
- .
.I.. .if

Multiple Clioice Questions Test
Scoring and Item Analysis Tool

By: Mohamad Zarnberi Saad

University of Nottingham

t

Submitted September 1995, in partial fulfiilment of the conditions
for the award of the degree of Msc in Information Technology

Supervisor: Mrs. Jean Hitchings

‘ U N I T KOLEKSI KHAS

.

c

This project has successfully developed a computer program that can be

used on IBM-compatible personal computers to do multiple-choice

questions test scoring and item analysis. The program is menu driven, with

pull-do+n menus act as the main interface with the user. The program

reads input data from an ASCII text file, which filename is given by the

user. The user has to prepare the data file before using this program. The

output given is the scores obtained from the test and the item analysis

results, which consists of discrimination index, difficulty index and

response count. The output displayed on screen can also be saved to a text

file. The user can make several options in giving commands for the

program to score and analyse the item. These include scoring using

guessing correction and displaying response count in percentage. ’

CHAPTER 1 : INTRODUCTION

1.1 Introduction to This Project

1.2 The Needs to Do This Project

1.3 The Scope of This Project

CHAPTER 2 : INTRODUCTION TO THE PROGRAM

2.1 Introduction to The Program

211.1 What This Program Is

2: 1.2 Requirements

2.1.3 Potential Users

2.2 Motivations for Making this Program

2.2.1 Tie Saving

2.2.1.1 Encouraging Continuous Student’s Development Diagnostics

2.2.2 Encouraging the Use of Computers in Schools

CHARTER 3 : THEORY AND PRACTICE OF MCQ TEST

3.1 Introduction

3.2 Scoring

3.2.1 Number of Correct Answers

3.2.2 Guessing Correction

3.3 Item Analysis

3.3.1 Difficulty Index

5

5

6

6

6

7

8

;’ 9

11

12

12

13

13

14

*

3.3.2 Discrimination Index

3.3.3 Response Count

1 5

1 6

3.4 The Problems with Manual Scoring and Analysis 1 7

3.4.1 Scoring Problems 1 7

3.4.2 Item Analysis Problems 1 8

3.5 Alternatives to Manual System 1 9

CHAPTER 4 : SYSTEM ANALYSIS AND DESIGN

4.1 Introduction

4.2 Project Objectives

4.3 System Analysis

4.3.1 Data Flow Diagrams

4.3.1.1 Context diagram

4.3.1.2 Diagram 0, or top-level DFD

4.3.1.3 Level 2 DFDs

4AJystem Design

4.4.1 Designing Program Output

4.4.1.1 Output File

4.4.1.2 Screen Output

.4.4.2 Designing System Input

4.4.3 User Interface Design
.-

4.4.3.1 Type of User Interface

4.4.3.2 Dialogues and Communications

4.4.3.3 Feedback

20

2 0

21

21

21

2 2

2 2

‘16

2 6

2 7

2 8

2 9

3 0

3 0

3 1

3 2

6.2.2 Main Menu

6.3 Pull-Down Menu Items

6.3.1 File Menu

6.3.2 Results Menu

6.3.3 Marking Menu

6.3.4 Analysis Menu

6.3.5 Other Menu

6.4 Typing In the File, Test or Class Name

6.5 Browsing the Results

6.6 Input File

6.7 Output File

6.8 Error Messages

CHAPTER 7 : CONCLUSIONS

7.1 Project Objectives Achievement

7.2.Further Enhancements

References

4 9

5 0

5 0

5 1

5 1

5 2

5 2

53

53

55

5 6

5 8

Appendix A: Different Valid Format of Input Data File

Appendix B: *?‘he Code of Pull-down Menu Definition File

5 9

5 9

Appendix C: The Code of Pull-down Menu Implementation File

Appendix D: The Code of Main Program MCQTEST.CPP

TABLE OF FIGURES

Figures P a g e

Chapter 4

Figure 4.1 - Context diagram of the proposed system

Figure 4.2 - Diagram 0 or top-level DFD

Figure 4.3 - Process 1

Figure 4.4 - Process 2

Figure 4.5 - Process 3

Figure 4.6 - Process 4

Figure 4.7 - Output fJe layout

Figure 4.8 - The screen layout, showing the output area

Figure 4.9 - The input file format
P

Chapter 5

Figure 5.1 - The arrays that will store the input data

Figure 5.2 - The arrays that will store the results

Figure 5.3 - Extracting a student’s answers to do the scoring

Figure 5.4 - Copying and sorting the students’ answers 2-D array

Figure 5.5 - Extracting answers to calculate the discrimination index

Figure 5.6 - Extractinganswers to calculate the difficulty index

Figure 5.7 - The changing of displaying margins

Figure 5.8 - Arrays that store the menus

2 1

2 2

2 3

2 3

2 4

2 5

2 7

28

3 0

3 4

35

3 6

3 7

38

3 9

4 3

4 6

E

L’ Chapter 6

8
Figure 6.1 - Screen layout of the program

Figure 6.2 - Main menu choices

Figure 6.3 - File menu

Figure 6.4 - Results menu

Figure 6.5 - Scoring menu

Figure 6.6 - Analysis menu

Figure 6.7 - Other menu

Figure 6.8 - Prompt for typing in the input file name

Figure 6.9 - Sample results from the item analysis.

Figure 6.10 - Input fde format

..’ Figure 6.11 - Choosing the output file contents

I!
Figure 6.12 - Output file layout 5 6

49

49

5 0

51

51

5 2

5 2

5 3

5 4

5 5

5 6

CHAPTER 1

INTRODUCTION

i

1 .I Introduction to This Project

This project is concerns with helping educators by providing an easy and cheap way of

scoring and analysing MCQ test questions. The method of providing the help is by

developing and completing a computer program that can be used as a tool to score and

analyse MCQ test items. The computer program to be developed must be easily accessible by

the educators, easy to use and cheap. Educators that will benefit most from this project are

expected to be the educators that are teaching in lower-level institutions, like primary and

secondary school teachers. Higher-level educators in higher institutions like universities may

be can access and use the program that has been developed specially for their university.

However, they can still use the program developed through this project if they like to.

1.2 The Needs to Do This Project

G

c

There are several reasons why this project topic has been selected. While some of them are

academic reasons, some of them come from my personal considerations. Education has been

selected as the field of research because of my personal consideration. As an ex-teacher, I

real& the heavy burdens that teachers have. It is not unusual they have to do so many works

in a very short time. Therefore, a topic that can benefit teachers and lighten their burdens is

more preferable. . . . ‘.

Testing field is chosen (and not Computer Assisted Learning or time-tabling, for example)

because assessment and testing appeared to be one of the most difficult division in education.

1

Furthermore, while progrxns like CAL, nre growing very fast in number, there is not much

attention given by software developers to help teachers in speeding up test scoring and item

analysing, except in managing and processing already obtained scores. So, programs like the

one to be developed in this project need to be produced more.

MCQ is chosen because its scoring procedure is more direct compared to other kinds of

questions. For example, the ‘fill m-the-blank’ type will need some expertise value in the

program that evaluate the answers especially in determining the score from a wrongly spelled

answer. Any research in such area will need much more time to be completed. So, MCQ is

chosen because of the time constraint that does not permit too advance research to be

completed.

There are several programs that are able to do what is intended to be done in this project.

One of the programs that deals with computer automated marking is ceilidh system

(Computer Environment For Interactive Learning In Diverse Habitats), developed and

currently running at the University of Nottingham. In addition to managing programming

skills assessment, ceilidh also have a facility to do MCQ marking. This facility can also be

used to give questions to students, and the students must answer the questions while using a

computer that is connected to the network server that provide the ceilidh service.

While programs like ceilidh are already exist, still there are the needs to proceed with this

project. The currently exist programs are normally inaccessible by the school teachers. To

use the programs, not only the teachers have to consult the university that built the program,

but also they will need adequate skills to use computers in the same platforms where the

‘

c

programs have been built for, Furthermore, these programs are normally difficult to be

transferred from one platform to another. For instance, if ceilidh were meant to worked on

UNIX-based machines, it will become almost inaccessible to the teachers who only has got

training to use DOS-based personal computers. So, a small program that will be easily

accessible by the teachers and will serve the purpose of scoring and analysing MCQ test

items still needs to be developed.

The main purpose of this project is to provide the teachers a cheap and easy way to release

their heavy burdens of scoring and analysing tests’ answers. The teachers should not have to

spend so much money to buy new machines or devices. This can be achieved by providing

them with a computer program that can fit into a diskette and can be run using their existing

personal computer at school or at their home.

1.3 The Scope of This Project

This project should be completed in two and a half months. So, it is suitable for this project

to include only the first live phases from the usual seven phases in a system life cycle. The

phases to be included are:

1. Identifying problems and objectives.

2. Finding the information required.

3. Doing the system analysis.

4. Designing the system.

5. Developing and documenting the software.

In this project, phases 1 and 2 are reported in chapters 2 and 3. Phase 3, the system analysis,

is shown in chapter 4. The software development (coding) is explained in chapter 5 and

*

lastly, the software documentation is located in chapter 6. The two phases that are not

included in this project due to the time constraint are:

1. Testing and maintaining the software.

2. Implementing and evaluating the software.

Testing, implementing and evaluating the software will consume so much time that

implementing it will most likely to make this project exceed the time limit. So, it has been

decided that this project will only do the first five phases.

4

CHAPTER 2

INTRODUCTION TO THE PROGRAM

L

ti

*

t

c

2.1 Introduction to The Program

2.1.1 What This Program Is

The program described in this report is entitled “Multiple Choice Question (MCQ) Test Scoring

and Item Analysis Tool”. Like suggested by its title, it can be used as a tool to accomplish the

task of scoring MCQ tests and analysing the functionality and usability of each question in such

tests.

This program helps the users by reducing the time spent in scoring and analysing the test items

(in educational tests, a question is also known as an item). Instead of having to mark and analyse

the test manually using paper-based works, the users only have to ready an ASCII text file by

any text editor to be used as the input data to this program. The text file should contain all the

answers of the test. The program will read the text fde and then do the works of giving scores to

the students and analysing the test items.

While using this program, the user can change several options regarding the scoring and

analysing procedure. These include the way scoring is done and the way to report the results.

The result of this program is the test score for each student, and the analysis results concerning

each question in that test. The output is in two forms, which are on-screen form and in-file form.

The user can browse through the results displayed on the screen, and can then write the rest& to

a disk file for further processing purposes, such as editing it in a word-processor and printing it

c

Y

.

F

2.1.2 Requirements

This program is written and compiled using Turbo Ctt version 1.01 for DOS. The user must

run this program from an IBM compatible personal computer (PC) with at least 256kb RAM,

operating on at least DOS operating system version 4. The PC used must also use a colour

monitor, capable of displaying text in 16 colours mode.

2.1.3 Potential Users

Most program developed have the potential users in the mind of their developers. This MCQ test

tool program is intended to help people who deal with MCQ tests, regardless of the level of the

tests. So the potential users of this program include all educators and test organ&s, such as

teachers and lecturers. A teacher in a primary school may be using this program in more basic

settings mode, where the scoring scheme does no correction to the raw marks. Educators at

higher level such as lecturers in universities can benefit from more advanced features of this

program, for instance using guessing correction scheme in scoring a test. A test organ&or that

develops tests periodically and used some questions repeatedly, for example admission tests, can

take most advantage in the analysis part of this program. He/she can find out the functionality.

and usability of an item before deciding whether to use the item or such items in future tests.

2.2 Motivations for Making this Program

In every system developed, there must be some motivations that stimulated the idea of

developing the system and several factors that encouraged its development. For this MCQ test

tool program, there an~two major motivations that encouraged its development. The first one is

the consideration of the time that can be saved by using this program, including the advantages

of using computers to do recalculation in much better ways. Secondly, we are hoping that the

6

* r

*

provision of a cheaper alternative compared to much more expensive tools currently used by

specialised test organ&r will contribute to the extensive use of computers among educators in

schools. It is on these concerns that this program has been built.

2.2.1 Time Saving

Time saving is the first and biggest motivation to the building of this program. As already

acknowledged by most test administrators, not only the task of making a good MCQ test itself is

very hard and time consuming, but also the task of scoring, and then analysing the functionality

and the usability of each question in the test. The scoring process involves scanning all the

candidate answers, each time comparing them with the actual answers and then giving the mark

to that item. The number of comparisons involved is the product of the number of students and

the number of questions. For instance, if a test seated by m students contains n questions, the

marker must do m x n comparisons to complete the scoring process. This is not including the

process of giving scores for the test as a whole to the students, which involv& the counting of

right answers. The process will consume much more time if guessing correction is involved,

where the number of wrong answers also had to be counted and be put into a formula.to obtain

the corrected score.

The process of analysing each test item is more tedious compared to the process of scoring the

test. This involves scanning all the candidates’ answers sheets for each item. This tediousness can

be seen by taking response count as the simplest example. To count the number of responses for

each choices m an item-, the marker has to examine the answer sheet back and forth, one choice

at a time. For example, to count the number of choice “A”, he/she has to go through all the

answer sheets to count the occurrence of “A” for that particular item. If the question has 5

7

choices, i.e. "A~~ to II E”, he/she has to go through the answer sheets 5 times for that item alone.

So there is considerably much time needed to complete the item analysis process.

e
If a computer program can be used to do all these tasks in one instance, the time saved will be

significantly important. The time saved can then be used by the educators to make better

decisions for next test preparations. Although the educators have always managed to come up

with the student scores, it is very discouraging for them to come up with the item analysis

results, due to the time taken to complete the process. If they do not do item analysis, they will

lose much useful information about their own teaching methods and the item’s capability. These

kinds of information are very helpful in making judgement about previous teaching methods

used before the test, and can be used to determine the reliability of each item. In conclusion, a

program that can speed up the process of scoring and analysing the test items can save educators

so much time, which will give them more time to make better judgement on the test and their
.

teaching methods.

2.2.1 .l Encouraging Continuous Student’s Development Diagnostics

The development of this program is also based on the idea of providing a facility that is not only

fast, but also “clean” in scoring and analysing the test items, which in turn will encourage the

P
continuous monitoring of students’ progress, compared to paper-based systems. Here, the word

“clean” means that the report given is flexible enough to change with possible changes to the

c
answers given, without cluttering the report. For example, if a wrong actual answer is given and

then changed; this program will also taking the new input as the ,usual input, re-scoring and

analysing the test. This will save much time, again. In current practice, a recalculation must be

done to all the scores and item analysis that has involved with a wrongly given answer item. In

8

*

8

r

contrast, re-calculations using computers are just the matter of running the program again, and

the new output will be given at once. By providing a program that will give clean and accurate

reports about each test item, we will provide the educators a facility that can be used to diagnose

any flaw in the instructions given while teaching the students before the test. For instance, if an

item is reported by this program to have a zero difficulty index (that is nobody answered it

right), may k the given actual answer is wrong, or the educators can suspect that some major

concept misunderstandings have been contracted by the students. If the answer given is wrong,

he/she only have to run the program again. If there is evidence that misconceptions had

happened, he can correct that in the next meeting with his/her students. In other words, by

providing a program that will help the educators in analysing the test items, we can help them in

giving better service to their students, by both preparing more reliable tests to evaluate them and

by correcting any misconceptions in their students mind. Both the educators and the students can

benefit from this kind of programs.

2.2.2 Encouraging the Use of Computers in Schools

Another concern that arouses the idea of building this program is to provide a cheaper

alternative for MCQ test processing, which in turn will encourage the more extensive use of

computers in schools: The uses of computers in primary and secondary schools are currently not

very impressive compared to sectors as industrial, business or in higher educational institutions.

This is due to the factors such as the high cost, the small number of computer software that is

appropriate for school administration purposes and the lack of knowledge and consciousness

towards the computer use among school administrators and teachers (Ray, 1991). Though the.-

cost of buying a unit of computer is quite high for a school, many schools have at least one unit

of computer located in the administration office to do at least clerical works. So the cost factor is

not a major factor that prevents the educators in schools to use computers. If appropriate

F

software can be, developed and its functionality can be showed to the administrators, perhaps

their consciousness will be greatly improved. One such software is the program that can help

them mark the multiple choice question tests and giving help in interpreting the tests.

Currently, there are several kinds of machines used in scanning the candidate answers, recording

them and then scoring and analysing the items used. These machines are usually expensive

enough that only certain companies which are specialising in test processing are using them.

Usually, an average school cannot afford to buy those machines. By giving schools the access to

this program, we are actually giving them an alternative to do MCQ processing in a cheaper

way, since this program can be run through a typical PC.

In conclusion, two motivations have encouraged the development of this program. The first one

is the consideration of the time that can be saved by using a computer program to replace paper-

based works. By giving results in a very short processing time, we are hoping that the educators

will not be discouraged to do item analysis anymore. The second one is the idea of providing a

cheaper MCQ test tool, which is hoped to contribute to more comprehensive use of com&ters in

schools.

10

CHAPTER3

.I THETHEORYANDPRACTICEOF
MCQTE~TSSCORINGANDITEMANALY~IS

L,

3.1 Introduction

MCQ tests have got more critics than any other forms of testing do (Wood,1991,p.32). However,

MCQ tests are still being widely used. They are used in teacher-constructed tests in schools to

assess the students and instruction. In higher level admission tests, MCQ tests are used to select

only the best-performing candidates. It is also commonly used in medical education, where the
.

factual domain to be tested is usually very big.

The main critic to MCQ tests is that they failed to measure higher-level cognitive outcomes, as

done by essay questions. However, we should not expect MCQ tests to do what they are not

particularly designed for. As Wood (1991,p.32) suggested, MCQ can be justified by insisting that

it is a technique that does a particular job and not more than that. The job MCQ is doing is

making students to read the questions and then think, not writing. We should not expect MCQ to

do more than that. As far as its job is concerned, MCQ is doing it very well So, according to

Wood, it is not that MCQ cannot do its job, but the critics wanted MCQ to do the job that is

suitable to be accomplished by other methods.

The fact that MCQ tests are still being widely used suggests that it has several advantages. One

advantage that MCQ tests ,have over essay tests is that MCQ tests can sample the content of
:

certain domain extensively (Wiersma,l!NO,p.43). If a teacher wants to measure the outcome of

his/her instructions in a very big area, he/she can do so by assigning an MCQ test containing

enough questions. He/she cannot do that with essay test because of the test time limit. This is true

” +
11

since in MCQ tests, to indicate the answer, a candidate is expected to just mark the answer on the

* answer sheet. While answering essay questions, the students spend more time in organising

0 his/her essay and writing it down

Besides being able to extensively sample a domain, MCQ tests also take less time to be scored

compared to essay tests. Very simple and objective scoring methods are used, which will also

ensure that there should be no bias in the scoring process, a phenomenon proven to happened in

essay tests scoring. This is one of the reasons why big assessment organisations that prepare the

.

r:

V

admission test use MCQ tests to select competent candidates.

3.2 Scoring

There are several scoring techniques used in MCQ tests. These include counting the raw number

of correct answers and applying guessing correction The most widely used is the counting of

correct answers, which is very popular in teacher-constructed tests at school IeveL The next

popular method is applying guessing correction to the number of correct responses, which is

considerably common in very big admission tests and medical education tests. Other variations of

scoring methods include dual response and the use of differential weightings of responses.

However, since these variations are not very common, they are not included in this research

t

3.2.1 Number of Correct Answers

The most extensive use of MCQ test scoring, due to its simplicity, is by counting number of

correct answers. No alteration is done to the score obtained. The advantage to this technique is

obvious, that it is very easy to use and understand. The disadvantage is it does not cope with

random guessing that might have been adopted by the candidates during the test.

12

0

P

c

c

l

3.2.2 Guessing Correction

As the name suggests, guessing correction is done to comect the supposedly lower scores

obtained by a candidate, which has become higher because blind guessing were practiced through

out the test. To understand how to correct the score, one must understand how the guessing

process might improve the candidate’s score. For an example, take an MCQ test which use 5

choices in each question. If a candidate use blind guessing to answer a question, the probability of

he/she to hit the right answer is 1 out of 5, or 0.2. If he/she guesses on 20 questions, the

probability is that he/she will get 20 / 5 = 4 questions right. Guessing correction aimed to

eliminate the points gained by blind guessing. The general formula for calculating the actual score

is:

score = r ight - (wrong / (n - 1) 1 ,

where n is the number of choices in a question. For example, take a test that contains 100

questions of 5 choices. If a student answered 70 questions and omitted 30, and get 54 right and

16 wrong answers, the corrected score will be:

score = 54 - (16 / (5 - 1)) = 54 - 4 = 50 .

What is reflected is that from 54 right answers, the candidate might have been certain on only 50

of them, and guess blindly on 20 of them, which h&he hit 4 questions correct. By deducting the

possible points by random guessing, guessing correction is trying to eliminate the extra points that

came corn blind guessing.

3.3 Item Analysis

Item analysis is done to gain useful information that will help in ‘making decisions about the

students, the teaching method and the item itself (Wiirsma,199O,p.240-241). The error pattern

showed by a student on several related items can lead to decisions about that student. The error

13

pattetn showed on a group of collective items aimed to measure an objective can support

* decisions about the pace of the instruction. Performance patterns on an item itself can show

whether that item is adequate or not.

The most common and traditionally used analysis processes are the difficulty index and

dkcrinkation index (Wiirsma,E@O,p.143). Lennox (1974,p.21), when discussing the analysis

required to make up a test paper, suggested that it should be no more than seven figures to be

presented. These are ditlicuity index, discrimination index and five response count results, one

count for each possible answer. Lennox is not in favour of using too complicated mathematical

techniques, because it can bring the dangers of ignoring the item contents due to the extensive

favours for their calculated indices and the possibility to make the figures very hard to understand.

Due to these reasons, this research will only concentrate on those three anaiyses, that are ditliculty

index, discrimination index and response count.

3.3.1 Difficulty Index

The diffkulty index of an item shows the percentage of students who got the right answer for that

item. The formula to calculate this is very simple:

d i f f i c u l t y i n d e x = r / t ,

where r is the number of correct responses

and t is the total number of candidates.

This formula v$ll give a reverse definition of the difktlty index, where the larger the index, the

..
easier the item That is why some people call it the easiness index, hke Lennox (1974) did. The

valuerangeisfromOt0 l,withOmeansthatnocandidateanswereditrightand 1 meansall

14

candidates got it right. So, a lower dif?iculty index means that most of the candidates cannot

answer the item correctly.

c

The simplest use of the d&t&y index is in determining whether candidates could have grabbed a

concept tested in a question and in certifying the suitability of an item itself. If the difficulty index

on an item that meant to test what have been taught in class is very low, this means that the

students as average still did not get the concept. It is also used to detect the fault of giving too

many clues in a question. For example, if a dEculty index for an item is expected to be low, but it

turns out to be high, this may be because the item has given so much hints that most candidates

getting it right.

3.3.2 Discrimination Index

Theoretically, the discrimination index is the quantity of item contribution to the final order of tbe

candiiates, based on their total mark (Lennox,1974,p.21). In other words, discrimination index is

the degree of effectiveness of an item in splitting candidates with high scores on the total test from

those with low scores (Wiirsma,199O,p.145). The value range for the discrimination index is

between 1 and -1. When all the candidates who get an item right stand higher in the order than all

those who get it wrong, the item is said to have discrimination index of 1. There, that particular

itemisgoodind is&ninating higher-scorers and lower-scorers in that test as a whole. In contrast,

if the value of discrimination index is -1, that item has totally failed to discriminate between high

achievers and low achievers of the test. Such items are bad, and should be eliminated from the

next test. The value of 0 means that the item is also fails to discriminate students, but it is better

than a negative value. The formula used to calculate the discrimination index is:

discrimination index = pH - pL ,

15

where pH = difliculty index for the higher group

. and pL = dif?iculty index for the lower group.

0
The number of candidates in a group is 30% of the total number. So, to calculate the

discrimination index, one must first marks the answers, sorts the answer sheets according to

position and then choose 30% of highest score candidates and 30% of lowest score candidates.

For each item, he/she must count the correct answers of each group to get the pH and pL.

c

d

The use of discrimination index is mainly to measure how good an item in separating good and

unsatisfactory candidates. Often, this index is used in very high quality admission tests, to make

sure that the tests themselves are capable of &ring poor candidates from good candidates. For

in-class purpose, discrimination index alone is not a decisive factor in evaluating the item

effectiveness. Usually, it is always used in conjunction with difticulty index and response counts to

detect any flaw in the test items or in the instruction given.

8

3.3.3 Response Count

Response count is done in a very direct way, that is counting the occurrence of each choices in an

item The total number of responses counted, added with the number of omissions, ought to be

the total number of candidates. The primary use of response count is in studying the students’

.-

error patterns. As Gronlund (198 1,~. 187) stated:

“The nature of the incorrect alternatives selected by pupils provides clues to factual errors and

misunderstandings that need correction.”

For example, if a wrong choice is constantly being chosen by all candidates in an item assured to

have no flaw, it is very likely that the students have seized a wrong notion.

16

Response count can also help in evaluating the effectiveness of d&r-actors. For example, if

* candidates are in favour of only two out of five choices, the other 3 alternatives are not very good

distracters, because the candidates know that those 3 are the impossible choices. In that case,

what is supposed to be a 5 alternatives question has turned out to be a true-false item

3.4 The Problems with Manual Scoring and Analysis

The main problem with most statistics works is the time consumed in processing the data This is

also true with MCQ tests scoring and item analysis, where one must spend a lot of time in

counting the answers of the candidates.

3.4.1 Scoring Problems

Scoring MCQ tests is a process which is fully exposed to errors. As Gronlund(1981,p.292)

stati:

“Despite the simplicity of hand-scoring procedures, the task is fraught with possibilities for

error.”

In scoring a candidate’s answer sheet, one has to compare all the candidates’ answers v&h actual

answers as many times as the total number of questions. If the number of questions is small

enough he/she can simultaneously count the number of matching comparisons while comparing

them That will be di!Xcult to accomplish if the test contains so many questions. So, in a big test,

while comparing answers, one must first marks the candidate answer sheet with one recognisable

mark on each$.right answer. After finishing the marking process, he/she must then count the

number of correct answers to get the score for that candidate. If guessing correction is to be used,

one must also count for the total number of wrong answers. The- using both numbers, the

17

corrected score can be calculated. All these are really exposed to counting error and they are very

time consuming.

6

r

3.4.2 Item Analysis Problems

The success of doing item analysis lay on the success of counting answers. All three analysis

results are based on the counting of answers. The main problem of human counting is the

exposure to mistakes. In item analysis, re-counting has to be done if there is a counting mistake.

An example where the counting has to be repeated is in the response count process. If the total

number of answers on each alternative, added to the number of omissions is diierent from the

total number of candidates, then there must be a mistake, and the counting process has to be

repeated. Here, accurate figures have to be gained because not only it will defect the response

count result, but also the dikulty index that will be calculated. Difklty index can be directly

afkted by the response count result, since one can just take the number of correct answers in the

response count result to calculate the difficulty index.

While the dif&ulty index can benefit from overall response counts, the dkrimination index

cannot. Discrimination index can only be done after the scoring process is completed and the

answer sheets have been sorted according to marks obtained. Only 54% of the answer sheets will

be used, that are the top 30% and the lowest 30% of all answer sheets. Here, the counting

process is started again to get the number of correct answers on each group to calculate the pH

and pL. Again; time-consuming and error-prone contribute to the problems associated with

Ending an item analysis result.

3.5 Alternatives to Manual System

This research is motivated by the idea of reducing the problems in scoring and analysing the items

c in MCQ tests. As has been previously discussed, time-consuming and error-prone are the major

problems with the processes. An alternative to doing hand-scoring is by using machine-scoring,

which require specially designed answer sheets. However, as Gronlund(1981,p.246) implied, the

machine-scoring should be used only if the number of papers to be scored is big enough so that

the expense is worthy. Besides, the companies who offer machine-scoring facility are not always

easily accessible to all schools. So, using machine-scoring is not a good alternative for teachers.

If the use of computers is the primary concern, we can suggest the use of a statistical package to

automate the manual system. However, statistical packages is not a good choice because of two

masons. Firstly, if the intention is just to do scoring and item analysis, statistical packages are

usually not worth buying because they are expensive. Secondly, statistical packages are designed

to be used by more serious statisticians, working on more advance numerical computations. The

users usually need some training in statistics and the understanding of the package before they can

really benefit from the package. So, generally, statistical packages are quite di&ult to be

mastered by average school teachers and will increase the unsuitability of using them to do the

scoring and item analysis.

Qne alternative that is more suitable is a computer program that has the following characteristics.

It must be cheap, simple, not very big, can be operated in typical PCs currently used in schools

and can be easily understood and mastered by those who have already know the item analysis

methods. This research is intended to prepare that program

/’ .

19

e

Chapter 4

System Analysis and Design

4.1 Introduction

In a system life cycle, there are at least 7 phases involved. The first phase requires the system

developer to identify the problems occurred within the current practice, to find any chance to

improve the situation and to discover the objectives of the project. The second phase is to

determine the information requirements. In this phase, the analysts have to know what

information is needed by the potential system users to perform their jobs. These 2 phases

have been discussed in chapters 1,2 and 3. The next 2 phases are system analysis and design,

which will be the subject of this chapter.

4.2 Project Objectives

As the result of the first and second phases of this project, which was discussed in previous

chapters, the suitable objective of this research is to develop a computer program that can be

used as a tool by all educators to:

1. Quickly and accurately mark and score the student answers in multiple choice question

tests.

2. Quickly and accurately calculate the discrimination index, difficulty index and the response

counts of muhiple choice question test items, by which can then be used by the users in

validating the test itself.

20

c

It is hoped that this program will then encourage the teachers to do item analysis in most

MCQ tests they develop and can then be used in improving their teaching methods and

future MCQ tests they will develop.

4.3 System Analysis

The analysis phase is done to reveal the system needs. To help the process of requirements

determination, this project uses a technique called Data Flow Diagrams (DFD). It is from

these DFDs that further progress will be made.

4.3.1 Data Flow Diagrams

DFDs are the graphical representations of the data flows and data transformations between

processes in the system. This project will use DFDs in analysing the system so that the nature

of data flows in the system will be clearly seen, making it easier to move to the

implementation phase.

4.9.1 .I bonrexr alagram

1 MCQ
Scoring

and Analysis
System

Figure 4.1 Context diagram of the proposed system

In this context diagram, there are 2 external entities; ‘students’ and ‘teacher’. ‘Students’ will

answer the test questions, providing the input to the system. The ‘teacher’ will provide the

.

21

actual answers to be used by the system in scoring and analysing the test items. The output

of this system will be sent back to the ‘teacher’, to enable him/her interpreting the outcome

and the validity of the test items.

4.3.1.2 Diagram 0, or Top-level DFD

e

l

11 Input
Accept
S t i n t s ’Abmv4lm

Fomwn4d
anw4n

p?‘”
1

+ Dll Scora8

SCOfW

Figure 4.2 Diagram 0 or top-level DFD

The next DFD developed after context diagram is called ‘diagram 0’ or ‘level 1 DFD’. This

diagram shows all the p,rocesses, the data flow ar?d the data store in the most general form

after context diagram. The details of each process in this diagram will be discussed in the

next sections, with the processes in this diagram being expanded into more detailed

diagrams.

4.3.1.3 Level 2 DFDs

Processes ’ 1, 2, 3 and 4 on diagram 0 have been exploded to create more detailed child

diagrams. These diagrams are called level 2 processes.

i
L

. . 2 2

Process 1

0

c

Figure 4.3 Process 1

Process 1 is concerned with taking the students’ answers and ensuring that the data is in the

correct format. The ‘students’ external entity wiIl provide the answers that will be used in

scoring and analysing the MCQ test items. Before proceeding with those processes, it is vital

that the data do not contain any faulty format. This will ensure that the section that will score

and analyse the answers will receive ‘clean’ answers. It will prevent those parts from having

to deal with incorrect answer formats, which will waste their time in filtering the wrongly

formatted data. Child process 1.1 will take the answers from the external entity ‘students’

and provide the answers to process 1.2, which will in turn check the validity of the answers.

The output from process 1 is the valid, well-formatted answers ready to be used by other

processes.

Process 2

c

Figure 4.4 Process 2

23

Process 2 is so much like process 1, in the sense that they both take the unformatted

I

answers, checked the answers’ validity and then give all valid answers as output. They only

a differ in the amount of data they have to deal with. While process 1 has to take and check the

answers of all students, process 2 only has to deal with a set of answers, i.e. the actual

answers given by the teacher. So, their DFDs look so much alike.

Process 3

Process 3 will do the scoring for the system. It takes 2 input, the formatted student answers

and the formatted actual answers. Process 3.1 will compare the student’s answers with the

actual answers. It will count the total number of matches occurred in those comparisons,
.

giving it as the output. Process 3.2 receives the output of process 3.1 as its own input,

together with the scoring option. Depending on the scoring option, it will do the guessing

correction process and calculate the actual score obtained by a student. The output of this

process is the scores of all students.

24

-- . .

Process 4

Formatted actual an5wers

Fotmatted cmswcn

t w
pncdyrir recultc

Figure 4.6 Process 4

Process 4 contains 3 sub-processes. Process 4.1 receives 3 input and from those data, it will

calculate the discrimination index of each item in the test. The output given is the

discrimination index of all items in the test. In similar manner, process 4.2 only needs the

student answers and the actual answers to produce the difkulty index. Process 4.3 will

count the number of responses that choose each alternative in student answers. To do that, it

only needs the student answers, and will give the result of the counting process as its output.

So, the output of process 4 is the analysis results obtained from the 3 sub-processes.

Processes 5 and 6

Process 5 and process 6 are both primitive processes. They are the processes that do not

have any sub-process. Both processes have simple tasks, reporting the input into more

formatted forms. The data to be reported by processes 5 and 6 are ‘scores’ and the ‘analysis

results’, respectively. The scores are then stored in the ‘scores’ data store and the analysis

results are stored in ‘analysis results’ data store. External entity ‘teacher’ is given the access

to these results.

25

In system analysis, usual extensions to DFDs are the use of data dictionary and the making of -

structured decisions. However, this project will not using data dictionary due to the small

nature of this project. It is not needed since all data have been reduced tom its lowest form in

DFDs. Structured decisions process through structured English method is not discussed in

this chapter. Instead, pseudocode, which is very close to structured English will be used in

the implementation phase and will be shown in the next chapter. The next phase after system

analysis is system design.

4.4 System Design

System design is the fourth phase in a system life cycle. In this phase, the information

colIected in earlier phases are used to design the system entity. The design process usually

involves the system output, input, database files, user interfaces and data-entry. For this

program, only program input, output, and user interfaces need to be designed. Database files’

design is not needed since there will be no databases to be used and no relating files will be

created. Data-entry design is not needed because data-entry will be done through other

programs, before running this program.

4.4.1 Designing Program Output

This program will use 2 kinds of output; screen output and files output. The users of this

program will be given the choices whether or not to write the results that they are seeing on

the screen to an output file. If they want a hard copy of the results, they can write the results

into a file and print them later. The output given will contain useful information normally

gained after a test has been marked and analysed. The output of the marking part will include

scores of each student, that is the number of correct answers and their percentage of right.

c

26

answer from all questions. The output of item analysis part will include the difficulty index,

,
,.. ~> discrimination index and the count of each choice in a question.

4.4.1.1 Output File

The output file will be in ASCII text format, to make it easier to be imported into any word

processor for printing purposes or into a spreadsheet for further calculation. For example,

after using this program, a teacher might be interested in interpreting the test scores. This

program will not be built for test scores interpreting, so it is important to make the scores

easily accessible by other programs that will process and interpret the scores. To achieve

that, the output file will be in the form of easily accessible ASCII text format. However, if

one wants to quickly print the output, he/she can directly send the ASCII file to any line

printer after quitting this program, without having to edit the file in a word processor first.

*******************t******************+*********~******************
TEST INFORMATION
Class ZXXXXXXXXXXXXXXXXXX
Test ZXXXXXXXXXXXXXXXXXX
Number of students : 99
Number of questions: 99

t**~***+*******

TEST RESULTS
Names . Scores Percentage
________________----------------------------
p 99 99.99
xxxxxaxX 99 99.99

****t**

ITEM ANALYSIS RESULTS
Discr. Diff. Response count

Q# index index A B C D E Omit
___________________-_____^______________----------------------
9 9.99 .' 9.99 9 9 9 9 9 9 9 9 9 9 9 9
9 9.99 ,* 9.99 9 9 9 9 9 9 9 9 9 9 9 9
9 9.99 it.99 9 9 9 9 9 9 9 9 9 9 9 9

Figure 4.7 Outputfile layout

21

Like illustrated in Figure 4.7, the output file is divided into 3 section: test information, test

ii scores and item analysis results. The first section will contain the test name, the name of the

c class that has seat the test, the total number of candidate and the total number of questions in

the test. The second section will show the result of test scoring, i.e. the test scores. Lastly,

the third section will show the item analysis results. In both second and third section, the

adjacent columns will be separated by a TAB, making it easier to import these columns into

spreadsheet columns for further processing.

4.4.1.2 Screen Output

For screen output, this program will use a colour screen, which is able to display 16 colours

text. While more advanced graphics screen adapter like VGA or Super VGA is commonly

available nowadays, it is important to make sure that this program will be easily accessible by

the educators that want to run it on a very basic PC. Furthermore, one of the target of this

project is to provide a cheap alternative to machine-scoring and item analysis. So, this

program will use only the text mode in displaying the output, because it will not require the

more advanced monitors and more important, it is sufficient to serve the purpose of

displaying the output.

Scoring

1’ il_results
Item analysis
results

-

- Menu line

1

1
Output and
POP-UP
windows
area

- Program status

Figure 4.8 The screen layout, showing the output area

The screen is divided into 3 main sections, like depicted in Figure 4.8. The output will be

shown in the middle area, at the centre of the screen. The output area is divided into 2

c sections, one to display the scores and one for displaying the item analysis results. Each

output area will be divided into columns of information. In both sections, if any area

provided can not afford any surplus output, the user will be provided with a way to scroll up

and down to see the excess output.

c

4.4.2 Designing System Input
c

After completing the DFDs, it can be clearly seen that the inputs to this program are the

student answers and the teacher’s answers, together with the teachers option in scoring the

answers. Like the output, this program will use two forms of input. The input data will be

taken from an ASCII text file, and the user will interact with this program using the

keyboard. The keyboard will be used to take several program controls and options from the

user. The input data, i.e. the answers of the test will be in ASCII text file format. This is the

most simple file format that is supported by most word processors and can be prepared using

the typical text editors such as Editor for DOS and Notepad for Windows.

.

The input data will not be typed directly by the user while using this program. Instead, the

input data file must be ready before this program is entered. So, there is no need for

designing a data entry form. What is needed is designing the input file format, so that it is

easy to be prepared and can be easily read by this program. The input file format is shown in

Figure 4.9.

29

.

Actual
XXXXXXXXXxxXXXXXXXxxxxx tanswers

~xxxxxxxxxxxxxxxxxx ’ xxxxxxxxxxxxxxxxxxxXxxx +-j
xxxxxxxxxxxxxxxxxx ’ xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx * xxxxxxxxxXXXXXXXXXXXXXX Candidate
xxxx~xxxxxxxxxxxxx * xxxxxxxxx xxxxxxXxxxxxxx

1

answers
xxxxxxxxxxxxxxxxxx * xxxxxxxxxxxxxxxxXXXX
XxxXxxXXXXXXXxxXXX * xxxxxxxxxxxxxxxxxxxxxxx

.

Figure 4.9 The inputfile format

The first line of the file contains the teacher’s answers, which will act as the actual answers

to the test. The following lines after that contain candidate names and answers, with the

name and answers be separated by an asterisk, ‘*‘. The asterisk will act as an indication to

the program that the next data is the candidate’s answers, not his/her name. To simplify the

task of typing in the input data file, the asterisk can appear exactly after the candidate’s name

and all the name length need not be the same, even though for user’s own visibility, it will be

permitted (see Appendix A for input data variations). Hence, all of the following will be a

valid set of data:

John Smith * ABCCBBDEDDDAEBC

Michael Ritter * ABCCBBEEDDDAEBC

Jimmy Black * ABCCBBDEDEEXEBC

The name length will be restricted to only 20 characters. The total number of questions

should not exceed 200 questions and in a test, this number should all be the same as the

number of actual answers.

4.4.3 User Interface Design

F available from a set of pull-down menus. Pull-down menus were chosen to be implemented

4.4.3.1 Type of User Interface

The user of this program will choose the actions he/she wants to do by choosing the actions

l

in this program because their uses are quite common in most programs currently available for

PC. Furthermore, this can encourage inexperienced users to use this program, because the

nature of choosing a selection from a pull-down menu is less error prone comparedto

numbered menu. In a pull-down menu, a user must highlight a choice and can read the text

accompanying the highlighted choice before actually choosing it, making it less probable for

the user to make a wrong choice.

.
4.4.3.2 Dialogues and Communications

c

Interactions between a user and this program will be done through the keyboard and the

screen. The user will give all commands using the keyboard and this program will use the

screen to response and give program output. While the use of mouse pointing device is

currently popular, the consideration of time that have to be allocated for implementing

mouse interfacing has retract the initial idea of using the mouse. For the means of

consistency, the user will have to press ENTER each time he/she wants to choose any choice

from the pull-down menu. The user will also use the same keys when doing the screen

scrolling for browsing scores or item analysis results. This will speed the progress of the user

in mastering this program

In taking the input such as the input and output file names, the user will be presented with a

pop-up window prompting him/her for the filename. The length of the input will be restricted

by the right edge of the window, ensuring that this program will get only right amount of

characters from the user. This will also help to prevent the user from providing invalid

filenames.

31

I

4.4.3.3 Feedback

In ensuring that the user will get the idea of what is the result of the action that has been

taken, appropriate feedback will begiven. Feedback will be given to:

1. Notify~whether or not the input is in correct form.

2. Notify whether or not a request has been completed, and what should be done next.

3. Indicate that a selection is currently not available, and giving its reason.

4. Warn that the most current request will erase the current results.

Feedback will be given through pop-up windows, located at the centre of the screen.

c

This program will also have the current status indicator at the bottom of the screen, to tell

the user the current state of the program. It will also show the keys that are available at those

specific times. This is important in ensuring that the user always know what he/she is doing

and what keys should be pressed. It will also help in indicating what should be the next

reactions from the program.

In this system design phase, the program output, input and user interfaces were designed to

meet the requirements. After the system design phase, the implementation phase is entered,

where the coding of the design will be accomplished.

32

CHAPTER 5

THE IMPLEMENTATION
OF THE ANALYSIS AND DESIGN

5.1 Introduction

The implementation phase of a system construction involves the software codes development

by the programmers. The software development is based on the analysis and design results.

In this program, pseudocodes are used as an intermediate step for developing the codes. The

code development is done in three separate parts: the core program, the user interface and

the integration of those two. The first and second parts were thoroughly tested to ensure

they can reliably do their own jobs independently before integrating them. The program

L

l

coding and compilation was done using Turbo C++ for DOS Version 1.1.

c

5.2 The Core Program

The core program is the inner part of the software that does the calculating job and produce

the results, ready to be presented to the user by the user interface. This part is invisib,k to the

program user. The functions in this part are activated only when they are requested by the

interfacing part. The 3 main program parts that act as the core parts are data reading, scoring

and item analysis.

52.1 Program Data Storage

The data that’will be read from an input file will be stored in a 1 dimension (1-D) characters’

array and 2 two dimensions (2-D) character’s arrays (Figure 5.1). Actual answers will be

stored in the 1-D array (Figure 5.l.a), starting with question number 1 be stored in array

element 0. The maximum answers that it can store, i.e. the limit of the column, are

33

determined by an integer constant, MAXQUESTN. The students’ answers will be stored in -a

2-D array of characters(Figure 5.l.b), with the first student’s answers be stored in the frost

. row of the array, i.e. at-element 0,O. The students’ names will be stored in another 2-D array

of characters (Figure 5.1.~). The maximum name length that it can store is determined by the

MAXCNAME constant. Both of these 2-D arrays have the same limit of total students that it

can store, i.e. MAXSTUDENTS. When reading the input data, this anay will be faed up until

end of data is encountered or until all the rows have been filled.

I Question number

I
- Actual answers array Icharacterl

Question number

1
1 2 3 4 f, w-m......-.-.--. n=,,,,A’#Q,,EST,,,

1
: :

student ; St”dent i

n

0
= MAXSTUDENTS

Students’ answers
i B array lcharactersl

n

0c q

Name characters

MAXSTUDENTS

The results of calculations will be stored in 4 arrays, like shown in Figure 5.2. The

Figure 5.1 The arrays that will store the input data

discrimination index will be stored in a float array (array A), starting from element 0 up to

themaximumelement,MAXQUESTN - 1. The difficulty index will also be stored in one

float array (array B). Because array A and B have a common length, the discrimination and

diflkulty index arrays could also have been combined and stored in an array of structures

that has 2 elements. However, this has not been implemented by considering the difficulties..

that will arise in sending them together to the user interface functions that will report the

output to the user. The scores will be stored in an integer array (array C) and the response

c count results will be stored in a 2-D array of integers (array D).

3 4

Discrimination index 0B
D i f f i c u l t ,ionayex

array (!

(

Quedion number
1 2 3 4 5 n

A
Alternatives
(choices] 6

0
Cd+

D j?esvonse count array finteaer!

Figure 5.2 The arrays that will store the results

5.2.2 Data Reading

Data to this program will be read from a text ffie. To simplify the user’s task in preparing the

fde, it has been decided in the design phase that the teacher’s and the candidates’ answers are

to be located in the same file. So, the reading part will take the answers from one file only.

However, for programming flexibility, they will be done separately by different functions.

The teacher’s answers are read into the 1-D array shown earlier in Figure 5.1. The students’

answers are read into the 2-D answers array. In doing this, the data reading part must ensure

that the reading processes of both teacher’s and candidate’s anSwers are successful. If it fails

to read in any answers, it will indicate it by returning a failure flag.

The pseudocode of teacher’s answers reading:

8

!’

OPEN input file
IF fail to open the input file

RETURN failure flag
ELSE

READ teacher’s answers
CLOSE input ftie
REmJRN success flag

35

The pseudocode of students’ answers reading;

OPEN input file
IF fail to open the input fide

RETURN failure flag
ELSE

READ teacher’s answers
number-of-questions = count from teacher’s answers
WHILE number of students not exceed maximum

READ a student’s name
READ a student’s answers into a 2D array
IF total mimber of a student’s answers Q number-of-questions

Stop reading
FUTURN failure flag

IF no more student’s name exist
BREAK, stop reading, exit from WKLE

ENDWHILE
CLOSE input file
RETURN success f-lag

5.2.3 Scoring

Scoring involves 3 kind of data: students’ answers, teacher’s answers and the scoring option,

i.e. whether or not to use guessing correction. The scoring function will first compare each

student’s answers with actual answers to get the raw score. The comparison is made easy by

copying a row of the 2-D answers array (Figure 5.3). The resulting 1-D array will be sent

into a counting function that will then return the number of correct answers. If the user had

already opt to use guessing correction, the scores will then be corrected. All students’ scores

are stored in a 1-D integer array, shown earlier in Figure 5.2.~.

pmg;
Questiorl

1 2 3 4 5 --*------------. n
array

f ‘B Get the

stuient 1 compare number

with - o f
correct

Ylllllll111ll answers
.‘n Actual answers

I
Figure 5.3 Extracting a student’s answers to do the scoring

36

t question are extracted from the answers 2-D array (Figure 5.5). The element margins are

Declare a 1-D array, cur-student (to hold the answers for one student)
DO WHILE there are still student’s answers

co@y a row into cur-student array
count the number of correct answers for that student, com$ring actual answers with cur-student
IF want to use guessing correction

count the number of wrong answers for that student
update score with corrected score by doing guessing correction

ENDIF
ENDDO .

5.2.4 Item Analysis

Item analysis in this program consists of the calculation of discrimination index and difficulty

index together with the counting of response on each alternative in each question. Each

analysis is done separately by different functions.

5.2.4.1 Discrimination Index

To calculate the item discrimination index, the students’ answers must fust be sorted

according to the total marks obtained from the test as a whole. Since the original order of the

students’ answers array should remain intact, the function that will calculate the

discrimination index must make a new copy of the array and then sort it before it can

calculate the discrimination index. This is depicted-in Figure 5.4 below:

c

L*

Original
students’
answers
array

COPY
b

sort Sorted
students’
answers
array

I A new copy

Figure 5.4 Copying and sorting the students’ answers 2-D array

After sorting, the array element margins for 30% highest and 30% lowest students are then

determined. In the loop that will calculate the discrimination index, the answers for each

.

31

then used in getting the number of students that answered correctly in each part. The

m discrimination index is then calculated and stored in the 1-D float array shown earlier in

c Figure 5.2.a.

Sor ted
students’ Qucrtion1 2 3 4 5 _._..-.~~~~~~. n Question #5

answers 1
array

:

1

3
30% highest,

Student ;
will be used to get pH

n 3
30% lowest,

t will be used to get pL
I 1

extract a question

Figure 5.5 Extracting answers to calculate the discrimination index

e Dseudocode of discrimination index calculation:

copy answers 2-D array into new-answers
copy scores 1-D array into new-scores
sort new-answers and new-scores descendiigly
calculate 30% highest and 30% lowest array margins
DO WHILE there are still student’s answers

pH = number of correct answers in 30% highest / total students in the 30% part
pL = number of correct answers in 30% lowest / total students in the 30% part
disc-index = pH - pL

ENDDO

5.2.4.2 Difficulty Index

Calculating the difficulty index of a question involves counting the number of students who

answered that particular question correctly. For simplicity and visibility, this program copy

all the answers for that particular question before sending it to a function. This function will

then count and return the number of occurrences of the actual answers in that particular

w

/
t

question’s array. This step is depicted in Figure 5.6.

38

Students’

answers 1

12 34ytim . ..----...---... n Question 15
array 2

3

$;g/Jt~~~~.Jr.gnces

in all student’s
Studenf :j

1

0 answers
DMDE BY

number of students
n
-. 1

GET

extract a question difficulty index

- Figure 5.6 Extracting answers to calculate the difficulty index

The pseudocode of difficulty index calculation;

Count total-no-students
Dee+ a 1-D array, cur-question (to hold the answers for one question)
DO WHILE there are still student’s answers

copy a column from 2-D array of answers
count right-answers from that column alone
diff-index = right _ answers / total-no-students

ENDDO

5.2.4.3 Response Count

Doing the response count is much the same like counting the correct answers in calculating

the di&ulty index and scoring process. The same copy-and-pass procedure as already used

in calculating discrimination and difficulty index is also used here. In response counting, the

function that counts the number of occurrences of an alternative is called. The result of each

counting is then stored in the 2-D array that stored the response count results shown earlier

in Figure 5.2 (d).

. The pseudocode of response count:

Declare a 1-D array, cur-question (to hold the answers for one question)
DO WHILE there are still student’s answers

copy a column from 2-D array of answers
count responses for alternative ‘A’, then ‘B’, then ‘C’, then ‘D’, then ‘E’, then Omittance

ENDDO

39

5.2.5 Writing Output to Fib

. In writing the results to the file, the printing function will use the file name supplied by the

c user interface part. If the file name is not valid, it will return an indication to the user

interface that it can not open that file. If this function can open the file and write the results

into the file successfully, it will then close the file and return a successful indication. In

writing the results, it will select certain amount of information to be included in the output

file, depending on the user options.

The pseudocode of output writing function;

Open output file
IF fail to open fde

FtEmJRN failure flag
ELSE

PRINT test information
lF include-score

PRINT names, scores, percentage scores
ENDlF
IF include-analysis-results

PRINT analysis-results
ENDIF

ENDlF
RETURNsuccessflag

5.3 The User Interface

The user interface of this program depends much on the way the user will interact with the

program. The user will spend most of his/her time doing one of three tasks: choosing an item

from the pull-down menu, browsing the results and typing in several data such as

input/output ftie names. So, the success of user interface of this program depends on the user

interface of these three parts.

5.3.1 The Pull-down Menu Class

The pull-down menu in this program is used from the user-defined class specially coded for

the use of pull-down menus. This class has been implemented to be a general purpose class

that can be used in applications other than this project, too. The class has been carefully

w implemented so that its users (i.e. the programmers) can easily declare and use it. To declare

c a pull-down menu, this class needs 3 information: the menu top co-ordinate 6n the screen,

the left co-ordinates and the strings that will appear in the menu. For example, the following

code will declare a ‘file’ menu that contains 3 choices that will be activated at screen co-

ordinate 10,lO.

c

.

// step 1. declare the array string that will appear in the menu

char.filetext[I4AX~M~PANEL][MAX~M~CHARSj = (

'Load file', 'Close file', 'Quit',

1;

// step 2. declare/construct a pull down menu named 'filemenu'

PullDown filemenu (10, 10, filetext);

// to activate:

int choice = filemenu.choose();

The constructor
l

Before a menu can be used, it must be constructed first, and this is done by a function called

constructor. The constructor will first check the validity of the initialisation, and will also

determine the screen co-ordinates of the menu.

The pseudocode of the constructor:

check the Xl and Y 1 co-ordinates -- not to exceed the upper/left screen border
calculate the longest panel suing, initialise X2
calculate the number of panels, initialise Y2
check the X2 and Y2 co-ordinates -- not to exceed the lower/right scre.en border
get the menu-strings for each panel
fill in the empty right part of each string with spaces

To choose an item

Choosing an item from a pull-down menu involve navigating through its panel. This is done

by using the arrow keys, UP and DOWN. Once we arrived at the panel we want to select, we

4 1

will press the ENTER key. This class implemented the pull-down menu panel selection using

this conventional method. If a programmer wants to activate a pull-down menu he/she has

declare earlier, it is done by cahing the choose0 function, and assigning its return value into

an integer variable (see the sample code fragment above). The choose0 function will return

the panel number the user has selected. If, however, the user does not choose any panel from

the menu (i.e. by pressing ESC or left arrow or right arrow), this function w3.l return a

number equivalent to those keys. This returned number can then be used by the programmer

in determining an appropriate action. One example of its usage is if a user has pressed the

right arrow, another pull-down menu that sits at the right of the current menu can then be

activated.

The nseudocode of chooseO function;

store the cUrrent menu area into buffer
show pull-down menu, highlight frost panel
wait for keystroke
DOWHlLErrue

IF keystroke = down-arrow
highlight the panel below current panel
IF current panel is the bottom panel

highlight the top panel
ENDIF

ELSEIF keystroke = up-arrow
highlight the panel at the top of current panel
IF current panel is the top panel

highlight the bottom panel
ENDIF

ELSEIF keystroke = ENTER
restore screen buffer
return the number of current panel

ELSEIF keystroke = LEFT / RIGHT / ESC
restore screen buffer
return the number of that keystroke

ENDDO

5.3.2 Browsing the Results

For displaying output, the screen is divided into two parts. The scores will be shown on the

left of the screen and the item analysis results wilI be shown on the right of the screen. Since

42

the total number of students and the total number of questions are usually greater than the

* screen rows, the screen can not afford to display either results in one screen. So, a scrolling

c method must be developed to browse through both scoring and analysis results.

c

4

All results of this program to be displayed were stored in arrays (see Figure 5.2). The array

element number can be used as a reference to emulate the position of screen margins to be

displayed to the user. This is visual&d in Figure 5.7. The top margin will first hold element

0, and will then be increased when the user pressed DOWNARROW. If the user pressed

PAGEDOWN,themargins areincrementedas many as a screen tall. The process ofmargins

changing will continue, like depicted in the pseudocode for the result browsing, and will only

stop when the user has pressed ESC to stop browsing.

Figure 5.7 The changing of display

top margin +
= 1

bmod!p-+
= 10

After pressed After pressed

DOWN-ARROW PAGE-DOWN

The pseudocode of result browsing;

initialise top and bottom margin (top = 0, bottom = screenJal1)
DOWHlLEtrue

SELEfl CASE keypressed
CASE PAGEJ3OWN

increa& top and bottom margins by one screen
CASE PAGE-UP

decrease top and bottom margins by one screen
CASE ARROWJOWN

inaease top and bottom margins by 1
CASE ARROW~UP

decrease top and bottom margins by 1
CASE CT’RLHOME

set margins like early state (top = 0)
CASE CTRLJND

top margin -
= 11

margins

43

l

set bottom margin = max-array-element (go to far end)
CASE ESC

return

END SELECT
ENDDO

5.3.3 Prompting for A String

Although this program will read most of its input data from an input file, it still needs some

string input from the user when the program is running. These strings have to be typed in by

the user. These include the input data file name, the output file name, and the information of
V

the test being analysed A special function has been created for the purpose of taking string

input from the user while the program is running. This function will receive the pointer of the

suing to be input, and will modify its content, depending on the keys pressed by the user.

The user can only exit from giving this input by pressing ENTER or ESC. If ESC is pressed,

the string will be set to contain nothing.

c
The pseudocode of string uromptin&

4

t

put cursor at starting position
Do

get keypressed
IF keypressed = ENTER

done = true
ELSEIF keypressed = BACKSPACE

retract cursor one position
EL&IF keypressed = ESC

set string contains nothing
done = true

ELSE
accumulate keypmsed
advance cursor one position

WHILE not (done)

5.3.4 Managing Pop-up Windows

There are many occasions in this program that a window has to be popped-up to show

messages to the user. Windows are also popped-up before the string prompting function is

called. The pop-up window pseudocode is shown below. The pop-up window used in string

44

prompting is much the same as this pseudocode, except in 2 places. First, it has to include

0 the length of the string to be input in calculating the co-ordinates and the buffer size.

c Secondly, it has to wait until the user finished giving input before the screen area can be

restored.

e

.Messwop-uo windows general pseudocode,

calculate width using string message to be shown
calculate left X co-ordinate and right X co-ordinate
calculate screen area size
capture screen area into screen buffer
wait for keypressed
restore screen area

5.4 The Integration of Core Program and User Interface

The core program and the user interface must be integrated by an outer layer. This most

outer layer is where a user of this program can navigate in the main pull-down menus.

Appropriate core action will be taken according to the selection of the pull-down menus. In

the program code, this outer layer is located in the main program. The pull-down menus are

declared and activated from this part. When entering this program, the user is first presented

with this menu of pull-down menus. To navigate between these menus, the user:can use

either RIGHT or LEFT arrow keys. If a user wants to select a choice, he/she must press

ENTER when the choice is being highlighted. The logic of this outer layer user interface is

explained below.

The general pseudocode of navigatine through the main menu:

activate first pull-down menu
D o

wait for keypressed
IF keypressed = FUGH'f

activate the pull-down menu at the right
EL!33 keypressed = LEFT

activate the pulldown menu at the left
WHILE true

e

45

‘Activate’ in the-above pseudocode means highlighting the menu title, show the pull-down

v menu and ready to take choicks from this menu. This general idea has contribute to a more

L
- specific idea of using arrays of me&s to represent pull-down menus. The array element

number will act as a reference number, to be used when a menu is to be activated or de-

activated.

c

4

?z%:;

0 File menu

1 Marking menu

2 Analysis menu

3 Result menu
4 Other menu

Fi le menu
tit le

Marking rn;r

Analysis menu
tit le

Result menu
tit le

Other menu
tit le

Array that stqre
menu class objects 0B Array that store

menu title information

Figure 5.8 Arrays that store the menus

Two arrays will be used to store the menus, like shown in Figure 5.8. The first one (array A)

will store the actual menu, and the second one (array B) will store the information about the

menu title. They will be referred in those 2 arrays with the same element numbers. ,,When a

p&down menu is to be activated, the title information array (Figure 5.8(b)) will he used to

highlight the current title and dimmed the previous title. The actual pull-down menu is then

activated by referencing the pointer of its element in the array in Figure 5.8(a). By changing

this element number, the menus will then be activated one by one, depending on the keys that

have been pressed by the user.

.
The deli pseudocode for navistine in main menu;

declare an array of structures, storing menu title information
declare menu strings
declare pull-down menu objects
declare an array, storing all the above pull-down menus objects
let current-menu-element = 0
Do

take pointer to the current-menu-element

46

let choice = activate current-menu-element
IF choice = RIGHTARROW

* increment current-menu-element
ELSEIF choice = LEFMRROW

decrement current-menu-element
c ELSE-.

take appropriate action, using SELECT CASE . . .
WHILE true

5.5 Conclusion

The coding phase in this program has been developed in three different parts: the core

program, user interface and the integrating part. The core program is concerned about

getting the results from input data. The user interface is responsible in getting the user

response and acts as a platform where the user can interact with the core program. The

integrating part is responsible in preparing a way of giving choices to the user in selecting an

appropriate action while running this program.

l

47

CHAPTER 6

a

USER DOCUMENTATION

6.1 Requirements

You must run this program on a PC running with at least 256kb RAM, operating on DOS

operating system version 4 or higher. The PC must also have a colour monitor and a

keyboard attached to it. The colour monitor must be able to display text in 16 colours. You

would not need a mouse to use this program. You need not to have a hard disk, because you

can also run this program from a floppy disk.

6.2 Starting and Quitting The Program

To start this program, change your current directory to the directory that contains this

program executable file, named MCQTEST. EXE. If the program resides in your floppy disk,

insert your disk into the disk drive first and change your current drive into your floppy drive.

Type the program name once you are ready. For example, if you are running it from your

floppy drive A: , type MCQTEST:

A:\> MCQTEST

This program will then start and you will be given the program screen.

You can quit from using this program by highlighting the Quit panel from File menu, and

press ENTER. YOU will be brought back to the DOS prompt.

A:\> ’

4 8

6.2.1 Screen Layout

l

.

You cgn make yourself familiar with the screen (Figure 6.1) before proceeding using this

program. You will choose your actions from the pull-down menus located at the top of the

screen. You can move between these menus with LEFT and RIGHT arrow keys and you can

select a choice by pressing ENTER. The 2 lines at the bottom of the screen will give you 2

useful information. The first line will show the current program status, i.e. what are you

doing at the time. The second line will show the keys on the keyboard that you can press at

that specific time. The results of your actions will be shown in the large centre area of the

screen. The left section will be used to display the scores obtained by the students in a test.

The right section will be used to display the item analysis results, i.e. the discrimination

index, difXculty index ad the response counts of the test items. You will be using

program by navigating in just 3 areas: the pull-down menus, the score browsing section

item analysis results browsing section.

I + ! Menu line I

Ill Output and
1 results 1 results rj J PoduP

windows
area

Program status

this

and

Figure 6.1 Screen layout of the program

6.2.2 Main Menu

This program’has 5 pulldown menus to choose from (Figure 6.2).

Figure 6.2 Main menu choices

c

.

4 9

After entering this program, the File menu will be activated for you. You can move between

l allthese menus with LEFTARROW and RIGHTARROwkeys. Forexample,ifyou want to

I move to the Result menu from File menu, you can press RIGHTARROW key. However, if

you just entered this program, you can only choose from the File menu. Any attempt to

choose from other menus will pop-up an error message. You are not allowed to completely

leave this main menu. Although you can do tasks after selecting from this menu, after you

completed your task, you will be brought back to this menu.

6.3 The Menu Items

6.3.1 File Menu

File menu has two choices (Figure 6.3).

0

a Figure 6.3 File menu

The first choice is to load, score and analyse a test file. If you press ENTER on this panel,

and there are no currently unsaved tests result, you will be presented with a pop-up window

asking you to type in the name of the data file (see section 6.4 for details on typing file name

and section 6.5 for input file details). The data from that file will be read, the answers will be

automatically scored and the items will be analysed. A pop-up window suggesting you to use

the Result menu to browse the results will appear.

The second option from this menu is used for quitting from the program. If you have load a

data but the results have not been saved, a warning message telling you that the results have

50

c

l

0

l

not been saved will appear. You can choose to cancel quitting, and return to the main menu.

This program will quit and will not giving this message if you have saved the results to an

output file, or-you have not load a file at all.

6.3.2 Results Menu

The Results menu is used for browsing and saving the results of scoring and item analysis

(Figure 6.4). The first two choices are used to browse the scores and the item analysis results

on the screen. The third panel is used to save the results to an output file. If you choose this

third choice, you will be given another pull-down menu prompting you to choose the results

that you like to include in the output file (see section 6.7 for details of output file).

Figure 6.4 Results menu

6.3.3 Scoring Menu

The Scoring menu will give you the options to change the scoring methods, like shown here

1

on Figure 6.5.

Figure 6.5 Scoring menu

Selecting the fust option will make the answers to be re-scored, giving the scores in raw

marks. Choosing the second option will make the students’ answers be re-scored, and the

raw marks are corrected before being presented to you. The third choice is to be used when
*

/

51

you want to use guessing correction with the number of alternatives in the test questions is

s less than 5. For example, to use guessing correction on true/false test items, you can choose

.
this third choice, then choose “2 choices” from its submenu, and then re-score using guessing

correction (choose the second menu choice). By default, the guessing correction will

calculate the corrected scores by assuming that there were 5 alternatives (A, B, C, D, E) in

the test questions to be analysed. Each time you select to re-score, you will be automatically

entered into the score browsing mode, enabling you to look at all the scores. You will have

to press ESC to return to main menu.

6.3.4 Analysis Menu

The fourth selection from the main menu is Analysis menu (Figure 6.6). This menu presents

you with an opportunity to display the response counts in the form of percentage of students

that choose the alternatives, instead of just the raw numbers. If you select one of the options

from this menu, you will enter the mode where you can browse the analysis results, with the

response counts format shown according to your preference.

Figure 6.6 Analysis menu

6.3.5 Other Menu

The last menu’is the Other menu, which has 3 selections (Figure 6.7).

r

/’

., j -
52

The first selection will display all the current settings and the test information. The current

settings shown include whether or not the guessing correction has been used and the number

of alternatives in a question. The test information includes the class name, the test name: the

total number of students and the number of questions. The second choice will let you type in

the name of the students’ class whose answers are being dealt with. The third choice will let

you type in the name of the test itself, i.e. the name of the subject or the module. These

names will be used in printing the test information into the output file and in displaying the

.

c

l

current settings.

6.4 Typing In the File, Test or Class name

When you choose to open a data file, or to write the results to an output fde, you will be

prompted for the file name. You will have to type in the file name in a pop-up window, like

Figure 6.8.

When you are prompted with the file name, you must type in a valid ASCII text hle that

contains the test answers. Like indicated at the status line at this time, you can type in any

character that is valid in a file name. If you have type in a few characters, but realise that you

have made a mistake, you can correct the mistake using the BACKSPACE key. Your input

length at this prompt is restricted by the right edge of the pop-up window. You can complete

your task of filling in the file name by pressing the ENTER key.

53

When you-want. to input the class name-whose answers are being dealt with and the test

subject name, you will -be given another prompt, which also looks like Figure 6.8. The

- difference is the sentence that prompts you for the names and the length of input.~which is-

longer..

.

0

d

.

6.5 Browsing the Results

After you have load in the input data, you should browse the results of scoring and item

analysis by selecting Result menu. When you are browsing the scores, you can scroll through

the icores by pressing Up Arrow, Down Arrow, Page Down, Page Up, Control Home and

Control End. Up Arrow and Down Arrow will let you scroll one line at a time, Page Up and

Page Down will let you scroll one page at a time, while Control Home and Control End will

take you to the start and the end of the list. Figure 6.9 shows an example of the results from

the item analysis. For response count, it shows the number of students that opt for the

correct answer in a quite different colour from other alternatives.

Figure 6.9 Sample resultsfrom the item andysis.

54

6.6 Input File

.

c

The test actual answers and students’ answers should be ready before you start this program,

since this program did not provide youwith a facility to input them. The file can be prepared

using any text editor or word processor, as long as it is saved as the ASCII text file. You can

see the input file samples provided with this program (see Appendix A). The general format

of the file is shown in Figure 6.10.

Actual
XxxxxXXxxxxxxxxxxxxxxxx -anSwers

* xxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx * xxxxxxxxxxxxxxxxxxxxxxx

Candidate xxxxxxxxxxxxxxxxxx * xxxxxxxxxxxxxxxxXxxxxx Candidate
names xxxxxxxxxxxxxxxXXX * xxxxxxxxxxxmaxxxxxxxX

xxxxxxxxxxxxxxxxxx * xxxxxXxxxxxxxxXXxxXx
XxxxXxxxxxXxxxXxxX * xxxxxxxxxxxmxxxxxxxxxx 1 answers

Figure 6.10 Input j% format

The test actual answers must appear in the first line of the fde, with no spacing between each

answer. The total of answers should not exceed 150, since all answers after the 150th answer

will be ignored by this program. For your convenience, you can adjust the position of the

actual answers so that they are in the same column as the students’ answers, like shown in

Figure 6.10, as long as the are preceded only by spaces. The next lines should contain the

students’ names and their answers. The name length should not exceed 20 letters, including

spaces. If this length is exceeded, the exceeding letters will be ignored. After a name, there

should be an asterisk. If a student’s name has less than 20 characters, you can put the

asterisk exactly after the name, even though you may prefer to make it parallel with other

names. The student’s answers should appear after that asterisk. The total number of a

student’s answers should be the same as the teachers’ answers. If one of the students has a

different number of answers, this program will present you with a message telling you this

55

error, and the data file will not be loaded. You can exit this program and edit the data file

before entering it again.

-z

6.7 Qutput File

An output file is created when you save the results. The format of the file will depend on the

way you saved the file. When you choose to save it, you will be given a pull-down menu

asking you for the information that you want to include in the output file (Figure 6.11).

*

l

L

I

Figure 6.11 Choosing the outputjile contents

So, the output file format will depend on your choice from this menu. One information that

will be written whatever selection you made is the test information. This includes the test

name, the class name, the total students and the total questions. Test scores and item analysis

results wil.l only be written if you choose to write them or you choose to include both of

them in the file. In this case, the fiie format will be like shown in Figure 6.12. ;

ktt

TEST INFORMATION
Class :XXXXXXXXXXXXXXXXXX
Test :XXXXXXXXXXXXXXXXXX
Number of students : 99
Number of questions: 99
t
TEST RESULTS
Names Scores Percentage
___----^---------- -----------_-___--_-------
p 99 99.99
p 99 99.99
*****t***,*********************t****************************
ITEM ANALYSIS RESULTS

Discr. Diff. Response count
Q# index index A B C D E Omit
____-----_-------- __-__-___--_____-__-------------------------
9 9.99 9.99 99 99 99 99 99 99
9 9.99 9.99 99 99 99 99 99 99

Figure 6.12 Outputfile layout

56

This program is not intended to do the score processing. It does not even give the simplest

” information-about the scores, for instance the average of the scores. The scoring done is just

it for providing the scores to the teachers and supplying input to enable the item analysis. So,
~-

after getting the results, you may need to make further processing on the scores, like scaling,

or you may want to make some statistical analysis that is not supported by this program. To

do that, you can easily import this output file into other programs like a spreadsheet, because

the adjacent columns are separated by a TAB. Most spreadsheets are able to import data

from ASCII text file and the columns can easily be imported into the cells if they are

separated by the TAB. So, even if this program has not supported the more advance score

processing, it prepares a method to link the way of doing it.

.

l

CHAPTER 7

_ CONCLUSIONS

r) -

7.1 Project Objectikes Achievement

The main goal of this project is to built a computer program that can act as a tool to score

and analyse multiple choice question tests. The program should also small, cheap and easily

accessible by all educators, i.e. they can use it without having to face so many problems. The

program has been completed and is ready to be used. Although it can cope with what has

been a cumbersome problem for educators, it is small enough that it can reside in a diskette,

together with the data files. It can be run on a typical PC that can be found in most schools at

present time. It can do its job in a PC with just 256kb of conventional RAM and does not

require a hard disk. The program operations are based on the actions taken while the user is

using the pull-down menu. So, the user does not have to know complicated commands to

use it. This program also gives an adequate amount of message when an error occurred, and

indicates what should be done when an error occurred. So, it can be said that this program is

not difficult to use by an average user. The fact that it is small, does not require”advance

skills on operating it, and can run on a PC with low specifications contribute much in

achieving the target of this project. So, as a conclusion, this project has successfully achieved

r,

.

its goal.

7.2 Further Enhancements

While the goal of this project has been achieved, there are still further enhancements can be

made to rectify the program. Some re-engineering may be need’to be done to design a better

program, but that will not make it hard to improve it, because the program functions have
.

i’ r
i

.-_ _ _ _

59

been coded so that they are as objective as possible. The core program that does the

a calculation jobs was developed separately from the user interface part that wi.U take user

m responses. So, if more output is required, the core program can be modified; If the interface

is later found out to be flawed somewhere, it can be re-coded and tested separately.

Furthermore, there is a pull-down menu class that is ready to be used anytime. So, any

addition in program selection can be accomplished without taking so much time and effort

4

Possible extension to this project would be to incorporate it with an automatic answer

reading procedure. Currently, the computer program developed through this project requires

that the test answers be typed in into a text file before being processed. May be this fact will

discourage some educators from using it if they think that the task of preparing the data file

is also a cumbersome job. One possible solution is to incorporate this program to process the

answers that are automatically entered through an automated testing, using computer

terminals as test taking stations. Other possible solution is to have the students mark their

answers to the test questions using specially designed answer forms. The forms can then be

scanned using a scanner to trace the answers.

#

L

60

*

c

Referenceq

1. Barclay, Kenneth A., Gordon, Brian J., C++ Problem Solvir& and Programming;
Hertfordshire, Prentice Hall International, 1994. .-

2. Gronlund, Norman E., Measurement and Evaluation in Tepching. 4th Ed..
New York, Macmillan Publishing, 198 1.

31 Kendall, Kenneth E., Kendall, Julie E., systems Analysis and Design. 3rd. Ed.
Englewood Cliffs, Simon And Schuster, 1995.

4. Lyman, Howard B., Test Scores and What They Mean. 3rd Ed.
Englewood Cliffs, Prentice-Hall, 1978.

5. Peddie, Bill, White, Graham, Testing In Practice.
Auckland, Heinemann Educational Books, 1978.

6. Ray, John R., Davis, Lloyd D., Computers in Educational Administration. California,
Mitchell Mcgraw-Hill, 199 1.

7. Schildt, Herbert, C+ + The Complete Reference.
Calfornia, Osborne Mcgraw-Hill, 1995.

8. Schildt, Herbert, Using Turbo C++.
Calfornia, Osborne Mcgraw-Hill, 1990.

9. Sumner, Ray, The Role Of Assessment in Schools.
Windsor, Nfer-Nelson, 199 1.

10. Wiersma, William, Jurs, Stephen G., Educational Measurement And Testing. 2ndEd.
Massachusetts, Simon And Schuster, 1990.

11. Wood, Robert, Assessment and Testing, A Survey Of Research.
Cambridge, Press Syndicate, 1991.

.._--- -_ _ _..-._ -- .---

APPENDIX A
DIFFERENT VALID FORMATS OF INPUT FILE

c

I

All of the followings are examples of valid answers order in the input file
for t&is progfam.

1. All answers-in the same columns, with asterisks on the same columns in each line.

ABAEECADDCBACACEECECADBBD
Hillary Beet l ABAEEDA-DCEDBDBEECECADCAD
Alexandra Spith * ABAEDCADDBEABACCACECEECAD
Lindsay Scott * ABDEECADDCEACBCBECECADBBD
Mike Johnson * BBEECADDCBACBCEECDECADCAD
Johaan Young * DD--CCADDBEDBDBDECEC!EECAD
Mark Brown * ABABEDADDCEACACDEDECADCA-
Patrick McNamara * ABDEECADDCELACBCAECECADCAD

2. All answers in one same column, except actual answers.

ABABECADDCEACACEECECADBBD
Xillary Beat * ABAEEDA-DCEDBDBEECECADCAD
Alexandra Smith l ABAEDCADDBBABACCACECEECAD
Lindsay Scott l ABDEECADDCBACBCBECECADBBD
Mike Johnson l BBEECADDCBACBCEECDECADCAD
Johaan Young * DD--CCADDBEDBDBDECECEECAD
Mark Brown * AaAEEDADDCBACACDEDECADCA-
Patrick McNamara l ABDEECADDCBACBCAECECADCAD

3. All answers in one same column, with asterisks not on the same column in each line,

ABABECADDCEACACEECECADBBD
Xillary Best * ABABEDA-DCEDBDBEECECADCAD
Alexandra Smith l ABABDCADDBBABACCACECEECAD
Lindsay Scott * ABDEECADDCEACBCBECECADBBD
Mike Johneon * BBEECADDCEACBCEECDECADCAD
Johaan Young l DD--CCADDBEDBDBDECECEECAD
Mark Brown l ABAEEDADDCEACACDEDECADCA-
Patrick McNamara * ABDEECADDCEACBCAECECAIXXD

4. Answers in different columns, with asterisks not on the same column in each line, and
actual answers starting at the first column.

ABAEECADDCEACACEECECADBBD
Xillary Be& l ABAEEDA-DCEDBDBEECECADCAD
Alexandra @th * ABqEDCADDBBABACCACECEECAD
Lindoay Scott * ABDEECADDCBACBCBECECADBBD
Mike Johnson l BBEECADDCBACBCEECDECADCAD
Johaan Young * DD--CCADDBEDBDBDECECEECAD
Mark Brown l ABAEEDADDCBACACDEDECADCA-
Patrick McNamara l ABDEECADDCEACBCAECECADCAD I

- I- - _ _ _.__._ - . . -
_.

APPENDIX B
THE CODE OF PULL-DOWN MENU DEFINITION FILE

l

///

// General purpose pull down menu definition file //
// Done on Sat 32/7 //
// By: Mohamad Zamberi Saad //
// For the completion of USC of Information Technology //
// Completed between Jun 1995 - Septembeti 1995. //
//////////////////////////////l//////////~/~~///~//~~/~~/////

-

#ifndef PULLJOWN-H
#define PULL-DOWN-H

// keys on keyboard that will be used when choosing an item
const int UP-ARROW = 72;
const int DOWN-ARROW = 80;
const int LEFT-ARROW = 75;
const int RIGHT-ARROW = 77;
const int ENTER = 13;
const int ESC = 27;

#include <conio.h>
// menu color
const int N-TEXT-COLOR = BLUE; // blue on white
const int N-BG-COLOR = WHITE;
const int H-TEXT-COLOR = WHITE; // white on blue
const int H-BG-COLOR = BLUE;

const int MAx_M_CHARS = 40; // maximum chars in a menu panel
const int MAX-M-PANEL = 4; // maximum panel in a pull down menu

class PullDown (

private:
int Xl, Yl, X2, Y2;
char menu-str[MAX-M-PANEL] [MAX-M-CHARS];

public:
// constructor
PullDown(int x-1, int y-1, char str~of~menu[MAX~M~PANEL][MAX~M~CHARS]);

// choose an item from the currently shown pull down menu
int choose 0;

// display all the choices in every panel
void init-show 0;

// change the hlite panel from prev panel to cur panel
void change-hlite (int prev, int cur);

1; // end class

#endif

APPENDIX C
THE CODE OF PULL-DOWN MENU IMPLEMENTATION FILEc

/////////////////////////////////I///////~~~//~~~/~/~~ii///~/
b // Implementation of pull-down -. menu clam //

// Done: Sat. 23/7/95 //.-
// By: Yohamad Zamberi Saad //
// For the completion of MSc of Information Technology //

// Completed between Jun 1995 - September 1995 //
///~~//~/~//~~~/~/~~/

c

c

// example use: to declare a 'file' menu that contains 3 choices
// that will be activated at co-ord 10,lO
// // step 1. declare the array string
// char helptext[MAX-M-PANEL] [MAX-M-CHARS] = {
// "Load file', 'Close file', 'Quit",
// 1;
// // step 2. declare/construct the pull down menu
// PullDown filemenu (10, 10, filetext);
//
// to activate: int choice = filemenu.choose();

#include <iostream.h> // needed by cerr
#include <stdlib.h> // needed by exit0
#include <string.h> // needed by strlen() and strcat()
#include 'pul1down.h'

// constructor
PullDowIlrrPullDown (iat x-l, int y-1,

char etr-of_menu[~_M_PANELl[KAX_M_CHARSl) {

// 1. check the length -- not to exceed the upper/left screen border
if (x-1 < 3 II y-1 < 3) (

cerr cc "\nCan not init. menu: border (upper/left) out of screen.\n";
exit (-1);

I

// 2. calculate the longest panel string, to get X2
int lgst-str = 0;
for (int i = 0; i c MAX-M-PANEL; i++) // note : start from 0, to max-1

if (lgst-str < strlen(str-of-menu[iI))
lgst-str = strlen(str-of-menu[i]);

x2 = x-1 + lgst-str - 1;
Xl = x-1;

// 3. calculate the number of panels, to get Y2
i = 0;
while (str-of-menu[i][O] != I') i++; // accumulate i until no more panels
if (i > MAX-M-PANEL) Y2 = y-1 + MAX-M-PANEL - 1;
else Y2 = y-1 + i - 1;
Yl = y-1;

// 4. check the length -- not to exceed the lower/right screen border
if (X2 > 78 II Y2 > 23) (

cerr << '\nCan not init. menu: border (lower/right) out of screen.\n#;
exit (-1);

I

:;r5iigetothe menu-str from str-of-menu
- ; i c MAX-M-PANEL; i++)

for (int j = 0; j < MAX~M~CHAFG; j++)
menu-str[i] [j] = str-of-menu[i][j]; // copy

c

8

// 6. fill in the empty right part of each string with spaces.
for (i = 0; i c MAX-M-PANEL; i++) (

int j = (X2 - Xl + 1) - strlen(menu-str[i]); // panel-width = X2-X1+1
while (jj> 0) (// keep concatenates only if not yet filled

strcat(menu-str[i], " ');
j--;

) // end concatenate for one panel string
) // end for

) ,, Qnd +********+**************************** conotmctor

// show all-the panels and hilite first panel before taking any choice
void PullDown: : hit-show () I

textcolor(N-TEXT-COLOR); textbackground(N-BG-COLOR);

// draw the top border of box
const int panel-width = X2 - Xl + 1;
gotoxy(X1 - 1 , Yl - 1);
cprintf('fi");
for (int i = 0; i c panel-width; i++)

cprintf("A");
cprintf('L");
// show all the panels
const int no-panels = Y2 - Yl + 1;
int y = Yl;
for (i = 0; i < no-panels; i++) (

gotoxyo(l - 1, y);
cprintf("%s', ")"); // left border
cprintf("%s", menu-str[i]); // print using private data member
cprintf('%s', "3'); // right border
y++;

) // end for
// draw the bottom border of box
gotoxy(X1 - 1 , Y2 + 1);
cprintf('A");
for (i = 0; i c panel-width; i++)

cprintf('A");
cprintf('9');
// hilite the FIRST panel
textcolor(H-TEXT-COLOR); textbackground(H-BG-COLOR); // use hilite colors
gotoxy(X1, Yl);
cprintf("%s", menu-str[O]); // first string
gotoxy(X1, Yl); // put cursor back at starting of string
// set normal colors again, for safety
textcolor(N-TEXT-COLOR); textbackground(N-BG-COLOR);

) ,, ad function ~**t**+t~***t*t*tt+**************~**~* initmahow

// change the hilite panel from prev panel to cur panel
void PullDownr:change-hlite (int prev, int cur) (

// normal the prev.
textcolor(N-TEXT-COLOR); textbackground(N_BG-COLOR);
gotoxy(X1; prev + Yl);
cprintf('%s', menu-str[prev]);
// hilite the current
textcolor(H-TEXT-COLOR); textbackground(H-BG-COLOR);
gotoxy(X1, cur + Yl);
cprintf('%s', menu-str[cur]);
gotoxy(X1, cur + Yl); // put the cursor back at the beginning
// set normal colors again, for safety
textcolor(N-TEXT-COLOR); textbackground(N-BG-COLOR);

) ,, ,, ad function l ***tt.*t*tt**t*t+t****************.** change-hlite

c

c

// get the choice from pull down menu
int PullDownrrchooer 0 (

l

a

4

t

// allocate memory to store current screen contents

0 char *scr-buf;
scr-buf = new char1 ((X2+1) - (X1-i) + 1.) * ((Y2+1) -- (Yl-f) + 1.) * 2 1;
if (!scr-buf) (-.

cerr << "Video-memory allocation error\n";
cerr << 'in choose() in pulldown.cpp\n';
exit (1);

1
// store current screen contents
gettext(Xl-1, Yl-1, X2+1, Y2+1, scr-buf);
init-show 0; // show all, hilite 1st.
int cur-panel = 0, prev-panel;
char ch;
const int no-panels = Y2 - Yl + 1;
do (

ch = getch();
-switch (ch) {

case DOWNJRROW:
prevganel = cur-panel;
if (cur-panel != no-panels - 1)

cur-panel++;
else

cur-panel = 0;
change-hlite (prevganel, curJane1);
break;

case UP-ARROW:
prevganel = cur-panel;
if (cur-panel != 0) // panels are from 0 to (no-panels - 1)

cur-panel--;
else

cur-panel = no-panels - 1;
change-hlite (prev-panel, cur-panel);
break;

case ENTER:
// restore the previous screen contents, delete the buffer that holds it

puttext(Xl-1, Yl-1, X2+1, Y2+1, scr-buf);
delete scr-buf;
return (cur-panel + 1);

case ESC:
// restore the previous screen contents, delete the buffer that holds it

puttext(Xl-1, Yl-1, X2+1, Y2+1, scr-buf);
delete scr-buf;
return ESC;

case LEFT-ARROW:
// restore the previous screen contents, delete the buffer that holds it

puttext(Xl-1, Yl-1, x2+1, Y2+1, scr-buf);
delete scr-buf;
return LEFT-ARROW;

case RIGHT-ARROW:
// restore the previous screen contents, delete the buffer that holds it

puttext(Xl.-1, .Yl-1, X2+1, Y2+1, scr-buf);
delete scr-buf;
return RIGHT-ARROW;

) // end switch

] while (1); // end while

, ,, ad fun,....ion t**CI+*+~~+****~***~*************~**** ,ehooee

APPENDIX D
THE CODE OF MCQTEST.CPP

.
,, *****************t*************************~*******~**** //
// The program-that score and analyae the multiple-choice //
// queatioa testa itkin. //-..
// //
// By: Mohamad Zamberi Saad //
// Par the-completion of MSc of Information Technology //
// Completed between Jun 1995 - September 1995 //
// //
// to make executable file: //
// 1. make pulldown menu object file //
// compile t tee -c -P pulldown.cpp //
// //
// 2. make executable file: //
// compile : tee -P mcqteat.cgp pulldown.obj //
// //
,, *** ,,

#include <iostream.h> I/ needed by tout and cerr
#include cfstream.h> // needed by ofstream
#include <conio.h> // needed by gotoxy() -- and cprintf()
#include <stdlib.h> // needed by exit0 in main function
#include "pul1down.h' // needed to use the pull down menu system

// ***
// MENU AND SCREEN PART

// this structure will hold information about menu titles
// and first coordinates of pull down menus
struct menu (
char title-str[lO]; // title string, ex: 'File'
int t_leftX; // title left X
int pd-1eftX; // pull down left X

I;

// keys on keyboard -- addition to those defined in pul1down.h
co&t int UP-ARROW = 72;
const int PAGE-UP = 73;
const int DOWNJJRROW = 80;
const int PAGE-DOWN = 81;
const int CTRL-HOME = 119;
const int CTRL-END = 117;
const int BACKSPACE = 8;

c

// menu and screen constants
const int NOJfENU = 5; // number of pull down menus
const int TITLE-Y = 1; // top co-ordinate of the menu titles
const int UPPER-Y = TITLE-Y + 2; // top co-ordinate of a pulldown menu
const int MAXCOLSCR = 80; // maximum screen column
const int RALFCOLSCR 5.38; // half of screen column
const int MAXROWSCR- = 25; // maximum screen row
const int SCOR-CLR = CYAN;
const int ANA-CLR = BLUE;
const int TRUE = 1;
const int FALSE = 0;

a

i w

// menu and screen functions
int activ8menu (int n, menu menu-item[], PullDown cur-menu);
void draw-border(int xl, int yl, int x2, int y2, int fgcol, int bgcol);
void ready-screen 0;

.

void tidy-up();

1)

void show-mesg(char *err-msg, int err);
void paint-box(int xl, int yl, int x2, int y2, int col);
void use-text-color(int fgcol, int bgcol);
void useLnormal-color0;
void prompt-line(char *msg, char *str-toget, int len); -
void statusline (int n);
void show-status (char l linel, char l line2);
void displayclass (char *clasname, char *testname);
int sub-pulldown (int leftX, int topY, char streeng[][MAX-M-CHARS]);

// ************************t*****************~**************
// CORE PROGRAM THAT CALCULATE AND PRODUCE OUTPUT

int const MAXSTUDENTS = 150; // maximum students in the test
int const MAXQUESTN = 100; // maximum questions in the test
int const MAXCNAME = 20; // maximum characters in a student's name
int const MAXCHOICES = 5; // maximum choices in one question

// init functions
void initanswer (char answers[][MAXQUESTNl);
void initnames (char toinit[][MAXCNAME]);
void initlDarray (char *toinit, int limit);
int readteacansw (char *to-read, char *filename);
int readstudans (char to-read[][MAXQUESTNl, char names[][MAXCNAME],

char *filename);

// support functions
int len-ofstr (char *tocount);
int countstudents (char answers[][MAXQUESTN]);
void copy-row (char tochange[][MAXQUESTN], char *tobelD, int row-num);
void copy-co1 (char tochange[][MAXQUESTN], char l tobelD, int colgum);
int no-correct (char *arrayA, char *arrayB);
int no-wrong (char *arrayA, char *arrayB);
int guess-correct (int right, int wrong, int choices);
int no-match (char to-match, char *cur-question, int start, int stop);
float round-to2 (float toround);
void get-streeng (char *to-get, int lento-get, int startX, int y);

// process functions
void scoring (char answers[l[MAXQUESTN], char *teachers,

int score[], int choices);
void do-diff-ind (char answers[][MAXQUESTN], char *teachers,

float diff-ind[]);
int resp-count(char to-count, char *cur-question);
void do-resp-count (char answers[][MAXQUESTN], int resp-table11 [MAXQUESTN]);
void do-disc-index (char answers[][MAXQUESTN], char *teachers,

int score[], float disc-index[]);
void sort-answers(char answers[][MAXQUESTN], int score2[], int no-students);

int print-result (char *out-fname, char name-arr[] [MAXCNAME], int score[],
int no-students, int no-questions, float disc-index[], float diff-index[],
int resp[].[MAXQUESTN], char *cl-name, char *subj-name, int res2print);

// displaying
void doshowscore (char names[][MAXCNAME], int score[],,

int no-students, int no-qtns);
void showscore (char names[l[MAXCNAME], int score[], int top,

int bottom, int no-qtns);
void doshowanalysis (float disc-index[], float diff-index[l,

int resp[][MAXQUESTN], int no-questions, char *teachersanswers);
void showanalysis (float disc-index[], float diff-index[l,

int resp[][MAXQUESTN], int top, int bottom, char *teachersanswers);

void load-data(char answers[l[MAXQUESTN], char names[l[MAXCNAME],
c

!

char *teachers-answers);
void show-settings (int choices, char *clasname, char *testname,

int no-q, int no-students);

// f l a g s
int fl-dataloaded = FALSE;
int fl-usegc = FALSE;
int fl-count-pert = FALSE;
int-fl-saved = FALSE;

-

// ***~***

main 0 (-
char answers[MAXSTUDENTSI[MAXQUESTN]; // hold the students' answers
char teachanswer[MAXQUESTN]; // hold the teacher's answers
char names[MAXSTUDENTS] [MAXCNAMEI; // students' names
int no-questions; // # of questions
int qchoices = 5; // # of choices in a question
int score[MAXSTUDENTSl; // hold the scores

float disc-index[MAXQUESTNl;
float diff-index[MAXQUESTNl;
int resp~table[MAXCHOICES+l][MAXQUESTN];
// + 1 to accommodate invalid answers or omittance.
char *clasname = * *; // temporarily
char *testname = ' "; // temporarily

// ******************t***************************~***********
// MENU PART

+

,

.!.
c

// declare an array of menu titles
menu menu-arr[] = (

("File', 5, 5,],
{"Result', 12, 12,),
(.Scoring", 22, 22,],
('Analysis", 33, 33,],
{'Other", 45, 45,],

1;

ready-screen();

for (int i = 0; i < NO-MENU; i++) { // print pd menu titles
gotoxy(menu-arr[il.t_leftX, TITLE-Y);
cprintf("%s", menu-arr[i] .title-str);

I

char filetext[MAX~M~PANELl[MAX~M~CHARSl = (
'Load, score and analyse a test file", "Quit this program'

I;

char resulttext[MAX~M~PALl~MAX~M~CHARSl = (
*Browse .scores (on the screen)', "Browse analysis result (on screen)',
"Send results to output file'

I;

char scoretext[MAX-M-PANEL][MAX-M-CHARS] = {
'Restore, NOT using guessing correction',
'Restore, USE guessing correction',
'Change number of choices in a question.,

1;

char anlystext[MAX~M~PANELl[MAX~M~CHARSl = (
*Report response COUnt in %',

'Report resp. count in raw numbers".,
I;

char othertext[MAX-M-PANEL]-[MAX_M_CHARS] = {
'Display all current settings', ~1
-"Type in or change CLASS name',
;Type in or change TEST name',

1;

// declare the pull down menus, one by one
PullDown filemenu (menu,arr[Ol.pdJeftX, UPPER-Y, filetext);
PullDown resultmenu (menu~arr[ll.pd~leftX, UPPER-Y, resulttext);
PullDown Scoremenu (menu_arr[2].pdJeftX, UPPER-Y, scoretext);
PullDown anlysmenu (menu_arr[3] .pd-leftX, UPPER-Y, anlystext);
PullDown othermenu (menu_arr[4].pd_leftX, UPPER-Y, othertext);

c

.

c

,’
l

// declare an array that store all of the pulldown menus
PullDown pdown[NOJlENU] = (

filemenu, resultmenu, scoremenu, anlysmenu, othermenu,
I;
PullDown *pdgointer;

i/ navigate through all menus here
int choice = 0, cur-menu = 0;
do (
pdgointer = &pdown[cur-menu]; // obtain pointer to 'cur-menu'th element
statusline(
choice = activ8menu (cur-menu, menu-arr, *pd_pointer); // activate

switch (choice) (

case RIGHT-ARROW:
if (cur-menu != NO-MENU - 1) cur-menu++; else cur-menu = 0;
break;

case LEFT-ARROW:
if (cur-menu != 0) cur-menu--; else cur-menu = NO-MENU - 1;
break;

,) // end switch

// TAKE ACTIONS HERE.
// check first, whether data has been loaded
if (!fl-dataloaded && choice != RIGHT-ARROW && choice != LEFT-ARROW

&& cur-menu > 0)
show-mesg('You must open a test data file first!', 1);

else { I/ *** 1 ***
switch (cur-menu) (

case 0: // 'File menu'
switch (choice) {

case 1: // load input file
;// make sure: no other file opened but not been saved
'int oktoload = (!fl-dataloaded) I I (fl-dataloaded && fl-saved);

" if (!oktoload) {
show-mesg ('Results of THIS test has not been saved yet.', 1);
char menutext[MAX_M_PANEL] [MAX-M-CHARS] = (

'Cancel, do not load a new test file',
'Yes, load and do NOT save this one',

I;
int Xleft = 28, Ytop = 12;
int decide = subgulldown (Xleft, Ytop, menutext);
if (decide == 2) oktoload = TRUE;

I

if (oktoload) (
statusline(4);

3

1)

load-data(answers, names, teachanswer);
initlDarray(clasname, 20);
initlDarray(testname, 20);
displayclass(clasname, testname);
// re-init areas of results display
paint-box (1, TITLE-Y + 3, HALFCOLSCR, MAXROWSCR - 2, SCOR-CLR);
paint-box (HALFCOLSCR +-1, TITLE-Y + 3,
MAXCOLSCR, MAXROWSCR - 2, ANA-CLR);.

// score and analysis, automatically
scoring (answers, teachanswer, score, qchoices);

-do-diff-ind (answers, teachanswer, diff-index);
do-resp-count (answers, resp-table);
do-disc-index (answers, teachanswer, score, disc-index);
fl-saved = FALSE;
) // end if oktoload
break;

case 2: // quit program
int oktoexit = (!fl-dataloaded) II (fl-dataloaded && fl-saved);
if (!oktoexit) (

show-mesg ("Results has not been saved yet.', 1);
char menutext[MAX~M~PANELl[MAX~M~CHARSl = (

"Cancel, do not quit',
'Yes, quit and do not save*,

1;
int Xleft = 30, Ytop = 12;
int decide = sub-pulldown (Xleft, Ytop, menutext);
if (decide == 2) oktoexit = TRUE;

) // end if
if (oktoexit) {

// the only NORMAL PROGRAM EXITING is through here
tidy-up (1;
tout cc 'Program ends OK\n";
exit (1);

I

) // end switch (choice) in cur-menu = 0;
break; // case cur-menu == 0

case 2: // 'Scoring menu"
// NO need of using switch (choice) here.
if (choice == 1 I I choice == 2) (// prevent activate with LEFT/RIGHT

if (choice == 1) fl-usegc = FALSE;
else fl-usegc = TRUE;
scoring (answers, teachanswer, score, qchoices);
statusline(2);
doshowscore (names, score,

countstudents(answers), len-ofstr(teachanswer));
1
else if (choice == 3) (// change # of alternatives

// give pull down menu of 2,3,4,5 number of choices.
statusline(8);
show-mesg ('How many choices in a question?', 0);
char menutext[MAX-M-PANEL] [MAX-M-CHARS] = (

'2 choices -- ex: True/False',
'3 choices -- ex: A,B,C',
'4 choices -- ex: A,B,C,D',
'5 choices -- ex: A,B,C,D,E',

1;
int Xleft = 30, Ytop = 12;
const int oldc = qchoices; // caution : if press ESC.
qchoices = (1 + subgulldown (Xleft, Ytop, menutext));

if (qchoices == ESC + 1 I I qchoices == LEFT-ARROW + 1
II qchoices == RIGHT-ARROW + 1) qchoices = oldc;

} // end if
break; // case cur-menu == 1

a case 3: // "Analysis menu' -_
switch (choice) (
case 1: // analysis, showing resp, count in %
fl-countgerc = TRUE;

doshowanalysis (disc-index, diff-index, resp-table,
len-ofstr(teachanswer), teachanswer);

break;
case 2: // analysis, NOT showing resp. count in %

fl-countgerc = FALSE;
doshowanalysis (disc-index, diff-index, resp-table,

len-ofstr(teachanswer), teachanswer);
break;

} // end switch (choice) in cur-menu = 2;
break; // case cur-menu == 2

case 1: // "Result menu"
switch (choice) I

case 1:
statusline(2);
doshowscore (names, score,

countstudents(answers), len-ofstr(teachanswer));
break;

l

4

case 2:
statusline(3);
doshowanalysis (disc-index, diff-index, resp-table,

len-ofstr(teachanswer), teachanswer);
break;

case 3: // write to output file
char menutext[MAX-M-PANEL] [MAX-M-CHARS] = (

'Write SCORES only",
"Write ITEM ANALYSIS RESULTS only',
"Write BOTH of the above",

I;
int Xleft = 28, Ytop = 12;
int res2print = subgulldown (Xleft, Ytop, menutext);
if (res2print >= 1 && res2print <= 3) {

char *outfile-name = * .;
prompt-line ('Please type in the OUTPUT filename:',

outfile-name, 12);
if (print-result (outfile-name, names, score,

countstudents(answers), len-ofstr(teachanswer), disc-index,
diff-index, resp-table, clasname, testname, res2print)

) (// succesfully written.
show-mesg ("OK. Report written in that file', 0);
fl-saved = TRUE;

* 1
else- show-mesg ('Sorry. Can not open that OUTPUT file', 1);

} // end if
break;

1 // end switch (choice) in cur-menu = 3;
break; // case cur-menu == 3

case 4: // 'Options menu*
switch (choice) (

. .

I

1) --

case 1: // show current settings
statusline(7);
show-settings (qchoices, clasname, -testname,
-ien-ofstr(teachanswer), countstudents(answers));

break;
case 2: // input class name

statusline(5);
prompt-line('Please type in the CLASS name:., clasname, 20);
displayclass(clasname, testname);
break;

case 3: // input test name
-statusline(6);
prompt-line('Please type in the TEST name:", testname, 20);
displayclass(clasname, testname);
break;

1 // end switch (choice) in cur-menu = 4;
break; // case cur-menu == 4

} // end switch (cur-menu)
) // end *** 1 *+*

) while (1); // end while

1 // end main

// ****************t**********+***********************************
// second level functions -- called from the main0 only -- by menu

.

l

l

4

// load data from ASCII text file into answers, names & teachers-answers
void load-datatchar anaweratl [MAXQUESTNI, char name~[] [HUCNAMEI,

char *teachers-anPwerB) 1

// read in the INPUT file name
char *infile-name = ' l ; // temporarily
// to avoid 'Null pointer assignment'
prompt-line("Please type in the test data filename:., infile-name, 12);

initlDarray(teachers_answers, MAXQUESTN);
if (readteacansw(teachers_answers, infile-name)) {
// if succesfully read teachers answers

initnames(names); // proceed, reading students answer
initanswer(answers);
if (readstudans(answers, names, infile-name)) (
// if successfully read students answer

fl-dataloaded = TRUE;
show-mesg("OK. Choose Browse from Result menu to see the result:, 0);

} // end if readstudans
else (// if NOT succeed in readstudans

show-mesg ('Error in reading student answers", 1);
initnames(names);
initanswer(answers);
fl-dataloaded = FALSE; // to prevent further options

) // end else.-- end of reading students answer
} // end if readteacansw
else (// failed reading teachers answers

fl-dataloaded = FALSE;
show-mesg ('Error: Can not open that INPUT file", 1);

} // end else

} // ad function +***~t*~C~lt*t*t~+*+***** load-data

// **~**************
// CORE PROGRAM THAT CALCULATE AND PRODUCE OUTPUT

.

.

// this function will open the output file, then write the score
// and the results of item analysis
int print-raault (char-*out-fname, -.char name~arr t I tMAX&AMEl-, int wore [I,

int no-otudemto, int no-question&v, float disc-index[J, float diff-iadex[l,
int reapI DUXQUESTNI, char *cl~~aum, char l abj,name, int reo2print) (

ofstream file-out (out-fname);
if (!file-out) // can't open file
return 0;

// print test information
file-out << ' Class: . -cc cl-name << '\n";
file-out << 9 Test: " << subj-name <c '\n';
file-out << . Number of students: " << no-students << '\n';
file-out c< " Number of questions: l << no-questions << '\n\n*;

if (res2print != 2) { // if not only printing item analysis results
// show names and scores

file-out << "\t\t\tTEST RESULT\n";
file-out c< ' Names n << *Scores* << n Percentage\n";
file-out << I---------,-------,-------------------------------~. I
for (int stud = 0; stud < no-students; stud++) (

// file-out <c stud + 1;
for (int j = 0; j < MAXCNAME; j++)
file-out << name-arr[studl [jl;

file-out << '\t';

file-out << score[stud] c< "\t"
c< round~to2((score[stud]/(no_questions+O.O0))*100); // percentage

) // end printing all students
file-out << '\n\n';

) // end if

if (res2print != 1) (// if not only printing scores
// show discrimination index and difficulty index
file-out << *\t\t\tITEM ANALYSIS RESULTS\n';
file-out << '\tDiscr.\tDiff.\t\tResponse count\n";
file-out << "Q#\tindex\tindex\tA\tB\tC\tD\tE\t\-\n";
file-out
<< I--\n~;
for (int ques = 1; ques <= no-questions; ques++) (

file-out << (ques) << "\t'
<< round_to2(disc_index[gues - 11) << '\t'; // disc ind

file-out << round_to2(diff_index[gues - 11) cc '\t'; // diff ind

for (int row = 0; row < (MAXCHOICES+l); row++) { // resp count
file-out << resp[row][ques - 11;
if (fl-count-pert) (

const int pert = resp[row][ques - 11 / (0.00 + no-students) + 100;
file-out << '(' c< pert << ')';

I
file-out <c '\t';

) // end printing resp. count for each question

file-out cc "\n';

) // end for -- end printing all ana. results for each question
file-out cc .\n.;

I // end if

.
file~out.close();
return 1;

} // md function *********t*************** print~;eIilult
1

--
// initialize the answer 'array, filling ali with 'I char.
void initanower(char answars[l [UXQUESTNl) 1

for (inti = 0; i < MAXSTUDENTS; i++)
for (int j = 0; j < WQUESTN; j++)

answers[i][j]= '1;

8

.

// initialize the names array, filling all with I8 char.
void initnameo(char toinittl [I4AXCNA&fEl) 1

for (int i = 0; i < MAXSTUDENTS; i++)
for (int j = 0; j < MAXCNAME; j++)
toinit[i][jl= ' 1;

) // md function l +*8*8*8t*t*+**+********* initn-o

// read in students answer, line by line.
int readotudano(char to-read11 MAXQUESTNI, char names [I WAXCml,

char *filename) {

ifstream file-in (filename);
if (!file-in) 1

return 0;
I

// 1. to ignore the 1st data, i.e. teachers answer.
// 2. and to count the number of questions
char *dummy;
file-in >> dununy;
const int no-quest = len-ofstr(dummy);

int i;
for (int t = 0; t < MAXSTUDENTS; t++) (:

1= 0;
char c;

// read names -- char by char

while (file-in.get(c), c != I*' && !file-in.eof()) (
names[t][il = c;
i++;

) // end of reading the name, indicated by an '*I.
if (!c) (// if c is eof() -- Ctrl-2

file-in.close();
return 0;

1

file-in >> to-readIt]; // read answers for one student -- one string
if (len-ofstrtto-read[t]) != no-quest && to-read[t] [0] != '1) (

show-mesg(@Number of student's answer is not same as teacher's', 1);
return 0;

1
if (!to-read[t][O]) // Ctrl-Z in answers.

break;

1 // end for

// close input file

file-in.close();
return 1; // succeed in reading

} // end function +*****+*t***t***~****~*** rea&,tudana

// initialise 1D array
void initlDarray(char l toinit, int limit) {

for (int j = 0; j < limit; j++)
toinit[j]= 1';

// read the teachers answer, return succeed or not
int readteacanaw(char *to-read, char *filename) {

ifstream file-in (filename);
if (!file-in) // can not open INPUT file

return 0;

file-in >> to-read; // READ FIRST LINE ONLY

file-in.close();
return 1;

) // ad function l ************************ readteacanew

// count how many questions (or the length of the string)
int len-ofatr(char *tocount) {

int res = 0;
char *p = tocount;
while (*p++ != I')

res++;
return res;

) // ad function t***t*t*t*ttt+t~~t*+~*~** len-ofstr

// given the student answers array, return the number of students
int countmtudento(char unowera[l [MAXQUESTNI) i

int res = 0;
while (answers[res][O] != 'I && res < MAXSTUDENTS)

res++ ;
return res;

) // end function ************************* countotudento

l

‘J’)
i:

-I -!

// scores the students answer, by comparing one student each time.
void scoring (char answers[] [MAXQUESTNI, char *teachera,

int ecore[l, int choice@) {

// for using guessing correction
int wrong' = 0;

int row = 0;
char cur-student[MAXQUESTN];

while (answers[row][O] != 'I) (
initlDarray(cur-student, MAXQUESTN);
copy-row(answers, cur-student, row);
score[row] = no-correct(teachers, cur-student);
if (fl-usegc) (// use guessing correction or not
wrong = no-wrong(teachers, cur-student);

-

l

l

/
I

score[row] = guess-correct(score[row], wrong, choices);
if (score[rowl < 0) score[row] = 0;

) // end if
row++;

) // end while

} // end function l ***********************i *Corfng

// calculate the actual score from right and wrong answers.
int guessjcorrect (int right, int wrong, int choices) (

int result;
result = right - (wrong/(choices - 1)); // make sure choices not < 2
return result;

) ,, aad fun&ion **************t********** guema-correct

// extract, one row from 2D array to a 1D array.
void copy-row (char tochangetl [MAXQUESTNI, char *tobelD, int row-mm) (

for (int i = 0; i < MAXQUESTN; i++)
-tobelD[i] = tochange[row-numl [i];

) ,, ad function ~t******t*+~~***8******** copy-row

// extract one row from 2D array to a 1D array.
void copy-co1 (char tochangetl WAXQUESTNI, char *tobrlD, int col-mm) (

for (int i = 0; i < MAXSTUDENTS; i++)
tobelD[i] = tochange[il[col-num];

) ,, ad function +*+*t**~t+*~*tt*~******** ~opy-~~l

// return how many matching between 2 1D arrays, excluding)I.
iat no-correct (char *arrayA, char l arrayB) {

int i = 0, result = 0;
while (arrayA[il != 'I) (

if (arrayA[il == arrayB[i])
result++;

i++;
1
return result;

) // md function ~~*~*t~***~t+t******~***~ no-correct

// return how many wrong answers between 2 1D arrays, excluding II.
int no-wrong (char *arrayA, char l arrayB) (

int i = 0, result = 0;
while (arrayA[i] != 'I) (

if (arrayA[i] != arrayB[i] && arrayB[i] != I-')
result++;

i++;
I
return result;

) // ad function t*~***+*+~+********t**~** no-wrong

// do calculate diff. index
void do-diff-ind (char aaawere[][HAXQUESTNI, char *teacher@,

float diff-indll) {

int co1 = 0, right = 0, no-students = 0;
no-students = countstudents(answers);
char cur~question[MAXSTUDENTS];
while (answers[O][col] != 'I) (

.

.

.

?

.

initlDarray(cur-question, MAXSTUDENTS); // for safety
copy-col(answers, cur-question, ~01);
right = resp-count(teachers[col], cur-question);
diff-ind[col] = (right +~O.OO) /-no-students;

col++;

1 // end while
} // ana function ~**~***********t**+*****~ do diff fnd

// return how many occurance of to-count in cur-question array, excluding 11.
int reap-count(char to-count, char *cur-quratioa) (

int i = 0, result = 0;
while (cur-question[i] != 'I) (

if (cur-question[il == to-count)
result++;

i++;
I
return result;

} /; end fun&ion l ****+t*t**ttt**t******~* repp count

// do the response counting
void do-reap-count (char answera[] [MAXQUESTN], int resp~table[ltMAX~uEsml) (

int co1 = 0;
char cur-question[MAXSTUDENTS];
while (answers[OJ[col] != 'I) (

initlDarray(cur-question, MAXSTUDENTS); // for safety
copy-col(answers, cur-question, ~01); // for simplicity
resp-table[O][col] = resp-count('A', cur-question);
resp-table[l] [col] = resp-count('B', cur-question);
resp_table[2][col] = resp-count('C', cur-question);
resp_table[3] [co11 = resp-count('D', cur-question);
resp_table[4][col] = resp-count('E', cur-question);
resp-tableI [co11 = resp-count('-', cur-question);
col++;

) // end while
} // end function l ************************ do-reap-count

// do the disc. Index calculation
void do-disc-index (char answerstlWW2UESTNl, char *teachers,

int acoretl, float disc-index1 I) (

// make a new copy of answers
char new~answers[MAXSTUDENTS][MAXQUESTN];
for (int i = 0; i < MAXSTUDENTS; i++)

for (int j = 0; j c MAXQUESTN; j++)
new-answers[i] [j] = answers[i][j]; // copy

// make a new copy of scores
int new~score[MAXSTUDBNTS];
for (i = 0; i c MAXSTUDENTS; i++)

new-score[i] =. score[i]; // copy

const int no-studs = countstudents(answers);
sort-answers (new-answers, new-score, no-studs);

// calculate the disc. index on this new sorted answers

const float no-students = no-studs + 0.00;
// make it float for further calculation.

^ .- . ..- .~....L... -. -

const float marain = 0.30;
const int gap =-(no-students * margin);

L const int top-start = 0;
const int top-stop = gap - 1; // 30% highest
const int hot-start = no-students - gap; // 30% lowest

l
const int bet-stop = no-students - 1; -

float pH = 0.00, pL = 0.00;
int co1 = 0;
const float gap-float = gap + 0.00;
char cur-question[MAXSTUDENTS];
while (new-answers[O][col] != 'I) (

initlDarray(cur-question, MAXSTUDENTS); // for safety
copy-col(new-answers, cur-question, col);
pH = no-match (teachers[col], cur-question,

top-start, top-stop) / (gap-float);
pL = no-match (teachers[col], cur-question,

hot-start, hot-stop) / (gap-float);
disc-index[col] = pH - pL;
col++;

) // end while

#’
l

} // end function ************************* do-dix-inda

// sort answers descendingly, before do disc. index
void sort-anowers(char anmwers[J [XAXQUESTN], int acoreZ(], int no-studenta) (

char swap[MAXQUESTN];
for (int i = 0; i < no-students; i++) (// sorting.
for (int j = 0; j < i; j++) (
if (score2[j] < score2[i]) (// descending

// swap the answers of the students,

//I. copy-row i into a swap
copy-row (answers, swap, i);

//2. copy row j into row i
for (int k = 0; k < MAXQUESTN; k++)

answers[i] [k] = answers[j][k];

//3. copy swap into row j
for (k = 0; k < MAXQUESTN; k++)

answers[j][k] = swap[k];

// AND sort the score, also.
const int swap = score2[i];
score2[i] = score2[j];
score2[jl = swap;

1 // end if
} // end for j

) // end for i -- end of sorting

) // ad f&&ion *tt**8+**+*t*t+t*t*t***** Port-anPwers

// return how many occurrence of to-match in cur-question array.
int no-match (char to-match, char *cur-queotion, int start, int atop) {

int result = 0;
// note: use <= instead of < , because want to include stop margin
for tint i = start; i <= stop; i++)
if (cur-question[i] == to-match)

result++;

return result;

.

. ch = getch();

) // end function *t+*~***t~******tt****~~~ no-match

7/ call the function that will show the score
void doehowecore (char nameo[][MAXCNAbiE], int Fcore[],

int no-students, int no-qtns) 1

constint upper-screen = TITLE-Y + 3;
const int lower-screen = 23; // add this to add screen length
const int-max-element = no-students - 1; // because start from element 0
int tall = lower-screen - (upper-screen);
if (tall > no-students) tall = no-students;

// top & bottom store the element number to display,
// from top to bottom. bottom is bigger than top.
int top = 0; // start with first element in the array
int bottom = tall - 1; // if tall = 5, this is 4, so do from 0 to 4 .

u&e-text-color(YELLOW, SCOR-CLR);
gotow (1, upper-screen);
cprintf('%s', m # Name Score (%)"I;

use-text-color(WHITE, SCOR-CLR);
window (1, upper-screen t 1, HALFCOLSCR, upper-screen t tall t 1);
// need to use the scoring result area as the current window,
// because the showscore will print relative to that area.

char ch;
do t

// extreme case on the low end of array -- i.e. top of display
if (top < 0) (

top = 0;
bottom = tall - 1; // like early state

1

// extreme case on the high end of array -- i.e. bottom of display
if (bottom > max-element) (
bottom = max-element;
top = max-element - tall t 1;

1

// display from 'top'th el. to 'bottom'th el.
showscore (names, score, top, bottom, no-qtns);

switch (ch) (

.

case PAGE-DOWN: // increase the margins by the length of one screen
top*+= tall; bottom t= tall; break;

case,PAGE-UP: /!. decrease the margins by the length of one screen
top -= tall;. bottom -= tall; break;

case EQWNJiRROW: // increment the margins
top++; bottom++; break;

case UP-ARROW: // decrement the margins
top--; bottom--; break;

case CTRL-HOME: // like early state
top = 0; bottom = tall - 1; break;

case CTRL-END: // go to far end
bottom = max-element; top = max-element - tall t 1; break:

case ESC:

.

0 .-

/� l

use~normal~color();
window (1, 1, MAXCOLSCR, MAXROWSCR); // set back to normal
return;

)- // end switch

) while (1); // end while

} // end function l ************************ doahowscore

// display scores from top to bottom
void showrrcorr (char namcra[][MAXCNAXE], int pcore[], int top,

int bottok, int no-qtno) (

const int left = 4; // first char of a name will appear here
int y = 1; // start from top co-ord of CURRENT window
for (int i = top; i c= bottom ; i++) (// print for each student

use-text-color(YELLOW, SCOR-CLR);
gotoxy(left - 3, y); // print students number
cprintf("%3d", i + 1);
use-text-color(BLACK, SCOR-CLR);

for (int j = 0; j <= MAXCNAME; j++) (// print name
gotoxy(left + j, y);
cprintf("%c", names[i][jl);

1
gotoxy(left + MAXCNAME + 2, y); // print score
cprintf("%3d", score[il);

gotoxy(left + MAXCNAME + 7, y); // print score in %
cprintf("%3.0f', (score[i] / (no-qtns + 0.00)) l 100);

y++;
) // end print for each student

) // end function l *~*****t*t*tt*t*t***~~** ohowscore

// call the function that will show the analysis results
void doshowanalyoia (float dim-index[J, float diff-index[],

int reap[l[MAXQUESTN], int no-questions, char l teacheroanowers) (

const int upper-screen = TITLE-Y + 3;
const int lower-screen = 23; // add this to add screen length
const int max-element = no-questions - 1; // because start from element 0
int tall = lower-screen - (upper-screen);
if (tall > no-questions) tall = no-questions;

int top = 0; // start with first element in the array
int bottom = tall - 1; // if tall = 5, this is 4, so do from 0 to 4 .

use-text-color(YELLOW, ANA-CLR);
gotoxy(HALFCOLSCR + 1, upper-screen);
cprintf('%s", ' Q# Disc Diff A B C D E -");

use-text-color(WHITE, ANA-CLR);
window (HALFCOLSCR + 1, upper-screen + 1, MAXCOLSCR,

upper-screen + tall + 1);

char ch;
do (

if (top < 0) (

top = 0;

.
bottom = tall - 1; // like early state

I

*
if (bottom > max-element). (
bottom = m m - e l e m e n t ;
top = max-element - tall + 1;

I

showanalysis (disc-index, diff-index, -resp,
top, bottom, teachersanswers);

ch = getch();

switch (ch) (

case PAGE-DOWN: // increase the margins by the length of one screen
top += tall; bottom += tall; break;

case PAGE-UP: // decrease the margins by the length of one screen
top -= tall; bottom -= tall; break;

case DOWN-ARROW: // increment the margins
top++; bottom++; break;

case UP-ARROW: // decrement the margins
top--; bottom--; break;

case CTRL-HOME: // like early state
top = 0; bottom = tall - 1; break;

case CTRL-END: // go to far end
bottom = max-element; top = ma-element - tall + 1; break;

case ESC:
use-normal-color();
window (1, 1, MAXCOLSCR, MAXROWSCR); // set back to normal
return;

) // end switch

) while (1); // end while

} // ad function l ************************ doehowanalysio

// display analysis results
void ehowanalyois (float disc-indexI], float dlff-indextl,

int reap [I [wqQulwTNl , int tog, iat bottom,‘char l teacheroanawera) {

const int left = 1;
// the right most digit of q. number will appear here, (relative)
int y = 1; // start from top co-ord of CURRENT window

// count the total number of students, from the number
// of students that answer each choices, (totalling) because does not
// want to count from their 2D answer array (not available here)
int no-studs = 0;
for (int choice = 0; choice c (MAXCHOICES + 1); choice++)
no-studs += resp[choice] [top];

for (int i = top; i <= bottom ; i++) (// for each question

use-text-color(YELLOW, ANA-CLR);
gotoxy(left, y); // print question number
cprintf("%3d', i + 1);
use-text-color(WHITE, ANA-CLR);

gotoxy(left + 4, y); // print disc. index
cprintf("%5.2f', disc-index(i1);

.
gotoxy(left + 11, yl; // print diff. index
cprintf('%4.2fm, diff-index[il); // no -ve value.

-
// display resp. count
for (int choice.= 0; choice < (MAXCHOICES + 1); choice++) (

if (teachersariswers[il == choice + 65)
use-text-color(LIGHTCYAN.ANA-CLR);

gotoxy(left + 17 + (4. * choice), y);
if (fl-countqerc) // display in %

cprintf('%3.0f', (resp[choicel [il / (no-studs + 0.00)) * 100);
else

cprSntf('%3d", resp[choicel[ill; // no -ve value.
if (teachersanswers[i] == choice + 65) use~text~color(WHITE, ANA-CLR);

I
y++;

. 1 // end printing out for one question

) // ad function •+~***,~~******+*****n~~~ showanalysis
.

// ******~**********************+***************~*****~**********~
// MENU AND SCREEN PART

// draw border from xl,yl to x2,y2 in fgcol
void draw-bordertint xl, int yl, int x2, int y2, int fgcol, int bgcol) (

use-text-color (fgcol, bgcol);

// upper border
gotoxY(x1 , yl);
cprintf("d"); // upper left
for (int x = xl + 1; x <= x2 - 1 ; xtt) (
got-Y (x, Yl) ;
cprintf('f");

I
cprintf(", "1; // upper right

// left and right border
for (int y = yl t 1; y <= y2 - 1; ytt) (

gotoxy (xl I Y 1 ;
cprintf("J '1; // left border

gotoxy(x2 - 1, y);
cprintf(" 3'); // right border

I

// draw the bottom border of box
gotoxY(x1 , y2);
cprintf(l0');
for (x = xl t 1; x <= x2 - 1 ; xc+) (
gotoxyk y2);
cprintf (“f-j;

I
cprintf('%');

// activate the 'n'th menu in menu-item[] array,

// and taking choice from cur-menu pull down menu.
int activ8Gmu (h-n, menu menu-itemI], PullDown cur-menu) (

gotoxy (menu-item(n].t-leftX, TITLE-Y); // to hilite menu title
use-text-color (H-TEXT-COLOR, H-BG-COLOR);
cprintf('%s", menu-item[n].title-str); // print title-in hlite

int res = cur_menu.choose(); // take choice, from choose0

gotoxy (menu-item[n].t-leftX, TITLE-Y); // to normal again the-title

use~normal~color0;
cprintf('Ps' ,menu-item[n].title-str); // print title in normal

return res;

} // ad function ***~*****~*+t******+**t*+ activ8menu

// last thing to be called when quitting
void tidy-up (1 (

show-mesg('Thanks for using this program.", 0);
textmode(LASTMODE);
clrscrt);

) ,, end fun&ion *C+t+*t***+*tt****+**+t** tidywup

// make the screen ready, so that ready to use by any other parts
void ready-screen 0 (

textmode(3); // set screen mode to 80 columns by 25 rows, color
// paint the menu title line
paint-box (1, TITLE-Y, MAXCOLSCR, TITLE-Y, N-BG-COLOR);

// paint the class and test title line
displayclass ("NO CLASS NAME','NO TEST NAME');

// title line of score window and item analysis results window
int y = TITLE-Y + 2;
int bgcol = RED; // have to use to make it same as 'paint func.' color
paint-box (1, y, MAXCOLSCR, y, bgcol);
use-text-color(LIGHTGREEN, bgcol);
gotoxy(lO, y); cprintf('%s", "SCORES');
gotoxy(HALFCOLSCR + 14, y); cprintf('%s', 'ITEM ANALYSIS RESULTS');

// areas of results display
// scores area
paint-box (1, TITLE-Y + 3, HALFCOLSCR, MAXROWSCR - 2, SCOR-CLR);
// analysis results area
paint-box (HALFCOLSCR + 1, TITLE-Y + 3, MAXCOLSCR, MAXROWSCR - 2, ANA-CLR);

) // end function l ************************ ready-screen

// err is used to determine the appearance of error box
void chow-meog(char *err-mag, int err) (

int winwidth = len-ofstr(err-msg) + 2; // extra 2 on right, 2 on left
if (winwidth > MAXCOLSCR) (// for programmer's use only

cerr << 'Error message exceeded screen width.';
exit (1);

.
int togad = FALSE;
if (winwidth % 2 != 0) (// if odd
winwidth++; // make it even
togad = TRUE;

I -
const int 1eftX = (MAXCOLSCR / 2) - (winwidth / 2);
int rightx = (MAXCOLSCR / 2).+ (winwidth / 2);

if (!to_pad) rightX++;

const topY = 13;
const 1owY = 15;

char *scrn-buf;
scrn-buf = new char[(rightX - 1eftX + 1) * (1owY - topY + 1) * 2 1;
gettext(leftX, topY, rightX, lowY, scrn-buf);
// for shadow
char *scrn_buf2; // right shadow
scrn-buf2 = new char-[(1) * (1owY - topy + 1) * 2 1;
char *scrn_buf3; // bottom shadow
scrn-buf3 = new char1 (rightX - 1eftX + 1) * (1) * 2 1;

// for shadow
gettext(rightX + 1, topY + 1, rightX + 1, 1owY + 1, scrn-buf2);
gettext(leftX + 1, 1owY + 1, rightx + 1, 1owY + 1, scrn-buf3);
paint-box(rightX + 1, topY + 1, rightX + 1, lowy + 1, BLACK);
paint-box(leftX + 1, 1owY + 1, rightX + 1, 1owY + 1, BLACK);

if (err) draw-border (leftX, topY, rightX, lowy, LIGHTCYAN, RED);
else draw-border (leftX, topY, rightX, lowY, BLACK, WHITE);
gotoxy(leftX + 2, topY + 1); // print the message
cprintf('%s', err-msg);
gotoxy(leftX + 2, topY + 1);

getch () ;

// restore the previous screen contents, delete the buffer that holds it
puttext(leftX, topY, rightX, lowY, scrn-buf);
delete scrn-buf;
puttext(rightX + 1, topY + 1, rightX + 1, 1owY + 1, scrn-buf2);
delete scrn-buf2;
puttext(leftX + 1, 1owY + 1, rightX + 1, 1owY + 1, scrn-buf3);
delete scrn-buf3;

use-normal-color{);

) // and function •**t~****t**l~+*~t*t***~* ohow_mePg

// paint the area from xl,yl to x2, y2 in 'col' color.
void paint-box(int xl, int yl, int x2, int y2, int col) (

use-texticolor(col, col); // set both text and bg to have same color

window(x1, yl, x2, ~2);
clrscr0;

// set back to normal
window(1, 1, MAXCOLSCR, 25);
use~normal~color0;

) // ad function l t***+*~t~*~t**t+*~C*~~*~ paint-bo⌧

1.

.- .e-.

// change default text color and text back ground color
void use-text-colqr(int fgcoli-int bgcol) (

textcolor(fgco1); // set text to fgcol
textbackground(bgcol1; // set background to bgcol

} // end function ***************+********* uao-text-color

*

a

8

?a

,/:
9

// set the colors back to normal
void uoe-normal-color0 (

textcolor(N-TEXT-COLOR); // set text back to normal color
textbackground(N-BG-COLOR); // set bg back to normal color

) // end function l ************************ use-normal-color

// take a string from keyboard, giving prompt in a pop up window
// restriction: str-toget must have been declared using specific style,
// ex: char *filename = "THISDATA.TST";// to avoid 'Null pointer assignment'
// then call using: prompt-line("Please type in the filename', filename, 12);
// this is because we are using user-defined function len-ofstr()
// to count the 'msg' string length
void prompt-line(char l rasg, char l str-toget, int len) (

int winwidth = len-ofstr(msg) + len + 2; // extra 2 on right, 2 on left
if (winwidth > MAXCOLSCR) { // for programmer's use only

cerr << "Error message exceeded screen width.";
exit (1);

I

int togad = FALSE;
if (winwidth % 2 != 0) (// if odd
winwidth++; // make it even
togad = TRUE;

1

const int 1eftX = (MAXCOLSCR / 2) - (winwidth / 2);
int rightX = (MAXCOLSCR / 2) + (winwidth / 2);

if (!toqad) rightX++;

const topY = 13;
const 1owY = 15;

char *s-buf;
s-buf = new char[(rightX - 1eftX
char *s_buf2; // right shadow
s-buf2 = new char1 (1) * (1owY -

+1) * (1owY - topy + 1) * 2 1;

topy + 1 1 * 2 I ;
char *s_buf3; // bottom shadow
s-buf3 = new char[(rightX - leftx + 1) l (1) l 2.1;

if (!s-buf II !s_buf2 II !s_buf3) { // failed to allocate memory
cerr << '\nVideo memory allocation error while prompting\n*;
exit (1);

I

gettext(leftX, topY, rightX, lowY, s-buf);
gettext(rightX + 1, topY + 1, rightx + 1, 1owY + 1, s-buf2);
gettext(leftX + 1, 1owY + 1, rightX + 1, 1owY + 1, s-buf3);

.

t

draw-border (leftX, topY, rightX, lowY, BLUE, WHITE);
gotoxy(leftX + 2, topY + 1); // print the message
cprintf("%s', -msg);
// paint black spaces
paint-box(rightX - len - 1, topY + 1, rightX - 2, topY + 1, BLACK);

// right and bottom shadow
paint-box(rightX + 1, topY + 1, rightX + 1, 1owY + 1, BLACK);
paint-box(leftX + 1, 1owY + 1, rightX + 1, 1owY + 1, BLACK);

use-text-color(WHITE, BLACK); // take the string here
get-streeng(str-toget, len, rightX - len - 1, topY + 1);
use-normal-color();

// restore the previous screen contents, delete the buffer that holds it
puttext(leftX, topY, rightX, lowY, s-buf);
delete s-buf;
puttext(rightX + 1, topY + 1, rightX + 1, 1owY + 1, s_buf2).;
delete s-buf2;
puttext(leftX + 1, 1owY + 1, rightX + 1, 1owY + 1, s-buf3);
delete s-buf3;

) // ad function t****t**t~*+*****tt+~**** prompt line

// print mssages in the status line
void atatualine tint n) {

char *linel, *line2;
switch (n) (

case 1:
line1 = "Choosing from pull down menu';
line2 = 'Down, Up, Right, Left, ENTER, ESC";
break;

case 2:
line1 = 'Browsing the SCORES of the student';
line2 = "Down, Up, PgDown, PgUp, Ctrl-End, Ctrl-Home, ESC';
break;

case 3:
line1 = 'Browsing the results of ITEM ANALYSIS";
line2 = 'Down, Up, PgDown, PgUp, Ctrl-End, Ctrl-Home, ESC';
break;

case 4:.
line1 = "Typing in the filename";
line2 = "All valid characters in a filename, followed by ENTER";
break;

case 5:
line1 = "Typing in the CLASS name';
line2 = "Any available character on the keyboard, followed by ENTER";:
break;

case 6:
line1 = 'Typing in the TEST name";
line2.z 'Any available character on the keyboard, followed by ENTER';
break:

case 7:'
line1 = "Looking at current settings";
line2 = "Any key (to clear the display)";
break;

case 8:
line1 = 'Choosing the number of
line2 = 'Down, Up, Right, Left,
break;

) // end switch

choices in a question';
ENTER, ESC";

show-status(line1, line2);

) // end function +t******C***t*t*+*******~ PtatuPline

// print out messages on-2 status lines
void ahowgtatus (char +linel, char l lin&Z) (

// first-line -- current status
int y = MAXROWSCR - 1;
int bgcol = RED;
paint-box- (1, y, MAXCOLSCR, y, bgcol);
use-text-color(LIGHTGREEN, bgcol);
gotoxy(3, y); cprintf("%s', " [Status:]');
use-text-color(YELLOW, bgcol);
gotoxy(21, y); cprintf("%s", linel);

// available keys line
y = MAXROWSCR;
bgcol = CYAN;
paint-box (1, y, MAXCOLSCR, y, bgcol);
use-text-color(RED, bgcol);
gotoxy(3, y); cprintf("%s", "[Keys available:]");
use-text-color(BLUE, bgcol);
gotoxy(21, y); cprintf("%s", line2);

) // ad function l +*t~t*+*t+*****t*t*~~*** show-otatus

// display the class and the test name
void diaplayclaas (char l claaname, char l temtname) (

int y = TITLE-Y + 1;
int bgcol = CYAN;
paint-box (1, y, MAXCOLSCR, y, bgcol);
use-text-color(BLACK, bgcol);
gotoxy(lO, y); cprintf('%s', .Class:*);
gotoxy(50, y); cprintf("%s', 'Test:');

use-text-color(BLUE, bgcol);
gotoxy(l6, y); cprintf('%s", clasname);
gotoxy(55, y); cprintf('%s", testname);

) // end function •**t*t**.***~****+**.**** diaplayclaoo

// round a number into 2 decimal places float
float round-to2 (float toround) {

float x = toround * 100;
int n = (.'toround l 100);

if (toround > 0). (
if (x- n > 0.5) n++;

} else
if (.x - n c -0.5) n--;

return (0.00 + n) / 100;

} // ad function •*l*t~~*******t*~*~~~~*~* round-to2

// tciset -- string to be input, lento-get -- len of string to be input
// startX -- X coord to begin getting the string
I/ Y -- Y coord to get the string
void get-atreeng (char *to-get, int lento-get, int startx, int y) (

int done = 0, elem = 0;
c h a r c h ;
gotoxy(startX, y);
do (

ch = getche(); // to display while input

3

if (ch y= ENTER) C // *l*
if (elem c lento-get - 1) to-get[elemI = '\O'; // null
done = 1;

I // *1*
else

if (ch == BACKSPACE) (// l 2*
if (elem > 0) (

if (elem == lento-get - 1) (// special case
gotoxy(startX + elem, y); // -- because did not erase
cprintf('%c", ' '); // the last (max) char
gotoxy(startX + elem - 1, y);

Lo get[elemI = '\O';
cpGintf("%c', ' ');
elem--;

1
gotoxy(startX + elem, y);

1 // *2*
else

if (ch == ESC) (// *3*
for (int j = 0; j c lento-get - 1; j++)

to-get[Ol = '\O';
done = 1;

I // l 4*
else (// l 5*

to-get[eleml = ch;
if (elem < lentoget - 1) elem++;
gotoxy(startX + elem, y);

1 // l 5* end if - else

) while (!done);

} // end function l *******+**************** get-atreeng

// show all the curent settings
void Show-settinga (int choices, char l clasname, char *teatname,

int no-q, int no_studentP) (

const int,'leftX = 20;
int rightX = 60;
const topY = 7;
const 1owY = 17;

char l scrn-buf;
scrn-buf = new char[(rightx - 1eftX + 1) * (1owY - topy + 1) * 2 I;
gettext(leftX, topY, rightX, lowY, scrn-buf);

// for shadow
char *scrn_buf2; // right shadow
scrn-buf2 = new char1 (1) * (1owY - topY + 1) + 2 1;

1

._.._-.. .__-I.--- --

gettext(rightX + 1, topY + 1, rightX + 1, 1owY + 1, scrn-buf2);

I,

11 .
E
i

a

1

// *
i

0

char *scrn_buf3; // bottom shadow
scrn-uf3 = new char[(rightX - 1eftX + 1) * (1) * 2 1;
gettext(leftX + 1, 1owY + 1, rightX + 1, 1owY + 1, scrn-buf3);

paint-box(rightX + 1, topY + 1, rightX + 1, lowy + 1, BLACK);
paint-box(leftX + 1, 1owY + 1, rightx + 1, 1owY + 1, BLACK);

draw-border (leftX, topY, rightX,-lowY, BLACK, WRITE);

paint-box(leftX + 1, topY + 1, rightX - 1, 1owY - 1, WHITE);
window (leftX, topY, rightX, 1owY);

use-text-color(BLUE, WRITE);
gotoxy(l3, 1); cprintf('%s', 'uCURRENT SETTINGSIG");
gotoxy(3, 2); cprintf("%s", "Score using guessing correction ?:a);
gotoxy(19, 3); cprintf('%s", 'Number of choices:');
gotoxy(7, 4); cprintf(*%s", 'Display response count in % 3:");

use-text-color(RED, WRITE);
gotoxy(37, 2);
if (fl-usegc) cprintf("%s", 'YES"); else cprintf("%s", "NO');
gotoxy(37, 3); cprintf("%d", choices);
gotoxy(37, 4);
if (fl-countgerc) cprintf("%s', 'YES'); else cprintf(*%s", "NO');

use-text-color(BLUE, WRITE);
gotoxy(l1, 6); cprintf("%s', . -- Test information -- l);
gotoxy(3, 7); cprintf("%s*, "class :");
gotoxy(4, 8) ; cprintf('%s", "Test :");
gotoxy(3, 9); cprintf("%s", "Number of questions :');
gotoxy(3, 10); cprintf('%s', "Number of students :");

use-text-color(RED, WRITE);
gotoxy(l1, 7); cprintf("%s", clasname);
gotoxy(ll, 8) ; cprintf('%s", testname);
gotoxy(25, 9); cprintf("%d", no-q);
gotoxy(25, 10); cprintf('%d", no-students);

getch0;

// restore the previous screen contents, delete the buffer that holds it
puttext(leftX, topY, rightX, lowY, scrn-buf);
delete scrn-buf;
puttext(rightX + 1, topY + 1, rightX + 1, 1owY + 1, scrn-buf2);
delete scrn-buf2;
puttext(leftX + 1, 1owY + 1, rightX + 1, 1owY + 1, scrn-buf3);
delete scrn-buf3;

window (1, 1, MAXCOLSCR, MAXROWSCR); // set back to normal
use~normal~color0;

) // end f&&ion ***************+********* ohow-settings

// take choices from pull down menu, showed through streeng
int subgulldown (int left& iat topY, char atreeng[lDfAXJLCMRSI) (

PullDown subgdmenu (leftX, topY, streeng);
return subqdmenu.choose();

