
The copyright © of this thesis belongs to its rightful author and/or other copyright

owner. Copies can be accessed and downloaded for non-commercial or learning

purposes without any charge and permission. The thesis cannot be reproduced or

quoted as a whole without the permission from its rightful owner. No alteration or

changes in format is allowed without permission from its rightful owner.

AN ENHANCED DYNAMIC REPLICA CREATION AND

EVICTION MECHANISM IN DATA GRID FEDERATION

ENVIRONMENT

MUSA SULE ARGUNGU

DOCTOR OF PHILOSOPHY

UNIVERSITI UTARA MALAYSIA

2018

i

Permission to Use

In presenting this thesis in fulfillment of the requirements for a postgraduate degree

from Universiti Utara Malaysia, I agree that the Universiti Library may make it

freely available for inspection. I further agree that permission for the copying of this

thesis in any manner, in whole or in part, for the scholarly purpose may be granted

by my supervisor(s) or, in their absence, by the Dean of Awang Had Salleh Graduate

School of Arts and Sciences. It is understood that any copying, publication, or use of

this thesis or parts thereof for financial gain shall not be allowed without my written

permission. It is also understood that due recognition shall be given to me and

Universiti Utara Malaysia for any scholarly use which may be made of any material

from my thesis.

Requests for permission to copy or to make other use of materials in this thesis, in

whole or in part, should be addressed to:

Dean of Awang Had Salleh Graduate School of Arts and Sciences

UUM College of Arts and Sciences

Universiti Utara Malaysia

06010 UUM Sintok

ii

Abstrak

Sistem Grid Data Bersekutu merupakan satu infrastruktur yang menghubungkan

beberapa sistem grid, yang memudahkan perkongsian besar yang data, serta sumber

penyimpanan dan pengkomputeran. Mekanisme sedia ada bagi replikasi data hanya

tertumpu kepada mencari nilai fail berdasarkan jumlah akses fail dalam menentukan

fail mana yang akan direplikasi, dan meletakkan replika baru di lokasi yang

menyediakan kos bacaan yang minimum. DRCEM melakukan secara berbeza

dengan mempertimbangkan kebergantungan logik fail dalam mencari nilai fail, dan

menempatkan replika baru di lokasi dengan beban kerja, jarak rangkaian dan

kegagalan tapak yang minimum, dengan itu meminimumkan pemindahan data dan

kos penyimpanan. Tesis ini memperkenalkan satu penambahbaikan ke atas

mekanisme replikasi data yang dikenali sebagai Mekanisme Penciptaan dan

Pengeluaran Replika (DRCEM) yang menggunapakai sumber data grid dengan

memperuntukkan tapak replika yang sesuai dalam sistem yang bersekutu.

Mekanisme yang dicadangkan menggunakan tiga skim: 1) Skim Penilaian dan

Pengeluaran Replika Dinamik, 2) Skim Penempatan Replika Dinamik, dan 3) Skim

Pengusiran Replika Dinamik. DRCEM telah dinilai menggunakan simulator

rangkaian OptorSim berdasarkan empat metrik prestasi: 1) Tempoh Perlengkapan

Pekerjaan, 2) Penggunaan Rangkaian yang Berkesan, 3) Penggunaan Elemen

Penyimpanan, dan 4) Penggunaan Elemen Pengkomputeran. DRCEM mengatasi

mekanisme ELALW dan DRCM sebanyak 30% dan 26% dari segi Tempoh

Perlengkapan Pekerjaan. Di samping itu, DRCEM menggunakan ruang

penyimpanan yang sedikit berbanding ELALW dan DRCM sebanyak 42% dan 40%.

Walau bagaimanapun, DRCEM menunjukkan prestasi yang lebih rendah berbanding

dengan mekanisme sedia ada dalam Penggunaan Elemen Pengkomputeran,

disebabkan penambahan dalam pengiraan kebergantungan logik fail. Hasil kajian

menunjukkan Tempoh Perlengkapan Pekerjaan yang lebih baik dengan penggunaan

sumber yang lebih rendah daripada pendekatan sedia ada. Penyelidikan ini

menghasilkan tiga skim replikasi yang terkandung dalam satu mekanisme yang dapat

menyumbang kepada peningkatan prestasi persekitaran Grid Data Bersekutu, yang

mampu membuat keputusan sama ada untuk mencipta atau mengusir lebih daripada

satu fail dalam masa yang sama. Tambahan pula, kebergantungan logik fail telah

diintegrasikan ke dalam skim penciptaan replika untuk menilai fail data dengan lebih

tepat.

Kata kunci: Replikasi Data, Grid Data Bersekutu, Penciptaan Replika, Penempatan

Replika, Penggantian Replika

iii

Abstract

Data Grid Federation system is an infrastructure that connects several grid systems,

which facilitates sharing of large amount of data, as well as storage and computing

resources. The existing mechanisms on data replication focus on finding file values

based on the number of files access in deciding which file to replicate, and place new

replicas on locations that provide minimum read cost. DRCEM finds file values

based on logical dependencies in deciding which file to replicate, and allocates new

replicas on locations that provide minimum replica placement cost. This thesis

presents an enhanced data replication strategy known as Dynamic Replica Creation

and Eviction Mechanism (DRCEM) that utilizes the usage of data grid resources, by

allocating appropriate replica sites around the federation. The proposed mechanism

uses three schemes: 1) Dynamic Replica Evaluation and Creation Scheme, 2)

Replica Placement Scheme, and 3) Dynamic Replica Eviction Scheme. DRCEM was

evaluated using OptorSim network simulator based on four performance metrics: 1)

Jobs Completion Times, 2) Effective Network Usage, 3) Storage Element Usage,

and 4) Computing Element Usage. DRCEM outperforms ELALW and DRCM

mechanisms by 30% and 26%, in terms of Jobs Completion Times. In addition,

DRCEM consumes less storage compared to ELALW and DRCM by 42% and 40%.

However, DRCEM shows lower performance compared to existing mechanisms

regarding Computing Element Usage, due to additional computations of files logical

dependencies. Results revealed better jobs completion times with lower resource

consumption than existing approaches. This research produces three replication

schemes embodied in one mechanism that enhances the performance of Data Grid

Federation environment. This has contributed to the enhancement of the existing

mechanism, which is capable of deciding to either create or evict more than one file

during a particular time. Furthermore, files logical dependencies were integrated into

the replica creation scheme to evaluate data files more accurately.

Keywords: Data Replication, Data Grid Federation, Replica Creation, Replica

Placement, Replica Eviction

iv

Acknowledgements

First, I would like to express my utmost gratitude to Almighty Allah for his creation

and making me submissive to Him. I would like to gratefully acknowledge the

enthusiastic supervision of my thesis supervisors, for the continuous support of my

PhD study and related research, for their patience, motivation and guidance. I could

not have imagined having better advisers and mentors for my PhD.

Parts of this work would not have been possible without the active contributions of

my colleagues at InterNetWorks Research Group. I thank them for the long

discussions we had, the papers they helped write, and their valuable feedback and

constructive criticisms.

My profound gratitude goes to the heads of InterNetworks Research Laboratory

(IRL) for the great support and for the massive efforts in providing the facilities to

conduct this study. I wish to also thank the supporting team of OptorSim simulator

for their guidance, and to the Open Grid Forum (OGF), particularly the Working

Group on Distributed Computing Infrastructure Federation (WGDCIF), for their

persistent updates in this study.

I am also grateful to School of Computing, UUM College of Arts and Sciences, for

providing research facilities and related resources that facilitated my study. It was an

exciting place to work and study.

Finally, I am immeasurably grateful to my family for their kindness, patience and

support. They have always been there and encouraged me; without their selfless

love, I know I could not have completed my doctoral studies.

v

Table of Contents

Permission to Use .. i

Abstrak .. ii

Abstract .. iii

Acknowledgements ... iv

Table of Contents ..v

List of Figures ..x

List of Tables ... xiii

List of Appendices ... xiv

List of Abbreviations .. xv

CHAPTER ONE INTRODUCTION .. 1

1.1 Research Background ... 1

1.2 Research Motivation ... 6

1.3 Problem Statement .. 9

1.4 Research Questions .. 12

1.5 Research Objectives ... 13

1.6 Significance of the Research ... 14

1.7 Research Contributions ... 16

1.8 Scope of the Research. .. 17

1.9 Thesis Organisation .. 18

CHAPTER TWO LITERATURE REVIEW ... 20

2.1 Introduction .. 20

2.2 Data Grids .. 22

2.3 Data Grid Projects .. 24

2.4 Data Grid Models ... 26

2.5 Overview of Data Grid Federation Systems .. 28

2.6 Data Grid Federation Scenarios .. 29

2.6.1 The Peer-to-Peer or Napster Federation System 33

2.6.2 The CMS Federation System ... 34

2.6.3 The BIRN Federation System .. 34

2.6.4 NASA Backup Federation System ... 35

2.6.5 The BaBar Federation System.. 36

vi

2.6.6 The Earth System Grid Federation ... 36

2.6.7 Data Grid Federation Middleware and Frameworks 37

2.7 Data Replication in Data Grid Federation Systems .. 39

2.7.1 Replica Management System and Replica Eviction 39

2.7.2 Stages of Dynamic Replica Creation .. 42

2.7.3 What Triggers Data Replication in a DGF Environment 43

2.7.4 Replica Optimisation Process .. 43

2.7.5 Availability of Data and Replica Sites .. 48

2.7.6 The Concept of Replica Dependency ... 49

2.7.7 Concept of Grid Jobs and Job Schedules .. 50

2.8 Related Work on Data Replication .. 52

2.8.1 Popularity Based Data Replication Mechanisms 56

2.8.2 Availability Based Data Replication Mechanisms 60

2.8.3 Replica Placement Mechanisms ... 65

2.8.4 Replica Management Stage .. 67

2.8.5 Replica Selection ... 67

2.8.6 Replica Maintenance ... 68

2.9 Data Grid Federation Simulation Tools ... 72

2.9.1 Comparisons of Various Grid Simulation Tools 73

2.9.2 The OptorSim Simulator .. 75

2.10 The Existing Data Replication Mechanisms .. 78

2.10.1 ELALW Data Replication Mechanism ... 82

2.10.2 DRCM Data Replication Mechanism ... 83

2.11 Chapter Summary ... 84

CHAPTER THREE RESEARCH METHODOLOGY ... 87

3.1 Introduction .. 87

3.2 Research Design ... 88

3.3 Research Clarification (RC) .. 90

3.4 Descriptive Study-I (DS-I) .. 91

3.4.1 An Overview of the Proposed DRCEM Mechanism 92

 3.4.1.1 Conceptual Model of the DRCEM Mechanism 93

 3.4.1.2 Framework for the DRCEM Mechanism 96

3.5 Prescriptive Study (PS) ... 99

vii

3.5.1 The Procedure for Mechanism Validation 100

3.5.2 Comparison with Manual Computations of the Validation Data 103

3.6 Descriptive Study-II (DS-II) ... 105

3.6.1 Procedure for Performance Evaluation ... 106

3.6.1.1 Analytical Modeling .. 106

3.6.1.2 Evaluation Using Testbed .. 107

3.6.1.3 Evaluation Using Simulation ... 107

3.6.2 The Simulation Environment ... 108

3.6.2.1 The OptorSim Simulator and Simulation Parameters 109

3.6.2.2 The Simulation Parameters used for Data Collection and

Analysis .. 111

3.6.2.3 The Simulation Topology .. 115

3.6.2.4 Replication and Scheduling Mechanisms in OptorSim

Simulator .. 117

3.6.3 Performance Evaluation Metrics .. 119

3.6.3.1 Job Completion Time .. 119

3.6.3.2 Effective Network Usage .. 120

3.6.3.3 Storage Element Usage ... 120

3.6.3.4 Computing Element Usage (CE Usage) 121

3.7 Chapter Summary ... 122

CHAPTER FOUR THE SCHEMES IN DRCEM MECHANISM 124

4.1 Introduction .. 124

4.2 Design Objectives for the Proposed (DRCEM) Mechanism 124

4.2.1 Access Latency (Tobs Times) .. 125

4.2.2 Optimising Storage and Computing Element Usage 125

4.2.3 Minimising Bandwidth Consumption... 126

4.3 Detailed Schemes Design for the Proposed (DRCEM) Mechanism 127

4.3.1 The Dynamic Replica Evaluation and Creation Scheme 128

4.3.1.1 Determining the Popularity of Data Using Access

Frequencies ... 130

4.3.1.2 Illustrations on How to Determine Access Frequencies ... 134

4.3.1.3 Framework for Determining the Required Number of Files

to Replicate ... 137

viii

4.3.1.4 Scenarios Used to Determine the Required Number of Files

to Replicate ... 138

4.3.1.5 Illustrations on How the Required Numbers of Files are

Computed.. 139

4.3.2 The Dynamic Replica Placement Scheme 142

4.3.2.1 Determining the Replica Placement Cost (RPC) 144

4.3.2.2 Calculating the File Transfer Time (FTT) 146

4.3.2.3 Illustrations on RPC computations for Replica Placement.146

4.3.2.4 Determining Workloads for all Regional Sites 150

4.3.2.5 Computing Site Distance Using Bandwidth Information.. 151

4.3.2.6 Finding Shortest Paths Using an Iterative Deepening Depth-

First Path-Finding Algorithm. ... 158

4.3.2.7 Mathematical Framework for Replica Site Availability ... 159

4.3.2.8 Framework for Determining Files Weights 164

4.3.2.9 Framework for Determining Files Logical Dependencies 165

4.3.2.10 Mathematical Framework for Determining File Value 171

4.3.3 The Dynamic Replica Eviction Scheme ... 173

4.3.4 The Complete Algorithm for the Proposed DRCEM Mechanism ... 175

4.3.4.1 Explanations on the Unique Features of for Proposed

DRCEM Mechanism ... 178

4.4 DRCEM Data Replication Mechanism Implementation 181

4.4.1 Diagramatic Representation of DRCEM Integration with OptorSim

Simulator ... 182

4.4.2 Diagramatic Representation of DRCEM Simulation Processes in

OptorSim .. 185

4.4.3 DRCEM Programming and Codes Integration in OptorSim Simulator187

4.5 Chapter Summary ... 195

CHAPTER FIVE THE DRCEM PERFORMANCE EVALUATION ALONG

WITH COMPARISON ON EXISTING MECHANISMS 196

5.1 Introduction .. 196

5.2 Comparison of DRCEM with ELALW and DRCM Mechanisms 196

5.2.1 Analysis on Number of Jobs and Effects on Replications 197

5.2.3 Analysis on the Effect of Number of Jobs on Jobs Times 200

ix

5.2.4 Analysis on the Effect of Number of Jobs on the Effective Network

Usage ... 204

5.2.5 Analysis on the Effect of Number of Jobs on Storage Element Usage207

5.2.6 Analysis on the Effect of Number of Jobs on Computing Element

Usage ... 208

5.3 Analysis on the Effects of File Dependencies on the Performance Metrics .. 210

5.3.1 Effects of File Logical Dependencies on Jobs Completion Times 213

5.3.2 Effects of File Logical Dependencies on Effective Network Usage ... 215

5.3.3 Effects of File Logical Dependencies on Storage Element Usage 216

5.3.4 Effects of File Dependencies on Computing Element Usage 216

5.4 Effect of Site Availability on Replications .. 217

5.5 Analysis on Indirect Logical Dependability .. 218

5.6 Analysis on Access Frequencies and File Weights 220

5.7 Analysis on Access Frequencies and File Values .. 221

5.8 Chapter Summary ... 223

CHAPTER SIX CONCLUSION AND FUTURE WORK 225

6.1 Introduction .. 225

6.2 Revisiting the Research Objectives ... 228

6.3 Revisiting the Research Contributions .. 232

6.4 Future Research Works ... 235

REFERENCES ... 237

x

List of Figures

Figure 1.1 Grid system types ... 3

Figure 1.2 Grid federation data resource sharing system...................................... 4

Figure 1.3 Scope of the research ... 17

Figure 2.1 An abstract view of data grid system .. 22

Figure 2.2 DG models and their characteristic elements 26

Figure 2.3 The Peer-to-Peer federation model ... 33

Figure 2.4 A Federation middleware for integrating heterogeneous data grids ... 37

Figure 2.5 Replica management architecture ... 40

Figure 2.6 A Concept of grid’s jobs scheduling ... 51

Figure 2.7 A DGF Architecture based on cluster federation topology 61

Figure 2.8 Peer-to-Peer architecture of OptorSim replica optimiser 76

Figure 2.9 Algorithm for ElALW mechanism ... 82

Figure 2.10 Algorithm for DRCM mechanism .. 83

Figure 3.1 Research Design ... 89

Figure 3.2 Main Steps in the Research Clarification Stage 90

Figure 3.3 Conceptual Model of the proposed DRCEM Mechanism 93

Figure 3.4 Relationship between DRCEM, RLS, ISP and other related entities .. 96

Figure 3.5 Framework for the proposed DRCEM Mechanism 97

Figure 3.6 Main Steps in the Prescriptive Study Stage 99

Figure 3.7 Validation process flowchart .. 101

Figure 3.8 Variation of mean job completion time over 20 simulations runs 105

Figure 3.9 The DRCEM Test bed showing sites connectivity 116

Figure 4.1 Flowchart for dynamic replica evaluation and creation scheme

(DRECS) .. 129

Figure 4.2 Flowchart for dynamic replica placement scheme (DRPS) 144

Figure 4.3 Dijkstra's algorithm for finding distances between replica sites 152

Figure 4.4 Graph abstraction for computing distance between sites 156

Figure 4.5 Graph abstraction showing dependencies amongst 16 data files . 169

Figure 4.6 Flowchart for dynamic replica eviction scheme (DRES) 174

Figure 4.7 Algorithm for DRCEM mechanism .. 175

Figure 4.8 OptorSim UML showing relationships amongst the six packages ... 182

Figure 4.9 OptorSim UML class diagram showing DRCEM implementation .. 184

xi

Figure 4.10 DRCEM integration into OptorSim package 186

Figure 4.11 DRCEMOptimiser implementation into ReplicatingOptimser class 188

Figure 4.12 DRCEMStorageElement implementation into

AccessHistoryStorageElement .. 189

Figure 4.13 DRCEM entire code in the OptorSim simulator 192

Figure 4.14 Implementation of DRCEMOptimiser into the StorageElementFactory

class 193

Figure 4.15 Implementation of DRCEMOptimiser into OptimiserFactory class . 194

Figure 5.1 Effect of jobs numbers on replications for 10 GB file size 198

Figure 5.2 Effect of jobs numbers on replications for 5 GB file sizes 198

Figure 5.3 Effect of jobs numbers on replications for 2.5 GB file sizes 198

Figure 5.4 Jobs times for different number of submitted jobs of 10 GB files size ...

 ... 202

Figure 5.5 Jobs times for different number of submitted jobs of 5 GB files size 203

Figure 5.6 Jobs times for different number of submitted jobs of 2.5 GB files size ..

 ... 203

Figure 5.7 ENU for different number of submitted jobs of 10 GB files size 205

Figure 5.8 ENU for different number of submitted Jobs of 5 GB files size 205

Figure 5.9 ENU for different number of submitted jobs of 2.5 GB files size 205

Figure 5.10 SE Usage of DRCM and existing mechanisms for 10 GB files size . 207

Figure 5.11 SE Usage of DRCM and existing mechanisms for 5 GB files size ... 207

Figure 5.12 SE Usage of DRCM and existing mechanisms for 2.5 GB files size 208

Figure 5.13 DRCEM results and existing mechanisms on CE usage for 10 GB files

size ... 208

Figure 5.14 DRCEM results and existing mechanisms on CE usage for 5 GB files

size ... 209

Figure 5.15 DRCEM results and existing mechanisms on CE usage for 2.5 GB files

size ... 209

Figure 5.16 An instance of job configuration file showing logical dependencies 211

Figure 5.17 DRCEM jobs completion times with files dependencies 214

Figure 5.18 DRCEM ENU and existing mechanisms with files dependencies 215

Figure 5.19 DRCEM SEU and existing mechanisms with files dependencies 216

Figure 5.20 DRCEM CEU and existing mechanisms with files dependencies 217

xii

Figure 5.21 DRCEM and existing mechanisms on number of replications 217

Figure 5.22 DRCEM ILD values computations for 16 case data files. 219

Figure 5.23 DRCEM, DRCM file dependencies computations for 16 case data files

 ... 219

Figure 5.24 DRCEM FW values computations for 16 case data files. 220

Figure 5.25 DRCEM, DRCM FW values computations for 16 case data files. ... 220

Figure 5.26 DRCEM popular file evaluation computations for 16 case data files.

 ... 221

Figure 5.27 DRCEM and DRCM on FV computations for 16 case data files. 222

xiii

List of Tables

Table 2.1 Summary of strengths and weaknesses of related literature in data

replication 69

Table 2.2 Comparisons of various grid simulation tools 74

Table 2.3 Features of DRCM and ELALW on replica management. 78

Table 2.4 Additional features of DRCM and ELALW based on files types and

required number of replicas. 79

Table 3.1 Fixed value and internal validity tests data 103

Table 3.2 Statistic data for validation result 104

Table 3.3 Configuration parameters used in the simulations 110

Table 4.1 Computation of popular file using access frequencies 136

Table 4.2 Example of 16 files together with their values and existing number of

copies 140

Table 4.3 Example of how DRCEM computes PNoR values of data files 141

Table 4.4 Example of how DRCEM computes RPC values of data files 146

Table 4.5 Sample site status record for availability workload from TeraGrid 162

Table 4.6 Sample availability computation for six sites 163

Table 4.7 Example of file transfer status 164

Table 4.8 Indirect logical dependencies computations for 16 sites 167

Table 4.9 Computed file weight values for 16 data files 170

Table 4.10 Calculating file values for 16 data files 172

Table 5.1 Summary of results from the simulations of 50 to 5000 jobs 197

Table 5.2 DRCEM, DRCM and ELALW on 5000 jobs with 10.0 GB files size 200

Table 5.3 DRCEM, DRCM and ELALW on 5000 jobs with 5.0 GB files size 200

Table 5.4 DRCEM, DRCM and ELALW on 5000 jobs with 2.5 GB files size 201

Table 5.5 Efficiency of DRCEM against ELALW and DRCM mechanisms 202

Table 5.6 Sample types of jobs and number of files they depended on for running

the jobs 211

Table 5.7 Performance of DRCEM and the existing mechanisms with file

dependencies 212

Table 5.8 DRCEM against ELALW and DRCM on file dependencies 213

xiv

List of Appendices

Appendix A Files Access History Sample Workload Data.................................... 248

Appendix B Site Connectivity Data from Gnutella file-sharing Network.............. 249

Appendix C Site Availability Sample Workload Data... 253

xv

List of Abbreviations

APACGrid Australian Partnership for Advanced Computing Grids

APIs Application Programming Interfaces

BADC British Atmospheric Data Centre

BeInGrid Business Experiments in Grid

BIRN Bioinformatics Research Network

CE Computing Element

CERN European Organization for Nuclear Research

CEU Computing Element Usage

CG Compute Grid

CPU Central Processing Unit

DDG Data Duplication problem on the Grid

DG Data Grids

DGF Data Grid Federation

DIF Directory Interchange Format

DPSO Discrete Particle Swarm Optimisation

DRA Data Replication Agent

DRCEM Dynamic Replica Creation and Eviction

DRCM Dynamic Replica Creation Mechanism

DRECS Dynamic Replica Evaluation and Creation Scheme

DRES Dynamic Replica Eviction Scheme

DRPS Dynamic Replica Placement Scheme

EDG European Data Grid

EGEE Enabling Grids for E-science

ELALW Enhanced Largest Access Largest Weight

ENU Effective Network Usage

ERDA Efficient Dynamic Replication Algorithm

FV File Value

FW File Weight

GCMD NASA Global Change Master Directory

GF Grid Federation

GFA Grid-Federation Agent

xvi

GMS Grid Management Software

GridPP The UK Grid for Particle Physics

GriPhyN Grid Physics Network

GRIS Grid Resource Information Services

HCS Hierarchical Cluster Scheduling

HDD Hard Disk Drive

HPC High Power Computing

HRS Hierarchical Replication Strategy

HTC High Throughput Computing

IDE Integrated Development Environment

ILD Indirect Logical Dependency

LALW Largest Access Largest Weight

LAN Local Area Network

LAS Live Access Server

LDGF Large Data Grid Federation

LFU Least Frequently Used

LHC Large Hadron Collider

LRMS Local Resource Management Systems

LRU Least Recently Used

NASA National Aeronautics and Space Administration

P2P Peer-to-Peer

PDB Protein Data Bank

PDCS Parallel and Distributed Computing Systems

PH-PSO Parallel Particle Swarm Optimisation

QoS Quality of Service

ROP Replica Optimisation Process

SE Storage Element

SEU Storage Element Usage

SGFRS Sub-Grid-Federation Replication Strategy

SGFS Sub-Grid-Federation Scheduling

SLAs Service Level Agreements

TeraGrid Now Extreme Science and Engineering Digital

Environment (XSEDE)

xvii

TLC Total Logical Connections

UML Universal Mark-up Language

UNICORE Uniform Interface to Computing Resources

WAN Wide Area Network

1

CHAPTER ONE

INTRODUCTION

1.1 Research Background

Data Grid Federation (DGF), as a distributed computing infrastructure, is an

interesting area of continued research, which emanates from the popular Grid

Computing (GC) paradigm that manages diverse resources from different

administrative domains [1]. In this chapter, a brief background on the types of Grid

Computing and Data Grid Federation is given as well the types of servies offered by

these types of Distributed Computing infrastructure. The chapter, in its subsequent

secions, explains the problems that motivated this research together with statements

of research questions that need to be addressed. Accordingly, the research objectives

are articulated to help address the research questions. In its last three sections, the

chapter highlights on the significance of the research, research conributions as well

as scope of the research, respectively. Lastly, the chapter maps out how the whole

thesis is structured, by highlighting on the contributions of each chapter (One to Six)

of this thesis.

The fundamental goal of this research is to develop a dynamic replica creation and

eviction mechanism (DRCEM) for improving the performance of DGF systems,

interms of jobs completion times, storage element usage (SEU), effective network

usage (ENU) and computing element usage (CEU). As mentioned earlier, DGF

belongs to Grid Computing paradigm [2] and it is formed by joining more than one

Data Grids system [3] or computing clusters together [1]. Furthermore, DGF is a

large-scale resource management system consisting of data and computing

2

resources, linked via Peer-to-Peer connections [1]. Other innovative technologies

similar to Grid Computing include Pear-to-Pear Computing (P2P) [4], Mobile

Computing [5], Cloud Computing [6] and Ubiquitous Computing [7].

Grid Computing paradigm can be categorized into two major parts, namely (i)

Computational Grid (CG) and (ii) Data Grid (DG). Computational Grid is an

infrastructure that requires massive computational tasks, with little emphasis on

extensive data analysis. Data Grid, on the other hand, is deployed for computational

tasks that deal with the study, as well as the analysis of a considerably large dataset

[1], [8], [9].

Grid Computing makes it possible to share diverse sets of resources such as

supercomputers, minicomputers, desktops, laptops, computational clusters, storage

facilities, data resources, sensor devices, virtual scientific instruments and various

types of applications. Among the services offered on DG platforms include data

federations and replication services, that manage a huge number of replica files,

hosted on several storage facilities. By analogy, DGF systems incorporate different

and heterogeneous computing platforms, thereby enabling fast, up-to-date, reliable

and secure access to distributed file storage to users and federating service providers

[10], [11].

Some of the applications of Grid Computing are to provide enormous computational

capacity to resolve problems that pose challenges to researchers in the fields of

sciences as well as engineering, which previously would seem very tasking. These

problems exist in the following domains: (i)- High Energy Physics (HEP) [7], (ii)-

Earthquake Engineering and Simulations (EES) [7], (iii)- Astrophysics, such as

3

Climate and Weather Modeling [7], (iv)- Aircraft Engine Diagnostics [7], (v)-

Bioinformatics [12], (vi)- Drug Discovery [12], (vii)- Financial Modeling [7], (viii)-

Virtual Observatory and Digital Image Analysis [7].

Grid systems come in different flavors, depending on the motive for their

development namely; grids for compute-intensive tasks, grids for data-intensive

services, grids for application services, grids for utility services, interaction grids and

knowledge-based services grids [7]. Thus, when multiple DG platforms are joined

they form a federation, which is the focus of this research. The following Figure 1.1

outlines some of the notable grid systems types available globally that could join to

form a Grid Federation.

Figure 1.1. Grid system types [7]

From Figure 1.1, grid systems are classified into six sub classes according to the

research in [7] namely (i) - Data Grids, (ii) - Services Grids, (iii) – Utility Grids, (iv)

– Knowledge Grids, (v) – Application Services Grids and (vi) – Interaction Grids.

4

All the grids types may have common software and hardware resources. Typical

software resources include data resources, application resources and components

services. The hardware resources comprise of computing resources, storage

resources and network resources. In any type of grid system, the software and

hardware support each other, and the components interact to provide integrated grid

services. Thus, according to research by researchers in [13], DGF is formed by

means of a federation mechanism or software that binds the individual DG systems

belonging to different administrative domains, with various computing infrastructure

[1]. Figure 1.2 shows an abstract model of DGF data resource sharing system

consisting of several institutions globally.

Figure 1.2. Grid federation data resource sharing system [14]

The concept of DGF systems supersedes that of Parallel and Distributed Computing

systems (PDCS) because the former incorporates numerous resources, and it spans

different administrative domains with varying data management policies [15]. The

5

task of data management over a DGF infrastructure is very complex owing to

ambiguous factors such as heterogeneity, dynamicity, organization-specific policies,

and various political and socio-economic factors [1]. Each of the grid system type

may consist of several hardware and software resources that are available to the

numerous users.

Both DG and DGF platforms emanated from the same computing background,

except that the latter is formed from the former and consequently, the resulting

federation environment inherits some of the characteristics from the traditional DG

platforms. The abstract model of DGF data resource sharing system shown on Figure

1.2 consists of various institutions that may span several regions globally, in which

each institution serves as both provider as well as requester of contents and services

to the federation users.

Thus, DGF systems contain more regions and larger number of sites, compared to

the traditional DG system, which affects the way data replication is performed in

these systems. In DGF system, resource sharing is necessary to facilitate access to

data files or workspaces for collaboration between the federation units or regions.

The shared resources could be accessed directly by federated sites, without

seamingly passing through intermediate entities. The members of such a federation

are thus resource providers as well as resource requestors [1]. Data resources could

be made more available via replication service, which makes duplicate copies of

available data resources from one region to other regions that may need such data

services. However, data replications need to be done with caution, so as not

contraints the available storage resources within the system [14]. Also, the federation

system consists of several sites that are far apart, and may communicate with one

6

another via WAN connectivity, which may necessitate the need for data replication

services within the individual regions of the DGF system. These are some of the

motivating factors that call for continued research in this research domain, which

will be disussed further in the next section under research motivation.

1.2 Research Motivation

In a Distributed Computing system, such as the DG system, data replication plays a

significant role in improving data availability, as well as making the data more

accessible to numerous users [16]. Furthermore, data replication helps to improve

data availability, which if done with caution could improve the performance of DGF

systems. Data availability means to have the required data accessible and obtainable

at all times by the users from the nearest possible replica site [17].

A replica of a file is a duplicate copy of that file, which looks exactly as the original

file. Also, a file replica may have a link to its original file over the network, by

means of some synchronisation mechanisms [18]. Thus, in a DGF system, data

replication service is of paramount importance, due to the size of federation. In DGF

systems, for data replication to be more efficient, several challenges and constraints

have to be encountered. These include Peer-to-Peer sites connectivity issues, file

dependencies, availability of replica sites, file transfer time, site workload, the

distance between client and host site, and the required number of replica copies to

meet up with data demands from the growing number of users [19], [20], [21]. A

DGF system could be regarded as a Peer-to-Peer system, if there is resources sharing

capability amongst the participants, in terms of hardware facilities such as

processing devices, storage devices, network links capacity, printing devices, as well

7

as other related online equipments [22]. In this type of setup, resources failures due

to the unpredictable sites’ behaviours could present serious issues regarding data

replication. This is because, Peer-to-Peer connectivity exhibits specific

characteristics, in which the clients behave both as providers and requesters to

particular services. In other words, each participant commits a part of its resources to

serve other clients directly. Thus, when the provider failed or become inadvertently

absent at the time its services are much needed by the requester, this present serious

setback in terms of jobs times and bandwidth consumption. Also, due to the loose

coupling of the federation architecture, distance between the provider and the

requester may increase file transfer time of peer sites that are located far apart, which

will consequently affect bandwidth usage and jobs times.

Another major challenge in DGF, similar to conventional DG systems, is the storage

issue, and the required number of replica copies to be created. Thus, there is a need

for replica creation and placement strategies that consider all the necessities for data

replication (availability, reliability, consistency, accessibility, and scalability),

without compromising the storage and bandwidth costs within the DGF system.

Unfortunately, however, most replication mechanisms in the literature are designed

to tackle specific aspects relating to the various cost functions within the grid

environment. Some mechanisms concentrate on improving data availability [23],

while others seek to improve data reliability and consistency [24], [25]. It is

challenging for a single approach to address all the issues in one mechanism, but the

ideal situation is to find a mechanism that addresses the most crucial aspects.

Usually, a tradeoff is done between the various cost functions involving bandwidth,

storage and computational resources [1], [26], [27], [28]. Replication services enable

data sharing across regions, which improves data localization to different

8

administrative domains [29]. Numerous issues related to sciences and engineering

disciplines stimulate the intensified interest for developing and deploying DG

infrastructure [30], [31]. Because of the increasing popularity of the Internet and the

globally coordinated virtual approach to conducting scientific and engineering

related experiments; for instance the Large Hadron Collider (LHC) project [2], the

global community is overwhelmed with huge scores of data worldwide. As these

data overflows become wide open, an opportunity has presented itself for real time

capturing of scientific data. In addition, the time required to turn the captured data

into meaningful information continues to reduce by the day. DGF systems enable

research institutes to take advantage of the grid computing facility to address

complex computational challenges. Therefore, the needs to buy large and expensive

servers for applications that can be split-up and work out to smaller application

servers has reduced drastically [32], [33]. Results can then be concatenated and

analyzed upon job(s) completion [34], [35], [36].

As seen in Figure 1.2 (page 4), the various institutions or organizations are typically

referred to as regions or clusters within the DGF system [37], [38]. In such setup,

accessing large datasets from sites across the regions will attract transfer time and

consumes high bandwidth. Furthermore, the LAN as well as the WAN

communications amongst the regional sites present overhead and may tie down the

overall performance of the system. Therefore, if important data files are duplicated

in the various regions, it will reduce the number of WAN communication, which

will also reduce file transfer time and consequently prevents bandwidth congestion

across the regions [38]. Data locality via replication is required to improve access

performance, job throughput and decrease WAN communications amongst the sites,

and ease the constraints due to cross registrations of users [38]. Within the grid

9

setup, there are job-scheduling mechanisms that convey some particular jobs types

onto a given set of sites or destination sites for executions. All grid jobs require

certain data items for their execution. These data need to be available to the users’

discretion at the time of request. Therefore, data transfer time is a factor, which

requires data to be replicated to local sites.

Also, Data replication has the potential to minimise job execution time by decreasing

bandwidth usage and time required to transfer data files. The task of data replication

is performed by creating several copies of important data files in the individual

regions of DGF systems [39], [40]. Thus, data replication has the potential of

improving data availability [41], [42], minimizing bandwidth consumption and time

required to access data files [38], [43] by creating important replicas of the source

data files [44], [45], [46].

1.3 Problem Statement

DGF systems present an interesting and dynamic environment for global data

sharing and management [1]. However, issues such as sites communications, file

dependencies, sites availability, sites workloads and distance between replica sites

present serious concerns, regarding data replication within these systems, which tend

to impede in their smooth running. The reason been that there is increase in sites

communications and distance between sites due to the federation size, as well as

sites failures due to the loosely coupled nature of the federation system, which

requires a consistent load sharing amongst the active sites. Thus, sites

communications due to data access across regions tends to affect bandwidth usage,

which has a consequent effect on the jobs completion times of the users [38], [39].

10

One of the main problems in DGF systems is how to determine the importance of a

data file (file value evaluation), which is the first step in replica creation for

determining the desired files that need to be replicated to meet users needs, as well

as unwanted files that need to be evicted from the system. The existing works on

data replication made several efforts [8], [26], [40] to resolve the issue of file value

evaluation. However, their evaluation process had been based on files access

frequencies, thereby limiting file importance to users only. Thus, the importance of a

file to another file, which is denoted by the inter-dependability of file replicas, is an

essential factor in determining the desired file to be replicated or unwanted files to

be evicted, and has been ignored by the existing DRCM and ELALWmechanisms.

Another serious concern in DGF system entails selecting sites locations where to

place replica files, which could be drastically affeted by the availabiity of the replica

site [47], [48]. Availability refers to the situation whereby a site becomes online or

offline at the time it is needed. The existing works made some efforts by cosidering

sites distance and workloads, while placing new files replicas. However, they failed

to consider the availability status of all the sites where to put the newly created files

replicas [8], [26]. These factors combined, are essential for determining a replica

placement cost (RPC), which will improve the overall performance of DGF systems

[26].

The issue of site workload is a measure of load balancing, which affects the storage

usage and the jobs completion times in the DGF systems. The existing works made

efforts in addressing the issue of sites workloads. However, their works ignored

lightly loaded sites, which ensures highly loaded sites are not considered for replica

placement, but only lightly or moderately loaded sites should be considered [46].

11

Regarding the issue of determining the required number of replica copies, which is a

measure of data availability [49], [50] to satisfy users demands within the DGF

system, files dependabilities and the size of DGF system affect the way of finding

the required number of replica copies, this is a serious issue needed to be addressed.

The works of [8], [26] could have resolved this issue, except that their file evaluation

process did not adequately addressed the issue of finding the popular files, which is a

pre-requisite step to finding the required number of replicas.

A file’s popularity [51], [52] can be determined based on access frequencies, but this

factor is not enough without due consideration to the possible inter-dependencies

amongst the various files within the federation regions. Therefore, the ELALW

popularity criteria could be enhanced by associating the access frequencies with file

inter-dependency factor. The replica creation decision should select a popular file

based on access weight [8], [50], [53], [54], and indirect (clustered) logical

dependencies, in addition to direct logical dependencies proposed by the DRCM in

[26].

Finding required number of replicas will mean that some replicas are not needed,

and thus need to be evicted from the system. This might create serious problems,

considering the possible logical inter-dependencies amongst replica files, which may

lead to deleting replicas with many connections to other files [8]. Evicting files

replicas with high connectivities to other files may lead to erroneous data transfers,

which may affect jobs time when dependents files required to complete such jobs are

missing. The existing works evicts file replicas based on the least frequently used

(LFU) factor, but failed to consider dependability factor.

12

Further to replica placement decision, ELALW finds direct shortest possible distance

using hops counts. This is inadequate considering that hop counts does not always

present the shortest possible distance value [53], [55]. In other words, the shortest

distance could be via a single or multiple sites. Thus, replica placement cost (RPC)

was not adequately addressed by the existing mechanisms.

In addition, site availability impacts on both replica placement and replica eviction

decisions, which previously has been treated on the platform of Peer-to-Peer

distributed computing [56], [57]. However, despite its potentials in making data

replicas more available, site availability factor is yet to be incorporated into data

replication mechanisms by existing researches. In this study, an enhanced dynamic

replica creation and eviction mechanism (DRCEM), is proposed for improving the

performance of Data Grid Federation systems. The proposed DRCEM mechanism

strikes a balance between two existing data replication mechanisms DRCM and

ELALW, which were also based on the European Data Grid (EDG) infrastructure

topology [2].

1.4 Research Questions

The primary research question entails how to adequately address the issues of file

values, workloads and site failures, as well as inter-dependencies amongst replica

files, while taking decision on replica evaluation (finding popular files and

computing required number of replicas), replica creation, replica placement and

eviction within a federated data grid environment, for minimising jobs completion

times, storage usage, computing element usage and bandwidth usage. The following

sub-questions help to answer the main research question.

13

i. How to determine the highly important files and the required number of replica

files needed for replication, based on their access weights and inter-

dependability values, within a federated data grid environment ?

ii. How could sites failures, workloads, and distances between replica sites be

computed, to determine the most suitable locations to place new replica files,

within a data grid federation environment ?

iii. How to determine desired storage space that could accommodate the newly

created replica files, as well as avoid deleting files that may be needed in the

future ?

iv. How to measure the performance of the proposed mechanism in a numerical

simulation environment ?

1.5 Research Objectives

The fundamental goal of this research is to develop a mechanism that creates

replicas of important files, allocates the replicas to suitable storage locations based

on site distance, site workloads and site availability, and evict less significant

replicas based on their sizes, access weights and inter-dependability values. The

mechanism aims to improve the performance of Data Grid Federation system in

terms of jobs completion times, network bandwidth consumption, storage element

usage and computing element usage.

The proposed mechanism incorporates three schemes namely (i) Dynamic Replica

Evaluation and Creation Scheme (DRECS), (ii) Dynamic Replica Placement Scheme

(DRPS) and (iii) Dynamic Replica Eviction Scheme (DRES). In pursuance of this

central goal, the following sub-objectives are formulated.

14

i. To design a dynamic replica evaluation and creation scheme that selects highly

important files and computes the desired number of files replicas required for

replication, in a federated data grid environment, based on their access weights

and inter-dependability values.

ii. To design a dynamic replica placement scheme based on site failures, sites

workloads and sites distance, to determine the most suitable site locations within

each region for placing new file replicas.

iii. To design a dynamic replica eviction scheme that frees more space from suitable

storage elements based on file sizes, access weights and logical dependencies, to

accommodate newly created files replicas, without deleting files that may be

needed in the future.

iv. To evaluate the proposed mechanism using jobs completion times, network

bandwidth consumption, storage element usage and computing element usage

metrics in OptorSim numerical simulation environment.

The replica creation and eviction mechanism seeks to determine the frequency by

which individual sites join and leave the federation system, as well as inter-

dependency values of the popular files. As a complimentary activity, there is a need

to develop an algorithm that arranges the sites according to increasing/decreasing

order of failures over a designated period, to achieve the desired goal. The file with

highest /frequent failures should not be considered for placing file replicas.

1.6 Significance of the Research

In a DGF system, file replicas could be accessed from different regions for executing

a variety of jobs. In addition, if the requested files reside on site locations that are

15

closer to the requesting client, then access time and bandwidth consumption will be

minimised to the benefit of the user. This strategy helps to improve the job

throughput.

However, if the requested file replicas are not available on the site, which is

scheduled to execute the job, then users will have to process their jobs remotely. In

such cases, it will take much longer access time for the job to be processed; partly

due to bandwidth constraints, and partly due to the size of the replica file, wherein

some applications, may scale up to gigabytes in size. However, the constraints of

inter-communications bandwidth across DGF sites is avoided via replication of

important data files in the various regional sites. One of the significance of this

thesis is that data availability is improved via replication of important data items,

without constraints on the storage elements usage.

Also, another significance is that data access time is minimised by placing replicas

within the regional sites, which improved job completion times in DGF

environment. Replica placement helps avoid sites with down times, thereby

improves data availability and access times.

In addition, Replica placement performs load balancing by considering lightly and

moderately loaded sites, thereby improves jobs times and saves bandwidth

consumption, as well as storage usage. Replica eviction considers file dependability,

by not deleting an important replica, which may be needed by the users or other files

at a later time. Thus, replica eviction creates space for an incoming replica, in case

there is no available storage to hold the newly created replica. This also helps to load

balance the regions of the DGF system.

16

1.7 Research Contributions

i. The evaluation of popular files by computing logical dependencies amongst

the data files, stands as a major contribution to the research domain, which

prviously has been based on files access frequencies.

ii. Another major contribution by this research is its ability to resolve the

problem of sites failures, which before now, has been a soring issue in

determining the appropriate locations sites for replica placement decision.

iii. Computation of distance between replica sites has been enhanced via the use a

modified Dijkstra's algorithm, which previously has been based on hops

counts.

iv. The issue of replica eviction has been enhanced in such a way that important

replicas that may be needed later, are not caressly evicted from the system.

v. Also, the research has made significant cotribution in making space more

available within DGF systems, through the provision of a dedicated dynamic

replica eviction mechanism.

vi. The issue of what file to replicate has been significantly addressed by making

sure that only important files are replicated; thus avoiding redundant

replications, which may consume the much needed storage resources. This

could be seen in the fewer number of replications done by the mechanism

compared to the existing mechanisms.

17

1.8 Scope of the Research.

This research focuses on a federation of hierarchical DG systems, similar to tree-

like-structured grid model, which reflects the EDG platform structure [58], [59],

[60]. The hierarchical DG model is a typical architecture used in various research

works [58], [59]. The modality of data that are used in this work is in the form of

structured data. The work is limited to a mechanism for data replication. This

research focused on replica creation and eviction in a DGF environment. Thus,

designing of job scheduling mechanism is not covered by this research. Figure 1.3

shows the scope covered by this research regarding domain, applications, and

resources.

Figure 1.3. Scope of the research

The type of data, applications, topology and resources covered by this research are

explained in this section. The data used in this research is of read-only type. Thus,

this research has not considered the consistency of write types and costs due to

overheads of update propagation. The shaded boxes in the diagram indicate the

18

scope of this research. The resources considered in this work are limited to data,

storage facilities, bandwidth, and processor. The proposed mechanism aimed to

improve the performance of DGF systems regarding jobs times, storage usage,

bandwidth consumption and computing element usage.

1.9 Thesis Organisation

The work in this thesis is organised into six main chapters. The work commences

with an overview and explanations of the research domain, which is presented in the

introductory Chapter One. The chapter also presents the statement of the research

problems, as well as the research questions and objectives, amongst others. The

remaining chapters are organized as follows:

Chapter Two presents a broader overview of Data Grids (DG) regarding their

models and layered architecture. The chapter discusses the basic conceptions and

dissimilarities between the existing DG models, which include Monadic, Hierarchy,

Federation, and Hybrid model. Furthermore, the chapter highlights on how Data

Grid Federations (DGF) are instituted by joining various DG systems together. Most

importantly, the chapter discusses the unique characteristics of DGF systems, which

makes them open for continued research, as well as their domain of application. The

chapter also discusses the concepts of data availability and locality, which aids to

address the research questions adequately, as well as develop a keen understanding

of data replication mechanisms. Finally, the chapter reviewed comprehensively,

some research gaps from relevant related studies in DG systems with a focus on data

replication mechanisms. The outcome of this chapter leads to deciding on the

mechanisms to put in play for realizing the aims and objectives of this thesis.

19

Chapter Three explains the tools and methodology used for carrying out the

research. The chapter presents a brief description of the simulator used in this

research. Also, the chapter describes the grid federation architecture together with

the inputs to and expected outputs from the simulation environment. The measurable

metrics that are used as benchmarks, for evaluating the performance of the proposed

mechanism, are as well presented in this chapter.

Chapter Four. The chapter presents the detailed design of the proposed mechanism,

after a brief overview of the design objectives. The various schemes and algorithmic

requirements of the proposed mechanism, as well as the individual components

required for the design, are also explained in this chapter. The chapter presented

some numerical illustrations aimed at demonstrating how the proposed mechanism

works. The implementation processes of the proposed mechanism, which includes

integration of the new mechanism into the simulation environment, as well as the

necessary codes implementations are detailed in this chapter. The chapter concludes

with a summary section.

Chapter Five presents research results of the proposed replica creation and eviction

mechanism, for addressing the research problem. It discusses the different scenarios

used in the simulation process. The various results output from the simulation

process are discussed, as well as compared with other related replication

mechanisms for benchmarking.

Chapter Six concludes the research, by summarising the entire research work. The

chapter also highlights on the statements of the research contributions, as well as

future direction for further works relating to this research domain.

20

CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

This chapter presents a general overview of DG models and their layered

architecture, together with a brief analysis regarding the different models of DG

systems, which include monadic, hierarchical, hybrid and federation models. The

chapter also discusses some of the Data Grid Federation models available and their

areas of applications. Further, critical review of related researches in specific areas

of data replication mechanisms within Data Grids and Data Grid Federations is

conducted in this chapter. The central aim of this thesis is improving data availability

by proposing an enhanced dynamic replica creation and eviction mechanism

(DRCEM) that seeks to improve the performance of DGF environment in terms of

jobs completion times, storage usage, bandwidth consumption and computing

element usage. Also, this chapter explored in further details, the characteristics

features of two selected existing ELALW [8] and DRCM [26] mechanisms, for

performance comparison later with the proposed DRCEM mechanism, based on the

afore-mentioned performance metrics. Also, the chapter concludes with a summary.

As mentioned earlier, the focus of this thesis is on improving data availability via

dynamic replication of valuable data, and eviction of unnecessary files replicas. The

proposed mechanism evaluates existing files replicas based on their importance to

both users and the DGF system at large and duplicates essential files replicas to

attain the desired availability without constraining the storage resources. Thus, the

importance of a file to users is indicated by how frequently a file is accessed by the

21

users [42], [53], while file’s importance to the system is indicated by number of

direct and indirect logical connections of a file access to other files in the system

[61].

For instance, in software engineering, logical dependencies are exhibited by a set of

data files that changed simultaneously due to reasons of change in proprietary

information, classes refactoring, version changes and other elements that linked the

files to the same semantic or logical class [61]. Another instance of logical

dependencies is observed on students’ records system in an institution, which

typically keeps two or more file records for a single candidate namely personal

record and academic record. The academic record is usually split into courses record

and exams record. All the three records are linked via a primary key, which may be

candidate’s matric number. Changes to the matric number will affect the other files.

In recent times, the information age challenged the global community with an

enormous amount of data produced on a daily basis by many works of life. Some of

the applications include scientific findings, sensor networks, Internet of things (IoT)

and engineering applications, amongst others. The enormously produced data items

are used for data sharing and collaboration across a variety of discipline over various

WAN-enabled organisations, world over. Consequently, effective administration of

these voluminous data resources is regarded as a significant area of research for

sciences, engineering as well as other application areas in the global institutions [62].

The Data Grid (DG) tends to resolve this problem by offering a scalable as well as

distributed infrastructure that connects several compute and data-intensive resources

from diverse places, establishments and varied platforms [63]. The DG environment

enables users to access resources transparently, similar to retrieving the resources

22

from their local regional sites. The era of grid computing has witnessed several

technological advancements over the years [64], which was fueled by various

motives namely computational needs, data requirements, application services

requirements, utility services, interaction and knowledge-based services.

2.2 Data Grids

Data Grids enables users to access a significant volume of data, operate and

transform the data to suit their needs. The users could also generate and maintain

various copies of the data items, as well as store them in distributed storage facilities

[18]. Figure 2.1 presents a high-level view of worldwide DG system.

Figure 2.1. An abstract view of data grid system [30]

The DG system depicted in Figure 2.1 spans different countries, the components of

which include high-speed networks linking computational and storage resources.

Some of the common services offered on DG systems include mechanisms for data

23

resource discovery, management and transfer to requesting clients [1], [9], [26].

Nevertheless, the discovery and transfer services are based on requests of an

application, which forms part of a collection of other related services. These related

services may include, amongst other things, management of replica consistency, data

cleaning and analyses [24]. DG systems are typically equipped with a security layer

that mediates all operations, to ascertain that all requests originate from genuine

sources, and only approved operations are allowed to accomplish on the platform.

Another crucial service offered on the DG platform is the management of shared

collections of data items that originated from diverse sources. These data items are

maintained on different types of storage elements (SE). The scalable nature of DG

systems allows an authenticated and effortless addition of new nodes to the platform.

Due to the dynamic nature of operations platforms, and in case of migrating from

one platform to another, DG systems incorporated persistent storage archive as a

mandatory service, to preserve the various data collections, related metadata, access

permissions, and information regarding versions upgrades [14].

Furthermore, from the abstract view of DG systems in Figure 2.1, major centres

communicate with each other via high bandwidth networks represented by thick

lines. The thinner lines indicate the low-bandwidth networks that link the subsidiary

centers. Each primary data store maintained data items that are produced by either

experimentation, scientific instruments, or sensing nodes. These data collections are

transmitted to other storage locations on requests, away from where the data

originated, by the means of data replication services. Additionally, scheduling

mechanisms are deployed to ensure that users’ requests are routed to appropriate

data sites within the DG environment.

24

The first point of contact when addressing data requests from users is the local

replica catalog. Data from the local storage facilities are obtained and transmit to

requesting clients, after authenticating the requester’s credentials. However, if the

requested data items are not readily obtainable from the local storage facilities, the

data need to be obtained from a remote repository. Subsequently, the data may have

to be routed to a super computing facility or a cluster facility for processing

purposes. In the case of DGF systems, these computing facilities may be part of a

DG infrastructure located in another region. The processed data items may then be

subjected to series of activities, which include sharing, visualisations, analysis and

duplications on local storage facilities [14]. As mentioned earlier in the introductory

Chapter One, data replication improves data locality in both DG and DGF systems,

but comes with a price, thus need to be done under some guiding principles, which

will be discussed later in Section 2.6 of this chapter.

2.3 Data Grid Projects

The organization of data items from originating sources determines to a large extent,

the type of DG model design. Thus, numerous DG models exist globally, for various

kinds of operations, which depend on some factors such as the data origin,

distributed or single source, size of the data, and mode of data sharing. Data Grid is

part of the Grid Computing paradigm, which presents an evolving structure for

accessing distributed resources, complex computational and data resources, across

independent organizations. Their federation is fomred by linking various DG

platforms. More discussion on DG federation is given in Section 2.5 of this chapter.

Data Grids present a robust data management systems for global sharing, distributing

and maintaining data that reside on storage systems belonging to various managerial

25

domains. A DG platform offers consistent namespaces for its users, as well as other

entities such as the digital objects, storage space for maintaining persistent identities

and access rights, which enables replicating certain data items as well as scheduling

of users’ jobs, while taking into accounts the different user’s time zones. The grid

infrastructures are analogous to the electrical power grids that afford users with a

persistent access to electrical energy, with little concern over the source of such

services. Examples of grid projects, which combined the computational powers of

worldwide-distributed computers include BeInGrid, BIRN (2005), GridPP, TeraGrid

[65], ChinaGrid, and APACGrid) [59].

Data Grids are developed based on the need for a global-scale data management

services including access to data, integration, processing and archiving through

distributed data warehouses. Some notable amongst DG projects include EGEE,

LHC Grid, and GriPhyN [65]. The Net-Solve and Grid-Solve are two notable

Application Service Grids developed to provide access to remote applications,

modules, and libraries that are hosted on Data Centers (DC) or Computational Grids

(CG) [65]. Access Grid is an example of interaction grid with a focus on interaction

as well as collaborative visualization amongst users.

Knowledge Grids aimed towards knowledge acquisition, processing, and

management, as well as offers functionalities for business analysis via unified data

mining services. Utility Grid emphasized on providing all the grid services to its

users, which include computing power, access to data services, and utility services

that are part of users’ benefits when duely subscribed [7]. Grid systems portrayed a

layered architecture with Computational Grid (CG) forming the bottom layer, while

the Utility Grid is forming the topmost layer [30]. A grid at a higher-level employs

26

the services of grids that operate at bottom layers in the design. For instance, a DG

utilizes the services of the CG for data processing and hence builds on it. Also, the

grids at the lower layer focus heavily on infrastructure aspects, whereas those at the

higher layer focus on users and quality of service delivery. The next sub-sections

explain these models in further details.

2.4 Data Grid Models

As opined in Section 2.3 of this chapter, DG systems are modeled according to the

underlying projects that created them. The various DG models depict the mode of

data flow in a system. For instance, in a centralised DG platform, all requests for

data items are directed to the central storage facilities. A variety of models is in place

for the operation of a DG services. Figure 2.2 shows four notable DG models that

are used to deploy DG infrastructure around the world today, together with their

characteristics elements.

Figure 2.2. DG models and their characteristic elements [30]

The models architectures are dependent upon specific factors namely; data source;

whether single or distributed; as well as the size and method of sharing the data

27

items [30]. The model on the Figure 2.2 are explained susequently in the next

paragraph.

 Monadic (Centralized). This model is regarded as the common method of

deploying a DG infrastructure, whereby the entire data resources are stored

on centralised storage facilities. The data stores accept users’ requests for

data, then deliver the requested data items if available. The mornadic model

offers a single access point, by which users retrieve data items. Thus, the

distinction between monadic and the other DG models is that, in the other

DG models, data items could be retrieved fully or partially from a variety of

access points within the system.

 Hierarchical. This model presents data to collaborators in the form of a

hierarchy. Data items flow from originating sources to major centres and to

sub-centres.

 The Federation model [30] is dominant in DG platforms deployed by

organisations or institutions that are willing to collaborate by sharing some of

the data on their localised data stores. Examples of DG federation include the

Bioinformatics-based Research Networks (BIRN) federation [30], NASA

backup federation [15], NPACI driven federation [9], NARA federation [9],

BaBar federation [9], PDB federation [9], SIOExplorer federation and Web

cache federation system [9]. Section 2.6 (Data Grid Federation Scenarios;

page 29) gives more explanations on these models.

 The hybrid model combines the features of the other DG models.

This study focuses on designing a data replica creation and eviction mechanism for

DG federation systems. The proposed mechanism aims to improve on the

28

performance of DGF system regarding jobs completion times, bandwidth usage

storage element usage and computing element usage. The next section gives an

overview of DG federation models and scenarios, as well as their characteristic

features, some of which were inherited from the traditional DG systems.

2.5 Overview of Data Grid Federation Systems

Data Grid Federation refers to a model for distributed resource management that

group a pool of computing sites into clusters or regions [1], [9]. DGF is the focus of

this research, and thus, the overall goal is centred on enhancing the performance of

the system regarding jobs times, bandwidth, storage and computing element usage,

by improving on the data replication mechanisms within the DGF platform.

DGF offers a global platform for collaboration and resources sharing systems that

consists of various DG systems, which are linked via WAN connections [1], [9], [30]

[66]. The platform enables complete decentralisation of resource control and offers

better scalability, as well as a self-organize-able and fault-tolerant computing

environment.

DGF provides an alternative to the unbalanced resources sharing constraints imposed

by the centralized DG systems [3], [30], [45], [67]. The logical coupling of DGF

systems could take any of the following forms namely a Hierarchical Peer-to-Peer

[22], Centralized Peer-to-Peer [22], Decentralized Peer-to-Peer [22] or Absolute

Peer-to-Peer system [68].

Depending on the type of logical coupling, different DGF scenarios exist, which

serve the global community on various works of life. According to researchers in

29

[1], [9], the feature of grid computing is moving towards federated infrastructure,

integrating many global communities and numerous users. The next section explains

the point of difference between the conventional DG platforms and the federated DG

systems, together with scenarios in which DGF systems are deployed.

2.6 Data Grid Federation Scenarios

This Section highlights some DGF systems that have been in operations over the

years. The overview will be used to lay the foundation on the inherent characteristics

of the DGF systems for proper justification and motivation for the study. According

to research in [68], DG platforms could be federated over dedicated Peer-to-Peer

grid systems, with one or more servers, in which case the platforms are referred to as

centralized Peer-to-Peer DGF systems. As expected, decentralized Peer-to-Peer DGF

systems are not strictly controlled by dedicated servers. The decentralized Peer-to-

Peer systems can be a single tier or multi-tier (hierarchical) in their topology. The

hierarchical Peer-to-Peer DGF systems combine both centralized and decentralized

architectures to take advantage of both topologies [68].

Research conducted by the authors in [1], [30], explained DGF as a model for

distributed resource management that group a pool of computing sites into clusters.

In addition, the researchers explained that DGF could be seen as a platform for

sharing of vast resources globally that incorporates individual DG systems linked via

peer level connections. The peer level connection approach enables complete

decentralization of resource control and offers better scalability as well as a self-

organisable and fault-tolerant computing environment. According to research

conducted severally by researchers in [1], [30], [35], [69], they maintained that a

DGF system offers solutions to the uncoordinated resources sharing constraints

30

imposed by the centralized DG systems. In [1], it was reported that the Grid

Computing in general, emanates from the existing distributed computing paradigm,

which encapsulates the ever-increasing internet-based communities, with diverse

topology and computing resources that may span over different administrative

domains. In addition, according researchers in [1], the distinction between traditional

DG system and DG Federation is that: Whereas DG systems offer the capability for

management of data resources on distributed storage facilities; the DGF platform

provides a means of managing the data on multiple DG systems. The implication of

this interpretation regarding DG systems and their federations suggests that DGF is

an architectural framework for logical coupling of DG resources that are under

different organisational domains. The various organisations are likely to run on

distinct administrative and time domains, and may transparently share their

resources based on given policy and schedule the grid jobs based on an established

Quality of Service (QoS).

The DGF resource types include computing machines, commutating clusters, online

instruments for scientific experiments, storage facilities, data resources as well as

various types of applications. The consumers of these resources can utilise them to

solve data-intensive applications.

Furthermore, the researchers in [1] explained that DGF systems present a loosely

coupled architecture, whose logical coupling is usually determined by a pre-

determined appropriate federation mechanism [13], [15]. Going further, they

reported that, federating multiple DG systems imposes controls on users’

registrations, which limits their ability to register across other regions. Consequently,

their ability to access some resources, data files, and other utilities is also limited.

31

In addition, since DG federation brings together sites from geographically

distributed resources [1], it imposes a number of issues namely increase in the

distance between the regional sites and availability issues resulting from the loosely

coupled nature of the regional sites. In addition, some jobs require more than one file

to execute, and some files require other files or partial replicas for their proper

execution, which brings about the issue of file dependability. Furthermore, since the

data required for some jobs may not be available within the region of request,

transferring such data to local region will have to consider workload or storage space

availability.

Fortunately, however, the issues regarding sites distance and availability as well as

files dependability and workloads could be resolved by deploying a robust data

replication system, which will incorporate all these factors into one mechanism.

These four factors further distinguish DGF systems from the traditional DG systems.

Furthermore, the four factors are used by this thesis as the design metrics elements to

help evaluate the performance metrics. Section 2.7.5 explains more on site

availability, while Section 2.7.6 explains more on file dependability issues.

Also, the limitations due to users’ inter-registration could be partly resolved by

embarking on identity federations, as explained in research conducted by [70], as

well as by integrating storage facilities and computing centers of different sizes,

power, and architecture according to [71]. The later type of federation leads to Cloud

Data Centers. The revolving point for these constraints could be associated with the

users or imposed automatically by the regional DGF managers. The researchers

further explained that the constraints might be restricted to either no inter-

registration, partial inter-registration or complete inter-registration by the users.

32

According to research in [1], [9], more than 1,500 methods of federating DG systems

may result, if users’ registration metrics or constraints are combined in a variety of

ways. Finding the best approach for achieving grid federation presents a dynamic

research area because of the numerous ways the federation could be implemented.

Thus, in recent times, research conducted by the authours on DGF systems in [15],

explained a means by which various DG installations are integrated using identity

federation. Their research case study was of National Aeronautics and Space

Administration (NASA) on how to achieve a secure information sharing amongst the

partnering organizations. Similarly, researchers in [72] buttressed the importance of

identity federation for NASA's future, to provide viable collaboration competencies

between NASA and the various partner organizations.

Each organization taking part in a DG federation maintains ownership and controls

of its data resources [1]. The strengths of collaboration depend to some extents on

the integration limits imposed by the various stakeholders. These limits may include

site autonomy, users’ inter-registration, and replication threshold as well as

synchronization degree. With proper credentials, researchers from partner

organisations may take advantage of the DGF platforms for their various data needs.

The researchers delved further by discussing ten scenarios of DGF systems that have

been deployed over the years, to tackle real-world issues in sciences [1].

Some notable instances of the real world DGF scenarios are highlighted in

Subsections 2.6.1-2.6.7. Furthermore, researchers in [38] reported that each DG

platform in a DGF system is referred to as a zone or region. The various regions

manage their data stores, metadata indexes, users’ credentials, list of resources and

utilities within the system. Some of the federation scenarios alongside their areas of

33

applications identified by this research include: Peer-to-peer or Napster federation

[1], BIRN federation [12], CMS federation [73], NASA backup federation [15], [72],

NPACI driven federation [9], NARA federation [9], BaBar federation [74], PDB

federation [75], SIOExplorer federation and Web cache federation system [9]. The

next sections discuss the type of Peer-to-Peer Federation models in more details, as

well as research efforts in the development of a middleware architecture for

federating different DG systems.

2.6.1 The Peer-to-Peer or Napster Federation System

The Peer-to-Peer federation of clusters reported by the researchers in [3], depicted

this infrastructure as the type of model implemented by Napster [1]. This model is

shown in Figure 2.3.

Figure 2.3. The Peer-to-Peer federation model [3]

34

The Napster federation is also termed as the “Free-floating Zones.” This platform

has numerous individual regions without a central region. The individual regions are

peers to their sister regions. The system comprises of few resources, which are

accessed by limited number of registered users. The Peer-to-Peer federation model is

predominantly adopted by organisations that are willing to share their data items

from their local stores. The various regions are regarded as individual DG systems

that operate on their own (similar to personal computer). The regions are losely

coupled, thus the regions connect on occassions for data exchange or collaborative

purposes. The occasional exchange is synonymous to data exchane with colleagues

via auxiliary storage devices. Also, the regions are autonomous and control the kind

of data shared with the collaborators.

2.6.2 The CMS Federation System

The Compact Moun Solenoid (CMS) Data Grids Federation, is explained by

researchers in [62], [76] as a hierarchical model. In the CMS federation, data files

originate from a major region. The data objects are then replicated to minor regions

down the lower level in the hierarchy. The minor regions can manipulate the data

along with the associated metadata and may wish to share all or subsets of the data to

other clients. The CMS federation is dedicated to providing a structured analysis

environment to physicists at the LHC centers, whose activities are focused on

analysing the data from Physics experiments.

2.6.3 The BIRN Federation System

The Bio-Informatics Research Network (BIRN) reported by the researchers in [1]

and [12], is a DGF platform with a focus on Bio-Informatics research data. This

35

platform is termed as a resource interaction model, in which data objects are shared

amongst multiple regions. The sister regions can replicate the data for use by their

numerous users. This type of federation proves more effective in situations where

the partner regions are placed far from each other, but would like to make access to

data objects easier for the numerous users from other regions. The users can

duplicate the data for offline usage, and may share the files to other users of the

same mutual interests. The same process is carried on the associated metadata, which

would then be synchronised across the regions. The BIRN started operations with a

handful of sites and presented application-oriented test beds with a central

coordinating center. The federation was initiated by the European National Institutes

of Health in the year (2001) [12], with an anticipated growth that will span many

regions, which will provide an open framework for global sharing of relevant data.

2.6.4 NASA Backup Federation System

The National Aeronautics and Space Administration (NASA) backup federation

model, also called the Archival Zone or Back-up Zone, as reported by [1] and

buttressed by the researchers in [15]. The recent development in NASA federation

system portrays identity federation [15], [72], in which members of one organisation

can use their credentials to access information hosted or managed by a partner

organisation in a separate security domain.

The NASA federation was achieved via a pre-defined set of authentication

information to the hosting organisation. Thus, different organisations can share

information beyond the boundaries of their individual DG firewalls, which reduces

the cost of credential management, improve security and provide a reduced sign-on

experience to users. In this platform, there could be multiple regions, which share

36

data objects with an auxiliary region referred to as the archival zone. The various

partner regions donate data objects that are used to populate the archival zone. These

archives serve as data backup for the entire regions, which may be stored on disks or

other auxiliary data storage syetems.

2.6.5 The BaBar Federation System

The BaBar federation model is popularly known as the Replicated Data Zones [1],

[73]. In the BaBar federation, each region works independent of the others, but

maintains the same set of data objects as well as the associated metadata across the

partner regions. In this type of federation, each region operates autonomously, and

users’ credentials in the sister regions are useful only within their regional

boundaries, but not permitted to cross over to the partner regions. However,

individual users may wish to obtain accounts with other regions apart from their

domain, which will enable them to access as well as replicate data from those

regions, as permitted by their subscriptions status. The advantage of this type of

federation is that the regions could save network bandwidth, while sharing data over

a WAN connection.

2.6.6 The Earth System Grid Federation

The Earth System Grid Federation (ESGF) was formed using a distributed and

federated software platform [77]. The federation composed of numerous sites that

are geographically apart. The sites interoperate via common interfaces, services as

well as protocols for collaboration purposes. Each site maintains its data objects

together with the related metadata independent of the partner sites. In addition, the

sites can join or leave the federation at will. The ESGF Peer-to-Peer platform is an

37

instance of globally operated systems; by which scientific data objects are accessed

via web-based application interfaces. A few of the most noticeable implementations

of ESGF data systems include NASA Global Change Master Directory (GCMD),

which is a well established platform for geo-scientific metadata records, and British

Atmospheric Data Center (BADC) for data collections relating to global atmospheric

conditions.

2.6.7 Data Grid Federation Middleware and Frameworks

Software for joining different DG platforms, otherwise known as FedMi was

developed according to research in [78]. Figure 2.4 shows an abstract architecture of

FedMi proxy server package.

Figure 2.4. A Federation middleware for integrating heterogeneous data grids [78]

FedMi’s goal was to achieve reliable collaboration between numerous DG systems

from heterogeneous domains. The software comprises a system of proxy server

package, which runs on top of the underlying implementations of various DG

Main Data

Server

Jobs

Scheduler

Proxy

Server

Proxy

Server

Proxy

Server

Proxy

Server Proxy

Server

Client

Program

38

platforms. A common interface was integrated into the proxy server package, which

enables users from various DG platforms to collaborate. For integrating a DG

platform into the federation system, the DG administrator needs to implement the

interface that will translate the basic instructions supported by FedMi package, into

native instructions understandable by the underlying DG installation. By this way,

the complexities of their architectures are hidden away from the various partnering

organisations, thereby providing a high-level abstraction of their heterogeneity.

Also in [79] the researchers proposed a framework for joining various types of

service grids from multiple domains, for efficient management of corporate

intelligence data objects. The architectural framework provides support for

synchronising various services, such as service-registries, service-composition,

access-control, and monitoring, which are under the management of a service grid

operator. The authors applied the proposed framework to the language-service

domain for the establishment of a language grid. Similarly, in [3] the researchers

proposed a framwork that consists of a Peer-to-Peer federation agent, which joins

resources together from distributed cluster platforms, to enable a collaborative

environment amongst the various partner organisations. The framework provides

mechanism for cooperative and coordinated sharing of distributed clusters, aimed at

resolving the problems of application-specific non-coordinated resource allocation

nature of the tradional DG environment, which makes scheduling processes

independent of the others in the system. The non-coordinated nature of the tradional

DG systdms can exacerbate the load sharing and utilisation problems of distributed

resources due to substandard schedules that my occur in the systems. To overcome

these limitations, the framework allows resources to be used transparently from the

federation, when local resources are inadequate to satisfy user’s demands.

39

2.7 Data Replication in Data Grid Federation Systems

The two principal issues that surround DGF systems involved how to integrate

various DG platforms to form a federation sysyem over WAN connections, and how

to make data more available as well as accessible via replication. Although

developing an efficient middleware for federating DG systems presents open

research issues [1], this research will not delve deeper into the aspects of middlewire

development. The core of this research is for data replication, which has been

previously introduced under Research Motivation (Section 1.2, page 6). Data

replication generates multiple copies of the existing data objects to provide access

opportunities from remote sites [80]. Subsequently, this section will discuss further

into the concepts of data replication and its roles in improving the overall

performance of DGF systems. Before discussing relevant literature on data

replication, the next section discuss replica management architecture for DG

systems.

2.7.1 Replica Management System and Replica Eviction

A DGF system joins together a globally distributed data objects, from diverse

administrative domains. Every partner in the federation requires persistent access to

various data objects of mutual interests. Data replication serves as a pre-requisite

technique for preserving network bandwidth cost, and an essential factor for

maintaining data reliability. Replication also ensures scalable collaboration amongst

the partner regions . Replica eviction removes unwanted replicas from the system.

Both data replication and replica eviction are part of the replica management system

[81]. Figure 2.5 shows a system of replica management architecture, which consists

of storage facilities that are linked via high-performance data trasport protocols.

40

Figure 2.5. Replica management architecture [30]

In addition, the performance of a replication mechanism could be affected by the

available storage space as well as the network bandwidth between source and target

sites [82]. Thus, there is a need for a replica management system [83], [84], which

will guarantee access to data items, as well as the management of the available

storage spaces.

In a typical replica management system, replicated data objects are managed by the

replica manager, based on storage space availability of the relica sites. In the replica

manager, there is a catalog or a directory that keeps track of the locations of files

replicas. Various applications may query the replica catalog to find if replica copies

exist for particular data objects in the system. The query will return the number as

well as location information for the duplicate files. The application software on the

client machines will usually incorporate library suites that query the catalog for

possible existence of certain data objects within the system. The replication methods

as well as the replica management system are amongst the essential components of

http://www.sciencedirect.com/science/article/pii/S1084804510002171#bbib6

41

dynamic replication strategy. An important function of replication mechanism entails

the ability to minimise the time required to access data objects in the system, which

is part of the core objectives of replica optimisation services. If all requests for data

objects are sent to the appropriate replica sites, files’ access time could be reduced to

minimal [18].

The access history for various data objects is collected into a statistical data form,

and the repeatedly used files are replicated in advance. The replication mechanism

decides which files to replicate, when to replicate, and where to put new files

replicas. The static and dynamic replication systems are the two terms used to

classify replica placement mechanisms in a DG platform.

A replication mechanism is said to be static, if the duplicate data objects are placed

statically within the system. In other words, if more space is needed, or if such data

objects become obsolete, then the files have to be manually evicted from the system.

Static replication system is not suitable in a dynamic environment, such as the DGF

systems, where users exhibit certain degree of unpredictable behaviour, which will

consequently undermine the potentials of data replication systems.

In contrast, a dynamic replication system duplicates data objects as well as evicts

them automatically, if the need arises or when the data objects become obsolete in

the system. Data objects could be obsolete in the system, if the users stopped

patronising the files. However, other files may still need these files, even if the users

stopped accessing them directly. Thus, file eviction should consider replica

dependencies, prior to evicting files that are regarded as obsolete. The proposed

DRCEM mechanism ensures the benefits of replication are not tempered with

42

despite the possible changes in users’ behaviours to form the popular data [60], [85].

Assessment of popular data file can be done by considering file access by users or

relevance of the data file to other files in the DGF system. Dynamic replication

promotes file popularity, as well as load balancing by distributing file replicas to

lightly or moderately loaded sites within a given region. The benefits of data

replication cannot be over-estimated. When data are replicated on sites closer to

clients, bandwidth consumption is drastically reduced. Also, in a distributed

environment such as the DGF environment, the number of replica sites could be

increased to boost up data availability and improve system performance.

Where relevant literature is not readily available on data replication in DGF

environment, the research falls back to data replication in the traditional DG

systems, and explore the possibility of tailoring to suit the target environment.

Besides, DGF is a collaboration of DG systems. Thus, a mechanism that works in

DG environment will certainly work in DGF environment with some modifications.

2.7.2 Stages of Dynamic Replica Creation

Dynamic replica creation (DRC) encapsulates three main stages as follows:

a. The decision for replication: firstly, given the jobs type and data objects to

operate on, then there is need to specify the method for replicating the data

objects, in other words, whether to actually replicate or evict the files.

b. Determining the number of replica files: after deciding on which files to

replicate or evict, the next stage is to find the required number of the affected

files that need to be created or evicted from the system.

c. Placement of file replicas into appropriate locations: the mechanism for

43

replication should determine the appropriate locations to put the new file

replicas, or the locations from where to evict the old replicas.

2.7.3 What Triggers Data Replication in a DGF Environment

When a request for data objects is sent to a given site, but the data objects are not

available on that particular site, the situation could trigger a replication process. This

kind of strategy is also called an unconditional strategy, where every data request

results to a replication process. Thus, along with replication, there is possible

eviction of data objects. Among the popular policies used commonly in operating

systems are the Least Recently Used (LRU) and the Least Frequently Used (LFU)

mechanisms [9], [51], [86]. These mechanisms are used to evict data objects to claim

space for new significant data objects. The above-mentioned strategies are also used

in DG systems for evicting obsolete data objects [44], [50], [51], [52]. In the LRU

mechanism, the required file replicas are obtained by the queried site. If space is not

sufficient in the target location to hold the file replica, the mechanism will evaluate

the existing data objects to determine the data objects that are least significant and

evict such data objects.

2.7.4 Replica Optimisation Process

Replication helps to improve data locality, which may result to reduction in the time

required for a job to execute in DG systems [87]. By replication, duplicate copies of

data objects are stored at various locations within the local storage, for easy recovery

of such data, in situations where the data objects are lost or unavailable.

Additionally, replication tends to save sites bandwidth, which may reduce

congestion when demand for data objects increases in the system. Nevertheless,

44

despite its advantages, replication also has some issues. These issues could be

triggered by factors such as the insufficiency of storage space at local sites, as well

as the bandwidth between various sites [88]. Additionally, the files in a DG system

are typically produced in larger sizes [69], [89]; consequently, placing file duplicates

to each site and maintaining an indefinite number of duplicates is not a good

practice, particularly in DGF platforms [10]. Hence finding the adequate (optimal)

number of duplicates as well as finding the ideal location to host them is a vital

process [90]. This process is referred to as the replica optimisation problem. Data

optimisation and replica optimisation are synonymously used in the literature, to

refer to the problems of optimising the number of replicas in DG systems [90].

In DGF systems, finding required number of replicas is equally as crucial as finding

the locations for hosting the file replicas [11], where the sites are located far apart

with large number of data objects. The way to formulate Replica Optimisation

Process (ROP) involves amongst other things; architecture (topology) of the

underlying system, users’ locations, users’ requests for popular data objects, and

ideal locations suitable for hosting file replicas. The objective of ROP could be

centred on the minimisation of certain costs regarding access to data objects, storage

space and file transfer from source to destination sites. The individual cost or a

combination of more than one cost is thus minimised or maximised, which depends

on the laid down objectives of the replication mechanism. For instance, the cost due

to communications, the cost due to extreme storage element usage, the cost due to

infinite number of duplicate files, and the cost due to maximum number of locations

to host duplicate files. Literarily, these costs are respectively refereed to as read cost,

storage cost, replica placement cost and site cost. Various studies have attempted to

address the various costs related to replica optimisation in DG systems [27], [42],

45

[91], [92]. In the past, some researchers proposed mechanisms that distribute file

replicas to locations where the read cost (RC) is minimal [40], [42], [54], [92], which

minimised the time required to transfer data objects over the network to requesting

clients. Regarding the replica placement cost (RPC), some researchers considered

hosting data objects on storage locations that optimise storage usage in the system

[27], [93], [94], [95].

The storage cost is synonymously refereed to as the file size, the site throughput, or

the fact that a file duplicate resides at an ideal location, which also means cost of

placing replica files [90]. Associated to read cost is the access cost, which refers to

the duration it takes to access data objects, stored in a replicated site [34]. In this

thesis, an enhanced scheme for replica placement cost is integrated in the proposed

DRCEM mechanism, which considered, access cost (storage cost) and site distance

in finding the best locations where to put file replicas within a federated DG system.

1. Replication Benefits

Some of the crucial benefits of data replication are:

• Improves performance: Replication can enhance the system’s performance,

regarding jobs completion times and bandwidth consumption. Data files could

be placed at sites locations that are closer to the users’ access points. Therefore,

response time, file transfer time and the overhead will reduce, thereby

improving on the jobs completion times. Thus, users can access data items

within a given region at the same degree of response time, if essential file

replicas are duplicated evenly over the network via replication.

• Enables balancing of sites workloads within the DGF regions: Replication can

offer load balancing between the regional sites, in such a way that same data

46

items could be simultaneously served by multiple sites. Therefore, this gesture

will minimise the burden on the originating sites, where the main data items are

been hosted.

However, despite its numerous advantages, data replication in DGF systems is

constrained by issues such as the storage resources usage, sites workloads and

bandwidth consumption. Data replication mechanisms should consider some

significant factors to control the cost of replication. The factors impact directly on

the systems’ performance. Thus, excessive use of replication is not recommended, to

conserve DGF network and other resources. The next subsection discusses the

factors for data replication.

2. Replication Factors

The following essential factors should be considered when developing a replication

mechanism in DGF systems [8], [26]:

• Which data file should be reproduced?

Most of the existing replication mechanisms select the files for replication using

popularity of the stored data files as a measure for the selection. A common

method for assessing popularity of data files on a given storage element is to

calculate the total requests made to the data files over a specified period. Other

mechanisms replicate only shared files or files that are very rare in the system.

• Which sites should hold the replica files?

The decision on where to place a certain file replica is very crucial. Essential

copies of files replicas need to be stored on storage facilities closer to sites that

may request such files in the future, so that delays due to searching and

downloading of the files will be minimised. Moreover, some dynamic

47

characteristics of DGF sites, such as workloads, storage availability and site

failures, should be considered while placing files replicas. Thus, mechanism for

improving data availability should measure the site availability or failure prior

to placing new file replicas in the DGF system: If an essential file replica is

stored on a site, which has a low degree of availability (frequent failures), there

is need to look for an alternative file replica to preserve the file’s desired

availability.

• When and how replication is to be carried out?

It is crucial to decide between static, eventful or periodic replication: The trigger

for replication is equally important, while contemplating on when to perform

replication. A replica is said to be static if it is unmanaged, which means that the

content is not changed through time. A dynamic replication takes place either

eventfully or periodically, depending on what triggers it. Eventful replication

occurs at the time of data request. Periodic replication occurs at the background,

at certain interval, to balance the data availability of the system. Static

replication is not an option in DGF systems.

• What file should be evicted and from which sites?

Since eviction removes files permanently from the system, caution is needed not

to evict files with links to other files. In other words, file eviction should not be

guided by users’ frequent access only, but also how frequent a file is accessed by

other files within the system. If a certain data file is not directly accessible by a

user, but is always invoked when a user accessed another file, which provides

partial service to the file accessed by the user, deleting such partial service

provider may not be in the best interest of replica eviction decision.

48

2.7.5 Availability of Data and Replica Sites

Availability refers to capability to deliver suitable services, despite underlying

constraints in the system. This situation is otherwise, tagged as the readiness for

correct service delivery [58]. The lifespan of a Peer-to-Peer connection in DG

systems is classified into a set of ‘up states’ and ‘down states’ [68]. Furthermore,

data availability means having the required data accessible at all times, by users

and the critical applications [17]. Also, availability is the condition wherein

consumers can persistently access a given resource. Therefore, in DGF

environment, availability means that if a data item is available, then the users

including applications can have constant access to the data items. Any condition

that renders the data resource inaccessible causes the opposite of availability,

otherwise known as “unavailability”. Replica availability is the ability of a file

replica to provide proper services to the users, despite certain underlying

constraints. The availability of a replica can be drastically affected by the frequent

failures of the host site. In other words, it is worthwhile to consider replica

availability alongside site availability.

In [19], the researchers opined that a site in a federated DG platform is less

consistent in its behaviour, even in a dedicated server-based federation system [19].

That is because the central servers only control specific behaviours, such as access to

centralized billing software or a centralised database. However, control over

characteristic sites behaviours regarding disconnecting and reconnecting back to the

federation is very limited. This is simply due to fact that the user, who controls the

site, can shut down the system or application at any moment or uninstall it

permanently. Thus, a reasonable solution to deal with sites failures is for replication

49

mechanism to find best sites where to place replicas, that is, sites with less

unavailability measures. Although site availability has been addressed previously by

research in [19], its application in replica placement was however overlooked by

modern dynamic replication mechanisms.

Sites availability can be affected by the period considered as “valid availability”. In

addition, repair times, insufficient bandwidth; time differences (due to geographical

locations) could lead to sites availability issues, which need to be considered while

contemplating on sites availability measurements. In these regards, this research

does not explicitly differentiate between these variations regarding availability.

Thus, availability based on the Telecommunications industry interpretations reported

by authors in [19], is the degree of operability of a system or sub-system, which is

determined from the ratio of total time of operation during a given interval, to the

length of the measured time interval.

2.7.6 The Concept of Replica Dependency

As explained by research in [61], replica dependencies are considered as the type

of implicit relationships typical of interactions between software objects or

artifacts that evolved together over a specified period. Direct logical

dependencies (DLD) are defined for pairs of files in an association rule of the

form F1⇒F2, meaning that when F1 occurs, F2 also occurs. In this notation, F1

and F2 are two disjoint sets of items. Furthermore, F1 and F2 are called the

antecedent left-hand-side, (LHS) and the consequent right-hand-side, (RHS) of

the rule, respectively. In software development process, the density of

dependencies amongst sites increases the likelihood of synchronization failures,

as argued by research in [96]. Based on this notion, the work of researchers in

50

[97] proposed a more comprehensive measure based on the DLD concept, called

clustering of logical dependencies (CLD). Unlike the DLD, the CLD measure

encapsulates the degree to which the files that have direct logical dependencies

to the given file Fi, may have indirect logical dependencies (ILD) among

themselves. Thus, in this thesis, the indirect logical dependencies (ILDs)

amongst replica files are considered in addition to DLDs for proper file

evaluation. Computation of Logical dependencies of file replicas are dealt with

in Chapter Four (Section 4.5.6, page 165).

2.7.7 Concept of Grid Jobs and Job Schedules

Although this thesis is concerned about data replication, it is pertinent to discuss the

concept of grid jobs, and job scheduling briefly. Grid job scheduling has been

described by authors in [39] as the process of scheduling jobs to specific available

physical resources, trying to minimize a given cost function specified by the user. In

a simple DG installation, users may submit their jobs directly to a machine suitable

for running the jobs. However, the larger systems, such as the DGF platforms, would

usually include a robust job scheduler for mapping various jobs onto the grid

environment. According to the researchers in [98], different resources types are

available on the grid for collaborative purposes. These resources are typically

accessed from applications that serve as an interface to the users. The term

application refers to the highest piece of the task within the DG system. In some

situations, however, the term job is used synonymously to refer to as application. An

application may be broken down into any quantity of individual jobs. In a typical

grid environment, jobs might require the outputs from other jobs to execute. Figure

2.6 , shows a concept of grid’s jobs scheduling.

51

Figure 2.6. A Concept of grid’s jobs scheduling [98]

The terms such as transactions, work units or submissions are readily used by the

grid industry to depict the concepts of grid jobs. Jobs could also mean the same thing

as programs that are run to accomplish some tasks in the grid environment. The jobs

may perform computational tasks, run one or multiple system-specific commands,

perform data operations, or control machinery.

Some jobs may have high data affinity compared to others. The reason manifests in

the requirements for extensive data objects as well as numerous file replicas that are

needed by some jobs, which differentiate the jobs with compute intensive jobs. In

addition, these replicas are distributed as well as situated over regions that are

globally scattered. The schedulers need to consider bandwidth and transfer time

amongst computational sites while retrieving data objects from storage facilities

[83], [99]. Therefore, mechanism for scheduling grid jobs should be aware of

replication mechanism that is closer to the computational sites, for improved

system’s performance.

52

Grid jobs may have explicit dependencies that could inhibit them from running in

parallel. The situation requires some form of data duplication. For instance, some

data items may have to be copied onto the target machine, on which the jobs will

run. Jobs may require additional sub-jobs, depending on the range of data they

process. These dependency behaviours of data files can influence how data are

evicted from the grid environment as well as the popularity of the replica files.

2.8 Related Work on Data Replication

The core of this thesis is to develop an enhanced dynamic data replication and

eviction mechanism for improving the performance of DGF systems, in terms of

jobs times, network usage, storage and computing element usage. This section

discusses the relevant literature, based on which the research goals are formulated.

That is, the section looks at critical, relevant studies, and thereby helps in justifying

the gaps in the chosen research area. Various researchers made some efforts in trying

to improve data locality and availability within both the conventional DG

environment and its federations. The replication mechanisms are affected by the

underlying grid topology, whether centralized, hierarchical and decentralized or

federation systems [69]. Thus, the basic difference between DG and DGF systems

regarding data replication mechanisms is the way these mechanisms handle replica

placement decision and replica management regarding replica eviction [50]. Some

mechanisms consider replica placement and management on the regions of the DGF

systems [87], as against the entire federation system [69]. In addition, while some

research works concentrate on popularity-based data replication mechanisms, others

worked on availability-based replication mechanisms. These are critically examined

in Subsection 2.8.1 and 2.8.2, respectively.

53

Researchers in [87], proposed a data replication mechanism for addressing the

problem of data availability within DGF environment based on files’ access history

within regions with high bandwidth concentration. The mechanism improves access

latency and remote site access, by selecting a file for replication using access history.

However, restricting data access to sites with high bandwidth may overburden the

system, and hence results in reducing the overall system performance.

Data availability within DGF regions was considered by the research in [50] aimed

at improving data locality by proposing a mechanism, which was called Least

Access Lowest Weight (LALW). The LALW mechanism duplicates data objects

based on access frequency with the aim of improving upon access time and transfer

time. However, even though the mechanism identified the region within which to

place file replicas; it falls short of specifically determining the ideal locations within

the regions, which are suitable for hosting the duplicated data objects. Also, the

replicating mechanism failed to determine sites distances, which will have a drastic

effect on jobs completion time. The other shortcoming is that LALW failed to

consider logical dependencies amongst the replica files, which is a crucial parameter

in file evaluation for determining file popularity and its worth in relation to users and

other files. In addition, the mechanism did not consider response time, which affects

the decision for selecting file replicas, as well as the jobs completion time.

In [26], the author proposed a replica creation algorithm for DG systems

(DRCM), by capitalizing on the shortfalls of the LALW mechanism. The replica

selection decision was based on files with high weight or rate of growth based on the

LALW mechanism [50]. The mechanism aimed to minimize network bandwidth

consumption and storage cost. However, it failed to find the availability of the site

54

to hold file replica and did not consider response time as well. Another issue is

that DRCM did not properly address the issue of file dependability, as it only

considers direct logical dependability, ignoring indirect (clustered) logical

dependability between replica files.

Also, in [54], the researchers proposed a GA-Based replica placement

mechanism for DG systems to address the issue of management of large data

files in DG environment that provides massive data resources across

geographically distributed systems. Their work aimed at improving data

resource sharing capability via replication. The mechanism identifies a suitable

location to place file replicas, using five design metrics (read cost, storage cost,

sites’ workload, and replication site). However, the mechanism failed to

consider resource failure, site distance and inter-dependability amongst replica

files. In [8], the researchers proposed an enhancement of the LALW mechanism,

which was referred to as the “Enhanced LALW” mechanism or ELALW. The

mechanism selects a file to replicate by considering how many times the file would

be requested in the near future, which was based on the work of researchers in [50].

ELALW is critically analysed in Subsection 2.8.1 of this chapter, since its one of the

core reference work in this thesis.

The researchers in [38] proposed an agent-based dynamic algorithm for

replication in hierarchical DGF systems. The mechanism was anchored around a

central master site, and various regions controlled by static header sites. The

mechanism selects best replica site based on bandwidth capacity, load capacity, and

computing capacity of the site. One pressing issue in this approach is that replication

within the various regions is controlled by static headers. If a header fails, the

55

complete replicas within that regions will not be accessible. This situation requires

dynamic headers within the various regions, which will minimise rate of failures in

the system. The dynamic headers can be created by storing index information within

the different sites of the regions, and a dynamic header selection algorithm, so that

once the current header sites stop responding, one of the neighbouring sites could be

selected as the header site. This thesis assumes that there is dynamic header selection

mechanism within the DGF system. Thus, it is not a concern in this research.

Further, data replicas are stored at the header sites. This may not provide the

required data availability to serve the numerous users. Also, file dependability was

not considered while evaluating popular file for replication. The replica placement

decision also failed to address the issue of distance between replica sites as well as

site availability, while determining the suitable sites to host new replicas.

The work of researchers in [100] would have resolved the problem of static headers

by proposing a mechanism that implements dynamic headers within the regions.

However, the mechanism creates another problem similar to [87] in that, replica

placement decision is based on sites with high bandwidth concentration. Also, the

mechanism did not consider the distance between replica site and the requesting site

while placing replicas. Thus, the region with high bandwidth can be put far away

from the requesting client, and may not be available all the times. Another

shortcoming is that the replica creation decision does not consider periodic

replication; it is based on the event of a request for a file coming from clients. Also,

replica placement based on high bandwidth region may have the adverse tendency of

creating bottlenecks as the number of inter-cluster hits for region increases. Also, the

distance of a region from requesting a client with high bandwidth may impede on

access time and job completion time. Also, the site availability may be another issue,

56

if not evaluated before placing data replicas. In [101], the writers proposed

algorithms for replica cost optimisation in DG systems of tree network architecture,

which are constrained by quality of service (QoS) as well as network bandwidth

costs. The algorithms’ primary objective was to minimise the cost of replication,

which includes additional costs due to communications and storage usage, while the

anticipated user-oriented QoS regarding users’ distance from the server machine is

assured. The authours considered bandwidth limitation as a global QoS regarding the

network, which can impact on the DG systems’ users. Additionally, the authours

evaluated the heuristic algorithms regarding replication cost, network bandwidth

usage, and data availability. The afore-mentioned variables are considered

significant for evaluating DG systems’ performances. Although the work in [101]

fares well regarding replication cost, bandwidth usage, and data availability, yet

there is a need for improvement, regarding site availability, site distance and inter-

dependability of replica files. The next subsection discussed relevant works

concerning popularity-based data replication mechanisms, to clarify gaps in the

existing literature further.

2.8.1 Popularity Based Data Replication Mechanisms

Central to replicating data file is to improve data locality and availability by

maintaining numerous duplicates of the data objects at strategic locations within the

DG sites [3], [69]. Many mechanisms for replication have been proposed for Peer-to-

Peer DGF systems by different researchers, notable amongst which include

researches in [102], [103], [104] for improving data availability and reliability within

the systems. Replicas can synchronize with other replicas within the regional sites.

However, to decide on improving data availability, the importance or relevance of

57

such data objects needs to be established. The idea of file importance brings about

the concept of file popularity. Many researchers attempted to address the issue of file

popularity in DG systems [8], [38], [40], [44], [51], some of which may require

modifications for deployments in DGF platforms. Notable amongst these approaches

are discussed in the following subsections.

According to researchers in [40], DG platforms deal with an enormous volume of

data on a regular basis. Thus, the authors proposed a popularity-based replication

mechanism, which computes an appropriate number of replica copies and determines

the DG sites for replica placement. The authours named the mechanism as Latest

Access Largest Weight (LALW) mechanism. The mechanism correlates each past

access to data objects with a different weight, which helps to determine the

significance of each data objects in the system over certain period. A data object

with more recent access has a larger weight, which signifies that the data object is

more relevant to the system’s users.

The authours used OptorSim simulator for evaluating the system’sperformance. The

results of simulation show that LALW effectively enhances the ENU. In effect, the

LALW approach finds popular files and duplicate them to suitable regions, without

adding too much burden on the system’s network. Although the LALW mechanism

determines the region where the replica needs to be placed as well as the number of

file replicas to be created, it failed to determine the appropriate sites within the

regions where the file replica should be placed. Thus, this approach may need some

modifications for deployment in DGF environment, since detemining the appropriate

regional sites suitable for replica placement is a core requirment in DGF systems.

58

In [8], the researchers proposed an enhancement of the LALW mechanism [40],

which was referred to as the “Enhanced LALW” mechanism or ELALW. The

mechanism selects a file to replicate by considering how many times the file would

be requested in the near future, which was based on the work of researchers in [50].

Also, the mechanism makes replica placement decision by considering factors such

as replica size, replica copies, site with least transfer time, awaiting requests for file

replicas as well as the storage usage.

Further, the ELALW mechanism aimed to improve jobs time, network bandwidth

and storage element usage. Simulation results from OptorSim showed that the

mechanism fares well regarding the measureable metrics compared to other

mechanisms. A drawback with the ELALW mechanism is that the cost of replication

due to the distance of replica site from requesting site was not adequately addressed.

As a resolve, there is need to modify the mechanism to determine not only the

distance between requesting site, but also the percentage availability of the sites to

hold the file replicas. This mechanism could be enhanced by this research to locate

and evict the unpopular files for replica placement decision. The enhancements will

focus on finding the network distance between replica site and requesting site, file

dependability measure as well as site availability.

The study conducted by the work in [26], portrayed a common method used to

improve the performance of data access in distributed systems. The study examined

some algorithms for data replication that have been proposed by other researchers.

Also, the study proposed a dynamic replica creation algorithm using the concepts of

exponential decay/growth based on the LALW mechanism [40]. The main

contribution of that reserch was to find popular files for replication based on access

59

history, using the concept of exponential decay/growth. The theoretical ascertion of

exponential growth/decay entails that the rate of growth is proportional to the current

file size, as well as the access history of the file.

The theory is popular considering that each file’s popularity increases with an

increase in its’ access rate and decreases by the decrease in its’ access rate. The

popular file is determined by taking the average after totalling the various file’s

access rates at different time intervals. The mechanism was compared with the

popular LALW mechanism and yielded similar results as the LALW mechanism.

Thus, the exponential decay/growth theoritical framework could be enhanced to

evaluate popular files by considering logical dependencies along with the file’s

access rates, for proper file evaluation.

In [38], an Efficient Dynamic Replication Algorithm (ERDA), which uses agent for

DG systems, was proposed. The algorithm resolves the problem of centralized

arrangement of sites within clusters, by enhancing the replica placement strategy in

[69]. The EDRA mechanism was implemented in a hierarchical DG system and

selects best replica sites based on the network bandwidth, sites workloads, and

storage capacity. Sites workload helps in balancing the loads on the DG sites, which

is done by distributing loads evenly on the sites. EDRA was evaluated using

OptorSim simulator, based on the CMS model. The performance was evaluated

using access time, network usage and storage usage measureable metrics. The

simulation results obtained were compared with BHR, LRU, No Replication, and

EDRA strategy, which was tested using different jobs ranging from 100 to 500 jobs.

The results showed an improved efficiency of EDRA mechanism regarding jobs

time, network, and usage of storage facility. This approach has potentials in load

60

balancing, but replica placement failed to consider other important variables such as

the site distance and site availability. This mechanism could also be enhanced to

achieve better performance in DGF systems, regarding load balancing.

2.8.2 Availability Based Data Replication Mechanisms

The distance covered by users to search for suitable data objects depends on how the

replica files are distributed within the system [36]. Simply stated, increasing the

number of duplicate files would lead to a corresponding increase in data availability

within the system. However, due to the larger sizes of DGF data resources, it would

be very expensive to store an infinite number of file duplicates. Therefore, it is vital

to control the number of file duplicates to preserve storage space. In these regards, a

replication mechanism, which improves data availability as well as system’s

performance, without excessive use of storage and bandwidth resources is mostly

desirable. For instance, the work of researchers in [27] creates replica copies for

maintaining a certain level of data availability within a Peer-to-Peer system, so that

each site within the system is at liberty to duplicate data objects of interest. In that

research, data availability was based mainly on the failure rate of the host sites.

Thus, the authors developed scheme for increasing the number of duplicate file

copies based the fact that each peer site could duplicate data objects of interest,

based on an established system’s threshold for data resource availability.

Unfortunately however, the scheme failed to determine the exact number of file

replicas needed to balance the storage usage, improve system’s performance, as well

as satisfies the excessive demands from the users. In addition, a scheme for replica

eviction was not an integral part of the mechanism. Consequently, file duplicates

will continue to accumulate in the system even though they become obsolate,

61

thereby affects the replica placement cost. The next paragraphs examined critically,

some of the notable research works regarding data avaiability in the traditional DG

systems, that may be adopted in DGF platforms.

In [49], the researchers proposed a replication scheme, the aim of which was to

ensure desired availability of data with minimum replication, without degrading

system performances regarding load balancing, response time (Jobs times), and

improving data availability. The researchers proposed a replica placement and

replacement strategy that maintains desired data availability with minimum possible

replication, despite the constraints of sites failures and sites loads within the

federation. Their main contribution aims at a replica placement and replacement

decision that takes into account the desired data availability, as well as sites stability

and failures. The mechanism focuses on a hierarchical topology of federated clusters

as shown in Figure 2.7. This topology is in use by several existing distributed

systems, such as the Internet [23], [49].

Figure 2.7. A DGF Architecture based on cluster federation topology

Cluster 1 Cluster 2 Cluster n

Normal

Node

Cluster

Head

Root

Inter-Cluster link

Intra-Cluster link

62

Their work covers placement of replicas in distributed systems and data grids, using

a cluster federation topology, with a single root to the link between the various

clusters. The topology does not have a dedicated server, but a root site (super site)

that binds the various clusters together. Each cluster has a header called cluster-head

(CH), which liaises with other clusters on behalf of members of the cluster. The

header site manages the other sites via a routing table. Also, the header site contains

metadata and information on file replicas that are in the cluster. The file replicas are

stored on the storage elements within the cluster. In this model, sites have predictive

behaviours, and if a failure is detected, the sites will be re-adjusted to keep the

topology connected. The strength includes improving data availability with minimal

replica placement. Also, sites availability is monitored by header sites to ensure

stability. However, the availability relates more to the topology stabilization and

ensuring an available number of replica files, considering the current workload of

the sites. Thus, their work aims to optimise the number of replicas. However, the

scheme fails to keep track of percentage site availability over a specific period,

which will help to decide on where to place replica files for the benefit of both users

and the federation system as a whole. In addition, workload was not entirely

addressed, such that highly loaded site that offers lower replication cost should be

made lightly or moderately loaded by replica eviction or placement. Thus, some of

the good features could be improved for deployment into a DGF platform.

The work of researchers in [105], proposed a replica management solution to

optimise files’ replicas by reducing useless or unnecessary replicas. To this end, the

researchers defined two mathematical frameworks, which determined the appropriate

number of replicas to achieve a given level of performance, without compromising

63

system’s performance. The researchers observed that since every replica must

perform all updates at some point in time, replica updates may create saturation point

beyond which replication process does not increase system throughputs.

Furthermore, if the number of replicas exceeds the optimum threshold, the

unnecessary replicas would create an overhead as a result of additional message

communications. Thus, the idea is to maintain minimum replica that can efficiently

serve the needs of the DG users. Furthermore, the authors asserted that replication

could tolerate failures to some extent, because if a replica site fails, another replica

file can be used to replace it on another site. However, the number of replication

must be monitored and adjusted concerning the failure frequency, for reducing the

cost of replica consistency management. Then, given a rate of site failures, their goal

was to estimate how much replicas are needed to ensure system availability. This

differs significantly with determining percentage site availability for replica

placement decisions. Instead of waiting for a replica file to fail and replace it with an

active one, it is pertinent to take record of previous sites failures, determine sites

with high percentage failures, then avoid such sites for replica placement. Such

gesture will ensure all replicated files are placed on sites that are active almost all the

times.

In [102], the work explained that efficient data sharing in global Peer-to-Peer

systems is difficult due to the unpredictable site failure, insufficient bandwidth as

well as unreliable network connectivity amongst the peer sites. Placing data replicas

on various sites can improve data availability and enhances the response time. Thus,

determining when and where to place file replica for satisfying the performance

needs of numerous users, in large distributed systems, with unpredictable user-

behavior and dynamic network characteristics, is a difficult task. The researchers

64

proposed an approach, in which peer sites create replicas automatically in a

decentralized fashion, as required to meeting availability goals. The framework

aimed at maintaining a certain level of data availability in the system. The model

was evaluated using simulations, and the results showed that the strategy could be

used for determining the required number of file replicas in the system. However, if

data replicas should be created in every DGF site, the storage cost will escalate

beyond desirable limits.

In [106], the work presents a survey of recent dynamic data replication strategies.

The authors studied as well as classified the strategies according to the underlying

DG platforms, in which the strategies were deployed. Also, the authors discussed the

strategies based on some crucial metrics, which include jobs times, access time,

storage and bandwidth management. Furthermore, the impact of DG architecture on

dynamic replication performance was investigated in a simulation environment.

Furthermore, the writers highlighted some critical issues and open research problems

on dynamic replication in DG systems.

The authors also studied some factors that influence the performance of DG systems

in general. Considering the dynamic nature of the DG systems, sites can join or leave

the system at any time. As a result, the number of active sites at any given time may

vary. Thus, dynamic replication strategies should consider these dynamic aspects of

the DG systems, as well as consider how files are accessed by the users. Also,

mechanisms for replication should consider storage usage, and bandwidth

consumption. Consequently, the benefits of replication should always outweigh the

overheads.

65

2.8.3 Replica Placement Mechanisms

According to researchers in [89], replica placement is the process of identifying

where to place copies of replicated data files within a DG system. In addition,

transferring a data file from a site to a client consumes an amount of bandwidth. A

significant issue here entails where to put the new file replicas to minimize the

amount of bandwidth used [89], which means the storage is of great importance

when it comes to replica placement [26]. The cost of transferring a file from the

underlying site to the other locations is referred to as the replica placement cost

(RPC), which is determined by the file access cost multiplied by the distance

between replica sites [26]. The next paragraphs highlight some existing mechanisms

that addressed crucial issues regarding replica placement in DG systems.

Regarding the issue of bandwidth, the researchers in [87] proposed a replica

placement approach, to minimize access time by going round network congestion.

The apparoach was titled: Bandwidth Hierarchy based Replication (BHR). The BHR

minimizes the required time for accessing and transferring the file replica. The

mechanism places a replica at a location of high bandwidth concentration. But, such

method considers only the transfer costs of the underlying file replica, and does not

guarantee to minimise the overall replication cost.

The authors in [107] proposed a replica placement approach with load balancing

capabilities. The approach places the most frequently accessed file closer to DG

users and makes replication decision by considering the access load and the storage

load of the candidate’s replica servers as well as their sibling sites. The strategy does

not consider site distance as well file request to other files. In other words, the

strategy ignored the possibility of logical dependencies amongst replica files.

66

The authors in [27] proposed an algorithm that can evaluate the replica placement in

multi-tier DG systems. The aim was to maximise the gap between the cost of

replication and the replication benefits, which are determined by the storage cost and

the transfer time cost. The benefit is accorded to the users by the decrease in a

transfer time off their jobs. The transfer time is the period for transferring from the

current location to the new location. Again, replica eviction mechanism was not

incorporated. Thus the “storage cost” may escalate due to files accumulations.

In [59], the researchers proposed a dynamic replica placement scheme that takes into

considerations the dynamic nature of replica sites in the DG environment. The

dynamic nature of DG sites entails leaving the grid and possibly joining again at a

later time. Thus, the work investigated two parameters. The first is the number of

request for each file by the neighbouring sites. The second is the effectiveness of

each site involving the number of times the site failed to respond to a file request due

to its absence from the grid. This approach made efforts regarding replica

availability but failed to consider the site availability as a function of replica

placement decision making.

The researchers in [8] proposed a replica placement mechanism that places the

popular file to a suitable site by considering the access frequencies for each replica

file. Access frequency is considered as an essential factor that should be taken into

consideration while deciding on replica placement. However, some critical factors

such as the overall replication cost (storage cost and read cost), site distance and site

availability, should also be considered [19].

67

2.8.4 Replica Management Stage

At this stage, the replicas have already been distributed to different locations based

on the described replica creation mechanisms. If multiple replicas exist, a replica

management service is required [84], [101]. Replica Management Service (RMS)

discovers the available replicas and selects the best replica that matches the user’s

quality of service requirements, and then adjusts the location of those replicas. Thus,

there are two main phases in the Replica Management Stage (RMS); namely,

Replica Selection (RS) and Replica Maintenance (RM), and each of which will be

discussed briefly in the next subsections.

2.8.5 Replica Selection

In a typical grid environment, replication systems create multiple copies of the same

data file and distribute these copies (replicas) to different site locations. These site

locations vary in their capabilities, resources, and network. Thus, there is a

significant difference in selecting a replica location, amongst many locations that are

widely distributed [42]. The replica selection strategy is the process of choosing a

replica from among those spreading across the grid sites based on some

characteristics functions [42], [52].

The big challenge of any replica selection strategy is defining the appropriate criteria

to determine the best replica location, and the selection algorithm used for replica

selection strategy. One common replica selection criteria reported by existing

literature is the response time [29], however, replica selection should consider site

distance as well [8].

68

2.8.6 Replica Maintenance

According to research in [42], the candidate site that holds replicas may currently not

be the best sites to look for replicas in subsequent periods, due to the dynamic nature

of DG systems. Therefore, replica maintenance needs to consider site parameters,

such as availability, distance and workload. If a particular site metric degrades in its

performances, the maintenance services should update replica location services, or

consider moving the file to a preferable site. For instance, changes in site bandwidth,

the distance between replica sites, or resources failure. In either case, replica

maintenance needs to dynamically move valuable replicas to sites with favorable

performances. Although, replica maintenance service is not in the scope of this

thesis, its mention is included here to help understand the importance of the

performance metrics considered by this thesis.

The authors in [89] proposed a dynamic replica maintenance strategy called

Dynamic Maintenance Service (DMS) to improve the performance of the DG

environment. DMS decides where to place the replicas based on two main

parameters: request frequency and free storage space. However, the replica eviction

scheme is not considered; instead, the system does not locate the replica at a site

unless there is enough storage space even if it stands to benefit the overall system

performance. Concerning changes in the distance between replica sites, the replica

maintenance phase will adjust/move important replicas to the appropriate location

based on the information collected relating to some effect factors [89] [108].

Replicas should be adjusted to the appropriate locations that are closer to the

computing devices to adapt the current network environment to reduce time when

the computing device accesses the data, as well as to maintain optimal performance

69

of the network environment [108]. If on the other hand, the network environment is

changed, which makes the same replica sites not always being the best choice to

download data while reducing transmission time. Therefore, according to research in

[89], replicas should be adjusted to the appropriate locations for achieving optimal

access times. Based on the literature review in this chapter, it was concluded that

there are many issues regarding the current replica placement mechanisms in DGF

systems, and there is a need to enhance these mechanisms in various aspects.

Obviously, to get benefits from replication mechanism, the file transfer time,

bandwidth and storage costs need to be minimised. From the literature, it was

observed that there was deficiency in current replication mechanisms for the efficient

management of DGF resource usage, as most of the mechanisms focused on the

traditional DG systems. However, in the absence of many replication mechanisms

devoted to DGF system, this thesis revamped to related mechanisms in the

traditional DG systems. Table 2.1 gives parameter wise summary of some of the

related approaches critically reviewed by this study.

Table 2.1

Summary of strengths and weaknesses of related literature in data replication

Approach Topology Replicatio

n policy

Metrics Simulato

r

Strengths Weaknesses

Dynamic

data grid

replication

strategy

based on

internet

hierarchy

[87]

Tree-level

hierarchical

Data Grid

Bandwidth

hierarchy

replication

Access

time

effective

network

usage

OptorSi

m

Reduces

access time

and

bandwidth

consumption

Search for

the required

file is

limited to

sites with

high

bandwidth

A dynamic

data

replication

strategy

using

access-

weights in

data grids

[8]

Hierarchica

l Data Grid

Latest

access

largest

weight

Network

usage,

storage

usage, jobs

times

OptorSi

m

Increases

efficient

network

usage.

Failed to

address

resources

failure, node

distance, file

dependabilit

y

70

Table 2.1 continued.
Implementin

g data

placement

strategies for

the cms

experiment

[109]

CMS Data

Grid

File

popularity

Access

latency,

network

utilization

OptorSi

m

Minimizes

pre-

placement of

data and

automatic

replication

of hot

datasets

Did not

address

resource

constraints,

such storage

capacity

while

automatic

replication

A GA-Based

Replica

Placement

Mechanism

for Data Grid

[54]

Hierarchica

l Data Grid

Replicate

s popular

files

based on

file value

and

weights

Access

time,

storage

network

usage,

usage

OptorSi

m

Works on

both

dependent

and

independent

files

Failed to

address

resource

failures, site

distance and

file inter-

dependabilit

y

Managing

data

replicatio

n and

placement

based on

availabilit

y [83]

Cluster

federation

with header

sites to link

between

clusters

Takes into

account data

availability

based on host

sites stability

Access

time,

network

distance

FTSim

simulator

Improves data

availability

with minimal

replica

placement,

Ensures site

stability.

Availability

related only

to topology

stabilization,

not linked to

replica

placement

Efficient

Dynamic

Replicatio

n

algorithm

using

agent for

Data

Grids [38]

Hierarchical

Data Grid

Federation

(Central

node,

Regions

Headers)

Agent-based

replication

Mean

job

time,

network

usage,

storage

usage

OptorSim Finds the

region where

place file

replica

Not consider

site distance,

storage

latency &

site

availability

Dynamic

Data Grid

Replication

Algorithm

Based on

Weight and

Cost of

Replica

[41]

Hierarchica

l Data Grid

Lowest

Weight and

Lowest

Cost

Job times OptorSim Processes

jobs faster

than DHRA

algorithm

by 33%

Failed to

address

storage

usage,

network

usage,

resource

failures,

node

distance

Dynamic

data storage

&

placement

system

based on

category &

popularity

[51]

Hierarchica

l Data Grid

Replication

based on

File

category

and

popularity

Tob time,

network

usage, and

storage

usage

OptorSim

Better

memory

utilization

than HDFS

Did not

consider

site

failures,

file

dependenci

es, replica

consistency

71

Table 2.1 continued.

Exploiting

cms data

popularity

to model

the

evolution

of data

manageme

nt for run-2

and beyond

[62]

Based on

EU Data

Grid

Future data

predictions

based on

file

popularity

Network

utilization,

storage

usage, job

throughput

OptorSim

CMS

analytics:

collecting

/transformi

ng data,

and

predicts

future data

Storage for

storing the

analysis

data is

constraints

, thus

stores data

externally.

RPLB: A

replica

placement

algorithm

in data grid

with load

balancing

[110]

Based on

EU Data

Grid

Replica

placement

based on

highest

degree and

the highest

frequency

Access

time,

Storage

usage, job

throughput

OptorSim generates

less

number of

replicas,

achieves

load

balancing

Not

consider:

node

distance,

storage

latency &

node

availability

Implement

ation of

sub-grid-

federation

model for

performanc

e

improveme

nt in

federated

data grid

[100]

DG

Federation

Network

core area

Network

consumptio

n, access

time

OptorSim Locates

best

replicas at

sites with

the highest

bandwidth,

fewer

remotes

sites access

Did not

consider:

File

dependenci

es, Node

distance,

site

availability

Towards

efficient

location

and

placement

of dynamic

replicas for

geo-

distributed

data stores

[6]

Geo-

distributed

data stores

Identifies

popular

data in the

cluster, and

replicates

closer to

the clients

Memory

usage,

read-

latency,

error rate

Synthetic

simulator

Allows

users to

locate

closest data

copy with

minimal

overhead

Automatic

placement

of popular

data,

overlooks

possibility

of resource

failures

Data

replication

approach

with

consistency

guarantee

[18]

Based on

EU Data

Grid

Replica

region

selection,

placement,

& update

Network

usage,

response

time,

system

load &

system

availability

Gridsim Performs

ok when all

the sites

have

facility to

hold data

copies

Failed to

address

storage

constraints

72

The table explicitly indicates the existing approaches and their respective strengths

and weaknesses in data replication related tasks. It also indicates the replication

policy adopted by the existing mechanisms, the grid topology along with the

measurable metrics. Furthermore, the table reveals the type of simulation

environment suitable for evaluating the performance of data replication mechanisms.

The outcomes of the literature review as summarised in the Table 2.1, are based on

the related works in both DG and DGF systems. In addition, it was apparent that the

existing mechanisms kept ignoring resources failures, site workloads, as well as

inter-dependencies amongst replica files, while deciding on where to place file

replicas. Thus, more enhancements needs to be done on the existing mechanisms to

address the goal of minimising replica placement cost, without degrading system

performance, regarding jobs times and bandwidth usage. Thus, the table serves as

input as well as reference data feed in the research design section of Chapter 3

(Section 3.2: Research Design). The thesis selects relevant mechanisms from

existing literature in DG system that could serve for DGF system, since the latter is

formed by joining various units of the former. In the next section, this thesis

discusses the DGF simulations tools for more details.

2.9 Data Grid Federation Simulation Tools

This study has conducted an extensive analysis of some of the widely used grid

simulators available in the market. These will be deliberated upon in this section.

The authors observed that simulating DGF environment entails looking at the DGF

system regarding regions, with each region representing an individual DG system.

Thus, this research looked into the simulators used for the individual DG systems,

and selects the most popular amongst them. Sequel to the dynamic behaviours of

73

distributed systems, a significant challenge to any simulation process is the validity

question: does a simulation shows what would happen in the real testbed

environment? Apparently, there seems to be no ideal simulation tool for any broad

scientific area [111]. This is one reason there exist many simulators each focused on

a specific aspect, which makes validation and verification possible [111]. Indeed, it

is not wrong to say that grid installations are becoming the prevalent and most

complicated distributed systems worldwide. Thus, it is not surprising there exist

numerous different simulation tools [111].

Various grid simulation tools have been developed over the years based on the type

of application run on the target grid platform. Prominent among them are: OptorSim

[37]; Bricks [112]; ChicagoSim [73]; EDGSim [73]; GangSim [113]; GridNet [73];

GridSim [114]; SimJava [73]; HuskySim [73]; MicroGrid [115]; PlanetLab [73];

Emulab [73]; SimGrid [115]; and SimBOINC [116]. The next sub-section compares

the various simulation tools based on design motivations, grid platform and support

for replication and scheduling mechanisms, which facilitates the choice of OptorSim

simulator for performance evaluation in this thesis.

2.9.1 Comparisons of Various Grid Simulation Tools

In this subsection, the research examines critically the various types of simulation

tools based on their design motivations, grid platform usage and support for

replication and scheduling optimisations. This gesture helps in choosing the

appropriate simulation tool for performance evaluation in this thesis, as will be

discussed in Chapter Three (Section 3.6.1 page 106) and Chapter Five (page 196).

Table 2.2 gives summary of comparisons between various grids simulators based on

the afore-mentioned features.

74

Table 2.2

Comparisons of various grid simulation tools

Simulator Design

Motivation

Grid

Platform

Suport for

Replication &

Scheduling

Mechanisms

OptorSim [37] A discrete event simulator for testing

dynamic scheduling and replication

mechanisms developed in the framework

of the European Data Grid (EDG) project

used for optimizing grid performance.

Data Grids and

Computational

Grids

Data

replication and

Resource

scheduling

Bricks [112] Resource Scheduling tool for

computational environment.

Computational

and Data Grids

Scheduling

ChicagoSim

[73]

Models computations, network and

application behavior of computational

grids.

Computational

Grids

EDGSim [73] A discrete event simulation for high energy

physics data analysis of the European Data

Grid project. Support for data replication.

Comoutational

and Data Grids

Data

replication

GangSim [113] A scheduling algorithm simulator for large

systems comprising of hundreds thousands

computers and storage systems.

Computational

Grids

Scheduling

GridNet [73] A simulation tool for dynamic data

replication mechanisms developed to

evaluate the performance of different

scalable distributed systems that uses

replica placement to meet the need of a

large numbers of users who continuously

change their data demands.

Data Grids and

Computational

grids

Data

replication

GridSim [114] A discrete events simulation of scheduling

mechanism for large scale resources

distributed systems.

Comoutational

and Data Grids

Scheduling

SimJava [73] A discrete events simulation of scheduling

mechanism for large scale resources

distributed systems.

Comoutational

and Data Grids

Scheduling

HuskySim [73] A discrete event grid simulator, enables

simulation of both static and dynamic

resource scheduling mechanisms

Computational

Grids

Scheduling

MicroGrid

[115]

An emulation tool that provides a vehicle

for scientific study of grid topologies and

applications. It emulates computations and

applications performances.

Computational

Grids

Scheduling

PlanetLab [73] Platform for emulating Network, CPUs

and applications services.

Computational

Grids

Scheduling

75

Table 2.2 continued.

EmuLab [73] Platform for emulating network topologies

in distributed systems.

Distributed

Systems

Scheduling

SimGrid [115] Simulates networks and computational

resources for large-scale distributed

systems such as Grids, Clouds, HPC and

Peer-to-Peer systems

Computational

and Data Grids

Scheduling

SimBOINC

[116]

Simulator based on the SimGrid toolkit,

designed for the simulation of scheduling

strategies in heterogeneous and volatile

desktop grids and volunteer computing

systems.

Computational

and Data Grids

Scheduling

The choice of OptorSim was based on its frequent uses by existing researchers on

data replication related issues as seen in Table 2.1, as well as its design motivation

and support for both replication and scheduling related issues (Table 2.2). The next

subsection presents an overview of OptorSim simulator, the candidate simulator

chosen by this research.

2.9.2 The OptorSim Simulator

Amongst these tools, OptorSim is extensively used in simulating DG systems as

explained severally by different researchers, such as [38], [40], [92], [117], [118],

[119] as well as in DGF related data optimisation problems [38], [100]. OptorSim is

a tool designed to test numerous replication optimisation approaches in a simulated

grid environment before they are deployed in the real grid system, especially

simulating data access optimisation mechanisms. OptorSim uses discrete event

simulation framework. The OptorSim architecture for Peer-to-Peer replication

optimisation of data resources, which comprises of the access mediator, storage

mediator, and the Peer-to-Peer mediator, is shown in Figure 2.8.

76

Figure 2.8. Peer-to-Peer architecture of OptorSim replica optimiser

According to research in [117], OptorSim was developed in the framework of the

European Data Grid (EDG), as a joint effort of the University of Glasgow and

CERN. The OptorSim architecture, shown in Figure 2.8, is based on the EDG model

where sites provide computational and data storage resources, both modeled as

computing elements (CEs), resource brokers schedule the jobs to CEs and routers

without CEs. Each site handles its file content with replica managers; replicas are

automatically created and destroyed using replica optimisers with different

algorithms. Network topology can be described by enumerating the sites and

specifying the bandwidth. Also, there are several file access patterns available for

configuration. The OptorSim is equipped with replica optimiser comprising of three

building blocks. These are:

 The Access Mediator (AM) - contacts replica optimisers to locate the

cheapest copies of files and makes them available locally

77

 The Storage Broker (SB) - manages files stored in SE, trying to maximise

profit for the finite amount of storage space available

 The Peer-to-Peer Mediator (P2PM) - establishes and maintains Peer-to-Peer

communication between DG sites

In addition to simulating data replication strategies, OptorSim is designed to also

handle job scheduling optimisations application in parallel and distributed

computing systems [120]. It is an Open Source Java Application published under

General Public License (GPL), thus presents a cost less tool for the simulation

activities in this thesis. The OptorSim simulator enables modelling and simulating of

entities in parallel and distributed computing (PDC) systems. These entities may

include amongst others, users, applications, computational and data handling, as well

as resources brokers for design and evaluation of optimisation mechanisms.

OptorSim simulator provides a facility for building different classes of various

resources that can be combined using resource brokers for solving computational as

well as data-intensive applications. A resource can be a computing element (CE) on

a single processor or multiprocessor with a shared or distributed memory resource,

that is managed by time or space shared scheduling mechanisms.

The processing sites within a CE can be heterogeneous regarding processing

capability, configuration, and availability. The resource brokers use scheduling

mechanisms or strategies for mapping jobs to CEs to optimise the system or user

objectives depending on their goals [38]. Amongst the simulation tools reviewed,

OptorSim and GridSim [114], [121] simulators have been widely used to investigate

the properties of both computational and DG platforms. However, critical study of

these simulators indicated that previous researchers had extensively used OptorSim,

to evaluate data replication mechanisms in a DG platforms, as well DGF

78

environment. Also, based on the design motivations, OptorSim has been intended for

testing of dynamic data replication mechanisms in DG environment.

2.10 The Existing Data Replication Mechanisms

This section discusses the characteristics features of two existing mechanisms that

will be used later in chapter five for performance comparison with the proposed

DRCEM mechanism. After critical analysis of the related literature in section 2.8 of

this chapter, the two mechanisms DRCM and ELALW were selected for

comparison, based on their relevance features as well as significant contributions,

which provide the impetus for the various schemes of the proposed DRCEM

mechanism. Although the existing mechanisms have made significant contributions

in terms of replica evaluation, creation, placement and eviction functions, however,

there is need for improvement on these features as earlier opined in the study of

related works on data replication (Section 2.8). Table 2.3 outlines some of the

significant features of the selected replication mechanisms, based on the triggers for

replica evaluation and creation, as well as replica placement and eviction decisions,

which form the core components of the replica management stage.

Table 2.3

Charateristics features of DRCM and ELALW on replica management.

Mechanism

Triggers for Replica

Evaluation and

Creation Decision

Replica Placement Decision
Replica Eviction

Decision

DRCM Triggered by job

submission and file

importance

Based on number of access

(NoA) and the current sites

loads

Based on file value and

storage cost

ELALW Triggered by job

submission and file

importance

Based on number of access

(NoA) and site distance

Least frequently used

files

79

In what follows, Table 2.4 outlined some additional characteristics features of

DRCM and ELALW, based on the types of files supported, number of files to be

replicated, number of created replicas, replica placement function and replica

eviction function. The table features help to identify the parameters that are suitable

for direct integration into the proposed mechanism and the parameters that require

further enhancement prior to integration into the proposed mechanism by this

research.

Table 2.4

Additional features of DRCM and ELALW based on files types and required number

of replicas.

 Mechanism DRCM ELALW

Type of files Independent and dependent files Independent files

Number of files to be

replicated

Depends on FV and number of

existing replicas

Depends on FV and number of

existing replicas

Number of created replicas Depends on FV, and number of

existing replicas

Depends on FV and number of

existing replicas

Replica placement function Depends on read cost, workload

and places of dependent files

Depends on NoA and node

distance

Eviction function Based on FV Based on FV

As outlined in Tables 2.3 and 2.4, the existing mechanisms considered both

independent and dependent files for replica evaluation and creation, but have failed

to consider indirect logical dependencies of files, which is an important feature for

efficient replica evaluation and creation decision. In addition, the existing

mechanisms place replica files based on read cost, workload and site distance.

However, they failed to consider sites availability in the replica placement decision.

Furthermore, the mechanisms evict unwanted files based on file value (FV), without

regards to inter-dependability amongst file replicas, which may lead to deleting an

important file that may be needed later.

80

The DRCEM seeks to narrow the gap in the existing studies by enhancing both the

replica evaluation and creation, replica placement and eviction processes. In

addition, the idea of DRCEM was inspired from the real world marketing

community, where there is a need for balance between the interests of users and the

interests of service providers (resources) [26]. Thus, DRCEM as a part of data

management services in DGF systems, provides the grid community with improved

essential services compared to the existing DRCM [26] and ELALW [8]

mechanisms. DRCEM aims to enhance the existing mechanisms by developing three

schemes embodied in one mechanism namely dynamic replica evaluation and

creation scheme (DRECS), dynamic replica placement scheme (DRPS), and

dynamic replica eviction scheme (DRES). The unique advantages of DRCEM

include its considerations for site workload, site distance, direct and indirect logical

dependencies of files, as well as availability of replica sites in the course of

evaluating, creating, placing and evicting replica files.

One of the issues addressed by DRCEM over the existing replication mechanisms is

that it selects popular files based on file value and indirect logical dependencies, in

addition to direct logical dependencies. The existing DRCM mechanism considered

only the direct logical dependencies of files, as an enhancement over the LALW

mechanism [40]. Thus, there was no particular focus on the dependency

measurement, (when a file is dependent on another) for evaluating popular files. In

other words, there is need to cconsider both direct logical dependencies (DLD) and

indirect logical dependencies (ILD) of data files to determine the significance of the

files to both users and the grid system, which also aids in evaluating the data files

and determining the popularity of each file. The DLD and ILD compliments file

access history in determining the popularity of each data file. Since access history

81

gives records of user-to-files accesses, there is need to determine file-to-file access

history, for proper file evaluation.

Regarding sites loads, there is need to consider both lightly and moderately loaded

sites, as well as avoid highly loaded sites while placing replicas. In addition, there is

need for a replica eviction scheme that will evict unwanted replicas from the system

based on file values and dependency factors, thereby improving the storage space

availability for placing new replica files within the federation system.

Also, there is need to consider three levels of data files, that is, independent files,

directly dependent files and indirectly (clustered) dependent files, whereas the

existing works operate only on independent files and directly dependent files. The

next two subsections (2.10.1 and 2.10.2) outlined the algorithms for ELALW and

DRCM mechanisms, respectively. Figures 2.9 and 2.10 illustrate the algorithms for

the ELALW and DRCM mechanisms respectively, which show the differences in the

procedures of each mechanism.

82

2.10.1 ELALW Data Replication Mechanism

The following Figure 2.9 shows an outline of the ELALW algorithm [8].

Figure 2.9. Algorithm for ELALW mechanism [8]

83

2.10.2 DRCM Data Replication Mechanism

The following Figure 2.10 shows an outline of the DRCM algorithm [26].

Figure 2.10. Algorithm for DRCM mechanism [26]

84

Figure 2.10 continued.

2.11 Chapter Summary

This chapter presents solid background on the issues covered in this thesis. The

chapter conducts a critical review of related works in the research domain, and

towards the end of the chapter, a comparison was made between proposed

mechanism with some selected popular existing mechanisms. The first part of the

chapter presented a brief description and characteristics of Data Grids and their

federations, as well as some silent issues involved in dealing with Peer-to-Peer

connectivities within the federation regions. Further, it was highlighted in this part

that DGF systems are unlike other types of distributed systems due to their extensive

data requirements, the presence of virtual organizations, broader heterogeneity,

autonomous domains and unpredictable behavior of peer sites. The second part

presented the need for an enhanced replication mechanism in a DGF environment.

Related works in data replication were critically studied and presented. The review

85

highlights related research and recent developments in replication mechanisms in the

research domain. The second part indicates that the existing replication mechanisms

require further enhancements in some functionalities. The first aspect is concerned

with the mechanism as a whole, where more functions need to be included in the

replication mechanism, such as: considering files dependencies while deleting

replicas, how many replicas should be deleted and finding the places from where to

delete the replicas.

To the best of the author’s knowledge, no previous work encapsulates all of the core

functions in a single mechanism. In this context the functions are: Determining

which files to be replicated, places to host the newly created replicas and how many

copies required; Determining the percentage site availability, while placing the

replicas; Considering workloads, which entails determining the lightly loaded and

moderately loaded sites, while placing replicas for load balancing, as well as

considering the distance between sites in addition to access time; Determining which

files to be evicted, locations from where to evict the files and how many files for

replica optimisation, as well as determining the file to be evicted, in the case of

insufficient storage space.

The second aspect is concerned with the individual functions of the replication

mechanism, where some parameters have been neglected by existing replication

mechanisms, which should be considered. For instance, while evaluating the

individual files, to determine which file is to be replicated and evicted, the designer

needs to consider the indirect logical dependency relationships between files, in

addition to direct logical dependencies and the depreciation or appreciation rate of

the file replicas. While placing the newly created files, the implementation needs to

86

address the workload, which includes both highly loaded, lightly loaded and

moderately loaded site before deciding where to place the replica files. The highly

loaded sites should not be considered for replica placement. Going by the relevant

literature reviewed in this thesis, it is proposed that there be a need for an

enhancement in the replication mechanism that will consider all the core

functionalities listed above. Also, the proposed mechanism should include the

necessary parameters not considered by previous researchers either due to scope

limitations or lack of unawareness, as pointed out in the critical review of the

relevant works in this chapter.

Peer-to-Peer communications have been mentioned in many sections of the chapter,

to examine the common properties that could affect replicaton in DGF systems.

Although this research is not dedicated to replication in Peer-to-Peer computing

domain, it was apparent to discuss the concept due to its similarity with the behavior

of DGF sites within various regions. As mentioned earlier in the introductory

Chapter 1, the sites within the regions of the DGF system communicate with each

other, as well as with other sites in the neighboring regions. The nature of the

communication is thus categorized into inter-regional and intra-regional

communication. This is one of the motivations that informs the decision to include

background literature from the dedicated Peer-to-Peer computing paradigm, so as to

understand the dynamic nature of peer sites within the DGF system, which may

interfere with the goal of achieving efficient replica placement, and consequently

impedes in realization of the overall research goal, if not adequately addressed.

87

CHAPTER THREE

RESEARCH METHODOLOGY

3.1 Introduction

Research on grid systems and related discipline could take any of the forms, i.e.,

theoretical, experimental, design methodology, or a combination of these methods

[122]. The interaction of users and sites are highly sophisticated in DGF

environment, resulting in difficulty to predicting their behaviours from the

beginning. In effect, studying the properties of DGF components comprising of

multiple users and heterogeneous sites by implementing and deploying a prototype

solution on a test bed will require many resources, tremendous efforts, and time.

Indeed, the immediately available, feasible option will be to design the prototype

using a suitable design methodology and later simulate the proposed solution. Thus,

this research adopts the design research methodology (DRM) for its exceptional

ability to generate a prototype solution close to reality. Also, its ability to provide a

mechanism for evaluating some measurable metrics that might be used to elevate the

grid performance makes design research method a suitable choice for this research.

In this research, the DRM is used to draw the action plan for integrating the various

components of the study in a comprehensible and logical manner and proceeds by

introducing its primary stages. Section 3.2 discusses the overall research design.

Section 3.3 discusses the first stage of DRM known as Research Clarification (RC).

The section discusses the goal of RC stage, methods to support this stage, and

overall deliverables from this phase. Section 3.4 describes the second stage called

Descriptive Study-I (DS-I). It discusses steps to obtain sufficient understanding of

the current situation, designs a reference model, and proposes a conceptual model.

88

Section 3.5 explained the method adopted in designing the proposed dynamic replica

creation and eviction mechanism in line with the third stage of DRM, namely

Prescriptive Study (PS). Section 3.6 outlined the various techniques for performance

evaluation, under the Descriptive Study–II, as well as explains the evaluation

techniques used by this thesis. Toward the end of the section, the performance

evaluation metrics used in this thesis are discussed (Subsection 3.6.3). The chapter

concludes with a summary in Section 3.7.

3.2 Research Design

The central aim of this research is to design a dynamic replica creation and eviction

mechanism, with the intent to enhance the performance of the existing situations into

better performance. The preferred solutions entail improving data availability,

minimizing jobs completion times, minimizing bandwidth usage, as well as

optimising storage and computing element usage, which will help minimise access

latency and improve job throughput of the DGF system. This thesis utilises the DRM

approach to guide in achieving the stated research goals.

The DRM approach requires a careful mapping of understanding of the traditional

mechanisms and the development of a new one leading to an effective and efficient

solution [88], [123]. These requirements are fitted with the design research

definition as proposed by research in [122], and buttressed in [124], where design

research integrates the development of understanding and the development of

mechanisms. The DRM is an approach and a guideline, coined with a set of

supporting methods that represent a framework for performing design research. The

approach helps to make design research more rigorous, effective and efficient. Its

outcomes are both academically and practically more worthwhile [122]. Due to these

89

attractive features, DRM has been adopted for conducting this research. The DRM

framework for this thesis is shown in Figure 3.1.

Figure 3.1. Research Design

The various aspects of the DRM framework complement each other to produce an

efficient and effective solution, for a better/higher performance. Blessing opined that

design research must be scientific in acquiring valid results both in the theoretical

and practical sense and due to its unique features; it requires a distinct methodology,

such as the DRM. The framework illustrates the links between the various stages

of the DRM, the methods used in each stage, and the primary deliverables. DRM

90

comes in four different stages, namely Research Clarification (RC), Descriptive

Study-I (DS-I), Prescriptive Study (PS), and Descriptive Study-II (DS-II) stages. In

the sections that follow, a brief explanation of DRM stages from the perspective of

this research area is presented.

3.3 Research Clarification (RC)

This research started with the first stage of DRM called RC, which was used to

obtain a precise understanding, as well as a challenging but realistic overall research

plan. In general, the deliverables of the RC stage is Chapter One. The RC stage

consists of six iterative steps, as shown in Figure 3.2.

Figure 3.2. Main steps in the research clarification stage

Start

1- Identify the research topic of
interest

2- Clarify the status of the problem

3- Clarify the questions and
objectives

4- Identify the research gap

5- Select the research type

6- Determine:
a. Research questions
b. Research objectives
c. Research contributions

7- Formulate research plan

Is the Research
plan acceptable?

Yes

No

Move to next
stage

91

More specifically, the deliverable is the overall research plans that include the

following elements: research focus and motivation, research problem and research

questions, related literature, research approach (research type, scope, main stages,

and methods), and the area of research contributions and deliverables.

3.4 Descriptive Study-I (DS-I)

The DS-I stage proceeds the RC stage. Whereas the RC stage is concerned with the

realistic research plan, the DS-I stage is mostly associated with assessment and clear

understanding of the current situations. The DS-I consists of five steps [123],

typically made up of several iterations, as follows:

I. Review Literature

II. Determine research focus

III. Develop research plan for DS-1

IV. Undertake Empirical study:

a. Collect, process and analyse data

b. Update the conceptual Model

V. Draw overall conclusions:

c. Combine the results

d. Complete the conceptual model

The DS-I stage usually involves a critical analysis of related literature as well as

empirical studies of the research area. In the course of this study, a detailed analysis

of the current mechanisms was discussed as shown in Chapter two under literature

review, and many empirical studies were critically evaluated to gain more

perceptions into the existing solutions and onward look. Every step of the DS-I

92

stage is geared towards increasing the understanding of the subject matter and

may result in further empirical studies or literature reviews, which may lead to

further refining and updating of the performance and the conceptual model.

The outcomes of the DS-I stage are a critical examination of related works as

well as strengths and weaknesses of data replication mechanisms in DGF

systems as presented in chapter two, and conceptual model for the proposed

DRCEM mechanism.

3.4.1 An Overview of the Proposed DRCEM Mechanism

In this section, the core components of the proposed DRCEM mechanism are

outlined. The development of these schemes entails the design of the core

mathematical models for each scheme in the proposed mechanism. The components

of the new mechanism, otherwise referred to as Dynamic Replica Creation and

Eviction Mechanism (DRCEM) are enhancements on the existing DRCM [26] and

ELALW Mechanisms [8]. Hence, the proposed DRCEM is a coin of three schemes,

thus:

1. Dynamic Replica Evaluation and Creation Scheme (DRECS), which decides on

replica evaluation and creation, determines how many replicas needed to be

created; the DRECS evaluates data files based on access history and files logical

dependencies, then optimises the number of replicas by creating the required

number of replicas to meet users’ data needs.

2. Dynamic Replica Placement Scheme (DRPS), finds the best location sites to host

the newly created replicas; the best location sites are determined by the site

distance, site availability, site workload and replica placement cost.

93

3. Dynamic Replica Eviction Scheme (DRES), which decides on replicas to evict in

case there is need to create more space for the newly created replicas.

3.4.1.1 Conceptual Model of the DRCEM Mechanism

Figure 3.3 shows the conceptual model for the proposed DRCEM mechanism.

Figure 3.3. Conceptual model of the proposed DRCEM mechanism

To achieve the desired goal of improving the performance of the DGF system

regarding jobs completion times, network consumption, storage and computing

element usage, this thesis develops a conceptual model for the proposed DRCEM

mechanism. Some design metrics are carefully selected and used by this thesis to

Dynamic Replica Placement Scheme

(DRPS)

Sites Availability Sites Workloads Distance between

Sites

Replica Placement

Cost (RPC)

If Space

not enough

Dynamic Replica Evaluation and

Creation Scheme (DRECS)

Existing File Replicas
Direct/ Indirect Logical

Dependencies Measure File Access History

Dynamic Replica Eviction Scheme

(DRES)

Replica Value
Direct Logical
Dependencies

Indirect Logical
Dependencies

Dynamic Replica Creation and

Eviction Mechanism (DRCEM)

94

help in realising the effectiveness of the performance metrics. These design metrics

include number of jobs, file size, site distance, site availability, site workload and

replica placement cost. The conceptual model for the proposed DRCEM mechanism

describes the desired and improved solution, following a critical review of related

works. The figure consists of three schemes namely DRECS, DRPS, and DRES.

From Figure 3.3, the proposed DRCEM conceptual model suggests that, the

mechanism achieves a set of functional and non-functional requirements. The

functional requirements of DRCEM include replica evaluation and creation, replica

placement, and replica eviction decision.

In the replica evaluation and creation functionality, DRCEM performs replication

evaluation and creation processes and determines which files will be replicated as

well as how many copies to be created. To make the decision, DRCEM considers

popularity of the files combined with their logical dependencies, which is termed as

File value (FV), and the existing number of replicas of each file.

The DRCEM considers file appreciation or depreciation, in addition, to file logical

dependency to evaluate the files, aim at determining the files’ popularity as regards

to users’ access. File appreciation or depreciation is rooted by the theory of

exponential growth/decay [8], [26]. In addition, the DRCEM evaluates data files

based on file value and existing number of replicas with the aim of determining the

files’ popularity relating to other files in the DGF system. Then, based on the two

factors, the DRCEM decides on the overall file popularity.

Relating to the replica placement functionality for hosting the newly created replicas,

the location sites that provide the least amount of Replica Placement Cost (RPC) for

95

data replicas are chosen. Choosing the best location depends on the parameters

namely; site distance, site availability, site workload, inter-dependent files location,

and RPC. Eventually, in replica eviction functionality, the eviction function is

invoked to evict a victim replica from the target storage element to provide space for

the newly created replica. Choosing the victim replica depends on the parameters,

namely the value of the files, inter-dependability and site workloads (highly

loaded/lightly loaded sites).

The non-functional requirements that have been achieved include:

 Scalability: The DRCEM can scale well, in the case of increasing the

depending parameters, such as file sizes and a number of submitted jobs

 Interoperability: The DRCEM should have the ability to work with other

existing systems without special efforts, such as replica location services

(RLS)

 Performance: The DRCEM should show improved performance compared to

other similar mechanisms. Therefore, the evaluation metrics are used to

measure the performance of the system

 Feasibility and Simplicity: The DRCEM should be implementable. Thus the

mechanism has been void of ambiguities, to ease the implementation tasks

DRCEM relies on existing data grid core services, such as Replica Location

Services (RLS) [52], [63] that provide information related to the physical file

locations, and Information Service Provider (ISP) [125] , to provide the network

availability and status. Figure 3.4 shows a relationship between DRCEM, Replica

Location Services (RLS), Information Service Provider (ISP) and other related

entities of the Replica Management Services.

96

Figure 3.4. Relationship between DRCEM, RLS, ISP and other entities

The DRCEM works in the background of the system in such a way that there is no

direct connection with users. Therefore, as shown in Figure 3.4, DRCEM offers the

following functionalities:

i- Gathers replica locations information from RLS;

ii- Gathers network bandwidth information from the Network Status;

iii- Gathers jobs information from the history file; and

iv- Makes central decisions on replica evaluation and creation, replica

placement, and replica eviction.

3.4.1.2 Framework for the DRCEM Mechanism

The framework of the proposed DRCEM mechanism is shown in Figure 3.5. The

framework comprises of three schemes namely, dynamic replica evaluation and

creation, dynamic replica placement and dynamic replica eviction scheme.

97

Figure 3.5. Framework for the proposed DRCEM mechanism

The framework outlines how to achieve the various stages of replica evaluation and

creation scheme, replica placement scheme and replica eviction scheme. Although

the schemes appeared to be in parallel, they are actually logically arranged according

to their execution as A, B and C on the figure. Specifically, the following

methodologies insured to achieve the three components of the framework. Thus;

A. The dynamic replica evaluation and creation scheme (DRECS) aimed at

creating and optimising number of replicas within a DGF system. In order to

optimise number of replicas, insignificant file replicas will have to be deleted

along with the creation process. This process differs with the dynamic replica

eviction scheme (DRES) process in (C), whose aim is to create more space for

98

incoming replicas. The replica evaluation and creation scheme encapsulates the

following set of activities: Identify previous access frequencies for the files in

the federation, then;

i. Compute average access frequencies for all the files in the federation

ii. Compute logical dependencies for all the file

iii. Compute indirect logical dependencies for all the files

iv. Compute file weights

v. Compute files values

B. The dynamic replica placement scheme (DRPS) is achieved via the following

set of activities: Identify the availability status for all the sites

i. Determine percentage availability for all the sites

ii. Compute average and optimum availability

iii. Compute current workloads for all the sites; determine lightly and

moderately loaded sites

iv. Compute distance between replica sites, using bandwidth information

C. For dynamic replica eviction scheme (DRES), files are evicted to create more

space for incoming replica files, in case there is shortage of space to

accommodate the newly created replica files. Thus, the dynamic replica

eviction scheme is invoked only on the condition of insufficient storage space

by the DRPS stage to evict file replicas that have low value and less

dependability factor.

The proposed DRCEM mechanism performs these activities seamlessly, without

constraining the users and the grid resources. Balance is maintained between replica

placement and eviction, by deleting unwanted replicas and creating replicas of

popular files. In addition, replica placement aims at making sure all-important

99

replicas are hosted on sites with higher availability in the DGF, regarding online and

offline status, and at distances that offer least replica placement cost.

3.5 Prescriptive Study (PS)

The PS is the main stage in DRM, as it includes the design of the proposed

mechanism. Figure 3.6 shows a flowchart describing the main steps of the

prescriptive stage according to this research phenomenon.

Figure 3.6. Main steps in the prescriptive study stage [126]

For this research, network modelling and simulation process proposed by

research in [126] is adopted. The first block of the PS stage represents specifications

Start

1- Proposed DRCEM Mechanism

2- Conceptual Modeling of
DRCEM

3- Mathematical Modeling of the
Conceptual Model

4- Algorithmic Interpretation of the
Mathematical Model

5- Coding of the Algorithm using
Java Programming Language:

a. Module Design and Coding
b. Compiling, Linking and Testing

6- Validation of the developed
Computer Program

Valid Model?

Yes

No

Input for DS-
II

100

of the proposed mechanism. The second and third blocks constitute model

development that includes problem analysis, goals determination, and study of

related theory. Furthermore, it frequently involves making assumptions and

introducing a simplification to reduce the model’s complexity.

Blocks 4 and 5 in Figure 3.6 illustrate mechanism implementation, and it

depends very much on the choice of the simulation environment. Finally,

validation will be covered in detail in the following subsection. The deliverables

of the PS stage are Chapter Four and Five (Objectives 2 and 3), which covers the

development of the proposed Dynamic Replica Creation and Eviction Mechanism

(DRCEM). The design and implementation of the proposed mechanism as well

as the performance validation of the proposed mechanism are carried out under

the PS stage.

3.5.1 The Procedure for Mechanism Validation

Mechanism validation often connotes authenticating that the mechanism, within

its domain of applicability, behaves satisfactorily and consistent with the study

objectives [127]. Mechanism validation is the capacity to demonstrate that a

computerised mechanism within its domain of applicability possesses a satisfactory

range of accuracy [127]. Validation needs to be performed to ensure that the

mechanism meets its intended requirements regarding the working methodology

and the obtained results, which is all part of the process to building the correct

mechanism.

Thus validation ensures that the proposed mechanism is transformed from one form

to another while maintaining its sufficient accuracy [127]. In other words,

101

validation assesses the accuracy of transforming a mechanism representation from

a flowchart or pseudocode form into an executable computer program. The

following Figure 3.7 shows the flowchart of the mechanism validation process.

Figure 3.7. Validation process flowchart [127]

The NetBeans IDE for Java Developers provides integrated functionality for Java

programs, such as Source Editor, GUI Builder, compiler, debugger, launcher, parser,

and makefile generator, which enables the validation process. The NetBeans IDE for

Java Developers provides integrated functionality for developing and analyzing Java

source codes. In this research, the various schemes for the proposed mechanism are

102

transformed into Java code since OptorSim requires Java as the base programming

language. The Code Analysis, which is an integral part of NetBeans, is capable of

identifying and exposing syntax errors to the advantage of developers. Code analyser

works by scanning Java source codes and checks for potential programming

problems as well as syntax and semantic errors. Code Analysis is a crucial feature

and was used to ensure that: the mechanism is programmed and implemented

correctly, and the mechanism does not contain any errors or bugs. After writing

the program codes, validation ensures that the code is correct both syntactically

and logically. The validation process was done according to the laid down

techniques as outlined by the research in [127], such as fixed value and internal

validity tests, which are considered as standard reference for validation of

simulation mechanisms. This thesis adopts the relevant techniques concerning

validation of DRCEM mechanism, which was done against two existing DRCM

and ELALW mechanisms. Two methods are used to validate the DRCEM

mechanism, as explained subsequently:

Fixed Value Test: Fixed values of the simulation parameters are chosen (number

of file access, file dependency level set to 0), and elementary topology such that

expected results can be calculated manually, and then compared with actual

results. Number of file access indicates how many times a given file is accessed at

the completion of the experiment. By setting the dependency level to zero, it

means that file inter-dependencies is set to minimum (zero) value, aimed at

keeping the validation experiment as simple as possible.

A simple topology is used for the validation process that consists of twenty (20)

sites and five (5) jobs were run, while keeping the dependency level set to zero

103

and maintaining the same number of time intervals between jobs submissions.

Then, the DRCEM was invoked to execute the jobs, after the five jobs have been

submitted. Then, the number of jobs processed and the jobs completion time for

each site were observed and recorded from the simulation, followed by manual

calculations of these parameters to ascertain the mechanism’s logic was correctly

coded. Afterwards, the existing function that is already implemented in Optorsim

<listReplicas (String)>, was used to verify the manual calculations, and the results

yielded the same replica files that were expected to be replicated.

Internal Validity: The simulation was run several times (up to 20 times) to

make sure that amount of variability are small. According to research in [123], the

acceptable number of times for simulation validation is ten (10) times.

3.5.2 Comparison with Manual Computations of the Validation Data

The previous section explained the procedure for mechanism validation. This

section will explain the process by running and comparing the simulation results

from validation data with manual computations of the expected outcomes. Table

3.1 shows the data used for the fixed value and internal validity tests in this thesis.

Table 3.1

Fixed value and internal validity tests data

Parameter Value

Number of Jobs 5

File Size 100MB

Number of sites 20

File dependencies 0

Job Delay 2500ms

Scheduler QAC

104

Table 3.2

Statistic data for validation result

Site ID Number of Jobs processed
Job Completion

Time (Mill sec)

Site1 1 191.85

Site3 1 104.731

Site16 2 372.34

Site17 1 40.471

Total 5 709.392

Mean Job Time of all Jobs (Mill

sec)

 141.000

From Table 3.2, it shows that sites 1, 3, 16 and 17 were selected out of the 20 sites

specified in the simulation to run the jobs. The mechanism selects these sites for

executing the five jobs based on the selection procedure outlined in the QAC

scheduling mechanism [33]. Each of Site1, Site3 and Site17 processed one job out

of the five jobs, with jobs completion time of 191.85, 104.731 and 40.471 mill

sec, respectively. In addition, Site 16 alone processed 2 jobs, with job completion

time of 372.34 mill sec.

Furthermore, from the total column in Table 3.2, there are five numbers of jobs,

which indicated there was no job loss. Therefore, the issue of job loss will not be

considered, as the simulation accounts for all submitted jobs. Also, manual addition

of the individual jobs completion time reveals 191.85+104.731+40.471+372.34 =

709.392 mill sec, and dividing this value by the number of jobs (5) reveals 141.787

mill sec. This result is similar to the output from the validation simulation result in

Table 3.2. The manual computation of job completion time is performed using

Equation 3.3, which is explained further in section 3.6.3 under the performance

evaluation metrics. Table 3.2 presents the result from the 20 runs of the validation

data, Figure 3.8 plots the mean job completion time for 20 simulation runs.

105

Figure 3.8. Variation of mean job completion time over 20 simulations runs

From the figure, it shows an insignificant variance with a root mean square value

(RMS) of 12.99, when compared to the absolute values (which are of order 102), it is

clear that the variation is in fact negligible. From the start, the values seem to be

higher because the storage elements are empty. After the first run, the mean job

completion time started dropping due to access history. Although the graph

fluctuates at some points, it is however to be expected due to occasional interrupts

within the system, which may result to minor delays while executing some jobs.

Both DRCM and ELALW exhibits similar pattern of graph as would be explained

under performance evaluation in Chapter Five, which further confirms the validation

process. What follows is the DS-II stage, which explains the technique used to

evaluate the performance of the proposed mechanism (see Chapter Five, Section

5.2).

3.6 Descriptive Study-II (DS-II)

The DS-II focused on the performance evaluation of the designed mechanism.

Performance evaluation is a crucial step in evaluating any research. Since there is

need to study the behaviours of the system before building such systems, thus the

system’s performance could be explored using measurement, simulation

106

modelling or analytical modelling [88], [123]. The evaluation of DRCEM

performance could be conducted using any of the above three possible traditional

methods. However, measurement is most feasible when the actual system or its

prototype exists. Thus, the available options are narrowed to two, namely analytical

and simulation modelling. The subsequent subsections explain briefly the available

techniques typically used for performance evaluation and a choice is made amongst

the existing techniques for evaluating DRCEM mechanism.

3.6.1 Procedure for Performance Evaluation

Selecting the evaluation technique is a very crucial step in all performance

evaluation projects [123]. The following subsections explain briefly the different

types of techniques that are typically employed to evaluate the performance of a

mechanism [88], [128].

3.6.1.1 Analytical Modeling

Analytical (also called mathematical) modelling is a set of equations formulated

using mathematical symbolism to describing the performance of an actual

system [88], [123]. A mathematical model can be investigated using computer

programming, which translates the operations by using functional relationships

within the system. The results of the mathematical model can be represented

using a graphical representation drawn from the output of the running program.

Users can adjust the conditions of the system by varying the input or parameters

of the program. The technique is best suited for studying the behaviours of systems

whose prototypes or actual implementation is yet to be carried out. Modeling helps

to understand better the initial view of a system before moving to the

107

implementation process. This technique is often used to study simple systems,

where an analytical model is built and validated to explore and solve a particular

problem in a system. Once the system complexity increases, this technique would

require simplification and assumptions to focus on certain aspects of the system

and fix the rest. According to [19], mathematical modelling has several benefits

and advantages such as low cost and requires less time. However, it has low

accuracy as compared to other techniques in performance evaluation.

3.6.1.2 Evaluation Using Testbed

Performance evaluation using measurement technique proved to be reliable and is

preferable for validating a simulation model [122], [123]. However, in practice,

this method is often impracticable either because the actual systems may not exist

or due to the high cost of carrying out the measurements. Performance evaluation

via measurement could be conducted using testbeds or direct implementation of

the real systems. Although this technique delivers reliable results, the need for

specialised equipment makes it unbearably costly [122], [123].

3.6.1.3 Evaluation Using Simulation

Simulation is a valuable and flexible tool for analysing the performances of

computer systems [122]. In most systems designs, the real system or its prototype

may not be available. Thus, a simulation model helps in studying the dynamic

behaviours and responses of real systems. Also, even if a system lends itself to

measurement, it may be preferable to use simulation. Because it accords the

developers with a variety of scalable and controllable alternative workloads, as

well as environments for comparison [128].

108

The simulation approach is extensively applied for evaluating and validating the

performances of grid systems [123], and this research adopts this method of

validation and evaluation. Some of the motivating characteristics features of

simulation tools include: (i)- Simulation eliminates the need to build a real system

from the onset. (ii)- Simulation provides enabling ground for conducting

experiments in a controllable, and repeatable successions. (iii)- No limit to the

number of scenarios for experimentation. (iv)- Simulation allows other researchers

to reproduce the results of previously conducted experiments [123], [129].

The use of simulation environment to study the performance of the proposed

DRCEM system attracts the following: (i)- Provide enabling ground for creating

an accurate representation of the DGF model under review. (ii)- Simulators

provide integrated development and simulation running on a single machine,

which makes it easy for researchers to run their simulations and data analysis

within the same environment. (iii)- It becomes possible to create complex

topologies via simulators, which would have been otherwise impossible to

replicate in a test bed environment. (iv)- Simulation enables researchers to

reconstruct a representation of the application model easily. (v)- Simulation

Provides vivid access to all the data about the metrics for performance evaluation

in a graphical representation. (vi)- Some Simulators are available as freeware.

Thus, little cost is needed to simulate systems under different scenarios [128].

3.6.2 The Simulation Environment

In this research, the performance analysis of jobs times, storage, bandwidth and

computing element usage is conducted using the OptorSim simulation

environment. As explained in Chapter Two, other grid simulators exist, such as

109

GridSim [114], [121], SimGrid [115], and GangSim [113], with varying

characteristics features that differentiate them from one another regarding merits

and demerits. This research has conducted a critical review of the most commonly

used simulators in grid industry regarding their various functionalities. The initial

justification for choosing OptorSim as the main simulator in this research follows

straight from Chapter Two (Section 2.8). It was evident that majority of research

conducted on DG systems used OptorSim to investigate the perofrmance of the

proposed mechanisms. In addition, from Table 2.2, the OptorSim simulator has

been designed to test dynamic scheduling and replication mechanisms. In these

regards, this research has adopted OptorSim as the main simulation environment

for evaluating the proposed mechanism regarding jobs completion time, storage

element usage, bandwidth usage and computing element usage. The following

subsection explains some variable features of the OptorSim simulator along with

the simulation setup used in this thesis.

3.6.2.1 The OptorSim Simulator and Simulation Parameters

The OptorSim provides enabling ground for simulating any grid topology and a list

of jobs to process using the integrated and extensible configuration files. It could

also simulate background traffics and network usage. The simulator has provision

for adding new mechanisms. During simulation, data statistics can be collected

according to the measurable metrics specified [130].

A total of 5000 jobs was simulated in this research, with varying number of file sizes

ranging from 2.5 GB, 5.0 GB and 10 GB. Table 3.3 presents the simulations

parameters used in this thesis that are mostly static throughout the simulation

processes.

110

Table 3.3

Configuration parameters used in the simulations

Parameter Value

Number of Jobs 50, 500, 1000, 2000, 3000, 4000, 5000

Scheduler QAC Scheduling Mechanism

Site Policy All Job Types

File Size 10GB, 5GB, 2.5GB

Sites Bandwidth The same EDG test bed bandwidth configuration file [33]

Storage capacity One site has the most capacity of 100 GB to hold all the master files

at the beginning of the simulation. The others have a uniform size of

80 GB.

Access history length 1000000 Ms

Storage metric (D) 0.67

Max. Queue Size 200 jobs

Job Delay 2500 Ms

Some of the design parameters such as the file size and bandwidth are variable

parameters, which are described in the jobs.config, and bandwidth.config files of the

OptorSim simulator, respectively, as shown on the table. In addition, number of jobs

is one of the variable parameters that keep changing as the simulation proceeds. A

job is submitted to Resource Broker every 25 seconds. Resource Broker then

submits to CE according to a QAC scheduling mechanism. There are six job types,

and each job type requires specific files for execution. The order of files accessed in

a job is sequential and is set in the job configuration file as an input to the

simulation. OptorSim is a command-driven software, but a friendly GUI is

incorporated into the simulation environment, which may be used by researchers for

comfort. However, GUI needs to be enabled from within the parameters config file

that came with the OptorSim installation package. Further, the simulator can be run

using Java integrated development interface (IDE) such as the NetBeans and Eclipse

[33]. In this thesis, the NetBeans IDE is used for the simulation processes.

111

The simulation process could output relevant statistics depending on the measurable

metrics specified within the simulation setup. These include total and individual job

times, computing element (CE) usage, number of replications, local and remote files

accessed, as well as the percentage of storage element (SE) usage.

The suitable statistical elements are displayed at the grid level, the individual sites

and the components of the sites. The statistics can be viewed in real-time using the

Graphical User Interface (GUI). The next subsection explains some of the important

parameters used for data collection and analysis.

3.6.2.2 The Simulation Parameters used for Data Collection and Analysis

After running the simulation, there is the need to collect desired data that will aid in

measuring the performance of the proposed mechanism. Thus, OptorSim

simulator outputs relevant statistics depending on the measurable metrics specified

within the simulation setup. In this research, the relevant data collected from the

simulation output include; individual job times, total job times, number of

replications, number of files evicted, local and remote files accessed, storage

element sage (SEU), and computing element usage (CEU). These statistical

elements are displayed at the grid level and the individual sites, as well as the

components of the sites. The graphical user interface helps in displaying the

statistics that can be read off in real-time. The collected data statistics are used in

the measurement of the data availability as well as evaluation of the performance

metrics.

DRCEM is compared with other existing mechanisms as explained in Chapter Two

(Section 2.10) and will be discussed in Chapter Five under performance evaluation.

112

In order to evaluate the system’s performance, the simulation was run using different

number of jobs and file sizes, then the results were compared with the other existing

mechanisms. The parameters that influence replication mechanisms within the

simulator includes number of submitted jobs, site policy, job scheduler, access

history length, storage metric (D), maximum queue size, and job delay [8]. These

parameters are monitored throughout the simulation processes. They complement in

the performance evaluation processes. For instance, the numbers of submitted jobs,

as well as files sizes are varied, to measure the jobs completion times, storage

element usage, bandwidth consumption and computing element usage.

i) Number of Submitted Jobs (Job Workload)

System scalability can be tested by the number of jobs running during the

simulation. In the real DG system, according to research in [109], the CMS

experiment makes a considerable usage of DG resources for the data storage and

online analysis. For instance, on daily basis, an average of 250 users submits

200,000 jobs per day, reaching peaks of 500,000 jobs that access distributed data

resources.

Thus, a user submits an average of 800 jobs on daily basis. So following the

footprints of the existing works [8], [26], for simulating a different number of

submitted jobs, the number of jobs considered for evaluation in this thesis is varied

between 50 to 5000, at the intervals of 50, 500, 1000, 2000, 3000, 4000 and 5000

jobs. At the various intervals, values for the measurable metrics are output into

tables and graphs for analysis.

113

ii) Site Policy

Different grid regions are likely to prioritise different kinds of jobs; each job has its

requirements, which means that there are sites that may not be able to execute

specific jobs. Site policy refers to a type of jobs, which would not be accepted by

sites in the system. The effect of site policies on the overall running of the grid is

investigated. This was done by defining two extremes of policy namely All Job

Types and One Job Type [131]. Therefore, if a site accepts all job types, then the site

has All Job Types policy on the underlying grid. Likewise, if a site would accept

only one job type, then the site has One Job Type policy. In this thesis, it is assumed

that sites can accept all jobs types. Thus, there no need for analysis regarding jobs

types, but job numbers and file sizes.

iii) Scheduling Mechanism (Job Scheduler)

Typically, a scheduler submits jobs to the grid sites according to some algorithms

that may affect the performance of the replication mechanism [34], [35]. The

following are the job scheduler mechanisms implemented in OptorSim. Random:

jobs are randomly scheduled to any computing element that can execute the job.

Queue Length (QL): jobs are scheduled to the computing element that has the

shortest queue of waiting jobs. Access Cost (AC): jobs are scheduled to the

Computing Element with the lowest access cost (time taken to access the files

required by the job). Queue Access Cost (QAC): jobs are scheduled to the

computing element with the lowest queue access cost (sum of access cost for all jobs

in the queue at the given computing element). For uniformity in the obtained results,

and since the fourth scheduling mechanism combines the second and the third

mechanism, this research used the fourth scheduler in all the simulation scenarios.

114

iv) Access History Length

The access history length is defined as the period from which to maintain file access

history. The history of file accesses is used by replication mechanisms to identify the

most popular file in the next time window. Therefore, the length of history used in

the computations must be carefully chosen to produce an accurate prediction. If the

history does not go back in time far enough, the statistics of file access may not be

exact, but if the history goes back too far, it may affect simulator performance.

Moreover, the information could be overdue and obsolete. Thus, the default length

of access history (1000000 Ms) that was configured with the simulator is considered

for evaluation throughout the simulation scenarios.

v) Storage Metric (D)

Storage metric is defined as the ratio of the storage element size to the total dataset

size [132], which is computed in the following Equation 3.1:

 (3.1)

If the value of 𝐷>1, then there is enough space in the storage element to hold all

files that a job would require. Hence, there is no need for any eviction and the

replication mechanism will have little effect on the performance of the grid. If 𝐷<1,

than the storage element is not capable of holding all of the required files so eviction

must take place and choices have to be made on which replicas to keep. In this case,

the replication mechanism will be useful. In order to study the effect of storage

metric, different file sizes that vary between 2.5 GB to 10 GB were considered and

used in the simulation processes.

 (3.1)

Storage Element Size
D

Total Dataset Size


115

vi) Maximum Queue Size (MQS)

The MQS is defined as the highest number of jobs a site can keep in its queue. The

queue size was fixed at 200 jobs per queue in all of the experiments, to

accommodate for jobs, which is the default setting that came with the simulator

[131]. This parameter does not affect the results in any way since the job delay

factor (item vii) takes care of the delay between job submission and retreiving of a

job from the queue.

vii) Job Delay

Job delay is defined as the rate at which jobs are submitted to the data grid

environment. In this thesis, job delay was fixed at 25 seconds in all of the

simulations, as this is the default setting; there is no need to adjust the value.

3.6.2.3 The Simulation Topology

In this subsection, the simulation topology with its associated network

connectivity is explained. The sites are connected via varying bandwidth

capacities. Some sites are connected with a bandwidth capacity of 45 million bits

per second (45Mbps), while others have as high as 2500 Mbps. The variations in

bandwidth capacities make data replication decision very crucial.

The study of DRCEM was carried out using two existing studies namely the

DRCM [26] and ELALW [8], both of which are based on the EU Data Grid model

[16]. In EU Data Grid, a set of high-energy physics analysis jobs was generated

from the Compact Muon Solenoid (CMS) [76], [81] experiments in the European

Organization for Nuclear Research (CERN) [133], [134] project. Jobs were based

116

on the job types described in [26]. The simulation topology is shown in Figure 3.9,

indicating the various sites and bandwidth connectivity amongst the sites.

Figure 3.9. The DRCEM test bed showing sites connectivity

Thus, the topology used in this thesis has four clusters, and each cluster has 4000

sites. One site has the most capacity of 100 GB to hold all the master files at the

beginning of the simulation. The others have a uniform size of 80 GB. As

highlighted earlier in Chapter Two (Section 2.5) the future of Grid Computing is

dynamically shifting from standalone grid to a federation grid environment [65]

[1]. True to this assertion, the European Data Grid (EDG) has migrated to

European Grid Infrastructure (EGI) [135], supported by EGI-InSPIRE [130]. EGI

has featured a federation of shared computing, storage and data resources from

national and inter-governmental resource providers that deliver sustainable,

integrated and secure distributed computing services, to European researchers and

117

their global partners [130], [135]. Thus, the composition of the EU Test bed sites

has grown to more than what appeared on the standard CMS Test bed. Also, the

topology has advanced to a federation of Data Grid connecting more countries,

with over 200 user communities up to 20,000 site users, much more than

envisaged by the original EU Data Grid Project [136].

A mechanism for Data Replication will have to consider the fact that EU

topology, which evolved from EDG, Enabling Grids for E-science (EGEE) to EGI

[130], [135] has now much number of sites than the early stages of grid

technology. Therefore, this thesis considers simulating 10,000 sites, to study the

scalability of DGF systems as the number of jobs increases, which also serves as a

motivation for choosing the topic of this research. Implementing the DRCEM

topology in OptorSim does not present much difficulty, as the simulator is

designed with a Peer-to-Peer mediator, which establishes and maintains

connections between sites.

3.6.2.4 Replication and Scheduling Mechanisms in OptorSim Simulator

The OptorSim simulator is bundled with both replication and scheduling

mechanisms, which were deployed based on the EDG test bed [40]. However, the

modular architecture of the OptorSim simulator allows researchers to integrate and

test new mechanisms for performance evaluation. The scheduling mechanisms are

used by the Resource Brooker to allocate jobs; and the replication mechansisms are

used by the Replica Manager at each site to make copies of popular data items. The

replication mechanisms help to decide when to replicate a file, which file to replicate

and which file to delete according to research in [40]. The overall aim is to reduce

the time it takes jobs to run and to make the best use of grid resources [37]. In the

118

short term, an individual user wants their job to finish as quickly as possible,

however, in the long run, the goal is to have the data distributed in such a way as to

improve job times for all users, thus giving the highest throughput of jobs [38]. So

far, the following scheduling mechanisms have been implemented in OptorSim:

a. The Scheduling Mechanisms

The scheduling mechanisms incorporated into the OptorSim simulator are

Random Scheduling that schedules jobs to random sites [33]. The access cost

scheduling (ACS) that schedules jobs to the site where time to access all files

required by the job is shortest [33]. The queue size scheduling (QSS) [33], which

schedules jobs to sites with the shortest job queue. The queue access cost (QAC)

[33] scheduling that schedules jobs to sites where access cost for all jobs in the

queue is shortest. In this thesis, the scheduling mechanism used along with the

DRCEM mechanism for simulating system’s performance is the QAC scheduler.

The QAC scheduler has been used by existing works of the researchers in [8],

[26] to evaluate their mechanisms.

b. The Replication Mechanisms

The replication mechanisms that are bundled with the OptorSim simulator are

No replication, which reads files remotely [33]. The least recently used (LRU)

[33], which always replicate, and deletes least recently used file. The least

frequently used (LFU) [33], which always replicate, and delete least frequently

used file. The economic model (Binomial) [33], which replicates files if

economically advantageous, uses binomial prediction function for file values.

The economic model (Zipf) [33] that replicates if economically advantageous,

using Zipf-based prediction function. In addition, the modular design of the

119

OptorSim simulator enables new replication/scheduling policies to be

developed and integrated the toolkit.

3.6.3 Performance Evaluation Metrics

Some performance metrics are used to evaluate the system performance. Four

performance metrics namely jobs completion times; network usage, storage and

computing element usage are used to evaluate the system performance. In addition,

these metrics are evaluated using design metrics such number of jobs, file size, site

distance, site workload and file logical dependencies. More details on the design

metrics is given in Chapter 5. What follows is a comprehensive explanation on the

performance metrics used in this thesis.

3.6.3.1 Job Completion Time

Job completion time, otherwise known as mean job execution time (MJET) is

defined as the average time a job takes to execute, from the moment it is scheduled

to Computing Element, to the moment when it has finished processing all of the

required files. It is calculated by summing the total time taken by each job and

divided by the total number of jobs [49], as shown in the following formula:

 (3.2)
TotalJobsTime

Jobs Completion Times
n




Where,

TotalJobsTime; is the total time taken by each job.

n; is the total number of jobs processed.

120

3.6.3.2 Effective Network Usage

Effective Network Usage (ENU) is defined as the ratio of files transferred to files

requested, so a low value indicates that the optimisation mechanism used is better at

placing files in the right places. Thus, ENU is a measure of how well the replication

mechanism uses the network [92] is computed as:

 (3.3)
remote file access replications

remote file access local file access

N N
ENU

N N






Where Nremote file access is the number of times that Computing Element reads a

file from a remote location, Nreplications is the total number of file replication

that occurs, Nlocal file access is the number of reads performed locally.

A lower value of ENU would indicate that the utilisation of network bandwidth is

more efficient. Thus, to get low ENU value, the value of numerator should be small,

which means that the mechanism should not do more replication unless it is

beneficial to the entire system [92].

3.6.3.3 Storage Element Usage

Storage element usage of a site is the percentage of capacity reserved by files

according to the total capacity for the underlying storage. The average of all storage

reserve capabilities in the DGF can reflect the total system storage cost [84]. The

Average Storage Usage (ASU) metric is computed by the following equation [140]:

1

()

 100% (3.4)

n

i

U
site

C
ASU

N

 


Where,

 U; is the storage space reserved for data files, N; is the number of sites in

the data grid and C; is the total capacity of the storage facility or medium

121

3.6.3.4 Computing Element Usage (CE Usage)

CE usage is defined as the percentage of time that a CE is active (transferring or

processing data). The CE usage of the whole DGF system is computed by

aggregating the CE usage of each CE from the individual regions. The CE usage is

a metric that could be of interest to resource owners, as high CE usage would

mean that the workload is balanced across the individual DG platforms [49]. Low

CE usage, on the other hand, would mean that some CEs have long queues while

others are underused.

 Response time

Response time can be interpreted as the waiting time at the end of a request

submission, and the commencement of the corresponding response from the

system. It could also mean the time interval between request submission and the

corresponding response from the system [4]. The latter definition is more

appropriate if the time between request and getting response takes too long.

Response time is mathematically represented as follows [37]:

Response time (Tr) = Waiting time (Wt) + Service time (Ts) (3.5)

 Distance Between Replica Sites

The distance D(x,y), denotes network distance between site x and site y. Network

distance is computed by considering the number of physical devices between sites,

using the number of hops with a traceroute command. Also, distance information is

captured when a replica is checked for the first time, to reduce the cost. Network

distance between sites influences replica selection decision, which is one of the key

components of data management in data-intensive applications. Because of the

122

possibility of the existence of several replicas for a given file, network distance is

often used as the deciding factor for determining which replica location is the best

for the grid users [92].

 Job Throughput

Throughput is the rate (requests per unit of time) at which the requests can be

serviced by the system [59]. For batch streams, the throughput is measured in jobs

per second. For interactive systems, the throughput is measured in requests per

second. For CPUs, the throughput is measured in Millions of Instructions per

Second (MIPS), or Millions of Floating-Point Operations per Second (MFLOPS).

For networks, the throughput is measured in packets per second (PPS) or bits per

second (bps). For transactions processing systems, the throughput is measured in

Transactions per Second (TPS). The throughput of a system steps up as the load

on the system increases from the start. After a certain load, the throughput ceases

to rise; in most scenarios, the throughput may start reducing. The nominal

capacity of a system is the maximum achievable throughput under perfect

workload conditions. Bandwidth is the nominal capacity of networks.

3.7 Chapter Summary

This chapter has described in details the research design in readiness for achieving

the research objectives. This research’s prime objective is geared towards

developing a dynamic replica creation and eviction mechanism (DRCEM) for

improving data availability, which in turns improve the performance of DGF

systems in terms of jobs completion times, storage element usage, network

bandwidth usage and computing element usage. Four principal activities of the

123

research are outlined in this chapter in line with the design research principle. The

first activity is the Research Clarification (RC) stage, which discusses methods to

support the initial stage of this research. RC was used to identify issues in the

DGF systems, identify gap in the literature, and identify the problem, formulate

objectives, and research questions that are both academically and practically

worthwhile and realistic.

The second activity is called Descriptive Study-I (DS-I), which discusses steps to

obtain sufficient understanding of the current situations relating to the DGF

systems by using the reference table in Chapter two, which aids in proposing the

DRCEM conceptual model. The third activity highlights the methods adopted in

designing the proposed DRCEM mechanism for improving DGF performance,

otherwise known as Prescriptive Study (PS). It was shown that the proposed

DRCEM mechanism encapsulates three schemes namely DRECS, DRPS and

DRES responsible for replica evaluation and creation, replica placement and

replica eviction, respectively. The PS stage aids in coming up with the

methodologies for realising the three schemes of the proposed mechanism. It

shows vividly the various activities contained in each of the schemes.

The last activity named DS-II focuses on the evaluation of the proposed DRCEM

mechanisms for DGF systems. The chapter also explained the validation and

evaluation environment, along with the measurable metrics. The proposed

DRCEM mechanism was validated, and parameters used in Chapter Five for

performance evaluation are outlined as well explained in this chapter.

124

CHAPTER FOUR

THE SCHEMES IN DRCEM MECHANISM

4.1 Introduction

The chapter commences by giving brief highlights on the design objectives of the

proposed mechanism, as well as explanations on the rationales and goals of the

proposed mechanism. The chapter also gives the detailed design of the DRCEM

along with design specifications, schemes, flowcharts and algorithms. The

implementation of Dynamic Replica Creation and Eviction Mechanism (DRCEM)

for improving the performance of DGF system is explained in the chapter’s

subsequent sections. The central idea of data replication is to preserve some replicas

or duplicates of the same data at various locations within the DGF system. Thus, the

three DRCEM schemes (see Figure 3.3) are fully developed and explained in this

chapter. In addition, numerical examples are given at appropriate subsections of the

chapter to illustrate how the various schemes operate to realise the intended

functions of the DRCEM mechanism.

4.2 Design Objectives for the Proposed (DRCEM) Mechanism

The core goal of this research is to develop a dynamic replica creation and eviction

mechanism (DRCEM), with the aim of minimising jobs completion times, network,

storage and computing element usage, within a DGF environment. The term

dynamic means that the mechanism creates files replicas that are subject to timely

maintenance. Unlike static replica creation, which does not support timely

maintenances in terms of replica updates, the replicas created by DRCEM could

accept any forms of updates, either synchronous or asynchronous updates. One of

125

the core benefits of the dynamic replica creation is that the replica files need not to

entirely be replaced, in case of changes to the original or source file. In addition, as

explained in Chapter 3, the proposed DRCEM mechanism consists of three schemes

namely, Dynamic Replica Evaluation and Creation Scheme (DRECS), which

determines the file replicas that need to be created, the Dynamic Replica Placement

(DRPS) scheme that determines best locations on which newly created replicas

should be placed and the Dynamic Replica Eviction Scheme (DRES), which

determines the file replicas to be deleted in order to create more space within the

federation regions.

These schemes are coined to form the DRCEM mechanism, which leads to realising

the design objectives as well as the overall system objectives. The next subsections

explain briefly, the performance metrics that formed the design objectives in this

chapter, starting with the jobs times.

4.2.1 Access Latency (Tobs Times)

The term access latency (jobs times) refers to access time, considering delays due to

the distance between replica site and the site requesting for such replicas. In

addition, network bandwidth affects access time for data files, which may drastically

affects the time required to execute scheduled jobs. The distance between replica

sites plays a vital role in minimising network bandwidth usage [119].

4.2.2 Optimising Storage and Computing Element Usage

The storage cost is the storage space used to store data, and computing element

indicates the resources used for computational tasks. Therein, the proposed

126

mechanism utilises storage and computing element as optimally as possible by:

a. Determining the number of replicas that need to be created or evicted such that

there is a balance between users’ data requirement and system workload

b. Locates the important files replicas closer to the jobs that need them

c. Determining the victim replica that needs to be replaced by the newly created

replica, in case there is not enough space at the chosen site to host the new

replicas

4.2.3 Minimising Bandwidth Consumption

The term bandwidth relates to the propagation characteristics of communication

systems between two sites within the network, and bandwidth quantifies the data rate

that a network path can transfer [34], [35].

When the network bandwidth consumption is reduced, the network traffic will be

decreased. Network traffic can be expressed as transmission time in the network,

which is the period when a user requests a replica until the replica download is

completed. Therefore, the proposed mechanism utilizes bandwidth as optimally as

possible by:

a. Placing the replicas very close to the sites that request the replicas

b. Distributing the replicas among sites such that the workload is balanced, and thus

avoid the network congestion

c. Ensuring that a site only stores a copy of a replica with the aim to distribute the

workload among the sites; and

d. The number of times the system performs the replication process is minimised as

much as possible

127

4.3 Detailed Schemes Design for the Proposed (DRCEM) Mechanism

In this subsection, the schemes for the proposed DRCEM mechanism are fully

developed. The required inputs to the mechanism include file access history, site

availability and site connectivity workload data, as outlined in the appendices

section. The design of the proposed DRCEM mechanism commences with mapping

out how the mechanism decides which file is important and worth keeping in the

system, as well as which file is insignificant. This is achieved via the dynamic

replica evaluation and creation scheme (DRECS).

The second stage of the design involves a dynamic replica placement scheme

(DRPS), which determines the appropriate locations to put the newly created replica

files. The third crucial stage involves a dynamic replica eviction scheme (DRES),

which determines the unwanted replicas to be deleted from the DGF system in order

to create more space for the newly created file replicas.

Thus, the mechanism takes decision whereby only the most popular files are

replicated, and the least popular (insignificant) files are evicted. The evaluation

process requires a scheme to calculate the file lifetime (FLT), file weight (FW), and

file strengths (FS) and projected number of replicas (PNoR), based on files access

histories. The proposed DRCEM mechanism takes account of the relationship

between both the grid users and grid system, while deciding which file to replicate

and which file to evict. Also, site distance, site availability and workloads are taken

into considerations by the mechanism prior to placing file replicas. Thus, the design

of the DRCEM mechanism commences with the development of a dynamic replica

evaluation and creation scheme (DRECS) of the DRCEM mechanism, as explained

in the following subsection.

128

4.3.1 The Dynamic Replica Evaluation and Creation Scheme

The dynamic replica evaluation and creation scheme (DRECS) decides which file

should be created and how many copies to be created. The scheme performs a file-

by-file evaluation of all replica files to determine whether a file is worth having

compared to all other replica files that are in the system. In a DGF system, when a

file is required by a job and is not available in a local storage, it may either be

replicated or read remotely. If a file is replicated, the next time it is requested, the

job can read it quickly and the time to complete the job could be reduced. However,

if replicating a file requires the eviction of other files, future jobs running those files,

which were evicted will take longer period.

The DRECS scheme was briefly outlined in Chapter Three (Subsection 3.4.1.2).

Further to that, the scheme uses the file access history workload data (Appendix A),

then performs the following set of activities:

i. Evaluates individual files to determine access frequency for each file, within

a specified past time interval (determine popular and unpopular files)

ii. Compute average increase/decrease rate for the access frequencies within the

past time intervals, for all the files in the federation

iii. Determines file life time (FLT), which is the file access frequency for the

upcoming time intervals

iv. Determines files that have direct links, as well as indirect links to each

individual file (computes logical dependencies)

v. Compute file weights (FW), files values (FV), file strengths (FS) and

projected number of file replicas (PNoR) required for each popular data file

vi. Performs logical comparison of the PNoR for each file with zero (0), based

129

on which the scheme creates three files (at the first run) namely

Popularity_List, Unpopularity_List and Stability_List, to contain the list of

popular files, unpopular files and stable files records, respectively.

vii. Create the required file replicas of the popular files based on the PNoR value,

using the Popularity_List file records

viii. Input for dynamic replica placement scheme (DRPS)

The following Figure 4.1 shows the logical flowchart of the dynamic replica

evaluation and creation scheme (DRECS).

Figure 4.1. Flowchart for Dynamic Replica Evaluation and Creation Scheme

(DRECS)

The Dynamic Replica Evaluation and Creation Scheme (DRECS) is the first of the

three schemes that form the DRCEM mechanism. The scheme commences with the

replica evaluation, as the first stage in replica creation. Also, this thesis assumes

periodic replica creation, that is, the mechanism conducts background checks on the

access frequencies of the existing files, and automatically decides to replicate the

130

most popular files. Before creating a replica of a file, there is need to determine

which file(s) need to be replicated, and how many copies.

The replica creation evaluates the individual files and selects the popular file for

replication, and unpopular file for eviction based on associated file values. File value

is a function of file lifetime, file weight and file age. Also, file weight signifies the

importance of a file to the entire files, which is a function of file lifetime and file

dependencies. Furthermore, file lifetime is a function of file access frequency. The

uniqueness of the DRCEM mechanism is that, it considers all these parameters while

evaluating popular files, a functionality which is lacking in the existing mechanisms.

The next subsection explains how the DRECS determines popular files.

4.3.1.1 Determining the Popularity of Data Using Access Frequencies

Due to the limited storage capacity, replication decision should be made to conform

to users’ needs so that high demand files (replicas) should be kept and files (replicas)

with less demand are evicted. The high and fewer demand replicas are determined by

the frequency at which these replicas are requested by the users. In this thesis, a

modified scheme based on the research in [8], is adopted with modifications, for

finding file replicas with high demands as well as fewer demands within the DGF

environment.

The modified scheme is at this moment referred to as a dynamic scheme for

evaluating popular file based on appreciation (increase) rate and depreciation

(decrease) rate, which is also based on access frequencies of the file replicas. Replica

creation mechanisms intend to identify and select potential popular files because it is

believed that popular files in the past time window are likely to remain popular in

131

the future time frame. The proposed DRCEM mechanism is designed by considering

the importance of data files to both users and other files within the DGF system.

Regarding file’s importance to users, the mechanism takes account of how

frequently the user requests a file and determine the change to this request whether

the files exhibit a progressive or dwindling change. In addition, the mechanism

keeps track of the relationships between data files, and observing the level of both

direct logical dependencies (DLD) and indirect logical dependencies (ILD) on a

particular file. As explained in Chapter (Section 2.6.7: Concept of replica

dependency), DLD refers to relationship between data files, which are directly

linked together. Indirect logical dependency (ILD) refers to link to a file via another

data file, which is also called transitive or clustered logical dependency.

File access weight indicates the frequency at which a given data file is accessed

over a time interval. It also forms the basis for determining the file that needs to

be replicated, based on the file’s popularity or its importance relating to other

files. This research adopts the concept of access history of the stored files to find

the most popular file and least popular file within the DGF system.

The statistic required for access frequencies is obtained from the header sites

within each region. The header sites manage file information in each of the

clusters of the DGF system. A given file record in a cluster header is stored

according to the following format: <File_ID, Cluster_ID, Number> [8], [26].

The Number indicates how many times a given file (File_ID) was accessed by

the cluster (Cluster_ID). Increase/ decrease factor determines how popular or

unpopular an entity could be after a certain period. By analogy, data file could

132

increase (appreciate) or decrease (depreciate) after a given period. The factor

that determines file increase or decrease is the access frequency, which is

obtained from the access history. The principle of file increase/decrease applies

to file access history based on the enhanced largest access largest weight

algorithm (ELALW) [8]. That is, file popularity increases or decreases by the

frequency at which the file is accessed over a given period.

Each file popularity increases by the increase in access frequency and decreases

by the decrease in access frequency. Thus, this research applies the principle of

file increase/decrease on file access history to determine popular files, as well as

files with less popularity. The popularity/unpopularity of a data file, determines

how relevent/irrelevent such data file is to both users and the DGf system at

large. File access history is mathematically modeled by the following formulae

[8]: Assuming
t

fa is used to represent the number of accesses for file 𝑓 at time 𝑡,

and
1t

fa 
 is used to represent the number of accesses at time t+1, and then access

history would be given by [8]:

0() (4.1)kta t a e 

a0 = number of access for file f at time t,

a(t) = number of access for the same file f at time t+1, after the first

access. By evaluating the trend in Equation 4.1, a sequence is obtained

after a time T. Thus, the sequence of access numbers after a time T is

given by:

𝑎𝑓
0 𝑎𝑓

1 𝑎𝑓
2 𝑎𝑓

3 … . … 𝑎𝑓
𝑇−1 𝑎𝑓

𝑇 (4.1.1)

133

Average access rates for all intervals is calculated as follows:

1

0 (4.1.2)

T

i

i

T










Where

𝛼𝑇−1 = 𝑙𝑖𝑛
𝑎𝑓

𝑇

𝑎𝑓
𝑇−1 (4.1.3)

Also from equation 4.1.3, the lin factor is a natural logrithm, which is used to

multify the quantity
𝑎𝑓

𝑇

𝑎𝑓
𝑇−1 , which is a division of the number of access for file f at

the current time interval with the number of access for file f in the immediate

previous time interval.

𝑎𝑓
𝑇 = 𝑎𝑓

𝑇−1 ∗ 𝑒 𝛼𝑇−1 (4.1.4)

T = number of past intervals,

F = set of files accessed,

𝑎𝑓
𝑡 = number of access for file f at the current time interval (t),

𝑎𝑓
𝑇−1 = number of access for file f in the immediate previous time

interval (T-1)

e = the increase /decrease factor for the replica files after a given

period, which is computed using natural logrithm function.

Note that the natural logarithm of a number is the power to which “e” would have

to be raised to equal that number. The function of 𝑒 is similar to its application in

determining the rate of population increase or decrease for a settlement, in a

typical census aaplication. The number of access for the next time interval is

calculated as follows:

𝑎𝑓
𝑇+1 = 𝑎𝑓

𝑇 ∗ 𝑒 𝛼 (4.1.5)

134

For instance, assuming the following set of data files, A, B, and C, and suppose

that each of the file record is accessed at least once. According to research in [8]

and [26], an increase in file access indicates file popularity, while a decrease in

file access indicates file unpopularity. Based on these phenomena, this research

finds the most popular file based on its increase rate, while the unpopular file is

determined based on its decrease rate. Furthermre, this thesis considers

additional factors while evaluating popular files namely DLD and ILD of file

replicas.

Thus, using the sample access history workload data file (Appendix A), the most

popular and least popular files are computed in stages, which starts by

computing the average access frequncies for the upcoming future interval, using

the previous history of data access to these files. The average access frequency

for the upcoming interval, also known as the lifetime of the data file (FLT), is

computed by Equation 4.1.6.

File lifetime (FLT) = average access frequency for the upcoming interval:

1 * e (4.1.6)T T

f fFLT a a  

Where α has been expressed under Equation 4.1.2 as the average access

rates for time intervals between T1 to Tn, where T1 and Tn represents the

time intervals under review for the first and the last interval, respectively.

4.3.1.2 Illustrations on How to Determine Access Frequencies

For illustrations on how the proposed DRCEM mechanism computes the average

access frequencies for the stored replica files, for five consecutive time intervals,

sixteen case files are used in this scenario. Within five consecutive time intervals

135

between T1 to Tn (n=5), access frequencies for the sixteen data files A, B, C to P

are pre-determined between T1 to T4.

The next fifth access frequency is computed to determine how frequent the files

would be accessed after time T5, by considering the previous access frequencies

T1 to T4 and the increase/ decrease factor, 𝑒. To illustrate, assuming from Table

4.1, file A was accessed in the passt time intervals 10 times after time T1, 15 times

after time T2, 12 times after time T3 and 10 times after time T4. Then the

following compuations ensured to find the value of alpha (α) as well as the next

number of access to file A, after time T5. Thus, from Equation 4.1.2, the factor

alpha (𝛼) is used to determine the average access rates for all intervals as follows:

     10 1512
12 15 20 = 0.231

3

lin lin lin


 
  (4.1.7)

Also, from Equation 4.1.5, the number of access for file A in the next time

interval after T4 is T5, which is computed as follows in Equation 4.1.8:

𝑎𝑓
𝑇+1 = 𝑎𝑓

𝑇 ∗ 𝑒 𝛼 ← 𝑎𝐴
4+1 ∗ 𝑒 −0.231 (4.1.8)

But according to the data on Table 4.1, number of access for file A at time T4 =

10, and T5 is unknown. Thus Equation 4.1.8 becomes:

𝑎𝑓
5 = 𝑎𝐴

4 ∗ 𝑒 −0.231 (4.1.9)

𝑎𝑓
5 = 10 ∗ 𝑒 −0.231 ≈ 07.937 (4.1.10)

Therefore, number of access for file A after time T5 ≈ 08; from Equation 4.1.10.

The same process is followed by the mechanism to compute access rates and the

number of access for all other files in the system. Thus, given the sequence of

acces numbers in Equation 4.1.1, the mechanism uses Equation 4.1.2 and

Equation 4.1.5 to compute the files’ life time, which is also denoted as the

136

average number of access frequncies in Equations 4.1.6. The Table 4.1 shows set

of values for average access rates and acces frequencies for the past 4

consecutive intervals as well as for the upcoming fifth interval (T5), for the

example files A-P, which were computed using Equations 4.1.1 - 4.1.6.

Table 4.1

Computation of popular file using access frequencies

File

ID

No of Access for

time intervals T1 to

T4

Find T5

Find alpha

(𝜶)=average

increase/decrease

rate for all

previous intervals

Find number of

access for the next

time interval after

the fourth interval

(file lifetime)

 T1 T2 T3 T4 T5 𝛼 ←
∑ (𝛼𝑖)𝑇−1

𝑖=0

𝑇
 𝑎𝑓

4+1 ← 𝑎𝑓
4 ∗ 𝑒 𝛼

A 20 15 12 10 08 -0.231 07.937 ≅ 08

B 17 20 24 15 14 -0.042 14.383 ≅ 14

C 15 13 20 30 38 0.231 37.796 ≅ 38

D 14 18 21 16 17 0.045 16.728 ≅ 17

E 15 19 17 14 14 -0.023 13.682 ≅ 14

F 20 16 14 11 09 -0.1993 09.0125 ≅ 09

G 20 17 15 24 14 -0.042 14.383 ≅ 14

H 15 13 20 30 38 0.231 37.796 ≅ 38

I 14 18 21 16 17 0.045 16.728 ≅ 17

J 20 16 14 11 09 -0.1993 09.0125 ≅ 09

K 14 18 21 16 17 0.045 16.728 ≅ 17

L 20 12 15 10 08 -0.231 07.937 ≅ 08

M 13 15 30 20 38 0.231 37.796 ≅ 38

N 20 17 15 24 14 -0.042 14.383 ≅ 14

O 20 15 12 10 08 -0.231 07.937 ≅ 08

P 14 18 21 16 17 0.045 16.728 ≅ 17

From Table 4.1, the least popular file is the file that gets the least number of

access in the next coming interval. In this case, files A, L and O have the least

amount of access. Thus, A, L and O are the unpopular candidates files for eviction

to create more space for upcoming replicas, while file C, H, and M are the

candidate's files for replication with the highest number of access (38) in the

upcoming (fifth) time interval (T5). The unpopular files are the files that have

least number of requests from the users over the specified time interval measured,

thus are considered less signifant in the system.

137

4.3.1.3 Framework for Determining the Required Number of Files to Replicate

Having known the popular file regarding the past time window and future access

frequencies, the proposed mechanism needs to determine how many copies of the

popular file should be created. The projected number of replicas to be created

depends on some factors such as the file value (FV), file strengths (FS) in relation

to both users (FS<users>) and other files (FS<system>:) as well as the threshold value

(TH) and existing number of copies of the file replicas (ENoC) [40].

The term file strength signifies how freqently a file is accessed by both users and

other files in the system, which indicates how important a file is to the users and

the system. The DRCEM computes the projected number of replicas (PNoR) by

considering the importance or strengths of the popular file regarding users and the

system as follows [40]:

(())
 (4.2)

users system files

si

FS TH FS ENoC
PNoR

TH

     
  




Where;

PNoR is the projected number of required replica copies.

TH: is the threshold value, usually assigned by the systems administrator;

set to 50% in this thesis to control the number of replications.

FS<users>: is the file strength regarding users, which indicates the

importance of file to users and is computed as follows [40]:

 (4.2.1)users

files

FV
FS

FV
 

 




Where

FS: file strength regarding users, and

FV: is the value in respect to the DGF system (Section 4.3.2.10)

138

FS<system>: is the file strength regarding the DGF system as a whole and is

computed as follows [40]:

 (4.2.2)system

files

ENoC
FS

ENoC
 

 




where,

FS: is the file strength regarding the DGF system as a whole, and

ENoC: existing number of replica copies of the underlying file.

The objective here is to strike a balance between the users and the DGF system

either by increasing or decreasing the number of existing copies of replica files

(𝐹S<system>) to meet the volume of demand on files within the DGF (𝐹S<users>).

The balance occurs when users and systems strengths are identical as expressed by

the following Equation 4.2.3 [40]:

𝐹S<users> = 𝐹S<system> (4.2.3)

However, a common scenario is when there are many requests, but few replicas

exist [11], [40]. This is because storage capacities and other DGF resources are

limited. Therefore, in this thesis, the focus is on the most occurring scenario, so

Equation 4.3.3 will become Equation 4.2.4 as follows [40].

FS<users> = TH*FS<system> (4.2.4)

where TH is the threshold value that determines the required percentage

number of copies that are supposed to exist to meet the user's request of

the popular file.

4.3.1.4 Scenarios Used to Determine the Required Number of Files to Replicate

In this thesis, number of popular files for replication is controlled by both the TH

value and PNoR value. As explained under Equation 4.2, the system administrator

specifies the threshold value as a percentage value, which is usually set to 50% of

139

the storage resources. However, the TH value varies according to the DGF

situation, such as the current bandwidth, the type of the running applications and

jobs, as well as the workload of the system (number of jobs and number of files).

In this thesis, the TH value is set to 50%, so that number of replication should not

occupy more than 50% of the storage resources. This is to make sure storage

resources are not drastically constrained by unnescessary number of files replicas.

Regarding the use of PNoR value to control the number of popular files to

replicate, this thesis considers three different scenarious.

a. Scenario 1: if the P𝑁𝑜𝑅 > 0, then the system will replicate copies of the

file, based on the computed PNoR value of the affected file

b. Scenario2: if the P𝑁𝑜𝑅 < 0, then the system will evict copies of the

existing file replicas, based on the computed PNoR value of the file

c. Scenario3: if the P𝑁𝑜𝑅 = 0, then neither replication nor eviction is

required fof the underlying file replicas

4.3.1.5 Illustrations on How the Required Numbers of Files are Computed

In this subsection, the thesis illustrates how the required number of popular files

are computed using TH value and PNoR value. At the start of the computation, FV

and the ENoC are used as inputs.

The FV (refer to Section 4.3.2.10 Mathematical Framework for Determining File

Value) and ENoC represents file values and existing number of replica copies,

respectively. Assume a region within DGF system has 16 files, and their

corresponding FV and ENoC exist as shown in Table 4.2.

140

Table 4.2

Example of 16 files together with their values and existing number of copies

File ID

File value in

respect to

DGF (FV)

Existing number

of replica copies

(ENoC)

File1 25.58 1

File2 32.20 2

File3 58.90 1

File4 36.33 3

File5 27.95 4

File6 47.04 1

File7 14.00 3

File8 68.74 1

File9 26.51 1

File10 31.08 6

File11 42.56 1

File12 38.34 2

File13 51.73 4

File14 53.94 1

File15 08.00 3

File16 33.07 2

Total 595.97 36

Thus, the relationship between ENoC and PNoR is that the former is used as input

for determining the later. For implementation, the ENoC are obtained from the

access history workload data file. However, for illustrative purposes, the existing

number of copies in Table 4.2 are assigned arbitrarily for the sixteen case data

files. From Table 4.2, the assumption made was that the threshold value (TH) set

by system administrator is 50%, that means from Equation 4.2.4, the FS<users>

should be twice FS<system> value. The primary concern here is to determine which

files need to be replicated and which files need to be evicted. The first step is to

calculate the strengths of each file regarding both users and system according to

Equations (4.2), (4.2.1), and (4.2.2). For example, the strengths of File1 regarding

both the users and system as well as the projected number of the required replicas

(PNoR) are computed as follows.

141

 1

25.58
 0.043

595.97
File users

FS
 

 

 1

1
 0.028

36
File system

FS
 

 

(1)

(0.043 2 0.028) 36
 -0.234 0

2
FilePNoR

  
  

The computed PNoR value is rounded to the nearest whole number since it

represents projected number of replica copies, which must be an integer value. In

this situation the projected number of replica for File1 is null. Thus, no replication

will occur for File1 in this scenario. Thus, the mechanism computes FS values and

PNoR values for all files, as shown in Table 4.3.

Table 4.3

Example of how DRCEM computes PNoR values of data files

File ID
Users

Strengths

System

Strengths
PNoR

File1 0.042922 0.027778 -0.227

File2 0.05403 0.055556 -1.027

File3 0.09883 0.027778 0.779

File4 0.060959 0.083333 -1.903

File5 0.046898 0.111111 -3.156

File6 0.07893 0.027778 0.421

File7 0.023491 0.083333 -2.577

File8 0.115341 0.027778 1.076

File9 0.044482 0.027778 -0.199

File10 0.05215 0.166667 -5.061

File11 0.071413 0.027778 0.285

File12 0.064332 0.055556 -0.842

File13 0.0868 0.111111 -2.438

File14 0.090508 0.027778 0.629

File15 0.013423 0.083333 -2.758

File16 0.055489 0.055556 -1.001

From Table 4.3, the results show that File3, File8, and File14 each has PNoR

value approximately equal to 1, thus needs to be replicated by one copy each,

while 1 copy of File2 and file16, 2 copies of File4, 5 copies of File10, 3 copies of

142

File5 and File7 need to be evicted from system to create more space. The negative

value indicates that these files contain excess number of file replicas, therefore the

excess need to be evicted.

Also, the PNoR with positive values indicates that their present qunatity is not

sufficient to meet the required data availability within the system. Therefore, more

copies of these files need to created. On the other hand, the PNoR for File1 = -

0.227 and that of file9 =-0.199, which approximately equal to 0, thus no action

will befall thes files, as they are considered to be in a stable state. In effect, there

will be three kinds of files, the first kind contains files that need to be replicated,

the second contains files that need to be evicted, and the third kind contains files

that will neither be replicated nor evicted from the system, in others words, these

kind of files are considred stable as the case with file1 and file9.

Note that file weight (FW) and file value (FV) are used by both the DRCES,

DRPS and DRES schemes, thus the design of these parameters are reserved for

the next subsection. This does not effect the logical flow of the DRCEM program

in the Java Programming Language environment, which allows modular

programming design.

4.3.2 The Dynamic Replica Placement Scheme

The Dynamic Replica Placement Scheme (DRPS) finds the best site to place the

newly created file replicas. Placing replicas closer to sites that will likely request the

file benefits the users regarding data locality [141]. Thus, while selecting best

locations for placing file replicas, in addition to considering the dynamic behavior of

the peer sites, five parameters need to be determined. These are replica placement

143

cost (RPC), file transfer time (FTT), site workload, the distance between sites,

availability of replication site (SA), and DLD/ ILD of replica files. Thus, DRCEM

considers the aforementioned parameters to obtain a more efficient location for

placing file replicas in the DGF environment. The scheme uses the Popularity_List

file record, and then performs the following set of activities:

i. Computes current workload for all sites

ii. Compute current disk space (CDS) and optimum disk space (optimum CDS)

iii. Get storage requirements from files sizes

iv. Compute distance between replica sites (D) using bandwidth information

v. Compute replica placement cost from FV, FTT & D and compute RPC

optimum

vi. Determines percentage availability for all sites

vii. Add sites whose CDS > SR to selected_relica_site list

viii. Add sites whose CDS <= SR to Unpopularity_List (unstable_relica_site),

and then invoke the DRES scheme

ix. Add sites whose RPC <= optimum RPC; PNoR ≠ 0 and Availability >= 85%

to the best_replica_site list

x. Distribute the computed popular files from DRECS scheme to the various

sites in the best_replica_site list

144

The following Figure 4.2 shows the logical flowchart of the dynamic replica

placement scheme (DRPS).

Figure 4.2. Flowchart for Dynamic Replica Placement Scheme (DRPS)

The next sub-section address how to determine the RPC for placing newly created

replicas.

4.3.2.1 Determining the Replica Placement Cost (RPC)

For data-intensive jobs, the replication scheme should make sure the file replica is

placed closer to the jobs schedules, where the data required for running the jobs can

easily be accessed [101]. The replicating mechanism proposed in this thesis for these

types of data-intensive jobs is based on the “replication cost” of placing the data for

the jobs, where the data could be obtained easily. Replication cost here does not refer

to monetary cost, but the estimated time to copy all the files required for the job into

145

a local store or storage facility so that the relevant jobs can access the files directly.

From a set of sites that are suitable for hosting the replica files (according to site

availability and workload constraints), the replica file is placed to site that offers

minimum replication cost. The RPC is the total cost of transferring a file from the

underlying site to the remote locations, which is determined by the file access cost

and the distance between replica sites, which is computed according to Equation 4.3,

based on the work in [54].

 
0 (

,
4.3)

i

n

si

si

D Source destinationFV F fiT eT
R

l
PC

m

 



Where,

n = total number of sites within the grid,

m = number of sites that request the replica from the given location,

FVsi = File value in respect to a particular site, which is determined according

to the following formula outlined by the research in [26].

 (4.3.1)si

si

FileValue
FV

NoR


Where,

FileValue is the file value in respect to the DGF system as a whole, which is

determined from Equation 4.7

𝑁o𝑅si = number of requests for the popular file from a specific site, 𝑠

  , iD x y file = the distance between replica site and the site requesting ifile

measured in hops; number of physical elements along the path between source

and destination site. The next subsection illustrates how to compute file transfer

time (FTT).

146

4.3.2.2 Calculating the File Transfer Time (FTT)

FTT is defined as the data transmission via a wide area network, which depends

on the network bandwidth and the size of the file. It is computed by the

following equation [40].

 (4.3.2)
FileSize

FTT
Bandwidth



Where,

FileSize is the size of filei whose FTT is to be determined, and Bandwidth is the

network Bandwidth between the host site of filei and the site from where the

data is retrieved.

4.3.2.3 Illustrations on RPC computations for Replica Placement.

The RPC is computed from access cost (FV & FTT) and site distance (D), as

expressed by Equation 4.3. This subsection illustrates how the proposed mechanism

computes RPC for determining appropriate sites to place newly created replicas.

From equation 4.3, RPC is computed using FVsi, FTT and distance between sites.

For illustrations, the parameters used for computing RPC values for the 16 example

files are collected in the following Table 4.4.

Table 4.4

Example of how DRCEM computes RPC values of data files

Site

ID

File

ID

File

Size

(MB)

Bandwidth

MBPS

FV in

respect

to

DGF

system

siNoR FVsi FTT

(Milsec)

Site

Distance

(hops)

RPC

(Milsec)

0 File1 100 100 38.94 26 1.498 1000.00 2 115.231

1 File2 100 150 32.20 18 1.789 666.67 1 66.260

2 File3 100 622 58.90 21 2.805 160.77 5 107.371

3 File4 100 100 36.33 19 1.912 1000.00 2 201.263

4 File5 100 45 27.95 14 1.996 2222.22 1 316.825

147

Table 4.4 continued.

5 File6 100 250 47.04 38 1.238 400.00 1 13.032

6 File7 100 100 14.00 0 0 1000.00 5 0.000

7 File8 100 622 68.74 31 2.217 160.77 4 45.991

8 File9 100 100 26.51 10 2.651 1000.00 1 265.100

9 File10 100 150 31.08 23 1.351 666.67 1 39.160

10 File11 100 150 42.56 26 1.637 666.67 2 83.949

11 File12 100 45 38.34 30 1.278 2222.22 3 283.800

12 File13 100 622 51.73 14 3.695 160.77 4 169.727

13 File14 100 100 53.94 40 1.349 1000.00 2 67.450

14 File15 100 100 08.00 0 0 1000.00 2 0.000

15 File16 100 250 33.07 16 2.067 400.00 3 155.025

From Table 4.4, some assumptions are made regarding the NoR and site distance

values. Regarding the NoR values for the individual files, its assumed that total

number of requests made to a file includes both direct requests and indirect requests,

which are determined by file weight (FW). A single or several other files may have

made these requests. However, since there is no break down on file-to-file data

requests from a real life scenario, this thesis assumed the calculated FW values for

the NoR values. In other words, the calculated FW in Section 4.3.2.8 rounded to the

nearest whole number, is used to represent NoR for a file for computation of RPC.

The second assumption on the site distance is that, distance is zero, if request for a

popular file emanates from the same site. That is, if the source and destination sites

are the same. Furthermore, due to the lack of actual data for sites distances from real

life scenario, arbitrary distance values are assigned to the various sites for illustrative

purposes. In other words, arbitrary distances are assigned between the sites in the

absence of actual site-to-site distance amongst the various sites. However, for the

implementation in this thesis, EDG test bed bandwidths values have been used as the

distances between the sites.

148

Now, from Equation 4.3.1 and from the Table 4.4, file value for file1 in respect to

another file is computed as follows:

 = 1.497 1.50
26

38.94
file1FV  

 = 1.789 1.79
18

32.20
file2FV  

Similarly, all other file values in respect to other files are computed in the same

pattern. Also, from Equation 4.3.2, FTT for the individual file is computed as

follows:

100
1.00secs

100
file1FTT  

100
0.67secs

150
file2FTT  

From the FTT computation, File1 has same value for size and bandwidth, thus FTT

is 1.00 second. Similarly, File2 has size of 100 MB and bandwidth value of 150

Mbps, resulting to 0.67 second. Thus, higher bandwidth results to lower FTT and

lower bandwidth results to higher FTT. In addition, file size ranges from 2.5 GB to

10 GB in all the experiments conducted in this thesis. However, for convenience, the

illustration uses 10 GB file size scaled down by 100%, which gives 100 MB. This

has been the practice for the EDG simulations due to large files sizes [33]. The EDG

simulation in OptorSim uses scaled down representation of the actual file sizes for

convenience. Furthermore, since the FTT is measured in millisecond, the above

value needs to be converted to millisecond as well. Thus, 1.00 Second = 1000.00

Millisecond. Similarly, FTT for all the other files is computed in the same pattern.

The number of physical elements (hops) between source and destination is used as

the distance between the sites, and this is obtained from the sample site connectivity

workload data in Section 4.3.2.7, Table 4.5 on page 162. The bandwidth between

149

sites varies, which imitates the EDG test bed bandwidth connectivity. For the actual

implementation, the EDG bandwidth configuration file is used as the bandwidth

between the various sites. Furthermore, the bandwidths values are used as the

distances between the various sites. Now, to find RPC from Equation 4.3, for

number of sites ranging from 1 to n, the computations proceed as follows:

1000* 2
115.231

1.498
secs

26
site0RPC milli


 

666.67 *1
66.260 secs

18

1.789
site1RPC milli


 

Thus, from the table, total RPC is the sum of all the computed RPC for sites from 0,

to n. average RPC is total RPC/number of sites.

The average RPC is used to determine the optimum RPC, as outlined by Equation

4.3.3 as follows:

 (4.3.3)allsites
Average

TotalRPC
RPC

NumberofSites



 Where

ToTalRPC is the total cost of replica placement for all sites

NumberOfSites represents the total number of sites in the DGF system

Also, the optimum RPC is determined from average RPC as follows:

50%() (4.3.4)Optimum AverageRPC RPC

Where

RPCOptimum is the replica placement cost that provides the ideal cost of

replication, which is determined from 50% of the RPCAverage (Equation 4.3.3).

150

4.3.2.4 Determining Workloads for all Regional Sites

The workload of a site is defined as the number of requests that can be fulfilled by

the underlying regional site [142]. The candidate site should not exceed a specific

amount of workload that was assigned to it. For load balancing, this thesis considers

lightly and moderately loaded sites for replica placement, in the context of storage

space. The proposed DRCEM mechanism computes the current disk space (CDS) for

all sites (Equation 4.4) and divides by the number of sites to obtain the CDSAverage

(Equation 4.4.1). Then computes the Optimum_CDSsi >= 75% (Average CDS)

(Equation 4.4.2) as a proportion of CDS on the Average CDS. The Equations 4.4 to

4.4.4 are outlined as follows.

 (4.4)CDS = TotalDiskSpace - CurrentLoad

 (4.4.1)allsites
Average

TotalDiskSpace
CDS

NumberofSites



_ >= 75%(CDS) (4.4.2)si AverageOptimum CDS

 (4.4.3)Lightly Loaded Site Optimum CDS 

 ; (4.4.4)Moderately Loaded Site Optimum CDS

Lightly loaded site are those sites whose CDS is less than (>) the optimum CDS

(Equation 4.4.3). Moderately loaded sites are those sites whose CDS equals (=) the

value of the optimum CDS (Equation 4.4.4). Highly loaded sites contain CDS

greater (>) than the optimum CDS. In this thesis, replica placement avoids sites that

are highly loaded. The rationale is to control the amount of files duplicated and to

balance the load amongst the regions sites.

Thus, DRCEM compares storage requirement (SR) of the file replica with current

disk space for all the SEs. If the SR is less than or equal to (<=) Optimum_CDS, then

151

places the replica file. Otherwise, replica eviction will be invoked, to create more

space, to accommodate the new replica file. The next subsection explains how the

proposed mechanism computes the distance between sites to compliment replica

placement.

4.3.2.5 Computing Site Distance Using Bandwidth Information

D(x, y) represents network distance between sites x and y, computed using the

network bandwidth information. Also, distance information is captured when a

replica is checked for the first time, to reduce the cost of checking. To show the

effectiveness of any dynamic replication mechanism, a site needs to be able to

identify the nearest replica. This problem could be solved by using the least number

of hops probes with a traceroute command. The nearest replica is one, which is the

least number of steps away from the site. In case there is a tie between two or more

replicas, one of them is selected randomly [142].

The distance between sites has been considered by [8] in relation to replica

placement, using hop counts. For small grid installations, finding the distance may

not present many difficulties. However, when dealing with larger network as the

case with this work, there is a need for a robust mechanism that not just finds the

distance, but finds it fast enough to narrow access time for data replicas. In this

thesis, finding the shortest distance is by using a modified version of the Dijkstra's

algorithm. Dijkstra's algorithm (Figure 4.3, Page 152) is used to find the shortest

paths between sites in a graph, which may represent, for example, road networks for

“Intelligent Map” path planning as reported by the work in [143]. In similar vein, the

algorithm is used to find the shortest distance in computer networks. Dijkstra's

algorithm uses data structures such as Array, Set, Stack, Heap, List, and Queue

152

implementations to store the distance information [146], which in this case the

bandwidths connecting the various sites are used as the distance information. This

thesis adopts Dijkstra's algorithm based on its popularity in the literature reviewed

by this research and less time complexity of O(|E|+|V|Log |V|). The modified

version of the Dijkstra's algorithm is shown in Figure 4.3.

Figure 4.3. Dijkstra's algorithm for finding distances between replica sites

1. function Dijkstra (Graph, source); //the function takes inputs graph and source

site, then compute shortest distances between the sites

2. use site connectivity sample workload data file;

3. compute TLC = DLD+ILD; //compute total logical connections

4. compute TLC_Average; for all sites

5.

n n

i i

TLC_Average= TLC÷ Sites  ;

6. set dist[source] ← 0 // Initialization

7. create vertex set Q

8. group vertices based on TLC value

9. for each group,

10. set source ←ILD (site i) => TLC_Average

11. for each vertex v in Graph:

12. if v ≠ source

13. set dist[v] ← INFINITY //Unknown distance from source to v

14. set prev[v] ← UNDEFINED // Predecessor of v

15. do Q.add_with_priority(v, dist[v])

16. While Q is not empty: // Main loop

17. u ← Q.extract_min() // Removes and returns best vertex

18. for each neighbour v of u: // Only v that is still in Q

19. alt ← dist[u] + length(u, v)

20. if alt < dist[v]

21. dist[v] ← alt

22. prev[v] ← u

23. do Q.decrease_priority(v, alt)

24. End if

25. End for

26. End while

27. End if

28. End for

29. End for

30. Return dist[], prev[]

31. //Iterative deepening depth-first path-finding (IDDF)

32. S ← empty sequence // list of vertices

33. u ← target

34. while prev[u] is defined: // Construct the shortest path with a stack S

35. insert u at the beginning of S // Push the vertex onto the stack

36. u ← prev[u] // Traverse from target to source

37. insert u at the beginning of S // Push the source onto the stack

153

38.

39. function IDDFS(root); //Iterative deepening depth-first search

40. calls DLS if depth is known before hand

41. for depth from 0 to ∞

42. found ← DLS(root, depth);

43. if found ≠ null

44. returns found

45.

46. function DLS(node, depth) //Depth-limited search function

47. if depth = 0 and node is a goal;

48. return node

49. if depth > 0

50. for each child of node

51. found ← DLS(child, depth−1)

52. if found ≠ null

53. return found

54. returns null

55. END

Figure 4.3 continued.

From the pseudo-code in Figure 4.3, Graph is the set of vertices of the input graph

and source is the starting site or vertex. If only the shortest path between source site

and target site needed to be found, the algorithm can be terminated to stop the search

after line 15 if u = target (line 20), and the rest of the algorithm is ignored. The

algorithm will perform a number of iterations to find shortest paths between given

vertices. Other algorithms exist such as Johnson algorithm and Floyd Warshall

algorithm, with time complexities of O(|V|2log|V+|V||E|) and O(n3), respectively,

which are higher than Dijkstra's [143]. The Dijkstra algorithm exists as original and

the common variant. The original variant found the shortest path between two sites,

while the common variant sets a single site as the "source" site and finds shortest

paths from the source to all other sites in the graph, producing a shortest paths

collection, using the specified data structure [143], [146]. This thesis impalements

the common variant of Dijkstra's algorithm using min-priority queue, with some

modifications. The min-priority queue is implemented using heap data structures due

154

to its low time complexities. The advantage of Dijkstra's algorithm is that it finds

shortest path in O(|E|+|V|Log(|V|)) if a min-priority queue is used [143]. However,

the algorithm fails if there is negative edge in the graph; but none exists in the case

of this thesis. Thus, F(E, V) = O(|E| + |V| log |V|), which means that f(V, E) is “big

oh” of (|E| + |V| log |V|). This means that f(E, V) is asymptotically smaller than or

equal to (|E| + |V| log |V|). Therefore, in an asymptotic sense (|E| + |V| log |V|) is an

upper bound for f(E, V) [143]. The meaning of asymptotically smaller implies that 1

less than logn, less than n, less than nlogn, less than n2 as follows: 1 < logn < n <

nlogn < n2 < n3 < 2n < n!, in that order [143].

Furthermore, “amortized time” is the way to express the time complexity, when an

entity exhibits bad time complexity only occasionally, besides the time complexity

that happens most of the time. Thus, amortized time is the average time taken per

operation, if many operations are performed at an instance. Considering that priority

queue permits decrease-key operation in just O(1) amortized time, justified its

implementation along with the Dijkstra's algorithm.

The implementation of Dijkstra’s algorithm into the DRCEM mechanism, along

with a min-priority queue abstract data type, gives faster computing time than using

a basic queue. The min-priority queue (line 16-26) offers an abstract data type that

provides three basic operations thus; add_with_priority(), decrease_priority() and

extract_min(). Such a data structure can offer low run times due to lower time

complexities, leading to faster computing time than using a basic queue [53], [55].

One of the major modifications done on the Dijkstra's algorithm by this thesis to

solve the issue of finding shortest distance between replica sites, entails how to

select the source site from a group of sites, to construct site-distance graph. The first

155

modification starts from line 2 through to line 10. The second modification (line 35-

58) is the integration of an Iterative deepening depth-first path-finding (IDDFS)

algorithm that returns the shortest path trees after the first part of the algorithm

finished execution at line 34.

As regards to the first modification, the algorithm starts by computing the total

logical connections (TLC) ← (DLD+ILD using site connectivity sample workload

data file in line 2 and 3. Line 4 computes the TLC average. In line 6, source distance

value is initialized to zero, that is, distance from source site to itself is set to zero.

Line 7 creates a set of vertices from connectivity workload data file, and group the

vertices according to TLC value in line 8. Line 9 begins the first For Loop, which

selects the site with TLC value greater than or equal (=>) to the TLC_average and

assigns the site as source site in that group. If more than one site satisfies this

condition, one site among them is selected randomly.

The second For Loop began with an if condition to compare each vertex v with

source site within the group. Then, it proceeds to extract distance information for

each vertex and insert the distance value of each vertex within the group into the

array set Q, with a priority D(v), using a min-priority queue data structure (line 16).

By initializing the source to zero, the rest of the array elements are set to infinity (∞)

for the remaining sites as expressed by line 13 and 14. The main loop commences

with a while Q is not empty construct at line 19. The code u←vertex in Q with min

dist[u] in line 20, searches for the vertex u in the vertex set Q that has the least

dist[u] value from the sample site connectivity workload data file (see Appendix

B on page 249 for the connectivity workload data), and returns the best vertex

with min value. The length(u, v) in line 22 returns the length of the edge joining

156

(i.e., the distance between) the two neighbouring sites u and v. The variable alt

on line 22 is the length of the path from the root site to the neighbouring site v, if

it were to go through u. If this path is shorter than the current shortest path

recorded for v, that current path is replaced with this alt path value. The prev

array is populated with a pointer to the next-hop site on the source graph to get

the shortest route to the source. Figure 4.4 shiows graph abstraction for

computing distance between sites.

Figure 4.4. Graph abstraction for computing distance between sites

From Figure 4.4, the coloued boxes and coloured lines for sites A, B, C, D, E and F

indicate an instance of a shortest-path tree from the given starting vertex A to the

other vertices B ... E in the graph. Also, the numbers in brackets represent the site

identifications (IDs), the numbers along the edges represent distance between

‘Depends on’ P (16)

G (6)

I (9)

J (10) C (2)

D (3)

E (4)

M (13)

N (14)

O (15)

K (11)

B (1)

H (7)

F (5)

L (12)

A (0)

1

157

respective sites. For instance, the distance between site A and B is 2, distance

between A and C is 1, distance between A and D is 5. Similarly, the distance

between site B and D is 2 and distance between B and E is 1. Furtermore, the

distance between C and D is 5 and the distance between C and E is 4. These

distances are arbitrarily set for illustration purposes. However, in the actual

implementation, the bandwidths values between the various sites are used as the

distances between the sites. The distance information along the paths connecting the

various sites are used to find the shortest distance between the sites suitable for

replica placement. As mentioned earlier, for the actual implementation, the distance

values are replaced with bandwidth data connecting these sites. The bandwidth data

is obtained from the EDG testbed bandwidth configuration file that came with

OptorSim simulation tool v2.1 [33]. Since the various EDG sites are not connected

via same bandwidth, that is, some sites have higher bandwidth than others, thus

became suitable for use in the experiments as distances connecting various sites.

Site A is marked as the source site. The process is synonymous to assigning the site

with highest number of logical connections, or the site with highest request for data

as the source site, then finding the shortest paths from this source to all other sites in

the region. It works by building a shortest-path tree from a given starting vertex to

every other vertex in a graph, using weights allocated to each edge; in this case, the

vertices are sites, and the weights are the bandwidth available between each site. In

this scenario (Figure 4.4), the graph shows a construct with a vertex for each site

carrying data file. Thus, from Figure 4.4, it was assumed that site A is the source

site, and all other sites are destination sites. The numbers between the vertices

indicate the bandwidth between the individual sites. Making A to be source site is

arbitrary. Other sites could be made as sources sites, as well. The distance

158

information is stored using a min-priority queue. Thus, the modifications on the

Dijkstra's algorithm include the computation of TLC values, the use of priority

queue Q for holding the set of sites or vertices v and the integration of the Iterative

deepening depth-first path-finding (IDDFS) scheme for returning the shortest paths

trees. For illustrations, this research demonstrates how distances between replica

sites tare represented using graph abstraction method. The next subsection

describes the second modification on the algorithm; the iterative deepening depth-

first path-finding algorithm.

4.3.2.6 Finding Shortest Paths Using an Iterative Deepening Depth-First Path-

Finding Algorithm.

After computing the various distances, the shortest path can be read from source to

target by reverse iteration after line 34 of the algorithm. The S in (line 35) is the

sequence list of vertices constituting the shortest paths from source to target, or the

empty sequence if no path exists. The function DLS(node, depth) is called the depth-

limited search function (line 50-59), which is used to impose depth limit on the

search locations. The DLS is used in conjunction with IDDFS, to save time and

conserve memory. This is achieve by deciding to only search up to the specified

depth L, that is, the algorithm does not expand beyond depth L based on the DLS

function. However, if solution is deeper than depth L, then the algorithm increases L

iteratively to cover the depth. A more general formulation would be to find all the

shortest paths between source target (there might be several alternative paths of the

same length). Then instead of storing only a single site in each entry of prev, the

algorithm would store all sites satisfying the relaxation condition. For example, if

both r and source connect to the target and both of them lie on different shortest

paths through the target (because the edge cost is the same in both cases), and then

159

the algorithm would add both r and source to prev [target]. When the algorithm

completes, prev[] data structure will describe a graph that is a subset of the original

graph with some edges removed. Its key property will be that if the algorithm runs

with some starting site, then every path from that site to any other site in the new

graph will be the shortest path between those sites in the original graph, and all paths

of that length from the original graph will be presented in the new graph. Now the

iterative deepening depth-first path-finding algorithm [53] was used on the new

graph, to find and return all the shortest paths between two given sites, which

commences after line 35 of the algorithm.

4.3.2.7 Mathematical Framework for Replica Site Availability

Sites availability has previously been discussed in Chapter 2 (Section 2.7.5

Availability of Replica Site, page 48). Site availability is expressed as a

percentage, based on a number of hours put up by sites online. A replication site is

a location that is hosting the replica of the file being replicated. In this thesis,

replication sites should have percentage availability of greater than or equal to (>=)

85%, prior to selecting it amongst the best locations for replica placement. While

measuring availability for the various sites within the federation system, there is

need to consider all of the following questions: what are the units or elements of

measurement; what parameters are included in the measurement; what tools are

used to collect the parameters; what algorithm is used to calculate the

availability, and over what period is the availability presented and considered

valid. To measure site availability, there exist two methods namely; by

measuring the response time of a site and by measuring percentage packet loss

of a site [19], [21]. The two methods involved using probe techniques, such as

160

the Packet Inter-Network Groper (PING) command and observe the response

time, or sending data package to individual sites and observe the precentage of

packet loss at the receiving site. Due to the ambiguities of measurement

involving packet loss, this thesis considers sites availability based on response

times.

Site availability involves how to calculate the availability of a system that has

been in operation for some times. In so doing, a mathematical framework is

typically employed by network administrators to measure site availability. Such

framework uses site availability record, which is based on both uptime and

downtime of the site under review. The availability of replication sites is of utmost

importance in this thesis, which is computed according to Equation 4.5 [19].

 *100% (4.5)
MeasuredTime UAS

SA
MeasuredTime




Where:

 SA = the time frame within which a site is operational and is

expressed as a percentage value

 MeasuredTime (Uptime), is the amount of time during the period in

question that the system was up

 Unavailable Seconds (UAS) or Downtime, is the amount of time

during that same period that the system was down

Also, from the SA value, the percentage value is computed according the

following Equation 4.5.1.

*100% (4.5.1)si siSA SA

The method employed for calculating site availability is based on historical up or

downtime status of the grid sites. In the real world scenario, dedicated software

161

for failure reporting, analysis and corrective actions system, such as the Orion

software deployed on BOINC platform [67] are used to capture such historical

data for managerial decision making. For instance, the Orion could be set to poll

for the current status of the grid sites using dedicated polling feature, and log

files are read using log reader that is bundled with the Orion software [146].

Thus, to determine site availability, a background PING command is sent to sites

by the software, and if the site responds to a PING within the default time

interval, the site is considered up, and a value of 1 is recorded in the response

time view. Otherwise, a value of 0 is recorded in the response time view, if the

site failed to respond to a PING command within the default interval; thus, the

site is considered down [146].

The assumption in this thesis is that Data Grid installations are equipped with

such monitoring software and that sites availability records are readily available.

What needs to be done is to formulate a mathematical framework that extracts

the availability records for the individual sites and determine their percentage

availability over a certain period. Equipped with this percentages, the proposed

mechanism decides on where to place incoming data replica, in addition to

considering network distance and replication cost.

Availability is also defined as the probability of the system being found in the

operating state at some time t in the future given that the system started in the

operating state at time t = 0. Failures and down states occur, but maintenance or

repair actions always return the system to an operating state [146]. This thesis does

not consider maintenance period as a separate entity. Thus, the mathematical

framework defined in Equation 4.5 is maintained.

162

Sites availability in this thesis is determined by using existing data from the public

failure time trace archive (FTA) records. FTA is an online public repository of

availability time traces taken from diverse parallel and distributed system [47], [48].

Table 4.5 shows site status records used by this research to determine availability

measure of individual sites for data replication considerations.

Table 4.5

Sample site status record for availability workload from TeraGrid

#event

id

Comp

onent

id

Site

id

Platf

orm

id

Site

name

event

type

start

time

stop

time

Event

end

reason

0 0 927 10 "tg-login1" 1 1.15E+09 1.17E+09 NULL

0 0 928 10 "tg-login2" 1 1.15E+09 1.17E+09 NULL

0 0 929 10 "tg-login3" 1 1.15E+09 1.17E+09 NULL

0 0 930 10 "tg-login4" 1 1.15E+09 1.17E+09 NULL

0 0 739 10 "tg-c740" 1 1.15E+09 1.17E+09 NULL

0 0 748 10 "tg-c749" 1 1.15E+09 1.17E+09 NULL

0 0 962 10 "tg-s148" 1 1.15E+09 1.17E+09 NULL

0 0 234 10 "tg-c235" 1 1.15E+09 1.17E+09 NULL

1 0 234 10 "tg-c235" 0 1.17E+09 1.17E+09 NULL

2 0 234 10 "tg-c235" 1 1.17E+09 1.17E+09 NULL

0 0 233 10 "tg-c234" 1 1.15E+09 1.17E+09 NULL

1 0 233 10 "tg-c234" 0 1.17E+09 1.17E+09 NULL

2 0 233 10 "tg-c234" 1 1.17E+09 1.17E+09 NULL

0 0 236 10 "tg-c237" 1 1.15E+09 1.17E+09 NULL

1 0 236 10 "tg-c237" 0 1.17E+09 1.17E+09 NULL

2 0 236 10 "tg-c237" 1 1.17E+09 1.17E+09 NULL

0 0 235 10 "tg-c236" 1 1.15E+09 1.17E+09 NULL

1 0 235 10 "tg-c236" 0 1.17E+09 1.17E+09 NULL

2 0 235 10 "tg-c236" 1 1.17E+09 1.17E+09 NULL

0 0 230 10 "tg-c231" 1 1.15E+09 1.17E+09 NULL

From Table 4.5, the data of interest include Site_id, Site_name, event_type,

start_time and stop_time. The record contains up to 260,000 Sites. However, this

research is interested in 10,000 sites only. The reason for limitting to 10,000

sites is to tally with the capacity of the topology been simulated. Also, the data is

raw, thus need to be analyzed for further usage. From Table 4.5, it could be seen

that the data gives start time and stop time probes for each site at various time

intervals. These probes are summed up for the individual site to get total availability

163

for the site. For instance, the event_type contains availability (uptime) and

unavailability (downtime) records for the sites, with one (1) and zero (0)

indicating availability and unavailability, respectively. The start_time and

stop_time indicates the start and stop of the probes, respectively. From Equation

4.5, assuming the following sites (927=A, 928=B, 929=C, 930=D, 739=E,

748=F, giving the measuredTime and UAS, the following Table 4.6 gives

percentage availability for the six case sites A to F.

Table 4.6

Sample availability computation for six sites

Sites MeasuredTime

(Secs)

Unavailable

Seconds UAS

Availability %

A 60 5 85%

B 60 7 79%

C 60 3 90%

D 60 6 82%

E 60 6 82%

F 60 5 85%

From Table 4.6, the eligible sites for replica placement include site A, site C and

site F with percentage availability of 85%, 90% and 85%, respectively. These

sites have attained the minimum availability specified for replica placement by

this thesis. Note that, 97% availability translates to a total downtime of nearly 11

days a year, while 99.91% availability is a little less than eight hours over a year.

In practice, a replica file may seem to have high access frequency even though it

is hosted on site with frequent failures. The chances are that the access may have

been erratic most of the times due to site failures. Therefore, there is the

likelihood of transferring whole or a fraction of the data file to the requesting

client. In such cases, the access counter will increment, when in actual sense the

file has not been fully transmitted, or data loss may have occurred along the

process [146]. This situation needs to be checked and curtailed by making sure

164

that important replica are not placed on site with frequent failure or

unavailability status. Also, an attempted but failed data transfer may have, for

instance, two status as shown in Table 4.7.

Table 4.7

Example of file transfer status

File Date accessed Status Comment

A 12/11/2016 Complete -

B 13/11/2016 Failed Network failure

A 13/11/2016 Failed Corrupt data

C 13/11/2016 Complete -

C 13/11/2016 Failed Unplanned maintenance

A 14/11/2016 Failed Site stops responding

The course of failure could be due to either of the following factors: data

corruption, network failure, site failure (shuts down or become unavailable), and

maintenance activities at the site location. All the above factors could contribute

to failure, which may cause data not to be readily available to the requesting

clients. However, whatever may have been the course of failure, this thesis

considers it as unavailability of the replica site. Thus, failure is modeled based

on the available record obtained from the TeraGrid FTA record [47], [48].

4.3.2.8 Framework for Determining Files Weights

The data files that are used in this research are in the form of source code

modality. Thus, there is a possibility to have some files that need other files to be

executed or compiled. In other words, there might be a dependency relationship

between files [26]. The dependency level differs from one file to another, i.e.,

the importance of a file to the environment is not the same. The concern is to

determine the importance of a file to the whole files system, which is termed as

file weight (FW). The following equation computes the file weight:

165

1

 (4.6)
n

i i

i

FW FLT ILD


 

where,

FW = f𝑖𝑙𝑒 w𝑒𝑖𝑔h𝑡

𝑛: total number of files in the grid federation system,

𝐹𝐿T: file lifetime (computed previously)

I𝐿𝐷: file dependency level of other files on the given file; ILD is

zero, if dependency does not exist.

4.3.2.9 Framework for Determining Files Logical Dependencies

Before determining file weight (FW), file lifetime and the dependency level

between the various files need to be established. File lifetime has been computed

in Subsection 4.3.1.1. of this chapter. In addition, this thesis concerns about the

indirect logical dependencies of data files, in addition to the direct logical

dependencies. Logical dependencies are considered as the type of implicit

relationships typical of interactions between software objects or artifacts that

evolved together over a given period [61].

Direct Logical Dependencies (DLD) are defined for pairs of files in an

association rule of the form F1⇒ F2, meaning that when F1 occurs, F2 also

occurs. In this notation, F1 and F2 are two disjoint sets of items. Furthermore, F1

and F2 are called the antecedent (left-hand-side, LHS) and the consequent (right-

hand-side, RHS) of the rule, respectively. In software development process, the

density of dependencies amongst sites increases the likelihood of

synchronisation failures, as argued by researchers in [96]. Based on this notion,

researchers in [97] proposed a more comprehensive measure based on the DLD

166

measure, called clustering of logical dependencies (CLD), wich is also another

name for indirect logical depedencies (ILD), or transitive dependences. Unlike

the DLD, the CLD measure encapsulates the degree to which the files that have

direct logical dependencies to the given file fi, have indirect logical dependencies

(ILD) among themselves. In this thesis, ILD is computed from the CLD measure

for a proper file value evaluation. In the graph-theoretic relations, the ILD

measure for a given file fi is computed as the density of connections among the

direct neighbours of file fi [97]. Thus, the indirect logical dependency measure is

mathematically expressed by Equation 4.7 [97].

jk

i

i i

2|{e }|
ILD(f) (4.7)

k (k -1)


where

ki is the number of files or neighbours that a particular file fi is connected

to, through logical dependencies

ejk is a link between files j and k which are neighbours of file fi.

The work of researchers in [26], considered only the direct logical dependencies

between files, in a bid to find file value (FV). Thus, the dependency measure did

not consider the links between neighbouring sites, meaning that it did not

capture the ILD amongst the files. Thus, ignoring the ILD may not serve the

level of dependency measure needed to provide the actual file value (FV). To go

round the problem, in addition to capturing the direct links between file fi and

neighbouring sites (J, k), this thesis consisders the links between the neighbours

(j, k) themselves into considerations, while determining the associated file

dependencies.

167

In the context of this study, a logical dependency from a file f2 to another file f1

is denoted by F1⇒F2, that is, an association rule in which the antecedent and

consequent are both singleton sets containing f1 and f2, respectively. It is also

assumed that both f1 and f2 may have their neighbours, which have to be taken

into considerations.

Thus, from Equation 4.7, the ILD values for the example files A to P are

computed for illustrations here. The values of this measure range from 0 to 1.

Also, the total logical conections (TLC) are computed using data on Figure 4.3.

The TLC values are used by the Dijkstra's algorithm to speed up the process of

finding shortest distance. Table 4.8 illustrates the omputations of DLD, ILD and

TLC for the 16 data files in our example.

Table 4.8

Indirect logical dependencies computations for 16 sites

File_ID

Number of

direct neighbors

that file fi is

connected to

(ki)

Number of indirect

neighbors connected

to file fi via j & k

(ejk)

Total logical

connections

(TLC) =

DLD+ILD

ILD measurement

jk
i

i i

2|{e }|
ILD(f)

k (k -1)


A 3 5 8 0.536

B 3 6 9 0.597

C 4 6 10 0.299

D 3 5 8 0.536

E 3 5 8 0.536

F 3 6 9 0.597

G 0 0 0 0.000

H 3 3 6 0.366

I 2 2 4 0.693

 3 3 6 0.366

K 3 7 10 0.648

L 4 7 11 0.324

M 2 4 6 0.693

N 3 6 9 0.597

O 0 0 0 0

P 3 3 6 0.366

As mentioned earlier the total logical conections (TLC) are computed using data

on Figure 4.3. The TLC values are used by the Dijkstra's algorithm to speed up

the process of finding shortest distance. To simplify the process of finding the

168

shortest distance, the set of vertices in Figure 4.4 are grouped based on their

respective TLC values and a subset is created for each group. Equations 4.7.1

and 4.7.2 are used to compute TLC and TLC_Average, respectively.

 (4.7.1)TLC DLD ILD 

_ (4.7.2)
n n

i i

TLC Average TLC Sites  

Where DLD refers to number of direct neighbours of sitei,

ILD refers to number of indirect neighbours of sitei.

Note that ILD differs from ILD measure, in that the later is a fractional value

from 0 to 1, whereas the former indicates number of indirect links to sitei. For

each group, the site with ILD value => TLC_average is set as the source site.

The value for TLC_average is obtained by adding all the TLC values and divide

by the number of sites. In this thesis, graph abstraction [147] is used to indicate

components dependencies amongst the data files within the DGF system using

the ILD values computed from Equation 4.7. Graph abstraction method

exemplifies a simple logic for articulating file dependencies on graph sites. One

of the most widely used applications of the graph abstraction in computing

discipline is to track components dependencies. For instance, dependency

tracking on the compilation process for all files in application programs that are

developed on a daily basis. These dependencies manifest inside programs used

for developing tailored packages, such as Netbeans Integrated Development

Environment (IDE). The tracking helps in minimising the number of files that

must be recompiled or adjusted, after effecting some changes to the initial

package [147]. Similarly, dependency tracking for data replicas in DGF system

helps to identify the relevance or importance of a file in relation to other files

within the system. To illustrate how file weight/importance is calculated,

169

suppose that files A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, and P exist, and

exhibits some dependencies on one another, their dependencies at time t-1 is

demonstrated on the graph abstraction shown in Figure 4.5.

Figure 4.5. Graph abstraction showing dependencies amongst 16 data files

From Figure 4.5, the graph abstraction shows a construct with a vertex for each

data file. The arrow lines in the graph indicate which files are dependent on

other files. For instance, the forward arrow means file A is used by file B, C and

P, while the opposite direction of the arrow means that file B, C and P depend on

file A. The choice of which direction to point the arrows is somewhat arbitrary.

However, it is important to note that the arrows mean used by, while the opposite

directions mean depends on. The computed ILD relations in Table 4.8 (Page

167) means that file L is more important than other files as there are four files

‘Depends on’
P (17)

G (14)

I (17)

J (09)
C (38)

D (17)

F (09)

M (38)

N (14)

O (08)

K (17)

B (14)

H (38)

E (14)

L (08)

A (8)

170

(E, F, D, N) that directly depend on file L, while the rest have less than four.

Regarding FLT, file C, H, and M are more important than the rest, with FLT of

38 each. However, the next level of decision is made after computing file weight

(FW), which is determined by file lifetime and ILD dependents amongst sites.

Hence, the FW for files A, B, C, D, to P are obtained according to Equation 4.6,

and the computed values for FW are shown in Table 4.9.

1

n

i i

i

FW FLT ILD


 

FW(FLTA, ILD) = (0.366*17) + (0.299*38) +0.597*14 = 25.94

FW(FLTB, ILD) = 0.366*38) + (0.536*08) = 18.20

Table 4.9

Computed file weight values for 16 data files

File

ID

FLT ILD

measure

Neighbou

ring sites

ILDi due to

neighbouring sites

n

i i

i=1

FW FLT *ILD

A 08 0.536 P, C, B 0.366*17, 0.299*38,

0.597*14

25.94

B 14 0.597 H, A 0.366*38, 0.536*08 18.20

C 38 0.299 A, E, D 0.536*08, 0.536*14,

0.536*17

20.90

D 17 0.536 C, L, F 0.299*38, 0.324*08,

0.597*09

19.33

E 14 0.536 C, L 0.299*38, 0.324*08 13.95

F 09 0.597 D, L, M 0.536*17, 0.324*08,

0.693*38

38.04

G 14 0.000 0 0 0.00

H 38 0.366 B, C, K 0.597*14, 0.299*38,

0.648*17

30.74

I 17 0.693 J, P 0.366*09, 0.366*17 9.51

J 09 0.366 I, K 0.693*17, 0.648*17 22.80

K 17 0.648 J, H, N 0.366*09, 0.366*38,

0.597*14

25.56

L 08 0.324 E, F, D, N 0.536*14, 0.597*09,

0.536*17, 0.597*14

30.34

M 38 0.693 F, N 0.597*09, 0.597*14 13.73

N 14 0.597 K, L, M 0.648*17, 0.324*08,

0.693*38

39.94

O 08 0 0 0 0.00

P 17 0.366 A, I 0.536*08, 0.693*17 16.07

From the computed FW values, file F and N proved to be more important than

others, due to the indirect logical dependencies around file F and N, with 38.04

171

and 39.94 file weights, respectively. The next stage determines the file value,

which is the peak of economic importance associated with data files, whose

magnitude is determined from the file lifetime (FLT) and the file weight (FW).

4.3.2.10 Mathematical Framework for Determining File Value

The file value for each data file within the federation is computed by taking into

account both users’ behaviour in accessing the files and files’ behaviour in

relation to other files. Thus, file lifetime (FLT) and file weight (FW) are used to

compute the file value (FV). As mentioned in Chapter Three, the age parameter

proposed by the work of researchers in [139] is not incorporated in our

framework due to time constraints and lack of enough viable data on file age

(FA) from the site status record at our disposal. File value is used to indicate the

capacity of demands on a file in the DGF system, based on which, certain file(s)

will be replicated or evicted by the proposed mechanism. The higher the file

value, the more relevant the file is. The three parameters (FLT, FW and FV)

described file’s behaviour in relation to both users, other files, and the grid

system as explained by researchers in [139] reporting from [26]. These

parameters are further broken down into five parameters as follows:

a. File-to-User relationship - the behaviour of a file being requested by users,

and notes the change to this request; whether is an increase or decrease

change. The File-to-User relationship provides the lifetime (FLT) of a file

b. File-to-File relationship - behaviour of a file directly or indirectly

requesting other files and is represented by file weight (FW)

c. File-directly-to-File relationship - behaviour of a file directly requesting

other files and is represented by direct logical dependency (DLD)

172

d. File-indirectly-to-File relationship – denotes a file indirectly requesting

other files and is represented by indirect logical dependency (ILD)

e. File-to-Grid relationship – this denotes the age (FA) of a file, in the entire

grid system.

Thus, in this thesis, file value (FV) is computed from the following parameters;

file lifetime and file weight (FLT*ILD) [26], which is mathematically expressed

by the following Equation 4.8:

 (,) (,) (,) (4.8)Filevalue t f FLT t f FW t f 

Where

FileWeight = FLT * ILD, but FLT and FW have been computed previously.

The computed file value (FV) from Equation 4.8 is presented in Table 4.10.

Table 4.10

Calculating file values for 16 data files

File ID File weight

(FW)

File lifetime (FLT) File value

(FV)

A 25.94 08 38.94

B 18.20 14 32.20

C 20.90 38 58.90

D 19.33 17 36.33

E 13.95 14 27.95

F 38.04 09 47.04

G 0.00 14 14.00

H 30.74 38 68.74

I 9.51 17 26.51

J 22.80 09 31.08

K 25.56 17 42.56

L 30.34 08 38.34

M 13.73 38 51.73

N 39.94 14 53.94

O 0.00 08 08.00

P 16.07 17 33.07

From Table 4.10, computed file values indicated that file H is more important than

the rest of the files with FV of 68.74, followed by file C with FV of 58.90. It is clear

that even though file F has high FW of 38.04, the small value of FLT brings down

the corresponding computed FV to 47.04, thereby making it the 3rd most important

file in this scenario.

173

4.3.3 The Dynamic Replica Eviction Scheme

The dynamic replica eviction scheme (DRES) evicts insignificant (unwanted)

replicas from the Unpopularity_List (Unstable_replica_site) file records to obtain

more space for the newly created files replicas. In addition, the DRES scheme part of

the DRCEM mechanism considers file dependencies while deciding which file to

evict, so that files with high dependency level are not carelessly evicted from the

system.

The unwanted replicas are the replicas of the file that get negative entry for the

projected number of replica (PNoR)values, and the system decides to delete them to

reduce storage cost. Therefore, the location sites from which the replica to be deleted

are required. The calculations used here are the same as the ones used in the dynamic

replica placement scheme (DRPS), but with some minor modifications. The scheme

uses the Unstable_replica_site file record, and then performs the following set of

activities:

i. Get list of storage elements from the current region, and their CDS

ii. Locate all the lightly and moderately loaded sites

iii. Compute the ILD for all the files in the Unstable_replica_site file record

iv. Isolate sites with minimum CDS (highly loaded sites)

v. Isolate files with minimum ILD (less dependability) factor to other files,

whose sizes >= SR

vi. Delete files with minimum ILD from the sites with minimum CDS (highly

loaded sites)

vii. Place popular file replicas on the newly created spaces within the SEs

174

The following Figure 4.6 shows the logical flowchart of the dynamic replica eviction

scheme (RDES).

Figure 4.6. Flowchart for Dynamic Replica Eviction Scheme (DRES)

For removing a file from the site, the ILD value of all the files stored on the site is

compared with one another. The files with less ILD values, which consequently have

less weights are deleted and replaced with the newly created files replicas as seen on

the flowchart for the DRES scheme. Having discussed all the schemes that

collectively interact to form the DRCEM mechanism, the next subsection outlines

the overal algorithm for the mechanism.

175

Input: Number of access for each file (NoA(filei)), number of access intervals t,direct logical

dependencies (DLD) indirect logical dependencies (IDL), file size, bandwidth between sites,

number of copies of existing replicas of each file (ENoC(filei));

Output: Creating copies of popular files replicas for placement to suitable locations,

Procedure:

1. /* Dynamic Replica Evaluation and Creation Scheme (DRECS)*/

2. Use file access history workload data file;

3. for each file in the grid regions, given the number of access within the past time

intervals (T1, T2…Tn);

4. /* evaluate individual files to determine popular and unpopular files */

5. Find alpha

1

0

T

ii

T









 ; /*average increase/decrease rate for all intervals*/

6. Calculate
1 * eT T

f fFLT a a   ; /file life time, which is also file access

frequency for the upcoming time intervals*/

7. Calculate
2 | {e } |

()
(1)

jk
ILD fi

k ki i




 ; /Indirect logical dependencl for individual files*/

8. Calculate
1

n
FW FLT ILDi ii

 


; /* file weight */

9. Calculate (,) (,) (,)FV t f FLT t f FW t f  ; /*file value*/

10. Calculate
FV

FS users
FVfiles

 
 

 ; /*file strengths (FS) regarding users*/

11. Calculate
system

files

ENoC
FS

ENoC
 

 




; /*file strengths (FS) regarding grid

system*/

4.3.4 The Complete Algorithm for the Proposed DRCEM Mechanism

The previous Section 4.3 (Subsections 4.3.1-4.3.3) explained the detailed design of

the DRCEM schemes. The following Figure 4.7 gives the outline of the complete

algorithm for the proposed DRCEM mechanism, which encapsulates all the schemes

described above.

Figure 4.7. Algorithm for DRCEM Data Replication mechanism

176

Figure 4.7 continued.

12: Calculate
(())FS TH FS ENoCfilesusers system

PNoR
TH

      
 ; /*

Projected no of replicas*/

13: /* Compare file PNoR (which is a measure of file strengths) with zero */

14: if (PNoR > 0) then

15: Add filei to the Popularity_List File Records

16: else if (PNoR < 0) then

17: Add filei to Unpopularity_List File Records //for eviction at later time

18: else if (PNoR = 0) then

19: Add filei to the Stability_List.

20:

21: /* Replica Placement Scheme begins here*/

22: /* Use the Unpopularity list File Records*/

23: for each data file in the Unpopularity_List

24: get all the sites containing filei

25: for each site in the list

26: Calculate
FileValue

FVsi
NoRsi

 ;

27: Calculate
FileSize

FTT
Bandwidth

 ;

28: Calculate Distance between Sites D (Source, destination) filei ;

29: /* Use Site Availability Workload Records File (Appendix C) */

30: Calculate
MeasuredTime UAS

SA
MeasuredTime


 ; /* Site Availability */

31:/* Use Site Connectivity Workload Records File (Appendix B) */

32: Calculate
 1 ,D Source dn FV FTT estination files ii

RPCsi
m

 
 ;

33: Compute: ;
TotalRPC

allsites
RPCAverage

NumberofSites




34: 50%() ;RPC RPCOptimum Average

35: Arrange sitei in descending order of RPCOptimum;

36: while (PNoR (filei) < 0); // delete files with negative PNoR

37: delete filei from sitei ;

38: PNoR (filei) + +;

39: Repeat for all regions in the DGF system

40: Break //DRECS ends here after determining the required repicas to create

41: /* Dynamic Replica Placement Scheme (DRPS) */

42: /* Use Popularity_List File Record */

43: for each file in the Popularity_List File Records

44: for each site in the DGF regions

45: check sitei against the requirements for hosting filei

46: /* the requirements s are RPC, Current Load and Site Availability */

177

Figure 4.7 continued.

47: Calculate si

ni

FileValue
FV

NoR
 ;

48: Calculate
FileSize

FTT
Bandwidth

 ;

49: Calculate Distance between Sites D (Source, destination) filei ;

50: /* Use Site_Availability work load record file */

51: Calculate si

MeasuredTime UAS
SA

MeasuredTime


 ; /* Site Availability */

52: Percentage *100%si siSA SA

53: Calculate
 

1
 ,

 i

i

n

s

D Source destinationFV FT fileT
RPC

m

 



;

54: Calculate ;allsites
Average

TotalRPC
RPC

NumberofSites



55: Compute 50%() ;Optimum AverageRPC RPC

56: Calculate CDS = TotalDiskSpace - CurrentLoad ;

57: Calculate;

 ;allsites
Average

TotalDiskSpace
CDS

NumberofSites



58: _ >= 75%(CDS) si AverageOptimum CDS ;

59: Arrange the sites according to increasing order of optimum CDS values;

60: Lightly Loaded Site Optimum CDS  ;

61: Moderately Loaded Site Optimum CDS ;

62: Arrange the sites according to decreasing order of optimum RPC values;

63: Arrange the sites according to decreasing order of percentage %SA value;

64: get storage requirement (SR) from the size of filei ;

65: /*Initialize replica placement with load balancing*/

66: /*Compare SR of each filei replica with optimum CDS for all the SEs */

67: if the SR < optimum CDS then

68: if RPC for sitei <= optimum RPC

69: add sitei to the selected_replica_site list;

70: Sort [sitei, filei] in descending order;

71: for each site in the sorted list;

72: while (PRNoR (filei) ≠0); AND Availability(sitei) >= 85%

73: add (sitei, filei) to the best_replica_site list;

74: replicate (sitei, filei);

75: End

76: End

77: End

78: End

79: Repeat for all regions in the DGF system;

80: End

81: Break

178

Figure 4.7 continued.

4.3.4.1 Explanations on the Unique Features of for Proposed DRCEM

Mechanism

The DRCEM mechanism encapsulates some unique features, which makes it

performs differently from the existing mechanisms. These features include an

enhanced method of file evaluation, which considers logical dependencies as well as

the importance of a file to both users and the DGF system as a whole. Also, another

unique feature is the site availability parameter, which determines the percentage

availability of replica sites, prior to placement of newly created replicas.

Furthermore, DRCEM finds replica placement cost for all sites, such that sites with

minimum replica placement costs are considered for replica placement within the

DGF system. Thus, from Figure 4.7, DRCEM commences operation between line 2

and 9, with evaluation of popular files based on FLT, ILD, FV, and FW, which is a

strong improvement over DRCM that evaluates popular files based on FLT, FV, and

FW only, without considering inter-dependencies amongst the replica files. Between

82: /* Dynamic Replica Eviction System (DRES) */

83: /*Invoked when there is not enough storage space for replica placement*/

84: for each filei in the best_replica_site or unstable_replica site records;

85: Calculate
2 |{e } |

 ()
(1)

jk

i

i i

ILD file
k k




;

86: Check space availability, FVs and ILDs for sitei, filei;

87: Sort filei in asccending order of ILDs

88: if optimum CDSsi < SR (filei); /*highly loaded*/

89: if ILD (filei) < Average ILD (filei); /*less file dependability*/

90: Select files that their size >= SR;

91: Delete files with smallest ILDs;

92: Replicate (sitei, filei);

93: Repeat for all regions in the DGF system

94: End

179

line 10 and 11, DRCEM identifies the file strength for users, which is denoted by

𝐹Suser and file strength for system that is denoted by 𝐹Ssystem. Based on 𝐹Suser,

𝐹Ssystem, and threshold value (TH), the projected number of replicas (PNoR) is

calculated as shown in line 12. File strength indicates how important a file is to the

users and the system in general.

Regarding the users, file strength indicates how frequently a file is accessed by users

of the system. For the system, file strength indicates how frequently a file is accessed

by other files in the system. Then, based on PNoR value, the files are categorised

into three groups as shown between lines 14 to 20, for determining the required

number of replicas to either create or evict. The computation for projected number of

replicas is similar to DRCM and ELALW mechanisms, with a strong additional

parameter for indirect logical dependencies parameter for evaluating file value. In

this thesis, the TH value is set to 50%, so that number of replication should not

occupy more than 50% of the storage.

Comparing with ELALW mechanism shown in Figure 2.10, page 82 (between lines

2 and 10), and file evaluation depends on a number of accesses, which reflects users’

perspective only. It is worth mentioning that computation time of DRCEM in this

phase is more than computation time of ELALW, as it determines the group of files

to be replicated or evicted based on their indirect logical dependencies. This

additional activity tends to draw heavily on the computing element usage compared

to the existing mechanisms. Nevertheless, DRCEM accelerates the process of

placing replicas, by controlling unwanted replication, which improves the system’s

performance significantly. Also, DRCEM invokes the replica eviction scheme

(DRES), to evict the unwanted replicas in replica placement decision phase, before

180

deciding where to place the newly created replicas. Contrary to ELALW that has no

separate replica eviction function, the DRES scheme stands a unique feature of the

DRCEM mechanism. The commands between line 21 and 27 in Figure 2.10, shows

the steps for deleting replicas in the case of insufficient storage space in ELALW

mechanism.

In line 26 there is While Loop means that deleting replicas will be continuing until

free space is available. The DRCEM’s DRECS scheme sets stage for the dynamic

replica placement scheme (DRPS) by computing the essential parameters required

for placing new replica as seen between line 22 and 36. These include computation

of sites distances, sites availabilities and replica placement cost. In addition,

unnecessary replicas are evicted from the regions to create more space for incoming

replica files as expressed by lines 37-40.

Also, the dynamic replica eviction scheme (DRES) is helpful in the replica

placement process in case of insufficient storage, so that less significant replicas

(less value, less weight, and low dependency level) are evicted, so that high valued

files are not carelessly evicted from the sites as outlined between line 84 and 96. The

Current Disk Space (CDS) in line 57 is a measure of the available storage capacity

of a site as well as load balancing factor, and is calculated as follows [137]:

CDS = 𝑆reg − 𝑆usage (4.9)

Where; 𝑆reg is maximum storage capacity of a site and 𝑆usage is

storage space occupied by resources on the site.

The optimum CDS is computed as 75% of the average CDS, to ensure that only

lightly and moderately loaded sites are considered for replica placement. The 75% is

considered by this research as optimum considering that no SE will be 100% free. If

181

the CDS is higher than the size of the file to be replicated, then the replica is placed

on the site. If however, the site has insufficient space, other sites are contacted

within the region. If all the sites within the region returned a CDS less than the file

size, then the mechanism will delete old files or replicas from the site. For

computing the required number of replicas, the DRCEM mechanism uses threshold

value (TH), file strengths in respect to both the DGF system and the users of the

system, to compute the desired number of replicas to create or to evict from the

system. The TH value is set to 50% of the system resources in order to control the

number of files replicated. For computing the required number of replicas using

PNoR values , there may exist three possible scenarios; these are:

Scenario 1: if the P𝑁𝑜𝑅 > 0, then the system will replicate PNoR replicas of the

underlying file.

Scenario 2: if the P𝑁𝑜𝑅 < 0, then the system will delete PNoR of existing replicas.

Scenario 3: if the P𝑁𝑜𝑅 = 0, then neither replication nor deletion is required.

4.4 DRCEM Data Replication Mechanism Implementation

In this section, the implementation of the new schemes for the proposed DRCEM

mechanism along with the existing ELALW and DRCM mechanisms are explained.

The code implementation and the network structure are outlined, followed by a

detailed explanation on the connectivity amongst sites within same and different

regions. The schemes for DRCEM, ELALW and DRCM mechanisms are

programmed in Java high level programming language, and were implemented in the

relevant sections of the OptorSim simulator. The next subsection explains how

DRCEM was implemented into the OptorSim simulator, along with the existing

mechanisms used for comparison.

182

4.4.1 Diagramatic Representation of DRCEM Integration with OptorSim

Simulator

OptorSim is capable of simulating many aspects of the grid system, and these

aspects are divided into packages, where each of which contains a collection of

related classes. The diagram shown in Figure 4.8 describes the six packages within

OptorSim and relationships among them.

Figure 4.8. OptorSim UML showing relationships amongst the six packages

Each of the packages in Figure 4.8 could evolve to accept new classes for solving

problems related to the grid systems. Starting at the lowest level, the optorsim.time

package deals with how time is measured during the simulation. The

optorsim.Infrastructure stimulates the underlying grid infrastructure including the

network, grid sites, and the basic components of the sites: Computing Elements

(CEs) and Storage Elements (SEs). The Peer-to-Peer connectivity and messaging

system along with the auctioning process are contained in the optorsim.Auctions

package. The functionality of the replica management component including Replica

Location Service (PLS) is performed by the optorsim.reptorsim package, while the

183

replica optimisation strategies are simulated in the optorsim.optor package.

Optorsim is the highest-level package, which simulates the grid resources and users,

as well as controls the Graphical User Interfaces (GUIs).

Three replication mechanisms have already been implemented in OptorSim

simulator, namely LFU, LRU, and Economic models. In this research work, three

additional mechanisms are implemented namely ELALW and DRCM mechanisms

that are used for performance comparison, and the DRCEM, which is the proposed

Mechanism.

The DRCM, ELALW and DRCEM along with the other replication mechanisms that

have already been implemented in OptorSim, are both written in Java high-level

programming language. The mechanisms are implemented into OptorSim simulator

via the optorsim.optor package. The resulting modules are named as

DRCMOptimiser, ELALWOptimiser, and DRCEMOptimiser.

The library classes for these mechanisms in effect extend the functionalities of the

existing skelOptor class, which is also a functional part of the optorsim.optor

package. The DRCEMOptimiser contains the class objects used by the DRCEM

mechanism for achieving the research objectives. These classes include

+getFileValue, +getReplicasToCreate(), +getSiteDistance(), +getRPC(),

+getSiteAvailability() and +getBestLocation(), among others. The functionalities of

these classes include computation of file value, obtaining file replica to create,

obtaining site distance, computing the RPC, in that order. Figure 4.9 presents a UML

class diagram showing the existing mechanisms (DRCM, ELALW, FLU, RLU

Economic, Ecobin and Ecozip) and the proposed DRCEM mechanism

implementation into OptorSim simulator.

184

Figure 4.9. OptorSim UML class diagram showing DRCEM implementation

From Figure 4.9, the module by the extreme right side shows the objects contained

in the proposed DRCEM mechanism, which also shows the main contribution of this

research in the OptorSim Package. The two modules at the extreme left side show

the other optimisers for DRCM and ELALW mechanism added into OptorSim

package, which are used to compare the performance of the proposed DRCEM

mechanism. The remaining LfuOptimiser, EconomicOptimiser, LruOptimiser,

EcoBinModelOptimiser and EcoZipModelOptimiser are part of OptorSim package

that was used for simulating job scheduling and data replication strategies on EDG

test bed [119] [132]. The optimisable is the main interface, which relates to both the

existing and newly added optimiser via the skelOptor class. In other words, all the

optimisers extend the functionality of the skelOptor class.

185

4.4.2 Diagramatic Representation of DRCEM Simulation Processes in

OptorSim

The simulation process commences when a user submits a job to the grid via the

Resource Broker (RB), which in turn looks for appropriate CE to execute the job.

Depending on the scheduling mechanism specified by the user, the RB then

schedules the job to the CE, by following the relevant commands in the scheduling

mechanism. The user usually specifies the desired scheduling mechanism in the

OptorSim parameters’ file before the simulation starts. The CE starts executing the

submitted job by processing all the files needed to execute that job. If there are

dependent files or partial replicas required to accomplishing the job, these will be

fetched by the RB.

Thus, it is important that files required to accomplish jobs are located closer to the

jobs that use them to save bandwidth usage and hence saves jobs completion time.

This is the reason why the study considers distance between replica sites as one of

the design variables for performance metrics evaluation. In the OptorSim parameters

file, the access pattern defines the order by which jobs should be processed,

following which the CE processes the files.

At this stage, local optimiser specified in the parameters file is invoked to find the

best replica for the file. The CE then reads the file and processes it, before calling for

the next file, until all the files for the job have been processed, in that order. Based

on the OptorSim architecture, each site has its replica optimiser termed as a local

optimiser, and its primary role is to find the best replica and replicate it in the local

SE according to the chosen mechanism. The simple optimiser is used as a local

optimiser that finds the best file replica and read off the required files remotely. Thus

186

no replication occurs. In this thesis, the replication decision is made by the proposed

DRCEM mechanism. At regular time intervals, DRCEM gets information of the files

from Replica Catalogue (RC), which will inform the decision to replicate or evict

certain files based on the outcome of the evaluation processes (see Section 4.3.1.1:

Determining the popularity of data files based on access frequencies, page 130). The

following Figure 4.10 shows implementation of DRCEM optimiser in OptorSim and

how it interacts with relevant components to accomplish simulation processes.

Figure 4.10. DRCEM integration into OptorSim package

As explained previously in Section 4.4.1, the integration of DRCEM optimiser into

OptorSim is done via skelOptor class through to the optimisable main interface,

where users can access and use the optimiser. Then a pointer is added from the

replica manager to the newly added optimiser, so that it could be selected like the

other existing mechanisms to execute submitted jobs. The replica catalogue (RC) of

187

the replica manager (RM) holds mappings of logical file names to physical file

names [83], stores information regarding files evaluation in the system, and then

accordingly makes required replication or eviction decision, if it is necessary to do

so. After new file replicas are created or evicted, the RC is updated to reflect the

affected files.

4.4.3 DRCEM Programming and Codes Integration in OptorSim Simulator

The previous subsections (4.4.1-4.4.2) explained diagrammatically, the process of

integrating the DRCEM optimiser into the OptorSim simulator and the simulation

processes, respectively. In this subsection, the principal implementation tasks made

by this research in the process of integrating the DRCEM mechanism in OptorSim

simulator are explained, which involved programming and integrating the

programm codes into the appropriate sections of the OptorSim packages as indicated

on Figure 4.10. The program codes for DRCEM mechanism have been validated

earlier using the methods outlined in Chapter Three (Section 3.5.1, Page 100).

As stated previously in Chapter 3, the DRCEM schemes were programmed using

Java high level programming and implemented in OptorSim simulator, which is

managed using NetBeans Integrated Development Environment. In addition,

discussion on the OptorSim simulator was given Chapter Three (Subsection 3.6.2.1,

Page 109) of this thesis.

The implementation commences by developing a DRCEMOptimiser class for the

proposed DRCEM mechanism, and integrates the optimiser into optorsim.optor

package, via the ReplicatingOptimiser class. The DRCEMOptimiser extends the

functionalities of the ReplicatingOptimiser class.

188

Figure 4.11 shows the integration of DRCEMOptimiser into optorsim.optor package,

via the ReplicatingOptimiser class.

Figure 4.11. DRCEMOptimiser implementation into ReplicatingOptimser class

Similar to other integrated mechanisms, DRCEM has its storage element function

that is used when the optimiser decides to make any file replication or eviction. The

DRCEMStorageElement class performs this functionality.

189

The following Figure 4.12 shows the integration of DRCEMStorageElement into

AccessHistoryStorageElement.

Figure 4.12. DRCEMStorageElement implementation into

AccessHistoryStorageElement

190

Figure 4.12 continued.

Thus, there are two main classes that need to be created, namely DRCEMOptimiser

and DRCEMStorageElement class. The DRCEMOptimiser class directs the

DRCEMStorageElement class to store replicas that are created by the optimiser as

well as to remove files. The DRCEMStorageElement will then execute the

commands and thus stores or removes the particular files. Therefore, the

DRCEMStorageElement extends the functionalities of the

AccessHistoryStorageElement class in the optorsim.optor package.

191

The implementation of DRCEMStorageElement class into optorsim.optor package

via the AccessHistoryStorageElement class was a success, and free from

programming errors. The DRCEMStorageElement class includes the main methods

that manipulate the stored data, including, <getSiteDistance>,

<getSiteAvailability>, <getWorkLoad> and <getRPC>.

The DRCEM mechanism computes sites distances using the <getSiteDistance>

method. Site failure is determined by using the <getSiteAvailability> method. The

site workloads and replica placement costs are computed using the <getWorkLoad>

and <getRPC> methods, respectively.

In the same vein, similar classes were developed for both ELALW and DRCM

mechanisms namely ELALWOptimiser and DRCMOptimiser, respectively, which

were implemented in OptorSim via same interface. While interacting with DRCEM,

the various methods contained in the mechanism perform to achieve the desired

objectives of this thesis. These methods include program logics to calculate site

distance, site availability site workload and replica placement cost, as specified by

the DRCEM schemes.

Furthermore, the overall program code for the DRCEM mechanism has been

implemented in the OptorSim package using the NetBeans environment, under the

OptorSimPlus1 project, which is free from programming errors. The OptorSimplus1

project is part of this thesis’ efforts in the process of programming and codding the

DRCEM mechanism, based on the original OptorSim-2.1 package [33].

192

The following Figure 4.13 presents a part of DRCEM’s implemented code after

completing the integration processes.

Figure 4.13. DRCEM entire code in the OptorSim simulator

From Figure 4.13, the code integration confirms the following expectations:

 DRCEM has been correctly coded into the NetBeans environment

 The DRCEM code implementation is free from program bugs and errors

193

Part of the implementation process involves including the DRCEM mechanism into

the parameters file, so that it could be selected for the simulation purpose. To that

effect, DRCEM is implemented into the OptimiserFactory class and

StorageElementFactory classes respectively. OptorSim is already bundled with five

optimisers. Thus, this thesis implements ELALWOptimiser and DRCMOptimiser into

the simulator, in addition to the proposed DRCEMoptimiser. Figure 4.14 and Figure

4.15; show the implementations of DRCEMOptimiser, ELALWOptimiser and

DRCMOptimiser into StorageElementFactory and OptimiserFactory, respectively.

Figure 4.14. Implementation of DRCEMOptimiser into the StorageElementFactory

class

194

The following Figure 4.15, show the implementations of DRCEMOptimiser,

ELALWOptimiser and DRCMOptimiser into OptimiserFactory class.

Figure 4.15. Implementation of DRCEMOptimiser into OptimiserFactory class

From Figure 4.14 and Figure 4.15, the DCREMOptimiser code implementation into

StorageElementFactory and OptimiserFactory classes indicates that the code is free

from both syntax and semantic errors, which further confirmed the validation

process of DRCEM mechanism explained previously in Chapter Three. The next

section summarises the chapter.

195

4.5 Chapter Summary

This chapter presented the design of replication mechanism called an Enhanced

Dynamic Replica Creation and Eviction Mechanism (DRCEM). The Chapter

outlined the primary objectives of the design, which include minimising the jobs

completion time, minimising the network bandwidth consumption, minimiszing the

storage element usage as well as the computing element usage. For achieving the

above objectives, the chapter explained the design of DRCEM mechanism, which

incorporates three main schemes, thus: (i) - Dynamic Replica Evaluation and

Creation Scheme (DRECS). In this part file replicas are evaluated to determine their

popularity as well as compute the required number of replicas to be created. (ii) -;

Dynamic Replica Placement Scheme (DRPS): This part determines the sites from or

to which the replicas are to be placed. (iii) - Dynamic Replica Eviction Scheme

(DRES): This part is invoked when there is not enough space in the selected site to

host the newly created replicas, and then there is a need to create more space to

accommodate the newly created replicas.

These schemes have been successfully designed in this chapter, and numerical

examples have been provided in its various sections to illustrate how each scheme in

the proposed mechanism performs. The step-by-step implementation of the entire

DRCEM mechanism was carried in this chapter along with brief on how the

mechanism interacts with the various components of the OptorSim simulator for

executing user’s jobs. The next chapter discusses the overall performance of the

DRCEM along with comparison on existing mechanisms evaluated through

simulation experiments, based on the selected performance metrics (Jobs

Completion Times, ENU, SEU, and CEU).

196

CHAPTER FIVE

THE DRCEM PERFORMANCE EVALUATION ALONG WITH

COMPARISON ON EXISTING MECHANISMS

5.1 Introduction

In a bid to evaluate the new DRCEM mechanism, this thesis conducted a

comparative evaluation experiment between ELALW mechanism and the DRCM

mechanism as explained earlier in the introductory chapter. This chapter presents a

series of experiments with the aim of examining the efficiency of DRCEM in

different situations. The presented experiments with their results aimed at evaluating

the system performance are based on the selected performance metrics namely jobs

completion times, network bandwidth usage, storage element usage and computing

element usage. The DRCEM performance evaluation along with comparison on

existing mechanisms is presented in this chapter. As mentioned ealier in Chapter 3

(Section 3.6.3: Performance Evaluation Metrics, Page 119), the performance metrics

are evaluated using design metrics, which include number of jobs, file size, site

distance, site workload, file logical dependencies and type of job scheduling

mechanism. The next section explains the steps taken by this thesis and compares the

simulation results with the existing mechanisms.

5.2 Comparison of DRCEM with ELALW and DRCM Mechanisms

In this section, DRCEM is compared against ELALW and DRCM mechanisms using

the configuration and parameters files outlined in Chapter Three, Section 3.6.2.1

(Table 3.3).The next sub-section is the analysis of number of jobs effects on the

amount of replications performed by each of the mechanisms under review.

197

5.2.1 Analysis on Number of Jobs and Effects on Replications

In this subsection, the comparison is based on the behaviours of DRCEM for

submitted number of jobs in a certain workloads for a particular performance metric.

The effects of number of jobs submitted to the DGF environment on the amount of

replication are analysed. The performance of DRCEM and other replication

mechanisms are measured, using the Queue Access Cost scheduling mechanism with

the other parameters and varying the number of jobs submitted from 50 to 5000.

Summary of results from the simulation is given in Table 5.1.

Table 5.1

Summary of results from the simulations of 50 to 5000 jobs

Number

of Jobs

DRCEM

Replications

ELALW

Replications

DRCM

Replications

50 189 215 197

500 375 348 334

1000 395 428 413

2000 452 536 596

3000 478 652 624

4000 526 678 666

5000 568 765 705

In the following Figures (5.1-5.3), the effects of number of jobs on number of

replications are analyzed based on 10 GB, 5 GB, and 2.5 GB file sizes, for DRCEM,

ELALW and DRCM mechanisms, respectively.

198

Figure 5.1. Effect of jobs numbers on replications for 10 GB file size

Figure 5.2. Effect of jobs numbers on replications for 5 GB file sizes

Figure 5.3. Effect of jobs numbers on replications for 2.5 GB file sizes

199

From Figures 5.1-5.3, both mechanisms showed similar pattern of increasing number

of replications as the number of jobs rises from 50 to 5000. In addition, it is evident

that file size does not have much effect on the number of replications. However, jobs

numbers do affect the numer of replications in all the mechanisms. As the job

numbers increase from 50 to 5000, the number of replications also increases.

However, at higher number of jobs, there is decline in the number of replications.

This is because the mechanisms keep a history of all access to data files. Thus, the

locations of various replication sites are taken into considerations from the previous

access history. This tends to narrow down the number of replications subsequently.

Although from the beginning, the replications seem to be raising steadily with jobs

numbers. As the number of jobs reaches 2000 (Figure 5.3), the replication rises at

much lower rate, indicating an arithmetic pattern. From the simulation results in

Figures 5.1-5.3, DRCEM shows least amount of replications as the number of jobs

rises from 50 to 5000, compared to DRCM and ELALW.

Although the number of replications done by DRCEM is lower than that of the

existing mechanisms (DRCM and ELALW), this does not slow down the jobs

completion times, as would be seen in subsection 5.2.3, page 200 under the analysis

of the number of jobs on jobs times. The reason has been that DRCEM replicates

under strict conditions of site availability, site workloads and relative distances

between replica sites.

This condition made sure that although replication is minimised to conserve storage

resources, it also strategically places replicas at locations that offer best faster access

times to the advantage of the users. In addition, along with storage conservation,

DRCEM does not consume much bandwidth, due to the reduced number of

200

replications, as would be seen in (subsection 5.2.4, page 204) under the analysis on

the effect of a number of jobs on the effective network usage. The next subsection,

explains the analysis on the effect of number of jobs on jobs completion times.

5.2.3 Analysis on the Effect of Number of Jobs on Jobs Times

The simulation results of DRCEM and existing mechanisms for 5000 jobs of 10 GB,

5 GB and 2.5 GB file sizes are presented in Table 5.2, Table 5.3 and Table 5.4,

respectively.

Table 5.2

DRCEM, DRCM and ELALW on 5000 jobs with 10.0 GB files size

Number of

Jobs

Metrics DRCEM ELALW DRCM

5000

Jobs Completion Times 4217.91 6066.16 5703.63

Effective Network Usage

(ENU)

78.13 86.04 83.59

Storage Element Usage

(SEU)

18.35 48.96 47.26

Computing Element Usage

(CEU)

55.89 50.24 51.56

Table 5.3

DRCEM, DRCM and ELALW on 5000 jobs with 5.0 GB files size

Number of

Jobs

Metrics DRCEM ELALW DRCM

5000

Jobs Completion Times 1207.50 2386.30 2233.56

Effective Network Usage

(ENU)
0.7336 0.7908 0.7781

Storage Element Usage

(SEU)
8.64 23.54 23.78

Computing Element Usage

(CEU)
35.33 28.33 33.50

201

Table 5.4

DRCEM, DRCM and ELALW on 5000 jobs with 2.5 GB files size

Number of

Jobs

Metrics DRCEM ELALW DRCM

5000

Jobs Completion Times 198.05 440.76 366.57

Effective Network Usage

(ENU)

0.6058 0.6148 0.6123

Storage Element Usage

(SEU)
2.73 10.06 3.22

Computing Element Usage

(CEU)
25.33 18.33 23.50

The efficiency of the proposed DRCEM mechanism is computed using the standard

Equation 5.1 and compared with DRCM and ELALW mechanisms.

100 (5.1)

existing mechanism HDRCEM

existing mechanism

metric value metricvalue
Efficiency

metric value


 

From Table 5.2, and using Equation 5.1, for instance, DRCEM outperforms ELALW

by 30.47% and DRCM by 26.05% in Jobs Completion Times metric, regarding

efficiency. Also, the efficiency of DRCEM over ELALW and DRCM regarding

Storage Element Usage is 42.10% and 40.01%, respectively.

Regarding the Effective Network Usage, the performances of both mechanisms

under study are at close range. However, due to the less number of replications by

DRCEM, its performance over ELALW shows the efficiency of 4.55% and 2.28%

over DRCM. Regarding the Computing Element Usage metric, the efficiency of

DRCEM over ELALW is 23.65%, while it is 19.12% against DRCM mechanism.

In the same vein, from Table 5.3 and Table 5.4, the efficiencies of DRCEM against

ELALW and DRCM, are computed and presented in the following paragraph.

202

Table 5.5 shows the efficiency of DRCEM with percentage values, against existing

mechanisms.

Table 5.5

Efficiency of DRCEM against ELALW and DRCM mechanisms

 Percentage Efficiency (%)

Metrics DRCEM vs.

ELALW

DRCEM vs.

DRCM

Jobs Completion Times 30.47% 26.05%

Storage Element Usage (SEU) 42.10% 40.01%

Effective Network Usage (ENU) 4.55% 2.28%

Computing Element Usage (CEU) 23.65% 19.12%

In what follows, the result presented in Table 5.5 is discussed and analysed in further

details. Figures 5.4-5.6, present the analysis on effects of a number of jobs on jobs

completion time based on 10 GB, 5 GB, and 2.5 GB file sizes, respectively.

Figure 5.4. Jobs times for different number of submitted jobs of 10 GB files size

203

Figure 5.5. Jobs times for different number of submitted jobs of 5 GB files size

Figure 5.6. Jobs times for different number of submitted jobs of 2.5 GB files size

From Figures 5.4-5.6, it could be seen that DRCEM achieves less jobs completion

times compared to the existing mechanisms. A better mechanism is the one with

fewer amounts of jobs completion times. Therefore, it suffices to say that DRCEM

performs the best among the compared mechanisms. DRCEM consumes 26.05% less

204

Jobs Completion Times compared to DRCM, and 30.47% over ELALW. The lower

jobs completion times is due to the replication decision that has been made by

DRCEM, in which decides to replicate a group of valuable files at the same time, as

well as considers sites with fewer workloads and high availability. As a result,

replicas of popular files are spread in the DGF environment and increase data

availability. On the other hand, ELALW replicates only one popular file at one

decision, while DRCM replicates group of files, without due regards to the site

availability and distance between replica sites.

Previously in Section 5.2.1, it was established that DRCEM performs less number of

replications, compared to ELALW and DRCM. The reason has been that DRCEM

replication is guided by site distance, site availability and workload (only

lightly/moderately loaded sites are considered). In this case, performing fewer

replications has two advantages, thus; saves storage by not performing unnecessary

replications and boast jobs time; whereas in the other mechanisms, valuable time is

used to perform unnecessary replications. Although replication is done to improving

data availability, this needs to be with caution in order: not to constraints the storage;

not constraints the users by slowing down their jobs times and not constraints the

grid federation by creating bottlenecks.

5.2.4 Analysis on the Effect of Number of Jobs on the Effective Network

Usage

Performing replication process affects the ENU metric, the ENU is calculated by the

Equation 3.3, and the large value of 𝑁replications will increase the ENU value. Figure

5.7-5.9 shows the results of ENU metric; there was little difference between the

three mechanisms under review regarding ENU metric.

205

Figure 5.7. ENU for different number of submitted jobs of 10 GB files size

Figure 5.8. ENU for different number of submitted Jobs of 5 GB files size

Figure 5.9. ENU for different number of submitted jobs of 2.5 GB files size

206

The DRCEM makes the decision of replication or deletion every constant time

interval and start to replicate or delete the replicas. Thus, at the beginning of the

simulation, the number of replication seems to be high, as a result of which ENU

becomes higher. However, as the simulation goes with time, the number of

replication decreases, with a resultant decrease in ENU value. Nevertheless,

DRCEM shows slightly better network usage of about 4.55% efficient over

ELALW, which is almost twice that of DRCM, which has percentage ENU of

2.28%. Thus, both ELALW and DRCM indicate poor usage of the network

bandwidth compared to the DRCEM mechanism.

The effective network usage for 50, 500, 1000, up to 5000 jobs, shown in Figures

5.7-5.9, decreases with the number of jobs submitted. This is as might be expected,

since the access histories used by the replication mechanism to make replication

decisions take time to build up and stabilises. The existing mechanisms, though,

show much lower usage with an increased number of jobs, with a factor of 2

differences between the ELALW and the DRCM mechanism.

The main advantage of the DRCEM mechanism is that it uses up considerably less

network bandwidth than the DRCM and ELALW mechanisms. Thus, the results in

Figures 5.7-5.9 indicate that file size affects network consumption. Thus, similar to

storage consumption, network usage could be conserved, when processing a large

file. This is done by splitting the file into smaller chunks and made to run on

different machines. As could be seen in the figure, network usage is higher at the

beginning of the simulation. However, as the job processing builds up with time,

there is a decline in the network usage.

207

5.2.5 Analysis on the Effect of Number of Jobs on Storage Element Usage

Looking at the data in Figures 5.10-5.12 illustrate that DRCEM uses the least

amount of storage (SEU) by outperforming ELALW by 35%, and DRCM by 27%.

The reason for DRCEM outperformance has been that, the replication process is

strictly guided by the percentage availability of the replica sites, site distance and

workloads, which makes replication to be lower than both DRCM and ELALW,

without constraining the jobs completion times, as evident in the previous analysis

on number of jobs versus jobs times (page 202). The following Figures 5.10-5.12

compare DRCEM with existing mechanisms (DRCM & ELALW) on the storage

element usage for 10 GB, 5 GB, and 2.5 GB file sizes, respectively.

Figure 5.10. SE Usage of DRCM and existing mechanisms for 10 GB files size

Figure 5.11. SE Usage of DRCM and existing mechanisms for 5 GB files size

208

Figure 5.12. SE Usage of DRCM and existing mechanisms for 2.5 GB files size

Furthermore, the reduction in the use of storage is more pronounced with the

decrease in file sizes, as seen in Figures 5.10-5.12. This indicates that file size can

have a drastic effect on storage consumption. Thus, to minimise storage usage, large

file for a job could be split into smaller chunks and distribute to different sites, for

faster execution and conservation of storage usage.

5.2.6 Analysis on the Effect of Number of Jobs on Computing Element Usage

The following Figures 5.13-5.15 show DRCEM results and existing mechanisms on

CE usage for different files sizes.

Figure 5.13. DRCEM results and existing mechanisms on CE usage for 10 GB files

size

209

The Computing element usage is less influenced by the replication process,

compared to the scheduling process. Each job in the federation needs to be scheduled

on an appropriate computing element, which makes a number of jobs run on every

computing element a concern. The following Figure 5.14 shows DRCEM results and

existing mechanisms on CE usage for 5 GB files sizes.

Figure 5.14. DRCEM results and existing mechanisms on CE usage for 5 GB files

size

The following Figure 5.15 shows DRCEM results and existing mechanisms on CE

usage for 2.5 GB files sizes.

Figure 5.15. DRCEM results and existing mechanisms on CE usage for 2.5 GB files

size

210

The number of jobs scheduled on a computing element by a job scheduler

determines the impact of CEU metric. In this thesis, Queue Access Cost (QAC) has

been used as a job scheduler, which sends the job to appropriate computing elements

that are closer to the data, with less workload and higher percentage availability.

The DRCEM mechanism records the highest value regarding CEU metric, as it has

the highest CEU value against ELALW by 23.65% and DRCM by 19.12%. This is

because DRCEM allocates the file replicas of the sites taking into account the

workload of the sites in the federation and locations of existing file replicas with

direct logical dependence on the parent files. The workload information influences

the scheduling algorithm to strike a balance while distributing the jobs, as the jobs

are sent to the computing elements that are closer to the data and have high

percentage availability. In addition, it is observed that the results patterns in Figures

5.13-5.15 showed some oscillations. This was because of some sites CEs may

encounter occasional interrupts during the simulations, which may tie down the CE

momentarily, or boast the CE’s performance in case no interruption occurred.

5.3 Analysis on the Effects of File Dependencies on the Performance Metrics

In this section, the same configuration and parameter files as in configuration

parameters used in running 5000 Jobs (Table 3.3 Configuration parameters used in

the simulations, Page 110) are used, with additional parameters for file

dependability. As stated earlier in Chapter Three, this thesis considers both direct

and indirect logical dependability based on the assumption that some of the files in

the grid depend on one another. Also, other files may logically depend on these

dependent files. In this scenario, the thesis used the same types of jobs and files as in

211

the simulator to illustrate the dependability measure. Table 5.6 illustrates types of

jobs and the number of files they depended on for running the jobs.

Table 5.6

Sample types of jobs and number of files they depended on for running the jobs

Job_ID

Number of files or

neighbors that file fi is

connected to

(ki)

Link between files j and

k which are neighbors of

file fi

(ejk)

Number of dependent

files

A 3 5 8

B 3 6 9

C 4 6 10

D 3 5 8

E 3 5 8

F 3 6 9

From Table 5.6, the number of dependent files for each job is calculated by summing

up the direct neighbours and the indirect links. Figure 5.16 is an instance of job

configuration file showing logical dependencies amongst the data file, which

illustrates the implementation of these jobs in the OptorSim configuration file.

Figure 5.16. An instance of job configuration file showing logical dependencies

212

From Figure 5.16 for instance, job_a_type, denoted by A contains (3+5 = 8)

dependent files. Similarly, both job_b_type denoted by B, and job_f_type denoted by

F contains (3+6 = 9) dependent files. In addition, job_c_type denoted by C, contains

(4+6 =10) dependent files. Both job D and E contains eight dependent files each.

From Figure 5.16, for example, job_a_type depends on eight files namely, filea0,

filea1, filea2, filea3, filea4, filea5, filea6, filea7, filea8, fileb0, fileb1 and fileb2.

Similarly, job_b_type depends on four files namely; fileb0, fileb1, filea2 and fileh3.

The Job_a_type indicates name of a job of type a submitted to the DGF environment

for execution.

Other jobs types include job_b_type, job_c_type, job_d_type, job_e_type, up to

job_h_type, in that order. In the simulator, each file has a name, and each job is

associated to a particular file name. The simulation results of DRCEM and the

existing mechanisms under review are presented in Table 5.7, based on the specified

performance metrics.

Table 5.7

Performance of DRCEM and the existing mechanisms with file dependencies

Number of

Jobs
Metrics DRCEM ELALW DRCM

5000

Jobs Completion Times 5683 8245 7845

ENU 82.25 94.26 88.37

SEU 20.53 50.65 49.61

CEU 56.78 52.35 53.67

The assumption made in this thesis is that the total percentage logical dependency of

a data file varies from 0% and 75%. The maximum logical dependency of a data file

should not be above 75%. This was in accordance with the existing DRCM

213

mechanism, which reported that dependency label beyond 75%, may result to

instability on the dependent files performances. When a file does not have any

dependents, the minimum logical dependency of zero is attained. For instances, the

logical dependency value of job_b_type equals the sum of percentage logical

dependencies of all the b dependent files thus; 8% of fileb0, 7% of fileb1, 8% of

filea2, and 8% of fileh3 resulting to total percentage logical dependency value of

31%, which is less than 75%. To compare the performance of the DRCEM

mechanism against the existing mechanisms, the efficiency values are computed

using Equation 5.1 and the results are presented in Table 5.8.

Table 5.8

Efficiency of DRCEM against ELALW and DRCM on file dependencies

Performance Metrics
DRCEM vs.

ELALW
DRCEM vs. DRCM

Jobs Completion Times 31.07% 27.56%

ENU 12.74% 6.93%

SEU 59.47% 58.62%

CEU -8.46% -5.79%

5.3.1 Effects of File Logical Dependencies on Jobs Completion Times

From Table 5.7 & 5.8, the results of experimenting with logical dependencies

amongst replica files are outlined. It is observed that the jobs completion time

increases with the increase in the dependencies amongst the files. The increase in

jobs completion time is because of the additional burden of both direct and indirect

relations with other files, whose execution times are added to the execution time of

the parent file. The following Figure 5.17 shows that DRCEM achieves faster jobs

completion times, with percentage efficiency of 31.07% and 27.56% over ELALW

214

and DRCM mechanism, respectively.

Figure 5.17. DRCEM jobs completion times with files dependencies

In effect, the time required to execute a job is increased with the corresponding

increase in the dependency values. The result shows that DRCEM performs better

than the existing mechanisms regarding jobs completion time, ENU and SEU, by

completing 5000 jobs at a lesser time, consuming fewer networks and less storage

facility. However, on the part of CEU, a negative value is obtained for the efficiency

of DRCEM against both ELALW and DRCM mechanisms.

The interpretation of the negative value is that DRCEM recorded higher CEU usage

than both ELALW and DRCM, which resulted in efficiency value of -8.46% and -

5.79%, respectively. Although DRCEM recorded higher CEU, this does not make it

worst mechanism going by its better performance in jobs completion time, SEU, and

ENU. Usually, a trade-off has to be made amongst some of the performance metrics.

It is unusual for a mechanism to obtain lower values for all the performance metrics.

Whereas lower values indicate better performance in some metrics such as jobs

completion times and ENU, other metrics perform better at higher values, as the case

with CE usage.

215

5.3.2 Effects of File Logical Dependencies on Effective Network Usage

The effect of files logical dependencies on ENU is shown in Figure 5.18. The result

indicates that DRCEM makes better use of the network bandwidth. This is due to the

DRCEM’s replication behaviours of placing file replicas for a job closer to the files

logical dependents. Because the CE requires not only the original file that has been

requested by the users but also all of its dependent files, to execute the job. Thus, file

worth is determined by taking into considerations the number of logical connections

it has with other files.

Data transfer time would have been a serious issue if the replica placement failed to

consider logical file dependencies while deciding on where to place replica files. In

other words, placing dependent files far apart will result to longer data transfer time

for all the replicas required to execute a specific job.

DRCEM outperforms both ELALW and DRCM by 12.74% and 6.93% regarding

ENU, respectively. Placing replica files closer to their logical dependents reduces

file transfer time, thereby narrowing bandwidth consumption.

Figure 5.18. DRCEM ENU and existing mechanisms with files dependencies

216

5.3.3 Effects of File Logical Dependencies on Storage Element Usage

The following Figure 5.19 shows the result of using logical file dependencies on

storage element usage for simulating 5000 jobs, at the interval of 50, 500, 1000, up

to 5000.

Figure 5.19. DRCEM SEU and existing mechanisms with files dependencies

The storage management of DRCEM shows better performance compared to the

existing mechanisms with 59.47% percent efficiency over ELALW and 58.62%

percent efficiency over DRCEM. This is one of the advantages of controlling the

number of replications; saves storage space, which is a significant issue in the

federation environment.

5.3.4 Effects of File Dependencies on Computing Element Usage

The performance of DRCEM regarding the use of computing element is shown in

Figure 5.20. DRCEM recorded higher CEU usage than both ELALW and DRCM

mechanism, which resulted in negative efficiency value of -8.46% and -5.79%,

respectively.

217

Figure 5.20. DRCEM CEU and existing mechanisms with files dependencies

The DRCEM higher CEU usage is to be expected due to the number of computations

needed to take care of the logically dependent files that are required to execute the

jobs successfully. Although DRCEM recorded higher CEU, this does not make it the

worst mechanism considering its better performance in MJET, SEU, and ENU.

5.4 Effect of Site Availability on Replications

Figure 5.21 shows the performance of DRCEM against existing mechanisms on

replications.

Figure 5.21. DRCEM and existing mechanisms on number of replications

218

Site availability is one of the major deciding factors for replica placement decision.

That is to say before the mechanism decides where to place new file replica, the

percentage availability of the site locations is compared with the percentage

availability of all the sites within the regions. If the availability is greater than or

equal to 85%, then replica placement takes place. Otherwise, loops until this

condition is satisfied. The result indicates that for 5000 jobs, DRCEM replicates 568

data files to sites locations with higher availability. On the other hand, ELALW and

DRCM replicate 765 and 705 files respectively.

In addition to site availability, DRCEM replication considers site workload and

distance, in order not to constrain the storage resources; a reason why the number of

replication is lower than the existing mechanisms. Thus, the total replication is done

under 50% of the system resources. Thus, replication should not exceed the

threshold value set by the system admin, which in this thesis; the assumption was

that the threshold value set by system admin is 50%.

5.5 Analysis on Indirect Logical Dependability

As explained in Chapter Three, DRCEM evaluates popular files based on access

frequencies and indirect logical dependencies, against direct logical dependencies as

the case with the DRCM mechanism. The result indicates that ILD values increase

sharply with corresponding increase in the indirect dependents links between replica

files. ILD values have effect on the file value evaluation, as would be seen in Figure

5.26, the higher the ILD values, the higher the file values. The following Figure 5.22

shows DRCEM ILD values computations for 16 case data files. The figure indicated

that dependability increases with an increase in the number of both direct and

indirect dependent files.

219

Figure 5.22. DRCEM ILD values computations for 16 case data files.

This shows that DRCEM has potentials over existing mechanisms by considering

both direct and indirect relations while evaluating files for replica creation, as seen in

the following Figure 5.23.

Figure 5.23. DRCEM, DRCM file dependencies computations for 16 case data files

0

1

2

3

4

5

6

7

8

A B C D E F G H I J K L M N O P

F
il

e
 D

e
p

e
n

d
a

b
il

it
y

File_ID

DRCEM Direct / Indirect Dependents Value
Computations for 16 Files

Direct Dependents Indirect Dependents ILD Value

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

1.2000

A B C D E F G H I J K L M N O P

D
ir

ec
t

/I
n

d
ir

ec
t

D
ep

en
d

en
ci

es

File_IDs

DRCEM, DRCM on File Dependencies Computations

DRCM ILD Value DRCEM ILD Value

220

5.6 Analysis on Access Frequencies and File Weights

The results of DRCEM FLT and FW are shown in the following Figures 5.24 and

5.25.

Figure 5.24. DRCEM FW values computations for 16 case data files.

Figure 5.25 compares DRCEM and existing mechanisms on FLT and FW

computations.

Figure 5.25. DRCEM, DRCM FW values computations for 16 case data files.

From the results of Figure 5.24, it is clear that FLT, which is determined from access

frequencies, has a positive effect on FW. It is evident that FW rises with a

0

5

10

15

20

25

30

35

40

45

A B C D E F G H I J K L M N O P

F
L

T
 /

 F
W

File_IDs

DRCEM FLT and FW Computations for 16 Files

DRCEM FLT DRCEM FW

0

10

20

30

40

50

A B C D E F G H I J K L M N O P

FL
T

/
FW

File_IDs

DRCEM, DRCM on FLT and FW Computations

DRCM FLT DRCM FW

DRCEM FLT DRCEM FW

221

corresponding increase in FLT. Thus, finding popular file by DRCEM mechanism

makes an effective decision by considering indirect logical dependencies, in addition

to the direct logical dependencies. Because FW is determined from FLT and ILD,

and FV is determined from FLT and FW, which means ILD assumes a significant

part in determining the importance of data files in relation to other files within the

federation sites.

5.7 Analysis on Access Frequencies and File Values

ELALW mechanism evaluates data files based on half-life algorithm, which assumes

the value of data files depreciates by half of its original value. To assess the files in

the present time window, the file values within the fast time intervals are computed,

and this is referred to as the file access frequency. As a result, the values of the file

will be quite large even though the files are not being accessed anymore. On the

other hand, DRCEM, similar to the DRCM mechanism, evaluates data files based on

file appreciation/depreciation principle. Figure 5.26 shows DRCEM result for

evaluating 16 data files, compared with the existing DRCM and ELALW

mechanisms on FLT, ILD, FW and FV.

Figure 5.26. DRCEM popular file evaluation computations for 16 case data files.

-10
0

10
20
30
40
50
60
70

A B C D E F G H I J K L M N O P

FL
T/

 C
LD

/
FW

 /
 F

V

File_IDs

DRCEM FLT, ILD, FW and FV computations for 16 data
files

DRCEM FLT DRCEM ILD Value
DRCEM FW DRCEM FV

222

The average appreciation/depreciation rate is calculated and substituted in the file

evaluation formula, to evaluate the files in a current time interval; see how DRCEM

evaluates data files in Table 4.1 (on page 136). Difference between DRCEM and the

existing mechanisms is that, compared with the values of a recent number of access

for the files, DRCM generates file values without taking into considerations, the

indirect (transitive) logical dependencies amongst these files. On the other hand,

DRCEM generates file values by considering both direct and indirect logical

dependencies between replica files.

Thus, the file values generated by DRCEM are more realistic than that of DRCM

and ELALW mechanisms, which operates similar mode of generating file values,

using direct logical relationships only. Figure 5.27 shows comparative results for

finding FV, between DRCM and DRCEM in evaluating 16 data files.

Figure 5.27. DRCEM and DRCM on FV computations for 16 case data files.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

A B C D E F G H I J K L M N O P

FV

File_IDs

DRCEM, DRCM on FV Computations

DRCM FV DRCEM FV

223

5.8 Chapter Summary

This chapter evaluates the performance of the proposed mechanism for dynamic

replica creation and eviction, otherwise known as DRCEM mechanism. The

performance evaluation commenced with Section 5.2, which discussed the DRCEM

performance and the existing using different design metrics. The performance

evaluation considers the four primary performance objectives aimed to minimise the

jobs completion times, the network bandwidth consumption, the storage element and

computing element usage. To evaluate the above objectives, this thesis uses different

measurement metrics namely number of submitted jobs, different file sizes, and

distance between replica sites, site availability, site workloads and replica placement

cost.

Reducing jobs completion times and bandwidth consumption could be achieved by

reducing the distance between source site for the job and all other sites hosting the

dependent files required by the job. Furthermore, jobs completion times and

bandwidth consumption could be minimised by reducing the site workload, reducing

replication cost as well maintaining high level of site availability. In addition,

minimising storage usage could be attained by controlling the number of files

replications as well ensuring load balancing in the system, which is done at the

expense of computing element usage. In other words, although the mechanism saves

storage by avoiding unnecessary replications, however, there is excessive usage of

computing element due to additional task of locating files closer to the jobs files that

needed them, as well as computations for site availability and workloads.

Furthermore, load balancing is achieved by avoiding highly loaded sites and

considering only lightly or moderately loaded sites for replica placement. In this

224

research, the DRCEM covers both aspects, which provides improved performance

over the existing mechanisms. The extensive experiments in this chapter have shown

that the performance of DRCEM is better than ELALW and DRCM in all the tested

performance metrics.

225

CHAPTER SIX

CONCLUSION AND FUTURE WORK

6.1 Introduction

This chapter presents an overview and conclusion on the research work carried out

in the thesis. The research contributions are supported by the simulation results,

which are highlighted. The feasibility of applying the proposed DRCEM mechanism

in the real works of life is presented. Recommendations on several possible future

research directions to realise and extend the work in this thesis are also identified

and recommended at the end. The chapter begins by reviewing the process involved

in the implementations of the DRCEM mechanism and the mechanisms used for

comparisons. The implementation began with the outline of the schemes for the

proposed DRCEM mechanisms in Chapter 4. The schemes were fully developed,

programmed and deployed to OptorSim simulator for performance evaluation.

In addition, numerical examples were given at relevant sections of Chapter 4 to

illustrate how the three schemes of the DRCEM mechanism interact to achieve the

stated objectives. After the implementation processes, simulations were run and

results were collected for performance evaluation. It was seen that both DRCEM and

existing mechanisms produced similar results patters for different number of

submitted jobs. In addition, it was shown that DRCEM performs better than the

existing mechanisms in terms of number of replications performed with increasing

number of submitted jobs.

The performance evaluation was carried out in Chapter 5, which revealed that

DRCEM performs well compared to ELALW and DRCM in terms of the measured

226

metrics (jobs completion times, network bandwidth usage, storage element usage

and computing element usage). It was however shown that DRCEM performs fair

compared to existing mechanisms regarding computing element usage, due to

excessive computations of dependent files and related computational tasks. Also, it

was established that DRCEM achieves faster jobs with minimal number of

replications compared to the existing mechanisms. In other words, DRCEM runs

jobs faster by not wasting precious time making unnecessary replications,

considering that files replicas are placed closer to jobs that need them.

In practice, data replication presents a dynamic means of making data more available

and placing the data closer to the numerous users of the DGF system. The need for

data replication is to spread duplicates of the identical data items to diverse sites, to

facilitate disaster recovery operations, in the case of data unavailability due to site

failure, site maintenance, unexpected downtimes or demands from the users.

Therefore, the proposed DRCEM mechanism has been designed and implemented to

annul some of the scoring effects of limited resources that impede on data

exploration in the established domain, which calls for the need of an enhanced data

replication mechanism. The main problem addressed by this thesis regarding replica

creation, placement and eviction decision include file sites communications, file

dependencies, sites failures, sites distances and sites workloads, aim at satisfying

both the DGF and its users constraints. Sites communications have been minimised

by replicating important data items to appropriate sites with the regions of the

federation, closer to users.

227

Satisfying the DGF system and users constraints is a measure of reducing the

stringent cost functions involving the storage usage, bandwidth usage, and file

transfer time costs. As regards to users satisfaction, reduction in file transfer time has

significantly impacted in reducing the cost for placing file replicas, which aids in

minimising the overall jobs times of the users. This problem has been addressed by

existing DRCM and ELALW mechanisms, but their works still needed

enhancements, as has been discussed under the review of related literature in

Chapter 2 of this thesis.

In addition, deciding on replica placement by considering site availability along with

some critical parameters has a significant effect on the overall system performance

compared to the existing mechanisms. These parameters include the transfer time of

data file among sites, workload of each site, and the distance between replica sites.

On the part of DGF storage resources, the constraints due to unbalanced workloads

are addressed by considering only lightly and moderately loaded sites for replica

placement. The load balancing issue even though has been addressed by previous

researchers, however, requires further enhancements to include other relevant

factors. Regarding bandwidth usage, the replica placement cost considers site

distance by placing file copies closer to sites that frequently need them, which

minimises bandwidth usage in the system.

Thus, DRCEM mechanism takes seriously the issues surrounding user’s satisfaction

and balancing grid storage usage, by looking at both users’ requirements and DGF

storage resource limitations. Creating and evicting file replicas present an interesting

research problem in DGF systems, due to inter-dependability of the replica files. In

228

this thesis, it was observed that replica creation decision by evaluating files based on

direct logical dependencies and indirect logical dependencies, in addition to access

frequencies, gives added advantage over the existing works.

Replica eviction from a storage element needs to be done with caution in order not to

delete a relevant file, which may be needed later. In this thesis, it was observed that

considering the file dependability combined with file value in replica eviction

presents better enhancements in the performance of the system than considering only

file value and size, as in the existing DRCM and ELALW mechanisms.

Also, load balancing is an important issue addressed by this research, which

considered lightly and moderately loaded sites, while deciding where to place newly

created replica. The load balancing is another vital function similar to the one

performed by replica replacement proposed by DRCM, but with the added

functionality of taking notes of files with high dependability measure, while evicting

replica files.

6.2 Revisiting the Research Objectives

This section discusses the research contributions, by giving comprehensive

explanations on the contributions in its various subsections. The significant

contribution of this research work is related to the proposing an enhanced replica

creation and eviction mechanism that enhances the performance of the DGF system,

by reducing jobs completion times, minimising bandwidth usage and optimising the

storage and computing element usage within the DGF regions. Therefore, the

contributions accorded by this thesis are of utmost significance, which are

highlighted above and are explained further, in the following subsections.

229

6.2.1 An Enhanced Replica Evaluation and Creation Scheme

In this research, an enhanced dynamic replica evaluation and creation scheme

(DRECS) is developed, which evaluates replica files based on their file values and

logical dependencies. The scheme determines how many copies of the replicas files

is required to meet with data demands within the DGF environment. The scheme

incorporates a mathematical framework for file logical dependency into the existing

popularity-based file evaluation framework proposed by the existing ELALW and

DRCM mechanisms, for finding file values within the regions of the established

research domain. The framework is based on the exponential growth/decay of file

replicas, which is referred to as the file appreciation and depreciation with logical

dependency framework.

The first part of the framework establishes files importance by observing the users

behaviours of accessing the files over time. The second part of the framework

establishes files importance by observing the files behaviours in connection to other

files within the regions, otherwise known as file dependability measure. In effect,

these two frameworks are jointly employed to determine the value of the popular

file, which establishes file’s importance regarding the users as well as the DGF

system in general. This is a significant enhancement over the existing works

ELALW and DRCM mechanisms, which considered only the users’ behaviours of

accessing files replicas over time, to determine the significance of a file to the grid

system.

Unlike the existing works, the proposed DRCEM mechanism takes decision on

creating more replicas of the important files to meet the demands of the users, based

on the outcomes of the two frameworks. Also, the replica eviction provides

230

additional function of creating more space for new incoming files replicas, incase

there is not enough space to accommodate the newly created file replicas. However,

this is done with due considerations to files with logical connectivities to other files.

6.2.2 An Enhanced Dynamic Replica Placement Scheme

The principle of replication suggests an economical way of hosting the newly

created replicas, so as not to constraints the storage resources, as well as not to draw

heavily on the bandwidth resources, while accessing such files. Furthermore,

creating many replicas is not the best option here, but determining the number of

replica copies that satisfies the desired data availability in the DGF system.

Therefore, a mechanism that generates a minimum number of replicas, but achieves

minimum jobs completion times is more significant than a mechanism that generates

more replicas, but ties down the system performance. Thus, the new dynamic replica

placement scheme (DRPS) proposed by this work selects the suitable location sites

that provide the least transfer time, by placing file replicas on sites that offer

minimum replica placement cost. Minimum replica placement cost is achieved by

considering file transfer time and distance between replica sites.

The replica placement cost encapsulates file access cost, which is the time required

to convey the replicas from source to destination sites. In other words, this denotes

the elapsed time from the moment a site sends a request for a data file till the time

the entire data file is transferred to its location. Thus, the best location sites is

achieved by considering file access cost, file transfer time, site workload, sites

distance, site availability, and logical inter-dependencies of replica files.

DRCEM performs less number of replications, compared to ELALW and DRCM,

because replication is guided by the aforementioned factors, which help to perform

231

adequate number of replications that improves the jobs execution times. Controlling

the number of replications has two advantages. In the first place, it saves storage by

not performing unnecessary replications, and secondly, it boasts jobs times. In

contrast, the existing works waste precious time by performing unnecessary

replications. Furthermore, although replication is known for improving data

availability, this needs to be with cautions; not to constraints the storage and the

users by slowing down their jobs times, and not to constraints the DGF system by

creating bottlenecks.

6.2.3 An Enhanced Dynamic Replica Eviction Scheme

The dynamic replica eviction scheme (DRES) is invoked by the DRPS scheme, if the

target storage at the site that is selected for placing newly created replica is full. The

DRPS first tries to locate sites that are lightly or moderately loaded for replica

placement. If none exists, then DRES is invoked to evict insignificant file replicas

from the highly loaded sites, to create more space for the newly created file replicas.

The DRES scheme determines the victim file to be evicted based on three design

parameters, namely file value, direct logical dependability, and indirect logical

dependability of the file replicas.

6.2.4 The DRCEM Mechanism

The core advantages of the developed DRCEM mechanism are: firstly, the new

mechanism embodies the above three schemes in one mechanism, which are

considered as essential functions in replication mechanism for DGF systems.

Secondly, the new mechanism performs replication of multi-files in one decision-

making, i.e., when the DRCEM decides to carry out the replication or eviction

process, the decision will include several files in a one decision.

232

6.2.5 Implementation of DRCEM in OptorSim Simulator

The implementation could serve as a starting point for other researchers in this

domain for further research work, benchmarking or modification purposes. It

presents a noble mechanism that encapsulates some essential schemes involved in

the replica evaluation, replica creation, replica placement and replica eviction

decision. The replica placement achieves load balancing, by avoiding sites that are

highly loaded and considering only sites that are lightly or moderately loaded for

replica placement. The implemntation of a load balancing scheme strengthens the

replica placement, by making sure both the DGF system and the users are not

constrained, while accessing data files. Considering the dynamic behaviour of the

DGF sites, candidate site on which replicas are currently hosted may not be the

suitable site from where to retrieve the replica due to factors such unavailability and

site distance, which may interfere with the jobs times. Therefore, the mechanism

ensures that replicas are placed on sites that accord better responses considering the

prevailing network conditions and peer sites behaviors. Another significant

contribution of this thesis, which makes it unique from existing works, could be seen

in the implementation of replica maintenance, which encapsulates replica

optimisation that maintains required number of data availability with a minimum

number of replication as possible.

6.3 Revisiting the Research Contributions

Further to the Research Contributions itemised in the introductory Chapter One

(Section 1.7, Page 16), this section is aimed at buttressing more on how the research

has contributed to the knowledge domain, which is in more ways than one. It

suffices to say that the following contributions have been accorded by the research.

233

i. The evaluation of popular files by computing logical dependencies amongst the

data files, stands as a major contribution to the research domain, which prviously

has been based on files access frequencies. File access frequency has been

predominantly used by previous researches in determining the popularity of a data

file. Finding popular files using access frequencies without logical dependencies

may not produce a realistic conclusion on which file is popular or not. This is

because, access frequency indicates how frequently a user accesses a particular

file, but does not include how frequently such file accesses a another file. Thus, to

establish the realistic popularity of a file, its logical connections to other files in

the system need to be included in the computation.

ii. Another major contribution by this research is its ability to resolve the problem of

sites failures by computing sites availability, which before now, has been a soring

issue in determining the appropriate locations sites for replica placement decision.

Previous researches have made tremendous efforts in finding appropriate sites

locations for replica placements. However, their efforts concentrated on sites

workloads and distances. Thus, this research contributed significantly, by

computing sites failures along with the workloads and distances prior to making

replica placement.

iii. Computation of distance between replica sites has been enhanced via the use of a

modified Dijkstra's algorithm, which previously has been based on hops counts.

Although using hops counts may suffice in small grid installations, large grid

systems may require a robust mechanism such as the case with this research.

Thus, this research computes sites distances using bandwidth information with the

modified Dijkstra's algorithm, which adds robustness and more efficiency

compared to the existing practice.

234

iv. The issue of replica eviction has been enhanced in such a way that important

replicas that may be needed later, are not caressly evicted from the system.

Previously, replica eviction has been based on LRU or LFU, which evicts data

files based on how frequently they have been accessed by the users within a

specified time frame. Considering that some files may connect to other files via

partial replica or threading issue, this research considered modelling the possible

logical dependencies amongst replica files, which produced positive effects in the

various computations of files values, files life times and files wieghts within the

DGF system, as seen in the results analysis of Sections 5.5 -5.7.

v. Also, the research has made significant cotribution in making space more

available within DGF systems, through the provision of a dedicated dynamic

replica eviction scheme, which is invoked when there is need for more storage

space by the replica placement stage. The method used by existing works to

create space usually evicts least frequently or least recently accessed files by the

users, which is an integral part of their mechanism, may result to concurrent

operations issues, by attempting to evict a file that is currently being accessed by

another file. As resolve to that, a dedicated mechanism for eviction, which checks

file dependencies prior to eviction, will surely be more efficient in creating the

desired space within the system without creating bottlenecks.

vi. The issue of what file to replicate has been significantly addressed by making

sure that only important files are replicated; thus avoiding redundant replications,

which may consume the much needed storage resources. This could be seen in the

fewer number of replications done by the mechanism compared to the existing

mechanisms.

235

6.4 Future Research Works

The coverage of this research work has unlocked a number of avenues for further

study. Despite the rigorous experiments, comprehensive discussions and thorough

analysis of the obtained results, yet, this research is subject to further enhancement

in many aspects. This section highlights on the possible areas of improvement in this

thesis. As the future of Grid Computing is shifting to federation-based computing

infrastructure, which evolves to provide a platform, which will support a variety of

distributed computing infrastructure, including High Powered Computing (HPC),

High Throughput Computing (HTC) and the Cloud Computing, this research could

be expanded to cover the full pledge European Grid Infrastructure (EGI) platform.

This thesis addressed resources failure regarding site unavailability. In the future,

there are plans to consider modelling of the various failure causes into a single

mechanism for a more efficient replica placement decision making. Also, as part of

future work, the DRCEM mechanism will be implemented in Cloud Data Centre

environment, based on the current EGI platform.

There are plans to extend this replica creation mechanism (DRCEM) to cover and

include the replica management strategies, namely replica selection strategy and

replica maintenance strategy. Replica selection strategy is responsible for finding the

best replica location out of many replicas, which are spread across the DGF to

provide the users with the essential replicas in the minimal response time possible,

while running their jobs.

Also, the mechanism could be enhanced to include job scheduling scheme. In this

research, the mechanism used for job scheduling is the existing Queue Access Cost

236

heuristic implemented in the OptorSim simulator. A scheduling scheme that

considers resources failures, site distance as well as site workloads will perform well

if joined with the replica placement decision proposed by this work.

The second scheme that could be included in this mechanism is replica maintenance

scheme. Due to the dynamic nature of the DGF system, regional sites that host the

file replicas may not be the best locations to fetch the replica in the future due to

resources failures. Therefore, there is a need to include a replica relocation policy to

consider relocating important file replicas that reside on site locations that have high

failure rates.

The replica placement avoids sites with high failures; however, if after placing the

file replicas, the site changes its availability status, such files should be relocated to

other sites with high availability. In other words, important files could be relocated

to location sites that could provide better replication cost, taking into considerations

the dynamic system behaviours regarding site distance, site availability and site

workload.

237

REFERENCES

[1] R. W. Moore, A. Jagatheesan, A. Rajasekar, M. Wan and W. Schroeder, “DATA GRID

MANAGEMENT SYSTEMS”, In NASA/IEEE MSST 2004 Twelfth NASA Goddard

Conference on Mass Storage Systems and Technologies, pp. 1-15, April 2004.

[2] I. Foster and C. Kesselman, The grid: blueprint for a new computing infrastructure.

Amsterdam: Kaufmann, 2007.

[3] R. Ranjan, A. Harwood and R. Buyya, "A case for cooperative and incentive-based

federation of distributed clusters", Future Generation Computer Systems, vol. 24, no. 4,

pp. 280-295, 2008.

[4] M. Rahmani and M. Benchaiba, “A comparative study of replication schemes for

structured P2P networks”, In Proceedings of the 9th International Conference on

Internet and Web Applications and Services, pp. 147-158, 2014.

[5] W. He, H. Li, L. Cui and S. Lu, "Maximizing the Availability of Process Services in

Mobile Computing Environments", 2016 IEEE International Conference on Services

Computing (SCC), San Francisco, CA, pp. 483-490, 2016.

[6] P Matri, A Costan, G Antoniu, J Montes and M. S. Pérez, Towards Efficient Location

and Placement of Dynamic Replicas for Geo-Distributed Data Stores. In Proceedings of

the ACM 7th Workshop on Scientific Cloud Computing, pp. 3-9, ACM, June 2016.

[7] M. Qureshi, M. Dehnavi, N. Min-Allah, M. Qureshi, H. Hussain, I. Rentifis, N. Tziritas,

T. Loukopoulos, S. Khan, C. Xu and A. Zomaya, "Survey on Grid Resource Allocation

Mechanisms", Journal of Grid Computing, Vol. 12, No. 2, pp. 399-441, 2014.

[8] N. Mansouri and A. Asadi, "Weighted data replication strategy for data grid considering

economic approach", International Journal of Computer, Control, Quantum and

Information Engineering Vol. 8, No. 8, pp. 1254-1263, 2014.

[9] A. Jagatheesan and R. Moore, "Data grid and grid flow management systems",

Proceedings, IEEE International Conference on Web Services, 2004, San Diego, CA,

USA, 2004, pp. xxix-xxix, doi: 10.1109/ICWS.2004.1314713

[10] V. Khurana, M. Berger and M. Sobolewski, “A federated grid environment with

replication services”, In Next Generation Concurrent Engineering, Omnipress, .(ibid.),

2005.

[11] V. Khurana, "A FEDERATED GRID ENVIRONMENT WITH REPLICATION

SERVICES", Doctoral Dissertation, Texas Tech University, 2005.

[12] W. Jiang, Q. Dai and Y. Zhou, "HUST-BioGrid: The deployment and evaluation of a

bioinformatics grid platform", 2010 3rd International Conference on Biomedical

Engineering and Informatics, Yantai, pp. 2785-2789, 2010.

[13] B. Bihani, B. K. Oliver and C. Liu, “Oracle International Corporation”, SYSTEM AND

METHOD FOR SUPPORTING DATA GRID SNAPSHOT AND FEDERATION, U.S.

Patent 20,160,092,540, 2016.

[14] R. W. Moore, A. Rajasekar and M. Wan, “Data Grids, Digital libraries, and persistent

archives: An integrated approach to publishing, sharing and archiving data”.

Proceedings of the IEEE (Special Issue on Grid Computing), Vol. 93, No. 3, 2005.

238

[15] A. Bass, and D. Kay, "Applying Identity Federation to Enable Secure Information

Sharing", A Case Study on Identity Federation between NASA and Lockheed Martin,

Lockheed Martin in collaboration with NASA ICAM, TSCP, USA, November 2013.

[16] D. G. Cameron, R. Carvajal-Schiaffino, A. P. Millar, C. Nicholson, K. Stockinger, and

F. Zini, "Evaluating scheduling and replica optimisation strategies in OptorSim,"

Journal of Grid Computing, pp. 57-69, March 2004.

[17] M. Lei and S. V. Vrbsky, “A Data Replication Strategy to Increase Data Availability in

Data Grids”, In GCA, pp. 221-227, June 2006.

[18] J. H. Abawajy and M. M. Deris, “Data Replication Approach with Consistency

Guarantee for Data Grid”, Computers, IEEE Transactions on, Vol. 63, No. 12, 2975–

2987, 2014.

[19] A. H. Monshi, “Calculating the Availability of Nodes in a Peer-to-Peer Backup

System”, Master Thesis 2011, Uppsala University, Department of Information

Technology, URN: urn:nbn:se:uu:diva-160433.

[20] Y. Mansouri, M. Garmehi, M. Sargolzaei, and M. Shadi, "Optimal Number of Replicas

in Data Grid Environment", in First International Conference on Distributed

Framework and Applications, 2008, DFmA, pp. 96-101, 2008.

[21] M. A. Salehi, B. Javadi, and R. Buyya, “ Preemption-aware admission control in a

virtualized grid federation”, In Advanced Information Networking and Applications

(AINA), 2012 IEEE 26th International Conference on pp. 854-861, 2012.

[22] M. Thulin, “Measuring Availability in Telecommunications Networks”, Master Thesis:

Royal Institute of Technology (KTH) Stockholm, 2004.

[23] B. Meroufel and G. Belalem, “Availability management in the data grid” In IT

Convergence and Services. Springer Netherlands, pp. 43-53, 2011.

[24] S. Sarra, K. Amar and B. Hafida, “A load balancing strategy for replica consistency

maintenance in data grid systems”, Informatica, Vol. 37, No. 3, 2013.

[25] S. Senhadji, A. Kateb and H. Belbachir, “Increasing Replica Consistency Performances

with Load Balancing Strategy in Data Grid Systems”, World Academy of Science,

Engineering, and Technology, International Journal of Computer, Electrical,

Automation, Control and Information Engineering, Vol. 7, No. 1, 153-158, 2013.

[26] M. K. Madi, “Replica Creation Algorithm for Data Grids”, Doctoral dissertation,

Universiti Utara Malaysia, 2012.

[27] Q. Rasool, J. Li and S. Zhang, "Replica Placement in Multi-tier Data Grid", in

Proceedings of 2009 Eighth IEEE International Conference on Dependable, Autonomic

and Secure Computing, pp. 103-108, 2009.

[28] H. Sun, B. Xiao, X. Wang and X. Liu, “Adaptive trade-off between consistency and

performance in data replication”, Software: Practice and Experience, Vol. 47, No. 6, pp.

891-906, 2017.

[29] C. Nicholson, D. G. Cameron, A. T. Doyle, A. P. Millar, and K. Stockinger, "Dynamic

data replication in LCG 2008," Concurrency and Computation: Practice and

Experience, Vol. 20, pp. 1259-1271, 2008.

239

[30] S. Venugopal, R. Buyya and K. Ramamohanarao, “A taxonomy of data grids for

distributed data sharing, management, and processing”, ACM Computing Surveys

(CSUR), Vol. 38, No. 1, pp. 3, 2006.

[31] T. Amjad, M. Sher and A. Daud, “A survey of dynamic replication strategies for

improving data availability in data grids”, Future Generation Computer Systems, Vol.

28, pp. 337-349, 2012.

[32] M. Bsoul, I. Phillips and C. Hinde, “MICOSim: A simulator for modelling economic

scheduling in Grid computing”, World Academy of Science, Engineering and

Technology, International Science Index, Vol. 68, 2012.

[33] C. Nicholson, "The OptorSim Archive of Questions Asked", 2008. [Online]. Available:

https://www.scribd.com/document/215874924/OPTORSIM-FAQ. [Accessed: 12- Mar-

2015].

[34] R. M. Rahman, K. Barker, and R. Alhajj, "A Predictive Technique for Replica Selection

in Grid Environment", In Seventh IEEE International Symposium on Cluster Computing

and the Grid CCGRID 2007, pp. 163-170, 2007.

[35] R. Ranjan, “Coordinated Resource Provisioning in Federated Grids”, Unpublished

Ph.D. Dissertation, The University of Melbourne, Australia, Department of Computer

Science and Software Engineering, July 2007.

[36] Y. F. Lin, J. J. Wu, and P. Liu, "A List-Based Strategy for Optimal Replica Placement

in Data Grid Systems", in Proceedings of Parallel Processing, 2008. ICPP'08. 37th

International Conference on, pp. 198-205, 2008.

[37] D. G. Cameron, A. P. Millar, C. Nicholson, R. Carvajal-Schiaffino, K. Stockinger and

F. Zini, “Analysis of scheduling and replica optimisation strategies for Data Grids using

OptorSim”, Journal of Grid Computing, Vol. 2, No. 1, pp. 57-69, 2004.

[38] P. Vashisht, R. Kumar and A. Sharma, "Efficient Dynamic Replication Algorithm

Using Agent for Data Grid", The Scientific World Journal, vol. 2014, pp. 1-10, 2014.

[39] R. M. Rahman, K. Barker, and R. Alhajj, "Replica placement strategies in a Data Grid,"

Journal of Grid Computing, vol. 6, pp. 103-123, 2008.

[40] R. Chang and H. Chang, "A dynamic data replication strategy using access-weights in

data grids", The Journal of Supercomputing, vol. 45, no. 3, pp. 277-295, 2008.

[41] Z. Zhang, C. Zhang, M. Zuo and Z. Wang, "Dynamic Data Grid Replication Algorithm

Based on Weight and Cost of Replica", TELKOMNIKA Indonesian Journal of

Electrical Engineering, vol. 12, no. 4, 2014.

[42] N. Mostafa, I. Al Ridhawi, and A. Hamza, "An intelligent dynamic replica selection

model within grid systems", IEEE 8th GCC Conference and Exhibition, Muscat, 2015,

pp. (1-6), doi: 10.1109/IEEEGCC.2015.7060061, 2015.

[43] S. Dayyani and M. R. Khayyambashi, “A Novel Replication Strategy in Data Grid

Environment with a Dynamic Threshold”, Databases, Vol 14, No. 17, 2014.

[44] L. Azari, A. Rahmani, H. Daniel and N. Qader, "A data replication algorithm for groups

of files in data grids", Journal of Parallel and Distributed Computing, vol. 113, pp.

115-126, 2018.

240

[45] M. Ciubăncan and M. Dulea, "Implementing advanced data flow and storage

management solutions within a multi-VO grid site", 2017 16th RoEduNet Conference:

Networking in Education and Research (RoEduNet), Targu Mures, pp. 1-4, 2017.

[46] M. A. Mehta, S. Agrawal, and D. C. Jinwala, “Novel algorithms for load balancing

using hybrid approach in distributed systems”, In Parallel Distributed and Grid

Computing (PDGC), 2012 2nd IEEE International Conference on pp. 27-32, IEEE,

December 2012.

[47] B. Javadi, D. Kondo, J. Vincent and D. Anderson, "Discovering Statistical Models of

Availability in Large Distributed Systems: An Empirical Study of SETI@home", IEEE

Transactions on Parallel and Distributed Systems, vol. 22, no. 11, pp. 1896-1903, 2011.

[48] D. Kondo, B. Javadi, A. Iosup and D. Epema, "The Failure Trace Archive": Enabling

Comparative Analysis of Failures in Diverse Distributed Systems”, In 10th IEEE/ACM

Int'l Symposium on Cluster, Cloud, and Grid Computing (CCGrid) pp. 398-407, IEEE,

2013.

[49] B. Meroufel and G. Belalem, "Managing Data Replication and Placement based on

Availability", AASRI Procedia, vol. 5, pp. 147-155, 2013.

[50] R. S. Chang, H. P. Chang and Y. T. Wang, “A dynamic weighted data replication

strategy in data grids", Computer Systems and Applications, AICCSA 2008. IEEE/ACS

International Conference on, pp. 414-421, March 31-April 4 2008.

[51] M. R. Jaju and P. Deshpande, “Dynamic data storage and placement system based on

the category and popularity”, International Journal, of Computer Engineering &

Technology (IJCET) Vol. 6, No. 6, pp. 08-15, June 2015.

[52] M. Shorfuzzaman, P. Graham, and R. Eskicioglu, "Popularity-Driven Dynamic Replica

Placement in Hierarchical Data Grids", in Parallel and Distributed Computing,

Applications and Technologies, 2008. PDCAT 2008, pp. 524-531, 2008.

[53] A. Eremeev, G. Korneev, A. Semenov and J. Veijalainen, “The Spanning Tree-based

Approach for Solving the Shortest Path Problem in Social Graphs”, In WEBIST 2016:

Proceedings of the 12th International conference on web information systems and

technologies. Volume 1, ISBN 978-989-758-186-1, SCITEPRESS, 2016.

[54] O. Almomani and M. Madi, “A GA-Based Replica Placement Mechanism for Data

Grid”, International Journal of Advanced Computer Science and Applications

(IJACSA), vol. 5, no. 10, 2014.

[55] Z. Qi, Y. Xiao, B. Shao, and H. Wang, “Toward a distance oracle for billion-node

graphs”, Proceedings of the VLDB Endowment, vol. 7, no. 1, 61-72, 2013.

[56] Q. Xin, T. Schwarz, and E. L. Miller, “Availability in global peer-to-peer storage

systems”, Distributed Data and Structures 6, Proceedings in Informatics, 2004.

[57] J. C. Chu, K. S. Labonte and B. N. Levine, “Availability and locality measurements of

peer-to-peer file systems”, In ITCom 2002: The Convergence of Information

Technologies and Communications, pp. 310-321. International Society for Optics and

Photonics 2002.

[58] A. Saleh, R. Javidan and M. FatehiKhajeh, "A four-phase data replication algorithm for

data grid", Journal of Advanced Computer Science & Technology, vol. 4, no. 1, p. 163,

2015.

241

[59] F. Ben Charrada, H. Ounelli, and H. Chettaoui, "An Efficient Replication Strategy for

Dynamic Data Grids", in Proceedings of International Conference on P2P, Parallel,

Grid, Cloud and Internet Computing (3PGCIC), 2010, pp. 50-54, 2010.

[60] R. Souli-Jbali, M. S. Hidri and R. B. Ayed, "Dynamic Data Replication-Driven Model

in Data Grids", In Computer Software and Applications Conference (COMPSAC), 2015

IEEE 39th Annual, vol. 3, pp. 393-397, July 2015.

[61] G. A. Oliva, F. W. Santana, M. A. Gerosa and C. R. De Souza, “Towards a

Classification of Logical Dependencies Origins: A Case Study”, ESEC/FSE, 12th

International Workshop on Principles of Software Evolution and the 7th annual, 2011.

[62] D. Bonacorsi, T. Boccali, D. Giordano, M. Girone, M. Neri, N. Magini and T. Wildish,

“Exploiting CMS data popularity to model the evolution of data management for Run-2

and beyond”, In Journal of Physics: Conference Series, Vol. 664, No. 3, p. 032003, IOP

Publishing, 2015.

[63] I. Foster, C. Kesselman, and S. Tuecke, "The Anatomy of the Grid: Enabling scalable

virtual organizations", International Journal of Supercomputing Applications, vol. 15,

pp. 200-222, 2001.

[64] U. K. Oxon, European DataGrid Project: Experiences of Deploying a Large Scale

Testbed for E-science Applications. Performance Evaluation of Complex Systems:

Techniques and Tools: Performance 2002. Tutorial Lectures, 2459, pp. 480, 2003.

[65] C. Vázquez, E. Huedo, R. Montero and I. Llorente, "Federation of TeraGrid, EGEE and

OSG infrastructures through a metascheduler", Future Generation Computer Systems,

vol. 26, no. 7, pp. 979-985, 2010.

[66] R. Ranjan, A. Harwood and R. Buyya, "Coordinated load management in Peer-to-Peer

coupled federated grid systems", The Journal of Supercomputing, vol. 61, no. 2, pp.

292-316, 2010.

[67] M. Petrova-El Sayed, K. Benedyczak, A. Rutkowski, & B. Schuller, “Federated

computing on the web: The UNICORE portal”, In Information and Communication

Technology, Electronics and Microelectronics (MIPRO), 2016 39th IEEE International

Convention on pp. 174-179, May 2016.

[68] Q. H. Vu, M. Lupu and B. C. Ooi, “Peer-to-Peer Computing: Principles and

Applications”, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-03514-

2, 2010.

[69] R. Ranjan, R. Buyya, , and A. Harwood, “A model for a cooperative federation of

distributed clusters”, In HPDC’14: Proceedings of the 14th IEEE International

Conference on High-Performance Distributed Computing, Research Triangle Park,

North Carolina, IEEE Computer Society, Los Alamitos, CA, USA, 2005.

[70] J. Basney, T. Fleury and J. Gaynor, "CILogon: A Federated X.509 Certification

Authority for CyberInfrastructure Logon", Concurrency and Computation: Practice and

Experience, Volume 26, Issue 13, pp. 2225-2239, September 2014.

[71] A. Zarochentsev, A. Kiryanov, A. Klimentov, D. Krasnopevtsev, P. Hristov, “Federated

data storage and management infrastructure”, In Journal of Physics: Conference Series,

Vol. 762, No. 1, p. 012016, IOP Publishing, 2016.

[72] R. R. Baturin, “Identity Federation and Its Importance for NASA's Future: The

SharePoint Extranet Pilot at Kennedy Space Center (KSC)”, University of

Massachusetts, Amherst, MA 01002, 2013.

242

[73] M. Mollamotalebi, R. Maghami, and A. S. Ismail, Grid and Cloud Computing

Simulation Tools. International Journal of Networks and Communications, vol. 3, no.

2, pp. 45-52, 2013.

[74] L. Galli, E. Baracchini, S. Bettarini, F. Bosi, E. Cavallaro, S. Dussoni, M. Minuti, F.

Morsani, D. Nicolo, G. Signorelli, F. Tenchini, M. Venturini and J. Walsh, "A Silicon-

Based Cosmic Ray Telescope as an External Tracker to Measure Detector

Performance", IEEE Transactions on Nuclear Science, vol. 62, no. 1, pp. 395-402,

2015.

[75] W. R. Peter, P. Andreas, A. Ali, C. Bi, R. B. Anthony, H. Cole, K. B. Stephen,...and , R.

K. Green, "The RCSB protein data bank: integrative view of protein, gene and 3D

structural information", Nucleic Acids Research, Vol. 45, Issue D1, , pp. D271-D281, 4

January 2017.

[76] C. Grandi, D. Bonacorsi, D. Colling, I. Fisk and M. Girone, “CMS computing model

evolution”, In Journal of Physics: Conference Series Vol. 513, No. 3, p. 032039, IOP

Publishing, 2014.

[77] L. Cinquini, D. Crichton, C. Mattmann, J. Harney, G. Shipman, F. Wang,... and Z.

Pobre, "The Earth System Grid Federation: An open infrastructure for access to

distributed geospatial data," E-Science (e-Science), 2012 IEEE 8th International

Conference on, vol 1, no. 10, pp. 8-12 Oct., 2012..

[78] C. M. Wang, H. M. Chen, C. C. Hsu and C. C. Huang, “Fedmi: A federation

middleware for integrating heterogeneous data grids”, In Parallel and Distributed

Processing with Applications (ISPA), 2011 IEEE 9th International Symposium on, pp.

127-134, 2011.

[79] Y. Murakami, M. Tanaka, D. Lin and T. Ishida, "Service Grid Federation Architecture

for Heterogeneous Domains" 2012 IEEE Ninth International Conference on Services

Computing, Honolulu, HI, pp. 539-546, 2012.

[80] M. Tang, B. Lee, C. Yeo and X. Tang, "Dynamic replication algorithms for the multi-

tier Data Grid",Future Generation Computer Systems, vol. 21, no. 5, pp. 775-790, 2005.

[81] D. Bonacorsi and T. Wildish, "Challenging data management in CMS computing with

network-aware systems", 2013 IEEE Nuclear Science Symposium and Medical Imaging

Conference (2013 NSS/MIC), Seoul, pp. 1-6, 2013.

[82] S. Figueira and T. Trieu, “Data replication and the storage capacity of data grids”, In

International Conference on High-Performance Computing for Computational Science

pp. 567-575, Springer, Berlin, Heidelberg, 2008.

[83] H. Zhong, Z. Zhang, and X. Zhang, "A Dynamic Replica Management Strategy Based

on Data Grid", in Proceedings of 2010 Ninth International Conference on Grid and

Cloud Computing, 2010, pp. 18-23, 2010.

[84] K. Sashi and A. Selvadoss Thanamani, "Dynamic Replica Management for Data Grid",

International Journal of Engineering and Technology, vol. 2, no. 4, pp. 329-333, 2010.

[85] F. Berman, G. Fox, and T. Hey, The Grid: Past, Present, Future, Grid Computing:

Making the Global Infrastructure a Reality. London, UK: Wiley Press, 2003.

[86] D. Nukarapu, B. Tang, L. Wang and S. Lu, "Data Replication in Data Intensive

Scientific Applications with Performance Guarantee "Parallel and Distributed Systems,

IEEE Transactions on, vol. 22, no. 8, pp. 1299,1306, Aug. 2011.

243

[87] S. M. Park, J. H. Kim, Y. B. Ko, and W. S. Yoon, “Dynamic data grid replication

strategy based on Internet hierarchy”, In International Conference on Grid and

Cooperative Computing pp. 838-846. Springer, Berlin, Heidelberg, December 2003.

[88] J. Mo, “Performance Modeling of Communication Networks with Markov Chains”,

Morgan & Claypool Publishers, 2010.

[89] C. T. Yang, C. P. Fu, and C. J. Huang, "A dynamic file replication strategy in data

grids," in TENCON 2007-2007 IEEE Region 10 Conference, pp. 1-5, 2007.

[90] Y. Mansouri, S. T. Azad and A. Chamkori, “Minimizing cost of K-replica in

hierarchical data grid environment”, In Advanced Information Networking and

Applications (AINA), 2014 IEEE 28th International Conference on pp. 1073-1080,

IEEE, May 2014.

[91] M. Bsoul, A. Al-Khasawneh, Y. Kilani and I. Obeidat, "A threshold-based dynamic

data replication strategy", The Journal of Supercomputing, vol. 60, no. 3, pp. 301-310,

2010.

[92] M. K. Madi and S. Hassan, “Dynamic replication algorithm in Data Grid: a survey”, In

International conference on network applications, protocols, and services, November

2008.

[93] S. Naseera and K. V. M. Murthy, “Agent-Based Replica Placement in a Data Grid

Environment", in Proceedings of First International Conference on Computational

Intelligence, Communication Systems and Networks. CICSYN'09, pp. 426-430, 2009.

[94] M. Shorfuzzaman, P. Graham and R. Eskicioglu, “QoS-aware distributed replica

placement in hierarchical data grids”, In Advanced Information Networking and

Applications (AINA), 2011 IEEE International Conference on pp. 291-299. IEEE,

March 2011.

[95] Z. Challal and T. Bouabana-Tebibel, "A priori replica placement strategy in data grid",

in Proceedings of 2010 International Conference on Machine and Web Intelligence

(ICMWI), pp. 402-406, 2010.

[96] J. D. Herbsleb, A. Mockus and J. A. Roberts, “Collaboration in Software Engineering

Projects: A Theory of Coordination”, In In Proceedings of the International Conference

on Information Systems (ICIS’06), 2006.

[97] M. Cataldo, A. Mockus, J. Roberts and J. Herbsleb, "Software Dependencies, Work

Dependencies, and Their Impact on Failures", IEEE Transactions on Software

Engineering, vol. 35, no. 6, pp. 864-878, 2009.

[98] F. Magoules, J. Pan, K. A. Tan, A. Kumar and A. Kumar, “Introduction to Grid

Computing”, London UK CRC Press, Taylor and Francis Group, pp. 10-14, 2010.

[99] C. Hamdeni, T. Hamrouni and F. B. Charrada, “New evaluation criterion of file replicas

placement for replication strategies in data grids”, In P2P, Parallel, Grid, Cloud, and

Internet Computing (3PGCIC), 2014 Ninth International Conference on pp. 1-8. IEEE.,

2014

[100] Z. Mohamad, F. Ahmad, A. N. M. Rose, F. S. Mohamad and M. M. Deris,

“Implementation of Sub-Grid-Federation Model for Performance Improvement in

Federated Data Grid”, Malaysian Journal of Applied Sciences, vol. 1, no. 1, pp. 55-67,

2016.

244

[101] A. Chamkoori, F. Heidari and N. Parhizgar, “Cost Optimisation of Replicas in Tree

Network of Data Grid with QoS and Bandwidth Constraints”, International Journal of

Advanced Computer Science and Applications(IJACSA), vol. 8, no. 6, 2017.

[102] K. Raganathan, A. Lamnitchi, and I. Foster, “Improving Data Availability through

Model-Driven Replication for Large Peer-to-Peer Communities”, In: Proceedings of

Global and Peer-to-Peer Computing on Large-Scale Distributed Systems Workshop,

Berlin, Germany, 2002.

[103] A. Abdullah, M. Othman, H. Ibrahim, M. N. Suleiman, and A. T. Othman,

“Decentralized replication strategies for P2P based scientific data grid”, International

Symposium on Information Technology (TSim’08), Vol. 3, pp.1-8, 2008.

[104] F. Xhafa, V. Kolici, A. Potlog, E. Spaho, L. Barolli, and M. Takizawa, “Data

replication in P2P collaborative systems”, Proceedings of the 7th International

Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), pp. (49-

57), 2012.

[105] M. Gueye, I. Sarr and S. Ndiaye, “Database replication in large-scale systems:

optimizing the number of replicas”, In Proceedings of the ACM 2009 EDBT/ICDT

Workshops (EDBT/ICDT 2009), New York, NY, USA, 3-9.

DOI=http://dx.doi.org/10.1145/1698790.169879, 2009.

[106] U. Tos, R. Mokadem, A. Hameurlain, T. Ayav and S. Bora, "Dynamic replication

strategies in data grid systems: a survey", The Journal of Supercomputing, vol. 71, no.

11, pp. 4116-4140, 2015.

[107] Q. Rasool, L. Jianzhong, G. S. Oreku, Z. Shuo, and Y. Donghua, "A load balancing

replica placement strategy in Data Grid", in Proceedings of Third International

Conference on Digital Information Management, ICDIM, London, UK, pp. 751-756,

2008.

[108] C. T. Yang, C. J. Huang, and T. C. Hsiao, "A Data Grid File Replication Maintenance

Strategy Using Bayesian Networks," in Intelligent Systems Design and Applications,

2008. ISDA'08, 2008.

[109] F. B. Megino, M. Cinquilli, D. Giordano, E. Karavakis, , M. N. GironeMagini and D.

Spiga, “Implementing data placement strategies for the CMS experiment based on a

popularity model”, In Journal of Physics: Conference Series, Vol. 396, No. 3, p.

032047. IOP Publishing, 2012.

[110] K. Rajaretnam, M. Rajkumar and R. Venkatesan, “RPLB: A Replica Placement

Algorithm in Data Grid with Load Balancing”, International Arab Journal of

Information Technology (IAJIT), vol. 13, no. 6, 2016.

[111] A. Sulistio, C. S. Yeo and R. Buyya, “A taxonomy of computer‐based simulations and

its mapping to parallel and distributed systems simulation tools”, Software: Practice

and Experience, vol. 34, no. 7, pp. 653-673, 2004.

[112] M. Mollamotalebi, R. Maghami and A. S. Ismail, “Grid and Cloud Computing

Simulation Tools”, International Journal of Networks and Communications, vol. 3, no.

2, pp. 45-52, 2013.

[113] C. L. Dumitrescu and I. Foster, “GangSim: a simulator for grid scheduling studies”, In

Proceedings of the Fifth IEEE International Symposium on Cluster Computing and the

Grid (CCGrid'05), Volume 02 (CCGRID '05), IEEE Computer Society, Washington,

DC, USA, pp. 1151-1158, 2005.

245

[114] R. Buyya, R. Ranjan, J. Broberg and M. Dias de Assuncao, “Gridsim: A grid simulation

toolkit for resource modelling and application scheduling for parallel and distributed

computing”, 2011.

[115] S. K. Patel, A. K. Sharma and G. Gupta, “State of Simulators in Computational Grid

System”, International Journal of Computer Applications, vol. 72, no. 16, 2013.

[116] S. A. Monsalve, F. G. Carballeira and A. C. Mateos, "Analyzing the performance of

volunteer computing for data intensive applications", 2016 International Conference on

High Performance Computing & Simulation (HPCS), Innsbruck, , pp. 597-604, 2016.

[117] D. H. Manjaiah and A. H. Guroob, "Triple integration optimisation techniques in data

grid environment using OptorSim simulator", 2017 International Conference on Data

Management, Analytics and Innovation (ICDMAI), Pune, pp. 138-144, 2017.

[118] F. Jolfaei and A. T. Haghighat, "The impact of bandwidth and storage space on job

scheduling and data replication strategies in data grids", In Computing technology and

information management (ICCM), 2012 8th international conference on, vol. 1, pp.

283-288, IEEE, 2012.

[119] R. L. Anikode and B. Tang, “Integrating Scheduling and Replication in Data Grids with

Performance Guarantee”, IEEE Globecom 2011 proceedings, 2011.

[120] S. M. Abbasi and M. Noorimehr, “A New Dynamic Data Replication Algorithm to

improve execution time in Data Grid”, International Journal of Computer Science and

Information Security, vol. 14, no. 6, pp. 185, 2016.

[121] K. Eng, A. Muhammed, M. A. Mohamed and S. Hasan, "Incorporating the Range-

Based method into GridSim for modeling task and resource heterogeneity”, IEEE

Access vol. 5, pp. 19457-19462, 2017.

[122] L.T.M. Blessing and A. Chakrabarti, DRM: a design research methodology, Springer

Verlag, Heidelberg, (2009).

[123] R. K. Jain, “Art of Computer Systems Performance Analysis: Techniques for

Experimental Design, Measurements, Simulation and Modeling”, John Wiley, 2015.

[124] A. Habbal, (2014), “TCP Sintok: Transmission Control Protocol with Delay-based Loss

Detection and Contention Avoidance Mechanisms for Mobile Ad hoc Networks”, Ph.D.

Thesis, School of Computing, Universiti Utara Malaysia, 2014.

[125] S. Vazhkudai, S. Tuecke, and I. Foster, "Replica selection in the Globus Data Grid", in

Proceedings of International Workshop on Data Models and Databases on Clusters and

the Grid (DataGrid 2001), pp. 106-113.

[126] M. Guizani, A. Rayes, B. Khan, and A. Al-Fuqaha, “Network Modeling and

Simulation: A Practical Perspective”, Wiley-Interscience, 2010.

[127] R. G. Sargent, “Verification and validation of simulation models”, Journal of

Simulation, vol. 7, no. 1, pp. 12-24, 2013.

[128] J. Y. Le Boudec, “Performance Evaluation of Computer and Communication Systems”,

No. LCA-BOOK-2010-001. EPFL Press, 2010.

[129] M. R. K Grace, S. S. Priya and S Surya, “A Survey on Grid Simulators”, International

Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN,

Vol. 2, No. 6, pp. 2249-9555, December 2012.

246

[130] H. Cordier, C. L’Orphelin, S. Reynaud, O. Lequeux, S. Loikkanen and P. Veyre, “From

EGEE Operations Portal towards EGI Operations Portal”, In Data Driven e-Science pp.

129-140, Springer, New York, NY, 2011.

[131] C. Mairi and M. Nicholson, "File management for HEP data grids", Ph.D. thesis,

University of Glasgow, 2006.

[132] M. Tang, B. S. Lee, X. Tang and C. K. Yeo, “The impact of data replication on job

scheduling performance in the Data Grid”, Future Generation Computer Systems, vol.

22, no. 3, pp. 254-268, 2006.

[133] F. Gagliardi, B. Jones, F. Grey, M. E. Bégin, and M. Heikkurinen, "Building an

infrastructure for scientific Grid computing: status and goals of the EGEE project,"

Philosophical Transactions of the Royal Society A: Mathematical, Physical and

Engineering Sciences, vol. 363, pp. 1729, 2005.

[134] G. Gai-Mei and B. Shang-Wang, “Design and Simulation of Dynamic Replication

Strategy for the Data Grid”, In Industrial Control and Electronics Engineering

(ICICEE), 2012 International Conference on pp. 901-903, 2012.

[135] N. Sadashiv and S. D. Kumar, “Cluster, grid and cloud computing: A detailed

comparison”, In Computer Science & Education (ICCSE), 2011 6th International

Conference on (pp. 477-482), IEEE, 2011.

[136] G. Mathieu, and J. Casson, GOCDB4, “A New Architecture for the European Grid

Infrastructure”, In Data Driven e-Science, pp. 163-174, Springer, New York, NY, 2011.

[137] R. Schollmeier, “A definition of peer-to-peer networking for the classification of peer-

to-peer architectures and applications”, In Peer-to-Peer Computing, 2001. Proceedings,

pp. 101-102, August 2001.

[138] B. Schroeder and G. A. Gibson, “The computer failure data repository (CFDR)”, In

Workshop on Reliability Analysis of System Failure Data (RAF'07), MSR Cambridge,

UK, March 2007.

[139] Y. Yusof, “Replication strategy based on data relationship in grid computing”, In

Proceedings of the 2nd International Conference on Advanced Information

Technologies and Applications, Dubai, UAE, pp. 379-386, 2013.

[140] W. H. Bell, D. G. Cameron, A. P. Millar, L. Capozza, K. Stockinger, and F. Zini,

"Optorsim: A grid simulator for studying dynamic data replication strategies",

International Journal of High-Performance Computing Applications, vol. 17, pp. 403-

416, 2003.

[141] M. Teng and L. Junzhou, "A prediction-based and cost-based replica replacement

algorithm research and simulation", in Proceedings of 19th International Conference on

Advanced Information Networking and Applications, (AINA 2005), pp. 935-940, 2005.

[142] K. Ranganathan and I. Foster, "Identifying Dynamic Replication Strategies for a High-

Performance Data Grid", International Grid Computing Workshop, pp. 75-86, 2001.

[143] P. R. Katre and A. Thakare, "A survey on shortest path algorithm for road network in

emergency services", 2017 2nd International Conference for Convergence in

Technology (I2CT), Mumbai, 2017, pp. 393-396, 2017.

[144] S. Palúch and T. Majer, "Effective and fast implementation of k-shortest paths

algorithms", 2017 18th International Carpathian Control Conference (ICCC), Sinaia, ,

pp. 284-289, 2017.

247

[145] "Calculate node availability", Solarwinds.com. [Online]. Available:

http://www.solarwinds.com/documentation/en/flarehelp/sam/content/core-calculating-

node-availability-sw1184.htm. [Accessed: 20- Feb- 2017].

[146] I. Jurdana, “AVAILABILITY MODEL OF COMMUNICATION NETWORKS IN

CONNECTING SHIP SYSTEMS USING OPTICAL FIBER TECHNOLOGY”,

Shipbuilding: Theory and Practice of Naval Architecture and Naval Techniques, Vol.

65 No. 3 September 2014.

[147] I. B. Boneva, A. Rensink, M. E. Kurban and J. Bauer, “Graph abstraction and abstract

graph transformation (No. TR-CTI)”, Centre for Telematics and Information

Technology, University of Twente, 2007.

248

Appendix A: Files Access History Sample Workload Data

 Access Intervals (mins)

1:00-

1:30

1:30-

2:00
2:00-

2:30
2:30-

3:00
3:00-

3:30
3:30-

4:00
4:00-

4:30
4:30-

5:00

File_ID Number of Access

1 200 150 120 100 200 150 120 100

2 170 200 240 150 170 200 240 150

3 150 130 200 300 150 130 200 300

4 140 180 210 160 140 180 210 160

5 150 190 170 140 150 90 170 140

6 200 160 140 110 200 160 140 110

7 200 170 150 240 200 70 150 240

8 150 130 200 300 150 130 200 300

9 140 180 210 160 140 180 210 160

10 200 160 140 110 200 160 140 110

11 140 180 210 160 140 180 210 160

12 200 120 150 100 200 120 150 100

13 130 150 300 200 130 150 300 200

14 200 170 150 240 200 170 150 240

15 200 150 120 100 200 150 120 100

16 140 180 210 160 140 180 210 160

17 150 190 170 140 150 190 170 140

18 200 160 140 110 200 160 140 110

19 200 170 150 240 200 170 150 240

20 150 130 20 300 150 130 200 300

21 140 180 210 160 140 180 210 160

22 170 200 240 150 170 200 240 150

23 150 130 200 300 150 130 200 300

24 140 180 210 160 140 180 210 160

25 150 190 170 140 150 190 170 140

26 200 160 140 110 200 160 140 110

27 140 180 210 160 140 80 210 160

28 200 120 150 100 200 120 150 100

29 130 150 300 200 130 150 300 200

30 200 170 150 240 200 170 150 240

31 200 150 120 100 200 150 120 100

32 140 180 50 160 140 180 210 160

33 150 190 170 140 150 190 170 140

34 200 160 140 110 200 160 140 110

35 200 170 150 240 30 170 150 240

36 150 130 200 300 150 130 200 300

37 140 180 210 160 140 180 210 160

38 170 200 240 150 170 200 240 150

39 150 130 200 300 150 130 200 300

40 140 180 210 160 140 180 210 160

41 150 190 170 140 150 190 170 140

42 200 170 150 90 200 170 150 240

43 150 130 200 30 150 130 200 30

44 140 180 210 160 140 180 210 160

45 170 200 240 150 170 200 240 150

46 150 130 200 50 150 130 200 30

47 140 180 210 160 140 180 210 160

48 150 190 170 140 150 190 170 140

49 200 150 120 100 200 150 120 100

50 10 200 24 150 17 20 240 15

249

Appendix B: Site Connectivity Data from Gnutella file sharing Network

(2002)

Directed graph (each unordered pair of nodes is saved once): #p2p-#Gnutella04.txt

#Directed Gnutella P2P network from August 4 2002

#Nodes: 10876 Edges: 39994
#From_

NodeId

To_

NodeId

#From_

NodeId

To_

NodeId

#From_

NodeId

To_

NodeId

#From_

NodeId

To_

NodeId

0 1 83 223 89 274 94 306

0 2 83 224 90 89 94 307

0 3 83 225 90 92 94 308

0 4 83 226 90 223 96 333

0 5 83 227 90 259 96 334

0 6 83 228 90 260 96 335

0 7 83 229 90 261 96 336

0 8 83 230 90 262 96 337

0 9 83 231 90 263 96 338

0 10 84 408 90 264 96 339

1 2 84 820 90 265 96 340

1 11 84 2619 91 249 96 341

1 12 84 2952 91 250 96 342

1 13 84 4166 91 251 97 27

1 14 84 4657 91 252 97 142

1 15 84 4754 91 253 97 502

1 16 84 5031 91 254 97 742

1 17 84 6337 91 255 97 871

1 18 84 6338 91 256 97 872

1 19 87 208 91 257 97 873

3 20 87 241 91 258 97 874

3 21 87 242 92 164 97 875

3 22 87 243 92 275 97 876

3 23 87 244 92 276 97 877

3 24 87 245 92 277 97 878

3 25 87 246 92 278 97 879

3 26 87 247 92 279 97 880

3 27 87 248 92 280 97 881

3 28 88 84 92 281 97 882

3 29 88 85 92 282 97 883

8 30 88 86 92 283 97 884

8 31 88 292 93 107 97 885

8 32 88 293 93 284 99 4

8 33 88 294 93 285 99 103

8 34 88 295 93 286 99 105

8 35 88 296 93 287 99 320

8 36 88 297 93 288 99 321

8 37 88 298 93 289 99 322

8 38 89 148 93 290 99 323

8 39 89 266 93 291 99 324

10 41 89 267 94 299 99 325

10 136 89 268 94 300 99 326

250

#From_

NodeId

To_

NodeId

#From_

NodeId

To_

NodeId

#From_

NodeId

To_

NodeId

#From_

NodeId

To_

NodeId

10 137 89 269 94 301 99 327

10 138 89 270 94 302 99 328

10 139 89 271 94 303 99 329

10 140 89 272 94 304 99 330

10 141 89 273 94 305 99 331

99 332 112 359 120 442 125 478

101 139 113 86 120 443 125 479

101 313 113 360 120 444 126 244

101 314 113 361 120 445 126 957

101 315 113 362 121 480 126 958

101 316 113 363 121 481 127 1475

101 317 113 364 121 482 127 2364

101 318 113 365 121 483 127 2799

101 319 113 366 121 484 127 3641

106 166 113 367 121 485 127 3681

106 171 115 395 121 486 127 3682

106 343 115 396 121 487 127 3683

106 344 115 397 121 488 127 3684

106 345 115 398 121 489 127 3685

106 346 115 399 122 149 127 3686

106 347 115 400 122 415 128 18

106 348 115 401 122 416 128 429

106 349 115 402 122 417 128 430

107 2981 115 403 122 418 128 431

107 3307 115 404 123 405 128 432

107 6479 116 512 123 406 128 433

107 7381 118 368 123 407 128 434

107 8612 118 369 123 408 128 435

107 8842 118 370 123 409 128 436

107 8843 118 371 123 410 128 437

107 8844 118 372 123 411 129 2518

107 8845 118 373 123 412 129 3309

108 350 118 374 123 413 129 3310

109 385 118 375 123 414 129 3311

109 386 118 376 124 419 129 3312

109 387 118 377 124 420 129 3313

109 388 119 102 124 421 129 3314

109 389 119 103 124 422 129 3315

109 390 119 322 124 423 129 3316

109 391 119 378 124 424 129 3317

109 392 119 379 124 425 130 446

109 393 119 380 124 426 130 447

109 394 119 381 124 427 130 448

111 102 119 382 124 428 130 449

112 329 119 383 125 470 130 450

112 351 119 384 125 471 130 451

112 352 120 97 125 472 130 452

112 353 120 408 125 473 130 453

112 354 120 438 125 474 130 454

112 355 120 439 125 475 130 455

112 356 120 440 125 476 131 140

251

#From_

NodeId

To_

NodeId

#From_

NodeId

To_

NodeId

#From_

NodeId

To_

NodeId

#From_

NodeId

To_

NodeId

112 358 120 441 125 477 131 328

131 456 141 504 153 549 165 594

131 457 141 505 153 550 165 595

131 458 141 506 153 551 165 596

131 459 141 507 153 552 53 548

131 460 141 508 153 553 165 597

131 461 141 509 153 554 165 598

131 462 141 510 153 555 166 205

131 463 141 511 154 167 166 599

132 3 144 260 154 580 166 600

132 52 144 377 154 581 166 601

132 219 144 513 154 582 166 602

132 222 144 514 154 583 166 603

132 464 144 515 154 584 166 604

132 465 144 516 154 585 166 605

132 466 144 517 154 586 166 606

132 467 144 518 154 587 166 607

132 468 144 519 154 588 167 608

132 469 144 520 157 155 167 609

133 570 147 402 157 556 167 610

133 1210 147 521 157 557 167 611

133 1755 147 522 157 558 167 612

133 2002 147 523 157 559 167 613

133 2773 147 524 157 560 167 614

133 3680 147 525 157 561 167 615

133 4229 147 526 157 562 167 616

133 4230 147 527 157 563 167 617

133 4231 147 528 157 564 168 155

133 4232 147 529 158 346 168 157

136 730 148 40 158 495 168 540

136 1116 148 121 158 505 168 618

136 1198 148 530 158 565 168 619

136 1454 148 531 158 566 168 620

136 4191 148 532 158 567 168 621

136 4694 148 533 158 568 168 622

136 5062 148 534 158 569 168 623

136 5626 148 535 162 570 168 624

136 8253 148 536 162 571 170 78

136 8958 148 537 162 572 170 715

137 289 150 538 162 573 170 716

137 493 150 539 162 574 170 717

137 494 150 540 162 575 170 718

137 495 150 541 162 576 170 719

137 496 150 542 162 577 170 720

137 497 150 543 162 578 170 721

137 498 150 544 162 579 170 722

137 499 150 545 165 589 170 723

137 500 150 546 165 590 171 543

137 501 150 547 165 591 171 600

141 502 153 197 165 592 171 616

141 503 153 473 165 593 171 625

252

#From_

NodeId

To_

NodeId

#From_

NodeId

To_

NodeId

#From_

NodeId

To_

NodeId

#From_

NodeId

To_

NodeId

171 626 184 666 194 9 206 328

171 627 184 667 194 290 206 641

171 628 184 668 194 351 206 753

171 629 184 669 194 581 206 754

171 630 184 670 194 836 206 755

171 631 184 671 194 4391 206 756

175 92 184 672 194 4596 206 757

175 190 184 673 194 4609 206 758

175 421 185 3578 194 4870 206 759

175 632 185 8662 194 6699 206 760

175 633 187 167 195 278 207 743

175 634 187 407 195 399 207 744

175 635 187 568 195 605 207 745

175 636 187 693 195 701 207 746

175 637 187 694 195 702 207 747

175 638 187 695 195 703 207 748

176 180 187 696 195 704 207 749

176 561 187 697 195 705 207 750

176 633 187 698 195 706 207 751

176 639 187 699 195 707 207 752

176 640 189 674 198 165 213 172

176 641 189 675 198 178 213 348

176 642 189 676 198 675 213 410

176 643 189 677 198 708 213 761

176 644 189 678 198 709 213 762

176 645 189 679 198 710 213 763

177 4 189 680 198 711 213 764

180 304 189 681 198 712 213 765

180 639 189 682 198 713 213 766

180 646 189 683 198 714 213 767

180 647 190 1091 200 724 218 69

180 648 190 1579 200 725 218 564

180 649 190 2793 200 726 218 768

180 650 190 3004 200 727 218 769

180 651 190 4496 200 728 218 770

180 652 190 4579 200 729 218 771

180 653 190 5173 200 730 218 772

181 359 190 5355 200 731 218 773

181 655 190 9273 200 732 218 774

181 656 190 9357 200 733 220 108

181 657 192 684 201 359 220 775

181 658 192 685 201 734 220 776

181 659 192 686 201 735 220 777

181 660 192 687 201 736 220 778

181 661 192 688 201 737 220 779

181 662 192 689 201 738 220 780

181 663 192 690 201 739 220 781

183 664 192 691 201 740 220 782

184 564 192 692 201 741 220 783

184 665 193 700 201 742 221 784

253

Appendix C: Site Availability Sample Workload Data

Site status record for availability workload data extracted from Failure Trace

Archives (FTA, 2007)

#event

_id

compone

nt_id

node

_id

platform

_id

Node

_name

event

_type
start_time stop_time

event_end

_reason

0 0 927 10 "tg-login1" 1 1.15E+09 1.17E+09 NULL

0 0 928 10 "tg-login2" 1 1.15E+09 1.17E+09 NULL

0 0 929 10 "tg-login3" 1 1.15E+09 1.17E+09 NULL

0 0 930 10 "tg-login4" 1 1.15E+09 1.17E+09 NULL

0 0 739 10 "tg-c740" 1 1.15E+09 1.17E+09 NULL

0 0 748 10 "tg-c749" 1 1.15E+09 1.17E+09 NULL

0 0 962 10 "tg-s148" 1 1.15E+09 1.17E+09 NULL

0 0 234 10 "tg-c235" 1 1.15E+09 1.17E+09 NULL

1 0 234 10 "tg-c235" 0 1.17E+09 1.17E+09 NULL

2 0 234 10 "tg-c235" 1 1.17E+09 1.17E+09 NULL

0 0 233 10 "tg-c234" 1 1.15E+09 1.17E+09 NULL

1 0 233 10 "tg-c234" 0 1.17E+09 1.17E+09 NULL

2 0 233 10 "tg-c234" 1 1.17E+09 1.17E+09 NULL

0 0 236 10 "tg-c237" 1 1.15E+09 1.17E+09 NULL

1 0 236 10 "tg-c237" 0 1.17E+09 1.17E+09 NULL

2 0 236 10 "tg-c237" 1 1.17E+09 1.17E+09 NULL

0 0 235 10 "tg-c236" 1 1.15E+09 1.17E+09 NULL

1 0 235 10 "tg-c236" 0 1.17E+09 1.17E+09 NULL

2 0 235 10 "tg-c236" 1 1.17E+09 1.17E+09 NULL

0 0 230 10 "tg-c231" 1 1.15E+09 1.17E+09 NULL

1 0 230 10 "tg-c231" 0 1.17E+09 1.17E+09 NULL

2 0 230 10 "tg-c231" 1 1.17E+09 1.17E+09 NULL

0 0 229 10 "tg-c230" 1 1.15E+09 1.17E+09 NULL

1 0 229 10 "tg-c230" 0 1.17E+09 1.17E+09 NULL

2 0 229 10 "tg-c230" 1 1.17E+09 1.17E+09 NULL

0 0 232 10 "tg-c233" 1 1.15E+09 1.17E+09 NULL

1 0 232 10 "tg-c233" 0 1.17E+09 1.17E+09 NULL

2 0 232 10 "tg-c233" 1 1.17E+09 1.17E+09 NULL

0 0 231 10 "tg-c232" 1 1.15E+09 1.17E+09 NULL

1 0 231 10 "tg-c232" 0 1.17E+09 1.17E+09 NULL

2 0 231 10 "tg-c232" 1 1.17E+09 1.17E+09 NULL

0 0 310 10 "tg-c311" 1 1.15E+09 1.17E+09 NULL

0 0 238 10 "tg-c239" 1 1.15E+09 1.17E+09 NULL

1 0 238 10 "tg-c239" 0 1.17E+09 1.17E+09 NULL

2 0 238 10 "tg-c239" 1 1.17E+09 1.17E+09 NULL

0 0 237 10 "tg-c238" 1 1.15E+09 1.17E+09 NULL

1 0 237 10 "tg-c238" 0 1.17E+09 1.17E+09 NULL

2 0 237 10 "tg-c238" 1 1.17E+09 1.17E+09 NULL

0 0 790 10 "tg-c791" 1 1.15E+09 1.17E+09 NULL

254

#event

_id

component

_id

node

_id

platform

_id

Node

_name

event

_type start_time stop_time

event_end

_reason

0 0 588 10 "tg-c589" 1 1.15E+09 1.16E+09 NULL

1 0 588 10 "tg-c589" 0 1.16E+09 1.16E+09 NULL

2 0 588 10 "tg-c589" 1 1.16E+09 1.17E+09 NULL

0 0 587 10 "tg-c588" 1 1.15E+09 1.17E+09 NULL

0 0 586 10 "tg-c587" 1 1.15E+09 1.17E+09 NULL

0 0 585 10 "tg-c586" 1 1.15E+09 1.16E+09 NULL

1 0 585 10 "tg-c586" 0 1.16E+09 1.16E+09 NULL

2 0 585 10 "tg-c586" 1 1.16E+09 1.17E+09 NULL

0 0 584 10 "tg-c585" 1 1.15E+09 1.17E+09 NULL

0 0 583 10 "tg-c584" 1 1.15E+09 1.17E+09 NULL

0 0 582 10 "tg-c583" 1 1.15E+09 1.16E+09 NULL

1 0 582 10 "tg-c583" 0 1.16E+09 1.16E+09 NULL

2 0 582 10 "tg-c583" 1 1.16E+09 1.17E+09 NULL

0 0 581 10 "tg-c582" 1 1.15E+09 1.17E+09 NULL

0 0 580 10 "tg-c581" 1 1.15E+09 1.17E+09 NULL

0 0 579 10 "tg-c580" 1 1.15E+09 1.17E+09 NULL

0 0 467 10 "tg-c468" 1 1.15E+09 1.17E+09 NULL

0 0 468 10 "tg-c469" 1 1.15E+09 1.17E+09 NULL

0 0 742 10 "tg-c743" 1 1.15E+09 1.16E+09 NULL

1 0 742 10 "tg-c743" 0 1.16E+09 1.16E+09 NULL

2 0 742 10 "tg-c743" 1 1.16E+09 1.17E+09 NULL

0 0 741 10 "tg-c742" 1 1.15E+09 1.16E+09 NULL

1 0 741 10 "tg-c742" 0 1.16E+09 1.16E+09 NULL

2 0 741 10 "tg-c742" 1 1.16E+09 1.17E+09 NULL

0 0 744 10 "tg-c745" 1 1.15E+09 1.17E+09 NULL

0 0 743 10 "tg-c744" 1 1.15E+09 1.17E+09 NULL

0 0 746 10 "tg-c747" 1 1.15E+09 1.17E+09 NULL

0 0 745 10 "tg-c746" 1 1.15E+09 1.17E+09 NULL

0 0 459 10 "tg-c460" 1 1.15E+09 1.17E+09 NULL

0 0 460 10 "tg-c461" 1 1.15E+09 1.15E+09 NULL

1 0 460 10 "tg-c461" 0 1.15E+09 1.15E+09 NULL

2 0 460 10 "tg-c461" 1 1.15E+09 1.17E+09 NULL

0 0 461 10 "tg-c462" 1 1.15E+09 1.17E+09 NULL

0 0 462 10 "tg-c463" 1 1.15E+09 1.17E+09 NULL

0 0 463 10 "tg-c464" 1 1.15E+09 1.17E+09 NULL

0 0 464 10 "tg-c465" 1 1.15E+09 1.17E+09 NULL

1 0 464 10 "tg-c465" 0 1.17E+09 1.17E+09 NULL

0 0 465 10 "tg-c466" 1 1.15E+09 1.17E+09 NULL

0 0 466 10 "tg-c467" 1 1.15E+09 1.16E+09 NULL

1 0 466 10 "tg-c467" 0 1.16E+09 1.16E+09 NULL

2 0 466 10 "tg-c467" 1 1.16E+09 1.17E+09 NULL

3 0 466 10 "tg-c467" 0 1.17E+09 1.17E+09 NULL

255

#event

_id

component

_id

node

_id

platform

_id

Node

_name

event

_type start_time stop_time

event_end

_reason

4 0 466 10 "tg-c467" 1 1.17E+09 1.17E+09 NULL

0 0 574 10 "tg-c575" 1 1.15E+09 1.15E+09 NULL

1 0 574 10 "tg-c575" 0 1.15E+09 1.15E+09 NULL

2 0 574 10 "tg-c575" 1 1.15E+09 1.17E+09 NULL

0 0 992 10 "tg-s178" 1 1.15E+09 1.17E+09 NULL

0 0 157 10 "tg-c158" 1 1.15E+09 1.15E+09 NULL

0 0 89 10 "tg-c090" 1 1.15E+09 1.17E+09 NULL

1 0 89 10 "tg-c090" 0 1.17E+09 1.17E+09 NULL

2 0 89 10 "tg-c090" 1 1.17E+09 1.17E+09 NULL

0 0 300 10 "tg-c301" 1 1.15E+09 1.17E+09 NULL

0 0 299 10 "tg-c300" 1 1.15E+09 1.17E+09 NULL

0 0 302 10 "tg-c303" 1 1.15E+09 1.17E+09 NULL

0 0 301 10 "tg-c302" 1 1.15E+09 1.17E+09 NULL

0 0 304 10 "tg-c305" 1 1.15E+09 1.16E+09 NULL

1 0 304 10 "tg-c305" 0 1.16E+09 1.16E+09 NULL

2 0 304 10 "tg-c305" 1 1.16E+09 1.17E+09 NULL

0 0 303 10 "tg-c304" 1 1.15E+09 1.17E+09 NULL

0 0 306 10 "tg-c307" 1 1.15E+09 1.17E+09 NULL

0 0 305 10 "tg-c306" 1 1.15E+09 1.17E+09 NULL

0 0 308 10 "tg-c309" 1 1.15E+09 1.17E+09 NULL

0 0 307 10 "tg-c308" 1 1.15E+09 1.17E+09 NULL

0 0 912 10 "tg-c909" 0 1.15E+09 1.15E+09 NULL

1 0 912 10 "tg-c909" 1 1.15E+09 1.17E+09 NULL

0 0 667 10 "tg-c668" 1 1.15E+09 1.17E+09 NULL

0 0 513 10 "tg-c514" 1 1.15E+09 1.15E+09 NULL

1 0 513 10 "tg-c514" 0 1.15E+09 1.15E+09 NULL

2 0 513 10 "tg-c514" 1 1.15E+09 1.17E+09 NULL

0 0 514 10 "tg-c515" 1 1.15E+09 1.15E+09 NULL

1 0 514 10 "tg-c515" 0 1.15E+09 1.15E+09 NULL

2 0 514 10 "tg-c515" 1 1.15E+09 1.17E+09 NULL

0 0 515 10 "tg-c516" 1 1.15E+09 1.17E+09 NULL

0 0 516 10 "tg-c517" 1 1.15E+09 1.17E+09 NULL

0 0 509 10 "tg-c510" 1 1.15E+09 1.17E+09 NULL

0 0 510 10 "tg-c511" 1 1.15E+09 1.17E+09 NULL

0 0 511 10 "tg-c512" 1 1.15E+09 1.17E+09 NULL

0 0 512 10 "tg-c513" 1 1.15E+09 1.17E+09 NULL

0 0 517 10 "tg-c518" 1 1.15E+09 1.15E+09 NULL

1 0 517 10 "tg-c518" 0 1.15E+09 1.16E+09 NULL

2 0 517 10 "tg-c518" 1 1.16E+09 1.17E+09 NULL

0 0 518 10 "tg-c519" 1 1.15E+09 1.17E+09 NULL

0 0 997 10 "tg-s183" 1 1.15E+09 1.17E+09 NULL

0 0 941 10 "tg-s047" 1 1.15E+09 1.17E+09 NULL

256

#event

_id

component

_id

node

_id

platform

_id

Node

_name

event

_type start_time stop_time

event_end

_reason

0 0 98 10 "tg-c099" 1 1.15E+09 1.17E+09 NULL

1 0 98 10 "tg-c099" 0 1.17E+09 1.17E+09 NULL

2 0 98 10 "tg-c099" 1 1.17E+09 1.17E+09 NULL

0 0 97 10 "tg-c098" 1 1.15E+09 1.17E+09 NULL

1 0 97 10 "tg-c098" 0 1.17E+09 1.17E+09 NULL

2 0 97 10 "tg-c098" 1 1.17E+09 1.17E+09 NULL

0 0 45 10 "tg-c046" 1 1.15E+09 1.16E+09 NULL

1 0 45 10 "tg-c046" 0 1.16E+09 1.17E+09 NULL

2 0 45 10 "tg-c046" 1 1.17E+09 1.17E+09 NULL

0 0 46 10 "tg-c047" 1 1.15E+09 1.15E+09 NULL

1 0 46 10 "tg-c047" 0 1.15E+09 1.15E+09 NULL

2 0 46 10 "tg-c047" 1 1.15E+09 1.16E+09 NULL

3 0 46 10 "tg-c047" 0 1.16E+09 1.17E+09 NULL

4 0 46 10 "tg-c047" 1 1.17E+09 1.17E+09 NULL

0 0 43 10 "tg-c044" 1 1.15E+09 1.16E+09 NULL

1 0 43 10 "tg-c044" 0 1.16E+09 1.17E+09 NULL

2 0 43 10 "tg-c044" 1 1.17E+09 1.17E+09 NULL

0 0 44 10 "tg-c045" 1 1.15E+09 1.16E+09 NULL

1 0 44 10 "tg-c045" 0 1.16E+09 1.17E+09 NULL

2 0 44 10 "tg-c045" 1 1.17E+09 1.17E+09 NULL

0 0 41 10 "tg-c042" 1 1.15E+09 1.16E+09 NULL

1 0 41 10 "tg-c042" 0 1.16E+09 1.17E+09 NULL

2 0 41 10 "tg-c042" 1 1.17E+09 1.17E+09 NULL

0 0 42 10 "tg-c043" 1 1.15E+09 1.15E+09 NULL

1 0 42 10 "tg-c043" 0 1.15E+09 1.16E+09 NULL

2 0 42 10 "tg-c043" 1 1.16E+09 1.16E+09 NULL

3 0 42 10 "tg-c043" 0 1.16E+09 1.16E+09 NULL

4 0 42 10 "tg-c043" 1 1.16E+09 1.16E+09 NULL

5 0 42 10 "tg-c043" 0 1.16E+09 1.17E+09 NULL

6 0 42 10 "tg-c043" 1 1.17E+09 1.17E+09 NULL

0 0 39 10 "tg-c040" 1 1.15E+09 1.16E+09 NULL

1 0 39 10 "tg-c040" 0 1.16E+09 1.16E+09 NULL

2 0 39 10 "tg-c040" 1 1.16E+09 1.17E+09 NULL

0 0 40 10 "tg-c041" 1 1.15E+09 1.16E+09 NULL

1 0 40 10 "tg-c041" 0 1.16E+09 1.17E+09 NULL

2 0 40 10 "tg-c041" 1 1.17E+09 1.17E+09 NULL

0 0 124 10 "tg-c125" 1 1.15E+09 1.16E+09 NULL

1 0 124 10 "tg-c125" 0 1.16E+09 1.16E+09 NULL

2 0 124 10 "tg-c125" 1 1.16E+09 1.17E+09 NULL

0 0 123 10 "tg-c124" 1 1.15E+09 1.16E+09 NULL

1 0 123 10 "tg-c124" 0 1.16E+09 1.16E+09 NULL

2 0 123 10 "tg-c124" 1 1.16E+09 1.17E+09 NULL

0 0 126 10 "tg-c127" 1 1.15E+09 1.16E+09 NULL

	FRONT MATTER
	Copyright Page
	Title Page
	Certification
	Permission to Use
	Abstrak
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Appendices
	List of Abbreviations

	MAIN CHAPTER
	CHAPTER ONE
	INTRODUCTION
	1.1 Research Background
	1.2 Research Motivation
	1.3 Problem Statement
	1.4 Research Questions
	1.5 Research Objectives
	1.6 Significance of the Research
	1.7 Research Contributions
	1.8 Scope of the Research.
	1.9 Thesis Organisation

	CHAPTER TWO
	LITERATURE REVIEW
	2.1 Introduction
	2.2 Data Grids
	2.3 Data Grid Projects
	2.4 Data Grid Models
	2.5 Overview of Data Grid Federation Systems
	2.6 Data Grid Federation Scenarios
	2.6.1 The Peer-to-Peer or Napster Federation System
	2.6.2 The CMS Federation System
	2.6.3 The BIRN Federation System
	2.6.4 NASA Backup Federation System
	2.6.5 The BaBar Federation System
	2.6.6 The Earth System Grid Federation
	2.6.7 Data Grid Federation Middleware and Frameworks

	2.7 Data Replication in Data Grid Federation Systems
	2.7.1 Replica Management System and Replica Eviction
	2.7.2 Stages of Dynamic Replica Creation
	2.7.3 What Triggers Data Replication in a DGF Environment
	2.7.4 Replica Optimisation Process
	2.7.5 Availability of Data and Replica Sites
	2.7.6 The Concept of Replica Dependency
	2.7.7 Concept of Grid Jobs and Job Schedules

	2.8 Related Work on Data Replication
	2.8.1 Popularity Based Data Replication Mechanisms
	2.8.2 Availability Based Data Replication Mechanisms
	2.8.3 Replica Placement Mechanisms
	2.8.4 Replica Management Stage
	2.8.5 Replica Selection
	2.8.6 Replica Maintenance

	2.9 Data Grid Federation Simulation Tools
	2.9.1 Comparisons of Various Grid Simulation Tools
	2.9.2 The OptorSim Simulator

	2.10 The Existing Data Replication Mechanisms
	2.10.1 ELALW Data Replication Mechanism
	2.10.2 DRCM Data Replication Mechanism

	2.11 Chapter Summary

	CHAPTER THREE
	RESEARCH METHODOLOGY
	3.1 Introduction
	3.2 Research Design
	3.3 Research Clarification (RC)
	3.4 Descriptive Study-I (DS-I)
	3.4.1 An Overview of the Proposed DRCEM Mechanism
	3.4.1.1 Conceptual Model of the DRCEM Mechanism
	3.4.1.2 Framework for the DRCEM Mechanism

	3.5 Prescriptive Study (PS)
	3.5.1 The Procedure for Mechanism Validation
	3.5.2 Comparison with Manual Computations of the Validation Data

	3.6 Descriptive Study-II (DS-II)
	3.6.1 Procedure for Performance Evaluation
	3.6.1.1 Analytical Modeling
	3.6.1.2 Evaluation Using Testbed
	3.6.1.3 Evaluation Using Simulation

	3.6.2 The Simulation Environment
	3.6.2.1 The OptorSim Simulator and Simulation Parameters
	3.6.2.2 The Simulation Parameters used for Data Collection and Analysis
	3.6.2.3 The Simulation Topology
	3.6.2.4 Replication and Scheduling Mechanisms in OptorSim Simulator

	3.6.3 Performance Evaluation Metrics
	3.6.3.1 Job Completion Time
	3.6.3.2 Effective Network Usage
	3.6.3.3 Storage Element Usage
	3.6.3.4 Computing Element Usage (CE Usage)

	3.7 Chapter Summary

	CHAPTER FOUR
	THE SCHEMES IN DRCEM MECHANISM
	4.1 Introduction
	4.2 Design Objectives for the Proposed (DRCEM) Mechanism
	4.2.1 Access Latency (Tobs Times)
	4.2.2 Optimising Storage and Computing Element Usage
	4.2.3 Minimising Bandwidth Consumption

	4.3 Detailed Schemes Design for the Proposed (DRCEM) Mechanism
	4.3.1 The Dynamic Replica Evaluation and Creation Scheme
	4.3.1.1 Determining the Popularity of Data Using Access Frequencies
	4.3.1.2 Illustrations on How to Determine Access Frequencies
	4.3.1.3 Framework for Determining the Required Number of Files to Replicate
	4.3.1.4 Scenarios Used to Determine the Required Number of Files to Replicate
	4.3.1.5 Illustrations on How the Required Numbers of Files are Computed

	4.3.2 The Dynamic Replica Placement Scheme
	4.3.2.1 Determining the Replica Placement Cost (RPC)
	4.3.2.2 Calculating the File Transfer Time (FTT)
	4.3.2.3 Illustrations on RPC computations for Replica Placement.
	4.3.2.4 Determining Workloads for all Regional Sites
	4.3.2.5 Computing Site Distance Using Bandwidth Information
	4.3.2.6 Finding Shortest Paths Using an Iterative Deepening Depth-First Path-Finding Algorithm.
	4.3.2.7 Mathematical Framework for Replica Site Availability
	4.3.2.8 Framework for Determining Files Weights
	4.3.2.9 Framework for Determining Files Logical Dependencies
	4.3.2.10 Mathematical Framework for Determining File Value

	4.3.3 The Dynamic Replica Eviction Scheme
	4.3.4 The Complete Algorithm for the Proposed DRCEM Mechanism
	4.3.4.1 Explanations on the Unique Features of for Proposed DRCEM Mechanism

	4.4 DRCEM Data Replication Mechanism Implementation
	4.4.1 Diagramatic Representation of DRCEM Integration with OptorSim Simulator
	4.4.2 Diagramatic Representation of DRCEM Simulation Processes in OptorSim
	4.4.3 DRCEM Programming and Codes Integration in OptorSim Simulator

	4.5 Chapter Summary

	CHAPTER FIVE
	THE DRCEM PERFORMANCE EVALUATION ALONG WITH COMPARISON ON EXISTING MECHANISMS
	5.1 Introduction
	5.2 Comparison of DRCEM with ELALW and DRCM Mechanisms
	5.2.1 Analysis on Number of Jobs and Effects on Replications
	5.2.3 Analysis on the Effect of Number of Jobs on Jobs Times
	5.2.4 Analysis on the Effect of Number of Jobs on the Effective Network Usage
	5.2.5 Analysis on the Effect of Number of Jobs on Storage Element Usage
	5.2.6 Analysis on the Effect of Number of Jobs on Computing Element Usage

	5.3 Analysis on the Effects of File Dependencies on the Performance Metrics
	5.3.1 Effects of File Logical Dependencies on Jobs Completion Times
	5.3.2 Effects of File Logical Dependencies on Effective Network Usage
	5.3.3 Effects of File Logical Dependencies on Storage Element Usage
	5.3.4 Effects of File Dependencies on Computing Element Usage

	5.4 Effect of Site Availability on Replications
	5.5 Analysis on Indirect Logical Dependability
	5.6 Analysis on Access Frequencies and File Weights
	5.7 Analysis on Access Frequencies and File Values
	5.8 Chapter Summary

	CHAPTER SIX
	CONCLUSION AND FUTURE WORK
	6.1 Introduction
	6.2 Revisiting the Research Objectives
	6.2.1 An Enhanced Replica Evaluation and Creation Scheme
	6.2.2 An Enhanced Dynamic Replica Placement Scheme
	6.2.3 An Enhanced Dynamic Replica Eviction Scheme
	6.2.4 The DRCEM Mechanism
	6.2.5 Implementation of DRCEM in OptorSim Simulator

	6.3 Revisiting the Research Contributions
	6.4 Future Research Works

	REFERENCES
	APPENDIX

