
The copyright © of this thesis belongs to its rightful author and/or other copyright

owner. Copies can be accessed and downloaded for non-commercial or learning

purposes without any charge and permission. The thesis cannot be reproduced or

quoted as a whole without the permission from its rightful owner. No alteration or

changes in format is allowed without permission from its rightful owner.

A TEST CASE GENERATION FRAMEWORK BASED ON UML
STATECHART DIAGRAM

 YASIR DAWOOD SALMAN

DOCTOR OF PHILOSOPHY
UNIVERSITI UTARA MALAYSIA

2018

 i

Permission to Use

In presenting this thesis in fulfilment of the requirements for a postgraduate degree

from Universiti Utara Malaysia, I agree that the Universiti Library may make it freely

available for inspection. I further agree that permission for the copying of this thesis

in any manner, in whole or in part, for scholarly purpose may be granted by my

supervisor(s) or, in their absence, by the Dean of Awang Had Salleh Graduate School

of Arts and Sciences. It is understood that any copying, publication, or use of this

thesis or parts thereof for financial gain shall not be allowed without my written

permission. It is also understood that due recognition shall be given to me and to

Universiti Utara Malaysia for any scholarly use which may be made of any material

from my thesis.

Requests for permission to copy or to make other use of materials in this thesis, in

completely or in part should be addressed to:

Dean of Awang Had Salleh Graduate School of Arts and Sciences

UUM College of Arts and Sciences

Universiti Utara Malaysia

06010 UUM Sintok

 ii

Abstrak

Pengesanan awal kesalahan perisian menawarkan lebih fleksibiliti untuk membetulkan
kesalahan tersebut pada peringkat awal pembangunan sistem. Malangnya, kajian sedia
ada masih belum cukup menyeluruh dalam menerangkan proses utama penjanaan kes
ujian secara automatik. Malahan algoritma yang digunakan dalam penjanaan ujian kes
tidak disediakan atau diterangkan dengan jelas. Kajian semasa juga hampir tidak
menangani isu gelung dan laluan selari, malahan kriteria liputan yang dicapai adalah
rendah. Oleh itu, kajian ini mencadangkan satu kerangka penjanaan kes ujian yang
menjana kes ujian yang diminimumkan dan diprioritasikan daripada gambarajah UML
keadaan dengan kriteria liputan yang lebih tinggi. Kajian literatur telah dilaksanakan
untuk mengenal pasti isu dan jurang yang berkaitan penjanaan kes ujian, pengujian
berasaskan model, dan kriteria liputan. Kerangka yang dicadangkan ini direka bentuk
hasil daripada maklumat yang dikumpul dan telah mengenalpasti lapan komponen
yang mewakili proses dalam penjanaan kes ujian. Komponen tersebut adalah jadual
hubungan, graf hubungan, pemeriksaan konsistensi, meminimumkan laluan ujian,
memprioritasikan laluan ujian, pemangkasan laluan, penjanaan laluan ujian dan
penjanaan kes ujian. Sebagai tambahan, satu prototaip untuk melaksanakan kerangka
turut dibangunkan. Penilaian kerangka yang dibangunkan melibatkan tiga fasa:
prototaip, perbandingan dengan kajian terdahulu dan ulasan pakar. Dapatan kajian
menunjukkan kriteria liputan yang paling sesuai bagi gambarajah UML keadaan
adalah liputan semua keadaan, liputan semua peralihan, liputan semua pasangan
peralihan, dan liputan semua laluan gelung bebas. Selain itu, kajian ini mencapai
kriteria liputan yang lebih tinggi dalam semua kriteria liputan yang dinyatakan di atas,
kecuali liputan semua keadaan apabila dibandingkan dengan kajian sebelumnya. Hasil
ulasan pakar menunjukkan bahawa pakar domain bersetuju bahawa kerangka yang
dicadangkan ini adalah praktikal, mudah untuk dilaksanakan kerana kesesuaiannya
dalam menjanakan kes ujian. Algoritma yang dicadangkan menghasilkan keputusan
yang betul, dan prototaip berupaya menjana kes ujian dengan berkesan. Secara
umumnya, sistem yang dicadangkan diterima baik oleh pakar berdasarkan aspek
kebergunaan, kebolehgunaan, dan ketepatannya. Kajian ini menyumbang secara teori
dan praktikal dengan menyediakan kerangka penjanaan kes ujian alternatif awal yang
mencapai liputan yang tinggi dan dapat dilaksanakan dengan efektif menggunakan
gambarajah UML keadaan. Kajian ini turut menambahkan pengetahuan baru dalam
bidang pengujian perisian khususnya kepada proses pengujian dalam teknik
berasaskan model, aktiviti pengujian, dan alat sokongan pengujian.

Kata kunci: Kerangka penjanaan kes ujian, liputan gelung, laluan selari, kes ujian
yang diminimumkan, kes ujian yang diprioritasikan.

 iii

Abstract

Early software fault detection offers more flexibility to correct errors in the early
development stages. Unfortunately, existing studies in this domain are not
sufficiently comprehensive in describing the major processes of the automated test
case generation. Furthermore, the algorithms used for test case generation are not
provided or well described. Current studies also hardly address loops and parallel
paths issues, and achieved low coverage criteria. Therefore, this study proposes a test
case generation framework that generates minimized and prioritized test cases from
UML statechart diagram with higher coverage criteria. This study, conducted a
review of the previous research to identify the issues and gaps related to test case
generation, model-based testing, and coverage criteria. The proposed framework was
designed from the gathered information based on the reviews and consists of eight
components that represent a comprehensive test case generation processes. They are
relation table, relation graph, consistency checking, test path minimization, test path
prioritization, path pruning, test path generation, and test case generation. In addition,
a prototype to implement the framework was developed. The evaluation of the
framework was conducted in three phases: prototyping, comparison with previous
studies, and expert review. The results reveal that the most suitable coverage criteria
for UML statechart diagram are all-states coverage, all-transitions coverage, all-
transition-pairs coverage, and all-loop-free-paths coverage. Furthermore, this study
achieves higher coverage criteria in all coverage criteria, except for all-state coverage,
when compared with the previous studies. The results of the experts’ review show
that the framework is practical, easy to implement due to it is suitability to generate
the test cases. The proposed algorithms provide correct results, and the prototype is
able to generate test case effectively. Generally, the proposed system is well accepted
by experts owing to its usefulness, usability, and accuracy. This study contributes to
both theory and practice by providing an early alternative test case generation
framework that achieves high coverage and can effectively generate test cases from
UML statechart diagrams. This research adds new knowledge to the software testing
field, especially for testing processes in the model-based techniques, testing activity,
and testing tool support.

Keywords: Test case generation framework, loop coverage, parallel path, minimized
test cases, prioritized test cases

 iv

Acknowledgement

All praises and thanks to the Almighty, Allah (SWT), for giving me the strength, the

patience, and the opportunity to complete this thesis. Besides, completing this thesis

would not have been possible without a number of people who offered their unfailing

support throughout the period of the study.

I would like to express my sincerest thanks and gratitude to my supervisor Dr. Nor

Laily Binti Hashim for the continuous support of my PhD study and related research,

for her patience, motivation, and immense knowledge. Her guidance helped me in all

the time of research and writing of this thesis. I could not have imagined having a

better advisor and mentor for my PhD study.

To my family, thank you for encouraging me in all of my pursuits and inspiring me to

follow my dreams. I am especially grateful to my parents, who have been a constant

source of inspiration to me. It is their love, patience and encouragement during the

PhD period that helped me through hardships. I always knew that you believed in me

and wanted the best for me. My special gratitude to my brother and sister for

supporting me spiritually throughout writing this thesis and my life in general.

I would also like to thank my colleagues at Information Technology, Universiti Utara

Malaysia for their encouragement and support throughout this journey. I would also

like also to extend my thanks and appreciation to all of my friends who have

contributed in one way or another to help me complete this thesis successfully.

I could not have completed my thesis without the support of all these wonderful

people!

 v

Table of Contents

Permission to Use .. i

Abstrak ... ii

Abstract .. iii

Acknowledgement... iv

Table of Contents ... v

List of Tables... ix

List of Figures ... xi

List of Appendices .. xiv

List of Publications .. xv

List of Abbreviations... xvi

CHAPTER ONE INTRODUCTION ... 1

1.1 Introduction .. 1

1.2 Background of the Study .. 1

1.3 Problem Statement ... 9

1.4 Research Questions .. 13

1.5 Research Objectives ... 13

1.6 Research Scope .. 14

1.7 Research Framework .. 15

1.8 Research Contributions and Its Significance ... 16

1.9 Terminologies for Software Testing .. 19

1.10 Thesis Outline .. 21

CHAPTER TWO LITERATURE REVIEW .. 23

2.1 Introduction .. 23

2.2 Overview of Testing ... 23

2.2.1 Software Testing and its Techniques ... 25

2.2.2 Automated Software Testing ... 28

2.3 Test Case Generation ... 30

2.3.1 Automatic Test Case Generation ... 31

2.3.2 Automated Test Case Generation from Software Design 34

2.4 Theoretical Background ... 37

 vi

2.4.1 Graph Theory ... 38

2.4.2 Automata Theory ... 40

2.5 Model-based Testing .. 41

2.6 UML Diagrams .. 45

2.6.1 UML Statechart Diagram ... 51

2.7 Test Case Generation in Model-based Testing .. 54

2.7.1 Test Generation Approaches Using UML Activity Diagram 55

2.7.2 Test Generation Approaches Using UML Sequence Diagram 61

2.7.3 Test Generation Approaches Using UML Statechart Diagram 65

2.8 Test Case Minimization and Prioritization .. 80

2.8.1 Firefly Algorithm ... 84

2.8.2 Minimization and Prioritization Methods in Test Case Generation 87

2.9 Test Case Generation Process and Components .. 89

2.10 Test Coverage Criteria Selection ... 94

2.11 Summary .. 102

CHAPTER THREE RESEARCH METHODOLOGY 103

3.1 Introduction .. 103

3.2 Design Research ... 103

3.3 Phases of Research Methodology .. 105

3.3.1 Phase One: Information Gathering .. 107

3.3.2 Phase Two: Development and Design ... 110

3.3.3 Phase Three: Evaluation .. 114

3.3.4 Phase Four: Conclusion ... 121

3.4 Summary .. 121

CHAPTER FOUR ALGORITHMS DEVELOPMENT 122

4.1 Introduction .. 122

4.2 Design Goal .. 122

4.2.1 Parallel Path Problem and Loop Problem .. 123

4.3 Proposed Framework to Generate Test Cases .. 124

4.3.1 Construction of UML Statechart Diagram ... 126

4.3.2 State Relationships Table ... 132

4.3.3 State Relationships Graph .. 137

 vii

4.3.4 Generating Test Case Paths ... 139

4.3.5 Test Case Path Minimization ... 145

4.3.6 Test Case Path Prioritization .. 153

4.3.7 Generating Test Cases .. 156

4.4 Coverage Criteria Calculation .. 160

4.4.1 All-State Coverage ... 161

4.4.2 All-transition Coverage .. 162

4.4.3 All-transition-pair Coverage .. 162

4.4.4 All-one-loop-path Coverage .. 163

4.5 Prototype Development .. 164

4.6 Summary .. 169

CHAPTER FIVE EVALUATION ... 170

5.1 Introduction .. 170

5.2 Research Framework Evaluation ... 170

5.2.1 Prototyping and Examples ... 171

5.2.2 Comparison with Previous Studies .. 190

5.2.3 Expert Reviews .. 195

5.3 Summary .. 200

CHAPTER SIX CONCLUSION .. 201

6.1 Introduction .. 201

6.2 Summarizing the Study .. 201

6.3 Contributions .. 204

6.3.1 Test Case Generation Framework .. 204

6.3.2 Enhanced Consistency Checking of Test Paths 205

6.3.3 Improved Path Pruning .. 205

6.3.4 Coverage Criteria for UML Statechart Diagram...................................... 206

6.3.5 SRT Algorithm ... 206

6.3.6 TCGP Algorithm .. 207

6.3.7 Path Minimization Method .. 208

6.3.8 Path Prioritization Method ... 208

6.3.9 Test Case Generation Algorithm ... 209

6.3.10 Developed Prototype .. 209

 viii

6.4 Limitations and Future Work ... 209

REFERENCES ... 211

 ix

List of Tables

Table 2.1 Test Case Generation Methods Using UML Activity Diagram 59

Table 2.2 Test Case Generation Methods Using UML Sequence Diagram 64

Table 2.3 Test Case Generation Methods using UML Statechart Diagram 75

Table 2.4 Test Case Minimization Methods .. 84

Table 3.1 Construct Descriptions ... 120

Table 4.1 Vertex Types Description .. 131

Table 4.2 State Relationships Table ... 136

Table 4.3 Path Weight for Each Path ... 146

Table 4.4 Coverage Criteria for Each Path .. 147

Table 4.5 Adjacency Matrix ... 148

Table 4.6 Guidance Value .. 149

Table 4.7 Guidance Matrix .. 150

Table 4.8 Guidance Matrix after First Path .. 151

Table 4.9 Coverage Criteria Percentage for Minimized Paths 152

Table 4.10 Calculation of Brightness Values of 10 Fireflies 154

Table 4.11 Objective Function ... 155

Table 4.12 Test Path Prioritization... 156

Table 4.13 Generated Test Cases ... 160

Table 5.1 SRT of a University Library UML Statechart Diagram 173

Table 5.2 Test Cases for UML Statechart Diagram of a University Library 174

Table 5.3 Coverage Criteria Percentage for UML Statechart Diagram of a

University Library ... 175

Table 5.4 For UML Statechart Diagram of an Online Shop 176

Table 5.5 Test Path Prioritization for the UML Statechart Diagram of an Online

Shop ... 178

Table 5.6 Test Cases for a UML Statechart Diagram of an Online Shop 179

Table 5.7 Coverage Criteria Percentage for a UML Statechart Diagram of an Online

Shop ... 179

Table 5.8 SRT of a UML Statechart Diagram of an Airline Check-in 181

Table 5.9 Test Path Prioritization of a UML Statechart Diagram of an Airline

Check-in .. 183

 x

Table 5.10 Test Cases of UML Statechart Diagram of an Airline Check-in 184

Table 5.11 Coverage Criteria Percentage of a UML Statechart Diagram of an Airline

Check-in .. 184

Table 5.12 SRT for A UML Statechart Diagram for a Retail Point of Sale 186

Table 5.13 Test Path Prioritization for a UML Statechart Diagram for a Retail Point

of Sale .. 188

Table 5.14 Test Cases for a UML Statechart Diagram for a Retail Point of Sale ... 189

Table 5.15 Coverage Criteria Percentage for a UML Statechart Diagram for a Retail

Point of Sale .. 190

Table 5.16 Result of Achieved Coverage Criteria ... 191

Table 5.17 Comparison Result of Coverage Criteria ... 194

Table 5.18 Experts’ Background.. 197

Table 5.19 Results for Expert Review Verification ... 199

 xi

List of Figures

Figure 1.1: Research Framework ... 16

Figure 1.2: Software Testing Procedure... 18

Figure 2.1: Relation of Fault, Error, and Failure.. 25

Figure 2.2: Comparison Between Black-box and White-box Testing 27

Figure 2.3: Software Testing Life Cycle .. 31

Figure 2.4: Comparative Graph for Cost of Software Repair by Development

Lifecycle Phases ... 36

Figure 2.5: Fault Proportion According to Source Phase .. 37

Figure 2.6: Graph Example .. 39

Figure 2.7: MBT Process ... 45

Figure 2.8: Overview of UML Diagrams ... 46

Figure 2.9: Simple UML Statechart Diagram for ATM Machine Transactions 52

Figure 2.10: Simple UML Activity Diagram for Login Screen 56

Figure 2.11: Simple UML Sequence Diagram for ATM Machine 62

Figure 2.12: Coverage Criteria from Previous Work ... 80

Figure 2.13: Pseudocode for Firefly Algorithm ... 86

Figure 2.14: Architecture of a Test Case Generator System 91

Figure 2.15: Test Case life cycle .. 93

Figure 2.16: Hierarchy of Transition-based Coverage Criteria 97

Figure 3.1: Steps of Research Methodology .. 106

Figure 3.2: The Proposed Development Framework Phases 111

Figure 3.3: Rapid Application Development Model .. 113

Figure 4.1: Proposed Framework for Automatic Test Case Generation 125

Figure 4.2: Main Constructs Used in UML Statechart Diagram 127

Figure 4.3: UML Statechart Diagram of ATM System ... 129

Figure 4.4: Edges and Vertices Relationship Conditions....................................... 133

Figure 4.5: Rule 5, Clarification Example ... 134

Figure 4.6: SRT Algorithm .. 135

Figure 4.7: State Relationship Graph ... 138

Figure 4.8: All Possible Test Paths Using DFS Algorithm 140

Figure 4.9: TCGP Algorithm ... 142

 xii

Figure 4.10: All Possible Test Paths Using TCGP Algorithm 143

Figure 4.11: Optimized Test Paths ... 151

Figure 4.12: Test Case Minimization ... 152

Figure 4.13: Path Pruning Steps ... 158

Figure 4.14: TCG Algorithm ... 159

Figure 4.15: Test Case Generation Prototype .. 166

Figure 4.16: Test Case Generation Prototype in the Statechart Page 166

Figure 4.17: Test Case Generation Prototype in the Graph Page 167

Figure 4.18: Test Case Generation Prototype in the Total Path Page 168

Figure 4.19: Test Case Generation Prototype Test Case Page 168

Figure 5.1: UML Statechart Diagram of a University Library 172

Figure 5.2: Chart Relationship Graph for a University Library UML Statechart

Diagram .. 173

Figure 5.3: All Possible Test Paths for a University Library UML Statechart

Diagram .. 174

Figure 5.4: UML Statechart Diagram of an Online Shop 175

Figure 5.5: Chart Relationship Graph for the UML Statechart Diagram of an Online

Shop .. 177

Figure 5.6: All Possible Test Paths for the UML Statechart Diagram of an Online

Shop .. 177

Figure 5.7: Optimized test paths for the UML statechart diagram of an online shop

 .. 178

Figure 5.8: UML Statechart Diagram of an Airline Check-in 180

Figure 5.9: Chart Relationship Graph of a UML Statechart Diagram of an Airline

Check-in .. 182

Figure 5.10: All Possible Test Paths of a UML Statechart Diagram of an Airline

Check-in .. 182

Figure 5.11: Optimized test paths of UML statechart diagram of an airline check-in

 .. 183

Figure 5.12: UML Statechart Diagram for a Retail Point of Sale 185

Figure 5.13: Chart Relationship Graph for UML Statechart Diagram for a Retail

Point of Sale .. 187

 xiii

Figure 5.14: All Possible Test Paths for UML Statechart Diagram for a Retail Point

of Sale ... 187

Figure 5.15: Optimized Test Paths for UML Statechart Diagram for a Retail Point of

Sale .. 188

Figure 5.16: Test Coverage Criteria Chart of Comparison Result 195

 xiv

List of Appendices

Appendix A Expert Evaluation Form .. 238

Appendix B Consent For Participation In Expert Verification 244

Appendix C Detailed Minimization And Prioritization For Selected Examples 245

 xv

List of Publications

Published

Hashim, N. L., & Salman, Y. D. (2011). An improved algorithm in test case generation
from UML activity diagram using activity path. Proceedings of the 3rd
International Conference on Computing and Informatics, ICOCI.

Salman, Y. D., & Hashim, N. L. (2014). An improved method of obtaining basic path

testing for test case based on UML state chart. Science International, 26(4).

Salman, Y. D., & Hashim, N. L. (2016). Automatic Test Case Generation from UML

State Chart Diagram: A Survey Advanced Computer and Communication
Engineering Technology (pp. 123-134): Springer.

Salman, Y. D., Hashim, N. L., Rejab, M. M., Romli, R., & Mohd, H. (2017a).

Coverage criteria for test case generation using UML state chart diagram.
Paper presented at the AIP Conference Proceedings.

Salman, Y. D., Hashim, N. L., Rejab, M. M., Romli, R., & Mohd, H. (2017b).

Coverage Criteria for UML State Chart Diagram in Model-based Testing.
Journal of Telecommunication, Electronic and Computer Engineering (JTEC),
9(2-11), 85-89.

Salman, Y. D., & Hashim, N. L. (2017). Test Case Generation Model for UML
Diagrams. Journal of Telecommunication, Electronic and Computer
Engineering (JTEC), 9(2-2), 171-175.

Accepted

Salman, Y. D., Hashim, N. L., Rejab, M. M., Romli, R., & Mohd, H. (2017).
Generating test cases for model-based testing and detecting deadlocks using
Tarjan’s algorithm.

Salman, Y. D. & Hashim, N. L. (2017). A Test Cases Minimization And Prioritized
Method Using Firefly Algorithm Based On UML State Chart Diagram.

 xvi

List of Abbreviations

BFS Breath First Search
DFS Depth First Search
EFSM Extended Finite State Machine
FSM Finite State Machine
GeMiTefSc Generation and Minimization of Test Cases from State Chart
GTSC Automated Generated Test Case Based on Statechart
IOCO Input/Output Conformance
MBT Model-based testing
OCL Object Constraint Language
OMDAG Object Method Acyclic Graph
OMG Object Management Group
POS Practical Swarm Optimization
PSO Particle Swarm Optimization
RAD Rapid Application Development
SAD State Activity Diagram
SCCF Statechart Coverage Criteria Family
SCOTEM State COllaboration TEst Model
SRT State Relationship Table
SRG State Relationship Graph
SUT System Under Test
TCG Test Cases Generation
TCGP Test Case Generation Paths
TeGeMiOOSc Test Generation and Minimization for O-O Software with State

Charts
TFG Test Flow Graph
TGV Test Generation with Verification
UML Unified Modelling Language
VDT Vertex Description Table
XML Extensible Markup Language

1

CHAPTER ONE

INTRODUCTION

1.1 Introduction

This introductory chapter deliberates on the motivational aspects of software testing

in general and automatic test case generation in practice, and focuses on using Unified

Modelling Language (UML) diagrams as inputs to generate test cases.

This chapter presents the introduction to this study, beginning with the background of

the study, which includes the background of software testing and automatic test case

generation and the related literature. The next sections present the research problems,

research questions, and research objectives. Subsequently, the scope of the research

and the research framework will be discussed. Finally, the significance of the study

and the terminologies will be presented. This chapter is concluded with an outline of

the remaining chapters of this thesis.

1.2 Background of the Study

Computers and software are some of the major innovations in the history of mankind

(Srivastav & Gupta, 2016). The use of computers plays a key role in the daily lives of

people. The significant roles of computers in society and the increasing demand for

complex computer applications makes software development difficult for software

developers (Chavez, Shen, France, Mechling, & Li, 2016). Thus, the effort exerted and

the cost of software development testing ultimately increases (Chen & Li, 2010).

 2

Testing has been proven as an essential tool in enhancing the quality of code

programming. Testing is also considered a critical part of today’s software

development (Rungi & Matulevičius, 2013). Therefore, in the practice of software

development, testing remains the most vital part of quality assurance (Sood & Rattan,

2016).

Software testing aids in detecting software bugs and errors that cannot be detected by

compilers (Patwa & Malviya, 2014). Furthermore, testing can guarantee software

correctness to enhance the quality of the system (Tan, 2003). However, software

testing is considered as a complicated task that requires the software tester to illustrate

whether its purpose is achieved (Kim, Porter, & Rothermel, 2005). Practically or

theoretically, testing is generally a difficult task.

Testing consumes a substantial amount of development time. Thus, developing an

automatic test case generation algorithm for Model-Based Testing (MBT), which

supports the commencement of the software testing process immediately after the

design phase of the system lifecycle or as soon as the modelled requirements becomes

available, is imperative (Oluwagbemi & Asmuni, 2014). Software testing is considered

a critical part of the software development lifecycle (Gulia & Chugh, 2015) because

software testing is performed during software development through a sequence of

instructions of test inputs followed by expected outputs (Sahoo, Ojha, Mohapatra, &

Patra, 2016b).

One of the software testing methods is the test case generation, where test cases can

be declared as a classification of variables or conditions that fulfilled specific test

coverage criteria (Wu & Fan, 2014). Coverage criteria are rules or requirements that

 3

need to be satisfied by the test cases (Offutt & Abdurazik, 1999). Researchers stated

that a significant amount of research has been targeted toward automated test case

generation techniques (Xu, Kim, Kim, Rothermel, & Cohen, 2010; Yu, Martinez,

Danglot, Durieux, & Monperrus, 2017). Generating test cases is considered an

important activity in the MBT process (Li, Li, He, & Xiong, 2013a; Oluwagbemi &

Asmuni, 2014). Software testers will discover whether a software system is executed

according to the system requirements and the sequences of its executions by using test

cases (Li et al., 2013a). However, test case generation is the most challenging and an

extensively researched activity (Bertolino, 2003). Therefore, improving its

effectiveness and reducing the cost of software testing by automating the test case

generation have significant benefits (Rafi, Moses, Petersen, & Mäntylä, 2012).

Test cases could be generated from requirement specifications and design documents.

For example, the UML statechart diagram is one of the diagrams used in the early life

cycle of a system design (Lu & Tseng, 2010). Thus, this diagram can be used to

generate test cases for software development to improve the efficiency and

effectiveness of software testing (Kumaran, Kumar, & Kumar, 2011).

Test cases can be fully automated, in which the generation, evaluation, and execution

of unit test cases can be automated and integrated into the programming task (Belli,

Hollmann, & Kleinselbeck, 2009; Salman & Hashim, 2014). Then, writing test cases

for bugs that are difficult to detect in automatic systems would be the only job of

software testers. Test case generation becomes one of the most critical knowledge-

demanding tasks because of its strong impact on the efficiency and effectiveness of

the complete testing process (Bertolino, 2007; Zhu, Hall, & May, 1997).

 4

A test case is a description of a test with mechanisms that describe inputs, events, or

actions, and expected responses to define whether the feature of an application works

properly (Shinde, 2013). Test cases are typically generated from manual or automatic

inputs. Manual generation depends on the expertise of software testers who must

perform the testing and detecting of errors (Sung & Paynter, 2006). Furthermore, the

existing methods for the automatic generation of test cases needs to be enhanced and

improved (Koong et al., 2012). The enhancement of the automatic generation of test

cases can be implemented using minimization and prioritization (Singh & Shree,

2016). Therefore, there are advantages in developing such mechanism that increases

the coverage and diversity of test cases, while minimize and prioritize the generated

test cases (Singh & Shree, 2016).

There are a number of different approaches to aid the test case generation. The process

in test case minimization is to identify and then eliminate the obsolete or redundant

test case(s) from the generated test cases (Santosh & Singh, 2013). For the

prioritization approach, the process is to identify the ‘ideal’ test cases that maximize

desirable properties (Yoo & Harman, 2012). It was proved by empirical studies that

the implementation of minimization and prioritization techniques in test case

generation can be effective (Kim et al., 2005; Yoo & Harman, 2012).

A significant amount of research for the past decades has focused on automatic test

case generation (Cartaxo, Neto, & Machado, 2007; Heumann, 2001; Javed, Strooper,

& Watson, 2007; Kim, Kang, Baik, & Ko, 2007; Krishnachandra, 2016; Kundu &

Samanta, 2009; Lilly & Uma, 2010; Linzhang et al., 2004; Mingsong et al., 2009;

Mingsong, Xiaokang, & Xuandong, 2006; Oluwagbemi & Asmuni, 2015; Sahoo,

 5

Mohapatra, & Patra, 2016a). Therefore, numerous techniques have been explored by

researchers intensively and propelled to generate test cases. By contrast, software

systems have become progressively complex (Salman & Hashim, 2016). For instance,

they now use distinctive techniques within diverse programming languages and run on

diverse platforms with components developed by diverse vendors (Anand et al., 2013).

The methods for automatic test case generation techniques that use UML-based testing

can be categorised in several ways. The most common way to classify testing

approaches is by diagram type (Shirole & Kumar, 2013). However, test case

generation using these diagrams are ruled by intermediate representations in which

these diagrams are converted. Therefore, this analysis can broadly classify testing

approaches to metaheuristic and MBT techniques (Shirole & Kumar, 2013). These

techniques focus on using UML models to generate test cases to enhance the testing

of the system under test (SUT). The SUT can be usually described as a component

within a containment tree (Gross, 2005), and are executed at the system, unit, and

incorporation stages (Shirole & Kumar, 2013). The researcher work are based on these

techniques, intermediate models, and coverage criteria that are clarified in Chapter 2

(section 2.7) to understand the key features of several test case generation research

methods.

Metaheuristic refers to a process that pursues a solution to an optimization problem.

However, finding a solution is not guaranteed (Eusuff, Lansey, & Pasha, 2006). Is uses

a heuristic function, as a human would do, to guide the search. The heuristic search

can either be a blind search or an informed search (Eusuff et al., 2006). Several

metaheuristic techniques that generate test cases exist, such as ant colony optimization,

 6

hill climbing, particle swarm optimization (PSO), genetic algorithm, simulated

annealing, artificial immune systems, alternating variable method, and genetic

programming (Shirole & Kumar, 2013). Ant colony optimization and genetic

algorithm are the most widely used metaheuristic techniques in test case generation

using UML (Sharma, 2014).

MBT is used to validate requirements, check the requirement’s consistencies, and

generate test cases that are focused on the behavioural aspects of the software (Society,

2014). Statechart diagrams, activity diagrams, and sequence diagrams, are the most

commonly used UML structures to generate test cases (Shirole & Kumar, 2013).

During software development, UML is used to visualize, document, and specify the

models of the software systems, including their designs and structures (Rumbaugh,

Jacobson, & Booch, 2004). UML is one of the best modelling tools that can manage

complex and large systems (Pandey & Jain, 2014). Furthermore, UML is the language

that creates models, provides a life cycle, which is widely used to designate design and

analysis the software specifications (Biswal, Nanda, & Mohapatra, 2008), and

supports software development. However, the test case generation from the UML

diagram is considered as a major challenge for researchers because of its

implementation and covering most of the system under development (Gulia & Chillar,

2012; Schweighofer & Heričko, 2014; Tripathy & Mitra, 2012).

In previous studies, UML diagrams that are based on automatic test case generation

has gained much attention by many studies (Hashim & Salman, 2011; Li, He, & Wu,

2012; Li et al., 2013a; Prasanna & Chandran, 2011; Schweighofer & Heričko, 2014;

Shirole, Suthar, & Kumar, 2011; Swain, Panthi, Behera, & Mohapatra, 2012c).

 7

Accurately generated test scenarios are vital to achieve test suitability, ensure software

quality, and coverage criteria (Prasanna & Chandran, 2011). Moreover, UML

diagrams would help software testers and developers understand the behaviours and

dynamic properties of the system (Prasanna & Chandran, 2011).

The UML statechart diagram categorises the performance of a computer program or

other processed works (Felicie, 2012). This diagram has many possible states. Entities

or sub-entities are always in one of these states. In addition, the conditional transfer

from one state to another is possible and well defined. Furthermore, this diagram can

be applied as a model that generates test cases (Felicie, 2012).

The UML statechart diagram is a better option than other UML diagrams in test case

generation because its lifecycle and the changes that it endures upon the delivery of an

event are shown (Swain, Mohapatra, & Mall, 2010a). This diagram can also reveal

unit-level faults (Abdurazik, Offutt, & Baldini, 2004). For example, a UML statechart

diagram delivers further explanation of the action orders of the external system that

are handled and recognized by the systems (Kumaran et al., 2011).

Coverage criteria is usually a rule or requirement that test cases need to satisfy (Paul

& Jeff, 2008). According to Utting and Legeard (2010), many types of coverage

criteria can be used with the UML statechart diagram, such as all-states coverage, all-

configurations coverage, all-transitions coverage, all-transition-pairs coverage, all-

loop-free-paths coverage, all-one-loop-paths coverage, all-round-trips coverage, and

all-paths coverage.

 8

The most frequently used theory to generate test cases from UML diagrams is the

graph theory. In addition, in graph theory, depth-first search (DFS) is one of the basic

algorithms used to generate test cases from the UML diagrams (Lammich & Neumann,

2015). DFS traverses the graph or model for as long as possible (i.e., until no non-

visited vertex is left) to cover every branch before pursuing back and is the base of a

gathering of automata and graph algorithms (Lammich & Neumann, 2015). In

addition, many researchers have used DFS to identify all the possible paths of the test

graph for the test cases to achieve the all-transition coverage (Swain et al., 2012c).

However, the use of DFS in traversing loops will result in multiple appearances of

some paths or path combinations in the test sequence (Mingsong et al., 2006).

Therefore, DFS has subordinate coverage in other types, such as all-loop-free-paths

coverage, all-one-loop-paths coverage, and all-round-trips coverage because the full

combination of decision and loop states will result in path explosion (Mingsong et al.,

2006).

This study investigates software testing and automatic test case generation. The

statechart diagram from UML is used as a base for test case generation to develop the

most suitable test framework before the programs are finalized in the design phase.

Furthermore, a method is proposed to minimise the number of test cases and prioritize

the test cases. Therefore, this study will generate test cases with the highest coverage

criteria in the smallest possible number of test cases to decrease the manual process

and the faults caused by human interaction.

 9

1.3 Problem Statement

The error-finding cycle cost varies significantly from the software development life

cycles (Stecklein et al., 2004). If software testing can be performed in the early stage,

then the error can also be detected earlier. Therefore, the development period and

expenses are reduced (Kim, Son, & Kim, 2011; Yadav, Patel, Arora, Uptu, & Jnu,

2016). In this study, the proposed approach identifies errors during the design phase

using the UML statechart diagram by automatically generate test cases. There are

significantly benefit from the automation and generation of this test cases (Binder,

2000). However, producing a large amount of test data will result in difficulties in

testing. Therefore, the software tester that handles the test data will greatly benefit

when the test data are minimized and prioritized (Rhmann & Saxena, 2016).

UML statechart diagram is required during design phase in the software development

process (Felderer & Herrmann, 2015; Kumaran et al., 2011; Murthy, Anitha, Mahesh,

& Subramanyan, 2006; Schweighofer & Heričko, 2014; Tsumaki & Morisawa, 2000).

The UML statechart diagram is a better option than other UML diagrams in test case

generation, because its lifecycle and the changes that it endures upon the delivery of

an event are shown (Swain et al., 2010a). Also its specifies the transition of one object

in the system (Tsumaki & Morisawa, 2000), during its life and the stimuli that cause

the object to change its state (Shirole et al., 2011). State charts are used to represent

the behaviour of an object (Shirole et al., 2011). Typically, it is used for describing the

behaviour of classes. It shows how an object will react to an event (Swain et al.,

2010a). The UML statechart diagram test cases can reveal unit-level faults better than

other diagrams (Abdurazik et al., 2004).

 10

Although various test case generation techniques are available (Hooda & Chhillar,

2014), the MBT approach has involved many scholars and continuous research is

conducted to enhance the generation of minimized automatic test cases with the lowest

cost and human effort (Ingle & Mahamune, 2015). Various test case generation

methodologies that use the UML statechart diagram have been proposed by several

researchers, software developers, and software testers by using many UML diagrams,

algorithm types, and methods (Ali, Shaik, & Kumar, 2014; Chimisliu & Wotawa,

2013a, 2013b; Gulia & Chillar, 2012; Swain, Behera, & Mohapatra, 2012a, 2012b;

Swain et al., 2012c). The discussion on these works is presented in section 2.6 of

Chapter 2. Several researchers used test case generation with an extension of methods

like, the state activity diagram (SAD), DFS, mutation analysis (Swain et al., 2010a),

and test generation with verification (TGV) methods (Chimisliu & Wotawa, 2013b).

Tools like input/output label transition systems (IOLTSs) and random test selection

(Gnesi, Latella, & Massink, 2004). Also algorithm like Euler circuit (Li et al., 2012).

Although all of these methods generate test cases, their works did not consider the

minimization (Ali et al., 2014) or prioritization (Swain et al., 2012c) and contained

limitation in coverage criteria (Chimisliu & Wotawa, 2013b), and every technique has

its defect. However, a combination of different techniques in a framework is an

effective solution to increase the reliability of the generated test cases (Farooq &

Quadri, 2011; Pahwa & Solanki, 2014).

Several works have provided steps for the test case generation from a UML diagram,

such as those by Boghdady, Badr, Hashim, and Tolba (2011b); Karambir and Kuldeep

(2013), where they discussed the processes and components involved in test case

generation. However, to the best of our knowledge no comprehensive framework that

 11

can represent the entire process of test case generation is available until the time of

this study.

In addition, few studies in this area, revealed their proposed algorithms or the testing

processes used during the testing, among these studies are by Hartmann, Imoberdorf,

and Meisinger (2000); Kansomkeat and Rivepiboon (2003); Kosindrdecha and

Daengdej (2010); Santiago et al. (2006); Santiago, Vijaykumar, Guimarães, Amaral,

and Ferreira (2008). This scenario results on these methods to may not be applicable

in future work, or to be improved or applied enhancement on them. Furthermore, its

implementation in test case tool or reproduction on test case generation in a fully

automated manner is difficult.

Many of the test case tools were not integrated (Santiago et al., 2008). Tools that are

used for test case generation demand significant effort from software testers because

all testing processes require manual interference to make appropriate adjustments on

the output of a tool to be used as input to another tool (Santiago et al., 2008). In

addition, some of other tools used internally by an enterprise and not available to the

public, whereas others are no longer actively developed (Anand et al., 2013).

Many studies in automatic test case generation from UML diagrams used the DFS

algorithm to generate test paths (Kundu & Samanta, 2009; Nayak & Samanta, 2010;

Patnaik, Acharya, & Mohapatra, 2011; Pilskalns, Andrews, Ghosh, & France, 2003;

Shirole et al., 2011; Swain et al., 2012c; Swain et al., 2010a). The use of this algorithm

results in loss of paths, especially loop paths, thereby decreasing loop coverage.

Therefore, the generating an enhanced DFS algorithm or creating a new algorithm for

 12

path generation is necessary to include the path coverage criterion and the loop path

coverage (Mingsong et al., 2006).

In conducting test case generation, the quality or adequacy of test cases is often

described using the coverage criteria (McQuillan & Power, 2005). Current test case

generation techniques consume a large amount of time and cost with less testing

coverage (Kosindrdecha & Daengdej, 2010). Many approaches, such as genetic

algorithms, model checking, or graph search algorithms are used to perform such

coverage criteria for UML diagrams (Weißleder, 2010). One of the gaps in the existing

UML statechart diagram methods is the selection of a proper input graph that has

enough complexity to generate an accurate coverage percentage and overcome the

limitations of existing approaches, such as decision states and loops (Biswal, 2010).

Swain et al. (2012a, 2012b); Swain et al. (2012c) used low-cyclomatic complexity

UML statechart diagrams and did not prioritize generated test cases. In addition,

Chimisliu and Wotawa (2012); Chimisliu and Wotawa (2013a, 2013b) applied only

one coverage criteria, which is the transaction coverage, and generated a large number

of test cases that were not minimized. Moreover, they did not prioritize their generated

test cases. Therefore, a test generation method that generates minimized and prioritized

test cases with more comprehensive test coverage criteria is highly required.

This study focuses on generating minimized and prioritized test cases that achieve the

highest possible coverage criteria and handle complex inputs, such as decision and

loop states. Therefore, more efficacious automatic test method is required. This study

developed a framework that automatically generates test cases from UML statechart

diagrams, in which detailed algorithms are provided. Additionally, a prototype has

 13

been developed to implement this framework. As a result, a new tool has been created

to automatically generate the minimum test case with high efficiency and additional

comprehensive test coverage.

1.4 Research Questions

This study is an attempt to design and develop a framework and its combined

algorithms that automatically generate minimized and prioritized test cases using UML

statechart diagrams from the design documents. However, expenses and some issues

need to be considered in automated testing. The issues that should be resolved,

depending on which part of the process would be improved, are as follows:

i. What are the current test case generation methods and UML diagrams needed

to propose a test case generation framework?

ii. What are the suitable coverage criteria covered by the proposed framework?

iii. How the test cases are generated using the proposed framework?

iv. How are the proposed test case generation framework and its algorithms

evaluated?

1.5 Research Objectives

This study aims to propose a test case generation framework that generates minimized

and prioritized test cases from UML statechart diagram with the highest coverage

criteria and smallest in size and number of test cases. The framework with its methods

present the entire process of test case generation. This study would also provide

 14

evidence to prove that this framework meets the applicability requisite of test case

generation. The specific objectives of the study are as follows:

i. To investigate the current practices of software test case generation methods

that use the UML diagrams as an input, to design the proposed framework.

ii. To identify the suitable coverage criteria, which are covered by the proposed

framework generated test cases.

iii. To develop an improved method that generates minimized and prioritized test

cases using the proposed test case generation framework.

iv. To evaluate the proposed framework using prototyping, comparison with

existing work, and expert review.

1.6 Research Scope

This study focuses on investigating software testing and the automatic generation of

test cases using a UML statechart diagram. This research also includes the theoretical

development and implementation for the framework and its algorithms. The graph

theory was used as a base to convert the UML statechart diagram to the intermediate

model. Firefly algorithm is used for the minimization and prioritization of this work.

The programming style used to program the prototype focuses on open source and the

use of an object-oriented programming approach as the basis of the development

method. In addition, this study focuses on the UML statechart diagram created in the

development cycle. However, nested states are not included in the scope of this study.

In addition, this study focuses on MBT techniques.

 15

The time consumed during testing has not been considered or measured because part

of the research objectives is to validate the proposed framework using coverage

criteria. In addition, the automating of testing result in reducing the cost, however the

cost reduction is not been measured.

The prototype that was developed in this study is aimed at implementing the proposed

framework and getting the comparison results of the used examples, however it is not

ready to be commercialized.

1.7 Research Framework

A research framework defines the outcomes and set of research activities (Lithner,

2008). This framework presents the diagram components of this study that are

connected to one another and built into this framework. Figure 1.1 shows the

framework of this study.

Figure 1.1 shows the research framework, including the objectives, the methods used

in achieving the research objectives, and the outcome from the objectives. The first

phase aims to identify the technique for generating test cases, which includes the

literature review. This phase focuses on finding and improving existing algorithms and

proposed methods to accomplish the first objectives for test case generation. The

second phase of this research framework aims to propose the required coverage criteria

to test the generated test cases. The third phase includes the development of the

framework algorithms to automatically generate minimized and prioritized test cases.

This phase also includes the creation and development of a prototype that implements

 16

the methods. The last phase involves the evaluation of the proposed framework and its

algorithms and prototype. Chapter 3 discusses the details of all phases.

Figure 1.1. Research Framework

1.8 Research Contributions and Its Significance

At present, software-intensive systems increasingly influence people’s lives. Thus,

system features and functionalities require more qualifications. Subsequently, the need

Objectives
Method used to achieve the

objectives

The outcome from

the objectives

Technique:

Develop the methods to
implement the model to
generate the test case.

To develop an
improved method
that generates
minimized and
prioritized test cases
using the proposed
test case generation
framework

Achieve

Objective 3

To investigate the
current practices of
software test case
generation methods
that use the UML
diagrams as an input,
to design the
proposed framework

1. Review of literature

2. Perform analysis on the
previous work and explore
the techniques and tools
that can be applied in this
research.

Achieve

Objectives

1 and 2

Achieve

All

Objectives

Achieve

Objective 4

Technique:

Evaluate the developed
framework, its algorithms, and
the prototype.

To evaluate the
proposed framework
using prototyping,
comparison with
existing work, and
expert review

To identify the
suitable coverage
criteria, which are
covered by the
proposed framework
generated test cases

 17

for qualified and reliable systems has expanded. However, as the requirements

increase, the complexity of software-intensive systems also increases with error-

proneness, which is related to shortened development times.

• Body of knowledge

This study develops a framework to automatically generate minimized test cases from

the UML statechart diagram, also prioritizing these test cases. This study contributes

to software engineering, particularly on software testing, especially in generating test

cases using model-based techniques, which generates test cases based on the design

document, to validate and focus on the behavioural aspects of the software. This study

contributes to traversal algorithm by proposing new algorithm, and to test paths or

sequence by developing path pruning, also enhanced consistency checking to support

the loops. In addition, contribute to minimization and prioritization by adapting firefly

algorithm, the use of develop path weight equation, and the use of information flow.

Moreover, this study contributes to test activities by including the expected results for

each test case, which can aid test activities by providing improved methods and

algorithms. Furthermore, the developed prototype can alleviate the burden of manual

testing, thereby providing support to the testing tool for generating test cases from the

UML statechart diagram. Figure 1.2 shows the contribution of software testing. Thus,

this study is a worthwhile effort that is beneficial for software testers.

• Practical

This study primarily intends to benefit the software application industry by focusing

on less costly and earlier alternative automatic test case generation techniques that will

help software testers and developers by reusing UML statechart diagrams. The

 18

proposed framework provides the fully required detailed for researchers and developer

to create their own test case generation tool.

Figure 1.2. Software Testing Procedure
Adapted from Society (2014)

In addition, the practical advantages of this study are outlined as follows (Binder,

2000): Provide clear and between coverage criteria testing procedures for test case

generation; suggest the development process to automatically generate an optimized

test case from UML diagrams presented by the proposed framework; eliminate flaws

in the manual input through the automation of the process in the developed prototype.

 19

Moreover, automation is the only repeatable way to efficiently measure a large amount

of input.

1.9 Terminologies for Software Testing

This study contains some software testing terms that require explanation. This section

provides the definition of the terminologies that are used throughout this study.

Differentiation has been conducted among the many definitions and particularly refers

to the following testing terms:

Definition 1 Path Testing: Path testing is a method that is frequently used to ensure

that a set of paths or a particular path in the program are tested at least once (Shen &

Abraham, 2000).

Definition 2 Testing: Testing is a software verification method that deduces execution

results or traces that the SUT possesses certain good properties (Dssouli, Saleh,

Aboulhamid, En-Nouaary, & Bourhfir, 1999).

Definition 3 Software Testing: This is a process that evaluates the software by

executing and observing it (Ammann & Offutt, 2008).

Software testing includes, but is not limited to, the process of executing the program

with the intent of finding fault, failure, and error that might exist in the software.

 20

Definition 4 Test Case: A test case is composed of test case values, prefix values,

expected results, and postfix values, which are necessary for the complete evaluation

and execution of SUT (Ammann & Offutt, 2008).

In many different levels of abstraction, a test case can be existed. The most important

difference is between concrete and abstract test cases. A test case is combination of

three stages. The first stage is the initial state in which the test data are input into the

system. The second stage involves inputting the test data into the system. The last stage

is expecting the output from the system (Mall, 2009; Offutt & Abdurazik, 1999). This

testing will provide the specification behaviour of the actual software to the output

produced by the software in a particular test case.

Definition 5 Expected Results: When tests are executed, the result that will be produced

is called expected result. This result will be recognized if and only if the program

satisfies its intended behaviour (Ammann & Offutt, 2008).

The two most commonly applied problems related to software testing are identifying

the details of the software behaviour and providing the right values to the software.

Definition 6 Test Requirement: A test requirement can be defined as a specific

component of a software artefact that must be covered or satisfied by a test case

(Ammann & Offutt, 2008).

Definition 7 Software Failure: Failure is external due to incorrect behaviours with

respect to system requirements or other components from the expected behaviour

(Ammann & Offutt, 2008).

 21

1.10 Thesis Outline

This thesis consists of six chapters, including this chapter. The remaining chapters

are structured as follows:

• Chapter Two: Literature Review

This chapter presents a discussion of the background information and related works of

software testing, including an overview of UML diagrams and test case generation

using these diagrams. This chapter also explains the MBT processes and issues

concerning the automatic test case generation using UML diagrams. Then, the

discussion focuses on the coverage criteria. In addition, test case optimization and

prioritization, test case generation processes and components, and theoretical

background are discussed. The chapter ends with a summary of its contents.

• Chapter Three: Research Methodology

This chapter is an introduction to the methodology used in the present study. The

research methodology and its phases are presented. Furthermore, each phase is

discussed in detail.

• Chapter Four: Algorithm Development

This chapter discusses the algorithms development that will be implemented in the

proposed framework. Furthermore, coverage criteria calculation equations for the

selected coverage criteria and prototype development are presented.

• Chapter Five: Evaluation

This chapter reports the evaluation of the proposed framework based on three stages,

namely prototyping, comparison, and expert review.

 22

• Chapter Six: Conclusions

This chapter begins by summarizing the study. Then, the contributions of this thesis

are highlighted. The limitations and future work in related fields are addressed. Finally,

a conclusion is provided.

 23

CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

This chapter describes the state of the art in software testing, test case generation

techniques and their automation, and the use of MBT. The discussion begins with the

overview of testing, followed by test case generation. The theoretical background is

elaborated, followed by MBT and UML diagrams. Analysing some related studies and

their techniques on automatic test case generation using UML diagrams in general and

the UML statechart diagram in particular. Then, the existing issues in optimization and

prioritization of automatic test case generation are explained. Test case generation

process and components are also discussed after that, as well as coverage criteria. The

chapter ends with a summary.

2.2 Overview of Testing

Today, developing applications and high-quality systems with minimum errors and

faults is necessary. Furthermore, cost and time should be as low as possible (Kull,

2009). Speeding up the delivery of services is the significant role of automated testing

techniques for software development (Dustin, Garrett, & Gauf, 2009). Automatic

testing is an essential task when familiarizing with technology and decreasing

expenses are the goals. One of the processes in automatic testing is automatic test case

generation. Test cases help a user test all possible combinations and compose an entire

coverage of the application (Javed et al., 2012). Testing also provides areas in which

the application works fine and the amount in which the testing has concluded

(Karambir & Kuldeep, 2013).

 24

Test cases can be generated based on the system requirement specification and design

document (Hooda & Chhillar, 2014). This study focuses on test case generation from

system design documents using the UML statechart diagram. The input values that a

test case contains are reflected in the system. Thus, selected operations are tested using

test cases. These input values can be parameters that launch the system or a series of

input data (Ngah, 2012).

Test cases are created from the system design of the UML statechart diagram when a

system will be tested. In ideal situations, the test case either passes or fails (Gotlieb,

2012). If all tests pass, then a symmetrical arrangement between the design document

and the test is observed. If the tests fail, then the system encounters problems in

generating expected results; thus, the system has errors. If a test is performed with

defined situations but the system still fails, then errors are due to the system design.

When a test is unsuccessful, the reason behind the cause of failure is identified (Hessel,

2006).

The effects on SUT by testing it can cause unpredictable behaviour. Hopper (1981)

stated that the first unpredicted performance was caused by a moth trapped between

the points of relay. Thus, the term “bug” is used to describe a failure, error, or fault in

a computer program or system. However, this term does not appropriately define the

different stages of fault, failure detection, and error propagation of error.

Failures can be detected directly by test cases because they are concerned with

requirements. Figure 2.1 shows that one of the possible ways for a fault to cause error

is by the activation and propagation to failure.

 25

Figure 2.1. Relation of Fault, Error, and Failure

Software testing, mostly called fault detection technique, is considered as a failure

detection technique because only failures can be identified by this test (Morell, 1984,

1990; Offutt, 1988). The next two subsections will be on software testing and its

techniques, and automated software testing.

2.2.1 Software Testing and its Techniques

Testing is considered as an essential process to ensure the functionality of a system.

The difficulty of testing is depending on the complexity of the SUT (Elallaoui, Nafil,

Touahni, & Messoussi, 2016). Furthermore, development cost increases when the

software complexity increases, thereby requiring much effort, time, and expertise

(Elallaoui et al., 2016). Software testing is one of the most important and critical

phases in software development process that cannot be ignored (Bentley, 2005;

Kosindrdecha & Daengdej, 2010). Software testing is used to verify whether the

system behaves in its intended way to reveal bugs in a system and to ensure that the

system complies with its specifications (McQuillan & Power, 2005).

Similar to any other product, software requires testing. Nothing can be considered

correct unless its functionality has been tested first. For physical products, testing can

be as simple as using a product in all of its intended uses with the unpremeditated

Fault Activation Error Propagation Failure

 26

products to be tested for errors, and formulating a conclusion that the product is

satisfactory (Rapos, 2012). With software, the testing process is more complicated and

often tends to be formal. Therefore, software testing has become an extremely

important aspect of development (Rapos, 2012).

Although the defined development processes and helpful development tools increased,

software development remains a largely manual process. Thus, errors, which are

mostly caused by human fault, occur when a software is created. Error can be due to

many possibilities, such as a misunderstanding in the user requirement, faults in the

system, or even a programmer’s mistake.

Practical-sized software usually offers a complicated set of possible ways of

experimentation. Deciding the exact behaviour for software testing is one of the main

difficulties. During experimentation, deciding whether the experimental behaviours

are correct or not is also difficult. Therefore, new and enhanced testing and

development techniques should be applied to face these challenges (Elallaoui et al.,

2016).

Testing can be executed under several conditions. Observability and knowledge are

two of the most effective features in SUT internal matters (Weißleder, 2010). Test

cases can be generated using two main methods, namely, white box and black box

(Sapna & Mohanty, 2008), as shown in Figure 2.2. The black-box technique is a

functional or behavioural technique based on qualifications. This strategy disregards

the internal structure of the tested object. Instead, it focuses on the required

qualifications for object testing, thereby disregarding the method applied to the tested

object (Aichernig, 2001).

 27

Figure 2.2. Comparison Between Black-box and White-box Testing
Source: Xu, Chen, Wang, and Rud (2016)

In the white-box testing model or structural testing, tests are generated based on the

software structure or internal implementation, which tests the program at the structural

level (McMinn, 2004). This model includes the choice of criterion, identification of a

set of branches, paths, or vertices, and a test case generated (Ahamed, 2010). Some

common examples of this strategy are data flow testing, which executes every

statement as a minimum once; statement testing, which executes every branch as a

minimum once; and branch testing, which tests the usage of all data objects (Nidhra &

Dondeti, 2012).

White-box and black-box testing have both advantages and disadvantages. Therefore,

a new approach called grey-box testing is formed to combine the advantages of these

techniques (Linzhang et al., 2004). Grey-box testing techniques are used by white-box

level to design tests that will be executed at the black-box level. This technique allows

 28

the tester to have access to the internal information of SUT while tests are being

designed (Lima & Faria, 2016). However, tests are performed under realistic

circumstances, and therefore only failures will be discovered.

The most common testing tasks are test result evaluation and test case generation that

are usually automated based on the SUT model. One of this testing is the MBT and

according to Karambir and Kuldeep (2013), MBT is considered as a black-box testing

technique.

2.2.2 Automated Software Testing

Automated testing is a well-established research area. Nevertheless, a gap in software

testing application is recognized between academic and industrial research (Rafi et al.,

2012). According to Rafi et al. (2012), automated testing can detect and provide

solutions to many difficult and complex bugs.

In many areas, automation has been successful. Therefore, the use of an automated

software testing programme to test another software programme is the next step of

evolution that can be called automated software testing (Kelly, 1999).

The use of an automated software testing programme can significantly decrease the

software development cost, increase testing result accuracy, complete test preparation

in advance, and rapidly run tests (Srivastava & Kim, 2009).

The use of automated software testing is not a straightforward process. For many years,

researchers have proposed various approaches and methods to develop test case

generation (Bhat & Prashanth, 2014; Kaur & Harwinder, 2013; Mani & Prasanna,

 29

2016; Mohi-Aldeen, Mohamad, & Deris, 2014; Oluwagbemi & Asmuni, 2015; Wu &

Fan, 2014; Yemul, Vhatkar, & Bag, 2014; Zhang, Duan, Yu, Tian, & Ding, 2016). The

development of these methods and techniques will result in significant cost savings

and software testing automation support (Srivastava & Kim, 2009).

Figuring out the accuracy of a given part of a software is highly complicated. Software

testing was traditionally performed manually and occasionally. However, a systematic,

traceable, and systematic approach is required for the safety of the industrial

environment. Automated tools are currently applied in the industry to perform and

organize test cases (Prasanna & Chandran, 2011). Automation is essential for many

reasons, where manually writing test cases can be tedious, and writing good test case

can sometimes be more of an art than a science (Shamshiri et al., 2015). Manual

production of test cases is tiresome and entails many errors (Kangas, 2008). The

development process would be highly improved through automated test case

generation because the most time-consuming parts of the process are preserved

(Prasanna & Chandran, 2011).

Furthermore, automation would result in complete sets of test cases because of its

systematic performance. However, some issues related to software automation need

emphasis. Although generating a set of test cases can be automated, two important

issues have to be considered. First, the generated test cases size should be considered

because unnecessary test cases might be included, and the paths of the final test cases

should be minimized (Ahmed, 2016; Belli & Hollmann, 2008). Second, selecting the

best test case also needs to be attended by prioritizing the selected test cases

(Sumalatha & Raju, 2014). The studies on software testing has suggested a variety of

 30

solutions for the automation of test case generation. Some of these solutions were

conducted and applied in software testing, such as for commercial products. However,

many associated problems, such as the requirement for specialists with a higher skill

level, the effect of new methods on people, and the need to increase the required tools

for testing, should be eliminated before software testing can receive widespread

support and acceptance.

2.3 Test Case Generation

The constitution of a test case will vary from one system to another, but in its simplest

form, it will be a series of events that will result in a certain execution path, given

certain conditions (Rapos, 2012). Values for attributes and parameters can be

generated based on any constraint and can supply to the program for a test execution

(Rapos, 2012).

Aside from software development, the testing phase is divided into three categories,

namely, test case generation, test case evaluation, and test case execution (Karambir

& Kaur, 2013). Compared with the other two categories, test case generation is the

most challenging among the categories (Gulia & Chillar, 2012). Manually created test

cases are usually time consuming and error prone; thus, the next logical phase is the

automation of the test case (Schwarzl & Peischl, 2010b). Test case generation can save

effort and time and reduce the number of faults and errors at the same time (Gulia &

Chillar, 2012; Sahoo et al., 2016b). Likewise, the reliability of tests is increased and

the costs of manual testing are reduced (Shamsoddin-Motlagh, 2012).

 31

Figure 2.3 highlights the steps in the software testing life cycle. The software

developer or software testers will be assisted in finding inconsistencies and

uncertainties in the requirement specification and the design documents of the system

for earlier test case generation (Shull, Rus, & Basili, 2000). When errors are removed

early during the devolving life cycle, the time and development cost software systems

decrease significantly.

Figure 2.3. Software Testing Life Cycle
Source: Karambir and Kuldeep (2013)

2.3.1 Automatic Test Case Generation

The generation of a subjective test case requirement is a nontrivial problem. Several

researchers have focused on the automation of test case generation in which various

degrees of success are shown in the reported results. Different design artefacts and

SUT methodologies are used in the automatic generation of test cases. The automatic

generation of test cases will take and process the design artefacts as input, and then

 32

generate test sequences based on certain pre-specified testing coverage criteria. Then,

the exact test data for each test sequence are determined to form the test cases (Kaur

& Gupta, 2013). This method builds the confidence of the developer and successively

executes software testing in generating the test case for a set of data inputs (Jena,

Swain, & Mohapatra, 2014).

Test case generation is an essential step in software testing. Test cases categorise the

pre-test state and environment of SUT in addition to test conditions or inputs (Binder,

2000). A test case identified as a set of test inputs, states, and expected output is

developed to verify an execution with a specific requirement or implementation of a

specific program path (Lilly & Uma, 2010). Test cases aim to identify the

communication conditions and problems that will be implemented in a test. Test case

requirements will be necessary to verify the acceptability and success of any product

implementation (Heumann, 2001).

Test case generation can be achieved from specifications and requirements, source

code, or design document. Test cases are usually designed based on the software

source code (Abdurazik & Offutt, 2000; Jena, Swain, & Mohapatra, 2015). This code

will cause difficulties in test case generation, especially for mass-level testing (Jena et

al., 2015). Generating test cases in the development cycle based on the requirement

specification and design documents of the project will add as an advantage by enabling

the early availability of tests in the software development life cycle (Kumaran et al.,

2011) to create more effective test planning. Additionally, the advantage of design-

based testing is to test the performance of the application based on the requirement

specifications and design documents (Jena et al., 2014). However, manual test case

 33

generation is time consuming and difficult (Jena et al., 2014). Thus, either a semi-

automatic or an automatic test case generation based on the requirement specification

and design document is usually anticipated (Krishnachandra, 2016).

The test case generation from UML diagrams includes many steps. The steps begins

by storing the UML diagram information in a database-based table, which will

subsequently transform the data into a graph model (Priya & Sheba, 2013). Next, the

test paths are generated from the graph model in which these paths will help identify

all possible routes that the software will follow and form these routes into a test case

(Werner & Grabowski, 2012). These paths are the structural method of testing and test

cases that will demonstrate every possible executable path for the program (Parnami,

2013). Two fixed vertices are included in the test paths. These vertices are established

by the fact that every legal path must begin at the source vertex and end at the sink

vertex (Schligloff & Roggenbach, 2002), which are called the start state and the end

state. The number of vertex predecessors is its in-degree, and the number of successors

of the vertex is its out-degree (Srikant & Shankar, 2007). A path from a vertex 𝑋𝑋1 to a

vertex 𝑋𝑋𝑘𝑘 in a graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) is a sequence of vertices (𝑋𝑋1,𝑋𝑋2,𝑋𝑋3, … ,𝑋𝑋𝑘𝑘) such that

(𝑋𝑋𝑖𝑖,𝑋𝑋𝑖𝑖+1)ϵ E for every 𝑖𝑖, 1 ≤ 𝑖𝑖 ≤ 𝑘𝑘 (Panthi & Mohapatra, 2012) as shown in Figure

2.6.

Test case generation has always been necessary and basic to the testing process

(Bertolino, 2003). Incidentally, many researchers have conducted research on test case

generation using UML diagrams (Jia & Liu, 2002; Jia, Liu, & Qin, 2003; Kaur &

Singh, 2015; Mani & Prasanna, 2016; Oluwagbemi & Asmuni, 2015; Prasanna,

Sivanandam, Venkatesan, & Sundarrajan, 2005). Other techniques include random and

 34

goal-oriented techniques. A test case based on assumptions regarding fault distribution

are controlled by random techniques. Intelligent techniques for automated generated

test cases rely on complex calculations to identify test cases (Santiago et al., 2006).

Modelling languages can be used in the software requirement specification and design

document. UML is the most extensively used modelling language. Thus, UML

diagrams have been used by many researchers, such as sequence diagrams, statechart

diagrams, and activity diagrams, to generate test cases using MBT case generation

techniques (Chimisliu & Wotawa, 2013a; Nayak & Samanta, 2010; Oluwagbemi &

Asmuni, 2015).

Examining a piece of software or model manually and formulating a number of tests

that will use the program through a number of executions is possible. However, this

process is infeasible and can often result in overlooking a particular case that causes

software error or even an ideal case to ensure functionality (Lavagno, Markov, Martin,

& Scheffer, 2016). Thus, automated test case generation has become an area of focus.

Software development teams aim to provide a program or a system model and to have

a complete set of tests that are automatically generated to test all desired executions.

A number of possible methods for automatic test case generation have been developed

because generating test cases by hand selection is error prone and time consuming

(Rapos, 2012).

2.3.2 Automated Test Case Generation from Software Design

The automated generation of test cases has been proposed to reduce the challenges in

test case generation (Korel, 1990). The quality of manual testing depends on the

 35

experience and software design knowledge of the tester. Thus, automated test case

generation can provide effective test cases with appropriate software design. This

problem can also address those resulting from human errors and lack of testing

experience.

The use of UML diagrams can produce test cases earlier in the development lifecycle

and test the system before the coding cycle, given that the UML diagrams created in

the system follow certain specifications. Such early generation of test cases will enable

software developers to find uncertainties and inconsistencies in the system

specification and design (Jain & Sheikh, 2014).

In the case of component-based software development, the use of program source code

to generate a test case is proven to be insufficient because even the source code may

not be available to software developers. Therefore, using design specifications to

generate test cases is important (Samuel, Mall, & Bothra, 2008). In addition, creating

new diagrams is not a necessity because the same diagrams created for the design

phase are used for test case generation. Furthermore, test case generation based on

design specifications has an additional advantage of providing test cases early in the

software development cycle, thus making the test planning more effective (Samuel et

al., 2008).

Software design and testing are both important in the software development lifecycle.

Faultless software design helps software developers in developing a system, and

excellent software design can support developers adjust to various software

requirements during the software development process (Samuel et al., 2008).

 36

The early detection of errors has become a serious issue. As shown in Figure 2.4, an

error that is detected in the later cycles is extremely costly to repair (Tuple, 2010).

Moreover, detecting a fault during the system testing is 10 times more costly than

detecting the same fault during the system design. The same fault is up to 30 times

more costly if detected during the system production. Unfortunately, requirements and

design specifications are major sources of software bugs (see Figure 2.5). Studies have

found that, in some cases, the proportion of such bugs to the overall detected bugs can

be 50% or more (Perry, 2007).

Figure 2.4. Comparative Graph for Cost of Software Repair by Development
Lifecycle Phases

Adapted from Dawson, Burrell, Rahim, and Brewster (2010)

 37

Figure 2.5. Fault Proportion According to Source Phase
Adapted from Rice (2010)

In addition, requirements represent the application from the perspective of the business

as a whole or the user. Moreover, the design specification represents the application

from the perspective of the software developer or the technical team. Therefore, test

cases for the software system must be generated during the software design lifecycle.

The next section cover several theories behind the generation of test cases applied in

this study.

2.4 Theoretical Background

According to Kerlinger (1986), a theory is “a set of interrelated constructs (concepts),

definitions, and propositions that present a systematic view of phenomena by

specifying relations among variables, with the purpose of explaining and predicting

the phenomena” (p. 9).

27%

56% 7%

Design

Code

Requirements

Others

10%

 38

This study adapted two major theories to automatically generate the test cases: graph

theory and automata theory. The following subsections will introduce these theories in

the context of the current research.

2.4.1 Graph Theory

The paper published by Euler (1736) on the Seven Bridges of Königsberg is considered

as the first paper in the history of graph theory. Graph theory is an important area of

modern mathematics with many applications in social science, computer science,

engineering, chemistry, genetics, business, and industry. This theory is a new science

developed and invented to solve challenging problems of a “computerized” society,

for which traditional areas of mathematics, such as calculus or algebra, are ineffective

(Voloshin, 2009).

Graph theory is an area of mathematics that can assist researchers in utilizing the model

information to test applications in many different ways (Robinson, 1999). Graph

theory techniques have been an important part of MBT and several graph techniques

(Shahzad, Raza, Azam, Bilal, & Shamail, 2009).

The adoption of graph theory techniques for MBT has been conducted by many

researchers as the intermediate graph. In this study, the UML statechart is converted

into a graph to generate the test paths.

The graph G is a set of vertices 𝑉𝑉 together with a set of edges 𝐸𝐸 and is presented as

𝐺𝐺 = (𝑉𝑉,𝐸𝐸).

 39

An example of the graph is shown in Figure 2.6. This graph has 𝑉𝑉 = 6 vertices

and 𝐸𝐸 = 8 , where 𝑉𝑉 = (𝑉𝑉1,𝑉𝑉2,𝑉𝑉3,𝑉𝑉4,𝑉𝑉5,𝑉𝑉6) and 𝐸𝐸 = (𝐸𝐸1,𝐸𝐸2,𝐸𝐸3,𝐸𝐸4,𝐸𝐸5,𝐸𝐸6,𝐸𝐸7,𝐸𝐸8) .

𝐸𝐸1 = (𝑉𝑉1 → 𝑉𝑉2) , 𝐸𝐸2 = (𝑉𝑉2 → 𝑉𝑉3) , 𝐸𝐸3 = (𝑉𝑉3 → 𝑉𝑉4) , 𝐸𝐸4 = (𝑉𝑉1 → 𝑉𝑉3) , 𝐸𝐸5 = (𝑉𝑉1 →

𝑉𝑉5) , 𝐸𝐸6 = (𝑉𝑉5 → 𝑉𝑉1) , 𝐸𝐸7 = (𝑉𝑉5 → 𝑉𝑉4) , and 𝐸𝐸8 = (𝑉𝑉4 → 𝑉𝑉6) because each edge

connects a pair of vertices; therefore, 𝐸𝐸 = �(𝑉𝑉1 → 𝑉𝑉2), (𝑉𝑉2 → 𝑉𝑉3), (𝑉𝑉3 → 𝑉𝑉4), (𝑉𝑉1 →

𝑉𝑉3), (𝑉𝑉1 → 𝑉𝑉5), (𝑉𝑉5 → 𝑉𝑉1), (𝑉𝑉5 → 𝑉𝑉4), (𝑉𝑉4 → 𝑉𝑉6)� (Voloshin, 2009).

Figure 2.6. Graph Example

The graph representation is performed by using a square-name adjacency matrix,

which has one row and one column for each vertex. If vertex 𝑉𝑉𝑖𝑖 is connected by edge

to vertex 𝑉𝑉𝑗𝑗, then (𝑖𝑖, 𝑗𝑗) is 1; otherwise, it is 0 (Voloshin, 2009). For the graph in Figure

2.6, the adjacency matrix denoted by 𝐴𝐴(𝑔𝑔) is

 40

𝐴𝐴(𝑔𝑔) =

⎝

⎜⎜
⎛

0 1 1 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
1 0 0 1 0 0
0 0 0 0 0 0⎠

⎟⎟
⎞

.

2.4.2 Automata Theory

Automata theory is a classical theoretical tool that is central to the development of

computer science. This theory also has relevant applications in machine theory. The

elegance and simplicity of this theory in “constructivist” applications is remarkable

(Marijuán & Westley, 1992).

Automata theory is a theory in theoretical computer science and discrete mathematics.

This theory is relevant to the study of abstract machines and automata, as well as other

computational problems. This study automates the test case generation and uses

deterministic automaton definition to present the UML statechart diagram as a

quadruple ST = (E, Σ, H, T), where (Belli & Hollmann, 2008)

• E is a finite set of events,

• Σ = (𝑆𝑆, 𝑆𝑆𝛯𝛯 ,𝑆𝑆Г) is a triple of a set of states with S as a finite set of states,

𝑆𝑆𝛯𝛯 ⊆ 𝑆𝑆 denoting the entries (initial states),

𝑆𝑆𝛯𝛯 ⊆ 𝑆𝑆 the exits (final states),

• H ⊆ S × S is a hierarchy relation, and

• T ⊆ S × E × S is a finite set T of transitions.

The set of states S comprises split sets of simple states 𝑆𝑆simple and composite states

𝑆𝑆comp consisting of AND- and XOR-states. The sets of initial and final states are

 41

termed 𝑆𝑆𝛯𝛯 and 𝑆𝑆Г, respectively. Final states represent possible exits from the system.

The set H defines a binary relation on the set S forming a tree. For an element, (𝑠𝑠, 𝑠𝑠′) ∈

𝐻𝐻 holds that a state s is an immediate sub-state of state 𝑠𝑠′ . Transitions must be

deterministic and associated with an event (Belli & Hollmann, 2008).

The following section cover the characteristic of MBT, together with the common

process in MBT test case generation.

2.5 Model-based Testing

MBT is considered a testing technique where test cases are derived from the model

that identifies the predictable behaviour of a system (Bozkurt, Harman, & Hassoun,

2013). Formal models with exact semantics are very important because they are more

appropriate for the automatic generation of test cases (Frantzen, Tretmans, &

Willemse, 2006).

There are many techniques beside MBT to generate test case, like random test case

generator, path oriented approach, and intelligent approach (Shah, Shahzad, Bukhari,

Minhas, & Humayun, 2016). A random test case generator may create many test data;

but might fail to find test case to satisfy requirements (Singh, 2014). A path oriented

approach identifies path for which test case has to be generated, however the path

might be infeasible, the test data generator might fail to find an input that will traverse

the path (Wei & Xiaoxue, 2010). An intelligent approach generates test cases quickly

but is quite complex (Prasanna et al., 2005). Comparing with these techniques, MBT

is a valuable one, since it creates useful, flexible, and automated test cases from

practically first day of development (Singh, 2014). Models are simple to modify,

 42

generate innumerable test sequences, and allow the testers to get more testing

accomplished in shorter time, also can be occupied from the software design

documents (Prasanna et al., 2005). Even though varied test case generation approaches

are available, MBT approach has attracted many researchers and still research is being

carried out to optimize the generation of test cases with minimum human effort (Singh,

2014).

Tests that are produced through models are called MBT (Utting & Legeard, 2010).

The idea for this type of testing was earlier known as specification-based testing

(Utting, Pretschner, & Legeard, 2006). The benefit from this model is that MBT does

not require a formal system specification; instead, it can represent several features of

tested design phase (Pinheiro, Simão, & Ambrosio, 2014). In this section, a brief

explanation of the processes in generic MBT is presented. Figure 2.7 illustrates five

major parts of the MBT process, which are model, generator, concretize, execution,

and analysis, which were introduced by Utting et al. (2006).

MBT is an important approach with many advantages that can lead to cost reduction

and increased quality and effectiveness of a testing procedure (Schweighofer &

Heričko, 2014). MBT, which uses UML diagram from design specifications for test

case generation, overcomes the deficiencies that are extremely difficult to identify in

the system state information, either from the code or from the requirement

specifications. Therefore, MBT has been developed as a promising testing method

(Pahwa & Solanki, 2014).

MBT is suitable when the requirements are formally specified through graphical

notations, such as UML statechart diagrams, and when the test cases are generated

 43

using the formal specifications. The use of this method for software testing is generally

preferred for the following reasons (Saini & Srivastava, 2015):

1. MBT can be easily understood by both business and developer communities.

2. MBT separates the business rationale from the testing code.

3. MBT can quickly achieve automated testing.

4. MBT allows developers to switch testing instruments if the same model is

required or utilized in various stages.

5. MBT focuses on requirement coverage.

6. MBT helps developers design more and code less.

The modelling phase is the initial stage. Normally, a system model that under testing

is referred to as the abstract model because it is not as complicated as the actual system.

The document specification or requirement creates this model, and it encodes the

intended system behaviour. Furthermore, this phase includes a test plan that secures

the needed requirements and considers the specifications of the design. Thus, this

model would be applied in generating the test.

The next phase is generating test cases from the models. The tools that are applied in

this stage are presented in the bold box line in Figure 2.7. Abstract test cases are

produced from the abstract of the model. These abstract test cases select the main

features that should be tested and removes the other details. The process of generating

the test follows the coverage criteria to trace the test case requirements (Ammann &

Offutt, 2008). Therefore, this study will focus on this stage to generate the test cases

and adopt the coverage criteria.

 44

In the third phase of this model, abstract test cases that were produced in the second

stage are changed into practicable concrete test cases, and this process is referred to as

test concretization or implementation. This phase also requires the support of tools

and/or the aid of a programmer. This process is implemented through the

implementation of many templates and mappings between the values of concrete and

abstract test cases. In the fourth phase, the test is performed. However, the test needs

to be adjusted to its environment before execution. This adjustment is done by using a

test adapter tool. To perform the test against the real SUT, the test adapter adds the

specific data of implementation to the tests. The test can be performed in two modes:

online or offline. The tests and inputs generated in the online mode are used, which

are also based on the response of SUT. The MBT tool manages and keeps track of the

test results. However, in the offline mode, the saved forms of concrete test cases are

created in the form of scripts that will be later performed through manual application

or the use of certain tools.

In the last stage, the test results are analysed. This phase is similar to the conventional

analysis of the test. In the case of errors in the test case, an analysis to identify the

source of error is used. The error could be caused by a flaw or the test case in the

system and in its setup.

 45

Figure 2.7. MBT Process
Source: Utting and Legeard (2010)

The next section elaborate on UML diagram in general and highlights the reasons for

selecting UML statechart diagram as an input for generating the test cases.

2.6 UML Diagrams

UML is a modelling standard that is generally used in software engineering. UML

incorporates a set of graphic notion techniques to produce visual models of object-

oriented software-intensive systems (Sood & Rattan, 2016). In the 1990s at Rational

Software, UML was developed by Grady Booch, Ivar Jacobson, and James Rumbaugh,

 46

and was adapted and overseen by the Object Management Group (OMG) since 1997

(Sood & Rattan, 2016).

UML is a visual language for the documentation, construction, and specification of

system artefacts (UML, 2004). Therefore, UML is a language that generally models

and represents systems.

UML 2.0 is more extensive and complicated than the earlier version, also increased

the amount of UML documentation. Figure 2.8 shows that the UML specification

describes the two main kinds of UML diagrams, namely, structural and behavioural

diagrams (Gupta, 2014).

Figure 2.8. Overview of UML Diagrams
Source: Gupta (2014)

 47

Structural diagrams show the system’s static structure, various abstractions, and

implementation levels in its fragments and the ways they are connected to one another.

The meaningful ideas of a system are represented by the elements in a structure

diagram, which are implemented in a real-world and abstract concept (Swain et al.,

2012c).

Behaviour diagrams are used to represent the dynamic aspect and behaviour of the

system (Knaak & Page, 2005). These diagrams are composed of a set of interconnected

states and activities. Activities resemble the operations of object types, whereas states

resemble their pre- and post-conditions. Structural diagrams represent the activity of

the system’s structure and its fragments on various stages of implementation and

abstraction, which show the correlation among fragments (Na, Choi, & Lim, 2006).

UML is becoming an essential skill for anyone who is virtually incorporated in

software projects (Wiegers & Beatty, 2013). The selection of modelling language in

the system requirement and design are influenced by two reasons. First, the model

offers a blueprint for developers to provide project managers the exact requirements

needed to develop and precisely calculate the cost of a given project. Furthermore,

UML is the bridge between non-technical users and technical developers (Ibrar, 2013).

Test cases are frequently generated from the code of the software after its

implementation. Although UML diagrams are also used to generate test cases based

on specification and design, in this testing the software developer is allowed to test the

system before starting writing the code (Alhroob, 2012). Multiple diagram

representations are provided by UML to describe the software design information from

 48

different perspectives. UML was recently proposed as the new model to be used in the

design and analysis of SUT (Weilkiens, 2011).

UML diagrams have become the source for test case generation because they are

among the most preferred standard tools for the software development industry (Grant

& Datta, 2016; Kim, Lively, & Simmons, 2006; Lange, Chaudron, & Muskens, 2006).

Despite the use of UML diagrams in test case generation, several existing features do

not consider the basic UML diagrams. These used diagrams are not consistent with the

standard diagrams defined by OMG (2010). Using such modified diagrams that have

extra techniques will require the developers and designers to obtain further knowledge

of these tools.

The standard UML diagrams for test case generation are used in this study. The

implementation of these standard diagrams will allow the developers and designers to

focus only on the content of their design document without the additional burden of

rephrasing their design documents in a different modified requested format.

Many studies on test case generation from UML diagrams are proposed because UML

is considered as a standard in software development (Kernschmidt & Vogel-Heuser,

2013; Lange et al., 2006; Liu & Zhang, 2014). Furthermore, the availability, numerous

support tools, and standardization of UML make it widely used in software

development. In addition, transforming a suitable UML diagram to a source code can

be easily done. Cavarra, Crichton, Davies, Hartman, and Mounier (2002) elaborated

on the use of the UML diagram for automatic test case generation; they described each

UML diagram component that could be used to generate test cases.

 49

UML-based testing has been used by researchers for many years to produce test cases

earlier in the development cycle (Rhmann & Saxena, 2016). Although prioritization

techniques based on code are investigated by most researchers, the prioritization of

test cases generated from UML diagrams has not received much research attention

(Rhmann & Saxena, 2016).

Using UML diagrams to generate test cases is one of the most significant methods in

software testing. One of the advantages of this method is covering the issues raised by

object-oriented programs (Linzhang et al., 2004). However, using UML diagrams to

generate test cases is a difficult and challenging task (Ali et al., 2014).

The UML statechart diagram is one of the most important UML diagrams because the

appearance structure of the solution at the most detailed level is determined. In

addition, the classes implemented and interaction with one another are shown (Bell,

2003).

Class diagram is another UML diagram that can be used to generate the test cases

(Prasanna, Chandran, & Suberi, 2011). However, the behaviour of the system is not

specified as compared to the UML statechart diagram. Furthermore, the UML class

diagram does not contain any information on the target behaviour, and therefore cannot

be used in test case generation (Doungsa-ard, 2012).

UML activity and statechart diagrams model the dynamic behaviour of the system, and

the most frequently used UML diagrams for software design (Felderer & Herrmann,

2015; Schweighofer & Heričko, 2014). Essentially, the UML activity diagram is

considered as a flowchart that shows the activity’s flow of control. However, the UML

 50

statechart diagram shows a state machine to ensure the state flow of control. A UML

activity diagram is a special case of UML statechart diagram in which all or most of

the states are activity states and the transitions are activated by completion of activities

in the source state (Jürjens, 2005).

Using UML activity diagrams to generate test cases will not illustrate any state

information of the system. Therefore, the state of the entire system during the

execution of a use case, which is a collection of objects, remains unknown. However,

the system behaviour may be varied to the same input depending on the state a system

is in (Swain et al., 2010a). The UML statechart diagram shows the lifecycle of an

object: the transitions that it undergoes upon receipt of an event. The UML statechart

diagram test cases can reveal unit-level faults better than other diagrams (Abdurazik

et al., 2004).

Test cases generated through UML statechart diagrams revealed 12% more integration

level faults than those revealed by sequence diagrams. This result indicates that UML

state diagrams are more efficient in revealing unit-level faults (Baig, 2009).

Furthermore, Kansomkeat, Offutt, Abdurazik, and Baldini (2008) show in an

experiment that testing using UML statechart diagram tests more faults than testing

using a UML sequence diagram. In addition, twice as many tests from UML statechart

than tests from sequence diagrams are observed. The UML statechart diagram has the

same semantics as the other state-based specifications, thereby enabling the

generalization of the proposed test case generation (Abdurazik & Offutt, 1999).

This current challenge exists in generating test cases from software design lifecycle

rather than in the coding cycle of the system development (Makker & Singh, 2011).

 51

This condition will result in the use of a proper model in the software system, which

is the first step of the solution because UML diagrams are used to represent different

software design issues (Berardi, Calvanese, & De Giacomo, 2005). The UML

statechart diagram can be used to represent parallel activities and hierarchical

relationships that usually are presented in modern complex software (Santiago et al.,

2008). This illustration helps in testing the design cycle in the software system using

the generated test cases. The next section describes the UML statechart diagram and

its benefit in test case generation.

2.6.1 UML Statechart Diagram

This section explains the principles of the UML statechart diagram. The statechart

structure is based on statechart formalism. David Harel firstly introduced this diagram

in 1987. This diagram is a visual modelling language that represents finite state

automata with added parallelism, hierarchy, broadcast communication, and history.

Harel created the formalism to describe large and reactive systems because he believed

that such a method was not available at that time (Harel, 1987).

In UML statechart diagrams, as shown in Figure 2.9, the basic elements are the

rounded rectangles that represent the states and labelled arrows that indicate

transitions. The composition for transition is “Event [guard condition] / action,” in

which the event is considered as a message that is sent (Kansomkeat & Rivepiboon,

2003). In the UML statechart diagram, states, events, and transitions are the

fundamental components and the main building blocks (Specification, 2007).

Conceptually, an object remains in a state until an event causes it to transit to another

state (Samuel et al., 2008).

 52

Figure 2.9. Simple UML Statechart Diagram for ATM Machine Transactions

A state may include other summarized sub-states, and the state is called a composite

state. One of the special states in generating test paths is the starting state, which

indicates the first condition of every test path. Another special state is the end state,

which indicates the last condition and the end of all the paths (Gross, 2005).

The UML statechart diagram has two types, namely, composite or simple type. A

composite state entails one or more regions. A simple state does not have any sub-

states. A composite state can be either sequential or concurrent. A composite state

cannot be in more than one sub-state at any time but can be in any one of its sub-states

(Specification, 2007). OMG suggests that in a concurrent type, an object and logic of

its sub-states determine the state. The object is regarded to be in all the concurrent

states simultaneously.

 53

UML statechart diagrams use states and state transitions to describe software

behaviours or a single object (Yemul et al., 2014). The diagrams define the dynamic

software behaviour in terms of how it responds to external input (Kansomkeat et al.,

2008). These diagrams are used to aid the software developer in depicting the dynamic

behaviour of the entire system or in better understanding any complex functionality or

a single object in a system or a sub-system (Yemul et al., 2014). Therefore, this

diagram can naturally be considered as a good source for unit testing (Kansomkeat et

al., 2008).

Finite state machines (FSM) had been used to describe the reactive components of

models with reactive components for more than half a century before UML statechart

diagrams were introduced (Drusinsky, 2011). However, when FSMs were applied to

larger problems, the models were unreadable and cluttered because FSMs were

sequential and flat. Therefore, relatively simpler systems, such as protocols, are

modelled using FSMs. More complex systems, such as the engine controller of an

aircraft, are modelled using the UML statechart diagram (Mathur, 2008). In addition,

UML statechart diagrams have built-in capabilities in their environment to describe

their interaction with multiple objects (Drusinsky, 2011). Furthermore, UML

statechart diagrams, being an extension of FSM, with added functions, are the most

popular language for modelling reactive components (Drusinsky, 2011).

The UML statechart diagram is a rich extension of the FSM. The UML statechart

diagram needs to be handled differently when used as an input to generate test cases

(Kaner & Fiedler, 2013). The UML statechart diagram is considered as a source for

test case generation and is not the item under test (Doungsa-ard, 2012). Instead, the

 54

UML statechart diagram implementation is under test. Such an integration is also

known as implementation under test (Kaner & Fiedler, 2013). For example, a UML

statechart diagram may represent the model of a user login while an implementation

under test is its integration.

This study aims to generate a test case from the system design cycle that achieves most

of the system coverage criteria. UML statechart diagrams are selected as the input of

this study. The UML statechart diagram describes the changes in the system, which

can be represented by an attribute value or state of the system. The UML activity

diagram or the UML case diagram are not practical to be used for test case generation

as an inputs because they describe the system more from the business view, which is

the functional requirement, and not that of the software developer (Al-kahlout, B.

salha, & El-haddad, 2017; Doungsa-ard, 2012). The UML statechart diagram describes

the system based on the programmer view to map the software more easily.

2.7 Test Case Generation in Model-based Testing

This section surveys the current research in test case generation using MBT from UML

diagrams. The information and data obtained from this review will aid in devolving

the framework and selecting the coverage criteria.

Researchers such as Gnesi et al. (2004); Kansomkeat and Rivepiboon (2003); Kim,

Hong, Bae, and Cha (1999) have paid considerable attention to automatic test case

generation from UML diagrams. Numerous efforts were paid to use UML diagrams to

generate test cases (Linzhang et al., 2004; Mingsong et al., 2006). In addition, studies

have been conducted on the test case generation from UML-diagram-based activity,

 55

which uses a grey box method to generate test cases (Linzhang et al., 2004). At the

same time, more researchers have worked on generating test cases from UML

statechart diagrams (Ali et al., 2007; Kosindrdecha & Daengdej, 2010; Swain et al.,

2012c).

Although the focus of this study is on the test case generation from UML statechart

diagram, test case generations from other types of diagrams are also investigated to

identify the commonalities or trends in the test case generation algorithm being

applied. It has been spotted after passing through different approaches that UML

diagrams like activity, sequence, and statechart have been used to generating test cases,

and their techniques share some similarities in some components. The following

section presents test case generation approaches using UML activity, sequence

diagram, and statechart.

2.7.1 Test Generation Approaches Using UML Activity Diagram

As shown in Figure 2.10, UML activity diagrams clarify the sequential control flows

of activities. The UML activity diagram uses a kind of directed graph as its graphical

illustration. The action node in a UML activity diagram is represented by a rectangle

with rounded corners. This node represents the execution of an operation on input data,

and new data are generated to deliver an outgoing edge.

 56

Figure 2.10. Simple UML Activity Diagram for Login Screen

The control flows of activities in the UML activity diagram are used to model the

dynamic aspects of a control flow of an operation or a group of objects, which shape

a kind of design specifications for the software (Chen et al., 2009).

The test case is directly extracted from the UML activity diagrams, which model

complex processes that have loops, parallelism, and event-driven behaviour. The UML

activity diagrams can also be used to specify the workflow and business process or to

model the behaviour of some use cases (Eshuis, 2006).

The predicted behaviour of an operation, which deals with coverage criteria, are

described in the following sections. Successively, each test scenario provides complete

information on the test case generation. Finally, the application of the category-

partition method makes potential input/output constraints (Ostrand & Balcer, 1988)

that can achieve path coverage from the generation of the test cases. However, this

 57

technique at any time of execution overlooks information related to the state of the

objects inside the system.

Mingsong et al. (2006) offered to acquire a reduced test set implementation using UML

activity diagrams. They focused on generating the test cases for Java programs

randomly and achieved the execution traces of the program by executing the programs

while applying the test cases. They also acquired reduced test cases by comparing

simple paths with program execution traces. The help of the plain path coverage

criterion avoids the path explosion because the loops and concurrency are available.

Their adequacy coverage criteria for the UML activity diagrams are based on the

matching between UML activity diagrams and the paths execution traces of the

implementation codes of the program. They generally dealt with activity coverage,

transition coverage, and simple path coverage. However, their approach was limited

to UML activity diagrams that do not contain loops or concurrency.

Chen, Mishra, and Kalita (2008) proposed an approach for automatic test case

generation using UML activity diagrams. To generate properties, the researchers used

specification coverage and design models and model checking to enable directed test

generation. Their technique achieved activity coverage, key path coverage, and

transition coverage. To generate directed tests, the researchers defined and used the

fault model of the specification model. In their study, the UML activity diagram was

converted to intermediate model as the formal model. Then, the properties were

generated from the coverage criteria. Finally, to generate required tests, the properties

were applied on the formal model using model checking.

 58

Fan, Shu, Liu, and Liang (2009) proposed a technique for test case generation from

sub-UML activity diagram to introduce composite activity diagram hierarchically.

Their technique generated test cases based on (intermediate model) composition trees

generated from UML activity diagram by taking the functional decomposition, round-

robin strategy, and bottom-up integration testing strategy into consideration.

Furthermore, their coverage criteria were based on transition coverage and activity

coverage.

Kansomkeat, Thiket, and Offutt (2010) proposed a method for generating test cases

from UML activity diagrams, which is called the condition classification tree. Then,

intermediate model condition classification trees were generated by analysing the

UML activity diagrams, which were then used to create test cases and test case tables.

In addition, to introduce faults, they used mutation analysis to evaluate test sets based

on the number of mutants that failed or were killed. However, the mutants were

generated manually.

Kundu and Samanta (2009) proposed an approach to generate test cases using UML

activity diagrams. In their approach, they translated the UML activity diagrams into

an activity graph. From the result of the activity graph, they used DFS and breadth first

search (BFS) algorithm to generate test cases. These generated test cases are based on

an activity path coverage criterion and are used to cover loop faults and organization.

To achieve UML activity diagram coverage, they considered a coverage criterion

called activity-path coverage criterion.

Hashim and Salman (2011) proposed a test case generation algorithm from a UML

activity diagram, where they generated the test case by converting the UML activity

 59

diagram into an activity graph that store all the activity information. The graph was

used to automatically generate an activity path, which contains all the possible test

case paths. Then, from all the stored information and the paths, the test case was

generated automatically. Furthermore, a prototype was created to implement and test

the algorithm.

Boghdady et al. (2011b) proposed a newly enhanced methodology to generate test

cases automatically from UML activity diagrams using the extensible markup language

(XML) form. The XML for each UML activity diagram in any system was transferred

to an activity dependency table, which covers a reduced form of all the functionalities

in the UML activity diagram. A directed graph called activity dependency graph was

automatically generated using the activity dependency table, which was used in

combination with the table to generate all the possible test case paths. In their study,

to achieve minimization, they reduced the test case paths before generating the final

efficient set of test cases. To accomplish their validation, they implemented the

cyclomatic complexity technique to the generated test case paths to calculate the lower

bound for the generated test case paths. Thus, the general performance of the testing

process was optimized with respect to saving time and effort.

Table 2.1

Test Case Generation Methods Using UML Activity Diagram

Author(s) Input

model

Method Intermediate

model

Coverage criteria

Mingsong et

al. (2006)

Activity

diagram

Random testing - Activity, transition,

simple path

 60

Table 2.1 Continue

Author(s) Input

model

Method Intermediate

model

Coverage criteria

Chen et al.

(2008)

Activity

diagram

Coverage driven Formal model Activity, key path,

transition

Fan et al.

(2009)

Activity

diagram

Bottom-up testing

strategy activity diagram

Composition

tree

Transition, activity

Kundu and

Samanta

(2009)

Activity

diagram

DFS and BFS traversal Activity graph Activity path

Kansomkeat

et al. (2010)

Activity

diagram

Condition classification

tree method, mutation

analysis

Condition

classification

trees

-

Hashim and

Salman

(2011)

Activity

diagram

Activity path Activity graph Activity path

Boghdady et

al. (2011b)

Activity

diagram

XML form Activity

dependency

graph

Hybrid

Table 2.1 represents the test case generation based on a UML activity diagram. It

shows the input models that have been used for test case generation, which is the

activity diagram. Furthermore, the intermediate models that generated an intermediary

between the input model and the generated paths, and the coverage criteria, are also

clarified in this table.

As observed in Table 2.1, amongst the seven papers that report credible evidence, most

papers used activity graph as the intermediate model. There are also only one paper

that did not use intermediate model which is by Mingsong et al. (2006). Moreover, the

 61

table shows that the intermediate model is quite important in assisting the generation

of the test cases. In addition, the methods used in these papers to generate the paths

from the intermediate model can be used also on different UML diagrams as can be

seem in Table 2.1. The method proposed by Kundu and Samanta (2009) to construct

the UML activity diagram can be adapted in this study to be used on UML statechart

diagram construction to be used later in path pruning (refer to Section 4.3.1). In

addition, Boghdady et al. (2011b) in their work described the converting from the

intermediate table to intermediate graph, was also adapted in this study (refer to

Section 4.3.3). An activity diagram has transition coverage, activity coverage,

concurrent-path coverage, and simple-path coverage criteria (Shirole & Kumar, 2013).

However, the transition coverage is the most commonly used method in the activity

diagrams, as presented in Table 2.1.

2.7.2 Test Generation Approaches Using UML Sequence Diagram

In the UML sequence diagram shown in Figure 2.11, the control structures and the

sequence of messages between the objects, which contains group of objects and

messages, are described. The lines in the objects represent messages and the lifelines

represent objects. The messages show an association among the objects to complete

the system functionality, and they are exchanged from top to bottom in a natural order

sequentially.

A UML sequence diagram is an illustration of the successful and unsuccessful event

collaboration between the objects. Consequently, this diagram is useful in integration

testing (Specification, 2007). For each use case, to understand the dynamic behaviour

of the system, a UML sequence diagram is drawn.

 62

Figure 2.11. Simple UML Sequence Diagram for ATM Machine

Pilskalns et al. (2003) presented a method to generate test cases using UML sequence

diagrams. They also presented a new graph that summarizes many paths that exist

between objects, using their own method, and called it object method acyclic graph

(OMDAG). To generate the test cases, they generated test paths by crossing OMDAG

using DFS or BFS algorithms. Thereafter, they selected the suitable parameter and

attribute values for object instantiations that cause the execution of the required test

sequence. Finally, all tests were defined in the object method execution table. To

accomplish the coverage criteria of this study, all message paths, and full predicate

coverage were measured.

Li, Li, Qing, and Chen (2007) presented an approach to automatically generate a test

case from a UML sequence diagram. To amend the UML limitations, they used the

Object Constraint Language (OCL). In the beginning, they constructed a tree

representation of sequence diagrams. Then, the traversal of the constructed tree for

 63

selecting conditional predicates from the sequence diagram was carried out. Then, to

generate test data, they selected conditional predicates and OCL pre- and post-

condition expressions for each path. A function minimization technique was also used

to generate the test data. Furthermore, the coverage criteria focused on message, path,

and condition coverage.

Dinh-Trong, Ghosh, and France (2006) presented a systematic approach to generate

test inputs from UML class and sequence diagrams. Test case generation information

was collected in a directed graph called variable assignment graph from sequence and

class diagrams. This approach adopts a symbolic execution method to derive test input

constraints from the presented graph and solves these constraints with the alloy

constraint solver. In addition, their coverage criteria focused on all message paths and

condition coverage.

Shirole and Kumar (2010) proposed a hybrid approach to generate test cases for MBT

that uses the information from UML sequence diagram and genetic algorithm. Test

cases have evolved through generations to correct sequence flows of execution.

Therefore, they used a method named call dependencies to show the sequence diagram,

which is useful for integration testing. The generation of test cases using genetic

algorithm improved the exception coverage as well as method coverage. The coverage

criteria focused on message sequence coverage.

Nayak and Samanta (2010) proposed an approach to generate test cases from the

information embedded in UML sequence diagrams, class diagrams, and OCL

constraints. In their study, a structured composite graph was generated from class

diagrams and OCL constraints to improve a sequence diagram with constraint

 64

information and attribute. They generated the test specifications from the structured

composite graph. In addition, their coverage criteria focused only on all path coverage.

As shown in Table 2.2, the UML sequence diagrams played a role in generating test

cases because these diagrams were also part of the requirements and development

diagrams. The table illustrates the input model, the method to generate the test case,

the use of the intermediate model as a medium, and the coverage criteria. In addition,

the use of DFS is quite prominent in generating the paths. Moreover, for the coverage

criteria, all message and path conditions are commonly used.

Table 2.2

Test Case Generation Methods Using UML Sequence Diagram

Author(s) Input

model

Method Intermediate

model

Coverage criteria

Pilskalns et

al. (2003)

Sequence

diagram

DFS or BFS traversal Object method

directed, acyclic

graph

All message paths,

full predicate

Li et al.

(2007)

Sequence

diagram

Traversal, function

minimization

Scenario tree Message, path,

condition

Dinh-Trong

et al. (2006)

Sequence

diagram

Symbolic execution,

constraint solver

Variable

assignment graph

All message paths,

condition

Shirole and

Kumar

(2010)

Sequence

diagram

Genetic algorithm Call dependency

graph

Message sequence

Nayak and

Samanta

(2010)

Sequence

diagram

DFS traversal, symbolic

execution

Structured control

graph

All paths

 65

2.7.3 Test Generation Approaches Using UML Statechart Diagram

Statechart diagrams in UML can be used to construct the dynamic aspects of a system.

This diagram consists of transitions, states, actions, and events (Rumbaugh et al.,

2004) and emphasizes the flow of control from state to state by illustrating a state

machine. A UML statechart is a comprehensive FSM with concurrency, hierarchy, and

communication, and these extensions allow small diagrams to express complex

behaviour in a modular method (Utting & Legeard, 2010).

The purpose of generating a test case using a UML statechart diagram is to verify the

relationship among the behaviour, state transition, state, action, and event (Kim et al.,

2011). This technique is used to determine if the system specifications are fulfilled

through the state-based motion of the system. In the state-based system, three reasons

caused the fault. First, the state diagram cannot accurately transfer the system function

specification. Second, the UML statechart diagram configuration is erroneous or

unreliable. Finally, the statechart diagram is converted to programmable code (Kim et

al., 2011).

Kim et al. (1999) proposed a method to produce test case generation for class testing

by using UML statechart diagrams. By deriving test cases, their method transformed a

UML statechart diagram into an extended finite-state machine (EFSM). In the resulting

EFSMs, broadcast communications were removed and the concurrent and hierarchical

structures of states were compressed. By transforming EFSMs, data flow was defined

into flow graphs. In the flow graphs, the conventional data flow was applied to analyse

the techniques. However, their work only discussed a method for the generation of test

cases and thus an automated environment would be needed in order to support the total

 66

process of class testing, also they focused on the unit testing of classes, but did not

consider inter-relationships between classes.

Hartmann et al. (2000) extended the UML diagrams with particular representations to

generate a design-based testing situation. First, a UML statechart diagram was issued

to define the active behaviour of each system part. Then, the connections between the

parts were identified. By interpreting the state diagrams, a global FSM was obtained.

This global FSM relates to the integrated system behaviour, which was used to

generate the test cases. The authors aimed at the stub generation problem, but how

their method reduces the number of manually crafted stubs remains unclear. The

interaction between the components was conducted via message exchange, which did

not contain parameters and values. In this thesis, no constraint on the message was

used. Furthermore, components interacted via message exchange containing

parameters and values.

Kansomkeat and Rivepiboon (2003) developed a transformation method from UML

statechart diagrams into intermediate diagrams that were used to generate test

sequences. The test cases were generated automatically from UML statechart diagrams

created by the Rational Rose tool. The testing coverage criterion was used to guide the

generation of test cases and to cover the intermediate model testing flow graph (TFG)

from the all-state coverage and all-transition coverage. Based on their fault detection

abilities, the test cases measured the effectiveness. From the generated test cases, the

results of simple test experiments had high effectiveness. However, usually, more than

one object often participated in the execution of a use case. Therefore, testing using

 67

this approach with the chance of such behaviour occurring will be difficult. In addition,

the approach did not generate multiple test data because of the lack of coverage.

Offutt, Liu, Abdurazik, and Ammann (2003) developed a method to automatically

generate test cases from UML statechart diagrams by changing events for Boolean

class attributes. The developments of many useful coverage criteria that were centred

on the UML statechart diagrams were found to be effective. Class-level testing was

the aim of their approach. This method attains transition pair coverage, transition

coverage, and full predicate coverage. Offutt and Abdurazik (1999) also provided

suitable visions on counting test prefaces that contain necessary inputs for the test

values to place the software into the suitable state. In their study, all transitions were

assumed to be triggered by change events. In addition, their approach did not handle

guards. In comparison, their work was not limited to any particular type of event or

transition. The developed algorithm from their work will handle change events, time

events, and transitions with guards.

Gnesi et al. (2004) offered a formal test case generation by providing a mathematical

basis for conformance testing and automatic test case generation for UML statechart

diagram that was established on an operational semantic. With transitions labelled by

input/output pairs, they proposed a formal conformance testing relation for input-

enabled transition systems. To succeed in the specified requirements, testing the

software was identified as conformance testing. Considering the formal specification,

a conformance relation defines the accuracy criterion of the implementation. However,

proper test selection strategies are needed to apply the test generation algorithm in

practice.

 68

Briand, Labiche, and Cui (2005) focused on creating a methodology using UML

statechart diagram to define the system state required for each event or transition,

which are part of the paths to be tested, input values for the parameter for all actions,

and events associated with these transitions. Their work generated a test case

specification involving a possible sequence of transitions. A requested sequence tree

was also constructed to develop the test restraints for the transition sequences and to

acquire the interactions among state-dependent objects in their work.

Li and Lam (2005) presented an approach to generate test sequences from UML

statechart diagrams using ant colony optimization. A UML statechart diagram was

transformed into an intermediate model called a directed graph. By exploring the

directed graph by a group of ants cooperatively, test sequences were generated. From

this generation, all-state coverage was achieved.

Santiago et al. (2006) presented a method to automate test case generation from UML

statechart diagrams using a software specification model. This method converts the

UML statechart diagram model into an XML-based language table. Moreover, by

using the performance chart tool, they generated an intermediate model as FSM based

on control flow. Their intention was to determine that by using a higher-level

technique, such as UML statechart diagrams, a complex software with clarity and rich

details can be presented. UML statechart diagrams are able to model a complex system

more realistically and provide hierarchy and parallelism for it. Although these

conditions are not enough to guarantee that a test case generation approach is

successful, an improvement was still observed especially when the conditions have

been compared with the use of Condado as an unconnected tool with FSM

 69

specification. In addition, the Condado implements the switch cover method for the

control part. A switch is a transition-to-transition pair, and their method generated test

cases to cover all pairs of transitions in the model in the coverage criteria.

Murthy et al. (2006) suggested a new foundation to generate test cases using the UML

statechart diagram as the basis model of behaviour. They also defined a test-ready

UML statechart diagram, which indicates that the model is ready with data for a test

generator to generate test scripts automatically from it. To generate the paths, the

researchers started from the starting vertex with a state transition and reconnoitred the

next vertex subsequent of its state transitions. A satisfied state transition provided

guard condition. The researchers solved the problem of generating the test case from

a UML statechart diagram by defining all the sentential forms derivable from an

equivalent extended context-free grammar model. Additionally, in the convergence

criteria, they achieved the path coverage and the basic path coverage.

Ali et al. (2007) projected a method for state-based integration testing. Their work

produced an intermediate test model called state collaboration test model (SCOTEM)

from the corresponding UML statechart diagrams and UML collaboration diagrams.

SCOTEM copies all possible paths for object state changes where message sequences

may be produced. Then, the model produces test paths centred on several coverage

criteria. For them, revealing the state-dependent interaction errors is the goal behind

the generated test cases. Their work reflects the analysis of all possible states of

cooperating levels in an interface.

Santiago et al. (2008) presented an environment called automated generated test case

based on statechart (GTSC) that allows a test designer to generate test cases based on

 70

statechart test criteria and FSM methods. This interesting characteristic allows test

sequence generation from both statechart and FSM techniques, which are based on the

same FSM. However, other comparisons need to be made, namely, all-paths-k-C0-

configuration of the statechart coverage criteria family (SCCF) as well as the round-

trip route testing offered by Binder (2000) and all-paths-k-configurations. Similarly,

more comparisons between the latest FSM-based methods are available, such as state

counting, and some SCCF criteria. Such an analysis will be enabled with the help of

mutation testing by GTSC in applying these test criteria methods.

Kosindrdecha and Daengdej (2010) proposed a new method to generate and prepare

both test data and test case based on UML statechart diagram, called TGfMMD

method. This method has been developed to verify the UML statechart diagram before

the generation of both test cases and test data from the extended UML statechart

diagram. However, this method has not been tested in a complex UML statechart

diagram.

Swain et al. (2010a) proposed a novel technique to generate test cases automatically

from UML statechart diagram and activity diagram. They constructed an intermediate

representation based on the model, which they named SAD. They generated the test

case from the use of SAD generation, DFS, and mutation analysis. In addition, to detect

harmonization of the UML statechart diagram as well as activity diagram faults within

a use case of the system exercise, an activity synchronization in the context of multiple

state combinations was used. They also achieved transition coverage and state/activity

path coverage. For the testing, they have implemented a prototype tool based on their

 71

approach. However, in their study, the tester should select the test data for each test

case manually.

Shirole et al. (2011) also worked on the automatic generation of a test case using a

UML statechart diagram. The researchers used the genetic algorithm as a medium for

their tool by combining the information from the UML statechart diagram. They

proposed a search-based approach to handle infeasible paths and test data generation.

They also used the following steps to generate the test cases. First, the UML

specifications were transformed into EFSM. Second, the EFSM was transformed into

an extended control flow graph. Third, test sequences were generated using genetic

algorithm and DFS. Finally, the test cases were selected using data-flow techniques.

In the coverage criteria, they focused on state cover, transition cover, all-definition

cover, and all du-paths. However, the UML statechart diagrams that they considered

were very simple, which led to reduced coverage when dealing with scenarios that are

more complex. Full path coverage is not obtained because of the use of DFS and fitness

function.

Li et al. (2012) presented a test case generation approach that takes UML statechart

diagrams as inputs. The researchers first constructed the UML statechart diagram to

conform to system requirements. Then, the .mdl file of the UML statechart diagram

was analysed, and the main information of the UML statechart diagram was extracted

and converted into a directed graph. Finally, an algorithm was designed to construct

the Euler circuit based on a directed graph and test cases were generated automatically

by Euler circuit algorithm. Their specified test coverage criteria were the state

coverage and transition coverage of UML statechart diagram to minimize the number

 72

of test cases. Although generated test paths were minimized, they still contained

redundant transitions.

In an earlier study, Swain et al. (2012c) proposed an approach to automatically

generate test cases from a UML statechart diagram. First, the researchers constructed

the UML statechart diagram for a given object. Then, the UML statechart diagram was

traversed, conditional predicates were selected, and these conditional predicates were

transformed into source code. Then, the test cases were generated and stored by using

function minimization technique. From the UML statechart diagram, they performed

a DFS to select the associated predicates. After selecting the predicates, they predicted

an initial dataset. They generated test predicate conditions from a UML statechart

diagram, which were used to generate test cases. Their technique accomplished limited

coverage in test cases such as transition pair coverage, state coverage, action coverage,

and transition coverage. The technique also achieved full-predicate coverage by

generating test data for each conditional clause. Moreover, the technique can handle

transitions with guards and achieve a transition path coverage. In the present study, the

quantity of test cases is minimized. By contrast, Swain et al. reached transition path

coverage in testing the limitations decided by simple predicates, but the test case needs

to be optimized.

Additionally, Swain et al. (2012b) proposed an approach for test case generation,

namely, test generation and minimization for O-O software with statechart

(TeGeMiOOSc). The researchers started by analysing the system, which was tested

and accepted by users, and then by building the UML statechart diagram. After they

converted the given UML statechart diagram into an intermediate model, they named

 73

it as a state transition graph. DFS was used to form test sequences and generate all the

possible paths. Then, all the valid sequences of the application were obtained until the

final edge was reached. Finally, they minimized a set of test cases by calculating the

state coverage for each test sequence. In the same year, Swain et al. (2012a) performed

a similar experiment to generate a test case from the UML statechart diagram, which

was called generation and minimization of test cases from statechart (GeMiTefSc).

First, the researchers built a UML statechart diagram model for SUT. Next, they

conjugated a state transition graph from a UML statechart diagram. Then, by using the

graph, all the required information were extracted. Next, they generated the test cases

by applying Wang’s algorithm (Linzhang et al., 2004). Finally, they minimized the set

of test cases by calculating the state coverage for each test case, which helped them

determine the test cases that were covered by other test cases. However, after creating

the intermediate graph, the researchers relied on DFS to generate the paths, which

resulted in reduced coverage when the UML statechart diagrams have loops and

feedbacks in it. Moreover, by using minimization, they minimized a set of test cases,

which caused overlapping or neglecting some of the important data, thereby leading

to less coverage.

Chimisliu and Wotawa (2012) in their earlier work proposed a method for generating

test cases aiming to automatically achieve transition coverage and state coverage of

the model. Their proposed approach presents an automatic transformation of the

system composed of communicating a UML statechart diagram into a language of

temporal ordering specification. They also showed how to generate test cases in a

semi-automatic way by using an input from the user as explanations on the UML

diagram. In their work, the generated test case coverage criteria did not contain any

 74

rejected transitions. Thus, the generation process was not as efficient as in the case

when the user provides explanations that can be used as rejected transitions in the test

purpose.

In their more recent work, Chimisliu and Wotawa (2013a) and Chimisliu and Wotawa

(2013b) proposed an improved tool for test case generation from UML statechart

diagram by using control, data, and communication dependencies. They generated the

test cases by using the TGV technology (Claude & Thierry, 2002), which is a test case

generator from the analysis and the construction of distributed processes toolbox. For

the coverage criteria, their generation technique was intended to achieve transition

coverage only. Therefore, the lack of coverage indicates the need to enhance this

method or obtain a novel one.

Li, Li, Tan, and Xiong (2013b) presented an approach using extended context-free

grammar to generate test cases from a UML statechart diagram. They used the context-

free grammars and UML statechart diagram as inputs, to perform an automated

consistency simulation for UML specification. First, they refined the source file of the

UML statechart and transformed it automatically into an intermediate model called

directed diagram. Then, they introduced the concept of PLAY-Tree; the consistency

checking of the UML statechart diagram is defined, where the existence of a

corresponding PLAY-Tree in all successful branches was checked. Their work only

satisfied the transition coverage criterion and state coverage criterion from many paths.

Ali et al. (2014) proposed a test-case-based technique using the UML state diagram.

They transferred the UML statechart diagram into an intermediate graph, which is the

FSM. Each node in this graph stores the necessary information for the test case, which

 75

will be generated later. They also used additional parameters for test case generation,

including pre- and post- conditions and object constraint language. By using FSM as

input to BFS, Ali et al. generated and transformed all basic paths to obtain a suitable

test case using the test-set generation algorithm. The generated test cases satisfied the

transition, transition pair, and state coverage criteria. However, apart from ignoring

loops, these cases required additional inputs to satisfy the coverage criteria.

Table 2.3

Test Case Generation Methods using UML Statechart Diagram

Author(s) Input

model

Method Intermediate

model

Coverage

criteria

Evaluation

Kim et al.

(1999)

Statechart Data flow EFSM - Comparison

Hartmann

et al.

(2000)

Statechart Test Development

Environment, test

specification

language (TSL)

Directed graph Transitions Comparison

Kansomke

at and

Rivepiboo

n (2003)

Statechart Parsing TFG,

mutation analysis

TFG State, transition Mutation

Analysis

Offutt et

al. (2003)

Statechart Spectest, software

cost reduction

Specification

graph

Transition, full

predicate,

transition pair,

complete

sequence

Comparison

Gnesi et al.

(2004)

Statechart IOLTSs, random

test selection

- - Comparison

 76

Table 2.3 Continue

Author(s) Input

model

Method Intermediate

model

Coverage

criteria

Evaluation

Briand et

al. (2005)

Statechart Normalization and

analysis of

operation contracts

and transition

guards

Invocation

sequence tree

Transitions,

transition pairs,

full predicate,

round-trip paths

Case Study

Li and

Lam

(2005)

Statechart Ant colony

optimization

Directed graph States -

Santiago et

al. (2006)

Statechart PerformCharts and

Condado

FSM Transition pair Case Study,

Simulation

Murthy et

al. (2006)

Statechart Extended UML

statechart model

Context-free

grammar

model

Path, basic path -

Ali et al.

(2007)

Collaborati

on and

statechart

SCOTEM

constructor, test

path generator, test

executor

SCOTEM Basic path,

transition, N-

path, and path

Mutation

Testing

Santiago et

al. (2008)

Finite state

machines

and

statechart

Switch cover,

distinguishing

sequence and

unique input/output

methods

FSM Transitions Comparisons

Kosindrde

cha and

Daengdej

(2010)

Statechart TGfMMD method Sketch

diagram-based

technique

States Comparison

Swain et

al. (2010a)

Statechart

and

SAD generation,

DFS, mutation

analysis

SAD State, transition,

path

Mutation

Analysis

 77

Table 2.3 Continue

Author(s) Input

model

Method Intermediate

model

Coverage

criteria

Evaluation

 activity

chart

Shirole et

al. (2011)

Statechart Genetic algorithm Extended

control flow

graph

State, transition,

definition, and

du-path

Empirical

Study

Li et al.

(2012)

Statechart Euler circuit

algorithm

Directed graph State, transition Comparison

Swain et

al. (2012c)

Statechart

DFS, Model JUnit

Statechart

graph

State, transition,

transition pair

Comparison

Swain et

al. (2012b)

Statechart TeGeMiOOSc State graph State, action,

transition,

transition path,

condition

Comparison

Swain et

al. (2012a)

Statechart GeMiTefSc State graph State, action,

transition, path,

condition

Comparison

Chimisliu

and

Wotawa

(2012)

Statechart TGV test case

generation tool

Test purpose Transition, state A case study

comparison

Chimisliu

and

Wotawa

(2013a)

Statechart TGV and the

Input/Output

Conformance

(IOCO) theory

Test purpose Transition A case study

comparison

 78

Table 2.3 Continue

Author(s) Input

model

Method Intermediate

model

Coverage

criteria

Evaluation

Chimisliu

and

Wotawa

(2013b)

Statechart TGV and IOCO Test purpose Transition A case study

Comparison

Li et al.

(2013b)

Statechart Extended context-

free grammar

Directed

diagram

Transition, state -

Ali et al.

(2014)

Statechart

and use

case

BFS FSM Transition,

transition pair,

state

Comparison

Table 2.3 reviews the studies of some researchers in the past decade and the input

models that they used, such as the UML statechart diagram or its combination with

others, and the method they used to generate the test cases. Additionally, the

intermediate model and coverage criteria are illustrated in the table.

These studies illustrated that the integration of UML statechart diagram in generating

the test case for the software development process and the MBT is important. The

conclusions from these studies describe that most of them need to translate the UML

statechart diagram into other descriptions, such as a graph or a table (intermediate

model), which are derived from the test cases. In the present study, an intermediate

table was adapted. In addition, several studies focused on the use of DFS as a basis to

generate the test paths. However, the present work provides an algorithm to generate

the test paths. Furthermore, this review emphasizes the importance of achieving all-

state coverage and all-transaction coverage in conducting coverage criteria.

 79

This section have reviewed 24 studies in generating test cases from UML statechart

diagram. In most of the techniques, it has been observed that their number of processes

ranges from four to six for generating test cases. It has also been perceived that few of

the techniques used one supporting diagrams with UML statechart diagram in order to

generate test cases. It has been spotted that there are similarities in the processes to

generate the test cases using UML sequence, activity, and statechart diagram, like the

intermediate table and test path generation. The inconsistency in the process used in

generating test cases for the existing works has raised the need to have a framework

that will have a complete set of process to generate test cases. This proposed

framework is based on the review of all these diagrams.

From the literature survey, it has been analysed that only quarter of the studies have

consider using minimization on the generated test cases or sequences, and most of this

studies used metaheuristic algorithms to achieve this, however prioritization was not

adapted with the use of UML statechart diagram at the time of this study. So far, there

is no technique that claims to generate test cases in an optimal way and still, there is a

rich space available for researchers to work in this area.

Similarly, out of total number of studies, comparison was most commonly used with

60% of the total reviewed studies used it to evaluate the generated test cases. Mutation

testing was also used by 12% of studies; however, this method is a structural testing

technique, which uses the structure of the code to guide the testing process.

Nevertheless, 12% of studies did not reveal their evaluation methods.

Likewise, from surveying these studies, in Table 2.3 to pin down the most frequently

used coverage criteria in test case generation from UML statechart diagram; it shows

 80

that the most commonly used coverage criteria are all-transition coverage (36%), all-

state coverage (24%), and all-transition-pair coverage (12%), as illustrated in Figure

2.12.

Figure 2.12. Coverage Criteria from Previous Work

To compare the present study with the previous works, five studies have been selected,

including those by Ali et al. (2007), Swain et al. (2010a), Swain et al. (2012c),

Chimisliu and Wotawa (2013b), and Ali et al. (2014), which are presented in Table

2.3. These studies have been selected according to the inputted diagram, outputted test

cases, revealed coverage criteria percentage, and method structure. The full

comparison can be viewed in Section 5.2.2 of Chapter 5.

2.8 Test Case Minimization and Prioritization

To reduce redundancy in generated test cases for SUT, two approaches have been

explored. The first approach is test case minimization technique that is used to

All-State
24%

All-Transitions
36%

All-Transitions-
Pair
12%

All-Path
7%

Basic-Path
5%

Others
16%

COVERAGE CRITERIA

 81

eliminate the redundant test cases (Omotunde et al., 2016). This technique is used to

automatically select a minimum set of test cases used before for testing a complex

software product (Xiong, 2011). The second technique is test case prioritization, where

the test cases are prioritized chronologically based on their importance and coverage

(Omotunde et al., 2016). This method prioritizes and schedules test cases in an

appropriate order. Test cases that are having higher priority must be run before than

the lower priority test case in order to minimize time, cost and effort during software

testing phase (Ghai & Kaur, 2017). In both approaches, the generated test cases should

necessarily detect faults in the system while maintaining a good coverage (Omotunde

et al., 2016).

The quality of the system is evaluated by executing the test cases. To measure the

quality of the generated test cases that contain both important and unimportant test

cases, which need to be reduced by using some systematic procedure. Test case

generations need to be effective in terms of both time and resources (Sumalatha &

Raju, 2014). In the generated test cases, the possibility of redundant test cases needs

to be reduced and eliminated, which leads to the process of test case minimization.

Test case minimization is also called test case reduction (Hooda & Chhillar, 2014).

The purpose of test case minimization is to reduce the number of the test cases using

method and technique, while maintaining the coverage criteria (Sumalatha & Raju,

2014).

Minimization procedure is applied to maximize coverage, decrease computational

complexity, increase fault detection rate, and minimize running time (Sumalatha &

Raju, 2014). Studies were conducted to generate a minimized number of test cases

 82

with the same coverage criteria as the original generated test cases (Ahmed, 2016;

Belli & Hollmann, 2008; Srivastava, Baby, & Raghurama, 2009; Srivatsava,

Mallikarjun, & Yang, 2013). These studies addressed the test case minimization

problem with the advantage of producing test cases that are optimal while considering

the coverage criteria.

Generating optimal test sequences and prioritizing the test sequences are still

challenging tasks (Panthi & Mohapatra, 2015). According to Tomar and Singh (2016),

no complete method is able to find optimal test cases up to the present. However, many

researchers used a number of methods to reach optimal possible test cases. The most

commonly used methods used by researchers to minimize the number of test cases

include ant colony optimization, bee colony optimization, PSO, genetic algorithm, and

firefly algorithm (Dubey, Singh, & Singh, 2016; Gulia & Chillar, 2012; Kulkarni,

Naveen, Singh, & Srivastava, 2011; Mala, Kamalapriya, Shobana, & Mohan, 2009;

Rhmann & Saxena, 2016; Sahoo et al., 2016a). These methods try to generate test data

in an automated manner to facilitate the task of software testing (Srivatsava et al.,

2013). Therefore, numerous studies have been conducted to minimize the test

sequences or test cases (Srividhya & Alagarsamy, 2014).

As shown in Table 2.4, the genetic algorithm is commonly used to minimize the

number of test cases. However, the genetic algorithm includes no memorization,

delayed convergence, risk of suboptimal solution, and nonlinear optimization (Baudry,

Fleurey, Jézéquel, & Le Traon, 2005; Mala, Ruby, & Mohan, 2012). Therefore, a

global optimal solution using genetic algorithm has no guarantee of success even when

it is reached (Mala & Mohan, 2009). In addition, generating optimized test cases

 83

requires more time compared to other methods (McCaffrey, 2009). Bee colony

optimization for test case minimization seemed to work effectively for programs with

small sizes. However, as the size of software increases, finding paths and test data

becomes more difficult (Lam, Raju, Ch, & Srivastav, 2012) because the bee colony

optimization method may be trapped in local search space and the number of iterations

is quite high (Srivatsava et al., 2013).

The firefly algorithm, is a new nature-inspired algorithm, it is widely used to solve

minimization problems, also results in efficient prioritization of the generated test

cases (Choudhary, Gigras, & Rani, 2016; Kwiecień & Filipowicz, 2012; Panthi &

Mohapatra, 2015). According to Hashmi, Goel, Goel, and Gupta (2013) the firefly

algorithm performed really well in optimizing the results. The firefly algorithm has

various advantages like being robust, accurate, and easy to be implemented

(Choudhary et al., 2016). In study conducted by Sahoo et al. (2016a), they found that

the test cases processed by firefly algorithm in compared with PSO, bat, harmony

search, and cuckoo search, reveals optimal result with efficiently in very less time and

with more accuracy. Furthermore, compared to the genetic algorithm and PSO

techniques, the firefly algorithm reduces the overall computational effort by 86% and

74%, respectively (Panthi & Mohapatra, 2015; Yang & He, 2013). In addition,

according to a survey by Kavita, Shilpa, Yogita, Payal, and Akshath (2015), the Meta

heuristic approach firefly algorithm has proven to be successful minimization test case

generation method. Their results covers each and every vertex of the graph of problem

under test. Therefore, this study uses a firefly algorithm to minimize and prioritize test

cases.

 84

Table 2.4

Test Case Minimization Methods

Author(s) Method Objective

McCaffrey (2009) Genetic algorithm Generation of minimal all-pair test cases

Mala and Mohan

(2009)

Bee colony optimization Non-pheromone-based test case optimization

Dahiya, Chhabra,

and Kumar (2010)

Bee colony optimization Automatic generation of structural software

tests

Mala and Mohan

(2010)

Hybrid genetic algorithm Test case optimization during the solution

generation process by improving the quality of

test cases

Suri, Mangal, and

Srivastava (2011)

Genetic algorithms and bee

colony optimization

Regression test case reduction

Srivastava et al.

(2009)

Ant colony optimization Optimal test path identification

Panthi and

Mohapatra (2015)

Firefly algorithm Prioritization of test sequence generation

Rhmann and

Saxena (2016)

Firefly algorithm Prioritization of generated test paths

Dubey et al.

(2016)

Ant colony optimization Test case optimization for automated testing

SahSahoo et al.

(2016a)

Firefly algorithm Test sequence generating and optimize the

generate test sequence

2.8.1 Firefly Algorithm

The firefly algorithm is a bio-inspired metaheuristic algorithm (Panthi & Mohapatra,

2015) that was proposed at Cambridge University by Xin-She Yang; the concept is

inspired by the behaviour of fireflies. Approximately 2,000 species compose the firefly

 85

species, and most of them produce rhythmic and short flashes of light. Their generated

flashing light may serve as warning signals or an element of courtship rituals

(Kwiecień & Filipowicz, 2012; Yang, 2010). The firefly algorithm is inspired by the

flash pattern and characteristics of fireflies. This technique is used for solving

optimization problems (Rhmann & Saxena, 2016).

Test case generation is demanding and costly. Thus, an effective technique that will

minimize redundant generated test cases is needed. Furthermore, for effective testing,

the concept of test prioritization is often applied to run the test cases, which may reveal

faults earlier in the testing process (Rhmann & Saxena, 2016).

The objective function of the firefly algorithm is based on differences in light intensity

of a given optimization problem. Brightness helps fireflies to move toward brighter

and more attractive locations and to obtain optimal solutions (Kwiecień & Filipowicz,

2012). The firefly algorithm uses the following idealized rules (Yang, 2010):

1. All fireflies are unisex, so regardless of their sex, one firefly will be attracted

to the brightness of other fireflies.

2. Attractiveness is related to the brightness of fireflies. Therefore, for any two

fireflies, the less bright one will move toward the brighter one. Attractiveness

is relative to distance; brightness decreases as the distance between the fireflies

increases. If the two fireflies have the same level of brightness, then one of

them will move randomly.

3. The brightness of a firefly is determined or affected by the landscape of the

objective function.

 86

Based on these rules, the basic steps of a firefly algorithm can be summarized in the

pseudocode shown in Figure 2.13. The two essential components of the firefly

algorithm are the formulation of attractiveness of the firefly and the variation of light

intensity. For simplicity, this study assumes that the attractiveness of a firefly is

determined by its brightness.

Figure 2.13. Pseudocode for Firefly Algorithm
Source: Yang and He (2013)

The intensity of light is inversely proportional to the square of the distance, say 𝑑𝑑,

from the source. Thus, the intensity at 𝐼𝐼(𝑑𝑑) varies according to the inverse square

law,𝐼𝐼(𝑑𝑑) = 𝐼𝐼𝑠𝑠/𝑑𝑑2, where 𝐼𝐼𝑠𝑠 is the intensity at the source point. In the simplest form,

the brightness on intensity 𝐼𝐼 of a firefly at a particular location x can be chosen

as 𝐼𝐼(𝑑𝑑) ∝ f(x).

 87

When light passes through a medium with light absorption coefficient of λ, the light

intensity 𝐼𝐼 varies with distance, say d, which is given as follows:

𝐼𝐼(𝑑𝑑) = 𝐼𝐼0𝑒𝑒−λ𝑑𝑑
2 (2.1)

where 𝐼𝐼0 is the intensity at the source. The approximation of the Gaussian form in

Equation 2.1 is obtained by using the combined effect of inverse square law and

absorption, which is given as follows:

 𝐼𝐼(𝑑𝑑) =
𝐼𝐼0

1 + λ𝑑𝑑2
 (2.2)

Similarly, the attractiveness of a firefly can be defined as follows:

𝐴𝐴(𝑑𝑑) =

𝐴𝐴0
1 + λ𝑑𝑑2

 (2.3)

where 𝐴𝐴0is the attractiveness at 𝑑𝑑 = 0 and 𝐴𝐴(𝑑𝑑) is the attractiveness of the vertex at

distance 𝑑𝑑.

2.8.2 Minimization and Prioritization Methods in Test Case Generation

In this section, a review of the techniques used for an automatic test case generation

with test case minimization and/or prioritization is presented.

Srivastava et al. (2009) proposed a technique that used ant colony optimization for

path prioritization; the researchers used the directed graph to show the system and

presented different paths of the model during the execution. Their method

automatically selects the best path sequence that covers the maximum coverage by

calculating the strength of each path.

 88

Panthi and Mohapatra (2015) proposed a firefly-optimization-based approach for test

sequence generation and prioritization using a composite state in the UML state

machine diagram. Using the proposed algorithm, a group of fireflies can effectively

explore the UML state machine diagram and automatically generate test sequences to

achieve the test adequacy requirement. Redundant exploration of the state diagrams

and the iteration over the state loops are avoided through the construction of the

feasible control flow graph. The use of the firefly algorithm resulted in the efficient

prioritization of the generated test sequences. However, they did not generate the test

cases or consider about coverage criterion.

Rhmann and Saxena (2016) proposed a UML-model-based test paths generated from

UML activity diagram using the firefly algorithm. Their approach is based on the

complexity of different constructs of the UML activity diagram. They used cyclomatic

complexity and information flow metric to prioritize generated test paths. Cyclomatic

complexity and information flow metric can be calculated from the adjacency metric

of the flow graph of the UML activity graph.

Dubey et al. (2016) proposed an optimized test case system for the automated testing

using ant colony optimization. To improve the performance of the testing process, they

used data mining techniques to reduce the size of the test cases. In their study, a

technique called parallel early-binding recursive ant colony optimization system was

presented with automated testing to provide an efficient way of software testing.

Sahoo et al. (2016a) proposed the firefly algorithm to generate test sequence using test

data and then optimize the generated test sequence. Test data values are selected based

on the fitness function. Their work described how the test sequence are generated using

 89

the firefly algorithm and how they are useful in finding the optimal solution to

maximize the problem. In their study, they found that the firefly algorithm is more

accurate than other methods and the algorithm is able to generate automated test cases

with test data efficiently.

The previous studies (Dubey et al., 2016; Panthi & Mohapatra, 2015; Rhmann &

Saxena, 2016; Sahoo et al., 2016a; Srivastava et al., 2009) focused on minimization

and prioritization for the test sequence, where they only generate the paths and didn’t

generate the test cases. They used many types of methods and techniques to achieve

their objectives. However, these studies provide preliminary data on the test cases as

test sequence; also, the coverage criteria of the generated sequences was not taken into

consideration. The conclusion from these studies describe that the use of firefly

algorithm is the optimal selection for minimization and prioritization of the present

study generated test cases.

2.9 Test Case Generation Process and Components

Software developers often use a framework to design their systems. A framework is a

concept where the software provides general functionality that can be changed by user

code, thus providing application specific software. A framework is therefore a

universal and reusable software platform for the efficient development of applications

(Waller, Dresselhaus, & Yang, 2013). A framework is a software environment that is

designed to simplify application development and system management for a

specialized application domain. It is a layered structure indicating what kind of

programs can or should be built and how they would connected (Bernstein, 1996). A

framework may be for a set of functions within a system and how they interrelate; the

 90

layers of an operating system; the layers of an application subsystem; how

communication should be standardized at some level of a network; and so forth. This

section presents the studies that explained the processes and important components

used in generating test cases to design the test case generation framework.

The components of a test case differ from system to system. However, in its simplest

form, the components are a series of events that lead to a certain execution path with

certain conditions. The values for attributes and parameters can be generated on the

basis of any constraint and then supplied to the program for test execution (Rapos,

2012).

Test case generation has a strong influence on the effectiveness and efficiency of the

complete testing process and is one of the most critical knowledge-demanding tasks

(Bertolino, 2007; Zhu et al., 1997). Test cases are typically generated from manual or

automatic inputs. Manual generation depends on the expertise of the software testers.

However, existing methods for the automatic generation of test cases still need to be

enhanced and improved (Koong et al., 2012).

The test case generator contains three main phases, which are essential in generating a

test case from UML diagrams (Vernotte et al., 2014). These phases are shown in Figure

2.14. The first phase analyses the developed components of the system and delivers

the data to the second phase. The second phase investigates the data to determine the

appropriate paths; these paths may represent the high coverage criteria. The third phase

tests these paths as arguments. The third phase may provide feedback to the second

phase regarding any impracticable paths (Edvardsson, 1999).

 91

Figure 2.14. Architecture of a Test Case Generator System
Adapted from Edvardsson (1999)

Test cases will be generated with the help of stored strings in the database, which are

in the form of tables. In the database, the table of the UML statechart diagram

documents each particular message of the UML statechart diagram to generate test

cases by extracting the correlating information (Karambir & Kuldeep, 2013). When a

class name has been found, it will be entered to the database with the related class

attributes along with its operations, attributes, cardinality, dependency, inheritance

classes, and every stored string.

According to Boghdady, Badr, Hashem, and Tolba (2011a); Shanthi and Kumar

(2012); Verma and Dutta (2014), a reduced form of the stored database (i.e., a

dependency table) is needed. This table is generated from the database, created for

each UML diagram in any system, and is called a state relationship table (SRT), which

covers all the functionalities in the UML diagram. The SRT is then used to

 92

automatically generate a directed graph called state relationship graph (SRG), which

is used in conjunction with the SRT as an intermediate model (Boghdady et al., 2011b).

The SRG will be used later to generate all possible test paths. Furthermore, the

reliability of the intermediate model will increase by conducting a consistency check

and entering automatic information.

Converting the UML statechart diagram specifications into an SRT does not generate

a blind SRG product of the basic states within each parallel component. The generated

machine is the possible combination of configurations based on the simulated events

(Santiago et al., 2006). Moreover, one or more arcs can be pruned to avoid generating

a large graph (Salman & Hashim, 2017) because it removes unnecessary vertices on

the entire graph (Kang, Lee, Lee, Yoon, & Shin, 2015). Pruning reduces the graph

needed to be tested and thus minimizes the number of vertices that are processed (Chan

& Lim, 2007). Notably, graph pruning has a serious drawback of not testing the entire

machine (Santiago et al., 2006). By contrast, a modified version named path pruning

ignores only the states with minimum effect on the system, thereby making it

applicable to generate test cases for complex systems.

The SRG describes the logic structure of a software module as follows: the vertices

represent computational statements or expressions, the edges represent the transfer of

control between vertices, and each possible execution path of the module has a

corresponding path from the entry to the exit vertex of the graph (Shirole et al., 2011).

Therefore, after formulating all the necessary information, an algorithm is necessary

to generate all the possible paths (Hashim & Salman, 2011; Kundu & Samanta, 2009)

based on several possible coverage criteria. From the generated paths, a test case

 93

generation algorithm will generate the test case (Swain et al., 2012b; Swain,

Mohapatra, & Mall, 2010b).

According to Hooda and Chhillar (2014), the next phases of the life cycle of a test case

(as shown in Figure 2.15) are test case generation, test case selection, test case

minimization, and test case prioritization. However, Srivatsava et al. (2013) suggested

minimizing and prioritizing the test paths before generating test cases because the test

paths are more modifiable as the test case generation depends on the data of test paths.

Figure 2.15. Test Case life cycle
Adapted from Hooda and Chhillar (2014)

Test case selection is a method of selecting a subset of test cases from a test suite to

reduce the time, cost, and effort in the software testing process. This method is highly

similar to the test case minimization technique (Hooda & Chhillar, 2014). Therefore,

this study will adapt the test case minimization technique in its framework and select

the first state from the prioritization as the best test case.

 94

From the preceding discussion, this study will propose a test case generation

framework that combines the preceding processes and components. The proposed

framework for test case generation will be composed of eight modules, which include

SRT, SRG, consistency checking, test path minimization, test path prioritization, path

pruning, test path generation, and test case generation. The framework is shown in Fig.

3.2 in Chapter 3.

2.10 Test Coverage Criteria Selection

This study aims to measure the quality of generated test cases. To measure the quality

of a set of test cases, a criterion is necessary (Miller, Padgham, & Thangarajah, 2010).

A sequence of conditions that satisfy certain coverage criteria are called test cases

(Rhmann & Saxena, 2016). Moreover, coverage criteria are used to evaluate how well

a system is exercised by a set of test cases (Fraser & Wotawa, 2007). Therefore, this

section considers coverage criteria measurement for the generated test cases.

Coverage criteria (or adequacy criterion) on software systems can be defined as the set

of conditions and rules imposing a set of test requirements on a software test (Saifan

& Mustafa, 2015). A number of coverage criteria are available for testing, and most of

them are based on the information of control and data flows (Hong & Ural, 2004). Test

coverage criteria enhance the generation of comprehensive test cases based on the

number of elements to cover or visit within a diagram.

Coverage criteria are a popular heuristic means to measure the fault detection

capability of test cases (Weißleder, 2010). A test coverage criterion is a crucial factor

 95

in validating and analysing the test adequacy of test cases (Shirole & Kumar, 2013). It

can also be used to direct and stop the test case generation processes.

Test coverage specifies the degree of the testing standard such as basis path testing or

path testing being achieved. The whole performance from the beginning to the end is

represented in a path (Kusumoto, Matukawa, Inoue, Hanabusa, & Maegawa, 2005).

Path testing is a testing technique where a set of paths is selected from the domain of

all possible paths through the program (Goodubaigari, 2013).

A series of statements, instructions, or high-level design is called a software path. This

path begins with a decision, junction, or entry and comes to end at the same or different

decision, exit, or junction. Moreover, the path may experience many decisions,

processes, and junctions once, twice, or more (Mall, 2009).

The use of the test case generation to drive path testing is thus suitable. The next

problem is the testing criteria. The program input domain can be divided into a path

by using a suitable test criterion. In addition, the strongest criterion in the path testing

family is the path coverage (Goodubaigari, 2013).

The performing path from the beginning to end, which performs any loop only once,

is called basis path testing. This path can be identified from other forms of basis path

through one-state activity nod or one-edge activity nod (Salman, Hashim, Rejab,

Romli, & Mohd, 2017). Basis path testing also refers to the testing of all basis paths.

This path testing fulfils the requisites of branch testing, and the independent paths that

can be applied to make an arbitrary path will be tested (Jorgensen, 2013). In other

words, basis path testing is a combination of branch testing and path testing.

 96

When applying model-based coverage criteria to a model, they can be compared by

subsuming them. This subsuming coverage criterion is considered stronger than the

individually subsumed coverage criterion. For example, in satisfying the coverage, all

transition coverage is considered the minimum coverage criterion. Most of the

commercial test generator tools are only able to satisfy slightly weak coverage criteria

(Budnik, Subramanyan, & Vieira, 2008). For example, the Smartesting LTD tool is

only able to cover all-transition coverage criteria (Weißleder & Sokenou, 2010).

Therefore, the only choice for the users of such tools, when they want stronger

coverage criteria, is to buy a new test generator tool or create their own. In this study,

the test case generation framework was developed in such a way that it cover more

coverage by fulfils the impartment coverage criterion. This current methods for

supporting the test case generation is now only able to satisfy a limited set of coverage

criteria (Weißleder, 2010).

For every test case generation method, certain targeted features need to be specifically

tested in the system. The tested targeted features can be specified using test coverage

criteria. The full-coverage criteria based on a model will be achieved when the test

reaches all model parts at least once (Pahwa & Solanki, 2014).

This section introduces the eight most common transition-based coverage criteria used

in MBT test case generation, namely, all-state coverage, all-configuration coverage,

all-transition coverage, all-transition-pair coverage, all-loop-free-path coverage, all-

one-loop-path coverage, all-round-trip coverage, and all-path coverage (Utting &

Legeard, 2010). These criteria are shown in Figure 2.16.

 97

Figure 2.16. Hierarchy of Transition-based Coverage Criteria
Source: Utting and Legeard (2010)

Notably, the all-loop-free-paths, all-one-loop-paths, and all-round-trip coverage

criteria can be relatively inadequate because they do not guarantee that all states (let

alone all transactions) are covered (Utting & Legeard, 2010). Also from surveying the

studies related to automatic test case generation using UML state diagram in Table 2.3;

that the most commonly used coverage criteria are all-state coverage, all-transition

coverage, and all-transition-pair coverage, as can be seen in Figure 2.12.

Using an extreme example, a UML statechart diagram primarily loops around a self-

transition a few times until a counter reaches a particular value, which then enables the

transition leading to the rest of the UML statechart diagram (Utting & Legeard, 2007).

For this example, the all-loop-free-path criterion can be satisfied with an empty test

case, the all-round-trip criterion can be satisfied with only a single test (one loop

around the self-transition), and Binder’s algorithm for generating an all-round-trip test

case can generate tests containing unsatisfiable guards, thereby disabling execution

(Utting & Legeard, 2010).

 98

This finding shows that these coverage criteria should be combined with other criteria,

such as all-state or all-transition criteria, to ensure that the entire UML statechart is

covered (Utting & Legeard, 2007). Utting and Legeard (2010) recommended that all

test cases generated from transition-based models satisfy all-transition coverage as a

minimum measure of quality. The following are the proposed coverage criteria for the

UML statechart diagram:

• All-state Coverage

Visiting every model state at least once through a test case is required (Li & Lam,

2005; Utting & Legeard, 2010). This criterion covers all states in every statechart

diagram for basic test generation. State coverage is a test adequacy criterion

requiring tests to check the output variables of a program. All variables defined

when executing a test scope (even those that are invisible, such as private fields of

objects) are considered by state coverage (Swain et al., 2012c).

However, the all-state coverage criterion is considered the weakest structural

coverage criterion (Devroey et al., 2014); still, few studies adapted this coverage

criterion (Chimisliu & Wotawa, 2012; Kansomkeat & Rivepiboon, 2003;

Kosindrdecha & Daengdej, 2010; Li & Lam, 2005; Li et al., 2012; Shirole et al.,

2011; Swain et al., 2012a, 2012b; Swain et al., 2012c). Therefore, for its

importance and wide usage, this coverage criterion is considered in this study.

• All-transition Coverage

The transition coverage specifies that each transition must be fired at least once in

some test cases (Devroey et al., 2014; Utting & Legeard, 2010). To test a transition,

the test case requires that the object under test be in the accepting state of the

 99

transition. The technique does not place any constraint on how to reach the

accepting state (Al Dallal & Sorenson, 2006). This coverage criterion is proposed

by several authors in generating test cases from statechart diagrams (Ali et al.,

2007; Chimisliu & Wotawa, 2012; Chimisliu & Wotawa, 2013a, 2013b; Hartmann

et al., 2000; Kansomkeat & Rivepiboon, 2003; Li et al., 2012; Offutt et al., 2003;

Santiago et al., 2006; Santiago et al., 2008; Shirole et al., 2011; Swain et al., 2012a,

2012b; Swain et al., 2012c; Swain et al., 2010a). Therefore, this coverage criterion

is one of the most commonly used, and this study considers this coverage criterion.

• All-transition-pair Coverage

The all-transition-pair coverage considers adjacent transitions successively

entering and leaving a given state. This coverage specifies that, for each state, each

couple of exiting transition has to be fired at least once (Devroey et al., 2014).

Thus, the all-transition-pair coverage includes the all-transition coverage. The all-

transition-pair coverage criterion generates more test cases than the all-transition

coverage criterion (Blanco, Fanjul, & Tuya, 2010). Given that the all-transition-

pair coverage is not widely used by researchers, Briand et al. (2005); Offutt et al.

(2003); Santiago et al. (2006) used the all-transition-pair coverage in their studies.

For the transition coverage, pairs that are executable by at least one product are

considered in the ratio that covers the parallel path (Devroey et al., 2014).

Therefore, this study considers this coverage for its importance to the parallel path.

• All-configuration Coverage

Visiting every configuration of the UML statechart diagram at least once is

required. This coverage criterion and the all-state coverage for systems with no

 100

parallelism are the same (Utting & Legeard, 2010). Thus, for this study, this

coverage criterion is not considered.

• All-one-loop-path Coverage

All-one-loop-path coverage returns all paths containing one cycle at most;

therefore, each generated path contains one and only one repeated state at most

(Muniz, Netto, & Maia, 2015). In other words, this condition requires visiting all

the loop-free paths through the model, including all paths that loop once (Utting &

Legeard, 2007). Muniz et al. (2015) covered all-one-loop-path coverage for MBT

but not for UML statechart diagram in their study. The present work considers this

coverage because this study focused on loops.

• All-loop-free-path Coverage

In the loop-free coverage, every loop path must be traversed at least once. A path

that does not contain any type of repetition is called loop-free path (Utting &

Legeard, 2010). Notably, this coverage does not frequently cover all transitions.

Similarly, this coverage does not constantly cover all states. However, all-one-

loop-path test cases include all paths of the all-loop-free-path coverage criterion.

Therefore, using all-one-loop-path coverage is sufficient, and the loop-free-path

coverage is not considered in the present study.

• All-round-trip Coverage

This coverage criterion is similar to the all-one-loop-path criterion because it

requires a test for each loop in the model. Furthermore, the test only has to perform

one iteration around the loop. Nevertheless, this coverage is weaker than the all-

 101

one-loop-path coverage because all the paths preceding or following a loop do not

require testing (Utting & Legeard, 2010). Therefore, all round trips will be

overlooked and the all-one-loop-path coverage will be chosen instead. However,

Briand et al. (2005) used all-round-trip coverage in their study.

• All-Path Coverage

The all-path coverage specifies that each executable path should be followed at

least once when executing the abstract test case on it (Devroey et al., 2014). The

all-path criterion corresponds to the exhaustive testing of the statechart diagram

model (Utting & Legeard, 2010). Few studies consider this coverage in their

coverage criteria (Ali et al., 2007; Murthy et al., 2006; Shirole et al., 2011; Swain

et al., 2012a) because it is generally impractical, given that such models typically

contain an infinite number of paths due to loops (Utting & Legeard, 2010). The

present study does not consider this coverage because it focuses on parallel paths

and loops.

Based on the preceding coverage criteria, all-state coverage is the weakest coverage,

but it still awaits acknowledgement for its importance and comprehensive use. All-

transition coverage and all-transition-pair coverage are important in parallel paths

because they cover all decision and guard states. These coverage criteria are used by

most of the reviewed papers. In all-loop-free-path, all-one-loop-path, and all-round-

trip coverage, the use of the all-loop-free-path coverage is efficient by itself, given that

the test from it covers all-one-loop-path and all-round-trip coverage. Conversely, all-

path coverage is impractical because, in loop cases, this coverage requires an infinite

number of paths.

 102

2.11 Summary

This chapter has highlighted the concepts of software testing, MBT, test case

generation and its automation and specified UML and statechart diagrams, as well as

the advantage of using these diagrams in generating test cases. In addition, coverage

criteria are highlighted, as well as the theories that will be used in this study. This

chapter also reviewed related literature regarding the test case generation techniques,

as well as path sequence minimization and prioritization based on generation from

UML diagrams in general and UML statechart diagram in particular. This study shows

the possibility of automatically generating test cases using UML statechart diagrams

with enhanced coverage criteria.

This literature reviewed the research that has been conducted to automatically and

semi-automatically generate the test case using the UML statechart diagram, activity

diagram, and sequence diagram.

 103

CHAPTER THREE

RESEARCH METHODOLOGY

3.1 Introduction

The purpose of this chapter is to discuss the research methodology to be used in this

study to present the approaches used in conducting this research. First, the research

phases are emphasized. Then, each phase is separately discussed in different sections.

In Section 3.3.1, the information gathering phase is discussed. Then, the design phase,

where the main components of the algorithms and its implementation, as well as a

description of the prototype development that are used to implement the framework

and how it is integrated, are presented in Section 3.3.2. The evaluation phase is

explained in Section 3.3.3, which contains the three stages of evaluation of this study,

while Section 3.3.4 provides the conclusion phase.

3.2 Design Research

This study used the design science approach to achieve all objectives as outlined in

Chapter 1. The selection of this approach is based on the philosophical foundation of

this study, the process involved, and the research outcomes. March and Smith (1995)

described design science research as a process that aims to “produce and apply

scientific knowledge of tasks or situations to create effective artefacts” to enhance the

practice. Furthermore, design research is viewed as an “improvement research” due to

its nature in problem solving and performance improvement.

Similarly, March and Smith (1995) emphasized that the design science approach

includes two essential activities: building and evaluating. In this approach, building is

 104

“the process of constructing an artefact for a specific purpose” and evaluation is “the

process of determining the performance of the artefact.” Nevertheless, outcomes such

as algorithms, working prototypes, processes, techniques, user interfaces,

methodologies, and frameworks can also be considered as valid artefacts under the

design research (Norshuhada & Shahizan, 2010).

According to Zelkowitz and Wallace (1998), the research methodologies can be

classified into three main categories: observational, historical, and controlled. The

observational methods consist of gathering the relevant information during the

development of the project. The historical methods gather existing information

regarding established projects. On the one hand, the controlled methods are classical

methods for the design and experiment used in other technical methods for the

statistical validity of the results.

On the other hand, Offermann, Levina, Schönherr, and Bub (2009) highlighted three

main phases in designing a research process, which are as follows: problem

identification, solution design, and evaluation. Furthermore, Moret and Shapiro (2001)

highlighted that the algorithms and methodology of experiments contain theoretical,

experimental, and simulation research. However, depending on the research needs, the

study may contain one or more characteristics from this component.

These mentioned research methodologies could be generally implemented in design

science research. However, a specific methodology may be required in this study.

Methodological difficulties of software engineering research have not been resolved

yet. Thus, researchers have to create a research approach that is suitable for their

problem at hand (Easterbrook, Singer, Storey, & Damian, 2008).

 105

Software testing may combine several different issues, such as humans and tools, and

may refer to computer science (Pimenta, 2006); therefore, different research fields are

necessary. By combining the mentioned research approaches, the new methodology

was generated. Thus, the uncertainty of software development and its technical basis

is clearly addressed.

3.3 Phases of Research Methodology

As mentioned, the processes that took place in this study are reflected in the recently

proposed research process based on March and Smith (1995); Moret and Shapiro

(2001); Offermann et al. (2009); Zelkowitz and Wallace (1998). The outline of the

research phases comprises four phases, which include information gathering,

development and design, evaluation, and conclusion as shown in Table 3.1. The

technique for each phase is further discussed in the subsections.

The research process consists of a sequence of steps; however, they are not always

sequentially executed. In this study, the steps often require iterations of processes. The

implementation of this process results in the design research artefacts, as presented

under the outcome column.

 106

Figure 3.1. Steps of Research Methodology

Content analysis

Expert

Review

Conclusion

R
es

ea
rc

h
M

et
ho

do
lo

gy

Outcome Phases Activity

1

Proposed Test

Case

Generation

Framework

Evaluation

and Results

4

Proposal

Evaluation

Prototyping

Verify the
proposed model

Publications

& Thesis

Thesis writing and
research publication

Development Design
Develop a Test Case Generation

Framework and Its Algorithms

Develop Automatic Test Case

Generation Prototype

Method

Information

Gathering Literature Study on the

Current Test Case Methods

Compare the Existing

Required For Coverage

Compare the Existing

Automatic Test Case Methods

Content

analysis

RAD

Comparison

Testing

2

3

 107

3.3.1 Phase One: Information Gathering

The initial phase of the research methodology is information gathering. The main

activities involved at this stage are synthesizing and collecting information and

studying the main topics for defined and considered relevant problems. The outcome

of this phase are as follows: understanding the scope and the objectives of this study

and identifying the particular problem and the problem statement. At this stage, the

test case generation approaches and methods are reviewed, as well as the problems

that were faced by the previous researchers. The current test case generation

algorithms and the background reviews are presented in the literature review in

Chapter 2 of this thesis. Once the proposal is finished, the plan for the entire project is

clarified.

This phase is achieved through the following steps: (1) literature study on the current

test case methods, (2) comparison of the existing requirements for coverage criteria,

and (3) comparison of the existing automatic test case generation algorithms. Each step

involved in this phase is described in the following subsections.

a) Literature Study on Current Test Case Methods

The literature study is performed by reviewing the previous works to identify the issues

and gaps related to the domain of the study.

Testing is always related to software development process. Thus, the related literature

on software testing models, tools, software development methodologies, and

techniques were obtained by reading the printed and online references. Among the

 108

references are journals, proceeding papers, standard documentation, books, and

unpublished theses.

The existing test case generation methods and models used in different environments

were analysed and reviewed in detail to identify their strong and weak points to suggest

a test case generation framework. Ideal feature lists were compared to the test case

generation methods, models have been studied and their possible up-to-date literature

were collected. This list will provide a formal and solid framework for comparing the

existing relevant methods.

b) Compare the Existing Coverage Criteria

This phase is designated to compare and analyse the existing current coverage criteria

for test case generation algorithms using content analysis.

Content analysis can be described as the process of obtaining efficient knowledge

regarding the proposed study, where the information can be attained from many

sources of information, including text, audio, video, and other forms of sources (Sharp,

Rogers, & Preece, 2007).

The content analysis is conducted by making marginal notes on the sources of the

automatic test case generation and marking it when interesting or relevant information

is found. Then, the notes in the margins are reviewed, and the different types of

information found regarding the different methods and graphs are listed. By reading

through the list and categories in such a way where each item offers a description,

listing them as major methods or graphs, comparing and contrasting the various major

and minor methods or graphs, will lead to identifying whether or not the categories

 109

can be linked in any way. At that time, the methods and graphs have then been

collected and examined in detail. In addition, the fitness of the methods and graphs

have been considered and their relevance was listed in a table. A review on all of the

categories was conducted to establish whether some of the categories could be merged

or sub-categorized. Then, the research returns to the original transcripts and ensures

that all the information has been categorized.

In this work, the objective of the content analysis was to develop an enhanced

algorithm to automatically generate the test case, including the coverage criteria and

other related issues. The literature and content analysis has been presented in Chapter

2.

c) Compare the Existing Algorithms

By completing the content analyses from the previous section, this phase compares

and analyses the current component of test case generation algorithms through (a)

input model, (b) method, (c) intermediate model, and (d) coverage criteria (a), as

shown in Tables 2.1, 2.2, and 2.3 (see Chapter 2). The objective of these comparative

studies was to explore and compare the existing development algorithms and methods

proposed by several researchers and developers in terms of coverage criteria and steps

to be accomplished. The analysis was based on achievement and limitations of the

methods. These studies also resulted in determining the main components of the

automatic test case generating algorithm, as well as the proposed framework to

develop the algorithms. The results of these comparative studies has been discussed in

Chapter 2.

 110

3.3.2 Phase Two: Development and Design

The first step in building the working system will be at the development stage, and

development is a systematic method of research. Therefore, this phase will be

designated to (a) develop a test case generation framework and its algorithms, (b)

develop its prototype, and (c) calculate the coverage criteria. This stage involves using

the output from the gathered information phase to plan a strategy for developing the

instruction.

a) Develop a Test Case Generation Framework and Its Algorithms

In this phase, the proposed framework and its algorithms was developed to generate

the test cases from UML statechart diagrams. Based on the proposed development

method in Figure 3.2, the development targets was achieved by using the following

processes and components:

1. Use the UML statechart diagram to define and represent the software

development specifications.

2. Automatically construct the SRT by (a) fulfilling the hierarchical

relationships based on the influences entered from the UML statechart

diagram, (b) automatic checking and storing for existing symmetric

ancestor descendent or parent–child hierarchical relations for every pair of

states, (c) avoiding the inconsistency problem by the automatic detection

for classes relationships based on a set of rules, and (d) automatic deduction

of new hierarchical relations (if available).

3. Automatically create the SRG from the SRT using the relation that has been

stored in the table.

 111

4. Generate all the possible paths using test case paths generation algorithm

from the SRG.

5. Check the generated test paths using consistency checking.

6. Minimize the generated test paths to select the best test paths.

7. Prioritize the minimized test paths.

8. Remove the duplication and unnecessary state from the generated test paths

using path pruning to avoid illegitimate test cases.

9. Automatically generate test cases from the pruned generated test paths.

Figure 3.2. The Proposed Development Framework Phases

The framework will have the UML statechart diagram as inputs and the test cases as

outputs as the goal of this study is to generate test case using the UML statechart

diagram.

Paths Prioritization

UML
statechart
diagram

 Generating Test Cases

Paths

Path Pruning

Consistency Checking

Paths Minimization

Test Case

Database

schema

State Relationships

Graph

State Relationships

Table

Generating Test Cases

 112

b) Coverage Criteria Calculation

In this phase, the selected coverage criteria were calculated using elements coverage

equation to be implemented on the generated test cases and will be compared later with

previous related studies.

c) Develop the Prototype

In this phase, a prototype was developed to automatically generate the test cases and

created based on the proposed framework. After designing the test case generation

framework, this research proceeds with the development of the prototype as shown in

Figure 3.3. The completed design was transformed into an executable form.

Prototyping is the process of translating systems specification into a physical outcome

to gain users’ feedback (Dix, 2009). In the prototyping approach, user involvement is

at its core. By adopting the approach, the activities involved may improve the

understanding of users of the system, along with its information needs and its

capabilities.

According to Dix (2009), prototyping has three main approaches: throwaway process

(Carmel & Becker, 1995), incremental process (Sprague Jr & Carlson, 1982),

evolutionary process (Keen, 1980), aims at building the decision support technologies

in a simple step with a feedback from users. The throwaway means that the knowledge

gained from the prototype is used in the final design. Incremental prototype refers to

the release of the final product as a series of components that have been separately

prototyped. By contrast, the evolutionary prototype serves as a basis for the next

 113

iteration of the design. This repetitive process aims to ensure that the development

process is properly progressing.

In this study, the prototype was used through evolutionary cycles. By using this type

of prototypes, the users will be able to comment on usability, look-and-feel, as well as

the flow of the prototypes.

The prototype development was utilized in the rapid application development (RAD)

model, which will be designed based on the work of Martin (1991). RAD is

characterized as having a substantial advantage from the other models of methodology.

One of the advantages of RAD is the possibility of starting early to develop and design

the system. The RAD methodology is characterized as flexible, allowing modification

of the design even after evaluation. The RAD methodology comprises four phases:

requirement planning, user design, construction, and cutover, as illustrated in Figure

3.3.

Figure 3.3. Rapid Application Development Model

 114

Through the requirement planning phase, the prototype life cycle of the system

combines elements of planning and analysis. In addition, in the user design phase, the

users interact with analysts of the systems and developers of the model. Based on the

data gathered from the previous studies, the outcome of this phase is identifying the

sequence action of the prototype. In the construction phase, the focus is on application

development and programming to ensure that tasks are similar to the prototype. The

prototype was developed by using PHP language, JavaScript, CSS, and HTML. The

design interface of the prototype was conducted and the classes was designed. The

design of the database for the prototype was executed using MySQL language. The

prototype was evaluated by an expert in software engineering.

3.3.3 Phase Three: Evaluation

Selecting the evaluation technique is a crucial step in all performance evaluation

projects (Jain, 1990). Evaluation is a set of research methods and associated

methodologies with a distinctive purpose. The first stage of this research evaluation

start with prototyping.

Prototyping is considered because it is extensively acknowledged by software

developers for early development testing. Apart from the prototyping method to

validate the developed algorithm, a comparison with five previous studies has also

been conducted. Furthermore, four different UML statechart diagrams are used to

show examples of loop and parallel problems. At this stage, an expert review approach

was also adapted.

 115

The combination of these evaluation methods will ensure that the final implementation

of the automatic test case generation framework represents an approach of software

development that has proven benefits in terms of coverage criteria.

a) Prototyping

According to Schwarzl and Peischl (2010a), the implementation of the algorithm in a

prototype will reveal more bugs and errors that are absent during simulation and

manual testing. Also, Costagliola, Ferrucci, and Francese (2002) revealed that

prototyping will help the developer to determine the requirements to develop the

expected product. A prototype was developed to validate the proposed algorithm,

clearly explain the work, and assist in understanding the techniques for the test case

generation (Zhang & Liu, 2013). The prototype was also evaluated using an expert

review in the expert review stage. Furthermore, four different UML statechart

diagrams were be used. These diagrams were adapted from Inamdar (2015); Lauder

and Kent (2001); Popp et al. (2009).

b) Comparison with Previous Test Case Generation Methods

The results of this study were compared with data from previous major and most recent

studies of automatic test case generation from UML statechart diagram in terms of

coverage criteria, including all states coverage, transitions coverage, transition-pairs

coverage, and loop-free paths coverage. Five studies were selected to be compared

with Ali et al. (2007), Swain et al. (2010a), Swain et al. (2012c), Chimisliu and

Wotawa (2013b), and Ali et al. (2014). These studies were selected according to their

similarity in objectives and methods to the objectives of this study. Revealing the

 116

coverage criteria percentage was also critical because the coverage criteria were based

on the comparison.

c) Expert Review

Expert review is an essential step in the implementation and development of projects

and systems. This activity provides an evaluation of documents, design concepts, and

artefacts to meet quality objectives (Garousi, 2010). Based on the demonstrated value

of expert reviews in software engineering, numerous industry experts have listed this

review at the top of the list of desirable software development practices (Boehm &

Basili, 2005). Expert reviews are usually performed by individuals who are not

associated with the original design team (O’Neil, 2001).

Expert review in software engineering particularly refers to a type of review in which

a creation is examined by one or more experts to evaluate its quality and practical

content (Wiegers, 2002a). The purpose behind an expert review in verification is to

illustrate a disciplined engineering practice to detect defects and correct them, thereby

preventing their occurrence in the functional use of the product or the system (Chrissis,

Konrad, & Shrum, 2011). Data collected during the expert review process is used not

only to correct defects but also to improve and evaluate the development process itself

(Garousi, 2010).

In system development, expert review is recognized as a significant way to improve

the quality of the developed software and serves as a complement for testing of other

products (Wiegers, 2002b). Therefore, the framework, algorithms, and prototype

evaluation in this study is conducted through expert review.

 117

As Shneiderman and Plaisant (2005) stated that different experts tend to find different

problems, having between three to five expert reviewers is suggested to be highly

productive and sufficient. Also according to Olson (2010) the number of expert

reviewers tends to be small, ranging from two or three experts (Holbrook, Krosnick,

Moore, & Tourangeau, 2007; Presser & Blair, 1994; Theis, Frood, Nishri, & Marrett,

2002). The evaluation review was conducted in two phases: the first was with an

academic expert and the second will be domain experts, who are software testers and

developers. This section was conducted with four academicians who have experiences

in software testing or/and software engineering domains. Meanwhile, the second

expert review process will be conducted with three software developers or/and

software testers.

Expert review has also been found to be one of the most effective ways to promote

productivity and quality of design processes not only in software engineering but also

in other engineering disciplines (Garousi, 2010).

An inspection is the most rigorous and systematic type of peer review. Inspection

follows a distinct multistage process with specific roles assigned to individual

participants (Wiegers, 2002b). All experts examined the same questions using forms

developed by the author.

The procedures for the expert review are arranged in the following manner: (a) setting

up the review form based on the selected evaluation attributes, (b) conducting the

review, (c) analysing the results, and (d) amending the model and algorithm (Zaibon

& Shiratuddin, 2010). Verifying the proposed framework involves the following three

activities:

 118

i. Identifying the potential experts

The first task is identifying the characteristics of the selected experts as suggested

by Hallowell and Gambatese (2009). The characteristics of these experts include

(1) being currently attached to the field of study under examination, (2) being

employed in practice in an academic or professional business, (3) having an

advanced degree in the field, and (4) having at least five years of professional

experience.

ii. The second task is determining the technique or method for conducting the

expert review approach.

The framework was verified by ensuring practicality, clarity, and completeness, as

well as the correctness of the algorithms. In addition, the effectiveness of the

prototype was evaluated, as well as the overall accuracy, usefulness, and usability

of the proposed system. Finally, understandability of the documentations was

evaluated.

iii. Email and interview approaches were used to contact the experts.

Invitations to become experts for the study were sent through e-mail. The related

documents were then sent to the experts who agreed to verify the framework and

its processes. They provided feedbacks through in-depth interviews.

The seven experts are sufficient for the purpose of the expert review (Shneiderman &

Plaisant, 2005). The following are activities involved during the expert review process

(Mohamed, 2015):

 119

1. The researcher conducts a presentation to provide an overview of the study and

explain its components, also provide detailed documents for the framework, its

algorithms, and the comparison results (from Sections 4.3, 4.4, and 5.2.2).

2. The expert run the prototype, go through the steps, saw the results, and try all

its functions.

3. The experts review the framework, algorithms (SRT, TCGP, minimization,

prioritization, and TCG), coverage criteria results, and prototype.

4. The experts fill in the verification form and provide their comments.

5. The researcher updates the software processes based on the comments of the

experts.

The feedback from the identified experts was collected and analysed to modify and

improve the proposed framework. Details are presented in Section 5.2.2.1. The

following section describes the instrument design that was used during the expert

review.

• Instrument Design

Interview questionnaire can be defined as a set of questions that are answered by the

respondents whose responses are documented (Sekaran and Bougie, 2010). In

evaluating the proposed system, the contents of the instrument from previous works

were obtained from different fields, such as general software development, multimedia

applications, and project management, which include the works by Al-Tarawneh

(2014); Bahrin (2011); Mohamed (2015). Additionally, outcomes from the theoretical

study, including Avancena and Nishihara (2015); Joo, Lin, and Lu (2011); Naik and

Tripathy (2011); Salah, Paige, and Cairns (2014); Shiratuddin et al. (2013); Vaziri and

 120

Mohsenzadeh (2012) were also applied, as shown in Table 3.1. The choices of the

evaluation attribute selection are based on the most appropriate to define the

dimensions that are under evaluation. Table 3.1 describes the selected evaluation

dimensions.

Two measurement scales, “agree/disagree” with comments/suggestions, are used as

semi-structured instrument evaluation tools as employed by Mohamed (2015).

Therefore, the feedbacks on the evaluation of the proposed framework are discussed

in Section 5.2.2.2. Details on the evaluation measures are presented in Appendix A.

Table 3.1

Construct Descriptions

DIMENSIONS DESCRIPTIONS SOURCE

Practicality The proposed framework of automatic
test case generation from UML
diagrams can practically be
implemented in the real world.

(Mohamed, 2015)

Clarity As a whole, the framework is workable
and the steps in the framework are
easily followed.

(Bahrin, 2011; Mohamed,
2015; Shiratuddin et al.,
2013)

Completeness The essential items of the proposed
framework are complete, satisfactory
and suitable to generate test cases.

(Naik & Tripathy, 2011;
Vaziri & Mohsenzadeh,
2012)

Correctness The algorithms: State Relationships
Table (SRT), Test Cases Paths
Generation (TCGP), minimization,
prioritization, and Test Cases
Generation (TCG), provide correct
results and achieve its objectives.

(Naik & Tripathy, 2011)

Effectiveness The prototype automatically generates
the test cases from the UML statechart
diagram, for which it is intended.

(Avancena & Nishihara,
2015; Joo et al., 2011)

Accuracy The system provides correct test case
result to the inputted UML statechart
diagram.

(Naik & Tripathy, 2011;
Salah et al., 2014)

 121

Table 3.1 Continue

DIMENSIONS DESCRIPTIONS SOURCE

Perceived
Usefulness

The proposed system is useful for the
software tester in improving the
coverage criteria quality of test case
generation.

(Calisir & Calisir, 2004;
Mohamed, 2015; Salah et
al., 2014)

Usability Using the proposed system would
make generating the test cases easy for
the software tester.

(Calisir & Calisir, 2004;
Mohamed, 2015; Salah et
al., 2014)

Understandability All documentations are clearly and
simply written such that procedures,
rules, and algorithms are readable and
can be easily understood.

(Naik & Tripathy, 2011;
Salah et al., 2014; Vaziri &
Mohsenzadeh, 2012)
(Mohamed, 2015)

3.3.4 Phase Four: Conclusion

The resulting generated test cases that have been evaluated in the evaluation phase,

confirmed the proposed algorithm. Consequently, the goal knowledge of the research

was obtained. The conclusion chapter describes and discuss the finding and result of

this study, as well as the limitation and possible future expansion of the proposed

algorithm.

3.4 Summary

Concisely, this chapter is dedicated to elaborate the processes involved in this study to

achieve all objectives. The phases in the methodology include four major phases:

information gathering, development and design, evaluation, and conclusion. Each

phase is further described in detail in terms of the activities that are involved in the

study.

 122

CHAPTER FOUR

ALGORITHMS DEVELOPMENT

4.1 Introduction

In this chapter, the requirements and goals of the proposed work are deliberated. The

generating of the test case from different methods is labelled. Furthermore, the

objectives for the new algorithm are provided. Therefore, this chapter describes the

automatic test case generation algorithms and their implementation, which were

developed as part of this thesis.

This chapter is organized as follows. Section 4.2 presents the design goal. The

proposed and improved algorithms to generate the test cases are discussed in Section

4.3. Next, the coverage criteria calculation is presented in Section 4.4. The prototype

development is presented in Section 4.5. Finally, the chapter is summarized in Section

4.6.

4.2 Design Goal

Software testing is one of the most expensive and time-consuming activities in

software development. A well-tested software system will be validated by the

customer before being accepted. Practitioners and researchers have attempted to

automate the system to increase reliability and reduce the cost of manual testing

(Prasanna et al., 2005; Shamsoddin-Motlagh, 2012).

Test cases can be mapped and directly derived from system design. Additionally, when

the test cases are generated early, software testers can usually find ambiguities and

inconsistencies in the design documents. The cost of developing software systems will

 123

definitely be reduced as errors are eliminated early during the development lifecycle

(Prasanna et al., 2005).

 Automatic test case generation was proposed to achieve a balance between the quality

and amount of test cases because random test case generation does not always ensure

the quality of the test case. Moreover, random text case generation mostly does not

perform well in terms of coverage criteria (Han & Kwon, 2008). Therefore, the

ultimate goal of this study is to increase coverage and reliability of software testing by

automating and generating it in the design phase through improving and creating

algorithms that automatically generate test cases with the highest coverage criteria.

4.2.1 Parallel Path Problem and Loop Problem

Two problems have prevented researchers from generating test data from UML

statechart diagram with 100% coverage: parallel path problems and loop problems

(Doungsa-ard, Dahal, Hossain, & Suwannasart, 2008). For example, the path from the

initial state to the final state can be easily generated when no loop exists inside the

UML statechart diagram. When the loops occur, the number of parallel paths are

increased as the number of loops in the path can vary. This condition is called state

explosion problem (Schroeder, Kim, Arshem, & Bolaki, 2003).

Loop and parallel path problems are examples of cases which demand large

computation time as the test case generation techniques cannot find the test case to

explore these parts (Edvardsson, 1999).

 124

In the parallel path problem, one sequence of paths is insufficient to cover every

transition in the SUT. Therefore, more than one path is required to cover every

transition and state from the initial to the final state. A parallel path refers to every path

that starts from the initial state and ends by the final state (Yan, Jiang, & Eynard, 2008).

An example of a parallel path in the ATM system is shown in Figure 4.3. The initial

to the final state has seven paths, as shown in Figure 4.10.

Loop problem occurs in either loop entry condition, loop terminating condition,

increment operation, or decrement operation. When generating test cases using the

UML statechart diagram, the main issue encountered by the software tester is the loop

problem. For example, when no loop states exist in the UML statechart diagram, the

paths from the initial to the final state can be easily generated. The situation in which

the transitions are formed as a loop in the UML statechart diagram is known as the

loop problem.

With the proposed framework in this thesis, this study has an obligation to cover the

loops in the used UML statechart diagram. Currently, the proposed searching cycles

or loops in graph techniques do not satisfy the requirement in this study because they

could not extract the exact loop but could check whether a graph has loops (Doungsa-

ard, 2012).

4.3 Proposed Framework to Generate Test Cases

Test cases are used to detect the software system faults. According to Kundu and

Samanta (2009), automatic test case generation is gaining acceptance from software

specialists. Advantages of automatic test generation include but are not limited to

 125

reduction of software development time and early detection of faults. This section

discusses the overview of the proposed approach to generate a test case from the UML

statechart diagram.

Figure 4.1. Proposed Framework for Automatic Test Case Generation

The proposed framework for test case generation will comprise seven modules:

construction of UML statechart diagram, state relationship table, state relationship

graph, test case path generation, test case path minimization, test case path

prioritization, and test case generation, as shown in Figure 4.1.

The seven steps will be described in detail in the following subsections. In addition,

each step will be illustrated with a running example of the UML statechart diagram of

the ATM system, as shown in Figure 4.3.

Generating Test Cases

Paths

UML
statechart
diagram

Path Pruning

Consistency Checking

Paths Minimization

Test Case

Database

schema

State Relationships

Graph

State Relationships

Table

Paths Prioritization

Generating Test Cases

 4

 5

 6

 7

2

3

7.1

2.1

4.1

 7.2

 1

 126

4.3.1 Construction of UML Statechart Diagram

In this research, the UML statechart diagram has been selected to automatically

generate test cases because this diagram provides a way to model the behaviour of the

system by analysing it in response to input data on how the state of the system changes

(D'Souza, Rao, Sharma, & Singh, 2012). However, the process goes through a few

steps before generating test cases. This section presents one of these processes to

formulate the UML statechart diagram. In accordance with this, the assumption is that

the vertices represent states and edges represent the transitions among the states

(Aggarwal & Sabharwal, 2012). Edges, which are usually drawn with arrows to

indicate their direction, connect to different kinds of vertices in a direction. An

outgoing edge from a vertex represents a transaction with an event, wherein an event

has a Boolean guard condition associated with it. An action is allied with the edge. The

vertices in this study will represent the state, initial state, and final state.

According to Booch (2005), UML statechart diagrams address the dynamic view of a

system. These diagrams are especially important in modelling the behaviour of a class,

an interface, or a collaboration. These diagrams also highlight the event-ordered

behaviour of an object, which is especially useful in modelling reactive systems. A

UML statechart diagram consists of five parts: state, transition, event, action, initial

state, and final state (Booch, 2005; UML, 2004). These constructs are shown in Figure

4.2.

The UML statechart diagram will be transferred later to a graph from where a graph 𝐺𝐺

will be presented as follows (Voloshin, 2009):

 127

 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) (4.1)

where

𝑉𝑉 = vertex,

𝐸𝐸 = edge,

𝐺𝐺 = graph.

Figure 4.2. Main Constructs Used in UML Statechart Diagram
Source: Aggarwal and Sabharwal (2012)

This graph will comprise a nonempty set of 𝑉𝑉 and set of 𝐸𝐸 (Diestel, 2012). Each edge

is a pairing of two vertices. For example, the sets 𝑉𝑉 = (𝑉𝑉1,𝑉𝑉2,𝑉𝑉3, …) and 𝐸𝐸 =

 {(𝑉𝑉1 → 𝑉𝑉2), (𝑉𝑉2 → 𝑉𝑉3), … }. Graphs have natural visual representations in which

each vertex is represented by a point and each edge by a line connecting two points, as

shown in Figure 4.7.

Cyclomatic complexity metric is used to measure the complexity of each diagram used

in this study. This complexity metric was selected because it quantitatively measures

the logical capability of a program (Oladejo & Ogunbiyi, 2014). The number of basic

paths is equal to the cyclomatic complexity of G. A path through a flow graph is a

 128

sequence of edges. This path indicates the flow of control in the corresponding

program. From a program with control graph G, basic path (BP) can be calculated by

the following formula (Kaner & Fiedler, 2013):

 𝐵𝐵𝐵𝐵(𝐺𝐺) = 𝐸𝐸 − 𝑉𝑉 + 2 (4.2)

where

𝐵𝐵𝐵𝐵(𝐺𝐺) = basic path cyclomatic complexity,

𝐸𝐸 = number of edges of the graph,

𝑉𝑉 = number of vertices of the graph.

The existence of loop vertices can significantly increase the number of paths. A few

assumptions on the distribution of the inputs can be used to estimate the number of

paths in a program in the presence of loops, thereby deriving a few tests to check loops.

Furthermore, the graph is considered simple when it does not have loops or parallel

edges (Bozeman et al., 2015). This can be attributed to the addition of a loop, which

will increase the value of cyclomatic complexity by one and each traversal of the loop

body adds a condition to the program, thereby increasing the number of paths by at

least one (Jain & Sheikh, 2014). Occasionally, the executed number of loop depends

on the input data and cannot be determined before program execution. This finding

becomes another cause of difficulty in determining the number of paths in a program.

In this study, the loop, as well as the number of decision vertices in it, will be executed

once. An example of the UML statechart diagram of the ATM system was adapted

from Ali et al. (2014) as shown in Figure 4.3, with five vertices and eight edges except

for the loop. The 𝐵𝐵𝐵𝐵(𝐺𝐺) = 8 − 5 + 2 = 5 is the cyclomatic complexity in Equation

4.2.

 129

Figure 4.3. UML Statechart Diagram of ATM System

As shown in Figure 4.3, State 1 represents the ATM card reading. If the card read

guard condition is Yes, then it will read the PIN code. However, if the card read guard

condition is No, then it will eject the card. A similar result is expected in reading the

PIN. If the PIN guard condition is Yes, then it will be processed to the selection of a

transaction; the card will be ejected if the PIN guard condition is No. However, the

card will be retained and aborted if an invalid PIN is entered. The user can select the

transaction. Then, the transaction will be performed or cancelled. Finally, the card will

be ejected. In performing a transaction, the customer can select between conducting

another transaction that results in a loop. Then, the customer finishes the transaction

and ejects the card.

 130

• Decomposing Statechart Diagram into Edges and Vertices

A transition in the UML statechart diagram is translated into edges in an automaton,

with intermediate locations when necessary (Håkansson & Mokrushin, 2004). The

UML statechart diagram constraints operation implementations and determines system

behaviour and structure (Gogolla, Hamann, Hilken, Sedlmeier, & Nguyen, 2014).

Generation of edge structure is based on the edge vector as shown in Equation (4.3).

The edge vector is responsible for merging a proper object with its message by

assuming that 𝑚𝑚𝑖𝑖 is a message between vertices, 𝐸𝐸𝑖𝑖 as the existing edge, and 𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑖𝑖′ are,

respectively, the state vertices immediately before and after message 𝑚𝑚𝑖𝑖 is executed.

The source and destination of message 𝑚𝑚𝑖𝑖 are signified by the source and destination

vertices. Thus, the UML statechart diagram edges will be presented as follows:

𝐸𝐸𝑖𝑖(𝑣𝑣𝑖𝑖 → 𝑚𝑚𝑖𝑖 → 𝑣𝑣𝑖𝑖′) (4.3)

Identified edges are insufficient to establish a coherent testing scenario. These edges

are connected by several types of relationships in the UML statechart diagram. These

relations must be identified to build an integrated testing scenario graph (Alhroob,

2014).

A set of rules was necessary to generate test cases from the UML statechart diagram.

Therefore, mapping constructs for the UML statechart diagram into different types of

vertices were proposed. From the most commonly used elements when modelling

UML statechart diagram and the newly proposed element, the following constructs are

considered as contributors to the structure of UML statechart diagrams (Cruz-Lemus,

Maes, Genero, Poels, & Piattini, 2010): State (State), InitialState (Start State),

 131

FinalState (End State), Decision (Decision State), Loop (Loop State), Output

(Decision State associated with End State), DecisionLoop (Decision State associated

with Loop State), GuardLoop (Guard State associated with Loop State), Guard (Guard

State), and SimpleState (simple state). These constructs were enhanced, and a new

vertex description table (VDT) was produced as illustrated in Table 4.1.

Table 4.1

Vertex Types Description

No. Constructs of UML

statechart diagram

Vertex type of SRG

1 State Vertex of type state; its associated string is state name

2 InitialState Vertex of type state without any incoming edge

3 FinalState Vertex of type state with no outgoing edge

4 Decision Vertex of type state with condition string, which has two

or more outgoing edges

5 Loop Vertex of type state with one edge performing a loop

6 DecisionLoop Vertex of type Decision with one of its edge performing a

loop

7 Guard Vertex of type decision with a Boolean expression

8 GuardLoop Vertex of type Guard with one edge performing a loop

9 SimpleState Vertex of type state that has only one outgoing edge and

is connected to finalState

10 Output Vertex of type decision with one edge connected to

finalState

 132

4.3.2 State Relationships Table

After decomposing and setting rules for the UML statechart diagram, the actual sorting

and saving into the database will begin. The works of Ali et al. (2014); Boghdady et

al. (2011a); Jena et al. (2014); Shanthi and Kumar (2012); Verma and Dutta (2014)

used a relationship table. In this study, an automatically generated relationship table is

proposed to set the relationships of states in a systematic way. The relationship table

is enhanced to be an SRT to automatically set the relationships between the vertices.

The central objective of this module is to automatically generate SRT from the UML

statechart diagram using the proposed rules and algorithm. This table aims to show all

the necessary information that can be useful for the system and generates the test cases

in the final stage. Figure 4.6 shows the pseudocode to capture the relationship of every

state of the UML statechart and convert it into SRT, as shown in Table 4.2.

The state table is a method to simplify the large systems in a comprehensive manner.

This tabular form is made for convenience to specify states, inputs, transitions, and

outputs (Tewari & Misra, 2015). The table follows Equation (4.1) because the SRT is

converted to a graph G. In G, vertices represent states, and edges represent transitions

between states (Diestel, 2012).

Other elements, such as d, represent the maximum number of vertices in one graph as

this work uses E and V. Given a vertex set (𝑉𝑉1,𝑉𝑉2, … ,𝑉𝑉𝑖𝑖) connected by 𝐸𝐸(𝑖𝑖 → j) as

(1 > 𝑖𝑖, 𝑗𝑗 ≥ 𝑑𝑑), their relationships should be determined according to a set of rules,

which has been collected and developed for this study. The list of rules that explain

the relationship conditions between vertices to enhance the extraction process is shown

in Figure 4.4.

 133

Rule 1: The first vertex will be indicated as 𝑉𝑉1, and the final vertex will be 𝑉𝑉𝑑𝑑. The

Start vertex has no ancestor, and the End vertex has no descendant (Mathur,

2008).

Rule 2: When a vertex with only one descendant vertex is connected

as 𝐸𝐸��𝑉𝑉𝑖𝑖 → 𝑉𝑉𝑗𝑗��, 𝑉𝑉𝑖𝑖 and 𝑉𝑉𝑗𝑗 are presented with one edge (Mathur, 2008).

Rule 3: In case of the current vertices (𝑉𝑉𝑖𝑖) with NULL destination edge, 𝑉𝑉𝑖𝑖 becomes

connected with an edge to 𝑉𝑉𝑑𝑑 as 𝐸𝐸{(𝑉𝑉𝑖𝑖 → 𝑉𝑉𝑑𝑑)}.

Rule 4: If an edge (𝑉𝑉𝑖𝑖,𝑉𝑉𝑗𝑗) ∈ E exists, then 𝑉𝑉𝑖𝑖 becomes the predecessor of 𝑉𝑉𝑗𝑗

when 𝑖𝑖 < 𝑗𝑗 and 𝑉𝑉𝑖𝑖 becomes a successor of 𝑉𝑉𝑗𝑗 when 𝑖𝑖 ≥ 𝑗𝑗 in their

relationship (Mathur, 2008). Also, a new indication for loop is flagged in

𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑖𝑖.

Rule 5: Each vertex can be connected to a maximum of two edges 𝐸𝐸��𝑉𝑉𝑖𝑖 →

 𝑉𝑉𝑗𝑗�, �𝑉𝑉𝑖𝑖 → 𝑉𝑉𝑗𝑗′�� . Therefore, in the case of 𝐸𝐸��𝑣𝑣𝑖𝑖 → 𝑉𝑉𝑗𝑗�, �𝑉𝑉𝑖𝑖 →

 𝑉𝑉𝑗𝑗′�, �𝑉𝑉𝑖𝑖 → 𝑉𝑉𝑗𝑗′′�� , or more edges, a new vertex is created for each

additional edge. The state information 𝑉𝑉𝑖𝑖′ is duplicated from 𝑉𝑉𝑖𝑖 without

creating a duplicated path and is then for 𝑉𝑉𝑖𝑖 as 𝐸𝐸�(𝑉𝑉𝑖𝑖 → 𝑉𝑉𝑖𝑖′), �𝑉𝑉𝑖𝑖 → 𝑉𝑉𝑗𝑗′′��

and for 𝑉𝑉𝑖𝑖′ as𝐸𝐸��𝑉𝑉𝑖𝑖′ → 𝑉𝑉𝑗𝑗�, �𝑉𝑉𝑖𝑖′ → 𝑉𝑉𝑗𝑗′��.

Figure 4.4. Edges and Vertices Relationship Conditions

In the example of the fifth rule as shown in Figure 4.5 (a), the graph has three

vertices (𝑉𝑉1,𝑉𝑉2,𝑉𝑉3) . Figure 4.5 (b) shows the conversion of the vertices to

(𝑉𝑉1,𝑉𝑉2, V2′ ,𝑉𝑉3) and the new edges relation to E{(V2 → V2′), (V2 → V1)} and

 134

E{(V2′ → V3), (V2′ → Vd)} because 𝑉𝑉2 has 3 edges, namely, E{(V2 → V1), (V2 →

 V3), (V2 → Vd)}.

Figure 4.5. Rule 5, Clarification Example

As adapted from Kot (2003), a UML statechart diagram can be a quadruple as shown

in Equation (4.4):

𝑆𝑆𝑐𝑐 = (𝑆𝑆𝑠𝑠,𝑇𝑇,𝑉𝑉a, 𝑆𝑆0) (4.4)

where

 𝑆𝑆𝑠𝑠 = a set of simple vertices,

 𝑇𝑇 = a set of edges,

 𝑉𝑉a = a set of variables used in the statechart,

 𝑆𝑆0 = an initial state of the statechart.

 135

Each 𝑆𝑆𝑠𝑠 will be an input to the SRT algorithm to automatically generate the SRT and

store it in the database.

SRT Algorithm
Input: 𝑆𝑆𝑐𝑐 = (𝑆𝑆𝑠𝑠,𝑇𝑇,𝑉𝑉𝑉𝑉, 𝑆𝑆0)
Output: SRT

1 endVertices ← getLengthOf (Ss);
2 for counter ←1 to endVertices do
3 V[counter] ← vertices value;
4 Va[counter] ← variables value;
5 counterplus ←1;
6 while Transitions[counter] have real number do
7 if (counterplus=1) then
8 Vfirst(counter) ←Transitions[counter][counterplus];
9 and if (counterplus=2) then
10 Vsecond(counter) ←Transitions[counter][counterplus];
11 else then
12 creatNewVertices V'(counter);
13 Vs(counter) ←V'(counter);
14 V'first ←Transitions[counter][counterplus-1];
15 V'second ←Transitions[counter][counterplus];
16 end if
17 increase counterplus by 1;
18 end do
19 if (counter=1) then
20 Type[counter] ← “initialState”;
21 end if
22 if (Vfirst[counter] = NULL AND counter ≠ endVertices) then
23 Vfirst[k] ← endVertices;
24 end if
25 if (counter < Vsecond[counter] and Vsecond[counter] ≠ NULL) then
26 decisionCounter++;
27 Vtype[counter] ← “decision”;
28 end then
29 if (counter > Vsecond[counter]) then
30 j ← Vsecond[counter];
31 set Vtype[counter] to “loop”;
32 for j to endVertices do
33 if (Vsecond[j] ≠ NULL and Vsecond[j] > j) then
34 loopcounter++;
35 end then
36 set Vnumber[counter] to loopcounter;
37 end do
38 end then
39 increase counter by 1;
40 end do
41 Type[counter] ← “finalState”;
42 set Vnumber[1] to counter+1;

Figure 4.6. SRT Algorithm

R4

R2

R1

R3

R5

R1

 136

A process starts with an InitialState, which goes through a number of transitional states

with various edges and ends with the FinalState. Initial vertex can be easily detected

from SRT as 𝑆𝑆0 is the InitialState and E{(𝑆𝑆0 → V1)} is the initial edge. Each state is

examined, and its value, type, and connecting edges are determined by applying the

rules of SRT relationship conditions.

Table 4.2

State Relationships Table

𝑽𝑽𝒊𝒊 𝑽𝑽𝒋𝒋 𝑽𝑽𝒋𝒋′ 𝑽𝑽𝑽𝑽𝒊𝒊 𝒎𝒎𝒊𝒊 𝒎𝒎𝒊𝒊′ 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒊𝒊 Vnumber

𝑺𝑺𝟎𝟎 1 Initial State 5

1 2 5 Reading card Card Read

[Yes]

Card Read [No]/

Eject

decision

2 2` 5 Reading PIN Cancel pressed decision

2` 3 d PIN Read

[Yes]

Aborted due to

many invalid

PIN cards/Card

Retained

decision

3 4 5 Selecting

transaction

Transition

selected

Cancel pressed decision

4 5 3 Performing

transaction

Transaction

Success

Customer wants

to do another

transaction

loop 1

5 d Rejecting card Simple State

d Final State

Table 4.2 shows the SRT, which contains eight columns: the vertices symbol for each

state (𝑉𝑉𝑖𝑖), the next two vertices (𝑉𝑉𝑗𝑗) and (𝑉𝑉𝑗𝑗′) that the state vertices transition to, the

state data (𝑉𝑉𝑉𝑉𝑖𝑖), the next two events (𝑚𝑚𝑖𝑖) and (𝑚𝑚𝑖𝑖′) performed by each state, the vertex

type (𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑖𝑖) which differentiates the decision state, the normal state, the loop state, the

final state, and the initial state. Finally, the value for the current vertices (Vnumber) is

 137

calculated. The modified SRT is created by using the UML statechart diagram as an

input, as shown in Figure 4.3. As an example, the first state will have 1 as its value in

(𝑉𝑉𝑖𝑖), the next two vertices will be 2 in (𝑉𝑉𝑗𝑗) and 5 in (𝑉𝑉𝑗𝑗′), the state data “reading card”

stored in (𝑉𝑉𝑉𝑉𝑖𝑖) will transition to 2 “Card Read [Yes]” in (𝑚𝑚𝑖𝑖) and 2 “Card Read [No]/

Eject” in (𝑚𝑚𝑖𝑖′). Its type is a “decision” vertex in (𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑖𝑖), and the final (Vnumber) is

left blank as this vertex has no necessary value.

4.3.3 State Relationships Graph

This section presents a discussion regarding the proposed intermediate diagram known

as an SRG, which has been subjected by most of the previous studies as shown in Table

2.4. SRG captures the information presented in UML statechart diagrams that are

stored in SRT and works as the intermediate model to generate the test paths. The

proposed SRG is made from vertices and edges as SRG = (V, E). In SRG, vertices

represent states and edges represent transitions between states (Diestel, 2012). Without

any loss of simplification, the assumption is that a unique vertex that represents the

start exists. In addition, one vertex represents the ends. The process of generating SRG

uses the SRT as input and goes through the following steps:

Step 1: Place the InitialState at the top of the tree as the start vertices.

Step 2: Position the FinalState as the root of the tree.

Step 3: If a vertex without any outgoing edge and its type are not a FinalState, then

connect this vertex to a FinalState with an edge.

Step 4: Detect the initial edge after InitialState and check if it was previously visited.

Step 5: Obtain the next vertex connected to the current edge.

 138

Step 6: If the current vertex was previously visited but has more than one edge, flag

this vertex and revisit again.

Step 7: If the current vertex was previously visited and does not have an unvisited

edge, proceed to the next vertex.

Step 8: Repeat steps 6 and 7 until the FinalState vertex is reached.

Step 9: If the current vertex type is FinalState, then consider the graph finished.

Figure 4.7. State Relationship Graph

The SRT is accomplished to automatically generate the SRG. The value provided for

each state in the SRT column (𝑉𝑉𝑖𝑖) is used to name the vertices in the SRG, where each

vertex represents a state in the UML statechart diagram. A loop on the SRT will be

 139

checked from vertex to vertex to determine the connection between the vertices and

edges. Therefore, checking the two preceding vertices (𝑉𝑉𝑗𝑗) and (𝑉𝑉𝑗𝑗′) columns in the

SRT for the symbol of the current vertex will determine the direction and location of

an edge from one vertex to another. Specifically, if it contains the symbol of the

previous vertex, then an edge from the previous vertex to the current one is drawn in

the SRG. Otherwise, a backtrack search in the SRG is conducted until the vertex whose

symbol is mentioned in the column of the current vertex is found. In addition, an edge

is created from the SRG to the current vertex until all the rows in the SRT are finished.

Synchronization, decisions, and loops are demonstrated using edges as well. An

example of SRG is shown in Figure 4.7.

4.3.4 Generating Test Case Paths

In this section, the description of the algorithm to test case generation paths (TCGP)

are presented. The first path in a set could be any complete path through G that starts

at vertex Start, ends at vertex End, and does not iterate any loop more than once. The

subsequent paths can be derived by changing the outcome of one of the conditions in

any of the paths derived so far such that the new path is not identical to any path already

derived (Kaner & Fiedler, 2013).

The existing studies used the DFS algorithm as a base graph optimization technique to

generate the paths, as shown in Table 2.4. DFS was used to traverse the graph

whenever possible. In DFS, edges are explored from the most recently discovered

vertex v, which still has unexplored edges leaving it. This process continues until all

the reachable vertices from the original source vertex are discovered (Tripathy &

Mitra, 2012). However, when this algorithm is applied to the example graph in Figure

 140

4.7, it generates five test paths as shown in Figure 4.8 as the DFS does not fully handle

loops, thereby leading to loss of paths (Kim et al., 2007; Mingsong et al., 2006).

Therefore, the common DFS algorithm will cause the loss of paths; thus, creating an

enhanced DFS algorithm or other algorithms to generate the paths is unnecessary

(Mingsong et al., 2006). The modification is performed to generate paths, and the

number of times a vertex can be visited depends on the number of decisions and loop

vertices present. If two-decision vertices are present, then a vertex is visited twice; if

two-loop vertices are present, then the vertex gets a chance of being visited four times.

TP 1: [S → 1 → 2 → 3 → 4 → 5 → E]

TP 2: [S → 1 → 2 → 3 → 5 → E]

TP 3: [S → 1 → 2 → 5 → E]

TP 4: [S → 1 → 2 → E]

TP 5: [S → 1 → 5 → E]

Figure 4.8. All Possible Test Paths Using DFS Algorithm

In this work, all possible test paths are generated using the proposed TCGP algorithm

in Figure 4.9, which guarantees visitation of all the UML statechart graph vertices and

achieving total path. The TCGP algorithm is applied on the SRG to obtain all the

possible test paths.

The test paths that have been generated using the TCGP algorithm cover all the

conditions, branches, and loop states. A specific flag has been created to test that every

loop has been visited as least once. Therefore, the coverage criteria of the basic paths

have been addressed. A test path comprises successive vertices forming a complete

path from the start vertex in an SRG to the end vertex. Figure 4.3 represents 12 edges

 141

𝐸𝐸𝑖𝑖(𝑖𝑖 = 𝐸𝐸1,𝐸𝐸2, … ,𝐸𝐸12) epitomizing a UML statechart diagram to a message 𝑚𝑚𝑗𝑗(𝑗𝑗 =

𝑚𝑚1,𝑚𝑚2, … ,𝑚𝑚11) between two vertices. The algorithm uses TCGP as shown in Figure

4.9 to produce seven test paths as shown in Figure 4.10. Then, the proposed algorithm

automatically generates seven test cases.

The proposed improved algorithm of the test paths generation is shown in Figure 4.9.

This algorithm will generate all the possible paths from the UML statechart diagram.

From this generation, the number of paths will be minimized and prioritized. Then, the

test cases will be generated from the minimized and prioritized test paths. The TCGP

algorithm will be following these steps to generate the paths:

Step 1: Calculate the basic paths of the graph 𝐵𝐵𝐵𝐵(𝐺𝐺) and generate 𝐵𝐵𝐵𝐵(𝐺𝐺) empty paths

slot starting with initialState to prevent the algorithm from going into looping

and into an infinite number of paths.

Step 2: Trace the last vertex in the path and follow it to the next vertex 𝑉𝑉𝑗𝑗. Generate a

new vertex until a decision, loop, or finalState vertex type is reached. In the

case of loop or finalState, the path generation will stop and move to the next

path. However, in the case of decision, the generated path up to this point will

be copied to other empty paths and continue with 𝑉𝑉𝑗𝑗′ of the decision vertex.

Step 3: Repeat Step 2 until all the paths end with loop or finalState vertex.

Step 4: Calculate 𝐵𝐵𝐵𝐵(𝐺𝐺) from the next vertex 𝑉𝑉𝑗𝑗 of the loop vertex and generate

𝐵𝐵𝐵𝐵(𝐺𝐺) empty paths slot starting with initialState to generate the remaining

loop paths.

Step 5: Repeat steps 2–4 until the entire paths end with finalState vertex.

 142

TCGP Algorithm

Input: SRG&SRT
Output: Set of test paths

01 Begin:
02 //calculate the basic paths of the state relationship graph
03 Basic paths ← decision vertex + 1;
04 Generate the empty basic paths and set first vertex as S
05 While not reaching the final vertex do
06 //Start the navigating from the first vertex
07 If the current vertex = 0 then
08 Set V ← 1;
09 End IF
10 //Navigate the vertices and generate new path for every decision type vertex
11 If 𝑉𝑉𝑗𝑗′ is empty then
12 Set the path next vertex to 𝑉𝑉𝑗𝑗;
13 Set current V ← 𝑉𝑉𝑗𝑗;
14 End IF
15 Else
16 Duplicate the current path and set it as new path;
17 Set the path next vertex to 𝑉𝑉𝑗𝑗;
18 Set the new path next vertex to 𝑉𝑉

𝑗𝑗′
;

19 Set current V ← 𝑉𝑉𝑗𝑗;
20 End Else
21 If current vertex of type ‘loop’ OR ‘finalState’ then exit the loop;
22 End While
23 //calculate the basic paths after the loop vertex
24 Basic paths ← decision vertex after loop+ 1;
25 Generate the empty basic paths and set first vertex as S
26 While there are more row in the path array do
27 Select the last vertex in the current path and set its vertex value to V
28 //Navigate only the loop paths
29 If the current V not of type 'finalState' then
30 While not reaching the final vertex do
31 //Navigate the remain vertices after the loop vertex
32 If 𝑉𝑉𝑗𝑗′ is empty or 𝑉𝑉𝑗𝑗′<V then
33 Set the path next vertex to 𝑉𝑉𝑗𝑗;
34 Set current V ← 𝑉𝑉𝑗𝑗;
35 End IF
36 Else
37 Duplicate the current path and set it as new path;
38 Set the path next vertex to 𝑉𝑉𝑗𝑗;
39 Set the new path next vertex to 𝑉𝑉𝑗𝑗′;
40 Set current V ← 𝑉𝑉𝑗𝑗;
41 End Else
42 End While
43 End If
44 End While
45 End Begin

Figure 4.9. TCGP Algorithm

 143

TP 1: [S→1→2→3→4→5→E]

TP 2: [S→1→5→E]

TP 3: [S→1→2→5→E]

TP 4: [S→1→2→E]

TP 5: [S→1→2→3→5→E]

TP 6: [S→1→2→3→4→3→4→5→E]

TP 7: [S→1→2→3→4→3→5→E]

Figure 4.10. All Possible Test Paths Using TCGP Algorithm

• Consistency Checking

Cain et al. (2003) introduced the consistency problem and proposed a technique to

detect inconsistency relations. All previous attempts to recover this problem was

observed to be done by manual adjustment. Although Cain et al. (2003) proposed a

technique to detect the inconsistency relations, this technique does not avoid or treat

inconsistencies.

Each UML statechart diagram is subjected to basically compute the minimum number

of test paths that must be covered to check its capabilities in covering the

functionalities of the UML statechart diagram. This complexity technique is used to

perform the previous computation (Boghdady, Badr, Hashem, & Tolba, 2012). The

number of paths can be measured by the number of decision vertices + 1 (Kumar &

Mathew, 2014). The number of paths will depend on the loop location, as well as the

decision vertices between the loop vertex and the final state as this study deals with

loops.

 144

Therefore, a new equation has been proposed, the total paths (TP) equation, which will

calculate the number of paths as shown in Equation (4.5). Then, the TP will be

compared with the number of the path generated and its generation will be confirmed.

𝑇𝑇𝐵𝐵(𝐺𝐺) = T + � �(𝑇𝑇𝑇𝑇𝑛𝑛 + 1) + ∑ (𝑇𝑇𝑇𝑇𝑛𝑛 + 1)𝐿𝐿𝐿𝐿
𝑛𝑛=1 �𝐿𝐿

𝑛𝑛=1 + 1 (4.5)

The following are the variables used:

• 𝑇𝑇𝐵𝐵 = total paths (value of the minimum number of test paths that must be

generated),

• 𝑇𝑇 = total number of vertices that are of Decision type,

• 𝑇𝑇 = total number of vertices that are of Loop type,

• 𝑇𝑇𝑇𝑇 = total number of vertices that are of Decision type between the Loop

 type vertex and Final State type vertex,

• 𝑇𝑇𝑇𝑇 = total number of vertices that are of Loop type inside the loop.

The second modified equation will be as follows because this work does not consider

coverage for all paths as mentioned in Chapter 2:

𝑇𝑇𝐵𝐵(𝐺𝐺) = T + ∑ (𝑇𝑇𝑇𝑇𝑛𝑛 + 1)𝐿𝐿
𝑛𝑛=1 + 1 (4.6)

Equation (4.6) is applied on the SRG shown in Figure 4.7 and Table 4.2, where 𝑇𝑇 =

4 vertices, 𝑇𝑇 = 118T vertex, and 𝑇𝑇𝑇𝑇 = 118T vertex, then

𝑇𝑇𝐵𝐵(𝑆𝑆𝑆𝑆𝐺𝐺) = 4 + ∑ (1 + 1)1
𝑛𝑛=1 + 1 = 7

The cyclomatic complexity is considered an upper bound for the branch coverage

criterion and the predicate/condition coverage criterion (Boghdady et al., 2011b). The

 145

cyclomatic complexity also shows the expected path sequence for SRG. In addition,

the low certainty of test paths is seven, which is the same number as that achieved by

the TCGP algorithm. Then, this part ensures that the generated test paths pass the

consistency checking.

4.3.5 Test Case Path Minimization

In this section, after generating the test case paths, test case minimization was

conducted to reduce the generation of the test cases paths numbers while maximizing

test coverage and generate an effective size of generated test cases.

Test case minimization starts by assuming each visited or amount of visited edge 𝐸𝐸𝑖𝑖 in

a specific path as 1 and 0 for unvisited edge. The generated path was converted to path

weight as shown in Table 4.3. The weight of a path is the summation of the weights of

the path traversed (Ruohonen, 2013). Therefore, this study proposed Equation 4.7 to

calculate weight values 𝑊𝑊𝑣𝑣 to determine each path weight of transactions in the system,

as shown in Table 4.3.

𝑊𝑊𝑣𝑣 = ∑ 𝑅𝑅
𝑖𝑖=0 𝐸𝐸𝑖𝑖
∑ 𝑓𝑓𝑖𝑖𝑛𝑛
𝑖𝑖=0

 (4.7)

where 𝑆𝑆 represents the total number of edges and in this example is equal to 12. 𝑓𝑓𝑖𝑖 =

1, where 𝑛𝑛 is the number of states. Table 4.3 shows the value of 𝑊𝑊𝑣𝑣 for each single

path. As an example, the first path 𝐸𝐸𝑖𝑖 summation is equal to 6 because it visits six

edges, and 𝑓𝑓𝑖𝑖 summation equals to 7 because it contains seven different vertices.

Therefore, 𝑊𝑊𝑣𝑣 = 6
7

= 0.85.

 146

Table 4.3

Path Weight for Each Path

TP S→1 1→2 1→5 2→3 2→5 2→E 3→4 3→5 4→5 4→3 5→E 𝐖𝐖𝐯𝐯
1 1 1 0 1 0 0 1 0 1 0 1 0.85
2 1 0 1 0 0 0 0 0 0 0 1 075
3 1 1 0 0 1 0 0 0 0 0 1 0.8
4 1 1 0 0 0 1 0 0 0 0 0 075
5 1 1 0 1 0 0 0 1 0 0 1 0.83
6 1 1 0 1 0 0 1 0 1 1 1 0.77
7 1 1 0 1 0 0 1 1 0 1 1 0.87

After generating the path weight, the next step starts by calculating the path coverage

for each single path, as shown in Table 4.4. Let the test cases TP be a set of test paths,

𝑇𝑇𝐵𝐵 = (𝑇𝑇1,𝑇𝑇2,𝑇𝑇3, … ,𝑇𝑇𝑛𝑛). If one of the 𝑇𝑇𝐵𝐵 achieves full coverage, then this test case

will be selected. If more than one test path achieves full coverage, the path with lower

𝑊𝑊𝑣𝑣 will be selected. When no test case achieves full coverage, selecting an effective

set of test cases that will achieve full coverage by its combination is necessary. Now,

this step is presented through an algorithm.

In most cases, one testing path cannot achieve full coverage, as there may be many

paths from several decision vertices, as shown in Table 4.4, where the sixth path

achieves all-state and all-one-loop-path coverage, but not achieving all-transition and

all-transition-pair coverage. An approach has been proposed in this study to select

more than one testing path to increase the testing coverage using the firefly algorithm.

Then, the selection continues until it reaches full coverage. The selection method for

the next best testing path depends on the firefly algorithm in the edges contained in the

best testing path. In other words, the next best testing path should contain various edges

as possible compared with the best testing path (Alhroob, 2012) with the lowest weight

possible. The testing paths, which are eliminated, have the largest similarity degree.

 147

Table 4.4

Coverage Criteria for Each Path

TP No. All state All transition All-transition pairs All-one-loop paths
1 100% 54% 44% 0%
2 57% 63% 11% 0%
3 71% 27% 22% 0%
4 57% 63% 22% 0%
5 85% 45% 33% 0%
6 100% 63% 55% 100%
7 100% 63% 55% 100%

The path weight (as shown in Table 4.3) and coverage criteria for each path are

generated first (as shown in Table 4.4, refer to Section 4.4 for the calculation method).

The proposed intermediate graph is converted to an adjacency matrix and then used to

generate a guidance matrix for the graph. Adjacency matrix is a two-dimensional

matrix that indicates the relationship between vertices and edges (Srivatsava et al.,

2013).

Next, the value of each element of the adjacency matrix is specified. If connectivity

between nodes i and j is detected, then the elements 𝑉𝑉𝑖𝑖𝑗𝑗 = 1 and 𝑉𝑉𝑖𝑖𝑗𝑗 = 0 otherwise,

(Das, 2014), as shown in Table 4.5. The following are the steps in creating an

adjacency matrix (Das, 2014):

Step 1: Construct an 𝑛𝑛 × 𝑛𝑛 null matrix (let it be 𝐴𝐴𝑑𝑑𝑗𝑗(𝑖𝑖, 𝑗𝑗)).

Step 2: Check whether an edge exists for all vertices.

Step 3: If 𝐸𝐸(𝑉𝑉𝑖𝑖,𝑉𝑉𝑗𝑗) = = 1.

𝐴𝐴𝑑𝑑𝑗𝑗(𝑖𝑖, 𝑗𝑗) = 1;

Step 4: Repeat step 3 for all values of i.

 148

The adjacency matrix in Table 4.5 was created best on the graph in Figure 4.7 as an

example. However, vertices 2 and 2` were combined.

Table 4.5

Adjacency Matrix

States 0 1 2 3 4 5 6
0 0 1 0 0 0 0 0
1 0 0 1 0 0 1 0
2 0 0 0 1 0 1 1
3 0 0 0 0 1 1 0
4 0 0 0 1 0 1 0
5 0 0 0 0 0 0 1
6 0 0 0 0 0 0 0

Then, the created adjacency matrix is used to generate a guidance matrix. A guidance

matrix holds guidance factors to probe the fireflies in making decisions at predicate

vertices in choosing the path (Srivatsava et al., 2013). The out degree of a vertex is the

total number of edges that move out from a vertex, and a vertex with an out degree

greater than 1 is defined as a predicate vertex (Srivatsava et al., 2013). It is used for

the decision matrix for a given graph. For a firefly at a predicate vertex, the decision

to choose a path or not is carried out by referring to the guidance factor in the guidance

matrix. It blocks the global view of the domain or graph. The guidance factor 𝐺𝐺𝐺𝐺 can

be defined as follows (Srivatsava et al., 2013):

𝐺𝐺𝐺𝐺 = 10 �𝐶𝐶𝐶𝐶𝑖𝑖�(𝑉𝑉 − 𝑖𝑖) − 0.1�� (4.8)

The guidance value for the final state is usually set to 1,000 or any high value. The

cyclomatic complexity (𝐶𝐶𝐶𝐶𝑖𝑖) of the given vertex 𝑖𝑖 can be calculated by the following

formula (Kaner & Fiedler, 2013):

 149

𝐶𝐶𝐶𝐶 = 𝐸𝐸 − 𝑉𝑉 + 2 (4.9)

where 𝐸𝐸 is the number of edges of the graph and 𝑉𝑉 is the number of vertices of the

graph.

Fireflies at a predicate vertex use the guidance factor as discussed above to traverse

the vertex. Therefore, the brightness can be defined as follows:

Brightness function= (1/guidance factor) (4.10)

Thus, a firefly at a predicate vertex follows the guidance factor with a lower value.

In the example in Figure 4.3, the number of vertices is 7, and the number of edges is

11; therefore, the Cyclomatic Complexity equal to 6. However, the Cyclomatic

Complexity for each vertex should be obtained (using Equation 4.9) to calculate the

guidance value. For example, for the third state, 𝐶𝐶𝐶𝐶3 = 4 − 3 + 2 = 3, and for the

same state, 𝐺𝐺𝐺𝐺3 = 10 �3�(7 − 4) − 0.1�� = 117, as shown in Table 4.6.

Table 4.6

Guidance Value

States Cyclomatic Complexity (CC) Guidance value (𝑮𝑮𝑮𝑮)
0 6 414
1 6 354
2 5 245
3 3 117
4 2 58
5 1 19
6 1,000 [END vertex infinity] 1,000 [finial state]

The guidance matrix (Table 4.7) is only a look-up/decision table of the adjacency

matrix with each guidance factor corresponding to every edge. Table 4.7 was created

 150

based on Table 4.5 by multiplying each state value by the guidance value from the

same state in Table 4.6.

Table 4.7

Guidance Matrix

States 0 1 2 3 4 5 6
0 0 354 0 0 0 0 0
1 0 0 245 0 0 19 0
2 0 0 0 117 0 19 1000
3 0 0 0 0 58 19 0
4 0 0 0 117 0 19 0
5 0 0 0 0 0 0 1000
6 0 0 0 0 0 0 0

Then, the algorithm will generate the first path = [0, 1, 5, 6] by starting from state 0

and searching the lowest value in the row, and in this case, it is 354 which represents

state 1. Therefore, the first sequence (0, 1) is created. Then, from state 1, proceed to

the next state with the lowest value. In this case, it is 19. Thereafter, create (1, 5). State

5 will end to state 6 to create (5, 6). Then, all the visited states in Table 4.7 [(0, 1), (1,

5), (5, 6)] will be replaced with zero as in Table 4.8. The next execution will generate

the rest of the paths until all the states are equal to zero.

Path 2 = [1, 2, 5]

Path 3 = [2, 3, 5]

Path 4 = [2, 6]

Path 5 = [3, 4, 5]

Path 6 = [4, 3]

The fifth path starts with 3, and the sixth path ends with 3. Therefore, they will be

combined as [4, 3, 4, 5].

 151

Table 4.8

Guidance Matrix after First Path

States 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 0 245 0 0 0 0
2 0 0 0 117 0 19 1000
3 0 0 0 0 58 19 0
4 0 0 0 117 0 19 0
5 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0

The algorithm will match each optimal path sequence with the test paths in Figure 4.10

to optimize the test cases, and the matched path is chosen. When more than one

matched path is present, choose the lowest path weight 𝑊𝑊𝑣𝑣 from Table 4.9 between the

selected match paths.

TP 2: [S→1→5→E]

TP 3: [S→1→2→5→E]

TP 5: [S→1→2→3→5→E]

TP 4: [S→1→2→E]

TP 6: [S→1→2→3→4→3→4→5→E]

Figure 4.11. Optimized Test Paths

The highest coverage percentage of a testing path that can cover a system is the best

path. However, the highest percentage does not mean the largest number of vertices.

Each path has its own coverage, as illustrated in Table 4.4.

This method minimized the number of test paths to five (see Figure 4.11) from the

seven test paths, as shown in Figure 4.10, where the first and seventh paths have been

 152

deleted. However, the experiment shows that the minimization method depends on the

complexity of the inputted graph, especially on the numbers of the loop in it.

The combination of these five paths leads to achieving all-state coverage, all-transition

coverage, all-transition-pair coverage, and all-one-loop coverage, as shown in Table

4.9.

Table 4.9

Coverage Criteria Percentage for Minimized Paths

TP No All state All transition All-transition pairs All-one-loop paths
2, 3, 5, 4, 6 100% 100% 100% 100%

Figure 4.12 shows the test case minimization from 10 UML statechart diagram

examples where the total minimization from the total number is 31%.

Figure 4.12. Test Case Minimization

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

0 1 2 3 4 5 6 7 8 9 10

T
es

t C
as

es
 N

um
be

r

Experimentation

Generated Test cases Minimized test cases

 153

4.3.6 Test Case Path Prioritization

Testing depends on fixed resources; thus, path prioritization is needed to schedule the

order of test execution (Ahmad & Baharom, 2017). Test path prioritization involves

scheduling the test cases systematically to improve the performance of regression

testing (Rothermel, Untch, Chu, & Harrold, 2001). Path prioritization means finding

the critical paths that a tester might want to test and/or prioritize.

Ten fireflies are generated at each vertex of the state relationship graph of the UML

statechart diagram for prioritization of the generated test paths. The brightness of each

firefly is determined by the following formula (Yang, 2010):

 𝐴𝐴𝑖𝑖 =
𝐴𝐴0

(1 + 𝛾𝛾𝑑𝑑)
 (4.11)

where 𝐴𝐴0 is the brightness of the firefly at the first vertex and the scaling factor is 100

to maintain the brightness values above zero, to avoid purely random search, and 𝛾𝛾 is

the light absorption coefficient obtained using the following equation (Rhmann &

Saxena, 2016):

γ = 𝐶𝐶𝐶𝐶𝑖𝑖 + 𝐼𝐼𝐺𝐺𝑖𝑖 (4.12)

where 𝐶𝐶𝐶𝐶𝑖𝑖 is the cyclomatic complexity at node vertex I and 𝐼𝐼𝐺𝐺𝑖𝑖 is the information

flow metric (Gries & Schneider, 2005) applied to system design component. The

𝐼𝐼𝐺𝐺 value for each vertex is calculated using the following equation (Gries & Schneider,

2005):

𝐼𝐼𝐺𝐺𝑖𝑖 = (FANIN𝑖𝑖 × FANOUT𝑖𝑖)2 (4.13)

 154

where FANIN𝑖𝑖 is the number of edges in vertex i and FANOUT𝑖𝑖 is the number of edges

out from the vertex i.

𝑑𝑑𝑖𝑖is the maximum random distance from the end vertex to that of vertex i in which the

fireflies are deployed, and vertices at the same level have the same distances

(Srivatsava et al., 2013). The maximum random distance value will be from �(𝑉𝑉 −

𝑖𝑖) − 𝑟𝑟�, where 𝑉𝑉 is the number of vertices of the graph, 𝑖𝑖 is the vertex, and 𝑟𝑟 is a

random number between 0.1 and 1.0. The 10 generated fireflies for each state are

shown in Table 4.10, where 𝑑𝑑𝑖𝑖 represents the random distance and 𝐴𝐴𝑖𝑖is the brightness

of the firefly.

Table 4.10

Calculation of Brightness Values of 10 Fireflies

V 1 2 3 4 5 6 7 8 9 10
𝑑𝑑𝑖𝑖 𝐴𝐴𝑖𝑖 𝑑𝑑𝑖𝑖 𝐴𝐴𝑖𝑖 𝑑𝑑𝑖𝑖 𝐴𝐴𝑖𝑖 𝑑𝑑𝑖𝑖 𝐴𝐴𝑖𝑖 𝑑𝑑𝑖𝑖 𝐴𝐴𝑖𝑖 𝑑𝑑𝑖𝑖 𝐴𝐴𝑖𝑖 𝑑𝑑𝑖𝑖 𝐴𝐴𝑖𝑖 𝑑𝑑𝑖𝑖 𝐴𝐴𝑖𝑖 𝑑𝑑𝑖𝑖 𝐴𝐴𝑖𝑖 𝑑𝑑𝑖𝑖 𝐴𝐴𝑖𝑖

0 6.

9

2.3

6

6.

8

2.3

9

6.

7

2.4

3

6.

6

2.4

6

6.

5

2.5 6.

4

2.5

4

6.

3

2.5

8

6.

2

2.6

2

6.

1

2.6

6

6 2.7

1 5.

9

1.6

7

5.

8

1.6

9

5.

7

1.7

2

5.

6

1.7

5

5.

5

1.7

9

5.

4

1.8

2

5.

3

1.8

5

5.

2

1.8

9

5.

1

1.9

2

5 1.9

6

2 4.

9

1.4

4

4.

8

1.4

7

4.

7

1.5 4.

6

1.5

3

4.

5

1.5

6

4.

4

1.6 4.

3

1.6

3

4.

2

1.6

7

4.

1

1.7

1

4 1.7

5

3 3.

9

1.3

3

3.

8

1.3

7

3.

7

1.4 3.

6

1.4

4

3.

5

1.4

8

3.

4

1.5

2

3.

3

1.5

7

3.

2

1.6

2

3.

1

1.6

7

3 1.7

2

4 2.

9

5.4

3

2.

8

5.6

2

2.

7

5.8

1

2.

6

6.0

2

2.

5

6.2

5

2.

4

6.4

9

2.

3

6.7

6

2.

2

7.0

4

2.

1

7.3

5

2 7.6

9

5 1.

9

3 1.

8

3.1

6

1.

7

3.3

4

1.

6

3.5

5

1.

5

3.7

7

1.

4

4.0

3

1.

3

4.3

3

1.

2

4.6

7

1.

1

5.0

8

1 5.5

6

Table 4.11 shows the separate calculation for cyclomatic complexity and information

flow for each vertex and the firefly brightness for that specific vertex after including

the random factor.

 155

Table 4.11

Objective Function

Vertex Cyclomatic Complexity CC Information Flow 𝑰𝑰𝑮𝑮𝒊𝒊 Firefly brightness 𝑨𝑨𝒊𝒊
0 6 0 2.36
1 6 4 1.82
2 5 9 1.5
3 3 16 1.53
4 2 4 6.49
5 1 16 3.16

According to Srivatsava et al. (2013), the mean firefly brightness from the first to the

last vertex in a specific path is the sum of firefly brightness accumulated at the end

vertex by the number of fireflies. That is,

Arithmetic mean of brightness (AMB) =

∑ 𝐴𝐴𝑖𝑖𝑛𝑛
𝑖𝑖−0
∑ 𝑓𝑓𝑖𝑖𝑛𝑛
𝑖𝑖=0

 (4.14)

However, 𝑊𝑊𝑣𝑣 was added to Equation (4.14) to guide the fireflies into selecting the best

test path.

The mean of brightness at every path is calculated using the following equation:

AMB =
∑ 𝐴𝐴𝑖𝑖𝑛𝑛
𝑖𝑖−0
∑ 𝑓𝑓𝑖𝑖𝑛𝑛
𝑖𝑖=0

+ 𝑊𝑊𝑣𝑣,

AMB = ∑ 𝐴𝐴𝑖𝑖𝑛𝑛
𝑖𝑖−0
∑ 𝑓𝑓𝑖𝑖𝑛𝑛
𝑖𝑖=0

+ ∑ 𝐸𝐸𝑖𝑖𝑅𝑅
𝑖𝑖=0
∑ 𝑓𝑓𝑖𝑖𝑛𝑛
𝑖𝑖=0

,

AMB =

∑ 𝐴𝐴𝑖𝑖𝑛𝑛
𝑖𝑖−0 + ∑ 𝐸𝐸𝑖𝑖𝑅𝑅

𝑖𝑖=0
∑ 𝑓𝑓𝑖𝑖𝑛𝑛
𝑖𝑖=0

 (4.15)

where 𝑓𝑓𝑖𝑖 = 1, 𝑖𝑖 is the state/vertex, 𝐴𝐴𝑖𝑖 is the firefly brightness, and n represents the

number of vertexes.

 156

Table 4.12

Test Path Prioritization

Test ID Test path AMB
TP 6 S→1→2→3→4→3→4→5→E 3.9842
TP 3 S→1→2→5→E 3.2095
TP 2 S→1→5→E 3.1137
TP 5 S→1→2→3→5→E 3.0725
TP 4 S→1→2→E 2.8912

The mean of brightness in every path is calculated using Equation (4.15). Table 4.12

shows prioritization of test paths arranged according to its mean of brightness value

for each generated optimized test paths. The test path that will have the highest mean

brightness value will have the highest priority and will be tested first (Rhmann &

Saxena, 2016). Similarly, other paths will be tested based on their mean of brightness

value. From the table, the optimized test path 6 has the highest brightness value,

thereby having a high-priority status followed by the third, second, fifth, and fourth

paths.

4.3.7 Generating Test Cases

In this stage, details of each symbol in each path are extracted from the SRT and added

to its corresponding vertex in the test path to obtain all the final test cases. The test

case will be generated automatically using the proposed algorithm.

A test case 𝑇𝑇𝐶𝐶 has a triple value (I, S, and O), where I is the data input that acts as a

function input to initiate the process, S is the state that indicates the process of

retrieving the test data, and O is the expected output of the system (Jena et al., 2014;

Mani & Prasanna, 2016; Sharma & PrakashSonwani, 2015). The set of input values

for the test case 𝐼𝐼 (𝑚𝑚1,𝑚𝑚2, … ,𝑚𝑚𝑖𝑖) is assumed as a set of messages and the state steps

 157

when the method is executed 𝑆𝑆 (𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑖𝑖−1) for vertices except the last vertex

because it will be the expected output resultant values in object 𝑂𝑂(𝑣𝑣𝑖𝑖). Therefore, the

equation will be represented in a test case as follows:

𝑇𝑇𝐶𝐶 = [𝐼𝐼(𝑚𝑚1,𝑚𝑚2, … ,𝑚𝑚𝑖𝑖),𝑆𝑆(𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑖𝑖−1),𝑂𝑂(𝑣𝑣𝑖𝑖)] (4.16)

As a part of the test case generation, obtaining the necessary values of the three

components of a test case will be from the TCGP itself. For this case, SRT and VDT

will be used in constructing test cases.

a) Path Pruning

The first part of the proposed algorithm for generating test cases is called pruning. It

is used to prune the generated test paths before generating the final test cases. By using

the pruning, some redundant test cases can be reduced as a test case set which meets

the test adequacy criteria (Mingsong et al., 2006). Chen, Poon, and Tse (1999)

proposed an algorithm to improve the value of SRG. They observed that the algorithm

for removing duplicates has many limitations. To overcome these limitations, a

method has been proposed for pruning the vertices and improving the value of the test

cases.

This method reduces the size of the test case itself by selecting only the vital

information from the SRT using the proposed vertex types as shown in Table 4.1. The

generated test case is smaller in content but at the same time functional to perform the

testing. Path pruning illustrates the detection and deletion of unwanted vertices with

the help of steps as shown in Figure 4.13. However, this process will lead to lowering

of the state coverage because this method aims to reduce the number of states.

 158

• When the type of the current 𝒗𝒗𝒊𝒊 of TCGP is either Start State or End State,

it will be ignored.

• When the type of the current 𝒗𝒗𝒊𝒊 of TCGP is State and the previous vertex is

not of type Decision, Start State, Guard, Loop, GuardLoop, or

DecisionLoop, it will be ignored.

• When the type of the current 𝒗𝒗𝒊𝒊 of TCGP is Guard or GuardLoop, then 𝒗𝒗𝒊𝒊

information is ignored and only its edge information 𝒎𝒎𝒊𝒊 is considered.

• When the type of the current 𝒗𝒗𝒊𝒊 of TCGP is Output, then add 𝒗𝒗𝒊𝒊to State and

insert 𝒗𝒗𝒊𝒊 → 𝒎𝒎𝒊𝒊 → 𝒗𝒗𝒅𝒅 into Expected Output. End the test case.

• When the type of the current 𝒗𝒗𝒊𝒊of TCGP is Simple State, add 𝒗𝒗𝒊𝒊 to Expected

Output. End the test case.

Figure 4.13. Path Pruning Steps

b) Produced Test Cases

The final part is generating the test cases using the test cases generation (TCG) algorithm

as shown in Figure 4.14, which will take the TCGP output and use it with pruning as

an input to generate all possible test cases that achieve the proposed coverage criteria.

The algorithm starts by taking all paths, and then traces each path vertex from start to

end, and finally uses each vertex saved information in SRT to apply the information

position in the requested test case.

 159

TCG Algorithm

Input: UML start charts path from TCGP algorithm
Output: Set of test cases

01 Begin:
02 Navigate each path from the start to final vertex;
03 Set current path number into TestCase[Test Case No];
04 While there are more row in the path array do
05 If current vertex not of type 'finalState,' then
06 If the next vertex is the path = v1, then
07 Set 𝑚𝑚𝑖𝑖 into TestCase[Input];
08 End If
09 Else If the current vertex not of type 'output,' then
10 Set𝑚𝑚𝑖𝑖′into TestCase[Input];
11 End If
12 End If
13 End While
14 While there are more row in the path array do
15 If the current vertex not of type 'finalState' & 'simpleState' & 'guard' & 'output,' then
16 Set 𝑉𝑉𝑉𝑉𝑖𝑖 into TestCase[state];
17 End If
18 If the current vertex of type 'output' and the next vertex of type 'finalState,' then
19 Set 𝑉𝑉𝑉𝑉𝑖𝑖into TestCase[state];
20 End If
21 End While
22 While there are more row in the path array do
23 If the current vertex of 'simpleState,' then
24 Set 𝑉𝑉𝑉𝑉𝑖𝑖into TestCase[expected output];
25 End If
26 If the current vertex of type 'output' and the next vertex of type 'finalState,' then
27 Set 𝑚𝑚𝑖𝑖′into TestCase[expected output];
28 End If
29 End While
30 End Begin

Figure 4.14. TCG Algorithm

Table 4.13 shows the final expected test case output. The table contains four columns,

namely, current test case number, its input, state, and output. These columns reflect

Equation (4.16).

 160

Table 4.13

Generated Test Cases

TC No. Input State Expected output

1 Card read [yes], PIN read [yes],

Transition chosen, customer

want to do another, transition

chosen, transition success

Choosing transaction,

Performing transaction,

Choosing transaction,

Performing transaction

Ejecting card

2 Card read [yes], PIN read [no] Ejecting card

3 Card read [no] Ejecting card

4 Card read [yes] Reading PIN Aborted due to many

invalid PIN card /card

Retained

5 Card read [yes], PIN read [yes],

Cancel Pressed

Choosing transaction Ejecting card

4.4 Coverage Criteria Calculation

A coverage criterion can be measured on any program during software development,

for example, design models, requirements, or source coded. The coverage criterion is

satisfied when a test case fulfils a set of test requirements in terms of structural

elements. Coverage is usually counted as the percentage of test requirement

satisfaction. The coverage criteria assess the quality and completeness of the test cases.

Coverage criteria are resulting from popular heuristics to measure the fault detection

capability of test cases (Shirole & Kumar, 2013). Clearly specifying the coverage

criteria is important because they are frequently used to measure the effectiveness of

test case generation (Ali, Briand, Hemmati, & Panesar-Walawege, 2010). The

percentage of criteria coverage is used to evaluate the accuracy or quality of test case

 161

generation approaches. The calculation formula for the percentage of coverage criteria

is depicted in Equation 4.17. The following formula indicates the number of elements

contained in the UML diagram, which are exercised in the generated test cases

(Oluwagbemi & Asmuni, 2015):

𝐸𝐸𝑐𝑐 = �
𝐸𝐸𝑡𝑡𝑐𝑐𝑠𝑠
𝐸𝐸𝑡𝑡𝑐𝑐𝑡𝑡𝑡𝑡𝐿𝐿

× 100� (4.17)

where 𝐸𝐸𝑐𝑐 indicates the elements’ coverage, 𝐸𝐸𝑡𝑡𝑐𝑐𝑠𝑠 denotes the number of elements

exercised in the test cases, and 𝐸𝐸𝑡𝑡𝑐𝑐𝑡𝑡𝑡𝑡𝐿𝐿 refers to the number of elements in the UML

diagram.

The following subsections discuss the calculation of the used coverage criteria.

4.4.1 All-State Coverage

Full coverage can be achieved when every state of the UML statechart diagram is

visited at least once and by applying all-state coverage to the test model. Through the

sets 𝑉𝑉𝑖𝑖 = (𝑉𝑉1,𝑉𝑉2,𝑉𝑉3, …) and because the total number of 𝑉𝑉𝑡𝑡 = 5 without the 'Start

State' and 'End State' in the example, every 𝑉𝑉𝑖𝑖 in the graph should be covered at least

once, as shown in Figure 4.3. The all-state coverage percentage of the all-state

coverage 𝐶𝐶𝐴𝐴𝐴𝐴 can be achieved by devising the visited vertex 𝑉𝑉𝑣𝑣 on the total 𝑉𝑉𝑡𝑡 the total

coverage:

𝐶𝐶𝐴𝐴𝐴𝐴 = �𝑉𝑉𝑣𝑣
𝑉𝑉𝑡𝑡

× 100� (4.18)

The proposed test cases achieve 𝑉𝑉𝑣𝑣 = 5 vertices; therefore ,𝐶𝐶𝐴𝐴𝐴𝐴 = �5
5

× 100� =

100%.

 162

4.4.2 All-transition Coverage

Full coverage is achieved when the test cases visit every transition of the UML

statechart diagram at least once and by applying all-transition coverage to the test

model. Each transition has a pre-vertex and a post-vertex (Paul & Jeff, 2008). Then,

assume all-transitions = AT so that AT ∈ E and all-transitions coverage 𝐶𝐶𝐴𝐴𝐴𝐴. In Figure

4.3, given that E=11 in the example, the following E should be covered at least once:

𝐸𝐸1(𝑉𝑉0 → 𝑉𝑉1)

𝐸𝐸2(𝑉𝑉1 → 𝑉𝑉2)

𝐸𝐸3(𝑉𝑉1 → 𝑉𝑉5)

𝐸𝐸4(𝑉𝑉2 → 𝑉𝑉3)

𝐸𝐸5(𝑉𝑉2 → 𝑉𝑉5)

𝐸𝐸6(𝑉𝑉2 → 𝑉𝑉𝑑𝑑)

𝐸𝐸7(𝑉𝑉3 → 𝑉𝑉4)

𝐸𝐸8(𝑉𝑉3 → 𝑉𝑉5)

𝐸𝐸9(𝑉𝑉4 → 𝑉𝑉5)

𝐸𝐸10(𝑉𝑉4 → 𝑉𝑉3)

𝐸𝐸11(𝑉𝑉5 → 𝑉𝑉𝑑𝑑)

Each E has Boolean flags (0) and (1), and its total is 𝐸𝐸𝑑𝑑 . The total coverage is

calculated as follows:

𝐶𝐶𝐴𝐴𝐴𝐴 = �𝐸𝐸𝑑𝑑
𝐴𝐴𝐴𝐴

× 100� (4.19)

4.4.3 All-transition-pair Coverage

The test cases should visit each pair of existing transitions of the UML statechart

diagram at least once to obtain a full all-transition-pair coverage for the test model.

Then, assume all-transition-pair coverage = 𝐶𝐶AP so that 𝐶𝐶AP ∈ 𝐸𝐸. In Figure 4.3, given

that 𝑉𝑉𝑑𝑑𝑒𝑒𝑑𝑑𝑖𝑖𝑠𝑠𝑖𝑖𝑑𝑑𝑛𝑛 = 4 in the example, the following 𝑉𝑉𝑑𝑑𝑒𝑒𝑑𝑑𝑖𝑖𝑠𝑠𝑖𝑖𝑑𝑑𝑛𝑛 should be covered at least

once:

 163

𝑉𝑉d1[(𝑉𝑉1 → 𝑉𝑉2), (𝑉𝑉1 → 𝑉𝑉5)]

𝑉𝑉d2[(𝑉𝑉2 → 𝑉𝑉3), (𝑉𝑉2 → 𝑉𝑉5), (𝑉𝑉2 → 𝑉𝑉d)]

𝑉𝑉d3[(𝑉𝑉3 → 𝑉𝑉4), (𝑉𝑉3 → 𝑉𝑉5)]

𝑉𝑉d4[(𝑉𝑉4 → 𝑉𝑉3), (𝑉𝑉4 → 𝑉𝑉5)].

Each 𝑉𝑉𝑑𝑑𝑒𝑒𝑑𝑑𝑖𝑖𝑠𝑠𝑖𝑖𝑑𝑑𝑛𝑛 has Boolean flags (0) and (1), and its total is 𝑉𝑉𝑑𝑑𝑡𝑡. The total coverage is

obtained using the following equation:

𝐶𝐶AP = � 𝑉𝑉𝑑𝑑𝑡𝑡
𝑉𝑉𝑑𝑑𝑒𝑒𝑑𝑑𝑖𝑖𝑠𝑠𝑖𝑖𝑑𝑑𝑛𝑛

× 100� (4.20)

The proposed test cases achieve all the 11 transitions pairs; therefore , 𝐶𝐶AP =

�11
11

× 100� = 100%.

4.4.4 All-one-loop-path Coverage

Full coverage can be achieved when the generated test paths from the UML statechart

diagram visited every loop plus all the paths that loop once by applying all-one-loop-

path coverage to the test model.

𝐸𝐸𝐴𝐴𝐴𝐴𝐿𝐿𝐴𝐴 = �𝐿𝐿𝐴𝐴
𝐴𝐴𝐴𝐴

× 100� (4.21)

where 𝐸𝐸𝐴𝐴𝐴𝐴𝐿𝐿𝐴𝐴 refers to the all-one-loop-path coverage and 𝑇𝑇𝑇𝑇 is the total number of

generated loop test cases. All the paths are required to precede or follow a loop to be

tested; thus, 𝑇𝑇𝐵𝐵 = 𝑙𝑙𝑑𝑑𝑑𝑑𝑡𝑡 × (𝑖𝑖𝑛𝑛𝑑𝑑𝑙𝑙𝑖𝑖𝑑𝑑𝑒𝑒𝑑𝑑 𝑑𝑑𝑒𝑒𝑠𝑠𝑖𝑖𝑑𝑑𝑛𝑛 + 1) = 1(1 + 1) = 2.

For example, in Figure 4.3, an all-one-loop-path test case would include the two path

tests of the all-loop-free-path coverage criterion (TP6 and TP7); therefore, it achieves

full coverage because 𝐸𝐸𝐴𝐴𝐴𝐴𝐿𝐿𝐴𝐴 = �2
2

× 100� = 100%.

 164

4.5 Prototype Development

The design and development phases of the prototype applied in the framework are

proposed in this study. Each phase in the framework has components embedded in the

prototype development.

Nowadays, many software developers are adopting iterative development

methodologies highlighted by RAD cycles. In iterative life cycles, testing is conducted

at many stages of development unlike waterfall development life cycles, where testing

is done at the end of the project. Identifying the flaws early is an advantage to reduce

the cost and time of system development. RAD has been proven a valuable software

strategy (Konstantinou, 2013).

As stated by Martin (1991), “RAD is a development life cycle designed to give much

faster development and higher-quality results than those achieved with the traditional

life cycle.” In general, software is allowed by the RAD development life cycle to be

written much faster, and the requirements are in turn allowed to be changed much

easier (Beynon-Davies, Carne, Mackay, & Tudhope, 1999; Martin, 1991; Ooi,

Shahrizal, Noordin, Nurulain, & Norhan, 2014).

Using the RAD methodology, the design and development of the prototype were

analysed to implement the suggested test case generation module and algorithm. Four

stages are included into the RAD methodology, namely, requirement planning, user

design, construction, and cutover stages, as shown in Figure 3.3.

In the requirement planning stage, the combined elements of the prototype that are

related to the system development life cycle must be obviously understood. The test

 165

case generator takes the UML statechart diagrams as an input and produces a set of

test cases based on analysis and algorithms. At the same time, it identifies and

generates test paths based on evaluated results. The primary objective of the prototype

is to automatically generate a test case. Each phase in the framework has components

embedded in the prototype development. In general, the prototype is generated in four

stages: statechart, intermediate graph, generated paths, and generated test cases.

In the user design stage, users interact with developed models and system analysts.

The target users were defined as software tester, software developer, and programmer

who can use the prototype in their testing. The prototype can be accessed through a

Web-based application to be more accessible. In addition, the user has the capability

to draw the UML statechart diagram and automatically generate the test cases while

displaying the steps.

In the construction stage, application and program development are the focus. The

prototype system is developed in JavaScript, PHP, and MYSQL. Initially, in the

implementation phase, previous stages are considered.

In the cutover stage, the final phase of RAD is implemented, including data

conversion and testing. Evaluating user satisfaction is considered the essential part of

the software development process.

The prototype was designed, and the results were evaluated based on the test case

generator framework. In addition, the prototype has a graphical interface that allows

users to construct, edit, and analyse UML statechart diagrams interactively.

 166

The following screen shots present the user interface and screens of the prototype. The

designed prototype begins on the first page of the application, and the homepage

allows the registered users access to provided UML statechart examples, as shown in

Figure 4.15.

Figure 4.15. Test Case Generation Prototype

Figure 4.16. Test Case Generation Prototype in the Statechart Page

 167

The UML statechart diagram of ATM system is shown by choosing the first example

in the prototype, as presented in Figure 4.16.

The prototype will show the complete process to the user; therefore, by clicking on the

next button, the intermediate graph of the selected UML statechart diagram page is

generated, as shown in Figure 4.17.

Figure 4.17. Test Case Generation Prototype in the Graph Page

Figure 4.18 summarizes the test case paths of a certain test scenario. Figure 4.19 shows

a sample of the detailed description of the test cases with the ability to approve or reject

these test cases. This detailed description provides structured information on how the

tester interacts with the system. It details which input the tester has to provide, what

output is expected, and what actions the tester should take.

 168

Figure 4.18. Test Case Generation Prototype in the Total Path Page

Figure 4.19. Test Case Generation Prototype Test Case Page

 169

4.6 Summary

This chapter describes the components of the proposed framework, including rules,

tables, and algorithms. The test case generation framework is proposed specifically to

provide the software tester with approaches for designing and developing automatic

test case generation application. Seven phases (i.e., construction of the UML statechart

diagram, SRT, SRG, test case path generation, minimization, prioritization, and test

case generation) are described in detail. Then, the framework will achieve four

coverage criteria: all-state coverage, all-transition coverage, all-transition-pair

coverage, and all-one-loop-path coverage in which the coverage criterion calculation

has been presented. Afterwards, the framework and its methods was implemented in

the prototype development. Objectively, this framework is intended for the software

tester to follow, in developing an automatic test case generation system.

 170

CHAPTER FIVE

EVALUATION

5.1 Introduction

In this chapter, evaluation of the proposed framework, methods, and algorithms was

conducted. The evaluation start by generate the test cases using the prototype then

comparing other similar test case generation methods. Furthermore, the domain

experts, who are knowledge experts and software practitioners, carried out the final

stage in the evaluation process. These stages are discussed further in this chapter.

5.2 Research Framework Evaluation

The main goal of the evaluation phase is to test the proposed framework and its

algorithms to automatically generate the test cases from the UML statechart diagram.

In addition, they are constructed specifically to ensure that it performs according to

expectation (Sommerville, 2011).

The proposed system was evaluated by comparing test case generation methods with

the two evaluation methods suggested by Sherwood and Rout (1998), the expert

review, and development of a prototype of the automatic test case generation program.

The combination of the three evaluation methods ensures that the final implementation

of the framework can generate test cases using the UML statechart diagram that are

proven beneficial in terms of coverage criteria.

The proposed system was evaluated in three stages, namely, prototyping, comparison,

and expert review. They are further discussed in the next sections. The next

subsections discuss the implementation of the framework and the use of the examples

 171

to generate the coverage criteria. Then, the result was used for comparison with

previous studies.

5.2.1 Prototyping and Examples

Prototype development was conducted as a part of evaluation. Prototyping does not

count as coding because the prototype is developed only to explore how parts of the

product work (Kaner, Falk, & Nguyen, 1999). Prototyping is widely acknowledged by

software developers for early development testing (Bahrin, 2011). Therefore,

implementing a prototype that can process the UML statechart diagram as an input,

apply all transformation steps on that diagram, and assemble the expected test cases is

needed to prove the proposed method.

In addition to the ATM, the other four UML statechart diagram examples that will be

implemented in the prototype to evaluate the proposed framework and calculate the

total average coverage criteria are the following: university library, online shop, airline

check-in, and retail point of sale, as shown in Figure 4.3 (Inamdar, 2015; Lauder &

Kent, 2001; Popp et al., 2009). For each example, the result of the test coverage of all-

state coverage, all-transition coverage, all-transition-pair coverage, and all-one-loop

coverage will be presented.

 172

a) UML Statechart Diagram of a University Library

Figure 5.1. UML Statechart Diagram of a University Library

A UML statechart diagram of a university library has been imported in the prototype,

as shown in Figure 5.1. The UML statechart diagram starts when a student needs to

login using his/her username and password. After obtaining the access, he/she can

search for a book, and when the book is found, he/she will be able to request for the

book. Once the librarian has made the request, he/she will receive the book. Then,

he/she will return the book and pay any fine if necessary. In the end, the system will

update the user profile and terminate the session.

Using the SRT algorithm as explained in Chapter 4 (see Figure 4.6), the prototype will

generate the SRT of the selected example and store the information in the database, as

shown in Table 5.1.

 173

Table 5.1

SRT of a University Library UML Statechart Diagram

𝑽𝑽𝒊𝒊 𝑽𝑽𝒋𝒋 𝑽𝑽𝒋𝒋′ 𝑽𝑽𝑽𝑽𝒊𝒊 𝒎𝒎𝒊𝒊 𝒎𝒎𝒊𝒊′ 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒊𝒊 V number

𝑺𝑺𝟎𝟎 1 Initial State 1

1 2 Student login User ID and password State

2 3 Search book Found book State

3 4 Request book Request librarian for

book

 State

4 5 Receive book Return back book State

5 6 Return book and

pay fine (if any)

Pay the fine State

6 d Profile update

and sign out

Stop Simple State

d finalState

Figure 5.2. Chart Relationship Graph for a University Library UML Statechart
Diagram

 174

The next step is generating test cases in the SRG format, which will be shown by the

prototype when the user clicks on the “Step by step” button, as shown in Figure 5.1.

The created SRG is shown in Figure 5.2.

After clicking the next button in the SRG page, the prototype will generate all possible

paths using the TCGP algorithm (see Figure 4.9) and demonstrate them as shown in

Figure 5.3.

TP 1: [S→1→2→3→4→5→6→E]

Figure 5.3. All Possible Test Paths for a University Library UML Statechart
Diagram

This example has one test path; thus, it does not need to be minimized or prioritized.

Therefore, the final generated result will be the test cases as shown in Table 5.2.

Table 5.2

Test Cases for UML Statechart Diagram of a University Library

TC No. Input State Expected output

1 User ID and password, pay the

fine

Return book and pay

fine (if any)

Profile update and sign

out

The coverage criterion for the above example is calculated after implementing the

example in the prototype, using coverage criteria calculation in Section 4.4, for later

comparison, as shown in Table 5.3.

 175

Table 5.3

Coverage Criteria Percentage for UML Statechart Diagram of a University Library

States (𝑪𝑪𝑨𝑨𝑺𝑺) Transition (𝑪𝑪𝐀𝐀𝐀𝐀) Transition pairs (𝑪𝑪𝐀𝐀𝐀𝐀) One loop path(𝑪𝑪𝐀𝐀𝐀𝐀)

50% 100% null null

Table 5.3 shows the total coverage criteria percentage for the example in Figure 5.1,

which contains four columns, namely, all-state coverage, all-transition coverage, all-

transition-pair coverage, and all-one-loop coverage. The all-transition-pair coverage

and all-one-loop coverage are null because the example does not contain a decision or

loop vertex.

b) UML Statechart Diagram of an Online Shop

Figure 5.4. UML Statechart Diagram of an Online Shop

 176

As shown in Figure 5.4, state 1 is a customer request for an item. If the requested item

is available, then he/she can proceed to state 2 where the customer pays for the item,

and if the item is not available, then the transaction is terminated. After the payment is

successful, the company will ship the item, or end the transaction if payment is

unsuccessful. Thereafter, if the customer is satisfied with the item, the process will

end; otherwise, the customer will return the item.

Using the SRT algorithm as explained in Chapter four (see Figure 4.6), the prototype

will generate the SRT of the selected example and store the information in the

database, as shown in Table 5.4.

Table 5.4

 For UML Statechart Diagram of an Online Shop

𝑽𝑽𝒊𝒊 𝑽𝑽𝒋𝒋 𝑽𝑽𝒋𝒋′ 𝑽𝑽𝑽𝑽𝒊𝒊 𝒎𝒎𝒊𝒊 𝒎𝒎𝒊𝒊′ 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒊𝒊 Vnumber

𝑺𝑺𝟎𝟎 1 Initial State 4

1 2 d Customer

requests an item

Request

available

[Yes]

Request

available [No]

decision

2 3 d Customer pays

for an item

Payment

Success [Yes]

Payment

Success [No]

decision

3 4 d Company ships

an item

Customer

satisfied [No]

Customer

satisfied [Yes]

decision

4 d Customer

returns an item

 Simple State

D finalState

The next step is the generation of test cases in the SRG format, which will be shown

by the prototype when the user clicks on the “Step by step” button, as shown in Figure

5.4. The created SRG is shown in Figure 5.5.

 177

Figure 5.5. Chart Relationship Graph for the UML Statechart Diagram of an Online
Shop

After clicking the next button in the SRG page, the prototype will generate all the

possible paths using the TCGP algorithm (see Figure 4.9) and demonstrate them as

shown in Figure 5.5.

TP 1: [S→1→2→3→4→E]

TP 2: [S→1→E]

TP 3: [S→1→2→E]

TP 4: [S→1→2→3→E]

Figure 5.6. All Possible Test Paths for the UML Statechart Diagram of an Online
Shop

 178

After generating all the possible paths, the minimization stage is conducted. However,

it generates the same amount of test paths as shown in Figure 5.7.

TP 1: [S → 1 → E]

TP 2: [S → 1 → 2 → E]

TP 3: [S → 1 → 2 → 3 → E]

TP 4: [S → 1 → 2 → 3 → 4 → E]

Figure 5.7. Optimized test paths for the UML statechart diagram of an online shop

After optimizing the test paths, the mean of the brightness value is calculated for each

path to prioritize the paths, as shown in Table 5.5. The table shows the order of the test

paths according to importance to test the most important test case first. Details on the

minimization and prioritization of this example are presented in Appendix B.

Table 5.5

Test Path Prioritization for the UML Statechart Diagram of an Online Shop

Test ID Test path Brightness value

TP 4 0 → 1 → 2 → 3 → 4 → 5 6.1010304355335

TP 3 0→ 1 → 2 → 3 → 5 4.6998174561816

TP 1 0 → 1 →5 4.5997256564649

TP 2 0 → 1 → 2 → 5 4.4963083323801

The final generated result will be the test cases, as shown in Table 5.6.

 179

Table 5.6

Test Cases for a UML Statechart Diagram of an Online Shop

TC No. Input State Expected output

1 Request available [Yes],

Payment success [Yes],

Customer satisfied [No]

Company ships an item Customer returns an item

2 Request available [Yes],

Payment success [Yes]

Company ships an item Customer satisfied [Yes]

3 Customer request an item Request available [No]

4 Request available [Yes] Customer pays for an item Payment success [No]

After implementing the example in the prototype, the coverage criteria for the above

example is calculated using the coverage criteria calculation in Chapter four to be used

later for comparison, as shown in Table 5.7.

Table 5.7

Coverage Criteria Percentage for a UML Statechart Diagram of an Online Shop

States (𝑪𝑪𝑨𝑨𝑺𝑺) Transition (𝑪𝑪𝐀𝐀𝐀𝐀) Transition pairs (𝑪𝑪𝐀𝐀𝐀𝐀) One loop path(𝑪𝑪𝐀𝐀𝐀𝐀)

100% 100% 100% null

Table 5.7 shows the total coverage criteria percentage for the example in Figure 5.4,

which contains four columns, namely, all-state coverage, all-transition coverage, all-

transition-pair coverage, and all-one-loop coverage. The all-one-loop coverage is null

since the example does not contain a loop vertex.

 180

c) UML Statechart Diagram of an Airline Check-in

Figure 5.8. UML Statechart Diagram of an Airline Check-in

As presented in Figure 5.8, the statechart for an airline check-in starts with an idle

state. Then, it proceeds to verify the state with a guard condition of whether to generate

the boarding pass when the guard condition value is Yes or Reject, but returns to idle

state if the guard condition value is No. In generating boarding pass state, the boarding

pass is printed, followed by check luggage state. This state also has a guard condition

whether to proceed to labelling the luggage (if any) or directly to the last passenger

state. Thereafter, the labelling the luggage state proceeds to the last passenger state.

The last passenger state checks whether the last passenger in the airplane manifest has

been reached to generate a list of check-in passengers or back to the idle state if it is

 181

not achieved. After generating a list of check-in passenger state, the statechart reaches

the final state.

Using the SRT algorithm as explained in Chapter Four (see Figure 4.6), the prototype

generates the SRT of the selected example and store the information in the database,

as shown in Table 5.8.

Table 5.8

SRT of a UML Statechart Diagram of an Airline Check-in

𝑽𝑽𝒊𝒊 𝑽𝑽𝒋𝒋 𝑽𝑽𝒋𝒋′ 𝑽𝑽𝑽𝑽𝒊𝒊 𝒎𝒎𝒊𝒊 𝒎𝒎𝒊𝒊′ 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒊𝒊 Vnumber

𝑺𝑺𝟎𝟎 1 Start Initial State 6

1 2 Idle State

2 3 1 Verify state Ticket [yes] Ticket

[no]

loop

3 4 Generating boarding

pass

Boarding pass

printed

 State

4 5 6 Checking luggage Luggage [yes] Luggage

[no]

decision

5 6 Labelling luggage Labelling printed State

6 7 1 Last passengers Last [yes] Last [no] decision

7 d Generating list of

check-in passengers

Stop Simple State

d Final State

The next step is the generation of test cases in the SRG format, which will be shown

by the prototype when the user clicks on the “Step by step” button, as shown in Figure

5.8. The created SRG is shown in Figure 5.9.

 182

Figure 5.9. Chart Relationship Graph of a UML Statechart Diagram of an Airline
Check-in

After clicking the next button in the SRG page, the prototype will generate all possible

paths using the TCGP algorithm (see Figure 4.9) and demonstrate them as shown in

Figure 5.10.

TP 1: [S→1→2→3→4→5→6→7→E]

TP 2: [S→1→2→3→4→6→7→E]

TP 3: [S→1→2→3→4→5→6→1→2→3→4→5→6→7→E]

TP 4: [S→1→2→3→4→5→6→1→2→3→4→6→7→E]

TP 5: [S→1→2→3→4→6→1→2→3→4→5→6→7→E]

TP 6: [S→1→2→3→4→6→1→2→3→4→6→7→E]

TP 7: [S→1→2→1→2→3→4→5→6→7→E]

TP 8: [S→1→2→1→2→3→4→6→7→E]

Figure 5.10. All Possible Test Paths of a UML Statechart Diagram of an Airline
Check-in

 183

After generating all the possible paths, the minimization stage will start by selecting

the best paths as shown in Figure 5.11.

TP 2: [S→1→2→3→4→6→7→E]

TP 4: [S→1→2→3→4→5→6→1→2→3→4→6→7→E]

TP 8: [S→1→2→1→2→3→4→6→7→E]

Figure 5.11. Optimized test paths of UML statechart diagram of an airline check-in

After optimizing the test paths, the mean of the brightness value is calculated for each

path as shown in Table 5.9 to prioritize the paths. Table 5.9 shows the order of test

paths according to their importance to test the most important test case first. Details on

the minimization and prioritization of this example are presented in Appendix B.

Table 5.9

Test Path Prioritization of a UML Statechart Diagram of an Airline Check-in

Test ID Test path Brightness value

TP 2 0→1→2→3→4→6→7→0 8.3417877259468

TP 8 0→1→2→1→2→3→4→6→7→8 6.8306759195254

TP 4 0→1→2→3→4→5→6→1→2→3→4→5→7→8 6.7065188982599

The final generated paths will be used to generate the test cases as shown in Table

5.10.

 184

Table 5.10

Test Cases of UML Statechart Diagram of an Airline Check-in

TC No. Input State Expected output

1 Ticket [yes], Boarding pass

printed, Luggage [no], Last [yes],

Stop

Idle, Generating

boarding pass

Generating list of

check-in passengers

2 Ticket [yes], Boarding pass

printed, Luggage [yes], Labelling

printed, Last [no], Ticket [yes],

Boarding pass printed, Luggage

[no], Last [yes], Stop

Idle, Generating

boarding pass, Labelling

luggage, Generating

boarding pass

Generating list of

check-in passengers

3 Ticket [no], Ticket [yes], Boarding

pass printed, Luggage [yes],

Labelling printed, Last [yes], Stop

Idle, Generating

boarding pass, Labelling

luggage

Generating list of

check-in passengers

After implementing the example in the prototype, the coverage criterion for the above

example is calculated using the coverage criteria calculation in Chapter four to be used

later for comparison, as shown in Table 5.11.

Table 5.11

Coverage Criteria Percentage of a UML Statechart Diagram of an Airline Check-in

States (𝑪𝑪𝑨𝑨𝑺𝑺) Transition (𝑪𝑪𝐀𝐀𝐀𝐀) Transition pairs (𝑪𝑪𝐀𝐀𝐀𝐀) One loop path (𝑪𝑪𝐀𝐀𝐀𝐀)

100% 100% 100% 100%

 185

Table 5.11 shows the total coverage criteria percentage for the example in Figure 5.8,

which contains four columns, namely, all-state coverage, all-transition coverage, all-

transition-pair coverage, and all-one-loop coverage.

d) UML Statechart Diagram for a Retail Point of Sale

Figure 5.12. UML Statechart Diagram for a Retail Point of Sale

In Figure 5.12, the system starts by making a sale. Then, a shopping cart is created.

Thereafter, the cart is ready for adding of items and proceeds to computing the sale

total or adds new items. After computing the sale total, the sale is confirmed to proceed

for the payment. In make payment state, the payment is verified and proceeds to

creating a preview of the entire sale when the payment is approved or direct to rejection

when the payment is not approved, then to cancelling of the transaction, and finally

 186

ending the case. In creating a preview, if the user does not need any modification, then

the transaction will end; otherwise, the user is directed to modification and proceeds

to computing the total sale and repeats the rest of the procedure.

Using the SRT algorithm as explained in Chapter four (see Figure 4.6), the prototype

will generate the SRT of the selected example and store the information in the

database, as shown in Table 5.12.

Table 5.12

SRT for A UML Statechart Diagram for a Retail Point of Sale

𝑽𝑽𝒊𝒊 𝑽𝑽𝒋𝒋 𝑽𝑽𝒋𝒋′ 𝑽𝑽𝑽𝑽𝒊𝒊 𝒎𝒎𝒊𝒊 𝒎𝒎𝒊𝒊′ 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒊𝒊 Vnumber

𝑆𝑆0 1 Make sale Initial State 4

1 2 Creating Success State

2 3 2 Checking item All items scanned Get next

item

loop

3 4 Computing sale

Total

Confirm sale State

4 5 Making payment State

5 5` 4 Verifying Retry loop

5` 6 8 Verified [true] Verified

[false]

decision

6 7 d Creating preview Modify [yes] Modify [no] decision

7 3 Modifying loop

8 9 Rejecting State

9 d Cancelling Simple State

d Final State

The next step is generation of test cases in the SRG format, which will be shown by

the prototype when the user clicks on the “Step by step” button, as shown in Figure

5.12. The created SRG is shown in Figure 5.13.

 187

Figure 5.13. Chart Relationship Graph for UML Statechart Diagram for a Retail
Point of Sale

After clicking the next button on the SRG page, the prototype will generate all possible

paths using the TCGP algorithm (see Figure 4.9) and demonstrate them as shown in

Figure 5.14.

TP 1: [S→1→2→3→4→5→8→9→E]

TP 2: [S→1→2→3→4→5→6→E]

TP 3: [S→1→2→3→4→5→6→7→3→4→5→8→9→E]

TP 4: [S→1→2→3→4→5→6→7→3→4→5→6→E]

TP 5: [S→1→2→3→4→5→4→5→8→9→E]

TP 6: [S→1→2→3→4→5→4→5→6→E]

TP 7: [S→1→2→2→3→4→5→8→9→E]

TP 8: [S→1→2→2→3→4→5→6→E]

Figure 5.14. All Possible Test Paths for UML Statechart Diagram for a Retail Point
of Sale

 188

After generating all the possible paths, the minimization stage will start by selecting

the best paths as shown in Figure 5.15.

TP 1: [S→1→2→3→4→5→8→9→E]

TP 8: [S→1→2→2→3→4→5→6→E]

TP 4: [S→1→2→3→4→5→6→7→3→4→5→6→E]

TP 6: [S→1→2→3→4→5→4→5→6→E]

Figure 5.15. Optimized Test Paths for UML Statechart Diagram for a Retail Point of
Sale

After optimizing the test paths, the mean of the brightness value is calculated for each

path as shown in Table 5.13 to prioritize the paths. Table 5.13 shows the order of test

paths according to their importance to test the most important test case first. Details on

the minimization and prioritization of this example are presented in Appendix B.

Table 5.13

Test Path Prioritization for a UML Statechart Diagram for a Retail Point of Sale

Test ID Test path Brightness value

TP 1 S→1→2→3→4→5→8→9→E 4.9599705586331

TP 4 S→1→2→3→4→5→6→7→3→4→5→6→E 2.6504048295212

TP 8 S→1→2→2→3→4→5→6→E 2.3697922355156

TP 6 S→1→2→3→4→5→4→5→6→E 2.3482365027468

The final generated result will be the test cases as shown in Table 5.14.

 189

Table 5.14

Test Cases for a UML Statechart Diagram for a Retail Point of Sale

TC No. Input State Expected output

1 Make sale, success, all items

scanned, confirm sale, verified

[false]

Creating, checking item,

Computing sale total,

Verifying, rejecting

Cancelling

2 Make sale, success, all items

scanned, confirm sale, verified

[true], modify [yes], make sale,

success, all items scanned,

confirm sale, verified [true],

modify [no]

Creating, checking item,

Computing sale total,

Verifying, creating preview,

Computing sale total,

Verifying

Creating preview

3 Make sale, success, all items

scanned, get next item, confirm

sale, verified [true], modify [no]

Creating, checking item,

Checking item, computing

sale total, verifying

Creating preview

4 Make sale, success, all items

scanned, confirm sale, retry,

verified [true], modify [no]

Creating, checking item,

Computing sale total,

Making payment, verifying

Creating preview

After implementing the example in the prototype, the coverage criteria for the above

example is calculated using coverage criteria calculation in Chapter four to be used

later for comparison, as shown in Table 5.15.

 190

Table 5.15

Coverage Criteria Percentage for a UML Statechart Diagram for a Retail Point of
Sale

States (𝑪𝑪𝑨𝑨𝑺𝑺) Transition (𝑪𝑪𝐀𝐀𝐀𝐀) Transition pairs (𝑪𝑪𝐀𝐀𝐀𝐀) One loop path(𝑪𝑪𝐀𝐀𝐀𝐀)

88.8% 100% 100% 100%

Table 5.15 shows the total coverage criteria percentage for the example in Figure 5.13,

which contains four columns, namely, all-state coverage, all-transition coverage, all-

transition-pair coverage, and all-one-loop coverage.

5.2.2 Comparison with Previous Studies

The decreasing cost and time of testing will be accomplished by automating the testing

in addition to eliminating human error (Khandai, Acharya, & Mohapatra, 2011). The

automated test cases satisfy a coverage criterion if, for every entity defined by the

coverage criterion, there is a test sequence in the test cases exercising the entity (Hong

& Ural, 2004). Therefore, this section focuses on determining the coverage

achievement using the proposed framework and algorithms. The evaluation of the

algorithm was conducted to ensure that the framework meets its intended requirements

in terms of coverage criteria. In other words, the proposed framework is intended to

increase the accuracy of coverage criteria by covering the loops and parallel paths.

Figure 5.16 shows that the detailed coverage criteria percentage of proposed generated

test cases framework, which are achieved by implementing five UML statechart

diagrams case studies (1) ATM system, (2) university library, (3) online shop, (4)

 191

airline check-in, and (5) retail point of sale. The coverage criteria percentage being

calculated using the proposed equations in 4.4.

Table 5.16

Result of Achieved Coverage Criteria

Case study
Coverage Criteria Percentage

State Transition Transition pairs One-loop paths

1 100% 100% 100% 100%

2 50% 100% null null

3 100% 100% 100% null

4 100% 100% 100% 100%

5 88.8% 100% 100% 100%

Total 87.76% 100% 100% 100%

The quality of the test case generated by the proposed framework is measured by the

coverage criteria. This section presents a graph that compares the proposed method

with other five existing test generation techniques based on the following

measurements as shown in Table 5.17: (a) all-state coverage, (b) all-transition

coverage, (c) all-transition-pairs coverage, and (d) all-one-loop-path coverage. These

techniques were developed by (i) Ali et al. (2007), (ii) Swain et al. (2010a), (iii) Swain

et al. (2012c), (iv) Chimisliu and Wotawa (2013b), and (v) Ali et al. (2014).

First, Ali et al. (2007) proposed a method to generate test case, which combines the

information from UML collaboration diagrams and statechart diagram. They

transformed these diagrams to an intermediate graph. Then, they traverse the

 192

SCOTEM graph using their proposed algorithm SCOTEM constructor to generate the

test paths. Then, they execute each test path to generate the test cases, which are

generated manually. In addition, Ali et al. (2007) generated a large set of test cases.

However, even if this method generates a greater size of tests (no minimization), these

tests do not maximize the test coverage. Moreover, they did not implement the

prioritization.

Second, Swain et al. (2010a) proposed a method to generate test cases automatically

from the UML statechart and activity diagram. They construct their graph based on

SAD and traverse this graph using DFS. The present study achieves all-transition and

all-one-loop-path coverage, while the method of Swain et al. (2010a) does not. Thus,

in comparison with Swain et al. (2010a), the present study has a substantial benefit in

terms of higher coverage in all-state and all-transition-pair coverage. Furthermore,

Swain et al. (2010a) generated many redundant test cases. In compare in this thesis,

the number of test cases is minimized, and the generated test cases are prioritized.

Third, in another work, Swain et al. Swain et al. (2012c) used the UML statechart

diagram for test case generation directly. In their method, they converted the UML

statechart diagram to a state graph, which traversed using DFS. They applied their

minimization function and generated the test case thereafter. The test criteria they used

do not cover loop-path coverage, and Swain et al. (2012c) achieved less coverage

criteria in the transition pair coverage compared with the proposed method. Also in

their minimization method, they calculated the vertex coverage for each test case and

determine which test cases are covered by other test cases, this will result in selecting

 193

more test cases to achieve the required coverage in compared to the proposed firefly

method. In addition, their study did not prioritize the generated test cases.

Fourth, Chimisliu and Wotawa (2013b) proposed an improved tool for test case

generation from a UML statechart diagram using control, data, and communication

dependencies. For the coverage criteria, their generation technique aimed at achieving

transition coverage only, and they do not minimize the generated test cases or prioritize

them.

Finally, Ali et al. (2014) reported that the UML statechart diagram is used in their

method by extracting the information from pre-condition, post-condition, and use case

to build a test case with the aid of OCL. They used deterministic finite state machine

as an intermediate model to be traversed by BFS to generate a test sequence. A

significant advantage of the present study in comparison with the work of Ali et al.

(2014) is that the present study has minimized the number of test cases and reduced

their sizes. Furthermore, the generated test cases are prioritized in testing while

maintaining the coverage criteria.

Thus, in comparison with the work of Ali et al. (2014); Ali et al. (2007); Chimisliu and

Wotawa (2013b); Swain et al. (2012c); Swain et al. (2010a), the proposed method has

substantial benefit in terms of the coverage achieved, where it achieved higher

coverage with smaller number and size of the test cases. These existing studies do not

ensure all-one-loop-path coverage testing, but the proposed method ensures it. The

coverage criteria comparison is shown in Table 5.16. However, for the proposed

method, the all-state coverage decreased from 100% to 87.7% after generating the test

cases from the test case paths because the present study applies path pruning before

 194

generating the test cases in which one of its objectives is to reduce the number of states.

Therefore, even it achieves less coverage in all-state coverage, the generated test cases

are more efficient. In addition, to comparison with these studies, the proposed work

has prioritized the generated test cases.

Table 5.17

Comparison Result of Coverage Criteria

Study
Coverage Criteria Percentage

State Transition Transition pairs One-loop paths

Ali et al. (2007) × 91% × ×

Swain et al. (2010a) 71% × 65% ×

Swain et al. (2012c) 100% 100% 58.17% ×

Chimisliu and Wotawa (2013) × 100% × ×

Ali et al. (2014) 100% 100% 100% ×

Proposed work 87.76% 100% 100% 100%

Figure 5.16 shows that the proposed method generates the highest coverage criteria in

all-one-loop coverage and those of Ali et al. (2014); Swain et al. (2012c) generate the

highest coverage criteria in all-state coverage for the test cases. The other three

techniques by Ali et al. (2014); Chimisliu and Wotawa (2013b); Swain et al. (2012c)

cover the all-transition coverage of the UML statechart diagram. Chimisliu and

Wotawa (2013b) approach has the least types of coverage criteria compared with other

techniques. Ali et al. (2014); Swain et al. (2012c) methods achieve all-transition-pair

coverage.

In the conclusion, the proposed method is the most recommended method to generate

 195

minimized and prioritized test cases with 100% coverage criteria aimed at all-state

coverage, all-transition coverage, all-transition-pair coverage, and all-one-loop path

for the UML statechart diagram.

Figure 5.16. Test Coverage Criteria Chart of Comparison Result

5.2.3 Expert Reviews

In this section, expert review was conducted because it can be easily implemented in

addition to being fast and affordable. Moreover, expert reviews have been

acknowledged as a significant way to detect and correct faults (Komuro & Komoda,

2008; Wiegers, 2002b). Furthermore, having a human to evaluate the correctness of a

given output is effective (Ammann & Offutt, 2008).

Consequently, the present study adapted this technique for the verification process.

This approach also has been used in the field of software engineering to evaluate or

obtain practitioner experience (Daneva & Ahituv, 2011).

0
10
20
30
40
50
60
70
80
90

100

All-State coverage All-transition coverage All-transition-pairs
coverage

All-one-loop-paths
coverage

Coverage Criteria Compare

Proposed work Ali et al. (2014) Chimisliu and Wotawa (2013)

Swain et al. (2012) Swain et al. (2010) Ali et al. (2007)

 196

Four professionals from software engineering and algorithm-related fields were

identified as the potential experts. In addition, three domain experts from the software

industry were added because they are potential users of the framework and prototype

and they can provide feedback based on their practices in real-world projects.

Prior to conducting the interview with the experts, the interview guide was developed.

The principles of preparing interview guides were adapted, whereby the discussion

was planned to be started by general topic, which is the introduction of the study. Then,

the next agenda was to obtain the weight values, continued with the evaluation of the

proposed framework. These key sequential activities were determined based on their

relative importance to the study, as suggested by the second principle of preparing

interview guide (Stewart & Shamdasani, 2014). Additionally, the materials used

during the interview session were prepared, namely the presentation slides, documents

for the participants and the questioner for the evaluation process.

According to the activities involved during the expert review process, the researcher

conducts a presentation to provide an overview of the study and explain its

components, also what to be expected to evaluate in this work by showing the

evaluation form. Then a presentation will be conducted to explain the process of the

framework and its algorithms, also the results and comparison with the previous

studies. At the same time, the researcher provides detailed documents that include the

framework, algorithms (TCGP, TCG, minimization and prioritization), coverage

criteria results, and the prototype also the results and comparison with the previous

studies to be reviewed by the experts. After that, the expert was able to run the

prototype and try its functions. In the end, the experts fill in the evaluation form

 197

(Appendix A) and provide their comments and feedback. In addition, as result from

the interview and the form, the researcher updates the software processes based on the

comments and suggestion from the experts.

Table 5.18 summarizes the knowledge experts’ background. The background of

domain experts and activities related to the review are discussed in Section 5.3.

Table 5.18

Experts’ Background

 ID Position Expertise Years of
Experience

Institutions

 D

om
ai

n

Expert A Software analyst Software development, Web
development, and database
analyst

7 years Uniutama
Solution
Sdn. Bhd

Expert B Research
development
project manager

Project management, software
development, software
development, software
engineering, and software
testing

7 years PT
Jingdong
Indonesia
Pertama

Expert C System analyst Software development, Web
development, and database
analyst

7 years Uniutama
Solution
Sdn. Bhd

 A
ca

de
m

ic

Expert D Senior lecturer Software engineer,
combinatorial testing
generation, and search-based
optimization algorithms

10 years University
Malaysia
Pahang

Expert E Associate
professor

Optimization algorithms,
swarm algorithms, and grid
computing

15 years Universiti
Utara
Malaysia

Expert F Senior lecturer

Software engineering,
software testing, algorithm
design

8 years Universiti
Malaysia
Perlis

Expert G Senior lecturer

Multimedia, Web design, Web
development, and game-based
learning

5 years Universiti
Utara
Malaysia

 198

• Results for the Review

Concisely, in Table 5.19, all of the experts agreed firstly that the framework achieved

practicality, clarity, and completeness. Secondly, the proposed algorithms

accomplished correctness. Thirdly, the prototype was effective. Fourthly, the system

achieved accuracy, perceived usefulness, and usability overall. Finally, the

documentation was comprehensible.

Meanwhile, Expert A is expert in the industrial domain, expert A agreed on the

usefulness of the system in software testing practices for industry, and found that they

system can reduce the time and cost. On the other hand, Expert D concluded that the

present study improved the test case generation process by generating high coverage

test cases, and the use of optimization algorithm benefit in increases the consistency

of the generates test cases. In addition, Expert D suggested adding some terms in the

processes to highlight the contribution of the proposed work.

Expert E is an expert in swarm algorithms, and has highlighted the benefit from using

firefly algorithms in achieving optimal test cases, and suggested the use of ten firefly

to reach the optimal selecting brightness to prioritize the generated test cases.

Furthermore, Expert F suggested that the comparison with the previous studies should

highlight the achievement of the current study in achieving loop coverage, and

demonstrate the improvement in minimization and prioritization, by stating that this

study achieved higher coverage criteria with less number of test cases in comparison

to other studies.

 199

However, the experts had some comments on the full automation of the prototype. For

example, Experts B and G suggested including UML statechart diagram upload

function, and Expert D suggested adding an integrated drawing function for future

work. Meanwhile, Expert A concluded that the prototype was working perfectly, and

the proposed system could simplify the software testing process.

Table 5.19

Results for Expert Review Verification

Dimensions
Expert

A

Expert

B

Expert

C

Expert

D

Expert

E

Expert

F

Expert

G

Practicality Agree Agree Agree Agree Agree Agree Agree

Clarity Agree Agree Agree Agree Agree Agree Agree

Completeness Agree Agree Agree Agree Agree Agree Agree

Correctness Agree Agree Agree Agree Agree Agree Agree

Effectiveness Agree Agree Agree Agree Agree Agree Agree

Accuracy Agree Agree Agree Agree Agree Agree Agree

Perceived Usefulness Agree Agree Agree Agree Agree Agree Agree

Usability Agree Agree Agree Agree Agree Agree Agree

Comprehensibility Agree Agree Agree Agree Agree Agree Agree

Overall comments:

Expert A: The system is very useful in software testing for the industry field, and it can reduce the

time and cost.

Expert B: The researcher is on the right track.

Expert C: The researcher is on the right track.

Expert D: The researcher improves the test case generation for UML statechart diagram by

modifying and combining the current approaches. The current work enhances the

generating of test cases by minimizing and prioritizing them.

Expert E: A beneficial study and can be improved by scoping the size of the tested systems. In

addition, the use of firefly algorithm benefit in minimizing the number of test cases and

prioritize them.

Expert F: The researcher is on the right track but needs to highlight the all-one-loop coverage

comparison. In addition, this work generated fewer prioritized test cases with higher

coverage criteria in comparison to other works.

Expert G: The researcher has implemented the technique correctly.

 200

5.3 Summary

This chapter has discussed the evaluation of the proposed framework, which was

conducted on the framework and algorithms using prototyping and comparison. In

addition, an expert review was conducted by seven experts. Based on the feedback, the

framework was improved.

 201

CHAPTER SIX

CONCLUSION

6.1 Introduction

In this chapter, the conclusion of the present study is presented as explored and

described in the thesis. The discussion begins a summary of the study in Section 6.2

followed by the contributions in Section 6.3. The limitations and future work of the

study are described in Section 6.4. The chapter ends with the conclusions in Section

6.5.

6.2 Summarizing the Study

This aim was achieved through four objectives, which have been defined in Section

1.5. The study is summarized based on these objectives accordingly.

Objective 1: To investigate the current practices of software test case generation

methods that use the UML diagrams as an input, to design the proposed

framework.

The first objective is to investigate the current methods used to generate test cases

based on UML diagrams by analysing the content of related past studies. This objective

aims to use these previous studies to establish the comprehensive process in generating

test cases in the proposed framework and to identify the existing methods in each

process. Furthermore, the content analysis of past research indicated the UML

statechart diagram is the most suitable UML diagram to generate the test cases from

the design software lifecycle phase. Moreover, the content analysis showed that past

studies lack coverage, particularly in SUT with transition and/or loop states, as

 202

highlighted in the problem statement in Chapter 1. The present study proposed a

framework that takes the UML statechart diagram as an input and generates test cases

as an output. The proposed framework has clear and well defined processes: SRTs,

STGs, test case path generation, consistency checking, test case path minimization,

test case path prioritization, path pruning, and test case generation, as shown in Figure

3.2.

Objective 2: To identify the suitable coverage criteria, which are covered by the

proposed framework generated test cases.

This objective was achieved by conducting content analysis on the previous studies to

select suitable coverage criteria for the generated test cases from the UML statechart

diagram. The content analysis of past research indicated that all-state and all-transition

coverage are the most commonly used coverage criteria. However, two other coverage

criteria were also selected, namely, all-transition pairs and all-one-loop coverage, for

their importance to deal with parallel and loop path coverage. The selected coverage

criteria for the generated test cases from the UML statechart diagram are all-state, all-

transition, all-transition-pair, and all-one-loop coverage. This framework has proposed

four test coverage criteria, while similar studies is this field such as Chimisliu and

Wotawa (2012); Chimisliu and Wotawa (2013a, 2013b) are having less number of

coverage criteria.

Objective 3: To develop an improved method that generates minimized and

prioritized test cases using the proposed test case generation framework.

The present study has fulfilled this objective by improving the methods that generate

optimized test cases by implementing them in the proposed test case generation

 203

framework. This process is conducted by converting the inputted UML statechart

diagram to a compatible SRT that can store all the relevant information in the database.

In turn, this table is converted to a SRG to be traversed to generate all possible test

paths using the TCGP algorithm. However, these paths will generate a large number

of test cases that will be difficult to test in their current condition. To overcome this

phenomenon, a modified firefly algorithm is proposed to minimize the number of test

paths and overcome this liability. The minimized test paths are passed into the second

phase of the firefly algorithm and prioritized. In the final phase, the test cases will be

generated according to the proposed coverage criteria as identified in the second

objective. This study is more comprehensive compare to similar studies such Chimisliu

and Wotawa (2012); Chimisliu and Wotawa (2013a, 2013b); Swain et al. (2012a,

2012b); Swain et al. (2012c), as this study cover more coverage criteria, minimized,

and prioritized test cases.

Objective 4: To evaluate the proposed framework using prototyping, comparison

with existing work, and expert review.

The last objective was fulfilled by evaluating this study into three stages, which are

prototyping, comparison with previous test case generation methods, and expert

review. In the prototyping phase, five different UML statechart diagrams with loops

and higher cyclomatic complicity have been used. As stated in the problem statement,

studies such as Biswal (2010); Swain et al. (2012a, 2012b); Swain et al. (2012c) are

using simpler graph. The examples were inserted into the developed prototype to

generate the test cases automatically; then, coverage criteria for each example are

calculated. The coverage criteria percentage results were compared with previous

methods in the comparison phase as described in Section 5.2.1.2.

 204

Practicality, clarity, completeness of the framework, correctness of the algorithm,

effectiveness of the prototype and accuracy, perceived usefulness, and usability of the

system were evaluated by the experts. Results from this stage revealed that the

proposed framework is practical, clear, and complete. Similarly, the algorithms were

implemented correctly. Likewise, the prototype is effective. The system was accurate,

useful, and usable. However, some modifications were performed to organize the

software processes. Further details on the expert review results are described in Section

5.2.2.

6.3 Contributions

In this thesis, the author has described the contribution of the proposed method. It starts

with its vital contribution, which is to design a framework for automatic test case

generation from the UML statechart diagram. The specific contributions are elaborated

in the next subsection.

6.3.1 Test Case Generation Framework

The main contribution of this study is to produce a new test case generation framework.

It was built based on the outcomes of the content analysis from previous studies and

enhanced through exploratory studies. This framework maps comprehensive processes

in converting UML diagrams to test cases, which can be used by researchers to

generate test cases for similar diagrams. Existing test case generation processes only

focus on parts of the process or do not achieve the appropriate coverage. Accordingly,

the present study focuses on generation of test cases with the highest coverage and

with the lowest number of possible test cases to overcome these limitations.

 205

The framework consists of the following seven main components: construction of

UML statechart diagram, SRT, SRG, test case path generation, test case path

minimization, test case path prioritization, and test case generation. In addition, the

present study has added two components, namely, consistency checking and path

pruning.

6.3.2 Enhanced Consistency Checking of Test Paths

The consistency checking equation was proposed to be added to the test case

generation framework phases to reduce human error for the UML statechart diagram

illustration. This consistency checking equation (see Equation 4.6) is an improved

version of the CC equation enhanced to support the loop coverage. This method aids

in ensuring the reliability of the inputted diagram.

6.3.3 Improved Path Pruning

A large test case makes the diagnosis difficult because it has redundant information

(Leitner, Oriol, Zeller, Ciupa, & Meyer, 2007); therefore, path pruning steps were

developed based on UML statechart diagram components to be added to the test case

generation framework phases. In genetic algorithm, pruning has been used to fasten

the process time of results and produce the optimal solution (Hedjazi & Marjani,

2010). The proposed pruning steps has been developed based on the concept of pruning

in genetic algorithm and by adapted state type method by Kundu and Samanta (2009).

The proposed path pruning steps (see Figure 4.13) has been developed to prune the

generated test path to generate smaller size test cases by reducing the unnecessary

information it them.

 206

6.3.4 Coverage Criteria for UML Statechart Diagram

A test case is a sequence of conditions that satisfy certain coverage criteria (Rhmann

& Saxena, 2016). Therefore, coverage criteria were required to evaluate the generated

test cases. A review on the related previous studies was conducted to select the most

common coverage criteria for UML diagrams in general and UML statechart diagram

in particular. Four coverage criteria were selected for UML statechart diagram test

case generation according to their importance. In addition, it is important in achieving

the aims of the present study in covering parallel paths and loop paths. The commonly

used coverage criteria are all-state coverage, all-transition coverage, and all-transition-

pair coverage. However, this study has added an additional coverage criterion that is

all-one-loop coverage to highlight the inadequacy in state loop covering.

• Coverage Criteria Calculation

After the coverage criteria were selected, an accurate coverage criteria calculation

method was needed to measure the percentage of criteria coverage to evaluate the

accuracy or quality of test case generation. These methods use element coverage

equation as basis and has been modified to accurately calculate each selected type of

coverage criterion as shown in Section 4.4. This equations help in calculating the

coverage for the selected coverage criterion automatically.

6.3.5 SRT Algorithm

To process the UML statechart diagram in a manner that the machine understands, the

diagram should be converted to a table to be stored in the database. However, there are

shortages of concepts as regards parsers that are capable of reading, extracting, and

 207

interpreting artefacts from UML diagrams (Oluwagbemi & Asmuni, 2014). This study

proposed an algorithm to extract and store UML statechart diagram information

regardless of the diagram complexity. The SRT algorithm (see Figure 4.6) stores the

UML statechart diagram in a table and highlights the relationships between the states

and at the same time store the state and edge information to be used later in automatic

test case generation. The SRT algorithm has been developed based on the previous

studies intermediate tables. However, these tables have been modified to handle loop

states and UML statechart diagram. In addition, this relation table can support the

generation of the test paths for most of UML diagrams by using its approach rules.

6.3.6 TCGP Algorithm

A traversal algorithm is needed to generate the test path from the intermediate graph.

The most common tree traversal algorithms are DFS and BFS. However, this study

focuses on covering the loop path, while the two existing traversal algorithms depend

on the tree graph. A tree is a special type of graph that contains no cycles. A tree is a

set of vertices with one vertex designated as the root vertex and a list of edges

connecting the vertices without creating cycles (Oluwagbemi & Asmuni, 2014).

Therefore, the present study proposed a traversal algorithm to generate all possible

paths according to the proposed coverage criteria. The proposed TCGP algorithm (see

Figure 4.10) was developed to handle decision and loop state to generate the test paths

that cover transition pairs and loop coverage. This algorithm solve parallel and loop

problems as discussed in Section 4.2.1.

 208

6.3.7 Path Minimization Method

Test case minimization mechanisms play a major role in reducing the number of test

cases without affecting their quality. However, reducing the number of test cases

especially in software systems is a major problem (Ahmed, 2016). Therefore, the

present study adapted the firefly algorithm with adjacency matrix to minimize the

generated test paths while maintaining the coverage criteria. However, the brightness

increases rapidly; thus, the path weight was formed to direct the firefly algorithm. The

path weight method was proposed to select the optimized test paths. The proposed

method uses the firefly algorithm output to select the optimized paths with the help of

the generated test path weight to minimize the test paths and reduce redundancy.

Therefore, this method (refer to Section 4.3.5) can generate fewer paths because one

path can cover more than one sequence of vertices.

6.3.8 Path Prioritization Method

Test case prioritization aims at ordering test cases to increase the rate of fault detection,

which quantifies how fast faults are detected during the testing phase (Eghbali &

Tahvildari, 2016). Therefore, the present study adapted the firefly algorithm as well as

the information flow metric to increase the brightness of the important vertices to drive

the algorithm to the important path and also to add the path weight method to the total

brightness of each path to select the most prioritized paths. Consequently, this method

(refer to Section 4.3.6) can choose the paths and prioritize them accordingly.

 209

6.3.9 Test Case Generation Algorithm

The main goal is to generate the test cases, which will use the generated information

up to this step to generate all the possible test cases that achieve the proposed coverage

criteria. The TCG algorithm (see Figure 4.14) uses the data stored in the SRT with the

output of the minimized and prioritized test paths and combined them with the path

pruning rules to generate the minimized test cases with prioritization order.

6.3.10 Developed Prototype

A prototype was developed to validate the proposed framework and investigate its

algorithm performance. By developing the prototype in a Web-based system, the seven

main phases of the framework were successfully embedded in the proposed

framework.

6.4 Limitations and Future Work

The present study could be further improved and extended in several aspects based on

previous in-depth discussion and detailed analysis. The study limitations and future

work to enhance this study are summarized as follows.

The proposed framework can be improved to be used for other UML diagrams beside

UML statechart diagram, also for a combination between two or more diagrams so that

the system is able to handle all type of errors (Khurana & Chillar, 2015). Furthermore,

the test case minimization and prioritization methods using the firefly algorithm can

be implemented in different test case paths since these paths can be generated from

different diagrams. However, further testing is required. For future work, other

metaheuristic algorithms can be adapted to minimize or prioritize the test cases, for

 210

example Krill Herd, Charged System Search, Bat Algorithm, Cuckoo Search, Bee

Algorithms, Ant Colony Optimization, and Particle Swarm Optimization

The developed prototype has few limitations because it was developed for evaluation

and not for commercial purposes. One of its limitations is the manual inputting of the

UML statechart diagram. An integrated drawing add-on will improve the prototype to

become more user friendly, and its compatibility with other modelling tools such as

Rational Rose, Magic Draw, and Microsoft Visio is worthy of investigation. In

addition, report function and previous system testing evaluation statistics can enhance

the prototype for commercial use.

Moreover, the test case generation framework is designed for small to medium

systems. In future work, the proposed method can be modified and tested on enterprise

systems.

 211

REFERENCES

Abdurazik, A., & Offutt, J. (1999). Generating test cases from UML specifications.
George Mason University.

Abdurazik, A., & Offutt, J. (2000). Using UML collaboration diagrams for static
checking and test generation. Paper presented at the «UML» 2000 -The
Unified Modeling Language.

Abdurazik, A., Offutt, J., & Baldini, A. (2004). A controlled experimental evaluation
of test cases generated from UML diagrams: Technical Report, ISE-TR-04-03.
George Mason University.

Aggarwal, M., & Sabharwal, S. (2012). Test case generation from UML state machine
diagram: A survey. Paper presented at the Computer and Communication
Technology (ICCCT), 2012 Third International Conference on.

Ahamed, S. (2010). Studying the feasibility and importance of software testing: An
analysis. Internatinal Journal of Engineering Science and Technology, 1(3),
119-128.

Ahmad, J., & Baharom, S. (2017). A Systematic Literature Review of the Test Case
Prioritization Technique for Sequence of Events. International Journal of
Applied Engineering Research, 12(7), 1389-1395.

Ahmed, B. S. (2016). Test case minimization approach using fault detection and
combinatorial optimization techniques for configuration-aware structural
testing. Engineering Science and Technology, an International Journal, 19(2),
737-753.

Aichernig, B. K. (2001). Systematic black-box testing of computer-based systems
through formal abstraction techniques. (PhD Dissertation), Graz University of
Technology, Graz, Austria.

Al-kahlout, A., B. salha, B., & El-haddad, N. (2017). E-Account APP. University of
Palestine, Gaza Strip, Palestine.

Al-Tarawneh, F. H. (2014). A framework for cots software evaluation and selection
for COTS mismatches handling and non-functional requirements. Universiti
Utara Malaysia.

Al Dallal, J., & Sorenson, P. (2006). Generating class based test cases for interface
classes of object-oriented black box frameworks. Transactions on
Engineering, Computing and Technology, 16, 90-95. doi: 10.1.1.193.4045

Alhroob, A. (2014). Best Test Cases Selection Approach. Paper presented at the
Scientific Cooperations International Workshops on Electrical and Computer
Engineering Subfields.

 212

Alhroob, A. M. (2012). Software test case generation from system models and
specification. Use of the UML diagrams and High Level Petri Nets models for
developing software test cases. University of Bradford.

Ali, M. A., Shaik, K., & Kumar, S. (2014). Test case generation using UML state
diagram and OCL expression. International Journal of Computer Applications,
95(12), 7 -11. doi: 10.5120/ijais2016451599

Ali, S., Briand, L. C., Hemmati, H., & Panesar-Walawege, R. K. (2010). A systematic
review of the application and empirical investigation of search-based test case
generation. IEEE Transactions on software engineering, 36(6), 742-762. doi:
10.1109/TSE.2009.52

Ali, S., Briand, L. C., Rehman, M. J.-u., Asghar, H., Iqbal, M. Z. Z., & Nadeem, A.
(2007). A state-based approach to integration testing based on UML models.
Information and Software Technology, 49(11), 1087–1106. doi:
10.1016/j.infsof.2006.11.002

Ammann, P., & Offutt, J. (2008). Introduction to software testing. Cambridge, United
Kingdom: Cambridge University Press.

Anand, S., Burke, E. K., Chen, T. Y., Clark, J., Cohen, M. B., Grieskamp, W., . . .
McMinn, P. (2013). An orchestrated survey of methodologies for automated
software test case generation. Journal of Systems and Software, 86(8), 1978–
2001. doi: 10.1016/j.jss.2013.02.061

Avancena, A. T., & Nishihara, A. (2015). Usability and pedagogical assessment of an
algorithm learning tool: a case study for an introductory programming course
for high school. Issues in Informing Science & Information Technology, 12,
21-44.

Bahrin, Z. S. (2011). Mobile game-based learning (mGBL) engineering model.
Universiti Utara Malaysia.

Baig, M. M. (2009). New software testing strategy. NED University of Engineering &
Technology, Karachi.

Baudry, B., Fleurey, F., Jézéquel, J.-M., & Le Traon, Y. (2005). Automatic test case
optimization: A bacteriologic algorithm. IEEE software, 22(2), 76-82.

Bell, D. (2003). UML basics Part III: The class diagram. The Rational Edge Nov.

Belli, F., & Hollmann, A. (2008). Test generation and minimization with basic
statecharts. Paper presented at the Proceedings of the 2008 ACM symposium
on Applied computing.

Belli, F., Hollmann, A., & Kleinselbeck, M. (2009). A graph-model-based testing
method compared with the classification tree method for test case generation.
Paper presented at the Secure Software Integration and Reliability
Improvement, 2009. SSIRI 2009. Third IEEE International Conference on.

 213

Bentley, J. E. (2005). Software testing fundamentals-concepts, roles, and terminology.
Paper presented at the Proceedings of SAS Conference.

Berardi, D., Calvanese, D., & De Giacomo, G. (2005). Reasoning on UML class
diagrams. Artificial Intelligence, 168(1), 70-118. doi:
10.1016/j.artint.2005.05.003

Bernstein, P. A. (1996). Middleware: a model for distributed system services.
Communications of the ACM, 39(2), 86-98.

Bertolino, A. (2003). Software testing research and practice. Paper presented at the
Abstract State Machines 2003.

Bertolino, A. (2007). Software testing research: Achievements, challenges, dreams.
Paper presented at the Future of Software Engineering.

Beynon-Davies, P., Carne, C., Mackay, H., & Tudhope, D. (1999). Rapid application
development (RAD): an empirical review. European Journal of Information
Systems, 8(3), 211-223. doi: 10.1057/palgrave.ejis.3000325

Bhat, S., & Prashanth, C. (2014). A study on automatic test case generation.
International Journal of Engineering Sciences & Research Technology, 3(4),
4073-4079. doi: 10.1.1.682.1527

Binder, R. V. (2000). Testing object-oriented systems: models, patterns, and tools.
Massachusetts, United States: Addison-Wesley Longman Publishing Co., Inc.

Biswal, B. N. (2010). Test case generation and optimization of object-oriented
software using UML behavioral models.

Biswal, B. N., Nanda, P., & Mohapatra, D. P. (2008). A novel approach for scenario-
based test case generation. Paper presented at the Information Technology,
2008. ICIT'08. International Conference on.

Blanco, R., Fanjul, J., & Tuya, J. (2010). Test case generation for transition-pair
coverage using Scatter Search. International Journal of Software Engineering
and Its Applications, 4(4), 37-56. doi: 10.1.1.233.765

Boehm, B., & Basili, V. R. (2005). Software defect reduction top 10 list. Foundations
of empirical software engineering: the legacy of Victor R. Basili, 426(426-
431). doi: 10.1109/2.962984

Boghdady, P., Badr, N., Hashem, M., & Tolba, M. (2012). An enhanced technique for
generating hybrid coverage test cases using activity diagrams. Paper presented
at the Informatics and Systems (INFOS), 2012 8th International Conference
on.

Boghdady, P. N., Badr, N. L., Hashem, M., & Tolba, M. F. (2011a). A proposed test
case generation technique based on activity diagrams. International Journal of
Engineering & Technology IJET-IJENS, 11(03), 37-57. doi: 10.1.1.296.9294

 214

Boghdady, P. N., Badr, N. L., Hashim, M. A., & Tolba, M. F. (2011b). An enhanced
test case generation technique based on activity diagrams. Paper presented at
the Computer Engineering & Systems (ICCES), 2011 International Conference
on.

Booch, G. (2005). The unified modeling language user guide. London, United
Kingdom: Pearson Education.

Bozeman, C., Ellsworth, A., Hogben, L., Lin, J. C.-H., Maurer, G., Nowak, K., . . .
Strickland, J. (2015). Minimum rank of graphs with loops. Electronic Journal
of Linear Algebra, 27(1), 1071. doi: 10.13001/1081-3810.2007

Bozkurt, M., Harman, M., & Hassoun, Y. (2013). Testing and verification in service‐
oriented architecture: a survey. Software Testing, Verification and Reliability,
23(4), 261-313.

Briand, L. C., Labiche, Y., & Cui, J. (2005). Automated support for deriving test
requirements from UML statecharts. Software & Systems Modeling, 4(4), 399–
423. doi: 10.1007/s10270-005-0090-5

Budnik, C. J., Subramanyan, R., & Vieira, M. (2008). Peer-to-Peer Comparison of
Model-Based Test Tools. GI Jahrestagung (1), 133, 223-226.

Cain, A., Chen, T. Y., Grant, D., Poon, P.-L., Tang, S.-F., & Tse, T. (2003). An
automatic test data generation system based on the integrated classification-
tree methodology Software Engineering Research and Applications (pp. 225-
238): Springer.

Calisir, F., & Calisir, F. (2004). The relation of interface usability characteristics,
perceived usefulness, and perceived ease of use to end-user satisfaction with
enterprise resource planning (ERP) systems. Computers in Human Behavior,
20(4), 505-515.

Carmel, E., & Becker, S. (1995). A process model for packaged software development.
Engineering Management, IEEE Transactions on, 42(1), 50-61.

Cartaxo, E. G., Neto, F. G. O., & Machado, P. D. (2007). Test case generation by
means of UML sequence diagrams and labeled transition Systems. Paper
presented at the Systems, Man and Cybernetics.

Cavarra, A., Crichton, C., Davies, J., Hartman, A., & Mounier, L. (2002). Using UML
for automatic test generation. Paper presented at the international symposium
on software testing and analysis ISSTA.

Chan, E. P., & Lim, H. (2007). Optimization and evaluation of shortest path queries.
The VLDB Journal—The International Journal on Very Large Data Bases,
16(3), 343-369.

 215

Chavez, H. M., Shen, W., France, R. B., Mechling, B. A., & Li, G. (2016). An
approach to checking consistency between UML class model and its Java
implementation. IEEE Transactions on software engineering, 42(4), 322-344.

Chen, L., & Li, Q. (2010). Automated test case generation from use case: A model
based approach. Paper presented at the Computer Science and Information
Technology (ICCSIT), 2010 3rd IEEE International Conference on.

Chen, M., Mishra, P., & Kalita, D. (2008). Coverage-driven automatic test generation
for UML activity diagrams. Paper presented at the Proceedings of the 18th
ACM Great Lakes symposium on VLSI, Orlando, Florida, USA.

Chen, M., Qiu, X., Xu, W., Wang, L., Zhao, J., & Li, X. (2009). UML activity diagram-
based automatic test case generation for Java programs. Computer Journal,
52(5), 545-556.

Chen, T., Poon, P.-L., & Tse, T. (1999). A new restructuring algorithm for the
classification-tree method. Paper presented at the Software Technology and
Engineering Practice, 1999. STEP'99. Proceedings.

Chimisliu, V., & Wotawa, F. (2012). Model based test case generation for distributed
embedded systems. Paper presented at the Industrial Technology (ICIT), 2012
IEEE International Conference on.

Chimisliu, V., & Wotawa, F. (2013a). Improving test case generation from UML
statecharts by using control, data and communication dependencies. Paper
presented at the Quality Software (QSIC), 2013 13th International Conference
on.

Chimisliu, V., & Wotawa, F. (2013b). Using dependency relations to improve test case
generation from UML statecharts. Paper presented at the Computer Software
and Applications Conference Workshops (COMPSACW), 2013 IEEE 37th
Annual.

Choudhary, K., Gigras, Y., & Rani, P. (2016). Cuckoo Search in Test Case Generation
and Conforming Optimality using Firefly Algorithm. Paper presented at the
Proceedings of the Second International Conference on Computer and
Communication Technologies.

Chrissis, M. B., Konrad, M., & Shrum, S. (2011). CMMI for development: guidelines
for process integration and product improvement. London, United Kingdom:
Pearson Education.

Claude, J., & Thierry, J. (2002). TGV: theory, principles and algorithms: A Tool for
the Automatic Synthesis of Conformance Test Cases for Non-Deterministic
Reactive Systems. Software Tools for Technology Transfer, 7(4), 297-315.

Costagliola, G., Ferrucci, F., & Francese, R. (2002). Web engineering: Models and
methodologies for the design of hypermedia applications. Handbook of
Software Engineering & Knowledge Engineering, 2, 181-199.

 216

Cruz-Lemus, J. A., Maes, A., Genero, M., Poels, G., & Piattini, M. (2010). The impact
of structural complexity on the understandability of UML statechart diagrams.
Information Sciences, 180(11), 2209-2220.

D'Souza, S., Rao, A., Sharma, A., & Singh, S. (2012). Modeling and verification of a
multi-agent argumentation system using NuSMV. arXiv preprint
arXiv:1209.4330.

Dahiya, S. S., Chhabra, J. K., & Kumar, S. (2010). Application of artificial bee colony
algorithm to software testing. Paper presented at the Software Engineering
Conference (ASWEC), 2010 21st Australian.

Daneva, M., & Ahituv, N. (2011). What practitioners think of inter-organizational ERP
requirements engineering practices: focus group results. International Journal
of Information System Modeling and Design, 2(3), 49-74.

Das, J. (2014). Bengali digit recognition using adjacency matrix. Jadavpur University
Kolkata.

Dawson, M., Burrell, D. N., Rahim, E., & Brewster, S. (2010). Integrating software
assurance into the Software Development Life Cycle (SDLC). Journal of
Information Systems Technology and Planning, 3(6), 49-53.

Devroey, X., Perrouin, G., Legay, A., Cordy, M., Schobbens, P.-Y., & Heymans, P.
(2014). Coverage criteria for behavioural testing of software product lines.
Paper presented at the International Symposium On Leveraging Applications
of Formal Methods, Verification and Validation.

Diestel, R. (2012). Graph theory. Berlin, Germany: Springer-Verlag Berlin
Heidelberg.

Dinh-Trong, T. T., Ghosh, S., & France, R. B. (2006). A systematic approach to
generate inputs to test UML design models. Paper presented at the Software
Reliability Engineering, 2006. ISSRE'06. 17th International Symposium on.

Dix, A. (2009). Human-computer interaction. United States: Springer

Doungsa-ard, C. (2012). Generation of software test data from the design specification
using heuristic techniques. Exploring the UML state machine diagrams and
GA based heuristic techniques in the automated generation of software test
data and test code. University of Bradford.

Doungsa-ard, C., Dahal, K., Hossain, A., & Suwannasart, T. (2008). GA-based
automatic test data generation for UML state diagrams with parallel paths
Advanced Design and Manufacture to Gain a Competitive Edge (pp. 147-156):
Springer.

Drusinsky, D. (2011). Modeling and verification using UML statecharts: a working
guide to reactive system design, Runtime Monitoring and Execution-based
Model Checking: Elsevier.

 217

Dssouli, R., Saleh, K., Aboulhamid, E., En-Nouaary, A., & Bourhfir, C. (1999). Test
development for communication protocols: towards automation. Computer
Networks, 31(17), 1835-1872.

Dubey, Y., Singh, D., & Singh, A. (2016). A parallel early binding recursive Ant
Colony optimization (PEB-RAC) approach for generating optimized auto test
cases from programming inputs. International Journal of Computer
Applications, 136(3), 11-17.

Dustin, E., Garrett, T., & Gauf, B. (2009). Implementing automated software testing:
How to save time and lower costs while raising quality. London, United
Kingdom: Pearson Education.

Easterbrook, S., Singer, J., Storey, M.-A., & Damian, D. (2008). Selecting empirical
methods for software engineering research Guide to advanced empirical
software engineering (pp. 285-311): Springer.

Edvardsson, J. (1999). A survey on automatic test data generation. Paper presented at
the Proceedings of the 2nd Conference on Computer Science and Engineering.

Eghbali, S., & Tahvildari, L. (2016). Test case prioritization using lexicographical
ordering. IEEE Transactions on software engineering, 42(12), 1178-1195.

Elallaoui, M., Nafil, K., Touahni, R., & Messoussi, R. (2016). Automated model
driven testing using AndroMDA and UML2 testing profile in scrum process.
Procedia Computer Science, 83, 221-228.

Eshuis, R. (2006). Symbolic model checking of UML activity diagrams. ACM
Transactions on Software Engineering and Methodology (TOSEM), 15(1), 1-
38.

Eusuff, M., Lansey, K., & Pasha, F. (2006). Shuffled frog-leaping algorithm: a
memetic meta-heuristic for discrete optimization. Engineering Optimization,
38(2), 129-154.

Fan, X., Shu, J., Liu, L., & Liang, Q. J. (2009). Test case generation from uml
subactivity and activity diagram. Paper presented at the Electronic Commerce
and Security, 2009. ISECS'09. Second International Symposium on.

Farooq, S. U., & Quadri, S. (2011). Evaluating effectiveness of software testing
techniques with emphasis on enhancing software reliability. Journal of
emerging trends in Computing and Information Sciences, 2(12), 740-745.

Felderer, M., & Herrmann, A. (2015). Manual test case derivation from UML activity
diagrams and state machines: A controlled experiment. Information and
Software Technology, 61, 1-15.

Felicie, A. L. (2012). UML state machine. Rhode Island, United States: Salve Regina
University

 218

Frantzen, L., Tretmans, J., & Willemse, T. A. (2006). A symbolic framework for
model-based testing Formal approaches to software testing and runtime
verification (pp. 40-54): Springer.

Fraser, G., & Wotawa, F. (2007). Test-case generation and coverage analysis for
nondeterministic systems using model-checkers. Paper presented at the
Software Engineering Advances, 2007. ICSEA 2007. International Conference
on.

Garousi, V. (2010). Applying peer reviews in software engineering education: an
experiment and lessons learned. IEEE Transactions on Education, 53(2), 182-
193. doi: 10.1109/TE.2008.2010994

Ghai, S., & Kaur, S. (2017). Hill-Climbing Approach for Test Case Prioritization.
International Journal of Software Engineering and Its Applications, 11(3), 13-
20.

Gnesi, S., Latella, D., & Massink, M. (2004). Formal test case generation for UML
statecharts. Paper presented at the Engineering Complex Computer Systems,
2004. Proceedings. Ninth IEEE International Conference on.

Gogolla, M., Hamann, L., Hilken, F., Sedlmeier, M., & Nguyen, Q. D. (2014).
Behavior modeling with interaction diagrams in a UML and OCL tool. Paper
presented at the Proceedings of the 2014 Workshop on Behaviour Modelling-
Foundations and Applications.

Goodubaigari, A. (2013). A software test data generation tool for unit testing of C++
programs using control flow graph. IJECS, 2388-2392.

Gotlieb, A. (2012). TCAS software verification using constraint programming. The
Knowledge Engineering Review, 27(03), 343-360.

Grant, E. S., & Datta, T. (2016). Modeling RTCA DO-178C Specification to Facilitate
Avionic Software System Design, Verification, and Validation. International
Journal of Future Computer and Communication, 5(2), 120.

Gries, D., & Schneider, F. B. (2005). An integrated approach to software engineering.
Kanpur, India: Pankaj Jalote. Indian Institute of Technology

Gross, H.-G. (2005). Component-based software testing with UML: Springer.

Gulia, P., & Chillar, R. S. (2012). A new approach to generate and optimize test cases
for UML state diagram using genetic algorithm:
http://doi.acm.org/10.1145/180921.2180933. SIGSOFT Softw. Eng. Notes,
37(3), 1-5. doi: 10.1145/180921.2180933

Gulia, P., & Chugh, J. (2015). Comparative analysis of traditional and object-oriented
software testing. ACM SIGSOFT Software Engineering Notes, 40(2), 1-4.

Gupta, J. (2014). An investigation of test cases generation from activity diagram.
Thapar University Patiala.

 219

Håkansson, J., & Mokrushin, L. (2004). An analysis tool for UML models with SPT
annotations. Paper presented at the Nordic Workshop on Programming
Theory.

Hallowell, M. R., & Gambatese, J. A. (2009). Qualitative research: Application of the
Delphi method to CEM research. Journal of construction engineering and
management, 136(1), 99-107.

Han, S.-H., & Kwon, Y.-R. (2008). An empirical evaluation of test data generation
techniques. Journal of Computing Science and Engineering, 2(3), 275-300.

Harel, D. (1987). Statecharts: A visual formalism for complex systems. Science of
computer programming, 8(3), 231-274.

Hartmann, J., Imoberdorf, C., & Meisinger, M. (2000). UML-based integration
testing. Paper presented at the ACM SIGSOFT Software Engineering Notes.

Hashim, N. L., & Salman, Y. D. (2011). An improved algorithm in test case generation
from UML activity diagram using activity path. Paper presented at the
Proceedings of the 3rd International Conference on Computing and
Informatics, ICOCI, Bandung, Indonesia

Hashmi, A., Goel, N., Goel, S., & Gupta, D. (2013). Firefly algorithm for
unconstrained optimization. IOSR J Comput Eng, 11(1), 75-78.

Hedjazi, S. M., & Marjani, S. S. (2010). Pruned genetic algorithm. Paper presented at
the International Conference on Artificial Intelligence and Computational
Intelligence.

Hessel, A. (2006). Model-based test case selection and generation for real-time
systems. (PhD Dissertation), Uppsala University.

Heumann, J. (2001). Generating test cases from use cases. The rational edge, 6(1).

Holbrook, A. L., Krosnick, J. A., Moore, D., & Tourangeau, R. (2007). Response order
effects in dichotomous categorical questions presented orally: The impact of
question and respondent attributes. Public Opinion Quarterly, 71(3), 325-348.

Hong, H. S., & Ural, H. (2004). Using model checking for reducing the cost of test
generation. Paper presented at the International Workshop on Formal
Approaches to Software Testing.

Hooda, I., & Chhillar, R. (2014). A review: study of test case generation techniques.
International Journal of Computer Applications, 107(16), 33- 37.

Hopper, G. M. (1981). The first bug. Annals of the History of Computing, 3(3), 285-
286.

Ibrar, M. (2013). UML diagrams: an aid to database design specification: a review.
International Journal of Advanced Research in Computer Science and
Software Engineering, 3(3), 598 -602.

 220

Inamdar, Y. (2015). Airport check-in of passenger. Retrieved Documents, 2016, from
http://docslide.us/documents/airport-check-in-of-passenger.html

Ingle, S., & Mahamune, M. (2015). An UML based software automatic test case
generation: survey. International Research Journal of Engineering and
Technology, 2(2), 971-973.

Jain, E. S., & Sheikh, E. M. (2014). A novel test case generation method through
metamorphic priority for 2-way testing method UMBCA implementation
criteria. International Journal of Engineering and Management Research,
4(3), 157 -163.

Jain, R. (1990). The art of computer systems performance analysis: techniques for
experimental design, measurement, simulation, and modeling. New Jersey,
United States: John Wiley & Sons.

Javed, A. Z., Strooper, P. A., & Watson, G. (2007). Automated generation of test cases
using model-driven architecture. Paper presented at the Automation of
Software Test, 2007. AST'07. Second International Workshop on Automation
of Software Test.

Javed, M., Ahmad, B., Abbas, Z., Nawaz, A., Abid, M. A., & Ullah, I. (2012).
Decreasing defect rate of test cases by designing and analysis for recursive
modules of a program structure: Improvement in test cases. International
Journal of Computer Science and Information Security, 10(8).

Jena, A. K., Swain, S. K., & Mohapatra, D. P. (2014). A novel approach for test case
generation from UML activity diagram. Paper presented at the Issues and
Challenges in Intelligent Computing Techniques (ICICT), 2014 International
Conference on.

Jena, A. K., Swain, S. K., & Mohapatra, D. P. (2015). Test case creation from UML
sequence diagram: a soft computing approach Intelligent Computing,
Communication and Devices (pp. 117-126): Springer.

Jia, X., & Liu, H. (2002). Rigorous and automatic testing of web applications. Paper
presented at the Proceedings of the 6th IASTED International Conference on
Software Engineering and Applications (SEA 2002).

Jia, X., Liu, H., & Qin, L. (2003). Formal structured specification for web application
testing. Paper presented at the Midwest Software Engineering Conference.

Joo, S., Lin, S., & Lu, K. (2011). A usability evaluation model for academic library
websites: efficiency, effectiveness and learnability. Journal of Library and
Information studies, 9(2), 11-26.

Jorgensen, P. C. (2013). Software testing: a craftsman’s approach. Boca Raton,
Florida, United States: CRC press.

 221

Jürjens, J. (2005). Secure systems development with UML. Berlin, Germany: Springer
Science & Business Media.

Kaner, C., Falk, J., & Nguyen, H. Q. (1999). Testing computer software. India:
Dreamtech Press.

Kaner, C., & Fiedler, R. L. (2013). Foundations of Software Testing. Massachusetts,
United States: Context-Driven Press.

Kang, H., Lee, S., Lee, C., Yoon, C., & Shin, S. (2015). SPIRIT: A framework for
profiling SDN. Paper presented at the Network Protocols (ICNP), 2015 IEEE
23rd International Conference on.

Kangas, K.-M. (2008). Test automation of digital mammography device. Helsinki
Polytechnic Stadia.

Kansomkeat, S., Offutt, J., Abdurazik, A., & Baldini, A. (2008). A comparative
evaluation of tests generated from different UML diagrams. Paper presented at
the Software Engineering, Artificial Intelligence, Networking, and
Parallel/Distributed Computing, 2008. SNPD'08. Ninth ACIS International
Conference on.

Kansomkeat, S., & Rivepiboon, W. (2003). Automated generating test case using
UML statechart diagrams. Paper presented at the Proceedings of the 2003
annual research conference of the South African institute of computer scientists
and information technologists on Enablement through technology.

Kansomkeat, S., Thiket, P., & Offutt, J. (2010). Generating test cases from UML
activity diagrams using the condition-classification tree method. Paper
presented at the Software Technology and Engineering (ICSTE), 2010 2nd
International Conference on.

Karambir, & Kaur, K. (2013). Performance analysis of Test Generation Techniques.
International Journal of Advanced Research in Computer Science and
Software Engineering, 3(7), 490-498.

Karambir, & Kuldeep, K. (2013). Survey of software test case generation techniques.
International Journal of Advanced Research in Computer Science and
Software Engineering, 937-942.

Kaur, A., & Harwinder, S. S. (2013). Automatic test case generation with SilK testing.
International Journal of Computer Applications, 79(15), 32-34.

Kaur, G., & Singh, P. (2015). Test Case Generation Using UML Diagram.
International Journal of Emerging Technologies in Engineering Research,
1(2), 23- 25.

Kaur, P., & Gupta, G. (2013). Automated model-based test path generation from UML
diagrams via graph coverage techniques. International Journal of Computer
Science and Mobile Computing, 2(7), 302-311.

 222

Kavita, C., Shilpa, Yogita, G., Payal, R., & Akshath, G. (2015). A Survey Paper on
Test Case Generation and Optimization: Cuckoo Search and Firefly Algorithm.
IJEDR, 3(2), 584-589.

Keen, P. G. (1980). Decision support systems: a research perspective. Decision
Support Systems: Issues and Challenges, 23-44.

Kelly, D. (1999). Software test automation and the product life cycle. Mactech
Magazine, 13(10).

Kerlinger, F. N. (1986). Foundations of behavioral research. Orlando, Florida, United
States: Holt, Rinehart and Winston.

Kernschmidt, K., & Vogel-Heuser, B. (2013). An interdisciplinary SysML based
modeling approach for analyzing change influences in production plants to
support the engineering. Paper presented at the Automation Science and
Engineering (CASE), 2013 IEEE International Conference on.

Khandai, M., Acharya, A. A., & Mohapatra, D. P. (2011). A survey on test case
generation from UML model. International Journal of Computer Science and
Information Technologies, 2(3), 1164-1171.

Khurana, N., & Chillar, R. (2015). Test case generation and optimization using UML
models and genetic algorithm. Procedia Computer Science, 57, 996-1004.

Kim, H., Kang, S., Baik, J., & Ko, I. (2007). Test cases generation from UML activity
diagrams. Paper presented at the Eighth ACIS International Conference on
Software Engineering, Artificial Intelligence, Networking, and
Parallel/Distributed Computing (SNPD 2007).

Kim, J. M., Porter, A., & Rothermel, G. (2005). An empirical study of regression test
application frequency. Software Testing, Verification and Reliability, 15(4),
257-279.

Kim, S., Lively, W. M., & Simmons, D. B. (2006). An Effort Estimation by UML
Points in Early Stage of Software Development. Paper presented at the
Software Engineering Research and Practice.

Kim, W. Y., Son, H. S., & Kim, R. Y. C. (2011). A study on test case generation based
on state diagram in modeling and simulation environment Advanced
Communication and Networking (pp. 298-305): Springer.

Kim, Y. G., Hong, H. S., Bae, D.-H., & Cha, S.-D. (1999). Test cases generation from
UML state diagrams IEE Proceedings-Software, 146(4), 187-192. doi:
10.1049/ip-sen:19990602

Knaak, N., & Page, B. (2005). UML ¾ as a Modelling Language in Discrete Event
Simulation. Paper presented at the 9th european conference on modelling and
simulation.

 223

Komuro, M., & Komoda, N. (2008). An explanation model for quality improvement
effect of peer reviews. Paper presented at the International Conference on
Computational Intelligence for Modelling Control & Automation.

Konstantinou, P. (2013). Rapid application development. Retrieved April, 1.

Koong, C.-S., Shih, C., Hsiung, P.-A., Lai, H.-J., Chang, C.-H., Chu, W. C., . . . Yang,
C.-T. (2012). Automatic testing environment for multi-core embedded
software - ATEMES. Journal of Systems and Software, 85(1), 43-60.

Korel, B. (1990). Automated software test data generation. IEEE Transactions on
software engineering, 16(8), 870-879. doi: 10.1109/32.57624

Kosindrdecha, N., & Daengdej, J. (2010). A test generation method based on state
diagram. Journal of Theoretical and Applied Information Technology, 28-44.

Kot, M. (2003). The state explosion problem. Retrieved May, 18, 2015.

Krishnachandra, M. (2016). A customized approach for automated test case generation
and optimization for system based software testing. international Journal of
Emerging Trends & Technology in Computer Science, 5(2), 36-39.

Kulkarni, N. J., Naveen, K. V., Singh, P., & Srivastava, P. R. (2011). Test case
optimization using artificial bee colony algorithm. Advances in Computing and
Communications, 570-579.

Kull, A. (2009). Model-based testing of reactive systems. (PhD Dissertation), Tallinn
University of Technology, Tallinn, Estonia.

Kumar, V. K., & Mathew, S. (2014). Compiler based test case generation.
International Journal on Recent Trends in Engineering & Technology, 11(1),
558.

Kumaran, U. S., Kumar, S. A., & Kumar, K. V. (2011). An approach to automatic
generation of test cases based on use cases in the requirements phase
International Journal on Computer Science and Engineering, 3(1), 102-113.

Kundu, D., & Samanta, D. (2009). A novel approach to generate test cases from UML
activity diagrams. Journal of Object Technology, 8(3), 65-83.

Kusumoto, S., Matukawa, F., Inoue, K., Hanabusa, S., & Maegawa, Y. (2005). Effort
estimation tool based on use case points method. Osaka University.

Kwiecień, J., & Filipowicz, B. (2012). Firefly algorithm in optimization of queueing
systems. Bulletin of the Polish Academy of Sciences: Technical Sciences,
60(2), 363-368.

Lam, S. S. B., Raju, M. H. P., Ch, S., & Srivastav, P. R. (2012). Automated generation
of independent paths and test suite optimization using artificial bee colony.
Procedia Engineering, 30, 191-200.

 224

Lammich, P., & Neumann, R. (2015). A framework for verifying depth-first search
algorithms. Paper presented at the Proceedings of the 2015 Workshop on
Certified Programs and Proofs.

Lange, C. F., Chaudron, M. R., & Muskens, J. (2006). In practice: UML software
architecture and design description. IEEE software, 23(2), 40-46. doi:
10.1109/MS.2006.50

Lauder, A., & Kent, S. (2001). Statecharts for Business Process Modeling Enterprise
Information Systems II (pp. 121-125): Springer.

Lavagno, L., Markov, I. L., Martin, G., & Scheffer, L. K. (2016). Electronic Design
Automation for Ic System Design, Verification, and Testing. United States:
CRC Press.

Leitner, A., Oriol, M., Zeller, A., Ciupa, I., & Meyer, B. (2007). Efficient unit test case
minimization. Paper presented at the Proceedings of the twenty-second
IEEE/ACM international conference on Automated software engineering.

Li, B.-L., Li, Z.-s., Qing, L., & Chen, Y.-H. (2007). Test case automate generation
from UML sequence diagram and OCL expression. Paper presented at the
Computational Intelligence and Security, 2007 International Conference.

Li, H., & Lam, C. P. (2005). An ant colony optimization approach to test sequence
generation for state-based software testing. Paper presented at the Quality
Software, 2005.(QSIC 2005). Fifth International Conference

Li, L., He, T., & Wu, J. (2012). Automatic test Generation from UML statechart
diagram based on euler circuit. International Journal of Digital Content
Technology & its Applications, 6(19), 129-136.

Li, L., Li, X., He, T., & Xiong, J. (2013a). Extenics-based test case generation for
UML activity diagram. Procedia Computer Science, 17, 1186-1193.

Li, L., Li, X., Tan, S., & Xiong, J. (2013b). Generating test cases from UML statechart
diagram based on extended context-free grammars. International Journal of
Digital Content Technology and its Applications, 7(5), 1206.

Lilly, R., & Uma, G. V. (2010). Reliable Mining of Automatically Generated Test
Cases from Software Requirements Specification. IJCSI international journal
of computer science issues, 7(1), 87-91.

Lima, B., & Faria, J. P. (2016). A Survey on Testing Distributed and Heterogeneous
Systems: The State of the Practice. Paper presented at the International
Conference on Software Technologies.

Linzhang, W., Jiesong, Y., Xiaofeng, Y., Jun, H., Xuandong, L., & Guoliang, Z.
(2004). Generating test cases from UML activity diagram based on Gray-box
method. Paper presented at the Software Engineering Conference.

 225

Lithner, J. (2008). A research framework for creative and imitative reasoning.
Educational Studies in Mathematics, 67(3), 255-276.

Liu, J., & Zhang, L. (2014). Using Formal Methods and Aspect Oriented Techniques
to Model Cyber Physical Systems. International Information Institute (Tokyo).
Information, 17(5), 1729.

Lu, M.-S., & Tseng, L.-K. (2010). An integrated object-oriented approach for design
and analysis of an agile manufacturing control system. The International
Journal of Advanced Manufacturing Technology, 48(9), 1107-1122.

Makker, V., & Singh, V. (2011). An Approach for Test Case Generation Using UML
State chart Diagram. International Journal of Advanced Research in Computer
Science, 2(5), 567 - 571.

Mala, D. J., Kamalapriya, M., Shobana, R., & Mohan, V. (2009). A non-pheromone
based intelligent swarm optimization technique in software test suite
optimization. Paper presented at the Intelligent Agent & Multi-Agent Systems,
2009. IAMA 2009. International Conference on.

Mala, D. J., & Mohan, V. (2009). ABC tester-artificial bee colony based software test
suite optimization approach. International Journal of Software Engineering,
2(2), 15-43.

Mala, D. J., & Mohan, V. (2010). Quality improvement and optimization of test cases:
a hybrid genetic algorithm based approach. ACM SIGSOFT Software
Engineering Notes, 35(3), 1-14.

Mala, D. J., Ruby, E., & Mohan, V. (2012). A hybrid test optimization framework-
coupling genetic algorithm with local search technique. Computing and
Informatics, 29(1), 133-164.

Mall, R. (2009). Fundamentals of software engineering. New Delhi, India: PHI
Learning Pvt. Ltd.

Mani, P., & Prasanna, M. (2016). Test Case Generation for Embedded System
Software Using UML Interaction Diagram. Journal of Engineering Science
and Technology, 12(4), 860 - 874.

March, S. T., & Smith, G. F. (1995). Design and natural science research on
information technology. Decision support systems, 15(4), 251-266.

Marijuán, P. C., & Westley, J. (1992). Enzymes as molecular automata: a reflection
on some numerical and philosophical aspects of the hypothesis. BioSystems,
27(2), 97-113.

Martin, J. (1991). Rapid application development. Basingstoke, United Kingdom:
Macmillan Publishing Company.

Mathur, A. P. (2008). Foundations of Software Testing, 2/e. London, United Kingdom:
Pearson Education.

 226

McCaffrey, J. D. (2009). Generation of pairwise test sets using a genetic algorithm.
Paper presented at the Computer Software and Applications Conference, 2009.
COMPSAC'09. 33rd Annual IEEE International.

McMinn, P. (2004). Search‐based software test data generation: a survey. Software
Testing, Verification and Reliability, 14(2), 105-156.

McQuillan, J. A., & Power, J. F. (2005). A survey of UML-based coverage criteria for
software testing. Department of Computer Science. NUI Maynooth, Co.
Kildare, Ireland, 1 -17.

Miller, T., Padgham, L., & Thangarajah, J. (2010). Test coverage criteria for agent
interaction testing. Paper presented at the International Workshop on Agent-
Oriented Software Engineering.

Mingsong, C., Qiu, X., Xu, W., Wang, L., Zhao, J., & Li, X. (2009). UML activity
diagram-based automatic test case generation for Java programs. THE
COMPUTER JOURNAL, 52(5), 545-556.

Mingsong, C., Xiaokang, Q., & Xuandong, L. (2006). Automatic test case generation
for UML activity diagrams. Paper presented at the Proceedings of the 2006
international workshop on Automation of software test.

Mohamed, S. F. P. (2015). A process based approach software certification model for
agile and secure environment. Universiti Utara Malaysia.

Mohi-Aldeen, S. M., Mohamad, R., & Deris, S. (2014). Automatic test case generation
for structural testing using negative selection algorithm. Paper presented at the
1st International Conference of Recent Trends in Information and
Communication Technologies.

Morell, L. J. (1984). A Theory of Error-based Testing. (PhD Dissertation), University
of Maryland at College Park.

Morell, L. J. (1990). A theory of fault-based testing. Software Engineering, IEEE
Transactions on, 16(8), 844–857.

Moret, B. M., & Shapiro, H. D. (2001). Algorithms and experiments: The new (and
old) methodology. Journal of Universal Computer Science, 7(5), 434-446.

Muniz, L. L., Netto, U. S., & Maia, P. H. M. (2015). TCG-a model-based testing tool
for functional and statistical testing. Paper presented at the ICEIS.

Murthy, P., Anitha, P., Mahesh, M., & Subramanyan, R. (2006). Test ready UML
statechart models. Paper presented at the Proceedings of the 2006 international
workshop on Scenarios and state machines: models, algorithms, and tools.

Na, H.-S., Choi, O.-H., & Lim, J.-E. (2006). A metamodel-based approach for
extracting ontological semantics from UML models. Paper presented at the
International Conference on Web Information Systems Engineering.

 227

Naik, K., & Tripathy, P. (2011). Software testing and quality assurance: theory and
practice. New Jersey, United States: John Wiley & Sons.

Nayak, A., & Samanta, D. (2010). Automatic test data synthesis using UML sequence
diagrams. Journal of Object Technology, 9(2), 75-104.

Ngah, A. (2012). Regression test selection by exclusion. (PhD thesis), Durham
University.

Nidhra, S., & Dondeti, J. (2012). Blackbox and whitebox testing techniques-a
literature review. International Journal of Embedded Systems and Applications
(IJESA), 2(2), 29-50.

Norshuhada, S., & Shahizan, H. (2010). Design research in software development:
Constructing and linking research questions, objectives, methods and
outcomes: Sintok: Penerbit Universiti Utara Malaysia.

O’Neil, D. (2001). Peer reviews, encyclopedia of software engineering. New York,
United States: Wiley.

Offermann, P., Levina, O., Schönherr, M., & Bub, U. (2009). Outline of a design
science research process. Paper presented at the Proceedings of the 4th
International Conference on Design Science Research in Information Systems
and Technology.

Offutt, A. J. (1988). Automatic test data generation. (PhD), Georgia Institute of
Technology, Atlanta, GA, USA.

Offutt, J., & Abdurazik, A. (1999). Generating tests from UML specifications:
Springer.

Offutt, J., Liu, S., Abdurazik, A., & Ammann, P. (2003). Generating test data from
state‐based specifications. Software Testing, Verification and Reliability,
13(1), 25-53.

Oladejo, B. F., & Ogunbiyi, D. T. (2014). An empirical study on the effectiveness of
automated test case generation techniques. American Journal of Software
Engineering and Applications, 3(6), 95-101.

Olson, K. (2010). An examination of questionnaire evaluation by expert reviewers.
Field Methods, 22(4), 295-318.

Oluwagbemi, O., & Asmuni, H. (2014). Development of a robust parser for extracting
artifacts during model-based testing from UML diagrams. International
Journal of Software Engineering and Technology, 1(2), 43-50.

Oluwagbemi, O., & Asmuni, H. (2015). Automatic generation of test cases from
activity diagrams for UML based testing (UBT). Jurnal Teknologi, 77(13).

Omotunde, H., Ibrahim, R., Ahmed, M., Olanrewaju, R., Ibrahim, N., & Shah, H.
(2016). A framework to reduce redundancy in android test suite using

 228

refactoring. Indian Journal of Science and Technology, 9(46). doi:
10.17485/ijst/2016/v9i46/107107

Ooi, W., Shahrizal, I., Noordin, A., Nurulain, M., & Norhan, M. (2014). Development
of rural emergency medical system (REMS) with geospatial technology in
Malaysia. Paper presented at the IOP Conference Series: Earth and
Environmental Science.

Ostrand, T. J., & Balcer, M. J. (1988). The category-partition method for specifying
and generating fuctional tests. Communications of the ACM, 31(6), 676-686.

Pahwa, N., & Solanki, K. (2014). UML based test case generation methods: a review.
International Journal of Computer Applications, 95(20), 1-6.

Pandey, B., & Jain, R. (2014). Importance of unified modelling language for test case
generation in software testing. Rituraj Jain et al, Int.J.Computer Technology
& Applications, 5(2), 345-350.

Panthi, V., & Mohapatra, D. (2015). Generating prioritized test sequences using
Firefly optimization technique Computational Intelligence in Data Mining-
Volume 2 (pp. 627-635): Springer.

Panthi, V., & Mohapatra, D. P. (2012). Automatic test case generation using sequence
diagram. Paper presented at the Proceedings of International Conference on
Advances in Computing.

Parnami, S. (2013). Testing target path by automatic generation of test data using
genetic algorithm. International Journal of Information and Computation
Technology, 3(8), 825-832.

Patnaik, D., Acharya, A. A., & Mohapatra, D. P. (2011). Generating testcases for
concurrent systems using UML state chart diagram Information Technology
and Mobile Communication (pp. 100-105): Springer.

Patwa, S., & Malviya, A. K. (2014). Impact of coding phase on object oriented
software testing. Covenant Journal of Informatics and Communication
Technology (CJICT), 2(1), 57-67.

Paul, A., & Jeff, O. (2008). Introduction to Software Testing. New York, United States:
Cambridge University Press.

Perry, W. E. (2007). Effective Methods for Software Testing: Includes Complete
Guidelines, Checklists, and Templates. New Jersey, United States: John Wiley
& Sons.

Pilskalns, O., Andrews, A., Ghosh, S., & France, R. (2003). Rigorous testing by
merging structural and behavioral UML representations The Unified Modeling
Language. Modeling Languages and Applications (pp. 234-248): Springer.

Pimenta, A. (2006). Automated specification based testing of graphical user
interfaces. (PhD Thesis), Porto University, Porto, Portugal.

 229

Pinheiro, A. C., Simão, A., & Ambrosio, A. M. (2014). FSM-based test case generation
methods applied to test the communication software on board the ITASAT
University Satellite: A Case Study. Journal of Aerospace Technology and
Management, 6(4), 447-461.

Popp, R., Falb, J., Arnautovic, E., Kaindl, H., Kavaldjian, S., Ertl, D., . . . Bogdan, C.
(2009). Automatic generation of the behavior of a user interface from a high-
level discourse model. Paper presented at the System Sciences, 2009.
HICSS'09. 42nd Hawaii International Conference on.

Prasanna, M., & Chandran, K. (2011). Automated Test Case Generation for Object
Oriented Systems Using UML Object Diagrams High Performance
Architecture and Grid Computing (pp. 417-423): Springer.

Prasanna, M., Chandran, K., & Suberi, D. B. (2011). Automatic test case generation
for UML class diagram using data flow approach. Academia Education, 1-7.

Prasanna, M., Sivanandam, S., Venkatesan, R., & Sundarrajan, R. (2005). A survey on
automatic test case generation. Academic Open Internet Journal, 15(6).

Presser, S., & Blair, J. (1994). Survey pretesting: Do different methods produce
different results? Sociological methodology, 24, 73-104.

Priya, S. S., & Sheba, P. (2013). Test case generation from UML models-a survey.
Paper presented at the Proc. International Conference on Information Systems
and Computing (ICISC-2013), INDIA.

Rafi, D. M., Moses, K. R. K., Petersen, K., & Mäntylä, M. V. (2012). Benefits and
limitations of automated software testing: Systematic literature review and
practitioner survey. Paper presented at the Proceedings of the 7th International
Workshop on Automation of Software Test.

Rapos, E. (2012). Understanding the effects of model evolution through incremental
test case generation for UML-RT models. Queen's University.

Rhmann, W., & Saxena, V. (2016). Optimized and prioritized test paths generation
from UML activity diagram using firefly algorithm. International Journal of
Computer Applications, 145(6), 16-22.

Rice, R. W. (2010). STBC: the economics of testing.
http://www.riceconsulting.com/public_pdf/STBC-WM.pdf.

Robinson, H. (1999). Graph theory techniques in model-based testing. Paper presented
at the International Conference on Testing Computer Software.

Rothermel, G., Untch, R. H., Chu, C., & Harrold, M. J. (2001). Prioritizing test cases
for regression testing. IEEE Transactions on software engineering, 27(10),
929-948.

Rumbaugh, J., Jacobson, I., & Booch, G. (2004). Unified Modeling Language
Reference Manual, The: Pearson Higher Education.

 230

Rungi, K., & Matulevičius, R. (2013). Empirical analysis of the test maturity model
integration (TMMi) Information and Software Technologies (pp. 376-391):
Springer.

Ruohonen, K. (2013). Graph theory. Tampere, Finland: Tampere University of
Technology.

Sahoo, R. K., Mohapatra, D. P., & Patra, M. R. (2016a). A firefly algorithm based
approach for automated generation and optimization of test cases.
International Journal on Computer Science and Engineering, 4(8), 54-58.

Sahoo, R. K., Ojha, D., Mohapatra, D. P., & Patra, M. R. (2016b). Automated test case
generation and optimization: a comparative review. International Journal of
Computer Science & Information Technology, 8(5), 19-32.

Saifan, A. A., & Mustafa, W. B. (2015). Using formal methods for test case generation
according to transition-based coverage criteria. Jordanian Journal of
Computers and Information Technology, 1(1), 15-30.

Saini, E. S., & Srivastava, E. V. (2015). Case Generation from the Combination of
UML Class and Activity Diagrams. International Journal Of Modern
Engineering Research, 5(7), 10-13.

Salah, D., Paige, R., & Cairns, P. (2014). An evaluation template for expert review of
maturity models. Paper presented at the International Conference on Product-
Focused Software Process Improvement.

Salman, Y. D., & Hashim, N. L. (2014). An improved method of obtaining basic path
testing for test case based on UML state chart. Science International, 26(4),
1607 - 1610.

Salman, Y. D., & Hashim, N. L. (2016). Automatic Test Case Generation from UML
State Chart Diagram: A Survey Advanced Computer and Communication
Engineering Technology (pp. 123-134): Springer.

Salman, Y. D., & Hashim, N. L. (2017). Test Case Generation Model for UML
Diagrams. Journal of Telecommunication, Electronic and Computer
Engineering (JTEC), 9(2-2), 171-175.

Salman, Y. D., Hashim, N. L., Rejab, M. M., Romli, R., & Mohd, H. (2017). Coverage
Criteria for UML State Chart Diagram in Model-based Testing. Journal of
Telecommunication, Electronic and Computer Engineering (JTEC), 9(2-11),
85-89.

Samuel, P., Mall, R., & Bothra, A. K. (2008). Automatic test case generation using
unified modeling language (UML) state diagrams. IET software, 2(2), 79-93.

Santiago, V., do Amaral, A. S. M., Vijaykumar, N., Mattiello-Francisco, M. F.,
Martins, E., & Lopes, O. C. (2006). A practical approach for automated test
case generation using statecharts. Paper presented at the Computer Software

 231

and Applications Conference, 2006. COMPSAC'06. 30th Annual
International.

Santiago, V., Vijaykumar, N. L., Guimarães, D., Amaral, A. S., & Ferreira, É. (2008).
An environment for automated test case generation from statechart-based and
finite state machine-based behavioral models. Paper presented at the Software
Testing Verification and Validation Workshop, 2008. ICSTW'08. IEEE
International Conference on.

Santosh, M., & Singh, R. (2013). Test Case Minimization By Generating Requirement
Based Mathematical Equations. International Journal of Engineering
Research & Technology (IJERT), 2(6), 1180 - 1188.

Sapna, P., & Mohanty, H. (2008). Automated Scenario Generation Based on UML
Activity Diagrams. Paper presented at the International Conference on
Information Technology.

Schligloff, H., & Roggenbach, M. (2002). Path testing. Advanced Topics in Computer
Science.

Schroeder, P. J., Kim, E., Arshem, J., & Bolaki, P. (2003). Combining behavior and
data modeling in automated test case generation. Paper presented at the
Quality Software, 2003. Proceedings. Third International Conference on.

Schwarzl, C., & Peischl, B. (2010a). Static-and dynamic consistency analysis of UML
state chart models Model Driven Engineering Languages and Systems (pp.
151-165): Springer.

Schwarzl, C., & Peischl, B. (2010b). Test sequence generation from communicating
UML state charts: An industrial application of symbolic transition systems.
Paper presented at the Quality Software (QSIC), 2010 10th International
Conference.

Schweighofer, T., & Heričko, M. (2014). Approaches for test case generation from
UML diagrams. Paper presented at the Third Workshop on Software Quality
Analysis, Monitoring, Improvement and Applications.

Shah, S. A. A., Shahzad, R. K., Bukhari, S. S. A., Minhas, N. M., & Humayun, M.
(2016). A Review of Class Based Test Case Generation Techniques. Journal
of Software, 11(5), 464-480.

Shahzad, A., Raza, S., Azam, M. N., Bilal, K., & Shamail, S. (2009). Automated
optimum test case generation using web navigation graphs. Paper presented at
the Emerging Technologies, 2009. ICET 2009. International Conference on.

Shamshiri, S., Just, R., Rojas, J. M., Fraser, G., McMinn, P., & Arcuri, A. (2015). Do
automatically generated unit tests find real faults? an empirical study of
effectiveness and challenges (t). Paper presented at the Automated Software
Engineering (ASE), 2015 30th IEEE/ACM International Conference on.

 232

Shamsoddin-Motlagh, E. (2012). A review of automatic test cases generation.
International Journal of Computer Applications, 57(13), 25 - 29.

Shanthi, A., & Kumar, G. M. (2012). Automated test cases generation from UML
sequence diagram. International Proceedings of Computer Science &
Information Technology, 41, 83 -89.

Sharma, P. (2014). Automated software testing using metahurestic technique based on
improved ant algorithms for software testing. International Journal on Recent
and Innovation Trends in Computing and Communication, 2(11).

Sharma, R., & PrakashSonwani, S. (2015). Programmed test case generation from
simulink/stateflow model. Indian Journal of Computer Science and
Engineering (IJCSE), 6(2), 45 - 51.

Sharp, H., Rogers, Y., & Preece, J. (2007). Interaction design: beyond human-
computer interaction. netWorker: The Craft of Network Computing, 11(4), 34.

Shen, J., & Abraham, J. A. (2000). An RTL abstraction technique for processor
microarchitecture validation and test generation. Journal of Electronic Testing,
16(1), 67-81.

Sherwood, C., & Rout, T. (1998). A structured methodology for multimedia product
and systems development. Paper presented at the ASCILITE.

Shinde, V. (2013). Software testing career package - a software tester's journey from
getting a job to becoming a test leader! : Software Testing Help.

Shiratuddin, N., Hassan, S., Hashim, N. L., Sarif, S. M., Bakar, A., & Shahbani, M.
(2013). Focus group evaluation on IPTComKitTM commercialization model.
Recent Advances in Electrical and Computer Engineering, 90-95.

Shirole, M., & Kumar, R. (2010). A hybrid genetic algorithm based test case
generation using sequence diagrams Contemporary Computing (pp. 53-63):
Springer.

Shirole, M., & Kumar, R. (2013). UML Behavioral Model Based Test Case
Generation: A Survey. ACM SIGSOFT Software Engineering Notes, 38(4), 1-
13.

Shirole, M., Suthar, A., & Kumar, R. (2011). Generation of improved test cases from
UML state diagram using genetic algorithm. Paper presented at the
Proceedings of the 4th India Software Engineering Conference.

Shneiderman, S. B., & Plaisant, C. (2005). Designing the User Interface: Strategies
for Effective Human-Computer Interaction (4th Edition). United States:
Pearson Addison Wesley.

Shull, F., Rus, I., & Basili, V. (2000). How perspective-based reading can improve
requirements inspections. Computer, 33(7), 73-79.

 233

Singh, R. (2014). Test case generation for object-oriented systems: A review. Paper
presented at the Communication Systems and Network Technologies (CSNT),
2014 Fourth International Conference on.

Singh, S., & Shree, R. (2016). A combined approach to optimize the test suite size in
regression testing. CSI transactions on ICT, 4(2-4), 73-78.

Society, I. C. (2014). Guide to the software engineering body of knowledge (SWEBOK
Version 3): IEEE.

Sommerville, I. (2011). Software engineering (9th ed.). Massachusetts, United States:
Addison-Wesley.

Sood, B., & Rattan, D. (2016). An efficient method to generate automation scripts
using selenium tool. An International Journal of Engineering Sciences, 17, 1 -
7.

Specification, O. A. (2007). OMG unified modeling language (OMG UML),
Superstructure, V2. 1.2. Object Management Group, 2(12).

Sprague Jr, R. H., & Carlson, E. D. (1982). Building effective decision support systems.
New Jersey, United States: Prentice Hall Professional Technical Reference.

Srikant, Y., & Shankar, P. (2007). The compiler design handbook: optimizations and
machine code generation. Cambridge, United Kingdom: CRC Press.

Srivastav, S., & Gupta, S. (2016). Software design pattern static validation using
cyclomatic complexity and UML approach. International Journal, 4(7), 89 -
97.

Srivastava, P. R., Baby, K., & Raghurama, G. (2009). An approach of optimal path
generation using ant colony optimization. Paper presented at the TENCON
2009-2009 IEEE Region 10 Conference.

Srivastava, P. R., & Kim, T.-h. (2009). Application of genetic algorithm in software
testing. International Journal of Software Engineering and Its Applications,
3(4), 87-96.

Srivatsava, P. R., Mallikarjun, B., & Yang, X.-S. (2013). Optimal test sequence
generation using firefly algorithm. Swarm and Evolutionary Computation, 8,
44-53.

Srividhya, J., & Alagarsamy, K. (2014). A synthesized overview of test case
optimization techniques. Journal of Recent Research in Engineering and
Technology, 1(2).

Stecklein, J., Dabney, J., Dick, B., Haskins, B., Lovell, R., & Moroney, G. (2004).
Error cost escalation through the project life cycle. National Aeronautics and
Space Administration.

 234

Stewart, D. W., & Shamdasani, P. N. (2014). Focus groups: Theory and practice (Vol.
20). California, United States: Sage Publications.

Sumalatha, V. M., & Raju, G. (2014). Model based test case optimization of UML
activity diagrams using evolutionary algorithms. Model Based Test Case
Optimization of UML Activity Diagrams using Evolutionary Algorithms,
12(11), 131-142.

Sung, P. W.-B., & Paynter, J. (2006). Software testing practices in New Zealand. Paper
presented at the Proceedings of the 19th Annual Conference of the National
Advisory Committee on Computing Qualifications.

Suri, B., Mangal, I., & Srivastava, V. (2011). Regression test suite reduction using an
hybrid technique based on BCO and genetic algorithm. Special Issue of
International Journal of Computer Science & Informatics (IJCSI), 2(2), 2231-
5292.

Swain, R. K., Behera, P. K., & Mohapatra, D. P. (2012a). Generation and optimization
of test cases for object-oriented software using state chart diagram.
International Journal, 407- 424.

Swain, R. K., Behera, P. K., & Mohapatra, D. P. (2012b). Minimal testcase generation
for object-oriented software with state charts. International Journal of
Software Engineering & Applications (IJSEA), 3(4).

Swain, R. K., Panthi, V., Behera, P., & Mohapatra, D. (2012c). Automatic test case
generation from UML state chart diagram. International Journal of Computer
Applications, 42(7), 26-36.

Swain, S. K., Mohapatra, D. P., & Mall, R. (2010a). Test case generation based on
state and activity models. Journal of Object Technology, 9(5), 1-27.

Swain, S. K., Mohapatra, D. P., & Mall, R. (2010b). Test case generation based on use
case and sequence diagram. International Journal of Software Engineering,
3(2), 21-52.

Tan, R. P. (2003). Programming language support for automated testing. (PhD
Dissertation), Virginia Tech.

Tewari, A., & Misra, A. K. (2015). An approach to Model Based Test case generation
for Student Admission Process. International Journal of Innovative Science,
Engineering & Technology, 2(10), 818 -825.

Theis, B., Frood, J., Nishri, D., & Marrett, L. D. (2002). Evaluation of a risk factor
survey with three assessment methods. Chronic Diseases and Injuries in
Canada, 23(1), 1 - 47.

Tomar, A., & Singh, P. (2016). Software testing with different optimization
techniques. International Journal of Emerging Technology and Advanced
Engineering, 6(4), 169-171.

 235

Tripathy, A., & Mitra, A. (2012). Test case generation using activity diagram and
sequence diagram. Paper presented at the International Conference on
Advances in Computing.

Tsumaki, T., & Morisawa, Y. (2000). A framework of requirements tracing using
UML. Paper presented at the Software Engineering Conference, 2000. APSEC
2000. Proceedings. Seventh Asia-Pacific.

UML, O. M. G. (2004). UML 2.0 Infrastructure Specification. OMG, Needham.

Utting, M., & Legeard, B. (2007). Practical model-based testing: a tools approach.
San Francisco, United States: Morgan Kaufmann.

Utting, M., & Legeard, B. (2010). Practical model-based testing: a tools approach.
San Francisco, United States: Morgan Kaufmann.

Utting, M., Pretschner, A., & Legeard, B. (2006). A Taxonomy of Model-based
Testing Technical report. Hamilton, New Zealand: The University of Waikato.

Vaziri, R., & Mohsenzadeh, M. (2012). A questionnaire-based data quality
methodology. International Journal of Database Management Systems, 4(2),
55.

Verma, A., & Dutta, M. (2014). Automated Test case generation using UML diagrams
based on behavior. International Journal of Innovations in Engineering and
Technology (IJIET), 4(1), 31 - 39.

Vernotte, A., Dadeau, F., Lebeau, F., Legeard, B., Peureux, F., & Piat, F. (2014).
Efficient Detection of Multi-step Cross-Site Scripting Vulnerabilities. Paper
presented at the 10th International Conference on Information Systems
Security Hyderabad, India.

Voloshin, V. I. (2009). Introduction to graph theory. New York, United States: Nova
Science Publishers.

Waller, M. P., Dresselhaus, T., & Yang, J. (2013). JACOB: an enterprise framework
for computational chemistry. Journal of computational chemistry, 34(16),
1420-1428.

Wei, Z., & Xiaoxue, W. (2010). Graph theory model based automatic test platform
design. Paper presented at the Software Engineering and Data Mining
(SEDM), 2010 2nd International Conference on.

Weilkiens, T. (2011). Systems engineering with SysML/UML: modeling, analysis,
design. Massachusetts, United States: Morgan Kaufmann.

Weißleder, S. (2010). Test models and coverage criteria for automatic model-based
test generation with UML state machines. Humboldt University of Berlin.

Weißleder, S., & Sokenou, D. (2010). ParTeG-a Model-Based Testing tool.
Softwaretechnik-Trends, 30(2), 1 -2

 236

Werner, E., & Grabowski, J. (2012). Mining test cases: optimization possibilities.
International Journal On Advances in Software, 5(3 and 4), 200-211.

Wiegers, K., & Beatty, J. (2013). Software requirements. London, United Kingdom:
Pearson Education.

Wiegers, K. E. (2002a). Peer reviews in software: A practical guide. Boston, United
State: Addison-Wesley Boston.

Wiegers, K. E. (2002b). Seven truths about peer reviews. Cutter IT Journal, 15(7), 31-
37.

Wu, Y.-C., & Fan, C.-F. (2014). Automatic test case generation for structural testing
of function block diagrams. Information and Software Technology, 56(10),
1360-1376.

Xiong, J. (2011). New software engineering paradigm based on complexity science:
an introduction to NSE. Berlin, Germany: Springer Science & Business Media.

Xu, S., Chen, L., Wang, C., & Rud, O. (2016). A comparative study on black-box
testing with open source applications. Paper presented at the Software
Engineering, Artificial Intelligence, Networking and Parallel/Distributed
Computing (SNPD), 2016 17th IEEE/ACIS International Conference on.

Xu, Z., Kim, Y., Kim, M., Rothermel, G., & Cohen, M. B. (2010). Directed test suite
augmentation: techniques and tradeoffs. Paper presented at the Proceedings of
the Eighteenth ACM SIGSOFT International Symposium on Foundations of
Software Engineering.

Yadav, K., Patel, S., Arora, T., Uptu, U. P., & Jnu, J. (2016). Challenges in automatic
test case generation. International Journal of Communications, 1, 99-102.

Yan, X.-T., Jiang, C., & Eynard, B. (2008). Advanced design and manufacture to gain
a competitive edge: Springer.

Yang, X.-S. (2010). Nature-inspired metaheuristic algorithms: Luniver press.

Yang, X.-S., & He, X. (2013). Firefly algorithm: recent advances and applications.
International Journal of Swarm Intelligence, 1(1), 36-50.

Yemul, M. S., Vhatkar, K., & Bag, V. (2014). Testing approach for automatic test case
generation and Optimization using GA. international Journal of Emerging
Trends & Technology in Computer Science, 3(5), 69 - 71.

Yoo, S., & Harman, M. (2012). Regression testing minimization, selection and
prioritization: a survey. Software Testing, Verification and Reliability, 22(2),
67-120.

Yu, Z., Martinez, M., Danglot, B., Durieux, T., & Monperrus, M. (2017). Test case
generation for program repair: a study of feasibility and effectiveness. ArXiv e-
prints, 1 -12.

 237

Zaibon, S. B., & Shiratuddin, N. (2010). Mobile game-based learning (mGBL)
engineering model as a systematic development approach. Paper presented at
the Global Learn.

Zelkowitz, M. V., & Wallace, D. R. (1998). Experimental models for validating
technology. Computer, IEEE, 31(5), 23-31. doi: 10.1109/2.675630

Zhang, C., Duan, Z., Yu, B., Tian, C., & Ding, M. (2016). A Test Case Generation
Approach Based on Sequence Diagram and Automata Models. Chinese
Journal of Electronics, 25(2), 234-240.

Zhang, W., & Liu, S. (2013). Supporting tool for automatic specification-based test
case generation Structured Object-Oriented Formal Language and Method
(pp. 12-25): Springer.

Zhu, H., Hall, P. A., & May, J. H. (1997). Software unit test coverage and adequacy.
ACM Computing Surveys (CSUR), 29(4), 366-427.

238

Appendix A

EXPERT EVALUATION FORM

EXPERT EVALUATION FORM

Dear Respected Respondent,

My name is Yasir Dawood Salman and I am currently pursuing my Ph.D. in

Information Technology (IT). I am specializing in Software Testing at the School of

Computing, College of Arts and Sciences, Universiti Utara Malaysia (UUM). My

Ph.D. research entitled An Automated Test Case Generation Model for UML

Statechart Diagram aims to develop a model and algorithms that can automatically

generate test case from the UML statechart diagram.

Expert review is the verification method selected to evaluate this study. This study

seeks your expertise in evaluating the proposed work. The information supplied will

be treated as confidential and will be used for research purposes only and may be

reported anonymously in academic publications. I humbly solicit for your kind

assistance to participate in this research.

The main purpose of this verification is to verify the proposed model and its

components, as well as other entities within the model, possesses a satisfactory range

of accuracy, completeness, and consistency.

 239

Kindly attach a copy of your CV after completion of this verification form for the

proper documentation of this research.

If you have any questions regarding this research, please feel free to contact me by e-

mail at yasir.dawod@gmail.com, phone number (+60169790922), or through my

supervisor Dr. Nor Laily Hashim at laily@uum.edu.my.

Thank you for your time and assistance.

Instructions:

Please read the system review documents provided to you and go through the model,

algorithms, and prototype carefully. Once this is done, please tick () the most

appropriate answer. You are advised to answer the questions based on your knowledge

and experience and verify the items in Section B. This section on software quality

dimensions is used to measure the originality and validity of the proposed system

implementation for automatic test case generation of the UML statechart diagram.

Section A is expert profile. This questionnaire is NOT intended to assess people, their

work, or knowledge. Completing the questionnaire will take around 30–45 minutes. I

will deeply appreciate if you could answer the questions carefully as the information

you provide will influence the accuracy and success of this research.

mailto:yasir.dawod@gmail.com
mailto:laily@uum.edu.my

 240

Section A: Expert Profile

Name (First and Last) ………………………………………………………………...

Employer/ Facility ………………………………………………………………...

Position [] Professor [] Associate Professor [] Senior Lecturer []

Lecturer [] Others (Please specify)…………………………...

………………………………………………………………...

Fields of

Specialization

………………………………………………………………...

………………………………………………………………...

………………………………………………………………...

Years of Experience in:

Algorithms Software

Development

Software

Engineering

Software Testing

…………………… …………………… …………………… ……………………

Research Interests ………………………………………………………………...

………………………………………………………………...

………………………………………………………………...

E-mail ………………………………………………………………...

Office Phone ……………………… Mobile Phone …………………...

 241

Section B: Items for Review

Please validate and give comments on the below mentioned dimensions on the

proposed system (framework, algorithms and prototype) implementation for an

automatic test case generation:

DIMENSIONS DESCRIPTIONS COMMENTS/SUGGESTIONS

Practicality The proposed framework of automatic

test case generation from UML

diagrams can practically be

implemented in the real world.

Agree

Disagree

Comments/ Suggestions:

--

--

--

Clarity As a whole, the framework is

workable and the steps in the

framework are easily followed.

Agree

Disagree

Comments/ Suggestions:

--

--

--

Completeness The essential items of the proposed

framework are complete, satisfactory,

and suitable to generate test cases.

Agree

Disagree

Comments/ Suggestions:

--

--

--

--

 242

Correctness The algorithms: State Relationships

Table (SRT), Test Cases Paths

Generation (TCGP), minimization,

prioritization, and Test Cases

Generation (TCG), provide correct

results and achieve its objectives.

Agree

Disagree

Comments/ Suggestions:

--

--

--

Effectiveness The prototype automatically generates

the test cases from UML statechart

diagram, for which it is intended.

Agree

Disagree

Comments/ Suggestions:

--

--

--

--

Accuracy The system provides correct test cases

result to the inputted UML statechart

diagram.

Agree

Disagree

Comments/ Suggestions:

--

--

--

--

Perceived

Usefulness

The proposed system is useful for the

software tester in improving the

coverage criteria quality of test case

generation.

Agree

Disagree

Comments/ Suggestions:

--

--

--

 243

Usability Using the proposed system would

make generating the test cases easy for

the software tester.

Agree

Disagree

Comments/ Suggestions:

--

--

--

--

Understand-

ability

All documentations are clearly and

simply written such that procedures,

rules, and algorithms are readable and

can be easily understood.

Agree

Disagree

Comments/ Suggestions:

--

--

--

--

Additional comments (if any):

..………………………………………………………………………………………..

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

Thank you.

…………………………………… Date……………………………………

(Signature & Official Stamp)

 244

Appendix B

CONSENT FOR PARTICIPATION IN EXPERT VERIFICATION

I volunteer to participate in a research project conducted by Yasir Dawood Salman,

Ph.D. student, in Information Technology (IT), School of Computing, College of Arts

and Sciences, Universiti Utara Malaysia (UUM).

I understand that the expert verification form is designed to evaluate the proposed

framework, algorithms, and prototype. I will be one of approximately eight people

being interviewed for this research.

1. My participation in this project is voluntary. I may withdraw and discontinue
participation at any time. If I decline to participate or withdraw from the study,
no one on my campus will be told.

2. The interview will last approximately 30-45 minutes. Notes will be written

during the interview. An audio tape of the interview and subsequent dialogue
will be make. If I do not want to be taped, I will need to inform in advance.

3. I understand that the researcher will not identify me by name in any reports

using information obtained from this interview, and that my confidentiality as
a participant in this study will remain secure. Subsequent uses of records and
data will be subject to standard data use policies, which protect the anonymity
of individuals and institutions.

4. I have read and understand the explanation provided to me. I have had all my

questions answered to my satisfaction, and I voluntarily agree to participate in
this study.

5. I have been given a copy of this consent form.

Name of Participant Date Signature

Name of Researcher Date Signature

 245

Appendix C

DETAILED MINIMIZATION AND PRIORITIZATION FOR

SELECTED EXAMPLES

Section A: UML Statechart Diagram of an Online Shop

The process of minimize and prioritize the UML statechart diagram of an online shop

example (see Section 5.2.2.1.2) is shown below.

Figure B.1. Chart Relationship Graph for the UML Statechart Diagram of an Online
Shop

The intermediate graph (Figure B.1) was converted to test paths using TCGP

algorithm, and all the possible generated test paths from the intermediate graph is

shown in Figure B.2.

 246

TP 1: [S → 1 → 2 → 3 → 4 → E]
TP 2: [S → 1 → E]
TP 3: [S → 1 → 2 → E]
TP 4: [S → 1 → 2 → 3 → E]

Figure B.2 All Possible Test Paths for the UML Statechart Diagram of an Online
Shop

Path weight was calculated for each tests path using Equation 4.7, as shown in Table

B.1, to determine each path weight of transactions in the system

Table B.1

Path Weight for Each Path for the UML Statechart Diagram of an Online Shop

TC S→1 1→2 1→E 2→3 2→E 3→4 3→E 4→E 𝑬𝑬 𝑾𝑾𝒗𝒗

1 1 1 0 1 0 1 0 1 5 0.83

2 1 0 1 0 0 0 0 0 2 0.66

3 1 1 0 0 1 0 0 0 3 0.75

4 1 1 0 1 0 0 1 0 4 0.8

After generate the path weight, next step start by calculate path coverage for each

single path as shown in Table B.2.

Table B.2

Coverage Criteria for Each Path for the UML Statechart Diagram of an Online Shop

TP No All-State All-Transition All-Transition-pairs All-One-loop-paths

1 100% 62% 50% -

2 50% 25% 16% -

3 66% 37% 33% -

4 83% 50% 50% -

 247

After generate the path weight and coverage criteria for each path the intermediate

graph is converted to adjacency matrix, as showing in Table B.3. Then, this matrix is

used to generate the guidance matrix for the graph.

Table B.3

Adjacency Matrix for the UML Statechart Diagram of an Online Shop

States 0 1 2 3 4 5
0 0 1 0 0 0 0
1 0 0 1 0 0 1
2 0 0 0 1 0 1
3 0 0 0 0 1 1
4 0 0 0 0 0 1
5 0 0 0 0 0 0

After creating adjacency matrix, it is then used to generate guidance matrix. In the

example in Figure 1, the number of vertices is 6, and the number of edges is 8, therefore

the Cyclomatic Complexity equal to 4. However, the Cyclomatic Complexity for each

vertex need to be calculated using Equation 4.9 to be used to calculate the guidance

value using Equation 4.8. The results are shown in Table 4.

Table B.4

Guidance Value for the UML Statechart Diagram of an Online Shop

States Cyclomatic Complexity CC guidance value 𝑮𝑮𝑮𝑮
0 4 196
1 4 156
2 3 87
3 2 38
4 1 9
5 1,000 [END vertex infinity] 1,000 [finial state]

Guidance matrix (Table B.5) is just as a look-up/decision table of adjacency matrix

with each guidance value corresponding to every edge.

 248

Table B.5

Guidance Matrix for the UML Statechart Diagram of an Online Shop

States 0 1 2 3 4 5
0 0 156 0 0 0 0
1 0 0 87 0 0 1000
2 0 0 0 38 0 1000
3 0 0 0 0 9 1000
4 0 0 0 0 0 1000
5 0 0 0 0 0 0

Then the algorithm will generate the path sequences as:

Path 1= [0, 1, 2, 3, 4, 5],
Path 2= [1, 5],
Path 3= [2, 5],
Path 3= [3, 5].

To optimize the test cases, the algorithm will match each optimal path with paths in

Figure B.2, and chose the lowest path weight 𝑊𝑊𝑣𝑣 between the selected paths match

paths. The minimized test paths are shown in Figure B.3

TP 1: [S → 1 → 2 → 3 → 4 → E]
TP 2: [S → 1 → E]
TP 3: [S → 1 → 2 → E]
TP 4: [S → 1 → 2 → 3 → E]

Figure B.3. Optimized Test Paths for the UML Statechart Diagram of an Online
Shop

The combination use of these three paths lead to achieving: all-state coverage, all-

transition coverage and, all-transition-pairs coverage as shown in Table B.6.

Table B.6

Coverage Criteria Percentage for the Minimized Paths for the UML Statechart
Diagram of an Online Shop

TP No All-State All-Transition All-Transition-pairs All-One-loop-paths
1,2,3,4 100% 100% 100% -

 249

The ten generated fireflies for each state are showing in Table B.7.

Table B.7

Calculation of Brightness Values of 10 Fireflies

V 1 2 3 4 5 6 7 8 9 10
𝑑𝑑𝑖𝑖 𝐴𝐴𝑖𝑖 𝑑𝑑𝑖𝑖 𝐴𝐴𝑖𝑖 𝑑𝑑𝑖𝑖 𝐴𝐴𝑖𝑖 𝑑𝑑𝑖𝑖 𝐴𝐴𝑖𝑖 𝑑𝑑𝑖𝑖 𝐴𝐴𝑖𝑖 𝑑𝑑𝑖𝑖 𝐴𝐴𝑖𝑖 𝑑𝑑𝑖𝑖 𝐴𝐴𝑖𝑖 𝑑𝑑𝑖𝑖 𝐴𝐴𝑖𝑖 𝑑𝑑𝑖𝑖 𝐴𝐴𝑖𝑖 𝑑𝑑𝑖𝑖 𝐴𝐴𝑖𝑖

0 6.
9 3.5 6.

8
3.5
5

6.
7 3.6 6.

6
3.6
5

6.
5 3.7 6.

4
3.7
6

6.
3

3.8
2

6.
2

3.8
8

6.
1

3.9
4 6 4

1 5.
9

2.0
7

5.
8

2.1
1

5.
7

2.1
5

5.
6

2.1
8

5.
5

2.2
2

5.
4

2.2
6

5.
3 2.3 5.

2
2.3
5

5.
1

2.3
9 5 2.

44

2 4.
9

2.8
3

4.
8

2.8
9

4.
7

2.9
5

4.
6

3.0
1

4.
5

3.0
8

4.
4

3.1
4

4.
3

3.2
2

4.
2

3.2
9

4.
1

3.3
7 4 3.

45

3 3.
9 4.1 3.

8 4.2 3.
7

4.3
1

3.
6

4.4
2

3.
5

4.5
5

3.
4

4.6
7

3.
3

4.8
1

3.
2

4.9
5

3.
1 5.1 3 5.

26

4 2.
9

14.
71

2.
8

15.
15

2.
7

15.
63

2.
6

16.
13

2.
5

16.
67

2.
4

17.
24

2.
3

17.
86

2.
2

18.
52

2.
1

19.
23 2 20

Table B.8 shows the separate calculation for cyclomatic complexity and information

flow for each vertex, then show the Firefly brightness for that specific vertex after

including the random factor.

Table B.8

Objective Function

Vertex Cyclomatic Complexity CC Information Flow 𝑰𝑰𝑮𝑮𝒊𝒊 Firefly brightness 𝑨𝑨𝒊𝒊
0 4 0 3.94
1 4 4 2.26
2 3 4 3.29
3 2 4 4.31
4 1 1 14.71

By calculating the mean of brightness at every path using Equation 4.15, the results

are shown in Table 9.

Table B.9

Test Path Prioritization for the Minimized Paths for the UML Statechart Diagram of
an Online Shop

Test ID Test path Brightness value
TP 1 0 → 1 → 2 → 3 → 4 → 5 6.1010304355335
TP 4 0 → 1 → 2 → 3 → 5 4.6998174561816
TP 2 0 → 1 → 5 4.5997256564649
TP 3 0 → 1 → 2 → 5 4.4963083323801

 250

In Table B.9 test paths mean of the brightness value is calculated for each generated

optimized test path. From the table it is observed that optimized test path one has the

highest brightness value and hence having high priority. Then the fourth path, the

second path, and finely the third one.

Section B: UML Statechart Diagram of an Airline Check-in

The process of minimize and prioritize the UML statechart diagram of an airline

check-in example (see Section 5.2.2.1.3) is shown below.

Figure B.4. Chart Relationship Graph of a UML Statechart Diagram of an Airline
Check-in

 251

The intermediate graph (Figure B.4) was converted to test paths using TCGP

algorithm, and all the possible generated test paths from the intermediate graph is

shown in Figure B.5.

TP 1: [S→1→2→3→4→5→6→7→E]
TP 2: [S→1→2→3→4→6→7→E]
TP 3: [S→1→2→3→4→5→6→1→2→3→4→5→6→7→E]
TP 4: [S→1→2→3→4→5→6→1→2→3→4→6→7→E]
TP 5: [S→1→2→3→4→6→1→2→3→4→5→6→7→E]
TP 6: [S→1→2→3→4→6→1→2→3→4→6→7→E]
TP 7: [S→1→2→1→2→3→4→5→6→7→E]
TP 8: [S→1→2→1→2→3→4→6→7→E]

Figure B.5. All Possible Test Paths of a UML Statechart Diagram of an Airline
Check-in

Path weight was calculated for each tests path using Equation 4.7, as shown in Table

B.10, to determine each path weight of transactions in the system

Table B.10

Path Weight for Each Path of a UML Statechart Diagram of an Airline Check-in

TC S→1 1→2 2→3 2→1 3→4 4→5 4→6 5→6 6→7 6→1 7→E 𝑬𝑬 𝑾𝑾𝒗𝒗
1 1 1 1 0 1 1 0 1 1 0 1 8 0.88
2 1 1 1 0 1 0 1 0 1 0 1 7 0.87
3 1 1 1 0 1 1 0 1 1 1 1 9 0.6
4 1 1 1 0 1 1 1 1 1 1 1 10 0.71
5 1 1 1 0 1 1 1 1 1 1 1 10 0.71
6 1 1 1 0 1 0 1 0 1 1 1 8 0.61
7 1 1 1 1 1 1 0 1 1 0 1 9 0.81
8 1 1 1 1 1 0 0 0 1 0 1 7 0.7

After generate the path weight, next step start by calculate path coverage for each

single path as shown in Table B.11.

 252

Table B.11

Coverage Criteria for Each Path of a UML Statechart Diagram of an Airline Check-
in

TP No All-State All-Transition All-Transition-pairs All-One-loop-paths
1 100% 72% 25% 0%
2 88% 63% 25% 0%
3 100% 81% 50% 50%
4 100% 90% 75% 50%
5 100% 90% 50% 50%
6 88% 72% 50% 50%
7 100% 81% 50% 50%
8 88% 63% 25% 50%

After generate the path weight and coverage criteria for each path the intermediate

graph is converted to adjacency matrix, as showing in Table B.12. Then, this matrix is

used to generate the guidance matrix for the graph.

Table B.12

Adjacency Matrix of a UML Statechart Diagram of an Airline Check-in

States 0 1 2 3 4 5 6 7 8
0 0 1 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0
2 0 1 0 1 0 0 0 0 0
3 0 0 0 0 1 0 0 0 0
4 0 0 0 0 0 1 1 0 0
5 0 0 0 0 0 0 1 0 0
6 0 1 0 0 0 0 0 1 0
7 0 0 0 0 0 0 0 0 1
8 0 0 0 0 0 0 0 0 0

After creating adjacency matrix, it is then used to generate guidance matrix. In the

example in Figure B.4, the number of vertices is 9, and the number of edges is 11,

therefore the Cyclomatic Complexity equal to 4. However, the Cyclomatic Complexity

for each vertex need to be calculated using Equation 4.9 to be used to calculate the

guidance value using Equation 4.8. The results are shown in Table B.13.

 253

Table B.13

Guidance Value of a UML Statechart Diagram of an Airline Check-in

States Cyclomatic Complexity CC guidance value 𝑮𝑮𝑮𝑮
0 4 316
1 4 276
2 4 236
3 3 147
4 3 117
5 2 58
6 2 38
7 1 9
8 1,000 [END vertex infinity] 1,000 [finial state]

Guidance matrix (Table B.14) is just as a look-up/decision table of adjacency matrix

with each guidance value corresponding to every edge.

Table B.14

Guidance Matrix of a UML Statechart Diagram of an Airline Check-in

States 0 1 2 3 4 5 6 7 8
0 0 276 0 0 0 0 0 0 0
1 0 0 236 0 0 0 0 0 0
2 0 276 0 147 0 0 0 0 0
3 0 0 0 0 117 0 0 0 0
4 0 0 0 0 0 58 38 0 0
5 0 0 0 0 0 0 38 0 0
6 0 276 0 0 0 0 0 9 0
7 0 0 0 0 0 0 0 0 1000
8 0 0 0 0 0 0 0 0 0

Then the algorithm will generate the path sequences as:

Path 1= [0, 1, 2, 3, 4, 6, 7, 8],
Path 2= [2, 1],
Path 3= [4, 5, 6, 1].

To optimize the test cases, the algorithm will match each optimal path with paths in

Figure B.5, and chose the lowest path weight 𝑊𝑊𝑣𝑣 between the selected paths match

paths. The minimized test paths are shown in Figure B.6

 254

TP 2: [S→1→2→3→4→6→7→E]
TP 4: [S→1→2→3→4→5→6→1→2→3→4→6→7→E]
TP 8: [S→1→2→1→2→3→4→6→7→E]

Figure B.6. Minimized Test Paths of a UML Statechart Diagram of an Airline
Check-in

The combination use of these three paths lead to achieving: all-state coverage, all-

transition coverage, all-transition-pairs coverage, and all-one-loop coverage as shown

in Table B15.

Table B.15

Coverage Criteria Percentage for the Minimized Paths

TP No All-State All-Transition All-Transition-pairs All-One-loop-paths
2, 4, 8 100% 100% 100% 100%

The ten generated fireflies for each state are showing in Table B16.

Table B.16

Calculation of Brightness Values of the Ten Fireflies

V 1 2 3 4 5 6 7 8 9 10
𝑑𝑑𝑖𝑖 𝐴𝐴𝑖𝑖 𝑑𝑑𝑖𝑖 𝐴𝐴𝑖𝑖 𝑑𝑑𝑖𝑖 𝐴𝐴𝑖𝑖 𝑑𝑑𝑖𝑖 𝐴𝐴𝑖𝑖 𝑑𝑑𝑖𝑖 𝐴𝐴𝑖𝑖 𝑑𝑑𝑖𝑖 𝐴𝐴𝑖𝑖 𝑑𝑑𝑖𝑖 𝐴𝐴𝑖𝑖 𝑑𝑑𝑖𝑖 𝐴𝐴𝑖𝑖 𝑑𝑑𝑖𝑖 𝐴𝐴𝑖𝑖 𝑑𝑑𝑖𝑖 𝐴𝐴𝑖𝑖

0 8.
9

2.7
3

8.
8

2.7
6

8.
7

2.7
9

8.
6

2.8
2

8.
5

2.
86

8.
4

2.8
9

8.
3

2.9
2

8.
2

2.9
6

8.
1

2.9
9 8 3.0

3

1 7.
9

0.9
6

7.
8

0.9
8

7.
7

0.9
9

7.
6 1 7.

5
1.
02

7.
4

1.0
3

7.
3

1.0
4

7.
2

1.0
6

7.
1

1.0
7 7 1.0

9

2 6.
9

1.7
8

6.
8

1.8
1

6.
7

1.8
3

6.
6

1.8
6

6.
5

1.
89

6.
4

1.9
2

6.
3

1.9
5

6.
2

1.9
8

6.
1

2.0
1 6 2.0

4

3 5.
9

4.0
7

5.
8

4.1
3

5.
7 4.2 5.

6
4.2
7

5.
5

4.
35

5.
4

4.4
2

5.
3 4.5 5.

2
4.5
9

5.
1

4.6
7 5 4.7

6

4 4.
9

2.8
3

4.
8

2.8
9

4.
7

2.9
5

4.
6

3.0
1

4.
5

3.
08

4.
4

3.1
4

4.
3

3.2
2

4.
2

3.2
9

4.
1

3.3
7 4 3.4

5

5 3.
9

7.8
7

3.
8

8.0
6

3.
7

8.2
6

3.
6

8.4
7

3.
5

8.
7

3.
4

8.9
3

3.
3

9.1
7

3.
2

9.4
3

3.
1

9.7
1 3 10

6 2.
9

5.4
3

2.
8

5.6
2

2.
7

5.8
1

2.
6

6.0
2

2.
5

6.
25

2.
4

6.4
9

2.
3

6.7
6

2.
2

7.0
4

2.
1

7.3
5 2 7.6

9

7 1.
9

20.
83

1.
8

21.
74

1.
7

22.
73

1.
6

23.
81

1.
5 25 1.

4
26.
32

1.
3

27.
78

1.
2

29.
41

1.
1

31.
25 1 33.

33

Table B.17 shows the separate calculation for cyclomatic complexity and information

flow for each vertex, then show the Firefly brightness for that specific vertex after

including the random factor.

 255

Table B.17

Objective Function

Vertex Cyclomatic Complexity CC Information Flow 𝑰𝑰𝑮𝑮𝒊𝒊 Firefly brightness 𝑨𝑨𝒊𝒊
0 4 0 2.82
1 4 9 1.04
2 4 4 2.04
3 3 1 4.59
4 3 4 2.89
5 2 1 8.47
6 2 16 6.76
7 1 1 31.25

By calculating the mean of brightness at every path using Equation 4.15, the results

are shown in Table B.18.

Table B.18

Test Path Prioritization of a UML Statechart Diagram of an Airline Check-in

Test ID Test path Brightness value
TP 2 0→1→2→3→4→6→7→0 8.3417877259468
TP 8 0→1→2→1→2→3→4→6→7→8 6.8306759195254
TP 4 0→1→2→3→4→5→6→1→2→3→4→5→7→8 6.7065188982599

In Table B.19 test paths mean of the brightness value is calculated for each generated

optimized test path. From the table it is observed that optimized test second path has

the highest brightness value and hence having high priority. Then the eighth path, and

finely the fourth one.

Section C: UML Statechart Diagram for a Retail Point of Sale

The process of minimize and prioritize the UML statechart diagram for a retail point

of sale example (see Section 5.2.2.1.4) is shown below.

 256

Figure B.7. Chart Relationship Graph for UML Statechart Diagram for a Retail Point
of Sale

The intermediate graph (Figure B.7) was converted to test paths using TCGP

algorithm, and all the possible generated test paths from the intermediate graph is

shown in Figure B.8.

TP 1: [S→1→2→3→4→5→8→9→E]
TP 2: [S→1→2→3→4→5→6→E]
TP 3: [S→1→2→3→4→5→6→7→3→4→5→8→9→E]
TP 4: [S→1→2→3→4→5→6→7→3→4→5→6→E]
TP 5: [S→1→2→3→4→5→4→5→8→9→E]
TP 6: [S→1→2→3→4→5→4→5→6→E]
TP 7: [S→1→2→2→3→4→5→8→9→E]
TP 8: [S→1→2→2→3→4→5→6→E]

Figure B.8. All Possible Test Paths for UML Statechart Diagram for a Retail Point of
Sale

 257

Path weight was calculated for each tests path using Equation 4.7, as shown in Table

B.19, to determine each path weight of transactions in the system

Table B.19

Path Weight for Each Path for UML Statechart Diagram for a Retail Point of Sale

TC
S
→
1

1
→
2

2
→
3

2
→
2

3
→
4

4
→
5

5
→
6

5
→
4

5
→
8

6
→
7

6
→
E

7
→
3

8
→
9

9
→
E

𝑬𝑬 𝑾𝑾𝒗𝒗

1 1 1 1 0 1 1 0 0 1 0 0 0 1 1 8 0.88
2 1 1 1 0 1 1 1 0 0 0 1 0 0 0 7 0.87
3 1 1 1 0 1 1 1 1 1 1 0 1 1 1 12 0.85
4 1 1 1 0 1 1 1 1 0 1 1 1 0 0 10 0.76
5 1 1 1 0 1 1 0 1 1 0 0 0 1 1 9 0.81
6 1 1 1 0 1 1 1 1 0 0 1 0 0 0 8 0.8
7 1 1 1 1 1 1 0 0 1 0 0 0 1 1 8 0.9
8 1 1 1 1 1 1 1 0 0 0 1 0 0 0 8 0.88

After generate the path weight, next step start by calculate path coverage for each

single path as shown in Table B.20.

Table B.20

Coverage Criteria for Each Path for UML Statechart Diagram for a Retail Point of
Sale

TP No All-State All-Transition All-Transition-pairs All-One-loop-paths
1 81% 57% 28% 0%
2 72% 50% 42% 0%
3 100% 85% 42% 50%
4 81% 71% 57% 50%
5 81% 64% 42% 50%
6 72% 57% 57% 50%
7 81% 57% 42% 50%
8 72% 57% 57% 50%

After generate the path weight and coverage criteria for each path the intermediate

graph is converted to adjacency matrix, as showing in table B.21. Then, this matrix is

used to generate the guidance matrix for the graph.

 258

Table B.21

Adjacency Matrix

States 0 1 2 3 4 5 6 7 8 9 10
0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0
2 0 0 1 1 0 0 0 0 0 0 0
3 0 0 0 0 1 0 0 0 0 0 0
4 0 0 0 0 0 1 0 0 0 0 0
5 0 0 0 0 1 0 1 0 1 0 0
6 0 0 0 0 0 0 0 1 0 0 0
7 0 0 0 1 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 1 0
9 0 0 0 0 0 0 0 0 0 0 1
10 0 0 0 0 0 0 0 0 0 0 0

After creating adjacency matrix, it is then used to generate guidance matrix. In the

example in Figure B.7, the number of vertices is 11, and the number of edges is 14,

therefore the Cyclomatic Complexity equal to 5. However, the Cyclomatic Complexity

for each vertex need to be calculated using Equation 4.9 to be used to calculate the

guidance value using Equation 4.8. The results are shown in Table B.22.

Table B.22

Guidance Value

States Cyclomatic Complexity CC guidance value 𝑮𝑮𝑮𝑮
0 5 495
1 5 445
2 5 395
3 4 276
4 4 236
5 4 196
6 3 117
7 3 87
8 1 19
9 1 9
10 1,000 [END vertex infinity] 1,000 [finial state]

 259

Guidance matrix (Table B.23) is just as a look-up/decision table of adjacency matrix

with each guidance value corresponding to every edge.

Table B.23

Guidance matrix

States 0 1 2 3 4 5 6 7 8 9 10
0 0 445 0 0 0 0 0 0 0 0 0
1 0 0 395 0 0 0 0 0 0 0 0
2 0 0 395 276 0 0 0 0 0 0 0
3 0 0 0 0 236 0 0 0 0 0 0
4 0 0 0 0 0 195 0 0 0 0 0
5 0 0 0 0 236 0 117 0 19 0 0
6 0 0 0 0 0 0 0 87 0 0 1000
7 0 0 0 276 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 9 0
9 0 0 0 0 0 0 0 0 0 0 1000
10 0 0 0 0 0 0 0 0 0 0 0

Then the algorithm will generate the path sequences as:

Path 1= [0, 1, 2, 3, 4, 5, 8, 9, 10],
Path 2= [2, 2],
Path 3= [5, 6, 7, 3],
Path 4= [5, 4],
Path 5= [6, 10].

To optimize the test cases, the algorithm will match each optimal path with paths in

Figure B.8, and chose the lowest path weight 𝑊𝑊𝑣𝑣 between the selected paths match

paths. The minimized test paths are shown in Figure B.9.

TP 1: [S→1→2→3→4→5→8→9→E]
TP 8: [S→1→2→2→3→4→5→6→E]
TP 4: [S→1→2→3→4→5→6→7→3→4→5→6→E]
TP 6: [S→1→2→3→4→5→4→5→6→E]

Figure B.9. Minimized Test Paths for UML Statechart Diagram for a Retail Point of
Sale

 260

The combination use of these three paths lead to achieving: all-state coverage, all-

transition coverage, all-transition-pairs coverage, and all-one-loop coverage as shown

in table B.24.

Table B.24

Coverage Criteria Percentage for the Minimized Paths

TP No All-State All-Transition All-Transition-pairs All-One-loop-paths
1, 8, 4, 6 100% 100% 100% 100%

The ten generated fireflies for each state are showing in Table B.25.

Table B.25

Calculation of Brightness Values of the Ten Fireflies

V 1 2 3 4 5 6 7 8 9 10
𝑑𝑑𝑖𝑖 𝐴𝐴𝑖𝑖 𝑑𝑑𝑖𝑖 𝐴𝐴𝑖𝑖 𝑑𝑑𝑖𝑖 𝐴𝐴𝑖𝑖 𝑑𝑑𝑖𝑖 𝐴𝐴𝑖𝑖 𝑑𝑑𝑖𝑖 𝐴𝐴𝑖𝑖 𝑑𝑑𝑖𝑖 𝐴𝐴𝑖𝑖 𝑑𝑑𝑖𝑖 𝐴𝐴𝑖𝑖 𝑑𝑑𝑖𝑖 𝐴𝐴𝑖𝑖 𝑑𝑑𝑖𝑖 𝐴𝐴𝑖𝑖 𝑑𝑑𝑖𝑖 𝐴𝐴𝑖𝑖

0
11

.9

1.6

5

11

.8

1.6

7

11

.7

1.6

8

11

.6

1.6

9

11

.5

1.7

1

11

.4

1.7

2

11

.3

1.7

4

11

.2

1.7

5

11

.1

1.7

7

1

1

1.7

9

1
10

.9

1.5

1

10

.8

1.5

2

10

.7

1.5

3

10

.6

1.5

5

10

.5

1.5

6

10

.4

1.5

8

10

.3

1.5

9

10

.2

1.6

1

10

.1

1.6

2

1

0

1.6

4

2
9.

9

0.4

8

9.

8

0.4

8

9.

7

0.4

9

9.

6

0.4

9

9.

5

0.5 9.

4

0.5 9.

3

0.5

1

9.

2

0.5

1

9.

1

0.5

2

9 0.5

3

3
8.

9

1.3

9

8.

8

1.4 8.

7

1.4

2

8.

6

1.4

3

8.

5

1.4

5

8.

4

1.4

7

8.

3

1.4

8

8.

2

1.5 8.

1

1.5

2

8 1.5

4

4
7.

9

1.5

6

7.

8

1.5

8

7.

7

1.6 7.

6

1.6

2

7.

5

1.6

4

7.

4

1.6

6

7.

3

1.6

8

7.

2

1.7

1

7.

1

1.7

3

7 1.7

5

5
6.

9

1.1 6.

8

1.1

2

6.

7

1.1

4

6.

6

1.1

5

6.

5

1.1

7

6.

4

1.1

9

6.

3

1.2

1

6.

2

1.2

3

6.

1

1.2

5

6 1.2

7

6
5.

9

2.3

6

5.

8

2.4 5.

7

2.4

4

5.

6

2.4

9

5.

5

2.5

3

5.

4

2.5

8

5.

3

2.6

2

5.

2

2.6

7

5.

1

2.7

2

5 2.7

8

7
4.

9

4.8

5

4.

8

4.9

5

4.

7

5.0

5

4.

6

5.1

5

4.

5

5.2

6

4.

4

5.3

8

4.

3

5.4

9

4.

2

5.6

2

4.

1

5.7

5

4 5.8

8

8
3.

9

11.

36

3.

8

11.

63

3.

7

11.

9

3.

6

12.

2

3.

5

12.

5

3.

4

12.

82

3.

3

13.

16

3.

2

13.

51

3.

1

13.

89

3 14.

29

9
2.

9

14.

71

2.

8

15.

15

2.

7

15.

63

2.

6

16.

13

2.

5

16.

67

2.

4

17.

24

2.

3

17.

86

2.

2

18.

52

2.

1

19.

23

2 20

Table B.26 shows the separate calculation for cyclomatic complexity and information

flow for each vertex, then show the Firefly brightness for that specific vertex after

including the random factor.

 261

Table B.26

Objective Function

Vertex Cyclomatic Complexity CC Information Flow 𝑰𝑰𝑮𝑮𝒊𝒊 Firefly brightness 𝑨𝑨𝒊𝒊
0 5 0 1.74
1 5 1 1.61
2 5 16 0.5
3 4 4 1.52
4 4 4 1.58
5 4 9 1.1
6 3 4 2.4
7 3 1 5.75
8 1 1 11.36
9 1 1 14.71

By calculating the mean of brightness at every path using Equation 4.15, the results

are shown in Table B.27.

Table B.27

Test Path Prioritization for UML Statechart Diagram for a Retail Point of Sale

Test ID Test path Brightness value

TP 1 S→1→2→3→4→5→8→9→E 4.9599705586331
TP 4 S→1→2→3→4→5→6→7→3→4→5→6→E 2.6504048295212
TP 8 S→1→2→2→3→4→5→6→E 2.3697922355156
TP 6 S→1→2→3→4→5→4→5→6→E 2.3482365027468

In Table B.27 test paths mean of the brightness value is calculated for each generated

optimized test path. From the table it is observed that optimized test path 1 has the

highest brightness value and hence having high priority. Then the fourth path, the

eighth path, and finely the sixth one.

	FRONT MATTER
	Copyright Page
	Title Page
	Certification
	Permission to Use
	Abstrak
	Abstract
	Acknowledgement
	Table of Contents
	List of Tables
	List of Figures
	List of Appendices
	List of Publications
	List of Abbreviations

	MAIN CHAPTER
	CHAPTER One INTRODUCTION
	1.1 Introduction
	1.2 Background of the Study
	1.3 Problem Statement
	1.4 Research Questions
	1.5 Research Objectives
	1.6 Research Scope
	1.7 Research Framework
	1.8 Research Contributions and Its Significance
	1.9 Terminologies for Software Testing
	1.10 Thesis Outline

	CHAPTER Two LITERATURE REVIEW
	2.1 Introduction
	2.2 Overview of Testing
	2.2.1 Software Testing and its Techniques
	2.2.2 Automated Software Testing

	2.3 Test Case Generation
	2.3.1 Automatic Test Case Generation
	2.3.2 Automated Test Case Generation from Software Design

	2.4 Theoretical Background
	2.4.1 Graph Theory
	2.4.2 Automata Theory

	2.5 Model-based Testing
	2.6 UML Diagrams
	2.6.1 UML Statechart Diagram

	2.7 Test Case Generation in Model-based Testing
	2.7.1 Test Generation Approaches Using UML Activity Diagram
	2.7.2 Test Generation Approaches Using UML Sequence Diagram
	2.7.3 Test Generation Approaches Using UML Statechart Diagram

	2.8 Test Case Minimization and Prioritization
	2.8.1 Firefly Algorithm
	2.8.2 Minimization and Prioritization Methods in Test Case Generation

	2.9 Test Case Generation Process and Components
	2.10 Test Coverage Criteria Selection
	 All-state Coverage
	 All-transition Coverage
	 All-transition-pair Coverage
	 All-configuration Coverage
	 All-one-loop-path Coverage
	 All-loop-free-path Coverage
	 All-round-trip Coverage
	 All-Path Coverage

	2.11 Summary

	CHAPTER Three research METHODOLOGY
	3.1 Introduction
	3.2 Design Research
	3.3 Phases of Research Methodology
	3.3.1 Phase One: Information Gathering
	3.3.2 Phase Two: Development and Design
	3.3.3 Phase Three: Evaluation
	3.3.4 Phase Four: Conclusion

	3.4 Summary

	CHAPTER Four ALGORITHMS DEVELOPMENT
	4.1 Introduction
	4.2 Design Goal
	4.2.1 Parallel Path Problem and Loop Problem

	4.3 Proposed Framework to Generate Test Cases
	4.3.1 Construction of UML Statechart Diagram
	4.3.2 State Relationships Table
	4.3.3 State Relationships Graph
	4.3.4 Generating Test Case Paths
	4.3.5 Test Case Path Minimization
	4.3.6 Test Case Path Prioritization
	4.3.7 Generating Test Cases

	4.4 Coverage Criteria Calculation
	4.4.1 All-State Coverage
	4.4.2 All-transition Coverage
	4.4.3 All-transition-pair Coverage
	4.4.4 All-one-loop-path Coverage

	4.5 Prototype Development
	4.6 Summary

	CHAPTER Five EVALUATION
	5.1 Introduction
	5.2 Research Framework Evaluation
	5.2.1 Prototyping and Examples
	5.2.2 Comparison with Previous Studies
	5.2.3 Expert Reviews

	5.3 Summary

	CHAPTER Six CONCLUSION
	6.1 Introduction
	6.2 Summarizing the Study
	6.3 Contributions
	6.3.1 Test Case Generation Framework
	6.3.2 Enhanced Consistency Checking of Test Paths
	6.3.3 Improved Path Pruning
	6.3.4 Coverage Criteria for UML Statechart Diagram
	6.3.5 SRT Algorithm
	6.3.6 TCGP Algorithm
	6.3.7 Path Minimization Method
	6.3.8 Path Prioritization Method
	6.3.9 Test Case Generation Algorithm
	6.3.10 Developed Prototype

	6.4 Limitations and Future Work

	REFERENCES
	APPENDIX

