
The copyright © of this thesis belongs to its rightful author and/or other copyright

owner. Copies can be accessed and downloaded for non-commercial or learning

purposes without any charge and permission. The thesis cannot be reproduced or

quoted as a whole without the permission from its rightful owner. No alteration or

changes in format is allowed without permission from its rightful owner.

CHID: CONDITIONAL HYBRID INTRUSION DETECTION

SYSTEM FOR REDUCING FALSE POSITIVES AND

RESOURCE CONSUMPTION ON MALICOUS DATASETS

HASHEM MOHAMMED ALAIDAROS

DOCTOR OF PHILOSOPHY

UNIVERSITI UTARA MALAYSIA

2017

 i

Permission to Use

In presenting this thesis in fulfilment of the requirements for a postgraduate degree

from Universiti Utara Malaysia, I agree that the Universiti Library may make it freely

available for inspection. I further agree that permission for the copying of this thesis

in any manner, in whole or in part, for scholarly purpose may be granted by my

supervisor(s) or, in their absence, by the Dean of Awang Had Salleh Graduate School

of Arts and Sciences. It is understood that any copying or publication or use of this

thesis or parts thereof for financial gain shall not be allowed without my written

permission. It is also understood that due recognition shall be given to me and to

Universiti Utara Malaysia for any scholarly use which may be made of any material

from my thesis.

Requests for permission to copy or to make other use of materials in this thesis, in

whole or in part, should be addressed to :

Dean of Awang Had Salleh Graduate School of Arts and Sciences

UUM College of Arts and Sciences

Universiti Utara Malaysia

06010 UUM Sintok

 ii

Abstrak

Memeriksa paket untuk mengesan pencerobohan berhadapan cabaran apabila

berlakunya jumlah trafik rangkaian yang tinggi. Proses pengesanan berdasarkan paket

bagi setiap muat beban pada wayar mengurangkan prestasi sistem pengesanan

pencerobohan rangkaian (NIDS). Isu ini memerlukan kepada satu pengenalan NIDS

berasaskan aliran untuk mengurangkan jumlah data yang akan diproses dengan

memeriksa agregat maklumat dari paket yang berkaitan. Walau bagaimanapun,

pengesanan berdasarkan aliran masih mengalami penjanaan amaran positif palsu

kerana input data yang tidak lengkap. Kajian ini mencadangkan Pengesanan

Pencerobohan Hibrid Bersyarat (CHID) dengan mencantumkan pengesanan

berasaskan aliran dengan pengesanan berasaskan paket. Tambahan lagi, ia juga

bertujuan untuk memperbaiki penggunaan sumber pendekatan pengesanan berasaskan

paket. CHID menggunakan algoritma penilaian ciri pembalut atribut yang

menandakan aliran hasad untuk analisis selanjutnya oleh pengesanan berasaskan

paket. Pendekatan Rangka Kerja Input telah digunakan untuk mencetus aliran paket

diantara pengesanan berasaskan paket dan berasaskan aliran. Eksperimen tapak

ujiterkawal telah dijalankan untuk menilai prestasi mekanisme pengesanan CHID

menggunakan set data yang diperolehi daripada pada kadar trafik yang berbeza. Hasil

penilaian didapati CHID memperoleh peningkatan prestasi yang ketara dari segi

penggunaan sumber dan kadar paket susut, berbanding pelaksanaan pengesanan

berasaskan paket lalai. Pada kelajuan 200 Mbps, CHID dalam senario IRC-bot, boleh

mengurangkan 50.6% dari penggunaan memori dan menyusut 18.1% penggunaan

CPU tanpa paket susut. Pendekatan CHID boleh mengurangkan kadar positif palsu

berdasarkan pengesanan berasaskan aliran dan mengurangkan penggunaan sumber

pengesanan berasaskan paket disamping memelihara ketepatan pengesanan.

Pendekatan CHID boleh dianggap sebagai sistem generik untuk diaplikasikan untuk

sistem pemantauan pengesanan pencerobohan.

Kata Kunci: Pengesanan berasaskan aliran, Pengesanan berasaskan paket, Bro-NIDS,

Rangka kerja input.

 iii

Abstract

Inspecting packets to detect intrusions faces challenges when coping with a high

volume of network traffic. Packet-based detection processes every payload on the

wire, which degrades the performance of network intrusion detection system (NIDS).

This issue requires an introduction of a flow-based NIDS that reduces the amount of

data to be processed by examining aggregated information of related packets.

However, flow-based detection still suffers from the generation of the false positive

alerts due to incomplete data input. This study proposed a Conditional Hybrid

Intrusion Detection (CHID) by combining the flow-based with packet-based detection.

In addition, it is also aimed to improve the resource consumption of the packet-based

detection approach. CHID applied attribute wrapper features evaluation algorithms

that marked malicious flows for further analysis by the packet-based detection. Input

Framework approach was employed for triggering packet flows between the packet-

based and flow-based detections. A controlled testbed experiment was conducted to

evaluate the performance of detection mechanism’s CHID using datasets obtained

from on different traffic rates. The result of the evaluation showed that CHID gains a

significant performance improvement in terms of resource consumption and packet

drop rate, compared to the default packet-based detection implementation. At a 200

Mbps, CHID in IRC-bot scenario, can reduce 50.6% of memory usage and decreases

18.1% of the CPU utilization without packets drop. CHID approach can mitigate the

false positive rate of flow-based detection and reduce the resource consumption of

packet-based detection while preserving detection accuracy. CHID approach can be

considered as generic system to be applied for monitoring of intrusion detection

systems.

Keywords: Flow-based detection, Packet-based detection, Input Framework

approach.

 iv

Acknowledgement

First of all, I would like to express my sincere and deep gratitude to my supervisor Dr.

Massudi Mahmuddin who provided considerable and invaluable insights and

comments to help me on this journey. Without his patient support, enlightened

guidance, it is impossible for me to complete and enhance the quality of my work.

I would like to thank the InterNetWork Lab team for their co-operation, kindness, and

sharing useful discussions for my research.

Thank you goes to Dr. Shakeel Habeeb, the dean of Prince Sultan College (PSCJ), Al-

Faisal University, for providing me the testbed resources for my research.

Special thanks go to Johanna Amann and Robin Sommer, the developers of the Bro-

IDS. Their supports with the many problems encountered during experiments were of

great help.

Finally, my heartiest gratitude goes to my beloved family, in particular, my parents

my wife without their love, support and encouragement, it would not be possible for

me end this journey.

 v

Table of Contents

Permission to Use .. i

Abstrak ... ii

Abstract .. iii

Acknowledgement... iv

Table of Contents ... v

List of Tables.. x

List of Figures .. xii

List of Appendices .. xiv

List of Abbreviations.. xv

List of Publications .. xvii

CHAPTER ONE INTRODUCTION ... 1

1.1 Background .. 1

1.2 Intrusion Detection System .. 2

1.3 Motivation .. 3

1.4 Problem Statement ... 5

1.5 Research Questions .. 8

1.6 Research Objectives ... 8

1.7 Research Contribution .. 9

1.8 Scope of the Study ... 9

1.9 Research Steps ... 10

1.10 Organization of the Thesis ... 12

CHAPTER TWO LITERATURE REVIEW .. 13

2.1 Growth of Traffic and Threats ... 13

2.1.1 Internet Attacks .. 15

2.1.2 Growth of Threats .. 16

2.2 Intrusion Detection Systems .. 17

2.2.1 Security Tools and Techniques .. 17

2.2.2 IDS Structure ... 19

2.2.3 Software-based IDS ... 20

 vi

2.2.4 IDS Types .. 22

2.2.4.1 Location-based IDS ... 23

2.2.4.2 Detection-based IDS .. 25

2.2.4.3 Data-processed-based NIDS .. 26

2.2.5 NIDS Requirements ... 28

2.2.6 NIDS Challenges ... 30

2.3 Packet-based NIDS .. 31

2.3.1 Scalability .. 32

2.3.2 Detection Accuracy .. 35

2.3.3 Botnet Detections Related Works .. 37

2.4 Flow-based NIDS ... 42

2.4.1 Flow-based Detection Overview .. 42

2.4.2 Structure ... 44

2.4.2.1 Exporter ... 45

2.4.2.2 Collector .. 46

2.4.2.3 Analyser ... 47

2.4.3 Scalability .. 47

2.4.4 Detection Accuracy .. 48

2.4.5 Botnet Detection Related Works.. 50

2.5 Packet-based and Flow-based Detection Comparison ... 54

2.5.1 Comparison .. 54

2.5.2 Trade-offs ... 54

2.6 False Positive Reduction .. 56

2.6.1 Scope of Attacks .. 56

2.6.2 Network Awareness ... 57

2.6.3 Traffic Cleanness ... 58

2.6.4 Alert Correlation .. 59

2.6.5 Hybrid Signature-based and Anomaly-based .. 62

2.6.6 Hybrid Flow-based and Packet-based .. 66

2.7 Chapter Summary... 68

CHAPTER THREE METHODOLOGY ... 70

 vii

3.1 Proposed Mechanism Design ... 70

3.2 Component Identification... 76

3.2.1 Traffic Capture ... 76

3.2.2 Flow Aggregation .. 77

3.2.3 Packet-based Detection .. 78

3.2.4 Flow-based Detection .. 80

3.3 Implementation .. 81

3.4 Evaluation .. 83

3.4.1 Experimental Environment .. 83

3.4.2 Experiment Setup ... 85

3.4.3 Measurement Procedures ... 89

3.4.4 Dataset .. 92

3.4.4.1 Malicious Datasets ... 93

3.4.4.2 Background Traces .. 96

3.4.5 Evaluation Metrics ... 97

3.5 Chapter Summary... 99

CHAPTER FOUR TWO STAGES FLOW-BASED DETECTION 100

4.1 Introduction .. 100

4.2 Design .. 104

4.3 Attack Selection ... 104

4.3.1 IRC-bot Behaviour ... 105

4.3.2 P2P-bot Behaviour ... 107

4.4 Detection Scripts Derivation .. 108

4.4.1 Packet and Flow Analysis .. 109

4.4.1.1 Flows Labelling ... 112

4.4.1.2 Attribute Classifications .. 112

4.4.2 Detection Policy Scripts ... 115

4.5 Detection Implementations .. 116

4.5.1 Flow-based Detection .. 116

4.5.1.1 Threshold-based Mechanism ... 119

4.5.1.2 Proof of Concept .. 121

 viii

4.5.2 Packet-based Detection .. 123

4.6 Evaluation Environment... 126

4.7 Chapter Summary... 127

CHAPTER FIVE CONDITIONAL HYBRID INTRUSION DETECTION 128

5.1 Introduction .. 128

5.2 Proposed Mechanism ... 131

5.2.1 Design and Theory ... 131

5.2.2 Combination Approach Scenario ... 133

5.3 Implementation .. 135

5.3.1 Traffic Recording Strategy... 135

5.3.2 Subsequent-Packet Strategy ... 138

5.3.3 PH and FL Communicating Process Implementation 140

5.3.3.1 BPF-only Method .. 141

5.3.3.2 Input Framework (IF) Method ... 142

5.3.4 IF Method Integration .. 143

5.3.4.1 Reading Files ... 144

5.3.4.2 Updating Table .. 146

5.3.4.3 BPF Filtering ... 147

5.3.4.4 Proof of Concept .. 148

5.3.5 Partial Payload Inspection Approach ... 150

5.3.6 Switching Approach based on Traffic Rate ... 151

5.4 Evaluation .. 155

5.4.1 Attack Scenarios .. 155

5.4.2 Experimental Environments ... 156

5.4.3 Measurement Procedures ... 158

5.4.4 Traffic Data for CHID Mechanism .. 159

5.5 Chapter Summary... 160

CHAPTER SIX RESULT AND DISCUSSION .. 161

6.1 Flow-based Detection Scripts .. 161

6.1.1 Dataset Correctness .. 161

6.1.2 Most Significant Attributes .. 162

 ix

6.1.3 Detection Accuracy .. 164

6.1.4 False Positive Test ... 165

6.1.5 Resource Consumption .. 166

6.2 CHID Mechanism .. 171

6.2.1 Detection Accuracy .. 171

6.2.2 Resource Consumption .. 173

6.2.3 Filtered Hosts and IF Method .. 177

6.2.4 Packet Drop Rate ... 179

6.2.5 Partial Payload in PH ... 181

6.3 Chapter Summary... 183

CHAPTER SEVEN CONCLUSION .. 186

7.1 Summary of Research .. 186

7.2 Objectives Achievements ... 187

7.2.1 First Objective .. 187

7.2.2 Second Objective ... 188

7.2.3 Third Objective .. 189

7.3 Main Contribution .. 191

7.4 Limitations and Future Works ... 193

a. Multi-thread Approach .. 193

b. PF_RING Packet Capturing .. 193

c. Diverse Attacks Scenario... 194

d. Tuning Flow Keys and Timeouts .. 194

7.5 Chapter Summary... 195

REFERENCES ... 196

 x

List of Tables

Table 2.1 Growing of Threats [29] ... 16

Table 2.2 Differences between IDS, Firewall, and IPS .. 18

Table 2.3 Examples of Botnets Attack [25] .. 39

Table 2.4 Botnet Detection Methods with Packet-based Approach 41

Table 2.5 Attacks Detectable by Flow-based NIDS only ... 50

Table 2.6 Botnet Detection Methods with Flow-based Approach 53

Table 2.7 Comparison between Packet-based and Flow-based NIDS 55

Table 2.8 Related Works for False Positive Reduction .. 62

Table 2.9 Related Works of Hybrid Detection Methods for False Positive Reduction

 .. 65

Table 3.1 Bro Advantages among Other NIDSs [10] ... 79

Table 3.2 System and Hardware Description Used in Testbed 86

Table 3.3 Software Applications Description Used in Testbed 86

Table 3.4 Loge Files Disabled .. 89

Table 3.5 Datasets and Statistics .. 94

Table 3.6 Notion Matrix [163] .. 97

Table 4.1 Fields Description of Wired.log file ... 111

Table 4.2 Features of Flow and Packet Generated from Logs 111

Table 4.3 Attributes Used for Classification .. 114

Table 4.4 Attribute Selection Setting and Classification Selection 115

Table 5.1 Two Combination Approaches .. 133

Table 5.2 Datasets for Detection Accuracy Measurements 160

Table 6.1 Best Three Important Attributes ... 163

Table 6.2 False Positive Rate (FPR) ... 164

Table 6.3 Precision Results ... 164

Table 6.4 Detection Results with P2P-bot Scenario ... 172

Table 6.5 Detection Results with IRC-bot Scenario ... 173

Table 6.6 Packet Drop Rate in P2P-bot Scenario ... 179

Table 6.7 Packet Drop Rate in IRC-bot Scenario ... 179

 xi

Table 6.8 Comparison between Full-Payload and Partial-Payload Inspection in PH

for P2P-bot Scenario .. 182

Table 6.9 Comparison between Full-Payload and Partial-Payload Inspection in PH

for IRC-bot Scenario .. 182

Table D.1 Fields Description of Connection.log file .. 225

Table D.2 Fields Description of Signatures.log file .. 226

Table D.3 Fields Description of Notice.log file .. 227

 xii

List of Figures

Figure 1.1: Challenges and Consequences for NIDS ... 4

Figure 2.1: Expansion of the Internet Users over Years [1] 14

Figure 2.2: IDS Main Components .. 19

Figure 2.3: Types of IDS (dash line indicates the research scope) 23

Figure 2.4: NIDS Location ... 24

Figure 2.5: Packet-based NIDS .. 32

Figure 2.6: Centralized Botnet Attack Methods .. 38

Figure 2.7: Decentralized Botnet Attack Methods ... 39

Figure 2.9: Flow-based Components [19] .. 45

Figure 3.1: Research Methodology .. 71

Figure 3.3: Conceptual Model of the CHID Approach .. 73

Figure 3.4: Proposed Flow Chart ... 74

Figure 3.5: Component Requirements for Proposed Mechanism 81

Figure 3.6: Experimental Testbed .. 86

Figure 3.7: Experimental Commands .. 92

Figure 4.1: Illustration of (a) Packet-based Detection System and (b) Flow-based

Detection System ... 105

Figure 4.2: Workflow for Deriving Flow-based Detection Policy Scripts 109

Figure 4.3: Two Stages Flow-based Detection Mechanism..................................... 117

Figure 4.4: Live Experiment for Proof-of-Concept ... 122

Figure 4.5: Sample of SumStats Scripts ... 126

Figure 5.1: Flow-based and Packet-based detection with a) Scalability Level and b)

Alert Verification Level (x-axis indicates the detection type) 132

Figure 5.2: Two Hosts with P2P Communications .. 133

Figure 5.3: Proposed Flow Chart with Traffic Recording Strategy 136

Figure 5.4: Proposed Flow Chart with CHID Mechanism 140

Figure 5.5: IF Method Integration into PH .. 144

Figure 5.6: Combination of IF and BPF Filter Approaches 147

Figure 5.7: Switching between CHID and PO Approaches based on Traffic Rate . 151

 xiii

Figure 6.1: Memory Usage with Different Traffic Rates – P2P-bot (FL: flow-based

detection; PO: default packet-based only) ... 166

Figure 6.2: CPU Usage with Different Traffic Rates – P2P-bot (FL: flow-based

detection; PO: default packet-based only) ... 167

Figure 6.3: Memory Usage with Different Traffic Rates – IRC-bot (FL: flow-based

detection; PO: default packet-based only) ... 168

Figure 6.4: CPU Usage with Different Traffic Rates – IRC-bot (FL: flow-based

detection; PO: default packet-based only) ... 168

Figure 6.5: Memory Usage over Time at 200 Mbps` – P2P-bot (FL: flow-based

detection; PO: default packet-based only) ... 170

Figure 6.6: CPU Usage over Time at 200 Mbps – P2P-bot (FL: flow-based detection;

PO: the default packet-based only) .. 171

Figure 6.7: Memory Usage over Time at 200 Mbps – IRC-bot 174

Figure 6.8: CPU Usage over Time at 200 Mbps – IRC-bot 174

Figure 6.9: Memory Usage with Different Traffic Rates – P2P-bot 175

Figure 6.10: CPU Usage with Different Traffic Rates – P2P 176

Figure 6.11: Memory Usage with Different Traffic Rates –IRC-bot 177

Figure 6.12: CPU Usage with Different Traffic Rates – IRC-bot............................ 177

Figure 6.13: Drop packet Rate with Different Traffic Rates – P2P-bot and IRC-bot

 .. 180

Figure C.1: Classes of Host Behaviour for Worm Detection................................... 223

Figure E.1: CPU Usage over Time at 100 Mbps – P2P-bot..................................... 228

Figure E.2: Memory Usage over Time at 100 Mbps – P2P-bot............................... 228

Figure E.3: CPU Usage over Time at 200 Mbps- P2P-bot 229

Figure E.4: Memory Usage over Time at 200 Mbps – P2P-bot............................... 229

Figure E.5: CPU Usage over Time at 500 Mbps – P2P-bot..................................... 230

Figure E.6: Memory Usage over Time at 500 Mbps – P2P-bot............................... 230

Figure E.7: CPU Usage over Time at 1000 Mbps – P2P-bot................................... 231

Figure E.8: Memory Usage over Time at 1000 Mbps – P2P-bot............................. 231

 xiv

List of Appendices

Appendix A Attack Classification ... 210

Appendix B NIDS Requirements ... 215

Appendix C Attacks Detectable by Flow-based Approach...................................... 218

Appendix D Main Bro Log Files ... 225

Appendix E Resource Consumptions Results .. 228

Appendix F Samples of Detection Code .. 232

 xv

List of Abbreviations

API Application Programming Interface

BPF Berkeley Packet Filtering

Broccoli Bro Client Communications Library

C&C Command and Control

CHID Conditional Hybrid Intrusion Detection

CTU Czech Technical University

DARPA Defence Advanced Research Project Agency

DPI Deep Packet Inspection

DoS Denial of Service

FL FLow-based-detection

FPA Front Payload Aggregation

FPR False Positive Rate

HIDS Host-based Intrusion Detection System

ICMP Internet Control Message Protocol

IDS Intrusion Detection System

IETF Internet Engineering Task Force

IF Input Framework

IP Internet Protocol

IPFIX IP Flow Information Export

IPS Intrusion Prevention System

IRC Internet Relay Chat

ISOT Information Security and Object Technology

 xvi

ISP Internet Service Provider

KDD Knowledge Discovery in Dataset

LAN Local Area Networks

NAT Network Address Translation

NIDS Network Intrusion Detection System

OSI Open Systems Interconnection

RP Received Packets

P2P Peer to Peer

PCAP Packet Capturing

PH Packet-based in Hybrid

PO Packet-based Only

PSCJ Prince Sultan College Jeddah

PYL Payload

SQL Structured Query Language

SSH Secure Shell

TCP Transmission Control Protocol

TPR True Positive Rate

UDP User Datagram Protocol

VoIP Voice over Internet Protocol

WAN Wide Area Networks

 xvii

List of Publications

[1] H. Alaidaros and M. Mahmuddin, “Conditional hybrid approach for intrusion

detection,” Research Journal Information Technology, vol. 8, pp. 55-65, 2016.

[2] H. Alaidaros, and M. Mahmuddin, “Flow-based Approach on Bro Intrusion

Detection,” in Advancement on Information Technology International Conference,

2015

[2] H. Alaidaros, M. Mahmuddin, A. Al Mazari, “From Packet-based Towards

Hybrid Packet-based and Flow-based Monitoring for Efficient Intrusion

Detection: An Overview” in 1st Taibah University International Conference on

Computing and Information Technology (ICCIT12), 2012

[4] H. Alaidaros, M. Mahmuddin, A. Al Mazari, “An Overview of Flow-based and

Packet-based Intrusion Detection Performance in High Speed Network,” in

12th International Arab Conference on Information Technology (ACIT12), 2011.

 1

CHAPTER ONE

INTRODUCTION

1.1 Background

The number of Internet clients and services is growing more and more [1]. New

Internet applications give users benefits for either their businesses or future life. The

Internet is a powerful medium that has changed how people communicate and do

businesses with the partners. These universal applications let companies achieve

things that never been imagined before.

In addition to growing of the Internet users, networks become bigger and bigger.

Although the Internet gives users’ bright life and good businesses, it also has its

unknown dark face. Since many new Internet services, devices, and hosts are

developing, the number of vulnerabilities either in user smartphones, computers or

servers is also increasing [2]. The more computers connected to the Internet the more

possibility that the attacks take place. Many security gaps are exposed and misused by

attacks. Unfortunately, attacks are growing with the Internet almost in parallel, and

the race between them is continuing.

The number and the damage cost by those attacks are rising continuously. The security

threats can exploit all types of the network, including LAN-based clusters, intranet,

large-scale computational grids, and peer-to-peer service networks. These threats also

exploit all exposed protocols and operating systems (OS) threatening different kinds

of their applications such as database and web servers. Considering the damage cost

originated from the attacks, it is important to detect an attack as soon as possible. The

The contents of

the thesis is for

internal user

only

 196

REFERENCES

[1] Internet World Stats, "Internet Growth Statistics," 2016, [Online; accessed 8-

Dec-2015]. [Online]. Available:

http://www.internetworldstats.com/emarketing.htm

[2] J. Nazario and J. Kristoff, "Internet Infrastructure Security," IEEE Security &

Privacy, vol. 10, pp. 24-25, 2012.

[3] E. Amoroso, Intrusion Detection: An Introduction to Internet Surveillance,

Correlation, and Response: New Jersey, 1999.

[4] G. Khalil, "Open Source IDS High Performance Shootout," SANS Institute

InfoSec Reading Room, 2015.

[5] S. S. Silva, R. M. Silva, R. C. Pinto, and R. M. Salles, "Botnets: A survey,"

Computer Networks, vol. 57, pp. 378-403, 2013.

[6] H. Debar, M. Dacier, and A. Wespi, "Towards a Taxonomy of Intrusion

Detection Systems," Computer Networks, vol. 31, pp. 805-822, 1999.

[7] N. Weng, L. Vespa, and B. Soewito, "Deep Packet Pre-filtering and Finite

State Encoding for Adaptive Intrusion Detection System," Computer

Networks, vol. 55, pp. 1648-1661, 2011.

[8] R. Koch, "Towards Next-generation Intrusion Detection," in 2011 3rd

International Conference on Cyber Conflict, 2011, pp. 1-18.

[9] M. Golling, R. Hofstede, and R. Koch, "Towards Multi-layered Intrusion

Detection in High Speed Networks," in 6th International Conference On Cyber

Conflict (CyCon 2014), 2014, pp. 191-206.

[10] J. Svoboda, "Network Traffic Analysis with Deep Packet Inspection Method,"

Master thesis, Faculty of Informatics, Masaryk University, Brno, 2014.

[11] M. Nor, "Malware Detection Using IP Flow Level Attributes," Journal of

Theoretical and Applied Information Technology, vol. 57, 2013.

[12] H. Dreger, A. Feldmann, V. Paxson, and R. Sommer, "Operational

Experiences with High-volume Network Intrusion Detection," in 11th ACM

conference on Computer and Communications Security, 2004, pp. 2-11.

[13] A. Papadogiannakis, M. Polychronakis, and E. P. Markatos, "Improving the

Accuracy of Network Intrusion Detection Systems under Load using Selective

Packet Discarding," in Proceedings of the Third European Workshop on

System Security, 2010, pp. 15-21.

[14] I. Sourdis, D. N. Pnevmatikatos, and S. Vassiliadis, "Scalable Multigigabit

Pattern Matching for Packet Inspection," IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, vol. 16, pp. 156-166, 2008.

[15] H.-J. Liao, C.-H. R. Lin, Y.-C. Lin, and K.-Y. Tung, "Intrusion Detection

System: A Comprehensive Review," Journal of Network and Computer

Applications, vol. 36, pp. 16-24, 2013.

[16] R. Hofstede, V. Bartoš, A. Sperotto, and A. Pras, "Towards Real-time Intrusion

Detection for NetFlow and IPFIX," in Proceedings of the 9th International

Conference on Network and Service Management (CNSM 2013), 2013, pp.

227-234.

http://www.internetworldstats.com/emarketing.htm

 197

[17] Y. Abuadlla, G. Kvascev, S. Gajin, and Z. Jovanovic, "Flow-based Anomaly

Intrusion Detection System using Two Neural Network Stages," Comput. Sci.

Inf. Syst., vol. 11, pp. 601-622, 2014.

[18] J. Zhang, R. Perdisci, W. Lee, X. Luo, and U. Sarfraz, "Building a Scalable

System for Stealthy P2P-Botnet Detection," IEEE Transactions on

Information Forensics and Security, vol. 9, pp. 27-38, 2014.

[19] A. Sperotto, G. Schaffrath, R. Sadre, C. Morariu, A. Pras, and B. Stiller, "An

Overview of IP Flow-based Intrusion Detection," IEEE Communications

Surveys & Tutorials, vol. 12, pp. 343-356, 2010.

[20] T. Hyslip and J. Pittman, "A Survey of Botnet Detection Techniques by

Command and Control Infrastructure," Journal of Digital Forensics, Security

and Law, vol. 10, pp. 7-26, 2015.

[21] L. Sheng, L. Zhiming, H. Jin, D. Gaoming, and H. Wen, "A Distributed Botnet

Detecting Approach Based on Traffic Flow Analysis," in Second International

Conference on Instrumentation, Measurement, Computer, Communication

and Control (IMCCC), 2012, pp. 124-128.

[22] T. Limmer and F. Dressler, "Flow-based Front Payload Aggregation," in IEEE

LCN, 2009, pp. 1102-1109.

[23] F. Hensel, "Flow-based and Packet level-based Intrusion Detection as

Complementary Concepts," High Diploma Thesis, Department of Informatics,

University of Zurich, Zurich, Switzerland, 2008.

[24] S. Khattak, N. R. Ramay, K. R. Khan, A. A. Syed, and S. A. Khayam, "A

Taxonomy of Botnet Behavior, Detection, and Defense," IEEE

Communications Surveys & Tutorials, vol. 16, pp. 898-924, 2014.

[25] S. Soltani, S. A. H. Seno, M. Nezhadkamali, and R. Budiarto, "A Survey on

Real World Botnets and Detection Mechanisms," International Journal of

Information and Network Security, vol. 3, p. 116, 2014.

[26] Z. Zhu, G. Lu, Y. Chen, Z. J. Fu, P. Roberts, and K. Han, "Botnet Research

Survey," in 32nd Annual IEEE International Computer Software and

Applications Conference, 2008, pp. 967-972.

[27] S. Abt and H. Baier, "Towards Efficient and Privacy-Preserving Network-

Based Botnet Detection Using Netflow Data," in Internation Network

Conference, 2012, pp. 37-50.

[28] V. M. Igure and R. D. Williams, "Taxonomies of Attacks and Vulnerabilities

in Computer Systems," IEEE Communications Surveys & Tutorials, vol. 10,

pp. 6-19, 2008.

[29] Symantec Corp, "Internet Security Threat Report," 2016, [Online; accessed 4-

Feb-2016]. [Online]. Available: https://www.symantec.com/security-

center/threat-report

[30] S. X. Wu and W. Banzhaf, "The Use of Computational Intelligence in Intrusion

Detection Systems: A Review," Applied Soft Computing, vol. 10, pp. 1-35,

2010.

[31] Snort IDS, "Snort," 2012, [Online; accessed 8-May-2013]. [Online].

Available: www.snort.org

[32] J. GERBER,"Suricata: A Next Generation IDS/IPS Engine," 2010, [Online;

accessed 4-May-2014]. [Online]. Available: https://suricata-ids.org/

https://www.symantec.com/security-center/threat-report
https://www.symantec.com/security-center/threat-report
http://www.snort.org/
https://suricata-ids.org/

 198

[33] P. Mehra, "A Brief Study and Comparison of Snort and Bro Open Source

Network Intrusion Detection Systems," International Journal of Advanced

Research in Computer and Communication Engineering, vol. 1, pp. 383-386,

2012.

[34] J. Beale, A. R. Baker, and J. Esler, Snort: IDS and IPS toolkit: Syngress, 2007.

[35] Bro, "Bro IDS," 2012, [Online; accessed 5-June-2013]. [Online]. Available:

www.bro.org

[36] B. Morin and L. Mé, "Intrusion Detection and Virology: an Analysis of

Differences, Similarities and Complementariness," Journal in Computer

Virology, vol. 3, pp. 39-49, 2007.

[37] R. R. Singh, N. Gupta, and S. Kumar, "To Reduce the False Alarm in Intrusion

Detection System Using Self Organizing Map," International Journal of Soft

Computing and Engineering (IJSCE), vol. 1, pp. 27-32, 2011.

[38] K. Wang, & Stolfo, S. J. , "Anomalous payload-based Network Intrusion

Detection," Recent Advances in Intrusion Detection, p. 19, 2004.

[39] M. Mahoney and P. Chan, "Learning Non-stationary Models of Normal

Network Traffic for Detecting Novel Attacks," in 8th ACM SIGKDD

International Conference on Knowledge Discovery and Data mining, 2002,

pp. 376–385.

[40] M.-S. Kim, H.-J. Kong, S.-C. Hong, S.-H. Chung, and J. W. Hong, "A Flow-

based Method for Abnormal Network Traffic Detection," in Network

Operations and Management Symposium, 2004, pp. 599-612.

[41] S. M. Hussein, F. H. M. Ali, and Z. Kasiran, "Evaluation Effectiveness of

Hybrid IDS using Snort with Naïve Bayes to Detect Attacks," in Second

International Conference on Digital Information and Communication

Technology and it's Applications (DICTAP), 2012, pp. 256-260.

[42] Z. M. Fadlullah, T. Taleb, A. V. Vasilakos, M. Guizani, and N. Kato,

"DTRAB: Combating Against Attacks on Encrypted Protocols through

Traffic-feature Analysis," IEEE/ACM Transactions on Networking (TON),

vol. 18, pp. 1234-1247, 2010.

[43] K.-K. Tseng, J. Lo, Y. Liu, S.-H. Chang, M. Merabti, F. Ng, CK, et al., "A

Feasibility Study of Stateful Automaton Packet Inspection for Streaming

Application Detection Systems," Enterprise Information Systems, pp. 1-20,

2016.

[44] H. Dreger, A. Feldmann, V. Paxson, and R. Sommer, "Predicting the Resource

Consumption of Network Intrusion Detection Systems," in International

Workshop on Recent Advances in Intrusion Detection, 2008, pp. 135-154.

[45] F. Fusco and L. Deri, "High Speed Network Traffic Analysis with Commodity

Multi-core Systems," in Proceedings of the 10th ACM SIGCOMM Conference

on Internet measurement, 2010, pp. 218-224.

[46] J. Morgan, "Streaming Network Traffic Analysis Using Active Learning,"

Master thesis, Department of Computer Science, Dalhousie University,

Halifax, Nova Scotia, 2015.

[47] M. Pihelgas, "A Comparative Analysis of Open-Source Intrusion Detection

Systems," Master thesis, Departement of Computer Science, Tallinn

University of Technology, Tallinn, 2012.

http://www.bro.org/

 199

[48] J. Korenek and P. Kobiersky, "Intrusion Detection System Intended for

Multigigabit Networks," in 2007 IEEE Design and Diagnostics of Electronic

Circuits and Systems, 2007, pp. 1-4.

[49] L. Braun, A. Didebulidze, N. Kammenhuber, and G. Carle, "Comparing and

Improving Current Packet Capturing Solutions based on Commodity

Hardware," in Proceedings of the 10th ACM SIGCOMM Conference on

Internet Measurement, 2010, pp. 206-217.

[50] P. Lambruschini, M. Raggio, R. Bajpai, and A. Sharma, "Efficient

Implementation of Packet Pre-filtering for Scalable Analysis of IP Traffic on

High-speed Lines," in 20th International Conference on Software,

Telecommunications and Computer Networks (SoftCOM), 2012, pp. 1-5.

[51] D. Ficara, G. Antichi, A. Di Pietro, S. Giordano, G. Procissi, and F. Vitucci,

"Sampling Techniques to Accelerate Pattern Matching in Network Intrusion

Detection Systems," in IEEE International Conference on Communications

(ICC), 2010, pp. 1-5.

[52] G. Jacob, P. M. Comparetti, M. Neugschwandtner, C. Kruegel, and G. Vigna,

"A Static Packer-agnostic Filter to Detect Similar Malware Samples," in

International Conference on Detection of Intrusions and Malware, and

Vulnerability Assessment, 2012, pp. 102-122.

[53] Q. Zhao, J. Xu, and A. Kumar, "Detection of Super Sources and Destinations

in High-speed Networks: Algorithms, Analysis and Evaluation," IEEE Journal

on Selected Areas in Communications, vol. 24, pp. 1840-1852, 2006.

[54] F. Haddadi, J. Morgan, E. Gomes Filho, and A. N. Zincir-Heywood, "Botnet

Behaviour Analysis using IP Flows: with HTTP Filters using Classifiers," in

Advanced Information Networking and Applications Workshops (WAINA),

2014 28th International Conference on, 2014, pp. 7-12.

[55] C.-H. Lin and S.-C. Chang, "Efficient Pattern Matching Algorithm for

Memory Architecture," IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 19, pp. 33-41, 2011.

[56] N. Weaver, V. Paxson, and J. M. Gonzalez, "The Shunt: an FPGA-based

Accelerator for Network Intrusion Prevention," in Proceedings of the 2007

ACM/SIGDA 15th International Symposium on Field Programmable Gate

Arrays, 2007, pp. 199-206.

[57] G. Munz and G. Carle, "Real-time Analysis of Flow Data for Network Attack

Detection," in 2007 10th IFIP/IEEE International Symposium on Integrated

Network Management, 2007, pp. 100-108.

[58] A. Karim, R. B. Salleh, M. Shiraz, S. A. A. Shah, I. Awan, and N. B. Anuar,

"Botnet Detection Techniques: Review, Future Trends, and Issues," Journal of

Zhejiang University SCIENCE, vol. 15, pp. 943-983, 2014.

[59] P. Porras, H. Saidi, and V. Yegneswaran, "A Multi-perspective Analysis of the

Storm (Peacomm) Worm," Computer Science Laboratory, Tech. Rep., 2007

[60] G. Sinclair, C. Nunnery, and B. B. Kang, "The Waledac Protocol: The How

and Why," in 4th International Conference on Malicious and Unwanted

Software (MALWARE), 2009, pp. 69-77.

[61] D. Andriesse and H. Bos, "An Analysis of the Zeus Peer-to-Peer Protocol,"

2013. [Online]. Available: http://www.few.vu.nl/~dae400/papers/zeus-tech-

report-2013.pdf

http://www.few.vu.nl/~dae400/papers/zeus-tech-report-2013.pdf
http://www.few.vu.nl/~dae400/papers/zeus-tech-report-2013.pdf

 200

[62] W. Zilong, W. Jinsong, H. Wenyi, and X. Chengyi, "The Detection of IRC

Botnet based on Abnormal Behavior," in 2010 Second International

Conference on Multimedia and Information Technology, 2010.

[63] G. Gu, R. Perdisci, J. Zhang, and W. Lee, "BotMiner: Clustering Analysis of

Network Traffic for Protocol-and Structure-Independent Botnet Detection," in

USENIX Security Symposium, 2008, pp. 139-154.

[64] G. Gu, J. Zhang, and W. Lee, "BotSniffer: Detecting Botnet Command and

Control Channels in Network Traffic," 2008.

[65] J. Goebel and T. Holz, "Rishi: Identify Bot Contaminated Hosts by IRC

Nickname Evaluation," HotBots, vol. 7, pp. 8-8, 2007.

[66] T.-F. Yen and M. K. Reiter, "Traffic Aggregation for Malware Detection," in

International Conference on Detection of Intrusions and Malware, and

Vulnerability Assessment, 2008, pp. 207-227.

[67] G. Gu, P. A. Porras, V. Yegneswaran, M. W. Fong, and W. Lee, "Bothunter:

Detecting Malware Infection through IDS-Driven Dialog Correlation," in

Usenix Security, 2007, pp. 1-16.

[68] P. Wurzinger, L. Bilge, T. Holz, J. Goebel, C. Kruegel, and E. Kirda,

"Automatically Generating Models for Botnet Detection," in European

Symposium on Research in Computer Security, 2009, pp. 232-249.

[69] D. H. Kim, T. Lee, J. Kang, H. Jeong, and H. P. In, "Adaptive Pattern Mining

Model for Early Detection of Botnet Propagation Scale," Security and

Communication Networks, vol. 5, pp. 917-927, 2012.

[70] S. García, A. Zunino, and M. Campo, "Botnet Behavior Detection using

Network Synchronism," Privacy, Intrusion Detection and Response:

Technologies for Protecting Networks, pp. 122-144, 2011.

[71] G. Jian, K. Zheng, Y. Yang, and X. Niu, "An Evaluation Model of Botnet based

on Peer to Peer," in Fourth International Conference on Computational

Intelligence and Communication Networks (CICN), 2012, pp. 925-929.

[72] L. Dan, L. Yichao, H. Yue, and L. Zongwen, "A P2P-Botnet Detection Model

and Algorithms based on Network Streams Analysis," in International

Conference on Future Information Technology and Management Engineering

(FITME), 2010, pp. 55-58.

[73] R. Hofstede, P. Čeleda, B. Trammell, I. Drago, R. Sadre, A. Sperotto, et al.,

"Flow Monitoring Explained: From Packet Capture to Data Analysis with

NetFlow and IPFIX," IEEE Communications Surveys & Tutorials, vol. 16, pp.

2037-2064, 2014.

[74] B. Claise, "Specification of the IP Flow Information Export (IPFIX) Protocol

for the Exchange of IP Traffic Flow Information," RFC 5101, 2008. [Online].

Available: http://www.rfc-editor.org/rfc/rfc5101.txt

[75] C. Estan, K. Keys, D. Moore, and G. Varghese, "Building a Better NetFlow,"

ACM SIGCOMM Computer Communication Review, vol. 34, p. 245, 2004.

[76] U. Banerjee, A. Vashishtha, and M. Saxena, "Evaluation of the Capabilities of

WireShark as a Tool for Intrusion Detection," International Journal of

Computer Applications, vol. 6, 2010.

[77] L. MartinGarcia,"TcpDump and Libpcap," 2012, [Online; accessed 9-July-

2012]. [Online]. Available: http://www.tcpdump.org

http://www.rfc-editor.org/rfc/rfc5101.txt
http://www.tcpdump.org/

 201

[78] V. Kumaran, "Event Stream Database based Architecture to Detect Network

Intrusion," in Proceedings of the 7th ACM International Conference on

Distributed Event-based Systems, 2013, pp. 241-248.

[79] V. Carela-Español, P. Barlet-Ros, A. Cabellos-Aparicio, and J. Solé-Pareta,

"Analysis of the Impact of Sampling on NetFlow Traffic Classification,"

Computer Networks, vol. 55, pp. 1083-1099, 2011.

[80] N. Duffield, "Sampling for Passive Internet Measurement: A Review,"

Statistical Science, pp. 472-498, 2004.

[81] T. Zseby, T. Hirsch, and B. Claise, "Packet Sampling for Flow Accounting:

Challenges and Limitations," in International Conference on Passive and

Active Network Measurement, 2008, pp. 61-71.

[82] D. Brauckhoff, M. May, and B. Plattner, "Flow-level Anomaly Detection-

Blessing or Curse," in IEEE INFOCOM Conference, 2007.

[83] J. David and C. Thomas, "DDoS Attack Detection using Fast Entropy

Approach on Flow-based Network Traffic," Procedia Computer Science, vol.

50, pp. 30-36, 2015.

[84] S. Yu, W. Zhou, W. Jia, S. Guo, Y. Xiang, and F. Tang, "Discriminating DDoS

Attacks from Flash Crowds using Flow Correlation Coefficient," IEEE

Transactions on Parallel and Distributed Systems, vol. 23, pp. 1073-1080,

2012.

[85] S. A. Abdulla, S. Ramadass, A. Altaher, and A. A. Nassiri, "Setting a Worm

Attack Warning by Using Machine Learning to Classify Netflow Data,"

International Journal of Computer Applications, vol. 36, pp. 49-56, 2011.

[86] F. Dressler, W. Jaegers, and R. German, "Flow-based Worm Detection using

Correlated Honeypot Logs," in Communication in Distributed Systems

Conference, 2007, pp. 1-6.

[87] L. Hellemons, L. Hendriks, R. Hofstede, A. Sperotto, R. Sadre, and A. Pras,

"SSHCure: a Flow-based SSH Intrusion Detection System," in IFIP

International Conference on Autonomous Infrastructure, Management and

Security, 2012, pp. 86-97.

[88] M. Vizváry and J. Vykopal, "Flow-based Detection of RDP Brute-force

Attacks," in Proceedings of 7th International Conference on Security and

Protection of Information (SPI 2013), 2013.

[89] P. Amini, R. Azmi, and M. Araghizadeh, "Botnet Detection using NetFlow

and Clustering," Advances in Computer Science: an International Journal, vol.

3, pp. 139-149, 2014.

[90] D. Zhao, I. Traore, B. Sayed, W. Lu, S. Saad, A. Ghorbani, et al., "Botnet

Detection based on Traffic Behavior Analysis and Flow Intervals," Computers

& Security, vol. 39, pp. 2-16, 2013.

[91] J. François, S. Wang, and T. Engel, "BotTrack: Tracking Botnets using

NetFlow and PageRank," in International Conference on Research in

Networking, 2011, pp. 1-14.

[92] M. Stevanovic and J. M. Pedersen, "Machine Learning for Identifying Botnet

Network Traffic," Journal of Aalborg University, 2013.

[93] S. Ganapathy, K. Kulothungan, S. Muthurajkumar, M. Vijayalakshmi, P.

Yogesh, and A. Kannan, "Intelligent Feature Selection and Classification

 202

Techniques for Intrusion Detection in Networks: A Survey," EURASIP

Journal on Wireless Communications and Networking, vol. 2013, p. 271, 2013.

[94] M. Stevanovic and J. M. Pedersen, "An Efficient Flow-based Botnet Detection

using Supervised Machine Learning," in International Conference on

Computing, Networking and Communications (ICNC), 2014, pp. 797-801.

[95] N. Bhargava, G. Sharma, R. Bhargava, and M. Mathuria, "Decision Tree

Analysis on J48 Algorithm for Data Mining," Proceedings of International

Journal of Advanced Research in Computer Science and Software

Engineering, vol. 3, 2013.

[96] M. N. Anyanwu and S. G. Shiva, "Comparative Analysis of Serial Decision

Tree Classification Algorithms," International Journal of Computer Science

and Security, vol. 3, pp. 230-240, 2009.

[97] A. Liaw and M. Wiener, "Classification and Regression by Random Forest,"

R news, vol. 2, pp. 18-22, 2002.

[98] A. Nogueira, P. Salvador, and F. Blessa, "A Botnet Detection System based on

Neural Networks," in Fifth International Conference on Digital

Telecommunications (ICDT), 2010, pp. 57-62.

[99] S. Saad, I. Traore, A. Ghorbani, B. Sayed, D. Zhao, W. Lu, et al., "Detecting

P2P Botnets through Network Behavior Analysis and Machine Learning," in

Ninth Annual International Conference on Privacy, Security and Trust (PST),

2011, pp. 174-180.

[100] S. Ting, W. Ip, and A. H. Tsang, "Is Naive Bayes a Good Classifier for

Document Classification," International Journal of Software Engineering and

Its Applications, vol. 5, pp. 37-46, 2011.

[101] D. Miller,"Softflowd: A Software Netflow Probe," 2012, [Online; accessed 7-

June-2013]. [Online]. Available: http://www.mindrot.org/projects/softflowd/

[102] F. Tegeler, X. Fu, G. Vigna, and C. Kruegel, "Botfinder: Finding Bots in

Network Traffic without Deep Packet Inspection," in Proceedings of the 8th

International Conference on Emerging Networking Experiments and

Technologies, 2012, pp. 349-360.

[103] L. Bilge, D. Balzarotti, W. Robertson, E. Kirda, and C. Kruegel, "Disclosure:

Detecting Botnet Command and Control Servers through Large-scale Netflow

Analysis," in Proceedings of the 28th Annual Computer Security Applications

Conference, 2012, pp. 129-138.

[104] U. Wijesinghe, U. Tupakula, and V. Varadharajan, "An Enhanced Model for

Network Flow Based Botnet Detection," in Proceedings of the 38th

Australasian Computer Science Conference (ACSC 2015), 2015, p. 30.

[105] G. Schaffrath, & B. Stiller, , "Conceptual Integration of Flow-based and

Packet-based Network Intrusion Detection," Resilient Networks and Services,

pp. 190-194, 2008.

[106] J. Steinberger, L. Schehlmann, S. Abt, and H. Baier, "Anomaly Detection and

Mitigation at Internet Scale: A survey," in IFIP International Conference on

Autonomous Infrastructure, Management and Security, 2013, pp. 49-60.

[107] M. A. Mehmood, A. Feldmann, S. Uhlig, and W. Willinger, "We Are All

Treated Equal, Aren't We?—Flow-level Performance as a Function of Flow

Size," in Networking Conference, 2014 IFIP, 2014, pp. 1-9.

http://www.mindrot.org/projects/softflowd/

 203

[108] G. F. Guo, "The Study of the Ontology and Context Verification Based

Intrusion Detection Model," in Applied Mechanics and Materials, 2014, pp.

3338-3341.

[109] U. Shankar and V. Paxson, "Active Mapping: Resisting NIDS Evasion without

Altering Traffic," in Proceedings Symposium on Security and Privacy, 2003,

pp. 44-61.

[110] F. Valeur, G. Vigna, C. Kruegel, and R. A. Kemmerer, "Comprehensive

Approach to Intrusion Detection Alert Correlation," IEEE Transactions on

Dependable and Secure Computing, vol. 1, pp. 146-169, 2004.

[111] M. Sourour, B. Adel, and A. Tarek, "Environmental Awareness Intrusion

Detection and Prevention System Toward Reducing False Positives and False

Negatives," in IEEE Symposium on Computational Intelligence in Cyber

Security, 2009, pp. 107-114.

[112] G. S. Kumar and C. Sirisha, "Robust Preprocessing and Random Forests

Technique for Network Probe Anomaly Detection," International Journal of

Soft Computing and Engineering (IJSCE) ISSN, pp. 2231-2307, 2012.

[113] D. G. Bhatti and P. Virparia, "Data Preprocessing for Reducing False Positive

Rate in Intrusion Detection," International Journal of Computer Applications,

vol. 57, 2012.

[114] D. G. Bhatti, P. Virparia, and B. Patel, "Conceptual Framework for Soft

Computing based Intrusion Detection to Reduce False Positive Rate,"

International Journal of Computer Applications, vol. 44, pp. 1-3, 2012.

[115] G. P. Spathoulas and S. K. Katsikas, "Using a Fuzzy Inference System to

Reduce False Positives in Intrusion Detection," in 2009 16th International

Conference on Systems, Signals and Image Processing, 2009, pp. 1-4.

[116] T. Pietraszek and A. Tanner, "Data Mining and Machine Learning—Towards

Reducing False Positives in Intrusion Detection," Information Security

Technical Report, vol. 10, pp. 169-183, 2005.

[117] D. Bolzoni, B. Crispo, and S. Etalle, "ATLANTIDES: An Architecture for

Alert Verification in Network Intrusion Detection Systems," in LISA, 2007, pp.

1-12.

[118] T. Kaur, "A Hybrid approach using Signature and Anomaly Detection to

Detect Network Intrusions," Ph.D. thesis, Thapar Univeristy Patiala, 2013.

[119] G. Gu, M. Sharif, X. Qin, D. Dagon, W. Lee, and G. Riley, "Worm Detection,

Early Warning and Response based on Local Victim Information," in 20th

Annual Computer Security Applications Conference, 2004, pp. 136-145.

[120] K. Wang, G. Cretu, and S. J. Stolfo, "Anomalous Payload-based Worm

Detection and Signature Generation," in International Workshop on Recent

Advances in Intrusion Detection, 2005, pp. 227-246.

[121] A. D. Todd, R. A. Raines, R. O. Baldwin, B. E. Mullins, and S. K. Rogers,

"Alert Verification Evasion through Server Response Forging," in

International Workshop on Recent Advances in Intrusion Detection, 2007, pp.

256-275.

[122] M. A. Aydın, A. H. Zaim, and K. G. Ceylan, "A Hybrid Intrusion Detection

System Design for Computer Network Security," Computers & Electrical

Engineering, vol. 35, pp. 517-526, 2009.

 204

[123] E. Tombini, H. Debar, L. Mé, and M. Ducassé, "A Serial Combination of

Anomaly and Misuse IDSes Applied to HTTP Traffic," in 20th Computer

Security Applications Conference 2004, pp. 428-437.

[124] Y.-X. Ding, M. Xiao, and A.-W. Liu, "Research and Implementation on Snort-

based Hybrid Intrusion Detection System," in 2009 International Conference

on Machine Learning and Cybernetics, 2009, pp. 1414-1418.

[125] K. Hwang, M. Cai, Y. Chen, and M. Qin, "Hybrid Intrusion Detection with

Weighted Signature Generation over Anomalous Internet Episodes," IEEE

Transactions on Dependable and Secure Computing, vol. 4, pp. 41-55, 2007.

[126] J. Yang, X. Chen, X. Xiang, and J. Wan, "HIDS-DT: An Effective Hybrid

Intrusion Detection System Based on Decision Tree," in International

Conference on Communications and Mobile Computing (CMC), 2010, pp. 70-

75.

[127] J. Zhang and M. Zulkernine, "A Hybrid Network Intrusion Detection

Technique using Random Forests," in First International Conference on

Availability, Reliability and Security (ARES'06), 2006, p. 8 pp.

[128] S. M. Hussein, F. H. M. Ali, and Z. Kasiran, "Evaluation effectiveness of

Hybrid IDS using Snort with Naïve Bayes to Detect Attacks," in Second

International Conference on Digital Information and Communication

Technology and it's Applications, 2012, pp. 256-260.

[129] D. J. Day, D. A. Flores, and H. S. Lallie, "CONDOR: A Hybrid IDS to Offer

Improved Intrusion Detection," in 2012 IEEE 11th International Conference

on Trust, Security and Privacy in Computing and Communications, 2012, pp.

931-936.

[130] V. Jacobson and S. McCanne, "libpcap: Packet Capture Library," Lawrence

Berkeley Laboratory, Berkeley, CA, 2009.

[131] C. Kreibich and R. Sommer, "Policy-controlled Event Management for

Distributed Intrusion Detection," in 25th IEEE International Conference on

Distributed Computing Systems Workshops, 2005, pp. 385-391.

[132] B. Amann, R. Sommer, A. Sharma, and S. Hall, "A Lone Wolf No More:

Supporting Network Intrusion Detection with Real-time Intelligence," in

International Workshop on Recent Advances in Intrusion Detection, 2012, pp.

314-333.

[133] L. Deri,"PF_Ring Packet Capture," 2011, [Online; accessed 4-May-2013].

[Online]. Available: http://www.ntop.org

[134] J. Stebelton,"Berkeley Packet Filters – The Basics," 2014, [Online; accessed

5-May-2013]. [Online]. Available:

http://www.infosecwriters.com/text_resources/pdf/JStebelton_BPF.pdf

[135] L. Deri and N. Spa, "nProbe: An Open Source Netflow Probe for Gigabit

Networks," in TERENA Networking Conference, 2003.

[136] S. Astashonok,"fprobe: a NetFlow Probe," 2007, [Online; accessed 25-

October-2013]. [Online]. Available: http://fprobe.sourceforge.net/

[137] P. B. Ruthven, "Contextual Profiling of Homogeneous User Groups for

Masquerade Detection," Master Thesis, Department of Computer Science and

Media Technology, Gjøvik University, Norway, 2014.

http://www.ntop.org/
http://www.infosecwriters.com/text_resources/pdf/JStebelton_BPF.pdf
http://fprobe.sourceforge.net/

 205

[138] Logging Framework, "Bro 2.4.1 documentation Framework," [Online;

accessed 19-Dec-2013]. [Online]. Available:

https://www.bro.org/sphinx/frameworks/logging.html#streams

[139] R. G. Sargent, "Verification and Validation of Simulation Models," Journal of

Simulation, vol. 7, pp. 12-24, 2013.

[140] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee, "A Design

Science Research Methodology for Information Systems Research," Journal

of Management Information Systems, vol. 24, pp. 45-77, 2007.

[141] S. Garcia, M. Grill, J. Stiborek, and A. Zunino, "An Empirical Comparison of

Botnet Detection Methods," Computers & Security, vol. 45, pp. 100-123, 2014.

[142] C. Rossow, C. J. Dietrich, C. Grier, C. Kreibich, V. Paxson, N. Pohlmann, et

al., "Prudent Practices for Designing Malware Experiments: Status Quo and

outlook," in 2012 IEEE Symposium on Security and Privacy, 2012, pp. 65-79.

[143] M. Tavallaee, N. Stakhanova, and A. A. Ghorbani, "Toward Credible

Evaluation of Anomaly-based Intrusion Detection Methods," IEEE

Transactions on Systems, Man, and Cybernetics, Part C (Applications and

Reviews), vol. 40, pp. 516-524, 2010.

[144] A. Papadogiannakis, D. Antoniades, M. Polychronakis, and E. P. Markatos,

"Improving the performance of passive network monitoring applications using

locality buffering," in Modeling, Analysis, and Simulation of Computer and

Telecommunication Systems, 2007. MASCOTS'07. 15th International

Symposium on, 2007, pp. 151-157.

[145] F. Schneider and J. Wallerich, "Performance evaluation of packet capturing

systems for high-speed networks," in Proceedings of the 2005 ACM

conference on Emerging network experiment and technology, 2005, pp. 284-

285.

[146] J. Corsini, "Analysis and Evaluation of Network Intrusion Detection Methods

to Uncover Data Theft," Napier University, 2009.

[147] A. Turner and M. Bing,"TcpReplay," 2011, [Online; accessed 9-Dec-2012].

[Online]. Available: https://sourceforge.net/projects/tcpreplay/

[148] A. Folkerts, G. Portokalidis, and H. Bos, "Multi-tier Intrusion Detection by

Means of Replayable Virtual Machines," Technical Report IR-CS-47, VU

University2008

[149] A. Yeow,"Bit-Twist: Libpcap-based Ethernet Packet Generator," 2016,

[Online; accessed 19-Jan-2016]. [Online]. Available:

http://bittwist.sourceforge.net/

[150] S. Forge,"TOMAHAWK," [Online; accessed 10-December-2016]. [Online].

Available: http://tomahawk.sourceforge.net

[151] S. C. Smith, K. W. Wong, I. Hammell, J. Robert, and C. J. Mateo, "An

Experimental Exploration of the Impact of Network-level Packet Loss on

Network Intrusion Detection," DTIC Document, 2015

[152] J. W. Haines, R. P. Lippmann, D. J. Fried, M. Zissman, and E. Tran, "1999

DARPA Intrusion Detection Evaluation: Design and Procedures," 2001.

[153] N. Nwanze, S.-i. Kim, and D. H. Summerville, "Payload Modeling for

Network Intrusion Detection Systems," in MILCOM 2009-2009 IEEE Military

Communications Conference, 2009, pp. 1-7.

https://www.bro.org/sphinx/frameworks/logging.html#streams
https://sourceforge.net/projects/tcpreplay/
http://bittwist.sourceforge.net/
http://tomahawk.sourceforge.net/

 206

[154] C. Thomas, V. Sharma, and N. Balakrishnan, "Usefulness of DARPA Dataset

for Intrusion Detection System Evaluation," in SPIE Defense and Security

Symposium, 2008, pp. 69730G-69730G-8.

[155] H. Om and A. Kundu, "A Hybrid System for Reducing the False Alarm Rate

of Anomaly Intrusion Detection System," in 1st International Conference on

Recent Advances in Information Technology (RAIT), 2012, pp. 131-136.

[156] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, "Toward Developing

a Systematic Approach to Generate Benchmark Datasets for Intrusion

Detection," Computers & Security, vol. 31, pp. 357-374, 2012.

[157] J. O. Nehinbe, "A Simple Method for Improving Intrusion Detections in

Corporate Networks," in International Conference on Information Security

and Digital Forensics, 2009, pp. 111-122.

[158] S. Tricaud,"French Honeynet Chapter Status Report," 2011, [Online; accessed

20-May-2013]. [Online]. Available: http://www.honeynet.org/chapters/france

[159] G. Szabó, D. Orincsay, S. Malomsoky, and I. Szabó, "On the Validation of

Traffic Classification Algorithms," in International Conference on Passive

and Active Network Measurement, 2008, pp. 72-81.

[160] Lawrence Berkeley National Laboratory, "Enterprise Tracing Project," 2005,

[Online; accessed 8-July-2014]. [Online]. Available:

http://www.icir.org/enterprise-tracing/

[161] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips, "The Bittorrent P2P File-

Sharing System: Measurements and Analysis," in International Workshop on

Peer-to-Peer Systems, 2005, pp. 205-216.

[162] O. E. Elejla, A. B. Jantan, and A. A. Ahmed, "Three Layers Approach For

Network Scanning Detection," Journal of Theoretical & Applied Information

Technology, vol. 70, 2014.

[163] G. Kumar, "Evaluation metrics for intrusion detection systems-a study,"

International Journal of Computer Science and Mobile Applications, II, vol.

11, 2014.

[164] D. Smallwood and A. Vance, "Intrusion Analysis with Deep Packet Inspection:

Increasing Efficiency of Packet Based Investigations," in Cloud and Service

Computing (CSC), 2011 International Conference on, 2011, pp. 342-347.

[165] A. Bremler-Barr, Y. Harchol, D. Hay, and Y. Koral, "Deep Packet Inspection

As a Service," in Proceedings of the 10th ACM International on Conference

on emerging Networking Experiments and Technologies, 2014, pp. 271-282.

[166] M. M. Masud, T. Al-khateeb, L. Khan, B. Thuraisingham, and K. W. Hamlen,

"Flow-based Identification of Botnet Traffic by Mining Multiple Log Files,"

in First International Conference on Distributed Framework and Applications,

2008, pp. 200-206.

[167] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten,

"The WEKA Data Mining Software: An Update," ACM SIGKDD Explorations

Newsletter, vol. 11, pp. 10-18, 2009.

[168] R. A. Rodríguez-Gómez, G. Maciá-Fernández, and P. García-Teodoro,

"Survey and Taxonomy of Botnet Research Through Life-cycle," ACM

Computing Surveys (CSUR), vol. 45, p. 45, 2013.

http://www.honeynet.org/chapters/france
http://www.icir.org/enterprise-tracing/

 207

[169] X. Ma, X. Guan, J. Tao, Q. Zheng, Y. Guo, L. Liu, et al., "A Novel IRC Botnet

Detection Method Based on Packet Size Sequence," in IEEE International

Conference on Communications (ICC), 2010, pp. 1-5.

[170] S. Garg, A. K. Sarje, and S. K. Peddoju, "Improved Detection of P2P Botnets

Through Network Behavior Analysis," in International Conference on

Security in Computer Networks and Distributed Systems, 2014, pp. 334-345.

[171] H. R. Zeidanloo and A. B. A. Manaf, "Botnet Detection by Monitoring Similar

Communication Patterns," 2010. [Online]. Available:

http://arxiv.org/abs/1004.1232

[172] G. Stringhini, T. Holz, B. Stone-Gross, C. Kruegel, and G. Vigna,

"BOTMAGNIFIER: Locating Spambots on the Internet," in USENIX Security

Symposium, 2011, pp. 1-32.

[173] G. Vliek, "Detecting Spam Machines, A Netflow-data Based Approach,"

Master thesis, Faculty of Electrical Engineering, University of Twente, 2009.

[174] Y. Li, D. Gruenbacher, and C. Scoglio, "Reward Only Is Not Enough:

Evaluating and Improving the Fairness Policy of the P2P File Sharing Network

eMule/eDonkey," Peer-to-Peer Networking and Applications, vol. 5, pp. 40-

57, 2012.

[175] D. Garant and W. Lu, "Mining Botnet Behaviors on the Large-Scale Web

Application Community," in Advanced Information Networking and

Applications Workshops (WAINA), 2013 27th International Conference on,

2013, pp. 185-190.

[176] E. B. Beigi, H. H. Jazi, N. Stakhanova, and A. A. Ghorbani, "Towards

Effective Feature Selection in Machine Learning-based Botnet Detection

Approaches," in IEEE Conference on Communications and Network Security

(CNS), 2014, pp. 247-255.

[177] W. T. Strayer, D. Lapsely, R. Walsh, and C. Livadas, "Botnet Detection based

on Network Behavior," Botnet Detection, pp. 1-24, 2008.

[178] A. I. Madbouly, A. M. Gody, and T. M. Barakat, "Relevant Feature Selection

Model Using Data Mining for Intrusion Detection System," International

Journal of Engineering Trends and Technology (IJETT), 2014.

[179] P. Sangkatsanee, N. Wattanapongsakorn, and C. Charnsripinyo, "Practical

Real-time Intrusion Detection Using Machine Learning Approaches,"

Computer Communications, vol. 34, pp. 2227-2235, 2011.

[180] P. Narang, J. M. Reddy, and C. Hota, "Feature Selection for Detection of Peer-

to-Peer Botnet Traffic," in Proceedings of the 6th ACM India Computing

Convention, 2013, p. 16.

[181] J. V. Gomes, P. R. Inácio, M. Pereira, M. M. Freire, and P. P. Monteiro,

"Detection and Classification of Peer-to-peer Traffic: A survey," ACM

Computing Surveys, vol. 45, p. 30, 2013.

[182] F. Giroire, J. Chandrashekar, N. Taft, E. Schooler, and D. Papagiannaki,

"Exploiting Temporal Persistence to Detect Covert Botnet Channels," in

International Workshop on Recent Advances in Intrusion Detection, 2009, pp.

326-345.

[183] A. Sperotto, G. Vliek, R. Sadre, and A. Pras, "Detecting Spam at the Network

Level," in Meeting of the European Network of Universities and Companies in

Information and Communication Engineering, 2009, pp. 208-216.

http://arxiv.org/abs/1004.1232

 208

[184] H. Weststrate, "Botnet Detection using Netflow Information," in 10th Twente

Student Conference on IT, 23rd January, 2009.

[185] Y. Liu, "Data Streaming Algorithms for Rapid Cyber Attack Detection," Ph.D.

thesis, Department of Computer Engineering, Iowa State University, Ames,

Iowa, 2013.

[186] H. Ma, S. Tan, and Z. He, "The Research of P2P Recognition Technology," in

Software Engineering and Service Science (ICSESS), 2014 5th IEEE

International Conference on, 2014, pp. 601-604.

[187] R. Keralapura, A. Nucci, and C.-N. Chuah, "A Novel Self-learning

Architecture for P2P Traffic Classification in High Speed Ntworks," Computer

Networks, vol. 54, pp. 1055-1068, 2010.

[188] M. Agnihotri,"DeepEnd Research: Library of Malware Traffic Patterns," 2013,

[Online; accessed 9-May-2014]. [Online]. Available:

http://www.deependresearch.org/2013/04/library-of-malware-traffic-

patterns.html

[189] S. Stover, D. Dittrich, J. Hernandez, and S. Dietrich, "Analysis of the Storm

and Nugache Trojans: P2P is here," USENIX Login, vol. 32, pp. 18-27, 2007.

[190] Bro IDS, "Signature framework — Bro 2.4.1 documentation," 2012, [Online;

accessed 6-Nov-2013]. [Online]. Available:

https://www.bro.org/sphinx/frameworks/signatures.html

[191] J. Amann, S. Hall, and R. Sommer, "Count Me In: Viable Distributed

Summary Statistics for Securing High-Speed Networks," in International

Workshop on Recent Advances in Intrusion Detection, 2014, pp. 320-340.

[192] M. Jonkman,"Emerging Bro Threats," 2008, [Online; accessed 30-June-2012].

[Online]. Available:

http://doc.emergingthreats.net/bin/view/Main/EmergingBro

[193] M. Jonkman,"Storm Worm Emerging Threats," 2007, [Online; accessed 4-

April-2013]. [Online]. Available:

http://doc.emergingthreats.net/bin/view/Main/StormWorm

[194] M. Tavallaee, "An Adaptive Hybrid Intrusion Detection System," Ph.D. thesis,

University of New Brunswick, 2011.

[195] G. Maier, R. Sommer, H. Dreger, A. Feldmann, V. Paxson, and F. Schneider,

"Enriching Network Security Analysis with Time Travel," in ACM SIGCOMM

Computer Communication Review, 2008, pp. 183-194.

[196] B. AsSadhan, J. M. Moura, D. Lapsley, C. Jones, and W. T. Strayer, "Detecting

Botnets using Command and Control Traffic," in Eighth IEEE International

Symposium on Network Computing and Applications 2009, pp. 156-162.

[197] PacketFilter, "Packet Filter in Bro," 2013, [Online; accessed 20-June-2013].

[Online]. Available:

https://www.bro.org/sphinx/scripts/base/frameworks/packet-

filter/main.bro.html

[198] G. Carle, F. Dressler, R. A. Kemmerer, H. Koenig, C. Kruegel, and P. Laskov,

"Network attack detection and defense–Manifesto of the Dagstuhl Perspective

Workshop, March 2nd–6th, 2008," Computer Science-Research and

Development, vol. 23, pp. 15-25, 2009.

http://www.deependresearch.org/2013/04/library-of-malware-traffic-patterns.html
http://www.deependresearch.org/2013/04/library-of-malware-traffic-patterns.html
https://www.bro.org/sphinx/frameworks/signatures.html
http://doc.emergingthreats.net/bin/view/Main/EmergingBro
http://doc.emergingthreats.net/bin/view/Main/StormWorm
https://www.bro.org/sphinx/scripts/base/frameworks/packet-filter/main.bro.html
https://www.bro.org/sphinx/scripts/base/frameworks/packet-filter/main.bro.html

 209

[199] G. Münz, N. Weber, and G. Carle, "Signature Detection in Sampled Packets,"

in Workshop on Monitoring, Attack Detection and Mitigation (MonAM 2007),

Toulouse, France, 2007.

[200] R. Sommer,"Bro Cluster Architecture — Bro 2.4.1 Documentation," 2013,

[Online; accessed 24-Jan-2015]. [Online]. Available:

https://www.bro.org/sphinx/cluster/index.html

[201] E. Alparslan, A. Karahoca, and D. Karahoca, "BotNet Detection: Enhancing

Analysis by Using Data Mining Techniques," INTECH Open Access

Publisher, 2012.

[202] Bro IDS, "Policy Stats," 2008, [Online; accessed 7-Dec-2013]. [Online].

Available: https://www.bro.org/sphinx/scripts/policy/misc/stats.bro.html

[203] R. Love, "Kernel Korner: CPU Affinity," Linux Journal, vol. 2003, p. 8, 2003.

[204] Open BL, "Abuse Reporting and Blacklisting," 2014, [Online; accessed 4-

July-2014]. [Online]. Available: https://www.openbl.org

[205] Black List, "URL Blacklist," 2013, [Online; accessed 2-May-2015]. [Online].

Available: http://urlblacklist.com/

[206] S. Hansman and R. Hunt, "A Taxonomy of Network and Computer Attacks,"

Computers & Security, vol. 24, pp. 31-43, 2005.

[207] K. Labib, "Computer Security and Intrusion Detection," Crossroads, vol. 11,

pp. 2-2, 2004.

[208] Y. Gao, Z. Li, and Y. Chen, "A DoS Resilient Flow-level Intrusion Detection

Approach for High-speed Networks," in 26th IEEE International Conference

on Distributed Computing Systems (ICDCS'06), 2006, pp. 39-39.

[209] T. Diibendorfer and B. Plattner, "Host Behaviour based Early Detection of

Worm Outbreaks in Internet Backbones," in 14th IEEE International

Workshops on Enabling Technologies: Infrastructure for Collaborative

Enterprise (WETICE'05), 2005, pp. 166-171.

[210] A. Sperotto, R. Sadre, P.-T. de Boer, and A. Pras, "Hidden Markov Model

modeling of SSH Brute-force Attacks," in International Workshop on

Distributed Systems: Operations and Management, 2009, pp. 164-176.

https://www.bro.org/sphinx/cluster/index.html
https://www.bro.org/sphinx/scripts/policy/misc/stats.bro.html
https://www.openbl.org/
http://urlblacklist.com/

 210

Appendix A

Attack Classification

In the literature, many attack classifications and taxonomies have been presented and

surveyed. However, not all the taxonomies that outlined in the literature provide the

same classification. Some studies classify the attack based on their goals, results, and

tools [28] and others classify the attacks based on the network type [206]. The highest

priority attacks are those who have a critical impact on the computer system. In this

appendix, the following major types of attacks are described.

A.1 Denial of Service (DoS)

The main objective of DoS attacks is to deny a legitimate user from using or accessing

his/her system in a normal mode. It often disturbs the service of a computer, a server,

or a network. Thus it is impossible to use its resources. This kind of attack is frequent

on the Internet. There are three types of Dos attacks: host based, network based, and

distributed based.

Host-based DoS attacks: This attack targets a vulnerability in the operating system,

application software, CPU, and memory. The main aim of this attack is to crash the

host. It also works by exploiting the implementation of network protocols

Network based DoS attacks: Network resources are targeted in this attack by

flooding the network with packets to disrupt legitimate use. In this case, the bandwidth

is overwhelmed with packets so that there is no left bandwidth for the legitimate users.

 211

TCP floods, ICMP floods, and UDP floods are the most network based DoS attack

identified that stream their packets to the target.

Distributed based DoS or DDoS attacks: This attack use a large number of attacked

computers to direct coordinated DoS attack against target or targets.

A.2 Information Gathering and Scanning

These attacks try to gather information about the system for further attacks. No actual

attack is launched on the computer and the network; they are, however, sniffed,

scanned, and probed. A packet sniffer is a simple tool to gather information about

computer and network by listening to every packet at a particular point in a network.

In conventional packet sniffer, the attacker set the Ethernet card into promiscuous

mode so that the card accepts and read all traffic packets in the network, even when a

packet is not addressed to this network card. MAC address, IP addresses, and running

services for a particular host can be obtained using sniffer tools.

A.3 Malicious Software

Malware includes Worms, Virus and Trojan horse, are malicious programs that are

inserted into a host to corrupt a system, deny access to a service. The worm runs

random code on the victim’s host and installs copies of itself in the memory, which

infects other hosts on the network. It leads to network congestion, delay, and loss

packets. A virus is a program that is attached to another program to run a particular

harmful function on the victim’s computer. The virus needs the user interaction to run

it and propagate to other files or hosts. However, the spread of worms is extremely

 212

faster than the virus. A Trajan horse is a program looks like a useful application, but

in fact, performs unwanted actions such as controlling the victim's host remotely using

backdoor installation.

A.4 IP Spoofing

This kind of attack is functioning on networks and TPC/IP protocols. Network

spoofing is used when the attacker pretends himself as a legitimate user by spoofing

who they are. Session Hijacking is the most popular attack in this kind of attack. The

attacker usually takes over a session between two hosts and then cuts one of these

hosts to be replaced by him. Session Hijacking usually operates at TCP layer and is

used to take over sessions of services such as FTP and Telnet. TCP session hijacking

also takes advantage of using IP spoofing and TCP sequence number. To make this

attack easy to the attacker, the attacker has to guess the TCP sequence number of the

session that is attempted to be hijacked by capturing and analysing the packets

travelling between the two victims. After the attackers manage to get the sequence

number, they spoof their IP address to be matched with one of the victim hosts and

then send a TCP packet to the other host with the hijacked sequence number. When

the other host accepts the packet and verifies the sequence number which is correct,

this host starts to reply to the attacker and continue the hijacked session.

Other types of attacks may include:

 Physical attacks: The aim of this attack is to damage the computer hardware

and network devices.

 213

 Buffer overflows: This attack overflow the process’s buffer of the victim’s

system to damage the process.

 Password attacks: This attack involves when the attacker is attempting to

guess a password of a protected host. Password dictionary and brute force are

the main example of this attack.

 Botnet attack: This attack was discussed in Chapter 4.

The following steps explain the nature and the methodology of the computer attacks

[207]:

1. Reconnaissance: This step involves the process when the attacker collects

information about its victim, including the network infrastructure, before

launching its attack.

2. Scanning: In this stage, the attacker starts to look for vulnerabilities and holes

by scanning the victim’s system. Towards the end, the attacker can obtain

precious information such as network topology, IP addresses of live hosts,

open port numbers, and security devices rules.

3. Getting Access: This step takes place when the attacker attempt to gain access

either using the operating system and application attacks if the attacker is a

legitimate user, or using the network if the attacker is an outsider.

 214

4. Retaining Access: After the attacker gained access to the compromised host,

he/she has to maintain this access. Trajan horse and Backdoors are the famous

techniques to perform this step.

5. Hiding Imprint: When the attackers have achieved what they want, they should

not leave any track on the system. Backdoor and RootKit are among techniques

that help the attacker to modify system logs and build hidden channel for data

transmission.

 215

Appendix B

NIDS Requirements

There are many requirements for efficient NIDS mentioned in the literature [6]. The

main two requirements that attracted researchers currently are scalability and detection

accuracy.

 Scalability: NIDS should operate in large volume networks without resource

consumption. This happens when all potential packets and traffic are analysed

without packet loss. Thus, detection analysis should be performed smoothly in

a large data network as well as with increase traffic and network’s size. Also,

the data amount to be processed by detection methods should be as small as

possible. Note that the term “potential packet” is used instead of “incoming

packet”, this is because potential packets are extracted after sampling

processes as will be discussed later.

 Detecting accuracy or detection rate: beside all potential packets should be

processed correctly; detection methods have to make the right decision, not to

decide falsely. To achieve this requirement, the true-positive rate should be

high while fewer false positive and negative rate.

Other requirements of NIDS may include:

 Detecting unknown attacks: novel intrusion should be detected

 216

 Detecting encrypted traffic: encrypted payloads should be readable and

analysed for intrusion detection.

 Early detection: intrusion should be detected as soon as possible

 Large data storage: all potential signatures, profiles, alerts, and reports

should be stored for long-term and further usage.

 NIDS security: NIDS should be secured enough against attackers who direct

attacks into the NIDS itself.

 Events correlation: For distributed attacks, NIDS should correlate single

attack event with other resources such as firewall, routers or other NIDS for

detection.

 IPv6 compatibility: NIDS should support IPv4 and IPv6

 Success attacks identification: NIDS should differentiate between successful

and unsuccessful attack so that the operator should take a proper action against

them.

 Privacy: NIDS should not violate privacy regulation of users by inspecting

private information both in payload and header of the packets.

 217

 Attack classification: After detection, NIDS should also identify and classify

attacks. Each attack has to be labelled and be under a category for further

analysis and measurements.

 218

Appendix C

Attacks Detectable by Flow-based Approach

This appendix presents the attacks that are detectable by flow-based NIDS and how

the current research community handles its limitation.

DoS Attack

Gao, et al. [208] proposed and implemented a DoS resilient High-speed Flow-level

Intrusion Detection system, HiFIND. The authors developed a prototype that accepts

flows exported from a Netflow router in real time. Their approach handles the problem

of DoS using flow aggregation accounted in data stream called a sketch. A sketch is a

hash table in one-dimension appropriated for quick storage of information. Sketch

counts incidences of an event and studies how the traffic behaves over a period of time

using statistics. It stores values that help an anomaly-based engine to trigger alarms

based on a statistical forecast. So an abnormal deviation from this forecast values is

detected as an intrusion. SYN flooding attack is one of DoS attacks that can be used

by sketch to detect this type of attack with the following steps:

 The sketch stores and calculates the difference between the number of SYN

packets and the number of SYN/ACK packets of each flow.

 If this difference is not within the normal range, a DoS SYN flooding attack is

detected.

 219

This approach can be implemented with relying on packet headers only instead of

flows but, however; data reduction which is provided by flows cannot be achieved.

Zhao, et al. [53] proposed and designed data streaming algorithms that can detect super

sources and super destinations attacks. Super source happens when a source or a host

has a unusual number of outgoing connection (fan-out) within specified period. An

example of the super source is port scanning that searches for vulnerable services

among different hosts. Super destination is considered when a destination or a host

receive abnormal number of incoming connection attempts within a small time

interval (fan-in). Distributed Denial of Service (DDoS) attack is an example of super

destination when a large number of hosts flood flows to a single destination. Data

streaming algorithms used in their work is to identify flows that have an unusual

number of connection after filtering part of the traffic. Unlike [208], the algorithms of

used in [53] is based on two dimension hash tables. To reduce the amount of data to

be processed, they perform flow sampling algorithm, hence improving the speed of

the process. Since not all the flows are processed, data reduction may compromise the

accuracy. The authors solve this problem by combining the power of data streaming

and sampling.

Kim, et al. [40] presented a detecting method for detecting abnormal network traffic

by analysing the traffic based on flows only. They use the term “traffic pattern” to

express different types of DoS attacks. A traffic pattern is a signature that describes

the number of flows, number of packets per flow, the size of flow, the size of packets,

and the total bandwidth occupied during the session. The authors use these patterns to

 220

differentiate between instances when detecting scanning or flooding attacks. For

example, during scanning or SYN flooding attack, since the attacker makes many

connection attempts, this pattern can be detected because of:

 a large number of flows generated since the attacker sends many packets to the

victim,

 a small number of packets per flow,

 moreover, the small size of the packet as the attacker sends small SYN packets.

The authors also managed to detect ICMP and UDP flooding attack. These attacks

have dynamic traffic patterns since it depends on the number of packets and hosts used

in these attacks. However, these attacks can be detected since they create large

bandwidth consumption and a high number of packets. Their approach can detect

traffic of different attacks with a similar traffic pattern by identifying their metrics and

then formalizing them into one detection function. However, certain attacks cannot be

observed using their method since Kim, et al. focused on detecting DoS and DDoS

attacks only. Since they used static threshold values of their parameters in the detection

function, their method cannot be suitable for every network condition. So, the adaptive

threshold for various network environments is required.

Munz and Carle [57] proposed a general system for DoS flow-based detection named

“TOPAS” (Traffic flOw Packet Analysis System). This system operates as a flow

collector from multiple sources. It receives data to be analysed in real-time. The

 221

authors develop TOPAS so that it supports different kinds of DoS detection modules

and it is publicly available. These modules are including SYN flood detection, Web

Server overloading module using HTTP request, and traceback module that identifies

the entry points of attack packet with spoofed source IP address. These modules can

be adjusted by the network administrator to increase the detection opportunities and

accuracy. An example of this is adjusting the number of SYN and SYN/ACK packets

in case of SYN flooding detection module. Although the authors state that TOPAS can

also analyse packet-base data, their approach does not support the combination of

packet-based and flow-based to reduce the false alarms.

Worms

Worm mechanism such as Code Red usually has two stages: victim discovery and

transfer code. In discovery stage, the worm surveys the network to find vulnerable

holes in the systems while in transfer stage, the worm starts to spread the code to the

systems. Unfortunately, the second stage cannot be detected using the flow-based

system since the code is injected in the payload which is not analysed by the flow-

based. Thus only the first stage of worm behaviour can be analysed and detected using

flow-based approach. Some attributes on the hosts when worms infect them are used

to detect worms attack. Such attributes include the number of connections, ratio of

outgoing to incoming traffic, and response way. However, some researchers deal with

worm detection the same way when dealing with scanning detection since they have

some common characteristics. DoS detection methods achieved by [53, 208] can be

used to detect the worm.

 222

Diibendorfer and Plattner [209] proposed a near real-time method for outbreak worm

detection in high-speed networks using flow-based approach. The method is based on

examination the behaviour and the number of incomings and outgoing connection of

the host. For detection method, the authors used the host behaviour and characteristics

to classify hosts into three classes: traffic class, connector class, and responder class.

Only suspicious hosts belong to these classes.

Hosts are classified as traffic class when the amount of traffic sent from the host is

more than received. An example of this is the worms send out exploit code or when

the worm spread in email attachments. Hosts that initiate an abnormal high number of

outgoing connections are classified under connector class. Such class happens when

hosts scan others. Responder class involves when a host holds bidirectional

connections such as TCP connection. An example of this class is when the host

responds to TCP handshake initiation or scan during a worm outbreak. In their

approach, overlapping within these classes is possible, meaning that a host can be

belonging to more than one class.

Figure C.1 illustrate this overlap. Worm outbreak attack can be detected by tracking

the cardinality of each class of an entire network periodically. Thus, any unexpected

or sudden changes in the cardinality of one or more classes are detected as worm

outbreak. The authors validate their method by tracing archived flow-level of recent

Internet emails and by tracing fast spreading worms such as Blaster.

Abdulla, et al. [85] proposed a worm warning system using IP flow and machine

learning approach. The authors consider the case that when a host is infected by an

 223

email worm or scanning, an unusual amount of traffic is initiated. This traffic is not

relied on DNS. They classify flow-based records using Support Vector Machine

(SVM) to extract features that belong to worm attacks. For training SVM, the features

are gathered into a set of patterns. The authors propose a structure that consists of three

modules: data collecting, data sampling, and classifier.

Figure C.1. Classes of Host Behaviour for Worm Detection

The first module collects the raw traffic and extracts the flow record information and

stores them into a database. The authors address the problem of dealing with a large

amount of flow data by creating the data sampling module. The classifier module

classifies the sampled traffic into a worm and benign flow. The SVM was trained by

the following scanning worms: CodeRed, Slammer, Doomjuice, and Witty. For email

worms, it was trained by sobig, Netsky, Storm, MyDoom, and Conficker.

 224

SSH

Secure SHell (SSH) is a communication protocol that allows a user to have full control

over a host’s resources remotely. Thus, hosts with SSH-enabled are unfortunately

targeted by intrusions. Sperotto, et al. [210] have studied and analysed the flow traffic

during SSH. They extract the flow data that is suspected to be malicious traffic. The

authors then develop a model which presents the flow characteristics when SSH

intrusion takes place. Although their model can detect these attacks, however, the

possibility of this model to be in practice is still unknown. Based on their work,

Hellemons (2012) develop an algorithm to test the practical applicability of the SSH

intrusion model. The algorithm uses the processed flow data to construct attack

metadata in the form of properties. Hellemons answered the question: “Can SSH

intrusion attacks be detected and analysed in practice by using only flow data?”

affirmatively. This method reduces the need for deep packet inspection system,

allowing for more scalable NIDS solution.

 225

Appendix D

Main Bro Log Files

D.1 Connection.log

Bro generates this log during run time. It consists of the complete connection log of

incoming and outgoing traffic. Table D.1 shows the fields of the connection.log file.

Table D.1

Fields Description of Connection.log file

 226

D.2 Signatures.log

This is log is generated when content matching occurs. Bro raises an event with the

alert named. This log also contains the payload content which triggers this event. Table

D.2 shows each field with its description for this log.

Table D.2

Fields Description of Signatures.log file

The following log text is a sample of Signatuers.log generated from PH when CTU-

52 dataset is used. It shows three infected IRC-bot were detected: 147.32.84.165,

147.32.84.191, and 147.32.84.192

#separator \x09

#set_separator ,

#empty_field (empty)

#unset_field -

#path signatures

#open 2015-08-01-08-13-34

#fields ts uid src_addr src_port dst_addr dst_port

 note sig_id event_msg sub_msg sig_count host_count

#types time string addr port addr port enum string string string

 count count

1313675274.978894 CoX6Zn4wnPAUOfTuOk 147.32.84.165 1027 74.125.232.201 80

 Signatures::Sensitive_Signature ircattack_client 147.32.84.165:

signature match GET /service/check2?appid=%7B430FD4D0-B729-4F61-AA34-

 227

91526481799D%7D&appversion=1.3.21.65&applang=&machine=0&version=1.3.21.65&osversion=5

.1... - -

1313675281.195719 CxIZuw1HkEATGTlkL6 147.32.84.191 1027 74.125.232.200 80

 Signatures::Sensitive_Signature ircattack_client 147.32.84.191:

signature match GET /service/check2?appid=%7B430FD4D0-B729-4F61-AA34-

91526481799D%7D&appversion=1.3.21.65&applang=&machine=0&version=1.3.21.65&osversion=5

.1... - -

1313675284.530430 CPfunv1ZCWV1ZnfWBj 147.32.84.192 1027 74.125.232.199 80

 Signatures::Sensitive_Signature ircattack_client 147.32.84.192:

signature match GET /service/check2?appid=%7B430FD4D0-B729-4F61-AA34-

91526481799D%7D&appversion=1.3.21.65&applang=&machine=0&version=1.3.21.65&osversion=5

.1... - -

#close 2015-08-01-08-13-48

D.3 Notice.log

Bro also generates this log at runtime. In this log, it contains activities that Bro

recognizes as interesting or bad. Table D.3 shows the filed description of this log.

Table D.3

Fields Description of Notice.log file

 228

Appendix E

Resource Consumptions Results

Figure E.1. CPU Usage over Time at 100 Mbps – P2P-bot

Figure E.2. Memory Usage over Time at 100 Mbps – P2P-bot

0

20

40

60

80

100

120

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

C
P

U
 U

sa
ge

 %

Time (min)

FL PH FL+PH PO

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

M
em

o
ry

 U
sa

ge
 (

M
B

)

Time (min)

FL PH FL+PH PO

 229

Figure E.3. CPU Usage over Time at 200 Mbps- P2P-bot

Figure E.4. Memory Usage over Time at 200 Mbps – P2P-bot

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

C
P

U
 U

sa
ge

 %

Time (min)

FL PH FL+PH PO

0

500

1000

1500

2000

2500

3000

3500

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

M
em

o
ry

 U
sa

ge
 (

M
B

)

Time (min)

FL PH FL+PH PO

 230

Figure E.5. CPU Usage over Time at 500 Mbps – P2P-bot

Figure E.6. Memory Usage over Time at 500 Mbps – P2P-bot

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6 7 8 9 10

C
P

U
 U

Sa
ge

 %

Time (min)

FL PH FL+PH PO

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 1 2 3 4 5 6 7 8 9 10

M
em

o
ry

 U
sa

ge
 (

M
B

)

Time (min)

FL PH FL+PH PO

 231

Figure E.7. CPU Usage over Time at 1000 Mbps – P2P-bot

Figure E.8. Memory Usage over Time at 1000 Mbps – P2P-bot

0

20

40

60

80

100

120

140

0 1 2 3 4

C
P

U
 U

sa
ge

 %

Time (min)

FL PH FL+PH PO

0

1000

2000

3000

4000

5000

6000

0 1 2 3 4

M
em

o
ry

 U
sa

ge
 (

M
B

)

Time (min)

FL PH FL+PH PO

 232

Appendix F

Samples of Detection Code

F.1 Bro SumStats Mechanism Code for Packet-based Spam Identifications

@load base/frameworks/sumstats

Networks that are considered "local":

 const private_address_space: set[subnet] = {

 10.0.0.0/8,

 192.168.0.0/16,

 172.16.0.0/12,

 147.32.84.0/8,

 100.64.0.0/10,

 127.0.0.0/8,

 [fe80::]/10,

 [::1]/128,

 } &redef;

const local_nets: set[subnet] &redef;

global spam_detect = open_log_file("spamhosts") &redef;

event connection_attempt(c: connection)

{

 # Make an observation!

 # This observation is about the host attempting the connection.

 if(cidresp_p == 25/tcp) {

 SumStats::observe("SMTP conn",

 SumStats::Key($host=c$id$orig_h),

 SumStats::Observation($num=1));

 }

 if(cidorig_p == 25/tcp) {

 SumStats::observe("SMTP conn",

 SumStats::Key($host=c$id$resp_h),

 SumStats::Observation($num=1));

 }

}

event connection_established(c: connection)

{

Make an observation!

Each established connection counts as one so the observation is always 1.

 if(cidresp_p == 25/tcp) {

 SumStats::observe("SMTP conn",

 SumStats::Key($host=c$id$orig_h),

 SumStats::Observation($num=1));

 }

 if(cidorig_p == 25/tcp) {

 SumStats::observe("SMTP conn",

 SumStats::Key($host=c$id$resp_h),

 SumStats::Observation($num=1));

 }

}

event bro_done()

{

}

event bro_init()

{

 Log::disable_stream(Conn::LOG);

 # The reducer attaches to the "SMTP conn" observation stream

 # and uses the summing calculation on the observations.

 local r1 = SumStats::Reducer($stream="SMTP conn",

 $apply=set(SumStats::SUM));

 # Create the final sumstat.

 # $threshold_val. The actual threshold itself is provided with

 # $threshold.

 233

 # Another callback is provided for when a key crosses the

 # threshold.

 SumStats::create([$name = " Detecting spam activities",

 $epoch = 10sec,

 $reducers = set(r1),

 # Provide a threshold.

 $threshold = 10.0,

 # Provide a callback to calculate a value from

 # the result

 # to check against the threshold field.

 $threshold_val(key: SumStats::Key, result:

SumStats::Result) =

 {

 return result["SMTP conn"]$sum;

 },

 # Provide a callback for when a key crosses

 # the threshold.

 $threshold_crossed(key: SumStats::Key, result:

SumStats::Result) =

 {

 if (key$host in private_address_space) {

 print fmt("%s attempted %.0f or more connections",

 key$host, result["SMTP conn"]$sum);

 print spam_detect, fmt(

 "%s attempted %.0f or more connections",

 key$host, result["SMTP conn"]$sum);

 }

 }]);

}

F.2 Bro PH Code for IRC-bot Detection

@load base/frameworks/notice

@load base/frameworks/signatures/main

@load base/protocols/irc

@load policy/misc/stats

@load-sigs ./ircattack.sig

@load base/frameworks/packet-filter

redef capture_filters = { ["filter_table"] = "" };

global print_logs = open_log_file ("print_log") &redef ;

global filter : string = "";

#To read a file into a Bro table, two record types have to be defined:

This record contains the types and names of the columns that should constitute the

table keys.

#Our key record only contains the host IP

type Idx: record {

 ip: addr;

};

#This record contains the types and names of the columns that should constitute the

table values.

type Val: record {

 comment: string;

};

Create an empty table that should contain the suspicious data

global suspicious: table[addr] of Val = table();

event update_filter ()

{

local ns = net_stats();

local filter_counter : count = 0;

local pre_filter : string = "host 100.101.102.103";

2) convert suspicious table into filter format string

 234

for (ip in suspicious)

{

pre_filter += fmt (" or host %s " , ip) ;

++ filter_counter;

}

print "pre_filter is";

print pre_filter;

3) packet filter framework read the filters

if (pre_filter != filter)

{

print " Filter has beed altered";

print " Perform Recompiling Filter";

captured_filter [filter_table] = pre_filter ;

}

else

{

print " Filter has not beed altered";

}

filter = copy (pre_filter) ;

print print_logs , " number of susp hosts marked ; hosts in filter";

print print_logs , fmt (" %s; %s", |suspicious| , filter_counter);

to update the capture_filter from suspicious, but not to update the suspicious

itself (since Reread is there)

schedule 10 sec { update_filter () };

flush_all () ;

}

event bro_init() &priority = 5

 {

#1) transfer + update flow suspicious ips into suspicious table

Input::add_table([$source="/home/hashem-bro/b-irc/flowirc/suspicious_file.log",

 $name="suspicious", $idx=Idx, $val=Val, $destination=suspicious,

$mode=Input::REREAD]);

 Input::remove("suspicious");

 schedule 5 sec { update_filter () };

set_buf(detailed_log, F);

 set_buf(bot_log, F);

 }

global checkflag = 0;

global ircbotdetect = open_log_file("ircbot_packet_hosts") &redef;

global p_at_in : count = 0;

global p_es_in : count = 0;

module IrcBot;

export {

 global detailed_log = open_log_file("irc.detailed") &redef;

 global bot_log = open_log_file("irc-bots") &redef;

 global summary_interval = 1 min &redef;

 global detailed_logging = T &redef;

 global content_dir = "irc-bots" &redef;

 global bot_nicks =

 /^\[([^\]]+\|)+[0-9]{2,}]/ # [DEU|XP|L|00]

 | /^\[[^]+\]([^]+\|)+([0-9a-zA-Z-]+)/ # [0]CHN|3436036

[DEU][1]3G-QE

 | /^DCOM[0-9]+$/ # DCOM7845

 | /^\{[A-Z]+\}-[0-9]+/ # {XP}-5021040

 | /^\[[0-9]+-[A-Z0-9]+\][a-z]+/ # [0058-X2]wpbnlgwf

 | /^\[[a-zA-Z0-9]\]-[a-zA-Z0-9]+$/ # [SD]-743056826

 | /^[a-z]+[A-Z]+-[0-9]{5,}$/

 | /^[A-Z]{3}-[0-9]{4}/ # ITD-1119

 ;

 global bot_cmds =

 /(^| *)[.?#!][^

]{0,5}(scan|ndcass|download|cvar\.|execute|update|dcom|asc|scanall) /

 | /(^| +\]\[+)* (ipscan|wormride)/

 | /(^| *)asn1/

 ;

 global skip_msgs =

 /.*AUTH .*/

 | /.**** Your host is .*/

 235

 | /.**** If you are having problems connecting .*/

 ;

 redef enum Notice::Type += {

 IrcBotServerFound,

 IrcBotClientFound,

 };

 type channel: record {

name: string;

passwords: set[string];

topic: string &default="";

topic_history: vector of string;

 };

 type bot_client: record {

host: addr;

p: port;

nick: string &default="";

user: string &default="";

realname: string &default="";

channels: table[string] of channel;

servers: set[addr] &optional;

first_seen: time;

last_seen: time;

 };

 type bot_server: record {

host: addr;

p: set[port];

clients: table[addr] of bot_client;

global_users: string &default="";

passwords: set[string];

channels: table[string] of channel;

first_seen: time;

last_seen: time;

 };

 type bot_conn: record {

client: bot_client;

server: bot_server;

conn: connection;

fd: file;

ircx: bool &default=F;

 };

We keep three sets of clients/servers:

(1) tables containing all IRC clients/servers

(2) sets containing potential bot hosts

(3) sets containing confirmend bot hosts

Hosts are confirmed when a connection is established between

potential bot hosts.

FIXME: (1) should really be moved into the general IRC script.

 global expire_server:

 function(t: table[addr] of bot_server, idx: addr): interval;

 global expire_client:

 function(t: table[addr] of bot_client, idx: addr): interval;

 global servers: table[addr] of bot_server &write_expire=24 hrs

 &expire_func=expire_server &persistent;

 global clients: table[addr] of bot_client &write_expire=24 hrs

 &expire_func=expire_client &persistent;

 global potential_bot_clients: set[addr] &persistent;

 global potential_bot_servers: set[addr] &persistent;

 global confirmed_bot_clients: set[addr] &persistent;

 global confirmed_bot_servers: set[addr] &persistent;

All IRC connections.

 global conns: table[conn_id] of bot_conn &persistent;

Connections between confirmed hosts.

 global bot_conns: set[conn_id] &persistent;

Helper functions for readable output.

 global strset_to_str: function(s: set[string]) : string;

 global portset_to_str: function(s: set[port]) : string;

 global addrset_to_str: function(s: set[addr]) : string;

}

function strset_to_str(s: set[string]) : string

{

 236

 if (|s| == 0)

 return "<none>";

 local r = "";

 for (i in s)

 {

 if (r != "")

 r = cat(r, ",");

 r = cat(r, fmt("\"%s\"", i));

 }

 return r;

}

function portset_to_str(s: set[port]) : string

{

 if (|s| == 0)

 return "<none>";

 local r = "";

 for (i in s)

 {

 if (r != "")

 r = cat(r, ",");

 r = cat(r, fmt("%d", i));

 }

 return r;

}

function addrset_to_str(s: set[addr]) : string

{

 if (|s| == 0)

 return "<none>";

 local r = "";

 for (i in s)

 {

 if (r != "")

 r = cat(r, ",");

 r = cat(r, fmt("%s", i));

 }

 return r;

}

function fmt_time(t: time) : string

{

 return strftime("%y-%m-%d-%H-%M-%S", t);

}

event print_bot_state()

{

 local bot_summary_log = open_log_file("irc-bots.summary");

 disable_print_hook(bot_summary_log);

 print bot_summary_log, "---------------------------";

 print bot_summary_log, strftime("%y-%m-%d-%H-%M-%S", network_time());

 print bot_summary_log, "---------------------------";

 print bot_summary_log;

 print bot_summary_log, "Known servers";

 for (h in confirmed_bot_servers)

 {

 local s = servers[h];

 print bot_summary_log,

 fmt(" %s %s - clients: %d ports %s password(s) %s last-seen

%s first-seen %s global-users %s",

 "L",

 s$host, |s$clients|, portset_to_str(s$p),

 strset_to_str(s$passwords),

 fmt_time(s$last_seen), fmt_time(s$first_seen),

 s$global_users);

 for (name in s$channels)

 {

 local ch = s$channels[name];

 print bot_summary_log,

 fmt(" channel %s: topic \"%s\", password(s) %s",

 ch$name, ch$topic,

 strset_to_str(ch$passwords));

 }

 }

 print bot_summary_log, "\nKnown clients";

 for (h in confirmed_bot_clients)

 237

 {

 local c = clients[h];

 print bot_summary_log,

 fmt(" %s %s - server(s) %s user %s nick %s realname %s last-

seen %s first-seen %s",

 "L", h,

 addrset_to_str(c$servers),

 c$user, c$nick, c$realname,

 fmt_time(c$last_seen), fmt_time(c$first_seen));

 }

 close(bot_summary_log);

 if (summary_interval != 0 secs)

 schedule summary_interval { print_bot_state() };

}

function do_log_force(c: connection, msg: string)

{

 local id = c$id;

 print bot_log, fmt("%.6f %s:%d > %s:%d %s %s",

 network_time(), id$orig_h, id$orig_p,

 id$resp_h, id$resp_p, c$addl, msg);

}

function do_log(c: connection, msg: string)

{

 if (c$id !in bot_conns)

 return;

 do_log_force(c, msg);

}

function log_msg(c: connection, cmd: string, prefix: string, msg: string)

{

 if (skip_msgs in msg)

 return;

 do_log(c, fmt("MSG command=%s prefix=%s msg=\"%s\"", cmd, prefix, msg));

}

function update_timestamps(c: connection) : bot_conn

{

 local conn = conns[c$id];

 conn$client$last_seen = network_time();

 conn$server$last_seen = network_time();

To prevent the set of entries from premature expiration,

we need to make a write access (can't use read_expire as we

iterate over the entries on a regular basis).

 clients[cidorig_h] = conn$client;

 servers[cidresp_h] = conn$server;

 return conn;

}

function add_server(c: connection) : bot_server

{

 local s_h = cidresp_h;

 if (s_h in servers)

 return servers[s_h];

 local empty_table1: table[addr] of bot_client;

 local empty_table2: table[string] of channel;

 local empty_set: set[string];

 local empty_set2: set[port];

 local server = [$host=s_h, $p=empty_set2, $clients=empty_table1,

 $channels=empty_table2, $passwords=empty_set,

 $first_seen=network_time(), $last_seen=network_time()];

 servers[s_h] = server;

 return server;

}

function add_client(c: connection) : bot_client

{

 local c_h = cidorig_h;

 if (c_h in clients)

 return clients[c_h];

 local empty_table: table[string] of channel;

 local empty_set: set[addr];

 local client = [$host=c_h, $p=c$id$resp_p, $servers=empty_set,

 $channels=empty_table, $first_seen=network_time(),

 $last_seen=network_time()];

 238

 clients[c_h] = client;

 return client;

}

function check_bot_conn(c: connection)

{

 if (c$id in bot_conns)

 return;

 local client = cidorig_h;

 local server = cidresp_h;

 if (client !in potential_bot_clients || server !in potential_bot_servers)

 return;

New confirmed bot_conn.

 add bot_conns[c$id];

 if (server !in confirmed_bot_servers)

 {

 NOTICE([$note=IrcBotServerFound, $src=server, $p=c$id$resp_p, $conn=c,

 $msg=fmt("ircbot server found: %s:%d", server,

$p=c$id$resp_p)]);

 add confirmed_bot_servers[server];

 }

 if (client !in confirmed_bot_clients)

 {

 NOTICE([$note=IrcBotClientFound, $src=client, $p=c$id$orig_p, $conn=c,

 $msg=fmt("ircbot client found: %s:%d", client,

$p=c$id$orig_p)]);

 add confirmed_bot_clients[client];

 }

}

function get_conn(c: connection) : bot_conn

{

 local conn: bot_conn;

 if (c$id in conns)

 {

 check_bot_conn(c);

 return update_timestamps(c);

 }

 local c_h = cidorig_h;

 local s_h = cidresp_h;

 local client : bot_client;

 local server : bot_server;

 if (c_h in clients)

 client = clients[c_h];

 else

 client = add_client(c);

 if (s_h in servers)

 server = servers[s_h];

 else

 server = add_server(c);

 server$clients[c_h] = client;

 add server$p[c$id$resp_p];

 add client$servers[s_h];

 conn$server = server;

 conn$client = client;

 conn$conn = c;

 conns[c$id] = conn;

 update_timestamps(c);

 return conn;

}

function expire_server(t: table[addr] of bot_server, idx: addr): interval

{

 local server = t[idx];

 for (c in server$clients)

 {

 local client = server$clients[c];

 delete client$servers[idx];

 }

 delete potential_bot_servers[idx];

 delete confirmed_bot_servers[idx];

 return 0secs;

}

function expire_client(t: table[addr] of bot_client, idx: addr): interval

{

 239

 local client = t[idx];

 for (s in client$servers)

 if (s in servers)

 delete servers[s]$clients[idx];

 delete potential_bot_clients[idx];

 delete confirmed_bot_clients[idx];

 return 0secs;

}

function remove_connection(c: connection)

{

 local conn = conns[c$id];

 delete conns[c$id];

 delete bot_conns[c$id];

}

event connection_state_remove(c: connection)

{

 if (c$id !in conns)

 return;

 remove_connection(c);

}

event irc_client(c: connection, is_orig: bool, prefix: string, data: string)

{

 if (detailed_logging)

 print detailed_log, fmt("%.6f %s > (%s) %s", network_time(),

id_string(c$id), prefix, data);

 local conn = get_conn(c);

 if (data == /^ *[iI][rR][cC][xX] *$/)

 conn$ircx = T;

}

event irc_server(c: connection, is_orig: bool, prefix: string, data: string)

{

 if (detailed_logging)

 print detailed_log, fmt("%.6f %s < (%s) %s", network_time(),

id_string(c$id), prefix, data);

 local conn = get_conn(c);

}

event irc_user_message(c: connection, is_orig: bool, user: string, host: string,

server: string, real_name: string)

{

 local conn = get_conn(c);

 conn$client$user = user;

 conn$client$realname = real_name;

 do_log(c, fmt("USER user=%s host=%s server=%s real_name=%s", user, host,

server, real_name));

}

function get_channel(conn: bot_conn, channel: string) : channel

{

 if (channel in conn$server$channels)

 return conn$server$channels[channel];

 else

 {

 local empty_set: set[string];

 local empty_vec: vector of string;

 local ch = [$name=channel, $passwords=empty_set,

$topic_history=empty_vec];

 conn$server$channels[ch$name] = ch;

 return ch;

 }

}

event irc_join_message(c: connection, is_orig: bool, info_list: irc_join_list)

{

 local conn = get_conn(c);

 for (i in info_list)

 {

 local ch = get_channel(conn, i$channel);

 if (i$password != "")

 add ch$passwords[i$password];

 conn$client$channels[ch$name] = ch;

 do_log(c, fmt("JOIN channel=%s password=%s", i$channel, i$password));

 }

}

global urls: set[string] &read_expire = 7 days &persistent;

 240

event http_request(c: connection, method: string, original_URI: string,

 unescaped_URI: string, version: string)

{

 if (original_URI in urls)

 do_log_force(c, fmt("Request for URL %s", original_URI));

}

event irc_channel_topic(c: connection, is_orig: bool, channel: string, topic: string)

{

 if (bot_cmds in topic)

 {

 do_log_force(c, fmt("Matching TOPIC %s", topic));

 add potential_bot_servers[cidresp_h];

 }

 local conn = get_conn(c);

 local ch = get_channel(conn, channel);

 ch$topic_history[|ch$topic_history| + 1] = ch$topic;

 ch$topic = topic;

 if (c$id in bot_conns)

 {

 do_log(c, fmt("TOPIC channel=%s topic=\"%s\"", channel, topic));

 local s = split(topic, / /);

 for (i in s)

 {

 local w = s[i];

 if (w == /[a-zA-Z]+:\/\/.*/)

 {

 add urls[w];

 do_log(c, fmt("URL channel=%s url=\"%s\"",

 channel, w));

 }

 }

 }

}

event irc_nick_message(c: connection, is_orig: bool, who: string, newnick: string)

{

 if (bot_nicks in newnick)

 {

 do_log_force(c, fmt("Matching NICK %s", newnick));

 add potential_bot_clients[cidorig_h];

 }

 local conn = get_conn(c);

 conn$client$nick = newnick;

 do_log(c, fmt("NICK who=%s nick=%s", who, newnick));

}

event irc_password_message(c: connection, is_orig: bool, password: string)

{

 local conn = get_conn(c);

 add conn$server$passwords[password];

 do_log(c, fmt("PASS password=%s", password));

}

event irc_privmsg_message(c: connection, is_orig: bool, source: string, target:

string,

 message: string)

{

 log_msg(c, "privmsg", source, fmt("->%s %s", target, message));

}

event irc_notice_message(c: connection, is_orig: bool, source: string,

 target: string, message: string)

{

 log_msg(c, "notice", source, fmt("->%s %s", target, message));

}

event irc_global_users(c: connection, is_orig: bool, prefix: string, msg: string)

{

 local conn = get_conn(c);

Better would be to parse the message to extract the counts.

 conn$server$global_users = msg;

 log_msg(c, "globalusers", prefix, msg);

}

event Input::end_of_data(name: string, source: string) {

for(ip in suspicious) {

 #print ip;

 241

 }

}

event bro_done()

{

}

event bro_init() &priority = -5

{

 if (summary_interval != 0 secs)

 schedule summary_interval { print_bot_state() };

Log::disable_stream(Conn::LOG);

Log::disable_stream(HTTP::LOG);

Log::disable_stream(Files::LOG);

}

F.3 Sample of Snort Rules for Botnet Detection

alert udp $HOME_NET 1024:65535 -> $EXTERNAL_NET 1024:65535 (msg:"E7[rb] BOTHUNTER

Storm(Peacomm) Peer Coordination Event [SEARCH RESULT]"; content:"|E311|"; depth:5;

rawbytes; pcre:"/[0-9]+\.mpg\;size\=[0-9]+/x"; rawbytes; classtype:bad-unknown;

sid:9910013; rev:99;)

alert udp $HOME_NET 1024:65535 -> $EXTERNAL_NET 1024:65535 (msg:"E7[rb] BOTHUNTER

Storm Worm Peer Coordination Event [PUBLISH]"; content:"|E313|"; depth:5; rawbytes;

pcre:"/[0-9]+\.mpg\;size\=[0-9]+/x"; rawbytes; classtype:bad-unknown; sid:9910011;

rev:99;)

	FRONT MATTER
	Copyright Page
	Title Page
	Certification
	Permission to Use
	Abstrak
	Abstract
	Acknowledgement
	Table of Contents
	List of Tables
	List of Figures
	List of Appendices
	List of Abbreviations
	List of Publications

	MAIN CHAPTER
	CHAPTER ONE: INTRODUCTION
	1.1 Background

	REFERENCES
	Appendix

