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Abstrak 

Dalam teori keputusan, Model Jumlah Wajaran (WSM) adalah kaedah terbaik dalam 
Analisa Keputusan Multi-Kriteria (MCDA) untuk  menilai beberapa alternatif dari segi 
bilangan keputusan kriteria. Penetapan wajaran merupakan tugas yang sukar, terutama 
jika bilangan kriteria adalah besar dan kriteria tersebut mempunyai ciri yang berbeza. 
Terdapat beberapa masalah dalam dunia sebenar yang menggunakan kriteria yang 
bercanggah dan kesan bersama. Dalam bidang automotif, fenomena ketukan dalam enjin 
pembakaran atau pencucuhan bunga api dalaman menghadkan kecekapan enjin. Kuasa 
dan ekonomi bahan api boleh dimaksimumkan dengan mengoptimumkan beberapa faktor 
yang mempengaruhi fenomena ketukan, seperti suhu, sensor kedudukan pendikit, masa 
pencucuhan bunga api, dan revolusi per minit. Mengesan ketukan dan mengawal factor 
atau kriteria di atas membolehkan enjin berjalan pada kuasa dan bahan api terbaik 
ekonomi. Keputusan terbaik mesti diambil daripada trade-off yang paling optimum dalam 
pemilihan kriteria tersebut. Objektif utama kajian ini adalah untuk mencadangkan satu 
model baharu Fungsi Penilaian Aggregat Bukan-Wajaran (NWAEF) untuk bukan linear 
fungsi multi-objektif yang akan meniru tingkah laku ketukan enjin (pembolehubah 
bersandar bukan linear) untuk mengoptimumkan keputusan faktor bukan linear 
(pembolehubah bebas bukan linear). Kajian ini telah memberi tumpuan kepada 
pembinaan satu model NWAEF dengan menggunakan keluk teknik pemasangan dan 
derivatif separa. Ia juga bertujuan untuk mengoptimumkan sifat bukan linear satu faktor 
dengan menggunakan Algoritma Genetik (GA) dan juga menyiasat tingkah laku fungsi 
tersebut. Kajian ini mengandaikan bahawa pengaruh separa dan bersama antara faktor 
diperlukan sebelum faktor boleh dioptimumkan. The Kriteria Maklumat Akaike (AIC) 
digunakan untuk mengimbangi kerumitan model dan kehilangan data, yang boleh 
membantu menilai pelbagai model yang diuji dan memilih yang terbaik. Beberapa kaedah 
statistik juga digunakan dalam kajian ini untuk menilai dan mengenal pasti penjelasan 
yang lebih baik dalam model. Terbitan pertama digunakan untuk memudahkan bentuk 
fungsi penilaian. Model NWAEF telah dibandingkan dengan Genetik Algorithm Wajaran 
Rawak (RWGA) dengan menggunakan lima set data yang diambil daripada enjin 
pembakaran dalaman yang berbeza. Terdapat variasi yang agak besar di masa berlalu 
untuk mendapatkan penyelesaian terbaik antara kedua-dua model. Keputusan pengujian 
dalam keadaan sebenar (enjin pembakaran dalaman) menunjukkan bahawa model baharu 
mengambil bahagian dalam mengurangkan masa yang berlalu. Kajian ini merupakan 
bentuk kawalan ketukan dalam subruang yang boleh meningkatkan kecekapan dan 
prestasi enjin, meningkatkan ekonomi bahan api dan mengurangkan pelepasan terkawal 
dan pencemaran. Digabungkan dengan konsep baru dalam reka bentuk enjin, model ini 
boleh digunakan untuk meningkatkan strategi kawalan dan menyediakan maklumat yang 
tepat kepada Unit Kawalan Enjin (ECU), yang akan mengawal ketukan pantas dan 
memastikan keadaan engine yang sempurna. 
  
Kata kunci: Model Jumlah Wajaran, Analisa Keputusan Multi-Criteria, Alogritma 
Genetik, Kriteria Maklumat Akaike, Keluk Pemasangan 
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Abstract 

In decision theory, the weighted sum model (WSM) is the best known Multi-Criteria 
Decision Analysis (MCDA) approach for evaluating a number of alternatives in terms of 
a number of decision criteria. Assigning weights is a difficult task, especially if the 
number of criteria is large and the criteria are very different in character. There are some 
problems in the real world which utilize conflicting criteria and mutual effect. In the field 
of automotive, the knocking phenomenon in internal combustion or spark ignition 
engines limits the efficiency of the engine. Power and fuel economy can be maximized 
by optimizing some factors that affect the knocking phenomenon, such as temperature, 
throttle position sensor, spark ignition timing, and revolution per minute. Detecting 
knocks and controlling the above factors or criteria may allow the engine to run at the 
best power and fuel economy. The best decision must arise from selecting the optimum 
trade-off within the above criteria. The main objective of this study was to proposed a 
new Non-Weighted Aggregate Evaluation Function (NWAEF) model for non-linear 
multi-objectives function which will simulate the engine knock behavior (non-linear 
dependent variable) in order to optimize non-linear decision factors (non-linear 
independent variables). This study has focused on the construction of a NWAEF model 
by using a curve fitting technique and partial derivatives. It also aims to optimize the non-
linear nature of the factors by using Genetic Algorithm (GA) as well as investigate the 
behavior of such function. This study assumes that a partial and mutual influence 
between factors is required before such factors can be optimized. The Akaike Information 
Criterion (AIC) is used to balance the complexity of the model and the data loss, which 
can help assess the range of the tested models and choose the best ones. Some statistical 
tools are also used in this thesis to assess and identify the most powerful explanation in 
the model. The first derivative is used to simplify the form of evaluation function. The 
NWAEF model was compared to Random Weights Genetic Algorithm (RWGA) model 
by using five data sets taken from different internal combustion engines. There was a 
relatively large variation in elapsed time to get to the best solution between the two 
models. Experimental results in application aspect (Internal combustion engines) show 
that the new model participates in decreasing the elapsed time. This research provides a 
form of knock control within the subspace that can enhance the efficiency and 
performance of the engine, improve fuel economy, and reduce regulated emissions and 
pollution. Combined with new concepts in the engine design, this model can be used for 
improving the control strategies and providing accurate information to the Engine 
Control Unit (ECU), which will control the knock faster and ensure the perfect condition 
of the engine. 
 
Keywords: Weighted Sum Model, Multi-Criteria Decision Analysis, Genetic 
Algorithms, Akaike Information Criterion, Curve Fitting 
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CHAPTER ONE  

INTRODUCTION 

1.1   Background 

Global optimization aims to find a solution for obtaining the global minimum (maximum) 

objective function. In other words, global optimization aims to determine not merely "a 

local minimum," but also "the smallest local minimum" with respect to the solution set. 

In the study of the problems of optimization, the focus is to look for optimal or near 

optimal solutions related to the goals stipulated (Rothlauf, 2011). 

Problems in the sphere of global optimization refer to the optima of nonlinear functions 

being characterized and computed. These problems are common within the mathematical 

modelling of real systems and are found in a large array of applications. A huge number 

of theoretical, computational and algorithmic contributions have evolved over the past 

few decades, which have led to the solution of many global issues involving essential 

practical application.  

When a non-linear relationship exists between entities, changes to one of those entities 

will not result in a change to the other entity. This means that the relationship that exists 

between the two entities can be considered unpredictable. Non-linear entities may possess 

relations that appear rather predictable but are more complex compared to linear 

relationships.  

Optimization problems have been considered crucial because of their visibility and 

strength. All designs and engineering activities have multiple objectives because they are 
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rooted in and are inherent of the four main objectives in the product and system design. 

Figure1.1 illustrates these objectives, which include performance, cost, scheduling (time), 

and risks (Maier & Rechtin, 2000). 

 

 

Figure 1.1. Factors of designs and engineering activities 

A mathematical model of the system must exist for each optimization problem. For 

example, in the field of automotives (Lochau, Sun, Goltz, & Huhn, 2010), the knocking 

phenomenon in internal combustion or spark ignition (SI) engines limits the efficiency of 

the engine(Eltaher, 2013; Lonari, 2011; Peyton, 2014). Abnormal combustion occurs at 

the time of an increase in pressure and temperature of non-burning gas contained within 

the cylinder, which will lead to the self-combustion of the fuel. This phenomenon leads to 

the combustion chamber experiencing oscillating pressure waves. The oscillating 

pressure is what causes damage which can shorten the life of the engine (Eltaher, 2013; 

Ganestam, 2010; Kasseris, 2011; Kozarac, Tomic, Taritas, Chen, & Dibble, 2015; Lonari, 



3 
 

2011; Peyton Jones, Spelina, & Frey, 2013; Taglialatela, Moselli, & Lavorgna, 2005; 

Thomasson et al., 2013). The knocking phenomenon is one of the major factors that limit 

the efficiency of SI engines (Lonari, 2011; Vancoillie, Sileghem, & Verhelst, 2013). 

These engines are being developed today to balance the reduction of fuel consumption 

with the improvement of the torque (Zhen et al., 2012). Control systems are designed in 

modern engines to minimize their exhaust emissions and to maximize their power and 

economy(Merola, Sementa, & Tornatore, 2011). Power and fuel economy can be 

maximized by optimizing some factors that affect the knocking phenomenon, such as 

temperature (TEMP), throttle position sensor (TPS), spark ignition timing(IGN), and 

revolution per minute (RPM) for a specific air/fuel ratio(Kozarac et al., 2015). Detecting 

knocks and controlling the above factors may allow the engine to run at the best power 

and fuel economy. Normal combustion occurs when a mixture of air and fuel is ignited 

using a spark plug; the combustion then flows smoothly from the point of ignition to the 

walls of the cylinder (Kasseris, 2011; Revier, 2006). 

Control of knock phenomenon is becoming more and more important in modern SI 

engine, due to the tendency to develop high boosted turbocharged engines (downsizing). 

To this aim, improved modelling and experimental techniques are required to precisely 

define the maximum allowable spark advance (Bozza, De Bellis, & Siano, 2014). 

Given its excessive complexity, white-box modelling is no longer valuable for control 

applications. Therefore, simulating these plants in black-box form is required to develop 

a model by utilizing information from the system tests (Sarker & Newton, 2007; 

Vossoughi & Rezazadeh, 2004). Several design optimization problems can be modelled 
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and solved as single nonlinear objective problems (SNOPs), which are usually highly 

constrained(Sarker & Newton, 2007). 

A model that evaluates evolution must be built to achieve optimization. Such objective 

can be achieved through the “Evaluation Function” (EF). Evolution is not a purely 

random process, but must always be clarified or implied. EF serves as a guide for 

evolution. In other contexts, this function is termed objective function, fitness function, 

penalty function, profit function, cost function, scalar function, and energy function. EF 

assesses the status of the entire system (or one agent) and then selects the next step 

according to the value of the evaluation. Aside from having a key role, EF is also among 

the fundamental problems in evolution (Jing, 2005). Given that a single objective GA 

assesses the value for each individual solution in the population, evaluation tools must be 

used for the assessment. These tools must be accurate enough to generate an acceptable 

quantitative estimation of real world phenomena that are referred to by the optimization 

model (Ahmadi, 2007).  

Each issue is most likely to possess an objective, meaning the thing that one is trying to 

find. An objective refers to be the goals of a particular issue. The described goals are 

transferred to evaluation functions, which are capable of providing a map from the 

solution space to the number set (Michalewicz, Schmidt, Michalewicz, & Chiriac, 2005) 

(see Figure 1.2). 

 

 

 

 



5 
 

 

 

Figure 1.2. Mapping from the solution space to a set of numbers (Michalewicz et al., 

2005) 

Therefore, each solution is allocated a numeric value from the evaluation function for 

each specific goal. Because they usually articulate the connection that exists between the 

method and the problem(see Figure 1.3) (Michalewicz et al., 2005), evaluation functions 

(in the case of single objective) or a set of evaluation functions (in the case of multi-

objective) are considered primary components of a heuristic method, regardless of 

whether it is tabu search, genetic algorithm, simulated annealing, ant system or simple 

hill climber (Michalewicz et al., 2005). 

 

 

 

 

 

Figure 1.3. Connection between the method and the problem  

Evaluation functions compare the quality of various candidate solutions by assigning 

each solution with a quality measure. The functions are capable of several things, 
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including the return of a rank of the candidate solution in terms of a set of solutions, 

generating an exact number in the event of an evaluation function being defined as a 

closed formula, or may include several components, including penalty expression in the 

case where a candidate solution may violate problem specific constraints (Michalewicz et 

al., 2005). 

The observation of MOOPs is considered the main advantage of GA over classic methods 

in optimization problems. The issues may be present in many scenarios, including 

product design, where certain criteria are required to be simultaneously satisfied (Shan & 

Wang, 2005; Tappeta, Renaud, & Rodríguez, 2002; Wilson, Cappelleri, Simpson, & 

Frecker, 2001), especially in cases in which many decision variables are present and the 

nature of the problem involves a complex trade-off. Within the context, ‘trade-off’ will 

refer to the situation where the value of one objective is traded for the value of another 

function (Ahmadi, 2007).  

There are some problems in the real world which utilise conflicting criteria and mutual 

effect. The best decision must arise from selecting the optimum trade-off within the 

criteria. Therefore, a new approach that is based on modelling and partial derivatives is 

proposed for the designing of a non-linear multi-objective evaluation function, which is 

the goal of nonlinear MOOPs. 

1.2   Problem Statement 

According to Grodzevich and Romanko (2006); Knowles and Hughes (2005); Sindhya 

(2011); Talbi, Basseur, Nebro, and Alba (2012), all engineering activities and designs 

mainly apply multi-objective problems. Many approaches have been applied for 
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addressing MOOPs. These approaches can be classified into enumerative, numerical, and 

Guided random search techniques methods (Bandyopadhyay & Saha, 2012). Guided 

random search techniques methods have no assumptions or auxiliary information about 

the objective function.  

One of the most important of nonlinear multi-objectives optimization problems in 

internal combustion engines (Spark ignition engine (SI)) is “knock”. Engine knock is an 

undesired phenomenon in spark ignited internal combustion engines, where it does not 

have a standard mathematical model to represent this phenomenon. Knock is still relevant 

and challenging (Peyton, 2014). There are many literature on knock sensing and 

detection, but needs significant potential in knock control. There are many nonlinear 

factors suffer from conflict and mutual influence that affect in knocking. A trade off for 

these factors is needed to prevent this problem (Kozarac et al., 2015; Millo, Rolando, 

Pautasso, & Servetto, 2014).   

Only guided random search techniques algorithms are capable of solving general 

nonlinear optimization issues with arbitrary objective functions utilising minimal 

quantities of assumptions regarding the objective function or by exempting limitation to 

(small) enumerative problems. The objective function weighting problem is a 

characteristic property of multi-objective problems (Herwijnen, 2011; Ismail & Yusof, 

2010; Murata & Ishibuchi, 1995; Murata, Ishibuchi, & Tanaka, 1996; Tran, Hanif, Tölli, 

& Juntti, 2012). The solution for the weighting problem is a natural basis for the 

classification. The decision maker must make a decision regarding the relative 

importance of every objective function in order to obtain one unique solution for an 

original multidisciplinary decision-making problem. This decision can be performed by 
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applying one of the three approaches (Ching-Lai & Abu, 1979; Marler & Arora, 2010; 

Zadbood & Noghondarian, 2012), firstly, in a priori preference articulation, the decision 

maker selects the weighting before running the optimization algorithm. Secondly, in 

progressive preference articulation, the decision maker interacts with the optimization 

program during the optimization process. Thirdly, in a posteriori preference articulation, 

no weighting is specified by the user before or during the optimization process.  

The multi-objective optimization algorithm provides a set of efficient candidate solutions 

from which the decision maker may choose his/her solution. Two mainstream approaches 

are currently being used for defining MOOPs and conflicting objectives(Amouzgar., 

2012; Jubril, 2012; Trummer & Koch, 2014; Yang, Karamanoglu, & He, 2013), namely, 

aggregate objective functions (weighted sum of objective functions) and pareto 

optimization(Hu & Mehrotra, 2012).   

In aggregate multi-objective functions the following questions must be addressed, how 

conflicting (Santana-Quintero, Montano, & Coello, 2010; Yang, 2011) and mutually 

independent objectives are traded off (Ryu, Kim, & Wan, 2009); which objective must be 

favoured over the others; and how the individual objective functions must be weighted in 

relation to each other. Assigning weights is a difficult task, especially if the objectives are 

in large quantities and have distinct characteristics (Coello, 1999; Gabli, Jaara, & 

Mermri, 2014; Herwijnen, 2011; Ismail & Yusof, 2010; Kim & Weck, 2005; Konak, 

Coit, & Smith, 2006; Tran et al., 2012).  

For this reason, a new Non-Weighted Aggregate Evaluation Function (NWAEF) for non-

linear multi-objectives has been proposed. Evaluation function (EF) accuracy can be 
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enhanced by selecting a suitable form for each decision variable (predictor variable) that 

has greatest effect on the dependent variable. The optimization accuracy is measured by 

answering the following research question: 

1.3   Research Questions 

1- How to select the factors (partial decision variables) which have most effect into 

decision-making problem? 

2- How to construct non-weighted aggregate single nonlinear multi-objective 

evaluation function in order to optimize and mitigate engine knocking? 

3- How to trade off the conflict and the mutual influence between individual 

objectives? 

4- How to evaluate the non-weighted aggregate single nonlinear multi-objective 

evaluation function? 

1.4   Research Objectives  

The main objective of this research is to propose a new Non-Weighted Aggregate 

Evaluation Function for Non-linear Multi-objectives (NWAEF) which will simulate the 

knock behavior (non-linear dependent variable) in order to optimize non-linear decision 

factors (non-linear independent variables). The following specific research objectives are 

fulfilled: 
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1- To construct and test regression models that having most influence using 

ANOVA and some statistical tests. 

2- To identify the optimal nonlinear mathematical models for system identification 

modeling using curve fitting technique in order to optimizing, thus mitigate 

engine knocking. 

3- To prevent conflicting and mutual effect by applying aggregate partial derivatives 

method for each objectives. 

4- To evaluate the non-weighted aggregate single nonlinear multi-objective 

evaluation function using genetic algorithm (GA) in terms of accuracy. 

1.5   Motivation and Significance of the Research 

A generic tool-based framework for the automated application of a configurable GA was 

developed to a particular engine model. Overcoming weights through construction Non-

Weighted Aggregate Evaluation Function (NWAEF) by using curve fitting, and partial 

derivative techniques, are an aid in providing a good approximation to feasible optimal 

solutions. In comparable with other models, some advantages can be obtained, namely:     

 Overcome the non-linear weight selection implicitly greatly improved 

computational efficiency of the aggregate multi-objective method by reducing the 

complexity of model objectives. 

 Time efficient (short time to solution), even when the problems have a large 

number of variables. 

 Provides good approximations to feasible optimal solutions. 
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 In building, a mathematical model we do not need information from the expert. 

 Improved accuracy in solutions (reduce the error). 

 Can add other objectives easily (expansion model). 

 Further study of the relationships among the design variables in the model, which 

may allow the utilization of GAs on different models. 

The number of electronically influenced parameters increases and is mainly controlled by 

the Engine Control Unit (ECU), setting up the ECU to find optimized engine 

parameterizations for specific operating points becomes more complicated (mutual 

influence and conflicting) . This study handled more factors although its complexity, it 

reached higher accuracy results from other models. In other hand, in internal combustion 

engine, the adjustment of purely mechanical control parameters is understood and 

handled accordingly. Along with the upcoming requirements some contributions may be 

provided including: 

 Reduction of fuel consumption and emissions. In addition preventing the engine 

damage, this research provides a form of knock control within the subspace that 

can enhance the efficiency and performance of the engine, improve fuel economy, 

and reduce regulated emissions and pollution. 

 Using a real engine test bed to validate different settings for a stepwise 

approximation of optimal parameterization is also time-consuming and costly, 

therefore simulation has been used to build the model. 

 Combined with new concepts in the engine design, this model can be used for 

improving the control strategies and providing accurate information to the ECU, 

which will control the knock faster and ensure the perfect condition of the engine. 
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 Provide the appropriate values (optimal values) for decision making, this model 

simulates a knock problem in SI engines by speeding up the decision that is taken 

by the ECU. 

1.6   Scope, Assumption, and Limitations of the Research 

This thesis has focused on the construction of a non-weighted aggregate evaluation 

function of multi-objective optimization for engine knock modelling by using a curve 

fitting technique and partial derivatives. This thesis also aims to optimize the non-linear 

nature of the factors by using GAs as well as investigate the behaviour of such function. 

This research assumes that a partial and mutual influence between factors is required 

before such factors can be optimized. The Akaik Information Criterion (AIC) is used to 

balance the complexity of the model and the data loss, which can help assess the range of 

the tested models and choose the best ones. Some statistical tools are also used in this 

thesis to assess and identify the most powerful explanation in the model. The first 

derivative is used to simplify the form of EF.  

All tests have been performed to build an EF that is based on real data that are obtained 

by test engines in the Research and Development Center of the Malaysian Proton 

Company, as well as in those data that are obtained by the vehicle diagnostics tools of 

EGMA in Iraq. These data cover different situations and speeds (1000 rpm to 5000 rpm) 

to obtain a more reliable function.  

The knocking phenomenon can be affected by many factors. Given the complexity on 

finding an appropriate analysis, this research only focuses on the three most significant of 

these factors. 
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1.7   Thesis Organization 

This thesis consists of six chapters. Chapter one presents the research problem.  

Chapter two is divided into three parts. The first part reviews the optimization, the second 

part deals with multi-objective optimization, and the third part reviews the multi-

objective EF of the aggregation technique. The first part also covers the concepts, scope, 

methods, and problems of optimization as well as reviews related studies on such subject. 

The second part discusses the methods, problems, and previous studies that are related to 

MOOPs. The third part covers the concepts, problems, and related works on the multi-

objective EF of the aggregation technique. 

Chapter three reviews the methodology achieving the research objective. This chapter is 

divided into several subsections. The first subsection describes the general framework 

and the behaviour that has been examined in this thesis. The second subsection reviews 

how the datasets within the application can be obtained. The third subsection describes 

the selection of the best model for each objective. The fourth subsection describes the 

construction of the single multi-objective EF. The fifth subsection discusses the 

optimization of the single multi-objective EF.  

Chapter four discusses the practical part of this thesis in more detail by reviewing the 

stages of building the EF and simulating the nonlinear factors that affect the knocking 

phenomenon. 

Chapter five presents the evaluation results that are obtained by applying the EF to 

different conditions and vehicles to prove the effectiveness of the proposed model. 
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Finally, Chapter six provides the conclusion of the whole research study, achievement of 

research, discussion the Knock detection methods, contributions, limitations and put 

forward some recommendations for future work. 
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CHAPTER TWO 

 LITERATURE REVIEW 

2.1 Introduction 

This chapter, presents reviews of research works related to the field research study 

undertaken for this thesis. Section 2.1, this section provides an introduction to this 

chapter, 2.2 presents the concept of optimization and its techniques, while Section 2.3 

introduces the problems related to the scope of optimization. While Section 2.4 presents 

Optimization Problems, reviews the research studies on the nonlinear factors and 

evaluative functions of optimization, Section 2.5 explains the basic concept of multi-

objective optimization problems and, its techniques including a literature review of this 

concept. Meanwhile Section 2.6 presents the concepts and research studies on aggregate 

multi-objective optimization (AMOO). Section 2.7 reviews the research studies on the 

non-linear knock factors optimization and evaluation function. Finally, Section 2.8 

provides a summary of this chapter. 

2.2 Basic concepts of Optimization 

Optimization is a common concept in many disciplines and various domains. In the study 

of the problems of optimization, the focus is to seek optimal or near optimal solutions 

related to the goals stipulated (Ahmad, 2012).  Usually, the problems cannot be solved in 

one step. It requires a process with guide lines on problem solving. Often, the process of 

problem solving involves different steps which take place in a sequence. According to   

Rothlauf (2011) the common steps used include recognizing and defining problems, 

construction and solving of models, and evaluation and implementation of solutions. 
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The goal of optimization is to seek optimal solution, or near optimal solution with little 

calculated effort. The effort of optimization can be measured in term of time (calculation 

of time) and space (computer memory). There are many methods of optimization, such as 

modern heuristic. These methods attempt to strike a balance between the quality in 

solution and effort. This means that an increase in effort (time and space) often leads to 

an increase in quality of the solutions (Rothlauf, 2011). 

2.3 Scope of optimization problems 

In a practical task, optimization can be defined as a following stage, for instance, to 

determine the best solution for a given system or process, within certain constraints. The 

task comprises several elements. The first one is Objective Function (OF) that provides 

the numerical quantitative value for the measurement of performance. The value of this 

function is recorded either as minimum or maximum. It objective function (OF) can be in 

the form of cost, yield, profit or system. 

The second element is a Predictive model that describes the behavior of the system. In the 

optimization process, the problem is translated into a set of equations and inequalities 

with restrictions such as the limitations that affect the performance of the system. 

The last element is Variables, found in the predictive model. Often, these variables 

undergo modifications to meet the restrictions. This can usually be done with the multiple 

instances of changing values, that result in a region determined by the subspace of these 

variables. In many of the problems found in the field of engineering problems,  this 
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subspace is described by a set of decision variables which can be interpreted as the 

degree of freedom in analyzing the process (Biegler, 2010). 

2.4 Optimization Problems  

It is necessary to have an insight of the systems and product design in order to achieve 

the desired performance. Therefore, it is essential to adopt an effective and systematic 

approach in the process of making decisions and improving performances. Such 

operations require optimization strategies in order to achieve the desired goals. However, 

many problems may be encountered during these processes. The following section 

addresses some of these problems. 

2.4.1 Solution Process in optimization 

Usually, users, companies and other organizations are unable to choose freely from all 

the available decisions alternatives (Rothlauf, 2011), despite the limitations that restrict 

the number of available alternatives. Generally, the restrictions are technical limitations, 

law or interpersonal relations between humans. 

According to Rothlauf (2011) the most difficult step in the optimization of problem is 

recognition of problems. This is because users or institutions have to abandon the current 

way of doing business and accept other (and perhaps better) ways of doing things. 

According to Arora, Huang, and Hsieh (1994) Several  algorithms  for  discrete-integer-

continuous optimization  problems  were  developed,  among  them  branch  and  bound  

method,  penalty  function  approach,  rounding–off,  cutting  plane, simulated  annealing,  
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genetic  algorithms,  neural  networks,  and  Lagrangian  relaxation methods. It is 

observed that some of the methods for discrete variable optimization use the structure of 

the problem to speed up the search for the discrete solution. This class of methods is not 

suitable for implementation into a general purpose application (Arora et al., 1994). 

The researchers Liu & J. Chen clarified in (2011), the importance of the use of genetic 

algorithms in solving optimization problems through the application of genetic algorithm 

to optimize the function. He explained their ease of use in solving the problems of 

functions optimization, where the author explained the genetic algorithm provides a 

general framework which can solve nonlinear, multi-model and multi-objective 

optimization problems of complex systems, it does not depend on the specific areas of the 

problem belongs to, and has been widely used in function optimization, automatic 

control, image processing, machine learning and other technology. 

In (1997) the researcher Al-Duwaish introduced a new method for the control of 

nonlinear systems using genetic algorithms. The proposed method formulates the 

nonlinear controller design as an optimization problem and genetic algorithms (GA) are 

used in the optimization process. Researcher used a model as a fitness function that 

contains a single input (one factor) in order to get a single output (SISO), researcher used 

a genetic algorithm (GA) for minimize the square of the error between the input and 

output. 

Farther more, In constructing models, the author (Rothlauf) posited in (2011) that there 

are two other relevant aspects in the building of the model namely availability of relevant 

data and evaluation of the resulting model. Also in constructing models, according to 
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Schneeweiss (2003), to build a model with an appropriate level of abstraction is a 

difficult task . Often, may start with a realistic model, but the problem cannot be solved. 

When this occurs, the realistic model is simplified to a form that can be solved by the 

optimization of existing methods. There is a basic trade-off between the capability of 

optimization methods to solve a model (tractability) and the similarity between the model 

and the underlying problem in the real world (validity). 

Ahmad (2012) described solution technique called Best Candidates Method (BCM) for 

solving optimization problems; the goal is to minimize the computation time to get the 

optimal solution. In this study he applied the BCM to the linear assignment problems 

(LAP) that is one of the optimization problems in the Operation Research (OR). The 

author he say, either, find all available combinations in sequential or parallel solution 

manner then compare the results to get the optimal one, but its need a very large 

computation time for a large scale problems, or  try to reach directly the optimal solution 

using different methods. But all available methods not always reach the optimal solution 

and have a complex solution technique or have a long computation time (Ahmad, 2012). 

The BCM based on election the best candidates and the alternative in each row and cover 

all columns with at least one candidate, then he can obtain the combinations that must be 

have no any intersect means, one candidate for each row and column. The BCM 

comparing to the Hungarian Method as shown from the solution steps can obtained the 

best combinations with less computation time and without complexity. Finally, this 

approach can be used for linear optimization problems only. 
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In solving models, also Rothlauf (2011) believes that modern heuristics can be easily 

applied to problems that are very realistic and close to real-world matters. However, 

modern heuristics usually do not guarantee a perfect solution. However, the solution 

model is difficult as standard variables of modern heuristics, typically show limited 

performance. Only variables to a specific problem and specific model produced high-

quality solutions (Bonissone, Subbu, Eklund, & Kiehl, 2006; Droste & Wiesmann, 2003; 

Puchta & Gottlieb, 2002). 

In the previous sections that discussed optimization problems, one of most important 

solution process problem is the construction of the models. Many real-life problems are 

nonlinear. For example, if a person wants to buy a car, he/she will prefer both high 

performance and low cost.  

Linear models are commonly used to approximate behavior. This innovative idea of 

using the linear framework is established well. Furthermore, linear models are easy to 

interpret and understand. Constructing linear models usually require less effort than 

nonlinear models. Unfortunately, linear approximations are only valid for a particular 

input (a given input range). Thus nonlinear modeling was preferred in different 

application areas in the past decades. Technological innovations have resulted in lesser 

restrictions in computation, memory, and access to data, making nonlinear modeling a 

more suitable option than linear modeling. According to Paduart et al. (2010), to build 

models for the nonlinear devices studied, employed method to identify the system. The 

primary goal of the system is to identify available mathematical models of input/output 
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data. This goal is often achieved by minimizing cost function, which is an integral part of 

the statistical framework (Figure 2.1) (Paduart et al., 2010). 

 

Figure 2.1. Basic idea of system identification: cost function relates data and model 

(Paduart et al., 2010) 

2.4.2   Properties of Optimization Problems 

The difficulty in the description of a problem lies with locating or identifying an optimal 

solution for a specific problem or problem instance. This difficulty in the identification of 

the problem is independent of the optimization method used. Determining the level of 

difficulty of a problem is often a challenging task as it is necessary to prove that there are 

no optimization methods that can better solve the problem. Therefore, statements about 

the levels of difficulty of a problem are method independent as they must hold for all 

possible optimization methods. 

It is known that different types of optimization methods lead to different search 

performances. Often, optimization methods exploit the characteristics of an optimized 

problem show better performance. In contrast, methods that do not exploit any 

characteristics of the optimized problem such as black-box optimization techniques, 
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usually show low performance. It is imperative to look into random search to better 

understand its application. 

According to Rothlauf (2011), there are many properties that related to optimization 

problems. these properties like problem difficulty, locality, decomposability. Locality of 

a problem is generally a description of how well the distances d (x,y) between any two 

solutions x,y ∈ X correspond to the difference in the objective values |f (x) − f (y)| (Franz, 

2006; Lohmann, 1993; Rechenberg, 1994). The locality of a problem is high if 

neighboring solutions have similar objective values and is low if the distances do not 

correspond to the differences in objective values. Relevant determinants for the locality 

of a problem are the metrics defined in the search space and the objective function f.  

In heuristic literature, several studies focus on locality for discrete decision variables 

(Caminiti & Petreschi, 2005; Gottlieb, Julstrom, Raidl, & Rothlauf, 2001; Gottlieb & 

Raidl, 2000; Paulden & Smith, 2006; Raidl & Gottlieb, 2005; Rothlauf & Goldberg, 

1999; Weicker & Weicker, 1999; Whitley & Rowe, 2005) and for continuous decision 

variables (Igel, 1998; Rechenberg, 1994; Sendhoff, Kreutz, & Von Seelen, 1997). For 

continuous decision variables, locality is also known as causality. High and low localities 

correspond to strong and weak causalities respectively. 

2.4.3 Reviewing of Optimization Methods 

Two different types of optimization methods can be identified. Exact optimization 

methods can guarantee that an optimal solution will be found, whereas heuristic 
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optimization methods cannot. When the effort increases polynomially with problem size, 

exact optimization methods are preferred (Rothlauf, 2011). 

Some medium-sized problems require exponential methods because the problems are 

intractable and cannot be solved using exact methods. Heuristic optimization methods are 

used to overcome these problems. These optimization methods are problem specific 

because they exploit the properties of the problem. The methods are also suitable for 

practical problems. Table 2.1 shows the specific strategies of the two optimization 

methods (R. Horst & H. E. Romeijn, 2002). 

Table 2.1 

 Optimization Methods (Horst & Romeijn, 2002) 

No. EXACT METHODS No. HEURISTIC METHODS 

1. Adaptive stochastic search 

methods 

1. Approximate convex underestimation 

2. Bayesian search algorithms 2. Continuation methods 

3. Branch-and-bound algorithms 3. Genetic algorithms, evolution 

strategies 

4. Enumerative strategies 4. “Globalized” extensions of local search 

methods 

5. Homotopy and trajectory 

methods 

5. Sequential improvement of local 

optima 

6. Integral methods 6. Simulated annealing 

7. “Naive” (passive) approaches 7. Tabu search (TS) 

8. Relaxation (outer 

approximation) strategies 
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2.4.3.1 Exact Methods 

In (2002), the authors Horst & Romeijn illustrated Adaptive stochastic search methods, 

these procedures depend, at least in part, on the random sample taken, adaptive search 

strategy adjustments, statistical stopping rules, clustering samples, and deterministic 

solution refinement options that can be entered as improvements on the original sample. 

These methods can be applied to Global Optimization Problems (GOPs) of discrete and 

continuous values with very general conditions (Horst & Romeijn, 2002). In other side of 

algorithms, Bayesian search algorithms, these algorithms are based on some prior 

assumptions of a random model with the same class of function in that given instance. 

Subsequent adjustments for the estimate is based on this model and the actual results. 

Bayesian search algorithms are frequently used methods (single-step optimization), and 

thus accounting is easier. Approximate decisions govern the research procedures. 

Bayesian methods are applied to general Continuous Genetic Optimization Problems 

(CGOPs) (Mockus, 2010; Mockus, Eddy, Mockus, Mockus, & Reklaitis, 1996). Also, 

another procedures, called Branch-and-bound algorithms, these procedures depend on 

adaptive partition, sampling, and bound (in partial subsets allowed in the main set). They 

can be applied to models with continuous GOs or mixed problems, analogous to pure 

integer programming, or mixed integer linear programming methodology. This general 

procedure applies to many special and specific situations and provides extensive 

generalizations. Branch-and-bound methods can be systematically applied to the various 

GOPs, such as concave minimization, DC programming, and Lipschitz optimization 

problems (Floudas, 1999; Hansen, 1992; Horst & Tuy, 1996a; Kearfott, 1996; Neumaier, 

1990; Pintér, 1996a; Ratschek & Rokne, 1988; Strongin & Sergeyev, 2000). 
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According to Horst and Tuy (1996b), another methods are used, like Enumerative 

strategies, these methods rely on the enumeration of all possible solutions. They are 

applicable to combinatorial optimization problems and to certain structured CGOP 

models (e.g., concave programming) (Horst & Tuy, 1996b). As well as, there is 

Homotopy and trajectory methods, this strategy aims to visit all the fixed points of the 

objective function f in the main dataset and list all the global and local optimal points. 

The methodology can be applied to smooth GOPs, but mathematical analysis may be too 

exhaustive (Diener, 1995). In other side, there are ways are used like Integral methods, 

these methods are designed to determine the main supremum of the objective function f 

of master data D by approximating the level sets of the function f (Hichert, Hoffmann, & 

Phú, 1997; Zheng & Zhuang, 1995). Also, other methods are used, called “Naive” 

(passive) approaches this approach includes simultaneous and random research on the 

grid. No correlation occurs between the sample points selected (samples can be taken 

simultaneously) without considering the individual results. Although such methods are 

obviously convergent under mild analytical assumptions, they are inappropriate in 

solving higher (often already in 3, 4, 5, etc. ) dimensional problems (Pintér, 1996b; 

Zhigljavsky & Pintér, 1991). Finally, one of the exact methods, is Relaxation (outer 

approximation) strategies, in this strategy, the general GOP is replaced with another 

sequence of partial problems (relaxed subproblems) that is difficult to solve. Cutting 

specific and general plans and various minorant functions are possible options. 

Relaxation algorithms are applicable to diversely structured GOs, such as concave 

minimization or DC programming models (Benson, 1995; Horst & Tuy, 1996b). 
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2.4.3.2 Heuristic Methods 

In (1997), the authors Dill et al. illustrated approximate convex underestimation, this 

strategy attempts to determine the convexity properties of the objective function based on 

the main sample data in D. This method is effective in a number of situations; however, 

in other cases (i.e., the quadratic model is inappropriate) it will not produce reliable 

approximate solutions. These strategies can be applied to smooth GOPs (Dill et al., 

1997). While, in (1997) the authors More & Wu clarified Continuation methods, for 

these methods, the objective function is made simple and smooth with few local 

minimizers. Next, the minimization procedure is employed to trace all the minimizers and 

returned to the original function. These methods are used in smooth GOPs (Moré & Wu, 

1997). In other side, Genetic algorithms (GA) are used, under evolution strategies. These 

Evolutionary optimization methods mimic biological evolution models. Different types of 

specific algorithms that are deterministic, random, and rule-based can be built. These 

strategies can be applied to discrete and continuous GOPs under moderate structural 

requirements (Glover & Laguna, 1997; Michalewicz, 1996; Osman & Kelly, 1996; Voss, 

Osman, & Roucairol, 1999). Also, other methods are used, called “Globalized” 

extensions of local search methods, these practical strategies begin with a global search 

(random search) followed by a local search. These methods are applied to smooth the 

GOPs, and the differential is usually assumed to include the local search component 

(Pintér, 1996a; Zhigljavsky & Pintér, 1991). As well as, there is Sequential improvement 

of local optima, these methods include tunneling, deflation, and filled function methods. 

These strategies run on adaptively constructed auxiliary functions to assist the search for 

the progressive arrival of optima while avoiding the ones found thus far. They are 
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applicable to smooth GO problems (Levy & Gómez, 1985). As well as, is used Simulated 

annealing, these techniques are based on the physical measurement of the cooling crystal 

structures that automatically link to a configuration with minimally stable energy, 

globally or locally. Simulated annealing is applicable to both discrete and continuous 

GOPs under mild structural requirements (Glover & Laguna, 1997; Osman & Kelly, 

1996). Tabu search (TS), is used, the basic concept of this method is to prevent the 

movement of research to previously visited points (usually discrete) in the search space, 

at least within the next few steps. TS methodology is primarily used to solve 

combinatorial optimization problems, although it can also be extended to handle 

continuous GOPs (Glover & Laguna, 1997; Osman & Kelly, 1996; Voss et al., 1999). 

Colby (2013) used the difference evaluation function to determine agent-specific 

feedback. This function has excellent empirical results in various domains, including air 

traffic control and mobile robot control. To transfer the computer constraint satisfaction 

problem (CSP) to a multi-agent system, in (2003), Jing & Qingsheng (“Emergence from 

Local Evaluation Function”) describes several evaluation function algorithms that 

illustrate the relationship between the problems of computers and complex systems. Of 

these algorithms, local search (LEF) and simulated annealing in a multi-agent framework 

explain the traditional algorithms used in a global evaluation function (GEF) that 

computes how good the current system state is and determines the total violated 

constraints. The researcher also explained some algorithms (EO and Alife) that are used 

in LEF to self-organize to a global solution state. LEF determines how good the agent 

state is and the total violated constraints. 
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In general, numerous methods are used in optimization to formulate and solve decision-

making problems. In Figure 2.2, and according to Talbi (2009), optimization methods can 

be classified as follows. 

 

Figure 2.2. Classical optimization methods 

2.5 Multi-Objective optimization 

Consciously or unconsciously, decisions are made every day of our lives. These decisions 

can be as simple as selecting a design of a dress or deciding the menu for dinner, or as 

difficult as designing a bridge or selecting a career. The former decisions are easy to 

make, whereas the latter may take several years because of the level of complexity 

involved. The main goal of most decisions is to optimize one or more criteria to achieve 

the desired result. Therefore, the development of optimization algorithms has been a great 

challenge in computer science (Bandyopadhyay & Saha, 2013). The problem is 

compounded by the fact that, in many situations, several objectives must be optimized 

simultaneously. These specific problems are known as multi-objective optimization 

problems (MOOPs). An array of metaheuristic single-objective optimization techniques, 
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such as genetic algorithms, simulated annealing, differential evolution, and their multi-

objective versions, have been developed. 

2.5.1 Basic Concept of Multi-Objective Optimization Problems 

At present, research on multi-objective optimization is very active because most real-

world engineering optimization problems are multi-objective in nature (Coello, 2001; 

Luna, Nebro, & Alba, 2006; Zhou et al., 2011). The task of finding solutions for such 

problems is known as multi-objective optimization (MOO) (also called multi-criteria 

optimization). MOOPs have several objective functions to be optimized which are 

usually in conflict with on another(Zhou et al., 2011). Specifically, multi-objective 

optimization is a type of problem with solutions that can be evaluated along two or more 

incomparable or conflicting objectives. The general form of MOOP is described below. 

Minimize/Maximize ƒm(x),    m=1, 2,…..,M 

Subject to  

gj(x) >= 0     j=1, 2, ….., J 

hk(x) =0,     k=1, 2,……,K 

xi
L ≤ xi ≤ xi

U         i=1, 2,…....,n  

 

A solution x is a vector of n decision variables: x = x1 , x2,……., xn 

The last set of constraints is called variable bounds; these bounds restrict each decision 

variable xi to take a value within a lower xi
L and an upper xi

U bound. They constitute a 

decision variable space D or the decision space. 
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MOO does not restrict the determination of a unique single solution, but does restrict a 

set of solutions collectively known as the Pareto front. Evolutionary algorithms (EAs) are 

suitable for solving such kinds of problems because they are capable of finding multiple 

trade-off solutions in a single run. Recognized subclasses of EAs include genetic 

algorithms (GA), genetic programming (GP), evolutionary programming (EP), and 

evolution strategies (ES) (Luna et al., 2006). Evolutionary algorithms are suitable in 

solving multi-objective optimization problems because such algorithms simultaneously 

deal with a set of possible solutions (population). Several members of the Pareto optimal 

set in a single run of the algorithm can be determined instead of performing a series of 

separate runs, as in the case of traditional mathematical programming techniques (Coello, 

1999).  

The first implementation of an Evolutionary Multi-Objective Optimization (EMOO) 

approach was the vector evaluation genetic algorithm (VEGA) Schaffer (1985) 

introduced in the mid-1980s and was mainly intended to solve problems in machine 

learning (Coello, 2001). However, these algorithms may be computationally expensive 

because (1) real-world problem optimization typically involves tasks demanding high 

computational resources, and (2) they aim to find the whole front of optimal solutions 

instead of searching for a single optimum (Luna et al., 2006). MOO does not restrict the 

determination of a unique single solution but does restrict a set of solutions called non-

dominated solutions. Each solution in this set is said to be a Pareto optimum and is 

known as the Pareto font when they are plotted in the objective. Obtaining the Pareto 

front of a given MOP is the main goal of MOO. EMOO approaches are classified using 

the simple classification in Figure 2.3. 
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Figure: 2.3. Summarized approaches of EMOO (Coello, 2001) 

2.5.2 Reviewing Evolutionary Multi-Objective Optimization Approaches 

Various strategies address the problems of MOO. In this section, we will discuss the most 

common approaches used in such problems and clarify some of the advantages and 

disadvantages of each approach. 

2.5.2.1   Aggregating Function Method 

Genetic algorithms (GA) depend on a scalar fitness function to guide the search. The 

most intuitive approach to deal with multiple objectives is to combine these objectives 

into a single function. The approach of combining objectives into a single (scalar) 

function is normally a denominated aggregating function, which has been attempted 

several times in literature with relative success in problems where the behavior of the 
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objective functions is more or less determined. An example of this approach is a sum of 

weights of the form: 

min ƒ(x) = w1ƒ1′ (x) + w2ƒ2′ (x) +..…+ wk ƒk′ (x)                                         (2.5) 

where ƒi′ (x) is the normalized objective function, ƒi (x) and Σ wi = 1. This approach is 

called a priori approach because the user is expected to provide the weights. Solving a 

problem with the objective function (2.5) for a given weight vector w = [w1, w2,..…,wk] 

yields a single solution, and if multiple solutions are desired, the problem should be 

solved multiple times with different weight combinations. To solve a MOO problem, 

weight wi is assigned to each normalized objective function ƒi′(x), such that the problem 

is converted to a single objective problem with a scalar objective function as mentioned 

earlier (2.5) (Santana-Quintero et al., 2010). 

This approach has several advantages. It is very simple, easy to implement, and efficient 

because it does not require any changes to the basic mechanism of a genetic algorithm. 

The approach can work properly in MOO problems with few objective functions and 

convex search spaces. However, one obvious problem of this approach is that generating 

a set of weights that properly scales the objectives when little is known about the problem 

may be difficult. However, the most serious drawback is that it cannot generate proper 

members of the Pareto optimal set when the Pareto front is concave, regardless of the 

weights used (Coello, 2001; Das & Dennis, 1997). 
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2.5.2.2   Vector Evaluated Genetic Algorithm  

Schaffer (1985) proposed an approach called VEGA, which differs from GA in the way 

the selection is performed. This operator is modified so that at each generation, a number 

of sub-populations is generated by performing proportional selection according to each 

objective function. Thus, for a problem with k objectives and a population size of M, k 

sub-populations of size M/k each will be generated. These sub-populations will be 

shuffled together to obtain a new population of size M, on which the GA will apply the 

crossover and mutation operators in the usual way. 

Advantages and Disadvantages. Given that only the selection mechanism of the GA 

needs to be modified, the approach is thus easy to implement and quite efficient. 

However, the “middling” problem prevents the technique from finding the compromise 

solutions that we normally aim to produce. In fact, if proportional selection is used with 

VEGA (as Schaffer did), the shuffling and merging of all the sub-populations will 

correspond to the average fitness components associated with each objective 

(Richardson, Palmer, Liepins, & Hilliard, 1989). Under these conditions, VEGA behaves 

as an aggregating approach subject to the same problems of such techniques. 

2.5.2.3   Multi-Objective Genetic Algorithm 

Fonseca and Fleming (1993) proposed the multi-objective genetic algorithm (MOGA). 

The approach consists of a scheme where the rank of a certain individual corresponds to 

the number of individuals in the current population by which it is dominated. All non-

dominated individuals are assigned rank 1, whereas the dominated ones are penalized 
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according to the population density of the corresponding region of the trade-off surface 

(Coello, 2001). 

Advantages and Disadvantages. The main strengths of MOGA is that it is efficient and 

relatively easy to implement (Coello, 1996). However, as with all the other Pareto 

ranking techniques, the performance of MOGA is highly dependent on the appropriate 

selection of the sharing factor. 

MOGA is a very popular EMOO technique (particularly within the control community), 

and it normally exhibits very good overall performance (Coello, 1996). 

2.5.2.4   Non-dominated Sorting Genetic Algorithm 

Non-dominated sorting genetic algorithm (NSGA) was proposed by Srinivas and Deb 

(1994) based on several layers of individual classifications. Before selection (stochastic 

remainder proportionate selection is used), the population is ranked on the basis of 

domination (using Pareto ranking), and all non-dominated individuals are classified into 

one category (with a dummy fitness value that is proportional to the population size). 

Advantages and Disadvantages. Some researchers reported that NSGA has lower overall 

performance than MOGA (both computationally and in the quality of the Pareto fronts 

produced) and seems to be more sensitive to the value of the sharing factor than MOGA 

(Coello, 1996). However, Deb et al. (2000) recently proposed a new version of this 

algorithm called NSGA-II, which is more efficient (computationally) and uses elitism and 

a crowded comparison operator that keeps diversity without specifying any additional 
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parameters. The new approach has yet to be tested extensively, but it is certainly 

promising. 

2.5.2.5   Niched Pareto Genetic Algorithm 

Horn et al. (1994) proposed the Niched Pareto Genetic Algorithm (NPGA), which  uses a 

tournament selection scheme based on Pareto dominance. Instead of limiting the 

comparison to two individuals (as normally done with traditional GAs), a higher number 

of individuals is involved in the competition (typically around 10% of the population 

size). When both competitors are either dominated or non-dominated (i.e., when there is a 

tie), the tournament result is decided through fitness sharing in the objective domain (a 

technique called equivalent class sharing is used in this case) (Horn et al., 1994). 

Advantages and Disadvantages. This approach does not apply Pareto ranking to the entire 

population but only to a segment of it at each run; hence, its main strength is that it is 

faster than MOGA and NSGA4. NPGA also produces good non-dominated fronts that 

can be kept for a large number of generations (Coello, 1996). However, aside from 

requiring a sharing factor, this approach also needs an additional parameter that is the 

size of the tournament. 

2.5.2.6   Target Vector Approaches 

Approaches wherein the decision maker has to assign targets or goals for each objective 

are considered in this approach. In this case, the GA tries to minimize the difference 

between the current solution found and the vector of goals (different metrics can be used 

for that purpose). The most popular techniques are hybrids with goal programming (Deb, 
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1999; Wienke, Lucasius, & Kateman, 1992), goal attainment (Wilson & Macleod, 1993; 

Zebulum, Pacheco, & Vellasco, 1998), and the min-max approach (Coello & 

Christiansen, 1998; Hajela & Lin, 1992). 

Advantages and Disadvantages. The main strength of these methods is their efficiency 

(computationally) because they do not require a Pareto ranking procedure. Their main 

weakness is the definition of the desired goals, which requires extra computational effort 

(normally, these goals are the optimum of each objective function considered separately). 

Furthermore, these techniques will yield a non-dominated solution only if the goals are 

chosen in the feasible domain, and such condition may certainly limit their applicability. 

2.5.3   Review in Multi-Objective Genetic Algorithm 

In (2007), Ahmadi employed single and multi-objective GA to find optimal solution(s) 

for design parameters of intake and exhaust systems, including intake pipes length, intake 

manifold geometry, timing of intake and exhaust valves, and exhaust manifold geometry. 

A model was used as an evaluation tool and genetic algorithm as an evolution method. 

Optimization problem was solved in two cases. In the first case, MOGA was 

implemented to solve a multi-objective problem, and a single GA was developed for the 

second problem. As a result, an optimal design layout for intake and exhaust systems was 

chosen from Pareto-optimal solutions. For the second case, the best timing for intake and 

exhaust valve was found at each engine speed to aid in developing a variable valve 

timing system for the engine. 
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An improved MOGA was proposed Liu et al. (2014) to solve constrained optimization 

problems. The constrained optimization problem was converted into a multi-objective 

optimization problem. The researcher presented an algorithm based on the multi-

objective technique, where the population is divided into dominated and non-dominated 

subpopulations. An arithmetic crossover operator was utilized for the randomly selected 

individuals from dominated and non-dominated subpopulation. The crossover operator 

could gradually lead the individuals to the extreme point and improve the local searching 

ability. Diversity mutation operator was introduced for the non-dominated subpopulation. 

In most response surface method (RSM) problems, the exact relationship between the 

response variables and the independent variables is not known. In 2012, Zadbood and 

Noghondarian (2012) dealt with multiple response surface (MRS) optimization problems 

with conflicting responses. They meticulously studied the most prominent approaches to 

MRS optimization, and reviewed and discussed the classifications of these approaches, 

with a special focus on the decision maker’s preference information. They recommended 

three steps to solve these problems: collecting data, building a model, and optimization. 

A low-order polynomial was used to build a model for the relationship among the 

variables; for any curvature in the system, a polynomial of higher degrees, mostly second 

order, is applied (Zadbood & Noghondarian, 2012). Thus, they used a quadratic 

polynomial. Results of their case study showed that applying an interactive method with 

an existing MRS approach generates better results. 

Jaszkiewicz, Hapke, and Kominek (2001) presented a comparative experiment with four 

multiple-objective evolutionary algorithms on a real-life combinatorial optimization 
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problem. The test problem corresponds to the design of a distribution system. The 

experiment compares the performances of a multiple-objective multiple-start local search 

(MOMSLS), Pareto ranking-based multiple-objective genetic algorithm (Pareto GA), an 

extension of Pareto GA involving local search (Pareto GLS), and multiple-objective 

genetic local search (MOGLS). The results of their experiment clearly indicated that the 

method-hybridizing recombination and local search operators by far outperform methods 

that use only one of the operators. Furthermore, MOGLS outperformed Pareto GLS. 

Zou, Liu, Kang, and He (2004) proposed a high-performance multi-objective 

evolutionary algorithm (HPMOEA) based on the principles of the minimal free energy in 

thermodynamics. The innovations of HPMOEA include the following: providing a new 

fitness assignment strategy by combining Pareto dominance relation and Gibbs entropy, 

and providing a new criterion for the selection of new individuals to maintain population 

diversity. They compared the performance of HPMOEA and those of four other well-

known multi-objective evolutionary algorithms (MOEAs), namely, NSGA II, SPEA, 

PAES, and TDGA, on a number of test problems. Simulation results showed that the 

HPMOEA can find a much better spread of solutions and has better convergence near the 

true Pareto-optimal front on most problems. 

A memetic algorithm designed by Adra, Griffin, and Fleming (2009) addressed the 

requirement for solution convergence toward the Pareto front of a multi-objective 

optimization problem. It incorporated a convergence accelerator operator (CAO) in 

existing algorithms for evolutionary multi-objective optimization. The convergence 

accelerator works by suggesting improved solutions in objective space and using neural 
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network mapping schemes to predict the corresponding solution points in a decision 

variable space. The researchers used a number of objectives from two to eight. In all 

cases, the introduction of the CAO led to improved convergence for comparable numbers 

of function evaluations. 

A new multi-objective optimization algorithm based on the emulation of the immune 

system behavior was proposed and validated by (Freschi & Repetto, 2005). The proposed 

approach was compared with the NSGA2 algorithm, which is representative of state-of-

the-art approaches to multi-objective optimization. They used three standard problems 

(unconstrained and constrained) to test the algorithm and compare it with the NSGA2 

algorithm. Three different metrics were adopted to carry out the comparisons. The 

authors claimed that the proposed approach can be a valid alternative to standard 

algorithms based on the results it obtained and its performance, which is similar or better 

than that of NSGA2. 

A real-life electromagnetic MOOP was dealt with by (Dias & De Vasconcelos, 2002). 

The authors proposed and described an NSGA, which they compared with four other 

algorithms (i.e., VEGA, NPGA, MOGA, and the classical method of objective 

weighting) using two test problems. From the comparison, the proposed NSGA 

performed better than the others, showing that it can be successfully used to find multiple 

Pareto-optimal solutions. 

In the automotive field, the rising demands for better performance and fuel economy by 

consumers on the one hand and the very restrict emission standards on the other have 

forced the automotive industry to take prudent measures to step up to these challenges. 
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To this end, the role of vehicle engines, specifically their calibration, is crucial. 

Vossoughi and Rezazadeh (2005) proposed a multi-objective structure for the 

optimization of engine control unit (ECU) mapping. Two different MOGAs, namely, 

distance-based Pareto genetic algorithm and NSGA (together with entropy-based 

MOGA), were proposed and applied. The results demonstrated that the computerized 

structure was superior to the manual mapping methods, and that multi-objective methods 

have more generality compared with single-objective ones. 

The knocking problem in an internal combustion engine belongs to a class of nonlinear 

problems, in which both steady-state and dynamic behaviors are nonlinear. Knocking 

control process requires intelligent monitoring because of the nonlinear nature of the 

knock and the nonlinear functional relationship between the input and output variables 

involved. In spite of continuing advances in optimal solution techniques for optimization 

and control problems, many of such problems remain too complex to be solved by known 

techniques. In mechanical and chemical engineering, evolutionary optimization has been 

applied by authors to identification systems (Dao, 2010; Pham & Coulter, 1995). 

2.6 Aggregating Multi-Objective Optimization 

Aggregating multi-objective optimization (AMOO) is the first technique developed to 

generate non-inferior solutions for multi-objective optimization. This technique is an 

obvious consequence of the seminal work of Kuhn and Tucker on numerical optimization 

(Coello, 1999; Kuhn & Tucker, 1951). This technique is also called “aggregating 

functions” because it combines (or “aggregates”) all the objectives into a single objective. 

Addition, multiplication, or any other combination of mathematical operations can be 
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used  (Coello Coello, 2001). Considered the oldest mathematical programming method, 

aggregating functions can be derived from the Kuhn–Tucker conditions for non-

dominated solutions. This technique type, however, does not incorporate directly the 

concept of Pareto optimum and is incapable of producing certain portions of the Pareto 

front. Characteristics of this technique are efficiency and ease of implementation, but it 

can handle only a few objectives (Coello, 2001). 

2.6.1   Basic Concept of Aggregating Multi-Objective Optimization 

Depending on how optimization and the decision process are combined, multi-objective 

optimization methods can be broadly classified into three categories (Coello, 2000; Horn, 

1997; Hwang & Masud, 1979; Zadbood & Noghondarian, 2012). 

Decision making before search: The objectives of the MOP are aggregated into a single 

objective, which implicitly includes preference information given by the decision maker 

(DM). In a priori preference articulation (Decide → Search), the DM combines the 

different objectives into a scalar cost function to effectively transform the MOP into a 

single-objective problem prior to optimization (Zadbood & Noghondarian, 2012). 

Decision making during search: The DM can articulate preferences during the 

interactive optimization process. After each optimization step, a number of alternative 

trade-offs are presented based on the DM-specified further preference information, which 

respectively guides the search. In this technique, progressive preference articulation 

(Search ↔ Decide) decision making and optimization are intertwined. Partial preference 
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information upon which optimization occurs is provided, providing an “updated” set of 

solutions for the DM to consider (Zadbood & Noghondarian, 2012). 

Search before decision making: Optimization is performed without any preference 

information given. The result of the search process is a set of candidate (ideally Pareto 

optimal) solutions from which the final choice is made by the DM. This result means that 

a posteriori preference articulation (Search → Decide) DM is presented with a set of 

efficient candidate solutions and chooses from that set (Zadbood & Noghondarian, 2012). 

Various methods fall under each MOEA solution technique, as summarized in Figure 2.4 

(Coello, Lamont, & Van Veldhuizen, 2007).   

 

Figure 2.4. MOEA Solution Technique Classification (Coello et al., 2007). 
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The aggregation of multiple objectives into one optimization criterion has the advantage 

that the classical single-objective optimization strategies can be applied without further 

modifications (Zitzler, 1999). 

In the aggregation method, a group of individual objectives is converted into one single 

objective using addition, multiplication, or other mathematical operations. One such 

method is weighting method or weighted sum, through which the original MOP is 

converted into a single-objective problem by forming a linear combination of the 

objectives, such as the following: 

Y = f(x)= w1.f1(x) + w2.f2(x) +……..+ wk.fk(x), 

The weights are denoted by wi and, without loss of generality, are normalized such that 

∑wi = 1. Solving the above optimization problem for a certain number of different weight 

combinations yields a set of solutions. 

2.6.2   Related Past Work on Aggregating Multi-Objective Optimization  

Aggregating functions is usually defined as the combining of objectives into a single 

function (Coello, 1999). 

Weights were employed in the fitness function by (Syswerda & Palmucci, 1991) in order 

to increase or decrease values throughout the assessment of resource schedulers, decided 

upon by the absence or the presence of any penalties (violated restrictions).  

Jakob, Gorges-Schleuter, and Blume (1992), in order to move the tool centre point of an 

industrial robot towards a fixed locality, utilised a weighted sum of several objectives in 
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the task planning to ensure accuracy and speed, and to avoid certain barriers and strive to 

create a path that is short and smooth.   

In 1993, Jones, Brown, Clark, Willett, and Glen (1993) employed weights for their 

genetic operators to indicate their efficiency during the application of a GA for the 

construction of hyper-structures from a set of chemical structures. 

This method was incorporated into a GA by Wilson and Macleod (1993) and used to 

design non-multiplier infinite impulse response filters, whereby the two opposing 

objectives reduced the response error and the cost of implementing the filter. 

This method was used by Liu, Begg, and Fishwick (1998) for the optimization of the 

outline and the positioning of the actuator of a 45-bar plane truss, whereby the objectives 

were to reduce the cost of the linear regulator quadratic control and to enhance the 

durability as well as the modal controllability of the control system in accordance with 

the total weight, asymptotical constancy, and eigenvalue limitations. 

In 1994, a weighted sum method was employed by Yang and Gen to solve a bi-criteria 

linear transportation problem. This method was expanded recently by Gen, Ida, Li, and 

Kubota (1995) and Gen and Cheng (1997) in an attempt to rectify the uncertainty which 

can emerge during decision making, by the inclusion of greater than two objectives, as 

well a fuzzy logic. The fuzzy ranking technique was employed in combination with the 

weighted sum in order to identify the Pareto solution with coefficients of objectives 

referred to as fuzzy numbers, which denote the uncertainly surrounding their relative 

importance.  



45 
 

Murata and Ishibuchi (1995) proposed a new approach for making a selection from a set 

of Pareto-optimal solutions. Their method was different from single-objective genetic 

algorithms in terms of the selection process and the elite preservation strategy. In their 

method of selection, the genetic algorithm picked individuals for a crossover operation 

according to a weighted sum of the multiple-objective functions. The distinctive feature 

of the selection process was that the weights attached to the multiple-objective functions 

varied according to the specifications of each selection. 

According to Murata et al. (1996), MOGAs may be used for flow shop scheduling. Based 

on their earlier study, the distinctive characteristics of their algorithm were its selection 

process and elite preservation strategy. Individuals were selected by their MOGA for a 

crossover operation according to a weighted sum of multiple-objective functions with 

varying weights. Instead of a single elite solution, multiple elite solutions were employed 

by the elite preservation strategy in the algorithm. In other words, a specific number of 

individuals were picked from a provisional set of Pareto optimal solutions, and these 

were carried forward into the next generation as elite individuals. 

Clustering is essentially a complex problem because it involves the building of suitable 

objective functions and the optimization of the objective functions. Sheng, Swift, Zhang, 

and Liu (2005) proposed an objective function known as the weighted sum validity 

function (WSVF), whereby the suggested function is the weighted sum of several 

normalized cluster validity functions. In order to optimise the WSVF, a hybrid niching 

genetic algorithm (HNGA) was also introduced to automatically generate the correct 

number of clusters as well as the proper segregation of the data set. A niching technique 
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was developed within the HNGA to maintain the diversity of both the population in terms 

of the number of clusters encoded in the individuals as well as the sub-population with an 

equal number of clusters throughout the search. Furthermore, the k-means algorithm was 

used to hybridize the HNGA. Both the HNGA and WSVF are effective on the whole in 

comparison to other related genetic clustering algorithms. 

Ryu et al. (2009) introduced a new technique for estimating the Pareto front for the 

simulation of a multi-objective optimization problem (MOP) where the precise forms of 

the objective functions are unavailable. In the proposed method, each objective function 

was iteratively estimated by means of a meta-modelling system, and a weighted sum 

method was used to transform the MOP into a set of single-objective optimization 

problems. The weight on each single-objective function was adjusted based on access to 

newly-introduced points at the existing iteration and the non-dominated points. 

According to the results, evenly distributed points were effectively produced by the 

proposed algorithm for a variety of Pareto fronts. 

Zou, Zhang, Yang and Gragg (2012) suggested a systematic method for obtaining a set of 

weights for forecasting upper body postures for 4 subjects with 18 targets for each 

subject. Eventually, an alternative method was developed by Zou et al. (2011a). Using 

the seated posture case, Zou, Zhang, Yang and Cloutier et al. (2011) extended this 

method to include standing reach tasks. In several researches, the global weights were 

computed by averaging the weights for all the subjects and tasks (Zou, Zhang, Yang and 

Boothby et al., 2011; Zou, Zhang, Yang and Cloutier et al., 2011; Zou et al., 2012). 
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Zou, Zhang, Yang, Cloutier, and Pena-Pitarch (2012) put forward a nonlinear inverse 

optimization method to ascertain the weights for the joint displacement function in 

standing reach tasks. The design variables were denoted by the weights of the cost 

function, which was the weighted sum of the differences between two sets of joint angles 

(predicted posture and actual standing reach posture). Three methods were used for the 

posture prediction, namely the empirical–statistical method, the direct inverse kinematics 

method, and the direct optimization-based method. In the first method, thousands of 

experimental data were gathered and processed by computer-aided software before being 

statistically analysed (Beck & Chaffin, 1992; Das & SENGUPTA, 1995; Faraway, 

Zhang, & Chaffin, 1999). This is a direct but rigid method. If the posture prediction 

settings were to change, a fresh experiment will have to be conducted. In the second 

method, a set of equations were employed to seek a solution (Griffin, 2001; Kim, Martin, 

& Gillespie, 2004; Tang, Cavazza, Mountain, & Earnshaw, 1999; Tolani, Goswami, & 

Badler, 2000; Wang, 1999; Wang & Verriest, 1998). Finally, in the third method, the 

minimum value of a cost function was generated by fulfilling all the limitation 

requirements. Certain performance measurements, such as discomfort  , joint 

displacement Jung and Park (1994), Zou et al. (2011) and Zou et al. (2011a), can be used 

as cost functions for the formulation of multi-objective optimizations (Howard, Cloutier, 

& Yang, 2012; Yang, Marler, Kim, Arora, & Abdel-Malek, 2004). The main problem in 

multi-objective optimization is the determination of the relative significance of various 

human performance measures. Among the methods such as the weighted sum method, 

the min-max method and the global criterion method, which are employed to obtain 
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Pareto solutions to a MOO problem, the weighted sum method is the one that is more 

popular. 

Weights are usually determined through trial and error (Athan & Papalambros, 1996; 

Ismail & Yusof, 2010; Messac & Mattson, 2002; Nedjah & de Macedo Mourelle, 2005; 

Yang et al., 2004) or by the self-adaptive weighted sum method (Khan, 2009; Kim et al., 

2004; Kim & Weck, 2005; Ryu et al., 2009; Zhang, Han, Li, & Song, 2008), where the 

principal idea is to adjust the weights accordingly within a search area instead of adopting 

a priori weights or defining inequality constraints. 

A third method is the consistency ratio method Saaty and Vargas (1991), where a 

hierarchy matrix is used to carry out comparisons of pairs in order to obtain the weights 

of all the factors before a consistency ratio, indicating the connection between the 

judgments and massive samples of purely random judgments, can be ascertained. The 

fourth method involves the use of a genetic algorithm to calculate the weights (Dong, Xu, 

Zou, & Chai, 2008; Rachmawati & Srinivasan, 2006). Zhang, Domaszewski and Fleury 

(2001) also introduced a weighting method consisting of the formulation of multi-bounds 

and convex programming for multi-criteria structural optimization (Zhang, 

Domaszewski, & Fleury, 2001). 

The conventional weighted sum approach to multi-objective optimization looks for 

Pareto-optimal solutions one by one by methodically altering the weights of the objective 

functions. However, it has been proven in earlier studies that the identified method can 

produce a weak distribution of solutions on the Pareto line and fails to locate a Pareto-

optimal solution at a non-convex area. An adaptive weighted sum (AWS) method 
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proposed by Kim and Weck (2005) concentrates on unexplored areas by adapting the 

weights instead of utilizing a priori weight selection while stating additional inequality 

limitations. This method generates solutions that are well distributed, is capable of 

locating Pareto-optimal solutions in non-convex regions, while ignoring non-Pareto 

optimal solutions. The method was further expanded through the development of a bi-

objective AWS method for problems that have more than two objective functions (Kim & 

Weck, 2006). 

Rachmawati and Srinivasan (2006) came up with a method that calculates the conversion 

of original objectives in accordance with the weighted sum functions. The converted 

functions are able to detect niches that will coincide with knee regions within the 

objective space. The niche strength as well as the parameters of the pool size control the 

density and extent of coverage within the knee regions. Although the algorithm is based 

on weighted sums, it is able to locate a possible solution within the non-convex area of 

the Pareto front. Favourable results have been obtained through the use of an algorithm 

which tests identified problems within several knee areas and skew on the Pareto-optimal 

front. 

Messac and Mattson (2002) developed a physical programming-based method to generate 

the Pareto front. In this method, the behaviours of the objective functions were examined 

in terms of their respective abilities to navigate in the design space, or equivalently, the 

ability to generate well-distributed sets of Pareto points. In particular, the behaviours of 

the weighted sum, as well as compromise programming, and the physical programming 

methods were examined. 
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2.7  Past work in Nonlinear Knock Factor Optimization and Evaluation Function 

Attar and Karim (1998) combined a deterministic gradient-based model with a simple 

genetic algorithm to predict the analytical parameters (variables) necessary for an engine 

to work within the optimum performance zone. This method was replaced by a restricted 

optimization problem and by other non-restricted problems to facilitate the formulation of 

the problem. Researchers used objective functions, such as the exterior penalty function 

with constraints, which were multiplied by the control coefficient r, and in turn were used 

to determine the magnitude of the exterior penalty function. The minimization must start 

with a relatively small value of r, which is gradually increased (Haftka & Gürdal, 1992).  

Khalil, Camal, and Laurent (2009) extended the previous model Attar and Karim (1998) 

to evaluate thermodynamic model assumptions that deal with the factor and methane 

number in gas, which affect the knock. 

Douaud and Eyzat (1978) examined the behaviour of knocking by using the factors that 

affect the knock, namely temperature and pressure, which were represented by a 

nonlinear mathematical model. They used this model to calculate the values of the 

pressure and temperature coefficients, as well as to reduce the total sum of squares of 

deviation present between integration and theoretical values for N tests. 

Mockus (2002) presented the basic ideas of an updated method known as the Bayesian 

heuristic approach (BHA), and explained the application of the Bayesian Approach (BA) 

to heuristic optimizations.    
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The BHA aims to fix prior distributions, P to a set of auxiliary functions fk(x) that can 

describe the best values gained through the use of K times some heuristic h(x). The 

heuristic h(x) is supposed to optimize an original function, v(y) of variables y ϵ Rn 

(Mockus et al., 1996). 

Al-Duwaish (1997) came up with a novel method for controlling nonlinear dynamical 

systems through the use of genetic algorithms. The proposed non-linear controller was 

designed to locate the optimal control input sequence, which reduces the error that may 

be present between the output of a nonlinear system and that of a reference model. A 

genetic algorithm was employed for the optimization process due to its ability to 

substantially shrink the input search space. Although the single input/single output 

concept was used, this method can just as easily be used for multi input/multi output 

(MIMO) systems (Al-Duwaish, 1997).   

di Gaeta, Giglio, Police, Reale, and Rispoli (2010) also evaluated knocking based on a 

pressure signal inside the cylinder by creating a model based on a partial differential 

equation. This equation differs from the classical wave formulation adopted by (Draper, 

1934). Draper’s approach provided a simple analytical method to calculate the resonance 

frequencies and the vibration modes inside an engine cylinder. 

Recently, Spelina, Jones, and Frey (2014) presented a modern method in signal analysis 

and simulation accuracy and control. The statistical properties of knock density and 

knock events show that the knock density behaves as an independent random process, 

and the knock events follow a binomial distribution. These properties have a major effect 
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on the simulation and control of the knocking. They dealt with the statistical properties of 

knocking to re-tune one factor that affects knocking, which is the ignition timing.   

Bozza et al. (2014) studied the behaviour of knocking in an SI turbocharged engine at 

drive-in conditions of full conversion. They also proposed a method that shows 

interesting advantages in terms of higher accuracy and sensitivity compared with the 

classical maximum amplitude of pressure oscillation approach (Brecq, Bellettre, & 

Tazerout, 2003). The authors measured a series of 200 consecutive pressure cycles for 

each speed and selected the standard engine calibration spark advance. They used two 

methodologies to analyse knocking under experimental and numerical points. The first 

was an auto-regressive model for the cylinder pressure signal. After the initial 

configuration, the knock index was calculated and the noise variance (NV) for a series of 

pressure cycles was obtained. They also used a technique to select an appropriate model 

for control. This technique, called the Akaike Information Criterion (AIC), is 

characterized by simplicity in model, and requires only a few adjustable parameters to 

ensure accuracy. 

Numerous factors such as volumetric efficiency, residual gas, air–fuel ratio, charge 

motion, combustion chamber temperature and so on contribute to knocking. In 2003, the 

Japanese Honda company Shih, Itano, Xin, Kawamoto, and Maeda (2003) conducted a 

study on the working combustion temperature inside the cylinder. The results showed 

that the uniformity of the individual cylinders needed to be improved by reducing 

variations in the combustion chamber temperatures among all the cylinders.  
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Jagtap Harishchandra, Koli Ravindra and Baste Sachin (2010) attempted to reduce the 

tendency of knocking by optimizing the charge temperature at the end of the compression 

stroke, and they effectively suppressed the knock by optimizing the flow of coolant 

through the cylinder head and crankcase. 

Through optical diagnostics, Merola et al. (2011) analysed the knock pressure signal to 

optimize the spark ignition. 

To avoid knocking, Elmqvist, Lindström, Ångström, Grandin, and Kalghatgi (2003) 

developed a simulation model for the control of phases in turbocharged engines. They 

monitored and optimized this model through a series of tests for different speeds and 

lambdas.   

Dao (2010) conducted a study on the modelling of the chemical dynamic engineering 

process to analyse, optimize, and control the behaviour of dynamic systems. A nonlinear 

mathematical model was developed to define the dynamic behaviour of a continuous 

stirred tank reactor (CSTR). The researcher used evolutionary algorithms in the field of 

artificial intelligence, and optimized and controlled the chemical reactor processes by 

using a genetic algorithm (GA) on different sets of factors or cost functions. The area 

resulting from the difference between the needed and actual temperature profiles of the 

reaction mixture within a selected time period, known as the CSTR cycle duration, was 

reduced by such an optimization. 
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2.8 Discussion and Summary 

Literature related to the area of research has been outlined within this chapter. The 

discussion included the basic concepts, techniques, previous works and problems of 

optimization. Previous works in relation to optimization, multi-objective optimization, 

and aggregate multi-objective optimization have been discussed. A further review of the 

literature on the nonlinear knock factor optimization and evaluation function was also 

conducted. 

Based on the summary of the algorithms, some overlaps may exist between the 

algorithms mentioned above. Furthermore, the combination of these research strategies is 

often desirable and possible, leading to the issue of non-trivial design search algorithms. 

Generally, robust optimization has to identify a trade-off between the quality of solutions 

and their robustness in terms of decision variable disturbance. This problem may be 

formulated as a multi-objective optimization problem. Unlike optimization under 

uncertainty, the objective function in robust optimization is considered as deterministic. 

If multi-objective optimization problems have concave Pareto fronts, weighted sum (WS) 

approaches tend to fail to find entire Pareto fronts (i.e., all the Pareto optimal solutions). 

Our approach, however, can handle multi-objective optimization problems with concave 

Pareto fronts. 

A nonlinear weight selection methods reviewed in this study has been shown to provide a 

means of controlling the distribution of points on the convex Pareto front. One major 

drawback of the WS method is that it does not provide means of controlling the 

distribution of points on the Pareto front. This is due its inability to take into 
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consideration the curvature of the Pareto surface to determine its own slope change and 

also to control its own slope sensitivity. This is because the weight space constraint for 

the standard WS is defined on a simplex which does not have curvature. The proposed 

method maps the nonlinear weight space into another form space constraint which allows 

its curvature to be controlled through free parameters. 

From a purely mathematical point of view, even the ‘simpler’ global optimization (GO) 

model instances, for example, concave minimization, or indefinite quadratic 

programming belong to the hardest class of mathematical programming problems. The 

computational difficulty of any general class of such models can be expected to increase 

exponentially, as a function of the problem dimensionality n. 
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CHAPTER THREE 

 RESEARCH METHODOLOGY 

3.1 Introduction 

This chapter presents a new approach for developing aggregate nonlinear evaluation 

function techniques used to optimize Nonlinear Multi-objective Optimization 

Problems(NMOOPs) by constructing a new evaluation function and using it as a fitness 

function for optimization in genetic algorithm (GA). This work consists of three main 

phases: data gathering, objectives modelling, and optimization. Data gathering shows the 

data type and how collect this data. Objectives modelling consist of two stages, system 

identification (SI) and the aggregation of the objective functions. System identification 

(SI) which included observed data, estimation, complexity, validation and evaluation of 

the model. Aggregation of the objective functions includes two steps, the individual 

objective functions are aggregated, and the “partial derivative” (PD) is applied to the 

aggregated individual objective function “Evaluation Function”. While optimization   

includes apply continuous GA in order to obtain outcomes. Figure 3.1 and the sections 

below illustrate these phases.  
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Figure 3.1. Framework for the optimization of NMOOPs 

3.2 Phase One: Data Gathering  

Concept of data fusion technology for multi-sensors, used in this study, which refers to a 

combination of data and information from multiple sensor, to obtain a more accurate 

assessment of a specific problem and identify the problem associated with these threats 

Ma (2001) (a combination of data and information from multiple sensors), consequently 

achieving  improved accuracy and obtaining the best inference on the problem under 

discussion. The concept of multi-sensors data fusion is a very modern one. The evolution 

of animals and humans has led to the ability to utilize multiple senses in order to increase 

their chance of survival. A good example of integration of data systems can be seen 
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within the human or animal brain. The brain is capable of integrating sensory 

information, such as sound, smell, visual, taste, as well as concrete data in order to 

achieve a complex understanding of the environment around them, which ultimately 

increases the chance of surviving within that environment.  

In this work focused on parametric multi-sensors data. Parametric algorithms are based 

on the assumptions of a parametric model, which consists of fitting the data model and 

estimating model parameters. In contrast, nonparametric algorithms are not based on any 

model parameters. Thus, the nonparametric algorithm is applied when problem 

parameterization is unknown or unavailable (Ma, 2001). 

One of the difficulties in this work is to determining which data type should be used in 

terms of “gathering” to access to the best modelling that represents the problem. 

According to the nature of the problem at hand, therefore should be using data 

overlapping gathered by manner namely “multi-sensors data fusion”. Generally, complex 

systems such as internal combustion engines have multiple sensors embedded at various 

levels within their structure. Sensors are data gathering mechanisms that measure a 

systemic quantity (such as functionality or failure) that provides the researcher or 

engineer with a multitude of reliability information. When data sets are drawn 

simultaneously from multiple sensors in a system, they are said to be overlapping or a 

“fusion” data set as a result of the mutual influence between them (Jackson, 2011).  

By identifying less value and the highest value for each of the objective functions, has 

been determined the appropriate work space for decision variable (knock). 
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𝒎𝒊𝒏 ≤  𝑻𝒑𝒔 ≤ 𝒎𝒂𝒙 , 

𝒎𝒊𝒏 ≤  𝑹𝒑𝒎 ≤ 𝒎𝒂𝒙      𝒂𝒏𝒅 

𝒎𝒊𝒏 ≤  𝑻𝒆𝒎𝒑 ≤ 𝒎𝒂𝒙 

 

A number of multi-objectives geometric problems require such methodology for data 

collection to obtain more reliable data for process modelling and testing when solving 

problems. Data were also gathered from sensors that allow analysis of overlapping data 

sets. The inherent inter-dependence of these data sets was exploited to yield significant 

additional information. In our problem, the data collection methodology was also 

exploited to obtain the greatest possible reliability in representing the proposed model. 

3.3 Phase Two: Objectives Modeling 

The stages of modelling will be described in this phase. Two methodologies were used to 

construct the model. The first is system identification (SI). In this stage, the construction 

of the model for evaluation utilized the same research methodology as Dym (2004) and 

Ljung (2010), which included observed data, estimation, complexity, validation, and 

evaluation of the model. The second methodology is the aggregation of the functions. 

According to Carrejo and Marshall (2007), in the beginning, Newton’s mathematical 

methodology, “Newtonian style,” was used, particularly in the Principia. Three main 

elements combine within the mathematical modelling process, which requires prior 

experience perceptions or the modelling process which may not resemble common 

concepts presented in mathematics or physics, See Figure 3.2.   
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Figure 3.2. Tensions during the mathematical modeling process (Carrejo & Marshall, 

2007) 

The learners’ real world experience may present cognitive conflicts and knowledge 

tension during contextual inquiry and during the study of standard mathematical and 

physical concepts. The level of complexity required in the construction of a mathematical 

model capable of describing and predicting the motion of an object was revealed in the 

results of the investigation. Perceptions which are described within the previous 

paragraph are also necessary. For example, Figure 3.3 shows the outcomes of the element 

interactions in the modelling problem. 
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Figure 3.3. Summary of tensions from hypothetical experiment (Carrejo & Marshall, 

2007) 

Specifically, Figure 3.4 shows the tensions related to the data and the scale function. 
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Figure 3.4.Summary of tensions related to data and scale function (Carrejo & Marshall, 

2007) 

3.3.1 System Identification 

The first methodology applied System identification, SI often refers to the construction of 

models within the mathematical context using observed input-output data. SI is seen as 

the connection between real-world applications and the mathematical world containing 

control theory and model abstractions (Ljung, 2010). See Figure 3.5. 
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Figure 3.5. Concept of SI (Ljung, 2010) 

In the past decades, a trend toward nonlinear modelling has been observed in different 

application areas. Technological innovations have resulted in fewer restrictions on 

computational memory and access to data, making non-linear modelling a more 

appropriate option. Various method of SI to build models employed for the nonlinear 

factors studied. The primary goal of the system is to identify mathematical models with 

available input–output data. This goal is often achieved by minimizing cost function, 

which is an integral part of the statistical framework, see Figure 3.6, (Dahleh, 2011; 

Paduart, 2008). 
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Figure 3.6. Basic idea of SI: cost function relates data and model (Dahleh, 2011) 

Nonlinear SI is able to divide into two cases: off-line and on-line (adaptive). In this study, 

focusing on the off-line case will be useful for gaining insights into the identification 

problem. 

An important step in the identification procedure is the estimation of the parameters in the model 

(Aarts, 2011). Initially, a model can be defined as the relationship that exists between the 

observed quantities within the system, such as (TEMPERATURE-KNOCK). Roughly 

speaking, a model can allow a prediction of properties or behaviours for an object. 

Usually, this relationship can be represented as a mathematical expression, table, or 

graph. 

With input (x) and output (y) the main objective is to identify the nonlinear system m. 

Identification usually refers to selecting the optimal model m from within the class or 

family of models M. “Best” can be measured using a selected criterion or cost function. 
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True Description 

Information 

Model Class 

Several typical cost functions can be used. The first expression is Akaike’s Final 

Prediction Error (AFPE) whereas the second is Akaike’s Information Criterion (AIC) and 

the third is the generalized cross-validation criterion (GCVC) (Ljung, 2010). The total 

sum of squared errors of outputs can be predicted using the model and measured outputs 

(Nowak, 2002). Also note the criterion by (Cost) C. The nonlinear SI problem can be 

mathematically presented as the following equation: 

𝑚′ = min 𝐶(𝑥, 𝑦, 𝑚)  , 
𝑚 ∈ 𝑀 

where m is chosen from the class M which minimizes the cost C (x, y, m). The most 

crucial element of nonlinear SI is the accurate specification of the family M (Nowak, 

2002). 

In general, the SI steps can be summarized as in the Figure 3.7 below: 

          

Why. What is it that we 
looking for? Identify the need 
for the  model. 

 
 Find. What is it that we     
want to know? List the data 
being   sought. 

           Given. What do we know?  
                                                                                               Identify the available  
                                                                                               relevant data.                                     
  
             Identify a collection of  
             models, such as linear state- 
             space models of order “n.” 
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Estimation  

Complexity 

Validation 

Improve 

              Select a model guided by  
              the information. 
 

  
  
  
          Measure the “size”  
           of a model class. 
 

 

  
           Ensure that the model is  
           useful for other data sets of  
           interest. 
 

 
          Can the model be improved?  

   Identify inadequately known     
parameter values and variables 
that should have been included. 

 

Figure 3.7. Summary of system identification steps (Ljung, 2010) 

True description: In most cases, the true description of the modelled object does not 

realistically achieve “true” description. Hence, assuming such a description as an 

abstraction is often more convenient because while it has the same characteristics as the 

model, the description is typically much more complex. 

Information: This step includes information obtained from the observed data as well as 

prior information regarding the object to be modelled, for example the model class. 
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Model class: This step will identify the model class, which refers to a collection of 

models. A model class may refer to the set that can be parameterized by the finite-

dimensional parameter, such as “all linear state-space models of order n”. 

Estimation (learning): This step refers to a process which can select the model guided 

by information. Referring to this model as process learning has become also increasingly 

common among statisticians. The elementary curve-fitting technique could be useful in 

dealing with the estimation problem. 

Model fit: The extent of which a certain model m can explain or fit to a certain data set Z 

in a (scalar) measurement. This is presented as F(m,Z). 

Complexity: The measurement of size or flexibility. Complexity measurements are 

denoted with the symbol AIC. It may be used as the vector which parameterizes a set in 

an efficient manner.  

Validation (generalization): This may be used to gauge the generalizability of the 

algorithm, or to conduct an estimation of performance potential of a learned model using 

current data from one algorithm. The model must be useful for the estimation data as well 

as other data relevant data sets. These data sets are known as validation data (testing 

data). An alternate name for this process is generalization. Finding a model that 

describes estimation data well is not very difficult. With a flexible model structure, 

finding something well-adjusted to the data is always possible. The estimated model can 

be presented with a new set of data and this is where the real test becomes apparent. The 
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average fit to validation will become inferior to the fit to estimation data. Multiple 

analytic results confirm this deterioration of fit.  

Usually, the model is constructed via the consideration of two concepts. Firstly, the 

proposed model should display strong agreement with the estimation data and secondly, 

it should not be overly complex (Ljung, 2010). The concepts are slightly contradictory, 

and therefore a compromise should be sought, which will be further discussed in the 

following section. The (m) model also becomes a random variable as the information is 

typically described by random variables (Ljung, 2010). 

3.3.2 Aggregation Evaluation Function Methodology  

The second methodology applied consist of two steps will be performed in this stage. 

First, the individual objective functions are aggregated. Second, the “partial derivative” 

(PD) is applied to the aggregated individual objective function “Evaluation Function”, as 

shown in the Figure 3.8 below: 

 

 

 

 

 

 

 

 

 

 
Figure 3.8. Aggregation evaluation function methodology 

Aggregate Individual 
Objective Functions 

Partial Derivative for 
Aggregated Objective Functions 
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3.3.3 Differential calculus and derivatives 

This section discusses the partial derivatives used to find a partial effect for each 

objective in the model of objective function, as well as the rate of change of one quantity 

in respect to another (Horan & Lavelle, 2005; Thomas, 1996).  

3.3.4 Partial Derivatives 

Assume a real-valued function z = f(x, y) of two real variables. The derivative of f with 

respect to x holding y constant is called the partial derivative of f with respect to x and is 

denoted by ∂ƒ/∂x. Similarly, the derivative of f with respect to y holding x constant is 

called the partial derivative of f with respect to y and is denoted by ∂ƒ/∂y (Horan & 

Lavelle, 2005). 

In other words, it is supposed that f is a function of two or more independent variables. At 

every point in the domain, the function may possess differing instantaneous rates of 

change, in different traced directions. These directional derivatives are able to be 

computed utilising the instantaneous rates of change of f along the directions of the 

coordinate axes (of independent variables). The rates of change along these “principal 

directions” are known as the partial derivatives (PD) of f. 

The usual rules of differentiation can be applied in order to find the partial derivative of f 

in respect to x for a function of two independent variables f(x, y), see Table 3.1.  

There is a single exception in that when the second variable y becomes apparent, it is 

treated as a constant. Also, the partial derivative of f with respect to y is able to be found 

by treating x as a constant when it becomes apparent. 
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Table 3.1 

 Rules of differentiation 
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This method can also be used for a function containing more than two independent 

variables. As an example, a partial derivative of the function with respect to the variable x 

is able to be obtained via differentiation with respect to x utilising the usual rules for 

differentiation. The exception is that other independent variables are treated as constants 

when they occur in the expression of f.  

With a function containing a single variable y = f(x), a change in the independent variable 

x will lead towards a corresponding change in dependent variable y. The rate of change of 

y with respect to x is depicted using a derivative (df / dx). For function with more than 

one variable, a similar situation will occur. In the relation z = f(x, y), x and y are the 

independent variables, and z is the dependent variable. 

This method is used as x and y will vary, as will the z value. The x and y may 

simultaneously change, which triggers a change in z. Instead of considering this general 

situation, one of the independent variables will be fixed, which is equivalent to moving 

along a curve obtained by intersection the surface by one of the coordinate planes.  

Consider f(x, y) = x3 +2x2y + y2 +2x+1. If we keep y constant and vary x, then the rate of 

change of the function f needs to be found. If we hold y at the value 3, then 

f(x, 3) = x3 + 6x2 + 9 + 2x + 1. 

In effect, we now have a function of only x. If we differentiate it with respect to x, we 

obtain the expression: 

3x2 + 12x + 0 + 2 + 0 ≡ 3x2 + 12x + 2. 
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We say that f has been differentiated partially with respect to x. We denote the partial 

derivative of f with respect to x by ∂f /∂x (to be read as ‘partial dee f by dee x’ ). In this 

particular example, when y = 3, 

∂f/∂x = 3x2 + 12x + 2. 

In the same way, if y is held at the value 4, then f(x, 4) = x3 +8x2 +16+2x+1, and thus for 

this value of y, 

∂f/∂x = 3x2 + 16x + 2. 

If y = c, a general constant, then 

f(x, c) = x3 + 2x2c + c2 + 2x + 1, 

and partial differentiation yields the expression 

∂f/∂x = 3x2 + 4cx + 2. 

Now, if we return to the original formulation 

f(x, y) = x3 + 2x2y + y2 + 2x + 1, 

and treat y as a constant, then the process of partial differentiation with respect to x gives 

∂f/∂x = 3x2 + 4xy + 0 + 2 = 3x2 + 4xy + 2. 
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Finally, can describe the final form of the evaluation function as an aggregate (sum) of 

partial derivative functions of each function representing one objective in the 

optimization problem, see Figure 3.9. 

 
Figure 3.9. Basic formulation of multi-objective evaluation function (Tarun, 2008) 

 

Differential calculus is about precisely describing the ways in which related quantities 

change. 
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In part above (Figure 3.9) of the methodology, the overall evaluation function was 

calculated by using the mathematical concept of “partial derivative” combined with 

aggregate objective functions. 

This concept can be explained by the situation where the function of two or more 

independent input variables will change in at least one of the input variables, and 

therefore the change in the function must be calculated. Partial differentiation refers to 

the holding of all, except one, variable constant and then finding the rate of change of the 

function in regards to the remaining variable (Thomas, 1996). 

3.4 Phase Three: Optimization Methodology 

This part describes the optimization process methodology by using a flowchart illustrated 

in Figure 3.14. 

Many MOOPs have appeared in our lives in recent decades. GA is the one of most timely 

approaches for multi-objective optimization subjects. Before discussing the optimization 

process methodology, should explain why used a GA in MOOPs. 

3.4.1 GA in MOOPs 

In the past, the complexity of the factors is specified, so using the model of a single 

objective and multi-objectives of such cases was possible. In the last two decades, 

however, two advances made modelling the best option in such a case. The first 

advancement is a significant increase in computing power and consequently in the speed 

of the solutions made available to the modeller. The second is the development of more 
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than one algorithm to address such models. The principle advanced here has been in the 

area of meta-heuristics. A heuristics is defined by Luke (2015) and Reeves (1995) as a 

technique that seeks or finds a good solution to a difficult model. The most popular meta-

heuristics include GAs (Golberg, 1989; Luke, 2015), which simulate species breed in the 

field of genetics; annealing, which mimics the cooling of materials in the field of physics; 

and the Tabu search, which emulates the concept of social “Taboo.” 

The multi-objective problem is one of the most promising directions in the context of GA 

application. The product has the potential to complement many daily life applications as 

well as address several engineering design issues (Konak et al., 2006). This potential is 

only beginning to be realised as it is capable of simultaneously supporting several, 

contrasting solutions of a problem, which allows the designer a greater range of choice 

and flexibility.  

The GA is not likely to offer competitive results for problems that are very well 

understood, almost linear, and has a reliable solution. If the problem can be solved 

analytically, then an acceptable level of hypotheses may be the best approach. However, 

if no solution to such problems exists, then GA can prove to be important and beneficial. 

Several possible solutions can be derived for a problem using GA, with a final selection 

being taken by the user. Sometimes, a situation arises where there is not one single 

solution, such as a family of Pareto-optimal solutions. In a case where there are multi-

objective optimization and scheduling problems, GA is able to simultaneously identify 

alternative solutions.  
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The highly accurate description is able to guide the decision maker to refine the 

requirements. The decision maker is able to gradually reduce the size of the solution 

while identifying the trade-offs between objectives in a case where objectives are able to 

be supplied interactively at each GA generation. The objectives variability doesn’t 

impose constraints on the search space while it acts as a changing environment to the GA. 

The size of the solution set changes in a way that is known by the decision maker and 

therefore the appropriate sharing coefficients are still able to be calculated (Fonseca & 

Fleming, 1993). In general, a multi-objective genetic optimizer can be described as in 

Figure 3.10. 

 

Figure 3.10. A general multi-objective genetic optimizer (Fonseca & Fleming, 1993) 

As shown in the flowchart shown below, Figure 3.11, in optimization methodology, a 

new aggregate evaluation function model (AEFM) can be used as a fitness assignment 

procedure. As one of the most important operators, this model influences the 

effectiveness of multi-objective GA. 
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Figure 3.11. Flowchart optimization methodology  
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3.5 Summary and discussion  

In order to test the system in correct manner, must be the input signal consideration. Input 

signals must sufficiently excite or probe the system to ensure that the measured outputs 

completely characterize the nonlinear system model. Generally, the input must be 

sufficiently rich in both values amount content and amplitude variation. It is important 

tests for nonlinearity. Is the system nonlinear or not? If so (nonlinear), can the type of 

nonlinearity (for example, polynomial). As well as, model class selection, based on the 

type and severity of the nonlinearity, one can choose between various parametric and 

nonparametric model classes. As a general rule, whenever parametric models provide 

adequate descriptions of the system, they are preferable to nonparametric models because 

they are more robust to errors and admit relatively simple identification procedures. Also 

must be considered for Optimality criterion selection. Once a given model class is 

adopted, a criterion or cost function is used to assess the fitness of specific models within 

the chosen class. System identification is the process of selecting or estimating the model 

that optimizes the criterion. The most common criterion is the sum of squared errors 

between the predicted output produced by the model and the actual measured Output. 

These steps are important so that the newly formulated algorithms can produce control 

model that could help human to understanding and overcoming the conflicting problem 

better, especially for large dimension problems. 
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CHAPTER FOUR  

CONSTRUCTION AND OPTIMIZATION OF NON-WEIGHTED 

AGGREGATE EVALUATION FUNCTION 

4.1 Introduction  

In this chapter, demonstrate how to construct and optimize the aggregate evaluation 

function (AEF) developed based on the methodology presented in the previous chapter. 

Section 4.1 illustrate introduction. Section 4.2 presents the method of data collection and 

how to read that data and the access sources to it. As well as how to deal with the factors 

that affect on knocking. Section 4.3 provides how to construct the individual objective. 

Aggregate multi-objective evaluation function constructions demonstrate in Section 4.4. 

The optimization process to the factors was explains in Section 4.5. Finally, section 4.6 

presents the validation of the model.  

4.2 Data Selection and Reading  

The development of the evaluation function model was based on the gathered data. Most 

multi-objective optimization problems can collect data at different times. In other words, 

the data for a particular objective can be collected in a given day and data for another 

objective the next day. Following the nature of our problem, the data was collected for all 

objectives simultaneously from multi-sensors. This kind of data is known as "overlapping 

data" and this technique is called “multi-sensors data fusion”. A diagnostic tool known as 

OBD II scan tool that can read the data from the sensors located in the engine of the 

vehicle was used, see Figure 4.1.  
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Figure 4.1. Engine Diagnostic tool ULTRASCAN P1 ( OBD II scan tool ) 

In automotive field, “knocking” is a nonlinear multi-objective optimization problem in 

internal combustion engine, whereas the factors that cause this problem are non-linear 
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and conflicting simultaneously. Furthermore, mutual influence exists between those 

factors (Harishchandra, Ravindra, Sachin, & Thiyagarajan, 2010; Merola et al., 2011; 

Zhen et al., 2012). This device addresses the electronic control unit (ECU) to read the real 

values of the factors that affect the occurrence of knocking, such as mechanical, 

electrical, environmental, and misuse. Figure 4.2 shows the fishbone diagram used to 

clarify those factors that influence knocking. 

 

Figure 4.2. Fishbone Diagram (Knock problem) 

Real data obtained from PROTON and EGMA companies for different engines and in 

different conditions. The three major factors considered were temperature (TEPM), 

throttle position sensor (TPS), and the speed engine (RPM). In addition, the output data 

from Knock sensor were obtained to build the mathematical model. 
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Several groups of real data (data sets) were obtained. These groups were divided into two 

parts, namely, training and testing data. Training data were used to construct the proposed 

model for function evaluation. Training data were obtained from a test engine (1.3 L 

Campro, modified to turbocharger, four-cylinder, MPI). Testing (experimental) data were 

used to validate the model, and these data were obtained from different engine types and 

conditions, can see the data in Appendix.  

The proposed model has been applied to many real data obtained from various internal 

combustion engines. Been dealing with these engines of different conditions such as 

temperature, speed and load specifications and some of them can be summarized in the 

following Table 4.1. 

Table 4.1 

 Different test Engines and Conditions 

Name Load Speed (RPM) Outside Temperature 

Proton Turbo-Charge With load 1000-5000 33 C0 

Jeep-Cherokee 6V- 3600 cc With load 760-2620 15 C0 

Hyundai-Genesis 8V 5.0GDI With load 540-3156 19 C0 

Dodeg With load 740-2600 25C0 

KIA-Sportage  4cyl-G2.0cc 

DOHC 

With load 773-4164 17 C0 

KIA-Sorento 4cyl- G2.4cc 

DOHC 

With load 665-3473 18 C0 
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4.3 Construct Individual Objectives and Aggregate Multi-objective Evaluation     

      Function 

After collecting the data, the concept of System Identification (SI) was applied in the 

construction of individual objective function. SI is a link between the real world and the 

world of mathematics. This link was between observation data (input/output data) and 

mathematical model, representing the behavior of these data. This relationship can be 

represented by a mathematical model, graph, or table. SI needs a cost function (CF), 

which is calculated to obtain the difference between the data and the model. The 

minimized variation maximizes the accuracy in the representation. 

In our problem, “curve fitting” was used to obtain the optimal model for each objective. 

We also used a statistical technique, “Akaike’s Information Criterion” (AIC), as a cost 

function to evaluate the mathematical model that represents the data. 

The mathematical relationship can be determined using curve fitting. Curve fitting seeks 

to identify an appropriate curve in which to fit the observed values and then utilizes the 

curve function to analyse the relationship between variables.  

Curve fit is able to express the relationship between the dependent variable Y and the 

single independent variable X and therefore estimate the value of parameters using 

nonlinear regression in order to determine an appropriate mathematical model.  

The purpose of curve fitting is to determine a mathematical model that suitable fits the 

data. It is assumed that the selection of a function of a certain form will have a theoretical 
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basis and therefore the curve fit will determine the specific coefficient that the function 

matches with the data (Pro, 2007). 

4.3.1 Curve Fitting Technique  

Curve fitting (CF) is used to discover a function f(x) in a function class M for the data (xi, 

yi) where i=0, 1, 2,…, n–1. The function f(x) will minimize the residual (error) under the 

weight W. The residual refers to the distance between the data samples and f(x). A 

smaller residual suggests a better fit. In the context of geometry, curve fitting refers to a 

curve y = f(x) that fits the data (xi, yi) where i=0, 1, 2,…, n–1. 

The fitting model should be selected before fitting the data set. One choice is to use a 

non-linear model to fit the logarithmic data, which leads to a correct fitting result. 

However, an improper choice such as a linear model results in incorrect fitting or 

inaccurate characteristics of the data set. Therefore, an appropriate fitting model must be 

selected based on the data distribution shape, and then based on the result, determine if 

the model is suitable.  

4.3.2 Curve Fitting Methods 

Differing fitting methods examine the input data in order to determine the curve fitting 

model parameters. Every method has a unique set of criteria to evaluate the fitting 

residual in order to determine the fitted curve. When the criteria of each method is 

properly understood, the best method can be determined and applied to the data set and fit 

the curve. The least squares (LS), least absolute residual (LAR), Bi-square fitting method 
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to linear fit, power fit, exponential fit, Gaussian peak fit, logarithm fit as well as others 

can be applied in order to find the function f(x).  

LS method determines ƒ(x) by minimizing the residual based on the following formula: 

1

𝑛
∑ 𝑤𝑖(𝑓(𝑥𝑖) − 𝑦𝑖)2𝑛−1

𝑖=0                                                                      (4.1) 

where n refer to the number of data samples, wi is ith element of the array of weights for 

the data samples, ƒ(xi) is ith element of the array of y-values of the fitted model, and yi is 

ith element of the data set (xi, yi). 

LAR method determines ƒ(x) by minimizing the residual based utilizing the formula: 

1

𝑛
∑ 𝑤𝑖|𝑓(𝑥𝑖) − 𝑦𝑖|𝑛−1

𝑖=0                                                              (4.2) 

Bisquare method determines f(x) utilizing an iterative process, displayed in Figure 4.3. 

The residual is also calculated utilizing the same formula as the LS method. Bisquare 

method calculates the data beginning with iteration k. 
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Figure 4.3. Bisquare Method Flowchart 
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Three factors (TPS, RPM, TEMP) were influential on the knocking problem. Each factor 

was considered an objective, represented as a mathematical model. A non-linear 

relationship was found between each objective and knocking. Figure 4.4 shows the non-

linear relationship between (TPS) and knock. 

 

 

Figure 4.4. Nonlinear Relationship between TPS and Knock 

Therefore, must identify and apply the models that fit with the nature and behaviour of 

non-linear data for each objective. Many classes of models (e.g., distribution models, 

exponential models, sigmoidal models, growth models, decline models, dose response 

models, etc.) for non-linear data set were selected to obtain the optimal model suitable for 

the data set.  

Approximately 50 models were applied for each objective (factor), as shown in Figure 

4.5. Based on some statistical measurements (e.g., AIC, residuals, R, R2 , std. err), the 

best three models(top results) were obtained and therefore selected one of them as an  
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optimal model to represent a data set. 

 

 

 

 

 

 

Figure 4.5. Non-linear Regression Models 

Obtained the best three models (Sinusoidal, Gaussian model, Heat capacity) as the top 

results to represent the objective (TPS) (see Figure 4.6). Following AIC, R, R2, and std. 

err, we selected the Sinusoidal model as a best model to represent the data for this 

objective.  
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Figure 4.6. Best Three Curve Fitting Models for TPS  

Based on the results of AIC, R, R2, and std. err, we selected the Sinusoidal model, as 

shown in Figure 4.7, as the best model to represent the data fit for this objective. 

 

 

Figure 4.7. Sinusoidal Curve Fitting for TPS 
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4.3.3 Akaike Information Criterion 

AIC is a method to select a model from a set of models. AIC examines the trade-off that 

exists between the complexity and the suitability of fit for the model.  

AIC is derived from relative Kullback-Leibler information (K-L). When an 

approximating model is used to approximate the full reality, information can be lost. A 

‘good’ model is one that is close to f (f truth in terms of a probability distribution) with a 

smaller relative K-L information value. The AIC value for each model can be calculated 

with the same data set, where the ‘best’ model refers to the one with minimum AIC value 

(S. Hu, 2007). 

4.3.4 Information Loss Estimation by Akaike Information Criterion 

A model was selected based on the values that were obtained from (AIC). Information 

will be lost as only one candidate model is used to represent the ‘true’ model. From N 

candidate models, the model that causes the least loss of information can be selected.  

AIC candidate model values are denoted by AIC1, AIC2, AIC3, …, AICN. AICmin is 

considered the minimum of those values. Therefore, exp((AICmin-AICi)/2) is interpreted 

as the relative likelihood that ith model minimizes the (estimated) information loss (Aho, 

Derryberry, & Peterson, 2014). 

For example, candidate set has three models with AIC values of 200, 202, and 210. The 

second model is exp((200-202)/2) = 0.3679 times as likely as the first model to minimize 

information loss and the third model is exp((200-210)/2) =0.0067 times as likely as the 

first model to minimize the information loss. The third model is excluded. The weighted 
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average of the first two models is obtained (with weights 1 and 0.368) and a statistical 

inference conducted based on the weighted multi-model (Akaike, 1998). An alternative 

method is to obtain further data to distinguish the first two models.  

If represent ((AICmin-AICi)/2) as b, can express a relative likelihood A as: 

A= eb, where e = 2.7182 

Now can calculate the value of A as vary b. Values obtained in this manner is listed in 

Table 4.2. For example,  

A= exp((AICmin – AICi )/2), AICmin = 2, AICi = 6, b = ((2-6))/2) = -2, e = 2.7182 

A= e-2= 2.718 -2 = 0.135 

 

Table 4.2 

 Value of A as Vary b 

b -3 -2 -1 0 1 2 3 
A=eb 0.050 0.135 0.368 1 2.718 7.389 20.086 

 

Can also represent the variances of b in a graph, as shown in Figure 4.8 
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Figure 4.8. Graph of the Exponential Function A = eb 

4.3.5 Goodness of Fit of a Model 

Goodness of fit (GOF) of a model is generally assessed using the coefficient of 

determination, R2. The assessment method equals one minus the ratio of the sum of 

squared estimated errors (the deviation of the actual value of the dependent variable from 

the regression line) to the sum of squared deviations of the means of the dependent 

variable. The total variation of the dependent variable is the sum of squared deviations of 

its mean. The extent to which the regression fails to explain the dependent variable (a 

measure of noise) is a measure from the sum of squared deviations of the regression line. 

Therefore, R2 statistic measures the extent to which the total variation of the dependent 

variable is explained by the regression. A variation in the dependent variable is well 

explained by a higher value of R2, which is an important factor if the model is to be used 

for predicting and forecasting (Sykes, 1993). 

4.3.6 Residuals  

GOF is determined within an iterative cyclic process. To ensure the fitting process is the 

most appropriate for the data set, the curve fitting algorithm associated with the model is 

measured based on the cycle when the curve is modified. Curve fitting algorithms are 

Relative likelihood 

AICmin- AICi 
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designed to minimize the sum of the residuals squared and GOF can be determined 

measuring the residuals in every cycle. Figure 4.9 shows the data are distributed 

randomly, indicating that this curve fitting is not unlikely. 

 

Figure 4.9. GOF Measure 

The residuals allowed the difference between the result and the data as a function of the 

independent variable to be revealed. A straight-line fit among the residual points was also 

apparent in the residual plot.  The light red regression line outlined the trend of the data 

and whether it was upward or downward (shown by the slope) as well the residual bias, 

either upwards or downwards.  

The Wald-Wolfowitz test was also conducted on the residuals. The bottom of the plot 

lists the observed quantity of runs as well as the chances that the observed quantity of 
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runs would occur if the model used to fit the data is correct; that is, the residuals being 

randomly distributed around the curve. The pattern of residuals is unlikely if the 

probability is less than 5%. If the pattern is greater than 5%, then the pattern is not 

unlikely. It is more desirable to obtain a higher probability of likelihood. 

4.3.7 Estimation of Regression Model 

One of the common approaches used to estimate the curved fitting  for the regression 

model is least squares error approach (LSE) (Joaquim & Marques, 2007). This approach 

attempts to obtain the minimum amount of error between observed value yi and 

estimation value b0 + b1xi: 

E= ∑ 𝜀𝑖
2𝑛

𝑖=1  = ∑ (𝑦𝑖 − 𝑏0 − 𝑏1𝑥𝑖)𝑛
𝑖=1

2,                                           (4.3) 
 

where b0 and b1 are estimates of β0 and β1, respectively. 

Other statistical measures like R, R2 and adjusted R2 are used in curve fitting to estimate 

the model. These measures are useful to assess GOF of the model. By computing the 

error sum of squares or residual sum of squares (SSE), that is, the quantity E in Eq (4.3), 

can understand their meaning.   

The predicted (or fitted) value is ŷi = b0 + b1xi. 

The computed error ei = yi − ŷi = yi − b0 − b1xi  is known as the residuals (Cottrell, 2003). 

SSE= ∑ (yi-ŷi)2 = ∑𝑒𝑖
2                                                                   (4.4) 
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The deviations are referred to each predicted value. Therefore, SSE has n − 2 degrees of 

freedom (DOF) because two DOF are lost: b0 and b1. 

Mean square error: MSE= 
SSE

𝑛−2
                                                             (4.5) 

Root mean square error or standard error: RMS =√𝑀𝑆𝐸. 

The total variance of the observed values is related to the total sum of squares (SST): 

SST= ∑ (y - ȳ)2                                                                                                 (4.6) 

The contribution of X to the prediction of Y can be evaluated using the following 

association measure known as coefficient of determination or R-square (Cottrell, 2003). 

R2= SST−SSE

SST
   ϵ [0,1]                                                                       (4.7) 

Often the value of “R-square” is found to be slightly optimistic. Several authors proposed 

the use of adjusted R-square instead.  

𝑅𝑎
2 =  𝑅2 − (1 − 𝑅2)/(𝑛 − 2)                                                                       (4.8) 

4.3.8 Comparison between (Sinusoidal and Gaussian model) in TPS objective 

The best model is obtained from the results in Table 4.3 based on some tests.  

 

 



96 
 

Table 4.3 

 Overview (Sinusoidal and Gaussian model) in TPS objective 

 Sum of Square R2 DOF AICc 

Sinusoidal 0.633329 0.537640 24 -99.0912 

Gaussian Model 0.717412 0.476255 25 -98.1207 

 

 Comparison 

By testing (AICc), the model (Sinusoidal AICc = -99.09) is the closest model to represent 

the data (i.e, best regression). By observing the value of probability (61.8987%), the 

probability of reducing the loss of information is highest for the Gaussian model with a 

probability of 38.1013%. 

The best regression selected using the F test is the Gaussian Model. 

 Justification 

- AIC Criterion   

AIC for Sinusoidal (-99.0912) was better than the Gaussian Model (-98.1207). 

Delta = 0.970501 

probability = 0.381013 

The Sinusoidal model was better at61.8987% 

- F-Test 

The more complicated model (Sinusoidal) has better SST than the simpler 

model (Gaussian model). The result of an F-test is strictly not valid unless the 

simpler model is a subset of the more complex model; that is, the simpler 
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model can be obtained by setting some parameters in the more complex model 

to certain constants. 

F = 3.18634 

P = 0.0869025 

If the simpler model was correct, SST would increase by approximately the 

gain in DOF when moving from the complex model to the simpler one (i.e., F 

= 1). 

The simpler regression (Gaussian model) has 8.69025% probability of better fit to 

the data. 

R2 is a number between zero and one Cottrell (2003), and this value shows the percentage 

change in knocking, simply indicating the extent to clarify regression analysis of the 

value of the variable that we are attempting to predict knocking. In this case, the value is 

equal to R2 0.537, implying that the regression analysis model is strong and can calculate 

the value of knocking approaches healthy status. If the value of this number is 0.3, should 

neglect the equation and search again for the factors that affect knocking. Graphically, 

can illustrate this comparison in Figure 4.10. 
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Figure 4.10. Compare between Two Models (Sinusoidal vs Gaussian Model) 

Finally, Sinusoidal was obtained as the best regression model and expressed as  

Y = a + b*cos(c*X + d)                                                                                 (4.9) 

4.4 Objectives Aggregation 

All these procedures were applied on one objective (TPS factor) to obtain a mathematical 

model that simulates the behavior of knocking. The same procedure was carried out on 

other objectives (factors) (RPM, TEMP). Hence, three models with the following 

equations was attended: 

Knock = a + b*cos(c*TPS + d)                                    (4.10)    (Sinusoidal) 

knock= p + q*Rpm+ s*Rpm2                                   (4.11) (Polynomial second order) 

knock= m + n *cos(o*Temp + e)                                 (4.12) (sinusoidal) 
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These factors (TPS, RPM, TEMP) have associated partial effects (partial influence) on 

knocking. To determine the overall effect on knocking should find the sum of these 

effects. In this study, the partial effect of each factor affects the process of knocking, and 

thus the sum of these effects on those factors to create the overall effect of the factors on 

knocking was found. A better model was obtained for one factor that affects knocking. 

Then, the first derivative of the model was found to determine the partial effect of the 

factor after applying real data, considering the fixed values of the other factors. 

First, aggregate all three individual objectives into a single objective. To calculate the 

partial effect for each factor, a partial derivative was used. The proposed model 

comprised three factors (complex model), Hence, the model analysis can be complicated. 

The first partial derivative was used to simplify the model to determine a partial effect for 

each factor. For example, the first partial differentiation of function Z = f(x,y) bivariate 

(two dimensions) provided a tangent line at a given point direction x or y, and thus the 

rate of change in Z with respect to x or change rate for Z with respect to y was measured. 

The first partial derivative was calculated using some differentiation rules, as shown 

below. 

knock = a + b *cos(c*Tps + d),     𝑑𝐾 = (
𝜕𝑘

𝜕𝑇𝑝𝑠
𝑑𝑇𝑝𝑠)

𝑅𝑝𝑚,𝑇𝑒𝑚𝑝
, 

where k denotes the knock. The derivative of knock (k) with respect to TPS, holding 

RPM, TEMP as constants, is known as the partial derivative of knock with respect to 

TPS. 

Five rules was needed to derive the first partial derivative of this formula:  
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𝑑

𝑑𝑥
𝑐 = 0                                    ……………rule (1) 

𝑑

𝑑𝑥
𝑐𝑥 = 𝑐                                  …………….rule (2) 

𝑑

𝑑𝑥
𝑐𝑢 = 𝑐

𝑑𝑢

𝑑𝑥
                              ……..………rule (3) 

𝑑

𝑑𝑥
𝑐𝑜𝑠 𝑥 =  − 𝑠𝑖𝑛 𝑥                   …….……….rule (4) 

If y = cos(u) such that u=f(x), then 

𝑑𝑦

𝑑𝑥
=  − sin(𝑢) .

𝑑𝑢

𝑑𝑥
                ….….………rule (5) 

Therefore,  

a = 0, constant…….rule (1) 

b*u=b*cos(c*TPS+d) 

because c*Tps = c…………...rule (2),       d = 0.........……rule (1) 

if y = cos(u) such that u=f(x), then  

𝑑𝑦

𝑑𝑥
=  − sin(𝑢) .

𝑑𝑢

𝑑𝑥
 

𝑑𝑢

𝑑𝑇𝑝𝑠
=

𝑑

𝑑𝑇𝑝𝑠
cos(c*Tps+d)= -sin(c*Tps+d)*c     …….……rule (5) 

𝑑

𝑑𝑇𝑝𝑠
𝑏𝑢=𝑏 ∗

𝑑𝑢

𝑑𝑇𝑝𝑠
= - b*c sin(c*Tps + d)………….rule (3) 

𝝏𝒌

𝝏𝑻𝒑𝒔
=  −𝒃 ∗ 𝒄 ∗ 𝐬𝐢𝐧(𝒄 ∗ 𝑻𝒑𝒔 + 𝒅) 

For RPM factor,  

knock = p + q*Rpm+ s*Rpm2,𝑑𝑘 =  (
𝜕𝑘

𝜕𝑅𝑝𝑚
𝑑𝑅𝑝𝑚)

𝑇𝑝𝑠,𝑇𝑒𝑚𝑝
, 
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𝝏𝒌

𝝏𝑹𝒑𝒎
= 𝒒 + 𝟐 ∗ 𝒔 ∗ 𝑹𝒑𝒎 

For Temp factor,  

knock = m + n *cos(o*Temp + e),𝑑𝑘 = (
𝜕𝑘

𝜕𝑇𝑒𝑚𝑝
𝑑𝑇𝑒𝑚𝑝)

𝑅𝑝𝑚,𝑇𝑝𝑠
 , 

𝝏𝒌

𝝏𝑻𝒆𝒎𝒑
= −𝒏 ∗ 𝒐 ∗ 𝒔𝒊𝒏 (𝒐 ∗ 𝑻𝒆𝒎𝒑 + 𝒆) 

Now, an overall model was obtained, which can be used in the analysis of the effect of 

factors on knocking, given that knocking depends upon RPM, TEMP, and TPS. Thus, the 

following formula was reached: 

k = k(Rpm,Temp,Tps) 

To obtain the relation among RPM, TEMP, and TPS, a partial deferential was used: 

𝑑𝑘 = (
𝜕𝑘

𝜕𝑅𝑝𝑚
𝑑𝑅𝑝𝑚)

𝑇𝑝𝑠,𝑇𝑒𝑚𝑝
 +  (

𝜕𝑘

𝜕𝑇𝑒𝑚𝑝
𝑑𝑇𝑒𝑚𝑝)

𝑅𝑝𝑚,𝑇𝑝𝑠
+

           (
𝜕𝑘

𝜕𝑇𝑝𝑠
𝑑𝑇𝑝𝑠)

𝑅𝑝𝑚,𝑇𝑒𝑚𝑝
                                                                    (4.13) 

Substituting the value of (4.10),(4.11),(4.12) in Eq. (4.13), was obtained  

𝑘 = (𝑞 + 2 ∗ 𝑠 ∗ 𝑅𝑝𝑚)𝑇𝑒𝑚𝑝,𝑇𝑝𝑠𝑑𝑅𝑝𝑚 + (−𝑛 ∗ 𝑜 ∗ 𝑠𝑖𝑛 (𝑜 ∗ 𝑇𝑒𝑚𝑝 +

𝑒))𝑅𝑝𝑚,𝑇𝑝𝑠𝑑𝑇𝑒𝑚𝑝 + (−𝑏 ∗ 𝑐 ∗ sin(𝑐 ∗ 𝑇𝑝𝑠 + 𝑑))𝑅𝑝𝑚,𝑇𝑒𝑚𝑝𝑑𝑇𝑝𝑠          (4.14) 

 

Knock =-1*(0.24304*20.873*sin((29.873*tps-1405.39002)*pi/180)-

1.08452*0.000117*rpm-0.000009226 * 38.29344 * sin((13.29344* 

temp+35.15755)*pi/180)+5) 



102 
 

4.5 Multi-Objectives Optimization using continuous Genetic Algorithm 

One way to solve the problems of multi-objective optimization is to use aggregate multi-

objectives in a single objective. To determine the weights for each objective is difficult 

because they are characterized by conflicting and mutual influence  

To aggregate the several objectives models into a single objective overcomes the problem 

of determining the weights and partial mutual influence. This model has been used as a 

scalar function of the continuous genetic algorithm (GA). 

In such a problem, each variable requires many bits to represent it. If the number of 

variables is large, the size of the chromosome is also large. Continuous GA is selected to 

achieve the final goal of increasing the accuracy of the results. When the variables are 

continuous, to represent them by floating-point numbers is more logical. A single 

floating-point number represents the variable instead of Nbits integers, requiring less 

storage than the binary GA. In continuous GA, the chromosomes do not have to be 

decoded prior to the evaluation of the scalar function. Therefore, the continuous GA is 

inherently faster to obtain than the binary GA. 

To solve for some of the multi-objective optimization problems, can be search for the 

optimal solution to the problem through the problem variables. Therefore, begin the 

process of fitting the solution to GA by defining a chromosome as an array of variable 

values to be optimized. 3D optimization problem was given and represented as the 

chromosome (TPS, RPM, TEMP). Then, the chromosome is written as an array with 1* 3 

elements such that  
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Chromosome = (TPS, RPM, TEMP)  

Each chromosome has a scalar determined by evaluating the scalar function f at the 

variables, TPS, RPM, TEMP. 

Scalar = f (Chromosome)=f ( TPS, RPM, TEMP)  

Scalar =f (TPS, RPM, TEMP) = -1*(0.24304*20.873*sin((29.873*tps-

1405.39002)* pi/180) -1.08452* 0.000117*rpm -0.000009226 * 

38.29344*sin((13.29344*temp+35.15755)*pi/180) +5) 

Subject to the constraints 

𝒎𝒊𝒏 ≤  𝑻𝒑𝒔 ≤ 𝒎𝒂𝒙 , 

𝒎𝒊𝒏 ≤  𝑹𝒑𝒎 ≤ 𝒎𝒂𝒙      𝒂𝒏𝒅 

𝒎𝒊𝒏 ≤  𝑻𝒆𝒎𝒑 ≤ 𝒎𝒂𝒙 

For example: 

740 ≤ 𝑅𝑝𝑚 ≤ 2600 

2.500 ≤ 𝑇𝑝𝑠 ≤ 12 

50 ≤ 𝑇𝑒𝑚𝑝 ≤ 68 

4.5.1 Initial Population  

To begin the continuous GA, was create an initial population of size (dat) and set 

generation = 0. For other GA parameters, we define an initial population of Npop 

chromosomes. A matrix represents the population with each row in the matrix 1 * Nvar 

array (chromosome) of continuous values. Given an initial population of Npop 
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chromosomes, the full matrix of Npop * Nvar real values is obtained by reading data set as 

a file. 

dat=xlsread(‘PROTON_4FACTORS_CY1.xlsx’) 

In our example, set the minimum and maximum values of each objective.  

 

varhi1=12   max tps 

varlo1=2.5000    min tps 

varhi2=2600   max rpm 

varlo2=740   min rpm 

varhi3=68   max temp 

varlo3=50     min temp 

These values vary from one engine to another depending on the design.  

The multiple objective values for each solution in a population was calculated, to obtain 

the overall assessment of each solution in the population (called scalar function). 

Scalar = f (Chromosome) = f ( TPS, RPM, TEMP)  

4.5.2 Natural Selection 

By selection operator and according to the evaluation function values, we decide which 

chromosome in the initial population is fit enough to survive and possibly reproduce 

offspring in the next generation while the rest die off. This process is conducted at each 

iteration to allow the population of chromosomes to evolve over the generations to the 
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fittest members as defined by the evaluation function. In this process, Npop scalar values 

and associated chromosomes are ranked from the lowest to the highest value. In Npop 

chromosomes in a given generation, only Nkeep chromosomes were retained and deemed 

fit enough for mating. Fraction of Npop that survived for the next step of mating was 

determined by rate, Xrate. The number of chromosomes that were at each generation was   

Nkeep = Xrate * Npop 

Natural selection occurs in each iteration or generation of the algorithm. Among Npop 

chromosomes in a generation, only the top Nkeep survived for mating, and the number of 

discarded chromosomes (bottom fraction) was determined by Npop-Nkeep to accommodate 

the new offspring. Based on random choice or somewhat arbitrary, we decide on how 

many chromosomes are retained. The few chromosomes retained to survive the next 

generation limited the diversity of genes in the offspring, and to retain too many 

chromosomes provide them the opportunity to contribute their traits to the next 

generation. The natural selection process often retains 50% (Xrate = 0.5). If we have Npop= 

60, therefore  

Nkeep=Npop*Nrate 

Nkeep=60*0.5= 30 

“Thresholding” method is another approach to natural selection. All chromosomes that 

have lower cost than some thresholds survive. 
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4.5.3 Pairing Approaches  

In GA, pairing chromosomes can be useful and interesting, such that they varied as 

pairing in an animal species. We select two chromosomes from a pool of Nkeep 

chromosomes to produce two new offspring. Pairing is conducted in the mating 

population until Npop - N keep offspring are born to replace the discarded chromosomes. 

Pairing has several methods.  

1. Pairing from Top to Bottom. This approach works on Npop matrix, starting from 

the top of list in the selection of chromosomes to include in the mating process. 

The approach selects two chromosomes simultaneously until the top Nkeep 

chromosomes are selected for mating. Therefore, the algorithm pairs odd rows 

with even rows. If a certain population matrix is present, the mother has row 

numbers in the population matrix, ma= 1, 3, 5,......., and the father has the row 

numbers pa = 2, 4, 6… This approach does not accurately model nature, but the 

programming is much more simple (Haupt & Haupt, 2004). 

 

2. Random Pairing. Uniform random number generator is used in this approach to 

select chromosomes. The parent’s row numbers are found utilizing the following 

equation: 

ma = ceil (Nkeep*rand(1, Nkeep)) 

pa = ceil (Nkeep*rand(1, Nkeep)) 

where ceil rounds the value to the next highest integer. 
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3. In this study, weighted random pairing is utilized. The probability which is 

assigned to each chromosome in the mating pool is inversely proportional to its 

cost. A chromosome with a lower cost has a greater chance of mating, while a 

chromosome with a higher cost has a lower chance of mating. A random number 

determines which chromosome is selected. This is often known as roulette wheel 

weighting. Rank and cost are two techniques of weighting. 

a. Rank weighting. This approach is based on a probabilistic calculation through 

rank n for each chromosome, which is an independent problem.  

Suppose there is an initial population of 10 random chromosomes (Npop=10). Their 

corresponding cost is shown in Table 4.4. 

Table 4.4 

Initial Population of 10 Random Chromosomes (Npop=10) and Their  
Corresponding Cost 

X Y Cost 
6.9745 0.8342 3.4766 
0.3035 9.6828 5.5408 
2.4021 9.3359 -2.2528 
0.1875 8.9371 -8.0108 
2.6974 6.2647 -2.8957 
5.6132 0.1289 -2.4601 
7.7246 5.5655 -9.8884 
6.8537 9.8784 13.752 
6.5454 5.3938 12.627 
4.5874 7.4206 -1.7615 

 

Therefore, (Nkeep= 5) surviving chromosomes after a 50% selection rate was obtained 

(see Table 4.5).  

Nkeep=10*0.5=5. 
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Table 4.5 

 Surviving Chromosomes after a 50% Selection Rate 

Number X Y Cost 

1 7.7246 5.5655 -9.8884 

2 0.1876 8.9371 -8.0108 

3 2.6974 6.2647 -2.8957 

4 5.6130 0.1288 -2.4601 

5 2.4021 9.3359 -2.2528 

 

 

Based on the formula,  

𝑃𝑛 =
𝑁𝑘𝑒𝑒𝑝 − 𝑛 + 1

∑ 𝑛
𝑁𝑘𝑒𝑒𝑝

𝑛=1

 

The probability for each chromosome can be calculated.  

=
5 − 𝑛 + 1

1 + 2 + 3 + 4 + 5
 

where n = rank for chromi 

=
6 − 𝑛

15
 

 

The cumulative probabilities listed in column 4 of Table 4.5 are used to select the 

chromosome. Table 4.6 shows the results for Nkeep = 5 chromosomes. 

 Table 4.6 
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Rank Weighting 

 

Number 

 

Chromosome 

 

Pn 
∑ 𝑷𝒊

𝒏

𝒊=𝟏

 

1 Chrom 1 0.333 0.333 

2 Chrom 2 0.266 0.599 

3 Chrom 3 0.2 0.799 

4 Chrom 4 0.133 0.933 

5 Chrom 5 0.066 0.999 

 

In the beginning, we create a random number between zero and one using the 

observations in Table 4.5. The first chromosome, which has the largest cumulative 

probability of the random number, will enter the mating pool. If the random number is r = 

0.477, then 0.333< r ≤ 0.599, and thus chromosome2 is selected. Many alternatives can be 

followed for pairing with the same chromosome. First, let it go, implying that three of 

these chromosomes appear in the next generation. Second, we randomly pick another 

chromosome. The choice of this approach is more realistic with the problem under 

discussion, as randomness in this approach is natural. 

b. Cost weighting. In this approach, rather than its rank in the population, the 

probability of selection is calculated from the cost of the chromosome. By 

subtracting the lowest cost of the discarded chromosomes (𝐶𝑁𝑘𝑒𝑒𝑝+1
) from the 

cost of all the chromosomes in the mating pool, a normalized cost is calculated for 

each chromosome. 

𝐶𝑛 = 𝑐𝑛 − 𝑐𝑁𝑘𝑒𝑒𝑝+1
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By the following formula, the probability of selection is calculated from the cost of 

the chromosome, 

𝑃𝑛 = |
𝐶𝑛

∑ 𝐶𝑛
𝑁𝑘𝑒𝑒𝑝

𝑛

| 

 

In this approach, a large spread in the cost between the top and bottom 

chromosomes will tend to weigh the top chromosome more. By contrast, the 

approach tends to weigh the chromosomes equally when all the chromosomes have 

approximately the same cost. Moreover, the probabilities must be recalculated for 

each generation when a chromosome is selected to mate with itself (Haupt & 

Haupt, 2004). 

4. Tournament Selection. In this approach, we randomly select a small subset of 

chromosomes (two or three) from the mating pool, and the chromosome with the 

lowest cost in this subset becomes a parent. Tournament selection works best in a 

large population because the population need not be sorted, and sorting becomes 

time consuming for large populations. 

4.5.4 Mating  

We define mating as the creation of one or more offspring from the selected parents in 

the pairing process. In this work, a combination of an extrapolation method with a 1X 

crossover method (single-point) was used. One or more crossover points in the selected 
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chromosome chosen was considered as the simplest methods. Two parents were selected 

to produce two offspring. In two crossover points (2X) method, the variables between 

these points were swapped, that is, between parents. Crossover points were randomly 

selected, and then the variables in between were swapped.  

In our problem, the first mating point was determined randomly by selecting a variable in 

the first pair of parents to be the crossover point: 

Xp= roundup(random*Nvar) 

Xp = ceil(rand(1,M)*3) 

where  

M = number of mating 

For example, if M = 3, the we obtain three crossover points (Xp= 2, 3, 1). 

Let  

Parent1= [pm1, pm2, pm3,……, pmxp,………,pmNvar] 

Parent2= [pd1, pd2, pd3,…...…, pdxp,………,pdNvar] 

 

where m and d denote mom and dad.  

Thereafter, a combination of selected variables was obtained to gain new variables as 

offspring.  
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Pnew1= pmxp - β[pmxp- pdxp] 

Pnew2= pdxp+β[pmxp- pdxp] 

 

where β is also a random value between 0 and 1. The final step is to complete the 

crossover with the rest of the chromosomes.  

 

offspring1= [pm1, pm2, pm3,……, pnew1,………,pdNvar] 

offspring2= [pd1, pd2, pd3,….…, pnew2,………,pmNvar] 

 

If the first chromosome variable is selected, only the variables on the right of the selected 

variable are swapped. If the last variable of the chromosome is selected, only variables on 

the left of the selected variable are swapped. Offspring variables are not permitted outside 

the bounds set by the parent, unless β > 1. 

If the first set of parents is given by  

Chromosome1 = [0.1244, 0.4771], 

Chromosome2 = [0.2346, 0.6783], 

then a random number generator selects p1 as the location of the crossover. The random 

number selected for β is 0.0373. The new offspring is given by: 

Offspring1 = [0.1244 - 0.0373 * 0.1244 + 0.0373 * 0.2346, 0.6783] 

=[0.0128 ,0.6783] 
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Offspring2 = [0.2346 + 0.0373 * 0.1244 - 0.0373 * 0.2346, 0.4771] 

                  =[  0.2304 ,0.4771] 

4.5.5 Mutation 

Random mutations can be described as an alternative to a particular percentage of the bits 

in a list of chromosomes. GA can explore mutation. It provides attributes that are not 

present in the original population and can prevent GA from converging too fast before 

sampling the entire cost surface. A single point mutation changes a 1 to a 0 in binary 

coding, and vice versa. Mutation points can be randomly selected from Npop*Nbits total 

number of bits in a population matrix. 

In the context of the Rocky Mountain National Park issue, 20% of the population 

(m=0.20) was selected for mutation (excluding the best chromosome). Therefore, seven 

pairs of random integers were selected using a random number generator, which 

correspond to the rows and columns of the mutated bits. The number of mutations is 

depicted using:  

#mutations = m * (Npop - 1) *Nbits = 0.2 * 7 * 14 = 19.6  ≅ 20 

The following pairs were randomly selected: 

mrow = [5 7 6 3 6 6 8 4 6 7 3 4 7 4 8 6 6 4 6 7] 

mcol =[6 12 5 11 13 5 5 6 4 11 10 6 13 3 4 11 5 14 10 5] 

 

The first random pair is (5, 6). Thus, the bit in row 5 and column 6 of the population 
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matrix is mutated from a 1 to a 0 and so on. 

In this work, we used the same concept to perform the mutation operator. The total 

number of mutations in the population matrix is multiplying the mutation rate (20%) by 

number of population, except for the best chromosome, which is multiplied by number of 

variable. For example, the number of mutations in population size 8 chromosome with 

two variables can be calculated using this formula.  

#mutations = mutation rate*(Number of population-1) * Number of variables 

#mutations = mrate * (Npop - 1) *Nvars = 0.2 * 7 *2 = 0.28  ≅  3 

Rows and columns of the variables to be mutated are selected by random numbers. Thus, 

a mutated variable is replaced by a new random variable. 

mrow = [ 54 7] 

mcol = [32 1] 

The first random pair is (5, 3). Thus, the value in row 5 and column 3 of the population 

matrix is replaced with a uniform random number between one and ten. 

6.61309.8190 

 

In our problem, the random numbers in the population matrix has different ranges. The 

procedure below in (Figure 4.11) explains how to solve this point. 

 

 
nmut=ceil((popsize-1)*Nt*mutrate) 

for ii=1:nmut 

ck=mcol(ii); 

switchck 

case 1 
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Figure 4.11. Mutation Procedure 

4.6 Model Validation 

To examine the validity of the model, an appropriate statistical method such as cross 

validity is conducted. This refers to a model validation technique used in the assessment 

of findings of statistical analysis that can be generalized to an independent data set 

(Devijver & Kittler, 1982; Geisser, 1993; Kohavi, 1995). The method can be used in the 

estimation of the level of model fit to a set of data, which is independent of that data 

applied in order to train the model. The method is also employed in the estimation of any 

quantitative measure to fit that’s suitable for the model data. Usually, it is used in 

contexts where the aim is forecasting and estimating how accurate a predictive model can 

perform. Cross-validation works by dividing a sample of data into complementary 

subsets and subsequently conducting an analysis on one of the subsets (the training set) 

and then validating the analysis against the other subset (validation or testing set). Several 
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cross-validations can be conducted using various partitions to decrease the variability, 

and the validation findings are averaged over the rounds.  

Mosteller and Doob (1949) says Cross-validation guards against hypotheses testing 

suggested by the data (named "Type III errors"), particularly when the samples are costly, 

hazardous, or impossible to gather. 

Throughout this examination, cross-validation was performed using the K-fold technique 

and SPSS software. K-fold cross-examination involves a sample being divided at random 

into k equal sized sub-samples. Amongst the k sub-samples, one sub-sample is kept for 

the validation data during model testing whereas the other k – 1 samples become the 

training data (see Figure 4.12). The cross-validation process occurs k times and each of 

the k sub-samples is applied one time only as the validation data. The average of the k 

findings from the folds is averaged in order to provide estimation. The advantage of this 

technique compared to repeat random sub-sampling is that the observations can be 

applied for both training and validation. Also, every observation is applied for validation 

exactly one time.  

 

Figure 4.12. Procedure of Three-fold Cross-validation 
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Given that the sample size of this study was 63 and not large, the value of K is selected as 

3 to provide adequate sample size in each partition. Moreover, CHAID method was used 

as growing method for this cross-validation. In CHAID analysis, the scales of predictors 

are banded into discrete groups prior to analysis.   

Table 4.7 demonstrates the result of the cross validation, and shows the value of risk 

estimation for this study is 0.036. This risk estimation value indicated that knock 

predicted by the model was wrong only for 0.036% of the cases. Consequently, the risk 

of wrong prediction of knock for other situation was 0.036%. We can conclude the 

proposed model is applicable for approximately 99.063% of cases, implying that this 

model works properly for 99.063% of cases, and the prediction would be accurate.  

Table 4.7 

Estimation of Risk for Knock Prediction 

Method Estimate Std. Error 

Cross-Validation 0.036 0.005 

 

4.7 Summary and Discussion  

In this chapter, the methodology described in the previous chapter was applied, which 

consists of three phases. Initially shows the behavior that has been the selection and data 

collection. In addition, clarifying how to build individual objectives and then building the 

evaluation function (model). While the last part shows the application of optimization 

methodology and verification of the effectiveness of the model. 

Growing Method: CHAID 
Dependent Variable: Knock 
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After applied all these methodologies, final model (evaluation function) was obtained, as 

shown below. 

Knock =-1*(0.24304*20.873*sin((29.873*tps-1405.39002)*pi/180)-

1.08452*0.000117*rpm-0.000009226 * 38.29344 * sin((13.29344* 

temp+35.15755)*pi/180)+5) 

It is easy to see that tradeoffs between these attributes are usually inevitable. Notably, 

when robustness and ease of use increase, efficiency typically decreases and vice versa. 

The stated general attributes are also interrelated. For instance, algorithms that are very 

sensitive to the selection of the tuning parameters are often problem dependent, and 

hence not sufficiently general. An algorithm tailored to a specific class of problems with 

common structure may be more efficient for that particular problem class than an 

algorithm that could be applied to a more general class of problems, but a lot less 

efficient or even unusable when applied to problems outside that class. 

 

CHAPTER FIVE  

EXPERIMENTAL RESULTS AND ANALYSIS 

5.1 Introduction 

In this chapter will be divided into three parts: The first part shows the reasons analysis 

for choosing the three factors (Tps, Rpm,Temp), and discard another factors depending 

on the results that have been obtained through the application of some statistical 

measurements by (Minitab & SPSS)  softwares, such that, was dealt the reasons for 
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selecting the one of  three models. The second part, using (Curve Expert Professional) 

program (CEP), to analysis the objectives in order to build the evaluation function, in 

addition to showing the results that have been obtained to validate the model chosen. 

Finally, Part three, by using (Matlab) program, shows the results of the work of the 

proposed model for the evaluation function in the optimization problem between 

conflicting objectives, and obtain a form, for simulations knocking problem in internal 

combustion engines. 

5.2 Sample Size Testing 

While known, factor analysis depend on the correlations structure between the factors, 

and it is know the correlation parameter value, depend on the sample size. Therefore it is 

important to test the sample size before doing the factors analysis. 

Generally, judgment of the whether the sample size is enough or not, must use Kaiser-

Meyer-Olkin(KMO) as a measure of sampling. The statistic value for this test is located 

in the range from zero to 1 integer; close this value to the 1 means increasing the 

reliability of factors that produced from analysis. Owner this test  Kaiser (1974) refer to 

the minimum acceptable value for this statistic is 0.50 in order to judgment the sampling 

size enough or not. The result of this test (KMO) shown in Table 5.1 is 0.540 (greater 

than 0.50), this means our data enough to do this analysis (Williams, Brown, & Onsman, 

2012). 
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Table 5.1 

KMO and Bartlett's Test 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .540 

Bartlett's Test of Sphericity Approx. Chi-Square .731 

df 3 

Sig. .866 

 

5.3 Selecting Factors and its Analysis, Results  

By experimental of the study, three models was constructed by using general regression 

analysis, these models can help us to select the best factors that have effect on knocking. 

 Conditions of the method used to estimate the regression model parameters 

The method of least squares of the most famous methods in the estimation of the 

regression model parameters, the Conditions of this method is: 

1. Normality test: you can use F-test or T-test whether in test the overall significant 

or partial significant for regression model. Necessary provide the normality 

distribution for residuals. 

2. Multi-collinearity: This means that there is a strong correlation and significance 

between two or more of the explanatory variables. Is one of the most important 

negative effects of the existence of multi-collinearity between explanatory 

variables is the instability of the regression coefficients. 
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5.3.1 General Regression Model Analysis: KNOCK versus TPS;TEMP;IGN;RPM  

The construction of the first model took four factors that affect the phenomenon of 

knocking and characterized by the conflicting between them. Factors are Temperature 

(Temp), Revolution per minute (Rpm), Throttle position sensor (Tps), Ignition timing 

(IGN). After applying the general regression, and Analysis of Variance (ANOVA) see 

Table 5.2, were obtained the following results and regression equation is: 

 

 Regression Equation 

KNOCK  =  988.455 - 12.3323 TPS - 0.0164546 TEMP + 0.00745664 IGN +  

                     0.000100153 RPM                                                                     (5.1) 

 
 Analysis of Variance 

 
Table 5.2 

 Analysis of Variance (ANOVA) 
 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 1.234 4 .309 52.403 .000b 

Residual .135 23 .006   
Total 1.370 27    

a. Dependent Variable: KNOCK 

b. Predictors: (Constant), RPM, TEMP, TPS, IGN 

 

Through the following Table 5.3, note the P. value in factors TPS, RPM is the value of 

less than 0.05, and this reflects that there is a significant effect on knocking for these two 

factors. From other side, the rest factors (TEMP, IGN) P.value greater than 0.05 this 

reflects less effect on knocking. 
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Table 5.3 

 Coefficients 
 

No. Term Coef. P. value 
1 Constant 988.455 0.000 
2 TPS -12.332 0.000 
3 TEMP -0.0164 0.760 
4 IGN 0.0074 0.122 
5 RPM 0.0001 0.001 

 
Therefore, to decrease the complex nature of the model (AIC simple defines the model 

complexity in terms of the number of free parameters) Bozdogan (2000), one must be 

deleted. In order to make the decision to delete any one of these factors, should be taking 

into account the correlation between all the factors, as well as the multicollinearity 

problem. Problems will also become apparent when predictor variables have strong 

correlation to each other. If this is the case, it is difficult to isolate the individual 

contribution of each predictor variable, which causes issues in the estimation of the 

relationship between the predictors and the outcome. Two statistics are used to 

diagnostics this problem (tolerance, Variance Inflation Factor (VIF)). For any variable in 

the model, if VIF is greater than 5, then this would be is a good pointer to such problem. 

The tolerance it is just reverse of VIF (Tolerance = 1/VIF) , this means  , if tolerance is 

less than 0.2 , then this is a similarly a cause of concern(Field, 2009).   

 

 

Table 5.4 

 Correlations TPS, IGN, TEMP, RPM 
                       

 TPS IGN TEMP 
IGN 0.088   

TEMP 0.107 -0.033  
RPM 0.122 0.921 0.070 
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Through correlation analysis of the four factors was observed that there is a strong 

correlation between IGN and RPM where the 0.921, see Table 5.4 above, also the value 

of VIF for IGN and RPM (7.063, 7,126) respectively, see Table 5.5 below, more than 5, 

this would be a good reason to worry, so it is supposed to delete one of these factors with 

high correlation.        

Table 5.5 

Multi-collinearity problem for 4-factors 
Coefficientsa 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. 

Collinearity Statistics 

B Std. Error Beta Tolerance VIF 

1 (Constant) 972.310 177.638  5.474 .000   
TPS -12.129 2.224 -.362 -5.454 .000 .974 1.026 

IGN .007 .005 .276 1.582 .127 .142 7.063 

TEMP -.017 .053 -.022 -.329 .745 .925 1.081 

RPM .000 .000 .658 3.761 .001 .140 7.126 

a. Dependent Variable: KNOCK 

 

 
The Summary of Model shown in the following Table 5.6. 
 
 
 
 
 
 
 
 
Table 5.6 

 The Summaryb of Model 1 for 4-Factors. 
 

Model R R Square 

Adjusted R 

Square 

Std. Error of the 

Estimate Durbin-Watson 

1 .949a .901 .884 .076737 .351 

a. Predictors: (Constant), RPM, TEMP, TPS, IGN 
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b. Dependent Variable: KNOCK 

 
S = 0.0768620,   R-Sq = 90.08%,   R-Sq(adj) = 88.36% ,   PRESS = 0.204633                 

R-Sq(pred) = 85.07% 
 

 

 Durbin-Watson Statistic 
 

Durbin-Watson statistic = 0.345914 
 
 
The normality test in Figure 5.1 Shown we find that the residuals are randomly 

distributed on both sides of the line, which means that the residuals are distributed 

moderate distribution (i e, follow normal distribution). 

 

 
 

Figure 5.1. Normality Test for residual (Model 1) 

5.3.2 General Regression Model Analysis: KNOCK versus TPS; TEMP; RPM 

In the construction of the second model, were taken three factors have an effect on the 

phenomenon of knocking and characterized by the conflicting between them. Factors are 

Temperature (Temp), Revolution per minute (Rpm), Throttle position sensor (Tps). After 
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applying the general regression, and Analysis of Variance (ANOVA), see Table 5.9, were 

obtained the following results and regression equation is: 

 Regression Equation 

KNOCK  =  1001.73 - 12.4751 TPS - 0.0375599 TEMP + 0.000139913 RPM        (5.2) 

Also the value of VIF in table 5.7 for all factors less than 5. 

 

Table 5.7 

 Multi-collinearity problem for 3-factors 
Coefficientsa 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. 

Collinearity Statistics 

B Std. Error Beta Tolerance VIF 

2 (Constant) 986.580 182.881  5.395 .000   
TPS -12.285 2.290 -.367 -5.363 .000 .976 1.024 

TEMP -.038 .053 -.049 -.721 .478 .986 1.015 

RPM .000 .000 .915 13.411 .000 .982 1.018 

a. Dependent Variable: KNOCK 

 
The Summary of Model shown in the following Table 5.8 
 
Table 5.8 

 The Summaryb of Model 2  for 3-Factors 
 

Model R R Square 

Adjusted R 

Square 

Std. Error of the 

Estimate Durbin-Watson 

2 .944a .890 .877 .079104 .585 

a. Predictors: (Constant), RPM, TEMP, TPS 

b. Dependent Variable: KNOCK 

 
 
 

S = 0.0793399     R-Sq = 88.97%        R-Sq(adj) = 87.60% 

PRESS = 0.217751  R-Sq(pred) = 84.11% 
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 Analysis of Variance 
 
Table 5.9 

 Analysis of Variance (ANOVA) 
ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

2 Regression 1.220 3 .407 64.967 .000b 

Residual .150 24 .006   
Total 1.370 27    

a. Dependent Variable: KNOCK 

b. Predictors: (Constant), RPM, TEMP, TPS 

 
 

 Durbin-Watson Statistic 
 

Durbin-Watson statistic = 0.577961 
 
 

The normality test in Figure 5.2 Shown we find that the residuals are randomly 

distributed on both sides of the line, which means that the residuals are distributed 

moderate distribution (i e, follow normal distribution). 

 
 

Figure 5.2. Normality Test for residual (model 2) 
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5.3.3 General Regression Model Analysis: KNOCK versus TPS; TEMP; IGN 

In the construction of the third model, were taken three factors have an effect on the 

phenomenon of knocking and characterized by the conflicting between them. Factors are 

Temperature (Temp), Throttle position sensor (Tps), Ignition timing (IGN). After 

applying the general regression, and Analysis of Variance (ANOVA), were obtained the 

following results and regression equation is: 

 Regression Equation 

KNOCK  =  929.707 - 11.6524 TPS + 0.0333036 TEMP + 0.0235528 IGN           (5.3) 

Also the value of VIF in table 5.10 for all factors less than 5. 
 

 
 
 
 
 

Table 5.10 

 Multi-collinearity problem for 3-factors 
Coefficientsa 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. 

Collinearity Statistics 

B Std. Error Beta Tolerance VIF 

3 (Constant) 911.808 220.081  4.143 .000   
TPS -11.428 2.757 -.341 -4.145 .000 .981 1.019 

TEMP .032 .064 .042 .509 .615 .987 1.013 

IGN .024 .002 .882 10.769 .000 .991 1.009 

a. Dependent Variable: KNOCK 

 
The Summary of Model shown in the following Table 5.11 
 
Table 5.11 

 Summaryb of Model 3  for 3-Factors 
 

Model Summaryb 
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Model R R Square 

Adjusted R 

Square 

Std. Error of the 

Estimate Durbin-Watson 

3 .917a .840 .820 .095464 .619 

a. Predictors: (Constant), IGN, TEMP, TPS 

b. Dependent Variable: KNOCK 

 

S = 0.0954181     R-Sq = 84.05%        R-Sq(adj) = 82.06% 

PRESS = 0.286746  R-Sq(pred) = 79.07% 
 

 Analysis of Variance 
 
Table 5.12 

Analysis of Variance (ANOVAa) 
 
 

Model Sum of Squares df Mean Square F Sig. 

3 Regression 1.151 3 .384 42.101 .000b 

Residual .219 24 .009   
Total 1.370 27    

a. Dependent Variable: KNOCK 

b. Predictors: (Constant), IGN, TEMP, TPS 

 Durbin-Watson Statistic 
 

Durbin-Watson statistic = 0.623352 
 
The normality test in Figure 5.3 Shown we find that the residuals are randomly 

distributed on both sides of the line, which means that the residuals are distributed 

moderate distribution (i e, follow normal distribution). 
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Figure 5.3. Normality Test for residual (Model 3) 
 

 

 
After obtaining the previous results for the three models, can be summarized in the 

following Table 5.13, in order to select the best model, among those three models. 

 

 

Table 5.13 

Summary result for three Models 
  

Model Adj. R2 Std. error  of the 
estimation 

F-Test Sig. P-value Durbin 
Watson 

Model 1 0.884 0.0767 52.403 0.000 0.351 
Model 2 0.877 0.0790 64.967 0.000 0.585 
Model 3 0.820 0.0954 42.101 0.000 0.619 

 
 
Three models are constructed by using regression analysis: 
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Knock = 988.455 - 12.3323 TPS - 0.0164546 TEMP+ 0.00745664 IGN + 0.000100153 RPM          (5.1) 

Knock = 1001.73 - 12.4751 TPS - 0.0375599 TEMP + 0.000139913 RPM                                         (5.2) 

Knock = 929.707 - 11.6524 TPS + 0.0333036 TEMP + 0.0235528 IGN                                             (5.3) 

Through the above Table 5.8 , we note a range of situations have been studied and 

analyzed in order to reach the best model through the selection of the factors that make 

the model less complexity. Note the P. value in all cases is the value of less than 0.05, 

and this reflects that there is a significant effect on knocking for all cases. 

Choose the best model among all 3 models, we used appropriate statistical criteria Akaike 

Information Criterion (AIC). AIC is the measurement of relative quality of a model for a 

set of data that can provide a tool for the selection of a model. AIC handles the trade-off 

between the complexity and goodness of fit. AIC can be calculated using the following 

formula:  

AIC=2k-2 ln (L) 

Where, K is the number of factors, L is the maximized value of the likelihood function of 

the estimated model. 

In other form: 

AIC= n * ln (∂2) + 2 * (K+1)       

 

where, n is size of sample, K is the number of factors (predictors) in given statistical 

model and (∂2 = SSE/ n). 
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Table 5.14 

 AIC Computation Results for Three Models 

Model n(Sample Size) SSE ∂(segma)^2 K AIC-Value 
TPS,TEMP,RPM,IGN 28 0.135 0.004821429 4 -139.3711803 
TPS,TEMP,RPM 28 0.15 0.005357143 3 -138.4210859 
TPS,TEMP,IGN 28 0.219 0.007821429 3 -127.8248657 
 

From the result above in Table 5.14, since, the complexity defines in AIC is the number 

of free parameters, as well as AIC score difference between two models is in magnitude 

of 1-2, the difference is significant, therefore, we can omit the first model (Bozdogan, 

2000). 

According to the relative probability that the ith model minimizes the (estimated) 

information loss, we can choose it. If we wrote the relative likelihood of the model to 

reduce the loss of information as follows: 

A=eb  

b = ((AICmin-AICi)/2) 

We can calculate the value of A as we vary b. 

A= Exp((AICmin – AICi )/2), 

 

From the table 5.14 can take the three AIC-value to calculate A and get the result of 

decision as shown: 

We would omit the third model from further consideration. Then the second model is:  

 

exp((-139.3711 − (-138.4210)/2)) = exp( -0.4755) 
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Such that ,        e= 2.718 “natural exponential”,             A = 2.718 -0.4755 

A=eb=0.6219 

 

That means, 0.6219 times as probable as the first model to minimize the information loss. 

Similarly, the third model is exp((-139.3711 − (-127.824))/2) = exp(-57735) = 0.0031 

times as probable as the first model to minimize the information loss. 

 Initially delete IGN factor from the proposed model after that, the remaining three 

factors namely RPM, TPS and TEMP are analyzed. From table 5.13, where it was noted 

that the explanatory power of the model (Adjusted R Square) has decreased to 0.877 after 

it was 0.884, a value slightly. We also note that the value of the F-test has risen from 

52.40 to 64.96 and this is proof model improved by good if compared with the value 

before pulling factor IGN. Note that in table 5.8 the value of the estimate error has 

increased from 0.07674 to 0.07910 a slight amount. 

Secondly, taking into consideration the second case, which deleted the RPM factor of the 

model as the study and analysis of the situation has been shown that the explanatory 

power of the model has decreased from 0.884 to 0.820.We note also that the value of F-

test has fallen from 52.403 to 42.101, a relatively large value, while increasing the 

standard error of the model from 0.07674 to 0.09546. Through analysis of the results it is 

clear that the second model is better than the third model, which means, deleted factor 

IGN. 

5.4 Results and analysis of constructing objective functions 
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After the decision to identify the factors that will be involved in the construction of the 

evaluation function by the results which obtained from the analysis of the factors tested, 

was construct individual objectives for each factor. 

5.4.1 TPS Objective Results 

Depending on the data has been the objective building. Figure 5.4 below, represents the 

scatter of the raw data, which represents the objective TPS. 

 
Figure 5.4. Scatter Raw Data for TPS objective 

 

After the applying of nearly 50 models was obtained four best candidate models for 

simulations of such data, see Table 5.15 

Table 5.15 

 Some models are applied on raw data 
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The top result can be summarize in Figure 5.5  

 

 
Figure 5.5. 3-Top Results Models for TPS objective 

 

Note from the results, in Table 5.15, that best fit between the tested models and our data, 

the model (sinusoidal), see Figure 5.6 is the best model simulates factor data (TPS) as the 

value(-99.09) of (AIC) less than the rest of the other models, In addition to the lowest 

standard error. While the explanatory power (r^2) is the highest, compared with other 

models. 
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Figure 5.6. Best fit model for TPS raw data 

 

We also note from the Table 5.15, there is a great close between the model (Sinusoidal) 

and (Gaussian model) in terms of the different values such as AIC, standard error and the 

explanatory power (r^2), this differentiation, will discuss in next chapter as well as 

comparing between them. 

An appropriate model is selected and tested, then a Wald-Wolfowitz test is run on the 

residuals. Figure 5.7 outlines the observed number of runs (nruns = 12), as well as the 

likelihood (22.63%) that the observed quantity of runs may occur if the model used to fit 

the data is correct (i.e., the residuals are randomly distributed around the curve). The run 

pattern of the residuals is unlikely if the probability is less than 5%. The pattern is not 

unlikely if it’s greater than 5% (which is different to being likely, which cannot be 

claimed). A higher likelihood is more desirable. The residual plot also shows a straight-

line fit to the residual points. The light red regression line depicts whether the trend is 
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upwards or downwards (depending on the slope) and also shows if the residuals bias 

upward or downward. 

 
Figure 5.7. Test Residual randomness for TPS fitting model 

 

A graph depicting the convergence history of non-linear regressions is displayed. The 

difference between results and data (known as the norm) is depicted as a function of 

iteration number, and the change in the residual is also shown as a function of iteration 

number (Figure 5.8). The residual of the last iteration should be to the level set in the 

application preferences if the iteration converges, except in the case of the iteration 

terminating due to a lack of change in the parameters, instead of a lack of change in the 

residual. 
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Figure 5.8.Convergence History for TPS factor 

 

A graph depicting the parameter history of non-linear regressions is displayed. Each 

parameter value is depicted as a function of iteration number. It is evident whether the 

parameters have ‘settled’ on a certain value before termination of the iteration. The 

parameters remain flat to the right side of the plot, which indicates they have settled, 

unless the iteration terminates because it exceeds the maximum number of iterations 

(Figure 5.9). 
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Figure 5.9. Parameter histories for TPS factor 

 

Figure 5.10 depicts a confidence band, which is the area where a certain likelihood 

(usually 95%, but can be adjusted) of containing the true curve which fits the data. The 

prediction band is an area that possesses likelihood (typically 95%, can be adjusted) of 

containing future data point. The prediction band is wider than the confidence band. 
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Figure 5.10. Confidence band and Prediction band 

 

Finally, the overview for TPS objective is :  
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5.4.2 RPM Objective Results  

The same procedure was applied to the rest of the factors data (RPM, TEMP.) were 

obtained results shown below. In Figure 5.11, represents the scatter raw data for RPM 

objective.  

 
Figure 5.11.Scatter Raw Data for RPM objective 

 

Through the results shown in Table 5.16 and overview below, we note there a 

rapprochement between the two models (Polynomial regression degree 3) and 

(Sinusoidal). Results also showed after a comparison between the two models, the first 

model (Polynomial Deg.3) is the best of the second model (Sinusoidal) for several 

reasons will be discussed in the next chapter. 
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Table 5.16 

 Some models are applied on RPM raw data 

 
 

Fitting raw data results, with the polynomial regression model showed in Figure 5.12 and 

the following overview:  

 
Figure 5.12.Polynomial Regression Model fitted with RPM data 
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The Wald-Wolfowitz test is performed on the residuals. The results, observed number of 

runs (nruns=12) and the likelihood (16.78%) that this observed number of runs could 

occur if the model was used to fit the data was correct, is at Figure 5.13. The run pattern 

of the residuals is unlikely if the probability is less than 5%. The pattern is not unlikely if 

the probability is greater than 5% (which is different to being likely, which is not 

claimed). A higher likelihood is desirable. A straight line fit to the residual points is also 

displayed on the residual plot. The light red regression line shows whether the trend is 

upwards or downwards to the data, determined by the slope of the line, as well as depict 

whether the residuals bias upward or downward. 
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Figure 5.13.Test Residual randomness for RPM fitting model 

5.4.3 Temperature Objective Results 

Depending on the data has been the objective building. Figure 5.14 below, represents the 

scatter of the raw data, which represents the objective TEMP. 

 
Figure 5.14.Scatter Raw Data for TEMP objective 
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After the applying of nearly 50 models was obtained four best candidate models for 

simulations of such data, see Table 5.17 

Table 5.17 

Some models are applied on TEMP raw data 

 
 

The top result can be summarize in Figure 5.15 

 
Figure 5.15. 4-Top Results Models for TEMP objective 
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Note from the results, in Table 5.15, that best fit between the tested models and our data, 

the model (sinusoidal), see Figure 5.16 is the best model simulates factor data (TEMP) as 

the value(-80.2106) of (AIC) less than the rest of the other models, In addition to the 

lowest standard error. While the explanatory power (r^2) is the highest, compared with 

other models. 

 
Figure 5.16. Sinusoidal Regression Model fitted with RPM data 
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The Wald-Wolfowitz runs test is conducted on the residuals. The result, observed number 

of runs (nruns = 17), and likelihood (80.69%) are depicted at the bottom of Figure 5.17. 

A higher likelihood is preferable.  The result displayed on the residual plot is a straight-

line fit to the residual points. The light red regression line depicts a downwards trend and 

a residual bias downwards. 
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Figure 5.17.Test Residual randomness for TEMP fitting model 

 

The results showed that the residual (error) resulting from the fitting process between the 

model and the data is (0.2275), and in the following Figure 5.18 below shows the change 

in the amount of error. 

 
Figure 5.18.Cconvergence History for TEMP factor 
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For nonlinear regressions, the parameter history is graphically displayed. Each parameter 

value is depicted as a function of iteration number. It is possible to determine if the 

parameters ‘settled’ on a particular value prior to iteration termination. The parameters 

are always flat at the right side of the plot, unless the iteration terminated because it 

exceeded the maximum number of iterations set in the application preferences. This 

indicates that they are settled (as per Figure 5.19). 

 
Figure 5.19.Parameter histories for TEMP factor 

Generally, can summarize the results above in Table 5.18 for three factors as a individual 

objectives. 

Table 5.18 

 Summary Three best models 

M Name Kind Family Equation 

1 Sinusoidal Regression Miscellaneous Y=a+b*cos(c*TPS+d) 

2 Polynomial Deg.3 Regression 
Linear 

Regression 

Y=a+b*RPM+c*RPM2+ 

d*RPM3 

3 Sinusoidal Regression Miscellaneous Y=a+b*cos(c*TEMP+d) 
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Table 5.18 Continued   

 

M Name 
Standard 

error 

Correlation 

Coeff. (r) 

Coeff.of 

Determination 

(r2) 

DOF AICC 

1 Sinusoidal 0.162446 0.733239 0.537640 24 -99.0911 

2 
Polynomial 

Deg.3 
0.023078 0.995323 0.990668 24 -208.372 

3 Sinusoidal 0.227579 0.304206 0.092541 24 -80.2106 

 

5.4.4 TPS Effect on Knocking 

With consideration of the fixed values of RPM and TEMP factors, the results shown that 

TPS is effective on knocking after apply the overall in formula in many situations to 

investigate its effect on Knocking. By observing the Figure 5.20 below, you will note the 

change in knocking when the values of TPS changes, with fixed temperature (Temp.) in 

the value of 89.5, and engine Revolution Per Minute (RPM) equals 5000, the value of the 

knocking will be equal 80. After increasing the (Temp) to 91.5, it is observed that the 

knocking is also increased, but when the (Temp) is continues rising, knock starts to 

decrease. Results from the application of the new model reflect low level knocking with 

increasing temperature (Temp) at the same points in Throttle (TPS), the Revolution Per 

Minute (RPM). This reflects the effectiveness of the new model with non-linear 

behaviour of the factors which affect the knock. 
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Figure 5.20. Effects TPS with different (Temp.) on knocking 

 

 
 

By calculate the mean of knocking, we can get results more clearly as a Table 5.19. 

 

Table 5.19 

TPS effect on knocking behavior 

CASES Minkn Maxkn Meankn 

RPM=5000,TEMP=89.5 -59.0748 80.6768 19.6465 

RPM=5000,TEMP=91.5 -57.3554 82.3962 21.3659 

RPM=5000,TEMP=95.5 -63.7278 76.0238 14.9935 
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5.4.5 RPM Effect on Knocking 

The results showed after the fixed each of (TPS) and (TEMP) the effect of (RPM) on the 

knocking with the change of TEMP in multiple cases, as in the following Figure 5.21: 

 
Figure 5.21. Effects RPM with different (Temp.) on knocking 
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Table 5.20 

RPM effect on knocking behavior 

CASES Minkn Maxkn Meankn 

TPS=80.023,TEMP=89.5 -6.8349 2.5251 -3.5756 

TPS=80.023,TEMP=91.5 -5.1155 4.2445 -1.8563 

TPS=80.023,TEMP=95.5 -11.48 -2.1279 -8.2287 

 

For example, note in Figure 5.21 and the Table 5.20 decrease knocking, when the TEMP 

tend to change toward to height (TEMP=95.5, TPS=80.023 and RPM=1000 ), with 

consideration TEMP and TPS in the fixed in each case, which shows the effectiveness of  

partial its effect in the decreasing of knock and the work of the proposed model. 

5.4.6 TEMP Effect on Knocking 

Through the results get them shows us the active role of temperature (TEMP) in 

influencing the knocking. In Figure 5.22 and table 5.21, note with TEMP change and 

fixed (RPM) and (TPS=0.80.023) in each stage of the change in engine speed (RPM) 

decrease the level of knocking.  This indicates that the partial effect of temperature as 

well as the effectiveness of the model in general, in reducing the level of knocking. 

Table 5.21 

 TEMP effect on knocking behavior 

CASES Minkn Maxkn Meankn 

TPS=80.023,RPM=1000.5 -12.1383 -5.7543 -9.4449 

TPS=80.023,RPM=2000.5 -9.7983 -3.4143 -7.1049 

TPS=80.023,RPM=3000.5 -7.4583 -1.0743 -4.7649 
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Figure 5.22. Effects TEMP with different (RPM) on knocking 

 

 
 

If AIC score difference between two models is in magnitude of 1-2, the difference is 

significant. 

Many executions have been applied and the results were as follows: 

Proton_Turbo_Charge 

 1-    0.22562      2-    0.23819         3-      0.23863            4-      0.24663            5-      0.24663 

 6-    0.24663      7-     0.24663        8-       0.24663            9-      0.24691           10-     0.24693 

11-     0.24691    12-      0.24691     13-      0.24691          14-     0.24691           15-      0.24691 

16-      0.24904    17-     0.24904     18-      0.24869          19-      0.24869          20-      0.24773 

21-      0.24815     22-      0.24815   23-      0.24815          24-      0.24815 
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Elapsed time is 0.030314 seconds. 

#generations=25   best Knock=0.24803 

Best solution 80.013197      1218.1296      89.904968 

Continuous genetic algorithm 

Optimal_Factors =       80.013       1218.1       89.905 

 

 

 

1      0.22272          2      0.22272          3      0.22272          4      0.23388            5      0.23388 

6       0.2468           7       0.2468           8       0.2483           9       0.2483             10       0.2483 

11     0.2483           12     0.2483           13     0.2483           14       0.2482           15       0.2482 

16     0.2482           17     0.2482           18      0.2481           19       0.2481 

 

 

Elapsed time is 0.033244 seconds. 

#generations=20  best Knock=0.24802 

Best solution 80.023205      1199.9138      90.134682 

Optimal_Factors =       80.023       1199.9       90.135 
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Elapsed time is 0.042071 seconds. 

#generations=53  best Knock=0.24799 

Best solution 80.021026       1205.459       91.36435 

Optimal_Factors =           80.021       1205.5       91.364 

 

 

 

Elapsed time is 0.053894 seconds. 

#generations=60  best Knock=0.24721 

Best solution      80.012358      1215.3987      91.381835 

Optimal_Factors =       80.012       1215.4       91.382 
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Elapsed time is 0.041634 seconds. 

#generations=60 best Knock=0.24836 

Best solution 80.344836      1195.6706      90.504088 

Optimal_Factors =       80.345       1195.7       90.504 

 

 

EGMA_4FACTORS.xlxs file-   Dodeg-charger 

1.    0.0921    2.   0.0921    3.   0.1979    4.   0.1979    5.    0.1979    6.    0.1979    7.     0.1979     

8.    0.2533    9.   0.2533   10.   0.2533   11.  0.2619   12.   0.2619   13.   0.2619   14.    0.2619 

15.   0.2638   16.   0.2638  17.   0.2638   18.  0.2638   19.  0.2638   20.   0.2638   21.     0.2656 

 22.  0.2656   23.   0.2656   24.   0.2656 
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Elapsed time is 0.036748 seconds. 

#generations=25  best Knock=0.26496 

Best solution       7.8567836      1482.4319      53.378833 

Optimal_Factors =       7.8568       1482.4       53.379 

 

Elapsed time is 0.050063 seconds. 

#generations=49  best Knock=0.26494 

Best solution 7.5149151      2199.7697      60.492805 

Optimal_Factors =       7.5149       2199.8       60.493 

 

Elapsed time is 0.035558 seconds. 

#generations=33  best Knock=0.26507 

Best solution 7.5658721       2012.996      58.466991 

Optimal_Factors =       7.5659         2013       58.467 
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Hyundai_Genesis 

1      0.16552          2      0.26125          3      0.26125          4      0.26125           5        0.26125 

6      0.26125          7      0.26125          8       0.26125          9       0.26125         10      0.26125 

11      0.26125        12      0.26125        13      0.26125        14      0.26125         15      0.26125 

16      0.26125        17      0.26125        18      0.26125         19      0.26685         20      0.26685 

21      0.26685         22     0.26685        23      0.26685          24      0.26685        25      0.26685 

26      0.26685         27      0.26685       28      0.26685          29      0.26685        30      0.26685 

31      0.26422         32      0.26459       33      0.26459          34      0.26459        35      0.26459 

36      0.26459         37      0.26459       38      0.26459          39      0.26462         40      0.26462 
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Elapsed time is 0.041626 seconds. 

#generations=41  best Knock=0.26504 

Best solution 7.646937      1776.0915      91.387088 

Optimal_Factors =      7.6469       1776.1       91.387 

 

 

EGMA_KIA_Motors_Sorento 

1     - 0.99678           2      0.27598           3      0.27598           4      0.27598         5      0.27598 

6       0.27598            7      0.27598           8      0.27598           9      0.27598        10      0.26716 

11     0.26716           12      0.26716          13      0.26716         14     0.26716       15      0.26716 

16     0.26716           17      0.26702          18       0.2665          19     0.2665         20       0.2665 

21     0.2652             22       0.2652            23       0.2652          24      0.2652        25       0.2652 

26     0.2648             27       0.2648            28       0.2648          29      0.2648        30      0.264  

31     0.2648             32      0.2648             33      0.2648           34     0.2648         35      0.2648 

36     0.2648             37      0.26481          38      0.26481          39     0.26481      40      0.26481 

41     0.26481           42      0.26481           43      0.26481 

Elapsed time is 0.046865 seconds. 

#generations=44  best Knock=0.26499 

Best solution 7.6713381      1717.5306      91.581631 

Optimal_Factors =       7.6713       1717.5       91.582 
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Elapsed time is 0.054338 seconds. 

#generations=60  best Knock=0.26514 

Best solution 7.5620406       2032.298      92.549749 

Optimal_Factors =        7.562       2032.3        92.55 

 

 

Elapsed time is 0.040090 seconds. 

#generations=45 best Knock=0.26494 

Best solution 7.4681168      2397.2582      89.914722 

Optimal_Factors =       7.4681       2397.3       89.915 
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Elapsed time is 0.036770 seconds. 

#generations=43  best Knock=0.26498 

Best solution 7.4643629        2416.17      91.173984 

Optimal_Factors =       7.4644       2416.2       91.174 
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5.5 Evaluation  

In (2010), researchers Ismail and Yusof, referring to one of the methods to resolve the 

multi objectives optimization problems using the weighted sum approach, where the 

weights are generated randomly. Murata and Ishibuchi  in (1995) and (1996) proposed an 

algorithm based on the weighted sum approach. This approached is called Random 

weight GA (RWGA). Their algorithm generates variable random weights vector at every 

GA iteration. By applying variable weighted-sum approached, various search directions 

are created in a single run without using additional parameters. This approach can 

produce a strong non-dominated solution that can be used as an initial solution for other 

techniques. However, this approach has difficulty in finding solutions which are 

uniformly distributed over nonconvex trade-off surface. The researcher claimed that he 

had obtained the better results from Schaffer algorithm VEGA in (1985). 

After applying the same data for each two algorithms (Proposed algorithm (NWAEF) & 

Random Weights GA (RWGA), the results appear as showing in table 5.22.  

Table   

5.22  Evaluation two algorithms (NWAEF & RWGA)   

Runs 
Proposed algorithm(NWAEF) Random Weights GA(RWGA) 

Best knock Elapsed time Best knock Elapsed time 

1 0.2480 0.030314  0.2610 0.102232 

2 0.2480 0.033244  0.2590 0.124155 

3 0.2479 0.042071  0.2629 0.172331 

4 0.2472 0.053894  0.2551 0.117408 

5 0.2483 0.041634  0.2611 0.103411 
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The findings, which appeared in the table above, shows that the value of the knock in the 

algorithm that generates random weights is the best of the proposed algorithm, relatively 

little variation in the results. But, on the other hand there is a relatively large variation in 

the time it takes to get to the best solution. Here we note that time is of great importance 

to reach the best solution. 

5.6 Evaluation and Total Error Results 

I've been compared to the behavior of the proposed model output with the output of the 

real model, see the following Figure 5.23, there has been showing relative error between 

the two models. The amount of error was calculated and the results were as follows: 

 
Figure 5.23. Total Error between Propose and Real Models 

 

Difference between the actual data and calculated data is computed: 
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Def= Actual data- calculated data 

Def= Ni-Hi 

DS= (Ni-Hi)2 

SSE= ∑ DS 

Hsize= sample size. 

Total_Error = SSE/ Hsize. 

 

Def = 0.0521    0.0721    0.0921    0.0912    0.0904    0.0949    0.0995    0.1130    0.1265    

0.1242    0.1219    0.0977    0.0736    0.0721    0.0706    0.0716    0.0725    0.0855    

0.0985      0.0974      0.0964      0.0275    -0.0413    -0.1101   -0.1788    -0.1771   -0.1755   

 -0.1759   -0.1763    -0.1716    -0.1669    -0.1662    -0.1655    -0.1652    -0.1649   -0.1418    

-0.1187   -0.0956   -0.0725   -0.0763   -0.0800   -0.0699   -0.0598   -0.0310  -0.0021    

0.0205    0.0432    0.0658    0.0885    0.1077    0.1268    0.1150    0.1031    0.0930    

0.0829       0.0728     0.0627      0.0693     0.0758     0.0837     0.0916     0.1078     0.1240 

Total_error =    0.0116 

In order to evaluate the simulated model, the model has been compared with more than a 

model in which researchers have dealt with the phenomenon of knocking, through the 

factors affecting this phenomenon and calculate the total error of the model has been 

verified the effectiveness of the model in different conditions for each of the temperature, 

the speed of rotation of the engine, the ratio of air / fuel (λ). 

The adoption of the temperature and pressure by researchers Douaud and Eyzat (1978), 

where it was fixed temperature coefficient in (X3=3800 K), while, the rest of the 

coefficients X1,X2 of the model are variable. 

The model has been improved by the researchers Elmqvist et al. (2003), where it was 

fixed  temperature coefficient and pressure coefficient X3,X2 respectively, while doing 

optimization for the third coefficient X1. Researchers adoption of the engine rotation 
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speed (RPM) and air /fuel ratio (lambda) in the work of the optimization of the 

coefficient X3. 

Results were presented by the following figure 5.24: 

 

Figure 5.24.  Comparison between model (Douaud & Eyzat) and (Elmqvist et al.) 

According to the results in Table (5.23), researcher Elmqvist et al. (2003) shows the total 

amount of error of the model is: 

Def= Actual data- calculated data 

Def= Ni-Hi 

DS= (Ni-Hi)2 

SSE= ∑ DS = 0.168 

Hsize = Sample size = 11 

Total_Error = SSE/ Hsize. 

Total _Error = 0.168/11  

 Total_Error = 0.01527  
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Table 5.23 

Difference average for (Elmqvist et al.) Model 

Case [rpm] 2500 3000 3500 
Measured 
average 

14.7 13.05 8.6 

Simulated 
average 

14.5 12.85 8.9 

Difference 
Average 

0.16 0.2 -0.32 

 

Figure 5.23 shows, according to the results that were obtained and have been previously 

calculated the overall error of the simulated model. We can say very good agreement 

between actual data (real) and simulation model of knock behavior. 

In order to get on the case of the knock, the engine running in different situations, these 

cases can be found in Table 5.24 and Table 5.25. 

Table 5. 24 

Experimental cases(Elmqvist et al.) 
 
Engine speed 2500, 3000, 3500 rpm 
λ @ 2500 rpm 0.92 
λ @ 3000 rpm 0.86, 0.99, 1.1 
λ @ 3500 rpm 0.84 
Fuel 95 RON 
Coolant temperature 90°C 
Table 5. 25 

Experimental cases (Simulate Model) 
Engine speed 1000, 2500, 3000, 3500 ,4000,4500, 5000 rpm 
Tps @ 1000 rpm 80.012 – 80.032 
Tps @ 2500 rpm 80.012 – 80.032 
Tps @ 3000 rpm 80.012 – 80.032 
Tps @ 3500 rpm 80.012 – 80.032 
Tps @ 4000 rpm 80.012 – 80.032 
Tps @ 4500 rpm 80.012 – 80.032 
Tps @ 5000 rpm 80.012 – 80.032 
Fuel 95 RON 
Coolant temperature 89.5, 90, 90.6 °C 
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Comparison between model Elmqvist et al. (2003) and simulation model illustrated in 

Table (5.26), where we note there is a difference in the amount of overall error for 

simulation model which shows the effectiveness of the model and the proximity of the 

real behavior of the knock. 

Table 5.26 

Error Comparison between model (Elmqvist et al.) and simulation model 

 SSE Hsize(Sample 

Size) 

Total Error =SSE/Hsize 

Elmqvist, 

C. Model 

0.168 11 0.01527 

Simulated 

Model  

0.7337 28 0.0116 

             0.00367 

5.7 Locality of the problem 

According to Rothlauf (2011)  the locality of a problem describes how well the distances 

d(x,y) between any two solutions x,y ∈ X correspond to the difference of the objective 

values   | f (x)− f (y)| .  The locality of a problem is high if neighboring solutions have 

similar objective values, on the other hand, the locality of a problem is low if low 

distances do not correspond to low differences of the objective values. 

Through the results shown in the tables 5.27,5.28,5.29,5.30 below, note that the 

difference (distance) between neighboring solutions is relatively slight. This reflects the 

robustness of the model. 
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Table 5.27 

 Locality of a problem Proton_Turbo_Charge 

NO. Best 
Knock 

Gen. Best solution Elapsed 
time 

TPS RPM TEMP. 
1 0.2480 25  80.013  1218.1  89.905  0.030314  

2 0.2480 20  80.023  1199.9  90.135  0.033244  

3 0.2479 53  80.021  1205.5  91.364  0.042071  

4 0.2472 60  80.012  1215.4  91.382  0.053894  

5 0.2483 60  80.345  1195.7  90.504  0.041634  

 

Table 5.28 

Locality of a problem EGMA-Dodeg-charger 

NO. Best 
Knock 

Generation Best solution Elapsed 
time 

TPS RPM TEMP. 

1 0.26496  25  7.856 1482.4  53.379  0.03674 

2 0.26494  49  7.514 2199.8  60.493  0.05006  

3 0.26507   33  7.565 2013  58.467  0.03555 

4 0.26506 54  7.866  1482.7  52.111  0.05949 

5 0.26505 35 7.753  1572.9  67.678  0.03972 
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Table 5.29 

Locality of a problem  EGMA-Hyundai_Genesis 

NO. Best Knock Gen. Best solution Elapsed time 

TPS RPM TEMP. 

1 0.2650  41  7.646 1776.1  91.387  0.0416 

2 0.2649 49 7.473 2374.8 91.333 0.0410 

3 0.2650 53 7.498 2275.6 95.781 0.0455 

4 0.2650 59 7.580 1967.1 91.279 0.0421 

5 0.2637 60 7.451  2463 89.936 0.0482 

Table 5.30 

Locality of a problem EGMA-KIA_Motors_Sorento 

NO. Best Knock Generation Best solution Elapsed time 

TPS RPM TEMP. 

1 0.26499  44  7.6713  1717.5  91.582  0.046865  

2 0.26514  60  7.562  2032.3  92.55  0.054338  

3 0.26494  45  7.4681  2397.3  89.915  0.040090  

4 0.26498  43  7.4644  2416.2  91.174  0.036770  

5 0.26495 56 7.4703 2390.4 91.674  0.052843 

 



172 
 

5.8 Accuracy Results of Optimization  

Table 5.31 

Result of optimization Accuracy for 10 runs Dodeg engine. 
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Table 5.32 

Result of  Optimization Accuracy for 10 runs Hyundai engine 
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Table 5.33 

Result of  optimization Accuracy for 10 runs KIA engine 
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Table 5.34 

Result of  optimization Accuracy for 10 runs proton engine 
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5.9 Summary and Discussion 

This chapter provides the results that were obtained according to the stages that were an 

explanation in the previous chapter (Chapter four).This include reasons analysis for 

choosing the three factors (Tps, Rpm,Temp), was dealt the reasons for selecting the one 

of three models. After that, in second part, analysis (objectives) in order to build the 

evaluation function (EF), in addition to show of the results that have been obtained to 

validate the model chosen. While, Part III, shows the results of the work of the proposed 

model for the evaluation function in the optimization problem between conflicting 

objectives, and obtain a form, for simulations knocking problem in internal combustion 

engines. 

Once the correct model has been specified, relative importance weights allow for the 

interpretation of the model and the comparison of predictor variables. In the past, 

researchers have tended to focus on the rank order of predictors identified by the various 

importance analyses. However, this approach can be misleading, and we urge caution 

when examining the rank ordering of predictors. Another myth surrounding the 

application of relative importance analysis is that these weights solve the problem of 

multicolinearity among predictors. Although it is true that both dominance analysis and 

relative weight analysis were developed for use with correlated predictors and do in fact 

partition variance among correlated predictor variables, high levels of correlation among 

the predictor variables cannot be ignored. For example, if two or more predictor variables 

are very highly correlated because they are essentially tapping into the same underlying 

construct, the resulting importance weights can be misleading. One mistakenly held 

belief is that importance weights should be used to select predictors for a model. In 
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actuality, both dominance analysis and relative weight analysis presuppose that the 

correct model has already been identified. For those interested in identifying the correct 

model, we recommend other procedures that may be more appropriate (e.g., procedures 

that help identify models with maximal R2). If data are analyzed using ANOVA, and a 

significant F value obtained, a more detailed analysis of the differences between the 

treatment means will be required. 
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CHAPTER SIX  

CONCLUSION AND PERSPECTIVES 

6.1 Introduction 

In this chapter, Section 6.2 presents the general discussion of optimization algorithms and 

multi-objective optimization problems. In Section 6.3, the role of genetic algorithm (GA) 

in MOOPs is described. In section 6.4 involved the discussion of knock detection 

methods. Section 6.5 deals with achievement of research. The contributions of the 

research are clarified in Section 6.6. Limitations that are involved with this research are 

identified in Section 6.7. In Section 6.8, future works that are associated with this 

research are presented. 

In general, the research addressed the limitation of the conflict among multiple 

objectives. Reducing the problem of determining the weights for each objective of the 

problem is also discussed. Many real-world problems of multiple objectives exist, which 

are difficult to deal with, moreover, it’s not easy the relative importance of each objective 

is determined.  

The main aim of the research is to reduce the complexity of evaluation function with 

conflicting objectives and to increase the speed of decision-making by reducing the 

calculations and by avoid determining the weights for each objective. High flexibility is 

also provided to add other objectives related to the solution of the problem.  
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6.2 General Discussion 

Because many contemporary problems are multi- objective, multi-objective optimization 

is of increasing importance for engineers and research science. Metaheuristic techniques 

are becoming a more popular approach at tackling such problems, most notably 

evolutionary algorithms.  

After implementing the proposed algorithm for multi-objective optimization test 

functions, we conclude that the approach showed a good performance in converging with 

the true optimal solution. However, parameter setting in problems with higher number of 

variables is crucial. 

Quantitative decisions in engineering, economics and science can be modelled using 

optimization tools and techniques. Ultimately, the decision maker tries to make the 

‘absolute best’ decision possible that corresponds to the minimum (or maximum) suitable 

objective function, whilst satisfying a determined collection of feasibility constraints. An 

objective function will express an overall (modelled) system performance, examples 

including profit, utility, loss, risk or error. The present constraints may arise from 

technical, economic, physical or other considerations.  

There may be overlap present amongst the optimization algorithms mentioned earlier. 

Also, it is possible to combine the search strategies, leading to a non-trivial issue in 

design search algorithms. Overall, robust optimization must find a trade-off between the 

quality of the solution and its robustness in terms of decision variable disturbance. It may 

be seen that the issue forms a multi-objective optimization problem. Not like 



180 
 

optimization under uncertainty, the objective function in robust optimization may be 

deterministic. 

6.3   Ability of GA to Solve MOOPs 

GA is suitable for this class of problem and therefore considered a popular metaheuristic 

approach. Several methods allow traditional GAs to be customized to accommodate 

multi-objective problems, such as special fitness functions, methods to promote solution 

diversity, among others (Konak et al., 2006). GA is also suitable for solving multi-

objective optimization problems because it is a population-based approach. The 

modification of a generic single-objective GA can lead to the determination of a set of 

multiple non-dominated solutions within a single run. GA is able to simultaneously 

search different regions of a solution area, which means finding diverse sets of solutions 

more possible for difficult problems with non-convex, discontinuous and multi-modal 

solution space. GA’s cross over operator is able to exploit structures of good solutions 

with regards to different objectives in order to create a new non-dominated solution 

within unexplored areas of the Pareto front. Because of this, GA has become one of the 

most popular heuristic approaches to multi-objective design and optimization problems 

(Konak et al., 2006) 

In (2002) state Jones et al. that 90% of approaches to multi-objective optimization aim to 

approximate the true Pareto front for the underlying problem. The majority of approaches 

utilize a metaheuristic technique, and 70% of all metaheuristic approaches were based on 

evolutionary approaches. Figure 6.1 shows that 70% of articles used GAs, which is a 
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primary metaheuristic approach, 24% used simulated annealing, and 6% used Tabu 

search. 

.  

Figure 6.1. Breakdown of articles by primary metaheuristic methods 

6.4   Knock Detection Methods Discussion 

From the information of the methods to detect knocking, it is important to note that the 

statistical methods use Band Pass Filters (BPF) that rely on one or more of the resonant 

frequencies of the signal compression engine. When the speed of the rotation of the 

engine is slow these methods can be effective where the signal to noise ratio (SNR) is 

high. However, the signal-to-noise ratio becomes less important and is ineffective in the 

case of high speed rotation of the engine. This is in addition to the change in the 

resonance frequencies as a result of changing the engine compression ratio, and also 

changing the components of the fuel mixture (air/fuel), as well as the combustion of the 

mixture ratio and other reasons, such as the adoption of frequency representation or 

representation using time only. 
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Therefore, all of these restrictions cause these methods to have difficulty in providing 

exact measurements for knock density detection. In order to improve the efficiency of the 

detection accuracy, these difficulties and limitations have to be overcome through the use 

of analysis based on the representation of time - frequency, such as the Wigner 

distribution. However, this method may not be effective when the pressure signal 

(knocking) has two or more resonance frequencies in which case the Wigner distribution 

will suffer from a Cross-Term. There are many ways to get rid of the cross term by using 

a method called the Gabor-Wigner transform or Cohen’s class distribution, but the large 

amount of computation required in these methods make them ineffective. In order to 

overcome this obstacle and improve the efficiency of detection accuracy it is possible to 

use fuzzy logic technology which features easy application, and requires only a short 

computation time. Moreover, it provides relevant information when a severe knock takes 

place, and in a comparison between fuzzy logic and conventional systems for knock 

detection, the fuzzy logic allows the determination of the non-linear correlation between 

inputs (knock factors) and outputs (knock intensity). Wavelet transform (WT) 

discrimination can be used in conjunction with fuzzy logic as fuzzy logic by itself has 

several limitations which could preclude its use in some cases, especially where the 

performance of fuzzy logic sometimes makes it difficult to analyze nonlinear effects. 

Fuzzy logic relies heavily on the experience of real life, which is a critical factor in the 

success of such control devices where a lack of experience could hinder the process. 

6.5 Research achievement 

The proposed main objective was achieved by construct a new Non-Weighted Aggregate 

Evaluation Function (NWAEF) for one of the Non-linear multi-objectives problems, 
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which will simulate the knock behavior, in order to optimize non-linear decision factors 

(non-linear independent variables). All study objectives have been successfully achieved, 

which are summarized as follows. 

 Objective 1: Select the factors (partial decision variables) that have strongest 

effect into decision-making problem, Construct and test three Non-linear 

regression models that having most influence on knocking by using ANOVA and 

some statistical tests. These models and analysis results in table 6.1  are : 

KNOCK  =  988.455 - 12.3323 TPS - 0.0164546 TEMP + 0.00745664 IGN +  

                     0.000100153 RPM 

KNOCK  =  1001.73 - 12.4751 TPS - 0.0375599 TEMP + 0.000139913 RPM 

KNOCK  =  929.707 - 11.6524 TPS + 0.0333036 TEMP + 0.0235528 IGN 

Table 6.1 

Summary analysis result for three Models 
  

Model Adj. R2 Std. error  of the 
estimation 

F-Test Sig. P-value Durbin 
Watson 

Model 1 0.884 0.0767 52.403 0.000 0.351 
Model 2 0.877 0.0790 64.967 0.000 0.585 
Model 3 0.820 0.0954 42.101 0.000 0.619 

 

 Objective 2:  Identify three optimal mathematical models that having most 

influence on knocking for system identification modeling by using curve fitting 

technique. These models are : 

Knock = a + b*cos(c*TPS + d)                              (Sinusoidal) 

knock= p + q*Rpm+ s*Rpm2                             (Polynomial second order) 

knock= m + n *cos(o*Temp + e)                            (sinusoidal) 
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 Objective 3: Individual objectives are successfully developed with aggregate 

partial derivatives method for each objective to prevent conflicting and mutual 

effect. The outcome for this process is: 

 

Knock = -1*(0.24304*20.873* sin((29.873*tps-1405.39002) *pi/180)-1.08452 *  

             0.000117 * rpm-0.000009226 * 38.29344 * sin((13.29344 * temp + 35.15755) *  

              pi/180)+5). 

 Objective 4: In Optimize the single nonlinear multi-objective evaluation function 

and evaluate the non-weighted aggregate single nonlinear multi-objective 

evaluation function using genetic algorithm (GA) as a tool in terms of accuracy. 

The results are shown in Chapter 5 and appendix. 

6.6 Contribution of the Research 

The algorithm that overcomes the problem of determining the relative importance of 

mutual influence between multiple objectives and the main objective has been proposed 

by bypassing the problem of determining the weights for each objective problem. In 

internal combustion engine, the trade-off between performance and the risk of 

irreversible damages remains to be the key factor in the design of both low-consumption 

and high-performance engines (racing) (Cavina, Corti, Minelli, Moro, & Solieri, 2006). 

Engine combustion control assumes a crucial role in reducing engine tailpipe emissions 

as well as maximizing performance. The amount of actuations influencing the 

combustion is on the rise, and as a consequence, control parameter calibrations 

(optimization) becomes challenging (Corti & Forte, 2011). In this research, several 

contributions may participate in dealing with a mathematical model (evaluation function), 
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namely, multivariate nonlinear model. This model simulates a knock problem in internal 

combustion engines by accelerating the decision taken by electronic control unit (ECU), 

which provides the appropriate values (ideal) for decision-making. Knock is one of the 

key factors that affect performance and durability of spark ignition engines. It can also 

damage engine pistons. The objective of knock control is to provide an adjustment to the 

spark target based on the presence or absence of knock. Engine knock signal detection 

and control in internal combustion engines continues to be an important feature in engine 

management systems. The trade-off between performance and a risk of irreversible 

damage will remain a key factor in the design of both high-performance (racing) and low-

consumption engines (Cavina et al., 2006). 

6.7 Limitations  

This research may have several limitations, such as difficulty of obtaining various 

devices to read data at the same time, because of their incompatibility with ECU and the 

diversity of the origin of the test engine data that were obtained. 

6.8   Recommendations for Future work 

Many primary and secondary factors influence knock process. No standard model exists 

for the representation of the knocking phenomenon. Thus, increasing the dimensions of 

the evaluation function (number of nonlinear factors) for building suitable and 

representation model for the process of knocking is possible through the foregoing view 

to build a multi-objective evaluation function MOEF that consists of three objectives. 
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The increase in evaluation function dimensions results in the possible reduction of 

evaluation function complexity through the construction and processing of the two 

factors in each of the objectives. Thus, computational time is reduced, and speed of 

decision-making submitted to other devices (actuators) is increased. 

The use of fuzzy logic in chromosomes may contribute in solving the standardization 

(normalization) of problems in multi-objective optimization problems. The normalization 

problem (i.e., making the scores of the objectives comparable; often called 

standardization or normalization) Herwijnen (2011) is among the major weaknesses of 

aggregate objective functions. Multi-objective decision analysis requires the scores of 

various objectives to be transformed into comparable units. When the scales of the 

objectives are the same, their scores can be compared or combined. 

6.9 Conclusion  

This work, a multi-disciplinary application in solving engineering problems was realized 

by adapting genetic algorithms to a constraint Non-weighted multi-objective optimization 

problem concerning an Engine Control Unit (ECU). After implementing the proposed 

algorithm for single objective optimization test functions, it was concluded that the 

approach showed a good performance in converging to the true optimal solution. 

However parameter setting in problems with higher number of variables is crucial. 

By means of a case study, various genetic operators were adopted, showing that GAs 

emerges as being an applicable and promising approach to such complex engineering 

optimization problems. Moreover, the effects of different GA settings were depicted, 

leading to significant influences in respect of performance and convergence of GAs. For 
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this purpose, knowledge from different fields was applied, including computer science, 

mathematical foundations of multi-objective optimization, automotive engineering, etc. 

In the course of the case study, an adaptable and configurable program was developed to 

automatically accomplish GAs with predefined settings to a sample wave engine model. 

The program was utilized to perform various experiments, trying different settings. The 

results were analyzed in detail and several possible solutions were selected to be tested 

and evaluated, in order to confirm the model quality compared to the real engine and thus 

reliability of the optimization result. It is believed that the hybrid method may improve 

the ability of algorithm in finding the global optimal solutions. There is an essential need 

of comprehensive studies related to convergence of optimization problems, comparison 

metrics and different ways of combining single and multi-objective methods in order to 

conclude in a more precise and scientific manner. 
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APPENDIX A  

PROTON_TURBO CHARGE ENGINE 

 

RUN Elapsed 
time Generations Best Knock Optimal Factors(Best solution) 

TPS RPM TEMP. 
1 0.030314 25 0.24803 80.013 1218.1 89.905 
2 0.033244 20 0.24802 80.023 1199.9 90.135 
3 0.042071 53 0.24799 80.021 1205.5 91.364 
4 0.053894 60 0.24721 80.012 1215.4 91.382 
5 0.041634 60 0.24836 80.345 1195.7 90.504 
6 0.050171 36 0.24793 80.137 1066.5 89.494 
7 0.026348 4 0.24792 80.013 1217.2 89.5 
8 0.044953 60 0.24741 80.02 1202.7 90.839 
9 0.036225 47 0.24793 80.148 1062.6 90.499 

10 0.034941 25 0.24803 80.013 1218.1 89.905 
11 0.032464 20 0.24802 80.023 1199.9 90.135 

 

 

(1)                                                                 (2) 

 

(2)                                                                 (4) 
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   (5)                                                                  (6) 

  

        (7)                                                             (8) 

 

        (9)                                                       (10) 
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(11) 

 

Appendix B  
KIA_Motors_Sorento 

RUN 
 

Elapsed 
time Generations Best Knock Optimal Factors(Best solution) 

TPS RPM TEMP. 
1 0.046865 44 0.26499 7.6713 1717.5 91.582 
2 0.054338 60 0.26514 7.562 2032.3 92.55 
3 0.040090 45 0.26494 7.4681 2397.3 89.915 
4 0.036770 43 0.26498 7.4644 2416.2 91.174 
5 0.061880 54 0.26499 7.4904 2302.2 90.591 
6 0.049794 57 0.265 7.4911 2296.3 87.882 
7 0.045329 60 0.26469 7.6645 1729.9 90.926 
8 0.044775 53 0.26498 7.6344 1814 95.045 
9 0.054044 46 0.26503 7.7019 1658 94.302 
10 0.063411 60 0.26464 7.6406 1784.4 87.068 

 

      

(1)                                                                 (2) 
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                                            (3)                                                                            (4) 

 

      

(5)                                                                 (6) 

      

(7)                                                                    (8) 
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(9)                                                                             (10) 

 

Appendix C  
 Hyundai_Genesis Engine 

RUN Elapsed 
time Generations Best Knock Optimal Factors(Best solution) 

TPS RPM TEMP. 
1 0.041626 41 0.26504 7.6469               1776.1 91.387 
2 0.032792 32 0.26498 7.6585               1753.9 95.858 
3 0.046630 40 0.26494 7.5212                2180.6 92.85 
4 0.043320 59 0.26507 7.4781               2355.7 90.784 
5 0.028497 25 0.26498 7.4744 2372.4 91.715 
6 0.041442 47 0.265 7.4675 2407 94.06 
7 0.028881 25 0.26499 7.5968               1918.1 92.593 
8 0.036631 35 0.26507 7.6751               1704.8 87.575 
9 0.038024 27 0.26504 7.7449               1576.5 88.572 
10 0.033767 31 0.26496 7.5119 2214.4 90.818 

 

     

                              (1)                                                                 (2) 
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(3)                                                          (4) 

 

    

                       (5)                                                                  (6) 

 

    

                                          (7)                                                                  (8) 

 



204 
 

 

    

                                          (9)                                                                  (10) 

 

Appendix D  
Dodeg Engine 

 

RUN Elapsed 
time Generations Best Knock Optimal Factors(Best solution) 

TPS RPM TEMP. 
1 0.036748 25 0.26496 7.8568               1482.4 53.379 
2 0.050063 49 0.26494 7.5149               2199.8 60.493 
3 0.035558 33 0.26507 7.5659                2012.9 58.467 
4 0.049124 34 0.265 7.7616 1559.9       66.594 
5 0.078471 60 0.26447 7.6748 1701.7 58.603 
6 0.050132 49 0.26499 7.8438                 1483.9 57.734 
7 0.051138 27 0.26504 8.2077                 2059.7 59.7 
8 0.048178 19 0.26503 7.8392               1487.5 55.217 
9 0.032778 19 0.26496 7.8403               1485.8 60.848 
10 0.061364 60 0.26509 8.1502                   1875.4 55 
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(1)                                                                   (2) 

  

(3)                                                                (4) 
 

    
 

(5)                                                              (6) 
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(7)                                                                (8) 

    

                                        (9)                                                                   (10) 
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APPENDIX E 
DATA SETS 

PROTON TURBO CHARGE 

TPS RPM TEMP. KNOCK 

80.02320454129288 
80.02182594762671 
80.02204010507785 
80.02101265030628 
80.02027229444965 
80.0210819446969 
80.00625294512477 
80.00976142952834 
80.01184026124425 
80.01235449856314 
80.0123581456365 
80.03112963132469 
80.03151629223605 
80.03051649428397 
80.02979766144979 
80.02973927908766 
80.03167684373201 
80.02031782539426 
80.02346713056056 
80.01904800901737 
80.02087610673237 
80.01998942460719 
80.0198909043711 
80.01836487517335 
80.02004982298519 
80.02011348712678 
80.02067347250018 
80.02113152956694 

1000.5 
1000.4 
1000.3 
1000.5 
1000.4 
1000.4 
1000.5 
1000.5 
1000.5 
1000.4 
1000.4 
1999.9 
1999.8 
2000.0 
1999.8 
1999.9 
2000.0 
2999.8 
2999.9 
2999.9 
3000.0 
4001.0 
4001.0 
4001.0 
4999.6 
4999.5 
4999.5 
4999.5 

90.1 
89.9 
90.1 
90.3 
89.3 
90.3 
90.6 
89.5 
90.1 
89.9 
89.8 
90.0 
90.3 
90.2 
90.2 
89.8 
90.1 
90.3 
90.1 
89.5 
90.3 
90.0 
89.8 
90.2 
90.4 
90.1 
89.9 
89.9 

0.27479553244339666 
0.3145224750739207 
0.3127932979287972 
0.32168359838959226 
0.34870855850050336 
0.34411675942900016 
0.292195760078057 

0.29028704089382235 
0.292558785175316 

0.31869671327074955 
0.31658149789903944 
0.17247724117107777 
0.17586395919059505 
0.1748822187824208 
0.18403744283795875 
0.18555168647629877 
0.1864885211388481 
0.40320785554277044 
0.39643188507843946 
0.4157507327499335 
0.47375244178007603 
0.6912158245182007 
0.7295861886218123 
0.7053926579266526 
0.7921056044720308 
0.8052391800473924 
0.8212442393102849 
0.8536828129098429 
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DODEG 

TPS RPM TEMP. KNOCK 

2.6 
2.8 
2.9 
3.0 
3.1 
3.6 
2.5 
2.5 
3.0 
3.1 
3.2 
3.0 
3.1 
3.1 
3.2 
3.2 
3.1 
3.5 
3.5 
5.0 
6.4 
9.1 
10.0 
12.0 
2.6 
2.8 
2.9 
3.0 

740.0 
745.0 
750.0 
780.0 
790.0 
800.0 
850.0 
950.0 
960.0 
980.0 
990.0 
1000.0 
1050.0 
1100.0 
1200.0 
1300.0 
1350.0 
1400.0 
1470.0 
1900.0 
2000.0 
2200.0 
2400.0 
2600.0 
740.0 
745.0 
750.0 
780.0 

50.0 
50.0 
50.0 
50.0 
52.0 
53.0 
55.0 
55.0 
56.0 
57.0 
57.0 
59.0 
60.0 
60.0 
60.0 
60.0 
61.0 
61.0 
64.0 
66.0 
66.0 
67.0 
68.0 
68.0 
50.0 
50.0 
50.0 
50.0 

0.5 
0.6 
0.7 
0.8 
0.8 
0.9 
0.6 
0.6 
0.8 
0.7 
0.7 
0.7 
0.7 
0.7 
0.9 
0.9 
0.8 
1.4 
1.5 
1.6 
1.7 
1.9 
2.0 
2.1 
0.5 
0.6 
0.7 
0.8 
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HYUNDAI-GENESIS 

TPS RPM TEMP KNOCK 

0.4 
0.4 
0.4 
0.4 
0.4 
0.8 
0.8 
0.4 
0.4 
0.8 
0.8 
0.8 
1.2 
1.2 
0.8 
0.8 
1.6 
1.2 
1.2 
1.5 
1.2 
1.6 
1.6 
2.4 
2.4 
2.4 
3.5 
3.5 
5.5 
5.9 
7.8 
0.8 

541.0 
543.0 
546.0 
550.0 
552.0 
583.0 
588.0 
589.0 
595.0 
595.0 
629.0 
636.0 
699.0 
739.0 
742.0 
759.0 
856.0 
878.0 
893.0 
933.0 
950.0 
1027.0 
1043.0 
1321.0 
1329.0 
1341.0 
1646.0 
1688.0 
2316.0 
2514.0 
3156.0 
759.0 

87.0 
96.0 
90.0 
93.8 
88.5 
92.3 
93.3 
90.8 
91.5 
90.0 
90.8 
92.3 
91.5 
94.5 
91.5 
91.5 
90.8 
94.5 
93.0 
93.0 
91.5 
93.0 
93.0 
91.5 
95.3 
96.0 
93.8 
93.8 
92.3 
93.0 
92.3 
91.5 

-2.25 
-2.25 
-2.25 
-2.25 
-2.25 
-2.25 
-2.25 
-2.25 
-2.25 
-2.25 
-2.25 
-2.25 
-2.25 
-2.25 
-2.25 
-2.25 
-2.25 
-2.25 
-2.25 
-2.25 
-2.25 
-2.25 
-2.25 
-2.25 
-2.25 
-2.25 
-2.25 
-2.25 
-2.25 
-2.25 
-2.25 
-2.25 
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KIA MOTORS-SORENTO 

TPS RPM TEMP. KNOCK 

1.3 
1.38 
1.44 
1.74 
1.74 
1.74 
1.79 
1.9 
2.2 
2.5 
2.9 
3.5 
4.63 
4.6 
4.45 
4.35 
4.22 
4.22 
4.22 
4.28 
4.34 
4.5 
4.7 
5.0 
5.26 
5.87 
5.87 
6.4 
8.03 
8.13 

665.0 
670.0 
675.0 
689.0 
695.0 
705.0 
720.0 
736.0 
745.0 
850.0 
940.0 
1150.0 
1576.0 
1585.0 
1630.0 
1725.0 
1896.0 
1907.0 
1915.0 
1940.0 
1975.0 
1975.0 
2035.0 
2189.0 
2240.0 
2604.0 
2616.0 
2870.0 
3417.0 
3473.0 

92.0 
91.0 
90.8 
89.3 
89.7 
90.0 
90.0 
90.0 
90.0 
90.2 
90.4 
90.5 
90.8 
91.0 
92.0 
92.5 
93.0 
92.3 
91.5 
91.5 
92.0 
92.5 
92.0 
93.0 
94.0 
95.3 
94.5 
92.0 
90.0 
90.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
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