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Abstrak 

Faktor manusia memainkan peranan penting dalam kejuruteraan perisian (SE) kerana 

perisian dibangunkan dan digunakan oleh manusia. Salah satu sebab utama kegagalan 

projek perisian adalah tidak memberikan tugasan kepada individu yang sesuai untuk tugas 

yang tepat semasa perancangan projek. Isu ini menjadi lebih kritikal apabila pembangun 

perisian bekerja di bawah tekanan masa (TP), yang sering menyebabkan prestasi kurang 

baik dan kelewatan projek. Setiap jenis personaliti mempunyai cara tersendiri untuk 

mengatasi TP, dan perbezaan gender mempengaruhi cara pembangun perisian menangani 

TP, yang memberikan hasil yang berbeza. Di samping itu, kompleksiti tugasan dan 

pengetahuan pembangun saling berhubung dengan jenis personaliti dan gender, yang 

berpotensi  mempengaruhi prestasi projek di bawah TP. Tujuan utama kajian ini adalah 

untuk mencadangkan model i-SYNERGY dengan mengkaji hubungan antara TP, jenis 

personaliti, gender, pengetahuan, dan kompleksiti tugasan. Untuk membangunkan model 

ini, bukti empirikal dikumpulkan daripada eksperimen terkawal yang dijalankan bersama 

pelajar SE, dan digeneralisasikan daripada data industri melalui dua kajian kes. Indikator 

jenis personaliti Myers-Briggs (MBTI) dan indeks beban tugas NASA (TLX) digunakan 

untuk mengukur jenis personaliti dan TP. Analisis data dibahagikan kepada dua peringkat. 

Peringkat pertama melibatkan pemeriksaan angka data untuk membangunkan model, 

manakala peringkat kedua melibatkan eksperimen ramalan untuk membangunkan model 

di bawah proses penemuan pengetahuan dalam pangkalan data (KDD). Lima teknik 

perlombongan data—rangkaian neural tiruan (ANN), mesin vektor sokongan (SVM), 

pokok keputusan, K-jiran terdekat (KNN), dan regresi logistik digunakan untuk mengenal 

pasti teknik yang paling sesuai untuk pembangunan model. Regresi logistik memberikan 

hasil paling signifikan dalam pembangunan model kajian, mengesahkan bahawa jenis 

personaliti dan perbezaan gender mempengaruhi keupayaan pembangun perisian untuk 

menangani TP. Kajian ini menawarkan bukti empirikal mengenai kesan tekanan masa 

terhadap aspek humanistik. Tambahan pula, model yang dibangunkan berupaya untuk 

meningkatkan kadar kejayaan projek perisian dalam bidang SE. 

 

Kata Kunci: Tekanan masa, jenis personaliti, kerumitan tugas, gender, pengetahuan 
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Abstract 

Human factors play a crucial role in software engineering (SE) as software is developed 

and utilized by people. One of the key reasons for software project failure is not assigning 

the right people to the right tasks during project planning. This issue becomes critical when 

developers work under time pressure (TP), often resulting in poor performance and delays. 

Each personality type approaches TP differently, and gender-based personality differences 

may further influence how developers handle TP, leading to varied outcomes. In addition, 

task complexity and developers’ knowledge interrelate with personality types and gender, 

potentially affecting project performance under TP. The main aim of this study is to 

propose the i-SYNERGY model by investigating the relationship between TP, personality 

types, gender, knowledge, and task complexity. To develop this model, empirical evidence 

was gathered from controlled experiments conducted with SE students, and generalised 

from industrial data through two case studies. The Myers-Briggs Type Indicator (MBTI) 

and NASA task load index (TLX) were used to measure personality types and TP, 

respectively. The data analysis was divided into two stages. The first stage involved 

examining factual figures of data to develop the model, while the second stage involved 

predictive experiments for developing the model under the knowledge discovery in 

databases (KDD) process. Five data mining techniques—artificial neural network (ANN), 

support vector machine (SVM), decision tree, K-nearest neighbor (KNN) and logistic 

regression were employed to identify the most suitable technique for model development. 

Logistic regression yielded the most significant results for developing the study model, 

confirming that personality types and gender differences influence software developers' 

ability to handle TP. This study offers empirical evidence regarding the impact of TP on 

humanistic aspects. Furthermore, the model developed can be leveraged to enhance the 

success rate of software projects in the field of SE. 

Keywords: Time pressure, Personality types, Gender, Task complexity, Knowledge 
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CHAPTER ONE 

INTRODUCTION 

1.1 Overview 

This chapter introduces the study's background and is followed by a discussion of the 

addressed problems. The research questions and constructs of the objectives of the study 

are discussed in the next sections. Furthermore, this chapter also addresses the scope and 

significance of the study. Moreover, this chapter includes the terms' operational definitions 

and the study's conceptual framework. Finally, this chapter gives an overview of the 

subsequent chapters of this study.  

1.2 Background of the Study  

The demand for software in human daily life is growing exponentially. Driven by the 

increasing reliance on digital technologies and the integration of software solutions into 

various aspects of daily routines. From communication and entertainment to work and 

education, software has become an integral part of modern life, shaping the way to interact, 

learn, and conduct daily activities. This surge in demand reflects the pivotal role that 

software plays in addressing the evolving needs and expectations of individuals in today's 

technologically driven world. Software engineering (SE) activities are significantly 

influenced by human aspects  (Hidellaarachchi et al., 2023; Mello & Coelho, 2021; Zykov 

& Attakorah, 2020; Fuggetta & Di Nitto, 2014; Santos, Magalhaes, & Correia-Neto, 2017). 

Software is developed and used by a variety of people; therefore, understanding an 

individual’s behavior is necessary for software development (Hidellaarachchi et al., 2023; 
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Appendix A 

Consent to Take Part in Research 

This appendix includes the consent form, which was used to ensure that all participants 

were fully informed about the study's objectives, their roles, and their rights. It highlights 

that participation was voluntary, and participants had the option to withdraw at any point 

without any consequences. 

Thank you for volunteering as a participants in this research on I-SYNERGY Model for 

Software Development Projects. Project contact details for further information. 

1. Ruqaya Gilal (ruqaya_gilal@ahsgs.uum.edu.my) 

2. Assosiate Prof. Dr. Mazni Omar (mazni@uum.edu.my) 

3. Dr.Mawarny Md. Rejab (mawarny@uum.edu.my) 

This research is conducted as following conditions: 

 Participation in this research will not impact in any way on their assessment. 

 Participants can withdraw at any time or refuse to give answer about research, 

there will be no disadvantage if they do. 

 Participants will not benefit directly from participating in this research. 

 All information that student will provide for this study will be treated confidentially. 

 In any report on the results of this research participants identity will remain 

anonymous. This will be done by changing their names. 

I (Full name) _________________________________________________________ 

Contact details ________________________________________________________ 

Declare that I am aware of the information provided above and have willingly served as a 

participants in the research. I am aware that the findings of this study might be published 

in academic sources, but that my name will not be disclosed. 

Signature of the participant: ____________________ 

Date: _________________ 

I believe the participant is giving informed consent to participate in this study 

Signature of the researcher: ____________________       Date: __________________ 

 

 

 

mailto:ruqaya_gilal@ahsgs.uum.edu.my
mailto:mazni@uum.edu.my
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Appendix B 

Personal Particulars 

This appendix contains the form used to collect personal information from participants, 

including their age, gender, and academic background etc. 

This study is about proposing i-SYNERGY Model for software development to reduce the 

failure rate in SE. The model is about which types of people personality can manage the 

TP in a better way. In this study, the collection of data will help to propose a model, all the 

data will be confidential. 

Name: _______________________________________________________________ 

Matric No: __________________________ Semester: ___________________________  

Age:________________________ Gender: ___________________________________  

Race:_______________________ First language: ______________________________  

Marital Status: (Bachelor/Married/Widow) _____________________________________  

Education Background:  Matriculation/ Intermediate/ Graduation /Diploma/ ________ 

Preferred e-mail address: _______________________________________ 

Signature:______________________________________________________________  

Date: ___________________  
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Appendix C 

The sample of Expert’s invitation E-mail and response  

 
This appendix includes the email invitation sent to experts, requesting their participation 

in the review process, along with their responses. The purpose of this communication was 

to involve experts in validating the instruments and providing insights to ensure the 

model's relevance and accuracy. 
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Appendix D 

The Instrument for Expert Review 

This appendix contains the evaluation of proposed model by experts to review. The feedback 

collected was crucial in refining the model and ensuring the reliability of the results. 

An Evaluation of i-SYNERGY: An Integrated Predictive Model of Time Pressure, 

Personality Types, Gender, Knowledge and Task Complexity to Determine Software 

Developer’s Performance 

 

Dear Prof/ Dr/ Sir/ Madam, 

 

I am Ruqaya Gilal, matric no: 903684, currently enrolled in the PhD program in Computer Science 

at Universiti Utara Malaysia (UUM), Malaysia. I am thrilled to extend a cordial invitation to you 

for participation in an expert review. Your selection is based on your fulfillment of one or more of 

the following criteria: 

 

1. Possession of a PhD or any advanced degree in Software Engineering (SE), Software Project 

Management (SPM), Computer Science (CS), or related fields. 

2. Accumulation of at least five years of study or research experience in the aforementioned areas 

or any relevant field. 

3. Accumulation of at least 3 to 5 years of practical experience in software project development. 

 

My PhD research proposes i-SYNERGY: An Integrated Predictive Model of Time Pressure, 

Personality Types, Gender, Knowledge and Task complexity to Determine Software 

Developer’s Performance.  The primary objective of the model is to predict and understand the 

impact of various variables on the performance of software developers under time pressure 

conditions. The model aims to contribute valuable insights into the nuanced interplay between time 

pressure, personality types, gender, knowledge, task complexity, and software developer 

performance. The operational definitions used in this study are defined below: 

 

 Time pressure (TP) refers to the perceived urgency and constraints imposed by deadlines or 

limited time frames within the software development context. In this study, time pressure is 

quantified using a Likert scale where participants rate their perceived time pressure levels. 

 Personality types are distinctive patterns of behavior, cognition, and emotion that characterize 

individuals. Personality types are assessed using the Myers-Briggs Type Indicator (MBTI). 

Participants' responses categorize them into specific personality types such as Extroverted (E) 

or Introverted (I), Sensing (S) or Intuitive (N), etc. 

 Gender refers to the social and cultural roles, behaviors, and expectations associated with 

being male or female.  Gender is recorded as male or female based on participants' self-

identification during the data collection process. 

 Knowledge represents the information, skills, and expertise possessed by software developers 

relevant to their tasks. Knowledge levels are measured using their previous academic records 

and for professionals’ years of experience in specific areas related to software development. 
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 Task complexity refers to the level of intricacy and difficulty involved in software 

development tasks. Task complexity is categorized into three levels—easy, medium, and 

hard—based on expert suggestions. 

 

The model is constructed using advanced data mining techniques, considering its suitability for 

predicting binary outcomes. Data mining techniques allows us to understand the probability of 

effective software developer performance under varying conditions. This methodology allows us 

to delve into the intricacies of the probability associated with effective outcomes, shedding light on 

the multifaceted relationships between the variables at play. The outcomes derived from this 

analysis provide estimations, offering valuable insights into the nuanced interconnections and 

dependencies among the identified variables within the software development landscape. 

 

This model's conceptual framework is organised around a series of well-considered hypotheses 

meant to clarify the intricate relationships present in the software development environment. With 

the purpose of examining certain connections and interactions between important variables, each 

hypothesis aims to advance our understanding of the variables that affect software engineers' 

performance. We set out to explore the hypotheses in order to find subtle insights that shed light 

on the intricate interactions between time pressure, personality types, gender, knowledge, task 

complexity, that affect software development endeavours as a whole. The study's alternative 

hypotheses are as follows: 

 

H1: There is a significant association between time pressure (TP) and the performance of 

software developers. 

 

H2: There is a significant moderation by different personality types on the effect of TP on 

software developer’s performance. 

 

H3: There is a significant moderation by different gender (male and female) on the effect of 

TP on the software developer’s performance. 

 

H4: There is a significant mediation by task complexity on the relationship between TP and 

software developer’s performance. 

 

H5: There is significant mediation by knowledge on the relationship between TP and software 

developer’s performance. 

 

These variables play a pivotal role in shaping the dynamics of the model, influencing the 

relationships between key variables. By elucidating on the mediating variables, specifically 

knowledge and task complexities, we aim to delve deeper into the underlying mechanisms through 

which these variables contribute to the performance of software developers under time pressure. 

Additionally, the explanation will encompass the moderating variables, such as personality types 

and gender, highlighting their role in influencing the strength and nature of the relationships within 

the model. This enhancement will provide a comprehensive understanding of the intricate interplay 

between these variables, fortifying the model's predictive capabilities. We anticipate that the model 



381 
 

will provide a robust foundation for predicting how software developers perform under time 

pressure based on their personality types, gender, knowledge levels, and task complexities. The 

outcomes aim to inform software managers, aiding in better task allocation, training strategies, and 

overall project management. 

 

This assessment form plays a pivotal role in not only validating the model's effectiveness and 

assessing its practical applicability in real-world settings but also in evaluating its substantial 

theoretical contribution. Your valuable feedback and suggestions, as guided by the provided 

instructions, are crucial for refining and validating the model. It is essential to underscore that all 

information shared will be treated with the utmost confidentiality, exclusively used for research 

purposes. The model is designed to enhance software developer performance under time pressure, 

making noteworthy strides in theoretical understanding. By advancing our comprehension of the 

intricate relationships between time pressure, personality types, knowledge and task complexities 

in software development, the model delves into theoretical underpinnings. This dual commitment, 

addressing both practical and theoretical dimensions, positions the model as a valuable asset for 

practitioners and researchers alike, fostering advancements in both applied and academic domains. 

Your thoughtful input is highly valued and will contribute significantly to the credibility and 

robustness of this research endeavor, with any insights provided being presented anonymously in 

academic publications. 

 

RUQAYA GILAL        

PhD candidate 

School of Computing  

Universiti Utara Malaysia 

 

Supervisors: 

Associate Prof. Dr. Mazni Omar  

Dr. Mawarny Md. Rejab 
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PARTICIPANTS’ DEMOGRAPHIC INFORMATION 

 
Name:    ___________________________________________ 
 
E-mail:   ____________________________________________ 

 
Gender:   MALE   FEMALE 
 
Age:   _________ 

 
Affiliation:  ____________________________________________ 

 
Position/Title:  ____________________________________________ 
 
Experience in the field: ___________________________________________ 

 
Expertise level:  Novice  Intermediate  Expert  
 
Have you been involved in the assessment or evaluation of software developers' 
performance in the past?    
 

Yes NO 
 
How often do you encounter challenges related to time pressure in your role 
within the context of software development?    

 
Frequently Rarely  
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   i-SYNERGY: CONCEPTUAL MODEL 
 
 
 
  
 

 
 
 

Figure 1. Conceptual Model 
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Model with hypotheses  

 
 

 
 

FIGURE 2. Model with Hypotheses 
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MODEL EVALUATION 

 

Dear Respondent, 

 
Kindly review the i-SYNERGY model Figure 1 & 2 attentively. Following your expertise, please 

provide feedback for all questions in the designated spaces. This section aims to assess the 

effectiveness of i-SYNERGY model across five dimensions: 
 

 Understandability:  Ensuring that all terms used in i-SYNERGY model are clear and 

unambiguous. 

 Relevance: Examining the consistency between variables and study objectives, as well as 

assessing the relationship between variables within i-SYNERGY model. 

 Feasibility: Evaluating the practical suitability of using the criteria in i-SYNERGY model. 

 Organization: Verifying that all variables of i-SYNERGY model are well-organised. 

 Comprehensiveness: Confirming the inclusion of all necessary variables within i-SYNERGY 
model. 

 

1. Understandability 

 

Please tick () your choice 

No  Terminology It is easy to 

understand  

Needs some 

explanation 

Needs very 

detailed 

explanation 

1.  How clear is the term "time pressure" 

in the context of the i-SYNERGY 

model? 

   

2.  Does the term "personality types" 
require additional explanation for 

better understanding? 

   

3.  How easily understood is the variable 
"gender" in the context of the i-

SYNERGY model? 

   

4.  How straightforward is the term 

"knowledge" in your interpretation 
within the i-SYNERGY model? 

   

5.  How well do you understand the 

concept of "task complexity" in the i-

SYNERGY model? 

   

6.  How clear is the term "software 

developer’s performance" within the i-

SYNERGY model? 

   

 
Comment / Suggestion: --------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------- 
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2. Relevance 

Please tick () your choice 

No Components Not 

relevant  

Relevant  Highly 

Relevant   

1.  To what extent is "time pressure" significantly 

associated with software developer performance in 

the i-SYNERGY model, as proposed in H1? 

   

2.  How well does "personality types" align with the i-
SYNERGY model's focus on software developer 

performance, considering H2 that suggests a 

moderation effect of different personality types on 
the relationship between time pressure and 

performance? 

   

3.  In the context of H3, which posits that gender 

significantly impacts the performance of software 
developers under time pressure conditions, how 

essential is the variable "gender" in studying its 

impact within i-SYNERGY? 

   

4.  Considering H4, which suggests that the effect of 

time pressure on software developer performance 

is significantly influenced by task complexity, how 

crucial is "task complexity" in providing insights 
into software developer performance within i-

SYNERGY? 

   

5.  How relevant is "knowledge" to the i-SYNERGY 
model's objective of assessing software developer 

performance, particularly with regard to H5, which 

proposes that knowledge significantly mediates the 

relationship between time pressure and software 
developer performance? 

   

 

Comment / Suggestion: --------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------
------------------------- 

 

 

 
 

3. Feasibility 

 1 Strongly Disagree, 2 Disagree, 3 Agree, 4 Strongly Agree 

 

No Model Practicability SD D A SA 
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1.  The i-SYNERGY model is suited to determine software 
developer performance. 

1  2 3 4 

2.  Time pressure in i-SYNERGY model in real-world scenarios 

impact the software developer’s performance. 

1  2 3 4 

3.  Personality and gender moderating the impact of TP on 
software developer’s performance real-world scenarios. 

1  2 3 4 

4.  The i-SYNERGY model might encounter limitations or 

difficulties when applied to different software development 

projects? 

1  2 3 4 

5.  The i-SYNERGY model suitable for assessing software 

developer performance in projects with varying levels of 

complexity and time pressure. 

1  2 3 4 

6.  The task complexity and knowledge mediating the impact of 
TP on software developer’s performance real-world 

scenarios. 

1 2 3 4 

7.  There are no adjustments or modifications to enhance the 

feasibility of implementing the i-SYNERGY model in a 
software development context. 

1  2 3 4 

8.  The i-SYNERGY model has ability to provide meaningful 

insights into software developer performance in real-world 
situations? 

1  2 3 4 

 

4. Organisation  

The connections and flows of all the components in i-SYNERGY are well organised.  

                                                                                                                            Yes [ ] No [ ]   
 

If No, please give a comment. ------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------------------- ---
------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------ ------------------------------------------

------------------------------------------------------------------------------------------------------------------
--------------------------------- ---------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------

---------------------------------- 

 

 

5. Comprehensiveness 

Overall, i-SYNERGY model is a comprehensive model.                                  Yes [ ] No [ ]  

  
If No, please give a comment. ------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------------------- ---

------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------ ------------------------------------------

------------------------------------------------------------------------------------------------------------------

--------------------------------- ---------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------
---------------------------------- 
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Other comments  

Please write further comments (if any) : ------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------

--------- ---------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------ ------------------------------
------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------- --------------------

------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------

---------------------------------------------- 

 

THANK YOU 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



389 
 

Appendix E 

The Application Letter for Conducting a Case Study at APTECH 

 

This appendix provides the formal application letter submitted to APTECH, requesting 

permission to conduct a case study at their software development institute. The letter 

outlines the purpose of the study and the data collection methods to be employed. 
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Appendix F 

Acceptance Letter from APTECH 

This appendix contains the official acceptance letter from APTECH, granting permission 

to conduct the case study.  
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Appendix G 

The Application Letter for Conducting a Case Study at HIST 

This appendix provides the formal application letter submitted to HIST, requesting 

permission to conduct a case study at their software development institute. 
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Appendix H 

Acceptance letter from HIST 

This appendix includes the acceptance letter from HIST, allowing the case study to be 

conducted at their institute. 
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Appendix I  

Personality Test Questionnaire 

This appendix contains the Myers-Briggs Type Indicator (MBTI) questionnaire, which 

was used to assess the personality types of participants.  

PERSONALITY TEST QUESTIONNAIRE  

This questionnaire takes about 30 minutes to complete. Please tick () one box for each 

question.  This questionnaire is NOT to assess people, their work, or knowledge. Please 

answer ALL the questions. The data collected from this questionnaire is strictly 

CONFIDENTIAL and will be used for research purposes only. 

 Thank you for your participation and valuable time in completing this questionnaire.   

……………………………………………………………………………………………… 

Name: _________________________________________________________________ 

Matric Number: __________________________________________________________  

E-Mail Address: _________________________________________________________ 

All the questions answer like: YES or NO 

1. You are almost never late for your appointments  

  YES  NO 

2. You like to be engaged in an active and fast-paced job  

 YES  NO 

3. You enjoy having a wide circle of acquaintances 

  YES  NO 

4. You feel involved when watching TV soaps  

 YES  NO 

5. You are usually the first to react to a sudden event: the telephone ringing or unexpected 

question  
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 YES  NO 

6. You feel that the world is founded on compassion  

  YES  NO 

7. You think that everything in the world is relative  

 YES  NO 

8. Strict observance of the established rules is likely to prevent attaining a good outcome  

  YES  NO 

9. It is difficult to get you excited 

 YES  NO 

 10. When making a decision, you rely more on your feelings than on analysis of the 

situation 

  YES  NO 

11. You often think about humankind and its destiny  

  YES  NO 

12. You believe the best decision is one which can be easily changed  

 YES  NO 

13. You often ponder the root cause of phenomena and things  

 YES  NO 

14. You prefer to act immediately rather than speculate about various options 15. You trust 

reason rather than feelings  

  YES  NO 

16. You are inclined to rely more on improvisation than on prior planning  

  YES  NO 

17. You spend your leisure time actively socializing with a group of people, attending 

parties, shopping, etc.  
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  YES  NO 

18. You usually plan your actions in advance  

  YES  NO 

19. Your actions are frequently influenced by your emotions  

  YES  NO 

20. You are a person somewhat reserved and distant in communication 

  YES  NO 

21. You know how to put every minute of your time to good purpose  

  YES  NO 

22. You often contemplate the complexity of life  

  YES  NO 

23. After prolonged socializing you feel you need to get away and be alone  

  YES  NO 

24. You often do jobs in a hurry 

  YES  NO 

25. You easily see the general principle behind specific occurrences  

  YES  NO 

26. You frequently and easily express your feelings and emotions  

  YES  NO 

27. You find it difficult to speak loudly  

  YES  NO 

28. You get bored if you have to read theoretical books  

  YES  NO 
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29. You tend to sympathize with other people  

  YES  NO 

30. You value justice higher than mercy  

  YES  NO 

31. You rapidly get involved in the social life of a new workplace  

  YES  NO 

32. The more people you speak to, the better you feel  

 YES  NO 

33. You tend to rely on your experience rather than on theoretical alternatives  

  YES  NO 

34. As a rule, you proceed only when you have a clear and detailed plan  

 YES  NO 

35. You easily empathize with the concerns of other people  

  YES  NO 

36. Often you prefer to read a book than go to a party  

  YES  NO 

37. When with a group of people, you enjoy being directly involved and being at the center 

of attention  

  YES  NO 

38. You are more inclined to experiment than to follow familiar approaches  

  YES  NO 

39. You are strongly touched by the stories about people's troubles  

  YES  NO 

40. Deadlines seem to you to be of relative rather than absolute importance 



397 
 

  YES  NO 

41. You prefer to isolate yourself from outside noises  

  YES  NO 

42. For you, it is easier to gain knowledge through hands-on experience than from books 

or manuals  

  YES  NO 

43. You think that almost everything can be analysed 

  YES  NO  

44. For you, no surprises is better than surprises - bad or good ones  

  YES  NO 

45. You take pleasure in putting things in order  

  YES  NO 

46. You feel at ease in a crowd  

  YES  NO 

47. You have good control over your desires and temptations  

  YES  NO 

48. You easily understand new theoretical principles  

  YES  NO 

49. You usually place yourself nearer to the side than in the center of the room  

  YES  NO 

50. When solving a problem you would rather follow a familiar approach than seek a new 

one  

  YES  NO 

51. A thirst for adventure is something close to your heart  
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  YES  NO 

52. When considering a situation you pay more attention to the current situation and less 

to a possible sequence of events  

  YES  NO 

53. When solving a problem you consider the rational approach to be the best  

  YES  NO 

54. You find it difficult to talk about your feelings  

  YES  NO 

55. Your decisions are based more on the feeling of a moment than on the thorough 

planning  

  YES  NO 

56. You prefer to spend your leisure time alone or relaxing in a tranquil atmosphere  

  YES  NO 

57. You feel more comfortable sticking to conventional ways  

  YES  NO 

58. You are easily affected by strong emotions  

  YES  NO 

59. You are always looking for opportunities  

  YES  NO 

60. As a rule, current preoccupations worry you more than your future plans  

  YES  NO 

61. It is easy for you to communicate in social situations  

  YES  NO 

62. You rarely deviate from your habits  
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  YES  NO 

63. You willingly involve yourself in matters which engage your sympathies  

  YES  NO 

64. You easily perceive various ways in which events could develop 

  YES  NO 
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Appendix J 

Academic Achievements/ Records 

 

This appendix presents the academic record form, which was used to assess the 

participants' knowledge in specific subjects relevant to software development. The form 

captured their grades in key subjects, such as structured programming, object oriented 

programming, and C++, which were used as a measure of their knowledge and expertise. 

Please fill in your previous grade for the following courses:  

 

Structured Programming  

 

Object Oriented 

Programming  

 

Programming languages 

(C++) 

   

 

*Please mention the obtained results in GRADE or GPA  

 

Name: _________________________________________________________________ 

Matric No: __________________________  

 

E-mail address: __________________________________________________________  

Signature: _______________________________________________________________  

Date: ___________________  
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Appendix K 

NASA Task Load Index (NASA-TLX) 

The NASA Task Load Index (TLX) included in this appendix was used to measure 

participants' perceived workload during tasks. This tool helped to quantify cognitive load 

and stress levels, allows to understand how time pressure (TP) influences performance 

under different conditions. 
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Appendix L   

Software Developers’ Knowledge and Experience Assessment Questionnaire/Form 

This appendix contains the questionnaire used to assess the knowledge and experience of the 
participating software developers. It captures their years of experience, technical skills, and 

familiarity with specific programming languages, contributing to the analysis of their performance. 

Dear Participant's, Thank you for participating in our study. 

Purpose Statement: The purpose of the questionnaire is to assess and gather information about 

participants' experience and background in the field of software development within software 

development houses. This information is valuable for understanding their professional backgrounds 

and how it may relate to various aspects of our study.   

Confidentiality Assurance: Rest assured that all responses you provide will be kept confidential 

and used solely for research purposes. 

Instructions:  Please read each question carefully and answer honestly to the best of your 

knowledge. Your feedback will help us better understand the dynamics between time pressure, 

knowledge, and software developer performance. 

 

1. Name (Optional):  _______________________ 

2. Age: ____________________ 

3. Gender: _______________ 

4. Educational Background: _________________________ 

5. Current Job Title: _________________________ 

6. Job Role: _______________ 

7. Current project: ________________ 

8 Years of Professional Experience: ____________________ 

9. Industry/Field: ______________ 

10. How many years have you worked in your current field/industry? 

___________________________________________________________________________ 

11. How would you rate your overall work experience on a scale of 1 to 10 (1 being least 

experienced, 10 being highly experienced)? 

___________________________________________________________________________ 

12. What software development methodologies have you worked with? 

________________________________________________________________________ 

13. Which programming languages are you proficient in? 

________________________________________________________________________ 
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Appendix M 

Questions for Experimental Tasks for Dataset A&B 

This appendix presents the set of experimental tasks which were in C++ programming language 

with the estimated time and allocated time given to participants, which were designed to evaluate 

their performance under time pressure and no time pressure. 

Questions  Task 

complexity 

TP/NTP Estimated 

time  

Allocated 

time  

Write a C program that asks the user to 
input their name and age, and then 

displays the information in the following 

format: 
Your name is [name] and you are [age] 

years old. 

 

Easy  NTP 30 minutes  1 hour  

Write a C program that generates 5 
random numbers between 1 and 10, 

displays them to the user, and then 

prompts the user to enter the sum of those 
numbers within a time limit of 5 seconds. 

 

Easy  TP 30 minutes 15 minutes 

Write a C program that takes an integer 

input from the user, and then calculates 
and prints the sum of all the even numbers 

between 1 and the input number 

(inclusive). 
 

Medium NTP 45 minutes  75 minutes  

Write a C program that generates a 

random 4-digit number and prompts the 

user to guess the number within a time 
limit of 10 seconds. The program should 

provide feedback to the user after each 

guess indicating if the guess is too high or 
too low. 

 

Medium  TP 45 minutes 30 minutes  

Write a C program that simulates a simple 

inventory system. The program should 
allow the user to add new items to the 

inventory, remove items from the 

inventory, and display the current 
inventory. Each item in the inventory 

should have a name, a quantity, and a 

price. 

 

Hard  NTP 1hour 30 

minutes  

2 hours  

Write a C program about what is the sum 

of the diagonal elements in the 5*5 grid 

of random numbers? 

Hard  TP 1hour 30 

minutes 

1 hour 
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Tasks for group B dataset 

Questions  Task 

complexity 

TP/NTP Estimated 

time  

Allocated 

time  

Write a C program that takes in two 

integers from the user and outputs their 
sum.   

Easy  NTP 10 minutes  20 minutes   

Write a program that generates a random 

integers between 1 and 10. And asks the 

user to guess the number.  The program 
should give the feedback on whether the 

guess was too high or too low, and 

continue the correct number is guessed.  

Easy  TP 10 minutes 5 minutes 

Write a program that reads in a list of 
integer from the user, and output the 

average of the result.  

 

Medium NTP 30 minutes  1 hour  

Write a C program that generates a random 

list of integers and sorts them in ascending 

order, the program should output both the 

original list and the sorted list. 
 

Medium  TP 20 minutes 12 minutes  

Write a C program that simulates a game 

of blackjack.  The program should allow 
the user to play against computer and 

should keep track the user’s score and 

dealer’s score.  

Hard  NTP 2 hour  3 hours  

Write a C program that read in a string 
from the user and output the longest 

substring that is a palindrome(a word that 

is the same forward and backwards) 

Hard  TP 45 minutes  30 minutes 
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Appendix N 

Decision Tree Using WEKA Tool 

This appendix shows the decision tree generated using the WEKA tool, which was applied 

to classify and predict software developers' performance based on the collected data. 

 

WEKA main interface  

 

Select Dataset 
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Select Classification Decision Tree Algorithm (J48) 

 

Sample of decision tree of easy TP 
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Sample of decision tree of easy NTP 

 

Sample of decision tree of Medium TP 
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Sample of decision tree of Medium NTP 

 

Sample of decision tree of hard TP 
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Sample of decision tree of hard NTP 
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Appendix O 

Artificial Neural Network Using WEKA Tool  

 

This appendix provides the screenshots of applying Artificial Neural Network (ANN) model 

generated using WEKA 

 

Select dataset 
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Select multilayer perceptron algorithm (ANN) in WEKA tool 

 

Appendix P 

K-Nearest Neighbour Using WEKA Tool 

This appendix provides the screenshots of K-Nearest Neighbour (KNN) model generated using 

WEKA. 

 

Select K value 
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Select IBK (KNN) in WEKA tool 
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Appendix Q 

Support Vector Machine Using WEKA Tool 

 

This appendix provides the screenshots of Support Vector Machine (SVM) model generated using 

WEKA. 

 

Select SMO as a SVM in WEKA tool 

 

Select kernel polynomial 
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Appendix R 

Logistic Regression Using SPSS 

This appendix contains the screenshots of logistic regression analysis conducted using 

SPSS. 

 

 
 

Sample of dataset 

 

 
 

List of Variables  
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Select binary logistic regression 
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Appendix S 

Sample of Logistic Regression (SPSS Output) 

This appendix showcases a sample output from the logistic regression analysis in SPSS. It includes 

the coefficients, odds ratios, and significance levels, which help explain the relationship between 

independent variables and performance. 

 

1. This block presents the results with only the constant included before any coefficients (predictor 

variables) are entered in the equation.   

Classification Table
a,b

 

 

Observed 

Predicted 

Performance  

Percentage Correct Ineffective Effective 

Step 0 Performance  Ineffective 0 50 .0 

Effective 0 130 100.0 

Overall Percentage   72.0 

a. Constant is included in the model. 

b. The cut value is .500 

 

2. The variables not in the equation show whether each predictor variables used improves the 

model. When the Sig. < .05, this shows that the variables are significant and would add the 

predictive power of the model. In this case only S_I Personality types was not contribute 

significantly to the model. 

 

Variables not in the Equation 

 Score df Sig. 

Step 0 Variables Gender(1) .825 1 .364 

E_I(1) .297 1 .586 

S_N(1) 1.833 1 .176 

F_T(1) 4.131 1 .042 

J_P(1) 3.006 1 .083 

Knowledge 84.536 1 .000 

TP(1) 22.073 1 .000 

TC 63.764 1 .000 

Overall Statistics 186.221 8 .000 
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3. This block presents the results when the predictor variables are included; the model achieved 

87% accuracy. 

 

Classification Table
a
 

 

Observed 

Predicted 

Performance 

Percentage Correct Ineffective Effective 

Step 1 Performance Ineffective 35(TN) 15(FP) 70.0 

Effective 11(FN) 119(TP) 91.5 

Overall Percentage   85.0 

a. The cut value is .500 

 

4. The variables in the equation determine which predictor variables contribute 

significantly to the model using Wald statistic. If the significant value less than .05, the 

variables do make a significant contribution. In this case, only S_I Personality types was 

not contributed significantly to the model. 

 

Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

95% C.I.for EXP(B) 

Lower Upper 

Step 1a Gender(1) .646 .259 6.236 1 .013 1.907 1.149 3.166 

E_I(1) -.676 .259 6.792 1 .009 .509 .306 .846 

S_N(1) .477 .254 3.511 1 .061 1.611 .978 2.653 

F_T(1) .634 .264 5.771 1 .016 1.885 1.124 3.163 

J_P(1) .598 .255 5.489 1 .019 1.818 1.103 2.996 

Knowledge 3.668 .404 82.574 1 .000 39.185 17.763 86.445 

TP(1) 1.461 .263 30.844 1 .000 4.311 2.574 7.220 

TC -1.529 .182 70.296 1 .000 .217 .152 .310 

Constant -8.890 1.250 50.556 1 .000 .000   

a. Variable(s) entered on step 1: Gender, E_I, S_N, F_T, J_P, Knowledge, TP, TC. 
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Appendix T 

Sample of Decision Tree (WEKA Outputs) 

This appendix includes a sample decision tree generated using the WEKA tool. It illustrates how 

the decision tree model was applied to classify the participants' performance. 

This is a sample output of WEKA tool for decision tree prediction accuracy using 10-fold cross-

validation.  
 
 Easy NTP 
 
=== Run information === 

 
Scheme:       weka.classifiers.trees.J48 -C 0.25 -M 2 

Relation:     easyNTP 

Instances:    180 
Attributes:   7 

              Gender 

              Knowledge 

              IE 
              SN 

              FT 

              JP 
              class 

Test mode:    10-fold cross-validation 

 

=== Classifier model (full training set) === 
 

J48 pruned tree 

------------------ 
Gender = Male 

|       EI = Introvert: Effective (4.0/2.0) 

|    EI = Extrovert 
|       |   SN = Sensing 

|       |    |   Knowledge <=2.8 

|       |    |    |   JP=perceiving: Effective (2.0) 

|       |    |     |   JP=Judging: Ineffective (3.0/1.0) 
|       |    |   Knowledge > 2.8: Effective (141.0/1.0) 

|       |   SN = Intuiting:  Ineffective (4.0/2.0) 

Gender = Female 
|      SN = Sensing 

|      |   Knowledge <=2.72: Ineffective (3.0) 

|      |   Knowledge > 2.72: effective (21.0) 
|      SN = Intuiting: Ineffective (2.0/1.0) 

 

Number of Leaves  : 8 

 
Size of the tree : 15 
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Time taken to build model: 0 seconds 
 

=== Stratified cross-validation === 

=== Summary === 

 
Correctly Classified Instances         169               93.8889 % 

Incorrectly Classified Instances        11                6.1111 % 

Kappa statistic                          0      
Mean absolute error                      0.1148 

Root mean squared error                  0.2397 

Relative absolute error                 96.0695 % 
Root relative squared error             99.9758 % 

Total Number of Instances              180      

 

=== Detailed Accuracy By Class === 
 

TP Rate   FP  Rate  Precision  Recall  F-Measure MCC ROC Area PRC Area Class  

1.000      1.000         0.939     1.000    0.968            0.6323     0.456    0.934    Effective 

1.000      1.000         0.939      1.000    0.968           0.6323     0.456    0.057    Ineffective 

Weighted Avg.   1.000        0.939         0.939     1.000    0.968            0.6323    0.456     0.881      

 
=== Confusion Matrix === 

 

   a   b   <-- classified as 
 166   0 |   a = Effective 

  11   3 |   b = Ineffective 

 

 

 EASY TP 

 

=== Run information === 
 

Scheme:       weka.classifiers.trees.J48 -C 0.25 -M 2 

Relation:     easyTP 
Instances:    180 

Attributes:   7 

              Gender 
              Knowledge 

              IE 

              SN 

              FT 
              JP 

              class 

Test mode:    10-fold cross-validation 
 

=== Classifier model (full training set) === 

 
J48 pruned tree 

------------------ 
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Gender = Male 

|      SN = Sensing 

|      |   TF = Thinking: Effective (63.0/1.0) 

|      |   TF = Feeling: Ineffective (16.0) 
|      SN = Intuiting: Effective (3.0) 

Gender = Female 

|      EI = Extrovert  
|      |   Knowledge > 2.62: Effective (18.0) 

|      |   Knowledge <=2.62: Ineffective (6.0) 

|      EI = Introvert: Ineffective (4.0) 
 

 

Number of Leaves:  6 

 
Size of the tree:  11 

 

 
Time taken to build model: 0 seconds 

 

=== Stratified cross-validation === 
=== Summary === 

 

Correctly Classified Instances         156               86.6667 % 

Incorrectly Classified Instances        24               13.3333 % 
Kappa statistic                          0.3284 

Mean absolute error                      0.1876 

Root mean squared error                  0.3417 
Relative absolute error                 79.9897 % 

Root relative squared error            100.4294 % 

Total Number of Instances              180      

=== Detailed Accuracy By Class === 
 
                  TP Rate FP Rate Precision Recall F-Measure MCC   ROC Area PRC Area Class 

                  0.949    0.667    0.902        0.949   0.925        0.337    0.642         0.892        Effective 

                  0.333    0.051    0.500         0.333   0.400         0.337   0.642         0.333        Ineffective 

Weighted Avg.    0.867    0.585    0.849          0.867   0.855         0.337   0.642        0.818      
 
=== Confusion Matrix === 

 

   a   b   <-- classified as 
 148   8 |   a = Effective 

  16   8 |   b = Ineffective 

 

 

 MEDIUM TP 

=== Run information === 

 

Scheme:       weka.classifiers.trees.J48 -C 0.25 -M 2 

Relation:     mediumTP 
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Instances:    180 
Attributes:   7 

              Gender 

              Knowledge 

              IE 
              SN 

              FT 

              JP 
              class 

Test mode:    10-fold cross-validation 

 
=== Classifier model (full training set) === 

 

J48 pruned tree 

------------------ 
 

Gender = Male 

| TF = Thinking: Effective (20.0/3.0) 
|   TF = Feeling 

|  |   JP= Judging: Ineffective (24.0/3.0) 

|  |   JP= Perceiving  
|  | |    Knowledge: >3.55 Effective (23.0/4.0) 

|  | |    Knowledge: <=3.55 Ineffective (7.0/2.0) 

Gender = Female 

|      EI = Extrovert: Effective (30.0) 
|      EI = Introvert 

|   |    JP= Perceiving: Ineffective (24.0/3.0) 

|   |    JP= Judging  
|   |   |  Knowledge: >3.29 Effective (43.0/8.0) 

|   |   |    Knowledge: <=3.29 Ineffective (15.0/1.0) 

 

 
Number of Leaves: 8 

 

Size of the tree: 15 
 

 

Time taken to build model: 0.02 seconds 
 

=== Stratified cross-validation === 

=== Summary === 

 
Correctly Classified Instances         123               68.3333 % 

Incorrectly Classified Instances        57               31.6667 % 

Kappa statistic                          0.3081 
Mean absolute error                      0.4165 

Root mean squared error                  0.4769 

Relative absolute error                 85.3143 % 
Root relative squared error             96.5197 % 

Total Number of Instances              180      
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=== Detailed Accuracy By Class === 
 

                  TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 
                  0.894      0.605      0.669      0.894      0.765          0.340        0.616         0.630          

Effective 

                  0.395     0.106      0.732      0.395      0.513          0.340        0.616         0.568      

Ineffective 

Weighted Avg.    0.683      0.394       0.696      0.683     0.659          0.340        0.616          0.604      

 
=== Confusion Matrix === 

 

  a  b   <-- classified as 

 93 11 |  a = Effective 
 46 30 |  b = Ineffective 

 

 

 MEDIUM NTP 

 

=== Run information === 
 

Scheme:       weka.classifiers.trees.J48 -C 0.25 -M 2 

Relation:     mediumNTP 

Instances:    180 
Attributes:   7 

              Gender 

              Knowledge 
              IE 

              SN 

              FT 
              JP 

              class 

Test mode:    10-fold cross-validation 

 
=== Classifier model (full training set) === 

 

J48 pruned tree 
------------------ 

 

Gender = Male 
|      EI = Extrovert: Effective (38.0/11.0) 

|      EI = Introvert 

|      |    TF = Thinking: Effective (33.0/2.0) 

|     |    TF = Feeling 
|   |   | JP= Judging: Ineffective (15.0/7.0) 

|   |   | JP= Perceiving  

|   |   |     Knowledge: >3.35 Effective (20.0) 
|   |   |       Knowledge: <=3.35 Ineffective (10.0/5.0) 

Gender = Female 

|      EI = Extrovert: Effective (35.0/9.0) 

|      EI = Introvert 
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|  |  TF = Thinking: Effective (18.0/2.0) 
|  |  TF = Feeling: Ineffective (11.0/7.0) 

 

 

Number of Leaves  :  8 
 

Size of the tree :  15 

 
 

Time taken to build model: 0 seconds 

 
=== Stratified cross-validation === 

=== Summary === 

 

Correctly Classified Instances         147               81.6667 % 
Incorrectly Classified Instances        33               18.3333 % 

Kappa statistic                          0.4743 

Mean absolute error                      0.2434 
Root mean squared error                  0.3885 

Relative absolute error                 68.8204 % 

Root relative squared error             92.621  % 
Total Number of Instances              180      

 

=== Detailed Accuracy By Class === 

 
                  TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 
                  0.885       0.415        0.879      0.885    0.882         0.474      0.691     0.835      

Effective 

                  0.585       0.115        0.600      0.585    0.593         0.474      0.691     0.436     

 Ineffective 

Weighted Avg.    0.817       0.346        0.815      0.817    0.816          0.474      0.691    0.744      

 
=== Confusion Matrix === 

 

   a   b   <-- classified as 

 123  16 |   a = Effective 
  17  24 |   b = Ineffective 

 

 

 HARD NTP 

=== Run information === 
 

Scheme:       weka.classifiers.trees.J48 -C 0.25 -M 2 

Relation:     hardNTP 
Instances:    180 

Attributes:   7 

              Gender 

              Knowledge 
              IE 

              SN 

              FT 
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              JP 
              class 

Test mode:    10-fold cross-validation 

 

=== Classifier model (full training set) === 
 

J48 pruned tree 

------------------ 
 

Gender = Male 

|      SN = Sensing: Effective (42.0/8.0) 
|      SN = Intuiting   

|      |    TF = Feeling: Ineffective (4.0/2.0) 

|     |    TF = Thinking  

|   |   | JP= Judging: Ineffective (16.0/9.0) 
|   |   | JP= Perceiving  

|   |   |     Knowledge >3.17 :  Effective (27.0/4.0) 

|   |   |       Knowledge <=3.17: Ineffective (18.0/14.0) 
Gender = Female 

|      TF = Feeling: Ineffective (19.0/3.0) 

|      TF = Thinking  
|  |  JP= Perceiving: Effective (20.0/7.0) 

|  |  JP = Judging 

|  |   |     Knowledge >3.15 :  Effective (26.0/11.0) 

|  |   |       Knowledge <=3.15: Ineffective (8.0/3.0) 
 

 

 
Number of Leaves  :  9 

 

Size of the tree :  17 

 
 

Time taken to build model: 0 seconds 

 
=== Stratified cross-validation === 

=== Summary === 

 
Correctly Classified Instances         146               81.1111 % 

Incorrectly Classified Instances        34               18.8889 % 

Kappa statistic                          0.5759 

Mean absolute error                      0.2319 
Root mean squared error                  0.3877 

Relative absolute error                 50.5239 % 

Root relative squared error             80.9541 % 
Total Number of Instances              180      

 

=== Detailed Accuracy By Class === 
 
                  TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 



425 
 

                  0.888       0.328        0.831      0.888    0.858            0.579     0.794     0.810      

 Effective 

                  0.672       0.112        0.768      0.672    0.717            0.579     0.794     0.675     

 Ineffective 

Weighted Avg.    0.811        0.251        0.808      0.811    0.808            0.579     0.794     0.762      
 

=== Confusion Matrix === 

 
   a   b   <-- classified as 

 103  13 |   a = Effective 

  21  43 |   b = Ineffective 
 

 

 HARD TP 

=== Run information === 

 

Scheme:       weka.classifiers.trees.J48 -C 0.25 -M 2 
Relation:     hardTP-weka.filters.unsupervised.attribute.Remove-R7 

Instances:    180 

Attributes:   7 
              Gender 

              Knowledge 

              IE 
              SN 

              FT 

              JP 

              class 
Test mode:    10-fold cross-validation 

 

=== Classifier model (full training set) === 
 

J48 pruned tree 

------------------ 
Gender = Male 

|      EI = Extrovert: Effective (15.0/8.0) 

|      EI = Introvert   

|      |    TF = Feeling: Ineffective (9.0/2.0) 
|     |    TF = Thinking  

|   |   | JP= Judging: Ineffective (28.0/8.0) 

|   |   | JP= Perceiving  
|   |   |     Knowledge >3.65 :  Effective (20.0/4.0) 

|   |   |       Knowledge <=3.65: Ineffective (22.0/1.0) 

Gender = Female 

|      EI = Extrovert: Ineffective (27.0/6.0) 
|      EI = Introvert   

|  |  SN= Intuiting: Ineffective (21.0/6.0) 

|  |  SN = Sensing 
|  |   |     Knowledge >3.45 :  Effective (21.0/4.0) 

|  |   |       Knowledge <=3.45: Ineffective (17.0/5.0) 
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Number of Leaves  : 9 

 

Size of the tree : 17 

 
 

Time taken to build model: 0 seconds 

 
=== Stratified cross-validation === 

=== Summary === 

 
Correctly Classified Instances         109               60.5556 % 

Incorrectly Classified Instances        71               39.4444 % 

Kappa statistic                          0.1822 

Mean absolute error                      0.4113 
Root mean squared error                  0.5108 

Relative absolute error                 87.4088 % 

Root relative squared error            105.3258 % 
Total Number of Instances              180      

 

=== Detailed Accuracy By Class === 
 
                  TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                  0.544       0.357        0.481      0.544    0.510            0.183      0.623          0.457     

Effective 

                  0.643      0.456        0.699       0.643    0.670            0.183     0.623           0.725     

Ineffective 

Weighted Avg.       0.606      0.419       0.616       0.606    0.610             0.183     0.623           0.624      

 
=== Confusion Matrix === 

 

  a  b   <-- classified as 
 37 31 |  a = Effective 

 40 72 |  b = Ineffective 
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Appendix U 

Sample of ROC Value Output Using SPSS Tool 

This appendix presents the Receiver Operating Characteristic (ROC) curve and value output from 

SPSS. The ROC curve was used to assess the performance of the predictive models, particularly 

their ability to distinguish between different performance classes. 

 

 

This is a sample of logistic regression area under ROC value output using SPSS tool. 

 Area Under the Curve 

Area Under the Curve 

Test Result Variable(s):   Predicted probability   

Area Std. Errora Asymptotic Sig.b 

Asymptotic 95% Confidence Interval 

Lower Bound Upper Bound 

.877 .016 .000 .845 .909 

The test result variable(s): Predicted probability has at least one tie between the positive actual state group 

and the negative actual state group. Statistics may be biased. 

a. Under the nonparametric assumption 

b. Null hypothesis: true area = 0.5 

 Table of the coordinated of the curves 

Coordinates of the Curve 

Test Result Variable(s):   Predicted probability   

Positive if Greater Than or Equal Toa Sensitivity 1 - Specificity 
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.0000000 1.000 1.000 

.0202824 1.000 .986 

.0287332 1.000 .971 

.0329347 1.000 .957 

.0371233 .980 .957 

.0389613 .980 .942 

.0452935 .980 .928 

.0584207 .980 .913 

.0677662 .980 .899 

.0703781 .980 .884 

.0764225 .980 .870 

.0871294 .961 .870 

.0957128 .941 .870 

.0991184 .922 .870 

.1017506 .922 .855 

.1049373 .922 .841 

.1068945 .922 .826 

.1086095 .922 .812 

.1099426 .922 .797 

.1116574 .922 .783 

.1133949 .922 .768 

.1163641 .922 .754 

.1221460 .922 .739 

.1320608 .922 .725 

.1406226 .922 .710 

.1449859 .922 .696 

.1495618 .922 .681 

.1547303 .922 .667 

.1670099 .922 .652 

.1855494 .922 .638 

.1980402 .922 .623 

.2166509 .922 .609 

.2354080 .902 .609 

.2387813 .902 .594 

.2431642 .902 .580 

.2565761 .902 .565 

.2691558 .902 .551 

.2800787 .902 .536 

.2911487 .892 .536 

.2991329 .892 .522 
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.3099393 .891 .522 

.3183179 .889 .522 

.3215377 .886 .507 

.3256601 .882 .493 

.3322520 .882 .478 

.3365980 .822 .464 

.3377421 .880 .449 

.3405317 .880 .435 

.3436240 .879 .420 

.3450636 .878 .406 

.3490349 .879 .398 

.3537606 .879 .291 

.3560362 .877 .291 

.3587788 .874 .291 

.3628548 .871 .291 

.3712444 .871 .285 

.3826762 .845 .281 

.4018615 .824 .279 

.4199693 .824 .278 

.4278312 .824 .275 

.4376323 .804 .275 

.4466397 .804 .261 

.4528386 .804 .246 

.4860710 .804 .232 

.5185848 .804 .217 

.5226381 .804 .203 

.5442137 .784 .203 

.5673362 .765 .203 

.5758607 .765 .188 

.5856884 .745 .188 

.5927218 .745 .174 

.5979844 .745 .159 

.6033616 .745 .145 

.6071771 .725 .145 

.6200465 .706 .145 

.6321110 .686 .145 

.6358551 .686 .130 

.6414809 .667 .130 

.6614873 .647 .130 

.6814723 .627 .130 
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.6864132 .608 .130 

.6904506 .608 .116 

.6951263 .608 .101 

.6995159 .608 .087 

.7029652 .608 .072 

.7058353 .588 .072 

.7099360 .569 .072 

.7136396 .569 .058 

.7141547 .549 .058 

.7171876 .529 .058 

.7222509 .529 .043 

.7301039 .529 .029 

.7434881 .510 .029 

.7555885 .490 .029 

.7606433 .451 .029 

.7627721 .431 .029 

.7693733 .412 .029 

.7753777 .392 .029 

.7805204 .373 .029 

.7939784 .373 .014 

.8180041 .353 .014 

.8395441 .353 .000 

.8495498 .333 .000 

.8607180 .314 .000 

.8697731 .294 .000 

.8767519 .275 .000 

.8847038 .255 .000 

.8872856 .235 .000 

.8888837 .216 .000 

.8975608 .196 .000 

.9080958 .176 .000 

.9130525 .157 .000 

.9147383 .137 .000 

.9237325 .118 .000 

.9383277 .098 .000 

.9494956 .078 .000 

.9572649 .059 .000 

.9606474 .039 .000 

.9648778 .020 .000 

1.0000000 .000 .000 
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a. The smallest cutoff value is the minimum observed test value minus 1, and the largest cutoff value is the maximum 

observed test value plus 1. All the other cutoff values are the averages of two consecutive ordered observed test values.  
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Appendix V 

Sample of ANN (WEKA outputs) 

This appendix contains the output from the ANN model generated using WEKA. It shows how the 

ANN model performed in predicting developers' performance, providing key metrics.  

 Easy NTP 

=== Run information === 

 

Scheme:       weka.classifiers.functions.MultilayerPerceptron -L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a 

Relation:     easyNTP  

Instances:    180 
Attributes:   7 

              Gender 

              Knowledge 

              IE 

              SN 

              FT 

              JP 

              class 

Test mode:    10-fold cross-validation 

 

=== Classifier model (full training set) === 

 
Sigmoid Node 0 

    Inputs    Weights 

    Threshold    -1.612323991080546 

    Node 2    4.079162368936238 

    Node 3    4.104727445668504 

    Node 4    5.247351573734934 

    Node 5    3.1777362869507515 

Sigmoid Node 1 

    Inputs    Weights 

    Threshold    1.6123450792869298 

    Node 2    -4.1076454996743745 
    Node 3    -4.075942931252122 

    Node 4    -5.247319954365999 

    Node 5    -3.177646115985696 

Sigmoid Node 2 

    Inputs    Weights 

    Threshold    1.6319834284718058 

    Attrib Gender=MALE    1.1844660639065632 

    Attrib Knowledge    9.026732310349168 

    Attrib IE=Introvert    0.5314094885708147 

    Attrib SN=Inituiting    0.09204460600113731 

    Attrib FT=Feeling    3.0948677179438286 
    Attrib JP=Judging    -0.37823219952998555 

Sigmoid Node 3 

    Inputs    Weights 

    Threshold    1.5964033464805456 

    Attrib Gender=MALE    1.019012189844543 
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    Attrib Knowledge    8.88492206004524 

    Attrib IE=Introvert    0.8588663459270639 

    Attrib SN=Inituiting    0.050506935843821384 

    Attrib FT=Feeling    3.265965524741468 

    Attrib JP=Judging    -0.4711669934442308 
Sigmoid Node 4 

    Inputs    Weights 

    Threshold    -1.6705827346063178 

    Attrib Gender=MALE    2.2929243066465634 

    Attrib Knowledge    5.058311374612433 

    Attrib IE=Introvert    1.172909852667952 

    Attrib SN=Inituiting    -2.9535195628683235 

    Attrib FT=Feeling    -3.31154274000043 

    Attrib JP=Judging    -5.329264347834518 

Sigmoid Node 5 

    Inputs    Weights 

    Threshold    2.182455439077911 
    Attrib Gender=MALE    2.8294468797991916 

    Attrib Knowledge    3.8237876476374724 

    Attrib IE=Introvert    2.4295701586303284 

    Attrib SN=Inituiting    3.561823936269066 

    Attrib FT=Feeling    -0.9728854021178202 

    Attrib JP=Judging    0.8795926486385012 

Class Effective 

    Input 

    Node 0 

Class Ineffective 

    Input 
    Node 1 

 

 

Time taken to build model: 0.24 seconds 

 

=== Stratified cross-validation === 

=== Summary === 

 

Correctly Classified Instances         166               92.2222 % 

Incorrectly Classified Instances        14                7.7778 % 

Kappa statistic                          0.1834 

Mean absolute error                      0.0965 
Root mean squared error                  0.2707 

Relative absolute error                 80.7291 % 

Root relative squared error            112.9339 % 

Total Number of Instances              180      

 

=== Detailed Accuracy By Class === 

 

                 TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                 0.970    0.818    0.948      0.970    0.959      0.189    0.806     0.984     Effective 

                 0.182    0.030    0.286      0.182    0.222      0.189    0.806     0.196     Ineffective 

Weighted Avg.    0.922    0.770    0.908      0.922    0.914      0.189    0.806     0.936      
 

=== Confusion Matrix === 

 

   a   b   <-- classified as 
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 164   5 |   a = Effective 

   9   2 |   b = Ineffective 

 Easy TP 

=== Run information === 

 
Scheme:       weka.classifiers.functions.MultilayerPerceptron -L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a 

Relation:     easyTP  

Instances:    180 

Attributes:   7 

              Gender 

              Knowledge 

              IE 

              SN 

              FT 

              JP 

              class 

Test mode:    10-fold cross-validation 
 

=== Classifier model (full training set) === 

 

Sigmoid Node 0 

    Inputs    Weights 

    Threshold    -7.22168273048237 

    Node 2    7.333868135387107 

    Node 3    4.562277510401897 

    Node 4    3.797147805782776 

    Node 5    3.453582937255274 

Sigmoid Node 1 
    Inputs    Weights 

    Threshold    7.222307991067093 

    Node 2    -7.334629072986696 

    Node 3    -4.5626594554813895 

    Node 4    -3.7974248993198745 

    Node 5    -3.453847221245762 

Sigmoid Node 2 

    Inputs    Weights 

    Threshold    0.5226748837965672 

    Attrib Gender=MALE    5.146757419581444 

    Attrib Knowledge    5.999725607573578 

    Attrib IE=Introvert    -3.2667817370684906 
    Attrib SN=Inituiting    4.268784523490736 

    Attrib FT=Feeling    3.8644008532666367 

    Attrib JP=Judging    -3.9616957991438526 

Sigmoid Node 3 

    Inputs    Weights 

    Threshold    7.302698585129874 

    Attrib Gender=MALE    2.3656979259129978 

    Attrib Knowledge    8.948062681036513 

    Attrib IE=Introvert    2.9376912177422803 

    Attrib SN=Inituiting    -2.107777387157654 

    Attrib FT=Feeling    -0.9624181933347362 
    Attrib JP=Judging    -0.1365005990787547 

Sigmoid Node 4 

    Inputs    Weights 
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    Threshold    4.969538916384451 

    Attrib Gender=MALE    -1.8808851521312042 

    Attrib Knowledge    9.972278549828708 

    Attrib IE=Introvert    -1.2675324582671317 

    Attrib SN=Inituiting    -1.2643120674751522 
    Attrib FT=Feeling    0.16899828294881278 

    Attrib JP=Judging    1.3656926864663814 

Sigmoid Node 5 

    Inputs    Weights 

    Threshold    0.06478190927587092 

    Attrib Gender=MALE    3.6909988879126376 

    Attrib Knowledge    3.4395861992450745 

    Attrib IE=Introvert    -3.2186829000064963 

    Attrib SN=Inituiting    1.2640601708427424 

    Attrib FT=Feeling    -5.66595331919958 

    Attrib JP=Judging    1.3997385073246207 

Class Effective 
    Input 

    Node 0 

Class Ineffective 

    Input 

    Node 1 

 

 

Time taken to build model: 0.1 seconds 

 

=== Stratified cross-validation === 

=== Summary === 
 

Correctly Classified Instances         155               86.1111 % 

Incorrectly Classified Instances        25               13.8889 % 

Kappa statistic                          0.2545 

Mean absolute error                      0.1559 

Root mean squared error                  0.3516 

Relative absolute error                 66.474  % 

Root relative squared error            103.3485 % 

Total Number of Instances              180      

 

=== Detailed Accuracy By Class === 

 
                 TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                 0.955    0.750    0.892      0.955    0.923      0.269    0.731     0.933     Effective 

                 0.250    0.045    0.462      0.250    0.324      0.269    0.731     0.350     Ineffective 

Weighted Avg.    0.861    0.656    0.835      0.861    0.843      0.269    0.731     0.855      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 149   7 |   a = Effective 

  18   6 |   b = Ineffective 

 Medium NTP 

=== Run information === 

 

Scheme:       weka.classifiers.functions.MultilayerPerceptron -L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a 
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Relation:     mediumNTP  

Instances:    180 

Attributes:   7 

              Gender 

              Knowledge 
              IE 

              SN 

              FT 

              JP 

              class 

Test mode:    10-fold cross-validation 

 

=== Classifier model (full training set) === 

 

Sigmoid Node 0 

    Inputs    Weights 

    Threshold    -8.308990761461665 
    Node 2    7.082345751040713 

    Node 3    4.9429271389675415 

    Node 4    4.983408930490522 

    Node 5    8.353746079837427 

Sigmoid Node 1 

    Inputs    Weights 

    Threshold    8.309255160641099 

    Node 2    -7.082578553926097 

    Node 3    -4.9430688433524965 

    Node 4    -4.983546064557313 

    Node 5    -8.354010955402025 
Sigmoid Node 2 

    Inputs    Weights 

    Threshold    1.0682762291753949 

    Attrib Gender=MALE    1.7540606294167198 

    Attrib Knowledge    12.088343832505172 

    Attrib IE=Introvert    -6.6308943415813415 

    Attrib SN=Inituiting    2.4992510789914255 

    Attrib FT=Feeling    4.76043748753173 

    Attrib JP=Judging    -6.255527322652588 

Sigmoid Node 3 

    Inputs    Weights 

    Threshold    1.0217402331726657 
    Attrib Gender=MALE    -1.0800195912550934 

    Attrib Knowledge    11.288263609867677 

    Attrib IE=Introvert    -1.7480956032330501 

    Attrib SN=Inituiting    -2.7326496916400815 

    Attrib FT=Feeling    -2.4444863043685476 

    Attrib JP=Judging    -0.6310326956320127 

Sigmoid Node 4 

    Inputs    Weights 

    Threshold    -0.973075837212566 

    Attrib Gender=MALE    -0.6632313401524159 

    Attrib Knowledge    10.283039276639531 
    Attrib IE=Introvert    1.3521304086695598 

    Attrib SN=Inituiting    -0.3949393512713436 

    Attrib FT=Feeling    4.135536681904543 

    Attrib JP=Judging    3.1341233560419135 

Sigmoid Node 5 
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    Inputs    Weights 

    Threshold    -1.0371385053461835 

    Attrib Gender=MALE    4.550485242557211 

    Attrib Knowledge    4.584979339481953 

    Attrib IE=Introvert    3.9938344458141963 
    Attrib SN=Inituiting    4.409500198516426 

    Attrib FT=Feeling    -1.9596509054419995 

    Attrib JP=Judging    -1.7911377321578088 

Class Effective 

    Input 

    Node 0 

Class Ineffective 

    Input 

    Node 1 

 

 

Time taken to build model: 0.07 seconds 
 

=== Stratified cross-validation === 

=== Summary === 

 

Correctly Classified Instances         151               83.8889 % 

Incorrectly Classified Instances        29               16.1111 % 

Kappa statistic                          0.5381 

Mean absolute error                      0.1761 

Root mean squared error                  0.3544 

Relative absolute error                 49.7877 % 

Root relative squared error             84.4754 % 
Total Number of Instances              180      

 

=== Detailed Accuracy By Class === 

 

                 TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                 0.899    0.366    0.893      0.899    0.896      0.538    0.849     0.933     Effective 

                 0.634    0.101    0.650      0.634    0.642      0.538    0.849     0.715     Ineffective 

Weighted Avg.    0.839    0.305    0.838      0.839    0.838      0.538    0.849     0.883      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 
 125  14 |   a = Effective 

  15  26 |   b = Ineffective 

 Medium TP  

 

=== Run information === 

 

Scheme:       weka.classifiers.functions.MultilayerPerceptron -L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a 

Relation:     mediumTP  

Instances:    180 

Attributes:   7 

              Gender 
              Knowledge 

              IE 

              SN 
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              FT 

              JP 

              class 

Test mode:    10-fold cross-validation 

 
=== Classifier model (full training set) === 

 

Sigmoid Node 0 

    Inputs    Weights 

    Threshold    -2.747814463835889 

    Node 2    2.675676674061201 

    Node 3    2.367000195416931 

    Node 4    2.77036049432141 

    Node 5    2.2527349422836687 

Sigmoid Node 1 

    Inputs    Weights 

    Threshold    2.747814463833765 
    Node 2    -2.675676674058894 

    Node 3    -2.3670001954153013 

    Node 4    -2.7703604943197457 

    Node 5    -2.252734942281631 

Sigmoid Node 2 

    Inputs    Weights 

    Threshold    -8.28044612238649 

    Attrib Gender=MALE    -1.9982507868510968 

    Attrib Knowledge    9.06411570924355 

    Attrib IE=Introvert    -0.2616024964660808 

    Attrib SN=Inituiting    -0.9992850432639037 
    Attrib FT=Feeling    4.538041884732333 

    Attrib JP=Judging    4.860527539396203 

Sigmoid Node 3 

    Inputs    Weights 

    Threshold    -6.180477210730169 

    Attrib Gender=MALE    11.008644131822377 

    Attrib Knowledge    5.746034282035654 

    Attrib IE=Introvert    -2.3054202879031847 

    Attrib SN=Inituiting    3.355508331343503 

    Attrib FT=Feeling    1.4565793977379453 

    Attrib JP=Judging    -4.722796461675759 

Sigmoid Node 4 
    Inputs    Weights 

    Threshold    -6.499403034610365 

    Attrib Gender=MALE    0.42648505651798974 

    Attrib Knowledge    14.424367329423161 

    Attrib IE=Introvert    -2.6182749082380745 

    Attrib SN=Inituiting    1.2068771221576318 

    Attrib FT=Feeling    -5.8368848340413 

    Attrib JP=Judging    0.9879813423522679 

Sigmoid Node 5 

    Inputs    Weights 

    Threshold    -7.421029274386928 
    Attrib Gender=MALE    -5.078691567410166 

    Attrib Knowledge    3.793183095559527 

    Attrib IE=Introvert    6.98982559567093 

    Attrib SN=Inituiting    -4.69560378282179 

    Attrib FT=Feeling    3.478157325932317 
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    Attrib JP=Judging    -5.026291284959339 

Class Effective 

    Input 

    Node 0 

Class Ineffective 
    Input 

    Node 1 

 

 

Time taken to build model: 0.1 seconds 

 

=== Stratified cross-validation === 

=== Summary === 

 

Correctly Classified Instances         113               62.7778 % 

Incorrectly Classified Instances        67               37.2222 % 

Kappa statistic                          0.2275 
Mean absolute error                      0.4146 

Root mean squared error                  0.5424 

Relative absolute error                 84.9177 % 

Root relative squared error            109.7794 % 

Total Number of Instances              180      

 

=== Detailed Accuracy By Class === 

 

                 TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                 0.712    0.487    0.667      0.712    0.688      0.228    0.626     0.707     Effective 

                 0.513    0.288    0.565      0.513    0.538      0.228    0.626     0.517     Ineffective 
Weighted Avg.    0.628    0.403    0.624      0.628    0.625      0.228    0.626     0.627      

 

=== Confusion Matrix === 

 

  a  b   <-- classified as 

 74 30 |  a = Effective 

 37 39 |  b = Ineffective 

 Hard NTP 

=== Run information === 

 

Scheme:       weka.classifiers.functions.MultilayerPerceptron -L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a 

Relation:     hard NTP  
Instances:    180 

Attributes:   7 

              Gender 

              Knowledge 

              IE 

              SN 

              FT 

              JP 

              class 

Test mode:    10-fold cross-validation 

 
=== Classifier model (full training set) === 

 

Sigmoid Node 0 
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    Inputs    Weights 

    Threshold    -10.217541248679213 

    Node 2    4.647094885955859 

    Node 3    6.202629706150964 

    Node 4    6.623577461305876 
    Node 5    6.5178911602332334 

Sigmoid Node 1 

    Inputs    Weights 

    Threshold    10.217500395288742 

    Node 2    -4.6470804961408465 

    Node 3    -6.202604025428656 

    Node 4    -6.623552965281675 

    Node 5    -6.517863401273089 

Sigmoid Node 2 

    Inputs    Weights 

    Threshold    -2.0356576356135623 

    Attrib Gender=MALE    6.2272580642629825 
    Attrib Knowledge    13.577551074252629 

    Attrib IE=Introvert    -1.4099865874551059 

    Attrib SN=Inituiting    5.225396245134555 

    Attrib FT=Feeling    2.988598282838154 

    Attrib JP=Judging    -0.042940751742980184 

Sigmoid Node 3 

    Inputs    Weights 

    Threshold    -1.3518520568456518 

    Attrib Gender=MALE    -1.8596118294147514 

    Attrib Knowledge    6.456161446393677 

    Attrib IE=Introvert    -7.707807228829701 
    Attrib SN=Inituiting    4.921657865510223 

    Attrib FT=Feeling    1.7777401192795685 

    Attrib JP=Judging    -3.276457638348229 

Sigmoid Node 4 

    Inputs    Weights 

    Threshold    -1.3535244805541669 

    Attrib Gender=MALE    -4.2815380665894 

    Attrib Knowledge    17.12174623844943 

    Attrib IE=Introvert    1.146227607473292 

    Attrib SN=Inituiting    -1.6775641796273912 

    Attrib FT=Feeling    0.2594982298094743 

    Attrib JP=Judging    -4.628070499944366 
Sigmoid Node 5 

    Inputs    Weights 

    Threshold    -1.2857259631462126 

    Attrib Gender=MALE    2.6256636016308184 

    Attrib Knowledge    10.85448628883054 

    Attrib IE=Introvert    2.639042912070103 

    Attrib SN=Inituiting    -1.6077392161628798 

    Attrib FT=Feeling    3.846591774591153 

    Attrib JP=Judging    6.687131032861244 

Class Effective 

    Input 
    Node 0 

Class Ineffective 

    Input 

    Node 1 
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Time taken to build model: 0.12 seconds 

 

=== Stratified cross-validation === 

=== Summary === 
 

Correctly Classified Instances         153               85      % 

Incorrectly Classified Instances        27               15      % 

Kappa statistic                          0.662  

Mean absolute error                      0.1846 

Root mean squared error                  0.3638 

Relative absolute error                 40.2288 % 

Root relative squared error             75.9792 % 

Total Number of Instances              180      

 

=== Detailed Accuracy By Class === 

 
                 TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                 0.922    0.281    0.856      0.922    0.888      0.666    0.874     0.905     Effective 

                 0.719    0.078    0.836      0.719    0.773      0.666    0.874     0.834     Ineffective 

Weighted Avg.    0.850    0.209    0.849      0.850    0.847      0.666    0.874     0.880      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 107   9 |   a = Effective 

  18  46 |   b = Ineffective 

 Hard TP 

=== Run information === 

 

Scheme:       weka.classifiers.functions.MultilayerPerceptron -L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a 

Relation:     hardTP  

Instances:    180 

Attributes:   7 

              Gender 

              Knowledge 

              IE 

              SN 

              FT 

              JP 
              class 

Test mode:    10-fold cross-validation 

 

=== Classifier model (full training set) === 

 

Sigmoid Node 0 

    Inputs    Weights 

    Threshold    6.749454483898948 

    Node 2    -5.891968918232094 

    Node 3    -1.9431110314402587 

    Node 4    -5.941932241639852 
    Node 5    -5.605640441552534 

Sigmoid Node 1 

    Inputs    Weights 
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    Threshold    -6.74945710251745 

    Node 2    5.89197137132199 

    Node 3    1.9431112183019503 

    Node 4    5.941934803239858 

    Node 5    5.605642912082491 
Sigmoid Node 2 

    Inputs    Weights 

    Threshold    3.7923355025233945 

    Attrib Gender=MALE    -2.754960570670259 

    Attrib Knowledge    -3.6537758551882233 

    Attrib IE=Introvert    -10.191853420058983 

    Attrib SN=Inituiting    6.406966929060274 

    Attrib FT=Feeling    3.3751456067965697 

    Attrib JP=Judging    -8.441706674597368 

Sigmoid Node 3 

    Inputs    Weights 

    Threshold    9.67122823469385 
    Attrib Gender=MALE    -5.868995538609118 

    Attrib Knowledge    -10.174776639899621 

    Attrib IE=Introvert    -2.5492162088030956 

    Attrib SN=Inituiting    0.3676612734120312 

    Attrib FT=Feeling    7.937850673599199 

    Attrib JP=Judging    -0.5429045564379983 

Sigmoid Node 4 

    Inputs    Weights 

    Threshold    -10.974570833535184 

    Attrib Gender=MALE    3.4103457217936923 

    Attrib Knowledge    -7.735146406566782 
    Attrib IE=Introvert    -0.6282057153681436 

    Attrib SN=Inituiting    -5.435086974770956 

    Attrib FT=Feeling    -4.989358659368399 

    Attrib JP=Judging    5.513238001430623 

Sigmoid Node 5 

    Inputs    Weights 

    Threshold    0.7672781382156343 

    Attrib Gender=MALE    -1.9008896623159002 

    Attrib Knowledge    -12.640560004902985 

    Attrib IE=Introvert    8.911869390538838 

    Attrib SN=Inituiting    -2.343580264323733 

    Attrib FT=Feeling    -4.5928840990501305 
    Attrib JP=Judging    4.376194875912708 

Class Effective 

    Input 

    Node 0 

Class Ineffective 

    Input 

    Node 1 

 

 

Time taken to build model: 0.09 seconds 

 
=== Stratified cross-validation === 

=== Summary === 

 

Correctly Classified Instances         123               68.3333 % 

Incorrectly Classified Instances        57               31.6667 % 
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Kappa statistic                          0.3284 

Mean absolute error                      0.3907 

Root mean squared error                  0.5115 

Relative absolute error                 83.0219 % 

Root relative squared error            105.4715 % 
Total Number of Instances              180      

 

=== Detailed Accuracy By Class === 

 

                 TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                 0.588    0.259    0.580      0.588    0.584      0.328    0.643     0.495     Effective 

                 0.741    0.412    0.748      0.741    0.744      0.328    0.643     0.720     Ineffective 

Weighted Avg.    0.683    0.354    0.684      0.683    0.684      0.328    0.643     0.635      

 

=== Confusion Matrix === 

 

  a  b   <-- classified as 
 40 28 |  a = Effective 

 29 83 |  b = Ineffective 
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Appendix W 

Sample of K-Nearest Neighbour Algorithm (WEKA outputs) 

This appendix includes a sample output from the KNN algorithm in WEKA. It displays the 

classification results and performance metrics, helping to evaluate the algorithm's accuracy in 

predicting developer performance.   

 

The results of KNN when K value is 13 

 Easy NTP 

=== Run information === 

 

Scheme:       weka.classifiers.lazy.IBk -K 13 -W 0 -A "weka.core.neighboursearch.LinearNNSearch -A 

\"weka.core.EuclideanDistance -R first-last\"" 
Relation:     easyNTP  

Instances:    180 

Attributes:   7 

              Gender 

              Knowledge 

              IE 

              SN 

              FT 

              JP 

              class 

Test mode:    10-fold cross-validation 

 
=== Classifier model (full training set) === 

 

IB1 instance-based classifier 

using 13 nearest neighbour(s) for classification 

 

 

Time taken to build model: 0 seconds 

 

=== Stratified cross-validation === 

=== Summary === 

 
Correctly Classified Instances         169               93.8889 % 

Incorrectly Classified Instances        11                6.1111 % 

Kappa statistic                          0      

Mean absolute error                      0.0916 

Root mean squared error                  0.2249 

Relative absolute error                 76.6376 % 

Root relative squared error             93.8053 % 

Total Number of Instances              180      

 

=== Detailed Accuracy By Class === 

 
                 TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                 1.000    1.000         0.939        1.000             0.968       ?          0.857     0.985     Effective 

                 0.000    0.000               0        0.000              0              ?        0.857       0.239     Ineffective 

Weighted Avg.0.939    0.939            0        0.939              0             ?         0.857        0.939      
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=== Confusion Matrix === 

 

   a   b   <-- classified as 

 169   0 |   a = Effective 

  11   0 |   b = Ineffective 

 Easy TP 

=== Run information === 

 

Scheme:       weka.classifiers.lazy.IBk -K 13 -W 0 -A "weka.core.neighboursearch.LinearNNSearch -A 

\"weka.core.EuclideanDistance -R first-last\"" 

Relation:     easyTP  

Instances:    180 

Attributes:   7 

              Gender 

              Knowledge 

              IE 

              SN 
              FT 

              JP 

              class 

Test mode:    10-fold cross-validation 

 

=== Classifier model (full training set) === 

 

IB1 instance-based classifier 

using 13 nearest neighbour(s) for classification 

 

 
Time taken to build model: 0 seconds 

 

=== Stratified cross-validation === 

=== Summary === 

 

Correctly Classified Instances         156               86.6667 % 

Incorrectly Classified Instances        24               13.3333 % 

Kappa statistic                          0      

Mean absolute error                      0.2053 

Root mean squared error                  0.3399 

Relative absolute error                 87.5438 % 

Root relative squared error             99.897  % 
Total Number of Instances              180      

 

=== Detailed Accuracy By Class === 

 

                 TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                 1.000    1.000    0.867      1.000    0.929      ?        0.633     0.898     Effective 

                 0.000    0.000    ?          0.000    ?          ?        0.633     0.207     Ineffective 

Weighted Avg.    0.867    0.867    ?          0.867    ?          ?        0.633     0.806      

 

=== Confusion Matrix === 

 
   a   b   <-- classified as 

 156   0 |   a = Effective 

  24   0 |   b = Ineffective 
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 Medium NTP 

=== Run information === 

 

Scheme:       weka.classifiers.lazy.IBk -K 13 -W 0 -A "weka.core.neighboursearch.LinearNNSearch -A 

\"weka.core.EuclideanDistance -R first-last\"" 
Relation:     mediumNTP  

Instances:    180 

Attributes:   7 

              Gender 

              Knowledge 

              IE 

              SN 

              FT 

              JP 

              class 

Test mode:    10-fold cross-validation 

 
=== Classifier model (full training set) === 

 

IB1 instance-based classifier 

using 13 nearest neighbour(s) for classification 

 

 

Time taken to build model: 0 seconds 

 

=== Stratified cross-validation === 

=== Summary === 

 
Correctly Classified Instances         142               78.8889 % 

Incorrectly Classified Instances        38               21.1111 % 

Kappa statistic                          0.1913 

Mean absolute error                      0.2769 

Root mean squared error                  0.3708 

Relative absolute error                 78.2821 % 

Root relative squared error             88.3921 % 

Total Number of Instances              180      

 

=== Detailed Accuracy By Class === 

 

                 TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 
                 0.971    0.829    0.799      0.971    0.877      0.249    0.800     0.905     Effective 

                 0.171    0.029    0.636      0.171    0.269      0.249    0.800     0.548     Ineffective 

Weighted Avg.    0.789    0.647    0.762      0.789    0.738      0.249    0.800     0.824      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 135   4 |   a = Effective 

  34   7 |   b = Ineffective 

 Medium TP 

=== Run information === 
 

Scheme:       weka.classifiers.lazy.IBk -K 13 -W 0 -A "weka.core.neighboursearch.LinearNNSearch -A 
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\"weka.core.EuclideanDistance -R first-last\"" 

Relation:     mediumTP  

Instances:    180 

Attributes:   7 

              Gender 
              Knowledge 

              IE 

              SN 

              FT 

              JP 

              class 

Test mode:    10-fold cross-validation 

 

=== Classifier model (full training set) === 

 

IB1 instance-based classifier 

using 13 nearest neighbour(s) for classification 
 

 

Time taken to build model: 0 seconds 

 

=== Stratified cross-validation === 

=== Summary === 

 

Correctly Classified Instances         115               63.8889 % 

Incorrectly Classified Instances        65               36.1111 % 

Kappa statistic                          0.2313 

Mean absolute error                      0.4427 
Root mean squared error                  0.4758 

Relative absolute error                 90.6707 % 

Root relative squared error             96.2946 % 

Total Number of Instances              180      

 

=== Detailed Accuracy By Class === 

 

                 TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                 0.788    0.566    0.656      0.788    0.716      0.239    0.660     0.694     Effective 

                 0.434    0.212    0.600      0.434    0.504      0.239    0.660     0.564     Ineffective 

Weighted Avg.    0.639    0.416    0.632      0.639    0.627      0.239    0.660     0.639      

 
=== Confusion Matrix === 

 

  a  b   <-- classified as 

 82 22 |  a = Effective 

 43 33 |  b = Ineffective 

 Hard NTP 

=== Run information === 

 

Scheme:       weka.classifiers.lazy.IBk -K 13 -W 0 -A "weka.core.neighboursearch.LinearNNSearch -A 

\"weka.core.EuclideanDistance -R first-last\"" 

Relation:     hardNTP  
Instances:    180 

Attributes:   7 

              Gender 
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              Knowledge 

              IE 

              SN 

              FT 

              JP 
              class 

Test mode:    10-fold cross-validation 

 

=== Classifier model (full training set) === 

 

IB1 instance-based classifier 

using 13 nearest neighbour(s) for classification 

 

 

Time taken to build model: 0 seconds 

 

=== Stratified cross-validation === 
=== Summary === 

 

Correctly Classified Instances         144               80      % 

Incorrectly Classified Instances        36               20      % 

Kappa statistic                          0.5199 

Mean absolute error                      0.3372 

Root mean squared error                  0.3986 

Relative absolute error                 73.4745 % 

Root relative squared error             83.2342 % 

Total Number of Instances              180      

 
=== Detailed Accuracy By Class === 

 

                 TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                 0.957    0.484    0.782      0.957    0.860      0.554    0.833     0.861     Effective 

                 0.516    0.043    0.868      0.516    0.647      0.554    0.833     0.740     Ineffective 

Weighted Avg.    0.800    0.327    0.813      0.800    0.785      0.554    0.833     0.818      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 111   5 |   a = Effective 

  31  33 |   b = Ineffective 

 Hard TP 

=== Run information === 

 

Scheme:       weka.classifiers.lazy.IBk -K 13 -W 0 -A "weka.core.neighboursearch.LinearNNSearch -A 

\"weka.core.EuclideanDistance -R first-last\"" 

Relation:     hardTP  

Instances:    180 

Attributes:   7 

              Gender 

              Knowledge 

              IE 
              SN 

              FT 

              JP 
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              class 

Test mode:    10-fold cross-validation 

 

=== Classifier model (full training set) === 

 
IB1 instance-based classifier 

using 13 nearest neighbour(s) for classification 

 

 

Time taken to build model: 0 seconds 

 

=== Stratified cross-validation === 

=== Summary === 

 

Correctly Classified Instances         117               65      % 

Incorrectly Classified Instances        63               35      % 

Kappa statistic                          0.1925 
Mean absolute error                      0.4422 

Root mean squared error                  0.4756 

Relative absolute error                 93.9554 % 

Root relative squared error             98.0794 % 

Total Number of Instances              180      

 

=== Detailed Accuracy By Class === 

 

                 TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                 0.338    0.161    0.561      0.338    0.422      0.205    0.636     0.475     Effective 

                 0.839    0.662    0.676      0.839    0.749      0.205    0.636     0.734     Ineffective 
Weighted Avg.    0.650    0.472    0.633      0.650    0.625      0.205    0.636     0.636      

 

=== Confusion Matrix === 

 

  a  b   <-- classified as 

 23 45 |  a = Effective 

 18 94 |  b = Ineffective 
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Appendix X 

Sample of Support Vector Machine (WEKA output) 

This appendix contains the output from the SVM model in WEKA, providing classification results 

and metrics used to evaluate the model's performance in predicting the outcomes. 

 Easy NTP 

=== Run information === 

 

Scheme:       weka.classifiers.functions.SMO -C 1.0 -L 0.001 -P 1.0E-12 -N 0 -V -1 -W 1 -K 

"weka.classifiers.functions.supportVector.PolyKernel -E 1.0 -C 250007" -calibrator 

"weka.classifiers.functions.Logistic -R 1.0E-8 -M -1 -num-decimal-places 4" 

Relation:     easyNTP  

Instances:    180 
Attributes:   7 

              Gender 

              Knowledge 

              IE 

              SN 

              FT 

              JP 

              class 

Test mode:    10-fold cross-validation 

 

=== Classifier model (full training set) === 
 

SMO 

 

Kernel used: 

  Linear Kernel: K(x,y) = <x,y> 

 

Classifier for classes: Effective, Ineffective 

 

BinarySMO 

 

Machine linear: showing attribute weights, not support vectors. 

 
        -0.004  * (normalized) Gender=MALE 

 +      -0.018  * (normalized) Knowledge 

 +      -0.0014 * (normalized) IE=Introvert 

 +      -0.0004 * (normalized) SN=Inituiting 

 +      -0.0005 * (normalized) FT=Feeling 

 +       0.0019 * (normalized) JP=Judging 

 -       0.9942 

 

Number of kernel evaluations: 2289 (82.396% cached) 

 

Time taken to build model: 0.2 seconds 
 

=== Stratified cross-validation === 

=== Summary === 

 

Correctly Classified Instances         169               93.8889 % 

Incorrectly Classified Instances        11                6.1111 % 

Kappa statistic                          0      
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Mean absolute error                      0.0611 

Root mean squared error                  0.2472 

Relative absolute error                 51.1338 % 

Root relative squared error            103.1196 % 

Total Number of Instances              180      
 

=== Detailed Accuracy By Class === 

 

                 TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                 1.000    1.000    0.939      1.000    0.968      ?        0.500     0.939     Effective 

                 0.000    0.000    ?          0.000    ?          ?        0.500     0.061     Ineffective 

Weighted Avg.    0.939    0.939    ?          0.939    ?          ?        0.500     0.885      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 169   0 |   a = Effective 
  11   0 |   b = Ineffective 

 

 Easy TP  

=== Run information === 

 

Scheme:       weka.classifiers.functions.SMO -C 1.0 -L 0.001 -P 1.0E-12 -N 0 -V -1 -W 1 -K 

"weka.classifiers.functions.supportVector.PolyKernel -E 1.0 -C 250007" -calibrator 

"weka.classifiers.functions.Logistic -R 1.0E-8 -M -1 -num-decimal-places 4" 

Relation:     easyTP  

Instances:    180 

Attributes:   7 
              Gender 

              Knowledge 

              IE 

              SN 

              FT 

              JP 

              class 

Test mode:    10-fold cross-validation 

 

=== Classifier model (full training set) === 

 

SMO 
 

Kernel used: 

  Linear Kernel: K(x,y) = <x,y> 

 

Classifier for classes: Effective, Ineffective 

 

BinarySMO 

 

Machine linear: showing attribute weights, not support vectors. 

 

        -0.0012 * (normalized) Gender=MALE 
 +      -0.0051 * (normalized) Knowledge 

 +       0.0007 * (normalized) IE=Introvert 

 +       0.0004 * (normalized) SN=Inituiting 

 +      -0.0003 * (normalized) FT=Feeling 

 +       0.0002 * (normalized) JP=Judging 
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 -       0.9978 

 

Number of kernel evaluations: 5228 (81.418% cached) 

 

 
 

Time taken to build model: 0.01 seconds 

 

=== Stratified cross-validation === 

=== Summary === 

 

Correctly Classified Instances         156               86.6667 % 

Incorrectly Classified Instances        24               13.3333 % 

Kappa statistic                          0      

Mean absolute error                      0.1333 

Root mean squared error                  0.3651 

Relative absolute error                 56.8458 % 
Root relative squared error            107.3283 % 

Total Number of Instances              180      

 

=== Detailed Accuracy By Class === 

 

                 TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                 1.000    1.000    0.867      1.000    0.929      ?        0.500     0.867     Effective 

                 0.000    0.000    ?          0.000    ?          ?        0.500     0.133     Ineffective 

Weighted Avg.    0.867    0.867    ?          0.867    ?          ?        0.500     0.769      

 

=== Confusion Matrix === 
 

   a   b   <-- classified as 

 156   0 |   a = Effective 

  24   0 |   b = Ineffective 

 Medium NTP 

=== Run information === 

 

Scheme:       weka.classifiers.functions.SMO -C 1.0 -L 0.001 -P 1.0E-12 -N 0 -V -1 -W 1 -K 

"weka.classifiers.functions.supportVector.PolyKernel -E 1.0 -C 250007" -calibrator 

"weka.classifiers.functions.Logistic -R 1.0E-8 -M -1 -num-decimal-places 4" 

Relation:     mediumNTP  

Instances:    180 

Attributes:   7 

              Gender 

              Knowledge 
              IE 

              SN 

              FT 

              JP 

              class 

Test mode:    10-fold cross-validation 

 

=== Classifier model (full training set) === 

 

SMO 
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Kernel used: 

  Linear Kernel: K(x,y) = <x,y> 

 

Classifier for classes: Effective, Ineffective 

 
BinarySMO 

 

Machine linear: showing attribute weights, not support vectors. 

 

        -0.6142 * (normalized) Gender=MALE 

 +      -3.7482 * (normalized) Knowledge 

 +       0.1089 * (normalized) IE=Introvert 

 +      -0.095  * (normalized) SN=Inituiting 

 +      -0.0398 * (normalized) FT=Feeling 

 +       0.5802 * (normalized) JP=Judging 

 +       1.1749 

 
Number of kernel evaluations: 4569 (75.082% cached) 

 

Time taken to build model: 0.04 seconds 

 

=== Stratified cross-validation === 

=== Summary === 

 

Correctly Classified Instances         155               86.1111 % 

Incorrectly Classified Instances        25               13.8889 % 

Kappa statistic                          0.5799 

Mean absolute error                      0.1389 
Root mean squared error                  0.3727 

Relative absolute error                 39.272  % 

Root relative squared error             88.8411 % 

Total Number of Instances              180      

 

=== Detailed Accuracy By Class === 

 

                 TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                 0.935    0.390    0.890      0.935    0.912      0.584    0.773     0.883     Effective 

                 0.610    0.065    0.735      0.610    0.667      0.584    0.773     0.537     Ineffective 

Weighted Avg.    0.861    0.316    0.855      0.861    0.856      0.584    0.773     0.804      

 
=== Confusion Matrix === 

 

   a   b   <-- classified as 

 130   9 |   a = Effective 

  16  25 |   b = Ineffective 

 Medium TP  

=== Run information === 

 

Scheme:       weka.classifiers.functions.SMO -C 1.0 -L 0.001 -P 1.0E-12 -N 0 -V -1 -W 1 -K 

"weka.classifiers.functions.supportVector.PolyKernel -E 1.0 -C 250007" -calibrator 

"weka.classifiers.functions.Logistic -R 1.0E-8 -M -1 -num-decimal-places 4" 
Relation:     mediumTP  

Instances:    180 

Attributes:   7 
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              Gender 

              Knowledge 

              IE 

              SN 

              FT 
              JP 

              class 

Test mode:    10-fold cross-validation 

 

=== Classifier model (full training set) === 

 

SMO 

 

Kernel used: 

  Linear Kernel: K(x,y) = <x,y> 

 

Classifier for classes: Effective, Ineffective 
 

BinarySMO 

 

Machine linear: showing attribute weights, not support vectors. 

 

        -0.4416 * (normalized) Gender=MALE 

 +      -3.0824 * (normalized) Knowledge 

 +      -0.0853 * (normalized) IE=Introvert 

 +       0.0504 * (normalized) SN=Inituiting 

 +       0.2821 * (normalized) FT=Feeling 

 +       0.0285 * (normalized) JP=Judging 
 +       1.6227 

 

Number of kernel evaluations: 5828 (76.486% cached) 

 

 

 

Time taken to build model: 0.03 seconds 

 

=== Stratified cross-validation === 

=== Summary === 

 

Correctly Classified Instances         126               70      % 
Incorrectly Classified Instances        54               30      % 

Kappa statistic                          0.3649 

Mean absolute error                      0.3    

Root mean squared error                  0.5477 

Relative absolute error                 61.4488 % 

Root relative squared error            110.8552 % 

Total Number of Instances              180      

 

=== Detailed Accuracy By Class === 

 

                 TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 
                 0.827    0.474    0.705      0.827    0.761      0.373    0.677     0.683     Effective 

                 0.526    0.173    0.690      0.526    0.597      0.373    0.677     0.563     Ineffective 

Weighted Avg.    0.700    0.347    0.698      0.700    0.692      0.373    0.677     0.632      

 

=== Confusion Matrix === 
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  a  b   <-- classified as 

 86 18 |  a = Effective 

 36 40 |  b = Ineffective 

 Hard NTP  

 

=== Run information === 

 

Scheme:       weka.classifiers.functions.SMO -C 1.0 -L 0.001 -P 1.0E-12 -N 0 -V -1 -W 1 -K 

"weka.classifiers.functions.supportVector.PolyKernel -E 1.0 -C 250007" -calibrator 

"weka.classifiers.functions.Logistic -R 1.0E-8 -M -1 -num-decimal-places 4" 

Relation:     hardNTP  

Instances:    180 

Attributes:   7 

              Gender 

              Knowledge 

              IE 
              SN 

              FT 

              JP 

              class 

Test mode:    10-fold cross-validation 

 

=== Classifier model (full training set) === 

 

SMO 

 

Kernel used: 
  Linear Kernel: K(x,y) = <x,y> 

 

Classifier for classes: Effective, Ineffective 

 

BinarySMO 

 

Machine linear: showing attribute weights, not support vectors. 

 

        -0.114  * (normalized) Gender=MALE 

 +      -4.4003 * (normalized) Knowledge 

 +       0.4335 * (normalized) IE=Introvert 

 +      -0.3197 * (normalized) SN=Inituiting 
 +      -0.2605 * (normalized) FT=Feeling 

 +      -0.0261 * (normalized) JP=Judging 

 +       2.1269 

 

Number of kernel evaluations: 5468 (79.383% cached) 

 

Time taken to build model: 0.02 seconds 

 

=== Stratified cross-validation === 

=== Summary === 

 
Correctly Classified Instances         150               83.3333 % 

Incorrectly Classified Instances        30               16.6667 % 

Kappa statistic                          0.6204 
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Mean absolute error                      0.1667 

Root mean squared error                  0.4082 

Relative absolute error                 36.3153 % 

Root relative squared error             85.2535 % 

Total Number of Instances              180      
 

=== Detailed Accuracy By Class === 

 

                 TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                 0.922    0.328    0.836      0.922    0.877      0.628    0.797     0.821     Effective 

                 0.672    0.078    0.827      0.672    0.741      0.628    0.797     0.672     Ineffective 

Weighted Avg.    0.833    0.239    0.833      0.833    0.829      0.628    0.797     0.768      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 107   9 |   a = Effective 

  21  43 |   b = Ineffective 

 Hard TP 

=== Run information === 

 

Scheme:       weka.classifiers.functions.SMO -C 1.0 -L 0.001 -P 1.0E-12 -N 0 -V -1 -W 1 -K 

"weka.classifiers.functions.supportVector.PolyKernel -E 1.0 -C 250007" -calibrator 

"weka.classifiers.functions.Logistic -R 1.0E-8 -M -1 -num-decimal-places 4" 

Relation:     hardTP  

Instances:    180 

Attributes:   7 

              Gender 
              Knowledge 

              IE 

              SN 

              FT 

              JP 

              class 

Test mode:    10-fold cross-validation 

 

=== Classifier model (full training set) === 

 

SMO 

 
Kernel used: 

  Linear Kernel: K(x,y) = <x,y> 

 

Classifier for classes: Effective, Ineffective 

 

BinarySMO 

 

Machine linear: showing attribute weights, not support vectors. 

 

        -0.7429 * (normalized) Gender=MALE 

 +      -2.3056 * (normalized) Knowledge 
 +       0.3795 * (normalized) IE=Introvert 

 +       0.4815 * (normalized) SN=Inituiting 

 +       0.3004 * (normalized) FT=Feeling 
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 +      -0.3786 * (normalized) JP=Judging 

 +       1.8975 

 

Number of kernel evaluations: 6197 (77.3% cached) 

 
 

 

Time taken to build model: 0.03 seconds 

 

=== Stratified cross-validation === 

=== Summary === 

 

Correctly Classified Instances         115               63.8889 % 

Incorrectly Classified Instances        65               36.1111 % 

Kappa statistic                          0.1873 

Mean absolute error                      0.3611 

Root mean squared error                  0.6009 
Relative absolute error                 76.7348 % 

Root relative squared error            123.9144 % 

Total Number of Instances              180      

 

=== Detailed Accuracy By Class === 

 

                 TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                 0.382    0.205    0.531      0.382    0.444      0.193    0.588     0.436     Effective 

                 0.795    0.618    0.679      0.795    0.733      0.193    0.588     0.668     Ineffective 

Weighted Avg.    0.639    0.462    0.623      0.639    0.624      0.193    0.588     0.580      

 
=== Confusion Matrix === 

 

  a  b   <-- classified as 

 26 42 |  a = Effective 

 23 89 |  b = Ineffective 
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Appendix Y 

Experimental Session Script 

This appendix provides the detailed script used during experimental sessions to communicate with 

participants about the task's duration. The script includes time duration announcements made 

throughout the tasks to ensure participants are aware of the total time available and how much time 

remains. This helped induce the desired level of time pressure (TP), particularly for the TP tasks. 

No-Time-Pressure (NTP) – Instructions  

**ROUND 1:** 

[Instructions are in italics and bold, while regular text represents spoken content.] 

 

**10:00 AM:** 

Welcome to our experimental session! Today, we have a series of programming tasks in C++ lined 

up for you. Please pay close attention to the instructions provided for each task. 

 

Before we move forward, could each of you please confirm that you've completed the consent form 

and the questionnaire? 

 

**10:20 AM:** 

Once everyone is ready, 

 

Let's begin with **Task 1**: 

**Time Context:** No Time Pressure (NTP) 

**Task Complexity:** Easy 

**Estimated Time:** 45 minutes 

 

You have a total of 45 minutes for this task. We'll remind you of the remaining time only once, so 

please focus on completing the task efficiently. 

 

**10:30 AM:** 

Take the next 5 minutes to review the task. If you have any questions or uncertainties, don't hesitate 

to ask for clarification. And don't forget to include your student ID on the sheet. 

 

**10:40 AM:** 
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You now have 45 minutes to complete the task. If you finish early, raise your hand to indicate 

you're done. 

 

If someone finishes the task, timestamp their sheet, and they can choose to continue if they wish. 

 

Remember, this is an individual task, so please refrain from discussing it with your peers. If you 

have any questions about the task, feel free to ask me. You can begin now. 

 

Time is ticking... 

 

If someone asks about the time, simply provide them with the current time. If they have questions 

about the task, encourage them to do what they understand from the instructions. 

 

**11:25 AM:** 

Time's up! Please stop your work and pass your sheets to the person sitting next to you. We'll collect 

them from there. 

Now, we'd like to gather your feedback on the perceived task load. NASA developed this technique 

to assess how individuals perceive the workload of a task. 

We're handing out the Magnitude of Load (Ratings) sheets. On these sheets, you'll find various 

sources of workload demands, each with a rating scale ranging from 0 to 100 in increments of 5. 

Your task is to rate each workload source by marking the appropriate point on the scale. Feel free 

to ask if you have any questions. 

 

**11:40 AM:** 

We'll now collect all NASA-TLX materials, including your ratings sheets. Please ensure that you've 

placed your student ID on all the materials you're returning. Thank you! 
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**Experimental Session Script** 

Time-Pressure (TP) – Instructions  

**ROUND 2:** 

[Instructions are in italics and bold, while regular text represents spoken content.] 

 

**10:00 AM:** 

Welcome to our experimental session! Today, we have another series of programming tasks in 

C++. Please make sure to carefully follow the instructions provided for each task. 

 

Before we continue, may I please confirm with each of you whether you've signed the consent form 

and completed the questionnaire? 

 

**10:20 AM:** 

Once everyone is ready, 

 

Let's move on to **Task 2**: 

**Time Context:** Time Pressure (TP) 

**Task Complexity:** Easy 

**Estimated Time:** 15 minutes 

 

For this task, you have 15 minutes. We'll give you reminders at the 8-minute mark and every 2 

minutes after that. Please focus on completing the task efficiently within this time frame. 

 

**10:30 AM:** 

Take the next 5 minutes to quickly review the task. If there's anything you don't understand, please 

feel free to ask. Also, don't forget to write your student ID on the sheet. 

 

**10:40 AM:** 

You have 15 minutes to complete the entire task. If you finish before the time is up, please let me 

know by raising your hand. 

 



461 
 

When someone finishes the task, I'll timestamp the sheet against the latest easy task under TP 

they've completed, and they can choose to continue if they wish. 

 

This is an individual task, so please refrain from discussing it with your peers. If you have any 

questions about the task, direct them to me. 

 

You may begin now. 

Time is ticking... 

You have Only 8 minutes left to complete the Task.  

Tick, tick, tick…  

You have Only 5 minutes left now for the Task.  

Tick, tick, tick…  

Only 2 minutes left 

 

If someone asks about the time, I'll provide the current time. If there are questions about the 

task, encourage participants to proceed with what they understand. 

 

**10:55 AM:** 

Time's up! Please stop your work and pass your sheets to the person sitting next to you. We'll collect 

them from there. 

Now, we'd like to gather your feedback on the perceived task load. NASA developed this technique 

to assess how individuals perceive the workload of a task. 

We're handing out the Magnitude of Load (Ratings) sheets. These sheets list various sources of 

workload demands, each with a rating scale from 0 to 100 in increments of 5, covering a range 

from low to high. Your task is to rate each workload source by marking a tick on the scale. If you 

have any questions, please don't hesitate to ask. 

**11:10 AM:** 

We'll now collect all NASA-TLX materials, including your ratings sheets. Please ensure that you've 

placed your student ID on all the materials you're returning. Thank you! 
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No-Time-Pressure (NTP) – Instructions  

**ROUND 3:** 

[Instructions are in italics and bold, while regular text represents spoken content.] 

 

**10:00 AM:** 

Welcome to our experimental session! Today, we have another set of programming tasks in C++. 

Please make sure to carefully follow the instructions provided for each task. 

 

**10:20 AM:** 

Once everyone is ready, 

 

Let's proceed with **Task 3**: 

**Time Context:** No Time Pressure (NTP) 

**Task Complexity:** Medium 

**Estimated Time:** 60 minutes 

 

For this task, you have a total of 60 minutes. We'll remind you about the remaining time only once, 

so please focus on completing the task efficiently. 

 

**10:30 AM:** 

Take the next 5 minutes to review the task briefly. If you have any uncertainties or questions, please 

don't hesitate to ask for clarification. Also, don't forget to include your student ID on the sheet. 

 

**10:40 AM:** 

You have the full 60 minutes to complete this task. If you finish before the allotted time, kindly 

raise your hand to indicate your completion. 

 

When someone finishes the task, I'll timestamp the sheet against the medium NTP task they've 

completed, and they can choose to continue if they wish. 

 

Remember, this is an individual task, so please avoid discussing it with your peers. If you have any 

questions about the task, feel free to direct them to me. 
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You may begin now. 

 

Time is ticking... 

 

If someone asks about the time, I'll provide the current time. If there are questions about the 

task, encourage participants to proceed with what they understand. 

 

**11:40 AM:** 

Time's up! Please stop your work and pass your sheets to the person sitting next to you. We'll collect 

them from there. 

 

Now, we'd like to gather your feedback on the perceived task load. NASA developed this technique 

to assess how individuals perceive the workload of a task. 

 

We're handing out the Magnitude of Load (Ratings) sheets. These sheets list various sources of 

workload demands, each with a rating scale from 0 to 100 in increments of 5, covering a range 

from low to high. Your task is to rate each workload source by marking a tick on the scale. If you 

have any questions, please don't hesitate to ask. 

 

**12:00 PM:** 

We'll now collect all NASA-TLX materials, including your ratings sheets. Please ensure that you've 

placed your student ID on all the materials you're returning. Thank you! 

 

 

 

 

 

 

 

 

 

 

 



464 
 

Time-Pressure (TP) – Instructions  

**ROUND 4:** 

[Instructions are in italics and bold, while regular text represents spoken content.] 

 

**10:00 AM:** 

Welcome to our experimental session! Today, we have another set of programming tasks in C++. 

Please make sure to carefully follow the instructions provided for each task. 

 

**10:20 AM:** 

Once everyone is ready, 

 

Let's proceed with **Task 4**: 

**Time Context:** Time Pressure (TP) 

**Task Complexity:** Medium 

**Estimated Time:** 30 minutes 

 

For this task, you have 30 minutes. We'll provide the first reminder after fifteen minutes and 

subsequent reminders every five minutes. Please focus on efficiently completing the task within 

the given time frame. 

 

**10:30 AM:** 

Take the next 5 minutes to quickly review the task. If there's anything you don't understand, please 

don't hesitate to ask for clarification. Also, don't forget to include your student ID on the sheet. 

 

**10:40 AM:** 

You have the full 30 minutes to complete this task. If you finish before the time is up, please let me 

know by raising your hand. 

 

When someone finishes the task, I'll timestamp the sheet against the latest medium TP task 

they've completed, and they can choose to continue if they wish. 

 

Remember, this is an individual task, so please refrain from discussing it with your peers. If you 

have any questions about the task, feel free to direct them to me. 



465 
 

 

You may begin now. 

 

Time is ticking... 

You have Only 15 minutes left to complete the Task.  

Tick, tick, tick…  

You have Only 10 minutes left now for the Task.  

Tick, tick, tick…  

You have Only 5 minutes left now for the Task 

Tick, tick, tick…  

Only 2 minutes left 

If someone asks about the time, I'll provide the current time. If there are questions about the 

task, encourage participants to proceed with what they understand. 

 

**11:10 AM:** 

Time's up! Please stop your work and pass your sheets to the person sitting next to you. We'll collect 

them from there. 

Now, we'd like to gather your feedback on the perceived task load. NASA developed this technique 

to assess how individuals perceive the workload of a task. 

We're handing out the Magnitude of Load (Ratings) sheets. These sheets list various sources of 

workload demands, each with a rating scale from 0 to 100 in increments of 5, covering a range 

from low to high. Your task is to rate each workload source by marking a tick on the scale. If you 

have any questions, please don't hesitate to ask. 

**11:25 AM:** 

We'll now collect all NASA-TLX materials, including your ratings sheets. Please ensure that you've 

placed your student ID on all the materials you're returning. Thank you! 
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No-Time-Pressure (NTP) – Instructions  

**ROUND 5:** 

[Instructions are in italics and bold, while regular text represents spoken content.] 

 

**10:00 AM:** 

Welcome to our experimental session! Today, we have another set of programming tasks in C++. 

Please make sure to carefully follow the instructions provided for each task. 

 

Before we proceed, may I please confirm with each of you whether you've signed the consent form 

and completed the questionnaire? 

 

**10:20 AM:** 

Once everyone is ready, 

 

Let's start with **Task 1**: 

**Time Context:** No Time Pressure (NTP) 

**Task Complexity:** Hard 

**Estimated Time:** 1 hour and 45 minutes 

 

For this task, you have a total of 1 hour and 45 minutes. We'll remind you about the remaining time 

only once, so please focus on efficiently completing the task. 

 

**10:30 AM:** 

Take the next 5 minutes to briefly review the task. If there are any uncertainties or questions, please 

don't hesitate to ask for clarification. Also, ensure that you include your student ID on the sheet. 

 

**10:40 AM:** 

You have the full 1 hour and 45 minutes to complete this task. If you finish before the time is up, 

please let me know by raising your hand. 

When someone finishes the task, I'll timestamp the sheet against the hard NTP task they've 

completed, and they can choose to continue if they wish. 
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Remember, this is an individual task, so please refrain from discussing it with your peers. If you 

have any questions about the task, feel free to direct them to me. 

 

You may begin now. 

 

Time is ticking... 

 

If someone asks about the time, I'll provide the current time. If there are questions about the 

task, encourage participants to proceed with what they understand. 

 

**12:25 PM:** 

Time's up! Please stop your work and pass your sheets to the person sitting next to you. We'll collect 

them from there. 

Now, we'd like to gather your feedback on the perceived task load. NASA developed this technique 

to assess how individuals perceive the workload of a task. 

We're handing out the Magnitude of Load (Ratings) sheets. These sheets list various sources of 

workload demands, each with a rating scale from 0 to 100 in increments of 5, covering a range 

from low to high. Your task is to rate each workload source by marking a tick on the scale. If you 

have any questions, please don't hesitate to ask. 

 

**12:40 PM:** 

We'll now collect all NASA-TLX materials, including your ratings sheets. Please ensure that you've 

placed your student ID on all the materials you're returning. Thank you! 
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Time-Pressure (TP) – Instructions  

**ROUND 6:** 

[Instructions are in italics and bold, while regular text represents spoken content.] 

 

**10:00 AM:** 

Welcome to our experimental session! Today, we have another set of programming tasks in C++. 

Please make sure to carefully follow the instructions provided for each task. 

 

**10:20 AM:** 

Once everyone is ready, 

 

Let's begin with **Task 6**: 

**Time Context:** Time Pressure (TP) 

**Task Complexity:** Hard 

**Estimated Time:** 1 hour and 15 minutes 

 

For this task, you have 1 hour and 15 minutes. We'll provide the first reminder after fifteen minutes 

and subsequent reminders every five minutes. Please focus on efficiently completing the task within 

this time frame. 

 

**10:30 AM:** 

Take the next 5 minutes to quickly review the task. If there's anything you don't understand, please 

don't hesitate to ask for clarification. Also, don't forget to include your student ID on the sheet. 

 

**10:40 AM:** 

You have the full 1 hour and 15 minutes to complete this task. If you finish before the time is up, 

please let me know by raising your hand. 

 

When someone finishes the task, I'll timestamp the sheet against the latest medium TP task 

they've completed, and they can choose to continue if they wish. 

 

Remember, this is an individual task, so please refrain from discussing it with your peers. If you 

have any questions about the task, feel free to direct them to me. 
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You may begin now. 

Time is ticking... 

You have Only 50 minutes left now for the Task.  

Tick, tick, tick…  

You have Only 40 minutes left now for the Task 

Tick, tick, tick…  

You have Only 30 minutes left now for the Task.  

Tick, tick, tick…  

You have Only 20 minutes left now for the Task 

Tick, tick, tick…  

You have Only 15 minutes left now for the Task.  

Tick, tick, tick…  

You have Only 10 minutes left now for the Task 

Tick, tick, tick…  

You have Only 5 minutes left now for the Task.  

Tick, tick, tick…  

Only 2 minutes left 

 

If someone asks about the time, I'll provide the current time. If there are questions about the 

task, encourage participants to proceed with what they understand. 

 

**11:55 AM:** 

Time's up! Please stop your work and pass your sheets to the person sitting next to you. We'll collect 

them from there. 

 

Now, we'd like to gather your feedback on the perceived task load. NASA developed this technique 

to assess how individuals perceive the workload of a task. 

 

We're handing out the Magnitude of Load (Ratings) sheets. These sheets list various sources of 

workload demands, each with a rating scale from 0 to 100 in increments of 5, covering a range 

from low to high. Your task is to rate each workload source by marking a tick on the scale. If you 

have any questions, please don't hesitate to ask. 
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**12:20 PM:** 

We'll now collect all NASA-TLX materials, including your ratings sheets. Please ensure that you've 

placed your student ID on all the materials you're returning. Thank you! 
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Appendix Z (A) 

Photos of Experiments 

This appendix contains photographs taken during the experimental sessions, capturing the setup 

and participants performing the tasks. These photos provide a visual representation of the 

experimental environment and demonstrate the conditions under which data were collected. 
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Appendix Z (B) 

Photos of Case Studies 

This appendix contains photographs taken during the ovbersavation of case studies in software 

houses, capturing the setup and participants performing the tasks. These photos provide a visual 

representation and demonstrate the conditions under which data were collected. 
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