TR

Ry

Multiple Clioice Questions Test
Scoring and Item Analysis Tool

By: Mohamad Zamberi Saad
Universty of Nottingham

Submitted September 1995, in partid fulfiilment of the conditions
for the award of the degree of Msc in Information Technology

Supervisor: Mrs. Jean Hitchings

‘UNIT KOLEKS! KHAS

ABETRACT

This prgect has successfully developed a computer program that can be
ussd on IBM-compeible persond computes to do multiple-choice
guestions test scoring and item andlyds The program is menu driven, with
pull-down menus act as the man interface with the user. The program
reeds input data from an ASCII text file which filename is given by the
use. The user has to prepare the data file before usang this program. The
output given is the scores obtaned from the tex and the item andyds
reults which conggs of disximingion index, difficulty index ad
response count. The output digplayed on screen can dso be saved to a text
file. The usr can meke sevad options in gving commends for the

program to score and andyse the item. These indude scoring usng

guessing correction and digplaying response count in percentage.

2]

TABLE OF CONTENTS

CHAPTER 1 : INTRODUCTION

1.1 Introduction to This Project

1.2 The Needs to Do This Project
1.3 The Scope of This Project

CHAPTER 2 : INTRODUCTION TO THE PROGRAM

2.1 Introduction to The Program

2.1.1 Wha This Program Is

2. 1.2 Requirements

2.1.3 Potentid Users
2.2 Mativations for Making this Program

221 Tie Saving

2.2.1.1 Encouraging Continuous Student's Devdopment Diegnodics

2.2.2 Encouraging the Use of Computers in Schodls

CHARTER 3 : THEORY AND PRACTICE OF MCQ TEST

3.1 Introduction

3.2 Scoring
3.2.1 Number of Correct Answers
322 Guessng Correction

3.3 ltem Andyss

331 Difficulty Index

11

12

12

13

13

14

L3

()

3.3.2 Discrimination Index 15

3.3.3 Response Count 16
3.4 The Problems with Manud Scoring and Andyss 17
34.1 Scoring Problems 17
34.2 ltem Anaysis Problems 18
35 Alterndtives to Manua System 19

CHAPTER 4 : SYSTEM ANALYSIS AND DESIGN

4.1 Introduction 20
4.2 Project Objectives 20
4.3 Sysem Andyss 21
4.3.1 Data Flow Diagrams 21
43.1.1 Context diagram 21
4.3.1.2 Diagram O, or top-level DFD 22
4313 Level 2 DFDs 22
4.4 System Design ‘16
44.1 Designing Program Output 26
44.1.1 Output File 27
4.4.1.2 Screen Output 28
'4.4.2 Designing System Input 29
443 User Interface Design 30
44.3.1 Type of User nterface 30
4432 Didogues and Communications 31

4.4.3.3 Feedback 32

6.2.2 Main Menu
6.3 Pull-Down Menu Items
6.3.1 File Menu
6.3.2 Results Menu
6.3.3 Marking Menu
6.34 Anayss Menu
6.3.5 Other Menu
6.4 Typing In the File, Test or Class Name
6.5 Browsing the Results
6.6 Input Fle
6.7 Output File

6.8 Error Messages

CHAPTER 7 : CONCLUSIONS
7.1 Project Objectives Achievement

7.2 Further Enhancements

References

Appendix A: Different Vdid Forma of Input Data File
Appendix B: The Code of Pull-down Menu Definition File
Appendix C: The Code of Pull-down Menu Implementation File

Appendix D: The Code of Main Program MCQTEST.CPP

49

50

50

51

51

52

52

53

53

55

56

58

59

59

TABLE OF FIGURES

Figures

Chapter 4

Figure 4.1 - Context diagram of the proposed system
Figure 4.2 - Diagram O or top-levdl DFD

Figure 4.3 - Process 1

Figure 4.4 . Process 2

Figure 4.5 - Process 3

Figure 4.6 - Process 4

Figure 4.7 - Output file layout

Figure 4.8 - The screen layout, showing the output area

Figure 4.9 - The input file format

Chapter 5

Figure 5.1 « The arays that will store the input data

Figure 5.2 - The arrays that will store the results

Figure 5.3 - Extracting a student’s answers to do the scoring

Figure 5.4 - Copying and sorting the students answers 2-D array
Figure 55 - Extracting answers to cdculate the discrimination index
Figure 5.6 - Extractinganswers to cdculate the difficulty index
Figure 5.7 - The changing of displaying margins

Figure 5.8 « Arrays that store the menus

Page

21
22
23
23
24
25
27
28

30

34
35
36
37
38
39
43

46

>

Chapter 6

Figure 6.1 - Screen layout of the program

Figure 6.2 - Man menu choices

Figure 6.3 - File menu

Figure 6.4 - Results menu

Figure 6.5 « Scoring menu

Figure 6.6 - Andyds menu

Figure 6.7 - Other menu

Figure 6.8 - Prompt for typing in the input file name
Figure 6.9 - Sample reaults from the item andlyss.
Figure 6.10 - Input file format

Figure 6.11 - Choosng the output file contents

Figure 6.12 - Output file layout

49

49

50

51

51

52

52

53

54

55

56

56

CHAPTER 1

INTRODUCTION

1 .1 Introduction to This Project

This project is concerns with helping educators by providing an easy and chegp way of
scoring and andysing MCQ test questions. The method of providing the help is by
developing and completing a computer program that can be used as a tool to score and
analyse MCQ test items. The computer program to be developed must be easily accessble by
the educators, easy to use and chesp. Educators that will benefit most from this project are
expected to be the educators that are teaching in lower-level ingtitutions, like primary and
secondary school teachers. Higher-level educators in higher inditutions like universties may
be can access and use the program that has been developed specidly for their universty.

However, they can Hill use the program developed through this project if they like to.

1.2 The Needs to Do This Project

There are severd reasons why this project topic has been sdected. While some of them are
academic reasons, some of them come from my persond consderations. Education has been
sdected as the fidld of research because of my persona consideration. As an ex-teacher, |

realise the heavy burdens that teachers have. It is not unusuad they have to do so many works

in a very short time. Therefore, a topic that can benefit teachers and lighten their burdens is

more preferable.

Tedting field is chosen (and not Computer Asssted Learning or time-tabling, for example)

because assessment and testing appeared to be one of the most difficult divison in education.

Furthermore, while programs like CAL, nre growing very fast in number, there is not much
attention given by software developers to help teachers in speeding up test scoring and item
andysing, except in managing and processng adready obtained scores. So, programs like the

one to be developed in this project need to be produced more.

MCQ is chosen because its scoring procedure is more direct compared to other kinds of
questions. For example, the ‘fill mthe-blank’ type will need some expertise vdue in the
program that evduate the answers especidly in determining the score from a wrongly spelled
answer. Any research in such area will need much more time to be completed. So, MCQ is
chosen because of the time congraint that does not permit too advance research to be

completed.

There are savera programs that are able to do what is intended to be done in this project.
One of the programs that deds with computer automated marking is celidh system
(Computer Environment For Interactive Learning In Diverse Habitats), developed and
currently running @ the Universty of Nottingham. In addition to managing programming
skills assessment, celidh dso have a fadlity to do MCQ marking. This facility can dso be
used to give questions to students, and the students must answer the questions while usng a

computer that is connected to the network server that provide the cellidh service.

While programs like cellidh are dready exis, dill there are the needs to proceed with this
project. The currently exis programs are normdly inaccessble by the school teachers. To
use the programs, not only the teachers have to consult the university that built the program,

but aso they will need adequate sills to use computers in the same platforms where the

prograns have been built for. Furthermore, these programs are normdly difficult to be
transferred from one platform to another. For ingtance, if ceilidh were meant to worked on
UNIX-based machines, it will become dmost inaccessble to the teachers who only has got
traning to use DOS-based persond computers. So, a smdl program tha will be easly

accessible by the teachers and will serve the purpose of scoring and analysing MCQ test

items gtill needs to be devel oped.

The main purpose of this project is to provide the teachers a chegp and easy way to release
their heavy burdens of scoring and andysing tests answers. The teachers should not have to
spend so much money to buy new machines or devices. This can be achieved by providing
them with a computer program that can fit into a diskette and can be run using ther existing

personal computer a school or at their home.

1.3 The Scope of This Project

This project should be completed in two and a haf months. So, it is suitable for this project
to include only the firg live phases from the usud seven phases in a sysem life cycle. The
phases to be included are:

1. Identifying problems and objectives.

2. Finding the information required.

3. Doing the system andysis.

4. Dedgning the sysem.

5. Developing and documenting the software.

In this project, phases 1 and 2 are reported in chapters 2 and 3. Phase 3, the system andlysis,

is shown in chapter 4. The software development (coding) is explained in chepter 5 and

lastly, the software documentation is located in chepter 6. The two phases that are not
included in this project due to the time condraint are:

1. Teding and maintaining the software.

2. Implementing and evauating the software.

Teding, implementing and evduding the software will consume so much time thet
implementing it will mogt likely to make this project exceed the time limit. So, it has been

decided that this project will only do the firs five phases.

CHAPTER 2

INTRODUCTION TO THE PROGRAM

2.1 Introduction to The Program
2.1.1 What This Program Is

The program described in this report is entitled “Multiple Choice Question (MCQ) Test Scoring
and Item Anayss Tool”. Like suggested by its title, it can be used as a tool to accomplish the
task of scoring MCQ tests and andysing the functiondity and usability of each question in such

tests.

This program helps the users by reducing the time spent in scoring and anadlysing the test items
(in educationd tests, a question is aso known as an item). Instead of having to mark and analyse
the test manually using paper-based works, the users only have to ready an ASCII text file by

any text editor to be used as the input data to this program. The text file should contain dl the
answers of the test. The program will read the text file and then do the works of giving scores to

the students and andysing the test items.

While usng this program, the user can change severd options regarding the scoring and
andysing procedure. These include the way scoring is done and the way to report the results.
The resault of this program is the test score for each student, and the andyd's results concerning
each question in that test. The output is in two forms, which are on-screen form and in-file form.
The user can browse through the results displayed on the screen, and can then write the result to

a disk file for further processng purposes, such as editing it in a word-processor and printing it

*t

2.1.2 Requirements

This program is written and compiled usng Turbo Cit verson 1.01 for DOS. The user must
run this program from an IBM compatible persond computer (PC) with a leest 256kb RAM,
operaing on a leest DOS operating sysem verson 4. The PC usad mug dso use a colour

monitor, cagpeble of digplaying text in 16 colours mode.

2.1.3 Potential Users

Maog program deveoped have the patentid usarsin the mind of their devedlopers This MCQ test

tool program is intended to help people who ded with MCQ tedts, regardiess of the levd of the
tests So the potentid users of this program incdlude al educators and test organisers, Such as

teachers and lecturers A teecher in a primary school may be udng this program in more basic
Settings mode, where the scoring scheme does no correction to the raw marks Educators a
higher levd such as lecturers in universties can bendfit from more advanced fegtures of this

program, for instance using guessing correction scheme in scoring atest. A\ test organisor thet
deveops tedts periodicdly and used some questions repeatedly, for example admisson tedts, can
teke mogt advantege in the andysis part of this program. He/she can find out the functiondlity

and usability of an item before dediding whether to use theiitem or such itemsin future tests

2.2 Motivations for Making this Program

In every sydem deveoped, there mugt be some moativations tha simulated the idea of
deveoping the sysem and severd factors that encouraged its development. For this MCQ test
tool program, there are two mgor mativations that encouraged its development. The firg one is
the condderation of the time that can be saved by udng this program, induding the advantages
of usng computers to do recdculaion in much better ways. Secondly, we are hoping that the

t

provison of a chegper dternaive compared to much more expensve tools currently used by
specialised test organiser Will contribute to the extensive use of computers among educaors in

schools. It is on these concerns that this program has been buiilt.

2.2.1 Time Saving

Time saving is the fird and biggest motivation to the building of this program. As dready

acknowledged by most test adminigtrators, not only the task of making a good MCQ test itself is
very hard and time consuming, but aso the task of scoring, and then andysing the functiondity
and the usability of each quegtion in the test. The scoring process involves scanning dl the
candidate answers, each time comparing them with the actud answers and then giving the mark

to tha item. The number of comparisons involved is the product of the number of students and

the number of questions. For instance, if a test seated by m Students contains n questions, the

marker must do m x n comparisons to complete the scoring process. This is not including the

process of giving scores for the test as a whole to the students, which involves the counting of

right answers. The process will consume much more time if guessing correction is involved,

where the number of wrong answers also had to be counted and be put into a formula.to obtain

the corrected score.

The process of analysing each test item is more tedious compared to the process of scoring the
test. This involves scanning al the candidates answers sheets for each item. This tediousness can
be seen by taking response count as the smplest example. To count the number of responses for
each choices in an item-, the marker has to examine the answer sheet back and forth, one choice
a atime. For example, to count the number of choice "A", he/she has to go through al the

answer sheets to count the occurrence of "A* for that particular item. If the question has 5

<5

choices, i.e. "a" to" E", he/she has to go through the answer sheets 5 times for that item aone.

So there is considerably much time needed to complete the item anadys's process.

If a computer program can be used to do al these tasks in one ingtance, the time saved will be
sgnificantly important. The time saved can then be used by the educators to make better
decisons for next test preparaions. Although the educators have aways managed to come up
with the student scores, it is very discouraging for them to come up with the item andyss
results, due to the time taken to complete the process. If they do not do item anayss, they will
lose much ussful information about their own teaching methods and the item’s capability. These
kinds of information are very hdpful in making judgement about previous teaching methods
used before the test, and can be used to determine the reliability of each item. In concluson, a
program that can speed up the process of scoring and anadysing the test items can save educators
0 much time, which will give them more time to make better judgement on the test and their

teaching methods.

2.2.1 .1 Encouraging Continuous Student’s Development Diagnostics

The development of this program is aso based on the idea of providing a facility that is not only
fadt, but ds0 “clean” in scoring and andysing the test items, which in turn will encourage the
continuous monitoring of students progress, compared to paper-based systems. Here, the word
“clean” means that the report given is flexible enough to change with possible changes to the
answers given, without cluttering the report. For example, if a wrong actua answer is given and

then changed; this program will aso taking the new input as the usual input, re-scoring and
andysing the test. This will save much time, again. In current practice, a recaculation must be

done to dl the scores and item andyds that has involved with a wrongly given answer item. In

contradt, re-caculations using computers are just the matter of running the program again, and
the new output will be given a once. By providing a program that will give clean and accurate
reports about each test item, we will provide the educators a facility that can be used to diagnose
any flaw in the ingructions given while teaching the students before the test. For instance, if an
item is reported by this program to have a zero difficulty index (that is nobody answered it
right), may be the given actua answer is wrong, or the educators can suspect that some mgor
concept misunderstandings have been contracted by the students. If the answer given is wrong,
he/she only have to run the program agan. If there is evidence that misconceptions had
happened, he can correct that in the next meeting with hisher students. In other words, by
providing a program that will help the educators in anaysing the test items, we can help them in
giving better service to their students, by both preparing more reliable tests to evaduate them and
by correcting any misconceptions in their sudents mind. Both the educators and the students can

benefit from this kind of programs

2.2.2 Encouraging the Use of Computers in Schools

Another concern that arouses the idea of building this program is to provide a chegper

dternative for MCQ test processing, which in turn will encourage the more extensive use of
computers in schools: The uses of computers in primary and secondary schools are currently not
very impressve compared to sectors as indudtrid, business or in higher educationd inditutions.
This is due to the factors such as the high cog, the smal number of computer software thet is
appropriate for school administration purposes and the lack of knowledge and consciousness
towards the computer use among school adminigtrators and teachers (Ray, 1991). Though the
codt of buying a unit of computer is quite high for a school, many schools have a least one unit

of computer located in the adminigiration office to do at least clerica works. So the cost factor is

not a maor factor that prevents the educators in schools to use computers. If appropriate

software can be, developed and its functiondity can be showed to the adminigtrators, perhaps
their consciousness will be greeatly improved. One such software is the program that can hep

them mark the multiple choice question tests and giving help in interpreting the tests.

Currently, there are severa kinds of machines used in scanning the candidate answers, recording
them and then scoring and analysing the items used. These machines are usudly expensve
enough that only certain companies which are specialising in test processing are using them.

Usualy, an average school cannot afford to buy those machines. By giving schools the access to
this program, we are actudly giving them an dternaive to do MCQ processng in a cheaper

way, since this program can be run through atypicd PC.

In concluson, two moativations have encouraged the development of this program. The first one
is the consideration of the time that can be saved by using a computer program to replace paper-
based works. By giving results in a very short processing time, we are hoping that the educators
will not be discouraged to do item andysis anymore. The second one is the idea of providing a
cheaper MCQ test tool, which is hoped to contribute to more comprehensive use of computers in

schools.

10

CHAPTERS

THETHEORYANDPRACTI| CEOF
MCQ TESTS SCORING AND ITEM ANALYSIS

3.1 Introduction

MCQ tests have got more critics than any other forms of testing do (Wood,1991,p.32). However,
MCQ tests are il being widdly used. They are used in teacher-constructed tests in schools to
asess the students and ingruction. In higher level admission tests, MCQ tests are used to select
only the best-performing candidates. It is aso commonly used in medica education, where the

factua domain to be tested is usudly very big.

The main critic to MCQ teds is tha they failed to measure higher-level cognitive outcomes, as
done by essay questions. However, we should not expect MCQ tests to do what they are not
particularly designed for. As Wood (1991,p.32) suggested, MCQ can be judtified by insisting that
it is a technique that does a particular job and not more than that. The job MCQ is doing is
making students to read the questions and then think, not writing. We should not expect MCQ to
do more than that. As far as its job is concerned, MCQ is doing it very well. So, according to
Wood, it is not that MCQ cannot do its job, but the critics wanted MCQ to do the job that is

suitable to be accomplished by other methods.

The fact that MCQ tests are still being widely used suggests that it has severd advantages. One
advantage that MCQ tests have over essay tests is that MCQ tests can sample the content of
catan domain extensvely (Wiersma,1990,p.43). If a teacher wants to measure the outcome of
his’her ingructions in a very big area, he/she can do s0 by assgning an MCQ test containing

enough quegtions. He/she cannot do that with essay test because of the test time limit. Thisistrue

11

since in MCQ tests, to indicate the answer, a candidate is expected to just mark the answer on the

answver sheet. While answering essay questions, the students spend more time in organising

hisher essay and writing it down

Besides being able to extensvely sample a domain, MCQ tests dso take less time to be scored

compared to essay tests. Very smple and objective scoring methods are used, which will dso
ensure that there should be no bias in the scoring process, a phenomenon proven to happened in
essay tests scoring. This is one of the reasons why big assessment organisations that prepare the

admission test use MCQ tests to select competent candidates.

3.2 Scoring

There are severa scoring techniques used in MCQ tests. These include counting the raw number
of correct answers and applying guessng correction The most widely used is the counting of
correct answers, which is very popular in teacher-constructed tests at school level The next
popular method is gpplying guessing correction to the number of correct responses, which is
considerably common in very big admission tests and medica educetion tests. Other variations of
scoring methods include dud response and the use of differentid weightings of responses.

However, since these variations are not very common, they are not included in this research

3.2.1 Number of Correct Answers

The mogt extensve use of MCQ test scoring, due to its amplicity, is by counting number of
correct answers. No ateration is done to the score obtained. The advantage to this technique is
obvious, that it is very easy to use and understand. The disadvantage is it does not cope with

random guessing that might have been adopted by the candidates during the te<t.

12

3.2.2 Guessing Correction

As the name suggests, guessng correction is done to correct the supposedly lower scores
obtained by a candidate, which has become higher because blind guessng were practiced through
out the test. To undersand how to correct the score, one must understand how the guessng
process might improve the candidete's score. For an example, take an MCQ test which us 5
choicesin each question. If acandidate use blind guessing to answer aquestion, the probability of
he/she to hit the right answer is 1 out of 5, or 0.2. If he/she guesses on 20 quedions the
probability is thet he/she will get 20 /' 5 = 4 quedions right. Guessng correction amed to
diminate the points gained by blind guessing. The generd formula for caculating the actud score
is:

score = right - (wrong / (n = 1)) |
where n is the number of choices in a quedion. For example, teke a test that contains 100
questions of 5 choices If a sudent answered 70 questions and omitted 30, and get 54 right and
16 wrong answers, the corrected score will be:

sore = 54 - (16 / (5 =~ 1)) = 54 = 4 = 50 .

What is reflected is that from 54 right answers, the candidate might have been certain on only 50
of them, and guess blindly on 20 of them, which he/she hit 4 quegtions correct. By deducting the
possible paints by random guessng, guessing correction is trying to dimingte the extra points thet

came from blind guessng.

3.3 Item Analysis
Item andyds is dore to gan ussful information that will hdp in ‘meking deddons about the
Sudents, the teaching method and the item itsdf (Wiersma,1990,p.240-241). The error paitern

showed by a sudent on saverd rdated items can leed to decisons about that sudent. The error

13

pattetn showed on a group of collective items aimed to measure an objective can support
decisons about the pace of the ingruction. Performance paiterns on an item itsdf can show

whether that item is adequate or not.

The most common and traditiondly used andyss processes are the difficulty index and
discrimination index (Wiersma,1990,p.143). Lennox (1974,p.21), when discussng the andyss
required to make up atest paper, suggested that it should be no more than seven figures to be
presented. These are difficuity index, discrimination index and five response count results, one
count for each possble answer. Lennox is not in favour of usng too complicated mathematica
techniques, because it can bring the dangers of ignoring the item contents due to the extensive
favours for their caculated indices and the possibility to make the figures very hard to understand.

Due to these reasons, this research will only concentrate on those three analyses, that are difficulty

index, discrimination index and response count.

3.3.1 Difficulty Index

The difficulty index of an item shows the percentage of students who got the right answer for that
item. The formula to cdculate thisis very smple:

difficulty index =r [/t ,
wherer is the number of correct responses

and t is the total number of candidates.

This formula will give a reverse definition of the difficulty index, where the larger the index, the

easer the item That is Why some people call it the essiness index, like Lennox (1974) did. The

value range is from O to 1, with O means that no candidate answered it right and 1 means all

14

candidates got it right. So, a lower difficulty index means that mog of the candidates cannat

ansver theitem correctly.

The dmplest use of the difficulty index isin determining whether candidates could have grabbed a
conoent tested in a question and in certifying the suitahility of an item itsdf. If the difficulty index
on an item tha meant to test wha have been taught in dass is vary low, this means that the
students as average gill did not get the conoept. It is dso used to detect the fault of giving too
many duesin aquegion. For example, if adifficulty index for anitem is expected to be low, but it
turns out to be high, this may be because the item has given so much hints that mog candidates
gdting it right.

3.3.2 Discrimination Index

Theordticdly, the discrimination index is the quantity of item contribution to the final order of tbe
candidates, based on thar total mark (Lennox,1974,p.21). In other words, discrimination index is
the degree of effectiveness of an item in Solitting candidates with high scores on the totd tet from
those with low soores (Wiersma, 1990,p.145). The vaue range for the disorimingtion index is
between 1 and -1. When dl the candidates who get an item right sand higher in the order than &
those who get it wrong, the item is said to have discrimination index of 1. There, that particular
itemisgoodind iscriminating higher-scorers and lower-scorersin thet test asawhoale. In contragt,
if the vaue of discrimination index is -1, that item has totdly faled to discriminate between high
achievers and low achievers of the test. Such items are bad, and should be diminated from the
next tes. The vdue of 0 means tha the item is d <o fals to discriminate Sudents, but it is better

than a negative value. The formula used to caculate the discrimination index is

discrimination index = pH - pL

15

where pr = difficulty index for the higher group

and pL = difficulty index for the lower group.

The number of candidates in a group is 30% of the totd number. So, to cdculate the
disrimination index, one must fird marks the answers, soits the answer sheets according to
postion and then choose 30% of highest score candidates and 30% of lowest score candidates.

For each item, he'she mugt count the correct answers of each group to get the pH and pL.

The use of discrimingtion index is manly to meesure how good an item in separating good and
unsatifactory candidates. Often, this index is used in very high quaity admisson teds to meke
aure that the tests themselves are cgpable of filtering poor candidates from good candidates. For
indass purpose, discrimingtion index done is not a decidve factor in evduding the item
effectiveness Usudly, it is dways usad in conjunction with difficulty index and response counts to

Oetect any flaw in the test items or in the indruction given.

3.3.3 Response Count

Response count is done in avery direct way, that is counting the occurrence of each choicesin an
item The tota number of responses counted, added with the number of omissons, ought to be
the totd number of candidates The primary use of regponse count is in dudying the sudents
error patterns. As Gronlund (198 1,p. 187) dtated:

“The nature of the incorrect alternatives selected by pupils provides clues to factual errors and
misunderstandings that need correction.”

For example, if awrong choice is condantly being chosen by dl candidates in an item assured to

have no flaw, it isvery likely thet the Sudents have seized awrong notion.

16

Response count can also help in evauaing the effectiveness of distractors. For example, if
candidates are in favour of only two out of five choices, the other 3 dternatives are not very good
distractors, because the candidates know that those 3 are the impossble choices In that casg,

whet is supposad to be a5 dternatives question has turned out to be atrue-faseitem

3.4 The Problems with Manual Scoring and Analysis
The man problem with mog gaigtics works is the time consumed in processing the data This is
also true with MCQ tests sooring and item andyss where one must spend a lot of time in

counting the answersof the candidates.

3.4.1 Scoring Problems

Scoring MCQ tests is a process which is fully exposed to erors. As Gronlund(1981,p.292)
stated:

“Despite the simplicity of hand-scoring procedures, the task is fraught with possibilities for
error.”

In scoring a candidate' s answer shedt, one has to compare dl the candidates’ answers with actud

ansvers as many times as the totd number of quetions If the number of quegions is smdl
enough he/she can Smultaneoudy count the number of matching comparisons while comparing
them That will be difficult to accomplish if the test contains SO many questions. So, in abig ted,

while comparing answers, one must first marks the candidate answer sheat with one recognisable
mark on each right answer. After finishing the marking process he/she must then count the
number of correct answersto get the score for that candidate. If guessing correction isto be used,

one must dso count for the totd number of wrong answers. Then, usng both numbers the

17

corrected score can be cdculated. All these are redlly exposed to counting error and they are very

time consuming.

3.4.2 ltem Analysis Problems

The success of doing item andyss lay on the success of counting answvers Al three andyd's
results are bassd on the counting of answvas The man problem of human counting is the
expoaure to midakes. In item andyds, re-counting has to be done if there is a counting mistake.

An example where the counting has to be repeated is in the response count process. If the totd

number of answvers on eech dterndive, added to the number of omissons is different from the
tota number of candidates, then there must be a mistake, and the counting process has to be

repegted. Here, accurate figures have to be gained because not only it will defect the response
count result, but also the difficulty index thet will be cdculated. Difficulty index can be directly
affected by the response count result, Snce one can jud take the number of correct ansversin the

response count result to caculate the difficulty index.

While the difficulty index can bendfit from overdl response counts, the discrimination index
cannot. Discrimingtion index can only be done dter the scoring process is completed and the
ansver sheets have been sorted according to marks obtained. Only 54% of the answer sheats will
be usd, that are the top 30% and the lowest 30% of dl answer sheets Here, the counting
process is darted again to get the number of correct answers on each group to caculae the pH
and pL. Again, time-consuming and error-prone contribute to the problems associated with

finding an item andyss resut.

18

3.5 Alternatives to Manual System

This research is mativated by the idea of reducing the problemsin scoring and andysing the items

in MCQ tests. As has been previoudy discussed, time-consuming and error-prone are the mgor
problems with the processes An dterndive to doing hand-scoring is by using machine-scoring,
which require spedidly desgned answer sheats. However, as Gronlund(1981,p.246) implied, the
mechine-scoring should be used only if the number of papers to be scored is big enough o that
the expense is worthy. Besdes, the companies who offer machine-scoring fadility are not dways

eedly accessbleto dl schools. So, usng mechine-scoring is not a good dterndive for teechers

If the use of computersis the primary concern, we can suggest the use of a datidica package to
automate the manud sysem. However, daidicad packages is not a good choice because of two
masons. Frdly, if the intention is judt to do sooring and item andyss, ddidica packeges ae

usudly not worth buying because they are expensve. Secondly, datidical packages are desgned
to be used by more sarious datisidans, working on more advance numerica computations. The
users usudly need some training in gaistics and the understianding of the package before they can

redly bendfit from the packege So, generdly, ddidicd packages are quite difficult to be
mastered by average schod teechers and will increase the unsuitability of using them to do the

sooring and item analyss

One dterndive that is more suitable is a computer program that has the following characteridics
It must be chegp, Imple, not very big, can be operated in typicd PCs currently used in schools
and can be easly undersiood and madtered by those who have dready know the item andyds

methods. This research is intended to prepare that program

19

Chapter 4

System Analysis and Design

4.1 Introduction

In a sysem life cyde, there are a least 7 phases involved. The fird phase requires the system
developer to identify the problems occurred within the current practice, to find any chance to

improve the dtuation and to discover the objectives of the project. The second phase is to

determine the information regquirements In this phese, the andyds have to know what
information is needed by the potentid sysem users to paform ther jobs Thee 2 phases
have been discussed in chapters 1, 2 and 3. The next 2 phasss are sysem andyss and design,
which will be the subject of this chepter.

4.2 Project Objectives
As the reault of the firs and sscond phases of this project, which was discussed in previous

chapters, the suitable objective of this research is to develop a computer program that can be
used as atool by dl educaors to:

1. Quickly and accuratdy mark and score the sudent answers in multiple choice question
tests.

2. Quickly and accuratdy caculate the discrimingtion index, difficulty index and the response
counts of multiple choice question test items by which can then be usad by the usas in

vdidding the test itsdf.

20

It is hoped tha this program will then encourage the teechers to do item andyds in mogt
MCQ teds they devdop and can then be used in improving therr teeching methods and
future MCQ tests they will deveop.

4.3 System Analysis
The andyds phase is done to reved the sysem nesds To hdp the process of reguirements
determingtion, this project uses a technique cdled Data How Diagrams (DFD). It is from

these DFDs that further progress will be mede.

43.1 Data Flow Diagrams

DFDs ae the grgphicd representations of the data flows and daa trandformations between
processss in the sysem. This project will use DFDs in andysng the system o tha the neture
of daa flows in the sydem will be dealy ssen, me&king it esser to move to the

implementation phase

4,3.1.1 Context diagram

Students N MC_Q
Scoring
and Analysis (user)

System

Hgure 4.1 Context diagram of the proposed system

In this context diagram, there are 2 extarnd entities ‘sudents and ‘teecher’. * Students' will

ansver the test quedions providing the input to the sysem. The ‘teeche’ will provide the

21

actud answers to be usad by the sysem in scoring and analysing the test items. The output
of this sysdem will be sent back to the ‘teacher’, to endble himher interpreting the outcome

and the vdidity of the teg items.

4.3.1.2 Diagram 0, or Top-level DFD

A 1] Input 5] Report Formatied
Students fAewen| Aceert | Repert
Answers
Di] Scores
s .
. { 3| Scorin Scores
§:.:;:,.,,- Teacher
. Answers
B gy
antwen
[Scores

- “Report Formatted
s o 2] Input 6| Repo ol
e, %cc t Report
Answers i
mﬂ‘ et ‘J:;ar
Analyse

Studenis’ . 4
Answers [D2|Analysis Results

Figure 4.2 Diagram 0 or top-level DFD

The next DFD developed dfter context diagram is cdled ‘diagran O or ‘levd 1 DFD’. This
diagram shows dl the processes, the deta flow and the data Sore in the most generd form
dter context diagram. The detals of each process in this diagram will be discussed in the
next sections with the processss in this diagram beng expanded into more dealed

diagrams
4.3.1.3 Level 2 DFDs
Processes’ 1, 2, 3 and 4 on diagram O have been exploded to creste more detailed child

diagrams. These diagrams are cdled leve 2 processes.

22

Process 1

@ Answers

L1 Test 12| mpwm
Unchecked . Formatted
Take answers Check arswers v
Students :
Answer All Answers

Fgure 4.3 Process 1

Process 1 is concerned with teking the sudents answers and ensuring that the deta is in the
correct format. The ‘Sudents externd entity will provide the answers tha will be usad in
sooring and andysing the MCQ test items. Before proceading with those processes it is vitd

thet the deta do nat contain any faulty format. This will ensure that the section thet will score
and andyse the answvers will recave ‘dean’ answers It will prevent those parts from having
to ded with incorrect answer formats, which will wegte thar time in filtering the wrongly
formatted data Child process 1.1 will teke the answers from the externd entity ‘sudents
and provide the answers to process 1.2, which will in turn check the vdidity of the ansvers

The output from process 1 is the vdid, wdl-formatted answvers reedy to be used by other

jprocesses.
Process 2
a.1 2.2 inmt
‘ % Unchecked | l Formatted ,
| Actual LK, Check i
Answer All Answers

FHgure 44 Process 2

23

Process 2 is 0 much like process 1, in the sense that they both teke the unformatted
ansvers, checked the ansvers vdidity and then give dl vaid answers as output. They only
differ in the amount of data they have to ded with. While process 1 has to take and check the
answers of al sudents, process 2 only has to ded with a st of answves i.e the actud

answers given by the teecher. So, ther DFDs look so much dike

Process 3
Scoting
option
tted I3. Scorin 3.2 8 i
Fomatted | 1| ring 94 Scoring
ﬁ" te cof Nur:zbc‘(of; g:l"“hs“’ Scores \
— Nlau:ﬁ::% h ma chng tual Score
sl
JNEwWers

Figure 4.5 Process 3

Process 3 will do the scoring for the system. It takes 2 input, the formatted sudent answers
and the formatted actud answvers. Process 3.1 will compare the sudent’s answers with the
actud answes It will count the totd number of matches occurred in those comparisons,
éiving it as the output. Process 3.2 receives the output of process 3.1 as its own input,
together with the scoring option. Depending on the scoring option, it will do the guessing
correction process and cdculae the actud score obtained by a sudent. The output of this
process is the scores of dl sudents.

Process4

Formatted actual cinswers

Formaited cnswers

Scoresl
h 4

h h ' h .
4.1 Analysis 4.2l Analysis 4.3 Analysis
3 Count
Calculate ulate
Discrimination gﬁcuﬂy Respon'ses
Index Index on Choices
¢ Ancilysis results

Fgure 4.6 Process 4

Process 4 contains 3 sub-processes. Process 4.1 receives 3 input and from those data, it will
cdaulate the disimingion index of eech item in the ted. The output given is the
discrimingtion index of dl items in the tes. In amilar manner, process 4.2 only neads the
dudent answvers and the actud answers to produce the difficulty index. Process 4.3 will
count the number of responses thet choose eech dterndive in udent answers. To do that, it
only neads the sudent ansvers and will give the result of the counting process as its output.

o, the output of process 4 is the andlyd's results obtained from the 3 sub-processes.

Processes 5 and 6

Process 5 and process 6 are both primitive processes. They are the processes that do not

have any sub-process. Both processes have smple tasks reporting the input into more
formatted forms. The data to be reported by processes 5 and 6 are ‘scores and the ‘andysis
results, respectivey. The scores are then dored in the ‘scores data gore and the andyss

results are dored in ‘andyds results data dore. Externd entity ‘teacher’ is given the access

to thexe realts.

In system andysis, usud extensions to DFDs are the use of data dictionary and the making of
dructured decisons. However, this project will not usng data dictionary due to the small
nature of this project. It is not needed since all data have been reduced to its lowest form in
DFDs. Structured decisons process through structured English method is not discussed in
this chapter. Ingtead, pseudocode, which is very close to structured English will be used in
the implementation phase and will be shown in the next chapter. The next phase after system

andyds is sysem design.

4.4 System Design

Sysem design is the fourth phase in a sysem life cyde In this phase, the information
collected in earlier phases are used to design the system entity. The design process usually
involves the system output, input, database files, user interfaces and dataentry. For this
program, only program input, output, and user interfaces need to be designed. Database files
design is not needed since there will be no databases to be used and no relating files will be
created. Daaentry design is not needed because dataentry will be done through other

programs, before running this program.

4.4.1 Designing Program Output

This program will use 2 kinds of output; screen output and files output. The users of this
program will be given the choices whether or not to write the results that they are seeing on
the screen to an output file. If they want a hard copy of the results, they can write the results
into a file and print them later. The output given will contan useful information normaly
gained after a test has been marked and analysed. The output of the marking part will include

scores of each student, that is the number of correct answers and their percentage of right

Pl

answer from dl questions. The output of item andyds pat will indude the difficulty index,

discrimination index and the count of each choice in a question.

4.4.1.1 Output File

The output file will be in ASCII text format, to make it easier to be imported into any word
processor for printing purposes or into a spreadsheet for further calculation. For example,
after using this program, a teacher might be interested in interpreting the test scores. This
program will not be built for test scores interpreting, so it is important to make the scores
eadly accessible by other programs that will process and interpret the scores. To achieve
that, the output file will be in the form of easly accessble ASCII text forma. However, if
one wants to quickly print the output, he/she can directly send the ASCII file to any line

printer after quitting this program, without having to edit the file in a word processor fird.

PR LR R R R 2222232233232 2R3 x 22222 A2 X2 2R il s ia s i 2 sl
TEST | NFORVATI ON

Class : XXXXXXXXXXXKXXKKXX

Test D $.9.9.6.9.0.0.0.0.0.0.9.0.9.¢.0.0 ¢

Nurmber of students : 99

Nunber of questions: 99

PR R R PR R R R LR R R R E R RS SRR R R R RS AR AR R AR AR RS Rl R S RAREERR RS

TEST RESULTS

Names . Scores Per cent age
AXXXXXXXXXKXXXXXXXXXKXX 99 99.99
.9.0.6.6.4.0.6.:4.9.0.6.6.0.9.0.0.0,0,6.¢. QY] 99.99

R L A 2222 X2 SRR XSRS 2R S 2 2 AR Rt R R s XA Rttt LR 2

I TEM ANALYSIS RESULTS

Discr. Diff. Response count
@ index i ndex A B C D E Omi t
9 9.99 9.99 99 99 99 99 99 99
9 9 .99 9. 99 99 99 99 99 99 99
9 9. 99 it.99 99 99 99 99 99 99

Figure 4.7 Qutput file layout

27

N e

N S

Like illusraed in FHgure 4.7, the output file is divided into 3 section: tes informetion, test
soores and item andys's reaults The firg section will contain the test name, the name of the
class that has sedt the ted, the totd number of candidate and the totd number of quedtions in
the test. The second section will show the result of test scoring, i.e the tes scores. Ladtly,

the third section will show the item andyds results In both second and third section, the
adjacent columns will be separated by a TAB, meking it eeser to import these columns into

Soreadshest columns for further processng.

4.4.1.2 Screen Output

For screen output, this program will use a colour screen, which is adle to display 16 colours

text. While more advanced grgphics screen adgpter like VGA or Super VGA is commonly
avalable nowadays, it is important to make sure that this program will be essily accessible by
the educators that want to run it on a very basc PC. Furthermore, one of the target of this
project is to provide a chegp dterndive to machinescoring and item andyss So, this
program will use only the text mode in displaying the output, because it will not require the

more advanced monitors and more important, it is suffident to sarve the purpose of

displaying the outpu.

+——- Menu line
Scoring ltem analysis Output and
rezdis results Pop-up
windows
area
+— | — Program status

Figure 4.8 The screen layout, showing the output area

The screen is divided into 3 main sections, like depicted in Figure 4.8. The output will be
shown in the middle area, a the centre of the screen. The output area is divided into 2

sections, one to display the scores and one for displaying the item andyss results. Each
output area will be divided into columns of information. In both sections if any aea

provided can not afford any surplus output, the user will be provided with a way to scroll up

and down to see the excess output.

4.4.2 Designing System Input

After completing the DFDs, it can be cdearly seen that the inputs to this program are the
gudent answers and the teacher’'s answers, together with the teachers option in scoring the
answers. Like the output, this program will use two forms of input. The input data will be
taken from an ASCIl text file, and the user will interact with this program usng the
keyboard. The keyboard will be used to take severad program controls and options from the
user. The input data, i.e. the answers of the test will be in ASCII text file format. This is the
most smple file format that is supported by most word processors and can be prepared using

the typicd text editors such as Editor for DOS and Notepad for Windows.

The input data will not be typed directly by the user while usng this program. Instead, the
input data file must be ready before this program is entered. So, there is no need for
desgning a daa entry form. What is needed is designing the input file format, so that it is
easy to be prepared and can be eadily read by this program. The input file format is shown in

Figure 4.9.

29

Actual
XXXXXXXXXARXOAAAXNKN cua

answers
~XXXXXXXXXXXXXXXXXX 1 XXXX XA XXX XX XAXXAXAXXX ’—|
; 100009006 000000000BRED§6000000000000006006044
Candidate XXXXXXXXXXXXXXXXXX F XXXXXXXX X XAXXAAXX AKX Candidate
names XRXXXXAXAOAKXAXA * - XXXXXXXXX XXXAXXXXXXKXXL answers
’ XXXXXXXXXXXXXXXXXX & X000 00000000000
XOCXXXANXNAXANAAXXXL * XXXXXXXXKKKXXXXXXXXXKX XXX

Figure 4.9 The inputfile format

The firgt line of the file contains the teacher’s answers, which will act as the actud answers
to the test. The following lines after that contain candidate names and answers, with the
name and answers be separated by an asterisk, “*’. The agterisk will act as an indication to
the program that the next data is the candidate's answvers, not hisher name. To smplify the
task of typing in the input data file, the asterisk can appear exactly after the candidate' s name
and dl the name length need not be the same, even though for user’s own vighility, it will be
permitted (see Appendix A for input data variations). Hence, dl of the following will be a

vaid st of data:

John Smth * ABCCBBDEDDDAEBC
M chael Ritter * ABCCBBEEDDDAEBC
Ji my Bl ack * ABCCBBDEDEEXEBC

The name length will be redricted to only 20 characters. The totd number of questions
should not exceed 200 quedtions and in a test, this number should dl be the same as the

number of actud answe's.

4.4.3 User Interface Design
4.43.1 Type of User Interface
The user of this program will choose the actions he/she wants to do by choosing the actions

available from a st of pull-down menus. Pull-down menus were chosen to be implemented

30

in this program because thar uses are quite common in mogt programs currently avallable for
PC. Furthemore, this can encourage inexperienced users to use this program, because the
neture of choodng a sdection from a pull-down menu is less eror prone compared-to
numbered menu. In a pull-down menu, a user mus highlight a choice and can read the text
accompanying the highlighted choice before actudly choosng it, meking it less probeble for

the user to make a wrong choice.

4.43.2 Dialogues and Communications

Interactions between a user and this program will be done through the keyboard and the

sreen. The user will give dl commands usng the keyboard and this program will use the
sreen to response and give program output. While the use of mouse pointing device is
currently popular, the congderdion of time that have to be dlocated for implementing
mouse intefadng hes retract the iniid idea of usng the mouse For the means of
conggtency, the user will have to press ENTER eech time he/she wants to choose any choice
from the pull-down menu. The user will ds0 use the same keys when doing the streen
scralling for browsng soores or item andlyss results. This will soeed the progress of the user

in megering this program

In taking the input such as the input and output file names, the user will be presented with a
pop-up window prompting him/her for the filename The length of the input will be restricted
by the right edge of the window, ensuring that this program will get only right amount of
charatters from the user. This will dso hdp to prevent the user from providing invaid

filenames

31

4.4.3.3 Feedback

In ensuring that the user will get the idea of what is the result of the action that has been
taken, appropriate feedback will be given. Feedback will be given to:

1. Notify whether or not the input is in correct form.

2. Notify whether or not a request has been completed, and what should be done next.

3. Indicate that a sdection is currently not avalable, and giving its reason.

4. Warn that the most current request will erase the current results.

Feedback will be given through pop-up windows, located at the centre of the screen.

This program will dso have the current status indicator a the bottom of the screen, to tell
the user the current state of the program. It will dso show the keys that are available a those
specific times. This is important in ensuring thet the user aways know what he/she is doing

and what keys should be pressed. It will dso hep in indicating wha should be the next

reactions from the program.

In this system design phase, the program output, input and user interfaces were designed to

meet the requirements. After the sysem design phase, the implementation phase is entered,

where the coding of the design will be accomplished.

32

131

CHAPTER 5

THE IMPLEMENTATION
OF THE ANALYSIS AND DESIGN

5.1 Introduction

The implementation phase of a sysdem condruction involves the software codes deve opment
by the progranmeas The software development is based on the andyss and desgn reaults
In this program, pseudocodes are used as an intermediate dep for developing the codes The
code development is done in three separae pats the core program, the user interface and
the integration of those two. The fird and second parts were thoroughly tested to ensure
they can rdiadly do their own jobs indegpendently before integrating them. The program

coding and compilation was done usng Turbo C++ for DOS Verson 1.1.

5.2 The Core Program

The core program is the inner part of the software that does the caculating job and produce
the results, ready to be presented to the user by the user interface. This part is invisible to the
program user. The functions in this pat are activated only when they are requested by the
interfacing part. The 3 main program parts that act as the core parts are dta reading, scoring

and item andyss

5.2.1 Program Data Storage

The data that will be read from an input file will be tored in a 1 dimension (1-D) characters
aray and 2 two dimendons (2-D) character’s arays (Fgure 5.1). Actud answers will be
dored in the 1-D aray (Fgure 5.1.a), dating with quesion number 1 be dored in aray

demat 0. The maximum answvas tha it can dorg i.e the limt of the coumn, ae

33

determined by an integer condant, MAXQUESTN. The students answers will be gored in -a
2-D aray of characters(Figure 5.1.b), with the fird student’s answers be stored in the first
row of the aray, i.e a-dement 0,0. The Sudents names will be dored in another 2-D aray
of characters (FHgure 5.1.c). The maximum name length that it can dore is detemined by the
MAXCNAME ocondant. Both of these 2-D arays have the same limit of tota Students thet it
can dore i.e MAXSTUDENTS. When reading the input deta, this array will be filled up until

end of daa is encountered or urtil dl the rows have been filled.

\ Question number

12348 crommreee n=MAXQUESTN
0 0 0 5 O O R O I
@ 012 345 -oemmememnene N=MAXQUESTN - }
ctval answers arr cter
Question number Name characters
1234 8 conevsnnasanaa n=MAXQUESTN 1 12 3485 -oeeeemcnnccnns N ZMAXCNAME
2 2
3 3
student ' Studeniz
N n
= MAXSTUDENTS MAXSTUDENTS
OB Students’ ansyer 1 Studenis norines
agy - {chargeters) _array[characters)

Figure 5.1 The arrays that will Sore the input data

The resllts of cdculdions will be dored in 4 arays like shown in FHgure 52. The
disrimination index will be gored in a float aray (aray A), dating from dement O up to
the maximum element, MAXQUESTN - 1 The difficulty index will dso be stored in one
floa aray (aray B). Because aray A and B have a common length, the discrimination and
difficulty index arays could dso have been combined and dored in an aray of dructures
that has 2 dements However, this has not been implemented by considering the difficuities
tha will aise in sending them together to the user inteface functions that will report the

output to the user. The scores will be sored in an integer aray (aray C) and the response

count results will be dored in a 2-D aray of integers (aray D).

34

170 1 39
2 2 -
$H3 Ar 13 Ar
; 3 Array . ic = ray
Question : [} Question ; [}
i element , P element
number ¢ number number i number
nCIMAXQUESTN - 1 ' n CIMAXQUESTN - 1
Discrimination _index: Difficultry index
array (float) @ array (flloatl
sH Question number
§:§ A}2345 L
*113 Anay
gﬁ}rgggtr i element Alternatives
i [i number (choices] 9
n CIMAXSTUDENTS - 1 Omit :
(9 rrgy fin r O Response count array {integer] |

Figure 5.2 The arrays that will store the results

5.2.2 Data Reading

Data to this program will be read from a text file. To amplify the usa’s task in preparing the
file, it has been decided in the design phese that the teacher’s and the candidates answers are

to be located in the same file So, the reading part will teke the answers from one file only.
However, for programming flexibility, they will be done ssparady by differet functions
The teacher's answers are read into the 1-D aray shown ealier in Fgure 5.1. The sudents

ansvers are reed into the 2-D answers aray. In doing this, the data reading part must ensure
that the reading processes of both teacher’s and candidate's answers are successul. If it fails

to reed in ay answvas it will indicate it by reurning a falure flag.

The pseudocode of teacher's answers reading:

OPEN input file

IF fail to open the input file
RETURN failure flag

ELSE
REA Dteacher’ sanswers
CLOSE input file
RETURN success flag

35

)

The pseudocode of students answers reading;

OPEN input file
IF fail to open the input file
RETURN failure flag
ELSE
READ teacher's answers
number-of-questions = count from teacher's answers
WHILE number of students not exceed maximum
READ astudent’sname
READ a dudent's answers into a 2D array
IF totd number Of a dudent's answers <> number-of-questions
Stopreading
RETURN failure flag
IF no more student's name exist
BREAK, stop reading, exit from WHILE
END WHILE
CLOSE input file
RETURN success flag

5.2.3 Scoring

Scoring involves 3 kind of data udents answers, teacher’s answers and the scoring option,

l.e whether or not to use guessing carrection. The scoring function will firs compare each
sudent’s answers with actud answers to get the raw score. The comparison is made essy by
copying a row of the 2-D answers aray (Figure 5.3). The resiting 1-D aray will be st
into a counting function that will then retumn the number of correct answvers. If the user hed

dready opt to use guessing correction, the scores will then be corrected. All dudents scores

are gored in a 1-D integer array, shown ealier in Fgure 5.2.c.

Question

Students' 19 34§ eemenrerenaaa n
answers | extract
array 2 a students’
3] WeR P LLLIITIITITITT] Getthe
: number
Student | compare ;
with correct
CIITIITIIITITI] answers

Actual answers

Fgure 5.3 Extracting a student’s answers to do the scoring

36

Th rin ud

Declare a 1-D array, cur-student (to hold the answers for one student)
DO WHILE there are still student’s answers
copy arow into cur-student array
count the number of correct answers for that student, comparing actual answers with cur-student
|F want to use guessing correction
count the number of wrong answers for that student
update score with corrected score by doing guessing correction
ENDIF
END DO

5.2.4 Item Analysis
Item andysis in this program condgts of the caculation of discrimination index and difficulty
index together with the counting of response on each dterndive in each question. Each

andyss is done separatdy by different functions.

5.2.4.1 Discrimination Index

To cdculate the item discrimination index, the Sudents answers mudt first be sorted
according to the total marks obtained from the test as a whole. Since the origina order of the
dudents answers aray should reman intact, the function that will calculate the
disrimination index must make a new copy of the aray and then sort it before it can

cdculate the discrimination index. This is depicted-in Figure 5.4 below:

Original Sorted
students’ copy sort ‘ students’
answers BE— — answers
array array

A new copy

Figure 54 Copying and sorting the students’ answers 2-D array

After sorting, the array dement margins for 30% highest and 30% lowest students are then
determined. In the loop tha will cdculate the discrimination index, the answers for each

question are extracted from the answers 2-D array (Figure 5.5). The dement margins are

37

then used in geting the number of Sudents that answered correctly in eech pat. The

discrimination index is then cdculaed and dored in the 1-D floa aray shown ealier in

Fgure 5.2a
Sorted _ | Question .
students' 190345 ceereeranmnacnns A Guestion #5
answers
array 2 30% highest,
3 3 will be used to get pH
Student |

30% lowest,
3 will be used to get pL

r t

extract a question

Figure 55 Extracting answers to calculate the discrimination index

The_pseudocode of discrimination index cdculation:

copy answers 2-D array into new-answers
copy scores 1-D array into new-scores
sot new-ansvers and new-scores descendiigly
calculate 30% highest and 30% lowest array margins
DO WHILE there are dill students answers
pH = number of correct answers in 30% highest / total students in the 30% part

pL = number of correct answers in 30% lowest / total students in the 30% part
disc-index = pH - pL
END DO

5.2.4.2 Difficulty Index

Cdaulding the difficuity index of a question involves counting the number of sudents who
answered that paticular question correctly. For Smplicity and visibility, this program copy
dl the answers for that paticular question before sending it to a function. This function will
then count and return the number of occurrences of the actud answers in that paticular

question’s array. This gep is depicted in Fgure 5.6.

38

Question .
Students’ 12 345 et vmnannsennnnns nQuestlonis
aray 9 un ihe occurences
O OC val answers
3 in all student’s
Student | [J answers
DMDE BY
number of students
answers
P ! T
extract a question dlffICU|ty index

+ Figure 56 Extracting answers to calculate the difficulty index

The psaudocode of difficulty index cdculation;

Count total-no-students
Declare a 1-D array, cur-question (to hold the answers for one question)
DO WHILE there are dill student’s answers
copy a column from 2-D array of answers
count right-answers from that column aone
diff_index = right _ answers / total-no-students
END DO

5.2.4.3 Response Count

Doing the response count is much the same like counting the correct answers in caaulaing

the difficulty index and scoring process. The same copy-and-pass procedure as aresdy used

in cdeulaing discrimination and difficulty index is dso used here In response counting, the

function tha counts the number of occurrences of an dtandive is cdled. The reault of each

counting is then dored in the 2-D aray tha dored the response count results shown earlier

in FAgure 5.2 (d).

The pseudocode of response count:

Declare a 1-D array, cur-question (to hold the answers for one question)
DO WHILE there are dll student's answers
copy a column from 2-D array of answers
count responses for aternative ‘A’, then ‘B’, then ‘C’, then ‘D, then ‘E’, then Omittance

END DO

39

5.2.5 Writing Output to File-

In writing the results to the file the printing function will use the file name supplied by the
user interface pat. If the file name is nat vdid, it will reun an indication to the us

interface thet it can not open that file If this function can open the file and write the resuits
into the file successully, it will then dose the file and retumn a successul indication. In
writing the reaults, it will sdect catain amount of information to be induded in the output

file, depending on the user options

The of writing fundtion;

Open output file
IF fal to open file
RETURN failure flag
ELSE
PRINT test information
IF include-score
PRINT names, scores, percentage Scores
ENDIF
IF include-analysis-results
PRINT andysisresults
ENDIF
ENDIF
RETURN success flag

5.3 The User Interface

The user interface of this program depends much on the way the usr will interact with the
program. The usar will spend mogt of hisher time doing one of three tasks choodng an item
from the pul-down menu, browsng the reslts and typing in sved daa uch as
input/output file names. So, the success of user interface of this program depends on the user

interface of these three parts.

5.3.1 The Pull-down Menu Class

The pull-down menu in this program is used from the user-defined dass specidly coded for

the use of pull-down menus This dass has been implemented to be a generd purpose dass

that can be used in gpplications other than this project, too. The class has been carefully
implemented so that its users (i.e. the programmers) can easily declare and use it. To declare
a pull-down menu, this class needs 3 information: the menu top co-ordinate on the screen,
the left co-ordinates and the srings that will gopear in the menu. For example, the following
code will declare a ‘fileé menu that contains 3 choices that will be activeted a screen co-

ordinate 10,10.

// step 1. declare the array string that will appear in the nmenu
char filetext[MAX_M_PANEL]{MAX_M_CHARS] = {

"Load file', 'Cose file', *Quit*,

}i

// step 2. declare/construct a pull down nenu naned 'filenenu'
PullDown filemenu (10, 10, filetext);

// to activate

int choice = filemenu.choose{);

The constructor

Before a menu can be used, it must be congtructed first, and this is done by a function called
congructor. The condructor will firs check the vdidity of the initidisation, and will dso
determine the screen co-ordinates of the menu.

The pseudocode of the condtructor:

check the X1 and Y 1 co-ordinates -- not to exceed the upper/left screen border
caculate the longest panel suing, initialise X2

calculate the number of panels, initialise Y2

check the X2 and Y2 co-ordinates -- not to exceed the lower/right screen border
get the menu-strings for each panel

fill in the empty right part of each string with spaces

To choose an item
Choosng an item from a pull-down menu involve navigating through its pand. This is done

by using the arrow keys, UP and DOWN. Once we arrived at the pand we want to sdlect, we

41

wi | | pressthe eNTER key. This class implemented the pull-down menu pand sdlection using
this conventiona method. If a programmer wants to activate a pull-down menu he/she has
declare earlier, it is done by calling the choose() function, and assgning its return vaue into
an integer variable (see the sample code fragment above). The choose() function will retun
the panel number the user has sdlected. If, however, the user does not choose any pane from
the menu (i.e. by pressng esc or left arow or right arow), this function will return a
number equivaent to those keys. This returned number can then be used by the programmer
in determining an gppropriate action. One example of its usage is if a user has pressed the

right arrow, ancther pull-down menu that dts at the right of the current menu can then be

activated.

The pseudocode of choose() function;

store the current menu area into buffer
show pull-down menu, highlight first panel
wait for keystroke
DO WHILE true
IF keystroke = down-arrow
highlight the panel below current panel
IF current panel is the bottom panel
highlight the top pane
ENDIF
ELSEIF keystroke = up-arrow
highlight the panel at the top of current panel
IF current panel is the top pane
highlight the bottom panel
ENDIF
ELSEIF keystroke = ENTER
restore screen buffer
return the number of current pane
ELSEIF keystroke = LEFT / RIGHT / ESC
restore screen buffer
return the number of that keystroke
END DO

5.3.2 Browsing the Results

For displaying output, the screen is divided into two parts. The scores will be shown on the

left of the screen and the item andlysis results will be shown on the right of the screen. Since

42

the totd number of dudents and the totad number of quedions are usudly gregter than the
v screen rows, the screen can not aford to display ather results in one screen. So, a scralling

. method mugt be developed to browse through both scoring and andlys's results

All reaults of this program to be disdlayed were gored in arays (see Figure 5.2). The aray
edement number can be usad as a reference to emulae the pogtion of streen margins to be
digplayed to the user. This is visualised in Hgure 5.7. The top margin will fird hold dement
0, and will then be increased when the user presssd DOANARROW If t he user pressed
PAGEDOWN, the margins ar ei ncr enent edas nmany as a screentall. Theprocessof margins
changing will continue, like depicted in the pseudocode for the result browsng, and will only
stop when the user has pressed ESC to stop browsing.

top margin — top margin
-0 ——— - 1
L]
botto .
marglrrl:I = Pr%:g{r?-_'” top margin —
4 R - 10 =11
botltom
margin
=20 BV
Initigl state After pressed After pressed
DOWN-ARROW PAGE-DOWN
FHoure 5.7 The changing of display margins
The psaudoocode of result browsing;

initialise top and bottom margin (top = 0, bottom = screen_tall)
- DO WHILE true
SELECT CASE Kkeypressed
CASE PAGE_DOWN
increase top and bottom margins by one screen
CASE PAGE-UP
decrease top and bottom margins by one screen
CASE ARROW_DOWN
inaease top and bottom margins by 1
CASE ARROW_UP
decrease top and bottom margins by 1
° CASE CTRL_HOME
set margins like early state (top = 0)
CASE CTRL_END

43

Set bottom margin = max_array_element (go to far end)
CASE EC

aneeon

END SELECT
END DO

5.3.3 Prompting for A String

Although this program will reed mog of its input deta from an input file it dill nesds some

dring input from the user when the program is running. These grings have to be typed in by
the user. These indude the input data file name, the output file name, and the information of
the tes being analysed. A spedid function has been created for the purpose of taking string
input from the user while the program is running. This function will recave the pointer of the
suing to be input, and will modify its content, depending on the keys pressad by the user.
The usr can only exit from giving this input by pressng ENTER or ESC. If ESC is pressed,

the gring will be st to contain nothing.

The pseudocode of dring prompting:

glocursor a garting pogtion

ﬁ:akewmd ENTER
keypressed =
done=true

ELSEIF keypressed = BACKSPACE
retract cursor one position

ELSEIF keypressed = ESC
set string contains nothing
done=true

ELSE
accumul ate keypressed

advance cursor oneposition
WHILE not (done)

5.3.4 Managing Pop-up Windows

There ae many occadons in this program that a window has to be popped-up to show
messages to the user. Windows are dso popped-up before the dring prompting function is
cdled. The pop-up window pseudocode is shown beow. The pop-up window used in gring

44

prompting is much the same as this pseudocode, except in 2 places Frg, it hes to indude
the length of the dring to be input in cdculding the co-ordinates and the buffer sze
Saoondly, it has to wait until the user finished giving input before the sreen area can be

restored.

calculate width using string message to be shown
calculate left X co-ordinate and right X co-ordinate
calculate screen area size

capture screen area into screen buffer

wait for keypressed

restore screen aea

5.4 The Integration of Core Program and User Interface

The core program and the user interface mudt be integraied by an outer layer. This mos

outer layer is where a user of this program can navigate in the man pull-down menus

Appropriate core action will be taken according to the sdection of the pull-down menus. In
the program code, this outer layer is located in the main program. The pull-down menus are
dedared and activated from this part. When entering this program, the user is fird presented
with this menu of pull-down menus. To navigate between these menus the user.can ue
either RIGHT or LEFT arrow keys If a user wants to sdect a choice, he/she mugt press

ENTER when the choice is bang highlighted. The logic of this outer layer user interface is
explaned bdow.

The generd pseudocode of navigating throuch the main menu:

activate first pull-down menu
Do
wait for keypressed
IF keypressed = RIGHT
activate the pull-down menu at the right
ELSEIF keypressed = LEFT
activate the pull-down menu at the left
WHILE true

45

‘Activate in the-above pseudocode means highlighting the menu title, show the pull-down
menu and ready to take choices from this menu. This generd idea has contribute to a more
specific idea of using arays of menus to represent pull-down menus The aray eement

number will act as a reference number, to be used when a menu is to be activated or de-

activated.
Element Element
numbaer number
<>+ Fiic menu <RS- File menu
0 0 title
1 | < Marking menu 1 | <SR- \iarking nﬁ{w
itle
2 | oS- Anclysis menu 2 |<u—- A nalysis men
title
3 |« Ros it menu 3 | <o ¢ ocuit menu
A 4 B title
<l Oiher menu < -- Oiher menu
title
Array that store Array that store
menu class objects menu title information

Figure 58 Arrays that store the menus

Two arrays will be used to store the menus, like shown in Figure 5.8. The first one (array A)
will gtore the actud menu, and the second one (array B) will store the information about the
menu title. They will be referred in those 2 arrays with the same dement numbers. When a
puli-down menu is to be activated, the title information array (Figure 5.8(b)) will he used to
highlight the current titte and dimmed the previous title. The actuad pull-down menu is then
activated by referencing the pointer of its dement in the array in Figure 5.8(a). By changing
this eement number, the menus will then be activated one by one, depending on the keys that

have been pressed by the user.

I navi in man menu;

declare an array of structures, storing menu title information
declare menu strings
declare pull-down menu objects
declare an array, storing all the above pull-down menus objects
let current-menu-element = 0
Do

take pointer to the current-menu-element

let choice = activate current-menu-element
IF choice = RIGHTARROW
increment current-menu-element
ELSEIF choice = LEFTARROW
decrement current-menu-element

ELSE
take appropriate action, using SELECT CASE . . .
WHILE true

55 Conclusion

The coding phese in this program has been deveoped in three different pats the core
program, usy inteface and the integraing pat. The core program is concerned about
getting the results from input data The usy interface is reponsble in geting the use
regoonse and acts as a plaform where the user can interact with the core program. The
integreting part is regpongble in preparing a way of giving choices to the user in sdecting an
gopropriate action while running this program.

47

CHAPTER 6

USER DOCUMENTATION

6.1 Requirements

You mugt run this program on a PC running with & leest 256kb RAM, operdting on DOS
operaing sysdem veason 4 or highe. The PC mug d0 have a coour monitor and a
keyboard atached to it. The colour monitor must be able to display text in 16 colours. You
would not need a mouse to use this program. You need not to have a hard disk, because you

can dso run this program from a floppy disk.

6.2 Starting and Quitting The Program

To dat this program, change your current directory to the directory that contans this
program executable file, named MCQTEST. EXE. If the program resdes in your floppy disk,
insart your disk into the disk drive fird and change your current drive into your floppy drive
Type the program name once you are reedy. For example, if you are running it from your
floppy drive A, type MOQTEST:

A:\> MCQTEST

This program will then gart and you will be given the program screen.

You can quit from uang this program by highlighting the Quit pend from Hle menu, ad
press ENTER. Yau will be brought back to the DOS prompt.

A\ >

48

6.2.1 Screen Layout

You can meke yourdf familiar with the screen (Fgure 6.1) before procesding udng this
program. You will choose your adtions from the pull-down menus located a the top of the
screen. You can move between these menus with LEFT and RIGHT arrow keys and you can
sdect a choice by pressng enter. The 2 lines a the bottom of the screen will give you 2
ussful informetion. The fird line will show the current program datus i.e what ae you
doing & the time. The second line will show the keys on the keyboard thet you can press a
that spedific time The reaults of your actions will be shown in the large centre area of the
screen. The left section will be used to display the scores obtained by the Sudents in a tes.
The right section will be used to digday the item andyds resuits, i.e the disorimingion
index, difficulty index ad the response counts of the test items. You will be usng this
program by navigating in just 3 areas the pull-down menus, the score browsing section and

item andyds results browdng section.

¢—:Menu line

Scoring ltem analysis Output and
results results pop-up
windows
area

=
1 +———— Program status

Figure 6.1 Screen layout of the program

6.2.2 Main Menu

This program has 5 pull-down menus to choose from (Figure 6.2).

Figure 6.2 Main menu choices

49

After entering this program, the FHle menu will be attivated for you. You can move between
all these menuswith LEFTARROW and RIGHTARROW keys. Forexampleifyou want to
move to the Result menu from File menu, you can pr ess RIGHTARROW key. However, if
you jud entered this program, you can only choose from the Hle menu. Any dtempt to
choose from other menus will pop-up an eror message You ae not dlowed to completdy
leave this main menu. Although you can do tasks dter sdecting from this menu, ater you

completed your task, you will be brought back to this menu.

6.3 The Menu ltems
6.3.1 File Menu

File menu has two choices (Figure 6.3).

Hgure 6.3 File menu

The first choice is to load, score and analyse atest file. If you press ENTER on this pand,

and there are no currently unsaved tedts result, you will be presented with a pop-up window
asking you to type in the name of the data file (see section 6.4 for detals on typing file name
and section 6.5 for input file details). The data from that file will be read, the answers will be
automaticaly scored and the items will be andysad. A pop-up window suggesting you to use

the Result menu to browse the results will gppear.

The second option from this menu is used for quitting fromthe program |f you have | oad a

data but the results have not been saved, a warning message tdling you that the results have

50

not been saved will gopear. You can choose to cancd quitting, and return to the main menu.
This program will quit and will not giving this message if you have saved the results to an

output file, or-you have not load afile a dl.

6.3.2 Results Menu

The Reaults menu is used for browsng and saving the results of socoring and item andyds

(Fgure 6.4). The fird two choices are used to browse the scores and the item andys's results

on the screen. The third pand is used to save the reaults to an output file If you choose this
y third choice, you will be given another pull-down menu prompting you to choose the results

thet you like to indude in the output file (see section 6.7 for detalls of output file).

Figure 6.4 Results menu

6.3.3 Scoring Menu
The Scoring menu will give you the options to change the scoring methods, like shown here

on Fgure 6.5.

Figure 65 Scoring menu

SHecting the first option will meke the answers to be rescored, giving the scores in raw
marks. Choosng the second option will make the sudents answers be rescored, and the

raw marks are corrected before being presented to you. The third choice is to be used when

51

you want to use guessng correction with the number of dterndives in the tes quedions is
less thean 5. For example, to use guessng correction on trueffdse test items you can choose
this third choice, then choose “2 choices’ from its submenu, and then re-score usng guessing
correction (choose the sscond menu choice). By default, the guessing correction will
cdculate the corrected scores by assuming that there were 5 dterndives (A, B, C, D, E) in
the test quedions to be andysed. Each time you sdect to re-score, you will be automaicaly
entered into the score browsing mode, enabling you to look a dl the scores. You will have

to press ESC to retun to man menu.

6.3.4 Analysis Menu

The fourth sdection from the man menu is Andyss menu (Hgure 6.6). This menu presents
you with an opportunity to display the response counts in the form of percentage of dudents
that choose the dterndives, indead of jud the rawv numbers If you sdect one of the options
from this menu, you will enter the mode where you can browse the andyds reaults with the

response counts forma shown according to your preference.

Figure 6.6 Analyss menu

6.3.5 Other Menu

The lag menu'is the Other menu, which has 3 sdedtions (Figure 6.7).

Figure 6.7 Other menu

52

The fird sdection will digolay all the current seitings and the test informetion. The current

settings shown indude whether or not the guessing correction has been used and the number
of dtemdtives in a question. The test information indudes the dass name, the tet name, the
totd number of gudents and the number of quetions The sscond choice will Iet you type in

the name of the dudents dass whose ansvers ae being dedt with. The third choice will let
you type in the name of the ted itdf, i.e the name of the subject or the module Thee
names will be usad in printing the test information into the output file and in digdlaying the

current settings.

6.4 Typing In the File, Test or Class name
When you choose to open a daa file, or to write the results to an output file, you will be
prompted for the file name You will have to type in the file name in a pop-up window, like

Fgure 6.8.

Figure 6.8 Prompt for typing in the input file name

When you are prompted with the file name, you mug type in a vdid ASCII text file that
contains the tet answvers. Like indicated a the datus line a this time, you can type in any
character that is veid in a file name. If you have type in a few charactars, but redise that you
have made a midake, you can correct the migake usng the BACKSPACE key. Your input
length & this prompt is redtricted by the right edge of the pop-up window. You can complete

your task of filling in the file name by pressng the ENTER key.

53

When youwant. to input the dass namewhose ansves ae beng dedt with and the test
subject name, you will -be given another prompt, which dso looks like Fgure 6.8. The

. difference is the sentence that prompts you for the names and the length of input, which is

longer..

6.5 Browsing the Results

After you have load in the input data, you should browse the results of scoring and item
andyss by sdecting Result menu. When you are browsing the soores, you can scrall through
the scores by pressng Up Arrow, Down Arrow, Page Down, Page Up, Control Home and
Contral End. Up Arrow and Down Arrow will let you scrall one line a atime, Page Up ad
Page Down will let you scrall one page a a time, while Control Home and Control End will
take you to the gart and the end of the list. Figure 6.9 shows an example of the reaults from
the item andyds For regponse court, it shows the number of Sudents thet opt for the

correct answer in a quite different colour from other dterndives.

o>
=
Lo T

> [
L2 A e W0 e TV D e O e (VS

G
?
8
9
&
1
2
i
4
g
6
P
]
9

T D DN WIS 0 O e I e T

e N R R
[#a) { 3 - L] sy -
[SaiN <Y L Y s

e PNy et e S-St
LN] R

i
i
i
1
1
i
i
i
i
i

Sk
3%

WO N i N e WWEISTOITE

~Figure 6.9 Sample resuits from the item analysis.

6.6 Input File

The test actud answers and sudents answers should be ready before you dart this program,
gnce this program did nat provide you with a fadlity to input them. The file can be prepared
usng any text editor or word processor, as long as it is saved as the ASCII text file You can
see the input file samples provided with this program (see Appendix A). The generd format
of the file is shown in FHgure 6.10.

Actual

XXXXXEXXXXXXXXXXXXEXXXXKX *__'answers

[0000000000000 1 XXKXXXKKXXKKXXXKXXXXXXX
XXXXXXXXXXXXXXXXXX F XXXXXXXXXXXKXXXXKXXXXXX

Sandidate | X0000GXXXXXXXXXXX * XXX0000000000000o0ooy | Candidate
names XXXXXO0OXXXXXXXKXX * - XXXAXXXXXX00OXXAAXXKX | answers

XXXXXXXXXXXXXXXXXX ® XAXXXXXXXAO0XNANXKKXX

[, 3000000000000+ XXXXXN000N0NKXAXXXXXXX

Fgure 6.10 Input file format

The test actud answers mugt gppear in the fird line of the file, with no spacing between each
answer. The total of answers should not excesd 150, Snce dl answers dter the 150th answer
will be ignored by this program. For your convenience, you can adjus the postion of the
actud answvers 0 tha they are in the same column as the sudents answers, like shown in
Fgure 6.10, as long as the are preceded only by spaces. The next lines should contain the
Sudents names and ther answers The name length should not exceed 20 leters induding
goaces. If this length is exceeded, the exceading ldters will be ignored. After a name, there
should be an adeik. If a dudent's name has less than 20 characters, you can put the
adaik exadly dter the name, even though you may prefer to meke it pardld with other
nanes The dudet’'s answves should gopear dter that agteisk. The totd number of a
Sudent's answers should be the same as the teechers answers. If one of the sudents hes a

different number of answers this program will present you with a message tdling you this

95

error, and the data file will not be loaded. You can exit this program and edit the deta file

before entering it agan.

6.7 Output File

An output file is crested when you save the results The format of the file will depend on the
way you saved the file When you choose to save it, you will be given a pull-down menu
asking you for the information that you want to indude in the output file (Fgure 6.11).

Figure 6.11 Choosing the outputjile contents

So, the output file format will depend on your choice from this menu. One informetion thet
will be written whatever sdection you mede is the tes informaion. This indudes the test
name, the dass name, the totd sudents and the totd questions Test scores and item andyss
results will only be written if you choose to write them or you choose to indude both of

them in the file. In this casg, the file forma will be like shown in FHgure 6.12.

Kk khkhRxrdrk bbbk kX kkhkhhhhkkrkr kb hk bk rddbbrrrrbhhbrbrrrrrdd

TEST | NFORVATI ON

Cl ass D 9.9:0.0.6.0.6:0.6.0.:6.0.:6.0.0.0.6.4
Test HED.90.0.9:0.9.9.0.6.0.9.0.0.0.0.0.0.0.4
Nunber of students : 99

Nunber of qkugsti ons: 99

*khkkkkhkkkkhkkk ***t**

TEST RESULTS

Names Scores Percent age
9:0.0.6.0.0.0.0.0.0.0.6.00.6.0.0.0:¢. 0. QL) 99. 99
KEXXXXXKXXXKXXKXXKXKK 99 99. 99

P AT 2222222222 SR R R AR S S XX RR 2R 22 R 2 a2 i ARt sttt 8

ITEM ANALYSI S RESULTS

Discr. Dff. Response count
Qi ndex i ndex A B C D E Om t
9 9.99 9.99 99 99 99 99 99 99
9 9. 99 9. 99 99 99 99 99 99 99

Fgure 6.12 Output file |ayout

56

This program is not intended to do the score processing. It does nat even give the smplest
information-about the scores, for ingance the average of the scores: The scoring done is just
for providing the scores to the teachers and supplying input to endble the item andyds o,
dter gdting the results, you may neaed to meke further processng on the soores, like scding,
or you may want to meke some ddigicd andyds that is not supported by this program. To
do thet, you can eadly import this output file into other programs like a spreadshedt, because
the adjacent columns are separated by a TAB. Mog Soreadshedts are adle to import data
from ASCll text file and the columns can eesly be imported into the cdls if they are
separated by the TAB. So, even if this program has not supported the more advance score

processing, it prepares a method to link the way of doing it.

57

CHAPTER 7

CONCLUSIONS

7.1 Project Objectives Achievement

The man god of this project is to built a computer program that can act as a todl to score
and andyse multiple choice question teds The program should dso smdl, chegp and eedly
accessble by dl educators i.e they can use it without having to face so many problems The
program has been completed and is reedy to be used. Although it can cope with what hes
been a cumbersome problem for educators, it is amdl enough thet it can resde in a diskette,
together with the data files. It can be run on atypica PC that can be found in mog schoadls at
present time. It can do its job in a PC with just 256kb of conventiond RAM and does not
require a hard disk. The program operdtions are based on the actions taken while the user is
usng the pull-down menu. So, the user does not have to know complicated commands to
use it. This program dso gives an adeguate anount of message when an eror occurred, and
indicates what should be done when an eror occurred. So, it can be sad that this program is
not difficult to use by an average user. The fact that it is amdl, does not require ‘advance
skills on opeaing it, ard can run on a PC with low spedfications contribute much in
achieving the target of this project. So, as a condudon, this project has successfully achieved
its godl.

7.2 Further Enhancements

While the god of this prgject has been achieved, there are dill further enhancements can be
made to rectify the program. Some re-enginesring may be need’'to be done to design a better

program, but that will not meke it hard to improve it, because the program functions have

59

been coded s0 that they are as objective as possble The core program that does the
cdculation jobs was devdoped ssparady from the usy interface part that will take user
responses. So, if more output is required, the core program can be modified; If the interface
is later found out to be flaved somewhere, it can be reccoded and teded separady.
Furthermore, there is a pull-down menu dass tha is ready to be used aytime So, ay
addition in program sdection can be accomplished without taking so much time and effort

Posshle extengon to this project would be to incorporate it with an automatic answver
reeding procedure. Currently, the computer program developed through this project requires
thet the test answers be typed in into a text file before being processed. May be this fact will
discourage some educators from ugng it if they think thet the task of preparing the data file
is dso a cumbersome job. One possible solution is to incorporate this program to process the
ansves tha ae automdicdly entered through an automaed teding, usng computer
terminds as test teking dations Other possble solution is to have the students mark their
ansvers to the test quedions uang goedidly desgned answer forms The forms can then be

scanned usng a scanner to trace the ansvers

References

1. Barday, Kenneth A., Gordon, Brian J, C++ Problem Solving and Programming;
Hertfordshire, Prentice Hal Internationd, 1994.

2. Gronlund, Norman E., Measurement and Evaluation in Teaching. 4th Ed.
New York, Macmillan Publishing, 198 1.

3. Kenddl, Kenneth E., Kenddl, Julie E, systems Analysis and Design. 3rd. Ed.
Englewood Cliffs, Smon And Schudter, 1995.

4. Lyman, Howard B., Test Scores and What They Mean. 3rd Ed.
Englewood Cliffs Prentice-Hdl, 1978.

5. Peddie, Bill, White, Graham, Testing In Practice.
Auckland, Henemann Educationd Books, 1978.

6. Ray, John R., Davis, Lloyd D., Computers in Educational Administration. Cdifornia,
Mitchdl Mograw-Hill, 199 1.

7. Schildt, Herbert, C+ + The Complete Reference.
Cdfornia, Ogborne Mcgraw-Hill, 1995.

8. Schildt, Herbert, Using Turbo C++.
Cdfornia, Osborne Mograw-Hill, 1990.

9. Sumner, Ray, The Role Of Assessment in Schools.
Windsor, Nfer-Ndson, 199 1.

10. Wiersma, William, Jurs, Stephen G., Educational Measurement And Testing. 2nd.Ed.
Massachusatts, Smon And Schugter, 1990.

11. Wood, Robert, Assessment and Testing, A Survey Of Research.
Cambridge, Press Syndicate, 1991.

APPENDIX A
DIFFERENT VALID FORMATS OF INPUT FILE

All of the followings are examples of valid answers order in the input file
for this program.

1. All answersin the same columns, with asterisks on the same columns in each line.

ABAEECADDCEACACEECECADBBD
ABAEEDA-DCEDBDBEECECADCAD
ABAEDCADDBEABACCACECEECAD
ABDEECADDCEACBCBECECADBBD
BBEECADDCBACBCEECDECADCAD
DD~~CCADDBEDBDBDECECEECAD
ABAEEDADDCEACACDEDECADCA~

ABDEECADDCEL ACBCAECECADCAD

Hillary Best

Al exandra Smith
Lindsay Scott
Mike Johnson
Johaan Young
Mar k Br own
Patrick McNamar a

%® % n % B x o

2. All answers in one same column, except actual answers.

ABABECADDCEACACEECECADBBD

Xillary Best * ABAEEDA- DCEDBDBEECECADCAD
Al exandra Smith ABAEDCADDBBABACCACECEECAD
Lindgsay Scott ABDEECADDCBACBCBECECADBBD
M ke Johnson BBEECADDCBACBCEECDECADCAD
Johaan Young DD--CCADDBEDBDBDECECEECAD
Mark Br own ABAEEDADDCEACACDEDECADCA -
Patrick McNamar a o ABDEECADDCEACBCAECECADCAD

* %0 o ©

3. All answvers in one same column, with asterisks not on the same column in each ling,

ABABECADDCEACACEECECADBBD
Xillary Best * ABABEDA- DCEDBDBEECECADCAD
Al exandra Smth e ABABDCADDBBABACCACECEECAD
Li ndsay Scott #* ABDEECADDCEACBCBECECADBBD
M ke Johnson * BBEECADDCEACBCEECDECADCAD
Johaan x»nemw e DD- - CCADDBEDBDBDECECEECAD
Mar k Brown e ABAEEDADDCEACACDEDECADCA-
Patrick McNamara * ABDEECADDCEACBCAECECADCAD

4. Answers in different columns, with asterisks not on the same column in each line, and
actual answers darting at the firs column.

ABAEECADDCEACACEECECADBBD

Xillary Best e ABAEEDA- DCEDBDBEECECADCAD
Al exandr a S;:nith * ABAEDCADDBEABACCACECEECAD

Lindsay Scott * ABDEECADDCBACBCBECECADBBD

Mike Johnson o BBEECADDCBACBCEECDECADCAD
Johaan Young * DD- - CCADDBEDBDBDECECEECAD
Mar k Brown e ABAEEDADDCEACACDEDECADCA-

Patri ck McNamara e ABDEECADDCEACBCAECECADCAD

THE CODE OF PUL

APPENDIX B
L-DOWN MENU DEFINITION FILE

LE0EPLE000000700070800700802787001700800800000070000287002040¢171717

// Ceneral purpose pull down ne
/7 Done on

// By: Mohamad

1/

// Completed between Jun

nu definition file //
Sat 32/17 //
Zamberi Saad //

For the conpletion of MSc of Information Technol ogy //

1995 1998 //

September

JHIITHETEEHEEE ittt ittt ietieditibineltint iy

#i f ndef PULL_DOWN_H
#define PULL- DOM-H
// keys on keyboard that will b

const int UP-ARROWN = 72;
const int DOMN ARROWN = 80;
const int LEFT-ARROW = 75;
const int R GHT- ARROWN = 77;
const int ENTER = 13;

const int ESC = 27;

#i ncl ude <conioc.h>

// menu col or

const int NTEXT-COLOR = BLUE
const int N_BG_COLOR = WH TE
const int HTEXT-COLOR = WH TE;

const int H_BG_COLOR = BLUE

const
const

i nt MAX_M_CHARS
int NMAX-M PANEL

40;
4;

//
/7

cl ass Pullbown {

private:
int X, v1, X2, Y2
char menu_str{MAX_M_PANEL]

public:
// constructor _
PullDown(int x_1, int y-1,

// choose an itemfromthe
int choose {);

// display all the choices
voi d init_show ();

// change the hlite panel f
void change-hlite (int prev,

}; // end class

#endif

e used when choosing an item

// blue on white
// white on bl ue

maxi mum chars in a menu
maxi mum panel in a pull

panel
down mrenu

[MAX- M CHARS ;

char str_of_menu{MAX_M_ PANEL] [MAX M CHARS]);

currently shown pull down nenu
in every panel

rom prev panel
int cur);

to cur panel

APPENDIX C
THE CODE OF PULL-DOWN MENU IMPLEMENTATION FILE

FEIITITIILIEEELEEEEEEEEELLETEIIIEEEEIEIEII80000001018007110111

/7 | mpl ement ati on of pull-down menu class /7
/1l Done: Sat . 22/7/85 /7
1/ By: Mohamad Zamberi Saad //
/7 For the conpletion of Mse of Information Technol ogy //

// Conpleted between Jun 1995 =~ Septenber 1995 //
LHTLITELE00EETIE0 000 it iniiid i iiritidtineitineiiiitiieiiil!

// exanple use: to declare a 'file' nenu that contains 3 choices
// that will be activated at co-ord 10,10

// // step 1. declare the array string

// char helptext [MAX_M_PANEL] [MAX- M CHARS] = {

7/ "Load file', 'Cdose file', '"Qit"

)

// // step 2. declare/construct the pull down menu

// PullDown filemenu (10, 10, filetext);

//

// to activate: int choice = filemenu.choose();

#i ncl ude <iostream.h> // needed by cerr
#incl ude <stdlib.h> // needed by exit()

#i ncl ude <string.h> // needed by strlen() and strcat()
#i ncl ude *pulldown.h"

// constructor
PullDown::PullDown (int x_1, int y 1,
char str_of_menu[MAX M PANEL] [MAX M CHARS]) {

// 1. check the length -- not to exceed the upper/left screen border

if (x_1<3 11 y_1<3) {
cerr << "\nCan not init. menu: border (upper/left) out of screen.\n*;
exit (-1);

)

// 2. calculate the | ongest panel string, to get X2
int lgst-str = O;
for (int i =0; i < MAX-MPANEL; i++) // note : start fromO, to nax-1
if (lgst-str < strlen(str_of menuli]})
I gst-str = strlen(str_of_menu{i]);

X2 = x_1 + lgst-str - 1;

X =x1;

// 3. calculate the nunber of panels, to get Y2

i = 0;

while (str_of_menu(i][0] != '') i++ // accunulate i until no nore panels
if (i > MMX-MPANEL) Y2 = y_1 + MAX-M PANEL - 1;

else Y2 =y 1 +i - 1;

Yl = y-1;

// 4. check the length -- not to exceed the |ower/right screen border

if (X2 > 78 11 Y2 > 23) {
cerr << "\nCan not init. menu: border (lower/right) out of screen.\n*;
exit (-1);

}

// 5. get the menu-str from str_of_menu
for (i = 0;ii < MAX-M PANEL; i++)
for (int | = 0;] < MAX_M_CHARS; j++)
menu_str(i} [j] = str_of_menu[i](j]; // copy

/7 6. fill in the enpty right part of each string with spaces.
for (i = 0; i < MAX-MPANEL; i++) {
int j = (X-X +1) - strlen(menu_str(i]); // panel-width = X2-X1+1
while (7 > 0) { // keep concatenates only if not yet filled
strcat (menu_str{i], * *);

J-==:
} // end concatenate for one panel string
} /7 end for

) // end (22232222 R2 SRR 222222222 X2 2R X2zl constmctor

// show al |l -the panels and hilite first panel before taking any choice
voi d PullDown:: init_show () {

textcolor (N_TEXT_COLOR); textbackground(N_BG_COLOR);

// draw the top border of box
const int panel-width = X2 « X1 + 1;
gotoxy(X1 - 1, v1 - 1);
cprintf (*U0*);
for (int i =
cprintf ("A*
cprintf("¢*);
// show all the panels
const int no_panels = Y2 - vl + 1;
int y = Y1;
for (i = 0; | < no_panels; i++) {
gotoxy (Xl - 1, y);
cprintf("%s*, *3*): // |eft border
cprintf("$s", menu_str(i]); // print using private data menber
cprintf(“ss*, *3=); // right border
Y++;
Y // end for
// draw t he bottom border of box
gotoxy (X1 -1, Y2 + 1);
cprintf (*A*);
for (i = 0; i < panel-width; i++)
cprintf ("A*);
cprintf (*“U*);
// hilite the FIRST panel
textcolor (H_TEXT_COLOR); textbackground (H_BG_COLCR); // use hilite colors
gotoxy (X1, Y1l});
cprintf ("%s", menu_str([0]); // first string
gotoxy (X1, Y1); // put cursor back at starting of string
// set normal colors again, for safety
textcolor (N_TEXT COLOR); textbackground (N_BG_COLOR) ;
) // end function [XXX X22ZX2X2XR22XX22 222X X2 R 2 a2 2 2 init_ﬂhow

s

0; i < panel-width; i+4)
)

// change the hilite panel fromprev panel to cur pane
voi d PullDown::change hlite (int prev, int cur) ({
// normal the prev.
textcolor (N_TEXT_COLOR); textbackground (N_BG_COLOR) ;
gotoxy (X1, prev + Y1);
cprintf ("%$s", menu_str(prevl);
// hilite the current
textcolor (H_TEXT _COLOR); textbackground (H_BG_COLOR) ;
gotoxy (X1, cur + Y1);
cprintf (*$s*, nenu-stricur]);
gotoxy (X1, cur + Y1); // put the cursor back at the beginning
// set nornal colors again, for safety
textcolor (N_TEXT_COLOR); textbackground (N_BG_COLOR);
} // // end function ¢ CUMILINNETWNINTITITITIPIIPITHAIT] change hlite

// get the choice frompull down nenu
int PullDown::choose () {

// allocate nmenmory to store current screen contents
char *scr_buf;) -
scr-buf = new char{ ((X2+1) = (X1-i) + 1) * ((Y241) -- (Y1-I) + 1) * 2 J;
if (lscr_buf) (
cerr << "Video-nenory allocati on error\n*;
cerr << 'in choose() in pulldown.cpp\n*;
exit (1);
)
// store current screen contents
gettext (X1-1, Yl-1, X2+1, Y2+1, scr-buf);
init_show (}; // show all, hilite 1st.
int cur_panel = 0, prev_panel;
char ch;
const int no-panels = Y2 - Y1 + 1;
do {
ch = getch();
-switch { ch) {
case DOWN_ARROW:

prevganel = cur-panel;

if (cur_panel != no-panels - 1)
cur_panel++;

el se

cur_panel = O;
change-hlite (prevganel, cur_panel);

br eak;
case UP- ARROW
prevganel = cur_panel;
if (cur_panel != 0) // panels are fromO to (no-panels - 1)
cur - panel - -;
el se

cur_panel = no_panels - 1;
change-hlite (prev_panel, cur-panel);
br eak;
case ENTER
// restore the previous screen contents, delete the buffer that holds it
puttext (X1-1, Yl-1, X2+1, vy2+1, scr-buf);
del ete scr-buf;
return (cur-panel + 1);
case ESC
// restore the previous screen contents, delete the buffer that holds it
puttext (X1-1, Yl-1, X2+1, y2+1, scr-buf);
del ete scr-buf;
return ESC
case LEFT- ARROW
// restore the previous screen contents, delete the buffer that holds it
puttext (X1-1, Y1-1, x2+1, y2+1, scr-buf);
del ete scr-buf;
return LEFT- ARRON
case R GHT- ARROW
// restore the previous screen contents, delete the buffer that holds it
puttext (X1-1, "Yi1-1, X2+1, Y2+1, scr-buf);
del ete scr-buf;
return R GHT- ARROW
) // end switch

) while (1); // end while

) // end function (2RSS IS ALA AR 2R 2R R 222 R X222 choose

APPENDIX D
THE CODE OF MCQTEST.CPP

// **.t***.****'i**********itt*t**‘*'****t**t.i***‘**#)**t //

// The programthat score and analyse the nmnultiple-choice //

// question tests items. /7
'y Iy
// By: Mohamad Zamberi Saad 'y
/7 For the-conpletion of MSc of I nformati on Technol ogy //
1/ Conpl et ed between Jun 1995 « Septenber 1995 1/
/1 1/
// to make executable file: /!
// 1. make pulldown nenu object file //
// conpile 3 teec -¢ -P pulldown.cpp l/
l/ t/
// 2. ke executable file: 1/
// compile : tce -P meqtest.cpp pulldown.ob] //
/1 1/

// (X2 XL XSRS XA AR R R 22 il i ol it s s 2 il a2ty R //

#incl ude <jiostream.h> // needed by cout and cerr

#i ncl ude <fstream.h> // needed by ofstream

#i ncl ude <conio.h> // needed by gotoxy() -- and cprintf()

#i ncl ude <stdlib.h> // needed by exit() in main function

#i ncl ude *pulldown.h* // needed to use the pull down nenu system

// [ZXX2ZERAESRSSE AR SRR R R RARRRRRRRRRRRERRER R ES R

// MENU AND SCREEN PART

// this structure will hold informati on about nmenu titles
// and first coordinates of pull down nenus
struct nmenu {

char title_str(10}; // title string, ex: 'File'

int t_leftX; /7 title left X

int pd_leftX; /7 pull down left X

}:

// keys on keyboard -- addition to those defined in pulldown.h
const int UP-ARROW = 72;

const int PAGE-UP = 73;

const int DOWN_ARROW = 80;

const int PAGE-DOM = 81;

const int CTRL_HOME = 119;

const int CTRL_END = 117,

const int BACKSPACE = 8§;

// menu and screen constants

const int NO_MENU = 5; // nunber of pull down nenus

const int TITLEEY = 1; // top co-ordinate of the nenu titles
const int UPPERY = TITLE-Y + 2; // top co-ordinate of a pulldown nenu
const int MAXCOLSCR = 80; // maxi mum screen col umm

const int HALFCOLSCR = 38; // half of screen colum

const int MAXROMBCR = 25; // maximum SCreen row

const int SCOR_CLR = CYAN

const int ANA-CLR = BLUE;

const int TRUE = 1;

const int FALSE = O;

// menu and screen functions

int activ8menu (int n, menu nenu-iteni], PullDown cur-menu);

void draw border(int xI, int yl, int x2, int y2, int fgcol, int bgcol);
voi d ready-screen (};

void tidy_up{();

void show nesg(char *err-nsg, int err)
voi d pai nt-box(int xl, int yl, int x2, int y2,int col);
void wuse-text-color(int fgcol, int bgcol);

voi d use-normal_color();

void pronpt-line(char *msg, char *str_toget, int len);

void statusline (int n);

voi d showstatus (char ® linel, char ® [ine2);

voi d displayclass (char *clasname, char *testname);

int sub_pulldown (int leftX, int topY, char streeng{][MAX_M_CHARS]);

// I T R R R 222222222222 X 322X SRR R2 2 R A2 R 22 Rz s ls s

// CORE PROGRAM THAT CALCULATE AND PRCDUCE QUTPUT

int const MAXSTUDENTS = 150; // nmaxi num students in the test

int const MAXQUESTN = 100; // maxi mum questions in the test

i nt const NMAXCNAME = 20; // maxi mum characters in a student's nane
int const MAXCHOCES = 5; // maxi mum choi ces in one question

// init functions

void initanswer (char answers{][MAXQUESTN]);

void initnames (char toinit(] [MAXCNAME]);

void initlDarray (char *toinit, int limt);

int readteacansw (char *to-read, char *filenanme);

int readstudans (char to_read[]([MAXQUESTN], char names{][MAXCNAME],
char *filenane);

// support functions

int len_ofstr (char *tocount);

int countstudents (char answers[][MAXQUESTN) ;

voi d copy-row (char tochange[)[MAXQUESTN], char *tobel D, int row_num);
void copy_col (char tochange[] [MAXQUESTN], char ® tobelD int col_num);
int no-correct (char *arrayA, char *arrayB);

int no-wong (char *arrayA, char *arrayB);

int guess-correct (int right, int wong, int choices);

int no-match (char to-match, char *cur-question, int start, int stop)
float round-to2 (float toround)

void get-streeng (char *to-get, int lento_get, int startX, int y);

// process functions
voi d scoring (char answers([][MAXQUESTN], char *teachers,
int score[]), int choices);
void do_diff_ind (char answers(][MAXQUESTN], char *teachers,
float diff_ind{]);
int resp_count{char to-count, char *cur-question)
voi d do_resp_count (char answers(] [MAXQUESTN]}, int resp_table[] [MAXQUESTN]);
voi d do-di sc-i ndex (char answers[][MAXQUESTN], char *teachers,
int score(], float disc_index[]);
voi d sort-answers(char answers(][MAXQUESTN], int score2([], int no-students);

int print-result (char *out-fnane, char name—arr[]J:NAXCNNWQ, int score(],
int no-students, int no-questions, float disc-index[], float diff_index{],
i nt resp(l.[MAXQUESTN], char *cl-name, char *subj_name, i nt res2print);
// displ ayi ng
voi d doshowscore (char names([][MAXCNAME], int score{],
int no-students, int no-qgtns);
voi d showscore (char names[] [MAXCNAME], int scorel], int top,
int bottom int no-qgtns);
voi d doshowanal ysis (float disc_index[], float diff_index[],
int resp(][MAXQUESTN], i nt no-questions, char *teachersanswers);
voi d showanal ysis (float disc_index[], float diff_index[],
int resp(][MAXQUESTN]}, int top, int bottom char *teachersanswers);

voi d | oad-dat a(char answers(] [MAXQUESTN], char names[] [MAXCNAME],

[N —

char *t eachers- answers);)
voi d showsettings (int choices, char *clasname, char *testname,
int no-g, int no- st udent s) ;

// flags

int f1_dataloaded = FALSE;

int f£1_usegc = FALSE, =
int f1_count_perc = FALSE

int fl_saved = FALSE

// PE R 2222822222 SR RS2 S R R R RS X 2R Rttt s

main () (°

char answers[MAXSTUDENTS] [MAXQUESTN]; // hold the students' answers
char teachanswer [MAXQUESTN]; // hold the teacher's answers
char names [MAXSTUDENTS] [MAXCNAME] ; // students' nanes

int no-questions; // # of questions

int gchoices = 5; // # of choices in a question

int score[MAXSTUDENTS]; // hold the scores

fl oat disc_index [MAXQUESTN] ;

float diff_index[MAXQUESTN];

int resp_table[MAXCHOICES+1] [MAXQUESTN] ;

// + 1 to accommodate invalid answers or omttance.

char *clasname = * “; // tenmporarily
char *testnanme = * “; // tenporarily

// pprpopargnprp PR RS YA X AR R R SRR R A RS R RS AR R AR AR R R R AR RE SRS

// MENU PART

// declare an array of nenu titles
menu menu_arr{] = (

("File', 5, 5.},
{"Result"', 12, 12,3},
(*Scoring", 22, 22,},
(" Anal ysis", 33, 33,},
{' @her", 45, 45,},
}i
ready_screen();
for (int i =0; i < NOMNJ, i++) { // print pd nmenu titles

gotoxy (menu_arr{i].t_leftX, TITLE-Y);
cprintf("%s",menu_arr[i].title_str);
)

char filetext[MAX M _PANEL] [MAX_M_CHARS] = {
"Load, score and analyse a test file", "Quit this program
}i

char resulttext[MAX_M_PANEL] [MAX M _CHARS] = {

*Browse -scores (on the screen)', "Browse analysis result (on screen)'

"Send results to output file'
}i

char scoretext [MAX_M_PANEL] [MAX_M_CHARS] = {
*Rescore, NOT using guessing correction',
*Rescore, USE guessing correction',
*Change nunber of choices in a question.,

}:

char anlystext{MAX_M_PANEL] {MAX_M_CHARS]} = (
Report response countin %,

"Report resp. count in raw nunbers".,
}i

char othertext [MAX_M_PANEL]-[MAX_M_CHARS] = {
"Display all current settings',

-"Type in or change CLASS nane',

*Type in or change TEST nane',

}i

// declare the pull down menus, one by one

PullDown filemenu (menu_arr(0].pd_leftX, UPPER Y, filetext);
PullDown resul tmenu (menu_arr(1].pd_leftX, UPPER Y, resulttext);
PullDown Scorenenu (menu_arr(2].pd_leftX, UPPER-Y, scoretext);
PullDown anlysnenu (menu_arr(3] .pd_leftX, UPPER Y, anlystext);
PullDown ot hernmenu (menu_arr(4].pd_leftX, UPPER-Y, othertext);

// declare an array that store all of the pulldown nenus
PullDown pdown[NO_MENU] = {

filemenu, resultmenu, scorenenu, anlysmenu, othernenu,
};
pPullDown *pd_pointer;

// navigate through all menus here

int choice = 0, cur-nenu = O;

do {
pdgoi nter = &pdown{cur_menu); // obtain pointer to 'cur_menu‘th el enent
statusline(1l);
choi ce = activ8menu (cur-nmenu, menu-arr, *pd_pointer); // activate

switch (choice) |

case R GHT- ARROW
if (cur-menu t= NOMENU - 1) cur-nmenu++; else cur-nenu = O;
break;

case LEFT- ARROW
if (cur-nmenu != 0) cur-menu--; else cur-menu = NO-MENU - 1;
br eak;

, Y} // end switch

// TAKE ACTIONS HERE.

// check first, whether data has been | oaded

if (1fl_dataloaded && choice != Rl GHT- ARRON && choi ce !'= LEFT- ARROV
&& cur-nmenu > 0)
show_mesg(“You nust open a test data file first!', 1);

else { /) *** 1 ***

switch (cur-nmenu) (

case 0: // 'File menu'
switch (choice) {
case 1: // load input file
7/ make sure: no other file opened but not been saved

'int oktoload = (!{fl_dataloaded) | | (fl_dataloaded && fl_saved);
“if (toktoload) (
shownmesg ('Results of THS test has not been saved yet.', 1);

char menutext (MAX_M_PANEL] [MAX- M CHARS] = {
"Cancel, do not load a new test file',
"Yes, load and do NOT save this one',

}i

int Xeft = 28, Ytop = 12

int decide = subgulldown (Xl eft, Ytop, nenutext);
if (decide == 2) oktoload = TRUE

if (oktoload) {
statusline(4);
| oad- dat a(answer s, nanes, t eachanswer) ;
initlDarray (clasname, 20);
initlDarray (testname, 20);
displayclass (clasname, testnane);
// re-init areas of results display
paint-box (1, TITLEY + 3, HALFCOLSCR, MAXROMSCR - 2, SCOR_CLR);
pai nt-box (HALFCOLSCR +-1, TITLEY + 3,
MAXCOLSCR, MAXROMSCR - 2, ANA_CLR);.
// score and anal ysis, automatically
scoring (answers, teachanswer, score, (qchoices);
-do_diff_ind (answers, teachanswer, diff_index);
do_resp_count (answers, resp_table);
do-disc-index (answers, teachanswer, score, disc-index);
fl-saved = FALSE
} // end if oktol oad
br eak;

case 2. // quit program
int oktoexit = (!fl_dataloaded) Il (fl_dataloaded && fl-saved);
if ('oktoexit) {
shownesg ("Results has not been saved vyet.', 1);
char menutext [MAX_M_PANEL] [MAX_M_CHARS] = {
"Cancel, do not quit',
"Yes, quit and do not save*,
};

int Xeft = 30, Ytop = 12
int decide = sub_pulldown (X eft, Ytop, nenutext);
if (decide == 2) oktoexit = TRUE

) // end if

if (oktoexit) {
// the only NORVMAL PROGRAM EXI TING i s through here
tidy_up();
cout << 'Program ends OK\n*;
exit (1);
}

} /7 end switch (choice) in cur-nenu = O;
break; // case cur-nenu == 0

case 2: // 'Scoring nenu"

// NO need of using switch (choice) here.

if (choice == 1 1 | choice == 2) { // prevent activate with LEFT/R GHT
if (choice == 1) f1_usegc = FALSE
el se £f1_usegc = TRUE
scoring (answers, teachanswer, score, qchoices);
statusline(2);
doshowscore (names, score,

count st udent s(answers), len_ofstr (teachanswer));

(}else if (choice == 3) (s/ change # of alternatives
// give pull down menu of 2,3,4,5 nunber of choices.
statusline(8);
shownesg ('How many choices in a question?, O0);
char menutext [MAX_M_PANEL] [MMWX-MCHARS = (

*»2 choices -- ex: TruelFalse',
*3 choices -- ex: A,B,C",
4 choices -- ex: A,B,C,D",

»g choices -- ex: A,B,C,D,E",

Yi

int Xeft = 30, Y’[O?] = 12;
const i Nt oldec = qchoices; /; caution : if press ESC
gchoices = (1 + sub_pulldown (Xeft, Ytop, nenutext));

j13

i f (qchoices== ESC + 1 || qchoices == LEFT-ARROWN + 1
Il qgchoices == RIGHT-ARROW + 1) qchoices = oldc;
}y /77 end if
break; /; case cur-nenu ==

case 3. // "Analysis nenu
switch (choice) { -
case 1: // analysis, showi ng resp. count in %

fl_count_perc = TRUE
doshowanal ysis (di sc-i ndex, di ff-index, resp-tabl e,
len_ofstr (teachanswer), teachanswer);
br eak;

case 2: // analysis, NOT show ng resp. count in %
f1_count_perc = FALSE

doshowanal ysis (disc-index, di ff-index, resp-tabl e,
len_ofstr (teachanswer), teachanswer);
br eak;
} /7 end switch (choice) in cur_menu = 2;
break; // case cur-nenu == 2

case 1. // "Result nenu"
switch (choice) [
case 1:
statusline(2);
doshowscore (nanes, score,

count st udent s(answer s), len_ofstr (teachanswer));
br eak;
case 2
statusline(3);
doshowanal ysis (disc-index, di ff-index, resp-tabl e,
len_ofstr(teachanswer), teachanswer);
br eak;

case 3. // wite to output file
char menutext [MAX_M_PANEL] [MAX_M_CHARS] = {
"Wite SOCRES only",
"Wite |ITEM ANALYSIS RESULTS only',
"Wite BOTH of the above",
}i
int Xleft = 28, Ytop = 12;
int res2print = sub_pulldown (X eft, Ytop, nenutext);
if (res2print >= 1 && res2print <= 3) {

char *outfile_name = * .

pronpt-line ('Please type in the OUTPUT filenane:",
outfile_name, 12);

if (print-result (outfile-nane, nanes, score,
count st udent s(answers), len_ofstr (teachanswer), di sc-index,
diff-index, resp-table, clasname, testname, res2print)

) { // succesfully witten.
shownmesg ("OK Report witten in that file', 0);
fl_saved = TRUE

}
el se- shownesg ('Sorry. Can not open that QUTPUT file', 1);

}y // end if
br eak;

} // end switch (choice) in cur-nenu = 3;
break; // case cur-nenu == 3

case 4. ;/ ' Options menu*
switch (choice) {

case 1. // show current settings
statusline(7); A
showsettings (gchoices, cl asname, testname,

len_ofstr (teachanswer), countstudents(answers));

br eak;

case 2. // input class nane
statusline(5);
pronpt-line(' Please type in the CLASS nane;
displayclass (clasname, testnane);
br eak;

case 3: // input test nane

-statusline(6);

., clasnane, 20);

prompt_line(*Please type in the TEST nane:", testname, 20);
displayclass(clasname, testnane);
br eak;

}// end switch (choice) in cur-nenu = 4
break; // case cur-nenu ==

) // end switch (cur-menu)
y // end ##**] **x

) while (1); // end while

Y // end main

// IZEX2XTEEEXE RS RS RSRARS SR AXSER R R R R XA RRRRRA Rl R R YR 2]
// second |l evel functions -- called fromthe main() only -- by nmenu

s/ load data fromASCI| text file into answers, nanes & teachers-answers
. vOoi d load_data(char answers|[] [MAXQUESTN], char names[] {MAXCNAME],
char *teachers_answers) {

. // read in the INPUT file name
char *infile_name = * ® . // tenporarily
// to avoid 'Null pointer assignment'
prompt_line("Please type in the test data filename:., infile_name, 12);

initlDarray (teachers_answers, NAXQUESTN);
if (readteacansw(teachers_answers, infile_name)) {
// i f succesfully read teachers answers
initnames (names); // proceed, readi ng students answer
i ni tanswer (answers);
i f (readstudans(answers, nanes, infile_name)) {
// if successfully read students answer
fl-datal oaded = TRUE
' show_mesg ("OK. Choose Browse from Result menu to see the result:,
} // end if readstudans
else { // if NOT succeed in readstudans
. shownesg ('Error in reading student answers", 1);
initnames (names) ;
i ni tanswer (answers);
fl-datal oaded = FALSE, // to prevent further options
} // end else.-- end of reading students answer
} // end if readteacansw
else (// failed reading teachers answers
fl-datal oaded = FALSE
shownesg ('Error: Can not open that INPUT file", 1);
} // end else

L) 3} /, .nd function RRRRERNER RIS NSRRI AT SRR O TS IOdd datl

// I ZZ 2 RS EZ RS AR R RS R R R RARR SR RARRRRRlli ARl sl Rl aR S R

// CORE PROGRAM THAT CALCULATE AND PRCODUCE QUTPUT

// this function wil

// and the results of item analysis

open the output file,

then wite the score

int print_result (char *out_fname, char name_arr [| [MAchAME] int scorse [],

int no_students,

int no_questions, float disc_index(],

float diff_index(],

int resp[) [MAXQUESTN], char *c1_name, char @ @cﬁzer@lﬁOl’fL@ int rea2print){

ofstream file-out (out - f nane) ;
if (1file_out) // can't open file
return 0;

// print test information

file-out << * d ass:
file-out << » Test: *
file-out << Nunber of students: *
file-out << * Nunmber of questions:

if (res2print !'= 2) (/7 if not only
// show nanes and scores
file-out << *\t\t\tTEST RESULT\n";

file-out << * Nanes

file-oUt €€ Mcmom e
stud < no-students;

for (int stud = O
// file-out <¢ stud + 1
for (int j = 0; |

file-out << name_arr([stud] [j]:
file-out << *\t*;

file-out <« score{stud] << *\t*

<< Cl-name << *\n*;
<< subj_name << "\n*;
<< ho-students << *\n";

. << NO-questions << *\n\n";

printing item analysis results

Scores << » Percentage\n'

stud++) { '

< MAXCNAME;, j++)

<< round_to2((score[stud]/(no_questions+0.00))*100); // percentage

) // end printing all students
file-out << "\n\n";

y // end if

if

(res2print != 1) { // if not only

printing scores

/7 show discrimnation index and difficulty index
file-out << *"\t\t\tITEM ANALYSI S RESULTS\n";

file-out << *\tDiscr.\tDiff.\t\tResponse count\n*;
file-out << *Q#\tindex\tindex\tA\tB\tC\ED\tE\t\-\n";
file-out
T D il e i ettt \n*;
for (int ques = 1; ques <= no_questions; ques++) {
file-out << (ques) << "\t*
<< round_to2(disc_index[ques - 11) << *\t*; // disc ind
file-out << round_to2(diff_index{ques =~ 1]) << "\t*; // diff ind
for (int row = 0; row < (MAXCHOICES+1); rowt+) { // resp count

file-out << resplrow]{ques » 11

i f (fl_count_perc) {
const int perc =

fil e-out

file-out << *"\t*;
) /7 end printing resp.
file-out << *"\n";
}y // end for --

end printing all
file-out

<< *"\n*;

Yy /7 end if

ana.

resp(row) [ques - 11 / (0.00 + no-students) * 100;
<< " (® << perc << *)";

count for each question

results for each question

»

file_out.close();
return 1;

} // end function ****kkkdskddkrdhANAIENRNE Orint ragylt

-

J/ initialize the answer "array, filling all with ' char.

voi d initanswer (char answers[] [MAXQUESTNI) (
for (int 1 = 0; i < MAXSTUDENTS, i++)

for (int j = 0, j < MAXQUESTN; j ++)
answers([i][j]l= '';
) // end function TZZXYX2 XXX 22X 22 2 2 2 2 J initan’w‘r

// initialize the names array, filling all with "' char.
voi d initnames(char toinit[] [MAXCNAME]) (
for (int i = 0; i < MXSTUDENTS, i++)
for (int j = 0;] < MXONAME |+4)
toinit[i][jl= ' ';
) / / end function ° EDMM LM EDIAEDDDBERI] - §nitnames

// read in students answer, line by line.
int readstudans(char to_read[] [MAXQUESTN], char nanes [][MAXCNAME],
char *filenane) {

ifstream file-in (filenanme);
if (tfile_in) ({

return O;
|
// 1. toignore the 1st data, i.e. teachers answer.
// 2. and to count the nunber of questions
char *dumy;

file-in >> dununy;

const int no-quest = len_ofstr(dummy);
int i;

for (int t = 0; t < MAXSTUDENTS, t++){

1 = 0; // read names -- char by char
char c;
while (file-in.get(c), c t= '*' g& !file_in.eof()) {
names{t][i] = c;
i ++:
y // end of reading the nane, indicated by an '+,
if (te) { /7 if c is eof() -- Ctrl-Z
file-in.close();
return O
)
file-in > to_read(t]; // read answers for one student -- one string
if (len_ofstr(to_read(t]) != no-quest && to_read(t] [0] (= '") {
show_mesg (“Number of student's answer is not sane as teacher's', 1);
return 0

}
if (tto_read[t)[0)) // Orl-Z in answers.
br eak;

} // end for

// close input file

file_in.close(); _ _
return 1; // succeed in reading

) // end function RhREEREAIAEAAECIFIREINRISIRTYSY Tagadstudans

// initialise 1D array
voi d initlDarray(char ® toinit, int limt) {
for (int j =0; J <limt; j++)
toinit[jl= *'; .
) // ‘nd t’unction L2 2222222222222 2222 2 2 XX 2] initlnlrray

// read the teachers answer, return succeed or not
int readteacansw(char *to-read, char *filenane) ({

ifstream file-in (filenane);
- if (tfile_in) // can not open INPUT file
return O;

. file-in >>» to-read; // READ FI RST LINE O\LY

file-in.close();
return 1;

) // end funCtI on e Rk b Sk bk bk R Ik Ik bk r‘.dteac‘nsw

// count how many questions (or the length of the string)
int len_ofstr(char *tocount) {

int res = 0;

char *p = tocount;

while (*p++ = '*)

res+t+;

return res;

) // end function SERNEEFARTTRETERRANERNARSE len_ofstr

// given the student answers array, return the nunber of students
i nt countstudents(char answers{] [MAXQUESTN]) (
int res = O;
whil e (answers{res)[0] != '! && res < MAXSTUDENTS)
res++,

return res;
} // end funct|0n (X2 X2Z X2 X222 IZEX 2 Count ot udento

// scores the students answer, by conparing one student each tine.
void scoring (char answers{] [MAXQUESTN], char *teachers,
- int score{l, int choices) {

// for using guessing correction
int wong' = O;

int rowz=z O;
char cur_student ([MAXQUESTN] ;

whil e (answers[row] [0] != *'} {
initlDarray (cur_student, MAXQUESTN);
copy-r ow(answver s, cur - st udent, row;
. score{row] = no_correct (teachers, cur-student);
if (fl_usege) (// use guessing correction or not
W ong = no_wrong (teachers, cur-student);

score[row] = guess-correct(score[row, wong, choices);
if (score(row] < 0) score[row] = O;
Yy // end if
I OWH;
) // end while

} // end function (] >WWWWWWMMMMMMM%MMWWVVWWK ’coring

// calculate the actual score fromright and wong answers.

int guessjcorrect (int right, int wong, int choices) {(
int result;
result =right - (wrong/({(choices - 1)); // make sure choices not < 2
return result;

} // end function wetwers kv webhn bbb b dd guess_correct

// extract, one row from 2D array to a 1D array.
voi d copy-row (char tochange[] [MAXQUESTN], char *tobelDd, int row_num) {
for (int i =0; i < MAXQUESTN; i ++)
-tobelD[i] = tochangelrow_num] [i];
) // end function L2 A2 222X LSRR AZE S XS R 2) Copy_row

// extract one row from 2D array to a 1D array.
voi d copy_col (char tochange(] [MAXQUESTN], char *tobelD, int col_num) (
for (int i = 0; i < MMXSTUDENTS;, i++)
tobelD[i] = tochange(i] {col_num];
) // end function *+*drersrdkddwndhdvrwnhrbns copy_col

// return how many matching between 2 1p arrays, excluding '',
int no-correct (char *arrayA, char ® arrayB) {

int i =0, result = O;
while (arrayA[i] != '') {
if (arrayA[i] == arrayBi{il)
resul t ++;
i +4;
}

return result;
} ,/ ‘nd function (2 X 2222222222 X2 X222 X 2 J no_correct

// return how many wong answers between 2 1D arrays, excluding ''.
int no-wong (char *arrayA, char ® arrayB) (

int i =0, result = O
while (arrayA[i] (= ') {
if (arrayA[i] != arrayB[i] && arrayB[i] != '-')
resul t ++;
i ++;
}

return result;
// end fuhction [T XXZ XX AR S22 22 2 X) no—wrong

// do calculate diff. index
void do_diff_ind (char answers[] [MAXQUESTN}, char *teacher @
float diff_ind(]) (

int col =0, right = 0, no-students = O;
no- students = countstudents (answers);
char cur_question[MAXSTUDENTS] ;

whil e (answers[0][col] = ') {

k> |

initlDarray (cur_guestion, MAXSTUDENTS); // for safety
copy-col (answers, cur-question, col);
ri ght = resp_count (teachers{col], cur-question);
diff_ind[col] = (right + 0.00) /-no-students;

col++;

} // end while
) // ‘nd funCtion LA A A2 A2 22222222 2 X 2) do dit’f ind

// return how many occurance of to-count in cur-question array, excluding rr,
int resp_count(char to-count, char *cur_question) {
int i =0, result = O;
whil e (cur_question{i] != ''} (
if (cur-question[il == to-count)
resul t ++
i++;
)
return result;
) // end function LR A A 2222222222 X222 22 X2] resp count

// do the response counting
voi d do-reap-count (char answers|[] [MAXQUESTN], int resp_table[] [MAXQUESTN]) (

int col = 0;
char cur_question[MAXSTUDENTS] ;
whil e (answers[0][col] != '')

initlDarray (cur_question, MAXSTUDENTS); // for safety
copy-col (answers, cur-question, col); // for simplicity
resp_table[0] [col] = resp_count ('A', cur-question);
resp_table[l] [col] = resp_count('B', cur-question);
resp_table[2][col] = resp_count('C', cur-question);
resp_table[3] [col] = resp_count('D', cur-question);
resp_table[4]) [col] = resp_count('E', cur-question);
resp_table([5] [col] = resp_count{'-', cur-question);
col++;
} // end while
} // end functlon ° EE R S S S S S S I S S S S S S S S I O S S do_reap_count

// do the disc. Index calculation
voi d do-disc-index (char answers([] [MAXQUESTN], char *teachers,
int score([], float disc_index[]} {

// make a new copy of answers
char new_answers [MAXSTUDENTS] [MAXQUESTN] ;
for (int i = 0; | < MAXSTUDENTS, i++)
for (int | =0; jJ < MXQESTN |++)
new_answers([il [j] = answers[i]([j]; // copy

// make a new copy of scores

i Nt new_score[MAXSTUDENTS] ;

for (i =0; i < MAXSTUDENTS; i++)
new_score([i] = score(i]; /! copy

const int no-studs = countstudents(answers)
sort-answers (new answers, new scor e, no- st uds) ;

// calculate the disc. index on this new sorted answers

const float no-students = no-studs + 0. 00;
// make it float for further calculation.

const float margin = 0.30.

const int gap = (no_students * nargin);

const int top-start = O;

const int top-stop = gap = 1; // 30% hi ghest

const int bot_start = no-students - gap; // 30% | owest
const int bot_stop = no-students - 1;

float pH = 0.00, pL = 0.00;
int col = O;
const float gap-float = gap + 0.00;
char cur - quest i on[MAXSTUDENTS] ;
while (newanswers[Q[col] != '') {
initlDarray (cur_question, MAXSTUDENTS); // for safety
copy_col (new_answers, cur-question, col);
pH = no-match (teachers(col), cur-question,
top-start, top-stop) / (gap-float);
pL = no-match (teachers(col], cur-question,
bot_start, bot_stop) / (gap-float);
disc_index[col] = pH = pL;
col ++;
} // end while

Y 17 end fUnCti ON %k hhkddbhbbhbbbbtbbbbhdbd do disc index

// sort answers descendi ngly, before do disc. index
voi d sort_answers(char answers[] [MAXQUESTN], int score2[], int no_students) {

char swap[MAXQUESTN] ;
for (int i =0; i < no-students; i++) (// sorting.
for (int j =0; j <i; j++t) {
if (score2(j] < score2(i]l) (// descending
// swap the answers of the students,

//1. copy-rowi into a swap
copy-row (answers, swap, i);

//2.copy rowj into row i
for (int k= 0; k < MAXQJESTN, k++)
answers[i][k] = answers([j][k];

//3. copy swap into row j
for (k = 0; k < MAXQUESTN, k++)
answers[j][k] = swapl(k];

// AND sort the score, also.
const int swap = score2[i];

score2[i] = score2([j];
score2[j] = swap;
} // end if
} // end for |j
}// end for i -- end of sorting

) // end function #**F**XFA4RXERXLERERELRRIY gore angwers

// return how many occurrence of to-match in cur-question array.
int no_match (char to-match, char *cur_question, int start, int gtop) {(

int result = 0;
// note: use <= instead of <, because want to include stop margin
for (int i = start; i <= stop; i++)

if (cur-question[i] == to-match)

resul t ++;

return result;

Y /7 end fUNCLi ON ***wsxrvtrrrendrrhbetbhorw no__mitch

7/ call the function that will show the score
voi d doshowscore (char names[] [MAXCNAME], int scorel[],
int no-students, int no_gqtns) (

const int upper-screen = TITLE-Y + 3;

const int lower-screen = 23; // add this to add screen | ength

const int max_element = no-students - 1, // because start from el enent
int tall = lower-screen « (upper-screen);

if (tall > no-students) tall = no-students;

// top & bottom store the el ement nunber to display,

// fromtop to bottom bottomis bigger than top.

int top = 0; // start with first element in the array

int bottom=tall -1; s/ if tall =5, thisis 4, so do fromoto 4 .

use_text_color (YELLOW, SCOR-CLR);
gotoxy (1, upper-screen);
cprintf(*%s*, " # Name Score (%)*);

use-text-col or (WH TE, SOOR-CLR);

window (1, wupper-screen t 1, HALFOOLSCR upper-screen t tall t 1);
/7 need to use the scoring result area as the current w ndow,

// because the showscore() will print relative to that area.

char ch;
do {
// extreme case on the low end of array -- i.e. top of display
if (top < 0) {
top = 0;
bottom=tall -1; // like early state
}
// extreme case on the high end of array -- i.e. bottom of display

if (bottom > nax-elenment)
bott om = nmax- el enent ;
top = max-elenment = tall t 1;

}

// display from'top'‘th el. to *bottom'th el.
showscore (names, score, top, bottom no-qtns);

ch = getch();
switch { ch) {

case PAGE-DOM: // increase the margins by the length of one screen
top += tall; bottom+=tall; break;

case PAGE_UP: // decrease the nargins by the length of one screen
top -= tall; bottom-z tall; break;

case DOWN_ARROW: // increment the nmargins
top++; bottom++; break;

case UP- ARROWN // decrement the margins
top--; bottom-; break;

case CTRL_HOME: // like early state
top =0; bottom = tall = 1; break;

case CTRL_END: // go to far end
bottom = max-el ement; top = nax-elenment = tall t 1; break:

case ESC

use_normal_color(};
window (1, 1, MWXOOALSCR, MMWROMCR); // set back to nornal

return;
Y /7 end sw tch
) while (1); // end while
)} /] end fUNCLION o *F*sssssisssxsssssssssss qoghowscore

// display scores fromtop to bottom
void showscore (char names[][MAXCNAME], int scorel[]l, int top,

int bottom, int no_qtns) (

const int left =4; // first char of a nane will appear here
int y=1;, // start fromtop co-ord of CURRENT w ndow
for (int i =top; i «=bottom; i++) {// print for each student

use-text - col or (YELLOW SOOR-CLR);

gotoxy(left - 3, y); // print students nunber
cprintf(*%3d*, i + 1);

use-text - col or (BLACK, SOOR-CLR);

for (int j =0,] <= MAXCNAME, j++) (// print nanme
gotoxy (left + j, Y);
cprintf("%c", names(i]{jl);

)
gotoxy (left + MAXCNAME + 2, y); // print score

cprintf (*%34*, scoreli]);

gotoxy (left + MAXCNAME + 7, y); // print score in %
cprintf (*$3.0f*, (scorel[i] / (no-qgtns + 0.00)) e 100);

Y++;
)} // end print for each student

) // end function * *HANRRRXNRFIRRFRENRRRRNNE _p oo 0g
// call the function that will show the anal ysis results

voi d doshowanal yoia (float disc_index{], float diff_index{],
int resp(] [MAXQUESTN], int no-questions, char ® teacheroanowers) (

const int upper-screen = TITLEY + 3;

const int lower-screen = 23; // add this to add screen length

const int max_element = no-questions - 1, // because start from el enment 0
int tall = |ower-screen - (upper-screen);

if (tall > no-questions) tall = no-questions;

int top = 0; // start with first elenent in the array
int bottom=tall - 1; //if tall =5, thisis 4, so do fromO to 4 .

use_text_color (YELLOW, ANA-CLR);
gotoxy (HALFCOLSCR + 1, upper-screen);
cprintf(*%s*, *» Q# Disc Dff A B C D E -%;

use-text - col or (WH TE, ANA-CLR) ;
wi ndow (HALFOOLSCR + 1, wupper-screen + 1, MAXCOLSCR
upper-screen + tall + 1);

char ch;
do {

if (top < 0) {

top = 0;
bottom = tall - 1; // like early state
)

if (bottom > nax-elenent).
bottom= mm- el ement ;
top = nax-element - tall + 1;
)

showanal ysi s (disc-index, diff_index, Vresp,
top, bottom teachersanswers);

ch = getch();
switch (ch) (

case PAGE-DOM: // increase the nargins by the length of one screen
top +=tall; bottom+= tall; break;

case PAGE-UP. // decrease the margins by the length of one screen
top -=tall; bottom-= tall; break;

case DOM- ARROW // increment the margins
top++; bottom++ break;

case UP- ARRON // decrenent the margins

top--; bottom-; break;
case CTRL_HOME: // like early state
top = 0; bottom=tall - 1; break;

case CTRL_END: // go to far end
bottom = max-el enent; top = max_element - tall + 1; break;
case ESC

use_normal_color();
window (1, 1, MAXCOLSCR MAXROMBCR); // set back to nornal
return;

} // end switch
) while (1); // end while
) // end functlon ° EIE IR IR IR S S S O I I R R R I I Sk S S Sk S 3 2 3% 4 dOﬂhOW&II.HIYliﬂ

// display analysis results
voi d ghowanalysis (float disc_index([], float diff_index[],
int resp [] [MAXQUESTN] , int top, int bottom, ‘char @ teacheroanavera) {

const int left = 1;
// the right nost digit of ¢. nunmber will appear here, (relative)
int 'y =1, // start fromtop co-ord of CURRENT w ndow

// count the total nunber of students, fromthe nunber
// of students that answer each choices, (totalling) because does not
// want to count fromtheir 2D answer array (not avail abl e here)
int no-studs = O;
for (int choice = 0; choice < (MAXCHO CES + 1); choi cet++)
no-studs += resp{choice] [top];

for (int i =top; i <= bottom; i++) { // for each question
use-text-col or (YELLOW ANA-CLR); _
gotoxy (left, y); // print question nunber
cprintf (*%3d*, i + 1);
use-text - col or (WH TE, ANA-CLR) ;

gotoxy (left + 4, y); // print disc. index
cprintf("%5.2f", disc_index[i]):

gotoxy (left + 11, yl; // print diff. index
cprintf(*%4.2f", diff_index{i]):; // no -ve val ue.

// display resp. count
for (int choice.= 0; choice < (MAXCHO CES + 1); choice++) (

I f (teachersanswers[i] == choice + 65)

use_text_color (LIGHTCYAN, ANA_CLR);

gotoxy(left + 17 + (4. * choice), vy);

I f (£1_count_perc) // display in %

Icprintf('%3.0f', (resp[choice] [i]/ (no-studs + 0.00)) * 100);

el se

cprintf (*$3d", resplchoice)([i]); // no -ve val ue.

i f (teachersanswers{i] == choice + 65) use_text_color (WHITE, ANA_CLR);

}

Y++;
} 7/ end printing out for one question

} // end function **dddksssiawsdddirdr*Neyy ghowanalysis

LA EZ AR A SRS R R AR AR R R X R AR X R R 2R R R R R R R R R X RR R PR E RN

// MENU AND SCREEN PART

// draw border fromxl,yl to x2,y2 in fgco
voi d draw_border (int x|, int yl, int x2, int y2, int fgcol, int bgcol) ¢

use-text-color (fgcol, bgcol);

- // upper border
gotoxy (X1 , vl);
cprintf (*0*); // upper |eft
v for (int x = xI +1; x <= x2«1; xtt) (
gotoxy (X, yl);
cprintf(*f*);
}
cprintf(* *); // upper right

/7 left and right border

for (int y =yl t 1, yv<=y2 ~1; ytt) {
gotoxy(xl, Y);
cprintf(*3 *); // left border

gotoxy(x2 = 1, Y);
cprintf(* 3"); // right border

* }

// draw t he bottom border of box
] gotoxy (%1 , v2);
cprintf (=6+);
for (x =xI t 1, x <= X2 =1 ; x++) {
gotoxy (X, y2);
cprintf (*f=*);

cprintf ("%*);
use_normal_color();

) // end function (232X A 22222222 R 2R 222t draw border

// activate the 'n'th nenu in menu_item[] array,

// and taking choice fromcur-nenu pull down nenu.
int activ8menu (int n, neEnu menu_item[], PullDown cur-nenu) (

gotoxy (menu_item{n].t_leftX, TITLE-Y); // to hilite menu title
use-text-col or (H TEXT- COLOR H_BG_COLOR) ;
cprintf(“%s”,nenu-itenfn].title-str); // print title-in hlite

int res = cur_menu.choose(); // take choice, from choose()
got oxy (menu_item[n].t_leftX, TITLE-Y); // to normal again the-title

use_normal_colorxr();
cprintf (*%s* menu_item[n}.title_str); // print title in nornal

return res;

} // end function *rdserrerRrrdrRraveReRIRSST o+ {vyBmenu

// last thing to be called when quitting
void tidy-up () {
show_mesg (*Thanks for using this program", 0);
t ext mode(LASTMODE) ;
clrscr();
} // end function IZT X EXX AR REES R 2 2 2 & & J tidy_up

// make the screen ready, so that ready to use by any other parts
void ready-screen 0 |

t ext mode(3) ; // set screen node to 80 colums by 25 rows, col or
// paint the nenu title line
pai nt-box (1, TITLE-Y, MAXCOLSCR TITLE-Y, N_BG_COLOR);

// paint the class and test title line
displayclass ("NO CLASS NAME®,*NO TEST NAME);

// title line of score window and item anal ysis results w ndow
int y=TTLEY + 2;

int bgcol = RED, // have to use to nmake it sanme as 'paint func.' color
paint-box (1, vy, MAXOOQLSCR vy, bgcol);
use-text-col or (LI GHTGREEN, bgcol);

gotoxy(l1Q vy); cprintf(*ss*, "SCORES);
got oxy(HALFOOLSCR + 14, y); cprintf(*%s*, '| TEM ANALYSI S RESULTS);

// areas of results display

// scores area

paint-box (1, TITLE-Y + 3, HALFOOLSCR, MAXROASCR - 2, SCOR_CLR);

// analysis results area

pai nt-box (HALFCOLSCR + 1, TITLE-Y + 3, MAXCOLSCR, MAXROABCR « 2, ANA-CLR);

use_normal_color();

)// end funCtlon ° R Sk S b ok I R R Rk bk bk b ready_screen

// err is used to determ ne the appearance of error box
voi d show_mesg(char *err_msg, int err) ({

int winwidth = len_ofstr(err_msg) + 2; // extra 2 on right, 2 on |eft
if (wWwnwidth > MMAXCOLSCR) { // for programmer's use only

cerr << 'Error nessage exceeded screen wdth.';

exit (1);
)

int to_pad = FALSE;

if (wnwidth $21!=0) { //if odd
wi nwi dt h++; // nake it even
to_pad = TRUE

}

const int leftX = (MAXCOLSCR / 2) - (wnwidth / 2);
int rightX = (MAXCOLSCR / 2)_ + (wWinwidth / 2)

if (lto_pad) rightX++;

const topY = 13;
const lowY = 15;
char *scrn_buf;

scrn-buf = new char{ (rightX - leftX + 1) * (lowY - topy + 1) * 27;
gettext(leftX, topY, rightX, lowY, scrn-buf);

// for shadow

char *scrn_buf2; // right shadow

sern_buf2 = new char{ (1) * (lowY = topY + 1) * 2];

char *sern_buf3; // bottom shadow

scrn_buf3 = new char{ (rightX - leftx + 1) * (1) * 2);

// for shadow

gettext(rightX + 1, topY + 1, rightX + 1, lowY + 1, scrn_buf2);
gettext(leftX + 1, lowY + 1, rightX + 1, lowY + 1, scrn_buf3);
pai nt-box(rightX + 1, topY + 1, rightX + 1, lowYy + 1, BLACK);
pai nt-box(leftX + 1, lowY + 1, rightXx + 1, lowy + 1, BLACK);

if (err) drawborder (leftX, topY, rightX, lowY, LIGHTCYAN, RED);
el se draw border (leftX, topY¥, rightX, lowY, BLACK, WHITE);
gotoxy(leftX + 2, topY + 1); // print the nessage

cprintf (*%s*, err-nsqQ);

gotoxy (leftX + 2, topY + 1);

getch ();

// restore the previous screen contents, delete the buffer that holds it
puttext (leftX topY, rightX, lowY, scrn-buf);

delete scrn-buf;

puttext(rightX + 1, topY + 1, rightX + 1, lowY + 1, secrn_buf2);

del ete scrn_bufl;

puttext(leftX + 1, lowY + 1, rightX + 1, lowY + 1, scrn_buf3);

del ete scrn_buf3l;

use-nornal - col or{);

) // and function #*s*ssessnsxsvrwansrnssss ghoy mesg

// paint the area from xl,yl to x2, y2 in 'col’ color.
voi d paint_box(int x|, int yl, int x2, int y2, int col) {

use_text_color(col, col); // set both text and bg to have sane col or

window(xl, yl, x2, ¥2):
clrscr();

// set back to normnal
window(1l, 1, MAXCOLSCR 25);
use_normal_color{();

} // end function WM ITIZTEIIEIIIILAELZ 2L 22 L] O XmenQOX

// change default text color and text back ground col or
void use-text-colgr(int fgeol, int bgcol) {

textcolor (fgcol) ; // set text to fgcol
textbackground (bgcol); // set background to bgcol

} /7 end fUuNCtion wwssssssresrrrerresrbnnsn use_text_color

// set the colors back to nornmal
void use_normal_color() {

textcolor (N_TEXT_COLOR) ; // set text back to nornmal col or
textbackground (N_BG_COLOR); // set bg back to normal col or

} /7 end function e *****xxkkkkkkkkkkkkxxkx* yga-normal -col or

// take a string fromkeyboard, giving pronpt in a pop up w ndow

// restriction: str_toget nust have been decl ared using specific style,

// ex: char *filename = *THISDATA.TST*;// to avoid 'Null pointer assignnent'
// then call using: prompt_line("Please type in the filenane', filenane, 12);
// this is because we are using user-defined function len_ofstr()

// to count the 'msg® string length

voi d prompt_line(char @ rasg, char ® str-toget, imt len) {

int winwidth = len_ofstr{msg) + len + 2; // extra 2 on right, 2 on |eft
if (winwidth > MAXCOLSCR) { // for programrer's use only

cerr << "Error nmessage exceeded screen width.";

exit (1);
}

int to_pad = FALSE

if (wnwidth ¢ 2 '=0) (// if odd
wi nwi dt h++; // make it even
to_pad = TRUE

}

const int leftx = (MAXCOLSCR / 2) = (winwidth / 2);
int rightx = (MMXCOLSCR / 2) + (winwidth 7 2);

if (tto_pad) rightX++;

const topY = 13;
const lowY = 15;

char *s_buf;

s_buf = new char([(rightX « leftx + 1) * (lowY - topy + 1) * 2 1
char *s_buf2; // right shadow

s_buf2 = new char[(1) * (lowY - topY + 1) * 2 |I;

char *s_buf3; // bottom shadow

s_buf3 = new char[(rightX = leftX + 1)} o (1) o 2 1;

if ('s_buf Il !s_buf2 || !s_buf3) { // failed to allocate nenory
cerr << "\nvideo nenory allocation error while prompting\n*;
exit (1);

}

gettext(leftX topY, rightX, lowY, s_buf);
gettext(rightX + 1, topY + 1, rightX + 1, lowY + 1, s_buf2);
gettext(leftX + 1, lowY + 1, rightX + 1, lowY + 1, s_buf3);

dr aw- bor der

gotoxy (leftX + 2, topY + 1);
cprintf (*%s*, msg);

(leftX, topY, rightX, lowY, BLUE, WH TE);

// paint black spaces

pai nt-box(rightX « len - 1,

// right and bottom shadow

pai nt-box(rightX + 1, tepy + 1,

pai nt-box(leftX + 1, lowY + 1,

use_text_color (WHITE, BLACK);

get_streeng (str_toget, | en,
use_normal_color();

// print the message

topY + 1, rightX - 2, topY + 1, BLACK);

rightX + 1, lowY + 1, BLACK);

rightX + 1, lowy + 1, BLACK);

// take the string here

rightX - len - 1, topY + 1);

// restore the previous screen contents, delete the buffer that holds it

puttext(leftX

del ete s_buf;

puttext(rightX + 1, topY¥ + 1, rightX + 1, lowY + 1, s_buf2);
del ete s_buf2;

puttext(leftX + 1, lowy + 1,

del ete s_buf3;

topY, rightX, lowY, s_buf);

rightX + 1, lowY + 1, s_buf3);

) // end function I X2 22X 2222 222 prompt line

/7 print mesages in the status line
voi d statusline (int n) {

char *linel, *1line2;

switch (n)
case 1:
linel
line2
br eak;
case 2:
linel
line2
br eak;
case 3:
linel
line2
br eak;
case 4:-
linel
i ne2
br eak;
case 5:
i nel
|ine2
br eak;
case 6:
linel
line2:
break;
case 7'
linel
[ine2
br eak;
case 8:
linel
line2
br eak;

#on

LT Hn

"oy

[T}

-
-

(

" Choosing from pull

Up,

' Down,

" Browsi ng

" [x)vm,

Up,

" Browsi ng

" Down,

"Typi ng

Up,

in the filename";

down nenu';
Right, Left, ENTER Esc*;
the SCORES of the student';
PgDown, PgUp, Crl-End, Qrl-Hone, EsC*;
the results of |ITEM ANALYSI S';
PgDown, PgUp, CQrl-End, Crl-Hone, EsC*®;

"All valid characters in a filenanme, followed by ENTER';

"Typi ng

" Typi ng

in
"Any available character

the CLASS nane';

on the keyboard, followed by ENTER';:

in the TEST nane";
"Any avail abl e character on the keyboard, followed by ENTER ;

"Looking at current settings";

"Any key (to clear the display)”;

'Choosing the nunmber of choices in a question';
"Down, Up, R ght, Left, ENTER, ESC*;

) // end switch

show status(linel, 1line2);

} // end function [Z2 X2 X2 AR R 22 2 2R 2 2 J ﬂtatuﬂlin‘

// print out nessages on-2 status l|ines
void show_status (char *linel, char ® [in&Z) ¢

// first-line -- current status

int y = MAXROMCR - 1;

int bgcol = RED

pai nt-box- (1, y, MMXOOLSCR vy, bgcol);

use-text - col or (LI GHTGREEN, bgcol);

gotoxy (3, y); cprintf("ss®, [Status:]");
use-text-col or (YELLOW bgcol);

gotoxy (21, y); cprintf(*%s*, linel);

// avail abl e keys line

y = MAXRONSCR,

bgcol = CYAN

paint-box (1, vy, MWCOASCR vy, bgcol);
use_text_color (RED, bgcol);

gotoxy(3, y); cprintf(*ss*, "[Keys available:]");
use-text - col or (BLUE, bgcol);

got oxy(21, y); cprintf(*%s*, |ine2);

use_normal_color();

} // and function * (22X XXXAZIERZ XA A2 2220 & 2 4 'how_'tatu‘

// display the class and the test nane
void displayclass (char ® claanane, char ® tentname) {

inty=TTLEY + 1;
int bgcol = CYAN

paint-box (1, vy, MMXOQSCR vy, bgcol);
use-text - col or (BLACK, bgcol);

gotoxy(1Q vy); cprintf(*%s", *Class:");
got oxy(50, y); cprintf(*ss*, 'Test:');

use-text - col or (BLUE, bgcol);
gotoxy (16, y); cprintf(*%s*, cl asnane);
got oxy(55, y); cprintf("%s", testnane);

) // end function (2 X2 RS2SR0 R 2 220 diﬂplayclalﬂ

// round a nunber into 2 decimal places float
float round-to2 (float toround) {

float x = toround * 100;
int n = (,toround . 100 };

if (toround > 0) {

if {(x-n > 0.5 n++
} else

if (x-n<-0.5) n--;
return (0.00 + n) / 100;

} /] end function #***s»wawssssssrasntavrrire round_to2

Jae

e

// to_get -- string to be input, lento_get -- len of string to be input
// startX -- X coord to begin getting the string

// Y -- Y coord to get the string

void get-atreeng (char *to-get, int lento_get, int startX, int y) (

int done = 0, elem= O;

char c¢h;
gotoxy (startX, y);
do {

ch = getche(); // to display while input

if (ch == ENTER) { // *1*
if (elem < lento_get - 1) to_get[elem] = '\0'; // null
done = 1;
} // *1*
el se
if (ch == BACKSPACE) (// ® 2*
if (elem> 0) (

if (elem == lento_get = 1) (// special case
gotoxy(startX + elem vy); // -- because did not erase
cprintf("sc*, ' '); // the last (max) char
gotoxy(startX + elem- 1, y);

}

to_getfelem] = '\0';

cprintf (*%c", ' ');

elem-;

}
gotoxy (startX + elem vy);

} /] *2*
el se
if (ch == ESQ { // *3*
for (int j = 0; j < lento_get = 1; j++)
to_get[0] = '\Q';
done = 1;
Y /7 0 4
else { // ® 5

to_get{elem] = ch
if (elem < lentoget = 1) elem++;
gotoxy (startX + elem vy);
} 7/ ® 5% end if - else
} while (!done);

} // end fUI’]CtIOI’] ° *******+**************** get_ﬂtreeng

// show all the curent settings
void show_settings (imt choices, char ® clashane, char *testname,
int Nno-g, int no_students) (

const int, leftX = 20:

int rightX = 60;
const topY = 7,
const lowY = 17;

char @ scrn-buf;
scrn-buf = new char{ (rightX « leftX + 1) * {lowY - topY + 1) * 2];
gettext (leftX, top¥Y, rightX, lowY, scrn-buf);

// for shadow _
char *scrn_buf2; // right shadow
scrn_buf2 = new char{ (1) * (lowY - topy + 1) * 2 };

gettext(rightX + 1, topY + 1, rightX + 1, lowY + 1, scrn_buf2);

char *scrn_buf3; // bottom shadow
scrn_buf3 = new char| (rightX - leftXx + 1) * (1) * 2 1;
gettext (leftX + 1, lowy + 1, rightX + 1, lowY + 1, secrn_buf3);

paint_box(rightX + 1, topY + 1, rightX * 1, lowY + 1, BLACK);
paint_box(leftX + 1, lowY + 1, rightX + 1, lowYy + 1 BLACK);

draw border (leftX, topY, rightX, lowY, BLACK, WR TE);

paint_box(leftX + 1, topY + 1, rightX - 1, lowY = 1, WHITE);
w ndow (leftX, topY, rightX, lowY);

use-text-col or (BLUE, WRI TE) ;

gotoxy (13, 1); cprintf(*%s*, "uCURRENT SETTINGSZ");

gotoxy(3, 2); cprintf("ss*, "Score using guessing correction ?:");
got oxy(19, 3); cprintf(*ss*, 'Nunber of choices:');

gotoxy (7, 4); cprintf("ss*, 'Display response count in % 2:*);

use-text - col or (RED, VR TE) ;

gotoxy (37, 2);

if (£l_usegc) cprintf(*ss*, 'YES'); else cprintf(*%s*, "NO");
gotoxy(37, 3); cprintf(*sd", choices);

gotoxy (37, 4);

if (fl_count_perc) cprintf(*ss*, 'YES); else cprintf(*ss*, "NO);

use-text - col or (BLUE, VW TE) ;

gotoxy(ll, 6); cprintf(*%s", . -- Test infornmation -- ®);
gotoxy (3, 7); cprintf(*ss*, "class :");

gotoxy (4, 8); cprintf("gs*, "Test :*);

gotoxy (3, 9); cprintf(*%s*, "Nunber of questions :*);
gotoxy(3, 10); cprintf("$s*, "Nunber of students :");

use-text - col or (RED, VW TE) ;

gotoxy (11, 7); cprintf(*ss*, clasnane);
gotoxy (11, 8); cprintf("$s*, testname);
gotoxy (25, 9); cprintf(*%d", no-q);

got oxy(25, 10); cprintf("%d", no-students);

getch();

// restore the previous screen contents, delete the buffer that holds it
puttext (leftX, topY, rightX, lowY, scrn-buf);
del ete scrn_buf;
puttext(rightX + 1, topY + 1, rightX + 1, lowY + 1, scrn_buf2);
del ete secrn_buf2;
puttext (leftX + 1, lowY + 1, rightX + 1, lowY + 1, scrn_buf3);
del ete scrn_buf3;

wi ndow (1, 1, MAXOCOLSCR, MAXROMBCR); // set back to nornal

use_normal_color();

, // end function XX XXX S22 22 X222 2 R A2 2 X R 'how_“tting‘

// take choices from pull down nenu, showed through streeng
int gub_pulldown (int leftX, int topY¥, char streeng(][MAX M CHARS]) (

PullDown subgdmenu (leftX, topY, streeng);
return sub_pdmenu.choosel() ;

) // end function I'TZIXTI2EELER2 2222 222 R 2) sub_pulldown

