The copyright © of this thesis belongs to its rightful author and/or other copyright owner. Copies can be accessed and downloaded for non-commercial or learning purposes without any charge and permission. The thesis cannot be reproduced or quoted as a whole without the permission from its rightful owner. No alteration or changes in format is allowed without permission from its rightful owner.

DETERMINANTS OF SUSTAINABILITY REPORTING BY ENVIRONMENTALLY SENSITIVE FIRMS IN NIGERIA

ALHASSAN HALADU

DOCTOR OF PHILOSOPHY UNIVERSITI UTARA MALAYSIA APRIL 2017

DETERMINANTS OF SUSTAINABILITY REPORTING BY ENVIRONMENTALLY SENSITIVE FIRMS IN NIGERIA

By

ALHASSAN HALADU

Thesis Submitted to
Tunku Puteri Intan Safinaz School of Accountancy,
Universiti Utara Malaysia,
in Fulfilment of the Requirement for the Degree of Doctor of Philosophy

PERMISSION TO USE

In presenting this thesis in fulfilment of the requirements for a Ph.D. Accounting from the Universiti Utara Malaysia (UUM), I agree that the Library of this university may make it freely available for inspection. I further agree that permission for copying this thesis in any manner, in whole or in part, for scholarly purposes may be granted by my supervisor(s) or in their absence, by the Dean of Tunku Puteri Intan Safinaz School of Accountancy (TISSA-UUM) where I did my thesis. It is understood that any copying or publication or use of this thesis or parts of it for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the UUM in any scholarly use which may be made of any material in my thesis.

Request for permission to copy or to make other use of materials in this thesis in whole or in part should be addressed to:

Dean of Tunku Puteri Intan Safinaz School of Accountancy Universiti Utara, Malaysia 06010 UUM Sintok Kedah Darul Aman

ABSTRACT

The effects of man's actions and industrialization on the bio-system have not been pleasant. The effect of environmental challenges likes drought, desertification, erosion, gas flaring, and pollution is suffering by Nigerian now. Indirectly, it affects the social and political landscape of Nigeria. Hence, this research has been made to investigate the relationship between sustainability reporting and its determinants like environmental policy administrators, corporate financial performance, board independence and corporate foreign ownership concentration. The research primarily targeted the nature and trend of sustainability disclosure in compliance with the Global Reporting Initiative (GRI-4 or G4) which is internationally recognized for sustainability reporting standards and guidelines. Concentrating on environmentally sensitive companies in Nigeria, the research covered 67 firms over a 6-year period (2009-2014). Data were analyzed through content analysis, descriptive statistics, and robust random effect regression after embarking on proper data screening and diagnostic tests. The results showed an appreciably higher level of sustainability disclosure by environmentally sensitive firms. However, on matters of influence only board independence and duality showed significant relationships. Both of which have inverse relationship with sustainability information disclosure indicating that an independent board and division of the CEO's duty does not encourage higher disclosure of sustainability information. The significance of these results is to enable the appropriate authorities to maintain the increasing trend in disclosure with the prospect of future improvements through mandatory disclosure. In addition, the research could serve as a basis for a major overhaul of the "Code of Corporate Governance - 2011". Universiti Utara Malaysia

Keywords: - sustainability reporting, environmentally sensitive firms, environmental policy administrators, corporate financial performance, Nigeria.

ABSTRAK

Aktiviti manusia dan industrialisasi memberikan kesan yang buruk kepada sistem bio. Kesengsaraan oleh kesan cabaran-cabaran terhadap alam sekitar seperti kemarau, kegersangan, hakisan, pembakaran gas, dan pencemaran dirasai oleh penduduk Nigeria sekarang. Secara tidak langsung, pencemaran ini memberikan kesan kepada lanskap sosial dan politik Nigeria. Oleh itu, kajian ini dijalankan untuk mengkaji hubungan di antara laporan pemampanan dan penentunya seperti pentadbir dasar alam sekitar, prestasi kewangan korporat, ciri-ciri lembaga dan penumpuan pemilikan asing Kajian ini mensasarkan kepada sifat dan kecenderungan pendedahan pemampanan selaras dengan Inisiatif Laporan Global (GR1-4 atau G4) yang diiktiraf di peringkat antarabangsa mengenai piawai dan garis panduan pendedahan pemampanan. Kajian ini memberi tumpuan kepada syarikat-syarikat peka alam sekitar yang meliputi 67 buah firma dalam tempoh 6 tahun (2009-2014) di Nigeria. Data dianalisis menggunakan kaedah analisis kandungan, statistik deskriptif dan kesan regresi teguh (robust random effect regression) selepas saringan data yang sesuai dilakukan serta ujian diagnostik. Hasil kajian menunjukkan tahap tertinggi pendedahan pemampanan oleh firma peka alam sekitar yang disenaraikan di NSE (Nigeria Stock Exchange). Walaubagaimanapun, hanya jawatankuasa bebas dan dualiti pengarah urusan menunjukkan hubungan yang signifikan. Kedua-dua faktor ini memberikan hubungan yang berlawanan dengan faktor pendedahan kemampanan maklumat, yang mana menunjukkan jawatankuasa bebas dan dualiti pengarah urusan tidak menggalakkan tahap pendedahan kemampanan maklumat yang tinggi oleh syarikat. Hasil kajian ini membolehkan pihak berkuasa yang berkenaan dalam mengekalkan kecenderungan peningkatan pendedahan kemampanan maklumat pada masa hadapan melalui pendedahan wajib. Tambahan lagi, kajian ini juga boleh dijadikan sebagai tanda aras dalam rombakan utama terhadap "Kod Tadbir Urus Korporat, 2011".

Kata kunci: - laporan kemampanan, pendedahan kemampanan, firma peka alam sekitar, pentadbir dasar alam sekitar, prestasi kewangan korporat, Nigeria.

ACKNOWLEDGEMENT

Many thanks to Almighty Allah for graciously giving me all privileges. I pray that the gentle souls of my parents especially my mother Hajia Fatima Conteh Haladu, who passed away on the 15th January 2015; rest in perfect peace. Ameen! I have the honour to acknowledge my employers and Tunku Puteri Intan Safinaz School of Accountancy for giving me the opportunity to pursue this program. My heartfelt thanks to my Supervisor Dr. Basariah Bt. Salim for her esteem guidance that matches only the best in academics. I pray that Allah reward her entire family a million fold. Let me also recognize the efforts of my External Examiner Associate Professor Dr. Hafiz-Majdi Ab Rashid and Internal Examiner Dr. Mudzamir Mohamed for their invaluable contributions to the success of this work.

My gratitude to Professor. Dr. Noor Azizi B. Ismail, Professor. Dr. Nik Kamariah Nik Mat, Associate Professor Dr. Chek Derashid and Dr. Ku Maisurah Ku Bahador. Many thanks to Mr. Mordecai Ladan, Mr. Jonathan Bawa (DPR), Mr. Usman Alex Kadiri (NSE), Dr. Ahmed R. Kasim, and Mr. Lawal Lukman (NESREA). Thanks to my colleagues like Dr. Abdulsalam Mas'ud, Dr. Nasiru Yunusa, Dr. Abdurrahman Adamu Pantamee, Dr. Usman Aliyu, Dr. Osazuwa Nosakhare Peter, and Dr. Murtala Musa Kaura. Special acknowledgement to my wife Jamila Abbas Hussaini, my brother-in-law Alhassan Abbas Chamo and my children Muhammad (Ambo-Ambo), Fatima (Yasmin) and Muhammad Sameer (Kirikichichi). I pray that Almighty Allah bless you all for your patience and understanding during the course of my Ph.D. program.

Universiti Utara Malaysia

TABLE OF CONTENTS

TITL	LE PAGE	i	
CERTIFICATION OF THESIS WORK		ii	
PER	PERMISSION TO USE		
ABS	ГКАСТ	V	
ABS	ГКАК	vi	
ACK	ACKNOWLEDGEMENT		
TAB	LE OF CONTENTS	viii	
LIST	OF TABLES	xii	
LIST	OF FIGURES	xiii	
LIST	OF APPENDICES	xiv	
LIST	OF ABBREVIATIONS	XV	
DEC	LARATION	xviii	
DED	ICATION	xix	
СНА	PTER ONE INTRODUCTION		
1.1	Background of the Research	1	
1.2	Problem Statement	11	
1.3	Research Questions	16	
1.4	Research Objectives	17	
1.5	Scope of the Research	18	
1.6	Significant of the Research	20	
1.7	Definition of Key Terms	22	
1.17	1.7.1 Environmentally Sensitive Firms	22	
	1.7.2 Non-Environmentally Sensitive or Environmentally		
	Non-Sensitive Firms	23	
	1.7.3 Environmental Policy Administrators	23	
1.8	Organization of the Thesis	23	
CIIA	PTER TWO LITERATURE REVIEW		
2.1	The Development of Sustainability Reporting	24	
2.1	The Development of Sustainability Reporting The Concept of Sustainability Reporting	26	
2.2	Objectives of Sustainability Reporting	30	
2.3	Advantages of Sustainability Reporting	31	
2.5	Challenges to Sustainability Reporting	34	
2.6	The Concept of Sustainable Development	35	
2.7	Sustainability Reporting Standards and Guidelines	38	
2.1	2.7.1 Global Reporting Initiative	40	
	2.7.1.1 The Reporting Principles of GRI Framework	42	
	2.7.1.2 GRI Sustainability Reporting Guidelines [G1(2000) and	72	
	G2 (2002)] Framework	43	
	2.7.1.3 Sustainability Reporting Guidelines Version G3 & G3.0	73	
	(2006-2011) and Version G3.1 (2011-2013) Framework	46	
	2.7.1.4 Major Content Disclosure of G3 (G3.0 and G3.1)	70	
	Frameworks	47	
	2.7.1.5 G4 Sustainability Reporting Principles and Standard	1 /	
	Disclosures	49	
	2 10 11 10 11 10		

	2.7.1.6 Major Upgrading Disclosure Contents of G4 (2013)	50
	2.7.1.7 The Contents of Standard Disclosure of G4	53
	2.7.2 Global Reporting Initiative (GRI) Empirical Results	61
	2.7.3 A Preview of EGASPIN	64
2.8	Sustainability Reporting in the Non-Oil & Gas Sector in Nigeria	70
	2.8.1 Environmental Challenges to the Non-Oil & Gas Sector	70
	2.8.2 Environmental Policy Instruments in the Non-Oil & Gas Sector	
	of Nigeria	74
2.9	Environmental Effects of Petroleum Mining in the Niger Delta	76
2.10	Sustainability Reporting and Accounting	79
2.11	Factors Influencing Sustainability Reporting (Determinants)	81
	2.11.1 Corporate Characteristics	81
	2.11.2 General Contextual Factors	90
	2.11.3 Internal Contextual Factors	96
2.12	A critical Examination of Discoveries in Sustainability Reporting	, ,
	Relationships	100
2.13	The Nigerian Corporate Governance Code (2011) as it affects	100
2.13	Sustainability Reporting	106
2.14	Summary of the Chapter	108
2.1 .	Summary of the Chapter	100
CHA	PTER THREE METHODOLOGY	
3.1	Introduction	110
3.2	Theoretical and Conceptual Framework	111
	3.2.1 Institutional Theoretical Framework	113
	3.2.2 Stakeholder Theoretical Framework	116
	3.2.3 Legitimacy Theoretical Framework	118
	3.2.4 Capital Need Theoretical Framework	121
3.3	Hypotheses Development	127
	3.3.1 Environmental Policy Administrators	128
	3.3.2 Corporate Performance (Financial/Economic)	130
	3.3.3 Board Characteristics	133
	3.3.4 Foreign Corporate Ownership Concentration and Sustainability	
	Disclosure	138
3.4	Research Design	139
3.5	Scope and Population of the Research	141
3.6	Sampling Technique and Sample Size	142
3.7	Research Models Specification	145
3.8	Data Description	146
3.9	Variables of the Research	148
	3.9.1 Dependent Variable	148
	3.9.2 Independent Variables	152
	3.9.3 Control Variable	153
3.10	Measurement of Variables: Estimation Techniques and Rating Scales	154
0.10	3.10.1 Sustainability Reporting	154
	3.10.2 Environmental Policy Administrators	155
	3.10.3 Corporate Performance	158
	3.10.4 Board Characteristics	159
	3.10.5 Corporate Foreign Ownership Concentration	160
3.11	Methods of Data Collection	161
3.12	Techniques of Data Analysis and Evaluation	162
		- 02

3.13	Sources of Data	163
3.14	Data Screening and Cleaning	165
	<u> </u>	165
	• • • • • • • • • • • • • • • • • • • •	167
	1	168
3.15	Dependent Variable"s Validity and Reliability Test	169
	•	169
	•	171
3.16	Validity and Reliability Tests for Mean Value Index for DPR/NESREA	
		172
3.17	Normality Tests	172
3.18	Summary of the Chapter	176
СНАР	TER FOUR RESULTS AND DISCUSSIONS	
4.1		178
4.2	The Nature and Trend of Sustainability Disclosure (Descriptive Statistics)	
4.3	Analysis of the Nature of Sustainability Disclosure of Sub-Items by	1/0
4.3		182
		183
	C	184
		185
		186
		187
		188
4.4		192
4.5		194
1.5		194
		194
		195
		196
		196
		197
	4.5.7 Average Annual Trend Disclosure	198
4.6	Analysis of Annual Environmental Items Disclosure Trend Increase	199
4.7	·	203
,		203
	1 /	206
4.8	The Nature of Foreign Ownership Concentration and Sustainability	_ , ,
		208
4.9		210
,	· · · · · · · · · · · · · · · · · · ·	210
	<u> </u>	215
	*	218
		222
	5	224
		224
4.10		227 227
	•	227 227
	g and a second s	228
		229

	4.10.4 Model Specification Test	229
	4.10.5 Omitted Variables Test	230
	4.10.6 Heteroskedasticity Test	230
4.11	Empirical Results and Discussions	232
4.12	Further Analysis of Variables	234
	4.12.1 Analysis by Categories	234
	4.12.2 Moderating Effects of Environmental Policy Administrators (F	EPA) 235
4.13	Test of Hypotheses	236
4.14	Summary of the Chapter	238
СНАН	PTER FIVE CONCLUSION AND RECOMMENDATIONS	
5.1	Introduction	239
5.2	Conclusion	241
5.3	Recommendations for Future Research	243
REFERENCES 24		246

LIST OF TABLES

Table 2.1	Global Sustainability Reporting Organizations	39
Table 2.2	Total Number of G4 Disclosure Indicators	53
Table 2.3	Summary of GRI Evolution (1997-2013)	59
Table 2.4	Laws Governing Pollution in Nigeria	65
Table 2.5	Major Sections of EGASPIN (1991)	66
Table 3.1	Relevant Independent Variables and Theories of the Research	
	Framework	127
Table 3.2	Environmentally Sensitive Industries in Nigeria (2009-2014)	142
Table 3.3	Criteria for Sample Selection	143
Table 3.4	Standard Disclosure Items (Dependent Variables)	150
Table 3.5	Measurements of Independent Variables	153
Table 3.6	Mean Value Index Scale (MVI) – NSE	156
Table 3.7	Mean Value Index Scale (MVI) – DPR & NESREA	157
Table 3.8	Summary of Data Sources	164
Table 3.9	Missing Data	167
Table 3.10	Replaced Missing Values	168
Table 3.11	List of Outliers	169
Table 3.12	Validity Statistics for Simple Average Disclosure Index	170
Table 3.13	Reliability Statistics for Simple Average Disclosure Index	171
Table 3.14	New Validity and Reliability Test for SADI	171
Table 3.15	Validity and Reliability of Mean Value Index Results	172
Table 3.16	Shapiro-Wilk Test for Normal Data	173
Table 4.1	Descriptive Statistics of Sustainability disclosure Sub-Items	179
Table 4.2	Jonckheere-Terpstra Test on Sub-Items Disclosure	204
Table 4.3	Jonckheere-Terpstra Test of Dependent Variable Items with SD4	
	(Economic Issues) – Pre & Post IFRS	205
Table 4.4	Jonckheere-Terpstra Test of Dependent Variable Items without	
	SD4 (Economic Issues) – Pre & Post IFRS	206
Table 4.5	Independent Sample Test (Mean Group Statistics) for Pre (1) &	
	Post (2) IFRS	207
Table 4.6	Independent Sample Test (Pre & Post IFRS) – Significance	208
Table 4.7	New Validity and Reliability Statistics for SADI	210
Table 4.8	Descriptive Statistics of Dependent Variable Items	210
Table 4.9	Descriptive Statistics of Dependent and Independent Variable	
	Items	212
Table 4.10	Interpretation of Standard Deviation	215
Table 4.11	Correlation Matrix	220
Table 4.12	Tabulation of Fixed, Random & Pooled OLS Coefficient Statistics	225
Table 4.13	VIF after Applying the Dummies (CO)	228
Table 4.14	Functional Form	230
Table 4.15	Estimated Random Effects Robust Regression Results	233
Table 4.16	Estimated Categorized Random Effects Robust Regression Results	234
Table 4.17	Estimated Moderating Random Effects of Environmental Policy	_
	Administrators	235
Table 4.18	Hypothesis Summary	236

LIST OF FIGURES

Figure 2.1	GRI-4 (G4) Sustainability Disclosure Framework	60
Figure 3.1	Theoretical Framework of the Research	124
Figure 3.2	Histogram	174
Figure 3.3	P-Kernel Density Estimate	175
Figure 3.4	P-Plot Graph	175
Figure 4.1	Nature of Disclosure – Agriculture	184
Figure 4.2	Nature of Disclosure - Construction/Real Estate	185
Figure 4.3	Nature of Disclosure – Healthcare	186
Figure 4.4	Nature of Disclosure - Industrial Goods	187
Figure 4.5	Nature of Disclosure - Natural Resources	188
Figure 4.6	Nature of Disclosure - Oil & Gas	189
Figure 4.7	Nature of Disclosure - Economy Average	191
Figure 4.8	Behaviour of Disclosure – Economy Average	192
Figure 4.9	Sectorial Simple Average Disclosure Index (SADI)	193
Figure 4.10	Trends in Agriculture	194
Figure 4.11	Trends in Construction/Real Estate	195
Figure 4.12	Trends in Healthcare	195
Figure 4.13	Trends in Industrial Goods	196
Figure 4.14	Trends in Natural Resources	197
Figure 4.15	Trends in Oil & Gas	197
Figure 4.16	Sectorial Average Trend	198
Figure 4.17	Annual Economy Trend	199
Figure 4.18	Percentage Rise in Disclosure Trend (2009-2014)	201
Figure 4.19	Annual Trend of Environmental Item Disclosure	202
Figure 4.20	Foreign Ownership Concentration Sustainability Disclosure Rate	
	(SADI)	209

LIST OF APPENDICES

Listed Companies in the Nigerian Stock Exchange 2011/2012 & 2012/2013	288
Environmentally Sensitive List of Companies that make up the	
•	290
•	293
List of Companies that make up the Sample Size of the research	294
Sample Codes for the Relevant Years	296
	297
	300
11	302
•	303
	304
	305
	312
±	318
	321
1 0	325
Key Contacts on Policy Administrators	327
Universiti Utara Malaysia	
	Environmentally Sensitive List of Companies that make up the Population of the research Guide to Sample Selection for Each Sector List of Companies that make up the Sample Size of the research Sample Codes for the Relevant Years Codes and Measurement Indices of the Variables Apportionment of Scores for Dependent Variables Letter to Respondent Research Questionnaire for Ph.D. Thesis (DPR & NESREA) Research Questionnaire for Ph.D. Thesis (NSE) Results of Data Analysis (Stata13SE, SPSS22 & Excel 2013) Descriptive Statistics Diagnostic Tests Robust Regression Global Reporting Initiative 4 (GRI-4 or G4) Sustainability Disclosure Indicators Key Contacts on Policy Administrators

LIST OF ABBREVIATIONS

BC Board Characteristics
BC1 Board Independence

BC2 Duality

BC3 Environmental Experts

BC4 Board Size

BOD Board of Directors

BPPM Business Planning and Policy Model CAC Corporate Affairs Commission

CEO Chief Executive Officer CG Corporate Governance

CO Foreign ownership concentration

CO₂ Carbon Dioxide

CP Corporate Performance

CP1 Firm Size

CP2 Financial Leverage CP3 Market-to-Book Value

CSED Corporate Social environmental disclosure CSER Corporate Social environmental reporting

CSR Corporate Social Reporting

CSRM Corporate Social Reporting Model
DPR Department of Petroleum Resources

EER Environmental Evaluation Report/Environmental Effects Reporting

EGASPIN Environmental Guidelines and Standards for the Petroleum Industry in

Nigeria

EIAR Environmental Impact Assessment Report

EMA Environmental Management Accounting

EMAS Environmental Management Accounting System

EMC Environmental Management Cost EPA Environmental Policy Administrator FME Federal Ministry of Environment G4 GRI (2013) – Latest Version of GRI

GGW Great Green Wall
GHG Greenhouse Gases
GJN Global Justice Now

GSD General Standard Disclosures
IDA International Development Agency

IFRS International Financial Reporting Standards

ILO International Labour Organization IOC International Oil Companies

IPIECA International Petroleum Industry Environmental Conservation Association

ISO International Standard Organization IUC International Union for Conservation

IYC Ijaw Youth Council

MAN Manufacturing Association of Nigeria

MASSOB Movement for the Actualization for the Sovereign State of Biafra

MDG Millennium Development Goals

MEND Movement for the Emancipation of the Niger Delta

Multinational Corporations MNC

Mean Value Index **MVI NDA** Niger Delta Avengers

Niger Delta People Salvation Front **NDPSF** Niger Delta People Volunteer Force **NDPVF**

NEPA National Environmental Protection Agency

National Environmental Standards and Regulations Enforcement Agency **NESREA**

Nigeria Erosion and Watershed Management Project **NEWMAP**

NGO Non-Governmental Organizations

Nigeria Integrated Waste Management Facility **NIWMF**

NLNG Nigerian Liquefied Natural Gas

Nigerian National Petroleum Corporation **NNPC**

Nitrogen Dioxide NO_2

National Production and Monitoring System **NPMS**

OECD Organization for Economic Cooperation and Development

PA1 Nigerian Stock Exchange

DPR/NESREA PA₂

Petroleum Industry Bill PIB

RUWES Rural Women Energy Security

RWES Rural Women Empowerment Scheme Simple Average Disclosure Index **SADI**

SD Standard Disclosure

SD1 Disclosure on Company's Strategy & Analysis Disclosure on Company's Organizational Profile SD2

SD3 Disclosure on Company's Governance Disclosure on Company's Economic Issues SD4

Disclosure on Company's Sustainability issues SD5

Disclosure on Company's Social Issues SD6

Disclosure on Company's Labour Practice & Decent Work SD7

Disclosure on Company's Human Rights Issues SD8 SD9 Disclosure on Company's Product Responsibility

Disclosure on Company's Ethical Policies on Environment **SD10**

Social and Sustainability accounting and Reporting **SEAR**

Security & Exchange Commission **SEC**

SEM Structural Equation Model

State Environmental Protection Agency **SEPA** Sustainability Management Accounting **SMA**

Small & Medium Enterprises SME

Sulphur Dioxide SO_2

Shell Petroleum Development Company **SPDC**

Specific Standard Disclosure SSD Triple Bottom Line Reporting TBL UK United Kingdom (Great Britain) **United Nations Organization** UN

United Nations Commission on Sustainable Development **UNCSD**

United Nations Development Program **UNDP UNEP** United Nations Environmental Program

United Nations Sustainable Stock Exchange Initiative UNSSEL

Volta River Authority **VRA**

WBCSD	World Business Council for Sustainable Development
WCED	World Commission on Environment and Development

WCS World Conservation Strategy
WRI World Resources Institute
WWF World Wide-Life Fund

DECLARATION

I declare that this Thesis is based on a study undertaken by me on the "Determinants of Sustainability disclosure by Environmentally Sensitive Firms in Nigeria" in Tunku Puteri Intan Safinaz School of Accountancy (TISSA-UUM), College of Business, Universiti Utara, Malaysia. This research work was conducted solely by me under the supervision of Dr. Basariah Bt. Salim. I proudly declare that this work has never been previously submitted for the award of a degree elsewhere and all ideas and views contain in it are products of my research. Where the views of others have been expressed, proper citations were made and they have been duly acknowledged.

Alhassan Haladu

Matado.

April 2017

DEDICATION

This Ph.D. Accounting research work is dedicated to my late father whose high sense of discipline, principles, and steadfastness has made it easier for me to survive under any social, traditional, cultural, economic, and political conditions. While alive, he had always reminded and warned me of my future and life after him. Today I very much appreciate his effort as I have come to understand the full meaning of his words (*Success*!). May Almighty Allah grant him a special place in Al-Janatul Firdausi and may He continue to bless his family and entire legacy. I pray that his gentle soul rest in perfect peace. Ameen Thuma Ameen!

MALLAM HALADU SULAIMAN HAFIZ WASAI (1920-1987)

CHAPTER ONE

INTRODUCTION

1.1 Background of the research

Traditionally, accounting has primarily focused on the financial performance of firms. Ayoola and Olasanmi (2013) suggested that this practice lacks an orientation towards the future as it emphasize on promoting the interest of shareholders only. Managers who wish to maximize businesses" potential should consider broad stakeholders" interest, and decisions taken at any time must consider the implication on all stakeholders (Ayoola & Olasanmi, 2013; Barde, 2009, Huang, Pepper & Bowrey, 2014). Today it has become acceptably clear that the governance and performance of companies in relation to sustainability issues are paramount in their long-term success and that of society as a whole; especially companies" desire for financial gains and improved corporate image (Akbas, 2014; Ayoola & Olasanmi, 2013).

Our environment consists of bio-diversification of the planet, which include different plant and animal species and microorganisms which must be conserved and preserved as a sign of recognition of its significance (Shah, 2014). However, this beautiful gift of nature has come under serious threat facing different types of problems to the extent that today this threat has become a global issue. Problems like climate change, energy demand and supply, waste disposal and removal, species loss, forest loss, resource depletion, alteration of atmospheric conditions and other sustainability issues are growing in magnitude (Beaudry, 2014; Creel, 2010). According to Beaudry (2014), the significant factors responsible for environmental

The contents of the thesis is for internal user only

REFERENCES

- Abiodun, D. (2015, April 22nd). "Who buys a private jet for \$10 million for goodness sake?" Alison-Madueke says she has not committed any crime. Retrieved from http://newswirengr.com/2015/04/22/who-buys-a-private-jet-for-10million-for-goodness-sake-alision.
- Aboody, D., M. E. Barth, and R. Kasznik (2004). "Firms" voluntary recognition of stock-based compensation expense." *Journal of Accounting Research*, 42, 123-150.
- Acti-Ifurueze, M. A. K., Etale, L. M. & Frank, B. P. (2013, March 12th). The impact of environmental cost on corporate performance. A study of oil companies in Niger Delta states of Nigeria. *Journal of Business and Management*. 2(2), 1-10.
- Adams, C. A. (2004). The ethical, social, and environmental reporting-performance portrayal gap. Accounting, Auditing & Accountability Journal. *Emerald Insight*. 17(5), 731-757.
- Adams, C. A., & Frost, G. (2006). Accounting for ethical, social, environmental, and economic issues: towards an integrated approach. *CIMA-Research Executive Summary Series*, 2(12), 1-6.
- Adams, C. A., & McNicholas, P. (2007). Making a difference: Sustainability reporting, accountability and organisational change. *Accounting, Auditing & Accountability Journal*, 20(3), 382-402.

- Adegbaju, A. A., & Olokoyo, F. O. (2008). Recapitalization and banks performance: a case study of Nigerian banks. *African Economic and Business Review*. ISSN 1109-5609
- Aert, W., Cormier, D. & Magnam, M. (2006, May/June). Intra-industry imitation in corporate environmental reporting: An international perspective. *Journal of Accounting and Public Policy*, 25(3). New York, ESEVIER.
- Ahmad, Z., Hassan, S. & Mohammad, J. (2003). Determinants of environmental reporting in Malaysia. *International Journal of Business Studies*, 11(1), 69-90.
- Ajibolade, S. O., Arowomole, S. S. A. & Ojikutu, R. K. (2010, January).

 Management accounting systems, perceived environmental uncertainty, and companies" performance in Nigeria. *International Journal of Academic Research*, 2(1), 195-201.
- Akbas, H. E. (2014). Company characteristics and environmental disclosures: an empirical investigation on companies listed on Borsa Istanbul 100Index. *Journal of Accounting and Finance*, 145-163.
- Alabede, J. O. (2012). An investigation of factors influencing taxpayers "compliance behaviour: evidence from Nigeria. A Ph.D. Thesis submitted to the Othman Yeop Abdullah Graduate School of Business, Universiti Utara, Malaysia.
- Alabi, O. F., & Ntukekpo, S. S. (2012). Oil companies and corporate social responsibility in Nigeria: an empirical assessment of chevron's community development projects in Niger delta. *British Journal of Arts and Social Sciences*, 4(2)2.

- Al-Farooque, O. (2010). An examination of the determinants of corporate ownership concentration in an emerging market context. *Malaysian Accounting Review*, 9(1), 105-122.
- Alfred, C. (2013). Nigeria Agip Oil Company"s corporate social responsibility in the Niger delta of Nigeria: an assessment of an unusual corporate social responsibility paradigm. *Journal of Sustainable Development in Africa*, 15(8).
- Al-Matari, Y. A. A. T. (2013). Board of Directors, Audit Committee Characteristics and the Performance of Public Listed Companies in Saudi Arabia. Ph. D. Thesis Othman Yeop Abdullah, Graduate School of Business, Universiti Utara, Malaysia.
- Alonso-Almeida, M., Llach, J., & Marimon, F. (2012, November 23rd). A closer look at "global reporting initiative" sustainability reporting as a tool to implement environmental and social policies: *A Worldwide Sector Analysis*, 21, 318-335.
- Altunbaş, Y., Kara, A., & van Rixtel, A. (2007). Corporate governance and corporate ownership: The investment behaviour of Japanese institutional investors (No. 0703). Banco de Espa a.
- Alves, S. (2012). Ownership concentration and earnings management: Evidence form Portugal. *Australian Accounting Business and Finance Journal*, 6(1), 57-73.
- Amaize, E. (2016). In Delta, herdsmen kill three villagers daily, amputate young me, rape girls Hon. Ivwurie. *VanguardNews (2016)*. Retrieved 12th June, 2016 from Facebook. http://www.vanguardngr.com/2016/06/delta-herdmen-kill-three-villagers-daily-amputate-young-men-rape-girls-hon-ivwurie/

- Anderson, D. (2003). Environmental reporting and transport the case of a public transport company. *Business Strategy and the Environment*, 12 386-399.
- Andrikopoulos, A. & Kriklani, N. (2013). Environmental disclosure and financial characteristics of the firm: the case of Denmark. *Corporate Social Responsibility and Environmental Management Journal*, 20, 55-64.
- Anyanwu, C. U. (2012, May 27th –June 1st). *The oil industry and the Nigerian environment*. IAIA 12 Conference Proceedings. Energy Future: The Role of Impact Assessment. 32nd Annual Meeting of the International Association for Impact Assessment (IAIA), Portugal.
- Aquino, M. N. (2009). An evaluation of financial and non-financial environmental disclosures of ten publicly listed mining companies in the Philippines. DLSU *Business and Economics Review*, 18(2), 55-64.
- Asaolu, T. O., Agboola, A. A., Ayoola, T. J., & Salamu, M. K. (2011). Sustainability in the Nigerian oil and gas sector. Environmental Management Conference Proceedings, Federal University of Agriculture Abeokuta, Nigeria.
- Aslan, H., & Kumar, P. (2012, April 25th). Strategic ownership concentration and the cost of debt. *The Review of Financial Studies*, 25(7), 2257-2299.
- Asuquo, A. I. (2012, January). Environmental friendly policies and their financial effects on corporate performance of selected oil and gas companies in Niger Delta region of Nigeria. *American International Journal of Contemporary Research*, 2(1), 168-173.

- Ayoola, T. J., & Olasanmi, O. O. (2013). Business case for integrated reporting in Nigeria oil and gas sector. *Issues in Social and Environmental Accounting*, 7(1), 30-54.
- Babbie, E. (2004). *The practice of social research* (10th Ed.). Thompson, Wadsworth Inc.
- Ballou, B., Heitger, D. L., Landes, C. E., & Adams, M. (2006). The future of corporate sustainability reporting. *Journal of Accountancy*, 202(6), 65-74.
 Retrieved from http://eserv.uum.edu.my/docview/206783794?accountid
- Barako, D. G., Hancock P., & Izan, H. Y., (2006)^a. "Factors influencing voluntary corporate disclosure by Kenyan companies". *Corporate Governance: An international Journal*, 14(2), 303-327.
- Barako, D. G., Hancock, P., & Izan, H. Y., (2006)^b. Relationship between corporate governance attributes and voluntary disclosures in annual reports: The Kenyan experience. *Financial Reporting, Regulation and Governance*, 5(1), 1-25.
- Barde, I. M. (2009). An evaluation of accounting information disclosure in the Nigerian oil marketing company. A Ph.D. thesis submitted to the Department of Accounting Bayero University, Kano, Nigeria.
- Bartelmus, P. & Cleveland, C. (2008, July 25th). Measuring sustainable economic growth and development. *Environmental and Natural Resource Accounting*. http://www.ecoearth.org/article/measuringsustainbleeconomicgrowthanddevelopment

- Basalamah, A. S. & Jermias, J. (2005, January-April). Social and environmental reporting and auditing in Indonesia: maintaining organizational legitimacy? *Gadjah Mada International Journal of Business*, 7(1), 109-127.
- Bassen, A., & Kovacs, A. M. M. (2008). Environmental, social and governance key performance indicators from a capital market perspective. *Zeitschrift für Wirtschafts-und Unternehmensethik*, (9/2), 182-192.
- Beaudry, F. (2014). The 10 countries with the least healthy environment.

 Environmental Issues Categories.

 http://environment.about.com/od/biodiversityconservation/a/population_grow.**

 htm
- Becchetti, L. & Ciciretti, R. (2009). Corporate social responsibility and stock market performance. *Applied Financial Economics*, 19(16), 1283–1993.
- Beets, S. D., & Souther, C. C. (1999). Corporate environmental reports: The need for standards and an environmental assurance service. *Accounting Horizons*, 13(2), 129-145.
- Bell, J. & Lundblad, H. (2011). A comparison of ExxonMobil"s sustainability reporting to outcomes. *Journal of Applied Business and Economics*, 12(1), 17-29.
- Berrone, P. & Gomez-Mejia, L. (2009). Environmental performance and executive compensation: An integrated agency-institutional perspective, 52(1), 103-126.
- Betry, M. A., and Rondinelli, D. A. (1998). Proactive corporate industrial management: *A New Industrial Revolution*. Academy of management Executive, 13(2), 38-50.

- Bewley, K. (2005). The impact of financial reporting regulation on the market valuation of reported environmental liabilities: preliminary evidence from US and Canadian public companies. *Journal of International Financial Management and Accounting*, 16(1), 1-48.
- Bhattacharya, A. (2014). Factors associated with the social and environmental reporting of Australian companies. *AABF Journal*, 8(1), 25-49.
- Bhattacharyya, A. (2016). Corporate Social and Environmental Responsibility in an Emerging Economy: Through the Lens of Legitimacy Theory. *Browser Download This Paper*.
- Bluszcz, A., & Kijewska, A. (2015). Challenges of sustainable development in the mining and metallurgy sector in Poland. *Metalurgija*, 54(2), 441-444.
- Borenstein, S. (2014, October 21). Earth heading hottest year on record. Santa Fe New Mexican. P 1.

Universiti Utara Malaysia

- Brammer, S. & Pavelin, S. (2006). Voluntary environmental disclosures by large UK companies. *Journal of Business Finance and Accounting*, 33(7–8), 1168–1188.
- Branco, M. C. & Rodrigues, L. L. (2007, June). Issues in corporate social and environmental reporting research. *Issues in Social and Environmental Accounting*, 1(1), 72-90.
- Brickley, J. A., Coles, J. L., & Terry, R. L. (1994). Outside directors and the adoption of poison pills. *Journal of Financial Economics*, 35, 371-390.

- Brown, H. S., de Jong, M., & Levy, D. L. (2009). Building institutions based on information disclosure: lessons from GRI's sustainability reporting. *Journal of cleaner production*, 17(6), 571-580.
- Brown, H., Jong, M., & Lessidrenska, T. (2007). The rise of the Global Reporting

 Initiative (GRI) as a case of institutional entrepreneurship. Cambridge,

 Massachusetts, EUA (No. 36). University Harvard, Working Paper.
- Bruton, G. D., Ahlstrom, D., & Li, H. L. (2010). Institutional theory and entrepreneurship: where are we now and where do we need to move in the future?. *Entrepreneurship theory and practice*, 34(3), 421-440.
- Buniamin, S. (December 2010). The quantity and quality of environmental reporting in annual reports of public listed companies in Malaysia. *Issues in Social and Environmental Accounting*, 4(2), 115-135.
- Burritt, R. L., & Schaltegger, S. (2010). Sustainability accounting and reporting: fad or trend?. *Accounting, Auditing & Accountability Journal*, 23(7), 829-846.
- Burritt, R. L., Hahn, T. and Schaltegger, S. (2002). Towards a comprehensive framework for environmental management accounting Links between business actors and EMA tools. *Australian Accounting Review*, 12(2), 1-16.
- Butler, E. (2015, June 12th). BBC World Service News. 15:30 hrs. Malaysian time.
- Campbell, D., Craven, B. & Shrives, P. (2003). Voluntary social reporting in three FTSE sectors: a comment on perception and legitimacy. *Accounting, Auditing and Accountability Journal*, 16(4), 558-581.

- Campbell, J. L. (2007). Why would corporations behave in socially responsible ways?

 An institutional theory of corporate social responsibility. *Academy of management Review*, 32(3), 946-967.
- Cann, A. (2016, March 5th 3:00 pm). *Tutorials on Shapiro-Wilk Test*. http://www.youtube.com/watch?v=QeKFuR4jBdA
- CAPPETTA (2014, April 21st). Massachusetts Personal Injury Lawyer Blog: The importance of an expert opinion. *Cappetta Law Offices*. Retrieved from http://www.massachusettspersonalinjurylawyer-blog.com/
- Carbonify.com (2014). What is Kyoto protocol? http://www.carbonify.com/articles/kyoto-protocol.htm
- Carol, A. A. and Frost, G. CIMA (2006). Accounting for ethical, social, environmental, and economic issues: Towards an integrated approach. Research Executive Summary Series, 2(12), 1-6.

Universiti Utara Malavsia

- Cavanagh, S. M., Hahn, R. W. and Stavins, R. N. (2001, September). *National environmental policy during the Clinton years*. Resources for the Future, 1616 P. Street, NW Washington, D. C. 20036. http://www.rff.org.
- Chen, C. J. P., & Jaggi, B. (2000). Association between independent non-executive directors, family control, and financial disclosures in Hong Kong. *Journal of Accounting and Public Policy*, 19, 285-310.
- Cheng, E. C. M., & Courtenay, S. M. (2006). Board composition, regulatory regime, and voluntary disclosure. *ScienceDirect The International Journal of Accounting*, 41, 262-289.

- Cheng, S., Evans III, J. H., & Nagarajan, N. J. (2008). Board size and firm performance: the moderating effects of the market for corporate control. *Review of Quantitative Finance and Accounting*, 31(2), 121-145.
- Chown, D. (2001). A review of the social, economic, and environmental impact of the forestry industry in South Africa. An M. Inst. Agrar. Research Report submitted to the School for Agriculture and Rural Development, University of Pretoria.
- Chukwubueze, A. O., & Nnaomah, K. C. (2012). Shell Petroleum Development Corporation: oil exploration and socio-economic life in Ogoni, Nigeria. *Journal of Sustainable Development*, 14(8), 132-140.
- Clapham, M. E. (2016, March 7th 4:20 pm). *Testing Normality: Shapiro-Wilk Test.*Tutorials. http://www.youtube.com/watch?v=dRAqSsgkCUc.
- Clarkson, P. M., Overell, M. B., & Chapple, L. (2011). Environmental reporting and its relation to corporate environmental performance. *ABACUS A Journal of Accounting, Finance, and Business Studies*, 47(1), 27-60.
- Clarkson, P., Li, Y., Richardson, G. & Vasvari, F. (2008). Revisiting the relation between environmental performance and environmental disclosure: An empirical analysis. *Accounting, Organizations and Society*, 33, 303–327.
- Cleveland, C. (31st May 2010). *Environmental Change and Socio-economic Factors* in Africa. United Nations Environmental Program. Encyclopaedia of Earth.
- Cohen, A. J., & Harcourt, G. C. (2003). Retrospectives: whatever happened to the Cambridge capital theory controversies?. *The Journal of Economic Perspectives*, 17(1), 199-214.

- Connelly, J. T., & Limpaphayom, P. (2004). Environmental reporting and firm performance: evidence from Thailand. *Journal of Corporate Citizen*, 13, 137-149.
- Contrafatto, M. (2011). Social and environmental accounting and engagement research: reflections on the state of art and new research avenues. *Economia Aziendale Online*, 2(3), 273-289.
- Cooper, D. R., Schindler, P. S., & Sun, J. (2003). Business research methods.
- Cormier, D. & Morgan, M. (1999). Corporate environmental disclosure strategies: determinants, costs, and benefits. *Journal of Accounting, Auditing and Finance*, 14(4), 429-451.
- Cormier, D., Gordon, I. M. and Magnan, M. (2004). Corporate environmental disclosure: Contrasting management's perception with reality. *Journal of Business Ethics*, 49, 143-165.
- Cornelissen, J. P., Durand, R., Fiss, P. C., Lammers, J. C., & Vaara, E. (2015). Putting communication front and center in institutional theory and analysis.

Universiti Utara Malavsia

- Cortez, M. A. A. (2011). Do markets care about social and environmental performance? Evidence from the Tokyo stock exchange. *Journal of International Business Research*, 10(2), 15-22.
- Cotter, J., Shivdasani, A., & Zenner, M. (1997). Do independent director enhance target shareholder wealth during tender offers? *Journal of Financial Economics*, 43, 195-218.
- Creel, T. S. (2010). Environmental reporting practices of the largest US companies.

 Management Accounting Quarterly Fall, 12(1), 13-19.

- Creswell, J. W. (1998). Qualitative enquiry and research design: Choosing among five traditions. London, Sage Publications, Inc.
- Criado-Jiménez, I., Fernández-Chulián, M., Larrinage-González, C., & Husillos-Carqués, F. J. (2008). Compliance with mandatory environmental reporting in financial statements: The case of Spain (2001–2003). *Journal of Business Ethics*, 79(3), 245-262.
- Crowth, D. (2000). Social and environmental accounting. London; Financial Times.

 Prentice Hall.
- Curry, J. (2014, October 13). The global warming statistical meltdown. *The Wall Street Journal Europe*. P 1.
- Dacin, M. T., Goodstein, J., & Scott, W. R. (2002). Institutional theory and institutional change: Introduction to the special research forum. *Academy of management journal*, 45(1), 45-56.

Universiti Utara Malaysia

- Damak-Ayadi, S. (2010). Social and environmental reporting in the annual reports of large companies in France. *Accounting and Management Information Systems*, 9(1), 22-44.
- Damjanov, N., Kauffman, R. S., & Spencer-Green, G. T. (2009, May). Efficacy, pharmacodynamics and safety of VX-702, a Novel p. 38 MAPK Inhibitor, in Theumatoid Arthritis. *ARTHRITIS & RHEUMATISM*. 60(5), 1232-1241.
- Dandago, K. I., & Arugu, L. O. (2014). Corporate social responsibility and environmental concerns in Nigeria: A critical focus on oil producing communities. *Issues in Social and Environmental Accounting*, 2, 104-115.

- De Jorge, J. & Laborda, L. (2011). Corporate growth, age and ownership concentration: Empirical evidence in Spanish firms. *Journal of Business Economics and Management*, 12(1), 164-196.
- Deegan C. (2002). The legitimising effect of social and environmental disclosures a theoretical foundation. *Accounting, Auditing and Accountability Journal*, 15(3), 281–311.
- Deegan, C. (2007). Financial accounting theory (3rd Edition). McGraw-Hill, Sydney.
- Delgado-Garcia, J. B., Quevedo-Puente, E. & Fuente-Sabate, J. M. (2010). The impact of ownership concentration on corporate reputation: Evidence from Spain. Corporate Governance: *An International Review*, 18(6), 540-556.
- Delmas, M. & Blass, V. D. (2010). Measuring corporate environmental performance: the trade-off of sustainability ratings. *Business Strategy and the Environment*, 19, 245-260. http://www.interscience.wiley... Com.
- Dingwerth, K. & Eichinger, M. (2010, August). Tamed transparency: How information disclosure under the global reporting initiative fails empower global environmental politics, 10(3), 74-96. http://www.researchgate.net
- Donaldson, T. & Preston, L. (2006), *Theories Used in IS Research: Stakeholder Theory*. http://www.istheory.yorku.ca/stakeholdertheory.htm.
- Dong, S. & Burritt, R. (2010). Cross-sectional benchmarking of social and environmental reporting practice in the Australian oil and gas industry, 18, 108-118. http://www.interscience.wiley.com.

- Donnelly, R., & Mulcahy, M. (2008). Board structure, ownership, and voluntary disclosure in Ireland. *Corporate Governance: An International Review*, 16(5), 416-429.
- Dragu, I. & Tiron-Tudor, A. (2013). The integrated reporting initiative from an institutional perspective: *Emergent factors*. *Precedia Social and Behavioural Sciences*, 92, 275-279.
- Drexhage, J. & Murphy, D. (2010, September 19th). *Sustainable development: From Brundtland to Rio 2012*. International Institute for Sustainable Development (IISD). United Nations Headquarters, New York.
- ELEX Legal Practitioners & Arbitrators (1999). Review of the national policy on the environment. Nigeria, Ikoyi Lagos.
- El-Gazzar, S. M., Fornaro, J. M. & Jacob, R. A. (2006). *An examination of determinants and contents of corporate voluntary disclosure of management*"s responsibility for financial reporting. Faculty Working Paper, Lubin School of Business, Pace University. http://digitalcommons.paceedu/lubinfaculty_workingpapers/56.
- Elijido-Ten, E. (2009). Can stakeholder theory add to our understanding of Malaysian environmental reporting attitudes? *Researchgate: Malaysian Accounting Reviews*, 8(2), 85-110.
- Enahoro, J. A. (2009). Design and bases of environmental accounting in oil and gas and manufacturing sectors in Nigeria. A PhD Thesis submitted to Department of Accounting, College of Business and Social Sciences, Covenant University, Ota, Nigeria.

- Eng, L. L., & Mak, Y. T. (2003). Corporate governance and voluntary disclosure. *Journal of Accounting and Public Policy*, 22, 325-345.
- Environmental Guidelines and Standards for Petroleum Industry (EGASPIN, 1991).

 Directorate of Petroleum Resources, Nigeria.
- Fama, E. F., & Jensen, M. C. (1983). Separation of ownership and control. *The Journal of Law and Economics*, 26, 301-325.
- Faux, J. (2008). Displaying environmental information to satisfy utility and sufficiency in entity reporting. *Malaysian Accounting Review*, 7(2), 95-116.
- Fauzi, F. & Locke, S. (2012). Board structure, ownership concentration and firm performance: A study of New Zealand listed firms. *Asian Academy of Management Journal of Accounting and Finance (AAMJAF)*, 8(2), 43-67.
- Federal Environmental Protection Agency FEPA (1998). *National policy on the*environment (Revised Draft copy). The Presidency, Independence Way South
 Central Area, Garki, Abuja.
- Federal Ministry of Environment-FME (2013). Policy instrument for the environment. Nigeria, Abuja.
- Fernando, S., & Lawrence, S. (2014). A theoretical framework for CSR practices: integrating legitimacy theory, stakeholder theory and institutional theory. *Journal of Theoretical Accounting Research*, 10(1), 149-178.
- Feyzi, J. S., Kangarlouei, B. S., Soleymani, B. & Motavassel, M. (2013, January-February). Corporate governance, ownership concentration, cash holdings, and firm"s value: A case of firms listed in Tehran stock exchange (TSE). *Asia*

- Pacific Journal of Research in Business Management (APJRBM) vol. 4, Issue 1-2 ISSN 2229-4101. http://www.skirec.com
- Firoz, C. A. M., & Ansari, A. A. (2010). Environmental accounting and international financial reporting standards (IFRS). *International Journal of Business and Management*, 5(10), 105-112.
- Firth, M. (1979). The impact of size, stock market listing, and auditors on voluntary disclosure in corporate annual reports. *Accounting and Business Research*, 9, 273-280.
- Fonseca, A. (2010, March). Barriers to Strengthening the Global Reporting Initiative

 Framework: Exploring the perceptions of consultants, practitioners, and researchers. In *Trabajo presentado en Accountability through Measurement:*2nd National Canadian Sustainability Indicators Network Conference.

 Toronto. [Links].
- Fortanier, F. & Kolk, A. (2014, November 18th). *On the economic dimension of CSR: Exploring Fortune Global 250 reports*. University of Amsterdam. http://www.dare.uv.nl.
- Fortes, H. (2002). The need for environmental reporting by companies: an examination of the use of environmental reports by Swedish public companies. *Greener Management International*. Winter 2002. 77-92.
- Freedman, M. & Jaggi, B. (2005) "Global warming, commitment to the Kyoto protocol, and accounting disclosures by the largest global public firms from polluting industries", *The International Journal of Accounting*, 40(3), 215-232.

- Freeman, R. E., Wicks, A. C., & Parmar, B. (2004). Stakeholder theory and "the corporate objective revisited". *Organization science*, *15*(3), 364-369.
- Frost, G. R. (2007). The introduction of mandatory environmental reporting guidelines: Australian evidence, *ABACUS* 43(2), 190–216.
- Gary, R. (December 2007). Taking a long view about what we now know about social and environmental accountability and reporting. *Issues in Social and Environmental Accounting*, 1(2), 169-198.
- Gbadeyan, R.A. (2003) "Marketing environmental problems for solution", in Jimoh, H. I. (Ed.): *Techniques in Environmental Studies*, 73–78, Nathadex Publishers, Ilorin.
- Geol, P. (July 2010). Triple bottom line reporting: an analytical approach for corporate sustainability. *Journal of Finance, Accounting, and Management*, 1(1), 27-42.

Universiti Utara Malavsia

- Gibson, J. L., Caldeira, G. A., & Spence, L. K. (2005). Why do people accept public policies they oppose? Testing legitimacy theory with a survey-based experiment. *Political Research Quarterly*, 58(2), 187-201.
- Glass, J. (2012). The state of sustainability reporting in the construction sector.

 Smart and Sustainable Built Environment, 1(1), 87-104.
- Global Reporting Initiative (2000-2006). Sustainability Reporting Guidelines. RG. GRI Version 3.0. The Netherlands. http://www.globalreporting.org
- Global Reporting Initiative (2000-2011). Sustainability Reporting Guidelines. RG. GRI Version 3.1. The Netherlands. http://www.globalreporting.org

- Global Reporting Initiative (2000-2012). *G3.1 Sustainability reporting guidelines & oil and gas sector supplement*. Version 3.1 OGSS. Final version. The Netherlands. http://www.globalreporting.org
- Global Reporting Initiative (2011). *GRI and ISA 26000: How to use the GRI guidelines in conjunction with ISO 26000*. ISBN: 978-90-8866-041-2. http://www.globalreporting.org
- Godelnik, R. (2012, August 28th). *What is sustainability reporting?* 8 tips for the casual reader.
- Grande, T. L. (2016, March 3rd 4:03 pm). *Identifying multivariate outliers with mahalanobis distance in SPSS*. Tutorials. http://www.youtube.com/watch?v=AXLAX6r5JgE.
- Grande, T. L. (2016, March 4th 4:30 pm). *Conducting a Shapiro-Wilk Normality test*in SPSS. Tutorials.

 http://www.youtube.com/watch?v=9KKAX5av7S4&ebc=ANyPxKq13QRFL5Q
- Gray R., Kouhy R., & Lavers S. (1995^a). Corporate social and environmental reporting. A review of the literature and a longitudinal study of UK disclosure. *Accounting, Auditing and Accountability Journal*, 8(2), 47–77.
- Gray, R. (2001) "Thirty years of social accounting, reporting and auditing: What if anything we have learnt", *Business Ethics: A European Review*, 10(1), 9-15.
- Gray, R. H., Owen, D. L. and Maunders, K. T. (1987). *Corporate social reporting:*Accounting and accountability. Hemel Hempstead, UK. Prentice Hall.

- Gray, R. Owen, D. & Adams, C. (1996). Accounting and accountability: Changes and challenges in corporate social reporting and environmental reporting.

 Prentice-Hall: Hemel Hempstead.
- Grenoble *Graduate School of Business* (2010, March 28th). http://www.lexicon.ft.com/term?term=ownership-concentration.
- Guenther, E., Hoppe, H., & Poser, C. (2006). Environmental corporate social responsibility of firms in the mining and oil and gas industries: Current status quo of reporting following GRI guidelines. *Greener Management International*, (53), 7.
- Gul, F. A. & Leung, S. (2002). Board leadership outside director's expertise and voluntary disclosure. *Journal of Accounting and Public Policy*, 23, 1-29.
- Guthrie, J. & Mathews, M. R. (1985) "Corporate social accounting in Australian", In Preston, L. E. (Ed.), Research in Corporate Social Performance and Policy, 7, 251.
- Haddock-Fraser, J. & Fraser, I. (2008). Assessing corporate environmental reporting motivations: differences between "close-to-market" and "business-to-business" companies. *Corporate Social Responsibility and Environmental Management*, 15, 140–155.
- Haggins & Frames (January 2011). Gender mainstreaming toolkit for national environmental policy and processes. A Report submitted to the Ministry of Environment Abuja, Nigeria on Gender and environment.

- Haider, M. D. (June 2010). An overview of corporate social and environmental reporting (CSER) in developing countries. *Issues in Social and Environmental Accounting*, 4(1), 3-17.
- Hair Jr, J. F. (2006). Black, WC, Babin, BJ Anderson, RE & Tatham, RL (2006). Multivariate data analysis, 6.
- Hair, J. J., Black, W., Babin, B., & Anderson, R. (2010). *Multivariate data Analysis,* (7th Ed.). Prentice-Hall International, London.
- Haladu, A. (2011, October). An assessment of compliance with the statement of accounting standard on stocks (SAS 4) by listed firms in the Nigerian foods/beverages and tobacco industry.
 M. Sc. Accounting Dissertation.
 Kano, Post Graduate School, Bayero University Kano, Nigeria.
- Haniffa R. M., & Cooke T. E. (2002). "Culture, corporate governance and disclosure in Malaysian corporations", *ABACUS*. 38(3), 27-60.

Universiti Utara Malaysia

- Haniffa, R. M., & Cooke, T. E. (2005). "The impact of culture and governance on corporate social reporting". *Journal of Accounting and Public Policy*, 24(5), 391-430.
- Haslinda, A. & Fuong, C. C. (2010, March). The implementation of ISO14001 environmental management system in manufacturing firms in Malaysia. *Asian Social Science*, 6(3), 100-107. http://www.ccsenet.org/ass.
- Hedberg, C. & von Malmborg, F. (2003). The global reporting initiative and corporate sustainability reporting in Swedish companies. *Corporate Social Responsibility and Environmental management*, 10, 153-164.

- Helmenstine, A. M. (2011, August). Control variable definition (control in an experiment). *ThoughtCo*. Retrieved on 11th May 2017. www.thoughtco.com/controlled-variable-definition-609094
- Ho, S. M. S. & Wong, K. S. (2001). A study of the relationship between corporate governance structures and the extent of voluntary disclosure. *Journal of International Accounting, Auditing & Taxation*, 10, 139–156.
- Holt, C. (2004). Corporate Governance and Accountability Module of CPA

 Australia, Victoria: Dakin University.
- Hope for Niger Delta Campaign HNDC (2010, February 18th). *Environmental Pollution in the Niger Delta*. IT Nessel.
- Hossain, M., Islam, K. & Andrew, J. (2006). Corporate social and environmental disclosure in developing countries: Evidence from Bangladesh. *Research Online*, University of Wollongong, Faculty of Business. www.http://ro.uow.edu.au
- Hossain, S. (2013, July 27th). *Removal of Serial Correlation. Model One. STATA*. http://www.youtube.com/watch?v=p1ffU86Olko.
- Hosseini, H. M., & Kaneko, S. (2012). Causality between pillars of sustainable development: Global stylized facts or regional phenomena? *Ecological Indicators*, 14(1), 197-201.
- Huang, T. Pepper, M. & Bowrey, G. (2014). Implementing a sustainability balanced scorecard to contribute to the process of organizational legitimacy assessment.

 Australian Accounting, Business, and Finance Journal.

- Hussein, N. A. M. A. (2012, December). Corporate social responsibility: perception and disclosure in response to CSR award with the moderating effect of family group affiliation in Yemen. Othman Yeap Abdullah, Graduate School of Business, University Utara, Malaysia.
- Ienciu, I. A. (2012). The contribution of the environmental management system to ensuring environmental reporting. *Studia UBB, ECONOMICA*, 52(2), 49-57.
- Ihlen, O., & Roper, J. (2014). Corporate reports on sustainability and sustainable development: "We have arrived". *Sustainable development*, 22(1), 42-51. http://www.wileyonlinelibrary.com
- Ikelegbe, A. (2005). State, ethnic militias, and conflict in Nigeria. *Canadian Journal of African Studies/La Revue canadienne des études africaines*, 39(3), 490-516.
- Ikpe, S. (2011). Safety and environmental team re-strategizes on regulatory oversight. DPR News. A quarterly Journal of the Department of Petroleum Resources, 6(2), 2.
- Information Nigeria (2015, June 4th). Reps pass PIB on last legislative day. http://www.informationng.com
- Initiative, G. R. (2013). G4 sustainability reporting guidelines. *Global Reporting Initiative: Amsterdam, NY, USA*, 3-94.
- Ionel-Alin, I. (2008). Environmental reporting and corporate governance for FTSE100 listed companies. Babe-Bolyai University, Faculty of Economics and Business Administration, 681-687.
- Isaksson, R., & Steimle, U. (2009). What does GRI-reporting tell us about corporate sustainability? *The TQM Journal*, 21(2), 168-181.

- Ismail, K. N. I. K. & Ibrahim, A. H. (2008). Social and environmental disclosures in the annual reports of Jordanian companies. *Issues in Social and Environmental Accounting*, 2(2), 198-210.
- Jann, B. (2012). Robust regression in Stata.
- Japan Government (Ministry of the Environment). Environmental reporting guidelines. Tentative Translation (March 2004).
- Jenkins, H. & Yakovleva, N. (2006). Corporate social responsibility in the mining industry: Exploring trends in social and environmental disclosure, 14, 271-284.
- Jensen, C. & Meckling, W. (1976, October 3rd). "Theory of the Firm: Managerial behaviour agency cost and capital structure". *Journal of Financial Economics*, 305-360.
- Jorgenson, D. W. (1963). Capital theory and investment behavior. *The American Economic Review*, 53(2), 247-259.
- Kadafa, A. A. (2012). Oil exploration and spillage in the Niger Delta of Nigeria. Civil and Environmental Research, 2(3), 38-51.
- Kantudu, S. A. (2006). Application of accounting standards on employee retirement benefits by quoted firms in Nigeria. PhD Accounting and Finance Thesis. Zaria, Post Graduate School, Ahmadu Bello University.
- Kapopoulos, P. & Lazaretou, S. (2009). Does corporate ownership concentration matter for economic growth? A cross-country analysis. *Managerial and Decision Economics*, 30, 155-172.

- Kasum, A. S. (2010). Environmental degradation problems caused by human activities in Nigeria: enforced (taxation) versus voluntary (social responsibility) solutions. *International Journal of Banking, Accounting, and Finance*, 2(3), 236–250.
- Kazmier, L. J. (2003). Schaum's Outline of Business Statistics. Schaum Pub Co.
- Khalid Md. Bahauddin, N. A. (2012, August). Impact of climate change on real estate sector in Bangladesh: A conceptual analysis and way forward to sustainable economy. *Bangladesh Research Publication Journal*, 7(2), 123-132.
- Khanna, M., Quimio, W. R. H. & Bojilova, D. (1997, May). Toxics release information: A policy tool for environmental protection. *Journal of Economics Research and Management*. http://www.researchgate.net
- Kolk, A., Walhain, S. & van de Wateringen, S. (2001). Environmental reporting by the fortune global 250: Exploring the Influence of Nationality and Sector. Business Strategy and the Environment, 12, 15-28.
- Kornblum, W. & Julian, J. (1992). *Social problems*. 7th Edition, United States of America. Prentice Hall Englewood Cliffs, NJ 07632.
- KPMG, (2011). Sustainability Reporting What you should know. http://www.kpmg.com
- Lakkanawanit, P. (2013). The influence of stakeholders "salience and engagement on corporate social responsibility disclosure of companies listed on the stock exchange of Thailand. Ph. D. Thesis Othman Yeop Abdullah, Graduate School of Business, Universiti Utara, Malaysia.

- Lamprinidi, S., & Kubo, N. (2008). Debate: the global reporting initiative and public agencies. 326-329.
- Lancaster, K. (2014). Social construction and the evidence-based drug policy endeavour. *International Journal of Drug Policy*, 25(5), 948-951.
- Laplume, A. O., Sonpar, K., & Litz, R. A. (2008). Stakeholder theory: Reviewing a theory that moves us. *Journal of management*, 34(6), 1152-1189.
- Lappalainen, J. & Nishanen, M. (2009). Does board composition and ownership concentration affect firm growth? Evidence from Finnish SMEs. *Research in Economics: Central and Eastern Europe*, 1(27) (1), 66-83.
- LeBrun, J. (2016). Advantages of financial leverage. *Small Business Chron.com*. Retrieve from http://smallbusiness.chron.com/advantages-financial-leverage-24808.html
- Lee, C. I., Rosenstein, N., Rangan, N., & Davidson, W. N. I. (1992). Board composition and shareholder wealth: The case of management buyouts. Financial Management, 12, 58-72.
- Lee, K. (2011). Motivations, barriers, and insecurities for adopting environmental management (cost) accounting and related guidelines: study of the republic of Korea. *Corporate Social Responsibility and Environmental Management*, 18, 39-49
- Levy, D. L., Brown, H. S. & de Jong, M. (2010). The contested politics of corporate governance: The case of global reporting initiative, 49(1), 88-115.

- Lindblom, C. K. (1994). "Theimplications of organizational legitimacy for corporate social performance and disclosure". Paper presented at the Critical Perspective on Accounting Conference, New York.
- Liu, X., & Anbumozhi, V. (2009). Determinant factors of corporate environmental information disclosure: an empirical study of Chinese listed companies. *Journal of Cleaner Production*, 17(6), 593-600.
- Llena, F. Moneva, J. M., and Hernandez, B. (2007). Environmental disclosures and compulsory accounting standards: the case of Spanish annual reports.

 **Business Strategy and the Environment*, 16, 50-63.
- Lungu, C. I., Caraiani, C., Dascalu, C. and Guse, G. R. (Dec. 2009/Jan. 2010). Social and environmental determinants of risk and uncertainties reporting. *Issues in Social and Environmental Accounting*, 3(2), 100-116.
- Madalina, G., Nadia, A. & Catalin, A. (2010). The role of the accountancy profession bodies in developing social and environmental reporting. *Economic Science Series*, 922-628.
- Magness, V. (2006). "Strategic posture, financial performance, and environmental disclosure An empirical test of legitimacy theory". *Accounting, Auditing and Accountability Journal*, 19(4), 540-563.
- Malarvizhi, P. & Yadav, S. (December 2008/January 2009). Corporate environmental disclosures on the internet: an empirical analysis of Indian companies. *Issues in Social and Environmental Accounting*, 2(2), 211-232.

- Malone, D., Fries, C., & Jones, T. (1993). An empirical investigation of the extent of corporate financial disclosure in the oil and gas industry. *Journal of Accounting, Auditing and Finance*, 8, 249-273.
- Mangena, M., Tauringana, V. & Chamisa, E. (2012). Corporate boards, ownership concentration and firm performance in an environment of severe political and economic crisis. *British Journal of Management*, 23, 523-541.
- Maquieira, C. P., Espinosa, C. E., & Vieito, J. P. (2012). Corporate performance and ownership concentration: Empirical evidence for Chile. *Quarterly Journal of Finance and Accounting*, 50(1), 75-96.
- Marshall, J. (2015, June 24th). BBC World Service News. 20:00 hrs. Malaysian time.
- Mathews, M. R. (2009). Further thoughts on mega-accounting and the need for standards. *Issues in Social and Environmental Accounting*, 2(20), 158-175.
- Matsumura, E. M., Prakash, R. & Vera-Munoz, S. C. (2014). Firm-value effects of carbon emissions and carbon disclosure. *The Accounting Review*, 89(2), 695-724.
- Mayer, D. O. (2006), *Stakeholder Theory*. *Encyclopaedia of business* 2nd edition. http://www.referenceforbusiness.com/encyclopedia/sel-str/stakeholder-Theory.htmt.
- Mayhara, K., Yamaguchi, A., Takenouchi, H., Kariya, T., Taguchi, H., & Shimizu, N. (2012, October). Osteoblasts stimulate osteoclast genesis via RANKL expression more strongly than periodontal ligament cells do in response to PGE₂. *OralBiology*, 57(10), 1377-1384.

- Mbat, D., Ibok, E., Daniel, E., and Campus, O. A. (2013). ExxonMobil and corporate social responsibility in Akwa Ibom state, Nigeria: Past and present. International Institute of Science, Technology, and Education. *Public Policy and Administration Research*, 3(3), 21-28. http://www.iiste.org.
- McMahon, M. S. (1995, April). The growing role of accountants in environmental compliance. *The Ohio CPA Journal*, 21-25.
- Milne, M. J., Ball, A., & Gray, R. (2008, August). Wither ecology? The triple bottom line, the global reporting initiative, and the institutionalization of corporate sustainability reporting. In *American Accounting Association Annual Meeting, Anaheim*.
- Min, L. K. (2010). The perceptions of ethics and social responsibility of Malaysian international chamber of commerce and industry corporate members in relation to ISO26000 Social Responsibility Adoption. Ph. D. Thesis College of Business, Universiti Utara, Malaysia.
- Mobbs, P. M. (February 2014). *The mineral industry of Nigeria*. US Geological Survey, Department of Interior.
- Mobus, J. L. (2011). Developing collective intentionality and writing the rules of the game for environmental reporting: A Content Analysis of SOP96-1: Comment Letters. *Accounting and the Public Interest*, 11, 68-95.
- Mohammed, N. T. (2015, March 11th). Desertification in northern Nigeria: Causes and implications for national food security. *Peak Journal of Social Sciences and Humanities*, 3(2), 22-31.

- Moneva, J. & Llena, F. (2000). Environmental disclosures in the annual reports of large companies in Spain. *The European Accounting Review*, 9(1), 7–29.
- Moneva, J. M., Archel, P., & Correa, C. (2006). GRI and the camouflage of corporate unsustainability. *Accounting Forum*, 30, 121-137.
- Monteiro, S. M. S., & Aibar-Guzman, B. (2010). Determinants of environmental disclosure in the annual reports of large companies operating in Portugal.

 Corporate Social Responsibility and Environmental Management, 17, 185-204.
- Montgomery, S. (Presenter). (2015). Paris climate deal. Podcast retrieved from http://tunein.com/radio/BBC-World-Service-West-Africa-s140656/
- Moroney, R., Windsor, C. and Aw, Y. T. (2012). Evidence of assurance enhancing the quality of voluntary environmental disclosure: an empirical analysis. *Accounting and Finance*, 52, 903-939.
- Mosene, J. A., Burritt, R. L., & Sanagu, M. V. (2013). Environmental reporting in the Spanish wind energy sector: An institutional view. *Journal of Cleaner Production*, 40, 199-211.

Universiti Utara Malavsia

- Muhibudeen, L. & Haladu, A. (2015). The impact of cash less policy tools on money circulating outside Nigerian banks. *International Journal of Business, Economics and Law*, 8(3), 47-52. ISSN 2289-1552.
- Myers, S. C. (1977). Determinants of corporate borrowing. *Journal of Financial Economics*, 5, 147-175.

- Natufe, I. (2001, November 2nd 4th). *The Problematic of Sustainable and Corporate*Social Responsibility: Policy Implications for the Niger Delta. Uhrobo Historical Society 2nd Annual Conference and General Meetings.
- Ndamba, R. (2012). Zimbabwe: public sector has a role in environmental sustainability. www.http://allAfrica.com
- NESREA (2008). National environmental standards and regulations enforcement agency of Nigeria. http://www.nesrea.gov.ng/faq.html.
- NESREA (2013). Laws and regulations. http://www.nesrea.gov.ng/regulationsindex.php.
- NESREA.org (2015, May 7th). The establishment of the national environmental standards and regulations enforcement agency of Nigeria. http://www.nesrea.org/about.php
- Ngwakwe, C. C. (2009). Environmental responsibility and firm performance: evidence from Nigeria. *International Journal of Humanities and Social Sciences*, 3(2), 97-103.
- Nigerian Stock Exchange (2012). http://www.nse.com.ng/
- Nigerian Stock Exchange (2012). Nigerian Stock Exchange All Share Index http://www.bloomberg.com/quote/NGSEINDX:IND
- NIJA.com (2015, April 27th). Asari Dokubo threatened to deal with Buhari. www.http://naija.com 03:10 hrs.
- Nikolaeva, R. & Bicho, M. (2011). The role of institutional and reputational factors in the voluntary adoption of corporate social responsibility reporting standards. *Journal of the Academy of Marketing Science*, 39(1), 136-157.

- NNPC (2014, July 12th). *Nigerian National Petroleum Corporation*. www.http://nnpcgroup.com
- Nomjov, C. (2015, March 24th). Five feared dead and scores wounded as Fulani herdsmen lay siege on Taraba village. http://www.NewsWireNGR.
- NSE FactBook (2011/2012). Nigerian Stock Exchange.

 www.http://nigerianstockexchange.com
- NSE FactBook (2012/2013). Nigerian Stock Exchange. www.http://nigerianstockexchange.com
- Nyor, T. (2008). Assessment of the level of accounting information disclosed in the financial statements of Nigerian banks. A Ph.D. Thesis presented to the Department of Economics and Management Sciences, Nigerian Defence Academy, Kaduna.
- O'Dwyer, B. (2003). The ponderous evolution of corporate environmental reporting in Ireland: Recent evidence from publicly listed companies. *Corporate Social Responsibility and Environmental Management*, 10(2), 91–100.
- Oduah, Z. (2015, April 27th). Buhari does not have that power to send anybody to prison – Asari-Dokubo. http://www.NewsWireNGR.com
- Offiong, K. A. (2000, September 1st). Environmental problem in the oil rich Niger

 Delta in Nigeria: The petrodollar oil versus the ecosystems survival. News

 line at Green Africa. http://www.greenafrica.org
- Ofuani, A. I. (2011). Environmental regulation of offshore (E & P) waste management in Nigeria: how effective. *Law Environment and Development* (*LEAD*) *Journal*, 7(2), 79-94.

- Ogundipe. S (2016, June 10th). Niger Delta Avengers blows up another AGIP facility.

 *Premium Times. http://www.wp.me/p2LdGt-R15
- OnTheIssues (2012, September 4th). *Democratic Party platform on the environment*. http://www.ontheissues.org/Celeb/Democratic Party Environment.htm.
- Osu, P. (2011). Government steps up regulatory compliance in the oil and gas industry... And sectoral activities to gulp \$20 billion annually. DPR News.

 A quarterly Journal of the Department of Petroleum Resources. 6(2), 1.
- Osu, P. (2012, April). DPR repositions for improved regulation of the oil and gas industry... Mandates additional requirements for petroleum product depots.

 DPR News. A quarterly Journal of the Department of Petroleum Resources, 7(1), 1.
- Othman, R. & Ameer, R. (2009, March 19th). Corporate social and environmental reporting: where are we heading? A survey of the literature. *International Journal of Disclosure and Governance*, 6, 298-320.
- Othman, R. & Ameer, R. (2010). Environmental disclosures of palm oil plantation companies in Malaysia: A tool for stakeholder engagement. *Corporate Social Responsibility and Environmental*, 17, 52-62.
- Otiotio, D. (2012). An overview of the oil and gas industry in Nigeria. United States Energy Information Administration.
- Owolabi, A. A. (2007). *Incorporating environmental costs into Nigeria oil and gas accounting*. Ph.D. thesis submitted to the department of management and accounting. Faculty of Administration, Obafemi Awolowo University; Ile-Ife, Nigeria.

- Pantamee, A. A. (2014, November). The effect of corporate governance on corporate social responsibility disclosure in the Nigerian petroleum marketing industry.

 Thesis Submitted to Othman Yeap Abdullah Graduate School of Business, Universiti Utara, Malaysia.
- Paquette, D. M., Bryant, J., & De Wit, J. (2011). Use of respondent-driven sampling to enhance understanding of injecting networks: a study of people who inject drugs in Sydney, Australia. *International Journal of Drug Policy*, 22(4), 267-273.
- Parker, D. (2005). "Social and environmental accountability research: A view from the commentary box". *Accounting, Auditing & Accountability Journal*, 18(6), 842-860. http://www.dx.doi.org/10.1108/09513570510627739.
- Patten, D. (2002). The relation between environmental performance and environmental disclosure: a research note. *Accounting, Organizations and Society*, 27, 763–773.
- Payne, T. N., & Dauterive, F. R. (2008, May). A Comparison of total laparoscopic hysterectomy to robotically assisted hysterectomy: Surgical outcomes in a community Practice. *Journal of Minimally Invasive Gynaecology*. http://www.researchgate.net/publication/5267790.
- Peavler, R. (2016). What is the market-to-book financial ratio? How analysts use the market-to-book financial ratio to assess value. https://www.thebalance.com/what-is-the-market-to-book-financial-ratio-393212

- Petroleum Industry Bill (2009). Federal ministry of petroleum resources. Office of the Honourable Minister of Petroleum Resources. 11th Floor, Block D NNPC Towers Herbert Macaulay Way, Central Business District Abuja, Nigeria.
- Phillips, R., Freeman, R. E., & Wicks, A. C. (2003). What stakeholder theory is not. *Business ethics quarterly*, *13*(04), 479-502.
- Pindado, J., & De La Torre, C. (2011). Capital structure: New evidence from the ownership concentration. *International Review of Finance*, 11(2) 213-226.
- Plumlee, M., Brown, D., Hayes, R. M. & Marshall, R. S. (2010). *Voluntary environmental disclosure and firm value: Further evidence*. Working paper. University of Utah: Salt Lake City.
- Prado-Lorenzo, J., Gallego-Alvarez, I. & Garcia-Sanchez, I. M. (2009). Stakeholder engagement and corporate social responsibility reporting: The ownership concentration effect. *Corporate Social Responsibility and Environmental Management*, 16, 94-107.
- Pramanic, A. K., Shil, N. C. & Das, B. (March 2008). Environmental accounting and reporting with special reference to India. MPRA (Munich Personal RePEc Archive). http://www.mpra.ub.uni.muenchen.de/7712/
- Premium Times (2017, January 9th). Buhari sacks official whose actions led to Adeboye''s exit as RCCG leader. http://www.premiumtimesng.com/news/
- PwC (2016). Board composition and shareholder activism.

 https://www.pwc.com/us/en/governance-insights
 center/publications/assets/board-composition-and-shareholder-activism.pdf

- Rahaman, A. S., Lawrence, S. & Roper, J. (2004). Social and environmental reporting at the VRA: Institutional legacy or legitimation crisis? *Critical Perspective on Accounting*, 15(1), 35-56.
- Rahman, A. A., Hashim, M. F. A. M., & Abubakar, F. (2010, June). Corporate social reporting: a preliminary study of Bank Islam, Malaysia. *Issues in Social and Environmental Accounting*, 4(1), 18-39.
- Rajab, B. (2009). Corporate risk disclosure: Its determinants and its impact on the company"s cost of equity capital. Ph.D. thesis submitted in partial fulfilment of the requirement of Edinburg Napier University for the degree of Doctor of Philosophy School of Accounting, Economics & Statistics. The Business School, Edinburg Napier University, UK.
- Rashid, A., & Lodh, S. C. (2008) "The influence of ownership concentrations and board practices on corporate social disclosures in Bangladesh", *Research in Accounting in Emerging Economies*, 8, 211-237.
- Regoniel, P. (2016). What is the difference between the theoretical and the conceptual framework? Retrieved 6th May, 2016 from Knoji Consumer Knowledge. https://www.college-college-life.knoji.com/
- Rikhardsson, P. & Holm, C. (2008). The effects of environmental information on investment allocation decisions: An experimental Study. *Business Strategy* and the Environment, 17, 382-397.
- Rondinelli D. A. (2006, October). Globalization of sustainable development?

 Principles and Practices in Transnational Corporations (TNCs). *International Research Colloquium*. http://www.ciber.gatech.edu

- Rossi, N. & Trequattrini, R. (2010). Environmental reporting and accountability in the Lazio region between national guidelines and pilot experiences of local governments in Italy. *Economia Aziendale Online 2000 web*, 3, 323-334.
- Salewicz, S. (1997). The role of monitoring and evaluation in strategic management and organizational development. Report of an international workshop organized by International Development Research Centre (IDRC), Canada and BAIF Development Research Foundation, India.
- Salim, B. (2011). Executive director remuneration and corporate governance in Malaysia. Ph.D. thesis submitted to the College of Business, Utara Universiti, Malaysia.
- Sama-Lang, I., & Zesung, N. A. (2016). The stakeholder theory of corporate control and the place of ethics in OHADA: The case of Cameroon. *African Journal of Business Ethics*, 10(1).
- Scott, W. R. (1987). The adolescence of institutional theory. *Administrative science* quarterly, 493-511.
- SEC Code (2011). Code of corporate governance for public companies in Nigeria (2011). Nigeria Security & Exchange Commission.
- Securities & Exchange Commission of Nigeria (2011). *Code of corporate*governance for public companies in Nigeria. Nigeria Security & Exchange
 Commission. http://www.sec.gov.ng
- Securities & Exchange Commission of Nigeria (2011, August 6th). "Who we are". http://www.sec.gov.ng.

- Sekaran, U., & Bougie, R. (2013). Research methods for business A skill building approach, 6th edition. West Sussex, United Kingdom: John Wiley & Sons.
- Shabbier, A., Tahir, S. H., & Aziz, B. (2013). Corporate governance through ownership concentration. For the Karachi Stock Exchange (KSE-100) Index. *Asian Journal of Management Sciences*, 7(1), 68-81.
- Shah, A. (2014, January 19). Global Issues: Social, political, economic, and environmental issues that affect us all. *Global Issues*. http://www.globalissues.org/about
- Shehata, N. F. (2014). Theories and determinants of voluntary disclosure.

 Accounting and Finance Research, 3(1), 18-26.
- Shehu, A. (2014). *Econometrics of panel data*. University Putra, Malaysia. http://www.abdulazizshehu@rocketmail.com
- Sherman, W. R., (2009, May). The global reporting initiative: What value is added? International Business and Economics Research Journal, 8(5), 9-21.
- Shields, P. and Rangarjan, N. (2013). A Playbook for Research Methods: Integrating

 Conceptual Frameworks and Project Management. Stillwater: New Forums

 Press
- Sikes, M. (2013). Split decisions: the pros and cons of separating CEO and chairman roles.

 Corporate Compliance Insights. http://corporatecomplianceinsights.com/split-decisions-the-pros-and-cons-of-separating-ceo-and-chairman-roles/

- Skouloudis, A., Evangelinos, K., & Kourmousis, F. (2009). Development of an evaluation methodology for triple bottom line reports using international standards on reporting. *Environmental Management*, 44(2), 298-311.
- Smith, M., Yahya, K. & Amiruddin, A. M. (2007). Environmental disclosure and performance reporting in Malaysia. *Asian Review of Accounting*, 15(2), 185-199.
- Solomon, J. (2007). *Corporate governance and accountability*. Second Edition, John Wiley, & Sons, Ltd.
- SSE (2013). Nigeria stock exchange joins the United Nations sustainable stock exchanges (SSE) initiative. SSE initiative in partnership with United Nations Environmental Program (UNEP) Finance Initiative and UN Global Compact. http://www.SSEinitiative.org
- SSE (2014). 2014 report on progress. A paper presented for the sustainable stock exchanges 2014 global dialogue. http://www.SSEinitiative.org
- St. John, T. (2009). *Interpreting the Standard Deviation*. http://www.youtube.com/watch?v= hFrXUGgDF8.
- Stanny, E. & Ely, K. (2008). Corporate environmental disclosure about the effects of climate change. *Corporate Social Responsibility and Environmental Management*, 15, 338–348.
- Suddaby, R. (2010). Challenges for institutional theory. *Journal of Management Inquiry*, 19(1), 14-20.

- Sulaiman, M. & Mokhtar, N. (2012, May 15th). Ensuring sustainability: a preliminary study of environmental management accounting in Malaysia. *International Journal of Business and Management Sciences*, 5(2), 85-102.
- Sumiani, Y., Haslinda, Y. & Lehman, G. (2007). Environmental reporting in a developing country: A case study on status and implementation in Malaysia.

 Journal of Cleaner Production, 15, 895-901. http://www.elsevier.com
- Tanimoto, K., & Suzuki, K. (2005, April). Corporate social responsibility in Japan:

 Analysing the participating companies in global reporting initiative,

 ResearchGate, 1-20.
- theguardian (2013, April 16th). Niger Delta Militants threaten retaliation over Islamist Attacks. www.theguardian.com/world/
- Thompson, I. (2007). "Mapping the terrain of sustainability accounting", in J.

 Unerman, J. Bebbington, & B. O'Dwyer (eds.), Sustainability accounting and accountability.

 Routledge,

 London.

 http://dx.doi.org/10.4324/NOE0415384889.pt1
- Tieleman, B., and Leroy, P. (2003). MIRA-PE: Environment and nature report Flanders: Policy evaluation. VMM.
- Tilt, C. A., & Symes, C. F. (1999, June). Environmental disclosure by Australian mining companies: environmental conscience or commercial reality?.
 In Accounting Forum (Vol. 23, No. 2, pp. 137-154).
- Tolulope, A. O. (2004). Oil exploration and environmental degradation: The Nigerian experience. *International Information Archives, International Society for Environmental Information Science*, EIA04-039, 2, 387-393.

- Toppinen, A., & Korhonen- Kurki, K. (2013). Global Reporting Initiative and social impact in managing corporate responsibility: a case study of three multinationals in the forest industry. *Business ethics: A European review*, 22(2), 202-217.
- Torres-Reyna, O. (2007, December). Panel data analysis fixed and random effects

 using Stata (v. 4.2). Princeton University, US.

 http://dss.priceton.edu/training/
- Trading Economics (2015). Employment in agriculture (% of total employment) in Nigeria. http://www.tradingeconomies.com
- Trotman, K. T. & Bradley, G. W. (1981, January). Associations between social responsibility disclosure and characteristics of companies. *Accounting Organization Society*, 6(4), 355-362.
- Tsafe, B. M. (2012). Stakeholders' Perceptions on Corporate Governance

 Constitution and Their Implications on Board Performance (Doctoral dissertation, Universiti Utara Malaysia).
- Twumasi, Y., and Merem E (2006). GIS and remote sensing applications in the assessment of change within a coastal environment in the Niger Delta region of Nigeria. *International Journal of Environmental Research & Public Health*, 3(1), 98-106. http://www.ijerph.org.
- Udayasankar, K. (2008). Corporate social responsibility and firm size. *Journal of Business Ethics*, 83(2), 167–175.
- Ukoli, M. K. (2005). Environmental factors in the management of the oil and gas industry in Nigeria. http://www.cenbank.org

- Uwuigbe, U. (2012, March 1st). Corporate social responsibility disclosure in Nigeria:

 A study of listed financial and non-financial firms. *Journal of Management and Sustainability*, 2(1), 160-169.
- Uwuigbe, U. (2012, September). Web-based corporate environmental reporting in Nigeria: a study of listed companies. *Internal Auditing and Risk Management*, Annul VII, 3(2), 57-72.
- Uwuigbe, U., Ranti, U. O. & Sunday, D. P. (2014, February). Corporate governance and capital structure: Evidence from listed firms in Nigeria Stock Exchange. *Advances in Management*, 7(2), 44-49.
- Uzokwe, A. O. (2003, August 11th). Devastating effects of pollution in Nigeria (Part I). *Nigeriaworld*. http://www.survivinginbiafra.com
- Vakilifard, H. R., Gerayli, M. S., Yanesari, A. M., & Ma'atoofi, A. R., (2011). Effect of corporate governance on capital structure: case of the Iranian listed firms. *European Journal of Economics, Finance, and Administrative Sciences*, 35, 165-172.
- Verardi, V., & Croux, C. (2008). Robust regression in Stata.
- Vidal, J. *Nigeria* "sagony dwarfs the gulf oil spill. The US and Europe ignore it. The Observer. (2010, May 30th).
- Volconici, V. (2014, September 25). How global population growth is creating serious environmental problems. Envifacts.
- Ward, H. (2010, September). The ISO 26000 international guidance standard on social responsibility: implication for public policy and transnational democracy. *Foundation for Democracy and Sustainable Development*.

- West, L. (2008). Top 10 things you can do to reduce global warming. *About.com Online. Retrieved*.
- Wong, L. & Fryxell, G. E. (2004). Stakeholder influences on environmental management practices: a study of fleet operations in Hong Kong (SAR), China. *Transportation Journal*, 43(4), 22–35.
- Woods, M. (2003, June). The GRI's mission is to promote international harmonization in reporting relevant and credible corporate economic, environmental, and social performance information. *The CPA Journal*, 73(6); 60-65.
- Wu, J., & Wokutch, R. E. (2015). Confucian stakeholder theory: An exploration. *Business and Society Review*, 120(1), 1-21.
- Yaffee, R. A. (2002). Robust regression analysis: some popular statistical package options. ITS Statistics, Social Science and Mapping Group, New York State University, downloaded on Dec, 23, 2009.
- Yusoff, H. & Darus, F. (2012). Environmental reporting practices in Malaysia: Is it a Mechanism for corporate accountability and shareholder engagement?

 Malaysian Accounting Review. Special Issue, 11(2), 137-159.
- Yusoff, H. (2013, November/December). Environmental practices in Malaysia and Australia. *Journal of Applied Business Research*, 29(6), 1717-1726.
- Zacks (2016). What is the difference between book value & market value per share of common stock? Retrieved from http://finance.zacks.com/difference-between-book-value

- Zaragosa, M. (2014, November 21st). *Business daily program*. BBC (British Broadcasting Corporation) World Service News, UK. 21:00 hrs. Malaysian time.
- Zeng, S. X., Xu, X. D., Dong, Z. Y., & Tam, V. M. Y. (2010). Towards corporate environmental information disclosure: An empirical study in China. *Journal of Cleaner Production*. http://www.doi:10.1016/j.jclepro.2010.04.005.
- Zhang, T., Gao, S. S. and Zhang, J. J. (2007, June). Corporate environmental reporting on the web: An exploratory study of Chinese Listed companies.

 *Issues in Social and Environmental Accounting, 1(1), 91-108.
- (2016). Experts and their roles A hired gun? Retrieved from http://www.beldenlex.com/pdf/Experts%20And%20Their%20Roles%20

Universiti Utara Malaysia

APPENDIX A

LISTED COMPANIES IN THE NIGERIAN STOCK EXCHANGE 2011/2012 & 2012/2013

S/N	SECTOR	INDUSTRIES	COMPANIES	CAPITALI ZATION (N)
1.	Agriculture	Crop Production	3	22.163
	8	Fishing/Hunting/Trapping	1	billion
		Livestock/Animal Specialities	1	
Sub-	total	*	5	
2.	Alternative	Property Management	1	4.072 billion
	Securities Market	Food Products	1	
	(ASeM)	Personal/Household Products	1	
		Pharmaceuticals	1	
		Electronic & Electrical Products	1	
		Metals	1	
		Petroleum & Petroleum Product Distribution	4	
		Apparels Retailers	1	1
		Food/Drug Retailers & Wholesalers	1	1
Sub-	total	,	12	1
3.	Conglomerates	Diversified Industries	6	78.805
Sub-			6	billion
4.	Construction/Real	Building Construction	2	129.788
	Estate	Building Structure/Completion/Others	2	billion
	/8//	Non-Building/Heavy Construction	2	
		Real Estate Development	2	1
		Real Estate investment Trust	2	
Sub-	total	Tear Estate III, estiment Trast	10	-
5.	Consumer Goods	Automobiles/Auto Parts	1	2.001 trillion
٥.	Consumer Goods	Beverages Brewers/Distillers	laysia	2.001 (11111011
	BUDI BAS	Beverages Non-alcoholic	1	-
		Food Products	11	-
		Food Products Diversified	2	-
		Household Durables	4	-
		Personal/Household Products	2	-
Sub-i	total	1 CISCHEL HOUSEHOLD 1 TOUGES	28	-
6.	Financial Services	Banking	16	2.010 trillion
0.	i maneiai sei vices	Insurance Carrier, Brokers & Services	30	2.010 ti iiioii
		Mortgage Carrier, Brokers & Services	4	1
		Other Financial Institutions	5	1
Sub-	total	Other I maneral institutions	55	-
7.	Healthcare	Healthcare Providers	2	34.555
		Medical Supplies	1	billion
		Pharmaceuticals	7	
Sub-	total		10	1
8.	Information &	Computer Based Systems	1	62.009
٠.	Communication	Computers & Peripherals	1	billion
	Technology (ICT)	Electronic Communication Services	1	2111311
	(101)	IT Services	2	1
		Processing Systems	2	1
		Telecommunications Carrier	1	1
		Telecommunication Services	2	1
Sub-	total	1 CICCOHIHIUHICAHOH SELVICES	10	1
<u>Зио-1</u> 9.	Industrial Goods	Ruilding Materials	13	1 012 +=:11:
ブ ・	industrial Goods	Building Materials Floatronia & Floatrial Products		1.912 trillion
		Electronic & Electrical Products	3	

		Packaging Containers	6	
		Tools & Machinery	3	
Sub-	total		25	
10.	Memorandum	Diversified Industries	22	61.700
	Quotations			billion
Sub-			22	
11.	Natural Resources	Chemicals	1	8.327 billion
		Metals	2	
		Non-Metallic Mineral Mining	1	
		Paper/Forest Products	2	
Sub-	total		6	
12.	Oil & Gas	Energy Equipment & Services	1	217.9 billion
		Integrated Oil & Gas	1	
		Petroleum & Petroleum Products	8	
		Distributors		
Sub-	total		10	
13.	Services	Advertising	1	53.797
		Apparel Retailers	1	billion
		Auto Mobile/Auto Parts Retailers	1	
		Courier/Flight/Delivery	2	
		Employment Solutions	1	
		Hospitality	1	
		Hotels/Lodging	2	
		Media/Entertainment	1	
		Printing Publishing	4	
	UTARA	Road Transportation	1	
	(3)	Specialty	2	
		Transport-Related Services	2	
Sub-	total		19	
Grand Total		63	218	6.596116 trillion

Source: NSE FactBook 2011/2012 & 2012/2013 financial year.

APPENDIX B

ENVIRONMENTALLY SENSITIVE LIST OF COMPANIES THAT MAKE UP THE POPULATION OF THE RESEARCH

		SAMPLE
S/N	COMPANY (POPULATION)	SIZE (82.72%)
	AGRICULTURE	,
1.	FTN COCOA PROCESSING PLC	4
2.	OKOMU OIL PALM PLC	
3.	PRESCO PLC	
4.	ELLAH LAKES PLC	
5.	LIVESTOCK FEEDS PLC	
	CONSTRUCTION/REAL ESTATE	
6.	ARBICO PLC	8
7.	CAPPA & D'ALBERTO PLC	
8.	CONSTAIN (WEST AFRICA) PLC	
9.	G. CAPPA PLC	
10.	JULIUS BERGER NIGERIA PLC	
11.	ROADS NIGERIA PLC	
12.	PINNACLE POINT GROUP LTD	
13.	UACN PROPERTY DEVELOPMENT CO PLC	
14.	SKYE SHELTER FUND	
15.	UNION HOMES REAL INVESTMENT TRUST	
	HEALTHCARE	
16.	EKOCORP PLC	8
17.	EVANS MEDICAL PLC	
18.	FIDSON HEALTHCARE PLC	
19.	GLAXO SMITHKLINE CONSUMER (NIG.) PLC	
20.	MAY & BAKER NIGERIA PLC	
21.	MORISON INDUSTRIES PLC	
22.	NEIMETH INTERNATIONAL PHARMACEUTICAL PLC	
23.	NIGERIA-GERMAN CHEMICALS PLC	
24.	PHARMA-DEKO PLC	
25.	UNION DIAGNOSTIC & CLINICAL SERVICES PLC	
	INDUSTRIAL GOODS	
26.	ABPLAST PRODUCTS PLC	23
27.	AFRICAN PAINTS (NIGERIA) PLC	
28.	ASHAKA CEMENT PLC	
29.	AUSTIN LAZ & COMPANY PLC	
30.	AVON CROWN CAPS & CONTAINERS (NIGERIA) PLC	

32. BETA GLASS & CO. PLC 33. CAP PLC 34. CEMENT COMPANY OF NORTHERN NIGERIA PLC 35. CHEMICAL AND ALLIED PRODUCTS PLC 36. CURTIX PLC 37. DANGOTE CEMENT PLC 38. DN MEYER PLC 39. FIRST ALUMINIUM NIGERIA PLC 40. GRIEF NIGERIA PLC 41. IPWA PLC 42. LAFARGE CEMENT WAPCO NIGERIA PLC	
34. CEMENT COMPANY OF NORTHERN NIGERIA PLC 35. CHEMICAL AND ALLIED PRODUCTS PLC 36. CURTIX PLC 37. DANGOTE CEMENT PLC 38. DN MEYER PLC 39. FIRST ALUMINIUM NIGERIA PLC 40. GRIEF NIGERIA PLC 41. IPWA PLC	
35. CHEMICAL AND ALLIED PRODUCTS PLC 36. CURTIX PLC 37. DANGOTE CEMENT PLC 38. DN MEYER PLC 39. FIRST ALUMINIUM NIGERIA PLC 40. GRIEF NIGERIA PLC 41. IPWA PLC	
36. CURTIX PLC 37. DANGOTE CEMENT PLC 38. DN MEYER PLC 39. FIRST ALUMINIUM NIGERIA PLC 40. GRIEF NIGERIA PLC 41. IPWA PLC	
37. DANGOTE CEMENT PLC 38. DN MEYER PLC 39. FIRST ALUMINIUM NIGERIA PLC 40. GRIEF NIGERIA PLC 41. IPWA PLC	
38. DN MEYER PLC 39. FIRST ALUMINIUM NIGERIA PLC 40. GRIEF NIGERIA PLC 41. IPWA PLC	
39. FIRST ALUMINIUM NIGERIA PLC 40. GRIEF NIGERIA PLC 41. IPWA PLC	
39. FIRST ALUMINIUM NIGERIA PLC 40. GRIEF NIGERIA PLC 41. IPWA PLC	
40. GRIEF NIGERIA PLC 41. IPWA PLC	
41. IPWA PLC	
EMAINED CEMENT WIN CONTROLLED	
43. NIGERIA WIRE INDUSTRIES PLC	
44. NIGERIAN BOYS MANUFACTURING COMPANY PLC	
45. NIGERIAN ROPES PLC	
NIGERIAN SEWING MACHINE MANUFACTURING COMPANY 46. PLC	
47. NIGERIAN WIRE AND CABLE PLC	
48. PAINTS AND COATINGS MANUFACTURERS NIGERIA PLC	
49. POLY PRODUCTS NIGERIA PLC	
50. PORTLAND PAINTS AND PRODUCTS (NIGERIA) PLC	
51. PREMIER PAINTS PLC	
52. STOKVIS NIGERIA PLC	
53. WEST AFRICAN GLASS INDUSTRY PLC	
NATURAL RESOURCES	
54. ALUMINIUM EXTRUSION INDUSTRIES PLC 5	
55. ALUMINIUM MANUFACTURING COMPANY PLC	
56. BOC GASES PLC	
57. HALLMARK PAPER PRODUCT PLC	
58. MULTIVERSE PLC	
59. THOMAS WYATT NIGERIA PLC	
OIL & GAS	
60. ADDAX PETROLEUM NIGERIA PLC	
61. AFREN ENERGY RESOURCES NIGERIA PLC	
62. AFROIL NIGERIA PLC.	
63. BECO PETRO PRODUCTS NIGERIA PLC.	
64. CGG VERITAS NIGERIA LIMITED	
65. CHEVRON NIGERIA PLC	
66. CONOCO PHILLIPS NIGERIA PLC	
67. CONOIL NIGERIA PLC	

68.	EQUATOR EXPLORATION NIGERIA LIMITED
69.	ETERNA NIGERIA PLC.
70.	EXXONMOBIL NIGERIA PLC
71.	FORTE OIL NIGERIA PLC
72.	HARDY OIL AND GAS NIGERIA PLC
73.	JAPAUL OIL & MARITIME SERVICES NIGERIA PLC.
74.	MRS (TEXACO) NIGERIA LIMITED
75.	NIGER DELTA EXPLORATION AND PRODUCTION PLC
76.	OANDO NIGERIA PLC
77.	ORIENTAL ENERGY RESOURCES NIGERIA LIMITED
78.	PETROLEUM GEO SERVICES NIGERIA LIMITED
79.	SHELL PETROLEUM DEVELOPMENT COMPANY NIGERIA PLC
80.	TECHNIP NIGERIA LIMITED
81.	TOTAL NIGERIA PLC

Source: Generated by the Author from FactBook (2011/2012 & 2012/2013).

• Companies found in only one financial year.

APPENDIX C

GUIDE TO SAMPLE SELECTION FROM EACH SECTOR

Summary of the Population of Environmentally Sensitive Sectors Quoted in the NSE

S/N	Sectors	No. of	Percentage
		Quoted	
		Firms	
	Environmentally Sensitive Sectors		
1.	Agriculture	5	6.17
2.	Construction/Real Estate	10	12.35
3.	Healthcare	10	12.34
4.	Industrial Goods	28	34.57
5.	Natural Resources	6	7.41
6.	Oil & Gas	10+12	27.16
Total		81	100

Source: NSE FactBook 2011/12, 2012/13 & 2013/14

Summary of Companies in the Sample Size

S/N Sectors		Sectors Total Population	
1.	Agriculture	5	4
2.	Construction/Real Estate	10	8
3.	Healthcare	10	8
4.	Industrial Goods	28	23
5.	Natural Resources	6	5
6.	Oil & Gas	22	19
Total		81	67

Source:

Generated by Author from the List that makes up the Population of the research. 82.72% is selected at random from the population of each sector as sample size.

APPENDIX D

LIST OF COMPANIES THAT MAKE UP THE SAMPLE SIZE OF THE RESEARCH

		SAMPLE SIZE	
		2011/2012 & 2012/2013 FINANCIAL YEAR	
S/N	CODE	AGRICULTURE (AGS)	
1	101	FTN COCOA PROCESSING PLC.	
2	102	OKOMU OIL PALM PLC.	
3	103	PRESCO PLC.	
4	104	LIVESTOCK FEEDS PLC.	
	CONSTRUCTION/REAL ESTATE (CRE)		
5	201	ARBICO PLC.	
6	202	CAPPA & D'ALBERTO PLC.	
7	203	CONSTAIN (WEST AFRICA) PLC.	
8	204	G. CAPPA PLC.	
9	205	JULIUS BERGER NIGERIA PLC.	
10	206	ROADS NIGERIA PLC.	
11	207	PINNACLE POINT GROUP PLC.	
12	208	UACN PROPERTY DEVELOPMENT CO. PLC.	
VE		HEALTHCARE (HCS)	
13	301	EVANS MEDICAL PLC.	
14	302	FIDSON HEALTHCARE PLC.	
15	303	GLAXO SMITHKLINE CONSUMER (NIG) PLC.	
16	304	MAY & BAKER NIGERIA PLC.	
17	305	MORISON INDUSTRIES PLC.	
18	306	NEIMETH INTERNATIONAL PHARMACEUTICAL PLC.	
19	307	NIGERIAN GERMAN CHEMICALS PLC.	
20	308	PHARMA-DEKO PLC.	
		INDUSTRIAL GOODS (IGS)	
21	401	AFRICAN PAINTS (NIGERIA) PLC.	
22	402	ASHAKA CEMENT PLC.	
23	403	NIGERIAN BAG MANUFACTURING COMPANY PLC.	
24	404	AVON CROWN CAPS & CONTAINERS (NIGERIA) PLC.	
25	405	BERGER PAINTS NIGERIA PLC.	
26	406	BETA GLASS & CO. PLC.	
27	407	CHEMICAL AND ALLIED PRODUCTS PLC.	
28	408	CEMENT COMPANY OF NORTHERN NIGERIA PLC.	
29	409	CURTIX PLC.	
30	410	DANGOTE CEMENT PLC.	
31	411	DN MEYER PLC.	

32	412	FIRST ALUMINIUM NIGERIA PLC.
33	413	GRIEF NIGERIA PLC.
34	414	IPWA PLC.
35	415	LAFARGE CEMENT WAPCO NIGERIA PLC.
36	416	NIGERIA WIRE AND CABLE INDUSTRIES PLC.
37	417	NIGERIAN ROPES PLC.
38	418	WEST AFRICAN GLASS INDUSTRY PLC.
		PAINTS AND COATINGS MANUFACTURERS NIGERIA
39	419	PLC.
40	420	POLY PRODUCTS NIGERIA PLC.
41	421	PORTLAND PAINTS AND PRODUCTS (NIGERIA) PLC.
42	422	PREMIER PAINTS PLC.
43	423	STOKVIS NIGERIA PLC.
		NATURAL RESOURCES COMPANIES (NRS)
44	501	ALUMINIUM EXTRUSION INDUSTRIES PLC.
45	502	ALUMINIUM MANUFACTURING COMPANY PLC.
46	503	BOC GASES PLC.
47	504	MULTIVERSE PLC.
48	505	THOMAS WYATT NIGERIA PLC.
	5/1	OIL & GAS COMPANIES (OAG)
49	601	AFREN ENERGY RESOURCES NIGERIA PLC.
50	602	AFROIL NIGERIA PLC.
51	603	BECO PETRO PRODUCTS NIGERIA PLC.
52	604	CHEVRON NIGERIA PLC.
53	605	CONOCO PHILLIPS NIGERIA PLC.
54	606	CONOIL NIGERIA PLC.
55	607	EQUATOR EXPLORATION NIGERIA LIMITED.
56	608	ETERNA NIGERIA PLC.
57	609	EXXONMOBIL NIGERIA PLC.
58	610	FORTE OIL NIGERIA PLC.
59	611	HARDY OIL AND GAS NIGERIA PLC.
60	612	JAPAUL OIL & MARITIME SERVICES NIGERIA PLC.
61	613	MRS (TEXACO) NIGERIA LIMITED.
62	614	NIGER DELTA EXPLORATION AND PRODUCTION PLC.
63	615	OANDO NIGERIA PLC.
64	616	ORIENTAL ENERGY RESOURCES NIGERIA LIMITED.
65	617	PETROLEUM GEO SERVICES NIGERIA LIMITED.
0.5	017	SHELL PETROLEUM DEVELOPMENT COMPANY
66	618	NIGERIA PLC.
67	619	TOTAL NIGERIA PLC.

Source: Generated by the Author from the Population of the research (2015)

APPENDIX E
SUMMARY OF COMPANY CODES FOR THE RELEVANT YEARS

		YEAR						
	NO. OF	2009	2010	2011	2012	2013	2014	
SECTOR	FIRMS	COMPANY/FIRM CODES						
AGRICULTURE (AGS)	4	AGS101-AGS104	AGS105-AGS108	AGS109-AGS112	AGS113-AGS116	AGS117-AGS120	AGS121-AGS124	
CONSTRUCTION/REAL ESTATE (CRE)	8	CRE201-CRE207	CRE208-CRE214	CRE215-CRE221	CRE222-CRE228	CRE229-CRE235	CRE236-CRE242	
HEALTHCARE (HCS)	8	HCS301-HCS307	HCS308-HCS314	HCS315-HCS321	HCS322-HCS328	HCS329-HCS335	HCS336-HCS342	
INDUSTRIAL GOODS (IGS)	23	IGS401-IGS418	IGS419-IGS436	IGS437-IGS454	IGS455-IGS472	IGS473-IGS490	IGS491-IGS408	
NATURAL RESOURCES (NRS)	5	NRS501-NRS504	NRS505-NRS508	NRS509-NRS512	NRS513-NRS516	NRS517-NRS520	NRS521-NRS524	
OIL & GAS (OAG)	19	OAG601-OAG616	OAG617-OAG632	OAG633-OAG648	OAG649-OAG664	OAG665-OAG680	OAG681-OAG696	

APPENDIX F

CODES AND MEASUREMENT INDICES OF THE VARIABLES

S/N	Code	Variable	Definition	Measurements	Source (Authority)
			DEPENDENT	VARIABLES	
1.	SD1	Strategy and Analysis	Disclosure of Key Items	Dummy values of 0-5	Ahmad, Hassan & Mohammad (2003), Sulaiman & Mokhtar (2012) and Monteiro & Aibar-Guzman (2010)
2.	SD2	Organizational Profile	Disclosure of Key Items	Dummy values of 0-5	Ahmad, Hassan & Mohammad (2003), Sulaiman & Mokhtar (2012) and Monteiro & Aibar-Guzman (2010)
3.	SD3	Governance	Disclosure of Key Items	Dummy values of 0-5	Ahmad, Hassan & Mohammad (2003), Sulaiman & Mokhtar (2012) and Monteiro & Aibar-Guzman (2010)
4.	SD4	Economic Issues	Disclosure of Key Items	Dummy values of 0-3	Ahmad, Hassan & Mohammad (2003), Sulaiman & Mokhtar (2012) and Monteiro & Aibar-Guzman (2010)
5.	SD5	Sustainability issues	Disclosure of Key Items	Dummy values of 0-5	Ahmad, Hassan & Mohammad (2003), Sulaiman & Mokhtar (2012) and Monteiro & Aibar-Guzman (2010)
6.	SD6	Social Issues	Disclosure of Key Items	Dummy values of 0-4	Ahmad, Hassan & Mohammad (2003), Sulaiman & Mokhtar (2012) and Monteiro & Aibar-Guzman (2010)
7.	SD7	Labour practices and Decent Work	Disclosure of Key Items	Dummy values of 0-2	Ahmad, Hassan & Mohammad (2003), Sulaiman & Mokhtar (2012) and Monteiro & Aibar-Guzman (2010)
8.	SD8	Human Rights Issues	Disclosure of Key Items	Dummy values of 0-2	Ahmad, Hassan & Mohammad (2003), Sulaiman & Mokhtar (2012) and Monteiro & Aibar-Guzman (2010)
9.	SD9	Product Responsibility	Disclosure of Key Items	Dummy values of 0-1	Ahmad, Hassan & Mohammad (2003), Sulaiman & Mokhtar (2012) and Monteiro & Aibar-Guzman (2010)

10.	SD10	Ethical Policies on Environment	Disclosure of Key Items	Dummy values of 0-1	Ahmad, Hassan & Mohammad (2003), Sulaiman & Mokhtar (2012) and Monteiro & Aibar-Guzman (2010)
11.	SADI	Simple Average Disclosure Index	The Average Disclosure	Index values of 0-1	Ahmad, Hassan & Mohammad (2003), Sulaiman & Mokhtar (2012) and Monteiro & Aibar-Guzman (2010)
	l .		INDEPENDEN	T VARIABLES	
Polic	y Administr				
12.	PA1	Security and Exchange Commission (SEC)/Nigerian Stock Exchange (NSE)	Survey (Questionnaire)	Mean value index using Likert Scale	Hossain, Islam, & Andrew, 2006; Enahoro, 2009; Sulaiman and Mokhtar, 2012
13.	PA2 (A)	Department for Petroleum Resources (DPR)	Survey (Questionnaire)	Mean value index using Likert Scale	Hossain, Islam, & Andrew, 2006; Enahoro, 2009; Sulaiman and Mokhtar, 2012
14.	PA2 (B)	National Environmental Standard and Regulations Enforcement Agency (NESREA)	Survey (Questionnaire)	Mean value index using Likert Scale	Hossain, Islam, & Andrew, 2006; Enahoro, 2009; Sulaiman and Mokhtar, 2012
Corp	orate Perfo	rmance (CP)	Universiti	Litara Mal	avcia
15.	CP1	Firm Size	Value of Total Assets	Log ₁₀ (Total Assets)	Monteiro & Aibar-Guzman, 2010
16.	CP2	Financial leverage	Long-term Debt	Total Debt/Total Equity	Andrikopoulos & Kriklani, 2013
17.	CP3	Market-to-Book value	Value of Firm	Market value/Book value	Andrikopoulos & Kriklani, 2013
Boar	d Charactei	ristics (BC)			
18.	BC1	Board Independence	Non-executive membership	Non-executive members/Executive members	Eng and Mak, 2003; Barako, Hancock & Izan, 2006
19.	BC2	Duality	Independence of CEOs	Dummy values (1 for independent & 0 for non-independent)	Barako, Hancock & Izan, 2006
20.	BC3	Environmental Experts	Environmentalists	Dummy values (1 for Experts & 0 for no Experts)	Sulaiman & Mokhtar, 2012
21.	BC4	Board Size	Quantity	Total Number of Members	Cheng & Courtenay, 2006

Corp	Corporate Foreign Ownership Concentration (CO)						
22.	CO1 (A)	Foreign ownersh concentration	· · · · · ·	of	Foreign	Percentage/Dummy of 1 for foreign owned (> 50%)	Al-Farooque, 2010; Delgado-Garcia, Quevedo-Puente, & Fuente-Sabate, 2010; Fauzi, & Locke, 2012; and Maquieira, Espinosa & Vieito, 2012 (Percentage). Monteiro & Aibar-Guzman, 2010; Prado-Lorenzo, Gallego-Alvarez, and Garcia-Sanchez, 2009 (Dummy).
23.	CO1 (B)	Foreign ownersh concentration	Proportion Interests	of	Local	Percentage/Dummy of 0 for local interest (> 50%)	Al-Farooque, 2010; Delgado-Garcia, Quevedo-Puente, & Fuente-Sabate, 2010; Fauzi, & Locke, 2012; and Maquieira, Espinosa & Vieito, 2012 (Percentage). Monteiro & Aibar-Guzman, 2010; Prado-Lorenzo, Gallego-Alvarez, and Garcia-Sanchez, 2009 (Dummy).
Cont	rol Variable		4				
24.	IT	Industrial Type	Nature of Fin	rms		Dummy values from 1 to 6	Ahmed, Hassan & Junaini, 2003; Akbas, 2014; Ismail & Ibrahim, 2009; Smith, Amiruddin, & Yahya, 2007

APPENDIX G APPORTIONMENT OF SCORES FOR DEPENDENT VARIABLES

CODE	OBSERVATIONS	KEY ITEMS	MEASUREMENT	TOTAL SCORE
SD1	STRATEGY AND	Relevance	1	5
	ANALYSIS	Strategy	1	
		Impact	1	
		Risks	1	
		Opportunities	1	
SD2	ORGANIZATIONAL	Name of Firm	1	5
	PROFILE	Address of Firm	1	
		Accounting year-end	1	
		Re-statement	1	
		Auditing &	1	
		Assurance		
SD3	GOVERNANCE	Organizational	1	5
		Structure		
		Mission & Vision	1	
		Agreements	1	
		Industrial	1	
		Membership		
	Tito	List of Stakeholders	1	
SD4	ECONOMIC ISSUES	Flow of Capital	1	3
15/		Economic Impact on	1	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		Society		
		Impact on the	1	
Z		Economy		
SD5	ENVIRONMENTAL ISSUES	Material Used	1	5
		Energy	1	
100	Universit	BIIIWellie	ysia 1	
	BUDI BUDI	Biodiversity &	1	
		Wastes		
		Environmental	1	
		Management		
		Department		
SD6	SOCIAL ISSUES	Social Policy	1	4
		Organizational	1	
		Responsibility		
		Employment	1	
		Management's	1	
		Relationship with		
		the Community		
SD7	LABOUR PRACTICES AND	Health & Safety	1	2
	DECENT WORK	Training &	1	
ar.a	IHD (A) DIOLING TOOLING	Education		
SD8	HUMAN RIGHTS ISSUES	Equal Rights	1	2
	DD ODLIGH	Privileges	1	_
SD9	PRODUCT	Environmental	1	1
	RESPONSIBILITY	Impact of the		
OD40	ETHICAL POLICIES ON	Product		_
SD10	ETHICAL POLICIES ON	Environmental Code	1	1
	ENVIRONMENT	of Conduct		
Tat. I E	marked Coons		22	22
	pected Score	— Total C /m + 1	33	33
Simple A	Average Disclosure Index (SADI)	= 1 otal Score/ I otal	33/33 = 1.00	1

Sour Expected Score

ce: Generated by Author from GRI 4. 1 Point is awarded for disclosure of each Key item and 0 for non-disclosure. (Total Maximum Score = 33, Minimum Score = 0).

APPENDIX H

LETTER TO RESPONDENT

SCHOOL OF ACCOUNTANCY COLLEGE OF BUSINESS UNIVERSITI UTARA, MALAYSIA

28th May 2015.

Dear Valued Respondent,

The Determinants of Sustainability disclosure by Environmentally Sensitive Firms in

<u>Nigeria</u>

This questionnaire is designed strictly for the purpose of academic research only at the Post Graduate level at Universiti Utara, Malaysia. The research is to evaluate the adequacy, sufficiency or otherwise of items being disclosed on environmental reports by companies listed in the Nigerian Stock Exchange and your role as a government enforcement agency. It is hoped that the outcome of the research was beneficial to the Nigerian society, environment, and economy as a whole. Be rest assured that any information given for the purpose of this research was treated in strict confidence and used only for academic purpose.

Thank you for your kind response and participation in this research.

Alhassan Haladu

(Doctoral Candidate)

APPENDIX I

RESEARCH QUESTIONNAIRE FOR Ph.D. THESIS (DPR & NESREA)

This Questionnaire was prepared to serve government Agencies charged with the responsibility of enforcing environmental standards and guidelines in Nigeria or Agencies considered as environmental policies" regulatory bodies. The questionnaire targets any of the following in organizations where administered: Chief Executive Officers, or Health, Social, and Environmental Experts in the organization.

A questionnaire was issued for each year starting from 2009 to 2014. With a questionnaire issued to each of the 2 environmental enforcement Agencies of DPR & NESREA, for the sectors under their jurisdiction and covered by the research, it means 6 questionnaires were issued for each year. 1 for DPR and 5 for NESREA. The total questionnaire issue for the entire 6-year period was therefore 36.

AGENCY: DPR & NESREA

PERIOD: 2009/2010/2011/2012/2013/2014 (Please circle the appropriate

year)

SECTOR COVERED: Oil & Gas (DPR) and the other 5 Environmentally

Sensitive Sectors (NESREA)

Sustainability disclosure-Compliance

The table below contain items scored 1-5 points with the key indicating the equivalent of the responses to the questions. You are required after careful consideration, to tick

the appropriate box based on the performance of the sector in relation to the items

outlined.

S/N	Items		Scores					
			0	1	2	3	4	5
1.	Number of registered firms.	REF						
2.	The employment of Environmental experts as part of management team.	EMT	ays	d				
3.	Companies" disclosure of environmental information.	EIM						
4.	Compliance with local environmental standards and guidelines.	ESG						
5.	Compliance with GRI sustainability disclosure standards and guidelines.	GED						
6. Compliance with other international sustainability disclosure standards and guidelines.								
7.	. The extent of monitoring by local environmental agencies.							
8.	Lack of obstacles to the enforcement of environmental rules.	OER						
9.	Non-sanctioned for violation of sustainability information disclosure.	NVE						
10.	Level of local investment attracted because of sustainability disclosure.	LIA						
11. Level of foreign direct investment (FDI) attracted because of sustainability disclosure.		FIA						
12.	12. Prospects for future improvements P							
Total				•	-	•		
Mear (60))	values index = [(total scores obtained/total expecte *5]	d scores						

KEY FOR MEAN VALUE INDEX

0.00-0.00 = unacceptable

1.01-2.00 poor

3.01-4.00 = good

APPENDIX J

RESEARCH QUESTIONNAIRE FOR Ph.D. THESIS (NSE)

This Questionnaire was prepared to serve government Agencies charged with the responsibility of enforcing environmental standards and guidelines in Nigeria or Agencies considered as environmental policies" regulatory bodies. The questionnaire targets any of the following in organizations where administered: Chief Executive Officers, or Health, Social, and Environmental Experts in the organization.

A questionnaire was issued for each year starting from 2009 to 2014. With a questionnaire issued to the environmental enforcement Agency of NSE for the sectors under their jurisdiction and covered by the research, it means 6 questionnaires were issued for each year. The total questionnaire issue for the entire 6-year period is therefore 36.

AGENCY: NSE

PERIOD: 2009/2010/2011/2012/2013/2014 (Please circle the appropriate

year)

SECTOR COVERED: All Six Environmentally Sensitive Sectors

Sustainability disclosure-Compliance

The table below contain items scored 1-5 points with the key indicating the equivalent of the responses to the questions. You are required after careful examination of your records, to tick the appropriate box based on the performance of the sector in relation to the items outlined.

S/N	Items			Scores				
			0	1	2	3	4	5
1.	Number of registered firms.	REF						
2.	Sectors non-environmental impact.	SEI						
3.	Firms environmental policies and strategies.	FPS	ays	la				
4.								
5.	5. The strength of Environmental Standards and Guidelines for the sector.							
6.	Companies" disclosure of environmental information.	EIM						
7.	Compliance with GRI sustainability disclosure standards and guidelines.	GED						
8.	Compliance with other international sustainability disclosure standards and guidelines.	IED						
9.	Lack of obstacles to the enforcement of environmental rules.	OER						
Total						ı		
Mear	values index = [(total scores obtained/total expected (45))*5]						

KEY FOR MEAN VALUE INDEX

0.00-0.00 = unacceptable 1.01-2.00 poor 3.01-4.00 = good 0.01-1.00 = very poor 2.01-3.00 = fair 4.01-5.00 = very good

APPENDIX K

RESULTS OF DATA ANALYSIS (STATA13, SPSS22 & EXCEL 2013)

DATA ANALYSED THROUGH SPSS22 Missing Data

Item	N	Missing		
		Count	Percent	
SD1	337	65	16.2	
SD2	337	65	16.2	
SD3	337	65	16.2	
SD4	335	67	16.7	
SD5	337	65	16.2	
SD6	337	65	16.2	
SD7	337	65	16.2	
SD8	336	66	16.4	
SD9	336	66	16.4	
SD10	336	66	16.4	
SADI	337	65	16.2	
CP1	365	37	9.2	
CP2	362	40	10.0	
CP3	350	52	12.9	
BC1	348	54	13.4	
BC2	353	49	12.2	
BC3	352	50	12.4	
BC4	348	54	13.4	
PA1	141	261	64.9	
PA2	332	70	17.4	
CO	402	0	.0	
IT	402	0	.0	

Replaced Missing Values

	Result Variable	N of Replaced Missing Values	Creating Function
1	SD1_1	65	SMEAN(SD1)
2	SD2_1	65	SMEAN(SD2)
3	$SD3^{-}1$	65	SMEAN(SD3)
4	$SD4^{-}1$	67	SMEAN(SD4)
5	$SD5^{-}1$	65	SMEAN(SD5)
6	SD6 ¹	65	SMEAN(SD6)
7	$SD7^{-}1$	65	SMEAN(SD7)
8	$SD8^{-}1$	66	SMEAN(SD8)
9	SD9 ⁻ 1	66	SMEAN(SD9)
10	$SD1\overline{0}$ 1	66	SMEAN(SD10)
11	SADI 1	65	SMEAN (SADÍ)
12	CP1 $\overline{1}$	37	SMEAN(CP2)
13	$CP2^{-}1$	40	SMEAN(CP3)
14	CP3 ⁻ 1	52	SMEAN(CP4)
15	BC1 1	54	SMEAN(BC1)
16	$BC2^{-}1$	49	SMEAN(BC2)
17	BC3 1	50	SMEAN(BC3)
18	$BC4^{-}1$	54	SMEAN(BC4)
19	PA1 1	261	SMEAN(PA1)
20	$PA2^{-}1$	70	SMEAN(PA2)
21	$CO\overline{1}$	0	SMEAN(CO)

22	TT 1	n	SMEAN(IT)
LL	11_1	U	SMEAN(II)

Validity Statistics for SADI

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measu	.883	
	Approx. Chi-Square	3745.207
Bartlett's Test of Sphericity	Df	45
	Sig.	.000

Communalities

	Extraction
SD1	.834
SD2	.872
SD3	.723
SD4	<mark>.086</mark>
SD5	.881
SD6	.827
SD7	.751
SD8	.829
SD9	.757
SD10	.773

Reliability Statistics for SADI

Cronbach's	Cronbach's	N of Items
Alpha	Alpha Based o	n
	Standardized	
	Items	
.896	.917	10

ANOVA with Friedman's Test

		Sum of Squares	Df	Mean Square	Friedman's Chi-Square	
Between People		2817.230	401	7.026		
	Between Items	5214.512 ^a	9	579.390	2401.551	.000
Within People	Residual	2641.288	3609	.732		
	Total	7855.800	3618	2.171		
Total		10673.030	4019	2.656		

Table 5.8 Jonckheere-Terpstra Test on Sub-Items Disclosure

	A	В	С	D	Е	F	G	Н	I	J	K	L	M	N	0	P	Q	R	S	Т	U	V	W
Number of Levels in YEAR	6 402	6 402	6 402	6 402	6 402	6 402	6 402	6 402	6 402	6 402	6 402	6 402	6 402	6 402	6 402	6 402	6 402	6 402	6 402	6 402	6 402	6 402	6 402
	37419.500	34237.000	36682.500	36682.500	39094.500	.000	.000	.000	39161.500	38826.500	35912.000	34036.000	36984.000	36615.500	36012.500	.000	33567.000	33567.000	35744.500	36749.500	36012.500	36280.500	35878.50 0
Observed J-T Statistic					- 70 4																		
Mean J-T Statistic	33667.500	33667.500	33667.500	33667.500	33667.500	.000	.000	.000	33667.500	33667.500	33667.500	33667.500	33667.500	33667.500	33667.500	.000	33667.500	33667.500	33667.500	33667.500	33667.500	33667.500	33667.50 0
	1056.100	695.171	1086.817	1121.940	1070.105	.000	.000	.000	1074.489	1143.386	1147.619	875.970	1120.673	1113.878	850.918	.000	114.424	114.424	783.308	1107.883	1005.937	949.844	1051.142
Std. Deviation of J-T Statistic			N				SIA																
	3.553	.819	2.774	2.687	5.071	.000	.000	.000	5.113	4.512	1.956	.421	2.959	2.647	2.756	.000	878	878	2.652	2.782	2.331	2.751	2.103
Std. J-T Statistic	.000	.413	.006	.007	.000	1.000	1.000	1.000	.000	.000	.050	.674	.003	.008	.006	1.000	.380	.380	.008	.005	.020	.006	.035
Asymp. Sig. (2-tailed)					BUDL																		

Jonckheere-Terpstra Test of Dependent variable Items with SD4 (Pre and Post IFRS)

	SD1	SD2	SD3	SD4	SD5	SD6	SD7	SD8	SD9	SD10	SADI
Number of Levels in	6	6	6	6	6	6	6	6	6	6	6
YEAR	(21)										
N	389	389	389	389	389	389	389	389	389	389	389
Std. J-T Statistic	5.301	4.472	2.105	1.153	3.708	1.821	2.629	3.571	4.622	2.967	4.086
Asymp. Sig. (2-tailed)	.000	.000	.035	.249	.000	.069	.009	.000	.000	.003	.000

J-T= SD1 SD2 SD3 SD4 SD5 SD6 SD7 SD8 SD9 SD10 SADI BY YEAR (2009 2014) SPSS22

Jonckheere-Terpstra Test of Dependent variable without SD4 (Pre and Post IFRS)

	SD1	SD2	SD3	SD5	SD6	SD7	SD8	SD9	SD10	SADI
Number of Levels in YEAR	6	6	6	6	6	6	6	6	6	6
N	389	389	389	389	389	389	389	389	389	389
Std. J-T Statistic	5.301	4.472	2.105	3.708	1.821	2.629	3.571	4.622	2.967	4.137
Asymp. Sig. (2-tailed)	<mark>.000</mark>	<mark>.000</mark>	.035	.000	<mark>.069</mark>	.009	.000	<mark>.000</mark>	.003	.000

J-T= SD1 SD2 SD3 SD5 SD6 SD7 SD8 SD9 SD10 SADI BY YEAR (2009 2014) SPSS22

Independent Sample Test (Mean Group Statistics) for Pre & Post IFRS

	PERIOD	N	Mean
SD1	1	201	2.55
ועפ	2	188	3.47
SD2	1	201	<mark>2.84</mark>
SDZ	2	188	
SD3	1	201	3.25
SDS	2	188	
SD5	1	201	1.98
SEC	2	188	
SD6	1	201	1.80
	2	188	
SD7	1	201	.94
	2	188	
SD8	1 2	201 188	.89 1.13
	1	201	.20
SD9	2	188	
	1	201	.29
SD10	2	188	
	1	201	.491542
SADI	2	188	

NSE

Communalities

- Committee Comm							
	Initial	Extraction					
Α	1.000	.801					
С	1.000	.969					
D	1.000	.982					
E	1.000	.924					
F	1.000	.965					
Н	1.000	.903					
1	1.000	.879					
K	1.000	.986					
В	1.000	.982					
AVG	1.0000	.932					
KMO							

Universiti Utara Malaysia

Extraction Method: Principal Component Analysis.

Reliability Statistics

Cronbach's Alpha	N of Items
.637	9

DPR/NESREA

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure	of Sampling Adequacy.	.696			
·	Approx. Chi-Square	6207.588			
Bartlett's Test of Sphericity	Df	66			
	Sig.	.000			

Reliability Statistics

Cronbach's Alpha	N of Items
.742	12

Independent Sample Test (Pre & Post IFRS) Significance

ampie	Test (Pre & Post IFR		
			t for Equality
		of Var	
		F	Sig.
	Equal variances	4.510	.034
SD1	assumed		
SDI	Equal variances not		
	assumed		
	Equal variances	4.253	<mark>.040</mark>
SD2	assumed		
SDZ	Equal variances not		
	assumed		
	Equal variances	.796	.373
SD3	assumed		
SDS	Equal variances not		
	assumed		
	Equal variances	1.531	.217
SD5	assumed		
SDS	Equal variances not		
	assumed		
	Equal variances	.303	.583
SD6	assumed		
SDU	Equal variances not		
TAR	assumed		
	Equal variances	.987	.321
SD7	assumed		
SD7	Equal variances not		
A	assumed		
8211	Equal variances	1.786	.182
SD8	assumed		
300	Equal variances not	Hitara M	lalavcia
BUDI BA	assumed	Otara M	lalaysia
OUDI	Equal variances	76.139	.000
SD9	assumed		
	Equal variances not		
	assumed		
	Equal variances	29.018	<mark>.000</mark>
SD10	assumed		
SDIO	Equal variances not		
	assumed		
	Equal variances	4.370	.037
SADI	assumed		
JADI	Equal variances not		
	assumed		

New Validity Statistics for SADI

Kaiser-Meyer-Olki	<mark>.881</mark>		
Sampling Adequac	Sampling Adequacy.		
	Approx. Chi-	3538.473	
Bartlett's Test of	Square		
Sphericity	Df	36	
	Sig.	.000	

New Reliability Statistics for SADI

Cronbach' s Alpha	N of Items	
.905	9	

CONVERSION TO PANEL DATA

. xtset id year

panel variable: id (unbalanced)

time variable: year, 2009 to 2014, but with gaps delta: 1 unit

DESCRIPTIVE ST	TATISTICS OF	ENVIRONMEN	TAL DISCLOSU	RE SUB-ITEMS	
Sub-Items	l Obs	Mean	Std. Dev.	Min	Max
relevance	389	.7043702	.456913	0	1
strategy	389	.9023136	.2972725	0	1
impact	389	.6606684	.4740923	0	1
risks	389	.6041131	.4896701	0	1
opportunit~s	389	.3161954	.465589	0	1
nameoffirm	389	1	0	1	1
addressoff~m	389	1	0	1	1
accounting~d	389	1	0	1	1
restatement	389	.3213368	.4675912	0	1
auditingas~e	389	.4473008	. 4978554	0	1
organizati~e	389	.5141388	.5004437	0	1
missionvis~n	389	.8277635	.3780721	0	1
agreements	389	.3907455	. 4885458	0	1
industrial~p	389	. 6246787	. 4848293	0	1
listofstak~s	389	.8303342	.3758223	0	1
flowofcash		1	0	1	1
economicim~y		.9974293	.050702	Malayosia	1
impactonth~y	•	.9974293	.050702	0	1
materialused	389	.874036	.3322361	0	1
energy	389 	. 6452442 	.4790554	0	1
effluents	389	.2467866	. 4316967	0	1
biodiversi~s	389	.218509	.4137668	0	1
environmen~n	389	.3007712	.459184	0	1
socialpolicy	389	.8637532	.3434922	0	1
organizati~y	389 +	.2699229 	.4444912 	0	1
employment	389	.596401	.4912507	0	1
relationsh~y	389	.2236504	.417227	0	1
healthsafety	389	.7532134	. 4316967	0	1
traininged~n	389	.2904884	. 4545724	0	1
equalrights	389 +	.3084833	.462462 	0	1
priviledges	389	.7069409	. 4557515	0	1
productenv~t	389	.3059126	.4613863	0	1
codeofcond~t	389	.3573265	. 4798293	0	1

APPENDIX L

DESCRIPTIVE STATISTICS

DEPENDENT VARIABLE ITEMS

. xtsum sd1 sd2 sd3 sd5 sd6 sd7 sd8 sd9 sd10 sadi cp1 cp2 cp3 bc1 bc2 bc3 bc4 pa1 pa2 co it

Variab:						Observations
	overall			0	5	N = 389
	between			.25		n = 67
	within					T-bar = 5.80597
sd2	overall	3.192802	1.596178	0	5	
	between			.25		n = 67
	•					T-bar = 5.80597
sd3	overall	3.411311	1.649891	0 1	5	N = 389
	between					n = 67
	within		1.317344			T-bar = 5.80597
sd5	overall	2.277635			_	N = 389
	between		1.125243		_	n = 67
	within					T-bar = 5.80597
sd6	overall			0		N = 389
	between				_	n = 67
	within					T-bar = 5.80597
sd7	overall	1.033419	.7225484	0	2	N = 389
	between			•	_	n = 67
	within		.5133526	6332476	2.200086	T-bar = 5.80597
sd8	overall	1.007712	.7232816	0	2	N = 389
	between		. 5253257	0	2	n = 67
	within			6589546	2.174379	T-bar = 5.80597
sd9	overall	.3059126	.4613863	0	1	N = 389
	between		.3395739	0	1	n = 67
	within		.3136363	5274207	1.139246	T-bar = 5.80597
sd10	overall	.3573265	.4798293	0	1	N = 389
	between		.3596964	0	1	n = 67
	within		.319404	4760069	1.19066	T-bar = 5.80597

DEPEND	ENT AND INI	DEPENDENT '	VARIABLES			
Variabl	e	Mean	Std. Dev.	Min	Max	Observations
sadi	overall	.5506447	.2760662	0	1	N = 389
	between		.1988304	.066675	. 96666	n = 67
	within		.1954284	1049219	1.056195	T-bar = 5.80597
cp1	overall	6.658138	.8075194	4.7997	9.4982	
	between		. 6699075	5.236033	8.287017	n = 67
	within		.4429669	4.718871	0.20.20.	T-bar = 5.80597
cp2	overall	4.06776	10.40374	-17.4103	91.4788	•
	between		6.435974	-4.068083	28.43003	n = 67
	within		8.208847	-24.36227	70.04118	T-bar = 5.80597
срЗ	overall	7.191919	11.99558	0	81.2952	N = 389
	between		10.81937	.1	55.7712	•
	within		5.677215	-30.23598	40.40282	T-bar = 5.80597
bc1	overall	2.007696	1.387329	. 2857	10	
	between		.9215568	. 66665	6.074533	
	within		1.039336	-2.343237	7.787096	
bc2	overall	.7172237	. 4509286	0	1	
	between		.2736807	0	1	•
	within		.3617802	1161097	1.550557	•
bc3	overall	.1131105	.3171358	0	1	
	between		.2485447	0	_	n = 67
	within		.1998711	7202228	. 9464439	•
bc4	overall	9.208226	2.466337	2	18	
	between		2.04763	5	15.5	
	within		1.40446	3.808226	17.54156	•
pa1	overall	3.046435	.1026895	2.9088	3.2724	•
	between		.0434645	2.98152	3.0906	•
	within		.0931905	2.937355	3.228235	T-bar = 5.80597
pa2	overall	2.471162	. 4785324	1.9159	3.332	•
	between		.327393	2.04085	3.012683	n = 67
	within		.3472225	1.860295		T-bar = 5.80597
co	overall	.4138817	.4931621	0	1	•
	between		. 4969377	0	_	n = 67
	within	1/2/	0	.4138817		T-bar = 5.80597
it	overall	4.164524	1.477905	1		N = 389
	between		1.537057	1	6	n = 67
	within		.046344	3.997858	4.997858	T-bar = 5.80597

.046344 3.997858 4.997858 | T-b

INTERPRETATION OF STANDARD DEVIATION (3 TIMES LOWER AND UPPER LIMITS)

VARIABLE	OBS.	MEAN	STD. DEV.	MIN.	MAX.	L. L.	U. L.	RMKS. 1	RMKS. 2
SD1	389	2.9974	1.5885	0	5	-1.7681	7.7629	G	G
SD2	389	3.1928	1.5962	0	5	-1.5958	7.9814	G	G
SD3	389	3.4113	1.6499	0	5	-1.5384	8.361	G	G
SD5	389	2.2776	1.5697	0	5	-2.4315	6.9867	G	G
SD6	389	1.9357	1.2957	0	4	-1.9514	5.8228	G	G
SD7	389	1.0334	0.7225	0	2	-1.1341	3.2009	G	G
SD8	389	1.0077	0.7233	0	2	-1.1622	3.1776	G	G
SD9	389	0.3059	0.4614	0	1	-1.0783	1.6901	G	G
SD10	389	0.3573	0.4798	0	1	-1.0821	1.7967	G	G
SADI	389	0.5506	0.2761	0	1	-0.2777	1.3789	G	G
CP1	389	6.6581	0.8075	4.7997	9.4982	4.2356	9.0806	G	В
CP2	389	4.0678	10.4037	-17.4103	91.4788	-27.1433	35.2789	В	В
CP3	389	7.1919	11.9956	0	81.2952	-28.7949	43.1787	В	В
BC1	389	2.0077	1.3873	0.2857	10	-2.1542	6.1696	G	В
BC2	389	0.7172	0.4509	0	1	-0.6355	2.0699	G	В
BC3	389	0.1131	0.3171	0	1	-0.8382	1.0644	G	В
BC4	389	9.2082	2.4663	2	18	1.8093	16.6071	G	В
PA1	389	3.0464	0.1027	2.9088	3.2724	2.7383	3.3545	G	G
PA2	389	2.4712	0.4785	1.9159	3.332	1.0357	3.9067	G	G
co	389	0.4139	0.4932	0	1	-1.0657	1.8935	G	G
IT E	389	4.1645	1.4779	1	6	-0.2692	8.5982	G	G

CORRELATION

simpleavgdisclindex firmsize pwcorr financialleverage mbvratio boardcomposition duality environmental expert boardsize nse dprnesrea ownersh > ipconcentration industrialtype, star (0.05)

```
| simple~x firmsize financ~e mbvratio boardc~n
enviro~t
simpleavgd~x |
            1.0000
             0.2120* 1.0000
   firmsize |
            0.1414* 0.3216* 1.0000
financiall~e |
            0.0864 0.1279* 0.2731* 1.0000
  mbvratio |
boardcompo~n | -0.1736* 0.0975 0.0587 -0.0950 1.0000 duality | -0.0434 0.0374 0.0789 -0.0198 -0.1041* 1.0000
environmen~t |
               0.2131*
                       0.1811*
                              0.0979
                                       0.1805* 0.0113
                                                       -0.0101
1.0000
 boardsize |
              0.1376*
                       0.1797*
                               0.0638
                                       0.1393* 0.1499*
                                                       0.0902
0.2631*
                                       -0.0101 -0.0600
                              0.0297
              0.1510* -0.0316
                                                       -0.0326
       nse |
0.2041*
             -0.1121* -0.1519* -0.1470* -0.1608* -0.0731 -0.0963 -
  dprnesrea |
0.0712
               0.0501 -0.0426
                              -0.0208
                                        0.1264* -0.0178
ownershipc~n |
0.1448*
industrial~e |
              0.2335*
                      0.2326*
                              0.1764*
                                        0.1440* -0.0250
                                                        0.0081
0.2131*
Variables | boards~e nse dprnes~a owners~n indust~e
boardsize | 1.0000
  nse | -0.0024
dprnesrea | 0.0746
                    1.0000
                    0.1640* 1.0000
1.0000
                    Universiti Utara Malaysia
FIXED EFFECTS REGRESSION
. xtreg sadi cp1 cp2 cp3 bc1 bc2 bc3 bc4 pa1 pa2 co it, fe
note: co omitted because of collinearity
note: it omitted because of collinearity
                                          Number of obs
Fixed-effects (within) regression
389
Group variable: id
                                            Number of groups
67
    within = 0.0852
                                            Obs per group: min =
R-sq:
     between = 0.0186
                                                        avg =
5.8
     overall = 0.0467
                                                        max =
6
                                      F(9,313)
3.24
                                           Prob > F
corr(u_i, Xb) = -0.1231
0.0009
        -----
sadi | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-----
       cp1 | .0287462 .0257237
                                    1.12 0.265
                                                     -.0218669
.0793594
       cp2 |
               .0008035
                         .0014043
                                      0.57
                                            0.568
                                                     -.0019596
.0035666
             -.0051594
                                  -2.68 0.008
       cp3 |
                       .0019239
                                                -.0089449
.001374
                                                -.0549361
```

-3.08

0.002

.0108802

bc1 | -.0335284

.0121208

	bc2	0980788	.0312615	-3.14	0.002	159588 -
	bc3	.007844	.0560712	0.14	0.889	1024793
	bc4	.002294	.0079884	0.29	0.774	0134231
.0180123	pa1	.249321	.5 .1338881	1.86	0.064	014113
.5127559	pa2	040521	5 .0365804	-1.11	0.269	1124961
.0314531	co	J 0	(omitted)			
C	it ons	•	<pre>(omitted) 4 .4343605</pre>	-0.35	0.729	-1.005313
$.703958\overline{2}$						
sigm	a_u	.20009685 .20811615				
:	rho	. 48036268	(fraction of			
						Prob > F =
. est sto	re fi	ixed				
	_	TS REGRESSIO	N c1 bc2 bc3 bc4	pal pa2 co	it. re	
		s GLS regres		Par Par 33		of obs =
Group var	iabl	e: id			Number	of groups =
-	thin	= 0.0692			Obs per	group: min =
be	tweer	n = 0.2574				avg =
5.8	erall	0 1571				
-		1 = 0.1571				max =
6				Wald	- ,	=
45.11			Universiti		- ,	=
45.11			Universiti		lalavsia	=
45.11 corr(u_i, 0.0000	x)	= 0 (assur	ned)	Utara M	Prob > c	=
45.11 corr(u_i, 0.0000 	x) adi	= 0 (assur	med)	Utara M	Prob > 0	= chi2 =
45.11 corr(u_i, 0.0000 	X) adi 	= 0 (assur	med)	Utara M	Prob > 0	= ehi2 = [95% Conf0002259
45.11 corr(u_i, 0.0000 	x) 	= 0 (assur	Std. Err. 8 .0206028 98 .0013083	1.95	Prob > 0	= Ehi2 = [95% Conf00022590009545
45.11 corr(u_i, 0.0000 	x) adi cp1 cp2	= 0 (assur	Std. Err. 88 .0206028 98 .0013083 .0014445	1.95 1.23	Prob > 0 P> z 0.051 0.219 0.064	= Ehi2 = [95% Conf000225900095450055115
45.11 corr(u_i, 0.0000 	x) adi cp1 cp2 cp3 bc1	= 0 (assur	Std. Err. 88 .0206028 98 .0013083 3 .0014445 .0099131	1.95 1.23 -1.86	Prob > 0 P> z 0.051 0.219 0.064	= Ehi2 = [95% Conf0002259000954500551150570723 -
45.11 corr(u_i, 0.0000 	x) adi cp1 cp2 cp3 bc1 bc2	= 0 (assur	Std. Err. Std. Err. 88 .0206028 98 .0013083 3 .0014445 .0099131 .028922	1.95 1.23 -1.86 -3.80	Prob > 0 P> z 0.051 0.219 0.064 0.000 0.002	= Ehi2 = [95% Conf0002259000954500551150570723146507 -
45.11 corr(u_i, 0.0000 	x) adi cp1 cp2 cp3 bc1 bc2 bc3	= 0 (assur Coef .040154 .001609 002680 0376429 089821 .053383	Std. Err. Std. Err. 88 .0206028 98 .0013083 3 .0014445 .0099131 .028922 35 .0485855	1.95 1.23 -1.86 -3.80 -3.11	Prob > 0 P> z 0.051 0.219 0.064 0.000 0.002 0.272	= Ehi2 = [95% Conf00022590009545005511505707231465070418424
45.11 corr(u_i, 0.0000 	x) adi cp1 cp2 cp3 bc1 bc2 bc3 bc4	= 0 (assur Coef .040154 .001609 002680 0376429 089821 .053383	Std. Err. Std. Err. 88 .0206028 98 .0013083 3 .0014445 .0099131 .028922 85 .0485855 .0065722	1.95 1.23 -1.86 -3.80 -3.11 1.10 1.66	Prob > 0 P> z 0.051 0.219 0.064 0.000 0.002 0.272 0.097	= Ehi2 = [95% Conf. 000225900095450055115057072314650704184240019657
45.11 corr(u_i, 0.0000 	x) adi cp1 cp2 cp3 bc1 bc2 bc3 bc4 pa1	= 0 (assur Coef .040154 .001609 002680 0376429 089821 .053383 .010915	Std. Err. Std. Err. 88 .0206028 98 .0013083 3 .0014445 .0099131 .028922 35 .0485855 .0065722 39 .1286065	1.95 1.23 -1.86 -3.80 -3.11 1.10 1.66	Prob > 0 P> z 0.051 0.219 0.064 0.000 0.002 0.272 0.097 0.082	= Ehi2 = [95% Conf. 0002259000954500551150570723146507041842400196570286403
45.11 corr(u_i, 0.0000 	x) adi cp1 cp2 cp3 bc1 bc2 bc3 bc4 pa1 pa2	= 0 (assur Coef .040154 .001609 002680 0376429 089821 .053383 .010915 .223423 036491	Std. Err. Std. Err. 88 .0206028 98 .0013083 3 .0014445 .0099131 .028922 35 .0485855 66 .0065722 39 .1286065 6 .0345078	1.95 1.23 -1.86 -3.80 -3.11 1.10 1.66 1.74 -1.06	Prob > 0 P> z 0.051 0.219 0.064 0.000 0.002 0.272 0.097 0.082 0.290	= [95% Conf.
45.11 corr(u_i, 0.0000 s. Interval]0805355 .004174 .0001508 .0182135 .0331349 .1486094 .0237968 .4754881	x) adi cp1 cp2 cp3 bc1 bc2 bc3 bc4 pa1 pa2 co	= 0 (assur Coef .040154 .001609 002680 0376429 089821 .053383 .010915 .223423 036491 .024985	Std. Err. Std. O013083	1.95 1.23 -1.86 -3.80 -3.11 1.10 1.66 1.74 -1.06 0.58	Prob > 0 P> z 0.051 0.219 0.064 0.000 0.002 0.272 0.097 0.082 0.290 0.561	= chi2 = [95% Conf000225900095450055115057072314650704184240019657028640310412560592317
45.11 corr(u_i, 0.0000	x) adi cp1 cp2 cp3 bc1 bc2 bc3 bc4 pa1 pa2 co	= 0 (assur Coef .040154 .001609 002680 0376429 089821 .053383 .010915 .223423 036491 .024985	Std. Err. Std. O013083	1.95 1.23 -1.86 -3.80 -3.11 1.10 1.66 1.74 -1.06 0.58	Prob > 0 P> z 0.051 0.219 0.064 0.000 0.002 0.272 0.097 0.082 0.290 0.561	= [95% Conf.
45.11 corr(u_i, 0.0000	x) adi cp1 cp2 cp3 bc1 bc2 bc3 bc4 pa1 pa2 co it	= 0 (assured) Coefficients	Std. Err. Std. O013083	1.95 1.23 -1.86 -3.80 -3.11 1.10 1.66 1.74 -1.06 0.58 1.87	Prob > 0 P> z 0.051 0.219 0.064 0.000 0.002 0.272 0.097 0.082 0.290 0.561 0.062	= ehi2 = [95% Conf.

sigma_u | .14512155 sigma_e | .20811615 rho | .32716195 (fraction of variance due to u_ (fraction of variance due to u_i)

. est store random

HAUSMAN TEST (FIXED AND RANDOM EFFECTS)

. hausman fixed

	Coeffi	cients		
1	(b)	(B)	(b-B)	sqrt(diag(V_b-
V_B))				
l l	fixed	random	Difference	S.E.
cp1	.0287462	.0401548	0114086	.0154024
cp2	.0008035	.0016098	0008063	.0005103
cp3	0051594	0026803	0024791	.0012708
bc1	0335284	0376429	.0041145	.0044843
bc2	0980788	089821	0082578	.0118659
bc3	.0078449	.0533835	0455387	.0279898
bc4	.0022946	.0109156	008621	.004541
pa1	.2493215	.2234239	.0258976	.0372342
pa2	0405215	0364916	0040299	.0121383

b = consistent under Ho and Ha; obtained from

xtreg

B = inconsistent under Ha, efficient under Ho; obtained from

xtreg

Test: Ho: difference in coefficients not systematic

chi2(9) = (b-B)'[(V_b-V_B)^(-1)](b-B) = 10.74

Prob>chi2 = 0.2939

(V_b-V_B is not positive definite)

POOLED OLS REGI					
. reg sadi cp1 Source	cp2 cp3 bc1 bc2 SS		pa2 co it MS	Num	ber of obs =
389			_	គ/ 1	1, 377) =
7.23					
Model 0.0000	5.14959221	11 .468144	746	Prob	> F =
Residual	24.4208819	377 .064776	875	R-so	quared =
0.1741 +-			_	Adj	R-squared =
	29.5704741	388 .076212	562	Root	MSE =
.25451 					
•	Coef.	Std. Err.	t	P> t	[95% Conf.
Interval]					
cp1 .0834925	.0487846	.0176516	2.76	0.006	.0140768
cp2	.0020043	.00137	1.46	0.144	0006895
.004698 cp3	0013211	.0011866	-1.11	0.266	0036542
.0010119	0433044	0007705	-4 42 0	000 - (0625150 _
.024093	0433044				
bc2 .0019506	0560088	.0294767	-1.90	0.058	1139682
bc3	.0857884	.0449538	1.91	0.057	0026031
.17418 bc4	.0168646	.0057571	2.93	0.004	.0055446
.0281846	2444220	1400005	1 70	0.006	0251004
pa1 .5240571	.2444338	.1422095	1.72	0.086	0351894
pa2 .0465195	0259917	.0368774	-0.70	0.481	0985029
co I	.016525	.0269903	0.61	0.541	0365454
.0695955 it		.0009697			.0002014
.0040148	101				
_cons .2730214	5708135	. 4291538	-1.33	0.184	-1.414648

[.] est store ols

BREUSCH & PAGAN LAGRANGIAN MULTIPLIER TEST

. xttest0

Breusch and Pagan Lagrangian multiplier test for random effects sadi[id,t] = Xb + u[id] + e[id,t] Estimated results:

ESCIMA	ed results:	Var	sd = sqrt(Var)
	sadi e	.0762126 .0433123	.2760662 .2081161
Test:	u Var(u) = 0	.0210603	.1451215
		chibar2(01)	

TABULATION OF FIXED, RANDOM AND POOLED OLS

. estimates table fixed random ols, star stat(N)

Variable	fixed	random	ols
cp1	.02874624	.04015479	.04878463**
cp2	.00080351	.00160976	.00200425
cp3	00515943**	00268034	00132114

bc1	03352845**	03764294***	04330441***
bc2	09807876**	08982099**	05600878
bc3	.00784486	.05338352	.08578843
bc4	.00229458	.01091556	.01686461**
pa1	.24932145	.2234239	.24443382
pa2	04052152	03649158	0259917
co	(omitted)	.02498525	.01652504
it	(omitted)	.00239108	.00210813*
_cons	15067739	35587284	57081352
+-			
N	389	389	389

legend: * p<0.05; ** p<0.01; *** p<0.001

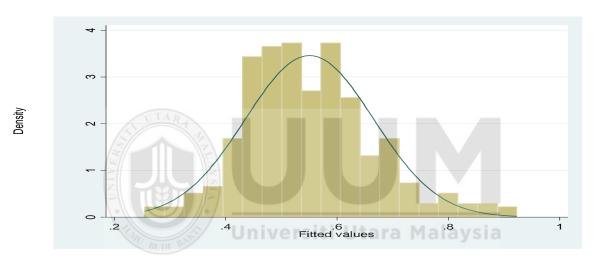
APPENDIX M

DIAGNOSTICS TESTS

GOODNESS OF MODEL TEST

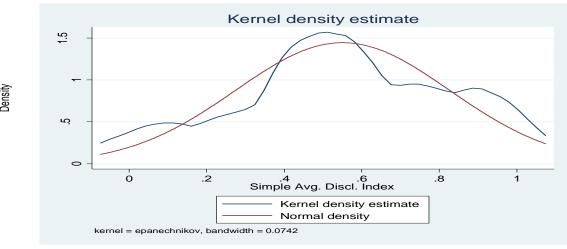
. predict e

(option xb assumed; fitted values)

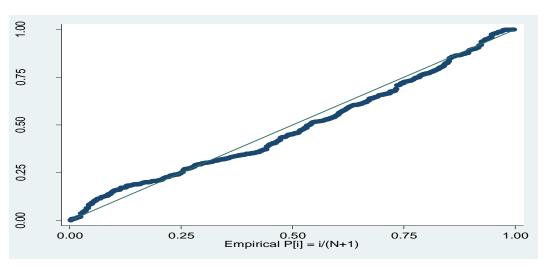

SHAPIRO WILK NORMALITY TEST

. swilk e

		Shapiro	-Wilk W t	test for	normal	data	
Variable			₩	V		_	Prob>z
e l	:	389 <mark>(</mark>	. 96958	8.168	3 4.	991 (0.0000


HISTOGRAM

. histogram e, kdensity normal (bin=19, start=.18283038, width=.03825416)


KDENSITY ESTIMATES

kdensity sadi, nor

P-PLOT GRAPH

. pnorm e

MULTICOLLINEARITY TEST

. vif

Variable	VIF	1/VIF	
it	2.03	0.491767	
pa2	1.87	0.536098	
pa1	1.28	0.782851	
bc3	TAR 1.22	0.821420	
cp1	1.22	0.821704	
cp2	1.22	0.821849	
cp3	1.21	0.824083	
bc4	1.21	0.828088	
bc1	1.10	0.908655	
CO I	1.06	0.942308	
bc2	1.06	0.944962	
	//	Universit	ti Utara Malaysi
Mean VIF	1.32	Dillacial	ii Otala Malaysi

AUTOCORRELATION TEST

. xtserial cp1 cp2 cp3 bc1 bc2 bc3 bc4 pa1 pa2 co it Wooldridge test for autocorrelation in panel data ${\tt H0:}$ no first-order autocorrelation

F(1, 66) = 4.744Prob > F = 0.0330

MODEL SPECIFICATION TEST

389	•	SS				ber of obs =	
40.76	+				F(2, 386) =	=
	I	5.15616761	2	2.5780838	Prob	> F =	-
Residual <mark>0.1744</mark>		24.4143065			R-so	uared =	•
	+				Adj	R-squared =	i
0.1701 Total .25149	1	29.5704741	388	.076212562	Root	MSE =	=
Interval]		Coef.				_	
	•	.7793643					4

_hatsq	.1895272	.587816	0.32	0.747	9661947
1.345249					
_cons	.0615164	.2007199	0.31	0.759	3331248
. 456157 6					

OMITTED VARIABLE TEST

. ovtest

Ramsey RESET test using powers of the fitted values of sadi

Ho: model has no omitted variables

F(3, 374) = 1.41Prob > F = 0.2402

HETEROSKEDASTICITY TEST:

. hettest

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity

Ho: Constant variance

Variables: fitted values of sadi

chi2(1) = 2.51Prob > chi2 = 0.1131

OR

. estat imtest

Cameron & Trivedi's decomposition of IM-test

Source	I	chi2	df	р
Heteroskedasticity Skewness Kurtosis	TANK	118.57 20.33 8.90	74 11 1	0.0008 0.0410 0.0028
Total	12	147.81	86	0.0000

***CO (DUMMY) & CONTROL VARIABLE
Cameron & Trivedi's decomposition of IM-test

Source		chi2	df	p
Heteroskedasticity Skewness Kurtosis		116.33 20.47 8.69	74 11 1	0.0012 0.0393 0.0032
Total		145.49	86	0.0001

OR

. xttest3

Modified Wald test for group wise heteroskedasticity

in fixed effect regression model

 $H0: sigma(i)^2 = sigma^2 for all i$

chi2 (67) = 1.8e+05 Prob>chi2 = 0.0000

APPENDIX N

ROBUST REGRESSIONS

RANDOM EFFECTS REGRESSION (ROBUST)

xtreg simpleavgdisclindex firmsize financialleverage mbvratio boardcomposition duality environmentalexpert boardsize nse dprnesrea ownershi

>	pconcentration	industrialtype,	re	robust
---	----------------	-----------------	----	--------

Random-effects GLS regr Group variable: id R-sq: within = 0.0701 between = 0.2408 overall = 0.1499 corr(u_i, X) = 0 (assid)	- B		Num Obs Wal	d chi2(11) b > chi2	os = min = avg = max = =	
			Robust			
simpleavgdisclindex Interval]	1		Std. Err.	z	P> z	[95% Conf.
	ı	.0519938		1.47	0.143	0175651
.1215527 financialleverage .0065014	ı	.000316	.0031559	0.10	0.920	0058694
	I	0025848	.0027353	-0.94	0.345	007946
boardcomposition	1	0444301	.0161125	-2.76	0.006	0760101 -
.0128501						
.0135282		082373	.0351256	-2.35	0.019	1512179 -
environmentalexpert	1	.055921	.0730112	0.77	0.444	0871782
boardsize	12	.0082181	.009612	0.85	0.393	0106211
.0270573		1			V	
.4984652	1 2	.239816	.1319663	1.82	0.069	0188332
dprnesrea	10	0384019	.0392799	-0.98	0.328	1153892
.0385854						
ownershipconcentration .1076318		.0204833	.0444643	0.46	0.645	0666652
industrialtype .0557182	ı	.0272394	.0145303	1.87	0.061	0012394

CORPORATE PERFORMANCE ESTIMATION (ROBUST)

_cons | -.4736918

.3079791

. xtreg simpleavgdisclindex firmsize financialleverage mbvratio industrialtype, re robust

.398819 -1.19 0.235

-1.255363

Random-effects GLS regression	Number of obs	= 389
Group variable: id	Number of groups =	= 67
R-sq: within = 0.0246	Obs per group: min =	= 4
between = 0.1085	avg =	= 5.8
overall = 0.0676	max =	= 6
	Wald chi2(4)	= 12.65
$corr(u_i, X) = 0 $ (assumed)	Prob > chi2 =	= 0.0131
	/~. 1 - 1: . 1 6 6	

(Std. Err. adjusted for 67 clusters in id)

 simpleavgdiscli~x	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
+						
firmsize	.0572666	.0342447	1.67	0.094	0098517	.1243849
financialleverage	0023885	.0028871	-0.83	0.408	0080472	.0032702
mbvratio	0017193	.002783	-0.62	0.537	0071738	.0037353
industrialtype	.0395111	.015136	2.61	0.009	.0098451	.0691771
_cons	.0229316	.2185804	0.10	0.916	4054781	. 4513414

BOARD COMPOSITION ESTIMATION REGRESSION (ROBUST)

. xtreg simpleavgdisclindex boardcomposition duality environmentalexpert boardsize industrialtype, re robust

Random-effects GLS regression	Number of obs	=	389
Group variable: id	Number of groups	=	67
R-sq: within = 0.0450	Obs per group: min	=	4
between = 0.2176	avg	=	5.8
overall = 0.1243	max	=	6
	Wald chi2(5)	=	25.86
$corr(u_i, X) = 0$ (assumed)	Prob > chi2	=	0.0001
_	(Std. Err. adjusted for	67	clusters in

n id)

simpleavgdisclindex		Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
boardcomposition	i	0415386	.0158294	-2.62	0.009	0725637	0105135
duality	T	0823591	.034582	-2.38	0.017	1501385	0145797
environmentalexpert	J	.0775974	.0687717	1.13	0.259	0571926	.2123874
boardsize	1	.0090566	.0098984	0.91	0.360	010344	.0284572
industrialtype	T	.0406882	.0136726	2.98	0.003	.0138904	.0674859
/cons	1	.4285024	.1106573	3.87	0.000	.211618	. 6453867

POLICY ADMINISTRATORS ESTIMATION REGRESSION (ROBUST)

. xtreg simpleavgdisclindex nse dprnesrea industrialtype, re robust

Random-effects GLS regression	Number of obs	=	389
Group variable: id	Number of groups	SIa	67
R-sq: within = 0.0096	Obs per group: min	=	4
between = 0.1184	avg	=	5.8
overall = 0.0643	max	=	6
	Wald chi2(3)	=	12.48
$corr(u_i, X) = 0 $ (assumed)	Prob > chi2	=	0.0059
(Std.)	Err. adjusted for 67 c	luster	s in id

Robust Coef. Std. Err. simpleavgdis~x | z P>|z| [95% Conf. Interval] nse | .2100859 .1456805 1.44 0.149 -.0754425 .0050497 dprnesrea | .0393864 0.13 0.898 -.0721462 .0822456 .0409344 .0685471 .0140884 0.004 industrialtype | 2.91 .0133216 _cons | -.2735852 .3980458 -0.69 0.492 -1.053741 .5065702

CORPORATE FOREIGN OWNERSHIP CONCENTRATION ESTIMATION (ROBUST)

. xtreg simpleavgdisclindex ownershipconcentration industrialtype, re robust

Random-effects GLS regression	Number of obs	=	389	
Group variable: id	Number of groups	=	67	
R-sq: within = 0.0018	Obs per group: min	=	4	
between = 0.1138	avg	=	5.8	
overall = 0.0573	max	=	6	
	Wald chi2(2)	=	10.70	
$corr(u_i, X) = 0 $ (assumed)	Prob > chi2	=	0.0047	
_	(Std. Err. adjusted	for	67 clusters	in
id)				

Τ Robust

328

simpleavgdisclindex Interval]	·	Coef.	Std. Err.	z	P> z	[95% Conf.
	_					
ownershipconcentration .1261573	ı	.0323497	.0478619	0.68	0.499	0614579
industrialtype .0711223	١	.0434383	.0141248	3.08	0.002	.0157543
_cons .4730004	ا	.3548665	.0602735	5.89	0.000	.2367325

ENVIRONMENTAL POLICY ADMINISTRATOR REPORTING AS A MODERATOR (ROBUST)

. xtreg environmentalreporting firmsizelog10 financialleverage mbvratio boardcomposition duality environmentalexpert boardsize ownershipconce > ntration industrialtype, re robust

Random-effects GLS reg	ressi	on		er of obs		389
Group variable: id				er of grou	-	67
R-sq: within $= 0.0484$			Obs	per group:	min =	4
between = 0.1983	1				avg =	5.8
overall = 0.113	2				max =	6
TITAD	_		Wald	d chi2(9)	=	25.22
corr(u i, X) = 0 (as:	sumed	.)		> chi2		0.0027
						67 clusters in
id)			(***			
12 15 15	18				W-111	
	1/5		Robust			
<pre>environmentalreporting Interval]</pre>	1.7	Coef.	Std. Err.	z	P> z	[95% Conf.
	\$/	Unive	rsiti Uta	ra Mal	aysia	
firmsizelog10	1	.1079956	.3088809	0.35	0.727	4973998
.713391						
financialleverage	1	.0001316	.000475	0.28	0.782	0007994
.0010626	•					
mbvratio	ı	0002699	.0003796	-0.71	0.477	0010138
.0004741						
boardcomposition	1	2240251	.0685709	-3.27	0.001	3584215 -
.0896286 duality	ı	0081688	.0047691	-1.71	0.087	0175162
.0011785	-					
environmentalexpert .0336756	I	.0134688	.0103098	1.31	0.191	0067381
boardsize	1	.0198307	.1902123	0.10	0.917	3529786
.39264	•					
ownershipconcentration	1	0008982	.0058199	-0.15	0.877	012305
.0105087	•					
industrialtype	1	.0029787	.0020971	1.42	0.155	0011315
.0070889	•				3.133	.0011515
cons	1	.5304019	.3230984	1.64	0.101	1028594
1.163663	'	.5504019	. 3230904	1.04	3.101	.1020394
1.103003						
		·			 -	====== =

RATIO OF ENVIRONMENTAL EXPERTS TO NON-ENVIRONMENTAL EXPERTS

ITEMS	NUM.	%
EXPERT	44	11.31
NON-EXPERT	345	88.69

TOTAL	389	100
-------	-----	-----

CORPORATE OWNERSHIP

OWNERSHIP	NUMBER	%AGE
LOCAL	228	59
FOREIGN	161	41
TOTAL	389	100

MODERATING EFFECTS OF ENVIRONMENTAL POLICY ADMINISTRATORS

- . su environmentalreporting firmsizelog10 financialleverage mbvratio boardcomposition duality environmentalexpert boardsize ownershipconcentr > ation industrialtype, det

	•	 ·		
	S:	ustainability r	eporting	
95%	1	1	Skewness	2035478
99%	1	1	Kurtosis	2.37412
		Firm Size (Lo	g10)	
95%	1.8414	1.8567	Skewness	.0248215
99%	1.8567	1.8567	Kurtosis	2.154394
		Financial leve	erage	
95%	131.0678	145.0553	Skewness	2.053351
99%	145.0553	145.0553	Kurtosis	6.360493
		MBV Ratio	0	
95%	238.3808	277.3158	Skewness	2.359187
99%	277.3158	277.3158	Kurtosis	8.25558
	(3)			
		Board Compos	1t10n 	
95%	1.5376	1.5738	Skewness	1410562
99%	1.5738	1.5738	Kurtosis	2.461716
	Cin Runi	Duality	versiti U	tara Mala
95%	9.995	10.631	Skewness	534923
99%	10.631	10.631	Kurtosis	1.853249
		Environmental 1	Expert	
95%	7.4963	7.7461	Skewness	2.525906
99%	7.7461	7.7461	Kurtosis	7.542784
		Board Size	e	
95%	2.0352	2.1004	Skewness	0351334
99%	2.1004	2.1004	Kurtosis	2.330767
	:	Foreign ownersh	ip concentratio	n
95%	9.5407	10.631	Skewness	.5681462
99%	10.631	10.631	Kurtosis	1.624496
		Industrial '	Туре	
95%	42.5242	46.4768	Skewness	4688524
99%	46.4768		Kurtosis	2.780665

APPENDIX O

GLOBAL REPORTING INITIATIVE 4 (GRI-4 or G4) SUSTAINABILITY DISCLOSURE INDICATORS

SCORE CARD FOR STANDARD DISCLOSURES

S/N	Code	Disclosure Indicator	Weight Scores	Actual Scores
		General Standard Disclosures (GSD)		
1.	G4-01 - G4-02	Strategy & Analysis	2	
2.	G4- 03- G4-16	Organizational Profile	14	
3.	G4-17 – G4-23	Identified Material Aspects and Boundaries	7	
4.	G4-24 – G4-27	Stakeholders Engagement	4	
5.	G4-28 – G4-33	Report Profile	6	
6.	G4-34 – G4-55	Governance	22	
7.	G4-56 – G4-58	Ethics and Integrity	3	
Sub-	Fotal		58	
		Specific Standard Disclosure (SSD)		
	S	pecific Standard Disclosure (Economic Category)		
8.	G4-EC01 – G4-EC04	Economic Performance	4	
9.	G4-EC05 – G4-EC06	Market Presence	2	
10.	G4-EC07 – G4-EC08	Indirect Economic Impacts	2	
11.	G4-EC09	Procurement Practices	1	
Sub-			9	
	Spe	cific Standard Disclosure (Environmental Category	·)	
12.	G4-EN01 – G4-EN02	Materials	2	
13.	G4-EN03 – G4-EN07	Energy	5	
14.	G4-EN08 – G4-EN10	Water	3	
15.	G4-EN11 – G4-EN14	Biodiversity	4	
16.	G4-EN15 – G4-EN21	Emissions	7	
17.	G4-EN22 – G4-EN26	Effluents and Wastes	5	
18.	G4-EN27 - G4-EN28	Products and Services	2	
19.	G4-EN29	Compliance	1	
20.	G4-EN30	Transport	1	
21.	G4-EN31	Overall	1	
22.	G4-EN32 – G4-EN33	Supplier Environmental Assessment	2	
23.	G4-EN34	Environmental Guidance Mechanism	1	
Sub-			34	
		dard Disclosure (Social Category – Labour & Dece	ent Work)	
24.	G4-LA01 – G4-LA03	Employment	3	
25.	G4-LA04	Labour Management Relations	1	
26.	G4-LA05 – G4-LA08	Occupational Health & Safety	4	
27.	G4-LA09 – G4-LA11	Training & Education	3	<u> </u>
28.	G4-LA12	Biodiversity & Equal Opportunity	1	
29.	G4-LA13	Equal Remuneration for Women & Men	1	
30.	G4-LA14 – G4-LA15	Supplier Assessment for Labour Practices	2	<u> </u>
31.	G4-LA16	Labour Practices Grievance Mechanism	1	<u> </u>
Sub-			16	
	-	Standard Disclosure (Social Category – Human Ri		
32.	G4-HR01 - G4-HR02	Investment	2	
33.	G4-HR03	Non-discrimination	1	
34.	G4-HR04 - G4-HR05	Freedom of Association & Collective Bargaining	2	
35.	G4-HR06	Forced or Compulsory Labour	1	
36.	G4-HR07	Security Practices	1	
37.	G4-HR08	Local Rights	1	<u> </u>

38.	G4-HR09	Assessments	1	
39.	G4-HR10 - G4-HR11	Suppliers Human Rights Assessment	2	
40.	G4-HR12	Human Rights Grievance Mechanism	1	
Sub-T	Total		12	
	Spec	ific Standard Disclosure (Social Category – Socie	ty)	
41.	G4-SO01 – G4-SO02	Local Community	2	
42.	G4-SO03 – G4-SO05	Anti-Corruption	3	
43.	G4-SO06	Public Policy	1	
44.	G4-SO07	Anti-Competitive Behaviour	1	
45.	G4-SO08	Compliance	1	
46.	G4-SO09 – G4-SO10	Supplier Assessment for Impact on Society	2	
47.	G4-SO11	Grievance Mechanism for Impacts on Society	1	
Sub-7	Total		11	
	Specific Star	ndard Disclosure (Social Category – Product Resp	onsibility)	
48.	G4-PR01 – G4-PR02	Customer Health & Safety	2	
49.	G4-PR03 – G4-PR05	Product & Service Labelling	3	
50.	G4-PR06 - G4-PR07	Marketing Communications	2	
51.	G4-PR08	Customer Privacy	1	
52.	G4-PR09	Compliance	1	
Sub-7	Total		9	
Gran	d Total Score		149	

APPENDIX P

KEY CONTACTS OF POLICY ADMINISTRATORS

1. NESREA

No. 4 Oro Ago Street,

Off Mohammed Buhari Way,

Garki – Abuja

Web: nesrea.gov.ng

Email: dg@nesrea.gov.ng or

 $GSM: \frac{1}{+2348096508800} + 2348174634670 (Abuja) + 2348034524121$

(Kano) and +2347093683207 (Laboratory).

2. NSE

Muktar El-Yakub Place

Plot 1129, Zakariya Maimalari Street,

Beside Metro Plaza.

Central Business District,

Abuja.

Web: nse.com.ng

Email: nseabuja@nse.com.ng or contactcenter@nse.com.ng

GSM: +2348181527899 (Abuja) and +234962325067 or +2348037140739

(Kano)

3. DPR

No. 7 Kofo Abayomi Street,

Victoria Island,

Lagos State,

Nigeria.

Mr. Isah Tafida,

Department of Petroleum Resources,

146, Shehu Kazaure Road, Hotoro GRA,

Kano State.

Department of Petroleum Resources,

24 Gobarau Road, GRA

Kaduna State.

Web: dprnigeria.com

Email: bassey.d.e@dpr.gov.ng or info@dpr.gov.ng or

dorothybassey@hotmail.com

GSM: +2348058298815 (Mr. Ladan, Abuja), +2348056099175 (Mrs.

Dorothy Bassey - Public Affairs Unit) and +2348150618402 (Kano)

4. NNPC

NNPC Towers, Central Business District,

Herbert Macaulay Way,

P. M. B. 190, Garki, Abuja.

Web: nnpcgroup.com

Email: webmaster@nnpcgroup.com

GSM: +234946081000

5. Shelterbelt Research Station, Kano.

Forestry Research Institute of Nigeria.

Email: abdul67ng@yahoo.com

GSM: +2348162152807, +2348098081243