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Abstrak 

Penyarian fitur ialah satu kaedah yang digunakan secara meluas untuk mengekstrak 
fitur yang signifikan dalam masalah gabungan data pelbagai penderia. Namun 
demikian, penyarian fitur mempunyai beberapa kelemahan. Masalah utamanya ialah 
kegagalan untuk mengenal pasti fitur diskriminatif dalam data multi kumpulan. 
Justeru, kajian ini mencadangkan satu analisis diskriminan gabungan data pelbagai 
penderia yang baharu menggunakan jarak Mahalanobis tak terbatas dan terbatas 
untuk menggantikan kaedah penyarian fitur dalam gabungan data pelbagai penderia 
peringkat rendah dan pertengahan. Kajian ini juga turut membina kaedah pemilihan 
fitur persentil kehadapan (PFPK) untuk mengenal pasti fitur diskriminatif tersaur 
untuk pengelasan data penderia. Prosedur cadangan pengelasan diskriminasi bermula 
dengan pengiraan purata jarak antara multi kumpulan menggunakan jarak tak 
terbatas dan terbatas. Kemudian, pemilihan fitur dimulakan dengan memberi pangkat 
kepada gabungan fitur dalam peringkat rendah dan pertengahan berdasarkan jarak 
yang dikira. Subset fitur telah dipilih menggunakan PFPK. Peraturan pengelasan 
yang dibina diukur menggunakan ukuran kejituan pengelasan. Keseluruhan 
penyiasatan telah dijalankan ke atas sepuluh data penderia e-nose dan e-tongue. 
Dapatan menunjukkan bahawa jarak Mahalanobis terbatas lebih superior dalam 
memilih fitur yang penting dengan bilangan fitur yang sedikit berbanding kriterium 
jarak tak terbatas. Tambahan pula, dengan pendekatan jarak terbatas, pemilihan fitur 
menggunakan PFPK memperolehi kejituan pengkelasan yang tinggi. Keseluruhan 
prosedur yang dicadangkan didapati sesuai untuk menggantikan analisis diskriminan 
gabungan data pelbagai penderia tradisional berdasarkan kuasa diskriminatif yang 
besar dan kadar penumpuan yang pantas pada kejituan pengelasan yang tinggi. 
Kesimpulannya, pemilihan fitur boleh menyelesaikan masalah penyarian fitur. 
Kemudian, PFPK yang dicadangkan terbukti efektif dalam memilih subset fitur 
dengan kejituan yang tinggi serta pengiraan pantas. Kajian ini juga menunjukkan 
kelebihan jarak Mahalanobis tak terbatas dan terbatas dalam pemilihan fitur bagi data 
berdimensi tinggi yang bermanfaat kepada kedua-dua jurutera dan ahli statistik 
dalam teknologi penderia. 

Kata Kunci : Analisis Diskriminan, Gabungan Data Pelbagai Penderia, Jarak 
Mahalanobis Tak terbatas,  Jarak Mahalanobis Terbatas, Pemilihan Fitur Persentil 
Kehadapan  
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Abstract 

Feature extraction is a widely used approach to extract significant features in multi 
sensor data fusion. However, feature extraction suffers from some drawbacks. The 
biggest problem is the failure to identify discriminative features within multi-group 
data. Thus, this study proposed a new discriminant analysis of multi sensor data 
fusion using feature selection based on the unbounded and bounded Mahalanobis 
distance to replace the feature extraction approach in low and intermediate levels 
data fusion. This study also developed percentile forward feature selection (PFFS) to 
identify discriminative features feasible for sensor data classification. The proposed 
discriminant procedure begins by computing the average distance between multi-
group using the unbounded and bounded distances. Then, the selection of features 
started by ranking the fused features in low and intermediate levels based on the 
computed distances. The feature subsets were selected using the PFFS. The 
constructed classification rules were measured using classification accuracy measure. 
The whole investigations were carried out on ten e-nose and e-tongue sensor data. 
The findings indicated that the bounded Mahalanobis distance is superior in selecting 
important features with fewer features than the unbounded criterion. Moreover, with 
the bounded distance approach, the feature selection using the PFFS obtained higher 
classification accuracy. The overall proposed procedure is found fit to replace the 
traditional discriminant analysis of multi sensor data fusion due to greater 
discriminative power and faster convergence rate of higher accuracy. As conclusion, 
the feature selection can solve the problem of feature extraction. Next, the proposed 
PFFS has been proved to be effective in selecting subsets of features of higher 
accuracy with faster computation. The study also specified the advantage of the 
unbounded and bounded Mahalanobis distance in feature selection of high 
dimensional data which benefit both engineers and statisticians in sensor technology. 

Keywords : Bounded Mahalanobis Distance, Discriminant Analysis, Multi Sensor 
Data Fusion, Percentile Forward Feature Selection, Unbounded Mahalanobis 
Distance 
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Glossary of Terms 

Gustatory – relates to the sensations that arise from the stimulator of taste receptor 

cells found throughout the mouth or easily known as sense of taste.    

Olfactory – the sense of smell mediated by specialized sensory cells of the nasal 

cavity of vertebrates. 

Sensor data – the signals from specific sensor that has been preprocessed according 

to some suitable preferred methods.  

Array sensor – a combination of sensors arranged in an array to overcome the 

problem of poor sensitivity and poor selectivity. 

Features – or sometimes known as variables referring to the dimension of sensor 

data. Easily determined as the number of array sensors attached in a sensor 

Group – or category is defined as a grouping of samples characterized by the same 

value of discrete variables or by contiguous values of continuous variables. 

Non-selectivity – a situation where the qualitative and quantitative information are 

combined and the sensor response become highly ambiguous which makes the sensor 

unusable in real conditions when sensors are exposed to more than one analyte 

species. 

Redundancy – occurrs as a consequence of the non-selectivity state where sensors 

are measuring the same response which makes the related sensors highly correlated 

http://en.wikipedia.org/wiki/Sense
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Low level data fusion – a state of combining different sensor data at the data level 

Intermediate level data fusion – a state of combining different features of different 

sensor data at the feature level 

High level data fusion – a state of combining the decisions of different sensors at the 

decision level 

Classifier – or sometimes called as classification function is the rule used to allocate 

future object with an aim to minimize the misclassification rate over all possible 

allocations.  

Training data set – is an independent data set used to train the classifier. 

Test data set – is an independent data set used to evaluate training bias and estimate 

real performance of the constructed classifier.
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CHAPTER ONE 

INTRODUCTION 

1.1 Introduction 

Discriminant analysis is a multivariate technique that explains the group membership 

as a function of multiple independent variables. The group membership is the 

dependent variable often appears as categorical value (nominal), while the 

independent variables which are often called as discriminators are usually in 

continuous form (interval or ratio). Wood, Jolliffe, and Horgan (2005) described 

discriminant analysis as a statistical technique that assigns observations to one of 

several distinct populations based on measurements made on the observations, or 

variables derived from the measurements. The process of allocating observations to 

their specific groups based on the constructed discriminant rules is called 

classification. The concept of discriminant analysis is rather exploratory in nature 

whereas the classification procedures are less exploratory, but leads to well-defined 

rules to allocate new observations.  

The notion of discriminant analysis was introduced by Sir Ronald A. Fisher in the 

mid of 1930s. Then, it became an area of interest to other researchers in various 

disciplines in the 1950s and 1960s. Some researchers break up discriminant analysis 

into two parts; predictive discriminant analysis and descriptive discriminant analysis. 

Predictive discriminant analysis focuses on the prediction of group membership 

based on a subset of variables selected using certain criteria which are eventually 

assessed by the classification accuracy. On the contrary, descriptive discriminant 

analysis deals with assessing the independents variables that best explain the group 

separation which reflects the importance. Concisely, this work adapts both concepts 
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where the prediction of group membership is being implemented using the most 

important variables measured by largest group separation. For simplicity, throughout 

this thesis, discriminant analysis is used as it explains proposed procedure in attempt 

to classify objects into some predetermined groups based on some measured 

variables.  

The concept and usefulness of discriminant analysis in diverse fields which include 

the physical, biological, social sciences, engineering, and medicine are discussed 

through inconsiderable number of literatures. One of the subdomains in engineering 

that manipulate the benefit of this concept is the multi sensor data fusion. It has been 

extensively employed in the applications where multiple sources of data are required 

for various pattern recognition and classification research such as in sensor network, 

robotics, video and image processing, intelligent system design as well as in food 

production. Two types of artificial sensors mainly applied in the food research are 

the electronic nose (e-nose) and electronic tongue (e-tongue). These electronic 

sensors have the capability of imitating the human senses (smell and taste) using 

sensor arrays and pattern recognition system. Main exploitation of these sensors is to 

fulfill a number of research interests such as food quality assessment, food 

authenticity estimation, food freshness evaluation, food shelf-life investigation as 

well as food process monitoring.  

Traditional approach in the food production related researches are highly dependent 

on trained human panels that solely relies on their olfactory (sense of smell) and 

gustatory (sense of taste) systems. Generally the manipulation of trained human 

panels involves lengthy and expensive methodology, which may initiate 

inconsistencies due to exhaustion and stress. Consequently, different analyses and 
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assessment results may be produced. Therefore, complementary yet reliable artificial 

sensors to mimic the trained human panel‟s taste and smell system are required as the 

conventional methods suffers from some drawbacks. The invention of e-nose and e-

tongue sensors in the multi sensor data fusion framework is the key to conquer the 

drawbacks. Figure 1.1 shows two artificial sensors that are believed to compliment 

human‟s smell and taste senses.   

 

Figure 1.1. Illustration of Artificial Sensors that Imitate Human Basic Senses 

The array of sensors equipped in the e-nose and e-tongue act as the detection system 

whenever they react to volatile compounds and chemical compounds, respectively. 

Figures 1.2 and 1.3 illustrate the array of sensors attached in the e-nose and e-tongue. 

These arrays of sensors are later referred as features among practitioners or 

commonly termed as variables among statisticians. Usually, these sensor devices are 

applied independently during the experiment. Thus, in order for these sensors to 
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work in such a way as human senses behave, the sensors are manipulated in a multi 

sensor data fusion framework. Presently, the application of multi sensor data fusion 

is burdened with abundant variables from different employed sensors, where these 

variables may inherit similar and/or dissimilar characteristics. Dealing with similar 

sensor devices may not be a big problem, but exploiting different sensor devices is a 

real challenge. To ensure consistency in discussion and to address both 

understanding on statistics and application of discriminant analysis in sensor data, 

this thesis will use the termed features to refer to measured variables. 

 

 

 

Figure 1.2. Illustration for Array of Sensors Attached in an E-Tongue (11-array) 

 

Figure 1.3. Illustration for Array of Sensors Attached in an E-Nose (32-array)  

Array of sensors for q=1, 2,…, 32 

Array of sensors for p=1, 2,…, 11 
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Basically, flavor is derived from the combination of the senses of taste and smell. 

Previous studies done by Woods (1998) and Wide, Winquist, Bergsten and Petriu  

(1998) suggested that the fusion of e-nose and e-tongue has the potential to mimic 

the human flavor panels since measurement data from both sensors are manipulated 

to produce sensor-specific opinions about the human-like sensing modalities.  Cole, 

Covington and Gardner (2011) have successfully confirmed that flavor can be 

assessed by combining these two artificial sensors. Thus, even though e-nose and e-

tongue are not integrated since each device works independently, data fusion 

techniques can be applied for further data analysis (Zakaria, Masnan, Zakaria and 

Shakaff, 2010). Presumably, e-nose and e-tongue is functioning successfully when 

good classification result is attained. Perhaps, to accomplish the purpose of e-nose 

and e-tongue to mimic the human panel‟s smell and taste is by obtaining good 

classification accuracy as the main goal. However, one of the challenges to achieve 

such purpose is to deal with variability of sensor arrays from both sensors. In real 

practice, sensor arrays from e-nose are highly correlated while sensor arrays from e-

tongue are less correlated among each other. Such scenarios are caused by the nature 

of fully selective and partially selective of the e-nose and e-tongue, respectively. 

Since these systems are not yet integrated like the way human smell and taste system 

behave, different levels of multi sensor data fusion approaches can be employed for 

the mimicking purposes. 

One of the multi sensor data fusion frameworks employed in food industries is the 

Joint Directors of Laboratories (JDL) Data Fusion Framework or sometimes known 

as JDL process model (Hall, 1992). Figure 1.4 illustrates the whole JDL data fusion 

framework. The framework enumerates in detail three different approaches for fusing 

sensor data namely low level data fusion (LLDF), intermediate level data fusion 
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(ILDF) and high level data fusion (HLDF). Obviously, a common technique involves 

in all level of data fusion is called the feature extraction. In feature extraction phase, 

raw data are transformed into a new form of reduced data set that is still represents 

the original information which is useful for further classification process.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4. Diagrams for the JDL Data Fusion Frameworks (a) LLDF model           
(b) ILDF Model, and (c) HLDF Model. (Hall, 1992) 
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decision making to choose important features were suggested, evaluated and 

implemented. Despite of the popularity of this technique, some pitfalls of this 

approach remain ambiguous. The method is highly dependence on a transformation 

approach for selecting useful features which has several limitations. The multi sensor 

data fusion model with feature extraction has successfully been applied in food-based 

problems, but the method of feature selection has received little attention in this 

application, example works include (Masnan et al., 2012; Banerjee, Tudu, Shaw, 

Jana, Bhattacharyya, & Bandyophadhyay, 2012; and Zakaria, Masnan, Zakaria, & 

Shakaff, 2014). 

The obvious weakness in the transformation approach is that it manipulates all the 

features in the analysis although some of the features may contain noise or irrelevant 

for the classification. Such extraneous features would only ruin the classification 

accuracy and in turn, reduce the potential of identifying useful features from the 

dataset. In addition, by applying feature extraction approach, new features defined by 

several functions containing all original features are formulated which then conceal 

the significant features. If in the case where identification of important features is of 

interest, the transformation approach may not be a suitable choice because it is lack 

of interpretability. Furthermore, the issue of indistinctness of retaining the 

appropriate number of principal components is another challenge.  

In order to address an effective alternative to the discussed problems, this study 

attempts to explore the advantageous of feature selection method. Feature selection 

is a study of algorithms to reduce dimensionality of data which aims to improve 

classification performance. For a dataset of size n, and P is the number of observed 

features from e-nose,  and/or Q is the number of observed features from e-tongue, the 

file:///C:/Users/Asus/AppData/Roaming/Microsoft/AppData/Roaming/Microsoft/AppData/Roaming/Microsoft/Comments.doc
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aim of feature selection is to reduce the dimension P to p where p   P or, to reduce 

the dimension Q to q where q   Q. This technique is commonly used when useful 

features are needed to be retained while irrelevant and/or redundant features are to 

be removed. In this study, relevant features are defined as features that could explain 

the separation between groups. Therefore, they are identified using the distance-

based criterion that measures the separation between groups. Many distance-based 

criteria are possible to be applied such as Euclidean distance, Bhattacharyya distance, 

Kullback-Leibler divergence etc., but this study opts to use Mahalanobis distance 2   

that was first introduced by Prasanta Chandra Mahalanobis in 1936. Further details 

of this criterion are elaborated in the next section 1.2. 

1.2 Motivation and Problem Statement 

The motivation and problem for this study begins with the importance of fusion of 

different sensor devices, which later leads to greater number of features to deal with. 

Most researchers in related area practiced on implementing features extraction 

(Masnan et al., 2012; Prieto et al., 2011; Zakaria et al., 2011; Vera, Aceña, Guash, 

Boque, Mestres, & Busto, 2011; and Apetrei et al., 2010), but the capability of such 

strategy is arguable as most features produced by sensor devices are highly 

correlated (Zhang & Yan, 2015; and Wang, Tyo, & Hayat, 2007; and Ciosek, 

Brzózka & Wróblewski, 2004). Alternatively, the idea of substituting feature 

extraction phase in the multi sensor data fusion model with feature selection is 

possible. However, feature selection needs one to determine a selection criterion 

which could lead to the best possible set of features for classification purposes. As 

such purpose, a selection criteria based on maximizes separation among groups 

sounds promising (Ray & Turner, 1992; Achariyapaopan & Childers, 1985; and Jain 
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& Waller, 1978). Unfortunately, estimated pair-wise distances among multi-group of 

features that represent the groups‟ separation headed to another problem of 

unbounded  0,  separation values. Such unbounded separation values leave 

researchers with an argument on “how large is large for the estimated pair-wise 

distances shall be defined for maximum separation?” To overcome this problem, the 

proposed work on bounded  0,1  Mahalanobis distance 2

A  by Ray and Turner 

(1992) was considered, and it became the main focus of this study. Among other 

issue raised from the application of unbounded and bounded Mahalanobis distance 

 2 2 and A  , repectively, is the difference in the classification performance based on 

subset of features generated by the Mahalanobis distances  2 2 and A  . These trails 

are elaborated sequentially along with the trend of multi sensor sensor fusion in the 

following paragraphs.  

Previous studies have revealed that simultaneous utilization of e-nose and e-tongue 

sensors is important to increase the amount of information extracted from a specific 

sample (Di Natale et al., 2000; Prieto et al., 2011). Some other investigations were 

demonstrated in Buratti, Benedetti, Scampicchio, and Pangerod (2004); Cosio, 

Ballabio, Benedetti, and Gigliotti (2007); Zakaria et al., (2010); Cole et al., (2011); 

Baldwin, Bai, Plotto, and Dea (2011); and Zakaria et al., (2011). Generally, the 

advantages of fusing e-nose and e-tongue in the food research have created a 

significant impact towards the food research domain, in which further improvement 

were recorded in the classification results. The significance of fusing only the e-nose 

and e-tongue as the sensory evaluation is important for the food safety, quality 

assessment, authenticity estimation, and freshness evaluation.  
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These systems are perceived as the human-like inspired sensor technologies to 

produce outputs well correlated with the human sensory panels; with which the taste 

sensor own the intelligent capability to break down the information included in the 

chemical substances to the basic information of taste quality (Ghasemi-

Varnamkhasti, Mohtasebi, & Siadat, 2010; Baldwin et al., 2011). In general, these 

sensors are capable in measuring the chemical compounds (Apetrei, et al., 2010; 

Cole et al., 2011) in the form of liquid and odor from sample which is critical for 

such research. 

In addition, recent trend in multi sensor data fusion research has shifted to the use of 

more sensors, for instance the use of e-nose and e-tongue with ultra violet 

spectrometers (as electronic eye or e-eye), Fourier Transformed Infra-Red (FTIR) 

spectroscopy, gas chromatography–mass spectrometry (GC-MS) and/or other kinds 

of sensors devices. This trend is maneuvered by the compeling needs to meet the 

complexity of food production research especially that directed to fulfill customer 

perception and acceptance. However, more sensors employed in a research does not 

necessarily implies the better the research is from the perspective of sensors-

integrated function. The research goals within the context of food industry appear to 

be the determinant to the preference sensors for application. Some examples of 

research which involved e-nose, e-tongue and other sensors were presented by 

Apetrei et al., (2010); Vera et al., (2011); and Prieto et al., (2011); and Prieto et al., 

(2011). 

As far as this research is concerned, several studies were performed using the 

applications of e-nose and e-tongue within the context of JDL process model which 

offer means to fuse at different level either at low, intermediate or high levels. 
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Previous studies have shown that fusing at different level has its own advantages and 

disadvantages, which differ from one study to another. For example, fusing at low 

level should be considered as the most efficient approach, but this comes with 

limitation such as rarely identical or commensurate sensors are applied in an analysis 

(Steinmetz, Sévila, & Bellon-Maurel, 1999). Steinmetz et al. (1999) further argued 

that fusing at intermediate level and high level use less information with respect to 

the raw signals provided by each sensor which include errors in the fusion process. 

However, fusing at the later levels are well adapted to practical cases involving 

sensor devices of different modalities. 

In addition, fusing data from e-nose and e-tongue leads to high dimensional data 

problem, or rather easily expressed by   P Q n   problem where P+Q denotes the 

number of fused features, and n is the number of observations. One obvious problem 

with data spaces of dimensionality higher than three is the difficulty to visualize data 

belonging to group. Moreover, high dimensional data has some unexpected 

mathematical properties, and as the number of dimensions increases, distance 

measure between groups become less meaningful. Besides, high dimensional data 

may create singular covariance matrices in which obtaining an inverse covariance 

matrix is impossible, hence classical rules cannot be constructed. The singularity 

problem is mainly caused by the correlated features of the applied sensors especially 

the e-nose. In addition, as the dimension of data increases and exceeds the number of 

sample, the fused data increases its complexity as well, but the classification 

performance is better than the single sensor system (Boilot, Hines, Gongora, & 

Folland, 2003). Therefore, an approach for selecting a subset of features in order to 
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optimize the performance of the fusion system is desired (Wide et al., 1998; Boilot et 

al., 2003). 

As there is no simple rule for selecting a proper fusion technique, a wide range of 

techniques has potential applicability. Earlier, Steinmetz et al. (1999) admitted that 

the selection of sensor fusion method is a difficult task. Huang, Cai and Xu (2007) 

also brought up the same issue of determining the level of data fusion of different 

problems that remain a dilemma. Di Natale et al. (2000) further pointed out that there 

is an issue of choosing the most convenient data fusion level for maximum 

information from the measurements to be achieved.  From the foregoing discussion, 

it is clear that there is no common one-fits-all architecture to fuse data from multiple 

sensors particularly e-nose and e-tongue. In general, implementation of data fusion 

approach is still unclear for a specific application and suffers from few problems as 

early as in the process of fusing data, selecting the appropriate fusion level, and 

singularity matrices which leads to dimension reduction. It is therefore, necessary to 

conduct an in-depth study by exploiting discriminant analysis and feature selection 

technique to produce a good classification rule ideal for fusion of e-nose and e-

tongue. 

Obviously, comprehensive research that demonstrates in-depth studies in the process 

of data fusion framework is still limited. This is mainly concerned with the feature 

extraction phase available in each data fusion level. Most previous researches that 

apply JDL process model were only focused on the use of Principal Component 

Analysis (PCA) as the feature extraction approach (Masnan, Mahat, Shakaff, Adom 

& Saad, 2012; Prieto et al., 2011; Vera et al., 2011; Zakaria et al., 2011; Zakaria et 

al., 2010; Cosio et al., 2007; Buratti et al., 2004; & Rodriguez-Mendez et al., 2004). 
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One of the key distinctions between feature extraction and feature selection reveals 

in their outcomes i.e. the features to be selected or extracted. Say six features 

1 2 6, , ,P P P  are considered for selection or extraction and only three relevant and 

useful features are required. If both approaches result in three features, the three 

selected features are a subset of six original features (say 1 3 6, ,P P P ), but the three 

extracted features ( iPC s) are some combination of six original features (say 

6 6

1 2
1 1

, , andi i i i
i i

PC a P PC b P
 

    
6

3
1

i i
i

PC c P


 ) where iii cba  and,  are some constants. 

The difference in the outcome of both approaches clearly provides a more objective 

choice to selection.   

Even though the greatest advantage of PCA is the ability to disentangle the 

redundancy effect inhibited in the sensor data particularly data from e-nose and e-

tongue, the selection of relevant features for further process is of interest. That is 

why recently feature selection techniques receive special attention from researchers 

in this area of study as an alternative to the feature extraction phase especially in a 

single sensor domain. Not to mentioned its potential and advantages in the multi 

sensor data fusion discipline. McLachlan (1992) stated that the application of feature 

selection in multiple linear regression and discriminant analysis not only leads to 

simpler models, but frequently improves prediction or classification accuracy. 

Therefore, the manipulation of feature selections in the data fusion of JDL process 

model with the objectives to select significant features to describe the groups‟ 

separation is worth to discover. And its suitability as well as its applicability for a 

specific data fusion levels is rather significance for the fusion of e-nose and e-tongue 

to closely mimic the human senses.  
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For that reason, this study aims to learn the best feature selection criteria and strategy 

to find the optimal subset of features meant for good classification performance. The 

discovery to figure out the best feature subsets is mainly based on the idea of group 

separation criteria using the unbounded  0,  Mahalanobis distance 2  and 

bounded  0,1  Mahalanobis distance 2

A . There are few reasons why the 

Mahalanobis distance criteria is chosen compared to other distance functions. For 

features that have larger variance, it will receive relatively less weight when 

Mahalanobis distance is applied. Similarly, two highly correlated features do not 

contribute as much as two features that are less correlated (Rencher, 2002, pg. 76). 

Thus, the application of Mahalanobis distance which contains the inverse of 

covariance matrix is actually standardizing all features to the same variance and 

eliminating the correlations effect. These make the Mahalanobis distance suitable for 

feature selection of multi-group problem with highly correlated features.  

Despite the different selection of feature subset generated by the unbounded  0,  

Mahalanobis distance 2  and bounded  0,1  Mahalanobis distance 2

A , a convention 

that leads to the use of earlier distance to the later distance are discussed. The 

problem of unbounded Mahalanobis distance is that 2  values may increase to  , 

and it may pose difficulty in the comparison of different feature sets of its total pair-

wise distance ( 2

gC )  in multi-group case. In g-group problem, the single large value 

of 2  in the set of 2

gC  would lead to a high value of the average distance which 

would than fail to represent the average separability of the g groups. Thus, to 

overcome the drawback is to transform the 2  values before averaging process in 
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such a way that the transformed measure lies within  0,1  range using the 

Mahalanobis distance 2

A .            

1.3 Research Objectives 

This thesis aims to investigate the potential application of distance-based feature 

selection in replacing the traditional feature extraction approach in the LLDF and 

ILDF models of the JDL model. The following objectives are expected to be attained 

in order to fulfill the research study: 

i. to develop univariate feature selection algorithms using the unbounded 

Mahalanobis distance  2  and bounded Mahalanobis distance  2

A   

for the LLDF and ILDF models, 

ii. to develop multivariate feature selection algorithms using the unbounded 

Mahalanobis distance  2  and bounded Mahalanobis distance  2

A  for 

the LLDF and ILDF models, 

iii. to construct the parametric classification rules based on the percentile 

forward feature selection for each of the developed algorithms in 

objective (i) and objective (ii), and  

iv. to evaluate the performance of the constructed parametric classification 

rules. 
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1.4 Significance of Study 

Studies on a single model of multi sensor data fusion have been done by several 

researchers. The LLDF was applied in the studies done by Sundic, Marco, Samitier, 

and Wide (2000), Di Natale et al., (2000), Boilot et al., (2003), Rodríguez-Méndez et 

al., (2004), Zakaria et al., (2010), and Zakaria et al., (2011). For the applications of 

ILDF model, studies were carried out by Rong, Ping, and Wenlei (2000), and Guru, 

Suraj, and Manjunath (2010), while Xiaobo, and Jiewen, (2005), Tao, and Veldhuis 

(2009), and Doeswijk et al., (2011) manipulated the HLDF model in their research.  

There were also studies that use two different multi sensor data fusion models for 

different classification purposes. As far as this research is concerned, only one 

research applied the LLDF and ILDF models (Vera et al., 2011), as well as the ILDF 

and HLDF (Steinmetz et al., 1999). Similarly goes to the simultaneous manipulation 

of the three multi sensor data fusion models (i.e. LLDF, ILDF and HLDF) where 

very few studies were done using these models. Such study can be found in Huang et 

al., (2007) that describes conceptually the overall picture of the multi sensor data 

fusion. Other case studies with the application of the three models can be referred to 

Roussel, Bellon-Maurel, Roger, and Grenier (2003) and Rudnitskaya et al., (2006) 

where both studies manipulated electronic tongue and Fourier transform infrared 

spectroscopy (FTIR); and aroma sensors, FTIR and ultraviolet spectrometer, 

respectively. For that reason, this thesis aims to exploit all the LLDF, ILDF and 

HLDF models in the fusion of e-nose and e-tongue.    

A thorough study of all the multi sensor data fusion models applied in the fusion of 

e-nose and e-tongue is very important in the food research community, especially 

when the application of fusion has proven to be an advantage. This is due to the 
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indistinctive results from the previous studies especially when more than one multi 

sensor data fusion models were applied in a research. Furthermore, there is no such 

consensus that can be found from the literature about the preferable multi sensor data 

fusion models to be used. Some researchers declared that LLDF model is the best 

(Rudnitskaya et al., 2006), while others found ILDF is better (Vera et al., 2011; and 

Steinmetz et al., 1999). On the other hand, HLDF model is claimed to be the best 

(Doeswijk et al., 2011; and Roussel et al., 2003). These show that different level of 

data fusion models (i.e. LLDF, ILDF and HLDF) adapt dissimilar information for 

classification due to different experiment settings, sensor devices applied and sample 

for test. Hence, the attempt to evaluate the usefulness and significant of all the multi 

sensor data fusion models involving the fusion of e-nose and e-tongue is expected to 

produce important findings of the best model suitable for discriminant analysis of 

respective fused sensors data. The findings are hoped to explicate the confusion and 

endless debate among the researchers of which models or mechanism worth for the 

fusion of e-nose and e-tongue.  

Another aspect that shall be highlighted is the potential use from the fusion of e-nose 

and e-tongue to replace or to complement the existing sensory panels in the food 

industries. Baldwin et al. (2011) discussed this issue in detail. Since sensory panels 

may not always be available and/or quality control personnel may not be consistent 

in evaluating samples, hence they urge the need of such technology for faster 

analysis. Furthermore, the fusion mechanism has the potential as the promising tools 

to mimic the human sensory system (Ghasemi-Varnamkhasti et al., 2010). Even 

though with technological advances and promising results, the fusion of e-nose and 

e-tongue are still unable to mimic the biological human sensory systems (Di Rosa, 

Leone, Cheli, & Chiofalo, 2017), the success of fusing these sensors data and further 
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classify them will be a remarkable findings to the development of replacement 

methods for sensory panels for objective measurement of food products in a 

consistent and cost effective manner. Above all, the success of feature selection 

technique to replace the conventional feature extraction in every data fusion level 

namely the LLDF, ILDF and HLDF provide significant findings to the issue of 

fusion of e-nose and e-tongue data.  

From the perspective of feature selection, this is an attempt to propose an approach to 

replace the feature extraction phase in the JDL fusion model specifically for the low 

LLDF and ILDF. Despite applying the conventional Mahalanobis distance that gives 

values in the range  0  to represent the separability between group means, a 

more practical measure based on the bounded Mahalanobis distance that give finite 

range  0,1  distance value is examined. The resulting finite distance value to 

represent the average separability has overcome the problem of m multi-group 

feature selection problem. These criteria is then used to create the parametric 

classification rule where the performance of both search is measured using the leave-

one-out technique. Figure 1.5 illustrates the proposed methodological changes for the 

conventional multi sensor data fusion model with the feature selection approach. 
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Figure 1.5. Proposed Methodological Changes for Multi Sensor Data Fusion (a) 
LLDF Model, and (b) ILDF Model using Feature Selection of 
Unbounded and Bounded Mahalanobis Distances        

1.5 Scope of Study and Assumptions 

This thesis addresses the problem of feature selection involves in multi sensor data 

fusion framework (LLDF and ILDF) of JDL process model specific for the 

exploitation of e-nose and e-tongue in the food related research. It provides an 

alternative to the conventional approach of extracting features included in all level of 

data fusion framework. Concentrations are given to determine the optimal feature 

subsets based on the distance-based criteria i.e. the unbounded  0,  Mahalanobis 

distance 2  and bounded  0,1  Mahalanobis distance 2

A . The major concern in 

LLDF model is to select important features from the combination features of e-nose 
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and e-tongue. In this case, the nature of highly correlated features among e-nose 

sensors and moderately correlated features among e-tongue sensors would be a real 

challenge. Commonly, features from e-nose would dominate the classification 

performance as compared to the e-tongue. However, selection of discriminative 

features is totally depends on the performance of features that can provide greater 

distance among groups by minimizing the influence of the numerical values.  

While for the ILDF, important features from both e-nose and e-tongue are selected 

independently. Once discriminant features were selected from both sensors, then 

only these features would be fused before they are transferred for classification 

puposes. However, cautious is given to the resulted fused features. There is a 

tendency that the selected features from both sensors may still be irrelevant once they 

were fused.   In order to accomplish the search of the relevant features based on the 

selected criterion, percentile forward feature selection is further applied. The 

percentile forward feature selection is a bottom up search procedure that adds new 

features to a feature subset one at a time based on certain percentiles of the ranked 

features until the final feature subset is obtained.  

The search strategy is suitable with the exploited filtering approach in identifying the 

optimal feature subset based on the separation criterion. Thus, optimal feature subset 

is limited to only the top highest percentiles  HP  of the ranked features that produce 

highest univariate distance values. In accordance to the selected search, another 

concern for discriminant analysis of this research is the accurate estimation of the 

misclassification rates. Despite many available error rate estimators, the leave-one-

out approach is employed. Several conditions of data in hand which include unequal 
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yet small sample sizes among quite a large number of groups are the main reasons 

for the estimator to be used.  

Finally, to draw the conclusions of which data fusion model that can best fit the 

fusion models of e-nose and e-tongue, the non-parametric classification techniques 

will be tested using the predefined features in every level. All the intended 

algorithms for the fusion of both sensors were created using the statistical computing 

platform called RStudio (version 1.0.136) with a 64-bit capacity. Data manipulated 

in this thesis are basically secondary datasets from e-nose and e-tongue available in 

the Centre of Excellence for Advanced Sensor Technology (CEASTech), Universiti 

Malaysia Perlis. However, the data obtained may vary from one dataset to another 

since the applied e-nose and e-tongue are different in each experiment, which reflect 

different feature dimension, unequal sample size as well as different subject of 

sample. Since datasets used for this thesis is secondary data, the following 

assumptions are made throughout the research. 

i. Data is presumed to comply with the appropriate data collection 

methods recommended for each sensor, as it is collected by the 

experts from the field. Therefore, the validity of sensor data is not 

argued in this thesis. 

ii. The experiment for obtaining data from e-nose and e-tongue are 

performed separately. Therefore, such data sets are considered 

independent of each other.  
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iii. Signals based on the base line (offset of the calibration curve) are 

manipulated for the preprocessing of e-nose and e-tongue data, and 

the preprocessing of each sensor differed. 

All related reviews of the above discussions are included in Chapter 2. The reviews 

are presented within three main subtopics; the electronic sensors, the need and some 

multi sensor data fusion frameworks, as well as the ongoing debates of the 

preference for multi sensor data fusion model; the next concerns are the feature 

selection issues in discriminant analysis where different selection criterion, 

approaches, strategies and some stopping rules are elaborated; and finally some 

existing techniques of parametric and nonparametric classifications are described.  

 Chapter 3 covers the research methodology applied in this study. The 

intended algorithms for every level of multi sensor data fusion are also included. The 

results and findings of the study are reported in Chapter 4. And finally Chapter 5 

illustrates the conclusions and future works for improvement. 
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CHAPTER TWO 

MULTI SENSOR DATA FUSION, FEATURE SELECTION AND 

CLASSIFICATION TECHNIQUES 

2.1 The Electronic Sensors 

The evolution of e-nose as an artificial olfactory is verified by the reported research 

on odor detection using an array of eight different electrochemical cells by Hartman 

and colleagues in 1964 (Phaisanggittisagul, 2007). However, only 20 years later, the 

development of an electronic instrument which is capable to detect and to recognize 

complex odors called e-nose is rationalized. The term “electronic nose” was first 

appeared in the literature around late 1980s (Gardner, 1988 in Gardner & Bartlett, 

1999). Definition of e-nose by Gardner and Bartlett (1994) in Gardner et al., (1999) 

has generally been accepted as “an electronic nose is an instrument which comprises 

an array of electronic chemical sensors with partial specificity and an appropriate 

pattern recognition system, capable of recognizing simple or complex odors.” 

E-nose is an instrument which mimics the sense of smell (Peris & Escuder-Gilabert, 

2009). In order to understand e-nose, it is useful to understand the basic components 

of smell process. Smell that constituted by an odor is stimulated in the human 

olfactory system that consists of three essential elements. Craven, Gardner and 

Bartlett (1996) described the system includes an array of olfactory receptor cells 

situated in the roof of the nasal cavity, the olfaction bulb which is situated above the 

nasal cavity, and the brain. Similarly, e-nose system is composed of three elements 

such as electronic sensor array, signal pre-processor and pattern recognition system. 

Figure 2.1 illustrates the basic components of the human olfactory system and an e-

nose system. 
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Figure 2.1. Typical Block Diagram of Human Olfaction and E-Nose 

Ideally, an e-nose may attempts to mimic the original human nose, but its 

performance is still far behind compared to the capability of human nose (Schaller, 

Bosset & Escher, 1998); the sensors still present a number of weak points (Di Rosa 

et al., 2017). The first element of an e-nose is electronic sensor array as shown in 

Fig. 2.1, which is also known as the sampling unit. The array of electronic chemical 

sensors with partial specificity (Hine, Llobet & Gardner, 1999) is responsible to 

provide dynamic responses (i.e. electrical signals in the form of resistance change) 

resulting from the interactions between an odor sample (i.e. odorant molecules in the 

form of volatile compounds) and the sensing materials (Gardner et al., 1999; Peris et 

al., 2009; Phaisangittisagul, Nagle & Areekul, 2010). Since volatile compounds are 

responsible for the aroma of foodstuffs (García-González & Aparicio, 2002), 

appropriate sampling technique is important for the sensor array to generate good 

signal response that lead to better odor classification (Peris et al., 2009). 

The success of e-nose to analyze gases has led to the development of an array of 

sensors that work in liquid surroundings (Rodríguez-Méndez, Apetrei & De Saja, 
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2010). It all started in 1982 from the work of Persaud and Dodd on e-nose that can 

make fine discriminations between complex odorant mixtures containing various 

ratios of odorants without the necessity of highly specialized peripheral receptors 

(Ciosek et al., 2004). Then, a system for liquid analysis was first described by Otto 

and Thomas in 1985 (Ciosek et al., 2004; Ciosek, Brzózka, Wróblewski, Martinelli, 

Di Natale & D‟Amico, 2005). However, the term e-tongue or artificial gustation 

became widely recognized in the late 1980s (Ciosek et al., 2004). The first multi-

sensor system for liquid analysis was based on a poor selectivity approach introduced 

by Toko and coworkers from Kyushu University in 1990, which referred as the taste 

sensor (Winquist, Krantz-Rülcker & Lundström, 2003). The term taste sensor is 

rather specific in nature with the ability to respond to the basic tastes of human 

tongue such as sourness, sweetness, bitterness, saltiness and umami (Toko, 2000). 

Oliveri, Casolina and Forina (2010) suggested a straightforward description of e-

tongue and taste sensor; the former term has a wider meaning, embracing all possible 

applications while the later is exclusively refer to sensory like evaluations.  

According to Gutiérrez et al. (2011) a clear definition of e-tongue did not appear 

until 2004. They defined e-tongue as an analytical instrument comprising an array of 

nonspecific, poorly selective, chemical sensors with partial specificity (cross 

sensitivity) to different compounds in a solution and an appropriate pattern 

recognition or multivariate calibration tool, capable of recognizing the quantitative 

and qualitative composition of simple and complex solutions (Legin, Rudnitskaya, 

Lvova, Vlasov, Di Natale & D‟Amico, 2003). Unlike the e-nose systems, e-tongue is 

not only employed for recognition and classification, but also for quantitative 

determination of multiple component concentrations (Legin et al., 2003; Rudnitskaya 

et al., 2006). Major differences compared to e-nose lie in the applied sensors or 
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sensor systems and their tasks for measurement (Hauptman, Borngraeber, Schroeder 

& Auge, 2000). How does e-tongue works? E-tongue is an artificial taste system that 

imitates human taste system (Toko, 1996; Kovács, Sipos, Szöllösi, Kókai, Székely & 

Fekete, 2011). Therefore, they are developed based on the mechanisms of biological 

systems. In a gustatory system, substances producing taste are received by the 

biological membrane of gustatory cells in non-specific taste buds on the tongue. 

Information on taste substances is transduced into electric signals which are then 

transmitted along the nerve fiber to the brain where the taste is perceived (Escuder-

Gilabert & Peris, 2010). Figure 2.2 describes basic components of e-tongue and the 

human taste system. 

 

 

 

 

 

Figure 2.2. Typical Block Diagram of Human Tongue and E-Tongue  

E-tongue systems compose of a sensor array and a data analysis system i.e. pattern 

recognition block (Ciosek & Wróblewski, 2011; Rodríguez-Méndez et al., 2010; 

Wei, Wang & Liao, 2009; Legin et al., 2003), or hardware and software components 

as defined by Jamal, Khan and Imam, 2009. Other researchers describe the 

components of e-tongues are of three elements including the sensors, sensor interface 
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and a processing unit (Abdul Aziz, Shakaff, Farook, Adom, Ahmad & Mahat, 2011; 

Ciosek & Wróblewski, 2006); or four elements consisting of automatic sampler, 

array of chemical sensors with different selectivity, instrumentation to obtain the 

signal, and software with appropriate algorithm to process the signal and get the 

required results (Escuder-Gilabert & Peris, 2010). However, for simplicity of 

explanation, the first description is preferable for this research.  

Several successful applications of e-nose are proven in the food industry mainly 

related to the process monitoring, shelf-life investigation, freshness evaluation, 

authenticity assessment, and some other food quality control studies (Peris et al., 

2009). Some specific applications include rice infestation (Zhou & Wang, 2011), 

food disease diagnosis and spoilage detection (Casalinuovo, Di Pierro, Coletta & Di 

Francesco, 2006), egg freshness determination (Dutta, Hines, Gardner,  Udrea & 

Boilot, 2003), red meat spoilage classification (El Barbri, Llobet, Bari, Correig & 

Bouchikhi, 2008), classification of agarwood oil (Hidayat, Md. Shakaff, Ahmad & 

Adom, 2010), and classification of different brands of Espresso coffee (Pardo et al., 

2000). 

Jamal et al. (2009) exhibited that the hardware is used for the capacitance 

measurements of sensorial units, while the software controls the data acquisition 

process, perform calculations and analyze the electrical signals. An example of 

hardware components of e-tongues further described by Jamal et al. (2009) are the 

signal generator, signal amplifier, multiplexer, data acquisition board, and a 

computer, as well as the software component that deals with electrical signals and 

provide capacitance values for further analysis. The electrical signals produced are 

not necessarily specific for any particular species in the liquid, instead a signal 
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pattern is generated which can be related to certain features or qualities of the sample 

using appropriate pattern recognition software (Rodríguez-Méndez et al., 2010).  

2.1.1 The Need for Multi Sensor Data Fusion 

Multi sensor data fusion is an evolving technique related to problem of how to 

combine data from one or multiple (and possibly diverse) sensors in order to make 

inferences about a physical event, activity or situation. Mitchell (2007) defined multi 

sensor data fusion as the theory, techniques, and tools which are used for combining 

sensor data, or data derived from sensory into a common representational format. 

Also, the definition includes multiple measurements produced at different time 

instants, by a single sensor as described by Smith and Erickson (1991).  

The applications of this concept span a wide domain including the military and 

nonmilitary applications. Though the military services of the United State of 

America pioneered the data fusion applications in the late 1970s, but only in the late 

1980s a small numbers of military data fusion systems were in operation. Among the 

applications include ocean surveillance, air-to-air and surface-to-air defense, 

battlefield intelligence, surveillance and target acquisition, and strategic warning and 

defense. Nonmilitary applications include law enforcement, remote sensing, 

automated monitoring of equipment, medical diagnosis, and robotics (Hall, 1992). 

Some other specific applications of multi sensor data fusion are in the area of 

multimodal biometric systems using face and palm-print (Raghavendra, Dorizzi,  

Rao & Kumar, 2011), renewable energy system (Li, Luo & Jin, 2010), color texture 

analysis (Wu, Li & Liao, 2007), face and voice outdoor multi-biometric system 

(Vajaria, Islam, Mohanty, Sarkar, Sarkar & Kasturi, 2007), personal authentication 
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(Duc,  Bigun, Bigun, Maitre & Fischer, 1997; Kumar, Wong, Shen & Jain, 2006), 

image recognition (Sun, Zeng, Liu, Heng & Xia, 2005), medical decision making 

(Harper, 2005), and road traffic accidents (Sohn & Lee, 2003). 

Further extensive applications of multi sensor data fusion are in the field of pattern 

recognition and classification of food science research. Food related industries have 

become more challenging ever as the demand increases each year. It is a common 

phenomenon occurs in every part of the globe where the food supply chain exists 

either in the form of fresh food or processed food products. As the demand arises 

especially for processed food products, certainly it imposes manufacturers to the so 

called efficient and immediate methods of monitoring products produced. Not only 

from the perspective of natural and human resources, applied technology, and 

business strategy, but beyond that is the product quality. In the case of processed 

food products, usually customers would perceive good quality product based on 

flavor, color, aroma, texture, nutrition, and microbial content (Korel & Balaban, 

2009).   

For that reasons, one of the biggest challenges to manufacturer is to preserve the 

intended quality of food products as it should be. In order to do that, a smart way to 

assess and maintain the quality parameters is required. Traditionally for the taste and 

aroma (or easily perceive as flavor), human panels or trained experts are responsible 

for the evaluation of quality parameters. However, this approach suffers from some 

drawbacks, for example; (i) discrepancy due to human fatigue or stress; (ii) time 

consuming; (iii) expensive  (García-González et al., 2002); (iv) impossible for on 

line monitoring (Cole et al., 2011; Ghasemi-Varnamkhasti et al., 2010; Buratti et al., 

2004); and (v) the evaluation perceptions depends on panelists‟ training (García-
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González et al., 2002). Thus, alternative method to the sensory properties of a 

product involving taste and smell organoleptic panels for the quality parameter 

assessment is highly desirable (Cole et al., 2011; Ghasemi-Varnamkhasti et al., 2010; 

Zhang and Jia, 2007). 

Flavor is generally understood to be the overall experience from the combination of 

oral and nasal stimulation and is principally derived from a combination of the 

human senses of taste and smell (Cole et al., 2011). The intention to overcome the 

drawback of human panel leads to the evolution of flavor sensor that combined the 

artificial olfactory (e-nose) and artificial gustation (e-tongue) (Craven et al., 1996; 

Toko, 1996). The application of e-nose and e-tongue begin in the early 1980s and 

1990s respectively, where several commercial instruments have become available 

(Schaller et al., 1998) mainly to reduce the need for flavor panels (Cole et al., 2011) 

and to increase the performance of the measurement (Winquist, Lundström & Wide, 

1999).  

An increasing demand for more accurate estimation of the subject being studied 

through measurement and detection has directed the emerging technology to fuse 

data from multiple sensors. Since then, more extended research were carried out, and 

the application widespread in various applications (Raghavendra et al., 2011; Li et 

al., 2010; Wu et al., 2007; Vajaria et al., 2007; Kumar et al., 2006; Sun et al., 2005; 

Harper, 2005; Sohn et al., 2003; Duc et al., 1997),  especially in the food industry 

(Cole, et al., 2011; Bruwer, MacGregor &  Bourg Jr., 2007; Cosio et al., 2007; 

Buratti et al., 2004; Olafsdottir et al., 2004; Boilot, et al., 2003; Cimander, Carlsson 

& Mandenius, 2002; Rong et al., 2000; Steinmetz, et al., 1999). 
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Certainly combination of these sensors has the potential to mimic the human flavor 

panels since measurement data from the sensors are manipulated to produce sensor-

specific opinions about the human-like sensing modalities (Wide, et al., 1998). This 

has been previously suggested by Hall (1992) as he described multi sensor data 

fusion as the technique consists of algorithms, methods and procedures to assemble 

data of different origin and nature in order to increase the information about an event 

or a phenomenon. Di Natale et al. (2000) also agreed that the utilization of such 

system is expected to enhance the amount of information extracted from a sample.  

Several applications of multi sensor data fusion applied in the food related issues 

include flavor sensing system (Cole et al., 2011), storage condition of olive oil 

(Cosio et al., 2007), variation of snack food textural measurement (Bruwer et al., 

2007), quality control of yoghurt fermentation (Cimander et al., 2002), wine analysis 

(Buratti et al., 2004; Rong et al., 2000), determination of fish quality (Olafsdottir et 

al., 2004), discrimination of standard fruit solutions (Boilot et al., 2003) and fruit 

quality assessment (Steinmetz et al., 1999). 

2.1.2 Multi Sensor Data Fusion Model 

There are several multi sensor data fusion frameworks that have been developed for 

different kinds of applications. Among them are JDL process model, Thomopoulus 

architecture, multi sensor integration fusion model, behavioral knowledge-based data 

fusion model, waterfall model, distributed blackboard data fusion architecture, as 

well as Omnibus data fusion model (further reading please refer to Esteban, Starr, 

Willetts, Hannah & Bryanston-Cross, 2005). One of the earliest and mostly applied 

data fusion frameworks is the JDL process model, developed by the U.S. Joint 

Directors of Laboratory (JDL) Data Fusion Working Group (DFS) (Hall & Llinas, 
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1997). The process model is mainly being researched by the U.S. military services 

beginning the late 1970s to support the developments of military applications 

(Huang, 2009; Esteban et al., 2005). The JDL-DFS group was established in 1986 to 

unify the terminology and procedure in data fusion, where eventually the JDL 

process model was developed (Huang, 2009) and has gain attention from 

multidisciplinary researchers.   

The JDL process model is a conceptual model which identifies the process, 

functions, categories of techniques, and specific techniques applicable to data fusion 

through different function levels. In 2004, the process model was revised. The data 

fusion function levels is partitioned into five data fusion function levels (Huang, 

2009); level 0 is the signal/feature assessment, level 1 is the entity assessment, level 

2 is the situation assessment, level 3 is the impact assessment, and finally level 4 is 

the performance assessment (Huang, 2009; Hall et al., 1997). Hall (1992) has 

discussed the above functions and introduced mathematical techniques for fusing 

data using data fusion algorithms which serve as the reference for both military and 

nonmilitary applications.  Extensive discussions of the data fusion techniques are 

refereed to Hall (1992).  

A typical application of multi sensor data fusion is called multi sensor identity 

fusion. Generally, in identity fusion, the interest is to combine identity declaration 

data from multiple sensors to obtain joint estimate of identity which is more specific 

and accurate, than any of the declarations from an individual sensor. In order to 

implement the data fusion system, one of the key issues is to decide where in the data 

flow does the fusion takes place. Usually, fusion could occur either at the raw data 

level (prior to feature extraction), at the feature vector level (prior to identity 
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declaration), or at the decision level (after each sensor has made an independent 

declaration of identity) (Hall, 1992). The initial concept is commonly known as low 

level data fusion or data level fusion, followed by intermediate level data fusion or 

feature level fusion, and the final is high level data fusion or decision level fusion.  

Before further discussions on different levels of data fusion, it is helpful to 

understand some common processes involve in each level such as association, 

feature extraction, as well as identity declaration. Association is performed towards 

the raw data to ensure data being fused relates to the same object. Feature extraction 

transforms the data output from sensor into a well-organized representation and 

simplified data format for much complex analyses. Details on the application of each 

identity fusion level are described in the following sections 2.1.2.1 to 2.1.2.3. Further 

reading is referred to Hall (1992). Another complete yet current dimension of multi 

sensor data fusion and can be found in Mitchell (2007). The later fusion model is not 

much covered in this thesis since the application of the model is less employed in the 

food research.   

2.1.2.1 Low Level Data Fusion 

The first model of multi sensor data fusion is the low level data fusion (LLDF), 

which implies concatenation of raw data (features) from similar or different sensors 

(Rudnitskaya et al., 2006; Di Natale et al., 2000; and Winquist et al., 1999). The 

resulting data matrix,  N PX  has n rows representing the number samples from 

different groups and p column signifying the total number of features from all the 

sensors. It combines the signals provided by the respective sensors to produce new 

data that is predicted to be more informative before any further processing begun.  
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In order to perform low level data fusion, the sensors must be identical, in such a 

way that the signals must be commensurate for the data can be combined together. 

After data are fused, the data will undergo an extraction process usually by means of 

principal component analysis (PCA). PCA allows visualization most of the 

information contained in a raw data matrix in few dimensions called principal 

components (PCs), which are orthogonal to each other (Vera et al., 2011). The PCA 

calculation on N PX  is achieved via an eigenvector decomposition of the 

corresponding covariance matrix, TX X  (Bruwer et al., 2007). Here, only the 

eigenvectors corresponding to the dominant eigenvalues are kept for classification. 

The whole process of LLDF is outlined in Figure 2.3.  

 

 

 

 

 

Figure 2.3. Framework of Low Level Data Fusion (Adapted from Hall, 1997) 

Some researches that employed this model include classification of pure and/or 

adulterated honey (Masnan et al., 2012), discrimination and sensory description of 

beers (Vera et al., to, 2011), classification of different honey samples (Zakaria et al., 

2011), classification of orthosiphon stamineus (Zakaria et al., 2010), multimodal 

characterization of red wines using three sensory modalities (Rodríguez-Méndez et 
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al., 2004),  discrimination of white grapes varieties (Roussel et al., 2003) and some 

others. Table 2.1 summarizes the application of e-nose and e-tongue and/or other 

sensors as well as its general remarks. The application of other sensors is also 

described in Table 2.2. 

Table 2.1 

 Summary of Studies for Fusion of E-Nose and E-Tongue and/or Other Sensors 
Using LLDF 

Authors Sample Classification 
Methods 

General Remarks LLDF 

Masnan et al., 
(2012) 

Honey PCA, LDA Classification of the intermediate level is 
better than low level. 

Prieto et al., 
(2011) 

Wine PCA, PLS-DA Discrimination result is significantly 
improved when signals are fused 

Gil-Sánchez et 
al., (2011) 

Wine PCA, Cluster Sensor fusion able to monitor evolution of 
wines as a function of day 

Zakaria et al., 
(2011) 

Honey PCA, LDA, 
PNN 

Classification of fusion method is better 
than single sensor 

Apetrei et al., 
(2010) 

Virgin 
olive oil 

PCA, PLS-DA Discrimination and prediction is improved 
by fusing three sensors 

Zakaria et al., 
(2010) 

Tea PCA (for EDA), 
LDA 

Classification of fusion is better than single 
sensor 

Cosio et al., 
(2007) 

Extra 
virgin 

olive oil 

PCA (for EDA), 
LDA 

Classification performance of fusion 
system is the same as classification using e-
nose 

Buratti et al., 
(2004) 

Wine PCA, LDA, 
CART 

Better classification obtained using e-nose 
and e-tongue. Chemical and color analysis 
are not helpful. 

Di Natale et 
al., (2000) 

Urine, 
milk 

PCA Cooperation of e-nose and e-tongue 
improves classification performances 

*Sundic et al., 
(2000) 

Potato 
chips, 
potato 
cream 

Fuzzy logics, 
ANN 

1. Considerable improvement of 
classification performance for fusion 

2. Classification performance for fusion is 
highly correlated to the increase of e-nose 
performance 



 

36 

 

Table 2.1 Continued 

*Winquist et 
al., (1999) 

Different 
juices 

PCA, Proj. 
latent structure 

Slight improvement when fuse the sensors 

*Wide et al., 
(1998) 

Different 
juices 

PCA, ANN Fusion technique improves the system 
performance 

 

Table 2.2 

 Summary of Studies for Fusion of Other Sensors Using LLDF 

Authors Applied Sensors Sample Classification 
Methods 

General Remarks 
LLDF 

Aranda-
Sanchez et 
al., (2009) 

Non-destructive 
acoustic impact 

technique & 
colorimeter 

sensors 

Tomato Bayesian 
classifier 

 

Data fusion helps to 
develop an optimum 
system for more 
accurate sorting 
decisions. 

Boilot et al., 
(2003) 

4 different e-
noses 

Juices- 
apple, pear, 

peach 

PCA, GA, 
PNN 

 

Classification of 
fusion method is better 
than single modality. 

Cimander et 
al., (2002) 

E-nose, NIRS, 
Bioreactor probes 

Yoghurt 
fermentation 

ANN, PCA 

 

Sensor fusion 
improves neural 
network stability and 
reliability. 

2.1.2.2 Intermediate Level Data Fusion 

Intermediate level data fusion (ILDF) is simply the fusion of preferred extracted 

features from different sensors. In this fusion level, extracted features from several 

data sources or from a multiple representation of single data source of different time 

periods are chosen (Rudnitskaya et al., 2006). The extracted feature matrices are 

concatenated to form a single extracted feature matrix as an input for classification 

purposes. The resulting merged data matrix is three-dimensional; the first dimension 

equal to the number of samples from different groups, the second and third 

dimensions are the number of extracted features from the first and second sensors. 
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The extracted features describe above comes from the calculation of covariance 

matrix TX X  that is performed to each sensor data. The resulting eigenvectors 

corresponding to the dominant eigenvalues from both sensors are fused before 

further classification. Figure 2.4 displays the process of ILDF. Meanwhile, the most 

common feature extraction technique that is usually associated with the dimension 

reduction process is PCA.  

 

 

 

 

 

Figure 2.4. Framework of Intermediate Level Data Fusion (Adapted from Hall, 
1997) 

Several researchers who applied this level include classification of pure and/or 

adulterated honey (Masnan et al., 2012), Vera et al., (2011) in the discrimination and 

sensory description of beers, Guru et al., (2010) in an attempt of fusing covariance 

matrices of PCA and Fisher linear discriminant (FLD), and Steinmetz et al., (1999) 

in the fusion methodology for fruit quality assessment and others. Different remarks 

were given for the fusion of e-nose and e-tongue using ILDF and/or LLDF as 

illustrated in Table 2.3 and in Table 2.4 for fusion of other sensors using ILDF and/or 

HLDF. 
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Table 2.3  

Summary of Studies for Fusion of E-Nose and E-Tongue Using LLDF and/or ILDF 

Authors Sample Classification 
Methods General Remarks ILDF 

Masnan et al., 
(2012) 

Honey PCA, LDA Classification of the intermediate level is 
better than low level. 

Vera et al., 
(2011) 

Beer LDA 1. ILDF is better than  LLDF  

2. Classification using fusion method is 
better than single sensor   

Rodríguez-
Méndez et al., 
(2004) 

Wine PCA Discrimination of fusion system is 
significantly improve than single sensor 

Rong et al., 
(2000) 

Wine Fuzzy NN Classification using fusion approach is 
better 

  

Table 2.4 

 Summary of Studies for Fusion of Other Sensors Using ILDF and/or HLDF 

Authors Applied 
Sensors 

Sample Classification 
Methods 

General Remarks ILDF 

Guru et al., 
(2010) 

Secondary data Video shoots, 
iris, zoo and 
wine dataset 

PCA, FLDA 

 

Performance of fusion 
system improved by 
fusing classifiers during 
feature extraction phase. 

Steinmetz et 
al., (1999) 

Destructive and 
nondestructive 

sensors 

Melon,  
peach 

PCA 

 

Intermediate level is 
better than high level. 
And the choice of sensor 
fusion method is a 
difficult task. 

 

2.1.2.3 High Level Data Fusion 

In high level data fusion (HLDF), each sensor performs a transformation to obtain an 

independent declaration of identity. More or less, the extraction process in the ILDF 

is continued for separate classification analysis. The identity declarations from each 
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sensor are subsequently fused. Identity declaration can be of two forms, identity 

result (hard fusion) and scores (soft fusion) (Huang, 2009). Either one of the forms is 

used as inputs for the decision fusion. Among the techniques for fusing declaration 

of identity include voting methods, Bayesian inference, Dempster-Shafer‟s method, 

generalized evidence processing theory (Hall, 1992) and knowledge based expert 

system (Huang, 2009).  Figure 2.5 shows the framework of HLDF. 

 

 

 

 

Figure 2.5. Framework of High Level Data Fusion (Adapted from Hall, 1997)  

Related researches applying HLDF include an attempt in increasing predictive 

performance of high level data fusion (Doeswijk et al., 2011), threshold-optimized 

decision level fusion applied in biometrics (Tao, & Veldhuis, 2009), assessing apple 

quality using three sensors (Xiaobo & Jiewen, 2005), discrimination of white grapes 

varieties (Roussel et al., 2003) and fusion methodology for fruit quality assessment 

(Steinmetz et al., 1999).  

It can be concluded from Table 2.5 that most researchers agreed with the fusion of e-

nose and e-tongue, whom some are with additional sensors, would provide better 

classification results compared to the utilization of single sensor. However, in certain 

cases, additional sensors other than e-nose and e-tongue may not be helpful such as 
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in the case of Buratti et al., (2004). Other than that, we may also observe that the 

performance of e-nose sensor is dominant than e-tongue, in contrast to the fusion 

method. This scenario is revealed from the work by Cosio et al., (2007), and in the 

case of Sundic et al., (2000) where they admit that the improved performance of 

fusion method is correlated to the increase performance of e-nose. Nonetheless, none 

of the previous works that involves e-nose and e-tongue has venture the HLDF. 

Table 2.5 

 Summary of Studies for Fusion of Other Sensors Using HLDF, ILDF and/or LLDF 

Authors Applied Sensors Sample Classification 
Methods 

General Remarks  

Doeswijk et 
al., (2011) 

Not mentioned Tomato PLSDA 

 

High level data 
fusion should 
always be 
considered for 
predictive purposes. 

Rudnitskaya 
et al., 
(2006) 

E-tongue, FTIR Apple PCA, PLS 
DISCRIM, 

PLS 
regression 

 

Best results for 
discrimination of 
apple varieties and 
determination of 
organic acid content 
were obtained using 
LLDF 

Xiaoboe et 
al., (2005) 

E-nose, machine 
vision, NIR 

(spectrophometer) 

Apple ANN 

 

High level fusion is 
able to provide more 
information for 
quality assessment. 

Roussel et 
al., (2003) 

Aroma sensors, 
FTIR, UV 

spectrometer 

White 
grapes 

varieties 

Bayesian 
classifier 

High level fusion 
improves the white 
grape classifications 
than the low level. 

Steinmetz et 
al., (1999) 

Destructive and 
nondestructive 

sensors 

Melon,  
peach 

PCA 

 

Intermediate level is 
better than high 
level.  
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2.1.3 Discussions of LLDF, ILDF and HLDF 

So far we have discussed three types of data fusion model that can be applied when 

dealing with different sensors data. Each model offers different architecture of fusing 

different sensors data. Further investigations on other sensor mechanisms than e-nose 

and e-tongue that engage different data fusion models in food research domain were 

also observed. Generally, we noticed more researchers have broadened their 

exploration to low, intermediate and/or high level fusion. However, the verdict for 

the best data fusion model especially involving e-nose and e-tongue is still 

inconclusive. For example, Rudnitskaya et al., (2006) claimed LLDF is better, but 

Roussel et al., (2003) to the contrary favored the HLDF than the other fusion levels. 

In contrast, Masnan et al. (2012) discovered ILDF is better than LLDF. Recognition 

was also given to the HLDF for the ability to provide more information (Xiaobo and 

Jiewen, 2005) and its predictive reason (Doeswijk et al., 2011). The disagreement 

among researchers regarding the most suitable fusion model to be applied for food 

discriminant using sensor mechanisms, and specifically in the context of e-nose and 

e-tongue will be discovered by this research.  

Earlier, Steinmetz et al., (1999) have forwarded their concerns on the difficulties of 

choosing the right fusion model. Even though they admit LLDF as the most efficient 

model, this model can only be used when identical or commensurate sensors are 

applied. They further commented that ILDF and HLDF methods are well adapted to 

practical cases with different sensors. Unfortunately, these models allow loss of 

information with respect to raw signal provided by each sensor where errors are 

transmitted in the fusion process.  According to Gigli, Bossé and Lampropoulos, 

(2007) HLDF is preferred for its feasibility, most tolerant to individual errors in a 

data stream subsystem, has lower computational complexity than ILDF, and due to 
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its low coupling of information, it is more robust to the removal or addition of 

individual data sources. However, the main disadvantage of HLDF is that 

information lost from a lower level fusion cannot be recovered at a higher level. 

Besides, the HLDF model is much concern on the process of voting some 

classification rules which more suitable in machine learning rather than statistics.  

Another concern that is of importance with regards to the data fusion levels is the 

phase of feature extraction in each model. Hall (1992) did not discuss much about 

feature extraction stage from the statistical point of view except in section 5.2 (pp. 

138-144). However his clarifications regarding extracted features for identification 

process from different dimensions and applications are significant for deeper 

understanding. As described in the previous studies as well as reviews in sections 

2.1.2.1, 2.1.2.2 and 2.1.2.3 of this thesis regarding LLDF, ILDF and HLDF, the most 

commonly applied feature extraction method in every data fusion level involving is 

obviously PCA. Other research such as Zakaria et al., (2014) used LDA as a tool to 

extract features. This practice can be observed from the summary of studies 

illustrated in Tables 2.1 and 2.2 for LLDF, Tables 2.3 and 2.4 for ILDF and Table 

2.5 for HLDF. Most studies related to sensor data fusion employed PCA as the 

dimension reduction technique. To name a few, it includes Byrne, O‟sullivan, 

Bredie, Anderson and Martens, (2003), Faber, Mojet and Poelman, (2003), Gimeno, 

Ansorena, Astiasarán and Bello, (2000), Hansen, Petersen and Byrne, (2005), Thybo, 

Kühn and Martens, (2003), as well as Zamora and Guirao (2004).  

There are some issues to be highlighted besides the preferable application of feature 

extraction using PCA in the JDL data fusion model. PCA is the most recognized 

dimension reduction tool (Mallet, Coomans & de Vel, 1996) for data that exhibit 
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multi-collinerity (Masnan et al., 2012; Bruwer et al., 2007; Steinmetz et al., 1999). 

Despite its popularity, PCA approach is confusing and sometimes is indefinite in 

nature. PCA can be calculated either using the covariance or correlation matrix 

(Masnan et al,. 2012, pp. 5-6), where the covariance matrix is suitable for features 

that have merely equal variance, while correlation matrix is suitable for features with 

unequal scales of measures. Jolliffe (2002, pp. 22-26) elaborated these concepts in 

detail. According to him, a major argument for using correlation rather than 

covariance matrices to define PCs is that the results of analyses for different sets of 

random variables are more directly comparable than for analyses based on 

covariance matrices. Misconception may occur if these distinctions are 

misunderstood. Most reviewed studies in LLDF, ILDF and HLDF concealed these 

issues for discussions except Bruwer et al. (2007) whom apply covariance matrix as 

well as Zakaria et al. (2010 & 2011) and Masnan et al. (2012) whom exploited 

correlation matrix.  

However, the most haziness issue in using PCA as dimension reduction method is in 

determining the number of principal components to retain. There are commonly three 

indicators to decide; average eigenvalue, elbow at a scree graph and/or proportion of 

total variance explained. Joliffe (2002) claimed these ad hoc rules-of-thumbs are 

intuitively plausible in justification. The average eigenvalue rule or sometimes called 

Kaiser‟s rule is constructed specific for use with correlation matrices but can be 

adapted for some types of covariance matrices (Jolliffe, 2002). Further explanation 

for such situation is referred to Jolliffe (2002, p. 115). According to Rencher (2002), 

by using this rule, retain associated PCs whose eigenvalues ( λ s) are greater than the 
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average of the eigenvalues,  

p

i i pλ
1

, where for  a correlation matrix the average is 

1.  

Although this indicator is widely applied and the default in many software packages, 

Rencher (2002) criticized that this indicator keeps those components that account for 

more variance than the average variance of the variables, which caused a wide gap 

between two eigenvalues that fall on both sides of the average. This rule was rarely 

utilized in the reviewed case of LLDF, ILDF, and HLDF except in Masnan et al. 

(2012). Less attention was also given to the scree graph approach in the discussion of 

multi sensor data fusion. Rencher (2002) recommended retaining those eigenvalues 

in the steep curve (elbow) before the first one on the straight line. Alas, in practice, 

the turning point between the steep curve and the straight line may be indistinct or 

there may be more than one discernible bend. Probably this approach is the least 

applied among all and may only be used to confirm the number of principal 

components selected as reported in Masnan et al. (2012).  

The third indicator, the proportion of variance explained, is the most frequently 

employed approach in extracting features in LLDF, ILDF and HLDF studies. Here, 

the number of principal components that are kept is depending on the cumulative 

percentage of total variation which one desires where the selected principal 

components contribute say 80% or 90%. Even though the challenge of this method 

lies in selecting an appropriate threshold percentage (Rencher, 2002), Jolliffe (2002) 

notified a sensible cutoff is very often in the range of 70% to 90%, or it can 

sometimes be higher or lower depending on the practical details of a dataset. But, 

Rencher (2002) further warned that too high percentage would run the risk of 

retaining components that are either sample specific (a component may not 
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generalize the population or sample) or variable specific (a component is dominated 

by a single variable and does not represent a composite summary of several 

variables). The inconsistencies of appropriate cutoff percentages to retain associated 

principal components can be observed in the previous studies. Table 2.6 signifies the 

discrepancies. Some of the reviews may involved few cases in their studies such as in 

Vera et al., (2011), Apetrei et al., (2010) and Rudnitskaya et al., (2006) and some 

others do not even reveal their threshold percentages for instance Rudnitskaya et al., 

(2006) and Cimander et al., (1999). 

Table 2.6 

 Varieties of Selected Proportion of Total Variance Explained and Number of 
Retained Principal Components Used by Different Researchers 

Authors Fusion 
Level 

% Total Variance 
Explained 

Number of Retained 
Principal Components 

Vera et al., (2011) LLDF Case 1 : 65% 

Case 2 : 73% 

Case 3 : 82% 

Case 1 : 7 

Case 2 : 10 

Case 3 : 15 

ILDF Case 1 : 97% 

Case 2 : 96% 

Case 3 : 62% 

Case 1 : 2 

Case 2 : 4 

Case 3 : 1 

Prieto et al., (2011) LLDF 60% 3 

Gil-Sánchez et al., (2011) LLDF 69% 2 

Zakaria et al., (2011) LLDF Greater than 80% 3 

Apetrei et al., (2010) LLDF Case 1 : 63% 

Case 2 : 59% 

Case 1 : 3 

Case 2 : 3 

Zakaria et al., (2010) LLDF Greater than 80% 2 

Cosio et al., (2007) LLDF 61% 2 

Rudnitskaya et al., (2006) LLDF 

ILDF 

HLDF 

LLDF : unmentioned 

ILDF : unmentioned 

HLDF : unmentioned 

LLDF : unmentioned 

ILDF : 5 & 7 

HLDF : 8 

Rodríguez-Méndez et al., 

(2004) 

ILDF 90% 2 
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The indistinctness issues in retaining the appropriate number of principal 

components for dimension reduction applied in multi sensor data fusion particularly 

involving e-nose and e-tongue has become a real challenge. Even though there is 

some flexibility upon the techniques for deciding the correct number of principal 

components for further classification, the indefinite nature of the accurate threshold 

to be used limiting the prospect of PCA as a feature extraction tool.  

Additionally, comments and critiques pointed out by Héberger and Andrade (2004) 

as well as Wood et al. (2005) in their articles that the significance of features selected 

by PCA is not known and the greater percentage of total variation does not 

automatically exemplify that the selected PCs should provide good features for 

discrimination. These discoveries are some evidence of PCA‟s disadvantages. 

Furthermore, when it comes to interpretation of certain features, PCA is lack of 

interpretability (Fraiman, Justel & Svarc, 2008; and Jolliffe, 2002). Fraiman, et al. 

(2008) further added that the resulting linear combinations of features in PCA are 

difficult to interpret unless most of the coefficients of the linear combination are not 

significant. Thus, studies on feature selection as an alternative to dimension 

reduction tool in multi sensor data fusion is the core of this research study and are 

extended in the following section 2.2.                    

2.2 Feature Selection 

Dealing with sensor fusion means more features are being considered for the 

construction of classifier especially for the LLDF model which results to 

considerably small sample size against large number of features. The rise of feature 

dimensionality spaces usually leads to a problem known as curse of dimensionality 

which was introduced by Bellman (1961). When this occurred, an enormous number 
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of samples are required to perform accurate predictions for problems with high 

dimensionality. Classification within these conditions may lead to inaccurate 

parameter estimation, and the inclusion of too many features may harm the 

performance of a sample classifier (Foithong, Pinngern & Attachoo, 2012; 

McLachlan, 1992; and Achariyapapaopan & Childers, 1985). Chandrashekar and 

Sahin (2014) added if a system uses irrelevant features, it will use this information 

for new data leasing to poor generalization. In such situations, consideration might 

be given to the extraction of some important features using feature extraction which 

turn out to be unfavorable as illustrated in section 2.1.3, or to employ subset of 

available features using feature selection.  

Feature selection refers to the procedure of selecting p relevant features based on 

certain criteria from a set of k original sensor features,  1 2, , , kP p p pP , for p 

where p k . It is a process of identifying the most useful features in describing 

differences among the possible groups (McLachlan, 1992). According to Wankhande 

et al. (2013) and Dernoncourt, Hanczar and Zucker (2014), feature selection is the 

process of removing irrelevant features in reducing the dimensionality of data to be 

processed, decreasing the execution time and improving the predictive accuracy of 

the classifier (Chandrashekar & Sahin, 2014; Marra & Wood, 2011; Nakariyakul & 

Casasent, 2009; and Kanal & Chandrasekaran, 1971). Generally, the goal of feature 

selection is to determine the right (Wankhande et al., 2013) and optimal subset of 

features (Achariyapapaopan et al., 1985, Zhang & Sun, 2002; and Schulerud & 

Albregtsen, 2004) that maximizes the information contents or predictive accuracy. 

Perhaps, the intentions of performing feature selection illustrated by McLachlan 

(1992) are reasonable and straightforward; if the objective of a study is to form a 
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discriminant rule for the prediction of unclassified subjects, the error rate is preferred 

for feature subset evaluation. Alternatively, if the aim of a study is to identify the 

useful features in discriminating different groups, then the appropriate measure for 

feature selection is the separation among groups provided by the feature subset.  

More researchers are convinced with the benefits offered by the concept of feature 

selection especially as an alternative to the feature extraction technique. For example, 

Youn (2004) outlines several advantages for the feature selection to be the preference 

in the classification of microarray dataset. With a generalization to multi sensor, the 

benefit includes (i) feature selection identifies relevant features which imply the 

subset of discriminating array sensors, and (ii) feature selection gives a better 

generalization error since only relevant features are included for classification. The 

selection of the most informative feature set leads to an improvement in the 

classification accuracy (Pechenizkiy, 2005), faster and more cost-effective 

classification performance, and better understanding of the underlying process of the 

observed dataset (Dash & Liu, 1997; Kabir, Islam & Murase 2010; Rueda, Oommen 

& Henriquez, 2010; Vergara & Llobet, 2011; and Li, Wu, Li &  Ding, 2013).  

The subject of feature selection has been applied to various conditions such as 

supervised, semi-supervised or unsupervised cases (Yen, Chen & Lin, 2010; Dy, 

2008; Liu & Motoda, 2008), causal feature selection (Guyon, Aliferis & Elisseeff, 

2008), as well as weighting and local methods (Kononenko & Šikonja, 2008; Huang, 

Xu, Ng & Ye, 2008; Domeniconi & Gunopulos, 2008; and Sun, 2008). Supervised 

feature selection is preferable when predictors are specifically selected for the 

purpose of increasing accuracy or to find a subset of predictors to reduce the 

complexity of the model. On the contrary, when the outcome is ignored during 
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elimination of predictors, the technique is called unsupervised feature selection. 

These details are available in Kuhn and Johnson (2013). Among the latest expansion 

of feature selection is the group feature selection that is employed in the area of data 

stream. Data stream is a sequence of digitally encoded coherent signals (packets of 

data) used to transmit or receive information that is in the process of being 

transmitted.  

Broadly speaking, feature selection aims to choose those observed features that are 

most discriminative for classifying subjects to their correct groups. These subset of 

features or sometimes known as discriminators refers to a subset of the original 

features that is able to distinguish the structure of the existing groups and is used to 

construct a classification rule (Mahat, 2006). Further discussions are available in Li 

et al., (2013) and Wankhande et al., (2013). Perhaps a straightforward feature 

selection method contains the following steps (Dash & Liu, 1997); (i) generation 

procedure for choosing appropriate discriminators, (ii) evaluation function for 

choosing the best possible discriminators, (iii) stopping criterion to stop the selection 

process, and finally (iv) validation procedure to finalize the final set of 

discriminators. The last step, however, is not considered as part of the feature 

selection process. Hence, literatures and discussions will be focusing to the first three 

steps.           

2.2.1 Feature Subset Generation Procedure 

The generation procedure is a searching procedure to generate subsets of features 

that meet the goal of searching (Dash & Liu, 1997). Commonly feature selection 

methods are divided into two; deterministic and stochastic feature selections. 

Deterministic methods include branch and bound which also known as exponential 

http://en.wikipedia.org/wiki/Encoder
http://en.wikipedia.org/wiki/Coherence_%28physics%29
http://en.wikipedia.org/wiki/Signalling_%28telecommunication%29
http://en.wikipedia.org/wiki/Packet_%28information_technology%29
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Transmission_%28telecommunications%29
http://en.wikipedia.org/wiki/Information
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search, and sequential method. Even though branch and bound method gives optimal 

feature subsets, the application is impractical since the complexity grows 

exponentially with the number of features, even for moderate number of features 

(Vergara et al., 2011). Mallet et al. (1996) and Dy (2008) commented that this 

method is inefficient if the number of features is 30 or more. In addition, this 

procedure exploits much time and only work with a monotonic criterion function.  

Further explanation of such method is referred to Fukunaga (1990, pp. 491-503) and 

Web (2002, pp. 312-313).  

Meanwhile, stochastic feature selection or known as randomized search algorithms 

attempts to overcome the computational costs of exponential methods. Stracuzzi 

(2008) claimed that this method would be useful when the space of possible feature 

subsets is prohibitively large and when the deterministic feature selection algorithms 

are prone to get trapped in local optima. The techniques include genetic algorithms 

(GA), simulated annealing (SA) and the greedy search procedures including 

forward, backward and stepwise searches. Genetic algorithms (GA) are modeled on 

the principle of evolution, developed by Siedlecki and Sklansky (1989), can also be 

used to find subset of features (Chandrashekar & Sahin, 2014). In GA approach, a 

given feature subset is represented as binary string (a “chromosome”) of length P, 

with a zero or one in position i, 1,2, ,i P  denoting the absence or presence of 

feature i in the set (Jain & Zongker, 2002). GA adopts the crossover and mutation as 

search mechanisms to randomly search for a good solution (Nakariyakul & Casasent, 

2009).  

Caution is given to the selection of parameter for the algorithm to perform well, and, 

Nakariyakul and Casasent (2009) reported previous comparative study showed that 



 

51 

 

the performance of GA degraded as the number of original features P increases. Jain 

and Zongker (2002) criticized this method does not attempt to find best subset of a 

specified size and it is hard to find the overall best subset since the chromosome 

score is heavily influenced by the subset size. According to Vergara et al. (2011), GA 

have been shown to be able to solve optimization problems by exploring all regions 

of the potential solution space and exponentially searching promising areas through 

mutation, crossover and selection operations applied to individual (chromosomes) in 

a population (set of possible solutions). Although GA is useful for selecting features, 

Jouan-Rimbaud et al. (1996) in Vergara et at. (2011) have shown that the solution 

found by GAs should be investigated carefully because the algorithm does not 

prevent meaningless features from being selected. 

SA is a stochastic technique that randomizes the search procedure and applying 

sophisticated control strategies. It applies larger step-widths at the beginning of the 

minimum search procedure to prevent the minimum search from being trapped in 

smaller local minima (Schürmann, 1996, p. 204). Unfortunately, Vergara et al. 

(2011) remarked these techniques are well suited to find a global optimum of feature 

selection problem, but at the cost of lengthy computation.  

The sequential methods significantly reduce the number of trials to be performed 

during the search by applying local search. This method is based on the previously 

known forward and backward feature selection (Liu & Motoda, 2008), where in 

forward selection one starts with an empty feature subset and adds relevant features 

into the subset according to a procedure; while for backward selection begins with a 

full set of features and removes an unimportant feature procedurally. Since both 
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searches might be too costly for large number of features, hence more efficient 

algorithms are developed (Liu & Motoda, 2008) called sequential strategies.  

This method is considered as suboptimal procedure (Schulerud & Albregtsen, 2004). 

The technique generally uses greedy techniques where it assesses a set of potential 

feature combination which avoids examining every feature combination. This makes 

sequential methods much simpler and faster than the deterministic and stochastic 

searching methods. One consequence of this approach is the risk of getting trapped in 

local minima of the search space (Vergara et al., 2011; Dy, 2008). Among the most 

popular methods include forward selection, backward selection and stepwise 

selection. There are also different kinds of suboptimal selection techniques, and 

readers are suggested to refer Web (2002, pp. 314-317).  

2.2.1.1 Forward Selection 

Forward selection is a bottom-up searching procedure that adds a new feature to a 

feature set one at a time (Jain & Zongker, 2002), until the final features set is reached 

(Web, 2002). All features are first examined in turn to find the one that optimizes the 

chosen criteria (Hastie et al., 2009). After the single best feature (from k features) is 

chosen (called as the discriminator), then it will be paired with each of the remaining 

(k - 1) features so that the pair which give the optimized determined criterion could 

be identified. Next, the chosen paired of discriminators will be paired with each of 

the remaining (k - 2) features in attempt to find a set of triple features that optimize 

the criterion. Such process continues until p discriminators have been selected which 

involve ( 1) ( 1)k k k p        
1 (2 1)
2

p k p   criterion function evaluations 

(Krzanowski, 2000). This method is computationally attractive, but it suffers from 



 

53 

 

the nesting effect i.e. the subset of the four best features chosen must contain the 

subset of the three best features and so on (Schulerud & Albregtsen, 2004; 

Nakariyakul & Casasent, 2009). Guyon and Elisseeff (2003) agreed that this search 

is computationally more efficient than backward search, but they commented weaker 

subsets are obtained using this search because the importance of features is not 

assessed in the context of other variables not included yet.  

2.2.1.2 Backward Selection 

Backward selection or rather known as backward elimination is a top-down analogy 

of the forward selection (Jain & Zongker, 2002). From the complete set of original 

features, each feature which has least impact is omitted in turn (Hastie et al., 2009). 

The process of omitting features repeated from subset of (k - 1), (k - 2), … based on 

the intended optimized criterion. The process continues until p discriminators are 

left, and this involves 1 (2 1)
2

p k p   criterion function evaluations (Krzanowski, 

2000). In forward selection, once a discriminator is selected in the retained set, it will 

remain in the set. Similarly, the backward elimination would not consider adding the 

discriminator that has been removed. In order to overcome such rigid selection of 

features, the stepwise selection combines the forward selection and backward 

elimination on the current set of discriminators is possible. However, this selection 

approach suffers the nesting effect as in the forward selection. 

Jain and Zongker (2002) commented that forward selection is faster than backward. 

They further commented that the different performance of forward and backward is 

expected since the forward selection starts with small subsets and enlarges the 

subsets, while backward starts with large subsets and shrink them. And it is 
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computationally expensive to determine the criterion value for large subsets than for 

small subsets. Guyon and Elisseeff (2003) remarked this search may outsmart 

forward selection by eliminating at the first step the variable that by itself provides 

the best separation to retain the two features that together perform best. Schulerud & 

Albregtsen (2004) added this search also suffer from the nesting problem. However, 

Kuhn and Johnson (2013) suggested improvement for this search using non-

inferential criteria such as Akaike Information Criterion (AIC) statistic, to add or 

remove features from the model.  

2.2.1.3 Stepwise Selection 

Stepwise selection is combination of the forward and backward approaches 

(Rencher, 2002), and thus overcomes the nesting problem (Schulerud & Albregtsen, 

2004). At each step of the process, features that are not included in the present subset 

are examined in turn to determine which feature is the best for inclusion. Then, all 

the features that are retained in the present subset are examined in turn to determine 

if any of the features can be excluded without loss. Feedbacks with regards to the 

application of this search are varied. The use of stepwise procedures should be 

confined to problems with large number of features that the computation time 

required to examine all cases is prohibitive (McCabe, 1975). Pfeiffer (1985) 

preferred this search because it is an important tool to reduce the number of features 

without substantial loss of the discriminatory power. Krzanowski (2000) claimed that 

stepwise procedures remain the universally most popular tools for feature selection 

with at least a satisfactory subset even though the globally optimum one is obtained. 

However, Fraiman et al. (2008) highlighted that this search is not feasible when 

many features are considered. Even though stepwise search procedure makes the 
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search less greedy, it increases the repetition of hypothesis testing (Kuhn & Johnson, 

2013; Marra & Wood, 2011).       

2.2.1.4 Other Feature Search   

Rough set theory has shown to be successful for selecting relevant and non-

redundant features from a given data set, but this approach is slow in terms of 

computational speed (Maji & Garai, 2013), and the joint dependency of the features 

for high dimensional real life data sets cannot be estimated correctly (Peng et al., 

2005).  In this approach, the real valued features are divided into several discrete 

partitions and the dependency of approximation of a feature is calculated (Maji & 

Garai, 2013). The major concern in the computation of the dependency of real valued 

features is the inherent error exists in the discretization process. Liu et al. (2009) 

claimed this is a popular technique to obtain feature subset based on consistency.  

Canonical variate analysis provides more possibilities for feature selection (Wood et 

al., 2005). This technique seeks for linear combination of the P features known as 

canonical variates within g groups which project the data onto an r-dimensional 

subspace   where min , 1r P g   in order to maximize the between groups to 

within groups variation, subject to the canonical variates being uncorrelated within 

and between groups. 

The plus-l-minus-r search applies the forward selection to add l features and uses 

backward selection to remove r features from the resultant subset in each selection 

cycle (Schulerud & Albregtsen, 2004). The selection process is repeated until the 

required number of features p  is obtained. This approach avoids the nesting 

problem. 
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Sequential Forward Floating Selection (SFFS) and Sequential Backward Floating 

Selection (SBFS) are an extension of forward and backward selection proposed by 

Pudil et al. (1994). These approaches efficiently remove the nesting problem by 

dynamically backtracking after each sequential step to locate a better subset 

(Nakariyakul & Casasent, 2009). SFFS uses the basis of forward selection to add one 

feature at a time to the selected feature subset, and every time a new feature is added 

to the present feature set, the algorithm backtracks using the backward selection to 

remove one feature at a time to find better subset. In reverse, SBFS method begins 

with all features k, removes one feature at a time and conditionally adds a feature to 

the resultant subset only if a better subset can be located. Reported studies in 

Nakariyakul and Casasent (2009) claimed that these floating search approaches 

performed better that the conventional forward and backward selections. Jain and 

Zongker (2002) stated the floating methods show results comparable to the optimal 

algorithm branch and bound, despite being for the most part, faster than the branch 

and bound algorithm.  

Somol et al. (1999) proposed adaptive versions of the floating search methods. This 

method adds or removes more than one feature in each sequential step to obtain a 

better subset. Once the desired number of features p is almost attained, the adaptive 

methods increase the number of features to add or remove from the current subset in 

each step primarily for thorough searches. Findings from two data sets reported by 

Somol et al. (1999) showed that the adaptive sequential forward floating selection 

(ASFFS) algorithm presented slightly better results than SFFS, but with longer 

searching times. Ferri et al. (1994) in Jain and Zongker (2002) compared the 

performance of GA, SFFS, and forward selection methods on data set with maximum 
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360 dimensions and concluded that SFFS gives good performance on every high 

dimensional problem.   

In common machine learning practices, the processes of feature selection and 

classification are set up in sequential procedures known as filters, wrappers, and 

embedded procedures (Blum & Langley, 1997). Filter procedure, ranks each feature 

based on some evaluation function of the individual predictive power and eventually 

chooses the best first p features. Primary assumption of this procedure is that the 

features are independent of each other and the final selection criterion can be 

obtained as a sum of or product of criteria evaluated for each feature independently 

(Cios, Swiniarski, Pedrycz & Kurgan, 2007). Vergara and Llobet (2011) explained 

the need to trim the number of features by assessing the features individually is 

purposely to understand their relative influence towards the classification 

performance. A common objective of ranking or filtering each feature is to select 

relevant (Ray & Turner, 1992; Vergara & Llobet, 2011) features or feature subset 

that may provide substantial predictive power (Cios et al., 2007). Wrappers treat 

classifiers as black boxes and aim at finding a feature subset that has minimum cross-

validation error on the training data. Approaches like sequential forward selection, 

genetic algorithms and simulated annealing are examples of wrapper. Embedded 

methods such as decision tree intrinsically selects a subset of features in the training 

of classifiers, or optionally estimate the importance of features from the coefficients 

in the classifiers like support vector machine (Yan & Zhang, 2015). 
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2.2.2 Evaluation Function for Selecting Features 

At this stage, the interest is to obtain an optimal features or subset of features using 

an evaluation function that can give the best classification performance. An 

evaluation function attempts to measure the discrimination ability of a feature or a 

subset of features to distinguish different group labels (Dash & Liu, 1997). Different 

evaluation criteria may lead to different optimal feature subsets (Pfeiffer, 1985; Dash 

& Liu, 1997). For instance, McLachlan (1992, pp. 91-93) stated the preference of 

selection criterion can be either allocatory or separatory, which depends on the 

objective of the discriminant analysis. Allocatory criterion measures effectiveness of 

feature vector in predicting group membership using the overall error rate of the 

optimal rule formed from the p features. Whereas, separatory criterion assesses the 

effectiveness of feature vector which tends to maximally distinguish or separate the 

population. Allocatory optimality is basically definable only when stringent 

assumptions are met while in vague situations a separatory function may sometimes 

usefully serve as an allocator (Geisser, 1976). Dash and Liu (1997) specifically 

divided evaluation for selecting feature into five different criteria which are distance, 

information, dependence, consistency, and classifier error rate.  

The choice of criterion for selecting features has to be fitted with the goal of 

classification. Habbema and Hermans (1977) stressed that the criterion for the 

features selection has to be linked as closely as possible to the practical aim of 

discriminant analysis. They further described the two aims as (i) description of the 

differences between the groups on the basis of the sample data as descriptive 

discriminant analysis, and (ii) allocation of future elements whose origin is not 

known with certainty through creating allocation rule is called the predictive 
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discriminant analysis. Mahat (2006) further simplified the connection between the 

selection criterion and the aim of discriminant analysis properly. Ideally, allocation 

criterion i.e. classifier performance is appropriate if the objective is to identify 

features useful to form a classification rule with high accuracy for allocating future 

objects. Whilst, separation criterion is relevant if the objective is to identify features 

that are useful to describe separation between groups. Reviews upon the evaluation 

function for feature selection are based on these two criteria.  

2.2.2.1 Allocation Criterion 

Perhaps allocation criterion is the most widely applied feature selection criterion in 

classification problem. A large amount of literatures on this criterion are available 

from the earliest year of publication to the latest one. Despite the varieties of 

approaches, basically we may group the approaches according to the criteria 

suggested by Dash and Liu (1997), except the distance criterion. Among the earlier 

and simple feature selection was discussed by Weiner and Dunn (1966) where 

features were selected based on the largest Studentized (t-Statistics) differences 

between two sample means as defined in (2.1). Let 1X  be the mean of a feature in 

1  and 2X  is the mean in 2 , with 1N  and 2N  are the size of  1  and 2  

respectively. Then, the t-statistics is 

1 2

1 2

( )
1 1

X Xt
s

N N






                                      (2.1) 
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McCabe (1975) proposed a test statistic U  that measures the ratio of the estimated 

generalized variance within, to the estimated generalized variance total. Small values 

of U  indicate good discrimination. Murray (1977) highlighted a method to eliminate 

features by discarding a pair of highly correlated features in a multiple comparison 

test.  Young and Odell (1984) discussed two linear feature selection techniques; the 

principal component method, and the singular value decomposition method, which is 

based on M method of feature selection and is estimated using 


M  defined by (2.2) 

where m denotes the distinct classes with known a priori probability. Unfortunately, 

this approach is inappropriate if the sample size from each group is greater or equal 

to the number of features.  















112112 mm μμμμM                           (2.2) 

Pfeiffer (1985) studied different criterion of iQ  which consider the ratio of 

probability density functions at point ijx  for a given group for nonparametric 

classification case. Hsu (1989) argued the application of partial F ratios, partial 

Wilks‟s Lambdas and p-values for evaluation of the unique contribution of a 

predictor to group discriminability. Three caveats concerning the these statistics; they 

may well lack of generalizability across different sets of predictors, elimination of 

two or more predictors because of low partial Fs or high p-values could result in a 

large decrease in the separability of groups, and finally despite their meaningful and 

interpretable in discriminant analysis, they are difficult to interpret in the stepwise 

approach.  
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Several evaluations of feature selection approaches that depend on data distributions 

include the Gini Index, information gain and information gain ratio. In this context, 

when a feature set is tested, the probability distribution of different classes is 

calculated and employed to measure the relevance with respect to the class concept 

(Lin, 2013). Thus, for mutli-group data, more diverse results are obtained than those 

in two-group problems, makes it hard to implement. Some investigations of such 

selection include Jin-Jie et al. (2008) who proposed information-theoretic criteria 

based on quadratic mutual information of feature selection and constructive criterion 

that overcome the earlier mutual information (common and Uniform distributions). 

Lin (2013) formulated the enhanced entropy denoted as EH as a new feature 

evaluation criteria defined by (2.3) with the success of approving a relevant feature 

relies on low entropy and low data variance. In this design,  TxEH ,  is compared 

with the initial status before splitting, and Aggregation Gain,  TxAG ,  is used to 

regard an improvement. In other word, the higher the  TxAG , , the more relevant 

feature x is to the class. 

     i

n

i
i

i TσTxH
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T

TxEH 2
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

                                  (2.3) 

Another criterion that usually applied in feature ranking mode (also known as filter 

method) includes the correlation criteria and mutual information which helps us 

understands the relevance of a feature (Chandrashekar & Sahin, 2014). The simplest 

correlation criteria is the Pearson correlation coefficient defined in (2.4) where ix  is 

the thi  feature, Y is the output (group), cov(xi,Y) is the covariance, var(xi) and var(Y) 

are the variances of x and Y, respectively. However, this ranking can only detect 
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linear dependencies between feature and target. Yin et al. (2013) implied it can be 

overcome by using simple nonlinear preprocessing techniques on the feature before 

the correlation coefficients is computed.  

 

 

,
( )

( )
i

i

cov x Y
R i

var x var Y



                                               (2.4) 

Mutual information or rather known as information theoretic ranking criteria uses the 

measure of dependency between two variables which begin with the Shannons 

definition for entropy. Suppose discrete feature X is observed, then the conditional 

entropy for continuous features is given by (2.5) which implies that by observing a 

feature X, the uncertainty in the output Y is reduced. The decrease in uncertainty is 

given by another function      XYHYHXYI , . If X and Y are independent, 

then the mutual information is zero and greater than zero if they are dependent. For 

continuous features, we may need to find the probability densities of ix  and y as well 

as the joint density of  yxp i , . Obviously, for the continuous problem, the 

application of this criterion is burdensome since we often do not know the densities 

and are hard to estimate from data. Suggestions for further readings include Yin et al. 

(2013), Foithong et al. (2012) and Liu et al. (2009).           

      xypyxpXYH
ix y

i log,                                     (2.5) 

An extension for mutual information used as a filter in order to obtain maximum 

classification or prediction performance with a minimal subset of features by 

reducing the redundancies among the selected features to a minimum is the minimum 
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redundancy-maximum relevance criteria. The entropy-based on this criterion 

indicates that the higher it is for a feature, the more the feature is needed which can 

be obtained by subtracting the redundancy from relevance. Detail of such criterion is 

referred to Sakar et al., (2012) and Foithong et al., (2012). Similar to minimum 

redundancy-maximum relevance criteria, but with slightly different strategy is the 

maximum relevance and significance criterion (Maji & Paul, 2011), maximum 

weight and minimum redundancy (Wang et al., 2013).        

Rayleigh coefficient can also be used as a criterion in reducing the number of 

selected features. Louw and Steel (2006) applied this criterion as they believe it 

optimize each step of feature identification for deletion. Considering α  as n-vector of 

elements, while )(M i  and )(N i  as the Gram matrix, the criterion in (2.6) is calculated 

at each step to determine which variable i that should be eliminated.     

 
 

 αα
αααR i

i
i

N
M
'

'
)(                                                 (2.6) 

Generally, allocation criterion is more concerned in finding the best subsets of 

features in the formation of good discriminant rule with good prediction power. This 

approach is actually somewhat similar with the regularization method proposed by 

Friedman (1989) in McLachlan (1992, pg. 152). He argued the influential subset of 

features has to be surprisingly small for the subset-selection techniques to be 

competitive with other regularization method or even without regularization at all. 

The feature subset selection within this perspective focuses on single feature 

relevance, relevance in the context of certain particular selection, or feature subset 

relevance towards predictive improvement or to gain in prediction accuracy. A 
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journal written by John et al. (1994) described definitions of relevance based on 

assumption that all features and the group are Boolean without noise. Chandrashekar 

and Sahin (2014) said the basic property of relevant features is those features which 

provide a measurement of feature‟s usefulness in discriminating the different classes. 

The later definition may also relate to the following criterion.   

2.2.2.2 Separation Criterion 

Another criterion that receives great interest is the separation criterion or sometimes 

known as the distance-based criterion. Han et al. (2013) referred this criterion as a 

measure that characterizes the quality of a feature based on its ability to discriminate 

instances of a group with instances from other groups. A large value of distance 

indicates that it is easier to discriminate between the groups (Afifi et al., 2004, p. 

259). Another description by Maji and Garai (2013) that reflects the separation 

criterion is the search of best possible set of features that have optimal saliencies for 

which the inter-group (respectively, intra-group) distances are maximized 

(respectively, minimize). In other word, instances from different groups (i.e. 

between-group) should have feature values that are more distinctive than values from 

the same group (i.e. within-group). McLachlan (1992) discussed this issue in detail in 

his book and regards this feature selection as most useful in describing differences 

among possible groups. Mahat (2006) also mentioned that this criterion is sometimes 

preferred as an alternative to classifier performance because it avoids heavy 

computation.  

Feature selection of this type is mostly performed in probabilistic approaches. 

Normally, probabilistic feature selection involves the use of certain bounds on the 
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probability of error which reflect the intuitive justification for the measure of 

separability between the groups. In particular, Kittler (1975) believed that the greater 

the distance, the smaller the probability of error. Kittler (1975) and Chittineni (1980) 

elucidated several types of a general two-group probabilistic distance measures that 

follow the Gaussian density distribution functions which include divergence (2.7), 

Bhattacharyya (2.8), Jeffreys-Matusita (2.9), and Kullback-Leibler (2.10), where 

 ip X   is the probability density functions of the patterns in groups i ,   dX   

is the multivariate integral, and these are defined as follows.   

   
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 
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Han et al. (2012) proposed a new criterion function known as separability index 

matrix that apply functions (2.8) and (2.11), which they claimed is capable of 

providing discriminant features for classification with a very low computational cost. 

Unfortunately, the criterion is dependent with the classifiability of a feature that 

works best for two-group but not multi-group problems. Another multi-group studies 
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that applied criteria (2.7), (2.8), and (2.9) were performed by Gunal and Adizkan 

(2008). Surprisingly, their results for transformed (2.7) i.e. taking the standardization 

form of the divergence within a certain range of values and (2.9) gave similar 

outputs, and the same results recorded from criterion (2.7) and (2.8). In a nut shell, 

Gunal and Adizkan (2008) generalized that criteria (2.7), (2.8) and (2.9) were unable 

to beat their proposed novel separability measure found on subspace analysis, the 

common subspace and Fisher subspace. 

Probabilistic approach of feature selection for multivariate data with multiple groups 

is complicated. Kittler (1975), Chittineni (1980), Davijver and Kittler (1982), and 

Ray and Turner (1992) whom remarked the most challenging part to deal with this 

criterion is to have the knowledge of the conditional probability densities of data that 

belongs to a particular family of probability density functions. Furthermore, in order 

to obtain effective probabilistic measure, it is necessary to have information about 

the probabilistic structure and the computation of the measures which usually 

involves the integration of multivariate density functions which have to be estimated 

from the training or sample data (Jain & Waller, 1978; Ray & Turner, 1992). 

Furthermore, for multi group problem, it seems hard to be implemented. 

Mahalanobis distance 2  (Mahalanobis, 1936) is known as an important feature 

selection criterion based on distance. Web (2002, pp. 426-427), Chittineni (1980) and 

Kittler (1975) claimed this distance function as a probabilistic distance measure 

when Bhattacharyya function in (2.8) has equal covariance matrices 1 2     . 

However, Ray and Turner (1992) preferred to specify Mahalanobis distance 2  as 

simple non-probabilistic measure which only takes into account the effect of 
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correlations between features, and makes it a potential powerful feature evaluation 

criterion. Given two Gaussian distributions with means 1μ  and 2μ  between two 

groups 1  and 2 , and a common dispersion matrix Σ , Mahalanobis distance 2  

is another useful feature selection. It is defined by equation (2.11).  

   2 1T   1 2 1 2μ - μ Σ μ - μ                                    (2.11) 

Afifi et al. (2004) strictly discussed the theoretical background of 2 applied for 

features that follow multivariate normal distribution. The parameters 1μ , 2μ , and Σ  

are usually unknown and often, the training set of in  instances from each group are 

used to estimate these parameters. Let 1X  and 2X  be the corresponding sample 

means vectors for two groups 1  and 2 , then the estimated Mahalanobis distance 

2D  between the two groups is defined by the equation (2.12), where S is the pooled 

variance-covariance matrix, and, 1n  and 2n  (such that 1 2n n n  ) are the sample size 

of data from groups 1  and 2 , respectively.  
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1 2 1 2X - X S X - X                                    (2.12) 
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Jain and Waller (1978) have applied this concept in their investigation of peaking 

phenomenon based on two ranking types i.e. worst to best ranking and best to worst 

ranking. Achariyapaopan and Childers (1985) have also examined recursive 

suboptimal feature selection using Mahalanobis distance based on filter approach 
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where for a set of one, any feature regardless of its power can be selected, but for 

best two features is the combination of the first and the last ranked features, while for 

the best of three features is the combination of the first, middle and the last ranked 

features. Studies by Jain and Waller (1978) and Achariyapaopan and Childers (1985) 

where performed in the context of two equiprobable multivariate Gaussian densities 

with a common covariance matrix.  

However, difficulties occurred in determining the probability of error since the 

conditional distribution of the chosen statistics for the decision rule should initially 

be determined. This technical flaw has long been tackled by previous researchers 

including Anderson (1951), John (1960), John (1961), Sitgreaves (1961) in Jain and 

Waller (1978), and Ray and Turner (1992).  Besides, Roberts and Hanka (1982) have 

also explored the effect of correlation between features on the discriminatory 

potential of a feature subset. If two features are highly correlated positively, then the 

pairwise Mahalanobis distance depends critically on the individual distances, 

whereas if they are highly correlated negatively the pairwise performance will be a 

substantial improvement on the single feature.   

 Ray and Turner (1992) have introduced two new [0, 1] bounded Mahalanobis 

distance-based evaluation criteria known as 2
A  and 2

B  for multi-group 

classification problem both in the distribution free and Gaussian distribution cases. 

Both criteria are illustrated in equations (2.14) and (2.15).  
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                                                      (2.14) 
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                                                   (2.15) 

The proposed criteria were tested for the recognition problem of hand-printed 

numeric characters, and proven to be more powerful over the direct use of the 

unbounded Mahalanobis distance 2  criterion (Ray & Turner, 1992). Further details 

of the Mahalanobis distance-based criteria 2
A  and 2

B  according to the distribution 

free and Gaussian distribution is available in Ray and Turner (1992). Few studies for 

the application of [0, 1] bounded Mahalanobis distance-based criteria of 2
A  are 

disclosed. Masnan et al. (2015) implemented [0, 1] bounded Mahalanobis distance-

based criteria 2
A  to filter the best subset of discriminant features for the 

classification of multi-group of honey.  

The criterion has been discovered sensible to perform sensor closeness test and 

significantly improve the evaluation based on [0, 1] distance value. In the case of 

sensor closeness test, the [0, 1] bounded Mahalanobis distance-based criteria 2
A   

has overcome the exceptionally high value of average distance which lead to the 

failure to represent the average separability of groups. However, in evaluation 

purposes, difficulties in making decision based on unbounded magnitude of 2 can 

be resolved using [0, 1] bounded Mahalanobis distance 2
A .  

An optimum measure of the effectiveness of a set of features is usually reflected by 

the Bayesian error probability  eP . Devijver and Kittler (1982) have proven the 

relationships between 2  and eP  in the distribution free case where there cannot be 
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any exact relationship as in equation (2.16) where 1  and 2  are the a priori 

probabilities of two groups. 

      1 2
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1 2
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π πP
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                                                   (2.16) 

Ray and Turner (1992) further shown the derivation of 2
A   based on equation (2.16) 

where they believed it was the only distribution free upper bound of eP  available in 

terms of 2 , denoted by equation (2.17). 
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                                                   (2.17) 

After some imposed operations to equation (2.17), the criterion 2
A   in equation 

(2.14) is obtained where  2 0,1A   which corresponds to a normalizing 

transformation on 2 0,   . Among other properties of equation (2.14) are (i) 

2
A   is monotonically an increasing function of 2 , (ii) 2

A   is symmetric with 

respect to 1  with the property equation    2 2
1 1 1A Ar r        since 

( 2 11   ), (iii)    2 2
1 1A Ar s        iff min(r, 1–r) < min(s, 1–s). Details of 

each proof can be referred to Ray and Turner (1992).  

In summary, since 2
A  is a function of the Mahalanobis distance 2 , and that 2  

can be solved in terms of 2
A , the distribution free upper bound (2.16) which is 
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expressed in terms of 2  can be expressed by 2
A . This implies that the error bound 

associated with 2
A  is the same as that associated with 2 . 2  increases 

unboundedly, whereas 2
A  is upper bounded by 1. Because of the boundedness, 2

A  

is expected to perform better than 2  in a multi group classification problem, as 

proved by Ray and Turner (1992). Another simple non probabilistic separation 

criterion is the Fisher ratio that does not assume the populations are normally 

distributed (Rencher, 2002, p. 300, Afifi et al., 2004, p. 259, and Johnson & 

Wichern, 2007, p. 590). The Fisher ratio provides a good measure of group 

separability because the distance increases as the between group difference increases, 

and the within group spread decreases (Han et al., 2013). The Fisher ratio is defined 

by equation (2.18) as the ratio of the between group difference to the within group 

spread as follows:    
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where ilx , jlx , 2
ilσ , and 2

jlσ  are the means and the variances of instances of the ith 

group and jth group in the direction of the lth feature, while ijlλ  indicates the group 

separation between the ith group and jth group in the direction of the lth feature.  

Thus, for multi-group problem, Han et al. (2013) defined the generalized Fisher ratio 

by equation (2.19) where lλ  is the average group separability measures in the 

direction of the lth feature and g is the total number of groups, while i and j indicate 

the group indices such that ,1 i  and j g , also iω  and jω  are the mixing weights 
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for the ith and jth group, respectively. Yin et al. (2013) commented that a negative 

aspect of using Fisher criterion to obtain feature ranking is that it does not reveal the 

mutual information among features.  
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Interclass distance is another simple group separability which can be used to assess 

discriminatory potential of pattern representations in a given space (Devijver & 

Kittler, 1982). This criterion is not defined explicitly via class conditional probability 

functions. Thus, its estimate can be computed based on the training set without prior 

determination of the probabilistic structure of the groups. Good separability among 

groups is displayed by the greater average pairwise distance between objects of 

different groups. Despite its simplicity, the only disadvantage is that this concept 

cannot serve as true indicators of mutual group overlap (Devijver & Kittler, 1982). 

2.2.3 Stopping Criterion  

A fundamental interest associated with the designing of pattern classifiers is to 

determine the optimal number of selected features for a given sample size. This can 

be set by deciding when the contribution of an additional feature is meaningful or 

meaningless. A stopping criterion determines when the feature selection process 

should stop. Several types of stopping criteria are: (a) the search completes; (b) some 

given bound is reached, where a bound can be a specified number (minimum number 

of features or maximum number of iterations); (c) subsequent addition (or deletion) 
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of any feature does not produce a better subset; and (d) a sufficiently good subset is 

selected (e.g., a subset may be sufficiently good if its classification error rate is less 

than the allowable error rate for a given task).  

Jain and Waller (1978) have studied two optimal number approach based on 

assumptions that each feature is equally good, and the features do not have equal 

discrimination power for classification. An approximate criterion used to determine 

whether or not a subsequent additional feature would be helpful for a classifier is 

given by equation (2.20) where 2
Pδ  denotes the increase in the Mahalanobis 

distance of each additional feature so that the average of error rate remains constant. 
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Applying equation (2.20) as a threshold for finding optimum number of ranked 

features according to equation (2.11) from best to worst, feature that does not 

increase 
2
Pδ  will be excluded. One can see as the sample size N increases, the value 

of 
2
Pδ  decreases. This indicates that if the sample size is approaching infinity, the 

selected p features contribute nothing to the separation. 

On the other hand, Achariyapaopan and Childers (1985) proposed a recursive 

algorithm for selecting near optimal features set by introducing a weighting factor 

 1
1 2

  W μ μ . Their argument was significant feature xi should be weighted 

more than insignificant feature. Selection begins by calculating the weight of each 

feature. The best feature based on the largest W is then selected and the 1Γ  as in 
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equation (2.21) is then calculated. Next, the best two feature combinations are 

determined by calculating the 2Γ . If 2 1Γ Γ , the second feature is included in the 

optimal features. Otherwise, the feature is excluded. The calculation of  Γ  in 

equation (2.21) was based on the approximation of the probability of error derived by 

Lachenbruch (1968).  
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Yongli et al. (2013) have applied a criterion function   min ,f c m  defined by 

equation (2.22), where c is the current classification rate, and m is the current 

misclassification rate. The evaluation criterion  ,f c m  which is a quadratic function 

with the minimum value would give the optimal feature subset needed. The criterion 

is used to obtain optimal feature subsets for their improved feature selection 

algorithm based on Mahalanobis distance.        

    , 1 100. .100f c m c m                                         (2.22) 

Appropriate statistical test can be applied for the stopping criterion. Let d  be a 

sample based distance between group, Mahat (2006, p. 115) illustrates simple 

explanation of different stopping rule for the selection strategies. In forward selection 

strategy, feature that produces the highest value of d  after being chosen in the set of 

discriminators will be selected in the strategy; thus, stop the selection when including 

a new discriminator does not significantly increase the value of d . While in 
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backward elimination strategy, feature that produces the highest value of d  after 

being eliminated in the set of discriminators will be deleted; thus, stop the selection 

when deleting further discriminators significantly decreases the value of d .    

Based on the above mentioned setting, whenever a set of discriminators have been 

identified, the following stopping rules may applied (Mahat, 2006): 

i. Testing for no additional information (forward selection). 

A new discriminator is chosen when its contribution together with the 

previous selected discriminators gives adequate information for separating 

the two groups in the forward selection. The null hypothesis ( : j pH    ) is 

performed for each pj ,,2,1  . This test checks at every step j the 

adequacy of the information in the j discriminators as compared to the 

information in all P discriminators. The following statistic is used to test the 

whole set of selected discriminators when each new potential discriminator is 

chosen 

 
 

2 2
1 2

2
1 2 1 2

1 p j
calc

j

n n D DN pF
p j n n D N n n

 
 

  
                        (2.23) 

Where 221  nnN , 
2

P
D  is the sample-based Mahalanobis distance using 

all the p continuous features and 
2

j
D  is the sample based Mahalanobis 

distance using the current j selected discriminators at step j. For a fixed value 
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of type I error, α, these steps will be continued until the first j discriminators 

give 
 , 1,1calc p j N pF F

   
 . 

ii. F to enter (forward selection). 

The null hypothesis 2 2
1:  where 2, 3, , ,j jH j p      is to test for 

adequacy of information given by a new potential discriminator, selected at 

step j of the forward selection, compared to the previous selected 

discriminators. The test statistics is  

  
 

 

2 2
1 2 1

2
1 2 1 1 2

1 j j

F

j

n n D D
F N j

n n D N n n





   

 
                    (2.24) 

The selection of potential discriminator is continuously performed until the 

first j discriminators gives 
 1, 1,1F N jF F

  
 . 

iii. Testing for no additional information (backward elimination). 

In backward elimination, the associated tests in (i) and (ii) are reversed. The 

null hypothesis for no additional information gain is  jppοH : , for 

pj ,,2,1  . And the test statistics is  

 
 21

2
21

22
21* 1

nnNDnn
DDnn

j
pNF

jp

jpp
R











                     (2.25) 
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And the deletion continues until  αpNjR FF  1,1,
* . 

iv. F to delete (backward elimination). 

The null hypothesis is ,,,3,2  where: 1 pjH jjο    and the 

associated test statistic is  

 
 

 21
2

121

22
121* 1

nnNDnn
DDnn

jNF
j

jj
F








                     (2.26) 

The deletion continues until  αjNF FF  1,1,1
* . 

2.3 Classification Rules 

Schaller et al. (1998) illustrated that supervised or trained learning methods classify 

an odor by developing a mathematical model based on training data, i.e. samples 

with known properties to a set of given descriptor. Test samples are then evaluated 

against a knowledge base and predicted class membership is deduced. These 

methods enable the system to reduce parameters such as volatile, temperature and 

humidity, and train a system to concentrate at particular combinations of sensors to 

measure a given odor. Supervised methods include artificial neural network (ANN) 

such as multi-layer perceptron (MLP), probabilistic neural network (PNN), and 

radial basis function network (RBF) (García-González et al., 2002; Zhang, Balaban 

& Principe, 2003; Dutta, Das, Stocks & Morgan, 2006); regression analysis that 

include partial least square (PLS), multiple linear regression (MLR), principal 
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component regression (PCR) and ridge regression (RR) (García-González et al., 

2002); discriminant function analysis (DFA) which include linear discriminant 

analysis (LDA) and quadratic discriminant analysis (QDA) (Shaffer et al., 1999; 

Rodriguez, et al., 2010); learning vector quantization (LVQ) (Shaffer et al., 1999); 

and support vector machine (SVM) (Di Natale, Davide, and Di Amico, 1995).  

The abovementioned methods can also be categorized as parametric approach or 

nonparametric approach. Parametric approaches assume that data can be described 

by a probability density function such as multi-normal distribution (Gardner et al., 

1999), while nonparametric approaches do not make any underlying assumptions 

about the probability distribution of data (Hines et al., 1999).  

2.3.1 Parametric versus Nonparametric Classification Approaches 

Fisher‟s Linear Discriminant Analysis (FLDA) was derived by Fisher (1936) that 

originally deals for two-group problem.  Rao (1948) generalized Fisher‟s Linear 

Discriminant Analysis (FLDA) from two-group problem to multiple-group problem 

which he called it as linear discriminant analysis (LDA) or rather known as multiple 

linear discriminant analysis. To understand the multiple-group problem, let us look at 

the two-group problem first. Let x  in groups 1 2 and    with means 1μ  and 2μ  and 

covariances 1  and 2  the linear combination of x  be written as 

1 1 2 2

T

n nY a x a x a x a x      where a  is a set of parameters of the model. Then Y  

will have means i
T μa  and variances aa i

T   for 2,1i .  
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Since the parameters 1μ , 2μ  and   are usually unknown, estimation for each 

parameter is often based on the training sets of ( )jn  . Assuming both groups have 

equal covariance   and the variance of Y  is aaT   in both groups, substitute 

 by i ix  (the estimated mean vector in i ), and  with S (the pooled estimate of 

variance), thus Fisher‟s approach tries to maximize the ratio of the between groups 

variance to within groups variance. The optimal criterion of FLDA is the linear 

combination 1

1 2
ˆ ( )T Ty a x x x S x    that maximize the ratio: 

 
2

1 2
ˆ ˆ

ˆ( )
ˆ ˆ

T T

T

a x a x
r a

a Sa


                                                 (2.27) 

Therefore, for  ˆr a  to be maximize is to find the best value of â  given by 

1

1 2( )S x x  which gives the maximum ratio as 1

1 2 1 2( ) ( )Tx x S x x  . Thus, allocation 

rule based on Fisher linear discriminant function (FLDF) is given by: 

Allocate 0 1 to x   if 0
ˆ 0y m  , or allocate 0 2 to x   if 0

ˆ 0y m  , where 

 1 1

0 1 2 0 1 2 1 2

1ˆ( ) ( )
2

TTy x x S x m x x S x x                                (2.28) 

For 2g  populations problem, the motivation behind FLDA is to find a reasonable 

representation of the populations that involves only a few linear combinations of 

observations, such as 1 2,  ,T T T

nY a x a x a x . The main purpose of FLDA is to 

separate population, and can also be used to classify. The g  populations are not 

necessarily assumed to be multivariate normal, but the population covariance 
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matrices are assumed equal, 1 2 g       . Based on the estimation of each 

parameter, the ratio for multiple group problems is defined by:   

  

  

1

( )

1 1

ˆ ˆˆ ˆ
ˆ ˆ

ˆ ˆ

g
TT

T i i
j

T
ng j

TT

i i
j i

a x x x x aa Ba
a Wa

a x x x x a





 

 
  

 

 
   





                                      (2.29) 

where B is the sample between groups and W  is equal to S, the estimate of   based 

on the sample within groups matrix, and the optimization of â  is represented in the 

form of eigenvectors ê  such that  1 2
ˆˆ ˆ( ) ( ) ( )jSBe n n n g e        . Let 

1 2
ˆ ˆ ˆ, , , 0s     denote the min 1,s (g - p)  nonzero eigenvalues of 1 ˆˆ ˆW Be e  , and 

1 2
ˆ ˆ ˆ, , , se e e  be the corresponding eigenvectors, then the vector coefficient â   that 

maximize the ratio (2.29) is given by 1 1
ˆ ˆa e . The linear combination 1

ˆ Ta x  is called 

the sample first discriminant, when 2 2
ˆ ˆa e  then 2

ˆ Ta x  is called the sample second 

discriminant and continue until ˆ ˆ
k ka e  the sample jth discriminant, sj  . Thus, 

allocation rule based on Fisher linear disriminant function (FLDF) is given by: 

Allocate  to jx   if 

     
2 2

2

1 1 1

ˆ ˆ
r r r

T T

j kj j k j i
j j j

y y a x x a x x
  

               for all ki                (2.30) 
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where ˆ
ja  is defined in (2.30) , ˆ  and   T

kj j ky a x r s  . Further details of these concepts 

can be found in (Hastie, Tibshirani, and Friedman, 2009, pp. 106-111), (Rencher, 

2002, pp. 304-305), and (Dillon, and Goldstein, 1984, pp. 400-403). 

Although FLDA approach does not strictly assume the groups are normally 

distributed, it does implicitly assume the covariance matrices of the groups are equal 

since a pooled covariance matrix is used. When the groups follow normal 

distribution and have equal covariance matrix  1 2 g      , Fisher‟s 

discriminant rule is equivalent to LDA with minimum equal costs of 

misclassification (ECM) rule with equal prior probability and equal cost of 

misclassification. Further details are referred to allocation rules of ECM in Johnson 

et al., (2007, p. 608). If g 21  does not hold, the classification rules can 

easily be altered to preserve optimality of classification rates. By substituting Si, the 

sample covariance matrix for the ith group in the distance function of  

   2 1( ) ,            for 1, 2,...,T

i i i iD y y y S y y i g                        (2.31) 

then (2.31) cannot be reduced to a linear function of y, but remains as a quadratic 

function (Rencher, 2002, p. 306). Thus, discrimination rules based on Si are called 

quadratic classification rule or known as QDA which was proposed by Smith (1947).  

However, Fatti, Hawkins and Raath (in Hawkins, 1982) have noted that if the 

distribution of the populations is not normal, the optimality of the linear discriminant 

function can still be improved. Throughout their simulation studies of applying the 

LDF and QDF to continuous data, they made several generalizations. First, for 
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distribution of data with lighter tail than the normal, the LDF or QDF should perform 

very adequately; second, LDF and QDF will perform poorly if the distributions are 

heavy tailed and skewed; and finally, if the distribution are heavy tailed but 

symmetric, QDF may perform reasonably well in terms of overall error rate when the 

training samples are very large. However, if the training samples are small, then 

heavy tailed would introduce excessively large sampling errors into parameter 

estimates, which lead to an unreliable discriminant function.    

2.3.2 Other Nonparametric Approaches 

Methods we have discussed so far can be considered as parametric and 

nonparametric methods. Even though LDA could be either parametric or 

nonparametric (known as FLDA), depending on the assumption of the group 

conditional densities of the samples being studied, LDA and QDA mark as the most 

influential methods under the multivariate normality condition. Among other 

methods that grab the attention of researcher in the multi sensor data fusion problem 

is the nonparametric techniques. When these techniques applied, the group 

conditional densities are not known (McLachlan, 1992, p.283). Such techniques 

include kernel, nearest neighbor, classification and regression trees (CART) and 

artificial neural networks (ANN) and of course the FLDA. These techniques are 

better alternative to parametric procedures, but, they usually need large amount of 

training set. 

Sewell (2009) described in detail the history and evolution of kernel method. Kernel 

discriminant analysis estimates the distribution of variables in each group using one 

of a variety of complex functions known as kernel density estimates. It is commonly 
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used in a nonlinear problem where one can map the problem from the input space to 

a new (higher dimension) space called the feature space by doing a nonlinear 

transformation using suitable chosen basis functions and then use a linear model in 

the feature space. The linear model in the feature space corresponds to a nonlinear 

model in the input space which makes it useful in the classification and regression 

problems. However, the choice of kernel function is crucial for the success of all 

kernel algorithms because the kernel constitute prior knowledge that is available 

about a task. Further readings of this technique can be found in a monograph on the 

theory of kernel written by Berg, Christensen and Ressel (1984).  

The nearest neighbor (1-NN) rule classify based on the "nearness" and then attempt 

to find groups of subjects that are as near as possible to each other. This is the most 

fundamental and simplest supervised classification techniques. However it tends to 

be computationally intensive and very robust to noise. The nearest neighbor of (1-

NN) and (k-NN) are among the preferred rule. Using the k-NN classifier, a test 

pattern is assigned to the class that is the most frequent among k-nearest neighbors in 

the training set. Usually k is selected to be odd in order to avoid ties. The k-NN rule 

becomes optimal when k tends to infinity. Such approach has been discussed by 

(Ciosek et al., 2006) in the application of e-nose. 

CART was developed by Breiman, Friedman, and Olshen (1984), is a tree building 

method in which data is split repeatedly in groups according to different parent 

nodes, child nodes and terminal nodes. Exhaustive search of all possible splits is 

performed until the optimal univariate splits is found. However, this method is biased 

toward selecting predictor variables having more levels and it is very computer 

intensive (Johnson et al., 2007). As far as this study is concerned, this method is 
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rarely applied in the multi sensor data fusion domain. Sources of discussion are 

available in (Worth, and Cronin, 2003; Buratti et al., 2004; Gigli et al., 2007).  

ANN are defined as structures comprised of densely interconnected adaptive simple 

processing elements called nodes that are able to perform massive parallel 

computations for data processing and knowledge representation. This technique is 

meant for data with nonlinear nature, and usually being applied in the fusion of e-

nose and e-tongue (Gutierrez-Osuna, 2002). This technique is favored in fusion 

domain may be because it resemble the structure and workings of the human brain 

through mathematical models. However, the potential disadvantage of this approach 

is that no statistical information can be created to express the model and the number 

of training samples as well as the training time required to analyze are largely 

dependent on the number of adjustable parameter for NN (more adjustable parameter 

increase the training sample and training time) (Ghasemi-Varnamkhasti et al., 2010). 

Some extensions of this technique were proposed by: (Rong et al., 2000 called fuzzy 

NN) and (Boilot et al., 2003 known probabilistic NN). Further discussions from the 

multi sensor data fusion perspective are included in (Wide et a., 1998; Cimander et 

al., 2002; Xiabo et al., 2005; Ghasemi-Varnamkhasti et al., 2010).   

Additional readings regarding other reported techniques applied in the multi sensor 

data fusion domain is accessible in: Bayesian classifier (Rousell et al., 2003), genetic 

algorithm (Rousell et al., 2003; Llobet, Brezmas, Vilanova and Correig, 2006; Gigli 

et al., 2007), support vector machine (SVM) classifier (Pardo et al., 2008; Dixon and 

Brereton, 2009; Wang et al., 2009; Tao et al., 2009), partial least square (Apetrei et 

al., 2010; Daeswijk et al., 2011), cluster analysis (Huang, Qiu and Guo, 2009), and 

fuzzy C-means (Sundic et al., 2000). 
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2.3.3 Evaluation of Constructed Classifier 

Once we have obtained the classifier that can allocate observations to its specific 

group, it is important to evaluate the performance of the classifier.  One way to judge 

the ability of classification procedures to predict group membership is to find the 

probability of misclassification known as error rate. For example, Johnson et al. 

(2007) suggested that Fisher‟s classifier can be optimal from a minimum expected 

cost of misclassification (ECM) or minimum total probability of misclassification 

(TPM) only when multivariate normality holds, such that )( and )( jTjN πxfπxf  for 

gj ,...,2,1 , are multivariate normal distributions with means gμμμ ,,, 21   with 

covariance matrix g ,,, 21  .  

However, in real case, this may not be the case. Rencher (2002, p. 314) described 

that classification rules developed using Fisher‟s concept can be considered as 

parametric or nonparametric for certain condition in the allocation rule. In the 

absence of multivariate normality, Fisher‟s classifier can be viewed as providing an 

approximation to the total sample information. Johnson et al. (2007) suggested the 

values of the first few discriminants themselves can be checked for normality and 

rule (2.28) employed. Since Fisher‟s linear discriminant method provides a 

discrimination rule minimizing the expected misclassification error (Hastie et al., 

2009), this method is considered non-cost-sensitive. Thus, Johnson and Wichern 

(2007, p. 619) recommended a computation of estimated error rate for allocation rule 

(2.28) using Lachenbruch‟s estimate, i.e. the expected actual error rate (AER) given 

by 
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where )(H
Mjn  is the number of misclassified holdout observations in the jth group, 

gj ,...,2,1 . The holdout concept will be described further in the next section. 

A much simpler and straight forward measure of classification performance is the 

apparent error rate (AER). This approach does not depend on the form of the parent 

populations and it can be applied for any classification procedure (Johnson and 

Wichern, 2007). It can be defined as the fraction of observations in the training 

sample that are misclassified by the sample classification function. AER can be 

easily calculated from the confusion matrix, which shows the actual versus predicted 

group membership. For 1n  objects from 1  and 2n  objects from 2 , the confusion 

matrix is as follows       

Table 2.7  

Confusion Matrix Table for Two Groups  1 2,    

 Predicted Membership 

  1  2   

Actual 

Membership 

 

1  1Cn   1 1 1W Cn n n     1n  

    

2  2 2 2W Cn n n   2Cn  2n  

Where 

 1Cn = number of objects from 1  correctly classified as 1  
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 1Wn = number of objects in 1  misclassified as 2  

 2Cn = number of objects from 2  correctly classified as 2  

 2Wn = number of objects in 2  misclassified as 1  

Therefore, the proportion of objects in the training set that is misclassified known as 

the apparent error rate is calculated as 

1 2

1 2

100W Wn nAER
n n

 
  

 
                          (2.33) 

Unfortunately, Efron (1986) criticized this approach exhibits biases especially when 

the size of training set is small. This drawback can be further improved using a 

resampling method called leave-one-out. 

Once we have developed the suitable classifier, the next issue need to be considered 

is the classifier performance. Our main interest is to design a discriminant rule that 

can classify future object well, which eventually gives low misclassification rate or 

the error rate. Generally, it is difficult to obtain an analytic expression for the error 

rate and therefore it must be estimated from the available data. Web (2002) 

expressed that the error rate measure suffers from the disadvantage that it is only a 

single measure of performance, treating all correct classifications equally and all 

misclassifications with equal weight. Among the common measure of error rate are 

apparent error rate, true error rate, expected error rate and Bayes error rate. Further 

readings on these measures are referred to Web (2002).  
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There are few techniques that can be applied to measure the error rate. Among them 

are the re-substitution method, hold out method, U-method or cross validation 

method, Jackknife method and bootstrap method. The re-substitution method (use 

the design set to estimate the error) yields what we call the apparent error rate. Error 

of this type is consistent, but can be severely optimistically bias (Dillon et al., 1984). 

The hold-out method splits the data into two mutually exclusive sets, the training and 

test set. The classifier is designed using training set and performance evaluated on 

the independent test set. Devijver and Kittler (1982) in Web (2002) criticized that 

this method makes inefficient use of the data and gives pessimistically biased error 

estimate. Dillon et al. (1984) added that this method requires large sample, and in 

their absence, either the function or its estimate of misclassification is likely to 

suffer, but the estimation of this method is consistent and unbiased. 

One of the cross-validation branches is the leave-one-out method. The method is 

among the mostly applied method especially in the case of small sample size. It is an 

improved version of the sample-splitting or partitioning procedure (Rencher, 2002). 

The method makes use of all the available data without serious bias in the estimating 

error rate such that calculate the error by using n-1 samples in the design set, and 

testing on the remaining sample, and this is repeated for all n subsets of size n-1 

(Web, 2002). The disadvantage of this method exist when the sample is large, result 

in computationally expensive to design n classifiers. This method yield almost 

unbiased estimates of the misclassification probabilities (Dillon et al., 1984). Despite 

the fact that this method is unbiased, several researchers criticized the method with 

regard to the large variance and mean square error.  
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The Jackknife method is a procedure for reducing the bias of the apparent error rate 

(Web, 2002). Dillon et al. (1984) reported that this method employ two stages: use 

the cross validation to obtain good estimates of classification error rate, and then use 

jackknife analysis to consider coefficient stability. These processes simultaneously 

require large number of successive runs and become increasingly time consuming 

and expensive.    

Bootstrap refers to a class procedure that samples the observed distribution, with 

replacement, to generate sets of observations that may be used to correct for bias 

(Web, 2002). This method provides nonparametric estimates of the bias and variance 

of an estimator which proven to be superior to many other techniques. Even though it 

is computationally intensive, many researchers find it to be an attractive technique 

which has recorded many developments from Efron (1979) who introduced the 

technique.



90 

 

CHAPTER THREE 

RESEARCH METHODOLOGY 

3.1 Introduction 

In the previous chapter, we have highlighted in specific the traditional feature 

extraction method that was widely applied for the dimension reduction of the multi 

sensor data fusion model involving e-nose and e-tongue sensors. Some complications 

in applying feature extraction in the respective areas have also been discussed in 

detail. This study proposes alternative idea which implements feature selection in the 

classification process of sensors data as planned in Figure 3.1.  

 

 

 

 

 

 

 

 

Figure 3.1. Proposed Methodological Changes for Multi Sensor Data Fusion          
(a) LLDF Model, and (b) ILDF Model Using Feature Selection of 
Unbounded and Bounded Mahalanobis Distances 
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In relation to the discussions of some drawbacks of PCA in section 2.1.3, Figure 3.2 

illustrates the basis of principal components (PC) applied for extraction of features 

based on the highest variance counted in the first few selected PCs. As highlighted in 

the literature, this approach lacks of interpretability and unable to show obvious and 

well-defined feature‟s contribution. 

 

 

   

   

     

  

 

 

 

 

 

 

Figure 3.2. Illustration of the Application of PCA and Probability Distribution 
Function in Dimension Reduction and Classification  
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Another well-known approach to perform feature selection is based on the 

probability distribution of data. The most challenging part to perform this criterion is 

to have the knowledge of the conditional probability densities of data that belongs to 

a particular family of probability density functions. This can only be done by 

performing some integration procedures. If only two groups are involved, the process 

may not be burdensome, but for multi-group problem, integration of multivariate 

density functions which have to be estimated from sample data would be 

complicated and time consuming due to more features involved for calculation.  

Again, Figure 3.2 shows the application of probability distribution approach for 

classification of two group problem which involve integration of probability 

distribution functions of groups. Due to this difficulty, feature selection as well as 

classification using the knowledge of data distribution is avoided.  

Therefore, for this study, emphasis was given to the feature selection issues based on 

distance approach which disregards the above hassles. Main focus was dedicated to 

the role of two Mahalanobis distance functions in selecting relevant features 

elaborated in section 2.2.2.2. The performance of the original Mahalanobis distance 

2  proposed by P. C. Mahalanobis (1936) and its extension 2
A  suggested by Ray 

and Turner (1992) will be further explored, compared and evaluated. The two 

functions 2  and 2
A  both in equations (2.11) and (2.14) differ in the calculated 

distance value and are estimated using 2D  and 2
AD .  The first function produces 

0,   unbounded distance, while the later gives  0,1  bounded distance.  

The effect between the two distances ( 2  and 2
A ) is not noticeable unless a 

thorough assessment is performed. We believe each function leads to dissimilar 
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evaluation of significant features which eventually affects the classification 

performance. Figure 3.3 shows graphically how the pair-wise distances between 

multi-groups were calculated using criterion 2D  which later was used to calculate 

the average distance 2
A . This study theoretically employs the Mahalanobis distance 

concept to find the maximum average distance values from both 2D  and 2
AD  as an 

indicator of good discriminant features.  

 

 

 

 

 

 

Figure 3.3. Graphical Representation of Pair-Wise Mahalanobis Distance 2 / 2
A  

Between Multi-Group Means 

The concepts of calculating pair-wise distances using 2  and 2
A  were found to be 

very useful and practical for this study compared to other distance measures. It 

provides a measure of similarity between multivariate populations and uses 

covariance information between features to weight the contributions of all features to 

the distance. Furthermore, the distance gives less weight to those features that have 

high variance and to those features that have high correlation. Euclidean distance was 

found to be inappropriate since this distance gives excess weight to features that were 
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highly correlated and gives additional weight to features that have high variance and 

similar information (Jalan, 2009). Taking the advantages of the distance provided by 

2  and 2
A , the study adopted the distance to measure the features‟ separability. 

In consequence, to accomplish the objectives of the study, the designed research 

methodology in this chapter has been technically evaluated to accommodate certain 

characteristics of single and fusion of e-nose and e-tongue data. Among the 

characteristics include: 

i. multivariate data under study are all continuous in nature,  

ii. data belong to multi-groups case, 

iii. small number of groups‟ sample size where each   30jn    for 

1,2, ,j g ,,  

iv.  sample size is smaller than the number of features (p and q) ,  n p , 

 n q ,  n p q   for p is the feature dimension of e-tongue, q is 

the feature dimension of e-nose, and p+q is the feature dimension for 

the fused features,  

v. data belong to multi-groups that follow normal and non-normal 

distributions, commonly groups‟ distributions are nearly symmetric 

with lighter tail, few groups‟ distributions are skewed but overall, the 

range for all groups are very small, and  

vi.  some differences in the nature of fused data where e-nose features are 

generally highly correlated positively, while e-tongue features are 

moderately and highly correlated positively and negatively.  
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In order to generalize (within the scope of the research) the capability of the LLDF 

and ILDF functions, we proposed a research methodology that applies a new feature 

selection criteria and procedure with common classification rule, stopping criterion 

and performance evaluation. Since data were mix in distribution, the parametric 

classification rule was employed in the second strategy.  The constructed rule was 

evaluated using leave-one-out approach. In addition, investigations were 

implemented using two data fusion models; LLDF and ILDF models. The HLDF is 

not considered in this research since the procedure of identity declaration is more of 

the machine learning approach. 

3.2 Percentile Forward Feature Selection and Algorithms for Data Fusion 

Generally, the new feature selection criteria and procedure is suitable for any high 

dimensional continuous dataset. This approach is suitable to reduce the dimension of 

data by identifying and selecting the most useful features that describe greatest 

separability among all possible groups. The distance criteria are basically suitable for 

data that are highly correlated among the features which is the case for the datasets 

applied in this research. Thus, this approach offers an advantage for multi-group data 

where information within features is redundant of each others. In addition, for the 

univariate feature ranking where the investigation of finding the most discriminative 

features to the least discriminative one, again, the selected criteria are able to assign 

less weight to features that have high variance. Further discussions of these criteria 

can be found in sections 3.2 and 3.3. 

As for the selection procedure of highly discriminative features that is important for 

higher classification accuracy, this research proposed a new feature selection 

approach suitable for the aforementioned datasets. The new approach is called 
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Percentile Forward Feature Selection (PFFS). The input features for this procedure 

is the decreasing-order-ranked features according to the separability among groups. 

This separability is identified based on the average distance value calculated for 

every feature in the dataset. Highest average distance values are believed to be 

influential in giving higher classification accuracy. Therefore, the features must be 

ranked in decreasing order (from the highest to lowest average distance) for ease of 

feature selection. This ordering is purposely implemented to ensure features that 

provide larger separability among the existing groups are given the priority to be 

selected first. In this case, the common well known feature selection approaches such 

as the backward or stepwise feature selections are no longer applicable for such data 

ranking. However, if the features are ranked in increasing order, then, the backward 

feature selection can be applied accodingly. 

To be more specific and for ease of feature selection implementation, the rank-and-

percentile form is imposed on the decreasing-order-ranked features. The ranked 

features are ranked again from 1 (the top highest distance in the decreasing-order-

ranked) to the nth (the bottom lowest distance in the decreasing-order-ranked) 

observation, accordingly, with the calculated percentile 100f i
f

  
  

  
, for 

0,1,2,..., 1i n  , where f is the number of fused features, respectively, for each new 

ranked feature. Say, for n=42 features i.e. for the LLDF model, the percentiles for the 

top highest distance, top second highest distance, top third highest distance, exectra, 

are represented by the 100.00%  100P , 97.50%  97.5P , 95.10%  91.5P , respectively. 

The lowest distance is represented by 0.00%  0P . For the implementation of ILDF 

model, the same processes are repeated accordingly. However, the percentile is 
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calculated using the number of features from single sensor,  1,2, ,t p  and 

 1,2, ,n q , for e-tongue and for e-nose, respectively.  

Thus, in order to select a subset of features p from a set of k original features 

 1 2, , , kP p p pP , where p k , the feature selection is performed by adding two 

features simultaneously in each feature subset. These can be described in the 

following order.  

Feature Subset 
Generation 

Number of 
Feature Included Rank[Percentile] Percentile 

Notation 
Subset 1 2 features  1,2 [100.0-97.5]  100.0 97.5

P  

Subset 2 4 features 1,2,3,4 [100.0-92.6]  100.0 92.6
P  

Subset 3 6 features 1,2,3,4,5,6 [100.0-87.8]  100.0 87.8
P  

: : : : 

For the LLDF model, the first subset include two features of percentile  100.0 97.5
P , the 

second subset include other additional two features of percentile  100.0 92.6
P  and 

others. However, for the ILDF model, the inclusion involve only single feature from 

e-tongue and e-nose into the feature subset. Here, the feature selection guarantees the 

inclusion of features from both sensors start from the first feature subset. 

Unfortunately, this is not the case for feature selection in the LLDF model where 

feature with higher separability measure regardless of from which sensor will be 

selected and the inclusion of features equally from both sensors is uncontrollable.        

  In general, PFFS provides a simple and straight forward procedure in selecting the 

potential features. This is because the selection focuses on features with the highest 

separability that are only located in the top few percentiles of the overall ranked 

features. PFFS is also flexible where the recommended percentile to include 
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influential features is up to the researcher‟s preference or intuitive judgement. This 

makes PFFS a heuristic feature selection approach where practical method is 

employed. but it does not guarantee to be optimal or perfect, but sufficient for the 

classification goal. The heuristic method is, however, can be employed to speed up 

the process of finding a satisfactory solution. Moreover, the approach gurantee only 

discriminative features are selected, and the least discriminative features that are 

considered negligible will be discarded without affecting the classification 

performance. 

Eventhough the decision of how many features are supposed to be in a feature subset 

is based on researcher‟s judgement, few conditions can be considered for the 

stopping criteria of the feature search. These conditions are primarily important for 

comparing the performance of the selection criteria either the unbounded or bounded 

Mahalanobis distance. Such conditions include 

i. Univariate and multivariate distances for feature ranking and selected 

feature subset. This condition is useful in identifying which criterion 

would give the best feature ranking and able to recognize discriminant 

features distinctively.  

ii. Discriminative power of the first selected feature subset. This condition 

evaluates the performance of the selected features in the first subset in 

achieving the higher classification accuracy. The higher the classification 

accuracy, the better the discriminative power of the selected features.   

iii. Highest classification accuracy for the first feature subset. Basically, if 

the features selected from the first feature subset produce higher 
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classification accuracy compared to the other criterion, then, the criterion 

is better than the other.    

iv. Maximum convergence of correct classification before deterioration 

based on feature subset. This condition looks for specific feature subset 

that could achieve highest classification accuracy before the classification 

performance deteriorates. The feature subset with less number of features 

but gives higher classification accuracy is considered as the best criterion. 

Taking into considerations the selection procedure and criteria for feature selection, 

the main framework for algorithms of LLDF and ILDF can be illustrated below. 

Determination of the selected percentiles for the LLDF and ILDF models for this 

research were based on the following settings after taking into accout the 

predetermined conditions. 

 

 

 

 

 

Figure 3.4. Proposed Percentiles for the Forward Feature Selection of the LLDF and 
ILDF Models using the Unbounded and Bounded Mahalanobis 
Distances. 

 

Model Selected Percentile & 
Number of Feature (D2) 

Selected Percentile & 
Number of Feature (DA

2) 
Feature 
Source 

LLDF Fusion  100.0 68.2
P  14 features  100.0 68.2

P  14 features 

 

 

ILDF 

 

e-tongue 
 100.0 66.6
P  4 features  

to 
 100.0 44.4
P  6 features 

 100.0 66.6
P  4 features 

to 
 100.0 44.4
P  6 features 

 

e-nose 
 100.0 90.3
P  4 features 

to 
 100.0 83.8
P  6 features 

 100.0 90.3
P  4 features 

to 
 100.0 83.8
P  6 features 
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A. Algorithm of Low Level Data Fusion (LLDF) with Feature Selection   

[Step 1]  

i.  Fuse original data from e-nose and e-tongue.  

ii. Compute the univariate unbounded Mahalanobis distance 2D  and the 

univariate bounded Mahalanobis distance 2
AD  of the fused features which 

then produce distance values  2D
F  and  2F

AD
, respectively. Rank  2D

F  

and  2F
AD

 from the largest to smallest distance values. Filter the ranked 

fused features  2D
F  and  2F

AD
, and select the top 68.2 percentile 

 100.0 68.2
P  of the highest average distance from  2D

F  and  2F
AD

 as the 

subset of potential discriminators for the next step. The selection of 68.2 

percentile is believed to fulfill the suggested four conditions. 

 

[Step 2]  

i. Utilize the subset of discriminators identified in step 1 to find the 

combination of features using  100.0 68.2
P  percentiles forward feature 

selection. 

ii. Calculate the multivariate unbounded Mahalanobis distance 2D  and the 

multivariate bounded Mahalanobis distance 2
AD  for each selected subset.   

iii. Construct a parametric classification rule using selected discriminators and 

training objects.   

iv. Measure classification performance using leave-one-out error rate. 
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B. Algorithm of Intermediate Level Data Fusion (ILDF) with Feature Selection 

[Step 1]   

i. Compute the unbounded Mahalanobis distance 2D  and the bounded 

Mahalanobis distance  2
AD  for each single sensor data of e-tongue (T) and 

e-nose (N), respectively, to generate  2D
T ,  2

AD
T ,  2D

N , and  2
AD

N .  

Rank each  2 2 2 2, , ,  and 
A AD D D D

T T N N  from the largest to smallest distance 

values.  

ii. Fuse the ranked single features of e-tongue and e-nose  2 2, ,
AD D

T T  2D
N , and 

2
AD

N  to get the ranked fused features  2 2 and 
D D

T N and  2 2 and 
A AD D

T N . 

Filter the ranked fused features  2 2 and 
D D

T N  and   2 2 and 
A AD D

T N   and 

select the top 66.6 percentile  100.0 66.6
P  or up to 44.4 percentile  100.0 44.4

P  of 

the highest average distance from  2 2 and 
AD D

T T  and select the top 90.3 

percentile  100.0 90.3
P  or up to 83.8 percentile  100.0 83.8

P  of the highest 

average distance from  2 2 and 
AD D

N N  as the subset of potential 

discriminators for the next step. The selected percentiles either  100.0 90.3
P  or 

 100.0 83.8
P  are considered to satisfy the illustrated conditions.  

 

[Step 2]  

i. Utilize the subset of discriminators identified in step 1 to find the 

combination of features using the  100.0 90.3
P  or  100.0 83.8

P  percentiles 

forward feature selection.  
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ii. Calculate the multivariate unbounded Mahalanobis distance 2D  and the 

multivariate bounded Mahalanobis distance 2
AD  for each selected subset.   

iii. Construct a parametric classification rule using selected discriminators and 

training objects.   

iv.  Measure classification performance using leave-one-out error rate. 

The overall algorithms can be further referred in Figure 3.1. The determination of 

percentile values in selecting the number of features in the LLDF and ILDF models 

were set based on the performance of each of the selected feature subsets. 
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3.3 Univariate Mahalanobis Distance  

Suppose a random matrix for investigation X  and Y  are both partitioned into multi-

group  2G  , i   1,2, ,i g , the ith of which comprises in  rows and 

constitutes a random sample from p and q-variate populations. The matrices denote 

by ilx  and ily  are signals data observed on the kth individual of the ith group 

 1,2, , ; 1,2, , ii g k n   from sensors e-tongue with dimension features 

 1,2, ,t p  and e-nose  1,2, ,n q . Hence, all objects in the multi-groups 

 , 1,2, ,G i i g    can be presented as  ,T T TZ x y  and the fused sensor data 

as  F
TT x y  .  

Then 11 22, , ,
ii i in px x x  and 11 22, , ,

ii i in qy y y  are assumed to be random samples from 

multivariate populations whose mean vectors  il i1 i2 ipμ = x , x ,…, x , 

 il i1 i2 iqμ = y ,y ,…,y  and dispersion matrix ilΣ . Let 
1 1

1 ,
g p

il il
i li

x
n  

 x  

1 1

1 ,
g q

il il
i li

y
n  

 y  
  
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ni
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i
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
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i
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i
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n

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




, 

where  and il ilx y  are the maximum likelihood estimators of il  and ( ) and ( )il ils x s y  

are the unbiased estimators of iΣ  for  1,2, ,i g ,  1,2, ,t p  and 

 1,2, ,n q , respectively.     

The features‟ structure for single and fused sensors data are described as in Table 

3.1. Let begins with univariate Mahalanobis distance 2  and 2
A , being estimated 
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using 2D  and 2
AD .  Selection of features begins by applying the univariate distance 

functions using 2D  and 2
AD  to all available features which contains several groups.  

Table 3.1 

 Illustration of Single Sensor Data and Fused Data  

Group 
(i) 

O
bs

er
va

tio
n 

(k
) 

Fused Features (l) 

1ikX   2ikX   ikpX  1ikY  2ikY    ik p qY


 
e-tongue Data e-nose Data 

1ikX   2ikX   ikpX  1ikY  2ikY   ikqY  

1 1 111x  112x   11px  111y  112y   11qy  

1 2 121x  122x   12 px  121y  122y   12qy  

          
1 n1 11 1nx  

11 2nx   11n px  
11 1ny  

11 2ny   11n qy  

2 1 211x  212x   21px  211y  212y   21qy  

2 2 221x  222x   22 px  221y  222y   22qy  
          

2 n2 22 1nx  
22 2nx   22n px  

22 1ny  
22 2ny   22n qy  

          
g 1 11gx  12gx   1g px  11gy  12gy   1g qy  

g 2 21gx  22gx   2g px  21gy  22gy   2g qy  

          
g ng 1ggnx  2ggnx   ggn px  1ggny  2ggny   ggn qy  

 

For simplicity of showing the 2
gC  pairwise-groups distances per feature, Table 3.2 

represents the combinations of the resulting distances for 2D  and 2
AD . The diagonal 

elements are the distances of the same centroids while either of the pair-wise 

distances on the lower or upper diagonal is useful for the required distance measure. 

In our case, we used the lower diagonal pair-wise groups‟ distances. 
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Table 3.2  

The 2
gC  Pairwise Mahalanobis Distance for Univariate Feature 

Distances for g  groups produce 2
gC  group pairs  9g    

 G1 G2 G3 G4 G5 G6 G7 G8 G9 
G1 0 2

1,2D  2
1,3D  2

1,4D  2
1,5D  2

1,6D  2
1,7D  2

1,8D  2
1,9D  

G2 2
2,1D  0 2

2,3D  2
2,4D  2

2,5D  2
2,6D  2

2,7D  2
2,8D  2

2,9D  
G3 2

3,1D  2
3,2D  0 2

3,4D  2
3,5D  2

3,6D  2
3,7D  2

3,8D  2
3,9D  

G4 2
4,1D  2

3,2D  2
4,3D  0 2

4,5D  2
4,6D  2

4,7D  2
4,8D  2

4,9D  
G5 2

5,1D  2
5,2D  2

5,3D  2
5,4D  0 2

5,6D  2
5,7D  2

5,8D  2
5,9D  

G6 2
6,1D  2

6,2D  2
6,3D  2

6,4D  2
6,5D  0 2

6,7D  2
6,8D  2

6,9D  
G7 2

7,1D  2
7,2D  2

7,3D  2
7,3D  2

7,5D  2
7,6D  0 2

7,8D  2
7,9D  

G8 2
8,1D  2

8,2D  2
8,3D  2

8,4D  2
8,5D  2

8,6D  2
8,7D  0 2

8,9D  
G9 2

9,1D  2
9,2D  2

9,3D  2
9,4D  2

9,5D  2
9,6D  2

9,7D  2
9,8D  0 

 

Equations (3.1) to (3.4) are applied to obtain the estimated pairwise-groups  ,i j  

distances of 2D  and 2
AD , respectively, where  1,2, , ; 1, , 1i g j i g     and 

i j . The calculation of univariate Mahalanobis distance was simplified by equation 

(3.3) where the inverse of ijs  in equation (3.2) is basically the reciprocal of the 

respective common variance. 

   2 1
T

ij i j ij i j
D X - X S X - X                                        (3.1) 

     
1 2

1 1

1 2 2

T T

ik i ik i jk j jk j
k k

ij

n n
X X X X X X X X

n n
 

    


 

 
S                  (3.2) 

 
2

2 i j

ij
ijS


X - X

D                                                 (3.3) 
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2
2

( ) 24
ij

A ij
ij

D
D




D                                                   (3.4) 

The summation of each of the resulting 2
gC  pair-wise distances using equation (3.1) 

divided by 2

gC  gave the average Mahalanobis distance of each evaluated feature. It 

can be simply obtained using equation (3.5) for features 1,2, ,t p , 1,2, ,n q , 

and 1,2, , , f p p q , respectively. The values of 2D  basically gives the  0,  

unbounded Mahalanobis distance. The process was repeated for the entire features of 

interest, independently. 

1
2 2

1 12

1 g g

l ijg
i j i

D
C



  

 D                                                 (3.5) 

1
2 2

( )
1 12

1 g g

A A ijg
i j i

D
C



  

 D                                              (3.6) 

Once the 2
gC  pair-wise distances of 2

ijD  using equation (3.1) were available, each 

element of 2

ijD  was computed using equation (3.4) which was originally derived by 

equation (2.16), where equal a priori probabilities  1 2 0.5π π   were applied. Then 

only the average distance for the second criterion that is the  0,1  bounded 

Mahalanobis distance value is obtained. The respective calculation for the average 

bounded Mahalanobis distance is as in equation (3.6). Such process was repeated for 

the entire features of interest. The maximum average distance values of 2D  and 2

AD   

for each feature are then ranked from the largest to smallest. The objective of 

performing univariate Mahalanobis distance is to select the best feature set ranked in 

the percentiles of  100.0 90.3
P ,  100.0 83.8

P  or up to  100.0 68.2
P of the largest ranked 
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distance of the LLDF. While the percentiles of  100.0 90.3
P  up  100.0 83.8

P  for e-nose 

features and  100.0 66.6
P  up to  100.0 44.4

P  for e-tongue features for the ILDF model as 

the input for the next strategy.  

3.4 Multivariate Mahalanobis Distance  

The next search for maximum average distance for subset of features of t p , n q  

or f p q   selected from the specified percentiles of fused and single ranked 

features in the previous step is described using the multivariate Mahalanobis 

distance. The quadratic form between the centroids of those features is given by 

equation (3.7) where  1 2, , ,il i i ilx x x  and  1 2, , ,jl j j jlx x x  represent the 

vector mean values for the multi-groups of  1,2, , ; 1, , 1i g j i g    , i j , 

 or  or l t n f , and 1

ijl

S  is the inverse of the pooled covariance matrix for the features 

1,2, ,t p , 1,2, ,n q , and 1,2, , , f p p q , respectively for e-tongue, 

e-nose and fusion.  

   2 1
T

ijl il jl ijl il jl
D X - X S X - X                                        (3.7) 

Unlike in the first stage where features were assumed to be independent, features 

were not assumed to be independent for the second stage. This was to enable 

comparison between 2D  and 2

AD  in their ranking of discriminant features. In the 

second stage, the output of the unbounded Mahalanobis distance 2

ijlD  was our interest 

and the 2
gC  pair-wise distances for the aforementioned percentiles of the specified 

subset of features such as in Table 3.2 were obtained. Next, the bounded 

Mahalanobis distance 2

AD  were obtained using equation (3.4) where we recalculated 
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each element of 2

ijlD  with equal a priori probabilities. Then the average distance for 

the criteria of the unbounded and bounded Mahalanobis distance values were 

obtained. The findings of the best feature subset within the selected percentiles were 

embedded with the classification process where the performance of selected feature 

subsets was compared based on the perspective of bounded and unbounded criteria.  

For the calculation of the proposed Mahalanobis distances, this study modified the 

original R-code of the pair-wise Mahalanobis distances for multi-grouped data 

available in package HDMD version 1.2 (26-02-2013) of Statistical Analysis Tools 

for High Dimension Molecular Data by McFerrin and McFerrin (2013). The 

modified code is available in Appendix A. Several reasons to modify the original R- 

code are as follows. 

i. The original R-code was developed to fulfill the high dimensional 

molecular data. In contrast, this deals with sensory data. Several 

attempts were executed with the HDMD using datasets in this study, 

but failed due to the input covariance matrix used. The input data 

for the original R-code is either the covariance or correlation matrix. 

However, this study uses the inverse covariance matrix. 

ii. The original HDMD only calculates the unbounded Mahalanobis 

distance. However, this study requires both calculations of the 

unbounded and bounded Mahalanobis distances. Thus, to fulfill the 

calculations requirement of the proposed unbounded and bounded 

Mahalanobis distances, the original code needs to be modified 

accordingly. 
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iii. This study has earned the permission from the authors (McFerrin & 

McFerrin, 2013) to modify the original R-code so that the 

computation of the pair-wise unbounded and bounded Mahalanobis 

distances can be implemented. 

iv. Ultimately, the main focus of this study was to perform selection of 

discriminative features subsets that produces high classification 

accuracy. In specific, this phase was involved in the implementation 

of the univariate Mahalanobis distance which entails many 

processes. However, the calculation of the multivariate Mahalanobis 

distance is to measure the average distance among multi-group data 

which consider more than one feature. Thus, the average distance 

obtained from the multivariate Mahalanobis distance is not as 

significant as the average distance of the univariate distance. 

Finally, the function of the univariate and multivariate Mahalanobis distance can be 

highlighted by emphasizing the output produced. By performing the univariate 

Mahalanobis distance, a thorough evaluation of all features was made based on the 

measure of separability. Feature with higher average distance demonstrates large 

separability. As a result, all available features in the dataset were ranked according to 

the separability scored. The ranked features are the input for the classification 

process. Unlike the univariate case, multivariate Mahalanobis distance was applied to 

measure the average distance for more than one feature. The calculation involved in 

the feature subsets based on the selected percentiles. Here, the interest was to show 

the separability of the selected features in the feature subsets.        
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3.5 Bounded and Unbounded Mahalanobis Distances as Criteria for 

Discriminant Features 

Total distance for the 2
gC  pair-wise groups of the first criterion that was the  

unbounded Mahalanobis 2

ijD  describes in Table 3.2, can be obtained by adding all 

the multi-group distance combinations of  1,2, , ; 1, , 1i g j i g     where 

i j . In our case, lower diagonal element of distance of Table 3.2 was summed for 

the calculation purposes. Generally, the summation of the lower diagonal divided by 

the value of 2

gC  gives the average of Mahalanobis distance of each evaluated feature 

or feature subset. In this process, the expected value approach was used to obtain the 

average distance, and the indication of good feature or subset of features was the 

maximum average value. Basically it takes value in the range  0,  with higher 

values represents greater separability of group centroids.  

In the case of multi-groups classification problems, when the expected value 

approach was applied and the pair-wise groups distance was adopted, serious 

difficulty occurred. For example, in a set of g-groups problem where 2g   , if one 

of the lower diagonal elements of 2
ijD  is exceptionally large, it would lead to a high 

value of average distance. This would then leads to failure of representing the 

average separability of the g groups. Thus, by transforming the boundless distance 

values produced by 2  using 2
A  before the averaging process would overcome the 

problem. The transformed value lies within a finite range 0 to1, known as bounded 

Mahalanobis distance. The bounded Mahalanobis distance  2 0,1A   corresponds to 

a normalizing transformation on  2 0,   . The normalization process was derived 
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from the distribution free of the relationship between 2  and the upper bounded 

Bayesian error probability, eP , as outlined in equation (2.16) in reported review in 

section 2.2.2.2.  

Since 2
A  is a function 2 , and 2  can be solved in terms of 2

A , the distribution 

free upper bound (2.18) which was expressed in terms of 2  can be expressed by 

2
A . This implies that the error bound associated with 2

A  was the same as that 

associated with 2 . As 2  increases unboundedly, 2
A  increases upper bounded by 

1. Therefore, because of the boundedness nature, 2
A  is expected to perform better 

than 2  in a multi-groups classification problem (Ray & Turner, 1992).   

3.6 Proposed Discriminant Analysis for Low Level Data Fusion  

The constructions of the full sequence of PFFS were completed by joining all the 

pieces of the proposed strategies begin with the LLDF model. For the LLDF model, 

fused features were the input. Once feature and/or subset of features with greater 

separability between groups‟ centroids are obtained, next step to perform 

classification is continued.  Feature and/or subset of features with the largest average 

distance among multi-groups would lead to accurate group recognition during 

classification process. It is expected that the higher the average distance, the better 

the accuracy of classification rule. In this study, selection of features was 

implemented using percentile forward selection approach. The process begins with 

no discriminator in a classification rule. Then, the best potential discriminator with 

the maximum criterion value approach (largest average distance) from the percentile 

ranking of the fused features 2
100.0 97.5 91.5 0.0

, , , ,
D

   P P P PF f f f f  and 
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2
100.0 97.5 95.1 0.0

, , , ,
AD

   P P P PF f f f f  is selected for both criterion 2  and 2
A , 

respectively.  

This process is described in Algorithms 3.1 and 3.2. Since 
100.0

fP  was considered the 

best feature for its greatest separability between all the pair-wise multi-groups 

centroids, the first step was compulsory to begin with 
100.0

fP . The next selection of 

discriminator was based on the remaining  2
100.0D

f PF . The second discriminator 

was paired with 
100.0

fP  that satisfy the condition i.e. the next largest average distance 

from the paired discriminators. The processes continue until all respective features in 

2
100.0 97.5 91.5 0.0

, , , ,
D

   P P P PF f f f f  and 2
100.0 97.5 95.1 0.0

, , , ,
AD

   P P P PF f f f f , but 

limited to cumulative  100.0 68.2
P  were selected as subset of discriminators for the 

development of classification rule and error assessment.  

The implementation of PFFS using separability criterion in this fashion was expected 

to overcome the nesting problem since focus was given to the top highest percentiles 

of features with the largest average distance for both unbounded and bounded 

Mahalanobis distances, 2  and 2
A , respectively. In addition, since only efficient 

features were included, this approach was computationally effective because 

inefficient features were not assessed in the search by 

 2
100.0 97.5 95.1 68.2D

f f f f   P P P PF , and  2
100.0 97.5 95.1 68.2AD

f f f f   P P P PF . 

Furthermore, the search does not require any stopping rule to be applied which 

simplified the implementation process. 
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A simple and straight forward approach to measure accuracy of the selected rule is 

the apparent error rate (AER). Known to be suitable for any type of classification and 

does not require any knowledge of the parent population. It measures how effective 

the rule was in allocating objects to its correct groups. The proportion of objects in 

the training sample that was misclassified by the applied rule was obtained from the 

confusion matrix table. As criticized for being bias, the apparent error rate can be 

improved through a resampling procedure such as leave-one-out. Leave-one-out 

attempts to remove the bias of the apparent error rate and mostly applied for small 

sample size. It uses an object as a test set and the remaining  1n  to build a rule. 

The advantage of this approach is that the size of training set is almost as large as the 

entire data set in each repetition and suitable for small data set. The process of these 

steps is describes in the following steps: 

i. omit an object k from sample in turn, for 1,2, , ik n  where  

1,2, ,i g  and 1 2 gn n n n    ,   

ii. based on the remaining objects,  1n , use the forward selection to select 

l from the original  F
TT x y   fused features, 

iii. construct a classification rule using those selected l features 

(discriminators) and then  1n  training objects, 

iv. classify the omitted object k using the corresponding l discriminators, and 

v. once all objects have been taken out in turn, compute the proportion of 

misclassified object. 

The proposed strategy to perform discriminant analysis was based on the linear 

discriminant analysis (LDA) for the classification purposes. The cross validation 
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using the leave-one-out approach was implemented in the classification rule using 

the option CV=TRUE in the following function fit <- lda(Group ~ 

feature1 + feature2 + … + featureN,data=data.file, 

na.action= "na.omit", CV=TRUE). The algorithms for fused feature 

ranking using the unbounded and bounded Mahalanobis distances are outlined in 

Algorithms 3.1 and 3.2, respectively. And the overall steps of the discriminant 

analysis of the LLDF model based on the unbounded and bounded Mahalanobis 

distances are illustrated in Figures 3.6 and 3.7, respectively. 
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Algorithm 3.1  
Fused Feature Ranking for Unbounded 0,   Mahalanobis Distance [ 2D ] for 

Low Level Data Fusion ~ Strategy 1 
 

 Input :  1 2 1 2Z , , , , , , ,p p qx x x y y y 
     - original fused feature set 

Output : Ranking criterion function  100.0 68.2
P  and ranked fused features 

2
100.0 97.5 95.1 0.0

, , , ,
D

   P P P PF f f f f  

 
Step 1 : Initialize 2 1 2, , , p qD 

   F f f f   

 Step 2 :  For each feature  , p qX Y Z    

i. Calculate the Mahalanobis distance for 2
gC  pair-wise 

groups using criterion (3.3) for each fused features in 
p qZ    

    
 

2

2 , 1,2, , ; 1, , 1i j

ij
ij

i g j i g
S

    
X - X

D             

ii. Calculate the average distance for 2
gC  pair-wise 

groups using criterion (3.5) for each fused features in 
p qZ   

1
2 2

1 12

1 g g

ij ijg
i j i

D
C



  

 D  

iii. Calculate the average distance for each fused features 

in p qZ   by  obtaining 2

1
f

p q

l l
l

D




  where 

1,2, ,l p q    

iv. Store lf  into  2D
F   

Step 3 : End of for loop 
Step 4 :  Rank feature  , p qX Y Z   (from largest to smallest values) 

based on 2 1 2, , ,F f f f p qD 
     

Step 5 : Filter 2 1 2, , ,F f f f p qD 
     to keep only first  100.0 68.2

P  

of 2
100.0 97.5 95.1 0.0

, , , ,
D

   P P P PF f f f f  for the next feature 

subset selection   



 

117 

 

Algorithm 3.2  
Fused Feature Ranking for Bounded  0,1  Mahalanobis Distance [ 2

AD ] for Low 
Level Data Fusion ~ Strategy 1 

 
 Input :  1 2 1 2Z , , , , , , ,p p qx x x y y y 

     - original fused feature set 

Output : Ranking criterion function  100.0 68.2
P  and ranked fused features 

2
100.0 97.5 95.1 0.0

, , , ,
AD

   P P P PF f f f f  

 
Step 1 : Initialize 2 1 2, , , p qD 

   F f f f  

 Step 2 :  For each feature  , p qX Y Z    

i. Calculate the Mahalanobis distance for 2
gC  pair-wise 

groups using criterion (3.4) with equal a priori 
probability for each fused features in p qZ   

2
2

( ) 2
, 1,2, , ; 1, , 1

4
ij

A ij
ij

D
i g j i g

D
    


D

 

ii. Calculate the average distance of 2
gC  pair-wise groups 

using criterion (3.6) for each fused features in p qZ   
1

2 2

1 12

1 g g

A Aijg
i j i

D D
C



  

   

iii. Calculate the average distance for each fused features 

in p qZ   by obtaining 2

1
f

p q

l Al
l

D




  where 

1,2, ,l p q   

iv. Store f l  into  2F
AD
   

Step 3 : End of for loop 
Step 4 :  Rank feature  , p qX Y Z   (from largest to smallest values) 

based on 2 1 2, , ,
A

p qD 
   F f f f  

Step 5 : Filter 2 1 2, , ,
A

p qD 
   F f f f  to keep only first  100.0 68.2

P  of 

2
100.0 97.5 95.1 0.0

, , , ,
AD

   P P P PF f f f f  for the next feature subset 

selection 
    

 

 



 

118 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6. Flow Chart of Discriminant Analysis for the LLDF Model (Criterion 2D ) 
End 

For     
k = 1, 2, …, n 

in turn 
Test Object, k 

Training Object, n - 1 

Estimate Group for k 

Classifier Evaluation  
If k = n 

If k ≠ n 

Multivariate Mahalanobis Distance 
Compute Average Distance of  2

gC  Group Pairs  2D  
 
 

Percentile Forward Feature Selection ~  100.0 68.2
P    

 

Start 

For x yZ       
f = 1, 2,…, p+q 

Fused Signals 

 e-nose + e-tongue data 

1 2 1 2Z , , , , , , ,p p qx x x y y y 
   

 

Univariate Mahalanobis Distance 
Compute Average Distance of  2

gC  Group Pairs  2D  
 
 

Rank Features 2D
F ,  f = 1, 2, …, p,…, p+q 

2
100.0 97.5 95.1 0.0

, , , ,
D

   P P P PF f f f f  
                                          

Parametric Classifier Construction 
 

2
100 96.7 93.5 68.2

, , , ,
D

   P P P PF f f f f  
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Figure 3.7. Flow Chart of Discriminant Analysis for the LLDF Model (Criterion 2
AD ) 

End 

For     
k = 1, 2, …, n 

in turn 
Test Object, k 

Training Object, n - 1 

Estimate Group for k 

Classifier Evaluation  
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If k ≠ n 

Multivariate Mahalanobis Distance 
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gC  Group Pairs  2
AD  

 
 

Percentile Forward Feature Selection ~  100.0 68.2
P    

 

Start 
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1 2 1 2Z , , , , , , ,p p qx x x y y y 
   

 

Univariate Mahalanobis Distance 
Compute Average Distance of  2

gC  Group Pairs  2
AD  

 
 

Rank Features 2
AD

F ,  f = 1, 2, …, p,…, p+q 

2
100.0 97.5 95.1 0.0

, , , ,
AD

   P P P PF f f f f  

 
                                          

Parametric Classifier Construction 
 

2
100 96.7 93.5 68.2

, , , ,
AD

   P P P PF f f f f  



 

120 

 

3.7 Proposed Discriminant Analysis for Intermediate Level Data Fusion 

Next, the construction of the whole sequence of PFFS and other proposed strategies 

for the ILDF model. The strategies of this model were similar to the LLDF model, 

but the difference is the way the features being fused. Unlike the previous model 

where fusion of features begun first, for the intermediate level, fusion takes place 

after the ranking and filtering procedures. The procedure is described in step 1 for the 

second model in previous section 3.1, as well as Algorithms 3.3 and 3.4. Evaluation 

and calculation of the criteria 2  and 2
A , were implemented for each features from e-

tongue, 1 2, , , pX x x x     and e-nose, 1 2, , , qY y y y    , separately. Once the 

ranking was done, the evaluation of subset features was performed by the inclusion 

of top best  100.0 90.3
P  up to  100.0 44.4

P  of each sensor based on the maximum expected 

value of average distance.  

The top best features of e-tongue,  100.0 66.6
P  to  100.0 44.4

P 2 
D

T  and e-nose,  100.0 90.3
P  

to  100.0 83.8
P 2D

N  were fused to form fusion of filtered ranking features 

2 2 2100.0 44.4 100.0 83.8( ) , ( )
D D D

T N 
    F P P  for criterion 2 . While best features of 

e-tongue,  100.0 66.6
P  to  100.0 44.4

P 2 
AD

T  and e-nose,  100.0 90.3
P  or  100.0 83.8

P 2
AD

N  are 

then fused for criterion 2
A  resulting fusion of filtered ranking features 

2 2 2100.0 44.4 100.0 83.8( ) , ( )
A A AD D D

T N 
   
 

F P P . Using this model, features from either 

of the e-tongue or e-nose have the equal chances to be chosen for the first and the 

following search.  
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The best potential discriminator 21 F
D

f   and 21 F
AD

f   with the maximum criteria 

of 2  and 2
A  from 2 2 2100.0 44.4 100.0 83.8( ) , ( )

D D D
T N 

    F P P  and 

2 2 2100.0 44.4 100.0 83.8( ) , ( )
A A AD D D

T N 
   
 

F P P , respectively, were selected. This process 

is previously outlined in strategy 1 of the intermediate level model as well as 

Algorithms 3.3 and 3.4. The next selection of discriminator was based on the 

remaining   2 2 2100.0 100.0D D D
f T or f N  F . The second discriminator was paired 

with the next selected 2Fl D
f   that maximize the criterion i.e. the next largest 

average distance from the paired discriminators. The same procedure was repeated 

for the second criterion 2
A .  

The processes continued until all features in 

2 2 2100.0 44.4 100.0 83.8( ) , ( )
D D D

T N 
    F P P  and 2 2100.0 44.4 100.0 83.8( ) , ( )

A AD D
T 

 


F P P  

2
AD

N 


 were selected as subset of discriminators for the development of 

classification rule and error assessment. The implementation of percentile forward 

selection using separability criterion in this fashion was expected to overcome the 

nesting problem for the intermediate level data fusion since focus was given to the 

best features with the largest average distance for both unbounded and bounded 

Mahalanobis distances, 2D  and 2
AD , respectively. In addition, since only efficient 

features were included, this approach is computationally effective because inefficient 

features were not assessed in the search by     2 2 2100.0 44.4D D D
 F F P F P  and 

    2 2 2100.0 83.8
A A AD D D
 F F P F P , for e-tongue and e-nose, respectively. 

Furthermore, the search does not require any stopping rule to be applied taking into 
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consideration of predetermined conditions, which simplified the implementation 

process.       

The rest of the procedures that involve the leave-one-out error estimation and the 

implementation of parametric rule based on LDA similar to the low level data fusion 

model were repeated for the intermediate level model. The algorithms for single 

feature ranking using the unbounded and bounded Mahalanobis distances are outline 

in Algorithms 3.3 and 3.4, respectively. While the overall steps of the discriminant 

analysis of the ILDF model based on the unbounded and bounded Mahalanobis 

distances are illustrated in Figures 3.8 and 3.9, respectively.   

Algorithm 3.3  
Single Feature Ranking for Unbounded 0,   Mahalanobis Distance [ 2D ] for 

Intermediate Level Data Fusion ~ Strategy 1 
 

Input : 1 2, , , pX x x x     & 1 2, , , qY y y y     - original single 

sensor feature set 
Output : Ranking criterion function,  100.0 44.4 100.0 83.8 or 

 
P P ; fused single 

feature ranking from e-tongue and e-nose of  

2 2 2100.0 44.4 100.0 83.8( ) , ( )
D D D

T N 
    F P P  

 
Step 1 : Initialize  2D

T   &  2D
N   

 Step 2 :  For each feature kx X  & ky Y  

i. Calculate the Mahalanobis distance for 2
gC  pair-wise 

groups using criterion (3.3) for each features 

1 2, , , pX x x x      and 1 2, , , qY y y y     

     

 
2

2 , 1,2, , ; 1, , 1i j
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ii. Calculate the average distance for 2
gC  pair-wise 

groups using criterion (3.5) for each features  X   and 
Y  

 
1

2 2

1 12

1 g g

ij ijg
i j i

D
C



  

 D  

 

iii.  Calculate the average distance 2

1
( )

p

l l
l

D X D


  and 

2

1
( )

q

l l
l

D Y D


 , for e-tongue and e-nose sensors, 

respectively. 
iv. Store ( )lD X  and ( )lD Y  into  2D

T   &  2D
N   

Step 3 : End of for loop 
Step 4 :  Rank feature  2D

T   &  2D
N   (from largest to smallest)  

Step 5 :  Filter  2D
T   &  2D

N   to keep only first 

 100.0 44.4P 2 
D

T  and  100.0 83.8P 2D
N , respectively 

Step 6 : Fused  100.0 44.4P 2 
D

T  and  100.0 83.8P 2D
N  to produce 

2 2100.0 44.4 100.0 83.8( ) , ( )
D D

T 
 F P P  2D

N    

 
 
 

Algorithm 3.4 
Single Feature Ranking for Bounded  0,1  Mahalanobis Distance [ 2

AD ] for 
Intermediate Level Data Fusion ~ Strategy 1 

 
 

Input : 1 2, , , pX x x x     & 1 2, , , qY y y y     - original single 

sensor feature set 
Output : Ranking criterions function,  100.0 44.4 100.0 83.8 or 

 
P P ; fused single 

feature ranking from e-tongue and e-nose of  

2 2100.0 44.4 100.0 83.8( ) , ( )
A AD D

T 
 


F P P 2
AD

N 


 

 
Step 1 : Initialize  2D

T   &  2D
N   

 Step 2 :  For each feature kx X  & ky Y  

i. Calculate the Mahalanobis distance for 2
gC  pair-wise 

groups using criterion (3.4) with equal a priori 



 

124 

 

probability for each features 1 2, , , pX x x x      and 

1 2, , , qY y y y     
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ii. Calculate the average distance of 2
gC  pair-wise groups 

using criterion (3.6) for each features 
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respectively. 
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Figure 3.8. Flow Chart of Discriminant Analysis for the ILDF Model (Criterion 2D ) 
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Figure 3.9. Flow Chart of Discriminant Analysis for the ILDF Model (Criterion 2
AD ) 
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3.8 Applications to Real Data 

The secondary data applied for this study was obtained from the Centre of 

Excellence for Advanced Sensor Technology (CEASTech), University Malaysia 

Perlis. For the purpose of consistency issue in comparing the performance of the 

feature selection algorithms and classification accuracies, ten datasets of different 

brands of pure Tualang honey were chosen. All the pure Tualang honey brands were 

purchased from the local market namely Agromas (AG), As-Syifa (AS), Syair Timur 

(ST), Tualang 3 (T3), Tayyibah (T), Tualang King (TK), Tualang TLH (TLH), 

Tualang Napis (TN), Wild Tualang (WT), and Yubalam Bahtera (YB). For each pure 

honey type, three bottles of three different batches of honey were purchased. And 

from each bottle, three samples of 5 ml honey were taken for experiments following 

the e-tongue and e-nose procedures, hence produced nine samples for each pure 

honey.  

In addition, for each pure honey dataset, several adulterated honey samples which 

was mixed with different percentages (20%, 40%, 60% and 80%) of beetroot sugar 

(BS) and cane sugar (CS) were also prepared. The BS and CS were imported from 

Germany and United Kingdom, respectively. The adulterated samples went through 

similar e-tongue and e-nose procedures as the experiments of pure honey. Briefly, as 

a result of the experiments using the e-tongue and e-nose sensors, each dataset 

contains 27 observations of pure honey type, nine observations of pure beetroot, nine 

observations of pure cane sugar, nine observations of four different adulterated 

honeys concentrations (i.e. 20%, 40%, 60% and 80%) with BS and nine observations 

of four different adulterated honeys concentrations (i.e. 20%, 40%, 60% and 80%) 

with CS. These made up each honey dataset with 117 observations from 11 groups.   
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Hence, overall, we have ten datasets of pure Tualang honey and its adulterated 

solutions. Table 3.3 illustrates an example of a dataset for Agromas (AG) and its 

adulterated solution based on the abovementioned mixture ratios which made the 

composition of 11 groups. The rest of the pure Tualang honey brand datasets were 

organized similar to AG as in Table 3.3. The procedure of collecting data using e-

tongue and e-nose devices were performed independently. The dimensions for e-

tongue and e-nose have been described in detail in sections 3.2 and Table 3.1.   

Table 3.3 

 Description of AG Tualang Honey Dataset with Adulterated Concentrations 

Label (Pure Honey + 
Sugar Solution) 

Grouping 
(Ratio for Pure Honey : 

Sugar Solution) 
 

No. of 
Observation 

AG 

BS 

CS 

AGBS20 

AGBS40 

AGBS60 

AGBS80 

AGCS20 

AGCS40 

AGCS60 

AGCS80 

100% Pure honey 

100% BS 

100% CS 

20% BS + 80% Pure honey 

40% BS + 60% Pure honey 

60% BS + 40% Pure honey 

80% BS + 20% Pure honey 

20% CS + 80% Pure honey 

40% CS + 60% Pure honey 

60% CS + 40% Pure honey 

80% CS + 20% Pure honey 

27 

9 

9 

9 

9 

9 

9 

9 

9 

9 

9 

Total 11 117 
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3.8.1 Setup and Measurement for E-Tongue 

The chalcogenide-based potentiometric e-tongue was made up of eight distinct ion-

selective sensors from Sensor Systems (St. Petersburg, Russia). The potentiometric 

sensors used in this experiment were as follows.  

Sensor Label Description 

Fe3+ Ion-selective sensor for Iron ions 

Cd2+ Ion-selective sensor for Cadmium  ions 

Cu2+ Ion-selective sensor for Copper ions 

Hg2+ Ion-selective sensor for Mercury ions 

Ti+ Ion-selective sensor for Titanium ions 

S2- Ion-selective sensor for Sulfur ions 

Cr4+ Ion-selective sensor for Chromium ions 

Ag+ Ion-selective sensor for Silver ions 

 

The e-tongue system was implemented by arranging an array of potentiometric 

sensors around the reference, pH and ORP probes. Each sensor output was connected 

to the analogue input of a data acquisition board (NI USB-6008) from National 

Instruments (Austin TX, USA). A 5% (w/v) solution of honey in distilled water was 

prepared and stirred for three minutes at 1,000 rpm before making any 

measurements. Each sample was replicated five times. For each measurement, the e-

tongue was steeped simultaneously and left over for five minutes, and the potential 

readings were recorded for the whole duration. After each sampling, the e-tongue 

was dipped for one minute in 10% ethanol, stirred at 400 rpm and rinsed twice using 

distilled water (stirred at 400 rpm for two minutes) to remove any sticky residues 

from previous samples sticking on the sensor surface to avoid contaminating the next 

sample. 
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3.8.2 Setup and Measurement for E-Nose 

The Cyranose320 (e-nose) from Smith DetectionTM which uses 32 non-selective 

sensors of different types of polymer matrix blended with carbon black was 

employed. The combination of these 32 sensors as an array allows the qualitative and 

capable of performing quantitative assessments of complex solutions. Each sample 

was drawn from a bottle using 10ml syringe and kept in a 13 x 100 mm test tube and 

seal with a silicone stopper. Each sample was replicated four times. Before 

measurement, each sample was placed in a heater block and heat up for 10 minutes 

to generate sufficient headspace volatiles. The temperature of sample was controlled 

at 50  °C during the headspace collection. 

Preliminary experiments were performed to determine the optimal experimental 

setup for the purging, baseline purge and sample draw durations. Ten seconds 

baseline purge with 30 seconds sample draw produced an optimal result (result is not 

shown). Baseline purge was set longer to ensure residual gases were properly 

removed since all the samples are in a liquid form and contains moisture. The pump 

setting was set to medium speed during sample draw. The filter used is made up of 

activated carbon granules and has large surface area which is effective to remove a 

wide range of volatile organic compounds and moisture in the ambient air. The 

experiment was carried out using e-nose on the honey samples. 

 

 

 

 

 

 Cycle Time (s) Pump Speed 

Sampling 

Setting 

Baseline Purge 10 120 mL/min 

Sample Draw 30 120 mL/min 

Idle Time 3 - 

Air Intake Purge 80 160 mL/min 
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3.8.3 Data Pre-Processing 

The fractional measurement method is essential when using a multi-modalities 

sensor fusion. This technique is often known as baseline manipulation and was 

applied to pre-process the data of both modalities. The maximum sensor response, St 

is subtracted from the baseline, S0 and then divided again by the S0. The formula for 

this dimensionless and normalized Sfrac, is determined as Sfrac = [St – S0]/S0. This 

gives a unit response for each sensor array output with respect to the baseline, which 

compensates for sensors that have intrinsically large varying response levels. It can 

also further minimize the effect of any temperature, humidity and temporal drifts.  

The data from different modalities were processed separately and all sensors were 

used in this analysis. In the case of the e-nose, S0 is the minimum value taken during 

the baseline purge with ambient air and St was measured during the sample draw. 

Each sampling cycle was repeated three times and the average was obtained for the 

four replicated samples. For the e-tongue measurements, S0 (baseline reading) is the 

average reading of distilled water, while St is the sensor reading when steeped in the 

solution. The steeping cycle was repeated three times for each sample and the 

average was obtained for each five of the replicated samples.  

Each Sfrac data point from each e-nose and e-tongue sensor formed the Sfrac matrix. 

This Sfrac matrix was processed separately and scaled using z-score (Sfrac,1) to zero 

mean and one standard deviation (taken from MATLAB statistical toolbox). This is 

to ensure that all sensor responses were commensurate and no particular sensor 

dominates the results.  
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3.8.4 Initial Multivariate Data Analysis 

Some preliminary data analyses were performed on all the collected datasets before 

further discriminant analyses were done. The analyses were purposesly implemented 

to gain some information about the structure of the groups, and to determine whether 

the samples fulfill the requirements of the selected classification rule. It includes the 

multivariate normality test, homogeneity of the variance covariance matrices, and the 

multicolinearity among features. Since all the features are in continuous form, the 

testing processes were implemented straightforwardly. The only challenge emerged 

was the small sample size for each multi-group factors compared to the number of 

features which creates high dimensional data  n p  for both sensors.  

It is important to know whether the investigated datasets is following multivariate 

normal for the optimal parametric rule is applied correctly. Otherwise, nonparametric 

rule may be more appropriate. Therefore, it will be worthwhile to perform some 

investigations on the selected datasets. For the multivariate normality assumption, 

data were tested univariately and multivariately. The univariate test for each group 

was performed separately using the Shapiro Wilk test procedure which is suitable for 

a sample less than 50 objects. The tested j  continuous variables 

 1, , ; 1, ,ijx j p q i g    is said to have a normal distribution if the obtained p-

value is greater than a predefined type I error,   i.e. 0.05  . The tested 

hypotheses are as follows: 

0 :H  The data is from a normally distributed population  

1 :H  The data is not from a normally distributed population  

The test was carried out for all the available datasets with the following R routine:  
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variable <- colnames(DATA)[c(2:11)]  

res <- vector("list", length(variable)) 

for (i in 1:length(variable))  

{ 

res[[i]] <- lapply(split(DATA[,variable[i]] ,DATA$Group),   

shapiro.test) 

} 

The multivariate normality test based on the kurtosis and skewness, as well as the Q-

Q plot can be performed using the well known Mardia multivariate normality test. 

Unfortunately, Mardia procedure failed because the requirement for the inversion of 

sample covariance matrices was not fulfilled. A problem with high dimensional data 

which was the case for both e-tongue and e-nose data was the nonsingular estimate 

for the covariance matrix. Since all the available multivariates normality tests 

required the inversion covariance matrices, a method of nonparametric inference for 

multivariate data was applied.  

The nonparametric model underlying the R package npmv introduced by Ellis, 

Burchett, Harrar, & Bathke, (2017) simply stated that the multivariate observations 

vectors ijX are independent and within the same groups, they follow the same p-

variate distribution. Typical global statistical hypotheses were “Are the g samples 

from the same population (multivariate distribution)?”  

# Load required packages 'npv' 

library(npmv) 

nonpartest(var1|var2|var3|…|varp~Group,DATA,permreps=1000) 

 

Another test of homogeneity of the variance covariance matrices was also conducted 

to check whether the groups fulfilled the requirement of having equal covariance 

matrix  . The hypotheses to be tested are 0 1: gH         against 

1 : i jH   for at least one i j    . The common test that can be used to test for 
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equality of covariance matrices is the Box‟s M-test. Unfortunately, the test 

approximation works well only if each sample size exceeds 20 and if p and g do not 

exceed 5.  Since the datasets contain unequal group sizes with 9n   and 27n  , 

with number of groups of eleven, the test were carried out using the nonparametric 

approaches. The test called the Fligner-Killeen test was performed based on the 

median of features for the null hypothesis is that the variances in each of the groups 

(samples) are the same. The R routine is available in stats package as follows:    

# Load required packages 'stats' 

library(stats) 

# Specify data 

testdata <- as.data.frame([DATA,3:13]) 

# Load required packages 'car' and 'coin' 

library(coin) 

test.var1 <- fligner.test(var1 ~ Group, data = testdata) 

: 

: 

Test.varp <- fligner.test(varp ~ Group, data = testdata) 

 

 

Finally, multiple correlation t-tests from a correlation matrix were also performed using R 

package „biotools‟. The following results (for one sample data) were among the outputs and 

plots for all the tests performed on all ten datasets in hand. 

3.9 Conclusion 

This chapter describes the methodology to perform percentile forward feature 

selection for the LLDF and ILDF model. Four main algorithms were proposed for 

the models. The unbounded and bounded Mahalanobis distances to be applied have 

been discussed in details in terms of its computation to get the average pairwise 

distances for the criteria. Distinctions between the univariate Mahalanobis distance 

and multivariate Mahalanobis distance were also discussed. The proposed algorithms 

to implement the fused feature ranking and the single feature ranking for the 
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unbounded  2D  and bounded  2
AD   distances, respectively, for the LLDF and 

ILDF combining the proposed two strategies were also made. The overall processes 

of the discriminant analysis using the four algorithms are available in Figures 3.6, 

3.7, 3.8 and 3.9. And finally, the ten datasets of the adulterated honey that were 

tested using each of the algorithms are described. The next chapter illustrates the 

findings of all the study objectives using the proposed algorithms and discriminant 

analyses.       
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CHAPTER FOUR 

RESULT AND DISCUSSION 

4.1 Introduction 

This chapter presents the results of some investigations on the proposed strategies of 

percentiles forward feature selection for discriminant analysis of LLDF and ILDF 

fusion models. The search for discriminative features for both fusion models were 

justified using the bounded  0,1  Mahalanobis distance  2
A  that is believed can 

overcome some weaknesses of the conventional method of unbounded 0,    

Mahalanobis distance  2 , or it performes at least as good as the former one.  To 

verify this claim, the explorations were performed following the seven research 

objectives which include:  

i. to develop univariate feature selection algorithms using the unbounded 

Mahalanobis distance  2  and bounded Mahalanobis distance  2

A   

for the LLDF and ILDF models, 

ii. to develop multivariate feature selection algorithms using the unbounded 

Mahalanobis distance  2  and bounded Mahalanobis distance  2

A  for 

the LLDF and ILDF models, 

iii. to construct the parametric classification rules based on the percentile 

forward feature selection for each of the developed algorithms in 

objective (i) and objective (ii), and  
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iv. to evaluate the performance of the constructed parametric classification 

rules. 

In order to achieve these objectives, investigations were conducted using ten 

different datasets of honey that were described earlier in section 3.8. Even though the 

setting of each of the dataset was almost the same, the repetitive process of the 

proposed feature selection was hoped to rationalize the potential of the bounded 

Mahalanobis distance over the unbounded version especially in selecting the 

discriminative features that lead to better classification performance. Findings are 

elaborated based on the LLDF model (sections 4.2 and 4.3) followed by the ILDF 

model (sections 4.4 and 4.5).    

4.2 Results for Low Level Data Fusion  

The implementation of PFFS for the LLDF model was performed using Algorithm 

3.1 for the unbounded  0,  Mahalanobis distance estimated by 2D , and Algorithm 

3.2 for the bounded  0,1  Mahalanobis distance estimated by 2
AD .  The results of 

these procedures were the ten lists of ranked e-nose and e-tongue features for all the 

datasets. A sample of such results for AG honey type can be observed from Table 

4.1. The table clearly specifies the feature ranking from both sensors. The unbounded 

criterion  2D  ranked feature from e-nose sensor (N23) with the distance score 

11,949.06 as the most discriminative feature and ranked feature from e-tongue sensor 

(T10)  with the distance score 41.37 as the least discriminative feature. However, the 

bounded criterion  2
AD  ranked feature N20 with the distance score 0.95 as the most 

discriminative feature and ranked feature T7 with the distance score 0.67 as the least 

discriminative feature.  
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Table 4.1 

 Results of Fused Feature Ranking for LLDF based on Bounded and Unbounded 
Mahalanobis Distance for AG Honey 

2D   Criterion 2
AD   Criterion 

Feature Criterion 
Value 

Rank Percentile Feature Criterion 
Value 

Rank Percentile 

N23 11,949.06 1 100.00% N20 0.947622 1 100.00% 

N5 11,343.20 2 97.50% N29 0.945641 2 97.50% 

N29 10,027.52 3 95.10% N5 0.939915 3 95.10% 

N31 4,040.16 4 92.60% N26 0.93304 4 92.60% 

N9 3,680.18 5 90.20% N10 0.932675 5 90.20% 

N26 3,482.48 6 87.80% N23 0.932147 6 87.80% 

N11 3,074.39 7 85.30% N28 0.926292 7 85.30% 

N6 2,418.34 8 82.90% N11 0.913003 8 82.90% 

N20 2,300.65 9 80.40% N22 0.909697 9 80.40% 

N10 1,793.69 10 78.00% N17 0.909596 10 78.00% 

N17 1,778.24 11 75.60% N31 0.903392 11 75.60% 

N15 1,407.55 12 73.10% N19 0.900304 12 73.10% 

N16 1,161.90 13 70.70% N9 0.897842 13 70.70% 

N28 1,129.29 14 68.20% N8 0.895816 14 68.20% 

N22 1,124.58 15 65.80% N18 0.89035 15 65.80% 

N8 1,094.92 16 63.40% N15 0.882092 16 63.40% 

N18 1,074.86 17 60.90% N30 0.878124 17 60.90% 

N13 869.54 18 58.50% N13 0.877008 18 58.50% 

N12 770.64 19 56.00% N12 0.875399 19 56.00% 

T11 762.64 20 53.60% N7 0.87438 20 53.60% 

N30 741.57 21 51.20% N6 0.871188 21 51.20% 

N4 669.04 22 48.70% N21 0.870555 22 48.70% 

N7 646.60 23 46.30% N16 0.869101 23 46.30% 

N14 574.10 24 43.90% T11 0.862588 24 43.90% 

N21 546.70 25 41.40% N27 0.861947 25 41.40% 

N19 536.86 26 39.00% N2 0.857348 26 39.00% 

N2 532.30 27 36.50% N24 0.855591 27 36.50% 

N1 500.41 28 34.10% N1 0.853093 28 34.10% 

N27 459.53 29 31.70% N3 0.851567 29 31.70% 

N3 446.28 30 29.20% N14 0.849068 30 29.20% 
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Table 4.1 Continued 

N24 318.36 31 26.80% T9 0.848139 31 26.80% 

N25 317.15 32 24.30% N4 0.845732 32 24.30% 

T2 236.18 33 21.90% T2 0.835134 33 21.90% 

T3 193.98 34 19.50% N25 0.81475 34 19.50% 

T7 180.85 35 17.00% T1 0.814565 35 17.00% 

T1 133.79 36 14.60% T5 0.807811 36 14.60% 

N32 119.50 37 12.10% N32 0.781032 37 12.10% 

T5 96.45 38 9.70% T8 0.779217 38 9.70% 

T9 69.64 39 7.30% T4 0.729904 39 7.30% 

T8 55.04 40 4.80% T3 0.678862 40 4.80% 

T4 42.19 41 2.40% T10 0.675177 41 2.40% 

T10 41.37 42 0.00% T7 0.66831 42 0.00% 

 

From this LLDF ranking list, the first  100.0 68.2
P  percentiles features from both 

criteria were selected for the next multivariate distance calculation and the 

classification procedure (performed pair by pair). This selection is specified in the 

dashed-box in Table 4.1. The selected discriminative features for the unbounded 

criterion  2D  were N23, N5, N29, N31, N9, N26, N11, N6, N20, N10, N17, N15, 

N16, and N28. For the bounded criterion  2
AD , N20, N29, N5, N26, N10, N23, N28, 

N11, N22, N17, N31, N19, N9, and N8 were selected. Repeat the process for the rest 

of the datasets. For the selections of AG honey, none of the feature from e-tongue 

was selected due to smaller average distance score.    

There were nine other similar tables as Table 4.1 to represent the results of feature 

ranking for the rest of honey types. However, the tables are available in Appendix B. 

Feature subsets appeared in the next Tables 4.2 to 4.11 were all the highest average 
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distance scores of the 68.2 percentiles  100.0 68.2
P  selected features resulted from the 

first procedure of fused feature ranking.    

Next, the percentiles forwards feature selection were performed towards the selected 

features based on the unbounded criterion  2D  using subsets of [N23, N5, N29, 

N31, N9, N26, N11, N6, N20, N10, N17, N15, N16, and N28]; and bounded 

criterion  2
AD  using subsets  [N20, N29, N5, N26, N10, N23, N28, N11, N22, N17, 

N31, N19, N9, and N8]. The percentiles forwards feature selection procedures for 

both criteria were performed for every cumulative 2.4 or 2.5 percentiles until the 

accumulated  100.0 68.2
P  percentiles were achieved.   

In this second strategy, the processes were implemented as described in Figure 3.6 

for further discriminant analysis based on the unbounded criterion  2D  and Figure 

3.7 for the bounded criterion  2
AD . The investigations were implemented in turn. 

For example, the first subset [N23, N5] =  100.0 97.5
P  percentile, the next subset [N23, 

N5, N29, N31] =  100.0 92.6
P , followed by the rest of the feature subsets, until its 

finally done for  100.0 68.2
P  feature subset. Table 4.2 is the results of discriminant 

analysis for both criteria  2D  and  2
AD . The table illustrates the performance of 

parametric classification (LDA rule) with the leave-one-out error estimation as well 

as the multivariate unbounded  2D  and bounded  2
AD  distance according to every 

feature subset.  
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Table 4.2 

 Classification Performances for Subset of Ranked Fused Features and the 
Multivariate Mahalanobis Distance for AG Honey (LLDF) 

Ranked 
Features 

Criterion 2D  Ranked 
Features 

Criterion 2
AD  

Accuracy 
(100%) 

Distance Accuracy 
(100%) 

Distance 

N23, N5 57.26 6.4697x10-4 N20, N29 66.67 6.7906x10-9 

N23, N5, N29, 

N31 

73.50 6.8589x10-4 N20, N29, N5, 

N26 

93.16 5.5525x10-7 

N23, N5, N29, 

N31, N9, N26 

92.31 6.9310x10-4 N20, N29, N5, 

N26, N10, N23 

97.44 1.2297x10-5 

N23, N5, N29, 

N31, N9, N26, 

N11, N6 

94.02 7.7855x10-4 N20, N29, N5, 

N26, N10, N23, 

N28, N11 

96.58 1.2328x10-5 

N23, N5, N29, 

N31, N9, N26, 

N11, N6, N20, 

N10 

96.58 7.8016x10-4 N20, N29, N5, 

N26, N10, N23, 

N28, N11, N22, 

N17 

96.58 1.2332x10-5 

N23, N5, N29, 

N31, N9, N26, 

N11, N6, N20, 

N10, N17, N15 

97.44 7.8063x10-4 N20, N29, N5, 

N26, N10, N23, 

N28, N11, N22, 

N17, N31, N19  

97.44 1.2637x10-5 

N23, N5, N29, 

N31, N9, N26, 

N11, N6, N20, 

N10, N17, N15, 

N16, N28 

97.44 7.8172x10-4 N20, N29, N5, 

N26, N10, N23, 

N28, N11, N22, 

N17, N31, N19, 

N9, N8 

94.87 1.2668x10-5 

 

The classification performance was given in percentages. The multivariate distances 

were also calculated and recorded for each of features subset. Tables 4.3 to 4.11 

show the overall results for the classification performance and the multivariate 

Mahalanobis distance for honey types AG, AS, ST, T, T3, TK, TLH, TN, WT and 
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YB, respectively. Generally, the classification performances of the unbounded  2D  

and bounded  2
AD  distances were varied for each honey dataset. 

Table 4.2 shows the results of the unbounded distance criteria which begins with 

selection of feature subset using features N23 and N5 as the influential features, 

while the bounded distance criteria preferred features N20 and N29. However, the 

classification performance seemed to be better for the later criterion which begun 

with 66.67% of correct classification and converge to the highest correct 

classification in the third subset selection. 

Table 4.3 portrays that discriminative features selected by the unbounded criterion 

were better than the first feature subset of the bounded criterion. The result was 

supported by the higher classification accuracy of the unbounded criterion. The 

highest correct classifications were only recorded by the classification of the sixth 

feature subsets from both criteria.   

Table 4.3 

 Classification Performances for Subset of Ranked Fused Features and the 
Multivariate Mahalanobis Distance for AS Honey (LLDF) 

Ranked 
Features 

Criterion 2D  Ranked 
Features 

Criterion 2
AD  

Accuracy 
(100%) 

Distance Accuracy 
(100%) 

Distance 

N26, N5 72.65 2.3511x10-5 N15, N5 68.38 4.0388x10-7 

N26, N5, N29, 

N31 

71.79 2.6341x10-5 N15, N5, N23, 

N11 

74.36 3.5921x10-6 

N26, N5, N29, 

N31, N15, N9 

79.49 2.6851x10-5 N15, N5, N23, 

N11, N29, N26 

85.47 3.7580x10-6 

N26, N5, N29, 

N31, N15, N9, 

N20, N16 

82.91 2.7296x10-5 N15, N5, N23, 

N11, N29, N26, 

N8, N18 

85.47 3.7580x10-6 
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Table 4.3 Continued 

N26, N5, N29, 

N31, N15, N9, 

N20, N16, N23, 

T11 

91.45 4.5724x10-4 N15, N5, N23, 

N11, N29, N26, 

N8, N18, N20, 

N2 

86.32 3.7709x10-6 

N26, N5, N29, 

N31, N15, N9, 

N20, N16, N23, 

T11, N17, N13 

94.02 4.5732x10-4 N15, N5, N23, 

N11, N29, N26, 

N8, N18, N20, 

N2, N4, T11 

93.16 8.2308x10-6 

N26, N5, N29, 

N31, N15, N9, 

N20, N16, N23, 

T11, N17, N13, 

N8, N21 

92.31 4.5737x10-5 N15, N5, N23, 

N11, N29, N26, 

N8, N18, N20, 

N2, N4, T11, 

N1, N3 

90.60 8.2333x10-6 

 

Table 4.4 depicts the results of bounded distance criteria begun the selection feature 

subset using features N6 and T2 as the influential features with higher accuracy 

compared to the unbounded criterion with lower correct classification rate. The 

accuracy rate for the unbounded criterion started to converge at the sixth feature 

subset selection. The unbounded criterion seemed less effective compared to the 

other criterion. 

Table 4.4 

Classification Performances for Subset of Ranked Fused Features and the 
Multivariate Mahalanobis Distance for ST Honey (LLDF) 

Ranked 
Features 

Criterion 2D  Ranked 
Features 

Criterion 2
AD  

Accuracy 
(100%) 

Distance Accuracy 
(100%) 

Distance 

N29, N5 63.25 2.3524x10-5 N6, T2 74.36 2.3656x10-7 

N29, N5, N23, 

N31 

76.92 2.0990x10-4 N6, T2, N31, 

N29 

71.79 2.6280x10-7 

N29, N5, N23, 

N31, N26, N9 

87.18 2.1263x10-4 N6, T2, N31, 

N29, N26, N5 

80.34 7.3720x10-7 
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Table 4.4 Continued 

N29, N5, N23, 

N31, N26, N9, 

T2, N11 

92.30 2.2483x10-4 N6, T2, N31, 

N29, N26, N5, 

N17, T11 

88.89 5.5281x10-6 

N29, N5, N23, 

N31, N26, N9, 

T2, N11, N6, 

N20 

93.16 2.4703x10-4 N6, T2, N31, 

N29, N26, N5, 

N17, T11, N23, 

*, N20  

*(omit N22) 

93.16 8.6750x10-6 

N29, N5, N23, 

N31, N26, N9, 

T2, N11, N6, 

N20, N17, N28 

94.02 2.4743x10-4 N6, T2, N31, 

N29, N26, N5, 

N17, T11, N23, 

N20, T1, N18 

96.58 8.6756x10-6 

N29, N5, N23, 

N31, N26, N9, 

T2, N11, N6, 

N20, N17,  N28, 

*, N1, N8 

*(omit  N10) 

93.16 2.4751x10-4 N6, T2, N31, 

N29, N26, N5, 

N17, T11, N23, 

N20, T1, N18, 

N9, N16 

96.58 

 

8.6866x10-6 

 

Similar patterns as achieved by ST honey type in Table 4.4 were observed from 

Table 4.5 for T honey. Except that the convergence of this dataset was achieved at 

the last feature subset. And the selection of features as well as highest classification 

accuracy was less effective for the unbounded criterion.  

Table 4.5  

Classification Performances for Subset of Ranked Fused Features and the 
Multivariate Mahalanobis Distance for T Honey (LLDF) 

Ranked 
Features 

Criterion 2D  Ranked 
Features 

Criterion 2
AD  

Accuracy 
(100%) 

Distance Accuracy 
(100%) 

Distance 

T7, T2 68.38 1.3081x10-4 N23, N6, 74.36 1.2652x10-6 

T7, T2, N29, 

N23 

83.76 1.9277x10-4 N23, N6, T11, 

N8 

83.76 1.4984x10-6 

T7, T2, N29, 

N23, N31, N5 

86.32 2.1021x10-4 N23, N6, T11, 

N8, N22, N10 

92.31 1.4986x10-6 
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Table 4.5 Continued 

T7, T2, N29, 

N23, N31, N5, 

N6, N26 

86.32 2.2342x10-4 N23, N6, T11, 

N8, N22, N10, 

N5, N18 

92.31 1.8625x10-6 

T7, T2, N29, 

N23, N31, N5, 

N6, N26, N9, 

N20 

88.89 2.2358x10-4 N23, N6, T11, 

N8, N22, N10, 

N5, N18, N9, 

N26 

92.31 1.8704x10-6 

T7, T2, N29, 

N23, N31, N5, 

N6, N26, N9, 

N20, N10, N17 

88.89 2.2359x10-4 N23, N6, T11, 

N8, N22, N10, 

N5, N18, N9, 

N26, N20, N17 

92.31 1.8725x10-6 

T7, T2, N29, 

N23, N31, N5, 

N6, N26, N9, 

N20, N10, N17, 

T11, N22 

93.16 2.1074x10-4 N23, N6, T11, 

N8, N22, N10, 

N5, N18, N9, 

N26, N20, N17, 

N19, T2 

94.02 3.6080x10-6 

 

Again, similar patterns in the results of Table 4.6 were observed following the results 

of Table 4.4 and 4.5. Except that the convergence of this dataset was achieved at the 

last feature subset. And the selection of features as well as highest classification 

accuracy was less effective for the unbounded criterion. 

Table 4.6  

Classification Performances for Subset of Ranked Fused Features and the 
Multivariate Mahalanobis Distance for T3 Honey (LLDF) 

Ranked 
Features 

Criterion 2D  Ranked 
Features 

Criterion 2
AD  

Accuracy 
(100%) 

Distance Accuracy 
(100%) 

Distance 

N29, N5 76.92 1.6931x10-6 N6, T2 84.62 2.4560x10-6 

N29, N5, N23, 

N31 

82.91 7.7784x10-5 N6, T2, N10, 

N31 

86.32 2.4596x10-6 

N29, N5, N23, 

N31, N26, N9 

88.89 7.8137x10-5 N6, T2, N10, 

N31, N29, N26 

90.60 2.4667x10-6 
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Table 4.6 Continued 

N29, N5, N23, 

N31, N26, N9, 

N10, N17 

90.60 7.8147x10-5 N6, T2, N10, 

N31, N29, N26, 

N5, N17 

92.31 2.5392x10-6 

N29, N5, N23, 

N31, N26, N9, 

N10, N17, N20, 

N6 

92.31 9.1028x10-5 N6, T2, N10, 

N31, N29, N26, 

N5, N17, T11, 

N23 

95.73 4.3066x10-6 

N29, N5, N23, 

N31, N26, N9, 

N10, N17, N20, 

N6, N8, T2 

94.87 2.3705x10-4 N6, T2, N10, 

N31, N29, N26, 

N5, N17, T11, 

N23, N22, N20 

95.73 4.3082x10-6 

N29, N5, N23, 

N31, N26, N9, 

N10, N17, N20, 

N6, N8, T2, N22, 

N15 

94.87 2.3707x10-4 N6, T2, N10, 

N31, N29, N26, 

N5, N17, T11, 

N23, N22, N20, 

T1, N18 

96.58 4.3082x10-6 

 

Table 4.7 shows the results of features selection of the bounded distance criteria, 

which confirmed the discriminative power of its selection is better than the 

unbounded criterion. In addition, the bounded criterion scored higher classification 

accuracy compared to the unbounded criterion.  

Table 4.7  

Classification Performances for Subset of Ranked Fused Features and the 
Multivariate Mahalanobis Distance for TK Honey (LLDF) 

Ranked 
Features 

Criterion 2D  Ranked 
Features 

Criterion 2
AD  

Accuracy 
(100%) 

Distance Accuracy 
(100%) 

Distance 

N23, N29  72.65 6.0223x10-5 N5, N23 82.05 1.4067x10-6 

N23, N29, N5, 

N9 

89.74 7.8790x10-5 N5, N23, T11, 

N6 

88.89 1.9562x10-6 

N23, N29, N5, 

N9, N26, N20 

89.74 7.9155x10-5 N5, N23, T11, 

N6, N10, N11 

92.31 1.9562x10-6 
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Table 4.7 Continued 

N23, N29, N5, 

N9, N26, N20, 

N17, N31 

89.74 8.0114x10-5 N5, N23, T11, 

N6, N10, N11, 

N17, N29 

94.87 1.9841x10-6 

N23, N29, N5, 

N9, N26, N20, 

N17, N31, N16, 

N10 

92.31 8.0126x10-5 N5, N23, T11, 

N6, N10, N11, 

N17, N29, N22, 

N18 

94.02 1.9842x10-6 

N23, N29, N5, 

N9, N26, N20, 

N17, N31, N16, 

N10, N15, N13 

92.31 8.0146x10-5 N5, N23, T11, 

N6, N10, N11, 

N17, N29, N22, 

N18, T2, N15 

93.16 2.9793x10-6 

N23, N29, N5, 

N9, N26, N20, 

N17, N31, N16, 

N10, N15, N13, 

N18, N6 

88.89 9.2349x10-5 N5, N23, T11, 

N6, N10, N11, 

N17, N29, N22, 

N18, T2, N15, 

N16, N19 

92.31 2.9792x10-6 

 

The results of dataset in Table 4.8 were better performed by the unbounded criterion 

in terms of the discriminative power of its feature subset. However, in terms of the 

convergence of highest classification was achieved by the bounded criterion at the 

fifth feature subsets. 

Table 4.8  

Classification Performances for Subset of Ranked Fused Features and the 
Multivariate Mahalanobis Distance for TLH Honey (LLDF) 

Ranked 
Features 

Criterion 2D  Ranked 
Features 

Criterion 2
AD  

Accuracy 
(100%) 

Distance Accuracy 
(100%) 

Distance 

N29, N9 83.76 3.3638x10-8 N6, N20  72.65 1.1681x10-8 

N29, N9, N26, 

N17 

91.45 4.9322x10-8 N6, N20, N9, 

N18 

90.60 1.1825x10-8 

N29, N9, N26, 

N17, N10, N5 

92.31 3.4975x10-6 N6, N20, N9, 

N18, N22, N8 

94.87 1.1836x10-8 
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Table 4.8 Continued 

N29, N9, N26, 

N17, N10, N5, 

N20, N31 

94.87 3.8907x10-6 N6, N20, N9, 

N18, N22, N8, 

N26, T11 

97.44 3.4863x10-7 

      

N29, N9, N26, 

N17, N10, N5, 

N20, N31, N18, 

N15 

97.44 3.9036x10-6 N6, N20, N9, 

N18, N22, N8, 

N26, T11, N28, 

*, N17 

(* omit N7) 

98.29 3.4866x10-7 

N29, N9, N26, 

N17, N10, N5, 

N20, N31, N18, 

N15, N8, N22 

98.29 3.9094x10-6 N6, N20, N9, 

N18, N22, N8, 

N26, T11, N28, 

N17, N15, *, 

N31 

*(omit N21) 

97.44 3.4878x10-7 

N29, N9, N26, 

N17, N10, N5, 

N20, N31, N18, 

N15, N8, N22, 

N16, N23 

96.58 9.1033x10-5 N6, N20, N9, 

N18, N22, N8, 

N26, T11, N28, 

N17, N15, N31, 

N5, N30 

97.44 4.4377x10-7 

 

Obvious difference can be spotted from the results in Table 4.9 above, where the 

bounded criterion outperformed the unbounded criterion in the selection of the first 

feature subset as well as the convergence of highest correct classification rate. 
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Table 4.9  

Classification Performances for Subset of Ranked Fused Features and the 
Multivariate Mahalanobis Distance for TN Honey (LLDF) 

Ranked 
Features 

Criterion 2D  Ranked 
Features 

Criterion 2
AD  

Accuracy 
(100%) 

Distance Accuracy 
(100%) 

Distance 

T3, N23 71.79 2.0409x10-4 N22, T11  92.31 2.3486x10-7 

T3, N23, N29, 

N9 

85.47 2.1010x10-4 N22, T11, N29, 

N10 

94.02 3.7112x10-7 

T3, N23, N29, 

N9, N26, N31 

86.32 2.1500x10-4 N22, T11, N29, 

N10, N26, N17 

92.31 3.7693x10-7 

T3, N23, N29, 

N9, N26, N31, 

N20, N10 

83.76 2.1530x10-4 N22, T11, N29, 

N10, N26, N17, 

N18, N19 

88.89 3.7695x10-7 

T3, N23, N29, 

N9, N26, N31, 

N20, N10, N6, 

N8 

88.03 2.3586x10-4 N22, T11, N29, 

N10, N26, N17, 

N18, N19, N9, 

T2 

95.73 1.2905x10-6 

T3, N23, N29, 

N9, N26, N31, 

N20, N10, N6, 

N8, T11, N22 

94.87 2.5562x10-4 N22, T11, N29, 

N10, N26, N17, 

N18, N19, N9, 

T2, N28, N6 

94.87 1.3624x10-6 

T3, N23, N29, 

N9, N26, N31, 

N20, N10, N6, 

N8, T11, N22, 

N17, N18 

94.87 2.5565x10-4 N22, T11, N29, 

N10, N26, N17, 

N18, N19, N9, 

T2, N28, N6, 

N20, N31 

96.58 1.3879x10-6 

 

For Table 4.10 above, quite similar performance were recorded for both the 

unbounded and bounded criteria. However, convergence of highest correct 

classification rate is shown to favor the bounded criterion. 
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Table 4.10  

Classification Performances for Subset of Ranked Fused Features and the 
Multivariate Mahalanobis Distance WT Honey (LLDF) 

Ranked 
Features 

Criterion 2D  Ranked 
Features 

Criterion 2
AD  

Accuracy 
(100%) 

Distance Accuracy 
(100%) 

Distance 

N5, N29 74.36 9.3746x10-6 N23, N28 74.36 3.2974x10-6 

N5, N29, N23, 

N26 

85.47 2.6217x10-4 N23, N28, N20, 

N31 

83.76 3.3699x10-6 

N5, N29, N23, 

N26, N9, N20 

88.89 2.6302x10-4 N23, N28, N20, 

N31, N6, N26 

87.18 3.8612x10-6 

N5, N29, N23, 

N26, N9, N20, 

N31, N6 

88.03 2.9777x10-4 N23, N28, N20, 

N31, N6, N26, 

N5, N10 

89.74 5.2536x10-6 

N5, N29, N23, 

N26, N9, N20, 

N31, N6, N11, 

N17 

90.60 2.9800x10-4 N23, N28, N20, 

N31, N6, N26, 

N5, N10, N29, 

N9 

91.45 5.4209x10-6 

N5, N29, N23, 

N26, N9, N20, 

N31, N6, N11, 

N17, N28, N10 

91.45 2.9837x10-4 N23, N28, N20, 

N31, N6, N26, 

N5, N10, N29, 

N9, N22, N8 

91.45 5.4215x10-6 

N5, N29, N23, 

N26, N9, 20, 

N31, N6, N11, 

N17, N28, N10, 

N15, N8 

91.45 2.9846x10-4 N23, N28, N20, 

N31, N6, N26, 

N5, N10, N29, 

N9, N22, N8, 

N15, N16 

93.16 5.4230x10-6 

 

Finally, the dataset in Table 4.11 describes that the bounded criterion once again 

outperformed the unbounded criterion in terms of discriminative power of feature 

subsets. The convergence of highest classification accuracy shown equally achieved 

in the last feature subsets from both bounded and unbounded criteria. 
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Table 4.11  

Classification Performances for Subset of Ranked Fused Features and the 
Multivariate Mahalanobis Distance for YB Honey (LLDF) 

Ranked 
Features 

Criterion 2D  Ranked 
Features 

Criterion 2
AD  

Accuracy 
(100%) 

Distance Accuracy 
(100%) 

Distance 

N5, N23 58.97 2.7559x10-4 N11, N28 60.68 4.2519x10-11 

N5, N23, N29, 

N26 

79.49 2.9294x10-4 N11, N28, N9, 

N26 

66.67 1.0872x10-9 

N5, N23, N29, 

N26, N6, N9 

84.62 3.2889x10-4 N11, N28, N9, 

N26, N20, N6 

76.92 3.08535x10-8 

N5, N23, N29, 

N26, N6, N9, 

N31, N20 

84.62 3.4173x10-4 N11, N28, N9, 

N26, N20, N6, 

N23, N17 

91.45 3.6059x10-6 

N5, N23, N29, 

N26, N6, N9, 

N31, N20, N11, 

N17 

93.16 3.4217x10-4 N11, N28, N9, 

N26, N20, N6, 

N23, N17, N5, 

T11 

96.58 5.7087x10-6 

N5, N23, N29, 

N26, N6, N9, 

N31, N20, N11, 

N17, N28, N8 

91.45 3.4307x10-4 N11, N28, N9, 

N26, N20, N6, 

N23, N17, N5, 

T11, N25, N10 

97.44 5.7107x10-6 

N5, N23, N29, 

N26, N6, N9, 

N31, N20, N11, 

N17, N28, N8, 

N10, T11 

98.29 3.3965x10-4 N11, N28, N9, 

N26, N20, N6, 

N23, N17, N5, 

T11, N25, 

N10, N8, N18 

98.29 5.7131x10-6 

 

4.3 Discussion for Feature Selection in Low Level Data Fusion 

The discussions of the LLDF results are described based on the predetermined 

conditions that include the univariate and multivariate distance for feature ranking 

and selected feature subset, selections discriminative power of the selected feature 

subsets, classification accuracy (first feature subset and highest accuracy), and 
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maximum convergence of correct classification before deterioration based on feature 

subset.  

The choice of features to be selected is based on the porposed Percentile Forward 

Feature Selection which earlier described in Section 3.2. Generally, the findings of 

the studies for LLDF were consistence with the previous study by Ray and Turner 

(1992) from the perspective of the performance of bounded distance  2
AD .  Based on 

the results in Tables 4.2 to 4.11 and Figures 4.1 to 4.3, the following discussions 

were made.  

Univariate and multivariate distances for feature ranking and selected feature 

subset. In the first process of fused feature ranking, the univariate Mahalanobis 

distance based on the unbounded and bounded criteria has shown its ability to 

recognize discriminant features uniquely. Distances given by the unbounded criterion 

represent the average distance for the particular feature across 11 groups. Higher 

distances were recorded among e-nose features for both unbounded and bounded 

criteria. Dissimilar to the previous criteria, bounded distance gave even distinctive 

features using average distance among 11 groups between distance values of 0 to 1. 

The multivariate Mahalanobis distance for the unbounded and bounded criteria were 

very small due to small range of the original datasets. From the finding in Tables 4.2 

to 4.11, we can see that the multivariate Mahalanobis distance increases very slowly 

for both criteria. 
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Figure 4.1. Comparison of Classification Accuracy based on 2D  and 2
AD   for Feature 

Subsets of AG, AS, ST and T Honey Types (LLDF) 

 

12 12 

12 12 
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Figure 4.2. Comparison of Classification Accuracy based on 2D  and 2
AD   for Feature 

Subsets of T3, TK, TLH and TN Honey Types (LLDF) 

12 12 

12 12 
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Figure 4.3. Comparison of Classification Accuracy based on 2D  and 2
AD  for WT and 

YB Honey Types (LLDF) 

Discriminative power of the first selected feature subset. Commonly, features 

selected for both criteria  2D  and  2
AD  were almost the same, but the features were 

ranked differently. These can be observed from the summary of the selected features 

of AG and ST honey (below), the selected features for the unbounded criteria are 

highlighted in orange while the one for the bounded are highlighted in blue. The 

results indicate that both criteria were able to detect discriminative features, but of 

different discriminative power. From the results in Tables 4.2 to 4.11, obviously 

feature subsets selected by bounded criteria gave higher discriminative power.  

12 12 
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Table 4.12 

Illustration for the Comparison of Ranked Fused Features (LLDF Model) for AG 
and ST Honey Dataset. 

 

 

For example, Table 4.12 shows for AG honey, features N20 (ranked 1st) and N29 

(ranked 2nd) selected using 2
AD  criterion gave 66.67% correct classification compared 

to features N23 (ranked 1st) and N5 (ranked 2nd) selected using 2D  criterion gave 

57.26% correct classification. The same pattern occurred for ST honey where 

features N6 (ranked 1st) and T2 (ranked 2nd) selected using 2
AD  criterion gave 74.36% 

correct classification compared to features N29 (ranked 1st) and N5 (ranked 2nd) 

selected using 2D  criterion gave 63.25% correct classification. These can be 

observed clearly from Figures 4.1 and 4.2 below. Out of 10 datasets tested, the 

selected first pair of features by the bounded criterion recorded 7 times (AG, ST, T, 

T3, TK, TN and YB) of higher discriminative power, one (WT) of equal 

discriminative power, and two (AS and TLH) by the unbounded criterion. 

Classification Accuracy (first feature subset and highest accuracy). Generally, the 

first selected feature subset based on the bounded criterion begun with higher 

classification accuracy compared to the unbounded criterion. For example, higher 
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correct classification 66.67% was recorded for the bounded criterion for AG honey, 

while the unbounded criterion gave only 57.26% correct classification. The same 

pattern occurred for ST honey where higher correct classification 74.36% was 

recorded for the bounded criterion, but the unbounded criterion gave only 63.25% 

correct classification. Further details referred to Figures 4.1 to 4.3 above. In terms of 

highest classification recorded for both criteria, out of 10 datasets tested, six highest 

classification accuracies were recorded by the bounded criterion (ST, T, T3, TK, TN, 

WT), two equal correct classification for both criteria (AG, TLH, YB), and one 

highest correct classification by the unbounded criterion (AS). However, varied 

highest accuracies were recorded at different feature subsets of each of the honey 

dataset of both criteria.  

Maximum convergence of correct classification before deterioration based on 

feature subset. This refers to the highest classification accuracy achieved based on 

some particular subset of features from both criteria. Observation of this point can be 

found from Figures 4.1, 4.2 and 4.3 where the first highest peak occurred. In specific, 

the results of this point are recorded in the following Table 4.12. Generally, feature 

subsets generated by the bounded criterion converge to the highest classification 

accuracy faster within certain initial feature subset as highlighted in Table 4.12.  

Table 4.13  

Comparison of Performance for the Unbounded and Bounded Feature Selection 
based on Feature Subset Number and Correct Classification (ILDF) 

DATASET 2D  2
AD  

Subset 
Number 

Accuracy Subset 
Number 

Accuracy 

AG 6 97.43 4 96.58 

AS 6 94.02 6 93.16 

ST 6 94.02 6 96.58 
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Table 4.13 Continued 

T 7 93.16 3 92.31 

T3 6 94.87 5 95.73 

TK 5 92.31 4 94.87 

TLH 6 98.29 5 98.29 

TN 6 94.87 2 94.02 

WT 6 91.45 5 91.45 

YB 7 98.29 7 98.29 

 

Overall, the bounded distance criterion 2
AD  performed better than the unbounded 

criterion 2D  in all aspect of discriminative power of the first selected feature subsets, 

classification accuracy of the first feature subset and its highest accuracy, and 

maximum convergence of correct classification before deterioration based on feature 

subset. These findings proof that the bounded distance criterion 2
AD  is superior in 

selecting subset of features that is important for higher classification accuracy for 

LLDF model. One weakness of this model is that there is no guarantee for features 

from both sensors to be selected especially when their individual ranking scored low 

average distance.  From the perspective of the adulterated honey classification, 

confusion to recognize an observation belongs to its original group was largely 

influenced by the adulterated honey mixture as describe in Table 3.3. Meticulous 

observations from the classification reports executed by LDA rule lead to similar 

pattern of wrongly classified the adulterated honey especially the mixture of pure 

honey with cane sugar and pure honey with beet sugar.      

4.4 Results for Intermediate Level Data Fusion 

The implementation of PFFS for the ILLDF model was performed using Algorithm 

3.3 for the unbounded  0,  Mahalanobis distance estimated by 2D , and Algorithm 
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3.4 for the bounded  0,1  Mahalanobis distance estimated by 2
AD .  The results of 

these procedures were the ten separate lists of ranked e-nose and e-tongue features 

for all the datasets. An example of such results for AG honey type can be observed 

from Table 4.14 for e-nose data and Table 4.15 for e-tongue data. The table clearly 

itemized the feature ranking from both sensors when performed separately, in 

accordance to the ILDF model.  

To mention some, the feature ranking of e-nose data for AG honey based on the 

unbounded distance were led by N23 (11,949.06), N5 (11,343.20), N29 (10,027.52), 

etc. and for the bounded distance, the superior features were N20 (0.9476), N29 

(0.9456), N5 (0.9399) and follows. For the e-tongue, superior features for the 

unbounded criterion were ranked by T11 (762.64), T2 (236.18), T3 (193.98), etc. and 

for the bounded distance, features were led by T11 (0.8626), T9 (0.8471), T2 

(0.8351) and as follows. The least important features for both criteria can be 

observed from Tables 4.14 and 4.15. These tables were obtained for all ten data set 

for both e-nose and e-tongue sensors. However, only for the AG honey results were 

included in this section, and the results of the other types of honey are attached in 

Appendix C. 

From this ILDF ranking list, select the first    100.0 83.8 100.0 44.4and
 

P P  percentiles of 

features from e-nose and e-tongue list, and fuse the features to form the 1st feature 

subset, and repeat for the next    96.7 88.8andP P ,    93.5 77.7andP P  to form the 2nd and 

3rd feature subsets from fusion of e-nose and e-tongue data. Then, performed 

classification for every selected feature subset to measure the classification accuracy.  

Unlike the LLDF model where we have specified to select the first  68.2P  features 
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from the ranked list, in the ILDF model, the feature subsets selection stop when the 

maximum accuracy achieved begun to deteriorate. Repeat the process for the rest of 

the ranked features. 

Table 4.14  

Results of Feature Ranking for ILDF based on Bounded and Unbounded 
Mahalanobis Distance for e-nose AG Honey 

2D  2
AD  

Feature Criterion 
Value 

Rank Percent Feature Criterion 
Value 

Rank Percent 

N23 11,949.06 1 100.00% N20 0.94762 1 100.00% 

N5 11,343.20 2 96.70% N29 0.94564 2 96.70% 

N29 10,027.52 3 93.50% N5 0.93991 3 93.50% 

N31 4,040.16 4 90.30% N26 0.93304 4 90.30% 

N9 3,680.18 5 87.00% N10 0.93268 5 87.00% 

N26 3,482.48 6 83.80% N23 0.93215 6 83.80% 

N11 3,074.39 7 80.60% N28 0.92629 7 80.60% 

N6 2,418.34 8 77.40% N11 0.913 8 77.40% 

N20 2,300.65 9 74.10% N22 0.9097 9 74.10% 

N10 1,793.69 10 70.90% N17 0.9096 10 70.90% 

N17 1,778.24 11 67.70% N31 0.90339 11 67.70% 

N15 1,407.55 12 64.50% N19 0.9003 12 64.50% 

N16 1,161.90 13 61.20% N9 0.89784 13 61.20% 

N28 1,129.29 14 58.00% N8 0.89582 14 58.00% 

N22 1,124.58 15 54.80% N18 0.89035 15 54.80% 

N8 1,094.92 16 51.60% N15 0.88209 16 51.60% 

N18 1,074.86 17 48.30% N30 0.87812 17 48.30% 

N13 869.54 18 45.10% N13 0.87701 18 45.10% 

N12 770.64 19 41.90% N12 0.8754 19 41.90% 

N30 741.57 20 38.70% N7 0.87438 20 38.70% 

N4 669.04 21 35.40% N6 0.87119 21 35.40% 

N7 646.60 22 32.20% N21 0.87055 22 32.20% 

N14 574.10 23 29.00% N16 0.8691 23 29.00% 
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Table 4.14 Continued 

N21 546.70 24 25.80% N27 0.86195 24 25.80% 

N19 536.86 25 22.50% N2 0.85735 25 22.50% 

N2 532.30 26 19.30% N24 0.85559 26 19.30% 

N1 500.41 27 16.10% N1 0.85309 27 16.10% 

N27 459.53 28 12.90% N3 0.85157 28 12.90% 

N3 446.28 29 9.60% N14 0.84907 29 9.60% 

N24 318.36 30 6.40% N4 0.84573 30 6.40% 

N25 317.15 31 3.20% N25 0.81475 31 3.20% 

N32 119.50 32 0.00% N32 0.78103 32 0.00% 

 

Table 4.15 

Results of Feature Ranking for ILDF based on Bounded and Unbounded 
Mahalanobis Distance for e-tongue AG Honey 

2D   2
AD    

Feature Criterion 
Value Rank Percent Feature Criterion 

Value Rank Percent 

T11 762.64 1 100.00% T11 0.86259 1 100.00% 

T2 236.18 2 88.80% T9 0.84814 2 88.80% 

T3 193.98 3 77.70% T2 0.83513 3 77.70% 

T7 180.85 4 66.60% T1 0.81457 4 66.60% 

T1 133.79 5 55.50% T5 0.80781 5 55.50% 

T5 96.45 6 44.40% T8 0.77922 6 44.40% 

T9 69.64 7 33.30% T4 0.7299 7 33.30% 

T8 55.04 8 22.20% T3 0.67886 8 22.20% 

T4 42.19 9 11.10% T10 0.67518 9 11.10% 

T10 41.37 10 0.00% T7 0.66831 10 0.00% 
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Table 4.16 

Classification Performances for Subset of Ranked Features and the Multivariate 
Mahalanobis Distance for AG Honey (ILDF) 

Ranked 
Features 

Criterion 2D  Ranked 
Features 

Criterion 2
AD  

Accuracy 
(100%) 

Distance Accuracy 
(100%) 

Distance 

N23, T11 77.78 4.6587x10-4
 N20, T11 73.50 1.3393x10-6 

N23, T11, N5, 

T2 

93.16 7.0840x10-4 N20, T11, N29, 

T9 

98.29 2.6791x10-5 

N23, T11, N5, 

T2, N29, T3 

100 3.3208x10-4 N20, T11, N29, 

T9, N5, T2 

98.29 3.5279x10-5 

N23, T11, N5, 

T2, N29, T3, 

N31, T7 

99.15 1.0450x10-2 N20, T11, N29, 

T9, N5, T2, 

N26, T1 

100 3.5306x10-5 

 
Findings from AG honey data shows that the unbounded criterion is better in the 

selection of discriminant feature, and converge faster to 100% correct classification. 

The feature subsets formed by the unbounded criterion also proved that it‟s the 

correct features sub setting.  

Table 4.17 

Classification Performances for Subset of Ranked Features and the Multivariate 
Mahalanobis Distance for AS Honey (ILDF) 

Ranked 
Features 

Criterion 2D  Ranked 
Features 

Criterion 2
AD  

Accuracy 
(100%) 

Distance Accuracy 
(100%) 

Distance 

N26, T11 83.76 2.8362x10-4 N15, T11 80.34 5.1572x10-6 

N26, T11, N5, 

T2 

94.02 3.0537x10-4 N15, T11, N5, 

T2 

88.03 5.5300x10-6 

N26, T11, N5, 

T2, N29, T9 

93.16 3.7995x10-4 N15, T11, N5, 

T2, N23, T1 

94.02 8.1263x10-6 

N26, T11, N5, 

T2, N29, T9, 

N31, T7 

96.58 6.8728x10-4 N15, T11, N5, 

T2, N23, T1, 

N11, T3 

96.58 1.2886x10-5 

    96.58 1.2968x10-5 
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Table 4.17 Continued 

N26, T11, N5, T2, N29, 

T9, N31, T7, N15, T3 

95.73 1.4796x10-3 N15, T11, N5, T2, N23, 

T1, N11, T3, N29, T8 

 
Similar pattern appeared for the second dataset where the unbounded criterion 

outperformed the bounded criterion. But none of the feature subsets recorded perfect 

classification.  

Table 4.18 

Classification Performances for Subset of Ranked Features and the Multivariate 
Mahalanobis Distance for ST Honey (ILDF) 

Ranked 
Features 

Criterion 2D  Ranked 
Features 

Criterion 2
AD  

Accuracy 
(100%) 

Distance Accuracy 
(100%) 

Distance 

N29, T2 70.09 3.9728x10-5 N6, T2 74.36 8.1560x10-7 

N29, T2, N5, 

T9 

78.63 2.1503x10-4 N6, T2, N31, 

T11 

* (omit N10) 

91.45 1.3990x10-5 

N29, T2, N5, 

T9, N23, T11 

89.74 1.0995x10-3 N6, T2, N31, 

T11, N29, T1 

94.02 1.4067x10-6 

N29, T2, N5, 

T9, N23, T11, 

N31, T1 

93.16 1.1023x10-3 N6, T2, N31, 

T11, N29, T1, 

N26, T9 

93.16 4.2582x10-6 

N29, T2, N5, 

T9, N23, T11, 

N31, T1, N26, 

T8 

92.31 1.1040x10-3 N6, T2, N31, 

T11, N29, T1, 

N26, T9, N5, 

T8 

91.45 4.7475x10-6 

 

For this dataset, the bounded criterion seems outperformed the unbounded criterion 

with faster convergence to maximum classification in the 3rd feature subset.  In this 

dataset, feature N10 was omitted though was ranked with higher distance since the 

data vector creates singularity problem.  
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Table 4.19 

Classification Performances for Subset of Ranked Features and the Multivariate 
Mahalanobis Distance for T Honey (ILDF) 

Ranked 
Features 

Criterion 2D  Ranked 
Features 

Criterion 2
AD  

Accuracy 
(100%) 

Distance Accuracy 
(100%) 

Distance 

N29, T7 92.39 1.0988x10-5 N23, T11 87.18 1.3072x10-6 

N29, T7, N23, 

T2 

83.76 1.9212x10-4 N23, T11, N6, 

T2 

87.18 3.2572x10-6 

N29, T7, N23, 

T2, N31, T11 

94.87 1.7947x10-4 N23, T11, N6, 

T2, N8, T8 

97.43 3.2573x10-6 

N29, T7, N23, 

T2, N31, T11, 

N5, T9 

91.45 2.9707x10-4 N23, T11, N6, 

T2, N8, T8, 

N22, T1 

94.02 3.2574x10-6 

 

Unlike other findings, this data demonstrates that the first feature subset with high 

discriminative power was given by the unbounded criterion, but faster convergence 

was obtained by the bounded criterion i.e. by the 3rd subset of features. 

Table 4.20 

Classification Performances for Subset of Ranked Features and the Multivariate 
Mahalanobis Distance for T3 Honey (ILDF) 

Ranked 
Features 

Criterion 2D  Ranked 
Features 

Criterion 2
AD  

Accuracy 
(100%) 

Distance Accuracy 
(100%) 

Distance 

N9, T2 91.45 1.3293x10-4 N6, T2 84.62 2.4560x10-6 

N9, T2, N5, T11 95.73 9.8515x10-5 N6, T2, N10, T11 93.16 1.7758x10-6 

N9, T2, N5, T11, 

N23, T1 

97.44 1.7818x10-4 N6, T2, N10, T11, 

N31, T1 

94.02 1.7763x10-6 

N9, T2, N5, T11, 

N23, T1, N31, T9 

96.58 3.366x10-4 N6, T2, N10, T11, 

N31, T1, N29, T9 

96.58 4.5752x10-6 

N9, T2, N5, T11, 

N23, T1, N31, 

T9, N26, T3 

100 9.1028x10-5 N6, T2, N10, T11, 

N31, T1, N29, T9, 

N26, T8 

94.87 

 

4.5744x10-6 
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Again for this dataset, unbounded criterion outperformed the bounded criterion with 

higher classification accuracy by the first feature subset with 91.45% correct 

classification. By having the fifth subsets for the unbounded criterion, the correct 

classification converges to 100%.  

Table 4.21 

Classification Performances for Subset of Ranked Features and the Multivariate 
Mahalanobis Distance for TK Honey (ILDF) 

Ranked 
Features 

Criterion 2D  Ranked 
Features 

Criterion 2
AD  

Accuracy 
(100%) 

Distance Accuracy 
(100%) 

Distance 

N23, T11 81.20 7.6756x10-5 N5, T11 85.47 4.0099x10-7 

N23, T11, N29, 

T2 

85.47 1.3180x10-4 N5, T11, N23, 

T2 

88.89 2.7277x10-6 

N23, T11, N29, 

T2, N5, T9 

88.89 3.0581x10-4 N5, T11, N23, 

T2, N6, T1 

93.16 2.9514x10-6 

N23, T11, N29, 

T2, N5, T9, N9, 

T1 

93.16 3.0599x10-4 N5, T11, N23, 

T2, N6, T1, N10, 

T8 

94.87 2.9516x10-6 

N23, T11, N29, 

T2, N5, T9, N9, 

T1, N26, T8 

96.58 3.0634x10-4 N5, T11, N23, 

T2, N6, T1, N10, 

T8, N11, T9 

94.87 5.7790x10-6 

N23, T11, N29, 

T2, N5, T9, N9, 

T1, N26, T8, 

N20, T7 

95.72 3.4862x10-4 N5, T11, N23, 

T2, N6, T1, N10, 

T8, N11, T9, 

N17, T5 

94.87 5.7813x10-6 

 

The bounded criterion appears to perform better for TK honey dataset when the first 

subset of features gave higher classification accuracy compared to the unbounded 

criterion. However, in terms of convergences to highest accuracy, the unbounded 

criterion seems to be better.     
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Table 4.22 

Classification Performances for Subset of Ranked Features and the Multivariate 
Mahalanobis Distance for TLH Honey (ILDF) 

Ranked 
Features 

Criterion 2D  Ranked 
Features 

Criterion 2
AD  

Accuracy 
(100%) 

Distance Accuracy 
(100%) 

Distance 

N29, T11 86.32 1.8835x10-5 N6, T11 79.49 3.4784x10-7 

N29, T11, N9, 

T2 

94.02 7.4032x10-5 N6, T11, N20, 

T2 

92.31 1.3632x10-6 

N29, T11, N9, 

T2, N26, T10 

93.16 7.4041x10-5 N6, T11, N20, 

T2, N9, T1 

96.58 1.3632x10-6 

N29, T11, N9, 

T2, N26, T10, 

N17, T5 

96.66 7.4068x10-5 N6, T11, N20, 

T2, N9, T1, 

N18, T8 

96.58 1.3632x10-6 

 

Again for this dataset, higher discriminative power belongs to the unbounded 

criterion. But the bounded criteria converge to maximum accuracy in the third 

feature subset faster than the unbounded criteria.  

Table 4.23 

Classification Performances for Subset of Ranked Features and the Multivariate 
Mahalanobis Distance for TN Honey (ILDF) 

Ranked 
Features 

Criterion 2D  Ranked 
Features 

Criterion 2
AD  

Accuracy 
(100%) 

Distance Accuracy 
(100%) 

Distance 

N23, T3 71.79 2.0409x10-4 N22, T11 92.31 2.3486x10-7 

N23, T3, N29, 

T11 

92.31 2.3035x10-4 N22, T11, N29, 

T2 

96.58 1.1472x10-6 

N23, T3, N29, 

T11, N5, T2 

95.73 3.3661x10-4 N22, T11, N29, 

T2, N10, T1 

97.44 1.1473x10-6 

N23, T3, N29, 

T11, N5, T2, 

N9, T1 

100 3.3696x10-4 N22, T11, N29, 

T2, N10, T1, 

N26, T7 

97.44 1.9685x10-6 
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Table 4.23 Continued 

N23, T3, N29, 

T11, N5, T2, 

N9, T1, N26, T7 

98.29 4.2680x10-4 N22, T11, N29, 

T2, N10, T1, 

N26, T7, N5, T8 

97.44 2.1097x10-6 

 

Obvious results were identified from this dataset where the bounded criterion 

successfully found the first two fusion feature with higher discriminative power. 

However, the bounded criterion converges to 100% correct classification early than 

the bounded distance. 

Table 4.24 

Classification Performances for Subset of Ranked Features and the Multivariate 
Mahalanobis Distance for WT Honey (ILDF) 

Ranked 
Features 

Criterion 2D  Ranked 
Features 

Criterion 2
AD  

Accuracy 
(100%) 

Distance Accuracy 
(100%) 

Distance 

N5, T11 93.16 2.0357x10-5 N23, T11 92.31 3.5512x10-6 

N5, T11, N29, 

T2 

96.16 5.9270x10-5 N23, T11, N28, 

T2 

96.58 4.2118x10-6 

N5, T11, N29, 

T2, N23, T10 

94.02 3.1295x10-4 N23, T11, N28, 

T2, N20, T10 

94.87 4.2183x10-6 

N5, T11, N29, 

T2, N23, T10, 

N26, T7 

91.45 3.4956x10-4 N23, T11, N28, 

T2, N20, T10, 

N31, T1 

99.15 4.2901x10-6 

 

Performance for this dataset is almost similar with small difference. In terms of 

discriminative power, the first feature subset for unbounded criterion leads the list 

but with small difference to the bounded criterion. However, the bounded criterion 

converges to the maximum correct classification with 0.85% error.  
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Table 4.25 

Classification Performances for Subset of Ranked Features and the Multivariate 
Mahalanobis Distance for YB Honey (ILDF) 

Ranked 
Features 

Criterion 2D  Ranked 
Features 

Criterion 2
AD  

Accuracy 
(100%) 

Distance Accuracy 
(100%) 

Distance 

N5, T11 82.05 2.6609x10-5 N11, T11 84.62 2.0198x10-7 

N5, T11, N23, 

T2 

92.31 3.2583x10-4 N11, T11, N28, 

T1 

92.31 2.0196x10-7 

N5, T11, N23, 

T2, N29, T1 

97.44 3.3887x10-4 N11, T11, N28, 

T1, N9, T2 

91.45 1.1308x10-6 

N5, T11, N23, 

T2, N29, T1, 

N26, T10 

94.87 3.4256x10-4 N11, T11, N28, 

T1, N9, T2, 

N26, T9 

98.29 4.1374x10-6 

 

Finally, for the YB honey, apparently the bounded criterion has selected the first 

feature subset with higher discriminative power compared to the unbounded 

criterion. And, the bounded criterion also managed to converge to the highest 

classification accuracy in the fourth feature subset.   

4.5 Discussion for Feature Selection in Intermediate Level Data Fusion 

The discussions of the ILDF findings are expressed based on the univariate and 

multivariate distance for feature ranking and selected feature subset, selections 

discriminative power of the selected first feature subsets, classification accuracy 

(first feature subset and highest accuracy), and maximum convergence of correct 

classification before deterioration based on feature subset. The choice of features to 

be selected for the ILDF model is based on the porposed PFFS which earlier 

described in section 3.2. 

 



 

169 

 

 

 

Figure 4.4. Comparison of Classification Accuracy based on 2D  and 2
AD   for Feature 

Subsets of AG, AS, ST and T Honey Types (ILDF) 
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Figure 4.5. Comparison of the Classification Accuracy based on 2D  and 2
AD   for 

Feature Subsets of   T3, TK, TLH and TN Honey Types (ILDF) 
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Figure 4.6. Comparison of the Classification Accuracy based on 2D  and 2
AD   for 

Feature Subsets of WT and YB Honey Types (ILDF) 

Based on the results in Tables 4.16 to 4.25 and Figures 4.4 to 4.6, the following 

discussions were made.  

Univariate and multivariate distances for feature ranking and selected feature 

subset. In the first process of feature ranking, the univariate Mahalanobis distance 

based on the unbounded and bounded criteria has shown its ability to recognize 

discriminant features distinctively. Distances given by the unbounded criterion 

represent the average distance for the particular feature across 11 groups. The highest 

average distance were among the e-nose features with as high as 12,593.81 (ILDF - 

dataset ST - feature N29), but not for the e-tongue features which scored much lower 

average distance. Unlike the previous criteria, bounded distance gave even noticeable 

features using average distance among 11 groups between the values 0 to 1. 
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Comparatively, by using these criteria, e-nose features recorded higher bounded 

distance compared to e-tongue features.     

Discriminative power of the first selected feature subset. Regularly, features selected 

by both criteria were almost the same, but the features were ranked differently. 

Consider the selected features for AG and ST (below), the selected features for the 

unbounded criteria are highlighted in green while the bounded criterion is 

highlighted in grey. The selection results indicate that both criteria were able to 

detect discriminative features, but of different discriminative power.  

Table 4.26 

Illustration for the Comparison of Ranked Fused Features (ILDF Model) for AG and 
ST Honey Dataset. 
 

ILDF 

(AG) 

2D  N5 N20 N23 N26 N29 T1 T2 T3 T9 T11 

Rank 3  1  5  4 6  2 
2
AD  N5 N20 N23 N26 N29 T1 T2 T3 T9 T11 

Rank 5 1  7 3 8 6  4 2 

 

Based on the above summary, for dataset AG honey, generally the unbounded 

criteria have different agreement on the selection of features from e-nose 

( 2D =>N23, 2
AD =>N20) but complete agreement for features from e-tongue 

( 2D =>T11, 2
AD =>T11). The same occurred to dataset ST where the selection of 

features by 2D  was feature N29, and 2
AD  was feature N6, but both criteria agreed to 

ILDF 

(ST) 

2D  N5 N6 N23 N26 N29 N31 T1 T2 T8 T9 T11 

Rank 3  5 9 1 7 8 2 10 4 6 
2
AD  N5 N6 N23 N26 N29 N31 T1 T2 T8 T9 T11 

Rank 9 1  7 5 3 6 2 10 8 4 
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choose T11 as their discriminative feature. Out of 10 datasets tested, this pattern also 

appeared in dataset AS (T11), T3 (T2), TK (T11), TLH (T11), WT (T11), and YB 

(T11).  

Classification Accuracy (first feature subset and highest accuracy). For the ILDF 

model, performance of both criteria in terms of achieving correct classification by 

using the first selected feature subset is even. Out of ten datasets, five datasets (AG, 

AS, T3, TLH, and WT) obtained higher accuracy rate based on their first subset 

feature using the unbounded criteria. Whereas, the other five datasets (ST, T, TK, TN 

and YB) recorded higher accuracy using the bounded criteria based on the first 

feature subset. Details of these can be referred to Tables 4.16 to 4.25. 

Maximum convergence of correct classification before deterioration based on 

feature subset. This refers to the highest classification accuracy achieved based on 

some particular subset of features from both criteria. It has been summarized in 

Table 4.27 below and can be observed in Figures 4.4, 4.5 and 4.6 where the first 

highest peak occurred from both criteria. The unbounded distance obtained 

maximum convergence sixth times with one even compared to the bounded distance. 

However, Table 4.27 shows that maximum convergence for the bounded criteria 

were attained as early as in the second feature subset to fourth feature subset. And for 

the unbounded criteria, maximum convergence were between the third to fifth 

feature subset  
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Table 4. 27  

Comparison of Performance for the Unbounded and Bounded Feature Selection 
based on Feature Subset Number and Correct Classification (ILDF) 

DATASET 2D  2
AD  

Subset 
Number 

Accuracy Subset 
Number 

Accuracy 

AG 3 100.00% 4 100.00% 

AS 4 96.58% 4 96.58% 

ST 4 93.16% 3 94.02% 

T 3 94.87% 3 97.43% 

T3 5 100.00% 5 94.87% 

TK 5 96.58% 4 94.87% 

TLH 4 96.58% 3 96.58% 

TN 4 99.15% 3 97.44% 

WT 3 94.02% 2 96.58% 

YB 3 97.44% 4 98.29% 

 

Overall, the bounded distance criterion 2
AD  performed better than the unbounded 

criterion 2D  in all aspect of discriminative power of the first selected feature subsets, 

classification accuracy of the first feature subset and its highest accuracy, and 

maximum convergence of correct classification before deterioration based on feature 

subset. These findings proof that the bounded distance criterion 2
AD  is superior in 

selecting subset of features that is important for higher classification accuracy for 

LLDF model.   

4.6 Conclusion 

Generally, the feature selection for fusion of features was successfully performed for 

LLDF where the discriminant features were identified based on the univariate fused 

feature ranking. The confirmation of the selected discriminant feature subset was 

obtained by measuring the accuracy of classification using the chosen feature 
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subsets. These processes were repeated over different selected feature subsets using 

percentile forward feature selection  HP  for all the ten datasets. Then, the 

multivariate Mahalanobis distances were also computed to show the average distance 

among the included feature subsets and groups.  For the LLDF model, features from 

e-nose dominate the highest fused feature ranking for both unbounded and bounded 

criteria, left out the features from e-tongue from being included among discriminant 

features. Only small number of e-tongue features was procured in the selected 

discriminant feature subsets for the LLDF.  

From the perspective of the ILDF model, basically the implementation of feature 

selection to replace feature extraction was also effective. Even though from the 

comparison of the classification accuracy based on the overall selected feature 

subsets between the LLDF and ILDF shows a difference performance, the ILDF 

model has shown more flexibility in selecting features from the two sensors. In fact, 

the number of discriminant features selected for the ILDF was lower than the number 

of discriminant features for the LLDF model. The findings could be because the way 

features were fused after individual feature ranking was performed separately. The 

way the ranked features from both sensors were fused was based on 100.0 44.4( )P  and 

100.0 83.8( )P  percentile forward feature selection for e-tongue and e-nose, respectively. 

The implementation of these selections seems effective for ILDF model.  

From the perspective of the adulterated honey classification, confusion to recognize 

an observation belongs to its original group was largely influenced by the adulterated 

honey mixture as describe in Table 3.3. Meticulous observations from the 

classification reports executed by LDA rule lead to similar pattern of wrongly 
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classified of the adulterated honey especially the mixture of pure honey with cane 

sugar and pure honey with beet sugar. 

From the results, the study concludes that the bounded Mahalanobis distance  2
AD  is 

comparatively better than the unbounded Mahalanobis distance  2D  in performing 

feature subsets selection to trace the discriminant features. These findings were 

applicable for the multi sensor data fusion of e-tongue and e-nose specifically for the 

LLDF and ILDF models. 

In summary, this chapter has provided answers to all the objectives of this study.  

The following chapter will summarize the overall conclusions of this study, the key 

contributions of the thesis, as well as some possible limitations and the direction for 

future work.  
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CHAPTER FIVE 

CONCLUSION AND FUTURE WORK 

5.1 Conclusion of Study 

This study aims to study the potential discriminant analysis using feature selection to 

replace the traditional discriminant analysis (PCA) via feature extraction in multi 

sensor data fusion. The study revealed that limited works were devoted to study the 

weaknesses of the traditional approach. One big weakness of the approach is the 

failure to identify specific discriminant features that contribute to highest 

classification accuracy. The discriminant analysis with feature extraction approach is 

highly dependent only on few selected combination of features trigged by percent of 

variance explained or the largest eigenvalues. Thus, the feature extraction approach 

is less objective in highlighting the significance of each specific feature and their 

contribution towards the classification accuracy.   

Two models of multi sensor data fusion applied for this study are the low and 

intermediate level data fusions which are commonly preferred by engineers in multi 

sensor data fusion. Since insufficient researches are available to improvise the 

traditional approach, this study tries to introduce a simple yet effective method to 

perform classification in the low and intermediate data fusion problem. The sensor 

fusion for this study comprised the e-nose (which mimics the human smell sense) 

and e-tongue (which mimics the human taste sense). Features from e-nose were 

formed by the 32 array of sensors, while features from e-tongue were created by 11 

array of sensor which works based on gaseous and liquid, respectively. 
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The fusion of features from the sensors created a new dimension of data fusion 

which befitted the curse of dimension within multi-group  11G . The 

investigation of the appropriate criteria which suited the previous aforementioned 

challenges preceded the potential of distance based feature selection which measure 

the separability among the multi-group centroids (group means). The maximum 

separability among the multi-group centroids given by the average distance of a 

feature became the focal solution to be proposed. The concept was adopted from a 

study done 25 years ago. 

Ray and Turner (1992) have proposed the bounded Mahalanobis distance-based for 

two new feature evaluation criteria  2 2 and A B   in a pattern recognition problem of 

isolated hand printed numeric characters. As far as this study is concerned, this study 

proved that one of the proposed criterions i.e.  2
A  has great potential to be applied 

in the problem of identifying discriminant features in low and intermediate level data 

fusion. In order to show the flexibility and potential of the bounded Mahalanobis 

distance  2
A , the unbounded Mahalanobis distance  2  was also included in the 

analyses.  

The research methodology applied in this study mainly devoted to the unbounded 

and bounded Mahalanobis distance criteria to identify the most discriminative 

features that give the highest classification accuracy. The performances of both 

criteria will be compared and contrast according to some evaluation points. In order 

to achieve these, four study objectives were formed. These objectives were 

implemented based on Figure 3.5, the proposed feature selection strategies based on 

the unbounded  2D  and bounded  2
AD  mahalanobis distance for LLDF and ILDF. 
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Specific implementations of the proposed feature selection were referred to 

Algorithm 3.1 for fused feature ranking for unbounded distance for LLDF, 

Algorithm 3.2 for fused feature ranking for bounded distance for LLDF, Algorithm 

3.3 for single feature ranking for unbounded distance for ILDF, and Algorithm 3.4 

for single feature ranking for bounded distance for ILDF. The classification accuracy 

using LDA with the leave-one-out error estimation were implemented as described in 

Figures 3.6 and 3.7 for the unbounded and bounded criteria for LLDF, and Figures 

3.8 and 3.9 for the unbounded and bounded criteria for ILDF.  

For this study, no stopping rule is needed since the most potential features were 

selected based on the average distance (which measures the average separability 

among multi-group) obtained from the ranking process. A heuristic selection of the 

number of features to be included for the feature subset selection was determined for 

the LLDF and ILDF models, called the percentile forward feature selection. For the 

LLDF model, the percentile forward feature selection is based on the top highest 

percentiles  100.0 68.2
P  of the ranked features.  

Model Feature 
Source 

Selected Percentile & 
Number of Feature ( 2D ) 

Selected Percentile & 
Number of Feature ( 2

AD ) 

LLDF Fusion  100.0 68.2
P  14 features  100.0 68.2

P  14 features 
 

It means, only the highest 14 ranked features were included for the discriminant 

search. The ranked features in LLDF which came from the e-tongue and e-nose 

sensors were fused at the data level, then the univariate unbounded and bounded 

distance criteria were computed, and finally they were ranked from highest to lowest. 

By doing these, the study is being simplified in the sense that no global search is 

needed, and concentration was given only to potential feature. 
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The similar concept was applied for the ILDF model. To simplify the search of 

discriminant feature subset, a bit different percentile forward feature selection was 

applied in the second model. Since features from the e-tongue and e-nose were fused 

at the intermediate level, the fusion occurred when the most discriminant features 

from both sensors were identified from the individual ranked list. The way the 

percentile forward feature selection was performed was based on the following 

percentiles from each ranked features, separately.  

Model Feature 
Source 

Selected Percentile & 
Number of Feature ( 2D ) 

Selected Percentile & 
Number of Feature ( 2

AD ) 

ILDF 

e-tongue 
 100.0 66.6
P  4 features  

to 
 100.0 44.4
P  6 features 

 100.0 66.6
P  4 features 

to 
 100.0 44.4
P  6 features 

e-nose 
 100.0 90.3
P  4 features 

to 
 100.0 83.8
P  6 features 

 100.0 90.3
P  4 features 

to 
 100.0 83.8
P  6 features 

 

With this approach, potential features from both sensors have the equal chances to be 

included in the feature selection, regardless of their overall ranking. By doing this, 

individual performance is reflected knowing that e-tongue and e-nose performed the 

object detection uniquely according to their designed functions. Again, by 

implementing percentile forward feature selection, no global search is required, and 

concentration was given only to promising feature.  

One advantage of the second model is that, the selection process of the discriminant 

features gave credit to both sensors equally where domination of single sensor is 

avoided. For this study, other feature search approaches such as backward and 

stepwise feature selections were not preferable because the approaches were 
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impractical for the proposed procedures. For example, adapting the stepwise or 

backward search would cause the inclusion process will be dominated by features 

from e-nose due to higher average distance, while deletion would prefer the features 

from e-tongue due to small distance.               

Through the implementation of the algorithms and classification rules, all the 

research objectives were attained, and the appropriate discriminant analysis based on 

feature selection to replace the discriminant analysis based on feature extraction was 

demonstrated and confirmed. In order to prove which of the two criteria either the 

unbounded or bounded performed better, several comparisons in terms of the 

univariate/multivariate distance for feature ranking, discriminative power of the first 

selected feature subset, classification accuracy (first feature subset and highest 

accuracy) and maximum convergence of correct classification before deteriorate 

were observed and analyzed. Through the findings, the unbounded Mahalanobis 

distance  2
A  estimated by  2

AD  was found to be more influential criteria to select 

discriminant feature subset based on average separability for both LLDF and ILDF 

models. In addition, the bounded criterion was able to select fewer numbers of 

features in its feature subsets compared to the unbounded distance criterion.     

In summary, this study has introduced alternative strategies for the traditional 

discriminant analysis based on feature extraction in the classification problem of 

multi sensor data fusion namely low and intermediate level data fusion. The 

applications of the unbounded and bounded Mahalanobis distance for the proposed 

discriminant analysis based on feature selection have shown some promising results. 

Among the two criteria, the bounded criterion revealed better achievements in terms 

of less number of features in the selected feature subsets, fast convergence of 
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accurate classification and the classification accuracy of the first selected pair of 

features was higher. And these findings can be observed when applied in the ILDF 

model.   

5.2 Contribution of Study  

The findings of this study have contributed to three different aspects including the 

knowledge of feature selection, methodology, algorithms and application. Each of 

these is explained in the following details: 

1. Knowledge of feature selection. This study has developed a new feature 

selection approach called percentile forward feature selection that suitable for 

fused data. The implementation of the proposed feature subset selection suits 

the low and intermediate level of data fusion models where discriminant 

features were successfully identified. Apart from that, the concept of 

unbounded and bounded Mahalanobis distances appeared to be the essence of 

value added to the research. These two criteria could be an important 

consideration when performing feature selection based on separability among 

multi-group centroids.         

2. Discriminant Analysis Methodology for the LLDF and ILDF. For years, the 

LLDF and ILDF have been implemented using the traditional discriminant 

analysis based on feature extraction. Dependency on the first few 

combinations of features given the highest variance explained or highest 

eigenvalues restricted the possibility to identify the most discriminant 

features that contribute to the utmost classification accuracy. The criteria of 

unbounded and bounded Mahalanobis distance have created a new dimension 
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of study in the LLDF and ILDF methodology. Discriminant analysis based on 

feature selection using the unbounded and bounded Mahalanobis distance 

gave some flexibility and practicality to the implementation of feature 

selection and classification of LLDF and ILDF models. 

3. Algorithms Development. All the previous contributions were accomplished 

via development of some associated algorithms. In specific, this study has 

designed new algorithms to compute univariate unbounded and bounded 

Mahalanobis distances and perform fused feature ranking for the discriminant 

analysis in LLDF and ILDF. Next, additional algorithms were created by 

modifying a built-in R function from HDMD package to compute the 

multivariate unbounded and bounded Mahalanobis distances for the final 

evaluation of feature subset selection in the LLDF and ILDF models. These 

algorithms have simplified the execution of every procedures of discriminant 

analysis in the LLDF and ILDF models.     

4. Applications of Discriminant Analysis based on Feature Selection. In this 

study, the proposed criteria and procedures were tested on ten datasets of 

honey collected from two different sensors (e-tongue and e-nose). Knowing 

that the sensors functioned uniquely according to the designed procedure, 

when their data are to be fused and analyzed, an appropriate approach should 

be followed so that the sensors contributions are equally assessed and valued. 

Therefore, a more reliable and accurate classification result could be found.      
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5.3 Direction for Future Work 

This work has not yet answered all problems related to replacing the traditional 

discriminant analysis based on feature extraction with the discriminant analysis 

based on feature selection approach. Future work is necessary to fill some flaws of 

this study, so that better classification results of this type can be produced. Directions 

for future research are summarized as follows.   

1. Chapter 3 of this study proposed percentile forward feature selection which 

heuristically determines what percentiles of ranked features to be included for 

the feature subset selection in the LLDF and ILDF models. Different 

percentiles of higher values may lead to new findings of which discriminative 

features influential for correct classification. The study also has not attempted 

to pair the features with the highest univariate Mahalanobis distance with the 

features of the lowest distance to be in subset of feature, and the classification 

results remain unresolved. 

2. Classification rule for this study is based on the parametric rule with 

classification accuracy as the performance measure. This is due to the nature 

of some of the variables that follow the normal distribution and some that are 

not. Thus, it may be worthwhile to execute the proposed procedures and 

algorithms using the nonparametric classification rules and compare the 

findings. 

3. The study only tested dataset of adulterated honey. Even though the dataset 

are quite many, different datasets other than adulterated honey could produce 

different distance and classification results. However, classification of pure 
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honey from the adulterated honey with cane sugar or beet sugar is a 

challenging task. What more when the adulterated honeys were purposely 

mixed to imitate the real honey, and the dataset were formed into multi-group 

of many different adulterated honeys. 

4. As previously mentioned, the study only includes two sensors such as e-

tongue and e-nose. These fused sensors produced about 42 features which 

became the input for the percentile forward feature selection. Similar and /or 

somewhat different findings were obtained when the LLDF or the ILDF 

models were applied using the two distance criteria. Therefore, the proposed 

procedures and algorithms using the nonparametric classification rules could 

be tested for different other sensors, where a deeper look at the relationships 

among selected discriminant features could be learnt 

5. Finally, application of the proposed procedures and algorithms should be 

implemented in the higher level data fusion. Less study is devoted for this 

model, but the execution of this model applying the proposed approaches 

would lead to interesting findings.   
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Appendix A 
 DEVELOPED R ALGORITHMS FOR THE UNIVARIATE AND 

MULTIVARIATE MAHALANOBIS DISTANCES 

A. Algorithms for fused feature ranking based on univariate unbounded 
Mahalanobis distance  2D   

univariate.mahalanobisU <- function(variable, grouping)  

{ 

  n <- nrow(variable)  

  g <- as.factor(grouping)  

  lev <- lev1 <- levels(g)  

  counts <- as.vector(table(g))   

  ng = length(lev1)  

  group.mean <- aggregate(variable, by = list(groupFUN =    

  "mean")    

  xbargroup <- as.vector(group.mean) 

  colnames(xbargroup) <- c("Group", "GroupMean") 

   

  group.var <- aggregate(variable, by = list(grouping), FUN =   

  "var") #group.var = data.frame  

  vargroup <- as.vector(group.var) 

  colnames(vargroup) <- c("Group", "GroupVariance") 

   

  str(xbargroup) 

  str(vargroup) 

     

  Distance = matrix(nrow = ng, ncol = ng)  

  dimnames(Distance) <- list(rownames(Distance, do.NULL =    

  FALSE, prefix = "g"), colnames(Distance, do.NULL = FALSE,  

  prefix = "g")) 

   

  Means = round(xbargroup$GroupMean, digits=10) 

  Variance = round(vargroup$GroupVariance digits=10) 

  Distance = round(Distance, digits=3) 

   

  for (i in 1:ng) { 

    for (j in 1:ng) { 

      if (i > j)  

         

Distance[i, j] <- ((Means[i]- Means[j])^2)*((counts[i] 

+counts[j])2) /(Variance[i]+Variance[j]) 

    } 

  } 

  return(Distance) 

}  
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B. Algorithms for fused feature ranking based on univariate bounded 
Mahalanobis distance  2

AD   

univariate.mahalanobisU <- function(variable, grouping)  

{ 

  n <- nrow(variable)  

  g <- as.factor(grouping)  

  lev <- lev1 <- levels(g)  

  counts <- as.vector(table(g))   

  ng = length(lev1)  

  group.mean <- aggregate(variable, by = list(groupFUN =    

  "mean")    

  xbargroup <- as.vector(group.mean) 

  colnames(xbargroup) <- c("Group", "GroupMean") 

   

  group.var <- aggregate(variable, by = list(grouping), FUN =   

  "var") #group.var = data.frame  

  vargroup <- as.vector(group.var) 

  colnames(vargroup) <- c("Group", "GroupVariance") 

   

  str(xbargroup) 

  str(vargroup) 

     

  Distance = matrix(nrow = ng, ncol = ng)  

  dimnames(Distance) <- list(rownames(Distance, do.NULL =    

  FALSE, prefix = "g"), colnames(Distance, do.NULL = FALSE,  

  prefix = "g")) 

   

  Means = round(xbargroup$GroupMean, digits=10) 

  Variance = round(vargroup$GroupVariance digits=10) 

  Distance = round(Distance, digits=3) 

   

  for (i in 1:ng) { 

    for (j in 1:ng) { 

      if (i > j)  

         

Distance[i, j] <- ((Means[i]-Means[j])^2)*   

((counts[i]+counts[j])-2)/(Variance[i]+ Variance[j]) 

Distance[i, j] <- Distance[i, j]/(4+Distance[i, j])  

} 

  } 

  return(Distance) 

}  
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C. Algorithms for multivariate unbounded Mahalanobis distance  2D    

library(HDMD) 

pairwise.MVmahal <- function (x, grouping, cov, inverted = 

FALSE, digits = 3, ...) 

{ 

  x <- if (is.vector(x))  

    matrix(x, ncol = length(x)) 

  else as.matrix(x) 

  if (!is.matrix(x))  

    stop("x could not be forced into a matrix") 

  if (length(grouping) == 0) { 

    grouping = t(x[1]) 

    x = x[2:dim(x)[2]] 

    cat("assigning grouping\n") 

    print(grouping) 

  } 

  n <- nrow(x) 

  p <- ncol(x) 

  if (n != length(grouping)) { 

    cat(paste("n: ", n, "and groups: ", length(grouping),  

              "\n")) 

    stop("nrow(x) and length(grouping) are different") 

  } 

  g <- as.factor(grouping) 

  g 

  lev <- lev1 <- levels(g) 

  counts <- as.vector(table(g)) 

  if (any(counts == 0)) { 

    empty <- lev[counts == 0] 

    warning(sprintf(ngettext(length(empty), "group %s is   

    empty", "groups %s are empty"), paste(empty, collapse = "  

    ")), domain = NA) 

    lev1 <- lev[counts > 0] 

    g <- factor(g, levels = lev1) 

    counts <- as.vector(table(g)) 

  } 

  ng = length(lev1) 

  group.means <- tapply(x, list(rep(g, p), col(x)), mean) 

  #if (missing(cov)) { 

  #if (is.null(poolcov)) { 

  #inverted = FALSE 

  #cov = cor(x) 

  #  cov = poolcov(x) 

  #} 

  #else { 

  #  if (dim(cov) != c(p, p))  

  #    stop("cov matrix not of dim = (p,p)\n") 

  #} 

  Distance = matrix(nrow = ng, ncol = ng) 

  dimnames(Distance) = list(names(group.means),    

  names(group.means)) 

  Means = round(group.means, digits) 

  Cov = round(cov, digits) 

  Distance = round(Distance, digits) 
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  for (i in 1:ng) { 

    Distance[i, ] = mahalanobis(group.means, group.means[i, ],  

    cov, inverted) 

  } 

  result <- list(means = group.means, cov = cov, distance = 

Distance) 

  result 

} 

 

D. Algorithms for multivariate bounded Mahalanobis distance  2
AD    

library(HDMD) 

pairwise.MVmahal <- function (x, grouping, cov, inverted = 

FALSE, digits = 3, ...) 

{ 

  x <- if (is.vector(x))  

    matrix(x, ncol = length(x)) 

  else as.matrix(x) 

  if (!is.matrix(x))  

    stop("x could not be forced into a matrix") 

  if (length(grouping) == 0) { 

    grouping = t(x[1]) 

    x = x[2:dim(x)[2]] 

    cat("assigning grouping\n") 

    print(grouping) 

  } 

  n <- nrow(x) 

  p <- ncol(x) 

  if (n != length(grouping)) { 

    cat(paste("n: ", n, "and groups: ", length(grouping),  

              "\n")) 

    stop("nrow(x) and length(grouping) are different") 

  } 

  g <- as.factor(grouping) 

  g 

  lev <- lev1 <- levels(g) 

  counts <- as.vector(table(g)) 

  if (any(counts == 0)) { 

    empty <- lev[counts == 0] 

    warning(sprintf(ngettext(length(empty), "group %s is 

empty",  

                             "groups %s are empty"), 

paste(empty, collapse = " ")),  

            domain = NA) 

    lev1 <- lev[counts > 0] 

    g <- factor(g, levels = lev1) 

    counts <- as.vector(table(g)) 

  } 

  ng = length(lev1) 

  group.means <- tapply(x, list(rep(g, p), col(x)), mean) 

  #if (missing(cov)) { 

  #if (is.null(poolcov)) { 

  #inverted = FALSE 

  #cov = cor(x) 
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  #  cov = poolcov(x) 

  #} 

  #else { 

  #  if (dim(cov) != c(p, p))  

  #    stop("cov matrix not of dim = (p,p)\n") 

  #} 

  Distance = matrix(nrow = ng, ncol = ng) 

  dimnames(Distance) = list(names(group.means), 

names(group.means)) 

  Means = round(group.means, digits) 

  Cov = round(cov, digits) 

  Distance = round(Distance, digits) 

  for (i in 1:ng) { 

    Distance[i, ] = mahalanobis(group.means, group.means[i,  

    ], cov, inverted) 

  } 

  result <- list(means = group.means, cov = cov, distance =  

Distance) 

  result 

} 
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Appendix B 
 Results of Fused Feature Ranking for LLDF based on Bounded and 

Unbounded Mahalanobis Distances 

Results of Fused Feature Ranking for LLDF based on Bounded and Unbounded 
Mahalanobis Distance for AS Honey 

 
D2 DA

2 
Feature Criterion 

Value Rank Percent Feature 
Criterion 

Value Rank Percent 
N26 1937.62 1 100.00% N15 0.9326 1 100.00% 
N5 1872.11 2 97.50% N5 0.9285 2 97.50% 
N29 1815.44 3 95.10% N23 0.9214 3 95.10% 
N31 1116.44 4 92.60% N11 0.9181 4 92.60% 
N15 1086.9 5 90.20% N29 0.914 5 90.20% 
N9 1058.89 6 87.80% N26 0.91 6 87.80% 
N20 994.57 7 85.30% N8 0.9099 7 85.30% 
N16 928.61 8 82.90% N18 0.9077 8 82.90% 
N23 917.45 9 80.40% N20 0.8984 9 80.40% 
T11 888.82 10 78.00% N2 0.8969 10 78.00% 
N17 886.27 11 75.60% N4 0.8965 11 75.60% 
N13 832.86 12 73.10% T11 0.8963 12 73.10% 
N8 800.05 13 70.70% N1 0.8916 13 70.70% 
N21 779.23 14 68.20% N3 0.8907 14 68.20% 
N11 755.48 15 65.80% N16 0.8883 15 65.80% 
N18 727.66 16 63.40% N31 0.8874 16 63.40% 
N28 712.29 17 60.90% N21 0.8834 17 60.90% 
N7 626.57 18 58.50% N9 0.882 18 58.50% 
N12 616.34 19 56.00% T2 0.8751 19 56.00% 
N10 582.97 20 53.60% N19 0.8743 20 53.60% 
N1 580.04 21 51.20% N13 0.8726 21 48.70% 
N3 545.42 22 48.70% N12 0.8726 22 48.70% 
N4 516.91 23 46.30% N14 0.8722 23 46.30% 
N14 502.47 24 43.90% N28 0.8555 24 43.90% 
T2 498.87 25 41.40% N25 0.8487 25 41.40% 
N2 436.33 26 39.00% N7 0.848 26 39.00% 
N22 423.87 27 36.50% T1 0.8386 27 36.50% 
N25 405.44 28 34.10% T3 0.8383 28 34.10% 
N19 385.8 29 31.70% T8 0.8379 29 31.70% 
N27 347.33 30 29.20% N30 0.8329 30 29.20% 
N6 344.93 31 26.80% N6 0.8129 31 26.80% 
N24 337.84 32 24.30% N27 0.8104 32 21.90% 
T9 318.68 33 21.90% N17 0.8104 33 21.90% 
T7 281.94 34 19.50% N22 0.805 34 19.50% 

N30 261.39 35 17.00% T9 0.7969 35 17.00% 
T3 258.33 36 14.60% T7 0.788 36 14.60% 
T8 148.62 37 12.10% T5 0.7791 37 12.10% 
T1 132.06 38 9.70% N24 0.7716 38 9.70% 
T4 96.43 39 7.30% N10 0.7405 39 7.30% 
T5 70.97 40 4.80% N32 0.704 40 4.80% 

N32 67.79 41 2.40% T10 0.5924 41 2.40% 
T10 43.47 42 0.00% T4 0.5177 42 0.00% 
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Results of Fused Feature Ranking for LLDF based on Bounded and Unbounded 
Mahalanobis Distance for ST Honey 

 
D2 DA

2 

Feature 
Criterion 

Value Rank Percent Feature 
Criterion 

Value Rank Percent 
N29 12593.81 1 100.00% N6 0.9642 1 100.00% 
N5 6375.09 2 97.50% T2 9226 2 97.50% 

N23 6014.23 3 95.10% N10* 0.9219 3 95.10% 
N31 5832.96 4 92.60% N31 0.9203 4 92.60% 
N26 5555.79 5 90.20% N29 0.9194 5 90.20% 
N9 4647.56 6 87.80% N26 0.919 6 87.80% 
T2 4354.62 7 85.30% N5 0.9106 7 85.30% 

N11 3749.95 8 82.90% N17 0.909 8 82.90% 
N6 3650.01 9 80.40% T11 0.9063 9 80.40% 

N20 3259.16 10 78.00% N23 0.9016 10 78.00% 
N17 2369.79 11 75.60% N22* 0.895 11 75.60% 
N28 2264.82 12 73.10% N20 0.89 12 73.10% 
N10* 1997.47 13 70.70% T1 0.8868 13 70.70% 

N1 1778.03 14 68.20% N18 0.8836 14 68.20% 
N8 1742.91 15 65.80% N9 0.881 15 65.80% 

N18 1742.85 16 63.40% N16 0.8804 16 63.40% 
N15 1695.26 17 60.90% N11 0.8777 17 60.90% 
N16 1346.31 18 58.50% N8 0.877 18 58.50% 
N22 1207.47 19 56.00% N15 0.8731 19 56.00% 
N30 1074.31 20 53.60% N28 0.8696 20 53.60% 
N3 913.47 21 51.20% N30 0.8599 21 51.20% 
T9 889.88 22 48.70% N19 0.8373 22 48.70% 

N12 868.62 23 46.30% N24 0.8372 23 46.30% 
N13 842.9 24 43.90% N13 0.8326 24 43.90% 
N19 826.82 25 41.40% N7 0.8323 25 41.40% 
N4 818.7 26 39.00% N21 0.8225 26 39.00% 

N27 761.42 27 36.50% N12 0.8156 27 36.50% 
N2 700.4 28 34.10% T9 0.8091 28 34.10% 
N7 687.86 29 31.70% N14 0.8053 29 31.70% 

N21 682.05 30 29.20% N25 0.8041 30 29.20% 
N25 587.72 31 26.80% N4 0.8032 31 26.80% 
N24 569.58 32 24.30% N2 0.8001 32 24.30% 
T11 542.8 33 21.90% N27 0.7924 33 21.90% 
N14 510.64 34 19.50% N3 0.7886 34 19.50% 
T1 341.75 35 17.00% T8 0.7881 35 17.00% 
T8 215.54 36 14.60% N1 0.7825 36 14.60% 
T5 177.28 37 12.10% T3 0.7425 37 12.10% 

N32 142.51 38 9.70% T5 0.742 38 9.70% 
T4 92.6 39 7.30% T10 0.7155 39 7.30% 
T3 62.53 40 4.80% T4 0.7119 40 4.80% 
T7 60.66 41 2.40% N32 0.7013 41 2.40% 
T10 11.09 42 0.00% T7 0.6736 42 0.00% 
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Results of Fused Feature Ranking for LLDF based on Bounded and Unbounded 
Mahalanobis Distance for T Honey 

D2 DA
2 

Feature 
Criterion 

Value Rank Percent Feature 
Criterion 

Value Rank Percent 
T7 84016 1 100.00% N23 0.9517 1 100.00% 
T2 17337.5 2 97.50% N6 0.9514 2 97.50% 

N29 4120.59 3 95.10% T11 0.9276 3 95.10% 
N23 3493.41 4 92.60% N8 0.9152 4 92.60% 
N31 2661.3 5 90.20% N22 0.9106 5 90.20% 
N5 2235.94 6 87.80% N10 0.9105 6 87.80% 
N6 2188.87 7 85.30% N5 0.9105 7 85.30% 
N26 2043.21 8 82.90% N18 0.9082 8 82.90% 
N9 1883.41 9 80.40% N9 0.9073 9 80.40% 
N20 1156.73 10 78.00% N26 0.9 10 78.00% 
N10 1097.63 11 75.60% N20 0.899 11 75.60% 
N17 1052.48 12 73.10% N17 0.8975 12 73.10% 
T11 1037.43 13 70.70% N19 0.8973 13 70.70% 
N22 1029.37 14 68.20% T2 0.8937 14 68.20% 
N8 1020.89 15 65.80% N28 0.8861 15 65.80% 
N28 1019.52 16 63.40% N29 0.8825 16 63.40% 
N18 900.7 17 60.90% N15 0.879 17 60.90% 
N15 870.4 18 58.50% T8 0.8762 18 58.50% 
N16 802.34 19 56.00% N16 0.8741 19 56.00% 
T9 660.37 20 53.60% N1 0.8677 20 53.60% 

N11 657.82 21 51.20% N13 0.8668 21 51.20% 
N12 554.35 22 48.70% T1 0.8653 22 48.70% 
N13 544 23 46.30% N7 0.8635 23 46.30% 
N27 537.6 24 43.90% N11 0.8607 24 43.90% 
T1 513.37 25 41.40% N21 0.8592 25 41.40% 

N19 475.41 26 39.00% N2 0.8588 26 39.00% 
N7 474.97 27 36.50% N4 0.8581 27 36.50% 
N1 446.23 28 34.10% N3 0.8504 28 34.10% 
N21 440.02 29 31.70% T9 0.8484 29 31.70% 
N14 434.49 30 29.20% N12 0.8464 30 29.20% 
N30 416.91 31 26.80% N31 0.8442 31 26.80% 
N25 321.53 32 24.30% N14 0.8426 32 24.30% 
N3 318.65 33 21.90% N27 0.8302 33 21.90% 
N24 291.55 34 19.50% N30 0.8077 34 19.50% 
N2 274.43 35 17.00% N25 0.8066 35 17.00% 
N4 263.23 36 14.60% N24 0.8002 36 14.60% 
T8 185.14 37 12.10% T4 0.7996 37 12.10% 

N32 143.86 38 9.70% T5 0.7527 38 9.70% 
T3 114.05 39 7.30% T10 0.7168 39 7.30% 
T4 98.99 40 4.80% N32 0.6727 40 4.80% 
T5 90.02 41 2.40% T3 0.5971 41 2.40% 

T10 76.1 42 0.00% T7 0.5829 42 0.00% 
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Results of Fused Feature Ranking for LLDF based on Bounded and Unbounded 
Mahalanobis Distance for T3 Honey 

 
D2 DA

2 

Feature 
Criterion 

Value Rank Percent Feature 
Criterion 

Value Rank Percent 
N29 3688.43 1 100.00% N6 0.9642 1 100.00% 
N5 3619.54 2 97.50% T2 0.9226 2 97.50% 
N23 2725.01 3 95.10% N10 0.9219 3 95.10% 
N31 2314.98 4 92.60% N31 0.9203 4 92.60% 
N26 2284.21 5 90.20% N29 0.9194 5 90.20% 
N9 1939.9 6 87.80% N26 0.919 6 87.80% 
N10 1787.67 7 85.30% N5 0.9106 7 85.30% 
N17 1356.67 8 82.90% N17 0.909 8 82.90% 
N20 1260.21 9 80.40% T11 0.9063 9 80.40% 
N6 1076.32 10 78.00% N23 0.9016 10 78.00% 
N8 1056.54 11 75.60% N22 0.895 11 75.60% 
T2 1002.97 12 73.10% N20 0.89 12 73.10% 

N22 986.39 13 70.70% T1 0.8868 13 70.70% 
N15 959.63 14 68.20% N18 0.8836 14 68.20% 
N18 930.71 15 65.80% N9 0.881 15 65.80% 
N16 925.82 16 63.40% N16 0.8804 16 63.40% 
N28 890.07 17 60.90% N11 0.8777 17 60.90% 
N11 716.85 18 58.50% N8 0.877 18 58.50% 
N13 692.65 19 56.00% N15 0.8731 19 56.00% 
T11 685.45 20 53.60% N28 0.8696 20 53.60% 
N21 628.14 21 51.20% N30 0.8599 21 51.20% 
N12 626.89 22 48.70% N19 0.8373 22 48.70% 
N1 573.16 23 46.30% N24 0.8372 23 46.30% 
N7 512.38 24 43.90% N13 0.8326 24 43.90% 
N14 477.42 25 41.40% N7 0.8323 25 41.40% 
N19 411.58 26 39.00% N21 0.8225 26 39.00% 
N4 377.42 27 36.50% N12 0.8156 27 36.50% 
N27 371.13 28 34.10% T9 0.8091 28 34.10% 
N2 350.85 29 31.70% N14 0.8053 29 31.70% 
N25 337.76 30 29.20% N25 0.8041 30 29.20% 
N30 320.51 31 26.80% N4 0.8032 31 26.80% 
N3 300.53 32 24.30% N2 0.8001 32 24.30% 
T1 298.75 33 21.90% N27 0.7924 33 21.90% 
T9 288.86 34 19.50% N3 0.7886 34 19.50% 

N24 210.66 35 17.00% T8 0.7881 35 17.00% 
T3 179.84 36 14.60% N1 0.7825 36 14.60% 
T8 128.25 37 12.10% T3 0.7425 37 12.10% 

N32 97.12 38 9.70% T5 0.742 38 9.70% 
T7 74.44 39 7.30% T10 0.7155 39 7.30% 
T4 58.29 40 4.80% T4 0.7119 40 4.80% 
T5 54.34 41 2.40% N32 0.7013 41 2.40% 

T10 52.63 42 0.00% T7 0.6736 42 0.00% 
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Results of Fused Feature Ranking for LLDF based on Bounded and Unbounded 
Mahalanobis Distance for TK Honey 

D2 DA
2 

Feature 
Criterion 

Value Rank Percent Feature 
Criterion 

Value Rank Percent 
N23 2663.26 1 100.00% N5 0.9366 1 100.00% 
N29 2538.28 2 97.50% N23 0.9269 2 97.50% 
N5 2069.87 3 95.10% T11 0.9262 3 95.10% 
N9 2066.03 4 92.60% N6 0.9207 4 92.60% 
N26 2050.25 5 90.20% N10 0.9166 5 90.20% 
N20 1580.12 6 87.80% N11 0.895 6 87.80% 
N17 1568.36 7 85.30% N17 0.8876 7 85.30% 
N31 1553.67 8 82.90% N29 0.8851 8 82.90% 
N16 1230.39 9 80.40% N22 0.8844 9 80.40% 
N10 1189.51 10 78.00% N18 0.8678 10 78.00% 
N15 1095.07 11 75.60% T2 0.8665 11 75.60% 
N13 1062.34 12 73.10% N15 0.8644 12 73.10% 
N18 1005.69 13 70.70% N16 0.8618 13 70.70% 
N6 977.35 14 68.20% N19 0.8608 14 68.20% 
N8 916.76 15 65.80% N12 0.8595 15 65.80% 
N22 865.9 16 63.40% T1 0.8587 16 63.40% 
T11 862.7 17 60.90% N8 0.8579 17 60.90% 
N21 860.6 18 58.50% N26 0.8507 18 58.50% 
N11 840.33 19 56.00% T8 0.8479 19 56.00% 
N28 786.16 20 53.60% N20 0.8475 20 53.60% 
N12 775.97 21 51.20% N29 0.8462 21 51.20% 
T2 749.26 22 48.70% N13 0.8439 22 48.70% 
N7 685.13 23 46.30% N25 0.8296 23 46.30% 
N14 540.21 24 43.90% N28 0.8207 24 43.90% 
N1 526.24 25 41.40% N14 0.816 25 41.40% 
N25 434.22 26 39.00% T9 0.8112 26 39.00% 
N19 424.72 27 36.50% N1 0.8102 27 36.50% 
N3 396.13 28 34.10% N7 0.81 28 34.10% 
N4 360.71 29 31.70% N21 0.8082 29 31.70% 
N27 343.16 30 29.20% N4 0.8041 30 29.20% 
N2 325.63 31 26.80% N31 0.8022 31 26.80% 
T9 316.08 32 24.30% N2 0.7969 32 24.30% 

N30 266.31 33 21.90% N27 0.7815 33 21.90% 
T1 205.23 34 19.50% N31 0.7576 34 19.50% 

N24 175.27 35 17.00% N24 0.7345 35 17.00% 
T8 159.03 36 14.60% T5 0.7164 36 14.60% 
T7 121.11 37 12.10% T10 0.7095 37 12.10% 

N32 106.62 38 9.70% T4 0.6858 38 9.70% 
T10 99.81 39 7.30% T7 0.6042 39 7.30% 
T5 65.49 40 4.80% T3 0.5951 40 4.80% 
T4 45.26 41 2.40% N30 0.5621 41 2.40% 
T3 26.77 42 0.00% N32 0.5095 42 0.00% 
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Results of Fused Feature Ranking for LLDF based on Bounded and Unbounded 
Mahalanobis Distance for TLH Honey 

D2 DA
2 

Feature 
Criterion 

Value Rank Percent Feature 
Criterion 

Value Rank Percent 
N29 2865.03 1 100.00% N6 0.9391 1 100.00% 
N9 2833.27 2 97.50% N20 0.9362 2 97.50% 
N26 2526.77 3 95.10% N9 0.9353 3 95.10% 
N17 2326.74 4 92.60% N18 0.9259 4 92.60% 
N10 2151.57 5 90.20% N22 0.9239 5 90.20% 
N5 1997.04 6 87.80% N8 0.9195 6 87.80% 
N20 1986.03 7 85.30% N26 0.9189 7 85.30% 
N31 1898.18 8 82.90% T11 0.9161 8 82.90% 
N18 1889.85 9 80.40% N28 0.9108 9 80.40% 
N15 1711.96 10 78.00% N7* 0.9087 10 78.00% 
N8 1539.02 11 75.60% N17 0.9079 11 75.60% 
N22 1457.59 12 73.10% N15* 0.905 12 73.10% 
N16 1416.93 13 70.70% N21 0.9036 13 70.70% 
N23 1328.33 14 68.20% N31 0.9032 14 68.20% 
N12 1292.17 15 65.80% N5 0.8974 15 65.80% 
N13 1139.75 16 63.40% N30 0.8969 16 63.40% 
N28 1069.02 17 60.90% N13 0.896 17 60.90% 
N21 992.47 18 58.50% N23 0.8954 18 58.50% 
N27 959.76 19 56.00% N27 0.8952 19 56.00% 
N7 926.02 20 53.60% N10 0.8944 20 53.60% 
N11 900.11 21 51.20% N12 0.8926 21 51.20% 
T11 868.3 22 48.70% N1 0.8916 22 48.70% 
N1 851.84 23 46.30% N29 0.8852 23 46.30% 
N19 772.37 24 43.90% N3 0.8846 24 43.90% 
N3 751.01 25 41.40% N19 0.8827 25 41.40% 
N6 698.65 26 39.00% N11 0.8798 26 39.00% 
N25 664.92 27 36.50% N2 0.8792 27 36.50% 
N14 632.77 28 34.10% N25 0.8678 28 34.10% 
N2 578.12 29 31.70% N16 0.8644 29 31.70% 
T2 428.15 30 29.20% N14 0.8631 30 29.20% 
N4 422.11 31 26.80% N4 0.8435 31 26.80% 
T10 419.94 32 24.30% T2 0.8404 32 24.30% 
N24 378.11 33 21.90% N24 0.8121 33 21.90% 
N30 345.88 34 19.50% T1 0.7814 34 19.50% 
T5 201.75 35 17.00% T8 0.7734 35 17.00% 
T9 148.68 36 14.60% T10 0.7712 36 14.60% 

N32 98.14 37 12.10% T5 0.7628 37 12.10% 
T1 94.16 38 9.70% N32 0.7611 38 9.70% 
T8 79.59 39 7.30% T7 0.6885 39 7.30% 
T7 77.88 40 4.80% T9 0.6707 40 4.80% 
T4 27.32 41 2.40% T3 0.6143 41 2.40% 
T3 24.61 42 0.00% T4 0.6131 42 0.00% 
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Results of Fused Feature Ranking for LLDF based on Bounded and Unbounded 
Mahalanobis Distance for TN Honey 

D2 DA
2 

Feature 
Criterion 

Value Rank Percent Feature 
Criterion 

Value Rank Percent 
T3 5306 1 100.00% N22 0.9255 1 100.00% 

N23 3747.14 2 97.50% T11 0.9229 2 97.50% 
N29 2640.31 3 95.10% N29 0.9216 3 95.10% 
N5 2182.42 4 92.60% N10 0.9156 4 92.60% 
N9 2025 5 90.20% N26 0.9137 5 90.20% 
N26 1770.22 6 87.80% N5 0.9082 6 87.80% 
N31 1473.64 7 85.30% N17 0.9033 7 85.30% 
N20 1411.19 8 82.90% N18 0.8995 8 82.90% 
N10 1326 9 80.40% N19 0.8956 9 80.40% 
N6 1209.44 10 78.00% N9 0.8902 10 78.00% 
N8 1206.69 11 75.60% T2 0.887 11 75.60% 
T11 1153.05 12 73.10% N28 0.8814 12 73.10% 
N22 1134.53 13 70.70% N6 0.8779 13 70.70% 
N17 1110.75 14 68.20% N20 0.8706 14 68.20% 
N18 1110.75 15 65.80% N31 0.8698 15 65.80% 
N11 1108.25 16 63.40% N21 0.8694 16 63.40% 
N15 1016.42 17 60.90% N16 0.8664 17 60.90% 
N1 913.06 18 58.50% N12 0.8648 18 58.50% 
N13 901.48 19 56.00% N7 0.8647 19 56.00% 
N16 896.82 20 53.60% N23 0.8644 20 53.60% 
N12 800.97 21 51.20% N27 0.863 21 51.20% 
N28 790.66 22 48.70% N15 0.8628 22 48.70% 
N3 782.48 23 46.30% N8 0.8603 23 46.30% 
N21 692.11 24 43.90% N2 0.8553 24 43.90% 
N7 646.58 25 41.40% N3 0.8544 25 41.40% 
N27 628.73 26 39.00% N1 0.8528 26 39.00% 
N25 609.36 27 36.50% N30 0.8527 27 36.50% 
N2 595.51 28 34.10% N25 0.8475 28 34.10% 
N19 573.71 29 31.70% N14 0.8446 29 31.70% 
N4 544.58 30 29.20% N13 0.8438 30 29.20% 
N14 530.46 31 26.80% N4 0.8262 31 26.80% 
T2 492.3 32 24.30% T1 0.8181 32 24.30% 

N24 331.69 33 21.90% N11 0.8163 33 21.90% 
N30 257.81 34 19.50% N24 0.7868 34 19.50% 
T1 142.21 35 17.00% N32 0.7464 35 17.00% 
T7 115.22 36 14.60% T7 0.7394 36 14.60% 

N32 107.78 37 12.10% T8 0.7383 37 12.10% 
T8 100.75 38 9.70% T9 0.7261 38 9.70% 

T10 89.38 39 7.30% T3 0.7189 39 7.30% 
T5 62.51 40 4.80% T5 0.706 40 4.80% 
T4 46.21 41 2.40% T10 0.6816 41 2.40% 
T9 42.27 42 0.00% T4 0.6441 42 0.00% 
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Results of Fused Feature Ranking for LLDF based on Bounded and Unbounded 
Mahalanobis Distance for WT Honey 

D2 DA
2 

Feature 
Criterion 

Value Rank Percent Feature 
Criterion 

Value Rank Percent 
N5 4127.81 1 100.00% N23 0.9408 1 100.00% 
N29 4037.63 2 97.50% N28 0.9369 2 97.50% 
N23 3405.52 3 95.10% N20 0.9356 3 95.10% 
N26 3347.08 4 92.60% N31 0.9352 4 92.60% 
N9 2942.97 5 90.20% N6 0.9344 5 90.20% 
N20 2461.75 6 87.80% N26 0.9315 6 87.80% 
N31 2299.67 7 85.30% N5 0.9306 7 85.30% 
N6 2016.16 8 82.90% N10 0.9272 8 82.90% 
N11 1739.11 9 80.40% N29 0.9247 9 80.40% 
N17 1666.27 10 78.00% N9 0.9199 10 78.00% 
N28 1488.67 11 75.60% N22 0.914 11 75.60% 
N10 1444.13 12 73.10% N8 0.9127 12 73.10% 
N15 1443.47 13 70.70% N15 0.9104 13 70.70% 
N8 1416.52 14 68.20% N16 0.9085 14 68.20% 
N16 1315.33 15 65.80% N11 0.9052 15 65.80% 
N18 1259.19 16 63.40% N27 0.9038 16 63.40% 
T11 1070.54 17 60.90% N25 0.9016 17 60.90% 
T2 1016.2 18 58.50% N12 0.9006 18 58.50% 

N12 1012.62 19 56.00% N31 0.8956 19 56.00% 
N1 899.3 20 53.60% N18 0.8947 20 53.60% 
N22 881.08 21 51.20% T11 0.8947 21 51.20% 
N3 834.49 22 48.70% N17 0.8915 22 48.70% 
N13 831.93 23 46.30% N1 0.8898 23 46.30% 
N7 809.65 24 43.90% N30 0.8803 24 43.90% 
N27 732.23 25 41.40% N14 0.8796 25 41.40% 
N30 723.78 26 39.00% N4 0.8778 26 39.00% 
N21 719.4 27 36.50% N7 0.8732 27 36.50% 
N4 668.77 28 34.10% N2 0.8725 28 34.10% 
N19 631.36 29 31.70% N13 0.8683 29 31.70% 
N14 588.74 30 29.20% N19 0.8616 30 29.20% 
N2 542.75 31 26.80% N21 0.8595 31 26.80% 
N25 471.72 32 24.30% T2 0.8198 32 24.30% 
T10 374.6 33 21.90% N24 0.8061 33 21.90% 
N24 296.97 34 19.50% T10 0.7894 34 19.50% 
T7 263 35 17.00% T1 0.778 35 17.00% 

N32 154.08 36 14.60% T8 0.777 36 14.60% 
T1 132.66 37 12.10% T9 0.763 37 12.10% 
T3 104.01 38 9.70% N32 0.7011 38 9.70% 
T5 70.1 39 7.30% T5 0.6943 39 7.30% 
T8 63.53 40 4.80% T3 0.6848 40 4.80% 
T4 43.16 41 2.40% T4 0.6747 41 2.40% 
T9 36.63 42 0.00% T7 0.6743 42 0.00% 
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Results of Fused Feature Ranking for LLDF based on Bounded and Unbounded 
Mahalanobis Distance for YB Honey 

D2 DA
2 

Feature 
Criterion 

Value Rank Percent Feature 
Criterion 

Value Rank Percent 
N5 6474 1 100.00% N11 0.9467 1 100.00% 
N23 5287.73 2 97.50% N28 0.9459 2 97.50% 
N29 4512.24 3 95.10% N9 0.9406 3 95.10% 
N26 3137.66 4 92.60% N26 0.9354 4 92.60% 
N6 3085.16 5 90.20% N20 0.9296 5 90.20% 
N9 2511.35 6 87.80% N6 0.9218 6 87.80% 
N31 2324.08 7 85.30% N23 0.9216 7 85.30% 
N20 1784.21 8 82.90% N17 0.9216 8 82.90% 
N11 1685.89 9 80.40% N5 0.921 9 80.40% 
N17 1329.32 10 78.00% T11 0.9134 10 78.00% 
N28 1278.17 11 75.60% N25 0.911 11 75.60% 
N8 1072.09 12 73.10% N10 0.9088 12 73.10% 
N10 1015.58 13 70.70% N8 0.9075 13 70.70% 
T11 960.45 14 68.20% N18 0.9061 14 68.20% 
N16 941.06 15 65.80% N15 0.904 15 65.80% 
N22 915.22 16 63.40% N27 0.8891 16 63.40% 
N15 889.7 17 60.90% N12 0.8866 17 60.90% 
N18 880.81 18 58.50% N30 0.8852 18 58.50% 
N30 856.89 19 56.00% N16 0.8807 19 56.00% 
N21 689.68 20 53.60% N13 0.8799 20 53.60% 
N13 679.78 21 51.20% N7 0.8794 21 51.20% 
N12 639.55 22 48.70% N22 0.8742 22 48.70% 
N7 517.44 23 46.30% N14 0.8728 23 46.30% 
N4 493.31 24 43.90% N19 0.8703 24 43.90% 
N1 484.69 25 41.40% N21 0.8695 25 41.40% 
N14 461.52 26 39.00% N1 0.8686 26 39.00% 
N25 447.94 27 36.50% N31 0.8682 27 36.50% 
N27 399.56 28 34.10% N29 0.8596 28 34.10% 
N3 369.81 29 31.70% N4 0.8577 29 31.70% 
N19 339.41 30 29.20% N3 0.848 30 29.20% 
N2 313.8 31 26.80% N2 0.8372 31 26.80% 
T2 218.66 32 24.30% T1 0.8312 32 24.30% 

N24 209.73 33 21.90% N24 0.8243 33 21.90% 
T1 202.2 34 19.50% T2 0.8204 34 19.50% 

T10 164.84 35 17.00% N32 0.7648 35 17.00% 
N32 108.32 36 14.60% T9 0.7566 36 14.60% 
T7 85.19 37 12.10% T10 0.7477 37 12.10% 
T3 57.36 38 9.70% T8 0.7058 38 9.70% 
T8 46.07 39 7.30% T7 0.6164 39 7.30% 
T9 37.04 40 4.80% T3 0.6067 40 4.80% 
T5 32.67 41 2.40% T4 0.6042 41 2.40% 
T4 22.2 42 0.00% T5 0.5806 42 0.00% 
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Appendix C 
Results of Single Feature Ranking for ILDF based on Bounded and 

Unbounded Mahalanobis Distances 
 

Results of Single Feature Ranking for ILDF based on Bounded and Unbounded 
Mahalanobis Distance for e-nose (AS honey) 

D2 DA
2 

Feature Criterion 
Value Rank Percent Feature Criterion 

Value Rank Percent 

N26 1,937.62 1 100.00% N15 0.9326 1 100.00% 
N5 1,872.11 2 96.70% N5 0.9285 2 96.70% 

N29 1,815.44 3 93.50% N23 0.9214 3 93.50% 
N31 1,116.44 4 90.30% N11 0.9181 4 90.30% 
N15 1,086.90 5 87.00% N29 0.914 5 87.00% 
N9 1,058.89 6 83.80% N26 0.91 6 83.80% 

N20 994.57 7 80.60% N8 0.9099 7 80.60% 
N16 928.61 8 77.40% N18 0.9077 8 77.40% 
N23 917.45 9 74.10% N20 0.8984 9 74.10% 
N17 886.27 10 70.90% N2 0.8969 10 70.90% 
N13 832.86 11 67.70% N4 0.8965 11 67.70% 
N8 800.05 12 64.50% N1 0.8916 12 64.50% 

N21 779.23 13 61.20% N3 0.8907 13 61.20% 
N11 755.48 14 58.00% N16 0.8883 14 58.00% 
N18 727.66 15 54.80% N31 0.8874 15 54.80% 
N28 712.29 16 51.60% N21 0.8834 16 51.60% 
N7 626.57 17 48.30% N9 0.882 17 48.30% 

N12 616.34 18 45.10% N19 0.8743 18 45.10% 
N10 582.97 19 41.90% N12 0.8726 19 41.90% 
N1 580.04 20 38.70% N13 0.8726 20 38.70% 
N3 545.42 21 35.40% N14 0.8722 21 35.40% 
N4 516.91 22 32.20% N28 0.8555 22 32.20% 

N14 502.47 23 29.00% N25 0.8487 23 29.00% 
N2 436.33 24 25.80% N7 0.848 24 25.80% 

N22 423.87 25 22.50% N30 0.8329 25 22.50% 
N25 405.44 26 19.30% N6 0.8129 26 19.30% 
N19 385.80 27 16.10% N17 0.8104 27 16.10% 
N27 347.33 28 12.90% N27 0.8104 28 12.90% 
N6 344.93 29 9.60% N22 0.805 29 9.60% 

N24 337.84 30 6.40% N24 0.7716 30 6.40% 
N30 261.39 31 3.20% N10 0.7405 31 3.20% 
N32 67.79 32 0.00% N32 0.704 32 0.00% 

 
Results of Feature Ranking for ILDF based on Bounded and Unbounded 

Mahalanobis Distance for e-tongue (AS honey) 
D2 DA

2 

Feature Criterion 
Value Rank Percent Feature Criterion 

Value Rank Percent 

T11 888.82 1 100.00% T11 0.8963 1 100.00% 
T2 498.87 2 88.80% T2 0.8751 2 88.80% 
T9 318.68 3 77.70% T1 0.8386 3 77.70% 
T7 281.94 4 66.60% T3 0.8383 4 66.60% 
T3 258.33 5 55.50% T8 0.8379 5 55.50% 
T8 148.62 6 44.40% T9 0.7969 6 44.40% 
T1 132.06 7 33.30% T7 0.788 7 33.30% 
T4 96.43 8 22.20% T5 0.7791 8 22.20% 
T5 70.97 9 11.10% T10 0.5924 9 11.10% 

T10 43.47 10 0.00% T4 0.5177 10 0.00% 
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Results of Feature Ranking for ILDF based on Bounded and Unbounded 

Mahalanobis Distance for e-nose (ST honey) 
 

D2 DA
2 

Feature Criterion 
Value Rank Percent Feature Criterion 

Value Rank Percent 

N29 12,593.81 1 100.00% N6 0.9642 1 100.00% 
N5 6,375.09 2 96.70% N10* 0.9219 2 96.70% 

N23 6,014.23 3 93.50% N31 0.9203 3 93.50% 
N31 5,832.96 4 90.30% N29 0.9194 4 90.30% 
N26 5,555.79 5 87.00% N26 0.919 5 87.00% 
N9 4,647.56 6 83.80% N5 0.9106 6 83.80% 

N11 3,749.95 7 80.60% N17 0.909 7 80.60% 
N6 3,650.01 8 77.40% N23 0.9016 8 77.40% 

N20 3,259.16 9 74.10% N22 0.895 9 74.10% 
N17 2,369.79 10 70.90% N20 0.89 10 70.90% 
N28 2,264.82 11 67.70% N18 0.8836 11 67.70% 
N10 1,997.47 12 64.50% N9 0.881 12 64.50% 
N1 1,778.03 13 61.20% N16 0.8804 13 61.20% 
N8 1,742.91 14 58.00% N11 0.8777 14 58.00% 

N18 1,742.85 15 54.80% N8 0.877 15 54.80% 
N15 1,695.26 16 51.60% N15 0.8731 16 51.60% 
N16 1,346.31 17 48.30% N28 0.8696 17 48.30% 
N22 1,207.47 18 45.10% N30 0.8599 18 45.10% 
N30 1,074.31 19 41.90% N19 0.8373 19 41.90% 
N3 913.47 20 38.70% N24 0.8372 20 38.70% 

N12 868.62 21 35.40% N13 0.8326 21 35.40% 
N13 842.90 22 32.20% N7 0.8323 22 32.20% 
N19 826.82 23 29.00% N21 0.8225 23 29.00% 
N4 818.70 24 25.80% N12 0.8156 24 25.80% 

N27 761.42 25 22.50% N14 0.8053 25 22.50% 
N2 700.40 26 19.30% N25 0.8041 26 19.30% 
N7 687.86 27 16.10% N4 0.8032 27 16.10% 

N21 682.05 28 12.90% N2 0.8001 28 12.90% 
N25 587.72 29 9.60% N27 0.7924 29 9.60% 
N24 569.58 30 6.40% N3 0.7886 30 6.40% 
N14 510.64 31 3.20% N1 0.7825 31 3.20% 
N32 142.51 32 0.00% N32 0.7013 32 0.00% 

 
Results of Feature Ranking for ILDF based on Bounded and Unbounded 

Mahalanobis Distance for e-tongue (ST honey) 
 

D2 DA
2 

Feature Criterion 
Value Rank Percent Feature Criterion 

Value Rank Percent 

T2 4,354.62 1 100.00% T2 9226 1 100.00% 
T9 889.88 2 88.80% T11 0.9063 2 88.80% 

T11 542.80 3 77.70% T1 0.8868 3 77.70% 
T1 341.75 4 66.60% T9 0.8091 4 66.60% 
T8 215.54 5 55.50% T8 0.7881 5 55.50% 
T5 177.28 6 44.40% T3 0.7425 6 44.40% 
T4 92.60 7 33.30% T5 0.742 7 33.30% 
T3 62.53 8 22.20% T10 0.7155 8 22.20% 
T7 60.66 9 11.10% T4 0.7119 9 11.10% 

T10 11.09 10 0.00% T7 0.6736 10 0.00% 
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Results of Feature Ranking for ILDF based on Bounded and Unbounded 
Mahalanobis Distance for e-nose (T honey) 

 
D2 DA

2 

Feature Criterion 
Value Rank Percent Feature Criterion 

Value Rank Percent 

N29 4,120.59 1 100.00% N23 0.9517 1 100.00% 
N23 3,493.41 2 96.70% N6 0.9514 2 96.70% 
N31 2,661.30 3 93.50% N8 0.9152 3 93.50% 
N5 2,235.94 4 90.30% N22 0.9106 4 90.30% 
N6 2,188.87 5 87.00% N10 0.9105 5 87.00% 

N26 2,043.21 6 83.80% N5 0.9105 6 83.80% 
N9 1,883.41 7 80.60% N18 0.9082 7 80.60% 

N20 1,156.73 8 77.40% N9 0.9073 8 77.40% 
N10 1,097.63 9 74.10% N26 0.9 9 74.10% 
N17 1,052.48 10 70.90% N20 0.899 10 70.90% 
N22 1,029.37 11 67.70% N17 0.8975 11 67.70% 
N8 1,020.89 12 64.50% N19 0.8973 12 64.50% 

N28 1,019.52 13 61.20% N28 0.8861 13 61.20% 
N18 900.70 14 58.00% N29 0.8825 14 58.00% 
N15 870.40 15 54.80% N15 0.879 15 54.80% 
N16 802.34 16 51.60% N16 0.8741 16 51.60% 
N11 657.82 17 48.30% N1 0.8677 17 48.30% 
N12 554.35 18 45.10% N13 0.8668 18 45.10% 
N13 544.00 19 41.90% N7 0.8635 19 41.90% 
N27 537.60 20 38.70% N11 0.8607 20 38.70% 
N19 475.41 21 35.40% N21 0.8592 21 35.40% 
N7 474.97 22 32.20% N2 0.8588 22 32.20% 
N1 446.23 23 29.00% N4 0.8581 23 29.00% 

N21 440.02 24 25.80% N3 0.8504 24 25.80% 
N14 434.49 25 22.50% N12 0.8464 25 22.50% 
N30 416.91 26 19.30% N31 0.8442 26 19.30% 
N25 321.53 27 16.10% N14 0.8426 27 16.10% 
N3 318.65 28 12.90% N27 0.8302 28 12.90% 

N24 291.55 29 9.60% N30 0.8077 29 9.60% 
N2 274.43 30 6.40% N25 0.8066 30 6.40% 
N4 263.23 31 3.20% N24 0.8002 31 3.20% 

N32 143.86 32 0.00% N32 0.6727 32 0.00% 
 

Results of Feature Ranking for ILDF based on Bounded and Unbounded 
Mahalanobis Distance for e-tongue (T honey) 

 
D2 DA

2 

Feature Criterion 
Value Rank Percent Feature Criterion 

Value Rank Percent 

T7 84,016.00 1 100.00% T11 0.9276 1 100.00% 
T2 17,337.50 2 88.80% T2 0.8937 2 88.80% 

T11 1,037.43 3 77.70% T8 0.8762 3 77.70% 
T9 660.37 4 66.60% T1 0.8653 4 66.60% 
T1 513.37 5 55.50% T9 0.8484 5 55.50% 
T8 185.14 6 44.40% T4 0.7996 6 44.40% 
T3 114.05 7 33.30% T5 0.7527 7 33.30% 
T4 98.99 8 22.20% T10 0.7168 8 22.20% 
T5 90.02 9 11.10% T3 0.5971 9 11.10% 

T10 76.10 10 0.00% T7 0.5829 10 0.00% 
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Results of Feature Ranking for ILDF based on Bounded and Unbounded 
Mahalanobis Distance for e-nose (T3 honey) 

 
D2 DA

2 
Feature Criterion 

Value Rank Percent Feature Criterion 
Value Rank Percent 

N29 3,688.43 1 100.00% N6 0.9642 1 100.00% 
N5 3,619.54 2 96.70% N10 0.9219 2 96.70% 

N23 2,725.01 3 93.50% N31 0.9203 3 93.50% 
N31 2,314.98 4 90.30% N29 0.9194 4 90.30% 
N26 2,284.21 5 87.00% N26 0.919 5 87.00% 
N9 1,939.90 6 83.80% N5 0.9106 6 83.80% 

N10 1,787.67 7 80.60% N17 0.909 7 80.60% 
N17 1,356.67 8 77.40% N23 0.9016 8 77.40% 
N20 1,260.21 9 74.10% N22 0.895 9 74.10% 
N6 1,076.32 10 70.90% N20 0.89 10 70.90% 
N8 1,056.54 11 67.70% N18 0.8836 11 67.70% 

N22 986.39 12 64.50% N9 0.881 12 64.50% 
N15 959.63 13 61.20% N16 0.8804 13 61.20% 
N18 930.71 14 58.00% N11 0.8777 14 58.00% 
N16 925.82 15 54.80% N8 0.877 15 54.80% 
N28 890.07 16 51.60% N15 0.8731 16 51.60% 
N11 716.85 17 48.30% N28 0.8696 17 48.30% 
N13 692.65 18 45.10% N30 0.8599 18 45.10% 
N21 628.14 19 41.90% N19 0.8373 19 41.90% 
N12 626.89 20 38.70% N24 0.8372 20 38.70% 
N1 573.16 21 35.40% N13 0.8326 21 35.40% 
N7 512.38 22 32.20% N7 0.8323 22 32.20% 

N14 477.42 23 29.00% N21 0.8225 23 29.00% 
N19 411.58 24 25.80% N12 0.8156 24 25.80% 
N4 377.42 25 22.50% N14 0.8053 25 22.50% 

N27 371.13 26 19.30% N25 0.8041 26 19.30% 
N2 350.85 27 16.10% N4 0.8032 27 16.10% 

N25 337.76 28 12.90% N2 0.8001 28 12.90% 
N30 320.51 29 9.60% N27 0.7924 29 9.60% 
N3 300.53 30 6.40% N3 0.7886 30 6.40% 

N24 210.66 31 3.20% N1 0.7825 31 3.20% 
N32 97.12 32 0.00% N32 0.7013 32 0.00% 

 
Results of Feature Ranking for ILDF based on Bounded and Unbounded 

Mahalanobis Distance for e-tongue (T3 honey) 
 

D2 DA
2 

Feature Criterion 
Value Rank Percent Feature Criterion 

Value Rank Percent 

T2 1,002.97 1 100.00% T2 0.9226 1 100.00% 
T11 685.45 2 88.80% T11 0.9063 2 88.80% 
T1 298.75 3 77.70% T1 0.8868 3 77.70% 
T9 288.86 4 66.60% T9 0.8091 4 66.60% 
T3 179.84 5 55.50% T8 0.7881 5 55.50% 
T8 128.25 6 44.40% T3 0.7425 6 44.40% 
T7 74.44 7 33.30% T5 0.742 7 33.30% 
T4 58.29 8 22.20% T10 0.7155 8 22.20% 
T5 54.34 9 11.10% T4 0.7119 9 11.10% 

T10 52.63 10 0.00% T7 0.6736 10 0.00% 
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Results of Feature Ranking for ILDF based on Bounded and Unbounded 
Mahalanobis Distance for e-nose (TK honey) 

 
D2 DA

2 

Feature Criterion 
Value Rank Percent Feature Criterion 

Value Rank Percent 

N23 2,663.26 1 100.00% N5 0.9366 1 100.00% 
N29 2,538.28 2 96.70% N23 0.9269 2 96.70% 
N5 2,069.87 3 93.50% N6 0.9207 3 93.50% 
N9 2,066.03 4 90.30% N10 0.9166 4 90.30% 

N26 2,050.25 5 87.00% N11 0.895 5 87.00% 
N20 1,580.12 6 83.80% N17 0.8876 6 83.80% 
N17 1,568.36 7 80.60% N29 0.8851 7 80.60% 
N31 1,553.67 8 77.40% N22 0.8844 8 77.40% 
N16 1,230.39 9 74.10% N18 0.8678 9 74.10% 
N10 1,189.51 10 70.90% N15 0.8644 10 70.90% 
N15 1,095.07 11 67.70% N16 0.8618 11 67.70% 
N13 1,062.34 12 64.50% N19 0.8608 12 64.50% 
N18 1,005.69 13 61.20% N12 0.8595 13 61.20% 
N6 977.35 14 58.00% N8 0.8579 14 58.00% 
N8 916.76 15 54.80% N26 0.8507 15 54.80% 

N22 865.90 16 51.60% N20 0.8475 16 51.60% 
N21 860.60 17 48.30% N29 0.8462 17 48.30% 
N11 840.33 18 45.10% N13 0.8439 18 45.10% 
N28 786.16 19 41.90% N25 0.8296 19 41.90% 
N12 775.97 20 38.70% N28 0.8207 20 38.70% 
N7 685.13 21 35.40% N14 0.816 21 35.40% 

N14 540.21 22 32.20% N1 0.8102 22 32.20% 
N1 526.24 23 29.00% N7 0.81 23 29.00% 

N25 434.22 24 25.80% N21 0.8082 24 25.80% 
N19 424.72 25 22.50% N4 0.8041 25 22.50% 
N3 396.13 26 19.30% N31 0.8022 26 19.30% 
N4 360.71 27 16.10% N2 0.7969 27 16.10% 

N27 343.16 28 12.90% N27 0.7815 28 12.90% 
N2 325.63 29 9.60% N31 0.7576 29 9.60% 

N30 266.31 30 6.40% N24 0.7345 30 6.40% 
N24 175.27 31 3.20% N30 0.5621 31 3.20% 
N32 106.62 32 0.00% N32 0.5095 32 0.00% 

 
Results of Feature Ranking for ILDF based on Bounded and Unbounded 

Mahalanobis Distance for e-tongue (TK honey) 
 

D2 DA
2 

Feature Criterion 
Value Rank Percent Feature Criterion 

Value Rank Percent 

T11 862.70 1 100.00% T11 0.9262 1 100.00% 
T2 749.26 2 88.80% T2 0.8665 2 88.80% 
T9 316.08 3 77.70% T1 0.8587 3 77.70% 
T1 205.23 4 66.60% T8 0.8479 4 66.60% 
T8 159.03 5 55.50% T9 0.8112 5 55.50% 
T7 121.11 6 44.40% T5 0.7164 6 44.40% 

T10 99.81 7 33.30% T10 0.7095 7 33.30% 
T5 65.49 8 22.20% T4 0.6858 8 22.20% 
T4 45.26 9 11.10% T7 0.6042 9 11.10% 
T3 26.77 10 0.00% T3 0.5951 10 0.00% 
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Results of Feature Ranking for ILDF based on Bounded and Unbounded 
Mahalanobis Distance for e-nose (TLH honey) 

 
D2 DA

2 

Feature Criterion 
Value Rank Percent Feature Criterion 

Value Rank Percent 

N29 2,865.03 1 100.00% N6 0.9391 1 100.00% 
N9 2,833.27 2 96.70% N20 0.9362 2 96.70% 

N26 2,526.77 3 93.50% N9 0.9353 3 93.50% 
N17 2,326.74 4 90.30% N18 0.9259 4 90.30% 
N10 2,151.57 5 87.00% N22 0.9239 5 87.00% 
N5 1,997.04 6 83.80% N8 0.9195 6 83.80% 

N20 1,986.03 7 80.60% N26 0.9189 7 80.60% 
N31 1,898.18 8 77.40% N28 0.9108 8 77.40% 
N18 1,889.85 9 74.10% N7 0.9087 9 74.10% 
N15 1,711.96 10 70.90% N17 0.9079 10 70.90% 
N8 1,539.02 11 67.70% N15 0.905 11 67.70% 

N22 1,457.59 12 64.50% N21 0.9036 12 64.50% 
N16 1,416.93 13 61.20% N31 0.9032 13 61.20% 
N23 1,328.33 14 58.00% N5 0.8974 14 58.00% 
N12 1,292.17 15 54.80% N30 0.8969 15 54.80% 
N13 1,139.75 16 51.60% N13 0.896 16 51.60% 
N28 1,069.02 17 48.30% N23 0.8954 17 48.30% 
N21 992.47 18 45.10% N27 0.8952 18 45.10% 
N27 959.76 19 41.90% N10 0.8944 19 41.90% 
N7 926.02 20 38.70% N12 0.8926 20 38.70% 

N11 900.11 21 35.40% N1 0.8916 21 35.40% 
N1 851.84 22 32.20% N29 0.8852 22 32.20% 

N19 772.37 23 29.00% N3 0.8846 23 29.00% 
N3 751.01 24 25.80% N19 0.8827 24 25.80% 
N6 698.65 25 22.50% N11 0.8798 25 22.50% 

N25 664.92 26 19.30% N2 0.8792 26 19.30% 
N14 632.77 27 16.10% N25 0.8678 27 16.10% 
N2 578.12 28 12.90% N16 0.8644 28 12.90% 
N4 422.11 29 9.60% N14 0.8631 29 9.60% 

N24 378.11 30 6.40% N4 0.8435 30 6.40% 
N30 345.88 31 3.20% N24 0.8121 31 3.20% 
N32 98.14 32 0.00% N32 0.7611 32 0.00% 

 
Results of Feature Ranking for ILDF based on Bounded and Unbounded 

Mahalanobis Distance for e-tongue (TLH honey) 
 

D2 DA
2 

Feature Criterion 
Value Rank Percent Feature Criterion 

Value Rank Percent 

T11 868.30 1 100.00% T11 0.9161 1 100.00% 
T2 428.15 2 88.80% T2 0.8404 2 88.80% 

T10 419.94 3 77.70% T1 0.7814 3 77.70% 
T5 201.75 4 66.60% T8 0.7734 4 66.60% 
T9 148.68 5 55.50% T10 0.7712 5 55.50% 
T1 94.16 6 44.40% T5 0.7628 6 44.40% 
T8 79.59 7 33.30% T7 0.6885 7 33.30% 
T7 77.88 8 22.20% T9 0.6707 8 22.20% 
T4 27.32 9 11.10% T3 0.6143 9 11.10% 
T3 24.61 10 0.00% T4 0.6131 10 0.00% 
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Results of Feature Ranking for ILDF based on Bounded and Unbounded 
Mahalanobis Distance for e-nose (TN honey) 

 
D2 DA

2 

Feature Criterion 
Value Rank Percent Feature Criterion 

Value Rank Percent 

N23 3,747.14 1 100.00% N22 0.9255 1 100.00% 
N29 2,640.31 2 96.70% N29 0.9216 2 96.70% 
N5 2,182.42 3 93.50% N10 0.9156 3 93.50% 
N9 2,025.00 4 90.30% N26 0.9137 4 90.30% 

N26 1,770.22 5 87.00% N5 0.9082 5 87.00% 
N31 1,473.64 6 83.80% N17 0.9033 6 83.80% 
N20 1,411.19 7 80.60% N18 0.8995 7 80.60% 
N10 1,326.00 8 77.40% N19 0.8956 8 77.40% 
N6 1,209.44 9 74.10% N9 0.8902 9 74.10% 
N8 1,206.69 10 70.90% N28 0.8814 10 70.90% 

N22 1,134.53 11 67.70% N6 0.8779 11 67.70% 
N17 1,110.75 12 64.50% N20 0.8706 12 64.50% 
N18 1,110.75 13 61.20% N31 0.8698 13 61.20% 
N11 1,108.25 14 58.00% N21 0.8694 14 58.00% 
N15 1,016.42 15 54.80% N16 0.8664 15 54.80% 
N1 913.06 16 51.60% N12 0.8648 16 51.60% 

N13 901.48 17 48.30% N7 0.8647 17 48.30% 
N16 896.82 18 45.10% N23 0.8644 18 45.10% 
N12 800.97 19 41.90% N27 0.863 19 41.90% 
N28 790.66 20 38.70% N15 0.8628 20 38.70% 
N3 782.48 21 35.40% N8 0.8603 21 35.40% 

N21 692.11 22 32.20% N2 0.8553 22 32.20% 
N7 646.58 23 29.00% N3 0.8544 23 29.00% 

N27 628.73 24 25.80% N1 0.8528 24 25.80% 
N25 609.36 25 22.50% N30 0.8527 25 22.50% 
N2 595.51 26 19.30% N25 0.8475 26 19.30% 

N19 573.71 27 16.10% N14 0.8446 27 16.10% 
N4 544.58 28 12.90% N13 0.8438 28 12.90% 

N14 530.46 29 9.60% N4 0.8262 29 9.60% 
N24 331.69 30 6.40% N11 0.8163 30 6.40% 
N30 257.81 31 3.20% N24 0.7868 31 3.20% 
N32 107.78 32 0.00% N32 0.7464 32 0.00% 

 
Results of Feature Ranking for ILDF based on Bounded and Unbounded 

Mahalanobis Distance for e-tongue (TN honey) 
 

D2 DA
2 

Feature Criterion 
Value Rank Percent Feature Criterion 

Value Rank Percent 

T3 5,306.00 1 100.00% T11 0.9229 1 100.00% 
T11 1,153.05 2 88.80% T2 0.887 2 88.80% 
T2 492.30 3 77.70% T1 0.8181 3 77.70% 
T1 142.21 4 66.60% T7 0.7394 4 66.60% 
T7 115.22 5 55.50% T8 0.7383 5 55.50% 
T8 100.75 6 44.40% T9 0.7261 6 44.40% 

T10 89.38 7 33.30% T3 0.7189 7 33.30% 
T5 62.51 8 22.20% T5 0.706 8 22.20% 
T4 46.21 9 11.10% T10 0.6816 9 11.10% 
T9 42.27 10 0.00% T4 0.6441 10 0.00% 
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Results of Feature Ranking for ILDF based on Bounded and Unbounded 
Mahalanobis Distance for e-nose (WT honey) 

 
D2 DA

2 

Feature Criterion 
Value Rank Percent Feature Criterion 

Value Rank Percent 

N5 4,127.81 1 100.00% N23 0.9408 1 100.00% 
N29 4,037.63 2 96.70% N28 0.9369 2 96.70% 
N23 3,405.52 3 93.50% N20 0.9356 3 93.50% 
N26 3,347.08 4 90.30% N31 0.9352 4 90.30% 
N9 2,942.97 5 87.00% N6 0.9344 5 87.00% 

N20 2,461.75 6 83.80% N26 0.9315 6 83.80% 
N31 2,299.67 7 80.60% N5 0.9306 7 80.60% 
N6 2,016.16 8 77.40% N10 0.9272 8 77.40% 

N11 1,739.11 9 74.10% N29 0.9247 9 74.10% 
N17 1,666.27 10 70.90% N9 0.9199 10 70.90% 
N28 1,488.67 11 67.70% N22 0.914 11 67.70% 
N10 1,444.13 12 64.50% N8 0.9127 12 64.50% 
N15 1,443.47 13 61.20% N15 0.9104 13 61.20% 
N8 1,416.52 14 58.00% N16 0.9085 14 58.00% 

N16 1,315.33 15 54.80% N11 0.9052 15 54.80% 
N18 1,259.19 16 51.60% N27 0.9038 16 51.60% 
N12 1,012.62 17 48.30% N25 0.9016 17 48.30% 
N1 899.30 18 45.10% N12 0.9006 18 45.10% 

N22 881.08 19 41.90% N31 0.8956 19 41.90% 
N3 834.49 20 38.70% N18 0.8947 20 38.70% 

N13 831.93 21 35.40% N17 0.8915 21 35.40% 
N7 809.65 22 32.20% N1 0.8898 22 32.20% 

N27 732.23 23 29.00% N30 0.8803 23 29.00% 
N30 723.78 24 25.80% N14 0.8796 24 25.80% 
N21 719.40 25 22.50% N4 0.8778 25 22.50% 
N4 668.77 26 19.30% N7 0.8732 26 19.30% 

N19 631.36 27 16.10% N2 0.8725 27 16.10% 
N14 588.74 28 12.90% N13 0.8683 28 12.90% 
N2 542.75 29 9.60% N19 0.8616 29 9.60% 

N25 471.72 30 6.40% N21 0.8595 30 6.40% 
N24 296.97 31 3.20% N24 0.8061 31 3.20% 
N32 154.08 32 0.00% N32 0.7011 32 0.00% 

 
Results of Feature Ranking for ILDF based on Bounded and Unbounded 

Mahalanobis Distance for e-tongue (WT honey) 
 

D2 DA
2 

Feature Criterion 
Value Rank Percent Feature Criterion 

Value Rank Percent 

T11 1,070.54 1 100.00% T11 0.8947 1 100.00% 
T2 1,016.20 2 88.80% T2 0.8198 2 88.80% 

T10 374.60 3 77.70% T10 0.7894 3 77.70% 
T7 263.00 4 66.60% T1 0.778 4 66.60% 
T1 132.66 5 55.50% T8 0.777 5 55.50% 
T3 104.01 6 44.40% T9 0.763 6 44.40% 
T5 70.10 7 33.30% T5 0.6943 7 33.30% 
T8 63.53 8 22.20% T3 0.6848 8 22.20% 
T4 43.16 9 11.10% T4 0.6747 9 11.10% 
T9 36.63 10 0.00% T7 0.6743 10 0.00% 
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Results of Feature Ranking for ILDF based on Bounded and Unbounded 
Mahalanobis Distance for e-nose (YB honey) 

 
D2 DA

2 

Feature Criterion 
Value Rank Percent Feature Criterion 

Value Rank Percent 

N5 6,474.00 1 100.00% N11 0.9467 1 100.00% 
N23 5,287.73 2 96.70% N28 0.9459 2 96.70% 
N29 4,512.24 3 93.50% N9 0.9406 3 93.50% 
N26 3,137.66 4 90.30% N26 0.9354 4 90.30% 
N6 3,085.16 5 87.00% N20 0.9296 5 87.00% 
N9 2,511.35 6 83.80% N6 0.9218 6 83.80% 

N31 2,324.08 7 80.60% N17 0.9216 7 80.60% 
N20 1,784.21 8 77.40% N23 0.9216 8 77.40% 
N11 1,685.89 9 74.10% N5 0.921 9 74.10% 
N17 1,329.32 10 70.90% N25 0.911 10 70.90% 
N28 1,278.17 11 67.70% N10 0.9088 11 67.70% 
N8 1,072.09 12 64.50% N8 0.9075 12 64.50% 

N10 1,015.58 13 61.20% N18 0.9061 13 61.20% 
N16 941.06 14 58.00% N15 0.904 14 58.00% 
N22 915.22 15 54.80% N27 0.8891 15 54.80% 
N15 889.70 16 51.60% N12 0.8866 16 51.60% 
N18 880.81 17 48.30% N30 0.8852 17 48.30% 
N30 856.89 18 45.10% N16 0.8807 18 45.10% 
N21 689.68 19 41.90% N13 0.8799 19 41.90% 
N13 679.78 20 38.70% N7 0.8794 20 38.70% 
N12 639.55 21 35.40% N22 0.8742 21 35.40% 
N7 517.44 22 32.20% N14 0.8728 22 32.20% 
N4 493.31 23 29.00% N19 0.8703 23 29.00% 
N1 484.69 24 25.80% N21 0.8695 24 25.80% 

N14 461.52 25 22.50% N1 0.8686 25 22.50% 
N25 447.94 26 19.30% N31 0.8682 26 19.30% 
N27 399.56 27 16.10% N29 0.8596 27 16.10% 
N3 369.81 28 12.90% N4 0.8577 28 12.90% 

N19 339.41 29 9.60% N3 0.848 29 9.60% 
N2 313.80 30 6.40% N2 0.8372 30 6.40% 

N24 209.73 31 3.20% N24 0.8243 31 3.20% 
N32 108.32 32 0.00% N32 0.7648 32 0.00% 

 
Results of Feature Ranking for ILDF based on Bounded and Unbounded 

Mahalanobis Distance for e-tongue (YB honey) 
 

D2 DA
2 

Feature Criterion 
Value Rank Percent Feature Criterion 

Value Rank Percent 

T11 960.45 1 100.00% T11 0.9134 1 100.00% 
T2 218.66 2 88.80% T1 0.8312 2 88.80% 
T1 202.20 3 77.70% T2 0.8204 3 77.70% 

T10 164.84 4 66.60% T9 0.7566 4 66.60% 
T7 85.19 5 55.50% T10 0.7477 5 55.50% 
T3 57.36 6 44.40% T8 0.7058 6 44.40% 
T8 46.07 7 33.30% T7 0.6164 7 33.30% 
T9 37.04 8 22.20% T3 0.6067 8 22.20% 
T5 32.67 9 11.10% T4 0.6042 9 11.10% 
T4 22.20 10 0.00% T5 0.5806 10 0.00% 
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