
The copyright © of this thesis belongs to its rightful author and/or other copyright

owner. Copies can be accessed and downloaded for non-commercial or learning

purposes without any charge and permission. The thesis cannot be reproduced or

quoted as a whole without the permission from its rightful owner. No alteration or

changes in format is allowed without permission from its rightful owner.

USING RGB COLOUR COMBINATION IN
COLOURED QUICK RESPONSE (QR) CODE

ALGORITHM TO ENHANCE QR CODE
CAPACITY

 AZIZI BIN ABAS

DOCTOR OF PHILOSOPHY
UNIVERSITI UTARA MALAYSIA

2018

USING RGB COLOUR COMBINATION IN
COLOURED QUICK RESPONSE (QR) CODE

ALGORITHM TO ENHANCE
QR CODE CAPACITY

 AZIZI BIN ABAS

Thesis Submitted to
Awang Had Salleh Graduate School of Arts and Sciences

Universiti Utara Malaysia,
In Fulfillment of the Requirement for the Degree of Doctor Philosophy

i

Dissertation

ii

Permission to Use

In presenting this thesis in fulfilment of the requirements for a postgraduate degree

from Universiti Utara Malaysia, I agree that the Universiti Library may make it freely

available for inspection. I further agree that permission for the copying of this thesis

in any manner, in whole or in part, for scholarly purpose may be granted by my

supervisor(s) or, in their absence, by the Dean of Awang Had Salleh Graduate School

of Arts and Sciences. It is understood that any copying or publication or use of this

thesis or parts thereof for financial gain shall not be allowed without my written

permission. It is also understood that due recognition shall be given to me and to

Universiti Utara Malaysia for any scholarly use that may be made of any material from

my thesis.

Requests for permission to copy or to make other use of materials in this thesis, in

whole or in part, should be addressed to:

Dean of Awang Had Salleh Graduate School of Arts and Sciences

UUM College of Arts and Sciences

Universiti Utara Malaysia

06010 UUM Sintok

iii

Abstrak

Kod Respons Pantas (QR) ialah kod bar dua dimensi yang menyimpan aksara dan
boleh dibaca oleh mana-mana kamera telefon pintar. Kod QR mempunyai keupayaan
untuk mengekod pelbagai format data dan bahasa. Walau bagaimanapun, Kod QR
hitam dan putih yang sedia ada menyediakan penyimpanan data yang terhad.
Walaupun terdapat penyelidikan mengenai Kod QR berwarna untuk meningkatkan
kapasiti penyimpanan, keperluan untuk kapasiti data yang lebih besar oleh pengguna
terus meningkat. Oleh itu, tesis ini mencadangkan algoritma Kod QR berwarna yang
menggunakan kombinasi warna merah, hijau dan biru (RGB) untuk membolehkan
storan data yang lebih besar. Algoritma yang dicadangkan mengintegrasikan
penggunaan teknik mampatan, pemultipleksan, dan pelbagai lapis dalam pengekodan
dan penyahkodan Kod QR. Tambahan pula, ia juga memperkenalkan algoritma
pengekodan/penyahkodan separa yang membolehkan pemanipulasi data. Algoritma
yang merangkumi proses pengekodan dan penyahkodan adalah berdasarkan teknik
warna RGB, yang digunakan untuk membuat Kod QR berwarna berkapasiti tinggi. Ini
direalisasikan dalam eksperimen yang menyimpan aksara Kod Piawai Amerika bagi
Saling Tukar Maklumat (ASCII). Aksara teks ASCII digunakan sebagai input dan
prestasi diukur dengan bilangan aksara yang boleh disimpan di dalam Kod QR hitam
dan putih versi 40 (iaitu tanda aras) dan juga Kod QR berwarna. Metrik eksperimen
lain termasuk peratusan aksara yang hilang, bilangan Kod QR yang dihasilkan, dan
masa berlalu untuk membuat Kod QR. Hasil simulasi menunjukkan bahawa algoritma
yang dicadangkan menyimpan 29 kali lebih banyak aksara daripada Kod QR hitam
dan putih dan 9 kali lebih banyak daripada Kod QR berwarna lain. Oleh itu, ini
menunjukkan bahawa Kod QR yang berwarna mempunyai potensi untuk menjadi
penyimpanan mini data kerana ia tidak bergantung kepada sambungan internet.

Kata kunci: Kod respons pantas, Kod bar, Pencapaian maklumat, Penyimpanan data,
Warna RGB

iv

Abstract

A Quick Response (QR) Code is a two-dimensional barcode that stores characters
and can be read by any smartphone camera. The QR code has the capability to encode
various data formats and languages; nevertheless, existing black and white QR code
offers limited data storage. Even though there exist research on coloured QR Code to
increase the storage capacity, requirement for larger data capacity by end user keep
increasing. Hence, this thesis proposes a coloured QR Code algorithm which utilizes
RGB colour combination to allow a larger data storage. The proposed algorithm
integrates the use of compression, multiplexing, and multilayer techniques in
encoding and decoding the QR code. Furthermore, it also introduces a partial
encoding/decoding algorithm that allows the stored data to be manipulated. The
algorithm that includes encoding and decoding processes is based on the red, green,
and blue (RGB) colour techniques, which are used to create high capacity coloured
QR code. This is realised in the experiments that store American Standard Code for
Information Interchange (ASCII) characters. The ASCII text characters are used as
an input and performance is measured by the number of characters that can be stored
in a single black and white QR code version 40 (i.e. the benchmark) and also the
coloured QR code. Other experiment metrics include percentage of missing
characters, number of produced QR code, and elapsed time to create the QR code.
Simulation results indicate that the proposed algorithm stores 29 times more
characters than the black and white QR code and 9 times more than other coloured
QR code. Hence, this shows that the coloured QR Code has the potential of becoming
a useful mini-data storage as it does not rely on internet connection.

Keywords: Quick Response Code, Barcode, Information retrieval, Data storage; RGB
colours.

v

Acknowledgement

First of all, I would like to thank my supervisor, Assoc. Prof. Dr. Yuhanis and Dr.

Fauzana Kabir Ahmad for giving me the opportunity to pursue this long and rewarding

journey, and for their help and guidance.

Most of all, I would like to thank my mother, Puteh Ismail, for her unconditional

support in every way and for her trust and love. To my father, Abas Ismail, in which I

undoubtedly see myself every day and who from heaven helped me to achieve what I

once saw so far away.

To my wife Zuraida Saad, my daughter Alia Qistina and my son Adib Qayyum, thank

you for your understanding, for loving me, and for being there for me all these years.

This was a very special period in my life in which I have great successes and

catastrophic failures, in which I learned about myself and the others, and in which I

was reminded that what matters is always the journey and not the destination. None of

these could have been possible without all of you, and for that I just would like to say

thank you. Also, to all my friends in UUM who never let me forget.

Let us close this chapter today and start a new one in this story, without forgetting

what I learned, what I am, and what I want to become.

vi

Table of Contents

Dissertation ... i

Permission to Use ... ii

Abstrak ... iii

Abstract ... iv

Acknowledgement.. v

Table of Contents .. vi

List of Tables... ix

List of Figures .. xii

List of Appendices .. xvi

List of Abbreviations.. xvii

 INTRODUCTION ... 1

1.1 Introduction .. 1

1.2 Problem Statement ... 7

1.3 Research Questions .. 10

1.4 Objectives ... 10

1.5 Significance of the Study ... 11

1.6 Research Scope .. 12

1.7 -Organisation of the Thesis .. 13

 LITERATURE REVIEW .. 16

2.1 QR Code ... 16

 QR Codes Architecture Structure .. 23

 Types of QR Code ... 25

2.2 Coloured Barcode... 27

2.3 Coloured QR Code ... 31

 Colour Depth .. 33

 Colour Model ... 34

vii

 Pixelation ... 38

 Multilayer Colour ... 39

 Multiplexing and Demultiplexing .. 58

 Compression .. 69

 Hybrid Extension ... 74

 Structured Append ... 79

2.4 Combination Techniques of QR Code Data Capacity ... 81

2.5 Summary .. 83

 RESEARCH FRAMEWORK ... 84

3.1 Research Methodology... 84

 Phase One ... 84

 Phase Two .. 90

 Phase Three .. 92

3.2 Summary .. 95

 ARCHITECTURE OF PROPOSED COLOURED QR

CODE .. 97

4.1 Encode Algorithmn .. 97

 Encode Module .. 98

 Encoding Steps ... 98

4.2 Decode Algorithmn .. 116

 Decoding QR Code .. 116

 Decoding Steps .. 117

4.3 Partial Extraction Algorithm .. 130

 Level 1 Decoding Module.. 131

 Level 1 Re-Encoding Module .. 135

 Level 2 Decoding Module.. 137

 Level 2 Re-Encoding Module .. 141

4.4 Summary .. 144

 FINDING ... 145

5.1 Encode Experiment .. 145

5.2 Encode Modules Experiment Result .. 145

viii

 Overall Encode Experiment Result .. 152

5.3 Decode Experiment .. 156

 Decode Modules Experiment Result ... 156

 Calculation of Total Black and White QR Codes 168

5.4 Partial Extraction Levels .. 169

 Partial Extraction Levels Experiment Result ... 170

5.5 Comparison With Existing QR code .. 182

5.6 Summary .. 185

 CONCLUSION .. 188

6.1 Summary of the Thesis .. 188

6.2 Encoding Design and Development Algorithmn ... 188

6.3 Decoding Design and Devopment Algorithm .. 191

6.4 Partial Extraction Decode and Re-encode Design and Development 193

6.5 Contribution ... 197

 The Model .. 198

6.6 Limitation ... 201

6.7 Future Work ... 202

6.8 Summary .. 205

REFERENCES ... 207

ix

List of Tables

Table 2.1: Data density comparison between some 2D barcodes printed in 600 dpi

(Courtesy: Melgar & Santander (2016))... 18

Table 2.2: The size and data capacity for different versions of QR code (Source:

Garateguy, 2014). ... 26

Table 2.3: A list of all the difference between colour depths. 33

Table 2.4: Example of saturated green in different RGB notations. 36

Table 2.5: The result of the scan process time in msec for QR code and HCC2D

(Source: Grillo et al., 2010). ... 44

Table 2.6: The identified information of QR code based on key elements. 45

Table 2.7: The future research, advantages, and disadvantages. 47

Table 2.8: The summary of multiplexing and demultiplexing methods of coloured

QR code concepts. .. 61

Table 2.9: The future research, advantages, and disadvantages. 62

Table 2.10: The special symbols used for each pattern (Vongpradhip, 2013). 65

Table 2.11: Example of distinct colour requirements for QR code multiplexing. 66

Table 2.12: The normalised values of RGB combination for coloured QR. 67

Table 2.13: The possibility problem experience if the priority exchange is

implemented. .. 74

Table 2.14: The processing time of encoding and decoding (Courtesy: Galiyawala

& Pandya (2015)). .. 82

Table 3.1: Maximum number of characters based on error correction level. 93

Table 4.1: Module index number identification for detailed encoding process.100

Table 4.2: The complete character code map for ASCII printable characters. .. 102

Table 4.3: The minimum character’s total amount value from 20 times repeated

experiment with error correction level H (Abas et al., 2017). 106

Table 4.4: The amount of characters that can be stored in black and white QR code

version 40 by character type (Courtesy: Wikipedia (2007)). 107

Table 4.5: The maximum total characters stored in the QR code by error level

(Abas et al., 2017). ... 108

x

Table 4.6: The characters’ file allocation. ... 111

Table 4.7: The index number identification for decoding module. 120

Table 4.8: The experiment of elapsed time order by error correction level. 122

Table 4.9: Decimal to binary process. .. 124

Table 4.10: The elapsed time of decoding demultiplexing process. 127

Table 4.11: The elapsed time of decompression process. 130

Table 4.12: List of tasks for partial execution decoding level 1 module. 134

Table 4.13: List of tasks for partial extraction re-encoding level 1 module. 137

Table 4.14: List of tasks for partial execution decoding level 2 module. 140

Table 4.15: List of tasks for partial extraction re-encoding level 2 module. 143

Table 5.1: The maximum number of characters stored in each QR code version 40.

 .. 146

Table 5.2: The size of the text file. .. 147

Table 5.3: Amount of characters encoded based on the sequence of

compression,multiplexing and multilayer. 148

Table 5.4: The comparison of total characters in black and white QR code by type

of characters.. 149

Table 5.5: The result of total characters during Base64 encoding (before) and

decoding (after) processes. ... 150

Table 5.6: The elapsed time of encoding compression process. 150

Table 5.7: The elapsed time of encoding multiplexing process. 151

Table 5.8: The result of multilayer process in second and millisecond. 152

Table 5.9: The elapsed time of encoding process. ... 154

Table 5.10: The difference of text capacity between QR code version 40 and

proposed coloured QR code. .. 155

Table 5.11: The compilation of elapsed time of overall decoding processes. 157

Table 5.12: The summary of processing time of decoding by Galiyawala and

Pandya (Courtesy: Galiyawala & Pandya (2014)). 158

Table 5.13: The normal QR code version 40 and compression tool (GZip) via binary

to text encode/decode gap and percentage of compression order by error

correction level. .. 160

xi

Table 5.14: The maximum total characters stored in QR code version 40 by error

level with multiple compression tools without encoder/decoder. 160

Table 5.15: The total character storage of 1, 8, 24, and N units of black and white

QR codes after completion of compression process and binary to text

decoding process. ... 161

Table 5.16: The calculation or simulation of the outcome of total character order by

error correction level from 24 and above units of black and white to 3

monocoloured QR codes (red, green, and blue). 163

Table 5.17: The simulation in increment of channel using RGB model with 8-bit

colour depth order by error correction level. 165

Table 5.18: The simulation in increment of channel using RGB model with 10-bit

colour depth order by error correction level. 166

Table 5.19: The simulation in increment of channel using RGB model with 16-bit

colour depth order by error correction level. 166

Table 5.20: The simulation in increment of channel using RGB model with 24-bit

colour depth order by error correction level. 167

Table 5.21: The simulation in increment of channel using RGB model with 80-bit

colour depth order by error correction level. 168

Table 5.22: The comparison between benchmark and proposed techniques in level

1 of decoding process. Level 1(Decode). ... 178

Table 5.23: The comparison between benchmark and proposed techniques in level

1 of re-encoding process. Level 1(Re-encode). 179

Table 5.24: The comparison between benchmark and proposed techniques in level

2 of decoding process. Level 2 (Decode). .. 179

Table 5.25: The comparison between benchmark and proposed technique in level 2

of re-encoding process. Level 2 (Re-encode). 180

Table 5.26: The level 1 and level 2 time range difference. 182

Table 5.27: The comparison text capacity between proposed coloured QR code and

existing QR code (black-white and colour) 183

Table 6.1: The module and sub-module upgrading plan. 201

xii

List of Figures

Figure 1.1. Examples of one-dimensional barcode and two-dimensional barcode

(Source: Rinkalkumar (2014)) .. 3

Figure 1.2. An example of stacked and matrix symbologies images (Source:

http://www.tec-it.com) ... 4

Figure 1.3. An image of QR code (Source: www.qrcode.com). 5

Figure 1.4. Examples of QR version 1, 10, and 40. .. 6

Figure 1.5. Example of QR codes with metric columns. .. 8

Figure 2.1. The mental model of RGB coloured QR code. 19

Figure 2.2. The history of QR code. ... 22

Figure 2.3. The structure of QR code version 2 (Galiyawala & Pandya, 2015;

Kieseberg et al., 2010; Wakahara, Yamamoto, & Ochi, 2010). 23

Figure 2.4. The design of QR codes (Courtesy: www.qrcode.com). 27

Figure 2.5. Microsoft’s High Capacity Colour Barcode (Courtesy:

http://research.microsoft.com/en-us/projects/hccb/). 29

Figure 2.6. The structures of standard and IP-based PM code technology (Source:

Asia Global Technology Sdn. Bhd.)... 30

Figure 2.7. The roadmap of PM code technology. ... 31

Figure 2.8. The colour format and the calculation based on 24-bit format (0..23).

 .. 32

Figure 2.9. The RGB model in a unit cube (Courtesy: Donald D. Hearn, M. Pauline

Baker, 2010). .. 37

Figure 2.10. The algorithm conversion from RGB to CMYK colour models. 38

Figure 2.11. The image zoomed out more closely. ... 39

Figure 2.12. The flow chart for encoding and decoding processes of coloured QR

code (Nurwono & Kosala, 2009).. 41

Figure 2.13. The layers in the image editor (Courtersy: Nurwono & Kosala (2009)).

 .. 50

Figure 2.14. The result of combination of four layers (Courtesy: Nurwono & Kosala

(2009)). ... 50

xiii

Figure 2.15. The process of encoding the coloured QR Code (Courtesy: Ramya &

Jayasheela (2014)). ... 52

Figure 2.16. The process of encoding coloured QR code (Courtesy: Blasinski et al.

(2013)). ... 53

Figure 2.17. Coloured QR code produced (Courtesy: Melgar et al. (2012)). 54

Figure 2.18. Values for data capacity for smaller version of HCC2D codes

(Courtesy: Grillo et al. (2010)) ... 54

Figure 2.19. Coloured QR code decoding algorithm (Courtesy: Nurwono & Kosala

(2009)). ... 56

Figure 2.20. Flow of decoding process (Courtesy: Blasinski et al. (2013)). 57

Figure 2.21. Procedure of colour threshold. (Courtesy: Melgar et al. (2012)). 58

Figure 2.22. The overview of multiplexing and demultiplexing methods. (Courtesy:

Vongpradhip (2013)). ... 59

Figure 2.23. The algorithms of multiplexing and demultiplexing

(Courtesy:Vongpradhip (2013)). .. 64

Figure 2.24. QR code with 8 special symbols (Vongpradhip, 2013). 65

Figure 2.25. The process to produce coloured QR code (Pillai & Naresh, 2014). . 66

Figure 2.26. Flow of the multiplexing process of coloured QR code. 67

Figure 2.27. Flow of the demultiplexing process of QR code with special symbols.

 .. 68

Figure 2.28. Flow of the decoding process. .. 68

Figure 2.29. Flow of the demultiplexing and decoding processes. 69

Figure 2.30. The flow chart in generating a high capacity QR code (Courtesy: Victor,

2012). .. 72

Figure 2.31. The steps to generate a large amount data for QR code. 72

Figure 2.32. The hash map data can be encoded into a 2D barcode (Courtesy: Victor

(2012)). ... 73

Figure 2.33. The processes involved when the techniques of compression,

multiplexing, and multilayer change positions. 77

Figure 2.34. Single symbol and the structured append of symbols encoded with

"ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789ABCDEFGH

IJKLMNOPQRSTUVWXYZ". .. 80

xiv

Figure 2.35. The methods of partial extraction. .. 81

Figure 3.1. The research framework. .. 85

Figure 3.2. The theoretical framework. .. 87

Figure 3.3. The testing activities. .. 89

Figure 3.4. The finalising and merging activities. .. 90

Figure 3.5. The proposed flow of the coloured QR code...................................... 91

Figure 3.6. The proposed flow of the partial extraction process of coloured QR

code... 91

Figure 3.7. The flow steps of the coding process. .. 93

Figure 4.1. The encoding flow process. .. 99

Figure 4.2. Coloured QR code encoding pseudocode... 100

Figure 4.3. The flow chart of character counting module................................... 105

Figure 4.4. The example of the first process in converting binary to decimal point

number in the index location (0,0) for each black and white QR codes

and assigning the value to the index location (0,0) at the red QR code.

 .. 115

Figure 4.5. The decoding flow process. .. 118

Figure 4.6. The pseudocode of main decoding programme................................ 119

Figure 4.7. The flow chart process of determining black or white pixels of black

and white QR codes. ... 126

Figure 4.8. The flow chart of decompression method. 129

Figure 4.9. The abstract model of 8-bit colour depth and 3-channel RGB colour

model. ... 132

Figure 4.10. The pseudocode of partial execution for decoding level 1. 134

Figure 4.11. The pseudocode of partial execution for re-encoding level 1. 136

Figure 4.12. The pseudocode of partial execution for decoding level 2. 140

Figure 4.13. The pseudocode of partial execution for re-encoding level 2. 143

Figure 5.1. A part of the employed Malay short story. 146

Figure 5.2. The flow processes of the encoding compression, multiplexing, and

multilayer modules. .. 153

Figure 5.3. The diagram of RGB colour depth and colour channel. 170

Figure 5.4. Level 1 decoding abstract model. ... 171

xv

Figure 5.5. Level 1 re-encoding abstract model. .. 172

Figure 5.6. Level 2 decoding abstract model. ... 173

Figure 5.7. Level 2 re-encoding abstract model. ... 174

Figure 5.8. A part of input data text. ... 175

Figure 5.9. The process flow results for QR code version 40............................. 176

Figure 5.10. The process flow results for proposed technique level 1. 176

Figure 5.11. The process flow results for proposed technique level 2. 177

Figure 6.1. The complete model of compression, multiplexing, and multilayer for

coloured QR code. .. 200

Figure 6.2. The example of method implementation of parallel processing for

partial extraction level 1. .. 203

Figure 6.3. The combination of two coloured QR codes. 204

Figure 6.4. The effect of light during decoding process. 205

xvi

List of Appendices

Appendix A : Result of Maximum Characters .. 227

Appendix B : Encode Level L... 228

Appendix C : Decode Level L .. 233

Appendix D : Partial Extraction (Decode) Level 1 ... 237

Appendix E : Partial Extraction (Re-encode) Level 1 .. 241

Appendix F : Partial Extraction (Decode) Level 2 ... 244

Appendix G : Partial Extraction (Re-encode) Level 2 .. 248

Appendix H : Processing Time Module .. 252

xvii

List of Abbreviations

1D One-dimensional

2D Two-dimensional

3D Three-dimensional

ANSI American National Standard Institute

ASCII American Standard Code for Information

 Interchange

CIAL Content Idea Asia Limited

CMY Cyan, Magenta, and Yellow

CMYK Cyan Magenta Yellow and Key (Black)

CQR Colour Quick Response

CQRC Colour Quick Response Code

GZip GNU Zip (Not Unix Zip)

HCC2D High Capacity Coloured Two Dimensional

HCCB High Capacity Colour Barcode

ISO International Organization for Standardization

LED Light Emitting Diode

http://www.iso.org/

xviii

LZW Lempel–Ziv–Welch

MATLAB Matrix Laboratory

PM Paper Memory

RGB Red Green Blue

RO Research Objective

RQ Research Question

URL Uniform Resource Locator

UTF Unicode Transformation Format

QR code Quick Response Code

ZIP Compressed File Archive

https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Welch
http://en.wikipedia.org/wiki/Uniform_Resource_Locator
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&ved=0ahUKEwiM7YaOx8PYAhXDpI8KHXYMB7MQFghLMAM&url=https%3A%2F%2Ftechterms.com%2Fdefinition%2Futf&usg=AOvVaw3tYEa8M1rtAg1D1Whf6Htu

1

INTRODUCTION

This research is on quick response code technology, which is one of the mechanisms

to store information using two dimensional (2D) barcode images. Instead of using only

white and black colour modules, this research proposes a coloured code that enables a

larger data storage capacity.

1.1 Introduction

Currently, the use of digital media and communications technologies is growing

rapidly from time to time. But in the same time, printed documents continue to form

a convenient interface for people. A large number of important documents such as

identity card, driving licence, passports, and other transaction data are still in printed

form. Without exception, some of the printed items are used to tell information about

the object or owner. Now in the digital era, one technique or mechanism is needed to

interface with the information in the printed items or documents, which can be

embedded inside printed objects. Thus, it can save more space in the printed document

and it is secure. The data can subsequently be retrieved via a scanner or digital camera

that can be aimed at the printed object (Bulan & Sharma, 2011b). In addition, it

facilitates users to store data without using an electronic data storage device and saves

the area of printed items or documents. The technique or mechanism used to embed

digital information inside the printed object must be provided with additional

operational features in the applications such as document authentication, meta-data

embedding, and document tracking in workflows (Bulan & Sharma, 2011b). The

information and methods as mentioned above refer to the use of barcode.

2

Barcode becomes a famous method of data storage because of its data retrieval

accuracy, quick data retrieval, functionality process, and physical characteristic

(Denso-Wave, 2015). The barcode is a graphical image representation, which is

capable of storing digital information about an object such as ticketing information,

tracking location, unified resource locator, contact list, and others related. The barcode

can be divided into two categories, namely one-dimensional barcode or traditional

barcode, and two-dimensional or matrix barcode (Feng & Zheng, 2010a). Technically,

the differences between types of barcodes are based on the width of the bars, character

set, method of encoding, checksum specifications, etc. (Purcaru & Roma, 2011). Based

on previous research by Chuang, Hu, & Ko (2010), the one dimensional (1D) barcode

is mostly known as “product identification”, while the 2D barcode emphasises on

“product descriptions”. This is due to the limitation of 1D barcode storage as compared

to 2D barcode. The 1D barcode contains various widths and parallel space lines.

Meanwhile, the 2D barcode is typically a graphical image that stores information in

both horizontal and vertical (Lin & Fuh, 2013). The major differences between 1D and

2D barcode include the capability to hold data per unit area, and the direction of

accessing data whether vertical or horizontal. Figure 1.1 shows examples of one-

dimensional barcode and two-dimensional barcode.

Based on the previous research from Feng (2010), 1D barcode information capacity is

limited because it is capable to encode only in alphabets and figures. Meanwhile, the

2D barcode has high reliability and strong capability to resist interference. In addition,

the 2D barcode has 100 times capability to hold information as compared to 1D

barcode. Most 2D barcodes can store various information about a product such as

product name, product details, web links, etc. (Chuang et al., 2010)

3

Figure 1.1. Examples of one-dimensional barcode and two-dimensional barcode

(Source: Rinkalkumar (2014))

The 2D barcode has two main categories, namely stacked and matrix symbologies

(Intermec Technologies Corporation, 2007). The stacked symbology is developed with

two or more small linear rows of barcode, which are stacked on the top of each other.

Examples of stacked symbologies are Portable Data File with 4 bars and spaces and

each pattern is 17 units long (PDF417), Code 16K, Code 49, and GS1 DataBar (Zhang

& Yang, 2015). The matrix symbology, on the other hand, is mainly arranged in a grid

with the geometric shapes of dark and light colours. It is commonly used in small item

marking, unattended and high speed reading applications. Examples of matrix

symbologies are Data Matrix, MaxiCode, Aztec Code, Code One, and QR Code

(Sutheebanjard & Premchaiswadi, 2010). Figure 1.2 shows an example of stacked and

matrix symbologies images, which are Global Standard 1 (GS1) DataBar Composite

(a) and Data Matrix (b).

The quick response code (QR code) is a 2D barcode (Chang, 2014; Denso, 2011;

Rawat, Sahu, & Puthran, 2015; Sarkar, Pu, Wu, Huang, & Wu, 2017), which is

categorised under matrix symbology barcode. It was proposed in 1994 by a Japanese

company, Denso Wave Incorporated and approved in 2000 as an AIM standard, JIS

4

Data Matrix
(b)

GS1 DataBar Composite
(a)

Figure 1.2. An example of stacked and matrix symbologies images (Source:

http://www.tec-it.com)

standard, and ISO standard (Commission & International Organization for

Standardization., 2000; Rathod Rinkalkumar, 2014; Vizcarra Melgar, Zaghetto,

Macchiavello, & Nascimento, 2012; Wang, Yang, Li, Yao, & Zhang, 2015). Figure

1.3 shows an image of QR code.

As stated by Grillo, Lentini, Querini, & Italiano (2010), there are many benefits or

advantages of QR code. The QR code has high capacity of encoded data because it

can handle a large diversity of data, such as numeric, binary, and alphabetic characters.

The area of space can be reduced as it can represent the data in a 1/30 space as

compared to a 1D barcode. The QR code is able to carry data in both horizontal and

vertical positions and offers high speed reading. Users can point the QR code in a

position of 360° recognition (Shen, Lu, Qi, & Jiang, 2014) to read the contents of the

QR code. Furthermore, the QR code has durability against soil, dirt, damage, distortion

resistance or scratch (Grillo et al., 2010). The data can still be read if the condition of

error correction level is set to the highest level. The storage can be clustered into many

parts and can be appended if necessary (Denso, 2011). Denso has released the patent

of QR code into the public domain so that anybody can use for free of charge (Boob,

Shinde, Rathod, & Gaikwad, 2014).

http://www.tec-it.com/en/support/knowbase/symbologies/datamatrix/

5

Figure 1.3. An image of QR code (Source: www.qrcode.com).

The QR code can be used in various applications (Kumaraguru & Bormane, 2012),

such as production, logistics, sales, and information to track (Shiang-yen, Foo, &

Idrus, 2010; Szövetség & Várallyai, 2012) Nowadays, the QR code has been adopted

in the areas where 1D barcode was utilised. These applications include retailing,

healthcare, life sciences, transportation, office automation, marketing, and advertising

(Denso, 2011; Pandya & Galiyawala, 2014).

The QR code is able to transmit information through a print-scan channel (Nikolaos &

Kiyoshi, 2010; Magadum, 2017) and display the information in the forms of numeric

and alphabetic characters, kanji, kana, hiragana, symbols, binary, and control (Bunma

& Vongpradhip, 2014; Denso, 2011; Kan, Teng, & Chou, 2009; Qianyu, 2014).

Conceptually, the idea behind this technology is not much different from the linear or

matrix barcode (Dita, Otesteanu, & Quint, 2011; Kato & Tan, 2005), nonetheless, its

capability in data density allied with high speed reading made it popular. Currently,

phone camera is used to scan the image of a QR code that contains contact information,

short messages, authorisation to a wireless network, and opening a web page in the

telephone's browser that is linked to the web server (Gutierrez, Abud, Vera, &

Sanchez, 2013).

http://en.wikipedia.org/wiki/Wireless_LAN

6

As reported by Nikolaos and Kiyoshi (2010) and Grillo et al. (2010) in their

researches, each of the QR code module is represented as a single bit where a black

square stores value 1 and a white square stores value 0. The capacity of a QR code

depends on the number of modules allocated. Even though it can contain four data

modes, numeric, alphanumeric, binary, or Japanese characters, it also depends on error

correction levels and type of encoded data (Kieseberg et al., 2010).

In general, there are 1 to 40 versions of QR code that are different in the number of

modules (Lyons, 2009). The storage capacity of QR code is determined by its version

and version 40 has the highest encoding capacity among QR codes (Sangkwon et al.,

2012). Figure 1.2 shows examples of QR code images for version 1, 10, and 40,

respectively. The lowest module is version 1 that consists of 21 x 21 modules, while

the largest, QR code version 40, consists of 177 x 177 modules (Denso-Wave, 2015;

Jahagirdar & Borse, 2015; Liao Zhao-lai, Huang Ting-lei, Wang Rui, 2010; Luo,

Wang, & Lin, 2016; Marktscheffel et al., 2016; Sun, Fang, Fu, & Zhao, 2009).

Figure 1.4. Examples of QR version 1, 10, and 40.

The QR code includes an error correction mechanism that helps to create redundant

data, which facilitates the QR code reader to accurately read the code even if part of it

is unreadable. The Reed-Solomon error correction code was implemented in QR code

7

to avoid data corruption and allows data recovery (Liu, Yang, & Liu, 2008;

Skawattananon & Vongpradhip, 2013). The error correction consists of four levels of

correction, namely L (Low), M (Medium), Q (Quartile), and H (High). Rawat et al.

(2015) stated that if the level of error correction is high, then there will be less space

for information storage. Hence, the maximum capacity of a QR code depends on the

encoded content and error recovery level.

Harish and De (2014) encouraged studies on improving storage capacity of QR code

even though the code can store more information than other conventional barcodes.

Base on the survey done by Pandya and Galiyawala (2014), possible research areas

to consider in QR code include data capacity, data recovery, security, and data

allocation (Kajaree & Behera, 2017; Yadav & Dawande, 2016), whereby this can be

achieved by using coloured QR code (Pandya & Galiyawala, 2014), multiplexing data

(Umaria & Jethava, 2015; Vongpradhip, 2013), scratch removal (Thomas & Paul,

2013), and data hiding (Rungraungsilp, Ketcham, Wiputtikul, & Phonphak, 2012).

The storage issues are the main important topic or problem for debate or discussion.

1.2 Problem Statement

To date, the QR code has the largest capacity storage among 2D barcodes, which is

approximately 3 kilobytes (Grillo et al., 2010; Denso, 2011; Victor, 2012) and for the

coloured barcodes, it has approximately 3 to 100 kilobytes (Galiyawala & Pandya,

2014). For all QR code versions, the size of the storage relies on the size of metric

column (Zhang, Yao, & Zhou, 2012). The more metric columns exist in a QR code,

the more data can be stored in it. Figure 1.5 shows different versions of QR code along

with their character size.

8

Figure 1.5. Example of QR codes with metric columns.

In detail, QR code has a limited size of storage whereby it can only store data up to

2,953 bytes (Victor, 2012; Vongpradhip, 2013), which is very small reported by Denso

Wave Incorporated (Denso-Wave, 2014). The high capacity coloured QR code (HiQ)

(3 layers) can obtain the data capacity only at 89 kilobytes and still can be considered

as small capacity (Yang, Xu, Deng, Loy, & Lau, 2017). Furthermore, it can only store

certain data (usually text or web address) (Chiang, Li, Hsia, Wu, & Hsieh, 2013). It is

difficult to store large-scale images (Victor, 2012) or secured data that requires a large

size of storage (Majumdar, Maiti, Bhattacharyya, & Nath, 2015).

In addition, the required number of QR code becomes larger if the amount of data to

be stored increases (Denso, 2011; Warasart & Kuacharoen, 2012; Subpratatsavee &

Kuacharoen, 2012). As a result, the QR codes are not suitable to be represented on

limited sizes of printed media. Even though there exist various encode and decode

application which employs coloured 2D barcodes such as Cobra, Strata and Focus

(Yang et al., 2017), nevertheless, not all smart phones utilizes the same colour display.

With limited colour display, the smart phones are not able to display actual colour QR

code.

9

Generally, the common methods to improve data capacity of barcodes are by

increasing the barcode size or barcode density (Feng & Zheng, 2010a).

Nevertheless, in these circumstances, the two methods have several limitations. When

the barcode size is enlarged, it will require a bigger printing area. On the other hand,

enhancing the QR code density can distinctly decrease the capability to resist

interference, and can increase the difficulty of barcode recognition. As a result, it will

lead to high computational cost due to preparing relevant equipment (Victor, 2012).

To overcome the issue on QR code storage size, various studies have turned into

coloured QR code (Liu, Zheng, & Jia, 2009; Yang et al., 2016). However, the

experiment conducted by Nurwono and Kosala (2009) has only been able to store data

up to nine kilobytes using three layers and eight colours. This is still considered

insufficient as it could not store plain text e-book, news paper and journal. The red,

green, and blue (RGB) colour combination is a technique used as a medium to increase

the data capacity of QR code (Tank, Unde, Patel, & Raskar, 2016). Even though many

researchers have used various colours to increase data capacity, their study consumes

large computational effort (i.e. time and storage) to encode and decode (Galiyawala &

Pandya, 2015; Grillo et al., 2010).

There is also work on using one QR code to build upon several QR codes or vice versa

(Qianyu, 2014). The technique is known as structured append feature (Denso Wave,

2014; Grillo et al., 2010). Since one QR code contains several QR codes inside it,

there will be issue of processing time during the decode and re-encode processes. Such

an approach requires a complete reproduction of QR code if partial information (data

in the QR code) is to be deleted, added or updated. Futhermore, it may require

additional QR codes if the data capacity of the current QR code has exceeded.

10

1.3 Research Questions

Based on the problem statement highlight in the previous research, the related

questions have been found:

1. What is the technique can be used to increase the data storage of a coloured QR code

compared to the black and white QR code and existing coloured QR code data capacity

(RQ1)?

2. How to append the compression, multiplexing and multilayer techniques with

coloured QR codes in order to get the maximum data size (RQ2)?

3. How can the coloured QR code be manipulated for information extraction (RQ3)?

1.4 Objectives

The aim of this research is to enhance the data capacity of a coloured QR code by

designing and developing the algorithms of compression, multiplexing, and

multilayer. The research aims is achieved by the following objectives:

1. To design and develop a RGB coloured QR code encoding algorithm with a larger

data storage (RO1).

2. To design and develop a RGB coloured QR code decoding algorithm that extracts

all stored data (RO2).

3. To design and develop a RGB coloured QR code partial decoding and re-encoding

algorithm that allows portion extraction of the required encoded data (RO3).

4. To evaluate the proposed RGB coloured QR code by comparing its performance

against existing QR code (RO4).

11

The first research objective (RO1) was derived as response to the first research

question (RQ1) as listed in Section 1.3. It is aimed to acquire the appropriate test

adequacy criteria (see Section 3.1.3) to be include in Phase Three research framework.

The second and third research objective will try to answer the second research question

(RQ2). Generally, it concern the detail design and techniques that can be used to get

more data capacity in a single coloured QR code. The third objective (RO3) is to

manipulate the data in a single coloured QR code after encode and decode processes

completed without involving many processes and saving the processing time. The last

research objective is not related to research question because it is only involving some

verification and validation after the whole system completed.

1.5 Significance of the Study

This research contributes in two areas, which are data storage and processing time. In

the data storage area, this research contributes to those who are interested to store data

in a QR code form. QR code can store data or information without using any electronic

chips. It can be used as a mini secondary storage. The QR code can reduce cost

(Charoensiriwath, Surasvadi, Pongnumkul, & Pholprasit, 2015) of storing data

because it only uses a common printer to print the QR code image. This paper-based

storage medium is cheap and easy to produce. It is also easy to distribute and carry and

does not require any complex technology to use. On the other hand, users can easily

retrieve relevant information by using QR code. It can improve business processes

through faster access to information (Charoensiriwath et al., 2015).

12

1.6 Research Scope

The scope of this research consists of encoding, decoding, and data manipulation of a

coloured QR code. This research does not include how the device reads the pattern

inside a QR code. Furthermore, it does not consider the quality of the printed QR code.

It also assumes that the stored data is text-based, with common symbols and not using

other text symbols such as Arabic, Japanese, etc. The aim of this research is to increase

the data storage capacity in a QR code by using a combination of methods from

previous researches (compression, multiplexing, and multilayer) and the enhancement

of the techniques. The techniques may use some colours such as red, green, blue, white,

and black. QR code version 40 is used in this research as a benchmark as this version

offers the largest capacity storage among QR codes.

The decoding process of coloured QR code does not use any QR code reader device,

but it will be generated by using a coloured QR code decoding algorithm. The reason

is that coloured QR code version 40 contains information that is translated into small

pixels and the reader device is not able to capture the correct colour due to inconsistent

brightness of light. Overall, the size of a QR code version 40 is 177 pixels x 177 pixels.

In this case, to regain the small pixels, it needs to use a high-resolution camera

smartphone in order to capture the small pixels of a QR code. This limitation is caused

by the availability of the device and its high cost. As a solution, to overcome this

problem, all the reading process is simulated by using computer programmes. The

lighting environment is also not tested because all the reading processes are generated

by computer programmes, and not in the actual environment. The input data is

captured from a random Malay short story and it is measured in millisecond for

processing time and total number of characters stored.

13

1.7 -Organisation of the Thesis

The QR code is one type of data storage media that can be utilised as content

distribution and integrated with printed media. If this research is able to increase the

data capacity and accuracy, the QR code can be used as a medium to convey a large

amount of information. The data capacity of QR code can be improved by merging

multiple researches in the data capacity of QR code. Based on this thesis, a lot of

information will be explained starting from the background study until the existing QR

code researches. Some reviews in certain researches were done to prove the problems

that may occur if this structure is implemented. Nonetheless, from this research, it may

contribute the solution to change the data capacity of QR code.

This thesis is organised in seven chapters. All the chapters are presented in

chronological order, i.e. introduction, literature review, research framework, encoding,

decoding, partial extraction, and conclusion. A brief explanation and organisation of

the respective chapters are as follows:

Chapter One explains the main introduction of the research in this thesis. It contains

a brief explanation on the preamble of knowledge terminologies involved in the

research, which is related to the use, structure, development chronologies, and

previous researches of QR code. Besides, this chapter also explains in detail the

background of the problem, research questions, goal, and objectives as well as its scope

and contributions to the domain research area.

Chapter Two reviews in detail about the QR code, which mainly concerns the

terminologies of fact and information knowledge for the research in this thesis. The

topics that will be picked out and emphasised in the discussion are QR code in detail,

14

review of coloured QR Code with its subordinate, comparison from previous

techniques applied to increase the data storage, and the combination of selected

techniques to be used in this research.

Chapter Three presents the research methodology that was undertaken in completing

this research. It comprises the explanation of three phases, which are phases one, two,

and three. The first phase reviews the preliminary studies that have been conducted to

find the suitable algorithms and techniques. Meanwhile, the second phase discusses

the development requirement and criteria. The last phase covers the tests and results

based on the problem, limitations, and assumptions of the research.

Chapter Four provides the information of the design and implementation of the

encoding process based on the suitable priority of encoding algorithms. Each algorithm

is converted into the actual programme and fixed with the processing time for each

selected algorithm. The input data is based on common American Standard Code for

Information Interchange (ASCII) characters. The result is collected in several

executions of the encoding programme. Some discussions on the result are guided

from the quantitative experiment. The details on the decoding process after the

encoding process is completed also discussed. The main objective is to evaluate the

information of previous actual text back without any data loss after decoding. This

chapter discusses the detailed steps of decoding processes based on reverse encoding

processes. Another process that was discussed is to bring two types of execution level,

namely levels one and two. The first level discusses the decoding and re-encoding of

conversional QR code. Meanwhile, the second level comprises decoding and re-

encoding monocolour QR code.

15

Chapter Five is aiming on the result from the finding in Chapter Four. Several

executions are conducted as well to obtain the data capacity, processing time and total

lost data. In addition, it includes some suggestions to gain data capacity based on each

algorithm conducted. Meanwhile, in the partial extraction algorithmn, the result is

collected and discussed as it may help the experiment of processing time for each level.

Chapter Six is the last chapter that concludes the thesis. It includes the summary of

the thesis, highlights the contributions and limitations of the research and the possible

future work.

16

LITERATURE REVIEW

This chapter offers the setting and some related researches conducted on QR code. The

QR code became popular and its convenience is universally recognised; the market

began to call for codes capable of storing more information, more character types, and

that could be printed in a smaller space. The patterns of QR are square, dots, hexagons,

and other geometric shapes inside the image; such a kind of barcode is referred to as

matrix or 2D barcode. The QR is very significant because it carries information on it.

The data storage is limited due to the structured design. The codes contain information

in both upright and horizontal proportions. Many researchers have proposed various

researches of QR code, which are planned to satisfy the storage capacity extension.

2.1 QR Code

The QR code has become widely popular due to its reading speed, accuracy, and

functional characteristics (Coleman, 2011; Y. Zhang, Gao, Li, & Lin, 2012).

Nowadays, there is an increasing amount of data, including emails, pictures, and

videos, all of which must be accessible in a timely and dependable fashion. This data

can be stored in personal computers, mobile phones or in data centres around the world

(Asare & Asare, 2015). On account of the growing data requirements, storage is

rapidly becoming an important factor in the data centre of information technology

equipment. Presently, the overwhelming flow of data continuously increases in

volume and detail, such as social media, internet of things, and multimedia (Hashem

et al., 2015; Richard L. Villars, Olofson, & Eastwood, 2011). As a result, the data

growth is the greatest challenge for larger enterprises. Still, storage not only demands

17

to scale in size, but also in performance, reliability, and power efficiency, among

others; all these challenges must be met while minimising deployment and

administration efforts (Prakash & Singh, 2010). Enterprises are actively calling for

steps to mitigate the growing data problem. The recent years have witnessed

substantial innovation in storage system extensions that provide critical improvements

in understanding some of these storage system goals (Frost et al., 2007; Gunawi,

Prabhakaran, Krishnan, Arpaci-Dusseau, & Arpaci-Dusseau, 2007; Z. Li, Chen,

Sudarshan, & Yuanyuan, 2004; Meyer et al., 2008; Narayanan, Donnelly, & Rowstron,

2008; Sundaram, Wood, & Prashant, 2006; Zhu, Li, & Patterson, 2008).

The QR code is one medium used to keep information using paper that has a code

inside it. Content Idea of Asia Co. Ltd. (2013), a Japanese mobile development

company, has created a three dimensional (3D) barcode system called Paper Memory

Code System or PM code. The technique is to stack the QR codes into one integrated

3D barcode. Microsoft Research has developed a 2D barcode called Microsoft’s High

Capacity Colour Barcode (HCCB), which is capable to store more than 84 bytes. As

claim by Nurwono and Kosala (2009), there are less academic researches related to

this system. Table 2.1 below shows the data density comparison between some 2D

barcodes printed in 600 dpi, which contain QR code, HCCB, High Capacity Coloured

Two Dimensional Code (HCCB2D), and CQR Code-5.

The primary goals of enhancing QR code are to increase the space available for the

data and to preserve strong robustness and error correction properties similar to the

original QR standard. In this respect, three parts are needed to consider when taking

on the QR code data capacity. The parts are the techniques to increase, the standard of

18

Table 2.1

Data density comparison between some 2D barcodes printed in 600 dpi (Courtesy:

Melgar & Santander (2016)).

Two Dimensional Barcode Data Density
[Bits per in2]

QR Code 5,136

HCCB 16,384
HCCB2D 15,409

CQR Code-5 17,163

the QR Code, and algorithms.The data capacity techniques are based on previous data

capacity researches or its enhancement of storage capacity. Moreover, the standard of

QR code follows the current version of QR code, which is version 40. Meanwhile, the

algorithms concentrate on encoding, decoding, and partial extraction. Many

algorithms have been divulged over internet environment now and the reason is to

reveal the method of creating, decoding, and encoding the QR code in different ways.

Some experimental studies have been conducted to achieve the best implementation.

One of the popular QR code data capacity techniques is using the combination of red,

green, and blue (RGB) colours, which is to make them united (Ahlawat & Rana, 2017;

Chandran, 2014; Toh, Goh, & Yeo, 2016). Thus, this technique subsequently proved

that data can be stored in the QR code in a large amount of data if RGB is combined.

Figure 2.1 shows the aim of a QR code mental model is to increase data capacity .

When considering the use of RGB colours in developing a coloured QR code, three

aspects need to be considered; data capacity techniques, encode and decode algorithms

and standard benchmarking. Relevant techniques need to be search for, extend and

combined to produce RGB coloured QR code as an output. In addition, a standard

19

benchmark need to be determined (i.e black and white QR code) prior to the process

of enhancing its storage capacity. When the input has been determined, algorithms to

produce (i.e encode) QR code need to be designed. This is followed by designing the

decoding algorithm that allows the extraction of the stored data. During the designing

process, among of the concern is the computational time to encode and decode the QR

code. The proposed QR code should be encoded and decoded in less than the time

required by existing QR code. In practical, there is also a need to manipulate data

stored in the QR code. This includes updating portion of the data such as a chapter in

book or updating a broken link.

Data Capacity Techniques Standard Algorithms

 Technique 1 Technique 2 Technique N

Version 40

DecodeEncode Partial
Extraction

New Enchancement Data Capacity QR Code

Combined

Figure 2.1. The mental model of RGB coloured QR code to increase data capacity.

The coloured QR code is beneficial in various ways but the main advantage is that it

can act as a mini data storage by end users to store permanent or temporary data. As

there exist information explosion in the current era, end users are overwhelmed with

lots of data and knowledge. Some of the data need to be easily stored and accessed.

Hence having a data storage that requires no additional device (such as thumb drive,

portable hard disc) or internet connection (cloud storage) will benefit the end users. To

20

date, users move around with smartphones and the use of coloured QR code as a

means of data storage will ease daily routines and fit into their lifestyle. This can be

seen advertising and marketing, item tracking, data sharing, product description,

airport boarding pass, web and mobile based authentication etc. (Nandhini, 2017;

Singh, Verma, & Raj, 2017). In many marketing companies, QR code can be found

on magazine pages, billboards, product boxes, beverages, advertisement papers, flyers,

and other marketing mediums (Čović & Šimon, 2016). This is due to the fact that end

users or customers like to access promotional information and discounted item

(Okazaki, Navarro, & Campo, 2013). Most of users are sharing a large amount of

information via QR code by visiting web sites that provide additional information

(Demir, Kaynak, & Demir, 2015). As QR code became popular and their convenience

universally recognized, the market began to call for codes capable of storing more

information, more character types, and that could be printed in smaller space

(Bhardwaj, Kumar, Verma, Jindal, & Bhondekar, 2016; Grillo et al., 2010). Hence,

recently, researchers are focusing on speed reading and coding capacity of QR code

(Bhardwaj et al., 2016).

The 1D barcodes are usually found in the purchasable items that are scanned at the

purchasing register counter. The functionality of the traditional barcodes depends on

the readability method that is from left to right. This is one of the main limit variances

in 1D barcodes. Nonetheless, the QR Code has several uniqueness, such as the

following:

1. High capacity of encoding the data (Lin & Fuh, 2013). The 1D barcode has

limited storage capacity and stores mostly less than 20 characters (Winter, 2011). In

addition, it can be scanned only in a horizontal direction. A QR code has the capability

21

to store hundred times than the capacity of 1D barcode. If the QR code uses one

symbol, it is able to store a maximum of 7,089 characters. The QR code is capable of

storing various types of data including numeric and alphabetic characters, kanji, kana,

hiragana, symbols, binary, and control codes (Denso, 2011).

2. Come out small printed data. If the 1D barcode and QR Code have the same

amount of data, the size among them has a 25% difference (Denso-Wave, 2014). It is

clearly stated that QR code can save more printed area as compared to 1D barcode.

3. Include Japanese fonts (kanji and katakana). The QR code was developed in

Japan for industrial purposes. Due to the reason above, the kanji and katakana setting

are the first priority in the implementation of QR code in Japan (Denso-Wave, 2014).

4. Dirt and damage robustness. As stated by Ji (2014), when the image of QR code

is tainted with dirt or damaged, the data can be recovered by a mechanism called error

correction and restoration. The data can be restored even if a segment of the QR code

is unreadable. There are four levels of error correction, namely level L (7% recovery),

M (15% recovery), Q (20% recovery), and H (25% recovery).

5. Can be read in many directions as compared to normal barcode. The reader

device is able to read the QR code in a 360° direction (Shen, Lu, Qi, & Jiang, 2013).

The QR code was developed with the detection pattern located in the three corners of

the symbols.

6. Structured append feature. The QR code is developed to store data in various QR

code symbols. This means that a QR code can be divided into more than one QR code

and all the QR codes can also be stored in one QR code.

The chronological history of QR code is shown below in Figure 2.2.

22

1960s

- Japan industries growth
- Point of Sales was developed and the barcode was

used to handle the cash register problem.
- The barcode can hold 20 numerical including kanji

Denso Wave ® start developed 2 dimensional
barcode that lead by Masahiro Hara

1994

- Denso Wave ® officially introduce QR Code
- Capable to store 7000 numeral after many

innumerable and repeated trial and error.
- In the beginning , QR Code used in Electronic

Kanban as communication tool in Process Control
System even at this time they are not sure it would
actually can accept and replace barcode

1999

- Approve a standard 2D code by Japan Industrial
Standard

- Made a standard 2D symbol on the Japan Automobile
Manufacturers Association's EDI standard transaction
forms

1999

- Use in public in Japan

2002

- Standard ISO approved

2012
- Win medal in the Media for Industry category of the

Good Design Award

June 2011

- QR Code for art show in North Western France and
just elegance of the design and cannot be read

- The Royal Dutch Mint recently produced limited
edition coins to commemorate the 100th anniversary
of the Mint in Utrecht that include embedded with QR
Code.

History

Figure 2.2. The history of QR code.

23

 QR Codes Architecture Structure

QR codes consist of different segments that are reserved for specific purposes. In QR

code version 2, the segment is divided into eight sections based on the numbers given

in Figure 2.3 and each segment has its own specific tasks. The specific tasks include:

Figure 2.3. The structure of QR code version 2 (Galiyawala & Pandya, 2015;

Kieseberg et al., 2010; Wakahara, Yamamoto, & Ochi, 2010).

1. Finder Pattern (1). It is used to detect a position of QR code in a decoder

application. It is surrounded by two guard zones of the one QR module called the

separator (Garateguy et al., 2014). The finder pattern consists of three identical

structures that are placed in all corners of the QR code except the bottom right one.

Each design is based on a 3x3 matrix of black modules surrounded by white modules

that are again surrounded by black modules. The finder pattern enables the decoder

software to identify the QR code and determine the correct orientation (Li et al., 2017).

2. Separators (2). The white separators improve the recognisability of the finder

patterns as they separate them from the actual data. The separators have a width of one

pixel (Galiyawala & Pandya, 2015).

24

3. Timing Pattern (3). In the decoder application, timing pattern is used to help

determine a symbol's coordinate. Alternating black and white modules in the timing

pattern enables the decoder software to determine the width of a single module and

denote it as the timing zone, which is also located between the finder patterns

(Garateguy et al., 2014).

4. Alignment Patterns (4). Alignment pattern is used to determine the sampling grids

from which code words are extracted and to ensure the correct deformation of the

pattern image (Garateguy et al., 2014). In version 2 and above, alignment patterns

support the decoder software in compensating for moderate image interference. On the

other hand, it is used to correct interruptions in the decoder application. The alignment

patterns are not included in QR code version 1. More alignment patterns are added

when the size of the QR code increases.

5. Format Information (5). The format information section stores information about

the error correction level of the QR code and the chosen masking pattern. In addition,

it consists of 15 bits next to the separators.

6. Data (6). Data is stored in 8-bit parts (called code words) (Farizshah & Abd Jalil,

2012) at the data section after it is converted into a bit stream. The size and data

capacity for different versions of QR code are shown in Table 2.2.

7. Error Correction (7). Similar to the data section, error correction codes are stored

in 8-bit long code words in the error correction section. As determined by Garateguy

(2014), QR code has four types of error correction, namely L, M, Q, and H, which

allow to correct up to 7%, 15%, 20%, and 30%, respectively of code words in error

(Hajduk, Broda, Kováþ, & Levický, 2016). The Reed-Solomon codes are used to

correct and detect the capacity by the formula e +2t ≤ k − p where k is the number of

error correcting code words, p is the number of misses of decoded protection code

25

words, e is the number of erasures, and t is the number of errors. In versions 1 to 3,

detection code words are used, which allow to identify a number of errors greater than

the correct capacity and fail the decoding. The maximum data capacity is given by the

size and correction level of the code. For example, a code of version 1 and 7%

correction capacity has a total number of code words n = 26 and k = 7 correction code

words. This code is capable of storing n – k = 26 – 7 = 19 code words and has an error

correction capacity of 2 code words.

8. Remainder Bits (8). If the data and error correction bits cannot be divided into 8

bit code words without a remainder, it will consist of empty bits.

 Types of QR Code

Various types of QR code were produced with certain patterns. As explain by Ji (2014)

and Tiwari (2017), there are five types of QR code, which will be explained below:

1. QR Code Model 1 / Model 2. Model 1 is capable to store up to 1,167 numerals and

it is the original QR code in the beginning. The highest version of the code is 14 with

73 x 73 modules. Model 2 is as important as model 1, which is capable to store up to

7,089 numeral characters. Version 40 with 177 x 177 modules is the largest module

produced. This mode1 is the type of QR code used nowadays.

2. Micro QR Code. It allows only one orientation to detect the pattern and can be

printed in a smaller space than before. It can store up to 35 numerals and the largest

module is 17 x 17.

3. iQR Code. The code can be generated in two steps whether rectangle or square

modules. The turned-over code, black and white inversion code or dot pattern code

can be printed. It also can store more information in a code as compared to QR code

26

model 2. Version 61 can store 40,000 numeral characters and contains 422 x 422

modules.

Table 2.2

The size and data capacity for different versions of QR code (Source: Garateguy,

2014).

Version Modules
per side

Function
pattern
modules

Format
and

version
modules

Data
modules

Code
word

capacity

Reminder
modules

1 21 202 31 208 26 0
2 25 235 31 359 44 7
3 29 243 31 567 70 7
4 33 251 31 807 100 7
5 37 259 31 1079 134 7
6 41 267 31 1383 172 7
7 45 390 67 1568 196 0
8 49 398 67 1936 242 0
9 53 406 67 2336 292 0
10 57 414 67 2768 346 0
11 61 422 67 3232 404 0
12 65 430 67 3728 466 0
13 69 438 67 4256 532 0
14 73 611 67 4651 581 3
15 77 619 67 5243 655 3
16 81 627 67 5867 733 3
17 85 635 67 6523 815 3
18 89 643 67 7211 901 3
19 93 651 67 7931 991 3
20 97 659 67 8683 1085 3
21 101 882 67 9252 1156 4
22 105 890 67 10068 1258 4
23 109 898 67 10916 1364 4
24 113 906 67 11796 1474 4
25 117 914 67 12708 1588 4
26 121 922 67 13652 1706 4
27 125 930 67 14628 1828 4
28 129 1203 67 15371 1921 3
29 133 1211 67 16411 2031 3

27

30 137 1219 67 17483 2185 3
31 141 1227 67 18587 2323 3
32 145 1235 67 19723 2465 3
33 149 1243 67 20891 2611 3
34 153 1251 67 22091 2761 3
35 157 1574 67 23008 2876 0
36 161 1582 67 24272 3034 0
37 165 1590 67 25568 3196 0
38 169 1598 67 26896 3362 0
39 173 1606 67 28256 3532 0
40 177 1614 67 29648 3706 0

4. SQR Code. It has a privacy function that can be used to store private information

or manage company information. The feature also includes restricting reading

function.

5. Logo Q. Logo Q is an incorporated level of design features such as illustrations,

letters, and logos. The readability is not compromised since propriety logic is used in

generating this type of code.

Figure 2.4 shows the design of various types of QR code as explained above.

Figure 2.4. The design of QR codes (Courtesy: www.qrcode.com).

2.2 Coloured Barcode

As stated by Grillo et al. (2010), Bishop (2007), and Fried (2007), some 2D barcodes

are using colours to create more symbols, resulting in a larger data capacity within the

28

same size. Examples of such barcodes are the Colour Bar Code System of Imageid

Ltd. and the more widely diffused Microsoft’s High HCCB. HCCB, also known as

Microsoft Tag, is used for a variety of applications such as information, entertainment,

and interactive experiences on mobile phones (Jancke, 2015). The main features of

HCCB in Figure 2.5 consist of rows of strings of symbols (triangles) of four different

colours: black, red, green, and yellow, and the consecutive rows are separated by a

white line. While the number of rows in a HCCB code may vary, the number of

modules in each row is always a multiple of the number of rows. A module represents

the basic entity for storing information in a 2D code. HCCB has a black boundary

around it, further surrounded by a thick white band. These patterns are designed to act

as visual landmarks in order to locate the barcode in an image. The black boundary at

the bottom of HCCB is thicker than the boundaries on the other three sides: the bottom

boundary acts as an orientation landmark, as barcodes may be at an arbitrary

orientation in the image. HCCB uses a grid of coloured triangles with four or eight

colours to encode data (Bagherinia & Manduchi, 2012). The last eight symbols on the

last row are always in the fixed order of black, red, green, and yellow (two symbols

per colour) and can be used as a colour palette during the scan.

This technique only considers certain primary colours such as black, red, green, and

yellow. It does not include the combination colour of RGB that can make many types

of colour. Furthermore, the storage for eight colours only can store 84 bytes as

compared to QR version 40 that can store up to 3 kilobytes.

As maintained opinion by Grillo et al. (2010), the main limitation of the HCCB code

is related to the fragility of the detection and alignment mechanisms. Indeed, the

29

detection process works as follows: it starts from a point that is supposed to be in the

interior of the code

8 colours barcode storing
84 RAW bytes

4 colours barcode storing 58
RAW bytes

Figure 2.5. Microsoft’s High Capacity Colour Barcode (Courtesy:

http://research.microsoft.com/en-us/projects/hccb/).

and proceeds on squares of larger sizes until it recognises the white border around the

code. After the white border has been located, it starts the alignment process by looking

for the thick bottom boundary. The fragility of the detection process derives from the

fact that not all the images inside a white border are necessarily codes and this will

bring the rise to delayed failures. Based on Prakash and Jancke (2008) researches, the

weakness of the alignment process derives from the fact that different slopes in the

scan phase might result in failure to properly recognise the thick bottom boundary.

Paper Memory Code (PM code) is known as a technology to convert a semi-huge data,

such as text, images, sound, animation etc. into encoded data in the QR coloured matric

code (Dagan, Binyamin, & Eilam, 2016; Nurwono & Kosala, 2009). The raster

generated code image can be decoded by the decoder and restored to the original data.

PM code was developed by Content Idea Asia Limited (CIAL) in Japan and the

30

structure is based on a three-dimensional x/y/z axis that allows more memory capacity

in the QR code to be stored. The PM code is a fifth generation media that allows the

fusion of all existing forms of media. Figure 2.6 shows the structures of standard and

IP-based PM code technology. A PM code with eight scales of colour without IP

access has been successfully developed, but the 24 scales of colour are still in progress

of development.

Figure 2.6. The structures of standard and IP-based PM code technology (Source:

Asia Global Technology Sdn. Bhd.).

The roadmap of PM code technology is shown in Figure 2.7. CIAL started their project

in 2009 and the largest amount of data that can be stored is 1.23 terabytes in 2003 by

using the personal computer mode.

31

Figure 2.7. The roadmap of PM code technology.

The advantages of PM code are include the following: (1) any type of digital data can

be encoded; (2) it can be printed; (3) more data can be stored as compared to the normal

QR Code; (4) and the RGB colours are used as the base colours that can produce more

than 17,000 colours to store the data.

Even though the PM code has the advantage of large data storage, data manipulation

is not considered with the idea to prevent outdated or rubbish data. Moreover, they

used their own encoding and decoding algorithms, thus the Denso QR code generator

cannot encode or decode the presented PM code.

2.3 Coloured QR Code

Most of the reproduction in printing uses cyan, yellow, and magenta colours, but in

capturing an image, it uses red, green, and blue sensing channels (Ramya &

Jayasheela, 2014). Many researches have proposed coloured QR code, which it can

offer more data capacity as compared to black and white barcodes (Pandya &

Galiyawala, 2014). The coloured QR code contains the same function patterns

including finder patterns, separators, and quiet zone (Melgar et al., 2012). As usual, all

32

digital colours are extracted from RGB model parameters. Each RGB colour

combination provides red, green, and blue colour codes, which can provide high

embedding capacity for coloured QR code.

An RGB colour system was developed from the combination of red, green, and blue

colours. There are 16,777,216 possible colours that use 8-bit colour. The colour format

and the calculation based on 24-bit format (0..23) are shown in Figure 2.8 below.

Figure 2.8. The colour format and the calculation based on 24-bit format (0..23).

As stated on the Online Reference and Tool website (2012), RGB colour space, or

RGB colour system, constructs all the colours from the combination of red, green, and

blue colours. The red, green, and blue use 8 bits each and have integer values from 0

to 255. The total of possible colour is 256*256*256=16,777,216 possible colours.

Each pixel on the LCD monitor displays colours this way, by a combination of red,

green, and blue LEDs. When the red pixel is set to 0, the LED is turned off. When the

red pixel is set to 255, the LED is turned on. Any value between them sets the LED to

partial light emission.

Each pixel in the LCD monitor displays colour based on RGB LED (light-emitting

diodes). The calculation of colour code is RGB = (R*65536) + (G+256) + B, where R

is red, G is green, and B is blue. For example, the colour for red is 0*655 + 0256 255

= #0000FF (in hexadecimal). RGB colours were selected because all computers use

33

this colour scheme to display multicolours in LED. It is easy to computerise the colour

chosen using the given calculation.

 Colour Depth

It is also known as bit depth or pixel depth that represents a number of bits used in a

pixel and a single pixel contains its colour component (Kim, Kim, & Cho, 2004;

Pascale, 2003; Süsstrunk, Buckley, & Swen, 1999). In the computer display, it refers

to the number of bits per pixel that represents a specific colour. Currently, almost all

computers support at least 32-bit colour, which allows up to 16.7 million of colour

combination. The 48-bit colour can be supported by an operating system that is

assuming the computer's video card supports this colour depth. When the technology

and available system resources have increased, the evolution of colour depth also

expanded. The evolution of colour depth starts with a two-colour combination known

as monochrome display. Table 2.3 shows a list of all the differences between colour

depths.

Colour depth refers to visual appeal. If the colour depth is set into high mode, then

more visual appeals appear on the computer display. The image will come out more

clear and vivid.

Table 2.3

A list of all the difference between colour depths.

Bit Colours Display name

1 2 Monochrome

2 4 CGA

34

4 16 EGA

8 256 VGA

16 65536 XGA

24 16,777,216 SVGA (True Colour)

32 4,294,967,296 Add Alpha Channel

48 281,474,976,710,656 Deep Colour

 Colour Model

As explained by Donald D. Hearn and M. Pauline Baker Hearn (2010), any method

for explaining the properties or behaviour of colour within some particular context and

creating a full range of colours from a small set of primary colours is called a colour

model. There are two types of colour models, which are additive colour models that

use light to display colour, and subtractive colour models that are applied for printing

by using inks. Currently, the colour model is simply a way to define colour and to

appear on hardware such as colour monitors and printers.

In the RGB model, the primary spectral component for each colour appears in red,

green, and blue colours (Sartor & Weeks, 1999; Farley, 2010). Additive colours use

the colour of light. Generally, the images represented in the RGB colour model consist

of three component images (red, green, blue) and when these components enter the

RGB monitor, the three image components combine on the phosphor screen to produce

a composite colour image that goes straight from a monitor to the eyes.

Basically, in the RGB image of 24 bits, each channel has 8 bits (red, green, blue),

which are composed of three images (one for each channel). Each image can store

discrete pixels with conventional brightness intensities between 0 and 255. The

https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&text=Donald+D.+Hearn&search-alias=books&field-author=Donald+D.+Hearn&sort=relevancerank

35

combination of red, green, and blue may produce many colours to be displayed. The

display adapter with 24 bits of information can contain 8 bits per component, then it is

multiplied by three components that will produce 16,777,216 (2563 or 224) discrete

combinations of R, G, and B values or colours. The colours in the RGB colour model

are described by indicating how much of each of red, green, and blue is included based

on its combination. Each component is defined from zero to maximum values. If all

the components are set up as zero, then the result will be black; meanwhile, if all

components are set up at maximum, the result is representable as white. The range of

these components can be indicated as follows:

1. From 0 to 1, with any fractional value in between. This representation is used in

theoretical analyses and in systems that use floating point representations.

2. Each colour component value can also be written as a percentage, starting from 0%

to 100%.

3. In computers, the component values are often stored as integer numbers in the range

of 0 to 255, the range that a single 8-bit byte can offer. These are often represented as

either decimal or hexadecimal numbers.

4. High-end digital image equipment are often able to deal with larger integer ranges

for each primary colour, such as 0..1023 (10 bits), 0..65535 (16 bits) or even larger, by

extending the 24-bit (three 8-bit values) to 32-bit, 48-bit, or 64-bit units (more or less

independent from the particular computer's word size).

Table 2.4 shows the example of saturated green written in different RGB notations.

https://en.wikipedia.org/wiki/Percentage
https://en.wikipedia.org/wiki/Integer
https://en.wikipedia.org/wiki/Byte
https://en.wikipedia.org/wiki/Hexadecimal
https://en.wikipedia.org/wiki/32-bit
https://en.wikipedia.org/wiki/48-bit
https://en.wikipedia.org/wiki/64-bit
https://en.wikipedia.org/wiki/Word_size

36

Table 2.4

Example of saturated green in different RGB notations.

Notation RGB Triplet

Arithmetic (0.0, 1.0, 0.0)

Percentage (0%, 100%, 0%)

Digital 8-bit per channel (0, 255, 0) or sometimes #00FF00 (hexadecimal)

Digital 16-bit per
channel (0, 65535, 0)

The RGB colour model can be represented in a unit cube. Each point in the cube

or vector (where the other point is the origin) represents a specific colour. Figure

2.9 shows the RGB model by using a unit cube. For example if,

red (1, 0, 0) + cyan (0, 1, 1) = white (1, 1, 1)

green (0, 1, 0) + magenta (1, 0, 1) = white (1, 1, 1)

blue (0, 0, 1) + yellow (1, 1, 0) = white (1, 1, 1)

The RGB colour model can be converted to other colour models such Cyan

Magenta Yellow Key (Black) (CMYK), Luminance (lightness) and two colour

channels (a and b) (Lab), perceived luminance and colour/luminance information

(YIQ), National Television System Committee (NTSC) colour model and others.

Some colour model needs to be converted to produce more clear images such as

37

Figure 2.9. The RGB model in a unit cube (Courtesy: Donald D. Hearn, M. Pauline

Baker, 2010).

from RGB to CMYK. For example, to convert from RGB to CMYK colour models,

the algorithm that can be used is shown in Figure 2.10.

/* identify and calculate complementary colours with given Red, Green, and
Blue colours*/

c = 255 – R; /* R = Red */

m = 255 – G; /* G = Green */

y = 255 – B; /* B = Blue */

/* find the black level k */

K = minimum (c,m,y)

38

/* correct complementary colour level based on k */

C = c - K

M = m - K

Y = y - K

/* The RGB values are in the range of [0:255] */

/* The CMYK values are in the range of [0:255] */

Figure 2.10. The algorithm conversion from RGB to CMYK colour models.

 Pixelation

Pixelation occurs when the image is zoomed in bitmap images and the individual

colour pixels (small colour square) are visible as elements that comprise the bitmap

(Gerstner et al., 2013). In early graphic application, it is easily visible with sharp edges

that gave curved objects and diagonal lines an unnatural appearance. Figure 2.11

shows the image that is zoomed out with a small section for a closer view, whereby

the fur can be distinguished by individual pixels. It can happen accidentally when the

image is designed to be displayed on a normal computer; when displayed at a large

screen, each pixel can be seen separately. The pixels are used to detail out the

information of an image. It can contribute the information regarding the type of colour

displayed of each pixel. From the combination of pixels, it can display an image. The

more pixels used in an image, the more details of the image are produced.

39

Figure 2.11. The image zoomed out more closely.

 Multilayer Colour

Taveerad and Vongpradhip (2016) and Nurwono and Kosala (2009) mentioned in their

research works that data capacity can be improved by adding more colour layers into

the QR code. Based on this research also, they mention that the QR code with a

capacity of nine kilobytes is not good enough according to the user standards and

independent internet information. Even though the researchers have not created the

auto generated coloured QR code application, they developed the pseudocode as a

guideline. Based on a study by Melgar et al. (2012), the development of coloured QR

code included a combination of layers. Each layer or depth was represented in one

colour. The coloured QR code contained stacks of single coloured QR Codes. After

that, each single coloured QR code was translated into binary data so that the coloured

QR codes could be encoded in 8-bit data.

A research on coloured QR code was proposed by Nurwono and Kosala (2009). In the

research entitled Colour QR Code for Mobile Content Distribution, they noted that the

coloured QR code is a matrix code that can be extended into a 3D barcode system. The

40

3D barcode contains x, y, and depth axis and it is an extended version of the traditional

QR code. Data capacity can be improved by adding more layers into the barcode

system by stacking them. From the experiment,, the coloured QR code was limited to

store only nine kilobytes with three layers, which had three colours and eight

combinations of colours. The constraint of this research is the colours experimented

were limited to red, green, and blue only. In addition, the experiment was only

conducted in a small amount of characters, which was only 19 characters. The version

of the coloured QR code used for testing was not version 40. Moreover, the nine

kilobytes data capacity was not sufficient according to user standards and for the

barcode to be internet independent (Nurwono & Kosala, 2009). The idea of this paper

is similar to Paper Memory Code and the development of the encoder and decoder

prototype was implemented on a mobile phone. Figure 2.12 illustrates the flow chart

for the encoding and decoding processes of coloured QR Code.

Another research by Ramya and Jayasheela (2014), entitled Improved Colour QR

Codes for Real Time Applications, claimed that the way to increase the QR code data

capacity is by adding colours. In order to obtain maximum data storage, the

characteristics of coloured QR code must be in a bigger size of pixels by reducing the

number of pixels needed to convey information. Three layers of cyan, magenta, and

yellow (CMY) colours were used and the combination of CMY resulted in eight

colours including black and white.

41

Input data

Calculate data length

Devide three parts

Generate QR Code each
part

Create a new byte array
and check every pixel of

the image if a layer is
meets with another layer

Save final value into the
new byte array

Create new image file

Capture image

Retrieve byte data

Read each pixel and
retrieve RGB value

Extract RGB layer

Decode each layer using
QR Code Decoder

Append the result

Show the result if text
else show action

En
co

di
ng

D
ec

od
in

g

Figure 2.12. The flow chart for encoding and decoding processes of coloured QR

code (Nurwono & Kosala, 2009)

The numbers of QR code input in this research were limited to three monocoloured

QR codes. The RGB colours were experimented due to the code’s capability to

construct all the colours from its combination (Online Reference and Tool, 2012).

Blasinski etc al. (2013) exploited the spectral diversity afforded by CMY colours in

generating the coloured QR using colour printing. The CMY colours were used to

increase the data rate by encoding independent data of CMY channels and decoding

the data from the RGB colour channels. The colours were limited to CMY colours. As

a result, a coloured QR code was produced from a combination of CMY colours only.

In addition, the coloured QR code was only limited to a three-colour combination and

42

not more than that. A small selection of words, i.e. “Hello World” (11 characters), was

tested and a small version of QR code was created. QR code version 40 was not

mentioned or experimented in this experiment in order to ascertain how many

characters could be stored in a single coloured QR code. Furthermore, the coloured

QR codes designed in their proposed framework could not be read by a monochrome

QR code reader due to the unsuitable designed decoder. This is not an effective method

for extending monochrome QR codes to the coloured QR code with low bit error rates

that are readily handled by error correction. The experimental results show that the

framework did not entirely accomplish to overcome the impact of the colour

interference, providing a low bit error rate and a high decoding rate. The research title

is Per-Colourant-Channel Colour Barcodes for Mobile Applications: An Interference

Cancellation Framework.

In a research entitled CQR Codes: Coloured Quick-Response Code, red, green, blue,

black, and white colours were used. Melgar etc al. (2012) proposed the ”coloured QR

code structure”, which was used to store or transmit information. The limited RGB

colours were used to deploy a new proposed code that enables twice the storage

capacity as compared to traditional binary QR Codes. The research did not use any

other colours except the RGB colours, black, and white. The research mentioned that

some Colour Quick Reference (CQR) code performance was not as good and not

correctly decoded. The experiment was limited to 1,024 bits of information only. The

Reed-Solomon error-correcting code with a theoretical correction capability out of

38.41% was concerned. The coloured QR code for testing was printed and a digital

camera with 3.2 megapixels was employed as input to decode the QR code in this

experiment. The result showed that the coloured QR code consistently decoded 1,024

43

bits of information stored on a 1.3 cm × 1.3 cm printed area. Among its features, the

structure had a remarkable transmission capacity and more complex aesthetic patterns.

Further research may consider a different set of colours at a large number, an algorithm

to counterbalance distortions caused by the inclination of the sensor, and the impact of

compression algorithms used in a digital camera.

Grillo etc al. (2010) developed a 2D barcode called High Capacity Coloured Two

Dimensional (HCC2D) in order to increase the data capacity of QR code. The aims of

HCC2D are to increase the data capacity, preserve the strong reliability and robustness

properties of QR code, error correction, and to make sure of not losing any

compatibility with the original QR standard (Singh et al., 2017). The experiment

showed that HCC2D codes obtain data densities close to Microsoft’s HCCB and strong

robustness similar to QR code. The constraint between QR Code and HCC2D is that

the overhead tends to increase when the number of colours and the code size increased.

Table 2.5 illustrates the result of the scan process time in millisecond for QR code and

HCC2D. This research was documented in a paper entitled High Capacity Coloured

Two Dimensional Codes.

Five research work papers were reviewed in order to gain the ideas in multilayered

colour on data capacity from the previous research results of a QR code. On the other

hand, a brief table of five papers has been summarised in order by the key element as

discussed in the papers previously. Among the key elements that have been identified

are colour used, increment data, error correction, transmission capacity, processing

time and others. This information can assist in making decisions concerning the best

structure for generating maximum data capacity on the coloured QR code mode. The

summary of the five research papers is shown in Table 2.6.

44

Table 2.5

The result of the scan process time in msec for QR code and HCC2D (Source: Grillo

et al., 2010).

From the result of these papers, some researchers have come out with the ideas for

future research and some have identified the advantages and disadvantages of their

research work. The purpose of it is to identify the hole to improve their research in a

way to give ideas to other researchers. Hereby, Table 2.7 can be referred as the

summary of future research, advantages, and disadvantages from the five research

papers.

45

Table 2.6

The identified information of QR code based on key elements.

No. Researchers and year Colours Increments
Error

Correction
Transmission

Capacity
Processing

Time
Others

1

Kris Antoni Hadiputra

Nurwono and

Raymondus Kosala

(2009)

 Red
 Green
 Blue

 3 times based
on layers
combined

 Reed-
Solomon

2

M. Ramya and

M. Jayasheela

(2014)

 Cyan
 Magenta
 Yellow

 3 times based
on layers
combined

 Reed-
Solomon

3

Henryk Blasinski,

Orhan Bulan, and

Gaurav Sharma

(2013)

 Cyan
 Magenta
 Yellow

 3 times Reed-
Solomon

 Otsu
Algorithm -
the reduction
of a grey level
image to a
binary image

4

Max E. Vizcarra Melgar,

Alexandre Zaghetto,

Bruno Macchiavello, and

 Red
 Green
 Blue
 Black
 White

1,024 bits of
information

 Reed-
Solomon

 Size of 1.3 cm
× 1.3 cm,
resulting in a
transmission
capacity of

46

 Anderson C. A.

Nascimento

(2012)

approximately
605 bits/cm2

5

Antonio Grillo,

Alessandro Lentini,

Marco Querini, and

Giuseppe F. Italiano

(2010)

 4 and 16
colours

 1.881
kilobytes/inch

 (600 dpi)
 Reed-

Solomon

 The average
overhead
introduced
by HCC2D
with 16
colours is
about 25%

47

Table 2.7

The future research, advantages, and disadvantages.

No. Researchers Future Research Advantage Disadvantage

1

Kris Antoni Hadiputra

Nurwono and

Raymondus Kosala

(2009)

 layers in the barcode system
 barcode reader accuracy
 colour correction algorithm

 suitable for outdoor environment
under daylight

 the discolouration and colour
changes of the colour barcode
by external factors

 three colours and three layers
only

 limited to a maximum of nine
kilobytes; not more than that

 QR code version 40 not tested

2

M. Ramya and

M. Jayasheela

(2014)

 creating other colour codes
such as red, green, and blue,
and it also deals with
implementing the coloured
QR code in real-time
applications by using field
programmable gate array

 reads the colour code in 360°
 expand barcode capacity by

adding colour
 utilises existing capabilities of

mobile devices

 CMY colours only

3

Henryk Blasinski,

Orhan Bulan, and

Gaurav Sharma

(2013)

 yellow channel has the highest

variability (lacking) and error
rates across commercial printer

 CMY colours only
 11 characters tested
 QR code version 40 not tested
 can only be decoded with

suitable decoder

48

4

Melgar, Alexandre

Zaghetto, Bruno

Macchiavello, and

Anderson C. A. Nascimento

(2012)

 a larger number or a different
set of colours

 an algorithm to counterbalance
distortions caused by the
inclination of the sensor

 the impact of compression
algorithms, commonly used in
digital cameras

 greater transmission capacity and
the use of more complex aesthetic
patterns

 RGB colours only
 limited to two times

expandable
 high performance overhead
 decoder cannot perform

correctly

5

Antonio Grillo,

Alessandro Lentini,

Marco Querini, and

Giuseppe F. Italiano

(2010)

 increasing the space available for
data

 a small computational overhead
 preserving similar robustness
 error correction
 not losing compatibility

 180dpi cannot be read
 Microsoft HCCB leads bigger

on data capacity as compared
to HCCB2D

 consume more overhead

49

2.3.4.1 Encoding

Nurwono and Kosala (2009) proposed the steps to encode multilayer coloured QR

code. The first step to start this process is by preparing to generate the single coloured

QR code. It can be generated via online (e.g. Kaywa Website, Swetake’s QR code

Encoder). Meanwhile, the Image Editing Software (e.g. Adobe Photoshop) is used to

combine the colours. Below are the steps to combine multicolour layers using the

image editing software by stacking three layers. The steps are as follows:

1. Firstly, the data is divided into three parts for ease of encoding. Each part will be

encoded into a different layer of the coloured QR code. If the user wants to encode a

file or a binary data, they need to obtain its binary data and divide them into three parts.

QR codes can only encode 8-bit data so the user needs to divide them proportionately.

2. Then the user encodes each part into a QR code. The user can choose whatever size

and error correction. The chosen size must be the same size for all three QR codes.

The codes and error correction level can be different in each QR code.

3. After all three QR codes have been generated, they must be assigned and stacked

with different colours. The first portion of the data or QR code should be assigned with

the red colour. The second layer should be green, and the last should be blue.

4. Once all layers have been assigned a colour, the colours must be combined on points

where the layers meet by using the image editing software for this purpose.

5. Four separate layers in the image editor need to be created and each should contain

a QR Code with one layer filled with black colour. Figure 2.13 shows the layers in the

image editor.

50

Figure 2.13. The layers in the image editor (Courtersy: Nurwono & Kosala (2009)).

6. The layers need to combine the colours on points where the layers meet. This can

be achieved by adding “Difference” effect on the layers. Figure 2.14 shows the result

of a combination of 4 layers.

Figure 2.14. The result of combination of four layers (Courtesy: Nurwono & Kosala

(2009)).

The encoding process is not implemented in the programming structure, so the

experiment cannot be performed such as performance and validation of the colour. All

combinations entirely depend on the image editor. The auto generator of coloured QR

code cannot be performed due to the limitations of the image editor’s capability.

Furthermore, the combination of colours for this experiment is limited to three colours

only as the benchmark.

51

A pseudocode has been proposed to build a coloured QR code auto generator. The

steps are as follows:

1. Get input data. Data can be numeric, alphanumeric, binary, or Japanese characters.

2. Calculate the data length and divide them into three parts.

3. Generate QR codes for each data part.

4. Assign colour for each layer. Layer 1 is Red, so every black point of the generated

QR code for Layer 1 is changed to Red. The RGB value of Black is (0,0,0) or #000000,

changed to (255,0,0) or #FF0000 for Red. Repeat the process to all layers and colours.

5. Create a new byte array and check every pixel of the image and examine whether a

layer meets with another layer. If yes, add their RGB values. For example: Layers Red

and Green meet at pixel position (10,25). Add Red RGB value #FF0000 and Green

RGB value #00FF00, so the new RGB value for that pixel is (255,255,0) or #FFFF00.

Then, invert this value using a logical NOT, so the final value is #0000FF. Afterwards,

store the final value in the new byte array.

6. Save the byte data and create a new image file. With the limitation of this method,

the encoded QR code needs to divide them proportionately. The size of QR code must

be similar for each layer, but the error correction level is not compulsory. In this case,

the limitation of this method cannot be applied for different sizes of QR codes. The

stack of layers needs to be applied with a black background layer and the combination

of the four layers needs to be merged.

A research by Ramya and Jayasheela (2014) has encoded the coloured QR Code by

converting all information to ASCII in the beginning. Three sets of data were used and

encoded into 8 bits of data, which contained 0 and 1 (Yeap, Cheong, Nisar, & Teh,

2014). The input element is divided into two elements. The ASCII value of the first

52

element should be added to the ASCII value of the next element and so on. All these

values are grouped together in the block of data. After the grouping conversion, these

data are divided into 8 bits of data. Suppose the data does not contain 8 bits, then zero

padding is carried out. The matrix laboratory (MATLAB) is used to carry out the mask

pattern. The steps above are repeated and the entire bit that has pixel value is converted

into square blocks. As a result, the colours such as cyan, yellow, and magenta are

assigned to all the bits and pixel values. Figure 2.15 illustrates the process of encoding

the coloured QR code.

Figure 2.15. The process of encoding the coloured QR Code (Courtesy: Ramya &

Jayasheela (2014)).

The data encoding process by Blasinski etc al. (2013) starts with encoding three

independent data to produce QR codes. Then, the QR codes are transformed into three

different coloured QR codes, which are CMY colours. The CMY coloured QR codes

53

are combined by overlay printing to generate the coloured QR code. Figure 2.16

illustrates the process of encoding coloured QR code.

Figure 2.16. The process of encoding coloured QR code (Courtesy: Blasinski et al.

(2013)).

Melgar etc al. (2012) proposed the encoding process starting with binarising the data

by considering each group of 16 bits representing one symbol. The Reed-Solomon

algorithm is used to generate the redundancy symbols and they will be merged with

the original data symbols. The purpose of the process above is for recovering data.

Two bits are used to be mapped into one of the four colours. Once the encoding

processes are completed, the coloured QR code is printed. This process will perform

noise during the printing process of coloured QR code if the resolution of the printer

is low. Figure 2.17 shows the coloured QR code produced from this research.

54

Figure 2.17. Coloured QR code produced (Courtesy: Melgar et al. (2012)).

Grillo etc al. (2010) noted in their research that in order to increase the data in HCC2D

(referring to the storage space), it should be generated in each module of the data area

with a colour selected from a colour palette. HCC2D can be composed of at least four

colours for each module, which is able to store more than one bit. The Bits per Module

(BpM) can be defined as the number of bits that a single module is able to store.

BpM = log2(number of colours)

If more colours are used, more data can be stored into the code. Figure 2.18 shows the

values for data capacity for a smaller version of HCC2D codes.

Figure 2.18. Values for data capacity for smaller version of HCC2D codes

(Courtesy: Grillo et al. (2010))

55

The HCC2D code encoder was developed by using the libqrencode library, whereby

it is a C library for encoding data in standard QR code symbols (Fukuchi, 2010).

2.3.4.2 Decoding

As usual, the first activity involved in decoding a coloured QR code is capturing the

image. The image is extracted into byte data and each of the byte data needs to be read

and translated into RGB colour values. Each RGB colour pixels will be separated into

monocolour layers and the process is performed by a QR code decoder. The layers

must have an appended structure because they use a combination of monocolour

concepts to store the information. The problems during decoding are the accuracy

problem due to lighting source, hardware, discolouration, image resolution etc.

(Nurwono & Kosala, 2009).

As specified by Nurwono and Kosala (2009), there are two main processes involved

when decoding the coloured QR code. The processes are separating the layers and

reading each layer. The processes to decode each QR code layer are basically similar

to the QR code encoding process; in contrast, it starts from bottom to top. The coloured

QR code decoding algorithm is shown in Figure 2.19.

From Figure 2.19, the algorithm only explains the detail about decoding the coloured

QR code, which is limited to the URL. Furthermore, the method to extract the RGB

colour should be explained in detail because it will reflect the performance and

validation of the coloured QR code. The flow of the decoding processes is illustrated

in Figure 2.12.

56

1
2
3
4
5
6
7
8
9

Get captured image
Retrieve byte data
Read each pixel and retrieve RGB value
Extract RGB layers
Decode each layer using QR Code Decoder
Append the result
Detect result type
If result is text then Show result
Else, show result and show available actions (example:
result contains URL, available action is to access URL)

Figure 2.19. Coloured QR code decoding algorithm (Courtesy: Nurwono & Kosala

(2009)).

The coloured QR code generation proposed by Ramya and Jayasheela (2014) in Figure

2.15 illustrates the ways to encode the coloured QR code generation. Even though the

decoding processes are not shown in Figure 2.15, the encoding processes can be

diverted to the decoding process if the flow processes are generated starting from the

end result of encoding coloured QR code. The processes start with converting the

coloured QR code into the separated CMY colours, followed by decoding the data

from the CMY QR code.

Blasinski etc al. (2013) noted in their research that the decoding process is a data

recovery process because there is no cross-interaction between the camera channels

(typically RGB colour channels used in capture devices) and CMY colourant layers

when capturing the image (Bulan & Sharma, 2011a). Nonetheless, CMY print

colourants can be extracted from RGB capture channels (Blasinski et al., 2013). After

capturing the images, the encoded data is extracted by using the localisation and

geometry correction algorithms (Parikh & Jancke, 2008) for monochrome barcodes to

produce an RGB QR code. After the RGB QR code is produced, the process continues

with overcoming the cross channel colour-interference by using the colour interference

57

cancellation algorithm. This process will result in estimated CMY QR codes. From the

result achieved, the estimated CMY QR will be decoded to extract information stored

in the previous CMY QR code. Figure 2.20 illustrates the flow of the decoding process.

Figure 2.20. Flow of decoding process (Courtesy: Blasinski et al. (2013)).

Based on the research by Melgar etc al. (2012), the decoding process starts with

capturing the images. The issue of positioning the coloured QR code during the

decoding process is to avoid the distortion of colours and symbol error. As a solution,

the image is converted to greyscale and a threshold is determined by the following

equation:

threshold =(lm1+lm2)/2

Where the value lm1 is a grey level corresponding to a first local maximum of grey

level and lm2 is two times of grey level of lm1.

Once the threshold is identified, the procedure of colour threshold is performed to

estimate the coloured QR code as shown in Figure 2.21.

58

Figure 2.21. Procedure of colour threshold. (Courtesy: Melgar et al. (2012)).

After the process is completed, the estimated coloured QR code is ready to be decoded

with minimal symbol error percentage. The decoding process can be performed by

using any coloured QR code algorithm because the coloured QR code has been

improved from the noise of the code word. This research aims to improve the decoding

process for coloured QR code, especially in the distortion of colours and positioning

of the camera.

 Multiplexing and Demultiplexing

The multiplexing technique refers to combining multiple similar types of item for

transmission over a single line. If multiplexing is used, only one QR code is required

(Ryu, 2015). This leads to the reduction in the line cost and assists in keeping track of

single QR codes. Meanwhile, the demultiplexing technique performs the reverse

59

function, which is to split the combined similar types of item into the original items

(Rouse, 2015).

In a research paper by Vongpradhip (2013), he mentioned about an algorithm to

increase the capacity of QR code by using multiplexing and demultiplexing. The

special symbol code concept is used to increase the data capacity from the traditional

QR code. The original data needs to be encoded and divided into smaller parts. The

smaller parts are generated in the standard form of the QR code and will be multiplexed

to produce a black and white QR code with special symbols inside. In the decoding

process, the QR code with special symbols will be dedicated in the same amount of

patterned QR code before it is multiplexed. These patterns can be read by a QR code

reader of a general smartphone and the data can be converted to the original form. The

processes of multiplexing and demultiplexing can be used in generating high capacity

QR code. However, at the same time, they generate overhead during the encoding and

decoding processes if they involve a large amount of layers. It is because the amount

of code symbols are dependent on the formula 2n (n = numbers of layers). A large

amount of n will influence the amount of code symbols. The overview of the

multiplexing and demultiplexing methods can be referred to Figure 2.22.

Original
Information

QR code
pattern 1

QR code
pattern 3

QR code
pattern 2

M
u
l
t
i
p
l
e
x

QR code
special

symbols

D
e
m
u
l
t
i
p
l
e
x

QR code
pattern 1

QR code
pattern 3

QR code
pattern 2

Original
Information

Figure 2.22. The overview of multiplexing and demultiplexing methods. (Courtesy:

Vongpradhip (2013)).

60

In the research paper entitled Improving the Capacity of QR Code by Using Colour

Technique proposed by Pillai and Naresh (2014), it was mentioned that data capacity

can be further improved by considering more colours along with black, white, red,

blue, green etc., and mixing with the multiplexing technique. This algorithm is capable

of increasing data capacity up to three times from the traditional QR code version 40

which is total 12888 bits. The code word of Reed-Solomon code is generated by using

finite fields and a damaged QR code can be recovered up to 30%.

The technique from a research entitled To Increase Data Capacity of QR Code Using

Multiplexing with Colour Coding in Embedding Speech Signal in QR Code has made

an effort to increase data capacity by multiplexing QR codes to produce a coloured QR

code. This idea has been proposed by Galiyawala and Pandya (2014). This technique

is similar with the paper done by Vongpradhip (2013); nonetheless, the difference is

a decoding method will generate a coloured QR code. The result showed that this

technique can increase data capacity up to 24 times from traditional QR code version

40 which is total 103104 bits. In the demultiplexing process, it is recommended to

multiplex 12 or less QR codes because it will generate faster results. The speech signal

can be embedded into the proposed technique due to its capability of offering a large

capacity. This process involves dividing the information into several parts and then

multiplexing the parts using a colour coding technique. For demultiplexing, it is the

reverse task of that of the multiplexing method.

Table 2.8 shows a summary of the multiplexing and demultiplexing methods of

coloured QR code concepts as discussed above. Table 2.9 shows a list of future

research, advantages, and disadvantages by researchers.

61

Table 2.8

The summary of multiplexing and demultiplexing methods of coloured QR code concepts.

No. Researchers and year Colours Increments Error
Correction

Transmission
Capacity Processing Time Others

1
Sartid Vongpradhip

(2013)
 Black
 White 3 times Reed-

Solomon

2

Prathibha N. Pillai and K.

Naresh

(2014)

 Black
 White
 Red
 Green
 Blue

 3 times
 Reed-

Solomon –
finite field

3

Hiren J. Galiyawala and

Kinjal H. Pandya

(2014)

 2n
colours n
= total
QR code

 24 times
 Reed-

Solomon

 processing time

very high during
multiplexing

62

Table 2.9

The future research, advantages, and disadvantages.

No. Researchers Future Research Advantage Disadvantage

1 Sartid Vongpradhip
 capacity improvement
 security
 information hiding

 able to increase data capacity 3
times

 limited to ASCII special
symbols

 Overhead of performance due
to comparison activities

2
Prathibha N. Pillai and K.

Naresh

 damage up to 30%
 able to increase data capacity 3

times
 high recovery level

 limit 3 colours
 version 40 not tested

3
Hiren J. Galiyawala and

Kinjal H. Pandya

 the proposed technique is only
used for digital transmission

 same colour across devices
without some kind of colour
management

 quality of camera to capture
images

 code optimisation

 data capacity 24 times as
compared to basic QR code,
which is greater than any other
techniques due to availability of
huge amounts of possible distinct
colours

 the multiplexing technique does
not distort the QR code visually

 use MATLAB as test
simulation as compared to
actual environment.

 not consider brightness and
illumination condition matters

 the processing time
requirement for
demultiplexing is high

 the printing device’s
dependency on generating
colours

 63

2.3.5.1 Encoding

Sartid Vongpradhip (2013) purposed the QR code using multiplexing and demultiplex

methods to increase the information of QR code. In the beginning, the original

messages are divided into small parts and performed into a QR code pattern. The

process of multiplexing starts with changing the module of each part to special

symbols and regenerating the QR code with special symbols inside. The patterns are

encoded and represented for each module in the QR code with special symbols that are

in black and white. Figure 2.23 shows the flow chart of the multiplexing and

demultiplexing processes.

The special symbols used are based on the number module pattern. Table 2.10 shows

the special symbols used in the module in each pattern. The value 0 represents the

black module and 1 represents the white module. When the corresponding module in

the same position of each pattern of QR code is black, black, black (0 0 0),

the symbol \ is used in the QR code. However, the symbols are tested to 10 characters

only (\, /, ^, V, >, <, ~ , and !) in the multiplexing and demultiplexing processes

and there are many symbols that can be introduced. Even though the experiment

mentioned that any characters on the keyboard or any special character patterns or

any special symbols can be used, there is no information of common symbols used

in another language keyboard. For example, the common symbols of Japanese were

not mentioned in this experiment. It is better for the compatibility process between two

languages or more. Furthermore, it cannot be read by the common QR code reader

after it is multiplexed. Figure 2.24 shows the QR code with eight special symbols.

64

Original Message

Divide Message into Smaller Parts

Encode Each Message into QR Code
Pattern

Multiplex module of each part to
QR Code with special symbols

Generate QR Code with
special symbols

Read QR Code with
special symbol

Demultiplex into Original QR Code
Patterns

Concatenated data in each QR Code
patterns to original information

Figure 2.23. The algorithms of multiplexing and demultiplexing

(Courtesy:Vongpradhip (2013)).

65

Table 2.10

The special symbols used for each pattern (Vongpradhip, 2013).

Figure 2.24. QR code with 8 special symbols (Vongpradhip, 2013).

Prathibha N. Pillai and K. Naresh (2014) started the encoding process by entering the

data and converting it into ASCII code equivalents. The primitive polynomial is used

to generate the ASCII equivalent finite field numbers. The Reed-Solomon encoder

algorithm is used to generate code words by using finite field numbers. After that, the

code word is converted into its binary and placed according to the QR code pattern.

The QR code pattern is considered as the colour layers and combined to generate a

coloured QR code. Figure 2.25 shows the process to produce a coloured QR code.

66

user data finite field
(ASCII)

reed
solomon
encoder

decimal to
binary

QR pattern
generator

colored QR
code

Figure 2.25. The process to produce coloured QR code (Pillai & Naresh, 2014).

Hiren J. Galiyawala and Kinjal H. Pandya (2014) divided the original information into

n parts. The n part is the number of QR code used for the multiplexing process and

also to be used as the required distinct colours based on the 2n equation. Table 2.11

shows the example of distinct colour requirements for QR code multiplexing.

Table 2.11

Example of distinct colour requirements for QR code multiplexing.

Number of QR codes
for multiplexing (n)

Required distinct
colours

2 4
3 8
4 16
5 32
6 64
… …
14 16384

The QR codes will be generated based on n parts. The multiplexing process starts with

identifying the distinct colour by using the colouring code technique. The distinct

colour will be assigned for each possible pattern after the QR code is combined. The

distinct colour generated from the RGB combination colours is performed from the

colour map matrix in MATLAB. The normalised values of the RGB combination of

67

coloured QR code are listed in Table 2.12. A colourful QR code will be generated after

the distinct colour has been identified during the multiplexing process.

Table 2.12

The normalised values of RGB combination for coloured QR.

QR
Code 1

QR
Code 2

QR
Code 3 Index Red Green Blue Colour

0 0 0 0 0 0 0 Black
0 0 1 1 0 0 1 Blue
0 1 0 2 0 1 0 Green
0 1 1 3 1 0 0 Red
1 0 0 4 0 1 1 Cyan
1 0 1 5 1 0 1 Magenta
1 1 0 6 1 1 0 Yellow
1 1 1 7 1 1 1 White

Figure 2.26 illustrates the flow of the multiplexing process of coloured QR code.

divide data
to n parts

generate QR
code of n

parts

multiplexing
QR code of
n parts with

color

generate
colored QR

code

Figure 2.26. Flow of the multiplexing process of coloured QR code.

2.3.5.2 Decode

As reported by Sartid Vongpradhip (2013) in the research, the decoding phase involves

reading a QR code with special symbols and demultiplexing it into the original

pattern. The symbol in each module (code word) will be extracted back to each layer

68

(pattern). The value 0 that represents the black module and 1 that represents the white

module will be restored back to each layer. After the module restoration is completed,

the original QR code is ready to be read as normal. Figure 2.27 illustrates the flow of

the demultiplexing process of QR code with special symbols.

colored QR
code

read QR code
with special

symbol

demultiplexing
the QR code
into original

pattern

concatenate
data in each QR
code pattern to
original data

Figure 2.27. Flow of the demultiplexing process of QR code with special symbols.

Meanwhile, Pillai and Naresh (2014) started the decoding process by reading the

coloured QR code image and splitting it into RGB colour layers. The split RGB colour

layers contain binary information and these layers will be converted to a decimal value

for each byte. The decimal values are used as an input for the Reed-Solomon decoder.

The outputs of the Reed-Solomon decoder are ASCII equivalents and they will be

converted into the original data. Figure 2.28 shows the flow of the decoding process.

colored QR
code

split into RGB
layers

binary to
decimal

Reed Solomon
decode decoded data

Figure 2.28. Flow of the decoding process.

The demultiplexing process developed by Hiren J. Galiyawala and Kinjal H. Pandya

(2014) involves the reverse task of the multiplexing method. The table of assigned

colour combination is referred to obtain the RGB values from the multiplexed coloured

69

QR code. The original pixel value of QR code will be restored by comparing it with

all the combinations of multiplexing tables. After the original pixel value of QR code

is restored, it is compatible to be scanned by reader devices. The extracted information

can be concatenated to form an original long message sequence. Figure 2.29 shows the

flow of the demultiplexing and decoding processes.

colored QR
code

demultiplex
colored QR

code by
comparing

color palletes
with color pixel

generate n parts
of black and

white QR codes

decode QR
codes and

concatenate
data to form
information

Figure 2.29. Flow of the demultiplexing and decoding processes.

 Compression

Nancy Victor (2012) mentioned in her research entitled Enhancing the Data Capacity

of QR Codes by Compressing the Data Before Generation that to increase the data

capacity in the QR code, it needs to be compressed first by using any type of data

compression techniques before the encoding process is performed. This research

suggests a technique for data compression by employing two steps: (1) the first step is

converting the text data into a binary form; (2) and the second step is generating the

hash map data from this binary data. As a result, the data compression can exceed more

than four megabytes of data in a QR code as compared to four kilobytes as before.

The compression idea is useful because it can reduce the consumption of resources

(Umaria & Jethava, 2015). Some extra computational processes need to be performed

70

when the process of decompressing is implemented. The factors of concern when a

compression process is implemented are the degree or percentage of compression, the

amount of distortion, and the computational resources (Donoho, Vetterli, Devore, &

Daubechies, 1998).

As in the general objective, the main idea of this research is to increase data capacity

by using multiple combination techniques on the coloured QR code. Based on research

by Victor (2012), normally, the data can be compressed up to four kilobytes in a normal

QR code at the error correction level L (maximum); nonetheless, by using the

technique proposed by the researcher, it can store more than four kilobytes. Victor (

2012) also noted that it is more efficient if the data compression technique used in a

QR code is capable to store more than four megabytes of data.

Error detection and colour distortion can be used as the metric measurement of

effectiveness of the proposed coloured QR code. Error detection level can be looked

through at the level of error correction. Meanwhile, colour distortion is not suitable to

be used in this research because it is related to the ability of the peripheral/device to

translate the colour when reading the image (QR code). In addition, the distortion is

caused by light environment, printed colour etc.

Even though the data capacity of QR code can increase drastically beyond four

kilobytes, some enhancements of QR code encoding and compression algorithm

techniques can be used to add more data capacity capability as compared to the normal

QR code. Data capacity can be improved by mixing the features in compression and

71

coloured QR code generation. There are three criteria that can be experimented,

namely data storage capacity, reading speed, and accuracy of the data (Victor, 2012).

2.3.6.1 Encoding

The idea to generate a high capacity QR code is by starting with a simple compression

of the data before the encoding process is performed. The implementation of encoding

is done through the normal processes of encoding the QR code, which are as follows

(Feng & Zheng, 2010b):

1. Analyse the data and convert the data to symbol characters. Identify the error

correction and detection level.

2. Encode the data.

3. Initiate error correction coding.

4. Add remainder bits and data masking patterns.

5. Generate the format information and version information (Hahn & Joung, 2002).

Figure 2.30 illustrates a flow chart in generating a high capacity QR code.

As what was proposed by Victor (2012), a coloured QR code can be developed from

the hash map data. By using the RGB colour coding technique, every letter from ‘A’

to ‘P’ will be assigned with different colours. Whenever such a character is

encountered, the corresponding colour will be placed in the QR code. The total bit for

colour allocation is four bits.

Another remainder of four bits is assigned to an allocation of sixteen characters in the

72

Input the data to
be encoded

Compress the data

Encode the data

Figure 2.30. The flow chart in generating a high capacity QR code (Courtesy: Victor,

2012).

hash map. For example: ‘a’ to ‘o’ and ‘p’ to ‘z’. Every sixteen character allocation

map will be represented as a group of colour codes. The steps to generate a large

amount data for QR code is shown in Figure 2.31.

Save data into text document Convert data into series of 0's and 1's
guided hash table allocated

Generate a hash map data into binary
numbers (Example: 0001 for A)

Generate the QR Code using hash map
data using encoding procedure

Figure 2.31. The steps to generate a large amount data for QR code.

When the above activities are completed, the coloured QR code generation can be

developed by combining both four bits. Figure 2.32 shows the example of how the

73

hash map data can be encoded into a 2D barcode. The colour mapping is limited to 16

colours because the four bits can have only 16 binaries.

Figure 2.32. The hash map data can be encoded into a 2D barcode (Courtesy: Victor

(2012)).

2.3.6.2 Decoding

The decoding process is the reverse of the encoding procedure (Victor, 2012). The

quiet zone needs to be identified in order to decode the correct data. In the decoding

procedure, the distortion of symbols can be corrected by alignment patterns. Two

techniques are recommended including the “edge to similar edge” estimation method

to check whether the detected bar-space pattern is correct (Hahn & Joung, 2002) and

the preprocesses that are conducted before performing the pattern finder. The

preprocesses include greyscaling of the captured colour image, histogram stretching

of the image, local adaptive thresholding, noise filtering, cropping, rotation

correction, and tilt correction (Falas & Kashani, 1994). The decoding process is

performed when the preprocesses and pattern finder are performed. Victor (2012)

claimed that the decoding process can be done from its encoded coloured QR code,

but there is no experiment result attached. It is just a theoretical concept.

74

 Hybrid Extension

Many techniques were presented by the researchers in regard to increasing the data

capacity of QR code. Several of the techniques are compression (Victor, 2012),

multiplexing (Ferreira & André, 2014; Vongpradhip, 2013), and multilayer (Nurwono

& Kosala, 2009). These techniques can be incorporated if the suitable method is

implemented together.

Three techniques were chosen to extend the data capacity. The techniques are

compression, multilayer, and multiplexing. At the same time, there will be several

possibility problems during the implementation. Table 2.13 shows the possibility

problem experience if the priority exchange is implemented.

Table 2.13:

The possibility problem experience if the priority exchange is implemented.

Priority 1 Priority 2 Priority 3 Remarks

Compression Multiplexing Multilayer

It is suitable

because it needs to

compress the data

first, then run the

black and white

QR code, followed

by generating the

coloured QR code

through the

multilayer

technique.

75

Compression Multilayer Multiplexing

Multilayer

involves the

coloured QR code.

Meanwhile, the

multiplexing

technique covers

the black and

white QR code. As

a result, it

consumes more

processing time

when converting

from coloured to

black and white

QR code. It is hard

to perform the

conversion.

Multiplexing Compression Multilayer

Not suitable

because the text

file needs to be

compressed first.

It consumes more

processing time

when decoding the

QR code back for

text compression.

Multiplexing Multilayer Compression

Not suitable

because the text

file needs to be

compressed first.

It consumes more

processing time

76

when decoding the

QR code back for

compression.

Multilayer Multiplexing Compression

Not suitable

because the text

file needs to be

compressed first.

It consumes more

processing time

when decoding the

QR code back for

compression.

Multilayer Compression Multiplexing

Not suitable

because the text

file needs to be

compressed first.

It consumes more

processing time

when decoding the

QR code back for

compression.

The compression must be generated first in order to save more characters. As explained

by Victor (2012), the text must be compressed first before the QR ode is generated.

Figure 2.33 below shows the processes involved when the techniques of compression,

multiplexing, and multilayer change their positions. From the abovementioned figure,

the first technique shows the least processes as compared to the second and third

techniques. The main reason is when the compression technique is moved to another

position after the text, it needs extra processing time in order to obtain a high capacity

77

QR code. Even if the compression technique is put in the last position, the QR code

cannot be generated. As a conclusion, the first technique is the best solution to gain

more data capacity in the proposed QR code.

Compression Multiplexing Multilayered

encode

Text

compress encode

decodedecodedecompress

CompressionMultiplexing Multilayered

decode and compress

Text

encode encode

decompress and encodedecode decode

MultilayeredMultiplexing Compression

encode

Text

encode decode and compress

decodedecode decompress and encode

The QR Code not
generated

1

2

3

Figure 2.33. The processes involved when the techniques of compression,

multiplexing, and multilayer change positions.

There are three proposed techniques that were based on the previous studies of several

researchers with some modification. The technical breakdown is as follows:

1. Compression technique. Based on a preliminary test performed by Azizi Abas,

Yuhanis Yusof, and Farzana Kabir Ahmad (2015), it showed that the GNU Zip (GZip)

compression was the best compression utility to compress text by using QR code. In

addition, it must be added with Base64 encoder/decoder.

78

2. Multiplexing technique. Vongpradhip’s (2013) research was chosen because the

QR code was still generated based on black and white colours. Moreover, Vongpradhip

(2013) mentioned that the QR code needs to be separated into small parts before it can

be multiplexed. With this idea, the compressed data will be separated based on the

maximum capacity storage of QR code version 40. The symbols are not used to

multiplex because there are limited symbols offered by characters in the operating

system. To solve this problem, another technique is utilised by using pixel modules in

QR code version 40. In this case, 177 x 177 modules will be plotted with black

representing 1 and white representing 0.

3. Multilayer technique. A coloured QR code will be generated based on a

combination of red, green, and blue QR code layers from the multiplexing process.

Nurwono and Kosala (2009) proposed a pseudocode to generate a coloured QR code

auto generator. The coloured QR code is built based on the combination of colours

from two layers. For example: the red and green layers meet at pixel position (10,25).

Then, athe Red RGB value #FF0000 and Green RGB value #00FF00 are added, so

the new RGB value for that pixel is (255,255,0) or #FFFF00. After that, the inversion

of this value uses a logical NOT, so the final value is #0000FF. Then, the final value

is stored in the new byte array. For some reason, this technique will encounter a

problem when the White RGB value #FFFFFF from layer 1 and White RGB value

#FFFFFF from layer 2 at the same pixel position meet. The new value for that pixel

cannot be assigned because the result of new value is #1FE for each segment, which

is not valid in the RGB colour system. The changes must be made by using

multiplexing first to obtain 8 bits colour identification for each RGB segment.

79

 Structured Append

The main feature of structured append in QR Code 2005 is the capability to divide a

maximum of 16 symbols structure format in a single QR code. The 16 symbols can be

divided into multiple data areas and QR symbols. The benefit of structured append in

QR code is that it allows printing in a narrow area (Brititsh Standards., 2009).

There are two types of mode in the structured append 8-bit code word that is placed in

a header block. They are:

1. The position of the particular symbol (4 bits). Located in the first four bits of the

header code word and identified as the position of the particular symbol. If the

indicator is 0011, then it refers to four symbols.

2. The total number of symbols to be concatenated (4 bits). Located in the last four

bits of the header code word and identified as the total number of symbols to be

concatenated in the structured append format. If the indicator is 0110, then it refers to

the total amount of symbols.

The bit pattern in a header block is the combination of position and total number of

symbols. For example: if the position is 0111 and total number of symbol is 0100, the

bit pattern is 01110100. Figure 2.34 illustrates a single symbol and the structured

append of symbols encoded with "ABCDEFGHIJKLMNOPQRSTUVW-

XYZ0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"

80

Figure 2.34. Single symbol and the structured append of symbols encoded with

"ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789ABCDEFGHIJKLMNOPQ

RSTUVWXYZ".

2.3.8.1 Implementation of partial extraction

Partial extraction is a method to manage the data inside the QR codes. The activities

include displaying, adding, updating, and deleting an operation of a decoded QR code.

This process is similar to the structured append format; nonetheless, it involves a

selected single QR code and not the symbols inside a QR code. This process will

improve the management of data inside the QR code. The structured append in QR

Code 2005 is limited to 16 symbols, but partial extraction is unlimited based on how

many QR codes are combined. Figure 2.35 illustrates the methods of partial extraction.

Usually, the process starts with decoding the new combined QR code until the original

QR code is produced. The data in the original QR Code will be decoded, followed by

managing the data (displaying, adding, updating, and deleting operations). After the

process of managing the data is completed, the set of original QR codes will be re-

encoded.

81

Sub Algorithmn 1 Sub Algorithmn 2 Sub Algorithmn n

Input 2 Input nInput 1

Output nOutput 2Output 1

Integrated between
algoritmn

Integrated between
algoritmn

Output

Input

QR code 1

QR code 2

QR code n

Re encodeRe encodeRe encodeRe encode

Decode Decode Decode Decode display, update, delete and add

Figure 2.35. The methods of partial extraction.

2.4 Combination Techniques of QR Code Data Capacity

Based on an analysis performed by Feng and Zheng (2010), the performance of 2D

barcode is divided into three areas, which are as follows:

1. Information capacity. By adding colours, the 2D barcode can improve its capability

to store more information. The coded rules need to be modified in order to enhance the

information capacity.

2. Information compression ratio. The high compression ratio will extend the total

amount of characters that can be stored. In addition, the QR code can store binary

values that can be used in the compression file.

3. Correcting capability. The high percentage of recovery value is good for QR code

because it will improve the QR code to be more robust and accurate in data

accessibility.

Based on Galiyawala and Pandya’s (2014) research in Table 2.14, the processing time

to encode and decode 14 QR codes took approximately 53.153 and 1236.105 seconds,

which is time-consuming to complete the task. It uses 16,384 colours to expand the

data capacity in QR code with an amount of 14 QR codes.

82

Table 2.14.

The processing time of encoding and decoding (Courtesy: Galiyawala & Pandya

(2015)).

Sr. No

Number of QR

codes

multiplexed

Assigned

distinct

colours (2*)

Processing time (seconds)

During

encoding

During

decoding

1 2 4 2922 2.892

2 3 8 3194 2.988

3 4 16 3364 2.982

4 5 32 3131 3.084

5 6 64 3297 3.381

6 7 128 3489 3.624

7 8 256 3911 4.359

8 9 512 4811 6.128

9 10 1024 6229 11.406

10 11 2048 9453 28.398

11 12 4096 15787 91.393

12 13 8192 27940 323.198

13 14 16384 53157 1236.11

The models and algorithms developed by Vongpradhip (2013), Nurwono and Kosala

(2009), and Victor (2012) are chosen based on several reasons. Among the reasons

are:

83

1. Data capacity. The new enhanced QR code is able to generate four megabytes of

data storage (Victor, 2012) and the data increment can achieve three times in a single

QR code (Vongpradhip, 2013).

2. Colours. Red, green, and blue are the colours tested by researchers regularly. The

colour combination of layers are only tested using a photo image application (Adobe

Photoshop). This technique is not a suitable method to experiment with the colours

and to combine them between the layers.

3. Compression. The compression technique is a value-added function to this research

because Victor (2012) mentioned in her research work that the data storage capacity

of QR codes can increase drastically if the compression technique is implemented.

Even though three research works are chosen, modifications must be made to combine

the input and output between the three methods. As in objective three, partial

information can be created using the index display technique. It means that the data

will be displayed using the selected index.

2.5 Summary

This chapter provided the background studies of the subjects tracked in this

proposition. The first items considered are the organisational process of the QR code

and the overview as support knowledge. The research on QR code was explained in

detail, especially on encoding, decoding, and partial extraction processes in QR code.

Partial extraction was explained in the way of its functionality and capability. As a

conclusion, several works from other researchers will be denoted as the necessary

foundation knowledge of the whole inquiry.

84

RESEARCH FRAMEWORK

This chapter describes the methodology used to achieve the research objectives.

The research methodology contains the methods and techniques that are used by

the researchers in a systematic way to solve a problem in bringing out the research

outcome; for example: data collection techniques, data processing techniques, and

instruments (Rajasekar, Philominathan, & Chinnathambi, 2013). This research applies

a deductive approach (Trochim, 2015), which begins with a general idea (such as

theory, principles, and concepts) and need to commented to the other chapters. As a

strategy, each phase have its own method and outcome.

3.1 Research Methodology

The process for this research is as illustrated in Figure 3.1.

 Phase One

The first phase is called the preliminary study as shown in Figure 3.1. The tasks involve

searching for information related to various sources and selecting the suitable

algorithms, which can be executed successfully before any modification is made on

the selected algorithm. Three components are to be considered when this phase is

implemented, namely creating the theoretical framework, testing existing algorithms,

and determining the suitable algorithm to be merged.

85

Phase Component

Preliminary Study

1. Theoretical Framework
2. Testing existing algorithms
3. Determine suitable algorithm to be merged

Outcome

Algorithms selected

Phase One

(Preliminary Study)

Phase Two

(Development Requirement)
(Development Process)

Development Requirement

1. Analysis requirement
2. Design the software and hardware

Outcome

Encode (RO1), decode (RO2),
and partial extraction (RO3)

algorithm

Development Process

1. Encoding coloured QR Code
2. Decoding coloured QR Code
3. Encode/Decode partial colored QR Code

Phase Three

(Testing)

Testing

1. Input and output testing
* declaring output as a benchmark

 * total characters, total lost and processing time
2. Logical error testing
3. Comparison testing

End task (RO4)

Phases

Figure 3.1. The research framework.

3.1.1.1 Theoretical Framework

The theoretical framework (Figure 3.1) focuses on a research question that tries to

identify, analyse, select, and synthesise research evidence relevant to that question. In

this research, the steps include the following:

86

1. Investigating storage increment methods in QR codes. This information can be

found in the literature of previous researches and commercial resources (Section 2.2

and Sections 2.3.4 until 2.3.8).

2. Identifying and collecting information from one or more databases to search the

algorithm used in QR code and coloured QR code, specifically in increasing data

capacity and compression. Online/offline databases such as e-journals, e-papers,

books, documents, proceedings and others are reviewed. This research aims to identify

the state-of-the-art method in QR code related to data capacity and compression

algorithm.

3. Developing an explicit search strategy to select the suitable algorithms produced

from previous researches. The reason is to determine the most relevant algorithms for

research work. The criteria based on successful execution, processing time and total

characters stored.

4. Selecting titles, abstracts, and implementation based on explicit inclusion after they

are identified from step (3).

The output discussion of the theoretical framework can be found in Sections 2.3.7 and

2.3.8.

Figure 3.2 shows the theoretical study of the first item in the first phase of the research

framework strategy.

87

Theoretical Framework

The Goal : To investigate the state-of-art of QR code

Input Activities Deliverable

 Investigate for storage
increment methods using color
QR codes

 Identifying one or more
databases to search current
studies of QR code itself, color
QR code, data capacity and
compression QR code.

 Developing an explicit search
strategy to select suitable
algorithm.

 Searching for previous/related
algorithms

 Identifying suitable algorithms.

Books.

Periodical Journals.

Proceedings.

Published and

Unpublished Papers.

Online Documentations.

Online Journals.

Online Proceedings.

White Papers.

 Set of algorithm used in QR
code.

 Set of processes, activities, and
techniques required for data
capacity and compression.

 Set of the evaluation criteria for
QR’s encode and decode
algorithms.

Figure 3.2. The theoretical framework.

3.1.1.2 Testing Selected Existing Algorithms

The second component is more on testing the selected existing algorithms, which

include the following:

1. Finding the flow charts, pseudocodes or programming codes that were developed to

increase the data capacity of coloured QR code (Sections 2.3.4 until 2.3.6 and Section

2.3.8).

2. Assembling the selected algorithm as a preparation for the coding process.

Reorganising the pseudocode, flow chart, and codes into a readable flow to ease the

process of coding them back afterwards.

88

3. Identifying the hardware. A personal computer will be used to develop the

application. Among the hardware are as follows:

 Intel i7 processor

 8GB DDR4 memory

 700GB storage allocation

 1440 dpi printer

4. Identifying the software. The selection of software includes system, application, and

programming language software.

 Windows 7 and above

 NetBean Integrated Development Environment version 7.2.1 and

above

 Java Software Development Kid version 8 and above

 ZXing version 2.1 and above, library for Java QR Code

 Apache Commons Compress library version 1.9 and above

 Graphic display application such as Microsoft Paint etc.

5. Developing the encoding and decoding processes. The developing process will

follow the steps in the algorithm created by the researcher.

6. Testing each algorithm based on data capacity (Grillo et al., 2010; Victor, 2012) ,

processing time (Galiyawala & Pandya, 2015; Grillo et al., 2010), and error correction

level (Pillai & Naresh, 2014) only. These three testing methods are the most evaluated

methods by the researchers in their research (Refer Tables 2.6 and 2.8)

89

Figure 3.3 shows the testing activities and outcomes towards choosing the best

algorithm for data capacity in QR code.

Testing the algorithmns

The Goal : To develop and test the literature systems algorithm

Input Activities Deliverable

 Collecting data to develop.

 Reorganize the algorithm.

 Identify the hardware and
software

 Develop the encode and decode
process

 Test each algorithm

 Get the result

Personal Computer

System Software

Application Software

Programming Language

 Hardware and software required
for the algorithm.

 Implemented algorithm

 Result of data capacity, processing
time, and error correction.

Figure 3.3. The testing activities.

3.1.1.3 Merging the Algorithms

The third component focuses on merging the three identified algorithms.

1. Using the test results to gain the compatibility among the three algorithms when the

merging process is implemented and to gain the maximum data capacity that can be

stored.

2. Determining the priority of the algorithm based on the test.

3. Synchronising the input and output among the selected algorithms.

90

Figure 3.4 illustrates the finalising and merging activities as a guideline to develop a

new enhanced QR code.

Determine suitable algorithms to be merged

The Goal : As a guideline to develop new enhancement QR code

Input Activities Deliverable

 Execute the various forms of
merged algorithms.

 Prioritize the algorithms as
shown in Table 2.13 .

 Synchronize input and output

List of selected algorithms
 A merged algorithms are

compression, multiplexing and
multilayer

Figure 3.4. The finalising and merging activities.

 Phase Two

This phase is concerned with the design and development of a coloured QR code. It is

divided into two parts: development requirement and development process.

3.1.2.1 Development Requirement

The development requirement phase investigates the processes involved in developing

a coloured QR code. This is achieved by analysing the required information on

hardware, software, and steps to develop a coloured QR code. The coloured QR code

algorithm consists of several algorithms, namely compression, multiplexing, and

multilayer. These algorithms will be designed for integration based on the required

input and output. Figure 3.5 shows the proposed flow of the encoded and decoded

91

coloured QR code. The partial extraction processes of a coloured QR code are

illustrated in Figure 3.6.

Sub Algorithmn 1 Sub Algorithmn 2 Sub Algorithmn n

Input 2 Input nInput 1

Output nOutput 2Output 1

Integrated between
algoritmn

Integrated between
algoritmn

Output

Input

Encode

Decode

New High Capacity QR Code

Figure 3.5. The proposed flow of the coloured QR code.

Sub Algorithm 1 Sub Algorithm 2 Sub Algorithm n

Input

Output

Input Input

OutputOutput

Integrated between
algoritmn

Integrated between
algoritmn

Output

Input

Re-Encode

Decode

New High Capacity Partial Extraction QR Code

Level 1 Partial Extraction Level n Partial Extraction

D
ata M

anipulation
(A

dd, U
pdate or D

elete)

Figure 3.6. The proposed flow of the partial extraction process of coloured QR code.

3.1.2.2 Development Process

This phase involves three main processes, which are encoding, decoding a coloured

QR code, and partial encoding/decoding a QR code. The processes include writing

separate encoding or decoding programmes by using Java core libraries and following

the Javadoc comment style. This is followed by merging the encoding and decoding

92

programmes. Next is the development of partial encoding/decoding algorithm based

on the required portion of information. It will be based on the proposed encoding and

decoding implementation of coloured QR code.

The illustration in Figure 3.7 shows the flow steps of the coding development process.

The algorithm from 1 to n consists of a combination of selected algorithms chosen

from Phase One. Algorithm 1 is the first priority to be executed in this development

process. Meanwhile, the algorithm n is the last portion to be executed and it will

produce the output, which is the coloured QR code. Before the integration of

algorithms is implemented, each algorithm is developed based on the encoding,

decoding, and partial extraction processes. Each algorithm is combined or merged to

build a completed model of high density coloured QR code after completing the test

task. Since the design and development of encode, decode and partial extraction are

completed in Phase Two then research objective one, two and three are fulfilled

simultaneously.

 Phase Three

After the development processes are completed, the testing phase is performed. The

input starts with the ability of QR code to store the characters inside, according to its

version and error correction level. The character allocation in the QR codes for version

40 has been set with a limited amount of characters according to the error correction

level, which is shown in Table 3.1. The character allocation is based on the preliminary

test (Abas et al., 2017).

93

D
ev

el
op

m
en

t
R

eq
ui

re
m

en
ts

D
ev

el
op

m
en

t
Pr

oc
es

se
s

Analysis

Design

Encode

Decode

Partial

error

error

error

completed

Algorithmn 1

Algorithmn 2

Algorithmn n

integration

integration

encode

partial extraction

decode

input

output
Testing and

Implementation

error

encode

partial extraction

decode

encode

partial extraction

decode

Figure 3.7. The flow steps of the coding process.

Table 3.1

Maximum number of characters based on error correction level.

Error Correction
Level

Total Characters
for each QR
Code

L 2952

M 2330

Q 1662

H 1270

94

Error detection and colour distortion are not discussed in this research. Error correction

level, data density, and processing time are used to test the newly proposed data

capacity of QR code.

3.1.3.1 Testing

The testing involves the utilisation of several input and output data. It is to ensure that

the proposed algorithm is implemented accordingly. The testing is to identify that the

programme execution is running well, efficient, robust, and reliable.

The experiment metric employed in this research is as follows:

1. Data density. To validate the total amount of ASCII codes that can be stored in the

coloured QR code. The larger the value, the better the algorithm is. It is formulated

based on how many characters are successfully encoded. The unit of measurement

used in this testing is the total amount of characters saved in the coloured QR code.

2. Accuracy order by error correction level. To validate the data restoration rate.

The higher the value, the better the algorithm is. The unit of measurement used in this

accuracy test is the percentage of character lost, which is:

(Total unit character decode / Total unit character encode) * 100

3. Processing time. To verify the total amount of time taken to complete the process.

The smaller the value, the better the algorithm is. This processing time is formulated

based on:

End task time – Start task time

The metric unit used in this processing time measurement is millisecond.

95

The testing includes:

1. Input and output testing. Several numbers of characters are used as input. The

reason is to validate the maximum total number of characters that can be held by the

QR code. The output needs to be validated as well because it will help to confirm the

stored total number of characters. The characters include alphanumeric, numeric,

binary, and several common symbols in the ASCII. The total characters need to be

identified during decode processes and the total processing time will be calculated

during encode, decode and partial extraction. This result is used as a benchmark to

compare with other system.

2. Logical errors. This testing is to check the unintended or undesired output or other

behaviour in the algorithms that will cause them to operate incorrectly.

3. Comparison testing. The comparison testing involves examining the result of the

proposed algorithms against QR version 40 and others high capacity coloured QR

code. The QR version 40 is used as a benchmark for all comparison testings including

high capacity coloured QR code.

After the testing part in Phase Three that has been implemented, the research objective

four is fulfill after this process completed.

3.2 Summary

This chapter has highlighted the research procedures, which gave detailed description

of the steps taken in completing the research in this thesis. The procedures include the

phases of preliminary study, development requirement, development process, and

testing. Besides, this chapter also discussed the design of the proposed algorithm which

96

is the coloured QR code that utlilizes the RGB colour combination. Such contribution

(refer to Chapter Four) includes details on encoding, decoding, and partial extraction

processes. The encoding process provides a proposed approach that could significantly

improve data density and processing time of the coloured QR code as compared to the

conventional QR code. Meanwhile, the decoding process retrieves the total characters

that have been successfully encoded. Lastly, the partial extraction process is able to

improve the processing time to regenerate the coloured QR code for data manipulation.

On the other hand, this research also investigates the merging of algorithms to generate

a coloured QR code with a larger capacity storage. It is later tested based on three

measurements: data density, accuracy, and processing time. This research framework

is a guideline to complete all the research objectives that have been stated.

97

ARCHITECTURE OF PROPOSED COLOURED QR CODE

This chapter explains the design and development of coloured QR code starting from

encode, decode and partial extraction. The design and development are based on the

methodology from Chapter 3. The process starts with designing the encode algorithm

and follow by development of encode algorithm. After that, it will proceed with the

design and development for decode and partial extraction. The processes contain

initialization, counting characters, creating black and white QR code, placing the pixel

and etc. The algorithm, pseudo code and flow chart are displayed which can bring

more understanding about the processes flow. After all the process are completed, the

empirical analyst will be implemented in order to give more impact on the next

research finding.

4.1 Encode Algorithmn

The encoding algorithm is a step-by-step process to produce a coloured QR code. This

chapter presents the results gathered from the experiment concentrating on encoding

modules based on the algorithm developed. In the beginning, all modules are explained

in the pseudocode mode because it is easier to explain. Then, all the pseudocodes will

be converted into the algorithms as shown in Appendix B. The findings are based on

processing time, total characters successfully encoded by type of error correction level,

total text file allocation after compression, and total bytes of coloured QR code image.

The following sections describe the findings of the experiment in detail.

98

 Encode Module

In general, the encoding modules used in this research are employed to generate a

complete coloured QR code that can store a large amount of data (focusing on text

characters as input). In this research, the encoding modules can be referred to in

Figures 3.5 and 3.6, which contain the development requirement and development

processes in Phase Two. Technically, Phase Two contains the preparation to obtain a

proposed model to generate a high density coloured QR code. The process to encode

a coloured QR code involves compression, multiplexing, and multilayer sub-modules.

 Encoding Steps

There are some steps to be considered when encoding the coloured QR code. The steps

involve the following three sub-modules:

1. Compression. The steps from compression are made by providing the prerequisite

text preparation and execution of compression.

2. Multiplexing. When compression succeeds, the multiplexing process will be

prepared by converting binary to text, converting the American National Standards

Institute (ANSI) code to Unicode Transformation Format 8 bit (UTF-8) and

multiplexing it.

3. Multilayer. After multiplexing is completed, the multilayer process will combine

the red, green, and blue QR codes into a coloured QR code. The encoding flow process

is shown in Figure 4.1.

In the previous researches (see Sections 2.3.2, 2.3.3, and 2.3.4), the encoding processes

are executed based on a single module as explained in Chapter 2. The researchers did

https://techterms.com/definition/unicode

99

not concentrate on merging other modules so as to gain extra storage for the QR code.

Some of the methods used in each module are different from this research. The names

of the modules are similar to this research and the output concentrates on producing

the coloured QR code.

Figure 4.2 shows the pseudocode to encode a coloured QR code.

Input Text
Preparation

Compress

Binary To
Text Encoder

Ansi to UTF8

Multiplex to
Mono Color

QR Code

Multilayer
RGB QR

Code

Compression

Multiplexing

Multilayering

Encode to
Black White

QR Code

Figure 4.1. The encoding flow process.

100

1 :
Initialize possible initialisation for file type, file input, file output, file

location, and count text (Module Index E1)

2 : Compress using compression module (Module Index E2)

3 : Encode binary to text using encoder (Module Index E3)

4 : Convert ANSI to UTF-8 (Module Index E4)

5 : Produce black and white QR code (Module Indices E5, E6, and E7)

6 :
Convert black and white QR code to Monocolour QR code (Module Index

E8)

7 : Convert monocolour QR code to coloured QR code (Module Index E9)

Figure 4.2. Coloured QR code encoding pseudocode.

There are several modules involved in this algorithm that are represented by index

numbers (See Appendix B). The index number identification for encoding modules are

shown in Table 4.1

Table 4.1

Module index number identification for detailed encoding process.

Module
Index Description

E1

To count all ASCII printable and control characters, such as line feed

and carriage return. The text file is used as input file and the total

characters are used as a division of text for each black and white QR

code.

E2
To compress a text file using an identified compression tool or

algorithm.

101

E3
An encoder is used to convert from binary to text. It will minimise the

storage capacity of text file after compression is completed.

E4
Conversion of ANSI to UTF-8 character encoding due to compatibility

of QR code to store the data inside it.

E5

To create N value of blank files and each can contain a maximum of

2,952 characters inside. As a default, the 2952 space characters will be

allocated inside each N value file.

E6

Divide the characters from UTF-8 file into 2,952 characters each and

append them to the N value files. If the total of divided characters is

more than N value files, the system will reject.

E7 Creation of N value of black and white QR codes.

E8 Creation of red, green, and blue QR codes.

E9 Creation of coloured QR code.

Note: N value consists of total amount of text files or black and white QR codes.

4.1.2.1 Encoding Compression Modules

The encoding compress algorithm consists of two modules, namely count character

module and compression module. These modules are separated due to their different

tasks. The first module focuses on counting the module to identify the amount of

ASCII printable and control characters, while the second module focuses on

compressing the file.

4.1.2.1.1 Count Character Module

This is the first step to fulfil the compression procedure known as preparation input

text. The compression process started by counting the total amount of characters

102

involved before the actual compression process began. The characters were counted

first to avoid a surplus of characters that would cause the failure of creating the QR

code. The character codes map in this research is referred to ASCII printable characters

(alphabets, numeric, and symbols) and two control characters, namely carriage return

and line feed. The other types of characters except as mentioned above are not

supported; for example, Arabic, Japanese, Chinese etc. Table 4.2 shows the complete

character code map in ASCII printable characters.

Table 4.2.

The complete character code map for ASCII printable characters.

Dec Character Description Dec Character Description

32 Space space 80 P uppercase

33 ! exclamation
mark 81 Q uppercase

34 " double quote 82 R uppercase
35 # number 83 S uppercase
36 $ dollar 84 T uppercase
37 % percent 85 U uppercase
38 & ampersand 86 V uppercase
39 ' single quote 87 W uppercase
40 (left parenthesis 88 X uppercase

41) right
parenthesis 89 Y uppercase

42 * asterisk 90 Z uppercase
43 + plus 91 [left square bracket
44 , comma 92 \ backslash

45 - minus 93] right square
bracket

46 . period 94 ^ caret / circumflex
47 / slash 95 _ underscore
48 0 zero 96 ` grave / accent
49 1 one 97 a lowercase
50 2 two 98 b lowercase
51 3 three 99 c lowercase
52 4 four 100 d lowercase

103

53 5 five 101 e lowercase
54 6 six 102 f lowercase
55 7 seven 103 g lowercase
56 8 eight 104 h lowercase
57 9 nine 105 i lowercase
58 : colon 106 j lowercase
59 ; semicolon 107 k lowercase
60 < less than 108 l lowercase
61 = equality sign 109 m lowercase
62 > greater than 110 n lowercase
63 ? question mark 111 o lowercase
64 @ at sign 112 p lowercase
65 A uppercase 113 q lowercase
66 B uppercase 114 r lowercase
67 C uppercase 115 s lowercase
68 D uppercase 116 t lowercase
69 E uppercase 117 u lowercase
70 F uppercase 118 v lowercase
71 G uppercase 119 w lowercase
72 H uppercase 120 x lowercase
73 I uppercase 121 y lowercase
74 J uppercase 122 z lowercase
75 K uppercase 123 { left curly bracket
76 L uppercase 124 | vertical bar
77 M uppercase 125 } right curly bracket
78 N uppercase 126 ~ tilde
79 O uppercase 127 DEL delete

The module initiated by setting the counter to count the characters in the file and

initialising them with integer zero. The input file was identified and initialized.

Additionally, the tree character map table is used as reference to count the group of

unique characters. The characters were to be received in UTF-8 format. After the

initialisation was completed, the process began by reading the first row of line inside

the input file and each character in the row line was separated into a group of unique

characters. If the character that was read was equal to the character in the tree character

map table, the counter of that character would increase by one. This process was

104

repeated by reading a row line in sequence until the end of the file. Since the characters

were read in an ASCII printed mode, the ASCII control characters were counted too.

The steps of this process started by reading the first row line inside the input file. If

the row line contained carriage return or line feed, then the counter would increase by

one based on what was found in the row line. Finally, all information regarding the

amount of unique characters were sent to the main programme. The flow processes of

counting the characters as shown in Figure 4.3

4.1.2.1.2 Compression Module

This module compresses the text file by using compression tools. Compression utility

was used to reduce the capacity of text file. The text file was converted to a binary file

by a compression utility. The GZip compression tool was chosen based on an

experiment to obtain the best compression tool (Abas et al., 2017). The experiment

was divided into two phases. In the first phase, several compression utilities were used

as an experiment to compress the text file. The compress utilities are Lempel–Ziv–

Welch (LZW) (Victor, 2012), Zip (Kattan & Poli, 2008), GZip (Husain, Bakhtiari, &

Zainal, 2014), Huffman Coding (Shahbahrami, Bahrampour, Rostami, & Mostafa

Ayoubi, 2011; M. Sharma, 2010; S. Sharma & Sejwar, 2016), Huffman Coding

merged with GZip (Oswal, Singh, & Kumari, 2016) , and Huffman Coding merged

with Zip (Pathak et al., 2011). The input data was taken from ASCII printed mode

characters and it was repeated 20 times to attain the minimal value compressed. After

the compression was completed, all the compressed items were kept in the QR code

with error correction level H. The compressed data inside the QR code is binary file

https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Welch
https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Welch

105

Initialize each total characters map = 0
Initialize file input, treeMap

Read character from file
input

If character equal treeMap

Increase total character map to 1

Read character from file
input

If not end of file

Display Error

Display result

Yes

No

No

Yes

Start

End

Figure 4.3. The flow chart of character counting module.

type. The results from this phase are shown in Table 4.3 and Appendix A. Appendix

A shows the result of 20 times repeated experiment and Table 4.3 shows the minimum

characters’ total amount value from the 20 times repeated experiment with error

correction level H.

106

The equation can be formulated in 4.1 as shown below:

𝐴 = {𝑎𝑖}𝑖=1
𝑁 (4.1)

A = set of elements
a = element
i = index
N = total of elements

which is denoted min A or mini ai, and is equal to the first element of a sorted character

(i.e. in order) from a set of A.

Table 4.3

The minimum character’s total amount value from 20 times repeated experiment with

error correction level H (Abas et al., 2017).

Normal Zip GZip LZW Huffmann
Coding

Huffman
and

 GZip

1,271 469 632 433 109 466

From the data in Table 4.3, the normal method without compression is the best way to

store data in a QR code. It can store up to 1,271 characters as compared to the

compressed file. The reason why this result cannot provide more characters to be

stored in the QR code is because the QR code has more capability to store data in

alphanumeric as compared to binary. Table 4.4 shows the amount of characters that

can be stored in black and white QR code version 40 by character type.

The pseudocode to compress text data using compression utilities as mentioned in

Section 4.3.1.2.2 was designed as a guideline to execute the actual action. Each data

107

output result produced from each compression utility was used as an input in the

second phase task.

Table 4.4

The amount of characters that can be stored in black and white QR code version 40

by character type (Courtesy: Wikipedia (2007)).

Input mode Max. characters Possible characters, default encoding

Numeric only 7,089 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Alphanumeric 4,296 0–9, A–Z (upper-case only), space, $, %, *,
+, -, ., /, :

Binary/byte 2,953 ISO 8859-1

Kanji/kana 1,817 Shift JIS X 0208

In the second phase, the compressed files were imposed with the Base64

encoder/decoder. The reason is to obtain more characters to be compressed so that the

QR code can store more data. As mention by Guwalani, Kala, Chandrashekar, Shinde,

and Mane (2014) in their research, the Base64 encoding schemes can be used to encode

binary data to textual data that needs be stored and transferred over media. There are

various encoders that can be used in this experiment, but the Base64 encoder/decoder

was chosen because the time for encoding and decoding is faster than other decoders

(He et al., 2010).

The fixed character composition was embedded as a test data. The results were

separated by error correction level as shown in Table 4.5. Each experiment was only

https://en.wikipedia.org/wiki/Alphanumeric
https://en.wikipedia.org/wiki/Binary_numeral_system
https://en.wikipedia.org/wiki/ISO_8859-1

108

performed once as it used fixed composition characters in the input file, where the

compression algorithm generated the same size files. From the results in Table 4.5, it

is noted that the highest total character is obtained by GZip compression. For example,

the QR code can hold up to 1,784 characters at the H level in version 40. The GZip

compression can exceed more than 40% of data compression as compared to the

normal text.

Table 4.5

The maximum total characters stored in the QR code by error level (Abas et al., 2017).

Error
Level Normal Zip Gzip LZW Huffman

Coding

Huffman
And
Gzip

Huffman
And Zip

H 1270 1560 1784 1167 212 1364 1166

Q 1662 2114 2405 1627 282 1827 1639

M 2330 3188 3470 2441 392 2607 2425

L 2952 4226 4480 3253 503 3323 3095

4.1.2.2 Encoding Multiplexing Modules

In this phase, the experiment starts with dividing the characters into appropriate files

according to the amount of characters specified before generating the black and white

QR codes. This process end with the development of red, green, and blue QR codes.

The sequence of process includes converting ANSI to UTF-8, creating blanks files,

dividing characters into blanks files, creating black and white QR codes, and creating

the red, green, and blue QR codes.

109

4.1.2.2.1 Converting ANSI to UTF-8 Module

The conversion needed to be done because the Base64 encoder would produce the

ANSI format during the conversion of binary to text. As usual, when creating the black

and white QR Code, the text data needed to be in UTF-8 format. The reasons of using

the UTF-8 format are as follows:

1. Most scanner devices use the JIS8 (QR 2000) format to scan the data that is

compatible with UTF-8 format. The JIS is Japanese Industrial

Standards for encoding the Japanese language and it provides code set conversion

support for UTF-8 (Stinner, 2017).

2. The ZXing library that was used to create the QR code is only able to receive the

UTF-8 format. This is a constraint for this experiment and the only solution is to

convert all outputs from the encoder received into the UTF-8 format.

The conversion of ANSI to UTF-8 used a class provided by Java library called Charset

with method encode.

4.1.2.2.2 Creating Blank Files module

After the encoding process was completed, the next step was to create blank files. This

process is categorised as one of the preprocesses before the actual multiplexing process

execution. The blank files had to be created because the multiplexing process had to

be prepared with a certain total of blank files before the input data could be embedded

inside the related files. In this experiment, N value blank files were created and divided

into three groups that represented eight files each.

https://en.wikipedia.org/wiki/Japanese_Industrial_Standard
https://en.wikipedia.org/wiki/Japanese_Industrial_Standard
https://en.wikipedia.org/wiki/Character_encoding
https://en.wikipedia.org/wiki/Japanese_language

110

The reason why the file must be created in eight files each will be mentioned in the

next paragraph. Three things were considered when initialising the blank files, which

were the total maximum characters, total files used, and file location to be written.

Basically, the allocation of maximum characters were based on the previous result of

the second column of Table 4.5. The error correction level L consumed 2,952

maximum characters and it was used in the experiment for multiplexing. Meanwhile,

the total files used in this experiment were N value blank files and they were located

at the current directory of the programme execution. During the process of creating

blank files, there was an instruction to add the ‘space’ symbols to all the blank files.

In other words, there were 2,952 ‘space’ symbols embedded in each file. The reason

why this action was taken is to ensure that all QR codes become version 40 after the

process of creating black and white QR codes was completed even if the information

was not fulfiled for complete N value of black and white QR codes. Essentially, the

version of QR code from this experiment will be created based on the total of

characters embedded.

4.1.2.2.3 Dividing Characters Module

For the next part, the characters from input files were separated with certain total

characters allocated. In this case, 2,952 characters were allocated for each file. Table

4.6 briefly shows the characters’ file allocation.

Several conditions were made to avoid logic error during execution. The conditions

include if the total character embedded exceeded more than N value files, the

programme would automatically fail to proceed. An error message would be displayed.

Moreover, if the characters embedded did not exceed (less) than N value files, then the

111

programme would continue to execute but it would keep the ‘space’ symbols balanced

inside the file that was embedded previously. All ‘space’ symbols were replaced when

inserting the encoded characters.

Table 4.6

The characters’ file allocation.

 A File Eight Files Twenty Four
Files N Files

Characters 2,952
8 x 2,952
23,616

24 x 2,952
70,848

N x 2,952
2,952N

Two calculations were made before the process began to execute. They were used to

identify the exact total files to be used. The first calculation is:

Total Files = Total Characters / Maximum Characters in Each File

If the value had a remainder, it would take only the integer value. Afterwards, the next

calculation was to obtain the mod value, which is:

Total Mod Value = Total Characters % Maximum Characters in Each File

When these calculations were completed, it would increase the total file by one, if the

total mod value had a remainder. The remainder was the balance characters for a last

file. If the characters were less than 2,952 characters, the remainder of ‘space’ symbols

in the last file would stay permanently together with the balance characters, as to

complete the 2,952 total characters in a single file.

112

When the files were ready to receive the characters, all the characters were separated

into 2,952 characters each and put into a file until the characters were moved to all

related files completely. If the characters did not reach the sufficient amount of 2,952

characters at the end of the process, the balance would be replaced with ‘space’

symbols permanently and stored in the last file. At the end, the process sent the total

files completed for the next process.

4.1.2.2.4 Creating Black and White QR Code Module

In this part, it would concentrate on creating the N value of black and white QR codes.

It used the file that contained the separated characters as the input data. The first step

was to initialize the text input and graphic output file. The graphic output files were

assigned names because it would ease the next session of execution. After the

initialisation was completed, the process extracted the data from input files by reading

it and putting it into the data array at the module of creating the black and white QR

codes. The process recalled (object-oriented) the same module as a part to create the

black and white QR code because the amount of input files was more than one.

Some criteria had to be applied before creating the black and white QR code. These

criteria are initialising the height, width, colour, character set, error correction level,

and margin. After these parameters were completed, the black and white QR code were

created by using ZXing library that contained QRCodeWriter class. This class

produced a byte matrix that contained the graphic pixels of QR code. This byte matrix

was used to generate the image of QR code with execution of buffer image and graphic

image. The design of black and white QR code was generated by pointing the location

of x-axis and y-axis pixel by pixel.

113

4.1.2.2.5 Creating Red, Green, and Blue QR Code Module

This method is the last method for the multiplexing process. The process task was

divided into three sub-processes. The sub-processes included reading the image and

converting it to 8-bit structure, gathering information, and creating the red, green, and

blue QR codes. In the first step, all information regarding the colour pixel from the

black and white QR code created previously was captured.

The images were read after the initialisation of the image file names, total image files,

and size of the images (height and width) had been identified. In this experiment, the

N value of black and white QR codes were used to create red, green, and blue QR

codes. The array of buffered image was assigned and information regarding the pixel

colours of the N value of black and white QR codes were kept. In other words, the

array of buffered image kept the information of pixel colours based on the total black

and white QR codes. The array of buffered image kept the information of the colour

type using the RGB scheme at the point of x-axis and y-axis of the black and white

QR code. Only two types of colour in the RGB scheme were used, which were black

and white.

After this information was collected, the next process is to convert the colour into a

digit. In this case, the black colour was assigned as 1 and the white colour was 0. The

code in the RGB scheme for black was RGB(000,000,000) and white was

RGB(255,255,255). For example, eight black and white QR codes were chosen and

combined via x-axis and y-axis index location in order to obtain a red QR code. The

x-axis and y-axis indices from eight black and white QR codes at location (0,0) were

merged as 8 bits of binary number because there were only 0 and 1. Afterwards, the

114

binary numbers were converted into a decimal number, which was between the range

of 0 and 254. These numbers were located at the first column of the RGB scheme. The

second and third columns were represented with 0 value. This information was

represented at pixel location (0,0). For another location, it will follow the same method

until the end of the pixel location, which was pixel location (width -1, height -1). For

the blue and green QR codes, the processes were still the same as generating the red

QR code. In this case, for the multiplexing, it generated the three QR codes, namely

red, green, and blue QR codes. Figure 4.4 shows an example of the first process in

converting binary to decimal point number in the index location (0,0) for each black

and white QR code and assigning the value to the index location (0,0) at the red QR

code. The creation of red, green, and blue QR codes came from the array of graphic

images that contained the colour of each pixel. The multiplexing process used eight

images and produced a single image by combining the binary numbers into 8 bits.

4.1.2.3 Encoding Multilayer Modules

After the multiplexing process was completed, the multilayer process would take over

to combine the red, green, and blue QR codes. This process read the whole colour code

from each index location starting from (0,0) until (width - 1, height -1) of the images

from red, green, and blue QR codes. The same index location of red, green, and blue

QR codes was blended in the RGB colour scheme as Colour (x, y, z), which indicated

x as the colour code of the red QR code, y for the green QR code, and z represented

the blue QR code. From this experiment, the multilayered QR codes consisted of

93,987 processes, which were calculated as (177 (size of the pixel x-axis) x 177 (size

of the pixel y-axis)) * 3 (red, green, and blue QR codes).

115

0

1

1

1

0

0

1

1

1

0

1

1

1

1

0

0

convert
to

decimal

11510

QR Code 1

QR Code 4

QR Code 2

QR Code 3

QR Code 5

QR Code 6

QR Code 7

QR Code 8

Locat ion index (0,0)

Locat ion index (0,0)

Location index (0,0)

Locat ion index (0,0)

Locat ion index (0,0)

Location index (0,0)

Location index (0,0)

Locat ion index (0,0)

index location (0,0)

Color(155,0,0)

Figure 4.4. The example of the first process in converting binary to decimal point

number in the index location (0,0) for each black and white QR codes and assigning

the value to the index location (0,0) at the red QR code.

116

In the beginning, the total image files, image file names (red, green, and blue QR

codes), image location, and final multilayered image file were initialized. However,

the total image files, image file names (red, green, and blue QR codes), and image

location were set as parameters for the multilayer algorithm. The buffer image for the

final multilayered image file initialized the size of width and height, plus the colour

type. All the pixel information from red, green, and blue QR codes were merged (as

mentioned in the previous paragraph) and assigned to the graphic image. After the

processes were finished, the graphic image assigned the colour value to the graphic

file so as to create the image.

4.2 Decode Algorithmn

This chapter describes the process of decoding a coloured QR code. All modules will

be explained in pseudocode form and all modules will be converted into algorithms.

All algorithms are shown in Appendix C. The experiment of the undertaken

experiment is based on time consumed, total of QR codes extracted, and error

correction level. The results are based on the experiment conducted according to the

methods used in this research. The pseudocodes are developed as a guideline before

developing a real programme. This chapter also provides some result of simulation if

the colour channel and colour depth are implemented. The following sections describe

the findings of the decoding experiment in detail.

 Decoding QR Code

The decoding process is to obtain the actual data that was encoded before. Basically,

the coloured QR code is a final physical result of the encoding process. It contains

117

some information embedded inside it. The information is represented by the coloured

QR code. When a coloured QR code is successfully encoded, it needs to be decoded

in order to retrieve the data stored in it. This is because when the users received a

coloured QR code, they need to know what is the information inside. The users cannot

translate the image of coloured QR code in physical shape, due of that, it needs to be

translated by using the decoding method.

In general, the decoding starts with the demultilayer process from the coloured QR

code to red, green, and blue QR codes. After that, the demultiplexing process will take

over to convert the red, green, and blue QR codes into 24 black and white QR codes.

Lastly, the decompression process will convert the content inside the black and white

QR codes into the original text.

 Decoding Steps

The decoding process is the reverse process of the encoding method. There are several

steps to be treated when maintaining the decoding processes, which are:

1. Demultilayer. This step is the first step for the decoding process. Generally, the

coloured QR code will be converted to red, green, and blue QR codes. This process

breaks the RGB colour code into separate unique red, green, and blue colour codes.

2. Demultiplexing. After the demultilayer process is completed, the demultiplexing

process will be prepared by converting the red, green, and blue QR codes into black

and white QR codes. The total of black and white QR codes is 24.

118

3. Decompression. The last process is to extract the contents inside the black and white

QR codes. Firstly, it needs to decode the black and white QR codes. As a result, the

GZip binary file is produced and ready to be extracted.

The decoding flow is presented in Figure 4.5.

Decode Colored
QRCode Demultiplex

Colored
QRCode

Red, Green
and Blue
QRCode

Demultiplexing

Dimultilayered

Demultilayer

Uncompress

N QRCodes

Base91 Text

Decode

Zip File Text File

Decode

Uncompress

Flow processes

Sub module

Belong to

Final Output

Final Input

Figure 4.5. The decoding flow process.

The main algorithm was designed with some modification on the encoding process.

Even though the decodinge process is an inverse of the encoding process, some

processes need to be reengineered. The main algorithm contains details of

demultilayer, demultiplexing, and decompression. Figure 4.6 shows the main

pseudocode of decoding a coloured QR code.

119

1 :
Initialize possible initialisation for file type, file input, file output, and file
location. Initialize resultColouredQR Code Decode as two-dimensional
array of colour (Module Index D1).

2 : Demultilayer process (Module Index D2)

3 : groupQRCode = {“red”,”green”, “blue”}

4 : groupFiles = {M1, M2, M3… Mn}

5 : for each file in groupFile

6 : Demultiplexing processes (Module Index D3)

7 end for

8 : if total files less than N value from group files

9 : Convert black and white QR code into textfile (Module Index D4)

10 : end if

11 : Text reconstruction (Module Index D5)

12 : Decompress (Module Index D6)

13 : /* Mn is a group of files */

Figure 4.6. The pseudocode of main decoding programme.

There are several modules in this decoding pseudocode and these are indexed by

numbers (See Appendix C). The index number identification for the decoding module

is shown in Table 4.7.

4.2.2.1 Initialisation Module

This is the first step that needs to be fulfiled before completing the whole processes.

The decoding demultilayer pseudocode should be initialized first before it could

proceed to bring the red, green, and blue QR codes as its output. The values consisted

120

of file type, file input, file output, and file location of coloured QR code information.

The information above was used to break out the coloured QR code into three

monocoloured QR codes. Then, it obtained the pixel colour information from the red,

green, and blue QR codes as an output. All input information above were to be used in

the next demultiplexing module.

Table 4.7

The index number identification for decoding module.

Index Descriptions

D1

The coloured QR code is used as input file. Initialize all related file

type, file input, file output, and file location of coloured QR code

information.

 D2

The demultilayer process is used to produce the red, green, and blue

QR codes. The generation of it is based on breaking the RGB colour

into single red, green, and blue colour codes.

D3
The demultiplexing process is used to break the red, green, and blue

colour codes into groups of Mn black and white QR codes.

D4
The decoding process handles the conversion of N value of black and

white QR codes into Base64 text file.

D5
The decoding process needs to handle the Base64 text reconstruction.

The Base64 text will be changed into GZip binary file.

D6
The decompression process normally extracts the compress file into the

original text file as used during the encoding process.

Note: N value is the total of black and white QR codes

121

4.2.2.2 Decoding Demultilayer Module

In detail, the coloured QR code was generated by the red, green, and blue QR code file

image combination. The file images were created based on the unique colours for red,

green, and blue. The RGB colours in each pixel location for red, green, and blue QR

codes are as follows:

RGB (x, 0, 0) – Red QR Code

RGB (0, x, 0) – Green QR Code

RGB (0, 0, x) – Blue QR Code

which is

x between 0 until 255.

For example, if the pixel location at (0,0) contains RGB(233,6,34), then the division

of RGB from red, green, and blue QR codes are:

RGB (233, 0, 0) – Red QR Code

RGB (0, 6, 0) – Green QR Code

RGB (0, 0, 34) – Blue QR Code

Each of the images were transferred into the colour that looked like red, green, and

blue colour code images on each of it.

The tasks started by assigning the contents of pixel colour information inside the

coloured QR code. From this information, the output image files were created first for

ease of allocating the related pixel colours to the related red, green, and blue QR codes.

All contents of pixel colour information inside the coloured QR were converted to the

image buffer before transferred to the related red, green, and blue QR codes. The way

122

of transferring the pixel colour information was by separating each element of the RGB

colour code scheme to red, green, and blue elements as discussed previously. The total

of colour pixels was based on the size of the coloured QR code image. As usual, the

image size of this coloured QR Code was 177 x 177 pixels, which as 31,329 pixels.

An experiment of elapsed time order by error correction level during decoding

demultilayer was performed successfully and the result is shown in Table 4.8. From

the results, the elapsed times were considered not much different in time range among

the error correction levels. Error correction level M completed its task in 0s 899ms.

Table 4.8

The experiment of elapsed time order by error correction level.

Error Correction Level Demultilayer

L 0s 925ms
M 0s 899ms

Q 0s 902ms
H 0s 900ms

4.2.2.3 Decoding Demultiplexing Module

The next process is demultiplexing, which consisted of demultiplexing from red,

green, and blue QR codes into N values of black and white QR codes. This process

extracted each pixel value, which was in decimal value, of each red, green, and blue

QR codes of RGB colour into binary numbers of 8 bits. After the binary numbers were

determined, they were broken up into eight separate units of 8-bit binary numbers.

Each separate digit of binary numbers served as white (0) or black (1) pixel colours of

123

each black and white QR code. For example, say that the pixel location (0,0) of red

QR code has RGB(45,0,0). Then, the 8-bit binary number is 00101101. The first digit

of the binary is 0, which represents the white colour of the first black and white QR

code at pixel location (0,0). It is also the same with the second and eighth black and

white QR Codes. This method shows the one to many concepts that were implemented

in the demultiplexing process.

The flow process started by identifying the red, green, and blue QR code image

information and creating the group of Mn black and white QR codes of each red, green,

and blue QR codes. The demultiplexing process started with extracting the decimal

value of the red element of RGB red QR colour code for each pixel location starting

from location (0,0) until (177,177). The last pixel location was determined by the size

of width and height of image. The next process continued with green and blue QR

codes by using conditional statement as they have to be executed one by one. The

decimal values only took place to the related red, green, and blue colour elements. For

example, if the RGB for red QR code is RGB(46,0,0), it will assign the decimal value

of 46 to the temporary storage location. All colour information of red QR code was

collected and kept into the temporary memory storage location. The temporary storage

collected all information of the green and blue QR codes in decimal value. When all

decimal values were collected, the next process was to convert the decimal value into

binary number. The decimal values were assigned as integer values and converted into

a string mode so as to easily manipulate the characters received. The calculation of

conversion was identified by a normal mathematical calculation. The decimal value

was divided by two and then the remainder was written down. This process was

124

repeated until it could not be divided by two anymore. For example, take the decimal

value of 157 as shown in Table 4.9.

Table 4.9

Decimal to binary process.

Divide value (÷) Modulus value (%)

157 ÷ 2 = 78 with a remainder of 1

78 ÷ 2 = 39 with a remainder of 0

39 ÷ 2 = 19 with a remainder of 1

19 ÷ 2 = 9 with a remainder of 1

9 ÷ 2 = 4 with a remainder of 1

4 ÷ 2 = 2 with a remainder of 0

2 ÷ 2 = 1 with a remainder of 0

1 ÷ 2 = 0 with a remainder of 1

Next, the value of the remainders from bottom to top represented the value of binary

number, which was 10011101.

After the binary numbers were collected from each red, green, and blue QR code, the

next step was breaking them into a single bit and marking the index location of each

bit. When the single bit was identified, the colour of pixels were labelled either black

or white. The colour pixel was recognised when the single bit gave a value of 0 or 1,

whereby 0 was for white and 1 was for black. Three items were considered during this

process in determining the colour, which were colour type of QR code, pixel location,

and index of breaking 8 bits of binary number to single bit 0 (white) or 1 (black) digit

combination. The processes of combination are as shown below:

125

Type of QR code x = red; y = green; z = blue

Pixel location = a(0,0) ~ a(177,177)

Break out index 8 bits location into single bit= p(0) ~ p(7)

The determination of black or white colour can be shown as a set of {type of QR

Code}{pixel location}{single bit}, which is in detail referred to as {xi}{aij}{pi}.

Figure 4.7 below shows the flow chart in determining the black or white pixels of black

and white QR codes.

4.2.2.4 Decoding Black and White QR Codes

When the 24 black and white QR codes were fully generated, the next step was to

decode them into the text file. The decoding process consisted of decoding each black

and white QR code, merging the decoded texts, and saving to the logical file. The

decoding process of QR code began by calling the first black and white QR code from

the red QR code and decoding it into text. The text contained in each black and white

QR code was a part of a full text during the previous encoding process. This process

continued until the last black and white QR code of the green QR code. The suitable

decoding module of black and white QR code is MultiFormatReader.

After the decoding process to text was completed, the next step was to merge the texts.

The texts were merged by using a string class, which could reserve about

2,147,483,647 (231 - 1) characters overall. Each text information stored in each black

QR code was assigned by using operator ‘+’. Lastly, all text information stored in the

buffer string class were stored in the file directory by using File class. The text file in

the file directory contained Base64 text format, which has to be decoded by its decoder.

126

Colour Type QR
code red, green or

blue (i)

Loop 0 until 176
(ai)

Loop 0 until 176
(aj)

Yes

Get RGB color element

Convert decimal to 8
bits binary

Loop 0 until 7 (p)

0 or 1

White

Black

Plot color black or
white at {xi}{aij}{pi}

Yes

Yes

Yes

Yes

No

No

No

No

Start

Read Colour Type
QR code

End

No

Figure 4.7. The flow chart process of determining black or white pixels of black and

white QR codes.

127

An experiment of elapsed time order of error correction level as shown in Table 4.10

was tested and it concentrated on the demultiplexing process only. From the tabulated

data, error correction level Q has the minimum total decoding demultiplexing elapsed

time, which is 1 second 614 milliseconds. Meanwhile, error correction level L has the

maximum decoding demultiplexing elapsed time with 1 second 656 milliseconds.

From the result, the time consumed to decode the coloured QR code to Base64 text

file was not a big issue because the range time between them was not too long. It took

approximately 1.65 seconds to complete the process.

Table 4.10

The elapsed time of decoding demultiplexing process.

Error
Correction

Level

RGB
Demultiplexing

Black and
White

Demultiplexing
Total Multiplexing

L 0s 402ms 0s 470ms 1s 656ms

M 0s 437ms 0s 465ms 1s 650ms

Q 0s 411ms 0s 450ms 1s 614ms

H 0s 421ms 0s 473ms 1s 655ms

4.2.2.5 Decoding Text Encoder/Decoder for Decompression Module

The Base64 text file format, i.e. the ASCII text decoder file that was generated from

the demultiplexing process, will be used as the first process in the decompression

method. In this process, the Base64 text needs to be converted to the compress file,

which is GZip file. The GZip file is a binary file that can decompress and produce the

128

original text file. There are two processes involved in this method, which are ASCII

text decoding and decompression tool.

The method started with reading the Base64 text file until the end of the file. The

reading function should be capable of reading the printed and control characters inside

the Base64 text file. After the reading process was completed, the characters were

converted to the binary file by using Base64.decode method. The binary compress file

was completely generated when the decoding of Base64 process successfully

converted it.

4.2.2.6 Decoding Compression Tool for Decompression Module

The last step is to decompress the binary compress file into the original text file. The

binary compress file in this case refers to the GZip file, which was used as the

compression tool. The suitable decompression class used in this research is GZip class.

Normally, this class was developed by the provider of compression tools. The

decompression step started with preparing the output stream file. Then, the data was

decompressed inside the binary compress file and put it into the output text file inside

the suitable internal directory. Figure 4.8 shows the flow chart of the decompression

method.

Table 4.11 shows the elapsed time of the decompression process. The decompression

process started from text decoder (Base64) until decompression (GZip). Error

correction level H had the capability to complete the decompression process in the

fastest time as compared to the other error correction levels, which was 0 second and

8 milliseconds.

129

End of file

Base91 decode

No

Save as compress file

Yes

Decompress

Save as text file

Start

Read character
from file input

End

Figure 4.8. The flow chart of decompression method.

130

From this perspective, it can be concluded that the time consumed to complete this

process did not contribute to the file size of QR code for this research.

Table 4.11

The elapsed time of decompression process.

Error Correction Level Decompression

L 0s 12ms
M 0s 11ms
Q 0s 9ms
H 0s 8ms

4.3 Partial Extraction Algorithm

This chapter describes the technique of decoding and re-encoding the coloured QR

code during half way of the process. It it called partial extraction. The need for it is for

data manipulation purposes.The manipulation includes update, insertion, and deletion.

All modules are written in pseudocode mode and these are arranged in the form of

module indices. Then, the algorithms are developed and shown in Appendices D, E,

F, and G. From the proposed partial extraction module, it can be proof that the

processing time can be reduced. The module is based on the current decoding module

but with some modification on the flow processes. The findings are based on how fast

the process can be manipulated and the amount of information.

The coloured QR code was developed based on the abstract model as shown in Figure

4.9. The QR codes that were produced in this model are monocolour (red, green, blue),

black, and white, then they are divided into two levels when partial extraction is

executed. The first level includes the manipulation of black and white QR code and

131

the second level is monocoloured QR code. Each level contains decoding and re-

encoding processes and each of them will be involved in both levels.

 Level 1 Decoding Module

This process started by identifying which black QR code index would be manipulated.

Moreover, the value bits of colour depth and the total of colour channels from the

colour model were to be described. When the index location of black and white QR

code, colour depth, and colour channels were classified, the next process was to decode

the coloured QR code by using the demultilayer process. For example, if the index of

black and white QR code is 24, the colour depth is 8 bits and uses the RGB colour

channel, the next process must be referred to the blue monocoloured QR code after the

demultilayer process. The formula to identify which index location of monocoloured

QR code will be referred from the index of black and white QR code is shown below:

Index location of monocolour = index location of black and white QR code / total

colour depth

which is by avoiding the remainder and take only the integer value. From the example

discussed previously, the index location of monocoloured QR code is 23 / 8 = 2.875,

in which the index location is 2.

When the monocoloured QR code has been created, the next process was to identify

the index location of monocoloured QR code that has to be extracted. The calculated

index location of monocoloured QR code was used as a guideline to extract the eight

132

1

2

8

10

16

9

8

2

1

18

24

17

RGB
ColourGreen

Red

Blue

Black
&

White

Level 1

Level 2

Figure 4.9. The abstract model of 8-bit colour depth and 3-channel RGB colour

model.

133

black and white QR codes. After the index location of the monocoloured QR code was

identified, the next process extracted the monocoloured QR code into eight black and

white QR codes. The index location of black and white QR code that was described or

inputted were to be used to identify which black and white QR code has to be extracted

into characters. The comparison process was used in order to find the selected index

location of black and white QR code. This part is known as the demultiplexing

process.

When a black and white QR code was selected, the next process as to extract it into

character text by using the QR code decoder. The characters from the black and white

QR code that was produced were in a non-readable text format that has to be decoded.

In the decompression process phase, the characters were decoded into a binary file,

which was a compression type format. Since the decompression process had two

processes, the next step was to decompress them into readable characters, which were

the original characters. The decompression process used decompression tools. The text

produced from the decompression tools could be manipulated such as add, update, or

delete.

The details of the decoding pseudocode for level 1 implementation started with

requesting the index location of black and white QR code as shown in Figure 4.10,

while Table 4.12 shows the index identification task from Figure 4.10. The pseudocode

in this section was converted into the algorithm as shown in Appendix D.

1
Input possible initialisation of index location of black and white QR code

(colour depth and colour channel if applicable) (Module Index P1)

134

2

Calculate the possible initialisation input of black and white QR code index

location (colour depth and colour channel if applicable) and location of

monocolour from index of black and white QR code

3 Produce solution (Module Index P2)

4
if (image of monocoloured QR code based on index location equals to

calculated index location)

5 Perform solution (Module Index P3)

6 end if

7 Initialize the image of black and white QR code based on index location

if (image of black and white QR code equals to index location initialized by

input

8 Perform solution (Module Index P4)

9 end if

10 Perform solution (Module Index P5)

11 Perform solution (Module Index P6)

12 Perform solution (Module Index P7)

Figure 4.10. The pseudocode of partial execution for decoding level 1.

Table 4.12

List of tasks for partial execution decoding level 1 module.

Index Description

P1
Initialize the related variable value before executing the whole process

such as file directory, file name, file type, and temporary storage

variable (array).

P2
The demultilayer process is used to produce the red, green, and blue

QR codes. The generation of it is based on breaking the RGB colour

into single red, green, and blue colour codes.

135

P3

The demultiplexing process is used to break the monocoloured QR

code based on the index location initialized into eight black and white

QR codes.

P4
The selected index location of black and white QR codes will be

decoded into printed and controlled characters.

P5
The character file is decoded by using a text to binary decoder

(Base64). The binary compression file type is developed.

P6

The uncompressed process extracts the compress file into parts of the

original text file as selected from the index location in black and white

QR codes.

P7 The text data is manipulated (add, update, delete)

 Level 1 Re-Encoding Module

When all the texts have been manipulated, the next process was to re-encode them to

the coloured QR code. The re-encoding process started by compressing the new

manipulated characters. It only involved the identified index location of black and

white QR codes and the remaining black and white QR codes stayed as images in the

computer directory file. The remaining codes would be used during the multiplexing

process. As usual, the new manipulated characters were compressed by compression

tools (GZip) and then from the binary compression file that was brought up, they were

converted from binary to text by using a decoder (Base64). The mode of the new text

was changed from ANSI to UTF-8. Then, the text from the decoder was encoded into

black and white QR codes.

136

The remaining and new black and white QR codes were combined again in the

multiplexing process and used as an input to develop monocoloured QR Codes. After

the monocoloured QR codes were created, the next step was to create a coloured QR

code with the multilayer process. The re-encoding methods of multiplexing and

multilayer were the same methods used in the previous chapter.

The details of the re-encoding pseudocode for level 1 implementation started with the

compression of the new manipulated text. It was used as the first input and was stored

in a text file at a specific location. Figure 4.11 and Table 4.13 show the method of re-

encoding pseudocode based on the identified index location of black and white QR

codes. Appendix E shows the detailed algorithm of level 1 re-encoding processes after

conversion from the pseudocode.

1
Identify the index location of black and white QR code and initialize possible

manipulated text file and use as an input (Module Index P8)

2 Compress the manipulated text file (Module Index P9).

3 Encode from binary to text (Module Index P10)

4
Produce conversion from ANSI to UTF-8 using encoded text (Module Index

P11)

5 Encode single black and white QR code (Module Index P12)

6 Place the black and white QR code into its group (Module Index P13)

7 Create monocoloured QR code (Module Index P14) with its group

8 Create coloured QR code (Module Index P14)

Figure 4.11. The pseudocode of partial execution for re-encoding level 1.

137

 Level 2 Decoding Module

The level 2 decoding pseudocode involves only the partial extraction of monocoloured

QR code, which needs to be identified first. The levels 1 and 2 processes have a similar

flow of task; nonetheless, level 2 extracts monocoloured QR codes, whereas level 1

extracts black and white QR codes. The benefit of the extraction of monocoloured QR

codes is that the extraction of data in the black and white QR codes can be made for

more than one black and white QR code. It depends on the total colour depth that was

used before.

Table 4.13

List of tasks for partial extraction re-encoding level 1 module.

Index Description

P8
Identify the index location of black and white QR code and initialize

possible manipulated text file and use as an input.

P9

The manipulated text file is used as an input and produces the

compression task by using compression tools. It will produce the binary

compress file.

P10
The binary compress file is converted back to text by using the binary

to text encoder (Base64).

P11 Changing the mode of text file from ANSI to UTF-8

P12
The encoded text file is used as an input and the creation and execution

tasks of the black and white QR code image use this input.

P13
Place the image of black and white QR code at the index location that

has been identified.

138

P14
Convert the black and white QR codes into monocoloured QR codes

by using new and remaining black and white QR codes as an input.

P15
Produce coloured QR codes by using new and remaining

monocoloured QR codes as an input.

The process began with the identification of which index location of monocoloured

QR code has to be manipulated. The next step was to initialize the text files’ index

location based on the monocoloured QR code index location. By using the function,

the total of black and white QR code was based on the type of colour depth of a single

colour channel used. For example, if the colour depth is 8 bits for a colour channel,

then the total of black and white QR code is 8 for a monocoloured QR code. To allocate

the index location of black and white QR codes, the formula is as follows:

First index location of black and white QR code = index location of monocoloured

QR code x type of colour depth of single colour channel

Then, the index location of black and white QR codes was increased by 1 and this

increment was repeated + 1 times based on the size of colour depth of the single colour

channel. The process continued with generating (demultilayer) the group of

monocoloured QR codes from coloured QR codes. The total of monocoloured QR

codes was based on the colour model used. When the monocoloured QR codes were

created, the condition statement was made to identify which monocolour would be

used to extract them. At that moment, when the monocoloured QR Code was

identified, it was then decoded (demultiplex) into black and white QR codes based on

colour depth. The image of black and white QR codes was initialized and located into

139

the specific location directory. All the images of black and white QR codes were

decoded into a text file, which contained the decoded characters (binary to text). After

the decoding process from black and white QR code to text file was completed, the

decoded text files were converted into binary compress files. The decoder tool was

used for this process. The binary files that were produced from the previous process

were decompressed. This was the last process to gain a part of the original texts or

characters. The part of original texts were manipulated with add, update or deletion

processes. Overall, the steps of decoding and re-encoding in level 2 were the same

process as discussed in the previous chapter, but with a difference in implementation.

The details of the decoding pseudocode for level 2 implementation started with

demultiplexing the coloured QR code until a part of the decoded characters were

decompressed into the original characters. Figure 4.12 and Table 4.14 show the

method of decoding pseudocode based on the identified index location of

monocoloured QR code. The details of the algorithm is shown in Appendix F.

1

Input possible initialisation of index location of monocoloured QR code

(colour depth and colour channel if applicable). Identify the index location of

monocoloured QR code and set the index of black and white QR code

(Module Index P16).

2 Execute the demultilayer process (Module Index P17)

3
if (image of monocoloured QR code equals to the indexed location

initialized by input)

4 Execute the demultiplexing process (Module Index P18)

5 else

6 exit system

7 end if

140

 Initialize the image of black and white QR code based on index location

8 Decode selected group of black and white QR codes (Module Index P19)

11 Decode the text using a text decoder (Module Index P20)

12 Uncompress the binary file (Module Index P21)

13 Manipulate data (add, update, delete) (Module Index P22)

Figure 4.12. The pseudocode of partial execution for decoding level 2.

Table 4.14

List of tasks for partial execution decoding level 2 module.

Index Description

P16

Input possible initialisation of the index location of monocoloured QR

code (colour depth and colour channel if applicable). Identify the index

location of monocoloured QR code and set the index of black and white

QR code.

P17

The demultilayer process is used to produce the red, green, and blue

QR codes. The generation of it is based on breaking the RGB colour

into single red, green, and blue colour codes.

P18

The demultiplexing process is used to break the monocoloured QR

code based on the index location initialized into eight black and white

QR codes.

P19

The group of selected index location of black and white QR codes

(based on the previous calculation) will be decoded into printed and

controlled characters.

P20
The character files are decoded by using a text to binary decoder

(Base64). The binary compression file type is developed.

141

P21

The uncompressed process extracts the compress files into parts of the

original text file as selected from the index location of black and white

QR codes.

P22 The text data is manipulated (add, update, delete)

 Level 2 Re-Encoding Module

After a group of characters has been manipulated, the next process is to re-encode them

into the coloured QR code. The re-encoding process involves a group of texts from

selected monocoloured QR codes. The benefit from this process is that a large amount

of characters can be manipulated as compared to the level 1 implementation.

The first step was managing the characters into the updated text file. The size of the

text file should be similar to the previous decompression process. The text file was

named based on the index location of the first black and white QR code and it was put

at the current specific directory, which was used in the programme to get these files.

The next process was to compress a group of updated text files by using a compression

tool. The updated text file that has to be compressed depended on which characters

were updated. If the text file was not updated, the compression and binary to text

decoding processes were not compulsory or necessary to be performed. It could be

used with the old version of black and white QR code. Assume that a group of text file

is updated, the compression tool will compress the text file. The process continued

with encoding the compress file type into encoded characters by using an encoder tool.

As a result, a bunch of characters were produced and were ready to be divided and put

into suitable black and white QR code version 40 maximum character capacity as well

142

as error correction level. The characters were converted from ANSI to UTP8 format

due to the restriction of embedding characters into the black and white QR codes. The

encoded characters in each file contained the maximum total characters of black and

white QR code version 40 and were represented in the form of images of black and

white QR codes. The total amount of files that was divided had to be similar to the

total amount of black and white QR code images that were decoded previously. If not,

the system would not able to proceed for the next step. When all the criteria were

fulfiled, the encoded character files were encoded into images of black and white QR

code. The name of the images of black and white QR codes were based on which

monocoloured QR code was used and they were located in the same location directory

of the original black and white QR code. The next step was the multiplexing process,

which converted a group of updated black and white QR codes into a single updated

monocoloured QR code. The type of monocolour model was identified based on the

decoding process that was done previously. The old and current monocoloured QR

codes were combined to produce coloured QR code via the multilayer process. This

was the last process of level 2 re-encoding pseudocode.

The details of the re-encoding pseudocode for level 2 implementation started with

gathering updated information in a text file until producing the updated coloured QR

code. Figure 4.13 and Table 4.15 show the method of re-encoding pseudocode based

on the identified index location of monocoloured QR code. Appendix G shows the

detailed algorithm for the re-encoding pseudocode of level 2.

143

1

Identify the index location of black and white QR code and monocoloured

QR code and initialize possible manipulated text file and use as an input

(Module Index P23)

2 Compress the manipulated text file (Module Index P24).

3 Encode from binary to text (Module Index P25)

4
Produce conversion from ANSI to UTF-8 using encoded text (Module Index

P26)

5
Place and divide text characters into suitable maximum file container

(Module Index P27)

5
Encode a group of black and white QR codes and place the them to their

groups (Module Index P28)

6
Create monocoloured QR code (Module Index P14) with its group (Module

Index P29)

7 Create coloured QR code (Module Index P30)

Figure 4.13. The pseudocode of partial execution for re-encoding level 2.

Table 4.15

List of tasks for partial extraction re-encoding level 2 module.

Index Description

P23
Identify the index location of black and white QR code and

monocoloured QR code and initialize possible manipulated text file.

P24

The manipulated text file is used as an input and produces the

compression task by using compression tools. It will produce the binary

compress file.

P25
The binary compress files are converted back to text by using a binary

to text encoder (Base64).

144

P26 The mode of text file is changed from ANSI to UTF-8.

P27

The encoded characters are divided into a file based on the maximum

values of black and white QR code version 40. If it has exceeded the

maximum capacity, another file will be created until all the characters

are fulfiled. Nonetheless, at the same time, the file quantity must be the

same as the previous quantity of decoded characters.

P28

Encode the text files into the updated black and white QR codes. Place

the image of black and white QR code at the index location that has

been identified.

P29

Convert the black and white QR codes into the updated monocoloured

QR codes by using new and remaining black and white QR codes as

the input.

P30
Produce the coloured QR code by using new and remaining

monocoloured QR codes as an input.

4.4 Summary

This chapter has provide a detail up about flow processes of encode, decode and partial

extraction. The main ground of this thesis is to provide and prove the algorithms that

have been design and developed can be increase the data capacity of coloured QR

code. These algorithms contribute to the proposed coloured QR code which is in

Figure 2.1 of Section 2.1. As the research in this thesis includes both pseudo code and

the flow chart to be presented, hence it is a complete detail how the encode, decode

and partial extraction were developed. From Chapter Four, the development of this

system is based on the algorithm developed. It will continue the process in getting the

finding in Chapter Five after the development of the system completed.

145

FINDING

This Chapter covers the detail experiment result of encode, decode and partial

extraction modules that was also includes in the Phase Three testing methodology.

Each modules contain compression, multiplexing and multilayer processes. The

following sections describe findings of the experiment in detail.

5.1 Encode Experiment

The experiments cover in getting the total characters, total characters lost and

processing time during conversion from text file to colour QR code. Every module will

be tested and comparison will be made among black and white QR code. The results

are divided into different error correction levels which are L, M, Q and H.

5.2 Encode Modules Experiment Result

The experiment of the proposed techniques in generating a coloured QR code is

performed based on three criteria, namely error correction level, data density, and

computational time. The input data is employed in this experiment and a text based on

a short story is stored in twenty-four black and white QR codes. Figure 5.1 shows a

part of the employed input text that has various types of characters such as numeric,

alphabets, and several symbols.

146

Figure 5.1. A part of the employed Malay short story.

The utilised benchmark method is QR code version 40. In this experiment, the

character's allocation on each QR code has been set with a limited amount of characters

according to error correction level. Hence, the maximum number of characters stored

in each black and white QR code version 40 is shown in Table 5.1. It is shown that

error correction level L has an advantage or highest on total amount characters among

others error correction level. It can store 2952 characters for black and white QR code

version 40

Table 5.1

The maximum number of characters stored in each QR code version 40.

Error Correction Level Total Characters of each QR
Code

L 2,952

M 2,330

Q 1,662

H 1,270

147

Meanwhile, the size of the text file is shown in Table 5.2. The text files are used as an

input to this experiment and the amount of characters for each black and white QR

code is divided based on error correction level.

Table 5.2

The size of the text file.

Error Correction Level Text file size

L 126 KB (129,512 bytes)

M 94.2 KB (96,477 bytes)

Q 68.8 KB (70,545 bytes)

H 51.7 KB (52,996 bytes)

The reason why error correction level needs to be tested is because it needs to obtain

some information about the amount of characters that can be stored by using different

levels within this model. Normally, if the error correction level is set with a lower

recovery mode such as L, then the total characters that can be stored in the QR code

increase as compared to level H. In this experiment, the error correction level is placed

with four levels, which are L, M, Q, and H. From the data depicted in Table 5.3 below,

it can be studied that the amount of characters will increase if the error correction level

is lower, which is level L. This is due to the feature of recovery function that was

embedded in the QR code. The minimum amount of characters that can be stored in

the new coloured QR code is 51,240 characters excluding new line and carriage return

in error correction level H. Meanwhile, the maximum amount of characters that can

be stored is 125,114 characters in error correction level L. There are no missing

148

characters during the encoding processes from the experiment conducted. All the

characters can be recovered in all error correction levels.

Table 5.3

Amount of characters encoded based on the sequence of compression,multiplexing and

multilayer.

Characters
Error

Correction Level
L

Error
Correction Level

M

Error
Correction Level

Q

Error
Correction Level

H

 Encode Decode Encode Decode Encode Decode Encode Decode

Total
characters 125,114 125,114 93,295 93,295 68,201 68,201 51,240 51,240

Total
characters
including
new line
and carriage
return

129,512 129,512 96,477 96,477 70,545 70,545 52,996 52,996

The benefit of compression includes reducing the size of data, hence utilising less time

to transmit the data. The lossless compression technique was chosen because it uses

less bandwidth (Kumar, Sharma, & Singh, 2012) and storage space (Goel & Singh,

2014). Furthermore, the lossless compression technique is suitable for text data as

every single bit of data that was in the original file remains the same after the file is

extracted. The lossless compression technique can avoid the loss of information and

requires less storage (Goel & Singh, 2014). The name of the application used is

remained from the experiment in Section 4.1.2.1.2. The compression process continues

with the Base64 encoder, which is used to convert the binary file to the text file. An

experiment was conducted to check the availability of characters during the encoding

149

processes. Table 5.5 shows the result of total characters during Base64 encoding

(before) and decoding (after) processes. The tabulated data shows that no missing

characters were found during the encoding and decoding processes for all error

correction level.

It seems that Base64 encodings can be used to reduce the amount of characters and

this result can be compared in Table 5.5. When the Base64 encoder is applied to

convert binary to text, the total characters in text mode that can be embedded into the

QR code become larger than the binary mode. Table 5.4 shows the comparison of total

characters that can be embedded into QR code order by type of characters. The numeric

character type can hold more characters in the QR code version 40 compared with

others character type.

Table 5.4

The comparison of total characters in black and white QR code by type of characters.

Character type Characters Maximum
characters

Numeric 0,1,2,3,4,5,6,7,8,9 7089

Alphanumeric (0-9), (a-z), (A-Z), space, $, %, *, + , -, .,/,; . 4296

Binary / Byte 8 bits 2953

Kanji / Kana Japanese symbol 1817

Table 5.6 shows the elapsed time of the encoding compression process. The encoding

process starts from GZip compression until Base64 encoder. Error correction level H

has the capability to complete the encoding compression process faster than the other

150

Table 5.5

The result of total characters during Base64 encoding (before) and decoding (after)

processes.

Characters
Level L Level M Level Q Level H

Before After Before After Before After Before After

Total
characters

70,845 70,848 53,275 53,280 39,887 39,888 30,479 30,480

Total
characters
including

new line and
carriage
return

70,845 70,848 53,275 53,280 39,887 39,888 30,479 30,480

error correction levels, which consumed 21 milliseconds to complete the processes.

The reason why error correction level H consumed less processing time because it hold

less characters compare with others which is less to process time for central processing

unit (CPU) to process. From this perspective, it can be concluded that the time

consumed to complete the process contributes to the total characters of QR code for

this research.

Table 5.6

The elapsed time of encoding compression process.

Error Correction Level Compression

L 0s 64ms
M 0s 29ms

Q 0s 24ms
H 0s 21ms

151

The encoding multiplexing process starts when the compression process is completed.

This process will complete when the red, green, and blue QR codes are created. The

time consumed for this process has been tested in order the gain information on which

error correction level consumes the longest time during this process. Table 5.7 clearly

shows that error correction level H has the capability to complete the process

immediately as compared to others. This refers to the elapsed time displayed. It can be

concluded that error correction levels H, Q, and M are able to complete over 50% less

than error correction level L.

Table 5.7

The elapsed time of encoding multiplexing process.

Error Correction Level Multiplexing Elapsed Time

L 13s 238ms
M 6s 531ms

Q 6s 276ms

H 6s 254ms

Finally, the last process in this model is finding the time employed in the multilayer

process by using different error correction levels. This process starts after the red,

green, and blue QR codes are created. These QR codes will be merged to produce the

coloured QR code. From the experiment conducted, the multilayer process is measured

based on time in the computer system. Table 5.8 tabulates the result of the multilayer

process in second and millisecond. The time range between error correction levels M,

Q, and H are not so much different, but error correction level L has a much different

152

time consumption.. It can be concluded that error correction level L is not suitable to

be used if the user needs to complete the process immediately (multilayer).

Table 5.8

The result of multilayer process in second and millisecond.

Error Correction Level Multilayer Elapsed Time

L 0s 925ms
M 0s 899ms

Q 0s 902ms
H 0s 900ms

 Overall Encode Experiment Result

Overall, the compression, multiplexing, and multilayer encoding processes are the best

way to increase the capacity of QR code. These processes can contribute extra data or

information to be embarked into an image, which is the QR code. To achieve the extra

capacity of the storage, a procedure needs to be followed in order to reach the goal.

Figure 5.2 shows the flow process of the encoding processes of compression,

multiplexing, and multilayer. It starts from a plain text file until a coloured QR Code

is produced. These step processes are the summaries from the chapters discussed

previously.

The encoding process starts from compression (GZip and Base64 encode),

multiplexing, until multilayer. Table 5.9 shows the elapsed time of the encoding

process. Error correction level H has the capability to complete the encoding process

153

Generate coloured
QR Code

Generate red, green
and blue QR Code

Encode by using
base91 decoder to
produce text file

Distribution Base91
text encoder

Compress the file

Text Files Distribution

GZip File

Normal Text File

1

2

3

24

Encode to 24 black
and white QR Codes

from base91 text
encode

1

2

3

24

Base91 Text Encode

Black and White QR
Code

Red, Green and Blue QR
Code

Coloured QR Code

Compression Module

Multiplexing Module

Multilayered Module

Figure 5.2. The flow processes of the encoding compression, multiplexing, and

multilayer modules.

in the fastest time as compared to the other error correction levels, which consumed 6

seconds and 254 milliseconds to complete the processes. Nonetheless, at the same

time, the total bytes of the image (coloured QR code) with error correction level L

have the minimum size of only 105 kilobytes (108,339 bytes). From this perspective,

it can be concluded that the time consumed to complete the process does not contribute

to the file size of QR code for this research.

154

Table 5.9

The elapsed time of encoding process.

E
rror

C
orrection L

evel

C
om

pression

M
ultiplexing

M
ultilayer

M
ultiplexing

and M
ultilayer

T
otal elapse

tim
e

T
otal B

ytes of

C
oloured Q

R

C
ode im

age

L
0s

64ms

13s

238ms

0s

 169ms

13s

 406ms

16s

 683ms

105 KB

(108,339 bytes)

M
0s

29ms

6s

 531ms

0s

97ms

6s

 629ms

7s

 551ms

105 KB

(107,997 bytes)

Q
0s

24ms

6s

276ms

0s

92ms

6s

 638ms

6s

 494ms

107 KB

(110,241 bytes)

H
0s

21ms

6s

254ms

0s

98ms

6s

 353ms

6s

 964ms

108 KB

(110,679 bytes)

The traditional QR code version 40 has been employed and used to compare with the

new proposed coloured QR code in the form of data capacity. Table 5.10 shows the

difference of text capacity between QR code version 40 and proposed coloured QR

code. From this table, error correction level L has a large difference between the two

QR codes. It consists of 29.12337 times of extended characters (for coloured QR code)

as compared to the traditional QR code version 40. Certainly, the new proposed QR

code has a large capability to extend the characters with a maximum of 125,114

characters.

155

Table 5.10

The difference of text capacity between QR code version 40 and proposed coloured

QR code.

Error
Correction

Level

Version 40
(Maximum)

Proposed
Coloured QR

Code
(Maximum)

Time difference
expanded

L 4,296 125,114 29.12337
M 3,391 93,295 27.51253

Q 2,420 68,201 28.18223
H 1,852 51,240 27.66739

Recently, there are many studies and researches on extending data capacity by using a

QR code. From Table 2.6 in Section 2.3.4, the research by Galiyawala and Pandya

(2014) was able to extend the data capacity of QR code up to 24 times, which is the

highest increment as compared to the traditional QR code and other researchers’

experiment. In addition, their research as shown in Table 2.14 in Section 2.4 revealed

that the total processing time to encode and decode 14 QR codes took about 53.153

and 1236.105 seconds, which indicates too much processing time consumed to

complete the task. This clearly shows that Galiyawala and Pandya (2014) need to

improve their processing time of decoding and encoding processes. Nonetheless, Table

5.10 shows an improvement of increment in the storage of coloured QR code, which

were 29.12337 (error correction level L), 27.51253 (error correction level M),

28.18223 (error correction level Q), and 27.66739 (error correction level H) times.

Furthermore, the time to complete the encoding processes is 16 seconds 683

milliseconds (error correction level L), 7 seconds 551 milliseconds (error correction

156

level M), 6 seconds 494 milliseconds (error correction level Q), and 6 seconds 964

milliseconds (error correction level H).

The proposed encoded QR code that employed the compression, multiplexing, and

multilayer techniques has shown an increase in QR code data storage. The experiment

was realised on the text based on a short story, which contained not more than 125,114

characters for error correction level L. As the undertaken experiment produced good

results, it is suitable to store or embedding product description for advertisement

purposes would also be a successful implementation.

5.3 Decode Experiment

The decode experiment can be done after the encode process completed. The

experiment results are suggestive to expendable colour depth and colour channel. Each

modules also tested such as compression and decompression, division of black and

white QR code and comparing processing time and compession tool with other

researcher.

 Decode Modules Experiment Result

The decompression process is the last step to regain the original text. From the

beginning until the end of the decoding processes, the elapsed time was calculated to

obtain the actual time to complete the process (See Appendix H). Table 5.11 shows

the compilation of elapsed time of overall decoding processes.

From Table 5.11, the overall processing time is nearly 6 seconds to complete the

decoding process. In detail, error correction level Q was able to complete the process

157

Table 5.11

The compilation of elapsed time of overall decoding processes.

Error
Correction

Level
Demultilayer Demultiplexing Decompression Overall

Total

L 0s 925ms 1s 656ms 0s 12ms 5s 959ms

M 0s 899ms 1s 650ms 0s 11ms 5s 929ms

Q 0s 902ms 1s 614ms 0s 9ms 5s 858ms

H 0s 900ms 1s 655ms 0s 8ms 6s 11ms

within 5 seconds 858 milliseconds, which is the fastest among the other three error

correction levels. The overall total column contains all process information starting

from the first command until the end line of the programme. The demultilayer,

demultiplexing, and decompression module columns contain the time consumed to

complete the specific task of the module. The decoding process in this model

experiment is still acceptable because the total of black and white QR codes from this

model is 24 units as compared to the number of maximum QR codes from the

experiment in Table 5.12, which is only 14 units. In addition, the processing time is

still the lowest as compared to the previous research from Table 5.12 given below. It

shows that this model is able to save more data or information as compared to the

experiment in Table 5.12. In detail, Table 5.12 shows 14 black and white QR codes

that were used to decode black and white QR codes with 1236.105 seconds to complete

the task. Meanwhile, the current experiment is able to decode 24 black and white QR

codes with completion time of approximately 6 seconds. The time difference between

them is 1230.105 seconds.

158

This method can extend the data storage of QR code if a minor modification is made

in the compression, multiplexing, and multilayer modules. The modification involves

choosing the best compression technology, developing a detailed colour depth, and

extending the colour channel.

Table 5.12

The summary of processing time of decoding by Galiyawala and Pandya (Courtesy:

Galiyawala & Pandya (2014)).

Sr No. Number of QR Codes
Multiplexed

Assigned Distinct
Colour (2*)

Decoding
Processing Time

(second)

1 2 4 2.892

2 3 8 2.988

3 4 16 2.98

4 5 32 3.084

5 6 64 3.381

6 7 128 3.624

7 8 256 4.359

8 9 512 6.128

9 10 1024 11.406

10 11 2048 28.398

11 12 4096 91.393

12 13 8192 323.198

13 14 16384 1236.105

159

5.3.1.1 Compression and Decompression

GZip was chosen and used in this experiment as it is the most popular data compression

tool (Morse Jr., 2005). The choice of compression tool is based on the experiment of

many compression tools . The compression model for the QR code in this research is

merged with the binary to/from text encoder/decoder. The reason is that the text mode

allows more data to be stored in the QR code. Nevertheless, the text file must be

compressed first before the binary to text process is performed. This method will

increase the percentage of compression. Table 5.13 shows the normal QR code version

40 and compression tool (GZip) via binary to text encoding/decoding gap and

percentage of compression order by error correction level. The total character result is

based on one unit of black and white QR code only.

The percentages in the QR code are different among them because the error correction

level has fixed the level of recovery of the QR code. The result of this experiment

emphasised the percentage that the QR Code can embed after compression. The GZip

algorithm can exceed within 40% to 52% of data compression of this model. If another

compression tool can exceed more than 52% and is compatible with the binary to text

encoder, it is better to use that compression tool as a goal to compress more data. This

compression model is flexible with other compression tools because all the

experiments were performed by using multiple compression tools such as Zip,

Huffman Coding, LZW etc. The best compression tool can be selected if the rate of

compression of text is high. Table 5.14 shows an experiment to obtain the maximum

total characters that can be stored in QR code version 40 by error level with multiple

compression tools without encoder/decoder.

160

Table 5.13

The normal QR code version 40 and compression tool (GZip) via binary to text

encode/decode gap and percentage of compression order by error correction level.

Error
Correction Level Total Normal

GZip and
Binary to

Text

GZip and
Binary to
Text (%)

Total
Reduction

(%)

L 2,952 1,528 52 48
M 2,330 1,140 49 51
Q 1,662 743 45 55
H 1,270 514 40 60

Table 5.14

The maximum total characters stored in QR code version 40 by error level with

multiple compression tools without encoder/decoder.

Error
Level Normal Zip Gzip LZW Huffman

Coding
Huffman
& Gzip

Huffman
& Zip

H 1270 1560 1784 1167 212 1364 1166
Q 1662 2114 2405 1627 282 1827 1639

M 2330 3188 3470 2441 392 2607 2425
L 2952 4226 4480 3253 503 3323 3095

The total normal characters that can be loaded into a black and white QR code version

40 after compression and binary to text conversion is formulated as follows:

Total normal character after decompression = (a * b) / c

Where:

a = total maximum characters of a normal QR code version 40 by error correction

level

161

b = total characters after compression and encoding of that same value of maximum

character storage of a normal QR Ccde version 40 by error correction level

c = total character after compression and encoding of normal characters of QR

code version 40 by error correction level

If the 24 units of black and white QR code are used to embed the text, more text

characters can be installed and can be referred to the next step, which is the

multiplexing process. It can be shown in Table 5.15.

Table 5.15

The total character storage of 1, 8, 24, and N units of black and white QR codes after

completion of compression process and binary to text decoding process.

Error
Correction

Level

1 Black and
White QR

Code

8 Black and
White QR

Codes

24 Black and
White QR

Codes

N Black and
White QR

Codes

L 5703.079 45624.63 136873.9 N * 5703.079
M 4762.193 38097.54 114292.6 N * 4762.193

Q 3717.69 29741.52 89224.57 N * 3717.69
H 3137.938 25103.5 75310.51 N * 3137.938

5.3.1.2 Multiplexing Using Colour Depth

The multiplexing process depends on how many bits of colour are allocated in each

colour channel to produce a monocoloured QR code. The total bit allocated in each

colour channel represents a type of colour that will be displayed in the monocoloured

QR code in a single pixel. The total colour in the monocoloured QR code is known as

colour depth. Colour depth is a bit depth of the bit number used for each

colour component of a single pixel. If the total value of bit is less, it means the colour

162

component of the single pixel can contain less colour pixels. Nonetheless, it is vice

versa if the total value of bit contains many bits. The experiment result shows that the

increasing total colour bit depth contributes to the outcome of total characters. This

process can be done during the multiplexing process. In addition, the value of total

colour bit depth is equivalent to the total of black and white QR codes used for the

multiplexing process, which is eight units for each monocoloured QR code. It can be

formulated by using the initialisation value from the experiment of 24-bit colours.

Table 5.16 shows the calculation or simulation of the outcome of total character order

by error correction level from 24 and above units of black and white to 3 monocoloured

QR codes (red, green, and blue). If the 24-bit colours are used, the total characters are

136873.9 for error correction level L, 114292.6 for error correction level M, 89224.57

for error correction level Q, and 75310.51 for error correction level H. These total

characters’ values can be used as a constant order by error correction level, if the

calculation to expand the colour depth is implemented. The formula is as follows:

Total characters = (x new bit RGB colour depth of error correction level * (total

character of 24-bit colour depth of error correction level) / 24 bits of RGB colour

depth of error correction level

where:

x = the value of new colour bit RGB

From the data tabulated, it is shown that if the colour bit of RGB increases, the total

characters will be raised. The increase of total characters is applied to all error

correction levels. For example, error correction level L with 240 bits RGB colour have

163

Table 5.16

The calculation or simulation of the outcome of total character order by error

correction level from 24 and above units of black and white to 3 monocoloured QR

codes (red, green, and blue).

Colour
Bit

Single
Channel

Colour
Bit

RGB**

Error Correction Level

L M Q H

8 24 136874 114293 89225 75311

10 30 171093 142866 111531 94138

16 48 273748 228586 178449 150621

24 72 410622 342879 267674 225932

32 96 547496 457172 356898 301242

40 120 684370 571465 446123 376553

48 144 821244 685758 535348 451863

56 168 958118 800051 624572 527174

64 192 1094992 914344 713797 602484

72 216 1231866 1028637 803021 677795

80 240 1368740 1142930 892246 753105

Note: ** also referred to as the total black and white QR codes used

the highest bit colours among the data tabulated, which is 1368740 million characters.

If the average of 7 characters is equivalent to a word, then the total words are

approximately 195534.29 words or 434.5 pages (Arial font, size 12, and single

spacing) (“Convert Words to Pages,” 2016). It is shown that in the future, if the 240

bits RGB colour exists, then the coloured QR code is able to save the content of a

research thesis or book in a single coloured QR code.

164

5.3.1.3 Multilayer Using Colour Channel

The multilayer process in this model is a process of combining monocoloured QR

codes into a single coloured QR code. In this experiment, the total colour channels

used are three colours, which are red, green, and blue. A colour channel contains the

colour information of the dominant colour element in a colour model. For example,

the RGB colour model consists of three major colours, which are red, green, and blue.

The colour channel can be added with more three main colours. This technique can be

formulated based on the following:

Total characters = colour channel * (total character of 24 (RGB of 8 bits) bits colour

depth of error correction level) / 24 bits of normal RGB colour depth of error

correction level

where:

Colour channel = colour model(3 x bit, 4 x bit, 5 x bit,…., nx bit)

where:

n = total main colour channel

x bit = the colour depth {8 bits, 16 bits, 24 bits, … x bits}

From the model created in this research experiment, a simulated colour channel has

been added with more than three colour channels. All data is based on simulation by

adding more than three colours in a single colour model. This experiment is suitable

for the multilayer/demultilayer process, which changes from monocolour to coloured

QR code. The colour depth depends on bit colours allocated. The first experiment starts

with an 8-bit colour depth and increment by 8 bits of a new colour component. Table

165

5.17 shows the increment of colour component of the RGB model with 8-bit colour

depth order by error correction level.

Table 5.17

The simulation in increment of channel using RGB model with 8-bit colour depth order

by error correction level.

Channel
(8 bits)**

Colour
Bit

RGB

Error Correction Level

L M Q H

3 24 136874 114293 89225 75311

4 32 182499 152391 118966 100414

5 40 228123 190488 148708 125518

6 48 273748 228586 178449 150621

7 56 319373 266684 208191 175725

8 64 364997 304781 237932 200828

9 72 410622 342879 267674 225932

10 80 456247 380977 297415 251035

11 88 501871 419074 327157 276139

12 96 547496 457172 356898 301242

Note: ** also referred to as the total monocoloured QR codes used

Even though the total characters are not so many as for colour depth technique, this

technique can also gain the characters that can be embeded into the coloured QR code.

Other colour depths of colour channels that can be implemented are shown in Tables

5.18, 5.19, 5.20, and 5.21. All the tables given below are increased by 10 bits, 16bits,

24 bits, and 80 bits.

166

Table 5.18

The simulation in increment of channel using RGB model with 10-bit colour depth

order by error correction level.

Channel
(10 bits) **

Colour
Bit

RGB

Error Correction Level

L M Q H

3 30 171093 142866 111531 94138

4 40 228123 190488 148708 125518

5 50 285154 238110 185885 156897

6 60 342185 285733 223062 188276

7 70 399216 333355 260238 219656

8 80 456247 380977 297415 251035

9 90 513278 428599 334592 282414

10 100 570308 476221 371769 313794

11 110 627339 523843 408946 345173

12 120 684370 571465 446123 376553

Note: ** also referred to as the total monocoloured QR codes used

Table 5.19

The simulation in increment of channel using RGB model with 16-bit colour depth

order by error correction level.

Channel
(16 bits) **

Colour Bit
RGB

Error Correction Level
L M Q H

3 48 273748 228586 178449 150621

4 64 364997 304781 237932 200828

5 80 456247 380977 297415 251035

6 96 547496 457172 356898 301242

7 112 638745 533367 416382 351449

167

8 128 729995 609563 475865 401656

9 144 821244 685758 535348 451863

10 160 912493 761953 594831 502070

11 176 1003743 838149 654314 552277

12 192 1094992 914344 713797 602484

Note: ** also referred to as the total monocoloured QR codes used

Table 5.20

The simulation in increment of channel using RGB model with 24-bit colour depth

order by error correction level.

Channel
(24 bits) **

Colour Bit
RGB

Error Correction Level
L M Q H

3 72 410622 342879 267674 225932

4 96 547496 457172 356898 301242

5 120 684370 571465 446123 376553

6 144 821244 685758 535348 451863

7 168 958118 800051 624572 527174

8 192 1094992 914344 713797 602484

9 216 1231866 1028637 803021 677795

10 240 1368740 1142930 892246 753105

11 264 1505614 1257223 981471 828416

12 288 1642488 1371516 1070695 903726

Note: ** also referred as the total monocoloured QR codes used

From the tables given above, it can be concluded that if the colour depth and the

channel in a colour model are added, the total characters will be increased

dramatically. From this situation, the model can contribute to the increase in total

168

Table 5.21

The simulation in increment of channel using RGB model with 80-bit colour depth

order by error correction level.

Channel
(80 bits) **

Colour Bit
RGB

Error Correction Level
L M Q H

3 240 1368740 1142930 892246 753105
4 320 1824987 1523907 1189661 1004140
5 400 2281233 1904883 1487077 1255175
6 480 2737480 2285860 1784492 1506210

7 560 3193727 2666837 2081907 1757245
8 640 3649973 3047813 2379323 2008280

9 720 4106220 3428790 2676738 2259315
10 800 4562467 3809767 2974153 2510350
11 880 5018713 4190743 3271569 2761385
12 960 5474960 4571720 3568984 3012420

Note: ** also referred to as the total monocoloured QR codes used

characters if the colour depth and channel change the selection of the best compression

tool.

 Calculation of Total Black and White QR Codes

The models of compression, multiplexing, and multilayer need to be merged in order

to obtain more characters stored in the coloured QR code. Nonetheless, at the same

time, the total number of black and white QR codes relies on colour depth and colour

channel. For example, if the colour depth is 16 bits and the channel is 4, then the black

and white QR code would be 64 units. It can be formulated by using the following:

169

Total black and white QR code = Total bits colour depth * Total channel of colour

model.

The main reason to determine the number of black and white QR code is to estimate

the suitable total characters that suit with the total black and white QR codes. If the

text characters are not so many, it is not suitable to use 80-bit colour depth with 12

channels because it will consume more elapsed time to complete the process. Figure

5.3 illustrates the diagram of RGB colour depth and colour model based on

compression, multiplexing and multilayer processes. The calculation formula can be

used in the opposite way. For example:

Total bits colour depth = Total black and white QR code / Total channel of colour

model

or

Total channel of colour model = Total black and white QR code / Total bits colour

depth

From statement above, it is shown the way to get optimal total bits colour depth or

total channel of colour model that can be used to avoid wastage of colour depth and

colour channel when users have certain amount of black and white QR code.

5.4 Partial Extraction Levels

This partial experiment consists 2 levels of extraction. The first one is called partial

extraction level 1 and another one called called partial extraction level 2. Each level

have their own purpose which are level 1 extracting only a single black and white QR

170

code and level 2 is extracting only a group of black and white QR code. Each level has

decode and re-encode processes.

Colour Depth

Channel of Colour
Total QR code

Figure 5.3. The diagram of RGB colour depth and colour channel.

 Partial Extraction Levels Experiment Result

The level 1 decoding abstract model that was used to update the information in black

and white QR codes is shown in Figure 5.4. The task of this model is updating the

black and white QR code information at the suggested index location. Meanwhile, the

re-encoding abstract model is shown in Figure 5.5 and this process will begin with

updating information in the text file at the previous index location in level 1.

171

In addition, the level 2 abstract model consists of the operation to update the mono QR

codes (red, green, and blue).The process will generate eight text files and the provider

can manipulate a larger amount of information. Figures 5.6 and 5.7 show the example

of decoding and re-encodinge of red monocoloured QR code.

1

Generate red, green and
blue QR Code

Generate 8 black and
white QR Code

2 3 8

Level 1 process stop
here (All information not

updated)

Coloured QR Code

Decode to text

Normal decode
Partial decode

Legend

1

Information add, update or delete
process flow

Figure 5.4. Level 1 decoding abstract model.

172

1

Generate coloured QR
code

Generate red coloured
QR code

2 3 8

Information add, update or delete
process flow

Level 1 process stop here (All
information not updated)

Coloured QR code

Re-encode to text

Normal re-encode
Partial re-endecode

Legend

1

Figure 5.5. Level 1 re-encoding abstract model.

173

Generate red, green and
blue QR code

Generate 8 Black and
White QR Code

1 2 3 8

1 2 3 8

Decode 8 Black and
White QR Code

Information add,
update or delete

process

Level 2 process stop
here (All information

not updated)

Coloured QR code

Normal decode
Partial decode

Legend

Figure 5.6. Level 2 decoding abstract model.

174

Generate RGB coloured
QR code

Generate red QR Code

1 2 3 8

1 2 3 8

Generate 8 Black and
White QR Code

Information add,
update or delete

process

Level 2 process stop
here (All information

not updated)

Coloured QR code

Normal re-encode
Partial re-encode

Legend

Figure 5.7. Level 2 re-encoding abstract model.

5.4.1.1 Partial Input Data

The input data is a compilation of texts based on short stories, which are stored in black

and white QR codes. The amount of characters depends on the error correction level.

error correction level L will be used in this experiment. The reason why other error

correction levels are not tested is thathe target of this experiment is to save processing

175

time. Figure 5.8 illustrates a part of the employed input text, which includes various

types of characters such as numeric, alphabets, and several symbols. The utilised

benchmark method is QR code version 40 with error correction level L. The maximum

number of characters stored in each QR code version 40 is shown in Table 4.4. The

experiment of the undertaken experiment is based on computational time.

Figure 5.8. A part of input data text.

5.4.1.2 Result of Extraction Levels

Several experiments were conducted and some figures and tables were tabulated as the

results of the experiments. The process flow results for the benchmark method (i.e. QR

code version 40) and the proposed technique are shown in Figures 5.9, 5.10 and 5.11.

176

Coloured QR code

Red, Green, Blue

24 Black and White QR Code

24 Text File

93 ms

Red 938 ms

Green 595 ms

Blue 599 ms

4 s 21 ms

601 ms

Red 157 ms

Green 177 ms

Blue 89 ms

440 ms

Legend
Decode

Re-encode

Figure 5.9. The process flow results for QR code version 40.

Coloured QR code

Red, Green, Blue

24 Black and White QR Code

24 Text File

96 ms

Red 1s 57 ms

Green 605 ms

Blue 603 ms

529 ms

601 ms

Red 240 ms

Green 17 ms

Blue 83 ms

529 ms

Legend
Decode

Re-encode

Figure 5.10. The process flow results for proposed technique level 1.

177

Colored QR Code

Red, Green, Blue

Index 0-7 Black and White QR Code

Index 0-7 Text File

199 ms

Red 587 ms

Green 0 ms

Blue 0 ms

1s 398 ms

933 ms

Red 1s 569 ms

Green 0 ms

Blue 0 ms

243 ms

Legend
Decode

Re-encode

Figure 5.11. The process flow results for proposed technique level 2.

Based on Figures 5.9, 5.10, and 5.11, the data was collected and tabulated into four

tables ordered by levels 1 and 2. Comparisons were made between each level and the

benchmark method. At the same time, each level is divided into decoding and re-

encoding processes. Tables 5.22, 5.23, 5.24, and 5.25 show the comparison between

levels and processes in terms of different processing time.

From Table 5.22, the overall result in level 1 (decode) shows that the proposed

technique is able to complete the task within 1 second 251 milliseconds as compared

to the benchmark method, which was 1 second 464 milliseconds. The time difference

between these techniques is 231milliseconds. During the process to generate the red,

green, and blue QR codes, the time consumed for the proposed technique is slower

than the benchmark technique due to the implemented task of collecting information

178

of pixels in the red QR code. This process is not available in the benchmark technique.

As a result, this will consume more processing time.

Table 5.22

The comparison between benchmark and proposed techniques in level 1 of decoding

process. Level 1(Decode).

From To Benchmark Proposed
Level 1 Difference

Coloured QR
Code Red, Green, Blue 601 ms 978 ms -377 ms

Red, Green, Blue
QR Codes

24 / Index 0 Black
and White QR
Code

423 ms 187 ms 236 ms

24 / Index 0 Black
and White QR
Code

24 / Index 0 File
Text 440 ms 84 ms 356 ms

Total 1s 464 ms 1s 251 ms 231 ms

When the decoding process in Table 5.22 is completed, the re-encoding process will

take over after the process of updating, deleting or adding information is done. From

Table 5.23, the total time consumed has a large time difference between the benchmark

and proposed techniques, which is 5 seconds 199 milliseconds. The benchmark

technique has to generate 24 black and white QR code, meanwhile, the proposed

technique only needs to generate one black and white QR code. This is why the

benchmark technique consumes more time as compared to the proposed technique.

179

Table 5.23

The comparison between benchmark and proposed techniques in level 1 of re-

encoding process. Level 1(Re-encode).

From To Benchmark Proposed
Level 1 Difference

24 / Index 0 File
Text

24 / Index 0 Black
and White QR
Code

4s 21 ms 231 ms 3s 790ms

24 / Index 0 Black
and White QR
Code

Red, Green, Blue 2s 132 ms 621 ms 1s 511ms

Red, Green, Blue
QR Codes Coloured QR Code 93 ms 195 ms -102 ms

Total 6s 246 ms 1s 47ms 5s 199ms

Table 5.24

The comparison between benchmark and proposed techniques in level 2 of decoding

process. Level 2 (Decode).

From To Benchmark Proposed
Level 2 Difference

Coloured QR
Code

Red Green,
Blue 601 ms 933 ms -332 ms

Red, Green,
Blue QR Codes

24 / Index 0-7
Black and
White QR
Code

423 ms 1s 569 ms - 1s 146ms

180

24 / Index 0-7
Black and
White QR
Code

24 / Index 0-7
File Text

440 ms 243 ms 197 ms

Total 1s 464 ms 2s 745 ms -1s 281ms

Table 5.25

The comparison between benchmark and proposed technique in level 2 of re-encoding

process. Level 2 (Re-encode).

From To Benchmark Proposed
Level 2 Difference

24 / Index 0-7
File Text

24 / Index 0-7
Black and
White QR
Code

4s 21 ms 1s 398 ms 2s 623ms

24 / Index 0-7
Black and
White QR
Code

Red, Green,
Blue 2s 132 ms 587 ms 1s 545 ms

Red, Green,
Blue QR Codes

Coloured QR
Code 93 ms 199 ms -106 ms

Total 6s 246 ms 2s 184ms 4s 62ms

Overall, during the generating of coloured QR code in level 2, the proposed technique

consumed nearly twice the total time consumed in the benchmark technique. This is

because the proposed technique has to collect pixel information in the green and blue

QR codes. This can be referred in Table 5.24. But after that, the data in Table 5.25

shows the time consumption process has been conquered back by the proposed

181

technique. The proposed technique took only 2 seconds 184 milliseconds to complete

the process while the benchmark technique completed it in 6 seconds 246 milliseconds.

In level 2, the decoding and re-encoding processes are executed in order to recover the

red QR code. Table 5.24 shows the same result of the decoding process in level 1 at

Table 5.22. The proposed technique took 933 milliseconds to complete the decoding

process from coloured QR code to red, green, and blue QR codes, whereas the

benchmark technique only took 601 milliseconds. For the next process, the proposed

technique consumed 1 second 569 milliseconds, but the benchmark technique only

took 423 milliseconds. The range difference is 1second 146 milliseconds. The reason

is the red QR code needs to separate the image file into a group of black and white QR

codes, which start from indices 0 until 7. This process needs extra time to process.

Overall, the time range difference between the benchmark and proposed techniques is

1 second 281 milliseconds.

During the level 2 re-encoding process in Table 5.25, the proposed technique led the

time process with a time range difference of 4 seconds 62 milliseconds. However, in

generating the coloured QR code, the benchmark technique led a time range difference

of 106 milliseconds. This result is similar to the level 1 re-encoding process and the

reason is the same as mentioned before.

Table 5.26 below shows the information on the overall results of level 1, which has a

time range difference of 5 seconds 430 milliseconds and level 2, which has a time

range difference of 2 seconds 781 milliseconds. From this result, the proposed

technique has a good performance as compared to the benchmark techniques.

182

Table 5.26

The level 1 and level 2 time range difference.

Level Benchmark Proposed
Total Time

(Level)
Total Time

1
Decode 1s 464 ms 1s 251 ms 231 ms

5s 430ms
Re-encode 6s 246 ms 1s 47ms 5s 199ms

2
Decode 1s 464 ms 2s 745 ms -1s 281ms

2s 781ms
Re-encode 6s 246 ms 2s 184ms 4s 62ms

5.5 Comparison With Existing QR code

All data for validation are taken from the previous researches of coloured QR code and

some commercial products. An analysis of comparison between the proposed coloured

QR code and existing coloured QR code is based on the data capacity for each of them.

The results are compared in term of total text characters stored in UTF-8 string length

or bytes saved. All of the QRcode data capacity is based on data in Table 2.1, Table

2.6, Table 2.8 and Section 2.3.6. The proposed coloured QR code (24 bits colour) will

employs error correction level L because it can store more data compared to other error

correct level. Table 5.27 shows the text capacity comparison between proposed

coloured QR code and existing QR code (black-white and colour).

183

Table 5.27

The comparison text capacity between proposed coloured QR code and existing QR

code (black-white and colour)

 Type of QR code/
Researchers Type

Total
Characters
(UTF-8 String
Length)

File size
(Kilobytes)

1 Proposed QR code (24
bits colour) Colour 125,114 122.181640625

2 QR code version 40 Black and
White 4296 4.1953125

3 Nancy Victor
(2012)

Black and
White 4096 4

4
Kris Antoni Hadiputra
Nurwono and Raymondus
(2009)

Colour 12888 12.5859375

5 M. Ramya and M.
Jayasheela (2014) Colour 12888 12.5859375

6
Henryk Blasinski, Orhan
Bulan and Gaura Sharma
(2013)

Colour 12888 12.5859375

7

Max E. Vizearra,
Alexandre Zaghetto,
Bruno Macchiavello and
Anderson C. A.
Nascimento (2012)

Colour 128 0.125

184

8

Antonio Grillo,
Alessandro Lentini,
Marco Querinni, and
Giuseppe F. Italiano
(2012)

Colour 1926.144 1.881

9 Sartid Vongpradhip
(2013) Colour 12888 12.5859375

10
Prathibha N. Pillai and K.
Naresh
(2014)

Colour 12888 12.5859375

11
Hiren J. Galiyawala and
Kinjal H. Pandya
(2014)

Colour 103104 100.6875

12 Microsoft High Capacity
Color Barcode Colour 84 0.08203125

13
Zhibo Yang, Huanle Xu
and Jianyuan Deng.
(2017)

Colour 8859 8.651367188

14 High Capacity Colour
Barcode Colour 13704 13.3828125

15
High Capacity Colour
Barcode Two
Dimensional

Colour 12888 12.5859375

16 Colour QR Code-5 Colour 14356 14.01953125

185

From data in the Table 5.26, it can be seen that the proposed coloured QR code stores

the largest total characters compared to the others. It can store 125,114 characters

which is equivalent to 122.181640625 kilobytes. The second largest is the QR code

proposed by Hiren J. Galiyawala and Kinjal H. Pandya which is can store 103104

characters. Prior to deriving the findings, it was learned that most of the coloured QR codes

offer more storage capacity compared to black and white QR codes. From these findings, it

can be concluded that the method of compression, multiplexing and multilayer used in this

research is the best way to achieve largest text data capacity in coloured QR code.

5.6 Summary

The encoding process involved three major processes, namely compression,

multiplexing, and multilayer. The end of this process is to produce a coloured QR code

that can store more data inside it as compared to the conventional QR code. The

compression process uses two type of tools, which are compression tool and text

encoder. The current compression tool can be changed to another compression tool if

it is able to compress more data and has extra capabilities such as more percentage of

text compression or fast transaction as compared to the previous one. Likewise, the

text encoder also can be changed to another text encoder that is capable to encode more

characters but with less character representation. From the information above, it is

shown that the compression module is a flexible module because the tools inside it can

be changed according to the capability of the tools. The multiplexing process is used

to join many QR codes into one QR code. This technique helps to minimise the n total

of QR codes into a single QR code representation. The QR code representation uses

monocolour, which can be expanded to other types of monocolour such as red, green,

186

and blue QR code monocolour. The n total of QR codes can also be represented by

each monocolour representation. It means that more QR codes can be produced. The

last process is the multilayer process, which stacks each monocoloured QR code and

mixes the colours among them. This technique can save more monocoloured QR code

allocation so that the QR code can be generated from monocolour into coloured

presentation.

The decoding process is the inverse of the encoding process and it consists of

demultiplexing, demultilayer, and decompression processes. The target is to regain the

encoded data into data input. From the result, it is shown that the data can be captured

back as it was inputted before without any missing characters. The maximum stored

data is up to 136,874 characters as shown in Table 5.16 with error correction level L

and 8 bits of each colour channel. On the whole, the characters can be increased if the

colour depth and colour channel are implemented in this model. As simulated, a single

coloured QR code can contain characters similar to a book or research thesis. Some

equations were published as the benchmark to obtain the suitable total black and white

QR code, colour depth, and colour channel that can be used as a reference as shown in

Sections 5.2.1.2, 5.2.1.3 and 5.2.2

The experiment in this thesis was conducted in two parts. The first part involved the

experiment to measure the time consumption of extracting a single black and white

QR code in terms of whether it can consume less time than the normal method. The

technique is called level 1 decoding and re-encoding. The second part was to evaluate

the time consumption of extracting the monocoloured QR code. The contents of data

187

were bigger than the previous parts because the monocoloured QR code could contain

many black and white QR codes. It is known as level 2 decoding and re-encoding.

As a result, it is shown that updating information in the QR code is suitable to be

performed by this method as compared to the existing method (i.e. QR code version

40) because it consumed less computational time. With such achievement, the QR code

can further be expanded in managing the updated data inside the code. Information

stored in the code can always be updated according to the provider’s needs.

In general, the comparison was made in the finding chapter due to prove that the

proposed coloured QR code has capability to store more characters among the others

QR code for a time being. The proposed QR code is using error correction L which is

not considering the recovery mode criteria. The research and commercial QR codes

were used as to compare with the proposed coloured QR codes. The finding in Section

5.5 has showed that highest data storage belong to the proposed coloured QR code as

compared with others QR code. Thus, in overall it can be concluded that the proposed

coloured QR code provides the best data storage for coloured QR code.

188

CONCLUSION

6.1 Summary of the Thesis

This thesis has explained in detail the model conducted to uncover the solution of a

problem in expanding the storage of a QR code. From the past studies, many

techniques were implemented to increase the storage of QR code such as compression,

symbol converter, multiplexing etc. Based on the ideas from the past (which focused

on expanding data), several ways have been revealed to expand more text characters

to be embedded into the QR code. The proposed model can assist users to increase the

storage in a faster way by using the QR code as a storage medium in a single image of

QR code. Prior to this, a literature review was conducted to examine the research

problem and decide the solution to the problem. The process of reviewing literature

involves continuous activities that take part starting from the beginning until the final

phase of the research.

6.2 Encoding Design and Development Algorithmn

The encoding algorithm process is starts with designing the encode process which is

come from the preliminary study processes. The preliminary study incudes the

theoretical framework, testing existing algorithm and determining the suitable

algorithms. The outcome from this process is toward to select the suitable algorithms.

The selected algorithm was divided into three modules. Since three modules have been

used, namely compression, multilayer, and multiplexing, the encoding throughput had

to follow the sequence of the process for each module. The development includes

189

analyst requirement and designing the suitable hardware and software. The first

method development is to compress the text data and utilise the binary to text encoder

for the QR code. The compression tool is flexible to any type of compression software

such as GZip, WinZip, WinRar etc., nonetheless, it is better if the compression tool is

able to compress more data. The binary to text encoder is also adjustable to any kind

of encoder tool such as Base8, Base16, Base91 etc., but it must also be compatible

with common printed and controlled characters used with the encoder. The encoded

binary to text encoder produces non-human readable text and is able to transmit data

from binary into (most common) ASCII characters. In addition, the encoder is used in

transmitting data or image over networking by using the email application. From the

result of the compression module, the capability to increase the data into more than

52% as a maximum result comes from the GZip compression algorithm as tested

before.

The multiplexing process consists of changing black and white QR codes into

monocoloured QR codes. Colour depth is used for adding more black and white QR

codes into single monocoloured QR codes. From the experiment, the 8-bit colour

scheme was used, which produced eight black and white QR codes. If the colour depth

is extended, more black and white QR codes can be produced for yielding

monocoloured QR codes by this throughput. Based on the experiment, the

multiplexing module provides an increment in data capacity up to 24 times as

compared to the existing research module. In the undertaken experiment, 24 black and

white QR codes were employed, meaning that the produced coloured QR code can

increase up to 24 times.

190

The multilayer process brings the conversion from monocoloured QR code to coloured

QR code. This is the last process from the encoding throughput model. The total

monocolour QR codes that were produced from the previous process depended on the

colour model used in this model. As the undertaken experiment produced positive

results, it is shown that after updating information in the QR code until the multilayer

process, less computational time was consumed and more data capacity was extended

as compared to the existing method (i.e. QR Code version 40). In addition, the

multilayer process complied with multiple error correction levels in the QR code.

From the flow process at Figure 4.1 in Section 4.1.2 of Chapter 4, the process starts

with the compression technique at first, which involves compressing the data using a

compression tool, then converting it from binary (compression file) to text using an

encoder. The main reason to convert from binary to text is because the black QR code

is not able to hold a large amount of binary data as compared to text data as shown at

Table 4.4 in Section 4.1.2.1.2 of Chapter 4. At Figure 4.2 in Section 4.1.2 of Chapter

4, all information regarding total character, input file, output file, and file type were

identified before the process began. The compression module ended up with producing

black and white QR codes. All black and white QR codes were arranged according to

the structure of text file. As to avoid compatibility of character type, the conversion to

UTF-8 must be made as mentioned in index E4 at Table 4.1 in Section 4.1.2 of Chapter

4 and also in Section 4.1.2.2.1 of Chapter 4. Each black and white QR code must

contain 2,952 characters due to the fixed minimum content of black and white QR

code version 40 as tested in Appendix A for 20 times. The result is shown at Table 4.3

in Section 4.1.2.1.2 of Chapter 4. All QR codes were blended together by using the

multiplexing technique, which produced red, green, and blue coloured QR codes.

191

The multiplexing technique consists of a combination of white as 0 and black as 1 for

each QR Code. Each combination must refer to the eight black and white QR codes

and as a result, they will produce a monocoloured QR code either red, green or blue

QR code as shown at Figure 4.4 in Section 4.1.2.3 of Chappter 4. The size of the

monocoloured QR codes used was 177 x 177 modules and they were stacked together

via the multilayer process. The red monocoloured QR code was placed at the top,

followed by green and blue. The multilayer technique is based on the combination or

blended values of red, green, and blue monocoloured RGB colour scheme as

mentioned in Section 4.1.2.3. The experiment involved all types of error correction

level of the QR codes. As a result, if a higher level of error correction level is

implemented, it will reduce the size of data density of the QR code as shown at Table

5.10 in Section 5.2.1 of Chapter 5. Furthermore, the percentage expanded among the

black and white QR codes and coloured QR codes is approximately 27.8% as at Table

5.10 in Section 5.2.1 of Chapter 5. The fastest elapsed time to complete the encoding

process is 6 seconds and 964 milliseconds at error correction level H as shown at Table

5.10 in Section 5.2.1 of Chapter 5. Therefore, the RO1 was achieved as mention in

Section 1.4 of Chapter 1.

6.3 Decoding Design and Devopment Algorithm

After the encoding process, the next process is to regain the original text. This process

is called decoding, which is the reverse of encoding. The process follows the task

sequence, which is demultilayer, demultiplexing, and decompression. The

demultilayer process only involves the conversion from coloured QR code into

monocoloured QR code. The decoding process for a coloured QR code requires

192

separating the layers. It can be done by reading the coloured QR codes and breaking

them into monocoloured QR codes.

The demultiplexing throughput includes separating each one of the monocoloured QR

codes into black and white QR codes. The demultiplexing process is a one-to-many

concept, which associates single values of products with two or more value products.

The total value of product refers to the number of bit allocation of colour depth in the

black and white QR codes. The demultiplexing process took approximately 3 seconds

to be completed in the experiment conducted.

The decompression process contains two parts of task, namely text to binary and

decompression. Since the blacks and whites contain the encoded text from the binary

to text encoder, they need to be converted back to the compression file type. A

compression tool was used to extract all information from the compression file type

into the original text. Based on the experiment in the decoding process, there was no

character and control character missing at the end of the result.

The demultiplexing process involves demultilayer, demultiplex, and decompression,

which are the reverse processes of encoding or known as decoding. As shown at

Figure 4.6 in Section 4.2.2 at Chapter 4 , the coloured QR codes will be separated into

three monocoloured QR codes (red, green, and blue) and can be expanded to other

colours of the colour channel implemented as shown at Table 5.16 in Section 5.3.1.2

of Chapter 5. The next process in the algorithm is to break the monocoloured QR codes

into a group of black and white QR codes. At Table 4.9 in Section 4.2.2.3 of Chapter

4, the decimal to binary technique is used to regain the eight black and white coloured

193

QR codes. The conversion in this experiment is based on the 8-bit colour code for each

monocoloured QR code. Nevertheless, it can be expanded into other large bit colours

of the colour depth implemented. As a conclusion, when more bit colours of the white

coloured QR code are applied, then more black and white coloured QR codes can be

produced. The experiment results are shown at Tables 5.17 until 5.21 in Section 5.3.1.3

of Chapter 5. All black and white QR codes will be decoded into text that contains a

non-meaningful text file. The last process is the decompression process and it involves

decoding the text (non meaningful) to binary conversion (Base 64) and decompressing

data using the compression tool. From the result, the total character that can be stored

in the black and white QR code depends on the type of compression tool used. From

the experiment, the GZip compression tool is suitable to implement the compression

module as compared to Zip, LZW, and Huffman Coding, and the comparison among

the compression tools is as shown at Table 4.3 in Section 4.1.2.1.2 of Chapter 4. The

total black and white QR codes can be identified if the total bit colour depth and total

channel of the colour model have been selected. As explained in this Section, the RO2

was successfully fulfill as stated in Section 1.4 of Chapter 2.

6.4 Partial Extraction Decode and Re-encode Design and Development

Since the encoding and decoding processes consumed throughput time, the other way

to minimise the throughput time is by using partial extraction. The partial extraction

process involves certain parts of the process in order to save processing time. The

content of black and white and monocoloured QR codes can be done partially, which

does not involve others not related to the QR code. The content management is divided

194

into two parts, which are level 1 for black and white QR code, and level 2 for

monocoloured QR code as shown at Figure 4.9 in Section 4.3.1 of Chapter 4 .

The level 1 process only involves a single selected black and white QR code as shown

at Figures 5.6 and 5.7 in Section 5.4.1 of Chapter 5. The processes start from multilayer

until multiplexing processes. Then, the selected black and white QR code will be

chosen. The decompression process only involves a single black and white QR code

until the part of original text is produced. After the text is manipulated, the text needs

to be re-encoded into a single QR code. The process starts with compressing and

encoding the black and white QR code image. Since the previous black and white QR

code images were not updated, they can be used again for the multiplexing process

together with the updated QR Code image. The process continues with multiplexing

and multilayer until the coloured QR code image is developed. The experiment shows

that partial extraction consumes less throughput time as compared to the normal

method.

The pseudocode for partial extraction level 1 at Figure 4.10 in Section 4.3.1 of Chapter

4 starts with justifying the index location of black and white QR code that needs to

extracted. The extraction process (decode) will execute along the path to the selected

index location of black and white QR code. When the selected black and white QR

code index location is successfully decoded and the information is updated, then the

re-encoding process is ready to begin. The steps of re-encoding as at Figure 4.11 in

Section 4.3.2 of Chapter 4 start with identifying the index location of black and white

QR code and then compressing it. Afterwards, the steps are similar to the encoding

processes, but they only run the modified data. The rest will use the uninterrupted data

195

as an input to execute the whole process until the end. This will reduce the elapsed

time of processing as shown at Tables 5.22 and 5.23 in Section 5.4.1.2 of Chapter 5.

Level 2 is an extracting process of monocoloured QR code into multiple black and

white QR codes. The benefit of level 2 is the text amount can be manipulated into a

large amount as compared to level 1. This technique can be referred to at Figures 5.6

and 5.7 in Section 5.4.1 of Chapter 5. The demultilayer process will extract a coloured

QR code into monocoloured QR codes. The selected monocoloured QR code will be

used for extracting into black and white QR codes. Only the selected monocoloured

QR code will proceed to the next step, which is the demultiplexing process. The

demultiplexing process continues only with the selected monocoloured QR code until

parts of the original text are produced. After the text is manipulated, the text is ready

to be re-encoded. The compression will take part to generate a decoded binary to text.

From that, the generation of QR code pattern can be done until it is ready for the

multiplexing process. The multiplexing process will generate the monocoloured QR

code based on the type of monocoloured QR code previously selected. The

combination of the not updated version of monocoloured QR codes and updated

monocoloured QR codes is used to generate the multilayer process just before the

coloured QR code is generated.

The pseudocode of partial extraction level 2 involves the modification of

monocoloured QR code as shown at Figure 4.12 in Section 4.3.3 of Chapter 4. The

pseudocode starts with identifying the index location of monocoloured QR code. The

total monocoloured QR code depends on the total of colour channel as shown at Tables

5.17 until 5.21 in Section 5.3.1.3 of Chapter 5. If the total of colour channel increases,

196

the total monocoloured QR code will also increase. This process is a normal decoding

process, which has been discussed in Chapter 5. However, contrastly, not all

monocoloured QR codes are processed, only selected monocoloured QR codes will be

decoded and processed as shown at Figure 4.10 in Section 4.3.1 of Section 4. After

the monocoloured QR code has been identified and decoded, the index location of

black and white QR code in the monocoloured QR code must be calculated of its index

location. The process is shown in lines 4 until 8 at Figure 4.12 in Section 4.3.3 of

Chapter 4. When a set of black and coloured QR code are successfully produced from

the previous process, they will be decoded into subcomplete not meaningful text data

(text encoded from the Base64 decoder). Based on the algorithm procedure at Table

4.14 in Section 4.3.3 of Chapter 4 at index P16, the binary file will be produced after

the Base64 decoder is successful implemented. Another decoding process using a

decompression tool is the last compression module process to be performed until the

actual data is produced. The actual data can be edited in terms of adding, updating or

deleting information. After the data has been manipulated, the process to generate a

complete coloured QR code can be created. This process is called the re-encoding

process. The re-encoding process starts with the identification of the index location of

black and white QR codes as shown at Figure 4.13 in Section 4.3.4 of Chapter 4. The

compression and Base64 encoder are executed based on the updated data only at the

compression module. This process is illustrated at Figure 5.7 in Section 5.4.1 of

Chapter 5. The new black and white QR codes will be generated by using the updated

data compression only.

The path to generate coloured QR codes continues with generating monocoloured QR

codes by using a combination of new and remaining black and white QR codes as data

197

input (Table 4.15 in Section 4.3.4 of Chapter 4 at index P23). Moreover, the generation

of coloured QR codes uses the new and remaining monocoloured QR codes after the

new monocoloured QR code is generated. The whole process can be referred to at

Table 4.15 in Section 4.3.4 of Chapter 4, starting from indices 6.19 until 6.24. From

the result, the decoding process at level 2 took 2 seconds 745 milliseconds, whereas

the normal process only took 1 second 464 milliseconds. This can be referred to at

Table 5.24 in Section 5.4.1.2 of Channel 5. The re-encoding process shows better

processing time for re-encoding level 2, which is 2 seconds 184 milliseconds as

compared to the benchmark technique with 6 seconds 246 milliseconds. Overall, the

combination of decoding and re-encoding processes is better than the benchmark

technique based on the processing time as shown at Table 5.26 in Section 5.4.1.2 of

Chapter 5. The RO3 and RO4 have been performed as required in the Section 1.4 of

Chapter 2.

6.5 Contribution

As a conclusion, the model used in extending data capacity in the QR code is

successful. This is the main contribution of this research because the model is able to

extend the data capacity of the QR code by a combination of compression,

multiplexing, and multilayer modules. This model is expected to assist users who tend

to increase the data capacity in a single QR code in terms of processing time efficiency

and data capacity in various error correction levels. In addition, this model benefits the

users in terms of reducing the number of QR codes.

The encoding and decoding algorithms follow the sequence of process model to obtain

the coloured QR code and to regain the original text. From the encoding algorithm

198

process, colour depth and colour model help to increase the capacity of QR code. The

more colour depth and colour model used, the more data capacity can be embedded

through the coloured QR code. In the decoding process, the algorithm is able to prevent

any missing character due to its precision in calculations of decoding.

From decoding and re-encoding partial extraction, the processes implemented parts of

the full data extraction so as to save the throughput time. The process includes the

extraction of a single and group of black and white QR codes. This model helps the

data to be manipulated without involving other black and white QR codes. Partial

extraction gives two options, which are level 1 (single) and level 2 (group) of black

and white QR codes. Figure 6.1 illustrates the complete model of compression,

multiplexing, and multilayer for coloured QR code.

 The Model

The model in Figure 6.1 was developed based on a combination of encoding, decoding,

and partial extraction methods. The methods were implemented first by developing the

algorithms followed by the programme. Most of the researchers as shown at Tables

2.6 and 2.8 in Section 2.3.5 of Chapter 2 and Section 2.3.6 of Chapter 2 proposed

several methods based on a single method of multilayer, multiplexing, and

compression without combine them in a suitable order. In order to obtain more data

capacity in the QR code with a comprehensively quick processing time, the

combination of methods based on the researchers above has been proposed. This

combination was tested and the model was built as a guideline. This model will also

guide users to upgrade the sub-module. Table 6.1 shows the module and sub-module

that can be upgraded and it is guided from the model given in Figure 6.1. For example,

199

in the compression module, users are able to change or upgrade the compression utility

to another type of compression utility. If the input contains different types of ASCII

characters such as Japanese or Arabic characters, they can use another encoder/decoder

to reduce the storage capacity. Partial extraction can reduce the processing time as

discussed in Chapter 6. The error correction level follows the current black and white

QR code.

The method used in this model must be followed in sequence starting from

compression until multilayer processes. The sequence cannot be changed as it will

cause errors in gaining more data capacity. The model is divided into two parts, namely

the current method and partial extraction method. The current method consists of the

encoding and decoding processes as discussed in Chapters 4 and 5. Meanwhile, the

partial extraction method that was discussed in Chapter 6 contains two levels. Level 1

involves the extraction of black and white QR codes, while level 2 extracts

monocoloured QR codes. All processes contribute in producing coloured QR codes

without any data lost.

200

Compression
&

Decompression

Multiplexing
&

Demultiplexing

Multilayer
&

Demultilayer

Text to binary
decoder

Decompression
tool

Binary to text
encoder

Compression
tool

Colour depth
decodeColour depth

encode

Colour
channel
decode

Colour
channel
encode

Coloured QR
Code

Original Text
&

Partial original
text

Multiplexing
&

Demultiplexing
(Partial

Extraction)

Compression
&

Decompression
(Partial

Extraction) Binary to text
encoder

Compression
tool

Colour depth
encode

Encode Flow

Decode Flow

Level 1 Partial Encode Flow

Level 1 Partial Decode Flow

Level 2 Partial Encode Flow

Level 2 Partial Decode Flow

Legend

Figure 6.1. The complete model of compression, multiplexing, and multilayer for

coloured QR code.

201

Table 6.1

The module and sub-module upgrading plan.

Module Sub-Module Current Upgrade

Compression Compression GZip
Any

compression
utility

 Encoder/Decoder Base64

Base91,
Base128 etc.
Depends on

type of
characters

Multiplexing Multiplexing 24-bit colours
128-bit colour,
256-bit colours

etc.

Multilayer Multilayer RGB

Any kind of
extra colour
channels in

RGB

6.6 Limitation

The limitations of the research in this thesis are as follows:

1. In the compression process, the data needs to be compress and translated from binary

to text files by using the encoder. The reason is the data can only be embedded into

the black QR code with high storage capacity when the data is in a text mode as

compared to a binary mode. It can cut the throughput time if the encoder discarded

from this model. The black and white QR code is unable to receive a binary mode in a

big amount of capacity as compared to text mode.

2. In the multiplexing process, the black and white QR codes only accept two types of

colour, which are black and white. The model cannot accept more than two types of

colour due to the restriction of 0 and 1 digit method. The 0 and 1 digits are used to

create the monocoloured QR colour. If more than two colours are carried out, then the

202

binary digit inside the RGB colour cannot be implemented. This will give incompatible

methods for this model.

3. In the multilayer process, the combination of layers are based on the combination

of monocoloured QR codes that are generated from the multiplexing process. When

the coloured QR codes are generated, the model cannot extend the combination layer

with other coloured QR codes. If the combination occurs, the data capacity can be

extended more than two times.

6.7 Future Work

The possible recommendations for future work are as follows:

1. The implementation of parallel processing could be implemented from this model,

especially in the partial extraction module. The reason of using the parallel processing

is to speed up the throughput time. The decoding and re-encoding processes can run

together and stop for a while at the black and white QR code image. Figure 6.2 shows

the example of method implementation of parallel processing for partial extraction

level 1 with 24 bit RGB.

2. The combination with the same model can contribute to extra data capacity of

coloured QR code. This method can be performed if two or more complete coloured

QR codes are combined and as a result, it will give another output image of the

combination. The technique that may be used is the multilayer process, which

combines the images. If the combination is successful, the data capacity can increase

up to two times or more from the current storage capacity. Figure 6.3 illustrates the

combination of two coloured QR codes. This combination method can be enhanced

203

with embedding more coloured QR codes and produce a single new invention of QR

code.

Multilayer
and Demultilayer

Multiplexing
and

Demultiplex

1 2 3 8

1

Information add,
update or delete

process flow

Level 1 process stop
here (All information not

updated)

Text to Binary
and

Compression/
Decompression

1

1

2

Coloured QR Code

Se
qu

en
ce

Parallel Processing
Parallel Processing

Figure 6.2. The example of method implementation of parallel processing for partial

extraction level 1.

204

Suitable
technique

Coloured QR Code

Coloured QR Code

New invention

Figure 6.3. The combination of two coloured QR codes.

3. This research can be enhanced by considering the brightness and darkness aspects

during the decoding process on the image of the coloured QR code. The brightness

and darkness aspects of the QR code image need to be considered because the colour

of the image will change due to the effect of light (Yang et al., 2016). The technique

must show how to convert to the normal colours if there is light during the decoding

process. The model cannot generate the original text if the colour combination does

not tally with the actual colour of the QR Code during the encoding process. Figure

6.4 illustrates the effect of light during the decoding process. The research can

contribute to how to solve the light effect problem during the decoding process of

coloured QR code.

205

QR Code Scanner

Figure 6.4. The effect of light during decoding process.

6.8 Summary

The coloured QR code model is a method to increase data storage in order to have

more data embedded in a single QR code. This model requires a set of test data or input

to perform a dynamic experiment on data storage in the QR code. Thus, the data helps

to prove the model developed whether it can be used to increase the data in QR code.

Various automated methods were used such as throughput time, total characters, and

error correction level. Thus, the research in this thesis proposed a model to derive and

generate a large data capacity to perform a text-based information by using

compression, multiplexing, and multilayer techniques. Having to furnish the text-

based data that conforms to the specifications of a solution model created, this model

gives positive results of data capacity by using this criteria. The model is able to

increase data storage of the QR code, in terms of using the compression, multiplexing,

and multilayer techniques. This model is expected to give hope for those who are

206

interested in increasing the data in a single QR code. This feature benefit can reduce

time constraint due to less throughput time and reduce the use of large amounts of QR

codes.

Based on the findings collected from the conducted experiment as discussed earlier, it

significantly proves that this model has increased the data capacity as compared to

what was employed in the current research of QR code. In addition, supported by the

findings from the partial extraction technique, it is shown that the content of the QR

code can be customised in a faster way as compared to the traditional technique. The

present study also shows that the proposed model is able to use other input such as

image, other type of characters, and public/private key. It is feasible to be adopted in

the process control industry, product description, offline e-book etc.

All objectives from this thesis have been fulfiled and all the research questions thave

been answered through this research. As this research is fully completed, this model

that produces coloured QR codes is ready to be used by the QR code industry to save

storage capacity in the future.

207

REFERENCES

Abas, A., Yusof, Y., & Ahmad, F. K. (2017). Expanding the data capacity of QR

codes using multiple compression algorithms and base64 encode/decode.

Journal of Telecommunication, Electronic and Computer Engineering, 9(2–2).

Ahlawat, S., & Rana, C. (2017). A Review on QR Codes : Colored and Image

Embedded. International Journal of Advanced Research in Computer Science,

8(5), 410–413.

Anonymous. (2013). PM-Code’s world. Retrieved July 7, 2018, from

http://pmcode.co-site.jp/

Asare, I. T., & Asare, D. (2015). The Effective Use of Quick Response (QR) Code

as a Marketing Tool. International Journal of Education and Social Science,

2(12), 67–73.

Bagherinia, H., & Manduchi, R. (2012). High Information Rate and Efficient Color

Barcode Decoding. In International Workshop on Color and Photometry in

Computer Vision (CPVC) (pp. 1–10).

Bhardwaj, N., Kumar, R., Verma, R., Jindal, A., & Bhondekar, A. P. (2016).

Decoding algorithm for color QR code: A mobile scanner application. In 2016

International Conference on Recent Trends in Information Technology, ICRTIT

2016. https://doi.org/10.1109/ICRTIT.2016.7569561

Bishop, T. (2007). Software notebook: Color is key to Microsoft’s next-generation

bar code. Retrieved July 7, 2018, from https://www.microsoft.com/en-

us/research/project/high-capacity-color-barcodes-hccb/

208

Blasinski, H., Bulan, O., & Sharma, G. (2013). Per-Colorant-Channel Color

Barcodes for Mobile Applications : An Interference Cancellation. In IEEE

Transaction on Image processing (Vol. 22, pp. 1498–1511).

Boob, A., Shinde, A., Rathod, D., & Gaikwad, A. (2014). Qr Code Based Mobile

App and Business Process Integration. International Journal of

Multidisciplinary and Current Research, 2(Sept and Oct 2014), 1014–1017.

Brititsh Standards. (2009). Information technology : automatic identification and

data capture techniques, QR code 2005 bar code symbology specification. ISO

Standards.

Bulan, O., & Sharma, G. (2011a). High Capacity Color Barcodes : Per Channel Data

Encoding via Orientation Modulation in. IEEE Transactions on Image

Processing, 20(5), 1337–1350.

Bulan, O., & Sharma, G. (2011b). High Capacity Data Embedding For Printed

Documents. University of Rochester.

Bunma, D., & Vongpradhip, S. (2014). Using augment reality to increase capacity in

QR code. In 4th International Conference on Digital Information and

Communication Technology and Its Applications, DICTAP 2014 (pp. 440–443).

https://doi.org/10.1109/DICTAP.2014.6821727

Chandran, A. (2014). Review on Color Qr Codes : Decoding Challenges.

International Journal of Engineering Research & Technology (IJERT), 3(4),

848–851.

Chang, J. H. (2014). An introduction to using QR codes in scholarly journals.

Science Editing, 1(2), 113–117. https://doi.org/10.6087/kcse.2014.1.113

209

Charoensiriwath, C., Surasvadi, N., Pongnumkul, S., & Pholprasit, T. (2015).

Applying QR code and mobile application to improve service process in Thai

hospital. In Proceedings of the 2015 12th International Joint Conference on

Computer Science and Software Engineering, JCSSE 2015 (pp. 114–119).

https://doi.org/10.1109/JCSSE.2015.7219781

Chiang, J. S., Li, H. T., Hsia, C. H., Wu, P. H., & Hsieh, C. F. (2013). High density

QR code with multi-view scheme. In Proceedings of the International

Symposium on Consumer Electronics, ISCE (Vol. 49, pp. 49–50).

https://doi.org/10.1109/ISCE.2013.6570246

Chuang, J.-C., Hu, Y.-C., & Ko, H.-J. (2010). A Novel Secret Sharing Technique

Using QR Code. International Journal of Image Processing (IJIP), 4(5), 468–

475.

Coleman, J. (2011). QR Codes: What Are They and Why Should You Care? In

Kansas Library Association College and University Libraries Section

Proceedings (Vol. 1, pp. 16–23). https://doi.org/10.4148/culs.v1i0.1355

Commission, & International Organization for Standardization., I. E. (2000).

Information technology -- automatic identification and data capture techniques

-- bar code symbology -- QR code. Geneva: Geneva : ISO : IEC, 2000.

Convert Words to Pages. (2016). Retrieved May 7, 2017, from

http://www.wordstopages.com/

Čović, Z., & Šimon, J. (2016). Usage of QR codes in promotion on social networks.

In Proceedings of 2016 International Conference on Smart Systems and

Technologies, SST 2016 (pp. 123–127).

https://doi.org/10.1109/SST.2016.7765645

210

Dagan, I., Binyamin, G., & Eilam, A. (2016). Delivery of QR Codes to Cellular

Phones through Data Embedding in Audio. In ISCEE International Conference

on the Science of Electrical Engineering (pp. 3–6).

Demir, S., Kaynak, R., & Demir, K. A. (2015). Usage Level and Future Intent of Use

of Quick Response (QR) Codes for Mobile Marketing among College Students

in Turkey. Procedia - Social and Behavioral Sciences, 181, 405–413.

https://doi.org/10.1016/j.sbspro.2015.04.903

Denso-Wave. (2015). QR Code Standardization. Retrieved July 7, 2018, from

http://www.qrcode.com/en/about/standards.html

Denso, A. (2011). Qr code essentials. Retrieved fr om http://www. nacs.

org/LinkClick. aspx. Retrieved from

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:QR+Code+®

+Essentials#0

Denso Wave. (2014). Denso Wave, The Inventor of QR Code. Retrieved July 7,

2018, from https://www.denso-autoid-eu.com/en/about-us/20-years-qr-

code.html

Dita, I., Otesteanu, M., & Quint, F. (2011). Data Matrix Code - A Reliable Optical

Identification of Microelectronic Components. 2011 IEEE 17th International

Symposium for Design and Technology in Electronic Packaging (SIITME), 1(1),

39–44.

Donald D. Hearn, M. Pauline Baker, W. C. (2010). Computer Graphics with Open

GL (4th Edition) (4th ed.). Pearson.

211

Donoho, D. L., Vetterli, M., Devore, R. A., & Daubechies, I. (1998). Data

Compression and Harmonic Analysis. In IEEE Transaction on Information

Theory (Vol. 44, pp. 2435–2476).

Falas, T., & Kashani, H. (1994). Two-Dimensional Bar-code Decoding with Camera-

Equipped Mobile Phones. In Pervasive Computing and Communications

Workshops, 2007. PerCom Workshops ’07. Fifth Annual IEEE International

Conference (pp. 2–5).

Farizshah, M., & Abd Jalil, K. (2012). The Embedding of Arabic Characters in QR

Code. In International Conference Open Systems (ICOS), 2012.

Feng, X., & Zheng, H. (2010a). Design and realization of 2D color barcode with high

compression ratio. In International Conference on Computer Design and

Applications, ICCDA 2010 (Vol. 1, pp. 314–317).

https://doi.org/10.1109/ICCDA.2010.5540872

Feng, X., & Zheng, H. (2010b). Design and realization of 2D color barcode with

high compression ratio. In International Conference on Computer Design and

Applications, ICCDA 2010 (Vol. 1, p. 4).

https://doi.org/10.1109/ICCDA.2010.5540872

Ferreira, R. a. S., & André, P. S. (2014). Colour multiplexing of quick-response (QR)

codes. Electronics Letters, 50(24), 1828–1830.

https://doi.org/10.1049/el.2014.2501

Fried, I. (2007, July 16). Microsoft gives bar codes a splash of color. ZDNet.

Retrieved from https://www.zdnet.com/article/microsoft-gives-bar-codes-a-

splash-of-color/

212

Frost, C., Mammarella, M., Kohler, E., Reyes, A. D. L., Hovsepian, S., Matsuoka,

A., & Zhang, L. (2007). Generalized File System Dependencies. SOSP’07, 1,

14.

Fukuchi, K. (2010). Libqrencode, a c library for encoding data in a qr code symbol.

Retrieved July 7, 2018, from https://fukuchi.org/works/qrencode/

Galiyawala, H. J., & Pandya, K. H. (2014). To Increase Data Capacity of QR Code

Using Multiplexing with Color Coding : An example of Embedding Speech

Signal in QR Code. In 2014 Annual IEEE India Conference (INDICON) (pp. 2–

7).

Galiyawala, H. J., & Pandya, K. H. (2015). To increase data capacity of QR code

using multiplexing with color coding: An example of embedding speech signal

in QR code. In 11th IEEE India Conference: Emerging Trends and Innovation

in Technology, INDICON 2014 (pp. 2–7).

https://doi.org/10.1109/INDICON.2014.7030441

Garateguy, G. J. (2014). Optimal Embedding of QR codes into Color, Gray Scale

and Binary Images. University of Delaware. Retrieved from

http://udspace.udel.edu/handle/19716/13350

Garateguy, G. J., Member, S., Arce, G. R., Lau, D. L., Member, S., & Villarreal, O.

P. (2014). QR Images : Optimized Image Embedding in QR Codes. IEEE

Transactions on Image Processing, 23(7), 2842–2853.

Gerstner, T., Decarlo, D., Alexa, M., Finkelstein, A., Gingold, Y., & Nealen, A.

(2013). Pixelated image abstraction with integrated user constraints. Computers

and Graphics (Pergamon), 37(5), 333–347.

https://doi.org/10.1016/j.cag.2012.12.007

213

Goel, S., & Singh, A. K. (2014). Cost Minimization by QR Code Compression.

International Journal of Computer Trends and Technology (IJCTT), 15(4), 157–

161.

Grillo, A., Lentini, A., Querini, M., & Italiano, G. F. (2010). High capacity colored

two dimensional codes. Computer Science and Information Technology

(IMCSIT), Proceedings of the 2010 International Multiconference on, 5(1),

709–716. https://doi.org/10.1109/IMCSIT.2010.5679869

Gunawi, H. S., Prabhakaran, V., Krishnan, S., Arpaci-Dusseau, A. C., & Arpaci-

Dusseau, R. H. (2007). Improving File System Reliability with I / O

Shepherding. In 21st ACM Symposium on Operating Systems Principles (p. 14).

Gutierrez, F., Abud, M. A., Vera, F., & Sanchez, J. A. (2013). Application of

contextual QR codes to augmented reality technologies. In 23rd International

Conference on Electronics, Communications and Computing, CONIELECOMP

2013 (pp. 264–269). https://doi.org/10.1109/CONIELECOMP.2013.6525798

Guwalani, P., Kala, M., Chandrashekar, R., Shinde, J., & Mane, D. (2014). Image

File Security using Base-64 Algorithm. International Journal Computer

Technology & Applications, 5(6), 1892–1895.

Hahn, H. I., & Joung, J. K. (2002). Implementation of Algorithm to Decode Two-

Dimensional Barcode PDF-417. In ICSP’O2 Proceedings.

Hajduk, V., Broda, M., Kováþ, O., & Levický, D. (2016). Image steganography with

using QR code and cryptography. In 26th Conference Radioelektronika 2016

(pp. 350–353). https://doi.org/10.1109/RADIOELEK.2016.7477370

Harish, N., & Gurav, S. (2014). Embedding a Large Information In QR Code Using

Multiplexing Technique. Taraksh Journal of Communications, 1(6), 6–9.

214

Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., & Ullah Khan, S.

(2015). The rise of “big data” on cloud computing: Review and open research

issues. Information Systems, 47, 98–115.

https://doi.org/10.1016/j.is.2014.07.006

He, D., Sun, Y., Jia, Z., Yu, X., Guo, W., He, W., … Lu, X. (2010). A Proposal of

Substitute for Base85 / 64 – Base91. In The SUMMER 8th International

Conference on Computing, Communications and Control Technologies 2010

(Vol. 85, pp. 4–7).

Husain, A., Bakhtiari, M., & Zainal, A. (2014). Printed document integrity

verification using barcode. Jurnal Teknologi (Sciences and Engineering), 70(1),

99–106. https://doi.org/10.11113/jt.v70.2857

Intermec Technologies Corporation. (2007, November). The 2D Revolution How

evolving business needs and improved technology are driving explosive growth

in two-dimensional bar coding, 2. Retrieved from

https://www.technologynetworks.com/tn/go/lc/view-white-paper-230951

Jahagirdar, K. S., & Borse, S. B. (2015). QR Code with Colored Image. International

Journal of Computer Applications, 115(16), 38–41.

Jancke, G. (2015). High Capacity Color Barcodes (HCCB). Retrieved July 28, 2018,

from https://www.microsoft.com/en-us/research/project/high-capacity-color-

barcodes-hccb/

Jennifer Farley. (2010). A Short Guide To Color Models. SitePoint, 1. Retrieved

from https://www.sitepoint.com/a-short-guide-to-color-models/

215

Kajaree, D., & Behera, R. . (2017). A Survey on Machine Learning: Concept,

Algorithms and Applications. International Journal of Innovative Research in

Computer and Communication Engineering, 5(2), 1302–1309.

https://doi.org/10.15680/IJIRCCE.2017.

Kan, T., Teng, C.-H., & Chou, W.-S. (2009). Applying QR code in augmented

reality applications. In Proceedings of the 8th International Conference on

Virtual Reality Continuum and its Applications in Industry - VRCAI ’09 (Vol. 1,

p. 253). https://doi.org/10.1145/1670252.1670305

Kato, H., & Tan, K. T. (2005). 2D barcodes for mobile phones. In Proceeding

Mobile Technology, Applications and Systems, 2005 2nd International

Conference (p. 8).

Kattan, A., & Poli, R. (2008). Evolutionary Lossless Compression with GP-ZIP. In

IEEE Congress on Evolutionary Computation, CEC 2008 (pp. 335–364).

Kieseberg, P., Leithner, M., Mulazzani, M., Munroe, L., Schrittwieser, S., Sinha, M.,

& Weippl, E. (2010). QR code security. In Proceedings of the 8th International

Conference on Advances in Mobile Computing and Multimedia - MoMM ’10 (p.

430). https://doi.org/10.1145/1971519.1971593

Kim, H. M., Kim, W., & Cho, D. (2004). A New Color Transforming for RGB

Coding. In ICIP ’04. 2004 International Conference (pp. 107–110).

Kingsley G. Morse Jr. (2005). Compression Tools Compared. Retrieved May 2,

2017, from http://www.linuxjournal.com/article/8051?page=0,0

Kumar, K., Sharma, P., & Singh, A. K. (2012). Configuring the System to Share

Internet from Single User to Multi-user with Single Internet Dongle.

International Journal of Soft Computing and Engineering (IJSCE), (4), 32–35.

216

Kumaraguru, S., & Prof Dr D. S. Bormane. (2012). Identification of QR Code based

on Pattern Recognition with Mobile Phones. International Journal of Modern

Engineering Research (IJMER), 2(5), 3544–3547.

Li, M., Cao, P., Yu, L., Liuping, F., Chen, J., & Jing, W. (2017). The research of

information hiding and extraction based on QR code positioning function. In

2nd IEEE International Conference on Computer and Communications, ICCC

2016 - Proceedings (pp. 589–593).

https://doi.org/10.1109/CompComm.2016.7924769

Li, Z., Chen, Z., Sudarshan, M. S., & Yuanyuan, Z. (2004). C-Miner: Mining Block

Correlations in Storage Systems. In Proceedings of the Third USENIX

Conference on File and Storage Technologies (p. 14).

Liao Zhao-lai, Huang Ting-lei, Wang Rui, Z. X. (2010). A Method of Image

Analysis for QR Code Recognition. In 2010 International Conference on

Intelligent Computing and Integrated Systems (pp. 250–253).

https://doi.org/10.1109/ICISS.2010.5657187

Lin, J., & Fuh, C. (2013). 2D Barcode Image Decoding. The Scientific World

Journal, 2013(3), 1.

Liu, Y., Yang, J., & Liu, M. (2008). Recognition of QR Code with mobile phones.

2008 Chinese Control and Decision Conference, 203–206.

https://doi.org/10.1109/CCDC.2008.4597299

Liu, Z., Zheng, H., & Jia, H. (2009). Design and implementation of color two-

dimension barcode with high compression ratio for Chinese characters. In

Proceedings - 2009 International Conference on Information Engineering and

Computer Science, ICIECS 2009.

https://doi.org/10.1109/ICIECS.2009.5363553

217

Luo, M., Wang, S., & Lin, P. Y. (2016). QR code steganography mechanism with

high capacity. In 2016 International Conference On Communication Problem-

Solving (ICCP) (pp. 1–2). https://doi.org/10.1109/ICCPS.2016.7751131

Lyons, S. (2009). Two-Dimensional Barcodes for Mobile Phones. University of

Toronto.

Magadum, B. (2017). Data security in QR code using Steganography. International

Journal of Innovative Research in Computer and Communication Engineering,

5(5), 10058–10063.

Majumdar, S., Maiti, A., Bhattacharyya, B., & Nath, A. (2015). A new encrypted

Data hiding algorithm inside a QR Code TM implemented for an Android

Smartphone system : S _ QR algorithm Introduction : International Journal of

Innovative Research in Advanced Engineering (IJIRAE), 2(4), 40–46.

Marktscheffel, T., Gottschlich, W., Popp, W., Werli, P., Fink, S. D., Bilzhause, A., &

Meer, H. de. (2016). QR code based mutual authentication protocol for Internet

of Things. In 2016 IEEE 17th International Symposium on A World of Wireless,

Mobile and Multimedia Networks (WoWMoM) (pp. 1–6).

https://doi.org/10.1109/WoWMoM.2016.7523562

Melgar, M. E. V., & Santander, L. M. (2016). Channel capacity analysis of 2D

barcodes: QR Code and CQR Code-5. In 2016 IEEE Colombian Conference on

Communications and Computing, COLCOM 2016 - Conference Proceedings

(Vol. 1). https://doi.org/10.1109/ColComCon.2016.7516376

Meyer, D. T., Aggarwal, G., Cully, B., Lefebvre, G., Feeley, M. J., Hutchinson, N.

C., & Warfield, A. (2008). Parallax : Virtual Disks for Virtual Machines. In

EuroSys08 (p. 44).

218

Nandhini. (2017). Performance Evaluation of Embedded Color QR Code on Logos.

In 2017 Third International Conference On Science Technology Engineering

and Management (ICONSTEM) (pp. 1009–1014).

Narayanan, D., Donnelly, A., & Rowstron, A. (2008). Write Off-Loading : Practical

Power Management for Enterprise Storage. ACM Transactions on Storage

(TOS), 4(3), 15.

Nikolaos, T., & Kiyoshi, T. (2010). QR-Code Calibration for Mobile Augmented

Reality Applications. In SIGGRAPH 2010 (p. 4503).

Nurwono, K., & Kosala, R. (2009). Color quick response code for mobile content

distribution. In Proceedings of MoMM2009 (pp. 267–271). Retrieved from

http://dl.acm.org/citation.cfm?id=1821799

Okazaki, S., Navarro, a, & Campo, S. (2013). Cross-media integration of Qr code: a

preliminary exploration. Journal of Electronic Commerce …, 14(2), 137–148.

Retrieved from http://csulb.edu/journals/jecr/issues/20132/paper1.pdf

Online Reference and Tool. (2012). Retrieved July 7, 2018, from

http://www.rapidtables.com/web/color/RGB_Color.htm

Oswal, S., Singh, A., & Kumari, K. (2016). Deflate compression algorithm.

International Journal of Engineering Research and General Science 2016, 4(1),

430–436.

Pandya, K. H., & Galiyawala, H. J. (2014). A Survey on QR Codes : in context of

Research and Application. International Journal of Emerging Technology and

Advanced Engineering, 4(3), 258–262.

219

Parikh, D., & Jancke, G. (2008). Localization and Segmentation of A 2D High

Capacity Color Barcode Microsoft ’ s HCCB Barcode localization. In

Applications of Computer Vision, 2008. WACV 2008. IEEE Workshop on (Vol.

1, p. 6).

Pascale, D. (2003). A Review of RGB Color Spaces. (D. Pascale, Ed.) (1st ed.).

Montreal, Canada: The BabelColor Company.

Pathak, S., Singh, S., Singh, S., Jain, M., Sharma, A., & 5. (2011). Data Compression

Scheme of Dynamic Huffman Code for Different Languages. International

Conference on Information and Network Technology 2011, 4(September 2010),

201–206.

Pillai, P. N., & Naresh, K. (2014). Improving the Capacity of QR Code by Using

Color Technique. International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering, 3(7), 10561–10568.

https://doi.org/10.15662/ijareeie.2014.0307025

Prakash, R., & Singh, S. (2010). Improving RAID Performance and Reliability with

Non-volatile Write Journals. CYPress Perform, (March), 1–5.

Purcaru, E., & Roma, C. (2011). 2D Barcode for DNA Encoding. Journal of Mobile,

Embedded and Distributed Systems, 3(3), 142–153. Retrieved from

http://jmeds.eu/index.php/jmeds/article/view/2D-Barcode-for-DNA-

Encoding/pdf

Qianyu, J. (2014). Exploring the Concept of QR Code and the Benefits of Using QR

Code for Companies. Lapland University of Applied Sciences.

Rajasekar, S., Philominathan, P., & Chinnathambi, V. (2013). Research

methodology. Research Methodology.

220

Ramya, M., & Jayasheela, M. (2014). Improved Color QR Codes for Real Time

Applications with High Embedding Capacity. International Journal of

Computer Applications, 91(8), 8–12.

Rathod Rinkalkumar, M. (2014). A Review on 1D & 2D Barcode with QR Code

Basic Structure and Characteristics. International Journal of Futuristic Trends

in Engineering and Technology Vol. 4 (01), 2014, 4(1), 4–7.

Rawat, D., Sahu, R., & Puthran, Y. (2015). Optimizing the Capacity of QR Code To

Store Encrypted Image. International Journal of Emerging Trends in

Engineering Research (IJETER), 3(1), 1–4.

Richard L. Villars, Olofson, C. W., & Eastwood, M. (2011). Big Data: What it is and

Why you should care. IDC. MA, USA.

Rouse, M. (2015). Multiplexing. Retrieved July 28, 2018, from

https://searchnetworking.techtarget.com/definition/multiplexing

Rungraungsilp, S., Ketcham, M., Wiputtikul, T., & Phonphak, K. (2012). Data

Hiding Method for QR Code Based on Watermark by comparing DFT with

DWT Domain. International Conference on Computer and Communication

Technologies (ICCCT’2012), 1(1), 154–158.

Ryu, J. (2015). The Modernization of the QR Code through Color and Brightness

Level. John J. Ryu’s Science Research. Indiana. Retrieved from

https://joonuryuscienceresearch.wordpress.com/2015/06/05/the-modernization-

of-the-qr-code-through-color-and-brightness-levels/

221

Sangkwon, H., Hyung, J. B., Junhoi, K., Sunghwan, S., Sunghoon, K., & Wook.

(2012). Drug Authentication Using High Capacity and Error Correctable

Encoded Microtaggants. In The 16th International Conference on Miniaturized

Systems for Chemistry and Life Sciences (pp. 1429–1431).

Sarkar, S., Pu, L., Wu, H. C., Huang, S. C. H., & Wu, Y. (2017). New multimedia

archiving technique using multiple quick-response codes. In IEEE International

Symposium on Broadband Multimedia Systems and Broadcasting, BMSB (pp.

4–9). https://doi.org/10.1109/BMSB.2017.7986236

Shahbahrami, A., Bahrampour, R., Rostami, M. S., & Mostafa Ayoubi. (2011).

Evaluation of Huffman and Arithmetic Algorithms for Multimedia Compression

Standards. International Journal of Computer Science, Engineering and

Applications, 1(4), 34–47. https://doi.org/10.5121/ijcsea.2011.1404

Sharma, M. (2010). Compression Using Huffman Coding. IJCSNS International

Journal of Computer Science and Network Security, 10(5, (May), 133–141.

Sharma, S., & Sejwar, V. (2016). QR code steganography for multiple image and

text hiding using improved RSA-3DWT algorithm. International Journal of

Security and Its Applications, 10(7), 393–406.

https://doi.org/10.14257/ijsia.2016.10.7.35

Shen, S., Lu, X., Qi, H., & Jiang, X. (2013). A Robust QR Code Extraction

Algorithm. In Z. Wen & T. Li (Eds.), Eighth International Conference on

Intelligent Systems and Knowledge Engineering (Vol. 2013, pp. 475–484).

Springer Heidelberg New York Dordrecht London.

Shen, S., Lu, X., Qi, H., & Jiang, X. (2014). A Robust QR Code Extraction

Algorithm. Advances in Intelligent Systems and Computing, 1, 475–484.

https://doi.org/10.1007/978-3-642-54924-3

222

Shiang-yen, T. A. N., Foo, L. Y., & Idrus, R. (2010). Application of Quick Response

(QR) Codes in Mobile Tagging System for Retrieving Information about

Genetically Modified Food. Proceedings of the 9th WSEAS International

Conference on Data Networks, Communications, Computers, DNCOCO, (June

2015), 114–118. https://doi.org/978-960-474-245

Singh, A., Verma, V., & Raj, G. (2017). A Novel Approach for Encoding and

Decoding of High Storage Capacity Color QR Code. In 2017 7th International

Conference on Cloud Computing, Data Science & Engineering (pp. 425–430).

Skawattananon, C., & Vongpradhip, S. (2013). An improved method to embed larger

image in QR code. In Proceedings of the 2013 10th International Joint

Conference on Computer Science and Software Engineering, JCSSE 2013 (pp.

64–69). https://doi.org/10.1109/JCSSE.2013.6567321

Stinner, V. (2017). Programming with Unicode Documentation Release 2011 (1st

ed.). Sphinx. Retrieved from

https://media.readthedocs.org/pdf/unicodebook/latest/unicodebook.pdf

Subpratatsavee, P., & Kuacharoen, P. (2012). An Implementation of a High Capacity

2D Barcode. Advances in Information Technology Communications in

Computer and Information Science, 344, 159–169.

Sun, M., Fang, Z., Fu, L., & Zhao, F. (2009). Identification of QR Codes Based on

Pattern Recognition. In Computer and Computing Technologies in Agriculture-

Ⅱ--Proceedings of the Third IFIP International Conference on Computer and

Computing Technologies in Agriculture(CCTA 2009) (pp. 397–401).

Sundaram, V., Wood, T., & Prashant, S. (2006). Efficient Data Migration in Self-

managing Storage Systems. In Autonomic Computing, 2006. ICAC ’06. IEEE

International Conference (p. 4).

223

Süsstrunk, S., Buckley, R., & Swen, S. (1999). Standard RGB Color Spaces. In

IS&T/SID 7th Color Imaging Conference (pp. 1–8).

Sutheebanjard, P., & Premchaiswadi, W. (2010). QR Code Generator. In Eighth

International Conference on ICT and Knowledge Engineering (pp. 89–92).

Szövetség, M. A., & Várallyai, L. (2012). From barcode to QR code applications.

Szám Journal of Agricultural Informatics, 3(2), 9–17. Retrieved from

http://www.magisz.org/journal

Tank, A. H., Unde, M. M., Patel, B. J., & Raskar, P. (2016). Storage and

transmission of information using grey level QR (quick-response) code

structure. In Conference on Advances in Signal Processing, CASP 2016 (pp.

402–405). https://doi.org/10.1109/CASP.2016.7746204

Taveerad, N., & Vongpradhip, S. (2016). Development of Color QR Code for

Increasing Capacity. Proceedings - 11th International Conference on Signal-

Image Technology and Internet-Based Systems, SITIS 2015, 645–648.

https://doi.org/10.1109/SITIS.2015.42

Thomas, A., & Paul, R. (2013). An Effective Method for Removing Scratches and

Restoring Low -Quality QR Code Images. International Journal for Advance

Research in Engineering and Technology Wind to Your Thoughts, 1(V), 5–9.

Tiwari, S. (2017). An introduction to QR code technology. In 15th International

Conference on Information Technology, ICIT 2016 (Vol. 1, pp. 39–44).

https://doi.org/10.1109/ICIT.2016.38

Toh, S. R., Goh, W., & Yeo, C. K. (2016). Data exchange via multiplexed color QR

codes on mobile devices. In Wireless Telecommunications Symposium (Vol.

2016–May). https://doi.org/10.1109/WTS.2016.7482035

224

Trochim, W. M. K. (2015). Research Methods: Knowledge base, 1(1), 1–369.

Retrieved from

https://www.researchgate.net/publication/243783609_The_Research_Methods_

Knowledge_Base

Umaria, M. M., & Jethava, G. B. (2015). Enhancing Data Storage Capacity in Quick

Response Code Using Multiplexing and Data Compression Technique. 2015

International Conference on Computational Intelligence and Communication

Networks (CICN), (1), 1091–1093. https://doi.org/10.1109/CICN.2015.214

Victor, N. (2012). Enhancing the Data Capacity of QR Codes by Compressing the

Data before Generation. International Journal of Computer Applications (0975

–8887), 60(2), 17–21.

Vizcarra Melgar, M. E., Zaghetto, A., Macchiavello, B., & Nascimento, A. C. A.

(2012). CQR codes: Colored quick-response codes. In IEEE International

Conference on Consumer Electronics - Berlin, ICCE-Berlin (Vol. 2401, pp.

321–325). https://doi.org/10.1109/ICCE-Berlin.2012.6336526

Vongpradhip, S. (2013). Use Multiplexing to Increase Information in QR Code. In

The 8th International Conference on Computer Science & Education (ICCSE

2013) (pp. 361–364).

Wakahara, T., Yamamoto, N., & Ochi, H. (2010). Image processing of dotted picture

in the QR code of cellular phone. In Proceedings - International Conference on

P2P, Parallel, Grid, Cloud and Internet Computing, 3PGCIC 2010 (pp. 454–

458). https://doi.org/10.1109/3PGCIC.2010.77

225

Wang, S., Yang, T., Li, J., Yao, B., & Zhang, Y. (2015). Does a QR code must be

black and white? In Proceedings of 2015 International Conference on Orange

Technologies, ICOT 2015 (pp. 161–164).

https://doi.org/10.1109/ICOT.2015.7498513

Warasart, M., & Kuacharoen, P. (2012). Paper-based Document Authentication using

Digital Signature and QR Code. In 4th International Conference on Computer

Engineering and Technology (ICCET 2012).

Weeks, H. R. M., Arthur, R., & Sartor, L. J. (1999). Histogram specification of 24-

bit color images in the color difference (C-Y) color space. Journal of Electronic

Imaging, 8(3), 290–300.

Winter, M. (2011). Scan Me - Everybody’s Guide to the Magical World of Qr Codes

(1st ed.). California: Westsong Publishing. Retrieved from

https://books.google.com/books?id=s5ZxqwwYKk8C&pgis=1

Yadav, S. H., & Dawande, P. N. A. (2016). A Survey on Image Embedding In QR

Code. International Journal of Advanced Research in Computer and

Communication Engineering, 5(4), 339–341.

https://doi.org/10.17148/IJARCCE.2016.5486

Yang, Z., Cheng, Z., Loy, C. C., Lau, W. C., Li, C. M., & Li, G. (2016). Towards

Robust Color Recovery For High Capacity Color QR Codes. In 2016 IEEE

International Conference on Image Processing (ICIP) (pp. 2866–2870).

Yang, Z., Xu, H., Deng, J., Loy, C. C., & Lau, W. C. (2017). Robust and Fast

Decoding of High-Capacity Color QR Codes for Mobile Applications. IEEE

Transactions on Image Processing, PP(c), 1.

https://doi.org/10.1109/TIP.2018.2855419

226

Yeap, K. H., Cheong, Y. K., Nisar, H., & Teh, P. C. (2014). A simple data storage

system using QR code. In 2014 5th International Conference on Intelligent and

Advanced Systems (ICIAS) (pp. 1–5).

https://doi.org/10.1109/ICIAS.2014.6869536

Zhang, M., Yao, D., & Zhou, Q. (2012). The Application and Design of QR Code in

Scenic Spot’s eTicketing System -A Case Study of Shenzhen Happy Valley.

International Journal of Science and Technology, 2(12). Retrieved from

http://www.ejournalofsciences.org

Zhang, W., & Yang, T. (2015). An Improved Algorithm for QR Code Image

Binarization. In 2014 International Conference on Virtual Reality and

Visualization And Visualization (pp. 154–159).

https://doi.org/10.1109/ICVRV.2014.51

Zhang, Y., Gao, T., Li, D., & Lin, H. (2012). An Improved Binarization Algorithm

of QR Code Image, (1), 2376–2379.

Zhu, B., Li, K., & Patterson, H. (2008). Avoiding the Disk Bottleneck in the Data

Domain Deduplication File System Challenges and Observations. In FAST ’08:

6th USENIX Conference on File and Storage Technologies (pp. 269–282).

227

Appendix A : Result of Maximum Characters

Result of maximum total characters stored in QR code from 20 times tested at error

correction level H.

No. of
Test Normal Zip GZip LZW Huffmann

Coding
Huffman+

GZip
1 1271 474 635 434 113 471

2 1271 471 638 434 112 466

3 1271 476 637 433 111 477

4 1271 472 636 436 114 474

5 1271 475 637 433 112 470

6 1271 473 635 438 112 473

7 1271 475 635 433 111 474

8 1271 473 641 438 111 472

9 1271 474 636 438 114 468

10 1271 474 638 439 113 470

11 1271 473 634 433 113 468

12 1271 473 637 438 111 474

13 1271 471 633 441 111 477

14 1271 471 634 433 111 472

15 1271 473 635 437 113 471

16 1271 469 636 440 111 471

17 1271 470 636 438 111 479

18 1271 469 633 437 113 471

19 1271 477 636 436 112 467

20 1271 478 632 433 109 467

228

Appendix B : Encode Level L

The algorithm of encoding process for error correction level L.

/* Algorithm Module Index E1 – Initialisation */
/*--*/

/* Creating the package to be used */
package qrcodecmm;

/* Initialisation java library */
call import java.io.FileInputStream;
call import java.io.FileOutputStream;
call import it.sauronsoftware.base64.Base64;
call import java.io.IOException;

/* Creating main class */
public class QRCodeCMM {

/* Initialisation variables to be used */
initialize static String plainTextFile = "D:/QR Code/QRCode/Journal3/levelL.txt";
initialize static String gZipTextFile = "D:/QR Code/QRCode/Journal3/gZipTextFile.gzip";
initialize static String base91TextFile = "D:/QR
Code/QRCode/Journal3/base91TextFile.b91";
initialize static String filePath = "D:/QR Code/QRCode/Journal3/";
initialize static String fileName = "fileNumber";
initialize static String fileType = ".txt";
initialize static String fileTypePNG = "png";
initialize static String fileRGB = filePath + "fileRGB." + fileTypePNG;
initialize static final int size = 551;

/* Creating main programme */
public static void main(String[] args) {

/* Counting the total characters including line feed and carriage return */
initialize object CounterLetters count = new CounterLetters();
execute count.CountLetter(plainTextFile);

/* Algorithm Module Index E2 – Compression utility (GZip) */
/*--*/

initialize object GZip gZip = new GZip();
execute gZip.gZipFile(plainTextFile, gZipTextFile);

/* Algorithm Module Index E3 – Encoder for Base64*/
/*---*/

229

initialize object base91cli base91 = new base91cli();
try {
initialize object FileInputStream ifs = new FileInputStream(gZipTextFile);
initialize object FileOutputStream ofs = new FileOutputStream(base91TextFile);
execute base91.encode(ifs, ofs);
} catch (Exception e) {
display error by using System.err.println(e);
}

/* Algorithm Module Index E4 – Compatibility QR Code ANSI to UTF */
/*---*/

initialize object ansiToUTF8 utf8 = new ansiToUTF8();
execute utf8.convert(base91TextFile);

/* Algorithm Module Index E5 – Creating blank file */
/*---*/

initialize object CreateQRCode1 create1 = new CreateQRCode1(size);
initialize object CreateQRCode9 create9 = new CreateQRCode9(size);
initialize object CreateQRCode17 create17 = new CreateQRCode17(size);

/* Counting characters */
initialize object CountChar countChar = new CountChar();
execute int countCharacter = countChar.count(base91TextFile);

/* Divide characters with related value and fit each of file */
initialize object DivideCharacters divide = new DivideCharacters();

/* Create blank files */
execute create1.createBlank40Files(filePath, fileName, fileType);

/* Algorithm Module Index E6 – Embedded text characters to each file */
/*--*/

/* Embedded text characters to each blank file created*/
execute int totalFiles = divide.divideCharacter(base91TextFile, countCharacter, filePath,
fileName);

/* Top up with blank files if not enough */
 if (totalFiles < 25) {
 totalFiles = 24;
 }

/* Specify three group contains 8 files each */
initialize int eight = 8;
initialize String[] multiColourLayerFail = {"QRRed", "QRGreen", "QRBlue"};
initialize int colourCombineRGB[][][] = new int[size][size][3];
initialize MultiLayerQRCode multiLayerQRCode = new MultiLayerQRCode();

230

/* Algorithm Module Index E7 and E8– Create black and white QR Code and
monocoloured QR Code. */
/*--
-*/

/* Start with first group (red) */
if (totalFiles >= 0) {
 initialize int total8 = 8;

 /* Create black and white QR Code from 1 to 8 (Module Index E7)

execute create1.generateQRCodeVersion40(filePath, fileName, fileType,
fileTypePNG, total8);

 /* Create monocoloured QR Code group 1 (Module Index E8)
 try {
 execute resultFinal = create1.readImage(filePath, fileName, fileTypePNG, total8);
 } catch (IOException ex) {
 }
 execute int[][] plotResultBlackWhite =
create1.generateMultiplexQRCode(resultFinal, total8);

 /* Combine pixels among 8 black and white QR Codes */
 for (int x = 0; x < size; x++) {
 for (int y = 0; y < size; y++) {
 execute colourCombineRGB[x][y][0] = plotResultBlackWhite[x][y];
 }
 }

 /* Generate first monocoloured QR Code */
 execute create1.generateQRCodeVersion40MonoColour(filePath, fileTypePNG,
plotResultBlackWhite, multiColourLayerFail[0]);
}

/* Start with second group (green) */
 if (totalFiles >= 8) {
 initialize int total16 = 16;

/* Create black and white QR Code from 9 to 16 (Module Index E7)
 create9.generateQRCodeVersion40(filePath, fileName, fileType, fileTypePNG,
total16);
 initialize int[][][] resultFinal = new int[eight][size][size];

/* Create monocoloured QR Code group 2 (Module Index E8)
 try {
 execute resultFinal = create9.readImage(filePath, fileName, fileTypePNG, total16,
eight);
 } catch (IOException ex) {
 }

231

 execute int[][] plotResultBlackWhite =
create9.generateMultiplexQRCode(resultFinal, total16);

/* Combine pixels among 8 black and white QR Codes */
 for (int x = 0; x < size; x++) {
 for (int y = 0; y < size; y++) {
 execute colourCombineRGB[x][y][1] = plotResultBlackWhite[x][y];
 }
 }

 /* Generate second monocoloured QR Code */
 execute create9.generateQRCodeVersion40MonoColour(filePath, fileTypePNG,
plotResultBlackWhite, multiColourLayerFail[1]);
 }

 /* Start with third group (blue) */
 if (totalFiles >= 16) {
 initialize int total24 = 24;

/* Create black and white QR Code from 17 to 24 (Module Index E7)
 execute create17.generateQRCodeVersion40(filePath, fileName, fileType,
fileTypePNG, total24);
 initialize int[][][] resultFinal = new int[eight][size][size];

/* Create monocoloured QR Code group 3 (Module Index E8)
 try {
 execute resultFinal = create17.readImage(filePath, fileName, fileTypePNG,
total24, eight);
 } catch (IOException ex) {
 }

 execute int[][] plotResultBlackWhite =
create17.generateMultiplexQRCode(resultFinal, total24);

/* Combine pixels among 8 black and white QR Codes */
 for (int x = 0; x < size; x++) {
 for (int y = 0; y < size; y++) {
 execute colourCombineRGB[x][y][2] = plotResultBlackWhite[x][y];
 }
 }

 /* Generate third monocoloured QR Code */
 execute create17.generateQRCodeVersion40MonoColour(filePath, fileTypePNG,
plotResultBlackWhite, multiColourLayerFail[2]);
 }

/* Algorithm Module Index E9– Create coloured QR Code. */
/*--
-*/

232

 initialize CombineRGB combineRGBColour = new CombineRGB();
 execute combineRGBColour.combineRGB(colourCombineRGB, fileRGB);
 }
}

233

Appendix C : Decode Level L

The algorithm of decoding process for error correction level L.

/* Algorithm Module Index D1 – Initialisation */
/*--*/

/* Creating the package to be used */
package qrcodecmn;

/* Initialisation variables to be used */

call import com.google.zxing.NotFoundException;
call import com.google.zxing.WriterException;
call import java.io.FileInputStream;
call import java.io.FileOutputStream;
call import it.sauronsoftware.base64.Base64;
call import java.awt.Colour;
call import java.io.BufferedWriter;
call import java.io.File;
call import java.io.FileWriter;
call import java.io.IOException;

/* Creating main class */
public class QRCodeCMN {

/* Initialisation variables to be used */
initialize static String plainTextFile = "D:/QR Code/QRCode/Journal3/Decode/fileText.txt";
initialize static String gZipTextFile = "D:/QR
Code/QRCode/Journal3/Decode/gZipTextFile.gzip";
initialize static String base91TextFile = "D:/QR
Code/QRCode/Journal3/Decode/base91TextFile.b91";
initialize static String filePath = "D:/QR Code/QRCode/Journal3/Decode/";
initialize static String filePathBefore = "D:/QR Code/QRCode/Journal3/";
initialize static String fileName = "fileNumberMerged";
initialize static String fileType = ".txt";
initialize static String fileTypePNG = "png";
initialize static String fileRGB = filePath + "fileRGB." + fileTypePNG;
initialize static String fileRGBBefore = filePathBefore + "fileRGB." + fileTypePNG;
initialize static File fileRGBDecode = new File(fileRGBBefore);
initialize static String[] multiColourLayerFile = {"QRRedDecode", "QRGreenDecode",
“QRBlueDecode"};
initialize static String fileRed = filePath + multiColourLayerFile[0] + "." + fileTypePNG;
initialize static String fileGreen = filePath + multiColourLayerFile[1] + "." + fileTypePNG;
initialize static String fileBlue = filePath + multiColourLayerFile[2] + "." + fileTypePNG;
initialize static File fileRedDecode = new File(fileRed);
initialize static File fileGreenDecode = new File(fileGreen);

234

initialize static File fileBlueDecode = new File(fileBlue);
initialize static String fileQRCodeBlackWhite[] = {"QRCodeBlackWhiteRed",
“QRCodeBlackWhiteGreen", "QRCodeBlackWhiteBlue"};
initialize static String fileOutputTextDecode = filePath + fileName + fileType;
initialize static String plainTextFileDecode = "D:/QR
Code/QRCode/Journal3/Decode/plainTextFile.txt";
initialize static String gZipTextFileDecode = "D:/QR
Code/QRCode/Journal3/Decode/gZipTextFile.gzip";
initialize static String base91TextFileDecode = "D:/QR
Code/QRCode/Journal3/Decode/fileNumberMerged.txt";
initialize static long startdecodeMultilayer, stopdecodeMultilayer;
initialize static long startdecodeRedQRCode, startdecodeGreenQRCode,
startdecodeBlueQRCode;
initialize static long stopdecodeRedQRCode, stopdecodeGreenQRCode,
stopdecodeBlueQRCode;
initialize static long startdecodeRedBlackQRCode, startdecodeGreenBlackQRCode,
startdecodeBlueBlackQRCode;
initialize static long stopdecodeRedBlackQRCode, stopdecodeGreenBlackQRCode,
stopdecodeBlueBlackQRCode;
initialize static long startdecodeBlackQRCode, stopdecodeBlackQRCode;
initialize static long startdecodebase91, stopdecodebase91;
initialize static long startdecodeGUnzip, stopdecodeGUnzip;
initialize static long startdecodeAll, stopdecodeAll;

/* Creating main class */
public static void main(String[] args) {

initialize object DecodeColourQR decode = new DecodeColourQR();
initialize object DecodeQRCode QRCodeText = new DecodeQRCode();
initialize int size = 551;
initialize int files = 8;

/* Algorithm Module Index D2 – Demultilayer*/
/*--*/

/* Decode From Coloured To Red, Green, and Blue Monocoloured */
try {
 execute Colour[][] resultcolourQRCodeDecode =
decode.readImage(fileRGBDecode);
 execute decode.decodeMultiLayerQRCodeRGB1(resultcolourQRCodeDecode,
filePath, multiColourLayerFile);

/* Algorithm Module Index D3 – Demultiplexing*/
/*--*/

/* Initialize the information of Black and White QR Code */
initialize QRCodeBlackWhite = new int[files][size][size];

/* Demultiplexing Red QR Code */

235

execute Colour[][] resultcolourRedQRCodeDecode = decode.readImage(fileRedDecode);
execute QRCodeBlackWhite =
decode.decodeQRCodeBlackWhite(resultcolourRedQRCodeDecode, 0);
execute decode.decodeQRCodeBlackWhite1(QRCodeBlackWhite, filePath,
fileQRCodeBlackWhite[0]);

/* Demultiplexing Green QR Code */
execute Colour[][] resultcolourGreenQRCodeDecode =
decode.readImage(fileGreenDecode);
execute QRCodeBlackWhite =
decode.decodeQRCodeBlackWhite(resultcolourGreenQRCodeDecode, 1);
execute decode.decodeQRCodeBlackWhite1(QRCodeBlackWhite, filePath,
fileQRCodeBlackWhite[1]);

/* Demultiplexing Blue QR Code */
execute Colour[][] resultcolourBlueQRCodeDecode = decode.readImage(fileBlueDecode);
execute QRCodeBlackWhite =
decode.decodeQRCodeBlackWhite(resultcolourBlueQRCodeDecode, 2);
execute decode.decodeQRCodeBlackWhite1(QRCodeBlackWhite, filePath,
fileQRCodeBlackWhite[2]);
} catch (IOException ex) {
}

/* Algorithm Module Index D4 – Decode Black and White QR Code */
/*---*/

/* Counting the total characters including line feed and carriage return */
initialize object CounterLetters count = new CounterLetters();
try {
initialize object BufferedWriter writer = null;
initialize and excute writer = new BufferedWriter(new FileWriter(fileOutputTextDecode));

/* Creating Naming Conversion for Black and White QR Code Image Name */
for (int i = 0; i < 24; i++) {
 initialize String filePathDecodeFinal = null;
 if ((i >= 0) && (i < 8)) {
 initialize filePathDecodeFinal = fileQRCodeBlackWhite[0] + i + "." +
fileTypePNG;

 } else if ((i >= 8) && (i < 16)) {
 initialize filePathDecodeFinal = fileQRCodeBlackWhite[1] + (i - 8) + "." +
fileTypePNG;

 } else if ((i >= 16) && (i < 24)) {
 initialize filePathDecodeFinal = fileQRCodeBlackWhite[2] + (i - 16) + "." +
fileTypePNG;
 }

initialize String filePathDecodeComplete = filePath + filePathDecodeFinal;

236

/* Decode Black and White QR Code */
initialize and excute String valueText =
QRCodeText.decodeTextQRCode(filePathDecodeComplete);

/* Write to Text File */
execute writer.write(valueText);

 }
 writer.close();
 } catch (WriterException ex) {
 ex.printStackTrace();
 } catch (IOException ey) {
 ey.printStackTrace();
 } catch (NotFoundException ez) {
 ez.printStackTrace();
 }

/* Algorithm Module Index D5 – Decode Encoder/Decoder Text (Base64) to
Compression file */
/*--*/

initialize Base64cli base64 = new base64cli();

try {
 initialize object FileInputStream ifs = new FileInputStream(base91TextFileDecode);
 initialize object FileOutputStream ofs = new FileOutputStream(gZipTextFileDecode);

 execute Base64.decode(ifs, ofs);
} catch (Exception e) {
System.err.println(e);
}

/* Algorithm Module Index D6 –Extraction Compression File to Text File */
/*--*/
 initialize object GZip gZip = new GZip();
 execute gZip.gunzipIt(gZipTextFileDecode, plainTextFileDecode);
}
}

237

Appendix D : Partial Extraction (Decode) Level 1

The algorithm of partial extraction level 1 (decode) process for error correction level L.

/* Algorithm Module Index P1 – Initialisation */
/*--*/

/* Creating the package to be used */
package qrcodecmn;

/* Initialisation java library */
call import com.google.zxing.NotFoundException;
call import com.google.zxing.WriterException;
call import java.io.FileInputStream;
call import java.io.FileOutputStream;
call import it.sauronsoftware.base64.Base64;
call import java.awt.Colour;
call import java.io.BufferedWriter;
call import java.io.File;
call import java.io.FileWriter;
call import java.io.IOException;

/* Creating main class */
public class QRCodeCMN {

initialize static String plainTextFile = "D:/QR Code/QRCode/Journal3/Decode/fileText.txt";
initialize static String gZipTextFile = "D:/QR
Code/QRCode/Journal3/Decode/gZipTextFile.gzip";
initialize static String base91TextFile = "D:/QR
Code/QRCode/Journal3/Decode/base91TextFile.b91";
initialize static String filePath = "D:/QR Code/QRCode/Journal3/Decode/";
initialize static String filePathBefore = "D:/QR Code/QRCode/Journal3/";
initialize static String fileName = "fileNumberMerged";
initialize static String fileType = ".txt";
initialize static String fileTypePNG = "png";
initialize static String fileRGB = filePath + "fileRGB." + fileTypePNG;
initialize static String fileRGBBefore = filePathBefore + "fileRGB." + fileTypePNG;
initialize static File fileRGBDecode = new File(fileRGBBefore);
initialize static String[] multiColourLayerFile = {"QRRedDecode", "QRGreenDecode",
"QRBlueDecode"};
initialize static String fileRed = filePath + multiColourLayerFile[0] + "." + fileTypePNG;
initialize static String fileGreen = filePath + multiColourLayerFile[1] + "." + fileTypePNG;
initialize static String fileBlue = filePath + multiColourLayerFile[2] + "." + fileTypePNG;
initialize static File fileRedDecode = new File(fileRed);
initialize static File fileGreenDecode = new File(fileGreen);
initialize static File fileBlueDecode = new File(fileBlue);

238

initialize static String fileQRCodeBlackWhite[] = {"QRCodeBlackWhiteRed",
"QRCodeBlackWhiteGreen", "QRCodeBlackWhiteBlue"};
initialize static String fileOutputTextDecode = filePath + fileName + fileType;
initialize static String plainTextFileDecode = "D:/QR
Code/QRCode/Journal3/Decode/plainTextFile.txt";
initialize static String gZipTextFileDecode = "D:/QR
Code/QRCode/Journal3/Decode/gZipTextFile.gzip";
initialize static String base91TextFileDecode = "D:/QR
Code/QRCode/Journal3/Decode/fileNumberMerged.txt";
initialize static int blackWhiteQRCode = 0;

/* Creating main programme */
public static void main(String[] args) {

initialize object DecodeColourQR decode = new DecodeColourQR();
initialize object DecodeQRCode QRCodeText = new DecodeQRCode();
initialize int size = 551;
initialize int files = 8;

/* Algorithm Module Index P2 – Extracting coloured QR Code (Demultilayer) */
/*--*/

try {

execute Colour[][] resultcolourQRCodeDecode = decode.readImage(fileRGBDecode);
execute decode.decodeMultiLayerQRCodeRGB1(resultcolourQRCodeDecode, filePath,
multiColourLayerFile);

/* Algorithm Module Index D3 – Demultiplexing*/
/*--*/

/* Initialize the information of Black and White QR Code */
initialize QRCodeBlackWhite = new int[files][size][size];

/* Demultiplexing Red QR Code */
execute Colour[][] resultcolourRedQRCodeDecode = decode.readImage(fileRedDecode);
execute QRCodeBlackWhite =
decode.decodeQRCodeBlackWhite(resultcolourRedQRCodeDecode, 0);
execute decode.decodeQRCodeBlackWhite1(QRCodeBlackWhite, filePath,
fileQRCodeBlackWhite[0]);
 } catch (IOException ex) {
 }

/* Algorithm Module Index P4 – Decode Black and White QR Code */
/*---*/
/* Counting the total characters including line feed and carriage return */
initialize object CounterLetters count = new CounterLetters();

try {

239

initialize object BufferedWriter writer = null;
initialize and excute writer = new BufferedWriter(new FileWriter(fileOutputTextDecode));

/* Creating Single Naming Conversion for a Black and White QR Code Image Name */

initialize String filePathDecodeFinal = null;
execute int i = blackWhiteQRCode;
initialize filePathDecodeFinal = fileQRCodeBlackWhite[0] + i + "." + fileTypePNG;

initialize String filePathDecodeComplete = filePath + filePathDecodeFinal;

/* Decode Single Black and White QR Code */
initialize and execute String valueText =
QRCodeText.decodeTextQRCode(filePathDecodeComplete);

/* Write to Text File */
execute writer.write(valueText);

/* Close to Text File */
execute writer.close();

} catch (WriterException ex) {
 ex.printStackTrace();
 } catch (IOException ey) {
 ey.printStackTrace();
 } catch (NotFoundException ez) {
 ez.printStackTrace();
 }

/* Algorithm Module Index P5 – Decode Encoder/Decoder Text (Base64) to
Compression file */
/*--*/

initialize Base64cli base64 = new base64cli();

try {
 initialize object FileInputStream ifs = new FileInputStream(base91TextFileDecode);
 initialize object FileOutputStream ofs = new FileOutputStream(gZipTextFileDecode);

 execute Base64.decode(ifs, ofs);
} catch (Exception e) {
System.err.println(e);
}
/* Algorithm Module Index P6 –Extraction Compression File to Text File */
/*--*/
 initialize object GZip gZip = new GZip();
 execute gZip.gunzipIt(gZipTextFileDecode, plainTextFileDecode);

/* Algorithm Module Index P7 – Open Text Application and Ready to Manipulate*/
/*--*/

240

execute “C:\windows\systems\notepad.exe”
}
}

241

Appendix E : Partial Extraction (Re-encode) Level 1

The algorithm of partial extraction level 1 (re-encode) process for error correction level L.

/* Algorithm Module Index P8 – Initialisation */
/*--*/

/* Creating the package to be used */
package qrcodecmm;

/* Initialisation java library */
call import java.io.FileInputStream;
call import java.io.FileOutputStream;
call import it.sauronsoftware.base64.Base64;
call import java.io.IOException;

/* Creating main class */
public class QRCodeCMM {

/* Initialisation variables to be used */
initialize static String plainTextFile = "D:/QR
Code/QRCode/Journal3/singleTextLevel1L.txt";
initialize static String gZipTextFile = "D:/QR Code/QRCode/Journal3/gZipTextFile.gzip";
initialize static String base64TextFile = "D:/QR
Code/QRCode/Journal3/base64TextFile.b64";
initialize static String filePath = "D:/QR Code/QRCode/Journal3/";
initialize static String fileName = "fileNumber";
initialize static String fileType = ".txt";
initialize static String fileTypePNG = "png";
initialize static String fileRGB = filePath + "fileRGB." + fileTypePNG;
initialize static final int size = 551;

/* Creating main programme */
public static void main(String[] args) {

/* Counting the total characters including line feed and carriage return */
initialize object CounterLetters count = new CounterLetters();
execute count.CountLetter(plainTextFile);

/* Algorithm Module Index P9 – Compression utility (GZip) */
/*--*/

initialize object GZip gZip = new GZip();
execute gZip.gZipFile(plainTextFile, gZipTextFile);

/* Algorithm Module Index P10 – Encoder for Base64*/
/*---*/

242

initialize object base91cli base91 = new base91cli();
try {
initialize object FileInputStream ifs = new FileInputStream(gZipTextFile);
initialize object FileOutputStream ofs = new FileOutputStream(base64TextFile);
execute base91.encode(ifs, ofs);
} catch (Exception e) {
display error System.err.println(e);
}

/* Algorithm Module Index P11 – Compatibility QR Code ANSI to UTF */
/*---*/

initialize object ansiToUTF8 utf8 = new ansiToUTF8();
execute utf8.convert(base64TextFile);

/* Algorithm Module Index P12 – Creating Black and White QR Code */
/*---*/

initialize object CreateQRCode1 create1 = new CreateQRCode1(size);
initialize object CreateQRCode9 create9 = new CreateQRCode9(size);
initialize object CreateQRCode17 create17 = new CreateQRCode17(size);

/* Counting characters */
initialize object CountChar countChar = new CountChar();
execute int countCharacter = countChar.count(base64TextFile);

/* Divide characters with related value and fit each of file */
initialize object DivideCharacters divide = new DivideCharacters();

/* Create blank files */
execute create1.createBlank40Files(filePath, fileName, fileType);

/* Embedded text characters to each blank file created*/
execute int totalFiles = divide.divideCharacter(base64TextFile, countCharacter, filePath,
fileName);

/* Checking if the file exceed more than 1 */
 if (totalFiles >= 2) {
 System.exit();
 }

/* Specify three group that contains 8 files each */
initialize int eight = 8;
initialize String[] multiColourLayerFail = {"QRRed", "QRGreen", "QRBlue"};
initialize int colourCombineRGB[][][] = new int[size][size][3];
initialize MultiLayerQRCode multiLayerQRCode = new MultiLayerQRCode();

/* Algorithm Module Index P12 and P13– Create black and white QR Code and place it
in a group. */

243

/*--
-*/

/* Start with first group (red) */
if (totalFiles >= 0) {
 initialize int total8 = 8;

 /* Create an updated single black and white QR Code (Module Index P12)

execute create1.generateQRCodeVersion40(filePath, fileName, fileType,
fileTypePNG, total8);

 /* get information from QR Code group 1 (Module Index P13)
 try {
 execute resultFinal = create1.readImage(filePath, fileName, fileTypePNG, total8);
 } catch (IOException ex) {
 }
 execute int[][] plotResultBlackWhite =
create1.generateMultiplexQRCode(resultFinal, total8);

 /* Combine pixels among 8 black and white QR Codes */
 for (int x = 0; x < size; x++) {
 for (int y = 0; y < size; y++) {
 execute colourCombineRGB[x][y][0] = plotResultBlackWhite[x][y];
 }
 }

/* Algorithm Module Index P14 – Create monocoloured QR Code. */
/*--
-*/
 execute create1.generateQRCodeVersion40MonoColour(filePath, fileTypePNG,
plotResultBlackWhite, multiColourLayerFail[0]);
}
 }

/* Algorithm Module Index P15– Create coloured QR Code. */
/*--
-*/

 initialize CombineRGB combineRGBColour = new CombineRGB();
 execute combineRGBColour.combineRGB(colourCombineRGB, fileRGB);
 }
}

244

Appendix F : Partial Extraction (Decode) Level 2

The algorithm of partial extraction level 2 (decode) process for error correction level L.

/* Algorithm Module Index P16 – Initialisation */
/*--*/

/* Creating the package to be used */
package qrcodecmn;

/* Initialisation variables to be used */

call import com.google.zxing.NotFoundException;
call import com.google.zxing.WriterException;
call import java.io.FileInputStream;
call import java.io.FileOutputStream;
call import it.sauronsoftware.base64.Base64;
call import java.awt.Colour;
call import java.io.BufferedWriter;
call import java.io.File;
call import java.io.FileWriter;
call import java.io.IOException;

/* Creating main class */
public class QRCodeCMN {

/* Initialisation variables to be used */
initialize static String plainTextFile = "D:/QR Code/QRCode/Journal3/Decode/
singleTextLevel2L.txt ";
initialize static String gZipTextFile = "D:/QR
Code/QRCode/Journal3/Decode/gZipTextFile.gzip";
initialize static String base91TextFile = "D:/QR
Code/QRCode/Journal3/Decode/base91TextFile.b91";
initialize static String filePath = "D:/QR Code/QRCode/Journal3/Decode/";
initialize static String filePathBefore = "D:/QR Code/QRCode/Journal3/";
initialize static String fileName = "fileNumberMerged";
initialize static String fileType = ".txt";
initialize static String fileTypePNG = "png";
initialize static String fileRGB = filePath + "fileRGB." + fileTypePNG;
initialize static String fileRGBBefore = filePathBefore + "fileRGB." + fileTypePNG;
initialize static File fileRGBDecode = new File(fileRGBBefore);
initialize static String[] multiColourLayerFile = {"QRRedDecode", "QRGreenDecode",
“QRBlueDecode"};
initialize static String fileRed = filePath + multiColourLayerFile[0] + "." + fileTypePNG;
initialize static String fileGreen = filePath + multiColourLayerFile[1] + "." + fileTypePNG;
initialize static String fileBlue = filePath + multiColourLayerFile[2] + "." + fileTypePNG;
initialize static File fileRedDecode = new File(fileRed);

245

initialize static File fileGreenDecode = new File(fileGreen);
initialize static File fileBlueDecode = new File(fileBlue);
initialize static String fileQRCodeBlackWhite[] = {"QRCodeBlackWhiteRed",
“QRCodeBlackWhiteGreen", "QRCodeBlackWhiteBlue"};
initialize static String fileOutputTextDecode = filePath + fileName + fileType;
initialize static String plainTextFileDecode = "D:/QR
Code/QRCode/Journal3/Decode/plainTextFile.txt";
initialize static String gZipTextFileDecode = "D:/QR
Code/QRCode/Journal3/Decode/gZipTextFile.gzip";
initialize static String base91TextFileDecode = "D:/QR
Code/QRCode/Journal3/Decode/fileNumberMerged.txt";

/* Creating main class */
public static void main(String[] args) {

initialize object DecodeColourQR decode = new DecodeColourQR();
initialize object DecodeQRCode QRCodeText = new DecodeQRCode();
initialize int size = 551;
initialize int files = 8;

/* Algorithm Module Index P17 – Demultilayer*/
/*--*/

/* Decode From Coloured To Red, Green, and Blue Monocoloured */
try {
 execute Colour[][] resultcoluorQRCodeDecode =
decode.readImage(fileRGBDecode);
 execute decode.decodeMultiLayerQRCodeRGB1(resultcolourQRCodeDecode,
filePath, multiColourLayerFile);

/* Algorithm Module Index P18 – Demultiplexing*/
/*--*/

/* Initialize the information of Black and White QR Code */
initialize QRCodeBlackWhite = new int[files][size][size];

/* Demultiplexing Red QR Code */
execute Colour[][] resultcolourRedQRCodeDecode = decode.readImage(fileRedDecode);
execute QRCodeBlackWhite =
decode.decodeQRCodeBlackWhite(resultcolourRedQRCodeDecode, 0);
execute decode.decodeQRCodeBlackWhite1(QRCodeBlackWhite, filePath,
fileQRCodeBlackWhite[0]);

/* Algorithm Module Index P19 – Decode Selected Group of Black and White QR Code
*/
/*---*/

/* Counting the total characters including line feed and carriage return */
initialize object CounterLetters count = new CounterLetters();
try {

246

initialize object BufferedWriter writer = null;
initialize and excute writer = new BufferedWriter(new FileWriter(fileOutputTextDecode));

/* Identify Index Location and Creating Naming Conversion of a Group Black and
White QR Code Image Names */
for (int i = 0; i < 8; i++) {
 initialize String filePathDecodeFinal = null;
 if ((i >= 0) && (i < 8)) {
 initialize filePathDecodeFinal = fileQRCodeBlackWhite[0] + i + "." +
fileTypePNG;
}

initialize String filePathDecodeComplete = filePath + filePathDecodeFinal;

/* Decode Black and White QR Code */
initialize and excute String valueText =
QRCodeText.decodeTextQRCode(filePathDecodeComplete);

/* Write to Text File */
execute writer.write(valueText);

 }
 writer.close();
 } catch (WriterException ex) {
 ex.printStackTrace();
 } catch (IOException ey) {
 ey.printStackTrace();
 } catch (NotFoundException ez) {
 ez.printStackTrace();
 }

/* Algorithm Module Index P20 – Decode Encoder/Decoder Text (Base64) to
Compression file */
/*--*/

initialize Base64cli base64 = new base64cli();

try {
 initialize object FileInputStream ifs = new FileInputStream(base91TextFileDecode);
 initialize object FileOutputStream ofs = new FileOutputStream(gZipTextFileDecode);

 execute Base64.decode(ifs, ofs);
} catch (Exception e) {
System.err.println(e);
}

/* Algorithm Module Index P21 –Extraction Compression File to Text File */
/*--*/
 initialize object GZip gZip = new GZip();
 execute gZip.gunzipIt(gZipTextFileDecode, plainTextFileDecode);

247

/* Algorithm Module Index P22 – Open Text Application and Ready to Manipulate*/
/*--*/
execute “C:\windows\systems\notepad.exe”

}
}

 248

Appendix G : Partial Extraction (Re-encode) Level 2

The algorithm of partial extraction level 2 (re-encode) process for error correction level
L.

/* Algorithm Module Index P23 – Initialisation */
/*--*/

/* Creating the package to be used */
package qrcodecmm;

/* Initialisation java library */
call import java.io.FileInputStream;
call import java.io.FileOutputStream;
call import it.sauronsoftware.base64.Base64;
call import java.io.IOException;

/* Creating main class */
public class QRCodeCMM {

/* Initialisation variables to be used */
initialize static String plainTextFile = "D:/QR
Code/QRCode/Journal3/singleTextLevel1L.txt";
initialize static String gZipTextFile = "D:/QR
Code/QRCode/Journal3/gZipTextFile.gzip";
initialize static String base64TextFile = "D:/QR
Code/QRCode/Journal3/base64TextFile.b64";
initialize static String filePath = "D:/QR Code/QRCode/Journal3/";
initialize static String fileName = "fileNumber";
initialize static String fileType = ".txt";
initialize static String fileTypePNG = "png";
initialize static String fileRGB = filePath + "fileRGB." + fileTypePNG;
initialize static final int size = 551;

/* Creating main programme */
public static void main(String[] args) {

/* Counting the total characters including line feed and carriage return */
initialize object CounterLetters count = new CounterLetters();
execute count.CountLetter(plainTextFile);

/* Algorithm Module Index P24 – Compression utility (GZip) */
/*--*/

initialize object GZip gZip = new GZip();

249

execute gZip.gZipFile(plainTextFile, gZipTextFile);

/* Algorithm Module Index P25 – Encoder for Base64*/
/*---*/

initialize object base91cli base91 = new base91cli();
try {
initialize object FileInputStream ifs = new FileInputStream(gZipTextFile);
initialize object FileOutputStream ofs = new FileOutputStream(base64TextFile);
execute base91.encode(ifs, ofs);
} catch (Exception e) {
display error System.err.println(e);
}

/* Algorithm Module Index P26 – Compatibility QR Code ANSI to UTF */
/*---*/

initialize object ansiToUTF8 utf8 = new ansiToUTF8();
execute utf8.convert(base64TextFile);

/* Algorithm Module Index P27 – Characters distribution to files */
/*---*/

initialize object CreateQRCode1 create1 = new CreateQRCode1(size);
initialize object CreateQRCode9 create9 = new CreateQRCode9(size);
initialize object CreateQRCode17 create17 = new CreateQRCode17(size);

/* Counting characters */
initialize object CountChar countChar = new CountChar();
execute int countCharacter = countChar.count(base64TextFile);

/* Divide characters with related value and fit each of file */
initialize object DivideCharacters divide = new DivideCharacters();

/* Create blank files */
execute create1.createBlank40Files(filePath, fileName, fileType);

/* Embedded text characters to each blank file created*/
execute int totalFiles = divide.divideCharacter(base64TextFile, countCharacter,
filePath, fileName);

/* Checking if the file exceed more than 8 */
 if (totalFiles >= 8) {
 System.exit();
 }

250

/* Specify three group that contains 8 files each */
initialize int eight = 8;
initialize String[] multiColourLayerFail = {"QRRed", "QRGreen", "QRBlue"};
initialize int colourCombineRGB[][][] = new int[size][size][3];
initialize MultiLayerQRCode multiLayerQRCode = new MultiLayerQRCode();

/* Algorithm Module Index P28– Create black and white QR Code and combine
it in a group. */
/*--
-----------*/

/* Start with first group (red) */
if (totalFiles >= 0) {
 initialize int total8 = 8;

 /* Create an updated single black and white QR Code (Module Index
P12)

execute create1.generateQRCodeVersion40(filePath, fileName, fileType,
fileTypePNG, total8);

 /* get information from QR Code group 1 (Module Index P13)
 try {
 execute resultFinal = create1.readImage(filePath, fileName, fileTypePNG,
total8);
 } catch (IOException ex) {
 }
 execute int[][] plotResultBlackWhite =
create1.generateMultiplexQRCode(resultFinal, total8);

 /* Combine pixels among 8 black and white QR Codes */
 for (int x = 0; x < size; x++) {
 for (int y = 0; y < size; y++) {
 execute colourCombineRGB[x][y][0] = plotResultBlackWhite[x][y];
 }
 }

/* Algorithm Module Index P29 – Create monocoloured QR Code. */
/*--
-----------*/
 execute create1.generateQRCodeVersion40MonoColour(filePath,
fileTypePNG, plotResultBlackWhite, multiColourLayerFail[0]);
}
 }

/* Algorithm Module Index P30– Create coloured QR Code. */
/*--*/

251

 initialize CombineRGB combineRGBColour = new CombineRGB();
 execute combineRGBColour.combineRGB(colourCombineRGB, fileRGB);
 }
}

252

Appendix H : Processing Time Module

The module of processing time for the current experiments of encoding, decoding and
partial extraction.

 private static String toString(long nanoSecs) {
 int minutes = (int) (nanoSecs / 60000000000.0);
 int seconds = (int) (nanoSecs / 1000000000.0) - (minutes * 60);
 int millisecs = (int) (((nanoSecs / 1000000000.0) - (seconds + minutes * 60)) *
1000);

 if (minutes == 0 && seconds == 0) {
 return millisecs + "ms";
 } else if (minutes == 0 && millisecs == 0) {
 return seconds + "s";
 } else if (seconds == 0 && millisecs == 0) {
 return minutes + "min";
 } else if (minutes == 0) {
 return seconds + "s " + millisecs + "ms";
 } else if (seconds == 0) {
 return minutes + "min " + millisecs + "ms";
 } else if (millisecs == 0) {
 return minutes + "min " + seconds + "s";
 }
 return minutes + "min " + seconds + "s " + millisecs + "ms";
 }

	FRONT MATTER
	Copyright Page
	Front Page
	Title Page
	Dissertation
	Permission to Use
	Abstrak
	Abstract
	Acknowledgement
	Table of Contents
	List of Tables
	List of Figures
	List of Appendices
	List of Abbreviations

	MAIN CHAPTER
	CHAPTER ONE
	INTRODUCTION
	1.1 Introduction
	1.2 Problem Statement
	1.3 Research Questions
	1.4 Objectives
	1.5 Significance of the Study
	1.6 Research Scope
	1.7 -Organisation of the Thesis

	CHAPTER TWO
	LITERATURE REVIEW
	2.1 QR Code
	2.1.1 QR Codes Architecture Structure
	2.1.2 Types of QR Code

	2.2 Coloured Barcode
	2.3 Coloured QR Code
	2.3.1 Colour Depth
	2.3.2 Colour Model
	2.3.3 Pixelation
	2.3.4 Multilayer Colour
	2.3.4.1 Encoding
	2.3.4.2 Decoding

	2.3.5 Multiplexing and Demultiplexing
	2.3.5.1 Encoding
	2.3.5.2 Decode

	2.3.6 Compression
	2.3.6.1 Encoding
	2.3.6.2 Decoding

	2.3.7 Hybrid Extension
	2.3.8 Structured Append
	2.3.8.1 Implementation of partial extraction

	2.4 Combination Techniques of QR Code Data Capacity
	2.5 Summary

	CHAPTER THREE
	RESEARCH FRAMEWORK
	3.1 Research Methodology
	3.1.1 Phase One
	3.1.1.1 Theoretical Framework
	3.1.1.2 Testing Selected Existing Algorithms
	3.1.1.3 Merging the Algorithms

	3.1.2 Phase Two
	3.1.2.1 Development Requirement
	3.1.2.2 Development Process

	3.1.3 Phase Three
	3.1.3.1 Testing

	3.2 Summary

	CHAPTER FOUR
	ARCHITECTURE OF PROPOSED COLOURED QR CODE
	4.1 Encode Algorithmn
	4.1.1 Encode Module
	4.1.2 Encoding Steps
	4.1.2.1 Encoding Compression Modules
	4.1.2.1.1 Count Character Module
	4.1.2.1.2 Compression Module

	4.1.2.2 Encoding Multiplexing Modules
	4.1.2.2.1 Converting ANSI to UTF-8 Module
	4.1.2.2.2 Creating Blank Files module
	4.1.2.2.3 Dividing Characters Module
	4.1.2.2.4 Creating Black and White QR Code Module
	4.1.2.2.5 Creating Red, Green, and Blue QR Code Module

	4.1.2.3 Encoding Multilayer Modules

	4.2 Decode Algorithmn
	4.2.1 Decoding QR Code
	4.2.2 Decoding Steps
	4.2.2.1 Initialisation Module
	4.2.2.2 Decoding Demultilayer Module
	4.2.2.3 Decoding Demultiplexing Module
	4.2.2.4 Decoding Black and White QR Codes
	4.2.2.5 Decoding Text Encoder/Decoder for Decompression Module
	4.2.2.6 Decoding Compression Tool for Decompression Module

	4.3 Partial Extraction Algorithm
	4.3.1 Level 1 Decoding Module
	4.3.2 Level 1 Re-Encoding Module
	4.3.3 Level 2 Decoding Module
	4.3.4 Level 2 Re-Encoding Module

	4.4 Summary

	CHAPTER FIVE
	FINDING
	5.1 Encode Experiment
	5.2 Encode Modules Experiment Result
	5.2.1 Overall Encode Experiment Result

	5.3 Decode Experiment
	5.3.1 Decode Modules Experiment Result
	5.3.1.1 Compression and Decompression
	5.3.1.2 Multiplexing Using Colour Depth
	5.3.1.3 Multilayer Using Colour Channel

	5.3.2 Calculation of Total Black and White QR Codes

	5.4 Partial Extraction Levels
	5.4.1 Partial Extraction Levels Experiment Result
	5.4.1.1 Partial Input Data
	5.4.1.2 Result of Extraction Levels

	5.5 Comparison With Existing QR code
	5.6 Summary

	CHAPTER SIX
	CONCLUSION
	6.1 Summary of the Thesis
	6.2 Encoding Design and Development Algorithmn
	Decoding Design and Devopment Algorithm
	6.4 Partial Extraction Decode and Re-encode Design and Development
	6.5 Contribution
	6.5.1 The Model

	6.6 Limitation
	6.7 Future Work
	6.8 Summary

	REFERENCES
	APPENDIX

