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Abstrak 

Memeriksa paket untuk mengesan pencerobohan berhadapan cabaran apabila 

berlakunya jumlah trafik rangkaian yang tinggi. Proses pengesanan berdasarkan paket 

bagi setiap muat beban pada wayar mengurangkan prestasi sistem pengesanan 

pencerobohan rangkaian (NIDS). Isu ini memerlukan kepada satu pengenalan NIDS 

berasaskan aliran untuk mengurangkan jumlah data yang akan diproses dengan 

memeriksa agregat maklumat dari paket yang berkaitan. Walau bagaimanapun, 

pengesanan berdasarkan aliran masih mengalami penjanaan amaran positif palsu 

kerana input data yang tidak lengkap. Kajian ini mencadangkan Pengesanan 

Pencerobohan Hibrid Bersyarat (CHID) dengan mencantumkan pengesanan 

berasaskan aliran dengan pengesanan berasaskan paket. Tambahan lagi, ia juga 

bertujuan untuk memperbaiki penggunaan sumber pendekatan pengesanan berasaskan 

paket. CHID menggunakan algoritma penilaian ciri pembalut atribut yang 

menandakan aliran hasad untuk analisis selanjutnya oleh pengesanan berasaskan 

paket. Pendekatan Rangka Kerja Input telah digunakan untuk mencetus aliran paket 

diantara pengesanan berasaskan paket dan berasaskan aliran. Eksperimen tapak 

ujiterkawal telah dijalankan untuk menilai prestasi mekanisme pengesanan CHID 

menggunakan set data yang diperolehi daripada pada kadar trafik yang berbeza. Hasil 

penilaian didapati CHID memperoleh peningkatan prestasi yang ketara dari segi 

penggunaan sumber dan kadar paket susut, berbanding pelaksanaan pengesanan 

berasaskan paket lalai. Pada kelajuan 200 Mbps, CHID dalam senario IRC-bot, boleh 

mengurangkan 50.6% dari penggunaan memori dan menyusut 18.1% penggunaan 

CPU tanpa paket susut. Pendekatan CHID boleh mengurangkan kadar positif palsu 

berdasarkan pengesanan berasaskan aliran dan mengurangkan penggunaan sumber 

pengesanan berasaskan paket disamping memelihara ketepatan pengesanan. 

Pendekatan CHID boleh dianggap sebagai sistem generik untuk diaplikasikan untuk 

sistem pemantauan pengesanan pencerobohan. 

 

Kata Kunci: Pengesanan berasaskan aliran, Pengesanan berasaskan paket, Bro-NIDS, 

Rangka kerja input. 
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Abstract 

Inspecting packets to detect intrusions faces challenges when coping with a high 

volume of network traffic. Packet-based detection processes every payload on the 

wire, which degrades the performance of network intrusion detection system (NIDS). 

This issue requires an introduction of a flow-based NIDS that reduces the amount of 

data to be processed by examining aggregated information of related packets. 

However, flow-based detection still suffers from the generation of the false positive 

alerts due to incomplete data input. This study proposed a Conditional Hybrid 

Intrusion Detection (CHID) by combining the flow-based with packet-based detection. 

In addition, it is also aimed to improve the resource consumption of the packet-based 

detection approach. CHID applied attribute wrapper features evaluation algorithms 

that marked malicious flows for further analysis by the packet-based detection. Input 

Framework approach was employed for triggering packet flows between the packet-

based and flow-based detections. A controlled testbed experiment was conducted to 

evaluate the performance of detection mechanism’s CHID using datasets obtained 

from on different traffic rates. The result of the evaluation showed that CHID gains a 

significant performance improvement in terms of resource consumption and packet 

drop rate, compared to the default packet-based detection implementation. At a 200 

Mbps, CHID in IRC-bot scenario, can reduce 50.6% of memory usage and decreases 

18.1% of the CPU utilization without packets drop. CHID approach can mitigate the 

false positive rate of flow-based detection and reduce the resource consumption of 

packet-based detection while preserving detection accuracy. CHID approach can be 

considered as generic system to be applied for monitoring of intrusion detection 

systems. 

 

Keywords: Flow-based detection, Packet-based detection, Input Framework 

approach. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background 

The number of Internet clients and services is growing more and more [1]. New 

Internet applications give users benefits for either their businesses or future life. The 

Internet is a powerful medium that has changed how people communicate and do 

businesses with the partners. These universal applications let companies achieve 

things that never been imagined before. 

In addition to growing of the Internet users, networks become bigger and bigger. 

Although the Internet gives users’ bright life and good businesses, it also has its 

unknown dark face. Since many new Internet services, devices, and hosts are 

developing, the number of vulnerabilities either in user smartphones, computers or 

servers is also increasing [2]. The more computers connected to the Internet the more 

possibility that the attacks take place. Many security gaps are exposed and misused by 

attacks. Unfortunately, attacks are growing with the Internet almost in parallel, and 

the race between them is continuing.  

The number and the damage cost by those attacks are rising continuously. The security 

threats can exploit all types of the network, including LAN-based clusters, intranet, 

large-scale computational grids, and peer-to-peer service networks. These threats also 

exploit all exposed protocols and operating systems (OS) threatening different kinds 

of their applications such as database and web servers. Considering the damage cost 

originated from the attacks, it is important to detect an attack as soon as possible. The 
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Appendix A 

Attack Classification 

In the literature, many attack classifications and taxonomies have been presented and 

surveyed. However, not all the taxonomies that outlined in the literature provide the 

same classification. Some studies classify the attack based on their goals, results, and 

tools [28] and others classify the attacks based on the network type [206]. The highest 

priority attacks are those who have a critical impact on the computer system. In this 

appendix, the following major types of attacks are described. 

A.1 Denial of Service (DoS) 

The main objective of DoS attacks is to deny a legitimate user from using or accessing 

his/her system in a normal mode. It often disturbs the service of a computer, a server, 

or a network. Thus it is impossible to use its resources. This kind of attack is frequent 

on the Internet. There are three types of Dos attacks: host based, network based, and 

distributed based. 

Host-based DoS attacks: This attack targets a vulnerability in the operating system, 

application software, CPU, and memory. The main aim of this attack is to crash the 

host. It also works by exploiting the implementation of network protocols  

Network based DoS attacks: Network resources are targeted in this attack by 

flooding the network with packets to disrupt legitimate use. In this case, the bandwidth 

is overwhelmed with packets so that there is no left bandwidth for the legitimate users. 
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TCP floods, ICMP floods, and UDP floods are the most network based DoS attack 

identified that stream their packets to the target.  

Distributed based DoS or DDoS attacks: This attack use a large number of attacked 

computers to direct coordinated DoS attack against target or targets.  

A.2 Information Gathering and Scanning 

These attacks try to gather information about the system for further attacks. No actual 

attack is launched on the computer and the network; they are, however, sniffed, 

scanned, and probed. A packet sniffer is a simple tool to gather information about 

computer and network by listening to every packet at a particular point in a network. 

In conventional packet sniffer, the attacker set the Ethernet card into promiscuous 

mode so that the card accepts and read all traffic packets in the network, even when a 

packet is not addressed to this network card.  MAC address, IP addresses, and running 

services for a particular host can be obtained using sniffer tools.  

A.3 Malicious Software 

Malware includes Worms, Virus and Trojan horse, are malicious programs that are 

inserted into a host to corrupt a system, deny access to a service. The worm runs 

random code on the victim’s host and installs copies of itself in the memory, which 

infects other hosts on the network. It leads to network congestion, delay, and loss 

packets. A virus is a program that is attached to another program to run a particular 

harmful function on the victim’s computer. The virus needs the user interaction to run 

it and propagate to other files or hosts. However, the spread of worms is extremely 
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faster than the virus. A Trajan horse is a program looks like a useful application, but 

in fact, performs unwanted actions such as controlling the victim's host remotely using 

backdoor installation. 

A.4 IP Spoofing 

This kind of attack is functioning on networks and TPC/IP protocols. Network 

spoofing is used when the attacker pretends himself as a legitimate user by spoofing 

who they are. Session Hijacking is the most popular attack in this kind of attack. The 

attacker usually takes over a session between two hosts and then cuts one of these 

hosts to be replaced by him. Session Hijacking usually operates at TCP layer and is 

used to take over sessions of services such as FTP and Telnet. TCP session hijacking 

also takes advantage of using IP spoofing and TCP sequence number. To make this 

attack easy to the attacker, the attacker has to guess the TCP sequence number of the 

session that is attempted to be hijacked by capturing and analysing the packets 

travelling between the two victims. After the attackers manage to get the sequence 

number, they spoof their IP address to be matched with one of the victim hosts and 

then send a TCP packet to the other host with the hijacked sequence number. When 

the other host accepts the packet and verifies the sequence number which is correct, 

this host starts to reply to the attacker and continue the hijacked session. 

Other types of attacks may include: 

 Physical attacks: The aim of this attack is to damage the computer hardware 

and network devices. 
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 Buffer overflows: This attack overflow the process’s buffer of the victim’s 

system to damage the process.  

 Password attacks: This attack involves when the attacker is attempting to 

guess a password of a protected host. Password dictionary and brute force are 

the main example of this attack. 

 Botnet attack: This attack was discussed in Chapter 4. 

The following steps explain the nature and the methodology of the computer attacks 

[207]: 

1. Reconnaissance: This step involves the process when the attacker collects 

information about its victim, including the network infrastructure, before 

launching its attack.  

2. Scanning: In this stage, the attacker starts to look for vulnerabilities and holes 

by scanning the victim’s system. Towards the end, the attacker can obtain 

precious information such as network topology, IP addresses of live hosts, 

open port numbers, and security devices rules.  

3. Getting Access: This step takes place when the attacker attempt to gain access 

either using the operating system and application attacks if the attacker is a 

legitimate user, or using the network if the attacker is an outsider. 
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4. Retaining Access: After the attacker gained access to the compromised host, 

he/she has to maintain this access. Trajan horse and Backdoors are the famous 

techniques to perform this step.  

5. Hiding Imprint: When the attackers have achieved what they want, they should 

not leave any track on the system. Backdoor and RootKit are among techniques 

that help the attacker to modify system logs and build hidden channel for data 

transmission. 
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Appendix B 

NIDS Requirements 

There are many requirements for efficient NIDS mentioned in the literature [6]. The 

main two requirements that attracted researchers currently are scalability and detection 

accuracy.  

 Scalability: NIDS should operate in large volume networks without resource 

consumption. This happens when all potential packets and traffic are analysed 

without packet loss. Thus, detection analysis should be performed smoothly in 

a large data network as well as with increase traffic and network’s size. Also, 

the data amount to be processed by detection methods should be as small as 

possible. Note that the term “potential packet” is used instead of “incoming 

packet”, this is because potential packets are extracted after sampling 

processes as will be discussed later. 

 Detecting accuracy or detection rate: beside all potential packets should be 

processed correctly; detection methods have to make the right decision, not to 

decide falsely. To achieve this requirement, the true-positive rate should be 

high while fewer false positive and negative rate. 

Other requirements of NIDS may include: 

 Detecting unknown attacks: novel intrusion should be detected 
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 Detecting encrypted traffic: encrypted payloads should be readable and 

analysed for intrusion detection. 

 Early detection: intrusion should be detected as soon as possible 

 Large data storage: all potential signatures, profiles, alerts, and reports 

should be stored for long-term and further usage. 

 NIDS security: NIDS should be secured enough against attackers who direct 

attacks into the NIDS itself. 

 Events correlation: For distributed attacks, NIDS should correlate single 

attack event with other resources such as firewall, routers or other NIDS for 

detection.  

 IPv6 compatibility: NIDS should support IPv4 and IPv6 

 Success attacks identification: NIDS should differentiate between successful 

and unsuccessful attack so that the operator should take a proper action against 

them. 

 Privacy: NIDS should not violate privacy regulation of users by inspecting 

private information both in payload and header of the packets. 
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 Attack classification: After detection, NIDS should also identify and classify 

attacks. Each attack has to be labelled and be under a category for further 

analysis and measurements. 
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Appendix C 

Attacks Detectable by Flow-based Approach 

This appendix presents the attacks that are detectable by flow-based NIDS and how 

the current research community handles its limitation. 

DoS Attack 

Gao, et al. [208] proposed and implemented a DoS resilient High-speed Flow-level 

Intrusion Detection system, HiFIND. The authors developed a prototype that accepts 

flows exported from a Netflow router in real time. Their approach handles the problem 

of DoS using flow aggregation accounted in data stream called a sketch. A sketch is a 

hash table in one-dimension appropriated for quick storage of information. Sketch 

counts incidences of an event and studies how the traffic behaves over a period of time 

using statistics. It stores values that help an anomaly-based engine to trigger alarms 

based on a statistical forecast. So an abnormal deviation from this forecast values is 

detected as an intrusion. SYN flooding attack is one of DoS attacks that can be used 

by sketch to detect this type of attack with the following steps: 

 The sketch stores and calculates the difference between the number of SYN 

packets and the number of SYN/ACK packets of each flow. 

 If this difference is not within the normal range, a DoS SYN flooding attack is 

detected. 
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This approach can be implemented with relying on packet headers only instead of 

flows but, however; data reduction which is provided by flows cannot be achieved.  

Zhao, et al. [53] proposed and designed data streaming algorithms that can detect super 

sources and super destinations attacks. Super source happens when a source or a host 

has a unusual number of outgoing connection (fan-out) within specified period. An 

example of the super source is port scanning that searches for vulnerable services 

among different hosts. Super destination is considered when a destination or a host 

receive abnormal number of incoming connection attempts within a small time 

interval (fan-in). Distributed Denial of Service (DDoS) attack is an example of super 

destination when a large number of hosts flood flows to a single destination. Data 

streaming algorithms used in their work is to identify flows that have an unusual 

number of connection after filtering part of the traffic. Unlike [208], the algorithms of 

used in [53] is based on two dimension hash tables. To reduce the amount of data to 

be processed, they perform flow sampling algorithm, hence improving the speed of 

the process. Since not all the flows are processed, data reduction may compromise the 

accuracy. The authors solve this problem by combining the power of data streaming 

and sampling. 

Kim, et al. [40] presented a detecting method for detecting abnormal network traffic 

by analysing the traffic based on flows only. They use the term “traffic pattern” to 

express different types of DoS attacks. A traffic pattern is a signature that describes 

the number of flows, number of packets per flow, the size of flow, the size of packets, 

and the total bandwidth occupied during the session. The authors use these patterns to 
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differentiate between instances when detecting scanning or flooding attacks. For 

example, during scanning or SYN flooding attack, since the attacker makes many 

connection attempts, this pattern can be detected because of:  

 a large number of flows generated since the attacker sends many packets to the 

victim,  

 a small number of packets per flow,  

 moreover, the small size of the packet as the attacker sends small SYN packets. 

The authors also managed to detect ICMP and UDP flooding attack. These attacks 

have dynamic traffic patterns since it depends on the number of packets and hosts used 

in these attacks. However, these attacks can be detected since they create large 

bandwidth consumption and a high number of packets. Their approach can detect 

traffic of different attacks with a similar traffic pattern by identifying their metrics and 

then formalizing them into one detection function. However, certain attacks cannot be 

observed using their method since Kim, et al. focused on detecting DoS and DDoS 

attacks only. Since they used static threshold values of their parameters in the detection 

function, their method cannot be suitable for every network condition. So, the adaptive 

threshold for various network environments is required. 

Munz and Carle [57] proposed a general system for DoS flow-based detection named 

“TOPAS” (Traffic flOw Packet Analysis System). This system operates as a flow 

collector from multiple sources. It receives data to be analysed in real-time. The 
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authors develop TOPAS so that it supports different kinds of DoS detection modules 

and it is publicly available. These modules are including SYN flood detection, Web 

Server overloading module using HTTP request, and traceback module that identifies 

the entry points of attack packet with spoofed source IP address. These modules can 

be adjusted by the network administrator to increase the detection opportunities and 

accuracy. An example of this is adjusting the number of SYN and SYN/ACK packets 

in case of SYN flooding detection module. Although the authors state that TOPAS can 

also analyse packet-base data, their approach does not support the combination of 

packet-based and flow-based to reduce the false alarms. 

Worms 

Worm mechanism such as Code Red usually has two stages: victim discovery and 

transfer code. In discovery stage, the worm surveys the network to find vulnerable 

holes in the systems while in transfer stage, the worm starts to spread the code to the 

systems. Unfortunately, the second stage cannot be detected using the flow-based 

system since the code is injected in the payload which is not analysed by the flow-

based. Thus only the first stage of worm behaviour can be analysed and detected using 

flow-based approach. Some attributes on the hosts when worms infect them are used 

to detect worms attack. Such attributes include the number of connections, ratio of 

outgoing to incoming traffic, and response way. However, some researchers deal with 

worm detection the same way when dealing with scanning detection since they have 

some common characteristics. DoS detection methods achieved by [53, 208] can be 

used to detect the worm.  
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Diibendorfer and Plattner [209] proposed a near real-time method for outbreak worm 

detection in high-speed networks using flow-based approach. The method is based on 

examination the behaviour and the number of incomings and outgoing connection of 

the host. For detection method, the authors used the host behaviour and characteristics 

to classify hosts into three classes: traffic class, connector class, and responder class. 

Only suspicious hosts belong to these classes.  

Hosts are classified as traffic class when the amount of traffic sent from the host is 

more than received. An example of this is the worms send out exploit code or when 

the worm spread in email attachments. Hosts that initiate an abnormal high number of 

outgoing connections are classified under connector class. Such class happens when 

hosts scan others. Responder class involves when a host holds bidirectional 

connections such as TCP connection. An example of this class is when the host 

responds to TCP handshake initiation or scan during a worm outbreak. In their 

approach, overlapping within these classes is possible, meaning that a host can be 

belonging to more than one class.  

Figure C.1 illustrate this overlap. Worm outbreak attack can be detected by tracking 

the cardinality of each class of an entire network periodically. Thus, any unexpected 

or sudden changes in the cardinality of one or more classes are detected as worm 

outbreak. The authors validate their method by tracing archived flow-level of recent 

Internet emails and by tracing fast spreading worms such as Blaster. 

Abdulla, et al. [85] proposed a worm warning system using IP flow and machine 

learning approach. The authors consider the case that when a host is infected by an 
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email worm or scanning, an unusual amount of traffic is initiated. This traffic is not 

relied on DNS. They classify flow-based records using Support Vector Machine 

(SVM) to extract features that belong to worm attacks. For training SVM, the features 

are gathered into a set of patterns. The authors propose a structure that consists of three 

modules: data collecting, data sampling, and classifier. 

 

 

 

 

 

 

 

Figure C.1. Classes of Host Behaviour for Worm Detection 

The first module collects the raw traffic and extracts the flow record information and 

stores them into a database. The authors address the problem of dealing with a large 

amount of flow data by creating the data sampling module. The classifier module 

classifies the sampled traffic into a worm and benign flow. The SVM was trained by 

the following scanning worms: CodeRed, Slammer, Doomjuice, and Witty. For email 

worms, it was trained by sobig, Netsky, Storm, MyDoom, and Conficker. 



 

 224 

SSH 

Secure SHell (SSH) is a communication protocol that allows a user to have full control 

over a host’s resources remotely. Thus, hosts with SSH-enabled are unfortunately 

targeted by intrusions. Sperotto, et al. [210] have studied and analysed the flow traffic 

during SSH. They extract the flow data that is suspected to be malicious traffic. The 

authors then develop a model which presents the flow characteristics when SSH 

intrusion takes place. Although their model can detect these attacks, however, the 

possibility of this model to be in practice is still unknown. Based on their work, 

Hellemons (2012) develop an algorithm to test the practical applicability of the SSH 

intrusion model. The algorithm uses the processed flow data to construct attack 

metadata in the form of properties. Hellemons answered the question: “Can SSH 

intrusion attacks be detected and analysed in practice by using only flow data?” 

affirmatively. This method reduces the need for deep packet inspection system, 

allowing for more scalable NIDS solution. 
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Appendix D 

Main Bro Log Files 

D.1 Connection.log 

Bro generates this log during run time. It consists of the complete connection log of 

incoming and outgoing traffic. Table D.1 shows the fields of the connection.log file. 

Table D.1 

 

Fields Description of Connection.log file 
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D.2 Signatures.log 

This is log is generated when content matching occurs. Bro raises an event with the 

alert named. This log also contains the payload content which triggers this event. Table 

D.2 shows each field with its description for this log. 

Table D.2 

 

Fields Description of Signatures.log file 

 

The following log text is a sample of Signatuers.log generated from PH when CTU-

52 dataset is used. It shows three infected IRC-bot were detected: 147.32.84.165, 

147.32.84.191, and 147.32.84.192  

#separator \x09 

#set_separator , 

#empty_field (empty) 

#unset_field - 

#path signatures 

#open 2015-08-01-08-13-34 

#fields ts uid src_addr src_port dst_addr dst_port

 note sig_id event_msg sub_msg sig_count host_count 

#types time string addr port addr port enum string string string

 count count 

1313675274.978894 CoX6Zn4wnPAUOfTuOk 147.32.84.165 1027 74.125.232.201 80

 Signatures::Sensitive_Signature ircattack_client 147.32.84.165: 

signature match GET /service/check2?appid=%7B430FD4D0-B729-4F61-AA34-
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91526481799D%7D&appversion=1.3.21.65&applang=&machine=0&version=1.3.21.65&osversion=5

.1... - - 

1313675281.195719 CxIZuw1HkEATGTlkL6 147.32.84.191 1027 74.125.232.200 80

 Signatures::Sensitive_Signature ircattack_client 147.32.84.191: 

signature match GET /service/check2?appid=%7B430FD4D0-B729-4F61-AA34-

91526481799D%7D&appversion=1.3.21.65&applang=&machine=0&version=1.3.21.65&osversion=5

.1... - - 

1313675284.530430 CPfunv1ZCWV1ZnfWBj 147.32.84.192 1027 74.125.232.199 80

 Signatures::Sensitive_Signature ircattack_client 147.32.84.192: 

signature match GET /service/check2?appid=%7B430FD4D0-B729-4F61-AA34-

91526481799D%7D&appversion=1.3.21.65&applang=&machine=0&version=1.3.21.65&osversion=5

.1... - - 

#close 2015-08-01-08-13-48 

 

 
 

D.3 Notice.log 

Bro also generates this log at runtime. In this log, it contains activities that Bro 

recognizes as interesting or bad. Table D.3 shows the filed description of this log. 

Table D.3 

 

Fields Description of Notice.log file 
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Appendix E 

Resource Consumptions Results 

 

Figure E.1. CPU Usage over Time at 100 Mbps – P2P-bot 

 

Figure E.2. Memory Usage over Time at 100 Mbps – P2P-bot 
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Figure E.3. CPU Usage over Time at 200 Mbps- P2P-bot 

 

 

Figure E.4. Memory Usage over Time at 200 Mbps – P2P-bot 
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Figure E.5. CPU Usage over Time at 500 Mbps – P2P-bot 

 

 

Figure E.6. Memory Usage over Time at 500 Mbps – P2P-bot 
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Figure E.7. CPU Usage over Time at 1000 Mbps – P2P-bot 

 

Figure E.8. Memory Usage over Time at 1000 Mbps – P2P-bot 
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Appendix F 

Samples of Detection Code  

F.1 Bro SumStats Mechanism Code for Packet-based Spam Identifications  

 
@load base/frameworks/sumstats 

## Networks that are considered "local": 

 const private_address_space: set[subnet] = {  

                10.0.0.0/8, 

                192.168.0.0/16, 

                172.16.0.0/12, 

                147.32.84.0/8, 

                100.64.0.0/10, 

                127.0.0.0/8, 

                [fe80::]/10, 

                [::1]/128, 

 } &redef; 

const local_nets: set[subnet] &redef; 

global spam_detect = open_log_file("spamhosts") &redef; 

 

event connection_attempt(c: connection) 

{ 

      # Make an observation! 

 # This observation is about the host attempting the connection. 

 if(c$id$resp_p == 25/tcp) { 

  SumStats::observe("SMTP conn",  

                   SumStats::Key($host=c$id$orig_h),  

   SumStats::Observation($num=1)); 

 } 

 if(c$id$orig_p == 25/tcp) { 

  SumStats::observe("SMTP conn",  

                   SumStats::Key($host=c$id$resp_h),  

   SumStats::Observation($num=1)); 

 } 

} 

 

event connection_established(c: connection) 

{ 

# Make an observation! 

# Each established connection counts as one so the observation is always 1. 

 if(c$id$resp_p == 25/tcp) {  

  SumStats::observe("SMTP conn",  

                   SumStats::Key($host=c$id$orig_h),  

   SumStats::Observation($num=1)); 

 } 

 if(c$id$orig_p == 25/tcp) {  

  SumStats::observe("SMTP conn",  

                   SumStats::Key($host=c$id$resp_h),  

   SumStats::Observation($num=1)); 

 } 

} 

 

event bro_done() 

{ 

} 

 

event bro_init() 

{ 

 Log::disable_stream(Conn::LOG); 

 # The reducer attaches to the "SMTP conn" observation stream 

 # and uses the summing calculation on the observations. 

 local r1 = SumStats::Reducer($stream="SMTP conn",  

   $apply=set(SumStats::SUM)); 

 # Create the final sumstat. 

 # $threshold_val.  The actual threshold itself is provided with 

 # $threshold. 
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 # Another callback is provided for when a key crosses the 

 # threshold. 

 SumStats::create([$name = " Detecting spam activities", 

                   $epoch = 10sec, 

                   $reducers = set(r1), 

                   # Provide a threshold. 

                   $threshold = 10.0, 

                   # Provide a callback to calculate a value from 

                   # the result 

                   # to check against the threshold field. 

                   $threshold_val(key: SumStats::Key, result: 

SumStats::Result) = 

                    { 

                    return result["SMTP conn"]$sum; 

                    }, 

                   # Provide a callback for when a key crosses 

                   # the threshold. 

     $threshold_crossed(key: SumStats::Key, result: 

SumStats::Result) = 

                   { 

   if (key$host in private_address_space) { 

                    print fmt("%s attempted %.0f or more connections",  

       key$host, result["SMTP conn"]$sum); 

                    print spam_detect, fmt( 

       "%s attempted %.0f or more connections",  

       key$host, result["SMTP conn"]$sum); 

   } 

 }]); 

} 

 
 

 

 
 

 

F.2 Bro PH Code for IRC-bot Detection  
 

@load base/frameworks/notice 

@load base/frameworks/signatures/main 

@load base/protocols/irc 

@load policy/misc/stats 

@load-sigs ./ircattack.sig  

@load base/frameworks/packet-filter 

 

redef capture_filters = { ["filter_table"] = "" }; 

global print_logs = open_log_file ("print_log") &redef ; 

global filter : string = ""; 

 

#To read a file into a Bro table, two record types have to be defined: 

# This record contains the types and names of the columns that should constitute the 

table keys.   

#Our key record only contains the host IP 

type Idx: record { 

        ip: addr; 

}; 

 

#This record contains the types and names of the columns that should constitute the 

table values. 

type Val: record { 

        comment: string; 

}; 

# Create an empty table that should contain the suspicious data 

global suspicious: table[addr] of Val = table(); 

 

event update_filter () 

{ 

local ns = net_stats(); 

local filter_counter : count = 0; 

local pre_filter : string = "host 100.101.102.103"; 

 

# 2) convert suspicious table into filter format string 
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for ( ip in suspicious ) 

{ 

pre_filter += fmt (" or host %s " , ip ) ; 

++ filter_counter; 

} 

print "pre_filter is"; 

print pre_filter; 

 

# 3) packet filter framework read the filters 

if ( pre_filter != filter ) 

{ 

print " Filter has beed altered"; 

print " Perform Recompiling Filter"; 

captured_filter [filter_table] = pre_filter ; 

} 

else 

{ 

print " Filter has not beed altered"; 

} 

filter = copy ( pre_filter ) ; 

print print_logs , " number of susp hosts marked ; hosts in filter"; 

print print_logs , fmt (" %s; %s", |suspicious| , filter_counter); 

# to update the capture_filter from suspicious, but not to update the suspicious 

itself (since Reread is there) 

schedule 10 sec { update_filter () };  

flush_all () ; 

} 

 

event bro_init() &priority = 5 

 { 

#1) transfer + update flow suspicious ips into suspicious table 

Input::add_table([$source="/home/hashem-bro/b-irc/flowirc/suspicious_file.log", 

 $name="suspicious", $idx=Idx, $val=Val, $destination=suspicious, 

$mode=Input::REREAD]); 

        Input::remove("suspicious"); 

               schedule 5 sec { update_filter () }; 

set_buf(detailed_log, F); 

 set_buf(bot_log, F); 

 } 

 

global checkflag = 0; 

global ircbotdetect = open_log_file("ircbot_packet_hosts") &redef; 

global p_at_in : count = 0; 

global p_es_in : count = 0; 

 

module IrcBot; 

export { 

 global detailed_log = open_log_file("irc.detailed") &redef; 

 global bot_log = open_log_file("irc-bots") &redef; 

 global summary_interval = 1 min &redef; 

 global detailed_logging = T &redef; 

 global content_dir = "irc-bots" &redef; 

 global bot_nicks = 

  /^\[([^\]]+\|)+[0-9]{2,}]/  # [DEU|XP|L|00] 

  | /^\[[^ ]+\]([^ ]+\|)+([0-9a-zA-Z-]+)/ # [0]CHN|3436036 

[DEU][1]3G-QE 

  | /^DCOM[0-9]+$/   # DCOM7845 

  | /^\{[A-Z]+\}-[0-9]+/   # {XP}-5021040 

  | /^\[[0-9]+-[A-Z0-9]+\][a-z]+/  # [0058-X2]wpbnlgwf 

  | /^\[[a-zA-Z0-9]\]-[a-zA-Z0-9]+$/ # [SD]-743056826 

  | /^[a-z]+[A-Z]+-[0-9]{5,}$/ 

  | /^[A-Z]{3}-[0-9]{4}/   # ITD-1119 

  ; 

 global bot_cmds = 

  /(^| *)[.?#!][^ 

]{0,5}(scan|ndcass|download|cvar\.|execute|update|dcom|asc|scanall) / 

  | /(^| +\]\[ +)\* (ipscan|wormride)/ 

  | /(^| *)asn1/ 

  ; 

 global skip_msgs = 

  /.*AUTH .*/ 

  | /.*\*\*\* Your host is .*/ 



 

 235 

  | /.*\*\*\* If you are having problems connecting .*/ 

  ; 

 redef enum Notice::Type += { 

  IrcBotServerFound, 

  IrcBotClientFound, 

 }; 

 type channel: record { 

name: string; 

passwords: set[string]; 

topic: string &default=""; 

topic_history: vector of string; 

 }; 

 type bot_client: record { 

host: addr; 

p: port; 

nick: string &default=""; 

user: string &default=""; 

realname: string &default=""; 

channels: table[string] of channel; 

servers: set[addr] &optional; 

first_seen: time; 

last_seen: time; 

 }; 

 type bot_server: record { 

host: addr; 

p: set[port]; 

clients: table[addr] of bot_client; 

global_users: string &default=""; 

passwords: set[string]; 

channels: table[string] of channel; 

first_seen: time; 

last_seen: time; 

 }; 

 type bot_conn: record { 

client: bot_client; 

server: bot_server; 

conn: connection; 

fd: file; 

ircx: bool &default=F; 

 }; 

# We keep three sets of clients/servers: 

#  (1) tables containing all IRC clients/servers 

#  (2) sets containing potential bot hosts 

#  (3) sets containing confirmend bot hosts 

# 

# Hosts are confirmed when a connection is established between 

# potential bot hosts. 

# 

# FIXME: (1) should really be moved into the general IRC script. 

 global expire_server: 

  function(t: table[addr] of bot_server, idx: addr): interval; 

 global expire_client: 

  function(t: table[addr] of bot_client, idx: addr): interval; 

 global servers: table[addr] of bot_server &write_expire=24 hrs 

  &expire_func=expire_server &persistent; 

 global clients: table[addr] of bot_client &write_expire=24 hrs 

  &expire_func=expire_client &persistent; 

 global potential_bot_clients: set[addr] &persistent; 

 global potential_bot_servers: set[addr] &persistent; 

 global confirmed_bot_clients: set[addr] &persistent; 

 global confirmed_bot_servers: set[addr] &persistent; 

# All IRC connections. 

 global conns: table[conn_id] of bot_conn &persistent; 

# Connections between confirmed hosts. 

 global bot_conns: set[conn_id] &persistent; 

# Helper functions for readable output. 

 global strset_to_str: function(s: set[string]) : string; 

 global portset_to_str: function(s: set[port]) : string; 

 global addrset_to_str: function(s: set[addr]) : string; 

} 

function strset_to_str(s: set[string]) : string 

{ 
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 if ( |s| == 0 ) 

  return "<none>"; 

 local r = ""; 

 for ( i in s ) 

 { 

  if ( r != "" ) 

   r = cat(r, ","); 

  r = cat(r, fmt("\"%s\"", i)); 

 } 

 return r; 

} 

function portset_to_str(s: set[port]) : string 

{ 

 if ( |s| == 0 ) 

  return "<none>"; 

 local r = ""; 

 for ( i in s ) 

 { 

  if ( r != "" ) 

   r = cat(r, ","); 

  r = cat(r, fmt("%d", i)); 

 } 

 return r; 

} 

function addrset_to_str(s: set[addr]) : string 

{ 

 if ( |s| == 0 ) 

  return "<none>"; 

 local r = ""; 

 for ( i in s ) 

 { 

  if ( r != "" ) 

   r = cat(r, ","); 

  r = cat(r, fmt("%s", i)); 

 } 

 return r; 

} 

function fmt_time(t: time) : string 

{ 

 return strftime("%y-%m-%d-%H-%M-%S", t); 

} 

event print_bot_state() 

{ 

 local bot_summary_log = open_log_file("irc-bots.summary"); 

 disable_print_hook(bot_summary_log); 

 print bot_summary_log, "---------------------------"; 

 print bot_summary_log, strftime("%y-%m-%d-%H-%M-%S", network_time()); 

 print bot_summary_log, "---------------------------"; 

 print bot_summary_log; 

 print bot_summary_log, "Known servers"; 

 for ( h in confirmed_bot_servers ) 

 { 

  local s = servers[h]; 

  print bot_summary_log, 

        fmt("    %s %s - clients: %d ports %s password(s) %s last-seen 

%s first-seen %s global-users %s", 

           "L", 

          s$host, |s$clients|, portset_to_str(s$p), 

          strset_to_str(s$passwords), 

          fmt_time(s$last_seen), fmt_time(s$first_seen), 

          s$global_users); 

  for ( name in s$channels ) 

  { 

   local ch = s$channels[name]; 

   print bot_summary_log, 

         fmt("        channel %s: topic \"%s\", password(s) %s", 

           ch$name, ch$topic, 

           strset_to_str(ch$passwords)); 

  } 

 } 

 print bot_summary_log, "\nKnown clients"; 

 for ( h in confirmed_bot_clients ) 
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 { 

  local c = clients[h]; 

  print bot_summary_log, 

        fmt("    %s %s - server(s) %s user %s nick %s realname %s last-

seen %s first-seen %s", 

           "L", h, 

          addrset_to_str(c$servers), 

          c$user, c$nick, c$realname, 

          fmt_time(c$last_seen), fmt_time(c$first_seen)); 

 } 

 close(bot_summary_log); 

 

 if ( summary_interval != 0 secs ) 

  schedule summary_interval { print_bot_state() }; 

} 

function do_log_force(c: connection, msg: string) 

{ 

 local id = c$id; 

 print bot_log, fmt("%.6f %s:%d > %s:%d %s %s", 

   network_time(), id$orig_h, id$orig_p, 

   id$resp_h, id$resp_p, c$addl, msg); 

} 

function do_log(c: connection, msg: string) 

{ 

 if ( c$id !in bot_conns ) 

  return; 

 

 do_log_force(c, msg); 

} 

function log_msg(c: connection, cmd: string, prefix: string, msg: string) 

{ 

 if ( skip_msgs in msg ) 

  return; 

 do_log(c, fmt("MSG command=%s prefix=%s msg=\"%s\"", cmd, prefix, msg)); 

} 

function update_timestamps(c: connection) : bot_conn 

{ 

 local conn = conns[c$id]; 

 conn$client$last_seen = network_time(); 

 conn$server$last_seen = network_time(); 

# To prevent the set of entries from premature expiration, 

# we need to make a write access (can't use read_expire as we 

# iterate over the entries on a regular basis). 

 clients[c$id$orig_h] = conn$client; 

 servers[c$id$resp_h] = conn$server; 

 return conn; 

} 

function add_server(c: connection) : bot_server 

{ 

 local s_h = c$id$resp_h; 

 if ( s_h in servers ) 

  return servers[s_h]; 

 local empty_table1: table[addr] of bot_client; 

 local empty_table2: table[string] of channel; 

 local empty_set: set[string]; 

 local empty_set2: set[port]; 

 local server = [$host=s_h, $p=empty_set2, $clients=empty_table1, 

       $channels=empty_table2, $passwords=empty_set, 

       $first_seen=network_time(), $last_seen=network_time()]; 

 servers[s_h] = server; 

 return server; 

} 

function add_client(c: connection) : bot_client 

{ 

 local c_h = c$id$orig_h; 

 if ( c_h in clients ) 

  return clients[c_h]; 

 local empty_table: table[string] of channel; 

 local empty_set: set[addr]; 

 local client = [$host=c_h, $p=c$id$resp_p, $servers=empty_set, 

       $channels=empty_table, $first_seen=network_time(), 

       $last_seen=network_time()]; 
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 clients[c_h] = client; 

 return client; 

} 

function check_bot_conn(c: connection) 

{ 

 if ( c$id in bot_conns ) 

  return; 

 local client = c$id$orig_h; 

 local server = c$id$resp_h; 

 if ( client !in potential_bot_clients || server !in potential_bot_servers ) 

  return; 

# New confirmed bot_conn. 

 add bot_conns[c$id]; 

 if ( server !in confirmed_bot_servers ) 

 { 

  NOTICE([$note=IrcBotServerFound, $src=server, $p=c$id$resp_p, $conn=c, 

    $msg=fmt("ircbot server found: %s:%d", server, 

$p=c$id$resp_p)]); 

  add confirmed_bot_servers[server]; 

 } 

 if ( client !in confirmed_bot_clients ) 

 { 

  NOTICE([$note=IrcBotClientFound, $src=client, $p=c$id$orig_p, $conn=c, 

    $msg=fmt("ircbot client found: %s:%d", client, 

$p=c$id$orig_p)]); 

  add confirmed_bot_clients[client]; 

 } 

} 

function get_conn(c: connection) : bot_conn 

{ 

 local conn: bot_conn; 

 if ( c$id in conns ) 

 { 

  check_bot_conn(c); 

  return update_timestamps(c); 

 } 

 local c_h = c$id$orig_h; 

 local s_h = c$id$resp_h; 

 local client : bot_client; 

 local server : bot_server; 

 if ( c_h in clients ) 

  client = clients[c_h]; 

 else 

  client = add_client(c); 

 if ( s_h in servers ) 

  server = servers[s_h]; 

 else 

  server = add_server(c); 

 server$clients[c_h] = client; 

 add server$p[c$id$resp_p]; 

 add client$servers[s_h]; 

 conn$server = server; 

 conn$client = client; 

 conn$conn = c; 

 conns[c$id] = conn; 

 update_timestamps(c); 

 return conn; 

} 

function expire_server(t: table[addr] of bot_server, idx: addr): interval 

{ 

 local server = t[idx]; 

 for ( c in server$clients ) 

 { 

  local client = server$clients[c]; 

  delete client$servers[idx]; 

 } 

 delete potential_bot_servers[idx]; 

 delete confirmed_bot_servers[idx]; 

 return 0secs; 

} 

function expire_client(t: table[addr] of bot_client, idx: addr): interval 

{ 
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 local client = t[idx]; 

 for ( s in client$servers ) 

  if ( s in servers ) 

   delete servers[s]$clients[idx]; 

 delete potential_bot_clients[idx]; 

 delete confirmed_bot_clients[idx]; 

 return 0secs; 

} 

function remove_connection(c: connection) 

{ 

 local conn = conns[c$id]; 

 delete conns[c$id]; 

 delete bot_conns[c$id]; 

} 

event connection_state_remove(c: connection) 

{ 

 if ( c$id !in conns ) 

  return; 

 remove_connection(c); 

} 

event irc_client(c: connection, is_orig: bool, prefix: string, data: string) 

{ 

 if ( detailed_logging ) 

  print detailed_log, fmt("%.6f %s > (%s) %s", network_time(), 

id_string(c$id), prefix, data); 

 local conn = get_conn(c); 

 if ( data == /^ *[iI][rR][cC][xX] *$/ ) 

  conn$ircx = T; 

} 

event irc_server(c: connection, is_orig: bool, prefix: string, data: string) 

{ 

 if ( detailed_logging ) 

  print detailed_log, fmt("%.6f %s < (%s) %s", network_time(), 

id_string(c$id), prefix, data); 

 local conn = get_conn(c); 

} 

event irc_user_message(c: connection, is_orig: bool, user: string, host: string, 

server: string, real_name: string) 

{ 

 local conn = get_conn(c); 

 conn$client$user = user; 

 conn$client$realname = real_name; 

 do_log(c, fmt("USER user=%s host=%s server=%s real_name=%s", user, host, 

server, real_name)); 

} 

function get_channel(conn: bot_conn, channel: string) : channel 

{ 

 if ( channel in conn$server$channels ) 

  return conn$server$channels[channel]; 

 else 

 { 

  local empty_set: set[string]; 

  local empty_vec: vector of string; 

  local ch = [$name=channel, $passwords=empty_set, 

$topic_history=empty_vec]; 

  conn$server$channels[ch$name] = ch; 

  return ch; 

 } 

} 

event irc_join_message(c: connection, is_orig: bool, info_list: irc_join_list) 

{ 

 local conn = get_conn(c); 

 for ( i in info_list ) 

 { 

  local ch = get_channel(conn, i$channel); 

  if ( i$password != "" ) 

   add ch$passwords[i$password]; 

  conn$client$channels[ch$name] = ch; 

  do_log(c, fmt("JOIN channel=%s password=%s", i$channel, i$password)); 

 } 

} 

global urls: set[string] &read_expire = 7 days &persistent; 
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event http_request(c: connection, method: string, original_URI: string, 

  unescaped_URI: string, version: string) 

{ 

 if ( original_URI in urls ) 

  do_log_force(c, fmt("Request for URL %s", original_URI)); 

} 

event irc_channel_topic(c: connection, is_orig: bool, channel: string, topic: string) 

{ 

 if ( bot_cmds in topic ) 

 { 

  do_log_force(c, fmt("Matching TOPIC %s", topic)); 

  add potential_bot_servers[c$id$resp_h]; 

 } 

 local conn = get_conn(c); 

 local ch = get_channel(conn, channel); 

 ch$topic_history[|ch$topic_history| + 1] = ch$topic; 

 ch$topic = topic; 

 if ( c$id in bot_conns ) 

 { 

  do_log(c, fmt("TOPIC channel=%s topic=\"%s\"", channel, topic)); 

  local s = split(topic, / /); 

  for ( i in s ) 

  { 

   local w = s[i]; 

   if ( w == /[a-zA-Z]+:\/\/.*/ ) 

   { 

    add urls[w]; 

    do_log(c, fmt("URL channel=%s url=\"%s\"", 

       channel, w)); 

   } 

  } 

 } 

} 

event irc_nick_message(c: connection, is_orig: bool, who: string, newnick: string) 

{ 

 if ( bot_nicks in newnick ) 

 { 

  do_log_force(c, fmt("Matching NICK %s", newnick)); 

  add potential_bot_clients[c$id$orig_h]; 

 } 

 local conn = get_conn(c); 

 conn$client$nick = newnick; 

 do_log(c, fmt("NICK who=%s nick=%s", who, newnick)); 

} 

event irc_password_message(c: connection, is_orig: bool, password: string) 

{ 

 local conn = get_conn(c); 

 add conn$server$passwords[password]; 

 do_log(c, fmt("PASS password=%s", password)); 

} 

event irc_privmsg_message(c: connection, is_orig: bool, source: string, target: 

string, 

  message: string) 

{ 

 log_msg(c, "privmsg", source, fmt("->%s %s", target, message)); 

} 

event irc_notice_message(c: connection, is_orig: bool, source: string,  

  target: string, message: string) 

{ 

 log_msg(c, "notice", source, fmt("->%s %s", target, message)); 

} 

event irc_global_users(c: connection, is_orig: bool, prefix: string, msg: string) 

{ 

 local conn = get_conn(c); 

# Better would be to parse the message to extract the counts. 

 conn$server$global_users = msg; 

 log_msg(c, "globalusers", prefix, msg); 

} 

 

event Input::end_of_data(name: string, source: string) { 

for(ip in suspicious) { 

  #print ip; 
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 } 

} 

 

event bro_done() 

{ 

} 

event bro_init() &priority = -5 

{ 

 if ( summary_interval != 0 secs ) 

  schedule summary_interval { print_bot_state() }; 

Log::disable_stream(Conn::LOG); 

Log::disable_stream(HTTP::LOG); 

Log::disable_stream(Files::LOG); 

} 

 

 

F.3 Sample of Snort Rules for Botnet Detection 

 

alert udp $HOME_NET 1024:65535 -> $EXTERNAL_NET 1024:65535 (msg:"E7[rb] BOTHUNTER 

Storm(Peacomm) Peer Coordination Event [SEARCH RESULT]"; content:"|E311|"; depth:5; 

rawbytes; pcre:"/[0-9]+\.mpg\;size\=[0-9]+/x"; rawbytes; classtype:bad-unknown; 

sid:9910013; rev:99;) 

 

alert udp $HOME_NET 1024:65535 -> $EXTERNAL_NET 1024:65535 (msg:"E7[rb] BOTHUNTER 

Storm Worm Peer Coordination Event [PUBLISH]"; content:"|E313|"; depth:5; rawbytes; 

pcre:"/[0-9]+\.mpg\;size\=[0-9]+/x"; rawbytes; classtype:bad-unknown; sid:9910011; 

rev:99;) 
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