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Abstrak 
 

Banjir telah menjadi kebimbangan yang serius di seluruh dunia kerana menyebabkan 
malapetaka kepada ekonomi dan ekologi. Oleh itu, strategi pengurangan risiko banjir 
digunakan untuk mengurangkan kesan yang berkaitan dengan banjir dengan 
mengenalpasti kejadiannya secara jangka panjang. Pelbagai faktor penyebab termasuk 
penggunaan kerangka data hibrid pelbagai ruang-masa dipertimbangkan dalam 
melaksanakan strategi tersebut. Selain faktor struktur atau bukan struktur homogen, 
penggunaan pelbagai alat berasaskan Sistem Maklumat juga diperlukan untuk 
menganalisis faktor penyebab semula jadi dengan tepat. Pada asasnya, strategi ini 
diperlukan untuk mengatasi pengelasan kerentanan banjir yang tidak tepat dan meramal 
kejadian banjir dalam jangka masa pendek. Oleh itu, kajian ini mencadangkan satu rangka 
kerja yang dinamakan: Rangka Kerja Data Hibrid Pelbagai Ruang-Masa Analisis Banjir 
Huluan Jangka Panjang (HyM-SLUFA) untuk menyediakan dimensi baru mengenai 
kajian kerentanan banjir dengan mendedahkan pengaruh beberapa faktor yang diperolehi 
dari topografi, hidrologi, tumbuh-tumbuhan dan pemendakan terhadap pengelasan 
kelemahan banjir serantau dan analisis banjir jangka panjang. Dalam membangunkan 
cadangan rangka kerja, imej ruang diperbetulkan secara geometri dan radiometrik 
berbantukan Sistem Maklumat Geografi Kuantum (QGIS). Data temporal dibersihkan 
melalui kaedah winsorization dengan menggunakan perisian statistik STATA. Segmen 
rangka kerja hibrid mengklasifikasi kelemahan banjir dan membuat analisis jangka 
panjang. Pengelasan dan analisis dijalankan dengan menggunakan imej ruang yang 
diperbetulkan untuk memperolehi pemahaman yang lebih baik mengenai hubungan antara 
hujan dengan ciri yang diekstrak terhadap peningkatan kejadian banjir serta menghasilkan 
pelbagai kerentanan banjir serantau di kawasan kajian. Di samping itu, dengan bantuan 
teknik regresi, pemendakan dan paras air digunakan untuk membuat analisis banjir jangka 
panjang bagi mengenalpasti potensi kejadian banjir supaya langkah penyelesaian proaktif 
dapat diambil. Untuk memastikan kebolehpercayaan dan kesahan rangka kerja yang 
dicadangkan, satu penilaian ketepatan telah dijalankan ke atas hasil data. Kajian ini 
mendapati pengaruh Faktor Penyebab Banjir (FCFs) yang digunakan dalam rangka kerja 
HyM-SLUFA, dengan mendedahkan ketaksamaan jurang ruang menunjukkan bahawa 
cerun rantau mempengaruhi tahap kerentanan banjir adalah lebih tepat berbanding dengan 
FCF yang lain, yang secara umumnya menyebabkan banjir huluan yang teruk apabila 
terdapat jumlah mendakan rendah di kawasan yang mempunyai tahap cerun yang rendah. 
Secara teorinya, HyM-SLUFA akan berfungsi sebagai panduan yang boleh digunakan 
atau disesuaikan untuk kajian yang serupa. Terutama, dengan mempertimbangkan gaya 
pemendakan dan klasifikasi kerentanan banjir yang ditentukan oleh pelbagai FCFs. 
Klasifikasi ini akan menentukan jenis polisi yang akan dilaksanakan dalam perancangan 
bandar, dan jumlah pengurangan kerentanan banjir dapat memberikan pandangan pada 
masa depan mengenai sebarang kejadian banjir agar tindakan penyelesaian proaktif yang 
praktikal dapat diambil oleh pihak berkuasa tempatan. 
 

Kata kunci: Analitik data raya, Analisis alam sekitar, Kerentanan banjir, Sistem Maklu- 
mat Geografi (GIS), Sistem Maklumat. 



iv 

 

Abstract 
 

 

Floods have become a global concern because of the vast economic and ecological havoc 
that ensue. Thus, a flood risk mitigation strategy is used to reduce flood-related 
consequences by a long-lead identification of its occurrence. A wide range of causative 
factors, including the adoption of hybrid multi-spatiotemporal data framework is 
considered in implementing the strategy. Besides the structural or homogenous non-
structural factors, the adoption of various Information Systems-based tools are also 
required to accurately analyse the multiple natural causative factors. Essentially, this was 
needed to address the inaccurate flood vulnerability classifications and short time of flood 
prediction. Thus, this study proposes a framework named: Hybrid Multi-spatiotemporal 
data Framework for Long-lead Upstream Flood Analysis (HyM-SLUFA) to provide a new 
dimension on flood vulnerability studies by uncovering the influence of multiple factors 
derived from topography, hydrology, vegetal and precipitation features towards regional 
flood vulnerability classification and long-lead analysis. In developing the proposed 
framework, the spatial images were geometrically and radiometrically corrected with the 
aid of Quantum Geographic Information System (QGIS). The temporal data were cleaned 
by means of winsorization methods using STATA statistical tool. The hybrid segment of 
the framework classifies flood vulnerability and performs long-lead analysis. The 
classification and analysis were conducted using the corrected spatial images to acquire 
better understanding on the interaction between the extracted features and rainfall in 
inducing flood as well as producing various regional flood vulnerabilities within the study 
area. Additionally, with the aid of regression technique, precipitation and water level data 
were used to perform long-lead flood analysis to provide a foresight of any potential 
flooding event in order to take proactive measures. As to confirm the reliability and 
validity of the proposed framework, an accuracy assessment was conducted on the outputs 
of the data. This study found the influence of various Flood Causative Factors (FCFs) used 
in the developed HyM-SLUFA framework, by revealing the spatial disparity indicating 
that the slope of a region shows a more accurate level of flood vulnerability compared to 
other FCFs, which generally causes severe upstream floods when there is low volume of 
precipitation within regions of low slope degree. Theoretically, the HyM-SLUFA will 
serve as a guide that can be adopted or adapted for similar studies. Especially, by 
considering the trend of precipitation and the pattern of flood vulnerability classifications 
depicted by various FCFs. These classifications will determine the kind(s) of policies that 
will be implemented in town planning, and the Flood Inducible Precipitation Volumes can 
provide a foresight of any potential flooding event in order to take practical proactive 
measures by the local authority.  

Keywords: Big data analytics, Environmental analysis, Flood vulnerability, GIS, 
Information systems.   
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Introduction 

This chapter presents an overview and synopsis of this research, starting with the 

background information and the motivation for conducting the research in section 1.2. 

Section 1.3 focuses on the problem statement which captures the challenges regarding 

flood mitigation strategies. Also, the chapter outlines the research questions and the 

corresponding objectives in sections 1.4 and 1.5 respectively. The scope of the research is 

highlighted in section 1.6, while section 1.7 concisely presents the significance of the 

research. The structure of the thesis is provided in section 1.8. This chapter concludes by 

presenting a chapter summary in section 1.9, while the frequently used terms are 

contextually defined in section 1.10.  

 

1.2 Background and Motivation of the Study 

Flooding has become a serious issue in several parts of the world and will relentlessly 

affect the way in which cities grow [1]. Adversely, the current climate change has 

triggered major changes in rainfall pattern which in turn, has increased flood vulnerability 

in several regions[2],[3]. As a result, flood-related disasters will correspondingly continue 

to occur in the future – one can never achieve complete safety [4]. Yet, flood vulnerability 

can be seriously alleviated if an appropriate means of mitigation or preparedness is 

developed [4].  
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Broadly, there exists three strategies of flood mitigation [4]: 

I. Modification of vulnerability to flooding: this involves legislation, land-use 

planning and management to allow mapping and prohibition of development 

within certain areas identified to be vulnerable to floods; 

II. Modification of flood waters: this consists of employing structural measures by 

erecting flood defence such as dams, reservoirs, drainages and diversions, 

vegetation and avoiding bare soil during precipitation; 

III. Modification of flood-induced impacts: this ultimately consists of identifying the 

likelihood of flood occurrence, prediction of water or flow condition, warning to 

the appropriate authority, evacuation, construction of defences, and essentially, 

review of flood mitigation approaches to enhance the process and planning for 

potential event by combining strategies 1 and 2. 

 

Currently, there is an adoption of structural measures (strategy II) to provide preventive 

measures, such as drainage, dikes, dams, embankments, flood control reservoirs and 

transhumance mechanisms in Malaysia, Netherlands, Bangladesh, China, and Nigeria as 

well as other parts of the world. This effort to cope with the extreme and varied climate 

change may no longer be able to mitigate flooding events due to changing of rainfall 

pattern [1], [4],[5],[6]. Also, this structural measures obstructs water from flowing which 

potentially leads to devastating impacts in downstream settlement and within agricultural 

lands [7],[8]. Therefore, non-structural measures involving flood prediction and 

identification of flood vulnerability, which can be obtained by pre-processing 

spatiotemporal data and performing long-lead flood prediction has been identified by 

experts to be very crucial in mitigating potential flooding events [9],[10]. Similarly, 
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disaster management coordinating agencies have equally placed a great emphasis on the 

non-structural means of flood mitigation, as stated in the studies conducted in [9],[10]. 

This emphasis on non-structural measures is because several or multiple factors that 

contributed to increasing the flood damage in the past were related to non-structural 

aspects of flood management[6],[9], which can be identified by pre-processing multiple 

spatiotemporal factors. 

 

Pre-processing of multiple factors generally involves series of sequential operations on 

spatiotemporal data sets, including atmospheric correction, geometric correction, image 

enhancement and transformation that are required prior to the analysis of flood causative 

factors or spatial imageries[11],[12],[13], which will be beneficial in generating relevant 

Flood Causative Factors (FCFs), as in the case of this research. At present, the benefits of 

these imageries upon scientists as well as decision-makers around the globe are yielding 

great opportunities by providing enhanced imageries [14]. Nonetheless, despite these 

immense benefits, various studies which were conducted based on these vital sets of data 

still remain below considerable expectation [15]. This can be attributed to lack of 

theoretical and technological understanding of spatiotemporal data [15]. 

 

It is also  noteworthy that employing spatiotemporal data for studies focusing on non-

structural flood mitigation is normally based on complex flood models that are data 

intensive; a requirement which can only be addressed by research-level organizations [1]. 

Adoption of such approach by stakeholders or local communities may be difficult due to 

its complexity, poor understanding of underlying assumptions, lack of skill in utilizing 

spatiotemporal data sets, besides high maintenance costs of the system [1]. Hence, the 
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primary motivation behind this research, which is to provide solutions to these 

aforementioned issues.  

 

Also, flood inundation maps generated from spatial data sets are at the base of flood risk 

management; informing the public and city planners about flood-prone areas in a region 

[16]. Nonetheless, despite recent advancements in computational techniques and 

availability of spatial data sets, flood hazard maps are still lacking in many countries [16]. 

The main difficulty in using a specific approach is primarily associated with the significant 

amount of data and parameters required by these approaches [16]. Hence, the need to pre-

process these spatial data which classify and depict regions that are prone to floods within 

the study area. 

 

Furthermore, the spatial description of vulnerability is of paramount importance in any 

flood analysis [17], which only satellite imageries of high resolution with a wide spatial 

coverage in conjunction with in-situ data sets can be used to obtain the required 

information for this purpose [17]. To this regard, previous studies on flood vulnerability 

and long-lead prediction in Niger state and other parts of the world are still constrained by 

their inability to sufficiently consider several relevant factors that induce floods which in 

turn, would have accurately classified various regions that are vulnerable to floods prior 

to performing the long-lead predictions. This, on the other hand, had impeded on the 

adequacy of the lead-time prediction and overly affects the decision-making aimed at 

flood mitigation. Therefore, a holistic approach is required to bridge the existing gaps; 

correct identification of regional flood vulnerability and long-lead analysis. 
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Similarly, due to the fact that flood disaster is one of the heaviest disasters in the world, it 

is therefore necessary for it to be monitored and analyzed in order to mitigate its related 

havocs. Obtaining the flood extent is a basis for monitoring and analyzing the flood-

induced disasters. Currently, satellite imageries without the limitation of weather and time, 

can provide important information for obtaining the flood extent [18]. Even more, Earth 

Observation (EO) satellites offer a unique capability on geomorphology by providing 

temporally repetitive views at the desired spatial scale (e.g., global, regional, or local) 

[19]. This wealth of remote sensing data conveys a huge potential for preventing, 

monitoring, and mitigating natural or anthropogenic (Man-made) disasters [19]. 

 

Essentially, focusing on flood risk, a successful exploitation of this vital data requires not 

only an accurate and reliable image-analysis approach to pre-process the desired 

imageries, but also, the ability to relate these information with multiple physical factors, 

such as topography, hydrology and vegetation of the observed processes [19]. Therefore, 

a multidisciplinary approach combining remote sensing with Geographical Information 

System (GIS) is a fundamental requirement in this regard. In essence, relating this 

expertise permits, in particular, satellite data to be exploited within the various phases of 

flood risk mitigation: risk assessment, prevention, mitigation, monitoring, and 

management [17],[19]. However, to date, the adoption of satellite imageries in flood 

analysis remains underutilized, as it is mostly restricted to binary segmentation into 

flooded and non-flooded representations, which is associated with the limitation of the 

satellite capabilities [17], [20]. 

Even though it is an achievement to possess the capability of space and environmental 

assets, such as satellites and terrestrial remote sensors [19],[21], the deficiency of 
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scientific approaches to pre-process multiple data sets obtained from these facilities 

needed for earth observation and environmental analysis is greatly undermining the ability 

to efficiently utilize these costly and vast acquired data [22],[23].The need for multiple 

factors is of an immense importance because the surface of the earth has multiple 

geomorphological features, such as water bodies, non-vegetal surface, topography, 

geomorphology, each considered as a factor having different characteristics in inducing 

floods when influenced by rainfall [24],[25]. The level of influence of rainfall on these 

factors can only be identified when imageries are pre-processed [11], [25],[26],[27].  

 

In a practical context, there is an ardent need by decision-makers to know which region(s) 

should mitigation efforts be focused on during floods or which regions are more 

vulnerable to floods [28]. The accurate knowledge of regions that are vulnerable to flood 

can only be obtained by the use of a multi-factorial approach. Therefore, this research is 

essential, especially for the study area (Niger state), which has always been affected by 

annual flooding event since the creation of the State in 1976 [29]. The exposure of this 

State to floods could be attributed to the geographical location of vast parts of the state 

within a lower terrain, presumed to be valleys and plains [29], which can only be identified 

by an accurate analysis of spatiotemporal data. However, the presence of these features 

has been causing devastating flooding impacts on annual basis, leading to death and 

destruction of properties. Consequently, the need to conduct this research becomes 

pertinent since the extant already conducted with the aim of addressing flood-related 

issues, which neither considered the use of multiple factors to delineate floodplains nor 

performed long-lead flood prediction simultaneously, as further detailed in ensuing 

section of the research problem.  



7 

 

 

1.3   Problem Statement 

The exploitation of remotely sensed data, also referred to as spatiotemporal data is very 

crucial for knowledge discovery in environmental analysis [30].This knowledge discovery 

as well as the understanding of environmental phenomenon can be enhanced when 

analysis is performed based on multiple heterogeneous data sets[31]. At present,  

numerous attempts have been made to overcome the inherent limitations of spatiotemporal 

data, often by the integration of multiple spatial data sets to provide a more accurate and 

comprehensive flood assessment[32]. Even more, in a time-critical disaster situation, 

utilization of multiple data sources is particularly, desirable to aid in the estimation of 

flood inundation extent [33]. Contrary to the approaches employed by various existing 

studies presented in the literature review section, which were based on one or a very scanty 

set of factors.  

 

For instance, regional flood vulnerability were identified by non-spatial(survey-based) 

study conducted in the State of Kelantan, Malaysia [34] and Abeokuta, Nigeria [35]. 

Despite the successes recorded in identifying regions vulnerable to floods, the studies 

recommend the need for long-lead prediction and also the need to identify the changes in 

water body to prevent flood-induced impacts. These recommendations involve the use of 

additional relevant factors that can reveal the pattern of vegetation and water content 

within the regions for better decision-making as adopted in [36]. This is because, accurate 

information obtained from multiple factors to depict the extent of water content is crucial 

in flood management [37].  

 



8 

 

Often, this information is difficult to obtain using the aforementioned survey techniques 

as a result of the fast movement of water contents in floods, tides, and storm, or may be 

inaccessible using the survey means [38]. The synoptic, repetitive nature of 

spatiotemporal data set enables monitoring of water bodies over large regions of land [38]. 

The use of these data sets to generate multiple relevant factors that influence floods was 

equally recommended in the study conducted by[39]. To this effect, in assessing the level 

of havoc caused by flooding event, satellite imageries were equally pre-processed in the 

study conducted by [40]. Although, the pre-processing approach employed generated the 

desired results by identifying vegetal and anthropogenic causative factors. Nonetheless, 

inclusion of other relevant factors (i.e. multiple factors) based on the hydrological, and 

topographical components to reveal the direction or accumulation of flow would have 

considerably enhanced the result beyond damage assessment to vulnerability 

identification which would have been employed for flood management in the future.  

 

In the same vein, while classifying regional flood vulnerability in Niger state, i.e. the study 

area considered in this research, in the study conducted by [29], a single set of spatial data 

was pre-processed to identify the variability of regional flood vulnerability [29]. 

Evidently, the result obtained from this study presented a relative level of accuracy. 

Nevertheless, the regions of Suleja, in Niger State, Nigeria was incorrectly classified to 

be non-vulnerable. Unfortunately, these regions have continued to experience severe 

floods in the past two years. This erroneous analytical result can be attributed to the use 

of a single factor to determine regional flood vulnerability within the aforementioned 

study [29]. Therefore, this research addresses this limitation by employing multiple factors 

aimed at generating better analytical results. 
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Comparing today’s availability of satellite imagery to the situation about ten years ago, 

the availability of satellite imagery covering a certain disaster event has improved 

substantially [41]. Nonetheless, as demonstrated by these aforementioned studies, the 

analysis was based mainly on a single or paucity of flood causative factors to identify 

flood vulnerability instead of multiple factors. Thus, in order to achieve a reliable and 

accurate results, multiple relevant factors, such as topographical, hydrological factors, etc. 

are required to be identified to accurately classify vulnerable regions prior to performing 

long-lead upstream flood prediction [42].   

 

Additionally, it is noteworthy that the identification of these multiple spatial factors leads 

to the collection of a heterogeneous and voluminous amount of data [43]. Evidently, 

satellite imageries exude an intensive nature; the increase in volume of data, increases the 

complexity of the pre-processing [1],[44]. While some studies have claimed that, the ideal 

means of averting the complexity in a voluminous sets of data is by avoiding the use of 

such data sets due to the presence of noise[45], which can adversely lead to erroneous 

analysis[46]. And even though pre-processing spatial data is by no means an easy task 

[47], nonetheless, since the basis for this research is formulated around an intensive 

spatiotemporal data pre-processing scope, an approach was proposed to ensure accurate 

pre-processing of the identified multi-factors. This essentially is due to the fact that the 

scientific study of extreme hydrological events, such as flood still has not yet been fully 

explored, in addition to the constraint faced by bodies responsible for flood risk 

assessment and flood warnings in providing efficient procedures [48]. Unfavorably, 

accurate estimation of flood vulnerability is not a simple issue as multiple factors must be 
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considered[49].Hence, this research proposes a holistic procedural means to pre-process 

the identified multi-factors. 

 

On the other hand, the political pressure on the scientific bodies to proffer long-lead flood 

prediction has increased in light of the recent flooding events in some parts of the world 

[50]. While flood predictions have been a widely known area of research [51],[52], only 

a few works have been reported on spatiotemporal and GIS-based approaches [51],[52], 

as in the case of this research. This is attributed to the inefficiency and unreliability of the 

existing works [51],[52], An effective flood predictive approach can aid to mitigate the 

worst impacts of flood-induced events resulting from heavy precipitation lasting for days 

[53]. quintessentially, a sufficient lead time (long-lead) is required for proactive 

measures[54].  

 

Generally, long-lead prediction of extreme precipitation, i.e., prediction of 6-15 days 

ahead of time is important for understanding the prognostic predictive potentials of many 

natural disasters, such as floods [55]. This enables an adequate implementation of rescue 

and evacuation operations as well as mitigating measures [56],[57]. More essentially, the 

need for an improved lead-time allows time to prepare and disseminate more information 

and also to mobilize towards the vulnerable regions[58]. Hence, the need to have an 

adequate long-lead prediction of any flooding events became crucial. Conversely, various 

adopted techniques and approaches reviewed are constrained due to the lead-time obtained 

which ranges between 1 hour to 24 hours. Also, due to the paucity of data sets used and 

the scope considered [51],[59],[60],[61],[62].  Interestingly, the study conducted for the 

State of Kelantan, Malaysia in[63], which attained the lead-time of seven days presented 
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a considerable lead-time towards flood mitigation. Nonetheless, this study is equally 

constrained due to its inability to identify those other flood influencing factors in addition 

to the influence of precipitation. And as a result, the recommendation for further studies 

to identify other flood influencing factors prior to performing the prediction was made 

therein.  

 

Thus far, this research has identified the challenges posed by the insufficient use of flood 

causative factors, the complexity of adopting such data intensive approach and above all, 

the inadequacy of predictive lead-time. Therefore, to address the theoretical perspectives 

of this research, and to attain its underpinning practical objectives, this research proposes 

a hybrid technique that is capable of classifying regional flood vulnerability and 

performing long-lead upstream flood prediction for those regions identified to be 

vulnerable as adapted from [63] and [64]. Essentially, a hybrid approach was needed to 

combine both pre-processing of multi-spatiotemporal data and prediction of upstream 

flood occurrence in order to have a better understanding of influence of rainfall on other 

relevant other flood causative factors which essentially has practical implications in 

determining the accuracy in the classification of flood vulnerability. This is because flood 

occurrence depends on the complex interactions between rainfall and the spatial 

factors[65], considered to be FCFs. 

 

Finally, while various studies which were reviewed provided useful insights on the 

exploration of multi-spatiotemporal factor for regional flood classification and also long-

lead upstream flood analysis, nonetheless, they equally presented some analytical errors 

ranging from the inaccurate identification of vulnerable regions to inadequate predictive 
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lead-time. Therefore, to ensure the reliability of the obtained analytical results from this 

research, the accuracy of the developed hybrid multi-factorial framework needed to be 

ensured. Although, the development of robust accuracy assessment methods for the 

validation of spatial data represents a difficult challenge for the geospatial science 

community[66]. However, the need for assessing the accuracy of a map generated from 

any spatiotemporal data has become universally recognized as an integral component of 

any research in order to ensure the reliability in decision-making [66]. Consequently, an 

accuracy assessment approach was proposed. 

 

Sequel to the aforementioned challenges associated with multiple spatiotemporal data pre-

processing for long-lead prediction, this research outlines the following issues: 

 

1. Insufficiency of relevant flood causative factors considered, resulting in poor 

identification of regional flood vulnerability and long-lead analysis; 

2. Complexity in pre-processing multiple spatiotemporal sets of data considered for 

regional flood vulnerability classification; 

3. Inaccuracy in identifying regional flood vulnerability, and inadequacy in 

performing long-lead prediction; 

4. Absence of a reliable accuracy assessment approach for the obtained results. 

 

In order to fill these aforementioned research gaps, an approach based on multi-

spatiotemporal data sets, which requires the identification and collection of multiple 

relevant flooding causative factors to be pre-processed in order to accurately classify 
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regional flood vulnerability and perform an adequate long-lead upstream prediction was 

proposed. 

 

1.4    Research Questions 

This research addresses the following research questions: 

I. What are the relevant spatiotemporal causative factors in flood vulnerability? 

II. How can multi-spatiotemporal flood causative factors be pre-processed for 

regional flood vulnerability classification? 

III. How can a hybrid framework be developed to classify flood vulnerability based 

on multi-factors and perform long-lead upstream flood analysis? 

IV. How can the accuracy of the developed hybrid framework for both vulnerability 

classification and long-lead analysis be assessed? 

 

1.5   Research Objectives 

 

The novelty of this research lies at the intersection of the broadly-defined multiple 

spatial and temporal data to perform a long-lead upstream flood prediction within 

vulnerable regions. Therefore, the overarching objectives of this research are as follows: 

I. To identify multiple relevant spatiotemporal causative factors in flood 

vulnerability; 

II. To define a multi-spatiotemporal FCF pre-processing approach needed for 

regional flood vulnerability classification; 

III. To develop a hybrid framework capable of classifying regional flood 

vulnerability and performing long-lead upstream flood analysis; 

IV. To assess the accuracy of the developed hybrid framework for both vulnerability 

classification and long-lead analysis.  
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1.6   Scope of the Study 

In line with the scope of this research, which is uniquely to focus on the upstream cause 

of flood, this section discusses various forms of data as well as the components of the 

proposed hybrid framework adopted in order to attain the defined objectives of the 

research. 

 

1.6.1   Data 

As earlier identified in the problem statement, various reviewed studies are inherently 

defective due to the paucity data employed. In order to address this limitation, multiple 

sets of data considered suitable for the purpose of this research were identified from the 

use or recommendation of such data sets by the extant studies. The generality of these sets 

of data include: 

I. NigeriaSat-x Satellite Image: Needed for Topographical and hydrological 

features of the study area; 

II. Daily Water Level: Needed to estimate the volume of water discharged by 

river towards the neighboring surroundings; 

III. Precipitation (Rainfall) Data: Data from continuous measurement of natural 

rainfall to identify the amount of rainfall covering from 1979-2016; 

IV. Temperature data: To determine the correlation between the rainfall and 

temperature and the influence on upstream flooding; 

V. Flood Inventory in the study area: To recognize the records of flooding 

events as well its regional the frequency that occurred at a place; 
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VI. Satellite LandSat8 Image: Needed to identify water bodies and vegetal 

stratification; 

VII. Shape file: Shapefiles contain all the geographical attributes of a map such as 

boundaries, states and the regions; 

VIII. LandSat Path and Row Map: Needed to download LandSat8 scenes for the 

study area; 

IX. Global Inventory on natural disasters. 

 

1.6.2   Framework Hybridization 

Broadly, hybridization denotes the merging or combination of two elements to form a 

single enhanced element. Recently, there is an effort being made towards overcoming 

some methodological limitations of a single technique by combining other research 

techniques simultaneously [67]. This is because, the complexity of systems and their 

multi-faceted relationships requires combination of technical approaches in order to 

provide a greater  insights to problem solving [67]. Ultimately, within the scope of this 

research, the combination of techniques to form the hybrid framework was ensured by 

considering the underlying methodological strengths of pre-processing multi-

spatiotemporal features and the functionality of long-lead analysis.  

 

Essentially, the developed hybrid framework is the fusion of two distinct facets; 

combining the multi-spatiotemporal data to identify and classify regional flood 

vulnerability, while the other facet performs the long-lead upstream flood prediction, 

which were adapted from several arrays of studies in flood mitigation, the novelty of this 

framework resides in its exhaustive approaches in ensuring the use of multiple flood 



16 

 

causative factors to identify and classify regional flood vulnerability and also to perform 

a long-lead flood prediction at a considerable amount of lead-time over a wide area. The 

result of the hybrid framework is intuitive and comprehensible enough to enable end-users 

leverage the full potentials of the acquired output for decision-making especially, in 

proactive flood mitigation.  

 

Additionally, the hybrid framework describes the approaches of multi-spatiotemporal data 

cleaning and feature extraction which are needed to enhance the interpretive accuracy in 

analyzing upstream floods over a complex and vast terrain. Accordingly, each phase of 

the framework performs distinct tasks. With an initial phase being the identification and 

collection of multi-spatiotemporal data, the second consists of the pre-processing tasks of 

these collected data sets. While the third, is the vulnerability classification, and long-lead 

flood analysis, and the accuracy of outputs was assessed in the course accuracy assessment 

in phase four prior to the validation of the developed Hybrid Multi-spatiotemporal data 

framework for Long-lead Upstream Analysis (Hym-SLUFA), as detailed in Chapters 

Three and Four. 

 

As mentioned thus far, spatiotemporal data sets remain the fundamental components for 

performing the flood vulnerability classification and long-lead analysis in this research. 

However, to avoid a redundant presentation of literature, and to also adhere to a logical 

and structural presentation of thesis writing, a detailed discussion on the data sets and 

tasks involved in various segments of the proposed framework is made in Chapter Three.  
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1.7   Significance of the Study 

This research contributes to the body of knowledge within the domains of big spatial data 

and big data analytics. This is particularly dominant in the facets of multi-spatiotemporal 

data pre-processing and its analysis for flood vulnerability classifications, and long-lead 

analysis of potential flooding events. As earlier mentioned, to mitigate the impacts of 

floods, it is essential to identify those areas that are vulnerable to floods with their 

corresponding levels of vulnerability and the recognition of any potential flooding events 

in a long-lead timeframe. Concisely, the contributory aspects of this research to the body 

of knowledge are summarized as follows. 

 

1.7.1 Theoretical Contribution 

This research has proposed a hybrid framework to pre-process multiple spatiotemporal 

data sets and perform a long-lead upstream flood analysis based on geographic 

information system GIS theory. The developed HyM-SLUFA framework was adapted 

from the concepts of other existing frameworks and recommendations provided by other 

studies in the areas of flood disaster management within the study area and other parts of 

the world as detailed in Chapter Two. As highlighted in section 1.2 (problem statement), 

the existing studies for flood analysis are constrained by the lead-time and the absence of 

other several relevant causative factors to correctly identify vulnerable areas. Therefore, 

this research has addressed these aforementioned limitations by utilizing multi-factorial 

approach to accurately classify regional flood vulnerability prior to performing long-lead 

analysis within the study area. 
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1.7.2   Methodological Contribution 

Broadly, various procedural approaches employed in the phases of the proposed hybrid 

framework have an important contributory significance to the body of knowledge. 

Particularly, since the data sets used in this research were initially acquired covering the 

entire surface of Nigeria. These sets of data did not only present the information in an 

unclean and raw format, but the coverage of the satellite imageries transcends the study 

area. Therefore, demonstrating the methods used in acquiring, cleaning and extracting 

scenes and coordinates representing the study area using the framework is considered a 

useful methodological contribution which can be adopted or adapted in similar data 

intensive studies. This is in addition to various means of classifying regional flood 

vulnerabilities. The results obtained from both theoretical and methodological facets were 

used to make various practical recommendations for decision-making in order to take 

proactive measures aimed at mitigating the impacts of any potential events within the 

study area. 

 

1.7.3 Practical Contributions 

This research has a practical contribution resulting from the proposed frameworks which 

aid in the classification of regions based on their corresponding levels of vulnerability. 

Also, the identification of any potential flooding events within the study area. These were 

required in order to proffer suggestions and recommendation for the local authorities in 

the study area for flood mitigation decision-making. Hence, these aspects of this research 

fundamentally demonstrate the importance of the developed hybrid framework in 

recognizing regional flood vulnerability and a potential floodable situation. More 

essentially, in identifying the minimum volume of rainfall that instigate a flooding event, 
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referred to as Flood Inducible Precipitation Volume (FIPV), policies as well as proactive 

measures can be implemented to mitigate or entirely avert flood induced disasters, which 

has been the underpinning motivation of the research. Beyond the regional scale, the 

proposed frameworks can be adopted or adapted in Malaysia, or other parts of the world 

facing similar flood-related issues. 

 

1.8 Organization of the Thesis 

The overall structure of the thesis detailing the research takes the form of six chapters, 

which includes: 

 

Chapter I— Introduction 

 This Chapter introduces the study and provides background details on the need to employ 

multiple factors in flood vulnerability classification and also highlights the importance 

of long-lead prediction. It discusses the context of the research and the motivation behind 

it. The chapter also outlined the research questions, and objectives. It further provides an 

overview of the research contributions and the data sets employed for the proposed 

framework in the research in addition to definition of some key terms used in the course 

of writing the thesis.  

 

Chapter II— Literature Review 

This chapter reviews the academic literature on floods and its related environmental as well 

as economic impacts. Various approaches adopted for flood mitigation and the associated 

limitations have been presented in this chapter. This chapter equally presents a review on 

lead-time flood predictions, and also discusses the supporting and the underpinning 

research theory.  
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Chapter III— Research Methodology 

This chapter discusses the research design and the methodological approaches employed 

in conducting this research. It further explains the rationale for pre-processing multiple 

factors for flood analysis, which provides insights on the process of performing the 

hybridization towards classifying regional flood vulnerability and performing long-lead 

upstream flood prediction. The chapter also presents various means of accuracy 

assessment prior to the validation of the developed framework.  

 

Chapter IV— Framework Development 

This chapter demonstrates the developmental strategies employed in the development of 

the framework using multi-spatiotemporal-based approach. Ultimately, this chapter 

implemented a hybrid technique to perform regional vulnerability classification and long-

lead flood predictive analysis using the pre-processed multiple factors. It also generated 

the major findings of this research which are elaborated in Chapter Five. 

 

Chapter V— Research Findings and Discussion 

This chapter presents a comprehensive discussion on the findings, drawing on both 

experimental and inferential observations in the course of conducting this research. 

 

 

 

Chapter VI— Conclusion and Recommendations 

This chapter provides answers to the research questions, and also explains how findings 

have fulfilled the research objectives and how the identified problems were addressed. In 
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addition, it summarizes the key findings and makes policy recommendations for the local 

authority towards flood mitigation. Finally, it presents the limitations of the research and 

outlined the aspects that can be considered in future studies. 

The aforementioned chapters are intrinsically linked in order to produce a logical and 

well-structured thesis as illustrated in Figure 1.1. 

 

Figure 1.1.A Schematic Illustration of Sectional Links 

 

Although, this thesis is structured from Chapter One. However, the systematic review of 

the literature in Chapter Two was initially done prior to the formation of chapter one as 

well as other chapters. Broadly, the entire foundation (problem statement) of this study as 

presented in Chapter One was identified from the reviewed studies in Chapter Two. In the 
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same vein, Chapter Two generated the research methodologies in Chapter Three based on 

various methods used in the reviewed studies, as well as the recommendations made in 

those studies. The methods served as a guide in the implementation of the framework in 

Chapter Four, which was needed to extract various flood causative factors. The extracted 

factors were employed in Chapter Five to identify regional flood vulnerability and long-

lead analysis. Finally, the thesis was concluded with a presentation of the obtained results, 

which served as the basis for the assessment and the eventual validation of HyM-SLUFA 

framework.  

 

1.9   Definition of Terms 

For the aim of clarification and simplified comprehension of this thesis, these frequently 

used terms were gathered from Environmental Systems Research Institute (ESRI) based 

on contextual definition as appeared within the literature:  

I. Delineation: Defining the physical boundaries of a stream, floodplain, 

jurisdictional wash, etc. 

II. Error Term: An error term is a variable in a statistical or mathematical model, 

which is created when the model does not fully represent the actual relationship 

between the independent variables and the dependent variables. As a result of this 

incomplete relationship, the error term is the amount at which the equation may 

differ during empirical analysis. The error term is also known as the residual, 

disturbance or remainder term.  

III. Exposure/Vulnerability: The presence of people; livelihoods; environmental 

services and resources; infrastructure; or economic, social, or cultural assets in 

places that could be adversely affected by flooding events. 
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IV. Feature Extraction: The process to represent raw image in a reduced form to 

facilitate decision making such as pattern detection, classification or recognition. 

V. Framework: a basic conceptual structure of interlinked ideas represented by 

processes which supports a particular approach required to attain a desired 

objective(s).  

VI. Geomorphology: The study of the physical features of the surface of the earth and 

their relation to its geological structures. 

VII. Hydrology: The scientific analysis of rainfall and runoff, its properties, 

phenomena and distribution; as well as water dynamics below the ground and in 

the atmosphere. 

VIII. Isohyet: A line on a map connecting points having the same amount of rainfall in 

a given period. 

IX. Lithology: The lithology of a rock unit is a description of its physical 

characteristics visible at outcrop, in hand or core samples or with low 

magnification microscopy, such as contour, texture, grain size, or composition. 

X. Long-lead: The ability to recognize any potential upstream flooding occurrence 

to at least 6-15 days in advance.  

XI. Nonlinearity: A process is called nonlinear when there is no simple proportional 

relation between cause and effect. The climate system contains many such 

nonlinear processes, resulting in a system with a potentially very complex 

behavior. Such complexity may lead to abrupt climate change. See also 

Predictability. 

XII. Normal Distribution: The normal distribution, also known as the Gaussian or 

standard normal distribution, is the probability distribution that plots all of its 
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values in a symmetrical fashion, and most of the results are situated around the 

probability's mean. Values are equally likely to plot either above or below the 

mean. Grouping takes place at values close to the mean and then tails off 

symmetrically away from the mean. 

XIII. Pattern:  In image processing, the computer-based identification, analysis, and 

classification of objects, features, or other meaningful regularities within an image. 

XIV. Peak Flow: The maximum rate of flow through a watercourse for a given storm 

XV. Runoff: Surface water resulting from rainfall or snowmelt that flows overland to 

streams, usually measured in acre-feet (the amount of water which would cover an 

acre one-foot deep). Volume of runoff is frequently given in terms of inches of 

depth over the drainage area. One inch of runoff from one square mile equals 53.33 

acre-feet. 

XVI. Situation: An interpretive representation recognizing the severity or mildness of 

an upstream flood. 

XVII. Stratification: The process of dividing an area to be monitored up into units to 

increase the efficiency of monitoring. 

XVIII. Spatiotemporal data: Spatiotemporal datasets normally comprise of condition of 

an entity, an event or a position in space over a period of time.  

XIX. Topography: The term topography represents the study of the shape and features 

of land surfaces. 

XX. Trend: A spatially nonrandom variation in the value of a variable that can be 

described by a mathematical function. 

XXI. Transient response also referred to as natural response represents the response of 

a system to a change from an equilibrium or a steady state. 
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XXII. Upstream: Related to event induced by heavy rainfall or natural factors inducing 

downstream havoc.  

XXIII. Vulnerability: The characteristics and circumstances of a community, system or 

asset that make it susceptible to the damaging effects of a hazard.  

 

1.10 Chapter Summary 

 

 

This chapter provides the background for the research as well as the statement of the 

problems, which formed the underpinning motivation for this research. The identified 

limitations in the extant studies prompted the need for the research questions and its 

corresponding objectives as itemized in this chapter. The main aim of this research is to 

device a mechanism for accurately measuring long-lead flood prediction. Broadly, 

flooding events are intrinsically dynamic due to the involvement of multiple flood 

causative factors which require multifaceted means of pre-processing multi-

spatiotemporal data for reliable analysis. Therefore, the ensuing chapter discusses the 

review made on floods and its related impacts, mitigating measures proposed by various 

studies, the corresponging challenges as well as the  limitations within these studies. 
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CHAPTER TWO 

LITERATURE REVIEW 

 

2.1.   Introduction 

This section provides a broad discussion on floods in comparison with other weather-

related hazards in section2.2. The impacts of floods is presented in section 2.3. Section 

2.4 describes the study area and its associated flood vulnerability. Essentially, the 

foremost step in developing a body of knowledge commences by considering previous 

studies in order to gain insights on the extent to which the extant studies have attained, 

and identify the procedures employed in addressing the focus of these studies [68]. 

Therefore, a critical review of relevant literature was ensured to proffer insights on the 

major challenges associated with flood management strategies, the approaches that have 

been employed to pre-process spatiotemporal data for regional flood classification, and 

the need for long-lead upstream flood analysis were explained in sections 2.5 and 2.6 

respectively. The concepts of flood causative factors and GIS theory are also introduced 

in section 2.7, and the chapter concludes with a summary in section 2.8.  

 

2.2.   Background on Flooding 

Floods are among the most devastating natural disasters known globally, inflicting 

monumental harm to lives and causing severe damages to properties, thereby presenting 

direct impacts to the socio-economy as well as the environment of the affected area(s) 

[69],[70],[71].  Contextually, flood represents a momentary state of incomplete or total 

inundation of a normally dry portion of land as a result of excess of waters from an 

uncommon increase from natural or artificial sources [72]. However, it is generally 
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believed that poor countries will suffer excessively from flooding disasters not only 

because of the global warming, but also as a result of population, poverty and their poor 

adaptive capacity [73], [74]. 

 

At present, weather-related disasters are becoming progressively recurrent, due mostly to 

a constant upsurge in the numbers of floods and storms. And regarding the rate of fatalities 

caused by these natural disasters, data collected from a disaster research organization 

based in Belgium, Centre for Research on the Epidemiology of Disasters (CRED) [75], as 

illustrated in Figure 2.1, indicates that 605,000 lives were lost in weather-related disasters 

between 1995 and 2015 with 242,000, 164,000,157,000,22,000 and 20,000 for storm, 

extreme temperature, flood, drought and landslide respectively.  

 

Figure 2.1. Number of People Killed by Weather-related Disasters(1995-2015)[75]. 

From this illustrative data, between1995-2015, 157,000 lives have been lost due to 

flooding events representing 26%. While it has also been reported that, floods has caused 

the number of impacts amongst natural disasters globally as illustrated in Figure 2.2. 
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Figure 2.2. Number of People Affected by Weather-related Disasters (1995-2015)[75]. 
 

As illustrated by Figures 2.1 and 2.2, in the last twenty years, the overwhelming majority 

(90%) of disasters were caused by floods, storms, extreme temperature and other weather-

related events. In total, 6,457 weather-related disasters were recorded globally by 

Emergency Event Database (EM-DAT). Over this period, weather-related disasters 

claimed 605,000 lives, an average of around 30,000 per annum, with an additional 4.1 

billion people who were either injured, left homeless or in need of emergency assistance.  

 

At present, there is a consensus that hazards which occur due to hydrological extremes 

such as flooding, are on the rise amongst other natural disasters such as storms and 

extreme temperature. The nature of disastrous floods has also changed in recent years, 

with flash floods, acute riverine and coastal flooding increasingly frequent. In addition, 

urbanization has significantly increased flood run-offs, while recurrent flooding of 
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agricultural land, particularly in Asia, has taken a heavy toll in terms of lost production, 

food shortages, consequently leading to economic losses as shown in graph represented 

by Figure 2.3. 

 

Figure 2.3.Annual Reported Economic Losses and Time Trend from Disasters:1980 -

2015[75]. 

 

Figure 2.3 (Graph) is a copyrighted data with a given permission to use in Appendix A 

shows the annual reported economic losses and time trend from disasters between 1980 

and 2015 comparing present to the past (EM-DAT, 2016). 

 

A critical examination of the aforementioned global disaster databases from EM-DAT for 

over four decades (1980-2015), revealed that climatic events (flood, storms, extreme 

temperature and drought had led to the total estimated economic loss each year from 

disasters ranges between the US $ 250 billion and the US $ 300 billion. Evidently, flooding 

events have demonstrated an increasing trend in various parts of the world. The root causes 

are attributed to the increased extreme rainfall as a result of climate change which is also 

aided by both natural and anthropogenic factors. For instance, the level of flood 

vulnerability and the magnitude of its impacts are largely attributed to many causative 
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factors such as the topography, hydrology and the vegetal nature of the study area 

considered. These causative factors influence flooding in various modes and at various 

degree in exposing the environment to devastating flooding events as further elaborated 

in the ensuing section. 

 

2.2.1  Flood Causative Factors 

Generally, floods occur primarily as a result of heavy downpour, unexpected or substantial 

melting of ice as well as failure of river protective walls [74].  The moment there is a 

rainfall, there occur an evaporation of a certain quantity into the atmosphere, and a certain 

quantity penetrates the soil descending into the system of groundwater. In this process, 

some volumes are captured by vegetation while the remaining quantity eventually moves 

into rivers, which is referred to as runoff.  This generally gives [74]: 

Runoff = Precipitation - Infiltration - Interception - Evaporation 

Evaporation carries a small value of this representation, mostly within a short window of 

time, and as such, infiltration, precipitation as well as interception carry larger values 

which define runoff and the subsequent release toward the river [74]. Generally, floods 

are mostly caused either by natural factors or anthropogenic factors as illustrated in the 

Figure 2.4. 
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Figure 2.4: Flood Causative Factors 

Primarily, precipitation or rainfall is the most influential factor in instigating a flood. 

Nonetheless, there are several other contributing factors. For instance, when rain falls on 

a catchment, the volume of precipitation that gets to the water ways reaches the streams 

depends on the nature of the catchment, mostly topography, and vegetation [76]. 

Specifically, with the occurrence of a heavy rainfall than usual within a specific region, 

runoff is likely to increase, consequently, presenting a high tendency for flood to occur 

[74].  Substantial downpour could be represented with the aid of Figure 2.5, illustrating 

curves (isohyets), while the Figure is referred to as isohyetal maps[74]: 

 

Figure 2. 5.  Distribution of Rainfall 

1. When the quantity of downpour is much within a little time, the corresponding lag 

time will be short. 
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2. When the quantity of the downpour is prolonged, the corresponding lag time will 

be extended, and the lag time is reduced in the absence of infiltration and 

interception. 

 

2.2.1.1   Natural Causative Factors 

In addition to precipitation, there are other natural flood causative factors which can be 

considered to reveal regions that vulnerable to floods and the corresponding levels of 

vulnerability within the study area as discussed in the ensuing sub-subsection. 

 

2.2.1.1.1   Topography Factors 
 

Topography plays a crucial role in spatial variability of hydrological situations, such as 

soil moisture and flow of groundwater. For some regions, vulnerability is often intensified 

by regional topographic conditions [77]. This generally involves the elevation and the 

slope angle of the area.  Elevation and slope equally play vital roles in determining the 

stability of a surface. The slope affects the direction and volume of surface 

runoff/subsurface drainage reaching a site. Slopes have a more influential influence in 

contributing rainfall to stream flows [78], since it determines the extent of overland flows, 

infiltration as well as subsurface flow.  

 

The combination of the slope angles fundamentally outlines the form of the slope and its 

relationship with the lithology, structure and the soil type. By implication, steeper slopes 

are more susceptible to surface runoff, while flat terrains are susceptible to water logging. 

Relatively, low gradient slopes are highly vulnerable to flood occurrences. While in most 

of the regions, the entire flood vulnerable area situated within a straight or flat elevated 

surface [78]. 
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2.2.1.1.2   Hydrological Factors 
 

Generally, the hydrology of a surface is associated with the identification of water flow 

on the surface within hydrological cycle, and the conveyance of elements, such as 

sediments and pollutants along with flowing water [79]. In order to reveal the hydrological 

characteristics and the level of influence in flooding, the flow direction, flow accumulation 

and topographical wetness index are indispensable.  This is because, a spatial hydrological 

process triggers the flow of water and transport over specific regions of the study area 

which can consequently cause severe flooding.  

 

 

2.2.1.1.3   Land Cover Factors 

Land cover variation is known to affect both surface water and soil hydrological contents 

by changing the hydrological substances of the surface and modifying the forms and rates 

of water flow [80]. More precisely, land cover changes influence evapotranspiration and 

surface runoff routing by altering the physical structure of vegetation and surface 

roughness[80]. These causative factors are considered within the scope of this research in 

order to determine the level of regional vegetation or greenness determined by Normalized 

Difference Vegetation Index (NDVI). The NDVI is the greenness index associated with 

the proportion of radiation that are photosynthetically absorbed which reflects the 

chlorophyll activity in plants within the surface.  

 

Precisely, when there is a rainfall over a barren slope, it flows on the surface faster than 

in forest area [81]. Based on various levels of vegetal density, the land cover was classified 

into “Bare soil”, “low vegetation”, “dense vegetation” and “water bodies” these 
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classifications equally have their distinct levels of flood vulnerability as discussed in the 

framework development analytical section as discussed in Chapter Four of the thesis. 

More importantly, understanding the distribution and dynamics of land cover is crucial to 

enhance the comprehension of the earth’s relevant features, including productivity of the 

land, the diversity of plant and animal species, and the biogeochemical as well as the 

hydrological cycles [82]. Assessing and monitoring the distribution of this factor remains 

an utmost priority in studies on global environmental changes as well as in daily planning 

and management [82].  

 

2.2.1.2   Anthropogenic Causative Factors 

Anthropogenic or man-made factors such as crops, buildings, and infrastructure directly 

replace portions of natural systems. In addition, anthropogenic influence can also obstruct 

species’ movements across landscapes or contribute to environmental degradation through 

waste[83]. While the vegetal or greenness of a surface prevents a free flow of water that 

can lead to flood, in the case of these anthropogenic factors, the vegetation is removed 

thereby causing floods[84].  

 

2.2.1.2.1   Impervious Surfaces 

The impervious surfaces mostly correspond to regions where runoff is rapidly active 

during a storm event as a result of lack of infiltration of water into the soil. Employing the 

means of identifying the land use in GIS, the assessment of the impervious regions are 

performed by identifying imagery cells that correspond to roads, building as well as 

gullies[85]. Within the scope of this research, vegetal stratification was considered since 

the activities of land use generally determines the vegetal level of a region.  
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2.2.1.2.2   Buildings 

Erecting structures on river floodplains, indiscriminate waste dumping are common in 

both rural and urban regions. In some instances, building approvals are given without 

clearly considering the nature of the surface and the impacts of the construction on the 

quality of the environment and location. Such buildings hinder the free flow of water, and 

can lead to floods at the downstream. Ironically, some of the motives for building around 

these floodplain regions are due to violation of government building regulations, 

ignorance, inheritance and scarcity of land suitable for development [86]. Aside the losses 

of lives and other devastating impacts to environments as a result of flooding events, the 

ensuing sections also highlight some of the impacts to the ecosystems as well as the 

economic impacts.  

 

2.3   Impacts of Flooding 

 

Globally, approximately 122,000 lives have been lost due to flood related issues in the last 

decade. It has also been estimated by the United Nations University that two (2) billion 

individuals could be affected by floods by 2050, out of which a greater portion will be 

Asians [99]. Despite huge monetary budgets committed into flood-control protective 

structures, such as levers and dams, the damages caused by flood still persist on a very 

high level over the years[87], resulting to some chemical and economic impacts. 

 

For impacts of flood on soil contents, flood removes gas openings which can restrict soil 

and gaseous interchange towards the molecular distribution in soil water [87]. 

Consequently, the strength of the soil is reduced by the loss of cohesion, making it 

impossible to use heavy equipment on the affected area as a result of the chemical impacts. 
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In the aspects of the economy, flood leads to a possible primary and secondary monetary 

losses within a region as a result of havoc inflicted on properties and both in agricultural 

and industrial sectors, leading to reduction in efficiency and earnings [88], [87],[89]. The 

impacts of flooding do not primarily concern lives, but most severely properties and social 

activities. This can be attributed to the uncertainty created by the increasing trend of 

climate change which on the other hand, has continuously increased the level of havoc as 

a result of the floods experienced. After an elaborate discussion of flooding, impacts and 

causes on a global point of view, the ensuing section describes the study area and its 

associated vulnerability to flood. 

 

2.4   Study Area and Associated Flood Vulnerability 

Further to the previous discussion, Nigeria like some other parts of the world, experiences 

annual rainfall-induced flooding events that cause severe havoc[90],[91],[92]. Early 2012, 

Nigeria was hit by a severe flood, claiming lives of about 430 persons, rendering 566,466 

homeless, and affecting a land area of around 4,701 km2 [92]. The raining seasons of May 

and October in Nigeria are usually marked by flash floods. Recently, the country 

witnessed one of its worst devastating impacts in 40 years in 2012 [116]. The post disaster 

estimation indicated that about 70% of the population is vulnerable to this disaster, which 

is detrimental to lives and properties [93].  

 

Specifically, the study area, which is Niger State, has a history of flood due to its location 

at the discharge point of the River Niger, measured at 4160 km long, considered the 12th 

longest river in the world and the third longest in Africa[94], after rivers Nile (Egypt) and  
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Zaire(Congo) with 6,650km and 4,700km length respectively. The general scope of this 

research is to identify a reliable and accurate means of explaining the regional variation 

in flood vulnerability and its occurrence in Niger State of Nigeria by pre-processing 

multiple spatiotemporal data sets related to the State and also performing long-lead 

upstream flood prediction accordingly. Here, in order to predict any potential flooding 

event for the regions identified to be susceptible to upstream floods, this research 

considers Niger State which is geographically indicated in Figure 2.6 as the study area 

because of the vast complex land mass that is prone to annual flooding events. 

 

Figure 2. 6. Geographical Location of Niger State, Nigeria 

 

Furthermore, Niger state which is located between latitudes 8.02◦N and 10.20◦N and 

longitudes 4.38◦E and 5.73◦E. Based on the census conducted in 2006 has an estimated 

population to be 3,954,772[30]. The State covers a landmass of 72,200.14km2 with 

18,007.38km2, 24,181.04km2, 20616.09km2 and 9,593.3km2 for valley, plains, upland and 
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highlands respectively [29],[95],. Additionally, the state is situated in the central part of 

the country with Minna as the capital [96], [95], as shown in Figure 2.6. Also, Niger state 

is the home for main hydro-electric plants, which are the Kainji[97], Tagwai and Shiroro 

dams[98], contributing greatly in the generation of electricity to the country. 

Unfortunately, these same hydro-electric plants serving as sources for social amenities are 

also the sources of some destructive events affecting lives and properties as a result of 

flooding [98].  

 

Additionally, Niger State experiences variation in the volume of rainfall between the 

average of 1200mm to 1800mm at its peak level in the southern region of the state to an 

average of between 800mm and 1500mm at the northern region. Rainfall is prevalent 

during the wet season, with the months of June to October which are usually identified as 

the months witnessing the highest volume of rainfall instigating to flooding havoc 

occurring around these months. The latitudinal situation of the state has rendered the state 

to high flood vulnerability with large regions of the states situated within the lower terrain 

along the largest river in Nigeria, River Niger inducing the hazards of annual flooding 

towards the communities adjacent to this river as well as those within the valleys [29]. 

 

Evidently, floods present the most profound events worldwide[99],[100]. Inhabitants in 

various parts of the world have experienced devastating events resulting from flood in the 

past, spawning severe impacts to both lives and properties within the affected 

environment. Essentially, these global impacts of flooding events and devastating havoc 

highlight the increasing importance of flood hazard studies [101].Thus far, this chapter 

has discussed the concepts of flood, the causes and the impacts at both global and regional 
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levels. With various identifiable havoc created by this natural disaster, it has become 

pertinent to also identify the strategies that can be employed in managing some of the 

related impacts.  

 

2.5 Global Flood Management Strategies 

Flood management is a major concern for countries that are vulnerable to floods. In the 

last centuries, in various regions, a variety of strategies and technologies utilized for flood 

management have evolved[102].  Flood risk management approaches broadly involve the 

use of structural and non-structural interventions to mitigate flood risks [102],[103] as 

illustrated by Figure 2.7. 

 

Figure 2.7.Characteristics of an Ideal Flood Vulnerability Management: [103] 

 

These characteristics form the building blocks of a good flood vulnerability management 

 (Figure 2.7) and represent an approach that concurrently seeks to make space for water 

while supporting appropriate economic use of the floodplain.  
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Notably, flood vulnerability management possesses multiple aims associated with 

multiple time and space scales. Achieving these aims depends on the development and 

implementation of appropriate strategically measures [103]. Flood management 

consequently embeds a continuous process of adaptation that is classified under structural 

and non-structural means of flood mitigation[71],[104].  

 

In flood management strategies, the structural measures are hard-engineered structures 

such as dams, dikes, flood defences, embankments, breakwaters, levees and drainage 

channels as commonly deployed in Netherlands, Bangladesh, India and Nigeria 

[8],[105],[106],[107]. However, according to Haque and Burton [108], these structural 

measures only address the physical vulnerability of people, property, and assets, as such, 

are considered inadequate to cover the full spectrum of disaster management. Similarly, 

as a result of the current climate change, the uncertainty of atmospheric condition is 

changing and a result, the structural measures have been considered ineffective to 

efficiently manage flooding events by the studies conducted by [1],[5],[4],[6]. As a result, 

the need to consider non-structural measures becomes important. 
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2.5.1   Flood Management Strategies in other Countries 
 

Globally, various strategies have been implemented in mitigating flooding events. For 

instance, in Malaysia, where floods are the most prevalent natural disasters affecting 4.9 

million people and inflict havoc worth of several millions of ringgits every year[109], 

some structural measures such as Flood Control Dams, Canalization, Ring Bund, Tunnels 

and Storage Ponds have been adopted to mitigate flood disasters. In another joint efforts 

between Hong Kong and Singapore aimed at mitigating the impacts of floods, a structural-

based means was deployed. Drainage systems were constructed with 190 million SGD 

annually from 2010 to 2014[105]. Nonetheless, it has been identified that flood 

management can be enhanced through non-structural measures with emphasis being 

placed on land use policies, vulnerability zoning and flood monitoring as implemented in 

this research.  

 

Also in China, a study conducted in[104], shows that an effort is currently being made by 

the government towards an urban flooding disasters by constructing a ‘Sponge City” 

which is believed to help in regulating and also to serve as a storage capacity for urban 

regions. At present, thirty (30) cities have been selected as the pilot sites for the project 

with a corresponding cost of around US$1 billion for each city. However, despite this 

huge investment, nineteen (19) out of the thirty (30) pilot cities were affected by 

devastating water disasters due to the failure of the Sponge City project. Consequently, 

the reliability and efficiency of this structural measures (Sponge City) became doubtful. 

The failure and inappropriateness of the Sponge City is generally attributed to the 

spatiotemporal variability of China which has also led to variability in flooding 

occurrences in various regions.    
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Table 2.1. 

Structural Measures of Flood Mitigation 

Ref Structural Measures Country 

[109] Flood Control Dams, Canalization, Ring 
Bund, Tunnels and Storage Ponds 

Malaysia 

[104] Sponge City for water absorption  China 
[105] Marina Barrage 

Embankments/sea walls 
Singapore 

[8] Dikes Netherlands 
[106] Dikes Bangladesh  
[107] Dams Nigeria 

 

Summarily, even though the concept of structural flood mitigative measures have been 

known since the World War II between 1950s to 1960s [105], nonetheless, the lessons 

learnt from large flooding events presented a paradigm shift towards the mitigation of the 

impacts based on multi-factorial mitigation approach, i.e. non-structural measures [105]. 

Essentially, flood analysts and decision-makers understand flood vulnerability with the 

aid of a model-based assessment to identify sources of vulnerability, floodplains and the 

potential victims (lives, properties and ecosystem) as encompassed in non-structural 

approaches [105].With regards to effective and efficient flood mitigative measures, flood 

hazard and regional vulnerability that affect individuals and communities, there is the need 

to integrate non-structural measures which involves flood prediction, monitoring and 

warning systems, resettlement of population, and identification of floodplains for policy 

implementation for land use[109]. For instance, in other parts of Nigeria, and specifically, 

within the study area, there have been several conventional measures implemented at the 

national and regional levels based either on the structural or non-structural means towards 

flood mitigations, as elaborated in the ensuing sub-subsection. 
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2.5.2   Flood Management Strategies in Niger State and other parts of Nigeria 

Fundamentally, the interaction between natural and anthropogenic activities are 

unavoidable. As a result, the likelihood of increasing scale and frequency devastating 

flooding events. The extant policies or regulations, as well as other structural measures 

for flood mitigation of the environment in Nigeria are poorly coordinated and 

counterproductive. Due to poor implementation and inadequate enforcement of these 

laws, regulations standards and guidelines, as well as climate change[110]. Some of the 

national and state policies/regulatory means of flood mitigation are reviewed as follows: 

 

I. Identification and Mapping of Disaster Prone Areas: The first intervention 

by the Nigerian government towards flood management in year 1962 as part 

of National Development Plans of 1962-68, 1970-74 and 1975-80, the Federal 

and States Ministry of Works was established in order to identify and map 

areas that are prone to floods as well as other natural hazards[111]. This 

management practices was employed to sensitize the citizenry about flood risk, 

and development of flood mitigation and preparedness. 

II. Structural Measures: In the use of structural measures, the impoundment of 

dams within the flood prone areas in Nigeria  in addition to a reservoir with a 

capacity of 36 million m3 have immensely impacted on mitigating the 

associated impacts resulting from floods in various parts of the country. 

Essentially, the construction of the dams, such as Kaji and Shiroro dams in 

Niger State (The study area), which  results in an unexpected drop of water 

level which allows recovery operations in case of any flooding events. Even 
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though the use of these measures seems helpful, the usefulness is only 

immediate and does not support a longer window time for proper proactive 

measures to be implemented [112].  

III. Policies and Institutional Frameworks: As one of the units in Federal 

Ministry of Works and Housing, Federal Environment Protection Agency 

(FEPA was established to develop policies and institutional frameworks that 

can mitigate the impacts of ecological disaster in Nigeria. Its entire 

responsibility is to oversee environmental management and protection but 

without an appropriate enabling law on enforcement issues. 

 

Currently, flood risk management seeks to lessen the magnitudes of flooding as well as 

its likelihood to occur by considering a mix of management options which extend beyond 

traditional engineering measures such as flood defences (structural measures) and 

incorporate a wide range of mechanisms which are referred to as being non-structural 

[113]. More pertinently, the growing likelihood that climate change will increase flood 

occurrence in many parts of the world enhances the need to examine how to improve flood 

mitigation [105]. Therefore, in order to propose the most reliable means of flood 

mitigative measures, which involves identifying floodplains, and also providing warnings 

for any potential flooding events, this research seeks to adopt a hybrid approach based on 

non-structural means by pre-processing multiple factors based on spatiotemporal data and 

also performing long-lead prediction that can reduce economical and human risks. In 

addition to promotion of goods and services within the study area as represented in the 

preceding illustration in Figure 2.7. Generally, floodplain classification or mapping is a 
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requirement, and non-structural measures remains a pre-requisite for prioritizing land use 

practices and planning better flood mitigative measures which can be achieved by pre-

processing spatiotemporal data[114].  

 

2.6 Spatiotemporal Data Pre-processing 

Spatiotemporal data pre-processing involves the identification of appropriate satellite data 

(spectral resolution, radiometric correction, geometric correction and the extraction of 

useful information for decision-making)[115]. There is no substitute for optimal data 

identification, however, after optimal data identification and collection, data pre-

processing remains the most important step[116]. Essentially, pre-processing of 

spatiotemporal data is a vital and crucial stage of data analysis in which at the initial stage, 

raw data sets are transformed to ‘‘cleaned’’ data, from which unwanted contents have 

been removed, so that this cleaned data is better suited for flood mitigative measures[117], 

[101]. 

 

Also, the ability to observe a vast region has greatly enhanced the quality as well as the 

quantity of spatiotemporal data which is continuously gaining more relevancy in various 

domains. However, these sets of data are exposed to noise during the acquisition from the 

orbit and as such, need to be pre-processed in order to retain only useful features required 

for analysis[118]. Additionally, in the phase of pre-processing multiple spatiotemporal 

factors, an excellent geographical reference enhances the accuracy in environmental 

analysis by bringing an image into a standard projection as well as locating the study area 

[119] prior to the extraction and classification of cleaned features in the analytical phase 

[119], [120]. 
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As earlier mentioned, the demand for spatiotemporal data is growing, and remotely sensed 

imagery is the primary source of these sets of data[121]. These data sets are also becoming 

more enhanced as a result of the increasing number of EO satellites in the orbit[121]. Even 

though there is an improvement in quality of these images, and at an affordable cost, there 

exists an identified obstacle in the pre-processing of these data for environmental analysis 

in general [121],and specifically, in flood mitigation as in the case of this research.  

Therefore, it is vital and urgent to identify suitable pre-processing techniques to be used 

[121]. This is mainly because, in many decades, several studies have adopted varied 

approaches in pre-processing satellite imageries for flood analysis. With certain levels of 

accuracies, limitations and most importantly, the recommendations.  

 

Broadly, flood analysis remains a complex process which has led to several studies 

addressing its different facets in order to contribute towards mitigating approaches[1]. 

Nonetheless, these studies exude some strengths as well as limitations. Therefore, in order 

to identify a more suitable and illustrative means of analyzing regional flood vulnerability, 

the ensuing subsection has reviewed some related literature based on spatial and non-

spatial means. 

 

2.6.1   Spatiotemporal Data and Vulnerability Paradigm 

The use of multiple factors in flood vulnerability classification is pre-requisite in this 

research. Therefore, in order to identify various relevant factors, this subsection reviews 

recent literature related to spatiotemporal data approaches for flood mitigative measures 

which is based on non-structural approach; its aims, methods and the constraints 
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surrounding their implementation, and further examine how applicable they may be in 

attaining the underpinning objectives of this research. 

 

Generally, flood vulnerability assessments are done using various approaches of varying 

complexity, depending on the volume of data sets, resources available and the time 

required[122]. In the context of this research, the following studies have been reviewed. 

A study conducted to identify the level of vulnerability in urban areas was conducted by 

Adelekan for the regions of Abeokuta in Nigeria[35]. This was attained by administrating 

questionnaires to 248 respondents over fourteen affected regions. The responses gathered 

from the respondents indicated that approximately, 50% had witnessed flooding events in 

the past. The respondents also indicated the absence of warning as flood mitigating 

measures were not implemented. Most of the respondents (85%), admitted to the absence 

of a warning system, while a smaller number of respondents (8%) admitted of having 

experienced flooding warning related to increased volume of precipitation as well as river 

overflow. As a result of high level of flood vulnerability observed by the study[35], several 

mitigating measures ranging from effective watershed management, control on removal 

of vegetation cover were recommended[35].  

 

In a less technical approach, a potentially floodable map representing river basin of 

Kelantan, Malaysia was drawn. A geological map was used to identify the lithological 

attributes of Kota Bharu, Kelantan. In order to recognize the pattern of flooding events, 

questionnaires were administered to some respondents in the state of Kelantan based on 

various, secondary and tertiary stages of flood impacts. A hundred and sixty (160) 

questionnaires were administered with 85.63% admitted to experiencing flooding events 
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on annual basis, while 76.25% admitted having experienced floods over the depth of one 

meter. Kota Bharu capital city of Kelantan 53.13% admitted being rarely affected by 

flooding events while 46.88% are frequently affected by floods. This study recommended 

the identification of changes in surface and how to prevent it from flooding impacts. The 

recommendation made in this study can involve the use of elevation data and other 

features showing the direction and accumulation of flow which will greatly enhance the 

reliability of this study in mitigating the impacts of flood within the area of interest[34]. 

 

Also, in order to generate a map depicting flood inundation, a study conducted based on 

the application of remote sensing and GIS for flood hazard management for the region of 

Sindh in Pakistan [123], employed MODIS imageries. The imageries were pre-processed 

using Object-based classification approach to classify elevation, land cover, settlement 

and road to delineate vulnerable regions from the non-vulnerable ones. In another closely 

related study, flow accumulation, land use, rainfall, slope and soil were pre-processed as 

FCFs for flood vulnerability delineation in alappuzha district, India, which were further 

assessed using AHP[124]. In another study conducted for Bashar River downstream of 

Yasooj city in Iran, land use, elevation and land slope as well as distance to the discharge 

channels were pre-processed to identify regions that are prone to a potential flooding 

events [125] . While Topography Wetness Index (TWI) was applied to identify flood 

vulnerability towards proper land use planning in state of Victoria, Australia. This was 

done with the aid of Laser Detection and Range (LiDAR). Disadvantageously, the TWI 

approach did not simulate the hydrological contents of the study area [126]. And even 

though this study in [123] stated the need to derive information from diverse imageries 
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for flood-related studies, similar to other related studies, it is found to be constrained in 

the sets of FCFs considered. 

 

Elsewhere in Nigeria, flood prone areas were efficiently classified using GIS for Makurdi, 

Nigeria [39]. The results obtained attributed the vulnerability of the area to either a 

continuous or intense downpour, causing flash floods and also increasing the volume of 

River Benue beyond its bank. The generated results were used also by town planners in 

modernizing the plan of the town, considered to be a mitigating measure. Despite these 

impactful results obtained, this study recommended the use of satellite imageries for a 

more advanced and enhanced results needed to mitigate the havoc of upstream floods.  

 

Similarly, in the mapping of flood dynamics and spatial distribution of vegetation in the 

Amazon floodplain using multi-temporal SAR data [36], sets of imagery data acquired 

from JERS-1 were used in this regard within a vast amazon floodplain. The approach used 

in the mapping was based on decision rule to classify the entire time series in mapping the 

minimum and the maximum flood situation level by determining three flood situations 

based on the occurrence of flooding events to its non-occurrence. The flooding events 

were classified into Never Flooded (NF), Occasional flooded (OF) and the Permanently 

Flooded (PF). The correctness of the map was assessed using the intermediary flood level, 

illustrating a correctness of 90%. However, to attain this exactitude, the study 

recommended the use of additional images on the classifier. This study was particularly 

defective because the map obtained identified the occasionally flooded regions but does 

not identify flood dynamics, e.g. when or for which water level each pixel representing 

the occasionally flooded was submerged during the rising water period. 
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In another study based on spatial factor conducted by [127], land cover was classified into 

the classes of water, sand, agriculture, cropland, island and settlement for flood inundation 

mapping. Inundation map was also created using maximum discharge data. The mapping 

was primarily aimed at the protection of wetland and management of land-resources.  

Even though, this study seems to have adopted a holistic approach, the use of other 

hydrological factors, such as flow accumulation and flood direction would have ensured 

the accuracy of inundation mapping. The study recommended the use of high resolution 

imageries and multiple time series data. Also, based on topographic factors, spatial 

imageries were pre-processed to assess flood vulnerability in the study conducted by[128]. 

The pre-processed factors were further weighted using Multiple-criteria Decision 

Analysis (MCDA). Even though, the result generated could be employed to classify flood 

vulnerability, integrating other factors as in the case of this research provides more 

insights on accuracy of the vulnerability.  

  



51 

 

In another breakthrough using imageries captured aerially [129], an Unmanned Ariel 

Vehicle (UAV) was used to acquire topographic imageries of 6cm resolution for flood 

assessment. Seemingly, the idea behind the use of imageries captured by UAV seems fast 

and relatively less time consuming to identify topographical features as in the case of an 

extensive pre-processing task. However, the coverage which is 0.25 sq Km. makes the 

services of such data sets and approach questionable. More so, during the hot summer 

season autopilot used to heat up quickly to 65oC or above which causes the sensor 

malfunction. Hence, the reliability on such means for flood assessment is farfetched.  

 

In assessing flood vulnerability in Niger state, which is the study area of this research, 

satellite imagery was also employed in [29], to identify various levels of regional flood 

vulnerability in the state. This study classified the regions with a relative level of success. 

However, some of the regions around Suleja identified to be non-vulnerable have being 

affected with recurrent annual flooding events because the analysis was only based on the 

elevation feature. The primary limitation of this study dwells in the use of a single feature 

to classify the vulnerability of the entire region. Even though areas identified to be highly 

vulnerable have a corresponding traits of high flood vulnerability, the use of slope feature 

as well as other topographic or hydrological features as in this case of this research would 

have yielded more accurate and reliable results. Therefore, this research proposes a pre-

processing framework that employed multiple features in order to enhance the 

identification of flood vulnerability within the study area. 

 

In the same vein, supervised classification was used to learn of the pattern land cover[130]. 

This was done by pre-processing multi-spectral from Landsat Thematic Mapper(TM) data 
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scenes in assessing the impact of Land Use (LU) changes to water turbidity in multiple 

watersheds. However, this study focused more on vegetal features such as palm oil, urban, 

forest, water bodies and bare features in the absence of flow direction as well as the flow 

accumulation of the terrestrial surfaces and subsequently recommended additional studies 

to identify the influence of LU and rainfall runoff as well as flood prediction. Another 

satellite image pre-processing was performed in applying Support Vector Machine (SVM) 

algorithm, both pre-disaster and post-disaster TerraSAR-X satellite images, data analytics 

for a rapid mapping events damage evaluation caused by the flood that occurred in 2013 

and the 2011 tsunami in Japan. Some factors were extracted by the use of SVM algorithm 

in order to identify the damaged and non-damaged features of the area. The adopted 

approach produced a relevant visual analytical representation of the data needed by end-

users for post disaster event assessment, which indicated about 30% of the area being 

affected by flood[40]. 

 

Correspondingly, a fuzzy based algorithm was adopted to distinguish between lands from 

water regions using spatiotemporal data[131]. The approach combines homogeneous 

features with averaged data that signifies a clear means of facing textural features. 

However, according to [132], currently, TWI is being employed in land cover studies, 

therefore, for an accurate identification of land cover features, this research employs both 

the TM land and Topographic Wetness Index (TWI) alongside other factors to correctly 

identify various spatial representations. This reviewed study successfully performed the 

pre-processing of the imagery for land cover. Auspiciously, the study further 

recommended the use of varied resolutions of imageries for other domain application as 

in this case of this research.  
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In the study conducted by [133], spatial imageries were pre-processed for the extraction 

of coastlines. Due to some inherent constraint observed by the study, the need to use 

imageries of higher resolution to monitor coastline was suggested. While in estimating the 

volume of flood in near real-time, a surface water detection using Moderate Resolution 

Imaging Spectroradiometer (MODIS) with DEM was performed by[134],  in order to 

produce flood maps. Similarly, as also demonstrated by the study in [135], spatial 

imageries were pre-processed to extract areas affected by flood in order to monitor flood 

situations. Even though, the results showed a certain level of reliability, it could not detect 

flooded urban regions easily as a result of the limitation of their spatial resolutions. To 

this effect, this research still identifies the need to collect spatial data of high resolution in 

order to avoid similar issues. 

 

While in another flood mapping study conducted by [136], DEM was pre-processed to 

identify flood vulnerability. Also, the wet surfaces were delineated from the dry areas 

before the inundated regions were eventually delineated from water bodies. In the same 

vein, spatial data was again pre-processed by[137], specifically, regions were classified 

into flooded, rain, and non-identified regions. This study demonstrated useful insight in 

using DEM for various classifications beyond topographic factor i.e. the inclusion of 

rainfall. Nonetheless, the reliability of the result was further marred by the exclusion of 

elevation and slope factors in addition to several other factors which can readily be 

obtained using the same set of data employed within the study. Hence, this research adopts 

an approach based on multi-factors in order to ensure the reliability and also the accuracy 

of the results. This is because, as earlier stated, the surface of the Earth exudes various 



54 

 

morphological features such as water bodies, vegetal features, and topographical features. 

Hence, the need for multiple sets of data to derive a holistic and accurate representation 

of these features.   

 

Also, in the assessment of vegetal ecology on regional forestry, the study conducted 

by[132]pre-processed DEM where GPS plots were chosen. From each plot, list of plant 

species was identified, and the related vegetal stratification was identified in order to 

determine the soil moisture and differences of species composition. Even though, the 

study was conducted to identify the performance of various algorithmic applications, 

nonetheless, the result obtained from this study indicates the importance of TWI in vegetal 

stratification. Hence, this research identifies TWI as a relevant factor in causative 

upstream flooding events.  

 

Finally, in another study, threshold segmentation algorithm was applied in order to extract 

flood extent with the aid RADARSAT-1 images in addition to digital topographic 

information[18]. The initial approach was to filter the images using filter of Enhanced 

Frost followed by geo-registration topographic data. Afterwards, the extent of the flood 

was mainly extracted from these images with the aid of threshold segmentation before the 

generation of Digital Elevation Model from the topographic data.  Thus far, this research 

has reviewed some related studies on flood mitigation based on spatiotemporal data sets 

as further summarized in Table 2.1.  
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Table 2.2 

Summary of the Pre-processing Approaches and Flood Mitigation Paradigm 

Ref Approach Strength Weakness  Opportunity for this research/Resolution(s) 

[29] 
Topographic-based 
approach 

Identified flood 
vulnerability to a 
certain level.  

Use of only elevation 
factor to identify and 
classify flood vulne- 
rability. 

RESOLUTION: 

The pertinent issue was resolved by using multi-
factor to accurately identify and classify regional 
flood vulnerability. 

[35] 
Survey-based 
approach 

Was able to identify 
the population 
residing within flood 
prone areas as well 
as those at non-
vulnerable areas 

Survey methods are 
unable to determine 
the hydrological 
characteristics of  
water bodies [38]. 

 
Identified the need for long-lead prediction 
to allow pro-active measures instead of 
reactive measures currently implemented. 
 

RESOLUTION: 

This issue has been resolved by successfully 
obtaining long-lead to allow proactive measures in 
section 4.2 
 

[18] 
DEM-based 
approach 

Extraction of flood 
extent 

Use of single factor 
to classify flood 
extent.  

RESOLUTION: 

The limitation was addressed in this research by 
adopting Multi-factors pre-processing approach to 
identify flood vulnerability.  
 

[34] 
Survey-based 
approach with 
geological map. 

Was able to 
identify the 
depth of the 
flood. In 
addition, the 

Survey methods are 
unable to determine 
the hydrological 
characteristics of  
water bodies [38]. 

Recommended the need to consider water body and 
identify its changes. 
 
RESOLUTION: 
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study also 
observed that 
properties are 
more vulnerable 
to flooding events 

The weakness as well as the recommendation 
were addressed in this research by classifying the 
vulnerability using NDVI  
and also learning the trend of water level alongside 
other temporal factors in subsections 4.1.2 and 
section5.2 

[39] 

GIS-based approach 
with physical 
elevation map. 
 
 
 
 
 
 
 
 
 
 
 
 
 

The study was able 
to identify areas 
vulnerable to floods. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Floods are generally 
caused by multiple 
factors such as 
topography, 
geomorphology and 
climate[34].  As a 
result, the use of 
multiple factors to 
identify vulnerable 
regions would have 
generated more 
accurate result in 
place of the 
approached based on 
a paucity of data as 
adopted by[39] 
 

The study recommends the use of satellite 
imageries.  
 
RESOLUTION: 

The recommendation was implemented in the 
research by using spatiotemporal sets of data in 
identifying and classifying regional flood 
vulnerability in section 4.1 
 
 
 
 
 
 
 
 

[40] 

Pre-processing EO 
imageries. 
 
 

Identified pre- and 
post-disaster 
manages.  
 

Pre- or post-disaster 
assessment only 
allows reactive 
measures to be 
implemented [35].  

RESOLUTION: 

As the basis of this research, the pre-processed 
imageries were used to identify vulnerable regions 
for flood prediction in order to take proactive 
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measures to enhance the adequacy of flood 
mitigation. 

[36] 
 
 
 
 
 

Vegetal-based 
approach. 
 
 
 
 
 

Ability to classify 
areas that are 
always, occasionally 
or never flooded.  
 
 
 

Accuracy assessment 
for the permanently 
flooded forest theme 
could not be attained. 
 
 
 

RESOLUTION: 

The limitation of this study was tamed in this 
research, by using the vegetal stratification to 
classify flood vulnerability to region based on the 
density of vegetation (Sub-section 5.2)  
 
 

[123], 
[124], 
[125] 
[126]. 
 
 
 
 

Elevation, Slope, 
TWI and 
Downstream-based 
approach. 
 
 
 
 
 

Recommended the 
use of Multiple 
FCFs. 
 
 
 
 
 
 

Absence of other 
factors that can 
influence inundation 
such as hydrological 
factors. 
 
 
 
 

 
Recommended the use of high resolution imageries 
and multiple time series data.  
 

RESOLUTION: 

This research employed multi-factor approach in 
classifying and mapping flood vulnerability in 
addition to the use of several points of times series 
data as described in sub-sections 4.1 and 4.2 
respectively. 
 

[127] 
 
 
 
 
 
 
 

Vegetal/Land cover 
classification 
approach.  
 
 
 
 
 

Was able to classify 
water, sand, 
agriculture, 
cropland, island and 
settlement for flood 
inundation. 
 
 

Absence of other 
factors that can 
influence inundation 
such as hydrological 
factors. 
 
 
 

Recommended the use of high resolution imageries 
and multiple time series data.  
 

RESOLUTION: 

This research employed multi-factor approach in 
classifying and mapping flood vulnerability in 
addition to the use of several points of times series 
data as described in sub-sections 4.1 and 4.2 
respectively. 
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[128]. 
 
 
 

Topographic-based 
approach. 
 
 
 

Successfully, 
assessed flood 
vulnerability.  
 
 

Absence of other 
relevant factors such 
as hydrological and 
vegetal factors 
 

RESOLUTION: 

The limitation was addressed by employing multi-
factors to assess flood vulnerability in section 4.1 
 
 

[129] 
 
 
 
 
 

Topographic-based 
approach. 
 
 
 
 

Simplified means of 
identifying 
topographic factors. 
 
 
 

Only topographical 
factor 
Limited coverage. 
 
 
 

RESOLUTION: 

Emphasis placed more on the need to use EO 
imageries to ensure wider coverage in addition to 
finding other relevant factors.  
 
 

[130] 
 
 
 
 
 
 
 

Land cover-based 
approach. 
 
 
 
 
 
 

Successfully 
classified vegetal 
factors such as palm 
oil, urban, forest, 
water bodies and 
bare features. 
 
 

Required more 
factors to be 
considered.  
 
 
 
 
 

Recommended the need to identify the relationship 
between vegetal factor, precipitation runoff and 
flood prediction 
 
RESOLUTION: 

Multi-factors utilized including vegetal factors, 
precipitation was equally used to predict any 
potential flooding events.  

[131],[132]
. 
 
 
 

Land Cover/TWI 
based approach. 
 
 

Delineation of lands 
from water regions. 
 
 
 

Absence of 
Topographic 
Wetness index as 
employed in 
[132]. 

Recommends the need to use other imageries beside 
Landsat TM. 
 
RESOLUTION: 

Nigeria-Sat-X was used in addition to LandSat-8 
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[133] 
 
 
 

Pre-processing 
based on textural 
enhancement. 
 

Coastline extraction 
 
 

Scanty set of data 
Low image resolution 
utilized. 
 

 
 
Recommended the need for high-resolution spatial 
data 
 

RESOLUTION: 

This limitation was addressed by using a relatively 
imageries of higher resolution in this research. In 
addition, multiple factors were considered. 

 
[134] 
 
 
 
 
 
 
 
 
 
 

Pre-processing 
based on MODIS 
and DEM 
 
 
 
 
 
 
 
 

Combination of both 
MODIS and DEM 
 
 
 
 
 
 
 
 
 

 
 
 
Only few factors 
considered. 
Very low Image 
resolution (500 m). 
Near real-time flood 
identification does 
not allow adequate 
time for proactive 
measures to be 
implemented.  
 
 
 
 
 

Recommended the need for high-resolution spatial 
data. 
 

RESOLUTION: 

The recommendation as well as the limitations were 
addressed by using imageries of higher resolution 
(28 m). 
Multi-factors considered as well. 
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[135] 
 
 
 
 

Pre-processing 
based on spatial data 
and DEM 
 
 
 

Flood vulnerability 
extraction 
 
 
 
 

Low resolution 
imageries and few 
factors considered 
 
 
 

RESOLUTION: 

 
The limitations were addressed by using imageries 
of higher resolution (28 m) described in section 3.2. 
In addition to the use of Multi-factors demonstrated 
in section 4.1. 
 

[136] 
Pre-processing 
based on DEM 

Identification of 
flood vulnerability.  

Scanty sets of data 
considered.  

RESOLUTION: 

The limitation was resolved by employing multiple 
factors to identify flood vulnerability (section 4.1) 

[137] 
Pre-processing 
using DEM 

Classification of rain 
and flooded regions 

Unspecified regions 
were classified.  
Scanty set of data 

 

RESOLUTION: 

The limitation was addressed by assigning various 
spatial features to their classes in section 4.2 
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As identified from these various studies, the use of spatial data has been of a considerable 

contribution leading to flood disaster mitigation in various parts of the world. However, 

these studies are constrained by the use of limited factors in deriving insights for flood 

inducing factors which has undermined the level of accuracy in identifying regions that 

are prone to floods. Therefore, this segment of this research addresses the first component 

of the framework, i.e. the definition of flood hazard regions. The aim is to identify flood 

hazard zones, where mitigative measures should be taken. Thus, multiple spatiotemporal 

factors were introduced to delineate such regions. 

 

Furthermore, it is noteworthy that, the basis of this research is to adopt a hybrid approach 

which pre-processing multiple flood causative factors to accurately identify and classify 

regional flood vulnerability within the study area. The second segment of the hybridized 

approach is to perform long-lead prediction for regions identified to susceptible to 

upstream floods, whose related studies have been reviewed in the ensuing subsection.  

 

2.6.2 Lead-time Flood Analysis 

In the last decade, several flooding events with relative devastating impacts in some parts 

of the world have caused loss of lives and economic havoc [138]. Identified factors such 

as streams have been equipped with warning features [138]. Nonetheless, more frequent 

severe precipitation has correspondingly led to an increase in flooding events. As a result, 

there is a need to propose a comprehensive predictive means for flooding events in order 

to implement a timely warning within the vulnerable regions [138].  Currently, a key 

research issue faced in the 21st century is to proffer early warning for any flooding events 
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with potentially devastating consequences[139]. A considerable long lead-time for flood 

prediction that allows timely issuance of flood warnings and proactive measures is a 

necessity due to the numerous logistical intricacies in securing vulnerable regions[140]. 

 

There exists several studies related to flood prediction and lead-time trend identifications 

in the past, with significant contributions in mitigation flood impacts either in the pre-

flooding events or post-flooding events. Despite the immense contributions of these 

studies, there also exists some inherent limitations in the lead-time identification of any 

potential flooding events or the associated date of occurrence.  

To this regard, this section meticulously reviews the state-of-the-art of various systems 

and techniques adopted in long-lead flood analysis which are highly needed by 

metrological department and most specifically, disaster monitoring/reporting agencies 

with the aim of mitigating the impacts of floods. 

 

In an attempt to identify a potential flooding event in Pahang basin in Malaysia, structure 

based Neural Network Autoregressive Model with Exogenous Input (NNARX) for flood 

prediction within a lead-time of 10 hours with the aid of Gradient Descent as training 

algorithm was conducted. In the study, a model was obtained by segmenting data sets into 

Training data, Validation and testing data [51]. The water level data was cleaned by 

normalization approach between ±1 prior to running the model. This was performed to 

remove the outliers in the data set[51].  The model was first obtained using training 

samples and then validated using validation samples. A historical data acquired for the 

period of ten days totaling 1463 were used for training sample. 
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Meanwhile, for model validation, 2000 data records acquired for a period of 13 days were 

used while 4000 data sets which were acquired for a period of 28 days were utilized as 

testing sample. The model was able to perform a 10-hour prediction of water level. Even 

though this approach seemed efficient, the lead-time of 10-hours is below the required 6-

16 days lead-time to efficiently implement flood mitigating measures in alleviating any 

potential flooding havoc. More so that the model underestimated the water level and as 

such the prediction of the level of flood water does not correspond with the exact water 

level[51].  

 

Similarly, a 7-hour prediction was made by utilizing the technique of Artificial Neural 

within the region of Terengganu [60], using the water level at the upstream and the water 

level and the site of the flood as parameters where a four-day samples of 542 data sets 

were acquired for modeling. While another four days data sets of 542 were collected for 

validation. For testing, a three-day data sets of 428 were used. The results indicated a 

successful 7-hour prediction of flood using NNARX technique. In another study, using an 

enhanced NNARX structure with the aid of Back Propagation Algorithm was successfully 

adopted to predict a water level flooding event in Kuala Lumpur with the lead-time of 5 

hours[59]. The study utilized a real-time data for both input as well as the output data 

collected from the Department of Irrigation and Drainage, Malaysia [59]. 

 

The prediction of flash flood over small rivers based on time series conceptual rainfall-

runoff technique has been in use since 1980 to predict the water level of Werra River in 

Germany using Least squares approach [138]. The period of calibration was between 

1/11/2006 and 31/10/2008. While the data acquired between 31/3/2010 and 8/11/2010 
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were used for validation. The result yielded a slightly reduced level of accuracy due to 

some radar errors encapsulated in the precipitation data in addition to the low rate of 

rainfall within this period [138]. The overall performance of this technique was marred by 

the erroneous precipitation data that was recorded by a radar when it was not the period 

for a considerable rainfall. 

 

In the same way, a survey-based study was also conducted in within the vicinity of Kainji 

in Niger State, Nigeria [141], where 100 respondents were administered 51% of which 

admitted receiving flood warning from Local radio station, 21% from market square, 

while small number received from religious centres and TV station. The study also made 

use of supervised form of classification to preprocess satellite imagery Landsat7 MSS on 

scene representing 191/053 spectral to identify the changes within Kainji in and its effect 

in Borgu community. The deteriorating effects of the environment was attributed to the 

agricultural activities of the inhabitants of the region which increases the vulnerability of 

the region to flooding events. As a result, the study recommends the development of an 

effective long-lead warning which will used against the impacts of potential flooding 

events. 
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Additionally, in[142], a study was conducted using NARX Neural Networks as well as 

Extended Kalman Filter (EKF) techniques to predict a flooding event with the aid of an 

algorithm based on back propagation which is commonly used. This however, was 

conducted without yielding any dependable results [142]. The study shows that NARX 

predicted relatively better, and despite the success it recorded in the predictions, the 

nonlinearity-related problems of data as well as the absence of input parameters requires 

an urgent solution. Consequently, the study proposed the integration of EKF alongside 

NARX technique to address this issue because EKF was developed to address nonlinearity 

issues [142]. 

 

In [143], a study on a two-three hour lead-time flood identification was equally conducted. 

Hourly precipitation records from 1988-2000 consisting of 30 incidents was used based 

on ANNs. Even though ANN-based serial-propagation generated a satisfactory output, the 

study identified the limitations of using ANN in decreased rate of learning as well as its 

performance in validation and testing phases. As a result, the approach was declared 

unsuitable especially within complex sets of data, and a recommendation for a more 

suitable and reliable approach was made.  

 

In the study area of this research, a major milestone was attained by adopting a predictive 

technique based on Best Fit Probability Distribution to evaluate the volume of rainfall and 

runoff using one of the three Dams in the state as the case study. However, factors that 

induce a flooding event are not limited only to the volume of rainfall or runoff [144]. The 

use of time series data indicating water volume and discharge volume from other rivers as 

well as the satellite images to identify the attributes of the terrain and the hydrological 



66 

 

nature as recommended by previous studies [39], which if utilized, can accurately identify 

any potential flooding events as well as its severity within the study area and beyond [39].  

 

In the same vein, a combined model based on   Adaptive Neuro fuzzy Inference System, 

was employed to perform an hourly prediction in Yaojiang watershed[145]. Even though, 

the result indicated a four-hour prediction based on two-hourly inputs, further study was 

equally recommended for an issuance of a more enhanced early warnings.  Similarly, a 

study conducted by Noor et al in [57],developed an NARX-based model to perform a 

twenty-four hour lead-time prediction. This was successfully done using ten months 

precipitation and river flow data[57]. 

 

In a flood predicting project embarked by EU, a cascading methodological approach for a 

10-day lead-time flood prediction of river discharge and flooding within the European 

measure river bodies were performed using mesoscale precipitation prediction. The study 

[50]was guided by uncertainty cascade model involving atmospheric, rainfall and 

inundation approaches. Even though the approach seemed effective, the analytical result 

was affected by the under prediction of rainfall. Thus, was considered defective for a long-

lead flood prediction. Therefore, the study suggested the enhancement in predicting 

rainfall as well as better comprehension of uncertainties in the precipitation and inundation 

mechanisms to reduce the prediction quantile in future studies.  

 

Finally, using both spatiotemporal and big data analytical approaches, studies on long-

lead were conducted in the State of Kelantan, using both precipitation and water level 

values to predict a seven day-lead time, and also for the State of Iowa, United States to 
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perform the prediction for a location using the heavy precipitation volume and the 

historical voulme of precipitable water [63],[64] 

Summarily, various approaches employed within a predictive domain are summarized in 

the Table 2.3. 
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 Table 2.3 

Summary of the Predictive Approaches 

 Ref Approach Strength Weakness  Prospects to the present research/Resolutions 

      

1 [51] Water level based 
prediction 

10 hours  Lead-time  

Data sets 

Provided longer lead-time using sufficient sets of data 

2 [57] Prediction based on 
precipitation and 
water flow 

24-hours lead-time 
prediction  

Scanty sets of data (10 
Months); 

Insufficient lead-time 

The pertinent issue was resolved by employing 
precipitation and water level data sets of 37 years to 
perform a thirteen day lead-time prediction 

3 [59] Water level  5 hours Real-time data Historical sets of data was used within this research 

4 [60] Water level Prediction 7-hours Lead-time 

Data sets  (four days) 

Employed larger volume of data sets to perform a 
long-lead prediction of 13 days 

5 

6 

[63][6
4] 

 

 Long-lead  Absence of FCFs Adoption of the proposed hybrid approach.  
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7 [143-
[146] 

Precipitation-based 
Prediction 

3 hours Lead-time Longer lead time provided 

8 [145] Precipitation-based  
prediction 

4 hours 

 

Lead time Provided longer lead-time using sufficient sets of data 

9 [146] Prediction based on 
water level 

5-hours 

5 years data 

Lead-time 

Relative adequate data 

Provided longer lead-time using sufficient sets of data 
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Concisely, it is also worthy of note that, each of the reviewed studies tend to manage flood 

vulnerability in a slightly different manner which is broadly encompassed in flood 

management techniques as illustrated in Figure 2.8 from [147]. 

 

 

Figure 2.8.Flood Management Techniques 

 

Concisely, the use of satellite imageries, survey means, and precipitation data as utilized 

by various studies for the purpose of flood mitigation, has immensely contributed towards 

a holistic understanding of spatiotemporal data pre-processing, flood prediction and 

ultimately, flood mitigation practices. The contributions also highlighted the primal need 

for more satellite features, and also the requirement for a longer lead-time in flood 

prediction. Aside the contributions and opportunities of these studies, there equally exists 
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some associated limitations as discussed in the ensuing subsection, which elaborates more 

on the critical aspects of the reviewed studies.  

 

2.6.3   Limitations of the Extant Studies 

 

As stated in the aforementioned subsections, the limitation, strengths and the prospects of 

the reviewed studies dwell on the effort made in identifying flood vulnerability associated 

with various parts of the world, with the aid of numerous approaches ranging from survey 

means to spatial data pre-processing using GIS-based environments. Despite the successes 

recorded in the various instances of vulnerability assessment and potential flood 

mitigation efforts, these approaches also present number of drawbacks. For instance, 

upstream floods can be instigated by either, topographic, hydrological, vegetal or 

anthropogenic factors[148]. However, in the reviewed studies, these causative factors 

were employed distinctively to identify and classify flood vulnerability. This practice 

evidently led to a reduced level of accuracy in flood identification within the areas of 

interest. In addition to the absence of the Flood Inventory or means of accuracy 

assessment. Therefore, to address these inherent issues, this research employs a multi-

factorial approach that combines multiple factors to identify various regions that are 

potentially prone to flooding events in order to enhance the level of accuracy in identifying 

various regions that are susceptible to upstream flood within the study area. 

 

In terms of lead-time flood prediction or analysis, the related studies in this regard were 

found to be challenged in providing accurate means of protecting and accommodating 

flood-related disasters. This is because, the lead-time which would have served to avert 

flood disasters considerably, was found to be short (1-24 hours), which is inadequate to 
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efficiently implement proactive measures in situation of flooding events, which are 

itemized as follows[149],[10]: 

I. to protect (avert and alter disasters); 

II. to accommodate (alter some structures used by humans to suit disasters); 

III. to evacuate (resettlement, prohibit development in disaster prone areas); and 

IV. to do nothing. 

 

By implication, the first and the second strategies are proactive measures which are 

prioritized considerations for an effective disaster mitigation. While strategies based on 

three and four are usually considered passive efforts in the case of any disaster beyond 

human control. From the reviewed studies, most attention was focused on the passive 

option (To evacuate). While little attention was given to the first and second options as 

observed from the extant studies. 

 

Essentially, a sufficient lead-time is required for proactive measures as in the case of 

Strategy One [54]. For instance, lead-time of 6-15 days of precipitation can aid to this 

effect[55],[56],[58].For instance, given a week’s lead time, the sequence of information 

actions might be [58]: 

I. 3-5 days lead-time: to provide advisory or period of heightened risk; participate in 

awareness raising activities through media, mobilize support organizations for the 

vulnerable regions; initiate participatory information dissemination by local 

authorities; 

II. Hourly lead-time: to provide flood warning; activation of emergency response; 

evacuation of most vulnerable groups; provide prescriptive advice to individuals. 
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While the above sequence of events may seem to be ideal for a flood event mitigation, it 

will not be possible to provide much advanced information for all types of e proactive 

measures to be implemented within a short period of time [58]. Hence, the need to have 

an adequate long-lead prediction of any flooding events as proposed within this research. 

This will ultimately enhance measures for Strategies One, Two and Three, in order to 

avert, accommodate and evacuate against any potential flooding events.  

 

On the other hand, the study conducted by P. Taylor on Statistics of extremes and 

estimation of extreme rainfall,  it has been identified therein that, the Gumbel distribution 

theory, which has predominantly been used for quantifying risk related to extreme 

precipitation is constrained by underestimating the high volume of precipitation [150]. 

Therefore, this research adopts approaches based on GIS theory as elaborated in the 

ensuing section. 

 

2.7   Research Theory 

Over the past decades, the structure of data used for GIS as well as the geographical 

representation has witnessed an exponential growth [151]. Faced with this inherent 

complexity created as a result of this growth, every potential GIS user is equally faced 

with the following issues: 

I. The need to identify the means of simplifying the complexity exuded by these sets 

of data; 

II. The need to identify a multidimensional theory to address and simplify the design 

and development of GIS research about the surface of the Earth, which consists of 

the descriptive, representative and the analytical features [151].  
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Therefore, to meet these needs, a theory that provides a simplified approach for spatial 

representation has been identified to be quintessential. Especially, in aspect of any 

scientific research and management of the surface and near-surface of the Earth, involving 

its description, representation, analysis and visualization [151].Within the scope of this 

research, the proposed GIS-based theory in [151], was used to identify the approach 

needed in response to several desiderata of a spatiotemporal analysis which is aimed at:  

I. Providing appropriate patterns of spatial representation to identify the 

interrelationship between domains and features of the environment;  

II. Extending the domain and feature representations, and the pattern of 

representation developed to handle them, into the temporal domain; 

III. Providing a means of developing spatiotemporal visualization extent and develop 

their essential properties.  

 

Another significant aspect of the GIS theory is that, analysis utilizes continuous 

comparisons of the events. This implies that as events are identified, they are associated 

to other events for comparisons or dissimilarities. The subsequent concepts will then be 

characterized, and within time, they are equally compared and classified. These 

comparisons can aid to attain an enhanced level accuracy. Correspondingly, this research 

compares flooding events and the regions targeted with other regions in order to identify 

the levels of vulnerability and the most influencing factors of the flooding events and 

eventually with Flood Inventory.  
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As discussed thus far, the principles of the adopted theory encompass the general approach 

on data collection, spatiotemporal data pattern representation, visualization and analysis 

of regional flood vulnerability.  

 

2.8   Chapter Summary 

The literature review in this chapter provides related background details on the impacts of 

flood, flood mitigating paradigms, and essentially, various approaches employed in 

spatiotemporal data pre-processing and flood prediction. The review serves as an ideal 

lens of identifying relevant flood causative factors as well as the processes utilized in flood 

vulnerability classification. Ultimately, in order to develop the desired hybrid framework, 

several works from the reviewed studies were adapted based on multi-factorial approach 

to accurately classify regional flood vulnerability, and also to perform long-lead prediction 

which are the basis of this research. The next section explains in detail, the research 

methodology adopted at attaining all the research objectives. 
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CHAPTER THREE 

RESEARCH METHODOLOGY 

 

3.1   Introduction 

This chapter presents the research design which discusses the approaches adopted in the 

conduct of the research with the corresponding flow of applied research processes to 

answer the research questions in Section 3.2. Section 3.3 discusses the means of 

identifying multiple flood causative factors which eventually aided in identifying the 

forms of data needed to be collected. Methods employed in pre-processing the collected 

multi-spatiotemporal data is described in Section 3.4. The hybridization processes 

involving regional flood vulnerability classification and long-lead prediction is presented 

in Section 3.5. Section 3.6 discusses the justification for using spatiotemporal data sets. 

Means of accuracy assessment is explained in section 3.7, and eventually, the chapter 

concludes with a summarized segment in section 3.8.  

 

3.2   Research Design 

A research design plays a crucial role in any meaningful research. It represents the general 

guiding precepts utilized by a researcher to combine several components of a research in 

a rational and structured manner, in order to successfully attain research objectives. 

Similarly, a research design ensures the adequacy of the procedures employed in obtaining 

valid and accurate answers to research questions[152]. It serves as a focal point for a well-

conducted research and provides comprehensive processes for the collection, analysis and 

interpretation of data. Consequently, Figure 3.1 illustrates the components of the adopted 

design in the course conducting the research. 
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Figure 3.1.Research Design: Adapted from[152]. 

 

By context, this research is based on experimental approach. By definition, scientific 

experiment represents a systematic approach to conducting a research in which the 

researcher employs one or more variables, and measures any change in other variables 

and to reliably establish a cause-effect relationship between the variables [152], [153]. 

Within the scope of this present research, it can be concluded that the utilization of spatial 

data to measure and classify the regional flood vulnerability as well as the temporal and 

seasonal observation of the precipitation leading to upstream floods, reflect effectively on 

the experimental mode of research. This is essentially so, because the phenomenon which 

is the upstream flood and the attempt to observe what caused it (causative factors), has led 

to the revelation and equally the identification of the various factorial influence to 

establish the effects leading to a potential upstream floods in various regions.  

 

Therefore, by implementing this research design as shown in Figure 3.1, various tasks 

from the identification of multiple flood causative factors to vulnerability classification, 

as well as long-lead prediction were accomplished in phases in order to meet the objectives 

of the research. The phases with the corresponding tasks are detailed in Figure 3.2. 
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Figure 3.2. Applied Research Processes 

Essentially, Figure 3.2 describes various tasks in phases and the corresponding deliverable 

that led to the realization of the hybrid framework. 

 

Overall, there are four phases involved in the applied research processes, which are: 1) 

Identification of multiple flood causative factors, 2) Definition of data pre-processing 

approach, 3) Develop hybridization approach and 4) Framework accuracy assessment, 

which correspond to research objectives one, two, three and four respectively. 

Furthermore, these processes are further detailed in the ensuing section distinctly. 

3.3   Phase I: Identification of Flood Causative Factors 

As earlier stated in the problem statement (section 1.2), the main issue that led to the 

reduced level of accuracy in flood vulnerability classification, was associated to the 
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inadequacy of factors considered in classifying regional flood vulnerability. Therefore, in 

order to fill this gap, this section elaborates the approaches used in identifying multiple 

factors, which can enhance the level of analytical accuracy of the research. 

Fundamentally, this research identified other relevant flood causative factors from the 

insight gained when such factors were either adopted or recommended in the reviewed 

studies in subsections 2.1.1 and 2.1.2 for both spatial and temporal factors respectively, 

or as further revealed by the experimental assessment conducted subsection 4.2.1 

 

Also, the identification of these factors within the reviewed studies essentially determines 

the type and the sources of spatiotemporal data collected in order to adopt a multi-factorial 

approach when classifying regional flood vulnerability. The use of several spatial features 

is primarily required to generate relevant flood causative factors (multi-factors) aimed at 

addressing this inherent research gap posed as objective one in section 1.4. Ultimately, the 

need to address this issue has further been supported by other studies. For instance, 

according to [154], in order to provide the most accurate spatial and temporal resolutions 

of data and framework, it is crucial to consider heterogeneous data sources. It stems from 

the fact that natural disasters are typical examples of complex conditions in which multiple 

factors have to be considered to proffer accurate and robust assessments. 

 

Specifically, in flood identification, the presence of several land features (factors), each 

with a specific traits requires classification into floodable or non-floodable vulnerability 

conditions, which will ultimately aid in identifying the locations and the extent to which 

the region are exposed to floods is the most basic information needed for flood mitigation 

strategies[154]. Regrettably, a comprehensive identification of these regions is still 
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lacking in many parts of the world[154]. Concisely, the identification of the 

aforementioned relevant flood causative factors has led to the collection of multi-

spatiotemporal data collection. Therefore, the subsection that ensues discusses the concept 

of spatiotemporal data collection.  

 

3.3.1   Data Collection 

Generally, studies based on GIS are more focused on the collection, visualization and 

analysis of spatial data sets. However, the most valuable aspect therein, is the data 

collection facet[155].Therefore, in order to collect various data sets required for this 

research, both terrestrial (Remote sensors) and space assets (Satellites) were considered 

as the main sources of the utilized data sets. It is pertinent to highlight that these devices 

have been deployed by the space research bodies such as the National Aeronautics and 

Space Administration (NASA), European Space Agency (ESA), the National Space 

Agency (Malay: Agensi Angkasa Negara), abbreviated ANGKASA and the Nigerian 

National Space Research and Development Agency (NASRDA) in order to capture 

weather-related information and features associated with geographical locations at both 

national levels and beyond as summarized in Table 3.1. 
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Table 3. 1. 

List of Collected Spatiotemporal Data Sets 
 

  

S/N Collected Data Purpose Source 

1 
 
 
 

NigeriaSat-X (22m 
Resolution) 
 
 

To extract the following factors: 
-Topographical  
-Hydrological. 
 

 
Satellite, 
NASRDA, 
Nigeria 
 
 
 

2 
 
 
 
 

Water Level (1979-2016) 
 
 
 
 

Time series data showing the volume and rate 
fluctuation of water body in Niger state. 
 
 
 

Remote Sensors, 
NIHSA, Nigeria 
 
 
 
 

3 
 
 
 

Precipitation/Rainfall(1979-
2016) 
 
 

Time series data showing  Rate and volume of 
regional rainfall in Niger state 
 
 

Remote Sensors 
CAR, Nigeria 
 
 

4 
 
 
 
 
 
 

Temperature (1979-2016)  
 
 
 
 
 
 

 
Time series data showing  Rate and intensity of 
regional temperature in the Niger state 
 
 
 
 
 

Remote Sensors 
CAR, Nigeria 
 
 
 
 
 
 

5 
 
 
 
 
 
 
 

Flood Inventory (2006-2017) 
 
 
 
 
 
 

Records of the past flooding events in the state. 
This consists of the date, and the regions affected   

 
 
 
 

 
 

 
In-situ 
NEMA 
&NSEMA 
Nigeria 
 
 
 
 
 
 
 

6 
 

LandSat-8 Data (30m 
resolution) 

Land Cover  
 

Satellite, 
NASA, USA 
 

7 Shape file (Administrative) 

 
Indicating the attributes of a map (states, cities 
and the boundaries) 

Satellite, 
NASRDA, 
Nigeria) 
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Here, even though Tropical Rainfall Measuring Mission (TRMM) data was collected to 

depict the seasonal and regional precipitation volume, this research only made use of the 

time series temporal data (Appendix B) for long-lead analysis. This is because, in the 

study conducted using TRMM for performance assessment over Pehand River [156], it 

has been identified that TRMM tends to overestimate the rainfall measurement by 26.95% 

on average. Therefore, terrestrial remotely sensed data was collected since it has more 

precision and its daily format covering many periods allows long-lead analysis to be 

performed reliably,while the TRMM was used for regional precipitation mapping.   

 

Similarly, LandSat Map representing Nigeria was needed to be employed for the 

identifications of scenes depicting Niger state as illustrated in Figure 3.3 

 

 
8 
 
 
 
 
 

 
Shape files (Water bodies) 
 
 
 
 
 

Used to identify water bodies in Nigeria and 
extract water bodies in the study area 
 
 
 
 
 

 
Satellite, 
NASRDA, 
Nigeria) 
 
 
 

 
 
9 

 
Global Disaster  
Inventory(1980-2015) 

 
To identify the trend of global flooding events 

 
In-situ 
CRED, Belgium 
 

 
 
10 TRMM Data Regional Precipitation Average  

Satellite, 
NASA, USA 
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Figure 3.3. Land-Sat Map of Nigeria 

Adapted from [157]. 

Illustratively, LandSat 8 was acquired from the United States Geological Survey website 

using both paths and rows corresponding to the boundaries of Niger State identified on 

the Landsat Scene map.  

 

The points corresponding to Paths and Rows of the study area were outlined to be 189/053, 

189/054, 190/052, 190/053, 190/054, 191/052, 191/053which were used to identify the 

scenes on United States Geological Survey’s website to obtain seven corresponding 

scenes as illustrated in ensuing illustration in Figure 3.4. 
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Figure 3.4. LandSat8 Collected using Scene Method 

In collecting satellite imageries using scene method for the study area, the Landsat map 

of Nigeria as shown in Figure 3.3, was used in identifying the values of both Paths and 

rows to get the nearest scene center latitude and longitude coordinates of the study area to 

produce the vegetal-based vulnerability map in Figure 4.5 in Chapter Four. 

 

Here, the values corresponding to paths and rows generated seven scenes for the study 

area as shown in Appendix K. This is because the study area is associated with a vast and 

complex geographic pattern. Hence, the need to have these scenes to have a complete 

spatial coverage of the state, which eventually reveals the vegetal features of the state. 
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3.3.2 Source of Data 

As illustrated in Table 3.1, most of the data were collected from the Nigerian Space agency 

known as National Space Research and Development Agency (NASRDA). The agency 

uses NigeriaSat-2and NigeriaSat-x which are controlled from the ground receiving 

segment stationed in Abuja, Nigeria [158],[159].Operations, such as task schedules, data 

capturing, and classification of satellite data are carried out from this terrestrial segment 

[159].  

 

 

3.3.3   Data Policy 

Data acquired from this satellite are free for Nigerian-based researches, while the 

imageries are marketed within Africa by GeoApps Plus Ltd; a marketing department under 

NASRDA. The marketing of data beyond Africa is done by Disaster Monitoring 

Constellation (DMC). NASRDA owns a conventional support department situated within 

its premises to proffer support for UN-SPIDER in the field of disaster management and 

Technical Advisory Mission[160],[161].Thus far, the sets of the data collected, the 

methods and their use have been further summarized in Figure 3.5. 
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Figure 3.5. Summary of Collected Spatiotemporal Data 

Briefly, one of the contributions of this research in addressing the first objective is that, 

the final output is not constrained by the limitations of using insufficient sets of data since 

the entirety of the research is based on multi-factorial approach of spatiotemporal data 

pre-processing. Thus, minimizing the impacts of analytical inaccuracy in the overall 

quality of the proposed hybrid framework. Ultimately, this approach is sought to enhance 

the accuracy of classification of regional flood vulnerability and also long-lead upstream 

flood prediction for better decision-making.  

 

As earlier discussed in section 3.3, spatiotemporal data were collected from multi-sources. 

Pre-processing these Big Data necessitates an effective methods to be implemented to 

exploit their information [154]. Even though it has been identified that, a seamless 

integration of techniques to pre-process these sets of data is challenging [162],nonetheless, 

the ensuing section details an adapted architectural processes employed to address the 
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fundamental challenges involved in pre-processing these vast and complex data sets 

required to reveal the encapsulated factors capable of inducing upstream floods.  

 

3.4   Phase II: Definition of Multi-spatiotemporal Data Pre-processing Approach 

Here, the collected spatiotemporal data were pre-processed to obtain the required multiple 

flood causative factors, which further processed for vulnerability classification. Generally, 

pre-processing involves data cleaning as well as various tasks involved in transforming a 

set of data to an enhanced formats prior to the analytical tasks[12],[163]. In this research, 

the collection of data sets was done from a data-intensive sources and as such, the 

uncertainty of these data is intrinsic [162]. Additionally, the collected sets of 

spatiotemporal data involve varied forms of data from multiple sources; a typical 

characteristics of “Big Data” which are known with various forms of 

complexity[164],[165],[166],[167]. Therefore, making an accurate decision in strategic 

spatial domain is heavily reliant on the extraction of knowledge from vast volume of data 

sets[168].   

 

As a result of the large volume of spatiotemporal data collected for this research, and due 

to the uncertainty of spatial factors, pre-processing this sets of data remains a very 

complex practice[168]. Hence, this section addresses the inherent complexity in pre-

processing these vast volume of data that are crucial in this research which in turn, fills 

the gap of research objective two by defining a pre-processing technique to determine 

multiple spatial factors needed for regional flood vulnerability classification.  
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To this effect, the ensuing procedural architecture in Figure 3.6 was adapted to ensure the 

pre-process and processing of these multiple sets of data. 

 

Figure 3.6.Information systems framework and Spatiotemporal Data Management 

Architecture 

Adapted from  [162],[169],[170], [171].  

As shown in Figure 3.6, the spatiotemporal data management architecture exudes a 

suitable illustration on how to properly pre-process and process these complex sets of data. 

This essentially was conducted by the guiding principles of Information System, which states that 

any methodological framework must ensure a span through the whole range of developmental 

phases, i.e., from project identification to the successful completion of any project[171]. 

Within various phases of this present research, the pre-processing segment of the architecture 

encompasses phases– from data cleaning through feature extraction. While the processing 

segment involves pattern classification, regional flood classification and evaluating the 

levels of influence posed by the factors in inducing upstream floods using AHP. After 

which, the accuracy of the approaches was assessed prior to framework validation. 

 

Specifically, within the context of this research, cleaning of these sets of data as discussed 

in the following section, is considered an effective means of ensuring the accuracy and 

analytical reliability [172],[173]. This practice was equally needed to ascertain the 

veracity (i.e., Big Data characteristics) traits in the pre-processed data prior to its 

extraction for subsequent flood vulnerability classification. 
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Similar with other domain, environmental analysis, the utilization of tools for problem 

solving is one thing; to proffer these tools is another. Not all every tool is suitable for a 

specific environmental application. Broadly, managing spatiotemporal data sets involves 

approaches ranging from data acquisition, data analysis as well as the generation or 

presentation of the eventual output. In the past, these approaches have been based on 

analogue means of data acquisition and manual methods of processing [174]. The recent 

advent of modern technologies has prompted an increase utilization of Information 

Systems required for the creation, manipulation, and storage as well as an enhanced use 

of spatiotemporal data compared to conventional applications in every facets of 

spatiotemporal data management; Geographic Information Systems.  Essentially, an 

Information System, which is a collection of tools for data management— through data 

acquisition, data retrieval, data pre-processing as well as data processing, contains both 

analogue and digital forms of data sets describing the real world phenomena.  

 

Explicitly, with the aid of Information Systems tools, the data sets were selected, classified 

and synthesized to generate details representing these phenomena, such as the use the 

topographical, hydrological and vegetal data sets to reveal and classify the real 

representation of flood vulnerability within the study area. Also, while spatiotemporal data 

is always associated with geographical locations, i.e., large-scale location consisting of 

topography, hydrology and land cover land use climatic factors beyond human, 

Information Systems is employed as the main tools needed to derive knowledge or insights 

from these spatial elements for decision-making. A comprehensible representation of 

geographic location for decision-making, is the factor that determines the tools required 

for spatiotemporal data processing, and placing more emphasis on the observable and 
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describable spatio-temporal effects with the information systems. To this effect, the 

ensuing subsection describes the approaches employed on data cleaning. 

 

3.4.1   Data Cleaning 

Broadly, data cleaning which is also referred to as data cleansing, focuses on the detection 

and elimination of errors and inconsistencies from data which is aimed at improving the 

quality of the data sets to suit a desired objective[175],[176]. Essentially, proper utilization 

of high-quality sets of data aids in making better predictions, analysis and decisions[177]. 

Inversely, low-quality sets of data are unsuitable for the intended purpose. For all intents 

and purposes, data cleaning is the process of normalizing or eliminating inaccurate sets of 

data[177]. This process is indispensable and particularly vital for Big Data Analytics, 

because erroneous data can lead to poor inference and analyses[177].This becomes a 

concern mostly, when large-scale heterogeneous data from varied sources are integrated 

for a purpose of data analytics [177], as in the case of this research. 

 

In satellite imageries, the cleaning processes involve using radiometric, geometric and 

data enhancement techniques, which aids in correcting, transforming and revealing the 

encapsulated information within the spatial imageries. While the temporal data sets were 

subjected to winsorization in order to identify and remove the outliers and missing values 

as illustrated in Figure 3.7. 
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Figure 3.7. Flowchart of Spatiotemporal data Cleaning 

Adapted From:[130],[164],[178],[179],[180],[181] 
 

As earlier discussed, satellite or spatial images like every other raw data are prone to 

errors. Therefore, the following processes were performed in order to obtain data sets with 

a relatively reduced error.  

 

3.4.1.1   Spatial Data Cleaning 

Mostly, spatial data cleaning is a fundamental first step of multi-sourced spatial data pre-

processing and knowledge discovery [182]. Conventionally, spatial data cleaning is the 

process of enhancing the quality of spatial data. This primarily involves examining and 

affirming the completeness and consistency of the collected sets of data[182]. 

Furthermore, it also encompasses the elimination of erroneous data, filling of missing 

details, denoising, performing both radiometrical and geometrical corrections, and 

enhancing the whole usability of the data. Beyond this, spatial data cleaning also analyzes 

the spatial data[182].  

 

Specifically, an accurate interpretation of remotely sensed data requires that digital 

imageries be corrected radiometrically and geometrically prior to analysis[183]. This pre-



92 

 

processing step is one of the basic elements of image analysis [183]. To this effect, the 

study area was extracted from other regions of Nigeria prior to the aforementioned 

corrective processes of the imageries as demonstrated in the following sub-subsection. 

 

3.4.1.1.1  Extraction of Study Area 

The extraction of the satellite image representing the study area was performed with the 

aid of the EO satellite NigeriaSat-x digital imageries at 22m resolution as shown in Figure 

3.8. Primarily, the satellite image collected covered the whole of Nigeria. Hence, the need 

to extract only the area of interest (i.e., Niger state). Using the shapefile shown in 

Appendix D. Even though, the imagery does not have any regional attributes, but broadly, 

it depicts both hydrological and topographical causative factors of Nigeria in addition to 

the identification of major water bodies (Appendix E). While Landsat8 was used to 

determine the vegetal factors. 

 

Figure 3.8. Raw NigeriaSat-x 
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Raw satellite images with the coverage of Nigeria; the lighter and darker regions represent 

higher and lower elevated regions respectively. From the satellite imagery in Figure 3.8, 

the study area as illustrated in Figure 3.9, was extracted using the administrative shapefile, 

which contains the thirty-six states of Nigeria in addition to the Federal Capital, and these 

states have a total number of 775 Local governments out of which, 25 are under the 

administrative boundaries of the study area (Appendix D).  

 

Figure 3.9. Extraction of Study Area 

 

The above figure shows the extracted study area clipped from the rest of the Nigerian 

spatial map with the aid of NigeriaSat-X and Administrative Shapefile.  

 

Generally, this method of extraction approach in Geographical Information System (GIS) 

was performed by clipping the imageries, which refers to the overlaying of a polygon on 

a target and extracting a raster data (satellite image) that are within the indicated study 
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area of the polygon. In applying the clipping method, the study area was therefore 

extracted while the features outside of the boundary are delineated. 

 

Similarly, in identifying the vegetal causative factors, the images acquired based on paths 

and rows (LandSat8) were used. These images had a swath, a coverage beyond the study 

area. Therefore, the TM imageries comprising of seven scenes were equally delineated.As 

earlier highlighted in the previous chapters, satellite imageries exude numerous errors, 

which range from random to human errors within the acquisition of these images as a 

result of the equipment used in the calibration. In addition, these errors could equally be 

as a result of either atmospheric distortion or cloud cover. These errors can directly impede 

the accuracy of the input data and indirectly affect the accuracy of the output data. As a 

result, the foremost task within this section was the cleaning of the extracted imagery as 

explained in the ensuing section.  

 

3.4.1.1.2   Radiometric Correction 

As a result of vast scale of spatial coverage of satellite imageries, acquisition of imageries 

over a curved terrain in two dimensional representations leads to geometric 

distortions[184]. Additionally, with recurrent acquisition, radiometric reliability is hard to 

preserve between different scenes of imageries due to different atmospheric conditions, 

variations in the solar illumination angles, and sensor calibration trends[184],[185]. 

Consequently, among the various aspects of image pre-processing, there are two 

outstanding requirements: geometric and radiometric corrections[186].Fundamentally, as 

identified in [187], radiometrically correcting a raw data is vital in order to remove missing 
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lines of data, and also for the elimination of the existing intensive variations in bands 

which are induced by the conflicting sensitive nature of satellites calibration.  

 

The adoption radiometric correction approach, which is matched with the study’s purpose 

yields accurate results after correction son the TM imageries as methodologically 

illustrated in Figure 3.10. 

 

Figure 3.10.  Radiometric Correction of TM Imageries 

 

Specifically, this process involves the use of GIS tools to convert DN values to spectral 

radiance, then converting the resultant spectral radiance to apparent reflectance as 

recommended in the study conducted in [188].  
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After these initial processes, the atmospheric effect as removed before the reflectance of 

pixel of the Earth’s surface was derived for the subsequent processes of the study. 

Additionally, since there was no cloud-free Landsat-8 TM images that were available for 

the study area at the point of data collection at the United States Geological Survey 

repository, the collected images were acquired under the cloud cover of 10 percent. 

Therefore, in order to meet the basic criteria defined in [189], which is to ensure less than 

10 percent of cloud cover, the scenes of the spatial imageries were further corrected to 

remove the atmospheric distortions. 

 

This practice involved the co-registration of the scenes in the same coordinate system 

because the study area was captured using seven scenes at different paths and rows. Also, 

the study area is within the equatorial region. Therefore, the cloud in the images were 

masked to decrease the problem encapsulated in satellite images which can potentially 

affect the output of the images in conformity with [13]. The output of this correction 

generated vegetal index and water bodies in the study area which were used to identify 

areas with low, moderate, dense or non-vegetal surfaces. The identification of the vegetal 

feature was crucial in the classification of regional flood vulnerability as presented in 

Chapter Four.  

 

In the same vein, an accurate approach that can geometrically correct these images as 

presented in the ensuing sub-subsection is equally very crucial for environmental analysis. 

This geometrical correction is mostly pertinent to Digital Elevation Models (DEMs) as 

well as flows which can severely induce floods in the study area[190].  
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3.4.1.1.3   Geometric Correction 

 

In general, the vast utilization of satellite imageries in various domains presents the need 

to geometrically correct the inherent distortions of the images to a desired projection[191]. 

Therefore, in furtherance to ensure the accuracy of the framework, this study after the 

radiometric correction, also performed the geometric correction which has the primary 

aim of eliminating the geometrical alterations displaying in the raw satellite images. 

Remotely acquired images are directly assigned coordinates referred to as projection. The 

challenges that are frequently experienced during the acquisition process is distortion, 

which can lead to serious discrepancy between the exact point on the ground and these 

coordinates in the acquired imageries, as a result of the satellites in the orbit. In applying 

geometric correction, reference map was used to assign the projection needed to determine 

the spacing as well as the grid points as illustrated in Figure 3.11. 
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Figure 3.10.Geometric Correction 

The standardization of the imageries into various formats from the originally collected 

formats enables the integration of the various data sets into the GIS tools for pre-

processing processes. The satellite imageries were first pre-processed (filling local 

depressions), the sinks and imperfections of DEMs were identified and filled because if 

not done, they will cause the surface flow to disappear and invalidate the water 

balance[192],[128]. After this preliminary correction, the images were geo-referenced 

to Universal Transverse Mercator (WGS84- Zone 32N) and a common window 

covering the same geographical coordinates was then extracted from each of the 

images in conformity with [192],[193],[194]. 

 

In search of comprehensible and relevant factors needed to describe imageries, it is 

required to render the imageries interpretable by humans [195],in form of image 

enhancement as discussed in the resulting sub-subsection. Spectral, textural, and 

contextual characteristics are the basic components utilized in human interpretation of 

imageries. Spectral characteristics define the tonal disparity in bands, while textural 

characteristics encompasses details on spatial distribution of tonal disparity in the band. 

Contextual characteristics comprises of details resulting from imagery of the study area.  

 

3.4.1.1.4    Image Enhancement 

Over the years, satellite images are used in many applications such as geographical 

information system, astronomy, and geoscience studies. Image enhancement is a 

decisive and fundamental step for remote sensing information retrieval and 
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classification[196]. It is typically used to locate objects and boundaries in 

images[196]. Image enhancement is currently regarded as one of the most important 

issues in image pre-processing. Image enhancement is the technique, which is most widely 

required in the field of image pre-processing to improve visualization features presented 

in the image[196]. In the case of satellite imageries, precisely finding efficient enhanced 

result in the existence of inherent uncertainty and ambiguity is a challenging task. Such 

suitable and accurate multispectral remote sensing image enhancement can appreciably 

support the applications in numerous fields ranging among agriculture, defense, geology, 

environmental science, etc. [196]. 

 

 

Similarly, the gray value assigned to a pixel is also the typical reflectance of many kinds 

of land covers. Consequently, assigning proper enhanced features with firmness is an 

inherent problem for satellite images[196]. In general, raw satellite images have a 

relatively narrow range of brightness values. Therefore, contrast enhancement is 

frequently employed to enhance the multiband satellite images for better interpretation 

and visualization. The images representing a change of surface features’ gray value are 

within a narrow range and these images look unclear. The process of image enhancement 

performed in this research was to enhance the valuable attributes of images to facilitate 

the visual identifications of features for flood analysis as recommended by [197].  

 

And finally, color enhancement was used in order to have a clear visualization of features 

that are potentially causing flooding events within the study area as elaborated in the next 

chapter (Chapter four). As earlier stated, the cleaning process was performed on both 
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spatial and temporal data sets. Therefore, the ensuing sub-subsection demonstrates how 

the winzorization on temporal data sets was performed.  

 

3.4.1.2  Temporal Data Cleaning 

Generally, floods are natural events associated with increase in the intensity of 

precipitation [198]. Every potentially floodable eventis characterized by the periodic 

determination of the total, average intensity as well as the maximum precipitation volume 

that can induce it [199].For clarity, in this research, these precipitation values are referred 

to as Flood Inducible Precipitation Values (FIPV). Therefore, in order to determine the 

FIPV, a large daily time series data records representing precipitation, water level and 

temperature from 1979-2016 were collected.  

 

The use of large sets of time series data was needed to learn the historical pattern of rainfall 

and its associated disastrous events in the past, which in turn reveals the trend for any 

potential flooding event. Inherently, these large data were recorded within a format that is 

lacking normality distribution, thereby leading to some difficulties in analysis. While 

some studies presume that, the ultimate means of avoiding the difficulty in a large volume 

of data is by avoiding the use of such data[45], this can be associated with the presence of 

noise or outliers [45], which can adversely lead to erroneous analysis [46]. Nonetheless, 

as the basis of this research was formulated around a framework known to be suitable in 

handling very large and complex forms of data, the resolution of this limitation had to be 

taken into account.  
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Therefore, cleaning this data by means of winsorizing became pertinent as recommended 

in [200], as demonstrated by Figure 3.12. 

 

Figure 3.1.Temporal Data Cleaning 

 

As illustrated in Figure 3.12, both the presence of outliers and missing values were 

corrected by employing Winsorization in order to have a cleaned set of temporal data for 

long-lead prediction and pattern learning.  

 

3.4.1.2.1   Winsorization 

Essentially, winsorization has a pivotal role in removing any potential outliers since it 

consists of substituting a record in both tails of a set with the subsequent having a reduced 

extreme value[46]. Similarly, winsorization decreases the extreme sensitivity in the mean 

values while enhancing the efficiency of the median at light tailed distributions during the 

statistical analysis[46]. As illustrated in Figure 3.12, the temporal data sets used for the 

long-lead analysis, with the aid of visual data exploratory approach, was assessed to 

identify the presence of missing values as suggested in [46]. Although, the temporal data 

set did not exude any traits of missing values. However, after the identification of outliers 

using graphical-based visual data exploratory approach as elaborated in subsection 4.2.2 

and also with Figure 4.10, the identified outliers were winsorized based on 5% in 
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conformity with [200],[201],[202],[203], in order to normalize the data before running 

multiple regression for assumptions on descriptive analysis and eventual predictive 

inferential statement.  

 

Thus far, these preceding processes generated cleaned and normalized sets of 

spatiotemporal data required for the multiple feature extraction to identify upstream flood 

causative factors and also for long-lead upstream flood analysis. The cleaning of 

spatiotemporal sets of data performed in the preceding subsection was not only to enhance 

the appearance of the features but as well to facilitate the tasks involved in feature 

extraction processes[204], as demonstrated in the following subsection. 

 

3.4.2   Multi-factorial Feature Extraction 

As earlier mentioned, floods are one of the most destructive of natural hazards, and cause 

extensive loss of life, as well as havoc to both land and property. As a result, it is 

imperative that an efficient flood assessment framework be developed to collect details 

on the occurrence and damage caused by floods[205], which will eventually aid in 

mitigating any potential flooding events within the study area. The need to mitigate the 

impacts of flood hazards or disaster becomes very imperative because it is difficult to 

control basic atmospheric processes which produce floods. The first step attempt by man 

in the process of flood disaster reduction is therefore, to identify relevant factors 

influencing the occurrence of flood within a region [43]. 

 

As already identified within the scope of the reviewed studies, the fundamental limitation 

therein dwells on the paucity of factors considered to represent flood causative factors. 
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Therefore, this research adopts an approach based on the extraction of multiple factors, 

which is also considered to be very crucial in environmental analysis[154], [206]. This 

consideration of multiple factors invariably ensures accuracy in flood vulnerability 

classification. Effectively, this helps in identifying regions that require long-lead flood 

prediction due to their vulnerability to floods; the underpinning objective of this research. 

To this effect, topographical, hydrological and vegetal factors were pre-processed as 

illustrated in Figure 3.13. 

 

 

Figure 3.13 Flowchart for Extraction of Flood Causative Factors 

Adapted from[207]. 

 

As illustrated in Figure 3.13, the pre-processed spatial data generated multiple flood 

causative factors. Essentially, it is very important to note that, understanding as well as 

addressing each factor of vulnerability, and their interactions, is crucial for effective flood 

disaster mitigation [23]. To this regard, pre-processing multiple spatiotemporal elements, 

involving topographical, hydrological and vegetal features were pre-processed in order to 
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generate multiple flood causative factors which were earlier addressed to fulfil the 

research objective one in Phase I of the proposed hybrid framework.  

 

Additionally, the relative severity of hydrological processes (flood) affecting the 

landscapes are sensitive to the nature of the topography within the region [208]. Therefore, 

indicator of these process can be designed as functions of distributed soil, vegetal, and 

particularly topographical features since it provides the opportunity for realistic 

representation of these factors[208]. Consequently, this subsection has been segmented 

into three sub-subsections. The first sub-subsection discusses characteristics as well as the 

procedures employed in generating topographic features for the identification of some 

relevant factors such as elevation and angular slope. The second sub-subsection presents 

modes of extracting hydrological features aimed at identifying factors such as flow 

direction, flow accumulation and Topographic Wetness Index. While the third sub-sub-

section aids in describing the approach used in extracting vegetal stratification by the use 

of Normalized Difference Vegetation Index (NDVI). 

 

3.4.2.1   Extraction of Topographic Factors 

The topography of an area plays a very important role in determining the exposure of the 

area to a potential flooding event. More so, topographic factors determine the severity, the 

volume of flow as well as the velocity of runoff [209],[210]. In the topographical factor 

extraction, the cleaned raster imageries were used to extract the following components. 

 

3.4.2.1.1   Elevation Factors 
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The creation of elevation was considered foremost in topographical factor extraction 

because other factors are dependent on it. In the predefined values, the vertical 

exaggeration value (Z value) used in the generation of the elevation was set to 1. This was 

required in the representation of regions with flat topographic features. It is advantageous 

for this exaggeration value in order to clearly identify those existing regions with 

relatively gentle or low elevation features. While the scale of ratio between vertical and 

horizontal units was set to 1. This ration of Vertical exaggeration represents the 

comparison of both horizontal and vertical scales on the profile of Digital Elevation 

Model.  

 

Procedurally, the value was obtained by taking an inch which denotes the scale of the 

horizontal axis and dividing it by the scalar value of the vertical axis. In the standard 

format, the values for both axis are 100inch/100inch= 1, signifying the absence of vertical 

exaggeration. And eventually, the output of the aforementioned processes generated the 

elevation factor with an altitude ranges between 45m and 511m above mean sea level, 

indicating the lowest and the highest elevation values respectively. The identification of 

regions within the Elevation classification was done by using regional latitude and 

longitude coordinates. By implication, the likelihood of flooding increases when slope 

angle is below a critical value and then decreases logarithmically low gradient elevation 

are highly related to flood vulnerability compared to high elevation, as supported by[210] 

and [211]. Contrary to some studies that have only considered the elevation as the only 

topographic causative factor, according to [125], the angular slope must be regarded as a 

causative factor, since it plays a vital role in identifying the velocity as well as vertical 
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percolation in inducing flooding events. Therefore, the ensuing sub-subsection 

demonstrates the method of extracting the angular slope.  

 

3.4.2.1.2   Angular Slope  

Angular slope generally reveals surfaces with low or high values of slope in degree or 

percentage. The obtained slope elaborated in Chapter Four, equally has a surface indicator 

to identify regions that are susceptible to floods as it plays a vital role in recognizing the 

vertical percolation as well as the velocity of the surface runoff and, consequently, leads 

to flooding.  Therefore, the angular slope was further extracted from the cleaned spatial 

data to have an exhaustive information on the influence of topography to flood 

vulnerability within the study area. This was done by defining the cleaned spatial data as 

the input in QGIS from the raster environment. The values for Z-factor earlier used in the 

creation of elevation were maintained throughout the creation of the other topographic 

factors, by implication, the Z-factor for slope as inherited from the previous process is 1, 

while the unit of measurement was selected in degree (0)and the output was vectorized.  

 

The lesser slope value signifies a flat surface, while the slope with higher values signifies, 

the steeper the slope of the surface, the higher the runoff leading to the increased 

probability of flood in regions at Depression or lower steep level. Noticeably, the pre-

processing of both elevation and slope fills the topographical-based issues found in some 

of the reviewed studies which only used elevation factor or survey means to classify 

regional flood vulnerability. Thus far, this sub-section has presented the methodological 

approaches in extracting topographical factors. The ensuing sub-subsection presents the 
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methods of extracting hydrological factors which play a major role is determining the flow 

of water as well as its concentration on the topographic surface.  

 

3.4.2.2   Extraction of Hydrological Factors 

The extraction of hydrological factor as well as other relevant factors as recommended in 

the study conducted by[212], is equally critical in flood vulnerability classification. This 

is because many of the flood causative factors are interrelated, and part of the approaches 

required to be considered in identifying regions susceptible to floods consists of 

identifying the most relevant factors in each of the closely related factors[213]. 

Essentially, the hydrological factors were considered to determine the level of 

susceptibility of various regions within the study area since both vertical and horizontal 

water flow can occur at the study area. More so, the hydrology of a surface is associated 

with the movement of water on the surface within hydrological cycle, saturation and the 

conveyance of elements such as sediments and pollutant along with flowing water[214]. 

As a result, the following hydrological factors were extracted to aid in the classifying 

regional flood vulnerability. 

 

3.4.2.2.1   Flow Direction  

In the facet of feature extraction within the pre-processing phase, it is very essential to 

obtain the directions of flow in order to implement some physical or structural measures 

needed to mitigate any potential flooding events within the regions where flow of water 

is directed at.  This is because the flow direction shows the possible direction of water 

run-off on the elevation factor[215]. Procedurally, the directions within which water flows 

were extracted by the determination of direction which is taken by flows in every cell 
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within the eight cells of the neighbor. This direction was defined by recognizing the 

direction of the steepest descent of the cells. It has been identified that flow is directed 

towards a cell when a cell is less than eight neighbors and then, it is assigned the lowest 

value. Illustratively, the extraction of flow direction is demonstrated by Figure 3.14. 

 

Figure 3.14. Hydrological Factor Creation Flowchart 

In creating the flow direction, the cleaned spatial raster was also declared as the input data, 

while the D8 algorithm was used to extract pattern for non-flat regions. Generally, a 

cleaned spatial data is needed to run the D8 algorithm[216]. The D8 algorithm which is 

integrated in the QGIS application is usually used to obtain the flow direction using the 

directional coding: 1 - East, 2 - Northeast, 3 - North, 4 - Northwest, 5 - West, 6 - 

Southwest, 7 - South, 8 – Southeast, and subsequently generated the flow accumulation 

output. In addition to the flow direction, flooding events can be influenced by the 
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accumulation of water, which can be assessed using the flow accumulation factor as 

elaborated in the following subsection. 

3.4.2.2.2   Flow Accumulation  

Sequel to the preceding process in creating the flow direction, the flow accumulation 

was concurrently computed by means of the accumulated number of pixels in 

upstream. Factors representing the flow accumulation were further obtained by the 

generation of a grid for accumulated flow to every cell. The output cells having a high 

volume of accumulation representing regions having flow concentration, and 

consequently, was utilized to recognize stream channels. While output cells having a low 

flow accumulation (zero value) were considered the local topographic heights and was 

employed to recognize ridges. 

 

Generally, regions with indicative traits of flow accumulation have the tendency of flood 

vulnerability, especially, when further influenced by heavy downpour.  This factor is 

crucial especially, for large river basins[217]. It is evident that the distribution of plant 

species is not random, and is associated with the distribution of hydrological and 

topographical factors[214].Therefore, after the extraction of both topographical and 

hydrological factors, the extraction of land cover features to obtain the vegetal factor was 

performed in order to identify regions with bare soil, dense vegetation and water bodies. 

 

3.4.2.3   Extraction of Land Cover 

Land cover plays a key role in global-scale patterns of the climate and biogeochemistry 

of the earth system[218]. More recently, remote sensing has been utilized as a basis for 

mapping global land cover. Conventionally, similar to the approaches adopted in this 
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research, spatial data sets provide maps of potential vegetation inferred from climate 

variability, such as precipitation. Therefore, to identify the level of influence posed by 

land cover factor, this research extracts the vegetal feature of the study area and the TWI 

as discussed in the following subsection.  

 

3.4.2.3.1   Vegetal Stratification 

The NDVI can be considered as an indirect indicator of the amount of biomass added to 

the soil, which may be related to the soil content[219]. Changes in NDVI also correspond 

to changes in the vegetation health, thus intimating at the availability of water to the plant 

and in turn to the bulk density, pore size/structure evolution and the soil hydraulic 

properties[219]. The generation of this factor was required in order to identify the vegetal 

contents of the study area. Essentially, satellite imageries provide the opportunities for 

vegetal analysis over a large area as in the case of this research. Vegetation Indices, such 

as the NDVI, is commonly used for vegetal trend analysis to identify the regional 

greenness of the area of interest.  

 

In extracting the vegetal stratification, the cleaned Landsat-8 images were classified based 

on Bands 02 (Blue),03 (Green) 04(Red) 05(Near Infrared (NIR)). While the NDVI was 

used to quantify the vegetation at the individual pixel. Using supervised classification, the 

color composite was defined at 3-2-1 to depict the natural color of the terrestrial features 

to classify the water bodies, bare soil and the vegetation density.  
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3.4.2.3.2   Topographic Wetness Index 

The Topographic Wetness Index (TWI) is commonly employed to quantitatively depict 

the conditions of soil moisture within a watershed, and it is the most frequently utilized 

indicator for static soil moisture content[220],[221]. So, it plays a vital role in flood-based 

researches[220]. The extraction of TWI was done by declaring the cleaned DEM as an 

input raster data. The output presented the regions with low and high levels of wetness. 

The output data was then classified to reveal various levels of regional flood vulnerability. 

 

Thus far, the preceding subsections have demonstrated the approaches employed in 

extracting various flood causative factors. The identification of these factors yielded the 

extractions of the needed multiple factors, attaining the research objectives One and Two 

respectively. As already established, this research entails the development of a hybrid 

framework. Therefore, the extraction of multiple factors was required to accurately 

perform regional flood vulnerability classification prior to performing the long-lead 

upstream flood prediction as discussed in the next section. 

 

3.5   Phase III: Hybridization of Vulnerability Classification and Long-lead 

Upstream Flood Analysis 

Disasters, such as floods, are determined by the vulnerability index and capacity index 

amongst other factors [222]. The vulnerability index comprises of losses and the exposure 

of the population indicator. While the capacity index comprises of early warning, 

preparedness indicators and mitigating indicators [222].  These indicators form the basis 

of the hybrid approach proposed within the context of this research to perform 

vulnerability classification and long-lead analysis in order to provide useful insights and 



112 

 

recommendations for appropriate mitigating measures against upstream flood disasters in 

Niger State. In order to identify the indicators of vulnerability, the extracted factors were 

classified. While the temporal factor was used to perform a long-lead prediction to enable 

adequate level of mitigative measures to be implemented using the generated results 

obtained from the proposed hybrid framework in Figure 3.15. 

 

Figure 3.15.Hybridization of Vulnerability Classification and Long-lead Flood Analysis 

 

As illustrated in Figure 3.15, the extracted multi-spatial and temporal factors were 

employed to classify regional flood vulnerability and perform long-lead flood prediction 

respectively. As concisely described in the ensuing subsections. 

 

3.5.1   Classification of Regional Flood Vulnerability 

As earlier established in the previous chapters, flooding event is one of the natural hazards 

which occur globally, and it is critical to be controlled through proper management. Thus, 

employing approaches to recognize vulnerable regions with the aid of RS and GIS is vital 

for decision-making [223]. It has also been corroborated that the detection of flood 
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susceptible regions is a basic component in flood mitigation[224]. Therefore, in order to 

identify and classify regional flood vulnerability, the extracted factors were classified by 

the means of symbology, which in the context of Cartographic design, is the use of 

graphical techniques to represent geographic information on a map, such as size, color 

and shape. The approach was performed using single band color to classify the factors 

into four distinct classes of Highly Vulnerable, Vulnerable, Marginally Vulnerable and 

Non-Vulnerable. By this means, regions were correspondingly classified based on their 

levels of vulnerability. 

 

Essentially, the outputs of the classification were transformed into maps depicting the 

locations as well as the interpretive legends to show regions and their related levels of 

vulnerability to flood. This is because the creation of maps is indispensable for regional 

prioritization in the decision-making and as such, are needed by disaster management 

agencies [225].  

 

On the other hand, in flood mitigation, time is one of the most important factors [223]. In 

view of addressing various limitations related to lead-time in the reviewed studies, this 

research adopts the second segment of the hybrid framework, which is to perform the 

long-lead upstream flood prediction for the regions mapped within the flood-prone areas. 

This was done by learning the trend of the temporal factors, consisting of daily 

precipitation, water level and temperature data acquired over the period of 37 years, which 

formed the basis for seasonality identification in the historical rainfall. This consequently 

helped in knowing the floodable periods and non-floodable periods over a long time span. 

The procedural approaches are further discussed in the following subsection. 
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3.5.2   Long-lead Upstream Flood Analysis 

It is noteworthy that, floods triggered by upstream factors, such as precipitation are among 

the most devastating natural disasters and one of the most rampant hydro-meteorological 

disasters globally[226].Adversely, the current global warming is altering the pattern of 

precipitation, leading to an increase in the intensity and frequency of precipitation thereby 

increasing the potential for floods [227].Generally, within the study area, upstream 

flooding events have been associated with heavy precipitation lasting for days or weeks. 

To ensure preventative and mitigating measures, accurate prediction of the regional flood 

inundation and dissemination of information on the inundation areas to emergency 

managers, city planners, and the general public is necessary[228].  

 

Accordingly, this subsection demonstrates the approaches employed in performing long-

lead analysis using the temporal time series data comprising of precipitation, water level 

and temperature with daily records of 13850 days i.e. from 1979-2016 as illustrated in 

Figure 3.16 and also Appendix B. with the authorization in Appendix L.  

 

Figure 3.16.Illustrative Sample of Temporal Data 

 



115 

 

Here, the long-lead upstream flood analysis, i.e., prediction of potential flooding by 

estimating the volume of precipitation that can potentially lead to a flood over a period of 

several days was obtained following the ensuing approaches as illustrated by the flowchart 

in Figure 3.17. 

 

Figure 3.17.Long-lead Upstream Analysis 

As illustrated in the flowchart in Figure 3.17, the determination of the long-lead prediction 

was performed with the aid of Flood Inventory and cleaned Temporal Data using 

clustering algorithm obtained with the aid of python programming language as elaborated 

in the ensuing sub-subsection. 

 

3.5.3   Long-lead Clustering Algorithm 

From the above flowchart, the algorithm is developed to determine the Flood Inducible 

Precipitation Volume (FIPV) as the corresponding lead-time towards a long-lead 

prediction. Ultimately, the clustering algorithm is based on logic reading from the 

precipitation data within the range long-lead i.e. 5-16 days. The primary aim of the 

algorithm is to return the various regional FIPV and the corresponding number of lead-
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time in days. This advertently, enables the local authority to gain an insight on the daily 

accumulation volume of precipitation that can lead to upstream flood.  

 

Figure 3.18. Long-lead Clustering Algorithm 

Algorithm 

Input: Set of Temporal Data,  = P, Precipitation, W, Water level  

Output: Flood Inducible Precipitation Values  

Begin: read file("For_Python.csv")  

Displaying Dataframe 

Columns = .Precipitation 

Precipitation records = .values 

Dataframe=Precipitation 

Range=df3.loc Date ['Date1':'Date2'] Date1 represents the date of the flood 

occurrence as identified from the Flood 

Inventory data set, while Date2 is the preceding 

historical rainfall dates prior to the flooding 

event. 

Display(Range) 

DVAP=Range.values.sum() Summation of Daily values of accumulated 

Precipitation 

Display("DVAP") 

Display(df1) 

NPD=df1[df1.Precipitation == [0]. 

shape[0] 

Summing all days with 0s in precipitation 

Display (df1[df1.Precipitation 

!=0].shape[0]) 

 

 

Display(DVAP-NPD)  

Display("FIPV") Shows the FIPV 

 

 

End 
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As illustrated in the preceding clustering algorithm in Figure 3.18, the initial step in 

determining the FIPV consists of identifying the date when flood had occurred in the past, 

which is contained in the Flood Inventory data. Once this is identified, with the aid of 

python programming language, the precipitation (rainfall) of the identified date is 

clustered alongside previous Precipitable and Non-Precipitable Days (NPD). The number 

of Daily Volume Accumulated Precipitation (DVAP) minus NPD is computed to have the 

accumulated volume as well as the number of days recorded. This process is repeated for 

a study area with different dates of flooding event consisting of a decadal record. Finally, 

the minimum accumulated volume over the number of days is termed FIPV.     

 

Practically, the FIPV for long-lead analysis, the dates for a flooding events were referred 

to in the Flood Inventory data. Using the records of the historical flooding events, the 

preceding days of precipitation were marked. The clustering algorithm identifies all the 

precipitable days and aggregates the volume of the precipitation with the corresponding 

number of days. While days within the threshold of FIPV that did not experience rainfall 

were ignored to have the exact number of days where rain fell leading to the accumulation 

of FIPV. Using the daily precipitation and the historical flooding events in the flood 

inventory, the experiment was repeated for other regions to obtain their corresponding 

lead-time. As a result, each location within the study area has its FIPV. Nonetheless, the 

variation of the FIPVs can be associated with other spatial flood causative as explained in 

Chapter Four.  

 

For instance, the 2012 flood which was the most devastating flooding event in Nigeria 

[229], as well as the study area also affected Katcha region on 28/08/2012, when a 
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considerable amount of rain was recorded from 19/08/2012 to 28/08/2012 with an 

accumulated value of 213.24mm precipitation over a period of 9 days.  These results 

provide important insights into the region of Katcha which continuously experiences 

flooding events as a result of voluminous rainfall recorded. Therefore, it was inferred that, 

when a rainfall occurs and accumulates to a minimum volume of the 213.24mm or above, 

without an intermittent stoppage of not more than a day, then there is a likeliest tendency 

of experiencing flooding in the coming days. 

 

This procedure was repeated for all the regions to identify their corresponding FIPV and 

the threshold for the long-lead. The identified volumes were regressed to identify the 

correlation between other temporal variables i.e. water level and temperature, while a 

proposed algorithm for a long-lead forecast is given Figure 3.18, and eventually, the model 

specification test was performed to validate the predictive model employed in performing 

the long-lead. From the preceding algorithm, vast volume of temporal data sets was 

utilized to determine the FIPV.  Remarkably, this methodological discussions demonstrate 

the means by which the long-lead analysis was attained based on the historical records. 

Expressly, from the identified historical FIPVs, a long-lead prediction can be performed 

using a range of forecast daily precipitation data which was as demonstrated using the 

ensuing pseudocode in Figure 3.19. 

 

 

 



119 

 

 

Figure 3.19. Long-lead Clustering Algorithm 
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From the preceding pseudo codes, the values of the forecast generated four distinct 

indications. The first is the period of gradual formation of volume of rainfall that can 

instigate upstream flood, the second is the prediction of long-lead after several 

observations must have been inputed. The third is the period when the rainfall will decline 

or halt, which indicates a recession in FIPV. And lastly, the re-accumulation of 

precipitation for yet an extension of flooding period or yet another flooding event. 

Instances of these distinct values are further presented in subsection 4.3.2 of Chapter Four. 

 

Furthermore, in order to ensure a reliable and accurate output from the developed hybrid 

framework, the present study further adopts an accuracy assessment of the developed for 

the framework. By this means, decision-makers or the local authority are clearly and 

unambiguously shown the correctness and the reliability of the generated results. 

Therefore, the ensuing subsection demonstrates the approaches employed in assessing the 

accuracy of the hybrid framework.  

 

3.6   Phase IV: Accuracy Assessment 

With the emergence of more enhanced techniques on spatiotemporal data sets, the need to 

perform accuracy assessment has received a renewed interest [230]. This is not to portray 

the accuracy assessment in traditional approaches (for instance, studies based on survey) 

as unimportant. Nonetheless, due to the complexity of digital classification, there is more 

of requirement to assess the accuracy of the results generated from digital imageries [230]. 

Making it crucial to consider a means of assessing the accuracy of the obtained pre-

processed outputs as well as the predicted results prior to the implementation of the 
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inferential statement on the long-lead predictions. Building on the aforementioned 

arguments, this research has proposed the following flowchart in Figure 3.20. 

 

Figure 3.20.Validation Flowchart for Framework Assessment 
 

In accessing the accuracy of the spatial factors, the correctness of the extracted multiple 

spatial factors was assessed using Google Earth and physical maps. This approach allows 

the identification of the extracted features to be associated with the terrestrial features 

using Keyhole Markup Language (KML) file for visual inspection based on Good Earth.  

Once the attributes were accurately identified geographically, the features were further 

assessed by experts in GIS as equally adopted the study conducted on GIS-based landslide 

susceptibility for Northeast Algeria in [231]. Correspondingly, in assessing the 
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correctness of the classified regional flood vulnerability, various regions were associated 

with their corresponding frequency of flooding events contained in the Flood Inventory 

data set covering the period from 2006 to 2017 (Appendix C).  

 

Ultimately, this was validated when regions identified to be highly vulnerable have a high 

frequency of flooding events. Inversely, regions identified to be least vulnerable have the 

least frequency of flooding events. Finally, experts in the domain of GIS were engaged to 

consolidate the preceding accuracy assessment of the outputs by providing insight into the 

underlying causes of flood vulnerability through the lens of multiple causative factors. 

The assessment was equally opined by experts in disaster management agency within the 

study area. The accuracy of both multi-factorial and vulnerability classification was 

assessed using the methods adopted in the study conducted a on flood risk assessment in 

China[232]using the following iterative flows: 

 

Figure 3.21.GIS-based Expert Iteration 

Using the above iterations, the accuracy of the output as well as the significance of the 

framework was assessed by the experts as analyzed in subsection 4.5.3.  

The final assessment was done on the long-lead prediction made using a statistical 

approach. Essentially, this was performed with the aid of model specification link test 
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using Stata tool. This approach consists of selecting an appropriate functional form for the 

predictive model. As demonstrated thus far, the entirety of the research was based on 

spatiotemporal sets of data. Therefore, for clarity, the modes of acquisition as well the 

justification for the use of spatiotemporal data are discussed in the following sub-section. 

 

3.7 Spatiotemporal Data Acquisition 

Broadly, the Earth’s surface is observed using EO satellites from the space and terrestrial 

remote sensors in order to provide essential data needed for natural disaster monitoring 

and mitigation such as upstream flooding and Katrina [233],[234]. Additionally, the past, 

present as well as the future trends of flood risks require accurate spatial and temporal 

information on potential flood vulnerabilities [235]. Satellite imageries as further 

explained in subsection 3.7.1, are generally more reliable in identifying the vulnerability 

of a surface to any disaster compared to the survey or questionnaire-based method used in 

some of the reviewed studies [35],[34], [141] in the previous chapter.  

 

3.7.1 Justification for using Spatiotemporal Data Sets 
 

The primary need for data acquired from EO satellite and RS (spatiotemporal data)which 

were majorly provided by Nigerian authority are as follow[236], [235],[237],[238]: 

I. Data from EO satellite serve as supporting means to remote sensors in analytical 

facet needed for prediction of natural disasters and other environmental analysis. 

Nevertheless, in some countries, EO satellite is adopted as the only source of 

environmental data, either as a result of the nonexistence of terrestrial remote 

sensors, or due to the ability of the EO satellite to capture environmental data 

efficiently without being affected by climate factors, such as cloud and heavy 
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downpour which attenuate the signal of the satellite which consequently, will 

reduce the quality of the data. 

II. Satellite images are useful for the estimation of water coverage, landscape and the 

dynamics within the study area. While data sets from remote sensors are useful in 

measuring temporal climatic data such as precipitation, temperature and water 

level. 

III. Topographical station without any atmospheric interference to attenuate the 

signals. 

IV. EO satellites provide near-real time data capable of enhancing analytical results in 

addition to the provision of continuity of data downlink for analytical task. 

 

As previously reviewed in the preceding chapter, numerous spatiotemporal data pre-

processing frameworks have been developed to classify regional vulnerability to flood 

disasters. Despite the emergence of these frameworks, [239] affirms that studies are yet 

to address the issue correctly. This is attributed to the absence of an exhaustive regional 

vulnerability analytical means [240]. Traditionally, early studies only focused on 

analyzing uniquely physical or structural features of vulnerability, as well as the 

researches published that are related to the natural and anthropogenic situations [241]. 

These limitations have therefore presented the need to employ a more robust and suitable 

framework to analyze upstream flood vulnerability aimed at obtaining an effective flood 

risk mitigation, especially, within the continent of Africa, which has been recognized by 

researchers to be a hotspot for floods. Thus, presenting the need for a reliable flood 

mitigation [35],[242],[243],[244]. 
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Conclusively, with these results, this research has addressed all the pertinent scientific 

issues highlighted in the problem statement by attaining all the objectives outlined in 

Chapter One (section 1.4). And as such, the proposed hybrid framework is considered 

valid as further elaborated in section 4.5 in Chapter Four. 

 

3.8   Chapter Summary 

 

This chapter has demonstrated the methodological approaches employed in conducting 

the research by examining the novel concepts based on hybrid approach for multi-

spatiotemporal data pre-processing and long-lead upstream flood prediction. It also 

outlines a comprehensive description of the procedural phases adopted with a detailed 

illustrative representations to demonstrate how the tasks were performed to attain the 

defined research objectives.  The chapter captured the classifications of regional flood 

vulnerability using multiple pre-processed spatial data, while the long-lead was attained 

by employing the temporal data, prior to the validation of the proposed framework. 

Having described the research methodological approach for this research, the ensuing 

chapter presents the development of the proposed hybrid framework.  
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CHAPTER FOUR 

HYBRID FRAMEWORK DEVELOPMENT 

 

4.1   Introduction 

Previously, the research methodology was described. The sequential approaches adopted 

herein gives an illustrative idea of the expected outputs from various phases of the 

proposed framework. In developing the proposed hybrid framework, this chapter is 

structured into two main segments. The first segment is the hybridization, which 

comprises of flood vulnerability classification in subsection 4.2.1, and the second segment 

discusses the long-lead analysis in subsection 4.2.2. A detailed discussion on long-lead 

trend representation is presented in section 4.3. Since the entire research is based on multi-

factorial approach, which presents various FCFs with diverse levels of influence towards 

flood vulnerability, the AHP-based evaluation of each factors to determine the level of 

influence posed in inducing flood is detailed in section 4.4. Section 4.5 presents the 

accuracy assessment within the framework. And the chapter ends with a summary in 

section 4.6.  

 

4.2   Formulation of Hybrid Elements 

To understand the concepts of floods, two central approaches must be considered. The 

first is to identify geographic nature of flood and the level of vulnerability in various 

regions. The second relates to the general nature of flood and the ability for a practical 

implementation of policies in flood mitigation[245]. Nonetheless, the absence of a 

unifying framework for flood vulnerability based on multi-factors to accurately identify 
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and classify geographic nature of flood and its level makes it problematic to select one 

single approach from among the various available approaches. Hence, the need to employ 

a hybrid approach based on multi-factors for both flood vulnerability classification and 

long-lead prediction. Therefore, in this section, multiple flood causative factors that were 

extracted have been considered in identifying and classifying regions that are susceptible 

to floods. The identification of flood-prone regions is vital, since flood risk is less likely 

to decrease anytime soon because of its association with climate change [215]. What can 

be done however, is to be able to identify regions that are at high risk of flooding, which 

will be the basis for prioritizing mitigative measures and to create awareness for 

prevention and proactive measures [215]. Additionally, a high level of information, i.e. a 

suitable scale of flood maps is a fundamental precondition for a reliable flood risk 

mitigation.  

 

A detailed spatial information on flood vulnerability is required for the development of 

regional flood management concepts, planning and cost-effective analysis of flood 

mitigative measures and, extremely vital, for the preparedness and prevention strategies 

of individual stakeholders (e.g., communities, companies, house owners etc.)[122]. As a 

result, in order to perform a long-lead upstream flood prediction, a hybrid approach was 

adopted to initially classify and map out regions that are prone to upstream floods prior to 

performing regional long-lead prediction using the pre-processed spatiotemporal data as 

illustrated in Figure 4.1. 
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Figure 4.1.Proposed Hybrid Approach for Vulnerability Classification and Long-lead 
Analysis 

Adapted from: [246]. 
 

The approaches adapted in Figure 4.1 represents the procedures based on hybrid approach, 

which provides a better understanding of the impact on the physiographical and 

morphological characteristics of the study area on the occurrence and magnitude of floods.  

 

As earlier mentioned, EO satellites provide a distinct capability for monitoring the surface 

of the earth by providing periodically repetitive global or regional images at a desired 

spatial scale. This rich remotely sensed data offers a vital means for prevention, 

monitoring, as well as management of disasters that are naturally or anthropogenically 

(man-made) induced [20]. In analyzing upstream flood vulnerability, an effective use of 

these means does not only necessitate accurate and reliable analytical approaches to 

extract the desired details, but also, the methods of combining the obtained details with 

physical attributes of the floods are crucial[247]. Therefore, this research considers the 

extracted features as the underlying factors responsible for the increase flood vulnerability 

within the study area. To this effect, various regions were classified based on the extracted 

factors in the ensuing subsection. 
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4.2.1   Vulnerability Classification from Spatial Data 

Currently, there are several methods adopted for vulnerability classifications. The study 

conducted by [248],however identifies the need for an effort to be made towards providing 

a broad, yet usable means of understanding vulnerability that can be used by communities 

to assess their own risk, and to decide which mode of measures to take in mitigating 

associated risks by planners and other relevant agencies. Generally, when classifying 

regions vulnerable to floods, the initial indication can be obtained by estimating the 

frequency of flooding events using the historical data (Flood inventory). Expediently, with 

the advent of satellite images, this can easily and accurately be classified[246], as in the 

case of this research. 

 

One of the most important roles of regional flood vulnerability classification within the 

concept of this research, is to identify a clear relationship amid the theoretical conception 

within flood vulnerability and regular administrative process aimed at mitigating the 

impacts of floods. Considering the contextual representation of vulnerability, the 

following causative factors were utilized using the Flowchart in Figure 4.2. 
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Figure 4.2. Regional Flood Vulnerability Mapping Flowchart. 

 

The use of limited FCFs to identify flood vulnerability within extant studies has been 

identified by this research to be the factors undermining the analytical accuracy in flood-

related studies. Therefore, the novelty of this research as illustrated in Figure 4.2, is the 

use of multi-spatiotemporal FCFs based on Topographical, hydrological and vegetal 

factors to classify regional flood vulnerability prior to long-lead analysis. 

 

Alarmingly, flooding events are likely to increase given the current prediction on the 

global warming, particularly in terms of monetary losses [249]. Whilst much more people 

live within low-elevated regions, these regions become more susceptible to floods [249]. 

Therefore strategies to cope with flooding, for instance, structural means such as reservoir 

and levee project, as well as non-structural means such as regulations, emergency 

preparedness etc. are implemented [249].  
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Essentially, these proactive measures depend on flood predictive efficiencies, and 

particularly, the ability to map out flood inundation areas is one of the most important 

requirements [249]. Consequently, various factors were employed to map out regions that 

are vulnerable to floods prior to performing long-lead upstream flood prediction as 

discussed in the succeeding sub-subsections. 

 

4.2.1.1   Topographical-based Vulnerability Classification 

Generally, topographical factors or features are the graphical representations of the 

regional landscape which provides interpretive presentation of the land surface, and the 

level of regional flood vulnerability[250]of the study area to potential flooding event(s). 

The various topographic based features identified to be flood causative features include 

Elevation and Slope. 

 

4.2.1.1.1   Elevation-Based Vulnerability Classification 
 

Primarily, in assessing the regional flood risk, elevation factor was classified into high, 

low, very low and very high elevations, which contributes to the exposure to floods. The 

classification of the elevation representing the study area was required to have a general 

knowledge on the regional topographic (terrain) for understanding and identification of 

the regions vulnerable to floods as well as their corresponding levels of vulnerability as 

illustrated in Figure 4.3. 
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Figure 4.3. Elevation-based Vulnerability Map 

The value of elevation obtained for various regions represent the gradient of the surface 

within the region in metres(m). Within the region of Katcha, which was marked by the 

lowest level of elevation (90.2457m), while Tafa possesses the highest elevation value at 

511m as shown in Table 4.1 
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Table 4. 1. 

Regional Elevation Values 

Regions 

 

Elevation (m) 

  

Aga 117.6239 

Agw 161.5762 

Bid 123.0762 

Bor 262.6028 

Bos 270.5563 

Cha 252.5918 

Eda 159.9411 

Gur 127.6221 

Gba 406.2143 

Kat 90.2457 

Kon 330.9187 

Lap 183.7931 

Lav 161.9863 

Mag 295.8828 

Mar 430.8329 

Mas 268.456 

Mok 169.6565 

Mun 415.7286 

Pai 307.8022 

Raf 288.6829 

Rij 365.2663 

Shi 280.1323 

Sul 451.6622 

Taf 511.152 

Wus 145.1833 

 

These elevation values were further classified into four classes of regional vulnerability 

as illustrated in Table 4.2 
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From the elevation factor, the four classes of vulnerability as adopted in the study 

conducted within the same study area, which was done by Ikusemoran et al in[29], have 

influence in various regions of the study area. With Suleja and Tafa considered non-

vulnerable. However, due to the unreliability of the results obtained using elevation 

features as earlier stated in the previous section, the angular slope must be regarded as a 

causative factor. Most importantly, since it plays a vital role in identifying the velocity as 

well as vertical percolation in inducing flooding events. Therefore, this research identifies 

the regional vulnerability based on the slope as described as follows.  

 

4.2.1.1.2   Slope-Based Vulnerability Classification 
 

The slope of a surface plays a significant influence topographically due to its ability to 

determine the direction as well as the volume of runoff on the surface, in addition to its 

contribution to stream flow. Therefore, angular slope causative feature aided to determine 

the form of a slop and how it influences structure, soil type as well as the drainage in 

Table 4. 2. 

Classification of Elevation-Based Vulnerability 

S/N Regions Elevation Class 

1 Bida, Gbako, Katcha 90-128 Highly Vulnerable 

2 Agaie,  Agwara,  Edati,  Lapai,  
Lavun,  Mokwa Wushishi 

129-256 Vulnerable  

3 Borgu, Bosso-Minna, Chanchaga,  
Kontagora,  Magama,  Mashegu, 
Paikoro,  Rijau,  Shiroro,  Gurara, 
Mariga, Munya, Rafi 

257-384 Marginally 
Vulnerable 

4 Suleja, Tafa 385-512 Non-Vulnerable 
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regional upstream flood vulnerability. Notably, as classified within the extracted feature, 

the slope at depression level (0-22.5°) causes a quick flow of water which greatly initiates 

floods within the study area. Inversely, extreme slope (67.5-90°) reduces the flow of 

water. However, steep and extreme slopes cause flood in regions with lower slopes while 

depression slope causes water logging.  

 

Broadly, low gradient or depression slopes (0-22.5°) are more vulnerable to flooding 

events compared to slopes with steep and extreme forms. This is because, water from rain 

or from rivers always accumulates within regions marked by low gradient (depression) 

pattern. As shown in Figure 4.4. 

 

 

Figure 4.4. Vulnerability Map based on Slope Angles 
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As illustrated in Figure 4.4, the surface slope is discretized into depression level, gentle 

slopping, steeply slopping and extremely slopping classes which will be used to analyse 

various degree of regional flood vulnerability in the next chapter.  

 

As represented by the map in Figure 4.4 above, a vulnerability map based on the slope 

factor representing the study area was further generated from regional slope. The 

classification of the vulnerability-based slope as represented in Table 4.3, has been 

classified into the ranks of Depression (Highly vulnerable), Gentle slope (Vulnerable), 

steep slope (Marginally Vulnerable) Extreme slope (Non-Vulnerable). For the study area, 

the vulnerability map based on the slop shows that Niger state lies largely between 

depression slope and steep slope. By implication, virtually all the regions have their 

peculiar traits of flood vulnerability. However, regions, situated within the depression 

slope are more exposed to flood vulnerability as a result of the flow emanating from the 

regions of extreme slope with a high velocity. The levels of vulnerability based on regional 

slope is classified in Table 4.3. 

 

 

Table 4.3.  

Classification of Vulnerable Areas Based on Slope Angles adapted from [208] and  [215] 

S/N Regions Slope (°) Class 

1 Mokwa, Mashegu, Borgu, Lavun, 
Agawara, Wushishi, Katcha, Gbako, 
Edati, Gurara 

0-22.5 Highly Vulnerable 

2 Agaie,  Bida, Rijau, Bosso, Chanchaga 22.6-45 Vulnerable  

3 Shiroro, Munya, Suleja, Lapai, Paikoro, 
Kontagora, Magama, Rafi, Tafa, Mariga 

46-67.5 Marginally Vulnerable 

4 N/A 67.6-90 Non-Vulnerable 
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As tabulated in Table 4.3, the slope values were obtained in the phase of processing the 

topographic element of the framework. Remarkably, the regional vulnerability identified 

using slope angles classified all the regions into four classes of highly vulnerable, 

vulnerable, marginally vulnerable and non-vulnerable. Contrary to the classifications 

made using the elevation values. The outputs obtained were further assessed with the data 

sets containing the records of regional Flood Inventory in order to ascertain the factors 

that provide the most reliable regional vulnerability classification output.  

 

Although, there is a dissimilarity in the generated vulnerability classification by both 

elevation and slope, a high gradient value of both slop and elevation features do not permit 

water to accumulate that could result into flooding. However, in the case of floods induced 

by water bodies, the elevation difference of various elevation cells from the water body 

could be considered. Whereas, for pluvial flood, local depressions, i.e., elevation cells 

with lower elevation than the surrounding ones would be more important. This implies 

that, the way in which the elevation could be associated with risk is important, even though 

it is also influenced by the density of vegetation attributed to the surface of the region(s) 

because infiltration of water in the soil is determined by the level of vegetal cover of the 

region as described in the subsequent subsection.   

 

4.2.1.2   Vegetal-based Vulnerability Classification 

Land cover equally influences hydrologic flow. For instance, by decreasing rain splash 

and increasing soil organic contents and soil porosity, vegetation could increase the rate 

at which water flows into the subsurface by means of infiltration. While in the subsurface, 

water can be transpired, flow laterally into surface water body, or move to deeper 
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groundwater channels. Water stored in the near subsurface is available to deep-rooted 

vegetation and can be transpired. So, enhancing infiltration may entail a reduction in the 

total volume of water available downstream [251], which can eventually reduce the 

vulnerability of floods.  

 

Correspondingly, enhanced soil water retention capacity enhances the protective effect of 

the soil on precipitation and delays the runoff processes, hours or days after a rainfall 

event. At present, one of the vast domains of utilizing EO satellite images has been to 

learn the pattern in the vegetal greenness, which is determined by climatic condition as 

well anthropogenic activities within the region [252]. Mostly in urbanized areas, these 

anthropogenic  activities can either enhance or reduce the vegetal greenness of a region 

by adopting agricultural areas into a habitable area [252]. This can subsequently reduce 

the level of the vegetation of the affected area thereby increasing the vulnerability to 

upstream floods. As earlier identified in the previous chapter, NDVI generated various 

degree of vegetation as well as the water bodies present within the study area. As 

elaborated in ensuing sub-section. 

 

4.2.1.2.1   Normalized Difference Vegetation Index-based Vulnerability 

Classification 

Generally, vegetation plays an important role in controlling soil erosion. It has been 

identified that an insignificant number of roots found on the soil can reduce the erodibility 

of the area when compared with regions without vegetation. Slopes having the features of 

a dense vegetation exude the ability to resist floods. The classes of vegetation shown in 

Figure 4.5 were determined by vegetation indices, which has the role of estimating the 
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greenness of vegetation of the study area and consequently reveals the regional 

vulnerability accordingly as contained in Table 4.4. 

 

 
Figure 4. 5.Vulnerability Map based on NDVI 

 
 

Normalized Difference Vegetation Index (NDVI) of Niger state showing various degree 

of vegetal density in addition to water bodies.  The NDVI presents a stratified form of 

vegetal classes consisting of water bodies, no vegetation (bare soil), low vegetation, 

moderate vegetation and dense vegetation which correspond to various levels of flood 

vulnerability within the study area as shown in Table 4.4.  
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As shown in Table 4.4, Niger state is largely covered with moderate vegetation and partly 

dense vegetation. As provided by the vegetal feature, supposed, the vast portion of the 

state experiences upstream floods marginally since land cover characteristic plays a role 

in flooding event as most of the regions within the State are identified to be marginally 

prone to upstream floods. Inferentially, this could be due to the impact of majorly regional 

greenness of the surface within the state. As earlier presented, both topographic and 

vegetal factors are directly influenced by the hydrological factors which determines the 

accumulation as well as the direction of flows as presented in the next subsection.  

 

4.2.1.3   Hydrological-based Vulnerability Classification 

Hydrological features are essential elements to identify the geographical proximity or 

interaction of an area with water [249]. These features help in recognizing the source as 

well as the routes taken by water. Although, the delineation of watershed can enhance the 

knowledge of areas that are potentially vulnerable to floods [249]. Nonetheless, the 

identification of flow on the surface needs a detailed physical illustration of the region at 

Table 4.4. 

Regional Classification of Vulnerable Areas Based on Vegetation Index 

S/N Regions Vegetation Class 

1 Borgu, Edati No Vegetation (Bare soil) Highly Vulnerable 

2 Mashegu, Rafi Low Vegetation Vulnerable  

3 Mokwa,  Mariga, Lavun, Wushishi, 
Gbako, Bida, Rijau, Bosso, 
Chanchaga, Shiroro, Munya, 
Kontagora 

Moderate Vegetation Marginally 
Vulnerable 

4 Agawara, Lapai, Agaie, Suleja, Tafa, 
Katcha, Magama 

Dense Vegetation Non-Vulnerable 
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the drainage structure in order to accurately describe the pattern of the flow during a 

flooding event [249]. Even though data sets or features obtained from various EO 

satellites, such as terrain features aid in the identification and assessment at various levels, 

the utilization of combined heterogeneous sets of data to reveal in-depth details of all the 

flood causative factors can enhance the flood analytical results.  

 

4.2.1.3.1   Flow Direction-Induced Vulnerability Classification 

The features representing the flow direction was required to identify the pattern at which 

the runoff on a surface causes flood using the slope from the adjacent cells within the 

study area. Especially, since the hydrological representation of flow direction is usually 

used to reveal the paths taken by water. Additionally, flow direction within a cell identifies 

the possibility of water flowing to either one or more of the adjacent regions which is also 

influenced by the slope of the study area.  As such, Figure 4.6 illustrates various paths that 

water takes to potentially cause upstream flooding within the study area.  
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Figure 4.6. Flow Direction Induced Vulnerability 

In the generated flow direction factor (Figure 4.6), it shows that the flow direction/Pattern 

across the state is majorly around the Southern axis of Katcha, Agaie and Edati. Thus 

exposing these regions to a high level of flood vulnerability, while it is slightly and 

uniformly distributed in other regions, with some regions like Shiroro and Munya are 

naturally drained into the adjacent water body, and other natural drain channels in 

neighboring surfaces. 

 

Furthermore, even though the direction of flow remains one of the factors that influences 

flooding events, regions which receives high volume of accumulation need to be identified 

as well. The identification of this flow accumulation is presented in the resulting sub-

subsection.  
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4.2.1.3.2   Flow Accumulation-Induced Vulnerability Classification 

The generated feature representing the flow accumulation as shown in Figure 4.7 

estimates the volume of the accumulated or accrued flow of water within the study area, 

which is also used to identify the stream channels present within the study area. This 

output as illustrated in Figure 4.7 equally reveals the volume of rain that falls on the 

surface which could flow towards each direction. 

 

Figure 4.7. Flow Accumulation 

The grids with the highest volume of accumulation are uniformly distributed mostly at the 

bottom of the pits within the South-Eastern regions of Gbako, Wushishi, Katcha and Rafi.  

 

With the identification of the direction and accumulation of flow and the regions 

associated with the vulnerability therein, the ensuing sub-subsection determines the level 

of wetness of the terrain known as Topographic Wetness Index (TWI). 
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4.2.1.3.3   Topographic Wetness Index-Induced Vulnerability Classification 

The Topographic Wetness Index (TWI) reveals the dispersal of regional topography 

which fundamentally determines the influencing region at the moment of rainfall in 

function of different slopes within the study area. The first assumption consists of 

approximating the transient response of the regions as a sequence throughout a stable 

condition and the supposed rate of discharge to be uniformly spatial which is given by 

equation 4.1: 

         q
�
� = ����                                                                                               (4.1) 

Where �� represents upstream region flowing via cell I/m, draining factor (rainfall), �� 

represents the rain within a given period t(m/hr); While q
�
� represents the discharge of the 

surface due to region being saturated, measured in m2/hr.  

 

The use of TWI in regional flood vulnerability classification is reliable, because it is 

derived from DEM based on the principle that a topographical profile controlling the 

dispersal of water and regions that contain the accumulation of water can also foretell the 

observed trend of saturated region.  Therefore, in this research, the TWI was used to 

identify higher water content around the regions of Bida, Agaie, Borgo and Agwara of the 

state, while other regions have been attributed to a low water content. These low and high 

level of water contents represent lower and higher flood vulnerability respectively in the 

study area. Implicitly, the TWI of the surface within the study area was determined by the 

evaluation of slope, flow direction and accumulation. The output generated a terrestrial 

representation of regions having drainage depression with a potential water accumulation. 

The regional value of TWI is determined as follows: 
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I=in(a/tanβ)          (4.2) 

Where I represents the value of index; 

with a representing the high contributing surfaces;  

while β represents the topographical slope. 
 

Another significant aspect of TWI dwells in its ability to observe the spatial influence on 

hydrology as well as its ability to identify the flow direction within the surface of the study 

area.  The vulnerability classification obtained from TWI showing various regions and 

their corresponding soil saturation is illustrated by Figure 4.8. 

 

Figure 4.8.Topographic Wetness Index 

In the TWI map, regions with low values of TWI represent the less vulnerable for forming 

ponding; while larger values of TWI are formed when the high surfaces are drained over 

a gentle slope.  
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Table 4.5 

TWI-based Classification  

 

S/N Regions Concentration Level Class 

1 Mokwa, Edati, Katcha High Concentration Highly Vulnerable  

2 Borgu, Agwara, Bosso, 
Gbako, Chanchaga, Paikoro, 
Rafi, Kontagor, Magama, 
Mashegu, Mariga 

Moderate 
Concentration 

Vulnerable 

3 Munya, Shiroro, Lavun, 
Rijau 

Low Concentration Marginally 
Vulnerable 

4 Bida, Lapai, Agaie, 
Wushishi, Gurara, Tafa, 
Suleja 

Least Concentration Least Vulnerable 

 

Here, surface ponding denotes the stagnant water on depressional surface where the 

surface soils gets to a point of saturation or flooded concrete depressions when 

precipitation is unable to infiltrate the surface. The TWI has identified lower water content 

around the North-East region of the state, while the regions which are situated around the 

central and the western regions. It has also been identified by [253], that, TWI can 

effectively be utilized to reveal regions that are associated with flood vulnerability. The 

values and the level of vulnerability in relation to the classified factors are summarized in 

Table 4.6. 

 

Table 4.6. 

Interpretation of Flood Causative Factor Classification  

Flood Causative Factors Values/ Classification Classification Interpretation 

Elevation (metres) 90    -  128 1 Highly Vulnerable 

129  -  256 2 Vulnerable 
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257  -  384 3 Marginally Vulnerable 

385  -  512 4 Non-Vulnerable 

Slope(Degree) 0       -  22.5 1 Highly Vulnerable 

22.5 -   45 2 Vulnerable 

45    -  76.5 3 Marginally Vulnerable 

67.5 -  90 4 Non-Vulnerable 

Flow Direction Directed Flows 1 Highly Vulnerable 

2 Vulnerable 

Non-Directed Flows 3 Marginally Vulnerable 

4 Non-Vulnerable 

Flow Accumulation High Accumulation 1 Highly Vulnerable 

2 Vulnerable 

Low Accumulation 3 Marginally Vulnerable 

4 Non-Vulnerable 

Topographic Wetness Index High Accumulation 1 Highly Vulnerable 

2 Vulnerable 

Low Accumulation 3 Marginally Vulnerable  

4 Non-Vulnerable 

Vegetal Factor No Vegetation 1 Highly Vulnerable 

Low Vegetation 2 Vulnerable 

Moderate Vegetation 3 Marginally Vulnerable 

Dense Vegetation 4 Non-Vulnerable 

 

Thus far, the extracted features have been used to identify various regions and their 

associated levels of vulnerability within the study area. In the identification of regional 

upstream flood vulnerability, various causative factors were independently used to 

classify regions based on their respective levels of vulnerability. In summary, the output 
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of the generated regional flood vulnerability is contained in Table 4.7 with classification 

of HV,MV,V,NV representing Highly Vulnerable, Marginally Vulnerable, Vulnerable 

and Non-vulnerable respectively.  

 

Table 4.7 

Regional Flood Classification 

Causative Factors Number of Classifications out of  4  

Elevation HV,MV,V,NV 

Slope HV,MV,V,LV 

Vegetation HV,MV,V,NV 

Flow Dir HV& NV 

Flow Acc HV& NV 

TWI HV,MV,V,NV 

 

The classified outputs were further compared with the Flood Inventory data collected over 

ten years as graphically represented in Figure 4.9. 
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Figure 4.9.Flood Inventory 

From the record contained in the flood inventory, it is evident that twenty-four out of 

twenty-five regions have experienced flooding events within the period of 2006-2016. 

This indicated that virtually, all the regions are vulnerable to floods except one as 

contained in the record. Therefore, the accuracy of the hydrological and vegetal factors is 

deemed defective. This is primarily because both hydrological and vegetal factors failed 

to reveal other regions that are vulnerable to floods.  

 

However, in comparison with topographical factor, it is noteworthy that, topographic 

factor generated a more reliable result when compared with the flood inventory. This is 

because, all other factors made a partial identification of regions vulnerable to flood. 

However, topographical factors generated a result that classified all the regions within 

various levels of flood susceptibility. Hence, it can be inferred that the topographical 

factor, most especially the angular slope is more accurate in identifying flood 

vulnerability. This was further elaborated in the Findings Section i.e. Chapter Five of the 
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thesis.  Meanwhile, in conformity with the proposed hybrid approach, which is to identify 

regional flood susceptibility prior to performing long-lead upstream flood prediction for 

the vulnerable regions, next sub-subsection describes the approaches employed in 

identifying the minimum value of precipitation that can potentially instigate flood in these 

regions.  

 

Generally, precipitation data remains a vital variable required to learn the pattern of 

rainfall required for hydrological cycle[254]. The intensity of precipitation immensely 

influences the severity of flood, as the hydraulic conductivity; which is the property of 

soil or plants that describes the ease with which water can move through pore spaces tends 

to be exceeded by the volume of the precipitation[255]. In addition, the increase of rainfall 

induces more rate of runoff and the depth of inundation path [255]. Similarly, it has been 

identified that the present climate change immensely contributes to the increase in 

flooding globally [256],[257].  

 

Therefore, learning pattern of varied climatic conditions such as rainfall aids in 

understanding the potential environmental impacts which in turn, will be very crucial in 

decision-making[258]. This is because, early prediction systems can aid in enhancing the 

efficiency of any flood mitigating measures, which decreases losses, such as evacuation, 

flow diversion, alerting the populace and preparedness of the flood managers[258]. In 

view of this, descriptive analysis based on statistical approach was adopted on the data in 

order to correct the data set and also have a global insight on the data prior to the long-

lead prediction. 
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4.2.2   Long-lead Statistical Assumptions from Temporal Data 

 

This research employed a statistical approach to correct and describe the influence of 

precipitation on regional upstream flooding in the study area. Within the scope of this 

research, the descriptive analysis of temporal variables are as represented in Table 4.6. 

The Table indicates the Minimum (min), mean, Standard Deviation (SD) obtained from 

daily temporal records containing the precipitation, temperature and water level data over 

the period of 37 years.  

 

More specifically, this sub-subsection presents the descriptive analysis for temporal data 

consisting of Precipitation, Temperature and Water level adopted for long-lead flood 

analysis. The descriptive analytics were presented based on the analytical output using 

regression. Besides, the daily descriptive statistics for regional precipitation, Temperature 

and Water Level is presented in Table 4.7. 

 

Table 4.7 

Values of Descriptive Analytics. 

Variable Min Mean Sd 

Precipitation (mm) 0 20.924   4.905544   

Temperature (°C) 10.212    46.2384   6.877063 

Water Level (mm) 1.03      95.59   95.59   

 

Descriptively, the temporal components contained in the Table 4.7 above shows varied 

minimum, mean and Sd values for precipitation, temperature and water level.  The 

summary of the results as shown in the above table describes the variables being 

considered for the long-lead analysis. Also, the correlation between the variables which 
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determines the relationship among variables is further elaborated in the ensuing sub-

subsection. 

4.2.2.1   Correlation Analysis 

Correlation analysis amongst the temporal variables was also considered within the scope 

of this research. Correlation analysis is performed fundamentally to describe the strength 

and direction of the relationship between variables [259]. The interpretation of the 

influence or strength within the variables based on of the relationship between variables 

was done based on criteria regarded in [259], which states that a correlation value of (r=.9 

and higher) is unsuitable and indicates multicollinearity within the approach. Therefore, 

as contained in Table 4.8, the correlation between variables of regional precipitation, 

water level and temperature are within the values of a suitable threshold (<0.9). 

Accordingly, the highest value between the variables is 0.099526.  

 

 

As contained in Table 4.8, the coefficients indicating a very weak correlation to 

precipitation, which is the upstream factor. However, the results show a significant 

correlation with both negative and positive correlation for Precipitation-Temperature and 

Table 4.8 

Variable Correlation 

 

Precipitation Coef. Std. Err. T P>|t| [95% Conf Interval] 

Temperature -0.1385825   .0053255    -26.02    0.000 -.1490213    -.1281438 

Water Level .0995206    .0017436     57.08    0.000 .0961028     .1029384 

Cons 3.771378    .1725279     21.86    0.000 3.4332     4.109556 
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Precipitation-Water level respectively. Analytically, when a unit of precipitation 

increases, it will cause decrease of 14%, while water level will increase with 10%.  

Ultimately, the positive relation between precipitation and water level is indicative of 

influence of precipitation to increasing level of water within the water body which capable 

of instigating flooding events within Borgu regions, which is adjacent to the main water 

body in the study area.  A conservative rule of thumb, then, seems to be that absolute 

values of Kittler-Illingworth (KI) > 10.0 suggest a problem, and absolute values of KI > 

20.0 indicates a more serious one implementing the obtained FIPV. From this insight, 

there is no identifiable record of multicollinearity between the temporal data used in this 

research. To this effect, diagnostic tests were performed within the statistical analysis to 

further reveal any violation of statistical inference. 

 

4.2.2.2   Diagnostics Test 

Conducting diagnostics test is an important approach within the concept of the descriptive 

analysis. Its usefulness is due to the role it plays in identifying any potential defilement of 

fundamental assumptions related to multivariate data analysis [260].  As such, this 

research conducted tests to address any issues associated with missing values, outlier 

evaluation and normality check in order to ascertain the validity assumptions prior to 

performing inference for the long-lead prediction. 

 

4.2.2.3   Missing Values 

Missing values represents the unavailability of suitable value of one or more variables for 

data analysis. Similarly, missing values can lead to a biased estimate and consequently, a 

distorted and erroneous decision-making [261]. Given the need for analytical accuracy 
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needed for decision-making, this research, performed an initial descriptive analytics to 

identify the volume of missing values within the large temporal data sets. Subsequently, 

the output of the descriptive statistics showed a total of 13850 records in the dataset 

(Appendix B), out of which no value was missing. Therefore, the assessment of possible 

outliers was done as presented in the resulting sub-subsection. 

4.2.2.4   Assessment of Outliers 

Outliers are observations in a dataset that are substantially different from the bulk of the 

data [262],[263].  In a regression-based analysis, the existence of outliers in a dataset can 

substantially distort the estimates of regression coefficients and consequently lead to 

unreliable results. However, to check for possible existing of outliers, several methods are 

often employed including standardized residual, cook’s distance and Mahalanobis 

distance statistic. For this research, graphical-based and standardized residual method 

were used to detect any possible observation which is outside the expected range, as 

illustrated in Figures 4.10 and 4.11. 



155 

 

 

Figure 4.10. Graphic-Based Outlier Representation for 1979-2016 Daily Record 

 

 

Figure 4.11.Graphic-Based Outlier Representation for Long-lead Record Over 8 Days 
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From the above graphical representation, the records representing the 1979-2016 daily 

temporal data sets is highly overwhelmed by the presence of outliers. Contrarily, within 

Long-lead record of 8 days, there is no any sign of this effects. To further ascertain this 

claim, standardized residual method was assessed.  

 

Generally, standardized residual method is the most widely used measure for detecting 

outliers. According to the rule of thumb, observations with standardized residual above 

+3 or -3 are considered as outliers[264],[265]. From the obtained results using all the 

temporal records, the residual results showed high presence of outliers depicted by the 

outputs of the residual results. 

 

Table 4. 9. 

Summary of Residual 1979-2016 Records 

 

Source Sum of Sq. Degree of 

Freedom 

Mean Sum of Sq Number of Obs =   13850 

F(  2, 13847) = 738.65 

Prob > F      =  0.0000 

R-squared     =  0.0964 

Adj R-squared =  0.0963 

Root MSE      =  17.911 

 

Model  473914.725 2 236957.363 

Residual 4442097.3 13847 320.798534 

Total 4916012.03 13849 354.972347 

    

    

    

 

As contained in Table 4.9, the record of the variable i.e. precipitation, temperature and water level 

contains 13859 number of observations comprising of records from 1979-2016. 
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Table 4.10 

Summary of Residual for Non-floodable Observations 

Source Sum of Sq. Degree of 

Freedom 

Mean Sum of Sq. Number of obs =   9 
F(  2, 6) = 4.54 
Prob > F      =  0.0630 
R-squared     =  0.6021 
Adj R-squared = 0.4694 
Root MSE  = 0.58193 
 

Model  3.07418162 2 1.53709081 
Residual 2.031856 6 0.338642667 

Total 5.10603762 8 0.638254703 

    

    

    

 

As contained in Table 4.10, the record of the variables i.e. precipitation, temperature and 

water level contains 9 number of observations comprising of records of 9 days of non-

floodable period, while the statistical values for floodable period contained in Table 4.11. 

 

Table 4.11 

Summary of Residual Long-lead Records 

Source Sum of 

Sq. 

Degree of 

Freedom 

Mean Sum of Sq. Number of Obs =   9 

F(  2, 13847) = 
2142.67 

Prob > F    =  0.0000 

R-squared  =  0.9958 

Adj R-squared = 
0.9943 

Root MSE =0.83697 

 

Model  986.8801 2 493.44004 

Residual 4.203071 6 .700511853 

Total 991.0832 8 123.885394 
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As contained in Table 4.10, the record of the variable i.e. precipitation, temperature and water 

level contains 9 number of observations comprising of records of 9 days of long-lead floodable 

period. 

 

As contained in Tables 4.8, 4.9 and 4.10, the value of R2     for the entire records of temporal 

data from 1079-2016 contained in Table 4.8 indicates an unfitness of the predictive model 

due to the presence of outliers. While the values of R2 for the non-floodable and long-lead 

floodable records in Tables 4.9 and 4.10 show the fitness of the predictive model.  This in 

general, shows the correctness of the model since the higher the R-squared, the better the 

model fits the data set. Summarily, the values of the residual indicate that the maximum 

and minimum standard residual values are within the limit of +3 or -3 as suggested by 

[264],[265],[266]. Based on this indication, none of the observations showed a high 

standard residual that has the potential to be an influential outlier. Accordingly, there is 

no case in the data set that is found to be an outlier for Non-floodable and Long-lead 

observations in Tables 4.9 and 4.10 respectively. 

 

4.2.2.5   Normality Test 

Normality represents the assumption indicating a normal distribution of the temporal 

variables as well as the linear combination within a model [266]. Several statistical 

analysis consisting of correlation and regression depend on the assumption that the sets of 

data conform to normality distribution. As a result, the normality of data sets has to be 

verified to ensure the correct use of statistical tests prior to an acceptance of a suitable 

hypothesis [267]. Additionally, normality test is vital in several approaches, linear 
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operations inclusive. Broadly, several assumptions for any potential occurrence of events 

are obtained from statistical inferences using normality [268].  

 

Also, normality-based test is required in data estimation since one of the assumptions of 

multiple regression requires the need for residual to be normally distributed. The generally 

adopted means of normality assessment was conducted with the aid of skewness and 

kurtosis values[269]. Therefore, to conduct a normality assessment on data using 

skewness and kurtosis, various acceptable values for both skewness and kurtosis were 

employed were required. Accordingly, [265] suggests a value of ±3 for skewness and ±10 

for kurtosis. In this research, a skewness and kurtosis test was performed for all variables. 
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Table 4.12 

Skewness and Kurtosis for All records, Long-lead and Non-flooded Observation 

 Panel A 

All Records Before 

Winsorization 

Panel A’ 

All Records After 

Winsorization 

Panel B 

Long-lead 

Observation 

Panel C 

Records for Non-Flooded 

Observation 

    Variable Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis 

Precipitation 7.301158   74.28578 2.64731 8.3452 -0.11695 1.982584 2.47299 7.119635 

Water Level 0.8443582   2.809533 1.03743 5.2232 -0.10416 1.71618 1.240717 2.880278 

Temperature 0.1527965   1.596798 2.30123 7.49371 0.755632 3.664849 -.1358425 1.91514 
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Considering the records Before Winsorization (Panel A) of Table 4.12, contrary to records 

after Winsorization (Panel A’), the results indicate that the skewness and kurtosis value 

for precipitation and water level were beyond the acceptable defined limit. Even though, 

with a large volume of data set, this assumption are not considered,(i.e. sample size greater 

than 30 are exempted from normality distribution tests) nonetheless, in order to uphold 

the established assumption of normality in respect of data distribution, the affected 

variables were further Winsorized at 5% in conformity with [270]. After performing the 

Winsorization as demonstrated in sub-section 3.4.1.2, a descriptive statistics values (Table 

4.11), were generated to derive the values for skewness and kurtosis. At this point, the 

value of skewness and kurtosis for all the variables as presented in Table 4.11, were within 

the acceptable threshold of ±3 and ±10  for skewness and Kurtosis respectively as 

recommended by [265].  

 

As contained in Panel B and C of Table 4.11, skewness values for precipitation, water 

level and temperature were within the acceptable value of ±3 and kurtosis value lower 

than 10. Explicitly, this approach was able to efficiently address issues related to normality 

within various variables used in this research. Aside, adopting this numerical approach for 

normality assessment within the variables, graphical means is equally used to further 

ensure the normality of the variables, which is in addition, was adopted in this research in 

order to have an elaborate and reliable assessment prior to the implementation of model 

specification test for long-lead upstream prediction. Consequently, a normality P-P plot 

and histogram were used to assess the fulfilment of the normality assumptions.  
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Figure 4.12. Probability Plot and Histogram:All records (1979-2016) 

 

Evidently, the pictorial results of both P-plot and Histogram in Figure 4.12 above, which 

was obtained from the 1979-2016 daily records showed a skewed pattern, denoting a non-

normally distributed data. Contrary to the results obtained for the long-lead observations 

as illustrated in Figure 4.13.  

Figure 4.13. Probability Plot and Histogram: Long-Lead 

 

Figures 4.10 and 4.11 depict the probability plot and histogram for both long-lead records 

and the complete data sets.  
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As illustrated in Figures 4.10 and 4.11, both the normality P-P plot and histogram 

confirmed that the temporal data used for all the records and long-lead upstream flood 

records fulfilled the normality trend. The normality P-P plot illustrates that the data points 

form an approximate straight line that is close to the fitted line. An indication that the 

variables are in a normal distribution trend. Likewise, the trend of all the bars on the 

histogram. As such, from these results, normality assumptions are assumednot to be 

violated in this research. Illustratively, the results for long-lead (Figure 4.11), showed a 

normal distribution pattern, while the representation for all records showed a skewed 

pattern, indicating a non-normal distribution. 

 

Essentially, conducting the correlations test for various regions independently showed 

both negative and positive relationships. Correlation coefficient between 0.0995206 to -

0.1385825were found with statistically significance at 86-99% based on t-test, this 

suggests certain connection between precipitation, water level and the temperature. It is 

worth noting that, this research is entirely based on big data, which allows the exemption 

of normality threshold test on the output. However, due to importance attached to the 

accuracy of the seasonal trends towards long-lead, validity of the normality was ensured 

because if the assumptions derived from the normality are not substantiated, it is 

impossible to draw accurate and reliable conclusions about practical events. More so, in 

statistical data analysis, many data sets are prone to outliers which increases the value of 

the kurtosis. Hence, the need to ensure the absence of outliers which could affect the 

accuracy of the lead-time [267],[268].With these obtained values below the threshold, it 

can be concluded that assumptions based on the normality are valid.  
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4.2.2.6   Regression Results 

Thus far, the aforementioned approaches conducted various diagnostic tests on the 

temporal data sets using multiple linear regression. Specifically, the regression was 

performed using precipitation data as the dependent variable, while water level and 

temperature were also considered. Consequently, the normality test needed for the 

hypothetical inference was conducted between the variables using normality distribution 

assessment based on the adapted study on flood information [63], which was personally 

recommended  by the principal author of the paper. The obtained results correspond to the 

defined values of coefficient (β), t-statistics and p-values. Hence, the following section 

determines the trend of the data sets prior to the determination of FIPV in order to identify 

the lead-time for the long-lead analysis.  

 

4.3   Long-Lead Trend Representation 

In recent times, interest has increased in learning about precipitation variability and trend 

in order to improve the periodic predictability for climate studies[271]. Identification of 

trends using time series related to environmental sciences can be obtained through a set 

of familiar classical procedures [272]. This is especially significant due to the explosion 

of spatiotemporal data sets that provide a common basis for data utilization aimed at 

attaining meaningful and applicable output for better decision-making. Particularly, 

depiction of historical trends and variations are significant for comprehension of the 

fundamental processes of flood, and then to predict for the motive of monitoring and 

mitigating any adverse impacts from floods [272].  
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Broadly, precipitation is extreme spatiotemporally since it is the result of complex 

interactions between a variety of dynamic processes with characteristic of spatial and 

temporal measures [271]. As earlier established in this research, the need to learn the 

pattern variability of precipitation (rainfall) allows the long-lead upstream prediction to 

be focused towards periods where there is an extreme precipitation volume. While the 

prediction ignores months with an insignificant or no rainfall. Therefore, in order to 

identify the magnitude of the trend in hydro-meteorological time series, Normality 

Distribution test based on adapted study for long-lead prediction [55][63] and[273] was 

employed. Fundamentally, the trend of the temporal data depicting the temporal 

variability was obtained within the framework as shown in Figure 4.14. 

 

Figure 4.14. Temporal Trend Variation 

 

From the generated results of the learned trends above, the overall observation identified, 

the months of November, December, January, February and March are normally 
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associated with no rainfall. While April to October are the months with rainfall records, 

with August having the peak rainfall round the year.  

 

Accordingly, the period from 2006–2016 experienced a relative increase in precipitation, 

and water level, leading to an associated increase in flooding events. This increase in the 

hydro-meteorological trend is directly associated to the current climate change 

experienced globally. With respect to upstream floods, this research identifies the general 

definition of flood as the large accumulation of precipitation capable of submerging the 

surface of the land [274]. Therefore, the following subsection presents the approaches 

used in identifying accumulated volume of precipitation that can lead to a flooding events 

in various regions of the study area referred to as Flood Inducible Precipitation Volume 

(FIPV). 

 

4.3.1   Determination of Flood Inducible Precipitation Volumes 

The preceding section drew an understanding on the trend of rainy and non-rainy seasons 

within the study area. Broadly, understanding the trend of rainy seasons can be crucial in 

managing the floods affecting millions of individuals as well as damaging properties 

[274]. Extreme precipitation generally impedes several economic activities as a result of 

the detrimental events caused by these floods[275]. Therefore, considerable lead-time 

identification of such extreme precipitations is required for decision-making, as well as 

strategic adaptations. Consequently, in order to determine the FIPV, the volume of a daily 

precipitation was determined by examining the quantity of the daily rainfall value in a 

succession of daily rainfall using the following equations.  
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With x =  
∑ �	


          (4.3) 

Where x represents a trend observation ∑ is the sum while N represents the total number 

of observed trends. While the standard deviation (SD) utilized is represented as:  

SD = � � 
��̄
� �� �




���
          (4.4) 

Where SD Standard Deviation 

x̄ = The value of the observed trend while 

CV = CV = ��
�̄ � ���

�          (4.5) 

 

Where: 

X = Daily records for a defined time 

N = Number of records considered  

∑ = Sum of all the values 

Consequently, the FIPV = ∑ 

 

Thus, generating the accumulation of precipitation both non-floodable and floodable 

values that can potentially induce upstream flooding events over a long-lead time frame 

in the region of Borgu is contained in Table 4.13.  
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Table 4.13 

NIPV and FIPV of BorguRegions 

Panel A: 

Non-Floodable Observation Over 9-Days  

Panel B: 

Floodable Observation with 8-Days Lead Time 

Date Precipitation 
(mm) 

Water Levl (cm) Temperature(°C) Date Precipitation (mm) Wat Level (cm) Temperature (°C) 

 

24/03/2015 2.4075 0.946 24.93 03/06/2015 9.31 0.769 23.96 

25/03/2015 0.045 0.145 26.18 04/06/2015 12.75 1.390 23.12 

26/03/2015 
 

0.0225 0.401 29.8 05/06/2015 34.3 4.014 16.87 

27/03/2015 0 0.096 33.63 06/06/2015 0 0.101 31.45 

28/03/2015 0 0.044 32.25 07/06/2015 10.02 1.026 23.45 

29/03/2015 0 0.057 34.73 08/06/2015 21.5 2.710 22.57 

30/03/2015 0 0.046 37.28 09/06/2015 20.95 2.504 22.9 

31/03/2015 0.0225 0.115 30.34 10/06/2015 25.21 3.012 21.21 

1/04/2015 0 1.230 38.46 11/06/2015 30.75 3.333 18.04 

Total 2.4975 3.081394762 287.6 Total  164.79 18.85901 203.57 
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Table 4.13 containing both floodable and non-floodable volumes. The records contained 

in Panel A contains the total accumulation of precipitation of 2.4975mm collected over 9 

days, with no associated flooding events. While the values under Panel B, the accumulated 

volume of precipitation from 03/06/2015 to 11/06/2015 led to flooding event. This was 

obtained after the identification of the flooded date from the flood inventory. And the 

previous rainy days were identified with their corresponding volumes of precipitation, 

which gave the accumulated volume of 164.79mm over 8-days lead-time. Here, the 

number of days from the aforementioned dates is nine. Nonetheless, on06/06/2015, no 

rainfall was experienced as depicted by the value corresponding to zero (0). Hence, the 

total number of the cluster is number of rainy days minus(-) the  number of dry days to 

measure the lead-time/days. From these values, the formation towards FIPV commenced 

from 03/06/2015, while 06/06/2015 witnessed recession of volumes because there was no 

rainfall experienced. The re-accumulation of the FIPV recommenced on 07/06/2015 with 

precipitation volume at 10.02 mm. 

 

Correspondingly, the regional values of the FIPVs for other regions were identified as 

summarized in Appendix J. This research has identified an uneven distribution of FIPV to 

the influence of other spatial factors, such as elevation, vegetation, slope, flow direction 

and flow accumulation of the surface in various regions of the study area tabulated in 

Appendix J. 

 

Inferentially, when the FIPV for various regional elevation is at the verge of accumulation, 

the estimated value can be used to determine the lead-time of a potential flooding events. 

Hence, proactive measures can be implemented within the vulnerable region(s) to mitigate 
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the havoc that can be inflicted by floods. Furthermore, the observations of the trends made 

indicated that flood frequencies in various regions vary substantially depending on 

elevation, flow direction, slope and vegetal nature of the associated area.   

 

Noticeably, the mean annual precipitation varies regionally in Niger state showing a 

distinct variation at various regions. Additionally, precipitation has a more adverse effect 

on flood vulnerability within some regions compared to others. Such as Mokwa, Katcha 

and Lapai. While areas adjacent to water bodies in the case of Borgu and Shiroro are also 

greatly affected when induced by an expected FIPV. This impact around Borgu and 

Shiroro is due to precipitation experienced around the water bodies which contributes to 

high level of discharge during the rainy season between the months of July and August, 

thereby increasing the severity of upstream floods in addition to the downstream factor.  

 

Thus far, this research has adopted heterogeneous features to identify the vulnerabilities 

as well as the levels of regional vulnerabilities within the study area in addition to the 

utilization of temporal data to identify a long-lead trend of upstream flood and the 

corresponding FIPV for any potential flooding events. This effectively, has implemented 

the two technical entities of the research, which are the big data for the voluminous, 

heterogeneous and initially unstructured data for detailed information gathering for the 

analysis. While the second was the analytics, which is the gathering of various tools 

required for the description and inference approaches as adopted in the adapted 

studies[64],[63].  
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Sequel to the previous analytical results generated from the long-lead predictive model 

specification, the level of influence of temporal factors was p=40.8%, indicating the that 

other factors are also influential to the dependent variable, which is the upstream flood. 

Also, seeing that the research was based on multi-factorial approach to classify regional 

flood vulnerability, and each factor having a distinct level of influence in inducing flood, 

this research further examined the associated influence of these relevant factors for proper 

decision-making by the local authorities within the study area. Essentially, analysis of 

relevant factors is crucial in view to implementing suitable  of flood mitigative 

measures[276].  

 

In this regard, it has been identified that, both Analytical Hierarchical Process (AHP) and 

Analytical Network Process (ANP) are very effective for flood vulnerability assessment 

[277], nonetheless, ANP is difficult to provide correct network structure among factors 

even for experts, and different structures lead to different results[278]. Hence, this 

research considers the utilization of Multi-criteria evaluation of the factors considered 

based on AHP as elaborated in the ensuing section.  

 

4.4   Multi-criteria Evaluation of Causative Factors 

The use of Multi-criteria evaluation provides an enhanced accuracy in decision-making 

when evaluating the influence of causative factors in flood vulnerability [279]. Therefore, 

this section assesses the level of influence of the considered causative factors in inducing 

upstream floods as considered within the scope of this research. In this research, the two 

primary GIS-based approaches; pairwise comparison approach i.e. AHP, as well as 

Ranking approaches in the calculation of weights of the causative factors were employed 
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to determine the level of influence within the factors. With the aid of AHP flowchart 

illustrated in Figure 4.15, the individual weightage for the causative factors was derived 

based on their influence in inducing floods in the study area. 

 

Figure 4.15. Analytic Hierarchy Process Flowchart: Source[280]. 

As illustrated in the Figure 4.1, the AHP of the flood causative factors considered within 

the scope of this research were further analyzed. AHP is known to be an organized 

approach used in the analysis of complex issues in both voluminous interrelated ideas and 

factors. This analysis consists of criteria setup and hierarchical construction prior to pair-

wise comparison.  
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Pairwise Comparison approach was utilized in defining the weights for the factors. 

Broadly, this approach consists of comparing factors and permits the comparisons of only 

two factors simultaneously. The pairwise-based matrix uses the pairwise comparisons an 

input and provides the associated weights as output, while AHP uses a mathematical 

approach for interpreting this matrix into vectors for the various factors.  The evaluations 

made on the flood causative factors associated with the study area were specifically 

identified experimentally and also based on the reviewed literature. These factors were 

also itemized in order of their influences towards flood vulnerability within the study area, 

as contained in Table 4.14.  

 

Table 4.14. 

Ranking of Causative Factors 

S/N Causative Factor Ranking Weightage  

1 Precipitation 1 40.8% 
2 Slope 2 18% 
3 Elevation 3 12% 
4 Vegetation 4 9% 
5 Flow Direction 5 8.2% 
6 Flow Accumulation 7 7% 
7 Topographic Wetness 9 5% 

 

The values of the weightage were initially obtained for precipitation from the model 

specification values. While the weightage of other factors is determined by a subjective 

means of using the Analytical Hierarchical Process (AHP).  

 

Specifically, the weight of the factors is determined after the ranking of the corresponding 

factors based on their influence or importance in causing floods.  After sorting the factors 
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in a hierarchical order, a comparison based on pairwise matrix for each matrix was formed 

to enable the comparison with other selected factors that also contribute to the flooding 

events within the study area.  Generally, values from 1-9 are used to rank the factors. 

However, in this research, the relative significance between the factors were formed using 

1, 2,3,4,5,7 and 9 representing the importance of the factors. The pairwise approach 

adopted used a matrix of 7 by 7, where the elements at the diagonal equaled 1. Table 4.15 

shows the values of every row representing the existing importance between two factors.  

 

Table 4.15. 

Comparison of Factors 

Causative 

Factors 

Precip Slope Elev. Veg. Flow Dir Flow Acc TWI 

Precipitation 1 2 3 4 5 7 9 

Slope 1/2 1 2 3 4 5 7 

Elevation 1/3 ½ 1 2 3 4 5 

Vegetation 1/4 1/3 1/2 1 2 3 4 

Flow Direction 1/5 ¼ 1/3 ½ 1 2 3 

Flow 
Accumulation 

1/7 1/5 1/4 1/3 1/2 1 2 

Topographic 
Wetness Index 

1/9 1/7 1/5 ¼ 1/3 1/2 1 

 

The first row represents the importance of precipitation when compared with the 

remaining factors.  Precipitation has been regarded as the most important or influential 

factors in this research in alignment with the events of rainfall that has always instigated 

flooding within the study area.  
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This was made evident from the trend learned using the precipitation data from 1979-2016 

(Collected from Centre for Atmospheric Research, with authorization in Appendix L), 

which showed that, flooding events only occurred as a result of high precipitation volume 

during the rainy season. This is in addition to records of Flood Inventory which equally 

showed the dates various flooding events had occurred in the past, which is also 

corroborated by the study conducted on Flood Disaster in Central Parts of Nigeria[281]. 

While slope and elevation were considered second and third most important respectively. 

This is because vulnerable surfaces are often situated in a region with a low value of 

slope/elevation. Vegetation and flow direction are of a perilous influence in instigating 

flood. Particularly in Borgu and Edati associated with a very low vegetal cover.   

 

Flow accumulation and Topographic Wetness Index were considered sixth and seventh 

respectively. While flow accumulation was considered the most important factor by some 

studies, however, since this research has considered the factors influencing flood on a 

wider surface by implementing the natural factors in the perception of upstream causes, 

the importance is placed more on the rainfall.  Essentially, even though precipitation as in 

the case of upstream flood, is the most influential factor, it is also pertinent to compare 

the level of influence posed by precipitation to other factors and vice versa. This practice 

is referred to as Pairwise Comparison, with the comparative results in Table 4.16. 
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Table 4.16 

Pairwise Comparison 

 
Causative 

Factors 
Precip Slope Elev Veg. Flow Dir Flow Acc TWI Weightage (%) 

Priority 

Vector 

Precipitation 1 2 3 4 5 7 9 40.8 0.408 
Slope 0.5 1 2 3 4 5 7 18 0.18 
Elevation 0.33 0.5 1 2 0.33 4 5 12 0.12 
Vegetation 0.25 0.33 0.5 1 2 3 4 8.2 0.9 
Flow 
Direction 

0.2 0.25 0.33 0.5 1 2 0.333 9 0.82 

Flow 
Accumulation 

0.14 0.2 0.25 0.33 0.5 1 2 7 0.07 

Topographic 
Wetness 
Index 

0.11 0.14 0.2 0.25 0.33 0.5 1 5 0.05 

          
Total 2.53 4.42 7.28 11.08 13.16 22.5 28.333 100 1 
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Furthermore, since each factor is measured in different units, for instance, millimeter for 

precipitation, degrees for slope and metres for elevation, therefore, the need to be 

normalized in order to obtain dimensionless classifications, i.e. a common numeric 

range/scale, to enable the aggregation into a final score. Normalization is an essential part 

of any decision making process because it transforms the input data into numerical and 

comparable data, allowing methods to rate and rank alternatives [282],[283]. The 

normalized values are therefore contained in Table 4.17. 

 

 

4.4.1 Consistency Check 

Prior to the verification or consistency check, AHP-based eigenvector matrix was formed, which 

required the need for the level of its consistency to be assessed. The needed consistency level is 

obtained by the ensuing index: 

�� =  !
"!          (4.10) 

Where: 

CR: Ratio of consistency 

Table 4.17  

Normalized Matrix 

Causative 

Factors 
Precip. Slope. Elevatio Veg. Flow Dir Flow Acc TWI 

Total Row 
(Priority) 

Precipitation 0.40 0.45 0.41 0.36 0.32 0.31 0.29 0.36 

Slope 0.20 0.23 0.27 0.27 0.25 0.22 0.23 0.24 

Elevation 0.13 0.11 0.14 0.18 0.19 0.18 0.16 0.16 

Vegetation 0.10 0.07 0.07 0.09 0.13 0.13 0.13 0.10 

Flow Direction 0.08 0.06 0.05 0.05 0.06 0.09 0.10 0.07 
Flow 
Accumulation 

0.06 0.05 0.03 0.03 0.03 0.04 0.06 0.04 

Topographic 
Wetness Index 

0.04 0.03 0.03 0.02 0.02 0.02 0.03 0.03 

Total 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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CI: Index of the consistency 

RI: Random Index 

 

The given values of RI are in Table 4.17. The results depend on the dimension of factors 

used with the corresponding values of RI. In the case of this research, seven (7) factors 

have been considered. 

Table 4. 18 

n/RI Values: Source:[284] 

n  1  2  
 
 3 
 

 4 5  6  7  8 9 10  11  12  13  14  15 

RI  0  0  0.58  0.90 1.12  1.24  1.32  1.41 1.45 1.49  1.51  1.48  1.56  1.57  1.59 

 
 
From the values presented in Table 4.17, the value of RI = 1.32. 
 
While AHP suggests that the consistency ratio (CR) must be <0.1. 

CI is calculated using Eq (4.11) 

With λmax being the maximum eigenvalue of the comparison matrix which were 

calculated in the Table 4.19 

Eigenvalue (λmax) 

Table 4.19 

Eigen vector 

eigenvalue Value 
1 0.3971 
2 0.2306 
3 0.1389 
4 0.0912 
5 0.67 
7 0.0469 
9 0.0315 
Total 1.6062 
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1.6062; and n is the number of criteria. RI values are given in specific tables.  

CI =  

�# = $%&��'
'��           (4.11) 

For values in Table 4.17, CI was determined: 

for λmax =1.6062, n=7 while RI = 1.32. Consequently, CR= -0.8989. This validates the 

consistency of the weight since the value of CR is less than 0.1. 

 

4.4.2   Significance of the Obtained AHP Results 

 

The significance of the AHP-based Multi-criteria evaluation results obtained substantiates 

that precipitation is the most influential causative factor in causing floods within the study 

area. Particularly, as learned within the precipitation trend, accumulated volume of 

precipitation experienced over a period influences other causative factors in inducing 

floods within the study area. High volume of precipitation accumulates to attain the FIPV 

and consequently, instigate floods in an already vulnerable region as earlier inferred. The 

FIPV vary based on the features of the region. Eventually, various recommendations were 

made for both theoretical and practical implementation of the findings provided by this 

research in the concluding section for proper mitigating strategies.  

 

As earlier mentioned, the need for assessing the accuracy of spatiotemporal outputs is 

considered to be an essential element of any study in order to ensure the reliability in 

decision-making  [66]. Therefore, the ensuing section elaborates on the accuracy of the 

developed hybrid framework.  
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4.5   Accuracy Assessment and Framework Validation 

In recent years, accuracy assessment or validation has become a fundamental element in 

spatiotemporal data analysis. The motive for accuracy assessment is mainly to reliably 

utilize the extracted spatiotemporal data for decision-making [285]. As such, it is 

absolutely imperative for some steps to be taken in assessing the accuracy of the output 

instead of simply assuming the correctness of the generated outputs. Within the scope of 

this research, the accuracy was assessed by visual inspection and difference image 

creation as adopted in a study conducted on accuracy assessment and validation of 

remotely sensed and other spatial information by Congalton [285]. In addition, expert 

review was sought for from both domain experts in GIS as well as disaster monitoring 

agency in the study area in lieu of error budgeting, and on-site techniques which are 

defective in accuracy assessment as they only compare the total area or land without taking 

into account the location [286].The assessment of the extracted outputs and the analytical 

results was performed with the following techniques[66],[285]. 

 

4.5.1   Visual Inspection and Aerial Photographic Interpretation 

In assessing the extracted output from spatiotemporal data visual inspection was the first 

step used to assess the accuracy of the features. This practice was essentially needed in 

order to ascertain the visual correctness of the features pre-processed. The visual accuracy 

assessment was done by identifying and comparing the features on the imageries to the 

truth-ground features and their various locations using physical maps and Keyhole 

Markup Language (KML) based on Google Earth (GE) services. Google Earth has of a 

recent been identified for its excellent potentials in visualization of spatiotemporal sets of 
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data[287], which can equally be employed to distinguish between types of land cover as 

well as other relevant factors within a spatial image[288]. 

 

Figure 4.16: Generated Map of the Study from the Pre-processed Spatial data with KML 

 

The results generated using the created KML file of the study area depict the visual 

representations for various features such, as boundaries and land cover within the study 

area. Essentially, the identification of the boundaries also validates the result to be free 

from locational errors. Also, reference data, such as aerial photography are considered to 

be accurate, which are commonly utilized to assess the output of spatial mapping [66]. 

Therefore, the correspondence of the visualized outputs to the ground-truth feature as 

depicted in Figure 4.16, further confirmed the accuracy of the outputs. 

 

4.5.2   Difference Image Creation 

Secondly, in order to assess the accuracy of the imageries, a direct comparison of 

imageries generated after pre-processing was compared with similar output generated by 

another research as adopted in the study conducted by[285]. Broadly, the spatial patterns 
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on the generated outputs conformed to those of the compared imagery. Especially, 

considering a similar study conducted by Ikusemoran et al in [29], which also applied 

spatial data on flood vulnerability within the same study area as in this research. 

Consequently, the accuracy was assumed to be valid as well. In continuation to 

ascertaining the accuracy of the proposed framework, reviews from experts in domains of 

GIS and flood mitigation were also considered as discussed in the ensuing section. 

 

4.5.3 Expert Review and Validation 

The array of experts contacted were engaged considering their expertise and their levels 

of education, knowledge on the study area as well as their years of working experience in 

GIS and disaster management. In this research, four practitioners from the GIS domain in 

addition to Disaster Management Agency in the study area were engaged in verifying the 

output obtained from the developed framework prior to validation. The demographic data 

of experts is contained in Table 4.20. 

 

Table 4.20 
Demographic Data of Experts 

Expert (E) Expertise Current Position Years 

E1 GIS 

Professor, Department of Geomatics, 
Faculty of Environmental Design, Ahmadu 
Bello University, Zaria, Nigeria 

 

24 

E2 GIS 
Assistant Director, Research NASRDA 

 
12 

E3 GIS 
Head of Satellite Ground Station 

Software, CSTD 
 

10 

E4 GIS 
Lecturer 

 
5 

E5 
Disaster 

Management 
P.R.O, NSEMA 11 
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The expertise of the practitioners is majorly in the domain of GIS, who are currently 

working in the domain of satellite imageries and GIS, while one is the Niger State 

Emergency Management Agency (NSEMA), which oversees both natural and 

anthropogenic forms of disaster within the study area. NSEMA was also was engaged to 

verify regions classified to vulnerable to floods as well as their related levels of severity 

and exposure to floods. The use of this agency was pertinent because, they are the only 

custodians of the Flood Inventory. Three experts have 24 to 10 years of working 

experience, while one has 5 years of working experience. The disaster management 

agency been responsible for various forms of disasters within the study area for over 11 

years, since the establishment of the agency breaking from the National Emergency 

Management Agency (NEMA).  

 

Assessment of Dimensions 

As earlier stated within the scope of this research, the expert assessment process was 

performed based on three dimensions namely, factorial/vulnerability classification, 

accuracy and the overall assessment on HyM-SLUFA framework as described in Table 

4.21presents the description of these dimensions used to further verify the accuracy of 

HyM-SLUFA, which were selected based on the preference and recommendations by 

researchers, such as [289] , for framework as well as model verification. 

  



184 

 

Table 4.21 
Description of the Assessment Dimensions for HyM-SLUFA 

Dimension Description 

 
Factorial/Vulnerability 

classification  
 
 

Classify and ensures various regions are assigned to their 
respective classes of flood vulnerability based on the 
considered factors. 

Accuracy  

 
 
The correctness of the produced results. 
 
 

Overall assessment on 
HyM-SLUFA 
Framework 

This dimension evaluates the ability of users or decision-
makers to gain useful insight from the information 
representation, pattern classification and the outputs within 
the framework.  Additionally, the interpretability, 
presentation, practicability, organization of the flow of the 
framework was assessed using this dimension.  

 

Expressly, the dimensions on the factorial/vulnerability classification were outlined to 

determine the output of the pre-processed and processed multi-spatiotemporal. This was 

confirmed by providing an option for the experts to either Agree, Disagree or make a 

comment when required.  The second accuracy dimension was considered to seek for the 

accuracy of information representation, formats and the outputs. With option to rate the 

corresponding accuracy based on the level of satisfaction by selecting Not-satisfactory 

(NS), Fairly satisfactory (FS), Satisfactory (S) and Very satisfactory (VS). Essentially, 

these options provides four Linkert scale in order to avoid misunderstanding within 

opinions that are likely neutral which may not show any evidence of purposeful 

assessment from the opinion of an expert[290].The third dimension represents the Overall 

assessment on HyM-SLUFA Framework factor with either an implicit Agree/Disagree 

option. Finally, at the end of the assessment form, experts can provide additional 

suggestions required to enhance the framework.  
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4.5.3.1  Analysis of Experts’ Opinions 

The output of the pre-processed and processed multi-spatiotemporal data sets along with 

assessment forms were sent to the experts for the assessment of the methodology, the 

outputs as well as the vulnerability classifications prior to the validation of the framework. 

While some experts required some clarifications via emails, some sought for a voice 

conversation for further clarification in the process of the assessment. The feedbacks were 

analyzed by employing descriptive and content analysis. Essentially, the feedbacks from 

the experts were analyzed in order to describe their individual opinions on the outputs, the 

accuracy of the output as well as the overall correctness of the framework and its 

usefulness as elaborated in ensuing sub-sections. 

 

In determining the opinion of the experts, various classifications of the factors into 

patterns and the classes of regional flood vulnerability was assessed by using the 

Agree/Disagree option with four experts out of four confirming positively as contained in 

Table 4.22.  
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Table 4.22 

Expert Assessment on Multi-factorial/Vulnerability Classification Dimension 

Multi-factorial/Vulnerability 

Classification 

Frequency (n=4) 

Agree Disagree 

Do DEM patterns correspond to the 
various high and low lands of the 
surface in Niger state? 

4  0 

Does the unit of measurement used 
correspond to the DEM unit of 
measurement? 

4  0 

Is the classification method used in 
conformity with the various elevation 
patterns?                      

4  0 

Are the patterns of the Slope in 
correspondence with the various high 
and low lands of the surface in Niger 
state. 

4  0 

Does the classification method used 
distiguesh clearly between the various 
patterns of the slope? 

4  0 

Do the identified features represent 
flow accumulation? 

4  0 

Is there any tendency of flow 
accumulation as identified in the 
feature? 

4  0 

Is there any tendency of flow direction 
as identified in the feature? 

4  0 

Do the identified features represent 
flow direction? 

4  0 

Are the regions identified with low or 
dense vegetation have the traits of such 
vegetation on the true-terrestrial 
features? 

4  0 

Are the water bodies identified in the 
output exist in the study area? 

4  0 

Are the regions correctly positioned on 
the maps?  4  0 

 

From the responses provided in Table 4.22 above, Figure 4.17further depicts the results 

of multi-factorial and vulnerability classification dimension, showing all the experts 

agreed to the correctness of the dimension the framework. 
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Figure 4.17.Experts’ Assessment: Multi-factorial/Vulnerability Classification 

 

From the above analyzed experts’ opinions, the classifications of factors and regional 

vulnerability were opined to be correctly done according to the experts engaged. The 

results showed an overall agreement to the correctness by the experts. Similarly, in 

Accuracy dimension, the opinions of the experts were assessed using the level of 

satisfaction as tabulated in Table 4.23. 

Table 4.23. 
Expert Assessment on Accuracy Dimension 

Accuracy 
Frequency n=(5) 

VS FS           S NS 
Satisfaction with graphical presentation.  2 3 0 0 
Precision of the output formats 1 3 1 0 
Satisfaction with outcome of the MCE using AHP 5 0 0 0 

Satisfaction with information representation 5 0 0 0 
Satisfaction with legends representation 0 2 0 0 
Satisfaction with classification 5 0 0 0 
Satisfaction with coordinate representation 3 2 0 0 

Key To Abbreviation: 

VS: Very Satisfactory 
FS: Fairly Satisfactory 
S: Satisfactory 
NS: Non-satisfactory 

0 0.5 1 1.5 2

Do DEM patterns correspond to the various high and low lands of the…
Does the unit of measurement used correspond to the DEM unit of…
Is the classification method used in conformity    with the various…

Are the patterns of the Slope in correspondence with the various high and…
Does the classification method used distiguesh clearly between the…

Do the identified features represent flow accumulation?
Is there any tendency of flow accumulation as identified in the feature?

Is there any tendency of flow direction as identified in the feature?
Do the identified features represent flow direction?

Are the regions identified with low or dense vegetation have the traits of…
Are the water bodies identified in the output exist in the study area?

Are the regions correctly positioned on the maps?

Multi-factorial/Vulnerability Classification

Frequency (n=4) Disagree Frequency (n=4) Disagree Frequency (n=4) Agree
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From Expert Assessment on Accuracy Dimension, the level of acceptance opined on the 
results by the experts is mainly between Very Satisfactory (VS) and Fairly Satisfactory 
(FS). 

 
 

 

Figure 4.18. Experts’ Assessment: Accuracy Dimension 

The accuracy dimension provided by the Experts generated a generally satisfactory results 
in terms of the accuracies of the framework and various obtained outputs as represented 
by Figure 4.18 above. 

Table 4.24 

Expert Assessment on Overall Accuracy of HyM-SLUFA 

Overall Assessment of HyM-SLUFA Framework 
Frequency n=(5) 

Agree Disagree          
Relevancy to the intended application 5 0 
Decision Support Satisfaction  5 0 
Comparison with existing usability evaluation method 5 0 
Clarity  5 0 
Tasks appropriateness 5 0 

Ease of use 5 0 
Internally consistent  5 0 

Well-organized (organization) 5 0 

Presentation (readable and useful format) 5 0 
Ability to produce expected results 5 0 
Ability to produce relevant and useful results 5 0 
Practicality (Ease of implementation) 5 0 

 

0 1 2 3 4 5 6

Satisfaction with graphical presentation.

Precision of the output formats

Satisfaction with outcome of the MCE…

Satisfaction with information representation

Satisfaction with legends representation

Satisfaction with classification

Satisfaction with coordinate representation

Accuracy Dimension

Frequency n=(5) NS Frequency n=(5) S

Frequency n=(5) FS Frequency n=(5) VS
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Figure 4.19: Experts’ Overall Assessment of the Framework 

As illustrated in Figure 4.19 above, all the experts engaged provided a positive and 

unbiased opinions towards the dimensions related with each component of the framework. 

Additional assessment questions were provided in order to cajole experts to provide 

additional opinion or suggestion aimed at enhancing the framework. The opinion provided 

for this dimension showed that all the experts agreed with the overall performance and 

contribution of HyM-SLUFA framework. Additionally, this segment of the thesis 

discusses the approaches of framework validation which also serves for benchmarking the 

analytical results obtained in comparison with other studies, which is explained in the 

flowing subsection. 

 

4.5.4 Benchmarking and Accuracy Assessment 

As earlier mentioned, additional accuracy assessment of the pre-processed data was 

performed by GIS experts in order to validate the proposed framework. This was mainly 

performed by assessing the accuracy of the spatial representations of the generated outputs 
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Overall Assessment of HyM-SULFA Framework
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in relation to the objectives and scope of the research. Furthermore, the usefulness and 

efficiency of the framework was equally determined by the domain experts in addition to 

various supported literature already cited in the research as indicated in the assessment 

request letter and assessment forms sent to the experts (Appendix F, G, and H). 

Essentially, this subsection further assesses the accuracy of the obtained results in the 

classification of flood vulnerability and the long-lead predictive model. 

Table 4.25 

Benchmarking of Vulnerability using a study conducted by and the obtained result.  

Class of 

Vulnerability 

Extant Study Current 

Research 

Affected Regions from 

Flood Inventory out of 25 

Number of Highly 
Vulnerable Regions 

12 10 42 

Number of Vulnerable  9 6 13 

Number of  
Marginally Vulnerable 

1 9 30 

Number of  Non-
Vulnerable 

3 0 2 

Total Number of 
Vulnerable Regions.  

22 25 24 

 

From the above benchmarked results in Table 4.20, the extant study in [29], claimed that 

regions of Munya, Suleja and Tafa are the Non-vulnerable. However, with the results 

obtained from this present research using slope factor, these regions have been classified 

under marginal form of vulnerability. And when compared with the Flood Inventory data, 

the results obtained by the present research presented a more accurate classification, since 

these regions presumably non-vulnerably in the extant study have continuously being 

faced with flooding events for the past three years. Thus, presenting the stringent 
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limitation of the existing study, while revealing the accuracy of this framework on the 

other hand. A more concise assessment is discussed in the ensuing sub-subsection.  

 

4.5.4.1   Assessment of Vulnerability Classification 

Generally, flood inventory is a vital means of quantifying spatial and temporal distribution 

of flooding events which are also used to assess the accuracy of flood predictive 

frameworks[101]. As it also shows the historical occurrence and frequency of flood 

hazards[246]. Thus, providing a reliable process of allowing the accuracy of the 

vulnerability classification to be assessed. By this means, the accuracy of the classification 

made was assessed primarily, by comparing various regions and their corresponding 

frequency of historical flooding events with the associated vulnerability classification 

from all the factors employed.  

 

In performing the accuracy of the developed framework, various classification revealing 

the regional flood vulnerability, as depicted by FCFs was assessed to identify any 

vulnerability traits, which was equally supported by the record of Flood Inventory with 

the events of floods that occurred – through the regions of high vulnerability to regions of 

marginal vulnerable from 2006-2017. In total, 85 events had occurred between 2006-2017, 

with 24 regions out of 25 with associated flood records while the total number of identified 

vulnerable regions are 25 as contained in Table 4.26.  
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As contained in Table 4.25, even though 24 out of 25 regions had experienced floods in 

the past, this assessment can be inferred that the region of Tafa, which does not have any 

record of flooding event can be affected by an impending flood as a result of the current 

global warming. Thus, the validation using the flood inventory was assessed to further 

ascertain the accuracy of the obtained outputs of the developed framework.  

 

In another phase of accuracy assessment, disaster management agency (Niger State 

Emergency Management Agency) was engaged. In the present study, regions within the 

study area were classified based on their levels of vulnerability to upstream floods. Even 

though the frequency of floods in a region determines the level of vulnerability as 

represented in the flood inventory data, disaster managers further validated this claim in 

order to ensure an accurate and reliable framework devoid of uncertainty. Therefore, an 

assessment form (AppendixF,G,H) was sent to Niger State Emergency Management 

Agency, which is the body responsible for disaster management within the study area 

considered in this research. Interestingly, the assessment obtained from the agency 

corroborates with the results generated by this research. As a result, a holistic approach 

has been utilized in ensuring the accuracy of the regional flood vulnerability.  

 

Table 4.26 

Classes of Flood Vulnerability and Corresponding Flooding Events 

No. of flooding 

Events 

Number of Affected 

Regions 

Number of Un-affected 

Region(s) 

Number of Identified 

Vulnerable Regions 

85 24 1 25 
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4.5.4.2   Assessment of Long-lead Predictive Analysis 

On the other hand, to access the accuracy of the predictive analysis, this research 

employed model specification approach to determine if adequacy of the predictive 

analysis and also assesses the possibility to identify any strongly influential outliers in the 

model using the link test. Fundamentally, the link test is based on the idea that when a 

regression is properly specified, no additional significant independent variables t are 

found. By implication, if the p-value of hat squared (_hatsq) is significant at 40.8%, the 

model is deemed not to be properly specified. In this model, the hat-squared was not 

significant therefore, the results indicate that the long-lead predictive model was 

adequately specified and had a reliable good fit (P-value=0.408) as contained in Table 

4.26 from the test conducted on the model specification. 

 

Table 4.26 

Model Specification Test 

Precipitation Coef. Std. Err. t P>t [95% Conf. Interval] 

              
_hat 0.928153 0.084591 10.97 0 0.721166 1.13514 
_hatsq 0.002075 0.002333 0.89 0.408 -0.00363 0.007783 
_cons 0.392557 0.688425 0.57 0.589 -1.29196 2.077071 

 

By including an error term, the long-lead predictive model and factors inducing upstream 

floods are derived as in equation 4.12,in case of multiple linear regression: 

 

()* = +�  +  +���-�#�* + +./0�1* + +23451* + +6758#1* + 9*                        (4.12) 

 

Where: 
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Uf represents upstream flood as the dependent variable, +� is a constant and β is the 

coefficient of each respective variable. The flood causative factors considered as 

independent variables are PRECIP which represents the precipitation, TOPF denotes 

topographical factors, HYDF depicting the hydrological factors while NDVIF 

representing the vegetal factors, and 9*is the error term.  

 

Eventually, with the value obtained from the predictive model specification as well as the 

assessment using MCE-AHP, the proposed framework was ultimately validated in 

addition to the remarks and suggestions made by the selected experts. Considering these 

aforementioned results, Figure 4.20 shows the developed hybrid framework that was 

employed to pre-process spatiotemporal data and also perform long-lead upstream flood 

analysis. 

 

Figure 4.20: Hybrid Multi-spatiotemporal Long-lead Upstream Flood Analysis 
Framework (HyM-SLUFA) 

 

With studies conducted by[162],[169],[170], which were used to formulate the basic 

architecture, as well as the sequence of the basic tasks involved within the phases of the 
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framework. This is based on knowledge discovery process using big data technique 

focusing on data cleaning, presentation, Data analysis, visualization and interpretation and 

decision-making. While studies conducted on flood mitigation in [29],[208] and [215], 

were used as a means of flood classifications and their associated interpretation of 

severity. Within the framework, studies based on BDA focusing on flood prediction 

conducted by[55],[63],[64], were adapted to perform the long-lead prediction. In 

conclusion, the benchmarking and the validation of the developed framework was 

validated by adapting the results and the recommendations of studies conducted by 

[29],[101], [246]. 

 

Figure 4.20 illustrates the hybridization of multi-spatiotemporal factors to classification 

of flood vulnerability and long-lead prediction. To this end, the developed framework 

serves as a contributory output of this research since, it was able to accurately pre-process 

multiple spatiotemporal data for flood vulnerability classification and long-lead 

prediction. This developed framework includes the phases of data 

identification/collection, data pre-processing, the hybridization of vulnerability 

classification and long-lead prediction, and the phase for accuracy assessment 

corresponding to the research objectives of the research.  

 

Essentially, the ability to identify the level of vulnerability of natural disasters and 

influence of global warming has been acknowledged as a vital research field,  which has 

been attracting the interest of researchers from various domains [291],[292],[293],[294]. 

Furthermore, of note it is that the developed framework is entirely based on Multi-factors 

and BDA with a seamless pre-processing approach. According to [295], an impediment 
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to efficient flood risk mitigation is the absence of a structured spatial framework with 

hydrodynamic results. More importantly, in order to address the aforementioned issues in 

proper developing a hybrid framework for pre-processing multiple spatiotemporal data 

and performing long-lead upstream flood prediction is required, Figure 4.20 depicts the 

developed hybrid framework to pre-process multi-spatiotemporal data sets and also 

perform long-lead upstream flood prediction over Niger state.  

 

4.6   Chapter Summary 

In this chapter, the formulation of the various components for the proposed hybrid 

framework is explained. The theoretical background that supports the need for various 

factors leading to the use of multi-spatiotemporal factors was detailed. Furthermore, the 

hybridization between multi-spatial and temporal factors for flood vulnerability 

classification and long-lead was equally elaborated. The levels of influence posed by each 

factor in inducing floods were equally estimated. The accuracy of the vulnerability 

classification and the long-lead predictive model was assessed using GIS approach and 

also opinions from experts related to the field of GIS and Disaster Management. The 

outputs from the GIS approaches employed and the inputs from the experts eventually 

enabled the validation of the proposed framework. In the course of performing various 

tasks in developing the framework, various findings were made, which are discussed in 

the ensuing chapter.  
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CHAPTER FIVE 

RESEARCH FINDINGS AND DISCUSSIONS 

 

5.1   Introduction 

Sequel to the tasks performed in developing the framework in the preceding chapter, this 

chapter discusses the key findings observed in the four distinctive stages of the hybrid 

framework, which correspond to the defined research objectives. Although, in general, the 

hybrid framework was able produce a more reliable flood vulnerability classification and 

long-lead predictions using multi-spatiotemporal data over a large and complex terrain, 

there are other specific findings observed in the course of its development. To this effect, 

section 5.2 discusses the findings at the initial phase of multi spatio-temporal data 

identification and collection. Sections 5.3 and 5.4 discuss the findings in the aspects of 

multi-spatiotemporal data pre-processing and hybridization respectively, and the chapter 

concludes with a summary in section 5.5. 

 

5.2   Findings on Multi-spatiotemporal Data Identification 

Within the scope of this research, contrary to the current approaches used by some extant 

studies, which was based on one or very scanty flood causative factors. However, in the 

process of developing the hybrid framework, some additional spatiotemporal FCFs which 

are influential in inducing flood vulnerability were identified. This identification of factors 

was initially done with the aid of the reviewed literature, while this research has further 

revealed the influence of these factors by the means of experimental assessment. These 
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causative factors range from the hydrological, topographical to vegetal elements with 

varied levels of influence on flood vulnerability. As concisely discussed in Table 5.1. 

 

Table 5.1.  

Associated Influence of FCFs 

S/N Flood Causative Factors Level of Influence (%) Geomorphology  

1 Precipitation 40.08 Upstream 

2 Slope 18% Hydrology 

3 Elevation 12% Hydrology 

4 Flow Direction 9% Topography 

5 Flow Accumulation 8.2% Topography 

6 NDVI 7% Land Cover 

7 TWI 5% Hydrology 

 

From the above listed relevant FCFs within the framework, various factors have been 

identified to be directly involved in instigating floods either due to the topographical, 

hydrological or vegetal geomorphological content of the study area as elaborated in the 

ensuing subsection. 

 

5.2.1   Precipitation 

The focus of this research dwells on the influence of upstream factor by considering the 

effect of precipitation upon other causative factors in inducing regional flooding events. 

This is because, the generation of an upstream flood depends on the ways in which 

precipitation is converted into hydrological discharge [296]. Therefore, this segment of 

the framework identifies the relationship of trends in precipitation trend most closely 
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related to historical regional flooding event within the study area. Essentially, the 

identified tresholds between dry and wet seasons were based on annual precipital records 

which correspondingly revealed flooding events occuring only during the wet seasons. 

Inversely, the treshold covering the dry season has no relationship with floods. An 

understanding of this threshold and the relationship between the seasonality and the 

occurrence of floods revealed the influence of precipitation in inducing regional upstream 

floods when acted on other factors to generate regional flood vulnerability, as further 

illustrated by the regional precipitation map of Figure 5.1. 

 

Figure 5.1. Regional Precipitation Map 

 

As illustrated in Figure 5.1, regions of Tafa and Suleja within the study area are situated 

around the regions of high precipitation volumes, yet with reduced levels of flood 

vulnerability. Correspondingly, these regions have the most resilience topographical and 

vegetal features. This therefore, explains the reduced level of flood vulnerability despite 
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the high volume of precipitation received. Evidently, it has been observed that regions 

with high volume of precipitation are not associated with high flood vulnerability. 

Consequently, the justification for the need of considering several factors that can 

potentially lead to flood vulnerability as employed in this research, instead of the 

assumption of generally relating floods to high precipitation.  

 

Specifically, within an empirical assessment conducted, the level of influence of the 

precipitation as revealed by the Model Specification statistical approach was identified to 

be 40.08%, (Table 4.26 of Chapter Four), which was also validated by some domain 

experts. Thus, indicating a high influence of precipitation when compared with other 

FCFs.  Similarly, the developed framework further identifies that even though there is a 

strong relationship between precipitation and regional floods since floods are only 

experienced during the peak precipitation. As anticipated, there is a considerable amount 

of variations in the levels of vulnerability within various regions, left unexplained. Some 

of the unexplained variations are as the results of unevenness of floods in some regions 

experiencing more precipitation, yet, with a reduced cases of flooding being recorded. 

This underscores the need to further identify the level of influence presented by other 

causative factors towards regional flood vulnerability, particularly given the apparent vast 

and complex nature of the terrain within the study area which can also be regarded to be 

an underlying conditioning causes of these variations. Therefore, this framework has 

sought to correlate the influence of slope with the prevailing regional upstream flood 

vulnerability within the study area. 
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5.2.2   Slope 

Currently, the notion of regional flood vulnerability is rarely considered by 

geomorphologists using slope factor, perhaps due to a reluctance to transcend beyond their 

perceived area of expertise or as a result of the absence of an approach which would have 

assessed the accuracy or inaccuracy of their adopted method, which would have in turn 

popularized the need for the consideration of slope. Therefore, within the slope-based 

classification made in this research, it has been observed that regions with low or 

depressionless slope patterns have an associated history of flooding events when 

compared with regions with relatively high or steep pattern. Thus, signifying the influence 

of slope in inducing flood vulnerability.  This classification also shows the influence of 

slope in inducing floods within the study area is enormous and widespread.  

 

The consideration given in implementing a slope–based vulnerability classification has 

furnished an additional identification of regions that are potentially vulnerable to upstream 

floods within the study area which is manifestly impossible to reveal using other FCFs. In 

comparing with the historical flooding events, and also the assessment by domain experts, 

which has been weighted at 18% influence rate in Table 4.13 of the previous chapter, this 

assumption equally corroborates with various records of floods experienced in the State. 

Also, it can be seen in the slope map that almost in all low or depressionless regions have 

higher frequencies of floods; as a consequence, low slope regions are at the peak of 

exposure and severity.  
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5.2.3   Elevation 

Elevation factor, on the basis of the vulnerability classifications made in the preceding 

chapter has shown that the terrain of the study area is topographically divers, ranging from 

high to low elevation patterns. In this case, upstream floods were not only experienced at 

a concentrated region(s) or uniquely to some particular elevation class, but as revealed, 

the flood vulnerability is associated virtually with all the classes, except for the extreme 

classes. Here, when the vulnerability representations of the elevation were compared with 

the Flood Inventory, the influence of elevation as causative factor may not be significant 

for the entire study area. Nonetheless, it is significantly influential to those regions having 

very low, low and marginally low elevation patterns with a corresponding history of 

floods. Therefore, it implies that elevation is a significant causative factor and thus, was 

given a weightage value of 12%. 

 

In the same vein, the sole adoption of elevation factor as employed in some studies is not 

reliable. This is because elevation alone is insufficient to reveal an accurate level of 

regional flood vulnerability. For instance, the regions of Katcha has the least elevation 

value at 90.2457m, expectantly, it should have the highest frequency of flooding events. 

Nonetheless, this region has moderately been experiencing floods compared to other 

regions with relatively higher elevation values like Mokwa 169.6565m with 5 and 11 cases 

of floods respectively. Thus, the need to consider more FCFs in flood vulnerability 

classification as adopted in this research.  
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5.2.4   Flow Direction 

Generally, even though hydrologists employ flow direction factor to identify how surface 

runoff contributes to flooding, this processed output has revealed that the channels of the 

flow as observed, are mainly targeted towards the diagonals of Katcha, Agaie Mokwa and 

Edati; implying the influence of flow direction factor to regional flood vulnerability within 

the surfaces as well as sub-surfaces of the study area, which has also been weighted at 

8.2%. This geomorphologic characteristics also presents regions that have a history of 

floods, when compared with Flood Inventory, and when processed, it showed the 

vulnerability to floods. 

 

5.2.5   Flow Accumulation 

As revealed by this hydrological factor, the traces of cells flowing into other cells in the 

pre-processed raster data shows the accumulated volume of water. This revelation 

ultimately was able to depict the amount of rain that would flow spatially, especially when 

it tends to cause any flooding event. Thus, demarcating non-saturated regions from 

saturated ones, which can lead to a potential flooding events. Remarkably, this factor has 

a corresponding influence to regional flood vulnerability to be at 7%, consisting of 

relatively low effects when compared with other relevant FCFs.  

 

5.2.6   Normalized Difference Vegetation Index 

Vegetation presents a foremost restraint to flooding; vegetation decreases runoff and aid 

in percolation. The influence of vegetation to our environment is well-known globally. 

While some surfaces are naturally less vegetal, some are rendered bare surfaces by 

anthropogenic activities, such as deforestation and urban development. Specifically, the 
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lack of vegetation of an area can influence the occurrence of flood as well as its severity. 

Therefore, as identified in the preceding chapter, regions with low vegetation have an 

associated high frequency of floods when compared with regions with high or dense 

vegetation. This has experimentally corroborated the aforementioned inference 

considering vegetation as equally a relevant FCF, which has furthered associated the level 

of its influence to floods to 9%. 

 

5.2.7   Topographic Wetness Index 

The consideration of this factor in the developed framework in this research has revealed 

its relevance in identifying regional flood vulnerability by delineating flood-prone 

regions. This finding also tallies with the claim made by the study conducted on 

Topography Wetness Index Application in Flood-Risk-Based Land Use Planning by 

Pourali et al, in [126], which says TWI is usable in identifying regions that are potentially 

vulnerable to upstream floods as well as regions that are highly vulnerable to floods. The 

influence of this factor is measured at 5%. 

 

Thus far, various relevant flood causative factors have been identified, and their levels of 

influence in inducing regional flood vulnerability has been stressed experimentally. That 

is, in addition to their identification in the literature review in Chapter Two. Thus, meeting 

research objective one. The subsequent section elaborates the findings made in the course 

of pre-processing these relevant factors, which in turn, meets the research objective two 

of this research. 
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5.3   Findings on Multi-spatiotemporal Data Pre-processing 

Among the voluminous sets of multi-spatiotemporal data used in developing the hybrid 

framework, there is an implicit, nontrivial and previously unknown knowledge unable to 

be captured by GIS operations in other studies. Under this premise, the interactive and 

iterative processes in multi-spatiotemporal data pre-processing have revealed some vital 

details on the levels of influence posed by each flood causative factors considered. The 

findings observed in the course of performing data pre-processing are spatially and 

temporally related. For instance, during the spatial data pre-processing phase within the 

framework, the results from this investigation have provided information on the relative 

effects of radiometric and geometric artifacts on NigeriaSat-X and Landsat-8 image 

products.  

 

Although, NigeriaSat-X and LandSat-8 are known for their high resolutions of 22m and 

30m respectively, nonetheless, it is clear from the sets of data collected, which involves 

several scenes at different temporal period that there will normally be significant (and 

generally increased) levels of noise in the data. Therefore, the need for both geometric and 

atmospheric corrections. In the context of radiometric and geometric corrections, it has 

also been observed within the developed framework that most of the options required for 

LandSat imageries for noise removal is the atmospheric correction in order to reduce the 

atmospheric distortion below 10%[189]. 

 

More importantly, the underpinning findings of this section indicate that there is high 

potential of applying both radiometric and geometric corrections in spatial imageries. On 

the other hand, in pre-processing the temporal data sets, the main operation performed 
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was the cleaning of the data aimed at addressing the outliers-related issues. By this 

practice, in the absence of missing values, the outliers were trimmed using Winsorization 

to detect and remove outliers. Importantly, within the large sets of data covering 1979-

2016 daily records, these data sets were heavily identified with outliers, even with the 

adoption of Winsorization at 5% as elaborated subsection 3.4.1. This has evidently 

revealed the importance and applicability of Winsorization on data sets as a reliable means 

of data pre-processing. This is because, the level of outliers were not only suppressed, but 

the normality of the data was enhanced, as earlier illustrated in Figure 4.10 in Chapter 

Four.  Concisely, the implementation of these pre-processing approaches have evidently 

enhanced the analytical accuracy and the interpretability of the output generated for 

vulnerability classification and long-lead prediction which are the primary basis for the 

formation of the  hybrid framework. 

 

Ultimately, the findings have further strengthen the proposed pre-processing approaches 

in pre-processing multi-spatiotemporal data sets thereby accomplishing the tasks involved 

in phase II of the developed framework and consequently fulfilling the research objective 

II concurrently.   

 

5.4   Finding on Vulnerability Classification and Long-lead Hybridization 

The findings of this section provide the scientific insight on the vulnerability classification 

and long-lead analysis needed by both decision-makers and scientific body of knowledge 

in the domains of GIS and flood mitigation, as elaborated in the ensuing subsections.  
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5.4.1   Findings on Vulnerability Classification 

In this subsection, the findings on the potential vulnerability of various regions within the 

study area as classified by multiple FCFs were revealed for appropriate mitigating 

measures to be implemented by the local decision-makers. Even though the FCFs used 

within the framework depicted various classes of flood vulnerability, the most important 

finding identified by the developed framework is the contrasting vulnerability 

classifications between various FCFs. Especially, within the same elements. For instance, 

between Elevation and Slope, which belong to the same topographic element or between 

Flow direction and Flow accumulation. As revealed for regions of Borgu being 

characterized by dense vegetation, which expectantly have the ability to suppress any 

adverse impact of precipitation resulting to upstream floods. However, it has been 

observed that these regions tend to be more vulnerable to major flood impacts due to their 

proximity to water bodies and moderate elevation within the environment, as equally 

corroborated by the engaged experts in Disaster management within the study area as 

discussed in 4.5.3 of the preceding chapter.   

 

Also, regions of Mokwa covered by moderate vegetation, with relatively moderate 

elevation have witnessed the most frequent record of flood. This can be attributed to the 

associated direction of flow directed towards this regions. Overall, flood vulnerability is 

principally low atMashegu, Paikoro, Suleja, Lavun, Mariga, Agaie, Rafi, Rijau regions. 

Although, it has been found that these regions have reduced values of elevation and slope 

features, nonetheless, they have very high levels of resilience from other factors, such as 

vegetation and geographical distance from hydrological factors. This as a result, can 

translate the low record of flooding events in these regions. While Tafa has the highest 
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volume of precipitation with the least occurrence of flooding events even though it is 

classified with a relative vulnerability level. This can equally be attributed to its ideal 

topographical vegetal nature serving as a means of suppression and resistance to flood 

vulnerability. Other regions collectively have from marginal to higher vulnerability levels 

compared to the rest. Eventually, these findings from component-level implementation 

can be utilized to recommend practical approaches towards flood mitigation. These 

include the implementation of proactive and reactive measures within vulnerable regions.   

 

Furthermore, it is noteworthy that, even though regions of Tafa in Niger State of Nigeria 

which has not had a record of flooding event was spatially found to be vulnerable, 

however, this can aid in taking some proactive measures before any flooding event occurs. 

This is because the impacts of the climate change have no sign of subsiding. Remarkably, 

the accuracy of the spatial results obtained dwells on the use of multiple relevant factors. 

Disregarding the use of these multifactorial approach contrary to what has been adopted 

within the proposed framework would have misrepresented regional flood vulnerability 

which would have in turn, led to an erroneous inference of flood vulnerability 

classification. Especially, in finding the regions of Suleja and Tafa amongst the vulnerable 

regions. This finding has further indicated the accuracy in using angular slope for regional 

flood vulnerability classification.  

 

Essentially, the reliance on angular slope factor to identify flood susceptibility has been 

identified to be more accurate compared to other factors. Therefore, this finding 

demonstrates that regional flood vulnerability mapping is inadequate using a few flood 

causative factors. Nonetheless, the spatial classification of regional vulnerabilities 
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obtained from various causative factors exudes the patterns for various levels of 

vulnerability. While there are differences in regional vulnerability levels, there is a general 

pattern of homogeneity in the levels of vulnerability across regions indicating slight 

variances between regions. The pattern from the topographical features showed more 

details on the regional vulnerability classification compared to those obtained from 

hydrological and vegetal stratification. It is more apparent and reliable using the flow 

direction and slope factors due to their abilities to have provided more accurate results on 

regional flood vulnerability classification. Similarly, flow accumulation and flow 

direction yielded a relatively reduced level of regional flood vulnerability identification; 

it presents the most spatially differentiated identification of regional vulnerability by 

identifying regions that are marginally vulnerable to flooding events. The findings from 

various factors are summarized in Table 5.2 with HV signifying Highly Vulnerable, while 

MV, V, and NV signifying Marginally Vulnerable, Vulnerable and Non-Vulnerable 

respectively. 

Table 5.2  

Comparative Results of Regional Vulnerability Classification 

Causative Factors Regional Vulnerability Identified Classes  No. of identified 

classes out of 4 

Elevation HV,MV,V,NV 3/4 

Slope HV,MV,V,LV 4/4 

Vegetation HV,MV,V,NV 3/4 

Flow Dir HV& NV 2/4 

Flow Acc HV& NV 2/4 
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TWI HV,MV,V,NV 3/4 

 

Despite the relatively uniform level of regional vulnerability classifications to a certain 

extent using these aforementioned factors, there is a clear pattern of high vulnerability 

within the regions of Katcha, Lapai, Edati and Borgu. This can be attributed to the low 

level of elevation, depressional degree of angular slope and proximity to the water body. 

Similarly, regions identified to be non-vulnerable as identified using elevation values, 

were identified to be vulnerable with the aid of slope. A possible explanation is that the 

spatial distribution of regional vulnerability could be associated to its Slope, which plays 

a significant role in identifying the velocity as well as filtration capable of causing 

flooding event as stated in [125]. This is a further evidence that slope-based vulnerability 

classification generates more accurate results as against the elevation-based study 

conducted within the study area in [29].  

 

Explicitly, variations in pattern classification was not unlikely. Hence, the justification for 

regional vulnerability classification using multiple causative factors in order to have a 

holistic assessment of the vulnerability for appropriate decision-making needed in disaster 

mitigation for any potential flooding event within any study area. This is essentially 

crucial since every vulnerability classification was able to identify the peculiarity and the 

factor inducing regional floods. Additionally, the findings related to spatial data pre-

processing informs prospective researchers on the spatial merits and the demerits of each 

Flood Causative factors ranging from hydrological, topographical or vegetal elements in 

their adopting flood vulnerability classification and mapping. This is vital information 
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when deciding which of the spatial data sets to use for similar studies at local, regional or 

national scale in order to accurately mitigate flood disaster since it enables the concerned 

authorities to reliably derive insight on regions that are potentially vulnerable to floods.  

 

5.4.2   Findings on Long-Lead Analysis 

The world has witnessed a drastic climate change within the last hundred years. One of 

the issues posed by the climate change is the accurate identification and quantification of 

trends in precipitation, as well as the hydrological implications related to the precipitation 

[297]. Therefore, in order to formulate suitable measures in hydrological management, 

information on spatiotemporal variability of precipitation, time series is essential [297]. 

In the process of learning the trends, it has been observed that the main identifiable 

characteristics of trends presented by the precipitation data sets was the strong seasonality; 

irregular trend between wet and dry seasons which is also reflected in the runoff pattern 

over the regions. However, the period of peak precipitation is between June-September of 

the raining season which coincides with a relative low period of low temperature.  

 

Evidently, the decline in rainfall during the dry seasons reflects easily in the general 

decline in flooding events within the study area as shown by the illustrated graph in Figure 

5.2 and the monthly precipitation values. This further substantiated by the Flood 

Inventory. 
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Figure 5.2: Monthly Pattern of Precipitation and Temperature 

 

As illustrated in Figure 5.2, the winter season, also referred to as the dry season 

(November, December, January, February and March), with a corresponding high 

temperature experienced during this period, thereby making the entire region to be devoid 

of any flooding events in the study area during this period of insignificant amount of 

rainfall. This is evidently contained in the Flood Inventory.  

 

While the raining season was found to be at its peak between the months of June, July, 

August and September, with related high frequency of floods recorded as a result. 

Whereas, May, September, October present flood inducible rainfall, early November only 

experience scarce amount of rainfall with a relative reduced frequency of flooding events. 

The peak volume of rainfall usually experienced during the month of August which can 

be translated into the regular flooding events recorded within this period. Remarkably, 
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various regions show varied levels of FIPV, conforming the inference that other than 

precipitation, there are other factors (such as the topography, hydrology and vegetation of 

an area) that induce floods in different regions to different levels of severity. This 

ultimately reveals that the FIPV are region dependent and are determined by the 

influencing FCFs within the regions.  

 

As further indicated by the descriptive analysis, which revealed that even though there is 

a positive correlation between precipitation and water level, there is no significant 

correlative influence between these factors. Considering the spatial nature of the study 

area, regions with reduced vegetation and low slope are associated with relatively low 

FIPV. This finding further confirms the aforementioned finding on the influence of FCFs 

in determining flood vulnerability at varied scales in various regions. For instance, even 

though the days for long-lead equally vary based on the intensity of rainfall, flash floods 

are readily experienced around regions of Borgu. This short lead-time can be attributed to 

the proximity of the regions to water bodies which also a contributing factor.  

 

In another observed evidence, using the Flood Inventory to define the lead time for the 

upstream prediction, any potential flooding events within the regions of Tafa could not be 

performed since the region has not yet experienced any events of flood. Therefore, it will 

be correct to assume that no flood prediction can be performed without the use of historical 

data sets as contained in the Flood Inventory, since the scope of the long-lead prediction 

are spatially focused on regions with historical event of floods. Another finding within the 

framework is the variability of rainfall in both seasons and regions. With an upward trend 

in the regions. This finding also corroborates the current climate change as the main 
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inducing factor of floods.  These current increased variations are, nevertheless, higher than 

the respective regional annual precipitation previously learned in the preceding years. This 

is equally evident in the increasing FIPVs between previous and the succeeding years. 

Consequently, it is assumed that alterations in the pattern of current precipitation, would 

inadvertently lead to more frequent and more severe regional flood. 

 

5.5   Accuracy Assessment 

Overall, the findings indicate how various regions are confronted with different class of 

flood vulnerability which were only identified by the implementation of an array of flood 

causative factors. Here, the use of Flood Inventory has proven to be a reliable means of 

accuracy assessment if regional flood vulnerability classification provided in the 

Benchmarking and Accuracy Assessment at 4.5.4 of Chapter Four, while the statistical 

method of identifying the fitness of the model has also confirmed to be a reliable and 

acceptable means of accepting long-lead predictive inference.  

  

5.6   Chapter Summary 

Multi-spatiotemporal data pre-processing for long-lead upstream flood analysis is an 

example of a complex and data intensive research where the various factors influencing 

flooding events at various degree have been identified. A comparative assessment made 

using the outputs generated from the use of the developed framework has provided a very 

useful insight to identify the most suitable factors that can accurately reveal the level of 

regional flood vulnerability. Also, the interactive impacts of both spatial and temporal 

factors were identified in this framework.  Concisely, it is evident from findings that flood 

causative factors have varied levels of inducing regional vulnerability when induced with 
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an upstream factor. An array of strategies ranging from effective urban developmental 

control, climate change adaptation and flood risk management that recognize equity and 

environmental policies can make a difference in suppressing any potential impacts as 

further detailed in the ensuing concluding chapter of the thesis. 
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CHAPTER SIX 

CONCLUSION AND RECOMMENDATION 

 

6.1   Introduction 

Before concluding this thesis, it is essential to first have a review of the aim and objectives 

in order to assess the extent to which they have been accomplished. Therefore, this chapter 

reviews the objectives in section 6.2, contributions are presented in section 6.3. Section 

6.4summarizes the research findings made by this research based on the defined research 

objectives. Evidently, in the course of conducting this research, some challenges were 

met. Some were addressed, while for those yet to be addressed, they are presented as the 

limitations of the research in section 6.5. Additionally, due to the complex and dynamic 

nature of flood disaster, there are still some aspects that can be covered in future research. 

Therefore, this section recommends and highlights the need for further studies in section 

6.6. And finally, the concluding remark of the research is presented in section 6.7. 

 

6.2   Examination of Research Objectives 

Primarily, the central focus of this research has been to develop a hybrid framework 

capable of classifying regional flood vulnerability and to perform long-lead upstream 

flood analysis based on multiple spatiotemporal data for Niger State, Nigeria. Due to the 

fact that the success or failure of a project or research is difficult to be determined if the 

anticipated results are not clearly enunciated[298], therefore, this section enunciates the 

accomplishments recorded at various stages of the developed framework which will in 

turn, confirm the fulfilment of the research objectives posed in Chapter One (1.4). 
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The approaches through which the four research objectives in Section 1.4 have been 

achieved is summarized as thus:  

 

6.2.1 Research Objective I 
 

To identify multiple relevant spatiotemporal causative factors in flood vulnerability. 

 

The preliminary issue identified by this research was the insufficiency of relevant flood 

causative factors considered in the extant studies. This resulted in poor identification of 

regional flood vulnerability and long-lead prediction. Therefore, the purpose of research 

objective I was to identify relevant factors that induce upstream flood by assessing the 

spatial contributory effects of these factors to regional flooding susceptibility within 

various regions of the study area. This was attained with the aid of relevant literature 

reviewed in subsection 2.6.1 on flood vulnerability in the global context with specific 

focus given to the study area, and the experimental observations made in the course of 

vulnerability classifications performed and revealing levels of influence at 18%, 12%, 9%, 

8.2%, 7%, 5% for slope, elevation, flow direction, flow accumulation, NDVI and TWI 

respectively illustrated in subsection 4.2.1.  

 

Interestingly, this percentage depicting the influence assigned to these factors have 

revealed their corresponding influence in inducing regional floods. Thus, confirming the 

relevance of the identified factors. Additionally, while the identification was made, the 

relevance and the corresponding levels of influence of the identified factors was 

corroborated by domain experts as explained in subsection 4.5.3 and further stressed in 

the Findings of the research elaborated in section 5.2.  
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6.2.2   Research Objective II 

 

To define a multi-spatiotemporal FCF pre-processing approach needed for regional 

flood vulnerability classification.  

Here, the associated issue to this research objective is the complexity in pre-processing 

multiple spatiotemporal factors considered for regional flood vulnerability classification. 

Even though, this research has identified these factors, pre-processing these vital factors 

presents a challenging task that also required a methodological approach to accurately 

obtain the needed features. Therefore, the main focus of objective II was to adopt 

radiometric, geometric and winsorization corrective approaches to pre-process the 

identified multiple factors depicting the geomorphology of the study area. This was 

attained by proposing a spatiotemporal data pre-processing approach to clean the spatial 

data by removing the atmospheric noise, correcting the geometric distortion prior to the 

extraction of multiple factors from the spatial imageries needed for flood vulnerability 

classification of the study area. While the temporal data sets was subjected to cleaning 

approach in order to eliminate the outliers with the aid of Winsorization approach 

explained in subsection 3.4.1, with the results shown in Table 4.11. The obtained outputs 

of the pre-processing approach in this research, which generated three elements of flood 

causative factors; with topographical, hydrological, vegetation and precipitation being the 

indicators considered for vulnerability has consequently fulfilled the corresponding 

research objective. 
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6.2.3   Research Objective III 

 

To develop a hybrid framework capable of classifying regional flood vulnerability and 

performing long-lead upstream flood analysis. 

 

In attaining this research objective, a hybrid framework was developed upon both spatial 

and temporal data sets representing the FCFs to perform regional flood vulnerability 

classification and also to perform long-lead analysis, detailed as thus: 

 

Vulnerability Classifications 

Within this segment of the research objective, the use of the pre-processed multi-factors 

is primarily, to classify regional flood vulnerability as well as their corresponding levels 

of vulnerability. Consequently, this segment of the research objective III focused on 

developing the first segment of the hybrid framework to delineate regions that are 

potentially prone to floods using various FCFs as detailed in sub-sections 4.2.1. This 

approach ultimately provided relevant knowledge on the regional flood vulnerability, the 

corresponding levels of vulnerability and the main inducing factors in all the regions 

within the study area. On the other hand, the second segment of the framework performs 

the long-lead analysis, as elaborated in the following subsection.  

 

Long-lead Analysis 

In attaining the main objective of this research, which is to perform the long-lead upstream 

flood analysis, the winsorized temporal data sets were used to perform long-lead flood 

prediction for those regions identified to be vulnerable to flooding events. This was 

attained with the aid of historical flooding events (Flood Inventory) and the volume of 
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rainfall that can potentially lead to upstream floods over a number of days was determined 

for various regions. With the intersection of these two approaches, Hybrid Multi-

spatiotemporal data Framework for Long-lead Upstream Flood Analysis (HyM-SLUFA) 

illustrated by Figure 4.20in Chapter Four, was successfully developed as the deliverable 

of this research. 

6.2.4   Research Objective IV 

 

To assess the accuracy of the developed hybrid framework for both vulnerability 

classification and long-lead analysis.  

 

GIS and flood related studies have various means of accuracy assessment. However, the 

extant studies did not demonstrate this crucial aspect. The limitations of some of the extant 

studies was largely due to the absence of any means of assessing the accuracy within these 

studies as explained in subsections 2.6.1, 2.6.2, and 2.6.3. This has further prompted this 

research to implement an accuracy assessment approach at the two segments of the 

hybridization. Ultimately, the accuracy of the proposed hybrid framework was assessed 

based on the spatial and temporal results obtained:  

I. Vulnerability Classification 

In accessing the accuracy of the generated spatial results, the regional 

classifications made using various FCFs accurately revealed regional flood 

vulnerability at various classes from highly vulnerable to non-vulnerable. 

When these results were compared with the record of Flood Inventory, the 

classifications corroborate with the regional flood frequencies contained in the 

Flood Inventory as detailed in the benchmarking of the result in subsection 
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4.5.4 in Chapter Four. Additionally, the positive remarks from the domain 

experts analyzed in subsection 4.5.3 of Chapter Four, which assessed the pre-

processed FCFs, vulnerability classifications and the overall accuracy of the 

developed framework further confirmed the accuracy of the classifications as 

well as the inferences made for various regions in relations to factors 

instigation floods.  

II. Long-lead Predictive Accuracy Assessment 

In assessing the accuracy of the long-lead analysis, and prior to the acceptance of the 

inferential statement on long-lead analysis, various tests were conducted on the 

precipitation data sets. This includes the normality, the identification of outliers and 

the Fitness of the predictive model. Ultimately, the data set depicting the FIPV for the 

long-lead prediction showed normality in its distribution with 0.11695 and 1.982584 

for skewness and kurtosis respectively. While no evidence of outlier was observed as 

illustrated in Figure 4.10 in Chapter Four. And finally, the values obtained from the 

long-lead predictive model (Table 4.26) indicated a well-specified model showing a 

reliable goodness of fit with p-value=0.408. Accordingly, the accuracy of the long-

lead has been attained. Thus, confirming the accuracy and the successful development 

of the hybrid framework. Nonetheless, in addition to the framework development, the 

research also made some vital contributions as discussed in the ensuing sections.  

 

6.3 Research Contributions  

The findings of this research suggest significant contributions to the existing body of 

knowledge; regarding flood disaster risk mitigation and multi-spatiotemporal data pre-
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processing. The study illustrated an innovative approach in understanding varied causes 

of upstream flood vulnerability as well as the insight into the disparity of regional flood 

vulnerability in the study area. Also, the findings of this research have contributed to the 

theoretical, methodological and practical facets towards the general aim of disaster 

management as detailed in the ensuing sub-sections. 

 

6.3.1 Theoretical Contribution 

The theoretical aspect of this research uncovers the disparity as well as the depiction of 

various satellite features to reveal various influence of FCFs towards upstream floods in 

Niger State. It equally provides insights to understand the impacts of these multiple 

causative factors in other parts of the world. Additionally, the long-lead trend identified 

also serves to reveal the pattern of rainfall that can cause floods in various parts of the 

study area. An effective framework that presents all the possible causes of flood remains 

crucial for an enhanced adaptation and mitigation efforts, since only with a comprehensive 

identification of vulnerability and trend of rainfall can the causes and characteristics of 

the increasing flood hazard be mitigated appropriately. This framework has proven to be 

an auspicious step for understanding of regions and their corresponding levels of 

vulnerability. Thus, this research has contributed to the growing body of knowledge by 

providing novel approaches in addressing unequal regional flood vulnerability over wider 

scale, in addition to the identification of any potential flooding events in long-lead 

timeframe.  

Ultimately, recalling the underpinning research theory in section 2.7, which requires the 

provision of appropriate patterns of spatial representation to identify the interrelationship 

between domains and features of the environment, in addition to providing a means of 
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developing spatiotemporal visualization extent and developing their essential properties, 

this research has reliably strengthened the adopted GIS theory. This has been strengthened 

by identifying and relating the flood vulnerability to the GIS and environmental domains, 

particularly by using the geomorphological properties to represent and analyze regional 

flood vulnerability within the study area.  

 

6.3.2   Methodological Contributions 

Generally, a framework has the ability to guide researchers towards applicable 

methodological and design considerations [299]. Therefore, in addition to the theoretical 

contributions, various techniques employed as illustrated by the developed framework in 

both pre-processing and long-lead analysis are other significant contributions. For 

instance, illustrative approaches in cleaning, correcting and extracting features from the 

big spatial data sets as well as the approaches employed in identifying the FIPV can serve 

as a methodological guide to adapt or adopt the framework to address similar issues at 

regional or national level. This has been corroborated in the study conducted on a Review 

of Flood Risk Analysis in Nigeria in[300], that Nigeria has not been able to evolve a model 

to a level which can be used to estimate flood damages and predict future occurrences and 

losses. Therefore, the developed framework can fill this gap when implemented. 

 

Decisively, the approaches employed to identify the FIPV based on the Flood Inventory 

and historical temporal data sets will serve as immense methodological contribution. In 

addition to this, the approaches used to perform a long-lead prediction which identifies 

the commencement of FIPV, the period of recession of FIPV and the period of re-
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accumulation of FIPV as elaborated in subsection 3.5.2 of Chapter Three, can equally be 

adopted in various similar studies.  

 

Additionally, the study[300], equally identified the need for an open-source environment 

to improve the flood risk analysis in Nigeria. Hence, the utilization of Quantum GIS, 

which a python-based open source tool to successfully conduct this research can entice 

other researches to be conducted using the same GIS tool.  

 

6.3.3   Practical Contribution 

In order to contribute to reducing the impacts of upstream floods in the study area, this 

research provides practical suggestions to the local authorities in the disaster management 

sector. Especially, since the results provided by this research proffers a practical insight 

for local disaster management agency as a means of enhancing regional flood control 

adaptation technique by prudently locating those regions identified to be highly vulnerable 

to promptly implement some structural measures to advertently mitigate any potential 

havoc that can severely affect the regions. While focusing on the non-structural means, 

such as the predictive analysis provided by this research in section 4.3, a routine flood 

monitoring using the amount of daily rainfall or the forecasted precipitation volume by 

the National Meteorological agency in Nigeria (NiMet) for long-lead prediction is 

recommended. In addition, some approaches ranging from public awareness and stringent 

technical policies as presented in the ensuing sub-subsections can equally be implemented. 

 

6.3.3.1   Development Control 
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In view of the current realities in Niger State in terms of increase in population and 

structural development, there is a pressing need to assess and reappraise the structural 

development as well as planning guidelines to pave the way for a suitable master plan. An 

efficient flood mitigative measures will serve as a main contributor to a sustainable town 

planning, as flooding events have become an event that are more severe within habitable 

environments. 

 

6.3.3.2   Political Will 

 

Organizations are influential in managing and mitigating the risks of disasters within 

various social groups [301],[302]. There is a need for every level of government, 

especially, the local authority, to employ political will in developing long-term measures 

to mitigate flood risk by working together with private organizations as well as residents 

at vulnerable regions. These collaborations should contribute towards the disaster 

mitigation [303]. Redefining and empowering local authorities will enhance a more 

equitable access to materials, and social welfare will go a long way in developing 

community resilience to potential flooding events. 

 

6.3.3.3   Poverty and Vulnerability Reduction 

Any effort in mitigating disaster, vulnerability as well as poverty are intertwined. 

According to[304], it is projected that, in the next year alone, if every natural disaster is 

averted in 89 countries, around 26 million individuals will move out of extreme poverty. 

By implication, the more the disaster, the poorer the individuals become. Consequently, 

sustainable actions (such as the implementation of a poverty alleviation program that 
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considers disaster risk mitigation plans) can make individual less vulnerable to flooding 

events.  

 

6.3.3.4   Technical and Institutional Adaptation 

Technical or structural mitigating measures need to be implemented in the vast major 

regions of the study area identified with a high level of vulnerability. Drainage systems 

and dams have widely been identified to be very useful against floods. These are 

advantageously used for irrigation and electrification in addition to serving as preventive 

measures against flooding events within the vulnerable regions.  

 

6.4   Summary of the Main Findings 

Broadly, the causative factors employed generated results illustrating regional flood 

vulnerability is unevenly distributed. With some regions showing less vulnerability than 

others. This result was further confirmed using the flood acquired from 2006-2017 

(Appendix C).The study further demonstrated that angular slope is more reliable in the 

classification of regional flood vulnerability. Evidently, since some regions identified to 

be non-vulnerable by other causative factors as well as in the study conducted by [29]. 

This claim was further verified by the record of flooding events which showed the 

accuracy of the results generated using angular slope.  

 

The use of large amount of data sets has been discourage by [46] over the complexity and 

its susceptibility to errors. Nonetheless, performing winzorization which was explained 

under temporal data cleaning in subsection 3.4.1, enhances the accuracy of a result 

regardless of the size of the data sets. This was demonstrated in employing the daily 



227 

 

records of time series data from 1979-2016 representing precipitation, water level and 

temperature readings. Similarly, the identified trend shows a negative correlation between 

temperature and rainfall of [-0.1385825], and a positive correlation between precipitation 

and water level at [0.0995206].  By implication, when there is an increase in the amount 

of rainfall, there is a decrease in temperature. While the water body experiences an 

increase in water content when the amount of rainfall increases. This positive relationship 

between these two variables results in an increase in the level of flood severity within the 

regions adjacent to the water body.  

 

6.5 Limitations of the Research 

The research is explicitly centered on the natural flood causative factors. Hence, the 

research only covers the relevant factors necessary to determine the levels of influence 

posed by topography, hydrology and vegetation of the study area in relation to 

precipitation, which is the upstream factor used in performing long-lead prediction. 

Therefore, regarding the limitations within this research, a number of caveats needs to be 

noted especially, in relation to the anthropogenic factors, such as settlement and dams 

which should be considered alongside upstream factors for continuous future research as 

elaborated in the ensuing section. 

 

6.6   Recommendation for Future Studies 

At this stage, the developed hybrid framework can further be explored to assess a broader 

set of case studies in other regions of Nigeria, or other parts of the world, concentrating 

on urban vulnerability to flood hazards and anthropogenic factors that influence the 

unequal occurrence of flood vulnerability. This is because, while this research provided a 
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hybrid approach for identification of both regional upstream flood vulnerability 

classification and long-lead analysis, it encompassed only to natural factors. Therefore, as 

an extension for this research, future studies should include, but not limited to the 

exploration of other forms of vulnerabilities in relations to anthropogenic factors, such as 

the regional settlements and the sectorial vulnerability classifications. Although, the 

prospect of having such data for both settlements and the sectorial vulnerability 

classifications to meet this recommendation remains unlikely due to the paucity of the 

required data sets on regional settlements and population density, especially in Nigeria as 

elaborated in the ensuing subsection. 

 

6.6.1   Settlement Classification of Vulnerability 

 

The limitation faced by the current institutional policies for environmental management 

especially, in land use policies have led to several detrimental events within some 

regions[86]. Therefore, accessing an accurate settlement estimation data for future 

research will aid in revealing the number of populations that are potentially vulnerable to 

flooding events which will in turn, help in sectorial classification of flood vulnerability as 

discussed in the following subsection in order to take additional proactive measures in 

mitigation flooding events. 

 

6.6.2   Sectorial Classification of Vulnerability 

The identified regional vulnerabilities within this research were classified based on the 

levels of its potential susceptibility to floods. Future studies can in addition, adopt a 

relatively simplified form of sectorial vulnerability such as the sector that are more 

vulnerable either agricultural, health or educational sector in other to complement the 
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measures suggested to by this research. A sectorial classification will relate vulnerability 

directly to the targeted institution thereby, providing a platform for institutional policy-

making, since even with the disaster management agencies, they are constrained by 

insufficient budget to implement some preventive measures.   

 

6.7 Concluding Remarks 

Upstream floods have become a regular and virtually ubiquitous threat in Niger state 

during the last decade. The annual flooding from heavy downpour is increasing;  

not only the mean volume, but also the extremes have increased. Therefore, this research 

has adopted a hybrid approach employing multi-spatiotemporal data for upstream flood 

vulnerability classification and long-lead analysis as a contribution towards the mitigation 

of potential flooding events within the study area. More essentially, during the analysis, 

the developed hybrid framework has illustrated its efficiency in identifying various flood 

vulnerability when using flood causative factors represented by satellite features. These 

features have provided relevant results for many facets that could serve as a guide for the 

improvement of such GIS applications and disaster management. Furthermore, the 

findings obtained, and also the remarks from the experts in subsection 4.5.3, showed that 

the proposed hybrid framework is significantly applicable in a practical aspect. However, 

the framework may not be adoptable within a flood analysis that focuses on anthropogenic 

(man-made) factors that could come in the future because the generality of this research 

dwelled on the consideration of natural causative factors. It is therefore hoped that this 

research will not only exemplify to the everyday flood mitigating practices within flood-

prone areas, but will as well show the applicability of Big Data Analytics in performing 

long-lead upstream flood prediction. Finally, from the results and the recommendations 
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provided by this research, when compared with the practical guiding principles of the 

United Nations International Strategy for Disaster Reduction (UNISDR), as elaborated in 

[305], which requires that every framework aimed at disaster management must ensure 

the identification of vulnerability and enhance early warning, and above all, strengthen 

the disaster preparedness for effective response at all levels. Thus, from the outputs of the 

vulnerability classifications and long-lead analysis, the developed HyM-SLUFA 

framework has successfully fulfilled these conditions.   
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APPENDICES 
 

Appendix A: Copyright Permission 

Dear Sir, 

 No problem to use some of our products based on EM-DAT until you put the full 
citation : "EM-DAT: The Emergency Events Database – Universitécatholique de 
Louvain (UCL) – CRED, D. Guha-Sapir – www.emdat.be, Brussels, Belgium” and the 
complete reference for the graph taken from ‘2015-Disasters in Numbers” report. 

Best regards, 

Pascaline Wallemacq 
Geographer at CRED – EMDAT 
30, Clos Chapelle-aux-Champs -  B.1.30.15 
1200 Brussels - Belgium 
Tel : +32-2-764-33-66  

Check out our summer course! www.aphes.be 

 From: Ahmed Ndanusa <elahmedn@gmail.com> 
Sent:mercredi 11 avril 2018 09:11 
To:contact@emdat.be 
Subject: Request for permission to copy your copyright materials 

Dear Sir/ Ma 

I would respectfully like to introduce myself by the name Ahmed Ndanusa. 
I am a student of Universiti Utara Malaysia who is currently conducting a PhD. research 
on flood mitigation. I hereby humbly request for permission to copy your copyright 
materials at this URL:  

http://cred.be/sites/default/files/2015_DisastersInNumbers.pdf 

Your consideration shall greatly be appreciated and acknowledged.   
Best regards 
Ahmed Ndanusa 
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Appendix B: Sample of Temporal Data 

 

Date Temperature Precipitation Water Level 
1/1/2015 19.29 0 0.226 
1/2/2015 18.91 0 0.280 
1/3/2015 18.14 0 0.176 
1/4/2015 17.67 0 0.144 
1/5/2015 17.33 0 0.136 
1/6/2015 17.83 0 0.175 
1/7/2015 17.84 0 0.208 
1/8/2015 18.47 0 0.196 
1/9/2015 17.98 0 0.146 

1/10/2015 17.4 0 0.180 
1/11/2015 17.18 0 0.149 
1/12/2015 16.91 0 0.129 
1/13/2015 17.5 0 0.150 
1/14/2015 18.77 0 0.148 
1/15/2015 19.31 0 0.143 
1/16/2015 19.95 0 0.139 
1/17/2015 21.03 0 0.142 
1/18/2015 21.1 0 0.157 
1/19/2015 22.02 0 0.146 
1/20/2015 21.07 0 0.275 
1/21/2015 20.8 0 0.313 
1/22/2015 21.08 0 0.258 
1/23/2015 21.55 0 0.176 
1/24/2015 21.49 0 0.160 
1/25/2015 21.55 0 0.236 
1/26/2015 21 0 0.327 
1/27/2015 21.25 0 0.372 
1/28/2015 21.1 0 0.250 
1/29/2015 20.52 0 0.261 
1/30/2015 20.93 0 0.421 
1/31/2015 21.07 0 0.455 

2/1/2015 21.57 0 0.337 
2/2/2015 21.57 0 0.267 
2/3/2015 21.57 0 0.264 
2/4/2015 22.52 0 0.390 
2/5/2015 23.09 0 0.327 
2/6/2015 22.48 0 0.309 
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2/7/2015 23.21 0 0.321 
2/8/2015 22.11 0 0.322 
2/9/2015 22.71 0 0.271 

2/10/2015 23.07 0 0.356 
2/11/2015 21.69 0 0.463 
2/12/2015 21.24 0 0.222 
2/13/2015 21.3 0 0.318 
2/14/2015 21.45 0 0.285 
2/15/2015 22.7 0 0.315 
2/16/2015 22.78 0 0.367 
2/17/2015 22.86 0 0.351 
2/18/2015 24.21 0 0.472 
2/19/2015 21.31 0 0.448 
2/20/2015 23.54 0 0.413 
2/21/2015 23.04 0 0.367 
2/22/2015 20.81 0.405 0.356 
2/23/2015 20.59 0 0.202 
2/24/2015 21.86 0 0.235 
2/25/2015 22.26 0 0.314 
2/26/2015 21.19 0 0.257 
2/27/2015 20.59 0 0.226 
2/28/2015 20.95 0 0.348 

3/1/2015 21.47 0 0.477 
3/2/2015 21.48 0 0.250 
3/3/2015 20.95 0 0.226 
3/4/2015 20.82 0 0.394 
3/5/2015 21.33 0 0.236 
3/6/2015 22.26 0 0.195 
3/7/2015 22.17 0 0.249 
3/8/2015 23.33 0 0.289 
3/9/2015 22.78 0 0.350 

3/10/2015 22.42 0 0.308 
3/11/2015 23.65 0 0.347 
3/12/2015 21.66 0 0.355 
3/13/2015 21.86 0 0.317 
3/14/2015 21.84 0 0.293 
3/15/2015 22.39 0 0.328 
3/16/2015 24.28 0 0.284 
3/17/2015 21.74 0 0.283 
3/18/2015 23.54 0 0.367 
3/19/2015 24.78 0 0.353 
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3/20/2015 24.56 0 0.395 
3/21/2015 23.57 0 0.402 
3/22/2015 23.46 0 0.431 
3/23/2015 26.19 0 0.388 
3/24/2015 24.93 2.4075 0.946 
3/25/2015 26.18 0.045 0.145 
3/26/2015 29.8 0.0225 0.401 
3/27/2015 33.63 0 0.096 
3/28/2015 32.25 0 0.044 
3/29/2015 34.73 0 0.057 
3/30/2015 37.28 0 0.046 
3/31/2015 30.34 0.0225 0.115 

4/1/2015 38.46 0 1.230 
4/2/2015 38.46 0 1.230 
4/3/2015 22.39 0 0.555 
4/4/2015 25.03 0 0.216 
4/5/2015 23.43 0 0.400 
4/6/2015 22.09 0 0.468 
4/7/2015 23.17 0 0.404 
4/8/2015 21.46 0 0.425 
4/9/2015 25.13 0 0.450 

4/10/2015 25.04 0 0.481 
4/11/2015 22.28 0 0.475 
4/12/2015 21.72 0 0.518 
4/13/2015 22.03 0 0.592 
4/14/2015 22.06 0 0.230 
4/15/2015 21.5 0 0.179 
4/16/2015 21.7 0 0.228 
4/17/2015 21.45 0 0.320 
4/18/2015 22.08 0 0.167 
4/19/2015 22.1 0 0.260 
4/20/2015 22.12 0 0.219 
4/21/2015 22.65 0 0.293 
4/22/2015 24.79 0 0.339 
4/23/2015 24.31 0 0.518 
4/24/2015 24.3 0 0.366 
4/25/2015 22.89 0 0.393 
4/26/2015 22.12 0 0.516 
4/27/2015 24.21 0 0.460 
4/28/2015 23.26 0 0.363 
4/29/2015 23.62 0 0.340 
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4/30/2015 22.44 0 0.399 
5/1/2015 23.32 0 0.393 
5/2/2015 24.5 0 0.449 
5/3/2015 23.74 0 0.439 
5/4/2015 22.05 0 0.440 
5/5/2015 23.66 0.765 0.658 
5/6/2015 19.92 0.0675 0.707 
5/7/2015 23.15 0 0.398 
5/8/2015 22.78 0 0.457 
5/9/2015 22.32 1.1925 0.510 

5/10/2015 23.74 0.3825 0.521 
5/11/2015 21.89 0.0225 0.556 
5/12/2015 22.27 0 0.468 
5/13/2015 23.2 0 0.522 
5/14/2015 21.82 0 0.466 
5/15/2015 17.63 2.475 0.656 
5/16/2015 21.04 0.1575 0.594 
5/17/2015 19.69 0 0.510 
5/18/2015 21.98 0 0.715 
5/19/2015 21.77 0 0.488 
5/20/2015 22.71 0 0.523 
5/21/2015 21.3 0 0.547 
5/22/2015 21.97 0 0.474 
5/23/2015 22.7 0 0.462 
5/24/2015 21.85 0 0.554 
5/25/2015 24.04 0 0.579 
5/26/2015 22.59 0 0.661 
5/27/2015 22.38 0 0.610 
5/28/2015 22.13 0 0.623 
5/29/2015 22.33 0 0.667 
5/30/2015 21.9 0 0.583 
5/31/2015 21.58 0 0.604 

6/1/2015 22.33 0 1.081 
6/2/2015 21.28 0 1.016 
6/3/2015 23.96 9.31 0.769 
6/4/2015 23.12 12.75 1.390 
6/5/2015 16.87 34.3 4.014 
6/6/2015 31.45 0 0.101 
6/7/2015 23.45 10.02 1.026 
6/8/2015 22.57 21.5 2.710 
6/9/2015 22.9 20.95 2.504 
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6/10/2015 21.21 25.21 3.012 
6/11/2015 18.04 30.75 3.333 
6/12/2015 22.58 0 0.861 
6/13/2015 21.03 0 0.823 
6/14/2015 20.91 0 0.739 
6/15/2015 21.01 0 0.814 
6/16/2015 22.26 0.6075 0.749 
6/17/2015 22.31 0.1125 0.751 
6/18/2015 21.87 0.27 0.699 
6/19/2015 21.11 0.6075 0.850 
6/20/2015 23.01 0.0675 1.019 
6/21/2015 20.81 1.665 1.226 
6/22/2015 20.32 0 1.020 
6/23/2015 20.83 0 0.931 
6/24/2015 20.91 0 0.847 
6/25/2015 20.57 0 0.795 
6/26/2015 19.94 1.17 0.842 
6/27/2015 20.68 0.225 0.883 
6/28/2015 20.89 0 0.843 
6/29/2015 20.49 0.09 0.781 
6/30/2015 22.18 0 0.877 

7/1/2015 23.28 0.945 0.762 
7/2/2015 21.37 3.9375 0.928 
7/3/2015 19.44 16.7625 0.859 
7/4/2015 20.02 11.0925 0.876 
7/5/2015 19.22 2.6325 0.887 
7/6/2015 19.14 0 0.818 
7/7/2015 20.2 0.0225 0.704 
7/8/2015 20.59 0.1125 0.798 
7/9/2015 19.96 18.81 0.686 

7/10/2015 21.1 3.06 0.694 
7/11/2015 18.9 6.4575 0.725 
7/12/2015 20.95 6.4125 0.856 
7/13/2015 19.86 0.6075 0.841 
7/14/2015 20.58 0 0.708 
7/15/2015 16.8 0.4725 0.728 
7/16/2015 18.49 2.0925 0.791 
7/17/2015 21.67 0.18 0.689 
7/18/2015 22.3 0.09 0.758 
7/19/2015 20.97 11.565 0.886 
7/20/2015 14.33 119.7675 1.361 
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7/21/2015 17.09 0.7875 1.597 
7/22/2015 18.32 0.0225 1.314 
7/23/2015 20.25 1.8225 0.792 
7/24/2015 18.22 0.99 0.682 
7/25/2015 18.97 0.36 0.985 
7/26/2015 17.21 33.57 1.097 
7/27/2015 14.63 30.8925 0.961 
7/28/2015 14.33 5.895 1.331 
7/29/2015 17.31 0.6975 1.661 
7/30/2015 16.42 2.61 1.134 
7/31/2015 18.26 0.0225 1.345 

8/1/2015 17.4 0.09 0.964 
8/2/2015 14.98 12.375 1.427 
8/3/2015 16.94 0.3375 1.304 
8/4/2015 15.08 8.3025 1.700 
8/5/2015 16.13 2.07 1.363 
8/6/2015 17.22 3.2625 1.064 
8/7/2015 15.19 2.115 1.457 
8/8/2015 14.71 4.0725 1.303 
8/9/2015 16.37 5.2425 1.740 

8/10/2015 15.19 32.1525 1.678 
8/11/2015 16.86 6.9525 1.343 
8/12/2015 15.63 19.8 1.040 
8/13/2015 17.19 0.675 1.704 
8/14/2015 17.61 0.0225 1.176 
8/15/2015 17.53 0 1.106 
8/16/2015 19.09 0.135 1.071 
8/17/2015 16.67 83.6325 0.981 
8/18/2015 16.85 0.6525 1.555 
8/19/2015 18.36 0.045 1.095 
8/20/2015 18.12 11.4075 1.089 
8/21/2015 15.57 19.2375 1.158 
8/22/2015 17.36 0.045 1.512 
8/23/2015 18.84 3.69 1.160 
8/24/2015 17.59 4.005 1.348 
8/25/2015 15.78 12.5775 1.194 
8/26/2015 14.67 14.4675 1.354 
8/27/2015 17.6 1.395 1.280 
8/28/2015 16.84 5.6025 1.257 
8/29/2015 13.56 43.11 1.595 
8/30/2015 15.65 12.105 1.286 
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8/31/2015 16.95 9.495 1.220 
9/1/2015 14.9 53.46 1.217 
9/2/2015 17.28 4.8375 1.495 
9/3/2015 13.97 32.13 1.535 
9/4/2015 17.58 0.3375 1.555 
9/5/2015 17.68 0 1.067 
9/6/2015 16.93 7.5825 1.657 
9/7/2015 17.57 0.09 1.319 
9/8/2015 15.99 10.305 1.167 
9/9/2015 16.91 2.52 1.754 

9/10/2015 18.06 0 1.107 
9/11/2015 18.66 0.1575 1.196 
9/12/2015 17.41 0 1.412 
9/13/2015 18.26 0.09 1.168 
9/14/2015 18.62 0.675 1.049 
9/15/2015 18.24 4.8825 1.122 
9/16/2015 18.01 5.265 1.414 
9/17/2015 13.75 121.8375 1.440 
9/18/2015 15.6 4.1625 1.848 
9/19/2015 17 0.5625 1.353 
9/20/2015 17.77 4.9725 1.068 
9/21/2015 17.55 0.045 1.329 
9/22/2015 18.4 0 1.137 
9/23/2015 18.85 0 1.028 
9/24/2015 19.05 0 1.084 
9/25/2015 17.69 0.45 1.136 
9/26/2015 18.09 0 1.684 
9/27/2015 18.78 0.18 1.110 
9/28/2015 18.88 0.765 0.943 
9/29/2015 17.9 0 1.076 
9/30/2015 18.14 0 1.244 
10/1/2015 18.58 0.09 1.000 
10/2/2015 18.72 0 1.000 
10/3/2015 18.25 0 1.038 
10/4/2015 19.05 1.26 1.004 
10/5/2015 18.12 5.7825 1.846 
10/6/2015 19.1 0.945 1.035 
10/7/2015 18.57 0 1.110 
10/8/2015 18.32 0 0.985 
10/9/2015 17.31 0.9225 1.217 

10/10/2015 18.94 0.0225 1.142 
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10/11/2015 19.28 0.6525 0.835 
10/12/2015 19.96 0.2925 0.955 
10/13/2015 19.94 0 1.000 
10/14/2015 19.28 0 0.926 
10/15/2015 19.62 0 0.996 
10/16/2015 20.51 0 0.915 
10/17/2015 19.45 0 0.921 
10/18/2015 19.46 0.0225 0.880 
10/19/2015 19.54 0 1.000 
10/20/2015 20.72 7.8525 0.824 
10/21/2015 18.86 8.3475 0.860 
10/22/2015 18.97 0 0.942 
10/23/2015 19.8 0 0.904 
10/24/2015 19.48 0 0.880 
10/25/2015 20.7 0.3825 0.920 
10/26/2015 20.8 0.2025 0.890 
10/27/2015 19.41 0 0.901 
10/28/2015 20.2 0 0.981 
10/29/2015 20.09 0 1.080 
10/30/2015 19.35 0 0.917 
10/31/2015 19.5 0 0.819 

11/1/2015 19.33 0 0.719 
11/2/2015 19.12 0 0.681 
11/3/2015 19.42 0 0.916 
11/4/2015 19.49 0 0.630 
11/5/2015 19.59 0 0.579 
11/6/2015 19.1 0 0.674 
11/7/2015 19.3 0 0.608 
11/8/2015 19.2 0 0.560 
11/9/2015 19.37 0 0.506 

11/10/2015 18.68 0 0.501 
11/11/2015 19.21 0 0.495 
11/12/2015 19.51 0 0.441 
11/13/2015 19.65 0 0.359 
11/14/2015 19.62 0 0.355 
11/15/2015 19.25 0 0.335 
11/16/2015 19.17 0 0.470 
11/17/2015 19.1 0 0.517 
11/18/2015 19.64 0 0.473 
11/19/2015 19.5 0 0.305 
11/20/2015 19.42 0 0.349 
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11/21/2015 19.38 0 0.366 
11/22/2015 20.17 0 0.378 
11/23/2015 20.14 0 0.369 
11/24/2015 20.19 0 0.335 
11/25/2015 20.16 0 0.321 
11/26/2015 20.78 0 0.304 
11/27/2015 21.52 0 0.400 
11/28/2015 20.65 0 0.488 
11/29/2015 20.43 0 0.467 
11/30/2015 19.91 0 0.413 

12/1/2015 13.32 0 0.327 
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Appendix C: Flood Inventory 2006-2017 

 

 

Regions Date of Flood 

Agaie 

27-Jul-12 

15-Aug-12 

9-Aug-14 

29-Sep-16 

Agwara 

9-Jul-12 

29-Jun-15 

11-Jun-16 

Bida 

17-May-06 

13-Aug-10 

20-Jul-12 

16-Jul-16 

Borgu 

17-May-06 

2-Jun-09 

23-Jul-12 

11-Jun-15 

26-Jul-16 

1-Oct-16 

29-Aug-16 

Bosso 

24-Aug-12 

11-Jun-12 

14-Aug-15 

27-Sep-15 

25-Aug-16 

Chanchaga 

28-Aug-17 

3-Jul-12 

1/9/2012 

28-Jul-16 

Edati 
1-Jul-12 

27-Jul-15 
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16/08/2015 

Gurara 10-Jul-12 

Gbako 
22-Aug-12 

9-Jul-15 

Katcha 

28-Aug-10 

4-Jul-12 

28-Aug-12 

13-Jul-15 

25-Jul-16 

Kontagora 

5-Jul-12 

13-Aug-16 

17-May-06 

Lapai 

24-Sep-15 

21-Jul-15 

8-Jul-09 

24/8/2016 

24-Aug-10 

3-Jul-12 

30-Jul-16 

Lavun 

25-Jul-09 

17-Jul-15 

29-Jul-16 

24-Sep-15 

Magama 
4-Oct-16 

15-Aug-12 

Mariga 
19-Jul-14 

22-Aug-12 

Mashegu 8-Sep-16 

Mokwa 

23-Jun-09 

15-Aug-10 

2-Jul-10 

24-Aug-12 

24-Aug-12 

27-Jun-14 

28-Jun-14 
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16-Aug-15 

7-Jul-15 

19-Sep-15 

29-Jul-16 

Munya 
15-Jun-12 

21-Jul-16 

Paikoro 
9-Aug-12 

27-Sep-15 

Rafi 9-Jul-14 

Rijau 17-Aug-12 

Shiroro 

24-Jul-09 

29-Jul-12 

15-Jul-12 

11-Aug-15 

Suleja 26-Jul-16 

Tafa 0 
Wushishi 31-May-09 

  17-Aug-10 
  6-Jul-13 
  21-Jul-15 

  20-Jul-12 
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Appendix D: Administrative Shapefile 

 

 

 



268 

 

Appendix E: Water bodies from Shapefile 
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Appendix F: Invitation to Participate in Framework Assessment 

 

Dear Prof. / Dr. / Sir / Ma, 

I am Ndanusa B. Ahmed who is currently pursuing his PhD study in Information Technology at 
Universiti Utara Malaysia. I am delighted to respectfully request for your ample time to participate 
in the review as well as validation of my proposed framework. You have been selected to 
participate for this research based on your expertise/experience in GIS and remote sensing data 
analysis. 

 

The main aim of this review and validation is to examine the accuracy and applicability of the 
proposed framework within the domain of spatiotemporal data and flood analysis. Moreover, the 
validation is one of the objective of my PhD research. Therefore, upon agree to participate, the 
proposed framework and sets of generated outputs shall be sent to you for your perusal. 
Furthermore, once this is done, please you will provide feedback using a validation form that is 
attached with the documents of the proposed framework. 

I assured you, the information given will be treated as confidential and will be used exclusively 
for the research purposes, which will be reported anonymously in academic publications. 

Please feel free to contact me or my supervisors by email: 

Thank you 

Ndanusa B. Ahmed 
elahmedn@gmail.com 

 

 

Supervisors 

 

Prof. Dr. Zulkhairi Md. Dahalin   Dr. Azman Ta’a 
zul@uum.edu.myazman@uum.edu.my 
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Appendix G: Expert Review & Validation Form 

 

Please validate and give comments on the below mentioned outputs on the proposed 
Multi-spatiotemporal approach for flood vulnerability classification and Long-Lead 

Upstream Flood Analysis for a Case of Niger state, Nigeria: Respondent: GIS Expert 
 
 
 
 

 

Relevancy to the 

intended 

application 

The proposed framework is 
useful to the long-lead flood 
analysis.  

Agree  
Disagree  
Comments/ Suggestions:  
----------------------------- 
------------------------------
---------------  

Decision Support 

Satisfaction  

 

The proposed framework 
provides appropriate results 
for valid decision-making.  

Agree  
Disagree  
Comments/ Suggestions:  
------------------------------ 
------------------------------
---------------  

Comparison with 

existing usability 

evaluation method  

The proposed framework is 
straight forward and easy to 
use compared to existing 
usability evaluation method  

Agree  
Disagree  
Comments/ Suggestions:  
------------------------------ 
------------------------------
---------------  

Clarity  The flow of assessment 
process (items) is defined 
clearly  

Agree  
Disagree  
Comments/ Suggestions:  
------------------------------ 
------------------------------
---------------  

Tasks 

appropriateness  
The tasks in the proposed 
framework are appropriate 
and efficient 

Agree  
Disagree  
Comments/ Suggestions:  
------------------------------ 
------------------------------ 

Ease of use  The proposed framework can 
be implemented easily  

Agree  
Disagree  
Comments/ Suggestions:  
------------------------------ 
------------------------------ 
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Internally 

consistent  

The proposed framework is 
consistent, dependable and 
easy to apply  

Agree  
Disagree  
Comments/ Suggestions:  
------------------------------ 
------------------------------ 

Well organised 

(organisation)  

The proposed framework is 
organized and well-
structured.   

Agree  
Disagree  
Comments/ Suggestions:  
------------------------------  
------------------------------ 

Presentation 

(readable and 

useful format)  

The proposed framework is 
readable and can produce 
results in a useful format.  

Agree  
Disagree  
Comments/ Suggestions:  
----------------------------- 
------------------------------ 

Ability to produce 

expected results 

The proposed framework can 
produce usability problems 
for the intended flood 
analysis.  

Agree  
Disagree  
Comments/ Suggestions:  
------------------------------ 
------------------------------ 

Ability to produce 

relevant and useful 

results  

The proposed framework 
produces results that can be 
used for future improvement  

Agree  
Disagree  
Comments/ Suggestions:  
------------------------------ 
------------------------------ 

Practicality (Ease 

of implementation)  
The proposed framework is 
practical to be implemented 
in the real-world 
environment  

Agree  
Disagree  
Comments/ Suggestions:  
------------------------------ 
------------------------------ 
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Appendix H: Disaster Monitoring/Management Agency 

 

Expert Review & Validation Form 
R

es
po

nd
en

t:
 D

is
as

te
r 

M
on

it
or

in
g/

M
an

ag
em

en
t A

ge
nc

yE
xp

er
ts

 

P
ro

fi
le

 
 

Institution: …………………….……………. 

………………………...……………………. 

………………..…………………………….. 

Phone: ……………………………………….  

Email: ……………………………………… 

Address of the Institution: …………………… 

……………………………………………… 

………………………………………………. 

 

 

 

 

 

 

 

 

 

 

 

 

  Please choose where appropriate:  YES NO 

A
cc

ur
ac

y 
on

 V
ul

ne
ra

bi
li

ty
 

  

Does the classification of the vulnerability for 

various regions match the levels of flood 

frequency within these regions? 

 

 

 

 

 

 

Borgu region has been identified to be adjacent to 

a water body, does the discharge from the water 

body during a heavy rainfall contribute to flooding 

events? 

  

Niger state is highly vulnerable to floods due to 

rainfall. 

  

Are Tafa and Suleja regions the least vulnerable 

areas in Niger state as identified regions to 

flooding events? 

  



273 

 

 L
an

d 
C

ov
er

 F
ea

tu
re

s 

Are the regions identified with low or dense 

vegetation have the traits of such vegetations on 

the true-terrestrial features? 

  

Are the water bodies identified in the output exist 

in the study area? 

  
V

is
ua

l A
ss

es
sm

en
t  

V
ul

ne
ab

il
it

y 

Identification of features images to the ground 

truth  features 

  

Are the regions correctly positioned on the maps?    

                                            NS:Not Satisfactory 

                                            FS:Fairly Satisfacotry 

                                            S:Satisfactory 

                                            VS: Very Satisfactory 

 

 

NS FS S VS 

Satisfaction with graphical presentation     

 Precision of the output formats     

 

Satisfaction with information representation 

 

    

In
te

rp
re

ta
bi

li
ty

  

L
ay

ou
ts

/P
re

se
nt

at
io

n 

Satisfaction with legends representation   

Satisfaction with classification   

Satisfaction with coordinate representation   

Satisfaction with scale and distance illustration   
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Please validate and give assessment comments on the below mentioned vulnerability and 
geographical outputs on the proposed multi-spatiotemporal Data framework and flood 

vulnerability classification for Long-Lead Upstream Flood Analysis for a Case of Niger 
state, Nigeria. 

 

Additional comments (if any): 

……………………………………………………………………………………………………...

……………………………………………………………………………………………………..

……………………………………………………………………………………………………

……………………………………………………………………………………………………

…..……………………………………Date…………………………… 

(Signature & Official Stamp)                         Signed by(Name): ………………………………….  

Thank you for your time and effort.  

  

 

Satisfaction with output display and format   



275 

 

APPENDIX I: GIS Expert Review 

 

Expert Review for Validation of Multi-spatiotemporal Data Framework Representing Niger 
State.  

Respondent: GIS (Satellite Imageries) & Geographical Experts 

E
xp

er
t’

s 
P

ro
fi

le
 

 

Name: Prof../Dr./Mr./Mrs. (Other…….) 

Years of Experience: ……………………. 

Place of work: ……………………………. 

………………………...……………………. 

………………..…………………………….. 

Position:……………………………………. 

Phone: ……………………………………… 

Email:……………………………………….  

 

 

 

 

 

YES 

 

 

 

 

 

NO 

T
er

ra
in

 F
ea

tu
re

 

D
ig

it
al

 E
le

va
ti

on
 M

od
el

 
(D

E
M

) 

Do DEM patterns correspond to the various high 

and low lands of the surface in Niger state? 

  

Does the unit of measurement used correspond to 

the DEM unit of measurement? 

  

Does the classification method used in 

conformity with the various elevation patterns? 

S
lo

pe
 

Are the patterns of the Slope in correspondence 

with the various high and low lands of the 

surface in Niger state. 

  

Does the classification method used distiguesh 

clearly between the various patterns of the slope? 
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H
yd

ro
lo

gi
ca

l F
ea

tu
re

s 

 
F

lo
w

 A
cc

um
ul

at
io

n 

Do the identified features represent flow 

accumulation? 

  

Is there any tendency of flow accumulation as 

identified in the feature?  

  

F
lo

w
 D

ir
ec

ti
on

 

Is there any tendency of flow direction as 

identified in the feature?  

  

Do the identified features represent flow 

direction? 

  

L
an

d 
C

ov
er

 F
ea

tu
re

s 

(V
eg

et
at

io
n)

 Are the regions identified with low or dense 

vegetation have the traits of such vegetations on 

the true-terrestrial features? 

  

W
at

er
 b

od
ie

s Are the water bodies identified in the output exist 

in the study area? 

  

A
cc

ur
ac

y 

 

Identification of features images to the ground 

truth  features 

  

Are the regions correctly positioned on the maps?    

NS:Not Satisfactory 

FS:Fairly Satisfacotry 

S:Satisfactory 

VS: Very Satisfactory 

 

 

NS FS S VS 

Satisfaction with graphical presentation     

 Precision of the output formats     
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Satisfaction with outcome of the MCE using AHP 

 

    

 

 

Satisfaction with information representation     
In

te
rp

re
ta

bi
li

ty
  

L
ay

ou
ts

/P
re

se
nt

at
io

n 
Satisfaction with legends of representation     

Satisfaction with classification of the patterns     

Satisfaction with coordinate representation     

Satisfaction with scale and distance illustration     

 

Satisfaction with output display and format     

 

T
oo

ls
 

QGIS was used to pre-process the images. How 

satisfactory are you with the outputs generated by 

this tool? 

    

 

Additional comments (if any): 

……………………………………………………………………………………………………

……………………………………………………………………………………………………

……………………………………………………………………………………………………

……………………………………………………………………………………………………

…… 

Thank you 

……………………………………  Date…………………………………… 

(Signature & Official Stamp) 
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Appendix J: Regional FIPV 

 

Locations  FIPV (mm 
Aga  190.32 
Agw 301.08 
Bid  208.540 
Bor 164.79 
Bos  213.44 
Cha  181.44 
Eda  361.64 
Gur  247.52 
Gba 295.8 
Kat  215.89 
Kon  317.81 
Lap  287.05 
Lav 170.27 
Mag  199.23 
Mar  281.60 
Mas 485.90 
Mok 386.41 
Mun  218.88 
Pai  203.66 
Raf  235.74 
Rij 243.85 
Shi  292.11 
Sul 579.92 
Taf N/A 
Wus 351.81 

 

 

 



279 

 

Appendix K: A Sample of LandSand Imagery 
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Appendix L: Authorization for Data Usage 
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