
The copyright © of this thesis belongs to its rightful author and/or other copyright

owner. Copies can be accessed and downloaded for non-commercial or learning

purposes without any charge and permission. The thesis cannot be reproduced or

quoted as a whole without the permission from its rightful owner. No alteration or

changes in format is allowed without permission from its rightful owner.

CHID: CONDITIONAL HYBRID INTRUSION DETECTION

SYSTEM FOR REDUCING FALSE POSITIVES AND

RESOURCE CONSUMPTION ON MALICOUS DATASETS

HASHEM MOHAMMED ALAIDAROS

DOCTOR OF PHILOSOPHY

UNIVERSITI UTARA MALAYSIA

2017

 i

Permission to Use

In presenting this thesis in fulfilment of the requirements for a postgraduate degree

from Universiti Utara Malaysia, I agree that the Universiti Library may make it freely

available for inspection. I further agree that permission for the copying of this thesis

in any manner, in whole or in part, for scholarly purpose may be granted by my

supervisor(s) or, in their absence, by the Dean of Awang Had Salleh Graduate School

of Arts and Sciences. It is understood that any copying or publication or use of this

thesis or parts thereof for financial gain shall not be allowed without my written

permission. It is also understood that due recognition shall be given to me and to

Universiti Utara Malaysia for any scholarly use which may be made of any material

from my thesis.

Requests for permission to copy or to make other use of materials in this thesis, in

whole or in part, should be addressed to :

Dean of Awang Had Salleh Graduate School of Arts and Sciences

UUM College of Arts and Sciences

Universiti Utara Malaysia

06010 UUM Sintok

 ii

Abstrak

Memeriksa paket untuk mengesan pencerobohan berhadapan cabaran apabila

berlakunya jumlah trafik rangkaian yang tinggi. Proses pengesanan berdasarkan paket

bagi setiap muat beban pada wayar mengurangkan prestasi sistem pengesanan

pencerobohan rangkaian (NIDS). Isu ini memerlukan kepada satu pengenalan NIDS

berasaskan aliran untuk mengurangkan jumlah data yang akan diproses dengan

memeriksa agregat maklumat dari paket yang berkaitan. Walau bagaimanapun,

pengesanan berdasarkan aliran masih mengalami penjanaan amaran positif palsu

kerana input data yang tidak lengkap. Kajian ini mencadangkan Pengesanan

Pencerobohan Hibrid Bersyarat (CHID) dengan mencantumkan pengesanan

berasaskan aliran dengan pengesanan berasaskan paket. Tambahan lagi, ia juga

bertujuan untuk memperbaiki penggunaan sumber pendekatan pengesanan berasaskan

paket. CHID menggunakan algoritma penilaian ciri pembalut atribut yang

menandakan aliran hasad untuk analisis selanjutnya oleh pengesanan berasaskan

paket. Pendekatan Rangka Kerja Input telah digunakan untuk mencetus aliran paket

diantara pengesanan berasaskan paket dan berasaskan aliran. Eksperimen tapak

ujiterkawal telah dijalankan untuk menilai prestasi mekanisme pengesanan CHID

menggunakan set data yang diperolehi daripada pada kadar trafik yang berbeza. Hasil

penilaian didapati CHID memperoleh peningkatan prestasi yang ketara dari segi

penggunaan sumber dan kadar paket susut, berbanding pelaksanaan pengesanan

berasaskan paket lalai. Pada kelajuan 200 Mbps, CHID dalam senario IRC-bot, boleh

mengurangkan 50.6% dari penggunaan memori dan menyusut 18.1% penggunaan

CPU tanpa paket susut. Pendekatan CHID boleh mengurangkan kadar positif palsu

berdasarkan pengesanan berasaskan aliran dan mengurangkan penggunaan sumber

pengesanan berasaskan paket disamping memelihara ketepatan pengesanan.

Pendekatan CHID boleh dianggap sebagai sistem generik untuk diaplikasikan untuk

sistem pemantauan pengesanan pencerobohan.

Kata Kunci: Pengesanan berasaskan aliran, Pengesanan berasaskan paket, Bro-NIDS,

Rangka kerja input.

 iii

Abstract

Inspecting packets to detect intrusions faces challenges when coping with a high

volume of network traffic. Packet-based detection processes every payload on the

wire, which degrades the performance of network intrusion detection system (NIDS).

This issue requires an introduction of a flow-based NIDS that reduces the amount of

data to be processed by examining aggregated information of related packets.

However, flow-based detection still suffers from the generation of the false positive

alerts due to incomplete data input. This study proposed a Conditional Hybrid

Intrusion Detection (CHID) by combining the flow-based with packet-based detection.

In addition, it is also aimed to improve the resource consumption of the packet-based

detection approach. CHID applied attribute wrapper features evaluation algorithms

that marked malicious flows for further analysis by the packet-based detection. Input

Framework approach was employed for triggering packet flows between the packet-

based and flow-based detections. A controlled testbed experiment was conducted to

evaluate the performance of detection mechanism’s CHID using datasets obtained

from on different traffic rates. The result of the evaluation showed that CHID gains a

significant performance improvement in terms of resource consumption and packet

drop rate, compared to the default packet-based detection implementation. At a 200

Mbps, CHID in IRC-bot scenario, can reduce 50.6% of memory usage and decreases

18.1% of the CPU utilization without packets drop. CHID approach can mitigate the

false positive rate of flow-based detection and reduce the resource consumption of

packet-based detection while preserving detection accuracy. CHID approach can be

considered as generic system to be applied for monitoring of intrusion detection

systems.

Keywords: Flow-based detection, Packet-based detection, Input Framework

approach.

 iv

Acknowledgement

First of all, I would like to express my sincere and deep gratitude to my supervisor Dr.

Massudi Mahmuddin who provided considerable and invaluable insights and

comments to help me on this journey. Without his patient support, enlightened

guidance, it is impossible for me to complete and enhance the quality of my work.

I would like to thank the InterNetWork Lab team for their co-operation, kindness, and

sharing useful discussions for my research.

Thank you goes to Dr. Shakeel Habeeb, the dean of Prince Sultan College (PSCJ), Al-

Faisal University, for providing me the testbed resources for my research.

Special thanks go to Johanna Amann and Robin Sommer, the developers of the Bro-

IDS. Their supports with the many problems encountered during experiments were of

great help.

Finally, my heartiest gratitude goes to my beloved family, in particular, my parents

my wife without their love, support and encouragement, it would not be possible for

me end this journey.

 v

Table of Contents

Permission to Use .. i

Abstrak ... ii

Abstract .. iii

Acknowledgement... iv

Table of Contents ... v

List of Tables.. x

List of Figures .. xii

List of Appendices .. xiv

List of Abbreviations.. xv

List of Publications .. xvii

CHAPTER ONE INTRODUCTION ... 1

1.1 Background .. 1

1.2 Intrusion Detection System .. 2

1.3 Motivation .. 3

1.4 Problem Statement ... 5

1.5 Research Questions .. 8

1.6 Research Objectives ... 8

1.7 Research Contribution .. 9

1.8 Scope of the Study ... 9

1.9 Research Steps ... 10

1.10 Organization of the Thesis ... 12

CHAPTER TWO LITERATURE REVIEW .. 13

2.1 Growth of Traffic and Threats ... 13

2.1.1 Internet Attacks .. 15

2.1.2 Growth of Threats .. 16

2.2 Intrusion Detection Systems .. 17

2.2.1 Security Tools and Techniques .. 17

2.2.2 IDS Structure ... 19

2.2.3 Software-based IDS ... 20

 vi

2.2.4 IDS Types .. 22

2.2.4.1 Location-based IDS ... 23

2.2.4.2 Detection-based IDS .. 25

2.2.4.3 Data-processed-based NIDS .. 26

2.2.5 NIDS Requirements ... 28

2.2.6 NIDS Challenges ... 30

2.3 Packet-based NIDS .. 31

2.3.1 Scalability .. 32

2.3.2 Detection Accuracy .. 35

2.3.3 Botnet Detections Related Works .. 37

2.4 Flow-based NIDS ... 42

2.4.1 Flow-based Detection Overview .. 42

2.4.2 Structure ... 44

2.4.2.1 Exporter ... 45

2.4.2.2 Collector .. 46

2.4.2.3 Analyser ... 47

2.4.3 Scalability .. 47

2.4.4 Detection Accuracy .. 48

2.4.5 Botnet Detection Related Works.. 50

2.5 Packet-based and Flow-based Detection Comparison ... 54

2.5.1 Comparison .. 54

2.5.2 Trade-offs ... 54

2.6 False Positive Reduction .. 56

2.6.1 Scope of Attacks .. 56

2.6.2 Network Awareness ... 57

2.6.3 Traffic Cleanness ... 58

2.6.4 Alert Correlation .. 59

2.6.5 Hybrid Signature-based and Anomaly-based .. 62

2.6.6 Hybrid Flow-based and Packet-based .. 66

2.7 Chapter Summary... 68

CHAPTER THREE METHODOLOGY ... 70

 vii

3.1 Proposed Mechanism Design ... 70

3.2 Component Identification... 76

3.2.1 Traffic Capture ... 76

3.2.2 Flow Aggregation .. 77

3.2.3 Packet-based Detection .. 78

3.2.4 Flow-based Detection .. 80

3.3 Implementation .. 81

3.4 Evaluation .. 83

3.4.1 Experimental Environment .. 83

3.4.2 Experiment Setup ... 85

3.4.3 Measurement Procedures ... 89

3.4.4 Dataset .. 92

3.4.4.1 Malicious Datasets ... 93

3.4.4.2 Background Traces .. 96

3.4.5 Evaluation Metrics ... 97

3.5 Chapter Summary... 99

CHAPTER FOUR TWO STAGES FLOW-BASED DETECTION 100

4.1 Introduction .. 100

4.2 Design .. 104

4.3 Attack Selection ... 104

4.3.1 IRC-bot Behaviour ... 105

4.3.2 P2P-bot Behaviour ... 107

4.4 Detection Scripts Derivation .. 108

4.4.1 Packet and Flow Analysis .. 109

4.4.1.1 Flows Labelling ... 112

4.4.1.2 Attribute Classifications .. 112

4.4.2 Detection Policy Scripts ... 115

4.5 Detection Implementations .. 116

4.5.1 Flow-based Detection .. 116

4.5.1.1 Threshold-based Mechanism ... 119

4.5.1.2 Proof of Concept .. 121

 viii

4.5.2 Packet-based Detection .. 123

4.6 Evaluation Environment... 126

4.7 Chapter Summary... 127

CHAPTER FIVE CONDITIONAL HYBRID INTRUSION DETECTION 128

5.1 Introduction .. 128

5.2 Proposed Mechanism ... 131

5.2.1 Design and Theory ... 131

5.2.2 Combination Approach Scenario ... 133

5.3 Implementation .. 135

5.3.1 Traffic Recording Strategy... 135

5.3.2 Subsequent-Packet Strategy ... 138

5.3.3 PH and FL Communicating Process Implementation 140

5.3.3.1 BPF-only Method .. 141

5.3.3.2 Input Framework (IF) Method ... 142

5.3.4 IF Method Integration .. 143

5.3.4.1 Reading Files ... 144

5.3.4.2 Updating Table .. 146

5.3.4.3 BPF Filtering ... 147

5.3.4.4 Proof of Concept .. 148

5.3.5 Partial Payload Inspection Approach ... 150

5.3.6 Switching Approach based on Traffic Rate ... 151

5.4 Evaluation .. 155

5.4.1 Attack Scenarios .. 155

5.4.2 Experimental Environments ... 156

5.4.3 Measurement Procedures ... 158

5.4.4 Traffic Data for CHID Mechanism .. 159

5.5 Chapter Summary... 160

CHAPTER SIX RESULT AND DISCUSSION .. 161

6.1 Flow-based Detection Scripts .. 161

6.1.1 Dataset Correctness .. 161

6.1.2 Most Significant Attributes .. 162

 ix

6.1.3 Detection Accuracy .. 164

6.1.4 False Positive Test ... 165

6.1.5 Resource Consumption .. 166

6.2 CHID Mechanism .. 171

6.2.1 Detection Accuracy .. 171

6.2.2 Resource Consumption .. 173

6.2.3 Filtered Hosts and IF Method .. 177

6.2.4 Packet Drop Rate ... 179

6.2.5 Partial Payload in PH ... 181

6.3 Chapter Summary... 183

CHAPTER SEVEN CONCLUSION .. 186

7.1 Summary of Research .. 186

7.2 Objectives Achievements ... 187

7.2.1 First Objective .. 187

7.2.2 Second Objective ... 188

7.2.3 Third Objective .. 189

7.3 Main Contribution .. 191

7.4 Limitations and Future Works ... 193

a. Multi-thread Approach .. 193

b. PF_RING Packet Capturing .. 193

c. Diverse Attacks Scenario... 194

d. Tuning Flow Keys and Timeouts .. 194

7.5 Chapter Summary... 195

REFERENCES ... 196

 x

List of Tables

Table 2.1 Growing of Threats [29] ... 16

Table 2.2 Differences between IDS, Firewall, and IPS .. 18

Table 2.3 Examples of Botnets Attack [25] .. 39

Table 2.4 Botnet Detection Methods with Packet-based Approach 41

Table 2.5 Attacks Detectable by Flow-based NIDS only ... 50

Table 2.6 Botnet Detection Methods with Flow-based Approach 53

Table 2.7 Comparison between Packet-based and Flow-based NIDS 55

Table 2.8 Related Works for False Positive Reduction .. 62

Table 2.9 Related Works of Hybrid Detection Methods for False Positive Reduction

 .. 65

Table 3.1 Bro Advantages among Other NIDSs [10] ... 79

Table 3.2 System and Hardware Description Used in Testbed 86

Table 3.3 Software Applications Description Used in Testbed 86

Table 3.4 Loge Files Disabled .. 89

Table 3.5 Datasets and Statistics .. 94

Table 3.6 Notion Matrix [163] .. 97

Table 4.1 Fields Description of Wired.log file ... 111

Table 4.2 Features of Flow and Packet Generated from Logs 111

Table 4.3 Attributes Used for Classification .. 114

Table 4.4 Attribute Selection Setting and Classification Selection 115

Table 5.1 Two Combination Approaches .. 133

Table 5.2 Datasets for Detection Accuracy Measurements 160

Table 6.1 Best Three Important Attributes ... 163

Table 6.2 False Positive Rate (FPR) ... 164

Table 6.3 Precision Results ... 164

Table 6.4 Detection Results with P2P-bot Scenario ... 172

Table 6.5 Detection Results with IRC-bot Scenario ... 173

Table 6.6 Packet Drop Rate in P2P-bot Scenario ... 179

Table 6.7 Packet Drop Rate in IRC-bot Scenario ... 179

 xi

Table 6.8 Comparison between Full-Payload and Partial-Payload Inspection in PH

for P2P-bot Scenario .. 182

Table 6.9 Comparison between Full-Payload and Partial-Payload Inspection in PH

for IRC-bot Scenario .. 182

Table D.1 Fields Description of Connection.log file .. 225

Table D.2 Fields Description of Signatures.log file .. 226

Table D.3 Fields Description of Notice.log file .. 227

 xii

List of Figures

Figure 1.1: Challenges and Consequences for NIDS ... 4

Figure 2.1: Expansion of the Internet Users over Years [1] 14

Figure 2.2: IDS Main Components .. 19

Figure 2.3: Types of IDS (dash line indicates the research scope) 23

Figure 2.4: NIDS Location ... 24

Figure 2.5: Packet-based NIDS .. 32

Figure 2.6: Centralized Botnet Attack Methods .. 38

Figure 2.7: Decentralized Botnet Attack Methods ... 39

Figure 2.9: Flow-based Components [19] .. 45

Figure 3.1: Research Methodology .. 71

Figure 3.3: Conceptual Model of the CHID Approach .. 73

Figure 3.4: Proposed Flow Chart ... 74

Figure 3.5: Component Requirements for Proposed Mechanism 81

Figure 3.6: Experimental Testbed .. 86

Figure 3.7: Experimental Commands .. 92

Figure 4.1: Illustration of (a) Packet-based Detection System and (b) Flow-based

Detection System ... 105

Figure 4.2: Workflow for Deriving Flow-based Detection Policy Scripts 109

Figure 4.3: Two Stages Flow-based Detection Mechanism..................................... 117

Figure 4.4: Live Experiment for Proof-of-Concept ... 122

Figure 4.5: Sample of SumStats Scripts ... 126

Figure 5.1: Flow-based and Packet-based detection with a) Scalability Level and b)

Alert Verification Level (x-axis indicates the detection type) 132

Figure 5.2: Two Hosts with P2P Communications .. 133

Figure 5.3: Proposed Flow Chart with Traffic Recording Strategy 136

Figure 5.4: Proposed Flow Chart with CHID Mechanism 140

Figure 5.5: IF Method Integration into PH .. 144

Figure 5.6: Combination of IF and BPF Filter Approaches 147

Figure 5.7: Switching between CHID and PO Approaches based on Traffic Rate . 151

 xiii

Figure 6.1: Memory Usage with Different Traffic Rates – P2P-bot (FL: flow-based

detection; PO: default packet-based only) ... 166

Figure 6.2: CPU Usage with Different Traffic Rates – P2P-bot (FL: flow-based

detection; PO: default packet-based only) ... 167

Figure 6.3: Memory Usage with Different Traffic Rates – IRC-bot (FL: flow-based

detection; PO: default packet-based only) ... 168

Figure 6.4: CPU Usage with Different Traffic Rates – IRC-bot (FL: flow-based

detection; PO: default packet-based only) ... 168

Figure 6.5: Memory Usage over Time at 200 Mbps` – P2P-bot (FL: flow-based

detection; PO: default packet-based only) ... 170

Figure 6.6: CPU Usage over Time at 200 Mbps – P2P-bot (FL: flow-based detection;

PO: the default packet-based only) .. 171

Figure 6.7: Memory Usage over Time at 200 Mbps – IRC-bot 174

Figure 6.8: CPU Usage over Time at 200 Mbps – IRC-bot 174

Figure 6.9: Memory Usage with Different Traffic Rates – P2P-bot 175

Figure 6.10: CPU Usage with Different Traffic Rates – P2P 176

Figure 6.11: Memory Usage with Different Traffic Rates –IRC-bot 177

Figure 6.12: CPU Usage with Different Traffic Rates – IRC-bot............................ 177

Figure 6.13: Drop packet Rate with Different Traffic Rates – P2P-bot and IRC-bot

 .. 180

Figure C.1: Classes of Host Behaviour for Worm Detection................................... 223

Figure E.1: CPU Usage over Time at 100 Mbps – P2P-bot..................................... 228

Figure E.2: Memory Usage over Time at 100 Mbps – P2P-bot............................... 228

Figure E.3: CPU Usage over Time at 200 Mbps- P2P-bot 229

Figure E.4: Memory Usage over Time at 200 Mbps – P2P-bot............................... 229

Figure E.5: CPU Usage over Time at 500 Mbps – P2P-bot..................................... 230

Figure E.6: Memory Usage over Time at 500 Mbps – P2P-bot............................... 230

Figure E.7: CPU Usage over Time at 1000 Mbps – P2P-bot................................... 231

Figure E.8: Memory Usage over Time at 1000 Mbps – P2P-bot............................. 231

 xiv

List of Appendices

Appendix A Attack Classification ... 210

Appendix B NIDS Requirements ... 215

Appendix C Attacks Detectable by Flow-based Approach...................................... 218

Appendix D Main Bro Log Files ... 225

Appendix E Resource Consumptions Results .. 228

Appendix F Samples of Detection Code .. 232

 xv

List of Abbreviations

API Application Programming Interface

BPF Berkeley Packet Filtering

Broccoli Bro Client Communications Library

C&C Command and Control

CHID Conditional Hybrid Intrusion Detection

CTU Czech Technical University

DARPA Defence Advanced Research Project Agency

DPI Deep Packet Inspection

DoS Denial of Service

FL FLow-based-detection

FPA Front Payload Aggregation

FPR False Positive Rate

HIDS Host-based Intrusion Detection System

ICMP Internet Control Message Protocol

IDS Intrusion Detection System

IETF Internet Engineering Task Force

IF Input Framework

IP Internet Protocol

IPFIX IP Flow Information Export

IPS Intrusion Prevention System

IRC Internet Relay Chat

ISOT Information Security and Object Technology

 xvi

ISP Internet Service Provider

KDD Knowledge Discovery in Dataset

LAN Local Area Networks

NAT Network Address Translation

NIDS Network Intrusion Detection System

OSI Open Systems Interconnection

RP Received Packets

P2P Peer to Peer

PCAP Packet Capturing

PH Packet-based in Hybrid

PO Packet-based Only

PSCJ Prince Sultan College Jeddah

PYL Payload

SQL Structured Query Language

SSH Secure Shell

TCP Transmission Control Protocol

TPR True Positive Rate

UDP User Datagram Protocol

VoIP Voice over Internet Protocol

WAN Wide Area Networks

 xvii

List of Publications

[1] H. Alaidaros and M. Mahmuddin, “Conditional hybrid approach for intrusion

detection,” Research Journal Information Technology, vol. 8, pp. 55-65, 2016.

[2] H. Alaidaros, and M. Mahmuddin, “Flow-based Approach on Bro Intrusion

Detection,” in Advancement on Information Technology International Conference,

2015

[2] H. Alaidaros, M. Mahmuddin, A. Al Mazari, “From Packet-based Towards

Hybrid Packet-based and Flow-based Monitoring for Efficient Intrusion

Detection: An Overview” in 1st Taibah University International Conference on

Computing and Information Technology (ICCIT12), 2012

[4] H. Alaidaros, M. Mahmuddin, A. Al Mazari, “An Overview of Flow-based and

Packet-based Intrusion Detection Performance in High Speed Network,” in

12th International Arab Conference on Information Technology (ACIT12), 2011.

 1

CHAPTER ONE

INTRODUCTION

1.1 Background

The number of Internet clients and services is growing more and more [1]. New

Internet applications give users benefits for either their businesses or future life. The

Internet is a powerful medium that has changed how people communicate and do

businesses with the partners. These universal applications let companies achieve

things that never been imagined before.

In addition to growing of the Internet users, networks become bigger and bigger.

Although the Internet gives users’ bright life and good businesses, it also has its

unknown dark face. Since many new Internet services, devices, and hosts are

developing, the number of vulnerabilities either in user smartphones, computers or

servers is also increasing [2]. The more computers connected to the Internet the more

possibility that the attacks take place. Many security gaps are exposed and misused by

attacks. Unfortunately, attacks are growing with the Internet almost in parallel, and

the race between them is continuing.

The number and the damage cost by those attacks are rising continuously. The security

threats can exploit all types of the network, including LAN-based clusters, intranet,

large-scale computational grids, and peer-to-peer service networks. These threats also

exploit all exposed protocols and operating systems (OS) threatening different kinds

of their applications such as database and web servers. Considering the damage cost

originated from the attacks, it is important to detect an attack as soon as possible. The

 2

main security tools for attack detection are Intrusion Detection System (IDS),

Firewall, and Intrusion Prevention System (IPS). IDS can be defined as “the process

of identifying and responding to malicious activity targeted at computing and

networking resources” [3]. It detects unwanted exploitation to a computer system, both

through the Internet and intranet.

Firewall is able to prevent some communication forbidden by the pre-defined security

policy. However, unlike IDS, it does not usually have the capability to search for

anomalies or specific content patterns. IPS is the next security layer that combines the

protection of firewalls with the monitoring ability of IDSs to protect networks. IPSs is

designed to sit inline with traffic flows and prevent attacks in real-time. However, they

block traffic independently without human interaction. Therefore, the main

disadvantages of IPSs are the serious consequences when blocking useful traffic

beside its bad performance in high volume networks. On the other hand, IDS needs

human interaction to do further actions. In addition, it sends commands to other

security devices of the network infrastructure that can filter the traffic. Based on

literature, IDS promises better performance in high speed networks compared with

IPS since it inspect the traffic offline instead of inline mode [4].

1.2 Intrusion Detection System

In general, IDSs are divided into two basic classes based on their position in the

network or audit source location: host-based IDS (HIDS) and network-based IDS

(NIDS). HIDS monitors a single machine and audit data, such as resource usage and

system logs, traced by the hosting operating system. On the other hand, NIDS monitors

 3

a network and analyses the traffic which flows through the link such as routers. This

research focus on NIDS since it is mostly used today and promised high detection rate

[5]. In addition, in NIDS, deploying a new host in a network does not need any

configuration to that host to be protected from intrusions. However, HIDS does not

have the capability to evaluate the network traffic.

There are two methods based on the data type to be analysed in NIDS, packet-based

and flow-based. Packet-based, also named Deep Packet Inspection (DPI), has to

inspect the whole packet. The flow-based technique is widely deployed as a data

source in applications like network monitoring, traffic analysis, and security. In flow-

based NIDS, rather than looking at all packets going through a network link, NIDS

looks at aggregated information of related packets of network traffic in the form of

flow. Such information includes the duration of flow and number of packets and bytes

sent and received in a particular connection.

1.3 Motivation

For NIDS to be efficient, the main requirements as mentioned in [6] and [7] are:

 Scalability: all potential packets are examined without resource overload in

NIDS;

 Detection accuracy: detecting wide scope of intrusions with high detection rate

and fewer false alarms.

These two requirements are currently attracted by researchers [6, 7]. Weng, et al. [7]

stated the key requirements of an NIDS are scalability and detection accuracy since

 4

they are the most requirements that influenced by increasing line-rates of network

traffic and growing number of attack patterns. Another reason for selecting these

requirements is that with all progresses that NIDS have made over years, researchers

struggle to make NIDS meet these requirements [8-10]. Figure 1.1 provides an

overview of the challenges for NIDS in general. It is obvious from the Figure that

NIDSs should be able to handle the growth in Internet bandwidth as well as the

increased number of attacks. Network traffic continues to grow which presents many

challenges in the domain of security. With an increasing data volume in the traffic, the

challenges of packet-based NIDS increase [8, 11]. However, given a high volume

network, they are not able to analyse all traffic and to cope with the current

environments.

Figure 1.1. Challenges and Consequences for NIDS

 5

When the whole payload of a packet is captured and inspected by NIDS, many

challenges are faced. Capturing, scanning, and analysing the whole payload are very

time-consuming. In addition, a large amount of data received from high volume

network requires much computational performance and resources regarding hardware,

capturing traffic, and detection process. Moreover, a drop in packets, resources

consumption, and missing potential intrusions will occur if the NIDS is not able to let

the analysis process be done [12, 13]. The lost packets may contain malicious data

and threats [13]. Thus, false negatives rate increase, on the other hand, negative impact

occurs on NIDS detection accuracy.

Growth and fast emergence of attacks and new threats are continued to increase. As

the number of attacks increase, the number of signatures and profiles also increase.

Hence, they have to be updated and stored in the NIDS database periodically. In this

case, database storage must be able to accommodate these patterns. Thus, resources

such as database size are very critical issues. Matching streaming payloads against

thousands of rules is computationally intensive since it requires more effort for

scanning with the huge size of the database, which leads to high resource consumption.

NIDS that is based on payload inspection show that up to 80% of the total processing

is spent on pattern matching [14]. Thus, there is an urgent need for higher

processability of NIDSs.

1.4 Problem Statement

Although some improvements have been made for NIDS over the last couple of years,

it still has some limitations. Researchers still struggle to make NIDSs process as little

 6

amount of data as possible wi These two requirements are currently attracted by

researchers thout compromising detection accuracy [15] . Also, there are lacks of the

current computational frameworks, and identifying the right portion of the payload to

be processed that can handle the growing of network traffic, the attacks, and threats

[16]. In payload inspection, it implies that it “pays load” and overhead to the system.

However, a vast amount of data requires a vast amount of computational performance,

particularly complex algorithms. In other words, systems that are capable of

monitoring every packet on a high-speed network are very expensive and high

resource consumption. Although sampling techniques are used to reduce the load of

NIDS, it may ignore potential packets that carry malicious traffic.

When the packet-based NIDSs have to inspect the whole payload of every incoming

packet, it is difficult to cope with large volume traffic. As it is very time-consuming,

therefore it is hard, or even impossible, to perform packet-based approach in this

environment [9, 15, 17]. In other words, packet-based NIDS performance does not

meet with the first feature of the efficient NIDS which is “scalability”. Packet-based

NIDSs have attracted intensive research efforts [10, 18]. Although these systems

demonstrated promising detection results, they suffer from poor scalability when they

analyse a large volume of network traffic in high-speed networks.

Although the future approach, flow-based NIDS, has peace with modern high volume

networks, it suffers from producing false positive alarms [9, 16]. The false positive

generation occurs because the limitation of information in the flow-based approach

and inability to access the raw data packets that might help for further investigation.

 7

Also, the complexity of malicious and non-malicious (benign) network traffic

characteristics allows flow-based NIDS to face challenges when distinguishing

between these traffic [19]. In other words, the flow-based approach does not meet with

the second feature of the efficient NIDS which is “detection accuracy”.

As a result when false positive alerts occur, the network operator has to receive a lot

of irritating alarms which are not intrusions. However, when overloading occurs with

these false alarms, system resources become exhausted, and the network infrastructure

protection system becomes weaker. In addition, the value of the intrusion alert will be

diminished and may not be noticed by this huge number of alerts. If the shortcomings

of both intrusion detection techniques are examined, a trade-off if found between the

full data available for detection in packet-based that leads to high resource

consumption and the limited information available in flow-based for scalability that

leads to high false alarms.

For detection accuracy in flow-based detection approach, several works showed the

ability to detect malicious traffic. However, these researchers reported a significant

number of false positive alerts [20, 21]. Although, a few works combine flow-based

and packet-based detection for enhancing NIDS scalability and reducing false positive

rates [9, 22, 23], their works were challenged since all full-payload packets, regardless

they are suspicious or non-suspicious, are processed by packet-based NIDS that leads

to a significant overhead consumption. Also, in their work, high-speed volume

measurements were not considered.

 8

1.5 Research Questions

The main research question of this research is: how to improve NIDS scalability while

preserving detection accuracy and the following sub-questions are raised up:

i. How to improve NIDS efficiency based on flow-based detection approach?

ii. How to mitigate the false positive alerts generated by flow-based NIDS

approach?

iii. How to evaluate the efficiency of a new proposed NIDS mechanism?

1.6 Research Objectives

The main objective of this research is to develop a mechanism named Conditional

Hybrid Intrusion Detection (CHID) to improve NIDS scalability while preserving

detection accuracy. To achieve this objective, the following three sub-objectives are

identified:

i. To investigate the researches that can improve NIDS efficiency.

ii. To develop appreciate NIDS mechanism by reducing the rate of false positive.

iii. To evaluate the developed NIDS mechanism by measuring its efficiency

through experiments.

 9

1.7 Research Contribution

The contribution of this research is to add to the body of knowledge a new hybrid

mechanism named CHID, that integrates and combines the two NIDSs approaches:

packet-based and flow-based, to enhances the NIDS scalability and detection

accuracy. Moreover, the mechanism. This mechanism utilizes the advantages of both

approaches and overcomes their drawbacks. In other words, NIDSs process is scalable

without compromising detection accuracy. The main contribution of this research can

be stated as follows:

 An efficient flow-based detection mechanism that analyses the flows for

suspicious identification.

 CHID mechanism that combines packet-based and flow-based detection

approaches and provides scalability while preserving detection accuracy.

1.8 Scope of the Study

The proposed mechanism may not detect all ranges of attacks. Thus, specific types of

attacks are considered. IRC and Peer to Peer (P2P) botnet attacks are considered to be

the most strong–threat to the security of Internet-connected users and systems [24].

These attacks are selected in this research since they have frequent sequential patterns

that involve several connections to or from the particular host in a short time [25, 26].

However, this characteristic fits the proposed NIDS mechanism since flow-based

detection yields promising results when detecting botnet activities that perform

repetitive traffic patterns.

 10

Since this research deals with network traffic which flows through the segment, NIDS

is considered in this research while HIDS is neglected. In addition, HIDS alone seems

to be ineffective in current botnet attacks [27]. On the other hand, NIDS is mostly used

today and promised high detection rate for botnet attacks [5]. Also, NIDSs have the

following advantages over HIDS: in contrast to HIDSs, deploying a new host in a

network does not need any configuration to that host to be protected from intrusions.

For updating and maintaining IDS in a single network, it is easier to update one device

such as NIDS, rather than updating multiple IDS devices for each host. HIDS does not

have the capability to evaluate the network traffic.

NIDS efficiency depends on traffic amounts to be processed, detection algorithms,

packet-capturing system, and the hardware. However, this research focuses on the

amount of traffic fed to NIDSs for analysis. For detection method, signature-based for

both flow-based and packet-based is used. Finally, in this work, the focus of detection

accuracy improvement concerns the false positive rate.

1.9 Research Steps

To accomplish the goal of this research, Figure 1.2 shows research steps carried out in

this thesis. The first step is to perform an in-depth study on the existing packet-based

and flow-based NIDS approaches to identify their advantages and disadvantages and

to explore the areas that should be eliminated or enhanced for scalable intrusion

detection. Then the flow-based NIDS mechanism of IRC and P2P botnets should be

designed and implemented. The third step is to perform performance evaluation of the

 11

flow-based and packet-based NIDS mechanisms to analyze their effects on the

accuracy of detection and resource consumptions.

Figure 1.2. Research Steps

The next step is to develop a conceptual model by taking the advantages of flow-based

and packet-based NIDS approaches and overcoming their drawbacks. Then the CHID

mechanism that combines flow-based and packet-based detection mechanisms is

designed and implemented in a testbed environment. The final step is to perform

performance evaluation of the CHID mechanism by comparing with the original

packet-based NIDS mechanism in term of accuracy of detection and resource

consumptions.

Evaluate the CHID mechanism by comparing with the original packet-based NIDS

Implement the CHID mechanism in a testbed environment

Design the hybrid mechanism, CHID

Evaluate the flow-based and packet-based detection mechanisms

Design and implement flow-based detection mechanism

In-depth study on the existing packet-based and flow-based NIDS approaches

 12

1.10 Organization of the Thesis

This work is organized as follows: Chapter 1 presents the research motivation,

problem statement, questions, objective, expected contributions and scope. Chapter 2

provides an overview of packet-based and flow-based NIDS approaches in term of

scalability and detection accuracy. The chapter also presents related works that tackle

the issues associated these approaches. More emphasis in this chapter is given the

impacts and related works of false positive issues. In Chapter 3, research methodology

of the study is explained in details. It presents the design of the proposed CHID

mechanism. Then, implementation, evaluation, and validation of this research are

discussed.

Chapter 4 studies how the flow-based NIDS approach can detect botnet malicious

activities by implementing flow-based detection mechanism. Chapter 5 proposes

CHID mechanism that reduces the false positive rate of flow-based detection and by

combining flow-based with packet-based detection mechanisms. For Chapter 6,

detection accuracy rate and resource consumption impacts on the flow-based detection

mechanism compared with packet-based detection mechanism are presented. The

combination approach (CHID) is then evaluated in term of resource consumption and

accuracy detection level. Finally, the conclusion is presented in Chapter 7.

 13

CHAPTER TWO

LITERATURE REVIEW

This chapter presents the importance packet-based and flow-based NIDS approaches

for detecting attacks. Their advantages and challenges in high-speed networks are

discussed in details. For operational definition, the combination of flow-based and

packet-based detection approaches is defined as a mechanism. The term mechanism

was also found in related studies that combine the two data sources [9, 23]. However,

to distinguish the mechanism from the term “system”, this mechanism is proposed to

enhance the detection system as a central component.

This chapter is organized as follows: Section 2.1 explains how the Internet

infrastructure, users, and threats are growing rapidly. Then types and challenges of

IDS are presented in Section 2.2. Packet-based and flow-based NIDS and their related

works regarding scalability and detection accuracy are discussed in details in

Section 2.3 and 2.4 respectively. These sections also present related works in botnet

detection. Section 2.5 present comparisons between flow-based and packet-based

detection. In Section 2.6, related works on false positive reduction are discussed.

2.1 Growth of Traffic and Threats

The evolution of the Internet users is incredible as shown in Figure 2.1. In 2005, the

number of users was about 1 million while it was about 3.4 million users by the end

of 2015 [1]. Fast increase of computers connected to the Internet has resulted in the

growth of Internet traffic and bandwidth in wide area networks (WAN). An access

speed of 10 Gigabits per second (Gbps) becomes normal. Most large corporations,

 14

universities, and government networks are moving toward higher speeds of up to 10

Gbps. Optical fiber infrastructures, which were restricted only to large businesses and

ISPs connection, have been installed widely in the backbone network to meet the

demand for the bandwidth.

In addition to the increasing of computers, increases of Internet services and

multimedia contents need high bandwidth. As a result, ISPs and network components

upgrade their network capabilities to accommodate the future traffic. Equipment

performance grows required to support high-bandwidth traffic. WAN devices that

were operated at speed 2.5 Gbps in 2000, they are operated at more than 40 Gbps

nowadays.

Figure 2.1. Expansion of the Internet Users over Years [1]

 15

2.1.1 Internet Attacks

The Internet has its unknown dark face although it provides users comfortable life and

business. When new Internet services, hosts, and devices are deployed, the number of

vulnerabilities in the network components is growing; hence hosts are targeted by

potential cybercriminals [8]. The vulnerability is a weakness, such as design flaws, or

coding errors which an attacker uses it to compromise availability, confidentiality, or

integrity of a host. Any threat that discovers and abuses the software and hardware

vulnerability is called an attack. Unfortunately, attacks cause high damage cost to the

organization. Resources affected by these attacks may have different symptoms such

as denial of services (DoS) or data lost. Appendix A presents brief taxonomy and

classifications of the Internet and computer attacks.

All types of network, including intranet, LANs, and large-scale computational grids,

can be negatively affected by these attacks. Besides the hardware components, all

exposed operating systems and protocols are also exploited by the crime activities

which results in compromising the applications such as databases and web services.

Such activities are conducted by installing malicious software (malware) programs on

the victim’s host. The user then executes these programs unintentionally to be infected

by the attacks. Also, one of the most challenging risks today is insider threats. It is

performed by internal users either by infecting the systems with malicious codes, or

exposing or misusing private information.

 16

2.1.2 Growth of Threats

Both attacks and Internet services are developing, and the race between them never

stop [28]. The scope of attackers and malicious software has been changed

significantly in a previous couple of years. Also, complexity and fast emergence of

new attacks on the Internet are also growing. However, no in-deep technical

knowledge is needed to create new attacks and malicious signatures.

When the number of devices is increasing, the number of vulnerabilities is also

increasing. Hence the chances of threats are higher. Based on reports from 2016

Internet Security Threat Report [29], Symantec discovered more than 430 million new

unique pieces of malware in 2015, up 36 percent from the year 2014. Also, 1.1 million

web attacks were blocked per day on 2015 compared with 493 thousand blocked on

2014. They also claimed that the new mobile vulnerabilities and total identities

exposed are also rising as shown in Table 2.1. The attackers are the ones who take the

first steps, by creating new attacks, and security professionals have only to response.

Table 2.1

Growing of Threats [29]

Items 2013 2014 2015

Number of web attacks blocked per day 569K 493K 1.1M

New mobile vulnerabilities 127 168 528

Total identities exposed - 348M 429M

 17

2.2 Intrusion Detection Systems

In this section, the IDS structure and types of IDS are presented in term of locations,

detection methods, and data type inputs. Certainly, these are not an exhaustive list of

known types. Instead, the most widespread and interesting approaches related to this

research are selected. Requirements of NIDS to be efficient are also discussed. Finally,

problems that are faced by NIDS are presented.

2.2.1 Security Tools and Techniques

Computer security device should provide confidentiality, integrity, and availability,

where confidentiality ensures information access to the only authorized party, integrity

ensures information remains unchanged, and availability ensures accessibility of

information by authorized parties whenever needed. Considering the damages and

consequences of the attacks, it is important to find tools to detect attacks as soon as

possible. One of these tools known as IDS which refers to detecting attacks or any

unauthorized activities performed on a computer or a network. It detects unwanted

exploitation to a computer system, both through the Internet and Intranet.

How IDSs differ from firewalls? Firewall is defined as a piece of hardware or software

program which functions in a networked environment to prevent some communication

forbidden by the pre-defined security policy. Firewall differs in the sense that it does

not usually have the capability to search for anomalies or specific content patterns,

such as spamming and worms, to the same degree as IDSs do. For these reasons, IDSs

must be at the first line of defence and work along with firewalls.

 18

An Intrusion Prevention Systems (IPS) is also a tool that detects attacks similar to IDS.

IPS is the next security layer that combines the protection of firewalls with the

monitoring ability of IDSs to protect networks with analysis necessary to make the

proper decision on the fly. IPSs are set in reactive mode and designed to sit inline with

traffic flows and prevent attacks in real-time. Since IPSs are inline inspection, they

block traffic independently without human interaction. Therefore, the main

disadvantages of IPSs are the serious consequences when blocking useful traffic

(when false alarms rise) beside its bad performance in high volume networks.

Unlike IPS, IDS is mostly set in passive mode since it only raises an alarm in case of

an intrusion and then needs human interaction to do further actions. Although it cannot

directly block malicious connections, and to mitigate detected attacks, it sends

commands to other devices of the network infrastructure that can filter the traffic, e.g.

firewalls or routers with access control lists. Table 2.2 summarizes the difference

between IDS, Firewall, and IPS.

Table 2.2

Differences between IDS, Firewall, and IPS

Feature IDS Firewall IPS

Main task Detect Allow/ Block
Detect and

block

Anomaly inspection? Yes No Yes

Slow down the network? No No Yes

Able to block intrusion
Manually and

automated
Automated Automated

Behaviour in detection Mostly passive Reactive Reactive

 19

2.2.2 IDS Structure

IDSs provides security management system for computer and networks. It detects

potential malicious activities by gathering, analysing, and identifying information

from different points of a network or on a particular host. An IDS can be defined as

“the process of identifying and responding to malicious activity targeted at computing

and networking resources” [3]. Though there are several implementations of IDS that

share the common components to detect intrusions, these components include data

collection (eyes), detecting engine (brain) with database (memory), and response

components (mouth) as shown in Figure 2.2.

Data collection: It is also called “sensors” which act as an agent that monitors the data

and traffic in real time. They are responsible for collecting, decoding, and pre-

processing packets and make them available to the next component to detect intrusion.

The input of the sensors can be system logs, system resources usage, network packets,

or network flows.

Figure 2.2. IDS Main Components

Data
Collection

Detection
Engine

Response

 20

Detection Engine: It is the brain of the IDS and called “analysis module”, which is

responsible for analysing, processing, and inspecting the input coming from data

collection. In this module, IDS matches the input data with the database or threshold

if needed, if a match is found, then it is an intrusion. Other analysis approaches are

being introduced such as statistical analysis, pattern matching, artificial immune

systems, and machine learning. Wu and Banzhaf [30] presented an overview and

problems of different kinds of methods and algorithms that are used in IDS. The

database stores all information about attack signatures, malicious patterns, and

network profiles and behaviours.

Response: If an intrusion is detected, it sends an alarm or intrusion information to the

operator to take further actions. The response can be active or passive. Most of the

current IDSs are designed to be passive since they just send alarms when intrusions

take place [8].

2.2.3 Software-based IDS

Having explained the structure of IDSs, this subsection presents the main IDS software

in literature. The most software-based IDS used in the research community are Snort

[31], Suricata [32] and Bro [33]. Snort is the most popular open-source IDS and used

mostly for signature-based and packet-based detection [34]. It performs deep packet

inspection using pattern matching in the form of rules. Rules describe network traffic

data of internets in structured text files. When a security-related incident occurs, such

as attack, these rules generate alerts. Suricata is also an open source application for

intrusion detection [32]. Similar to Snort, Suricata uses rules for pattern matching.

 21

These rules are compatible with Snort. Suricata is written in C language, and the

modules have to be also writing in C which requires more expertise than the Bro

language. Thus, Suricata may not be the best prototyping tool available.

Bro is open-source network IDS, and it monitors and inspects all traffic to detect

suspicious activity [33]. It was developed by Vern Paxson of Lawrence Berkeley

National Labs and the International Computer Science Institute. Bro is selected in this

research since it has been primarily developed as a research platform for intrusion

detection and traffic analysis. In addition, it was proved by Svoboda [10] that Bro is a

useful tool for effective development of proof-of-concept and fully functional

prototype. Also, it provides features through its script analysis engine and capability

to extend the response via script; and remains best suited for high throughput research

environments [4].

Bro is divided into three layers:

1. libpcap, packet capture.

2. event engine reduces the packet stream into a series of events.

3. event handlers, policy scripts.

It receives the captured traffic as raw network packets or flows, extract the meaning

of them, and put them into context or stream. It represents this context through events

“engine”. In contrast to Suricata and Snort, Bro is not rule-driven in which it

implements a scripting environment for creating rule-based detection. In other words,

Bro detection rules are described by the scripts which use Bro programming language.

 22

This language is an interpreted in a domain-specific type (e.g. addr type holds an IP

address). Bro provides scripting language, and it comes with a large set of pre-built

functions, yet the user can put Bro in novel ways by writing the own policy script. Bro

policy script is the basic analyser used to specify what actions to take and how to report

activities.

2.2.4 IDS Types

There are several types and taxonomies of IDS in the literature presented in [6, 15].

Figure 2.3 presents the main types of IDS concern in this research. Each type is

explained in the following sections. Before IDS types are presented, several terms that

are stated in this thesis should be defined.

False negative (undetected attacks): occurs when an IDS fails to identify an intrusion

when one has taken place. This event should not be generated for high detection

accuracy.

False positive (false alarms): occurs when an IDS incorrectly identified an intrusion

when none had taken place. This event should not be generated for high detection

accuracy.

True negative: occurs when no alert is raised, and no intrusion has taken place. This

event should be generated for high detection accuracy.

True positive: occurs when an IDS correctly identified an intrusion when one had taken

place. This event should be generated for high detection accuracy.

 23

The following subsections present the types of IDSs based on location, detecting

method, and process data.

Intrusion Detection

System

Network-based

Host-based

Anomaly-based

Signature-based

Packet-based

Flow-based

Based on input data

Based on audit source

location

Based on detection

method

Figure 2.3. Types of IDS (dash line indicates the research scope)

2.2.4.1 Location-based IDS

IDSs can be divided into two classes based on their source audit locations: Host-based

IDS (HIDS) and Network-based IDS (NIDS). HIDS resides locally on a single

computer and protects this particular host from intrusions and attacks. It monitors data

that resides on the host such as system logs, event logs, the local registry, and resource

usage. Computers, where HIDS can be deployed, can be a server, workstation, or

notebook. For NIDS, it captures and monitors traffic packets on the network and

analyses them to discover if an attacker is attempting to hack the system (see

Figure 2.4). Attacks such as DoS can be detected by NIDS. NIDS may be installed on

a specific computer to watch its own incoming and outgoing traffic or can be installed

 24

independently, such as in routers, to watch all network traffic; hence all machines in

the network are protected.

Figure 2.4. NIDS Location

Nowadays, a hybrid approach that combines HIDS and NIDS is implemented to

provide a greater degree of security level. NIDSs have the following advantages over

HIDS: in contrast to HIDSs, deploying a new host in a network does not need any

configuration to that host to be protected from intrusions. For updating and

maintaining IDS in a single network, it is easier to update one device such as NIDS,

rather than updating multiple IDS devices for each host. This research adopted NIDS

since it is mostly used today and promised high detection rate [5]. Also, NIDS has the

capability to evaluate the network traffic on the main traffic gateway, while HIDS has

the ability to analyse only its own (incoming/outgoing) network traffic.

 25

2.2.4.2 Detection-based IDS

In term of detection method, the two primary methods are signature-based and

anomaly-based IDS. Some IDSs combine the two approaches to providing more broad

and accurate detection. A signature-based IDS also named “misuse-based IDS”, works

similar to an anti-virus program. A signature is a pattern that represents a known threat.

Every intrusion has its signatures and patterns. Examples of signatures may include an

email with a subject named “Free Picture” with attached filed named Trojan.exe or

with a certain message in payload content. These signatures are stored in a database.

Signature-based IDS then simply compares what it analysed to the given list of

signatures in the database. If a successful match is found, an alert is raised. Snort [31]

and Bro [35] are two well-known examples of this type. They are open source and

they monitor network traffic and then match each packet they observe against a set of

rules and events.

For an anomaly-based IDS, also called “behaviour-based”, it does not deal with

signatures; instead, it deals with behaviours of users, hosts, network connections, and

services. It builds models of normal (benign) traffic profiles and patterns by collecting

characteristics of system and network behaviours over a period of time and when the

absence of intrusions. This stage is called training or learning stage and can be

developed manually and automatically. When anomaly-based IDS take place, it uses

statistical methods or neural network algorithms to compare what it is analysing (input

events) to the related models. If any significant deviations or changes fall outside the

predefined model is found, the traffic is marked as an anomaly (abnormal).

 26

Anomaly-based IDS can detect new and unknown attacks. For example, when a host

is infected by a new type of malware, the malware could initiate multiple connections,

consume the network bandwidth more than expected, send a huge number of emails,

or perform any significant behaviour that differs from the normal profile of the host.

However, anomaly-based has some major drawbacks that include:

 Building and defining normal models are a critical issue. If the models are

defined too narrow, some normal activities are marked as intrusion so that false

positive rates increase. On the other hand, if the models are defined too

broadly, some attack may not be detected; hence false negative rates increase

[36].

 Since the network is dynamic, new services and maintenance and user habit

keep change; the normal profile must be kept updated and regenerated

periodically to avoid false negative [37].

As a summary, signature-based NIDS is considered in this research since anomaly

NIDS approach faces challenges when building the normal profile of the network

environments. Thus, it must continually adapt to the changing network environment.

Otherwise, this approach may suffers from generating false negative and/or false

positive rates.

2.2.4.3 Data-processed-based NIDS

This subsection presents the types of NIDSs based on the data processed. The process

of NIDS requires data to be processed and analysed by the respective detection

 27

methods and algorithms. Based on the type of data to be analysed in NIDS, there are

two approaches: packet-based, flow-based NIDS. In packet-based, also named Deep

Packet Inspection (DPI), a detecting engine has to scan and analyse the whole packet,

header and payload, to determine whether the packet is an intrusion. Thus, it captures

all traffic packets individually passing a certain monitoring point such as a router

without ignoring any information. These packets are analysed by the detection engine

either directly or remotely. These packets encompass layer 2 to 7 in Open Systems

Interconnection (OSI). Signature-based NIDS, as discussed earlier, mostly uses

packet-based for intrusion detection. All incoming packets are scanned and compared

to every single rule of the database. In addition to monitoring all passing traffic,

analysis based on certain protocols such as Internet Control Message Protocol (ICMP)

that is based the headers only is possible; this is called “protocol-based NIDS”. Further

explanation about packet-based is presented in Section 2.3.

A flow-based NIDS does not look at the payload content for inspection and analysis.

However, it relies on information and statistics of network flows. Such information

includes a number of packets and bytes transferred over a particular time. Many

routers and monitor probes can perform flow-based data collection and aggregation

before NIDS analysis. A flow-based technique appears in the last ten years and widely

used as data source not only for security purpose, but it was originally for network

monitoring and analysis. Section 2.4 presents further details about this approach.

Anomaly-based and signature-based represent the detection methods and algorithms

whereas flow-based and packet-based represent the data type fed into those detection

 28

methods. However, not every anomaly-based NIDS uses flow-based approach. Some

anomaly-based NIDSs use packet-based as input data [38, 39]. On the other hand,

some signature-based NIDSs use flow-based for intrusion detection. This research

focuses on this scenario when flow-based is used. Several researchers also work in

this area [18, 23, 40]. In this case, the flow-based signatures describe network traffic

by certain values, or ranges of values, of flow properties and statistics. The receiving

flows are then compared with these signatures or thresholds for intrusion detection.

2.2.5 NIDS Requirements

There are many requirements for efficient NIDS mentioned in the literature. The two

requirements that are focus in this research and consider the main requirements are

scalability and detection accuracy [6, 7]. Weng, et al. [7] stated the key requirements

of an NIDS that attracted researchers currently are scalability and detection accuracy.

This is because they are the most requirements that influenced by increasing line-rates

of network traffic and growing number of attack patterns. Another reason for selecting

these two requirements is that with all progresses that NIDS have made over years,

researchers struggle to make NIDS meet these requirements [8-10]. This is because of

the trade-off between NIDS scalability and detection accuracy. In Sections 2.3 and 2.4,

discussion on how the packet-based and flow-based NIDS impact on these two

requirements is presented, respectively.

1. Scalability: NIDS should operate in large volume networks without resource

consumption overhead, i.e. when all potential packets and traffic are analysed

without packet loss. Thus, detection analysis should be performed smoothly in

 29

a large data network as well as with increase traffic and network’s size. Note

that the term “potential packet” is used instead of “incoming packet”; this is

because potential packets are extracted after sampling or filtering processes as

will be discussed later.

2. Detecting accuracy or detection rate: beside all potential packets should be

processed correctly; detection methods have to make the right decision, not to

decide falsely. To achieve this requirement, the true-positive rate should be

equal to the actual intrusions with fewer false positive and negative alarms.

Other requirements are also presented in [41, 42] (see Appendix B for more details)

that include:

 Detecting unknown attacks: novel intrusion should be detected

 Detecting encrypted traffic: encrypted payloads should be readable and

analysed for intrusion detection.

 Early detection: intrusion should be detected as soon as possible

 Large data storage: all potential signatures, profiles, alerts, and reports

should be stored for long-term and further usage.

 NIDS security: NIDS should be secured enough against attackers who direct

attacks into the NIDS itself.

 30

 Privacy: NIDS should not violate privacy regulation of users by inspecting

private information both in payload and header of the packets.

2.2.6 NIDS Challenges

The goal of this research is to propose an NIDS mechanism that meets the first two

requirements mentioned in the previous section, which are scalability and detection

accuracy. This section explains the reasons behind selecting these two requirements

among others. There are several obstacles that hinder NIDSs to achieve and meet these

requirements. Based on the survey conducted by [13, 19] these hindrances are as

follows:

1. The increase of volume traffic: network traffic continues to grow which

presents many challenges in the domain of security. NIDS have to receive a

huge amount of data to be examined and analysed; hence negative impact

occurs on NIDS scalability. In other words, storing and analysing of these data

requires much computing for detection and resource consumption.

Unfortunately, even if the NIDS processor speed increases, the increase of

network speed is faster than the speed of NIDS techniques. Another impact of

this issue is that when not all potential packets are inspected and analysed on

time due to high resource consumption, some of these packets start to drop.

The lost packets may contain malicious data and threats [13]. Thus, false

negatives rate increase, on the other hand, negative impact occurs on NIDS

detection accuracy.

 31

2. Growing of attacks and new malicious programs: growth and fast

emergence of attacks and new threats are continued to increase. As the number

of attacks increase, the number of signatures or profiles also increase. Hence,

they have to be updated and stored in the NIDS database periodically. In this

case, database storage must be able to accommodate these patterns. On the

other hand, matching process computation requires more effort for scanning

with the huge size of the database, which leads to high resource consumption;

hence negative impacts occur on both scalability and detection accuracy.

As a summary, the increase of network traffic and the growing of new attacks are

considered to be the most challenges to NIDS, especially in packet-based detection

system which will be discussed in the next section.

2.3 Packet-based NIDS

Having explained the structure, types, and challenges of IDS, this section discuss about

packet-based NIDS. Most of the current NIDSs, whether signature-based or anomaly-

based, use packet-based instead of flow-based approach [9]. The reason behind

selecting packet-based approach is because it provides full information about the

traffic which leads to better detection accuracy. This section emphasis on packet-based

approach. Then the impacts of the packet-based NIDS on the two requirements: high

scalability and detection accuracy, are presented. Filtering and sampling in packet and

payload level are presented. Finally, attacks that are detectable by packet-based are

discussed.

 32

The components of packet-based NIDS are very similar to the traditional IDS structure

described in Figure 2.2. Detailed view of packet-based NIDS is explained in

Figure 2.5. In packet-based NIDS, the signatures or thresholds are stored in a database.

Then NIDS simply compares the analysed packets to the given list of signatures or

threshold in the database. If a successful match is found, an alert is raised.

H Payload

IDS

Database

Signature/

Threshold

Packet

Intrusion/ Not

Intrusion

Match?

Figure 2.5. Packet-based NIDS

2.3.1 Scalability

With an increasing data volume in the traffic, the challenges of packet-based NIDS

increase [8, 10, 11]. Many types of research attempted to improve the scalability of

NIDS [9, 13, 43-46]. However, given a high volume network, they are not able to

analyse all traffic and to cope with the current environments. The following points

present how current environments influence the scalability of packet-based NIDS:

 Computational Process: When the whole payload of a packet is captured and

inspected by NIDS, either signature-based or anomaly-based, many challenges

 33

are faced. Capturing, scanning, and analysing the whole payload are very time-

consuming. A Large amount of data received from high volume network

requires much computational performance and resources regarding hardware,

capturing traffic, and detection process. Researchers found that signature-

based NIDS processing, which is based on payload, lies between 100 Mbps

and 200 Mbps when commodity hardware is used and 1 Gbps when a dedicated

server is used [47]. Korenek and Kobiersky [48] also stated that NIDS is

difficult to keep up with traffic over 200 Mbps when full payload analysis is

performed. Well-known packet-based NIDSs such as Snort show evidence of

high resource consumption when dealing with a large amount of data found in

high volume networks [9]. Matching streaming payloads against thousands of

rules is computationally intensive. Payload inspection based NIDS such as

Snort also shows that 80% of the total processing time of NIDS is left to string

matching process [14].

 Resource and Storage Capacity: However, since the increase of signatures

is still growing, resources such as database size are very critical issues. Dreger,

et al. [12] analysed and showed the main drawback of the packet-based

approach in term of resource and availability. These authors presented a

comprehensive evaluation of packet-based NIDS performance in high volume

network. They presented the key factors with respect to resource management

and efficient packet processing. On the packet capturing side and far from the

performance of NIDS itself, Braun, et al. [49] presented how the packet capture

(headers and payloads) performance influence the hardware components such

 34

memory and CPU in high volume networks. The metrics that are used in their

investigation include the packets captured and CPU utilization. They analysed

and evaluated the capture packet rates of different hardware and operating

systems, thus, the valid conclusion can be drawn regarding significant impacts

of packet capturing tasks.

Since the increase of computational process and storage capacity in packet-based

NIDS depends on the amount of data to be processed, sampling algorithms are

proposed to reduce the resource consumptions [50-53]. The sampling technique

generally chooses a subset of packets which supposed to reflect the information of the

entire all packets. The difference between filtering and sampling is that filtering has

to know the traffic properties in advance. However, although filtering and sampling

techniques reduce the overhead to NIDS, they require some processes and delay to

achieve their job. For example, since filtering approach needs to classify incoming

packets according to packet header fields, the comparison operation is required per

packet. Also, filtering approach may ignore aggressive and potential packets that

might have valuable information for intrusion detection [54]. Thus, much care is

needed when choosing these approaches. In this research, packet filtering process is

proposed based on suspicious flow-based IP addresses generated from another node.

Several approaches are also designed and proposed in recent years to reduce resource

consumption of packet-based NIDS in hardware aspects [55]. Braun, et al. [49]

designed detection process to enable string matching at several gigabits per second to

improve the performance of NIDS. A mechanism that reduces the amount of packet

 35

to be processed was also proposed by [56]. The authors introduced pre-filtering

process in their approach by indexing the header information of all incoming packets.

However, the cost of hardware-based NIDS is a big issue. Also, since some signatures

contain regular expressions, approaches in [49, 55] have limited advantages for

signature analysis [57].

2.3.2 Detection Accuracy

All common types of known attacks can be detected, provided that all potential traffic

be analysed. Since packets contain all complete payload and headers up to application

layer (layer 7 in OSI), packet-based NIDS can detect application intrusion easily.

Header information is very useful to identify attacks targeting vulnerabilities of

network stack implementation or scanning the networks to identify live services. On

the other hand, payload information is useful to recognize attacks targeted

vulnerabilities at application layer since the successful connection session can be

established in a normal way. In other words, the attacks detected by packet-based

NIDS only range from attacks which are more connection-oriented to attacks occur

only in network payload.

Packet-based NIDS mostly provides signature-based NIDSs sufficient information to

detect attacks. The main advantage of the packet-based technique is the low false

positive rate. However, this advantage is difficult to be achieved in high volume

networks. If the NIDS speed is not high enough to analyse all potential payloads, a

drop of packets may occur. Thus, potential intrusions are missed and false negative

 36

rate increases [13]. The following attacks can be detected using packet-based NIDS

approach:

 DoS attack: The main objective of DoS attacks is to deny a legitimate user

from using or accessing his/her system in a normal mode. When this attack

uses a large number of attacked computers against target or targets, it is called

distributed denial of service or (DDoS).

 Information Gathering and Scanning: These attacks try to gather information

about the system and network for further attacks.

 Malicious Software: Malware includes Worms, Virus and Trojan horse, are

malicious programs that are inserted into a host to corrupt a system, deny

access to a service.

 IP Spoofing: This kind of attack is functioning on networks and TPC/IP

protocols. Network spoofing is used when the attacker pretends himself as a

legitimate user by spoofing who they are. Session Hijacking is the most

popular attack in this kind of attack.

 Password attacks: This attack involves when the attacker is attempting to guess

a password of a protected host. Password dictionary and brute force are the

main example of this attack.

 Botnet attack: This attack infects a huge number of computers to be part of

controlled botnet. These computers attack the target based on the command

received such as DoS.

 37

More details about these attacks and other attacks can be found in Appendix A. This

research focus on botnet attack, specifically on IRC and P2P botnets. The reason

behind this selection is that the botnet attacks are considered to be the most strong–

threat to the security of Internet-connected users and systems, among other attacks

[24]. Also, these attacks have frequent sequential patterns that involve several

connections to or from the particular host in a short time [25, 26]. This characteristics

are helpful for flow-based NIDS detection. Since this research focus on botnet attack,

the following subsection present how this attack can be detected using packet-based

NIDS.

2.3.3 Botnet Detections Related Works

This attack uses a large number of compromised computers (bots) to direct

coordinated attack against target or targets. Figure 2.6 presents how botnet works and

can be summarized in the following phases:

1. Propagation or Infection phase: The attacker (or so-called botmaster) infects a

huge number of machines to be part of controlled botnet. The victim machines

install bot (or backdoor) software downloaded from web or email link.

2. Command and Control (C&C) phase: These bots are controlled by a botmaster

using C&C channels for communications. These channels can be centralized

structure as shown in Figure 2.6 (e.g. when Internet Relay Chat (IRC) or Hyper

Text Transfer Protocol (HTTP) are performed) or decentralized as shown in

Figure 2.7 (e.g. when Peer to Peer (P2P) communications are performed

among peers).

 38

3. Behaviour or attack phase: Finally, the bots attack the target based on the

command received from botmaster. Such attack may include DoS, phishing,

and spam.

Since the first phase involves in executing bot software, it could be detected in host-

based NIDS. However, this research focuses on other phases where NIDS plays a

significant role in detecting botnet. Table 2.3 shows the main botnet attacks that are

focused in this research and use command and control channels. Karim, et al. [58]

presents a comprehensive review of the latest state-of-the-art techniques of botnet

attacks.

Bot Master

Command and

Control

Bots

Victim

Figure 2.6. Centralized Botnet Attack Methods

 39

Bot Master

Bots

Victim

Figure 2.7. Decentralized Botnet Attack Methods

Table 2.3

Examples of Botnets Attack [25]

Name Architecture Protocol
Types of Infections

(propagation)

Communications

Intervals

Storm

[59]
P2P UDP

Spam, social engineering

techniques
Frequently

Waledac

[60]
P2P TCP/UDP

Drive-by downloads,

spam, social engineering
Frequently

Zues [61]
Centralized/

P2P

TCP/UDP

/HTTP

Spam, Drive-by

downloads

Frequently (every

2 minutes)

IRC-bot

[62]
Centralized TCP Chat, spam Frequently

 40

Several detection systems were proposed to detect botnet attack. These systems

include BotMiner [63], BotSniffer [64], Rishi [65], and Traffic Aggregation for

Malware Detection (TAMD) [66]. These methods have the following characteristics:

1) performing full packet inspection to process packet content, and 2) observing attack

patterns (such as scanning and sending spam emails) initiated by botnets. BotMiner,

for example, can detect both centralized and P2P botnets by identifying groups of the

hosts that share similar communication network characteristics and similar att-acks. It

assumes that the bots belonging to the same botnet would share similar C&C

communication patterns by responding similar commands to the bot master.

On the other hand, Rishi, TAMD, and BotSniffer, can detect C&C botnets by

identifying synchronized traffic communications that share similar packet content.

However, modern botnets start to use more stealthy ways, e.g. spam-bots that send

spam via stolen webmail accounts like Gmail, to non-observable, thereby making

these systems ineffective [18].

Bothunter [67] also was proposed to detect infected bots based on a pre-defined

infection model. In other words, if the host behaviours are consistent with the infection

model used by BotHunter, then the host is considered as a bot. This method detects

both centralized and P2P structure. However, nowadays bots use a wide variety of

approach for infection which may not be consistent with infection model of Bothunter

[18]. Table 2.4 presents the main botnet detection methods using packet-based

approach.

 41

Table 2.4

Botnet Detection Methods with Packet-based Approach

Botnet Methods P2P

Detection

IRC

Detection

HTTP

Detection

Generic

Detection

BotSniffer [64]

√ √

BotMiner [63] √ √ √

TAMD [66]

√ √

Rishi [65]

√

BotHunter [67]

√

Wurzinger, et al. [68] √ √ √

Markuf [69]

√

Synchronism [70]

√

Jian, et al. [71] √

Dan, et al. [72] √

√: means protocol is supported; P2P: Peer to Peer; IRC: Internet Relay Chat; HTTP:

Hyper Text Transfer Protocol; Generic: detects any protocol

Since the huge volume of traffic requires great scalability for NIDS, detection methods

need to process a large volume of traffic efficiently. However, as stated by Zhang, et

al. [18], most of these detection methods rely on deep packet inspection (DPI) to

process packet’s payload which make their scalability is significantly constrained. In

other words, these botnet detection methods may not be able to analyse all network

traffic related to bot-infected hosts when these methods are deployed in high-speed

network environments, and thus fail to detect these bots.

 42

2.4 Flow-based NIDS

With the issues of packet-based NIDS, researchers had to find an alternative approach

that receives a little amount of data while not compromising the accuracy. The

candidate alternative that attracts the attention of researchers is flow-based NIDS

technique. In this section, before discussing the scalability and detection accuracy of

this approach, the state-of-the-art of this approach is presented. The main components

of flow-based NIDS are also explained. Then the attacks that are detectable by flow-

based only are presented.

2.4.1 Flow-based Detection Overview

Flow-based NIDS looks at aggregated information of related packets of network traffic

in the form of flow record. Thus the amount of data to be processed is reduced.

Moreover, it does not provide any payload to NIDS; it rather provides statistics and

patterns about network connection to be processed by NIDS to identify malicious

flows. Thus, flow-based gathers information of a group of packets while packet-based

gathers information about individual packets.

However, to make the flow information, other network devices such as a router is

usually used. Such information includes number of packets and bytes delivered during

the flow, start and end time of the flow. This information is formed as “flow record”,

and exported to NIDS (either signature-based or anomaly-based) for further analysis

and detection. Currently, there are two protocols that aggregate packets and exports

flow format: NetFlow and IP Flow Information Export (IPFIX).

 43

 NetFlow protocol: is originally developed by Cisco. NetFlow version 9 is the

latest version and version 5 is more popular [73].

 IPFIX protocol: is considered as the successor of NetFlow protocol and it was

developed by Internet Engineering Task Force (IETF) working group [74].

These protocols are designed purposely for network statistics but later it was utilized

for security advantages. However, any network device such as a router, probe, or

switch with Flow-enabled can support these protocols. Wherever the term flow is

mentioned in this thesis, the following definition is applied: a flow can be defined as

a unidirectional data stream between two computer systems where all transmitted

packets of this stream share the following characteristics: IP source and destination

address, source and destination port number and protocol type [75]. These

characteristics are called flow keys. However, these flow keys can be configured by

the user in a flexible way. Several statistical information can be obtained from these

flows using metering process include: 1) number of packets that are aggregated in a

flow 2) Number of bytes in a flow 3) Start time when the first packet is received in a

flow 4) End time when the last packet is received in a flow, and 5) TCP flags occurring

in a flow.

These flow statistics, as well as flow key, are encapsulated and stored in the flow

record datagram. Figure 2.8 shows how three packets, for example, corresponding to

a flow record. The flow keys in this example are source and destination IP address,

source and destination port number, and protocol. Where as shown in Figure 2.8, the

flow record eliminates payload and calculate the length of all packets. The flow keys

 44

and the statistical information are very valuable to detect intrusions with ignoring

traffic payloads.

Figure 2.8. Three Packets Corresponding to a Flow Record

However, flow-based architecture is not as simple as packet-based NIDS. Also, packet

capturing tools and packet sniffers such Wireshark [76] and tcpdump [77] differ from

the flow-based approach. The only flow-based approach can support timeouts

mechanism for exporting flow records [73]. Also, Wireshark and tcpdump do not have

the ability to act as a collector so that the flows are readable by NIDS. While the only

single packet is analysed in packet-based approach, flow-based converts a group of

certain packets into flow record.

2.4.2 Structure

Flow-based NIDS consists of the following components: an exporter (flow

aggregator), a collector, and the NIDS (or analyser) as shown in Figure 2.9. Each

component is detailed in the following subsections.

 45

Network Intrusion

Detection System

Database Profiles

Intrusion?

Collector
Flow Aggregator

(Exporter)

Flows

Flow records

Figure 2.9. Flow-based Components [19]

2.4.2.1 Exporter

The exporter also named flow aggregator, can be considered as an observation point

and it can be dedicated device or built-in router. The input of the exporter is the

observed incoming potential packets. The main duty of the exporter is to create flow

records by accounting traffic statistics from aggregating relevant packets that share

certain flow keys. Flow aggregation means combining several data (from different

packets) into a single composite (flow record) with discarding other data (such as

payloads and some header fields of corresponding packets). The exporter starts

creating flows when two hosts attempt to communicate even when no connection is

established. Each header and timestamp of every potential packet are extracted when

the exporter captures the packets.

However, these flow records are sent out to the collector when they expire. They

expire in the following conditions (depends on the system configurations and can be

changed according to security objectives):

 46

 When the flow was idle for a predefined time (inactive timeout) when no new

packet belongs to exist flows arrives.

 When the predefined maximum time is reached (active timeout). The active

timeout ranges from 1 to 30 minutes.

 When TCP connection flow shutdown by Finish flag (FIN) or restart by Restart

flag (RST).

 When the flow cache memory is full.

If any of the above cases occurs, corresponding flow records are exported to the

collector. However, depending on the strategy of the exporter, a flow can be split into

multiple flow records. The exporter can be located either inside the network for insider

threats and malicious attacks or outside the network.

2.4.2.2 Collector

The collector’s task is to retrieve the flow records created by the exporter and store,

archive and organize them in a suitable format for NIDS for further analysis. It usually

receives the flow record from multiple exporters using unreliable protocol UDP for

the sake of performance. Also, the collector can be accessed through web-based end-

frond software for getting information and statistics such as number of flow records

and bytes.

 47

2.4.2.3 Analyser

The analyser (detection system) then accesses to the collector to analyse and process

the flows for intrusion detection. It then sends the decision to the reporter. Since flow-

based NIDS processes a copy of the network traffic, although it can be near real-time,

it is not an in-line device that can directly block malicious traffic. To mitigate the

detected malicious, commands are sent to another device such as a firewall to filter or

block this malicious traffic.

2.4.3 Scalability

NIDS in flow-based analyses small amount of data (flow records). Scalability issues,

computational processes and storage capacity that appear in packet-based, are not that

primary concerned. In large networks, however, storing flow records may be an issue,

but much more affordable when comparing with the packet-based approach. Also,

since the fact that more than one packets that have common properties are classified

in one flow record, the number of flow records that has to be analysed is less than the

number of corresponding packets. Thus, flow-based is the logical choice for NIDS in

high volume networks [78].

However, it seems that the overhead and computational resources consumption in the

detection analysis, whether by signature-based or anomaly-based, are disappeared but

on the cost of flow exporting and collecting process. This is because that the exporter,

or NetFlow device such as a router, offloads and absorbs the task from NIDS itself. It

means that when the router is used to generate flow records, the router itself might be

overloaded, hence a negative impact on the network, not on NIDS. This impact cannot

 48

be seen in packet-based NIDS since no extra devices are involved. Also, the

transmission of the exported flow records to the collector can consume a significant

amount of bandwidth.

However, sampling approaches either in packet-sampling [79] or in flow-sampling

level [73, 80] are proposed to solve these issues. However, several studies present the

impact of sampling approaches on flow accounting [81] NIDS. As a conclusion,

tradeoffs between reducing data (either in a packet or flow sampling) and supplying

sufficient detailed measurement for intrusion detection are observed. As a

consequence of packet sampling in flow-based NIDS, the properties and information

of the original packets can be lost or at least estimated since the flows are shortened.

It is obvious that the scalability of flow-based NIDS depends mostly on the

performance of the exporter [82]. If the amount of overhead in the network of flow-

based NIDS is more or equivalent to the amount of overhead in the packet-based

NIDS, then there is no advantage of using flow-based regarding scalability. Several

works attempt to improve the performance of flow aggregation process such as [22,

73].

2.4.4 Detection Accuracy

The question remains whether flow-based provides enough information, compared to

payload inspection, to be useful for intrusion detection. Since flow-based provides

NIDS with only information about traffic statistics, patterns, and connections, attacks

that are injected in payload might not be detected. Moreover, flow records contain

aggregated data up to transport layer. Thus, some attacks, especially on the application

 49

layer that carry malicious code, are only visible in the packet payloads. Researchers

work very hard to detect these kinds of attacks. However, these kinds of attacks can

be identified by flow-based NIDS if the attackers perform multiple attacks in series

and cause many flows targeting the victim [19].

These issues encourage researchers to enhance flow-based detection accuracy and

reducing the false negatives. Although this area of research is still young, promising

results are achieved by researchers with focusing only on flow-based. When analysing

the traffic statistics, patterns, and connections provided by flow-based aggregation,

malicious and intrusion traffic patterns can be easily identified during attacks.

Many types of research in the literature proposed systems that detect malicious

activities. For example, DoS attacks can be detected by using flow-based detection

only [40, 57, 83, 84]. Abdulla, et al. [85] and Dressler, et al. [86] developed models

that detect worm attacks by inspecting the flow of traffic only. In a recent study,

several works proposed flow-based detection to detect SSH dictionary and brute force

attacks [87, 88]. Also, flow-based detection only was also proposed to detect botnet

traffic by [89-91].

Table 2.5 shows and classifies some of the attacks that can be detected by flow-based

approach only. It also shows the type of detection methods used for each work.

Appendix C presents how these works detect DoS, Worm, and SSH attacks. As a

summary, flow-based NIDS is able to detect most of the attack mentioned in the

literature. Several studies were proposed to enhance detection methods in this fields.

The main disadvantage of these studies is the significant false alarm rate as will be

 50

discussed later in this chapter. The following subsection presents how botnet attack

can be detected using flow-based NIDS.

Table 2.5

Attacks Detectable by Flow-based NIDS only

Authors Attack Detection Method

David and Thomas [83], Yu,

et al. [84]

DoS, and distributed

DoS
Anomaly-based

Munz and Carle [57] DoS Hybrid-based

Kim, et al. [40] DoS Signature-based

Abdulla, et al. [85], Dressler,

et al. [86]
Worm Anomaly-based

Hellemons, et al. [87],

Vizváry and Vykopal [88]
SSH and brute-force Anomaly-based

Amini, et al. [89], Zhao, et al.

[90]
Botnet Not-specified

2.4.5 Botnet Detection Related Works

In this section, several studies on botnet detection using flow-based approach are

presented. Several studies adopted machine learning techniques for detecting

malicious activities. In machine learning, feature vectors are used to represent numeric

characteristics, named features of an object in a mathematical and analysable way. On

other words, it is a vector containing multiple elements about an object. These vectors

are important for many different areas of machine learning because of the

effectiveness and practicality of representing objects in a numerical way for the

analysis process [92]. For example, to generate most significant attributes, Wrapper

[93] subset evaluation is used to create all possible subsets from the feature vectors.

 51

Wrapper approach basically finds appreciate features with a different set of features

through a repetitive process of the classification algorithm [93].

Stevanovic and Pedersen [94] presents botnet detection method using flow-based data.

They converted network traffic into network flows in which to be classified. Several

classifiers were used for evaluating the validity of their method. They use real traffic

traces of P2P botnets and background traffic for training and testing processes. The

authors concluded that J48 [95], Random Tree [96], and Random Forest [97] algorithm

were the most successful algorithms for their operations. Nogueira, et al. [98] also

proposed the use of the flow-based approach to detect botnet activities among network

traffic. The researchers employed a Neural Network model in conjunction with the

flow-based approach. Their proposed model was evaluated by testing on traffic

generated by P2P application, Skype. However, botnet activity was artificially

generated. The detection of botnet activities using their method was quite successful

but with the reasonable false positive rate.

Saad, et al. [99] implemented an approach to detect P2P botnet activity that is slightly

different from the studies above. In addition, to using flow-based attributes, they used

host-based attributes that are exhibited in communication between hosts. In their

method, they use Support vector Machine (SVM) [100] as machine learning

technique. The aim of their research was to meet three botnet detection requirements;

adaptability, novelty detection, and early detection. They used traffic traces that

represent real world scenarios for their experiments. However, the authors concluded

that the proposed method did not adequately satisfy the three mentioned requirements

 52

for effectively detecting botnets. For HTTP botnet detection, Haddadi, et al. [54]

proposed a new framework based on botnet behaviour analysis. The authors employed

machine learning algorithms on flow-based traffic using NetFlow software, Softflowd

[101]. The implementation of proposed method used C4.5 and Naïve Bayes as learning

algorithms. The results showed that the C4.5 algorithm obtained very promising

performance on detecting HTTP botnet with a significant number of false positive

alerts.

Zilong, et al. [62] developed a detection method for IRC botnet activity based on

abnormal behaviour. They use NetFlow data as raw data. The main advantage of this

approach is that it does not need application layer information for detection. However,

this approach cannot detect real-time flow. BotFinder [102] proposed a detection

method that senses HTTP and IRC bots using NetFlow dataset. This method leverages

the discovery that C&C communication of certain bots trails specific regular patterns.

Machine learning was used to identify the key features of these communications based

on observing traffic that bots generated in a controlled environment. Based on these

features, BotFinder creates models that can be deployed to identify bots. This approach

achieves high detection rate but with generating false positive alerts.

Zhao, et al. [90] study the feasibility of detecting P2P botnet traffic without analysing

a complete network flow. Machine learning was used for classifying behaviour based

on time interval. The proposed method was based on Network flow while detecting

real-time botnet by inspecting these flows in small windows. Using real datasets, they

show that it is possible to identify the presence of botnet with high accuracy rate but

 53

with the reasonable false positive rate. Finally, the method called Disclosure [103]

proposed a large-scale botnet detection based on Netflow data and machine learning

techniques. The method relied on flow attributes including source and destination IP

address, source and destination port number, start and finish time of flow, and number

of packets and bytes per flow. Also, flow size, and client access pattern have been used

to distinguish C&C communication over normal traffic. As a result, the Disclosure can

perform real-time detection of IRC and HTTP botnet with the reasonable false positive

rate. Table 2.6 summarizes the related works discussed in this subsection.

As a summary, they use flow-based approach to detect various botnet attacks.

However, they reported false positive rate in their studies. Also, it is stated by

Wijesinghe, et al. [104] that high overheads were observed in their approaches in the

aspect of dataset size, CPU utilized by machine learning techniques, and for IP flows

capturing.

Table 2.6

Botnet Detection Methods with Flow-based Approach

Research P2P IRC HTTP

Stevanovic and Pedersen [94] √

Nogueira, et al. [98] √

Saad, et al. [99] √

Haddadi, et al. [54]

√

Zilong, et al. [62]

√

BotFinder [102]

√ √

Zhao, et al. [90] √

Disclosure [103]

√ √

 54

2.5 Packet-based and Flow-based Detection Comparison

Comparisons between packet-based and flow-based approaches are presented in this

section. Then the trade-offs between these approaches are discussed.

2.5.1 Comparison

Having explained the packet-based and flow-based NIDS and their related works

regarding scalability and detection accuracy, Table 2.7 summarizes the differences

between packet-based and flow-based NIDS. It shows some advantages of flow-based

NIDS over packet-based detection. Unlike packet-based detection, since flow-based

NIDS can provide valuable information to anomaly-based NIDS, flow-based NIDS

can detect unknown attacks [41]. Also, encrypted payload does not influence the

process of flow-based NIDS since no payload is analysed. In other words, encrypted

malicious traffic can be detected using flow information without decryption [42].

However, the proposed approach used in this research has combination of flow-based

and packet-based NIDS. In other words, the proposed approach attempts to take the

advantages of flow-based NIDS and reduce the disadvantages of packet-based NIDS

as discussed in Chapter 5.

2.5.2 Trade-offs

As mentioned earlier, the efficiency of NIDS depends mainly on the type of data to be

processed: individual packet (with payload) or flows [105]. Packet-based provide full

information to NIDS to detect attacks while flow-based provide limited and

aggregated information to NIDS for intrusion detection. In term of scalability, since

packet-based NIDS process large amount of data, it degrades its scalability, especially

 55

in high volume network. On the other side, flow-based is a good choice for this issue

since it deals with the small amount of data. In term of accuracy, Information gathered

from packet-based is enough for NIDS to detect almost all kinds of attack, hence

improving NIDS accuracy. On the other side, since the information gathered from

flow-based is aggregated, NIDS accuracy suffers from false alarms.

Table 2.7

Comparison between Packet-based and Flow-based NIDS

Feature Flow-based NIDS Packet-based NIDS

Data to be analysed [106] Flow records Header and payload

Size of data to be analysed [43] Small Mostly large

Detection method mostly used

[106]

Anomaly-based Signature-based

Resource consumption [106] Usually low Usually high

Size of network preferred [43] Small and Large

network

Small network

Extra device needed[107] Extra device is

required to reform the

traffic

No need extra device

Delay before detection analysis

[107]

Has to delay since

packets need to be

aggregated

No delay

False positive rate [107] High Low

Allow to access raw packet data

for further analysis [106]

Cannot access raw

packet

Can access raw

packet

Privacy [107] Confidential data in

payload is not

compromized

Confidential data in

payload is

compromized

 56

Flow-based detection promises to be able to process data in high volume network with

limited data with a trade-off of a higher false positive rate, while in packet-based, it

promises to be able to detect intrusion in low false alarms with a trade-off of higher

resource consumption with additional data processing.

2.6 False Positive Reduction

Due to the complexity of characteristics of malicious and non-malicious traffic, NIDS

based on flows faces challenges when distinguishing between this traffic especially

when they have similar characteristics [105]. Such similar characteristics may include

in flow duration, port number, and number of packets per flow.

It affects negatively on NIDS decision when considering normal traffic as intrusion,

hence high false positive rate is a result [103]. However, enhancing the detection

algorithm accuracy of NIDS has been a hot issue in research while relatively less for

enhancing the false positive [108]. With the issues of the flow-based NIDS approach,

researchers attempt to handle them with a variety of methods. This section discusses

several approaches that aim to reduce the false positive rate.

2.6.1 Scope of Attacks

Approaches that reduce false positive rate are proposed by specializing NIDS to detect

certain types of attacks, thus, make the signatures more specific. As discussed in

Section 2.4.4, several types of research propose special NIDS that only focus on

worms Abdulla, et al. [85], Dressler, et al. [86], botnet Amini, et al. [89], Zhao, et al.

[90], DoS [83][84], and brute-force Hellemons, et al. [87], Vizváry and Vykopal [88]

 57

attacks. By specializing and narrowing to certain types of attacks to be detected, the

false positive rate can be reduced. This is because when the signatures are more

general, any similar pattern can be identified as an intrusion. However, although these

approaches show promising low false positive rate, they did not utilize the

combination of flow-based and packet-based approaches for better results with

increase the range of attacks.

2.6.2 Network Awareness

Another approach that reduces the false positive rate is when NIDS deeply understand

the environment of the network behaviour [8, 106]. Information provided by legal

vulnerability scanner, for example, helps NIDS to comprehend its environment.

Shankar and Paxson [109] proposed a model that builds profiles of the environment

using an active mapping that helps NIDS to understand its environment. These profiles

store the current network architecture, topology, and policy.

Correlation between alerts and discovered vulnerabilities can also decrease false

positive rate [110]. Also, Sourour, et al. [111] used further information about the

network characteristics and provided them with NIDS analysis. These characteristics

include security policy, network topology, and the types of software installed on the

network and hosts. Adding these characteristics to NIDS can avoid false positive

generation [18]. For example, when a security policy X is changed into Y and NIDS

does not update with the policy Y, any event that matches with policy Y will be

considered as an intrusion. Adding new device or host to a network should also inform

NIDS to update the profile to avoid false positive. However, most of the network and

 58

system environments are dynamic and not fixed. Thus, such approaches face

challenges in modern environment, hence frequent building profiles is required to

improve detection accuracy.

2.6.3 Traffic Cleanness

Some researchers focus on the pre-processing part of NIDS and machine learning to

reduce the false positive rate. From the fact that the cause of high false positive is the

raw data that enter into NIDS, they implement a pre-processing module to reduce

ambiguity, irrelevant, duplicated, and noise data from traffic before entering into

detection engine [17, 106]. Filtering technique for pre-processing using random forest

[97] classification algorithms is proposed by [112]. Also, Bhatti and Virparia [113]

proposed a pre-processing module that cleans the traffic and handles missing data of

the traffic to be suitable and more accurate for further analysis.

In their module, four rounds were implemented. The first round was to remove noise

and incomplete data. The second round was feature selection and extraction. In this

round, it removed spurious and duplicate data to reduce the false positive rate. The

third round used configuration based process where the network topology, existing

host and services were stored. Since NIDS collected information from various sources

for better detection accuracy, this raises a challenge with dealing with a different data

format which might lead to a false positive. To solve this problem, the last round was

proposed to generate unified data format to be analysed by NIDS. However, this

approach might reach to exaggerative traffic cleaning. This is because when cleaning

 59

the traffic, valuable information might be deleted and hinder an organization to access

to them.

Also, Bhatti, et al. [114] proposed an approach that combines genetic and neural

network techniques. Although the authors did not show any result, the proposed model

divided into three stages to reduce false positive rate. Firstly, the preprocessing stage

was used to clean the traffic and to reduce topological sensitive false positive. In the

second stage, genetic algorithm and neural network identified intrusions by further

processing. In the last stage, conflicting results were sent to NIDS to identify false

positives and updated the system accordingly. Moreover, Spathoulas and Katsikas

[115] proposed filtering method using fuzzy logic. The authors take some properties

and information of generated alarms such as signature, timestamps, and IP addresses,

as an input. Then filtering technique is used to reduce false alarm rates. However,

although these alert analysis techniques are promising low false positive rate,

scalability issues getting worse and the false negative rate become higher.

2.6.4 Alert Correlation

Alert correlations and post-processing techniques are also used for false positive

reduction. Alerts that are generated by NIDS become inputs to a processor for further

analysis using data mining or machine learning. Pietraszek and Tanner [116] and

Abuadlla, et al. [17] used one layer as post-process for alert analysis after intrusion

alarm was raised. The authors used either data mining (off-line) or machine learning

(on-line).

 60

To identify successful intrusion attempts and reduce the false positive rate, some

approaches for alert verification are proposed based on host responses. Bolzoni, et al.

[117] and Kaur [118] did not take only advantages of using alert correlation to provide

a more accurate alert, but also analysing the outgoing traffic. The outgoing traffic is

the output traffic from the compromised or the target system. They use three

components in their approach: existing NIDS, anomaly detection output, and

correlation system as shown in Figure 2.10. Their method checks if the traffic is raising

an alert in the input NIDS generates an anomaly in outgoing traffic too.

IDS
Incoming

Traffic

A
le

rt

Output

Anomaly

Detector

(1)

(2)

(3)

Incoming traffic

Outgoing traffic

Correlation

Anomaly results

Intrusion?

Figure 2.10. Correlation Approach by Bolzoni et al. [117]

The approach firstly takes the alert raised by NIDS (signature-based or anomaly-

based) that monitors incoming traffic. Then anomaly detection output analyses the

outgoing traffic of the victim host for further process. Correlation system used the alert

 61

raised by NIDS and the result from anomaly detection output to remove false positive

raised by input NIDS. If the anomaly detection output generates an anomaly, the alert

is forwarded to the IT staff for desired action (true positive); otherwise, the traffic is

discarded (false positive). However, this method is only designed for TCP-based

network services such as HTTP. Also, they did not use packet-based NIDS for the

second stage for decision confirmation.

The idea of utilizing the outgoing traffic of the victim host is also used before

generating certain decision of worm detection. Gu, et al. [119] also introduced a model

that scans the outgoing traffic for certain port numbers. When an anomaly attacks a

certain host port number, its output traffic of that host is scanned. This output traffic

is then used for checking other systems that have similar port service whether they

have similar output traffic. If this is the case, it means that the attacker tries to contact

multiple systems; hence, worm infection is probably performed. Wang, et al. [120]

also proposed a model in a similar way. However, the outgoing traffic is cached when

an anomaly is identified in a host to be compared to the neighboured output traffic.

When this traffic is matched, this means that worms have infected the host, and these

worms were trying to replicate themselves by spreading into another host.

As a summary, the approaches mentioned in this subsection have several limitations.

Other types of attacks are not considered in these approaches. Also, since these

approaches rely strongly on the output traffic or responses generated from the target

system, forged output traffic generated by the attacker could trick the alert verification

process and hide from detection. On other words, an attacker can modify the

 62

anomalous output traffic, after the intrusion has taken place, to be legitimate traffic by

crafting the attack payload. The target host then executes machine encoded

instructions that are injected by the attacker to fake the outgoing traffic and to make

the traffic normal. So, this vulnerability that accepts this code injection should be

protected and the system output traffic sometimes cannot be used as a trusted method

for reducing false positive rate. For more details on this issue, refer to [121]. Table 2.8

summarizes the related works from this section.

Table 2.8

Related Works for False Positive Reduction

Researches Approach Limitation

[83-85, 87-90] Specializing attacks Scalability issues were not studied in

details.

[109-111] Network and system

environment awareness

Most of the network and system

environments are dynamic

[112-115] Traffic cleanness and

machine learning

Exaggerative traffic cleaning may

occur, and valuable information

might be deleted

[116, 117, 119,

120]

Post-processing and

alert correlation

Forged output traffic generated by

the attacker could trick the alert

verification.

2.6.5 Hybrid Signature-based and Anomaly-based

To reduce the NIDS false positive rates and to address the drawbacks of signature-

based and anomaly-based detection, some researchers proposed approaches that

combine both detection methods to reach accuracy (low false alarms) of the signature-

based detection and have the ability to detect new attacks.

 63

Aydın, et al. [122] proposed a hybrid NIDS by combining anomaly-based and

signature-based detection. Signature-based detection is based on Snort. Their aim is to

make NIDS to detect unknown attacks using anomaly-based approach and reduce false

positive rates. These anomaly detections act as pre-processor of Snort and use

statistical methods which are the most common method that detects intrusion by

examining abnormal traffic. The pre-processor operation can give alarms, edit or filter

the packets before they reach Snort detection engine. Although their approach has an

improvement of detecting new attacks, they did not consider the high volume traffic

issues. They use packet-based only as a data source for the engines which has negative

impacts on the NIDS scalability. Also, their proposed hybrid forces all incoming

packets to be inspected by the two engines, anomaly-based and signature-based,

without sampling strategy. This means that delay and performance overheads occur in

NIDS itself.

Tombini, et al. [123] proposed a hybrid architecture in which anomaly-based detection

comes first, then feeding the signature-based detection with potential intrusions. They

implement anomaly detection to list suspicious events. Then, signature detection is

applied to classify these suspicious items into three groups. These groups are attacks,

unknown attacks, and false alarms. The main limitation of this approach is that, in the

case of suspicious items, corresponding packets have to be inspected twice, once by

anomaly-based and the next by signature-based detection. Thus, scalability of the

whole NIDS might be degraded.

 64

Ding, et al. [124] and Hwang, et al. [125] proposed a technique that also combined

signature-based and anomaly-based NIDS. Their hybrid consists of three sub-

modules: signature detection, anomaly detection, and signature generation modules.

The last module extracts the intrusion signatures that are detected by anomaly

detection and map them into Snort rules. These signatures are then added to Snort

database for future detection of similar attacks. By using the anomaly-based method,

it shows an improved performance through mining anomalous traffic episodes from

Internet connection. In their hybrid technique, placing signature-based engine at first

stage means every per-packet must be inspected which degrades the scalability of

NIDS. Thus, this hybrid approach is not suitable for high volume network.

Similar to [68][125], Yang, et al. [126] also proposed a hybrid approach of signature-

based detection and then anomaly-based detection based on decision tree algorithms.

Zhang and Zulkernine [127], Hussein, et al. [128], Day, et al. [122], and Kaur [111]

proposed a hybrid approach that combines signature-based detection and anomaly-

based. In their approaches, signature-based is followed by anomaly-based detection.

Their evaluation showed that their signature detection produced a high detection rate

with a low false positive rate, and the anomaly detection has the ability to detect novel

intrusion. In [127], observed activities firstly are fed to the signature detection to detect

known intrusion using random forest [97] algorithm. Then uncertain items that do not

match any pattern in the previous phase are fed to the anomaly detection to detect

unknown attacks using outlier detection that is provided by random forest algorithm.

Signature detection can remove known intrusion signatures from the dataset, so that

 65

the anomaly detection performance can be improved by only applying the rest

signatures.

However, in their approach, some intrusions that are very similar to each other cannot

be detected by the anomaly detection since this is a drawback of the outlier detection.

Also, processing every packet on the wire effect negatively on NIDS scalability.

Table 2.9 summarizes related works in this subsection along with the aspect of

detection engine and data processed type. In the proposed mechanism in this research,

both packet-based and flow-based are used as data source type as discussed in the next

chapter.

Table 2.9

Related Works of Hybrid Detection Methods for False Positive Reduction

Authors Detection Engine Data Source Type

Aydın, et al. [122] Anomaly-based (as pre-processor) then

signature-based

Packet-based

Ding, et al. [124] Signature-based then anomaly-based Packet-based

Yang, et al. [126] Signature-based and anomaly-based in

parallel

Protocol-based and

packet-based

Tombini, et al. [123] Anomaly-based then signature-based Packet-based

Zhang and Zulkernine

[127]

Signature-based then anomaly-based Packet-based

Hussein, et al. [128] Signature-based then anomaly-based Packet-based

Hwang, et al. [125] Signature-based then anomaly-based Packet-based

Day, et al. [129] Signature-based then anomaly-based Packet-based

Kaur [118] Signature-based then anomaly-based Packet-based

 66

2.6.6 Hybrid Flow-based and Packet-based

Another approach proposed by researchers to reduce the false positive rate is by

combining (hybrid) packet-based and flow-based techniques. However, the current

research literature is rarely considering this approach. From the literature, this

approach was conducted by [9], [22] and [23]. Limmer and Dressler [22] proposed a

new monitoring technique called Front Payload Aggregation (FPA). Their technique

combines the flow records and their corresponding (part of) payloads in the pre-

processing stage to reduce the amount of data to be processed by NIDS.

The authors collected a certain amount of bytes from the payload and added it to the

corresponding flow records before NIDS analyses it. They used VERsatile

MONitoring Toolkit (Vermout) [22] for performance testing for their FPA. Vermout

is an open-source software monitoring toolkit for creating and processing flow data

based on the traffic data and producing flow records [22]. It also can accept and

process raw packet by Packet Capturing (PCAP) library [130]. They successfully

managed to integrate their FPA approach into the current monitoring protocol without

any disruption.

Their work has several limitations. In their performance results, however, no

performance on detection accuracy analysis in NIDS was presented in their work. In

other words, false positive and negative rate were not studied in their analysis.

Although flow aggregation goal was to reduce monitoring information, this goal

cannot be accomplished when certain attacks are involved. Moreover, they proposed

this approach with the context of enhancing the performance of signature-based

 67

detection in high volume network, not from the context to reduce the false positive

rate as the main mission of this research does. Also, packets of every flow regardless

whether they are suspicious or non-suspicious, are processed by signature-base

detection. This means more resource consumptions are needed for processing these

packets.

Hensel [23] proposed a model that combines packet-based and flow-based. The author

managed to reduce the number of packets to be processed by NIDS and enhance alert

confidence. The most important part of combining the two approaches is the

communicating mechanism between them. The author used the Bro client

communications library (or so-called Broccoli) [131] to enable communicating

process between flow-based and packet-based NIDS (e.g. exchange IP addresses).

However, the author highlighted the significant overhead consumption of Broccoli

method. Also, the full payload of the packets was captured and inspected, and high-

speed volume measurements were not considered in his work. Overall, the author

stated that no saving in resource consumption could be observed in his approach. Due

to limited time, the research was not able to make a conclusive statement regarding

detection performance

Golling, et al. [9] also attempt to take the advantages of combining flow-based and

packet-based detection. However, although they considered high volume traffic (10

Gbps), no results were reported since the implementation is under deployment. As a

summary, the work done by Limmer and Dressler [22] was focused on enhancing the

scalability of signature-based detection, not on reducing false positive. On the other

 68

side, although Hensel [23] focused on improving scalability and on false positive

reduction, unfortunately, due to time limitation, the author could not do further

evaluation to make a universal statement in term of detection performance.

2.7 Chapter Summary

At the beginning of this chapter, motivation of this research was presented. It showed

the growing of network infrastructure, speed, and threats. There were lacks of the

current computational frameworks, and identifying the right portion of the payload to

be processed that could handle with the increasing of the network speed, growing of

network traffic, and growing of the attacks and threats. State of the art of IDS, which

is believed to protect from these threats, was explained. IDS types in term of location,

detection methods, and data-processed were also presented.

The main problems and requirements of NIDS, which are scalability and detection

rate, were discussed. The types of NIDS in term of data-processed, which are packet-

based and flow-based, were explained in details. For each of these types, scalability

and detection accuracy were discussed. Related works for botnet detection using both

packet-based and flow-based were presented in details. Then, the comparison between

these two types was explained and summarized. It showed that flow-based is the good

choice in high volume network while the packet-based is more suitable for detection

accuracy.

Also, future NIDS should be designed without the need of the payload for the sake of

scalability. To handle the issue of high false positive in NIDS generally, several

researchers had tried to reduce the rate of false positive using approaches such as

 69

correlation, a hybrid of signature and anomaly methods, and a hybrid of packet-based

and flow-based.

 70

CHAPTER THREE

METHODOLOGY

In the previous chapter, discussion related flow-based, packet-based and its

combination is presented. This chapter proposes the research methodology adopted in

this research. The phases in research methodology include: proposed mechanism

design, components identification, implementations, and evaluation, see Figure 3.1.

For the first phase, Section 3.1 presents the design of the proposed mechanism. Each

component in the proposed mechanism is explained in Section 3.2. These components

include: traffic capture, flow aggregation, packet-based detection, and flow-based

detection. Section 3.3 presents the implementation of the proposed mechanism. In this

section, verification and validation of the proposed mechanism are also explained.

Finally, Section 3.4 presents the evaluation of the implemented mechanisms in term

of detection accuracy and resource consumption. In this section, the experiment

testbed, datasets, and performance metrics used in this research are explained in

details.

3.1 Proposed Mechanism Design

The outcome of this phase is the design of the CHID mechanism and it is based on the

analysis of the literature. Where as shown in Figure 3.2, the idea of this design is to

obtain the advantage of flow-based NIDS by having a small amount of data to be

processed and the advantage of packet-based NIDS by having a low false positive rate

(see the oval in Figure 3.2).

 71

Figure 3.1. Research Methodology

Using this hybrid approach will overcome the bad scalability and packet drops of the

packet-based NIDS. This is because the packet-based NIDS inspects only the packets

marked by flow-based NIDS. On the other hand, using packet-based NIDS will

overcome the high false positive rate of flow-based NIDS since the detected packets

will be inspected by packet-based NIDS. To improve NIDS performance while basing

on the critical review of many related works, false positive of flow-based detection

and resource consumption of packet-based detection were determined as the key

Experiments and

Proof of Concept
Implementations

Verification and

Validation

(Objective 2)

Testbed Process and

Experiment Study
Evaluation

CHID Evaluation and

Analysis

(Objective 3)

Literature Analysis
Components

Identification

Components

Selection of CHID

(Objective 2)

Literature Analysis
Proposed

Mechanism Design

CHID Proposed Flow

Chart

(Objective 1, 2)

Methods Phases Deliverables

 72

factors to be addressed in this research. Furthermore, the overall ultimate goal for this

research is the reduction of false positive and resource consumption of NIDS.

Figure 3.2. The Idea of the Proposed Mechanism (the scope of the idea is covered by

the oval)

As a consequence of addressing these factors, a conceptual model of CHID was

designed to describe the expected desired and improved situation using the hybrid

approach. Figure 3.3 illustrates the conceptual model of the proposed solution named

Conditional Hybrid Detection Approach (CHID). As shown in this Figure 3.3, false

negative from flow-based NIDS is not considered since it is assumed in this research

that the flow-based NIDS is able to detect all kinds of intrusions. In other words, the

focus of detection accuracy improvement concerns the false positive rate only.

The flowchart is used in this thesis to present the proposed CHID mechanism as shown

in Figure 3.4. As shown in the Figure, not every incoming packet goes through packet-

based detection unless flow-based detection identifies it as suspicious traffic. The

 Packet-based NDIS

 Bad Scalability

 High Detection Accuracy

 Full Payload Inspection

 Packets Drop

Flow-based NDIS

Better Scalability

Data Reduction

High False Positive

 73

proposed mechanism is conditional hybrid-based detection. It is conditional because

the packets will be inspected by packet-based only if the condition occurs. When the

flow-based detection identifies a suspicious flow, it will make the decision for these

suspicious flows as an intrusion.

Traffic

Flow-based

IDS

False Positive

Packet-based

IDS

False Positive

 Reduction

High PerformanceHigh Accuracy

Figure 3.3. Conceptual Model of the CHID Approach

Marking these suspicious flows as intrusion will avoid false negative to take place.

This step is important since the consequences and damages of a false negative are

higher than false positive. Also, this mechanism can reduce the false positive rate of

the flow-based detection. However, when the suspicious flows are marked as an

intrusion, this decision is corrected to the operator later if it is found not an intrusion.

This is achieved when packet-based detection analyses these packets that belong the

suspicious connection and then makes a decision of this detection. In the case when

no suspicious identified by flow-based detection, detection accuracy should be strong

enough to avoid false negative.

 74

Suspicious?

Receive Network
Traffic

Flow Aggregation

Flow-based Detection

Bring corresponding
packets

Packets

Flow records

Request
packets

Packet-based
Detection

Packets

Do nothing
Yes No

Start

Retrieve
packet

End

Figure 3.4. Proposed Flow Chart

Since packet-based NIDS has to import the suspicious IP addresses from flow-based

NIDS, communicating process between the two detection should be designed. Input

Framework (IF) method [132] will be proposed in this research as communicating

 75

process method in CHID mechanism. It integrates external information in real-time

into an NIDS source without negatively affecting the NIDS’s main task, even in high-

volume environments. However, this CHID approach is suitable for repetitive patterns

in which the attack has a sequential frequent pattern that involves many connections

to or from the particular host in short time.

A few existing researches used similar way in which they combine flow-based and

packet-based NIDS [9], [22] and [23]. However, they differs from the proposed

approach. Limmer and Dressler [22] proposed this approach with the context of

enhancing the performance of signature-based detection, not from the context to

reduce the false positive rate as the main mission of this research does. Also, unlike

the proposed work, packets of every flow regardless whether they are suspicious or

non-suspicious, are processed by signature-base detection. This means more resource

consumptions are needed for processing these packets.

Instead of using IF method for communicating process between flow-based NIDS and

packet-based NIDS in the proposed mechanism (see Chapter 5 for more details),

Hensel [23] used the Bro client communications library (or so-called Broccoli) [131].

However, the author highlighted the significant overhead consumption of Broccoli

method. Also, his approach captured and inspected the full payload of the packets

instead of partial payload. In addition, [9] and [22], did not use machine learning

technique for flow-based detection as the proposed mechanism does (see Chapter 4

for more details). Golling, et al. [9] reported that the implementation of their work was

under deployment.

 76

3.2 Component Identification

In this phase, the practical requirements to operate all the mechanism in this research

are presented. Four main components in the proposed mechanisms include traffic

capture, flow aggregation, packet-based detection, and flow-based detection. The tool

for every component in the mechanism is explained and justified in this section. The

deliverable of this phase is the component selections based on the proposed CHID

mechanism.

3.2.1 Traffic Capture

Packet capturing is the practice of retrieving packets from the traffic link and the

forward it to the respective device to do further process. This task can be performed

by the very well-known software library named Packet Capturing (PCAP) [130].

PCAP (or libpcap for Windows) is an open source library suitable for off-the-shelf

hardware and is used by many operating systems to capture the packet from network

interface [130]. Linux system is considered to be the best choice since PCAP can

optimize the Linux kernel for capturing the packets. Another library for traffic capture

is PF_RING [133]. It directs the received packets to a ring buffer. However, PF_RING

could not be implemented in this research since it requires cluster-mode in Bro NIDS.

PCAP has the ability for packet filtering. This filtering use mechanism called Berkeley

Packet Filtering (BPF) [134]. This mechanism provides the ability to limit the

monitoring of the incoming traffic to only predefined data. Before the packets are sent

out to the next module, BPF has to be checked. For example, traffic might be filtered

according to the protocol set (HTTP and/or FTP), IP addresses of the source and

 77

destination, port numbers, or packet length. In normal flow aggregation, since flow

aggregation needs data in each packet header up to transport layer, length filtering in

PCAP is used to capture only this data instead of capturing the whole packet.

Also, PCAP can record packet not only with a full payload but with a predefined length

of the payload. This is used when the monitoring system requires partial payload to be

processed. This flexibility of size can be easily configured in PCAP. TCPDump tool

[77] provides PCAP library and BPF filtering and storing the traffic on a disk for

further investigation. From a performance perspective, monitoring system depends on

the implementation of the traffic capturing mechanism. To achieve high scalability in

high volume network (more than 1 Gb/s), every incoming packet must be retrieved

and sent to next module. If the packet is not forwarded to the next module, drop packet

occurs.

3.2.2 Flow Aggregation

Flow aggregation is the process that receives packets from PCAP and groups the

packets that share flow keys into one flow records. Flow aggregation can be as a device

(NetFlow router) or software running on a desktop computer [73]. In the

implementation, software-based flow generation is selected for some reasons. Any

configuration such as timeouts can be set easily. Parameters such as flow keys can be

added or removed in a flexible way. In contrast, these features cannot be found in the

hardware-based router device. This is because the device is mostly belonging to an

organization that does not give users full control on it.

 78

The most popular software-based flow aggregation is Softflowd [101]. It is open

source software that captures packets at the network interface, aggregates the packets

into flows, and exports the flow records to the collector. Softflowd supports NetFlow

version 5 and 9 and IPFIX protocols. There are other software-based flow aggregations

such as nProbe [135], and fprobe [136]. Softflowd is selected for this work for the

following reasons:

 It provides efficiency and high performance in flow aggregation in software-

based.

 Its source code is available, and it is Global Public License.

 It provides flexibility in configuring the parameters to produce flow records

using command-line.

3.2.3 Packet-based Detection

The most software-based NIDS used in the research community are Snort [34],

Suricata [32], and Bro [35]. To select software-type intrusion detection platform, the

following criteria are evaluated and discussed for each system:

 User-friendly: Does NIDS allow development in an easy way?

 Prototyping: Is NIDS suitable for creating of method prototype?

 High-speed network support: Does NIDS support monitoring in high-speed

traffic environments?

 Extensibility: Is the functionality of NIDS extendable in a reasonable way?

 79

Among other NIDSs, Bro is user-friendly [10]. For example, in contrast to Suricata

and Snort, Bro is not rule-driven in which it implements a scripting environment for

creating rule-based detection. In other words, Bro detection rules are described by the

scripts which use Bro programming language. This language is an interpreted in a

domain-specific type. Bro policy script is the basic analyser used to specify what

actions to take and how to report activities. Regarding prototyping, it was proved by

Svoboda [10] that Bro is an essential tool for effective development of proof-of-

concept and fully functional prototype. In addition, varies proof-of-concepts are

required in this research in order to come out with the final prototype.

Also, Bro NIDS remains best suited for high throughput research environments as

stated in [4]. For extending the functionality of the system, Bro offers features through

its script analysis engine and capability to extend the response via script. Bro provides

scripting language, and it comes with a large set of pre-built functions, yet the user

can put Bro in novel ways by writing and extending the own policy script [10].

Table 3.1 presents the summary of the mentioned criteria related to each NIDS.

Therefore, in this research, Bro is chosen as packet-based and flow-based detection.

Table 3.1

Bro Advantages among Other NIDSs [10]

NIDS
User-

friendly
Prototyping

High-speed network

support
Extendibility

Snort No No Somewhat Somewhat

Suricata No No Somewhat Somewhat

Bro Yes Yes Yes Yes

 80

3.2.4 Flow-based Detection

In the flow-based detection stage, flow records are processed and analysed by the

predefined algorithm and method. The output of the flow-based detection is a decision

whether the flow is suspicious or non-suspicious. In the case of suspicious, the output

contains details of the suspicious flow such as attacker's IP address and type of botnet

activity. Flow-based analysis mostly depends on using statistical information and

thresholds to differentiate between normal and abnormal behaviour. If the threshold is

exceeded, then the suspicious state is identified. For example, if the number of flows

that share the source and destination IP addresses reaches a specific number of flows

within a specific time, then this flow is marked as suspicious.

Since Bro provides the flexibility of writing scripts and defining thresholds, this study

intends to write codes in Bro and define a threshold for the certain type of attacks.

However, since Bro do not provide flow-based detection, a mechanism is proposed to

build this detection from scratch as presented in Chapter 4. To write the policy scripts

to detect malicious activities, obtaining the rules and malicious flow features is

required. To achieve this, machine learning algorithms are used to extract these rules

and features from labelled datasets. Bro is an excellent choice for feature extraction

[137]. This is because Bro provides real-time highly structured log files (can be used

for digital forensic analysis or later research analysis) are generated and broken down

by protocols and alerts that are written in plain text ASCII.

In this research, suspicious log file is created manually to be compatible with Bro

logging format. To create this logging file, Bro comes with a logging framework [138]

 81

that supports flexible key-value based logging interface that allows user to create own

logging file in Bro logging format. The following abbreviations are defined to be used

in the entire thesis: FL represents FLow-based detection; PH represents Packet-based

detection in CHID approach; CHID is a combination of FL and PH, and PO represents

the default Packet-based Only detection that inspects all packets. Figure 3.5

summarizes all the components with corresponding tools.

PCAP

Softflowd

Bro IDS

Bro IDSTraffic

capture

Flow

aggregation
Flow-based

detection

Packet-based

detection

Figure 3.5. Component Requirements for Proposed Mechanism

3.3 Implementation

In this phase, the implementation of the components mentioned earlier is presented to

operate the original and proposed detection mechanisms. The outcome of this phase is

verification and validation of these mechanisms to make sure that all components are

experimentally working together correctly and reflecting the conceptual model before

evaluation process begins.

In this work, two mechanisms have been implemented:

1. Flow-based detection mechanism (Chapter 4).

 82

2. CHID mechanism that consists of customized packet-based and flow-based

detection (Chapter 5).

For high and accurate evaluation, all these mechanisms run in the same environment

and platform and are injected with the same traffic (dataset). Verification and

validation are performed in this phase. The verification measures the accuracy of

transforming the proposed approach from a flow chart into a computer executable

program [139]. All mechanisms that are used in this research are transformed into Bro

script codes. Furthermore, these codes are then analysed and verified to ensure that

they are free of errors and bugs. Also, each component is verified individually before

implementing the overall mechanism.

For validation, it is the process when the approach, within its domain of applicability,

behaves with satisfactory with the study of the research objectives [139]. For this,

validation is required to be performed to ensure that the results obtained from the

implementation of the proposed mechanism are meeting with its intended objectives.

Furthermore, in the validating conceptual model, the research need to determine

whether the assumptions in constructing the model are correct and reasonable. Also,

proof of concept is mainly used in the research domain to demonstrate the feasibility

of a new implemented model or idea. It is useful to verify and validate that the concept

or theory of an approach is probably acceptable in a useful manner [140]. In this

research, proof of concept is used to verify and validate the initial combination

approach before finalizing the implementation of the proposed mechanism.

 83

3.4 Evaluation

When the mechanisms are designed and implemented, their efficiencies must be

evaluated. Also, in this research, performance evaluations should be run in different

scenarios. In CHID approach, the full and partial payload for packet-based detection

is implemented separately. Moreover, the implementation of the proposed approach

should ensure that the model is capable of working with different type of attacks.

These scenarios are implemented to evaluate the proposed approach in term of

detection accuracy and resource consumption. In the evaluation, the resource

consumption of Netflow aggregation is not considered because it is assumed to exist

in a production network [9]. This section presents the experimental environments,

testbed setup, measurement procedures, datasets that are injected into the detection

systems, and the evaluation metrics.

3.4.1 Experimental Environment

Based on the literature, there is no common method for IDS evaluation [141].

However, in intrusion detection fields, comparing the new results with other’s works

were proven hard to accomplished [141]. When comparing new detection method that

uses a new dataset with other methods, the other methods need to be run on the new

dataset. However, to obtain the original implementation of other methods is difficult

due to copyright issues. Also, most of the research in IDS field do not share their

dataset due to privacy reasons [142].

Garcia, et al. [141] shows that majority of network-based detection methods were not

able to compare their methods with third party methods. The authors also stated that

 84

the difficulties behind this comparison are either their datasets tend to be private, or

the description of their methods tends to be incomplete. Another reason of the

difficulties of reproducing third party’s method was explained by [143]. The authors

stated that most of the detection proposals lack proper documentation of their methods

and experiments.

As a consequence of the above issues, in this research, local comparisons are made

between the proposed approaches with the default packet-based detection. For the

experimental environment, sequential (one after another) experiments for both

proposed approach and default packet-based with identical input data, require

repeatable and reproducible environments. It is challenging to evaluate an IDS in such

environments. The first option is to use live traffic. Since series of measurements are

run in the experiments, running the experiments on live traffic approach is not possible

because that will not yield fair comparisons when different configurations run in

sequence. In this case, it is difficult to inject both approaches with the same traffic at

the same time. In other words, live traffic has limitations, regarding the repeatability

of experiments, for any systematic performance evaluation study.

The second option is to execute the experiments in offline-mode approach to receive

datasets (traces). In this option, the traffic is captured from the network tap and record

it into a file for future injection. Then the file is replayed and fed to both approaches,

on the same machine, one after the other. This option is also not practical. This is

because of Bro, in this case, would process the packets as quickly as possible at 100%

CPU utilization. This observation was verified by the experiments when Bro packet-

 85

based was run in offline mode to read dataset using “-r” command, the CPU usage

reached and kept at 100% very quickly.

To address the aforementioned issues in those two options, a method that combines

the best of both mentioned options is used. In this method, Bro reads the input from a

pre-captured public dataset but in live mode, which can be achieved by replaying the

traces into Bro through a switch (as discussed in next subsection). This approach

results in a reproducible procedure that is comparable to using the data in the

experiment on live traffic. The datasets used in the experiments are public and used

for research community (see Section 3.4.4 for more details). Several researches used

similar experimental environments including [144, 145], and [146]. Their NIDSs read

the input from public and private datasets in live mode. They replay these datasets one

after another for fair comparison purpose.

3.4.2 Experiment Setup

In this study, the experiments are run in a controlled environment, also called testbed.

For more effective evaluation of the detection methods, testbed environment is

preferred compared to simulating environments [141]. Simulation environment uses

a computer-generated system to represent the behaviours of a real or proposed system.

The experiment setup on testbed is depicted in Figure 3.6. The experimental

environment run on two machines interconnected through a Gigabit switch. Both

machines are running 12.04 Linux-based Ubuntu Desktop 64-bit with Intel i7 3.1 GHz

with 32 GB of RAM. Table 3.2 summarizes the description of the hardware and system

 86

for both machines while Table 3.3 presents the description of the software applications

used in these machines.

LAN

PacketsPackets

Gigabit Switch

Port Mirror

 Flow Aggregator
 Bro-IDS Flow-based
 Bro-IDS Packet-

based

 Tcpreplay Traffic
Generator

 Datasets

Figure 3.6. Experimental Testbed

Table 3.2

System and Hardware Description Used in Testbed

Requirements Description

CPU Intel i7 3.1 GHz

RAM 32 GB size

Operating System Linux Ubuntu 64-bits

Switch Linksys Smart Gigabit LGS318

Table 3.3

Software Applications Description Used in Testbed

Software Name Description Software Version

Bro Intrusion Detection System Bro 2.3 [33]

Tcpreplay Traffic Replay tcpreplay v4.0.5 [147]

Softflowd Flow Aggregation Softflowd v0.9.9 [101]

 87

Network Interface Cards (NIC) of both machines support Gbps. Linux as the operating

system is installed on these machines since Bro NIDS only support Unix-based

systems. These machines are installed with default lippcap and BPF configurations for

packet capturing and filtering from network interface card. The first machine is used

for traffic generation. This machine replays real (previously captured) network traffic

datasets on the wire using a packet generator tool that sends the packets back onto the

network through other devices such as a switch, and then to the NIDS machine (second

machine) for further analysis. Several packet generator tools are available [148],

mainly including Tcpreplay [147], Bit-twist [149], and Tomahawk [150]. Tcpreplay

is used in the experiments in this research. For efficient performance, tcpreplay is

believed to be the best packet generator among others since it provides the ability to

cache and store the traffic from hard drive to RAM [151]. This feature will avoid any

disk I/O latency in order to increase performance. Another excellent feature of the

tcpreplay tool is that different traffic speeds can be adjusted and controlled when

injecting to the network interface.

The switch is selected since it supports Gigabit speed with port mirror enabled to

forward all traffic to the analysing (second) machine. Since the NIDS is running in

passive mode, it only receives a copy of the whole traffic for further analysis. The

second machine is installed with Softflowd v0.9.9 [101] and Bro 2.3 [33]. Softflowd

is used as the flow aggregator with default parameters to generate flow records from

the dataset packets received and to export those records to the collector. These records

are exported to the collector when they expire. Softflowd is also capable of generating

Cisco Netflow export format. Also, to verify that Softflowd receives all packets from

 88

the tcpreplay machine, the Softflowctl program is used to track the Softflowd process

for statistical measurements.

Although Bro NIDS provide user-friendly interface for building policy script, it

provides a command-line interface (CLI) for running and executing these scripts.

Also, Bro is configured to collect the flow records by reading the flows from a UDP

socket in the localhost with an approach suitable for Bro analysis. Localhost address

is used since the flow aggregator and Bro flow-based NIDS are in the same machine.

This scenario was also implemented in [23] and [144]. Moreover, Bro is installed on

this machine with default configuration. To not to miss any received packets for Bro,

Tcpreplay begins after Bro has been initiated. Then Bro instances are terminated

immediately after capturing the last packet of the replayed dataset.

Because the Tcpreplay tool allows adjusting the transmission speed in Mbps, the

experiments are repeated by replaying the datasets from 100 to 1000 Mbps. However,

the experiments are not conducted beyond 1000 Mbps since the network interface

cards of all machines support traffic volume up to 1000 Mbps. All of the tests were

run three times to avoid any anomalies or noise in results. However, to relieve the load

of Bro, generating irrelevant logs shown in Table 3.4 were disabled for all

experiments. This is because DNS.log, HTTP.log, and Connection.log have nothing to

do with intrusion detection and they are more related to general communication

sessions.

 89

Table 3.4

Loge Files Disabled

Log Files Description

DNS.log Generate DNS analysis and tracks DNS queries along with their

responses.

HTTP.log Generate HTTP analysis and tracks HTTP requests along with their

responses.

Connection.log Generate connection analysis and tracks TCP/UDP/ICMP connections

3.4.3 Measurement Procedures

To validate and evaluate each of detection mechanism in the proposed approach (flow-

based and packet-based detections) and the default detection system, standard

measurement procedures are defined. This subsection presents commands and their

parameters for each instance used in the experiments. All these commands are in

Linux-based command line platform.

A. Tcpreplay

Tcpreplay replays datasets in PCAP file format into the second machine to evaluate

detection methods. The following command line is executed:

tcpreplay –i eth0 –M 200 –K dataset.pcap

The –i set the Ethernet interface where the tcpreplay send the dataset out. To adjust

the traffic rate, –M 200 parameter is used, which means tcpreplay send the traffic in

200 Mbit per second. For efficient performance, –K is used to enable caching and

 90

storing traffic to RAM. This is to avoid any disk I/O latency in order to increase

performance. Since the RAM size should have enough capacity for this purpose, the

RAM was increased to 32 GB.

B. Flow aggregation

For converting the received packets into flows the following command line is used:

softflowd -i eth0 –d –n 127.1.1.0:12345

The Ethernet interface that is listening for packets is specified with –i parameter. The

–d is used for debugging. The softflowctl dump-flows command is used in order print

all logged exported flows. Default maximum timeout is used. –n parameter is added

to the command to tell Softflowd where to export flows on flow expiry timeouts. Since

Bro is launched on the same machine, localhost IP address with an arbitrary port

number is set.

C. FL

The following command is used for evaluating flow-based detection:

bro –Y 127.1.1.0:12345 flow-based-detection.bro

-Y parameter indicates the source where the flow-based detection receives flow

records. In the experiments, this should be identical with Softflowd exporting location,

hence localhost with the same port number. It is possible to add a parameter here to

define the local host’s subnet to be monitored. However, they are already defined them

 91

in the script internally. The last parameter is the Bro file name of flow-based policy

script where all incoming flows are analysed.

D. PO

 For evaluating Bro default packet-based detection or PO, the following command is

used:

bro –i eth0 default-packet-based.bro

It is required to specify the corresponding Ethernet interface using –i parameter. For

network interface, eth0 is set since it is connected directly to the port-mirror on the

switch is used to receive packets from tcpreplay machine. The local host’s subnet to

be monitored in packet-based detection are defined in the script itself instead of

defining them in the command. The last parameter is the default-packet-based.bro

policy script file name where all incoming packets are analysed. Figure 3.7

summarizes and show the procedure commands run in order. In all experiments in this

research, as shown in Figure 3.7, Tcpreplay instance begins after all Bro instances

have been launched. This is to ensure that Bro detection does not miss any packets.

 92

Figure 3.7. Experimental Commands

3.4.4 Dataset

The dataset is playing an important role when evaluating NIDS. For the dataset

captured from traffic, it should contain potential attacks that can be tested by the

proposed approach. To achieve this, traffic is captured in controlled testbed

environments. From this environment, a dataset that carries packet traces can be

obtained that represent the real traffic and contain potential attacks. Most of the

researchers used public benchmark dataset based on the testbed for evaluating their

NIDS approaches. In the literature, DARPA 1999 dataset [152] is the most widely

used for validation NIDS. This dataset is contributed significantly to the NIDS

researchers for the purpose of testing their proposed IDSs [153]. It was developed by

MIT Lincoln Laboratory. Although the researcher still using the dataset, it faces

challenges since it seems to be old and it does not contain the changes of Internet

traffic and new attacks. With the absence of better benchmarks, a huge amount of

tcpreplay –i eth0 –M 200 –K dataset.pcap

softflowd -i eth0 –d –n 127.1.1.0:12345

bro –Y 127.1.1.0:12345 flow-based-detection.bro

bro –i eth0 default-packet-based.bro

 93

NIDS research experiments were relying on DARPA dataset [154, 155]. On the other

hand, this dataset was criticized due to its age and inability to reflect real-world traffic

by [156] and therefore discarded in this research.

The DEFCON data [157] is newer public benchmark dataset based on the testbed, but

they did not explain what type of attacks this data carries. The reasons behind the

lacking of the public benchmark dataset are a due to privacy concern especially when

the traffic contains IP addresses that identify users or payload that identify sensitive

information. This data leak information that might be valuable to the attackers or the

competitors.

3.4.4.1 Malicious Datasets

To avoid the criticism against works that rely only on DARPA dataset, another dataset

is collected that contains recent application traffic. Mainly, two public labelled

datasets are used in this research. The first dataset used is the Information Security and

Object Technology (ISOT) dataset published on 2011 [90]. The other datasets are

generated from Czech Technical University (CTU) in different scenarios and

published on 2013 [141]. Labelling these datasets is useful to validate the accuracy of

the detection methods [92]. These datasets are presented in Table 3.5 with more

statistical details in each dataset. More explanations about ISOT datasets and CTU

scenarios by their authors are found in [90] and [141], respectively. The datasets

mentioned in this table were generated based on lab environment and traffic

communicating of physical hosts and servers with various operating systems and

applications. In their testbed, many types and scenarios of attacks were carried out that

 94

represent current threats especially the repetitive attacks such as DoS, Worm, and

Botnets.

Table 3.5

Datasets and Statistics

Datasets

Total

Extracted

Packets

Total

Exported

Flows

Average

bytes per

flow

Average

packets

per flow

Type of

Activity

ISOT 59.9 million
5.2

million
25,196 44 P2P-bot

CTU-50 2.1 million 159,704 10,438 21 Spam-bot

CTU-51 66.3 million
31.7

million
2,161 2 IRC-bot

CTU-52 3.9 million
1.7

million
2,311 2 IRC-bot

CTU-53 351,537 11,117 46,063 57 P2P-bot

PSCJ-1 10 million
4.3

million
3,432 23 Non-malicious

PSCJ-2 22 million
9.5

million
5,233 25 Non-malicious

The ISOT dataset was created purposely for the research community. It has a

combination of several existing publicly available P2P-botnet malicious and non-

malicious datasets (3.3% is malicious P2P botnet flows). The malicious dataset was

obtained from the French chapter of the Honeynet project [158] captured on 2011 and

involving P2P botnet activities such as Storm, Weledac, and Zeus. For the non-

malicious datasets, it was collected from two incorporated different datasets, one from

 95

the Traffic Lab at Ericsson Research in Hungary [159] and the other from the

Lawrence Berkeley National Lab (LBNL) [160].

The Ericsson Lab dataset contains a large number of general traffic from popular

applications such as HTTP web browsing behaviour, World of Warcraft gaming

packets, and packets from popular BitTorrent[161] clients such as Azureus. The

LBNL Institute is a research organization with a medium-sized enterprise network.

The recording of the network trace of LBNL occurred over three month’s period, from

October 2004 to January 2005. This traffic contains a variety of network activities that

involve everyday activity usages such as HTTP web behaviour, popular sharing file

packets, emails, and streaming media.

CTU datasets were generated in different scenarios and published in 2013. These

datasets are created under Malware Capture Facility Project [141] and obtained for

botnet behaviour analysis. The datasets have several real captures that are labelled and

generated by a number of computers infected with the IRC-bot, P2P-bot, HTTP-bot.

Where as shown in Table 3.5, four datasets from CTU are considered in this research.

CTU-50 is referred to as CTU-Malware-Capture-Botnet-50 in the literature [141].

Similarly, CTU-51 is referred to as CTU-Malware-Capture-Botnet-51; CTU- 52 is

referred to as CTU-Malware-Capture-Botnet-52; and CTU-53 is referred to as CTU-

Malware-Capture-Botnet-53. However, for privacy reasons, completed PCAP is made

public for only infected machines. For background and normal traffic in PCAP format

are not available. The malicious labelled data is made by the expert group in security

 96

fields. ISOT and CTU datasets were also used by variety of studies such as [46], [162]

with different research objectives.

3.4.4.2 Background Traces

For the non-malicious traffic, unfortunately, none of the datasets mentioned in Table

3.5 (except for the ISOT dataset) contains full-payload background traffic for privacy

reasons. Background traffic is required for non-malicious training and false positive

testing. In other words, if the NIDS generates intrusion alarm from this background

traffic, it is considered as a false positive alert. To create this traffic, two separate

background traces were captured, in a one-day complete payload trace. They were

captured at Alfaisal University, Prince Sultan College Jeddah (PSCJ), Information

Technology Centre, at the main gateway link that connects hundreds of hosts with an

educational network to the Internet.

The first trace is named as “PSCJ-1” and captured on Monday, 5th May 2014 from

8:00 am for 24 hours. The size of this trace is 8 GB and contains 32 million packets,

corresponding to approximately 1.9 million flows. For the second trace, it is named as

“PSCJ-2” with 17 GB of size and contains 22 Millions of packets. It was captured on

Monday, 12th May 2014 from 8:00 am for 48 hours. The PSCJ-1 and PSCJ-2 datasets

involve everyday activity usages such as HTTP web behaviour, popular sharing file

packets, IRC traffic, emails, and streaming media. All implementations in this research

will be injected by these datasets using traffic replay tools, Tcpreplay.

 97

3.4.5 Evaluation Metrics

Based on the literature, the metrics mostly used for NIDS evaluations are detection

accuracy and resource consumption [23]. Notions presented in Table 3.6 are used in

the evaluation to measure the common metrics: true positive and true negative rate and

precision. Many researches used these metrics for NIDS evaluations [11, 46, 141,

155].

Table 3.6

Notion Matrix [163]

 Actual Non-Malicious Actual Malicious

Detected as malicious False Positive (FP) True Positive (TP)

Detected as non-malicious True Negative (TN) False Negative (FN)

True Positive Rate (TPR) as calculated in:

 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(3.1)

For False Positive Rate (FPR) and precision, the following formulas are used:

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁

(3.2)

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

 (3.3)

 98

For the resource consumption, the following metrics are used for all implementations:

1. CPU and memory usage of the flow-based detection: this metric measures how

flow-based detection processes such as threshold calculation, updating tables,

and running scripts, consume the resources. This metric monitors the resource

consumption of the flow-based NIDS to make valid assumptions on how much

traffic volume can be processed until the resources are exhausted.

2. CPU and memory usage of packet-based detection: this metric evaluates how

the proposed packet-based and the default Bro packet-based detection handle

the packet processing. This metric monitors the resource consumption of the

packet-based NIDS to make valid assumptions on how much traffic volume

can be processed until the resources are exhausted.

3. Packet drop rate of packet-based detection: this is important metric to measure

the packet drop rate of the proposed packet-based and the default Bro packet-

based detection. To calculate the packet drop rate, the following metrics are

required:

 A number of received packets in all packet-based detections.

 A number of processed packets in all packet-based detections.

The following formula is used to compute the packet drop rate:

Packet drop rate =
Number of received packets

Number of processed packets
 (3.4)

 99

From these metrics, the efficiency of the proposed NIDS is evaluated. All of the tests

are run three times to avoid any an

omalies or noise in results. Then, the CPU and memory parameters are measured in

all experiments as an average value. This average value is calculated from the mean

values of the results of these tests. These results are plotted in graphs over time and

with different traffic speed rates. Bro provides statistical information that might be

useful to get the important evaluation metrics. These resource consumption metrics

are generated using stats.bro that is provided by Bro application. For the proposed

method, CPU and memory of flow-based and packet-based are summed to enable a

direct comparison with default packet-based detection.

3.5 Chapter Summary

This chapter presented the four phases in the research methodology. These phases

included the design of the proposed mechanisms, components requirements,

implementation of the proposed mechanisms, and evaluation phase. For the first phase,

the design of the proposed mechanism named CHID was briefly explained. The

components of the mechanism were then explained in details. These components

included: traffic capture, flow aggregation, packet-based detection, and flow-based

detection. Implementation of the proposed mechanism was also presented briefly. In

this phase, verification and validation of the proposed mechanisms were also

discussed. Finally, evaluation of the mechanisms in term of detection accuracy and

resource consumption were presented. In this phase, the experiment testbed, datasets,

and performance metrics used in this research were explained.

 100

CHAPTER FOUR

TWO STAGES FLOW-BASED DETECTION

4.1 Introduction

Due to the severity of network threats, detection systems have attracted intensive

research efforts. For botnet threats case, some detection systems have been proposed

as presented in Section 2.3.3. Most of these systems focus on detecting botnets in the

command and control stage. Although these systems demonstrated promising

detection results, they suffer from poor scalability when they analyse a large volume

of network traffic in high-speed networks. Their poor scalability originated mainly

from their deep packet inspection (DPI) analysis on the payload of network packets as

studied by [10]. BotHunter [67], for example, perform payload anomaly inspection

and signature-based detection engine. TAMD [66] uses packet payload to compute the

scores of content similarity. Parsing the content of IRC communication was required

for BotSniffer [64] and Rishi [65]. BotMiner [63] also perform DPI for detecting

binary downloading and remote exploitation. Smallwood and Vance [164] and

Bremler-Barr, et al. [165] also develop DPI for intrusion detection but with reasonable

resource consumption rate.

Because of packet-based detection is computationally expensive, the above systems

cannot be directly deployed in their software platform design in high volume networks.

In other words, with an increase in network volume and speed, existing network

NIDSs face challenges when capturing full payload traffic for malicious inspection

which in turn affect the performance and accuracy of NIDS [27]. To overcome this

 101

issue, the main aim of this chapter is to design and implement flow-based detection

approach. Flow-based detection approach reduces the amount of data to be analysed

by looking at aggregated information of related packets in the form of flow. Also,

many network operators have flow monitoring services at their disposal [106], thus

deploying these flow aggregation comes at almost no cost. Golling, et al. [9] consider

flow-based intrusion detection as a viable approach for operators of high-speed

networks.

Several works showed the ability to detect malicious traffic using only flow-based

attributes with several machine learning classifiers as presented in Section 2.4.5. Their

methods extract malicious flow features from datasets. However, these methods hold

the following limitations:

 Most of the approaches proposed by these researchers reported a significant

number of false positive alerts [20, 21]. The reasons behind generating these

false positives include: 1) limited information available for intrusion analysis,

2) complexity of characteristics of normal and abnormal traffic, 3) generic of

signatures (when the signatures are developed to be more general, any similar

pattern can be identified as intrusion), 4) network and system environment are

dynamic.

 Wijesinghe, et al. [104] pointed out that their approaches observed high

overhead in the aspect of CPU utilization that caused from flow capturing

process.

 102

 With focusing only on flow data analysis, they ignore the benefits of packet

data analysis that provide more information about the traffic.

 Various researches focus on detecting botnet attacks using flow-based

detection but in host-based behaviour (or HIDS) [166] with neglecting

network-based behaviour (or NIDS). Host-based detection alone seems to be

ineffective in current botnet attacks [27].

 Some of these researches lack real traffic data collection since they used

artificial traffic which does not reflect real traffic [98].

 Other researchers [71, 72] evaluate their proposed botnet detection methods in

a simulated environment. The basic problems with these approaches are the

lack of the implementation model in real-world scenarios.

As discussed in Chapter 2, this research focuses on network-based behaviour analysis

(or NIDS) which is mostly used today and promised high detection rate for botnet

attacks [5]. Instead of using only flow-based data, a combination of flow-based and

packet-based analysis is used in this chapter to collect more information about the

malicious and non-malicious traffic in the datasets. Moreover, the data collected for

traffic analysis is captured in an environment that represent real traffic. For more

effective evaluation of the detection method, testbed environment is performed instead

of simulating environments.

 103

In summary, the main contribution of this chapter is to propose flow-based detection

mechanism in two stages: precondition and threshold states. The aim of precondition

stage is to identify all candidate hosts are potentially related to malicious botnet

communications. To identify these candidates, they must pass certain rules that

contain botnet activities behaviour. The aim of the threshold stage is to analyse the

behaviours of these candidates classifies these them into either normal or bots. To

achieve the proposed flow-based detection mechanism, the following contributions of

this chapter are performed:

1. Design and implement a workflow process to build flow-based detection

scripts (for precondition stage). These scripts obtain characteristics of

malicious activities by extracting malicious flow features from a variety of

labelled datasets. Packet and flow analysis (using Bro) in addition to

attribute classification (using WEKA [167] machine learning) are involved

in this process.

2. A flow-based detection threshold-based (the second stage) approach that

analyses the botnet flows for suspicious identification.

This chapter is organized as follows: Section 4.2 presents the design of flow-based

detection mechanism. In Section 4.3, the behaviour of the selected attacks to be

implemented are discussed. A workflow for building flow-based detection scripts is

implemented in Section 4.4. More details on how detection mechanisms are

implemented are presented in Section 4.5. Then Section 4.6 explains how to validate

 104

and evaluate the flow-based detection implementation on the testbed with the new

datasets.

4.2 Design

To study the detection accuracy impacts on flow-based detection approach, in this

section, design and implementation flow flow-based detection scripts are required (see

Figure 4.1 (b)). The inbound and outbound traffic of the internal network is analysed

to detect possible intrusive activities that the local machines are performing. The

output of this processing is the list of machines IP addresses which perform malicious

activities. Detection methods monitor only local hosts.

In packet-based detection approach, as shown in Figure 4.1 (a), all incoming packets

are passed to packet-based detection. While packet-based detection listens directly

from the network interface, the flow-based detection listens from the flow aggregator

in order receive the flow records as input. Bro detecting signatures for packet-based

inspection are available, but no directly implementable flow-based detection exist. In

this chapter, flow detection scripts are build using statistical analysis of the traffic.

Before the implementations of detection scripts are presented, discussion on attack

selection and the datasets used are presented in next sections.

4.3 Attack Selection

Based on literature [25, 168, 169], botnet attacks perform repetitive traffic patterns.

Repetitive patterns imply that the attacks generate similar traffic patterns in future

connections. With this point in mind, and rather than review general botnet detection

 105

in this work, the following bot-related malicious types are selected to be considered in

this chapter: IRC-bot and P2P-bot. These botnets are the most popular active botnets

[20]. Also, these cases of botnet attacks are believed to be the most strong–threat to

the security of Internet-connected users and systems [24]. For more details on the

characteristics of these malicious activities, refer to [25, 26]. In the following

subsections, the behaviours of IRC-bot and P2P-bot are presented. These behaviours

are useful for feature selection used for botnet detection implementation in this

chapter.

Figure 4.1. Illustration of (a) Packet-based Detection System and (b) Flow-based

Detection System

4.3.1 IRC-bot Behaviour

Concerning IRC-bot, flow-based includes significant information about IRC and IRC-

bot connections. Both connections use TCP communications. IRC connection such as

 106

a ping-pong message exchange is easily identified in flow-level information. A ping-

pong message or so-called keep-alive function is used by an IRC server to determine

whether the user computer is alive and to prevent the channel from being idle. It works

as follows: IRC server sends a ping message to the IRC client. This client replies with

a pong message. This ping-pong message holds a fixed amount of packets and bytes

per flow [170]. Typically, no messages are exchanged when a bot is communicating

with the controller other than ping-pong messages because IRC-bot is mostly in idle

mode; since it usually waits for commands from the controller. The absence of any

messages other than ping-pong messages could be a significant indication of the

presence of an IRC-bot which is utilized in this chapter.

Also, currently, a large fraction of spam comes from botnets (e.g. IRC or P2P botnet).

Based on the literature, the most efficient and common activity that a master of botnet

command the bots is spamming [171, 172]. Some reports indicate that around 80% of

all email traffic is spam and that most of them are sent via botnets [5]. Thus, these

observations imply that e-mail spam detection can be an effective strategy for

subsequent botnet detection. Stringhini, et al. [172] pointed out that botnet tends to

send a large number of spam in a relatively short period. Also, bot spammers send

many SMTP connections and receive a few or no SMPT connections [173]. With

taking this assumption into account, the botnet could be detected by identifying the

associated spams.

For packet-based detection, the payload information for IRC-bot also contains

potential information for detecting such attacks. With this information, it is possible

 107

to identify whether an IRC connection is used for benign communication such as

chatting or for malicious communication such as connecting to an IRC-bot command

and control server.

4.3.2 P2P-bot Behaviour

In P2P bots, peers do not receive commands from a central server, as they do in IRC-

bot; instead, they receive commands from peers. In other words, in P2P network, every

bot acts as a client and server at the same time. Unlike client-server botnet (such as

IRC botnet), P2P botnet is getting much attention by an attacker; this is because even

if a single node in the P2P bots is detected, the entire botnet can still continue [169].

Unlike IRC-bot, P2P communication uses UDP protocol. It is reported in the literature

[107] that P2P-bot involves higher numbers of connections between peers compared

with the normal communication in P2P such as e-Donkey and Bit-torrent applications.

A higher number of connections means higher flows occur in P2P-bot, which can be

easily marked by the flow-based process.

For packet-based detection, payloads include significant information for P2P-bot

intrusion detection. For example, in command and control (C&C) communication, a

payload could contain the instructions (e.g., what task to perform) sent to peers. Even

some part of this communication could be encrypted; it still contains static values that

are useful for signature detection. Also, spam emails sent by a bot (in the attack phase)

could be a sign of a P2P botnet. This occurs when compromised machines controlled

by a botnet is commanded to send spam by searching email contact on that machine.

For example, most Storm botnets serve as spam senders [18]. Thus the number of

 108

SMTP packets may also be an indicator for such attacks. This implies that spam

detection can be an effective strategy for subsequent botnet detection.

4.4 Detection Scripts Derivation

Since the main goal of this chapter is to study the false positive impact on flow-based

detection approach, it is required to implement the flow-based detection mechanism

by developing policy scripts for specific malicious detection. For developing detection

scripts, existing labelled datasets are utilized. Packet and flow analysis along with

machine learning are also used to collect and extract malicious flow and packet

features from these datasets. Based on the findings, the flow-based detection scripts

are implemented to detect P2P and IRC bots. Then different datasets are used to

validate this detection method.

Figure 4.2 illustrates the different steps for deriving detection scripts for each botnet

malicious type. These steps include: packet and flow analysis of datasets to generate

log files, observation of the output log files, writing detection script policy and rules,

and validating and evaluating the detection script. The following subsections details

each step. In this chapter, several labelled datasets will be applied to Figure 4.2 to

build detection scripts on each malicious activity.

 109

Assumptions

(Literature review)

Association

(MySQL)

(1)

Flow Analysis

(3) Detection Policy

Script

Script Validation and

Evaluation

(with new dataset)

logs

Scripts

(1)

Packet Analysis

Flow aggregation

Flow records

Dataset

(Malicious

and normal)

Packets Packets

logs

Attribute

Classification

Labeled flows dataset

Most important malicious flows attributes

Figure 4.2. Workflow for Deriving Flow-based Detection Policy Scripts

4.4.1 Packet and Flow Analysis

In this step, packet and flow analysis against the given combined datasets are

performed. The input is PCAP format datasets, and the output is log files generated

from Bro analysis. The aim of packet analysis is to label flows as discussed in the next

subsection. Non-malicious and malicious dataset are combined. Malicious dataset

selection depends on the type of malicious activity type. In this case, CTU-52 and

 110

CTU-53 datasets are used for IRC-bot and P2P-bot respectively. Also CTU-50 dataset

is used to extract spamming flow behaviour. For non-malicious traffic, PSCJ-1 trace

is used. For each malicious type, since the combined datasets are in PCAP format, it

is converted into network flows (by using Softflowd) and then, the flows are used as

input for the flow analysis for further analysis in this step.

However, before Packet and flow analysis begin, the datasets were cleaned by

removing out non-IP, non-TCP/UDP, and irrelevant traffic. Also, to limit the amount

of packet and flows processing of these datasets, eliminating non-relevant packets and

flows within the datasets are performed using filtering scripts. These filtering scripts

are based on known infected and normal machines IP addresses, port numbers, and

protocols, depending on the malicious activities selection (e.g., in spam, packets and

flows initiated from internal host IP addresses to external host on TCP protocol with

port 25 only were extracted). Packet analysis also relies on Dynamic Protocol

Detection (DPD) to determine the application protocol (such as BitTorent [161],

eDonkey [174]) of the connections.

Also, the logs provide Unique Identifier (UID) of a connection which is used to

correlated information across other Bro logs as shown in Table 4.1. This table also

shows the fields and a brief description of weird log file. Other log files including,

notice.log, connection.log, and signatures.log are presented in Appendix D. These

files contain details regarding unusual activities that shed some insight on the

behaviour of the malicious traffic. Other logs also added manually, that are not written

by default, to get more deep analysis. The output of this step is the log files generated

 111

by both flow and packet analysis. The features that are extracted from logs files are

presented in Table 4.2. These logs are stored in MySQL database for the next step.

Table 4.1

Fields Description of Wired.log file

Field Type Description

Ts Time Timestamp of message

Uid String Connection unique id

Id record ID record

name String The name of the wired occurred

Addl String Additional information along with the weird

Notice Bool Indicate whether this weird is also turned into a notice

Peer String The peer generated this weird

Table 4.2

Features of Flow and Packet Generated from Logs

Type Features Description

Shared features

src_ip IP address of source host

dest_ip IP address of destination host

src_p Source port number

dest_p Destination port number

Proto Protocol

Flow-based features

Octs Total octets or bytes per flow

pkts Total packets per flow

ts Flow time start (for the first packet in a flow)

tf Flow time finish (for the last packet in a flow)

Derived flow features

duration Flow duration (duration = tf – ts)

bpp Average bytes per packet in flow (octs/pkts)

Bps Average bytes per second (octs/duration)

Pps Average packets per second (pkts/duration)

 112

4.4.1.1 Flows Labelling

The outcome of this step is flow datasets with labelling. In this step, flow labelling

from packet analysis logs to flow analysis logs are made. Labelling the flows as

malicious is based on IP address. First, matching the 5-tuple (source and destination

IP addresses, source and destination port numbers, and protocol) and timestamps of

both packet and flow analysis logs using MySQL are performed. Second, when a

match is found, the flow is labelled, based on the packet-based analysis decision. The

reason for selecting packet analysis for flow labelling is detailed below.

Unlike flow analysis, since packet logs are generated from full packet inspection,

hence is rich of information; it is assumed that packet-based logs are the benchmark

for alert decision and labelling. With this in mind, and to reduce the number of flows

for further analysis, a decision, that flow is malicious or non-malicious, is based on

the decision of its corresponding packet generated by packet analysis. In other words,

flows that are alerted by packet analysis as malicious, are extracted and labelled

herewith. Finally, flow labelled datasets mixed with malicious and non-malicious

labels, for each malicious type, are generated. To obtain feature vectors that represent

normal traffic, it is assumed that the traffic in PSCJ-1 trace is clean. Thus, they are

then labelled as non-malicious.

4.4.1.2 Attribute Classifications

Attribute classifications on the labelled flow datasets are then taken place. The

outcome of this step is the most significant attributes for malicious detection. For this

purpose, the advantage of using an open-source toolkit, WEKA [167] data mining

 113

package is utilized. WEKA has a collection of popular machine learning algorithms.

These algorithms are used for learning the flow characteristics from the labelled

datasets (in CSV format) based on the hidden features trained by both malicious and

non-malicious traffic. The main goal of using these algorithms is for features

classifications and then to find out the most important malicious flow attributes that

provide maximum detection accuracy. Then their corresponding rules (from the

classification process) of these significant attributes are considered in the next step to

improve the accuracy of the detection scripts.

Table 4.3 shows the features selected as the input of WEKA for the purpose of attribute

evaluator to generate the most important attributes in each malicious type. These

features are widely used in recognition of botnet traffic [90, 99, 175-177]. Where as

shown in the table, spam-bot is added since IRC and P2P bots behaviour involves in

spamming activities as mentioned in Section 4.3. Thus, extracting spamming features

from the datasets is useful for IRC-bot and P2P-bot detection. Where as shown in

Table 4.3, source port number of spam and IRC-bot scenarios are not selected. This is

because the source port number of these scenarios does not carry potential signs for

detection [62]. Also, some features from Table 4.2 are neglected due to derivation

based. For example, tf and ts are not considered since the duration is derived from these

features.

These feature selections should be relevant to the behaviour of the malicious types as

presented in Section 4.3. For example, in IRC-bot, a number of packets per flow are

much related to Ping-Pong (keep-alive) communication used in regular IRC channel.

 114

Ignoring unrelated features will avoid noisy attributes that affect negatively on the

classification accuracy.

Table 4.3

Attributes Used for Classification

Attribute Spam-bot IRC-bot P2P-bot

Source port (src_p) X X

Destination port (dest_p)

Flow duration (duration)

Packets per flow (pkts)

bytes per flow (octs)

Bytes per packet (bpp)

Bytes per second (bps)

 () means selected while (x) means not selected

For generating the most significant attributes, Wrapper subset evaluation [93] is used

to create all possible subsets from the feature vectors, with the best first search method.

Wrapper approach finds appreciate features with a different set of features through a

repetitive process of the classification algorithm. Then the best set is determined [176].

With every subset is classified, full training is set, by each classification machine

learning algorithms. Wrapper strategy is select since the focus of this chapter is to

analyse the relevant importance of the existing flow-level features and to determine

the most effective subset of selected features.

Table 4.4 present the classification algorithms used in this research. They are chosen

since they are widely used learning approach with better accuracy in botnet detection

studies [46, 178, 179]. Narang, et al. [180] found out that J48 [95] and RepTree were

 115

useful classification algorithms for botnet detection. Gomes, et al. [181] also stated

that within the botnet traffic classification domain, the most common algorithms used

are the tree structure. Based on the accuracy results generated from these algorithms,

the most effective features are generated.

Table 4.4

Attribute Selection Setting and Classification Selection

Type Description

Attribute evaluator Wrapper

Search method Best first

Attribute selection mode Full training

Number of folds 5

Classification algorithm

Tree

J48 (C4.5)

Random Tree

RepTree

BFTree

Rule

JRip

PART

DTNB

4.4.2 Detection Policy Scripts

Writing the detection policy script presents the most important step in this chapter. To

implement flow-based detection policy script, rules of the most important features

derived from the previous step, and rules inspired from the literature are used in the

first stage, precondition stage, as explain in the next section. For flow-based detection

scripts, in addition to the rules derived from the previous step, P2P and IRC botnet

detection are based on the fact that these botnets involve in repetitive patterns during

 116

their communications. Bots require communicating to bot master to receive

commands and send requested data.

Even in P2P, bots often exchange information with each other. As stated by Soltani,

et al. [25], these communications usually occurs at specific time intervals and make

repetitive patterns which can be useful for detecting these botnets. Also, Giroire, et al.

[182] observed that a bot must repeatedly obtain new instructions from a C&C server.

Thus, a host often contacting a remote host would have higher connection persistence.

4.5 Detection Implementations

4.5.1 Flow-based Detection

For implementing flow-based detection policy script, rules of the most important

features derived from the previous step, and rules inspired from literature [183-185]

are combined to a form called “rules”. These rules are then converted into Bro script

syntax. The aim of flow-based detection is to differentiate between normal and

abnormal behaviour using statistical information and threshold value. In this work,

flow-based detection mechanism primarily has two stages: precondition stage and

threshold stage as shown in Figure 4.3. Algorithm 4.1 explains the principle of the

flow-based detection mechanism.

Stage I: The aim of precondition stage is to identify all candidate hosts within

monitored network that appear to be potentially related to malicious P2P or IRC

communications. To achieve this, when flow-based detection receives flow records,

these flows must pass the rules mentioned above, before further analysis. In other

 117

words, this stage reduces the number of flows to be further processed at the threshold

stage. These rules depend upon malicious activity types. For example, in P2P bots

type, the output flows of this stage are the flows that carry P2P traffic characteristics

along with malicious patterns.

 Bro Flow-based
 Detectio Script

Flow Aggregation

Traffic

1st Stage:
Pre-condition

Stage

2nd Stage:
Threshold

 Stage

Logs

Figure 4.3. Two Stages Flow-based Detection Mechanism

Based on the experiments in this chapter, it was found that P2P bots engage with

source and destination port numbers ranged from 1024 to 65535. In addition to port

numbers, these rules contain flow statistical information of malicious flows such as

number of bytes, packets per flow and flow duration (see the results in Section 6.1.2).

For example, the ping-pong message in IRC botnet generally holds a fixed amount of

packets and bytes per flow [170]. More details on the threshold stage are discussed

 118

further later in this subsection. However, to monitor only local network hosts, scripts

were written that scope the monitored host’s ranges and set IP address of the only local

network hosts. Thus, external IP address is not considered to be detected.

Algorithm 4.1: Flow-based Detection Mechanism

Inputs: flows

Outputs: suspicious hosts

1: Receive flow

2: if flow is new and passes the precondition stage then

3: increment the number of flow of the host by 1

4: if the number of flows of the host >= threshold && the host is not

previously marked as suspicious then

5: mark the host as suspicious and add it to output log

6: end if

7: end if

Stage II: The aim of the threshold stage is to analyse the behaviours of the hosts

generated by the first stage and classifies these hosts into either normal or bots (IRC-

bot or P2P-bot). This stage is to minimize the false-positive alerts generated from the

previous stage. The threshold stage is implemented using statistical analysis and based

on the following observation. Since bots such as P2P-bots or IRC-bots involve in

repetitive communications (in addition to spamming), the number of flows to a distinct

host is greater than that found in standard, benign communication (this fact was

verified in the experiments).

 119

With this fact in mind, a botnet may engage in malicious activities when the number

of incoming or outgoing flows of a bot exceeds the normal behaviour. To achieve this,

a script is added in the threshold stage to record and count the number of flows of

every host IP address received, within a specified time interval. For this purpose, a

counter value is given to each local host. Also, it is also required to create the so-called

Periodic table for incrementing and updating the number of flows for each host. If the

number of flows of a particular host exceeds a threshold, the host is considered

malicious bots. To ensure that these repetitive-pattern malicious activities are

repeatedly occurring at this stage, a script is added to track the malicious IP addresses

every period. Such repetitive patterns occur when ping-pong messages are exchanged

between client and C&C server at regular intervals to check whether the client host is

alive. To avoid false negative alerts, the detection scope should not be narrow, but this

will be on the account on false positive alert.

4.5.1.1 Threshold-based Mechanism

In threshold stage, fixed threshold is not the optimal choice in existing networks. In

this work, however, the threshold is adaptively set according to the traffic volume

changes. The principle of this dynamic threshold calculation is explained in Algorithm

4.2. However, the threshold is updated and calculated periodically (e.g., at a scheduled

interval of 50 seconds), depending upon the type of attack. In this work, the threshold

value is changed periodically based on the mean number of a total number of flows.

Besides the mean value is a common statistic dimension, it is selected based on the

findings from BotMiner [63], where stated that the number of connections a bot

engages is more than the average number of connections of all participating hosts. In

 120

another word, it assumes that the bots belonging to the same botnet would share similar

communication patterns compared to the non-bot hosts.

Algorithm 4.2: Threshold Calculation in Flow-based Detection Mechanism

Inputs: Periodic Table

Outputs: threshold value

1: Set initial scale = 10

2: for every host in Periodic Table do

3: total number of flows = total number of flows + Periodic Table [host]

4: end for

5: total number of hosts = length of Periodic Table

6: if number of host = 0 then

7: Set average = 50 to avoid dividing number by zero

8: end if

9: if number of host != 0 then

10: average = (total number of flows divided by total number of hosts)

11: end if

12: new threshold = average * scale

13: return new threshold

To get the mean threshold value, it is calculated based on the total number of potential

concurrent flows associated with a host in relation to the total number of all hosts

participating (in the periodic table) within a predefined period. To calculate the actual

threshold value, this mean value is then multiplied by a fixed scale number. This scale

number is set to save the operator effort of manual determination of an appreciate

threshold. This scale number need a careful adjustment since it affects the threshold

calculation. The high threshold value may miss potential malicious activities. On the

 121

other hand, the low threshold value may trigger many suspicious hosts which could

increase false positive rate. In the flow-based detection, to avoid any programming

bugs when launching flow-based detection, and the threshold is not calculated yet, an

initial threshold value is set. To adjust the initial threshold and scale values, an

experiment was run to study the behaviour of botnet activities from the datasets. Based

on this experiment, the best results were obtained when the average of the scale value

is set to 10. Basically, for each botnet scenarios, a script that calculates the average

total number of flows that bots involve was written at the threshold stage.

However, when the calculation considered all hosts exist in the periodic table even the

old entries (hosts that entered into the table more than 15 minutes), the threshold value

would increase quickly. This might be caused when these old entries have high flows

numbers. In this case, the threshold becomes very high which might miss potential

malicious flows to be marked. This problem was solved, to make sure that threshold

value is reasonable, by adding expiry time for all entries in the periodic table.

However, this mechanism records the time of each host entered the table, once the host

reaches the expiry time, the host leaves the table. Also, the threshold calculation is

calculated in a predefined period.

4.5.1.2 Proof of Concept

For proof of concept and to study the feasibility of the flow-based detection

mechanism setup, an experiment with default Bro analysis and flow aggregator is

implemented. The aim of this experiment is to verify and validate overall processes of

flow-based detection. In the whole thesis, this experiment is referred as “live

 122

experiment“. In this experiment, the following simple scenario is chosen. Bro scripting

code reads live traffic from the Internet as shown in Figure 4.4. In this scenario, P2P

normal activities connections are selected. To analyse P2P activities, BitTorrent [161],

eDonkey [174] and Kazaa [186] P2P legitimate applications are executed on the

machine and then flow-based detection processes the corresponding flows. These

legitimate applications are selected since they are desirable in this verification in

which they involved in repetitive UDP communications [187]. In this case, it is

required to set a simple condition (for the first stage) in the flow-based detection script

that considers UDP protocol with port ranges; depends on the type of application. Two

command instances were run in this experiment:

 Softflowd was run to read live traffic and convert it into flows

 Bro flow-based was also run to analyse the flows received from Softflowd

Switch
User

Internet

- Softflowd

- Bro flow-based

detection

Figure 4.4. Live Experiment for Proof-of-Concept

From the proof of concept perspective, the scripting code of flow-based detection

mechanism was verified and validated. For Netflow functionality, netflow.bro policy

 123

file provided by Bro are extended for flow record analysis. Although no errors bugs

are obtained, the following issues were observed.

Because flow aggregator can produce several flow records with the same connection

(e.g., when downloading a large file) [16], repeatedly analysing these records in flow-

based detection might waste resources [19]. It was observed in this experiment that

flow-based detection processed a huge number of existing flows rather than new flows.

Therefore, better resource consumption might be obtained if flow-based detection

processes only new (unique) flows. This issue was solved by adding a script to

determine whether the received flow is existing in the flow table by matching the flow

key 5-tuple. When no match occurs, this flow is considered new flow and will further

be processed (see the seond line in Algorithm 4.1).

4.5.2 Packet-based Detection

Having shown how the flow-based detection mechanism is implemented, this

subsection implement the packet-based detection mechanism. This subsection

presents how packet-based detection mechanism is implemented. Signatures obtained

from literature [68, 188] are combined to form “signatures” for packet-based detection.

Wurzinger, et al. [68] generated a network-level botnet signatures based on the botnet

command-response pattern from real botnet traffic collections. They extract these

signatures by observing bot behaviours captured in a controlled environment and

recording its network traces. Then they identify points in a network trace that likely

involved in IRC and P2P botnet activities. For example, one of the common payload

signature for P2P-bots is such information form as *.mpg;size=*, where *

 124

represent decimal numbers [68, 189]. More details on how they extracted the

signatures are discussed below.

First, malware is collected and executed for a period of a few days in a controlled

environment. The malware is then allowed to send its C&C traffic into the Internet.

All incoming and outgoing traffic are recorded for the automatic signature extraction

process. Change point detection is used to determine “most relevant” traffic patterns

in which they will be extracted and collected. The idea is that these relevant patterns

will be seen often and can therefore be automatically identified. Such patterns include

when a bot master issues a command to its botnet, which results in scanning behaviour.

The command and response signatures can be inferred for arbitrary C&C protocols,

e.g. IRC or P2P. The generated signatures can be built into the Bro and can be then be

used for botnet detection.

In this work, payloads of incoming packets are compared with these signatures. If

these payloads match with these signatures, then it is considered as an intrusion. The

signature engine of Bro provides high-performance pattern matching that is separately

from the normal script processing. Bro relies mainly on its scripting language for

defining and processing detection policies. For defining scripting language, the

signature below describes an example of such scripts

Signature example {

ip-proto == udp

dst-port==6666

 125

payload /.*.mpg;size=*/

event “P2P bot is found” }

This signature requests Bro to match the regular expression *.mpg;size=* on all UDP

packets going to port 6666. When the matching occurs, Bro raises an event

signature_match with alert named “P2P bot is found”. It also returns the payload

content which triggers this event. The expression matches against either the raw

payload of a connection (for TCP connections as in IRC-bot) or for each packet (for

UDP connections as in P2P-bot).

This work also utilizes default and built-in signature-based detection scripts, such as

ircbot.bro, provided by Bro [190]. Also, Summary Statistics, or so-called “SumStats”

mechanism is developed by Bro to observe and analyse application layer data by

efficiently summarizing network activities [191]. Figure 4.5 shows sample of

SumStats script approach where the rest of the script can be found in Appendix F.1.

Signatures expression from Snort can be used and then converted to Bro script format.

These signatures can be found at Bleeding Edge Threats [192, 193], an organization

that delivers signatures for serious attacks including botnets. Signature conversion

processes had been automated in the past, but for the time being, they are converted

manually. In addition, Porras, et al. [59] provides Snort botnet payload rules that can

be easily converted into Bro syntax in this work (see Appendix F.3).

 126

event connection_established(c: connection)

{

Make an observation!

Each established connection counts as one so the observation is always 1.

 if(cidresp_p == 25/tcp) {

 SumStats::observe("SMTP conn",

 SumStats::Key($host=c$id$orig_h),

 SumStats::Observation($num=1));

 }

 if(cidorig_p == 25/tcp) {

 SumStats::observe("SMTP conn",

 SumStats::Key($host=c$id$resp_h),

 SumStats::Observation($num=1));

 }

}

Figure 4.5. Sample of SumStats Scripts

4.6 Evaluation Environment

Once detection scripts of flow-based are implemented, it is important to validate and

evaluate this implementation to determine possible false negatives and positive alerts,

in addition, to study the resource consumptions, compared with packet-based

detection. To do so, the detection policy scripts that were implemented from

Section 4.5, must be applied to packet-based and flow-based detection shown in

Figure 4.1 (a) and Figure 4.1 (b). For effective validation, new datasets that include

same malicious activities in addition to background traffic are used as input data. P2P-

bot detection is validated with ISOT dataset while in IRC-bot, CTU-51 dataset is used

(see Section 3.4.4). Each of this malicious dataset is combined with PSCJ-2 trace as

additional background dataset. In the evaluating environment, datasets are replayed

into the detection machine.

Testbed illustrated in Figure 3.6 is used in the experiments. All commands mentioned

in the measurement procedures (see Section 3.4.3) are used in this chapter. However,

in all experiments conducted in this chapter, two detection instances are running on

 127

the second machine. The first instance is to launch flow based detection to collect flow

records from flow aggregator (Softflowd) to find malicious flows based on the policy

script. The second instance is for packet detection to collect packets from the live

interface. All these detection instances run in an identical environment in term of input

source (datasets), and traffic speed. FL and PO are experimented in sequence but with

the same datasets and platform. The output logs are then manually observed to

determine whether the known IP addresses of the infected machines (that produce

malicious flows) are detected or undetected.

4.7 Chapter Summary

In this chapter, since there is no flow-based detection built-in in Bro; flow-based

detection mechanism was implemented from scratch. To implement flow-based

detection mechanism, characteristics of malicious activity were required. For this

purpose, a workflow process was designed and implemented to extracts malicious

flow features against several labelled datasets. Packet and flow traffic analysis are

applied on these datasets to generate malicious features. From these malicious

features, machine learning algorithms were used to generate the most important

attributes and rules that will be useful for implementing the first stage of flow detection

mechanism. Then flow-based detection policy scripts were implemented in two stages:

precondition and threshold stages. These scripts analyse the behaviour of flows based

on certain rules (precondition stage) and threshold-based (threshold stage) strategy.

For validating flow detection methods, different recent labelled datasets were used.

The evaluation results are presented in Chapter 6.

 128

CHAPTER FIVE

CONDITIONAL HYBRID INTRUSION DETECTION

5.1 Introduction

In the previous chapter, flow-based detection mechanism was designed and

implemented. The idea was to derive detection scripts from malicious labelled datasets

and using machine learning to extract malicious features from those datasets.

Evaluation results (see Section 6.1) showed that flow-based detection showed a

significant amount of false positive alerts compared with packet-based detection. Also,

several works implemented flow-based detection methods for botnet attack and their

methods still suffer from generating false positive [18, 54]. Although a lot of efforts

have been made to reduce the number of false alarms generated by NIDS (as discussed

in Section 2.6), having an NIDS with no false alarm is almost impossible [194]. The

impacts of producing false positive have negative consequences on the network

performance. Such impacts include:

 The network operator has to be overwhelmed with a lot of annoying alarms.

However, the attackers can exploit this situation by overloading the system

monitored by an IT staff. Hence network infrastructure defence becomes

weaker.

 With generating huge unjustified alerts, the value and urgency of true alert are

diminished. When a real attack occurs, its alert is handled as it was within false

positive alerts. Hence false negative occurs [111].

 129

 System resources become exhausted when receiving and processing a large

number of false positives.

As discussed in Section 2.6.1.6, a few works combine flow-based and packet-based

detection for enhancing NIDS scalability and reducing false positive rates [9, 22, 23].

In [9], no results were reported since the implementation is under deployment. The

resource consumption of the work [22] was challenged since all packets, regardless

they are suspicious or non-suspicious, are processed by packet-base detection. In their

performance results, no performance on detection accuracy analysis in NIDS was

presented. In [23], the author highlighted the significant overhead consumption of

Broccoli [131] method that enables communicating process between flow-based and

packet-based detections. Also, in their work, high-speed volume measurements was

not considered, and a full payload of the packets was captured and inspected. Instead

of using labelled datasets, these approaches used live traffic for their evaluation

measurements. Live traffic has limitations, regarding the repeatability of experiments,

for any systematic performance evaluation study.

This chapter proposes a mechanism named Conditional Hybrid Intrusion Detection

(CHID). The aim of this mechanism is to reduce the false positive rate of flow-based

detection by combining flow-based with packet-based detection to compensate for

their mutual drawbacks. To be specific, Flow-based detection identifies a reasonable

number of suspicious hosts that are likely bots. The traffic of these hosts can be

forwarded to packet-based detection for further analysis. Also, this combination

approach can significantly reduce resource consumption of packet-based detection by

 130

reducing the amount of traffic to be applied to this detection. Thus, the scalability of

packet-based detection can be improved while preserving detection accuracy. Also,

high volume traffic environment and partial payload inspection in packet-based

detection are considered in this Chapter. However, this research proposed a

mechanism that enables communicating process between flow-based and packet-

based detections in order to exchange the flow-based suspicious IP addresses. The

main contribution of this chapter are as follows:

 Design CHID mechanism to reduce the false positive alerts caused by flow-

based detection and to reduce the resource consumption of packet-based

detection.

 Design a mechanism that combines the method of IF and BPF filter to

communicate between flow-based and packet-based detection modules in

CHID approach.

This chapter is organized as follows: Section 5.2 presents the design and theory of the

proposed detection mechanism. In Section 5.3, the practical requirements for

designing and operating the proposed mechanisms are implemented. In this section,

several strategies are presented for this CHID mechanism. To test the feasibility of

these strategies, proof of concept is experimentally implemented until the final

prototypical implementation is revised. This section also proposes Input Framework

(IF) method to exchange data between packet-based detection and flow-based

detection. Finally, Section 5.4 present the evaluation of the proposed detection

 131

mechanism. This section discusses the attack selection and experimental environment

where the proposed mechanism is evaluated.

5.2 Proposed Mechanism

This section discusses how the combination of two approaches, flow detection, and

packet detection, can reduce false positives from flow-based detection and reduce the

resource consumption of packet-based detection while maintaining the level of

detection accuracy.

5.2.1 Design and Theory

The idea of the proposed mechanism design is to obtain the advantages of a flow-

based NIDS approach by having a small amount of data to be processed and the

advantages of a packet-based NIDS approach by having a low false-positive rate. With

these two approaches, the proposed mechanism is based on the following strategy: one

approach is used for the first inspection (to mark traffic as suspicious), and the second

one is used for further inspection to confirm the decision made by the first inspection.

To identify the first and second inspector, Figure 5.1 and Table 5.1 are presented based

on the literature and the experimental results from the previous chapter. As presented

in Figure 5.1 (a), flow-based analysis has better scalability (see the y axis) due to light

resources consumption compared with packet-based analysis. On the other hand,

considering the high resource usage of packet-based detection, it degrades the system

scalability. Where as shown in Figure 5.1 (b), however, flow-based detection generates

false alerts that need to be verified by the other inspector. This degrades the level of

 132

alert verification. On the other hand, because packet-based detection has high

detection accuracy, it is more suitable to be used to verify an alert made from the other

inspector.

In the combined approach theory, two approaches are possible. The first approach is

to set flow-based detection as a first inspector and packet-based as a second inspector.

The second approach is the opposite. To identify the candidate approach among them,

Table 5.1 are derived based on Figure 5.1. It is observed that the first approach is

anticipated to have better scalability and alert verification level. On the other side,

when placing packet-based detection in the second inspector, low scalability level

might occur with low alert verification from flow-based detection. Thus, the first

approach has been chosen as a candidate for CHID for the rest of the thesis. A scenario

describing the chosen approach is presented in the next subsection.

Figure 5.1. Flow-based and Packet-based detection with a) Scalability Level and b)

Alert Verification Level (x-axis indicates the detection type)

 133

Table 5.1

Two Combination Approaches

Combination Approach Anticipated Performance

Flow-based Packet-based Good Scalability with High Alert Verification

Packet-based Flow-based Bad Scalability with Low Alert Verification

5.2.2 Combination Approach Scenario

The following scenario describes the importance of the chosen approach that combines

flow-based and packet-based detection. This scenario shows the need of packet-based

NIDS as the second layer to verify the false positive generated from flow-based NIDS.

In the scenario, as shown in Figure 5.2, Host A communicates with Host B with the

existence of flow-based NIDS. The NIDS processes the flows generated from the

communication between the two hosts. It is assumed that the abnormal (intrusive)

behaviour occurs when the number of flows in a connection exceeds the predefined

threshold in a short time. This intrusion might be classified as port scanning that

prepares for an attack.

Internet

Router/NAT
Hub

IDS

Local Network

Host A

Host B

Figure 5.2. Two Hosts with P2P Communications

 134

It was observed that host A communicates host B with matching the case above. Hence

it was alerted as an intrusion. After investigation the cause of this activity, it was found

that host A was trying to call host B via Voice Over IP (VoIP) application (Skype), at

the back of NAT, many times in short period. Thus, the sender (host A) did not involve

in malicious activity to attack the host B. Eventually, false positive was generated by

the flow-based NIDS.

From this scenario, it can be seen that distinguishing between normal (benign) and

intrusive activities are the main challenge of flow-based NIDS. Thus, NIDS decision

relying on flow-based only cannot be certain and accurate. In this case, another

detection layer is required which is packet-based NIDS to make a final statement for

the decision. This is because packet-based data provides useful information to NIDS

about the traffic such as the signatures and malicious code within the data [9].

Similar scenarios can be seen when a benign traffic is marked as an intrusion. For

example, when large flows corresponding to HTTP connections attempt to a web

server, this activity is not necessary to be always an intrusion. Even a sweep through

the entire web addresses when looking for a web server, this should not be considered

as an intrusion. Such activities might happen when some search engines perform port

scanning to search for the web server to crawl and index the corresponding websites.

Thus, flow-based NIDS does not proof the intention behind those activities whether

they carry the malicious attack. Hence packet-based NIDS is required as second

detection layer. This problem arises when proxies, NAT (as seen in the first scenario),

 135

and DHCP are used since many IP addresses may correspond to a single address or

vice versa.

5.3 Implementation

This section presents the practical requirements for designing and operating the

proposed hybrid CHID mechanism. Two strategies of the hybrid mechanism are

presented in this section in the context of the proof of concept: traffic recording and

subsequent-packet. By implementing a first proof of concept, it is explained why the

recording traffic strategy as hybrid mechanism had to be discarded. On the other hand,

the subsequent-packet strategy will be considered in this chapter as CHID mechanism,

as discussed in the following subsections.

5.3.1 Traffic Recording Strategy

Again, the goals of CHID mechanism are to verify alerts that are produced by flow-

based detection and to reduce the resource consumption of packet-based detection. To

achieve these goals, packets corresponding to (or triggered) these alerts are retrieved

for further inspection by packet-based detection. However, the issue is that these

packets might already have exited the link by when suspicious flows are generated;

therefore, these packets become not retrievable. In this case, when suspicious flows

occur, a packet-based NIDS would not be able to request the relevant packets for

payload analysis. To overcome the mentioned issue and to ensure inspection of past

traffic, the captured traffic is recorded into a PCAP file using Tcpdump. This strategy

is named as Traffic Recording. Figure 5.3 shows how this strategy works. When

 136

recording into the file, packet-based detection later reads the file in offline mode to

retrieve and then inspects only suspicious traffic.

Packet-based
Detection Script

Packets

Receiving Network Traffic

Flow Aggregation

Flow-based
Detection Script

Packets

Flow records

Suspicious
IP

addresses
Match?

Export Suspicious
 IP addresses

Yes

Do Nothing
No

Recording into File

Packets

Reading from the
File

Packets

End

Start

Figure 5.2. Proposed Flow Chart with Traffic Recording Strategy

To test the feasibility of this strategy method, proof of concept is implemented

experimentally. The same scenario conducted in the live experiment (presented in

Section 4.5.1.2) is used. In this experiment, flow-based detection read live traffic that

carries P2P communication flows. After executing P2P applications on the machine

 137

to inspect the transmitted traffic, the following instances are launched on the Bro

machine:

 Softflowd command was run to read live packets and converted into flows.

 Bro flow-based detection was run to read and analyse the flows received from

Softflowd.

 Tcpdump command was run to record the live traffic and save it into recording

file.

 Finally, Bro packet-based was run in offline mode to read the recording file

generated from tcpdump.

When to initiate the experiment, Tcpdump starts recording the live traffic into a

recording file in PCAP format. Packet-based detection starts reading offline from the

PCAP file and inspects only the traffic that matches with the log file based on host IP

addresses. Flow-based detection performs well without problems and errors. However,

after one minute of launching, packet-based detection stop reading the PCAP file,

although tcpdump still running and recording. The cause of this issue was identified

by monitoring the experiment. The cause is that packet-based detection was faster than

tcpdump recording which leads to the internal issue that it was not possible to be

solved. Since the recording approach could not be validated, it is discarded in this

work.

 138

Another method of reading the past traffic is to use Bro Timemachine method to go

back in time and retrieve only certain parts of the captured traffic [195]. However,

Timemachine method does not meet the requirements and is discarded for the

following reasons. Timemachine method was developed to record traffic in days rather

than hours. Thus, its query functionality requires much time to retrieve sufficient data

from the captured traffic. This delay can negatively affect NIDS performance,

particularly when the number of queries increases. Another challenge facing the

Timemachine approach is interruptions that might occur when performing queries

while capturing packet operation. In regular basis, Timemachine is more suitable for

recording traffic, not for querying and retrieving traffic. To overcome the mentioned

issues, the subsequent-packets strategy is proposed, which is explained in the next

subsection.

5.3.2 Subsequent-Packet Strategy

In botnet activities, repetitive attacks frequently send similar traffic and patterns in

future connections [25, 168]. AsSadhan, et al. [196] assumes that a bot involves in a

repeated pattern behaviour. The authors then explore this behaviour by analysing and

looking for periodic components in botnet traffic traces. As a result, botnet traffic

exhibits periodic behaviour. The communications between bots and the C&C servers

are based on either a pull or push mechanism [64]. Depending on the mechanism used,

each bot often either contacts or is contacted by other bots to updating requests for

command and control process, receive commands, discovering peers in P2P structure,

and send keep-alive messages.

 139

This pattern exists in bots regardless of the structure of the botnet (e.g., centralized or

P2P) and the communication protocol being used between bots and the C&C server

(e.g., IRC, HTTP) [196]. Moreover, this pattern happens in a periodic manner for a

given bot, and it occurs because a bot’s communication with the C&C server repeats

itself with a certain pre-programmed period. This pre-programmed behaviour to

perform similar routine communication with the C&C server and for the same

botmaster [5, 196].

As a conclusion, these observations implies that these malicious activities can be

detected and verified by inspecting their future packets using packet-based detection.

With this fact in mind, these activity characteristics can be utilized to verify the flow-

based alerts by inspecting related packets in the corresponding future traffic instead of

past traffic. This strategy is named as “Subsequent-packet”. However, the advantage

of this strategy is the ability to read the traffic in live mode instead of offline mode.

Figure 5.4 illustrates how the hybrid mechanism using subsequent-packet strategy

works. It works as follows: initially, Bro in packet-based is adjusted with the Berkeley

Packet Filter (BPF) to exclude all traffic. Later, when flow-based detection generates

suspicious IP addresses, the packet-based detection adds these IP addresses into the

capture filter so that from now on, only incoming traffic that matches these suspicious

IP addresses is subject to inspection by packet-based detection for further analysis. If

packet detection finds an intrusion, it updates the intrusion log file. Otherwise, it is

considered a flow-based false positive. From now and onwards, in this thesis, this

strategy is used as the basis for CHID mechanism.

 140

Packet-based
Detection Scripts

(PH)

Matched Packets

Receiving Network Traffic

Flow Aggregation

Flow-based
Detection Scripts

(FL)

Packets

Flow records

Suspicious
IP Address

Match?

Export Susbicious
IP addresses

Yes

Do Nothing

Packets

Captured Filter

End

Start

Figure 5.3. Proposed Flow Chart with CHID Mechanism

5.3.3 PH and FL Communicating Process Implementation

The proposed mechanism, CHID, mainly has two components: PH and FL. Each

detection runs in separate Bro instance. Since PH has to import the suspicious IP

addresses from FL, communicating process should be implemented. This section

presents how the communicating process between these two detection approaches is

implemented. Two methods of communicating process are presented in the context of

the proof of concept: BPF-only and IF methods. By implementing first proof of

concept, it is explained why the BPF-only method had to be discarded. On the other

hand, IF method will be considered in this chapter as communicating process method

 141

in CHID mechanism, as discussed in the following subsections. This section also

explains the integration between IF method and Bro detection engine.

5.3.3.1 BPF-only Method

To ensure that packet-based detection in CHID approach, or PH, is only capturing the

suspicious IP addresses, PH should communicate with FL to read the suspicious log

file. This subsection presents a method for importing the suspicious IP address using

BPF (by adding –f in the Bro instance command). It also presents the proof concept

of this method with the same scenario from live experiment (presented in

Section 4.5.1.2) is performed. The following instances were run in this experiment:

 Softflowd was run to read live traffic to export flows

 Bro FL was run to read and analysed these flows and generated a file that stored

suspicious IP addresses.

 Bro PH was run to read live traffic and capturing based on the IP address filter

BPF. It uses “-f” as parameter followed by IP addresses generated from FL.

FL mechanism is similar with one conducted on Section 4.5.1, but with a little

customization to add IP addresses (which conduct P2P activities) to the file. For PH

script, print function (to print all IP addresses that PH processes) was only added to

make sure that PH was triggered based on the captured filter. When running the

experiment, BPF managed to exclude all traffic when the suspicious file was empty.

This means that the captured filter, as shown in the Figure 5.4, is working properly.

 142

Then FL started reading flows from Softflowd and started generating IP addresses into

the suspicious file as shown in the Figure 5.4. Unfortunately, after a while, PH did not

capture any packets while FL instance was running. However, PH captured the packets

only when PH instance was restarted; then it captured (using BPF) the future traffic

matching the IP addresses successfully. PH printed all IP addresses that captured by

BPF, and it worked without any fault and was error-free. However, it was observed

that to update BPF with new IP addresses, it was required to restart (re-launch) PH.

However, to automate BPF update, a script was added to schedule PH to be launched

every 30 seconds.

This method (BPF only) worked faultlessly. Filtering must be updated as fast as

possible for better performance. As experienced in this experiment, this method was

not practical since scheduling this update resulted in a significant delay, thus should

not be the optimal choice. Also, resource consumption was badly affected since

restarting PH many times required additional CPU overhead. With these mentioned

issues, this BPF-only method was discarded.

5.3.3.2 Input Framework (IF) Method

As an alternative to the BPF-only method, Broccoli method [131] can be used for this

purpose, because it subscribes to events of other Bro instances. However, based on

literature, it suffers from high overhead consumption as reported by [23]. The

overhead consumption was caused due to more frequent updates of the BPF filter.

Thus, the Broccoli method is discarded in this research.

 143

The alternative method to the Broccoli method is to combine the BPF with the most

recent novel framework developed by [132], which is called “Input Framework (IF)”.

The IF architecture can be implemented on top of the Bro NIDS. Unlike Broccoli

method, IF method integrates external information in real-time into an NIDS source

without negatively affecting the NIDS’s main task, even in high-volume

environments. In CHID mechanism, it allows PH instance to import the suspicious log

file from FL instance and stores it in a table.

The following sections explain how to implement IF method and integrate it into

detection scripts. Then a script-level Application Programming Interface (API) to

configure the file input sources is discussed. Also, IF method is customized to meet

the CHID requirements.

5.3.4 IF Method Integration

Figure 5.5 shows how IF implementation integrates into packet-based detection

mechanism, PH. The input manager acts as the interface between the PH analysis

engine core and file sources. It receives a request from the PH engine to open a stream,

issue a new file reader thread, and then instructs it to connect to the corresponding file

source. The reader passes it on to the manager when reading data. The manager then

(after converting the data into a Bro format) feeds the data into PH engine, either the

event stream or directly into the user scripts as shown in Figure 5.5.

 144

PacketsPackets

EventsEvents

User ScriptsUser Scripts

Bro PH Engine

Input ManagerInput Manager Ascii FileReader
Thread

Ascii FileReader
Thread

Input Framework

Suspicious FileSuspicious File

Figure 5.4. IF Method Integration into PH

The IF implementation integrates fully into PH’s domain-specific scripting language.

In the following, the main parts of the script-level interface that the IF method exposes

to the user are discussed. As a simple running scenario, importing IP addresses of

suspicious hosts from a file named suspicious_log (generated from FL), formatted as

a 2-tuple (IP address, reason) where IP address is the host’s address and the reason a

textual description of the host’s offense. Stored in a tab-separated file (log file), the

list looks like this:

Ip Reason

147.16.2.195 P2P-bot suspicious

147.16.2.192 P2P-bot suspicious

147.16.2.196 P2P-bot suspicious

5.3.4.1 Reading Files

The IF method can directly import files such as the above into tables. To do so, it is

required to declare the columns to extract from the file by defining two corresponding

record types (records are similar to structs in C programming language): one for the

 145

table index and one for its values. In the scenario above, assuming the IP address as

the table index and the reason as its value, the following types can be defined:

type Index: record { ip: addr; };

type Value: record { reason: string; };

When reading the suspicious_log file, the IF method will use the records’ field names

(ip and reason) to locate the corresponding columns, and it will interpret their content

according to the fields’ types (addr is Bro’s built-in script types for IP addresses).

Next, the table that will receive the content of the file is defined as follows:

global suspicious_log: table[addr] of Value;

Note that the types for table index and values must correspond to the Index and Value

records, respectively. Now that the types and the table are defined, the IF API function

is used to read the suspicious IP address from the suspicious_log file as shown below:

Input::add_table(source="/home/suspicious_log.log",

idx=Index, val=Value, destination=suspicious_log);

When executing the add_table function, the IF’s manager issues a new reader

thread (as shown in Figure 5.5). While the new thread is analysing the suspicious_log

in the background, it continuously forwards entries to the manager, which in turn puts

them on the suspicious table accordingly.

 146

5.3.4.2 Updating Table

The suspicious_log sources will see frequent updates at regular intervals. This is since

FL keep adding new suspicious hosts. IF implementation mainly provides two

mechanisms to accommodate updates. The first mechanism is to call the API’s

function manually to refresh of an input stream. The IF method may also individually

add, delete, or modify table entries once they get updated. This mechanism is

preferable if one knows when to expect a change. The second mechanism is to put a

reader into automatic update mode. In this mode, the reader thread continually re-read

the source file for modifications and trigger the update operation automatically. The

IF method will then add any new values to the corresponding table or remove ones

that no longer exist. With the second mechanism, IF API function looks like this:

Input::add_table(source="/home/suspicious_log.log",

idx=Index,val=Value ,destination=suspicious_log,

$mode=Input::REREAD);

In this work, this mechanism (automatic update) is selected. This is because the

changes in the suspicious file are unexpected and may occur at any time. The

advantage of using IF method for re-reading processes is avoiding PH instances from

extra overhead caused by being launched multiple times to update the table. It is

required to customize IF method process to provide a file reader that can read a file

once at start-up and then continuously monitor it for any changes and trigger the

update operation automatically. In CHID mechanism, to minimize PH consumption,

 147

this re-reading process is called only when there is a new entry added to the log file,

as shown in the flow chart in Figure 5.6.

Does Suspicious
Log File Change?

Log Suspicious File

Update Table

Filter

Compile/ Re-compile/ Update

New entry in
table?

Do nothing

Yes

Yes

No

Do nothing
No

Re-read Suspicious
Log File

Start

Start

Figure 5.5. Combination of IF and BPF Filter Approaches

5.3.4.3 BPF Filtering

Now that the integration of IF method into PH detection is implemented, a

combination mechanism of IF and BPF is implemented in this subsection so that BPF

 148

filter can read the suspicious log file. To filter the incoming traffic in Bro based on IF

entries, PacketFilter framework [197] is used. This framework supports how Bro sets

its BPF capture filter. By default Bro sets a capture filter that allows all incoming

traffic. If a filter is set, then filter takes precedence over the default open filter using

capture filters variable. This variable is a BPF filter that is used by default to define

what traffic should be captured.

Figure 5.6 illustrates how the BPF filter reads the suspicious log file through IF

communication. After IF method updates its table, PH captures the packets that

correspond to the IP addresses found in that table. When the table is empty, BPF

excludes all traffic. The BPF filter frequently reads the entries from the table and

updates the filter to add them to the capturing process. To perform this function, the

compilation is needed. To avoid unnecessary filter compiling overhead occurring

when updating the filter, this update (or filter re-compilation) should only occur when

the table is changed.

5.3.4.4 Proof of Concept

The proof-of-concept is performed to test the feasibility of CHID mechanism (with

subsequent-packet strategy) after integrating IF approach. Again, the live experiment

(performed in Section 4.5.1.2) is used. In the experiments, three instances were

running. One for Softflowd and the other two are for FL and PH. Softflowd and PH

read live traffic. FL script is similar with one conducted on Section 4.5.1 and is

customized to add IP addresses, which conduct P2P activities, to the file. For PH

 149

script, it is suggested to add print function to print IP addresses of processed traffic

and to make sure that PH was triggered based on the captured filter.

Initially, when started the experiment, BPF excluded all traffic when the suspicious

file was empty. FL started reading flows from Softflowd and generated P2P IP

addresses into the log file. PH added these IPs into the captured filter via IF method

and kept updating this filter whenever needed. PH starts capturing incoming traffic

that only matches with these IPs (it was verified by printing all IP addresses processed

by PH). When added a new IP address in the file, the table and the filter were

automatically updated with that address successfully. In this experiment, no errors or

bugs are found. Appendix F.2 shows PH code for IRC-bot detection based on the flow

chart shown in Figure 5.6.

However, in the log file, every entry should have an expiry time. Once this expiry time

is reached, the entry (suspicious IP address) is deleted. This process ensures that

entries are updated with only recent suspicious traffic. Also, in this experiment, it was

proofed that filtering (or indexing) by only matching on IP address instead of on 4-

tuple (IP address and port number of source and destination) was more practical. First,

if filtering by 4-tuple is performed, many unique records will be entered into the flow

log file, and hence, many requests will be made by PH to collect the relevant packets.

To reduce the number of records, it is suggested to filter the traffic by IP address only

so that PH detection will inspect all connections to and from this IP address. Second,

the compilation time of the filter, when IP addresses only were applied, requires less

time compared with when port numbers were considered. With this simple

 150

experiment, it was concluded that the CHID mechanism worked correctly and will be

considered in the evaluation process.

5.3.5 Partial Payload Inspection Approach

Although PH detection mechanism inspects selected packets from traffic, the whole

payload of the packet is analysed for detecting intrusions which might be time-

consuming especially in of high volume network. Researchers such as [22, 198, 199]

found methods to select portion of the payload to be captured and analysed without

compromising the security. This portion should be very relevant to security properties.

When the client and server intend to transfer bulk data, handshake process and data

request and response must be performed first which it happened at the beginning of

every connection. In the data request and response exchange, sensitive information for

authentication is transferred, such as in HTTP GET or POST request. When the

attacker uses web exploitation against the victim, the signature can be found in this

request.

Münz, et al. [199] found that the most security relevant portion is focused at the

beginning of a connection. The authors analysed rule sets of the Snort to get

knowledge about the relationship between the rules and the amount of payload needed.

It can also find the bytes of payload that do not contain interested information and

ignore them without impairing the detection accuracy. They concluded that 90% of all

Snort rules could be found in the first 145 bytes. With this fact in mind, the portion

size of payload to be inspected by PH detection can be adjusted. Bro provides such

scenario by resizing the packet payload using the snaplen function. This scenario is

 151

considered in the evaluation to determine what the optimal payload size is that

provides better resource consumption with accurate detection.

5.3.6 Switching Approach based on Traffic Rate

In current network environments, the amount of traffic is not at constant volume; it is

rather in between low and high volume. In low volume network, under 80 Mbps for

example, Bro packet-based mechanism can process all packets with enough resources

and without dropped packet [200, 201]. In this case, one could say that flow-based

detection or CHID approach is not needed to replace default packet-based detection.

On the other hand, in high volume network (more than 100 Mbps), CHID is preferred

and needed to reduce analysed packets. In other words, in low volume network

environment, CHID approach is not preferable, and its advantages may be destroyed.

Thus, switching between inspecting all packets (PO) and inspecting only suspicious

packets (CHID) is proposed, as shown in Figure 5.7

Traffic

Default Packet-

based (PO)

Speed?

CHID Approach

Low High

Figure 5.6. Switching between CHID and PO Approaches based on Traffic Rate

 152

Algorithm 5.1 describes how switching between processing all packets approach and

CHID approach. In this section, this switching approach uses the total number of

received packets within a certain interval as an indication of the volume speed. For

example, when Bro receives more than 1 Million packets (threshold) in 15 seconds

(time interval) (that corresponding to 66,666 packets per second), it can be considered

high volume network. This value (total number of Received Packets or RP) will be

used to be compared with traffic volume threshold (that are set by a network operator),

and it is required to set the time interval as well. On the other words, RP is the total

number of packets received since the last stats interval [202].

 Algorithm 5.1: Approach Selection based on Traffic Rate

Inputs: total current packet received all time, total number of last packets received

Outputs: change status of filter and flow aggregation if needed

1: Set traffic volume threshold value = 1000000

2: Set time interval = 10 seconds

3: If (reading live traffic) then

4: current received packets since the last stats interval (RP) = total current packets

5: received all time – last packets received

6: if (RP > volume threshold) then

7: if current traffic volume is already high

8: do nothing

9: End if

10: if current traffic volume is already low then

11: resume flow aggregation

12: Set filter “ON”

13: End If

14: End If

15: If (RP < volume threshold) then

16: If current traffic volume is already low then

17: Do nothing

18: End if

 153

19: If current traffic volume is already high then

20: Pause flow aggregation

21: Set filter “OFF”

22: End If

23: End If

To calculate the RP value, two values are required. The first value is the total current

packet received at the end of the interval and the second value is the total packets

received at the beginning of the corresponding interval. The RP value is calculated as

following formula:

𝑅𝑃 = Total Number of Packets Received All Time – Last Number of Packets Received (5.1)

RP value is recalculated regularly based on the time interval set. In any time, if RP

value is more than the volume threshold value, this means the traffic is under high

volume and vice versa. When switching from low volume to high volume, flow

aggregation (Softflowd) should be executed to feed FL with flows. In this case, PH

activates IF and filter process. On the other hand, if the switching occurs from high to

low volume, then Softflowd is suspended to relieve FL from extra unnecessary

overhead. In this case, packet-based detection should inspect all packets with default

configuration by inactivating filter process.

To study the feasibility of this method, proof of concept mechanism is experimented.

The scenario in the live experiment (presented in Section 4.5.1.2) could not be used in

this section because, in live traffic, it is not possible to adjust the traffic volume speed

 154

manually as needed in this experiment. Thus, it is suggested to use the controlled

testbed environment presented in Section 3.4.2 with taking CTU-52 dataset (see

Section 3.4.4) as a scenario. This dataset is replayed using tcpreplay to adjust between

high and low speeds.

This experiment adds stats.bro load as a module in PH script to calculate RP value.

The volume threshold and time interval are set to be 1000,000 packets and 10 seconds

respectively. This threshold value is chosen because based on the experiments at high

traffic rate, it was found this value to a correspondent high megabit per second. For

suspending and activating flow aggregation and filtering process, Linux script shell

was added and linked to Bro system. In this simple experiment, the following instances

are required:

 Tcpreplay was run on the first machine to replay the dataset to Bro in the

second machine.

 Softflowd was run to read traffic from the network interface and convert the

packets into flows.

 FL was also run to read and process the flows and then generate the suspicious

file.

 PH was run to be able to read filtered traffic from the network interface.

During this experiment, traffic volume rate was purposely adjusted between low and

high volume to verify the switching traffic approach. Traffic speed more than 100

 155

Mbps was considered as high volume [47]. RP value was updated every 10 seconds

and compared with a threshold value, and the Linux script was performing

accordingly. The switching traffic approach was verified and validated without error

or bugs reported from this experiment.

5.4 Evaluation

Having shown the implementation of the CHID mechanism, this section presents how

this implementation is evaluated. This is to ascertain the possibility of CHID

mechanism to reduce resource consumption while maintaining detection accuracy

when compared with the default packet-based detection or PO.

The following subsections initially present and justify the attack scenarios selections

used in this evaluation. This section also presents the comparative and experimental

environments for the evaluation of the proposed implementations. Finally, it is

required to explain measurement procedures used in this evaluation before discussing

the datasets used in this measurement.

5.4.1 Attack Scenarios

To evaluate the CHID mechanism, attack scenarios that fit the mechanism should be

prepared. Based on literature [25, 168, 169], flow-based detection yields promising

results when detecting botnet activities that perform repetitive traffic patterns.

Repetitive attacks mean that the attacks generate similar traffic patterns in future

communications. Such repetitive patterns may include 1) when bot-infected machines

frequently connect to C&C servers to receive commands, 2) when a bot keeps sending

 156

spam emails to distribute a botnet or 3) when “keep-alive” messages are sent from

time to time for an IRC-botnet. With these points in mind, IRC-bot and P2P-bot as

malicious types are selected to be considered. Also, these cases of botnet attacks are

believed to be the most strong–threat to the security of Internet-connected users and

systems [24].

The other reason behind selecting these attacks is that they match the hybrid

mechanism strategy (see Section 5.2). Thus, an attack can be marked as suspicious in

the first inspector (FL) and can be detected and verified in the second inspector

(packet-based detection mechanism or PH), which can access data (payloads) not

available in FL. More details on this point concerning IRC and P2P botnets, refer to

Section 4.3. In this chapter, FL and PO detection scripts, for IRC-bot and P2P-bot, are

adopted from the previous chapter in Section 4.5.

Similar to IRC-bot and P2P-bot attacks, there are other attacks that can be detected in

both flow and packet level. Such attacks include HTTP-bot and brute-force attacks.

However, the proposed mechanism is not designed such that a combination of flow

and packet detection is a suitable solution for enhancing performance in all cases. For

example, DoS attacks, scanning, and probing are not suitable cases for the proposed

approach because they do not include significant payloads for detection. Therefore,

they do not meet this requirement.

5.4.2 Experimental Environments

In this chapter, comparative analysis is performed between CHID mechanism

(FL+PH) that has customized Bro packet-based scripts and PO mechanism that has

 157

default Bro packet-based detection configuration. Also, the performance comparison

occurs in two situations: 1) packet-based detection is directly applied (PO), 2) packet-

based is applied with CHID approach (PH). In other words, the detection accuracy and

the total resource consumption in the CHID approach are calculated to perform a direct

comparison with Bro PO. PH and PO share the same signature detection. The

difference between them is that PH is involved in IF and BPF techniques. For accuracy

detection evaluation, it is required to compare the log files generated from both PH

and PO. The CHID and PO mechanisms are experimented in sequence with the same

datasets and platform.

In this evaluation, both the CHID and PO mechanisms receive the traffic from datasets

by replaying these datasets. CHID and PO mechanisms are run on testbed depicted in

Figure 3.5 but with adding PH mechanism in the second machine. Bro is installed in

the second machine with default configuration for PO while customized for PH to

accommodate the IF and BPF methods.

In all experiments, three detection instances are running on the second machine. The

CHID mechanism uses two detection instances, one for FL to collect the flow records

from flow aggregator (Softflowd) to find suspicious flows based on the policy script.

The second instance is for packet detection PH to collect packets from the live

interface based on the filter process. The third Bro instance is used for independent

packet detection PO, which inspects all incoming traffic. All of these detection

instances run in identical environments regarding input sources (datasets), and data

volume rate.

 158

5.4.3 Measurement Procedures

To evaluate each of detection script (FL, PH, and PO) and to keep comparable results

between them, the standard evaluation procedures defined in Section 3.4.3 are used.

However, two instances are added to these evaluation procedures: PH instance and

CPU affinity. These instances are explained below.

a. PH

PH is executed by launching this instance:

bro –i eth0 hybrid-packet-based.bro

The –i parameter specify the corresponding Ethernet interface where PH reads from.

As seen in the command, eth0 is used since it is connected directly to the port-mirror

on the switch where traffic forwarded from tcpreplay machine. For defining subnet

monitored hosts, it is treated similarly to FL command. Finally, this command loads

hybrid-packet-based.bro policy script that establishes BPF, IF, and corresponding

signature engines. Appendix F.2 shows the content of this policy scripts. In this script,

it is required to add the sub-directory of the suspicious file inside IF script. However,

the file must be empty before the next experiment start. This is to make sure that PH

exclude all incoming packets at the beginning of the experiment.

b. CPU Affinity

Bro is a single-threaded application, meaning that the design has been constructed in

which it does not break its threads and send them to multiple cores. Thus, it does not

 159

get the advantage of the multi-core architecture. Since the machines used in the

evaluation support multi-core processing, each detection instance to be run assigned

on separate core using CPU affinity tool [203]. This is to minimize resource

consumption effects by the system. This can be achieved by using taskset, command

that is Linux-based tool as follows:

taskset core-number processes-ID

5.4.4 Traffic Data for CHID Mechanism

This subsection presents datasets used for each resource consumption and detection

accuracy for CHID mechanism measurements. To study the resource consumption of

CHID and PO implementations, CTU-52 and ISOT datasets are selected for IRC-bot

and P2P-bot scenarios, respectively. In addition, PSCJ-2 is used as background trace

instead of PSCJ-1 due to the larger size of the PSCJ-2. However, each of malicious

datasets is combined with PSCJ-2 background traffic and injected to detection

machine.

For detection accuracy measurements, more datasets are included to get better testing

results. Thus, IRC-bot scenario is evaluating using CTU-51 and CTU-52 datasets

while P2P bot activities are evaluated on both ISOT and CTU-53 datasets as shown in

Table 5.2. Since these datasets are labelled, it will be useful to validate the accuracy

of CHID and PO methods. Both PSCJ-1 and PSCJ-2 are combined to these malicious

datasets to support the evaluation of false positive measurements. However, CTU-50

is discarded in this evaluation since it is not considered as an attack scenario in this

chapter.

 160

Table 5.2

Datasets for Detection Accuracy Measurements

Scenario Datasets for Detection Accuracy Measurements

P2P-bot ISOT, CTU-53,PSCJ-1, PSCJ-2

IRC-bot CTU-52, CTU-51, PSCJ-1, PSCJ-2

5.5 Chapter Summary

In this chapter, a mechanism named CHID for improving NIDS scalability was

presented. CHID mechanism is based on combining flow-based and packet-based

detections to build on their advantages and overcome their drawbacks to reduce the

resource consumption of NIDS. CHID mechanism is proposed to verify alerts that are

produced by flow-based detection and to reduce the resource consumption of packet-

based detection. To achieve these goals, subsequent-packets corresponding to these

alerts are retrieved for further inspection by only packet-based detection. CHID

mechanism is implemented in Bro NIDS and utilize the IF method to communicate

between flow-based and packet-based detection mechanisms. CHID and PO

implementations are evaluated by replaying labelled datasets, ranging the traffic rate

from 100 to 1000 Mbps. Evaluation results of the proposed approach are discussed in

Section 6.2.

 161

CHAPTER SIX

RESULT AND DISCUSSION

In this chapter, evaluation results and discussion of the proposed mechanisms are

explained. First, Section 6.1 study the performance of the flow-based detection

mechanism, which was implemented in Chapter 4. Then, the performance of CHID

mechanism is presented in Section 6.2.

6.1 Flow-based Detection Scripts

After implementing the workflow processes that extracted malicious flow features

from datasets as presented in Section 4.4, most significant attributes were generated

to build flow-based detection policy scripts. This section presents these attributes and

evaluation results in term of detection accuracy and resource consumption of these

flow-based detection scripts.

6.1.1 Dataset Correctness

To check the correctness of labelling decisions in the datasets obtained from the public

and presented in Chapter 4, these datasets were analysed and verified manually using

Bro analysis logs. For example, after extracting and analysing the flows initiated from

the internal hosts who were labelled as bots in the ISOT dataset, it was observed that

these machines exhibit unusual network usage comparing to other machines. These

machines engaged in a large number of SMTP connections (7,699 flows) within a

short time of period, by sending packets (with randomly source email addresses and

advertising words in the email’s subject) to many external servers on port 25.

 162

However, only one machine (172.16.0.2) in ISOT dataset seems to have either

incomplete traffic or been wrongly labelled as bots. All other labelled machines as

infected machines on the other datasets were found to be correctly labelled.

6.1.2 Most Significant Attributes

For the most significant attributes used in flow-based detection scripts, Table 6.1 lists

the best three important attributes with generated by different classification algorithms

for each malicious type. These attributes were observed to be very useful in the flow-

based detection script. From these attributes, the following rules were observed and

merged into flow-based detection:

 Spam-bot: dest_p == 25/tcp && pkts < 83 && duration <= 5 sec

 P2P-bot: dest_p from 1024/upd to 65535/udp && pkts <= 17 && duration <=

12 sec

 IRC-bot : pkts < 8 && octs < 570 && dest_p ≠ 6667/tcp, 6668/tcp

Destination port number was often employed as an absolute feature in identifying

botnet traffic [176]. For example, for bots involves spam activity detection, it is

obvious that destination port is among these attributes since port 25 on the SMPT

destination server is a good sign of this malicious type. It is also observed that packets

and bytes per flow in IRC-bot are the most significant attributes. These features are

mostly intended to represent similar communication patterns and have been used for

the purpose of botnet traffic identification [175, 176]. For example, the values of these

 163

attributes are constant and really small as appear at regular intervals (PING/PONG

communication, e.g. for when each time keep-alive is exchanged), where normal IRC

traffic has more and larger packets as also appeared in [184].

Table 6.1

Best Three Important Attributes

Classification

algorithm

Spam-bot IRC-bot P2P-bot

J48 dest_p, duration, pkts dest_p, pkts, octs src_p, dest_p, duration

Random Tree dest_p, duration, pkts dest_p, pkts, duration src_p, dest_p, pkts

Rep Tree dest_p, duration, pkts dest_p, pkts, octs src_p, dest_p, duration

BF Tree dest_p, duration, pkts dest_p, pkts, duration src_p, dest_p, duration

PART dest_p, duration, pkts dest_p, pkts, duration orig_p, dest_p, duration

Jrib dest_p, duration, pkts dest_p, octs, duration orig_p, dest_p, pkts

DTNB dest_p, duration, pkts pkts, octs, duration orig_p, dest_p, pkts

It was also observed that the traffic generated by bots is more uniform than traffic

generated by non-bot hosts. Thus, these attributes are relevant to identify bot

behaviour as promised by [90, 99]. Also, flow duration was showed to be a significant

feature for malicious botnet detection. It is one of the most useful parameters used in

the detection of botnets [176]. This is because the majority of botnets maintain long

communication sessions. This characteristic has been widely applied in many botnet

detections approaches [175-177].

 164

6.1.3 Detection Accuracy

For detection script validation, when using newly labelled datasets in the experiments,

flow-based detection mechanism marked all known infected machines IP addresses in

these datasets as malicious bots (FN = 0). This mean that flow-based script can detect

all the infected machines that generate malicious flows with 100% detection accuracy.

Table 6.2 and 6.3 show the FPR and precision for each malicious type respectively. It

shows that flow-based detection mechanism suffers from generating false positive

alerts.

Table 6.2

False Positive Rate (FPR)

 IRC-bot P2P-bot

FPR# 0.25 0.20

#the value is 0 if there is no FP

Table 6.3

Precision Results

 IRC-bot P2P-bot

Precision$ 0.66 0.42

$value is 1 if there is no FP

In IRC-bot detection results, for example, five benign IP addresses detected as

malicious were reported from flow-based detection analysis. Also, unlike packet-

based detection, incomplete data (no payload data) of the flow-based analysis also

plays an important role in producing these false alarms. In other words, payloads

provide a significant role for identifying non-malicious traffic. To test false positive

 165

in packet-based detection mechanism, IRC-bot dataset was run and no false positive

alerts generated which indicates the accuracy level when the payload is inspected.

6.1.4 False Positive Test

To make a statement on the false positive alert generated from flow-based detection

mechanism, further investigation on the traffic features of these IP addresses are

performed in two approaches. First, Bro analysis is launched and filtered based on

these IP address for manual inspection. After investigating the output log files, the

alerts from these IP addresses are caused by the similarity between malicious and non-

malicious recorded data. Such data include flow duration, port number, and number

of packets per flow.

The second approach involves in public blacklist investigations. However, these false

positive alerts generated from hosts that reside at PSCJ campus monitored network

where non-malicious traffic are assumed to be generated. To verify whether these

hosts involve in any botnet activates, the following steps are performed; 1) identify all

IP address of these hosts. 2) list all non-campus network IP addresses that were

contacted by an identified IP address; and 3) for each non-campus network IP

addresses, look it up in search engines and check whether the address can be found in

any blacklisted server that involve any malicious activities. If an identified IP address

has contacted a blacklisted peer, it could be most likely a bot. Also, publicly available

blacklists such as [204] and [205] are also used. Based on the findings, none of the

hosts residing on PSCJ campus are confirmed to be bots. As a conclusion, the

 166

statement can be stated that the false positives generated by flow-based detection are

indeed false positive.

6.1.5 Resource Consumption

In this subsection, evaluation results of the resource consumptions of both FL and PO

are presented. The importance of this evaluation is to compare between the two

scenarios: IRC and P2P botnets, in term of memory and CPU usages, for each FL and

PO detection. In addition, this evaluation study how FL can handle the flow records

in high speed link compared with PO. This subsection shows the memory and CPU

usages while replaying the P2P-bot trace with speed ranging from 100 to 1000 Mbps,

in Figure 6.1 and 6.2 respectively.

Figure 6.1. Memory Usage with Different Traffic Rates – P2P-bot (FL: flow-based

detection; PO: default packet-based only)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

100 200 300 400 500 600 700 800 900 1000

M
em

o
ry

 U
sa

ge
 (

M
B

)

Traffic Rate (Mbps)

FL

PO

 167

Figure 6.2. CPU Usage with Different Traffic Rates – P2P-bot (FL: flow-based

detection; PO: default packet-based only)

It is observed in these figures that PO consumes higher memory and CPU usage

compared with FL. When sending packets at a constant rate of 500 Mbps, for example,

FL mechanism drops CPU usage from 97% with PO to 24%. This observation is

expected since FL processes only flow records rather than inspecting whole packet

data. Also, this observation was stated by Golling, et al. [9] that flow-based detection

can handle the flow records of the 10 Gbps link. Similar to P2P-bot detection, this

observation was true when IRC-bot scenario is measured as shown in Figure 6.3 and

6.4.

0

20

40

60

80

100

120

100 200 300 400 500 600 700 800 900 1000

C
P

U
 U

sa
ge

 %

Traffic Rate (Mbps)

FL

PO

 168

Figure 6.3. Memory Usage with Different Traffic Rates – IRC-bot (FL: flow-based

detection; PO: default packet-based only)

Figure 6.4. CPU Usage with Different Traffic Rates – IRC-bot (FL: flow-based

detection; PO: default packet-based only)

FL plays an important impact on resources consumption. However, at all data rates,

the CPU usage of FL is slightly higher in IRC compared with a P2P-bot scenario (see

0

500

1000

1500

2000

2500

3000

3500

4000

4500

100 200 300 400 500 600 700 800 900 1000

M
em

o
ry

 U
sa

ge
 (

M
b

p
s)

Traffic Rate (Mbps)

FL

PO

0

20

40

60

80

100

120

100 200 300 400 500 600 700 800 900 1000

C
P

U
 U

sa
ge

 %

Traffic Rate (Mbps)

FL

PO

 169

Figures 6.2 and 6.4). When investigating the causes, FL received larger flows when

IRC was used. Also, because the second stage in FL detection depends on upon the

first stage (precondition), FL processes a huge number of hosts (101 hosts were

processed in the second stage as shown later in Table 6.5) that carry IRC

characteristics from the traffic compared with P2P (25 hosts were processed as shown

later in Table 6.4). When more hosts passed the first stage, more hosts were processed

in the second stage, which led to more resources being needed. Such resources include

1) updating the FL table for all hosts used in the second stage of flow-based detection

and 2) dynamic threshold calculations for all hosts participating in the FL table.

To study how FL and PO behave over running time, Figures 6.5 and 6.6 are generated

to show the memory and CPU usage over time at 200 Mbps rate. These figures show

that both memory and CPU usages of FL and PO rise to a certain level and remains at

the same level almost all the time. This observation was true with other traffic rates

even when IRC-bot case was tested. For FL, for example, this observation could be a

result of setting the timeouts, flushing of old states, and expiration values of all entries

in the tables to be consistent.

It is also observed in all experiments that when similar flows within the same

connection were discarded (as suggested in Section 4.5.1.2), FL process only 22% of

total received flows; when P2P scenario at 200 Mbps was measured. This indicates

that a huge number of flows, belong to the same connections, were exported in

separate flows. Therefore, better resource consumption was obtained when flow-based

detection processes only new (unique) flows.

 170

As a conclusion from this section, although FL mechanism showed a significant

improvement in resource consumptions, this improvement was on the cost of detection

accuracy in term of false positive rate. In other words, the accuracy of FL is sacrificed

for the sake of scalability. Since packet-based detection deserves higher score in

accuracy and flow-based deserves higher score in scalability, this gives implication in

placing this packet-based detection as the second layer to the flow-based detection

mechanism to reduce the false positive rate as discussed in the next section.

Figure 6.5. Memory Usage over Time at 200 Mbps` – P2P-bot (FL: flow-based

detection; PO: default packet-based only)

0

500

1000

1500

2000

2500

3000

3500

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

M
em

o
ry

 U
sa

ge
 (

M
B

)

Time (min)

FL

PO

 171

Figure 6.6. CPU Usage over Time at 200 Mbps – P2P-bot (FL: flow-based

detection; PO: the default packet-based only)

6.2 CHID Mechanism

In this section, evaluation results of the measurement performance of the proposed

CHID mechanism are presented.

6.2.1 Detection Accuracy

According to the findings from Chapter 4 where flow-based detection only was

implemented, the results reported a significant number of false positive alerts.

However, when the same datasets are input into CHID mechanism, no false positive

alerts were identified. This is due to the extra layer, PH, added after flow-based

detection in CHID. In all measurements, it is important to mention that the false

positive reported from flow-based-only in Section 6.1.3 were mitigated when CHID

mechanism is implemented. Based on the findings, PO and PH can detect all IRC-bot

and P2P-bot infected IP addresses that are reported and labelled in the traces, see Table

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

C
P

U
 U

sa
ge

 %

Time (min)

FL

PO

 172

6.4. As shown in the table, in the P2P-bot scenario, six hosts are reported as infected

hosts in PH and PO. These six hosts are labelled in their respective traces as P2P-bot

hosts.

Table 6.4

Detection Results with P2P-bot Scenario

Number of hosts in threshold-stage 25

Number of hosts marked as suspicious from FL 20

Number of hosts filtered in PH 20

Number of hosts detected as P2P-bot in PH 6

Number of hosts detected as P2P-bot in PO 6

Number of hosts labelled as P2P-bot in the traces 6

With this result in mind, PH yields a high accuracy rate with a zero false negative rate.

Since CHID was able to detect all infected hosts reported in the traces, PH is not only

able to detect intrusion activities but also means that FL detection plays an important

role in detection accuracy as declared by [19]. This is because PH filtered incoming

packets depend primarily upon the suspicious list generated from FL detection. Table

6.4 and 6.5 also shows the number of hosts involved in threshold stage in FL detection.

Then among these hosts, suspicious hosts are marked based on the threshold

mechanism. These tables also show that the number of the suspicious hosts is identical

with the number of hosts in the filter. This validates IFs implementations.

 173

Table 6.5

Detection Results with IRC-bot Scenario

Number of hosts in threshold-stage 101

Number of hosts marked as suspicious from FL 17

Number of hosts filtered in PH 17

Number of hosts detected as IRC-bot in PH 13

Number of hosts detected as IRC-bot in PO 13

Number of hosts labelled as IRC-bot in the traces 13

6.2.2 Resource Consumption

Concerning resource consumption, Figures 6.7 and 6.8 show how these resources

behave at 200 Mbps over time when IRC-bot case was measured. The results show

that CHID (FL+PH) mechanism saves much memory and CPU usage compared with

the PO mechanism. This observation is expected because PH processes only potential

(filtered) packets rather than inspecting all incoming traffic. To calculate the reduction

rate of packet processed by PH, in the case of IRC-bot 200 Mbps, PH processed only

45.5% of total packets processed by PO.

It is clearly observed that it is possible to reduce the resource consumption of packet-

based in the CHID approach compared with default packet-based that inspects all

packets. These figures show that both memory and CPU usages rises to a certain value

and remains at the same value almost all the time. Other results with P2P-bot scenario

are shown in Appendix E. These results show similar observations with other traffic

rates even when P2P-bot case was tested. These results also show that CHID

 174

mechanism saves much memory and CPU usage compared with the PO mechanism.

It was also observed the ability to reduce the resource consumption of packet-based in

the CHID approach compared with PO.

Figure 6.7. Memory Usage over Time at 200 Mbps – IRC-bot

Figure 6.8. CPU Usage over Time at 200 Mbps – IRC-bot

0

500

1000

1500

2000

2500

3000

3500

4000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M
em

o
ry

 U
sa

ge
 (

M
B

)

Time (min)

FL PH FL+PH PO

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
P

U
 U

sa
ge

 %

Time (min)

FL PH FL+PH PO

 175

To study the memory and CPU resources behaviour when increase traffic rate, Figures

6.9 and 6.10 show the memory and CPU usages while replaying the P2P-bot trace with

speeds ranging from 100 to 1000 Mbps. The results show that CHID (FL+PH)

generates less memory and CPU usage compared with the PO method. For CHID, this

holds true until traffic rate reaches 500 Mbps. The reason for this is the increased

number of filtered hosts as will be discussed in the next subsection. The more hosts

that are in the filter, the more traffic is received and consumed. For PH, CPU usage

reaches maximum utilization at 1000 Mbps. When sending packets at a constant rate

of 200 Mbps, CHID approach drops CPU usage from 97.7% with PO to 72.4% with

CHID approach.

Figure 6.9. Memory Usage with Different Traffic Rates – P2P-bot

0

500

1000

1500

2000

2500

3000

3500

4000

4500

100 200 300 400 500 600 700 800 900 1000

M
em

o
ry

 U
sa

ge
 (

M
B

)

Traffic Rates (Mbps)

FL PH FL+PH PO

 176

Figure 6.10. CPU Usage with Different Traffic Rates – P2P

Similar to the P2P-bot scenario, the above observation is also true when the IRC-bot

scenario is measured. At a 200 Mbps rate, as shown in Figures 6.11 and 6.12, CHID

can save 50.6% of memory and 18.1% of CPU usage compared with PO approach. In

both scenarios, as shown in Figures 6.10 and 6.12, PH has less resource consumption

compared with PO until 1000 Mbps rate. However, the total CPU consumption of

CHID approach (FL+PO) reaches at almost the full CPU capacity when the traffic rate

is about 500 Mbps. This means that CHID approach can save resource consumption

until 500 Mbps rate takes place. Both CHID approach and PO show CPU increase

when traffic rate increase. This artifact most likely results from packet capture library

(libpcap), which is discussed later in Section 6.2.4.

0

20

40

60

80

100

120

140

100 200 300 400 500 600 700 800 900 1000

C
P

U
 U

sa
ge

 %

Traffic Rates (Mbps)

FL PH FL+PH PO

 177

Figure 6.11. Memory Usage with Different Traffic Rates –IRC-bot

Figure 6.12. CPU Usage with Different Traffic Rates – IRC-bot

6.2.3 Filtered Hosts and IF Method

The number of filtered hosts in PH also affects the resource consumptions. When

comparing between P2P-bot and IRC-bot cases, it is observed that the memory and

0

500

1000

1500

2000

2500

3000

3500

4000

4500

100 200 300 400 500 600 700 800 900 1000

M
em

o
ry

 U
sa

ge
 (

M
B

)

Traffic Rate (Mbps)

FL PH FL+PH PO

0

20

40

60

80

100

120

140

160

100 200 300 400 500 600 700 800 900 1000

C
P

U
 U

sa
ge

 %

Traffic Rates (Mbps)

FL PH FL+PH PO

 178

CPU usage of P2P-bot scenario are higher compared with the IRC-bot scenario. This

holds until the traffic rate reaches about 500 Mbps. The reason for this is the increased

number of filtered hosts reported from the P2P scenario. With the same reason, when

receiving packets at 500 Mbps onwards, IRC-bot scenario consume higher resources

compared with the P2P-bot case. The more hosts that are in the filter, the more traffic

is received and consumed, and vice versa. However, these filtered hosts require more

filter compilation overhead. This compilation is needed to apply filters in the packet

capturing operation. In other words, the filter compilation or BPF update resource

usages increases when the number of hosts added to filter increases, which might

destroy the advantage of the CHID approach.

As mentioned earlier, the resource consumption of packet-based in CHID can be

reduced compared with default packet-based that inspects all packets. This implies

that the resource consumption of IF method, which is used for multi-instances

communication, does not affect negatively on intrusion detection. This finding is also

stated by Amann, et al. [132]. However, this implication shows that the approach of

combination BPF and IF methods performs better performance compared with

Broccoli [131] method implemented by Hensel [23] where the author declared its

cause of the significant consumption overhead due to more frequent updates of the

BPF filter.

However, IF method may contribute a negative effect on resource consumption if the

filtered host number is high. More filtered hosts require more updates to the

corresponding table. Moreover, the re-read function must be called every time a new

 179

host is added to the log file generated by FL. Unfortunately, an optimum value of

filtered hosts cannot be easily identified. This is because such identification largely

depends upon the data in the network traffic characteristics in the traces themselves,

i.e., session length, protocols, and the ratio of malicious traffic to benign traffic.

6.2.4 Packet Drop Rate

With concerning packets drop issues, Table 6.6 and 6.7 compare the packet drop with

traffic rates from 100 to 1000 Mbps for P2P and IRC bot. Drop packet rate is calculated

in relation to the total packet received.

Table 6.6

Packet Drop Rate in P2P-bot Scenario

Traffic

Rates
100 Mbps 200 Mbps 500 Mbps 1000 Mbps

PH# 0.00 0.16 5.40 21.12

PO** 5.04 9.32 29.79 48.45

#PH represents packet-based detection in the approach

**PO represents the default packet-based only detection that inspects all packets

Table 6.7

Packet Drop Rate in IRC-bot Scenario

Traffic

Rates
100 Mbps 200 Mbps 500 Mbps 1000 Mbps

PH# 0.00 0.00 7.98 27.47

PO** 2.50 5.12 26.02 48.55

#PH represents packet-based detection in the approach

**PO represents the default packet-based only detection that inspects all packets

 180

As observed in the Figure 6.13, it is expected that PO has higher drop rate compared

with PH even at 1 Gbps rate. At 500 Mbps in IRC-bot scenario, for example, PH

reports 7.98% of drop packet while 26% in PO. This is because of light CPU usage in

PH as stated early in this section. Experiments demonstrated that when P2P scenario

is measured, PH solution can handle bandwidth up to 200 Mbps with a little drop of

0.16%. With the same traffic rate, no drop is reported when IRC-bot is tested. Based

on findings, PO detection can handle up to 80 Mbps rate. For validating the PO

implementation, the same observation was also stated by Alparslan, et al. [201] and

had been proofed experimentally by Pihelgas [47]. Also, Bro official documentation

also stated that a single Bro instance can handle approximately 80 Mbps with a normal

load of traffic [200]. Comparing with these works, on the other hand, PH in CHID

approach can handle higher rate, up to 200 Mbps. However, in the experiments, the

default configuration PO start dropping packets at 100 Mbps.

Figure 6.13. Drop packet Rate with Different Traffic Rates – P2P-bot and IRC-bot

0.00

10.00

20.00

30.00

40.00

50.00

60.00

100 200 300 400 500 600 700 800 900 1000

D
ro

p
 P

ac
ke

t
R

at
e

%

Traffic Rate (Mbps)

PH-IRC PO-IRC PH-P2P PO-P2P

 181

It is also observed that PH in P2P starts to drop packets faster than IRC scenario. The

reason behind this may refer to 1) the higher CPU consumption at the early traffic rates

when P2P scenario is measured as mentioned earlier in this section, and 2) Per-packet

processing time which might occur when packet-based detection spends much time on

a single packet, either in libpcap or in Bro itself, it may miss the subsequent packets.

Also, the processing time of each packet depends on the type of the packets received

(e.g. protocol, packet length). For example, processing HTTP packets require a longer

time than TCP packets.

However, both Bro PO and PH have shown to dropped packets increase when the

speed rate of the packets increase. This is because Bro is a single-threaded technique

which means Bro only fully utilizes one processor core and is not taking advantage of

multi-core CPU. This will lead to overloading the Bro with a big amount of traffic.

Thus Bro is not keeping up with the traffic rate since transmission rates are faster than

what Bro can handle which lead the buffer to eventually fill up, and the packets had to

be dropped. Another reason for packets drop is the packet capture library libpcap

design as discussed later in the next chapter.

6.2.5 Partial Payload in PH

In this section, the experiments of CHID mechanism are run again but with partial

payload capturing approach. As discussed in Section 5.4.1, the first N-byte portion of

a packet could carry significant and related data to be useful for malicious detection.

In the P2P-bot experiments, it was discovered that the first 105 bytes of the malicious

traffic were a candidate for intrusion detection. However, for IRC-bot case, PH must

 182

capture the first 447 bytes to detection IRC-bot infected machines. Based on the

experiments with these partial payload values, Table 6.8 and 6.9 present comparison

between capturing full payload and partial payload in term of CPU usage and packet

drop rate, for P2P-bot and IRC-bot cases respectively. In this experiments, the data

rate of 100 Mbps was discarded since no dropped packets were reported in this rate as

mentioned in the previous subsection.

Table 6.8

Comparison between Full-Payload and Partial-Payload Inspection in PH for P2P-

bot Scenario

Approac

h

Traffic Rate (Mbps)

200 500 1000

CPU
Usage

rate

Packet
Drop Rate

CPU
Usage
Rate

Packet
Drop Rate

CPU
Usage
Rate

Packet
Drop Rate

Full
Payload

61.658 0.162 68.760 5.400 98.562 21.116

Partial
Payload

49.511 0.000 55.480 0.001 83.209 0.295

Table 6.9

Comparison between Full-Payload and Partial-Payload Inspection in PH for IRC-

bot Scenario

Approac

h

Traffic Rate (Mbps)

200 500 1000

CPU
Usage

rate

Packet
Drop Rate

CPU
Usage
Rate

Packet
Drop Rate

CPU
Usage
Rate

Packet
Drop Rate

Full
Payload

48.334 0.000 71.378 7.984 96.950 27.473

Partial
Payload

40.644 0.000 61.043 0.000 94.693 6.349

As shown in these tables, it is observed that the CPU usage and packet drop rates were

decreased when PH capturing partial payload compared with full payload inspection.

 183

Thus, partial payload inspection approach played an important role in improving

resource consumption of PH. In this case, PH can handle the traffic transmission until

500 Mbps instead of 200 Mbps when full payload capturing occurred. However,

although partial payload inspection approach proof a significant improvement

compared with full payload processing, this should not be in all cases. Since N-byte

values were determined from datasets that were captured in certain circumstances, it

is not possible to make a universal statement of N-byte value for such scenarios since

the malicious traffic is dynamic.

Also, selecting the correct N-byte length for a packet capture is critical. If the chosen

N-byte value is too long, it may cause performance degradation as observed in the

experiments. Moreover, this may cause packets to be dropped. On the other hand, if

the chosen N-bye is too short, it is anticipated to miss potential attack which its

signature exist in packets that can never be recovered. Thus, it is challenged to limit

N-byte to the smallest number that will capture the most relevant malicious data.

6.3 Chapter Summary

In this chapter, it was clear that Bro is a powerful and useful tool for data analysis and

feature extraction on the labelled dataset. The workflow process that extracts

malicious flow features from datasets as input was implemented. This workflow is

found to be useful to generate malicious features that can be used in detection policy

script. However, this workflow was designed in a way that it can be applied to any

datasets whether is labelled or non-labelled.

 184

When flow-based detection mechanism was run against several labelled datasets to

detect malicious activities, based on the experiments, no false negatives are reported.

This indicates that flow-based detection implementation along with attributes

selection (obtained from machine learning) and the threshold-based mechanism

promises high detection rate for flow-based detection. However, false positive alerts

were generated which degrades the accuracy of flow-based detection mechanism. It is

also concluded that since only flow data is available in flow-based detection

mechanism, it is hard to make complete potential behaviour about the malicious

activities found in the datasets.

Since packet-based detection mechanism does not report any false positive alerts, the

result shows that its resource consumption is far higher than when flow-based

detection mechanism is tested. It was also expected that the resource consumption,

CPU and memory usage, of flow-based detection was much less than packet-based

detection. To reduce the false positive rate in flow-based detection and to reduce the

resource consumption of packet-based detection, CHID mechanism was proposed.

The experimental evaluation shows that the CHID mechanism, in both P2P and IRC

bot scenarios, could gain a significant performance improvement when using IF and

BPF methods, compared with default Bro packet-based detection implementation.

When IRC-bot scenario is implemented at 200 Mbps rate, CHID can save 50.6% of

memory and 18.1% of CPU usage. With this in mind, it is possible to enhance the

resource usage of packet-based in CHID approach. With scalability improving, CHID

implementation maintained accuracy detection level and managed to eliminate false

 185

positive alerts generated from flow-based detection and also detect all reported

malicious hosts.

The consumption resources of IF method and BPF compilation depend on the number

of suspicious hosts generated from flow-based detection. The more hosts produce from

flow-based detection; the more resources are needed in packet-based detection CHID

approach. A huge number of filtered host results in compilation process overhead

which might destroy the advantage of CHID solution. For flow-based detection

resources, the number of concurrent hosts processed in the FL table can affect the

overall of the approach performance. This is because the hosts require table updating

and dynamic threshold calculations.

The experiments also demonstrated that proposed packet-based detection mechanism

or PH can handle about 200 Mbps network traffic rate without packet drops compared

with 100 Mbps when PO was executed. However, drop packet rate increase slightly

beyond this limit. This is because Bro is single-threaded in which Bro does not take

advantage of multi-core CPU and only fully utilize one processor core. Moreover, the

processing time of each packet may influence packet drop which depends on the type

of the packet received. Also, the experiments showed that it is possible to reduce the

packet drop rate of PH by capturing the first N-byte of each incoming packets instead

of capturing full payload.

 186

CHAPTER SEVEN

CONCLUSION

This chapter summarizes the research presented in this thesis as discussed in

Section 7.1. Then Section 7.2 presents the achievements of the three objectives

mentioned in Chapter 1. Also, main contributions of this research are highlighted in

Section 7.3. Finally, Section 7.4 present the limitation and directions for future works.

7.1 Summary of Research

In this research, the challenges that are existing in IDS were considered. Chapter 1

introduced the motivation for this research and brought up the problems of the inability

of intrusion detection to handle the growth of traffic rates. The aim of this research

was also presented in this chapter. Chapter 2 provided a background of packet-based

and flow-based NIDS approaches in relation to scalability and detection accuracy. It

showed that flow-based is the good choice in high volume network while the packet-

based is more suitable for detection accuracy. With the serious consequences and

impact of false positive generation, this chapter presented several types of research

that proposed various approaches to reduce the rate of false positive.

In Chapter 3, research methodology of the study was explained in five phases. For the

first phase, it briefly presented the design of the proposed mechanism, CHID. The

second phase explained each component in the proposed mechanism to be

implemented. These components included: PCAP library was used for traffic capture,

open-source Softflowd was selected for flow aggregation. Also, with the open-source,

Bro NIDS as a central component, the design of CHID is implemented. In this phase,

 187

verification and validation of these mechanisms and the needs of proof-of-concepts

were also discussed.

Evaluation of the mechanisms in term of detection accuracy and resource consumption

were presented. In this phase testbed was implemented performance evaluation. This

testbed consists of two Linux desktop machines connected through a switch. One

machine was assigned to replay the datasets, in different traffic rates ranging from 100

to 1000 Mbps, to the second machines where intrusion detections were installed.

Finally, datasets used in this research were presented in details. These datasets were

captured, labelled and shared in public. Chapter 4 was established to validate the first

objective as discussed in the next section. Second and third objectives were established

in Chapter 5. Chapter 6 presented overall performance results of all implementations

as detailed in the next section.

7.2 Objectives Achievements

As in this section, the achievements the three objectives mentioned in Chapter 1 are

presented.

7.2.1 First Objective

The first sub-objective stated as follows:

To investigate the researches that can improve NIDS efficiency.

To achieve this sub-objective, this research presented many approaches that attempts

to improve NIDS scalability and detection accuracy. The efficiency of NIDS depends

 188

mainly on the type of data to be processed: individual packet (with payload) or flows.

Packet-based provides full information to NIDS to detect attacks while flow-based

provides limited and aggregated information to NIDS for intrusion detection. In term

of scalability, since packet-based NIDS process large amount of data, it degrades its

scalability, especially in high volume network. On the other side, flow-based is a good

choice for this issue since it deals with the small amount of data.

In term of accuracy, information gathered from packet-based is enough for NIDS to

detect almost all kinds of attack, hence improving NIDS accuracy. On the other side,

since the information gathered from flow-based is aggregated, NIDS accuracy suffers

from false alarms. Flow-based detection promises to be able to process data in high

volume network with limited data with a trade-off of a higher false positive rate, while

in packet-based, it promises to be able to detect intrusion in low false alarms with a

trade-off of higher resource consumption with additional data processing.

7.2.2 Second Objective

Since the performance results from Section 6.1 showed that flow-based detection

generates a significant number of false positive compared with packet-based detection,

the second objective stated as follows:

To develop appreciate NIDS mechanism by reducing the rate of false positive.

To achieve this objective, the performance results of flow-based detection mechanism

are compared with the proposed mechanism, CHID. Before implementing CHID,

flow-based NIDS was required to be implemented. Since there were no flow-based

 189

detection scripts built-in in Bro NIDS, it was required to implement flow-based

detection mechanism from scratch. For this purpose, Chapter 4 proposed a mechanism

to build flow-based detection scripts in two stages: precondition and threshold stages.

For the first stage, the mechanism was designed and implemented to obtain

characteristics of malicious activity by extracting malicious flow features from several

labelled datasets. From these malicious features, classification algorithms were used

to generate the most important attributes and rules that would be useful for

implementing the first-stage flow detection scripts. These rules in addition to

threshold-based (second stage) mechanism were used for flow-based detection scripts.

For CHID implementation, Chapter 5 proposed CHID mechanism to reducing the false

positive alerts caused by flow-based detection. CHID mechanism was based on

combining flow-based and packet-based detections to build on their advantages and

overcome their drawbacks. The aim of CHID mechanism was to verify suspicious

alerts generated from flow-based detection. To achieve this aim, subsequent packets

corresponding to these alerts were retrieved for further inspection by packet-based

detection. CHID combined the use of so-called Input Framework and BPF filter

methods to communicate between flow-based and packet-based detection modules.

7.2.3 Third Objective

The third objective stated as follows:

To evaluate the developed mechanism by measuring its efficiency through

experiments.

 190

To evaluate the flow-based NIDS and based on the findings from Chapter 6, the

workflow that was used to extract malicious flow features, was able to generate

malicious features that could be used in detection policy script. When validating the

only flow-based detection mechanism, this mechanism was able to detect all infected

hosts reported in the datasets. This indicated that detection implementation along with

attributes selection (obtained from machine learning) and threshold-based mechanism

played an important role for high detection rate in flow-based detection. The results

also showed that resource consumption, CPU and memory usage, of flow-based

detection mechanism was much less than packet-based detection. This was due to the

data reduction achieved in flow-based detection.

For CHID evaluations, results in Chapter 6 showed that CHID implementation

maintained accuracy detection level and managed to eliminate false positive alerts

generated from flow-based detection and detected all reported malicious hosts. It was

also observed that the consumption resources of IF and BPF compilation depend upon

the number of suspicious hosts generated from flow-based detection. The more hosts

identified by flow-based detection, the more resources are needed in packet-based

detection in CHID mechanism.

In order to evaluate the performance results of proposed packet-based detection or PH,

these results are compared with default packet-based detection, PO. CHID mechanism

was used and extended to reduce the resource consumption of packet-based detection.

Chapter 6 presented the measurement results of CHID implementation. The

experimental evaluation showed that CHID mechanism could gain a significant

 191

performance improvement compared with a default Bro packet-based detection

implementation. This improvement holds true until traffic rate reaches a certain value.

With this saving in mind, the resource usage of packet-based detection in CHID

approach was enhanced.

Also, Chapter 5 implemented CHID but with the inspecting portion size of payload

instead of full payload to reduce the resource consumption. The results showed that it

is possible to reduce the resource consumption and packet drop rate of packet-based

in CHID mechanism by capturing the first N-byte of each incoming packets. Since

network volume is in a dynamic mode which is between low and high traffic rate,

switching approach between default Bro detection and the proposed mechanism

(CHID) was also proposed in Chapter 5. This would avoid using CHID in low traffic

where extra unnecessary overhead might occur from both flow-based and packet-

based detection.

7.3 Main Contribution

The overall contribution of this research was to develop a new mechanism named

CHID that enhances the NIDS scalability. Moreover, the mechanism integrates and

combines the two NIDSs approaches: packet-based and flow-based. The specific

contributions are:

 The reduction of false positive alerts generated from flow-based detection

system was achieved by developing CHID mechanism. The aim of CHID

mechanism was to verify suspicious alerts generated from flow-based

detection by inspecting packet-based data.

 192

 The enhancement of resource consumption of NIDS with CHID

mechanism compared with the default packet-based NIDS mechanism

(Bro). For example, when IRC-bot scenario is implemented at 200 Mbps

rate, CHID can save 50.6% of memory and 18.1% of CPU usage without

any dropped packets.

 The improvements in resource consumption of the communication

processes between flow-based and packet-based detection system were

achieved in CHID mechanism by combining BPF and IF methods.

 The significant improvement in scalability of packet-based detection

mechanism (PH) compared with the default packet-based detection (PO)

by only inspecting certain suspicious traffic. Also, PH detection can adjust

the payload length (e.g. the first N-bytes) to be captured to reduce the

resource consumption while preserving the detection accuracy.

 The improvement of NIDS scalability by tuning (switching) between

default Bro detection and the proposed approach (CHID) based on traffic

volume rate. This is to avoid using CHID approach in low traffic where

extra unnecessary overhead might occur from both flow-based and packet-

based detection. On the other hand, default packet-based detection can

handle low traffic volume better than CHID approach.

 193

7.4 Limitations and Future Works

a. Multi-thread Approach

The proposed mechanism, CHID, had shown to dropped packets when the speed rate

of the packets increases. This is because Bro is a single-threaded technique which

means Bro only fully utilize one processor core and is not taking advantage of multi-

core CPU. This will lead to overloading the Bro with a big amount of traffic. To

address this issue, the developers of Bro implemented a proof-of-concept multi-

threaded version of Bro, but is not released yet. The only option is to spread the

workload across many cores using cluster-mode [200] that is provided by Bro. In

cluster-mode, a set of worker nodes examines independent traffic streams and share

their results through a central manager node.

b. PF_RING Packet Capturing

One of the major challenges of NIDS is packet loss in the capturing system.

Unfortunately, lost packets cannot be retrieved afterwards. To attempt to optimize the

performance of the capturing system, PF_RING can be used. It offers an improvement

to the standard PCAP library, or libpcap, mechanism especially with small packets.

Since it directs the received packets to a ring buffer, it allows a higher rate of packets

per second for monitoring. Also, it allows saving computational costs which make it

more suitable for high volume networks environment [133]. However, to enable

PF_RING in Bro, cluster-mode [200] must be run. In order to implement cluster-mode,

several computer machines are required which need budget and much effort for user

configurations. In this research, the maximum traffic rate used in the experiments was

 194

1Gbps. The current network volume, especially in a large organization, is beyond this

rate. Higher traffic rate can be considered in future with the hybrid approach.

c. Diverse Attacks Scenario

However, CHID mechanism is not designed as a suitable solution for enhancing the

performance of NIDSs in all scenarios. CHID mechanism just demonstrates the

possible approach of combining flow-based and packet-based detection in specific

scenarios. Similar to IRC-bot and P2P-bot attacks, there are other attacks that can be

detected in both flow and packet level with repetitive traffic patterns. Such attacks

include HTTP-bot and brute-force attacks. These attacks with combined approach can

be considered in the future.

d. Tuning Flow Keys and Timeouts

There are serval factors that affect the performance of flow-based detection. These

factors include flow keys and timeout length of flow exporting. Generally, flow

records are exported to the collector when the active or inactive timeout of the flow

expires. More flow keys and large timeouts can provide the NIDS more and specific

information about the traffic. The longer timeouts are applied, the more specific

characteristics are analysed, and hence, the accurate decision is made with the lower

false positive rate. On the other hand, a short timeout may lead to detecting in near

real-time. Tuning these values until the desired performance is obtained can be

considered in the future work.

 195

7.5 Chapter Summary

The research presented in this thesis was summarized in this chapter. This chapter also

discussed in details the achievements of each of the three objectives mentioned in this

research. Having explained the research objectives, the main contributions of this

research were presented. Finally, this chapter highlighted the limitations and directions

for future works.

 196

REFERENCES

[1] Internet World Stats, "Internet Growth Statistics," 2016, [Online; accessed 8-

Dec-2015]. [Online]. Available:

http://www.internetworldstats.com/emarketing.htm

[2] J. Nazario and J. Kristoff, "Internet Infrastructure Security," IEEE Security &

Privacy, vol. 10, pp. 24-25, 2012.

[3] E. Amoroso, Intrusion Detection: An Introduction to Internet Surveillance,

Correlation, and Response: New Jersey, 1999.

[4] G. Khalil, "Open Source IDS High Performance Shootout," SANS Institute

InfoSec Reading Room, 2015.

[5] S. S. Silva, R. M. Silva, R. C. Pinto, and R. M. Salles, "Botnets: A survey,"

Computer Networks, vol. 57, pp. 378-403, 2013.

[6] H. Debar, M. Dacier, and A. Wespi, "Towards a Taxonomy of Intrusion

Detection Systems," Computer Networks, vol. 31, pp. 805-822, 1999.

[7] N. Weng, L. Vespa, and B. Soewito, "Deep Packet Pre-filtering and Finite

State Encoding for Adaptive Intrusion Detection System," Computer

Networks, vol. 55, pp. 1648-1661, 2011.

[8] R. Koch, "Towards Next-generation Intrusion Detection," in 2011 3rd

International Conference on Cyber Conflict, 2011, pp. 1-18.

[9] M. Golling, R. Hofstede, and R. Koch, "Towards Multi-layered Intrusion

Detection in High Speed Networks," in 6th International Conference On Cyber

Conflict (CyCon 2014), 2014, pp. 191-206.

[10] J. Svoboda, "Network Traffic Analysis with Deep Packet Inspection Method,"

Master thesis, Faculty of Informatics, Masaryk University, Brno, 2014.

[11] M. Nor, "Malware Detection Using IP Flow Level Attributes," Journal of

Theoretical and Applied Information Technology, vol. 57, 2013.

[12] H. Dreger, A. Feldmann, V. Paxson, and R. Sommer, "Operational

Experiences with High-volume Network Intrusion Detection," in 11th ACM

conference on Computer and Communications Security, 2004, pp. 2-11.

[13] A. Papadogiannakis, M. Polychronakis, and E. P. Markatos, "Improving the

Accuracy of Network Intrusion Detection Systems under Load using Selective

Packet Discarding," in Proceedings of the Third European Workshop on

System Security, 2010, pp. 15-21.

[14] I. Sourdis, D. N. Pnevmatikatos, and S. Vassiliadis, "Scalable Multigigabit

Pattern Matching for Packet Inspection," IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, vol. 16, pp. 156-166, 2008.

[15] H.-J. Liao, C.-H. R. Lin, Y.-C. Lin, and K.-Y. Tung, "Intrusion Detection

System: A Comprehensive Review," Journal of Network and Computer

Applications, vol. 36, pp. 16-24, 2013.

[16] R. Hofstede, V. Bartoš, A. Sperotto, and A. Pras, "Towards Real-time Intrusion

Detection for NetFlow and IPFIX," in Proceedings of the 9th International

Conference on Network and Service Management (CNSM 2013), 2013, pp.

227-234.

http://www.internetworldstats.com/emarketing.htm

 197

[17] Y. Abuadlla, G. Kvascev, S. Gajin, and Z. Jovanovic, "Flow-based Anomaly

Intrusion Detection System using Two Neural Network Stages," Comput. Sci.

Inf. Syst., vol. 11, pp. 601-622, 2014.

[18] J. Zhang, R. Perdisci, W. Lee, X. Luo, and U. Sarfraz, "Building a Scalable

System for Stealthy P2P-Botnet Detection," IEEE Transactions on

Information Forensics and Security, vol. 9, pp. 27-38, 2014.

[19] A. Sperotto, G. Schaffrath, R. Sadre, C. Morariu, A. Pras, and B. Stiller, "An

Overview of IP Flow-based Intrusion Detection," IEEE Communications

Surveys & Tutorials, vol. 12, pp. 343-356, 2010.

[20] T. Hyslip and J. Pittman, "A Survey of Botnet Detection Techniques by

Command and Control Infrastructure," Journal of Digital Forensics, Security

and Law, vol. 10, pp. 7-26, 2015.

[21] L. Sheng, L. Zhiming, H. Jin, D. Gaoming, and H. Wen, "A Distributed Botnet

Detecting Approach Based on Traffic Flow Analysis," in Second International

Conference on Instrumentation, Measurement, Computer, Communication

and Control (IMCCC), 2012, pp. 124-128.

[22] T. Limmer and F. Dressler, "Flow-based Front Payload Aggregation," in IEEE

LCN, 2009, pp. 1102-1109.

[23] F. Hensel, "Flow-based and Packet level-based Intrusion Detection as

Complementary Concepts," High Diploma Thesis, Department of Informatics,

University of Zurich, Zurich, Switzerland, 2008.

[24] S. Khattak, N. R. Ramay, K. R. Khan, A. A. Syed, and S. A. Khayam, "A

Taxonomy of Botnet Behavior, Detection, and Defense," IEEE

Communications Surveys & Tutorials, vol. 16, pp. 898-924, 2014.

[25] S. Soltani, S. A. H. Seno, M. Nezhadkamali, and R. Budiarto, "A Survey on

Real World Botnets and Detection Mechanisms," International Journal of

Information and Network Security, vol. 3, p. 116, 2014.

[26] Z. Zhu, G. Lu, Y. Chen, Z. J. Fu, P. Roberts, and K. Han, "Botnet Research

Survey," in 32nd Annual IEEE International Computer Software and

Applications Conference, 2008, pp. 967-972.

[27] S. Abt and H. Baier, "Towards Efficient and Privacy-Preserving Network-

Based Botnet Detection Using Netflow Data," in Internation Network

Conference, 2012, pp. 37-50.

[28] V. M. Igure and R. D. Williams, "Taxonomies of Attacks and Vulnerabilities

in Computer Systems," IEEE Communications Surveys & Tutorials, vol. 10,

pp. 6-19, 2008.

[29] Symantec Corp, "Internet Security Threat Report," 2016, [Online; accessed 4-

Feb-2016]. [Online]. Available: https://www.symantec.com/security-

center/threat-report

[30] S. X. Wu and W. Banzhaf, "The Use of Computational Intelligence in Intrusion

Detection Systems: A Review," Applied Soft Computing, vol. 10, pp. 1-35,

2010.

[31] Snort IDS, "Snort," 2012, [Online; accessed 8-May-2013]. [Online].

Available: www.snort.org

[32] J. GERBER,"Suricata: A Next Generation IDS/IPS Engine," 2010, [Online;

accessed 4-May-2014]. [Online]. Available: https://suricata-ids.org/

https://www.symantec.com/security-center/threat-report
https://www.symantec.com/security-center/threat-report
http://www.snort.org/
https://suricata-ids.org/

 198

[33] P. Mehra, "A Brief Study and Comparison of Snort and Bro Open Source

Network Intrusion Detection Systems," International Journal of Advanced

Research in Computer and Communication Engineering, vol. 1, pp. 383-386,

2012.

[34] J. Beale, A. R. Baker, and J. Esler, Snort: IDS and IPS toolkit: Syngress, 2007.

[35] Bro, "Bro IDS," 2012, [Online; accessed 5-June-2013]. [Online]. Available:

www.bro.org

[36] B. Morin and L. Mé, "Intrusion Detection and Virology: an Analysis of

Differences, Similarities and Complementariness," Journal in Computer

Virology, vol. 3, pp. 39-49, 2007.

[37] R. R. Singh, N. Gupta, and S. Kumar, "To Reduce the False Alarm in Intrusion

Detection System Using Self Organizing Map," International Journal of Soft

Computing and Engineering (IJSCE), vol. 1, pp. 27-32, 2011.

[38] K. Wang, & Stolfo, S. J. , "Anomalous payload-based Network Intrusion

Detection," Recent Advances in Intrusion Detection, p. 19, 2004.

[39] M. Mahoney and P. Chan, "Learning Non-stationary Models of Normal

Network Traffic for Detecting Novel Attacks," in 8th ACM SIGKDD

International Conference on Knowledge Discovery and Data mining, 2002,

pp. 376–385.

[40] M.-S. Kim, H.-J. Kong, S.-C. Hong, S.-H. Chung, and J. W. Hong, "A Flow-

based Method for Abnormal Network Traffic Detection," in Network

Operations and Management Symposium, 2004, pp. 599-612.

[41] S. M. Hussein, F. H. M. Ali, and Z. Kasiran, "Evaluation Effectiveness of

Hybrid IDS using Snort with Naïve Bayes to Detect Attacks," in Second

International Conference on Digital Information and Communication

Technology and it's Applications (DICTAP), 2012, pp. 256-260.

[42] Z. M. Fadlullah, T. Taleb, A. V. Vasilakos, M. Guizani, and N. Kato,

"DTRAB: Combating Against Attacks on Encrypted Protocols through

Traffic-feature Analysis," IEEE/ACM Transactions on Networking (TON),

vol. 18, pp. 1234-1247, 2010.

[43] K.-K. Tseng, J. Lo, Y. Liu, S.-H. Chang, M. Merabti, F. Ng, CK, et al., "A

Feasibility Study of Stateful Automaton Packet Inspection for Streaming

Application Detection Systems," Enterprise Information Systems, pp. 1-20,

2016.

[44] H. Dreger, A. Feldmann, V. Paxson, and R. Sommer, "Predicting the Resource

Consumption of Network Intrusion Detection Systems," in International

Workshop on Recent Advances in Intrusion Detection, 2008, pp. 135-154.

[45] F. Fusco and L. Deri, "High Speed Network Traffic Analysis with Commodity

Multi-core Systems," in Proceedings of the 10th ACM SIGCOMM Conference

on Internet measurement, 2010, pp. 218-224.

[46] J. Morgan, "Streaming Network Traffic Analysis Using Active Learning,"

Master thesis, Department of Computer Science, Dalhousie University,

Halifax, Nova Scotia, 2015.

[47] M. Pihelgas, "A Comparative Analysis of Open-Source Intrusion Detection

Systems," Master thesis, Departement of Computer Science, Tallinn

University of Technology, Tallinn, 2012.

http://www.bro.org/

 199

[48] J. Korenek and P. Kobiersky, "Intrusion Detection System Intended for

Multigigabit Networks," in 2007 IEEE Design and Diagnostics of Electronic

Circuits and Systems, 2007, pp. 1-4.

[49] L. Braun, A. Didebulidze, N. Kammenhuber, and G. Carle, "Comparing and

Improving Current Packet Capturing Solutions based on Commodity

Hardware," in Proceedings of the 10th ACM SIGCOMM Conference on

Internet Measurement, 2010, pp. 206-217.

[50] P. Lambruschini, M. Raggio, R. Bajpai, and A. Sharma, "Efficient

Implementation of Packet Pre-filtering for Scalable Analysis of IP Traffic on

High-speed Lines," in 20th International Conference on Software,

Telecommunications and Computer Networks (SoftCOM), 2012, pp. 1-5.

[51] D. Ficara, G. Antichi, A. Di Pietro, S. Giordano, G. Procissi, and F. Vitucci,

"Sampling Techniques to Accelerate Pattern Matching in Network Intrusion

Detection Systems," in IEEE International Conference on Communications

(ICC), 2010, pp. 1-5.

[52] G. Jacob, P. M. Comparetti, M. Neugschwandtner, C. Kruegel, and G. Vigna,

"A Static Packer-agnostic Filter to Detect Similar Malware Samples," in

International Conference on Detection of Intrusions and Malware, and

Vulnerability Assessment, 2012, pp. 102-122.

[53] Q. Zhao, J. Xu, and A. Kumar, "Detection of Super Sources and Destinations

in High-speed Networks: Algorithms, Analysis and Evaluation," IEEE Journal

on Selected Areas in Communications, vol. 24, pp. 1840-1852, 2006.

[54] F. Haddadi, J. Morgan, E. Gomes Filho, and A. N. Zincir-Heywood, "Botnet

Behaviour Analysis using IP Flows: with HTTP Filters using Classifiers," in

Advanced Information Networking and Applications Workshops (WAINA),

2014 28th International Conference on, 2014, pp. 7-12.

[55] C.-H. Lin and S.-C. Chang, "Efficient Pattern Matching Algorithm for

Memory Architecture," IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 19, pp. 33-41, 2011.

[56] N. Weaver, V. Paxson, and J. M. Gonzalez, "The Shunt: an FPGA-based

Accelerator for Network Intrusion Prevention," in Proceedings of the 2007

ACM/SIGDA 15th International Symposium on Field Programmable Gate

Arrays, 2007, pp. 199-206.

[57] G. Munz and G. Carle, "Real-time Analysis of Flow Data for Network Attack

Detection," in 2007 10th IFIP/IEEE International Symposium on Integrated

Network Management, 2007, pp. 100-108.

[58] A. Karim, R. B. Salleh, M. Shiraz, S. A. A. Shah, I. Awan, and N. B. Anuar,

"Botnet Detection Techniques: Review, Future Trends, and Issues," Journal of

Zhejiang University SCIENCE, vol. 15, pp. 943-983, 2014.

[59] P. Porras, H. Saidi, and V. Yegneswaran, "A Multi-perspective Analysis of the

Storm (Peacomm) Worm," Computer Science Laboratory, Tech. Rep., 2007

[60] G. Sinclair, C. Nunnery, and B. B. Kang, "The Waledac Protocol: The How

and Why," in 4th International Conference on Malicious and Unwanted

Software (MALWARE), 2009, pp. 69-77.

[61] D. Andriesse and H. Bos, "An Analysis of the Zeus Peer-to-Peer Protocol,"

2013. [Online]. Available: http://www.few.vu.nl/~dae400/papers/zeus-tech-

report-2013.pdf

http://www.few.vu.nl/~dae400/papers/zeus-tech-report-2013.pdf
http://www.few.vu.nl/~dae400/papers/zeus-tech-report-2013.pdf

 200

[62] W. Zilong, W. Jinsong, H. Wenyi, and X. Chengyi, "The Detection of IRC

Botnet based on Abnormal Behavior," in 2010 Second International

Conference on Multimedia and Information Technology, 2010.

[63] G. Gu, R. Perdisci, J. Zhang, and W. Lee, "BotMiner: Clustering Analysis of

Network Traffic for Protocol-and Structure-Independent Botnet Detection," in

USENIX Security Symposium, 2008, pp. 139-154.

[64] G. Gu, J. Zhang, and W. Lee, "BotSniffer: Detecting Botnet Command and

Control Channels in Network Traffic," 2008.

[65] J. Goebel and T. Holz, "Rishi: Identify Bot Contaminated Hosts by IRC

Nickname Evaluation," HotBots, vol. 7, pp. 8-8, 2007.

[66] T.-F. Yen and M. K. Reiter, "Traffic Aggregation for Malware Detection," in

International Conference on Detection of Intrusions and Malware, and

Vulnerability Assessment, 2008, pp. 207-227.

[67] G. Gu, P. A. Porras, V. Yegneswaran, M. W. Fong, and W. Lee, "Bothunter:

Detecting Malware Infection through IDS-Driven Dialog Correlation," in

Usenix Security, 2007, pp. 1-16.

[68] P. Wurzinger, L. Bilge, T. Holz, J. Goebel, C. Kruegel, and E. Kirda,

"Automatically Generating Models for Botnet Detection," in European

Symposium on Research in Computer Security, 2009, pp. 232-249.

[69] D. H. Kim, T. Lee, J. Kang, H. Jeong, and H. P. In, "Adaptive Pattern Mining

Model for Early Detection of Botnet Propagation Scale," Security and

Communication Networks, vol. 5, pp. 917-927, 2012.

[70] S. García, A. Zunino, and M. Campo, "Botnet Behavior Detection using

Network Synchronism," Privacy, Intrusion Detection and Response:

Technologies for Protecting Networks, pp. 122-144, 2011.

[71] G. Jian, K. Zheng, Y. Yang, and X. Niu, "An Evaluation Model of Botnet based

on Peer to Peer," in Fourth International Conference on Computational

Intelligence and Communication Networks (CICN), 2012, pp. 925-929.

[72] L. Dan, L. Yichao, H. Yue, and L. Zongwen, "A P2P-Botnet Detection Model

and Algorithms based on Network Streams Analysis," in International

Conference on Future Information Technology and Management Engineering

(FITME), 2010, pp. 55-58.

[73] R. Hofstede, P. Čeleda, B. Trammell, I. Drago, R. Sadre, A. Sperotto, et al.,

"Flow Monitoring Explained: From Packet Capture to Data Analysis with

NetFlow and IPFIX," IEEE Communications Surveys & Tutorials, vol. 16, pp.

2037-2064, 2014.

[74] B. Claise, "Specification of the IP Flow Information Export (IPFIX) Protocol

for the Exchange of IP Traffic Flow Information," RFC 5101, 2008. [Online].

Available: http://www.rfc-editor.org/rfc/rfc5101.txt

[75] C. Estan, K. Keys, D. Moore, and G. Varghese, "Building a Better NetFlow,"

ACM SIGCOMM Computer Communication Review, vol. 34, p. 245, 2004.

[76] U. Banerjee, A. Vashishtha, and M. Saxena, "Evaluation of the Capabilities of

WireShark as a Tool for Intrusion Detection," International Journal of

Computer Applications, vol. 6, 2010.

[77] L. MartinGarcia,"TcpDump and Libpcap," 2012, [Online; accessed 9-July-

2012]. [Online]. Available: http://www.tcpdump.org

http://www.rfc-editor.org/rfc/rfc5101.txt
http://www.tcpdump.org/

 201

[78] V. Kumaran, "Event Stream Database based Architecture to Detect Network

Intrusion," in Proceedings of the 7th ACM International Conference on

Distributed Event-based Systems, 2013, pp. 241-248.

[79] V. Carela-Español, P. Barlet-Ros, A. Cabellos-Aparicio, and J. Solé-Pareta,

"Analysis of the Impact of Sampling on NetFlow Traffic Classification,"

Computer Networks, vol. 55, pp. 1083-1099, 2011.

[80] N. Duffield, "Sampling for Passive Internet Measurement: A Review,"

Statistical Science, pp. 472-498, 2004.

[81] T. Zseby, T. Hirsch, and B. Claise, "Packet Sampling for Flow Accounting:

Challenges and Limitations," in International Conference on Passive and

Active Network Measurement, 2008, pp. 61-71.

[82] D. Brauckhoff, M. May, and B. Plattner, "Flow-level Anomaly Detection-

Blessing or Curse," in IEEE INFOCOM Conference, 2007.

[83] J. David and C. Thomas, "DDoS Attack Detection using Fast Entropy

Approach on Flow-based Network Traffic," Procedia Computer Science, vol.

50, pp. 30-36, 2015.

[84] S. Yu, W. Zhou, W. Jia, S. Guo, Y. Xiang, and F. Tang, "Discriminating DDoS

Attacks from Flash Crowds using Flow Correlation Coefficient," IEEE

Transactions on Parallel and Distributed Systems, vol. 23, pp. 1073-1080,

2012.

[85] S. A. Abdulla, S. Ramadass, A. Altaher, and A. A. Nassiri, "Setting a Worm

Attack Warning by Using Machine Learning to Classify Netflow Data,"

International Journal of Computer Applications, vol. 36, pp. 49-56, 2011.

[86] F. Dressler, W. Jaegers, and R. German, "Flow-based Worm Detection using

Correlated Honeypot Logs," in Communication in Distributed Systems

Conference, 2007, pp. 1-6.

[87] L. Hellemons, L. Hendriks, R. Hofstede, A. Sperotto, R. Sadre, and A. Pras,

"SSHCure: a Flow-based SSH Intrusion Detection System," in IFIP

International Conference on Autonomous Infrastructure, Management and

Security, 2012, pp. 86-97.

[88] M. Vizváry and J. Vykopal, "Flow-based Detection of RDP Brute-force

Attacks," in Proceedings of 7th International Conference on Security and

Protection of Information (SPI 2013), 2013.

[89] P. Amini, R. Azmi, and M. Araghizadeh, "Botnet Detection using NetFlow

and Clustering," Advances in Computer Science: an International Journal, vol.

3, pp. 139-149, 2014.

[90] D. Zhao, I. Traore, B. Sayed, W. Lu, S. Saad, A. Ghorbani, et al., "Botnet

Detection based on Traffic Behavior Analysis and Flow Intervals," Computers

& Security, vol. 39, pp. 2-16, 2013.

[91] J. François, S. Wang, and T. Engel, "BotTrack: Tracking Botnets using

NetFlow and PageRank," in International Conference on Research in

Networking, 2011, pp. 1-14.

[92] M. Stevanovic and J. M. Pedersen, "Machine Learning for Identifying Botnet

Network Traffic," Journal of Aalborg University, 2013.

[93] S. Ganapathy, K. Kulothungan, S. Muthurajkumar, M. Vijayalakshmi, P.

Yogesh, and A. Kannan, "Intelligent Feature Selection and Classification

 202

Techniques for Intrusion Detection in Networks: A Survey," EURASIP

Journal on Wireless Communications and Networking, vol. 2013, p. 271, 2013.

[94] M. Stevanovic and J. M. Pedersen, "An Efficient Flow-based Botnet Detection

using Supervised Machine Learning," in International Conference on

Computing, Networking and Communications (ICNC), 2014, pp. 797-801.

[95] N. Bhargava, G. Sharma, R. Bhargava, and M. Mathuria, "Decision Tree

Analysis on J48 Algorithm for Data Mining," Proceedings of International

Journal of Advanced Research in Computer Science and Software

Engineering, vol. 3, 2013.

[96] M. N. Anyanwu and S. G. Shiva, "Comparative Analysis of Serial Decision

Tree Classification Algorithms," International Journal of Computer Science

and Security, vol. 3, pp. 230-240, 2009.

[97] A. Liaw and M. Wiener, "Classification and Regression by Random Forest,"

R news, vol. 2, pp. 18-22, 2002.

[98] A. Nogueira, P. Salvador, and F. Blessa, "A Botnet Detection System based on

Neural Networks," in Fifth International Conference on Digital

Telecommunications (ICDT), 2010, pp. 57-62.

[99] S. Saad, I. Traore, A. Ghorbani, B. Sayed, D. Zhao, W. Lu, et al., "Detecting

P2P Botnets through Network Behavior Analysis and Machine Learning," in

Ninth Annual International Conference on Privacy, Security and Trust (PST),

2011, pp. 174-180.

[100] S. Ting, W. Ip, and A. H. Tsang, "Is Naive Bayes a Good Classifier for

Document Classification," International Journal of Software Engineering and

Its Applications, vol. 5, pp. 37-46, 2011.

[101] D. Miller,"Softflowd: A Software Netflow Probe," 2012, [Online; accessed 7-

June-2013]. [Online]. Available: http://www.mindrot.org/projects/softflowd/

[102] F. Tegeler, X. Fu, G. Vigna, and C. Kruegel, "Botfinder: Finding Bots in

Network Traffic without Deep Packet Inspection," in Proceedings of the 8th

International Conference on Emerging Networking Experiments and

Technologies, 2012, pp. 349-360.

[103] L. Bilge, D. Balzarotti, W. Robertson, E. Kirda, and C. Kruegel, "Disclosure:

Detecting Botnet Command and Control Servers through Large-scale Netflow

Analysis," in Proceedings of the 28th Annual Computer Security Applications

Conference, 2012, pp. 129-138.

[104] U. Wijesinghe, U. Tupakula, and V. Varadharajan, "An Enhanced Model for

Network Flow Based Botnet Detection," in Proceedings of the 38th

Australasian Computer Science Conference (ACSC 2015), 2015, p. 30.

[105] G. Schaffrath, & B. Stiller, , "Conceptual Integration of Flow-based and

Packet-based Network Intrusion Detection," Resilient Networks and Services,

pp. 190-194, 2008.

[106] J. Steinberger, L. Schehlmann, S. Abt, and H. Baier, "Anomaly Detection and

Mitigation at Internet Scale: A survey," in IFIP International Conference on

Autonomous Infrastructure, Management and Security, 2013, pp. 49-60.

[107] M. A. Mehmood, A. Feldmann, S. Uhlig, and W. Willinger, "We Are All

Treated Equal, Aren't We?—Flow-level Performance as a Function of Flow

Size," in Networking Conference, 2014 IFIP, 2014, pp. 1-9.

http://www.mindrot.org/projects/softflowd/

 203

[108] G. F. Guo, "The Study of the Ontology and Context Verification Based

Intrusion Detection Model," in Applied Mechanics and Materials, 2014, pp.

3338-3341.

[109] U. Shankar and V. Paxson, "Active Mapping: Resisting NIDS Evasion without

Altering Traffic," in Proceedings Symposium on Security and Privacy, 2003,

pp. 44-61.

[110] F. Valeur, G. Vigna, C. Kruegel, and R. A. Kemmerer, "Comprehensive

Approach to Intrusion Detection Alert Correlation," IEEE Transactions on

Dependable and Secure Computing, vol. 1, pp. 146-169, 2004.

[111] M. Sourour, B. Adel, and A. Tarek, "Environmental Awareness Intrusion

Detection and Prevention System Toward Reducing False Positives and False

Negatives," in IEEE Symposium on Computational Intelligence in Cyber

Security, 2009, pp. 107-114.

[112] G. S. Kumar and C. Sirisha, "Robust Preprocessing and Random Forests

Technique for Network Probe Anomaly Detection," International Journal of

Soft Computing and Engineering (IJSCE) ISSN, pp. 2231-2307, 2012.

[113] D. G. Bhatti and P. Virparia, "Data Preprocessing for Reducing False Positive

Rate in Intrusion Detection," International Journal of Computer Applications,

vol. 57, 2012.

[114] D. G. Bhatti, P. Virparia, and B. Patel, "Conceptual Framework for Soft

Computing based Intrusion Detection to Reduce False Positive Rate,"

International Journal of Computer Applications, vol. 44, pp. 1-3, 2012.

[115] G. P. Spathoulas and S. K. Katsikas, "Using a Fuzzy Inference System to

Reduce False Positives in Intrusion Detection," in 2009 16th International

Conference on Systems, Signals and Image Processing, 2009, pp. 1-4.

[116] T. Pietraszek and A. Tanner, "Data Mining and Machine Learning—Towards

Reducing False Positives in Intrusion Detection," Information Security

Technical Report, vol. 10, pp. 169-183, 2005.

[117] D. Bolzoni, B. Crispo, and S. Etalle, "ATLANTIDES: An Architecture for

Alert Verification in Network Intrusion Detection Systems," in LISA, 2007, pp.

1-12.

[118] T. Kaur, "A Hybrid approach using Signature and Anomaly Detection to

Detect Network Intrusions," Ph.D. thesis, Thapar Univeristy Patiala, 2013.

[119] G. Gu, M. Sharif, X. Qin, D. Dagon, W. Lee, and G. Riley, "Worm Detection,

Early Warning and Response based on Local Victim Information," in 20th

Annual Computer Security Applications Conference, 2004, pp. 136-145.

[120] K. Wang, G. Cretu, and S. J. Stolfo, "Anomalous Payload-based Worm

Detection and Signature Generation," in International Workshop on Recent

Advances in Intrusion Detection, 2005, pp. 227-246.

[121] A. D. Todd, R. A. Raines, R. O. Baldwin, B. E. Mullins, and S. K. Rogers,

"Alert Verification Evasion through Server Response Forging," in

International Workshop on Recent Advances in Intrusion Detection, 2007, pp.

256-275.

[122] M. A. Aydın, A. H. Zaim, and K. G. Ceylan, "A Hybrid Intrusion Detection

System Design for Computer Network Security," Computers & Electrical

Engineering, vol. 35, pp. 517-526, 2009.

 204

[123] E. Tombini, H. Debar, L. Mé, and M. Ducassé, "A Serial Combination of

Anomaly and Misuse IDSes Applied to HTTP Traffic," in 20th Computer

Security Applications Conference 2004, pp. 428-437.

[124] Y.-X. Ding, M. Xiao, and A.-W. Liu, "Research and Implementation on Snort-

based Hybrid Intrusion Detection System," in 2009 International Conference

on Machine Learning and Cybernetics, 2009, pp. 1414-1418.

[125] K. Hwang, M. Cai, Y. Chen, and M. Qin, "Hybrid Intrusion Detection with

Weighted Signature Generation over Anomalous Internet Episodes," IEEE

Transactions on Dependable and Secure Computing, vol. 4, pp. 41-55, 2007.

[126] J. Yang, X. Chen, X. Xiang, and J. Wan, "HIDS-DT: An Effective Hybrid

Intrusion Detection System Based on Decision Tree," in International

Conference on Communications and Mobile Computing (CMC), 2010, pp. 70-

75.

[127] J. Zhang and M. Zulkernine, "A Hybrid Network Intrusion Detection

Technique using Random Forests," in First International Conference on

Availability, Reliability and Security (ARES'06), 2006, p. 8 pp.

[128] S. M. Hussein, F. H. M. Ali, and Z. Kasiran, "Evaluation effectiveness of

Hybrid IDS using Snort with Naïve Bayes to Detect Attacks," in Second

International Conference on Digital Information and Communication

Technology and it's Applications, 2012, pp. 256-260.

[129] D. J. Day, D. A. Flores, and H. S. Lallie, "CONDOR: A Hybrid IDS to Offer

Improved Intrusion Detection," in 2012 IEEE 11th International Conference

on Trust, Security and Privacy in Computing and Communications, 2012, pp.

931-936.

[130] V. Jacobson and S. McCanne, "libpcap: Packet Capture Library," Lawrence

Berkeley Laboratory, Berkeley, CA, 2009.

[131] C. Kreibich and R. Sommer, "Policy-controlled Event Management for

Distributed Intrusion Detection," in 25th IEEE International Conference on

Distributed Computing Systems Workshops, 2005, pp. 385-391.

[132] B. Amann, R. Sommer, A. Sharma, and S. Hall, "A Lone Wolf No More:

Supporting Network Intrusion Detection with Real-time Intelligence," in

International Workshop on Recent Advances in Intrusion Detection, 2012, pp.

314-333.

[133] L. Deri,"PF_Ring Packet Capture," 2011, [Online; accessed 4-May-2013].

[Online]. Available: http://www.ntop.org

[134] J. Stebelton,"Berkeley Packet Filters – The Basics," 2014, [Online; accessed

5-May-2013]. [Online]. Available:

http://www.infosecwriters.com/text_resources/pdf/JStebelton_BPF.pdf

[135] L. Deri and N. Spa, "nProbe: An Open Source Netflow Probe for Gigabit

Networks," in TERENA Networking Conference, 2003.

[136] S. Astashonok,"fprobe: a NetFlow Probe," 2007, [Online; accessed 25-

October-2013]. [Online]. Available: http://fprobe.sourceforge.net/

[137] P. B. Ruthven, "Contextual Profiling of Homogeneous User Groups for

Masquerade Detection," Master Thesis, Department of Computer Science and

Media Technology, Gjøvik University, Norway, 2014.

http://www.ntop.org/
http://www.infosecwriters.com/text_resources/pdf/JStebelton_BPF.pdf
http://fprobe.sourceforge.net/

 205

[138] Logging Framework, "Bro 2.4.1 documentation Framework," [Online;

accessed 19-Dec-2013]. [Online]. Available:

https://www.bro.org/sphinx/frameworks/logging.html#streams

[139] R. G. Sargent, "Verification and Validation of Simulation Models," Journal of

Simulation, vol. 7, pp. 12-24, 2013.

[140] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee, "A Design

Science Research Methodology for Information Systems Research," Journal

of Management Information Systems, vol. 24, pp. 45-77, 2007.

[141] S. Garcia, M. Grill, J. Stiborek, and A. Zunino, "An Empirical Comparison of

Botnet Detection Methods," Computers & Security, vol. 45, pp. 100-123, 2014.

[142] C. Rossow, C. J. Dietrich, C. Grier, C. Kreibich, V. Paxson, N. Pohlmann, et

al., "Prudent Practices for Designing Malware Experiments: Status Quo and

outlook," in 2012 IEEE Symposium on Security and Privacy, 2012, pp. 65-79.

[143] M. Tavallaee, N. Stakhanova, and A. A. Ghorbani, "Toward Credible

Evaluation of Anomaly-based Intrusion Detection Methods," IEEE

Transactions on Systems, Man, and Cybernetics, Part C (Applications and

Reviews), vol. 40, pp. 516-524, 2010.

[144] A. Papadogiannakis, D. Antoniades, M. Polychronakis, and E. P. Markatos,

"Improving the performance of passive network monitoring applications using

locality buffering," in Modeling, Analysis, and Simulation of Computer and

Telecommunication Systems, 2007. MASCOTS'07. 15th International

Symposium on, 2007, pp. 151-157.

[145] F. Schneider and J. Wallerich, "Performance evaluation of packet capturing

systems for high-speed networks," in Proceedings of the 2005 ACM

conference on Emerging network experiment and technology, 2005, pp. 284-

285.

[146] J. Corsini, "Analysis and Evaluation of Network Intrusion Detection Methods

to Uncover Data Theft," Napier University, 2009.

[147] A. Turner and M. Bing,"TcpReplay," 2011, [Online; accessed 9-Dec-2012].

[Online]. Available: https://sourceforge.net/projects/tcpreplay/

[148] A. Folkerts, G. Portokalidis, and H. Bos, "Multi-tier Intrusion Detection by

Means of Replayable Virtual Machines," Technical Report IR-CS-47, VU

University2008

[149] A. Yeow,"Bit-Twist: Libpcap-based Ethernet Packet Generator," 2016,

[Online; accessed 19-Jan-2016]. [Online]. Available:

http://bittwist.sourceforge.net/

[150] S. Forge,"TOMAHAWK," [Online; accessed 10-December-2016]. [Online].

Available: http://tomahawk.sourceforge.net

[151] S. C. Smith, K. W. Wong, I. Hammell, J. Robert, and C. J. Mateo, "An

Experimental Exploration of the Impact of Network-level Packet Loss on

Network Intrusion Detection," DTIC Document, 2015

[152] J. W. Haines, R. P. Lippmann, D. J. Fried, M. Zissman, and E. Tran, "1999

DARPA Intrusion Detection Evaluation: Design and Procedures," 2001.

[153] N. Nwanze, S.-i. Kim, and D. H. Summerville, "Payload Modeling for

Network Intrusion Detection Systems," in MILCOM 2009-2009 IEEE Military

Communications Conference, 2009, pp. 1-7.

https://www.bro.org/sphinx/frameworks/logging.html#streams
https://sourceforge.net/projects/tcpreplay/
http://bittwist.sourceforge.net/
http://tomahawk.sourceforge.net/

 206

[154] C. Thomas, V. Sharma, and N. Balakrishnan, "Usefulness of DARPA Dataset

for Intrusion Detection System Evaluation," in SPIE Defense and Security

Symposium, 2008, pp. 69730G-69730G-8.

[155] H. Om and A. Kundu, "A Hybrid System for Reducing the False Alarm Rate

of Anomaly Intrusion Detection System," in 1st International Conference on

Recent Advances in Information Technology (RAIT), 2012, pp. 131-136.

[156] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, "Toward Developing

a Systematic Approach to Generate Benchmark Datasets for Intrusion

Detection," Computers & Security, vol. 31, pp. 357-374, 2012.

[157] J. O. Nehinbe, "A Simple Method for Improving Intrusion Detections in

Corporate Networks," in International Conference on Information Security

and Digital Forensics, 2009, pp. 111-122.

[158] S. Tricaud,"French Honeynet Chapter Status Report," 2011, [Online; accessed

20-May-2013]. [Online]. Available: http://www.honeynet.org/chapters/france

[159] G. Szabó, D. Orincsay, S. Malomsoky, and I. Szabó, "On the Validation of

Traffic Classification Algorithms," in International Conference on Passive

and Active Network Measurement, 2008, pp. 72-81.

[160] Lawrence Berkeley National Laboratory, "Enterprise Tracing Project," 2005,

[Online; accessed 8-July-2014]. [Online]. Available:

http://www.icir.org/enterprise-tracing/

[161] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips, "The Bittorrent P2P File-

Sharing System: Measurements and Analysis," in International Workshop on

Peer-to-Peer Systems, 2005, pp. 205-216.

[162] O. E. Elejla, A. B. Jantan, and A. A. Ahmed, "Three Layers Approach For

Network Scanning Detection," Journal of Theoretical & Applied Information

Technology, vol. 70, 2014.

[163] G. Kumar, "Evaluation metrics for intrusion detection systems-a study,"

International Journal of Computer Science and Mobile Applications, II, vol.

11, 2014.

[164] D. Smallwood and A. Vance, "Intrusion Analysis with Deep Packet Inspection:

Increasing Efficiency of Packet Based Investigations," in Cloud and Service

Computing (CSC), 2011 International Conference on, 2011, pp. 342-347.

[165] A. Bremler-Barr, Y. Harchol, D. Hay, and Y. Koral, "Deep Packet Inspection

As a Service," in Proceedings of the 10th ACM International on Conference

on emerging Networking Experiments and Technologies, 2014, pp. 271-282.

[166] M. M. Masud, T. Al-khateeb, L. Khan, B. Thuraisingham, and K. W. Hamlen,

"Flow-based Identification of Botnet Traffic by Mining Multiple Log Files,"

in First International Conference on Distributed Framework and Applications,

2008, pp. 200-206.

[167] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten,

"The WEKA Data Mining Software: An Update," ACM SIGKDD Explorations

Newsletter, vol. 11, pp. 10-18, 2009.

[168] R. A. Rodríguez-Gómez, G. Maciá-Fernández, and P. García-Teodoro,

"Survey and Taxonomy of Botnet Research Through Life-cycle," ACM

Computing Surveys (CSUR), vol. 45, p. 45, 2013.

http://www.honeynet.org/chapters/france
http://www.icir.org/enterprise-tracing/

 207

[169] X. Ma, X. Guan, J. Tao, Q. Zheng, Y. Guo, L. Liu, et al., "A Novel IRC Botnet

Detection Method Based on Packet Size Sequence," in IEEE International

Conference on Communications (ICC), 2010, pp. 1-5.

[170] S. Garg, A. K. Sarje, and S. K. Peddoju, "Improved Detection of P2P Botnets

Through Network Behavior Analysis," in International Conference on

Security in Computer Networks and Distributed Systems, 2014, pp. 334-345.

[171] H. R. Zeidanloo and A. B. A. Manaf, "Botnet Detection by Monitoring Similar

Communication Patterns," 2010. [Online]. Available:

http://arxiv.org/abs/1004.1232

[172] G. Stringhini, T. Holz, B. Stone-Gross, C. Kruegel, and G. Vigna,

"BOTMAGNIFIER: Locating Spambots on the Internet," in USENIX Security

Symposium, 2011, pp. 1-32.

[173] G. Vliek, "Detecting Spam Machines, A Netflow-data Based Approach,"

Master thesis, Faculty of Electrical Engineering, University of Twente, 2009.

[174] Y. Li, D. Gruenbacher, and C. Scoglio, "Reward Only Is Not Enough:

Evaluating and Improving the Fairness Policy of the P2P File Sharing Network

eMule/eDonkey," Peer-to-Peer Networking and Applications, vol. 5, pp. 40-

57, 2012.

[175] D. Garant and W. Lu, "Mining Botnet Behaviors on the Large-Scale Web

Application Community," in Advanced Information Networking and

Applications Workshops (WAINA), 2013 27th International Conference on,

2013, pp. 185-190.

[176] E. B. Beigi, H. H. Jazi, N. Stakhanova, and A. A. Ghorbani, "Towards

Effective Feature Selection in Machine Learning-based Botnet Detection

Approaches," in IEEE Conference on Communications and Network Security

(CNS), 2014, pp. 247-255.

[177] W. T. Strayer, D. Lapsely, R. Walsh, and C. Livadas, "Botnet Detection based

on Network Behavior," Botnet Detection, pp. 1-24, 2008.

[178] A. I. Madbouly, A. M. Gody, and T. M. Barakat, "Relevant Feature Selection

Model Using Data Mining for Intrusion Detection System," International

Journal of Engineering Trends and Technology (IJETT), 2014.

[179] P. Sangkatsanee, N. Wattanapongsakorn, and C. Charnsripinyo, "Practical

Real-time Intrusion Detection Using Machine Learning Approaches,"

Computer Communications, vol. 34, pp. 2227-2235, 2011.

[180] P. Narang, J. M. Reddy, and C. Hota, "Feature Selection for Detection of Peer-

to-Peer Botnet Traffic," in Proceedings of the 6th ACM India Computing

Convention, 2013, p. 16.

[181] J. V. Gomes, P. R. Inácio, M. Pereira, M. M. Freire, and P. P. Monteiro,

"Detection and Classification of Peer-to-peer Traffic: A survey," ACM

Computing Surveys, vol. 45, p. 30, 2013.

[182] F. Giroire, J. Chandrashekar, N. Taft, E. Schooler, and D. Papagiannaki,

"Exploiting Temporal Persistence to Detect Covert Botnet Channels," in

International Workshop on Recent Advances in Intrusion Detection, 2009, pp.

326-345.

[183] A. Sperotto, G. Vliek, R. Sadre, and A. Pras, "Detecting Spam at the Network

Level," in Meeting of the European Network of Universities and Companies in

Information and Communication Engineering, 2009, pp. 208-216.

http://arxiv.org/abs/1004.1232

 208

[184] H. Weststrate, "Botnet Detection using Netflow Information," in 10th Twente

Student Conference on IT, 23rd January, 2009.

[185] Y. Liu, "Data Streaming Algorithms for Rapid Cyber Attack Detection," Ph.D.

thesis, Department of Computer Engineering, Iowa State University, Ames,

Iowa, 2013.

[186] H. Ma, S. Tan, and Z. He, "The Research of P2P Recognition Technology," in

Software Engineering and Service Science (ICSESS), 2014 5th IEEE

International Conference on, 2014, pp. 601-604.

[187] R. Keralapura, A. Nucci, and C.-N. Chuah, "A Novel Self-learning

Architecture for P2P Traffic Classification in High Speed Ntworks," Computer

Networks, vol. 54, pp. 1055-1068, 2010.

[188] M. Agnihotri,"DeepEnd Research: Library of Malware Traffic Patterns," 2013,

[Online; accessed 9-May-2014]. [Online]. Available:

http://www.deependresearch.org/2013/04/library-of-malware-traffic-

patterns.html

[189] S. Stover, D. Dittrich, J. Hernandez, and S. Dietrich, "Analysis of the Storm

and Nugache Trojans: P2P is here," USENIX Login, vol. 32, pp. 18-27, 2007.

[190] Bro IDS, "Signature framework — Bro 2.4.1 documentation," 2012, [Online;

accessed 6-Nov-2013]. [Online]. Available:

https://www.bro.org/sphinx/frameworks/signatures.html

[191] J. Amann, S. Hall, and R. Sommer, "Count Me In: Viable Distributed

Summary Statistics for Securing High-Speed Networks," in International

Workshop on Recent Advances in Intrusion Detection, 2014, pp. 320-340.

[192] M. Jonkman,"Emerging Bro Threats," 2008, [Online; accessed 30-June-2012].

[Online]. Available:

http://doc.emergingthreats.net/bin/view/Main/EmergingBro

[193] M. Jonkman,"Storm Worm Emerging Threats," 2007, [Online; accessed 4-

April-2013]. [Online]. Available:

http://doc.emergingthreats.net/bin/view/Main/StormWorm

[194] M. Tavallaee, "An Adaptive Hybrid Intrusion Detection System," Ph.D. thesis,

University of New Brunswick, 2011.

[195] G. Maier, R. Sommer, H. Dreger, A. Feldmann, V. Paxson, and F. Schneider,

"Enriching Network Security Analysis with Time Travel," in ACM SIGCOMM

Computer Communication Review, 2008, pp. 183-194.

[196] B. AsSadhan, J. M. Moura, D. Lapsley, C. Jones, and W. T. Strayer, "Detecting

Botnets using Command and Control Traffic," in Eighth IEEE International

Symposium on Network Computing and Applications 2009, pp. 156-162.

[197] PacketFilter, "Packet Filter in Bro," 2013, [Online; accessed 20-June-2013].

[Online]. Available:

https://www.bro.org/sphinx/scripts/base/frameworks/packet-

filter/main.bro.html

[198] G. Carle, F. Dressler, R. A. Kemmerer, H. Koenig, C. Kruegel, and P. Laskov,

"Network attack detection and defense–Manifesto of the Dagstuhl Perspective

Workshop, March 2nd–6th, 2008," Computer Science-Research and

Development, vol. 23, pp. 15-25, 2009.

http://www.deependresearch.org/2013/04/library-of-malware-traffic-patterns.html
http://www.deependresearch.org/2013/04/library-of-malware-traffic-patterns.html
https://www.bro.org/sphinx/frameworks/signatures.html
http://doc.emergingthreats.net/bin/view/Main/EmergingBro
http://doc.emergingthreats.net/bin/view/Main/StormWorm
https://www.bro.org/sphinx/scripts/base/frameworks/packet-filter/main.bro.html
https://www.bro.org/sphinx/scripts/base/frameworks/packet-filter/main.bro.html

 209

[199] G. Münz, N. Weber, and G. Carle, "Signature Detection in Sampled Packets,"

in Workshop on Monitoring, Attack Detection and Mitigation (MonAM 2007),

Toulouse, France, 2007.

[200] R. Sommer,"Bro Cluster Architecture — Bro 2.4.1 Documentation," 2013,

[Online; accessed 24-Jan-2015]. [Online]. Available:

https://www.bro.org/sphinx/cluster/index.html

[201] E. Alparslan, A. Karahoca, and D. Karahoca, "BotNet Detection: Enhancing

Analysis by Using Data Mining Techniques," INTECH Open Access

Publisher, 2012.

[202] Bro IDS, "Policy Stats," 2008, [Online; accessed 7-Dec-2013]. [Online].

Available: https://www.bro.org/sphinx/scripts/policy/misc/stats.bro.html

[203] R. Love, "Kernel Korner: CPU Affinity," Linux Journal, vol. 2003, p. 8, 2003.

[204] Open BL, "Abuse Reporting and Blacklisting," 2014, [Online; accessed 4-

July-2014]. [Online]. Available: https://www.openbl.org

[205] Black List, "URL Blacklist," 2013, [Online; accessed 2-May-2015]. [Online].

Available: http://urlblacklist.com/

[206] S. Hansman and R. Hunt, "A Taxonomy of Network and Computer Attacks,"

Computers & Security, vol. 24, pp. 31-43, 2005.

[207] K. Labib, "Computer Security and Intrusion Detection," Crossroads, vol. 11,

pp. 2-2, 2004.

[208] Y. Gao, Z. Li, and Y. Chen, "A DoS Resilient Flow-level Intrusion Detection

Approach for High-speed Networks," in 26th IEEE International Conference

on Distributed Computing Systems (ICDCS'06), 2006, pp. 39-39.

[209] T. Diibendorfer and B. Plattner, "Host Behaviour based Early Detection of

Worm Outbreaks in Internet Backbones," in 14th IEEE International

Workshops on Enabling Technologies: Infrastructure for Collaborative

Enterprise (WETICE'05), 2005, pp. 166-171.

[210] A. Sperotto, R. Sadre, P.-T. de Boer, and A. Pras, "Hidden Markov Model

modeling of SSH Brute-force Attacks," in International Workshop on

Distributed Systems: Operations and Management, 2009, pp. 164-176.

https://www.bro.org/sphinx/cluster/index.html
https://www.bro.org/sphinx/scripts/policy/misc/stats.bro.html
https://www.openbl.org/
http://urlblacklist.com/

 210

Appendix A

Attack Classification

In the literature, many attack classifications and taxonomies have been presented and

surveyed. However, not all the taxonomies that outlined in the literature provide the

same classification. Some studies classify the attack based on their goals, results, and

tools [28] and others classify the attacks based on the network type [206]. The highest

priority attacks are those who have a critical impact on the computer system. In this

appendix, the following major types of attacks are described.

A.1 Denial of Service (DoS)

The main objective of DoS attacks is to deny a legitimate user from using or accessing

his/her system in a normal mode. It often disturbs the service of a computer, a server,

or a network. Thus it is impossible to use its resources. This kind of attack is frequent

on the Internet. There are three types of Dos attacks: host based, network based, and

distributed based.

Host-based DoS attacks: This attack targets a vulnerability in the operating system,

application software, CPU, and memory. The main aim of this attack is to crash the

host. It also works by exploiting the implementation of network protocols

Network based DoS attacks: Network resources are targeted in this attack by

flooding the network with packets to disrupt legitimate use. In this case, the bandwidth

is overwhelmed with packets so that there is no left bandwidth for the legitimate users.

 211

TCP floods, ICMP floods, and UDP floods are the most network based DoS attack

identified that stream their packets to the target.

Distributed based DoS or DDoS attacks: This attack use a large number of attacked

computers to direct coordinated DoS attack against target or targets.

A.2 Information Gathering and Scanning

These attacks try to gather information about the system for further attacks. No actual

attack is launched on the computer and the network; they are, however, sniffed,

scanned, and probed. A packet sniffer is a simple tool to gather information about

computer and network by listening to every packet at a particular point in a network.

In conventional packet sniffer, the attacker set the Ethernet card into promiscuous

mode so that the card accepts and read all traffic packets in the network, even when a

packet is not addressed to this network card. MAC address, IP addresses, and running

services for a particular host can be obtained using sniffer tools.

A.3 Malicious Software

Malware includes Worms, Virus and Trojan horse, are malicious programs that are

inserted into a host to corrupt a system, deny access to a service. The worm runs

random code on the victim’s host and installs copies of itself in the memory, which

infects other hosts on the network. It leads to network congestion, delay, and loss

packets. A virus is a program that is attached to another program to run a particular

harmful function on the victim’s computer. The virus needs the user interaction to run

it and propagate to other files or hosts. However, the spread of worms is extremely

 212

faster than the virus. A Trajan horse is a program looks like a useful application, but

in fact, performs unwanted actions such as controlling the victim's host remotely using

backdoor installation.

A.4 IP Spoofing

This kind of attack is functioning on networks and TPC/IP protocols. Network

spoofing is used when the attacker pretends himself as a legitimate user by spoofing

who they are. Session Hijacking is the most popular attack in this kind of attack. The

attacker usually takes over a session between two hosts and then cuts one of these

hosts to be replaced by him. Session Hijacking usually operates at TCP layer and is

used to take over sessions of services such as FTP and Telnet. TCP session hijacking

also takes advantage of using IP spoofing and TCP sequence number. To make this

attack easy to the attacker, the attacker has to guess the TCP sequence number of the

session that is attempted to be hijacked by capturing and analysing the packets

travelling between the two victims. After the attackers manage to get the sequence

number, they spoof their IP address to be matched with one of the victim hosts and

then send a TCP packet to the other host with the hijacked sequence number. When

the other host accepts the packet and verifies the sequence number which is correct,

this host starts to reply to the attacker and continue the hijacked session.

Other types of attacks may include:

 Physical attacks: The aim of this attack is to damage the computer hardware

and network devices.

 213

 Buffer overflows: This attack overflow the process’s buffer of the victim’s

system to damage the process.

 Password attacks: This attack involves when the attacker is attempting to

guess a password of a protected host. Password dictionary and brute force are

the main example of this attack.

 Botnet attack: This attack was discussed in Chapter 4.

The following steps explain the nature and the methodology of the computer attacks

[207]:

1. Reconnaissance: This step involves the process when the attacker collects

information about its victim, including the network infrastructure, before

launching its attack.

2. Scanning: In this stage, the attacker starts to look for vulnerabilities and holes

by scanning the victim’s system. Towards the end, the attacker can obtain

precious information such as network topology, IP addresses of live hosts,

open port numbers, and security devices rules.

3. Getting Access: This step takes place when the attacker attempt to gain access

either using the operating system and application attacks if the attacker is a

legitimate user, or using the network if the attacker is an outsider.

 214

4. Retaining Access: After the attacker gained access to the compromised host,

he/she has to maintain this access. Trajan horse and Backdoors are the famous

techniques to perform this step.

5. Hiding Imprint: When the attackers have achieved what they want, they should

not leave any track on the system. Backdoor and RootKit are among techniques

that help the attacker to modify system logs and build hidden channel for data

transmission.

 215

Appendix B

NIDS Requirements

There are many requirements for efficient NIDS mentioned in the literature [6]. The

main two requirements that attracted researchers currently are scalability and detection

accuracy.

 Scalability: NIDS should operate in large volume networks without resource

consumption. This happens when all potential packets and traffic are analysed

without packet loss. Thus, detection analysis should be performed smoothly in

a large data network as well as with increase traffic and network’s size. Also,

the data amount to be processed by detection methods should be as small as

possible. Note that the term “potential packet” is used instead of “incoming

packet”, this is because potential packets are extracted after sampling

processes as will be discussed later.

 Detecting accuracy or detection rate: beside all potential packets should be

processed correctly; detection methods have to make the right decision, not to

decide falsely. To achieve this requirement, the true-positive rate should be

high while fewer false positive and negative rate.

Other requirements of NIDS may include:

 Detecting unknown attacks: novel intrusion should be detected

 216

 Detecting encrypted traffic: encrypted payloads should be readable and

analysed for intrusion detection.

 Early detection: intrusion should be detected as soon as possible

 Large data storage: all potential signatures, profiles, alerts, and reports

should be stored for long-term and further usage.

 NIDS security: NIDS should be secured enough against attackers who direct

attacks into the NIDS itself.

 Events correlation: For distributed attacks, NIDS should correlate single

attack event with other resources such as firewall, routers or other NIDS for

detection.

 IPv6 compatibility: NIDS should support IPv4 and IPv6

 Success attacks identification: NIDS should differentiate between successful

and unsuccessful attack so that the operator should take a proper action against

them.

 Privacy: NIDS should not violate privacy regulation of users by inspecting

private information both in payload and header of the packets.

 217

 Attack classification: After detection, NIDS should also identify and classify

attacks. Each attack has to be labelled and be under a category for further

analysis and measurements.

 218

Appendix C

Attacks Detectable by Flow-based Approach

This appendix presents the attacks that are detectable by flow-based NIDS and how

the current research community handles its limitation.

DoS Attack

Gao, et al. [208] proposed and implemented a DoS resilient High-speed Flow-level

Intrusion Detection system, HiFIND. The authors developed a prototype that accepts

flows exported from a Netflow router in real time. Their approach handles the problem

of DoS using flow aggregation accounted in data stream called a sketch. A sketch is a

hash table in one-dimension appropriated for quick storage of information. Sketch

counts incidences of an event and studies how the traffic behaves over a period of time

using statistics. It stores values that help an anomaly-based engine to trigger alarms

based on a statistical forecast. So an abnormal deviation from this forecast values is

detected as an intrusion. SYN flooding attack is one of DoS attacks that can be used

by sketch to detect this type of attack with the following steps:

 The sketch stores and calculates the difference between the number of SYN

packets and the number of SYN/ACK packets of each flow.

 If this difference is not within the normal range, a DoS SYN flooding attack is

detected.

 219

This approach can be implemented with relying on packet headers only instead of

flows but, however; data reduction which is provided by flows cannot be achieved.

Zhao, et al. [53] proposed and designed data streaming algorithms that can detect super

sources and super destinations attacks. Super source happens when a source or a host

has a unusual number of outgoing connection (fan-out) within specified period. An

example of the super source is port scanning that searches for vulnerable services

among different hosts. Super destination is considered when a destination or a host

receive abnormal number of incoming connection attempts within a small time

interval (fan-in). Distributed Denial of Service (DDoS) attack is an example of super

destination when a large number of hosts flood flows to a single destination. Data

streaming algorithms used in their work is to identify flows that have an unusual

number of connection after filtering part of the traffic. Unlike [208], the algorithms of

used in [53] is based on two dimension hash tables. To reduce the amount of data to

be processed, they perform flow sampling algorithm, hence improving the speed of

the process. Since not all the flows are processed, data reduction may compromise the

accuracy. The authors solve this problem by combining the power of data streaming

and sampling.

Kim, et al. [40] presented a detecting method for detecting abnormal network traffic

by analysing the traffic based on flows only. They use the term “traffic pattern” to

express different types of DoS attacks. A traffic pattern is a signature that describes

the number of flows, number of packets per flow, the size of flow, the size of packets,

and the total bandwidth occupied during the session. The authors use these patterns to

 220

differentiate between instances when detecting scanning or flooding attacks. For

example, during scanning or SYN flooding attack, since the attacker makes many

connection attempts, this pattern can be detected because of:

 a large number of flows generated since the attacker sends many packets to the

victim,

 a small number of packets per flow,

 moreover, the small size of the packet as the attacker sends small SYN packets.

The authors also managed to detect ICMP and UDP flooding attack. These attacks

have dynamic traffic patterns since it depends on the number of packets and hosts used

in these attacks. However, these attacks can be detected since they create large

bandwidth consumption and a high number of packets. Their approach can detect

traffic of different attacks with a similar traffic pattern by identifying their metrics and

then formalizing them into one detection function. However, certain attacks cannot be

observed using their method since Kim, et al. focused on detecting DoS and DDoS

attacks only. Since they used static threshold values of their parameters in the detection

function, their method cannot be suitable for every network condition. So, the adaptive

threshold for various network environments is required.

Munz and Carle [57] proposed a general system for DoS flow-based detection named

“TOPAS” (Traffic flOw Packet Analysis System). This system operates as a flow

collector from multiple sources. It receives data to be analysed in real-time. The

 221

authors develop TOPAS so that it supports different kinds of DoS detection modules

and it is publicly available. These modules are including SYN flood detection, Web

Server overloading module using HTTP request, and traceback module that identifies

the entry points of attack packet with spoofed source IP address. These modules can

be adjusted by the network administrator to increase the detection opportunities and

accuracy. An example of this is adjusting the number of SYN and SYN/ACK packets

in case of SYN flooding detection module. Although the authors state that TOPAS can

also analyse packet-base data, their approach does not support the combination of

packet-based and flow-based to reduce the false alarms.

Worms

Worm mechanism such as Code Red usually has two stages: victim discovery and

transfer code. In discovery stage, the worm surveys the network to find vulnerable

holes in the systems while in transfer stage, the worm starts to spread the code to the

systems. Unfortunately, the second stage cannot be detected using the flow-based

system since the code is injected in the payload which is not analysed by the flow-

based. Thus only the first stage of worm behaviour can be analysed and detected using

flow-based approach. Some attributes on the hosts when worms infect them are used

to detect worms attack. Such attributes include the number of connections, ratio of

outgoing to incoming traffic, and response way. However, some researchers deal with

worm detection the same way when dealing with scanning detection since they have

some common characteristics. DoS detection methods achieved by [53, 208] can be

used to detect the worm.

 222

Diibendorfer and Plattner [209] proposed a near real-time method for outbreak worm

detection in high-speed networks using flow-based approach. The method is based on

examination the behaviour and the number of incomings and outgoing connection of

the host. For detection method, the authors used the host behaviour and characteristics

to classify hosts into three classes: traffic class, connector class, and responder class.

Only suspicious hosts belong to these classes.

Hosts are classified as traffic class when the amount of traffic sent from the host is

more than received. An example of this is the worms send out exploit code or when

the worm spread in email attachments. Hosts that initiate an abnormal high number of

outgoing connections are classified under connector class. Such class happens when

hosts scan others. Responder class involves when a host holds bidirectional

connections such as TCP connection. An example of this class is when the host

responds to TCP handshake initiation or scan during a worm outbreak. In their

approach, overlapping within these classes is possible, meaning that a host can be

belonging to more than one class.

Figure C.1 illustrate this overlap. Worm outbreak attack can be detected by tracking

the cardinality of each class of an entire network periodically. Thus, any unexpected

or sudden changes in the cardinality of one or more classes are detected as worm

outbreak. The authors validate their method by tracing archived flow-level of recent

Internet emails and by tracing fast spreading worms such as Blaster.

Abdulla, et al. [85] proposed a worm warning system using IP flow and machine

learning approach. The authors consider the case that when a host is infected by an

 223

email worm or scanning, an unusual amount of traffic is initiated. This traffic is not

relied on DNS. They classify flow-based records using Support Vector Machine

(SVM) to extract features that belong to worm attacks. For training SVM, the features

are gathered into a set of patterns. The authors propose a structure that consists of three

modules: data collecting, data sampling, and classifier.

Figure C.1. Classes of Host Behaviour for Worm Detection

The first module collects the raw traffic and extracts the flow record information and

stores them into a database. The authors address the problem of dealing with a large

amount of flow data by creating the data sampling module. The classifier module

classifies the sampled traffic into a worm and benign flow. The SVM was trained by

the following scanning worms: CodeRed, Slammer, Doomjuice, and Witty. For email

worms, it was trained by sobig, Netsky, Storm, MyDoom, and Conficker.

 224

SSH

Secure SHell (SSH) is a communication protocol that allows a user to have full control

over a host’s resources remotely. Thus, hosts with SSH-enabled are unfortunately

targeted by intrusions. Sperotto, et al. [210] have studied and analysed the flow traffic

during SSH. They extract the flow data that is suspected to be malicious traffic. The

authors then develop a model which presents the flow characteristics when SSH

intrusion takes place. Although their model can detect these attacks, however, the

possibility of this model to be in practice is still unknown. Based on their work,

Hellemons (2012) develop an algorithm to test the practical applicability of the SSH

intrusion model. The algorithm uses the processed flow data to construct attack

metadata in the form of properties. Hellemons answered the question: “Can SSH

intrusion attacks be detected and analysed in practice by using only flow data?”

affirmatively. This method reduces the need for deep packet inspection system,

allowing for more scalable NIDS solution.

 225

Appendix D

Main Bro Log Files

D.1 Connection.log

Bro generates this log during run time. It consists of the complete connection log of

incoming and outgoing traffic. Table D.1 shows the fields of the connection.log file.

Table D.1

Fields Description of Connection.log file

 226

D.2 Signatures.log

This is log is generated when content matching occurs. Bro raises an event with the

alert named. This log also contains the payload content which triggers this event. Table

D.2 shows each field with its description for this log.

Table D.2

Fields Description of Signatures.log file

The following log text is a sample of Signatuers.log generated from PH when CTU-

52 dataset is used. It shows three infected IRC-bot were detected: 147.32.84.165,

147.32.84.191, and 147.32.84.192

#separator \x09

#set_separator ,

#empty_field (empty)

#unset_field -

#path signatures

#open 2015-08-01-08-13-34

#fields ts uid src_addr src_port dst_addr dst_port

 note sig_id event_msg sub_msg sig_count host_count

#types time string addr port addr port enum string string string

 count count

1313675274.978894 CoX6Zn4wnPAUOfTuOk 147.32.84.165 1027 74.125.232.201 80

 Signatures::Sensitive_Signature ircattack_client 147.32.84.165:

signature match GET /service/check2?appid=%7B430FD4D0-B729-4F61-AA34-

 227

91526481799D%7D&appversion=1.3.21.65&applang=&machine=0&version=1.3.21.65&osversion=5

.1... - -

1313675281.195719 CxIZuw1HkEATGTlkL6 147.32.84.191 1027 74.125.232.200 80

 Signatures::Sensitive_Signature ircattack_client 147.32.84.191:

signature match GET /service/check2?appid=%7B430FD4D0-B729-4F61-AA34-

91526481799D%7D&appversion=1.3.21.65&applang=&machine=0&version=1.3.21.65&osversion=5

.1... - -

1313675284.530430 CPfunv1ZCWV1ZnfWBj 147.32.84.192 1027 74.125.232.199 80

 Signatures::Sensitive_Signature ircattack_client 147.32.84.192:

signature match GET /service/check2?appid=%7B430FD4D0-B729-4F61-AA34-

91526481799D%7D&appversion=1.3.21.65&applang=&machine=0&version=1.3.21.65&osversion=5

.1... - -

#close 2015-08-01-08-13-48

D.3 Notice.log

Bro also generates this log at runtime. In this log, it contains activities that Bro

recognizes as interesting or bad. Table D.3 shows the filed description of this log.

Table D.3

Fields Description of Notice.log file

 228

Appendix E

Resource Consumptions Results

Figure E.1. CPU Usage over Time at 100 Mbps – P2P-bot

Figure E.2. Memory Usage over Time at 100 Mbps – P2P-bot

0

20

40

60

80

100

120

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

C
P

U
 U

sa
ge

 %

Time (min)

FL PH FL+PH PO

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

M
em

o
ry

 U
sa

ge
 (

M
B

)

Time (min)

FL PH FL+PH PO

 229

Figure E.3. CPU Usage over Time at 200 Mbps- P2P-bot

Figure E.4. Memory Usage over Time at 200 Mbps – P2P-bot

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

C
P

U
 U

sa
ge

 %

Time (min)

FL PH FL+PH PO

0

500

1000

1500

2000

2500

3000

3500

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

M
em

o
ry

 U
sa

ge
 (

M
B

)

Time (min)

FL PH FL+PH PO

 230

Figure E.5. CPU Usage over Time at 500 Mbps – P2P-bot

Figure E.6. Memory Usage over Time at 500 Mbps – P2P-bot

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6 7 8 9 10

C
P

U
 U

Sa
ge

 %

Time (min)

FL PH FL+PH PO

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 1 2 3 4 5 6 7 8 9 10

M
em

o
ry

 U
sa

ge
 (

M
B

)

Time (min)

FL PH FL+PH PO

 231

Figure E.7. CPU Usage over Time at 1000 Mbps – P2P-bot

Figure E.8. Memory Usage over Time at 1000 Mbps – P2P-bot

0

20

40

60

80

100

120

140

0 1 2 3 4

C
P

U
 U

sa
ge

 %

Time (min)

FL PH FL+PH PO

0

1000

2000

3000

4000

5000

6000

0 1 2 3 4

M
em

o
ry

 U
sa

ge
 (

M
B

)

Time (min)

FL PH FL+PH PO

 232

Appendix F

Samples of Detection Code

F.1 Bro SumStats Mechanism Code for Packet-based Spam Identifications

@load base/frameworks/sumstats

Networks that are considered "local":

 const private_address_space: set[subnet] = {

 10.0.0.0/8,

 192.168.0.0/16,

 172.16.0.0/12,

 147.32.84.0/8,

 100.64.0.0/10,

 127.0.0.0/8,

 [fe80::]/10,

 [::1]/128,

 } &redef;

const local_nets: set[subnet] &redef;

global spam_detect = open_log_file("spamhosts") &redef;

event connection_attempt(c: connection)

{

 # Make an observation!

 # This observation is about the host attempting the connection.

 if(cidresp_p == 25/tcp) {

 SumStats::observe("SMTP conn",

 SumStats::Key($host=c$id$orig_h),

 SumStats::Observation($num=1));

 }

 if(cidorig_p == 25/tcp) {

 SumStats::observe("SMTP conn",

 SumStats::Key($host=c$id$resp_h),

 SumStats::Observation($num=1));

 }

}

event connection_established(c: connection)

{

Make an observation!

Each established connection counts as one so the observation is always 1.

 if(cidresp_p == 25/tcp) {

 SumStats::observe("SMTP conn",

 SumStats::Key($host=c$id$orig_h),

 SumStats::Observation($num=1));

 }

 if(cidorig_p == 25/tcp) {

 SumStats::observe("SMTP conn",

 SumStats::Key($host=c$id$resp_h),

 SumStats::Observation($num=1));

 }

}

event bro_done()

{

}

event bro_init()

{

 Log::disable_stream(Conn::LOG);

 # The reducer attaches to the "SMTP conn" observation stream

 # and uses the summing calculation on the observations.

 local r1 = SumStats::Reducer($stream="SMTP conn",

 $apply=set(SumStats::SUM));

 # Create the final sumstat.

 # $threshold_val. The actual threshold itself is provided with

 # $threshold.

 233

 # Another callback is provided for when a key crosses the

 # threshold.

 SumStats::create([$name = " Detecting spam activities",

 $epoch = 10sec,

 $reducers = set(r1),

 # Provide a threshold.

 $threshold = 10.0,

 # Provide a callback to calculate a value from

 # the result

 # to check against the threshold field.

 $threshold_val(key: SumStats::Key, result:

SumStats::Result) =

 {

 return result["SMTP conn"]$sum;

 },

 # Provide a callback for when a key crosses

 # the threshold.

 $threshold_crossed(key: SumStats::Key, result:

SumStats::Result) =

 {

 if (key$host in private_address_space) {

 print fmt("%s attempted %.0f or more connections",

 key$host, result["SMTP conn"]$sum);

 print spam_detect, fmt(

 "%s attempted %.0f or more connections",

 key$host, result["SMTP conn"]$sum);

 }

 }]);

}

F.2 Bro PH Code for IRC-bot Detection

@load base/frameworks/notice

@load base/frameworks/signatures/main

@load base/protocols/irc

@load policy/misc/stats

@load-sigs ./ircattack.sig

@load base/frameworks/packet-filter

redef capture_filters = { ["filter_table"] = "" };

global print_logs = open_log_file ("print_log") &redef ;

global filter : string = "";

#To read a file into a Bro table, two record types have to be defined:

This record contains the types and names of the columns that should constitute the

table keys.

#Our key record only contains the host IP

type Idx: record {

 ip: addr;

};

#This record contains the types and names of the columns that should constitute the

table values.

type Val: record {

 comment: string;

};

Create an empty table that should contain the suspicious data

global suspicious: table[addr] of Val = table();

event update_filter ()

{

local ns = net_stats();

local filter_counter : count = 0;

local pre_filter : string = "host 100.101.102.103";

2) convert suspicious table into filter format string

 234

for (ip in suspicious)

{

pre_filter += fmt (" or host %s " , ip) ;

++ filter_counter;

}

print "pre_filter is";

print pre_filter;

3) packet filter framework read the filters

if (pre_filter != filter)

{

print " Filter has beed altered";

print " Perform Recompiling Filter";

captured_filter [filter_table] = pre_filter ;

}

else

{

print " Filter has not beed altered";

}

filter = copy (pre_filter) ;

print print_logs , " number of susp hosts marked ; hosts in filter";

print print_logs , fmt (" %s; %s", |suspicious| , filter_counter);

to update the capture_filter from suspicious, but not to update the suspicious

itself (since Reread is there)

schedule 10 sec { update_filter () };

flush_all () ;

}

event bro_init() &priority = 5

 {

#1) transfer + update flow suspicious ips into suspicious table

Input::add_table([$source="/home/hashem-bro/b-irc/flowirc/suspicious_file.log",

 $name="suspicious", $idx=Idx, $val=Val, $destination=suspicious,

$mode=Input::REREAD]);

 Input::remove("suspicious");

 schedule 5 sec { update_filter () };

set_buf(detailed_log, F);

 set_buf(bot_log, F);

 }

global checkflag = 0;

global ircbotdetect = open_log_file("ircbot_packet_hosts") &redef;

global p_at_in : count = 0;

global p_es_in : count = 0;

module IrcBot;

export {

 global detailed_log = open_log_file("irc.detailed") &redef;

 global bot_log = open_log_file("irc-bots") &redef;

 global summary_interval = 1 min &redef;

 global detailed_logging = T &redef;

 global content_dir = "irc-bots" &redef;

 global bot_nicks =

 /^\[([^\]]+\|)+[0-9]{2,}]/ # [DEU|XP|L|00]

 | /^\[[^]+\]([^]+\|)+([0-9a-zA-Z-]+)/ # [0]CHN|3436036

[DEU][1]3G-QE

 | /^DCOM[0-9]+$/ # DCOM7845

 | /^\{[A-Z]+\}-[0-9]+/ # {XP}-5021040

 | /^\[[0-9]+-[A-Z0-9]+\][a-z]+/ # [0058-X2]wpbnlgwf

 | /^\[[a-zA-Z0-9]\]-[a-zA-Z0-9]+$/ # [SD]-743056826

 | /^[a-z]+[A-Z]+-[0-9]{5,}$/

 | /^[A-Z]{3}-[0-9]{4}/ # ITD-1119

 ;

 global bot_cmds =

 /(^| *)[.?#!][^

]{0,5}(scan|ndcass|download|cvar\.|execute|update|dcom|asc|scanall) /

 | /(^| +\]\[+)* (ipscan|wormride)/

 | /(^| *)asn1/

 ;

 global skip_msgs =

 /.*AUTH .*/

 | /.**** Your host is .*/

 235

 | /.**** If you are having problems connecting .*/

 ;

 redef enum Notice::Type += {

 IrcBotServerFound,

 IrcBotClientFound,

 };

 type channel: record {

name: string;

passwords: set[string];

topic: string &default="";

topic_history: vector of string;

 };

 type bot_client: record {

host: addr;

p: port;

nick: string &default="";

user: string &default="";

realname: string &default="";

channels: table[string] of channel;

servers: set[addr] &optional;

first_seen: time;

last_seen: time;

 };

 type bot_server: record {

host: addr;

p: set[port];

clients: table[addr] of bot_client;

global_users: string &default="";

passwords: set[string];

channels: table[string] of channel;

first_seen: time;

last_seen: time;

 };

 type bot_conn: record {

client: bot_client;

server: bot_server;

conn: connection;

fd: file;

ircx: bool &default=F;

 };

We keep three sets of clients/servers:

(1) tables containing all IRC clients/servers

(2) sets containing potential bot hosts

(3) sets containing confirmend bot hosts

Hosts are confirmed when a connection is established between

potential bot hosts.

FIXME: (1) should really be moved into the general IRC script.

 global expire_server:

 function(t: table[addr] of bot_server, idx: addr): interval;

 global expire_client:

 function(t: table[addr] of bot_client, idx: addr): interval;

 global servers: table[addr] of bot_server &write_expire=24 hrs

 &expire_func=expire_server &persistent;

 global clients: table[addr] of bot_client &write_expire=24 hrs

 &expire_func=expire_client &persistent;

 global potential_bot_clients: set[addr] &persistent;

 global potential_bot_servers: set[addr] &persistent;

 global confirmed_bot_clients: set[addr] &persistent;

 global confirmed_bot_servers: set[addr] &persistent;

All IRC connections.

 global conns: table[conn_id] of bot_conn &persistent;

Connections between confirmed hosts.

 global bot_conns: set[conn_id] &persistent;

Helper functions for readable output.

 global strset_to_str: function(s: set[string]) : string;

 global portset_to_str: function(s: set[port]) : string;

 global addrset_to_str: function(s: set[addr]) : string;

}

function strset_to_str(s: set[string]) : string

{

 236

 if (|s| == 0)

 return "<none>";

 local r = "";

 for (i in s)

 {

 if (r != "")

 r = cat(r, ",");

 r = cat(r, fmt("\"%s\"", i));

 }

 return r;

}

function portset_to_str(s: set[port]) : string

{

 if (|s| == 0)

 return "<none>";

 local r = "";

 for (i in s)

 {

 if (r != "")

 r = cat(r, ",");

 r = cat(r, fmt("%d", i));

 }

 return r;

}

function addrset_to_str(s: set[addr]) : string

{

 if (|s| == 0)

 return "<none>";

 local r = "";

 for (i in s)

 {

 if (r != "")

 r = cat(r, ",");

 r = cat(r, fmt("%s", i));

 }

 return r;

}

function fmt_time(t: time) : string

{

 return strftime("%y-%m-%d-%H-%M-%S", t);

}

event print_bot_state()

{

 local bot_summary_log = open_log_file("irc-bots.summary");

 disable_print_hook(bot_summary_log);

 print bot_summary_log, "---------------------------";

 print bot_summary_log, strftime("%y-%m-%d-%H-%M-%S", network_time());

 print bot_summary_log, "---------------------------";

 print bot_summary_log;

 print bot_summary_log, "Known servers";

 for (h in confirmed_bot_servers)

 {

 local s = servers[h];

 print bot_summary_log,

 fmt(" %s %s - clients: %d ports %s password(s) %s last-seen

%s first-seen %s global-users %s",

 "L",

 s$host, |s$clients|, portset_to_str(s$p),

 strset_to_str(s$passwords),

 fmt_time(s$last_seen), fmt_time(s$first_seen),

 s$global_users);

 for (name in s$channels)

 {

 local ch = s$channels[name];

 print bot_summary_log,

 fmt(" channel %s: topic \"%s\", password(s) %s",

 ch$name, ch$topic,

 strset_to_str(ch$passwords));

 }

 }

 print bot_summary_log, "\nKnown clients";

 for (h in confirmed_bot_clients)

 237

 {

 local c = clients[h];

 print bot_summary_log,

 fmt(" %s %s - server(s) %s user %s nick %s realname %s last-

seen %s first-seen %s",

 "L", h,

 addrset_to_str(c$servers),

 c$user, c$nick, c$realname,

 fmt_time(c$last_seen), fmt_time(c$first_seen));

 }

 close(bot_summary_log);

 if (summary_interval != 0 secs)

 schedule summary_interval { print_bot_state() };

}

function do_log_force(c: connection, msg: string)

{

 local id = c$id;

 print bot_log, fmt("%.6f %s:%d > %s:%d %s %s",

 network_time(), id$orig_h, id$orig_p,

 id$resp_h, id$resp_p, c$addl, msg);

}

function do_log(c: connection, msg: string)

{

 if (c$id !in bot_conns)

 return;

 do_log_force(c, msg);

}

function log_msg(c: connection, cmd: string, prefix: string, msg: string)

{

 if (skip_msgs in msg)

 return;

 do_log(c, fmt("MSG command=%s prefix=%s msg=\"%s\"", cmd, prefix, msg));

}

function update_timestamps(c: connection) : bot_conn

{

 local conn = conns[c$id];

 conn$client$last_seen = network_time();

 conn$server$last_seen = network_time();

To prevent the set of entries from premature expiration,

we need to make a write access (can't use read_expire as we

iterate over the entries on a regular basis).

 clients[cidorig_h] = conn$client;

 servers[cidresp_h] = conn$server;

 return conn;

}

function add_server(c: connection) : bot_server

{

 local s_h = cidresp_h;

 if (s_h in servers)

 return servers[s_h];

 local empty_table1: table[addr] of bot_client;

 local empty_table2: table[string] of channel;

 local empty_set: set[string];

 local empty_set2: set[port];

 local server = [$host=s_h, $p=empty_set2, $clients=empty_table1,

 $channels=empty_table2, $passwords=empty_set,

 $first_seen=network_time(), $last_seen=network_time()];

 servers[s_h] = server;

 return server;

}

function add_client(c: connection) : bot_client

{

 local c_h = cidorig_h;

 if (c_h in clients)

 return clients[c_h];

 local empty_table: table[string] of channel;

 local empty_set: set[addr];

 local client = [$host=c_h, $p=c$id$resp_p, $servers=empty_set,

 $channels=empty_table, $first_seen=network_time(),

 $last_seen=network_time()];

 238

 clients[c_h] = client;

 return client;

}

function check_bot_conn(c: connection)

{

 if (c$id in bot_conns)

 return;

 local client = cidorig_h;

 local server = cidresp_h;

 if (client !in potential_bot_clients || server !in potential_bot_servers)

 return;

New confirmed bot_conn.

 add bot_conns[c$id];

 if (server !in confirmed_bot_servers)

 {

 NOTICE([$note=IrcBotServerFound, $src=server, $p=c$id$resp_p, $conn=c,

 $msg=fmt("ircbot server found: %s:%d", server,

$p=c$id$resp_p)]);

 add confirmed_bot_servers[server];

 }

 if (client !in confirmed_bot_clients)

 {

 NOTICE([$note=IrcBotClientFound, $src=client, $p=c$id$orig_p, $conn=c,

 $msg=fmt("ircbot client found: %s:%d", client,

$p=c$id$orig_p)]);

 add confirmed_bot_clients[client];

 }

}

function get_conn(c: connection) : bot_conn

{

 local conn: bot_conn;

 if (c$id in conns)

 {

 check_bot_conn(c);

 return update_timestamps(c);

 }

 local c_h = cidorig_h;

 local s_h = cidresp_h;

 local client : bot_client;

 local server : bot_server;

 if (c_h in clients)

 client = clients[c_h];

 else

 client = add_client(c);

 if (s_h in servers)

 server = servers[s_h];

 else

 server = add_server(c);

 server$clients[c_h] = client;

 add server$p[c$id$resp_p];

 add client$servers[s_h];

 conn$server = server;

 conn$client = client;

 conn$conn = c;

 conns[c$id] = conn;

 update_timestamps(c);

 return conn;

}

function expire_server(t: table[addr] of bot_server, idx: addr): interval

{

 local server = t[idx];

 for (c in server$clients)

 {

 local client = server$clients[c];

 delete client$servers[idx];

 }

 delete potential_bot_servers[idx];

 delete confirmed_bot_servers[idx];

 return 0secs;

}

function expire_client(t: table[addr] of bot_client, idx: addr): interval

{

 239

 local client = t[idx];

 for (s in client$servers)

 if (s in servers)

 delete servers[s]$clients[idx];

 delete potential_bot_clients[idx];

 delete confirmed_bot_clients[idx];

 return 0secs;

}

function remove_connection(c: connection)

{

 local conn = conns[c$id];

 delete conns[c$id];

 delete bot_conns[c$id];

}

event connection_state_remove(c: connection)

{

 if (c$id !in conns)

 return;

 remove_connection(c);

}

event irc_client(c: connection, is_orig: bool, prefix: string, data: string)

{

 if (detailed_logging)

 print detailed_log, fmt("%.6f %s > (%s) %s", network_time(),

id_string(c$id), prefix, data);

 local conn = get_conn(c);

 if (data == /^ *[iI][rR][cC][xX] *$/)

 conn$ircx = T;

}

event irc_server(c: connection, is_orig: bool, prefix: string, data: string)

{

 if (detailed_logging)

 print detailed_log, fmt("%.6f %s < (%s) %s", network_time(),

id_string(c$id), prefix, data);

 local conn = get_conn(c);

}

event irc_user_message(c: connection, is_orig: bool, user: string, host: string,

server: string, real_name: string)

{

 local conn = get_conn(c);

 conn$client$user = user;

 conn$client$realname = real_name;

 do_log(c, fmt("USER user=%s host=%s server=%s real_name=%s", user, host,

server, real_name));

}

function get_channel(conn: bot_conn, channel: string) : channel

{

 if (channel in conn$server$channels)

 return conn$server$channels[channel];

 else

 {

 local empty_set: set[string];

 local empty_vec: vector of string;

 local ch = [$name=channel, $passwords=empty_set,

$topic_history=empty_vec];

 conn$server$channels[ch$name] = ch;

 return ch;

 }

}

event irc_join_message(c: connection, is_orig: bool, info_list: irc_join_list)

{

 local conn = get_conn(c);

 for (i in info_list)

 {

 local ch = get_channel(conn, i$channel);

 if (i$password != "")

 add ch$passwords[i$password];

 conn$client$channels[ch$name] = ch;

 do_log(c, fmt("JOIN channel=%s password=%s", i$channel, i$password));

 }

}

global urls: set[string] &read_expire = 7 days &persistent;

 240

event http_request(c: connection, method: string, original_URI: string,

 unescaped_URI: string, version: string)

{

 if (original_URI in urls)

 do_log_force(c, fmt("Request for URL %s", original_URI));

}

event irc_channel_topic(c: connection, is_orig: bool, channel: string, topic: string)

{

 if (bot_cmds in topic)

 {

 do_log_force(c, fmt("Matching TOPIC %s", topic));

 add potential_bot_servers[cidresp_h];

 }

 local conn = get_conn(c);

 local ch = get_channel(conn, channel);

 ch$topic_history[|ch$topic_history| + 1] = ch$topic;

 ch$topic = topic;

 if (c$id in bot_conns)

 {

 do_log(c, fmt("TOPIC channel=%s topic=\"%s\"", channel, topic));

 local s = split(topic, / /);

 for (i in s)

 {

 local w = s[i];

 if (w == /[a-zA-Z]+:\/\/.*/)

 {

 add urls[w];

 do_log(c, fmt("URL channel=%s url=\"%s\"",

 channel, w));

 }

 }

 }

}

event irc_nick_message(c: connection, is_orig: bool, who: string, newnick: string)

{

 if (bot_nicks in newnick)

 {

 do_log_force(c, fmt("Matching NICK %s", newnick));

 add potential_bot_clients[cidorig_h];

 }

 local conn = get_conn(c);

 conn$client$nick = newnick;

 do_log(c, fmt("NICK who=%s nick=%s", who, newnick));

}

event irc_password_message(c: connection, is_orig: bool, password: string)

{

 local conn = get_conn(c);

 add conn$server$passwords[password];

 do_log(c, fmt("PASS password=%s", password));

}

event irc_privmsg_message(c: connection, is_orig: bool, source: string, target:

string,

 message: string)

{

 log_msg(c, "privmsg", source, fmt("->%s %s", target, message));

}

event irc_notice_message(c: connection, is_orig: bool, source: string,

 target: string, message: string)

{

 log_msg(c, "notice", source, fmt("->%s %s", target, message));

}

event irc_global_users(c: connection, is_orig: bool, prefix: string, msg: string)

{

 local conn = get_conn(c);

Better would be to parse the message to extract the counts.

 conn$server$global_users = msg;

 log_msg(c, "globalusers", prefix, msg);

}

event Input::end_of_data(name: string, source: string) {

for(ip in suspicious) {

 #print ip;

 241

 }

}

event bro_done()

{

}

event bro_init() &priority = -5

{

 if (summary_interval != 0 secs)

 schedule summary_interval { print_bot_state() };

Log::disable_stream(Conn::LOG);

Log::disable_stream(HTTP::LOG);

Log::disable_stream(Files::LOG);

}

F.3 Sample of Snort Rules for Botnet Detection

alert udp $HOME_NET 1024:65535 -> $EXTERNAL_NET 1024:65535 (msg:"E7[rb] BOTHUNTER

Storm(Peacomm) Peer Coordination Event [SEARCH RESULT]"; content:"|E311|"; depth:5;

rawbytes; pcre:"/[0-9]+\.mpg\;size\=[0-9]+/x"; rawbytes; classtype:bad-unknown;

sid:9910013; rev:99;)

alert udp $HOME_NET 1024:65535 -> $EXTERNAL_NET 1024:65535 (msg:"E7[rb] BOTHUNTER

Storm Worm Peer Coordination Event [PUBLISH]"; content:"|E313|"; depth:5; rawbytes;

pcre:"/[0-9]+\.mpg\;size\=[0-9]+/x"; rawbytes; classtype:bad-unknown; sid:9910011;

rev:99;)

	FRONT MATTER
	Copyright Page
	Title Page
	Certification
	Permission to Use
	Abstrak
	Abstract
	Acknowledgement
	Table of Contents
	List of Tables
	List of Figures
	List of Appendices
	List of Abbreviations
	List of Publications

	MAIN CHAPTER
	CHAPTER ONE: INTRODUCTION
	1.1 Background
	1.2 Intrusion Detection System
	1.3 Motivation
	1.4 Problem Statement
	1.5 Research Questions
	1.6 Research Objectives
	1.7 Research Contribution
	1.8 Scope of the Study
	1.9 Research Steps
	1.10 Organization of the Thesis

	CHAPTER TWO: LITERATURE REVIEW
	2.1 Growth of Traffic and Threats
	2.1.1 Internet Attacks
	2.1.2 Growth of Threats

	2.2 Intrusion Detection Systems
	2.2.1 Security Tools and Techniques
	2.2.2 IDS Structure
	2.2.3 Software-based IDS
	2.2.4 IDS Types
	2.2.4.1 Location-based IDS
	2.2.4.2 Detection-based IDS
	2.2.4.3 Data-processed-based NIDS

	2.2.5 NIDS Requirements
	2.2.6 NIDS Challenges

	2.3 Packet-based NIDS
	2.3.1 Scalability
	2.3.2 Detection Accuracy
	2.3.3 Botnet Detections Related Works

	2.4 Flow-based NIDS
	2.4.1 Flow-based Detection Overview
	2.4.2 Structure
	2.4.2.1 Exporter
	2.4.2.2 Collector
	2.4.2.3 Analyser

	2.4.3 Scalability
	2.4.4 Detection Accuracy
	2.4.5 Botnet Detection Related Works

	2.5 Packet-based and Flow-based Detection Comparison
	2.5.1 Comparison
	2.5.2 Trade-offs

	2.6 False Positive Reduction
	2.6.1 Scope of Attacks
	2.6.2 Network Awareness
	2.6.3 Traffic Cleanness
	2.6.4 Alert Correlation
	2.6.5 Hybrid Signature-based and Anomaly-based
	2.6.6 Hybrid Flow-based and Packet-based

	2.7 Chapter Summary

	CHAPTER THREE: METHODOLOGY
	3.1 Proposed Mechanism Design
	3.2 Component Identification
	3.2.1 Traffic Capture
	3.2.2 Flow Aggregation
	3.2.3 Packet-based Detection
	3.2.4 Flow-based Detection

	3.3 Implementation
	3.4 Evaluation
	3.4.1 Experimental Environment
	3.4.2 Experiment Setup
	3.4.3 Measurement Procedures
	3.4.4 Dataset
	3.4.4.1 Malicious Datasets
	3.4.4.2 Background Traces

	3.4.5 Evaluation Metrics

	3.5 Chapter Summary

	CHAPTER FOUR: TWO STAGES FLOW-BASED DETECTION
	4.1 Introduction
	4.2 Design
	4.3 Attack Selection
	4.3.1 IRC-bot Behaviour
	4.3.2 P2P-bot Behaviour

	4.4 Detection Scripts Derivation
	4.4.1 Packet and Flow Analysis
	4.4.1.1 Flows Labelling
	4.4.1.2 Attribute Classifications

	4.4.2 Detection Policy Scripts

	4.5 Detection Implementations
	4.5.1 Flow-based Detection
	4.5.1.1 Threshold-based Mechanism
	4.5.1.2 Proof of Concept

	4.5.2 Packet-based Detection

	4.6 Evaluation Environment
	4.7 Chapter Summary

	CHAPTER FIVE: CONDITIONAL HYBRID INTRUSION DETECTION
	5.1 Introduction
	5.2 Proposed Mechanism
	5.2.1 Design and Theory
	5.2.2 Combination Approach Scenario

	5.3 Implementation
	5.3.1 Traffic Recording Strategy
	5.3.2 Subsequent-Packet Strategy
	5.3.3 PH and FL Communicating Process Implementation
	5.3.3.1 BPF-only Method
	5.3.3.2 Input Framework (IF) Method

	5.3.4 IF Method Integration
	5.3.4.1 Reading Files
	5.3.4.2 Updating Table
	5.3.4.3 BPF Filtering
	5.3.4.4 Proof of Concept

	5.3.5 Partial Payload Inspection Approach
	5.3.6 Switching Approach based on Traffic Rate

	5.4 Evaluation
	5.4.1 Attack Scenarios
	5.4.2 Experimental Environments
	5.4.3 Measurement Procedures
	5.4.4 Traffic Data for CHID Mechanism

	5.5 Chapter Summary

	CHAPTER SIX: RESULT AND DISCUSSION
	6.1 Flow-based Detection Scripts
	6.1.1 Dataset Correctness
	6.1.2 Most Significant Attributes
	6.1.3 Detection Accuracy
	6.1.4 False Positive Test
	6.1.5 Resource Consumption

	6.2 CHID Mechanism
	6.2.1 Detection Accuracy
	6.2.2 Resource Consumption
	6.2.3 Filtered Hosts and IF Method
	6.2.4 Packet Drop Rate
	6.2.5 Partial Payload in PH

	6.3 Chapter Summary

	CHAPTER SEVEN: CONCLUSION
	7.1 Summary of Research
	7.2 Objectives Achievements
	7.2.1 First Objective
	7.2.2 Second Objective
	7.2.3 Third Objective

	7.3 Main Contribution
	7.4 Limitations and Future Works
	7.5 Chapter Summary

	REFERENCES
	Appendix

