑍∗ 

0.0 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.000 0.050 0.050 0.000 0.050 0.050 0.000 

0.1 0.195 0.397 0.088 0.114 0.239 0.072 0.076 0.527 0.087 0.093 0.819 0.114 0.113 0.008 0.191 0.197 0.048 0.398 0.398 0.578 

0.2 0.288 0.819 0.180 0.202 0.710 0.135 0.147 0.985 0.206 0.225 0.999 0.342 0.341 0.370 0.637 0.639 0.666 0.958 0.954 0.955 

0.3 0.329 0.981 0.311 0.283 0.938 0.234 0.241 0.999 0.424 0.450 1 0.691 0.692 0.823 0.949 0.953 0.971 1 1 1 

0.4 0.500 0.995 0.461 0.376 0.997 0.372 0.388 1 0.962 0.907 1 0.930 0.919 0.976 0.998 0.999 1 1 1 1 

0.5 0.511 0.988 0.612 0.513 0.999 0.543 0.547 1 0.896 0.983 1 0.995 0.994 0.999 1 1 1 1 1 1 

0.6 0.579 0.999 0.755 0.566 1 0.716 0.734 1 0.984 0.998 1 0.999 0.999 1 1 1 1 1 1 1 

0.7 0.586 0.999 0.884 0.693 1 0.864 0.999 1 0.999 0.999 1 1 1 1 1 1 1 1 1 1 

0.8 0.687 1 0.957 0.778 1 0.956 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1
2
0
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Table 4.4  

Power of test for 5p   

 

 

 



 

3n  5n  10n  20n  30n  50n  100n  

𝑇∗ 𝑍∗ 𝐽 𝑇∗ 𝑍∗ 𝐽 𝑇∗ 𝑍∗ 𝐽 𝑇∗ 𝑍∗ 𝐽 𝑇∗ 𝑍∗ 𝐽 𝑇∗ 𝑍∗ 𝐽 𝑇∗ 𝑍∗ 

0.0 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.000 0.050 0.050 00000 0.050 0.050 0.000 

0.1 0.168 0.459 0.063 0.073 0.233 0.070 0.073 0.410 0.083 0.085 0.573 0.103 0.102 0.002 0.160 0.155 0.039 0.323 0.334 0.561 

0.2 0.268 0.799 0.098 0.120 0.776 0.120 0.124 0.912 0.195 0.299 0.923 0.300 0.300 0.583 0.542 0.541 0.823 0.903 0.905 0.995 

0.3 0.340 0.960 0.155 0.205 0.956 0.201 0.212 0.992 0.396 0.406 0.989 0.622 0.614 0.929 0.899 0.902 0.996 0.999 0.999 1 

0.4 0.500 0.981 0.237 0.313 0.991 0.319 0.339 0.999 0.649 0.658 0.999 0.886 0.882 0.996 0.994 0.993 1 1 1 1 

0.5 0.510 0.988 0.372 0.410 0.998 0.478 0.504 0.999 0.869 0.865 0.860 0.986 0.998 1 0.999 1 1 1 1 1 

0.6 0.570 0.992 0.525 0.509 0.999 0.662 0.680 1 0.976 0.970 0.999 0.999 0.999 1 1 1 1 1 1 1 

0.7 0.617 0.996 0.663 0.999 0.999 0.831 0.835 1 0.998 0.994 1 1 1 1 1 1 1 1 1 1 

0.8 0.667 0.998 0.780 1 1 0.945 0.939 1 1 0.999 1 1 1 1 1 1 1 1 1 1 

1
2

1
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4.6.2 Power of theTest for a Medium Number of Variables ( 10p and  15 )  

Table 4.5 and Table 4.6 show the power of test for a medium number of variables. 

Drawing from the two tables, the conclusion can be made that power of statistical 

test increases compared with the previous section, and, the number of values that 

equal to 1 are increase.  

In Table 4.5, most values of the power test of the *Z statistic are greater than the 

Jennrich statistic and the *T  statistic for all shifts in the correlation matrix. When the 

sample size 3n , the power values of *T statistic fall within the  interval when the 

shift in the correlation matrix is 0.1 and above. When the sample size n = 5 and 10 

the values of power of the *T statistic are very small and all the values fall outside 

the interval of the power. While, the values of *Z statistic fall within the power 

interval at 20.  and above. When the sample size n increases to 20, 30, 50 and 

100  all the values of the Jennrich statistic, the *T statistic and the *Z statistic fall 

within the interval of the power when the shift in correlation matrix 0.3 and above. 

All the values of the power of the *Z  statistic were larger than the other two tests.  

Based on Table 4.6, when 3n , the *T  statistic and the *Z  statistic are power 

when the shift of correlation matrix is 0.2 and above. On the other hand, when the 

sample size is n = 5, 10, and 20  the values of power of the *T  statistic are very 

small, and outside the interval. The conclusion can be made that the *T  statistic is 

not power. For sample size 30, 50 and 100 the values of the three tests fall within the 

interval when the shift in correlation matrix 0.3 and above. Furthermore, from this 
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table, all the values of the power test of the *Z statistic are larger than the other two 

statistical tests, and the *Z statistic dominates the other two statistical tests.  

From the two tables we showed that there are 171 conditions for p = 10 involved to 

evaluate the performance of the power of statistical test, there are 53 35, and 33  

conditions for the *Z  statistic, the *T statistic and the Jennrich statistic respectively 

fall within the interval of power. In addition, the Jennrich statistic cannot be 

calculated when p > n. For p = 15, there are 162 conditions in all the table. There are 

53, 29, and 27  conditions belong to the *Z  statistic, the *T statistic, and the Jennrich 

statistic respectively. From two tables, the value of the power of *Z  statistic fall 

within the interval of the power form the shift in the correlation matrix 0.2 and 

above. In brief, the two tables show that the results drawn from the *Z statistic are 

more powerful than the other two statistical tests and dominate in the range of a 

medium number of variables.  
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Table 4.5 

Power of test for 10p    

 

 

 

  

 

 

 

 

 

 

 

 

 𝑛 = 3 𝑛 = 5 𝑛 = 10 𝑛 = 20 𝑛 = 30 𝑛 = 50 𝑛 = 100 

𝜌 𝑇∗ 𝑍∗ 𝑇∗ 𝑍∗ 𝐽 𝑇∗ 𝑍∗ 𝐽 𝑇∗ 𝑍∗ 𝐽 𝑇∗ 𝑍∗ 𝐽 𝑇∗ 𝑍∗ 𝐽   𝑇∗         𝑍∗ 

0.0 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.000 0.050 0.050 0.000 0.050 0.050 0.000 

0.1 0.591 0.171 0.114 0.417 0.120 0.135 0.983 0.115 0.126 0.980 0.153 0.160 0.200 0.256 0.270 0.555 0.638 0.633 0.871 

0.2 0.724 0.852 0.114 0.999 0.323 0.235 1 0.289 0.288 0.999 0.446 0.451 0.906 0.770 0.799 1 0.998 0.999 1 

0.3 0.764 1 0.045 1 0.608 0.264 1 0.530 0.717 1 0.766 0.774 1 0.987 0.990 1 1 1 1 

0.4 0.794 1 0.003 1 0.835 0.204 1 0.763 0.880 1 0.952 0.997 1 0.970 0.999 1 1 1 1 

0.5 0.663 1 0.009 1 0.947 0.122 1 0.913 0.971 1 0.996 0.999 1 0.999 1 1 1 1 1 

0.6 0.631 1 0.020 1 0.985 0.092 1 0.979 1 1 0.999 1 1 1 1 1 1 1 1 

0.7 0.752 1 0.013 1 0.995 0.210 1 0.997 1 1 1 1 1 1 1 1 1 1 1 

0.8 0.905 1 0.009 1 0.997 0.410 1 1 1 1 1 1 1 1 1 1 1 1 1 

1
2
4
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Table 4.6 

Power of test for 15p    

 

 

 

 𝑛 = 3 𝑛 = 5 𝑛 = 10 𝑛 = 20 𝑛 = 30 𝑛 = 50 𝑛 = 100 

𝜌 𝑇∗ 𝑍∗ 𝑇∗ 𝑍∗ 𝑇∗ 𝑍∗ 𝐽 𝑇∗ 𝑍∗ 𝐽 𝑇∗ 𝑍∗ 𝐽 𝑇∗ 𝑍∗ 𝐽 𝑇∗ 𝑍∗ 

0.0 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.000 0.050 0.050 0.0000 0.050 0.050 0.000 

0.1 0.976 0.137 0.131 0.318 0.167 0.999 0.177 0.157 1 0.177 0.187 0.200 0.292 0.322 0.993 0.732 0.730 0.994 

0.2 0.989 0.825 0.034 1 0.079 1 0.469 0.286 1 0.469 0.445 0.993 0.773 0.800 1 0.999 0.999 1 

0.3 0.992 1 0.014 1 0.011 1 0.747 0.253 1 0.747 0.839 1 0.976 0.982 1 1 1 1 

0.4 0.980 1 0.010 1 0.000 1 0.911 0.085 1 0.911 0.864 1 0.999 0.999 1 1 1 1 

0.5 0.935 1 0.038 1 0.000 1 0.974 0.005 1 0.974 0.854 1 1 1 1 1 1 1 

0.6 0.949 1 0.016 1 0.005 1 0.994 0.002 1 0.994 0.953 1 1 1 1 1 1 1 

0.7 0.978 1 0.011 1 0.008 1 0.999 0.006 1 0.999 0.997 1 1 1 1 1 1 1 

0.8 0.989 1 0.021 1 0.006 1 0.999 0.116 1 0.999 1 1 1 1 1 1 1 1 

1
2
5
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4.6.3 power of the Test for a Large Number of Variables ( 20p and 30 )  

The power of tests for a larger number of variables for the three tests is presented in 

Table 4.7 and 4.8. For both tables, the value of the power of *Z statistic is greater 

than the other two statistical tests for all sample sizes.  

In table 4.7, when the sample size 3n  the value of the power for the *Z statistic 

and the *T statistic fall within the interval when the shift of correlation matrix 20.

and above. Furthermore, for 10 20 30 50n , , ,   and 100 , the value of *Z statistic 

within interval from 0 1. shift in correlation matrix and above for both tables. The 

values of the power of the *T  statistic when the sample size n = 5, 10, 20, and 30  

are not within the interval in all shifts. Whereas, when n = 50 and 100, most the 

values are powerful when the shift is 20. and above. While, for the Jennrich statistic, 

no comparison can be made when p n . When n = 20, 30, 50 and , 100 all the 

values of the Jennrich statistic are within the interval of  power when the shift is 20.

and above.  

Based on Table 4.8, overall the *Z  statistic is powerful when the shift is 20. and 

above. When n = 3, the *T  statistic is powerful when the values are 1.0 and above. 

When the sample size is 5 the values of the *T  statistic are fall within the power 

interval for small shift 0.1 and 0.2. In cases when the sample size n = 10, 20, 30 and 

50, all the values of the power of the *T statistic are outside the interval . On the 

other hand, for n = 100 the values of the power of the *T  statistic are within the 

interval when the shift is 1.0 and above. For the Jennrich statistic, when the sample 
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size equals the number of variable or the sample size is larger than number of 

variable, all values fall within the power interval when the shift is 20.  and above. 

Furthermore, for Table 4.8 the value of the power of the *Z  statistic are within the 

interval when the shift of correlation is 10. and above for all sample size.  

There are 162  and 153 conditions for p = 20 and 30, respectively involved to 

evaluate the power of the statistical tests. In the case when p = 20, there are 52  

conditions of the *Z  statistic and 29  for the Jennrich statistic and 23  for the *T  

statistic. However, for p = 30 for *Z  statistic, there are 53  and 22 conditions for the 

Jennrich statistic while the *T  statistic had 18 conditions. Thus, the conclusion can 

be made that the *Z  statistic dominated the other two tests.  

 

 

 

 

 

 

 



 

  

128 

 

Table 4.7 

Power of test for 20p    

    

 

 

 𝑛 = 3 𝑛 = 5 𝑛 = 10 𝑛 = 20 𝑛 = 30 𝑛 = 50 𝑛 = 100 

𝜌 𝑇∗ 𝑍∗ 𝑇∗ 𝑍∗ 𝑇∗ 𝑍∗ 𝐽 𝑇∗ 𝑍∗ 𝐽 𝑇∗ 𝑍∗ 𝐽 𝑇∗ 𝑍∗ 𝐽 𝑇∗ 𝑍∗ 

0.0 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.000 0.050 0.050 0.000 0.050 0.050 0.0000 

0.1 0.999 0.140 0.328 0.292 0.340 1 0.273 0.060 0.999 0.224 0.213 0.300 0.323 0.315 0.378 0.750 0.767 1 

0.2 0.999 0.911 0.033 1 0.037 1 0.737 0.003 1 0.580 0.326 0.999 0.750 0.709 1 0.999 0.999 1 

0.3 0.999 0.990 0.040 1 0.010 1 0.963 0.001 1 0.837 0.161 1 0.947 0.896 1 1 1 1 

0.4 0.995 1 0.001 1 0.018 1 0.998 0.000 1 0.949 0.110 1 0.993 0.963 1 1 1 1 

0.5 0.986 1 0.051 1 0.046 1 0.999 0.027 1 0.984 0.212 1 0.999 0.987 1 1 1 1 

0.6 0.987 1 0.017 1 0.049 1 1 0.005 1 0.992 0.111 1 1 0.999 1 1 1 1 

0.7 0.989 1 0.007 1 0.057 1 1 0.009 1 0.993 0.122 1 1 1 1 1 1 1 

0.8 0.996 1 0.002 1 0.091 1 1 0.010 1 0.977 0.131 1 1 1 1 1 1 1 

1
2
8
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Table 4.8 

 Power of test for 30p   

 

 

 𝑛 = 3 𝑛 = 5 𝑛 = 10 𝑛 = 20 𝑛 = 30 𝑛 = 50 𝑛 = 100 

𝜌 𝑇∗ 𝑍∗ 𝑇∗ 𝑍∗ 𝑇∗ 𝑍∗ 𝑇∗ 𝑍∗ 𝐽 𝑇∗ 𝑍∗ 𝐽 𝑇∗ 𝑍∗ 𝐽 𝑇∗ 𝑍∗ 

0.0 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.000 0.050 0.050 0.000 0.050 0.050 0.000 

0.1 1 0.131 0.998 0.340 0.034 1 0.042 1 0.466 0.201 0.300 0.390 0.312 0.514 0.724 0.707 1 

0.2 1 0.987 0.876 1 0.014 1 0.010 1 0.949 0.318 1 0.820 0.274 1 0.991 0.980 1 

0.3 1 1 0.020 1 0.100 1 0.008 1 1 0.152 1 0.965 0.043 1 1 0.999 1 

0.4 1 1 0.137 1 0.005 1 0.004 1 1 0.020 1 0.994 0.010 1 1 0.999 1 

0.5 1 1 0.053 1 0.003 1 0.004 1 1 0.010 1 0.998 0.010 1 1 1 1 

0.6 1 1 0.021 1 0.010 1 0.012 1 1 0.010 1 0.999 0.004 1 1 1 1 

0.7 1 1 0.008 1 0.009 1 0.002 1 1 0.001 1 0.995 0.002 1 1 1 1 

0.8 1 1 0.010 1 0.000 1 0.000 1 1 0.029 1 0.915 0.000 1 1 1 1 
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4.6.4  Conclusion of the Power of Test  

The following is the summary of the results. The power of test for *Z statistic is show to 

be excellent when we have small sample size and large sample size. When comparing 

with the another two statistical tests the *Z  statistic is dominate the others statistical 

tests in any kind of variable size (small, medium or large). The sensitivity of the 

alternative statistical test to the correlation shits increase as the power of the new 

alternative statistical test *Z  increase. This means the new alternative statistical test *Z  

is very sensitive to shift in the correlation structure. 

4.7 Examples of Real Application  

The Asia Pacific currencies is used to validate the new alternative statistical test *Z  and 

*T  statistic by using two approaches. Firstly, we performed the testing of two 

independent samples of correlation matrices, followed by the testing of several 

independent samples of correlation matrices using control chart. However, we cannot 

perform the Jennrich statistic due to the occurance of singularity problem.  

We start this section by presenting the Q-Q plot to check the normality assumption since 

the *Z statistic is developed on basis of multivariate normal distribution. When the 

points lie very nearly along a straight line, the normality assumption remains tenable. 

However, nonormality is suspected if the points deviate from a straight line.  

Figure 4.1 (a) to Figure 4.1 (d) is performed for checking assumption of normality. We 

calculate the coeeficient of determination, R-square to evaluate how good the model fits 
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the data. The values of R-square is lie between 0 and 1, and it becomes larger as the 

model fits better. Next, the Q-Q plot for January 2010 until December 2011 are 

presented 

 

January 2010                                                          

 

                       February 2010 

 

March 2010 

 

April 2010 

 

May 2010 

 

June 2010 

Figure 4.1 (a). The Q-Q plot for 6 months from January 2010-June 2010 
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July 2010 

 

August 2010 

 

September 2010 

 

October 2010 

 

November 2010 

 

December 2010 

Figure 4.1 (b). The Q-Q plot for 6 months from July 2010-December 2010 
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Figure 4.1 (c). The Q-Q plot for 6 months from January 2011-June 2011 
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Figure 4.1 (d). The Q-Q plot for 6 months from July 2011-December 2011 

The points in Figure 4.1 (a) to (d) are reasonably straight also it shows that the Q-Q plot 

fits the trend line this indicates the data are normal distribution. The values of R square 

are presented in the Table 4.9.   
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              Table 4.9 

             R-square fro 24 samples  

Sample Month R2 

1 January 2010 0.9717 

2 February 2010 0.9947 

3 March 2010 0.9541 

4 April 2010 0.9521 

5 May 2010 0.9726 

6 June 2010 0.9400 

7 July 2010 0.9841 

8 August 2010  0.9821 

9 September 2010 0.9286 

10 October 2010 0.9882 

11 November 2010 0.9228 

12 December 2010 0.9342 

13 January 2011 0.9426 

14 February 2011 0.9825 

15 March 2011 0.9711 

16 April 2011 0.9717 

17 May 2011 0.9345 

18 June 2011 0.9162 

19 July 2011 0.9579 

20 August 2011  0.9405 

21 September 2011 0.9631 

22 October 2011 0.9690 

23 November 2011 0.9529 

24 December 2011 0.9528 

 

The table shows that all the value of R-square is close to 1. Therefore, we conclude that 

all the data follow normal distribution. Next, we used A-D test to test the normality.  

The smaller the value of A-D test, the faster the speed of convergence in distribution. 

Table 4.10 shows the result of A-D test 
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Table 4.10 

Anderson Darling test 

 

 

Table 4.10, it is shown the best value of A-D is 0.8 and below. Since  p value is large 

than 0.05, we fail to reject 0H  such that the data follow normal disribution.    

4.7.1 Testing the Equality of Two Correlation Matrices      

In this section, we present the results of Asia Pacific currencies using *T statistic and the 

alternative statistical test called *Z statistic, for the propose of validation. The 

currencies from Asia Pacific countries were employed to analyze the defferances in 

Sample  A-D test p-value 

1 0.1994 0.8750 
 

2 0.5074 0.1782 
 3 0.2896 0.5802 
 

4 0.8090 0.0548 

5 0.3301 0.4970 
 

6 0.6583 0.0736 
 

7 0.6952 0.0594 

8 0.5075 0.1782 
 

9 0.3758 0.3783 
 

10 0.5328 0.1504 
 

11 0.3949 0.3399 

 
 

12 0.3638 0.4070 
 

13 0.2601 0.6741 
 

14 0.1209 0.9856 
 

15 0.4746 0.2171 
 

16 0.3301 0.4970 

17 0.4066 0.3181 
 

18 0.6529 0.0760 
 

19 0.2404   0.7428 

20 0.3064 0.5370 
 

21 0.2725 0.6306 

 
 

22 0.5202 0.1622 

23 0.5341 0.1504 

 
 

24 0.2247 0.7976 
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correlation matrices between February and April 2011, where it was one month before 

and one month after the Tohoku earthquake incident. To study the effect before and 

after the crisis. There are 23 currencies from the Asia Pacific countries and the sample 

size of the two samples equal to 19. To test the following hypothesis we used the 

significance level 050. . 

Firstly, the results of the equality test between two correlation matrices by using *T

statistic (equation 2.10) is presented. To determine *T statistic, the sample correlation 

matrix of February, 1R , the sample correlation matrix of April, 2R , the upper-off-

diagonal elements of correlation matrix of February, 1UR , the upper-off-diagonal 

elements of correlation matrix of April, 2UR , the pooled correlation matrix,   are 

prepared. 
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We compute the 
0 1 0 2 0 3, , ,V ,V ,V and 

0

* . Then, the *T statistic is computed. The statistical 

test is compared to the critical value for making a decision. The degree of freedom is, 

   1 23 23 1
253

2 2

p p
k

 
   . Therefore, the critical value of *T is 

2

0 05 253 291.101.. ,   

Based on 1015 82*T . and p-value 0 050. , the null hypothesis is rejected. 

Secondly, the results of the equality test between two correlation matrices, *Z statistic is 

presented. To determine *Z statistic, the  ,R ,R ,R ,R UU 2121  the upper-off-diagonal 

elements of pooled correlation matrix is   U  , the matrix where the diagonal 

elements are the diagonal elements of  is D , the matrix where the diagonal 

elements are the diagonal elements of  is D , are prepared.  
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We compute  
2

1 48 341Uv R . ,  
2

2 34 472Uv R .  and the variance of 
*Z , 

          

     

2

2 2

2 2 2 4 4t tTr Tr Tr D Tr D  2Tr D D

        Tr D Tr D

   

 

         

 

    


 


Therefore, 1 2 19 19 38n n n     . Then *Z statistic is computed.  

   
2 2

1 2

2

48 341 34 472
1 765

1 1
1171 964

1 37

U U*
v R v R . .

Z .

.
n



 
  



 

The statistical test is compared to the critical value for making a decision. Therefore, 

the critical value of *Z is 0 025 1 96*

.Z .  . Based on 1 765Z* . and p-value= 0840. , 

we failed to reject the null hypothesis. 

Therefore, by using *T , we conclude that the two correlation samples are not equal. 

While, by using *Z the two samples are equal.  

4.7.2 Testing Several Correlation Matrices Using Control Chart  

In this example, we want to use the two test for several independent samples. By 

utilizing this approach the stability is same to testing the hypothesis of the similarity 

of the two correlation matrices is done repeatedly  

01

00
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where i=1, 2,…, m, and 0  is the reference sample. In this example, we have 24 

samples (months), we retrieved the daily data of 23 currencies from Asia Pacific 

currencies. Hence there are 24 corresponding correlation matrices, with different 

size. In general, there are 5 trading days per week, and about 19 to 22 days for a 

month excluding holiday and weekend. In Table 4.11, illustrate the sample size.  

Table 4.11 

The Sample Size of the Foreign Exchange Rate Data  

No. 𝒏 size No. 𝒏 size 

Jan 10 𝑛1 19 Jan 11 𝑛13 19 

Fub10 𝑛2 19 Fub11 𝑛14 19 

Mar10 𝑛3 22 Mar11 𝑛15 22 

Apr10 𝑛4 20 Apr11 𝑛16 19 

May10 𝑛5 19 May11 𝑛17 20 

Jun10 𝑛6 21 Jun11 𝑛18 21 

Jul10 𝑛7 20 Jul11 𝑛19 19 

Aug10 𝑛8 20 Aug11 𝑛20 21 

Sep10 𝑛9 20 Sep11 𝑛21 20 

Oct10 𝑛10 19 Oct11 𝑛22 19 

No10 𝑛11 20 No10 𝑛23 20 

Dec10 𝑛12 20 Dec10 𝑛24 19 

 

4.7.2.1 *
T Control Chart  

 To construct the corresponding control chart, we define mUR  and 0U . Then, we 

compute the 
0 1 0 2 0 3, , ,V ,V ,V and 

0

* . Next, the *T statistic is computed to every 24 

months of samples and the results are shown in Table 4.12. 
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Table 4.12 represent the values of *

mT  statistic where 1 2 24m , , ...,  , the first 

column represent 24 samples from January 2010 until December 2011, the second 

column represent the values of *

mT statistic for 24 samples while, the third column 

present the tabulated value for 𝜒2 , the fourth column represent the p-value and the 

last column is the results. 

In Figure 4.2, we present the Chi-square control chart. The significance level 

0 05.  ,  the upper limits of control chart (UCL), 101.291
2
 kUCL   with degree 

of freedom, 
   1 23 23 1

253
2 2

p p
k .

 
    All months in Table 4.12 are plotted in 

blue colour and UCL in orange colour. The vertical axis is the *

mT  statistic, where 

1 2 24m ,  ,  ...,   and the horizontal axis is 24 months.  
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Table 4.12 

 The values of *T  statistic  

 

 

 

 

 

 

 

 

 

 

 

 

 

m 𝑻∗ *102 2

0.05,253χ *102 p-Value Result 

1 70.64994 2.91101 0.0000 Reject 𝐻0 

2 58.90507 2.91101 0.0000 Reject 𝐻0 

3 47.87139 2.91101 0.0000 Reject 𝐻0 

4 58.37806 2.91101 0.0000 Reject 𝐻0 

5 39.70816 2.91101 0.0000 Reject 𝐻0 

6 42.67845 2.91101 0.0000 Reject 𝐻0 

7 58.74452 2.91101 0.0000 Reject 𝐻0 

8 37.54839 2.91101 0.0000 Reject 𝐻0 

9 51.51666 2.91101 0.0000 Reject 𝐻0 

10 91.46684 2.91101 0.0000 Reject 𝐻0 

11 56.06998 2.91101 0.0000 Reject 𝐻0 

12 109.19585 2.91101 0.0000 Reject 𝐻0 

13 85.56412 2.91101 0.0000 Reject 𝐻0 

14 111.70083 2.91101 0.0000 Reject 𝐻0 

15 72.65498 2.91101 0.0000 Reject 𝐻0 

16 142.51274 2.91101 0.0000 Reject 𝐻0 

17 44.03481 2.91101 0.0000 Reject 𝐻0 

18 51.8249 2.91101 0.0000 Reject 𝐻0 

19 51.14576 2.91101 0.0000 Reject 𝐻0 

20 67.99281 2.91101 0.0000 Reject 𝐻0 

21 57.40211 2.91101 0.0000 Reject 𝐻0 

22 52.04419 2.91101 0.0000 Reject 𝐻0 

23 73.09234 2.91101 0.0000 Reject 𝐻0 

24 103.58171 2.91101 0.0000 Reject 𝐻0 
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Figure 4.2. Foreign Exchange Chart for *T  

Therefore, according to Table 4.12 and the Figure 4.2. For the *T statistic we reject 

all the hypotheses we conclude by using *T  all the sample are out-of-control. We 

learn that at all months give a signal. This signal shows that there is a change in 

correlation structure at that particular month, and the p-value to all samples are equal 

0 is less than  for that reason we reject the null hypothesis for all samples. p-value 

is defined as the smallest significance level that the results in rejection of the null 

hypothesis this definition is the more useful definition since it can be applied to any 

collection test (Wright, 1992). A p-value is used to provides information about 

whether a statistical test is significant or not and also, it is indicates something about 

how significant the result is i.e. the smaller the p-value, it is the stronger the evidence 

against the null hypothesis. 

𝑇 𝑚
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4.7.2.2 *
Z  Control Chart  

To construct the corresponding control chart, for *Z statistic we define mUR and 

0U . Then, we compute   pooled correlation matrix, U  , D , D ,

  ,Rv iU

2
   2

iUv   and 2 . To every 24 months of samples. Next, the 
*

mZ  statistic 

is computed to every 24 months of samples and the results are shown in Table 4.12. 

Table 4.13 represent the values of 
*

mZ  statistic the first column represent 24 samples 

from January 2010 until December 2011, the second column represent the values of 

*Z statistic for 24 samples while, the third column represent the upper control limit 

(UCL)= ,96.1025.0
2

05.0  ZZ  the fourth column represent the p-value and the last 

column is the results. 

In Figure 4.3, we present the *Z   control chart. The significance level .05.0  All 

months in Table 4.13 are plotted in blue colour, UCL in orange colour and the LCL is 

gray colour. The vertical axis is the *

mZ statistic, where 1 2 24m , , ...,   and the 

horizontal axis is 24  months.  
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Table 4.13 

The values of *

mZ  statistic 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m 
*

mZ  𝒁𝟎.𝟎𝟐𝟓 p-value Result 

1 7.109 1.96 4.22×10-12 Reject 𝐻0 

2 8.772 1.96 7.78×10-18 Reject 𝐻0 

3 12.251 1.96 1.02×10-33 Reject 𝐻0 

4 0.689 1.96 0.315 Fail to Reject 𝐻0 

5 18.489 1.96 2.34×10-75 Reject 𝐻0 

6 7.895 1.96 1.16×10-14 Reject 𝐻0 

7 16.037 1.96 5.65×10-57 Reject 𝐻0 

8 18.489 1.96 2.35×10-75 Reject 𝐻0 

9 20.444 1.96 6.92×10-92 Reject 𝐻0 

10 7.766 1.96 3.21×10-14 Reject 𝐻0 

11 5.158 1.96 6.67×10-7 Reject 𝐻0 

12 9.506 1.96 9.54×10-21 Reject 𝐻0 

13 15.551 1.96 1.23×10-53 Reject 𝐻0 

14 6.194 1.96 1.86×10-9 Reject 𝐻0 

15 7.448 1.96 3.59×10-13 Reject 𝐻0 

16 −0.038 1.96 0.399 Fail to Reject 𝐻0 

17 8.291 1.96 4.74×10-16 Reject 𝐻0 

18 23.176 1.96 9.30×10-118 Reject 𝐻0 

19 17.309 1.96 3.49×10-66 Reject 𝐻0 

20 10.495 1.96 4.85×10-25 Reject 𝐻0 

21 16.779 1.96 2.93×10-62 Reject 𝐻0 

22 11.728 1.96 5.40×10-31 Reject 𝐻0 

23 −0.050 1.96 0.398 Fail to Reject 𝐻0 

24 −1.998 1.96 0.0452 Reject 𝐻0 
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Figure 4.3. Foreign Exchange Chart for *Z  

Therefore, according to Table 4.13 and the Figure 4.3, we learn that all months give 

a signal except the 4th (April 2010), 16th (April 2011), 23rd (November 2011) sample. 

This three months failed to reject the null hypothesis. This signal shows there is 

change in correlation structure at that particular month. We conclude from the result 

these three samples are stable and the others are not stable.  

Based on this example, testing the hypothesis repeatedly that is more advantageous 

since we can investigate all the corresponding correlation matrices independently. 

Thus, we can know which correlation matrix is challenging. In this situation, in order 

to determine which result is more trustworthy is by looking to the power of test of 

the two statistical test. These two examples is given to show the new alternative 

statistic can accommodate condition of high dimension data.  
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According to Schermelleh-Engel, Moosbrugger, and Müller (2003) Chi square is 

sensitive to the sample size, this may make a weak relationship statistically 

significant if the sample size is large enough.  
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CHAPTER FIVE 

CONCLUSION AND FUTURE RESEARCH 

5.1 Conclusion 

The main goal of this research was to derive an alternative statistical test for solving 

the problem faced by Jennrich statistic, which is the singularity problem. In 

achieving this goal, an alternative statistical test, namely, the *Z statistic, is derived 

based on vec operator, commutation matrix, and Frobenius norm of upper-off-

diagonal elements. Later, the performance of the alternative statistical test, the *Z  

statistic, is evaluated in terms of the power of test. By using a simulation study, the 

alternative statistical test, *Z  statistic is compared with the Jennrich statistic, and the 

*T statistic. The result of simulation study shows that the *Z  statistic possesses good 

properties and was more powerful than the Jennrich statistic and the *T statistic. 

Additionally, this new statistic can be used in both condition which are when the 

number of variables is larger than the sample size, and when the number of variables 

is smaller than the sample size. In general, the results showed that the alternative 

statistical test, the *Z . Moreover, the following asymptotic distributions have been 

proven in this thesis,  

i. The asymptotic distribution of sample correlation matrix for 2p   has been 

proven as the following     .  -1,0 22 Nrn d  
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ii. The asymptotic distribution of sample correlation matrix are derived by using 

Theorem 3.1       Γ,NvecRvecn
p

d 01 2  , where 

2 p pM M   while,  pppp KIM  2

2

1
 and 

        
 p ppppp

IΛ-IΛII 22 ;  ppK  is the commutation 

matrix of size  2 2p p  and 
t

ii

t

i

p

i

ip hhhhΛ 
1

 where, ih is the i -th column 

of pI . 

iii. The asymptotic distribution of   2

URv is normally distributed with the mean  

 
2

Uv  , and the variance 

         2 4 8
t tt t

U U U p p Uv T   Γ   T  v  v T  M   M  T  v        

iv. The asymptotic distribution of  the new  alternative statistical test, the *
Z

statistic, in the following proposition     2 2

1 U Un v R v    is normal 

distribution with mean  
2

Uv  and variance  

        

       
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        

   

    


 


      

The new alternative statistic is proposed in the following propositions and corollary. 
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i. The new alternative statistic *Z is proposed in the following proposition: If 

2p  , under 0H , then      
2 2

2

01 0d

i ,U ,Un  v R  v N , .    
  

 

ii. If 
0

 is unknown, under 0H , then we have the following corollary  

         
22

2

01 0d

i ,U ,U
ˆn v R v N , 

 
  

  
  

where 

U,iR and U,
ˆ

0  are the upper-off-diagonal elements of iR and 0̂ ,  

respectively. 

      

       

0

0 0 0 0 0

2
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0 0 0 0 0

2 2

0 0 0 0 0 0

2 2 2 4
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ˆ
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       

       

     

   


   
        

Rˆ 0 is the average of correlation matrices of mR,...,R,R 21 . 

  a matrix of size  p p   such that    0

t ˆv T T vec    . 

  as a matrix the diagonal elements are the diagonal 
0 ˆD,

0
ˆDWe define 

. respectively 0 ˆ and0
ˆ elements of 

 01  i:H versus 00 :  iH For testing the hypothesis repeatedly   ii.i    

  i=1, 2, …, m. The proposed test is 
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  0H  is rejected if 
2/

*

zZ i   

After the derivation, by using simulation study via Matlab (2016a), the results 

showed that 

i. The power of the test for the small number of variables ( 43  ,p  and 5 ( showed 

that the *Z  statistic dominated the *T statistic and the Jennrich statistic. In detail, 

the total number of conditions to evaluate the power of test for 43  ,p   and 5 

were 189, 180 and 180 conditions, respectively. For 3p , there were 47, 35 and 

33 conditions for the *Z statistic, the *T statistic, and the Jennrich statistic 

respectively that fell within the interval of power. While, for 4p , there were 

51, 37, and 31 conditions for the *Z  statistic, the *T statistic, and the Jennrich 

statistic respectively that fell within the interval of power. For 5p , there were 

51, 38 and 33 conditions for the *Z  statistic, the *T statistic, and the Jennrich 

statistic respectively that fell within the interval of power. 



  

160 

 

ii. The power of test for the medium number of variables, (p = 10 and p =15) 

showed that the *Z  dominated *T statistic, and Jennrich statistic. In detail, the 

total number of conditions to evaluate the power of test were 171 and 162 

conditions respectively. For 10p  there were 53, 35 and 33  conditions for the 

*Z  statistic, the *T statistic and the Jennrich statistic respectively that fell within 

the interval of power. While, for 15p , there were 53, 29 and 27 conditions for 

the *Z  statistic, the *T  statistic and the Jennrich statistic respectively that fell 

within interval of the power.  

 

iii. The power for a large number of variables ( 20p and 30 ) shows that the *Z  

statistic still dominated the *T statistic and the Jennrich statistic. In detail, the total 

number of conditions to evaluate the power of test for 20p  and 30  were 162 

and 153 conditions respectively. For 20p  there were 52, 29 and 23 conditions 

for the *Z  statistic, the Jennrich statistic and the *T  statistic respectively that fell 

within the interval of power. While, for 30p , there were 53, 22 and 18 

conditions that fell within the interval of power of test for the *Z statistic, the 

Jennrich statistic and the *T statistic respectively. For a large number of variables, 

the *Z  statistic still dominated the other two tests. 

 

In general, the power of test of the alternative statistical test, the *Z statistic, was 

better than the Jennrich statistic and the *T statistic in all conditions p n   and 

p n . 
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Furthermore, to validate the new alternative statistical test, the currencies from Asia 

Pacific countries were employed to analyze the difference in the correlation matrices 

before and after Tohoku earthquake incident. This statistical test can be applied for 

testing hypotheses in a high dimension data using different approaches. The first 

approach with two independent samples of correlation matrices presented the data by 

using the *T statistic and the new alternative the statistic *Z . The result showed that 

by using *T statistic the null hypothesis was rejected, and the two correlation 

samples were not equal. By using *Z  statistic, the null hypothesis was not rejected, 

meaning that the two correlation samples were equal. The second approach had 

several independent samples of correlation matrices by using a control chart. This 

approach tested the hypothesis repeatedly, which offers more advantages by testing 

all the corresponding correlation matrices independently. The results by using the *T

statistic showed that all the samples were out-of-control. Using the new alternative 

statistic *Z  we fail to reject the null hypothesis for three months. The result of 

validation showed that a difference exists between the results by using two statistical 

tests. To decide which result is more trustworthy the power of the test must be 

examined. The empirical study demonstrated show that the new alternative statistic 

can accommodate the condition of a high dimension data. 

In conclusion, the new alternative statistical test *Z statistic holds an advantage in 

that the test can handle cases in which the number of variables is larger than the 

sample size. For that reason, the alternative statistical test *Z statistic is deemed to 

be more suitable in various real applications.  
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5.2 Future Research  

This work has not yet answered all problems related to good statistical test. The 

direction for future research are summarized as follows: 

i. To investigate the asymptotic distribution of the proposed test when the data are 

nonnormal; and  

ii. To investigate the improvement of covariance estimators such as banding, 

tapering and thresholding. 
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Appendix A 

Matlab Programing Code of Performance Z* Statistic 

clear all 

clc 

tic 

format long 

disp ('rho - value T_power ') 

for j=0:8 

     

n1=50; n2=n1; n=n1+n2;  %sample size 

p=10;                    %variables    

  

rho=j/10;                %Covariance shift 

k=1.0;                  %Constant value 

I=eye(p,p); 

R2=eye(p); 

T=Tp(p); 

mu=repmat([0],1,p); 

               %Number of contaminated  

Sigma0=eye(p); 

R1 = ones(p)*k*rho; 

R1(logical(eye(size(R1)))) = 1; 

Sigma=R1; 

Re=10000;              %replication   

alpha=0.05;             %Significance level   
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my_stat1=[ ]; 

for r1=1:Re 

  

    Z2=mvnrnd(mu,Sigma0,n1); 

  

%     OM=corr(Z2); 

     

    RA2=corr(Z2); 

    RA1=(n1*R1+n2*RA2)/n; 

    rr1=T'*T*vec(RA1); 

    OU=reshape(rr1,p,p); 

    rr2=T'*T*vec(R1); 

    R2U=reshape(rr2,p,p); 

    l=T'*T*vec(RA1); 

    L=reshape(l,p,p); 

    d=diag(RA1*L); 

    D=diag(d); 

    dd=diag(L*RA1); 

    DD=diag(dd); 

    

sigma3=2*[2*trace(L'*RA1*L*RA1)+2*trace(L'*RA1*L'*RA1) 

        -4*trace(L'*RA1*DD*RA1)-4*trace(L*RA1*D*RA1) 

        

+2*trace(D'*RA1*DD*RA1)+trace(D'*RA1*D*RA1)+trace(DD*RA1

*DD*RA1)]; 

    b=sqrt((1/(n-1))*sigma3); 

    Zi1=(sumsqr(R2U)-sumsqr(OU))/b; 

    my_stat1=[my_stat1;Zi1]; 

     

end 
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y1=sort(my_stat1);%To arrange the values in ascending 

order 

  

%      CV1=y1(9500) 

    

%To find Type I error rate and power 

  C1=0; 

  

 for i=1:Re 

     if (y1(i)>   CV1) 

         C1=C1+1; 

    end 

  

 end 

  T_POWE1=C1/Re; 

fprintf( '%2.7f % 7.6f\n',rho,T_POWE1 ) 

 end 

 

 toc 
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Appendix B 

Matlab Programing Code of Z* Statistic 

    tic 

   close all 

   clear all 

   clc 

  

   load matlab 

%    m=m1;%change m=m1 refer to what we need 

   k=2; 

   [r,s]=size(m1); 

   [t,u]=size(m0); 

   n1=r; 

   n2=t; 

   p=s; 

    n=n1+n2;  %sample size 

    I=eye(p,p); 

    T=Tp(p); 

    R1=corr(m1); 

    R2=corr(m0); 

    RA1=(n1*R1+n2*R2)/n; 

    rr1=T'*T*vec(RA1); 

    OU=reshape(rr1,p,p); 

    rr2=T'*T*vec(R1); 

    R2U=reshape(rr2,p,p); 

    l=T'*T*vec(RA1); 

    L=reshape(l,p,p); 

    d=diag(RA1*L); 

    D=diag(d); 

    dd=diag(L*RA1); 
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    DD=diag(dd); 

    

sigma3=2*[2*trace(L'*RA1*L*RA1)+2*trace(L'*RA1*L'*RA1) 

        -4*trace(L'*RA1*DD*RA1)-4*trace(L*RA1*D*RA1)  

+2*trace(D'*RA1*DD*RA1)+trace(D'*RA1*D*RA1)+trace(DD*RA1

*DD*RA1)]; 

    b=sqrt((1/(n-1))*sigma3); 

    Zi1=(sumsqr(R2U)-sumsqr(OU))/b; 
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