UTILIZATION OF JAVA REFLECTION
IN DETECTING OBJECT CONCEPT SIMILARITIES

A master project submitted to the Graduate School of in partid
fulfillment of the requirement for the degree of
Master of Science (Information Technology) (MSc.IT)
Univergti Utara Mdaysa

by

TAN CHOO JUN

©Tan Choo Jun, 2000. All rights reserved.

Sekolah Siswazah
(Graduate School)
Universiti Utara Malaysia

PERAKUAN KERJA KERTAS PROJEK
(Certification of Project Paper)

Saya, yang bertandatangan, memperakukan bahawa
(1, the undersigned, certify that)

TAN CHOO JUN

calon untuk Ijazah

, Master of Scienc Inf laticon Tech
(candidate for the degree of) tence (Information Tech nology)

telah mengemukakan kertas projek yang bertajuk
(has presented his/her project paper of the following title)

UTILIZATION OF JAVA REFLECTION

IN DETECTING OBJECT CONCEPT SIMILARITIES

seperti yang tercatat di muka surat tajuk dan kulit kertas projek
(as it appears on the title page and front cover of project paper)

bahawa kertas projek tersebut boleh diterima dari segi bentuk serta kandungan,
dan meliputi bidang ilmu dengan memuaskan.

(that the project paper acceptable in form and content and that a satisfactory
knowledge of the field is covered by the project paper).

Nama Penyelia . Mohd. Zamberi Saad
(Name of Supervisor):

1 o e
Tandatangan %{ e e g e
(Signature) : e Je

>

Tarikh th
(Date)) 8" March 2000

PERMISSION TO USE

In presenting this master project in partial fulfillment of the requirements for a
degree of Master of Information Technology from Universiti Utara Malaysia, [agree
that the University Library may make it freely available for inspection. I also grant
permission for copying of this project in any manner, in completely or in part, for
scholarly purposes. In my absence, this may be grated by the lecturers who
supervised my project or by the Dean of Graduate School. It is understood that any
copying or publication or use of this project or parts thereof for financial gain not be
allowed without my written permission. It is also understood that due recognition
shall be given to me and to Universiti Utara Malaysia for any scholarly use which
may be made of any material from my project.

Requests for permission to copy or to make other use of materials in this project, in
completely or in part, should be addressed to

Dean of Graduate School
Universiti Utara Malaysia
06010 UUM Sintok
Kedah Darul Aman

ABSTRAK

Projek ini membangunkan gplikas “Java Reflection”. [a menggunakan package
system javalangreflect yang dibangunkan oleh Sun Microsystem dalam JDK versi
12 dan ke atas. “Reflection”, juga dikendi sebaga “Introspection”, mempunyai
keupayaan “melihat kandungan” sesuatu kelas atau objek. [z digunakan untuk
mengekplotes kandungan fall kelas Dengan bantuan enjin pengandisa, gplikas
yang dibangunkan berkeupayaan menghasilkan maklumat kesamaan antara objek
tanpa merujuk kepada kod asal. Metodologi Object-Oriented, khususnya Teknik
Permodelan Objek, digunakan untuk membangunkan gplikas ini. Terdapat empat
tahgp untuk diryjuk daam methodologi 1ni1, iatu andiss rekabentuk Sstem,
rekabentuk objek, dan implementas. Inputnya adalah fal objek Java, dan output
aplikes mengandungi meklumat persameen pada fal-fal input. Maklumat objek
dibahagikan kepada lima kategori, iaitu Modifier, Interface, Field, Method, dan
Congructor. Sigem akan menghasilkan maklumat kesamaan di antara dua fail objek
untuk setigp kategori, termasuk kategori yang digunakan dan dikemukakan.
Kekergpan maklumat kesamaan juga merupakan sub komponen output terperinci
sgem. Kesmpulannya, gplikas i1 addah alat dternatif untuk membandingkan
sekumpulan fail objek dengan pantas dan menghasilkan output yang mudah
difahami. Contoh kegunaan aplikasi ini adalah sebagai satu alat membantu
pensyarah menila tugasan pelgar dengan satu moded ided dan kriteria penilaan
yang mda. Sdan itu, ia juga sesua digunakan untuk membandingkan tahap
kesamaan antara dua jawapan pelgjar bagi mengesan plagiarisme.

ABSTRACT

This project is about developing a Java reflection application. It utilizes the
reflection features in the sysem package java.langreflect of Sun Microsystems
JDOK version 1.2 and above. Reflection, dso named as Introspection, has the ability
to “look indde’ a class or an object (Lemay, 1996). It uses to explore the content of
the class tiles With the hdp of the andyzer engine, the developed application is
cgpable to produce smilarity object’'s information between the inputs without
referring to the source code. The Object-Oriented Methodology, specificdly the
Object Modding Technique, is used to develop this Reflection Application. There
are four stages involving andyss, system design, object design, and implementation
that are followed in this methodology. The input is the Java object files and the
output contains of gmilaity information of those object files The object's
informetion is divided into five categories incuding Modifier, Interface, Fdd,
Method, and Congructor. The system address the smilar information for each
category between two object files to the user, which including the smilar used and
declared category. The smilar items frequency will dso be an dement of the
system’'s detall output. As a concluson, this agpplication is an dternative tool to
compare a group of object files in fa mode with readable result in gpplication’s
output. The example of the gpplication usage is as a contributing tool to help
lecturers to evaduate student assgnments with an ided mode answer with congtant
evaduaing criteria requirements. It is dso suitable to be used in determining student
plagiaism.

1

ACKNOWLEDGEMENTS

Many people contributed to the successful completion of my project at Universiti
Utara Malaysia. First, [would like to express deep gratitude to my supervisor Mohd.
Zamberi Saad for his valuable guidance and advice, which contributed substantially
towards the completion of this study. My gratitude is also extended to my course
coordinator, Associate Professor Dr. Wan Rozaini Sheik Osman, for all the help
extended and meticulously undergoing the project, and giving numerous suggestions
in overall presentation.

Special thanks give to Associate Professor Haji Abdul Razak Ismail, deputy Dean of
Language and Scientific Thinking School, who guide me in completing this
academic writing in Information Technology’s field. Also, not forgetting the former
Dean of Information Technology School, Associate Professor Shahrum Hashim, Dr.
Mubarak Rahamathulla Ali, and William Koh Siew Yan who inspired me to explore
various fields in research, and finally undertake this programming area of the
project. I am grateful to Mr. Wong Chee Onn, lecturer of Information Technology
School, for his kindliness to correct this report’s grammars and spelling mistakes.

Finally, I express a deep sense of gratitude to my family and my dearest Joyce Ong
for their valuable untiring and moral support.

CONTENT PAGE

TITLE PAGE

CERTIFICATION OF PROJECT PAPER
PERMISSION TO USE

ABSTRAK

ABSTRACT

ACKNOWLEDGEMENTS

CONTENT PAGE

CHAPTER ONE : INTRODUCTION
CHAPTER TWO : THE PURPOSE AND PROBLEM STATEMENT

2.1 THE BACKGROUND OF THE SOLUTION

2.2 THE REFLECTION
2.2.1 THE USE OF REFLECTION
2.2.2 THE SUPPORT VERSION OF JDK FOR REFLECTION
2.2.3 THE CONTENT OF java.lang reflect

CHAPTER THREE : THE PROJECT DEFINITION

3.1 THE NATURE OF APPLICATION
3.2 THE PROJECT ASSUMPTION
3.3 THE SCOPE AND OBJECTIVE

CHAPTER FOUR : THE LITERATURE REVIEW
CHAPTER FIVE : THE METHODOLOGY

5.1 THE CONCEPTUAL DEVELOPMENT
A) ANALISIS
B) SYSTEM DESIGN
C) OBJECT DESIGN
D) IMPLEMENTATION
5.2 THE LOGICAL DEVELOPMENT
5.3 THE EXPECTED INPUT AND OUTPUT

CHAPTER SIX : CONCLUSION
6.1 THE CONTRIBUTION OF PROJECT

6.2 THE CONTRIBUTION FOR FUTURE STUDY
6.3 THE LIMITATION

1
i1
v

o

NN W

18

18
19
28
32
35
37
48

49
49

51
52

BIBLOGRAPHY
APPENDIX A: SAMPLE OUTPUT WITH DISCRIPTION
APPENDIX B: USER MANUAL
APPENDIX C: FIGURE / DIAGRAM
FIGURE 1: OBJECT MODEL DIAGRAM
FIGURE 2: EVENT TRACE FOR REFLECTION APPLICATION
FIGURE 3: EVENT FLOW DIAGRAM
FIGURE 4: STATE DIAGRAM FOR CLASS REFLECTAPP
FIGURE 5: INPUT AND OUTPUT VALUES FOR
REFLECTAPP SYSTEM
FIGURE 6: DATA FLOW DIAGRAM (LEVEL Q)
FIGURE 7: DATA FLOW DIAGRAM (LEVEL 1)
PROCESS 1.0 (DETECTING OBJECT FILES)
FIGURE 8: DATA FLOW DIAGRAM (LEVEL 1)
PROCESS 2.0 (ANALYSING OBJECT FILES)
FIGURE 9: DATA FLOW DIAGRAM (LEVEL 1)
PROCESS 3.0 (SEARCHING DETAIL INFORMATION)
FIGURE 10: REFLECTAPP CONTROL
APPENDIX D: GANTT CHART
APPENDIX E: GLOSSARY

vi

54
56
63
66
67
68
69
70
71

72
73

74
75
76

77
79

Chapter One

Introduction

This project uses Java technology, a platform-independent’ application, developed
by Sun Microsystems. The Java programming offers “reflection” features, which is
capable to examine or interpret Java compiled codes, and turns them into actual uses
of classes, method and so on. The main technology applied in this project is the

Java’s reflection feature that uses it to reflect the similarities of object concepts.

! Refer to Appendix E: Glossary, page 79.

Chapter Two

The purpose and problem statement

The purpose of the study is to explore the capability of Java Reflection in reflecting
the content of object file, and in producing meaningful information in Java
application’s output. In Whale’s research (1990), the work stated the plagiarism
detection system is critically depends on the choice of program representation to
identify similarity of program in large populations. There were two categories of
conventional software metric used to represent program as listed by Whale (1990),
and they were not efficient in addressing program information when applied to
complex program. From the previous study in detecting plagiarism system showed
that for the system to cope with sophisticated plagiarism techniques, it needs to

involve complex programming (Whale (2), 1990).

Therefore, this project is carried out to discover the difficulties in gathering
information for plagiarism analysis. The produced system is used to compare a
number of different object files for detecting object concept similarities. It is capable
to address destination’s object information through the object file. The object
concept is divided into five categories including Modifier, Interface, Field, Method,
and Constructor. The developed system will address the similar information for each

category between two object files to the user. For example the category Method, the

similar information addresses by the system including the similar used Method and
declared Method occur in particular set of both object files. The similar items’
frequency will also be an element of the system’s detail output. For partial system’s
output, a percentage will be computed by the system separately subject to particular
set of two object files upon all the category similarities’ value. This exploration
might be the solution to address complex program information in Whale’s (1990)

work.

As mentioned before, this application is using the reflection features in Java
technology to collect the hidden class information in Object-Oriented environment
from the object file. Unfortunately, the exploration of this application is only valid in
Java environment. This means that the source input or destination object file to be

compared must be originated from Java’s object file.

2.1 The background of the solution

This application is a console program, and it is different as compared to Java
Applet’. It will only read input from the keyboard, and display text output on the
screen. Although it is a console program, the nature of the program is not limited
to user interaction (Jaworski, 1998) comparing to Java Applet, which is reading
the keystrokes and mouse clicks, and display graphical shapes in a windows.

Console program’s strength is minimizing the program’s complexities,

2 1bid.

especially in term of excluding the Graphical User Interfaces’ components
coding. The emphasize of this project is more to the engine’s logic to examine
orderly the hidden content information in object file compared to the

presentation of graphical interface to the user.

The most basic Input-Output (I/O) performed by this console application is
reading data entered at the user's keyboard and writing data to the user's console.
In Java, the system class of the java.lang package is used to perform keyboard
input and console output (Jaworski, 1998). The java.lang package is one of the
packages of the Core Java API, and it provides a number of classes and
interfaces that are fundamental to Java programming. The Package class’ is new
to JDK 1.2. It is used to provide version information about a package. The
Object class’ is at the top of the Java class hierarchy. All classes are subclasses
of Object and therefore inherit its methods. The Class class’ is used to provide

class descriptors for all objects created during Java program execution.

The java.lang reflect package is part of the system class of the java.lang package
(Amnold, 1997). It contains the classes and interfaces, which enable classes,
interfaces, and objects to be examined, and their public fields, constructors, and
methods to be discovered and used at runtime. These capabilities are used by
Java Beans, object inspection tools, Java runtime tools such as the debugger, and

other Java applications and applets.

3 Ibid.
* Ibid.
> Ibid.

The javalangreflect package consists of the Member interface® and seven
classes: AccessibleObject7, Arrayg, Constructor’, Fieldlo, Method”, Modiﬁerw,

and ReflectPermission'’ (Jaworski, 1998),

2.2 The reflection

The package java.lang.reflect contains the Java reflection package, the classes
that can be used to examine a type in detail. Reflection, also called as
introspection, has the ability to "look inside" a class or an object (Lemay, 1996).
It enables the application to get information about destination object's variables
and methods as well as actually set, and get the values of those variables and to
call methods. In other case’s example, the developer can write a complete type
browser using classes, or write an application that interprets code that a user

writes, turning that code into actual uses of classes, method, etc.

? Ibid.

10 Ibid.
" 1bid,
' Ibid.
3 Ibid.

2.2.1 The use of reflection

Object reflection is useful for tools such as class browsers or debuggers,
where getting the information of an object. It allows the user to explore
what that object can do, or for component-based programs, such as Java
Beans, where the ability for one object to query another object about what
it can do (and then ask it to do something) is useful to build larger

applications.

2.2.2 The support version of JDK for reflection

The classes that support reflection of Java classes and objects are part of

the core Java 1.1 API and above. It means this reflection feature was

introduced since Java Development Kit (JDK)) 1.1. They are not available

in the earlier version, like JDK version 1.0.2.

2.2.3 The content of java.lang.reflect

A package, java.lang reflect, contain classes to support reflection, which

includes the following as mentioned above:

a) Field, for managing and finding out information about class and
instance variables.

b) Method, for managing class and instance methods,

¢) Constructor, for managing the special methods for creating new
instances of classes.

d) Array, for managing arrays.

e) Modifier, for decoding modifier information about classes, variables

and methods.

In newest JDK version 1.2 or until version 1.2.2, it provides the capability
to identify the same features as above with additional part in Java language
access controls (Jaworski, 1998). This permits reflection to be better used

with the more flexible JDK version 1.2 security model.

Chapter Three

The project definition

The purpose of the study is to explore the capability of Java Reflection in reflecting
the content of object file, and producing meaningful information in Java
application’s output. This project develops a Java console application by utilizing
the Reflection features in the system package java.langreflect of Sun

Microsystems’s Java Development Kit'* version 1.2.

3.1 The nature of the application

In executing this application, at least two Java object file is required to be
located in the destination folder. With the Java technology, the application is
capable to detect the similarity of object information between these two object
files. To detect the object file’s information, the application will use the system
package java.langreflect, which have the ability to look inside a class file of
Java. The information reflected in this application includes the Modifier,
Interface, Field, Method, and Constructor, including the used and declared, and

the frequency they invocated.

Y Ibid.

Input Output

Java Reflaction Application

Partial Output Final Output

Process i

Ohbject File 1

(*class)
Reflect the cortent] 1 Information of
N) [e~ 5 "
of object files object files
Object File 2

1

Camparison of :
Object file's

information H

t

I

1

(*.class)

I
{
|
]
i
|
!
1
! | (Meaningful solution of Java
—»| The similarity of object &
|
|

method in used

To examine the previous mentioned application’s partial output, Java classes
were built to compare the object files information. The result of examination

includes the similarity of object and method in two object files.

By using the similarity of object’s information, one can compare a number of
different systems for detecting potential plagiarisms in program’s source code. In
Verco & Wise paper (1996), Parker and Hamblen define software plagiarisms as
a program that has been produced from another program with a small number of
routine changes. There are many systems built based on attribute counting and
structure-metric system in literature review, which were discovered in Verco &
Wise paper regarding the detecting suspected plagiarism. These automatic
plagiarism detection systems used to overcome the persistent problem in
generating program source code, for example in carrying out programming
assignments of university courses. This is due to the relative ease to own the
same capability program without owning the skill by altering another people’s

program.

This application can also be used to examine the differential of two-object file
directly without referring to their source code. From the information obtained by
the application, the program version can be easily retrieved. In developing large
application, one cannot avoid confusion with the contents of sheet source code.
Sjoberg, Welland & Atkinson (1997) emphasized that the software constraint of
construction for large application system is to prevent applications from
becoming unnecessarily large, complex and confusing. With this application,
programmer not only can retrieve the program’s version, but also the solution for
above confusion. The application’s output will be the meaningful information of
two checked object files, which is also the summary information of sheets source
code. With the similarities object information, the programmer can trace back
the developing phases, and only concentrate on the differential In program.
Indirectly, this application will contribute towards faster proceeding in further

system enhancement process.

With the capability of this application to reflect class information, and with the
help of system package java.lang reflect, of course, the user still can obtain
benefits of type-safety to linguistic reflection yields, which is stated by Kirby &

Morison (1998), in proceeding of generating safely new programs.

10

3.2 The project assumption

This application will be preferable for those who do not own the source code but

intend to examine object code. With the help of this application, the user can get

the information of the object file. To execute this application, the user has to

fulfill the following requirements.

a)

b)

d)

The application is utilizing the Java technology, so the input of application
must originate from a Java object file. This requirement is the key to ensure
the validation of operation of the application.

The application is platform-independent application, and the user can
execute the application in any platform with pre-installed and setup the JDK,
at least with the tested version 1.2.

To suit the user’s specification in object concept analysis, user is required to
examine the information in file user.ini, and alter them to obtain the
expected result.

This application is a tool developed for those who are familiar with Java
application development. One must be well known in using the JDK
development tools, or at least the steps to execute Java application and

compile the source code.

11

3.3 The scope and objective

The coverage of the project only consists of the development of reflection
application with Java programming language. The project put emphasis on the
engine of reflecting, and the final output in presenting the similarities result in
percentage form. The reflection application exploring the object information
base on the content of object files, which should be located in the same folder
where the reflection application resides. The final output percentage is gathering
the similarity percentage of Modifiers, Interfaces, Fields, Methods, and
Constructors. This result is presented on the screen after executing the
application. However, the user is recommended using the Java Integrated
Development Environment (IDE) tools, such as Tek-Tools KAWA IDE, to

execute the application to obtain the scrollable output on screen.

The objective of this project is to produce to those who interested to discover the
similarity of Java object file information without referring to the source code. It
1s an alternative tool to comparing a group of object files in fast mode with

readable result in application’s output.

12

Chapter Four

The literature review

Linguistic reflection defined by Kirby & Morrison (1998) as a program’s ability to
generate new program fragments, and to integrate them into its own execution. By
incorporating these new program fragments into the ongoing computation make the
persistent applications environment, including supporting safe evolution of long-
lived programs and data, and specifying highly generic programs that may be reused
in many contexts. Kirby & Morrison showed this style of reflection in the compiled,

strongly typed language Java, and used as a paradigm for program generation.

In strongly typed systems, the linguistic reflection process includes checking of the
generated program fragments to ensure type safety. Two varieties of type-safe
linguistic reflection'” can be identified. These vary as to the time at which generator
execution takes place. Kirby & Morrison (1998) only concentrated on the run time
linguistic reflection, and emphasized on the type-safe generation and binding of new
code. They also described the nature of linguistic reflection, and the way it can be
integrated with a compiled strongly typed language, such as Java, by the facility of
JDK version 1.1 to provide the basic facilities of linguistic reflection. The finding

shows that the strongly typed run time linguistic reflection allows programs to

 Ibid.

13

generate new programs safely. The strongly typed run time linguistic reflection

consists more information to reflective computation, in the form of systematically

required types.

In an earlier paper, Stemple (1993) and group proved that the integration of
linguistic reflection, strong typing and static checking can provide a uniform
mechanism for the production and evolution of data and programs that exceeds the

capabilities of present database programming languages.

From above review, they showed that linguistic reflection application is supporting
evolution in strongly typed persistent systems. The inevitable changes to meta-data
in long-lived systems give rise to the problem of consistently changing all the
affected programs and data. Given some mechanism for locating the relevant
programs and data, linguistic reflection can be used to introduce transformed
versions in a controlled manner. Unfortunately, the results had shown only
understood by those who know what they are doing in the application or the content

of particular class.

Another issue raised up in Whale’s research (1990) was plagiarism detection system
is critically dependent on the choice of program representation to identify similarity
of program in large populations. There were two categories of conventional software
metric used to represent program were listed by Whale (1990), and they were not
efficient in addressing program information when they are applied to complex

program. In another work of Whale, he stated that for detecting plagiarism system to

14

cope with sophisticated plagiarism techniques, the system have to involve complex
programming (Whale (2), 1990). This complex programming involvement occurs as
to cope with the sophisticated plagiarism techniques in source code; example stated
by Whale is demonstrating similarities to non-specialists in quantifying the degree of
similarity between large nominated program pairs. It was another difficulty to gather

information for plagiarism analysis in previous works.

Kirby (1992) made a comment that the reflective languages are hard to use as they
contain a mixture of several kinds of code to respect to their role in reflection. The
languages used in early stage, which stated by Kirby (1998), in reflecting program
are Lisp, Scheme, TRPL, CRML, PS-algol, Napier88, and POP-2. In the same
research, Kirby suggested further work could be carried on Java-specific aspects of
linguistic reflection, and providing better support for writing generators.
Unfortunately, all of them were based on nominated source code input to obtain
specific result. Example, in the Kirby (1998) suggestion, the same package of JDK
was used as this project, but it was used to make changes in the core classes so that
the developed system by Kirby can concurrently implementing the main memory
based compiler. The nominated target input is source code. This meant the existing
application could only capable to analyze or “look into” the source code, and not the
object code that had been compiled by the compiler, for specific purposes according

to the researcher’s research objective.

In this project, the same Java package, which had suggested by Kirby (1998), is used

to develop the reflection application, but the required nominated target input for

15

developed application is object file. This main project’s idea is to discover the
capability of Reflection feature in Java programming language, and adopt it to
detecting the object concept similarity also suitable for plagiarism analysis. The
output of the application is easy to understand by non-expert Java programming
user, whereby the comparison similarity result, which compiled in a separate set of
two object files, is presented in percentage of similarity. The detail of similarity
items and frequency occurrences of particular items can be traced back through the
detail information output. The detail information is listed in set of two object files,
and with spacing to separate each set of comparison. It is easy to view and 1dentify
similar programs in large populations, with the help of value after each object file’s
name in detail information list. The developed application is ready to quantify the
degree of similarity for large nominated program pairs without altering the logic or

source code of the application.

There are two kind of Java program that can be created, which is console
application, and graphics applet (Horstmann, 1998). This project is developed using
the Console Application style, and it is lack of Graphic User Interface (GUI)
components. The project purpose is to explore the capability of Java Reflection in
reflecting the content of the object file, and producing meaningful information in the
output to whom that interested with the similarity of Java object file’s information
without referring to the original source code. More emphasis is pressed on the
engine of reflecting a number of object files, and producing a set of similarity result

among the nominated target files in percentage form.

16

However, with console programs, this application is not limited to user interaction
(Jaworski, 1998) compared to Java Applet, which is reading the keystrokes and
mouse clicks, and display graphical shapes in a window. Console programs tend to
minimize the program’s complexities with excluding the GUI components’ coding.
The Sojberg’s work in discovering the software constraints for large application
system (1997) stated that to make the application system live longer, the application
is needed to prevent from becoming unnecessarily large, complex and confusing,
With the uses of console application environment, the application can continue to be

developed and enhanced to serve the purposes of future plagiarism analysis.

17

Chapter Five

The methodology

An application is developed to reflect the two or more object files. The Java
programming language, an Object Oriented (OO) programming language, is used to

develop the application.

5.1 The conceptual development

The validity of the project is based on the features offered by JDK version 1.2
and above, especially the system package of java.lang.reflect. The application

development is carried in Microsoft Windows 98 environment.

The JDK is used to compile the source code that is created from the text editor.
To execute the application, the Java interpreter in JDK is used to examine the
program coding result. The debugging of application will be done in text editor

from time to time in the process of application development.

Above is the environment to develop, and tools used in the process. The

development process follows the Object-Oriented Methodology. It consists of

18

building a model of an application domain, and then adding implementation
details to it during the design of a system. According to Rambaugh (1991), this
approach can be called as Object Modeling Technique. The methodology has the
following stages:
a) Analysis
The first stage of the methodology concerns with devising a precise, concise,
understandable, and correct model of the real world. In others words, the task
is to model the real world system so that it can be understood. The success
key of this stage is “what” the desired system must do, not “how” it will be
done. There are five steps to be followed in this stage.
1) The first step is to state the requirements. Through the finding
from literature review, this step stated downs “what” to be done.
In the previous research, Whale’s research (1990), the work stated
the plagiarism detection system is critically dependent on the
choice of program representation to identify similarity of program
in large populations (Whale, 1990). Furthermore, the existing
software metrics conventional, which used to represent program
were listed by Whale (1990), were not efficient addressing
program information when they adapted to complex program.
From the previous study, it showed the weakness in detecting
plagiarism system always coping sophisticated plagiarism
techniques, and another finding stated that it needed in involving
complex programming (Whale (2), 1990). Therefore, this project

is to discover the difficulties in gathering information for source

19

code analysis, especially addressing the program information for

complex program, specifically for Java application.

The second step is to construct an Object Model, which shows the

static data structure of the real world system, and organizes it into

workable pieces. The object classes are identified from the

application domain, which is listed as below.

The object concepts (Modifier, Interface, Field, Method,
Constructor);

Their weightage influencing the final output;

The tasks of analyzing the collected vocabs (reflecting the
concepts, multiply value, adding value, converting data
type, creating percentage, validation, gathering vocabs,
filtering vocabs, matching, counting frequency);

The tasks presenting output to the user:

The tasks request input from the user; and

The tasks manage the vocabs and vectors.

The objects are grouped to form the classes'® as below.

The class ReflectApp, the main class of the application,
which has the main role to perform the reflection tasks,
such as the tasks request input from the user, the tasks

manage the vocabs and vectors, reflecting the concepts.

' Ibid.

20

111)

* The class AnalyzeVocab, the class consists of the objects,
which have the common behavior of performing the
analyzing tasks. The object members including are
converting data type, creating percentage, validation,
gathering vocabs, matching, and counting frequency.

* The class ObjPropWeightage, the group of objects have
the tighten relationship in adding the weightage before the
final output, such as object concept’s weightage
influencing the final output, and filtering vocabs.

e The class Util, the groups of objects have the most
reusability role in supporting above classes. They are
multiply value, adding value, and the tasks presenting

output to the user.

The above grouping tasks are done according to the operations,
roles, and the level of relevant to others objects in the group. The
class Util is created to reduce the redundant objects appear in
different classes, and to increase the performance of application

under the reusability concept in Object-Oriented Programming,

The data dictionary is created since this stage, which has the role
to explain and interprets the isolated words during the application
development. This data dictionary is compiled at the end of this

report in the appendix E: Glossary.

21

vi)

Any dependency between two or more classes is identified. In the
methodology, this task is called identifying associations'’. The
multiplicity and missing associations’ issues is solved in this
stage. The role name is added appropriate to describe the role that
a class in the association plays from the point of view of the other

class.

The next task is to identify the attributes'® of the objects. The
attribute is gathered through the association classes. They can
used to show the relationship between two objects, such as the
similarity item, and the frequency occurrence within the objects
(Appendix C Figure 1: Object Model Diagram). From the
diagram, the binary relationships occur are one-to-many, and

many-to-many between the objects.

Then the classes are reorganized by using concept inheritance to
share the common structure. There are two directions to inherit
the classes, which are listed as below.

¢ Generalizing common aspects of existing classes into a

superclass (bottom up), and

Y Ibid.

% hid.

22

vii)

* Refine existing classes into specialized subclasses (top

down).

In this application, the first approach is used to inherit the classes,
which is searching classes with similar attributes, associations,
and operations. After the inheritance, the access path is tested,
and write off the repeatedly works before proceed to next step in

creating the Dynamic Modeling.

The next model, in third step, that shows the time dependent
behavior of the system, and the object in it is the Dynamic Model.
This model is looking for events that externally visible stimuli
and responses. It is consists of the summarize permissible event
sequences for each object with a state diagram. This dynamic
model is important for interactive systems (Rumbaugh, 1991).
The first step of creating this Dynamic Model is to list out the
scenarios of typical interaction sequences, and the scenarios are
as below.
* After user execute the application, the user is required
identifying the target file to be compared with.
¢ The application accepts one number file from user.
* The application performs the reflecting and analyzing
tasks, and print out the summary result of similarity

percentage subject to target file.

23

viii)

e Then the user is requested to choose the option to view the
detail of the similarity results.

e The application accepts the user input, and searching the
target comparison set’s result.

e The application print out the detail of similarity of each

comparison set.

Above scenarios are the major interaction, and because of the
nature of the application is console based, there is no interface
format require in the process of development. There are only
two printing message interact with user for proceeding the use

of application.

The next task is to identifying all the external events, such as the
input from the user or the response to the system’s request
(Appendix C Figure 2: Event trace for Reflection Application). In
this development, there are only two responses from the user, and
they are listed as below.

¢ The target file number to be compare with, and

e The response on printing the detail information of each

comparison set of previous analyzing results.

A State Diagram is built for the dynamic behavior of application,

and it shows the events the object receives and sends (Appendix

24

C Figure 4: State diagram for class ReflectApp). From the
diagram, the behavior of the system responding to the user feed
back can be viewed. If the error or invalid input occurs from
behalf of user, the error message will appear consequently by the
system itself. The diagram viewed up overall process will be
occurred in the system from beginning towards the stage of

system termination.

Above State Diagram will merge with previous scenarios to form
up the Event Flow Diagram of the application. At the same time,
checking the consistency and completeness of events is done
while drawing out the Event Flow Diagram (Appendix C Figure
3: Event flow diagram). It is a summary flow of diagram when
the system deals with system user. From the diagram, the user’s
inputs or outputs can be referred easily to achieve the event

consistency and completeness in the system.

Next, the fourth step is creating the Functional Model, which is
used to show how the values are computed or the background
computational operation, without regard for sequencing,
decisions, or object structure. Inside this model, it shows which
value depends on which other values and the functions that relates
them. The mentioned functions expressed in various ways, but in

this application the function is use the mathematical equations as

25

X1)

the base. To form up this model, the input and output values have
to identify first (Appendix C Figure 5: Input and output values for
ReflectApp system). In other words, these values are the

parameters of events between the system and the outside world.

From the above findings, the Data Flow diagram is constructed to
show how each value is computed or used from input values. This
diagram is usually constructed in layers (Appendix C Figure 6-9:

Data flow diagram).

In level 0 Data Flow diagram, it is a process-like model that
actually illustrates the system’s interfaces to outside world. It has
a bit similar with the Context diagram in methodology SSADM.
It shows the input and output, or how the system communicates

with outside world.

In level 1 Data Flow diagram, the process in level 0 is explained
in detail. For example, in process 1.0, the process of detecting
object files, the detail operation of detecting tasks is shown in the
diagram. The output from this process 1.0 will be found at earlier
level of Data flow diagram, which is the Object files’ list. The
same things will happen in process 2.0, which is regarding the
analyzing object files’ tasks. These tasks will carry by various

classes in the application by creating the vocabs first until the step

26

Xii)

xiii)

producing the similarity result subject to user’s target file.
Whereas the last process 3.0 is regarding the task of searching

from exist vocabs of the similarity result’s detail information.

Based on above Data Flow diagram, the next step is to identify
the constraints between the objects. Constraints are functional
dependencies between objects that are not related by an input-
output dependency.
e If the user locates less than two files, the system will
terminate.
* If the user input the target file out of range, the system
will terminate.
* If the user responds on viewing detail information as “n”,

the system will terminate.

For the conclusion from above works, the analysis places less
emphasis on defining operations compare to traditional
programming-based object-oriented methodologies. The reason
point out by Rumbaugh (1991) was the operations are open-
ended, and it was difficult to know when to stop modifying them
in this non-traditional programming based object-oriented
methodologies. However, with this methodology still can
correspond with object-oriented programming, such as queries the

attribute or associations in Object Model, queries the events in

27

Dynamic Model, and functions the Functional Model. The next
step s performing the operation from above accumulated analysis
stage’s work by verifying, iterating, and refining the above three
model. As mentioned before, for Object Model, operation can be
done including reading and writing attribute values and
association links. While for events’ operations, each event sent to
an object corresponds to an operation on the object. In Functional
Model, each function in the Data Flow Diagram corresponds to an

operation on an object or objects.

xiv) Finally, the last step for this stage is to iterating the analysis’
works. The refining overall analysis model is required to
overcome the inconsistencies and imbalances within and across

models, and ready as the basic for design in next stage.

b) System design
This stage is consists of designing overall architecture of the application.
Due to the size of this application, there is no sub system organized. The
1ssues concerns in this stage are what performance characteristics to
optimize, strategy of attacking the problem, and make tentative resource
allocations. Generally, there are eight steps to follow in this stage.
1) The first step is omitted due to the size of application, which is

small. So there is no sub system can be broken up.

28

iii)

v)

Next step is to identify the concurrency in objects’
implementation. This application is not a critical system, and in
practice, still many objects, which are listed before, can be
implemented on a single processor. Therefore, there is no need to
implement inherent concurrent in separate hardware unit, and this

step is omitted to examine in the design stage.

The estimation of the hardware resources requirement’s step also
1s omitted as this project is developing an independent, and has
specify small scope coverage application. In addition, this
application can run on a single computer with platform
independent feature. No other physical units must be arranging

among themselves.

In this application, there is no exist any internal or external data
store, so the step in methodology used to manage the data store is

omitted too.

Only one global resource, which is the logical name for position
of next input in vocabs, needed to be taken care to avoid
conflicting access in a shared environment of future
implementation. This resource is partitioned logically by declared
as “private static”, so that it did not shared with other classes, and

it is an independent control approach.

29

vi)

Vii)

The next step is choosing software to control the implementation.
There are two-control flows in a software system, which is
external control, and internal control. In this application, the
external control exists in the flow of externally visible events
among the objects in the system. For example, the procedure-
driven system control, the control resides within the program
code. The system control work as it requests input from user and
then wait for it; when the input arrives, control resumes within the

procedure that made the call.

For the internal control system, as events passed between objects,
and the same implementation mechanisms above is used.
However, the main different between these two control system 1is
the External control system’s interactions inherently involving
waiting for events because difference objects are independent and
cannot force other objects to respond; whereas the Internal control
system’s operations are generated by objects as part of the

implementation algorithm, so their patterns are predictable.

In this step, the tasks involve the boundary conditions. For

example the initialization, the application brought from a

quiescent initial state to a sustainable steady state condition.

30

viii)

Things to be initialized in this system include parameters, global

vanable of nextVocab, and tasks.

For failure issues, the application is planned termination in the
system. Failure can arise from user errors in this application, such
as the invalid input in choosing the target file’s number. In the
case of user picked the number, which is out of the detected files’
number, the system will terminate with an error message on
screen. Application was designed with a plan for orderly failure,
and most of the approaches used were the “If-else” statements in
the development. Other example, if the user responds to the

[T

system of viewing the detail information is not character y” or

n”; the system will terminate with an invalid’s error message on

screen.

The next step is to determine the trade off priorities in the system.
In the process development, the detection of quantity object files
by the system is located as high priorities, before proceed to other
steps. Next is the selected target file by the user to be comparing
with, so that the system can narrow down the scope of printing
and discovery of analysis. Then the next priority is pass to the
option of printing the detail information of the similarity-matched
items. The priority statement is Just the design philosophy to

guide the design process.

31

¢) Object design

It is a design built based on the analysis model but contains implementation

details. It also added details to the design model in accordance with strategy

established during the system design above. The focus of this stage is on the

data structures and algorithms needed to implement in each class. There are

eight steps to be followed in this stage as below.

i)

The first step is to combine the three models. For example, the
application’s Object Model did not showed operations. It only
shows the objects and their relationships. In this step, the tasks
are convert the actions and activities of the Dynamic Model, such
as the scenarios for the application, and the processes of the
Functional Model, such as the data flow of the application, into

operations attached to classes in the Object Model.

Each operation specified in the Functional Model needed to
transform as an algorithm or “how” it is done. This algorithm is
subdivided into calls on simpler operations until the lowest level
operations are simple enough to implement directly without
further refinement, for example the procedural definitions, and
the mathematical definitions for computing the function. Then,
the task is choosing the data structure the al gorithm work on. It is
regarding the tasks of organizing the operation in a form

convenient for the algorithms that use it. Examples of data

32

iii)

structures have used in this application are as arrays, two
dimensional arrays, vectors, associations, etc. Array is used to
store the known size of data, such as the object file name.
Whereas, the vector is used to store the unknown ones, such as
the items reflected by the Java package. The two dimensional
array is used to store, for example, the unrepeated vocabs

reflected by the Java package.

In the expansion of algorithms, new classes of objects are needed
to hold intermediate results. It involves the defining internal
classes, and these operations must be done in Object Design, as
they are not visible externally. Example in this project is the
validation of multiplier’s parameters, the low-level operation is
performed to wvalidate the condition of parameter before

proceeding the multiply operation in class Util.

The optimization work is done during this stage. The inefficient
but semantically correct analysis model can be optimized to make
the implementation more efficient in Object design’s stage. To
optimize the model, in this application development, is
rearranging the computation for greater efficiency, and save the
derived attributes to avoid re-computation of complicated

expressions.

33

vi)

The next step is to refine the strategy for implementing the state-
event models present in the Dynamic Model (Appendix C Figure
10: ReflectApp control). Firstly, using the location within the
program to hold state, which is involving the previous discussed
procedure-driven system, then direct the implementation of a state

machine mechanism, which is used the event-driven system.

With above model, the next task is to adjust the inheritance for
classes and operations. Example inheritance class in this
application is the class ExtensionFilter, which is used to filter
the file extension, specifically in searching or detecting the user’s
object files in destination folder. These tasks are performed by
rearranging, adjusting the class and operations to increase the

inheritance.

Then the next step involves analysis of the associations’ design.
During the Object Design stage, a strategy is formulated for
implementing the associations in the Object Model. Here, this
step is to analyze and optimize the design for flexibility to change
the decision with minimal effort. Example in this application is
the separated frequent used methods in the class Util, such as the
print2DArray, multiplyString, addString. The key in developing
application in this stage is hiding the implementation using the

access operations to traverse and update the association,

34

vit) After redesign the associations, the next step is to determine the
object representation. It is regarding the issue of choosing objects
when to use primitive types in representing objects, and when to

combine groups of related objects.

viii) Then the final step is to complete the physical packing. In this
application, this task only involves the compilation and
distribution of the source code and object files to be used by the

USCr.

d) Implementation
In this stage, the object classes and relationships developed during Object
Design are translated into Java programming language for implementation
purposes. Theoretically, the programming is relatively minor and mechanical
part of the development cycle, but practically, it involves most of the
developing period because the hard decisions made during design phases are
keep revising for improvement. The fact is the target language, Java, have
some extent to influence the design decisions, but the design decisions did
not have fully dependent on the fine details of the Java programming

language.

Java 1s an Object-Oriented programming language, and Object Modeling

techniques is producing the Object-Oriented design, so it is relatively easy to

35

implement the design since the language constructs are similar to design

constructs (Rumbaugh, 1991). There are several steps to be followed to

implement the Object-Oriented design in an Object-Oriented language.

i)

iii)

The first step to implement the design is to declare the object
classes. Each attribute and operation in an object diagram must be
declared as part of its corresponding class. Java is supporting the
declaration of “public” and “private”, which meant that the public
features could be accessed by any method, while private features

are only accessible by methods of the same class.

Next step is to create the objects for the application. Compared to
C++, Java is easy to use because for the new created object, the
Java does not need to allocate storage for its attribute values and
assign a unique object ID in storage block. Objects used in the

application are AnalyzeVocab and objPropWeightage.

During the invention of the object class, the operations have been
called consequently. In Java, each operation has one or more
implicit argument, the target object, indicated with a special
syntax. Java is permitted the developer to passing arguments as
ready-only values and as references to values that can be updated
by a procedure. For example, the vocabs, which pass in and out

for each reflecting categories of object concepts is referred during

36

the in operation, and has been updated as it out from each

reflecting engine.

1v) The application also uses the inheritance as provided by the Java
language. In the developed application, the inheritance, especially
for the class ExtensionFiltering, is implemented in static

condition and it is bound at runtime.

5.2 The logical development / program flow

In this section, the program flow explains the detail of how the application works
in logical. From this section, the reader will gain the knowledge of how the
application performs the tasks, where the source information from and forwarded

for next task. They will descript according to the source code line by line.

Generally, the application is developed in three objects or classes, which is listed

as below.

a) The ReflectApp class, consist of the main engine to perform the direction of
reflection analysis.

b) The analyzedVocab class, consist of the engine to analyze the collected
reflection result.

¢) The objPropWeightage class consists of the engine evaluating the selected

target file with user predetermines information.

37

At beginning of the source code, the application import four package, which has

a set of types and sub-packages as members, for different purposes as remark at

the end of the lines.
import java.lang.reflect.*; // For reflecting purposes
import java.util.¥; // For the use of Vector

// & retrieving file
import java.io.*; // For requesting input from user
import java.math.*; // For round up the percentage

In the ReflectApp class, integer nextVocab, is declared as private static, and it
is used internally only. It is variable for position of array vocab in method

addToVocab.

In the main of the ReflectApp class, the application performs the task to search
all the object files, which locate in the destination folder or same level as the
application’s object files located. This task is performed by the class
ExtensionFilter in searching the entire file with the extension of “class”. The
engine locates the found object files in array fileNames (Figure program flow 1),
except five object files used by this application, which is listed as below.

a) ReflectApp.class

b) ReflectApp$ExtensionFilter.class

¢) AnalyzeVocab.class

d) ObjPropWeightage.class

e) Util.class

38

Immediately after the searching, a two-dimension array, vocabs, is declared to

collect all object files” information.

An If-else statement is used to examine the length of array fileNames. If the
length is bigger than zero, which means there is one or more object files locate in
the destination folder, the application will print the collected object file’s or
files’ name, and will continue analysis tasks later. Else, an error message will
appear to warn user that there is no object file exit for comparison tasks, and the

system will terminate.

If the array length is bigger than zero, and the length is equal to one, an error
message will appear to warn the user that there is not enough object files to be
compare and carry on the analysis tasks. The application will terminate

immediately after printing the error message.

If the array length is bigger than zero, and the length is equal to more than one,
the application will print message to request user key in the number to be the
subject of later comparison purposes. Each carly detected object files will be
represented by listed number on screen. User request to key in the number that
represents specify object file, and press Enter key for continuing the process. If
user input the correct number within the range which is shown on screen, the
application would convert the number to actual file name to be used in future
analysis process. For the example, this converted target file name will be used in

method compileAllItem, and method filterResult.

39

Then the application will reflect each object files. To obtain the object concept
the application perform the task with the method reflectClassOrInterface.
Then, the application will load weightage information from the file user.ini,
which locate in the same folder as this application’s object files. Overall, that is
ten item’s information need to be load from the file user.ini. The default value in

the file user.ini is listed as below.

a) ModifiersWeightage=2/10

b) InterfacesWeightage=2/10
c) FieldsWeightage=2/10

d) MethodsWeightage=2/10

e) ConstructorsWeightage=2/10

f) itemMatchingWeight=5/10
g) fregExactMatchWeight=2/10
h) freqRangeMatchWeight=3/10

i) StatusNotExitIsSimilar=yes

J) fregqRange=20

The items a) to e), are the weightage for five category directly contribute to final
similarity percentage, which have been consider for each object file. Their total
should sum up for one, and each category said above can be omitted by
assigning 0/10. For example, if user just want to discover the similarity in
category method, so the item d) should assign the value of 1/ 1, and the others

(a), b),), e)) should assign the value of 0/1.

Whereas, for the items f) to h) is the weightage specifically for category Field,
Method, and Constructor for each object file. The reason this weightage is
created because three categories mentioned before encountering the frequency of

cach similarly item or items. The user can relocate the weight for these sub

40

categories to obtain accurate expected results. These three items should
contribute to total of one, and they can be omitted by assigning value 0/1. Item j)
is specifically created to determine the frequency range to be match for inside
the category h). The item j) assign value is based on the percentage value, such

as original frequency plus or minus 20% as mention above.

The item 1) is an option to let the user determine specifically non exit item in
analyzed categories (Modifier, Interface, Field, Method, Constructor) to be
consider as a similarity item or not. The default value assigned the non-exit item

1s considered as similar, and contribute towards to the final similarity percentage.

Then the application will analyze five categories, which is Modifier, Interface,
Field, Method, and Constructor, for each object files separately. These tasks are
performed separately with various methods. Example for Modifier and Interface,
the application will invocate the class AnalyzeVoeab, specifically the method
getCompareModifiers (for Modifier) or getComparelnterfaces (for Interface), to
comparing the similar item appear between the object files. Then the method
collectResult from the class AnalyzedVocab is used to collect the object files’

name and the similarity item’s value between two object files.

For the Field, Method, and Constructor, additional method is invocated, which is
method freqMatching, to compare the frequency between two obiject files. To
compile all the result for items matching, exact frequency matching, and range

frequency matching, method getCompileResult is invocated. During this

41

invocation, the items’ information from user.ini (f), g), h)) is retrieved to

determine the value will be produced.

Before present the output to user, all the result from Modifier, Interface, Field,
Method, and Constructor need to compile together. To perform this tasks, the
class ObjPropWeightage is invocated. At the same time, the weightage for
mentioned categories from user.ini is retrieved while compiling the results. The
status of non-exit item will submit together to produce the final similarity

percentage by method compileAllltem.

The final output will print by invocate the method print2DArray in class Util.
The output consists of the comparing set’s name, which subject to only two files
for each set, and the similarity percentage among these two files or set. The
target file or the file name choose by user at the beginning of the application is
executed will be the subject comparing to all the rest of object files. Thus, the
number comparing set will the total object files detected by application minus

one.

Immediately the printing of above output, a request input’s message from user
will appear. User can have the detail of similarities for above output by typing
“y” to request the application print out all the matching items, exact matching
frequency, and range matching frequency. If the user feed back is “n”, the

system will terminate, and wish the user. To print out the detail of similarity

matching, the application uses the method filterResult to filtering the complete

42

source, which produced by method getCompareMethods, method

getComparelnterfaces, method getCompareFields, method

getCompareMethods, and method getCompareConstructors. The target file

name is submitted together to filtering out the irrelevant subject files, and details.

In class ReflectApp, there are 12 methods were created to perform the analysis

tasks, and listed as below.

a)

b)

g)
h)

filterResult, used for filtering purposes before printing the detail information
of the similarity matching of the application.

addTo2DVocabs, used to add new found two-dimensional array to existing
accumulated two-dimensional array.

reflectClassOrlInterface, the main engine to reflect the object concepts,
which contain inside the object file.

reflectNameAndModifiers,

reflectInterfaces,

reflectFields,

reflectMethods, and

reflectConstructors, all five methods above (d), e), 1), g), h)) are sub engine
to reflect the object concepts of object file. The first task of these methods is
to record down the comparison object file’s name. For d) and e), the methods
reflect the used Modifiers, and Interfaces. Whereas, for f), g), and h), the

methods reflect the used plus declared Fields, Methods, and Constructors.

43

1)

k)

D

addToVocab, used to create a new and unrepeated accumulated vector.
Inside this method, there is a checking engine to perform the examination
tasks to make sure there is no redundancy item occurred.

filteringString, this method is used to filter out the object file’s name from
the matching items. If found the object file’s name exist in matched item, this
method will replace it with *FileName*. The purpose implement this engine
1s achieve the full analyzing tasks on the matching section, especially in
items matching, without considering the differential of object file’s name.
checkEntryExist, this method is used to support the method addToVocab,
especially to create the unrepeated accumulated vector.

countFrequency, is used to count the items frequency occur in the object
file. This method will compare the full-unrepeated accumulated vocabs to the

found items, including the used and declared items, in the object files.

In class AnalyzedVocab has created one constructor, tempVocabs, at very

beginning of the class. This constructor is reused internally in methods of class

AnalyzedVocab. Overall, there are 16 methods is created in this class, and is

listed as below.

a)
b)

c)

getModifiers,
getInterfaces,

getFields,

d) getMethods, and

g

h)

i)
i)
k)

)

getConstructors, above five methods is used to direct the collection of
specify information from the complete vocabs, which located in two
dimensional array tempVocabs.

getCreate, is an engine to collect information directly from tempVocabs.
Other words, this method is the base engine to perform the methods a),b),c),
d), and ¢).

convertObjectToStringArray, is used to convert the object array to string
array. This method is useful while converting the vector to array, because
after converting from vector to array, the output is in object array form. With
this method, the mentioned converted output can be easily turned into string
array.

getNumberOfSet, is used to calculate the number of comparison set, which
has direct relation to number of detected object files by the application.
getCompareModifiers,

getComparelnterfaces,

getCompareFields,

getCompareMethods, and

m) getCompareConstructors, are used to compare the specific categories

n)

according to methods. The source of these methods is came from a), b), c),
d), and e). The comparison is done between the source and destination object
file, which locate from the above sources. These methods will generate a two
dimensional array as output.

freqMatching, is perform the frequency-matching task for categories Field,

Methed, and Constructor only.

45

0) collectResult is used to collect the matching result from the unrepeated
accumulated vocabs, specifically for object files’ name, and the similarity
item’s value between two object files.

p) getCompileResult, is used to compile all the result for items matching, exact
frequency matching, and range frequency matching. In this method, the
weightage information, which has been loaded from user.ini, is used to
produce the similarity value between objects. The source for this method is

came from the method collectResult.

In class ObjPropWeightage, there are five constructors is created, and is listed

as below.

a) ModifiersWeightage,

b) InterfacesWeightage,

¢) FieldsWeightage,

d) MethodsWeightage, and

e¢) ConstructorsWeightage, are the constructors in class ObjPropWeightage.
Their value is loaded from file user.ini, and reused internally in method

CompileAllltem.

There are four methods in this class, and are listed as below.

a) compileAllltem, is used to compile all collected information from discovery
categories, which includes Modifier, Interface, F teld, Method, and
Constructor. The weightage information gather before will be multiplied, and

add-ins to final value. Each category’s result, which has been multiplied, will

46

b)

d)

be added to compute the final two-dimensional array together with the names
of two comparison object files.

convertToPercentage, is used to convert the computed value in method
compileAllltem to a percentage form before presenting to user.

filterResult, is used to filter the output of method compileAllltem before
presenting to user on screen.

checkValidDouble, is used to check the validation of double condition in
method compileAllltem, especially before performing the multiply task.
This method is considered as non-exist item’s status. If the non-exist item is
considered as similarity, then the value of 0/0 will change to 1/1, else the

value will be 0/1.

In class Util, there are four methods created to serve the above classes. Three of

the four methods, except the method getDivider, can be called outside of the

class Util to perform the tasks. The methods are listed as below.

a)
b)
c)

d)

multiplyString, is used to multiply integer in string form.

addString, is used to add similarity value in string form.

getDivider, is used to find the divider of value, so that it can simplify the
value before performing the multiplying or adding tasks in the above
methods.

print2DArray, is used to print out the two dimensional array. Most of the
outputs from the application’s methods are in two-dimensional array. In

order to present them to the user, this method is needed.

47

5.3 The expected input and output

The user needs to locate at least two or more Java object file in the folder, which
is same level as the Reflection Application object files. This application will

searching and detecting the quantity of object file can be analyzed.

Next, the user is required to choose the file number that represents the certain
file, which has been listed on screen. It is a target file to be considered in
comparing with other object files. After key-ins the selected number, the
application will perform the analyzing tasks, and lists the similarity percentage,
which is subject to the user’s target file. The expected output of the application
will be the result of comparative two-object file, and percentage of similarities

between two selected object files.

The application will offer an option, after above listing, in listing all the details

e .77 e

of similarities of above result. The user is require to key-ins “y” for yes or “n

for not to list the detail information of the analyzing results.

48

Chapter Six

Conclusion

The expectation of final product in project will be a list of comparison result of two-
object file with percentage. The detail information of similarities can be listed
through the order of user to enhance the percentage’s information. As overall, this
expected output is helping those who are innocent in the content application
understanding the original class developer’s idea by reflecting the detail object
concept. In addition, it is a tool to help user to discover the similarity information
between two-object files, in the fast mode, through the percentage between two-

object files.

6.1 The contribution of project

The purpose of the project is to discover the capability of Java Reflection, and it
is uses in producing similar object concept between two object files. After
compilation, there is no way for developer to read the hidden source code from
the compiled object file. The only way to get back the full and accurate object
concept is to obtain the object file’s source code, and analyzed it line by line. It

1s hard and cost more effort to complete this task. In this project, the application

49

is developed to reflect the hidden information in object file. Through the sample
output (Appendix A), it successfully reflects the similar hidden information that
locates in two-compiled object file. It helps the developer to discover the similar
object concept without referring to the complicated source code, and obtain the

similar object concept’s information in fast mode.

The expected output of the application come with similar percentage between
two-object files is useful in detecting the plagiarism cases in academic
institution. The students fault work can be discovered through the similar object
concept that contain inside the object files. The analyzing tasks are look into the
similarity section of Modifier, Interface, Field, Method, and Constructor. Each
section will consist of exact item matching, exact frequency item occurrence,
and predetermine range frequency item occurrence. These analyzing tasks’ result
is contributing towards the final similarity percentage. This application result can
help the educator judge the plagiarism cases in student work since it producing

the informative object concept from the student object files.

Besides, the capability of programming can be used to detect the plagiarism
cases among the student’s work, which wrote by Verco & Wise (1996), from this
project, this programming application also contributes as a tool to help the
lecturer to evaluate student’s assignment. To perform this task an ideal answer
needs to be ready before proceeding checking with the student’s assignment. It
also performs the cross checking among the students’ work, whereby, each

student’s work will be compared among the submitted object files in the folder,

50

Each student will compare with the lecturer’s ideal model answer. However, the
expected only showing the target object file, which had been selected by the
user. From the expected result, the lecturer can discover that the content of
student work consist of how many percentage the lecturer’s expected output as
in the ideal answer. For logical analysis, the application will match the quality of
object and method in used, which needs to be present in student’s work. The
higher matching of student work represents the knowledge own by particular
student. Evaluation marks on student can be given through this degree of
matching guideline. It is useful for those lecturers who need to mark a big group
of programming course’s student. It will help in increasing the lecturer
productivity of the daily workload, especially in evaluating the student

assignments, with constant requirements of evaluating programming content.

6.2 The contribution for future study

The project is reflecting the object concept information, and this task can be
done through the analysis of source code. For future study, the work should
compare the performance of existing analyzing approach with the source code
analyzer in achieving the preferable result of detecting the similarities object

concept information.

51

For better presentation of the application, this application should be presented in

improved interactive graphical user interface. This proposed work is to increase

the user friendliness in using the exiting application.

6.3 The limitation

The limitation of the application is listed as below.

a)

b)

This project uses Object-Oriented methodology, specifically the Object
Modeling Technique, however the development process did not fully used
the guideline that ruled by Rambaugh (1991). The main reason is the
unsuitability issues occur, such as size of the project is small, and mmpractical
fully following the stated steps, especially the steps in system design.

This application only tested in windows environment, specifically in
Microsoft Windows 95/98. This was due to lack of facility in university
environment. It should work on other platforms as the Sun Microsystems
promised the Java technology as platform independent. Further testing
should be carried out in different platform for this application to achieve
independent-platform criteria to ensure the portability of application.

The design of the classes is not fully achieved the object-oriented purposes.
This may cause the application’s performance decrease, and does not achieve
the reuse purposes, which offered by Java, a true Object-Oriented

Programming Language.

52

d) The modifications of the weightages’ information in the file of user.ini have
to be done in external text editor. The application did not design internally
for alternate the user.ini content. The enhancement needs to be done in exist
application for user alternate the mentioned file before performing the

analysis tasks.

53

Bibliography

Amold, Ken & Gosling, James. (1997). The Java™ Programming language (2™
Edition). England: Addison-Wesley Longman Inc.

Awad, Elias M. (1996). Building Expert System: Principles, Procedures, and
Applications. New York: West Publishing Company.

Horstmann, Cay. (1998). Computing Concepts with Java Essentials. New York:
John Willy & Sons, Inc.

Jaworski, Jamie. (1996). JAVA Developer's Guide. Indianapolis: Sams.net
Publishing.

Jaworski, Jamie. (1998). Java 1.2 Unleashed. Indianapolis: Macmillan Computer
Publishing

Kirby, G. N. C. (1992). Persistent Programming with Strongly Typed Linguistic

Reflection. http://www-ppg.dcs.st-
and.ac.uk/Publications/1992. html#persistent. programming (Accessed on
18/08/1998).

Kirby, Graham & Morrison, Ron. (1998). Linguistic Reflection in Java.
http://www-ppg.dcs.st-and.ac.uk/Publications/1998 html#java.reflection (Accessed
on 18/08/1998).

Lemay, Laura & Perkins, Charles L. & Morrison, Michael. (1996). Teach
Yourself Java in 21 Days (Professional Reference Edition). Indianapolis: Sams.net
Publishing.

Rambaugh, James. & Blaha, Michael. & Premerlani, William. & Eddy,
Frederick. & Lorensen, William. (1991). Object-Oriented Modeling and Design.
New York: Prentice-Hall International, Inc.

Sjoberg, Dag 1. K. & Welland, Ray & Atkinson, Malcolm. (1997). Software
Constraints for Large Application Systems. The Computer Journal. Vol.40 No.10
1997. Pg 598-616.

Stemple, D. & Morrison, R. & Kirby, G.N.C. & Connor, R.C.II. (1993).
Integrating Reflection, Strong Typing and Static Checking. http://www-ppg.dcs.st-
and.ac.uk/Publications/1993 html#integrating.reflection (Accessed on 18/08/1998).

54

Verco, Kristina L. & Wise, Michael J. (1996). Software for Detecting Suspected
Plagiarism: Comparing Structure and Attribute-Counting System. Presented paper of

First Australian Conference on Computer Science Education, Sydney, Australia,
July 3-5 1996, John Rosenberg (Ed), ACM.

Whale, Geoft. (1990). Software Metrics and Plagiarism Detection. Journal of
System Software. Vol.13 1990. Pg 131-138.

Whale, G. (2). (1990). Identification of Program Similarity in Large Populations.
The computer Journal. Vol.33 No.2 1990. Pg 141-146.

55

Appendix A:

Sample output with description

56

Sample output with description

This sample output is generated from windows platform, specifically from Microsoft
Windows 98, with the software called Tek-Tools KAWA IDE Version 3.5. The
output is bold and used the Courier New font to differential from the report texts.

D:\jdk1l.2.2\bin\java.exe ReflectApp

Working Directory - E:\collection\Java\3p\

Class Path - D:\jdk1.2.2\jswdk-
~1.1\lib\jspengine.jar;.;D:\jdk1l.2.2\jswdk-
~1.1\lib\servlet.jar;D:\jdk1l.2.2\jswdk-
~1.1\lib\xml.jar;D:\jdkl.2.2\lib\msql-jdbc—2—
0b5.jar;D:\jdkl.2.2\lib\tools.jar;D:\Kawa3.5\kawaclasses.zip;d:\jdkl
.2.2\jre\lib\rt.jar

The Reflection Application is executed by the KAWA IDE. The application also can
be executed in MS-Dos Prompt environment by typing the command of java
ReflectApp.

The collected Java Object's files (*.class) list:
File 1 : ReflectApp7
File 2 : ComboArray
File 3 : TestScore
File 4 : ReflectApp7a

File 5 : ComboAxxx

5 files found!
Please select file name to be consider?

(Choose 1-5 and Press Enter) > 1

Above is the application finding. The application detected five object files, which is
contain the file extension of class (* class), in the folder of E:\collection\java\3p\ to
be analyzed. Each of the files is represent by one number, and it is easy to let the
user choose the subject of comparison. The application is waiting for the user to key-
ins the target file’s number. In above sample output, the user choose “1”, and press
the Enter key!

kkkkkkkkk* For selectedPlagiarismResult **kx**kk*#

Comparing subject to : ReflectApp7, ComboArray,
Similarity percentage : 54.0%,

57

Comparing subject to : ReflectApp7, TestScore,
Similarity percentage : 54.0%,

Comparing subject to : ReflectApp7, ReflectApp7a,
Similarity percentage : 100.0%,

Comparing subject to : ReflectApp7, ComboAxxx,
Similarity percentage : 54.0%,

*kkkkxxk** End selectedPlagiarismResult **xkkkkwwnx
Do you want to see the detail of above comparison?
(Choose "y'" or "n") > y

After the user pressed the Enter key, the application performed the analysis tasks,
and the output is listed as above. Each of the comparison is subject to the target file,
as the user chooses at previous step. In this sample output, the user choose number
“17, which meant the target file is pointing to the file’s name called ReflectApp7.
Then, each set of result in comparison will consider the target file, which is
ReflectApp7, as the base to compare with.

The output is the selected plagiarism’s result, which meant each set, between two
files, there is a percentage to show the level of similarity between them. The higher
the percentage, the higher the plagiarism occurrence between this two files. In above
sample output, the set, which contains of ReflectApp7 and ReflectApp7a, is 100%
similar. It is the highest score that can be achieved by this application, which means
the plagiarism occurs between these two files.

A request input will appear immediately after the selected plagiarism result. The
application offer two option to the user to view the detail of similarity occur between

e 2

the files. The option “y” is to view the detail, and the option “n” is to deny the

[Tt

further printing detail. In above sample output, the user typed the character “y” to
view the detail of similarity comparison.

Below is the listed detail similarity information for each set of comparison. The
detail information is divided into five categories for each set, which reflected from
both object files, including the Modifier, Interfaces, Field, Method, and Constructor.

hhkkdkhhkdkhkdhhhhhkhkhkhhhhhhhhhkhkhhhkhkrhbhdhhhhhkhhhkhdhhd

Below is the detail of comparison subject to ReflectApp7
hdkkhkhkhkkhkhkhhhhhhhhhhkkhhkhhh ko hhhhhdhhkhhhhhhkhhd

Comparing subject to : ReflectApp7, 0/0, ComboArray, 0/0,
Similarity item/s : notExit,

Comparing subject to : ReflectApp7, 0/0, TestScore, 0/0,
Similarity item/s : notExit,

Comparing subject to : ReflectApp7, 0/0, ReflectApp7a, 0/0,

58

Similarity item/s : notExit,

Comparing subject to - ReflectApp7, 0/0, ComboAxxx, 0/0,
Similarity item/s ! notExit,

For example, the Modifier as above, the section Similarity item/s filled with result
“notExit”, which meant the Modifier does not exist in particular set of object files.
User can refer to the value locate behind of the object file’s name, if the value is 0/0,
it 1s an evidence to show that there js no item exist in particular object file.

Comparing subject to Reflectapp7, 0/0, ComboArray, 0/0,
Similarity item/s ¢! notExit,

Comparing subject to : Reflectapp7, 0/0, TestScore, 0/0,
Similarity item/s : notExit,

Comparing subject to - ReflectApp7, 0/0, ReflectApp7a, 0/0,
Similarity item/s ! notExit,

Comparing subject to Reflectapp7, 0/0, ComboAxxx, 0/0,
Similarity item/s ! notExit,

Comparing subject to - Reflectapp?, 0/1, ComboArray, 0/2,
Similarity item/s * notFoundSimilarity,
Frequency (1lst subject) : notFoundSimilarity,
Frequency (2nd subject) : notFoundSimilarity,

Comparing subject to : ReflectApp7, 0/1, TestScore, 0/9,
Similarity item/s : notFoundSimilarity,
Frequency(1lst subject) : notFoundSimilarity,
Frequency (2nd subject) : notFoundSimilarity,

Comparing subject to ReflectApp7, 1/1, Reflectapp7a, 1/1,
Similarity item/s : static int *FileName*.nextVbcab,
Frequency (1st subject): 1,

Frequency (2nd subject): 1,

Comparing subject to : ReflectApp7, 0/1, ComboAxxx, 0/2,
Similarity item/s : notFoundSimilarity,
Frequency (1st subject): notFoundSimilarity,
Frequency (2nd subject) : notFoundSimilarity,

For example the last set of comparison, the Field as above, the items exist in both of
the object files, the evidence can be getting from the value locates at behind the
object file’s name, such as 0/ 1, and 0/2. Unfortunately, there is no similarity among
the items exist.

59

Comparing subject to : ReflectApp7, 9/21, ComboArray, 9/9,

Similarity item/s : public boolean

Java.lang.Object.equals (java.lang.Object), public final native
java.lang.Class java.lang.Object.getClass(), public int
java.lang.Object.hashCode(), public final native void
java.lang.Object.notify(), public final native void
java.lang.Object.notifyAll (), public java.lang.String
java.lang.Object.toString(), public final void
java.lang.Object.wait() throws java.lang. InterruptedException,
public final native void java.lang.Object.wait(long) throws
java.lang.InterruptedException, public final void
java.lang.Object.wait(long,int) throws
java.lang.InterruptedException,

Frequency(1lst subject): 1, 1, 1, 1, 1, 1,1, 1, 1,

Frequency(2nd subject): 1, 1, 1, 1, 1, 1, 1, 1, 1,

Comparing subject to : ReflectApp7, 9/21, TestScore, 9/17,

Similarity item/s : public boolean
java.lang.object.equals(java.lang.Object), public final native
Java.lang.Class java.lang.Object.getClass(), public int
java.lang.Object.hashCode(), public final native void
java.lang.Object.notify (), public final native void
jJava.lang.Object.notifyall (), public java.lang.String
java.lang.Object. toString(), public final void
java.lang.Object.wait() throws java.lang. InterruptedException,
public final native void java.lang.Object.wait{long) throws
java.lang.InterruptedException, public final void
java.lang.Object.wait(long,int) throws
java.lang.InterruptedException,

Frequency(lst subject): 1, 1, 1, 1, 1,1, 1, 1, 1,

Frequency(2nd subject): 1, 1, 1, 1, 1, i, 1,1, 1,

For example, the above comparison set, for Method, the items matched were nine
among 21 from the first object file and 17 from the second object file. Whereas for
the below comparison set, the matching is full matched between these two object

files.

Comparing subject to : ReflectApp7, 21/21, ReflectApp7a, 21/21,

Similarity item/s ¢ static java.util.Vector

FileName.addToVocab(java.lang.Object[],java.lang.Object[]), static

boolean

60

User manual

This Reflection Application contains seven files, which is listed as below.
a) ReflectApp.java (source code)

b) ReflectApp.class

¢) ReflectApp8$ExtensionFilter.class

d) AnalyzeVocab.class

e) ObjPropWeightage.class

f) Util.class

g) User.ini

Step 1:

These files should locate in the same folder. It is recommend for non-expert user to
create a new folder, and copy these files into the created new folder. Let us name the
folder as “RefApp”

Step 2:

Then, copying all the object files into the “RefApp” folder.
Note: In order to make the application function correctly, user must copy at least
two or more object file (*.class)..

Step 3:

User can customize the application setting by editing the file user.ini. To edit this
file, do use external text editor, such as Windows Notepad or Windows Word Pad,
to edit the file. User can refer the example inside the file user.ini to customize the
analysis setting,

ModifiersWeightage=2/10
InterfacesWeightage=2/10

FieldsWeightage=2/10

MethodsWeightage=2/10

ConstructorsWeightage=2/10

// The total of 5 should equal to 1

// example: (2/10) + (2/10) + (2/10) + (2/10) + (2/10) =1

itemMatchingWeight=5/10
freqExactMatchWeight=2/10
freqRangeMatchWeight=3/10

// The total of 3 should equal to 1

// example: (5/10) + (2/10) + (3/10) = 1

statusNotExitIsSimilar=yes
// ves or no

freqRange=20

// example: 20 -> +- 20%
// example: 28.59 -> +- 28.59%

64

FileName.checkEntryExist(java.lang.String,java.lang.Object[]),
static java.lang.string[]
FileName.convertObjectTostringArray(java.lang.Object[]), static
void
FileName.countFrequency(java.lang.Object[],java.lang.object[],java
.lang.0Object[]), static void
FileName.describeClassOrInterface(java.lang.Class,java.lang.String
), static void
FileName.displayConstructors(java.lang.reflect.Constructor[]),
static void *FileName*.displayFields(java.lang.reflect.Field[]),
static void *FileName*.displayInterfaces(java.lang.Class[]), static
void *FileName*.displayMethods(java.lang.reflect.Method[]), static
void *FileName*.displayModifiers(int), public static void
FileName.main(java.lang.string[]), static void
FileName.printArray(java.lang.String[]), public boolean
java.lang.object.equals(java.lang.object), public final native
java.lang.Class java.1ang.Object.getClass(), public int
java.lang.Object.hashCode(), public final native void
java.lang.Object.notify(), public final native void
java.lang.Object.notifyAll(), public Java.lang.String
java.lang.object.toString(), public final void
java.lang.object.wait() throws java.lang.InterruptedException,
public final native void java.lang.object.wait(long) throws
java.lang.InterruptedException, public final void
java.lang.Object.wait(long,int) throws
java.lang.InterruptedException,

Frequency(lst subject): 1,1, 1,1, 1, 1, 1, 1,1,1, 2, 1, 1,1, 1,
i, 1, 1,1, 1,1,

Frequency (2nd subject): 1, 1, 1, 1, 1,1, 1,1, 1, 1, 2,1, 1, 1, 1,
i, 1, 1,1, 1,1,

Comparing subject to : Reflectapp7, 9/21, ComboAxxx, 9/9,

Similarity item/s : public boolean
java.lang.object.equals(java.lang.object), public final native
java.lang.Class java.lang.Object.getClass(), public int
java.lang.Object.hashCode(), public final native void
java.lang.Object.notify(), public final native void
java.lang.Object.notifyAll(), public jJava.lang.String
java.lang.object.tostring(), public final void
java.lang.Object.wait() throws java.lang.InterruptedException,
public final native void java.lang.Object.wait(long) throws
java.lang.InterruptedException, public final void
java.lang.Object.wait(long,int) throws
java.lang.InterruptedException,

Frequency (1st subject): 1,1, 1,1, 1,1, i, 1, 1,

Frequency (2nd subject): 1, 1, 1, 1, 1,1, 1, 1, 1,

61

Comparing subject to : ReflectApp7, 0/1, ComboArray, 0/1,
Similarity item/s ¢ notFoundSimilarity,
Frequency(1lst subject) : notFoundSimilarity,
Frequency (2nd subject) : notFoundSimilarity,

Comparing subject to : ReflectApp7, 0/1, TestScore, 0/1,
Similarity item/s ¢ notFoundSimilarity,
Frequency(lst subject) : notFoundSimilarity,
Frequency (2nd subject) : notFoundSimilarity,

Comparing subject to : ReflectApp7, 1/1, ReflectApp7a, 1/1,
Similarity item/s : public *FileName* (),

Frequency(1lst subject): 2,

Frequency (2nd subject): 2,
Comparing subject to : ReflectApp7, 0/1, ComboAxxx, 0/1,
Similarity item/s : notFoundSimilarity,

Frequency (lst subject) : notFoundSimilarity,

Frequency (2nd subject) : notFoundSimilarity,

Process Exit...

For above sample output, it depends on the information in the file user-.ini as below.
According to below information, the non-exit items are considered as similar for the
analysis. There is a guideline in this user-.ini to guide user to modify the content on
file. For example, the range of frequency matching is sated in percentage form.
There are some example are listed for user.

ModifiersWeightage=2/10
InterfacesWeightage=2/10

FieldsWeightage=2/10

MethodsWeightage=2/10

ConstructorsWeightage=2/10

// The total of 5 should equal to 1

// example: (2/10) + (2/10) + (2/10) + (2/10) + (2/10) = 1

itemMatchingWeight=5/10
freqExactMatchWeight=2/10
freqRangeMatchWeight=3/10

// The total of 3 should equal to 1

// example: (5/10) + (2/10) + (3/10) =1

StatusNotExitIsSimilar=yes
// yes or no

freqRange=20
// example: 20 -> +- 20%

// example: 28.59 -> 4+- 28.59%
// example: 200 -> +- 200%

62

Appendix B:

User manual

63

// example: 200 -> +- 200%

The default setting for user.ini is showed as above. There are eight weightages, one
exist status, and one frequency’s range retrieved by the application. The first five
weightages are the weightage for Modifier, Interface, Field, Method, and
Constructor. These weightages will bring direct effect to final application’s output.

The next three weightages have the direct effect on the categories Field, Method,
and Constructor only. They are divided into item matching weightage, exact
frequency weightage, and the range frequency weightage. For above the first five
weightages or the next three weightages should sum up as one.

Next, it is the status of not exit similarity for five categories, which are Modifier,
Interface, Field, Method, and Constructor, have been considered in this application.
The value for this status can be “yes” or “no” only.

The last item is the range of frequency matching, specifically for Field, Method, and
Constructor. This item should filling with percentage value as in the sample in file
user.ini.

Step 4.

Execute the application.

It is recommended that the user use the tested environment to execute the
application, which is in Tek-Tools KAWA IDE (can be download form
http://www.tek-tools.com, and install it with pre-install JDK version 1.2 or above)
environment. In KAWA IDE; user just need to open up the ReflectApp.java file,
compile the file (press F7), and run the file (press F4).

Of course, the user can also run the application in MS-Dos Prompt environment, by
typing this command line in as below.
C:\RefApp\ java ReflectApp press Enter

Note: To execute the application in any platform, the platform must pre-installed the

JDK version 1.2 and above (can be download from http://java.sun.com) before
executing the application.

65

Appendix C:

Figure / diagram

66

Figure 1: Object model diagram

T T T T e o *,*vg

| — —*f"_iﬁ —_— e i

Modifier r Interface | ‘ Field !

s B L R L T
| |

J Modifier names ' } interface names / 1 Field names | r

f I I

|- *ﬁﬁ\fﬁié i - | G— e |

T ! — |

have have have !

|

i o Object concepts

e — [— 1 -
| T T |
! have- , -have—— |
| Method names FA ‘J— Vocabs for previous 1- . Constructor names |
/\ names i
— e LT
influence 7 1
!
// 7/ ff
// ‘
————— ﬁ ‘
| Welghtage i / /
L _ !
f i
5 object concepts weight analyze ‘
R / |
/ i
f
\'
T T _ S L — wJ
i Engine analysing Utility { 1«
I Co
Intermediate vocabs & amays 4 I Intermediate vocabs & arrays |
i | \ |
- e -
r |
. |
‘ serve i
| » !
I
. |
| |
i .
serve f o *ﬁ{' o T ut o [
L eques mp,ﬁ, J
| |
|
f‘ | User's input |
|
]
| %
e %
‘ Pnntng output 1
I — |
| Application's output | ‘
e |
|
j
1
|
I
|
i
—_— —

Figure 2: Event trace for Reflection Application

|
|
Reflection "
User Application ‘
!
|
| [
| 1’
|
| | |
¢ Printthe detected object files' it — | !
|
]
;‘] |
¢—————— Request target file's number———— — . — |
{f :
‘ !
: f
[Lﬁ—~—» ———————Targetfile'snumber —— ——]
|
‘ ! i
i |
| L , . | (
%\Summary of similarity results (in set) subject to target file ———— —.-
| | |
‘ | |
| | |
M————Request to listing the detail similarity information ("'ytor'my— —— —
i | ;
‘ 1 i
? | |
! | i
ﬁ-* — ————————Enter "n", system terminate - — —— !
| I i
| o]
L**\ ————Enter "y’ to request detail information- — — —p 5
I ;
: i i
‘ ‘ ;
J | ,f
J | f
r{— ~—————Print detail information for each set of comparison--— - — — — . ;
i 1 i
\ i |
‘ I |
; i |
| ‘
i | i
| | |
f I
| |
| | |
] i
i J
| |
| i ‘
f ! |
/ | |
| .
i
I [
’ !
}‘ o
i | |
|
|

Figure 3: Event flow diagram

|

|

| | ___ User input the target file's number

| | User answer the request to print details
i [

1 |

| |

i

|

|

I i

! |

i ,

| User }

i 4

{ [

‘ | Print the detected object files in folder

; ; Request input on target file's number

! ‘4‘Printing the summary resuit of similary comparison
; 1 Request input (option "y" or "n*) to list the detail information
! ‘ Printing the detail information

‘ |

i |

| |

| |

‘ I

|

[
|
; |
J |
‘ i
! i
" f
| !
f ‘
‘ J
; |
| |
i [
I
| {
i Reflection 1‘
;\ Application ‘v‘
! |
|
| :?
| |
| !
[
|
J
i |
|
! |
|
i |
|
f
| ;
. |

Figure 4: State diagram for class ReflectApp

—————

- T~

Start

. do: Print detected object files: b
" request target file number

. —
—_—

i
i
|
!

Enter targef file number

|
IR

B Runtime error .
(not enough object files)

=

Error message

do: System terminate

|
~ — T ~. i
/ Analyzing object files . 7 / Error message
' do: Reflecting object concept / Bad number do: System terminate }
~——— ‘ N ~— “
‘ !
i
| I
|
I
3 f
| ‘
Correct number j
: ;
| |
| |
: Result listing 7 Terminate’s meccane |
! do: Print analyzed resut; i—— —option"n"- — .— » :zrrg;::gns t:]ren?;aa%z i ;
" offer option viewing detail information / S YRR ETRnale .
e |
’ f
| ,
|
Opﬁon llyn ;
| ‘
| i
|
P v i
f
Datail listing \ |
\ do: Print selected detail result ,’ |
- / i
— . |
|
|
i

Figure 5: Input and output values for ReflectApp system

N f.ﬁﬁ(}
i H I
! [
| |
;4 ———Locating the object files for comparison-— — —.—!
[
|
|
1
| I
[~—————————Detected object files' list-—— — —
| ! “
i J . . ‘
ReflectApp D —————Target object file's number-— — —‘
system J ‘
i |
? ——— ——Analyzed result (comparing similarity) -— — — g,
| I
| |
| ! I
g r
! r4————Feed back to view the detail information- — -
| |
] I

User

Figure 6: Data flow diagram (Level 0)

(Context diagram)

J‘_***f_k _—
|
|
1
) Tt
| | User.ini ;’

| (Extemal file) |

\

’ Pre-determine setting

| |
| R

| { 20 3
j Analysing Object
{ files I
! \“'_ﬁ#
i
1 f |
[: !
o o |
(1o | | (30
! | Detecting object . - -1 Searching detail J
| [files S Snmlla'rt]ty Target file /1 information |
e resu name O i
3 N\ | ! i R
1 N [| Detail
f S Obiject files' : ; similarity
‘r N list ‘. ‘ [result <
‘ Locate | | Respone
| objectfies | ' of printing detail
‘} in folder 4 _v_l_' information
i \\‘\ ‘ -
User

72

Figure 7: Data flow diagram (Level 1)
Process 1.0 (Detecting object files)

\ - I

{ ‘

Locate —

‘}, User L‘k object ﬁ|es‘—_’l Searching all file in ‘
! 1 : folder

] S ,/}
|

\
| Al files list

/—'J"ﬁ\,

i { 12)
} (—————l
Filter extension |

3 /

|
| |
|

3
Files with extension "class”

Obiject files’ list }—_—13_—_{

| Exception files .

! —_—
|
|

|

t Print files I

S 7
N 7“’_4 e
|

Selected files with extension "class"
|

Figure 8: Data flow diagram (Level 1)
Process 2.0 (Analysing object files)

P ——

"’ 27 |

Compiling All item f o
L J

21 ﬂ mmmmm =
i Reflecting object | } User.ini i
concepts ! \‘ (External file) |
4_1_ - t777) 77‘7777 ‘
Vocv_abs |
S 23 v
t
S S—D ‘ 22 \
item matching — —
i P Loading file ’
i information |
Matched array
|
|
R
Y -
L_—___} 28
| Frequency e
matching | i " Fitering resutt |
T T | —
; Matched array arour { Filtered
| \‘ weightage | result
| | | |
Matched //___Vﬁ\ ‘ e ¥
array 25 ; ! ' 2.9 “
(For P }——‘ﬁ
Modifier, J Collect result | Printing task
Interface) L) . -
| |
}
Matched array Plagiarism Similarity result
: result subject to
jp— v target file
f
28] |
(2 ﬂ Compiling '« v
1\ frequency result J [J
| e | J User —
1
Matched array ‘ S
(For Field, Method
Constructor) Tafget
| \ file's name
| .

(3

Target
file's hame

74

Figure 9: Data flow diagram (Level 1)
Process 3.0 (Searching detail information)

T I

; 2.8 i ; i

L Detail | |
o ﬂ— --—similarity 7,; User #

| Printing task | result ‘

-1’) =~ - / §
| ' 43

|
| Respone "y" to 7
print detail information Target

i | |
J Fitered resuit J file's name
i ! f 7 !
| | Y A !
; t' 31 ‘ Matched array L f
— «—(For Field, Method— 2 w
j Filtering resuft | Constructor) = :
| |
i Matched armray
: (For Modifier, J
! Interface) t
i | ;’
| i
I (1) i
| o |
!
|
; |
!
i J
| |
. t
\ [
|
i |
i |
‘ |
1 E
I |
| ‘
| 1
I
! |
|
| |
|
|
I
i !
; |
1 |
i :
—_— R S |

//”‘Request to feedback to view\'%;ﬁ_ Invalid input

A

Figure 10: ReflectApp control

e N,

Display

/ detected object

[oee
_ similarity resuit |

7

T

;
files /

\\¥ y
T

____ Invalid number
from user

Display the \)

J

|
S R

.

detail information ; from user

—_—T e

|

|
SR

o

~ \-\
,~ Display detait

]
{
\

. . 4
information of I
> similarity resutt /

R -

—

-

/”)Error message

P (System

. terminate)

—

a N
./ Error message

(System
' terminate)

}
|
/

Appendix D:

Gantt chart

77

Gantt chart

Gantt chart for development of Java Reflection Application (14 weeks)

Month November December January 2000 February
Date Start | Finish 14 20 28|14 11 18 251 8 15 22 28| 5 12 19 26
Week 234567891011121314151617
tPlanning

Review project

roposal 6-Nov | 18-Dec A

Exploring

Java reflection 6-Nov | 8-Jan * * o * o

Exploring Java

yntax and data

mjcmres G_Nov 1 g_Feb * * * * * * * »> * * * »* - * *
nalysis stage

omparing exist &

roposed

echniques 14-Nov| 4-Dec A o

dentifying problem {14-Nov| 28-Nov o

Discovering user

requirements 20-Nov| 29-Jan * o N A

Object modeling [28-Nov| 22-Jan A e S S

Dynamic modeling {28-Nov| 29-Jan b L S A

Functional

modeling 4-Dec| 5-Feb N R i

ystem design

tage

Logical design 4-Dec| 22-Jan A R

Object design

4istage

bject design 18-Dec| 12-Jan * R v oo * *
erifying object 15-Jan| 19-Jan A * *
mplementation

tage

oding 11-Dec| 19-Feb L T S T oo
System testing 15-Jan; 19-Jan * o v *
5 umentation |22-Jan| 26-Feb R B

78

Appendix E:

Glossary

79

1.

Glossary

Platform independence means that a program can run on any computer system.
Java programs can run on any system for which a Java Virtual Machine has been
installed (Lemay, 1996).

According to Horstmann (1998), there are two kind of Java program that can be
created, which is consele application, and graphics applet. Java Applet uses to
write application similar like window applications, which have Graphic User
Interface (GUI) components. For handling the events associated with those
components, the console program take into place, where there are no windows or
GUI components, and in simple programs, the only event that user usually need
to handle is the entering of keyboard data by the user. The primary difference
between console programs, and window applications or applets is that console
programs lack a graphical user interface. Console programs have the same entry
point source code as window applications--a main() method with a String]]
argument.

Java software development is based upon the use and reuse of packages. Both
Java 1.0 and Java 1.1 used packages. However, the Package class is new to JDK
1.2. It provides methods for obtaining package version information stored in the
manifest of jar files. The Package class provides fourteen methods that can be
used to retrieve information about packages. The static getPackage() and
getAllPackages() methods provide Package objects that are known to the
current class loader. The getName(), getSpecificationTitle(),
getimplementationTitle(), getSpecificationVersion(),
getImplementationVersion(), getSpecificationVendor(), and
getimplementationVendor() methods return name, title, version, and vendor
information about the specification and implementation of packages. The
getSealBase() method returns the base URL of a signed package. The isSealed()
method is used to determine if a package is sealed. The isCompatibleWith()
method is used to determine whether a package is comparable with a particular
version. The hashCode() and toString() methods override those inherited from
the Object class.

The Object class does not have any variables and has only one constructor.
However, it provides 11 methods that are inherited by all Java classes and
support general operations used by all objects. For example, the equals() and
hashCode() methods are used to construct hash tables of Java objects. Hash
tables are like arrays, but are indexed by key values and dynamically grow in
size. They make use of hash functions to quickly access the data that they
contain. The hashCode() method creates a hash code for an object. Hash codes
are used to quickly determine whether two objects are different.

The clone() method creates an identical copy of an object. The object must
implement the Cloneable interface. This interface is defined within the java.lang

80

package. It contains no methods and is used only to differentiate clonable classes
from non-clonable classes.

The getClass() method identifies the class of an object by returning an object of
Class.

The toString() method creates a String representation of the value of an object.
This method is handy for quickly displaying the contents of an object. When an
object is displayed, using print() or printin(), the toString() method of its class
1s automatically called to convert the object into a string before printing. Classes
that override the toString() method can easily provide a custom display for their
objects.

The finalize() method of an object is executed when an object is garbage-
collected. The method performs no action, by default, and needs to be overridden
by any class that requires specialized finalization processing.

The Object class provides three wait() and two notify() methods that support
thread control. These methods are implemented by the Object class so that they
can be made available to threads that are not created from subclasses of class
Thread. The wait() methods cause a thread to wait until it is notified or until a
specified amount of time has elapsed. The notify() methods are used to notify
waiting threads that their wait is over.

The Class class provides over 30 methods that support the runtime processing of
an object's class and interface information. This class does not have a
constructor. Objects of this class, referred to as class descriptors, are
automatically created and associated with the objects to which they refer.
Despite their name, class descriptors are used for interfaces as well as classes.

The getName() and toString() methods return the String containing the name of
a class or interface. The toString() method differs in that it prepends the string
class or interface, depending on whether the class descriptor is a class or an
interface. The static forName() method loads the class specified by a String
object and returns a class descriptor for that class.

The getSuperclass() method returns the class descriptor of a class's superclass.
The isInterface() method identifies whether a class descriptor applies to a class
or an interface. The getInterfaces() method returns an array of Class objects that
specify the interfaces of a class, if any.

The newlnstance() method creates an object that is a new instance of the
specified class. It can be used in lieu of a class's constructor, although it is
generally safer and clearer to use a constructor rather than newlnstance().

The getClassLoader() method returns the class loader of a class, if one exists.

Classes are not usually loaded by a class loader. However, if a class is loaded
from outside the CLASSPATH, such as over a network, a class loader (Classes

81

that are loaded from outside the CLASSPATH require a class loader to convert
the class byte stream into a class descriptor. ClassLoader is an abstract class that
is used to define class loaders) is used to convert the class byte stream into a
class descriptor. The Class class contains a number of other methods that begin
with get and is. These methods are as follows:

a) getClasses() -- Returns an array of all classes and interfaces that are
members of the class.

b) getComponentType() -- Returns the component type of an array.

c) getConstructor() and getConstructors() -- Return Constructor objects
for the class.

d) getDeclaredClasses(), getDeclaredConstructor(),
getDeclaredConstructors(), getDeclaredField(), getDeclaredFields(),
getDeclaredMethod(), and getDeclaredMethods() -- Return the classes,
constructors, fields, and methods that are declared for a class or interface.

¢) getDeclaringClass() -- Returns the class in which the referenced class is
declared (if any).

f) getField() and getF ields() -- Returns a specific Field object or all Field
objects of a class or interface.

g) getMethod() and getMethods() -- Returns a specific Method object or
all Method objects of a class or interface.

h) getModifiers() -- Returns the class or interface modifiers as a coded
integer.

1) getResource() and getResourceAsStream() -- Locates system resources.
System resources are objects that are used by the runtime system or local
Java implementation.

J) getSigners() -- Returns the signers of a class.

k) isArray() -- Returns true if the Class object represents an array.

1) isAssignableFrom() -- Used to determine whether an object of one class
can be assigned to an object of another class.

m) isInstance() -- Equivalent to the isInstanceOf operator.

n) isPrimitive() -- Returns true if the object represents a primitive type.

6. The Member interface is used to provide information about a Field,
Constructor, or Method. It defines two constant variables and three methods. The
DECLARED constant identifies the class members (fields, constructors, and
methods) that are declared for a class. The PUBLIC constant identifies all
members of a class or interface, including those that are inherited. The
getName() method returns the name of the referenced Member. The
getModifiers() method returns the modifiers of the referenced Member encoded
as an integer. The Modifier class is used to decode this integer. The
getDeclaringClass() method returns the class in which the Member is declared.

7. The AccessibleObject class is introduced with JDK 1.2. It is the superclass of
the Constructor, Field, and Method classes. It was added to the class hierarchy to
provide the capability to specify whether an object suppresses reflection-access
control checks. The isAccessible() method identifies whether the object

82

10.

11.

suppresses access control checks. The setAccessible() method is used to set the
accessibility of an object or array of objects.

The Array class is used to obtain information about, create, and manipulate
arrays. It consists of 21 static methods. The getLength() method is used to
access the length of an array. The get() method is used to access an indexed
element of an array. The getBoolean(), getByte(), getChar(), getDouble(),
getFloat(), getlnt(), getLong(), and getShort() methods are used to access an
indexed element of an array as a particular primitive type. The set() method is
used to set an indexed element of an array. The setBoolean(), setByte(),
setChar(), setDouble(), setF loat(), setInt(), setLong(), and setShort() methods
are used to set an indexed element of an array to a value of a particular primitive
type. The newlInstance() method is used to create new arrays of a specified size.

The Constructor class is used to obtain information about and access the
constructors of a class. It consists of nine methods. The getName() method
returns the name of the constructor. The getDeclaringClass() method identifies
the class to which the constructor applies. The newlInstance() method is used to
create a new instance of the class to which the constructor applies. The
getParameterTypes() method provides access to the parameters used by the
constructor. The getModifiers() method encodes the constructor's modifiers as
an integer that can be decoded by the Modifier class. The getExceptionTypes()
method identifies the exceptions that are thrown by the constructor. The
equals(), hashCode(), and toString() methods override those of the Object
class.

The Field class is used to obtain information about and access the field variables
of a class. It consists of 25 methods. The getName() method returns the name of
the variable. The getDeclaringClass() method identifies the class in which the
variable is declared. The getType() method provides access to the data type of
the variable. The getModifiers() method encodes the variable's modifiers as an
integer that can be decoded by the Modifier class. The get() method is used to
access the value of the variable. The getBoolean(), getByte(), getChar(),
getDouble(), getFloat(), getlnt(), getLong(), and getShort() methods are used
to access the value as a particular primitive type. The set() method is used to set
the value of the variable. The setBoolean(), setByte(), setChar(), setDouble(),
setFloat(), setInt(), setLong(), and setShort() methods are used to set the value
to a particular primitive type. The equals(), hashCode(), and toString()
methods override those of the Object class.

The Method class is used to obtain information about and access the methods of
a class. It consists of 10 methods. The getName() method returns the name of
the method. The getDeclaringClass() method identifies the class in which the
method is declared. The invoke() method is used to invoke the method for a
particular object and list of parameters. The getParameterTypes() method
provides access to the parameters used by the method. The getModifiers()
method encodes the method's modifiers as an integer that can be decoded by the
Modifier class. The getExceptionTypes() method identifies the exceptions that

83

12.

13.

14.

are thrown by the method. The getReturnType() method identifies the type of
object returned by the method. The equals(), hashCode(), and toString()
methods override those of the Object class.

The Modifier class is used to decode integers that represent the modifiers of
classes, interfaces, field variables, constructors, and methods. It consists of 11
constants, a single parameterless constructor, and 12 static access methods. The
11 constants are used to represent all possible modifiers. They are ABSTRACT,
FINAL, INTERFACE, NATIVE, PRIVATE, PROTECTED, PUBLIC,
STATIC, SYNCHRONIZED, TRANSIENT, and VOLATILE. The
toString() method returns a string containing the modifiers encoded in an
integer. The isAbstract(), isFinal(), isInterface(), isNative(), isPrivate(),
isProtected(), isPublic(), isStatic(), isSynchronized(), isTransient(), and
isVolatile() methods return a boolean value indicating whether the respective
modifier is encoded in an integer.

The ReflectPermission class is a permission class introduced with Java
Development Kit version 1.2. It is used to specify whether the default language
access should be suppressed for reflected objects.

Java Development Kit (JDK) provides a complete set of tools for the
development, testing, documentation, and execution of Java programs and
applets. Generlly JDK consists of seven programs, which are javac (compiler),
java (interpreter), jdb (debugger), javap (disassembler), appletviewer (Applet
viewer), javadoc (documentation generator), Javah (C language header file
generator). The latest JDK can be downloaded form the Sun Microsystems™
web page, which located at download page of http:/ java.sun.com/ .

84

(Text editor /L ;
| ‘ |

| - T'*"J |
! | | |

I ‘ | ‘ '
f

\\\
] I
\\
‘ oA J
| Documentaﬁon" J
t ‘ generator i 1
; (javadoc) ‘
B A L] |
- — -7‘7\ |
Compiler 1 ‘ |
(javac) J r‘
i source code ‘
P Ry documentation in |
T T ~ HTML
- class files (bytecode) - . |
T ! N T~
/,/// e J \\ 5
A ¥ o e e
J Interpreter ‘ 1 Applet viewer ! ﬂ Debugger -1 Disassembler
| (java)]‘ ’ (appletviewer) | J j (jdb) | [(javap)
] I Y B R
f

|

. Traced / stepped . {

Display of applet Variables, J

Progrraer:uomumut ! output (accessed dizr?agra;‘ (:ztpr';tm methods, source !
via HTML files) P o bt code instructions |

i ‘

i

Header file

| generator |

(javah) ;

_.——J,,. :
C header and

source code files

to implement
native methods

|

Usually (Jaworski, 1996), the Java program is writing with a text editor to
develop Java source files. These files consist of source code packages that
declare Java classes and interfaces. Source files use the .Java extension. The
Java compiler, javac, is uses to convert the source files into files that can
execute with Java interpreter. These files are referred to as byte code files and
end with the .class extension. The Java interpreter, java, executes classes from
the byte code (.class) files. It verifies the integrity, correct operation, and
security of each class as it is loaded and executed, and interacts with the host
operating system, windowing environment and communication facilities to
produce the desired program behavior. The debugger, jdb, is like the interpreter
in that it executes Java classes that have been compiled into byte code files, but

85

15.

16.

17.

18.

it also provides special capabilities to stop program execution at selected
breakpoints and to display the values of class variables. These capabilities are
very useful in finding programming errors. The disassembler (javap) takes the
byte code files and displays the classes, fields (variables), and methods that have
been compiled into the byte codes. It also identifies the byte code instructions
used to implement each method. The disassembler is a handy tool for recovering
the source code design of those compiled Java classes for which no source code
is available-for example, those that you would retrieve from the Web. The applet
viewer, appletviewer, displays Java applets contained within Web pages,
located on your local file system, or at accessible websites. It is used to test
applets that you develop. The automated documentation tool, javadoc, is used to
convert portions of Java source files into Hypertext Markup Language (HTML)
files. HTML is the language used to write Web pages. The HTML files
generated by javadoc document the classes, variables, methods, interfaces, and
exceptions contained in Java source files based on special comments inserted
into these files. The C programming language’s header file tool, javah, is used
to generate C-language header and source files from a Java byte code file. The
files generated by javah are used to develop native methods-Java classes that are
written in languages other than Java.

Two varieties of type-safe linguistic reflection: With compile time linguistic
reflection, the generators are evaluated during the course of program
compilation and the new code produced is incorporated into the program being
compiled. This technique could be viewed as a sophisticated form of macro
expansion, where the language used to evaluate the macro is the same as the
programming language itself With run time linguistic reflection, the
generators are evaluated during program execution and the new code produced is
compiled and executed in the same context.

Class is a description of a group of objects with similar properties, common
behavior, common relationship, and common semantics.

Association is a reference from one class to another.

Attributes are the properties of individual objects, and not the objects
themselves.

86

