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Abstrak 

Ujian t-dua sampel bebas dan ANOVA adalah kaedah klasik yang masing-masing 
digunakan secara meluas untuk menguji kesamaan dua kumpulan dan lebih daripada 
dua kumpulan. Walau bagaimanapun, kaedah berparameter ini mudah dipengaruhi 
oleh ketidak kenormalan, lebih ketara lagi apabila wujud varians yang heterogen dan 
saiz sampel yang tidak seimbang. Sebagaimana yang diketahui umum, pelanggaran 
dalam andaian ujian ini akan menyebabkan peningkatan dalam Ralat jenis I dan 
kemorosotan dalam kuasa ujian. Kaedah tidak berparameter seperti Mann-Whitney 
dan Kruskal-Wallis adalah merupakan alternatif kepada kaedah berparameter, namun, 
kehilangan maklumat berlaku disebabkan oleh data berpangkat. Bagi meringankan 
masalah ini, kaedah teguh boleh digunakan sebagai alternatif lain. Salah satu 
daripada kaedah tersebut adalah H-statistik. Apabila digunakan dengan penganggar 
M-satu langkah terubahsuai (MOM), statistik ujian ini (MOM-H) dapat menghasilkan 
kawalan Ralat jenis I yang baik walaupun dalam keadaan saiz sampel yang kecil, 
tetapi tidak konsisten pada beberapa keadaan yang dikaji. Tambahan pula, kuasa 
ujian adalah rendah yang berkemungkinan disebabkan oleh proses pangkasan data. 
Dalam kajian ini, MOM diwinsor (WMOM) bagi mengekalkan saiz sampel asal data. 
H-statistik apabila digabungkan dengan WMOM sebagai sukatan kecenderungan 
memusat (WMOM-H) telah menunjukkan kawalan Ralat jenis I yang lebih baik 
berbanding dengan MOM-H terutamanya di bawah rekabentuk seimbang walaupun 
dalam apa saja bentuk taburan. Ia juga menunjukkan prestasi yang baik di bawah 
taburan yang amat pencong dan berhujung berat bagi rekabentuk yang tidak 
seimbang. Di samping itu, WMOM-H juga mampu menjana kuasa yang lebih baik 
berbanding dengan MOM-H dan ANOVA di bawah kebanyakan keadaan yang dikaji. 
WMOM-H juga didapati dapat mengawal Ralat jenis I dengan lebih baik tanpa nilai 
liberal (>0.075) berbanding dengan kaedah berparameter (t-dua sampel bebas dan 
ANOVA) dan tidak berparameter (Mann-Whitney dan Kruskal-Wallis). Secara umum, 
kajian ini menunjukkan bahawa proses winsor (WMOM) boleh meningkatkan 
prestasi H-statistik dari segi kawalan Ralat jenis I dan meningkatkan kuasa ujian. 

Kata kunci : Winsor, Ralat jenis I, Kuasa Ujian, Kaedah Teguh, H-statistik  
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Abstract 

Two-sample independent t-test and ANOVA are classical procedures which are 
widely used to test the equality of two groups and more than two groups respectively. 
However, these parametric procedures are easily affected by non-normality, 
becoming more obvious when heterogeneity of variances and unbalanced group sizes 
exist. It is well known that the violation in the assumption of the tests will lead to 
inflation in Type I error rate and decreasing in the power of test. Nonparametric 
procedures like Mann-Whitney and Kruskal-Wallis may be the alternative to the 
parametric procedures, however, loss of information occur due to the ranking data. In 
mitigating these problems, robust procedures can be used as the other alternative. 
One of the procedures is H-statistic. When used with modified one-step M-estimator 
(MOM), the test statistic (MOM-H) produces good control of Type I error rate even 
under small sample size but inconsistent under certain conditions investigated. 
Furthermore, power of test is low which might be due to the trimming process. In 
this study, MOM was winsorized (WMOM) to retain the original sample size. The H-
statistic when combines with WMOM as the central tendency measure (WMOM-H) 
shows better control of Type I error rate as compared to MOM-H especially under 
balanced design regardless of the shape of distributions. It also performs well under 
highly skewed and heavy tailed distribution for unbalanced design. On top of that, 
WMOM-H also generates better power value, as compared to MOM-H and ANOVA 
under most of the conditions investigated. WMOM-H also has better control of Type 
I error rates with no liberal value (>0.075) compared to the parametric (t-test and 
ANOVA) and nonparametric (Mann-Whitney and Kruskal-Wallis) procedures. In 
general, this study demonstrates that winsorization process (WMOM) is able to 
improve the performance of H-statistic in terms of controlling Type I error rate and 
increasing power of test. 

Keywords: Winsorization, Type I error rate, Statistical Test Power, Robust Statistics, 
H-statistic 
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CHAPTER ONE  

INTRODUCTION  

1.1 Background 

In recent years, procedures for testing the equality of central tendency (location) 

measures or locating group effects has been studied and improved. The main purpose 

of this continuous improvement is to get a procedure that can perform well in 

controlling Type I error rate, simultaneously increasing power to detect the effects. It 

is well known that distribution of data and the variance among treatment groups are 

one of main concern for parametric procedures such as t-test and analysis of variance 

(ANOVA). In order to use these procedures, assumptions such that the data must be 

normally distributed and the variances must be homogeneous have to be fulfilled. 

Any deviation from these two assumptions will cause Type I error rate to be inflated 

and depressed in power rate (Keselman, Algina, Lix, Wilcox, & Deering, 2008; Syed 

Yahaya, 2005; Syed Yahaya, Othman, & Keselman, 2006). As a consequence, the 

null hypothesis will be falsely rejected and the effect of the procedures will go 

undetected. In real world, data that we get can hardly fulfill the assumptions needed 

by the parametric procedures. 

Conventionally, nonparametric procedures such as Mann-Whitney and Kruskal-

Wallis are the common alternatives when data fail to fulfill the assumptions of 

parametric procedures. However, the nonparametric procedures are more appropriate 

for weak measurement scale data and larger sample size is needed to reject a false 

hypothesis due to low power as compared to parametric procedures (Md Yusof, 

Abdullah, & Syed Yahaya, 2012a). Moreover, lesser information could be captured 
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when using nonparametric procedures because the procedures are based on ranking 

instead of the data measurement (Siegel, 1957). Taking into consideration the 

weaknesses of the parametric and nonparametric procedures, this study will embark 

on the search of a suitable procedure that can overcome the weaknesses of the 

aforementioned procedures. Existing in between the parametric and nonparametric 

procedures are the robust procedures which are not only flexible to assumptions, but 

are also powerful. These procedures also work well regardless of the size of the data, 

by controlling Type I error although the sample size is small. One of the robust 

location measures is modified one-step M-estimator (MOM), which provide good 

control of Type I error rate even in small sample size (Wilcox & Keselman, 2003b). 

Thus, robust procedures are the better alternatives when dealing with small data. 

1.2 Robust Statistics 

As there are weaknesses on both parametric and nonparametric procedure, another 

alternative which is gaining acceptance is robust statistics. According to Wilcox 

(1997, 2012), robust statistics can have good control in Type I error rate and 

maintain the power rate although the data set is non-normal or even 

heteroscedasticity exist. Theory of robustness was being developed by Huber (1964) 

and Hampel (1968) in the 1960’s as a solution to overcome the weakness in 

statistical procedure. In robust approach, there are also assumptions on the data 

distribution but the assumption does not always need to be fulfilled. Robust statistics 

can withstand the violation of parametric assumptions, by which it will perform as 

well as possible if the assumption is met, however, will not perform worse even if the 

assumption is slightly violated (Syed Yahaya, 2005). As mentioned by Huber (1981), 

robustness signifies insensitivity to small deviation from parametric procedure 
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assumptions and robust procedure usually adopts what might be called an “applied 

parametric viewpoint”, such that for a parametric procedure, it is hopefully to have a 

good approximation to the true underlying situation, but we cannot and do not 

assume that it is exactly correct. 

There are several robust procedures that have been proven to be able to deal with 

non-normal distributed data and variance heterogeneity. Welch test is capable in 

handling the problem of variance heterogeneity (Welch, 1951). Othman, Keselman, 

Padmanabhan, Wilcox, and Fradette (2004) demonstrated that when H-statistic is 

made robust by replacing its location measure with modified one-step M-estimator 

(MOM), the proposed procedure known as MOM-H showed good controlled in Type 

I error rate. MOM is a central tendency measure that apply trimming approach which 

eliminate the value of the tails from a set of data through the trimming criterion and 

it is an approach that able to deal with non-normality. Apart from trimming, another 

approach in dealing with non-normality is winsorizing, whereby through this 

approach, the original sample size is preserved by replaceing the tail of the data, 

rather than eliminate them. In section 1.3, 1.4 and 1.5, trimming, winsorizing and 

MOM-H will be discussed further.   

1.3 Trimming 

In the robust development process, trimming is being recommended as one of the 

approaches to deal with non-normality (Wilcox & Keselman, 2003a). One of the 

estimators generated from the process is trimmed mean. Trimmed mean is the 

average value of the remaining data after the trimming process (data on the left and 

the right tails being eliminated based on the trimming criteria). Generally, there are 
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two types of trimming; symmetric and asymmetric trimming. Symmetric trimming is 

a classical trimming procedure that data on both side of the tails are equally trimmed 

based on a predetermined percentage value. However, there is an issue regarding the 

percentage of trimming when using this approach. Different researchers have 

proposed different percentages for trimming. Rosenberger and Gasko (1983), 

proposed 20% in order to have a relatively small standard error and 25%when 

working with small sample sizes. On the other side, Wilcox and Keselman (2003b) 

had shown that 25% and 50% (medians) trimmed mean or trimmed mean with at 

least 25% trimming have good control over Type I error rate but these might fail to 

achieve satisfactory power rate. Wilcox (2003) then suggested 20% trimming to 

achieve better Type I error rate and power rate. 

Nevertheless, the symmetric trimming approach might lead to unnecessary trimming. 

Due to the predetermined amount of trimming, the data will be trimmed even if the 

distribution is normal, thus causing unnecessary loss of information. Symmetric 

trimming is also deemed to be not suitable for skewed distribution as the data should 

be trimmed more on the skewed tail as compared to the opposite. Hogg (1974) then 

proposed asymmetric or adaptive trimmed mean such that trimming can be done 

based on the distribution of data. When the approach was applied on hinge estimator 

(Reed & Stark, 1996) as the location measure for Welch test, the Type I error rate for 

the test was found to be well controlled (Keselman, Wilcox, Lix, Algina, & Fradette, 

2007). However, adaptive trimming approach also requires a predetermined 

percentage of trimming as in the usual trimming approach. Another trimming 

approach known as automatic trimming was introduced by Wilcox and Keselman 



5 

 

(2002). Unlike the aforementioned trimming approaches, in automatic trimming, data 

will be trimmed based on the shape of the distribution via a trimming criterion.  

Even though trimming is known to one of the best approach in reducing the effect of 

outliers, the removal of certain values in the calculation of the estimators is seemed 

to be the major weakness of this approach. Realizing this problem, Charles P. Winsor 

(1895 – 1951), a biostatistician, proposed a procedure to compensate the loss due to 

the trimming effect known as “winsorize” (Dixon, 1960).  

1.4 Winsorizing 

Other than trimming, winsorizing is another approach to deal with non-normal 

distribution. It is a procedure that being used to reduce the impact of outlier by 

limiting the extreme value in a data set. When calculating a mean, the result is 

always easily to being dominated by the tails. Thus, winsorization could help to 

reduce the effect. Winsorization is a strategy that gives more attention around the 

center rather than weighted in tails of a set of data which will lead to bias (Wilcox, 

1997, 2012). The calculation of winsorized mean follows the steps as in trimmed 

mean, but the data that are supposed to be trimmed and discarded will be replaced 

with the highest and lowest end of the remaining data respectively (Tukey & 

McLaughlin, 1963). Thus, winsorizing will maintain the original sample size.  

Winsorized Mean (WM) are the central tendency measure that applied winsorizing 

approach, the data winsorized symmetrically on both left and right tail of the data 

according to percentage been set. According to Dixon (1960) and Rivest (1994), WM 

provide better results in their study when measure under normally and skewed 

distributed data. Anyway, WM winsorized the data symmetrically regardless of 



6 

 

distribution, thus there might have been removed certain information and lead to loss 

of important information throughout the winsorization process.  

Adaptive Winsorized Mean (AWM) is the central tendency measure that able to deal 

with the problem of loss of important information in WM. AWM perform winsozring 

process according to the distribution, whether it is symmetrically or asymmetrically 

distributed and percentage assigned to the left and right tail depends on the shape of 

distributions. From the study of Ahmad Mahir and Al-Khazaleh (2009), they 

discovered that adaptive winsorized mean performed consistently better compared to 

other procedures. It is effectively being used to estimate the missing value in a time 

series data compared to other procedures likes averaging the whole data sets and 

naïve models. Another central tendency measure which adopts the winsorized 

approach is winsorized MOM (WMOM).  This estimator has been proven to perform 

well in controlling false alarm (Type I error) and achieves better probability of 

detection (test power) in multivariate statistical process control (Haddad, Syed 

Yahaya & Alfaro, 2012).  

The study of Ahmad Mahir and Al-Khazaleh (2009) found that compared to 

traditional central tendency measure, AWM has produced desirable result. Meanwhile, 

Haddad et al. (2012) shows that winsorized MOM performs better compared to the 

traditional and some other existing robust estimators in multivariate aspects. 

Different estimators perform differently based on the procedures used as shown by 

various robust statistics researchers such as Syed Yahaya (2005) and Md Yusof et al 

(2011).  Choosing the right estimators to be used in certain procedures can promise a 

fruitful result. Some estimators work perfectly with certain procedures and 

sometimes could be otherwise.  
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1.5 MOM-H Statistic 

MOM-H is a procedure with combination of central tendency measure, MOM, with 

H-statistic. Modified one-step M-estimator (MOM) (Wilcox & Keselman, 2003a) is a 

central tendency measure that was enhanced from one-step M-estimator (Staudte & 

Sheather, 1990). MOM applies trimming which is done automatically based on 

outlier detection criteria. MOM has good control of Type I error rate and achieves 

satisfactory power rate under both normal distribution and small sample size (Wilcox 

& Keselman, 2003a). On the other hand, H-statistic was originally introduced by 

Schrader and Hettmansperger (1980) which is readily adaptable with any central 

tendency measure. According to Wilcox (1997, 2012), this procedure gives 

reasonably good results when using M-estimator.  

With the positive comments for both MOM and H-statistic, Othman et al., (2004) 

applied MOM on H-statistic in their work and observed that Type I error rate can be 

controlled at nominal level. However, further study by Syed Yahaya (2005) found 

that MOM-H produce low power rate although it able to control the Type I error rate 

at the nominal level.  

1.6 Problem Statement 

Even though MOM-H showed good result on Type I error rate, but it produced low 

power (Othman et al., 2004; Syed Yahaya, 2005). This might be due to the loss of 

information after the trimming process. As mentioned in Section 1.5, MOM applied 

trimming which is done automatically based on outlier detection criteria. The 

extreme values that identified by the criterion in left and right tails are eliminated and 

the remaining value is averaged to estimate MOM. Throughout this process, the 
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sample size of the data has been reduced and is smaller than the original sample size. 

Sample size reduced indicate that there is loss of information when the extreme value 

is eliminated and the severity is depending on how much values are discarded. The 

loss of information for a data set with heavily skewed and heavy tails distribution 

will be more severe compared to the data set with slightly skewed distribution. 

According to Cohen (1992b) and Murphy, Myors and Wolach (2008), sample size is 

one of the criteria that will impact the power of statistical test. The trimming process 

of MOM which reduce the total sample size rather than retain the original has 

deviated from the desirable criteria of statistical test power and thus definitely will 

produce lower power rate accordingly.  

In this study, we replace the trimming process in MOM with winsorization and use 

the winsorized MOM estimator as the location measure for the H-statistic which is 

denoted as WMOM-H. By applying WMOM-H, the data are trimmed and replaced 

accordingly based on the shape of the distribution. There seems to be two advantages 

using this approach. First, the trimming prior to winsorizing trims data accordingly 

based on the shape of the distribution. Therefore, more data will be trimmed from the 

skewed tail compared to other. Second advantage is that the loss of data due to 

trimming could be reduced when the process of winsorizing takes place because all 

the trimmed data will be replaced with certain values. Thus, there will be no changes 

in the sample size and WMOM-H may be able to improve the power rate of the test. 

1.7 Objective of Study 

The main objective of this research is to develop a new robust procedure denoted as 

WMOM-H statistic. This procedure is expected to be able to control Type I error rate 
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better than MOM-H and also improve its power rate to a satisfactory level. In 

achieving this objective, we need to accomplish several tasks as follows: 

i. To develop a new robust procedure for testing groups known as WMOM-H 

ii. To investigate on the performance of the new proposed procedure (WMOM-

H) in terms of Type I error rate and power rate.  

iii.  To compare the robustness of the proposed new statistical procedure against 

the parametric, nonparametric and MOM-H procedure under various 

conditions.  

iv. To investigate the ability of the new proposed procedures on real data in 

medical manufacturing. 

1.8 Significant of Study 

The accomplishment of this research will benefit the researchers especially in 

experimental science because this achievement will bring group comparisons 

methodology to another higher level. For instance, some Research and Development 

(R&D) section in manufacturing industry might not be able to have large sample size 

for product change verification due to constraint of cost (high built product cost or 

high material cost) or time (long cycle time process). Thus, the proposed procedure is 

desirable as an alternative since the sample size is small and assumptions of normal 

distributed data with homogeneity variance are more likely to be violated. 

Moreover, the proposed procedure has an important advantage which it able to 

preserve the original sample size. In manufacturing industry, the common practice to 

deal with extreme value is to remove the data from the original set after confirming 

that it is an outlier through technical justification. An outlier test (Grubb’s test) is 
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performed or boxplot is plotted to confirm the existing of outlier. This practice has 

eventually reduced the collected sample size from their original quantity and the 

impact is more serious if the original sample size collected is very small. Thus, the 

proposed procedure which is able to deal wisely with the extreme value while 

preserve the original sample size is a potential remedy for the measurement with 

small same size.  

In general, the new methodology from this study can let the researchers to have some 

freedom in performing their data analysis without worrying about violation of 

assumptions, be it normality or variance homogeneity.  
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CHAPTER TWO 

LI TERATURE REVIEW 

2.1 Introduction 

Classical procedures such as Student’s two-sample t-test and ANOVA are widely 

used to test the equality of groups. However, according to Lix and Keselman (1998), 

both of these procedures are easily affected by any deviation from normality, more 

obvious when heterogeneity of variances and group sizes exist. It is well known that 

the violation in the assumption of these procedures will lead to inflation in Type I 

error rate and depression in the power rate of the tests (Mendes & Yigit, 2012; Md 

Yusof, Abdullah, Syed Yahaya, & Othman, 2012b; Md Yusof, Abdullah, Syed 

Yahaya, & Othman, 2011; Keselman et al.,2008; Syed Yahaya et al., 2006). These 

liberal values of Type I error rate will subsequently result in spurious rejections of 

the null hypotheses while low power rate will result in differences going undetected; 

substantially, leading to misinterpretation of the result (Erceg-Hurn & Mirosevich, 

2008). These days, ANOVA test is still being employed even the homogeneity of 

variance assumption is violated (Kulinskaya, Staudte, & Gao, 2003). However, it is 

well established that classical ANOVA is not robust enough when the assumptions are 

violated (Wilcox, Charlin, & Thompson, 1986). Even a slight deviation from 

normality will produce quite an impact on the power (Sawilowsky & Blair, 1992; 

Wilcox, 1995). These similar effects also occur in t-test (Wilcox, 1995). 

As mentioned in the previous chapter, nonparametric procedure might be a better 

choice when the assumptions of the parametric procedures are violated, however, it 

is well known that nonparametric procedure is less powerful and larger sample size is 
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needed in order to get credible results (Md Yusof et al., 2012a). For such reason, 

robust statistical procedures can be the prime choice to overcome the issues 

regarding violation of assumptions. Development of robust statistics focuses on 

parametric procedures, but we are not entirely convinced that the assumptions are 

always fulfilled (Syed Yahaya, 2005). Robust statistics being proven to be able to 

control the Type I error rate at the nominal level, while simultaneously produce 

reasonable statistical test power even under non-normal distribution and unequal 

variance data (Wilcox, 1997, 2012; Keselman, Wilcox, Othman, & Fradette, 2002; 

Keselman, Wilcox, Othman, & Fradette, 2004; Othman et al., 2004; Syed Yahaya, 

Othman, & Keselman, 2004a; Syed Yahaya, Othman, & Keselman, 2004b). 

One of the approaches in dealing with non-normal data is trimming (Wilcox & 

Keselman, 2003a). According to Wilcox, Keselman, Muska and Cribbie (2000), 

trimming can have good control of Type I error rate and increase power rate. 

Conventional trimming procedure trimmed the tail of the distribution by priori fixed 

symmetric percentage to both tails. However, this methodology did not investigate 

the necessary of trimmed process on the either tails of data (Keselman et al., 2007). 

Table 2.1 displays some of the percentages proposed for symmetric trimmed means. 

Nevertheless, symmetric trimming approach might lead to unnecessary loss of 

information due to the predetermined trimming percentage. Based on this approach, 

data will be trimmed according to the priori determined percentage regardless of 

distributional shape. Take for example a normally distributed set of data. When 

applying this approach, a predetermined percentage of data will be trimmed even 

though no trimming is needed in this case.  



13 

 

Table 2.1 

Symmetric trimming percentage proposed by researcher 

Researcher Percentage (%) Comments 

Rosenberger and Gasko (1983) 20% Have a relatively small 

standard error. 

25% Work well with small 

sample sizes. 

Wilcox and Keselman (2003b) 25% Have good control over 

Type I error rate but might 

fail to achieve satisfactory 

power rate. 

50%  

Wilcox (2003) 20% Achieve better Type I 

error rate and power rate 

Moreover, this approach also not suitable for skewed distribution data because the 

data should be trimmed more on skewed tail rather than the opposite tail. Hence, to 

deal with these disadvantages, Hogg (1974) proposed another approach namely 

asymmetric or adaptive trimmed mean which trimming is based on the distribution of 

data. This approach is found to be able to control Type I error rate and achieve higher 

power rate when applied on hinge estimator (Reed & Stark, 1996) as the location 

measure for Welch test (Keselman et al., 2007). However, this approach also needs a 

predetermined percentage value, which seems unreasonable when the distribution is 

normal.  
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Another procedure which needs no predetermined percentage value, but based on 

empirically determined trimming is modified one-step M-estimator (MOM). This 

approach is able to deal with the problems in symmetric trimming approach (Wilcox, 

1997, 2012). MOM has been proposed by Wilcox and Keselman (2003b) as central 

tendency measure in testing for treatment effects.  

By using MOM on H-statistic (Schrader & Hettsmansperger, 1980, Othman et al., 

2004) proposed a procedure known as MOM-H. The combination of H-statistic with 

MOM showed good control of Type I error rate (close to the nominal level); however, 

it also shows great variability across conditions. Other than that, the statistical power 

of this procedure is also low across conditions (Othman et al., 2004; Syed Yahaya, 

2005). 

Winsorization is another approach to make a statistic more robust. It shares the same 

process as trimming, but instead of trimmed the extreme values, this procedure 

however, substitutes the extreme portions by the remaining highest and lowest end of 

the data respectively (Tukey & McLaughlin, 1963; Dixon & Tukey, 1968). 

Winsorized mean is the trimmed mean that goes through the winsorizing process 

which preserved the original sample size and overcome the drawback of information 

loss due to trimming. According to Wilcox (1997, 2012), wisorization focus around 

the centre of a set of data rather than the tails that which might leads to bias. This 

measure is able to control Type I error rate under normal and skewed distributions 

(Dixon, 1960; Rivest, 1994). However, the usual winsorization process which 

follows the predetermined percentage of symmetric trimming, winsorized the data 

symmetrically even if the distribution of data is skewed. Furthermore, the number of 

data to be winsorized is based on the predetermined percentage. To deal with the 
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problems, Ahmad Mahir and Al-Khazaleh (2009) proposed the adaptive winsorized 

mean and found that it performs consistently better compared to the usual winsorized 

mean. Anyway, adaptive winsorized mean still depends on the predetermined 

percentage for left and right tails respectively. On the other hand, Haddad et al. (2012) 

proposed to winsorize MOM which winsorized data asymmetrically according to its 

winsorizing criterion rather than predetermined percentage. The estimator which was 

used as the central measure for Hotelling T2 chart performed so well in controlling 

false alarm rates (Type I error) regardless of the conditions and achieved desirable 

probability of detection (power).  

Before we further discuss on the selected procedures and central tendency measures, 

we firstly review on the Type I error rate and power rate of a statistical test that used 

as the performance measurement. 

2.2 Type I error rate 

Type I error, α is defined as the probability of incorrectly rejecting a true null 

hypothesis, thus, it should be a relatively small value to avoid false rejection. The 

null hypothesis and alternative hypothesis for testing the equality of central tendency 

measures is given as 

��: �� = � � =. . . = �
 , 

��: �� 
����  ��� �
  �� ��������� ���� �ℎ� ��ℎ��� 

where �
  is the central tendency parameter for�
 : � = 1,2, . . . , � , and �
 is the 

distribution for group �. Generally, Type I error can be explained as making incorrect 

decision by falsely rejecting the ��, which in fact �� is true. The significant level, α 
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is the likelihood of the risk taken on Type I error. For example, if α is 0.05, there is 5% 

probability that a true null hypothesis might be rejected. 

In robust statistics, the robustness is the ability of the procedure to control Type I 

error rate closed to the significant level (nominal level), α and is stable over a range 

of distributions even if there is some assumption violation (Syed Yahaya, 2005).  

According to Bradley (1978), a procedure is considered as robust when empirical 

Type I error, �� falls between 0.5� ≤ �� ≤ 1.5�. Thus, for a nominal level of α = 0.05, 

the Type I error rate should fall between 0.025 and 0.075. In empirical study, Type I 

errors rates above 0.075 and below 0.025 are considered as liberal and conservative 

respectively. However, based on Guo and Luh (2000), a test is considered as robust if 

it’s empirical Type I error rate does not exceed 0.075 for the 5% level of significance 

used. Regardless of any robust criterion we adopt, a procedure that can produce a 

Type I error rate closest to nominal level will be the best procedure (Md Yusof et al., 

2012b). 

Type I error rate of independent sample t-test is negatively affected by extremely 

skewed distribution (Sawilowsky & Blair, 1992). Apart from this, variance 

heterogeneity, unbalanced design, and even the pairings of unbalanced sample sizes 

with the unbalanced group variances will also give effect on Type I error rate control. 

Combination of larger variance with smaller sample size showed disruption in the 

control of the Type I error rate (Spector, 1993; Mendes & Yigit, 2012; Md Yusof et 

al., 2012b; Md Yusof et al., 2011; Keselman et al., 2008; Syed Yahaya et al., 2006). 

According to Mendes and Akkartal (2010), the statistical power of a test also 

decreases when there is heterogeneity in the variances and worsens when the 
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variance ratio among treatment group increases or the sample size is small. Besides, 

small departure of distribution from normality will also lead to reduce of statistical 

test power (Wilcox, 1998; Erceg-Hurn & Mirosevich, 2008). A small departure from 

normality can reduce the power rate of t-test from 0.96 to 0.28 (Wilcox, 1998). 

2.3 Power of a Statistical Test 

Power is being defined as 1 - β, where β is the Type II error probability. According to 

Cohen (1992b), power of a statistical test is the probability of correctly rejecting a 

false null hypothesis, which is the probability that the test will conclude that the 

phenomenon exists. On the other hand, Type II error is the probability of failing to 

reject the false null hypothesis. Power of a test is important as it will determine how 

good a test in detecting an effect. Low power will cause the result of a test to be 

inconclusive. Yet, in most of the work related to robust statistics, power analysis 

which is also known as, robustness of efficiency, is always continued to be ignored 

whilst robustness of validity, referring to the analysis on Type I error rate is of more 

concern (Syed Yahaya, 2005).  

A methodological study of Clark-Carter (1997) found that if power of statistical test 

was not taken into account by researchers, they will encounter high risk of Type II 

error. Cohen (1988) stated that neglecting power analysis will lead to the slow 

moving of the methodological advance. Researcher may conclude the proposed 

procedure is good enough based on the results of Type I error rate which in fact the 

test with low statistical test power been reduce likelihood to rejecting the incorrect 

�� . Meanwhile, neglecting statistical test power will decrease the detection of 
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interest effects and impose negative effect on the ability of researchers to establish 

statistical consensus through replication (Cohen, 1988).  

According to Cohen (1992b) and Murphy, Myors and Wolach (2008), power of a 

statistical test relies on three criteria, which are the significance criterion, sample size 

and effect size. Apart from the criteria, homogeneity of variances, population 

distribution and statistical procedure can also have effect on power rate. Increasing 

the deviation from the assumption of normality will give lower power rate, more 

significantly lower power rate when the sample size or effect size is small (Wilcox 

1998; Erceg-Hurn & Mirosevich, 2008; Mendes & Akkartal, 2010) 

Cohen (1992a, 1992b) proposed 0.80 as the desired power level for general used. 

According to Murphy et al. (2008), the minimum accepted value of statistical test 

power is greater than 0.50. The value smaller than 0.5, indicates that the test is more 

likely to be insignificant because it is unlikely to reject null hypothesis. 

2.3.1 The Significant Level 

The significance level, α is the probability of incorrectly rejecting the true null 

hypothesis. This criterion is also known as Type I error. Using α = 0.01 will result in 

lower power rate compared to α = 0.05 (Alan, Phyllis & John, 2008). In other words, 

the more conservative the significance level, the lower the power rate. As mentioned 

by Cohen (1988), directionality of the significance criterion also gives some impact 

to the power of a statistical test such that the resulting test will be more powerful if 

the direction is specified. A significant criterion is determined based on the effect 

size, sample size and desirable level of power (Murphy et al., 2008). 
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2.3.2 The Sample Size 

Sample size is always being a concern for the reliability and credibility of a sample 

results. The larger the sample size, the greater the reliability and credibility of the 

results, thus, the greater the probability of detecting a non-null state of affairs (Syed 

Yahaya, 2005). According to Cohen (1988) and Murphy et al. (2008), the statistical 

test power will be increasing accordingly when there is an increasing in the sample 

size. 

2.3.3 The Effect Size 

According to Murphy et al. (2008), the measure of effect sizes provides a 

standardized index of the actual treatment impact on the dependent variable. The null 

hypothesis always means that the effect size is zero. In Cohen (1988), “Effect size” is 

“the degree to which the phenomenon is present in the population” or “the degree to 

which the null hypothesis is false”. Basically, the measures of effect size can be 

categorized into three which are; small, medium, and large, depending on the area of 

research. The value of effect size is arbitrary, but, Cohen (1988) has the conventional 

definitions of effect size as given in Table 2.2. 
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Table 2.2 

Conventional effect size values by Cohen (1988) 

 Number of Groups 

Effect size 2 Groups > 2 Groups 

Small 0.20 0.10 

Medium 0.50 0.25 

Large 0.80 0.40 

2.4 The Estimators 

This section delineate the estimators used in this study, started with the central 

tendency measure, MOM, followed by the trimming criterion and the scale estimator 

used in the criterion. The discussion then continued with the main central tendency 

measure used in this study, that is winsorized MOM.  

2.4.1 Modified One-step M-estimator (MOM)  

Modified one-step M-estimator (MOM) (Wilcox & Keselman, 2003b) is a central 

tendency measure that was modified from one-step M-estimator (Staudte & Sheather, 

1990). One-step M-estimator is an approach that can help to solve the trimming 

problem. Based on a trimming criterion, one step M-estimator empirically determines 

whether an observation should be trimmed or not. The formula for estimate one-step 

M-estimator (Wilcox, 1997, 2012) given by  

�"# = 1.28 %&�'()* +�� − ��- + ∑ 0+
-#()1
2
3
45��# − �� − ��  (2.1) 

0+
-# = the �67 ordered observations in group j.     
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�# = Number of observations for group j. 

Let &8#be the median for group 9.      

&�'() = &�'#/0.6745  

&�'# = &�����>?0�# − &8#?, ?0�# − &8#?, ⋯ , ?0(# − &8#?A 
 

��= Number of observations 0
# such that +0
# − &8#-< -1.28(&�'()) 

��= Number of observations 0
# such that +0
# − &8#- > 1.28(&�'()) 

However, there is a disadvantage in one-step M-estimator such that it fails to perform 

under small sample size (Wilcox & Keselman, 2003b). For such reason, Wilcox and 

Keselman (2003b) then modified the estimator as in Equation 2.2 and name it as 

Modified One-step M-estimator (MOM) which competes well with trimmed means 

based estimators in terms of both power and control over the probability of Type I 

error even with small sample sizes. MOM is the average values of observations after 

the elimination of outliers (if any). Unlike trimmed mean which has the problem of 

lower breakdown point, this estimator has highest breakdown point of 0.5. Apart 

from low breakdown point, there is a difficulty to determine the best trimming 

percentage in trimmed mean since the procedure just trimmed the observations based 

on the priori set percentage without considering the shape of the distribution. MOM 

estimator is defined as 
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�"B = C 0+
-#�# − �� − ��
()1
2


3
45�
 

 
(2.2) 

0+
-# = the �67 ordered observations in group j. 

�#= Number of observations for group j. 

�� = Number of observations 0
# such that +0
# − &8#-< -2.24(&�'()) 

�� = Number of observations 0
# such that +0
# − &8#-	> 2.24(&�'()) 
2.4.2 Rescaling MAD 

If the observations are randomly sampled from a normal distribution, MAD estimates 

D�.EF	G  instead of estimate	G , the standard deviation. The 0.75 quartile of the 

standard normal distribution (D�.EF- which is approximately equal to 0.6745 (Wilcox, 

1997, 2012). Typically, MAD is being rescaled to estimate σ when sampling from a 

normal distribution. So, Wilcox (1997, 2012) suggested using &�'(, defined as 

&�'( � &�'0.6745 (2.3) 

In general, MAD does not estimate σ when distributions are non-normal. 

2.4.3 Criterion for Choosing the Sample Values 

The following Equation 2.4 and Equation 2.5 is used to determine the number of 

extreme observations in each group j, 

�� = Number of observations 0
# such that +0
# ,&8#-< ,H+&�'()- (2.4) 
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�� = Number of observations 0
# such that +0
# ,&8#- > H+&�'()-  (2.5) 

�� is the number of extreme observations in the left tail, and �� is the number of 

extreme observations in the right tail. For a sample with no extreme value, wherein �� 

= �� = 0, MOM is equals to the mean for the group. 

In MOM, the default constant K for the criterion is always 1.28 (unless being 

specified), which is 0.9 quartile of standard normal distribution (Wilcox, 1997, 2012). 

By using simulations with 10,000 replications, it was found that with K = 2.24, the 

standard error of the sample mean divided by the standard error of �"  is 

approximately 0.9 for �� = �� = �I = �J = �F = 20, while for small sample such 

as n = 10 and 15, the ratio is 0.88 (Wilcox & Keselman, 2003b). The value was 

adjusted in Othman et al. (2004) such that K = 2.24 for the purpose of having a 

reasonably small standard error when sampling from a normal distribution. The 

criterion for choosing sample values basically is a special case of the general method 

suggested by Rousseeuw and Croux (1993). As a result, the observation flagged to be 

eliminated is  

+0
# − &8#- > 2.24(&�'()) or +0
# − &8#- < -2.24(&�'())             (2.6) 

The advantage of using the criterion based on Median and MADn is the resulting 

finite sample breakdown point of �" is 0.5 (Wilcox & Keselman, 2003b). Wilcox, 

Keselman and Kowalchuck (1998) in testing group equality suggested that 

substituting robust measures of central tendency and a corresponding robust measure 

of scale could obtain test statistic that would not loss in power rate even under the 

influence of non-normality.  
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2.4.4 MADn 

&�'( � K ���
>?L
 − ���#L#?A (2.7) 

Equation 2.7 is the formula for median absolute deviation about the median, which is 

a robust scale estimator used in the trimming criterion of MOM. The function of the 

constant b is to keep the estimator consistent at normal model. When observations 

are drawn randomly from a normal distribution with b = 1, it estimates 0.6745σ 

(referred to section 2.4.1). Typically, MADn is rescaled with b = 1.4826. MADn has 

been identified by Huber (1981) as the most useful ancillary estimate of scale due to 

its high breakdown point. 

2.4.5 Winsorized Modified One-step M-estimator  

Winsorized Modified One-step M-estimator is a central tendency measure that is 

modified from the original MOM by replacing the trimming procedure with 

wisorizing procedure (Haddad et al., 2012). According to Haddad et al. (2012), 

winsoried MOM is given by; 

MN# = 1�# C M
#
()


3�
 (2.8) 

where 

M
#= the �67ordered observations in group j (after replacement of extreme value) 

�# = Number of observations for group j. 

On the other hand, the construct of winsorized sample is given by; 



25 

 

M
# � O P+
45�-# ,   �� P
# ≤ P+
45�-#P
#,   �� P+
45�-# < P
# < PR()1
2S#PR()1
2S#,   �� P
# ≥ PR()1
2S#
 (2.9) 

P
#= the �67ordered observations in group j (before replacement of extreme value) 

�� = Total number of smaller outlier in the data 

�� = Total number of larger outlier in the data 

Thus, P
# ≤ P+
45�-# and  P
# ≥ PR()1
2S# are the equations to determine the extreme 

value in the given data set. After those extreme values being replaced, value of 

winsorized MOM, MN
#, will be estimated by average the entire new data (data with 

extreme values being replaced). 

2.5 MOM-H Statistic 

The test statistic used in this study is H-statistic, originally proposed by Schrader and 

Hettmansperger (1980) which is readily adaptable to any central tendency measure. 

H-statistic is defined as 

� = 1U C �#
V

#3�
R�"# − �".S�

 (2.10) 

U = ∑ �##           

�". = ∑ �"## /W          

Keselman et al. (2002) and Othman et al. (2004) modified the H test by replacing �"# 

in equation 2.10 with modified one-step M-estimator, MOM (�"B), known as MOM-H 
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to test the measures of “’typical’ scores across treatment groups. The null and 

alternative hypothesis is as shown below. 

��: �B� � �B� �. . . = �B# 

��: �� 
����  ��� �B#  ��������� ���� �ℎ� ��ℎ��� 

MOM-H was proven to be able to control Type I error rate by Keselman et al. (2004), 

Othman et al., (2004) and Syed Yahaya et al. (2004a, 2004b). However, the Type I 

error rate does not consistently close to the nominal level (α = 0.05) across different 

study conditions. Moreover, the statistical test power of this procedure is also low 

(Othman et al., 2004; Syed Yahaya, 2005). As the sampling distribution of MOM-H 

is unknown, bootstrap method is often recommended. This method has been applied 

by Babu, Padmanabhan and Puri, (1999), Othman et al., (2004) and Syed Yahaya 

(2005) in their works on robust procedures for comparing groups. Under moderate 

sample size, this method has slightly better approximation compared to normal 

approximation theory (Babu et. al., 1999). Due to the goodness of bootstrap method, 

this study employed the method to test the hypothesis.   
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CHAPTER THREE 

METHODOLOGY 

3.1 Introduction 

The main focus of this study is the H-statistic with MOM (MOM-H) and winsorized 

MOM (WMOM-H) as the central tendency measures. MOM is a form of adaptive 

trimmed means. Unlike the usual trimmed mean by which the amount of trimming is 

priori determined and trimming is done symmetrically, the trimming amount in 

MOM is empirically determined and the trimming amount on the left and right tail is 

not necessarily equal (symmetric). The study on MOM-H which was conducted by 

Syed Yahaya (2005) proved that the Type I error rate of the test for most of the 

conditions were in control. Nevertheless, the procedure was unable to achieve a 

desired power level. In order to rectify this problem, MOM is winsorized in this 

study. Winsorization is based on the same trimming procedure conducted on MOM, 

but the trimmed values are replaced with the highest and lowest end of the remaining 

data.  

This study designed to cover various conditions which could highlight the strength 

and weakness of the procedure. For the purpose of comparison, the conditions 

proposed followed previous study of Syed Yahaya (2005) which includes the 

completely randomized design for two and four groups of small samples, types of 

distribution, heterogeneity of variance and pairing of the variance with group size. 

Based on the stated design, the study on Type I error rate and power rate of the test 

were conducted.  
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3.2 Procedures in the Study 

This study covers two procedures for comparing groups known as MOM-H and 

WMOM-H procedures. These procedures originated from H-statistic, and the 

acronyms MOM-H and WMOM-H are based on the central tendency measures MOM 

and WMOM used in the test statistic respectively as shown in the figure 3.1. 

 

Figure 3.1. H-statistic with the central tendency measures 

3.2.1 H-Statistic with MOM (MOM-H) 

MOM is the location (central tendency) estimator which uses robust scale estimator, 

MADn in its trimming criterion. Wilcox and Keselman (2003b) defined MOM as 

�"B � C 0+
-#�# , �� , ��
()1
2

3
45�  (3.1) 

where 

0+
-#= the �67ordered observations in group j. 

�# = Number of observations for group j. 

H-statistic 

MOM WMOM
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�� = Number of observations 0
# such that (0
# –&8#) < -2.24(&�'(#) 
�� = Number of observations 0
# such that (0
#–&8#) > 2.24(&�'(#)  
As per the equation above, (0
#–&8#) < -2.24(&�'(#) and (0
# –&8#) > 2.24(&�'(#) 
are to determine the extreme values in a given data set. After discarding the extreme 

values, MOM (�"B) is estimated by taking the average of the remaining observations. 

The process then proceeds with the computation of the H-statistic such that, 

� � 1UC�#V
#3� R�"B , �".S� (3.2) 

U � C�##  

�". �C�"B# /W 
where, 

J = the number of groups 

3.2.2 H-Statistic with Winsorized MOM (WMOM-H) 

In winsorized MOM, the trimmed observations are replaced by the highest and the 

lowest values of the remaining data. Thus winsorized MOM is defined as below, 

�"X � C0(YZ+
-#�#
()

  (3.3) 

where 
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0(YZ+
-#= the �67ordered observations in group j (after replacement of trimmed values) 

�# = Number of observations for group j. 

0(YZ+
-# � O 0+
45�-# , �� +0
# − &8#- < −2.24 +&�'(#-0+
-# , �� − 2.24 +&�'(#- ≤ +0
# − &8#- ≤ 2.24 +&�'(#-0R()1
2S#, �� +0
# − &8#- > 2.24 +&�'(#-  

�� = Number of observations 0
# such that (0
# –&8#) < -2.24(&�'(#) 

�� = Number of observations 0
#such that (0
#–&8#) > 2.24(&�'(#) 

(0
# –&8#) < -2.24(&�'(#) and (0
# –&8#) >2.24(&�'(#) are the formulas to determine 

the extreme values in the given data set. After replacing those extreme values, the 

WMOM value, �"X, is estimated by averaging the entire new data, and then followed 

by the calculation of the H-statistic which is similar to MOM-H (Equation 3.2).  

3.3 Variables Manipulated 

The main focus of this study is on the robustness of the proposed procedure against 

the violation of normality and variance homogeneity assumptions. To check on the 

performance of the procedures, a few variables that are common to the cause of the 

problems have been manipulated to create conditions that could help in identifying 

the strength and weakness of the procedure in testing the equality of groups. Those 

variables are number of groups, balance and unbalance sample sizes, type of 

distributions, variance heterogeneity, and nature of parings which further discussed 

in section 3.3.1 to section 3.3.5.  
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3.3.1 Number of Groups 

The procedures in this study will study for comparing two (J = 2) and more than two 

groups. For more than two groups case, a four groups design (J = 4) was chosen as 

this number of groups was proven to perform better in terms of Type I error rate and 

power rate when tested on the traditional F-test (Wilcox, 1994). 

3.3.2 Balanced and Unbalanced Sample Sizes 

The inequality in the number of observations among groups is another matter of 

concern in this study as this situation could inflate Type I error rate (Snedecor& 

Cochran, 1980; Yang, Li, & Guo, 2006; Wilcox, 2003). To check on the impact of 

the inequality of the sample size (number of observations) on Type I error rate and 

power rate of the procedures, cases for balanced as well as unbalanced sample sizes 

were considered. 

For the purpose of comparison, the total number of observations for two and four 

groups follows those suggested by Syed Yahaya (2005) such that N = 40 and N = 80 

respectively. For two groups case, the settings are such that ��  = ��  = 20 for 

balanced design while for the unbalanced, �� = 15 and ��= 25. In the case of four 

groups, the distribution of sample sizes for balanced design is �� = ��= �I = �J = 20 

and for the unbalanced design, �� = 10,�� = 15, �I = 25 and �J = 30. 

3.3.3 Types of Distributions 

In the independent sample t-test (for 2 groups design) and ANOVA (for more than 2 

groups design), normality is one of the criteria needed to be fulfilled in order to get 

accurate results. Any departure from normality (skewed or heavier tail) will lead to 
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poor performance in Type I error rate (Bradley, 1968). Moreover, according to 

Sawilowsky and Blair (1992) and Wilcox (1995), there is negative impact on power 

rate if data set is deviated from normality. Even if the sample size among groups are 

equal, power rate would still be at unsatisfactory level.  

Since we know that traditional statistical procedures are quite sensitive when dealing 

with non-normality, in this study, effect of the distribution also been investigated in 

terms of Type I error rate and power rate. For that purpose, three types of distribution 

with different level of skewness and kurtosis were chosen to evaluate on the impact 

of distributions on the procedures. These distributions include the standard normal 

distribution which represented distribution with zero skewness, chi-square 

distribution with three degrees of freedom represented moderate skewness and g-

and-h distribution with g = h = 0.5 represented extremely skewed and heavy tailed 

distribution.  

Chi-square distribution with three degrees of freedom+ \I�- represented moderately 

skewed distribution. Three degree of freedom is chosen for Chi-square distribution 

because it has a moderate skewness with skewness and kurtosis of ]� = 1.63 and 

]� = 4.00  respectively (Othman et al., 2004). On the other hand, the g-and-h 

distribution with g = 0.5 and h = 0.5 which represented extremely skewed 

distribution (Hoaglin, 1985), has undefined theoretical value for ]�and ]�. In g-and-h 

distribution, g represents the level of skeweness and h represents the tails level in the 

distribution. As their respective value increases, the skewness and the heaviness of 

tail also will increase accordingly (Wilcox, 1997, 2012). 
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3.3.4 Variance Heterogeneity 

Variance heterogeneity (heteroscedasticity) is another concern in testing the equality 

of location measure. In ANOVA test, when heteroscedasticity exists, the Type I error 

rate will inflate and power rate will subside even though sample sizes are equal 

among the groups (Scheffe, 1959; Schneider & Penfield, 1997; Mendes & Yigit, 

2012; Fan & Hancock, 2012). Kulinskaya et al. (2003) also claimed of misleading 

results when heteroscedasticity exists in one-way ANOVA. The inflations of Type I 

error rate increases in tandem with the degree of heterogeneity exist. Type I error rate 

inflates in a lesser degree when the sample sizes are equal with small heterogeneity 

of variances (Box, 1954; Sawilosky, 1990). However, under moderate (e.g. 1:1:6) or 

large (e.g. 1:1:12) heterogeneity, the inflation becomes larger even with equal sample 

sizes among the groups (Rogan & Keselman, 1977; Tormarkin & Serlin, 1986; 

Sharma & Kibria, 2012). In Fan and Hancock (2012), other ANOVA-based tests 

(Welch’s test, Brown–Forsythe test, James’ second-order test, Alexander–Govern 

test) also show increase in Type I error rate and loss of power rate when there is 

heteroscedasticity. 

In this study, variance with ratio of 1:36 being assigned across the groups in order to 

study the impact of heteroscedasticity on Type I error rate and power rate for the 

proposed procedure. This ratio has been applied in previous study of Syed Yahaya 

(2005). Keselman et al. (1998) also used ratios of 24:1 and 29:1 respectively in one-

way and in completely randomized factorial designs, ratio as high as 17,977:1 was 

even cited in Wilcox (2003). Thus, for this study, the ratio of 1:36 seems to be 

reasonable in representing the extreme heteroscedasticity.  
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In this study the heterogeneous variance was set as 1:36 for two groups design and 

1:1:1:36 for the four groups design. Another ratio that will be suggested for this 

study is 16: 36 for two groups and 1:4:16:36 for four groups design. The latter ratios 

represent moderate changes across groups (moderate heteroscedasticity) (Abdullah, 

Syed Yahaya, & Othman, 2011) while the earlier represent sudden changes across 

groups (Extreme Heteroscedasticity) (Keselman et al., 2007). 

3.3.5 Nature of Pairings 

When unequal sample sizes are paired with unequal variances, two types of pairings 

i.e. positive and negative pairings will emerge. These pairings have impact on the 

Type I error rate (Keselman et al., 1998; Keselman et al., 2004; Othman et al., 2004; 

Syed Yahaya, 2005; Fan & Handcock, 2012). A positive pairing exists when the 

largest number of group observations is paired with the largest group variance and 

the smallest number of group observations is paired with the smallest group variance. 

Meanwhile, negative pairing exists when largest number of group observations is 

paired with the smallest group variance, and the smallest number of group 

observations is paired with the largest group variance.  

Type I error rate is easily inflated when there is a negative pairing (Box, 1953; 

Snedecor & Cochran, 1980; Spector, 1993; Syed Yahaya, 2005; Fan & Handcock, 

2012). Based on Othman et al. (2004), positive and negative parings usually will 

produce conservative and liberal Type I error rate respectively. Due to the different 

effect on the performance of the procedure, in this study, the robustness of each 

proposed procedure is also evaluated under nature of paring. 
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3.4 Design Specification 

The variables discussed in Section 3.3 were manipulated to create several conditions 

that could highlight the strength and weakness of the procedures. The conditions are 

displayed in Table 3.1 to Table 3.5 below which are condition of distribution, Design 

specification for the balanced J = 2, Design specification for the unbalanced J = 2, 

Design specification for the balanced J = 4 and Design specification for the 

unbalanced J = 4 respectively with the details has been discussed in section 3.3.  

Table 3.1 

Conditions of Distribution 

Conditions Distributional Shape 

Perfect Normal 

Moderate Departure Chi-square 

Extreme Departure g = 0.5, h = 0.5 

 
Table 3.2 

Design specification for the balanced J = 2 

Group Sizes Group Variances 

1 2 1 2 

20 20 1 1 
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Table 3.3 

Design specification for the unbalanced J = 2 

Variance 

Heteroscedasticity 

Pairing Group Sizes Group Variances 

 1 2 1 2 

Extreme Positive 15 25 1 36 

Negative 15 25 36 1 

Moderate Positive 15 25 16 36 

Negative 15 25 36 16 

 
Table 3.4 

Design specification for the balanced J = 4 

Group Sizes Group Variances 

1 2 3 4 1 2 3 4 

20 20 20 20 1 1 1 1 

 
Table 3.5 

Design specification for the unbalanced J = 4 

Variance 

Heteroscedasticity 

Pairing Group Sizes Group Variances 

 1 2 3 4 1 2 3 4 

Extremely Positive 10 15 25 30 1 1 1 36 

Negative 10 15 25 30 36 1 1 1 

Moderate Positive 10 15 25 30 1 4 16 36 

Negative 10 15 25 30 36 16 4 1 
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3.5 Data Generation for Simulation Study 

Simulated data was used in this study to test on the performance of the proposed 

procedure in each condition. The data were generated using SAS/IML version 9.2. 

Below is the data generation procedure for each distributional shape investigated, the 

full SAS/IML programming of WMOM-H procedures is attached in the Appendix A  

i. Standard normal distribution 

a. Data were generated using SAS generator RANNOR (SAS, Institute, 

2011) by setting mean as 0 and standard deviation as 1.  

MTEMP = RANNOR(J(N,1,SSEED)); 

YTEMP = MTEMP[1:N]; 

ii. Chi-square distribution with three degrees of freedom + \I�- 

a. Data were generated by initially generate three standard normal 

variates using (a), followed by squaring each of the three standard 

normal variates and sum them up. 

TEMP=RANNOR(J(N,3,SSEED)); 

YTEMP = TEMP[,##]; 

MUCENT = 2.50;  

YTEMP = YTEMP - MUCENT; 

iii.  g-and-h distribution with g = h = 0.5;  

a. Data were generated by initially generate standard normal variates, Zij, 

using (a), followed by converting standard normal variate to random 

variable equation through the equation 
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0
# � _̀à
bexpRfD
#S , 1f exp gℎD
#�2 h , f ≠ 0

D
# exp gℎD
#�2 h , f = 0 (3.4) 

   

MTEMP = RANNOR(J(N,1,SSEED)); 

       TEMP = MTEMP[1:N]; 

       YTEMP = (EXP(TEMP#0.5)-1.0)/0.5#EXP(TEMP##2#0.5/2); 

In g-and-h distribution, g controls the degree of skewness of the distribution while h 

controls the heaviness of the tails. The distribution will be symmetric when g = 0. As 

g and h increase, the distribution will be more skewed and the tails get heavier 

respectively. However, if g = h = 0, then0
# = D , which is a standard normal 

distribution (Wilcox, 1997, 2012).  

For each design in this study, 5000 datasets were simulated. Basically, the minimum 

datasets of 1000 are almost enough to yield the same result as a full distribution for a 

test at 5% level of significance (Manly, 2007). For this study, the significance level, 

�, was set at 0.05. However, better sampling limits were obtained when using 5000 

datasets if compared to the used of 1000 datasets (Manly, 2007). As a result, this 

study proceeds with 5000 datasets. Each of these simulated datasets were 

bootstrapped 599 times for hypothesis testing. 

3.6 The Settings of Central Tendency Measures for Power Analysis 

Generally, there are three pattern of variability for power rate. Those are minimum, 

intermediate and maximum variability (Cohen, 1988), which indicate the deviation 

from the null hypothesis. In this study, we only focus on maximum variability pattern. 

Anyway, value of central tendency measures for the alternative hypothesis was 
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determined at first before can proceed for the power test. Effect size index, f, which 

measures the degree of deviation from no effect, is the one determine each of the 

pattern variability. Table 3.6 below is the conventional level proposed for the effect 

size index, f.  

Table 3.6  

Values of effect size, f with respect to number of groups by Cohen (1988) 

 Number of Groups 

Effect Size, f Two Four 

Small 0.20 0.10 

Medium 0.50 0.25 

Large 0.80 0.40 

This study covers three distributions as shown in Table 3.1. Each of the distribution 

was match number of groups, sample size across the groups, level of variance 

heterogeneity and nature of paring as presented in Table 3.2 to Table 3.5. 

3.6.1 Two Groups Case 

According to Cohen (1988), the effect size index, f for J = 2 is the absolute 

difference between two centre measures divided by their common within-population 

standard deviation, as in the equation below; 

� � |�� ,��|G  (3.5) 
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The test is considered as non-directional and standardized, where ��  and ��  are 

population means and G is the standard deviation of either population. For this study 

the value of �� and �� is replace by the proposed robust estimators, WMOM.  

This study only focus on maximum variability, so the effect size index, f, is 0.80. 

There is slightly different in the definition of f for the balanced (equal sample size 

and equal variances across the group) and unbalanced design (unequal sample size 

and unequal variance across group). For the balanced design, there is a common 

within-population σ, thus, f is defined as in Equation 3.5. Meanwhile, for the 

unbalanced design, since the variances are not equal, the equation requires a slight 

modification, by which pool variance is required in the denominator. The calculation 

of pool variance is as below; 

Gk � l+�� , 1-G�� + +�� − 1-G���� + �� − 2  (3.6) 

3.6.1.1 Balanced design (J = 2) 

As shown in Table 3.2, the sample sizes are n1 = n2 = 20 and the variances are G� =
G� = 1  for balanced design, J = 2. For the maximum pattern variability, the 

appropriate effect size, f = 0.80. If ��  = 1, and f = 0.80, the value for �� is 

determined by Equation 3.5 which is; 

|1 − ��|1 = 0.80 

�� = 1.80 

So, the setting of central tendency measures for J = 2 in our study is (1, 1.80).  



41 

 

3.6.1.2 Unbalanced design (J = 2) 

For the unbalanced design, the sample sizes are n1 = 15 and n2 = 25 (refer to Table 

3.3) with two levels of variance heterogeneity. The first level, G�� � 1 and G�� = 36 

represents extreme heterogeneity while the other level with G�� = 16 and G�� = 36 

represents moderate heterogeneity.  

Using the suggested sample sizes and group variances, the pooled variance, Gk is 

calculated as in Equation 3.6 followed by calculating for the m2. The calculation is 

almost the same as the balanced design, except that the standard deviation, σ, is 

replaced by the calculated pooled variance.  

Extreme variance heterogeneous: 

Gk = l+15 − 1-1 + +25 − 1-3615 + 25 − 2  

Gk = 4.81 

|1 − ��|4.81 = 0.80 

�� = 4.85 ≈ 5 

Moderate variance heterogeneous: 

Gk = l+15 − 1-16 + +25 − 1-3615 + 25 − 2  

Gk = 5.35 
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|1 − ��|5.35 = 0.80 

�� =  5.28 ≈ 5 

Therefore, the setting of central tendency measure for J = 2 in our study is (1, 5). For 

the unbalanced design, there are conditions for positive and negative pairings 

however we only focused on positive as it generate more variation (Syed Yahaya, 

2005). Table 3.7 shows the summary of the setting of central tendency measures for 

J = 2 under unbalanced design. 

Table 3.7 

The settings of central tendency measures for J = 2 unbalanced design 

Variability  Variance Effect size, f Location measure 

1, m1 

Location measure 

2, m2 

Maximum Extreme 0.8 1.0 5.0 

Moderate 

3.6.2 Four Groups Case 

When the number of groups is greater than two, the relationship between the effect 

size and range of standardized means depends upon the range over their means 

dispersion as represented by  

� = GnG  (3.7) 

where Gn is the standard deviation of the population means expressed in original 

scale units and G is the standard deviation within the population.  
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Within those four means, the largest and smallest values of the mean are used to 

determined d, which is the range of the standardized means such that 

� � �nop ,�n
(G  (3.8) 

where �nop and �n
( are the largest and the smallest of the four means, while G is 

the standard deviation within the population. Anyway, Equation 3.7 only suitable for 

unequal sample size, thus, for equal sample size, which has a simpler approach, will 

be discussed in the next sub-section. 

Under balanced design (equal sample size and equal variance across groups), the 

relationship between f and d for a given number of groups (J) is fixed. With regards 

to the value of d and J, Cohen (1988) has set the standard generalized pattern for 

each degree of variability (minimum, intermediate and maximum). Thus, based on 

the standard generalized pattern we are able to set the central tendency measure for 

the maximum variability. Table 3.8 presents the standard generalized pattern of d for 

maximum variability pattern under four groups case, J = 4.  

Table 3.8 

The standard pattern variability for J = 4 by Cohen (1988) 

Degree of Variability Pattern variability 

Maximum ,12 �, − 12 �, 12 �, 12 � 

3.6.2.1 Balanced Design (J = 4) 

Under balanced design, the relationship between f and d for maximum variability 

pattern depends whether the group size is even or odd as shown below: 
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When J in even number,  

�nop � 2�                 (3.9) 

When J in odd number, 

�nop � � 2WqW� , 1 (3.10) 

In our study, Equation 3.9 being applied since the group size is four (J = 4). Based on 

table 3.6, the effect size index, f, for maximum pattern variability for four groups is 

0.40, thus, the d value is 

�nop � 2+0.40- � 0.8 

As a result, the dispersion of the central tendency measures is (-0.4, -0.4, 0.4, 0.4) 

and Table 3.9 is the summary of the generalized and the central tendency measure 

dispersion respectively as suggested by Cohen (1988). 

Table 3.9 

Dispersion of central tendency measures corresponding to the pattern variability for 
J = 4 balanced design. 

Variability 

pattern 

Generalized dispersion Dispersion of central 

tendency measures 

Maximum ,12�, , 12�, 12 �, 12 � 
-0.4, -0.4, 0.4, 0.4 

3.6.2.2 Unbalanced Design (J = 4) 

As in section 3.6.2, Equation 3.7 and 3.8 are used to determine the value of f and d 

respectively for the setting of central tendency measure. According to the central 
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tendency measures for maximum variability pattern proposed by Cohen (1988) 

which is %,1
2
d, , 1

2
d, . 1

2
d, . 1

2
d*, the setting of central tendency measures for this 

condition is (-1, -1, 1, 1). This setting represents the setting used in Keselman et al. 

(2004), Othman et al. (2004) and Syed Yahaya (2005). 

As per Equation 3.7, standard deviation of the population means (	Gn- expressed in 

original scale unit which is defined as below; 

Gn � l∑ �#+�# ,�-�V#3� U  

 

(3.11) 

� � ∑ �#�#V#3�U  
 

for 9 � 1,…… , W 
Standard deviation within the populations (σ) for J = 4, it is defined as 

G � l+�� , 1-G�� . +�� , 1-G�� . +�I , 1-GI� . +�J , 1-GJ��� . �� . �I . �J , 4  (3.12) 

Given that �� � 10, �� � 15, �I � 25, �J � 30 , N = 80 and �� � ,1,�� �
,1,�I � 1,�J �. Thus,  

� � 10+,1- . 15+,1- . 25+1- . 30+1-80 � 3080 � 0.375 

Gn
� l10+,1 , 0.375-� . 15+,1 , 0.375-� . 25+1 , 0.375-� . 30+1 , 0.375-�80  
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Gn � l68.7580 � 0.927 

For extreme variance heterogeneous with G�� � 36, G�� � 1, GI� � 1, GJ� � 1 

G � l+10 , 1-36 . +15 , 1-1 . +25 , 1-1 . +30 , 1-110 . 15 . 25 . 30 , 4  

G � l39176 � 2.268 

Therefore, the effect size index, 

� � 0.9272.268 � 0.41 m 0.40 

Whilst, for moderate change variance design (moderate heteroscedasticity), the 

central tendency measure is set as (-1.3, -1.3, 1.3, 1.3) which d = 2.6. The proof that 

this dispersion was from the maximum variability pattern with the effect size index, f 

= 0.40 is shown as below; 

Given that�� � 10, �� � 15, �I � 25, �J � 30 , N = 80, �� � ,1.3,�� �
,1.3,�I � 1.3 and �J � 1.3. Thus,  

� � 10+,1.3- . 15+,1.3- . 25+1.3- . 30+1.3-80 � 3980 � 0.488 

Gn
� l10+,1.3 , 0.488-� . 15+,1.3 , 0.488-� . 25+1.3 , 0.488-� . 30+1.3 , 0.488-�80  



47 

 

Gn � l116.1980 � 1.205 

  For moderate variance heterogeneous with G�� � 36, G�� � 16, GI� � 4, GJ� � 1 

G � l+10 , 1-36 . +15 , 1-16 . +25 , 1-4 . +30 , 1-110 . 15 . 25 . 30 , 4  

G � l67376 � 2.976 

Therefore, the effect size index,  

� � 1.2052.976 � 0.405 m 0.4 

Table 3.10 

Dispersion of central tendency measures corresponding to the pattern variability for 
J = 4 unbalanced design 

Pattern 
Variability 

Variance 
Heterogeneity 

Generalized 
dispersion 

Dispersion of 
central tendency 

measures 
Maximum Extreme ,12�,, 12�, 12 �, 12 � 

-1, -1, 1, 1 
  

    
 Moderate ,12�,, 12�, 12 �, 12 � 

-1.3, -1.3, 1.3, 1.3 

In this study, we will apply the setting of central tendency measures of (-1, -1, 1, 1) 

and (-1.3, -1.3, 1.3, 1.3) for extreme heterogeneous and moderate level of 

heterogeneous variance design respectively.  
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3.7 Bootstrap Method  

Bootstrap is a computer-based methodology to obtain a more accurate estimation of 

central tendency measure as compared to the traditional statistical method (Efron & 

Tibshirani, 1986). Bootstrap method was applied in this study because MOM-H 

statistic’s sampling distributions are intractable. 

Thus, the percentile bootstrap method which is widely used by most robust 

statisticians to assess statistical significance is suggested. This method has been used 

for example by Othman et al. (2004) and Syed Yahaya (2005) to get the significance 

level for MOM-H statistic. According to Babu et al. (1999), this method is expected 

to give better approximation especially under moderate sample size. Besides, Wilcox 

(1997, 2012) recommended using bootstrap methods in small sample size in order to 

get good control of Type I error rate. 

Keselman et al. (2002) also discovered that Type I error control could be improved 

by combining bootstrap method with robust based central tendency measure 

(Keselman et al., 2002). A study from Westfall and Young (1993) demonstrated that 

by combining bootstrap method and trimmed means would result in better control of 

Type I error rate. This assumption was supported by the asymptotic results garnered 

by Hall and Padmanabhan (1992). Wilcox et al. (1998) in their work, combined 

trimmed means with bootstrap methods, and obtained good control of Type I error 

rate. Their study compared robust statistics by Welch (1951), Box (1954), and 

Alexander and Govern (1994) and their results produced non liberal Type I error rate. 

Thus, as mentioned by Wilcox (1997, 2012), the practicality of bootstrap is 
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irrefutable as it is widely used. For power rate, Beran (1986) discovered that the 

power function is almost similar between bootstrap method and the classical t-test. 

The time taken for the bootstrap computation mainly based on the bootstrap 

replication, B. According to Efron and Tibshirani (1993), B = 50 is enough to give a 

reliable estimation, but larger B is needed for percentiles estimation. Thus, they 

suggested that B should be at least 500 or 1000 in order to make the variability 

adequately low for estimated percentile. Davision and Hinkley (1997) also suggested 

that B should be at least 500 in order to obtain accurate results as there is large 

variability in the percentile estimation if number of simulation is less than 100. 

However, when choosing the value of B, Hall (1986) suggested that the value of B 

should be chosen so that 1, α  is a multiple of (B + 1)11 and 1, α  = .95 is the 

primary focus of the study. The small adjustment was proven in Wilcox et al. (1998), 

whereby B = 599 has decreased the liberal Type I error rate of Welch statistic 

compared to B = 600. Thus, bootstrap replication, B =599 is chosen in this study. 

3.7.1 MOM-H and WMOM-H with Bootstrap Method 

The performance of the proposed procedure was assessed based on their Type I error 

rate and power rate. Percentile bootstrap method was used to compute the p-value 

which consequently used to calculate Type I error rate and power rate. To obtain the 

statistical significance for WMOM-H statistic through percentile bootstrap method, 

below are the steps to calculate the p-values; 

i. WMOM-H statistic is calculated based on available data.  
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ii. Observation (�#-  from each group are resample (with replacement) 

randomly to obtain bootstrap sample. 

iii.  Each bootstrap was centred with estimated MOM or WMOM respectively 

such that t
#∗ = 0
#∗ − M&v&. 

iv. WMOM-H*is calculated using the respective value of t
#∗ . 

v. Step (i) to (iv) were repeated for B times (B =599) to generate  

vi.  M&v& − ��∗,  M&v& − ��∗,  M&v& − �I∗, … ,  M&v& − �w∗  

vii. The p-value is calculated by (Number of WMOM-H* > WMOM-H)/B.  

viii.  Lastly, step (i) to (vi) were repeated for 5000 times (simulation) and the 

average value is computed to obtain Type I error rate.  

The calculation of Type I error rate and power rate follow the same steps, except for 

the setting of the central tendency measures in the power rate calculation. The central 

tendency measures to compute Type I error rate were always set to be zero in order 

to remain the true null hypothesis. On the other hand, the central tendency measures 

set to obtain statistical test power are not zero but vary according to the effect size 

and pattern variability. The full SAS/IML programming of WMOM-H procedures is 

attached in the Appendix A.  
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CHAPTER FOUR 

ANALYSIS AND FINDINGS 

4.1 Introduction 

In this chapter, we are going to compare the proposed procedure, W-MOMH with 

MOM-H and their parametric and nonparametric counterparts in terms of Type I 

error rate and power rate of a test. As mentioned in chapter 3, to measure the 

robustness of the proposed procedure, the procedures have been exposed to various 

conditions which include balanced and unbalanced sample sizes, equal and unequal 

variances (moderate or extreme differences), nature of pairing of sample sizes to 

variances and type of distributions.  

This chapter is organized based on the investigated conditions, namely number of 

groups, which is then breakdown to balanced and unbalanced sample sizes. The 

comparison is based on Type I error rate and power rate of a test, which are 

summarized in the form of tables. 

The first column of each table displays the different types of distribution selected in 

this study with different levels of skewness and kurtosis. These distributions are the 

standard normal distribution, chi-square distribution with three degrees of freedom 

and g-and-h distribution with g = h = 0.5 which represents distribution with zero 

skewness, moderate skewness and extreme skewness with heavy-tailed respectively. 

The second column lists the two nature of pairings, positive (+ve) and negative (-ve) 

pairings based on the pairing assignment between sample sizes and group variances. 

The pairing is further divided into moderate (“m +ve” and “m -ve”) or extreme (“+ve” 

and “-ve”) changes according to the level of heterogeneity of the variances (moderate 
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and extreme heteroscedasticity). The pairing column only exists in unbalanced 

design as there is no pairing exist in the balanced design. The rest 4 columns record 

the Type I error rate obtained from the respective procedures (as stated on the 

column header).  

Bradley’s (1978) liberal criterion of robustness is applied in this study to evaluate the 

robustness of the procedure under different conditions. Based on the criterion a test 

with 5% of statistical significant level should produce Type I error rate between 

0.025 and 0.075 in order to be considered as robust under certain condition.  

Three existing procedures are being compared to the proposed procedure WMOM-H 

in this study, which includes MOM-H, classical parametric procedures, and 

nonparametric procedures. For two group’s case, t-test and Mann-Whitney represent 

parametric and nonparametric procedure respectively. Whilst, Analysis of Variance 

(ANOVA) and Kruskal-Wallis is respectively represented the four groups’ case. The 

goal of the WMOM-H is to test the equality of the groups such that 

��: �� � �� �. . . = �# 

��: �� 
����  ��� �#  ��������� ���� �ℎ� ��ℎ��� 

4.2 Type I error rate for J = 2 

For J = 2, the null hypothesis is ��: �� = �� while alternative hypothesis is ��: �� ≠
�� where � represents the location measure. Table 4.1 and 4.2 presents the empirical 

Type I error rate for balanced and unbalanced design. 
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4.2.1 Balanced Design (J = 2) 

The tests for balanced design were conducted with groups having equal number of 

observations and equal variances across the groups. Table 4.1 shows the results for J 

= 2. The results indicate that regardless of distributions, almost all the procedures 

investigated fulfilled Bradley’s robust criterion except for MOM-H under extremely 

skewed and heavy-tailed distribution. 

Table 4.1 

Empirical Type I error rate for balanced design, J = 2 

 Robust Procedure Parametric 
Procedure 

Nonparametric 
Procedure 

Distribution MOM-H WMOM-H t-test MW 
Normal 0.0410 0.0526 0.0528 0.0526 

Chi-square 0.0422 0.0526 0.0500 0.0566 
g = h= 0.5 0.0244 0.0396 0.0288 0.0526 

Grand Average 0.0359 0.0483 0.0439 0.0539 

Based on the grand average, WMOM-H generates the best average values among the 

procedures, which is not only nearest to the nominal level, but its value does not 

exceed the nominal level. Mann-Whitney (MW) generates the highest average Type I 

error rate (0.0539), but its deviation from the nominal level is less than t-test (0.0439). 

On the aspect of winsorization, the average result between MOM-H and WMOM-H 

shows great improvement on WMOM-H. The Type I error rate for WMOM-H is 

closer to the nominal level, which indicates that winsorization can increase the 

robustness of the procedure. 

With regards to distributional shapes, W-MOMH and MW perform equally good 

(0.0526) in controlling Type I error rate surpassing t-test (0.0528) under the normal 

distribution. For moderately skewed distributions, t-test shows perfect control of 
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Type I error rate (0.500), while for extremely skewed and heavy-tailed distribution; 

MW performs the best (0.0526).  

In general, the result for balanced design with J = 2 shows that proposed procedure 

has better control of Type I error rate.  

4.2.2 Unbalanced Design (J = 2) 

Under unbalanced design with group J = 2, several tests were carried out which 

paired unequal number of observations, with unequal variance across groups. Table 

4.2 shows that nearly 73% of the results across the assigned condition fulfilled 

Bradley’s robust criterion, and majority produced by robust procedure (i.e. MOM-H 

and WMOM-H).  

The proposed procedure WMOM-H has the same performance as the balanced design 

as shown by the “Grand Average” value. The value (0.0530) falls within the range of 

0.025 to 0.075 and closest to the nominal level compared to the other procedures. 

The next better procedure is MOM-H, followed by t-test and Mann-Whitney (MW), 

Type I error rate of 0.0418, 0.0621 and 0.0683, respectively. Additionally, WMOM-

H shows further improvement across various distributions and pairing, compared to 

the original procedure (i.e. MOM-H). It also has good control of Type I error rate 

regardless of the extreme or moderate changes in variances (extreme and moderate 

heteroscedasticity), with the overall results being within Bradley’s criterion.  

Overall MOM-H also produces results within the Bradley’s criterion of robustness, 

with the exception of positive pairing, combined with moderate heteroscedasticity 

design under extreme skewed and heavy-tailed distribution. In contrast, the 
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traditional statistical t-test and MW (parametric and nonparametric procedures) show 

failures in controlling Type I error rate, especially in the case of extreme 

heteroscedasticity conditions. 

Table 4.2 

Empirical Type I error rate for unbalanced design, J = 2 

  Robust Procedure Parametric 
Procedure 

Nonparametric 
Procedure 

Distribution  Pairing MOM-H WMOM-H t-test MW 
Normal +ve 0.0496 0.0628 0.0198 0.0448 

-ve 0.0470 0.0570 0.1268 0.1086 
m +ve 0.0388 0.0486 0.0360 0.0420 
m -ve 0.0384 0.0504 0.0704 0.0600 

Average 0.0435 0.0547 0.0633 0.0639 
Chi-square +ve 0.0626 0.0684 0.0238 0.0666 

-ve 0.0642 0.0674 0.1678 0.1312 
m +ve 0.0382 0.0538 0.0334 0.0502 
m -ve 0.0478 0.0556 0.0800 0.0770 

Average 0.0532 0.0613 0.0763 0.0813 
g = h = 0.5 +ve 0.0328 0.0532 0.0118 0.0426 

-ve 0.0324 0.0436 0.1048 0.0976 
m +ve 0.0222 0.0380 0.0238 0.0422 
m -ve 0.0276 0.0368 0.0464 0.0568 

Average 0.0288 0.0429 0.0467 0.0598 
Grand Average 0.0418 0.0530 0.0621 0.0683 

The result for the unbalanced design with the J = 2 generally suggests that the 

proposed procedure (i.e. WMOM-H) generates better control of Type I error rate, 

even under extreme heterogeneity variance across groups with unequal observations, 

and this is noticeably better compared to traditional statistical procedures. 
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4.3 Type I error rate for J = 4 

The null hypothesis for J = 4 is ��: �� � �� � �I � �J while alternative hypothesis 

is ��: �� 
����  ��� �#  ��������� ���� �ℎ� ��ℎ��� where θ represents the location 

measure. Tables 4.3 and 4.4 present the empirical Type I error rate for both balanced 

and unbalanced designs for this case. The results in the following subsections show 

that the proposed procedure has good control of Type I error rate for both balanced 

and unbalanced designs. 

4.3.1 Balanced Design (J = 4) 

In terms of balanced design for J = 4, several tests were conducted with all of the 

groups having equal number of observations and equal variances, across groups. The 

results in Table 4.3 show that WMOM-H has a considerable improvement compared 

to MOM-H in terms of Type I error rate control. 

Table 4.3 

Empirical Type I error rate for balanced design, J = 4 

 Robust Procedure Parametric 
Procedure 

Nonparametric 
Procedure 

Distribution MOM-H WMOM-H ANOVA KW 
Normal 0.0256 0.0420 0.0518 0.0498 

Chi-square 0.0170 0.0304 0.0450 0.0440 
g = h = 0.5 0.0098 0.0238 0.0290 0.0498 

Grand Average 0.0175 0.0321 0.0419 0.0479 

However, based on the grand average, Kruskal-Wallis (KW) generates the optimal 

average values of Type I error rate (0.0479), followed by ANOVA (0.0419), WMOM-

H (0.0321) and MOM-H (0.0175). The Type I error rate for WMOM-H were within 

Bradley’s criterion for both Normal and moderate skewed (Chi-square) distributions, 
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but was slightly below the lowest limit of the criterion for extreme skewed and heavy 

tail distributions. The overall robustness represented by the “Grand Average” showed 

improvement from 0.0175 to 0.0321, compared to the original procedure (MOM-H). 

Across distributions, KW ranked the highest in terms of controlling Type I error rate 

with values consistently close to the nominal level.  

The results for balanced design with J = 4 generally show that the proposed 

procedure (WMOM-H) has better control of Type I error rate compared to the 

original procedure (MOM-H). 

4.3.2 Unbalanced Design (J = 4) 

In unbalanced design for J = 4, several tests were conducted on the pairing of 

unbalanced sample size and unequal variances. Table 4.4 shows that only 69% of the 

results across the different conditions tested fulfilled Bradley’s robust criterion. 

Those which did not fulfill the robust criterion, majority were from the traditional 

statistical procedures. 

Moreover, the proposed procedure, WMOM-H, generated the optimal grand average 

value for Type I error rate (0.0524), followed by MOM-H (0.0405), Kruskal-Wallis 

(KW; 0.0843) and ANOVA (0.1422) with the KW and ANOVA value exceeding the 

criterion interval. Additionally, WMOM-H showed an improvement in robustness 

compared to the original procedure, with the grand average of Type I error closer to 

the nominal level of 0.050. Furthermore, WMOM-H was the only procedure rate that 

was fully in control of Type I error rate across different distributions and pairing 

designs, regardless of extreme or moderate variances in heterogeneity. MOM-H also 
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generated similar results, with the exception of the moderate heteroscedasticity 

design with extremely skewed and heavy-tailed distributions.  

Table 4.4 

Empirical Type I error rate for unbalanced design, J = 4 

  Robust Procedure Parametric 
Procedure 

Nonparametric 
Procedure 

Distribution  Pairing MOM-H WMOM-H ANOVA KW 
Normal +ve 0.0486 0.0644 0.0336 0.0448 

-ve 0.0528 0.0622 0.2850 0.1158 
m +ve 0.0426 0.0560 0.0288 0.0326 
m -ve 0.0404 0.0518 0.2224 0.1312 

Average 0.0461 0.0586 0.1425 0.0811 
Chi-square +ve 0.0646 0.0722 0.0596 0.0668 

-ve 0.0660 0.0714 0.3254 0.1258 
m +ve 0.0408 0.0574 0.0328 0.0466 
m -ve 0.0368 0.0474 0.2646 0.1578 

Average 0.0521 0.0621 0.1706 0.0993 
g = h = 0.5 +ve 0.0300 0.0432 0.0256 0.0442 

-ve 0.0290 0.0422 0.2400 0.1022 
m +ve 0.0190 0.0356 0.0128 0.0348 
m -ve 0.0150 0.0250 0.1760 0.1082 

Average 0.0233 0.0365 0.1136 0.0724 
Grand Average 0.0405 0.0524 0.1422 0.0843 

The failure of ANOVA and KW to be in the robust criterion was very much 

influenced by the negative pairing of both moderate and extreme heteroscedasticity, 

which lead to high grand average of Type I error rate (> 0.0750).  

With respective to the average by distribution, MOM-H obtained the highest rank of 

Type I error rate control for zero skewed (Normal) and moderate skewed (Chi-square) 

distributions with average Type I error rate of 0.0461, 0.0521 respectively. 

Meanwhile, WMOM-H produced the best Type I error rate control for extremely 

skewed with heavy tail distribution, producing average Type I error rate of 0.0365.  
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The results for the unbalanced design with J = 4 show that WMOM-H has better 

control of Type I error rate across different conditions compared to the traditional 

statistical procedures. 

4.4 Power rate of Test for J = 2 

As mentioned in Section 3.6, this study focused only on maximum variability. 

Therefore, the results presented in the subsequent sections only presents result of 

maximum variability. Similar to Type I error rate, the null hypothesis and alternative 

hypothesis are ��: �� � �� and ��: �� ≠ ��  respectively where θ represents the 

location measure. The power rate of the test for both balanced and unbalanced 

designs is presented in Tables 4.5 and 4.6. The results show that, in general, the 

proposed procedure has better power rate compared to MOM-H, t-test and Mann-

Whitney for both balanced and unbalanced designs. 

4.4.1 Balanced Design (J = 2) 

In terms of balanced design, both groups were assigned with equal number of 

observations (sample size) and equal variance across groups. The results in Table 4.5 

show that the proposed procedure improved in power rate for each distribution 

compared to the original procedure (MOM-H). It was also found to possess a higher 

power rate compared to the t-test when performing under extremely skewed and 

heavy tailed distributions (g = h = 0.5).  

Across the Grand Average values, Mann-Whitney (MW) generated the optimal 

power rate (0.4514) among the four different procedures, followed by WMOM-H, t-

test, and MOM-H, with grand average values of 0.3961, 0.3412 and 0.3383 
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respectively. With reference to the type of distributions, MW generated the best 

power rate across the various distributions, compared to other procedures.  

Table 4.5 

Empirical power rate for balanced design, J = 2 

 Robust Procedure Parametric 
Procedure 

Nonparametric 
Procedure 

Distribution MOM-H WMOM-H t-test MW 
Normal 0.5344 0.6604 0.6866 0.6650 

Chi-square 0.1412 0.1740 0.1806 0.2522 
g = h = 0.5 0.3392 0.3538 0.1564 0.4370 

Grand Average 0.3383 0.3961 0.3412 0.4514 

WMOM-H generally generated better power rate compared to t-test. The proposed 

procedure also improved considerably compared to the original procedure under J = 

2 balanced design. 

4.4.2 Unbalanced Design (J = 2) 

For the unbalanced design where tests were conducted on unequal number of 

observations paired with unequal variances. Similar to the balanced design, the 

results in Table 4.6 show that the proposed procedure has a considerable hike in 

power rate for various distributions, compared to the original procedure. In addition, 

it generated better power rate than t-test for the overall comparison (Grand Average). 

However, among the four investigated procedures, based on the Grand Average, 

Mann-Whitney (MW) generated the best power rate of 0.4724 followed by WMOM-

H (0.4501), t-test (0.3782) and MOM-H (0.3726). 
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Table 4.6  

Empirical power rate for unbalanced design, J = 2 

  Robust Procedure Parametric 
Procedure 

Nonparametric 
Procedure 

Distribution  Pairing MOM-H WMOM-H t-test MW 
Normal +ve 0.7672 0.8710 0.7458 0.7562 

-ve 0.5208 0.6358 0.8298 0.7142 
m +ve 0.5262 0.6490 0.6172 0.6134 
m -ve 0.4408 0.5482 0.6806 0.6042 

Average 0.5638 0.6760 0.7184 0.6720 
Chi-square +ve 0.1744 0.3700 0.3056 0.1656 

-ve 0.2006 0.1864 0.2172 0.3342 
m +ve 0.1316 0.2106 0.1720 0.1610 
m -ve 0.1526 0.1756 0.1802 0.2810 

Average 0.1648 0.2357 0.2188 0.2355 
g = h = 0.5 +ve 0.5436 0.6742 0.2308 0.6596 

-ve 0.3880 0.3656 0.2616 0.5672 
m +ve 0.3198 0.3850 0.1340 0.3958 
m -ve 0.3054 0.3294 0.1638 0.4160 

Average 0.3892 0.4386 0.1976 0.5097 
Grand Average 0.3726 0.4501 0.3782 0.4724 

According to the results depicted in Table 4.6, the WMOM-H procedure generated 

better power rate in almost all conditions compared to original procedure, except in 

the case of negative pairing with extreme heterogeneity variances under moderately 

skewed (Chi-square) and extremely skewed and heavy tails distributions (g = h = 

0.5). Comparing the Average results (each distribution) for WMOM-H procedure to 

the parametric t-test, we observed that WMOM-H performed better in moderately 

skewed (Chi-square) and extremely skewed and heavy tails distributions (g = h = 

0.5).  

The results for unbalanced designs with J = 2 reveal that the proposed procedure has 

better power rate compared to MOM-H and t-test, especially in moderately and 

extremely skewed and heavy tails distributions.  
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4.5 Power rate of Test for J = 4 

In terms of J = 4, the null hypothesis and alternative hypothesis are ��: �� � �� �
�I � �J and ��: �� 
����  ��� �#  ��������� ���� �ℎ� ��ℎ��� respectively where θ 

represents the location measure. The power rate of test for balanced and unbalanced 

designs is presented in Tables 4.7 and 4.8 respectively. The results show that the 

proposed procedure has better power rate compared to MOM-H, in both balanced and 

unbalanced designs. 

4.5.1 Balanced Design (J = 4) 

For J = 4 with balanced design, tests were conducted with all groups having equal 

number of observations, with equal variance across all groups. The results in Table 

4.7 show the empirical power rate for the balanced design with maximum pattern 

variability. According to the results, WMOM-H showed considerable improvement 

compared to the original procedure in terms of empirical power rate. 

Table 4.7 

Empirical power rate for balanced design, J = 4 

 Robust Procedure Parametric 
Procedure 

Nonparametric 
Procedure 

Distribution MOM-H WMOM-H ANOVA KW 
Normal 0.6260 0.7828 0.8364 0.8148 

Chi-square 0.0836 0.1408 0.2016 0.3042 
g = h = 0.5 0.2702 0.3120 0.1298 0.5506 

Grand Average 0.3266 0.4119 0.3893 0.5565 

Kruskal-Wallis (KW) generated the optimal power rate in the overall performance 

(refer to Grand Average), followed by WMOM-H, ANOVA, and MOM-H, with grand 

average power rate of 0.5565, 0.4119, 0.3893 and 0.3266 respectively. Across three 
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different distributions, ANOVA and KW have generated the highest power rate under 

zero skewness distribution for ANOVA, moderately skewed and extremely skewed 

with heavy tailed distributions for KW. 

In general, the results for balanced design for J = 4 show that WMOM-H generates 

better power rate compared to the original procedure, and is the more powerful 

compared to investigated procedures under extremely skewed and heavy tailed 

distributions except KW. 

4.5.2 Unbalanced Design (J = 4) 

In the unbalance design for group J = 4, tests were conducted with an unequal 

number of observations for each group, and with unequal variance across groups. 

With reference to Table 4.8, the results suggest that WMOM-H generates better 

power rate compared to the original procedure for all the conditions tested. The 

highest rank of power rate for the J = 4 unbalanced design belonged to Kruskal-

Wallis (KW), followed by ANOVA, WMOM-H and MOM-H respectively, with an 

overall average power rate of 0.6351, 0.3722, 0.2597 and 0.1813 respectively.  

With regards to the average summary by distribution, KW has the highest power rate 

for all of the tested distributions. The proposed procedure was found to have better 

performance across all designs compared to MOM-H. At the same time, it also 

performed better than ANOVA under positive pairing in extreme and moderate 

variances heterogeneity across all types of distributions. Compared to KW, WMOM-

H has better power rate in the case of moderate variance heterogeneity across groups 

with positive pairing for Chi-Square distributions.  
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Table 4.8 

Empirical power rate for unbalanced design, J = 4 

  Robust Parametric Nonparametric 
Distribution  Pairing MOM-H WMOM-H ANOVA KW 

Normal 

+ve 0.2878 0.4324 0.2714 0.9980 
-ve 0.2046 0.2668 0.8696 0.9994 

m +ve 0.4374 0.6178 0.4084 0.6204 
m -ve 0.2920 0.3842 0.8160 0.6984 

Average 0.3055 0.4253 0.5914 0.8291 

Chi-square 

+ve 0.0726 0.1486 0.1464 0.4342 
-ve 0.1174 0.1204 0.3692 0.7296 

m +ve 0.0698 0.1682 0.1144 0.0754 
m -ve 0.0970 0.1114 0.2734 0.3824 

Average 0.0892 0.1372 0.2259 0.4054 

g = h = 0.5 

+ve 0.1496 0.2278 0.0706 0.8020 

-ve 0.1340 0.1724 0.3284 0.9054 
m +ve 0.1702 0.2924 0.5600 0.4156 

m -ve 0.1426 0.1736 0.2390 0.5606 

Average 0.1491 0.2166 0.2995 0.6709 
Grand Average 0.1813 0.2597 0.3722 0.6351 

The results for the unbalanced design with J = 4 generally shows that the proposed 

procedure has better power rate compared to MOM-H. Additionally, it demonstrated 

better performance for positive pairing compared to negative pairing, for all types of 

distributions. WMOM-H is the most powerful among the four tested procedures 

under positive pairing with moderate heterogeneity variance design for Chi-Square 

distributions.  

4.6 Real Data Analysis 

In this section, two different sets of real data on medical manufacturing were applied 

on the proposed procedure (WMOM-H), the original procedure (MOM-H), 

parametric and nonparametric procedures for comparing groups. The first set of the 

data consist of two groups measurement from Supplier Quality Engineering (SQE) 
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while the second set of the data consist of four group of measurement from Research 

and Development (R&D). Thus, the discussion is split in two different subsections, 

4.6.1 and 4.6.2 representing two (J = 2) and more than two groups (J = 4) 

respectively.  Some basic exploratory analyses were also performed before testing 

the stated procedures. 

4.6.1 Real Data Analysis (J = 2) 

The source of data for J = 2 is from the Supplier Quality Engineering (SQE) 

department in a medical product manufacturing industry. The data were collected 

through an electrical test with intensity, dB as the measurement output. The SQE 

department need to determine whether there is any difference in performance for the 

new batch testing head compared to the currently use batch. In the measurement 

process, 20 and 22 units of testing head from the currently used batch and the new 

batch has been measured respectively. According to Table 4.9, data of current 

engineering used batch testing head was non-normally distributed while data of new 

batch testing head was approximate normally distributed with unequal variance 

across groups.  
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Table 4.9 

Descriptive statistic of real data with J = 2 

 Batch of Testing Head 
 Current New 

Test  
Normality Test Shapiro-Wilk Test 0.0381 0.6316 
Equal Variance 

Test 
Levene's Test 0.0022 

Statistic  
N 20 22 

Mean 0.0935 -0.0436 
Median 0.1750 -0.0600 

Standard Deviation 0.2383 0.1386 

In order to test whether there is a difference across 2 group using the stated 

procedures, the null hypothesis and alternative hypothesis was set as follows: 

��: �xyzzY(6 � �(YZ 

��: �xyzzY(6 ≠ �(YZ 

Table 4.10 

p-value of procedure test on real data with J = 2 

Procedure WMOM-H MOM-H t-test MW 
p-value 0.0417 0.0634 0.0310 0.0606 

The results after the analysis indicate that there was a statistical difference intensity, 

dB, for Group 1 and Group 2 detected by WMOM-H and t-test. However, MOM-H 

procedure and MW unable to detect the differences at 5 % level of significance. The 

p-value generated from the WMOM-H procedure was 0.0417 while 0.0310 for t-test. 

With reference to Table 4.2, the real data matched the design of extreme skewed and 
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heavy tailed distributions with moderate change of variances (negative paring), “m -

ve”. According to the simulation results in Table 4.2, the t-test showed better control 

of Type I error rate compared to WMOM-H and this match with our real data analysis 

results. 

4.6.2 Real Data Analysis (J = 4) 

The source of data for J = 4 was from the Research and Development (R&D) 

department in a health product manufacturing industry. In their new product 

development, there exists a product with different designs, and their engineering 

team desires to determine whether there is a difference in intensity, dB for the design 

with different parameter setting. Due to the time limitation in achieving the timeline, 

they only manage to produce and measure 25, 16, 26 and 6 units of products for 

design 1, 2, 3 and 4 respectively. According to Table 4.11, design 3 and 4 are 

normally distributed, but this is not the case for design 1 and 2. Besides, equal 

variance tests show that there are equal variances across the groups.  

Table 4.11 

Descriptive statistic of real data with J = 4 

 Design 
 1 2 3 4 

Test    
Normality 

Test 
Shapiro-Wilk 

Test 
0.0303 0.0274 0.3808 0.1705 

Equal 
Variance Test 

Levene's Test 0.5375 

Statistic    
N 25 16 26 6 

Mean 0.1612 0.1431 0.1826 0.3283 
Median 0.1800 0.1650 0.1900 0.3550 

Standard Deviation 0.0947 0.1409 0.1070 0.0673 
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In order to test whether there is a difference across groups for J = 4 using the stated 

procedures, the null and alternative hypotheses were set as follows: 

��: �� � �� � �I= �J 

��: �� 
����  ��� �#  ��������� ���� �ℎ� ��ℎ��� 

Table 4.12 

 p-value of procedure test on real data with J = 4 

Procedure WMOM-H MOM-H ANOVA KW 
p-value 0.0000 0.0050 0.0060 0.0120 

The results of the analysis show that there is a significant difference in average 

intensity, dB, across groups. The p-value generated are less than 0.05 for all the 

tested procedures. From Table 4.12, the WMOM-H procedure generate the lowest p-

value which is 0.000, among other tested procedures. This indicates that the proposed 

procedure shows better detection across the 4 groups compared to other procedures. 
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CHAPTER FIVE 

CONCLUSION 

5.1 Introduction 

Traditional parametric procedures are known to falter at correctly providing an 

accurate test result when the required assumptions are not fulfilled. Assumptions 

such as data are normally distributed and variances are equal must be fulfilled so that 

the parametric procedures can produce convincing results with no inflation of Type I 

error rate, simultaneously increasing the power to detect differences. Although 

nonparametric procedures can be the alternative when the aforementioned problems 

occur, the main weakness of these procedures include loss of information because of 

the ranking used in the measurement and also the demand for a larger sample size to 

reject any false hypothesis. Thus, this study aims to overcome these problems by 

suggesting a new robust location estimators known as winsorized Modified One-step 

M-estimator (WMOM) on H-statistic to compare groups. As highlighted in the earlier 

chapters, the proposed estimator originated from Modified One-step M-estimator 

(MOM), an asymmetric trimmed mean, which is winsorized to produce a better 

robustness effect. 

As presented in Chapter 4, the proposed procedure, WMOM-H, has been compared 

with MOM-H and their parametric and nonparametric counterparts in terms of Type I 

error rate and power rate of test across different investigated designs. The proposed 

procedure, WMOM-H, and the original MOM-H procedure were simulated 5000 

times with a significant level of 0.05; and bootstrap method was employed to test the 

hypothesis. To compare the robustness of the procedure under different investigation 

conditions, Bradley’s (1978) liberal criterion of robustness was applied, based on the 
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criterion, a test with a 5% significant level should produce a Type I error rate 

between 0.025 and 0.075 for the procedure to be considered robust under a particular 

condition. In addition, we also compared the power rate of the test to assess for any 

improvement in the power rate of MOM-H to WMOM-H under various conditions.  

5.2 Performance comparison between MOM-H and WMOM-H 

In terms of Type I error rate, we can observe that the proposed procedure, the 

winsorized approach, WMOM-H, showed an outstanding performance compared to 

the original procedure, MOM-H. Based on Table 5.1, 70% of the conditions test 

under WMOM-H produced the smallest disparity with the nominal level, 0.05, while 

only 30% produced by MOM-H. In addition, the robustness improved by 17% (from 

80% to 97%) using the proposed WMOM-H procedure, whereby, these 17% were 

from those investigated design that unable performed well in original procedure, 

MOM-H (Type I error rate below 0.025). 

Table 5.1 

Overall summary of Type I error rate for MOM-H and WMOM-H 

Comparison Criteria MOM-H WMOM-H 
Minimal Delta Relative to 0.05 30% 70% 

0.025 ≤ Type I error rate ≤ 0.075 80% 97% 
Type I error rate < 0.025 20% 3% 
Type I error rate > 0.075 0% 0% 

In reference to Table 5.1, the result shows that the 30% WMOM-H with delta Type I 

error rate higher than MOM-H was from an unbalanced design for both the group 

sizes of two and four. In addition, these involve both positive and negative pairings 

with extreme variance heterogeneity from Normal and moderately skewed (Chi-

square) distribution; with the exception of the group of two that has a moderately 
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skewed distribution, the negative pairing in moderate variance heterogeneity also 

generated a higher delta value compared to the original procedure.  

Nevertheless, these 30% designated condition still fall within Bradley’s criteria of 

robustness when the test was run with the proposed procedure, WMOM-H. Moreover, 

WMOM-H outperformed the extremely skewed and heavy tailed (g = h = 0.5) 

distribution in any paring and variance heterogeneity design for all group sizes. In 

regard to the balanced design, WMOM-H showed significant improvement 

(robustness) as compared to MOM-H, however, the Type I error rate for the four 

groups with extremely skewed and heavy tailed (g = h = 0.5) distribution did not fall 

within Bradley’s criteria of robustness. Nonetheless, the Type I error rate was 

improved from 0.0098 (MOM-H) to 0.0238 (WMOM-H).  

In terms of the power rate of the test, WMOM-H consisted of the largest portion 

(nearly 97.3%) with the highest power rate of the test compared to the original 

procedure, MOM-H, with reference to Table 5.2. In other words, WMOM-H had 

shown improved robustness in regard to the power rate of the test.  

Table 5.2 

Overall summary of power rate of test for MOM-H and WMOM-H 

Comparison Criteria MOM-H WMOM-H 
Higher Power Rate of Test 7% 93% 

The 7% higher power rate of the MOM-H procedure involved 2 designed conditions, 

two groups unbalanced design with moderately skewed distribution, and extremely 

skewed and heavy tailed distributions. In addition, these 2 designed conditions 

include negative paring and extreme variance heterogeneity. Although WMOM-H did 
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not perform well performed for these 2 designs, the difference was very minimal, 

which was less than 7% difference. On the other hand, the improvement of the power 

rate of the test for WMOM-H throughout the investigated conditions ranged from 

2.56% to 140.97%. 

In conclusion, the proposed procedure, WMOM-H, showed outstanding performance 

compared to the original procedure, MOM-H. WMOM-H improved the robustness of 

the procedure for both Type I error rate and the power rate of the test.  

5.3 Performance comparison between WMOM-H and Traditional Procedures 

In this section, the proposed procedure is compared with the respective traditional 

procedure. The parametric procedure is represented by t-test and ANOVA while the 

nonparametric procedure is represented by Mann-Whitney and Kruskal-Wallis for 

two and four groups respectively.  

Table 5.3 

Overall summary of Type I error rate for WMOM-H and traditional procedures 

Comparison Criteria WMOM-H Parametric 
Procedure 

Nonparametric 
Procedure 

Minimal Delta Relative to 0.05 53% 13% 37% 
0.025 ≤ Type I error rate ≤ 0.075 97% 50% 67% 

Type I error rate < 0.025 3% 17% 0% 
Type I error rate > 0.075 0% 33% 33% 

It can be observed from Table 5.3 that the proposed procedure has the highest 

percentage (nearly 53%) of Type I error rate with minimal difference to the nominal 

level, 0.05, across the designed conditions compared to the parametric (13%) and 

nonparametric (37%) procedures. This indicates that the proposed procedure 

WMOM-H was more robust than the traditional procedures. Moreover, each of the 
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procedure, when tested across different designation conditions showed that the 

WMOM-H procedure was able to fulfill Bradley’s criterion by 97% across different 

designs but not for parametric and nonparametric procedures, which can only 

achieve 50% and 67% respectively. Both the parametric and nonparametric 

procedures generated 33% liberal Type I error rate (> 0.075 of the Bradley’s interval) 

each while WMOM-H was clean from this should be avoided situation. Meanwhile, 

the comparison for the lower bound interval, the parametric procedure generated the 

highest with 17% followed by only 3% from WMOM-H and none for the non- 

parametric procedure. 

The outstanding performance of the WMOM-H procedure was largely attributed to its 

strength in generating a Type I error rate that was close to the nominal level for 

unbalanced design across different parings and variance homogeneity. 

Table 5.4 

Overall summary of power rate of test for WMOM-H and traditional procedures 

Comparison Criteria WMOM-H Parametric 
Procedure 

Nonparametric 
Procedure 

Highest Power Rate of 
Test 

20% 20% 60% 

In terms of the power rate of the test, WMOM-H only generated 20% of the highest 

power rate compared to traditional procedures. There was no specific pattern in the 

results for the power test, but the percentage of generating highest power rate seemed 

to be inclined to the nonparametric procedure. 

In conclusion, although the nonparametric procedure, generated better power rate, 

the WMOM-H procedure still shows outstanding performance compared to 

traditional procedures, as it was able to control Type I error rate within the Bradley’s 
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robustness criterion across differently designed tests. When testing for robustness, 

the ability to control Type I error rate is the utmost importance (Hayes, 2005).  

5.4 Implication 

The aim of this research is to develop a new robust procedure in testing the equality 

of the central tendency measure, which is able to control the Type I error rate and 

improve the power rate of the test as well. The developed procedure, WMOM-H, was 

proven to be robust compared to its original procedure, MOM-H, and traditional 

procedures (parametric and nonparametric procedures). Investigation on the 

robustness showed that 97% of the Type I error rate for WMOM-H fulfilled the 

robustness criterion from a total of 30 investigated conditions. WMOM-H performed 

well for both J = 2 and J = 4 in balanced and unbalanced sample sizes. However, the 

procedure did not perform as expected for J = 4 balanced design under extremely 

skewed and heavy tailed distributions generating Type I error rate of 0.0238. 

Nevertheless, the original procedure, MOM-H, also failed to fulfill Bradley’s robust 

criterion for this condition. 

For the power rate of the test, WMOM-H improved the power rate by 93% 

throughout the investigated design compared to its original procedure MOM-H. 

Although WMOM-H yielded a lower value compared to MOM-H for the 2 

investigated designs, the difference was very minimal, that was less than 7%. In 

regards to comparison with the traditional procedure, although the highest power rate 

of the test percentage for WMOM-H was only 20% compared to the parametric and 

nonparametric procedures, the 20% correspond to those investigated design that 

achieved low power rate in traditional procedures. 
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Overall, WMOM-H performed well compared to the other investigated procedures. 

Although the power rate of the test for this procedure was inconsistent across the 

investigated designs, the WMOM-H was still able to consistently controlled its Type I 

error rate across different designs. Moreover, this procedure was also able to 

generate better power rate of the test value by 20% out of the 30 investigated designs 

compared to traditional procedure.  

5.5 Suggestion for Future Research 

As mentioned in Section 5.1, parametric procedures would only have performed well 

when assumptions are fulfilled and the nonparametric procedure requires a large 

sample size collection to reject false hypothesis. Thus, the focus of this study is to 

generate a procedure which can perform well across all types of conditions, without 

worrying about the assumptions.  

Our study has proved that the proposed procedure, WMOM-H, was able to control its 

Type I error rate consistently within Bradley’s robust criterion. However, a lower 

and inconsistent power rate across investigation designs was the weakness of this 

procedure. At any rate, since WMOM has the strength to consistently control the 

Type I error rate across different designs, future researchers should investigate 

WMOM as one of the central tendency measure for post-hoc test and even extend this 

study other discipline such as in in Statistical Process Control (SPC), especially for 

machines or testers that consistently generate outliers across time before preventive 

maintenance is performed.  

As for H-statistic, even though WMOM-H has significantly improved robustness 

compared to MOM-H, other winsorized central tendency measures such as adaptive 
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winsorized mean should also be considered as a replacement to the current MOM or 

WMOM procedures, so that a more consistent increase in the power rate of the test 

can be achieved. 
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APPENDIX A 

SAS/IML Programming for WMOM-H 

***USING THE MOM ESTMATOR ON THE H STATISTIC***;  
OPTIONS PS= 40; 
OPTIONS NOCENTER; 
PROC IML; 
RESET NONAME; 
 
**PREPARING DATA FOR CALCULATING WMOM-ESTIMATOR**; 
(Please Refer To Author If Need Full Programming) 
START DATAMOD(Y, CRIT, YMAT)  GLOBAL (NX, NTOT, WOBS, BOBS); 
NTOT = NROW(Y); 
WOBS = NCOL(Y); 
BOBS = NCOL(NX); 
YT = J(NTOT, WOBS, 0); 
GMAD = J(WOBS, BOBS, 0); 
GMED = J(WOBS, BOBS, 0); 
F = 1; 
M = 0; 
DO I = 1 TO BOBS; 
. 
. 
. 
. 
. 
. 
FINISH; 
 
**VARIABLE WINSORIZING BASED ON CRITERIA VECTOR**; 
(PLEASE REFER TO AUTHOR IF NEED FULL PROGRAMMING) 
START WINSMOD(YMAT, CRIT, WINSOR, MUBARM, H) GLOBAL(NX, NTOT, WOBS, 
BOBS); 
WINSOR = J(WOBS, BOBS, 0); 
F = 1; 
M = 0; 
. 
. 
. 
. 
. 
. 
FINISH; 
 
**FINDING THE P-VALUE OF THE H STATISTIC REQUIRES BOOTSTRAP**; 
**GENERATING BOOTSTRAP SAMPLE**; 
(PLEASE REFER TO AUTHOR IF NEED FULL PROGRAMMING) 
START BOOTDAT(Y, WINSOR, YB) GLOBAL(NX, NTOT, WOBS, BOBS, SEED); 
F = 1; 
M = 0; 
. 
. 
. 
. 
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. 

. 
FINISH; 
 
**CALCULATING BOOTSTRAP H STATISTIC**; 
(PLEASE REFER TO AUTHOR IF NEED FULL PROGRAMMING) 
START BOOTSTAT(YB, HB) GLOBAL(NX, NTOT, WOBS, BOBS, SEED); 
. 
. 
. 
. 
. 
. 
FINISH;  
 
**********TRIAL RUN ON BOOTSTRAPPING WITH GENERATED DATA***********;  
SSEED=439839383; 
CPOPVAR = { 1 1 1 1}; 
CNX = { 20 20 20 20}; 
CPOPMN = {0 0 0 0}; 
CN = CNX[,+]; 
COND = NROW(CPOPVAR); 
NSIM = 5000; 
F = 1; 
 
**NUMBER OF BOOTSTRAP SAMPLES**; 
NUMSIM = 599; 
**SEED FOR BOOTSTRAPPING**;  
SEED = 40389; 
 
COUNTER = 0; 
ALPHA = 0.05; 
 
****GENERATE DATA FOR CONDITIONS****; 
(PLEASE REFER TO AUTHOR IF NEED FULL PROGRAMMING) 
DO K = 1 TO NSIM; 
  DO I = 1 TO COND; 
. 
. 
. 
. 
. 
. 
    RUN WMOM1; 
    IF (RESULTS[ 2] <= ALPHA) THEN COUNTER = COUNTER + 1; 
  END; *DO I;     
END; *DO K;  
 
DO I = 1 TO COND; 
   V = CPOPVAR[I,]; 
   S = CNX[I,]; 
   M = CPOPMN[I,]; 
   COUNT = COUNTER/NSIM; 
   PRINT 'STUDY CONDITIONS ARE:' ; 
   PRINT 'ALPHA IS:'  ALPHA[FORMAT = 5.2]; 
   PRINT 'GROUP POPULATION VARIANCES:'  V[FORMAT = 4.0]; 
   PRINT 'GROUP SAMPLE SIZES:'  S[FORMAT = 4.0]; 
   PRINT 'GROUP MEANS:'  M[FORMAT = 4.0]; 
   PRINT 'TEST FOR:4pemmn'  COUNT[FORMAT = 6.5];    
END; *DO I;
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