The copyright © of this thesis belongs to its rightful author and/or other copyright owner. Copies can be accessed and downloaded for non-commercial or learning purposes without any charge and permission. The thesis cannot be reproduced or quoted as a whole without the permission from its rightful owner. No alteration or changes in format is allowed without permission from its rightful owner.

LEADERSHIP STYLES AND SAFETY BEHAVIOURS WITH SAFETY CLIMATE AS A MEDIATOR A MONG OIL AND GAS WORKERS

DOCTOR OF PHILOSOPHY UNIVERSITY UTARA MALAYSIA MAY 2017

LEADERSHIP STYLES AND SAFETY BEHAVIOURS WITH SAFETY CLIMATE AS A MEDIATOR A MONG OIL AND GAS WORKERS

Thesis submitted to Othman Yeop Abdullah Graduate School of Business Universiti Utara Malaysia In Fulfillment of the Requirement for the Degree of Doctor of Philosophy

PERMISSION TO USE

In presenting this thesis in fulfilment of the requirements for the degree of Doctor of Philosophy from Universiti Utara Malaysia, I agree that the University Library may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purpose may be granted by my supervisors or, in their absence by the Assistant Vice Chancellor of the College of Business. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use which may be made of any material from my thesis.

Request for permission to copy or make other use of materials in this thesis, in whole or in part, should be addressed to:

Dean of Othman Yeop Abdullah Graduate School of Business Universiti Utara Malaysia 06010 UUM Sintok

ABSTRACT

Existing submissions from industry practitioners and researchers suggest a high rate of occupational accidents, injuries and fatalities occasioned by poor safety and health management systems, and attendant safety-related behaviours in the Nigerian oil and gas industry. In an attempt to improve employees' safety behaviours, this study investigated the relationship between leadership styles, safety climate and safety behaviours in the Nigerian O & G industry. Specifically, this study examines the influence of authentic leadership, inclusive leadership, safety climate on components of safety behaviours namely, safety compliance, safety participation and risky behaviour. Via a cross-sectional design and quantitative approach, the study was conducted among 319 systematically selected O & G workers in Rivers State, Nigeria. The PLS-SEM tool (SmartPLS 3.0) was used in analyzing the data collected from the respondents. The findings of the study indicated that the direct relationships between authentic and inclusive leadership styles with safety climate were positively significant. Also, the study found direct significantly positive relationships between safety climate and safety compliance and safety participation. However, the relationship between safety climate and risky behaviour was negative. Similarly, safety climate mediated the relationship between the authentic and inclusive leadership styles with safety compliance and safety participation, but not with risky behaviour. Based on the findings, it can be concluded that the authentic leadership and inclusive leadership styles are critical to positively shaping the safety climate perceptions of O & G workers. Positively shaped safety climate perceptions should in-turn determine the positive safety behaviours of the workers. Consequently, theoretical and practical implications, in addition to recommendations for future research are holistically discussed.

Keywords: Authentic Leadership, Inclusive Leadership, Safety Climate, Safety Behaviour, Oil and Gas Industry, Nigeria

ABSTRAK

Maklumat sedia ada daripada pengamal industri dan penyelidik menunjukkan kadar kemalangan, kecederaan dan kematian yang tinggi dalam pekerjaan. Hal ini berpunca daripada sistem pengurusan keselamatan dan kesihatan yang lemah, dan tingkah laku berkaitan keselamatan atendan dalam industri minyak dan gas di Nigeria. Dalam usaha untuk meningkatkan aspek tingkah laku keselamatan pekerja, kajian ini menyelidik hubungan antara gaya kepimpinan, iklim keselamatan dan tingkah laku keselamatan dalam industri minyak dan gas di Nigeria. Kajian ini menyelidik secara menyeluruh pengaruh kepimpinan autentik, kepimpinan inklusif, iklim keselamatan dan komponen tingkah laku keselamatan iaitu, pematuhan keselamatan, penyertaan keselamatan dan tingkah laku berisiko. Melalui reka bentuk keratan rentas dan pendekatan kuantitatif, kajian ini dijalankan ke atas 319 orang pekerja minyak dan gas yang dipilih secara sistematik di Rivers State, Nigeria. Perisian PLS-SEM (SmartPLS 3.0) digunakan untuk menganalisis data yang diperoleh daripada responden. Dapatan kajian menunjukkan bahawa hubungan langsung antara gaya kepimpinan autentik dan gaya kepimpinan inklusif dengan iklim keselamatan adalah positif secara signifikan. Kajian ini juga menemui hubungan langsung yang positif dan signifikan antara iklim keselamatan dan pematuhan keselamatan, serta penyertaan keselamatan. Walau bagaimanapun, hubungan di antara persekitaran keselamatan dan tingkah laku berisiko adalah negatif. Iklim keselamatan juga didapati mengantarakan hubungan antara gaya kepimpinan autentik dan gaya kepimpinan inklusif dengan pematuhan keselamatan serta penyertaan keselamatan, tetapi tidak bagi tingkah laku berisiko. Berdasarkan hasil kajian, dapat disimpulkan bahawa gaya kepimpinan autentik dan gaya kepimpinan inklusif adalah penting untuk membentuk persepsi positif iklim keselamatan pekerja industri minyak dan gas. Persepsi positif iklim keselamatan ini seterusnya menentukan tingkah laku positif keselamatan pekerja. Seterusnya, selain cadangan untuk kajian akan datang, implikasi teori dan praktikal turut dibincangkan secara holistik.

Kata kunci: kepimpinan autentik, kepimpinan inklusif, iklim keselamatan, tingkah laku keselamatan, industri minyak dan gas, Nigeria

ACKNOWLEDGEMENT

"We must find time to stop and thank the people who make a difference in our lives." -- John F. Kennedy.

My greatest gratitude goes to God Almighty for His mercies and protection all through my PhD journey. My supervisors, Associate Professor Dr. Chandrakantan Subramaniam and Professor Dr. Hassan Ali were invaluably helpful. Their scholarly advice, guidance, constructive criticisms, support and encouragement are inarguably priceless. This process would not have been succinctly completed without their help. Similarly, Prof. T. Ramayah, Prof. Dr. Rosna Awang Hashim, Prof. Dr. Rushiami Zien Yussouf, Dr. Zaleha Othman, Dr. Zuraida Hassan, and Dr. Francis Chuah are worth saying a big THANK YOU to, for their support and encouragement.

Universiti Utara Malaysia

I acknowledge the support of the following persons and institutions. His Royal Majesty, King Edward Asimini William Dappa Pepple III, Perekule XI, Amanyanabo and Natural Ruler of Grand Bonny Kingdom, Rivers State, Nigeria; Board and Management, Bonny Kingdom Education Trust Fund, His Excellency Chief Barr. E. Nyesom Wike and the government of Rivers State, Nigeria; Late Chief Dr. Yibo Buowari Brown, and the elders of Bouye Omuso (Brown) House, Finima, Bonny Kingdom, Amaopusenibo (Hon.) Randolph I. O. Brown (MFHR), Elder Inima D. Brown, Amaopuorubo (Alabota) Carol B. Allison; UUM Management, Board, Management and staff of the Ibani-Se Initiative.

My God-sent wife, Barr. (Mrs.) Ibimina Bara-Kabaka, our daughter, Alice Bara-Kabaka, and our soon-to-be-born child (Somiebi - now born on Monday 22nd May, 2017), were all wonderful during the journey. It is understandable that my absence during my PhD process was not too pleasant, but your support and prayers kept me going. My dear siblings, Ibiene, Pirinye, Onimi, Dagogo, Kele, and Nnirom, were all supportive. God bless you. My dear in-laws, Prince Jackson Ehuwa, Mrs. Siya Onimi Kabaka, Mrs. Ugochi Alred-Kabaka, Alhaji Mustapha Momoh, I salute you all. Thanks for your support and encouragement.

I wish my father was alive to witness this day, but my solace rests on the belief that his transmigration to the great beyond was of God and in God's bosom he is continuously resting. However, respite has always been found in my dearest mother, Mrs. Rose Kabaka Brown, whose prayers and best wishes I will for eternally be grateful of. I believe and trust God that you will live a healthy and prosperous long life. I therefore dedicate thesis to you and my father, the late Easy Kabaka Brown who foresaw this dream, but did not live to see it. Wherever he is, I am sure he will be proud.

For those I am unable to mention here as individuals and as groups, please note that you are always remembered in my prayers. I LOVE YOU ALL.

TABLE OF CONTENTS

TITLE PAGE	i
CERTIFICATION OF THESIS WORK	ii
PERMISSION TO USE	iv
ABSTRACT	v
ABSTRAK	vi
ACKNOWLEDGEMENT	vii
TABLE OF CONTENTS	ix
LIST OF TABLES	xvii
LIST OF FIGURES	xviii
LIST OF APPENDICES	xix
LIST OF ABBREVIATIONS	xx Malavsia
BUDI BA	, ,

CHAPTER ONE INTRODUCTION1
1.1 BACKGROUND OF STUDY1
1.1.1 Summary of the Oil and Gas Industry, and overview of the occupation
safety and health systems in Nigeria
1.2 PROBLEM STATEMENT
1.3 RESEARCH QUESTIONS
1.4 RESEARCH OBJECTIVES
1.5 SCOPE OF THE STUDY
1.6 SIGNIFICANCE OF THE STUDY
1.7 DEFINITION OF KEY TERMS

1.7.1 Authentic Leadership23
1.7.2 Inclusive Leadership
1.7.3 Safety Climate
1.7.4 Safety Behaviours
1.8 OUTLINE OF THE THESIS
CHAPTER TWO LITERATURE REVIEW26
2.1 INTRODUCTION
2.2 DEFINITION, IMPORTANCE, HISTORICAL PERSPECTIVES AND
MEASUREMENT OF SAFETY BEHAVIOUR
2.3 EMPIRICAL STUDIES ON SAFETY PERFORMANCE (BEHAVIOURS) 40
2.4 LEADERSHIP
2.4.1 Authentic Leadership 50
2.4.2 Inclusive Leadership 57
2.5 SAFETY CLIMATE 60
2.5.1 Definitions
2.5.2 Why Safety Climate? 62
2.5.3 Delineation of Safety Climate 64
2.5.4 Safety Climate - attitude and/or perception
2.5.5 Safety-Culture Safety-Climate Distinction
2.5.6 Measurement and Dimensions of Safety Climate
2.5.6.1 Management Commitment to Safety80
2.5.6.2 Safety Training 82
2.5.6.3 Safety Communication and Feedback
2.5.6.4 Safety Systems (Rules and Procedures)
2.6 LEADERSHIP AS AN ANTECEDENT OF SAFETY CLIMATE

2.7 SAFETY CLIMATE AS A MEDIATOR IN THE LEADERS	SHIP AND
SAFETY BEHAVIOUR RELATIONSHIP	
2.8 UNDERPINNING THEORIES	
2.8.1 Social Exchange Theory (SET)	
2.8.2 The Social System Theory (SST)	
2.9 CHAPTER SUMMARY	102
CHAPTER THREE METHODOLOGY	103
3.1 INTRODUCTION	103
3.2 RESEARCH PARADIGMS	
3.2.1 The Positivist Paradigm	106
3.2.2 Constructivist Paradigm	107
3.2.3 The Critical Theory Paradigm	107
3.2.4 The Realist Paradigm	108
3.2.5 Qualitative versus quantitative	109
3.3 APPROACH ADOPTED BY THE PRESENT STUDY	112
3.4 THE RESEARCH PROCESS	113
3.5 RESEARCH FRAMEWORK	115
3.6 STATEMENT OF HYPOTHESES	120
3.7 RESEARCH DESIGN	124
3.7.1 Unit of Analysis	126
3.8 POPULATION, SAMPLE, AND SAMPLING TECHNIQUE	127
3.8.1 Population	127
3.8.2 Sample Size	131
3.8.3 Sampling Technique	
3.9 OPERATIONALIZATION AND MEASUREMENT OF VARIABLE	ES 137

3.9.1 Authentic Leadership 138
3.9.2 Inclusive Leadership 139
3.9.3 Safety Climate
3.9.3.1 Management commitment to safety 142
3.9.3.2 Safety Training 142
3.9.3.3 Safety Communication and Feedback 143
3.9.3.4 Safety Rules and Procedures 144
3.9.4 Safety Behaviours 145
3.10 QUESTIONNAIRE DESIGN
3.11 PRE-TEST PROCEDURE
3.12 DATA COLLECTION PROCEDURE
3.13 DATA ANALYSIS 158
3 13 1 The use of Partial Least Squares Structural Equation Modeling (PLS
5.13.1 The use of Fattal Least Squares Structural Equation Modeling (FES
SEM) for Data Analysis
SEM) for Data Analysis 159 3.13.2 Measurement Model Analysis using the PLS-SEM 162 3.13.3 Construct Reliability 162 3.13.4 Convergent Validity 163 3.13.5 Discriminant Validity 163 3.13.6 Structural Model Analysis using PLS-SEM 167 3.14 CHAPTER SUMMARY 169 CHAPTER FOUR RESULTS 170 4.1 INTRODUCTION 170 4.2 RESPONSE RATE 170 4.3 MISSING DATA SCREENING AND MISSING VALUES TREATMENT 173

4.5 DESCRIPTIVE ANALYSIS OF THE STUDY VARIABLES 178
4.6 COMMON METHOD BIAS 179
4.7 THE PLS-SEM APPROACH
4.8 MEASUREMENT MODEL ANALYSIS 182
4.8.1 Content Validity
4.8.2 Assessment of Construct Reliability 185
4.8.3 Assessment of Discriminant Validity 187
4.8.4 Evaluation of the Overall Model 192
4.9 ASSESSMENT OF THE STRUCTURAL MODEL 196
4.9.1 Collinearity Assessment 197
4.9.2 Path Co-efficient Assessment
4.9.3 R ² Level Assessment
4.9.4 Assessment of effect size (f ²)
4.9.5 Assessment of Predictive Relevance Q ²
4.10 MEDIATING EFFECT ASSESSMENT
4.11 SUMMARY OF HYPOTHESES' ASSESSMENT
4.12 CHAPTER SUMMARY
CHAPTER FIVE DISCUSSION, CONCLUSION AND
RECOMMENDATION
5.1 INTRODUCTION
5.2 DISCUSSION
5.2.1 Level of Safety Behaviours
5.2.1 Level of Safety Behaviours2145.2.2 Main effect216
 5.2.1 Level of Safety Behaviours

5.2.2.3 Relationship between safety climate and safety behaviours217
5.2.3 Indirect effect
5.2.3.1 Mediating effect of safety climate on the relationship between
authentic leadership and safety behaviours 227
5.2.3.2 Mediating effect of safety climate on the relationship between
inclusive leadership and safety behaviours
5.3 IMPLICATIONS
5.3.1 Managerial Implications
5.3.2 Theoretical Implications
5.4 LIMITATIONS OF THE STUDY AND DIRECTIONS FOR FUTURE
RESEARCH
5.5 CONCLUSION
REFERENCES
Universiti Utara Malaysia

LIST OF TABLES

Table Page
Table 1.1 Accidents and Fatalities Rate in the Nigerian Work Setting (2002-2015)3
Table 3.1 Principal Research Paradigms and Related Views 105
Table 3.2 The Priority-sequence Model
Table 3.3 Assumptions of Quantitative and Qualitative Methodologies 111
Table 3.4 Estimated Staff Population of O & G and Related Companies in Rivers
State, Nigeria
Table 3.5 Estimated Staff Population of O & G and Related Companies reachable to
Participate in the Study
Tables 3.6 Summary of Study Instrument Items 147
Table 3.7 Questionnaire Items 150
Table 3.8 Reliability of the Constructs 155
Table 3.9 Rules of Thumb for Selecting a SEM to use for Data Analysis160
Table 3.10 Indices for Measurement Model Analysis using PLS-SEM166
Table 3.11 Indices for structural model analysis using PLS-SEM
Table 4.1 Summary of the Questionnaires and Response Rate 172
Table 4.2 Respondents Profile 176
Table 4.3 Descriptive Statistics of the Variables 179
Table 4.4 Quality Criteria of First Order Constructs for Variables of the Study187
Table 4.5 Loadings and Cross Loadings of Constructs to assess Discriminant
Validity190

Table 4.6 Discriminant Validity Assessment	192
Table 4.7 Second-order Formative Constructs Assessment	194
Table 4.8 Collinearity Assessment	
Table 4. 9 Results of Hypothesized Direct Relationships	202
Table 4.10 Co-efficient of Determination	204
Table 4.11 Effect Size Assessment	
Table 4.12 Predictive Quality Indicators of the Model	
Table 4.13 Indirect Effect Report	210
Table 4.14 Summary of Hypotheses Assessment	

LIST OF FIGURES

Figure	Page
Figure 2.1. Summary of gaps in the literature	96
Figure 3.1. The main stages of the research process	114
Figure 3.2 Research framework	119
Figure 3.3. Power analysis for medium effect	134
Figure 4.1. The Measurement Model	
Figure 4.2. Second stage formative constructs	194
Figure 4.3. The five-step procedure for structural model assessment	195
Figure 4.4. The structural model with weights and R ² values	196
Figure 4.5. Path model results (direct hypotheses)	200

LIST OF APPENDICES

Appendix A Research Questionnaire	306
Appendix B Review of Articles	. 312
Appendix C SPSS Outputs	331
Appendix D PLS Outputs	335

LIST OF ABBREVIATIONS

O & G	Oil and Gas
GDP	Gross Domestic Product
OSH	Occupational Safety and Health
HSE	Health, Safety and Environment
NNPC	Nigerian National Petroleum Corporation
OPEC	Organization of the Petroleum Exporting Countries
SET	Social Exchange Theory
SST	Social Systems Theory
HPWS	High Performance Work Systems
SMPs	Safety Management Practices
DPR	Department of Petroleum Resources
CMV	Commom Method Variance
AVE	Average Variance Extracted
MV	Common Method Variance
PhD	Doctor of Philosophy
PLS	Partial Least Squares
Q^2	Construct Cross-validated Redundancy
R ²	R-squared values
SEM	Structural Equation Modelling
SET	Social Exchange Theory
SPSS	Statistical Package for the Social Sciences

CHAPTER ONE

INTRODUCTION

1.1 BACKGROUND OF STUDY

Workplace safety has been identified as an integral part of organizational activities (Beus, Payne, Bergman, & Arthur, 2010; Cagno, Micheli, Jacinto, & Masi, 2014; Sinelnikov, Inouye, & Kerper, 2015), yet remains a serious challenge in view of workers' continuous exposure to chemical, ergonomic, biological, psychosocial and related hazards (Leka, Jain, Iavicoli, Vartia, & Ertel, 2011; Lievens & Vlerick, 2013). Interestingly, the increasing cases of major accidents, injuries and work-related incidences have contributed to the growing concern among industry practitioners and researchers on the need to improve safety in workplaces (Cavazza & Serpe, 2009; Goh, Love, Stagbouer, & Annesley, 2012; Li, Jiang, Yao, & Li, 2013). Also, the increasing direct and indirect costs associated with these occurrences of workplace accidents, injuries and possible eventual fatalities have further contributed to the growing tention being paid to improving workplace safety (Neal & Griffin, 2002; Shalini, 2009).

Direct costs associated with workplace incidents accrue to companies in the form of medical and health bills, claims for permanent incapacitation and death, damages to work equipment, forfeitures, penalties, legal liabilities and continuous expenses for improvements to HSE activities (Pessemier, 2009; Moore, 2009; Battaglia, Marco, & Passetti, 2014). On the contrary, indirect costs accruable as a result of workplace incidents accrue in the form of production losses, increases in insurance costs, loss of confidence, absenteeism, increased staff turnover and denting of corporate image

The contents of the thesis is for internal user only

REFERENCES

- Abdullah, N. A. C., Spickett, J. T., Rumchev, K. B., & Dhaliwal, S. S. (2009). Assessing employees' perception on health and safety management in public hospitals. *International Review of Business Research Papers*, 5(4), 54-72.
- Abu, T. A., & Nwosu, P. C. (2009). The effect of oil-spillage on the soil of Eleme in Rivers State of the Niger-Delta area of Nigeria. *Research Journal of Environmental Sciences*, 3(3), 316-320.
- Abudayyeh, O., Fredericks, T. K., Butt, S. E., & Shaar, A. (2006). An investigation of management's commitment to construction safety. *International Journal* of Project Management, 24(2), 167-174.
- Adams, S., & Opoku, E. E. O. (2017). BRIC versus OECD Foreign Direct Investment Impact on Development in Africa. In *Foreign Capital Flows and Economic Development in Africa* (pp. 147-161). Palgrave Macmillan US.
- Adie, W., Cairns, J., Macdiarmid, J., Ross, J., Watt, S., Taylor, C. L., & Osman, L.
 M. (2005). Safety culture and accident risk control: Perceptions of professional divers and offshore workers. *Safety Science*, 43(2), 131-145.
- Agnew, C., Flin, R., & Mearns, K. (2013). Patient safety climate and worker safety behaviours in acute hospitals in Scotland. *Journal of Safety Research*, 45, 95-101.
- Aguilera, R. V. (2005). Corporate governance and director accountability: An institutional comparative perspective. *British Journal of Management*, 16, 39-S53.
- Akselsson, R., A., Jacobsson, M., Borjesson, A., Ek, & Enander, A. (2012). Efficient and effective learning for safety from incidents. *Work 41*: 3216-3222.

- Alas, R., Tafel, K., & Tuulik, K. (2007). Leadership style during transition in society: Case of Estonia. Problems and Perspectives in Management, 5(1), 50-60.
- Alexopoulos, E. C., Kavadi, Z., Bakoyannis, G., & Papantonopoulos, S. (2009). Subjective risk assessment and perception in the Greek and English Bakery industries. *Journal of Environmental and Public Health*, 1-8.
- Al-Haadir, S., Panuwatwanich, K., & Stewart, R. (2013). Developing a Model of Construction Safety in Saudi Arabia. In Proceedings of the Thirteenth East Asia-Pacific Conference on Structural Engineering and Construction (EASEC-13) (pp. F-3). The Thirteenth East Asia-Pacific Conference on Structural Engineering and Construction (EASEC-13).
- Al-Moumen, M. (2009). Developing Iraq's oil industry to maximize government net revenues, Developing Iraq's Oil Industry to Maximize Government Net revenues. Department of Economics, Stanford University, Stanford, CA, 94305.
- Al-Refaie, A. (2013). Factors affecting companies' safety performance in Jordan using structural equation modeling. *Safety science*, *57*, 169-178.
- Altman, D., Burton, N., Cuthill, I., Festing, M., Hutton, J., & Playle, L. (2006). Why do a pilot study. *National Centre for Replacement, Refinement and Reduction* of Animal in Research, 1-2.
- Amorose, A. J., & Anderson-Butcher, D. (2007). Autonomy-supportive coaching and self-determined motivation in high school and college athletes: A test of self-determination theory. *Psychology of Sport and Exercise*, 8(5), 654-670.
- Arezes, P. M., & Miguel, A. S. (2008). Risk perception and safety behaviour: A study in an occupational environment. *Safety Science*, 46(6), 900-907.

- Arezes, P. M., & Sérgio Miguel, A. (2003). The role of safety culture in safety performance measurement. *Measuring Business Excellence*, 7(4), 20-28.
- ArnoldItkin (2011). Nigeria Offshore Accidents. Retrieved from: http://www.arnolditkin.com/Practice-Areas/Maritime-Offshore-Injury/Maritime-Workers-in-Foreign-Waters/Nigeria.aspx
- Asanka, W. A., & Ranasinghe, M. (2016, January). Study on The Impact Of Accidents on Construction Projects. In 6th International Conference on Structural Engineering and Construction Management, Kandy, Sri Lanka (pp. 58-67).
- Attwood, D., Khan, F., & Veitch, B. (2006). Occupational accident models—Where have we been and where are we going? *Journal of Loss Prevention in the Process Industries*, 19(6), 664-682.
- Avolio, B. J., & Gardner, W. L. (2005). Authentic leadership development: Getting to the root of positive forms of leadership. *The leadership quarterly*, 16(3), 315-338.

Universiti Utara Malaysia

- Avolio, B. J., & Luthans, F (2006). *The high impact leader: moments matter for accelerating authentic leadership development.* New York: McGraw-Hill.
- Avolio, B. J., Gardner, W. L., Walumbwa, F. O., Luthans, F., & May, D. R. (2004).
 Unlocking the mask: A look at the process by which authentic leaders impact follower attitudes and behaviors. *The Leadership Quarterly*, 15(6), 801-823.
- Babbie, E. (2004). *The Practice of Social Research*. Belmont, CA: Wadsworth, Thomson Learning Inc.
- Babbie, E. (2007). *The Practice of Social Research*. Belmont, CA: Thomson Learning.
- Bahari, S. F., & Clarke, S. (2013). Cross-validation of an employee safety climate model in Malaysia. *Journal of Safety Research*, 45, 1-6.

- Barbaranelli, C., Petitta, L., & Probst, T. M. (2015). Does safety climate predict safety performance in Italy and the USA? Cross-cultural validation of a theoretical model of safety climate. *Accident Analysis and Prevention*, 77, 35-44.
- Barlett, J. E., Kotrlik, J. W., & Higgins, C. C. (2001). Organizational research: Determining appropriate sample size in survey research. *Information Technology, Learning, and Performance Journal*, 19(1), 43-50.
- Barling, J., Loughlin, C., & Kelloway, E. K. (2002). Development and test of a model linking safety-specific transformational leadership and occupational safety. *Journal of applied psychology*, 87(3), 488-496.
- Barlow, L., & Iverson, R. D. (2005). Workplace safety. *Handbook of Work Stress*, 247-266.
- Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. *Journal of Personality and Social Psychology*, 51(6), 1173-1182.
- Bass, B. M. (1985). *Leadership and performance beyond expectations*. *New York*: Free Press.
- Bass, B. M. (1990). Bass and Stogdill's handbook of leadership: Theory, research, and managerial applications (3rd ed.). New York: Free Press.
- Bass, B. M. (1998). The ethics of transformational leadership. In J. Ciulla (Ed.), Ethics, the heart of leadership (pp. 169–192). Westport, CT: Praeger.
- Bass, B. M., & Avolio, B. J. (2000). Multifactor Leadership Questionnaire: MLQ; Sampler Set; Technical Report, Leader Form, Rater Form, and Scoring Key for MLQ Form 5x-short. Mind Garden.

- Bass, B. M., & Bass, R. (2009). *The Bass handbook of leadership: Theory, research, and managerial applications*. Simon and Schuster.
- Battaglia, M., Marco, F. R. E. Y., & Passetti, E. (2014). Accidents at work and costs analysis: a field study in a large Italian company. *Industrial health*, 52(4), 354-366.
- Bell, K. J., O'Connell, M. S., Reeder, M., & Nigel, R. (2008). Predicting and Improving Safety Performance. *Industrial Management*, 50(2).
- Bentley, T. A., & Haslam, R. A. (2001). Identification of risk factors and countermeasures for slip, trip and fall accidents during the delivery of mail. *Applied Ergonomics*, 32(2), 127-134.
- Bergh, L. I. V., Hinna, S., Leka, S., & Jain, A. (2014). Developing a performance indicator for psychosocial risk in the oil and gas industry. *Safety Science*, 62, 98-106.
- Bergh, L. I. V., Ringstad, A. J., Leka, S., & Zwetsloot, G. I. (2014). Psychosocial risks and hydrocarbon leaks: an exploration of their relationship in the Norwegian oil and gas industry. *Journal of Cleaner Production*, 84, 824-830.
- Beus, J. M., McCord, M. A., & Zohar, D. (2016). Workplace safety: A review and research synthesis. Organizational Psychology Review, 6(4), 352-381.
- Beus, J. M., Payne, S. C., Bergman, M. E., & Arthur Jr, W. (2010). Safety climate and injuries: an examination of theoretical and empirical relationships. *Journal of Applied Psychology*, 95(4), 713-727.

Blau, P. M. (1964). *Exchange and power in social life*. NY: Wiley.

- Blaxter, L., Hughes, C., & Tight, M. (2006). How to Research 3rd. Open University Press.
- Bodenlos, J. S., Wells, S. Y., Noonan, M., & Mayrsohn, A. (2015). Facets of Dispositional Mindfulness and Health among College Students. *The Journal* of Alternative and Complementary Medicine, 21(10), 645-652.

- Borenstein, M., Rothstein, H., & Cohen, J. (1997). Sample power: Release 1.00. Chicago, IL: Statistical Package for the Social Sciences (SPSS).
- Borgersen, H. C., Hystad, S. W., Larsson, G., & Eid, J. (2014). Authentic leadership and safety climate among seafarers. *Journal of Leadership & Organizational Studies*, 21(4), 394-402.
- Borman, W. C., & Motowidlo, S. M. (1993). Expanding the criterion domain to include elements of contextual performance. *Personnel Selection in Organizations; San Francisco: Jossey-Bass.*
- Bosak, J., Coetsee, W. J., & Cullinane, S. J. (2013). Safety climate dimensions as predictors for risk behavior. *Accident Analysis and Prevention*, *55*, 256-264.
- Bottani, E., Monica, L., & Vignali, G. (2009). Safety management systems: Performance differences between adopters and non-adopters. *Safety Science*, 47(2), 155-162.
- Bowen, E. R., & Starr, M. K. (1987). Basic Statistics for Business and Economics, 4th ed., McGraw-Hill, Singapore.
- Bowander, B. (1987). The Bhopal accident. *Technological Forecasting and Social Change*, 32(2), 169–182.
- Brahm, F., & Singer, M. (2013). Is more engaging safety training always better in reducing accidents? Evidence of self-selection from Chilean panel data. *Journal of Safety Research*, 47, 85-92.
- Brondino, M., Silva, S. A., & Pasini, M. (2012). Multilevel approach to organizational and group safety climate and safety performance: Co-workers as the missing link. *Safety Science*, 50(9), 1847-1856.

- Brown, K. W., Ryan, R. M., & Creswell, J. D. (2007). Mindfulness: Theoretical foundations and evidence for its salutary effects. *Psychological Inquiry*, 18(4), 211-237.
- Brown, R. L., & Holmes, H. (1986). The use of a factor-analytic procedure for assessing the validity of an employee safety climate model. *Accident Analysis* and Prevention, 18(6), 455-470.
- Burke, M. J., Sarpy, S. A., Tesluk, P. E., & Smith-Crowe, K. (2002). General safety performance: A test of a grounded theoretical model. *Personnel Psychology*, 55(2), 429-457.
- Burns, J. M. (1978). Leadership. New York: Harper & Row.
- Cagno, E., Micheli, G. J. L., Jacinto, C., & Masi, D. (2014). An interpretive model of occupational safety performance for Small-and Medium-sized Enterprises. *International Journal of Industrial Ergonomics*, 44(1), 60-74.
- Campbell, J. P., McCloy, R. A., Oppler, S. H., & Sager, C. E. (1993). A theory of performance. *Personnel selection in organizations*, 3570.
- Carmeli, A., & Shaubroeck, J. (2006). Top management team behavioural integration, decision quality, and organizational decline. Leadership Quarterly, 17(5), 441-453.
- Carmeli, A., Brueller, D., & Dutton, J. E. (2009). Learning behaviours in the workplace: The role of high-quality interpersonal relationships and psychological safety. *Systems Research and Behavioral Science*, 26(1), 81-98.
- Carmeli, A., Friedman, Y., & Tishler, A. (2013). Cultivating a resilient top management team: The importance of relational connections and strategic decision comprehensiveness. *Safety Science*, 51(1), 148-159.

- Carmeli, A., Reiter-Palmon, R., & Ziv, E. (2010). Inclusive leadership and employee involvement in creative tasks in the workplace: The mediating role of psychological safety. *Creativity Research Journal*, 22(3), 250-260.
- Carnino, A., Nicolet, J. L., & Wanner, J. C. (1990). *Man and risks: Technological and Human Risk Prevention* (21). Marcel Dekker.
- Carvalho, P. V., Dos Santos, I. L., & Vidal, M. C. (2005). Nuclear power plant shift supervisor's decision making during microincidents. *International Journal of Industrial Ergonomics*, 35(7), 619-644.
- Cavazotte, F. D. S. C. N., Duarte, C. J. P., & Gobbo, A. M. C. (2013). Authentic leader, safe work: the influence of leadership on safety performance. *Brazilian Business Review*, 10(2), 95-119.
- Cavazza, N., & Serpe, A. (2009). Effects of safety climate on safety norm violations: exploring the mediating role of attitudinal ambivalence toward personal protective equipment. *Journal of Safety Research*, 40(4), 277-283.
- Chang, Y. H., & Yeh, C. H. (2004). A new airline safety index. *Transportation Research Part B: Methodological*, 38(4), 369-383.
- Chemers, M. (1997). An Integrative Theory of Leadership. Mahwah, NJ: Lawrence Erlbaum Associates
- Cherry, M. A., & Sneirson, J. F. (2011). Beyond profit: Rethinking corporate social responsibility and green washing after the BP oil disaster. *Tulane Law Review*, 85(4), 983.
- Cheung, M. F., & Law, M. C. (2008). Relationships of organizational justice and organizational identification: The mediating effects of perceived organizational support in Hong Kong. Asia Pacific Business Review, 14(2), 213-231.

- Cheyne, A., Cox, S., Oliver, A., & Tomás, J. M. (1998). Modelling safety climate in the prediction of levels of safety activity. *Work and Stress*, *12*(3), 255-271.
- Chin, W. W. (1998). Commentary: issues and opinion on structural equation modeling. *Management Information Systems Quarterly*, 22 (1), 7-16.
- Chin, W. W. (1998). The partial least squares approach to structural equation modeling. In G. A. Marcoulides (Ed.), *Modern methods for business research* (pp 295-336). Mahwah: Lawrence Erlbaum Associates.
- Chin, W. W. (2010). How to write up and report PLS analyses. In V.E. Vinzi, W.W. Chin, J. Henseler, & H. Wang (Eds.), *Handbook of Partial Least Squares, Springer Handbooks of Computational Statistics* (pp. 655-690). Springer-Verlag Berlin Heidelberg. doi 10.1007/978-3-540-32827-8_29
- Choi, S. B., Tran, T. B. H., & Park, B. I. (2015). Inclusive leadership and work engagement: mediating roles of affective organizational commitment and creativity. *Social Behavior and Personality: An International Journal*, 43(6), 931-943.
- Choudhry, R. M. (2014). Behavior-based safety on construction sites: A case study. *Accident Analysis & Prevention*, 70, 14-23.
- Choudhry, R. M., Fang, D., & Ahmed, S. M. (2008). Safety management in construction: Best practices in Hong Kong. *Journal of Professional Issues in Engineering Education and Practice*, 134(1), 20-32.
- Christian, M. S., Bradley, J. C., Wallace, J. C., & Burke, M. J. (2009). Workplace safety: a meta-analysis of the roles of person and situation factors. *Journal of Applied Psychology*, 94(5), 1103-1127.
- Chughtai, A. A. (2015). Creating safer workplaces: The role of ethical leadership. *Safety Science*, 73, 92-98.

- Churchill, G. A. (2005). A Dawn IACOBUCCI. Marketing research: methodological foundations.
- Cianci, A. M., Hannah, S. T., Roberts, R. P., & Tsakumis, G. T. (2014). The effects of authentic leadership on followers' ethical decision-making in the face of temptation: An experimental study. *The Leadership Quarterly*, 25(3), 581-594.
- Cigularov, K. P., Adams, S., Gittleman, J. L., Haile, E., & Chen, P. Y. (2013). Measurement equivalence and mean comparisons of a safety climate measure across construction trades. *Accident Analysis and Prevention*, 51, 68-77.
- Clarke, S. (2006). The relationship between safety climate and safety performance: a meta-analytic review. *Journal of Occupational Health Psychology*, *11*(4), 315-327.
- Clarke, S. (2010). An integrative model of safety climate: Linking psychological climate and work attitudes to individual safety outcomes using metaanalysis. *Journal of Occupational and Organizational Psychology*, *83*(3), 553-578.

Clarke, S. (2013). Safety leadership: A meta-analytic review of transformational and transactional leadership styles as antecedents of safety behaviours. *Journal of Occupational and Organizational Psychology*, 86(1), 22-49.

- Clarke, S., & Flitcroft, C. (2008). Effects of transformational leadership on perceived safety climate: a longitudinal study. *Journal of Occupational Health and Safety, Australia and New Zealand, 24*(3), 237.
- Clarke, S., & Robertson, I. (2005). A meta-analytic review of the Big Five personality factors and accident involvement in occupational and nonoccupational settings. *Journal of Occupational and Organizational Psychology*, 78(3), 355-376.

- Clarke, S., & Ward, K. (2006). The role of leader influence tactics and safety climate in engaging employees' safety participation. *Risk Analysis*, *26*(5), 1175-1185.
- Cohen, J. (1988). *Statistical power analysis for the behavioural sciences* (2nd ed.). New York: Academy Press.
- Cohen, J. (1992). A power primer. *Psychological bulletin*, 112(1), 155-159.
- Cohen, J. M. (2002). Measuring safety performance in construction. *Occupational Hazards*, 64(6), 41-44.
- Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2013). *Applied multiple regression/correlation analysis for the behavioral sciences*. Mahwah, NJ; Routledge.
- Cohen, L., Manion, L., & Morrison, K. (2013). Research methods in education. Routledge.
- Colley, S. K., Lincolne, J., & Neal, A. (2013). An examination of the relationship amongst profiles of perceived organizational values, safety climate and safety outcomes. *Safety Science*, 51(1), 69-76.
- Collier, N., Fishwick, F., & Floyd, S. W. (2004). Managerial involvement and perceptions of strategy process. *Long Range Planning*, *37*(1), 67-83.
- Conway, J. M., & Lance, C. E. (2010). What reviewers should expect from authors regarding common method bias in organizational research. *Journal of Business and Psychology*, 25(3), 325-334.
- Cooper M. D. (2000). Towards a model of safety culture. *Safety Science*, *36*(2), 111-136.
- Cooper, C. D., Scandura, T. A., & Schriesheim, C. A. (2005). Looking forward but learning from our past: Potential challenges to developing authentic leadership theory and authentic leaders. *Leadership Quarterly*, 16, 475-493.

- Cooper, D. (2015). Effective Safety Leadership: Understanding Types & Styles That Improve Safety Performance. *Professional Safety*, 60(2), 49-53.
- Cooper, M. D., & Phillips, R. A. (2004). Exploratory analysis of the safety climate and safety behavior relationship. *Journal of Safety Research*, *35*(5), 497-512.
- Cox, S. J., & Cheyne, A. J. T. (2000). Assessing safety culture in offshore environments. *Safety Science*, 34(1), 111-129.
- Cox, S., & Cox, T. (1991). The structure of employee attitudes to safety: A European example. Work and Stress, 5(2), 93-106.
- Cox, S., & Flin, R. (1998). Safety culture: philosopher's stone or man of straw? *Work and Stress*, *12*(3), 189-201.
- Coyle, I. R., Sleeman, S. D., & Adams, N. (1995). Safety climate. *Journal of Safety Research*, 26(4), 247-254.
- Coyle, I. R., Sleeman, S. D., & Adams, N. (1996). Safety climate. *Journal of Safety Research*, 26(4), 247-254.
- Cresswell, J. W. (2014). Research design: qualitative, quantitative, and mixed methods approach (Kindle version). *Retrieved from Amazon. com*.
- Cropanzano, R., & Mitchell, M. S. (2005). Social exchange theory: An interdisciplinary review. *Journal of Management*, *31*(6), 874-900.
- Cui, L., Fan, D., Fu, G., & Zhu, C. J. (2013). An integrative model of organizational safety behavior. *Journal of Safety Research*, 45, 37-46.
- Cullen, D. (1990). The Public Inquiry into the Piper Alpha Disaster. HMSO. London.
- Dahl, Ø. (2013). Safety compliance in a highly regulated environment: A case study of workers' knowledge of rules and procedures within the petroleum industry. Safety Science, 60, 185-195.

- Dahl, Ø., & Olsen, E. (2013). Safety compliance on offshore platforms: A multisample survey on the role of perceived leadership involvement and work climate. *Safety Science*, 54, 17-26.
- Dane, E., & Brummel, B. J. (2013). Examining workplace mindfulness and its relations to job performance and turnover intention. *Human Relations*, 67(1), 105-128.
- Dane, E., 2011. Paying attention to mindfulness and its effects on task performance in the workplace. *Journal of Management*, *37*(4), 997–1018.
- Dealy, M. D., & Thomas, A. R. (2006). Change or die: how to transform your organization from the inside out. Westport, London: Greenwood Publishing Group.
- DeArmond, S., Huang, Y. H., Chen, P. Y., & Courtney, T. K. (2010). Corporate financial decision makers' perceptions of their company's safety performance, programs and personnel: Do company size and industry injury risk matter? *Work*, 37(1), 3-13.
- Deci, E.L., & Ryan, R.M. (2000). The "what" and "why" of goal pursuits: Human needs and the self-determination of behavior. *Psychology Inquiry* 11, 227-269.
- Dedobbeleer, N., & Béland, F. (1991). A safety climate measure for construction sites. *Journal of Safety Research*, 22(2), 97-103.
- DeJoy, D. M., Schaffer, B. S., Wilson, M. G., Vandenberg, R. J., & Butts, M. M. (2004). Creating safer workplaces: assessing the determinants and role of safety climate. *Journal of Safety Research*, 35(1), 81-90.
- Dekker, S. (2011). Drift into Failure: From Hunting Broken Components to Understanding Complex Systems. Farnham: Ashgate.
- Dekker, S. W., & Nyce, J. M. (2015). From figments to figures: ontological alchemy in human factors research. *Cognition, Technology and Work, 17*(2), 185-187.

- Demerouti, E., Bakker, A. B., Nachreiner, F., & Schaufeli, W. B. (2001). The job demands-resources model of burnout. *Journal of Applied psychology*, 86(3), 499-512.
- Denison, D. R. (1996). What is the difference between organizational culture and organizational climate? A native's point of view on a decade of paradigm wars. Academy of Management Review, 21(3), 619-654.
- Denscombe, M. (2014). *The good research guide: for small-scale social research projects*. McGraw-Hill Education (UK).
- Department of Petroleum Resources (2012). *Guidelines for compliance with the technical safety control requirements*. Retrieved from https://dpr.gov.ng/index/safety-guidelines/
- DePasquale, J. P., & Geller, E. S. (2000). Critical success factors for behavior-based safety: A study of twenty industry-wide applications. *Journal of Safety Research*, 30(4), 237-249.
- Diamantopoulos, A., & Siguaw, J. A. (2006). Formative versus reflective indicators in organizational measure development: A comparison and empirical illustration. *British Journal of Management*, 17(4), 263-282.
- Díaz-Cabrera, D., Hernández-Fernaud, E., & Isla-Díaz, R. (2007). An evaluation of a new instrument to measure organizational safety culture values and practices. Accident Analysis and Prevention, 39(6), 1202-1211.
- Didla, S., Mearns, K., & Flin, R. (2009). Safety citizenship behaviour: a proactive approach to risk management. *Journal of Risk Research*, *12*(3-4), 475-483.
- Diehl, P. L., & Gay, L. R. (1992). Research Methods for Business and Management. New York, NY, MacMillan Publishing.
- D'Innocenzo, L., Mathieu, J. E., & Kukenberger, M. R. (2016). A meta-analysis of different forms of shared leadership-team performance relations. *Journal of Management*, 42(7), 1964-1991.

- Donald, I., & Canter, D. (1994). Employee attitudes and safety in the chemical industry. *Journal of Loss Prevention in the Process Industries*, 7(3), 203-208.
- Donovan, S., Salmon, P. M., & Lenné, M. G. (2016). Leading with style: a literature review of the influence of safety leadership on performance and outcomes. *Theoretical Issues in Ergonomics Science*, 17(4), 423-442.
- Dorczak, R. (2011). School organisational culture and inclusive educational leadership. Contemporary Management Quarterly/Wspólczesne Zarzadzanie,2.
- Dragoni, L. (2005). Understanding the emergence of state goal orientation in organizational work groups: the role of leadership and multilevel climate perceptions. *Journal of Applied Psychology*, *90*(6), 1084-1095.
- Dutra, L. M., Kim, S. S., Williams, D. R., Kawachi, I., & Okechukwu, C. A. (2014). Worksite safety climate, smoking, and the use of protective equipment by blue collar building workers enrolled in the MassBUILT smoking cessation trial. Journal of occupational and environmental medicine/American College of Occupational and Environmental Medicine, 56(10), 1082.
- Dwyer, T., & Raftery, A. E. (1991). Industrial accidents are produced by social relations of work: A sociological theory of industrial accidents. *Applied Ergonomics*, 22(3), 167-178.
- Dyreborg, J., Lipscomb, H. J., Olsen, O., Törner, M., Nielsen, K., Lund, J., ... & Gensby, U. (2015). Safety Interventions for the Prevention of Accidents in the Work Place: A Systematic Review.
- Eagly, A. H., & Chaiken, S. (1993). *The psychology of attitudes*. Harcourt Brace Jovanovich College Publishers.
- Easterby-Smith, M., Thorpe, R. Y., & Lowe, A. A. (1991): *Management Research-An Introduction*. London: Sage.
- Edmondson, A. (1999). Psychological safety and learning behavior in work teams. Administrative Science Quarterly, 44(2), 350-383.
- Edmondson, A. C. (2004). Psychological safety, trust, and learning in organizations: A group-level lens. In R. M. Kramer, & K. S. Cook (Eds.), *Trust and distrust in organizations: Dilemmas and approaches* (pp. 239–272). New York: Russell Sage.
- Eid, J., Mearns, K., Larsson, G., Laberg, J. C., & Johnsen, B. H. (2012). Leadership, psychological capital and safety research: Conceptual issues and future research questions. *Safety Science*, 50(1), 55-61.
- Eigel, K. M., & Kuhnert, K. W. (2005). Authentic development: Leadership development level and executive effectiveness. *Monographs in Leadership* and Management, 3, 357-385.
- Embrey, D. E. (1993). Quantitative and qualitative prediction of human error in safety assessments. In *Institution of Chemical Engineers Symposium Series* (130, 329-329). Hemsphere Publishing Corporation.
- Encyclopedia Britannica (2015). *Rivers*. Retrieved from <u>https://en.wikipedia.org/wiki/Rivers_State#cite_note-niger_delta-11</u>.
- EnergyMix Report (2016). *Health safety issues in Nigeria's oil and gas sector*. Retrieved from: http://energymixreport.com/health-safety-issues-in-nigeriasoil-gas-sector/
- Evans, B., Glendon, A. I., & Creed, P. A. (2007). Development and initial validation of an Aviation Safety Climate Scale. *Journal of Safety Research*, 38(6), 675-682.
- Ezenwa, A. O. (2001). A study of fatal injuries in Nigerian factories. Occupational Medicine, 51(8), 485-489.
- Falk, R. F., & Miller, N. B. (1992). *A primer for soft modeling*. University of Akron Press.

- Fang, D., Chen, Y., & Wong, L. (2006). Safety climate in construction industry: a case study in Hong Kong. *Journal of Construction Engineering and Management*, 132(6), 573-584.
- Faul, F., & Erdfelder, E. (2009). G*Power [Computer software]. Retrieved from http://www.psycho.uni-duesseldorf.de/abteilungen/aap/gpower3/literature/
- Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G. (2009). Statistical power analyses using G* Power 3.1: Tests for correlation and regression analyses. *Behavior Research Methods*, 41(4), 1149-1160.
- Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. *Behavior Research Methods*, 39(2), 175-191.
- Fay, D., & Sonnentag, S. (2002). Rethinking the effects of stressors: a longitudinal study on personal initiative. *Journal of Occupational Health Psychology*, 7(3), 221-234.
- Feldman, G., Greeson, J., Renna, M., & Robbins-Monteith, K. (2011). Mindfulness predicts less texting while driving among young adults: Examining attentionand emotion-regulation motives as potential mediators. *Personality and Individual Differences*, 51(7), 856-861.
- Feng, X. Q., Acord, L., Cheng, Y. J., Zeng, J. H., & Song, J. P. (2011). The relationship between management safety commitment and patient safety culture. *International Nursing Review*, 58(2), 249-254.
- Fernández-Muñiz, B., Montes-Peón, J. M., & Vázquez-Ordás, C. J. (2012). Safety climate in OHSAS 18001-certified organisations: Antecedents and consequences of safety behaviour. Accident Analysis and Prevention, 45, 745-758.

- Fernández-Muñiz, B., Montes-Peón, J. M., & Vázquez-Ordás, C. J. (2014). Safety leadership, risk management and safety performance in Spanish firms. *Safety Science*, 70, 295-307.
- Fernández-Muñiz, B., Montes-Peón, J. M., & Vázquez-Ordás, C. J. (2007). Safety culture: Analysis of the causal relationships between its key dimensions. *Journal of Safety Research*, 38(6), 627-641.
- Fishbein, M. (1975). Ajzen, I. (1975). Belief, Attitude, Intention, and Behaviour: An Introduction to Theory and Research. Reading, MA: Addison-Wesley.
- Fitzgerald, B., & Howcroft, D. (1998). Competing dichotomies in IS research and possible strategies for resolution. In *Proceedings of the international conference on Information systems* (pp. 155-164). Association for Information Systems.
- Flin, R. (2007). Measuring safety culture in healthcare: A case for accurate diagnosis. *Safety Science*, 45(6), 653-667.
- Flin, R., & Yule, S. (2004). Leadership for safety: industrial experience. *Quality and Safety in Health Care*, *13*(2), 45-51.
- Flin, R., Mearns, K., O'Connor, P., & Bryden, R. (2000). Measuring safety climate: identifying the common features. *Safety Science*, *34*(1), 177-192.
- Ford, M. T., & Tetrick, L. E. (2011). Relations among occupational hazards, attitudes, and safety performance. *Journal of Occupational Health Psychology*, 16(1), 48-66.
- Fornell, C., & Cha, J. (1994). Partial least squares. Advanced Methods of Marketing Research, 407(3), 52-78.

- Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. *Journal of Marketing Research*, 18(1), 39-50.
- Freeman, E.J., 2004. Union-management solutions for preventing workplace injury of older workers. *Work*, 22(2), 145–151.
- Fugas, C. S., Silva, S. A., & Meliá, J. L. (2012). Another look at safety climate and safety behavior: Deepening the cognitive and social mediator mechanisms. *Accident Analysis and Prevention*, 45, 468-477.
- Fugas, C. S., Silva, S. A., & Meliá, J. L. (2012). Another look at safety climate and safety behavior: Deepening the cognitive and social mediator mechanisms. *Accident Analysis and Prevention*, 45, 468-477.
- Fugas, C., Silva, S. A., & Melia, J. L. (2012). Another look at safety climate and safety behaviour: Deepening the cognitive and social mediator mechanisms. *Accident Analysis and Prevention*, 45, 468-477. DOI:10.1016/j.aap.2011.08.013.
- Garavan, T. N., & O'Brien, F. (2001). An investigation into the relationship between safety climate and safety behaviours in Irish organisations. *Irish Journal of Management*, 22(1), 141.
- Gardner, W. L., Avolio, B. J., Luthans, F., May, D. R., & Walumbwa, F. (2005)."Can you see the real me?" A self-based model of authentic leader and follower development. *The Leadership Quarterly*, *16*(3), 343-372.
- Gardner, W. L., Cogliser, C. C., Davis, K. M., & Dickens, M. P. (2011). Authentic leadership: A review of the literature and research agenda. *The Leadership Quarterly*, 22(6), 1120-1145.

- Gardner, W. L., Cogliser, C. C., Davis, K. M., & Dickens, M. P. (2011). Authentic leadership: A review of the literature and research agenda. *The Leadership Quarterly*, 22(6), 1120-1145.
- Gardner, W. L., Fischer, D., & Hunt, J. G. J. (2009). Emotional labor and leadership: A threat to authenticity? *The Leadership Quarterly*, 20(3), 466-482.
- Gay, L. R., Mills, G. E., & Airasian, P. (2006). Educational research: Competencies for analysis and research. Upper-Saddle River, NJ: Pearson Education.
- Geisser, S. (1974). A predictive approach to the random effect model. *Biometrika*, 101-107.
- Geisser, S. (1974). A predictive approach to the random effect model. *Biometrika*, 61(1), 101-107.

Geller, E. S. (2000). The psychology of safety handbook. CRC Press.

- Geller, E. S. (2006). From Good to Great in Safety. *Professional Safety*, 51(6), 35-40.
- Getzels, J. W., & Guba, E. G. (1957). Social behavior and the administrative process. *The School Review*, 65(4), 423-441.
- Giallonardo, L. M., Wong, C. A., & Iwasiw, C. L. (2010). Authentic leadership of preceptors: predictor of new graduate nurses' work engagement and job satisfaction. *Journal of Nursing Management*, 18(8), 993-1003.
- Gibb, A., Lingard, H., Behm, M., & Cooke, T. (2014). Construction accident causality: learning from different countries and differing consequences. *Construction Management and Economics*, *32*(5), 446-459.
- Gittleman, J.L., Gardner, P.C., Haile, E., Sampson, J.M., Cigularov, K.P., Ermann,E.D., Stafford, P., Chen, P. (2010). [Case Study] City Center andCosmopolitan Construction Projects, Las Vegas, Nevada: lessons learned

from the use of multiple sources and mixed methods in safety needs assessment. *Journal of Safety Research*, 41, 263–281.

- Glendon, A. I., & Litherland, D. K. (2001). Safety climate factors, group differences and safety behaviour in road construction. *Safety Science*, 39(3), 157-188.
- Glendon, A. I., & Stanton, N. A. (2000). Perspectives on safety culture. *Safety Science*, *34*(1), 193-214.
- Goetsch, D. (2011). Occupational safety and health for technologist, engineers, and managers (7thed.). New Jersey: Pearson Education International.
- Goetsch, D. L. (2011). Occupational safety and health for technologists, engineers, and managers (7th ed.). UpperSaddle River, NJ: Pearson.
- Goh, Y. M., Love, P. E., Stagbouer, G., & Annesley, C. (2012). Dynamics of safety performance and culture: A group model building approach. Accident Analysis and Prevention, 48, 118-125.
- Goodall, K., Trejnowska, A., & Darling, S. (2012). The relationship between dispositional mindfulness, attachment security and emotion regulation. *Personality and Individual Differences*, 52(5), 622-626.
- Gordon, R. P., Flin, R. H., Mearns, K., & Fleming, M. T. (1996). Assessing the human factors causes of accidents in the offshore oil industry. In SPE Health, Safety and Environment in Oil and Gas Exploration and Production Conference. Society of Petroleum Engineers.
- Gouldner, A. W. (1960). The norm of reciprocity: A preliminary statement. *American Sociological Review*, 161-178.
- Graham, J. W., Hofer, S. M., Donaldson, S. I., MacKinnon, D. P., & Schafer, J. L. (1997). Analysis with missing data in prevention research. *The science of prevention: Methodological advances from alcohol and substance abuse research*, 1, 325-366.

- Griffin, M. A., & Neal, A. (2000). Perceptions of safety at work: a framework for linking safety climate to safety performance, knowledge, and motivation. *Journal of Occupational Health Psychology*, 5(3), 347-358.
- Griffin, T. G., Young, M. S., & Stanton, N. A. (2015). *Human factors models for* aviation accident analysis and prevention. Ashgate Publishing, Ltd.
- Grojean, M. W., Resick, C. J., Dickson, M. W., & Smith, D. B. (2004). Leaders, values, and organizational climate: Leadership strategies for establishing organizational climate regarding ethics. *Journal of Business Ethics*, 55, 223– 241.
- Guba, EG & Lincoln YS 1994, 'Competing Paradigms in Qualitative Research' in Denzin NK & Lincoln YS 1994, Handbook of Qualitative Research, Sage, Thousand Oaks: Publications, pp. 105-117.
- Guldenmund, F. W. (2000). The nature of safety culture: a review of theory and research. *Safety Science*, *34*(1), 215-257.
- Guldenmund, F. W. (2007). The use of questionnaires in safety culture research-an evaluation. *Safety Science*, 45(6), 723-743.
- Haenlein, M., & Kaplan, A. M. (2004). A beginner's guide to partial least squares analysis. Understanding Statistics, 3(4), 283-297.
- Hahn, S. E., & Murphy, L. R. (2008). A short scale for measuring safety climate. Safety Science, 46(7), 1047-1066.
- Hair Jr, J. F., Hult, G. T. M., Ringle, C., & Sarstedt, M. (2016). A primer on partial least squares structural equation modeling (PLS-SEM). Sage Publications.
- Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis: A global perspective. Upper Saddle River, NJ: Pearson.

- Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (1998).
 Multivariate data analysis. Uppersaddle River. *Multivariate Data Analysis* (5th ed) Upper Saddle River.
- Hair, J. F., Hult, T. M., Ringle, C. M., & Sarstedt, M. (2014). A primer on partial least square structural equation modeling (PLS-SEM): Sage Publications.
- Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. *Journal of Marketing Theory and Practice*, 19(2), 139-152.
- Hair, J. F., Ringle, C. M., & Sarstedt, M. (2013). Editorial-partial least squares structural equation modeling: Rigorous applications, better results and higher acceptance. *Long Range Planning*, 46(1-2), 1-12.
- Hair, J. F., Sarstedt, M., Pieper, T. M., & Ringle, C. M. (2012). The use of partial least squares structural equation modeling in strategic management research: a review of past practices and recommendations for future applications. *Long Range Planning*, 45(5), 320-340.
- Hair, J. F., Sarstedt, M., Ringle, C. M. & Mena, J. A. (2012). An assessment of the use of partial least squares structural equation modeling in marketing research. *Journal of the Academy of Marketing Science*, 40(3), 414-433.
- Halbesleben, J. R. (2010). A meta-analysis of work engagement: Relationships with burnout, demands, resources, and consequences. Work engagement: A handbook of essential theory and research, 8, 102-117.
- Hämäläinen P., Saarela, K, L., & Takala, J. (2009). Global trend according to estimated number of occupational accidents and fatal work-related diseases at region and country level. *Journal of Safety Research*, 40(2), 125-139.
- Hämäläinen, P., Takala, J., & Saarela, K. L. (2006). Global estimates of occupational accidents. *Safety Science*, 44(2), 137-156.

- Hammer, W., 1985. *Occupational Safety Management and Engineering*. Englewood Cliffs: Prentice-Hall.
- Hare, B., & Cameron, I. (2011). Site manager safety training. Engineering, Construction and Architectural Management, 18(6), 568-578.
- Harmon, R. J., Morgan, G. A., & Gliner, J. A. (1999). Evaluating the validity of a research study. *Journal of the American Academy of Child & Adolescent Psychiatry*, 38(4), 480-485.
- Harper, A. C., Cordery, J. L., De Klerk, N. H., Sevastos, P., Geelhoed, E., Gunson, C., Robinson, L., Sutherland, M., Osborn, D., & Colquhoun, J. (1997). Curtin industrial safety trial: managerial behaviour and program effectiveness. *Safety Science*, 24, 173–179.
- Hasan, A., & Jha, K. N. (2013). Safety incentive and penalty provisions in Indian construction projects and their impact on safety performance. *International Journal of Injury Control and Safety Promotion*, 20(1), 3-12.
- Håvold, J. I. (2005). Measuring occupational safety: from safety culture to safety orientation? *Policy and Practice in Health and Safety*, *3*(1), 85-105.
- Håvold, J. I. (2005). Safety-culture in a Norwegian shipping company. *Journal of Safety Research*, *36*(5), 441-458.
- Hendrick, H. W. (1991). Ergonomics in organizational design and management. *Ergonomics*, 34(6), 743-756.
- Henseler, J. (2010). On the convergence of the partial least squares path modeling algorithm. *Computational Statistics*, 25(1), 107-120.
- Henseler, J. (2012). Why generalized structured component analysis is not universally preferable to structural equation modeling. *Journal of the Academy of Marketing Science*, 40(3), 402-413.

- Henseler, J., Dijkstra, T. K., Sarstedt, M., Ringle, C. M., Diamantopoulos, A., Straub, D. W., *et al.* (2014). Common beliefs and reality about partial least squares: Comments on Ro"nkko" & Evermann (2013). Organizational Research Methods. (In-Print).
- Henseler, J., Fassott, G., Dijkstra, T. K., & Wilson, B. (2012). Analysing quadratic effects of formative constructs by means of variance-based structural equation modelling. *European Journal of Information Systems*, 21(1), 99– 112.
- Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. *Journal* of the Academy of Marketing Science, 43(1), 115-135.
- Hicks, G., Buttigieg, D., & De Cieri, H. (2016). Safety climate, strain and safety outcomes. *Journal of Management and Organization*, 22(01), 19-31.
- Hoffmeister, K., Gibbons, A. M., Johnson, S. K., Cigularov, K. P., Chen, P. Y., & Rosecrance, J. C. (2014). The differential effects of transformational leadership facets on employee safety. *Safety Science*, 62, 68-78.
- Hofmann, D. A., & Mark, B. (2006). An investigation of the relationship between safety climate and medication errors as well as other nurse and patient outcomes. *Personnel Psychology*, 59(4), 847-869.
- Hofmann, D. A., & Morgeson, F. P. (1999). Safety-related behavior as a social exchange: The role of perceived organizational support and leader-member exchange. *Journal of Applied Psychology*, 84(2), 286.
- Hofmann, D. A., & Stetzer, A. (1996). A cross-level investigation of factors influencing unsafe behaviors and accidents. *Personnel Psychology*, 49(2), 307-339.

- Hofmann, D. A., Jacobs, R., & Landy, F. (1995). High reliability process industries: Individual, micro, and macro organizational influences on safety performance. *Journal of Safety Research*, 26(3), 131-149.
- Høivik, D., Tharaldsen, J. E., Baste, V., & Moen, B. E. (2009). What is most important for safety climate: The company belonging or the local working environment?–A study from the Norwegian offshore industry. *Safety Science*, 47(10), 1324-1331.
- Hollander, E. (2012). Inclusive leadership: The essential leader-follower relationship. New York, NY: Routledge.
- Hollander, E. P. (2009). Inclusive leadership: The essential leader-follower relationship. New York, NY: Routledge.
- Hon, C. K., Chan, A. P., & Chan, D. W. (2011). Strategies for improving safety performance of repair, maintenance, minor alteration and addition (RMAA) works. *Facilities*, 29(13/14), 591-610.
- Hon, C. K., Chan, A. P., & Yam, M. C. (2012). Determining safety climate factors in the repair, maintenance, minor alteration, and addition sector of Hong Kong. *Journal of Construction Engineering and Management*, 139(5), 519-528.
- Hon, C. K., Chan, A. P., & Yam, M. C. (2014). Relationships between safety climate and safety performance of building repair, maintenance, minor alteration, and addition (RMAA) works. *Safety Science*, 65, 10-19.
- Hopkins, A. (2007). Beyond compliance monitoring: new strategies for safety regulators. *Law & Policy*, 29(2), 210-225.

- House, R. J., Rousseau, D. M., & Thomas-Hunt, M. (1995). The meso paradigm: A framework for the integration of micro and macro organizational behavior. *Research in Organizational Behavior*, 17, 71–114.
- Hovden, J., Lie, T., Karlsen, J. E., & Alteren, B. (2008). The safety representative under pressure. A study of occupational health and safety management in the Norwegian oil and gas industry. *Safety Science*, 46(3), 493-509.
- Hsu, S. H., Lee, C. C., Wu, M. C., & Takano, K. (2008). A cross-cultural study of organizational factors on safety: Japanese vs. Taiwanese oil refinery plants. Accident Analysis & Prevention, 40(1), 24-34.
- Huang, D. T., Clermont, G., Sexton, J. B., Karlo, C. A., Miller, R. G., Weissfeld, L. A., ... & Angus, D. C. (2007). Perceptions of safety culture vary across the intensive care units of a single institution. *Critical Care Medicine*, 35(1), 165-176.
- Huang, Y. H., Chen, P. Y., & Grosch, J. W. (2010). Safety climate: new developments in conceptualization, theory, and research. Accident Analysis and Prevention, 42(5), 1421-1422.
- Huang, Y. H., Zohar, D., Robertson, M. M., Garabet, A., Lee, J., & Murphy, L. A. (2013). Development and validation of safety climate scales for lone workers using truck drivers as exemplar. *Transportation research part F: traffic psychology and behaviour*, 17, 5-19.
- Huang, Y. P., Wang, X. Q., Ding, R. X., & Xia, N. N. (2016). Risk perception, risk propensity, and unsafe behavior: An empirical study of workers in Chinese construction industry. In *Industrial Engineering and Engineering Management (IEEM)*, 2016 IEEE International Conference on (pp. 1121-1125). IEEE.

- Huang, Y., Ho, M., Smith, G. S., & Chen, P. Y. (2006). Safety climate and self-reported injury: Assessing the mediating role of employee self-control. *Accident Analysis and Prevention*, 38(3), 425-433. DOI:10.1016/j.aap.2005.07.002.
- Huang, Y., Verma, S. K., Chang, W., Courtney, T. K., Lombardi, D. A., Brennan, M. J., et al. (2012). Management commitment to safety vs. employee perceived safety training and association with future injury. Accident Analysis and Prevention, 47, 94-101. DOI: 10.1016/j.aap.2011.12.001
- Hyllengren, P., Larsson, G., Fors, M., Sjöberg, M., Eid, J., & Kjellevold Olsen, O. (2011). Swift trust in leaders in temporary military groups. *Team Performance Management: An International Journal*, 17(7/8), 354-368.
- Hystad, S. W., Bartone, P. T., & Eid, J. (2014). Positive organizational behavior and safety in the offshore oil industry: Exploring the determinants of positive safety climate. *The Journal of Positive Psychology*, 9(1), 42-53.
- Ilies, R., Morgeson, F. P., & Nahrgang, J. D. (2005). Authentic leadership and eudaemonic well-being: Understanding leader–follower outcomes. *The Leadership Quarterly*, 16(3), 373-394.
- Inness, M., Turner, N., Barling, J., & Stride, C. B. (2010). Transformational leadership and employee safety performance: A within-person, between-jobs design. *Journal of Occupational Health Psychology*, 15(3), 279-290.
- International Labor Organization. Occupational Safety and Health. Available online: <u>http://www.ilo.org/public/English</u>.

International Labour Organization (2015). *Safety and health at work*. Retrieved from: <u>http://ilo.org/global/topics/safety-and-health-at-work/lang--</u> <u>en/index.htm</u>

- InterNations (2015). *Working in Nigeria*. Retrieved from: https://www.internations.org/nigeria-expats
- Investopedia (2016). *Biggest oil producers in Africa*. Retrieved from <u>http://www.investopedia.com/articles/investing/101515/biggest-oil-producers-africa.asp.</u>
- Jaussi, K.S., & Dionne, S.D. (2003). Leading for creativity: The role of unconventional leader behaviour. The Leadership Quarterly, 14(4), 475-498.
- Jiang, K., Lepak, D. P., Hu, J., & Baer, J. C. (2012). How does human resource management influence organizational outcomes? A meta-analytic investigation of mediating mechanisms. *Academy of Management Journal*, 55(6), 1264-1294.
- Jiang, L., Guangtao, Y., Yongjuan, L., & Feng, L. (2010). Perceived colleagues' safety knowledge/behaviour and safety performance: Safety climate as a moderator in a multilevel study. *Accident Analysis and Prevention*, 42(5), 1468-1476. DOI:10.1016/j.aap.2009.08.017.
- Jiang, L., Yu, G., Li, Y., & Li, F. (2010). Perceived colleagues' safety knowledge/behavior and safety performance: Safety climate as a moderator in a multilevel study. Accident Analysis & Prevention, 42(5), 1468-1476.
- Johnson, S. E. (2007). The predictive validity of safety climate. *Journal of Safety Research*, 38(5), 511-521.
- Johnson, J., Haegeli, P., Hendrikx, J., & Savage, S. (2016). Accident causes and organizational culture among avalanche professionals. *Journal of Outdoor Recreation and Tourism*, 13, 49-56.
- Kalha, S. (2009). Iraq, the current oil crisis and American mismanagement: The Ultimate Prize Oil and Saddam's Iraq. Allied Publishers.
- Kane, E. J. (2010). Redefining and containing systemic risk. Atlantic Economic Journal, 38(3), 251-264.

- Kapp, E. A. (2012). The influence of supervisor leadership practices and perceived group safety climate on employee safety performance. *Safety Science*, 50(4), 1119-1124.
- Kark, R., Katz-Navon, T., & Delegach, M. (2015). The dual effects of leading for safety: The mediating role of employee regulatory focus. *Journal of Applied Psychology*, 100(5), 1332-1348.
- Kartam, N. A., Flood, I., & Koushki, P. (2000). Construction safety in Kuwait: issues, procedures, problems, and recommendations. *Safety Science*, 36(3), 163-184.
- Kass, S. J., VanWormer, L. A., Mikulas, W. L., Legan, S., & Bumgarner, D. (2011). Effects of mindfulness training on simulated driving: Preliminary results. *Mindfulness*, 2(4), 236-241.
- Kath, L. M., Marks, K. M., & Ranney, J. (2010). Safety climate dimensions, leadermember exchange, and organizational support as predictors of upward safety communication in a sample of rail industry workers. *Safety Science*, 48(5), 643-650.
- Kelloway, E. K., & Barling, J. (2010). Leadership development as an intervention in occupational health psychology. Work and Stress, 24(3), 260-279.
- Kelloway, E. K., Mullen, J., & Francis, L. (2006). Divergent effects of transformational and passive leadership on employee safety. *Journal of Occupational Health Psychology*, 11(1), 76-86.
- Kelloway, E. K., Stinson, V., & MacLean, C. (2004). Eyewitness testimony in occupational accident investigations: Towards a research agenda. *Law and Human Behavior*, 28(1), 115-132.
- Kernis, M. H. (2003). Toward a conceptualization of optimal self-esteem. *Psychological Inquiry*, 14(1), 1-26.

- Khdair, W. A., Shamsudin, F. M., & Subramaniam, C. (2011). A proposed relationship between management practices and safety performance in the oil and gas industry in Iraq. *World Review of Business Research* 1(3), 27-45.
- Kiken, L. G., & Shook, N. J. (2011). Looking up: Mindfulness increases positive judgments and reduces negativity bias. *Social Psychological and Personality Science*, 2(4), 425-431.
- Kines, P., Andersen, L. P., Spangenberg, S., Mikkelsen, K. L., Dyreborg, J., & Zohar, D. (2010). Improving construction site safety through leader-based verbal safety communication. *Journal of Safety Research*, 41(5), 399-406.
- Klein, K. J., Dansereau, F., & Hall, R. J. (1994). Levels issues in theory development, data collection, and analysis. *Academy of Management Review*, 19, 195–229. Komaki, J. L. (1998). Leadership from an operant perspective. New York: Routledge.
- Kletz, T. A. (1985). Inherently safer plants. *Plant/Operations Progress*, 4(3), 164-167.
- Kline, R. B. (2005). *Principles and practice of structural equation modeling* (2nd ed.). New York: The Guilford Press.
- Kohli, S. (2007). *Safety management system*. Bangalore, Indian: Bangalore International Airport Limited.
- Kontogiannis, T., & Malakis, S. (2009). A proactive approach to human error detection and identification in aviation and air traffic control. *Safety Science*, 47(5), 693-706.
- Kotter, J. P., & Heskett, J. L. (1992). *Corporate culture and performance*. New York: Macmillan.
- Kouabenan, D. R., Ngueutsa, R., & Mbaye, S. (2015). Safety climate, perceived risk, and involvement in safety management. *Safety Science*, 77, 72–79.

- Kovjanic, S., Schuh, S. C., & Jonas, K. (2013). Transformational leadership and performance: An experimental investigation of the mediating effects of basic needs satisfaction and work engagement. *Journal of Occupational and Organizational Psychology*, 86(4), 543-555.
- Kozlowski, S. W., & Doherty, M. L. (1989). Integration of climate and leadership: Examination of a neglected issue. *Journal of Applied Psychology*, 74(4), 546-553.
- Kozlowski, S. W., & Klein, K. J. (2000). A multilevel approach to theory and research in organizations: Contextual, temporal, and emergent processes. In K. J. Kline & S. W. Kozlowski (Eds.), Multilevel theory, research, and methods in organizations (pp. 3–90). San Francisco: Jossey-Bass.
- KPMG (2016). *Nigeria's Oil and Gas industry brief.* Retrieved from: <u>http://www.blog.kpmgafrica.com/wp-content/uploads/2016/10/Nigerias-oil-and-gas-Industry-brief.pdf</u>.
- Krejcie, R. V., & Morgan, D. W. (1970). Determining sample size for research activities. *Educational and Psychological Measurement*, 30(3), 607-610.
- Krishnan, V. R. (2005). Transformational leadership and outcomes: Role of relationship duration. *Leadership & Organization Development Journal*, 26(6), 442-457.
- Kristensen, K., & Eskildsen, J. (2010). Design of PLS-based satisfaction studies. In Handbook of partial least squares (pp. 247-277). Springer Berlin Heidelberg.
- Krosnick, J. A., & Fabrigar, L. R. (1997). Designing rating scales for effective measurement in surveys. *Survey Measurement and Process Quality*, 141-164.
- Kvalheim, S. A., & Dahl, Ø. (2016). Safety compliance and safety climate: a repeated cross-sectional study in the oil and gas industry. *Journal of Safety Research*, 59, 33-41.

- Labodova, A. (2004). Implementing integrated management systems using a risk analysis based approach. *Journal of Cleaner Production 12*(6), 571-580.
- Lai, D. N., Liu, M., & Ling, F. Y. (2011). A comparative study on adopting human resource practices for safety management on construction projects in the United States and Singapore. *International Journal of Project Management*, 29(8), 1018-1032.
- Larsson, S., Pousette, A., & Törner, M. (2008). Psychological climate and safety in the construction industry-mediated influence on safety behaviour. *Safety Science*, 46(3), 405-412.
- Laschinger, H. K. S., Wong, C. A., & Grau, A. L. (2012). The influence of authentic leadership on newly graduated nurses' experiences of workplace bullying, burnout and retention outcomes: A cross-sectional study. *International journal of nursing studies*, 49(10), 1266-1276.
- Laurence, D. (2005). Safety rules and regulations on mine sites-the problem and a solution. *Journal of Safety Research*, *36*(1), 39-50.
- Law, W. K., Chan, A. H. S., & Pun, K. F. (2006). Prioritizing the safety management elements: a hierarchical analysis for manufacturing enterprises. *Industrial Management & Data Systems*, 106(6), 778-792.
- Lawton, R. (1998). Not working to rule: Understanding procedural violations at work. *Safety Science* 28(2), 77-95.
- Lee, J., Huang, Y. H., Robertson, M. M., Murphy, L. A., Garabet, A., & Chang, W. R. (2014). External validity of a generic safety climate scale for lone workers across different industries and companies. *Accident Analysis and Prevention*, 63, 138-145.
- Lee, T. (1998). Assessment of safety culture at a nuclear reprocessing plant. Work and Stress, 12(3), 217-237.

- Leggat, S. G., Bartram, T., & Stanton, P. (2011). High performance work systems: the gap between policy and practice in health care reform. *Journal of Health Organization and Management*, 25(3), 281-297.
- Leka, S., Jain, A., Iavicoli, S., Vartia, M., & Ertel, M. (2011). The role of policy for the management of psychosocial risks at the workplace in the European Union. *Safety Science*, 49(4), 558-564.
- Leroy, H., Anseel, F., Gardner, W. L., & Sels, L. (2015). Authentic leadership, authentic followership, basic need satisfaction, and work role performance: A cross-level study. *Journal of Management*, 41(6), 1677-1697.
- Lewin, K., Lippitt, R., & White, R. K. (1939). Patterns of aggressive behavior in experimentally created "social climates". *The Journal of Social Psychology*, 10(2), 269-299.
- Li, F., Jiang, L., Yao, X., & Li, Y. (2013). Job demands, job resources and safety outcomes: The roles of emotional exhaustion and safety compliance. *Accident Analysis and Prevention*, 51, 243-251.
- Liden, R. C., Wayne, S. J., & Stilwell, D. (1993). A longitudinal study on the early development of leader-member exchanges. *Journal of Applied Psychology*, 78(4), 662-674.
- Lievens, I., & Vlerick, P. (2014). Transformational leadership and safety performance among nurses: the mediating role of knowledge-related job characteristics. *Journal of Advanced Nursing*, *70*(3), 651-661.
- Lin, S. H., Tang, W. J., Miao, J. Y., Wang, Z. M., & Wang, P. X. (2008). Safety climate measurement at workplace in China: A validity and reliability assessment. *Safety Science*, 46(7), 1037-1046.
- Lindsay, P. H., & Norman, D. A. (2013). *Human information processing: An introduction to psychology*. Academic Press.

- Ling, F. Y. Y., Liu, M., & Woo, Y. C. (2009). Construction fatalities in Singapore. International Journal of Project Management, 27(7), 717-726.
- Lipsey, M. W. (1990). *Design sensitivity: Statistical power for experimental design*. Newbury Park: Sage Publications.
- Liu, S. M., Liao, J. Q., & Wei, H. (2015). Authentic leadership and whistleblowing: Mediating roles of psychological safety and personal identification. *Journal* of Business Ethics, 131(1), 107-119.
- Lloyd-Walker, B., & Walker, D. (2011). Authentic leadership for 21st century project delivery. *International Journal of Project Management*, 29(4), 383-395.
- Lowry, P. B., & Gaskin, J. (2014). Partial least squares (PLS) structural equation modeling (SEM) for building and testing behavioral causal theory: When to choose it and how to use it. *IEEE Transactions on Professional Communication*, 57(2), 123-146.
- Lu, C., & Yang, C. (2011). Safety climate and safety behaviour in the passenger ferry context. Accident Analysis and Prevention, 43(1), 329-341. DOI:10.1016/j.aap.2010.09.001
- Lu, C. S., & Shang, K. C. (2005). An empirical investigation of safety climate in container terminal operators. *Journal of Safety Research*, 36(3), 297-308.
- Lu, C. S., & Tsai, C. L. (2010). The effect of safety climate on seafarers' safety behaviors in container shipping. Accident Analysis and Prevention, 42(6), 1999-2006.
- Lu, C. S., & Yang, C. S. (2010). Safety leadership and safety behavior in container terminal operations. *Safety science*, 48(2), 123-134.
- Lubinski, D. (1996). Applied individual differences research and its quantitative Methods. *Psychology, Public Policy and Law, 2*(2), 187-203.

- Luria, G. (2008). Climate strength-How leaders form consensus. *The Leadership Quarterly*, 19(1), 42-53.
- Luria, G. (2010). The social aspects of safety management: Trust and safety climate. *Accident Analysis & Prevention*, 42(4), 1288-1295.
- Luria, G., Zohar, D., & Erev, I. (2008). The effect of workers' visibility on effectiveness of intervention programs: Supervisory-based safety interventions. *Journal of Safety Research*, *39*(3), 273-280.
- Luthans, F., & Avolio, B. J. (2003). Authentic leadership development. In K. S. Cameron, J. E. Dutton & R. E. Quinn (Eds.), *Positive organizational scholarship* (pp. 241–261). San Francisco, CA: Barrett-Koehler
- MacKinnon, D. P. (2008). Mediation analysis. *The Encyclopedia of Clinical Psychology*.
- Malhotra, N. (2008). *Pesquisa de marketing: uma orientação aplicada* (5ed.). Porto Alegre: Bookman.
- Malhotra, N. K. (2004). *Marketing research: an applied orientation*, 4th edn, Upper Saddle River, New Jersey: Prentice Hall.
- Malinowski, P., & Lim, H. J. (2015). Mindfulness at work: Positive affect, hope, and optimism mediate the relationship between dispositional mindfulness, work engagement, and well-being. *Mindfulness*, 6(6), 1250-1262.
- Mannan, M. S., O'Connor, T. M., & Keren, N. (2009). Patterns and trends in injuries due to chemicals based on OSHA occupational injury and illness statistics. *Journal of Hazardous Materials*, 163(1), 349-356.
- Marchand, A., Simard, M., Carpentier-Roy, M. C., & Ouellet, F. (1998). From a unidimensional to a bidimensional concept and measurement of workers' safety behavior. *Scandinavian Journal of Work, Environment and Health*, 24(2), 293-299.

- Martínez-Córcoles, M., Gracia, F. J., Tomás, I., Peiró, J. M., & Schöbel, M. (2013). Empowering team leadership and safety performance in nuclear power plants: A multilevel approach. *Safety Science*, 51(1), 293-301.
- Martínez-Córcoles, M., Gracia, F., Tomás, I., & Peiró, J. M. (2011). Leadership and employees' perceived safety behaviours in a nuclear power plant: a structural equation model. *Safety Science*, 49(8), 1118-1129.
- Martínez-Córcoles, M., Schöbel, M., Gracia, F. J., Tomás, I., & Peiró, J. M. (2012). Linking empowering leadership to safety participation in nuclear power plants: A structural equation model. *Journal of Safety Research*, 43(3), 215-221.
- Martins, A., Coelho, A. C., Vieira, M., Matos, M., & Pinto, M. L. (2012). Age and years in practice as factors associated with needlestick and sharps njuries among health care workers in a Portuguese hospital. Accident Analysis and Prevention, 47(1), 11-15. DOI.ORG/10.1016/J.AAP.2012.01.011
- Maslen, S., & Hopkins, A. (2014). Do incentives work? A qualitative study of managers' motivations in hazardous industries. *Safety Science*, 70, 419-428.
- Mathieu, J. E., DeShon, R. P., & Bergh, D. D. (2008). Mediational inferences in organizational research: Then, now, and beyond. Organizational Research Methods, 11(2), 203-223.
- May, D. R., Chan, A. Y., Hodges, T. D., & Avolio, B. J. (2003). Developing the moral component of authentic leadership. *Organizational Dynamics*, 32(3), 247-260.
- McCauley, C. D., Moxley, R. S., & Van Velsor, E. (1998). Handbook of creative leadership. San Francisco, CA: Jossey-Bass.

- McFadden, K. L., Henagan, S. C., & Gowen, C. R. (2009). The patient safety chain: Transformational leadership's effect on patient safety culture, initiatives, and outcomes. *Journal of Operations Management*, 27(5), 390-404.
- Mckenna, F.P., 1983. Accident proneness: a conceptual analysis. Accident Analysis and Prevention 15 (1), 65–71.
- McLain, D. L., & Jarrell, K. A. (2007). The perceived compatibility of safety and production expectations in hazardous occupations. *Journal of Safety Research*, 38(3), 299-309.
- Mearns, K. J., & Reader, T. (2008). Organizational support and safety outcomes: An un-investigated relationship? *Safety Science*, 46(3), 388-397.
- Mearns, K., & Yule, S. (2009). The role of national culture in determining safety performance: Challenges for the global oil and gas industry. *Safety Science*, 47(6), 777-785.
- Mearns, K., Whitaker, S. M., & Flin, R. (2001). Benchmarking safety climate in hazardous environments: A longitudinal, interorganizational approach. *Risk Analysis*, 21(4), 771-786.
- Mearns, K., Whitaker, S. M., & Flin, R. (2003). Safety climate, safety management practice and safety performance in offshore environments. *Safety Science*, 41(8), 641-680. DOI: 10:1016/S0925-7535(02)00011-5.
- Meliá, J. L., & Sesé, A. (1999). The measurement of the occupational safety climate and occupational health. *Anales de Psicología*, 15, 269-289.
- Meliá, J. L., Mearns, K., Silva, S. A., & Lima, M. L. (2008). Safety climate responses and the perceived risk of accidents in the construction industry. *Safety Science*, 46(6), 949-958.
- Merriam, S. (1988). *Case Study Research in Education*. San Francisco, CA: Jossey Bass.

- Meshkati, N. (1998, October). Lessons of Chernobyl and beyond: Creation of the safety culture in nuclear power plants. In *Proceedings of the Human Factors* and Ergonomics Society Annual Meeting (Vol. 42, No. 10, pp. 745-749). Sage Publications.
- Michael, J. H., Evans, D. D., Jansen, K. J., & Haight, J. M. (2005). Management commitment to safety as organizational support: Relationships with nonsafety outcomes in wood manufacturing employees. *Journal of Safety Research*, 36(2), 171-179.
- Moore, C. (2009). *Safety buisness is good business*. Paper session presented at the Small Business Development Conference. HSE, Australia.
- Morel, G., Amalberti, R., & Chauvin, C. (2008). Articulating the differences between safety and resilience: the decision-making process of professional sea-fishing skippers. *Human Factors: The Journal of the Human Factors and Ergonomics Society*, 50(1), 1-16.
- Morrow, S. L., Koves, G. K., & Barnes, V. E. (2014). Exploring the relationship between safety culture and safety performance in US nuclear power operations. *Safety Science*, 69, 37-47.
- Morrow, S. L., McGonagle, A. K., Dove-Steinkamp, M. L., Walker, C. T., Marmet, M., & Barnes-Farrell, J. L. (2010). Relationships between psychological safety climate facets and safety behavior in the rail industry: A dominance analysis. Accident Analysis and Prevention, 42(5), 1460-1467.
- Mostafa, A. M. S., & Gould-Williams, J. S. (2014). Testing the mediation effect of person–organization fit on the relationship between high performance HR practices and employee outcomes in the Egyptian public sector. *The International Journal of Human Resource Management*, 25(2), 276-292.

- Mulki, J. P., Jaramillo, J. F., & Locander, W. B. (2009). Critical role of leadership on ethical climate and salesperson behavior. *Journal of Business Ethics*, 86, 125–141.
- Mullen, J. E., & Kelloway, E. K. (2009). Safety leadership: A longitudinal study of the effects of transformational leadership on safety outcomes. *Journal of Occupational and Organizational Psychology*, 82(2), 253-272.
- Muller, D., Judd, C. M., & Yzerbyt, V. Y. (2005). When moderation is mediated and mediation is moderated. *Journal of Personality and Social Psychology*, 89(6), 852-863.
- Mumford, M. D., & Hunter, S. T. (2005). Innovation in organizations: A multi-level perspective on creativity. *Research in Multi-level Issues*, *4*, 11-74.
- Nahrgang, J. D., Morgeson, F. P., & Hofmann, D. A. (2007, April). Predicting safety performance: a meta-analysis of safety and organizational constructs.
 In Poster session presented at the 22nd annual conference of the society for industrial and organizational psychology, New York, NY.
- Nahrgang, J. D., Morgeson, F. P., & Hofmann, D. A. (2011). Safety at work: a metaanalytic investigation of the link between job demands, job resources, burnout, engagement, and safety outcomes. *Journal of Applied Psychology*, 96(1), 71-94.
- Naveh, E., Katz-Navon, T., & Stern, Z. (2005). Treatment errors in healthcare: a safety climate approach. *Management Science*, *51*(6), 948-960.
- Neal, A., & Griffin, M. A. (1997, April). Perceptions of safety at work: Developing a model to link organizational safety climate and individual behavior. In 12th Annual Conference of the Society for Industrial and Organizational Psychology. St. Louis, Missouri.
- Neal, A., & Griffin, M. A. (2002). Safety climate and safety behaviour. Australian Journal of Management, 27(1 suppl), 67-75.

- Neal, A., & Griffin, M. A. (2006). A study of the lagged relationships among safety climate, safety motivation, safety behavior, and accidents at the individual and group levels. *Journal of Applied Psychology*, 91(4), 946-953.
- Neal, A., Griffin, M. A., & Hart, P. M. (2000). The impact of organizational climate on safety climate and individual behavior. *Safety Science*, *34*(1), 99-109.
- Nelson, K., Boudrias, J. S., Brunet, L., Morin, D., De Civita, M., Savoie, A., & Alderson, M. (2014). Authentic leadership and psychological well-being at work of nurses: The mediating role of work climate at the individual level of analysis. *Burnout Research*, 1(2), 90-101.
- Neider, L. L. & Schreisheim, C. A. (2011). The Authentic Leadership Inventory (ALI): Development and empirical tests. *The Leadership Quarterly, 22:* 1146-1164.
- Nembhard, I. M., & Edmondson, A. C. (2006). Making it safe: The effects of leader inclusiveness and professional status on psychological safety and improvement efforts in health care teams. *Journal of Organizational Behavior*, 27(7), 941-966.
- Nielsen, M. B., Mearns, K., Matthiesen, S. B., & Eid, J. (2011). Using the Job Demands–Resources model to investigate risk perception, safety climate and job satisfaction in safety critical organizations. *Scandinavian journal of psychology*, 52(5), 465-475.
- Nielsen, M., Eid, J., Mearns, K., & Larsson, G. (2013). Authentic leadership and its relationship with risk perception and safety climate. *Leadership and Organization Development Journal*, 34(4), 308-325.
- Nigeria LNG Limited. (2015). Profile. Retrieved from; <u>http://www.nlng.com/Our-</u> <u>Company/Pages/Profile.aspx</u>

- Nishii, L. H., & Mayer, D. M. (2009). Do inclusive leaders help to reduce turnover in diverse groups? The moderating role of leader-member exchange in the diversity to turnover relationship. *Journal of Applied Psychology*, 94(6), 1412-1426.
- Nixon, P., Harrington, M., & Parker, D. (2012). Leadership performance is significant to project success or failure: a critical analysis. *International Journal of Productivity and Performance Management*, 61(2), 204-216.
- Norway, P. S. A. (2011). Regulations relating to management and the duty to provide information in the petroleum activities and at certain onshore facilities (The management regulations).
- Nunnally, J. (1978). Psychometric methods. New York: Mc-Graw-Hill.
- O'Connor, P., O'Dea, A., Kennedy, Q., & Buttrey, S. E. (2011). Measuring safety climate in aviation: A review and recommendations for the future. *Safety Science*, *49*(2), 128-138.
- O'Reilly, J. T., Hagan, P. E., & Montgomery, J. F. (2001). Historical perspectives. Accident Prevention Manual for Business & Industry: Administration & Programs 12th Edition (Editors: PE Hagan, JF Montgomery, JT O'Reilly), National Safety Council, ABD, 3-28.
- O'Dea, A., & Flin, R. (2001). Site managers and safety leadership in the offshore oil and gas industry. *Safety Science*, *37*(1), 39-57.
- Okojie O. (2010). System for Reporting Occupational Diseases in Nigeria. *African Newsletter on Occupational Health and Safety*, 20(3), 51-53.
- Okoye, P. U., Okolie, K. C., & Aderibigbe, Y. W. (2014). Correlation of Casualization Mechanism and Construction Workers Safety Behaviour. *International Journal of Engineering and Innovative Technology* (*IJEIT*), 3(9), 135-141.

- Olojede, I.; Fajonyomi, B.; Akhape, I; Mudashiru, S. (2003). Oil Pollution, Community Dissatisfaction and the threat to National peace and security, AAPS Occasional Paper Series, 4, 3.
- Oppong, S. (2014). Common health, safety and environmental concerns in upstream oil and gas sector: Implications for HSE management in Ghana. *Academicus International Scientific Journal*, (09), 93-106.
- Organization of the Petroleum Exporting Countries (2015). Nigeria facts and figures. Retrieved from: <u>http://www.opec.org/opec_web/en/about_us/167.htm</u>.
- Ornstein, A. C., & Hunkins, F. (1993). *Curriculum foundation, principles, and theory*. Boston, MA: Allyn and Bacon.
- Osaghae, E. E. (1995). The Ogoni uprising: oil politics, minority agitation and the future of the Nigerian state. *African Affairs*, *94*(376), 325-344.
- Ostroff, C., Kinicki, A. J., & Tamkins, M. M. (2003). Organizational culture and climate. *Handbook of Psychology*, 22: 565-593. John Wiley & Sons, Inc.
- Parboteeah, K. P., & Kapp, E. A. (2008). Ethical climates and workplace safety behaviors: An empirical investigation. *Journal of Business Ethics*, 80(3), 515-529.
- Parker, S. K., Axtell, C. M., & Turner, N. (2001). Designing a safer workplace: importance of job autonomy, communication quality, and supportive supervisors. *Journal of Occupational Health Psychology*, 6(3), 211-228.
- Parsons, T. (1970). Equality and inequality in modern society, or social stratification revisited. *Sociological Inquiry*, 40(2), 13-72.
- Paté-Cornell, M. E. (1990). Organizational aspects of engineering system safety: The case of offshore platforms. *Science*, 250(4985), 1210-1217.

- Paté-Cornell, M. E., & Bea, R. G. (1992). Management errors and system reliability: a probabilistic approach and application to offshore platforms. *Risk Analysis*, *12*(1), 1-18.
- Perry, C., Alizadeh, Y., & Riege, A. (1997, September). Qualitative methods in entrepreneurship research. In *Proceedings of the annual conference of the small enterprise association Australia and New Zealand* (pp. 547-567).
- Perry, C., Riege, A., & Brown, L. (1999). Realism's role among scientific paradigms in marketing research. *Irish Marketing Review*, 12(2), 16-23.
- Petroleum Safety Authority Norway (2010c). Regulations Relating to Health, Environment and Safety in the Petroleum Activities (The Activities Regulations). Retrieved from <u>http://www.ptil.no/getfile.php/Regelverket/Rammeforskriften_e.pdf</u>
- Petroleum Safety Authority Norway (2010d). Regulations Relating to Health, Environment and Safety in the Petroleum Activities (The Management Regulations).
- Petroleum Safety Authority Norway (2011b). Lifting Incident with Personal Injury GFA on 28 February 2011. PSA, Stavanger.
- Petroleum Safety Authority Norway, 2011a. Report Following Investigation of Incident on 18 December 2010 on Njord A, Where a Slip Joint Fell to the Drill Floor. PSA, Stavanger.
- Petter, S., Straub, D., & Rai, A. (2007). Specifying formative constructs in information systems research. *Management Information Systems Quarterly*, 31(4), 623-656.
- Peus, C., Jenny Sarah Wesche, J. S., Streicher, B., Braun, S., & Frey, D. (2012). Authentic Leadership: An Empirical Test of Its Antecedents, Consequences, and Mediating Mechanisms. *Journal of Business Ethics*, 107, 331-348.

- Pierce, J. L., Jussila, I., & Cummings, A. (2009). Psychological ownership within the job design context: revision of the job characteristics model. *Journal of Organizational Behavior*, 30(4), 477-496.
- Podsakoff, P. M., & Organ, D. W. (1986). Self-reports in organizational research: Problems and prospects. *Journal of Management*, 12(4), 531-544.
- Podsakoff, P. M., MacKenzie, S. B., Lee, J. Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: a critical review of the literature and recommended remedies. *Journal of applied psychology*, 88(5), 879-903.
- Pousette, A., Larsson, S., Torner, M., 2008. Safety climate cross-validation, strength and prediction of safety behaviour. *Safety Science* 46(3), 398–404.
- Prati, G., & Pietrantoni, L. (2012). Predictors of safety behaviour among emergency responders on the highways. *Journal of Risk Research*, *15*(4), 405-415.
- Preacher, K. J., & Hayes, A. F. (2004). SPSS and SAS procedures for estimating indirect effects in simple mediation models. *Behavior research methods*, 36(4), 717-731.
- Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. *Behavior research methods*, 40(3), 879-891.
- Premium Times (2016). 185 people die in 470 fire incidents in Nigeria in 2012. Retrieved from <u>http://www.premiumtimesng.com/news/131841-185-people-die-in-470-fire-incidents-in-nigeria-in-2012-fire-service.html</u>
- Probst, T. M., & Estrada, A. X. (2010). Accident under-reporting among employees: Testing the moderating influence of psychological safety climate and supervisor enforcement of safety practices. *Accident Analysis and Prevention*, 42(5), 1438-1444.

- Quinn, R. E., & McGrath, M. R. (1985). The transformation of organizational cultures: A competing values perspective. *Organizational Culture*, 315-334.
- Quinn, R. E., & Rohrbaugh, J. (1983). A spatial model of effectiveness criteria: Towards a competing values approach to organizational analysis. *Management Science*, 29(3), 363-377.
- Ramanujam, R., & Goodman, P. S. (2003). Latent errors and adverse organizational consequences: A conceptualization. *Journal of Organizational Behavior*, 24(7), 815-836.
- Randles, B., Jones, B., Welcher, J., Szabo, T., Elliott, D., & MacAdams, C. (2010).
 The accuracy of photogrammetry vs. hands-on measurement techniques used in accident reconstruction. In SAE 2010 World Congress & Exhibition. SAE International.
- Rasmussen, J. (1986). Information Processing and Human-Machine Interaction. An Approach to Cognitive Engineering.
- Rayner, S. (2009). Educational diversity and learning leadership: a proposition, some principles and a model of inclusive leadership? *Educational Review*, 61(4), 433-447.
- Razuri, C., Alarcón, L. F., & Diethelm, S. (2007). Evaluating the effectiveness of safety management practices and strategies in construction projects. In Proceedings of 15th Annual Conference of International Group for Lean Construction (IGLC-15), East Lansing, Michigan.
- Reason, J. T. (1997). *Managing the risks of organizational accidents* (Vol. 6). Aldershot: Ashgate.
- Reason, J. (2016). *Managing the risks of organizational accidents*. Routledge.

- Reason, J., Parker, D., & Lawton, R. (1998). Organizational controls and safety: The varieties of rule-related behaviour. *Journal of Occupational and Organizational Psychology*, 71(4), 289-304.
- Reber, R. A., Wallin, J. A., & Duhon, D. L. (1989). Safety programs that work. *Personnel Administrator*, 34(9), 66-69.
- Reichers, A. E., & Schneider, B. (1990). Climate and culture: An evolution of constructs. Organizational Climate and Culture, 1, 5-39.
- Reid, W. A., Bud West, G. R., Winston, B. E., & Wood, J. (2014). An instrument to measure level 5 leadership. *Journal of Leadership Studies*, 8(1), 17-32.
- Reinartz, W., Haenlein, M., & Henseler, J. (2009). An empirical comparison of the efficacy of covariance-based and variance-based SEM. *International Journal* of research in Marketing, 26(4), 332-344.
- Ringle, C. M., Sarstedt, M., & Straub, D. (2012). A critical look at the use of PLS-SEM in MIS Quarterly. *Management Information Systems Quarterly*, 36(1).
- Ringle, C. M., Wende, S., & Becker, J. M. (2014). Smartpls 3.1. 5. University of Hamburg, Hamburg, Germany.
- Ringle, C. M., Wende, S., & Will, A. (2005). SmartPLS 2.0 (beta). Hamburg, Germany.
- Roscoe, J. T. (1970). *Fundamental Research Statistics for the Behavioral Sciences*. New York: Holt, Rinehart and Winston.
- Rotundo, M., & Sackett, P. R. (2002). The relative importance of task, citizenship, and counterproductive performance to global ratings of job performance: a policy-capturing approach. *Journal of Applied Psychology*, 87(1), 66-80.

- Rousseau, Denise M. (1989). Psychological and implied contracts in organizations. Employee Responsibilities and Rights Journal, 2(2). 121-139.
- Ryan, J. (2007). Inclusive leadership: A review. *Journal of Educational* Administration and Foundation, 18(1/2), 92-125.
- Ryan, R. M., & Deci, E. L. (2003). On assimilating identities to the self: A selfdetermination theory perspective on internalization and integrity within cultures. *Handbook of Self and Identity*, 253-272.
- Salant, P., & Dillman, D. A. (1994). *How to conduct your own survey*. New York, NY: Wiley.
- Salkind, N. J. (2006). *Encyclopedia of measurement and statistics*. Minnesota: Sage Publications.
- Salmon, P. M., & Lenné, M. G. (2009). Putting the 'system' into safe system frameworks. *Australasian College of Road Safety Journal*, 20(3), 21-22.
- Sarstedt, M., Ringle, C. M., & Hair, J. F. (2014). PLS-SEM: Looking back and moving forward. Long Range Planning, 47(3), 132-137.
- Schein, E. H. (2010). Organizational culture and leadership. San Francisco, CA: John Wiley & Sons.
- Schneider, B., & Reichers, A. E. (1983). On the etiology of climates. *Personnel Psychology*, *36*(1), 19-39.
- Schneider, B., Salvaggio, A. N., & Subirats, M. (2002). Climate strength: a new direction for climate research. *Journal of Applied Psychology*, 87(2), 220-229.
- Schumacker, R. E., & Lomax, R. G. (2004). A beginner's guide to structural equation modeling. New Jersey: Psychology Press.

- Schutte, R. (2010). Safety Performance in the Construction Sector: The Influence of Transformational Leadership and the Mediating Role of Safety Climate (Master's thesis).
- Sekaran, U. (2003). Research methods for business. Hoboken: John Wiley & Sons.
- Sekaran, U., &Bougie, R. (2010).*Research methods for business: A skill building approach* (5th ed.). UK: John Wiley & Sons.
- Seo, D. C. (2005). An explicative model of unsafe work behavior. Safety Science, 43(3), 187-211.
- Seo, D. C., Torabi, M. R., Blair, E. H., & Ellis, N. T. (2004). A cross-validation of safety climate scale using confirmatory factor analytic approach. *Journal of Safety Research*, 35(4), 427-445.
- Settoon, R. P., Bennett, N., & Liden, R. C. (1996). Social exchange in organizations: Perceived organizational support, leader-member exchange, and employee reciprocity. *Journal of Applied Psychology*, 81(3), 219-227.

Shalini, R. T. (2009). Economic cost of occupational accidents: Evidence from a small island economy. *Safety Science*, 47(7), 973-979.

Universiti Utara Malavsia

- Shamir, B., & Eilam, G. (2005). "What's your story?" A life-stories approach to authentic leadership development. *The Leadership Quarterly*, *16*(3), 395-417.
- Shannon, H. S., Mayr, J., & Haines, T. (1997). Overview of the relationship between organizational and workplace factors and injury rates. *Safety Science*, 26(3), 201-217.
- Shen, Y., Tuuli, M. M., Xia, B., Koh, T. Y., & Rowlinson, S. (2015). Toward a model for forming psychological safety climate in construction project management. *International Journal of Project Management*, 33(1), 223-235.

- Shin, Y., Sung, S. Y., Choi, J. N., & Kim, M. S. (2015). Top management ethical leadership and firm performance: Mediating role of ethical and procedural justice climate. *Journal of Business Ethics*, 129(1), 43-57.
- Shore, T., Sy, T., & Strauss, J. (2006). Leader responsiveness, equity sensitivity, and employee attitudes and behavior. *Journal of Business and Psychology*, 21(2), 227-241.
- Shrout, P. E., & Bolger, N. (2002). Mediation in experimental and nonexperimental studies: New procedures and recommendations. *Psychological methods*, 7(4), 422-445.
- Silva, S., Lima, M. L., & Baptista, C. (2004). OSCI: an organizational and safety climate inventory. *Safety Science*, *42*(3), 205-220.
- Silvestre, B. S., & Gimenes, F. A. P. (2017). A sustainability paradox? Sustainable operations in the offshore oil and gas industry: The case of Petrobras. *Journal of Cleaner Production*, *142*, 360-370.
- Simard, M., & Marchand, A. (1995). A multilevel analysis of organisational factors related to the taking of safety initiatives by work groups. Safety Science, 21(2), 113-129.
- Simard, M., & Marchand, A. (1997). Workgroups' propensity to comply with safety rules: The influence of micro-macro organisational factors. *Ergonomics*, 40(2), 172-188.
- Sinclair, R. R., Martin, J. E., & Sears, L. E. (2010). Labor unions and safety climate: Perceived union safety values and retail employee safety outcomes. Accident Analysis & Prevention, 42(5), 1477-1487.
- Sinelnikov, S., Inouye, J., & Kerper, S. (2015). Using leading indicators to measure occupational health and safety performance. *Safety science*, 72, 240-248.

- Singer, S., Lin, S., Falwell, A., Gaba, D., & Baker, L. (2009). Relationship of safety climate and safety performance in hospitals. *Health Services Research*, 44(2), 399-421.
- Sitkin, S. B., & Pablo, A. L. (1992), Reconceptualizing the determinants of risk behaviour. Academy of Management Review, 17(1), 9–38.
- Sitkin, S. B., & Weingart, L. R. (1995). Determinants of risky decision-making behavior: A test of the mediating role of risk perceptions and propensity. Academy of Management Journal, 38(6), 1573-1592.
- Sitkin, S. B., & Weingart, L. R. (1995). Determinants of risky decision-making behavior: A test of the mediating role of risk perceptions and propensity. *Academy of Management Journal*, 38(6), 1573-1592.
- Siu, O. L., Phillips, D. R., & Leung, T. W. (2004). Safety climate and safety performance among construction workers in Hong Kong: The role of psychological strains as mediators. *Accident Analysis & Prevention*, 36(3), 359-366.
- Skogdalen, J. E., Utne, I. B., & Vinnem, J. E. (2011). Developing safety indicators for preventing offshore oil and gas deepwater drilling blowouts. *Safety Science*, 49(8), 1187-1199.
- Smith, G. S., Huang, Y. H., Ho, M., & Chen, P. Y. (2006). The relationship between safety climate and injury rates across industries: The need to adjust for injury hazards. Accident Analysis & Prevention, 38(3), 556-562.
- Smith, T. D., Eldridge, F., & DeJoy, D. M. (2016). Safety-specific transformational and passive leadership influences on firefighter safety climate perceptions and safety behavior outcomes. *Safety science*, 86, 92-97.
- Sneddon, A., Mearns, K., & Flin, R. (2013). Stress, fatigue, situation awareness and safety in offshore drilling crews. *Safety Science*, 56, 80-88.
- Spitzmuller, M., & Ilies, R. (2010). Do they [all] see my true self? Leader's relational authenticity and followers' assessments of transformational leadership. *European Journal of Work and Organizational Psychology*, 19(3), 304-332.
- Squires, M. A. E., Tourangeau, A. N. N., Spence Laschinger, H. K., & Doran, D. (2010). The link between leadership and safety outcomes in hospitals. *Journal of Nursing Management*, 18(8), 914-925.
- Stave, C., Pousette, A., & Törner, M. (2008). Risk and safety communication in small enterprises-how to support a lasting change towards work safety priority. *Journal of Risk Research*, 11(1-2), 195-206.
- Steers, R. M. (1975). Effects of need for achievement on the job performance-job attitude relationship. *Journal of Applied Psychology*, *60*(6), 678-682.
- Steers, R. M. Introduction to organizational behavior. Glenview, III: Scott, Foresman, 1981.
- Stevens, S. S., & Galanter, E. H. (1957). Ratio scales and category scales for a dozen perceptual continua. *Journal of Experimental Psychology*, 54, 377-411.
- Stone, E. F., & Hollenbeck, J. R. (1984). Some issues associated with moderated regression. Organizational Behaviour and Human Performance, 34(2), 195-213.
- Strauch, B. (2017). Investigating human error: Incidents, accidents, and complex systems. CRC Press.
- Strickoff, R. S. (2000). Safety performance measurement: Identifying prospective indicators with high validity. *Professional Safety*, 45(1), 36-39.
- Stryker, S. (2008). From Mead to a structural symbolic interactionism and beyond. *Annual Review of Sociology*, *34*, 15-31.

- Sutherland, V. J., & Cooper, C. L. (1991). Personality, stress and accident involvement in the offshore oil and gas industry. *Personality and Individual Differences*, 12(2), 195-204.
- Tabachnick, B.G. and Fidell, L.S. (2007), Using Multivariate Statistics (5th ed.). New York: Allyn and Bacon.
- Taj, A., Abdolvahabi, Z., Naghavi, V., Rahmati, H., &Naini, S. (2010). The relationship between the coach's transformational and transactional leadership styles. *World Applied Sciences Journal*, 10(1), 9-18.
- Takala, J., Hämäläinen, P., Saarela, K. L., Yun, L. Y., Manickam, K., Jin, T. W., ... & Lin, G. S. (2014). Global estimates of the burden of injury and illness at work in 2012. *Journal of occupational and environmental hygiene*, 11(5), 326-337.
- Tenenhaus, M., Vinzi, V. E., Chatelin, Y. M., & Lauro, C. (2005). PLS path modeling. *Computational Statistics and Data Analysis*, 48(1), 159-205.
- Tharaldsen, J. E., Mearns, K. J., & Knudsen, K. (2010). Perspectives on safety: The impact of group membership, work factors and trust on safety performance in UK and Norwegian drilling company employees. *Safety science*, 48(8), 1062-1072.
- Tharaldsen, J. E., Olsen, E., & Rundmo, T. (2008). A longitudinal study of safety climate on the Norwegian continental shelf. *Safety Science*, *46*(3), 427-439.
- The Nigerian Voice (2011). Safety at work; the Nigerian workers, the endangered species. Retrieved from http://www.thenigerianvoice.com/news/42628/1/safety-at-work-nigerian-workers-the-endangered-spe.html/

- ThisDay (2014). As US shuts its door on Nigeria's Oil Exports. Retrieved from http://www.thisdaylive.com/articles/as-us-shuts-its-door-on-nigeria-s-oilexports/190455/
- Tholén, S. L., Pousette, A., & Törner, M. (2013). Causal relations between psychosocial conditions, safety climate and safety behaviour–A multi-level investigation. *Safety Science*, 55, 62-69.
- Tinmannsvik, R. K., & Hovden, J. (2003). Safety diagnosis criteria—development and testing. *Safety Science*, *41*(7), 575-590.
- Tuckman, B. W. (1999). *Conducting Educational Research*, 5th edition, Wadsworth Group.
- Turnberg, W., & Daniell, W. (2008). Evaluation of a healthcare safety climate measurement tool. *Journal of Safety Research*, 39(6), 563-568.
- Turner, N., Stride, C. B., Carter, A. J., McCaughey, D., & Carroll, A. E. (2012). Job Demands–Control–Support model and employee safety performance. Accident Analysis and Prevention, 45, 811-817.

Universiti Utara Malavsia

Umeokafor, N., Umeadi, B., Jones, K., & Igwegbe, O. (2014). Compliance with occupational safety and health regulations in Nigeria's public regulatory entity: A call for attention. *International Journal of Scientific and Research Publications*, 4(5), 302-304.

- Van Dyne, L., & Pierce, J. L. (2004). Psychological ownership and feelings of possession: Three field studies predicting employee attitudes and organizational citizenship behavior. *Journal of Organizational Behavior*, 25(4), 439-459.
- Vanguard (2013). Workplaces in Nigeria unsafe, laments labour. Retrieved from http://www.vanguardngr.com/2013/06/workplaces-in-nigeria-unsafe-laments-labour/

- Vanguard (2016). From world 3rd fastest growing economy, Nigeria drops out of top 15 in Africa. Retrieved from <u>http://www.vanguardngr.com/2016/04/from-</u> world-3rd-fastest-growing-economy-nigeria-drops-out-of-top-15-in-africa/
- Vecchio, R.P., Justin, J. E., & Pearce, C. L. (2010). Empowering Leadership: An Examination of Mediating Mechanisms within a Hierarchical Structure. *The Leadership Quarterly* 21(3), 530-542.
- Vecchio-Sadus, A. M. (2007). Enhancing safety culture through effective communication. Safety Science Monitor, 11(3), 1-9.
- Vecchio-Sadus, A. M., & Griffiths, S. (2004). Successful marketing strategies for enhancing safety culture. *Safety Science*, 42(7), 601-619.
- Vinodkumar, M. N., & Bhasi, M. (2009). Safety climate factors and its relationship with accidents and personal attributes in the chemical industry. *Safety Science*, 47(5), 659-667.
- Vinodkumar, M. N., & Bhasi, M. (2010). Safety management practices and safety behaviour: Assessing the mediating role of safety knowledge and motivation. *Accident Analysis & Prevention*, 42(6), 2082-2093.

Universiti Utara Malavsia

- Vinodkumar, M. N., & Bhasi, M. (2010). Safety management practices and safety behaviour: Assessing the mediating role of safety knowledge and motivation. *Accident Analysis and Prevention*, 42(6), 2082-2039. DOI:10.1016/j.aap.2010.06.021.
- Vinzi, V. E., Chin, W. W., Henseler, J., & Wang, H. (Eds.). (2010). Handbook of partial least squares: Concepts, methods and applications. London: Springer Science & Business Media.
- Vinzi, V. E., Lauro, C., & Tenenhaus, M. (2003). PLS path modeling. In *PLS and related methods. Proceedings of the PLS03 International Symposium.*

- Vinzi, V. E., Trinchera, L., & Amato, S. (2010). PLS path modeling: from foundations to recent developments and open issues for model assessment and improvement. In *Handbook of partial least squares* (pp. 47-82). Springer Berlin Heidelberg.
- Vredenburgh, A. G. (2002). Organizational safety: which management practices are most effective in reducing employee injury rates? *Journal of safety Research*, 33(2), 259-276.
- Wachter, J. K., & Yorio, P. L. (2014). A system of safety management practices and worker engagement for reducing and preventing accidents: An empirical and theoretical investigation. *Accident Analysis and Prevention*, 68, 117-130.
- Wakilbe, F. A. (2004). 'Safety Culture in the Nigerian Oil and Gas industry: To what Extent can Organisations Influence Safety Culture to Reduce Accidents on Oil and Gas Installations?' (2013) CAR Annual Review < http://www.dundee.ac.uk/cepmlp/gateway/index.php?news=32237> accessed 4 August 2014.
- Wallace, J. C., & Vodanovich, S. J. (2003). Workplace safety performance: Conscientiousness, cognitive failure, and their interaction. *Journal of Occupational Health Psychology*, 8(4), 316-327.
- Wallace, J. C., Kass, S. J., & Stanny, C. J. (2002). The cognitive failures questionnaire revisited: dimensions and correlates. *The Journal of General Psychology*, 129(3), 238-256.
- Wallace, J. C., Popp, E., & Mondore, S. (2006). Safety climate as a mediator between foundation climates and occupational accidents: a group-level investigation. *Journal of Applied Psychology*, 91(3), 681-688.
- Walumbwa, F. O., Avolio, B. J., & Zhu, W. (2008). How transformational leadership weaves its influence on individual job performance: The role of identification and efficacy beliefs. *Personnel Psychology*, 61(4), 793-825.

- Walumbwa, F. O., Avolio, B. J., Gardner, W. L., Wernsing, T. S., & Peterson, S. J. (2008). Authentic leadership: Development and validation of a theory-based measure[†]. *Journal of Management*, 34(1), 89-126.
- Weigmann, D. A., Zhang, H., Thaden, T. V., Sharma, G., & Mitchell, A. (2002). A Synthesis of Safety Culture and Safety Climate Research (No. ARL-02-3/FAA-02-2 for Federal Aviation Administration). Urbana-Champaign: University of Illinois.
- Wiegmann, D. A., Zhang, H., Von Thaden, T. L., Sharma, G., & Gibbons, A. M. (2004). Safety culture: An integrative review. *The International Journal of Aviation Psychology*, 14(2), 117-134.
- Wigglesworth, E. C. (1978). Human factors in level crossing accidents. Accident Analysis & Prevention, 10(3), 229-240.
- Williamson, A. M., Feyer, A. M., Cairns, D., & Biancotti, D. (1997). The development of a measure of safety climate: the role of safety perceptions and attitudes. *Safety Science*, 25(1), 15-27.

Wills, A.R., Watson, B., Biggs, H.C., 2009. An exploratory investigation into safety climate and work-related driving. Work: A Journal of Prevention, Assessment & Rehabilitation, 32(1), 81–94.

Universiti Utara Malavsia

- Wilpert, B. (2000). Organizational factors in nuclear safety. In PSAM 5: Probabilistic Safety Assessment and Management, 32(47), 64-69.
- Wikipedia (2017). Rivers State, Nigeria. Retrieved from https://en.wikipedia.org/wiki/Africa
- Witter, R. Z., Tenney, L., Clark, S., & Newman, L. S. (2014). Occupational exposures in the oil and gas extraction industry: State of the science and research recommendations. *American journal of industrial medicine*, 57(7), 847-856.

- Wold, H. (1982). Soft modelling: the basic design and some extensions. *Systems under indirect observation, Part II*, 36-37.
- Wold, T., & Laumann, K. (2015). Safety management systems as communication in an oil and gas producing company. *Safety Science*, 72, 23-30.
- Wong, C. A., Spence Laschinger, H. K., & Cummings, G. G. (2010). Authentic leadership and nurses' voice behaviour and perceptions of care quality. *Journal of Nursing Management*, 18(8), 889-900.
- Worthington, R. L., & Whittaker, T. A. (2006). Scale development research a content analysis and recommendations for best practices. *The Counseling Psychologist*, 34(6), 806-838.
- Wright, K. B. (2005). Researching Internet-based populations: Advantages and disadvantages of online survey research, online questionnaire authoring software packages, and web survey services. *Journal of Computer-Mediated Communication*, 10(3), 00-00.
- Wu, A. D., & Zumbo, B. D. (2008). Understanding and using mediators and moderators. Social Indicators Research, 87(3), 367-392.
- Wu, T. C. (2008). Safety leadership in the teaching laboratories of electrical and electronic engineering departments at Taiwanese Universities. *Journal of* safety research, 39(6), 599-607.
- Wu, T. C., Chen, C. H., & Li, C. C. (2008). A correlation among safety leadership, safety climate and safety performance. *Journal of loss prevention in the process industries*, 21(3), 307-318.
- Wu, T. C., Li, C. C., Chen, C. H., & Shu, C. M. (2008). Interaction effects of organizational and individual factors on safety leadership in college and university laboratories. *Journal of Loss Prevention in the Process Industries*, 21(3), 239-254.

- Wuffli, P. A. (2016). Introduction: A Framework for Inclusive Leadership. In Inclusive Leadership (pp. 1-7). Springer International Publishing.
- Yammarino, F. J., Spangler, W. D., & Bass, B. M. (1993). Transformational leadership and performance: A longitudinal investigation. *The Leadership Quarterly*, 4(1), 81-102.
- Yeung, K. C., & Chan, C. C. (2012). Measuring safety climate in elderly homes. Journal of Safety Research, 43(1), 9-20.
- Yong, A. G., & Pearce, S. (2013). A beginner's guide to factor analysis: Focusing on exploratory factor analysis. *Tutorials in Quantitative Methods for Psychology*, 9(2), 79-94.
- Yorio, P. L., Willmer, D. R., & Moore, S. M. (2015). Health and safety management systems through a multilevel and strategic management perspective: Theoretical and empirical considerations. *Safety science*, 72, 221-228.
- Yule, S., Flin, R., & Murdy, A. (2006). The role of management and safety climate in preventing risk-taking at work. *International Journal of Risk Assessment* and Management, 7(2), 137-151.
- Yukl, G. (2002). *Leadership in Organizations*. Upper Saddle River, NJ: Prentice Hall.
- Yun, S., Cox, J., & Sims Jr, H. P. (2006). The forgotten follower: A contingency model of leadership and follower self-leadership. *Journal of Managerial Psychology*, 21(4), 374-388.
- Zhang, J., & Wu, C. (2014). The influence of dispositional mindfulness on safety behaviors: A dual process perspective. Accident Analysis and Prevention, 70, 24-32.

- Zhang, J., Ding, W., Li, Y., & Wu, C. (2013). Task complexity matters: The influence of trait mindfulness on task and safety performance of nuclear power plant operators. *Personality and Individual Differences*, 55(4), 433-439.
- Zhang, L., & Liu, Y. (2016). The Impact of Safety Climate on Safety Behavior for Drivers in High-Speed Railway Industry Using Safety Control as Mediator. In Proceedings of 2015 2nd International Conference on Industrial Economics System and Industrial Security Engineering (pp. 171-177). Springer Singapore.
- Zhang, R. P., & Li, R. Y. M. (2015). A Conceptual Study of Construction Workers' Safety Performance from Safety Climate and Social Exchange Perspectives. In *Construction Safety and Waste Management* (pp. 123-137). Springer International Publishing.
- Zhou, Q., Fang, D., & Mohamed, S. (2010). Safety climate improvement: Case study in a Chinese construction company. *Journal of Construction Engineering and Management*, 137(1), 86-95.
- Zhou, Q., Fang, D., & Wang, X. (2008). A method to identify strategies for the improvement of human safety behavior by considering safety climate and personal experience. *Safety Science*, 46(10), 1406-1419.
- Zhu, W., Avolio, B. J., Riggio, R. E., & Sosik, J. J. (2011). The effect of authentic transformational leadership on follower and group ethics. *The Leadership Quarterly*, 22(5), 801-817.
- Zikmund, W. G. (2003). Sample designs and sampling procedures. *Business Research Methods*, 7, 368-400.
- Zikmund, W. G., Babin, B. J., Carr, J. C., & Griffin, M. (2010). *Business research methods* (8thed.). South-Western: Cengage Learning.
- Zikmund, W. G., Babin, B. J., Carr, J. C., & Griffin, M. (2013). Business research methods. Cengage Learning.

- Zohar, D. (1980). Safety climate in industrial organizations: theoretical and applied implications. *Journal of Applied Psychology*, 65(1), 96.
- Zohar, D. (2000). A group-level model of safety climate: testing the effect of group climate on microaccidents in manufacturing jobs. *Journal of Applied Psychology*, 85(4), 587-596.
- Zohar, D. (2002). Modifying supervisory practices to improve subunit safety: a leadership-based intervention model. *Journal of Applied psychology*, 87(1), 156-163.
- Zohar, D. (2002). The effects of leadership dimensions, safety climate, and assigned priorities on minor injuries in work groups. *Journal of Organizational Behaviour*, 23(1), 75–92.
- Zohar, D. (2003). The influence of leadership and climate on occupational health and safety. *Health and safety in organizations: A multilevel perspective*, 201-230.
- Zohar, D. (2010). Thirty years of safety climate research: Reflections and future directions. *Accident Analysis and Prevention*, 42(5), 1517-1522.
- Zohar, D. (2014). Safety Climate: Conceptualization, Measurement, and Improvement. *The Oxford Handbook of Organizational Climate and Culture*, 317-334.
- Zohar, D., & Luria, G. (2003). The use of supervisory practices as leverage to improve safety behavior: A cross-level intervention model. *Journal of Safety Research*, 34(5), 567-577.
- Zohar, D., & Luria, G. (2005). A multilevel model of safety climate: cross-level relationships between organization and group-level climates. *Journal of Applied Psychology*, 90(4), 616-628.
- Zohar, D., & Luria, G. (2010). Group leaders as gatekeepers: Testing safety climate variations across levels of analysis. *Applied Psychology*, *59*(4), 647-673.

- Zohar, D., & Tenne-Gazit, O. (2008). Transformational leadership and group interaction as climate antecedents: a social network analysis. *Journal of Applied Psychology*, 93(4), 744-757.
- Zohar, D., Huang, Y. H., Lee, J., & Robertson, M. (2014). A mediation model linking dispatcher leadership and work ownership with safety climate as predictors of truck driver safety performance. Accident Analysis and Prevention, 62, 17-25.
- Zohar, D., Luria, G., 2004. Climate as a social-cognitive construction of supervisory safety practices: scripts as proxy of behavior patterns. *Journal of Applied Psychology* 89(2), 322–333.

Research Questionnaire

15th May, 2016.

Dear Respondent,

ACADEMIC RESEARCH QUESTIONNAIRE

I am a PhD candidate at the Universiti Utara Malaysia, and currently conducting a research on leadership, safety climate and safety behaviours in the Oil & Gas industry in Rivers State, Nigeria as part of the requirements for the award of a Ph.D. degree.

I realize that your time is valuable and many demands are made upon it by your heavy workload. However, your participation in this survey, which will require only about 10-15 minutes of your time, is vital to the success of this study and would be greatly appreciated. Please be assured that your responses will be treated with utmost confidentiality and used purely for academic purposes.

Thanking you for your kind co-operation.

Yours truly,

Bara Kabaka Brown

PhD Candidate (Occupational Safety and Health Management) School of Business Management, College of Business Universiti Utara Malaysia, 06010 Sintok Kedah, Malaysia. +60149482144; +2348036354268 barafinima@gmail.com ; barakabaka@yahoo.co.uk SECTION A: DEMOGRAPHIC INFORMATION

Please tick (\checkmark) in the appropriate boxes that correspond to the questions below.

1.	Gender:		Male		Female
2.	Marital Status:		Single		Married
			Divorced		Widowed
3.	Age (in years):		Less than 20		21 - 24
			25 – 29		30 - 34
			35 - 39		40 - 44
			45 – 49		50 and above
4.	Level of Education:		High School		Technical/Diploma
			Bachelors		Masters and above
5.	Work experience in this con	mpan	y: Year (s):	Month((s):
6.	Work experience in the Oil	and	Gas Industry: Year (s):		
7.	Occupation:				
	Technician/Millw	right	Engineer		Equipment Handler
			Electrician		Operator
	Pipe/Steel Worker	r	HVAC		Plant Maintenance
	Mechanic		U Welder		Driller
	Rigger		Safety Personne	1 🗆 (Concrete Worker
	Transportation/Lo	gisti	cs Others:		
8.	How often do you attend sa Never Sometimes Always	fety	trainings? Rarely Often		
9.	How many times have yo	u bee	en involved in a workpla	ace acc	eident in the last 12

months?_____

Section B

The following are statements pertaining to your leader. Please note the term "leader" refers to your **immediate supervisor**. On a five-point scale, indicate your level of

agreement on the statements stated hereunder by circling the responses according to the scale below:

1	-	Strongly Disagree
2	-	Disagree
3	-	Neither Agree nor Disagree
4	-	Agree
5	-	Strongly Agree

My Leader...

1	solicits feedback for improving his/her dealings with others.	1	2	3	4	5
2	is available for professional questions I would like to consult with him/her.	1	2	3	4	5
3	encourages others to voice opposing points of view.	1	2	3	4	5
4	shows interest in the safety of workers in the workplace.	1	2	3	4	5
5	describes accurately the way that others view his/her abilities.	1	2	3	4	5
6	ensures there is sufficient opportunity to discuss and deal with safety issues in meetings.	1	2	3	4	5
7	uses his/her core beliefs to make decisions.	1	2	3	4	5
8	ensures newly recruits are trained adequately to learn safety rules and procedures.	ay	2 sia	3	4	5
9	9 shows that he/she understands his/her strengths and weaknesses.				4	5
10	asks for ideas that challenge his/her core beliefs.	1	2	3	4	5
11	resists pressures on him/her to do things contrary to his/her beliefs.	1	2	3	4	5
12	gives high priority to safety in training programmes.	1	2	3	4	5
13	is clearly aware of the impact he/she has on others.	1	2	3	4	5
14	ensures the safety rules and procedures followed in the company are sufficient to prevent incidents from occurring.	1	2	3	4	5
15	is guided in his/her actions by internal moral standards.	1	2	3	4	5
16	considers safety to be equally important as production/work targets.	1	2	3	4	5

17	is open to hearing new ideas.	1	2	3	4	5
18	gives high priority to safety in the workplace.	1	2	3	4	5
19	is open to discuss the desired goals and new ways to achieve them.	1	2	3	4	5
20	ensures that employees can communicate hazard information before incidents occur through the hazard reporting system.	1	2	3	4	5
21	is an ongoing 'presence' in this team—someone who is readily available.	1	2	3	4	5
22	ensures the safety training given to employees is adequate to enable them to assess hazards in work areas.	1	2	3	4	5
23	is ready to listen to my requests.	1	2	3	4	5
24	encourages me to access him/her on emerging issues.	1	2	3	4	5
25	is accessible for discussing emerging problems.	1	2	3	4	5
26	ensures that the company's open door policy on safety issues is practiced.	1	2	3	4	5
27	clearly states what he/she means.	1	2	3	4	5
28	encourages workers to attend safety training programmes.	1	2	3	4	5
29	carefully listens to alternative perspectives before reaching a conclusion.	a ¹ y	2	3	4	5
30	ensures comprehensive training is given to the employees in workplace health and safety issues.	1	2	3	4	5
31	expresses his/her ideas and thoughts clearly to others.	1	2	3	4	5
32	attends safety meetings.	1	2	3	4	5
33	takes corrective action when told about unsafe practices.	1	2	3	4	5
34	ensures the facilities in the safety department are adequate to meet the needs of the organization.	1	2	3	4	5
35	shows consistency between his/her beliefs and actions.	1	2	3	4	5
36	ensures the target and goals for safety performance in the organization is clear to workers.	1	2	3	4	5
37	ensures participation of employees in regular safety inspections.	1	2	3	4	5

38	openly shares information with others.	1	2	3	4	5
39	is attentive to new opportunities to improve work processes.	1	2	3	4	5
40	always try to enforce safe working procedures.	1	2	3	4	5
41	admits mistakes when they occur.	1	2	3	4	5
42	ensures open communication about safety issues in the	1	2	3	4	5
43	acts quickly to solve the problems when near-miss accidents	1	2	3	4	5
	are reported.	1	2	3	4	5
44	objectively analyzes relevant data before making a decision.	1	2	2	4	5
45	is available for consultation on problems.	1	Z	3	4	5

Section C

The following are statements pertaining to your own behaviour at the workplace. On a five-point scale, please indicate your level of agreement on the statements stated hereunder by circling the responses according to the scale below:

1		Strongly Disagree	
2		Disagree	
3	Univ	Neither Agree nor Disagree	1
4	-	Agree	
5	-	Strongly Agree.	

1	I use all necessary safety equipment to do my job.	1	2	3	4	5
2	I help my co-workers when they are working under risky or hazardous conditions.	1	2	3	4	5
3	I voluntarily carryout tasks or activities that help to improve workplace safety.	1	2	3	4	5
4	I ensure the highest levels of safety when I carry out my job.	1	2	3	4	5
5	I break rules due to management pressure.	1	2	3	4	5
6	I take shortcuts that involve little or no risk.	1	2	3	4	5

7	I always point out to the management if any safety related matters are noticed in my company.	1	2	3	4	5
8	I put extra effort to improve the safety of the workplace.	1	2	3	4	5
9	I take chances to get the job done.	1	2	3	4	5
10	I encourage my co-workers to work safely.	1	2	3	4	5
11	I ignore safety regulations to get the job done.	1	2	3	4	5
12	I break work procedures.	1	2	3	4	5
13	I follow correct safety rules and procedures while carrying out my job.	1	2	3	4	5
14	I bend safety rules to achieve a target.	1	2	3	4	5
15	I get the job done better by ignoring some rules.	1	2	3	4	5
16	Conditions at the workplace keep me from working according to the rules.	1	2	3	4	5
17	I carry out my work in a safe manner.	1	2	3	4	5
18	It is always practical to follow all safety rules and procedures while doing a job.	1	2	3	4	5
	Universiti Utara Mal	ay	sia			
19	I am pressured by my workmates to break rules.	1	2	3	4	5

Thank you for your time.

REVIEW OF ARTICLES

S/No	Author(s), Title,	Research Issue(s),	Method	Finding	Issues, Gaps and
		Study Variables			Future Research
1.	Nielsen <i>et al.</i> (2013). Authentic leadership and its relationship with risk perception and safety climate.	This study aims to examine how authentic leadership relates to risk perception in safety critical organizations (SCOs). It is hypothesized that authentic leaders influence risk perception through the mediating effect of safety climate.	Using a survey design, the variables were assessed in a cross-sectional sample of 293 offshore oil installation workers from a single company.	Authentic leadership are negatively related to risk perception and positively associated with ratings of safety climate. Controlling for personality characteristics and leadership responsibility among respondents, the results confirm the hypothesis in that safety climate mediates the relationship between authentic leadership and risk perception. Safety climate had the strongest relationship with risk perception when assessed as a higher order construct.	More research is clearly necessary to fully comprehend the nature of the relationship between the variables. Supported basis for hypotheses
2.	Eid, <i>et al.</i> (2012). Leadership, psychological capital and safety research: Conceptual issues and future research questions.	Identify potential mechanisms that can explain how leadership affects safety outcomes. Authentic leadership – safety climate – Safety outcomes	Literature review on AL and safety outcomes with specific focus on the offshore O & G industry	From this we offer a research model and five research propositions implicating that authentic leadership directly affects safety outcomes via promoting positive safety climate perceptions.	Need to examine the relationship between authentic leadership and safety climate in safety critical organizations.
3.	Peus <i>et al.</i> (2012). Authentic Leadership: An Empirical Test of Its	Examine the antecedents and individual as well as group-level outcomes of AL in business as well	Longitudinal analysis. (Study 1; n = 306; (Study 2; n = 105).	Findings reveal leader self- knowledge and self-consistency as antecedents of authentic leadership and followers'	Further studies to determine exactly what components of authentic leadership

	Antecedents, Consequences, and Mediating Mechanisms.	as research organizations. First, we sought to investigate if the relation between perceived AL, leader predictability and followers' work-related attitudes could be replicated.		satisfaction with supervisor, organizational commitment, and extra effort as well as perceived team effectiveness as outcomes. The relations between authentic leadership and followers' work- related attitudes as well as perceived team effectiveness are mediated by perceived predictability of the leader, a particular facet of trust.	are crucial for follower attitudes and how they are influenced by situational variables. Deeper understanding of how AL impacts followers, their organizations, and the leaders themselves and how this type of leadership can be davaloped
4.	Cavazotte, <i>et al.</i> (2013). Authentic leader, safe work: the influence of leadership on safety performance.	This study analyzed the influence of authentic leadership on the workers' safety performance, investigating the psychological mechanisms that explain the connection between authenticity and workplace safety.	The study was conducted based on a sample of 186 workers involved in projects within the oil industry in Brazil. Positivist approach.	Results suggested that authentic leadership is associated with the feedback provided by supervisors as well as with worker's perception of justice and their safety performance. Furthermore, perception of justice seems to be a relevant route through which more authentic leaders would promote safe behaviors among their followers. It was also observed that individuals who are more conscientious and less prone to take risks are also those who engage more frequently in safe behavior in the workplace.	This work represents a contribution to the advancement of knowledge about authentic leadership and safety performance because empirical studies investigating the association between the two are rare until now. More studies on AL with specific focus on workplace safety.
5.	Borgersen, et al.	This study examined	Positivist.	AL made a statistically	AL scarcely

	(2014). Authentic leadership and safety climate among seafarers.	relationships between authentic leadership and safety climate among 463 seafarers sailing on 23 merchant vessels in the international shipping industry. Philippines	Questionnaires administration. Regression	significant contribution to explaining variance in safety climate, controlling for age, rank on board, and social desirable responding. The present study contributes to the literature in that AL emerged as a significant predictor of perceived safety climate variance in a research setting which has not been investigated earlier.	examined. Need for further studies.
6.	Hystad, <i>et al.</i> (2014). Positive organizational behavior and safety in the offshore oil industry: Exploring the determinants of positive safety climate.	Test workplace and individual factors that may affect safety climate. Specifically, we explore the potential influence of AL and psychological capital on safety climate and risk outcomes.	Norway Offshore O & G workers. Positivist. Questionnaire administration. SEM used for analysis	Across two samples of offshore oil-workers and seafarers working on oil platform supply ships, structural equation modeling yielded results that support a model in which AL exerts a direct effect on safety climate, as well as an indirect effect via psychological capital.	Scant attention to the question of what factors might be responsible for positive or negative safety climate. Additional studies encouraged.
7.	Neider and Schreisheim (2011). The Authentic Leadership Inventory (ALI): Development and empirical tests.	This paper presents the development and preliminary validation of a new measure of authentic leadership, the Authentic Leadership Inventory (ALI).	Positivist. Instrument development and validation	Results indicate some concerns with the ALQ but support the content validity, reliability, factor structure, convergent and discriminant validity, concurrent validity, and freedom from impression management response bias of the ALI	Future research would better be served by using separate authentic and transformational dimensions (rather than aggregate or global measures) to understand the unique aspects of

					both leadership
8.	Laschinger, <i>et al.</i> (2012). The influence of authentic leadership on newly graduated nurses' experiences of workplace bullying, burnout and retention outcomes: A cross- sectional study.	The purpose of this study is to test a model linking authentic leadership to new graduate nurses' experiences of workplace bullying and burnout, and subsequently, job satisfaction and intentions to leave their jobs.	Cross-sectional survey design with 342 new graduate nurses working in acute care hospitals in Ontario, Canada. The model was tested using path analysis techniques plus SEM.	AL had a negative direct effect on workplace bullying, which in turn had a direct positive effect on emotional exhaustion. Authentic leadership also influenced job satisfaction indirectly through bullying and emotional exhaustion. Authentic leadership, workplace bullying and emotional exhaustion all had significant direct effects on job satisfaction, which in turn, was related to lower turnover intentions.	constructs. The findings from this study demonstrate the fundamental importance of AL in creating supportive working environments. Additional literature on AL.
9.	Carmeli, <i>et al.</i> (2010). Inclusive leadership and employee involvement in creative tasks in the workplace: The mediating role of psychological safety.	This study examines how IL (manifested by openness, accessibility, and availability of a leader) fosters employee creativity in the workplace.	Quantitative. SEM analysis	The results of structural equation modeling (SEM) analysis indicate that IL is positively related to psychological safety, which, in turn, engenders employee involvement in creative work.	Further studies expecting on IL with related organizational factors and outcomes
10	Choi <i>et al.</i> (2015). Inclusive leadership and work engagement:	Examined the mediating roles of affective organizational commitment and	Quantitative. Use of questionnaire among employees	We found that inclusive leadership was positively related to employee work engagement, and that both affective	Theoretical contribution to SET and provide useful managerial

11	mediating roles of affective organizational commitment and creativity. Wuffli, P. A. (2016). Introduction: A Framework for Inclusive Leadership. In	employee creativity in the relationship IL and employee work engagement. Definition. Theoretical perspectives		organizational commitment and employee creativity mediated this relationship.	implications for organizations to improve work engagement among employees. Need to really examine IL
12.	Hollander, E. (2012). Inclusive leadership: The essential leader- follower relationship. New York, NY:	Insights into IL			Need to examine IL
13.	Neal and Griffin (2006). A Study of the Lagged Relationships Among Safety Climate, Safety Motivation, Safety Behavior, and Accidents at the Individual and Group Levels.	Perceptions of safety climate, motivation, and behavior at 2 time points and linked them to prior and subsequent levels of accidents over a 5-year period. Safety Climate, Motivation and Safety Behaviour	Longitudinal survey in the healthcare industry. Questionnaire used	In terms of top-down effects, average levels of safety climate within groups at one point in time predicted subsequent changes in individual safety motivation. Individual safety motivation, in turn, was associated with subsequent changes in self-reported safety behavior. In terms of bottom-up effects, improvements in the average level of safety behavior within groups were associated with a subsequent reduction in accidents at the group level.	Historical perspectives of safety behaviours
14.	Zohar (2002). The	This study is based on	Within-group split	(a) Leadership style affects the	Exposes on safety

	offects of load and in	three promises (a)	comple opolygic	level of concern for autordinets	alimata Dimanaiana
	effects of leadership	three premises: (a)	sample analysis.	level of concern for subordinate	climate. Dimensions
	dimensions, safety	Leadership style affects	Step-wise and	safety; (b) Concern for safety,	and importance of
	climate, and assigned	the level of concern for	group-wise	operationalized with supervisory	safety climate in
	priorities on minor	subordinate safety; (b)	regression	practices, provides the source	predicting safety
	injuries in work	Concern for safety,		for safety climate perceptions;	outcomes. How
	groups.	operationalized with		and (c) Safety priority as	leadership is related
		supervisory practices,		assigned by higher superiors'	to safety climate and
		provides the source for		influences supervisory safety	safety outcomes also
		safety climate		practice independently of	discussed and need
		perceptions; and (c)		leadership style. Leadership	for further studies
		Safety priority as		effects were moderated by	highlighted.
		assigned by higher		assigned safety priorities and	0 0
		superiors' influences		mediated by commensurate	
		supervisory safety		safety-climate variables. The	
		practice independently		results suggest that	
		of leadership style.		transformational and	
				transactional leadership provide	
				complementary modes of	
				(mediated and moderated)	
				influence on safety behavior	
15	Tholen at al. (2013) -	289 construction	Positivist	Results showed that individual	SB and reverse SB
15.	Causal relations	employees	1 051(1715)	perceptions of safety climate	influencing SC SC
	batwaan navahaaaaial	employees		everted a coursel offect on	minuclicing SC SC
	between psychosocial			individual sofaty habaviour but	
	conditions, safety			marvidual safety behaviour, but	
	the hand safety			we also found some evidence of	
	benaviour – A multi-			a reversed relationship, where	
	level investigation			safety behaviour influenced	
				safety climate. Furthermore, we	
				found that work unit average	
				perceptions of safety climate	
				predicted the growth of the	
				individual safety behavior but	
				this influence was mediated by	

				the individual's perception of the safety climate. The results also indicate that supportive psychosocial conditions within an organisation influence individual safety perceptions but do not per se have an impact on safety behaviour.	
16.	Huang <i>et al.</i> (2006) - Safety climate and self-reported injury: Assessing the mediating role of employee safety control	RUDI BANKI	Positivist	Factorial evidence substantiated that management commitment to safety, return-to-work policies, post-injury administration, and safety training are important dimensions of safety climate. In addition, the data support that safety climate is a critical factor predicting the history of a self- reported occupational injury, and that employee safety control mediates the relationship between safety climate and occupational injury.	Safety behaviours and self-reported injury MCS,RTW policies etc
17.	Griffin and Neal (2000) - Perceptions of Safety at Work: A Framework for Linking Safety Climate to Safety Performance, Knowledge, and Motivation	1403 Australian manufacturing	Positivist	Perceptions of knowledge about safety and motivation to perform safely influenced individual reports of safety performance and also mediated the link between SC and safety performance. Specific dimensions of safety climate were identified and constituted a	Safety behaviour Proposed framework, early insights on conceptualization of safety behaviour.

				higher order safety climate factor. The results support conceptualizing safety climate as an antecedent to safety performance in organizations.	
18.	Olsen (2010) - Exploring the possibility of a common structural model measuring associations between safety climate factors and safety behaviour in health care and the petroleum sectors	1919 and 1806 health care and petroleum questionnaire	Longitudinal. Positivist	SC Validation on SC factors	Safety behaviours explained and need to for further studies explained.
19.	Huang <i>et al.</i> (2012) Management commitment to safety vs. employee perceived safety training and association with future injury	MCS and SC	Positivist	Even though results showed that the correlation between employees' perceived safety training and management commitment to safety was high, CFA of measurement models showed that two separate factors fit the model better than as two dimensions of a single factor	Injuries compliance and participation
20.	Evans <i>et al.</i> (2007) - Development and initial validation of an Aviation Safety Climate Scale.	A need was identified for a consistent set of safety climate factors to provide a basis for aviation industry benchmarking.	Positivist	The results of this study have produced a scale of safety climate for aviation that is both reliable and valid.	Safety behaviours MCS, ST, Communication, equipment and maintenance. Need to further study safety climate.

21.	Morrow <i>et al.</i> (2014) Exploring the relationship between safety culture and safety performance in U.S. nuclear power operations	Safety Culture, Safety Climate, safety behaviours	Positivist	Correlations suggested meaningful, statistically significant relationships between safety culture, as measured by the survey, and multiple nuclear power plant performance indicators.	Safety Compliance and safety participation. Further studies needed.
22.	Seo <i>et al.</i> (2004) - A cross-validation of safety climate scale using confirmatory factor analytic approach.	This study tested the stability of a factor structure of a safety climate scale developed through an extensive literature review using confirmatory factor analytic approach and cross-validation.	Meta-analysis	Each item of safety climate showed proper discriminative power based on both internal and external criteria. Criterion validity was manifested by the significant positive correlation of the scale with five criteria. Evidence of construct validity was provided by both exploratory and confirmatory factor analyses. Both calibration and validation samples supported a consistent factor structure. Management commitment and supervisor support were found to influence other dimensions of safety climate.	Safety behaviours - compliance and participation and reduction of injuries. Gap on consistent factor structure of safety climate.
23.	Fernandez-Muniz <i>et</i> <i>al.</i> (2012). Safety climate in - OHSAS 18001-certified	To analyse the safety climate in these organisations, identify its dimensions, and	Meta-analysis	The results show that management's commitment, and particularly communication, have an effect	Employee satisfaction and firm competiveness. Different

24	organisations: Antecedents and consequences of safety behavior.	propose and test a structural equation model that will help determine the antecedents and consequences of employees' safety behaviour. MCS, SC		on safety behaviour and on safety performance, employee satisfaction, and firm competitiveness	dimensions of safety performance. Gaps. Additional studies on safety performance.
24.	Bosak <i>et al</i> (2013) - Safety climate dimensions as predictors for risk behavior.	This study examines the interactive relationship between three dimensions of safety climate (management commitment to safety, priority of safety, and pressure for production), and their impact on risk behavior reported by employees.	niversiti U	The results showed that, employees' risk behavior was negatively related to MCS and priority of safety and positively related to pressure for production. Moreover, the three- way interaction between MCS, priority of safety and pressure for production was significant. When pressure for production was high, MCS was negatively related to risk behavior, regardless of level of priority of safety on plant. When pressure for production was low, the effect of MCS on risk behavior was nullified under conditions of high, as compared to low priority of safety on plant.	Risky behaviour. Additional study needed. These findings highlight the importance of managerial commitment to safety in contexts where employees experience tensions between production deadlines and safety procedures.
25.	Kapp (2012) - The influence of supervisor leadership practices and perceived group	Leadership practices and safety behaviour	Positivist. Use of questionnaire	Results indicate that greater levels of transformational and contingent reward leadership are both associated with greater levels of safety compliance and	Future studies

	safety climate on			safety participation behavior,	
	employee safety			however group safety climate	
	performance			moderates the leadership-safety	
	1			compliance relationships.	
26.	Zohar and Luria	The moderating effect of		Results indicated that under low	Compliance and
	(2010) Group	transformational		or poor organisational climate,	Participation. The
	Leaders as	supervisory leadership		indicative of limited	need for further
	Gatekeepers: Testing	on the relationship		organisational commitment to	studies on leadership
	Safety Climate	between organisational		employee safety,	in the safety
	Variations across	and group climates,		transformational leaders	management.
	Levels of Analysis.	using safety climate in		promoted a higher group climate	Leadership as an
		risky operations as an		as compared to the	antecedent of safety
		exemplar.		organisational climate.	climate.
		UTARA		Similarly, under a weak	
		A A A		organisational climate,	
				indicative of limited consensus	
				among company employees	
				regarding the priority of safety,	
				transformational leaders	
				promoted a stronger group	
			nivorciti II	climate, reflecting greater	
		AND BUILD BAS	inversiti u	consensus among group	
		SODI		members.	
27.	Kines et al. (2010)	This paper tests the	Quantitative	Coaching construction site	Safety performance:
	Improving	effect of increasing		foremen to include safety in	compliance and
	construction site	leader-based on-site		their daily verbal exchanges	participation.
	safety through leader-	verbal safety		with workers has a significantly	Leadership based
	based verbal safety	communication on the		positive and lasting effect on the	communication.
	communication.	level of safety and		level of safety, which is a	
		safety climate at		proximal estimate for work-	
		construction sites.		related accidents.	
28.	Lievens & Vlerick	To report the impact of	Cross-sectional	The results show that	Compliance and
	(2013) -	transformational	survey with use of	transformational leadership	Participation.

	Transformational leadership and safety performance among nurses: the mediating role of knowledge- related job characteristics.	leadership on two dimensions of nurses' safety performance (i.e. safety compliance and safety participation) and to study the mediating role of knowledge- related job characteristics in this relationship.	questionnaire	exerted a significant positive impact on both dimensions of nurses' safety performance. This positive relation was mediated by knowledge-related job characteristics, supporting our second hypothesis.	Transformational leadership and knowledge related job-characteristics as mediators. Further studies needed on leadership in safety management.
29.	Zohar (2010) - Thirty years of safety climate research: Reflections and future directions	UTARA A		The need to study the antecedents of safety climate in relation to safety behaviours	
30.	Vinodkumar and Bhasi (2010) - Safety management practices and safety behaviour: Assessing the mediating role of safety knowledge and motivation.	Measuring employees' perceptions on 6 SMPs and self-reported safety knowledge, safety motivation, safety compliance and safety participation.	Quantitative study done in a safety critical organization in India	Path analysis showed that some of the safety management practices have direct and indirect relations with the safety performance components, namely, safety compliance and safety participation. Safety knowledge and safety motivation were found to be the key mediators in explaining these relationships. Safety training was identified as the most important safety management practice that predicts safety knowledge, safety motivation, safety compliance and safety participation.	Additional studies in safety management with specific focus on safety behaviours.

31.	Mearns <i>et al.</i> (2003) - Safety climate, safety management practice and safety performance in offshore environments.	The present study reports on a cross- organisational survey designed to benchmark participating offshore installations on their safety climate, and to identify best safety management practices.	Cross- organizational survey	Proficiency in some safety management practices was associated with lower official accident rates and fewer respondents reporting accidents.	Safety Climate & Safety Management Practices. Additional studies needed.
32.	Cigularov <i>et al.</i> (2013) - Measurement equivalence and mean comparisons of a safety climate measure across construction trades.	This study used multi- group confirmatory factor analyses to investigate the measurement equivalence of a multidimensional safety climate measure across ten construction trade groups	Cross-sectional survey among 4725 construction trades. Use of CFA	Results revealed strong measurement equivalence of the safety climate measure across the construction trade groups	SC measures. Further insights to assess the relationship between SC and safety behaviours
33.	Cooper & Phillips (2004) - Exploratory analysis of the safety climate and safety behavior relationship.	Exploring the relationship between SC and safety behaviour	Questionnaire. 540 packaging production plant, manufacturing. Regression analysis.	Perceptions of the importance of safety training were predictive of actual levels of safety behavior. The results also demonstrate that the magnitude of change in perceptual safety climate scores will not necessarily match actual changes in employee's safety behavior.	Behaviours. Early studies in safety behaviours based on Borman and Motowidlo (1993).
34.	Martinez-Corcoles <i>et</i> <i>al.</i> (2013) - Empowering team leadership and safety	Team Leadership DV Compliance and	479 workers in 2 Spanish nuclear power plants.	Leaders' empowering behaviors generated higher safety compliance behaviors and higher safety participation	Team leader behaviors. Further asserts need to study risky behaviour as a

	performance in nuclear power plants: A multilevel approach.	Participation and Risky Behaviour		behaviors by team members, whereas risky behaviors were reduced.	component of safety behaviour
35.	Lu & Tsai (2010) - The effect of safety climate on seafarers' safety behaviors in container shipping.	This study empirically examined safety climate and its effects on safety behaviors from seafarers' perceptions in the container shipping context. DV Compliance and participation and accidents and injuries recorded	Stratified sampling Use of questionnaire among 608 seafarers. Mata- Analysis	A structural equation model was used to examine the effect of safety climate dimensions, namely, safety policy, perceived supervisor safety behavior, and safety management, on safety behavior. The results revealed a positive association between safety climate and seafarers' safety behavior.	Safety climate dimensions, namely, safety policy, perceived supervisor safety behavior, and safety management, on safety behavior. Refer for gaps on safety climate measuresand also safety performance measures
36.	Hon <i>et al.</i> (2014) - Relationships between safety climate and safety performance of building repair, maintenance, minor alteration, and addition (RMAA) works.	The present study aims to determine the relationships between safety climate and safety performance of RMAA works, thereby offering recommendations on improving RMAA safety.	Questionnaires analysed from 396 repairs and maintenance personnel	A significant negative relationship between RMAA safety climate and incidence of self-reported near misses and injuries, and significant positive relationships between RMAA safety climate and safety participation and safety compliance respectively. Higher RMAA safety climate was positively associated with a lower incidence of self-reported near misses and injuries and higher levels of safety participation and safety compliance.	Near misses and injuries and safety compliance and participation. Information on safety climate and safety performance measures. History of safety performance.

37.	Wu (2008) - Safety leadership in the teaching laboratories of electrical and electronic engineering departments at Taiwanese Universities.	The study discusses the factors affecting safety leadership in teaching laboratories. Safety leadership	Mail questionnaire survey among 147 university faculty in various departments.	The descriptive statistics also reveals that among faculty, the perception of department heads' safety leadership is in general positive. A two-way MANOVA shows that there are interaction effects on safety leadership between university size and instructor age; there are also interaction effects between presence of a safety committee and faculty gender and faculty age.	Safety leadership. Leadership in safety management
38.	Fernandez-Muniz <i>et</i> <i>al.</i> (2014) - Safety leadership, risk management and safety performance in Spanish firms.	The role of the safety leadership and of the proactive risk management in the improvement of occupational safety performance. Safety Leadership & risk management	Questionnaire and data analyzed among 159 construction and services workers in Spain	The results show the importance of employees' safety behaviour in the improvement of safety outcomes, as well as the importance of the proactive risk management and transformational leadership in promoting safety behaviour.	Compliance and Participation. Refer for study on safety leadership. Transactional or transformational leadership
39.	Bahari & Clarke (2013) Cross- validation of an employee safety climate model in Malaysia.	The current study focuses on the cross- validation of a safety climate model in the non-Western industrial context of Malaysian manufacturing.	50 employees from manufacturing companies. CFA	Results showed that the model fit indices were below accepted levels, indicating that the original Cheyne <i>et al.</i> (1998) safety climate model was not supported. An alternative three- factor model was developed using exploratory factor analysis.	Justification for studying the Nigerian setting. Inconsistencies noted. Model not supported. cross- cultural study.
40.	Huang <i>et al.</i> (2012)	Explore and examine,	Questionnaires of	Even though results showed that	Refer for questions

	Management commitment to safety vs. employee perceived safety training and association with future injury.	specific to the restaurant industry, two important constructs emerging from the safety climate literature: employee perceptions of safety training and management commitment to safety. MCS and SC	419 restaurant workers. With the use of multivariate binomial equation.	the correlation between employees' perceived safety training and management commitment to safety was high, confirmatory factor analysis of measurement models showed that two separate factors fit the model better than as two dimensions of a single factor	on MCS and ST. safety training and MCS as important components of SC
		Injuries compliance and participation			
41.	Zohar and Luria (2010) Group Leaders as Gatekeepers: Testing Safety Climate Variations across Levels of Analysis.	This paper tests the moderating effect of transformational supervisory leadership on the relationship between organisational and group climates, using safety climate in risky operations as an exemplar.	Associational design. Testing a relationship among 3952 production workers	Results indicated that under low or poor organisational climate, indicative of limited organisational commitment to employee safety, transformational leaders promoted a higher group climate as compared to the organisational climate. Similarly, under a weak organisational climate, indicative of limited consensus among company employees regarding the priority of safety, transformational leaders promoted a stronger group climate, reflecting greater consensus among group member	Fragmentations exist. Further study on group level safety climate vis-à- vis improving organizational level safety climate
42.	Clarke (2013)	A theoretical model of safety leadership, which incorporated both	Meta-Analysis	The final model showed that transformational leadership had a positive association with both	The findings suggest that active transactional

	transformational and		perceived safety climate and	leadership is
	active transactional		safety participation, with	important in
	leadership styles, was		perceived safety climate	ensuring compliance
	tested using meta-		partially mediating the effect of	with rules and
	analytic path analysis.		leadership on safety	regulations, whereas
			participation. Active	transformational
			transactional leadership had a	leadership is
			positive association with	primarily associated
			perceived safety climate, safety	with encouraging
			participation and safety	employee
			compliance. The effect of	participation in
			leadership on safety compliance	safety. Therefore, in
			was partially mediated by	line with the
			perceived safety climate and the	augmentation
			effect on safety participation	hypothesis of
			fully mediated by perceived	leadership, a
	A A		safety climate.	combination of both
				transformational and
				transactional styles
				appeared to be most
		Jniversiti U	tara Malavsia	There is little
				quidance available
				on leadership
				interventions that
				focus on a wider
				range of leader
				behaviour or focus
				on the ability to
				change between
				leadership styles to
				fit the requirements
				of the situation.

43.	Martinez-Corcoles et	Study is to find out how	566 employees	The results indicated that when	Further antecedents				
	al. (2011).	leader behaviours	from a nuclear	safety culture was strong, leader	of safety climate.				
	Leadership and	influence employees'	power plant	behaviour generated a higher	Formed foundation				
	employees' perceived	safety behaviours		safety climate among the	for present study.				
	safety behaviours in a	(perceived safety		members, which predicted their					
	nuclear power plant:	behaviours) in the		perceived safety behaviours.					
	A structural equation	nuclear field.		Support was found for a					
	model			structural model linking					
				leadership and safety behaviour					
				to safety culture and safety					
				climate.					
0.1	. 1 1 . C . 1 .		1						
Other studies that formed strong foundation for the present study.									
Barling <i>et al.</i> (2002)									
Clarke and Ward (2006)									
Kelloway <i>et al.</i> (2006)									
Beus <i>et al.</i> (2016)									
Bosak	et al. (2013)								
		E. S	Universiti Utara Malavsia						
BUTTAN BAS									
SPSS OUTPUTS

	Gender								
		Frequency	Percent	Valid Percent	Cumulative Percent				
	Male	288	90.3	90.3	90.3				
Valid	Female	31	9.7	9.7	100.0				
	Total	319	100.0	100.0					

		M Frequency	Percent	Valid Percent	Cumulative
					Percent
	Single	92	28.8	28.8	28.8
	Married	205	64.3	64.3	93.1
Valid	Divorced	12	3.8	3.8	96.9
	Widowed	10	3.1	3.1	100.0
	Total	319	100.0	100.0	

			Age		
		Frequency	Percent	Valid Percent	Cumulative
	-		-		Percent
	Less than 20	4	1.3	1.3	1.3
	21-24	17	5.3	5.3	6.6
	25-29	66	20.7	20.7	27.3
	30-34	105	32.9	32.9	60.2
Valid	35-39	77	24.1	24.1	84.3
	40-44	36	11.3	11.3	95.6
	45-49	10	3.1	3.1	98.7
	50 and above	4	1.3	1.3	100.0
	Total	319	100.0	100.0	

Level of Education

		Frequency	Percent	Valid Percent	Cumulative Percent
	High School	57	17.9	17.9	17.9
	Technical/Diploma	217	68.0	68.0	85.9
Valid	Bachelors'	42	13.2	13.2	99.1
	Masters and Above	Unive ₃	.9	tara Ma	100.0
	Total	319	100.0	100.0	

Present Company Work Experience

		Frequency	Percent	Valid Percent	Cumulative
					Percent
	0-5	157	49.2	49.2	49.2
.,	6-10	136	42.6	42.6	91.8
valid	11-15	26	8.2	8.2	100.0
	Total	319	100.0	100.0	

-		Frequency	Percent	Valid Percent	Cumulative
					Percent
	0-5	101	31.7	31.7	31.7
) (- l' -l	6-10	181	56.7	56.7	88.4
valid	11-15	37	11.6	11.6	100.0
	Total	319	100.0	100.0	

Oil and Gas Work Experience

		Frequency	Percent	Valid Percent	Cumulative Percent
	Technician/Millwright	44	13.8	13.8	13.8
	Engineer	6	1.9	1.9	15.7
	Equipment Handler	27	8.5	8.5	24.1
	Scaffolder	18	5.6	5.6	29.8
	Electrician	33	10.3	10.3	40.1
	Operator	23	7.2	7.2	47.3
	Pipe/Steel Worker	10	3.1	3.1	50.5
	HVAC Operator	9	2.8	2.8	53.3
	Plant Maintenance	50	15.7	15.7	69.0
Valid	Mechanic	13	4.1	4.1	73.0
	Welder	versiti	2.2	2.2	51 a 75.2
	Driller	39	12.2	12.2	87.5
	Rigger	8	2.5	2.5	90.0
	Safety Personnel and First Aider	5	1.6	1.6	91.5
	Concrete Worker	11	3.4	3.4	95.0
	Transportation and Logistics	13	4.1	4.1	99.1
	Others	3	.9	.9	100.0
	Total	319	100.0	100.0	

Occupation

		Frequency	Percent	Valid Percent	Cumulative
					Percent
	Sometimes	17	5.3	5.3	5.3
Valid	Often	151	47.3	47.3	52.7
Valid	Always	151	47.3	47.3	100.0
	Total	319	100.0	100.0	

Frequency of attendance of Safety Training

Number of Times involved in Workplace Accident

		Frequency	Percent	Valid Percent	Cumulative Percent	
0)-5	274	85.9	85.9	85.9	
Valid 6	6-10	45	14.1	14.1	100.0	
2	otal	319	100.0	100.0		

PLS OUTPUTS

Average variance extracted

Bootstrap for hypotheses test

Composite reliability

Second stage model weights

Structural model

Second order stage model

	AL->SC- >SComp	AL->SC- >SP	AL->SC- >RB	IL->SC- >Scomp	IL->SC- >SP	IL->SC- >RB	
Sample 1	0.158000	0.168889	-0.034331	0.190455	0.203580	-0.041383	1
Sample 2	0.087349	0.083683	0.006697	0.210329	0.201502	0.016126	
Sample 3	0.155335	0.156263	-0.022823	0.186453	0.187567	-0.027395	
Sample 4	0.119727	0.122172	0.012436	0.173240	0.176778	0.017995	
Sample 5	0.174554	0.171805	0.020391	0.194183	0.191125	0.022684	
Sample 6	0.174849	0.174548	-0.027376	0.184545	0.184227	-0.028894	
Sample 7	0.195489	0.199841	-0.036786	0.152757	0.156158	-0.028745	
Sample 8	0.215866	0.235922	-0.039385	0.124790	0.136384	-0.022768	
Sample 9	0.066073	0.070904	-0.008609	0.313460	0.336379	-0.040845	
Sample 10	0.091080	0.087251	-0.016335	0.212935	0.203983	-0.038189	
Sample 11	0.066383	0.067126	0.005564	0.196968	0.199173	0.016511	aysia
Sample 12	0.102620	0.105982	-0.017526	0.240425	0.248302	-0.041061	-
Sample 13	0.195586	0.191741	-0.021284	0.186810	0.183137	-0.020329	
Sample 14	0.171646	0.167482	-0.043915	0.164754	0.160757	-0.042151	
Sample 15	0.078099	0.081118	-0.013073	0.274251	0.284850	-0.045906	
Sample 16	0.174425	0.176676	0.032968	0.191924	0.194401	0.036275	
Sample 17	0.163977	0.156910	0.013362	0.159934	0.153042	0.013033	
Sample 18	0.193753	0.206847	-0.025890	0.187296	0.199953	-0.025027	
Sample 19	0.130788	0.130562	-0.026925	0.204286	0.203932	-0.042056]
Sample 20	0.127856	0.134748	-0.008261	0.207299	0.218474	-0.013394]

Measurement and structural model outputs

Sample 21	0.119691	0.117722	0.023873	0.266076	0.261700	0.053070	
Sample 22	0.113469	0.119925	-0.023669	0.214287	0.226480	-0.044699	
Sample 23	0.164871	0.157207	-0.039062	0.191319	0.182425	-0.045328	
Sample 24	0.146354	0.157415	-0.024092	0.226481	0.243599	-0.037283	
Sample 25	0.113807	0.122962	-0.015817	0.180001	0.194482	-0.025016	
Sample 26	0.179295	0.182457	-0.011570	0.169748	0.172742	-0.010954	
Sample 27	0.121415	0.122137	-0.017428	0.195812	0.196976	-0.028106	
Sample 28	0.226573	0.243272	-0.052043	0.160085	0.171883	-0.036771	
Sample 29	0.102263	0.099104	-0.009698	0.158260	0.153370	-0.015009	
Sample 30	0.179424	0.178516	-0.052923	0.155011	0.154227	-0.045722	
Sample 31	0.137552	0.136883	-0.015492	0.181386	0.180504	-0.020429	
Sample 32	0.186704	0.183699	-0.026923	0.182541	0.179604	-0.026323	
Sample 33	0.123830	0.120974	0.011763	0.205639	0.200896	0.019534	
Sample 34	0.059881	0.061469	-0.008856	0.268492	0.275612	-0.039710	
Sample 35	0.110055	0.109183	0.012896	0.133918	0.132857	0.015692	
Sample 36	0.070765	0.074839	0.014105	0.204229	0.215987	0.040707	
Sample 37	0.009544	0.009486	-0.001364	0.286480	0.284736	-0.040934	
Sample 38	0.175304	0.185437	-0.016395	0.211012	0.223210	-0.019735	aysia
Sample 39	0.113465	0.118250	-0.014114	0.198782	0.207165	-0.024727	
Sample 40	0.139350	0.150987	0.035515	0.164305	0.178026	0.041875	
Sample 41	0.152867	0.147343	-0.017614	0.197359	0.190227	-0.022741	
Sample 42	0.218173	0.231081	-0.048041	0.169835	0.179883	-0.037397	
Sample 43	0.083649	0.080267	-0.023125	0.288553	0.276884	-0.079772	
Sample 44	0.210229	0.208887	-0.021377	0.193274	0.192040	-0.019653	
Sample 45	0.144437	0.140657	-0.023749	0.183710	0.178902	-0.030206	
Sample 46	0.162160	0.170933	-0.018700	0.192118	0.202512	-0.022154	
Sample 47	0.170373	0.173387	-0.036187	0.196846	0.200328	-0.041809	

Sample 48	0.179769	0.174743	-0.025803	0.219707	0.213564	-0.031536	
Sample 49	0.162167	0.165205	-0.019060	0.187576	0.191090	-0.022046	
Sample 50	0.222220	0.218534	-0.032122	0.115474	0.113558	-0.016692	
Sample 51	0.185848	0.181051	-0.034193	0.155761	0.151741	-0.028657	
Sample 52	0.138960	0.149574	-0.028231	0.204970	0.220627	-0.041641	
Sample 53	0.130586	0.123630	-0.013966	0.178228	0.168734	-0.019061	
Sample 54	0.068390	0.069629	-0.008835	0.237133	0.241428	-0.030635	
Sample 55	0.124089	0.128958	-0.016747	0.195319	0.202983	-0.026360	
Sample 56	0.129882	0.122333	-0.034027	0.196583	0.185158	-0.051502	
Sample 57	0.201875	0.202047	-0.037584	0.185529	0.185687	-0.034540	
Sample 58	0.134177	0.132942	-0.013648	0.135608	0.134359	-0.013794	
Sample 59	0.139169	0.129858	-0.017442	0.138187	0.128941	-0.017318	
Sample 60	0.123707	0.126738	-0.020322	0.186574	0.191145	-0.030649	
Sample 61	0.047755	0.047198	-0.005568	0.228318	0.225653	-0.026620	
Sample 62	0.066156	0.070556	-0.026020	0.265078	0.282708	-0.104260	
Sample 63	0.191154	0.190233	-0.017626	0.193822	0.192888	-0.017872	
Sample 64	0.226955	0.220353	-0.039147	0.195381	0.189697	-0.033701	_
Sample 65	0.168154	0.165256	-0.027100	0.153527	0.150882	-0.024743	aysia
Sample 66	0.203114	0.214076	-0.042167	0.165701	0.174644	-0.034400	
Sample 67	0.136994	0.148516	0.025482	0.162157	0.175797	0.030162	
Sample 68	0.209183	0.219566	-0.042904	0.179234	0.188130	-0.036761	
Sample 69	0.131602	0.143823	0.015640	0.255799	0.279555	0.030400	
Sample 70	0.113087	0.121938	-0.013716	0.194800	0.210046	-0.023627	
Sample 71	0.199823	0.195919	-0.019503	0.148353	0.145455	-0.014480	
Sample 72	0.145288	0.147839	-0.026170	0.286128	0.291153	-0.051539	
Sample 73	0.150714	0.162246	-0.015368	0.238549	0.256802	-0.024324	
Sample 74	0.169221	0.168835	-0.019590	0.180243	0.179832	-0.020866	

Sample 75	0.123545	0.121592	-0.010012	0.216242	0.212824	-0.017525	
Sample 76	0.195291	0.212840	-0.024320	0.169937	0.185208	-0.021162	
Sample 77	0.140709	0.139883	-0.021967	0.175383	0.174353	-0.027381	
Sample 78	0.191074	0.196883	-0.058958	0.177657	0.183058	-0.054818	
Sample 79	0.186107	0.191856	-0.031823	0.169900	0.175148	-0.029051	
Sample 80	0.235115	0.225676	-0.050060	0.084774	0.081371	-0.018050	
Sample 81	0.116505	0.126001	-0.017901	0.255530	0.276356	-0.039261	
Sample 82	0.144265	0.139498	-0.017786	0.174302	0.168542	-0.021489	
Sample 83	0.161064	0.166262	-0.020407	0.182555	0.188445	-0.023129	
Sample 84	0.105719	0.111615	-0.016227	0.174790	0.184538	-0.026828	
Sample 85	0.144922	0.159311	-0.017434	0.231888	0.254912	-0.027897	
Sample 86	0.131410	0.132349	-0.016960	0.239863	0.241577	-0.030957	
Sample 87	0.158727	0.157641	-0.012590	0.166861	0.165720	-0.013235	
Sample 88	0.152424	0.147252	-0.018534	0.213487	0.206244	-0.025958	
Sample 89	0.147498	0.142572	-0.019628	0.172515	0.166754	-0.022957	
Sample 90	0.118961	0.116705	-0.021099	0.226348	0.222056	-0.040145	
Sample 91	0.175422	0.172738	-0.029020	0.210326	0.207108	-0.034795	
Sample 92	0.083055	0.085491	-0.015145	0.218539	0.224949	-0.039849	aysia
Sample 93	0.158600	0.162174	-0.029543	0.278441	0.284716	-0.051866	
Sample 94	0.227550	0.235538	-0.034398	0.167896	0.173790	-0.025380	
Sample 95	0.101396	0.096966	-0.011047	0.181716	0.173778	-0.019798	
Sample 96	0.167401	0.177964	0.043533	0.203405	0.216239	0.052895	
Sample 97	0.151457	0.143897	0.013858	0.184336	0.175134	0.016867	
Sample 98	0.099971	0.093548	-0.015213	0.165475	0.154843	-0.025181	
Sample 99	0.210092	0.205984	-0.054063	0.168927	0.165623	-0.043470	
Sample 100	0.141891	0.154924	-0.020308	0.268811	0.293503	-0.038473	
Sample 101	0.174014	0.166449	-0.027495	0.206818	0.197827	-0.032678	

Sample 102	0.132525	0.126679	0.013706	0.256843	0.245512	0.026564	
Sample 103	0.114870	0.115842	-0.014208	0.228197	0.230128	-0.028225	
Sample 104	0.234965	0.237883	-0.058562	0.161203	0.163205	-0.040177	
Sample 105	0.233490	0.241607	-0.030572	0.186127	0.192598	-0.024371	
Sample 106	0.110347	0.115898	-0.027155	0.214710	0.225510	-0.052838	
Sample 107	0.156714	0.151146	-0.025384	0.208944	0.201521	-0.033844	
Sample 108	0.115671	0.113279	-0.014760	0.210649	0.206291	-0.026879	
Sample 109	0.119985	0.125185	0.014449	0.193686	0.202080	0.023325	
Sample 110	0.162329	0.158322	-0.041629	0.195485	0.190660	-0.050132	
Sample 111	0.217499	0.206936	-0.020964	0.154507	0.147003	-0.014892	
Sample 112	0.163648	0.164659	-0.031730	0.194148	0.195348	-0.037644	
Sample 113	0.149120	0.156748	0.018599	0.223832	0.235281	0.027917	
Sample 114	0.165168	0.177134	0.020901	0.198377	0.212748	0.025104	
Sample 115	0.186045	0.190225	-0.028715	0.158391	0.161949	-0.024446	
Sample 116	0.183463	0.184837	-0.032007	0.135303	0.136317	-0.023605	
Sample 117	0.138747	0.147779	-0.023467	0.199255	0.212225	-0.033700	
Sample 118	0.146583	0.145425	-0.016922	0.241916	0.240006	-0.027928	
Sample 119	0.190219	0.198482	0.029399	0.186761	0.194874	0.028864	aysia
Sample 120	0.070901	0.073505	-0.008707	0.295305	0.306154	-0.036266	
Sample 121	0.100585	0.103989	-0.025708	0.233678	0.241587	-0.059726	ĺ
Sample 122	0.203047	0.205172	0.012111	0.115312	0.116518	0.006878	
Sample 123	0.128628	0.128574	-0.008515	0.143626	0.143566	-0.009508	
Sample 124	0.214765	0.220135	-0.053866	0.210366	0.215626	-0.052763	
Sample 125	0.214618	0.229461	-0.021204	0.155000	0.165720	-0.015314	
Sample 126	0.085831	0.082428	-0.012538	0.256069	0.245916	-0.037405	
Sample 127	0.204176	0.204769	-0.019673	0.198411	0.198988	-0.019117	
Sample 128	0.077860	0.081585	-0.011415	0.208997	0.218996	-0.030641	

Sample 129	0.159740	0.156143	-0.019740	0.183097	0.178974	-0.022627	
Sample 130	0.155396	0.156183	-0.024581	0.177839	0.178740	-0.028131	
Sample 131	0.156435	0.168745	0.018960	0.163355	0.176209	0.019799	
Sample 132	0.172547	0.171195	-0.021599	0.222359	0.220617	-0.027834	
Sample 133	0.186038	0.175621	0.019630	0.155159	0.146471	0.016372	
Sample 134	0.191318	0.188123	-0.018300	0.179378	0.176382	-0.017158	
Sample 135	0.203604	0.215879	-0.039325	0.118816	0.125980	-0.022949	
Sample 136	0.176431	0.190131	0.009192	0.171469	0.184784	0.008934	
Sample 137	0.194352	0.182670	-0.015701	0.148170	0.139264	-0.011970	
Sample 138	0.206736	0.207171	-0.039705	0.175101	0.175470	-0.033629	
Sample 139	0.132620	0.137133	-0.017792	0.222934	0.230520	-0.029908	
Sample 140	0.210601	0.204391	-0.038060	0.136772	0.132739	-0.024717	
Sample 141	0.211898	0.207735	0.021061	0.130744	0.128175	0.012995	
Sample 142	0.211154	0.207016	-0.030569	0.123597	0.121176	-0.017894	
Sample 143	0.173121	0.174348	-0.024003	0.134078	0.135029	-0.018590	
Sample 144	0.121888	0.124166	-0.020217	0.264100	0.269037	-0.043805	
Sample 145	0.246402	0.248106	-0.053631	0.156623	0.157706	-0.034090	
Sample 146	0.172601	0.174065	-0.017152	0.230904	0.232864	-0.022946	aysıa
Sample 147	0.145311	0.153835	-0.022896	0.197099	0.208661	-0.031056	
Sample 148	0.142720	0.147587	-0.009502	0.239704	0.247877	-0.015960	ĺ
Sample 149	0.169505	0.163715	-0.030474	0.221198	0.213642	-0.039768	
Sample 150	0.172595	0.173396	-0.012357	0.247874	0.249024	-0.017747	
Sample 151	0.072566	0.073928	-0.017264	0.267525	0.272546	-0.063646	
Sample 152	0.152428	0.156495	-0.013844	0.170053	0.174589	-0.015444	
Sample 153	0.217622	0.201307	-0.051181	0.145008	0.134137	-0.034104	
Sample 154	0.134755	0.140568	-0.023076	0.213889	0.223116	-0.036627	
Sample 155	0.142636	0.151316	0.017091	0.219729	0.233101	0.026329	

Sample 156	0.143329	0.151371	-0.017364	0.236957	0.250251	-0.028706	
Sample 157	0.191649	0.186426	0.029612	0.187505	0.182395	0.028972	
Sample 158	0.163506	0.171814	-0.054249	0.235051	0.246995	-0.077987	
Sample 159	0.086705	0.087507	-0.006981	0.225764	0.227851	-0.018178	
Sample 160	0.205913	0.202548	-0.034915	0.125567	0.123515	-0.021292	
Sample 161	0.118725	0.114215	0.008102	0.152392	0.146602	0.010399	
Sample 162	0.146476	0.151432	0.010717	0.166773	0.172415	0.012202	
Sample 163	0.183561	0.189669	-0.039843	0.216335	0.223534	-0.046957	
Sample 164	0.147776	0.150533	0.013371	0.181961	0.185356	0.016464	
Sample 165	0.214966	0.226718	0.021582	0.131101	0.138268	0.013162	
Sample 166	0.079510	0.080253	-0.013620	0.207886	0.209829	-0.035611	
Sample 167	0.174381	0.172554	0.028847	0.204352	0.202210	0.033805	
Sample 168	0.148776	0.141742	-0.013665	0.164109	0.156350	-0.015073	
Sample 169	0.113291	0.108950	-0.012533	0.198592	0.190983	-0.021969	
Sample 170	0.091994	0.088970	-0.005473	0.207373	0.200556	-0.012337	
Sample 171	0.123573	0.130941	-0.020152	0.232947	0.246837	-0.037988	
Sample 172	0.159518	0.170868	-0.035858	0.224914	0.240917	-0.050558	
Sample 173	0.189001	0.180023	-0.026754	0.189500	0.180498	-0.026824	aysia
Sample 174	0.140090	0.143465	0.014437	0.180359	0.184704	0.018587	
Sample 175	0.205064	0.209949	-0.045588	0.142421	0.145813	-0.031662	
Sample 176	0.186882	0.197997	-0.034785	0.134957	0.142984	-0.025120	
Sample 177	0.230195	0.225946	-0.030415	0.131772	0.129339	-0.017411	
Sample 178	0.131119	0.141117	-0.024556	0.255152	0.274605	-0.047786	
Sample 179	0.226118	0.223921	-0.040184	0.134960	0.133649	-0.023984	
Sample 180	0.166867	0.174077	-0.045343	0.186310	0.194361	-0.050627	
Sample 181	0.125182	0.135531	-0.016001	0.206271	0.223323	-0.026366	
Sample 182	0.074875	0.080756	-0.012980	0.339635	0.366314	-0.058879	

Sample 183	0.134738	0.147714	0.027070	0.164949	0.180834	0.033140	
Sample 184	0.172395	0.173137	-0.028831	0.210438	0.211344	-0.035193	
Sample 185	0.137179	0.136148	-0.034274	0.285455	0.283309	-0.071321	
Sample 186	0.172496	0.170017	-0.023582	0.128677	0.126828	-0.017592	
Sample 187	0.166141	0.160102	-0.027651	0.150282	0.144819	-0.025012	
Sample 188	0.187664	0.202280	0.016340	0.170479	0.183756	0.014844	
Sample 189	0.140796	0.151581	0.009223	0.238375	0.256634	0.015614	
Sample 190	0.168171	0.174162	-0.019565	0.141695	0.146743	-0.016485	
Sample 191	0.148976	0.153424	-0.028574	0.201206	0.207213	-0.038592	
Sample 192	0.071554	0.071376	0.006375	0.266577	0.265913	0.023750	
Sample 193	0.161017	0.162908	-0.051883	0.150918	0.152690	-0.048629	
Sample 194	0.183975	0.175526	-0.016037	0.108168	0.103200	-0.009429	
Sample 195	0.131704	0.135179	0.028480	0.236464	0.242704	0.051133	
Sample 196	0.233287	0.231854	-0.016837	0.160679	0.159693	-0.011597	
Sample 197	0.065867	0.065061	-0.009807	0.258513	0.255350	-0.038489	
Sample 198	0.109712	0.101026	0.005688	0.138365	0.127411	0.007174	
Sample 199	0.113205	0.108582	-0.019197	0.219578	0.210611	-0.037235	
Sample 200	0.185899	0.178641	0.013974	0.175043	0.168209	0.013157	aysıa
Sample 201	0.233160	0.250766	-0.028154	0.185956	0.199998	-0.022454	
Sample 202	0.209401	0.206040	-0.024047	0.120009	0.118083	-0.013781	
Sample 203	0.097794	0.100812	-0.013267	0.260804	0.268853	-0.035381	
Sample 204	0.234852	0.238388	-0.027385	0.141019	0.143142	-0.016443	
Sample 205	0.176306	0.181610	-0.025821	0.203755	0.209884	-0.029841	
Sample 206	0.113836	0.111604	0.011972	0.252342	0.247394	0.026538	
Sample 207	0.104541	0.105018	-0.010699	0.232835	0.233897	-0.023828	
Sample 208	0.187762	0.193026	0.033047	0.185096	0.190285	0.032578	
Sample 209	0.177104	0.175083	-0.009321	0.180736	0.178673	-0.009513	

Sample 210	0.157020	0.153498	0.017942	0.134845	0.131820	0.015408	
Sample 211	0.151615	0.146840	-0.014606	0.207138	0.200614	-0.019955	
Sample 212	0.222294	0.220176	-0.012211	0.211291	0.209278	-0.011607	
Sample 213	0.143595	0.136851	-0.022220	0.187491	0.178686	-0.029012	
Sample 214	0.149009	0.151625	-0.034633	0.218354	0.222189	-0.050750	
Sample 215	0.182225	0.170946	-0.029567	0.165491	0.155248	-0.026852	
Sample 216	0.109520	0.116943	0.024752	0.216033	0.230676	0.048825	
Sample 217	0.140341	0.153295	0.026931	0.196788	0.214953	0.037763	
Sample 218	0.148036	0.143165	-0.030048	0.135990	0.131516	-0.027603	
Sample 219	0.247338	0.243735	-0.042009	0.177177	0.174596	-0.030093	
Sample 220	0.127927	0.131779	-0.022320	0.250593	0.258139	-0.043722	
Sample 221	0.193748	0.198058	0.017929	0.208520	0.213158	0.019295	
Sample 222	0.216742	0.219211	-0.030014	0.170676	0.172621	-0.023635	
Sample 223	0.160634	0.159191	-0.020549	0.109352	0.108370	-0.013989	
Sample 224	0.158957	0.170906	-0.027523	0.190139	0.204433	-0.032922	
Sample 225	0.146291	0.155493	-0.022269	0.209790	0.222987	-0.031936	
Sample 226	0.209535	0.214317	-0.045803	0.185729	0.189967	-0.040599	
Sample 227	0.215917	0.212756	0.046341	0.130992	0.129074	0.028114	aysıa
Sample 228	0.194867	0.203057	-0.040121	0.190032	0.198019	-0.039126	
Sample 229	0.213280	0.214912	-0.050832	0.188518	0.189960	-0.044930	
Sample 230	0.165114	0.169778	-0.032269	0.186256	0.191517	-0.036401	
Sample 231	0.184968	0.182072	-0.038321	0.190924	0.187936	-0.039555	
Sample 232	0.110670	0.109572	-0.016471	0.261153	0.258564	-0.038867	
Sample 233	0.120899	0.115306	-0.012105	0.215763	0.205783	-0.021603	
Sample 234	0.147556	0.144594	-0.012121	0.206624	0.202476	-0.016973	
Sample 235	0.131148	0.130852	-0.008497	0.195156	0.194714	-0.012643	
Sample 236	0.121666	0.119194	0.013917	0.184624	0.180874	0.021119	

Sample 237	0.168756	0.169565	0.021136	0.160597	0.161367	0.020114	
Sample 238	0.180464	0.167995	-0.034211	0.134599	0.125299	-0.025516	
Sample 239	0.184231	0.180640	0.018579	0.197369	0.193522	0.019904	
Sample 240	0.157129	0.156351	-0.023689	0.238557	0.237375	-0.035966	
Sample 241	0.108634	0.105032	-0.015388	0.217295	0.210090	-0.030780	
Sample 242	0.167821	0.166442	-0.031528	0.228083	0.226210	-0.042850	
Sample 243	0.097053	0.096398	0.004727	0.231692	0.230129	0.011286	
Sample 244	0.054058	0.052404	0.006899	0.224433	0.217564	0.028644	
Sample 245	0.171594	0.180888	-0.026600	0.171167	0.180438	-0.026533	
Sample 246	0.157394	0.156819	-0.025186	0.179712	0.179056	-0.028757	
Sample 247	0.172071	0.192055	-0.020515	0.200350	0.223618	-0.023886	
Sample 248	0.150597	0.157977	-0.012127	0.200605	0.210436	-0.016154	
Sample 249	0.063649	0.061219	0.003630	0.280220	0.269519	0.015983	
Sample 250	0.150381	0.151119	0.012890	0.202761	0.203756	0.017380	
Sample 251	0.182372	0.196538	-0.045384	0.201426	0.217072	-0.050125	
Sample 252	0.191801	0.194080	0.020438	0.199596	0.201968	0.021268	
Sample 253	0.169520	0.173943	-0.035696	0.191271	0.196263	-0.040276	
Sample 254	0.152191	0.150849	-0.012063	0.194596	0.192881	-0.015424	aysia
Sample 255	0.238214	0.249515	-0.051171	0.151557	0.158746	-0.032556	
Sample 256	0.144436	0.154034	-0.023245	0.220620	0.235282	-0.035506	
Sample 257	0.114573	0.112278	-0.020206	0.235094	0.230384	-0.041461	
Sample 258	0.198576	0.199958	-0.021692	0.175703	0.176926	-0.019193	
Sample 259	0.124501	0.125066	-0.012408	0.237760	0.238840	-0.023695	
Sample 260	0.180861	0.181664	-0.022368	0.183972	0.184789	-0.022752	
Sample 261	0.211365	0.219354	-0.026784	0.161251	0.167346	-0.020434	
Sample 262	0.197406	0.196264	-0.024872	0.191360	0.190253	-0.024111	
Sample 263	0.109166	0.102708	-0.024883	0.202855	0.190854	-0.046239	

Sample 264	0.219933	0.225835	0.024217	0.103651	0.106432	0.011413	
Sample 265	0.153899	0.150414	0.025100	0.245387	0.239831	0.040021	
Sample 266	0.170575	0.166279	-0.021546	0.159145	0.155137	-0.020102	
Sample 267	0.096792	0.094302	-0.008895	0.222632	0.216905	-0.020460	
Sample 268	0.232721	0.232527	-0.036193	0.177350	0.177202	-0.027581	
Sample 269	0.193160	0.195421	-0.030964	0.122497	0.123930	-0.019637	
Sample 270	0.181146	0.184984	-0.044289	0.172934	0.176598	-0.042282	
Sample 271	0.127750	0.129173	-0.016716	0.221056	0.223518	-0.028925	
Sample 272	0.206728	0.204253	-0.021489	0.087843	0.086791	-0.009131	
Sample 273	0.139509	0.139428	-0.018288	0.246249	0.246105	-0.032280	
Sample 274	0.160823	0.162942	-0.013937	0.148844	0.150805	-0.012899	
Sample 275	0.177756	0.186613	0.020424	0.191563	0.201107	0.022010	
Sample 276	0.102081	0.104613	0.020873	0.187804	0.192462	0.038402	
Sample 277	0.146392	0.145564	-0.018484	0.189461	0.188389	-0.023922	
Sample 278	0.188985	0.199770	-0.036733	0.165766	0.175226	-0.032220	
Sample 279	0.250967	0.239950	-0.039584	0.151112	0.144479	-0.023834	
Sample 280	0.120384	0.123685	-0.020402	0.157909	0.162239	-0.026761	
Sample 281	0.225247	0.235934	-0.042405	0.118717	0.124350	-0.022350	aysıa
Sample 282	0.200050	0.204720	-0.038814	0.167248	0.171153	-0.032450	
Sample 283	0.191361	0.188440	0.027286	0.180154	0.177404	0.025688	
Sample 284	0.163153	0.169910	0.011581	0.166926	0.173840	0.011849	
Sample 285	0.025329	0.025557	0.002976	0.266063	0.268456	0.031259	
Sample 286	0.113682	0.117476	-0.010986	0.184426	0.190581	-0.017822	
Sample 287	0.114180	0.121172	-0.009797	0.249027	0.264277	-0.021368	
Sample 288	0.123003	0.121260	-0.024555	0.200878	0.198032	-0.040101	
Sample 289	0.245239	0.243723	-0.029975	0.103345	0.102706	-0.012632	
Sample 290	0.167906	0.170511	-0.023338	0.153462	0.155844	-0.021331	

Sample 291	0.124349	0.122857	-0.023205	0.233826	0.231020	-0.043635	
Sample 292	0.213860	0.221939	-0.024523	0.140754	0.146071	-0.016140	
Sample 293	0.176443	0.172417	-0.023733	0.222689	0.217607	-0.029954	
Sample 294	0.145871	0.145315	-0.021328	0.194179	0.193438	-0.028392	
Sample 295	0.195056	0.217054	-0.033386	0.115314	0.128319	-0.019737	
Sample 296	0.170183	0.167938	-0.033119	0.139451	0.137611	-0.027138	
Sample 297	0.178435	0.165553	-0.029654	0.138500	0.128501	-0.023017	
Sample 298	0.086015	0.089089	-0.011673	0.246942	0.255767	-0.033511	
Sample 299	0.131655	0.136569	-0.009981	0.198312	0.205714	-0.015034	
Sample 300	0.160992	0.166868	-0.034245	0.191175	0.198153	-0.040665	
Sample 301	0.191812	0.191933	-0.031001	0.151485	0.151581	-0.024484	
Sample 302	0.183474	0.187462	-0.025502	0.200004	0.204350	-0.027799	
Sample 303	0.185286	0.183004	-0.017059	0.207527	0.204970	-0.019106	
Sample 304	0.100630	0.094459	-0.012070	0.204085	0.191572	-0.024478	
Sample 305	0.134176	0.143769	-0.012950	0.239891	0.257042	-0.023153	
Sample 306	0.196949	0.200971	-0.046921	0.196751	0.200769	-0.046874	
Sample 307	0.196636	0.194908	-0.044004	0.221261	0.219317	-0.049515	
Sample 308	0.209335	0.203007	-0.029742	0.231455	0.224458	-0.032884	aysıa
Sample 309	0.116948	0.111306	-0.015344	0.201310	0.191597	-0.026413	
Sample 310	0.114953	0.112740	0.008858	0.190280	0.186616	0.014663	
Sample 311	0.146218	0.160579	-0.029826	0.252141	0.276905	-0.051433	
Sample 312	0.081397	0.074871	-0.011485	0.241671	0.222297	-0.034100	
Sample 313	0.165167	0.163259	-0.021954	0.226859	0.224239	-0.030154	
Sample 314	0.173624	0.162456	-0.014508	0.173101	0.161967	-0.014464	
Sample 315	0.127715	0.122922	0.009811	0.208297	0.200480	0.016001	
Sample 316	0.203779	0.195202	-0.046140	0.158479	0.151810	-0.035883	
Sample 317	0.122495	0.130900	-0.020663	0.248610	0.265668	-0.041936	

Sample 318	0.090452	0.089427	0.013864	0.202493	0.200199	0.031037	
Sample 319	0.187046	0.187720	-0.017785	0.076641	0.076917	-0.007287	
Sample 320	0.131677	0.130820	-0.013224	0.223290	0.221836	-0.022424	
Sample 321	0.131606	0.141770	-0.022390	0.194617	0.209648	-0.033110	
Sample 322	0.120589	0.123167	-0.019802	0.235484	0.240518	-0.038668	
Sample 323	0.089759	0.085739	-0.009955	0.239040	0.228332	-0.026511	
Sample 324	0.161749	0.161766	-0.031088	0.201831	0.201852	-0.038792	
Sample 325	0.189721	0.187443	-0.027404	0.207201	0.204712	-0.029929	
Sample 326	0.153961	0.164310	0.010204	0.121690	0.129870	0.008065	
Sample 327	0.143399	0.152925	0.032652	0.217500	0.231948	0.049524	
Sample 328	0.096618	0.094718	-0.025438	0.270572	0.265251	-0.071238	
Sample 329	0.147630	0.144781	-0.025141	0.235305	0.230765	-0.040071	
Sample 330	0.139240	0.136061	-0.016318	0.206126	0.201421	-0.024156	
Sample 331	0.176832	0.190699	-0.032130	0.151780	0.163682	-0.027578	
Sample 332	0.228172	0.229406	-0.013741	0.138871	0.139621	-0.008363	
Sample 333	0.188781	0.194307	-0.020641	0.230597	0.237347	-0.025213	
Sample 334	0.133212	0.133997	-0.017164	0.177426	0.178472	-0.022861	
Sample 335	0.128290	0.126147	-0.011475	0.174500	0.171585	-0.015609	aysia
Sample 336	0.143462	0.146871	-0.017020	0.194928	0.199560	-0.023126	
Sample 337	0.077824	0.082921	-0.011075	0.202426	0.215683	-0.028807	
Sample 338	0.172045	0.187895	-0.023109	0.180726	0.197375	-0.024275	
Sample 339	0.191780	0.191494	0.039757	0.174992	0.174731	0.036277	
Sample 340	0.148088	0.143004	-0.023717	0.163179	0.157577	-0.026134	
Sample 341	0.099766	0.096794	-0.016445	0.201876	0.195861	-0.033277	
Sample 342	0.207554	0.211907	-0.036351	0.187528	0.191461	-0.032844	
Sample 343	0.148616	0.153992	-0.035535	0.231906	0.240295	-0.055451	
Sample 344	0.215711	0.228855	-0.079471	0.211533	0.224421	-0.077932	

Sample 345	0.155217	0.168637	-0.032835	0.187893	0.204138	-0.039747	
Sample 346	0.098442	0.098241	-0.014445	0.272568	0.272012	-0.039995	
Sample 347	0.218272	0.229762	-0.029670	0.118641	0.124887	-0.016127	
Sample 348	0.206763	0.196402	-0.023130	0.141563	0.134469	-0.015836	
Sample 349	0.210149	0.218218	-0.037736	0.173269	0.179923	-0.031114	
Sample 350	0.170714	0.171231	0.009367	0.185244	0.185805	0.010164	
Sample 351	0.215482	0.205230	0.035519	0.071416	0.068018	0.011772	
Sample 352	0.182931	0.178915	-0.017915	0.188300	0.184166	-0.018441	
Sample 353	0.210071	0.214945	0.029122	0.118178	0.120920	0.016383	
Sample 354	0.187702	0.192996	-0.031384	0.163525	0.168137	-0.027341	
Sample 355	0.201313	0.208989	-0.030942	0.167025	0.173394	-0.025672	
Sample 356	0.168673	0.175914	-0.037666	0.231743	0.241692	-0.051751	
Sample 357	0.143768	0.133725	0.009175	0.124298	0.115615	0.007932	
Sample 358	0.191426	0.189874	-0.030147	0.138636	0.137512	-0.021833	
Sample 359	0.227878	0.231633	-0.044491	0.207679	0.211102	-0.040547	
Sample 360	0.148161	0.152710	-0.010351	0.225180	0.232095	-0.015731	
Sample 361	0.137659	0.135085	-0.019739	0.190569	0.187005	-0.027326	
Sample 362	0.150411	0.154265	-0.024993	0.166161	0.170419	-0.027610	aysia
Sample 363	0.190261	0.178555	-0.018276	0.182025	0.170826	-0.017485	
Sample 364	0.185181	0.194159	-0.048664	0.208434	0.218539	-0.054775	
Sample 365	0.146007	0.149311	-0.021268	0.202246	0.206823	-0.029460	
Sample 366	0.203349	0.203548	-0.039066	0.117254	0.117369	-0.022526	
Sample 367	0.134611	0.130436	-0.010941	0.171605	0.166283	-0.013948	
Sample 368	0.168112	0.177608	-0.017854	0.142139	0.150168	-0.015096	
Sample 369	0.141913	0.151548	-0.019757	0.209544	0.223770	-0.029173	
Sample 370	0.174504	0.172757	-0.040142	0.222149	0.219924	-0.051102	
Sample 371	0.102155	0.105227	-0.020345	0.165872	0.170861	-0.033034	

Sample 372	0.217449	0.211559	-0.027974	0.152115	0.147995	-0.019569	
Sample 373	0.139911	0.138565	-0.036973	0.180844	0.179104	-0.047790	
Sample 374	0.197029	0.202816	-0.026902	0.217231	0.223612	-0.029660	
Sample 375	0.148244	0.137929	-0.017668	0.201128	0.187133	-0.023971	
Sample 376	0.189229	0.183091	-0.021859	0.130960	0.126712	-0.015128	
Sample 377	0.177390	0.180493	-0.019882	0.167186	0.170110	-0.018739	
Sample 378	0.193402	0.198098	-0.031031	0.154484	0.158236	-0.024786	
Sample 379	0.164018	0.165745	-0.036749	0.212422	0.214658	-0.047594	
Sample 380	0.172656	0.186441	-0.016372	0.224079	0.241970	-0.021248	
Sample 381	0.109588	0.115496	-0.017104	0.196184	0.206760	-0.030619	
Sample 382	0.125772	0.125367	-0.014060	0.268308	0.267444	-0.029994	
Sample 383	0.254265	0.261286	-0.025342	0.106900	0.109852	-0.010654	
Sample 384	0.089259	0.085419	0.007342	0.152569	0.146006	0.012549	
Sample 385	0.185276	0.187866	-0.027525	0.167251	0.169589	-0.024847	
Sample 386	0.169888	0.172410	-0.017442	0.214419	0.217602	-0.022014	
Sample 387	0.135821	0.139566	-0.018507	0.204782	0.210428	-0.027903	
Sample 388	0.189025	0.209746	-0.027023	0.182581	0.202595	-0.026102	
Sample 389	0.174011	0.178330	-0.025744	0.241049	0.247033	-0.035662	aysia
Sample 390	0.171409	0.172269	0.021231	0.160143	0.160946	0.019835	
Sample 391	0.148102	0.144109	-0.029502	0.185848	0.180837	-0.037020	
Sample 392	0.191734	0.187131	-0.020517	0.156151	0.152402	-0.016710	
Sample 393	0.134179	0.142279	-0.021498	0.225922	0.239559	-0.036197	
Sample 394	0.154367	0.161088	-0.030775	0.219620	0.229183	-0.043784	
Sample 395	0.175632	0.182305	0.025529	0.179986	0.186825	0.026162	
Sample 396	0.171354	0.172164	-0.022044	0.185055	0.185929	-0.023806	
Sample 397	0.148815	0.147987	-0.025063	0.240626	0.239286	-0.040525	
Sample 398	0.176398	0.175725	-0.037888	0.180471	0.179782	-0.038763	

Sample 399	0.188236	0.195556	-0.023932	0.135918	0.141204	-0.017280	
Sample 400	0.180011	0.188770	-0.023679	0.192943	0.202332	-0.025380	
Sample 401	0.146907	0.153671	-0.022182	0.228562	0.239086	-0.034511	
Sample 402	0.144327	0.141344	-0.026231	0.160513	0.157194	-0.029172	
Sample 403	0.192059	0.199183	-0.025027	0.263336	0.273105	-0.034315	
Sample 404	0.142282	0.144935	-0.027612	0.169334	0.172491	-0.032862	
Sample 405	0.164178	0.164710	-0.017545	0.164975	0.165509	-0.017630	
Sample 406	0.096921	0.099838	-0.011926	0.293809	0.302653	-0.036154	
Sample 407	0.092745	0.088768	-0.019727	0.217944	0.208600	-0.046358	
Sample 408	0.136036	0.138997	-0.034657	0.239595	0.244811	-0.061040	
Sample 409	0.092922	0.093823	-0.021212	0.234600	0.236876	-0.053554	
Sample 410	0.141532	0.142231	-0.026273	0.203480	0.204485	-0.037773	
Sample 411	0.169411	0.180582	-0.036352	0.179895	0.191757	-0.038601	
Sample 412	0.150965	0.147188	-0.019737	0.215352	0.209965	-0.028155	
Sample 413	0.207090	0.205633	-0.021425	0.138709	0.137733	-0.014350	
Sample 414	0.246442	0.241633	-0.043410	0.133875	0.131263	-0.023581	
Sample 415	0.189938	0.180284	-0.036059	0.107942	0.102455	-0.020492	
Sample 416	0.170621	0.172449	-0.015526	0.177933	0.179839	-0.016192	aysia
Sample 417	0.067685	0.068191	-0.009257	0.222888	0.224554	-0.030484	
Sample 418	0.135758	0.130246	0.015064	0.161015	0.154478	0.017867	
Sample 419	0.223009	0.220212	-0.053857	0.140664	0.138900	-0.033971	
Sample 420	0.178365	0.182705	-0.032302	0.218601	0.223921	-0.039589	
Sample 421	0.224910	0.225308	-0.038262	0.156766	0.157043	-0.026669	
Sample 422	0.165493	0.182505	0.018145	0.163399	0.180196	0.017915	
Sample 423	0.208377	0.211057	-0.022742	0.186013	0.188406	-0.020301	
Sample 424	0.157899	0.166875	-0.017993	0.179644	0.189855	-0.020471	
Sample 425	0.215716	0.215671	-0.027251	0.132420	0.132392	-0.016728	

Sample 426	0.110652	0.104869	0.008611	0.220911	0.209367	0.017192	
Sample 427	0.238365	0.251730	-0.044232	0.156661	0.165445	-0.029071	
Sample 428	0.229316	0.239172	-0.045078	0.159578	0.166437	-0.031369	
Sample 429	0.238995	0.243343	-0.056618	0.163314	0.166285	-0.038689	
Sample 430	0.219595	0.221211	-0.033002	0.147609	0.148695	-0.022184	
Sample 431	0.086653	0.083878	-0.011748	0.255559	0.247376	-0.034648	
Sample 432	0.136490	0.141093	-0.017037	0.181907	0.188040	-0.022706	
Sample 433	0.189571	0.205314	-0.028129	0.214517	0.232332	-0.031831	
Sample 434	0.161391	0.171214	-0.040119	0.208278	0.220954	-0.051774	
Sample 435	0.152641	0.151723	-0.029435	0.228929	0.227553	-0.044147	
Sample 436	0.138698	0.135987	-0.020543	0.243533	0.238774	-0.036071	
Sample 437	0.181762	0.179759	-0.030202	0.161112	0.159336	-0.026771	
Sample 438	0.138824	0.135068	-0.021910	0.163440	0.159018	-0.025795	
Sample 439	0.038727	0.039068	0.005800	0.247387	0.249566	0.037047	
Sample 440	0.005970	0.006099	-0.000496	0.345711	0.353168	-0.028709	
Sample 441	0.112990	0.108566	-0.008889	0.246716	0.237056	-0.019409	
Sample 442	0.191664	0.204669	-0.030114	0.208474	0.222620	-0.032755	
Sample 443	0.191294	0.187977	0.037699	0.168987	0.166057	0.033303	aysia
Sample 444	0.093684	0.095577	-0.007358	0.230728	0.235390	-0.018122	
Sample 445	0.150933	0.164472	-0.008734	0.240504	0.262078	-0.013916	
Sample 446	0.219797	0.216223	-0.058926	0.166223	0.163520	-0.044563	
Sample 447	0.190044	0.187032	0.022090	0.132995	0.130887	0.015459	
Sample 448	0.111916	0.104135	-0.020165	0.168597	0.156875	-0.030377	
Sample 449	0.210155	0.205530	-0.049695	0.174306	0.170470	-0.041218	
Sample 450	0.114771	0.115448	-0.017162	0.224078	0.225400	-0.033506	
Sample 451	0.219300	0.206165	0.049635	0.087936	0.082669	0.019903	
Sample 452	0.199453	0.208276	-0.029722	0.205029	0.214098	-0.030553	

Sample 453	0.149579	0.142525	-0.033222	0.204631	0.194982	-0.045449	
Sample 454	0.156706	0.159112	-0.023915	0.171647	0.174282	-0.026195	
Sample 455	0.086464	0.085804	0.010556	0.152131	0.150969	0.018573	
Sample 456	0.129824	0.126370	-0.025278	0.192433	0.187314	-0.037469	
Sample 457	0.136956	0.136222	-0.014065	0.212344	0.211206	-0.021807	
Sample 458	0.264704	0.275465	-0.056893	0.144456	0.150329	-0.031048	
Sample 459	0.186420	0.180102	-0.043119	0.149260	0.144201	-0.034524	
Sample 460	0.148564	0.157925	-0.021957	0.214802	0.228336	-0.031747	
Sample 461	0.096765	0.091161	-0.009172	0.188259	0.177356	-0.017844	
Sample 462	0.105591	0.112032	-0.011536	0.231347	0.245459	-0.025276	
Sample 463	0.172557	0.177054	-0.037183	0.206198	0.211572	-0.044432	
Sample 464	0.169326	0.182585	-0.028314	0.193059	0.208177	-0.032283	
Sample 465	0.181973	0.178535	-0.029572	0.203384	0.199541	-0.033051	
Sample 466	0.212181	0.214924	-0.041131	0.180472	0.182805	-0.034985	
Sample 467	0.163862	0.162642	-0.014045	0.120764	0.119865	-0.010351	
Sample 468	0.069865	0.069178	-0.020600	0.291945	0.289073	-0.086080	
Sample 469	0.205920	0.212264	-0.029759	0.147905	0.152461	-0.021375	
Sample 470	0.164086	0.168721	0.016718	0.144085	0.148155	0.014680	aysia
Sample 471	0.166372	0.173059	-0.026090	0.217458	0.226197	-0.034102	
Sample 472	0.179469	0.182978	-0.017757	0.193305	0.197084	-0.019126	
Sample 473	0.158407	0.165499	-0.021740	0.232951	0.243381	-0.031971	
Sample 474	0.121719	0.128042	0.014343	0.193606	0.203664	0.022815	
Sample 475	0.169809	0.186316	-0.035777	0.137827	0.151225	-0.029039	
Sample 476	0.219212	0.212555	-0.057319	0.185225	0.179600	-0.048432	
Sample 477	0.227881	0.237056	-0.027387	0.122060	0.126974	-0.014669	
Sample 478	0.088200	0.084512	-0.009976	0.201058	0.192651	-0.022741	
Sample 479	0.185228	0.192686	-0.052016	0.183049	0.190419	-0.051404	

Sample 480	0.094631	0.091545	0.015316	0.187123	0.181021	0.030285	
Sample 481	0.240169	0.254106	-0.037610	0.167020	0.176712	-0.026155	
Sample 482	0.194662	0.201102	-0.026748	0.209107	0.216024	-0.028733	
Sample 483	0.148258	0.150313	0.015774	0.210918	0.213843	0.022440	
Sample 484	0.094363	0.090776	0.005993	0.205770	0.197948	0.013069	
Sample 485	0.130132	0.130834	0.006818	0.239203	0.240493	0.012533	
Sample 486	0.108879	0.115253	-0.012261	0.175447	0.185717	-0.019757	
Sample 487	0.108808	0.110884	-0.023193	0.205697	0.209621	-0.043845	
Sample 488	0.050538	0.047687	-0.011410	0.225988	0.213241	-0.051023	
Sample 489	0.147234	0.134864	0.014187	0.152339	0.139541	0.014679	
Sample 490	0.172414	0.172294	-0.033213	0.227818	0.227659	-0.043886	
Sample 491	0.118081	0.119212	-0.016224	0.208073	0.210065	-0.028588	
Sample 492	0.178876	0.173759	-0.029185	0.208950	0.202972	-0.034092	
Sample 493	0.126811	0.127875	-0.014198	0.171952	0.173395	-0.019253	
Sample 494	0.192866	0.196071	-0.026193	0.188715	0.191851	-0.025629	
Sample 495	0.216783	0.215393	-0.031712	0.184052	0.182873	-0.026924	
Sample 496	0.196753	0.197601	-0.036899	0.173106	0.173852	-0.032464	
Sample 497	0.225125	0.229102	-0.042693	0.131849	0.134179	-0.025004	aysia
Sample 498	0.188916	0.204916	-0.035168	0.255643	0.277294	-0.047590	
Sample 499	0.211196	0.219816	-0.033248	0.185797	0.193381	-0.029249	
Sample 500	0.071531	0.067295	-0.007115	0.228457	0.214930	-0.022724	

	Original Sample (O)	Standard Deviation (STDEV)	T Statistics (O/STDEV)	P Values
Authentic Leadership ->Safety Climate-> Safety Compliance	0.154913	0.044552	3.477142	0.000551
Authentic Leadership ->Safety Climate-> Safety Participation	0.155990	0.045702	3.413184	0.000694
Authentic Leadership -> Safety Climate -> Risky Behaviour	-0.016295	0.020387	0.799266	0.424516
Inclusive Leadership ->Safety Climate-> Safety Compliance	0.191416	0.041266	4.638648	0.000004
Inclusive Leadership -> Safety Climate->Safety Participation	0.192747	0.043485	4.432523	0.000011
Inclusive Leadership -> Safety Climate ->Risky Behaviour	-0.020135	0.023980	0.839661	0.401500

Universiti Utara Malaysia

Mean, STDEV, T-Values, P-Values

	Original Sample (O)	Sample Mean (M)	Standard Deviation (STDEV)	T Statistics (O/STDEV)	P Values
Authentic Leadership -> Safety Climate	0.222192	0.226266	0.063687	3.488796	0.000528
Inclusive Leadership -> Safety Climate	0.274548	0.275014	0.059926	4.581467	0.000006
Safety Climate -> Risky Behaviour	- 0.073337	- 0.074684	0.083624	0.876990	0.380913
Safety Climate -> Safety Compliance	0.697205	0.697792	0.030743	22.678128	0.000000
Safety Climate -> Safety Participation	0.702050	0.704424	0.024179	29.035602	0.000000

Universiti Utara Malaysia