CLASSIFICATION OF CAPITAL EXPENDITURES AND REVENUE EXPENDITURES USING NEURAL NETWORK MODEL

ADNAN ALI ABOLGASIM

UNIVERSITI UTARA MALAYSIA 2008
CLASSIFICATION OF CAPITAL EXPENDITURES AND REVENUE EXPENDITURES USING NEURAL NETWORK MODEL

A thesis submitted to the Graduate School in partial Fulfillment of the requirement for the degree Master of Science (Information Technology) Universiti Utara Malaysia

By
Adnan Ali Abolgasim

© Adnan Ali Abolgasim, 2008. All rights reserved
KOLEJ SASTERA DAN SAINS
(College of Arts and Sciences)
Universiti Utara Malaysia

PERAKUAN KERJA KERTAS PROJEK
(Certificate of Project Paper)

Saya, yang bertandatangan, memperakukan bahawa
(I, the undersigned, certify that)

ADNAN ALI ABOLGASIM ABDALLA
(89738)

calon untuk Ijazah
(candidate for the degree of) MSc. (Information Technology)

telah mengemukakan kertas projek yang bertajuk
(has presented his/her project paper of the following title)

THE CLASSIFICATION OF CAPITAL EXPENDITURES AND REVENUE
EXPENDITURES USING NEURAL NETWORK MODEL

seperti yang tercatat di muka surat tajuk dan kulit kertas projek
(as it appears on the title page and front cover of project paper)

bahawa kertas projek tersebut boleh diterima dari segi bentuk serta kandungan
dan meliputi bidang ilmu dengan memuaskan.
(that the project paper acceptable in form and content, and that a satisfactory
knowledge of the field is covered by the project paper).

Nama Penyelia Utama
(Name of Main Supervisor) ASSOC. PROF. FADZILAH SIRAJ

Tandatangan
(Signature)

Nama Penyelia Kedua
(Name of 2nd Supervisor) MDM. NUR AZZAH ABU BAKAR

Tandatangan
(Signature)

Tarikh (Date)
12/11/08

Tarikh (Date)
12/11/2008
PERMISSION TO USE

In presenting this thesis in partial fulfillment of the requirements for a postgraduate degree from Universiti Utara Malaysia, I agree that the University Library may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purpose may be granted by my supervisor(s) or, in their absence by the Dean of the Graduate School. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use which may be made of any material from my thesis.

Requests for permission to copy or to make other use of materials in this thesis, in whole or in part, should be addressed to:

Dean of Graduate School
Universiti Utara Malaysia
06010 UUM Sintok
Kedah Darul Aman.
ABSTRACT

Financial statements are the basic means of transferring a complete picture about any company's performance which is the basement for any business decision making process. Hence, it is very important to ensure their healthy condition and to diagnose and cure any problem they might suffer from. One of the common problems is the over/under stating of the profit/loss and asset figures in the financial statements due to the misclassification between the capital and revenues expenditures. Moreover, it is practically difficult in some cases to draw a line between the two types. This study aims to integrate an Artificial Intelligence technique such as Neural Networks in order to develop a model that can be trained to recognize hidden patterns of the borderline between the two expenditures types. Thus it can successfully help in the classification between the capital and revenue expenditures. Twelve criterions were identified in order to classify between the two expenditures types and a Multi Layer Perceptron (MLP) was incorporated in the constructed neural network model using Neural Connection 2.0. The dataset was collected based on various cases of capital and revenue expenditures. The classification accuracy of the model was 97.51% for training and 94.20% for testing. Analysis has shown a significant correlation between identified criterions (input variables) with model target. Strong correlation between target and criterion LASMFY (0.532), which indicates that any expenditure lasts for more than a fiscal year will be more probable to be classified into a capital expenditure. Same conclusion goes to criterion RESORGN with a strong correlation of (-0.539), which indicates any expenditure that restored an existing asset to its original operating capacity will have more probability to be classified into a capital expenditure as well. Also, criterion RESALE proves its strong influence, since its correlation was (-0.874) this implies more probability of classification into revenue expenditure if any expenditure was spent for intent for resale. Medium correlation shown by criterion REGULR (-0.251) indicates a moderate probability of classification into revenue expenditure if expenditure was spent in a regular basis. Criteria with a weak correlation represent less probability of classification into either of the two expenditures types (capital or revenue expenditure), which implies that each of these criterions is heavily depending on contribution of the rest of criterions in order to be able to classify. These conclusions were found to be in line with definitions of capital and revenues expenditure drawn by accounting authors such as (Al-Daif, 1981) and (Fess & Warren, 1987).
ACKNOWLEDGEMENTS

I would like to acknowledge and appreciate the patience, valuable instructions and support from Associate Prof. Fadzilah Siraj, and would like to extend my thanks to my parents for their blessings and prays for me and to my friends for their endless encouragement and belief in me.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERMISSION TO USE</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>viii</td>
</tr>
</tbody>
</table>

CHAPTER ONE: INTRODUCTION

1.1 Introduction .. 1
1.2 Problem Statement ... 4
1.3 Research Objectives .. 4
1.4 Scope of the Research 5
1.5 Research Questions ... 5
1.6 Significance of the Study 5

CHAPTER TWO: LITERATURE REVIEW

2.1 Capital and Revenue Expenditures 6
2.1.1 Balance Sheet ... 7
2.1.2 Income Statement ... 8
2.1.3 Capital Expenditures 9
2.1.4 Revenue Expenditures 9
2.2 Statistics Contributions in Finance 10
2.3 AI Approaches in Financial Applications 11
2.4 Neural Networks Applications in Finance 14
CHAPTER THREE: METHODOLOGY

3.1 Introduction ... 17
 3.1.1 Variable Selection ... 18
 3.1.2 Data Collection ... 20
 3.1.3 Data Preprocessing .. 22
 3.1.4 Training, Testing and Validation Sets 23
 3.1.5 Neural Network Paradigm .. 23
 3.1.6 Evaluation Criteria ... 23
 3.1.7 Neural Network Training ... 24
 3.1.8 Evaluation and Analysis ... 24

3.2 Neural Networks ... 25
 3.2.1 Brief historical Overview 25
 3.2.2 Biological neuron networks 27
 3.2.3 Concept of Artificial Neural Networks 28
 3.2.3.1 Activation functions 30
 3.2.4 Neural Network Architecture 33
 3.2.4.1 Feed-Forward networks 33
 3.2.4.2 Recurrent networks 34
 3.2.5 Learning process .. 35
 3.2.5.1 Supervised learning 35
 3.2.5.2 Unsupervised learning 36
 3.2.5.3 Reinforcement learning 36
 3.2.6 Back-propagation algorithm 36

CHAPTER FOUR: RESULTS AND ANALYSIS

4.1 Dataset Analysis .. 41
 4.1.1 Descriptive statistics .. 41
4.1.2 Statistical relationship between target and input variables .. 43
4.2 Network Architecture, Training and Testing Result .. 44
 4.2.1 Number of hidden units ... 45
 4.2.2 Learning rate ... 48
 4.2.3 Momentum rate .. 50
 4.2.4 Activation function .. 52
 4.2.5 Number of Epoch .. 54
 4.2.6 NN Model ... 56
4.3 Further Evaluation of NN Model .. 58
4.4 Summary .. 61

CHAPTER FIVE: CONCLUSIONS AND SUGGESTIONS

5.1 Conclusions ... 62
5.2 Suggestions ... 65

REFERENCES .. 66

APPENDIXES ... 71
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Name of Table</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>The selected variables</td>
<td>18</td>
</tr>
<tr>
<td>3.2</td>
<td>Expenditure transactions sample</td>
<td>20</td>
</tr>
<tr>
<td>3.3</td>
<td>A sample of dataset in Yes/No – Cap/Rev codes</td>
<td>21</td>
</tr>
<tr>
<td>3.4</td>
<td>A sample of dataset in numerical codes</td>
<td>22</td>
</tr>
<tr>
<td>3.5</td>
<td>Normalized dataset sample</td>
<td>22</td>
</tr>
<tr>
<td>3.6</td>
<td>Dataset allocations</td>
<td>23</td>
</tr>
<tr>
<td>4.1</td>
<td>Frequencies for dataset attributes</td>
<td>42</td>
</tr>
<tr>
<td>4.2</td>
<td>Chi-square test</td>
<td>43</td>
</tr>
<tr>
<td>4.3</td>
<td>Spearman correlations between input variables and target</td>
<td>44</td>
</tr>
<tr>
<td>4.4</td>
<td>Parameters initial values before training process</td>
<td>45</td>
</tr>
<tr>
<td>4.5</td>
<td>Training and test results using different numbers of hidden units</td>
<td>45</td>
</tr>
<tr>
<td>4.6</td>
<td>Different weight seeds to confirm the best number of hidden units</td>
<td>47</td>
</tr>
<tr>
<td>4.7</td>
<td>Training and testing results using different learning rates</td>
<td>48</td>
</tr>
<tr>
<td>4.8</td>
<td>Learning rate Vs weight seed</td>
<td>49</td>
</tr>
<tr>
<td>4.9</td>
<td>Training and testing results using different momentum rates</td>
<td>51</td>
</tr>
<tr>
<td>4.10</td>
<td>Momentum rate Vs weight seed</td>
<td>52</td>
</tr>
<tr>
<td>4.11</td>
<td>Training and test results using different activation functions</td>
<td>53</td>
</tr>
<tr>
<td>4.12</td>
<td>Training and testing results using different epoch numbers</td>
<td>54</td>
</tr>
<tr>
<td>4.13</td>
<td>Number of epochs Vs weight seed</td>
<td>55</td>
</tr>
<tr>
<td>4.14</td>
<td>Model final parameters</td>
<td>56</td>
</tr>
<tr>
<td>4.15</td>
<td>Representation of the four transactions against identified criterions</td>
<td>58</td>
</tr>
<tr>
<td>4.16</td>
<td>The four transactions in normalized form</td>
<td>59</td>
</tr>
<tr>
<td>4.17</td>
<td>Final results for four transactions examples</td>
<td>60</td>
</tr>
<tr>
<td>5.1</td>
<td>Target and criterions correlations</td>
<td>64</td>
</tr>
<tr>
<td>5.2</td>
<td>Classification Table by Logistic Regression</td>
<td>64</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Figure Name</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Simple template of a Balance Sheet statement</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>An Income Statement simple template</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>Example of classification between capital and revenue expenditures</td>
<td>10</td>
</tr>
<tr>
<td>3.1</td>
<td>The study methodology</td>
<td>17</td>
</tr>
<tr>
<td>3.2</td>
<td>Hebb's diagram of neuron cells in visual context</td>
<td>26</td>
</tr>
<tr>
<td>3.3</td>
<td>Structure of a biological neuron</td>
<td>27</td>
</tr>
<tr>
<td>3.4</td>
<td>Components of the biological and artificial neurons</td>
<td>28</td>
</tr>
<tr>
<td>3.5</td>
<td>An artificial neural network</td>
<td>29</td>
</tr>
<tr>
<td>3.6</td>
<td>A nonlinear model of a neuron</td>
<td>30</td>
</tr>
<tr>
<td>3.7</td>
<td>Threshold function</td>
<td>31</td>
</tr>
<tr>
<td>3.8</td>
<td>Piecewise-linear function</td>
<td>31</td>
</tr>
<tr>
<td>3.9</td>
<td>Sigmoid function</td>
<td>32</td>
</tr>
<tr>
<td>3.10</td>
<td>Hyperbolic tangent function</td>
<td>32</td>
</tr>
<tr>
<td>3.11</td>
<td>An example of feed-forward networks</td>
<td>34</td>
</tr>
<tr>
<td>3.12</td>
<td>Recurrent network without hidden units</td>
<td>34</td>
</tr>
<tr>
<td>3.13</td>
<td>Recurrent network with hidden units</td>
<td>35</td>
</tr>
<tr>
<td>3.14</td>
<td>Reinforcement learning system</td>
<td>36</td>
</tr>
<tr>
<td>3.15</td>
<td>Multi-Layer Perceptron</td>
<td>38</td>
</tr>
<tr>
<td>4.1</td>
<td>Target distribution</td>
<td>42</td>
</tr>
<tr>
<td>4.2</td>
<td>Attributes distribution</td>
<td>43</td>
</tr>
<tr>
<td>4.3</td>
<td>Accuracy percentages of different numbers of hidden units</td>
<td>46</td>
</tr>
<tr>
<td>4.4</td>
<td>Accuracy Vs seed number for numbers of hidden units 4, 6 and 20</td>
<td>47</td>
</tr>
<tr>
<td>4.5</td>
<td>Accuracy of different learning rates for training and testing</td>
<td>49</td>
</tr>
<tr>
<td>4.6</td>
<td>Accuracy Vs seed number for values of learning rates 0.1 and 0.2</td>
<td>50</td>
</tr>
<tr>
<td>4.7</td>
<td>Accuracy of different momentum rates for training and testing</td>
<td>51</td>
</tr>
<tr>
<td>4.8</td>
<td>Accuracy Vs seed No. for activ. Func. Linear, Sigmoid and Tanh</td>
<td>53</td>
</tr>
<tr>
<td>4.9</td>
<td>Accuracy percentages of different numbers of Epoch</td>
<td>55</td>
</tr>
<tr>
<td>4.10</td>
<td>Accuracy Vs seed number for 100, 200 and 300 epochs</td>
<td>56</td>
</tr>
</tbody>
</table>
4.11 The obtained model’s architecture .. 57
4.12 Model output using Neural Connection 2.0 59
CHAPTER ONE

INTRODUCTION

1.1 Introduction

Traditionally financial domain used to employ the latest technologies in order to facilitate its various daily tasks. Recently, financial expertise started to incorporate Artificial Intelligence techniques due to the increasing need to fulfill analysis functions with a considerable complexity in less time, cost and more accuracy. In the last several years, Neural Networks became very popular as an artificial intelligence powerful technique in classification, patterns recognition and prediction tasks (Blass & Crilly, 1992). Artificial neural networks are made of set of processing units called the neurons as they mimic the human brain. The artificial neural network can learn and store knowledge by changing the weights associated with the neurons connections which can be used to solve a given problem via training and experience (Thulasiram et al., 2003).

The classification between the capital expenditures and revenue expenditures is one of the common problems in the accounting literature since it has a significant impact on financial statements. Thompson (2002) pointed out that the misclassification between capital and revenue expenditures has a great impact on the integrity of the financial statements. The consequences if revenue expenditure is treated as a capital expenditure will be:
The contents of the thesis is for internal user only
REFERENCES:

Uhrig, R. E. (1995).*Introduction to Artificial Neural Networks*. 1995, IEEE.

Zamini, S. M. (2007). Developing Neural Network Models to Predict Ice Accretion Type and Rate on Overhead Transmission Lines. University of Quebec.