

**WEB-BASED ELECTRICAL FAULT DIAGNOSIS  
USING EXPERT SYSTEM**

**ZAKARIA HUSSAIN**

**GRADUATE SCHOOL  
UNIVERSITI UTARA MALAYSIA  
2003**

**WEB-BASED ELECTRICAL FAULT DIAGNOSIS  
USING EXPERT SYSTEM**

A Project submitted to the Graduate School in partial  
fulfillment of the requirements for the degree  
Master of Science (Intelligent Knowledge Based System)  
Universiti Utara Malaysia

By :

**ZAKARIA HUSSAIN**  
April 2003

## **PERMISSION TO USE**

In presenting this thesis in partial fulfillment of the requirement for a postgraduate degree from Universiti Utara Malaysia, I agree that the University Library may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by my supervisor or, in their absence, by the dean of the Graduate School. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use which may be made of any material from my thesis.

Requests for permission to copy or to make other use of materials in this thesis, in whole part, should be addressed to :

**Dean of Graduate School  
Universiti Utara Malaysia  
06010 UUM Sintok  
Kedah Darul Aman**

## **ABSTRAK**

Kajian ini merangkumi pembangunan sistem pakar untuk mengenalpasti kegagalan bekalan elektrik di dalam sesebuah bangunan atau premis khususnya dalam mengenalpasti punca dan lokasi kegagalan tersebut. Model sistem yang dibangunkan digunakan untuk penilaian unit pembangunan dan penyelenggaraan sesebuah bangunan berasaskan web supaya mudah dicapai oleh setiap pengguna. Asas pembangunan sistem ini adalah dengan menggunakan kaedah “Engineering Knowledge Based Expert system”. Kaedah ini digunakan untuk menjana fakta dengan berasaskan satu set peraturan untuk mendapatkan keputusan. Sistem ini memilih sebahagian daripada fakta dengan merujuk kepada sebahagian daripada fakta yang lain yang berkenaan menggunakan “rule-base reasoning”. Aktiviti utama dalam pembangunan sistem ini termasuk pencarian pengetahuan, validasi pengetahuan, penterjemahan pengetahuan, takbiran, serta penjelasan. Kesimpulannya, sistem pencarian kegagalan bekalan elektrik dalam sesebuah bangunan dibangunkan untuk membantu membuat satu keputusan terbaik terhadap lokasi dan punca kegagalan tersebut. Sistem pakar ini mempunyai potensi yang baik dalam membantu meningkatkan perkhidmatan bekalan elektrik masa kini.

**Katakunci :** sistem pakar, kegagalan bekalan elektrik, engineering knowledge based system, rule-base reasoning.

## ABSTRACT

This thesis discusses the key issues of development of an Expert System (ES) proposed for diagnosing of electrical fault in a building in term of the location and cause of failure. This module used for self-assessment diagnosing in web-based environment so that easier for the maintenance and development unit in any building to get and use the system. The basic development of the system is based on the concept of Engineering Knowledge Based Expert System approach. This knowledge based approach, is used to generate facts by using a set of rules to retrieve a solution. It will choose parts of the texts by referring to other relevant texts by using rule-based reasoning. The main activities in developing the system include the knowledge acquisition, knowledge validation, knowledge representation, inference and explanation. In conclusion, the development of an expert system for diagnosing electrical fault in a building is to help the user to make a better decision on the location and cause of electrical fault in the building. Therefore, the expert system has a great potential in supporting and enhancing the services of electrical supply nowadays.

**Keywords :** expert system, electrical fault, engineering knowledge based system, rule-base reasoning.

## **ACKNOWLEDGEMENT**

I would like to express my thanks and gratitude to Allah S.W.T, the Most Beneficent, the Most Merciful whom granted me the ability and willing to start and complete this project. I pray to His greatness to inspire and to enable me to continue the work for the benefits of my country, specifically for educational institutions.

I am deeply indebted to my supervisor Aniza Mohamed Din whose help, stimulating suggestions and encouragement helped me at all the times during the project development and the writing of this thesis. I would also like to express heartfelt thanks to lecturers who are working in Universiti Utara Malaysia, especially En Azham Hussain, my brother, on their full supports.

My former IKBS classmates' batch May 2001 and December 2001 who have supported me towards the completion of this project and to all those who gave me the possibility to complete this project, I wish to thank them for all their help, support, interest and valuable hints.

Last but not least, I would like to give my special thanks to my wife Pn. Ma'azah Hj. Omar Zuhdi and my beloved daughters, Khairun Nida' and Nur 'Ulya Nasuha whose love and patient to see me through this work. To my beloved family, thanks for your encouragements, advices and loves. May God bless you all.

## TABLE OF CONTENTS

|                   | <b>Page</b> |
|-------------------|-------------|
| PERMISSION TO USE | i           |
| ABSTRAK           | ii          |
| ABSTRACT          | iii         |
| ACKNOWLEDGMENT    | iv          |
| TABLE OF CONTENTS | v           |
| LIST OF TABLES    | x           |
| LIST OF FIGURES   | xi          |

### CHAPTER 1: INTRODUCTION

|                                 |   |
|---------------------------------|---|
| 1.1 Overview                    | 1 |
| 1.2 Problem Statement           | 3 |
| 1.3 Objectives                  | 4 |
| 1.4 Scope of Work               | 4 |
| 1.5 Significant of The Research | 6 |

### CHAPTER 2: LITERATURE REVIEW

|                                        |    |
|----------------------------------------|----|
| 2.1 Electrical Fault                   | 7  |
| 2.1.1 Types of Electrical Disturbances | 8  |
| 2.1.2 Types of Fault                   | 9  |
| 2.1.3 Protection Devices               | 10 |

|                                                 |    |
|-------------------------------------------------|----|
| 2.2 Expert System                               | 11 |
| 2.2.1 Expert System Architecture                | 12 |
| 2.2.2 Knowledge Representation in Expert System | 13 |
| 2.2.2.1 Rule-Based Systems                      | 14 |
| 2.2.2.2 Frame-Based Systems                     | 14 |
| 2.2.2.3 Engineering-Based Expert System         | 15 |
| 2.3 Expert System in Power Engineering          | 16 |
| 2.4 Intelligent Web-Based System                | 20 |
| 2.4.1 Advantage of Intelligent Web-Based System | 20 |
| 2.4.2 ColdFusion                                | 21 |

### CHAPTER 3: METHODOLOGY

|                                        |    |
|----------------------------------------|----|
| 3.1 Methodology Overview               | 22 |
| 3.2 Architecture of an Expert System   | 23 |
| 3.3 Development of an Expert System    | 26 |
| 3.3.1 Problem Identification           | 28 |
| 3.3.2 Knowledge Acquisition            | 29 |
| 3.3.3 Knowledge Representation         | 33 |
| 3.3.4 Testing and Verification         | 36 |
| 3.3.5 Implementation and Documentation | 37 |

## CHAPTER 4: SYSTEM IMPLEMENTATION

|                                                      |    |
|------------------------------------------------------|----|
| 4.1 Introduction                                     | 39 |
| 4.2 Knowledge Representation Design                  | 40 |
| 4.2.1 Semantic Network Knowledge Model               | 40 |
| 4.2.1.1 Semantic Network for Specified Building      | 41 |
| 4.2.1.2 Semantic Network for Entire Building         | 46 |
| 4.2.1.2 Semantic Network for Other Premises          | 51 |
| 4.3 Process Modeling                                 | 53 |
| 4.3.1 Structure Diagram                              | 53 |
| 4.3.1.1 Module 1: Web Information Module             | 54 |
| 4.3.1.2 Module 2: Web Self Diagnosing Module         | 54 |
| 4.3.1.3 Module 3: Web Suggestion Module              | 55 |
| 4.3.1.4 Module 4: Administration Module              | 55 |
| 4.3.2 Context Diagram                                | 55 |
| 4.3.3 Data Flow Diagram (DFD)                        | 55 |
| 4.3.3.1 System Login (Level 1)                       | 58 |
| 4.3.3.2 Status Checking (Level 1)                    | 59 |
| 4.3.3.3 User Registration (Level 1)                  | 60 |
| 4.3.3.4 Diagnose Process and Result (Level 1)        | 61 |
| 4.3.3.5 Administration and Knowledge Base Management | 62 |
| (Level 1)                                            |    |

|                                   |    |
|-----------------------------------|----|
| 4.4 Web Based Design              | 63 |
| 4.4.1 Web Based Structure         | 63 |
| 4.4.2 Database Structure          | 64 |
| 4.4.2.1 Knowledge Base Table      | 64 |
| 4.4.2.2 Symptom Table             | 65 |
| 4.4.2.3 Condition Table           | 65 |
| 4.4.2.4 Response Table            | 66 |
| 4.4.2.5 User Information Table    | 67 |
| 4.4.2.6 Keep Information Table    | 67 |
| 4.4.2.7 Administration Table      | 68 |
| 4.4.2.8 Guest Book Table          | 69 |
| 4.5 Flow Chart                    | 69 |
| 4.5.1 System Diagnose Flow Chart  | 70 |
| 4.5.2 Web Based System Flow Chart | 71 |
| 4.6 Interface Design              | 72 |
| 4.6.1 Main Menu Description       | 72 |
| 4.6.1.1 System Information        | 72 |
| 4.6.1.2 Diagnose                  | 73 |
| 4.6.1.3 Administration            | 73 |
| 4.6.1.4 Searching                 | 73 |
| 4.6.1.5 Guest Book                | 74 |
| 4.6.1.6 System Developer          | 74 |

|                                                 |    |
|-------------------------------------------------|----|
| 4.6.2 Design of User Interface                  | 74 |
| 4.6.2.1 Main Menu Interface Design              | 75 |
| 4.6.2.2 System Information Interface Design     | 75 |
| 4.6.2.3 Register Diagnose User Interface Design | 76 |
| 4.6.2.4 Diagnose User Interface Design          | 76 |
| 4.6.2.5 Result Diagnose User Interface Design   | 77 |
| 4.6.2.6 Administration Interface Design         | 77 |
| 4.6.2.7 Searching User Interface Design         | 78 |
| 4.6.2.8 Guest Book User Interface Design        | 78 |
| 4.6.2.9 System Developer Interface Design       | 79 |
| <br>CHAPTER 5 : DISCUSSION AND CONCLUSION       |    |
| 5.1 Discussion                                  | 80 |
| 5.2 Conclusion                                  | 83 |
| 5.3 Further Recommendation                      | 85 |
| <br>REFERENCES                                  |    |
| APPENDICES                                      | 88 |
| APPENDIX A                                      | 89 |
| APPENDIX B                                      | 98 |

## LIST OF TABLES

| <b>Table No.</b> | <b>Name of Table</b>   | <b>Page</b> |
|------------------|------------------------|-------------|
| <b>No.</b>       |                        |             |
| 4.1              | Knowledge Base Table   | 64          |
| 4.2              | Symptom Table          | 65          |
| 4.3              | Condition Table        | 66          |
| 4.4              | Response Table         | 66          |
| 4.5              | User Information Table | 67          |
| 4.6              | Keep Information Table | 68          |
| 4.7              | Administration Table   | 68          |
| 4.8              | Guest Book Table       | 69          |

## LIST OF FIGURES

| <b>Figure No.</b> | <b>Name of Figure</b>                                                   | <b>Page No.</b> |
|-------------------|-------------------------------------------------------------------------|-----------------|
| 3.1               | Architecture of an Expert System                                        | 23              |
| 3.2               | Development Life Cycle of an Expert System                              | 27              |
| 4.1               | Main Knowledge Model for Electrical Fault Diagnosis                     | 41              |
| 4.2               | Knowledge Model for Specified Building                                  | 42              |
| 4.3               | Knowledge Model for Earth Fault                                         | 43              |
| 4.4               | Knowledge Model for Neutral to Ground Voltage Fault                     | 44              |
| 4.5               | Knowledge Model for Overcurrent Problem                                 | 45              |
| 4.6               | Knowledge Model for Fuse Blown Problem                                  | 46              |
| 4.7               | Knowledge Model for Entire Building                                     | 47              |
| 4.8               | Knowledge Model for Unbalance Three Phase System<br>Overcurrent Problem | 48              |
| 4.9               | Knowledge Model for Entire Building Earth Fault                         | 49              |
| 4.10              | Knowledge Model for Entire Building Neutral to Ground<br>Voltage Fault  | 50              |
| 4.11              | Knowledge Model for Entire Building Overcurrent<br>Problem              | 51              |
| 4.12              | Knowledge Model for Other Premises                                      | 52              |
| 4.13              | Electrical Fault Diagnosis System Structure Diagram                     | 53              |
| 4.14              | Context Diagram of the system                                           | 56              |
| 4.15              | Data Flow Diagram of the system-Level 0                                 | 57              |
| 4.16              | System Login Data Flow Diagram                                          | 58              |

|      |                                                                   |    |
|------|-------------------------------------------------------------------|----|
| 4.17 | Check Status Data Flow Diagram                                    | 59 |
| 4.18 | User Register Data Flow Diagram                                   | 60 |
| 4.19 | Diagnose Process and Result Data Flow Diagram                     | 61 |
| 4.20 | Administration and Knowledge Base Management<br>Data Flow Diagram | 62 |
| 4.21 | Web Based Structure                                               | 63 |
| 4.22 | System Diagnose Flow Chart                                        | 70 |
| 4.23 | Web Based System Flow chart                                       | 71 |
| 4.24 | Main Menu Interface Design                                        | 75 |
| 4.25 | System Information Interface Design                               | 75 |
| 4.26 | Register Diagnose User Interface Design                           | 76 |
| 4.27 | Diagnose User Interface Design                                    | 76 |
| 4.28 | Result Diagnose User Interface Design                             | 77 |
| 4.29 | Administration Interface Design                                   | 77 |
| 4.30 | Searching User Interface Design                                   | 78 |
| 4.31 | Guest Book User Interface Design                                  | 78 |
| 4.32 | System Developer Interface Design                                 | 79 |

# **CHAPTER 1**

## **INTRODUCTION**

### **1.1 Overview**

Modern power systems are required to generate and supply high quality electric energy to consumer. To achieve this requirement, computers have been applied to power system planning, monitoring, diagnosing, and controlling. Power system application program for analyzing system behaviors are stored in computer.

However the program developed for power system analysis and planning are based on mathematical models and implemented using languages that are suitable for numerical computation only. For sophisticated approaches to system analysis and diagnosis, development of methodologies and technique are needed to incorporate practical knowledge of planning engineers and numerical analysis program into the system.

The contents of  
the thesis is for  
internal user  
only

## REFERENCES

Abdul Rahman, T.K. And Jasmon, G.B.,(1995). "A New Technology for Voltage Stability Analysis in Power Systems and Improved Loadflow Algorithm for Distribution Network" ,Proceedings of the International Conference on Energy Management and Power Delivery, Singapore. Nov. 1995.

Andriessen, J. & Sandberg. J. (1999). "Where is Education Heading and How About AI?". *International Journal of Artificial Intelligence in Education 10*, 130-150.

Nelson,W.R.,(1982). "REACTOR, An Expert system for diagnosing and treatment of nuclear reactor Accidents, " AAAI, Conference Proceedings, pp. 296-301,1995.

Schulte, R.P.,(1987). "Artificial Intelligence solution to power system operating problem," IEEE Trans., PWRS-2, 4, pp. 920-926,1987.

Magdy,A.S. and Hani Harb, (1993). "Implementation of Expert System in Industry" International Journal of Science and Technology, Vol 6, num. 2, 1993.

Feigenbaum,E.A.,(1977). "The art of artificial intelligence: Themes and case studies of knowledge engineering," Proceedings of the 5<sup>th</sup> International Joint Conference on Artificial Intelligence,pp.1014-1029, 1977.

Hayes-Roth,B.F., Waterman,D.A., Lenat,D.,(1983). "Building Expert System" Reading MA : Addison Wesley,1983.

Findler,N.V.,(1979). "Associative network: Representation and use of knowledge by computer" New York, Academic Press, 1979.

Minsky,M.L.,(1975). "A frame-work for representing knowledge," The psychology of computer vision, pp.211-277, New York: McGraw Hill, 1975.

T.Sakaguchi, K.Matsumoto.,(1983). "Development of knowledge based system for PowerSystem Restoration," IEEE Trans., PAS-102, pp.320-326, 1983.

Tomsovic,K., Liu.C.C., Ackerman,P., Pope,S.,(1987). "An Expert system as a Dispatchers' Aid for the isolation of line section Fault," IEEE Trans PWRD-2,3 pp.736-743, 1987.

Talukdar,S.N.,(1985). "The operator assistant An Intelligent, Expandable, Program for power system trouble analysis," IEEE Conference Proceedings of on Power Industry Computer application, 1985.

Schulte,R.P., Sheble,G.B., Larsen,S.L., Wrubel,J.L, and Wollenberg,B.F,(1987). "Artificial Intelligence solution to power system operation problem," IEEE Trans., PWRS-2, 4, pp. 920-926,1987.

Wong,K.P., Tsang,C.P.,Chan,W.Y.,(1988). "Sherlock – A System for diagnosing Power Distribution Ring Network Faults," ACM Proceedings on the first International Conference on Industrial and Engineering Applications of Artificial Intelligence and expert system , Tullahoma, USA, pp.109-1113, 1988.

Tomsovic,K., Liu.C.C.,(1985). "An Expert System Assisting Decision-Making of Reactive Power/ Voltage Control," IEEE Conference Proceedings on Power Insdustry Computer Application, pp.242-248, 1985.