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Abstrak 

Ujian-t pelajar dan ujian-F ANOVA adalah ujian statistik klasik untuk 
membandingkan dua atau lebih kumpulan bebas. Kedua-duanya adalah ujian yang 
berkuasa apabila data tertabur normal dan mempunyai varians homogen. Walau 
bagaimanapun, data dengan pencirian tersebut adakalanya sukar untuk dipenuhi dalam 
kehidupan sebenar dan akan memberi kesan kepada kawalan kadar ralat Jenis I dan 
mengurangkan kuasa ujian statistik tersebut. Statistik-H adalah statistik teguh namun 
hanya mampu menunjukkan prestasi yang baik hanya pada set data tidak normal. 
Statistik ini telah diinovasikan dengan penganggar MOM dan ditandai sebagai MOM-
H. Oleh yang demikian, dalam kajian ini, dua statistik-H terubah suai dengan min 
menggunakan pendekatan terWinsor adalah dicadangkan untuk menangani 
ketidakpatuhan kedua-dua pencirian tersebut. Statistik yang dicadangkan adalah 
statistik-H dengan min terWinsor (WM) dan statistik-H dengan min terWinsor suai 
(AWM) yang masing-masing ditandai sebagai WM-H dan AWM-H. Menggunakan 
pengubahsuaian ini, prestasi ujian lebih baik bukan sahaja pada ketidaknormalan, 
tetapi juga pada keheterogenan varians. Pendekatan ini menggunakan nilai awal iaitu 
15% dan 25% nilai peWinsoran Pendekatan WM meWinsor secara simetri manakala 
AWM meWinsor secara tersuai mengikut bentuk taburan berdasarkan penganggar 
engsel, HQ dan HQ1. Statistik WM-H terdiri daripada 15WM-H dan 25WM-H, 
manakala AWM-H terdiri daripada 15WHQ-H, 25WHQ-H, 15WHQ1-H dan 25WHQ1-
H. Prestasi ujian yang dicadangkan adalah dinilai dengan menggunakan Kadar Ralat 
Jenis I dan kuasa ujian berdasarkan kajian simulasi. Semua keputusan daripada ujian 
yang dicadangkan dibandingkan dengan ujian statistik-H yang asal, MOM-H dan 
statistik klasik. Pada taburan terpencong, WM-H menunjukkan prestasi lebih baik 
berbanding dengan yang lain tetapi setanding dengan MOM-H. Secara keseluruhan 
ujian yang dicadangkan dapat memberikan hasil yang lebih baik daripada MOM-H dan 
ujian statistik klasik pada keadaan tertentu. Ujian yang dicadangkan juga 
ditentusahkan menggunakan set data sebenar. 

Kata kunci: Pendekatan terWinsor, Penganggar engsel, Kadar ralat Jenis I, Kuasa 
ujian, Statistik-H 
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Abstract 

Student’s t-test and ANOVA F-test are the classical statistical tests for comparing two 
or more independent groups. Both are powerful tests when data is normally distributed 
and variances are homogenous. However, the data with these properties sometime is 
difficult to be met in real-life will affect the Type I error rates control and reduce 
statistical power of the tests. H-statistic is a robust statistic but performs well only 
under non-normality dataset. This statistic had been invented with MOM estimator 
denoted as MOM-H. Therefore, in this study, two modified H-statistic with mean using 
Winsorizing approach are proposed to handle both violated properties. The proposed 
statistics are the H-statistic with Winsorized mean (WM) and the H-statistic with 
adaptive Winsorized mean (AWM) which denoted as WM-H and AWM-H, respectively. 
Using this modification, the tests perform better not only under non-normality, but also 
under heterogeneity of variances. The approach use predetermined values of 15% and 
25% Winsorization. The WM is Winsorizing symmetrically while the AWM is 
Winsorizing adaptively according to the shape of distribution based on hinge 
estimators, HQ and HQ1. The WM-H statistic consists of 15WM-H and 25WM-H, 
whereas the AWM-H comprises of 15WHQ-H, 25WHQ-H, 15WHQ1-H and 25WHQ1-
H. The performances of the proposed tests are evaluated using Type I error rates and 
power of test based on simulation study. All the results from the proposed tests are 
compared with the original H-statistic, MOM-H and classical statistical tests. The 
findings indicate that 15WHQ-H performs the best for two groups case especially 
under heavy tailed distribution. Under skewed distribution, WM-H has better 
performance to others but comparable to MOM-H. In overall the proposed tests are 
able to give better results than the MOM-H and the classical statistical tests under 
certain conditions. The proposed tests are also validated using real dataset. 

Keywords: Winsorizing approach, Hinge estimator, Type I error rates, Power of test, 
H-statistic 
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CHAPTER ONE 

INTRODUCTION

1.1 Background 

In the case of employing classical procedures in comparing independent groups, the 

normality of distribution and the homogeneity of variances among the groups are the 

primary concerns that will affect the analysis results. The devastating effect on 

controlling Type I errors rate and reducing the statistical power will happen when 

dispersion in these criteria occurs. (Syed Yahaya, 2005; Syed Yahaya, Othman, & 

Keselman, 2006; Keselman, Algina, Lix, Wilcox, & Deering, 2008). In order to deal 

with these violation of assumptions, the alternative procedures such as non-parametric 

procedure may be employed. However, the use of this procedure may cause loss of 

information as this procedure is testing on the ranking value rather than on the original 

parametric value (Siegel, 1957).  

Besides the non-parametric procedure, another common method used to deal with the 

violation of normality is simple data transformation. In other words, each observation 

of the data is transformed by taking inverse, logarithms, square roots, or other 

transformations, before performing test analysis (Rasmussen, 1989; Wilcox & 

Keselman, 2003a). Based on Rasmussen’s study in 1989, an accurate transformation 

may provide better control of Type I error rate and increase the statistical power under 

more non-normal distribution. However, for the mildly skewed data or the data that 

have groups with skewed data in opposite directions, it may not be advantageous. 

Furthermore, the transformations are complicated to perform and wrong or inaccurate 

transformation being chosen will affect the accuracy of the analysis results.  
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Another alternative method is the robust statistics approaches proposed to deal with 

the violation of assumptions problem when classical statistical procedures are used. 

Robust statistics is very powerful and able to perform well in terms of Type I error rate 

control and maintain adequate power rate, even under non-normal and heterogeneity 

of variances data (Erceg-Hurn & Mirosevich, 2008). As a result, the better solution to 

deal with the violating assumptions in statistical test analysis is by moving forward to 

robust statistics that able to derive a better test and improved performance compared 

to those from traditional Student’s t-test and analysis of variance (ANOVA) F-test. 

In recent years, several robust statistical tests have been proposed to deal with the non-

normal distribution and heteroscedasticity data. For example, the Welch test was 

developed to handle the problem of heteroscedasticity whereas the H-statistic was 

proposed to deal with the non-normality data (Welch, 1947; Welch, 1951; Othman, 

Keselman, Padmanabhan, Wilcox, & Fradette, 2004). However, the challenge in 

robust statistical tests development is to obtain a good test with better control of Type 

I error rate as well as able to achieve high in power under violated assumptions 

condition.  

The H-statistics was originally proposed by Schrader and Hettmansperger (1980) in 

which it is readily adaptable to any central tendency measure. It gives reasonably good 

results in comparison when using M-estimator, but it is not recommended for central 

tendency comparison that uses mean or even trimmed mean (Wilcox, 2012). Keselman, 

Wilcox, Othman, and Fradette (2002) replaced modified one-step M-estimator (MOM) 

as central tendency measure in H-statistic (denote as MOM-H) and this robust statistic 

was further studied by Othman et al. (2004). In their study, they found that this robust 

statistic is able to produce better control in Type I error rate and increase the statistical 
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power under skewed distribution. Syed Yahaya (2005) furthers the study on MOM-H. 

She proposed the approach of MOM-H with robust scale estimators, which are MADn, 

Sn, and Tn. She found that MOM-H is well in control over probability of Type I error 

under normal distribution but fair under non-normal distribution. 

1.2 Problem Statement 

The statistical test is a tool to compare and test the equality of central tendency of two 

or more independent groups. However, the commonly used central tendency measure 

such as mean is sensitive to the presence of outliers. The presence of outliers will lead 

to wrong interpretation of the results of the statistical analysis. The robust central 

tendency measure is one of the recommended statistics used to deal with the problem 

of the presence of outliers by using trimming approach to trim the observations at both 

tails of distribution (Wilcox & Keselman, 2003a). The usual trimmed mean is one of 

the trimming approaches that simply removes or trims a fixed proportion on both tails 

(left and right) of the distribution symmetrically and obtains the mean by average the 

remaining data. This trimmed amount is a predetermined trimming percentage without 

checking for outliers beforehand (Wilcox & Keselman, 2003a). If 0% proportion of 

trimming is set, the result of the trimmed mean is treated as a sample mean, and the 

trimmed mean is equal to a median when the maximum possible amount of trimming 

which is 50% for each tail (Wilcox, 2003). However, the number of data to be trimmed 

is a question to be asked before performing the trimming process.  

In previous study, Huber (1972) suggested that the trimmed mean with the trimming 

percentage between 1% and 10% should be an almost efficient estimate and 

commented that 5% trimming percentage may provide even better on the average. He 

also proposed 15% trimmed mean to deal with the not-so-long-tailed distribution. The 
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15% of trimming percentage was also recommended by Mudholkar, Mudholkar and 

Srivastava (1991). This is because they found that the 15% of trimming percentage is 

adequate for most practical situations. Stigler (1977) suggested 10% trimmed mean for 

the data sets that exhibit a slight tendency toward more extreme value. Rosenberger 

and Gasko (1983) proposed 20% of trimming in general to achieve a relatively small 

standard error, and suggested 25% of trimming for small sample sizes. Wilcox and 

Keselman (2003b) showed that 25% to 50% trimmed mean or a proportion of trimmed 

mean of at least 25% will have good control over the probability of Type I error but 

have the potential of substantially reducing the power rate. Under normality, Wilcox 

(2003) proposed 20% of trimming as a reasonable default value based on small 

standard error achieving criteria, as well as to avoid the low power and obtain good 

control of Type I error rate.  

Beside the trimmed amount, the trimming process is also another factor of concern. 

As mentioned before, the trimming process of usual trimmed mean is symmetrical 

trimming and may cause the loss of important information. This trimming is performed 

by trimming the data symmetrically on left and right tails without checking the pattern 

of distribution. It simply removes the data according to predetermined trimmed 

proportion on both tails even under normal distribution. However, the data should not 

be trimmed at all when the data is normally distributed. For data with skewed 

distribution, the usual trimmed mean also trims the data symmetrically regardless of 

the shape of the data distribution. In practical, this type of data should be trimmed 

more on the right if the distribution is skewed to the right and vice versa. 

To deal with the skewed distributed data, the asymmetric trimmed mean proposed by 

Hogg (1974) is applied.  The asymmetric trimmed mean is similar to the usual trimmed 
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mean, but it allows asymmetric trimming according to the shape of distribution as its 

strength. The asymmetric trimmed mean was modified by Keselman, Wilcox, Lix, 

Algina, and Fradette (2007) with the use of the hinge estimator to determine the 

proportion of trimming. This approach is called adaptive trimmed mean using hinge 

estimator. The hinge estimator determines the trimming proportion of the adaptive 

trimmed mean based on the shape of the distribution where the proportion of trimming 

for right tail is more than left tail when the distribution is skewed to the right and vice 

versa. The hinge estimator was proposed by Reed and Stark (1996) where seven hinge 

estimators was proposed. The HQ and HQ1 are the best among the top estimators 

recommended by Keselman et al. (2007). They are used in adaptive trimmed mean as 

these two estimators provide better control of Type I error rate in Welch test.  

There are two descriptions for trimming proportion or trimming percentage. First, the 

trimming proportion is defined as the trimmed amount for each tail and this is used in 

usual trimmed mean. The other description is used in Keselman et al. (2007) where 

the proportion of trimming is the total proportion required to trim from the sample data. 

As mentioned before, the adaptive trimmed mean using hinge estimator is similar to 

the usual trimmed mean in which it needs a predetermined trimming percentage. 

However, its proportion of trimming is the total trimmed proportion. In Keselman et 

al. (2007), the results showed that 15% and 25% of trimming provided better control 

of Type I error rate and higher statistical power. Under extremely non-normal 

distribution, 10% of trimming provided good performance in their study. On the other 

hand, 15% trimming using HQ1 obtained a good control of Type I error rate and is 

recommended by Abdullah (2011). 
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Wilcox and Keselman (2003b) proposed modified one-step M-estimator (MOM) 

which was transformed from the Staudte and Sheather (1990) one-step M-estimator. 

This is another central tendency measure proposed to deal with skewed distributed 

data. The trimming process is done empirically based on the outlier detection criteria. 

MOM trims the data flagged as outliers. There is a possibility of no trimming at all or 

different amounts of trimming in each tail (Wilcox & Keselman, 2003b). From the 

study of Wilcox and Keselman (2003b), MOM has obtained relatively good power 

under normality, and has performed well and provided good control in Type I error 

rate when the sample size is small. MOM has a substantially smaller standard error, 

but may not be the case when comparing with mean sometimes (Wilcox, 2012). 

However, the outlier is very difficult to detect and failure of outlier detection will affect 

the power rate of a statistical test (Wilcox, 2003). 

In general, the means determined based on the trimming approaches (usual trimmed 

mean, adaptive trimmed mean and empirically trimmed mean) are obtained by 

calculating the average of the remaining data after the trimming process. These 

trimming procedures may cause the sample size to be reduced or always changing. 

Furthermore, this will cause the loss of important information when the data is 

discarded. The Winsorized approach mean is another statistical measurement of 

central tendency suggested by Charles P. Winsor as mentioned in Dixon (1960). 

Instead of discarding the data, the discarded data is replaced with the highest and 

lowest values of the remaining data, then the Winsorized mean (symmetrically) 

calculates by averaging all the data (Tukey & McLaughlin, 1963). Ahmad Mahir and 

Al-Khazaleh (2009) found that the asymmetrical Winsorized mean consistently 

performed better than other methods used in their study.  The Winsorized approach 

mean preserves the sample size after the trimming process. By mention at the 
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motivation, modified H-statistic with Winsorized approach mean (symmetrically and 

adaptively using hinge estimator) were proposed to improve the performance in 

controlling the Type I error rate and obtain high power under non-normal distribution, 

heterogeneity of variances and the unbalance of sample sizes conditions. 

1.3 Objective of the Study 

The main goal of this study is to modify the H-statistic with Winsorized approach 

mean in order to be applicable under various data conditions without worrying for any 

violation of the assumption. In order to meet this objective, several sub-objectives to 

be accomplished as listed below: 

i. Develop the modified test statistic known as modified H-statistic with 

Winsorized mean (WM-H) and modified H-statistic with adaptive Winsorized 

mean (AWM-H) that use the Winsorized approach mean (symmetrically or 

adaptively) as the central tendency measure in H-statistic. 

ii. Investigate the performance of the proposed test statistic in terms of Type I error 

rate and power.  

iii. Compare the robustness of the test statistic against the existing procedures (t-

test, F-test and MOM-H) under various conditions.  

iv. Investigate the ability of the proposed procedures on real data 

(education/health/finance/manufacturing). 

1.4 Significance of the Study 

The success of this study will be able to move forward the experimental design 

methodology in various fields. Normality of data and homogeneity of variances among 

treatment groups have been the main concerns of analysts when they perform their 

analysis as the results may be biased if the conditional assumption is not fulfilled. 
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Therefore, the new methodology proposed in this study will be advantageous to the 

researchers in various areas (especially experimental sciences). In particular, the 

researchers can proceed with their original data without much concern regarding the 

characteristic of their data.  

1.5 Organization of the Thesis 

There are five chapters in this study. The first chapter describes the problem faced 

when the statistical test uses classical procedures and reviews the alternative 

procedures proposed by other researchers to deal with the problem. Besides, the robust 

statistics and the proposed procedures are also briefly introduced in Chapter One. The 

procedure and the robust central tendency measures used in this study are further 

reviewed and described in detail with some of the past and contemporary research 

findings in Chapter Two. Chapter Two also explains some important terminologies 

such as Type I error rate, statistical power and bootstrap method.  

In Chapter Three of this study, the way to conduct the empirical investigation is 

described. The design and selection of the test conditions to evaluate the performance 

of the procedures are discussed in this chapter. This chapter also discusses the data 

generation of four types distribution from the standard normal. Another section in 

Chapter Three describes the setting of central tendency measures for the power 

analysis that focuses on the pattern and the effect size.  

The results of the evaluation on the procedures are discussed in Chapter Four. The 

performance of the procedures was evaluated via the ability of Type I error rate control 

and statistical power performance. Chapter Five ends this study with discussion and 

conclusion as well as suggestions for further studies.
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

Statistical test is a powerful tool to test the equality of the central tendency measure of 

the independent treatment groups. However, non-normality and heteroscedasticity are 

the challenges when classical statistic procedures are used. For example, analysis of 

variance (ANOVA) is one of the widely used classical parametric statistical tests and 

its ability to detect true differences would be seriously hampered when the assumptions 

of normality and homoscedasticity are not met (Syed Yahaya, 2005). Moreover, in real 

data analysis, these assumptions are hard to attain. This violation of assumptions will 

affect the results and lead to wrong interpretation of the data analysis when classical 

procedures are used (Erceg-Hurn & Mirosevich, 2008). Therefore, researchers had 

made effort to seek for alternative statistical procedures that are able to provide 

accurate results under any condition even when the assumptions are violated. This is 

the answer of why robust statistical test procedures are developed and keep moving 

forward, to alleviate the problems inherent with the violation of assumptions when 

parametric statistical tests are used. The robustness of the statistical tests is assessed 

from its ability of controlling Type I error rate and power. 

Type I error rate is also known a significance level. It is often denoted by 𝛼 and defined 

as the probability of rejecting the null hypothesis when it is true. The null hypothesis 

of the central tendency measure equality test as 

H0: θ1 = θ2 = ⋯ = θj,  

where θi is the measure of central tendency for group i distribution, Fi: i = 1, 2, …, j. 

The probability of the Type I error or the rate of Type I error (denoted as ρ) is the 
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proportion or percentage of significant statistical test to check the equality of the 

central tendency measures. It should be a small value and close to the nominal 

(significance) value. The robustness of the statistical tests is referring to the ability of 

a procedure to maintain the ρ value at its nominal level, α. Based on the robustness 

criterion proposed by Bradley (1978), a procedure is considered robust if its ρ is within 

0.5α and 1.5α. For nominal level, α = 0.05, the interval for ρ should be from 0.025 to 

0.075. The ρ of a test tends to differ from the nominal level, α when the violation 

assumptions occur and the null hypothesis is true (Bradley, 1978). 

The power of the statistical test is the probability that the false null hypothesis is 

correctly rejected, that is, the probability that a statistically significant result is 

obtained (Cohen, 1988, 1992b). The power of statistical test is denoted by 1 − β, where 

β is the Type II error. The Type II error rate is the probability of failing to reject the 

false null hypothesis. In convention, Cohen (1992a, 1992b) proposed 80% as the 

desired value of power for general use. However, 50% of statistical power is the 

minimum accepted value and values smaller than this are likely to fail (reject null 

hypothesis) than to succeed (Murphy, Myors & Wolach, 2008). The power of the 

statistical test depends on the significance level, α, the sample size, n, and the effect 

size, f (Cohen, 1992b). 

In terms of α, the lower α value without predicted direction results in lower statistical 

power. While for sample size, the larger the sample size, the more precise the results 

and the higher the statistical power (Cohen, 1988). Cohen (1992b) defined the effect 

size as the difference between the null hypothesis and alternative hypothesis. The 

smaller effect size means smaller discrepancy between the null hypothesis and 

alternative hypothesis, thus results in lower power of a statistical test. Therefore, the 
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higher statistical power can be obtained by the increment of α or sample size, or by 

larger effect size. 

2.2 Measure of Central Tendency 

The measure of central tendency is the key factor of statistical test. One of the purpose 

of comparing independent groups test is to testing the equality of the central tendency 

measure for two or more distributions.  For example, the Student’s t-test is calculated 

by taking the difference between two means divided by the standard error, 

 t = X̅1 − X̅2

√
S1

2

n1
 + 

S2
2

n2

                  (2.1) 

where X̅i is the measure of central tendency for group i distribution, Fi: i = 1, 2, …, j. 

S𝑖
2 and n𝑖 are the group i, i = 1, 2, …, j variance and sample size respectively. Mean is 

a commonly used central tendency measure. However, it is sensitive to the presence 

of outliers and this will affect the results of the statistical test. Therefore, a robust 

measure of central tendency is required to obtain a better result of statistical test in 

controlling Type I error rate and higher statistical power even under the conditions of 

violated assumptions. The usual trimmed mean is one of the robust measures of central 

tendency that is commonly used. It discards the data symmetrically on both tails. 

Besides, there are also asymmetric trimmed mean that allows asymmetrical trimming, 

and empirically trimmed mean, which trims the outlier only. 

2.2.1 Usual Trimmed Mean 

The usual trimmed mean (γ-trimmed mean) is one of the earlier robust central tendency 

measures that is used as an alternative central tendency measure in a statistical test. It 

is done by symmetrically trimming the smallest, the largest or both values of the data 

according to a percentage of trimming which is fixed without assessing the 
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characteristic of the data distribution (Keselman et al., 2007). The mean is calculated 

by the average of the remaining trimmed data. For instance, Xij = (x1j, x2j, …, xnj) are 

a random sample in ordered and associated with the jth group and 𝛾-trimmed mean is 

defined as 

mt(γ) = 
1
q

 ∑  Xij
n - k
i = 1+k                            (2.2) 

where γ  is the trimming percentage where the proportion of observations will be 

trimmed from each tail of the distribution. The k = [nγ] is rounded down to the nearest 

integer and q = n − 2k, so that q = n − 2nγ. 

When conducting the γ -trimmed mean, the trimming process must be done with 

caution due to two drawbacks of γ-trimmed mean. In particular, the quantity of the 

data to be trimmed and the issue of symmetrically trimming must be considered. This 

is to avoid the loss of important information during the process. Furthermore, the shape 

of the data distribution, whether normal or non-normal is unable to be identified 

without further assessment (Wilcox & Keselman, 2003a). When the data is skewed or 

is a heavy-tailed distribution, the data should be trimmed asymmetrically according to 

the shape of the distribution rather than trimmed symmetrically. 

2.2.2 Adaptive Trimmed Mean 

The adaptive trimmed mean is an alternative robust central tendency measure that is 

able to deal with the drawbacks of 𝛾-trimmed mean. The adaptive trimmed mean is 

done asymmetrically by referring to the characteristic of the data distribution before 

executing the trimming process (Keselman et al., 2007). The adaptive trimmed mean 

was originally proposed by Hogg (1974) and is defined as 

𝑚𝑡(𝛾ℓ, 𝛾𝑢) =
1

𝑞
∑ 𝑋𝑖𝑗

𝑛−𝑘2
𝑖=1+𝑘1

                 (2.3) 
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where 𝛾ℓ and 𝛾𝑢 are the lower and upper trimming percentage respectively.  So, 𝑘1 =

[𝑛𝛾ℓ], 𝑘2 = [𝑛𝛾𝑢]  and 𝑞 = 𝑛 − 2𝑘1 − 𝑘2. 

Keselman et al. (2007) adopted the adaptive trimmed mean by Hogg (1974) with 

collaboration with hinge estimators from Reed and Stark (1996) to obtain a better 

measure of central tendency. The hinge estimators used in the adaptive trimmed mean 

suit the trimming process to the shape of data distribution. Reed and Stark (1996) 

defined seven hinge estimators namely HQ, HQ1 and HH3 from tail length measure, 

and HQ2, HH1, HSK2 and HSK5 from measure of skewness. Among these seven hinge 

estimators, HQ and HQ1 are recommended as the best and most efficient estimators 

with a good control of Type I error rate in Welch test (Keselman et al., 2007; Reed & 

Stark, 1996). 

2.2.2.1 Hinge estimator, HQ 

The hinge estimator HQ was defined by Reed and Stark (1996) from the tail-length 

measure Q, which was proposed by Hogg (1974) 

Q =
U.05 - L.05
U.5 - L.5

                  (2.4) 

where Lα is the mean of the smallest 𝛼𝑛 observations and Uα is the mean of the largest 

𝛼𝑛 observations. The Q can be used to classify the symmetric distributions as light-

tailed (Q < 2), medium-tailed (2 ≤ Q ≤ 2.6), heavy-tailed (2.6 ≤ Q ≤ 3.2) and very 

heavy-tailed (Q > 3.2) (Reed & Stark, 1996). 

Reed and Stark (1996) defined HQ as 

HQ =
UWQ

UWQ +  LWQ
                                (2.5) 
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where UWQ =
∑ 𝑛𝑗(U.05 - L.05)J

𝑗=1

∑ 𝑛𝑗
J
𝑗=1

 and LWQ =
∑ 𝑛𝑗(U.5 - L.5)J

𝑗=1

∑ 𝑛𝑗
J
𝑗=1

. The 𝛾 is the total percentage 

to be trimmed from the data. So, the 𝛾ℓ is the lower proportion of trimming, 

𝛾ℓ = 𝛾HQ = 𝛾
UWQ

UWQ +  LWQ
                (2.6) 

and the upper proportion to be trimmed is calculated by 

𝛾𝑢 = 𝛾 − 𝛾ℓ                  (2.7) 

From the study of Keselman et al. (2007), the HQ is the second best hinge estimator 

in controlling Type I error rate.  

2.2.2.2 Hinge estimator, HQ1 

Another hinge estimator defined by Reed and Stark (1996) based on Hogg’s (1974) 

tail-length measure, Q1 is HQ1,  

Q1 =
U.2 - L.2
U.5 - L.5

                  (2.8) 

Q1 is the tail-length measure proposed by Hogg (1974) and it is used for the 

classification of symmetric distributions as light tail distribution when Q1 is smaller 

than 1.81, medium tail distribution when Q1 is from 1.81 to 1.87 and heavy tail 

distribution when Q1 is larger than 1.87. Its algorithm is similar to HQ, and differs 

from HQ in the criteria of  UWQ1
 where 𝛼 is equal to 0.2. The HQ1 was defined by 

Reed and Stark (1996) as 

HQ1 =
UWQ1

UWQ1  + LWQ1
                           (2.9) 

Keselman et al. (2007) recommended adaptive trimmed mean using HQ1 in 

heteroscedastic statistic as it is able to obtain better control of Type I error rate and 

good power to detect the effects. Abdullah (2011) also recommended HQ1 as it 

obtained good control of Type I error rate in her study. 
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2.2.3 Modified one-step M-Estimator (MOM) 

The modified one-step M-estimator (MOM) proposed by Wilcox and Keselman 

(2003b) was transformed from one-step M-estimator (Staudte and Sheather, 1990). It 

is quite similar to the adaptive trimmed mean in terms of the data trimming approach, 

which is based on data distribution. However, the difference in MOM is the trimming 

process that is done empirically based on the outlier detection criteria, in which 𝑋𝑖𝑗 is 

flagged as an outlier if 

|𝑋𝑖𝑗 − M̂𝑗| > 2.24(MADn)              (2.10) 

where 

 M̂𝑗 = median of jth group 

MADn =
MAD

0.6745
  

MAD = median of the value |𝑥1𝑗 − M̂𝑗|, |𝑥2𝑗 − M̂𝑗|, ⋯ , |𝑥𝑛𝑗 − M̂𝑗| 

MOM was defined by Wilcox and Keselman (2003b) as 

𝜃 = ∑
𝑋𝑖𝑗

𝑛𝑗−𝑘1𝑗−𝑘2𝑗

𝑛𝑗−𝑘2𝑗

𝑖=𝑘1𝑗+1
                        (2.11) 

where 

 𝑋𝑖𝑗 = the 𝑖𝑡ℎ ordered observations in group 𝑗. 

𝑛𝑗 = number of observations for group 𝑗.  

𝑘1𝑗 = number of  observations 𝑋𝑖𝑗 that (𝑋𝑖𝑗 − M̂𝑗) < −2.24 MADn  

𝑘2𝑗 = number of  observations 𝑋𝑖𝑗 that (𝑋𝑖𝑗 − M̂𝑗) > 2.24 MADn  

MOM is able to adapt in small sample sizes statistical test with 2.24 as suggested by 

Wilcox and Keselman (2003b). The proposed constant of 2.24 is due to reasonably 

good efficiency obtained under normality for n, which is less than 100. MOM also 

provides relatively good power under normality and good control of the Type I error 



16 
 

rate under non-normal distribution and small sample size (Wilcox & Keselman, 2003b). 

However, the trimming process based on outlier detection criteria will lead to 

unsatisfactory test result when it fails to detect the outlier.  

2.2.4 Winsorized Mean (WM) 

Winsorized mean (WM) is another robust central tendency measure, which determines 

the mean by using the Winsorizing approach suggested by Charles P. Winsor. It 

appears similar to the usual trimmed mean, but it substitutes the trimmed values with 

the nearest retained values, rather than trimming them away (Tukey & McLaughlin, 

1963; Dixon & Tukey, 1968). This allows the sample size to remain the same. The 

WM modified from Equation 2.2 is given as 

𝑚𝑤(𝛾) =
1

𝑛
∑ 𝑋𝑖𝑗

𝑛−𝑘
𝑖=1+𝑘 + 𝑘(𝑋1+𝑘𝑗 + 𝑋𝑛−𝑘𝑗)              (2.12) 

where  

𝛾 = the proportion of the observations from each tail of the distribution that will be 

replaced  

𝑘 = [𝑛𝛾] = the number of substituted values taken to the nearest rounded down integer 

Dixon (1960) and Rivest (1994) showed that using the WM as the central tendency 

measure under normally and skewed distributed data provided better results in their 

studies.  

As mentioned above, the WM appear like the usual trimmed mean. Therefore, its 

Winsorizing process is similar to the trimming process. The data is winsorized 

symmetrically regardless of skewed or heavy-tailed distributed data. Therefore, the 

loss of information also occurs on WM when performing the Winsorizing process. The 

data should be winsorized adaptively according to the shape of the distribution for 

skewed or heavy-tailed distributed data. 
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2.2.5 Adaptive Winsorized Mean (AWM) 

To deal with the problem of symmetric Winsorizing as mentioned in previous sub-

section, adaptive Winsorized mean (AWM) is the alternative robust central tendency 

measure to be used. The AWM is able to perform the Winsorizing process according 

to the shape of the distribution, either symmetrical or asymmetrical. The AWM is 

defined as 

𝑚𝑤(𝛾ℓ, 𝛾𝑢) =
1

𝑛
∑ 𝑋𝑖𝑗

𝑛−𝑘2
𝑖=1+𝑘1

+ 𝑘1𝑋1+𝑘1𝑗 + 𝑘2𝑋𝑛−𝑘2𝑗          (2.13) 

which is modified from Equation 2.3, where 𝛾ℓ  and 𝛾𝑢  are the lower and upper 

Winsorizing proportions respectively.  So, 𝑘1 = [𝑛𝛾ℓ] and 𝑘2 = [𝑛𝛾𝑢].  

The Winsorizing percentage of AWM is set priory as Winsorized mean (WM). 

However, the amount to winsorize for each tail depends on the shape of the data. Then, 

the average of after adaptive Winsorizing process data us taken to get the AWM. 

The aforementioned robust central tendency measure such as adaptive trimmed mean 

using hinge estimator and WM proved to produce better results in statistical testing. 

Therefore, this study proposes the use of Winsorizing approach (symmetrical or 

asymmetrical using hinge estimator). In order to deal with the non-normal data, this 

study suggests the AWM rather than the WM. However, the WM is also proposed to 

assess its performance in proposed statistical test, H-statistic. 

2.3 H-statistic 

H-statistic is one of the robust statistical procedures that readily adapts to any central 

tendency measure. It gives reasonably good results when using M-estimator, but it is 

not recommended for mean or even trimmed mean (Wilcox, 2012). Schrader and 

Hettmansperger (1980) originally proposed this robust statistical test and defined as 
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𝐻 =
1

𝑁
∑ 𝑛𝑗(𝜃𝑗 − 𝜃.)

2J
𝑗=1                                                      (2.14) 

𝑁 = ∑ 𝑛𝑗𝑗   

 𝜃. = ∑
𝜃̂𝑗

𝐽𝑗  

Othman et al. (2004) modified this statistic with modified one-step M-estimator (MOM) 

as its central tendency measure, 𝜃 rather than M-estimator. This modified procedure 

was named as MOM-H. MOM-H proved that it is able to provide better control of Type 

I error rate even under skewed distributions. Syed Yahaya (2005) adopted scale 

estimators of Sn and Tn in MOM-H in her study. As a result, MOM-H produced better 

control of Type I error rate under normal distribution and showed reasonable 

performance under non-normal data. The MOM estimator used the outlier detection as 

its trimming criteria, but the outlier is not easy to detect. This may cause result in no 

outliers been being detected and the power rate will be affected (Wilcox, 2003).  

In this study, the Winsorizing approach mean, WAM (common naming for both WM 

and AWM) are suggested as the central tendency measures to substitute the MOM 

estimator in H-statistic. The Winsorizing percentages selected for WAM used in this 

study were 15% and 25%. According to the studies of Keselman et al. (2007) and 

Abdullah (2011), 15% and 25% of trimming provided better controlling of Type I error 

rate and high statistical power. Thus, six new procedures based on H-statistic were 

generated namely 15WM-H, 25WM-H, 15WHQ-H, 25WHQ-H, 15WHQ1-H and 

25WHQ1-H. 

2.3.1 15WM-H 

15WM-H uses 15%-Winsorized mean (15WM) as the central tendency measure of H-

statistic. First of all, calculate the 15%-Winsorized mean with Equation 2.12 where 𝛾 

= 15% that might be discarded and replace 15% data from left tail and 15% data from 
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right tail with the smallest and largest value of the remaining data respectively after 

the data are discarded.  

After 15WM is calculated, compute the H-statistic by using Equation 2.14 with 15WM 

as the central tendency measure, 𝜃𝑗. These steps apply to subsection 2.3.2 with 25% as 

its Winsorizing percentage. 

2.3.2 25WM-H 

25WM-H is the H-statistic using 25%-Winsorized mean (25WM) as its central 

tendency measure. This procedure is almost similar with 15WM-H. The difference is 

it uses 25% as its Winsorizing percentage. When calculating the Winsorized mean, 

25WM-H uses 𝛾 = 25% in Equation 2.12.  Next, the same step that uses Equation 2.14 

in 15WM-H is applied in 25WM-H to compute its H-statistic. 

2.3.3 15WHQ-H 

15WHQ-H is the modified H-statistic with 15%-AWM using hinge estimator HQ as its 

central tendency measure. To obtain 15WHQ-H, calculate the HQ hinge estimator by 

using Equation 2.5. Then, use the value calculated from Equation 2.5 to compute the 

lower and upper Winsorizing proportions by using Equation 2.6 and 2.7 with 0.15 

(15%) as its total Winsorizng percentage, 𝛾. 

𝛾ℓ = .15HQ = .15
UWQ

UWQ− LWQ
                                   (2.15) 

𝛾𝑢  =  .15 − 𝛾ℓ                                   (2.16) 

After the upper and lower proportions of Winsorization are calculated, use Equation 

2.13 to calculate 15WHQ. Finally, the H-statistic is calculated by using Equation 2.14.  

 

 



20 
 

2.3.4 25WHQ-H 

25WHQ-H is another procedure as discussed in 2.3.3 that uses HQ to calculate its 

lower and upper Winsorizing proportions. However, this procedure uses 25% (0.25) 

as its total Winsorizing percentage as shown below 

𝛾ℓ = .25HQ = .25
UWQ

UWQ−LWQ
                          (2.17) 

and 

𝛾𝑢 = .25 − 𝛾ℓ                         (2.18)  

Follow all steps in 2.3.3 and replace Equation 2.15 and 2.16 with Equation 2.17 and 

2.18 respectively to calculate 𝜃𝑗 (Equation 2.13) and H-statistic (Equation 2.14) as the 

modified H-statistic with 25%-AWM using hinge estimator HQ. 

2.3.5 15WHQ1-H 

The way to calculate modified H-statistic with 15%-AWM using hinge estimator HQ1 

(denoted as15WHQ1-H) is similar to the steps in 2.3.3. The only difference is the use 

of hinge estimator, HQ1 to calculate the Winsorizing proportion for 15%-AWM. This 

procedure uses Equation 2.9 to replace Equation 2.5 in procedure 2.3.3 to calculate the 

lower proportion of Winsorizing 

𝛾ℓ = .15HQ1 = .15
UWQ1

UWQ1−LWQ1
                              (2.19) 

The next step is to calculate the upper proportion of Winsorizing by 

𝛾𝑢 = .15 − 𝛾ℓ                                      (2.20) 

Following that, use Equation 2.13 to calculate the 𝜃𝑗  and finally, the H-statistic is 

computed by using Equation 2.14.  
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2.3.6 25WHQ1-H 

In this procedure, 25% of Winsorization is used to calculate 25%-AWM using hinge 

estimator HQ1 in the modified H-statistic (denoted as 25WHQ1-H). The Winsorizing 

proportion of 25%-AWM using hinge estimator HQ1 is calculated by 

𝛾ℓ = .25HQ1 = .25
UWQ1

UWQ1−LWQ1
                            (2.21) 

𝛾𝑢 = .25 − 𝛾ℓ                    (2.22) 

Equation 2.21 and 2.22 are then used in Equation 2.13 to calculate 25%-AWM using 

hinge estimator HQ1, 𝜃𝑗. Finally, the H-statistic is computed by using the Equation 

2.14. The results of the H-statistic depend on the modified procedures with AWM and 

the AWM-H is able to obtain better performance under various conditions. 

Since the sampling distribution of H-statistic is unknown, the percentile bootstrap 

method was used to obtain the p-value (Othman et al., 2004).  

2.4 Bootstrap method 

The bootstrap method is a resampling method that resamples and replaces the data 

from a dataset introduced by Efron (1979). It is able to measure accuracy to a statistical 

estimate routinely that is far too complicated for traditional computation of statistical 

analysis (Efron & Tibshirani, 1986, 1993). The bootstrapping is simple and can help 

in increasing the accuracy of the test statistic (Md Yusof, Abdullah, Syed Yahaya, & 

Othman, 2012). The bootstrap method is also able to deal with the issue of the 

unknown distribution of a statistical test. 

From the study of Syed Yahaya (2005), the advantages of the bootstrap were listed, 

which includes: 
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i. wide applicability – requires no theoretical calculation, and is available 

no matter how mathematically complicated the estimator may be, 

ii. increased accuracy, 

iii. and ability to take advantage of modern computing and completely 

automatic. 

In terms of obtaining good control of Type I error rate, the bootstrap technique can be 

advantageous. Some version of the percentile bootstrap method generally has practical 

advantage when measures of central tendency that are relatively insensitive to outliers 

are used (Wilcox & Keselman, 2003a). The bootstrap procedure for this study is 

discussed in the next chapter. 
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CHAPTER THREE 

METHODOLOGY 

3.1 Introduction 

Recently, a few robust statistical tests for the comparison of independent groups have 

been developed to obtain better results in controlling Type I error rates and higher 

statistical power under non-normality and heteroscedasticity. The H-statistic is one of 

these robust procedures that has been proven to be successful for those purpose as 

mentioned in the previous chapter. Furthermore, this test statistic is readily adaptable 

in any central tendency measures but not recommended for mean or even trimmed 

mean (Wilcox, 2012). Therefore, this study proposes a few statistical tests that use the 

Winsorized approach mean (Winsorized mean, WM, and adaptive Winsorized mean 

using hinge estimator, AWM) in H-statistic namely WM-H and AWM-H. 

To evaluate the performance of these proposed procedures in terms of Type I error rate 

control and statistical power, five variables were manipulated to simulate various 

conditions that can be used to highlight the strengths and weaknesses of these 

statistical tests. These five variables were type of distribution, number of groups, 

sample sizes, degree of variance heterogeneity and nature of pairing. The 

performances of the proposed procedures were assessed using 5000 simulated datasets 

which were generated using SAS generator RANNOR of SAS/IML Version 9.3 (2011) 

and with a 5% statistical significance level (α = 0.05). 

3.2 Proposed Statistical Procedures 

In this study, the H-statistic was modified to obtain an improved procedure capable of 

handling the problem of non-normality and heteroscedasticity. The H-statistic was 

modified by replacing the original central tendency measure with a 15% and 25% 
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winsorizing percentage of WM which is denoted as WM-H. Another modification of 

these H-statistic test denoted as AWM-H which used a 15% and 25% winsorizing 

percentage of AWM (using hinge estimators, HQ and HQ1) to replace the original 

central tendency measure. The 15% and 25% of trimming percentage provided the best 

results in controlling Type I error rates and high statistical power in the studies of 

Keselman et al. (2007) and Abdullah (2011). Therefore, 15% and 25% of 

winsorization were chosen to represent the minimum and maximum winsorizing 

percentage in this study. Figure 3.1 illustrates the proposed procedures for this study. 

Figure 3.1.  Statistical tests with the corresponding robust central tendency measure 

and percentage of winsorization 

In general, this study generated six new H-statistic procedures namely 15WM-H, 

25WM-H, 15WHQ-H, 25WHQ-H, 15WHQ1-H, and 25WHQ1-H. These six new 

procedures were compared to the MOM-H and classical procedures (Student’s t-test 

and ANOVA, F-test).     
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3.3 Manipulation of Variables 

The proposed procedures were tested under various conditions generated from 

manipulating five variables which are discussed as follow. 

3.3.1 Type of Distribution 

Violating the assumption of normality is one of the problems faced when using the 

classic statistical test in comparing the central tendency measures of two or more 

treatment groups. Under non-normal distribution conditions, the classical procedures 

such as Student’s t-test and ANOVA F-test will yield inadequate and unsatisfactory 

results in controlling the Type I error rates and statistical power (Bradley, 1968; Syed 

Yahaya, 2005). In this study, four conditions of distribution with different levels of 

skewness and kurtosis (tail’s length) were used to test the effects of distribution on the 

proposed procedures. These four types of distribution were generated by using the g- 

and -h distribution introduced by Tukey (1977) and extensively studied by Hoaglin, 

Mosteller and Tukey (1983), and Wilcox (2012).  

The g- and -h distribution was generated by transforming the standard normal 

distribution, Z using the following equation: 

Yij= {

exp(gZij)-1
g

exp (
hZij

2

2
) ,        g ≠ 0                                               (3.1)

Zij exp (
hZij

2

2
) ,                 g = 0                                                (3.2)

  

where g and h are the non-negative constants with both effecting the skewness and 

kurtosis of distribution respectively. The increase in the g and h values will raise the 

values of the skewness and kurtosis leading to the distributions being skew and heavier 

distribution tails (Wilcox, 2012).  
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The first distribution selected was a standard normal distribution (g = h = 0) which 

represented zero skewness (κ1 = 0) and was light-tailed (κ2 = 0.3). The values of g = 

0 and h = 0.5 were selected for symmetric heavy-tailed distribution with no skewed 

(κ1 = 0) but heavy-tailed (κ2 = undefined). The g = 1 and h = 0 values were chosen to 

represent the skewed normal tailed. In the study by Wilcox (2012), the g = 1 and h = 

0 values corresponded to a lognormal distribution and it is skewed with a relatively 

light-tailed (κ1 = 6.2, κ2 =114). The forth distribution, which is a skewed heavy-tailed 

distribution generated from the g- and -h distribution with g = 1 and h = 0.5, was 

selected to represent a distribution with a level of skewness similar to a lognormal 

distribution but heavy-tailed ( κ1  = κ2  = undefined). These four conditions of 

distribution were chosen in line with the assumptions that the proposed procedures are 

able to perform well under any condition which lies in between the normal and extreme 

values of the skewness and kurtosis of distribution. These four types of distribution 

are shown in Table 3.1 as follow. 

Table 3.1  

The skewness and kurtosis of g- and -h distributions 

g h Skewness, 𝜿𝟏 Kurtosis, 𝜿𝟐 Distribution 

0 0 0 0.3 Normal 

0 0.5 0 Undefined Symmetry heavy tailed 

1 0 6.2 114 Skewed normal tailed 

1 0.5 Undefined Undefined Skewed heavy tailed 

(Source: Wilcox, 2012) 
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3.3.2 Number of Groups 

Besides the type of distribution, the number of groups, or group sizes is another 

condition being considered to evaluate the robustness of the proposed procedures. 

Therefore, this study used two and four groups as one of the conditions to assess the 

performances of the proposed procedures. The groups of two (J = 2) is the minimum 

number of groups for comparing independent groups. Furthermore, these group sizes 

often use the classical Student’s t-test to determine the equality of central tendency 

measures due to its ability to perform well under normality. For the case of more than 

two groups, four groups (J = 4) were chosen as it is the moderate number of groups as 

studied by Lix and Keselman (1998).  

3.3.3 Sample Sizes  

In most data, the imbalance of sample sizes usually occurs in the biomedical field 

(Yang, Li, & Gao, 2006). The existence of these unbalanced sample sizes could affect 

the ability of statistical tests to control for Type I error rates and statistical power 

(Wilcox, 2003). Thus, both unbalanced and balanced sample sizes were taken into 

consideration when developing the proposed procedures of assessment for this 

variable in the study. 

For cases involving two groups, a total number of 40 samples were chosen (as sample 

size, N) because it has been commonly used in previous studies such as Othman et al. 

(2004), Syed Yahaya (2005), and Keselman et al. (2007). The number of observations 

(nj) for each group under unequal sample size conditions were designated as n1=15 

and n2=25 whereas n1=n2=20 was set for equal sample sizes. 

For case with more than two groups, Othman et al. (2004), and Keselman et al. (2007) 

used the total number of sample size, N = 70 and N = 90 to study the effects of unequal 
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sample sizes and both were able to provide reasonable results in controlling for Type 

I error rates. However, these two values are not suitable for a balanced sample size 

with 4 groups. Therefore, N = 80 is used in this study because it is between the two 

sample size values mentioned above and it is believed that this total number of sample 

will perform well in controlling the Type I error rates. Syed Yahaya (2005) also used 

the total number of sample, N = 80, and assigned the nj for cases with unequal sample 

sizes as n1 = 10, n2 = 15, n3 = 25 and n4 = 30. Therefore, the same nj values were used 

in this study to evaluate the effects of unequal sample sizes in the case of J = 4 for the 

proposed procedures. In contrast, n1 = n2 = n3 = n4 = 20 was assigned for cases with 

equal sample sizes. 

3.3.4 Degree of Variance Heterogeneity 

The unequal variances or variance heterogeneity is another problem faced when 

classical procedures were used in testing the equality of central tendency measures of 

two or more treatment groups. Even with normal and balanced sample sizes, the 

violation of the equal variance assumption will give unsatisfactory results for Type I 

error rate controls and statistical power (Wilcox, 1994).  

The ratio of variances was selected as 1:1 (1:1:1:1) and 1:36 (1:1:1:36) to investigate 

the performance of the proposed procedures under equal and unequal variances 

respectively. The ratios of 1:36 (J =2) and 1:1:1:36 (J = 4) are the extreme 

heterogeneity of variances condition that are used to evaluate the performances of 

statistical procedures (Othman et al., 2004; Syed Yahaya, 2005; Keselman et al., 2007). 

Keselman et al. (2007) reported that the ratio of 1:36 (1:1:1:36) was large and 

reasonable to evaluate the effectiveness of the proposed procedures to perform under 

a ‘potentially’ extreme condition. Consequently, with the selected ratios, the 
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performances of the proposed procedures were evaluated with equal and unequal 

variance conditions.  

3.3.5 Nature of Pairing 

From previous researches, the pairings of sample sizes with variances might provide 

different results in terms of the Type I error rate control (Othman et al., 2004; Syed 

Yahaya, 2005; Keselman et al., 2007). There are two types of nature pairings known 

as positive pairing and negative pairing. Both pairings were formed when unequal 

sample sizes are paired with unequal variances (Syed Yahaya, 2005). In cases where 

the smallest sample size, nj is paired with the smallest variance, and the largest sample 

size, nj is paired with the largest variance, this condition represents positive pairing 

(Othman et al., 2004; Syed Yahaya, 2005; Keselman et al., 2007). Negative pairing, 

on the other hand, refers to cases where the smallest nj  is paired with the largest 

variance and vice versa. To evaluate the robustness of the proposed procedures with 

the effects of nature pairing, both positive and negative pairings were included as one 

of the variables for this study. 

3.4 Design of Specification 

Figure 3.2. The conditions for investigating the robustness of the proposed procedures 
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To assess the robustness of the proposed procedures, the five variables thoroughly 

discussed in the previous sub-sections were manipulated. As shown in Figure 3.2, the 

manipulation of the five variables created a few test conditions that can highlight the 

strengths and weaknesses of these proposed procedures.  

Table 3.2 

Design specification for the balanced or unbalanced and J = 2 or J = 4 conditions 

Groups Sample Sizes Group Variances Pairing 

J = 2, Balanced 

 

20 20 - - 1 1 - - - 

20 20 - - 1 36 - - - 

J = 2, Unbalanced 

 

15 25 - - 1 1 - - - 

15 25 - - 1 36 - - Positive 

15 25 - - 36 1 - - Negative 

J = 4, Balanced 

 

20 20 20 20 1 1 1 1 - 

20 20 20 20 1 1 1 36 - 

J = 4, Unbalanced 

 

10 15 25 30 1 1 1 1 - 

10 15 25 30 1 1 1 36 Positive 

10 15 25 30 36 1 1 1 Negative 

 

In general, the test conditions can be categorised into three conditions. The first is the 

perfect condition where the sample sizes and variances for each groups are equal and 

the shape of distribution is normal. The second condition is the mild departure 

condition with the combination of either balanced sample sizes and equal variances 

with non-normal distribution, or unbalanced sample sizes and unequal variance with 

normal distribution. The extreme departure condition is the third condition with a 
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combination of unbalanced sample sizes and unequal variances with non-normal 

distribution. 

Table 3.2 illustrates the design specification for J = 2 and J = 4. With the design 

specifications, the robustness of the proposed procedures was evaluated in terms of 

Type I error rates and statistical power. 

3.5 Data Generation 

In this study, the SAS/IML Version 9.3 (SAS, 2011) generator RANNOR was used to 

run the simulations to generate the pseudo-random variates. The g- and -h distribution 

was used to generate four types of distribution by transforming the standard normal 

variables to random variables via Equation 3.1 or 3.2 according to the selected g and 

h values. 

For the symmetry distributions where g = 0, the central tendency measure is equal to 

zero so the null hypothesis is not affected when multiplying each Yi j by σj to obtain 

unequal variances (Wilcox, 1994). For skewed distributions where g > 0, the central 

tendency measure is not equal to zero and the population mean of the g- and -h 

distribution is  

μg h = 1
g(1−h)1 2⁄ (e g2 2(1−h)⁄ − 1)             (3.3) 

(Hoaglin, 1985). Thus, the observations, Yi j, from each simulated skewed distribution 

should subtract the population central tendency parameter (θ) as 

Xi j = Yi j  −  θ                          (3.4) 

before multiplying by σj, to ensure that the null hypothesis remains true. To compute 

the θ, one million observations from each investigated distributions were generated 

with the θ being eventually determined by using robust location estimators (Othman 
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et al., 2004; Wilcox and Keselman, 2003b; Keselman et al., 2007). These θ values 

were then used to standardize the variates from each replication to assure that the null 

hypothesis remains true in every case.  

For the cases with unequal variances, each Xi j from Equation 3.4 were multiplied by 

the square root of 𝜎𝑗
2

 to obtain a distribution with a standard deviation σj as 

 Xi j = Yi j  −  θ×√σj
2              (3.5) 

The σj, which is used to multiply with Xi j are not the actual values of the standard 

deviations (variances) and these values more aptly reflect the ratio of the variances 

(standard deviations) between the groups as in Table 3.2 (Wilcox, 1994).  

For the statistical power analyses, the groups’ central tendency measures were set to 

not be zero allowing the values of the groups’ central tendency measures to vary 

according to the suggested effect size and pattern variability (refer to Section 3.6). 

Therefore, θ j added to Equation 3.6 as  

Xi j = Yi j  −  θ×√σ j
2 + θ j             (3.6) 

to conform to either Type I error rate or power analysis. The θ j is always set at zero 

for Type I error rates assessment while the values of θ j are depends on the settings of 

the central tendency measures for power analysis.  

For each design, irrespective of the cases or the number of groups investigated, 5000 

datasets for each conditions were performed using a 0.05 statistical significance level 

(α = 0.05) to estimate the Type I error rates and the statistical power. In the study by 

Manly (2007), a minimum of 1000 datasets were sufficient in analysing the results at 

a 5% level of significance. However, better sampling limits will be obtained 99.9% of 
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the time when using 5000 datasets instead of 1000 datasets (Manly, 2007). Therefore, 

for this study, 5000 datasets were chosen as the number of randomizations and each of 

these simulated datasets were then bootstrapped 599 times (refer to Section 3.7). 

3.6 The Settings of Central Tendency Measures for Power Analysis 

For the Type I error rate assessments, the first step is to define each group’s central 

tendency measure to equal zero (H0: 𝜇1 = 𝜇2 = ⋯ = 𝜇𝑛 = 0). The same setting is also 

required prior to statistical power analyses; however, the difference is the setting of 

central tendency measures should be defined according to the alternative hypothesis 

rule (H1: 𝜇1 ≠ 𝜇2 ≠ ⋯ ≠ 𝜇𝑛 ). From previous studies such as Keselman, Wilcox, 

Algina, Fradette, and Othman (2004), Othman et al. (2004), and Syed Yahaya (2005), 

the values were defined according to the conventional values of small, medium and 

large effect sizes as proposed by Cohen (1988) and studied by Cohen (1992a), Cohen 

(1992b), and Murphy, Myors, and Wolach (2008). Table 3.3 showing the conventional 

values of effect sizes for J = 2 and J = 4 in describing large, medium, and small effects. 

Therefore, the different effect size values will provide dissimilar settings of central 

tendency measures for power analyses. 

Table 3.3 

The conventional values for small, medium and large effects 

 

Effect size Group size 
J = 2 J = 4 

Small 0.20 0.10 

Medium 0.50 0.25 

Large 0.80 0.40 
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The distinction between the null hypothesis, H0 and the alternative hypothesis, H1 is 

defined as the effect size (Cohen, 1992b). The larger effect size will lead to easier to 

detect the effect of statistical tests and provide a larger value of statistical power 

(Murphy, Myors, & Wolach, 2008). However, the small and medium effect sizes are 

also included in this study to compare the statistical power performance of the 

proposed procedures. 

Although the setting of central tendency measure is based on the effect size, f, the f 

needs to be translated to a range of standardized central tendency measures, d, before 

proceeding with any calculations. According to Cohen (1988), the d is the distance 

between the smallest and the largest of the J central tendency measures which is 

originally a mean as defined as: 

d = 𝜃𝑚𝑎𝑥− 𝜃𝑚𝑖𝑛

𝜎
                               (3.7) 

where 𝜃𝑚𝑎𝑥 and 𝜃𝑚𝑖𝑛 are the largest and the smallest of J central tendency measures 

respectively and  𝜎 is the (common) standard deviation within the populations: 

𝜎 =  √
(𝑛1−1)𝜎1

2+(𝑛2−1)𝜎2
2+⋯+(𝑛𝑗−1)𝜎𝑗

2

𝑛1+𝑛2+⋯+𝑛𝑗−𝑗
                      (3.8) 

As mentioned in the previous sub-section, the cases involving J = 2 and J = 4 were 

included in the power analyses of this study. For each case, the balanced and 

unbalanced designs were studied. Therefore, the settings of the central tendency 

measure for power analyses were set by according to the conditions shown in Table 

3.2. 
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3.6.1 Cases with Two Groups (J = 2) 

For situations where J = 2, the d is the distance between standardized means divided 

by the (common) standard deviation within the population and defined as f by Cohen 

(1988): 

  d = f =
|𝜃1− 𝜃2|

𝜎
                            (3.9) 

with 𝜃1 and 𝜃2 representing the population means and 𝜎 being the standard deviation 

within the population. In this study, the population means were replaced with the 

central tendency measures that was discussed in the previous chapter. 

In terms of balanced and unbalanced design, the ds were defined by using Equation 

3.8 and Equation 3.9. The balanced design uses balanced sample sizes and variances 

for the calculation whereas the unbalanced design uses the pairing of unbalanced 

sample sizes with variances in both equal and unequal conditions. 

3.6.1.1 Balanced Design (J = 2) 

Since the small, medium and large effect sizes as shown in Table 3.3 were used to 

study the power performance of the proposed procedures, the settings of the central 

tendency measure can be defined by using Equation 3.9 for balanced sample sizes with 

equal variances (n1 =  n2; 𝜎1
2 =  𝜎2

2) which is one of the conditions in Table 3.2. The 

settings of the central tendency measure are defined as, 

Small effect size, 0.2 = |1− 𝜃2|

1
  

Medium effect size, 0.5 = |1− 𝜃2|

1
  

Large effect size, 0.8 = |1− 𝜃2|

1
  

if  𝜃1 = 1 and the 𝜎 calculated from Equation 3.8 with sample sizes and variances are 

n1 =  n2 = 20 and 𝜎1
2 =  𝜎2

2 = 1 respectively. 
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Then, the θ2 for each effect size are 

Small effect size,  θ2 = 1.2  

Medium effect size,  θ2 = 1.5 

Large effect size,  θ2 = 1.8 

Therefore, the settings of the central tendency measure for J = 2 with balanced sample 

sizes and equal variances were set as shown in Table 3.4.   

Table 3.4 

The setting of central tendency measures for power analysis under J = 2 equal 
variances for balanced design and unbalanced design 

 

A similar procedure was used to calculate the setting of central tendency 

measure for the condition of balanced sample sizes which are paired with unequal 

variances (n1 =  n2; 𝜎1
2 ≠  𝜎2

2). However, the (common) standard deviation within the 

population, 𝜎, needs to be calculated by using Equation 3.8 as  

𝜎 =  √
(20−1)1+(20−1)36

20+20−2
= 4.30  

where n1 =  n2 = 20 and 𝜎1
2 = 1, 𝜎2

2 = 36. Then, used Equation 3.9 to obtain the 

central tendency measure settings as 

Small effect size, 0.2 = |1− 𝜃2|

4.30
  

Medium effect size, 0.5 = |1− 𝜃2|

4.30
  

Effect size ( θ1, θ2) 

Small, f = 0.2 (1, 1.2) 

Medium, f = 0.5 (1, 1.5) 

Large, f = 0.8 (1, 1.8) 



37 
 

Large effect size, 0.8 = |1− 𝜃2|

4.30
  

If  𝜃1 = 1 and the 𝜎 = 4.30, thus the θ2 are 

Small effect size,  θ2 = 1.86  

Medium effect size,  θ2 = 3.15 

Large effect size,  θ2 = 4.44 

The J = 2 settings of the central tendency measure for balanced sample sizes with 

unequal variances are shown in Table 3.5.   

Table 3.5 

The setting of central tendency measures for power analysis under J = 2 unequal 
variances for balanced design 

 

3.6.1.2 Unbalanced Design (J = 2) 

The same steps were used to determine the settings of the central tendency measure 

for the unbalanced design (J = 2) power analyses. The values of sample sizes and 

variances for the unbalanced design with either equal or unequal variances followed 

the values which were shown in Table 3.2. For the unbalanced design with equal 

variances, the setting of central tendency measures is the same as the balanced design 

with equal variances. This is because the (common) standard deviation within the 

population, 𝜎, is 1 for the cases involving equal variances that 𝜎1
2 = 𝜎2

2 = 1 regardless 

Effect size ( θ1, θ2) 

Small, f = 0.2 (1, 1.86) 

Medium, f = 0.5 (1, 3.15) 

Large, f = 0.8 (1, 4.44) 
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the sample sizes are unbalanced (n1 = 15, n2 = 20) or balanced. Therefore, the setting 

of central tendency measures for this case was the same as shown in Table 3.4. 

For the unbalanced design with unequal variances (n1 ≠  n2; 𝜎1
2 ≠ 𝜎2

2), it was divided 

according to positive pairing and negative pairing. When n1 = 15, n2 = 20, 𝜎1
2 = 1 

and 𝜎2
2 = 36, this condition is the positive pairing of unbalanced design and the 𝜎 is 

calculated by using Equation 3.8 as 

 𝜎 =  √
(15−1)1+(25−1)36

15+25−2
  

and 𝜎 = 4.81 being the result. Then, the settings of the central tendency measure were 

defined by using Equation 3.9 with 𝜎 = 4.81 and if  𝜃1 = 1 

Small effect size, 0.2 = |1− 𝜃2|

4.81
  

Medium effect size, 0.5 = |1− 𝜃2|

4.81
  

Large effect size, 0.8 = |1− 𝜃2|

4.81
  

Therefore, 𝜃2 =  1.96, 3.41 and 4.85  for small, medium and large effect sizes 

respectively. The results for the settings of the central tendency measure for power 

analysis under J = 2 unbalanced design with positive pairing are shown in Table 3.6.   

Table 3.6 

The setting of central tendency measures for power analysis under J = 2 positive 
pairing for unbalanced design 

 

Effect size ( θ1, θ2) 

Small, f = 0.2 (1, 1.96) 

Medium, f = 0.5 (1, 3.41) 

Large, f = 0.8 (1, 4.85) 
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Besides positive pairing, negative pairing is also considered in the study of statistical 

power. The negative pairing for unbalanced design is formed when n1 = 15 and 

n2 = 20 are associated with 𝜎1
2 = 36 and 𝜎2

2 = 1. By using Equation 3.8, the 𝜎 was 

computed as 

 𝜎 =  √
(15−1)36+(25−1)1

15+25−2
  

= 3.73 

With 𝜎 = 3.73 , the central tendency measure settings for power analysis were 

calculated by using Equation 3.9, where if  𝜃1 = 1 

Small effect size, 0.2 = |1− 𝜃2|

3.73
  

Medium effect size, 0.5 = |1− 𝜃2|

3.73
  

Large effect size, 0.8 = |1− 𝜃2|

3.73
  

Thus, 𝜃2 for unbalanced design with negative pairing under J = 2 for small, medium 

and large effect size were shown in Table 3.7.  

Table 3.7 

The setting of central tendency measures for power analysis under J = 2 negative 
pairing for unbalanced design 

 

 

 

Effect size ( θ1, θ2) 

Small, f = 0.2 (1, 1.75) 

Medium, f = 0.5 (1, 2.87) 

Large, f = 0.8 (1, 3.98) 
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3.6.2 Cases with Four Groups 

For the cases where J is more than two, the Equation 3.9 is not suitable to determine 

the setting of central tendency measures. For this case, Cohen (1988) proposed the 

spread of the means by a value similar to the standard deviation instead of the distance. 

Then, this value is divided with the common standard deviation of the population as 

shown 

f =
𝜎𝑚

𝜎
                            (3.10) 

where, the 𝜎𝑚 for the balanced design is 

 𝜎𝑚 = √
∑ (mj−m)2J

j=1

J
               (3.11) 

 m =
∑ mj

J
j=1

J
,   J = 1, 2,⋯, j            (3.12) 

and for the unbalanced design is 

   𝜎𝑚 = √
∑ nj(mj−m)2J

j=1

N
                  (3.13) 

 m =
∑ njmj

J
j=1

N
,   J = 1, 2,⋯, j            (3.14) 

The standard deviation of the population means signifies the standard deviation within 

the population (Cohen, 1988).   

As discussed earlier, the value of f needs to be converted to d by using Equation 3.7 

and Equation 3.8 before determining the setting of central tendency measures. When 

the case has means more than two, the relationship between the f and the d depends 

upon the dispersion of the means over their range (Cohen, 1988). Equation 3.7 defined 

the range between the largest and the smallest of the J means; then, the remaining J - 

2 means are fall variously over the d and unable to be determined. Thus, Cohen (1988) 

proposed three patterns of variability to describe the relationship between f and d with 
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a function of J means. The three patterns of variability described by Cohen (1988) are 

minimum, intermediate and maximum variability respectively. 

The focus of this study is to assess the large effect of variability, thus the maximum 

variability was selected which yields the maximum standard deviation with J means 

spread at both extreme ends of the range (Cohen, 1988). Cohen (1988) proposed this 

pattern of variability with all even numbers of the means being 

 d = 2f                         (3.15) 

and when the number of means is odd 

𝑑 = f 2J
√J2−1

               (3.16) 

The even number of groups (J = 4) was selected for this study, thus the Equation 3.15 

was used for both balanced and unbalanced designs. By the definition of Cohen (1988), 

when the J is even, the number of J will evenly fall at − 1
2

𝑑 and + 1
2

𝑑. Therefore, the 

pattern variability for the four central tendency measures are − 1
2

𝑑, − 1
2

𝑑, + 1
2

𝑑, + 1
2

𝑑. 

3.6.2.1 Balanced Design (J = 4) 

Similar to J = 2, all three effect sizes – small, medium and large – where f = 0.1, 0.25 

and 0.4 respectively (refer to Table 3.3) were used for the proposed procedures’ power 

assessment under J = 4 conditions. As mentioned in the previous sub-section, this 

study will focus on maximum variability as suggested by Cohen (1988); hence, the 

pattern variability of the central tendency measures is − 1
2

𝑑, − 1
2

𝑑, + 1
2

𝑑, + 1
2

𝑑 Then, 

the d for cases with balanced sample sizes paired with equal variances (n1 = n2 =

 n3 = n4; 𝜎1
2 = 𝜎2

2 = 𝜎3
2 = 𝜎4

2) were calculated directly by using Equation 3.15 (J = 4 

= even) and the small, medium and large effect sizes were 

Small effect size, 𝑑 = 2(0.1) = 0.2  
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Medium effect size, 𝑑 = 2(0.25) = 0.5 

Large effect size, 𝑑 = 2(0.4) = 0.8   

Thus, the dispersion of the central tendency measures for this pattern variability are as 

shown as in Table 3.8 for small, medium and large effect size respectively. 

Table 3.8 

The setting of central tendency measures for power analysis under J = 4 equal 
variances for balanced design 

 

For cases involving balanced sample sizes paired with unequal variances (n1 = n2 =

 n3 = n4; 𝜎1
2 ≠ 𝜎2

2 ≠ 𝜎3
2 ≠ 𝜎4

2), the value of d is determined by using Equation 3.80, 

3.10 to 3.12. First, the values of m are determined by using Equation 3.12 with the 

assumption that  m1 = m2 = −
1
2

d , m3 = m4 = 
1
2

d  as proposed by Cohen (1988) 

regarding the maximum variability pattern of the central tendency measures 

(−
1
2

d, −
1
2

d, +
1
2

d, +
1
2

d) , thus, 

m =
0
4

= 0  

Then, Equation 3.11 is used to calculate the  𝜎𝑚 as 

𝜎𝑚  = √(−
1

2
𝑑)2+(−

1

2
𝑑)2+(

1

2
𝑑)2+(

1

2
𝑑)2

4
  

=
1

2
𝑑  

Effect size ( θ1, θ2, θ3, θ4) 

Small, f = 0.1 (-0.1, -0.1, 0.1, 0.1) 

Medium, f = 0.25 (-0.25, -0.25, 0.25, 0.25) 

Large, f = 0.4 (-0.4, -0.4, 0.4, 0.4) 
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Next, the 𝜎 is computed by using Equation 3.80 with sample sizes, n1 = n2 =  n3 =

n4 = 20 and variances, 𝜎1
2 = 1, 𝜎2

2 = 1, 𝜎3
2 = 1, 𝜎4

2 = 36 as 

𝜎 =  √
(20−1)1+(20−1)1+(20−1)1+(20−1)36

20+20+20+20−4
  

= 3.12   

Lastly, the d for small, medium and large effect sizes were determined by using 

Equation 3.10 as 

Small effect size, 0.1 =
1/2 d
3.12

    

 d = 0.62 

Medium effect size, 0.25 =
1/2 d
3.12

    

d = 1.56 

Large effect size, 0.4 =
1/2 d
3.12

    

 d = 2.50 

As per result above, the dispersion of the central tendency measures for small, medium 

and large effect sizes with balanced sample sizes and unequal variances are illustrated 

in Table 3.9 below. 

Table 3.9 

The setting of central tendency measures for power analysis under J = 4 unequal 
variances for balanced design 

 

Effect size ( θ1, θ2, θ3, θ4) 

Small, f = 0.1 (-0.31, -0.31, 0.31, 0.31) 

Medium, f = 0.25 (-0.78, -0.78, 0.78, 0.78) 

Large, f = 0.4 (-1.25, -1.25, 1.25, 1.25) 
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3.6.2.2 Unbalanced Design (J = 4) 

For the unbalanced design of J = 4, the settings of the central tendency measures were 

determined by using Equation 3.8, 3.10, 3.13 and 3.14 with f equal 0.1, 0.25 and 0.4 

for small, medium and large effect sizes respectively. Let’s m1 = m2 = −
1
2

d, m3 = 

m4 = 
1
2

d as proposed by Cohen (1988) for maximum variability pattern of the central 

tendency measures, Equation 3.13 and Equation 3.14 were used to determine the σm 

as 

𝜎m = √
∑ nj(mj−m)2J

j=1

N
= √

(n1 + n2 )(n3 + n4 )2+ (n3 + n4 )(n1 + n2)2

N3 d2  

where 

m =
∑ njmj

J
j=1

N
=

n3 + n4 − n1 − n2
2N

d  

Then, 𝜎 is calculated by using Equation 3.8 as 

𝜎 =  √
(n1 − 1)σ1

2 + (n2 − 1)σ2
2 + ⋯ +(nj − 1)σj

2

n1 + n2 + ⋯ + nj − j
  

= √
(n1 − 1)σ1

2 + (n2 − 1)σ2
2 + (n3 − 1)σ3

2 + (n4 − 1)σ4
2

N − 4
  

Lastly, the d is calculated by using Equation 3.10 as 

 f =  
 𝜎𝑚

𝜎
=

 √
(n1 + n2)(n3 + n4)

2
+ (n3 + n4)(n1 + n2)

2

N3 d2 

σ
  

 d =  √
σ2 × f 2× N3

(n1 + n2 )(n3 + n4 )2+ (n3 + n4 )(n1 + n2)2            (3.17) 

According to the previous studies by Keselman et al. (2004), and Othman et al. (2004), 

the setting of the central tendency measures, -1, -1, 1, 1 was developed for maximum 

variability with a large effect size with Syed Yahaya (2005) further studying for the 

statistical power analysis. This central tendency measure setting is based on the 
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conditions described in Table 3.2 where n1 = 10, n2=15, n3=25 and n4=30 as the 

sample sizes and 𝜎1
2 = 36 , 𝜎2

2 = 1 , 𝜎3
2 = 1 , and 𝜎4

2 = 1  as the variances. This 

condition is known as unbalanced design with negative pairing of unequal variances 

(n1 ≠ n2 ≠ n3 ≠ n4; 𝜎1
2 ≠ 𝜎2

2 ≠ 𝜎3
2 ≠ 𝜎4

2). Thus, the setting of the central tendency 

measures for maximum variability with large effect size is computed by Equation 3.8 

and Equation 3.17 as 

𝜎 =  √
(10−1)36+(15−1)1+(25−1)1+(30−1)1

10+15+25+30−4
  

 = 2.27  

and 

 d =  √ 2.272 × 0.42× 803

(10 + 15)(25 + 30)2+ (25 + 30)(10 + 15)2  

= 1.96 ≈ 2  

Based on maximum variability pattern of the central tendency measures, the setting of 

these measures for this condition was -1, -1, 1, 1 and this setting has been used in 

Keselman et al. (2004), Othman et al. (2004), and Syed Yahaya (2005) studies. 

However, d = 1.96 instead of d = 2 was used in this study to obtain results with higher 

accuracy. For small and medium effect sizes, the same steps were used as  

Small effect size, d =  √ 2.272 × 0.12× 803

(10 + 15)(25 + 30)2+ (25 + 30)(10 + 15)2  

= 0.49  

Medium effect size, d =  √ 2.272 × 0.252× 803

(10 + 15)(25 + 30)2+ (25 + 30)(10 + 15)2  

= 1.22  

Therefore, the setting of central tendency measures for unbalanced design with 

negative pairing for small, medium and large effect sizes are shown in Table 3.10. 
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Table 3.10 

The setting of central tendency measures for power analysis under J = 4 negative 
paring for unbalanced design 

 

Besides the negative pairing of the unbalanced design, positive pairing is also used as 

mentioned previously. The condition of the positive pairing for unbalanced design 

involves the sample sizes n1 = 10, n2=15, n3=25 and n4=30 paired with variances 

𝜎1
2 = 1, 𝜎2

2 = 1, 𝜎3
2 = 1, and 𝜎4

2 = 36. By using Equation 3.8 and Equation 3.17, the 

setting of the central tendency measures for maximum variability with small, medium 

and large effect sizes were computed as 

𝜎 =  √
(10−1)1+(15−1)1+(25−1)1+(30−1)36

10+15+25+30−4
  

 = 3.79  

and 

Small effect size, d =  √ 3.792 × 0.12× 803

(10 + 15)(25 + 30)2+ (25 + 30)(10 + 15)2  

= 0.82  

Medium effect size, d =  √ 3.792 × 0.252× 803

(10 + 15)(25 + 30)2+ (25 + 30)(10 + 15)2  

= 2.04  

Large effect size, d =  √ 3.792 × 0.42× 803

(10 + 15)(25 + 30)2+ (25 + 30)(10 + 15)2  

 = 3.27  

Effect size ( θ1, θ2, θ3, θ4) 

Small, f = 0.1 (-0.25, -0.25, 0.25, 0.25) 

Medium, f = 0.25 (-0.61, -0.61, 0.61, 0.61) 

Large, f = 0.4 (-0.98, -0.98, 0.98, 0.98) 
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Thus, the setting of central tendency measures for unbalanced design with positive 

pairing under J = 4 for small, medium and large effect size are illustrated as in Table 

3.11.  

Table 3.11 

The setting of central tendency measures for power analysis under J = 4 positive 
paring for unbalanced design 

 

Another condition under unbalanced design is unbalanced sample sizes paired with 

equal variances (n1 ≠ n2 ≠ n3 ≠ n4; 𝜎1
2 = 𝜎2

2 = 𝜎3
2 = 𝜎4

2). The setting of the central 

tendency measures for this condition was also computed by using Equation 3.8 and 

Equation 3.17 with sample sizes n1 = 10, n2=15, n3=25 and n4=30 and variances 

𝜎1
2 = 𝜎2

2 = 𝜎3
2 = 𝜎4

2 = 1 as described in Table 3.2. The d for small, medium and large 

effect sizes were calculated as 

Small effect size, d =  √ 12 × 0.12× 803

(10 + 15)(25 + 30)2+ (25 + 30)(10 + 15)2  

= 0.22  

Medium effect size, d =  √ 12 × 0.252× 803

(10 + 15)(25 + 30)2+ (25 + 30)(10 + 15)2  

= 0.54  

Large effect size, d =  √ 12 × 0.42× 803

(10 + 15)(25 + 30)2+ (25 + 30)(10 + 15)2  

 = 0.86  

Effect size ( θ1, θ2, θ3, θ4) 

Small, f = 0.1 (-0.41, -0.41, 0.41, 0.41) 

Medium, f = 0.25 (-1.02, -1.02, 1.02, 1.02) 

Large, f = 0.4 (-1.64, -1.64, 1.64, 1.64) 
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where the 𝜎 = 1 due to 𝜎1
2 = 𝜎2

2 = 𝜎3
2 = 𝜎4

2 = 1. For J = 4 unbalanced design that is 

paired with equal variances, the setting of central tendency measures for small, 

medium and large effect sizes are as shown in Table 3.12.  

Table 3.12 

The setting of central tendency measures for power analysis under J = 4 equal 
variances for unbalanced design 

 

With the settings of central tendency measures for statistical power analysis as above, 

the robustness of proposed methods under small, medium and large effect sizes with 

maximum variability for 2 and 4 group sizes can be evaluated. 

3.7 Bootstrap 

Bootstrap is a computer-based method that is able to routinely assess the accuracy of 

an estimator with high intricacy for traditional computation of statistical analysis 

(Efron & Tibshirani, 1986, 1993). It can provide reasonably accurate results for some 

problems of hypotheses testing (Wilcox, 2012). 

When working with intractable sampling distributions, bootstrap methods are able to 

cope with this problem by resampling the random sample that has insufficient 

information about a population (Syed Yahaya, 2005). Additionally, better results for 

Type I error rates under small sample sizes can be obtained, but it should be cautioned 

that some of these bootstrap methods will actually provide worse results (Wilcox, 

Effect size ( θ1, θ2, θ3, θ4) 

Small, f = 0.1 (-0.11, -0.11, 0.11, 0.11) 

Medium, f = 0.25 (-0.27, -0.27, 0.27, 0.27) 

Large, f = 0.4 (-0.43, -0.43, 0.43, 0.43) 
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2012). The combination of bootstrap methods with certain robust central tendency 

measures can improve the control of Type I error rates (Keselman, Wilcox, Othman, 

& Fradette, 2002). Othman et al. (2004), and Syed Yahaya (2005) used the percentile 

bootstrap in their studies to obtain the significance level, p-value of MOM-H statistic. 

The percentile bootstrap is relatively effective in terms of controlling the Type I error 

rates with at least 20% of trimming but it is still able to perform reasonably well with 

15% and even 10% trimming (Wilcox, 2012). When computing a p-value, the 

percentile bootstrap has faster execution time and do not lead to the computational 

problems (Wilcox, 2012). 

Besides Type I error rates, the bootstrap methods also work on statistical power 

analysis with the use of percentile bootstrap in the studies of Othman et al. (2004), and 

Wilcox, Keselman, Muska, and Cribbie (2000). Ultimately, Wilcox (2012) found more 

than 1000 journal articles that have obtained great practical applications in both 

theoretical and simulation studies on the bootstrap methods. 

3.7.1 Modified H-statistic with Percentile Bootstrap 

As discussed above, the percentile bootstrap could provide significant results in MOM-

H statistic. Therefore, the similar approach has been employed in the modified H-

statistic with proposed central tendency measures of Winsorized mean (WM) and 

adaptive Winsorized mean with hinge estimators, HQ and HQ1 (AWM), and named as 

WM-H and AWM-H respectively. The percentile bootstrap was used to compute the p-

values that represented the estimated Type I error rates or statistical power. The steps 

of the percentile bootstrap to obtain the p-values are as follow: 

(a) Calculate the modified H-statistic with proposed central tendency 

measures based on the available data and denote it as H. 



50 
 

(b) Randomly sample and replace the nj  observations from the jth group to 

obtain bootstrap samples of X1 j
* , X2 j

* , ⋯, Xnj j
* . 

(c) Centre each bootstrap sample with respective estimated central tendency 

measures, 𝜃 as Ci j
* =Xi j

* − 𝜃j, i=1, 2, ⋯, nj. 

(d) Use the Ci j
*  values to calculate the modified H-statistic and denote it as H*. 

(e) Repeat Step 2 to Step 4 B times to yield H1
*, H2

*, ⋯, HB
* , where B = 599 

appears to suffice in most situations when n ≥ 12 (Wilcox, 2012). 

(f) Obtain the p-value by using (# of H* > H)/B.   

To set the number of bootstrap replications, B, there is not a fixed value and it is 

according to approximations. Efron and Tibshirani (1993) found B = 50 was often 

enough to provide a good estimate of standard error. In Othman et al. (2004), and Syed 

Yahaya (2005), the B = 599 was used because it provided reasonable results in their 

respective studies. Besides that, the Wilcox, Keselman, and Kowalchuk (1998) study 

proved that the setting of B = 599 instead of 600 resulted to three liberal values of the 

Welch statistic decreasing in size to 0.074 (from 0.076), 0.077 (from 0.078), and 0.07 

(from 0.077). Furthermore, the results from Hall (1986) also showed the advantages 

of choosing B = 599 rather than B = 600 because 1 − α is a multiple of (B + 1)−1 and 

1 − α = .95 is the primary focus of the study.  
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CHAPTER FOUR 

RESULT OF ANALYSIS 

4.1 Introduction 

Normality and homogeneity are the two main concerns when performing a statistical 

analysis. The accuracy of the analysis result will be affected if any of these two 

assumptions are violated, which may result in wrong decision-making. The search for 

an alternative procedure that is able to obtain a better Type I error rate and with more 

statistical power under a violated assumption condition will be the focus of this study. 

This study proposes a two-test statistic formed from the modification of an H-statistic 

with a Winsorized mean (WM-H) and an H-statistic with an adaptive Winsorized mean 

(AWM-H) as its central tendency measure. The Winsorized mean (WM) and adaptive 

Winsorized mean (AWM) require a predetermined percentage similar to the usual 

trimmed mean, but the trimmed value will be winsorized with the smallest or largest 

or both smallest and largest remaining data before the mean is computed. The 

difference between WM and AWM is that AWM requires a hinge estimator, so that it 

would be able to perform asymmetry winsorizing according to the distribution shape, 

whereas WM only able to perform symmetry winsorizing. In this study, 15% and 20% 

were selected as the predetermined percentage for winsorization and hinge estimators, 

HQ and HQ1 were used in the AWM calculation. After selecting the predetermined 

winsorized percentage and hinge estimators, six procedures are formed as mentioned 

in Section 3.2.  

A comparison between the robustness of the proposed procedures in terms of Type I 

error rates and statistical power was done with the original MOM-H and the classical 

procedures that are Student’s t-test (2-group tests) and ANOVA F-test (4-group tests).  
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To highlight the strengths and weaknesses of the compared procedures, various 

variables were used, as stated in Section 3.3, such as the number of groups, the type of 

population distribution, sample size, the degree of variance heterogeneity, and the 

nature of pairing.  A few test conditions were proposed by manipulating the variables. 

The compared procedures were then tested with these test conditions. All the results 

in terms of Type I error rates are outlined in Table 4.1 and Table 4.2. 

As discussed in Section 3.3.1, four types of distribution generated by g- and -h 

distribution, shown in the first column of Table 4.1 and Table 4.2, are standard normal 

distribution (g = h = 0), symmetric heavy tailed distribution (g = 0; h = 0.5), skewed 

normal tailed distribution (g = 1; h = 0), and skewed heavy tailed distributions (g = 1; 

h = 0.5). The second and third columns of Table 4.1 and Table 4.2 represent the pairing 

of the sample sizes and variances. Two types of natural paring i.e. positive pairing and 

pairing will be formed as a result of the unbalanced sample sizes paired with unequal 

variances, as displayed in the fourth column of Table 4.1 and Table 4.2. The natural 

pairing does not apply to the balanced design and unbalanced design with equal 

variances. The fifth to tenth columns of Table 4.1 and Table 4.2 outline the Type I 

error rates of the proposed procedures formed via the modified H-statistic and 

compared with the Type I error rates of MOM-H and classical procedure (Student’s t-

test or ANOVA F-test) that are displayed in the eleventh and twelfth columns of Tables 

4.1 and 4.2. The last row (“AVERAGE”) for each distribution is the average of Type 

I error rates for each procedure, which corresponds to the type of distribution. The 

“GRAND AVERAGE” is the average value from all Type I error rates, obtained from 

each procedure and displayed in the last row of Table 4.1 and Table 4.2. For the power 

analysis, an additional column, which is the effect sizes column, is added after the 

column for natural pairing. 



53 
 

4.2 Type I Error Rates 

The robustness of the proposed procedures were evaluated using the robustness 

criterion proposed by Bradley (1978). According to the criterion, the proposed 

procedure is considered robust if its empirical Type I error rate (ρ) is within 0.5α and 

1.5α. Therefore, at the 5% statistical significance level (𝛼 = 0.05) used in this study, 

the procedure will only be considered robust in any manipulated condition design 

(refer to Section 3.3) if its empirical Type I error rate falls within 0.025 and 0.075 

(marked with an underline).  

When the empirical Type I error rate is smaller than 0.025, the procedure is considered 

conservative, whereas a liberal procedure entails an empirical Type I error rate that is 

larger than 0.075. The robustness criterion based on Bradley (1978) was chosen for 

this study since it had been widely used in study such as Othman et al. (2004), Syed 

Yahaya (2005) and Abdullah (2011). Besides the Bradley’s (1978) robustness criterion, 

another criterion was also used, i.e. the procedure that can provide a Type I error rate 

closest to the nominal (significance) level of 𝛼 = 0.05 would be considered the best 

procedure (marked with bold font).  

4.2.1 Type I Error Rates for the Two-Group Test (J = 2) 

The Type I error rate results for the Two-group test (J = 2) are illustrated in Table 4.1. 

All of the procedures were tested under four types of population distribution with five 

conditions generated from the manipulation of sample sizes and variances.  

4.2.1.1 Standard normal distribution (g = h = 0) 

When the procedures are tested under standard normal distribution (g = h = 0), all of 

the proposed procedures were determined to be robust, as their Type I error rates fell 

within Bradley’s robustness criterion interval (0.025 and 0.075) for all five 
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manipulated conditions, except for the Student’s t-Test under unbalanced sample sizes 

paired with unequal variances either positive or negative pairing, which obtained Type 

I error rates of 0.0198 and 0.1268 respectively. However, the overall performance of 

the procedures fulfilled the robustness criterion based on their “AVERAGE” values 

and thus are considered robust. 

4.2.1.2 Symmetric heavy tailed distribution (g = 0; h = 0.5) 

The Type I error rates for all procedures grew smaller with an increase in kurtosis with 

zero skewness. When the procedures are tested under symmetric heavy tailed 

distribution (g = 0; h = 0.5) with balanced sample sizes and equal variances, none of 

the procedures met Bradley’s robustness criterion with giving conservative Type I 

error rates, except for 15WHQ-H and the Student’s t-test, which were considered 

robust with 0.0292 and 0.0356 as their respective Type I error rates All the procedures 

were determined to be robust when tested under unequal variances with 15WHQ-H 

found to be the best procedure under this condition, as it yielded a Type I error rate 

equal to 0.0430, which is the closest value to the nominal level of 𝛼 = 0.05.  

Under unbalanced sample sizes, only 15WHQ-H, 15WHQ1-H, and the Student’s t-test 

fulfilled the robustness criterion with Type I error rates of 0.0300, 0.0258, and 0.0374, 

respectively, when variances are equal. When the condition consisted of unbalanced 

sample sizes with positive pairing, except for 25WHQ1-H (0.0242) and t-test (0.0118), 

the other procedures satisfied Bradley’s criterion of robustness. With negative pairing, 

all proposed procedures met the robustness criterion except for 15WM-H and the 

Student’s t-test. The overall performance under symmetric heavy tailed distribution 

resulted in the “AVERAGE” values for all procedures falling within the robustness 
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criterion interval except for the 15WM-H and 25WHQ1-H where both of these 

procedures yielded conservative Type I error rates. 

4.2.1.3 Skewed normal tailed distribution (g = 1; h = 0) 

All proposed procedures were able to perform within Bradley’s robustness criterion 

interval under a skewed normal tailed distribution (g = 1; h = 0) when the variances 

are equal, either with balanced or unbalanced sample sizes. Among the proposed 

procedures, 15WHQ-H was determined to be the best method, yielding the closest 

Type I error rates (0.0476 and 0.0524) to the nominal level, 0.05 under both conditions. 

When the variances became unequal, only three procedures, 15WM-H, 25WM-H, and 

MOM-H performed well with Type I error rates that fell within the robustness criterion 

interval regardless of the sample size design or natural pairing. Besides the three 

procedures, the Student’s t-test also performed well under positive pairing with a Type 

I error rate of 0.0370. 25WQH1-H was also found to be robust under negative pairing 

besides the three procedures mentioned earlier. 15WM-H, 25WM-H, 25WQH1-H, and 

MOM-H were the procedures that yielded “AVERAGE” values of 0.0434, 0.0374, 

0.0620, and 0.0448 respectively, which were satisfying Bradley’s robustness criterion 

and also proving to have a robust overall performance under a skewed normal tailed 

distribution. 

4.2.1.4 Skewed heavy tailed distributions (g = 1; h = 0.5) 

15WHQ-H was the only procedure considered robust according to the Bradley’s 

robustness criterion under a skewed heavy tailed distribution (g = 1; h = 0.5) with 

balanced sample sizes and equal variances. The other procedures gave conservative 

Type I error rates under this condition. However, the Type I error rates for all 

procedures increased when the variances became unequal. In the balanced sample sizes 
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with unequal variances condition, all the procedures were found to be robust except 

for 15WM-H (0.0228) and 25WM-H (0.0222), which yielded conservative Type I error 

rates. 

Under unbalanced sample sizes with equal variances, only 15WHQ-H (0.0370) and the 

t-test (0.0272) were considered robust, whilst other procedures did not meet Bradley’s 

robustness criterion. Under the unbalanced sample sizes with positive pairing 

condition, half of the procedures, which are 15WM-H, 25WHQ-H, 15WHQ1-H, and 

MOM-H fulfilled the robustness criterion, whereas the other half fell outside the 

criterion interval of 0.025 to 0.075. All procedures were able to produce Type I error 

rates within the robust criterion interval except for 15WM-H and the t-test under 

negative pairing condition of skewed heavy tailed distribution.  

Under this extreme condition, the majority of the procedures performed well with 

providing “AVERAGE” Type I error rates from 0.0256 to 0.0560. However, three out 

of eight procedures, i.e. 15WM-H, 25WM-H, and 25WHQ1-H failed to satisfy 

Bradley’s robustness criterion with “AVERAGE” values of 0.0171, 0.0198, and 

0.0242, respectively. 

The overall performance of the procedures, based on the “GRAND AVERAGE” 

values, resulted in none of them failing Bradley’s robustness criterion. All of the 

procedures were determined to be robust with “GRAND AVERAGE” values from the 

smallest value of 0.0346 (25WM-H) to the highest value of 0.0685 (25WHQ-H), all of 

which are still within the criterion interval of 0.025 to 0.075.  
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Table 4.1 

The Type I error rates for J = 2 

Type of 
Distribution 

Sample Size Variance Natural 
Pairing 

15 
WM-H 

25 
WM-H 

15 
WHQ-H 

25 
WHQ-H 

15 
WHQ1-H 

25 
WHQ1-H 

MOM-H Student’s  
t-test 

g=0; h=0 20 20 1 1 
 

0.0520* 0.0524* 0.0566* 0.0546* 0.0560* 0.0538* 0.0410* 0.0528* 
20 20 1 36 0.0646* 0.0582* 0.0712* 0.0696* 0.0678* 0.0668* 0.0498* 0.0618* 
15 25 1 1 0.0498* 0.0488* 0.0588* 0.0532* 0.0588* 0.0520* 0.0366* 0.0490* 
15 25 1 36 + 0.0606* 0.0582* 0.0650* 0.0702* 0.0652* 0.0660* 0.0496* 0.0198 
15 25 36 1 - 0.0536* 0.0546* 0.0672* 0.0602* 0.0672* 0.0586* 0.0470* 0.1268 

AVERAGE 0.0561* 0.0544* 0.0638* 0.0616* 0.0630* 0.0594* 0.0448* 0.0620* 
g=0; h=0.5 20 20 1 1 

 
0.0220 0.0222 0.0292* 0.0220 0.0182 0.0220 0.0214 0.0356* 

20 20 1 36 0.0276* 0.0304* 0.0430* 0.0386* 0.0256* 0.0350* 0.0324* 0.0402* 
15 25 1 1 0.0144 0.0226 0.0300* 0.0226 0.0258* 0.0170 0.0232 0.0374* 
15 25 1 36 + 0.0260* 0.0304* 0.0424* 0.0330* 0.0252* 0.0242 0.0304* 0.0118 
15 25 36 1 - 0.0198 0.0288* 0.0410* 0.0374* 0.0402* 0.0256* 0.0330* 0.0996 

AVERAGE 0.0220 0.0269* 0.0371* 0.0307* 0.0270* 0.0248 0.0281* 0.0449* 
g=1; h=0 20 20 1 1 

 
0.0280* 0.0280* 0.0476* 0.0320* 0.0326* 0.0320* 0.0312* 0.0358* 

20 20 1 36 0.0510* 0.0406* 0.1690 0.0962 0.0912 0.0944 0.0544* 0.1226 
15 25 1 1 0.0256* 0.0304* 0.0524* 0.0430* 0.0454* 0.0302* 0.0300* 0.0382* 
15 25 1 36 + 0.0706* 0.0424* 0.1682 0.1356 0.1200 0.0870 0.0506* 0.0370* 
15 25 36 1 - 0.0418* 0.0458* 0.1310 0.0974 0.1322 0.0666* 0.0580* 0.2334 

AVERAGE 0.0434* 0.0374* 0.1136 0.0808 0.0843 0.0620* 0.0448* 0.0934 
g=1; h=0.5 20 20 1 1 

 
0.0104 0.0158 0.0288* 0.0164 0.0140 0.0146 0.0200 0.0232 

20 20 1 36 0.0228 0.0222 0.0734* 0.0472* 0.0348* 0.0384* 0.0398* 0.0434* 
15 25 1 1 0.0100 0.0148 0.0370* 0.0214 0.0230 0.0134 0.0178 0.0272* 
15 25 1 36 + 0.0254* 0.0206 0.1040 0.0554* 0.0416* 0.0246 0.0374* 0.0088 
15 25 36 1 - 0.0170 0.0256* 0.0540* 0.0516* 0.0560* 0.0298* 0.0356* 0.1108 

AVERAGE 0.0171 0.0198 0.0594* 0.0384* 0.0339* 0.0242 0.0301* 0.0427* 
GRAND AVERAGE 0.0347* 0.0346* 0.0685* 0.0529* 0.0520* 0.0426* 0.0370* 0.0608* 

Notes: (*) liberal criterion; (bold) closest to nominal level  
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Table 4.2 

The Type I error rates for J = 4 

Type of 
Distribution 

Sample Size Variance Natural 
Pairing 

15 
WM-H 

25 
WM-H 

15 
WHQ-H 

25 
WHQ-H 

15 
WHQ1-H 

25 
WHQ1-H 

MOM-H ANOVA 
F-test 

g=0; h=0 20 20 20 20 1 1 1 1 
 

0.0444* 0.0376* 0.0510* 0.0472* 0.0522* 0.0462* 0.0256* 0.0518* 
20 20 20 20 1 1 1 36 0.0590* 0.0540* 0.0668* 0.0638* 0.0614* 0.0626* 0.0460* 0.1096 
10 15 25 30 1 1 1 1 0.0454* 0.0376* 0.0596* 0.0512* 0.0612* 0.0508* 0.0246 0.0504* 
10 15 25 30 1 1 1 36 + 0.0580* 0.0572* 0.0640* 0.0682* 0.0618* 0.0626* 0.0486* 0.0336* 
10 15 25 30 36 1 1 1 - 0.0738* 0.0596* 0.0870 0.0856 0.0916 0.0824 0.0528* 0.2850 
AVERAGE 0.0561* 0.0492* 0.0657* 0.0632* 0.0656* 0.0609* 0.0395* 0.1061 

g=0; h=0.5 20 20 20 20 1 1 1 1 
 

0.0060 0.0098 0.0136 0.0062 0.0054 0.0060 0.0078 0.0336* 
20 20 20 20 1 1 1 36 0.0210 0.0296* 0.0344* 0.0308* 0.0214 0.0280* 0.0292* 0.0782 
10 15 25 30 1 1 1 1 0.0052 0.0074 0.0138 0.0098 0.0112 0.0074 0.0076 0.0404* 
10 15 25 30 1 1 1 36 + 0.0220 0.0292* 0.0408* 0.0378* 0.0254* 0.0248 0.0302* 0.0192 
10 15 25 30 36 1 1 1 - 0.0290* 0.0184 0.0440* 0.0452* 0.0454* 0.0452* 0.0274* 0.2392 
AVERAGE 0.0166 0.0189 0.0293* 0.0260* 0.0218 0.0223 0.0204 0.0821 

g=1; h=0 20 20 20 20 1 1 1 1 
 

0.0112 0.0112 0.0368* 0.0166 0.0172 0.0158 0.0134 0.0432* 
20 20 20 20 1 1 1 36 0.0484* 0.0384* 0.1712 0.0962 0.0912 0.0952 0.0512* 0.2448 
10 15 25 30 1 1 1 1 0.0134 0.0116 0.0270* 0.0208 0.0262* 0.0178 0.0140 0.0442* 
10 15 25 30 1 1 1 36 + 0.0686* 0.0390* 0.2068 0.1538 0.1594 0.1096 0.0476* 0.1278 
10 15 25 30 36 1 1 1 - 0.0574* 0.0368* 0.1100 0.1060 0.1086 0.1022 0.0616* 0.3804 
AVERAGE 0.0398* 0.0274* 0.1104 0.0787 0.0805 0.0681* 0.0376* 0.1681 

g=1; h=0.5 20 20 20 20 1 1 1 1 
 

0.0024 0.0040 0.0120 0.0040 0.0042 0.0040 0.0070 0.0226 
20 20 20 20 1 1 1 36 0.0146 0.0184 0.0646* 0.0342* 0.0236 0.0278* 0.0336* 0.0918 
10 15 25 30 1 1 1 1 0.0034 0.0042 0.0128 0.0092 0.0098 0.0056 0.0052 0.0376* 
10 15 25 30 1 1 1 36 + 0.0174 0.0182 0.1000 0.0578* 0.0468* 0.0272* 0.0334* 0.0278* 
10 15 25 30 36 1 1 1 - 0.0188 0.0126 0.0406* 0.0354* 0.0396* 0.0354* 0.0314* 0.2214 
AVERAGE 0.0113 0.0115 0.0460* 0.0281* 0.0248 0.0200 0.0221 0.0802 

GRAND AVERAGE 0.0310* 0.0267* 0.0628* 0.0490* 0.0482* 0.0428* 0.0299* 0.1091 

Notes: (*) liberal criterion; (bold) closest to nominal level  
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4.2.2 Type I Error Rates for the Four-Group Test (J = 4) 

Beside the Two-group test (J = 2), this study also focused on the Four-group test (J = 

4) where the Type I error rate result is illustrated in Table 4.2. Similar to the Two-

group test, four types of distribution with five conditions generated from the 

manipulation of sample sizes and variances were also used to evaluate the robustness 

of the proposed proposal in the Four-group test.  

4.2.2.1 Standard normal distribution (g = 0; h = 0) 

Under standard normal distribution (g = 0; h = 0), the “AVERAGE” values of all the 

procedures were found to fulfil Bradley’s robustness criterion and were considered 

robust except for the ANOVA F-test, which yielded liberal “AVERAGE” values. 

Looking into each condition, all procedures were found robust under balanced sample 

sizes with equal variances. However, 15WHQ-H was determined to be the best 

procedure under this condition because it was able to provide a Type I error rate closest 

to the nominal level of 𝛼 = 0.05. All of the procedures yielded Type I error rates that 

fell within the robustness criterion interval except for the ANOVA F-test where its 

Type I error rates fell out of the criterion interval under unequal variances even with 

balanced sample sizes. 

The MOM-H failed to fulfil the robustness criterion under the condition of unbalanced 

sample sizes with equal variances, whereas others procedure performed better with 

Type I error rates from 0.0376 to 0.0612. However, all of the procedures performed 

well under the positive pairing condition giving Type I error rates that fell within the 

criterion interval. 15WHQ-H, 25WHQ-H, 15WHQ1-H, and 25WHQ1-H showed 

slightly poor performances under the negative pairing condition yielding liberal Type 

I error rates. The ANOVA F-test performed the worst under this condition, providing 
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a Type I error rate of 0.2850. Under this negative pairing condition, 15WM-H, 25WM-

H, and MOM-H were found to be robust and were also able to yield Type I error rates 

within the interval of 0.025 to 0.075. 

4.2.2.2 Symmetric heavy tailed distribution (g = 0; h = 0.5) 

Only the classical procedure, the ANOVA F-test, was considered robust as its Type I 

error rates fell under the robustness criterion with symmetric heavy tailed distribution 

(g = 0; h = 0.5) and equal variances, either paired with balanced or unbalanced sample 

sizes. The rest of the procedures failed the criterion, providing conservative Type I 

error rates. When the variances became unequal, all of the procedures were still able 

to control their Type I error rates so that they fell within the interval of 0.025 and 0.075, 

except for 15WM-H, 15WHQ1-H, and the ANOVA F-test under balanced sample sizes.  

When unbalanced sample sizes were paired with unequal variances, all of the 

procedures were found to be robust, yielding robust Type I error rates except for 

15WM-H, 25WHQ1-H, and the ANOVA F-test that had slightly poor performances 

under the positive pairing condition. For the negative pairing condition, only 25WM-

H and the ANOVA F-test did not perform well with poor Type I error rates. For 

“AVERAGE” values, only 15WHQ-H and 25WHQ-H performed well under a 

symmetric heavy tailed distribution, providing “AVERAGE” values within the 

robustness criterion interval. 15WHQ-H was also the one procedure, which had an 

“AVERAGE” Type I error rate closest to the significance level of 𝛼 = 0.05. 

4.2.2.3 Skewed normal tailed distribution (g = 1; h = 0) 

Under skewed normal tailed distribution (g = 1; h = 0), the Type I error rates for all 

procedures fell below the nominal level of 𝛼 = 0.05 under balanced sample sizes paired 
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with equal variances. However, none of them fulfilled Bradley’s robustness criterion 

except for 15WHQ-H and the ANOVA F-test with Type I error rates of 0.0368 and 

0.0432, respectively. When the variances became unequal, both these procedures 

performed the worst and only 15WM-H, 25WM-H, and MOM-H performed well and 

were considered robust.  

15WHQ-H, 15WHQ1-H, and the ANOVA F-test yielded Type I error rates within the 

robustness criterion interval under unbalanced sample sizes paired with an equal 

variances condition, whereas the other procedures performed with conservative Type 

I error rates. The three above-mentioned procedures yielded poor robustness under 

unbalanced sample sizes paired with unequal variances regardless of positive or 

negative pairing. Under these positive and negative pairing conditions, 15WM-H, 

25WM-H, and MOM-H performed well, producing Type I error rates from 0.0368 to 

0.0616, which fulfilled the robustness criterion.  

Under this skewed normal tailed distribution, 15WM-H, 25WM-H, 25WHQ1-H, and 

MOM-H performed well in controlling their “AVERAGE” Type I error rates and were 

found to be robust based on Bradley’s robustness criterion. The “AVERAGE” Type I 

error rates for other procedures under this type of distribution performed liberally and 

poor robustness was noted. 

4.2.2.4 Skewed heavy tailed distribution (g = 1; h = 0.5) 

None of the procedures were found to be robust under skewed heavy tailed distribution 

(g = 1; h = 0.5) with balanced sample sizes and equal variances. Plus, all produced 

conservative Type I error rates. Only the ANOVA F-test fulfilled the robustness 

criterion and was considered robust when the sample sizes became unbalanced. Other 
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procedures failed the criterion under unbalanced sample sizes paired with equal 

variances. 15WHQ-H, 25WHQ-H, 25WHQ1-H, and MOM-H became robust under 

unequal variances paired with balanced sample sizes. The Type I error rates for other 

procedures fell out of the robustness criterion interval and were considered not robust 

under this condition. 

All of the procedures were found to be robust under the positive paring conditions 

except for 15WM-H, 25WM-H, and 15WHQ-H where 15WM-H and 25WM-H 

provided conservative Type I error rates, whilst 15WHQ-H performed liberally in 

terms of Type I error rates. With negative paring, 15WM-H, 25WM-H, and the 

ANOVA F-test did not satisfy the robustness criterion, whereas other procedures were 

considered robust according to the criterion. From the “AVERAGE” values, only 

15WHQ-H and 25WHQ-H were considered robust under a skewed heavy tailed 

distribution with Type I error rates of 0.0460 and 0.0581, respectively. . The other 

procedures gave conservative Type I error rates except for the ANOVA F-test, which 

yielded liberal Type I error rates.   

Overall, all of the procedures except for the ANOVA F-test were found to be robust 

in terms of “GRAND AVERAGE” values, which is the average of all Type I error 

rates from each manipulated condition of distribution type, sample size, and group 

variance. All the “GRAND AVERAGE” Type I error rates ranged from 0.0267 to 

0.0628, which still conformed to Bradley’s robustness criterion interval except for the 

ANOVA F-test, which yielded a liberal Type I error rate (0.1091).  
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4.3 Power Analysis 

The analysis of power in statistical testing was another assessment considered in this 

study. Similar to the Type I error rates, this analysis uses the same condition designs. 

However, the setting of the central tendency measures was determined differently, as 

mentioned in Section 3.7 where these settings were based on the conditions of design, 

effect sizes, and pattern variability. For each design, three types of effect sizes (small, 

medium, and large) were chosen to evaluate the compared procedures. For the Two-

group test, the three levels of selected effect sizes were small, f = 0.20, medium, f = 

0.50, and large, f = 0.80. The small, f = 0.10, medium, f = 0.25, and large effect sizes, 

f = 0.40, were selected for the Four-group test. Regarding the pattern variability based 

on Cohen (1988), this study only focused on the maximum pattern variability.  

According to previous studies, a procedure is considered a high power procedure when 

it produces power of more than 80% and an accepted power performance must be at 

least more than 50% (Cohen, 1992a; Cohen, 1992b; Murphy, Myors & Wolach, 2008). 

Thus, these two criterions were chosen for the statistical power analysis of this study 

where the minimum accepted power is 50% marked with *, and a value more than 80% 

is considered high power and would be marked with bold font, as illustrated in 

Appendix A and Appendix B. However, the focus of this study is on Type I error rates 

rather than statistical power because the ability of the procedures to control Type I 

error rates is as important as the ability of the procedures to control the probability of 

rejecting the null hypothesis when it is true. The aim of the power analysis in this study 

is to assess the probability of rejecting null hypothesis when it is false, i.e. to assess 

the sensitivity of the procedures in detecting a statistically significant result (Cohen, 

1992b). Thus, Figure 4.1 to Figure 4.8 only shows the power performance of the 
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procedures that have satisfied Bradley’s robustness criterion and considered robust 

under the designed test conditions.  

4.3.1 Power of Two-Group Test (J = 2) 

Figure 4.1 to Figure 4.4 shows the power rate performances for the Two-group test 

with four types of distribution and designed conditions that are similar to the 

assessment of Type I error rates (as outlined in Section 4.2). 

4.3.1.1 Standard normal distribution (g = h = 0) 

The power analysis of this study will only focus on the robust procedures, as 

mentioned above. Thus, Figure 4.1 only shows the statistical power for robust 

procedures that were evaluated under standard normal distribution (g = h = 0). Overall, 

the statistical power of all procedures increased with an increase in effect size from 

small to large, and all of the procedures were able to achieve the accepted power 

performance, i.e. 50%, when effect size was large, except for in the negative pairing 

condition. Under balanced sample sizes paired with equal variances condition, all 

procedures had comparable performances ranging from 65% to 69% under the large 

effect size, except for 25WM-H, with a slightly poor result of 61%. The poorest 

performance procedure with 53% was MOM-H. When variances became unequal, the 

majority of the procedures observed an improvement but still could not satisfy the high 

power criterion, as the highest obtainable power was only 75%, produced by 15WHQ-

H under a large effect size. MOM-H was still able to provide the lowest power of 54% 

under this condition with a large effect size. 

The majority of the power results became slightly worse when sample sizes became 

unbalanced even when the variances were still homogenous. All of the procedures 
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were only able to fulfil the accepted power criterion under a large effect size with the 

lowest power being 50% and the highest being 67% produced by MOM-H and 

25WHQ-H, respectively.  

Figure 4.1. The statistical power for J = 2, g = h = 0 

All of the procedures observed better power performance under positive pairing. 

15WHQ-H, 15WHQ1-H, 25WHQ1-H, and 25WHQ-H met the 50% power criterion 

ranging from 52% to 58% under a medium effect size. When the effect size became 

larger, all procedures were considered high power procedures with more than 80% 

power except for MOM-H with 73% power, albeit it was still considered accepted 

power procedure. 
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With negative pairing, all the procedures yielded the worst power performance under 

a standard normal distribution with none of the procedures achieving at least the 

accepted power performance. The highest obtainable power was a mere 45%, 

produced by 15WHQ-H and 15WHQ1-H. 

4.3.1.2 Symmetric heavy tailed distribution (g = 0; h = 0.5) 

Figure 4.2. The statistical power for J = 2, g = 0; h = 0.5  

Under a symmetric heavy tailed distribution (g = 0; h = 0.5), all of the procedures 

performed poorly for all test conditions even under a large effect size, as shown in 

Figure 4.2. All of the procedures were considered to have low power, as none of them 

were able to provide at least 50% power, except for 25WM-H and MOM-H, which 

were able to produce the accepted power of 50% and 55%, respectively, under a 
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positive pairing condition with a large effect size. A side observation of 25WM-H 

shows that this procedure achieved a power rate that was slightly increased from a 

small to medium effect size and then drastically increased with a large effect size.   

Beside the positive pairing condition, the best obtainable power was around 20%, 

produced by 15WHQ-H and the Student’s t-test under equal variances regardless of 

balanced or unbalanced sample sizes. The best power with around 20% was also 

observed for 25WM-H and MOM-H under the negative pairing condition with large 

effect sizes. Under the condition of balanced sample sizes paired with unequal 

variances, the power performance was observed to be slightly better with a value close 

to 40% for 25WM-H, 25WHQ-H, and MOM-H under a large effect size. 

4.3.1.3 Skewed normal tailed distribution (g = 1; h = 0) 

None of the compared procedures were able to fulfil the accepted power of 50% under 

a skewed normal tailed distribution (g = 1; h = 0) with balanced sample sizes and 

paired with equal variances, as shown in Figure 4.3. The best procedure, 25WM-H, 

gave 39% power under a large effect size and this was the highest power that could be 

obtained among the procedures. 15WM-H and 25WM-H were able to perform at least 

to a power of 50%, which is the accepted power under a large effect size when the 

variances were unequal even with the sample sizes still balanced. However, both 

procedures were still unable to satisfy the high power procedures, as the highest power 

obtained was only 64% (by 15WM-H). 

When it comes to unbalanced sample sizes paired with equal variances and large effect 

sizes, the highest power obtained (by MOM-H) was only 38%, which is still considered 

a low power procedure. This means that all procedures were considered low power 
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procedures as none of them were able to achieve the accepted power of 50% under this 

condition. 

Figure 4.3. The statistical power for J = 2, g = 1; h = 0  

All of the procedures yielded acceptable but not high power procedures under the 

positive pairing condition and with a large effect size. However, three procedures that 

the 15WM-H, 25WM-H and t-test able to obtained the power rate as high as closed to 

the high power, 80% and the best procedure under this condition was 15WM-H. This 

procedure was able to fulfil the accepted power criterion with a medium effect size, 

giving 52% and 79% power, which is very close to the high power criterion of 80% 

with a large effect size.  
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Under the negative pairing condition, all procedures provided a poor performance with 

the highest power of 30%, provided by MOM-H under a large effect size. Under this 

condition, the trend of the t-test did not behave as per the usual trend where the power 

rate would usually increase with increasing effect size. 

4.3.1.4 Skewed heavy tailed distributions (g = 1; h = 0.5) 

Figure 4.4. The statistical power for J = 2, g = 1; h = 0.5  

From Figure 4.4, the power performances of the procedures were observed to be poor 

when the distribution became skewed with a heavy tailed (g = 1; h = 0.5) distribution 

compared to the skewed normal tailed distribution. 15WHQ-H was the only robust 

procedure in terms of Type I error rate under balanced sample sizes paired with equal 

variances condition, but its power performance was similarly poor, as it was only able 
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to produce 11% power even under a large effect size. Its power became slightly better 

at 16% under a large effect size and was the best compared to other procedures when 

the sample sizes became unbalanced. 

The highest power under the condition of balanced sample sizes and unequal variances 

was 12%, 23%, and 39% for small, medium, and large effect sizes, respectively, 

obtained by 15WHQ-H. However, even though these powers failed to satisfy the 

accepted power criterion of 50%, these were the best power performance compared to 

other procedures that had been evaluated under the same condition. Under this 

condition, all the procedures were considered low power procedures with the best 

power provided by 15WHQ-H, as discussed above. 

Under the positive pairing condition, MOM-H was found to be the best procedure with 

48% power under large effect size. However, this value still does not meet the accepted 

power criterion, but it is very close. MOM-H was also the best procedure, yielding 28% 

power, but is still considered a low power procedure under the negative pairing 

condition and a large effect size. The rest of the procedures performed poorly with 

approximately a 20% gap with MOM-H for both positive pairing and negative pairing 

conditions. 

4.3.2 Power of Four-Group Test (J = 4) 

The power analysis of the Four-group test (J = 4) was also considered in this study 

with similar designed conditions to the Two-group test (J = 2). The main difference 

between the Two-group test and the Four-group test was that the effect sizes used to 

determine the setting of the central tendency measure in the latter were f = 0.10, 0.25, 

and 0.40 for small, medium, and large effect sizes, respectively, as mentioned in 
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Section 3.7. The result of the power assessment for the Four-group test is illustrated in 

Figure 4.5 to Figure 4.8 where they are evaluated with a criterion that more than 80% 

correlates to high power and at least 50% is the accepted power performance (Cohen, 

1992a; Cohen, 1992b; Murphy, Myors & Wolach, 2008). 

4.3.2.1 Standard normal distribution (g = 0; h = 0) 

Figure 4.5 illustrates the comparative power performances of the procedures under g 

= h = 0, a standard normal distribution with five designed conditions manipulated 

based on sample sizes and variances. Under balanced sample sizes and equal variances, 

most of the procedures were able to obtain a high power where the powers of the 

procedures were more than 80% at a large effect size. The procedures considered to 

have a high power were 15WHQ-H, 25WHQ-H, 15WHQ1-H, 25WHQ1-H, and the 

ANOVA F-test, whereas the rest of the procedures were considered to have acceptable 

power procedures, as they were still able to produce more than 50% power. The power 

performance of the procedures reduced when the variances became unequal. However, 

the procedures were still able to keep their power to at least more than the accepted 

power of 50% at a large effect size, except for MOM-H, which dropped in power to 

43%, and was considered a low power procedure under balanced sample sizes paired 

with unequal variances. 

When looking at the condition of unbalanced sample sizes paired with equal variances, 

most of the procedures were able to provide a high power from 84% to 87% except for 

25WM-H, which yielded a power of 79% under a large effect size. Although 25WM-

H did not satisfy the high power criterion, it was still considered an accepted power 

procedure as its power rate was more than 50% and was very close to the 80% high 

power criterion. 
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Figure 4.5. The statistical power for J = 4, g = h = 0 

All of the procedures were able to meet the high power criterion under positive pairing 

with a large effect size. The lowest power, 86%, was produced by MOM-H and the 

highest power was produced by 15WHQ1-H at 98%. 15WHQ-H, 15WHQ1-H, and 

25WHQ-H were also able to provide accepted powers of 50%, 50% and 53%, 

respectively, when the effect size was a medium. In this condition, 15WHQ1-H was 

considered the best procedure, as it was able to produce accepted power at a medium 

effect size, and also obtaining the highest power at a large effect size. 

Under the negative pairing condition, only three procedures, 15WM-H, 25WM-H, and 

MOM-H, were found to be robust in terms of Type I error rates. However, all of the 
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procedures were considered low power procedures, as the highest obtainable power 

was only 31%, given by 15WM-H under a large effect size. 

4.3.2.2 Symmetric heavy tailed distribution (g = 0; h = 0.5) 

Overall, it could be observed that the power performance of all the procedures were 

poor under a symmetric heavy tailed distribution, as shown in Figure 4.6. Under the 

condition where equal variances are paired with either balanced or unbalanced sample 

sizes, all procedures were non-robust with conservative Type I error rates except for 

the ANOVA F-test, but the highest power of ANOVA F-test was only 17% and 18% 

with a large effect size and is considered a low power rate under both equal variances 

conditions. 

Under balanced sample sizes paired with unequal variances, the procedures gave low 

power, within the 17% to 27% range, under a large effect size. MOM-H was considered 

the best procedure with 27% power, which was the highest power among the 

procedures under this condition. Moving to the positive pairing condition, MOM-H 

was able to satisfy and give an accepted performance of 56% power and it was the 

only procedure able to achieve accepted power under a large effect size. Besides 

MOM-H, 25WM-H was observed to gain a drastic increment in power from a medium 

to large effect size, and producing 46% power, which is close to the accepted power 

criterion of 50% under a large effect size. However, none of the procedures could 

satisfy the accepted power criterion and were considered low power procedures under 

the negative pairing condition, providing approximately 10% power at a large effect 

size. 
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Figure 4.6. The statistical power for J = 4, g = 0; h = 0.5 

4.3.2.3 Skewed normal tailed distribution (g = 1; h = 0) 

Under the skewed normal tailed distribution (g = 1; h = 0), the ANOVA F-test and 

15WHQ-H were the only two procedures that were found to be robust in terms of Type 

I error rates and both had almost similar power performances, 33% and 32%, 

respectively, under balanced sample sizes paired with equal variances and a large 

effect size condition, as illustrated in Figure 4.7. However, both of the procedures were 

considered low power procedures, giving no more than 50% of accepted power. When 

the sample sizes became unbalanced, the power of both procedures were observed to 

slightly increase to 34% for the large effect size, but were still considered low power 

procedures. 
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For the unequal variances condition, regardless of balanced or unbalanced sample sizes, 

15WM-H, 25WM-H, and MOM-H performed well in terms of Type I error rates and 

were considered robust. In terms of power performances, all of the them gave the 

poorest power under the negative pairing condition with the highest power of 22% 

given by MOM-H at a large effect size, but it is still considered a low power procedure. 

Even though it is still considered a low power procedure under balanced sample sizes, 

the powers of the procedures were observed to become better, giving power close to 

the accepted power of 50%, especially for 15WM-H and 25WM-H, which were able to 

produce 48% and 45% power, respectively, at a large effect size.  

Figure 4.7. The statistical power for J = 4, g = 1; h = 0 
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Under positive pairing and a large effect size, the powers of the procedures were 

observed to be the highest among other conditions under the skewed normal tailed 

distribution. The procedures were able to perform with more than 50%, which is the 

accepted power performance. 15WM-H and 25WM-H were the best procedures, which 

produced power close to but not quite 80% at a large effect size. 

4.3.2.4 Skewed heavy tailed distributions (g = 1; h = 0.5) 

Figure 4.8 shows the power performance of the procedures under a skewed heavy 

tailed distribution for all designed conditions except for the balanced sample sizes 

paired with equal variances condition. This is due to the focus of this study, which is 

the Type I error rates, as mentioned earlier in Section 4.3. Furthermore, all of the 

procedures provided conservative Type I error rates under balanced sample sizes 

paired with equal variances and were considered non-robust procedures according to 

Bradley’s robustness criterion, as discussed in Section 4.2.2.4. Thus, Figure 4.8 does 

not show the balanced sample sizes paired with equal variances condition, as Figure 

4.8 only shows the power performance of robust procedures.   

15WHQ-H and MOM-H were the best procedures even if they were considered low 

power procedures under balanced sample sizes paired with unequal variances and a 

large effect size condition with the highest power among the procedures of 20% and 

23% power, respectively. Under the condition of unbalanced sample sizes paired with 

equal variances, only the ANOVA F-test was found to be robust but it was still a low 

power procedure, as it produced only 6% power even under large effect sizes. 

MOM-H was the best procedure under both positive and negative pairing conditions, 

especially under the positive pairing condition. The power trend of other procedures 
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increased gradually from a small to large effect size. On the other hand, the power 

trend of MOM-H drastically increased from a medium to large effect size and yielded 

the highest power out of all the procedures under a large effect size. However, it was 

still considered a low power procedure due to its power that was close but not more 

than the accepted power of 50%. Under the negative paring condition, the best 

procedure, MOM-H, was only able to produce 16% power at a large effect size and 

thus was also considered a low power procedure. In summary, none of the procedures 

shown in Figure 4.8 were able to satisfy at least the accepted power criterion and all 

were considered low power procedures under the skewed heavy tailed distribution. 

Figure 4.8. The statistical power for J = 4, g = 1; h = 0.5 

4.4 Summary of Type I Error Rates and Power Analysis 

For the overall Type I error rate performance, all of the proposed procedures were able 

to obtain robust AVERAGE Type I error rates within Bradley’s robustness criterion 

regardless of the number of group size (J = 2) or (J = 4) under g = 0; h = 0 (standard 

normal). When the g- and –h distribution became h = 0.5 (heavy tailed) either with g 
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= 0 (normal) or g = 1 (skewed), only 15WHQ-H and 25WHQ-H were able to obtain 

AVERAGE Type I error rates within Bradley’s robustness criterion and were 

considered robust for both J = 2 and J = 4. However, both of the procedures were 

unable to perform well under g = 1; h = 0 (skewed normal tailed). Under this 

distribution, the only procedures considered robust under J = 2 and J = 4 were 15WM-

H, 25WM-H, and 25WHQ1-H. 

In regard to J = 2, referring to the Type I error rate under the test conditions, all the 

proposed procedures (WM-H and AWM-H) were found to be robust in all test 

conditions under g = 0; h = 0. 15WHQ-H was the only robust procedure in all test 

conditions when h = 0.5 with g = 0. Under g = 1; h = 0; only WM-H was able to perform 

well within the robust Type I error rates under all conditions considered.  When it came 

to J = 4, only WM-H was able to control its Type I error rates well and was considered 

a robust procedure under g = 0; h = 0. The rest of the procedures were unable to control 

their Type I error rates within the robustness criterion interval for all test conditions 

but were still able to control their Type I error rate for certain conditions under any 

type of distribution. When compared to MOM-H and the classical procedures, the 

proposed procedures had comparable performances with MOM-H and performed 

better compared to the classical procedures when the distribution was non-normal. 

Most of the Type I error rates for the proposed procedures including MOM-H 

decreased when the group size increased. The decrement in Type I error rates resulted 

in a few procedures not meeting the robustness criteria, giving conservative Type I 

error rates. However, an increment in Type I error rates resulted in certain procedures 

becoming liberal under certain test conditions and distributions. Most of the non-

robust conditions of the procedures were observed to give conservative Type I error 
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rates regardless of J = 2 or J = 4. Liberal Type I error rates were also observed and 

mostly occurred in conditions of unequal variances, especially under a skewed 

distribution. 

In terms of power analysis, most of the robust procedures were able to achieve an 

accepted power of 50% under g = 0; h = 0 regardless of group sizes either two or four 

(J = 2 or J = 4) for all conditions except for negative pairing. Under this distribution, 

the proposed procedures were able to achieve a high power of 80% under the positive 

pairing condition for J = 2. When J = 4, the proposed procedures were also able to 

achieve a high power under equal variances regardless of balanced or unbalanced 

sample sizes and the positive pairing condition was the only condition in which all 

procedures could be considered high power procedures.   

Under g = 0; h = 0.5, MOM-H was the only robust procedure that was able to achieve 

an accepted power of 50%, and it was also the procedure with the highest power under 

positive pairing for both J = 2 and J = 4. When the distribution became skewed, the 

robust procedures were able to achieve accepted power under the positive pairing 

condition for both J = 2 and J = 4 but only WM-H produced an accepted power under 

balanced sample sizes paired with unequal variances for J = 2. None of the robust 

procedures were able to obtain at least an accepted power of 50% under the extreme 

non-normal distribution where g = 0; h = 0.5 (skewed heavy tailed distribution). 

4.5 Real data analysis 

As mentioned in Section 1.3, real data analysis was done to verify the validity of the 

proposed procedures. The selected data was run through a crystallization process to 

improve the Mean Aperture (M.A.) of refined sugar from a sugar manufacturing plant. 
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The M.A. is the sugar grain size, which is an important KPOV (Key Process Output 

Variable) for a sugar manufacturing plant. It is used to produce the customers’ desired 

grain size. The different grain sizes will have different usage to customers and an 

incorrect production of sugar grain size will cause it to be reprocessed. 

The M.A. obtained from an experiment with four conditions and 14 data had collected 

by systematic sampling throughout 23 tons of bulk production from each condition. It 

was observed that the means of M.A. hovered within the 0.9 to 1.04 mm range, as 

shown in Table 4.3. The mean is a statistical value, which is used to identify how the 

data would look like. Besides the mean, other important statistical values were also 

identified, as shown in the descriptive statistics of refined sugar M.A. in Table 4.3. 

The identification of the behaviour of the data is important prior to conducting any 

statistical test on the data. The selection of the statistical test for data analysis must be 

done carefully, as inadequate tests may impact the analysis results. Furthermore, the 

impacted results could be misleading and result in misinterpretation and the wrong 

decision being made.   

Table 4.3 

Some descriptive statistics on the M.A. of refined sugar 

Group n Mean Standard 
Deviation 

Skewness Kurtosis Shapiro-
Wilks 

1 14 0.983 0.020 0.004 -1.771 0.0127* 

2 14 1.000 0.039 1.288 0.877 0.0009* 

3 14 1.039 0.033 0.499 -1.723 0.0010* 

4 14 1.033 0.050 -0.572 -1.475 0.0050* 

Total 56 12.175 16.081  
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This dataset has a balanced sample size of n1=n2= n3=n4=14. The highest standard 

deviation in Group 3 shows that it has the widest range dispersion and has a negative 

skewness and kurtosis coefficient with values of -0.572 and -1.475, respectively. 

Group 2 is observed to have the highest positive coefficient of skewness compared to 

other groups, with a value of 1.288. Overall, each group in this dataset has a non-

normal distribution where all of them produced a significant value based on the 

Shapiro-Wilks test with a p-value of less than 0.05. 

Figure 4.9. The box plot of refined sugar M.A. 

Figure 4.9 illustrates the behaviour of the data in box plots. The box plot of each group 

showed a single whisker or none at all. This means that the data of each group was 

not-normally distributed and skewed either to the left or to the right with regard to the 

whisker. There was no whisker in Group 2, with an observed outlier. This outlier 
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caused the mean to shift to the right. Overall, the data was obviously different between 

the compared groups according to the properties of the M.A. of refined sugar, as 

illustrated via the box plots.  

Besides the assumption of normality, another assumption concerning statistical testing 

is the homogeneity of variances. The data set was tested with Levene's Test for 

homogeneity of variances and was found to be significant with a p-value, of 0.0026, 

less than 0.05, as shown in Table 4.4.  

Table 4.4 

Levene's Test for Homogeneity of refined sugar M.A. Variances 

Source DF Sum of Squares Mean Square F Value Pr > F 

Group 3 0.00471 0.00157 5.4 0.0026* 

Error 52 0.0151 0.000291  

 

Table 4.5 

The p-value of refined sugar M.A. testing 

Statistical 
test 

15 
WM-H 

25 
WM-H 

15 
WHQ-H 

25 
WHQ-H 

15 
WHQ1-H 

25 
WHQ1-H 

MOM-H ANOVA 
F-test 

p-value 0.0017* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.2020 0.0004* 

 

Based on the results of the Shapiro-Wilks and Levene's Test, the M.A. of refined sugar 

did not satisfy the assumption of normality and homogeneity of variances. Therefore, 

this data set was used to validate the performance of the compared procedures under 

violated assumptions; the p-values are outlined in Table 4.5. The p-values produced 

by the compared procedures showed a significant difference with 5% significance 
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level for all procedures except for MOM-H, which was unable to detect the difference 

between the groups with a p-value of 0.2020. 
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CHAPTER FIVE 

DISCUSSIONS AND CONCLUSION 

5.1 Introduction 

The main objective of this study is to find alternative statistical methods that are able 

to test the equality of central tendency measures under non-normal data and 

heterogeneous of variances with higher accuracy. In real life, the non-normal dataset 

is commonly collected and the conventional statistical tests such as Students’ t-test and 

ANOVA F-test are usually sensitive to the shape of the data distribution and making 

these tests unable to perform well, where these tests would be losing their control over 

the Type I error as well as reduce the power rate. Alternative methods such as non-

parametric or transformation methods may be able to address the violation of the 

assumptions. However, these methods adopt the ranking values or transformed values 

instead of the original parametric values in the statistical testing which may lead to 

inaccurate results of the analysis (Siegel, 1957; Rasmussen, 1989). Another alternative 

method is the robust statistics. In statistical testing, the robust statistical method is 

considered a powerful method which is able to control its Type I error rate at nominal 

level and also obtain sufficient power rate, even if the dataset is non-normal or the 

variances are heterogeneous or both (Erceg-Hurn & Mirosevich, 2008).  

In dealing with the issue variance heterogeneity and non-normality, a few robust 

statistical methods were proposed, such as Welch test and H-statistic. The H-statistic 

was selected for this study due to its simple statistical calculation and ability to perform 

well under skewed distribution dataset. This robust statistic has better control of the 

Type I error rate and the statistical power when the central tendency measure of H-

statistic is replaced by the modified one-step M-estimator (MOM) by Keselman, 
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Wilcox, Othman, and Fradette (2002) denoted as MOM-H and further studied by 

Othman et al. (2004), and Syed Yahaya (2005). 

The MOM estimator was one of the robust statistics which was used in MOM-H to 

improve the Type I error rate control and power rate. However, the MOM estimator 

used the trimming approach based on the outlier detection method. The trimming 

approach may cause the loss of important information especially when the sample size 

is small or when the outlier is very difficult to detect. Failure to detect outliers may 

influence the statistical test’s power rate (Wilcox, 2003). Nonetheless, these two 

concerns can be addressed by using the Winsorized mean (WM) and adaptive 

Winsorized mean (AWM).  

The WM winsorizes data symmetrically, while AWM winsorizes data assymmetrically 

based on the shape of the data distribution. Both methods require predetermined 

percentages of winsorization. However, the AWM uses the hinge estimator to identify 

how much to be winsorized on the left and right tails of the data (Keselman et al., 

2007). In this study, the AWM adopts the hinge estimators of HQ and HQ1 that was 

proposed by Reed and Stark (1996), due to their ability to provide better control of 

Type I error rate in the Welch test as recommended by Keselman et al. (2007).  

As the WM and AWM requires the percentages of the winsorization proportion to be 

predetermined, there is concern as to how much data can be winsorized.  In this study, 

15% and 25% were used as the predetermined value of winsorizing due to both are 

common use as trimming percentages and recommended by various studies such as 

Huber (1972), Rosenberger and Gasko (1983), Mudholkar, Mudholkar and Srivastava 

(1991), Wilcox and Keselman (2003b). The 15% and 25% in trimming also provides 
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better control of the Type I error rate and high statistical power according to the studies 

of Keselman et al. (2007), and Abdullah (2011). 

Six robust procedures were proposed from the modification of the H-statistic by 

adopting the WM and AWM using hinge estimator of HQ and HQ1. All of these six 

proposed procedures, named as 15WM-H, 25WM-H, 15WHQ-H, 25WHQ-H, 

15WHQ1-H and 25WHQ1-H, were compared to the MOM-H and classical test 

(Student’s t-test for two groups and ANOVA F-test for more than two groups test). 

To assess the ability of the compared methods to control the Type I error rate and its 

power performance, 5000 simulated datasets were generated by the SAS generator 

RANNOR (SAS, 2011). These datasets were then bootstrapped 599 times using the 

percentile bootstrap method to test the hypothesis due to the intractability of the 

sampling distributions of the statistics. The simulated datasets were generated with 

manipulation of five variables. The five variables include the type of population 

distribution, the number of groups, sample size, the degree of variance heterogeneity, 

and the nature of pairing. 

Four types of distributions, generated by g- and -h distribution, had been used to test 

the compared methods for the effect of data distribution. The shape of distribution of 

the g- and -h distribution was controlled by the g and h values. Increasing the g and h 

values will increase the skewness and kurtosis of data. Therefore, the four conditions 

of g and h values used in this study includes g = 0; h = 0 (standard normal), g = 0; h = 

0.5 (symmetry heavy tailed), g = 1; h = 0 (skewed normal tailed) and g = 1; h = 0.5 

(skewed heavy tailed). 
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The heterogeneity of variances effect of the compared methods was also studied by 

using the unequal variances of 1:36 (1:1:1:36) ratio which was commented as an 

extreme variance heterogeneity condition in Othman et al. (2004), Syed Yahaya (2005), 

and Keselman et al. (2007). The sample sizes were also considered as one of the 

variable to study the effect of Type I error rate control and power rate. The nature 

pairings of sample sizes and variances effect were studied when the unbalanced sample 

sizes were paired with unequal variances. Two and four were the selected group sizes 

to study the performance of the compared methods under different group numbers.  

To evaluate the performance of Type I error rate control, the robustness criterion 

proposed by Bradley (1978) was used. The method is considered robust when the Type 

I error rate, ρ meets the criterion ρ ± 0.025 where the Type I error rate must be in 

between the interval of 0.025 ≤ ρ ≤ 0.075 with significance level of 0.05. The best 

method will produce the Type I error rate closest to nominal value of 0.05. In terms of 

power performance evaluation, the criterion of minimum 50% and more than 80% was 

selected. The method that produces more than 50% will be considered as the accepted 

power rate, while the method that produces more than 80% will be considered as the 

high statistical power method.  

5.2 Type I Error Rates and Statistical Power Analysis 

Table 5.1 shows the number of conditions for each procedure that meets the Bradley’s 

robustness criterion (denoted as scores). The total conditions of each procedure is 40 

regardless of the number of groups. Table 5.2 shows the number of conditions for the 

procedure which produce the closest Type I error rate to the nominal value, 0.05, and 

this procedure will be considered as the best. The number of conditions mentioned will 

be denoted as a score in both Table 5.1 and Table 5.2. 
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Table 5.1 

Score of the procedures which were robust in terms of Type I error rates 

Group 
Size 

Type of 
Distribution 

15 
WM-H 

25 
WM-H 

15 
WHQ-H 

25 
WHQ-H 

15 
WHQ1-H 

25 
WHQ1-H 

MOM-H t-test / 
F-test 

J=2 

g=0; h=0 5 5 5 5 5 5 5 3 

g=0; h=0.5 2 3 5 3 4 2 3 3 

g=1; h=0 5 5 2 2 2 3 5 3 

g=1; h=0.5 1 1 4 3 3 2 3 2 

Score 13 14 16 13 14 12 16 11 

J=4 

g=0; h=0 5 5 4 4 4 4 4 3 

g=0; h=0.5 1 2 3 3 2 2 3 2 

g=1; h=0 3 3 2 0 1 0 3 2 

g=1; h=0.5 0 0 2 3 2 3 3 2 

Score 9 10 11 10 9 9 13 9 

Total Score 22 24 27 23 23 21 29 20 

 

Based on Table 5.1, all proposed procedures, except the Student’s t-test, within the 

group size of two scored 5. This result suggests that the procedures are robust for all 

conditions, except the Student’s t-test, when the distribution is normal (g = 0; h = 0). 

When the distribution becomes heavy tailed (g = 0; h = 0.5), only the 15WHQ-H 

obtained the score of 5, hence being the best among the compared procedures. 

However, under skewed distribution (g = 1; h = 0), the performance of the procedure 

deteriorated significantly with only 2 conditions meeting the Bradley’s robustness 

criterion. The same outcome was observed for another few procedures including 

25WHQ-H, 15WHQ1-H, and 25WHQ1-H. On the contrast,15WM-H, 25WM-H and 

MOM-H resulted in better performance under the skew distributed dataset with scores 

of 5. Nonetheless, the 15WHQ-H was also able to perform well under skewed heavy 

tailed (g = 1; h = 0.5) dataset although performance was slightly poor with scores of 4. 

Therefore, shows that it performs well as long as the data have heavy tail.  
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The performance of the procedures generally reduced when the group size was 

increased to 4. Under g = 0; h = 0, the WM-H regardless of the percentages of 

winsorization are the best as these procedures still scored 5. For other procedures, the 

performance was slightly poorer with scores of 4 and Student’s t-test being lowest with 

a score of 3. The WHQ-H had comparable performance with MOM-H under g = 0; h 

= 0.5 with scores of 3. Under g = 1; h = 0 and g = 1; h = 0.5, the maximum score was 

3. Under g = 1; h = 0, the best procedures were WM-H and MOM-H whereas AWM-H 

with 25% and MOM-H were the best under g = 1; h = 0.5.  

Table 5.2 

Score of the Type I error rates which were robust and closest to nominal level, 0.05 
compared among the procedures 

Group 
Size 

Type of 
Distribution 

15 
WM-H 

25 
WM-H 

15 
WHQ-H 

25 
WHQ-H 

15 
WHQ1-H 

25 
WHQ1-H 

MOM-H t-test / 
F-test 

J=2 

g=0; h=0 2 0 0 0 0 0 3 0 

g=0; h=0.5 0 0 3 0 0 0 0 2 

g=1; h=0 1 1 2 0 0 0 1 0 

g=1; h=0.5 0 0 2 3 0 0 0 0 

Score 3 1 7 3 0 0 4 2 

J=4 

g=0; h=0 0 1 1 0 0 0 3 1 

g=0; h=0.5 0 0 2 0 1 0 0 2 

g=1; h=0 1 0 0 0 0 0 2 2 

g=1; h=0.5 0 0 2 0 1 0 0 1 

Score 1 1 5 0 2 0 5 6 

Total Score 4 2 12 3 2 0 9 8 

The total score of the proposed procedures were in between the scores of MOM-H and 

classical tests (Student’s t-test and ANOVA F-test) with the 15WHQ-H being the 

procedure scoring closest to the MOM-H with total scores of 27 (for 15WHQ-H) and 

29 (for MOM-H). However, the 15WHQ-H is the best procedure when it comes to the 
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number of conditions that were robust and closest to nominal level, 0.05 as displayed 

in Table 5.2. 

Besides Type I error rate, the statistical power was also evaluated as shown in Table 

5.3 where the number of conditions (denoted as score) that met Bradley’s robustness 

criterion and have accepted statistical power (at least 50%). For J = 2 case, one of the 

test conditions for all AWM had achieved at least 50% power rate since the effect size 

under g = 0; h = 0 were medium and all procedures, except Student’s t-test, have scores 

of 4 when the effect size became large. Most of the procedures had low statistical 

power under non-normal distribution regardless of being skewed, heavy tailed or 

combination of both. Under g = 0; h = 0.5, only 25WM-H and MOM-H were able to 

obtain score of 1 when the effect size was large. The 15WM-H was able to achieve 

score of 1 when the effect size under g = 1; h = 0 was medium. It also obtained score 

of 2 when the effect size was large, similarly for 25WM-H. For g = 1; h = 0.5, none of 

the procedures were able to provide a power rate of at least 50% even under a large 

effect size. Overall, the WM-H was the best procedure under the group size of two, 

that scored the highest of 7 as compared to other procedures.  

Under the group size of four, all the procedures showed the same performance as group 

size of two except 25HQ1-H and MOM-H where the scores dropped when group size 

was increased from two to four under g = 0; h = 0. When the tail of distribution became 

heavy, only MOM-H was able to perform with a statistical power more than 50% with 

a score equal to 1. Under skewed distribution, only WM-H had the same performance 

as MOM-H with a score of 1. When all of the procedures were tested under g = 1; h = 

0.5, similar outcomes were observed in both group sizes of two and four where none 

of them were able to provide the statistical power of at least 50%.  
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Table 5.3 

Score of statistical power with robust condition more than 50% 

Group 
Size 

Type of 
Distribution 

Effect Size 15 
WM-H 

25 
WM-H 

15 
WHQ-H 

25 
WHQ-H 

15 
WHQ1-H 

25 
WHQ1-H 

MOM-H t-test / 
F-test 

J=2 

g=0; h=0 
Small 0 0 0 0 0 0 0 0 

Medium 0 0 1 1 1 1 0 0 
Large 4 4 4 4 4 4 4 3 

g=0; h=0.5 
Small 0 0 0 0 0 0 0 0 

Medium 0 0 0 0 0 0 0 0 
Large 0 1 0 0 0 0 1 0 

g=1; h=0 
 

Small 0 0 0 0 0 0 0 0 
Medium 1 0 0 0 0 0 0 0 

Large 2 2 0 0 0 0 1 1 

g=1; h=0.5 
Small 0 0 0 0 0 0 0 0 

Medium 0 0 0 0 0 0 0 0 
Large 0 0 0 0 0 0 0 0 

Score 7 7 5 5 5 5 6 4 

 
J=4 

g=0; h=0 
Small 0 0 0 0 0 0 0 0 

Medium 0 0 1 1 1 0 0 0 
Large 4 4 4 4 4 4 2 3 

g=0; h=0.5 
Small 0 0 0 0 0 0 0 0 

Medium 0 0 0 0 0 0 0 0 
Large 0 0 0 0 0 0 1 0 

g=1; h=0 
 

Small 0 0 0 0 0 0 0 0 
Medium 0 0 0 0 0 0 0 0 

Large 1 1 0 0 0 0 1 0 

g=1; h=0.5 
Small 0 0 0 0 0 0 0 0 

Medium 0 0 0 0 0 0 0 0 
Large 0 0 0 0 0 0 0 0 

Score 5 5 5 5 5 4 4 3 
Total Score 12 12 10 10 10 9 10 7 

91 



 
 
 

92 
 

Table 5.4 

Score of statistical power with robust condition more than 80% 

Group 
Size 

Type of 
Distribution 

Effect Size 15 
WM-H 

25 
WM-H 

15 
WHQ-H 

25 
WHQ-H 

15 
WHQ1-H 

25 
WHQ1-H 

MOM-H t-test / 
F-test 

J=2 

g=0; h=0 
Small 0 0 0 0 0 0 0 0 

Medium 0 0 0 0 0 0 0 0 
Large 1 1 1 1 1 1 0 0 

g=0; h=0.5 
Small 0 0 0 0 0 0 0 0 

Medium 0 0 0 0 0 0 0 0 
Large 0 0 0 0 0 0 0 0 

g=1; h=0 
 

Small 0 0 0 0 0 0 0 0 
Medium 0 0 0 0 0 0 0 0 

Large 0 0 0 0 0 0 0 0 

g=1; h=0.5 
Small 0 0 0 0 0 0 0 0 

Medium 0 0 0 0 0 0 0 0 
Large 0 0 0 0 0 0 0 0 

Score 1 1 1 1 1 1 0 0 

 
J=4 

g=0; h=0 
Small 0 0 0 0 0 0 0 0 

Medium 0 0 0 0 0 0 0 0 
Large 2 1 3 3 3 3 1 3 

g=0; h=0.5 
Small 0 0 0 0 0 0 0 0 

Medium 0 0 0 0 0 0 0 0 
Large 0 0 0 0 0 0 0 0 

g=1; h=0 
 

Small 0 0 0 0 0 0 0 0 
Medium 0 0 0 0 0 0 0 0 

Large 0 0 0 0 0 0 0 0 

g=1; h=0.5 
Small 0 0 0 0 0 0 0 0 

Medium 0 0 0 0 0 0 0 0 
Large 0 0 0 0 0 0 0 0 

Score 2 1 3 3 3 3 1 3 
Total Score 3 2 4 4 4 4 1 3 

92 
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Comparing the total score between group sizes of four and two, the total score for all 

procedures in group size of four had lower scores except WHQ-H and 15WHQ1-H that 

had the same score in both group sizes. According to the total score in Table 5.3, the 

best procedure was WM-H which had the highest score of 12. The WHQ-H and WHQ1-

H had comparable scores with MOM-H and the poorest was the classical procedures 

that only got scores of 7. 

According to previous studies (Cohen, 1992a; Cohen, 1992b; Murphy, Myors & 

Wolach, 2008), the statistical power is considered as high when it achieves 80%. Table 

5.4 illustrates the compared procedures’ statistical power performance by the number 

of conditions (denoted as score) which were robust and have more than 80%. Most of 

the procedures were not high power regardless of the group size being two or four as 

shown in Table 5.4. For group size of two, the procedures were able to produce more 

than 80% only when g = 0; h = 0 and only one condition achieved the high power. The 

high power procedures were the proposed procedures of WM-H, WHQ-H and WHQ1-

H. When group size was four, the procedures were also able to achieve high power 

only when g = 0; h = 0 but with higher scores as compared to group size of two. In this 

case, the highest scoring procedures were WHQ-H, WHQ1-H and ANOVA F-test. 

Overall, the WHQ-H and WHQ1-H were the best two procedures which had the highest 

scores compared to others. 

5.3 Implications 

As discussed in previous chapters, the main concerns were the non-normality and 

heterogeneous variances which may impact the Type I error rate and statistical power 

of classical methods of the hypothesis testing. Therefore, the main goal of this study 

is to find for alternative methods that can be applied under various data conditions 
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without worrying about violations of the assumption. The H-statistic was modified 

using Winsorized Mean (WM-H) and Adaptive Winsorized Mean (AWM-H) as the 

central tendency measure. The results of this study showed that both proposed methods 

successfully improved the Type I error rate and statistical power even under violated 

assumption conditions.  

Among all the compared procedures, none were considered as the best in all conditions. 

However, the 15WHQ-H can be considered as a good robust method that was evaluated 

under various test conditions as mentioned in previous chapter. It obtained better Type 

I error rate and achieved higher power than other procedures. It performed well for 

heavy tailed distribution especially for Two-group test. However, it is not 

recommended for skewed distribution with unequal variances conditions as stated in 

Teh, Abdullah, Syed Yahaya, and Md Yusof (2014). Besides, the others procedures 

from AWM-H are also not recommended for skewed distribution due to AWM-H 

unable to control the Type I error rate well under this distribution. 

For skewed distribution, the WM-H or existing MOM-H is recommended due to its 

ability to control the Type I error rate especially for heterogeneous variance conditions. 

Furthermore, the WM-H showed better statistical power as compared to the others. 

However, the WM-H and MOM-H have concerns when used for equal variances under 

Four-group test. These methods provided the conservative Type I error rate when the 

methods were evaluated under homogenous variances regardless of balanced or 

unbalanced conditions for Four-group test. 

The results of this study showed that each procedure have their own strengths and 

weaknesses. While one procedure performs well in certain conditions, it may also be 
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the worst in other conditions. As such, more research is required to find better 

alternatives for robust statistical methods. Nonetheless, the outcome of this study may 

give some ideas as a starting point.  

5.4 Suggestion for Future Research 

The modified H-statistic in this study was proven to improve the Type I error rate 

control and statistical power for the dataset with non-normal distribution and 

heterogeneous variances. However, it is not ideal in all conditions and few weaknesses 

was identified such as inability of AWM-H to perform well under skewed distributed 

dataset. Furthermore, the statistical power of the proposed procedures can still be 

improved as the procedures were unable to achieve the high power rate for most of the 

test conditions even when it produced better power rate compared to existing 

procedures. 

In this study, only the hinge estimator HQ and HQ1 were used. However, Reed and 

Stark (1996) proposed 7 methods which are able to determine the shape of distribution 

either by tail length or skewness. The HQ and HQ1 that was used in this study is the 

tail length based Hinge estimator and proved it is able to perform well under heavy 

tailed distribution but poor if the distribution is skewed. Therefore, further study on 

the entire hinge estimator would be able to help to identify the best Hinge estimator in 

AWM-H. Besides the AWM using hinge estimator to determine the shape and tailed to 

be winsorized, other alternative estimator which is able to handle both heavy tailed 

and skewed distribution is needed.  

Another proposed procedure is WM-H which needs a predetermined value prior the 

winsorizing is conducted. The result of this study finds that the Type I error rates of 
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the procedures performed conservatively for those failed to fulfilled the Bradley’s 

robustness criterion. However, the predetermined value observed have impacted the 

WM-H’s Type I error rates. Therefore, a study on the predetermined value can be done 

to find the predetermined value which is able to optimise the performance of the 

proposed procedures.  

The WM and AWM showed ability to improve the H-statistic performance in terms of 

Type I error rate and statistical power, but still failed to perform well in a few test 

conditions such as the unequal variances conditions. Therefore, the use of the WM and 

AWM in other statistical procedure is also believed to improve the overall performance 

of the procedure especially when the procedure is known to perform well under 

unequal variances conditions.  

Further research in finding the best statistical method cannot be stopped and needs to 

continue. Beside the suggestions above, there are still many improvement 

opportunities that can be explored. The new and robust statistical methods may have 

been introduced and this may help in improving the accuracy of the statistical analysis 

and the right decision can be made accordingly. 

. 
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APPENDIX A 

The statistical power for J = 2 

Type of 
Distribution 

Sample 
Size 

Variance Natural 
Pairing 

Effect Size 15 
WM-H 

25 
WM-H 

15 
WHQ-H 

25 
WHQ-H 

15 
WHQ1-H 

25 
WHQ1-H 

MOM-H Student’s 
t-test 

g=0; h=0 

20 20 1 1   

Small, f = 0.20 9.04 8.96 10.08 9.86 9.76 9.64 6.96 9.16 

Medium, f = 0.50 31.16 29.08 34.64 33.40 33.84 33.00 23.50 33.62 

Large, f = 0.80 64.92* 60.86* 68.84* 66.88* 68.90* 66.54* 53.44* 68.66* 

20 20 1 36   

Small, f = 0.20 10.64 10.34 14.12 14.52 12.28 14.36 8.52 11.16 

Medium, f = 0.50 32.88 30.16 41.86 42.20 37.74 41.36 25.84 35.34 

Large, f = 0.80 64.68* 61.56* 74.48* 74.38* 70.54* 73.54* 54.16* 68.54* 

15 25 1 1   

Small, f = 0.20 9.06 8.28 9.90 10.58 9.92 9.88 6.70 9.12 

Medium, f = 0.50 29.66 27.82 32.14 32.52 32.12 31.20 21.38 31.52 

Large, f = 0.80 63.36* 60.44* 66.50* 66.64* 66.52* 65.04* 50.02* 66.52* 

15 25 1 36 + 

Small, f = 0.20 12.90 12.32 14.90 18.64 14.88 16.76 9.68 5.46 

Medium, f = 0.50 46.56 43.08 51.96* 57.56* 51.98* 53.88* 35.88 29.28 

Large, f = 0.80 84.68* 80.94* 87.90* 90.46* 87.88* 88.82* 73.26* 70.26* 

15 25 36 1 - 

Small, f = 0.20 7.96 7.66 8.58 7.14 8.58 7.14 5.94 16.84 

Medium, f = 0.50 19.96 19.44 21.40 18.72 21.40 18.54 15.10 36.60 

Large, f = 0.80 43.02 40.58 44.58 40.58 44.56 40.72 31.72 62.86* 

AVERAGE 35.37 33.43 38.79 38.94 38.06 38.03 28.14 37.00 
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APPENDIX A 

Type of 
Distribution 

Sample 
Size 

Variance Natural 
Pairing 

Effect Size 15 
WM-H 

25 
WM-H 

15 
WHQ-H 

25 
WHQ-H 

15 
WHQ1-H 

25 
WHQ1-H 

MOM-H Student’s 
t-test 

g=0; h=0.5 

20 20 1 1   

Small, f = 0.20 3.04 4.18 3.58 3.12 2.56 2.92 4.50 4.34 

Medium, f = 0.50 8.14 13.06 7.94 7.30 5.72 7.00 14.34 9.72 

Large, f = 0.80 19.78 31.62 16.60 17.44 12.94 16.38 35.02 19.24 

20 20 1 36   

Small, f = 0.20 4.38 4.96 7.18 7.26 4.56 5.78 5.58 5.94 

Medium, f = 0.50 12.24 16.58 16.94 17.82 10.74 14.50 17.76 12.24 

Large, f = 0.80 27.08 36.28 31.56 35.92 22.06 29.74 38.42 24.80 

15 25 1 1   

Small, f = 0.20 1.84 3.30 4.34 2.94 2.96 2.36 3.60 4.68 

Medium, f = 0.50 6.20 10.24 10.20 6.88 6.52 6.74 12.72 9.58 

Large, f = 0.80 15.56 26.38 20.28 15.52 13.94 15.92 31.04 18.42 

15 25 1 36 + 

Small, f = 0.20 4.20 6.00 8.30 7.90 4.52 5.70 6.54 2.10 

Medium, f = 0.50 14.32 10.24 22.30 22.36 13.18 17.04 25.14 7.12 

Large, f = 0.80 32.84 50.22* 41.96 43.30 27.44 35.54 54.54* 17.40 

15 25 36 1 - 

Small, f = 0.20 2.56 3.78 4.18 3.20 3.98 2.68 3.92 11.64 

Medium, f = 0.50 5.82 8.88 7.60 5.00 6.78 5.34 9.82 18.38 

Large, f = 0.80 11.90 19.00 14.40 9.90 13.06 11.16 22.06 28.62 

AVERAGE 11.33 16.31 14.49 13.72 10.06 11.92 19.00 12.95 
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APPENDIX A 

Type of 
Distribution 

Sample 
Size 

Variance Natural 
Pairing 

Effect Size 15 
WM-H 

25 
WM-H 

15 
WHQ-H 

25 
WHQ-H 

15 
WHQ1-H 

25 
WHQ1-H 

MOM-H Student’s 
t-test 

g=1; h=0 

20 20 1 1   

Small, f = 0.20 4.42 4.82 7.16 4.82 4.84 4.62 6.02 5.50 

Medium, f = 0.50 13.92 17.18 17.42 12.78 12.74 12.44 18.16 15.14 

Large, f = 0.80 31.78 39.26 35.06 28.28 28.00 27.64 38.84 32.16 

20 20 1 36   

Small, f = 0.20 12.46 8.14 33.18 21.12 19.56 20.26 5.88 25.48 

Medium, f = 0.50 34.48 27.24 66.72* 48.90 45.84 46.86 18.80 57.92* 

Large, f = 0.80 64.36* 59.82* 90.24* 75.76* 70.48* 71.04* 46.44 85.68* 

15 25 1 1   

Small, f = 0.20 5.04 4.94 7.66 6.36 6.40 5.02 6.12 4.90 

Medium, f = 0.50 14.94 15.28 19.38 15.62 15.80 13.64 17.70 14.50 

Large, f = 0.80 31.32 35.50 35.46 30.28 30.74 28.68 37.62 31.84 

15 25 1 36 + 

Small, f = 0.20 18.80 10.46 37.32 2882 26.66 20.54 6.54 12.10 

Medium, f = 0.50 52.32* 42.50 75.90* 61.14* 59.00* 49.68 27.52 46.16 

Large, f = 0.80 79.74* 78.72* 95.04* 81.22* 80.56* 73.42* 63.90* 79.74* 

15 25 36 1 
- 

Small, f = 0.20 3.82 5.18 8.40 6.44 8.46 5.12 8.88 15.50 

Medium, f = 0.50 7.22 10.64 8.68 7.34 8.46 6.88 18.00 13.28 

Large, f = 0.80 13.58 20.42 13.58 12.60 13.26 12.60 30.00 18.24 

AVERAGE 25.88 25.34 36.75 29.43 28.72 26.56 23.36 30.54 
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APPENDIX A 

Type of 
Distribution 

Sample 
Size 

Variance Natural 
Pairing 

Effect Size 15 
WM-H 

25 
WM-H 

15 
WHQ-H 

25 
WHQ-H 

15 
WHQ1-H 

25 
WHQ1-H 

MOM-H Student’s 
t-test 

.g=1; h=0.5 

20 20 1 1   

Small, f = 0.20 1.78 2.46 3.54 2.12 1.68 1.80 3.58 2.60 

Medium, f = 0.50 4.48 7.98 6.22 4.54 3.52 3.80 13.30 4.80 

Large, f = 0.80 10.40 19.72 11.76 8.74 6.80 7.30 31.78 9.32 

20 20 1 36   

Small, f = 0.20 3.60 3.54 11.92 7.92 5.70 6.30 3.32 6.72 

Medium, f = 0.50 10.96 12.80 23.32 18.04 12.64 13.94 11.88 14.44 

Large, f = 0.80 24.12 30.74 39.00 32.88 22.48 24.48 33.06 26.84 

15 25 1 1   

Small, f = 0.20 1.78 2.30 5.22 2.58 2.62 1.72 3.94 2.78 

Medium, f = 0.50 4.66 7.42 9.50 4.56 4.90 3.60 12.78 4.50 

Large, f = 0.80 9.84 17.26 16.06 8.82 9.00 7.72 30.26 8.54 

15 25 1 36 + 

Small, f = 0.20 5.30 4.54 17.34 9.82 7.74 5.34 3.74 2.08 

Medium, f = 0.50 15.00 18.56 34.36 20.52 16.66 13.40 17.00 7.10 

Large, f = 0.80 30.74 43.94 50.74* 32.78 27.92 24.76 48.38 18.04 

15 25 36 1 - 

Small, f = 0.20 1.82 3.18 4.84 3.92 4.44 2.32 6.58 9.22 

Medium, f = 0.50 3.40 6.40 5.70 3.96 4.60 3.24 15.46 9.88 

Large, f = 0.80 6.44 12.82 8.16 5.52 6.60 5.54 27.94 11.92 

AVERAGE 8.95 12.91 16.51 11.11 9.15 8.35 17.53 9.25 

GRAND AVERAGE 20.38 22.00 26.64 23.30 21.50 21.22 22.01 22.43 

Notes: (*) more than 50%; (bold) more than 80%  
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APPENDIX B 

The statistical power rate for J = 4 

Type of 
Distribution 

Sample Size Variance Natural 
Pairing 

Effect Size 15 
WM-H 

25 
WM-H 

15 
WHQ-H 

25 
WHQ-H 

15 
WHQ1-H 

25 
WHQ1-H 

MOM-H ANOVA 
F-test 

g=0; h=0 

20 20 20 20 1 1 1 1   

Small, f = 
0.10 8.28 7.28 9.62 9.20 9.66 9.04 4.90 9.78 

Medium, f 
= 0.25 35.48 31.54 40.38 38.42 40.02 38.08 23.82 41.76 

Large, f = 
0.40 78.30* 73.66* 82.48* 80.54* 82.46* 80.24* 62.60* 83.64* 

20 20 20 20 1 1 1 36   

Small, f = 
0.10 7.42 7.06 9.80 9.96 8.80 9.76 5.62 14.12 

Medium, f 
= 0.25 20.56 19.16 27.16 27.20 24.46 26.72 15.04 37.14 

Large, f = 
0.40 58.86* 53.50* 69.18* 67.56* 65.78* 66.92* 43.12 85.64* 

10 15 25 30 1 1 1 1   

Small, f = 
0.10 9.64 8.12 11.10 11.68 11.80 10.56 5.34 9.80 

Medium, f 
= 0.25 40.72 35.06 43.00 44.72 44.58 41.96 24.42 41.38 

Large, f = 
0.40 84.12* 79.08* 85.80* 86.52* 86.54* 85.40* 65.62* 85.64* 

10 15 25 30 1 1 1 36 + 

Small, f = 
0.10 9.32 8.58 11.90 13.10 11.42 11.52 7.14 5.58 

Medium, f 
= 0.25 43.18 39.34 50.02* 53.48* 50.06* 49.74 31.12 29.16 

Large, f = 
0.40 96.38* 92.54* 98.00* 97.80* 98.22* 97.40* 85.88* 91.38* 

10 15 25 30 36 1 1 1 - 

Small, f = 
0.10 8.04 6.66 9.00 9.00 9.76 8.56 6.10 32.22 

Medium, f 
= 0.25 14.98 12.32 15.16 15.42 16.90 14.92 9.74 52.44* 

Large, f = 
0.40 31.04 24.76 31.18 31.70 34.00 30.64 20.16 86.02* 

AVERAGE 36.42 33.24 39.59 39.75 39.63 38.76 27.37 47.05 
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PPENDIX B 

Type of 
Distribution 

Sample Size Variance Natural 
Pairing 

Effect Size 15 
WM-H 

25 
WM-H 

15 
WHQ-H 

25 
WHQ-H 

15 
WHQ1-H 

25 
WHQ1-H 

MOM-H ANOVA 
F-test 

 

20 20 20 20 1 1 1 1   

Small, f = 
0.10 0.82 1.62 1.50 0.84 0.72 0.82 1.62 3.78 

Medium, f 
= 0.25 3.00 7.74 3.82 3.06 2.00 3.12 8.96 7.68 

Large, f = 
0.40 10.56 25.44 9.74 9.12 5.72 9.00 29.64 17.26 

20 20 20 20 1 1 1 36   

Small, f = 
0.10 2.44 3.28 4.68 4.10 2.86 3.54 3.82 8.30 

Medium, f 
= 0.25 5.64 8.68 8.96 8.48 5.18 6.96 9.78 13.06 

Large, f = 
0.40 15.04 23.88 18.90 20.08 11.98 16.98 26.50 24.74 

10 15 25 30 1 1 1 1   

Small, f = 
0.10 0.96 1.38 1.98 g=0; h=0.5 1.44 1.06 1.66 4.58 

Medium, f 
= 0.25 3.22 5.60 5.86 4.92 3.90 3.76 8.38 8.78 

Large, f = 
0.40 11.10 19.34 15.42 13.02 10.50 11.08 29.78 18.38 

10 15 25 30 1 1 1 36 + 

Small, f = 
0.10 3.14 3.74 5.76 6.26 3.84 4.20 4.30 2.60 

Medium, f 
= 0.25 4.24 6.24 14.86 15.56 9.70 10.86 17.56 5.76 

Large, f = 
0.40 27.76 46.04 34.36 35.20 24.46 28.44 56.20* 14.64 

10 15 25 30 36 1 1 1 - 

Small, f = 
0.10 3.04 2.04 4.26 4.28 4.14 4.06 3.20 25.56 

Medium, f 
= 0.25 5.16 3.88 6.02 5.62 5.68 5.38 5.52 31.14 

Large, f = 
0.40 9.56 8.14 10.16 10.12 9.48 9.44 11.98 40.56 

AVERAGE 7.05 11.14 9.75 9.48 6.77 7.91 14.59 15.12 
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APPENDIX B 

Type of 
Distribution 

Sample Size Variance Natural 
Pairing 

Effect Size 15 
WM-H 

25 
WM-H 

15 
WHQ-H 

25 
WHQ-H 

15 
WHQ1-H 

25 
WHQ1-H 

MOM-H ANOVA 
F-test 

g=1; h=0 

20 20 20 20 1 1 1 1   

Small, f = 
0.10 2.00 2.26 5.08 2.28 2.44 2.26 2.50 5.78 

Medium, f 
= 0.25 7.76 11.32 14.04 8.12 8.34 8.10 11.34 14.86 

Large, f = 
0.40 24.76 33.84 32.38 21.40 21.70 21.42 33.40 33.14 

20 20 20 20 1 1 1 36   

Small, f = 
0.10 7.64 5.12 24.72 14.02 13.42 13.76 5.24 33.08 

Medium, f 
= 0.25 19.36 15.10 47.46 29.54 28.84 29.28 12.28 58.82* 

Large, f = 
0.40 48.10 44.82 78.42* 57.48* 56.20* 565.8* 36.76 86.10* 

10 15 25 30 1 1 1 1   

Small, f = 
0.10 2.54 1.96 4.42 3.40 3.94 2.60 2.44 5.06 

Medium, f 
= 0.25 10.14 10.04 14.96 11.92 13.02 9.34 11.22 13.80 

Large, f = 
0.40 27.48 31.36 33.98 28.32 29.74 24.90 35.40 34.10 

10 15 25 30 1 1 1 36 + 

Small, f = 
0.10 12.92 7.68 32.84 24.58 25.08 17.82 5.30 20.86 

Medium, f 
= 0.25 39.34 32.44 65.54* 52.90* 52.00* 41.52 22.54 48.70 

Large, f = 
0.40 75.42* 76.96* 92.54* 79.12* 78.14* 69.06* 66.42* 82.52* 

10 15 25 30 36 1 1 1 - 

Small, f = 
0.10 5.40 4.12 9.60 9.56 9.78 8.84 7.96 35.80 

Medium, f 
= 0.25 8.26 7.06 11.24 10.78 11.16 10.12 13.62 40.24 

Large, f = 
0.40 14.50 13.26 17.18 16.90 17.28 15.96 22.00 52.78* 

AVERAGE 20.37 19.82 32.29 24.69 24.74 22.10 19.23 37.71 
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APPENDIX B 

Type of 
Distribution 

Sample Size Variance Natural 
Pairing 

Effect Size 15 
WM-H 

25 
WM-H 

15 
WHQ-H 

25 
WHQ-H 

15 
WHQ1-H 

25 
WHQ1-H 

MOM-H ANOVA 
F-test 

g=1; h=0.5 

20 20 20 20 1 1 1 1   

Small, f = 
0.10 0.32 0.54 1.26 0.48 0.46 0.48 1.38 2.34 

Medium, f 
= 0.25 1.38 2.64 2.60 1.04 0.88 0.96 6.14 3.84 

Large, f = 
0.40 3036 9.60 5.04 2.32 2.10 2.26 21.92 6.46 

20 20 20 20 1 1 1 36   

Small, f = 
0.10 2.02 2.10 7.98 4.68 3.42 3.88 2.98 10.92 

Medium, f 
= 0.25 4.16 5.18 11.84 7.48 5.34 6.04 6.36 15.32 

Large, f = 
0.40 9.94 16.60 19.94 13.20 9.62 10.80 22.84 24.18 

10 15 25 30 1 1 1 1   

Small, f = 
0.10 0.42 0.52 1.78 0.96 1.06 0.64 0.92 3.52 

Medium, f 
= 0.25 1.30 2.00 3.84 2.00 2.02 1.32 5.84 4.20 

Large, f = 
0.40 3.92 7.76 8.14 4.12 4.04 2.62 21.66 6.18 

10 15 25 30 1 1 1 36 + 

Small, f = 
0.10 2.78 2.42 13.16 7.72 5.98 3.56 3.08 3.68 

Medium, f 
= 0.25 6.90 9.76 21.66 12.92 10.40 7.10 11.48 6.86 

Large, f = 
0.40 17.74 31.04 35.42 21.68 19.16 13.88 48.82 14.48 

10 15 25 30 36 1 1 1 - 

Small, f = 
0.10 2.00 1.58 3.80 3.28 3.42 3.14 4.56 21.32 

Medium, f 
= 0.25 2.94 3.14 4.64 3.38 3.60 3.14 8.68 21.30 

Large, f = 
0.40 4.92 5.84 7.06 5.08 5.36 4.46 15.58 24.28 

AVERAGE 4.27 6.71 9.88 6.02 5.12 04.29 12.15 11.26 

GRAND AVERAGE 17.03 17.73 22.88 19.99 19.07 18.27 18.34 27.78 

Notes: (*) more than 50%; (bold) more than 80% 
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