TELECOMMUNICATION SUBSCRIPTION FRAUD DETECTION USING NEURAL NETWORK

A thesis submitted to the Faculty of Information Technology in partial fulfillment of the requirement for the degree
Master of Science (Intelligent System)
Universiti Utara Malaysia

By
NURATIKHAH SHAHRIN

All Rights Reserved.
KOLEJ SASTERA DAN SAINS
(College of Arts and Sciences)
Universiti Utara Malaysia

PERAKUAN KERJA KERTAS PROJEK
(Certificate of Project Paper)

Saya, yang bertandatangan, memperakukan bahawa
(I, the undersigned, certify that)

NURATIKAH SHAHRIN

calon untuk ijazah
(candidate for the degree of)
Msc. (Intelligent System)

telah mengemukakan kertas projek yang bertajuk
(has presented his/her project paper of the following title)

TELECOMMUNICATION SUBSCRIPTION FRAUD
DETECTION USING NEURAL NETWORK

seperti yang tercatat di muka surat tajuk dan kulit kertas projek
(as it appears on the title page and front cover of project paper)

bahawa kertas projek tersebut boleh diterima dari segi bentuk serta kandungan
dan meliputi bidang ilmu dengan memuaskan.
(that the project paper acceptable in form and content, and that a satisfactory
knowledge of the field is covered by the project paper).

Nama Penyelia Utama
(Name of Main Supervisor): ASSOC. PROF. FADZILAH SIRAJ

Tandatangan
(Signature) :
Tarikh (Date) : 27/06/08

Nama Penyelia Kedua
(Name of 2nd Supervisor): MISS NOORAINI YUSOFF

Tandatangan
(Signature) :
Tarikh (Date) : 27/06/08
PERMISSION TO USE

In presenting this thesis in partial fulfilment of the requirements for a postgraduate degree from Universiti Utara Malaysia, I agree that the University Library may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by my supervisor, in her absence, by the Dean of the Faculty of Information Technology. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain should not be allowed without my written permission. It is also understood that due recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use which may be made of any material from my thesis.

Request for permission to copy or to make use of material in this thesis, in whole or in part should be addressed to:

Dean of the Faculty of Information Technology
Universiti Utara Malaysia
06010 UUM Sintok
Kedah Darul Aman
ABSTRACT
(Bahasa Malaysia)

ABSTRACT
(English)

Telecommunications fraud costs carriers billions of revenue dollars annually. The telecom fraud criminal is often ingenious and is typically motivated by money, anonymity, or both. Through use of the Internet, the fraud community is becoming more collaborative, and as a result, more ingenious. Because of this, fraud detection applications must become more sophisticated to keep pace with the criminals. A system to prevent subscription fraud in fixed telecommunications with high impact on long-distance carriers is proposed. The system consists of a neural network technique, using Multilayer Perceptron (MLP). A total of 158 data samples from Telecom Malaysia Bhd were collected trained and tested using model. The prediction module allows identifying potential fraudulent customers at the time of subscription. The analysis of the data shows a reasonably strong correlation between the input variable, which consist of severity, user certainty factor, indicator case and target. The result shows that 78% of prediction accuracy has been obtained. From the result that has been produce, neural network has a potential to be used for detecting fraud in telecommunication.
ACKNOWLEDGEMENT

Firstly, I would like to extend my thanks and gratitude to Telecom Bhd who have given their cooperation during this research, where they have fully support in all the information I need for this research.

Next, I would like to extend my thanks to University Utara Malaysia (UUM) for facilities and resources provided. Without the support of the facilities from UUM this research may not be come true so smoothly.

Besides that, I would like to take this opportunity to express my thanks and gratitude to my Supervisor, Associate Professor Fadzilah Siraj, for her guidance, wonderful support and efforts in assisting me carrying out these research and thesis to become a reality.

Last but not least, my gratitude also goes to my beloved family members who have done great job of supporting me throughout this research. They have been very understanding and offered lots of encouragement when the system and research I was working on did not seem to work the way it should be.

To those I have not mentioned above, but had ever helped me, I really appreciate it and felt very thankful for all your helps. Thanks to all of you.
TABLE OF CONTENTS

PERMISSION TO USE ii
ABSTRACT (Bahasa Malaysia) iii
ABSTRACT (English) iv
ACKNOWLEDGEMENT v
TABLE OF CONTENT vi
LIST OF TABLES vii
LIST OF FIGURES viii

CHAPTER 1 : INTRODUCTION

1.1 Background 1
1.2 Problem Statement 3
1.3 Objectives 5
1.4 Scope of the study 5
1.5 Significance of the study 5
1.6 Organization of the report 6

CHAPTER 2 : LITERATURE REVIEWS

2.1 Overview 7
2.2 Fraud Detection Using Neural Network 10
2.3 Fraud Detection Using Other Techniques 12
2.4 Summary 13

CHAPTER 3 : METHODOLOGY

3.1 Overview of Methodology 14
 3.1.1 Awareness of Problem 16
 3.1.2 Suggestion 16
 3.1.2.1 Layer 1 17
 3.1.2.2 Layer 2 18
 3.1.2.3 Layer 3 18
 3.1.3 Development 18
 3.1.3.1 Data Acquisition 19
 3.1.3.2 Data Description and Selection 19
 3.1.3.3 System Development 22
 3.1.4 Evaluation 34
 3.1.5 Conclusion 34
3.2 Summary 34
CHAPTER 4: RESULT AND DISCUSSION

4.1 Neural Network Detection System 35
4.2 Preprocessing Data Result 38
4.3 Training Data Result 40
4.4 Prediction Data Result 42
 4.4.1 Test Case 1 43
 4.4.2 Test Case 2 44

CHAPTER 5: CONCLUSION

5.1 Conclusion 45
5.2 Future Enhancement 46

REFERENCES 47
APPENDIX: System User Manual 54
LIST OF TABLES

Table 3.1 Sample of Datasets 20
Table 3.2 Description of each Attribute 21
Table 3.3 Sample of Datasets after Attributes Selection and Classifying
the telecommunication fraud into different classes. 22
LIST OF FIGURES

Figure 3.1 General Methodology of Design Research (Vaishnavi & Kuechler, 2005) 15
Figure 3.2 Flow of Neural Network Architecture 17
Figure 3.3 Neural Network Module Process 23
Figure 3.4 Neural Network Structure Diagram 23
Figure 3.5 Normalization Sequence 24
Figure 3.6 Normalization Algorithm 25
Figure 3.7 Backpropagation Algorithm 27
Figure 3.8 Flowchart of the training process 30
Figure 3.9 Feedforward Algorithm 32
Figure 3.10 Flowchart of the prediction process 33
Figure 4.1 Preprocessing Interface 36
Figure 4.2 Training Interface 37
Figure 4.3 Prediction Interface 38
Figure 4.4 Raw Data 39
Figure 4.5 Result of Normalization 40
Figure 4.6 Data Partition for Training 41
Figure 4.7 Result of Training 42
Figure 4.8 Result of Non Fraud Cases 43
Figure 4.9 Result of Fraud Cases 44
CHAPTER 1

INTRODUCTION

In this chapter, the first section explains the background of the study that mainly involves the fraud detection and fraud detection technique using Neural Network. Next, the research problem is presented, followed by the objectives, significance of the project and scope for the study. As a conclusion for this chapter, the organization of this study is presented.

1.1 Background

Telecommunication fraud is increasing dramatically each year resulting in loss of a large amount of euros worldwide. The history of telecommunications crime, including several types of fraudulent activities, was reviewed by Collins (1999a, 1999b, 2000). Fraud detection involves identifying fraud as quickly as possible once it has been committed.
The contents of the thesis is for internal user only
REFERENCES

Hansen, J. V., McDonald, J. B., Messier, W. F., & Bell, T. B. A generalized qualitative –
1022-1032, 1996.

13-19.

10-14.

Pattern Recognition Letters, 22, 55-61.

Predicting subscriber dissatisfaction and improving retention in the wireless

M. Taniguchi, M. Haft, J. Hollmen, and V. Tresp. Fraud detection in communication

Novel techniques for fraud detection in mobile telecommunication networks. In ACTS Mobile Summit, Grenada, Spain.