

The copyright © of this thesis belongs to its rightful author and/or other copyright owner. Copies can be accessed and downloaded for non-commercial or learning purposes without any charge and permission. The thesis cannot be reproduced or quoted as a whole without the permission from its rightful owner. No alteration or changes in format is allowed without permission from its rightful owner.

**i-SYNERGY: AN INTEGRATED PREDICTIVE MODEL OF TIME
PRESSURE, PERSONALITY TYPES, GENDER, KNOWLEDGE
AND TASK COMPLEXITY TO DETERMINE SOFTWARE
DEVELOPER'S PERFORMANCE**

DOCTOR OF PHILOSOPHY
UNIVERSITI UTARA MALAYSIA
2025

Awang Had Salleh
Graduate School
of Arts And Sciences

Universiti Utara Malaysia

PERAKUAN KERJA TESIS / DISERTASI
(*Certification of thesis / dissertation*)

Kami, yang bertandatangan, memperakukan bahawa
(*We, the undersigned, certify that*)

RUQAYA GILAL

calon untuk Ijazah **PhD**
(*candidate for the degree of*)

telah mengemukakan tesis / disertasi yang bertajuk:
(*has presented his/her thesis / dissertation of the following title*):

**"I-SYNERGY : AN INTEGRATED PREDICTIVE MODEL OF TIME PRESSURE,
PERSONALITY TYPES, GENDER, KNOWLEDGE AND TASK COMPLEXITY
TO DETERMINE SOFTWARE DEVELOPER'S PERFORMANCE"**

seperti yang tercatat di muka surat tajuk dan kulit tesis / disertasi.
(*as it appears on the title page and front cover of the thesis / dissertation*).

Bahawa tesis/disertasi tersebut boleh diterima dari segi bentuk serta kandungan dan meliputi bidang ilmu dengan memuaskan, sebagaimana yang ditunjukkan oleh calon dalam ujian lisan yang diadakan pada : **10 September 2024**.

*That the said thesis/dissertation is acceptable in form and content and displays a satisfactory knowledge of the field of study as demonstrated by the candidate through an oral examination held on:
10 September 2024.*

Pengerusi Viva:
(Chairman for VIVA)

Assoc. Prof. Ts. Dr. Nor Laily Hashim

Tandatangan
(Signature)

Pemeriksa Luar:
(External Examiner)

Prof. Dr. Noreen Izza Arshad

Tandatangan
(Signature)

Pemeriksa Dalam:
(Internal Examiner)

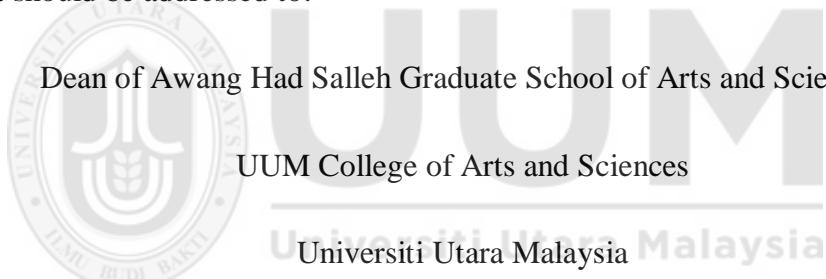
Ts. Dr. Nur Hani Zulkifli Abai

Tandatangan
(Signature)

Nama Penyelia/Penyelia-penyalia: **Assoc. Prof. Dr. Mazni Omar**
(Name of Supervisor/Supervisors)

Tandatangan
(Signature)

Nama Penyelia/Penyelia-penyalia: **Dr. Mawarny Md. Rejab**
(Name of Supervisor/Supervisors)


Tandatangan
(Signature)

Tarikh:
(Date) **10 September 2024**

Permission to Use

In presenting this thesis in fulfilment of the requirements for a postgraduate degree from Universiti Utara Malaysia, I agree that the Universiti Library may make it freely available for inspection. I further agree that permission for the copying of this thesis in any manner, in whole or in part, for scholarly purpose may be granted by my supervisor(s) or, in their absence, by the Dean of Awang Had Salleh Graduate School of Arts and Sciences. It is understood that any copying, publication, or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use which may be made of any material from my thesis.

Requests for permission to copy or to make other use of materials in this thesis, in whole or in part should be addressed to:

06010 UUM Sintok

Abstrak

Faktor manusia memainkan peranan penting dalam kejuruteraan perisian (SE) kerana perisian dibangunkan dan digunakan oleh manusia. Salah satu sebab utama kegagalan projek perisian adalah tidak memberikan tugas kepada individu yang sesuai untuk tugas yang tepat semasa perancangan projek. Isu ini menjadi lebih kritikal apabila pembangun perisian bekerja di bawah tekanan masa (TP), yang sering menyebabkan prestasi kurang baik dan kelewatan projek. Setiap jenis personaliti mempunyai cara tersendiri untuk mengatasi TP, dan perbezaan gender mempengaruhi cara pembangun perisian menangani TP, yang memberikan hasil yang berbeza. Di samping itu, kompleksiti tugas dan pengetahuan pembangun saling berhubung dengan jenis personaliti dan gender, yang berpotensi mempengaruhi prestasi projek di bawah TP. Tujuan utama kajian ini adalah untuk mencadangkan model i-SYNERGY dengan mengkaji hubungan antara TP, jenis personaliti, gender, pengetahuan, dan kompleksiti tugas. Untuk membangunkan model ini, bukti empirikal dikumpulkan daripada eksperimen terkawal yang dijalankan bersama pelajar SE, dan digeneralisasikan daripada data industri melalui dua kajian kes. Indikator jenis personaliti Myers-Briggs (MBTI) dan indeks beban tugas NASA (TLX) digunakan untuk mengukur jenis personaliti dan TP. Analisis data dibahagikan kepada dua peringkat. Peringkat pertama melibatkan pemeriksaan angka data untuk membangunkan model, manakala peringkat kedua melibatkan eksperimen ramalan untuk membangunkan model di bawah proses penemuan pengetahuan dalam pangkalan data (KDD). Lima teknik perlombongan data—rangkaian neural tiruan (ANN), mesin vektor sokongan (SVM), pokok keputusan, K-jiran terdekat (KNN), dan regresi logistik digunakan untuk mengenal pasti teknik yang paling sesuai untuk pembangunan model. Regresi logistik memberikan hasil paling signifikan dalam pembangunan model kajian, mengesahkan bahawa jenis personaliti dan perbezaan gender mempengaruhi keupayaan pembangun perisian untuk menangani TP. Kajian ini menawarkan bukti empirikal mengenai kesan tekanan masa terhadap aspek humanistik. Tambahan pula, model yang dibangunkan berupaya untuk meningkatkan kadar kejayaan projek perisian dalam bidang SE.

Kata Kunci: Tekanan masa, jenis personaliti, kerumitan tugas, gender, pengetahuan

Abstract

Human factors play a crucial role in software engineering (SE) as software is developed and utilized by people. One of the key reasons for software project failure is not assigning the right people to the right tasks during project planning. This issue becomes critical when developers work under time pressure (TP), often resulting in poor performance and delays. Each personality type approaches TP differently, and gender-based personality differences may further influence how developers handle TP, leading to varied outcomes. In addition, task complexity and developers' knowledge interrelate with personality types and gender, potentially affecting project performance under TP. The main aim of this study is to propose the i-SYNERGY model by investigating the relationship between TP, personality types, gender, knowledge, and task complexity. To develop this model, empirical evidence was gathered from controlled experiments conducted with SE students, and generalised from industrial data through two case studies. The Myers-Briggs Type Indicator (MBTI) and NASA task load index (TLX) were used to measure personality types and TP, respectively. The data analysis was divided into two stages. The first stage involved examining factual figures of data to develop the model, while the second stage involved predictive experiments for developing the model under the knowledge discovery in databases (KDD) process. Five data mining techniques—artificial neural network (ANN), support vector machine (SVM), decision tree, K-nearest neighbor (KNN) and logistic regression were employed to identify the most suitable technique for model development. Logistic regression yielded the most significant results for developing the study model, confirming that personality types and gender differences influence software developers' ability to handle TP. This study offers empirical evidence regarding the impact of TP on humanistic aspects. Furthermore, the model developed can be leveraged to enhance the success rate of software projects in the field of SE.

Keywords: Time pressure, Personality types, Gender, Task complexity, Knowledge

Acknowledgement

First and foremost, I express my deepest gratitude to Allah for His countless blessings and guidance throughout this journey. Without His grace, this big achievement would not have been possible. I am thankful to my father, Roshan Ali Gilal, for his unwavering support and prayers, which have always been my source of strength. I am proud to acknowledge his significant role in my success. I also pray to Allah to send my greetings and updates to my late mother, who cannot see my success today. I miss her dearly and believe she would be proud of this achievement. I pray she is enjoying the pleasant gardens of heaven.

I would like to extend my sincere appreciation to my main supervisor, Assoc. Prof. Dr. Mazni Omar, for her compassionate guidance, expert advice, continuous support, and useful comments throughout this study. Many thanks go as well to my cosupervisor, Senior Lecturer Dr. Mawarny Rejab, for her scholarly support, guidance, suggestions, and encouragement during my research progress.

I extend a special thanks to my brothers, Muhammad Yahya Gilal and Abdul Rehman Gilal. Particularly, I am deeply grateful to Abdul Rehman, my best friend and my role model. His unwavering motivation and guidance were instrumental in my decision to pursue a Ph.D. He showed me this dream and supported me in every aspect. His encouragement and example have been invaluable. I extend my heartfelt gratitude to all my family members for their continuous support throughout this journey.

I am also deeply grateful to my friend Kainat. During times of stress, and depression, her encouragement and ability to make me smile and feel refreshed were invaluable. Her support played a crucial role in keeping me focused and positive. I would like to express my deepest appreciation to my husband, Naveed Ahmed Abbasi. He has been a pillar of strength and support. His understanding, and selflessness in handling his own work to give me time for mine were crucial to my success. His unwavering belief in me kept me going even during the toughest times.

Thank you all for being a part of this journey. May all of us be granted a marvelous life, here and in the Akhirah.

Table of Contents

Permission to Use	i
Abstrak.....	ii
Abstract.....	iii
Acknowledgement	iv
Table of Contents	v
List of Tables.....	xii
List of Figures	xv
List of Appendices.....	xvii
List of Abbreviations	xviii
CHAPTER ONE INTRODUCTION	1
1.1 Overview	1
1.2 Background of the Study.....	1
1.3 Problem statement	9
1.3.1 Insufficient Evidence on the Relationships of Human Factors and Task Assignment on Software Developers' Performance	11
1.3.2 Addressing the Need for a Comprehensive Predictive Model to Determine Software Developer's Performance	16
1.4 Research Questions.....	20
1.5 Research Objectives.....	20
1.6 Scope of the Study	21
1.7 Research Framework	25
1.8 Significance of the Research	29
1.9 Operational Definitions.....	32
1.10 Thesis structure.....	35

CHAPTER TWO LITERATURE REVIEW	39
2.1 Introduction	39
2.2 Software Failure in Software Development	39
2.3 Time Pressure (TP) in Software Engineering (SE)	43
2.4 Time Pressure (TP) in Other Fields	50
2.4.1 Assessing the Impact of Time Pressure (TP): The Role of the NASA Task Load Index (NASA-TLX)	53
2.5 Human Aspects in Software Development	55
2.6 Personality in Software Engineering (SE)	58
2.6.1 Personality Types Measurement	65
2.6.2 Software Development Major Tasks and Personality	75
2.6.3 TP and Personality Types	79
2.7 Gender and Personality	83
2.7.1 Masculinity and Femininity in Personality Theory.....	85
2.7.2 Gender and Time Pressure (TP).....	87
2.8 Task Complexity and Time Pressure (TP)	90
2.9 Role of Knowledge under Time Pressure (TP)	97
2.10 Time Pressure (TP) Predictive Models in Software Engineering (SE).....	100
2.11 Data Mining Techniques and Tools for Developing i-SYNERGY Model.....	106
2.11.1 Support Vector Machine (SVM)	112
2.11.2 Decision Tree	114
2.11.3 Artificial Neural Network (ANN)	117
2.11.4 Logistic Regression	120
2.11.5 K-Nearest Neighbour (KNN).....	122
2.11.6 Summary of Data Mining Techniques to Develop Predictive Model	125

2.11.6.1 Utilization of WEKA Tool for Data Mining Analysis (Waikato Environment for Knowledge Analysis)	127
2.12 Summary	129
CHAPTER THREE RESEARCH METHODOLOGY	131
3.1 Introduction	131
3.2 Research Design	131
3.3 Phase One: Model Design	136
3.3.1 Data Collection	137
3.3.1.1 Questionnaires and Forms	137
3.3.2 Study Population	142
3.3.2.1 Academic Settings	144
3.3.2.2 Industrial Settings	148
3.3.3 Controlled Experiments-Academic Settings	151
3.3.3.1 Experimental Procedure.....	153
3.3.3.2 Case Studies-Industrial Setting	158
3.3.4 Data analysis	163
3.3.4.1 Quantitative analysis	163
3.3.4.2 Descriptive analysis	168
3.3.5 Knowledge Discovery Databases (KDD) Modelling Steps.....	169
3.3.5.1 Data Selection.....	170
3.3.5.2 Data pre-processing	172
3.3.5.3 Data Transformation	173
3.4 Phase Two: Model Development	175
3.4.1 Initial Verification	176
3.4.1.1 Instrument Design.....	178

3.4.1.2 Experts Identification	180
3.4.1.3 Data Collection and Analysis	181
3.4.1.4 Model Refinement	182
3.4.2 Data Mining Techniques.....	182
3.4.2.1 Support Vector Machine (SVM)	184
3.4.2.2 Decision Tree.....	185
3.4.2.3 Artificial Neural Network (ANN).....	187
3.4.2.4 Logistic Regression.....	188
3.4.2.5 K- Nearest Neighbour (KNN)	189
3.4.3 Evaluation and Interpretation.....	191
3.5 Phase Three: Model Performance Evaluation	192
3.5.1 Model Performance Validation.....	192
3.5.2 Model Generalisation	194
3.6 Threats of Validity	195
3.6.1 Internal Validity	196
3.6.2 External Validity	197
3.6.3 Construct Validity	198
3.6.4 Conclusion Validity.....	199
3.7 Summary	199
CHAPTER FOUR RESULTS AND FINDINGS.....	202
4.1 Introduction	202
4.2 Results from Experimental Study.....	202
4.3 Empirical Results of Dataset A.....	206
4.3.1 Participants' Performance in Dataset A	207
4.3.2 Participant's Personality Types	210

3.3.3 Participant's Performance and Personality Types	212
4.3.4 Variation in Personality Preferences.....	216
4.3.5 Personality Types and Gender.....	219
4.3.6 Participant's Performance and Gender	222
4.3.7 Participants' Performance and Task Complexity	224
4.3.8 Participants Performance and Knowledge	227
4.4 Empirical Results of Dataset B	230
4.4.1 Participants' Performance of Dataset B	231
4.4.2 Participants' Performance and Personality Types	233
4.4.3 Participants' Performance and Personality Types	234
4.4.4 Variation in Personality Preferences.....	239
4.4.5 Personality Types and Gender.....	240
4.4.6 Participants' Performance and Gender	243
4.4.7 Participants' Performance during Task Complexity.....	245
4.4.8 Participants' Performance and Knowledge	247
4.5 Comparative Results of Dataset A and B.....	250
4.6 Discussion on Findings	255
4.7 Summary	256
CHAPTER FIVE THE i-SYNERGY MODEL DEVELOPMENT	258
5.1 Introduction	258
5.2 Model Refinement	258
5.3 Expert Review	261
5.3.1 Demographic Profiles of Experts	261
5.3.2 Results from the Expert Review	264
5.3.2.1 Understandability of the Terminology used in i-SYNERGY	264

5.3.2.2 Relevance of the Proposed Components in i-SYNERGY	266
5.3.2.3 Feasibility of i-SYNERGY	267
5.3.2.4 Organisation of the Connections and Flows in i-SYNERGY	270
5.3.2.5 Comprehensiveness of i-SYNERGY	270
5.3.3 Findings from the Expert Reviews.....	270
5.4 Knowledge Discovery in Databases (KDD) Steps and Model Development	271
5.4.1 Data Mining	271
5.4.1.1 Support Vector Machine (SVM)	272
5.4.1.2 K-Nearest Neighbours (KNN).....	273
5.4.1.3 Decision Tree.....	275
5.4.1.4 Artificial Neural Network (ANN).....	289
5.4.1.5 Logistic Regression.....	292
5.4.2 Evaluation and Interpretation.....	295
5.5 Discussion on i-SYNERGY Model.....	299
5.5.1 Model Performance Validation.....	309
5.6 Generalisation of the Model.....	312
5.6.1 The Model and UoS dataset.....	312
5.6.2 The Model and Industrial dataset	317
5.7 Summary	321
CHAPTER SIX CONCLUSION.....	323
6.1 Introduction	323
6.2 The Research Summary	323
6.2.1 Revisiting the Research Objectives	325
6.3 Contribution of the Study.....	329
6.4 Limitations and Recommendations for Future Research.....	331

6.5 Concluding Remarks.....	336
REFERENCES	337

List of Tables

Table 2.1 List of Time Pressure (TP) Studies in SE.....	47
Table 2.2 TP in Other Fields	51
Table 2.3 List of Studies Worked on Personality in SE	61
Table 2.4 List of Words to Describe Introvert and Extrovert (Bradley & Hebert, 1997) .	70
Table 2.5 List of Words to Describe Sensing and Intuition (Bradley & Hebert, 1997)	71
Table 2.6 List of Words to Describe Thinking and Feeling (Bradley & Hebert, 1997)....	72
Table 2.7 List of Words to Describe Judging and Perceiving (Bradley & Hebert, 1997)73	73
Table 2.8 MBTI 16 Personality Types (Myers et al., 1998)	74
Table 2.9 Software Development Tasks and Personality Type	78
Table 2.10 Task Complexity Studies.....	95
Table 2.11 Role of knowledge under TP	98
Table 2.12 Comparison of Existing Models on Time Pressure (TP) in Software Development	102
Table 2.13 Data Mining Summary	108
Table 2.14 Comparisons of different data mining techniques	125
Table 3.1 Research Design	135
Table 3.2 The summary of the Academic participants.....	147
Table 3.3 Student's GPA and Category.....	148
Table 3.4 Participants for Case Studies	150
Table 3.5 Training session	152
Table 3.6 Time Context and Task Complexity Distribution.....	154
Table 3.7 Experimental Time Schedule.....	156
Table 3.8 Classes of Performance	158
Table 3.9 Variables Data Types	164
Table 3.10 Hypotheses of the Study	166
Table 3.11 The Variables used in this Study	171
Table 3.12 Transformation of Variable's Values.....	174
Table 3.13 Description of the Verification Dimensions.....	178
Table 4.1 Total Number of Effective and Ineffective Performances	204
Table 4.2 Variations of Personality Types in Controlled and Experimental Phase	217

Table 4.3 Male and Female Personality Types	219
Table 4.4 Variation in Personality Performance in Dataset B	239
Table 4.5 Gender and Personality Types in Dataset B	241
Table 4.6 Results of hypotheses	254
Table 5.1 The Experts' Suggestions and Actions Taken to Improve i-SYNERGY	259
Table 5.2 Demographic profile of the experts	262
Table 5.3 Understandability of the Terminologies.....	265
Table 5.4 Relevance of the Components	266
Table 5.5 Feasibility of i-SYNERGY.....	268
Table 5.6 Overall Results of SVM Technique	273
Table 5.7 Overall Results of KNN Technique	274
Table 5.8 Predication Accuracy of Decision Tree (easy TP) at 10-fold.....	276
Table 5.9 Predication Accuracy of Decision Tree (easy NTP) at 10-fold.....	278
Table 5.10 Predication Accuracy of Decision Tree (medium TP) at 10-fold	280
Table 5.11 Predication Accuracy of Decision Tree (medium NTP) at 10-fold	282
Table 5.12 Predication Accuracy of Decision Tree (hard TP) at 10-fold.....	284
Table 5.13 Predication Accuracy of Decision Tree (Hard NTP) at 10-fold	286
Table 5.14 Overall Results of ANN Technique	290
Table 5.15 Null Models of Logistic Regression	293
Table 5.16 Regression Models with Prediction Variables.....	293
Table 5.17 Overall Results of SVM Technique	296
Table 5.18 Overall Results of Decision Tree Technique.....	296
Table 5.19 Overall Results of ANN Technique	297
Table 5.20 Overall Results of KNN Technique	298
Table 5.21 Overall Results of Binary Logistic Regression Technique	298
Table 5.22 Confusion Matrix of Constant Model of Logistic Regression	310
Table 5.23 Confusion Matric of Full Logistic Regression Model	310
Table 5.24 Confusion Matrix from UoS for Generalisation	313
Table 5.25 SIBA vs UoS: Descriptive Analysis on Personality Variables (NTP).....	313
Table 5.26 SIBA vs UoS: Descriptive Analysis on Personality Variables (TP).....	314
Table 5.27 AUC of the Predicted Model	316

Table 5.28 Confusion Matrix from Industrial Data for Generalisation	318
Table 5.29 SIBA vs Industry: Descriptive Analysis on Personality Variables (NTP)....	319
Table 5.30 SIBA vs Industry: Descriptive Analysis on Personality Variables (TP).....	320

List of Figures

Figure 1.1: Research Framework	29
Figure 1.2: Thesis structure based on objectives of the research	38
Figure 2.1: Different Personality Tests Percentages (Cruz et al., 2015)	68
Figure 2.2: Frequency of used Psychometric Instruments (Almeida et al., 2023)	69
Figure 2.3: Design of the Proposed Model	105
Figure 2.4: Data Mining Role and Tasks (Dunham, 2006)	106
Figure 2.5: Pseudo Code for Building Decision Tree (Kotsiantis, 2007).....	116
Figure 2.6: Single Layer Neural Network (Tripathi & Saraswat, 2020)	119
Figure 2.7: K nearest neighbour (Taunk, 2019).....	124
Figure 3.1: Flow Chart of Research Experimental Design	157
Figure 3.2: i-SYNERGY Model with Hypotheses	168
Figure 3.3: Expert Review Activities	177
Figure 3.4: Research Design	201
Figure 4.1: Average Effective and Ineffective Performance under NTP and TP in Dataset A & B	205
Figure 4.2: Participants's Performance during TP and NTP tasks in dataset A	208
Figure 4.3: Participant's Personality Types in Dataset A	210
Figure 4.4: Sixteen Combinations of MBTI Types in Dataset A.....	211
Figure 4.5: Effective Performance of Personality Types under No Time Pressure (NTP) in Dataset A.....	214
Figure 4.6: Effective Performance of Personality Types under Time Pressure (TP) In Dataset A.....	214
Figure 4.7: Four Dimension Personality Types in Controlled Tasks (NTP) In Dataset A	215
Figure 4.9: Male and Female Personality Types in Dataset A.....	220
Figure 4.10: Four Dimensions Personality Types of Male and Female in Dataset A	221
Figure 4.11: Performances Gender-Wise in Dataset A	222
Figure 4.12: Task Complexity and Performances in Dataset A	225
Figure 4.13: Gender-wise Knowledge (Academic Background) in Dataset A	228
Figure 4.14: Participants' Performance during TP and NTP Tasks in Dataset B	232

Figure 4.15: Participants' Personality Types in Dataset B	233
Figure 4.16: Sixteen Combinations of MBTI Types in Dataset B	234
Figure 4.17: Effective Performance of Personality Types under No Time Pressure (NTP) in Dataset B	235
Figure 4.18: Four Dimensions Personality Types in NTP in Dataset	236
Figure 4.19: Effective Performance of Personality Types under Time Pressure (TP) in Dataset B	237
Figure 4.20: Four Dimension Personality Types in Time Pressure (TP) in Dataset B ...	238
Figure 4.21: Male and Female Personality Types in Dataset B	242
Figure 4.22: Four Dimensions Personality Preferences of Males and Females in Dataset B	243
Figure 4.23: Performances Gender-Wise in Dataset B.....	244
Figure 4.24: Task Complexity with Performances in Dataset B.....	246
Figure 4.25: Gender-wise Knowledge (Academic Background) in Dataset B	248
Figure 5.1: The Revised i-SYNERGY Model	260
Figure 5.2: Demographic Data of Experts	263
Figure 5.3: Understandability of the i-SYNERGY Terminologies	265
Figure 5.4: Relevance of the Components.....	267
Figure 5.5: Pruned Decision Tree Easy Task TP using C4.5 Algorithm in WEKA	277
Figure 5.6: Pruned Decision Tree Easy Task NTP using C4.5 Algorithm in WEKA ..	279
Figure 5.7: Pruned Decision Tree Medium Task TP using C4.5 Algorithm in WEKA..	281
Figure 5.8: Pruned Decision Tree Medium Task NTP using C4.5 Algorithm in WEKA	283
Figure 5.9: Pruned Decision Tree Hard Task TP using C4.5 Algorithm in WEKA	285
Figure 5.10: Pruned Decision Tree Hard Task NTP using C4.5 Algorithm in WEKA ..	287
Figure 5.11: 10-Fold Mean Accuracy.....	289
Figure 5.12: Flow Chart of i-SYNERGY Model	303
Figure 5.13: Pseudo code of Algorithm of Generating i-SYNERGY Model	304
Figure 5.14: ROC Curve	317

List of Appendices

Appendix A	Consent to Take Part in Research	376
Appendix B	Personal Particulars	377
Appendix C	The Sample of Expert's Invitation E-mail and Response.....	378
Appendix D	The Instrument for Expert Review	379
Appendix E	The Application Letter for Conducting a Case Study at APTECH.....	389
Appendix F	Acceptance Letter from Aptech	390
Appendix G	The Application Letter for Conducting a Case Study at HIST	391
Appendix H	Acceptance Letter from HIST	392
Appendix I	Personality Test Questionnaire	393
Appendix J	Academic Achievements/ Records.....	400
Appendix K	NASA Task Load Index (NASA-TLX).....	401
Appendix L	Software Developers' Knowledge and Experience Assessment Form ..	402
Appendix M	Questions for Experimental Tasks for Dataset A&B	403
Appendix N	Decision Tree Using WEKA Tool	405
Appendix O	Artificial Neural Network Using WEKA Tool.....	410
Appendix P	K-Nearest Neighbour Using WEKA Tool.....	411
Appendix Q	Support Vector Machine Using WEKA Tool.....	413
Appendix R	Logistic Regression Using SPSS.....	414
Appendix S	Sample of Logistic Regression (SPSS Output).....	416
Appendix T	Sample of Decision Tree (WEKA Outputs)	418
Appendix U	Sample of ROC Value Output Using SPSS Tool.....	427
Appendix V	Sample of ANN (WEKA outputs).....	432
Appendix W	Sample of K-Nearest Neighbour Algorithm (WEKA outputs).....	444
Appendix X	Sample of Support Vector Machine (WEKA output)	450
Appendix Y	Experimental Session Script	458
Appendix Z(A)	Photos of Experiments	471
Appendix Z (B)	Photos of Case Studies	473

List of Abbreviations

AUC	Area Under Curve
ANN	Artificial Neural Network
BR	Boundary Region
CRD	Completely Randomize Design
CS	Computer Science
FP	False Positive
FPR	False Positive Rate
GPA	Grade Point Average
HIST	Hidayah Institute of Science and Technology
IT	Information Technology
i-SYNERGY	An Integrated Predictive Model of Time Pressure, Personality Types, Gender, Knowledge and Task Complexity to Determine Software Developer's Performance
KDD	Knowledge Discovery Database
KNN	K- Nearest Neighbor
MBTI	Myers-Briggs Type Indicators
NTP	No Time Pressure
NASA-TLX	Nasa Task Load Index
OOP	Object Oriented Programming
PM	Project Management
SPM	Support Project Management
SP	Structured Programming
SE	Software Engineering
SPSS	Statistical Packages of Social Science

SVM	Support Vector Machine
SIBA	Sukkur Institute of Business Administration
TLX	Task Load Index
TPR	True Positive Rate (TPR)
TN	True Negative
TP	Time Pressure
UUM	Universiti Utara Malaysia
UoS	University of Sindh
WEKA	Waikato Environment Knowledge Analysis

CHAPTER ONE

INTRODUCTION

1.1 Overview

This chapter introduces the study's background and is followed by a discussion of the addressed problems. The research questions and constructs of the objectives of the study are discussed in the next sections. Furthermore, this chapter also addresses the scope and significance of the study. Moreover, this chapter includes the terms' operational definitions and the study's conceptual framework. Finally, this chapter gives an overview of the subsequent chapters of this study.

1.2 Background of the Study

The demand for software in human daily life is growing exponentially. Driven by the increasing reliance on digital technologies and the integration of software solutions into various aspects of daily routines. From communication and entertainment to work and education, software has become an integral part of modern life, shaping the way to interact, learn, and conduct daily activities. This surge in demand reflects the pivotal role that software plays in addressing the evolving needs and expectations of individuals in today's technologically driven world. Software engineering (SE) activities are significantly influenced by human aspects (Hidellaarachchi et al., 2023; Mello & Coelho, 2021; Zykov & Attakorah, 2020; Fuggetta & Di Nitto, 2014; Santos, Magalhaes, & Correia-Neto, 2017). Software is developed and used by a variety of people; therefore, understanding an individual's behavior is necessary for software development (Hidellaarachchi et al., 2023;

REFERENCES

Abbas, A., Faiz, A., Fatima, A., & Avdic, A. (2017). Reasons for the failure of government IT projects in Pakistan: A contemporary study. *2017 International Conference on Service Systems and Service Management*, 1–6.

Abdullah, S. N. H. S., Fauzi, W. F., Sudin, M. N., Zahari, N. N., Ab Rahman, Z. Bin, Ismail, A. D., Suradi, N. R. M., Rambely, A. S., Kusenin, N. B. S., Shaari, A. H. B., & others. (2018). Assessment of Self-Identity Among Teens Towards Self-Crime Prevention Program. *2018 Cyber Resilience Conference (CRC)*, 1–4.

Abuhaija, B., Alloubani, A., Almatari, M., & Jaradat, G. M. (2023). *A comprehensive study of machine learning for predicting cardiovascular disease using Weka and SPSS tools*. 13(2), 1891–1902. <https://doi.org/10.11591/ijce.v13i2.pp1891-1902>

Acuna, S. T., Juristo, N., & Moreno, A. M. (2006). Emphasizing human capabilities in software development. *IEEE Software*, 23(2), 94–101.

Agwu, O. E., Akpabio, J. U., Alabi, S. B., & Dosunmu, A. (2018). Artificial intelligence techniques and their applications in drilling fluid engineering: A review. *Journal of Petroleum Science and Engineering*, 167, 300–315.

Ahmadi, A., Delkhosh, F., Deshpande, G., Patterson, R. A., & Ruhe, G. (2023). Learning Software Project Management From Analyzing Q & A 's in the Stack Exchange. *IEEE Access*, 11(January), 5429–5441. <https://doi.org/10.1109/ACCESS.2023.3235953>

Ahsan, Z., & Obaidellah, U. (2023). Effect of emotion and workload on expertise in programming. *Telematics and Informatics Reports*, 100095.

Akay, A., Dragomir, A., & Erlandsson, B.-E. (2013). A novel data-mining approach leveraging social media to monitor consumer opinion of sitagliptin. *IEEE Journal of Biomedical and Health Informatics*, 19(1), 389–396.

Akay, A., Dragomir, A., & Erlandsson, B.-E. (2014). Network-based modeling and intelligent data mining of social media for improving care. *IEEE Journal of Biomedical and Health Informatics*, 19(1), 210–218.

Al-Ahmad, W., Al-Fagih, K., Khanfar, K., Alsamara, K., Abuleil, S., & Abu-Salem, H. (2009). A Taxonomy of an IT Project Failure: Root Causes. *International Management Review*, 5(1), 93.

Alaidaros, H., Omar, M., Romli, O., & Al-Sakkaf, A. (2022). *The Evaluation of an Improved Model of the Agile Kanban Using Focus Group*.

Alaidaros, H., Omar, M., & Romli, R. (2020). Improving the progress monitoring task of Agile Kanban method: An enhanced theoretical framework and its implication.

International Journal of Scientific and Technology Research (IJSTR), 9(1), 611–615.

Alaideros, H., Omar, M., & Romli, R. (2021). A Review on the Methods of Evaluating the New Approaches Proposed in the Agile Context. *International Journal of Computer and Information Technology (IJCIT), 10(1), 5–10.*

Albert, W., & Tullis, T. (2013). Measuring the User Experience: Collecting. *Analyzing, and Presenting Usability Metrics, 41–96.*

Ali, B. J., & Anwar, G. (2021). *An Empirical Study of Employees ' Motivation and its Influence Job Satisfaction. 2, 21–30.*

Almeida, D., Kalinowski, M., & Graziotin, D. (2023). Psychometric Instruments in Software Engineering Research on Personality : Status Quo After Fifty Years. *Journal of Systems and Software, 203, 111740.*

Altarawneh, M. H. A. (2016). *Monitoring oriented agile based web applications development methodology for small software firms in Jordan.* PhD Thesis, UUM.

Ambagtsheer, R. C., Shafiabady, N., Dent, E., Seiboth, C., & Beilby, J. (2020). The application of artificial intelligence (AI) techniques to identify frailty within a residential aged care administrative data set. *International Journal of Medical Informatics, 136, 104094.*

Amin, A., Basri, S., Rahman, M., Capretz, L. F., Akbar, R., Gilal, A. R., & Shabbir, M. F. (2020). The impact of personality traits and knowledge collection behavior on programmer creativity. *Information and Software Technology, 128, 106405.*

Amin, A., Rehman, M., Akbar, R., Basri, S., & Hassan, M. F. (2018). Trait-Based Personality Profile of Software Programmers: A Study on Pakistan's Software Industry. *2018 8th International Conference on Intelligent Systems, Modelling and Simulation (ISMS), 90–94.*

Anderson, G., Keith, M. J., Francisco, J., & Fox, S. (2018). The Effect of Software Team Personality Composition on Learning and Performance: Making the " Dream" Team. *Proceedings of the 51st Hawaii International Conference on System Sciences, 451–460.*

Arafat, H., Alfeilat, A., Hassanat, A. B. A., Lasassmeh, O., & Tarawneh, A. S. (2019). *Effects of Distance Measure Choice on K-Nearest Neighbor Classifier Performance : A Review. 00(00).* <https://doi.org/10.1089/big.2018.0175>

Aries, E. (1976). Interaction patterns and themes of male, female, and mixed groups. *Small Group Behavior, 7(1), 7–18.*

Arockiaraj, M. C. (2013). Applications of Neural Networks In Data Mining. *Research Invenity: International Journal Of Engineering And Science, 3(1), 08–11.* <https://doi.org/10.1109/neurel.2004.1416521>

Arya, D., Wang, W., Guo, J. L. C., & Cheng, J. (2019). Analysis and Detection of Information Types of Open Source Software Issue Discussions. *Proceedings - International Conference on Software Engineering, 2019-May*, 454–464. <https://doi.org/10.1109/ICSE.2019.00058>

Aseervatham, S., Antoniadis, A., Gaussier, É., Burlet, M., & Denneulin, Y. (2011). A sparse version of the ridge logistic regression for large-scale text categorization. *Pattern Recognition Letters*, 32(2), 101–106.

Ask, K., & Granhag, P. A. (2007). Motivational Bias in Criminal Investigators ' Judgments of. *Journal of Applied Social Psychology*, 37(3), 561–591. <https://onlinelibrary-wiley-com.libezproxy.open.ac.uk/doi/pdfdirect/10.1111/j.1559-1816.2007.00175.x>

Atlam, H. F., Alenezi, A., Hussein, R. K., & Wills, G. B. (2018). Validation of an adaptive risk-based access control model for the internet of things. *International Journal of Computer Network and Information Security*, 12(1), 26.

Austin, R. D. (2001). The Effects of Time Pressure on Quality in Software Development: An Agency Model. *Information Systems Research*, 12(2), 207.

Awang, H., Aji, Z. M., & Osman, W. R. S. (2018). Measuring virtual learning environment success from the teacher's perspective: Scale development and validation. *AIP Conference Proceedings*, 2016(1).

Ayer, T., Chhatwal, J., Oguzhan, A., Kahn Jr, C. E., Woods, R. W., & Burnside, E. S. (2010). Informatics in Radiology Comparison of Logistic Regression and Artificial Neural Network Models in breast cancer risk estimation. *Radiographics*, 30(1), 13–22.

Azhar, S., Hassali, M. A., Mohamed Ibrahim, M. I., Saleem, F., & Siow Yen, L. (2012). A survey evaluating nurses' perception and expectations towards the role of pharmacist in Pakistan's healthcare system. *Journal of Advanced Nursing*, 68(1), 199–205.

Azzehh, M., Elsheikh, Y., Nassif, A. B., & Angelis, L. (2023). Examining the performance of kernel methods for software defect prediction based on support vector machine. *Science of Computer Programming*, 226(December). <https://doi.org/10.1016/j.scico.2022.102916>

Baddoo, N., & Hall, T. (2003). De-motivators for software process improvement: an analysis of practitioners' views. *Journal of Systems and Software*, 66(1), 23–33.

Baethge, A., Menhardt, A.-K., Frontzkowski, Y., & Schilbach, M. (2023). Two sides of the same coin: motivating and demotivating mediation paths of time pressure and their relationship with strain. *Anxiety, Stress, \& Coping*, 37(1), 86–99.

Baethge, A., Vahle-Hinz, T., Schulte-Braucks, J., & van Dick, R. (2018). A matter of time? Challenging and hindering effects of time pressure on work engagement. *Work & Stress*, 32(3), 228–247.

Bakar, A. A., Kefli, Z., Abdullah, S., & Sahani, M. (2011). Predictive models for dengue outbreak using multiple rulebase classifiers. *Proceedings of the 2011 International Conference on Electrical Engineering and Informatics*, 1–6.

Bakker, A. B., & Demerouti, E. (2007). The job demands-resources model: State of the art. *Journal of Managerial Psychology*, 22(3), 309–328.

Bakker, A. B., & Demerouti, E. (2017). Job demands--resources theory: Taking stock and looking forward. *Journal of Occupational Health Psychology*, 22(3), 273.

Barber, B. M., & Odean, T. (2001). Boys will be boys: Gender, overconfidence, and common stock investment. *The Quarterly Journal of Economics*, 116(1), 261–292.

Barroso, A. S., Madureira, J. S., Soares, M. S., & do Nascimento, R. P. C. (2017). Influence of human personality in software engineering-a systematic literature review. *International Conference on Enterprise Information Systems*, 2, 53–62.

Basten, D. (2017). The Role of Time Pressure in Software Projects: A Literature Review and Research Agenda. *International Research Workshop on IT Project Management*, 1–15.

Basten, D., Müller, M., Ott, M., Pankratz, O., & Rosenkranz, C. (2021). Impact of time pressure on software quality: A laboratory experiment on a game-theoretical model. *PLoS ONE*, 16(1 January), 1–21. <https://doi.org/10.1371/journal.pone.0245599>

Batool, T. (2016). *Time Pressure and Flexibility in Daily Agendas*. Masters thesis.

Bayona-Oré, S., Calvo-Manzano, J. A., Cuevas, G., & San-Feliu, T. (2014). Critical success factors taxonomy for software process deployment. *Software Quality Journal*, 22(1), 21–48.

Bealing Jr, W. E., Staley, A. B., & Baker, R. L. (2009). An exploratory examination of the relationship between a short form of the Keirsey Temperament Sorter and success in an introductory accounting course: A research note. *Accounting Education: An International Journal*, 18(3), 331–339.

Behera, B. (2019). *Performance Evaluation of Deep Learning Algorithms in Biomedical Document Classification*. 220–224.

Beilock, S. L., Bertenthal, B. I., Hoerger, M., & Carr, T. H. (2008). When does haste make waste? Speed-accuracy tradeoff, skill level, and the tools of the trade. *Journal of Experimental Psychology: Applied*, 14(4), 340.

Beilock, S. L., & DeCaro, M. S. (2007). From poor performance to success under stress: working memory, strategy selection, and mathematical problem solving under pressure. *Journal of Experimental Psychology: Learning, Memory, and Cognition*, 33(6), 983.

Bem, S. L. (1993). *The lenses of gender: Transforming the debate on sexual inequality*. Yale University Press.

Bender, L. L., Walia, G. S., Fagerholm, F., Pagels, M., Nygard, K. E., & Münch, J. (2014). Measurement of the non-technical skills of software professionals: An empirical investigation. *International Conference on Software Engineering and Knowledge Engineering*, 478–483.

Bhatia, N., & Vandana. (2010). Survey of nearest neighbor techniques. *ArXiv Preprint ArXiv:1007.0085*.

Bonner, S. E. (1994). A model of the effects of audit task complexity. *Accounting, Organizations and Society*, 19(3), 213–234.

Borg, A. (2014). *A CIAR study in a male dominated ICT Company in Malta which looks at work-life issues through the masculine lens: a case of: if it ain't broke, don't fix it?* Middlesex University.

Börstler, J., Ali, N. bin, Svensson, M., & Petersen, K. (2023). Investigating acceptance behavior in software engineering—Theoretical perspectives. *Journal of Systems and Software*, 198, 111592. <https://doi.org/10.1016/j.jss.2022.111592>

Bouchard Jr, T. J. (2004). Genetic influence on human psychological traits: A survey. *Current Directions in Psychological Science*, 13(4), 148–151.

Boyle, G. J. (1995). Myers-Briggs type indicator (MBTI): some psychometric limitations. *Australian Psychologist*, 30(1), 71–74.

Braarud, P. Ø., & Kirwan, B. (2010). Task complexity: what challenges the crew and how do they cope. In *Simulator-based Human Factors Studies Across 25 Years* (pp. 233–251). Springer.

Bradley, J. H., & Hebert, F. J. (1997). The effect of personality type on team performance. *Journal of Management Development*, 16(5), 337–353.

Bravo, E. R., Santana, M., & Rodon, J. (2015). Information systems and performance: the role of technology, the task and the individual. *Behaviour & Information Technology*, 34(3), 247–260.

Briggs, A. R. J., Morrison, M., & Coleman, M. (2012). *Research methods in educational leadership and management*. Sage Publications.

Brooks, F. P. (1995). *The Mythical Man-Month*. F. Brooks. http://lib1.org/_ads/1463C19523CD01779A44C26F628308A4

Brooks, F. P. (1975). *Mythical Man-Month*. 10.

Buck, R., Khan, M., Fagan, M., & Coman, E. (2018). The user affective experience scale:

A measure of emotions anticipated in response to pop-up computer warnings. *International Journal of Human-Computer Interaction*, 34(1), 25–34.

Buckert, M., Schwieren, C., Kudielka, B. M., & Fiebach, C. J. (2014). Acute stress affects risk taking but not ambiguity aversion. *Frontiers in Neuroscience*, 8, 82.

Busemeyer, J. R., & Diederich, A. (2002). Survey of decision field theory. *Mathematical Social Sciences*, 43(3), 345–370.

Bustamante, E. A., & Spain, R. D. (2008). Measurement invariance of the NASA TLX. *Proceedings of the Human Factors and Ergonomics Society Annual Meeting*, 52(19), 1522–1526.

Byrne, K. A., Silasi-Mansat, C. D., & Worthy, D. A. (2015). Who chokes under pressure? The Big Five personality traits and decision-making under pressure. *Personality and Individual Differences*, 74, 22–28. <https://doi.org/10.1016/j.paid.2014.10.009>

Byström, K., & Järvelin, K. (1995). Task complexity affects information seeking and use. *Information Processing & Management*, 31(2), 191–213.

Calderwood, R., Klein, G. A., & Crandall, B. W. (1988). Time pressure, skill, and move quality in chess. *The American Journal of Psychology*, 481–493.

Campbell, D. J. (1988). Task complexity: A review and analysis. *Academy of Management Review*, 13(1), 40–52.

Campbell, D. K. (1991). Goal levels, complex tasks, and strategy development: A review and analysis. *Human Performance*, 4(1), 1–31.

Cao, D. M., Sayed, M. A., Islam, M. T., Mia, M. T., Ayon, E. H., Ghosh, B. P., Ray, R. K., Raihan, A., Akter, T., & Rahman, M. (2024). Advanced Cybercrime Detection: A Comprehensive Study on Supervised and Unsupervised Machine Learning Approaches Using Real-world Datasets. *Journal of Computer Science and Technology Studies*, 6(1), 40–48.

Capretz, L. F. (2014). Bringing the human factor to software engineering. *IEEE Software*, 31(2), 104.

Capretz, L. F., & Ahmed, F. (2010a). Making sense of software development and personality types. *IT Professional*, 12(1), 6–13. <https://doi.org/10.1109/MITP.2010.33>

Capretz, L. F., & Ahmed, F. (2010b). *Why Do We Need Personality Diversity in Software Engineering?* *ACM SIGSOFT Software Engineering Notes*, 35(2). <https://doi.org/10.1145/1734103.1734111>

Capretz, L. F., & Ahmed, F. (2018). A Call to Promote Soft Skills in Software Engineering. *ArXiv Preprint ArXiv:1901.01819*.

Capretz, L. F., Ahmed, F., & da Silva, F. Q. B. (2017). Soft sides of software. *ArXiv Preprint ArXiv:1711.07876*.

Capretz, L. F., Varona, D., & Raza, A. (2015). Influence of personality types in software tasks choices. *Computers in Human Behavior*, 52, 373–378.

Casaclang, R. I. M., Antonio, J., Manahan, P. L., Pineda, D. C. A., & Villaflor, N. M. N. (2023). *Wake Up or Stay Up ?: The Correlation of Sleep Quality and Task Workload to Academic Performance of UST Graduate and Undergraduate Students During the COVID-19 Pandemic*. 2220–2230.

Ceran, A. A., Ar, Y., Tanrıöver, Ö. Ö., & Ceran, S. S. (2023). Prediction of software quality with Machine Learning-Based ensemble methods. *Materials Today: Proceedings*, 81, 18–25.

Chae, S., Seo, Y., & Lee, K. C. (2015). Effects of task complexity on individual creativity through knowledge interaction: A comparison of temporary and permanent teams. *Computers in Human Behavior*, 42, 138–148. <https://doi.org/10.1016/j.chb.2013.10.015>

Charbuty, B., & Abdulazeez, A. (2021). Classification Based on Decision Tree Algorithm for Machine Learning. *Journal of Applied Science and Technology Trends*, 2(01), 20–28. <https://doi.org/10.38094/jastt20165>

Charette, R. N. (2005). Why software fails [software failure]. *IEEE Spectrum*, 42(9), 42–49.

Chatzigeorgakidis, G., Karagiorgou, S., Athanasiou, S., & Skiadopoulos, S. (2018). FML-kNN: scalable machine learning on Big Data using k-nearest neighbor joins. *Journal of Big Data*, 5(1), 1–27.

Cherkassky, V., & Ma, Y. (2004). Practical selection of SVM parameters and noise estimation for SVM regression. *Neural Networks*, 17(1), 113–126.

Chinenye, O., & Tochukwu, K. (2023). *Software Defect Prediction System Based on Decision Tree Algorithm*. 16(4), 32–48. <https://doi.org/10.9734/AJRCOS/2023/v16i4368>

Chintamani, K., & Ellis, R. D. (2009). *NASA TLX: Software for assessing subjective mental workload*. March. <https://doi.org/10.3758/BRM.41.1.113>

Chong, D. S. F., Van Eerde, W., Chai, K. H., & Rutte, C. G. (2010). A double-edged sword: The effects of challenge and hindrance time pressure on new product development teams. *IEEE Transactions on Engineering Management*, 58(1), 71–86. <https://doi.org/10.1109/TEM.2010.2048914>

Chou, W. (2013). *Fast-tracking Your Career: Soft Skills for Engineering and IT Professionals*. John Wiley & Sons.

Chowdary, B. V., & Radhika, D. y. (2018). A Survey on Applications on Data Mining Techniques. In *International Journal of Computer Applications* (Vol. 13, Issue 2). <https://doi.org/10.5120/ijca2015905986>

Chowdhury, N. H., Adam, M. T. P., & Skinner, G. (2019). The impact of time pressure on cybersecurity behaviour: a systematic literature review. *Behaviour & Information Technology*, 1–19.

Chung, J., & Monroe, G. S. (2001). A research note on the effects of gender and task complexity on an audit judgment. *Behavioral Research in Accounting*, 13(1), 111–125.

Claessens, B. J. C., Van Eerde, W., Rutte, C. G., & Roe, R. A. (2007). A review of the time management literature. *Personnel Review*.

Cohen, L., Manion, L., & Morrison, K. (2017). *Research methods in education*. routledge.

Colligan, L., Potts, H. W. W., Finn, C. T., & Sinkin, R. A. (2015). Cognitive workload changes for nurses transitioning from a legacy system with paper documentation to a commercial electronic health record. *International Journal of Medical Informatics*, 84(7), 469–476.

Colquitt, J. A., Conlon, D. E., Wesson, M. J., Porter, C. O. L. H., & Ng, K. Y. (2001). Justice at the millennium: a meta-analytic review of 25 years of organizational justice research. *Journal of Applied Psychology*, 86(3), 425.

Constantinople, A. (1973). Masculinity-femininity: An exception to a famous dictum? *Psychological Bulletin*, 80(5), 389.

Cooper, C. L., Cooper, C. P., Dewe, P. J., O'Driscoll, M. P., O'Driscoll, M. P., & Dewe, P. J. (2001). *Organizational stress: A review and critique of theory, research, and applications*. Sage.

Costello, S. H., & H., S. (1984). Software engineering under deadline pressure. *ACM SIGSOFT Software Engineering Notes*, 9(5), 15–19. <https://doi.org/10.1145/1010941.1010947>

Cover, T., & Hart, P. (1967). Hart,“Nearest neighbor pattern classification.” *IEEE Trans. Info. Theory*, 13(1), 21–27.

Cox, R. C. (2017). *Assessing transformative learning: Toward a unified framework*.

Creedy, G. D., Skitmore, M., & Wong, J. K. W. (2010). Evaluation of risk factors leading to cost overrun in delivery of highway construction projects. *Journal of Construction Engineering and Management*, 136(5), 528–537. [https://doi.org/10.1061/\(ASCE\)CO.1943-7862.0000160](https://doi.org/10.1061/(ASCE)CO.1943-7862.0000160)

Cristóbal, J. R. S., Carral, L., Diaz, E., Fraguela, J. A., & Iglesias, G. (2018). *Review Article*

Complexity and Project Management : A General Overview. 2018.

Croson, R., & Gneezy, U. (2009). Gender differences in preferences. *Journal of Economic Literature*, 47(2), 448–474.

Cruz, S., da Silva, F. Q. B., & Capretz, L. F. (2015). Forty years of research on personality in software engineering: A mapping study. *Computers in Human Behavior*, 46, 94–113.

Cruz, S. S. J. O., da Silva, F. Q. B., Monteiro, C. V. F., Santos, P., & Rossilei, I. (2011). Personality in software engineering: Preliminary findings from a systematic literature review. *15th Annual Conference on Evaluation & Assessment in Software Engineering (EASE 2011)*, 1–10.

Cunha, F., Grande, C., Santos, R., Grande, C., & Perkusich, A. (2023). Preliminary Results of Mapping Capabilities for Agile Software Team Formation. In *Proceedings of ISE a•Z23: 3nd Brazilian Workshop on Intelligent Software Engineering (ISE 2023)* (Vol. 1, Issue 1). Association for Computing Machinery.

Czajkowski, M., & Kretowski, M. (2014). *Globally Induced Model Trees : An Evolutionary Globally Induced Model Trees : An Evolutionary Approach*. June. <https://doi.org/10.1007/978-3-642-15844-5>

Dalal, S., & Chhillar, D. R. S. (2012). *Case Studies of Most Common and Severe Types of Software System Failure*. 2(8), 341–347.

Danades, A., Pratama, D., Anggraini, D., & Anggriani, D. (2016). Comparison of accuracy level K-nearest neighbor algorithm and support vector machine algorithm in classification water quality status. *2016 6th International Conference on System Engineering and Technology (ICSET)*, 137–141.

Danjuma, K. J. (2015). *Performance Evaluation of Machine Learning Algorithms in Post-operative Life Expectancy in the Lung Cancer Patients*. <http://arxiv.org/abs/1504.04646>

Dash, S. S., Nayak, S. K., & Mishra, D. (2019). A Review on Machine Learning Algorithms. In *Intelligent and Cloud Computing* (pp. 495–507). Springer.

David, S. K., Saeb, A. T., & Al Rubeaan, K. (2013). Comparative analysis of data mining tools and classification techniques using weka in medical bioinformatics. *Computer Engineering and Intelligent Systems*, 4(13), 28–38.

Davide, T., Burak, F., Scanniello, G., Romano, S., Karac, I., Kuhrmann, M., Mandi, V., & Rama, R. (2021). *A Family of Experiments on Test-Driven Development*.

Davis, A., Overmyer, S., Jordan, K., Caruso, J., Dandashi, F., Dinh, A., Kincaid, G., Leedeboer, G., Reynolds, P., Sitaram, P., & others. (1993). Identifying and measuring quality in a software requirements specification. *[1993] Proceedings First*

International Software Metrics Symposium, 141–152.

Dawis, R. V., & Lofquist, L. H. (1984). *A psychological theory of work adjustment: An individual-differences model and its applications*. University of Minnesota Press.

De Clercq, D., Haq, I. U., & Azeem, M. U. (2019). Time-related work stress and counterproductive work behavior: Invigorating roles of deviant personality traits. *Personnel Review*, 48(7), 1756–1781. <https://doi.org/10.1108/PR-07-2018-0241>

de Kock, E., Van Biljon, J., & Botha, A. (2016). User experience of academic staff in the use of a learning management system tool. *Proceedings of the Annual Conference of the South African Institute of Computer Scientists and Information Technologists*, 1–10.

De Paola, M., & Gioia, F. (2016a). Who performs better under time pressure? Results from a field experiment. *Journal of Economic Psychology*, 53, 37–53.

De Paola, M., & Gioia, F. (2016b). Who performs better under time pressure? Results from a field experiment. *Journal of Economic Psychology*, 53, 37–53. <https://doi.org/10.1016/j.jeop.2015.12.002>

Deak, A., Stålhane, T., & Sindre, G. (2016). Challenges and strategies for motivating software testing personnel. *Information and Software Technology*, 73, 1–15.

Debbabi, M., Hassa\"ine, F., Jarraya, Y., Soeanu, A., Alawneh, L., Debbabi, M., Hassa\"ine, F., Jarraya, Y., Soeanu, A., & Alawneh, L. (2010). Verification, Validation, and Accreditation. *Verification and Validation in Systems Engineering: Assessing UML/SysML Design Models*, 75–93.

DeLacoste-Utamsing, C., & Holloway, R. L. (1982). Sexual dimorphism in the human corpus callosum. *Science*, 216(4553), 1431–1432.

Denissen, J. J. A., & Penke, L. (2008). Motivational individual reaction norms underlying the Five-Factor model of personality: First steps towards a theory-based conceptual framework. *Journal of Research in Personality*, 42(5), 1285–1302.

Dennis Caplan, K. G. M., & Lester, M. (2018). Can incentives mitigate student overconfidence at grade forecasts? *Accounting Education*, 27(1), 27–47. <https://doi.org/10.1080/09639284.2017.1361850>

Devlin-Hegedus, J., Miller, M., Cooke, S., Ware, S., & Richmond, C. (2023). Measured task load in directed observers versus active participants undergoing high-fidelity simulation education in a critical care setting. *AEM Education and Training*, 7(4), e10894.

Diederich, A., & Busemeyer, J. R. (2003). Simple matrix methods for analyzing diffusion models of choice probability, choice response time, and simple response time. *Journal of Mathematical Psychology*, 47(3), 304–322.

Dinesh, P., & P., K. (2022). Medical Image Prediction for Diagnosis of Breast Cancer Disease Comparing the Machine Learning Algorithms: SVM, KNN, Logistic Regression, Random Forest, and Decision Tree to Measure Accuracy. *ECS Transactions*, 107(1), 12681. <https://doi.org/10.1149/10701.12681ecst>

Dorrian, J., Baulk, S. D., & Dawson, D. (2011). Work hours, workload, sleep and fatigue in Australian Rail Industry employees. *Applied Ergonomics*, 42(2), 202–209.

Dreiseitl, S., & Ohno-Machado, L. (2002). Logistic regression and artificial neural network classification models: a methodology review. *Journal of Biomedical Informatics*, 35(5–6), 352–359.

Driskell, T., Salas, E., & Driskell, J. E. (2018). Teams in extreme environments: Alterations in team development and teamwork. *Human Resource Management Review*, 28(4), 434–449.

Dunham, M. H. (2006). *Data mining: Introductory and advanced topics*. Pearson Education India.

Dur, A., Fern, P., Weinman, N., Akalın, A., & Fox, A. (2021). *Exploring Gender Bias in Remote Pair Programming among Software Engineering Students : The twincode Original Study and First External Replication*.

DURA, C. (2018). COMPLETELY RANDOMIZED DESIGN OF A MARKETING EXPERIMENT. *Annals of the University of Petroşani, Economics*, 18(1), 67–76.

Duran, Z., Akargöl, İ., & Doğan, T. (2023). *Data Mining , Weka Decision Trees*. 401–416.

Dutt, S., Chandramouli, S., & Das Amit, K. (2019). Machine Learning1st(Ed.). *India: Pearson*.

Dutta, R., Univeristy, C., Costa, D. E., Univeristy, C., & Univeristy, C. (n.d.). *Diversity Awareness in Software Engineering Participant Research*.

Dye, M. E., Runyan, P., Scott, T. A., Dietrich, M. S., Hatch, L. D., France, D., & Alrifai, M. W. (2023). Workload In Neonatology (WORKLINE): Validation and feasibility of a system for measuring clinician workload integrated into the electronic health record. *Journal of Perinatology*, 1–7.

Eckel, C. C., & Grossman, P. J. (2002). Sex differences and statistical stereotyping in attitudes toward financial risk. *Evolution and Human Behavior*, 23(4), 281–295.

Edmondson, A. C. (2011). Strategies for learning from failure. *Harvard Business Review*, 89(4), 48–55.

El-Attar, M. (2019). A comparative study of students and professionals in syntactical model comprehension experiments. *Software and Systems Modeling*, 18(6), 3283–3329.

Eldor, L., Fried, Y., Westman, M., Levi, A. S., Shipp, A. J., & Slowik, L. H. (2017). The experience of work stress and the context of time: Analyzing the role of subjective time. *Organizational Psychology Review*, 7(3), 227–249.

Ellinas, C., Allan, N., & Johansson, A. (2016). Project systemic risk: Application examples of a network model. *International Journal of Production Economics*, 182, 50–62.

Elyasi, S., Nejad, A. V., & Taghiyareh, F. (2023). *MBTI-Personality Types and Traits of Professional Software Engineers*. 6(1), 9–16.

en Hvidsten, T. R. (1999). Fault diagnosis in rotating machinery using rough set theory and ROSETTA. *Department of Computer and Information Science, Norwegian University of Science and Technology*.

Enriquez, D. C., Pimentel, J. J. A., López, M. Á. H., & Acevedo, F. A. (2018). COMPARATIVA KINECT VS MYO APLICANDO LA PRUEBA NASA-TLX EN UN ENTORNO DE RVI PARA INSPECCIÓN EN AEROGENERADORES. *Pistas Educativas*, 39(128).

Falessi, D., Juristo, N., Wohlin, C., Turhan, B., Münch, J., Jedlitschka, A., & Oivo, M. (2018). Empirical software engineering experts on the use of students and professionals in experiments. *Empirical Software Engineering*, 23(1), 452–489.

Farhat, S., Abdelkader, M., Meddeb-Makhlouf, A., & Zarai, F. (2020). Comparative Study of Classification Algorithms for Cloud IDS using NSL-KDD Dataset in WEKA. *2020 International Wireless Communications and Mobile Computing (IWCMC)*, 445–450.

Fawcett, T. (2006). An introduction to ROC analysis. *Pattern Recognition Letters*, 27(8), 861–874.

Fayyad, U., Piatetsky-shapiro, G., & Smyth, P. (1996). *From Data Mining to Knowledge Discovery in*. 17(3), 37–54.

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). The KDD process for extracting useful knowledge from volumes of data. *Communications of the ACM*, 39(11), 27–34.

Feldt, R., Zimmermann, T., Bergersen, G. R., Falessi, D., Jedlitschka, A., Juristo, N., Münch, J., & Oivo, M. (2018). *Four commentaries on the use of students and professionals in empirical software engineering experiments*. 3801–3820.

Feng, S., Keung, J., Xiao, Y., Zhang, P., Yu, X., & Cao, X. (2024). Improving the undersampling technique by optimizing the termination condition for software defect prediction. *Expert Systems with Applications*, 235, 121084.

Fernández-Sanz, L., & Misra, S. (2011). Influence of human factors in software quality and productivity. *International Conference on Computational Science and Its Applications*, 257–269.

Finance, M. O. (2021). Pakistan Economic Survey, 2020-21. *Finance Division, Government of Pakistan Islamabad: Islamabad, Pakistan.*

Flowerdew, R., & Martin, D. (2005). *Methods in human geography: a guide for students doing a research project.* Pearson Education.

Francis-Smythe, J. A., & Robertson, I. T. (2003). The importance of time congruity in the organisation. *Applied Psychology, 52*(2), 298–321.

Francis, L. J., Craig, C. L., & Robbins, M. (2008). The relationship between the Keirsey Temperament Sorter and the short-form revised Eysenck Personality Questionnaire. *Journal of Individual Differences, 29*(2), 116–120.

French, J. R. P., Caplan, R. D., & Van Harrison, R. (1982). *The mechanisms of job stress and strain* (Vol. 7). Chichester [Sussex]; New York: J. Wiley.

Fuggetta, A., & Di Nitto, E. (2014). Software process. *Future of Software Engineering, FOSE 2014 - Proceedings*, 1–12. <https://doi.org/10.1145/2593882.2593883>

Furnham, A. (1996). The big five versus the big four: the relationship between the Myers-Briggs Type Indicator (MBTI) and NEO-PI five factor model of personality. *Personality and Individual Differences, 21*(2), 303–307.

George, J. M., & Zhou, J. (2007). Dual tuning in a supportive context: Joint contributions of positive mood, negative mood, and supervisory behaviors to employee creativity. *Academy of Management Journal, 50*(3), 605–622.

Ghani, E. K., Jabal, Z. A., Zandi, G., & Hye, Q. M. A. (2022). Effects of Knowledge, Time Pressure and Personality on Professional Skepticism among Government Auditors. *International Journal of Applied Economics, Finance and Accounting, 12*(1), 12–20. <https://doi.org/10.33094/ijaefa.v12i1.514>

Gil, M., Albert, M., Fons, J., & Pelechano, V. (2020). *Engineering Human-in-the-Loop Interactions in Cyber-Physical Systems.*

Gila, A. R., Jaafa, J., Omar, M., & Tunio, M. Z. (2014). Impact of personality and gender diversity on software development teams' performance. *2014 International Conference on Computer, Communications, and Control Technology (I4CT)*, 261–265.

Gilal, A.R., Jaafar, J., Capretz, L. F., Omar, M., Basri, S., & Aziz, I. A. (2018). Finding an effective classification technique to develop a software team composition model. *Journal of Software: Evolution and Process, 30*(1). <https://doi.org/10.1002/smr.1920>

Gilal, Abdul Rehman, Ali, H. A., Shaikh, K., Waqas, A., Abro, R. A., & Gilal, R. (2019). Respect Human Value to Control Software Development Failure. *International Journal of Engineering and Advanced Technology, 9*(2), 2245–2250. <https://doi.org/10.35940/ijeat.b3345.129219>

Gilal, Abdul Rehman, Jaafa, J., Omar, M., & Tunio, M. Z. (2014). Impact of personality and gender diversity on software development teams' performance. *I4CT 2014 - 1st International Conference on Computer, Communications, and Control Technology, Proceedings, I4ct*, 261–265. <https://doi.org/10.1109/I4CT.2014.6914186>

Gilal, Abdul Rehman, Jaafar, J., Abro, A., Umrani, W. A., Basri, S., & Omar, M. (2017). Making programmer effective for software development teams: An extended study. *Journal of Information Science and Engineering*. <https://doi.org/10.6688/JISE.2017.33.6.4>

Gilal, Abdul Rehman, Jaafar, J., Omar, M., Basri, S., Aziz, A., & Din, I. (2015). A Set of Rules for Constructing Gender-based Personality types' Composition for Software Programmer. *Lecture Notes in Electrical Engineering by Springer*, February 2016.

Gilal, Abdul Rehman, Jaafar, J., Omar, M., Basri, S., Aziz, I. A., Khand, Q. U., & Hasan, M. H. (2017). Suitable Personality Traits for Learning Programming Subjects: A Rough-Fuzzy Model. *INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS*. <https://doi.org/10.14569/IJACSA.2017.080820>

Gilal, Abdul Rehman, Jaafar, J., Omar, M., Basri, S., & Aziz, I. D. A. (2019). A set of rules for constructing gender-based personality types' composition for software programmer. *Proceedings of the International Conference on Data Engineering 2015 (DaEng-2015)*, 363–374. https://doi.org/10.1007/978-981-13-1799-6_38

Gilal, Abdul Rehman, Jaafar, J., Omar, M., Basri, S., & Waqas, A. (2016). A Rule-Based Model for Software Development Team Composition: Team Leader Role with Personality Types and Gender Classification. *Information and Software Technology*, 74, 105–113. <https://doi.org/10.1016/j.infsof.2016.02.007>

Gilal, Abdul Rehman, Omar, M., Jaafar, J., Sharif, K. I., Mahesar, A. W., & Basri, S. (2017). Software development team composition: personality types of programmer and complex networks. *6th International Conference on Computing and Informatics (ICOI-2017)*, 153–159.

Gilal, Abdul Rehman, Omar, M., & Sharif, K. I. (2013). Discovering personality types and diversity based on software team roles. *International Conference on Computing and Informatics, ICOI, 2013*, 259–264.

Gilal, Abdul Rehman, Tunio, M. Z., Waqas, A., & Almomani, M. A. (2019). *Task Assignment and Personality: May*. <https://doi.org/10.4018/978-1-5225-9448-2.ch001>

Gilal, Abdul Rehman, Tunio, M. Z., Waqas, A., Almomani, M. A., Khan, S., & Gilal, R. (2019). Task Assignment and Personality: Crowdsourcing Software Development. In *Human Factors in Global Software Engineering* (pp. 1–19). IGI Global.

Gill, T. G., & Hicks, R. C. (2006). Task complexity and informing science: A synthesis. *Informing Science*, 9, 1.

Girardi, D., Lanubile, F., Novielli, N., & Serebrenik, A. (2021). *Emotions and Perceived Productivity of Software Developers at the Workplace*. XX(XX). <https://doi.org/10.1109/TSE.2021.3087906>

Gneezy, U., Niederle, M., & Rustichini, A. (2003). Performance in competitive environments: Gender differences. *The Quarterly Journal of Economics*, 118(3), 1049–1074.

Goel, A., Goel, A. K., & Kumar, A. (2023). The role of artificial neural network and machine learning in utilizing spatial information. *Spatial Information Research*, 31(3), 275–285. <https://doi.org/10.1007/s41324-022-00494-x>

Gorla, N., & Lam, Y. W. (2004). Who should work with whom?: building effective software project teams. *Communications of the ACM*, 47(6), 79–82.

Graham, J. R., Harvey, C. R., & Huang, H. (2009). Investor competence, trading frequency, and home bias. *Management Science*, 55(7), 1094–1106.

Graziotin, D., Fagerholm, F., & Wang, X. (2017). *On the Unhappiness of Software Developers*. <https://doi.org/10.48550/arXiv.1703.04993>

Greitzer, F. L. (2005). Toward the development of cognitive task difficulty metrics to support intelligence analysis research. *Fourth IEEE Conference on Cognitive Informatics, 2005.(ICCI 2005)*, 315–320.

Grinblatt, M., & Keloharju, M. (2009). Sensation seeking, overconfidence, and trading activity. *The Journal of Finance*, 64(2), 549–578.

Guidry, T. L., Halligan, B. B., & Peters, C. (2018). Strategies for Handling Failures in Development of Information Systems. *Journal of Managerial Issues*, 30(3), 278–363.

Guillaume-Joseph, G., & Wasek, J. S. (2015a). Improving software project outcomes through predictive analytics: Part 1. *IEEE Engineering Management Review*, 43(3), 26–38. <https://doi.org/10.1109/EMR.2015.2469451>

Guillaume-Joseph, G., & Wasek, J. S. (2015b). Improving software project outcomes through predictive analytics: Part 2. *IEEE Engineering Management Review*, 43(3), 39–49. <https://doi.org/10.1109/EMR.2015.2469471>

Gupta, S. K., Gunasekaran, A., Antony, J., Gupta, S., Bag, S., & Roubaud, D. (2019). Systematic literature review of project failures: Current trends and scope for future research. *Computers & Industrial Engineering*, 127, 274–285. <https://doi.org/10.1016/j.cie.2018.12.002>

Gwizdka, J. (2009). Assessing Cognitive Load on Web Search Tasks. *The Ergonomics Open Journal*, 2, 114–123.

Gwizdka, J., & Spence, I. (2006). What can searching behavior tell us about the difficulty

of information tasks? A study of Web navigation. *Proceedings of the American Society for Information Science and Technology*, 43(1), 1–22.

Hackman, J. R., & Oldham, G. R. (1980). *Work redesign*.

Halford, G. S., Wilson, W. H., & Phillips, S. (1998). Processing capacity defined by relational complexity: Implications for comparative, developmental, and cognitive psychology. *Behavioral and Brain Sciences*, 21(6), 803–831.

Hammad, M., Alqaddoumi, A., Al-obaidy, H., & Almseidein, K. (2019). *Predicting Software Faults Based on K-Nearest Neighbors Classification*. 5(5).

Harrison, D. A., Newman, D. A., & Roth, P. L. (2006). How important are job attitudes? Meta-analytic comparisons of integrative behavioral outcomes and time sequences. *Academy of Management Journal*, 49(2), 305–325.

Hart, S G, & Staveland, L. E. (1988). *Development of NASA-TLX (task load index): results of empirical and theoretical research*. *Adv. Psychol.* 52 (C), 139--183 (1988).

Hart, Sandra G. (2006a). NASA-TLX: 20 Years Later. *Proceedings of the Human Factors and Ergonomics Society Annual Meeting*, 50, 904–908. <https://doi.org/10.1177/154193120605000909>

Hart, Sandra G. (2006b). NASA-task load index (NASA-TLX); 20 years later. *Proceedings of the Human Factors and Ergonomics Society Annual Meeting*, 50(9), 904–908.

Hasan, A., Moin, S., & Pasha, M. (2019a). Prediction of Personality Profiles in the Pakistan Software Industry--A Study. *Psych*, 1(1), 320–330.

Hasan, A., Moin, S., & Pasha, M. (2019b). *Prediction of Personality Profiles in the Pakistan Software Industry – A Study*. 320–330.

Hassan, M. (2019). *A Policy Recommendations Framework To Resolve Global Software Development Issues*. *Icic*. <https://doi.org/10.1109/ICIC48496.2019.8966719>

Hastie, S., & Wojewoda, S. (2015). Standish group 2015 chaos report-q&a with jennifer lynch. *Retrieved*, 1(15), 2016.

Hawari, A., & Heeks, R. (2010). Explaining ERP failure in a developing country: a Jordanian case study. *Journal of Enterprise Information Management*.

Hazzan, O., & Hadar, I. (2008). Why and how can human-related measures support software development processes? *Journal of Systems and Software*, 81(7), 1248–1252.

Hazzan, O., & Tomayko, J. (2004). Human aspects of software engineering: The case of extreme programming. *International Conference on Extreme Programming and Agile Processes in Software Engineering*, 303–311.

Heck, P., Klabbers, M., & van Eekelen, M. (2010). A software product certification model. *Software Quality Journal*, 18, 37–55.

Heck, P., & Zaidman, A. (2017). A framework for quality assessment of just-in-time requirements: the case of open source feature requests. *Requirements Engineering*, 22, 453–473.

Hernandez, I., & Preston, J. L. (2013). Disfluency disrupts the confirmation bias. *Journal of Experimental Social Psychology*, 49(1), 178–182. <https://doi.org/10.1016/j.jesp.2012.08.010>

Hidellaarachchi, D., & Grundy, J. (2023). *The Impact of Personality on Requirements Engineering Activities : A Mixed-Methods Study*.

Hidellaarachchi, D., Grundy, J., Hoda, R., & Madampe, K. (2020). *The Effects of Human Aspects on the Requirements Engineering Process : A Systematic Literature Review*. August.

Hidellaarachchi, D., Grundy, J., Hoda, R., & Mueller, I. (2023). The Influence of Human Aspects on Requirements Engineering-related Activities: Software Practitioners' Perspective. *ACM Transactions on Software Engineering and Methodology*, 1(1), 1–37.

Hoang, H., & Rothaermel, F. T. (2005). The effect of general and partner-specific alliance experience on joint R&D project performance. *Academy of Management Journal*, 48(2), 332–345.

Holtkamp, P., Jokinen, J. P. P., & Pawlowski, J. M. (2015). Soft competency requirements in requirements engineering, software design, implementation, and testing. *Journal of Systems and Software*, 101, 136–146.

Hong, S. R., Hullman, J., & Bertini, E. (2020). Human Factors in Model Interpretability: Industry Practices, Challenges, and Needs. *Proceedings of the ACM on Human-Computer Interaction*, 4(CSCW1), 1–27. <https://doi.org/10.1145/3392878>

Hooimeijer, P., & Weimer, W. (2007). Modeling bug report quality. *Proceedings of the Twenty-Second IEEE/ACM International Conference on Automated Software Engineering*, 34–43.

Hosmer Jr, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). *Applied logistic regression* (Vol. 398). John Wiley & Sons.

Höst, M., & Thelin, T. (2005). *Experimental Context Classification : Incentives and Experience of Subjects*. 470–478.

HOU, W., LI, M., & HUANG, J. (2019). Performance Study of Light Assembly Operations Considering Time Pressure and Task Complexity. *DEStech Transactions on Computer Science and Engineering*, cscme.

Hsu, C., & Lin, C. (2002). *A Comparison of Methods for Multiclass Support Vector Machines*. *13*(2), 415–425.

Huang, L., Endrawes, M., & Hellman, A. (2015). An experimental examination of the effect of client size and auditors' industry specialization on time pressure in Australia. *Corp. Ownersh. Control*, *12*(4), 398–408.

Hubert, M., & Engelen, S. (2007). Fast cross-validation of high-breakdown resampling methods for PCA. *Computational Statistics & Data Analysis*, *51*(10), 5013–5024.

Huggins, A., & Claudio, D. (2018). A performance comparison between the subjective workload analysis technique and the NASA-TLX in a healthcare setting. *IIE Transactions on Healthcare Systems Engineering*, *8*(1), 59–71.

Husain, S., Kadribay, B., Jarndal, A., & Hashmi, M. (2023). Comprehensive Investigation of ANN Algorithms Implemented in MATLAB, Python, and R for Small-Signal Behavioral Modeling of GaN HEMTs. *IEEE Journal of the Electron Devices Society*, *11*(July), 559–572. <https://doi.org/10.1109/JEDS.2023.3324084>

Husić, J. B., Alagić, E., Baraković, S., & Mrkaja, M. (2019). The Influence of Task Complexity and Duration when Testing QoE in WebRTC. *2019 18th International Symposium INFOTEH-JAHORINA (INFOTEH)*, 1–6.

Ibrahim, F. A., & Shiba, O. A. (2019). Data Mining : WEKA Software (an Overview). *Journal of Pure & Applied Sciences*, *18*(3), 54–58. www.Suj.sebhau.edu.ly

Ibraigheeth, M. A., & Fadzli, S. A. (2020). Software project failures prediction using logistic regression modeling. *2020 2nd International Conference on Computer and Information Sciences, ICCIS 2020, October 2020*. <https://doi.org/10.1109/ICCIS49240.2020.9257648>

Ibraigheeth, M., & Fadzli, S. A. (2022). *Core Factors for Software Projects Success*. *3*, 69–74.

Idowu, S., Osman, O., & Berger, S. T. (n.d.). *Machine Learning Experiment Management Tools : A Mixed-Methods Empirical Study*.

IEEE Standard Glossary of Software Engineering Terminology. (1990). *IEEE Std 610.12-1990*, 1–84. <https://doi.org/10.1109/IEEESTD.1990.101064>

Ilies, R., Scott, B. A., & Judge, T. A. (2006). The interactive effects of personal traits and experienced states on intraindividual patterns of citizenship behavior. *Academy of Management Journal*, *49*(3), 561–575.

Islam Rifat, M. R., Al Imran, A., & Badrudduza, A. S. M. (2019). EduNet: A Deep Neural Network Approach for Predicting CGPA of Undergraduate Students. *1st International Conference on Advances in Science, Engineering and Robotics Technology 2019, ICASERT 2019*, *2019*(Icasert), 1–6. <https://doi.org/10.1109/ICASERT.2019.8934616>

Jacko, J. A., & Ward, K. G. (1996). Toward establishing a link between psychomotor task complexity and human information processing. *Computers & Industrial Engineering*, 31(1–2), 533–536.

Jedlitschka, A., & Pfahl, D. (2005). Reporting guidelines for controlled experiments in software engineering. *2005 International Symposium on Empirical Software Engineering, 2005.*, 10--pp.

John, O. P., Srivastava, S., & others. (1999). *The Big-Five trait taxonomy: History, measurement, and theoretical perspectives* (Vol. 2). University of California Berkeley.

Johnson, J. (2018). *CHAOS report: decision latency theory: it is all about the interval*. Lulu. com.

Jones, K. S., Lind, A., Service, I., Tang, M., Shaoqin, W., & Bingli, X. (2020). *Prediction of Vocational Students Behaviour using The k-Nearest Neighbor Algorithm Prediction of Vocational Students Behaviour using The k- Nearest Neighbor Algorithm*. <https://doi.org/10.1088/1742-6596/1566/1/012046>

Jørgensen, K. M. and M. (2009). *A Review of Surveys on Software Effort Estimation*. 1325.

Jørgensen, M., & Sjøberg, D. I. K. (2001). Impact of effort estimates on software project work. *Information and Software Technology*, 43(15), 939–948.

Judge, T. A., & Zapata, C. P. (2015). The person–situation debate revisited: Effect of situation strength and trait activation on the validity of the Big Five personality traits in predicting job performance. *Academy of Management Journal*, 58(4), 1149–1179.

Julie, M. D., & Kannan, B. (2010). Prediction of learning disabilities in school age children using decision tree. *Communications in Computer and Information Science, 90 CCIS*, 533–542. https://doi.org/10.1007/978-3-642-14493-6_55

Kaluzniacky, E. (2004). *Managing psychological factors in information systems work: An orientation to emotional intelligence*. IGI Global.

Kanhokthorn, L., & Xi, J. (2020). *Effect of individual on software development team performance Investigating individualism of software engineers and how it could affect a software development team performance*.

Kannan, R., Manohar, S. S., & Kumaran, M. S. (2018). Nominal features-based class specific learning model for fault diagnosis in industrial applications. *Computers & Industrial Engineering*, 116, 163–177.

Kant, G., & Sangwan, K. S. (2015). Predictive modeling for power consumption in machining using artificial intelligence techniques. *Procedia CIRP*, 26, 403–407.

Karagözoglu, E., & Kocher, M. G. (2019). Bargaining under time pressure from

deadlines. *Experimental Economics*, 22(2), 419–440.

Karapiçak, Ç. M., & Demirörs, O. (2013). A case study on the need to consider personality types for software team formation. *International Conference on Software Process Improvement and Capability Determination*, 120–129.

Karim, S., Warnars, H. L. H. S., Gaol, F. L., Abdurachman, E., Soewito, B., & others. (2017). Software metrics for fault prediction using machine learning approaches: A literature review with PROMISE repository dataset. *2017 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)*, 19–23.

Kaufman, C. F., Lane, P. M., & Lindquist, J. D. (1991). Time congruity in the organization: A proposed quality-of-life framework. *Journal of Business and Psychology*, 6(1), 79–106.

Kaur, R., & Sengupta, J. (2013). *Software Process Models and Analysis on Failure of Software Development Projects*. 2(2), 1–4. <http://arxiv.org/abs/1306.1068>

Keirsey, D., & Bates, M. (1984). Please understand me: Character and temperament types. Del Mar. Calif.: *Prometheus Nemesis*.

Kelly, J. R., & McGrath, J. E. (1985). Effects of time limits and task types on task performance and interaction of four-person groups. *Journal of Personality and Social Psychology*, 49(2), 395.

Khan, A. A., & Keung, J. (2016). Systematic review of success factors and barriers for software process improvement in global software development. *IET Software*, 10(5), 125–135.

Kim, D., Ivanov, S., Plastun, A. T., Tikhonova, O. V., Malygin, I. V., Bespalov, V. Y., Sidorov, A. O., Grachev, P. Y., Bazarov, A. A., Tabachinskiy, A. S., & others. (2018). *IOP Conference Series: Materials Science and Engineering*.

Kleiner, S. (2014). Subjective time pressure: General or domain specific? *Social Science Research*, 47, 108–120.

Kocher, M. G., Schindler, D., Trautmann, S. T., & Xu, Y. (2019). Risk, time pressure, and selection effects. *Experimental Economics*, 22(1), 216–246.

Kohavi, R., & others. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. *Ijcai*, 14(2), 1137–1145.

Komeda, S., Tsunoda, M., & Nakasai, K. (2024). *Prediction of Residual Defects after Code Review Based on Reviewer Confidence*. 3, 273–276. <https://doi.org/10.1587/transinf.2023MPL0002>

Korsaa, M., Johansen, J., Schweigert, T., Vohwinkel, D., Messnarz, R., Nevalainen, R., &

Biro, M. (2013). The people aspects in modern process improvement management approaches. *Journal of Software: Evolution and Process*, 25(4), 381–391.

Koturwar, P., Girase, S., & Mukhopadhyay, D. (2015). A survey of classification techniques in the area of big data. *ArXiv Preprint ArXiv:1503.07477*.

Koushki, P. A., Al-Rashid, K., & Kartam, N. (2005). Delays and cost increases in the construction of private residential projects in Kuwait. *Construction Management and Economics*, 23(3), 285–294.

Kowalczyk, T. (2019). *SOFTWARE DEVELOPMENT PROJECTS AS AN ENGINE OF GROWTH FOR ORGANIZATION'S BUSINESS VA LUES*. 139.

Kratchounova, D., Choi, I., Mofle, T. C., Miller, L., Stevenson, S., & Humphreys, M. (2023). Flight Technical Error and Workload During Head-Up Display Localizer Guided Takeoff. *Journal of Air Transportation*, 31(1), 18–24.

Krippendorff, K. (2018). *Content analysis: An introduction to its methodology*. Sage publications.

Kruglanski, A. W., & Freund, T. (1983). The freezing and unfreezing of lay-inferences: Effects on impressional primacy, ethnic stereotyping, and numerical anchoring. *Journal of Experimental Social Psychology*, 19(5), 448–468.

Kuckartz, U. (2013). Qualitative text analysis: A guide to methods, practice and using software. *Qualitative Text Analysis*, 1–192.

Kumar, S. A., & others. (2011). *Efficiency of decision trees in predicting student's academic performance*.

Kuutila, M., Mantyla, M., Farooq, U., & Claes, M. (2020). What Do We Know About Time Pressure in Software Development? *IEEE Software*.

Kuutila, M., Mäntylä, M., Farooq, U., & Claes, M. (2019). *Time Pressure in Software Engineering: A Systematic Literature Review*. <https://doi.org/10.48550/arXiv.1901.05771>

Kuutila, M., Mäntylä, M., Farooq, U., & Claes, M. (2020). Time pressure in software engineering: A systematic review. *Information and Software Technology*, 121. <https://doi.org/10.1016/j.infsof.2020.106257>

Kuutila, M., Mantyla, M. V., Claes, M., & Elovainio, M. (2017). Reviewing literature on time pressure in software engineering and related professions: Computer assisted interdisciplinary literature review. *Proceedings - 2017 IEEE/ACM 2nd International Workshop on Emotion Awareness in Software Engineering, SEmotion 2017*, 54–59. <https://doi.org/10.1109/SEmotion.2017.11>

Le Lann, G. (1997). An analysis of the Ariane 5 flight 501 failure-a system engineering

perspective. *Proceedings International Conference and Workshop on Engineering of Computer-Based Systems*, 339–346.

Le, S., Antonia, B., & Philippe, M. D. (2019). *Decision-making in complex environments under time pressure and risk of critical irreversibility : The role of meta rules*.

Leder, J., Häusser, J. A., & Mojzisch, A. (2013). Stress and strategic decision-making in the beauty contest game. *Psychoneuroendocrinology*, 38(9), 1503–1511.

Lee, T. W., Locke, E. A., & Latham, G. P. (1989). *Goal setting theory and job performance*.

Lehtinen, T. O. A., Mäntylä, M. V., Vanhanen, J., Itkonen, J., & Lassenius, C. (2014). Perceived causes of software project failures - An analysis of their relationships. *Information and Software Technology*, 56(6), 623–643. <https://doi.org/10.1016/j.infsof.2014.01.015>

Lenberg, P., Feldt, R., & Wallgren, L. G. (2015). Behavioral software engineering: A definition and systematic literature review. *Journal of Systems and Software*, 107, 15–37. <https://doi.org/10.1016/j.jss.2015.04.084>

LePine, J. A., Podsakoff, N. P., & LePine, M. A. (2005). A meta-analytic test of the challenge stressor--hindrance stressor framework: An explanation for inconsistent relationships among stressors and performance. *Academy of Management Journal*, 48(5), 764–775.

Liang, C., Liu, J., Feng, J., Xiao, A., Zeng, H., Wu, Q., & Yu, T. (2023). Automatic detection of contextual defects based on machine learning. *International Journal of Embedded Systems*, 16(1), 75–82. <https://doi.org/10.1504/IJES.2023.134124>

Lin, D., Bezemer, C.-P., & Hassan, A. E. (2019). Identifying gameplay videos that exhibit bugs in computer games. *Empirical Software Engineering*, 24(6), 4006–4033.

Lippa, R. A. (2001). On deconstructing and reconstructing masculinity--femininity. *Journal of Research in Personality*, 35(2), 168–207.

Lipton, Z. C., Elkan, C., & Naryanaswamy, B. (2014). Optimal thresholding of classifiers to maximize F1 measure. *Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)*, 8725 LNAI(PART 2), 225–239. https://doi.org/10.1007/978-3-662-44851-9_15

Liu, C., Berry, P. M., Dawson, T. P., & Pearson, R. G. (2005). *Liu et al 2005 Selecting thresholds of occurrence in the prediction of species distributions.pdf*. 3(December 2004), 385–393.

Liu, J. Y.-C., Chen, H.-G., Chen, C. C., & Sheu, T. S. (2011). Relationships among interpersonal conflict, requirements uncertainty, and software project performance. *International Journal of Project Management*, 29(5), 547–556.

Liu, P., & Li, Z. (2012). Task complexity: A review and conceptualization framework. *International Journal of Industrial Ergonomics*, 42(6), 553–568.

Liu, P., & Li, Z. (2011). Toward understanding the relationship between task complexity and task performance. *International Conference on Internationalization, Design and Global Development*, 192–200.

Lo, S. K., Lu, Q., Wang, C., Paik, H.-Y., & Zhu, L. (2020). *A Systematic Literature Review on Federated Machine Learning: From A Software Engineering Perspective*. 37(4). <https://doi.org/10.1145/3450288>

Lundsgaard, C., Lund, O., & Nielsen, M. (2008). Accurate approximation method for prediction of class I MHC affinities for peptides of length 8, 10 and 11 using prediction tools trained on 9mers. *Bioinformatics*, 24(11), 1397–1398.

Madhi, N. Al, & Rogers, T. (2022). *Assessing Workload Perception in Introductory Computer Science Projects using NASA-TLX*. December 2021. <https://doi.org/10.1145/3478431.3499406>

Magnus, J. R., Peresetsky, A. A., & Roy, M. (2018). *Grade Expectations : Rationality and Overconfidence*. 8(January), 1–10. <https://doi.org/10.3389/fpsyg.2017.02346>

Malekpour, F., Malekpour, A. R., Mohammadian, Y., Mohammadpour, Y., Shakarami, A., & Sheikh Ahmadi, A. (2014). Assessment of mental workload in nursing by using NASA-TLX. *The Journal of Urmia Nursing and Midwifery Faculty*, 11(11), 892–899.

Mangos, P. M., & Steele-Johnson, D. (2001). The role of subjective task complexity in goal orientation, self-efficacy, and performance relations. *Human Performance*, 14(2), 169–185.

Mäntylä, M. V., Petersen, K., Lehtinen, T. O. A., & Lassenius, C. (2014a). *Time pressure: a controlled experiment of test case development and requirements review*. 83–94. <https://doi.org/10.1145/2568225.2568245>

Mäntylä, M. V., & Itkonen, J. (2013). More testers--The effect of crowd size and time restriction in software testing. *Information and Software Technology*, 55(6), 986–1003.

Mäntylä, M. V., Petersen, K., Lehtinen, T. O. A., & Lassenius, C. (2014b). *Time pressure: a controlled experiment of test case development and requirements review*. *Proceedings of the 36th International Conference on Software Engineering*, 83–94. <https://doi.org/10.1145/2568225.2568245>

Maria De Paola, F. G. (2015). Who performs better under time pressure? Results from a field experiment. *Journal of Economic Psychology*, 8708.

Mark, G., Iqbal, S. T., Czerwinski, M., & Johns, P. (2014). Bored mondays and focused afternoons: the rhythm of attention and online activity in the workplace. *Proceedings*

of the SIGCHI Conference on Human Factors in Computing Systems, 3025–3034.

Martinez-Miranda, J., & Pavón, J. (2010). Human attributes in the modelling of Work Teams. *International Conference on Information Technology for Balanced Automation Systems*, 276–284.

Maruping, L. M., Venkatesh, V., Thatcher, S. M. B., & Patel, P. C. (2015). Folding under pressure or rising to the occasion? Perceived time pressure and the moderating role of team temporal leadership. *Academy of Management Journal*, 58(5), 1313–1333. <https://doi.org/10.5465/amj.2012.0468>

Mather, P., & Tso, B. (2016). *Classification methods for remotely sensed data*. CRC press.

Matsubara, P., Steinmacher, I., Gadelha, B., & Conte, T. (2023). *Moving on from the software engineers' gambit: an approach to support the defense of software effort estimates*. <http://arxiv.org/abs/2302.07229>

Matteson, S. (2018). Report: Software failure caused \$1.7 trillion in financial losses in 2017. *TechRepublic*. [Online]. Available: <Https://Www.Techrepublic.Com/Article/Report-Software-Failure-Caused-1-7-Trillion-in-Financial-Losses-in-2017>.

Matturro, G., Raschetti, F., & Fontán, C. (2019). A Systematic Mapping Study on Soft Skills in Software Engineering. *J. UCS*, 25(1), 16–41.

McCoach, D. B., Gable, R. K., Madura, J. P., McCoach, D. B., Gable, R. K., & Madura, J. P. (2013). Defining, measuring, and scaling affective constructs. *Instrument Development in the Affective Domain: School and Corporate Applications*, 33–90.

McCrae, R. R., & John, O. P. (1992). An introduction to the five-factor model and its applications. *Journal of Personality*, 60(2), 175–215.

McGuirk, P. M., & O'Neill, P. (2016). *Using questionnaires in qualitative human geography*.

McNab, A. L., Hess, T. J., & Valacich, J. S. (2009). Designing emergency response applications for better performance. *ICIS 2009 Proceedings*, 3.

Melamed, S., Ben-Avi, I., Luz, J., & Green, M. S. (1995). Objective and subjective work monotony: Effects on job satisfaction, psychological distress, and absenteeism in blue-collar workers. *Journal of Applied Psychology*, 80(1), 29.

Mello, R. de, & Coelho, M. (2021). *Characterizing the Experience of Subjects in Software Engineering Studies*.

Meyer, A., Barr, E. T., Bird, C., & Zimmermann, T. (2019). Today was a Good Day: The Daily Life of Software Developers. *IEEE Transactions on Software Engineering*.

Meyer, D. (2014). *Support vector machines the interface to libsvm in package e1071*. *R-News*.

Michailidou, A., & Economides, A. (2008). Gender and diversity in collaborative virtual teams. In *Computer-Supported Collaborative Learning: Best practices and principles for instructors* (pp. 199–224). IGI Global.

Miller, J. (2008). A total benefits strategy is a valuable approach in HR outsourcing. *Employment Relations Today*, 34(4), 55–61.

Mirbod, M., & Dehghani, H. (2023). ScienceDirect Smart Trip Prediction Model for Metro Traffic Control Using Data Mining Techniques. *Procedia Computer Science*, 217(2022), 72–81. <https://doi.org/10.1016/j.procs.2022.12.203>

Mirna, M., Jezreel, M., Brenda, D., & Claudia, V. (2014). Software process improvement from a human perspective. In *New Perspectives in Information Systems and Technologies, Volume 1* (pp. 287–298). Springer.

Misra, P. K., Kumar, N., Misra, A., & Khang, A. (2023). Heart disease prediction using logistic regression and random forest classifier. In *Data-Centric AI Solutions and Emerging Technologies in the Healthcare Ecosystem* (pp. 83–112). CRC Press.

Mohamed, S. F. P. (2015). *A process based approach software certification model for agile and secure environment*. Universiti Utara Malaysia.

Molich, R., & Jeffries, R. (2003). Comparative expert reviews. *CHI'03 Extended Abstracts on Human Factors in Computing Systems*, 1060–1061.

Morales, Á. F. C., Arellano, J. L. H., Muñoz, E. L. G., & Mac\'ias, A. A. M. (2020). Development of the NASA-TLX Multi Equation Tool to Assess Workload. *International Journal of Combinatorial Optimization Problems and Informatics*, 11(1), 50–58.

Morgan, D. L. (1996). *Focus groups as qualitative research* (Vol. 16). Sage publications.

Mountrakis, G., Im, J., & Ogole, C. (2011a). *ISPRS Journal of Photogrammetry and Remote Sensing* Support vector machines in remote sensing : A review. 66, 247–259. <https://doi.org/10.1016/j.isprsjprs.2010.11.001>

Mountrakis, G., Im, J., & Ogole, C. (2011b). Support vector machines in remote sensing: A review. *ISPRS Journal of Photogrammetry and Remote Sensing*, 66(3), 247–259.

Myers, I. B., McCaulley, M. H., & Most, R. (1985). *Manual, a guide to the development and use of the Myers-Briggs type indicator*. consulting psychologists press.

Myers, I. B., McCaulley, M. H., Quenk, N. L., & Hammer, A. L. (1998). *MBTI manual: A guide to the development and use of the Myers-Briggs Type Indicator* (Vol. 3). Consulting Psychologists Press Palo Alto, CA.

Nandhini, S., & Marseline K.S., J. (2020). Performance Evaluation of Machine Learning Algorithms for Email Spam Detection. *2020 International Conference on Emerging Trends in Information Technology and Engineering (Ic-ETITE)*, 1–4. <https://doi.org/10.1109/ic-ETITE47903.2020.9312>

National Bank of Pakistan. (2019). INDUSTRY & ECONOMIC BULLETIN - 2019. *CREDIT MANAGEMENT GROUP (CMG), NBP*, 1–171.

Nazar, M., Alam, M. M., Yafi, E., & Su'Ud, M. M. (2021). A Systematic Review of Human-Computer Interaction and Explainable Artificial Intelligence in Healthcare with Artificial Intelligence Techniques. *IEEE Access*, 9, 153316–153348. <https://doi.org/10.1109/ACCESS.2021.3127881>

Nemeth, C. J. (1985). DISSENT, GROUP PROCESS, AND. *Advances in Group Processes*, 2, 57–75.

Nettle, D., & Penke, L. (2010). Personality: bridging the literatures from human psychology and behavioural ecology. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 365(1560), 4043–4050.

Niazi, M., Wilson, D., & Zowghi, D. (2006). Critical success factors for software process improvement implementation: an empirical study. *Software Process: Improvement and Practice*, 11(2), 193–211.

Niederle, M., & Vesterlund, L. (2007). Do women shy away from competition? Do men compete too much? *The Quarterly Journal of Economics*, 122(3), 1067–1101.

Nikulin, C., Lopez, G., Piñonez, E., & Gonzalez, L. (2019). NASA - TLX for predictability and measurability of instructional design models : case study in design methods. *Educational Technology Research and Development*, 67(2), 467–493. <https://doi.org/10.1007/s11423-019-09657-4>

Ohly, S., & Fritz, C. (2010). Work characteristics, challenge appraisal, creativity, and proactive behavior: A multi-level study. *Journal of Organizational Behavior*, 31(4), 543–565. <https://doi.org/10.1002/job.633>

Olson, J., & Kalinski, R. (2017). Making Student Online Teams Work. *Quarterly Review of Distance Education*, 18(4), 1–23.

Omar, M., Alaidaros, H., & Romli, R. (2020). *An Improved Software Project Monitoring Task Model of Agile Kanban Method : A Practitioners ' Perspective*. 10(2), 548–554.

Omar, M., Aljasim, Z. A., Ahmad, M., Baharom, F., Yasin, A., & Mohd, H. (2015). *Team formation model of selecting team leader : An analytic hierarchy process (AHP) approach TEAM FORMATION MODEL OF SELECTING TEAM LEADER : AN ANALYTIC HIERARCHY PROCESS (AHP) APPROACH*. January.

Omar, M., Katuk, N., Abdullah, S. L. S., Hashim, N. L., & Romli, R. (2015). Assessing

personality types preferences amongst software developers: A case of Malaysia. *ARPJ Journal of Engineering and Applied Sciences*, 10(3), 1499–1504.

Ontoum, S., & Chan, J. H. (2022). *Personality Type Based on Myers-Briggs Type Indicator with Text Posting Style by using Traditional and Deep Learning*. <http://arxiv.org/abs/2201.08717>

Özdemir, M., Dönmez, K., & Demirel, S. (2023). Determining the Key Factors Affecting Pseudo-Pilot Workload Based on Real-Time Simulations. *Transportation Research Record*, 03611981231169529.

Page, S. E. (2008). *The Difference: How the Power of Diversity Creates Better Groups, Firms, Schools, and Societies-New Edition*. Princeton University Press.

Pal, S. K., & Mitra, S. (1999). *Neuro-fuzzy pattern recognition: methods in soft computing*. John Wiley & Sons, Inc.

Pan, Z., Wang, Y., & Ku, W. (2017). A new k-harmonic nearest neighbor classifier based on the multi-local means. *Expert Systems with Applications*, 67, 115–125.

Pandey, A. K., & Rajpoot, D. S. (2016). A comparative study of classification techniques by utilizing WEKA. *2016 International Conference on Signal Processing and Communication, ICSC 2016*, 219–224. <https://doi.org/10.1109/ICSPCom.2016.7980579>

Park, E., & Dooris, J. (2020). Predicting student evaluations of teaching using decision tree analysis. *Assessment & Evaluation in Higher Education*, 45(5), 776–793. <https://doi.org/10.1080/02602938.2019.1697798>

Pearson, R. G. (2007). Species' distribution modeling for conservation educators and practitioners. *Synthesis. American Museum of Natural History*, 50, 54–89.

Pearson, R. G. (2010). Species' distribution modeling for conservation educators and practitioners. *Lessons Conserv*, 3, 54–89.

Pelled, L. H., & Xin, K. R. (1999). Down and out: An investigation of the relationship between mood and employee withdrawal behavior. *Journal of Management*, 25(6), 875–895.

Petersen, K., & Wohlin, C. (2010). The effect of moving from a plan-driven to an incremental software development approach with agile practices: An industrial case study. *Empirical Software Engineering*, 15(6), 654–693. <https://doi.org/10.1007/s10664-010-9136-6>

Pietsch, C. P. R., Messier, W. F., & Vegas, L. (2017). *The Effects of Time Pressure on Belief Revision in Accounting: A Review of Relevant Literature within a Pressure-Arousal-Effort-Performance Framework*. 29(2), 51–71. <https://doi.org/10.2308/bria-51756>

Pratama, R. Y., Prasetyowati, S. S., & Sibaroni, Y. (2022). Personality Classification Of Social Media Users Based On Type Of Work And Interest In Information. *JIPI (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika)*, 7(4), 1025–1032. <https://doi.org/10.29100/jipi.v7i4.3196>

Pulka, B. M., Rikwentishe, R., Mani, U. A. U., & Jossiah, M. M. (2015). Variation of attitude among university students towards entrepreneurship education. *Journal of Business Administration and Education*, 7(2).

Puspitasari, D., Ramanda, K., & Supriyatna, A. (2020). *Comparison of Data Mining Algorithms Using Artificial Neural Networks (ANN) and Naive Bayes for Preterm Birth Prediction Comparison of Data Mining Algorithms Using Artificial Neural Networks (ANN) and Naive Bayes for Preterm Birth Prediction*. <https://doi.org/10.1088/1742-6596/1641/1/012068>

Putman, P., Antypa, N., Crysovergi, P., & van der Does, W. A. J. (2010). Exogenous cortisol acutely influences motivated decision making in healthy young men. *Psychopharmacology*, 208(2), 257.

Pyle, D. (1999). *Data preparation for data mining*. morgan kaufmann.

Quinlan, J R. (1993). C4. 5: Programs for machine learning. Morgan Kaufmann, San Francisco. *C4. 5: Programs for Machine Learning*. Morgan Kaufmann, San Francisco.

Quinlan, J Ross. (1986). Induction of decision trees. *Machine Learning*, 1(1), 81–106.

Rahman, F., & Devanbu, P. (2013). How, and why, process metrics are better. *2013 35th International Conference on Software Engineering (ICSE)*, 432–441.

Ramač, R., Mandić, V., Taušan, N., Rios, N., Freire, S., Pérez, B., Castellanos, C., Correal, D., Pacheco, A., Lopez, G., & others. (2022). Prevalence, common causes and effects of technical debt: Results from a family of surveys with the IT industry. *Journal of Systems and Software*, 184, 111114.

Ramanujan, S., Scamell, R. W., & Shah, J. R. (2000). An experimental investigation of the impact of individual, program, and organizational characteristics on software maintenance effort. *Journal of Systems and Software*, 54(2), 137–157.

Ramiro, E. D., Valdehita, S. R., Martín, J., & Luceño, L. (2010). *Psychometric Study of NASA-TLX Mental Workload Index in a Sample of Spanish Workers*. 26. <https://doi.org/10.5093/tr2010v26n3a3>

Rasmussen, M., Standal, M. I., & Laumann, K. (2015). Task complexity as a performance shaping factor: A review and recommendations in Standardized Plant Analysis Risk-Human Reliability Analysis (SPAR-H) adaption. *Safety Science*, 76, 228–238.

Raunak, M. S., & Binkley, D. (2017). Agile and other trends in software engineering. 2017

Raza, A., Sattar, H., & Fatima, N. (2022). Time Pressure's Impact on Software Quality. *Pakistan Journal of Engineering and Technology*, 5(2), 133–139. <https://doi.org/10.51846/vol5iss2pp133-139>

Razzaq, S., Huang, J., Sun, H., & Xie, M. (2019). Analyzing time pressure for software economics. *Journal of Enterprise Information Management*.

Reis, D., Hoppe, A., Arndt, C., & Lischetzke, T. (2017). Time pressure with state vigour and state absorption: are they non-linearly related? *European Journal of Work and Organizational Psychology*, 26(1), 94–106.

Remington, K., Zolin, R., & Turner, R. (2009). A Model of Project Complexity: Distinguishing dimensions of complexity from severity. *The 9th International Research Network of Project Management*, 11(October), 11–13.

Rescher, N. (1998). *Complexity: A philosophical overview*. Transaction Publishers.

Ricca, F., Di Penta, M., Torchiano, M., Tonella, P., & Ceccato, M. (2009). How developers' experience and ability influence web application comprehension tasks supported by uml stereotypes: A series of four experiments. *IEEE Transactions on Software Engineering*, 36(1), 96–118.

Richter, K., & Dumke, R. R. (2015). *Modeling, evaluating, and predicting IT human resources performance*. Auerbach Publications.

Rieskamp, J., & Hoffrage, U. (2008). Inferences under time pressure: How opportunity costs affect strategy selection. *Acta Psychologica*, 127(2), 258–276.

Robinson, P. (2001). Task complexity, task difficulty, and task production: Exploring interactions in a componential framework. *Applied Linguistics*, 22(1), 27–57.

Rodríguez-Pérez, G., Nadri, R., & Nagappan, M. (2021). *Perceived diversity in software engineering*:

Rodriguez, J. J., Quintana, G., Bustillo, A., & Ciurana, J. (2017). A decision-making tool based on decision trees for roughness prediction in face milling. *International Journal of Computer Integrated Manufacturing*, 30(9), 943–957.

Rostami, A., Gabler, C., & Agnihotri, R. (2019). Under pressure: The pros and cons of putting time pressure on your salesforce. *Journal of Business Research*, 103, 153–162.

Rothbard, N. P., & Wilk, S. L. (2011). Waking up on the right or wrong side of the bed: Start-of-workday mood, work events, employee affect, and performance. *Academy of Management Journal*, 54(5), 959–980.

Rubio, S., E. Díaz, and J. M. (2001). Methodological aspects of subjective evaluation of mental workload. *Arch Prev Labor Risks*, 4(4), 160-168.

Runeson, P. (2003). Using students as experiment subjects--an analysis on graduate and freshmen student data. *Proceedings of the 7th International Conference on Empirical Assessment in Software Engineering*, 95–102.

Russell, M. (2019). 7.2 Denver Airport. *Bits and Bugs: A Scientific and Historical Review of Software Failures in Computational Science*, 29, 192.

Russo, D., & Stol, K. J. (2022). Gender Differences in Personality Traits of Software Engineers. *IEEE Transactions on Software Engineering*, 48(3), 819–834. <https://doi.org/10.1109/TSE.2020.3003413>

Ryckman, R. (n.d.). Theories of personality. 2004. *Thomson/Wadsworth, Belmont, CA*.

S. B. Kotsiantis. (2007). Supervised Machine Learning: A Review of Classification Techniques. *Journal of Manufacturing Science and Engineering, Transactions of the ASME*, 249–268. <https://doi.org/10.1115/1.1559160>

Saeedi, M. (2020). *Task Condition and L2 oral Performance : Investigating the Combined Effects of Online Planning and Immediacy*. 8(32).

Salman, I., Misirli, A. T., & Juristo, N. (2015). Are students representatives of professionals in software engineering experiments? *2015 IEEE/ACM 37th IEEE International Conference on Software Engineering*, 1, 666–676.

Salman, I., & Turhan, B. (2018a). Effect of time-pressure on perceived and actual performance in functional software testing. *ACM International Conference Proceeding Series*, 130–139. <https://doi.org/10.1145/3202710.3203148>

Salman, I., & Turhan, B. (2018b). Effect of time-pressure on perceived and actual performance in functional software testing. *Proceedings of the 2018 International Conference on Software and System Process*, 130–139.

Salman, I., Turhan, B., & Vegas, S. (2019). A controlled experiment on time pressure and confirmation bias in functional software testing. *Empirical Software Engineering*, 24(4), 1727–1761.

Santos, R. E. D. S., Magalhaes, C. V. C. De, Correia-Neto, J. D. S., Silva, F. Q. B. Da, Capretz, L. F., & Souza, R. (2017). Would You Like to Motivate Software Testers? Ask Them How. *International Symposium on Empirical Software Engineering and Measurement, 2017-Novem*, 95–104. <https://doi.org/10.1109/ESEM.2017.16>

Sarif, S. M., Ibrahim, N., & Shiratuddin, N. (2016). Design model of computerized personal decision aid for youth: An expert review. *AIP Conference Proceedings*, 1761(1).

Sarker, I. H., Colman, A., Han, J., Khan, A. I., Abushark, Y. B., & Salah, K. (2020). Behavdt: a behavioral decision tree learning to build user-centric context-aware predictive model. *Mobile Networks and Applications*, 25(3), 1151–1161.

Satterwhite, S., Knight, K. R., Miaskowski, C., Chang, J. S., Ceasar, R., Zamora, K., & Kushel, M. (2019). Sources and impact of time pressure on opioid management in the safety-net. *J Am Board Fam Med*, 32(3), 375–382.

Sauer, C., Gemino, A., & Reich, B. H. (2007). The impact of size and volatility on IT project performance. *Communications of the ACM*, 50(11), 79–84.

Schilling, L. S., Dixon, J. K., Knafl, K. A., Grey, M., Ives, B., & Lynn, M. R. (2007). Determining content validity of a self-report instrument for adolescents using a heterogeneous expert panel. *Nursing Research*, 56(5), 361–366.

Schober, P., & Vetter, T. R. (2021). *Logistic Regression in Medical Research*. 132(2), 365–366.

Schoch, K. (2020). Case study research. *Research Design and Methods: An Applied Guide for the Scholar-Practitioner*, 245–258.

Schoorman, F. D., Mayer, R. C., & Davis, J. H. (2007). *An integrative model of organizational trust: Past, present, and future*. Academy of Management Briarcliff Manor, NY 10510.

Schuff, D., Corral, K., & Turetken, O. (2011). Comparing the understandability of alternative data warehouse schemas: An empirical study. *Decision Support Systems*, 52(1), 9–20. <https://doi.org/10.1016/j.dss.2011.04.003>

Segal, U. A. (1982). The cyclical nature of decision making: An exploratory empirical investigation. *Small Group Behavior*, 13(3), 333–348.

Shafiabady, N., Lee, L. H., Rajkumar, R., Kallimani, V. P., Akram, N. A., & Isa, D. (2016). Using unsupervised clustering approach to train the Support Vector Machine for text classification. *Neurocomputing*, 211, 4–10.

Shah, H., Harrold, M. J., & Sinha, S. (2014). Global software testing under deadline pressure: Vendor-side experiences. *Information and Software Technology*, 56(1), 6–19. <https://doi.org/10.1016/j.infsof.2013.04.005>

Shah, K., Patel, H., Sanghvi, D., & Shah, M. (2020). A comparative analysis of logistic regression, random Forest and KNN models for the text classification. *Augmented Human Research*, 5(1), 1–16.

Shahin, M. A., Jaksa, M. B., & Maier, H. R. (1999). Recent Advances and Future Challenges for Artificial Neural Systems in Geotechnical Engineering Applications. *Advances in Artificial Neural Systems*.

Sharp, D. (1987). *Personality types: Jung's model of typology* (Vol. 31). Inner City Books.

Shelton, J. T., Elliott, E. M., Matthews, R. A., Hill, B. D., Gouvier, W. M., & others. (2010). The relationships of working memory, secondary memory, and general fluid intelligence: working memory is special. *Journal of Experimental Psychology: Learning, Memory, and Cognition*, 36(3), 813.

Shen, J., Baysal, O., & Shafiq, M. O. (2019). Evaluating the performance of machine learning sentiment analysis algorithms in software engineering. *Proceedings - IEEE 17th International Conference on Dependable, Autonomic and Secure Computing, IEEE 17th International Conference on Pervasive Intelligence and Computing, IEEE 5th International Conference on Cloud and Big Data Computing, 4th Cyber Scienc*, 1023–1030.
<https://doi.org/10.1109/DASC/PiCom/CBDCom/CyberSciTech.2019.00185>

Shepherd, D. A., Patzelt, H., Williams, T. A., & Warnecke, D. (2014). How does project termination impact project team members? Rapid termination, creeping death, and learning from failure. *Journal of Management Studies*, 51(4), 513–546.
<https://doi.org/10.1111/joms.12068>

Shepherd, D. A., Patzelt, H., & Wolfe, M. (2011). Moving forward from project failure: Negative emotions, affective commitment, and learning from the experience. *Academy of Management Journal*, 54(6), 1229–1259.
<https://doi.org/10.5465/amj.2010.0102>

Sheykhmousa, M., Mahdianpari, M., Ghanbari, H., Mohammadimanesh, F., Ghamisi, P., & Member, S. (2020). *Support Vector Machine Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review*. 13, 6308–6325.

Shneiderman, B., Plaisant, C., Cohen, M., Jacobs, S., Elmqvist, N., & Diakopoulos, N. (2016). *Designing the user interface: strategies for effective human-computer interaction*. Pearson.

Shurchkov, O. (2012). Under pressure: gender differences in output quality and quantity under competition and time constraints. *Journal of the European Economic Association*, 10(5), 1189–1213.

Simsekler, M. C. E., Qazi, A., Alalami, M. A., Ellahham, S., & Ozonoff, A. (2020). Evaluation of patient safety culture using a random forest algorithm. *Reliability Engineering & System Safety*, 204, 107186.

Singh, S., & Saikia, L. P. (2020). A Comparative Analysis of Text Classification Algorithms for Ambiguity Detection in Requirement Engineering Document Using WEKA. In *ICT Analysis and Applications* (pp. 345–354). Springer.

Smith, E. K., Bird, C., & Zimmermann, T. (2016). Beliefs, practices, and personalities of software engineers: a survey in a large software company. *Proceedings of the 9th*

Smith, P. (2014). Project cost management--global issues and challenges. *Procedia-Social and Behavioral Sciences*, 119, 485–494. <https://doi.org/10.1016/j.sbspro.2014.03.054>

Sobieraj, S., & Krämer, N. C. (2020). Similarities and differences between genders in the usage of computer with different levels of technological complexity. *Computers in Human Behavior*, 104. <https://doi.org/10.1016/j.chb.2019.09.021>

Sommerville, I. (2010). *Software Engineering: International Version*. Boston, MA: Pearson.

Song, Y., Arnott, D., & Gao, S. (2020). Graduate students as surrogates for managers in business intelligence and analytics research : a preliminary study. *Journal of Decision Systems*, 00(00), 1–25. <https://doi.org/10.1080/12460125.2020.1838037>

Sonnentag, S., Brodbeck, F. C., Heinbokel, T., & Stolte, W. (1994). Stressor-burnout relationship in software development teams. *Journal of Occupational and Organizational Psychology*, 67(4), 327–341.

Soofi, A. A., & Awan, A. (2017). Classification techniques in machine learning: applications and issues. *Journal of Basic and Applied Sciences*, 13, 459–465.

Speier-Pero, C. (2019). Using aggregated data under time pressure: a mechanism for coping with information overload. *Journal of Decision Systems*, 1–19. <https://doi.org/10.1080/12460125.2019.1623533>

Spilker, B. C. (1995). The effects of time pressure and knowledge on key word selection behavior in tax research. *Accounting Review*, 49–70.

Stake, J. E., & Eisele, H. (2010). Gender and personality. In *Handbook of gender research in psychology* (pp. 19–40). Springer.

Standing, O., Standing, S., & Kordt, E. (2016). Explaining attribution in information technology projects. *Journal of Systems and Information Technology*.

Starcke, K., Wolf, O. T., Markowitsch, H. J., & Brand, M. (2008). Anticipatory stress influences decision making under explicit risk conditions. *Behavioral Neuroscience*, 122(6), 1352.

Steyerberg, E. W., Vickers, A. J., Cook, N. R., Gerdts, T., Gonen, M., Obuchowski, N., Pencina, M. J., & Kattan, M. W. (2010). Assessing the performance of prediction models: a framework for some traditional and novel measures. *Epidemiology (Cambridge, Mass.)*, 21(1), 128.

Storbeck, J., & Clore, G. L. (2008). Affective arousal as information: How affective arousal influences judgments, learning, and memory. *Social and Personality Psychology*

Compass, 2(5), 1824–1843.

Stray, V., Florea, R., & Paruch, L. (2022). Exploring human factors of the agile software tester. *Software Quality Journal*, 30(2), 455–481.

Suganya, M., & Alagarsamy, K. (2016). A review on software process improvement methodologies for small and medium enterprises. *IJSTE-International Journal of Science Technology & Engineering, Online*, 2, 284–290.

Sulaiman, S., Okere, H. C., Awang, D. R. R., & Mean, F. O. (2016). Expert review of the multimodal interaction model for Foot Reflexology VRST application. *2016 3rd International Conference on Computer and Information Sciences (ICCOINS)*, 530–535.

Sweller, J. (1994). Cognitive load theory, learning difficulty, and instructional design. *Learning and Instruction*, 4(4), 295–312.

Sweller, J. (2011). *Cognitive load theory*. Springer.

Tajpour, M., Hosseini, E., Mohammadi, M., & Bahman-zangi, B. (2022). *The Effect of Knowledge Management on the Sustainability of Technology-Driven Businesses in Emerging Markets : The Mediating Role of Social Media*.

Tantithamthavorn, C., McIntosh, S., Hassan, A. E., & Matsumoto, K. (2016). Automated parameter optimization of classification techniques for defect prediction models. *Proceedings of the 38th International Conference on Software Engineering*, 321–332.

Taunk, K. (2019). A Brief Review of Nearest Neighbor Algorithm for Learning and Classification. *2019 International Conference on Intelligent Computing and Control Systems (ICCS), Iciccs*, 1255–1260.

Termen, L. M. (1936). *Sex and personality: Studies in masculinity and femininity*.

Thakor, H. R. (2017). A survey paper on classification algorithms in big data. *International Journal Of Research Culture Society*, 1(3).

The Standish Group. (2014). Big Bang Boom. *Web*, 12. <http://blog.standishgroup.com/BigBangBoom.pdf>

Timmermans, D. (1993). The impact of task complexity on information use in multi-attribute decision making. *Journal of Behavioral Decision Making*, 6(2), 95–111.

Tomayko, J. E., & Hazzan, O. (2004). Human aspects of software engineering (electrical and computer engineering series), Charles River Media. Inc., Rockland, MA.

Topi, H., Valacich, J. S., & Hoffer, J. A. (2005). The effects of task complexity and time availability limitations on human performance in database query tasks. *International Journal of Human-Computer Studies*, 62(3), 349–379.

Tricentis. (2017). Software Fail Watch 5th Edition. <Https://Www.Tricentis.Com/Resources/Softwarefail-Watch-5th-Edition/>.

Tripathi, R. C., & Saraswat, M. (2020). *Assessment & Prediction of Software Reliability : ANN Approach*. 1–4.

Tsai, W.-C., Chen, C.-C., & Liu, H.-L. (2007). Test of a model linking employee positive moods and task performance. *Journal of Applied Psychology*, 92(6), 1570.

Tunio, M. Z., Luo, H., Cong, W., Fang, Z., Gilal, A. R., Abro, A., & Wenhua, S. (2017). *Impact of Personality on Task Selection in Crowdsourcing Software Development : A Sorting Approach*. 18287–18294.

Vapnik, V., & Vapnik, V. (1998). Statistical learning theory Wiley. *New York*, 1, 624.

Varona, D., Capretz, L. F., Piñero, Y., & Raza, A. (2012a). Evolution of software engineers' personality profile. *ACM SIGSOFT Software Engineering Notes*, 37(1), 1–5.

Varona, D., Capretz, L. F., Piñero, Y., & Raza, A. (2012b). Evolution of software engineers' personality profile. *ACM SIGSOFT Software Engineering Notes*, 37(1), 1. <https://doi.org/10.1145/2088883.2088901>

Vasilescu, B., Posnett, D., Ray, B., van den Brand, M. G. J., Serebrenik, A., Devanbu, P., & Filkov, V. (2015). Gender and tenure diversity in GitHub teams. *Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems*, 3789–3798.

Vasiljevi, J. (2024). *A Data-Driven Approach to Team Formation in Software Engineering Based on Personality Traits*.

Verner, J., Sampson, J., & Cerpa, N. (2008). What factors lead to software project failure? *Proceedings of the 2nd International Conference on Research Challenges in Information Science, RCIS 2008, July*, 71–79. <https://doi.org/10.1109/RCIS.2008.4632095>

Vinella, F. L., Odo, C., Lykourentzou, I., & Masthoff, J. (2022). *How Personality and Communication Patterns Affect Online ad-hoc Teams Under Pressure*. 5(May). <https://doi.org/10.3389/frai.2022.818491>

Volkema, R. J. (1988). Process in Planning and Design *. *Behavioural Science*, 33, 292–300.

Voyer, D. (2011). Time limits and gender differences on paper-and-pencil tests of mental rotation: a meta-analysis. *Psychonomic Bulletin & Review*, 18(2), 267–277.

Wallace, D. R., & Kuhn, D. R. (2001). Failure modes in medical device software: an analysis of 15 years of recall data. *International Journal of Reliability, Quality and*

Safety Engineering, 8(04), 351–371.

Wan, M., Feng, L., Meng, X., Zhai, M., & Konopaske, R. (2022). Working College Students' Time Pressure and Work-School Conflict: Do Boundary Permeability and Dispositional Mindfulness Matter? *Psychological Reports*, 125(6), 3100–3125.

Wan, Z., & Lo, D. (2020). *Institutional Knowledge at Singapore Management University Perceptions, expectations, and challenges in defect prediction*. 1241–1266.

Wang, C.-H. (2014). Gender differences in the effects of personality traits on voter turnout. *Electoral Studies*, 34, 167–176.

Wang, H., Zhou, X., Jia, X., Song, C., Luo, X., Zhang, H., Wu, H., & Ye, J. (2021). Emotional exhaustion in front-line healthcare workers during the COVID-19 pandemic in Wuhan, China: the effects of time pressure, social sharing and cognitive appraisal. *BMC Public Health*, 21(1), 1–10.

Wiesche, M., & Krcmar, H. (2014). The relationship of personality models and development tasks in software engineering. *Proceedings of the 52nd ACM Conference on Computers and People Research*, 149–161.

Williams, A., & Buchan, J. (2022). *Using the case survey methodology for finding high-quality grey literature in software engineering*. June, 0–9.

Williams, T. M. (1999). The need for new paradigms for complex projects. *International Journal of Project Management*, 17(5), 269–273.

Witten, I. H., Frank, E., & Hall, M. A. (2011). *Data Mining: Practical Machine Learning Tools and Techniques, Third Edition (The Morgan Kaufmann Series in Data Management Systems)*. <http://www.amazon.com/Data-Mining-Practical-Techniques-Management/dp/0123748569%3FSubscriptionId%3D1V7VTJ4HA4MFT9XBJ1R2%26tag%3Dmekentosjcom-20%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0123748569>

Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). *Data Mining: Practical machine learning tools and techniques*. Morgan Kaufmann.

Witten, I. H., Hall, M. A., & Frank, E. (2011). Data Mining: Practical Machine Learning Third Edition. (*Morgan Kaufmann Series in Data Management Systems*). Morgan Kaufmann, 104(January), 607.

Wohlin, C., & Henningsson, K. (2003). *13 Empirical Research Methods in Web and Software Engineering 1*. 7–23.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A. (2012). *Experimentation in software engineering*. Springer Science & Business Media.

Wood, D., Kumar, V. K., Treadwell, T. W., & Leach, E. (1998). Perceived cohesiveness and sociometric choice in ongoing groups. *Journal of Group Psychotherapy, Psychodrama and Sociometry*, 51(3), 122.

Wood, R. E. (1986). Task complexity: Definition of the construct. *Organizational Behavior and Human Decision Processes*, 37(1), 60–82.

Wood, R. E., Mento, A. J., & Locke, E. A. (1987). Task complexity as a moderator of goal effects: A meta-analysis. *Journal of Applied Psychology*, 72(3), 416.

Wu, C.-C., Chen, Y.-L., Liu, Y.-H., & Yang, X.-Y. (2016). Decision tree induction with a constrained number of leaf nodes. *Applied Intelligence*, 45(3), 673–685.

Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G. J., Ng, A., Liu, B., Philip, S. Y., & others. (2008). Top 10 algorithms in data mining. *Knowledge and Information Systems*, 14(1), 1–37.

Wu, Y., Yang, X., Plaza, A., Qiao, F., Gao, L., Zhang, B., & Cui, Y. (2016). Approximate computing of remotely sensed data: SVM hyperspectral image classification as a case study. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, 9(12), 5806–5818.

Xian, X., & Liu, J. (2019). *Application of Chaos Theory in Incomplete Randomized Financial Analysis*. 6(6), 306–310. <https://doi.org/10.11648/j.ijefm.20180606.19>

Xie, J., Richard Yu, F., Huang, T., Xie, R., Liu, J., Wang, C., & Liu, Y. (2019). A survey of machine learning techniques applied to software defined networking (SDN): Research issues and challenges. *IEEE Communications Surveys and Tutorials*, 21(1), 393–430. <https://doi.org/10.1109/COMST.2018.2866942>

Xie, Z., Page, L., & Hardy, B. (2017). Investigating gender differences under time pressure in financial risk taking. *Frontiers in Behavioral Neuroscience*, 11, 246.

Xing, L., Lesperance, M. L., Zhang, X., & Hancock, J. (2020). Simultaneous prediction of multiple outcomes using revised stacking algorithms. *Bioinformatics*, 36(1), 65–72. <https://doi.org/10.1093/bioinformatics/btz531>

Xu, S., Song, F., Li, Z., Zhao, Q., Luo, W., He, X., & Salvendy, G. (2008). An ergonomics study of computerized emergency operating procedures: presentation style, task complexity, and training level. *Reliability Engineering & System Safety*, 93(10), 1500–1511.

Xue, S., Shi, X., Jiang, R., Feliciani, C., Liu, Y., Shiwakoti, N., & Li, D. (2021). Incentive-based experiments to characterize pedestrians' evacuation behaviors under limited visibility. *Safety Science*, 133(October 2020). <https://doi.org/10.1016/j.ssci.2020.105013>

Yang, Yanming, Xia, X., Lo, D., Bi, T., Grundy, J., & Yang, X. (2020). Predictive Models

in Software Engineering: Challenges and Opportunities. *ArXiv Preprint ArXiv:2008.03656*.

Yang, Yongxian. (2021). *The Evaluation of Online Education Course Performance Using*. 2021.

Yang, Z. R. (2010). *Machine learning approaches to bioinformatics* (Vol. 4). World scientific.

Yekkehkhany, B., Safari, A., Homayouni, S., & Hasanlou, M. (2014). A comparison study of different kernel functions for SVM-based classification of multi-temporal polarimetry SAR data. *The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences*, 40(2), 281.

Yeo, G. B., & Neal, A. (2004). A multilevel analysis of effort, practice, and performance: effects; of ability, conscientiousness, and goal orientation. *Journal of Applied Psychology*, 89(2), 231.

Yin, R K. (2003). Designing case studies. *Qualitative Research Methods*, 359–386.

Yin, Robert K. (2018). *Case study research and Applications Design and methods*.

Yiyuan, Z., Tangwen, Y., Dayong, D., & Shan, F. (2011). Using NASA-TLX to evaluate the flight deck design in design phase of aircraft. *Procedia Engineering*, 17(December), 77–83. <https://doi.org/10.1016/j.proeng.2011.10.010>

Yuhana, U. L., Sa, U., Kirana, C., Indraswari, J., Rochimah, S., Bagus, M., & Rasyid, A. (2022). *Classifying Composition of Software Development Team Using Machine Learning Techniques*. November. <https://doi.org/10.1109/CENIM56801.2022.10037407>

Zahid, A. H., M. Waji, H., Farooq, M. S., Abid, A., & Ali, A. (2018). A Critical Analysis of Software Failure Causes From Project Management Perspectives. *VFAST Transactions on Software Engineering*, 13(3), 113–119. <https://doi.org/10.21015/vtse.v13i3.512>

Zarndt, F. (2011). *MANAGING DIGITAL LIBRARIES : THE Project management 101 acceptance criteria ! 1*. <https://doi.org/10.1108/10650751111164542>

Zhang, J., Zhang, L., Harman, M., Hao, D., Jia, Y., & Zhang, L. (2018). Predictive mutation testing. *IEEE Transactions on Software Engineering*, 45(9), 898–918.

Zhang, S. (2020). Cost-sensitive KNN classification. *Neurocomputing*, 391, 234–242.

Zheng, B., Jiang, X., Tien, G., Meneghetti, A., Panton, O. N. M., & Atkins, M. S. (2012). Workload assessment of surgeons: correlation between NASA TLX and blinks. *Surgical Endoscopy*, 26(10), 2746–2750.

Zheng, H., Liu, W., & Xiao, C. (2018). An activity-based defect management framework for product development. *Computers & Industrial Engineering*, 118, 202–209.

Zhu, Y.-M. (2017). Failure-Modes-Based Software Reading. In *Failure-Modes-Based Software Reading* (pp. 29–37). Springer. <https://doi.org/10.1007/978-3-319-65103-3>

Zubair Ahmed. (2017). *Pakistan Is Ranked No. 4 In The Freelancing Industry: Report*. <https://paktwired.com/pakistan-is-ranked-no-4-in-the-freelancing-industry-report/>

Zupan, B., & Demsar, J. (2008). Open-source tools for data mining. *Clinics in Laboratory Medicine*, 28(1), 37–54.

Zykov, Sergey Viktorovich and Attakorah, J. A. (2020). *Survey of Human Factors in Crisis Responsive Software Development*. 1–5.

Appendix A

Consent to Take Part in Research

This appendix includes the consent form, which was used to ensure that all participants were fully informed about the study's objectives, their roles, and their rights. It highlights that participation was voluntary, and participants had the option to withdraw at any point without any consequences.

Thank you for volunteering as a participants in this research on I-SYNERGY Model for Software Development Projects. Project contact details for further information.

1. Ruqaya Gilal (ruqaya_gilal@ahsgs.uum.edu.my)
2. Assosiate Prof. Dr. Mazni Omar (mazni@uum.edu.my)
3. Dr.Mawarny Md. Rejab (mawarny@uum.edu.my)

This research is conducted as following conditions:

- Participation in this research will not impact in any way on their assessment.
- Participants can withdraw at any time or refuse to give answer about research, there will be no disadvantage if they do.
- Participants will not benefit directly from participating in this research.
- All information that student will provide for this study will be treated confidentially.
- In any report on the results of this research participants identity will remain anonymous. This will be done by changing their names.

I (Full name) _____

Contact details _____

Declare that I am aware of the information provided above and have willingly served as a participants in the research. I am aware that the findings of this study might be published in academic sources, but that my name will not be disclosed.

Signature of the participant: _____

Date: _____

I believe the participant is giving informed consent to participate in this study

Signature of the researcher: _____ Date: _____

Appendix B

Personal Particulars

This appendix contains the form used to collect personal information from participants, including their age, gender, and academic background etc.

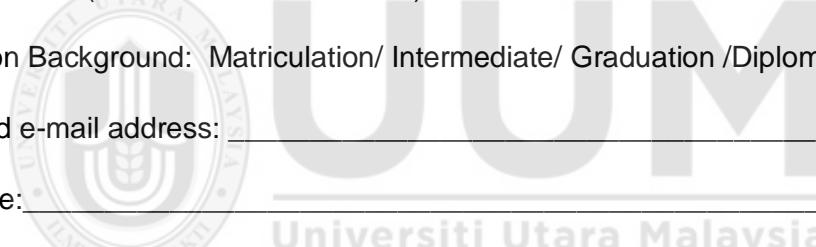
This study is about proposing **i-SYNERGY Model** for software development to reduce the failure rate in SE. The model is about which types of people personality can manage the TP in a better way. In this study, the collection of data will help to propose a model, all the data will be confidential.

Name: _____

Matric No: _____ Semester: _____

Age: _____ Gender: _____

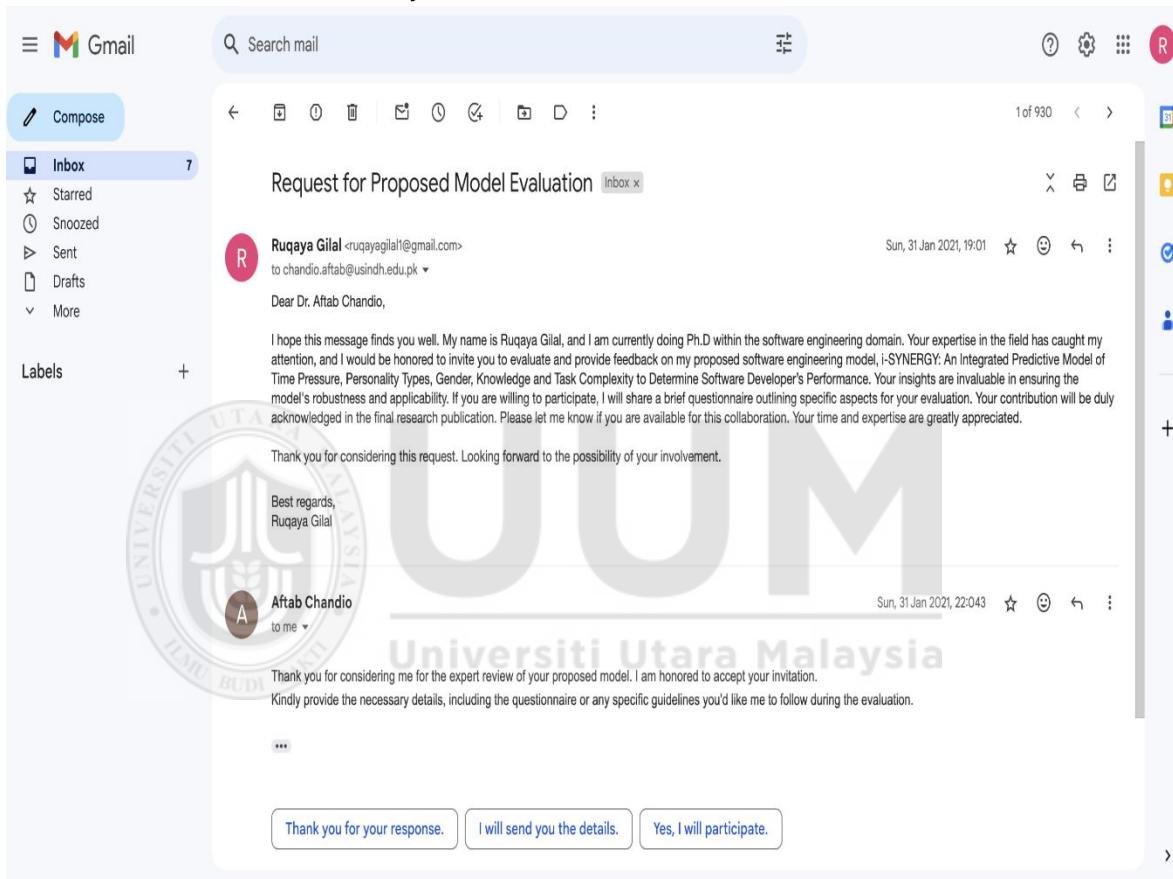
Race: _____ First language: _____


Marital Status: (Bachelor/Married/Widow) _____

Education Background: Matriculation/ Intermediate/ Graduation /Diploma/ _____

Preferred e-mail address: _____

Signature: _____


Date: _____

Appendix C

The sample of Expert's invitation E-mail and response

This appendix includes the email invitation sent to experts, requesting their participation in the review process, along with their responses. The purpose of this communication was to involve experts in validating the instruments and providing insights to ensure the model's relevance and accuracy.

The screenshot shows a Gmail inbox with the following details:

Compose button is visible.

Inbox tab is selected, showing 7 messages.

Search mail bar is empty.

Message 1: Subject: Request for Proposed Model Evaluation (Inbox x). From: Ruqaya Gilal <ruqayagilal@gmail.com> to chandio.aftab@usindh.edu.pk. Date: Sun, 31 Jan 2021, 19:01. Body text:

Dear Dr. Aftab Chandio,

I hope this message finds you well. My name is Ruqaya Gilal, and I am currently doing Ph.D within the software engineering domain. Your expertise in the field has caught my attention, and I would be honored to invite you to evaluate and provide feedback on my proposed software engineering model, i-SYNERGY: An Integrated Predictive Model of Time Pressure, Personality Types, Gender, Knowledge and Task Complexity to Determine Software Developer's Performance. Your insights are invaluable in ensuring the model's robustness and applicability. If you are willing to participate, I will share a brief questionnaire outlining specific aspects for your evaluation. Your contribution will be duly acknowledged in the final research publication. Please let me know if you are available for this collaboration. Your time and expertise are greatly appreciated.

Thank you for considering this request. Looking forward to the possibility of your involvement.

Best regards,
Ruqaya Gilal

Message 2: From: Aftab Chandio to me. Date: Sun, 31 Jan 2021, 22:04. Body text:

Thank you for considering me for the expert review of your proposed model. I am honored to accept your invitation.

Kindly provide the necessary details, including the questionnaire or any specific guidelines you'd like me to follow during the evaluation.

...

Response Buttons:

- Thank you for your response.
- I will send you the details.
- Yes, I will participate.

Appendix D

The Instrument for Expert Review

This appendix contains the evaluation of proposed model by experts to review. The feedback collected was crucial in refining the model and ensuring the reliability of the results.

An Evaluation of i-SYNERGY: An Integrated Predictive Model of Time Pressure, Personality Types, Gender, Knowledge and Task Complexity to Determine Software Developer's Performance

Dear Prof/ Dr/ Sir/ Madam,

I am Ruqaya Gilal, matric no: 903684, currently enrolled in the PhD program in Computer Science at Universiti Utara Malaysia (UUM), Malaysia. I am thrilled to extend a cordial invitation to you for participation in an expert review. Your selection is based on your fulfillment of one or more of the following criteria:

1. Possession of a PhD or any advanced degree in Software Engineering (SE), Software Project Management (SPM), Computer Science (CS), or related fields.
2. Accumulation of at least five years of study or research experience in the aforementioned areas or any relevant field.
3. Accumulation of at least 3 to 5 years of practical experience in software project development.

My PhD research proposes **i-SYNERGY: An Integrated Predictive Model of Time Pressure, Personality Types, Gender, Knowledge and Task complexity to Determine Software Developer's Performance**. The primary objective of the model is to predict and understand the impact of various variables on the performance of software developers under time pressure conditions. The model aims to contribute valuable insights into the nuanced interplay between time pressure, personality types, gender, knowledge, task complexity, and software developer performance. The operational definitions used in this study are defined below:

- **Time pressure (TP)** refers to the perceived urgency and constraints imposed by deadlines or limited time frames within the software development context. In this study, time pressure is quantified using a Likert scale where participants rate their perceived time pressure levels.
- **Personality types** are distinctive patterns of behavior, cognition, and emotion that characterize individuals. Personality types are assessed using the Myers-Briggs Type Indicator (MBTI). Participants' responses categorize them into specific personality types such as Extroverted (E) or Introverted (I), Sensing (S) or Intuitive (N), etc.
- **Gender** refers to the social and cultural roles, behaviors, and expectations associated with being male or female. Gender is recorded as male or female based on participants' self-identification during the data collection process.
- **Knowledge** represents the information, skills, and expertise possessed by software developers relevant to their tasks. Knowledge levels are measured using their previous academic records and for professionals' years of experience in specific areas related to software development.

- **Task complexity** refers to the level of intricacy and difficulty involved in software development tasks. Task complexity is categorized into three levels—easy, medium, and hard—based on expert suggestions.

The model is constructed using advanced data mining techniques, considering its suitability for predicting binary outcomes. Data mining techniques allow us to understand the probability of effective software developer performance under varying conditions. This methodology allows us to delve into the intricacies of the probability associated with effective outcomes, shedding light on the multifaceted relationships between the variables at play. The outcomes derived from this analysis provide estimations, offering valuable insights into the nuanced interconnections and dependencies among the identified variables within the software development landscape.

This model's conceptual framework is organised around a series of well-considered hypotheses meant to clarify the intricate relationships present in the software development environment. With the purpose of examining certain connections and interactions between important variables, each hypothesis aims to advance our understanding of the variables that affect software engineers' performance. We set out to explore the hypotheses in order to find subtle insights that shed light on the intricate interactions between time pressure, personality types, gender, knowledge, task complexity, that affect software development endeavours as a whole. The study's alternative hypotheses are as follows:

H1: There is a significant association between time pressure (TP) and the performance of software developers.

H2: There is a significant moderation by different personality types on the effect of TP on software developer's performance.

H3: There is a significant moderation by different gender (male and female) on the effect of TP on the software developer's performance.

H4: There is a significant mediation by task complexity on the relationship between TP and software developer's performance.

H5: There is significant mediation by knowledge on the relationship between TP and software developer's performance.

These variables play a pivotal role in shaping the dynamics of the model, influencing the relationships between key variables. By elucidating on the mediating variables, specifically knowledge and task complexities, we aim to delve deeper into the underlying mechanisms through which these variables contribute to the performance of software developers under time pressure. Additionally, the explanation will encompass the moderating variables, such as personality types and gender, highlighting their role in influencing the strength and nature of the relationships within the model. This enhancement will provide a comprehensive understanding of the intricate interplay between these variables, fortifying the model's predictive capabilities. We anticipate that the model

will provide a robust foundation for predicting how software developers perform under time pressure based on their personality types, gender, knowledge levels, and task complexities. The outcomes aim to inform software managers, aiding in better task allocation, training strategies, and overall project management.

This assessment form plays a pivotal role in not only validating the model's effectiveness and assessing its practical applicability in real-world settings but also in evaluating its substantial theoretical contribution. Your valuable feedback and suggestions, as guided by the provided instructions, are crucial for refining and validating the model. It is essential to underscore that all information shared will be treated with the utmost confidentiality, exclusively used for research purposes. The model is designed to enhance software developer performance under time pressure, making noteworthy strides in theoretical understanding. By advancing our comprehension of the intricate relationships between time pressure, personality types, knowledge and task complexities in software development, the model delves into theoretical underpinnings. This dual commitment, addressing both practical and theoretical dimensions, positions the model as a valuable asset for practitioners and researchers alike, fostering advancements in both applied and academic domains. Your thoughtful input is highly valued and will contribute significantly to the credibility and robustness of this research endeavor, with any insights provided being presented anonymously in academic publications.

RUQAYA GILAL

PhD candidate

School of Computing

Universiti Utara Malaysia

Supervisors:

Associate Prof. Dr. Mazni Omar

Dr. Mawarny Md. Rejab

PARTICIPANTS' DEMOGRAPHIC INFORMATION

Name: _____

E-mail: _____

Gender: MALE FEMALE

Age: _____

Affiliation: _____

Position/Title: _____

Experience in the field: _____

Expertise level: Novice Intermediate Expert

Have you been involved in the assessment or evaluation of software developers' performance in the past?

Yes NO

How often do you encounter challenges related to time pressure in your role within the context of software development?

Frequently Rarely

Universiti Utara Malaysia

i-SYNERGY: CONCEPTUAL MODEL

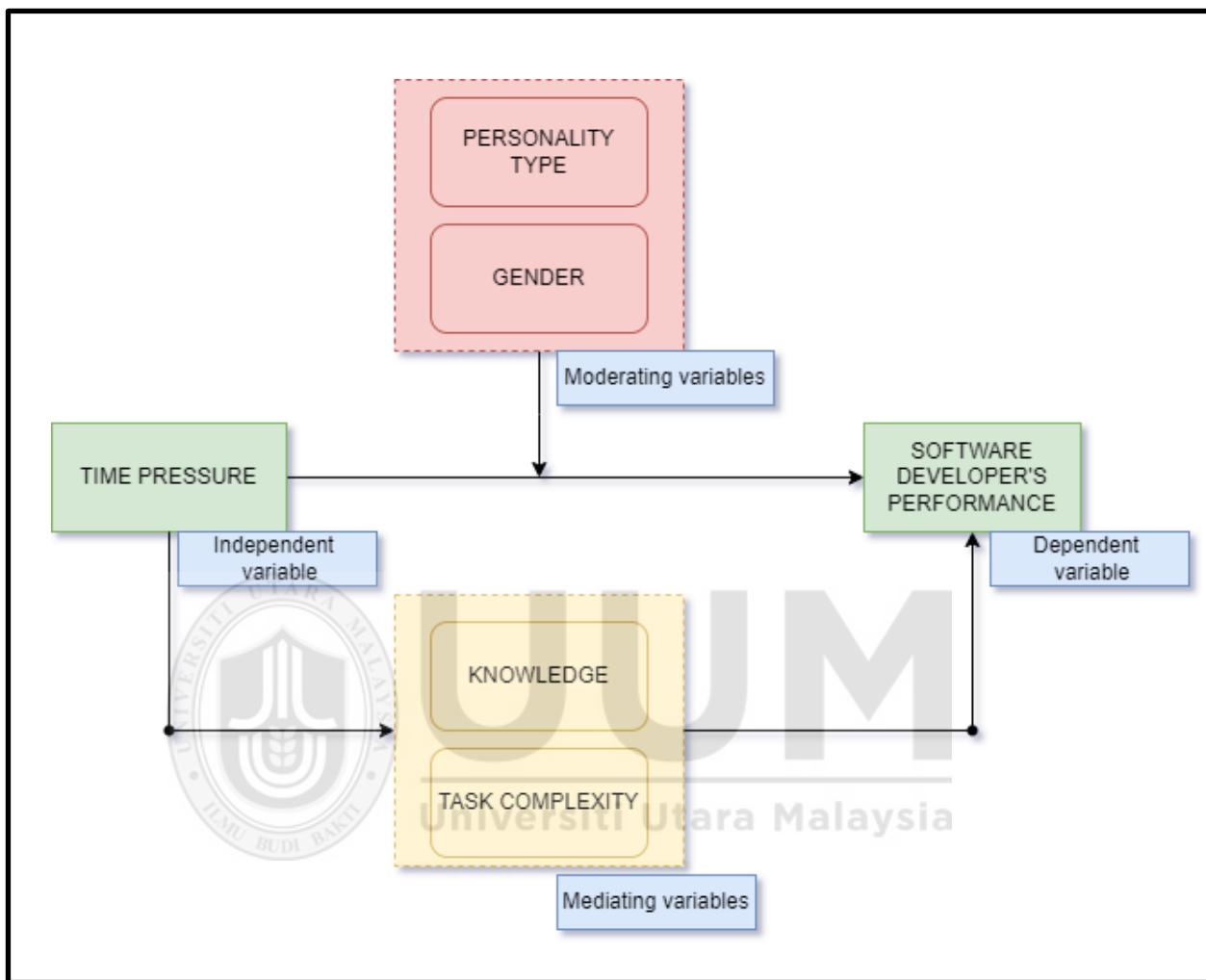
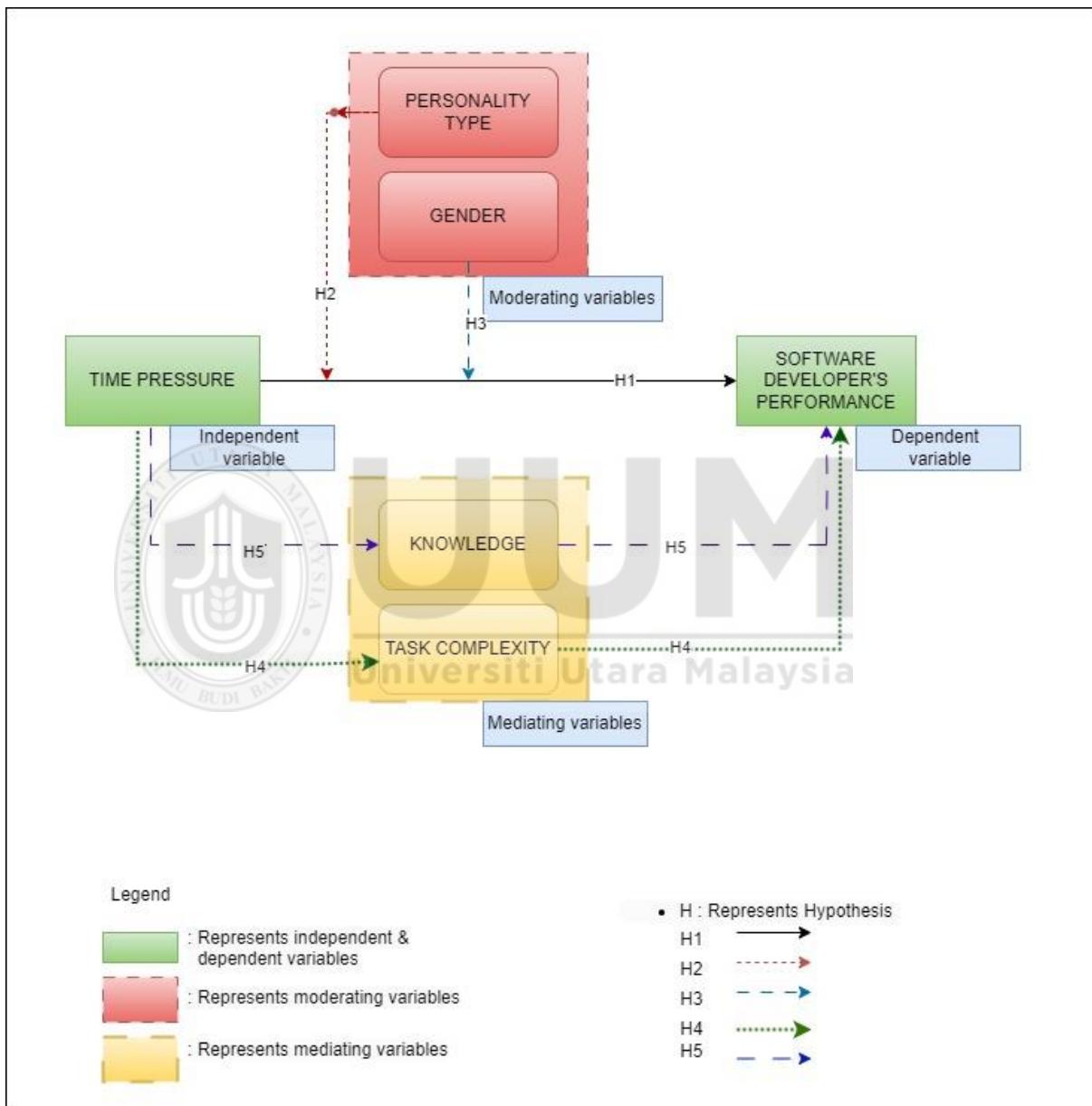



Figure 1. Conceptual Model

Model with hypotheses

FIGURE 2. Model with Hypotheses

MODEL EVALUATION

Dear Respondent,

Kindly review the i-SYNERGY model Figure 1 & 2 attentively. Following your expertise, please provide feedback for all questions in the designated spaces. This section aims to assess the effectiveness of i-SYNERGY model across five dimensions:

- **Understandability:** Ensuring that all terms used in i-SYNERGY model are clear and unambiguous.
- **Relevance:** Examining the consistency between variables and study objectives, as well as assessing the relationship between variables within i-SYNERGY model.
- **Feasibility:** Evaluating the practical suitability of using the criteria in i-SYNERGY model.
- **Organization:** Verifying that all variables of i-SYNERGY model are well-organised.
- **Comprehensiveness:** Confirming the inclusion of all necessary variables within i-SYNERGY model.

1. Understandability				
Please tick (✓) your choice				
No	Terminology	It is easy to understand	Needs some explanation	Needs very detailed explanation
1.	How clear is the term "time pressure" in the context of the i-SYNERGY model?			
2.	Does the term "personality types" require additional explanation for better understanding?			
3.	How easily understood is the variable "gender" in the context of the i-SYNERGY model?			
4.	How straightforward is the term "knowledge" in your interpretation within the i-SYNERGY model?			
5.	How well do you understand the concept of "task complexity" in the i-SYNERGY model?			
6.	How clear is the term "software developer's performance" within the i-SYNERGY model?			
Comment / Suggestion: ----- ----- ----- -----				

3.	Feasibility					
	1 Strongly Disagree, 2 Disagree, 3 Agree, 4 Strongly Agree					
No	Model Practicability	SD	D	A	SA	

1.	The i-SYNERGY model is suited to determine software developer performance.	1	2	3	4
2.	Time pressure in i-SYNERGY model in real-world scenarios impact the software developer's performance.	1	2	3	4
3.	Personality and gender moderating the impact of TP on software developer's performance real-world scenarios.	1	2	3	4
4.	The i-SYNERGY model might encounter limitations or difficulties when applied to different software development projects?	1	2	3	4
5.	The i-SYNERGY model suitable for assessing software developer performance in projects with varying levels of complexity and time pressure.	1	2	3	4
6.	The task complexity and knowledge mediating the impact of TP on software developer's performance real-world scenarios.	1	2	3	4
7.	There are no adjustments or modifications to enhance the feasibility of implementing the i-SYNERGY model in a software development context.	1	2	3	4
8.	The i-SYNERGY model has ability to provide meaningful insights into software developer performance in real-world situations?	1	2	3	4

4. Organisation

The connections and flows of all the components in i-SYNERGY are well organised.

Yes [] No []

If No, please give a comment. -----

5. Comprehensiveness

Overall, i-SYNERGY model is a comprehensive model.

Yes [] No []

If No, please give a comment. -----

Other comments

Please write further comments (if any) : -----

THANK YOU

Appendix E

The Application Letter for Conducting a Case Study at APTECH

This appendix provides the formal application letter submitted to APTECH, requesting permission to conduct a case study at their software development institute. The letter outlines the purpose of the study and the data collection methods to be employed.

PUSAT PENGAJIAN PENGKOMPUTERAN
SCHOOL OF COMPUTING
College of Arts and Sciences
Universiti Utara Malaysia
06010 UUM SINTOK
KEDAH DARUL AMANAN
MALAYSIA

Tel: 604-928 5068/5058/5060
Faks (Fax): 604-928 5067
Laman Web (Web): www.soc.uum.edu.my

Director
Aptech Institute of Learning
Jamshoro, Hyderabad

Dear Sir,

REQUEST FOR PERMISSION TO CONDUCT CASE STUDY AT APTECH INSTITUTE OF LEARNING

I hope this letter finds you well. I am writing to seek your permission on behalf of **Ruqaya Gilal (903684)**, a Ph.D. student under my supervision, to conduct a case study at Aptech Institute of Learning.

Her research focuses on the development of *A Predictive Model to Assess Software Developer Performance*. The main goal of this study is to propose a model that assists in mitigating the impact of time pressure on various aspects within the software development process. The investigated factors also encompass personality types, gender, knowledge, and task complexity. It is anticipated that the implementation of this model will aid software managers in effectively strategizing for the humanistic aspects crucial to the success of software projects.

Aptech, being a prominent software house, provides an ideal environment for her to gather valuable insights and data for their research. The case study at Aptech will specifically aim to analyze how time pressure influences different personality types of male and female with the different way of dealing with the things in software development which impact the overall project success.

We believe that conducting this case study at Aptech will significantly contribute to the depth and breadth of the research, allowing for a comprehensive understanding of the real-world implications of time pressure in software development.

I assure you that she will adhere to all ethical standards and guidelines throughout the research process. Additionally, any sensitive information obtained during the case study will be treated with utmost confidentiality and used solely for academic purposes. If you require any further information or have specific concerns regarding the case study, please do not hesitate to contact me at mazni@uum.edu.my.

Thank you for considering this request, and I look forward to your positive response.

Sincerely,

Dr. Mazni Omar
Associate Professor
School of Computing (SOC)
Universiti Utara Malaysia

Universiti Pengurusan Terkemuka
The Eminent Management University

Appendix F

Acceptance Letter from APTECH

This appendix contains the official acceptance letter from APTECH, granting permission to conduct the case study.

Dr Mazni Omar
Associate professor
School of Computing (SOC)
Universiti Utara Malaysia

Acceptance of Request for Case Study at APTECH learning

We are pleased to acknowledge and accept your request for case study collaboration with Aptech for the research project proposed by your Ph.D. student Ruqaya Gilal.

Having reviewed the details of the research project, we believe that Aptech can provide a valuable and conducive environment for the successful execution of the study. We understand the importance of fostering research initiatives and are committed to supporting academic endeavors that contribute to the advancement of knowledge in the field.

We appreciate the opportunity to contribute to the academic community through this collaboration and are confident that the outcomes of the research will be beneficial to both parties involved.

Thank you for choosing Aptech as the partner for this case study endeavor. We are eager to commence this collaboration and look forward to a fruitful and successful research project.

Best regards,

A handwritten signature in black ink, appearing to read "Shabir Shaikh".

Shabir Shaikh
Director
Aptech Learning
Jasmhoro, Hyderabad

Appendix G

The Application Letter for Conducting a Case Study at HIST

This appendix provides the formal application letter submitted to HIST, requesting permission to conduct a case study at their software development institute.

PUSAT PENGAJIAN PENGKOMPUTERAN
SCHOOL OF COMPUTING
College of Arts and Sciences
Universiti Utara Malaysia
06010 UUM SINTOK
KEDAH DARULAMAN
MALAYSIA

Tel: 604-928 5059/5058/5060
Faks (Fax): 604-928 5067
Laman Web (Web): www.soc.uum.edu.my

Director
Hidaya Institute of Science and Technology
Jamshoro, Hyderabad

Dear Sir,

REQUEST FOR PERMISSION TO CONDUCT CASE STUDY AT HIDAYA SOFTWARE HOUSE (HIST)

I hope this letter finds you well. I am writing to seek your permission on behalf of **Ruqaya Gilal (903684)**, a Ph.D. student under my supervision, to conduct a case study at Hidaya Software House (HIST).

Her research focuses on the development of *A Predictive Model to Assess Software Developer Performance*. The main goal of this study is to propose a model that assists in mitigating the impact of time pressure on various aspects within the software development process. The investigated factors also encompass personality types, gender, knowledge, and task complexity. It is anticipated that the implementation of this model will aid software managers in effectively strategizing for the humanistic aspects crucial to the success of software projects.

HIST, being a prominent software house, provides an ideal environment for her to gather valuable insights and data for their research. The case study at HIST will specifically aim to analyze how time pressure influences different personality types of male and female with the different way of dealing with the things in software development which impact the overall project success.

We believe that conducting this case study at HIST will significantly contribute to the depth and breadth of the research, allowing for a comprehensive understanding of the real-world implications of time pressure in software development.

I assure you that she will adhere to all ethical standards and guidelines throughout the research process. Additionally, any sensitive information obtained during the case study will be treated with utmost confidentiality and used solely for academic purposes. If you require any further information or have specific concerns regarding the case study, please do not hesitate to contact me at mazni@uum.edu.my.

Thank you for considering this request, and I look forward to your positive response.

Sincerely,

Dr. Mazni Omar
Associate Professor
School of Computing (SOC)
Universiti Utara Malaysia

Universiti Pengurusan Terkemuka
The Eminent Management University

Appendix H

Acceptance letter from HIST

This appendix includes the acceptance letter from HIST, allowing the case study to be conducted at their institute.

Hidaya Institute Of Science & Technology

Email: software.hist@hidayatrust.org

Phone: (022) 2115476

Dr Mazni Omar

Associate professor

School of Computing (SOC)

Universiti Utara Malaysia

Acceptance of Request for Case Study at Hidaya Institute of Science and Technology (HIST)

I trust this message finds you well. We have received your request regarding the proposed case study to be conducted by Ruqaya Gilal, your Ph.D. student, at Hidaya.

After careful consideration, we are pleased to grant permission to conduct the case study at HIST. We understand the importance of academic research and appreciate the opportunity to collaborate in advancing knowledge in the field of software development. HIST is committed to supporting research endeavors, and we will provide the necessary cooperation to facilitate a smooth and productive case study.

She will have the full cooperation of our team during the research period. We look forward to the outcomes of the study and hope that it proves beneficial not only her academic pursuits but also to the broader research community.

If there are any specific requirements or arrangements needed for the case study, please do not hesitate to reach out to our team. We are eager to contribute to the success of this research initiative.

Thank you for considering HIST as the chosen location for the case study, and we look forward to a fruitful collaboration.

Best regards,

A handwritten signature in black ink, appearing to read 'Imran Baloch'.

Imran Baloch

Hidaya Institute of Science and Technology (HIST)

Jamshoro, Hyderabad

Appendix I

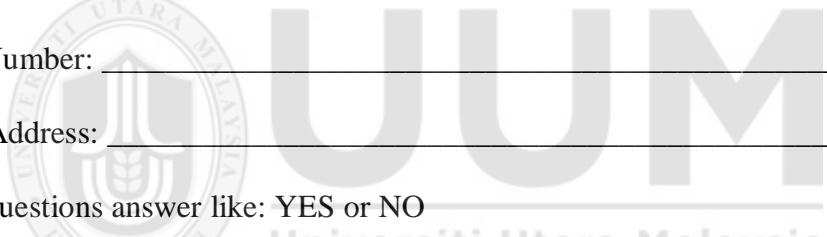
Personality Test Questionnaire

This appendix contains the Myers-Briggs Type Indicator (MBTI) questionnaire, which was used to assess the personality types of participants.

PERSONALITY TEST QUESTIONNAIRE

This questionnaire takes about 30 minutes to complete. Please tick (✓) one box for each question. This questionnaire is NOT to assess people, their work, or knowledge. Please answer ALL the questions. The data collected from this questionnaire is strictly CONFIDENTIAL and will be used for research purposes only.

Thank you for your participation and valuable time in completing this questionnaire.


.....

Name: _____

Matric Number: _____

E-Mail Address: _____

All the questions answer like: YES or NO

1. You are almost never late for your appointments

YES NO

2. You like to be engaged in an active and fast-paced job

YES NO

3. You enjoy having a wide circle of acquaintances

YES NO

4. You feel involved when watching TV soaps

YES NO

5. You are usually the first to react to a sudden event: the telephone ringing or unexpected question

YES NO

6. You feel that the world is founded on compassion

YES NO

7. You think that everything in the world is relative

YES NO

8. Strict observance of the established rules is likely to prevent attaining a good outcome

YES NO

9. It is difficult to get you excited

YES NO

10. When making a decision, you rely more on your feelings than on analysis of the situation

YES NO

11. You often think about humankind and its destiny

YES NO

12. You believe the best decision is one which can be easily changed

YES NO

13. You often ponder the root cause of phenomena and things

YES NO

14. You prefer to act immediately rather than speculate about various options 15. You trust reason rather than feelings

YES NO

16. You are inclined to rely more on improvisation than on prior planning

YES NO

17. You spend your leisure time actively socializing with a group of people, attending parties, shopping, etc.

YES NO

18. You usually plan your actions in advance

YES NO

19. Your actions are frequently influenced by your emotions

YES NO

20. You are a person somewhat reserved and distant in communication

YES NO

21. You know how to put every minute of your time to good purpose

YES NO

22. You often contemplate the complexity of life

YES NO

23. After prolonged socializing you feel you need to get away and be alone

YES NO

24. You often do jobs in a hurry

YES NO

25. You easily see the general principle behind specific occurrences

YES NO

26. You frequently and easily express your feelings and emotions

YES NO

27. You find it difficult to speak loudly

YES NO

28. You get bored if you have to read theoretical books

YES NO

29. You tend to sympathize with other people

YES NO

30. You value justice higher than mercy

YES NO

31. You rapidly get involved in the social life of a new workplace

YES NO

32. The more people you speak to, the better you feel

YES NO

33. You tend to rely on your experience rather than on theoretical alternatives

YES NO

34. As a rule, you proceed only when you have a clear and detailed plan

YES NO

35. You easily empathize with the concerns of other people

YES NO

36. Often you prefer to read a book than go to a party

YES NO

37. When with a group of people, you enjoy being directly involved and being at the center of attention

YES NO

38. You are more inclined to experiment than to follow familiar approaches

YES NO

39. You are strongly touched by the stories about people's troubles

YES NO

40. Deadlines seem to you to be of relative rather than absolute importance

YES NO

41. You prefer to isolate yourself from outside noises

YES NO

42. For you, it is easier to gain knowledge through hands-on experience than from books or manuals

YES NO

43. You think that almost everything can be analysed

YES NO

44. For you, no surprises is better than surprises - bad or good ones

YES NO

45. You take pleasure in putting things in order

YES NO

46. You feel at ease in a crowd

YES NO

47. You have good control over your desires and temptations

YES NO

48. You easily understand new theoretical principles

YES NO

49. You usually place yourself nearer to the side than in the center of the room

YES NO

50. When solving a problem you would rather follow a familiar approach than seek a new one

YES NO

51. A thirst for adventure is something close to your heart

YES NO

52. When considering a situation you pay more attention to the current situation and less to a possible sequence of events

YES NO

53. When solving a problem you consider the rational approach to be the best

YES NO

54. You find it difficult to talk about your feelings

YES NO

55. Your decisions are based more on the feeling of a moment than on the thorough planning

YES NO

56. You prefer to spend your leisure time alone or relaxing in a tranquil atmosphere

YES NO

57. You feel more comfortable sticking to conventional ways

YES NO

58. You are easily affected by strong emotions

YES NO

59. You are always looking for opportunities

YES NO

60. As a rule, current preoccupations worry you more than your future plans

YES NO

61. It is easy for you to communicate in social situations

YES NO

62. You rarely deviate from your habits

YES NO

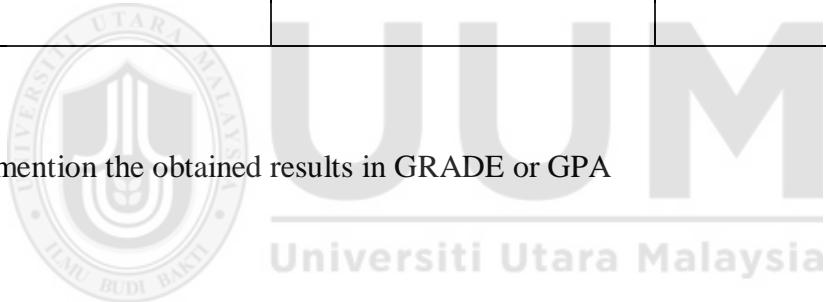
63. You willingly involve yourself in matters which engage your sympathies

YES NO

64. You easily perceive various ways in which events could develop

YES NO

Appendix J


Academic Achievements/ Records

This appendix presents the academic record form, which was used to assess the participants' knowledge in specific subjects relevant to software development. The form captured their grades in key subjects, such as structured programming, object oriented programming, and C++, which were used as a measure of their knowledge and expertise.

Please fill in your previous grade for the following courses:

Structured Programming	Object Programming	Oriented	Programming languages (C++)

*Please mention the obtained results in GRADE or GPA

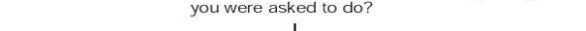
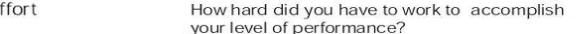
Name: _____

Matric No: _____

E-mail address: _____

Signature: _____

Date: _____



Appendix K

NASA Task Load Index (NASA-TLX)

The NASA Task Load Index (TLX) included in this appendix was used to measure participants' perceived workload during tasks. This tool helped to quantify cognitive load and stress levels, allows to understand how time pressure (TP) influences performance under different conditions.

NASA Task Load Index

Hart and Staveland's NASA Task Load Index (TLX) method assesses work load on five 7-point scales. Increments of high, medium and low estimates for each point result in 21 gradations on the scales.

Name	Task	Date
Mental Demand	How mentally demanding was the task?	
Physical Demand	How physically demanding was the task?	
Temporal Demand	How hurried or rushed was the pace of the task?	
Performance	How successful were you in accomplishing what you were asked to do?	
Effort	How hard did you have to work to accomplish your level of performance?	
Frustration	How insecure, discouraged, irritated, stressed, and annoyed were you?	

Appendix L

Software Developers' Knowledge and Experience Assessment Questionnaire/Form

This appendix contains the questionnaire used to assess the knowledge and experience of the participating software developers. It captures their years of experience, technical skills, and familiarity with specific programming languages, contributing to the analysis of their performance.

Dear Participant's, Thank you for participating in our study.

Purpose Statement: The purpose of the questionnaire is to assess and gather information about participants' experience and background in the field of software development within software development houses. This information is valuable for understanding their professional backgrounds and how it may relate to various aspects of our study.

Confidentiality Assurance: Rest assured that all responses you provide will be kept confidential and used solely for research purposes.

Instructions: Please read each question carefully and answer honestly to the best of your knowledge. Your feedback will help us better understand the dynamics between time pressure, knowledge, and software developer performance.

1. Name (Optional): _____

2. Age: _____

3. Gender: _____

4. Educational Background: _____

5. Current Job Title: _____

6. Job Role: _____

7. Current project: _____

8. Years of Professional Experience: _____

9. Industry/Field: _____

10. How many years have you worked in your current field/industry?

11. How would you rate your overall work experience on a scale of 1 to 10 (1 being least experienced, 10 being highly experienced)?

12. What software development methodologies have you worked with?

13. Which programming languages are you proficient in?

Appendix M

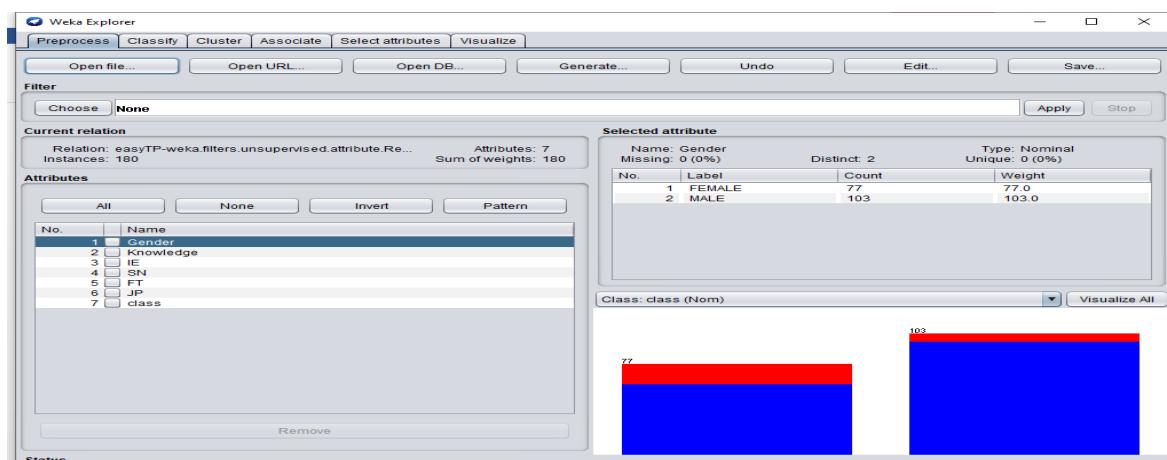
Questions for Experimental Tasks for Dataset A&B

This appendix presents the set of experimental tasks which were in C++ programming language with the estimated time and allocated time given to participants, which were designed to evaluate their performance under time pressure and no time pressure.

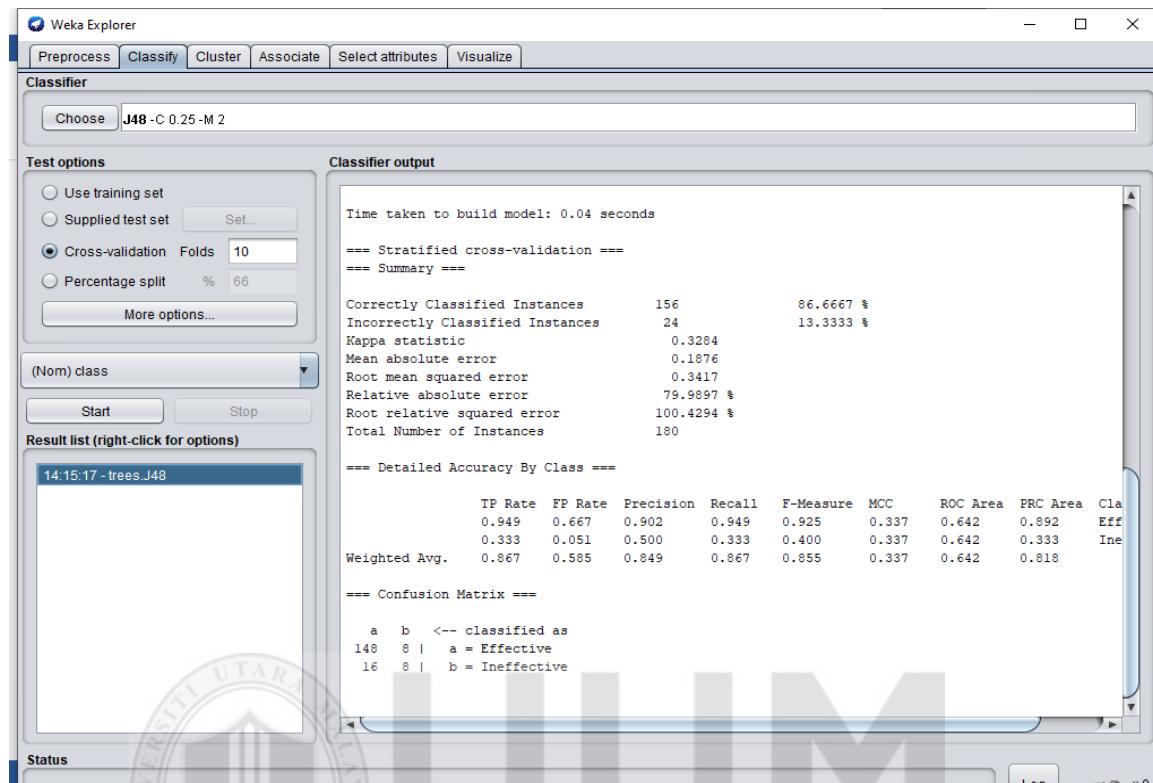
Questions	Task complexity	TP/NTP	Estimated time	Allocated time
Write a C program that asks the user to input their name and age, and then displays the information in the following format: Your name is [name] and you are [age] years old.	Easy	NTP	30 minutes	1 hour
Write a C program that generates 5 random numbers between 1 and 10, displays them to the user, and then prompts the user to enter the sum of those numbers within a time limit of 5 seconds.	Easy	TP	30 minutes	15 minutes
Write a C program that takes an integer input from the user, and then calculates and prints the sum of all the even numbers between 1 and the input number (inclusive).	Medium	NTP	45 minutes	75 minutes
Write a C program that generates a random 4-digit number and prompts the user to guess the number within a time limit of 10 seconds. The program should provide feedback to the user after each guess indicating if the guess is too high or too low.	Medium	TP	45 minutes	30 minutes
Write a C program that simulates a simple inventory system. The program should allow the user to add new items to the inventory, remove items from the inventory, and display the current inventory. Each item in the inventory should have a name, a quantity, and a price.	Hard	NTP	1hour 30 minutes	2 hours
Write a C program about what is the sum of the diagonal elements in the 5*5 grid of random numbers?	Hard	TP	1hour 30 minutes	1 hour

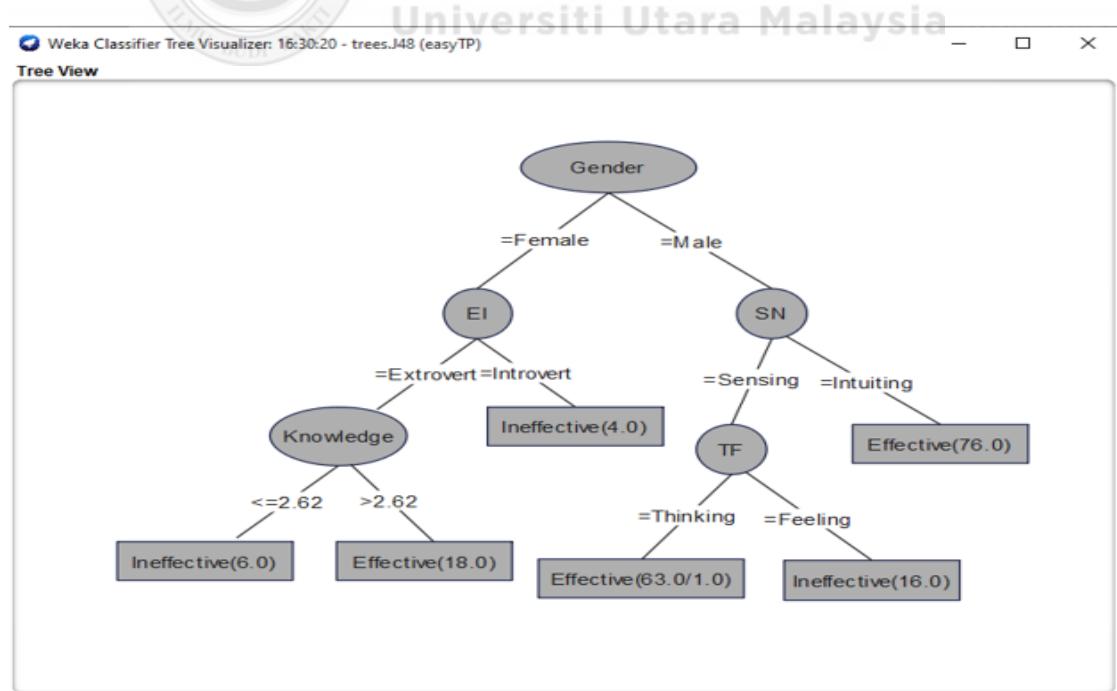
Tasks for group B dataset

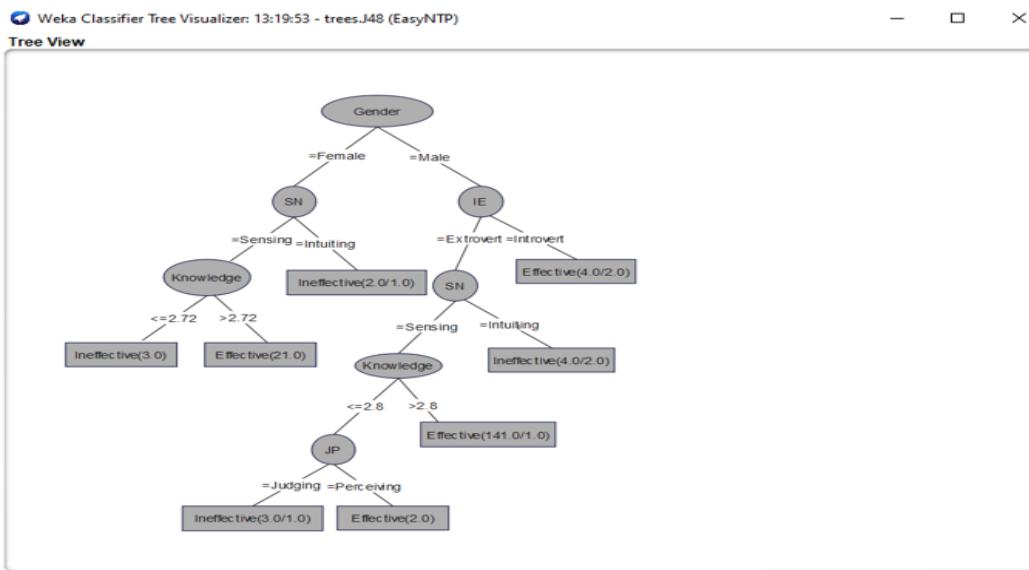
Questions	Task complexity	TP/NTP	Estimated time	Allocated time
Write a C program that takes in two integers from the user and outputs their sum.	Easy	NTP	10 minutes	20 minutes
Write a program that generates a random integers between 1 and 10. And asks the user to guess the number. The program should give the feedback on whether the guess was too high or too low, and continue the correct number is guessed.	Easy	TP	10 minutes	5 minutes
Write a program that reads in a list of integer from the user, and output the average of the result.	Medium	NTP	30 minutes	1 hour
Write a C program that generates a random list of integers and sorts them in ascending order, the program should output both the original list and the sorted list.	Medium	TP	20 minutes	12 minutes
Write a C program that simulates a game of blackjack. The program should allow the user to play against computer and should keep track the user's score and dealer's score.	Hard	NTP	2 hour	3 hours
Write a C program that read in a string from the user and output the longest substring that is a palindrome(a word that is the same forward and backwards)	Hard	TP	45 minutes	30 minutes

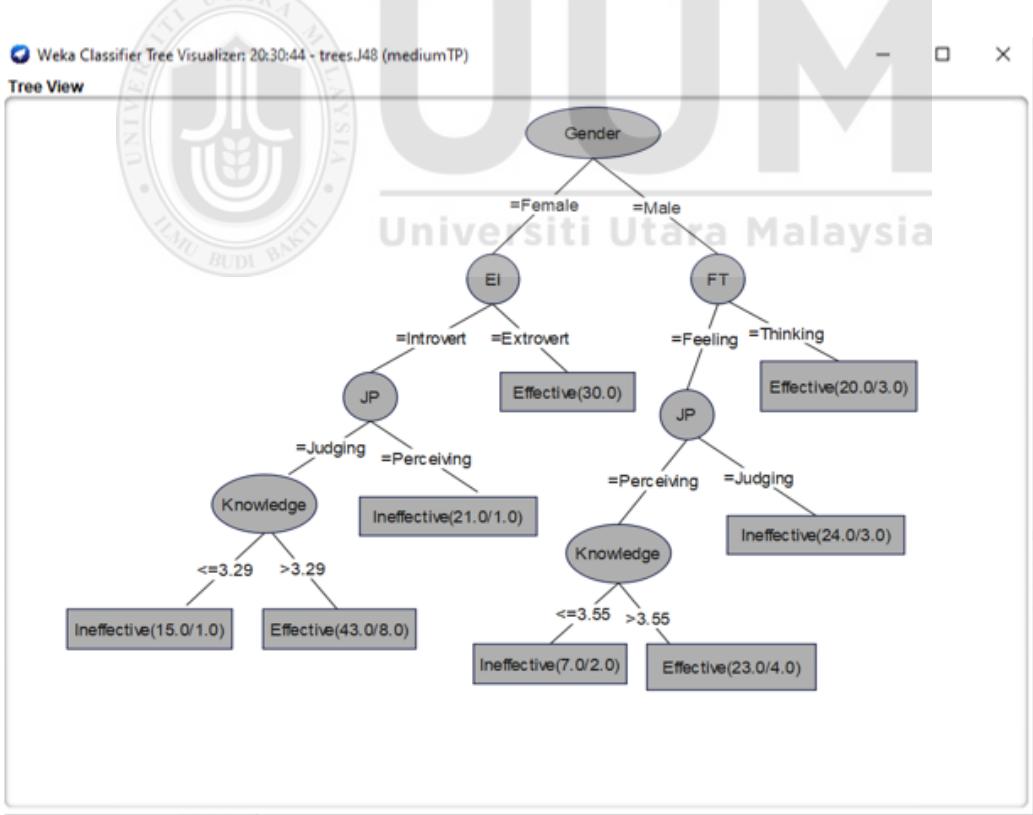

Appendix N

Decision Tree Using WEKA Tool

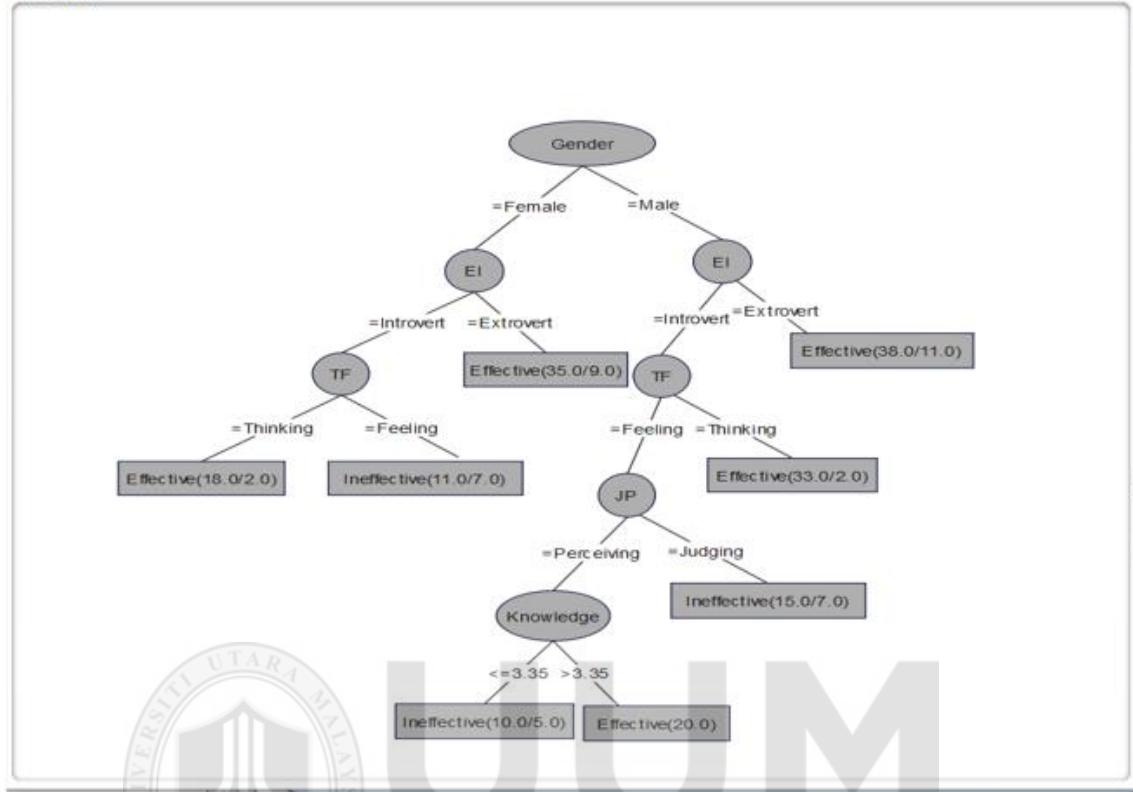

This appendix shows the decision tree generated using the WEKA tool, which was applied to classify and predict software developers' performance based on the collected data.


WEKA main interface

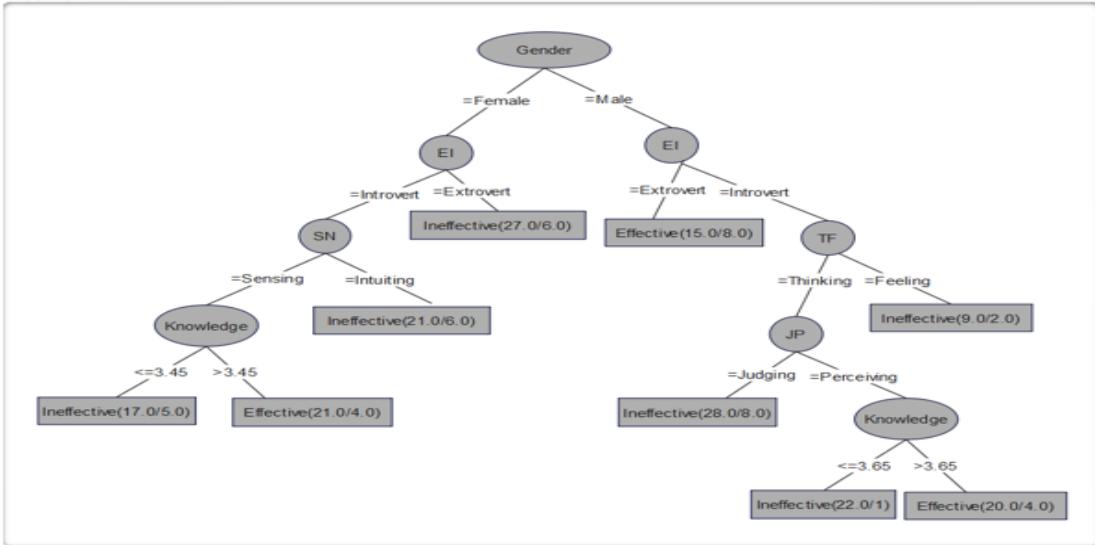

Select Dataset


Select Classification Decision Tree Algorithm (J48)

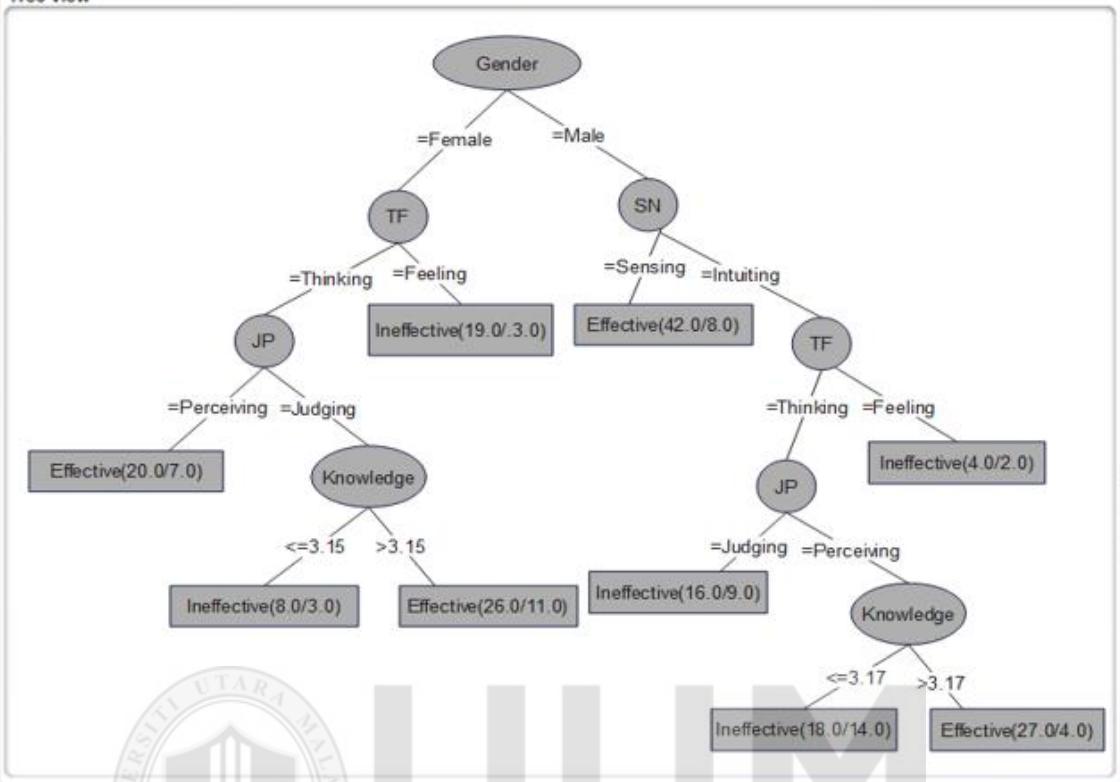
Sample of decision tree of easy TP



Sample of decision tree of easy NTP


Sample of decision tree of Medium TP

Tree View

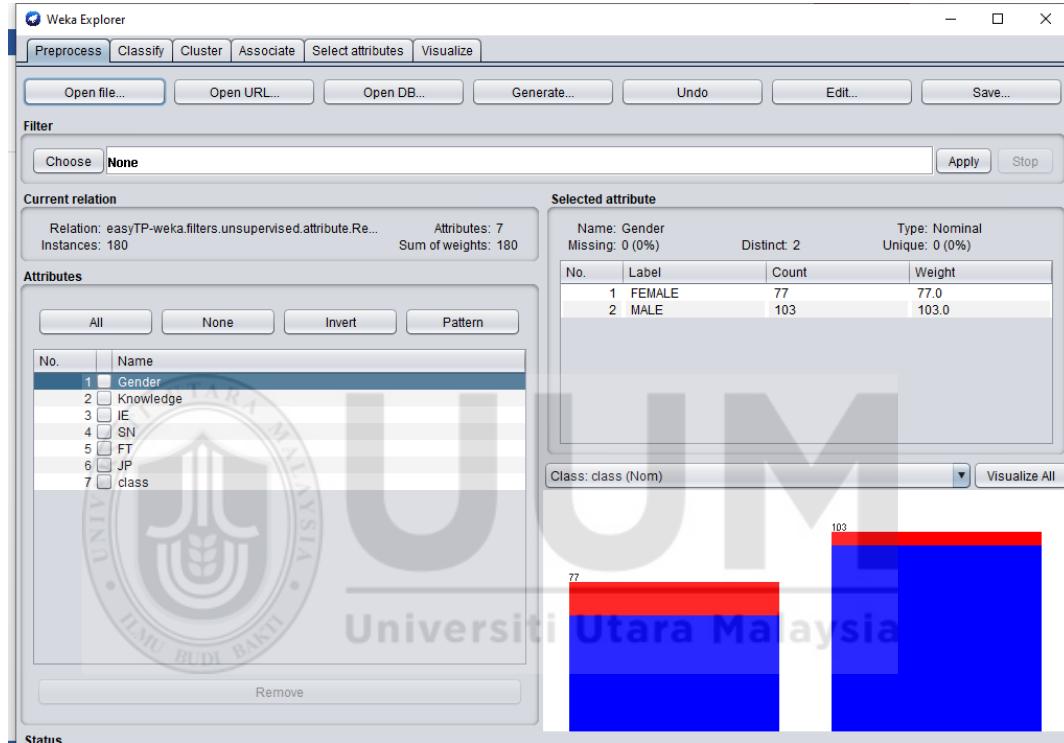

Sample of decision tree of Medium NTP

Tree View

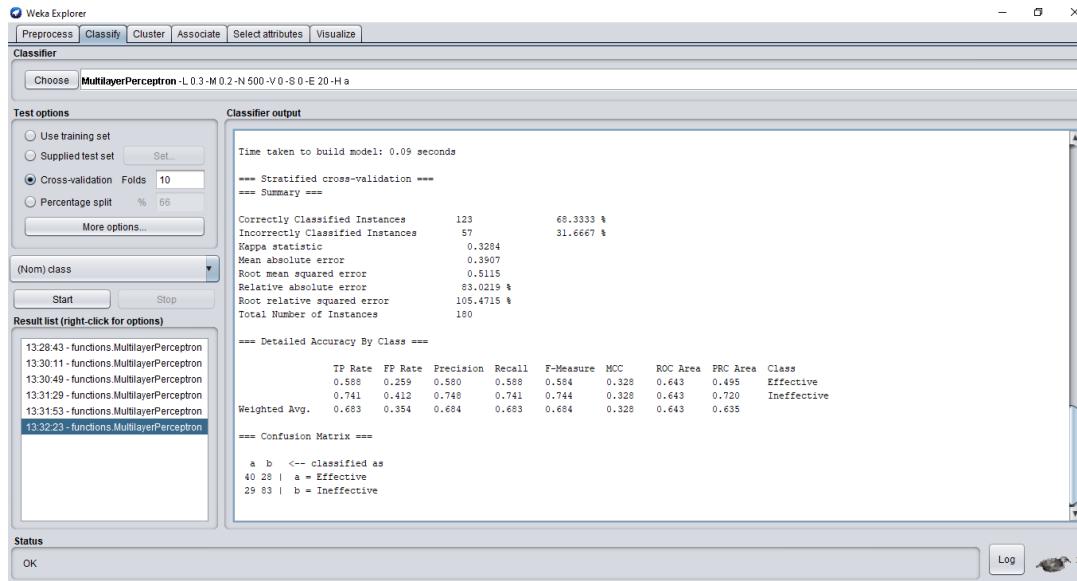
Sample of decision tree of hard TP

Tree View

Sample of decision tree of hard NTP



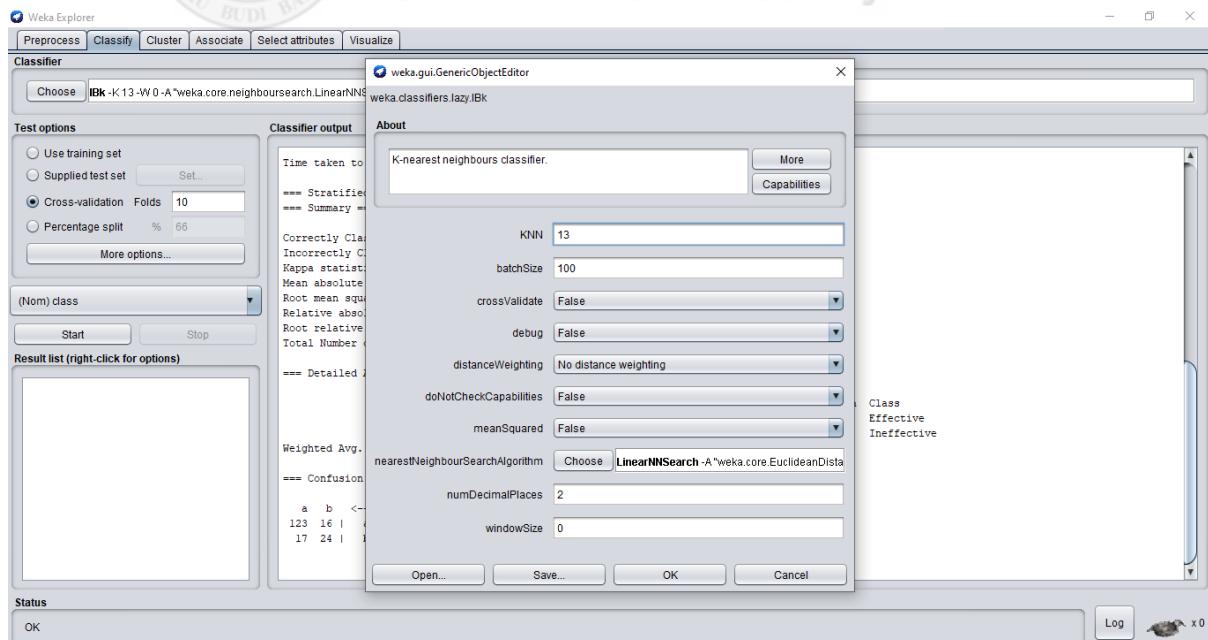
Universiti Utara Malaysia


Appendix O

Artificial Neural Network Using WEKA Tool

This appendix provides the screenshots of applying Artificial Neural Network (ANN) model generated using WEKA

Select dataset



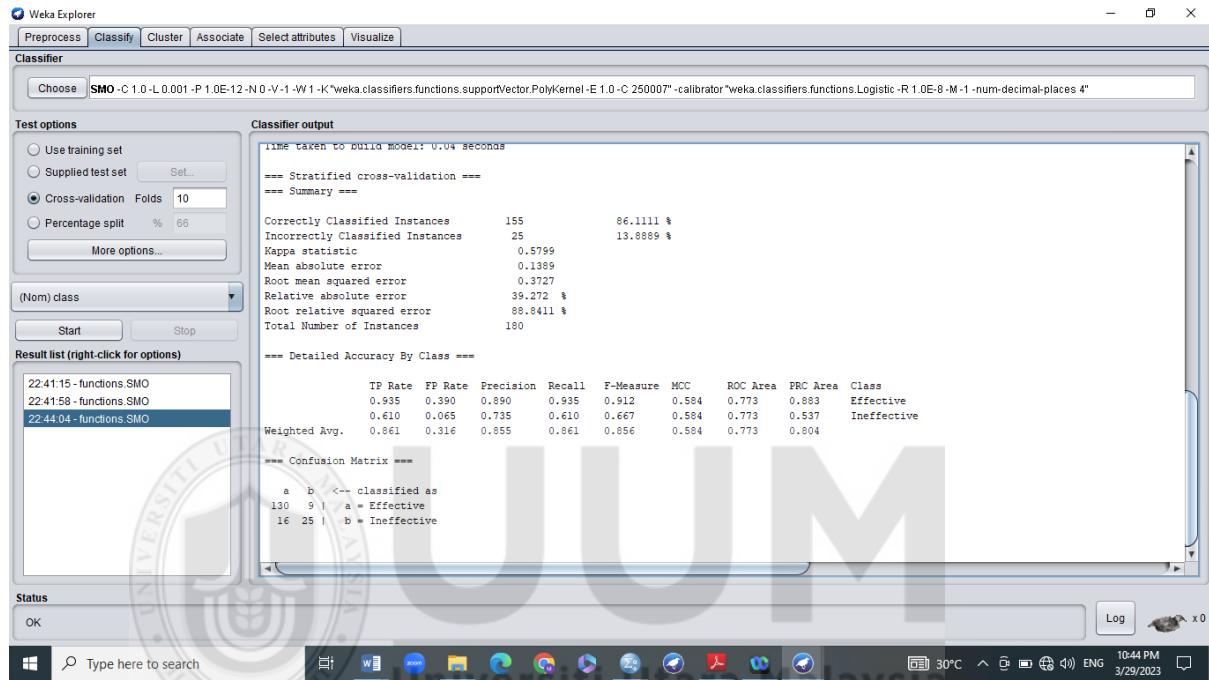
Select multilayer perceptron algorithm (ANN) in WEKA tool

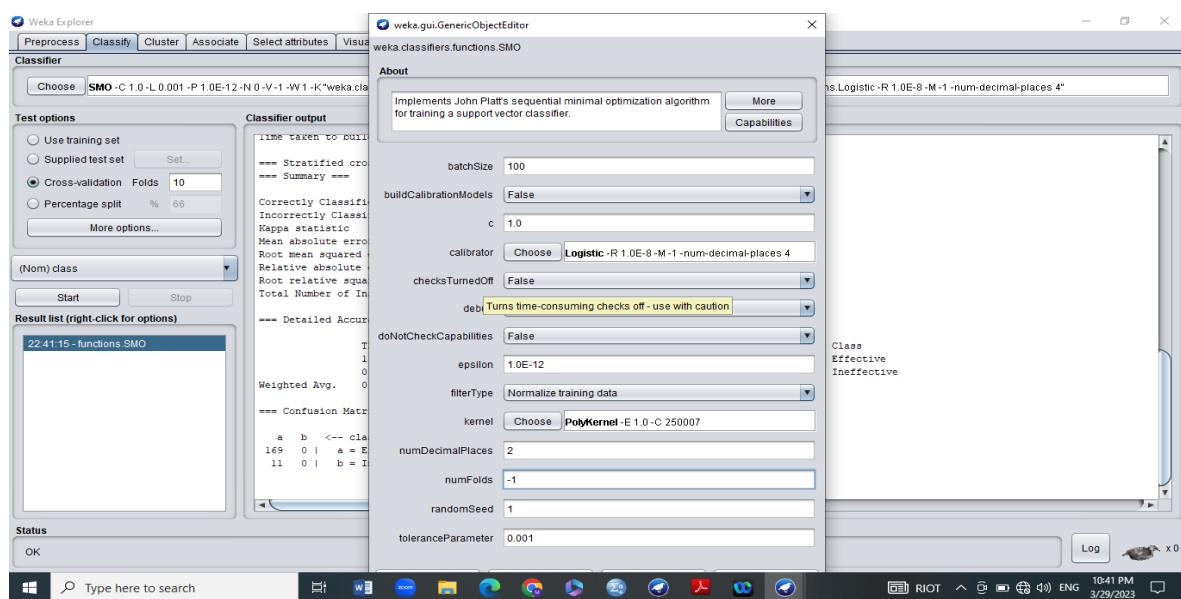
Appendix P

K-Nearest Neighbour Using WEKA Tool

This appendix provides the screenshots of K-Nearest Neighbour (KNN) model generated using WEKA.

Select K value

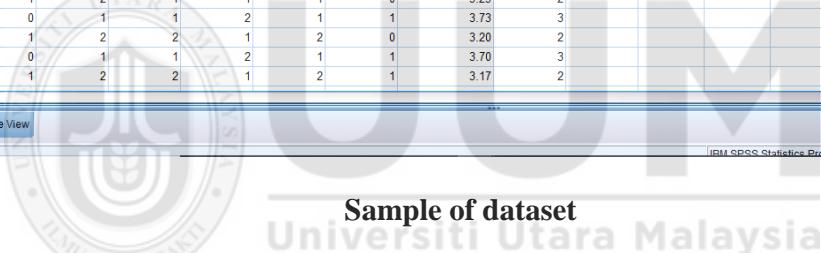

Select IBK (KNN) in WEKA tool


Appendix Q

Support Vector Machine Using WEKA Tool

This appendix provides the screenshots of Support Vector Machine (SVM) model generated using WEKA.

Select SMO as a SVM in WEKA tool



Select kernel polynomial

Appendix R

Logistic Regression Using SPSS

This appendix contains the screenshots of logistic regression analysis conducted using SPSS.

SPSS Data Editor window showing the 'Data View' tab. The dataset contains 22 rows of data with 16 variables: Gender, E_I, S_N, F_T, J_P, Effective_ineffective_1, Knowledge, knowledge_ct, and var1 through var8. The 'Visible: 8 of 8 Variables' message is displayed in the top right.

	Gender	E_I	S_N	F_T	J_P	Effective_ineffective_1	Knowledge	knowledge_ct	var1	var2	var3	var4	var5	var6	var7	var8
1	0	2	2	2	2	1	3.20	2								
2	1	1	1	1	1	1	3.70	3								
3	1	1	1	1	1	0	3.17	2								
4	0	2	1	2	2	0	3.48	2								
5	0	1	1	2	1	1	2.91	2								
6	0	2	1	2	2	0	2.57	2								
7	0	2	1	2	1	1	2.53	2								
8	0	1	2	2	1	1	3.50	2								
9	1	2	2	2	2	1	3.43	2								
10	1	1	1	1	1	0	3.63	2								
11	1	2	2	1	1	1	3.42	2								
12	1	1	2	2	2	0	2.68	2								
13	0	2	1	1	1	1	3.18	2								
14	1	2	2	1	1	1	3.37	2								
15	0	1	1	2	2	1	3.17	2								
16	0	2	2	1	2	1	3.37	2								
17	0	1	2	2	1	1	3.00	2								
18	1	2	1	1	1	0	3.23	2								
19	0	1	1	2	1	1	3.73	3								
20	1	2	2	1	2	0	3.20	2								
21	0	1	1	2	1	1	3.70	3								
22	1	2	2	1	2	1	3.17	2								

Sample of dataset

SPSS Data Editor window showing the 'Variable View' tab. The dataset contains 24 variables: Name, Type, Width, Decimals, Label, Values, Missing, Columns, Align, Measure, and Role. The 'Data View' tab is selected at the bottom.

Name	Type	Width	Decimals	Label	Values	Missing	Columns	Align	Measure	Role	
1	Gender	Numeric	8	0	gender of participant	{0, MALE, FEMALE}	None	8	Right	Nominal	Input
2	E_I	Numeric	8	0	personality type	{1, Introvert, Extrovert}	None	8	Right	Nominal	Input
3	S_N	Numeric	8	0	personality type	{1, Sensing, Intuiting}	None	8	Right	Nominal	Input
4	F_T	Numeric	8	0	personality type	{1, Thinking, Feeling}	None	8	Right	Nominal	Input
5	J_P	Numeric	8	0	personality type	{1, Judging, Perceiving}	None	8	Right	Nominal	Input
6	Effective_in...	Numeric	8	0	Effective_ineffective	{0, Ineffective, Effective}	None	8	Right	Nominal	Input
7	Knowledge	Numeric	8	2	Knowledge	None	None	11	Right	Scale	Input
8	knowledge_ct	Numeric	8	0	overall knowledge	{1, Low, High}	None	8	Right	Nominal	Input
9											
10											
11											
12											
13											
14											
15											
16											
17											
18											
19											
20											
21											
22											
23											
24											

List of Variables

SPSS Data Editor window showing the "Logistic Regression" dialog box.

Data View:

	Gender	E_I	S_N	F_T	J_P	Effective_ineffective.1	Knowledge	knowledge...	var							
1	0	2	2	2												
2	1	1	1	1												
3	1	1	1	1												
4	0	2	1	2												
5	0	1	1	2												
6	0	2	1	2												
7	0	2	1	2												
8	0	1	2	2												
9	1	2	2	2												
10	1	1	1	1												
11	1	2	2	1												
12	1	1	2	2												
13	0	2	1	1												
14	1	2	2	1												
15	0	1	1	2												
16	0	2	2	1												
17	0	1	2	2												
18	1	2	1	1												
19	0	1	1	2												
20	1	2	2	1												
21	0	1	1	2												
22	1	2	2	1												

Logistic Regression Dialog Box:

- Dependent:** Effective_ineffective.1 (Categorical)
- Covariates:** Gender, E_I, S_N, F_T, J_P
- Method:** Enter
- Selection Variable:** (empty)

Select binary logistic regression

Universiti Utara Malaysia

Appendix S

Sample of Logistic Regression (SPSS Output)

This appendix showcases a sample output from the logistic regression analysis in SPSS. It includes the coefficients, odds ratios, and significance levels, which help explain the relationship between independent variables and performance.

1. This block presents the results with only the constant included before any coefficients (predictor variables) are entered in the equation.

Classification Table ^{a,b}							
	Observed	Predicted				Percentage Correct	
		Performance		Ineffective	Effective		
		Ineffective	Effective				
Step 0	Performance	Ineffective	0	50	.0		
		Effective	0	130	100.0		
	Overall Percentage				72.0		
a. Constant is included in the model.							
b. The cut value is .500							

2. The variables not in the equation show whether each predictor variables used improves the model. When the $\text{Sig.} < .05$, this shows that the variables are significant and would add the predictive power of the model. In this case only S_I Personality types was not contribute significantly to the model.

Variables not in the Equation					
			Score	df	Sig.
Step 0	Variables	Gender(1)	.825	1	.364
		E_I(1)	.297	1	.586
		S_N(1)	1.833	1	.176
		F_T(1)	4.131	1	.042
		J_P(1)	3.006	1	.083
		Knowledge	84.536	1	.000
		TP(1)	22.073	1	.000
		TC	63.764	1	.000
	Overall Statistics		186.221	8	.000

3. This block presents the results when the predictor variables are included; the model achieved 87% accuracy.

Classification Table^a

		Predicted		Performance	Percentage Correct
		Observed	Ineffective		
Step 1	Performance	Ineffective	35(TN)	15(FP)	70.0
		Effective	11(FN)	119(TP)	91.5
Overall Percentage					85.0

a. The cut value is .500

4. The variables in the equation determine which predictor variables contribute significantly to the model using Wald statistic. If the significant value less than .05, the variables do make a significant contribution. In this case, only S_I Personality types was not contributed significantly to the model.

Variables in the Equation

	B	S.E.	Wald	df	Sig.	Exp(B)	95% C.I. for EXP(B)		
							Lower	Upper	
Step 1 ^a	Gender(1)	.646	.259	6.236	1	.013	1.907	1.149	3.166
	E_I(1)	-.676	.259	6.792	1	.009	.509	.306	.846
	S_N(1)	.477	.254	3.511	1	.061	1.611	.978	2.653
	F_T(1)	.634	.264	5.771	1	.016	1.885	1.124	3.163
	J_P(1)	.598	.255	5.489	1	.019	1.818	1.103	2.996
	Knowledge	3.668	.404	82.574	1	.000	39.185	17.763	86.445
	TP(1)	1.461	.263	30.844	1	.000	4.311	2.574	7.220
	TC	-1.529	.182	70.296	1	.000	.217	.152	.310
	Constant	-8.890	1.250	50.556	1	.000	.000		

a. Variable(s) entered on step 1: Gender, E_I, S_N, F_T, J_P, Knowledge, TP, TC.

Appendix T

Sample of Decision Tree (WEKA Outputs)

This appendix includes a sample decision tree generated using the WEKA tool. It illustrates how the decision tree model was applied to classify the participants' performance.

This is a sample output of WEKA tool for decision tree prediction accuracy using 10-fold cross-validation.

➤ Easy NTP

==== Run information ====

Scheme: weka.classifiers.trees.J48 -C 0.25 -M 2

Relation: easyNTP

Instances: 180

Attributes: 7

 Gender

 Knowledge

 IE

 SN

 FT

 JP

 class

Test mode: 10-fold cross-validation

==== Classifier model (full training set) ====

J48 pruned tree

Gender = Male

| EI = Introvert: Effective (4.0/2.0)

| EI = Extrovert

| | SN = Sensing

| | | Knowledge <=2.8

| | | | JP=perceiving: Effective (2.0)

| | | | JP=Judging: Ineffective (3.0/1.0)

| | | | Knowledge > 2.8: Effective (141.0/1.0)

| | | SN = Intuiting: Ineffective (4.0/2.0)

Gender = Female

| SN = Sensing

| | Knowledge <=2.72: Ineffective (3.0)

| | Knowledge > 2.72: effective (21.0)

| SN = Intuiting: Ineffective (2.0/1.0)

Number of Leaves : 8

Size of the tree : 15

Time taken to build model: 0 seconds

==== Stratified cross-validation ====

==== Summary ====

Correctly Classified Instances	169	93.8889 %
Incorrectly Classified Instances	11	6.1111 %
Kappa statistic	0	
Mean absolute error	0.1148	
Root mean squared error	0.2397	
Relative absolute error	96.0695 %	
Root relative squared error	99.9758 %	
Total Number of Instances	180	

==== Detailed Accuracy By Class ====

	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
1.000	1.000	0.939	1.000	0.968	0.6323	0.456	0.934	Effective	
1.000	1.000	0.939	1.000	0.968	0.6323	0.456	0.057	Ineffective	
Weighted Avg.	1.000	0.939	0.939	1.000	0.968	0.6323	0.456	0.881	

==== Confusion Matrix ====

a	b	<-- classified as
166	0	a = Effective
11	3	b = Ineffective

➤ EASY TP

==== Run information ====

Scheme: weka.classifiers.trees.J48 -C 0.25 -M 2

Relation: easyTP

Instances: 180

Attributes: 7

 Gender

 Knowledge

 IE

 SN

 FT

 JP

 class

Test mode: 10-fold cross-validation

==== Classifier model (full training set) ====

J48 pruned tree

```

Gender = Male
|   SN = Sensing
|   |   TF = Thinking: Effective (63.0/1.0)
|   |   TF = Feeling: Ineffective (16.0)
|   SN = Intuiting: Effective (3.0)
Gender = Female
|   EI = Extrovert
|   |   Knowledge > 2.62: Effective (18.0)
|   |   Knowledge <=2.62: Ineffective (6.0)
|   EI = Introvert: Ineffective (4.0)

```

Number of Leaves: 6

Size of the tree: 11

Time taken to build model: 0 seconds

==== Stratified cross-validation ====

==== Summary ====

Correctly Classified Instances	156	86.6667 %
Incorrectly Classified Instances	24	13.3333 %
Kappa statistic	0.3284	
Mean absolute error	0.1876	
Root mean squared error	0.3417	
Relative absolute error	79.9897 %	
Root relative squared error	100.4294 %	
Total Number of Instances	180	

==== Detailed Accuracy By Class ====

	TP	Rate	FP	Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
Effective	0.949	0.667	0.902	0.949	0.925	0.337	0.642	0.892	0.892	0.818	Effective
Ineffective	0.333	0.051	0.500	0.333	0.400	0.337	0.642	0.333	0.333	0.818	Ineffective
Weighted Avg.	0.867	0.585	0.849	0.867	0.855	0.337	0.642				

==== Confusion Matrix ====

```

a  b  <-- classified as
148 8 | a = Effective
16 8 | b = Ineffective

```

➤ MEDIUM TP

==== Run information ====

Scheme: weka.classifiers.trees.J48 -C 0.25 -M 2
 Relation: mediumTP

Instances: 180

Attributes: 7

Gender
Knowledge
IE
SN
FT
JP
class

Test mode: 10-fold cross-validation

==== Classifier model (full training set) ====

J48 pruned tree

Gender = Male

| TF = Thinking: Effective (20.0/3.0)
| TF = Feeling
| | JP= Judging: Ineffective (24.0/3.0)
| | JP= Perceiving
| | | Knowledge: >3.55 Effective (23.0/4.0)
| | | Knowledge: <=3.55 Ineffective (7.0/2.0)

Gender = Female

| EI = Extrovert: Effective (30.0)
| EI = Introvert
| | JP= Perceiving: Ineffective (24.0/3.0)
| | JP= Judging
| | | Knowledge: >3.29 Effective (43.0/8.0)
| | | Knowledge: <=3.29 Ineffective (15.0/1.0)

Number of Leaves: 8

Size of the tree: 15

Time taken to build model: 0.02 seconds

==== Stratified cross-validation ====

==== Summary ====

Correctly Classified Instances	123	68.3333 %
Incorrectly Classified Instances	57	31.6667 %
Kappa statistic	0.3081	
Mean absolute error	0.4165	
Root mean squared error	0.4769	
Relative absolute error	85.3143 %	
Root relative squared error	96.5197 %	
Total Number of Instances	180	

==== Detailed Accuracy By Class ====

	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
	0.894	0.605	0.669	0.894	0.765	0.340	0.616	0.630	
Effective		0.395	0.106	0.732	0.395	0.513	0.340	0.616	0.568
Ineffective									
Weighted Avg.	0.683	0.394	0.696	0.683	0.659	0.340	0.616	0.604	

==== Confusion Matrix ====

a b <-- classified as
93 11 | a = Effective
46 30 | b = Ineffective

➤ MEDIUM NTP

==== Run information ====

Scheme: weka.classifiers.trees.J48 -C 0.25 -M 2

Relation: mediumNTP

Instances: 180

Attributes: 7

Gender
Knowledge
IE
SN
FT
JP
class

Test mode: 10-fold cross-validation

==== Classifier model (full training set) ====

J48 pruned tree

Gender = Male

| EI = Extrovert: Effective (38.0/11.0)

| EI = Introvert

| | TF = Thinking: Effective (33.0/2.0)

| | TF = Feeling

| | | JP= Judging: Ineffective (15.0/7.0)

| | | JP= Perceiving

| | | | Knowledge: >3.35 Effective (20.0)

| | | | Knowledge: <=3.35 Ineffective (10.0/5.0)

Gender = Female

| EI = Extrovert: Effective (35.0/9.0)

| EI = Introvert

| | TF = Thinking: Effective (18.0/2.0)
| | TF = Feeling: Ineffective (11.0/7.0)

Number of Leaves : 8

Size of the tree : 15

Time taken to build model: 0 seconds

==== Stratified cross-validation ====

==== Summary ====

Correctly Classified Instances	147	81.6667 %
Incorrectly Classified Instances	33	18.3333 %
Kappa statistic	0.4743	
Mean absolute error	0.2434	
Root mean squared error	0.3885	
Relative absolute error	68.8204 %	
Root relative squared error	92.621 %	
Total Number of Instances	180	

==== Detailed Accuracy By Class ====

	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
Effective	0.885	0.415	0.879	0.885	0.882	0.474	0.691	0.835	
	0.585	0.115	0.600	0.585	0.593	0.474	0.691	0.436	
Ineffective									
Weighted Avg.	0.817	0.346	0.815	0.817	0.816	0.474	0.691	0.744	

==== Confusion Matrix ====

a	b	<-- classified as
123	16	a = Effective
17	24	b = Ineffective

➤ HARD NTP

==== Run information ====

Scheme: weka.classifiers.trees.J48 -C 0.25 -M 2

Relation: hardNTP

Instances: 180

Attributes: 7

Gender
Knowledge
IE
SN
FT

JP
class
Test mode: 10-fold cross-validation

==== Classifier model (full training set) ====

J48 pruned tree

Gender = Male

- | SN = Sensing: Effective (42.0/8.0)
- | SN = Intuiting
 - | TF = Feeling: Ineffective (4.0/2.0)
 - | TF = Thinking
 - | JP= Judging: Ineffective (16.0/9.0)
 - | JP= Perceiving
 - | Knowledge >3.17 : Effective (27.0/4.0)
 - | Knowledge <=3.17: Ineffective (18.0/14.0)

Gender = Female

- | TF = Feeling: Ineffective (19.0/3.0)
- | TF = Thinking
 - | JP= Perceiving: Effective (20.0/7.0)
 - | JP = Judging
 - | Knowledge >3.15 : Effective (26.0/11.0)
 - | Knowledge <=3.15: Ineffective (8.0/3.0)

Number of Leaves : 9

Size of the tree : 17

Time taken to build model: 0 seconds

==== Stratified cross-validation ====

==== Summary ====

Correctly Classified Instances	146	81.1111 %
Incorrectly Classified Instances	34	18.8889 %
Kappa statistic	0.5759	
Mean absolute error	0.2319	
Root mean squared error	0.3877	
Relative absolute error	50.5239 %	
Root relative squared error	80.9541 %	
Total Number of Instances	180	

==== Detailed Accuracy By Class ====

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

	0.888	0.328	0.831	0.888	0.858	0.579	0.794	0.810
Effective								
	0.672	0.112	0.768	0.672	0.717	0.579	0.794	0.675
Ineffective								
Weighted Avg.	0.811	0.251	0.808	0.811	0.808	0.579	0.794	0.762

==== Confusion Matrix ===

a b <- classified as
 103 13 | a = Effective
 21 43 | b = Ineffective

➤ HARD TP

==== Run information ===

Scheme: weka.classifiers.trees.J48 -C 0.25 -M 2
 Relation: hardTP-weka.filters.unsupervised.attribute.Remove-R7
 Instances: 180
 Attributes: 7

Gender
 Knowledge
 IE
 SN
 FT
 JP
 class

Test mode: 10-fold cross-validation

==== Classifier model (full training set) ===

J48 pruned tree

```
-----
Gender = Male
| EI = Extrovert: Effective (15.0/8.0)
| EI = Introvert
|   | TF = Feeling: Ineffective (9.0/2.0)
|   | TF = Thinking
|   |   | JP= Judging: Ineffective (28.0/8.0)
|   |   | JP= Perceiving
|   |   |   | Knowledge >3.65 : Effective (20.0/4.0)
|   |   |   | Knowledge <=3.65: Ineffective (22.0/1.0)
Gender = Female
| EI = Extrovert: Ineffective (27.0/6.0)
| EI = Introvert
|   | SN= Intuiting: Ineffective (21.0/6.0)
|   | SN = Sensing
|   |   |   | Knowledge >3.45 : Effective (21.0/4.0)
|   |   |   | Knowledge <=3.45: Ineffective (17.0/5.0)
```

Number of Leaves : 9

Size of the tree : 17

Time taken to build model: 0 seconds

==== Stratified cross-validation ====

==== Summary ====

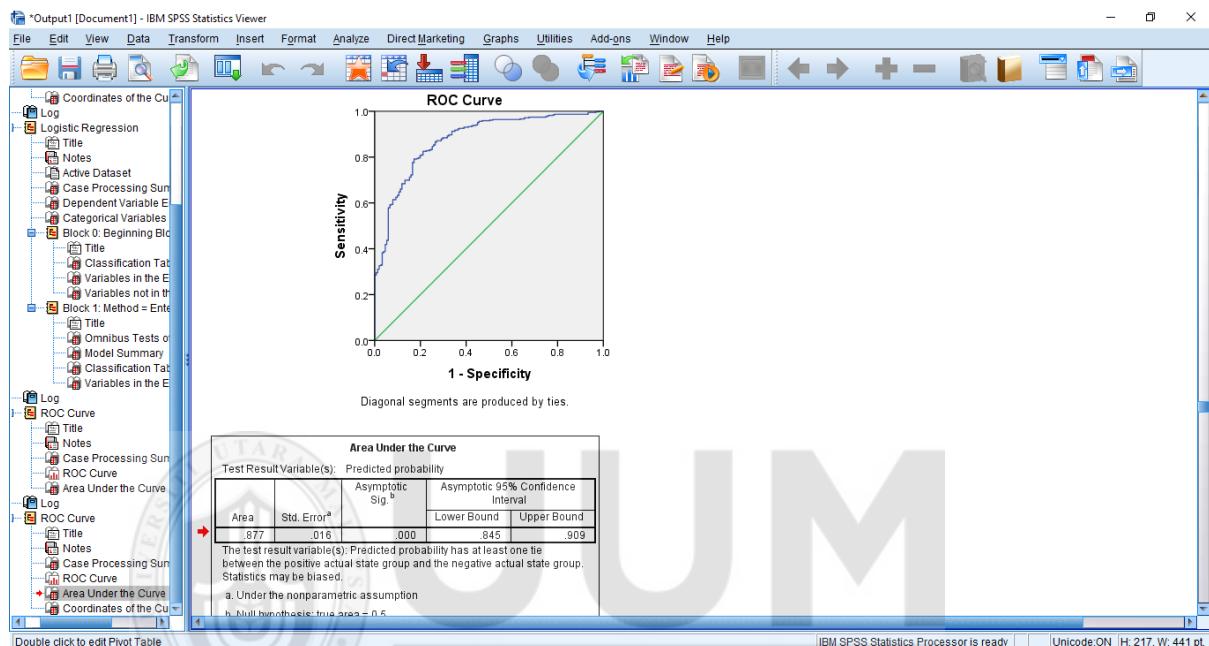
Correctly Classified Instances	109	60.5556 %
Incorrectly Classified Instances	71	39.4444 %
Kappa statistic	0.1822	
Mean absolute error	0.4113	
Root mean squared error	0.5108	
Relative absolute error	87.4088 %	
Root relative squared error	105.3258 %	
Total Number of Instances	180	

==== Detailed Accuracy By Class ====

	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
Effective	0.544	0.357	0.481	0.544	0.510	0.183	0.623	0.457	
	0.643	0.456	0.699	0.643	0.670	0.183	0.623	0.725	
Ineffective									
Weighted Avg.	0.606	0.419	0.616	0.606	0.610	0.183	0.623	0.624	

==== Confusion Matrix ====

a b <-- classified as


37 31 | a = Effective

40 72 | b = Ineffective

Appendix U

Sample of ROC Value Output Using SPSS Tool

This appendix presents the Receiver Operating Characteristic (ROC) curve and value output from SPSS. The ROC curve was used to assess the performance of the predictive models, particularly their ability to distinguish between different performance classes.

This is a sample of logistic regression area under ROC value output using SPSS tool.

➤ Area Under the Curve

Area Under the Curve

Test Result Variable(s): Predicted probability

Area	Std. Error ^a	Asymptotic Sig. ^b	Asymptotic 95% Confidence Interval	
			Lower Bound	Upper Bound
.877	.016	.000	.845	.909

The test result variable(s): Predicted probability has at least one tie between the positive actual state group and the negative actual state group. Statistics may be biased.

a. Under the nonparametric assumption

b. Null hypothesis: true area = 0.5

➤ Table of the coordinated of the curves

Coordinates of the Curve

Test Result Variable(s): Predicted probability

Positive if Greater Than or Equal To ^a	Sensitivity	1 - Specificity

.0000000	1.000	1.000
.0202824	1.000	.986
.0287332	1.000	.971
.0329347	1.000	.957
.0371233	.980	.957
.0389613	.980	.942
.0452935	.980	.928
.0584207	.980	.913
.0677662	.980	.899
.0703781	.980	.884
.0764225	.980	.870
.0871294	.961	.870
.0957128	.941	.870
.0991184	.922	.870
.1017506	.922	.855
.1049373	.922	.841
.1068945	.922	.826
.1086095	.922	.812
.1099426	.922	.797
.11116574	.922	.783
.11333949	.922	.768
.1163641	.922	.754
.1221460	.922	.739
.1320608	.922	.725
.1406226	.922	.710
.1449859	.922	.696
.1495618	.922	.681
.1547303	.922	.667
.1670099	.922	.652
.1855494	.922	.638
.1980402	.922	.623
.2166509	.922	.609
.2354080	.902	.609
.2387813	.902	.594
.2431642	.902	.580
.2565761	.902	.565
.2691558	.902	.551
.2800787	.902	.536
.2911487	.892	.536
.2991329	.892	.522

.3099393	.891	.522
.3183179	.889	.522
.3215377	.886	.507
.3256601	.882	.493
.3322520	.882	.478
.3365980	.822	.464
.3377421	.880	.449
.3405317	.880	.435
.3436240	.879	.420
.3450636	.878	.406
.3490349	.879	.398
.3537606	.879	.291
.3560362	.877	.291
.3587788	.874	.291
.3628548	.871	.291
.3712444	.871	.285
.3826762	.845	.281
.4018615	.824	.279
.4199693	.824	.278
.4278312	.824	.275
.4376323	.804	.275
.4466397	.804	.261
.4528386	.804	.246
.4860710	.804	.232
.5185848	.804	.217
.5226381	.804	.203
.5442137	.784	.203
.5673362	.765	.203
.5758607	.765	.188
.5856884	.745	.188
.5927218	.745	.174
.5979844	.745	.159
.6033616	.745	.145
.6071771	.725	.145
.6200465	.706	.145
.6321110	.686	.145
.6358551	.686	.130
.6414809	.667	.130
.6614873	.647	.130
.6814723	.627	.130

.6864132	.608	.130
.6904506	.608	.116
.6951263	.608	.101
.6995159	.608	.087
.7029652	.608	.072
.7058353	.588	.072
.7099360	.569	.072
.7136396	.569	.058
.7141547	.549	.058
.7171876	.529	.058
.7222509	.529	.043
.7301039	.529	.029
.7434881	.510	.029
.7555885	.490	.029
.7606433	.451	.029
.7627721	.431	.029
.7693733	.412	.029
.7753777	.392	.029
.7805204	.373	.029
.7939784	.373	.014
.8180041	.353	.014
.8395441	.353	.000
.8495498	.333	.000
.8607180	.314	.000
.8697731	.294	.000
.8767519	.275	.000
.8847038	.255	.000
.8872856	.235	.000
.8888837	.216	.000
.8975608	.196	.000
.9080958	.176	.000
.9130525	.157	.000
.9147383	.137	.000
.9237325	.118	.000
.9383277	.098	.000
.9494956	.078	.000
.9572649	.059	.000
.9606474	.039	.000
.9648778	.020	.000
1.0000000	.000	.000

a. The smallest cutoff value is the minimum observed test value minus 1, and the largest cutoff value is the maximum observed test value plus 1. All the other cutoff values are the averages of two consecutive ordered observed test values.

Appendix V

Sample of ANN (WEKA outputs)

This appendix contains the output from the ANN model generated using WEKA. It shows how the ANN model performed in predicting developers' performance, providing key metrics.

➤ Easy NTP

==== Run information ====

Scheme: weka.classifiers.functions.MultilayerPerceptron -L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a
Relation: easyNTP
Instances: 180
Attributes: 7

Gender
Knowledge
IE
SN
FT
JP
class

Test mode: 10-fold cross-validation

==== Classifier model (full training set) ====

Sigmoid Node 0

Inputs Weights

Threshold -1.612323991080546
Node 2 4.079162368936238
Node 3 4.104727445668504
Node 4 5.247351573734934
Node 5 3.1777362869507515

Sigmoid Node 1

Inputs Weights

Threshold 1.6123450792869298
Node 2 -4.1076454996743745
Node 3 -4.075942931252122
Node 4 -5.247319954365999
Node 5 -3.177646115985696

Sigmoid Node 2

Inputs Weights

Threshold 1.6319834284718058
Attrib Gender=MALE 1.1844660639065632
Attrib Knowledge 9.026732310349168
Attrib IE=Introvert 0.5314094885708147
Attrib SN=Inituiting 0.09204460600113731
Attrib FT=Feeling 3.0948677179438286
Attrib JP=Judging -0.37823219952998555

Sigmoid Node 3

Inputs Weights

Threshold 1.5964033464805456
Attrib Gender=MALE 1.019012189844543

Attrib Knowledge 8.88492206004524
 Attrib IE=Introvert 0.8588663459270639
 Attrib SN=Inituiting 0.050506935843821384
 Attrib FT=Feeling 3.265965524741468
 Attrib JP=Judging -0.4711669934442308

Sigmoid Node 4

Inputs Weights
 Threshold -1.6705827346063178
 Attrib Gender=MALE 2.2929243066465634
 Attrib Knowledge 5.058311374612433
 Attrib IE=Introvert 1.172909852667952
 Attrib SN=Inituiting -2.9535195628683235
 Attrib FT=Feeling -3.31154274000043
 Attrib JP=Judging -5.329264347834518

Sigmoid Node 5

Inputs Weights
 Threshold 2.182455439077911
 Attrib Gender=MALE 2.8294468797991916
 Attrib Knowledge 3.8237876476374724
 Attrib IE=Introvert 2.4295701586303284
 Attrib SN=Inituiting 3.561823936269066
 Attrib FT=Feeling -0.9728854021178202
 Attrib JP=Judging 0.8795926486385012

Class Effective

Input
 Node 0

Class Ineffective

Input
 Node 1

Time taken to build model: 0.24 seconds

==== Stratified cross-validation ====

==== Summary ====

Correctly Classified Instances	166	92.2222 %
Incorrectly Classified Instances	14	7.7778 %
Kappa statistic	0.1834	
Mean absolute error	0.0965	
Root mean squared error	0.2707	
Relative absolute error	80.7291 %	
Root relative squared error	112.9339 %	
Total Number of Instances	180	

==== Detailed Accuracy By Class ====

	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
Effective	0.970	0.818	0.948	0.970	0.959	0.189	0.806	0.984	Effective
Ineffective	0.182	0.030	0.286	0.182	0.222	0.189	0.806	0.196	Ineffective
Weighted Avg.	0.922	0.770	0.908	0.922	0.922	0.914	0.189	0.806	0.936

==== Confusion Matrix ====

a b <-- classified as

164 5 | a = Effective
9 2 | b = Ineffective

➤ Easy TP

==== Run information ====

Scheme: weka.classifiers.functions.MultilayerPerceptron -L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a

Relation: easyTP

Instances: 180

Attributes: 7

Gender
Knowledge
IE
SN
FT
JP
class

Test mode: 10-fold cross-validation

==== Classifier model (full training set) ====

Sigmoid Node 0

Inputs Weights
Threshold -7.22168273048237
Node 2 7.333868135387107
Node 3 4.562277510401897
Node 4 3.797147805782776
Node 5 3.453582937255274

Sigmoid Node 1

Inputs Weights
Threshold 7.222307991067093
Node 2 -7.334629072986696
Node 3 -4.5626594554813895
Node 4 -3.7974248993198745
Node 5 -3.453847221245762

Sigmoid Node 2

Inputs Weights
Threshold 0.5226748837965672
Attrib Gender=MALE 5.146757419581444
Attrib Knowledge 5.999725607573578
Attrib IE=Introvert -3.2667817370684906
Attrib SN=Inituiting 4.268784523490736
Attrib FT=Feeling 3.8644008532666367
Attrib JP=Judging -3.9616957991438526

Sigmoid Node 3

Inputs Weights
Threshold 7.302698585129874
Attrib Gender=MALE 2.3656979259129978
Attrib Knowledge 8.948062681036513
Attrib IE=Introvert 2.9376912177422803
Attrib SN=Inituiting -2.107777387157654
Attrib FT=Feeling -0.9624181933347362
Attrib JP=Judging -0.1365005990787547

Sigmoid Node 4

Inputs Weights

```

Threshold 4.969538916384451
Attrib Gender=MALE -1.8808851521312042
Attrib Knowledge 9.972278549828708
Attrib IE=Introvert -1.2675324582671317
Attrib SN=Inituiting -1.2643120674751522
Attrib FT=Feeling 0.16899828294881278
Attrib JP=Judging 1.3656926864663814
Sigmoid Node 5
Inputs  Weights
Threshold 0.06478190927587092
Attrib Gender=MALE 3.6909988879126376
Attrib Knowledge 3.4395861992450745
Attrib IE=Introvert -3.2186829000064963
Attrib SN=Inituiting 1.2640601708427424
Attrib FT=Feeling -5.66595331919958
Attrib JP=Judging 1.3997385073246207
Class Effective
Input
Node 0
Class Ineffective
Input
Node 1

```

Time taken to build model: 0.1 seconds

==== Stratified cross-validation ====

==== Summary ====

Correctly Classified Instances	155	86.1111 %
Incorrectly Classified Instances	25	13.8889 %
Kappa statistic	0.2545	
Mean absolute error	0.1559	
Root mean squared error	0.3516	
Relative absolute error	66.474 %	
Root relative squared error	103.3485 %	
Total Number of Instances	180	

==== Detailed Accuracy By Class ====

	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
Effective	0.955	0.750	0.892	0.955	0.923	0.269	0.731	0.933	Effective
Ineffective	0.250	0.045	0.462	0.250	0.324	0.269	0.731	0.350	Ineffective
Weighted Avg.	0.861	0.656	0.835	0.861	0.843	0.269	0.731	0.855	

==== Confusion Matrix ====

```

a  b  <- classified as
149 7 | a = Effective
18 6 | b = Ineffective

```

➤ **Medium NTP**

==== Run information ====

Scheme: weka.classifiers.functions.MultilayerPerceptron -L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a

Relation: mediumNTP
Instances: 180
Attributes: 7
Gender
Knowledge
IE
SN
FT
JP
class
Test mode: 10-fold cross-validation

==== Classifier model (full training set) ====

Sigmoid Node 0
Inputs Weights
Threshold -8.308990761461665
Node 2 7.082345751040713
Node 3 4.9429271389675415
Node 4 4.983408930490522
Node 5 8.353746079837427
Sigmoid Node 1
Inputs Weights
Threshold 8.309255160641099
Node 2 -7.082578553926097
Node 3 -4.9430688433524965
Node 4 -4.983546064557313
Node 5 -8.354010955402025
Sigmoid Node 2
Inputs Weights
Threshold 1.0682762291753949
Attrib Gender=MALE 1.7540606294167198
Attrib Knowledge 12.088343832505172
Attrib IE=Introvert -6.6308943415813415
Attrib SN=Inituiting 2.4992510789914255
Attrib FT=Feeling 4.76043748753173
Attrib JP=Judging -6.255527322652588
Sigmoid Node 3
Inputs Weights
Threshold 1.0217402331726657
Attrib Gender=MALE -1.0800195912550934
Attrib Knowledge 11.288263609867677
Attrib IE=Introvert -1.7480956032330501
Attrib SN=Inituiting -2.7326496916400815
Attrib FT=Feeling -2.4444863043685476
Attrib JP=Judging -0.6310326956320127
Sigmoid Node 4
Inputs Weights
Threshold -0.973075837212566
Attrib Gender=MALE -0.6632313401524159
Attrib Knowledge 10.283039276639531
Attrib IE=Introvert 1.3521304086695598
Attrib SN=Inituiting -0.3949393512713436
Attrib FT=Feeling 4.135536681904543
Attrib JP=Judging 3.1341233560419135
Sigmoid Node 5

Inputs Weights
 Threshold -1.0371385053461835
 Attrib Gender=MALE 4.550485242557211
 Attrib Knowledge 4.584979339481953
 Attrib IE=Introvert 3.9938344458141963
 Attrib SN=Initiating 4.409500198516426
 Attrib FT=Feeling -1.9596509054419995
 Attrib JP=Judging -1.7911377321578088
 Class Effective
 Input
 Node 0
 Class Ineffective
 Input
 Node 1

Time taken to build model: 0.07 seconds

==== Stratified cross-validation ====
 === Summary ===

Correctly Classified Instances	151	83.8889 %
Incorrectly Classified Instances	29	16.1111 %
Kappa statistic	0.5381	
Mean absolute error	0.1761	
Root mean squared error	0.3544	
Relative absolute error	49.7877 %	
Root relative squared error	84.4754 %	
Total Number of Instances	180	

==== Detailed Accuracy By Class ====

	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
Effective	0.899	0.366	0.893	0.899	0.896	0.538	0.849	0.933	Effective
Ineffective	0.634	0.101	0.650	0.634	0.642	0.538	0.849	0.715	Ineffective
Weighted Avg.	0.839	0.305	0.838	0.839	0.838	0.538	0.849	0.883	

==== Confusion Matrix ====

a b <- classified as
 125 14 | a = Effective
 15 26 | b = Ineffective

➤ Medium TP

==== Run information ====

Scheme: weka.classifiers.functions.MultilayerPerceptron -L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a
 Relation: mediumTP
 Instances: 180
 Attributes: 7
 Gender
 Knowledge
 IE
 SN

FT
JP
class
Test mode: 10-fold cross-validation

==== Classifier model (full training set) ====

Sigmoid Node 0

Inputs	Weights
Threshold	-2.747814463835889
Node 2	2.675676674061201
Node 3	2.367000195416931
Node 4	2.77036049432141
Node 5	2.2527349422836687

Sigmoid Node 1

Inputs	Weights
Threshold	2.747814463833765
Node 2	-2.675676674058894
Node 3	-2.3670001954153013
Node 4	-2.7703604943197457
Node 5	-2.252734942281631

Sigmoid Node 2

Inputs	Weights
Threshold	-8.28044612238649
Attrib Gender=MALE	-1.9982507868510968
Attrib Knowledge	9.06411570924355
Attrib IE=Introvert	-0.2616024964660808
Attrib SN=Inituiting	-0.9992850432639037
Attrib FT=Feeling	4.538041884732333
Attrib JP=Judging	4.860527539396203

Sigmoid Node 3

Inputs	Weights
Threshold	-6.180477210730169
Attrib Gender=MALE	11.008644131822377
Attrib Knowledge	5.746034282035654
Attrib IE=Introvert	-2.3054202879031847
Attrib SN=Inituiting	3.355508331343503
Attrib FT=Feeling	1.4565793977379453
Attrib JP=Judging	-4.722796461675759

Sigmoid Node 4

Inputs	Weights
Threshold	-6.499403034610365
Attrib Gender=MALE	0.42648505651798974
Attrib Knowledge	14.424367329423161
Attrib IE=Introvert	-2.6182749082380745
Attrib SN=Inituiting	1.2068771221576318
Attrib FT=Feeling	-5.8368848340413
Attrib JP=Judging	0.9879813423522679

Sigmoid Node 5

Inputs	Weights
Threshold	-7.421029274386928
Attrib Gender=MALE	-5.078691567410166
Attrib Knowledge	3.793183095559527
Attrib IE=Introvert	6.98982559567093
Attrib SN=Inituiting	-4.69560378282179
Attrib FT=Feeling	3.478157325932317

Attrib JP=Judging -5.026291284959339

Class Effective

Input

Node 0

Class Ineffective

Input

Node 1

Time taken to build model: 0.1 seconds

==== Stratified cross-validation ====

==== Summary ====

Correctly Classified Instances	113	62.7778 %
Incorrectly Classified Instances	67	37.2222 %
Kappa statistic	0.2275	
Mean absolute error	0.4146	
Root mean squared error	0.5424	
Relative absolute error	84.9177 %	
Root relative squared error	109.7794 %	
Total Number of Instances	180	

==== Detailed Accuracy By Class ====

	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
0.712	0.487	0.667	0.712	0.688	0.228	0.626	0.707		Effective
0.513	0.288	0.565	0.513	0.538	0.228	0.626	0.517		Ineffective
Weighted Avg.	0.628	0.403	0.624	0.628	0.625	0.228	0.626	0.627	

==== Confusion Matrix ====

a b <-- classified as
74 30 | a = Effective
37 39 | b = Ineffective

➤ Hard NTP

==== Run information ====

Scheme: weka.classifiers.functions.MultilayerPerceptron -L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a

Relation: hard NTP

Instances: 180

Attributes: 7

Gender
Knowledge
IE
SN
FT
JP
class

Test mode: 10-fold cross-validation

==== Classifier model (full training set) ====

Sigmoid Node 0

Inputs Weights
 Threshold -10.217541248679213
 Node 2 4.647094885955859
 Node 3 6.202629706150964
 Node 4 6.623577461305876
 Node 5 6.5178911602332334

Sigmoid Node 1
 Inputs Weights
 Threshold 10.217500395288742
 Node 2 -4.6470804961408465
 Node 3 -6.202604025428656
 Node 4 -6.623552965281675
 Node 5 -6.517863401273089

Sigmoid Node 2
 Inputs Weights
 Threshold -2.0356576356135623
 Attrib Gender=MALE 6.2272580642629825
 Attrib Knowledge 13.577551074252629
 Attrib IE=Introvert -1.4099865874551059
 Attrib SN=Inituiting 5.225396245134555
 Attrib FT=Feeling 2.988598282838154
 Attrib JP=Judging -0.042940751742980184

Sigmoid Node 3
 Inputs Weights
 Threshold -1.3518520568456518
 Attrib Gender=MALE -1.8596118294147514
 Attrib Knowledge 6.456161446393677
 Attrib IE=Introvert -7.707807228829701
 Attrib SN=Inituiting 4.921657865510223
 Attrib FT=Feeling 1.7777401192795685
 Attrib JP=Judging -3.276457638348229

Sigmoid Node 4
 Inputs Weights
 Threshold -1.3535244805541669
 Attrib Gender=MALE -4.2815380665894
 Attrib Knowledge 17.12174623844943
 Attrib IE=Introvert 1.146227607473292
 Attrib SN=Inituiting -1.6775641796273912
 Attrib FT=Feeling 0.2594982298094743
 Attrib JP=Judging -4.628070499944366

Sigmoid Node 5
 Inputs Weights
 Threshold -1.2857259631462126
 Attrib Gender=MALE 2.6256636016308184
 Attrib Knowledge 10.85448628883054
 Attrib IE=Introvert 2.639042912070103
 Attrib SN=Inituiting -1.6077392161628798
 Attrib FT=Feeling 3.846591774591153
 Attrib JP=Judging 6.687131032861244

Class Effective
 Input
 Node 0

Class Ineffective
 Input
 Node 1

Time taken to build model: 0.12 seconds

==== Stratified cross-validation ====
==== Summary ====

Correctly Classified Instances	153	85	%
Incorrectly Classified Instances	27	15	%
Kappa statistic	0.662		
Mean absolute error	0.1846		
Root mean squared error	0.3638		
Relative absolute error	40.2288 %		
Root relative squared error	75.9792 %		
Total Number of Instances	180		

==== Detailed Accuracy By Class ====

	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
0.922	0.281	0.856	0.922	0.888	0.666	0.874	0.905		Effective
0.719	0.078	0.836	0.719	0.773	0.666	0.874	0.834		Ineffective
Weighted Avg.	0.850	0.209	0.849	0.850	0.847	0.666	0.874	0.880	

==== Confusion Matrix ====

a	b	<-- classified as
107	9	a = Effective
18	46	b = Ineffective

➤ Hard TP

==== Run information ====

Scheme: weka.classifiers.functions.MultilayerPerceptron -L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a

Relation: hardTP

Instances: 180

Attributes: 7

Gender
Knowledge
IE
SN
FT
JP
class

Test mode: 10-fold cross-validation

==== Classifier model (full training set) ====

Sigmoid Node 0
Inputs Weights
Threshold 6.749454483898948
Node 2 -5.891968918232094
Node 3 -1.9431110314402587
Node 4 -5.941932241639852
Node 5 -5.605640441552534

Sigmoid Node 1
Inputs Weights

Threshold -6.74945710251745
 Node 2 5.89197137132199
 Node 3 1.9431112183019503
 Node 4 5.941934803239858
 Node 5 5.605642912082491
 Sigmoid Node 2
 Inputs Weights
 Threshold 3.7923355025233945
 Attrib Gender=MALE -2.754960570670259
 Attrib Knowledge -3.6537758551882233
 Attrib IE=Introvert -10.191853420058983
 Attrib SN=Inituiting 6.406966929060274
 Attrib FT=Feeling 3.3751456067965697
 Attrib JP=Judging -8.441706674597368
 Sigmoid Node 3
 Inputs Weights
 Threshold 9.67122823469385
 Attrib Gender=MALE -5.868995538609118
 Attrib Knowledge -10.174776639899621
 Attrib IE=Introvert -2.5492162088030956
 Attrib SN=Inituiting 0.3676612734120312
 Attrib FT=Feeling 7.937850673599199
 Attrib JP=Judging -0.5429045564379983
 Sigmoid Node 4
 Inputs Weights
 Threshold -10.974570833535184
 Attrib Gender=MALE 3.4103457217936923
 Attrib Knowledge -7.735146406566782
 Attrib IE=Introvert -0.6282057153681436
 Attrib SN=Inituiting -5.435086974770956
 Attrib FT=Feeling -4.989358659368399
 Attrib JP=Judging 5.513238001430623
 Sigmoid Node 5
 Inputs Weights
 Threshold 0.7672781382156343
 Attrib Gender=MALE -1.9008896623159002
 Attrib Knowledge -12.640560004902985
 Attrib IE=Introvert 8.911869390538838
 Attrib SN=Inituiting -2.343580264323733
 Attrib FT=Feeling -4.5928840990501305
 Attrib JP=Judging 4.376194875912708
 Class Effective
 Input
 Node 0
 Class Ineffective
 Input
 Node 1

Time taken to build model: 0.09 seconds

=== Stratified cross-validation ===
 === Summary ===

Correctly Classified Instances	123	68.3333 %
Incorrectly Classified Instances	57	31.6667 %

Kappa statistic	0.3284
Mean absolute error	0.3907
Root mean squared error	0.5115
Relative absolute error	83.0219 %
Root relative squared error	105.4715 %
Total Number of Instances	180

==== Detailed Accuracy By Class ====

TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
0.588	0.259	0.580	0.588	0.584	0.328	0.643	0.495	Effective
0.741	0.412	0.748	0.741	0.744	0.328	0.643	0.720	Ineffective
Weighted Avg.	0.683	0.354	0.684	0.683	0.684	0.328	0.643	0.635

==== Confusion Matrix ====

a b <-- classified as
 40 28 | a = Effective
 29 83 | b = Ineffective

Appendix W

Sample of K-Nearest Neighbour Algorithm (WEKA outputs)

This appendix includes a sample output from the KNN algorithm in WEKA. It displays the classification results and performance metrics, helping to evaluate the algorithm's accuracy in predicting developer performance.

The results of KNN when K value is 13

➤ Easy NTP

==== Run information ===

Scheme: weka.classifiers.lazy.IBk -K 13 -W 0 -A "weka.core.neighboursearch.LinearNNSearch -A \"weka.core.EuclideanDistance -R first-last\""

Relation: easyNTP

Instances: 180

Attributes: 7

Gender
Knowledge
IE
SN
FT
JP
class

Test mode: 10-fold cross-validation

==== Classifier model (full training set) ===

IB1 instance-based classifier

using 13 nearest neighbour(s) for classification

Time taken to build model: 0 seconds

==== Stratified cross-validation ===

==== Summary ===

Correctly Classified Instances	169	93.8889 %
Incorrectly Classified Instances	11	6.1111 %
Kappa statistic	0	
Mean absolute error	0.0916	
Root mean squared error	0.2249	
Relative absolute error	76.6376 %	
Root relative squared error	93.8053 %	
Total Number of Instances	180	

==== Detailed Accuracy By Class ===

	TP	Rate	FP	Rate	Precision	Recall	F-Measure	MCC	ROC	Area	PRC	Area	Class
1.000	1.000		0.939		1.000		0.968	?	0.857	0.985		Effective	
0.000	0.000		0		0.000		0	?	0.857	0.239		Ineffective	
Weighted Avg.	0.939	0.939		0	0.939		0	?	0.857	0.939			

==== Confusion Matrix ====

 a b <- classified as
169 0 | a = Effective
11 0 | b = Ineffective

➤ Easy TP

==== Run information ====

Scheme: weka.classifiers.lazy.IBk -K 13 -W 0 -A "weka.core.neighboursearch.LinearNNSearch -A \"weka.core.EuclideanDistance -R first-last\""

Relation: easyTP

Instances: 180

Attributes: 7

 Gender
 Knowledge
 IE
 SN
 FT
 JP
 class

Test mode: 10-fold cross-validation

==== Classifier model (full training set) ====

IB1 instance-based classifier
using 13 nearest neighbour(s) for classification

Time taken to build model: 0 seconds

==== Stratified cross-validation ====

==== Summary ====

Correctly Classified Instances	156	86.6667 %
Incorrectly Classified Instances	24	13.3333 %
Kappa statistic	0	
Mean absolute error	0.2053	
Root mean squared error	0.3399	
Relative absolute error	87.5438 %	
Root relative squared error	99.897 %	
Total Number of Instances	180	

==== Detailed Accuracy By Class ====

TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
1.000	1.000	0.867	1.000	0.929	?	0.633	0.898	Effective
0.000	0.000	?	0.000	?	?	0.633	0.207	Ineffective
Weighted Avg.	0.867	0.867	?	0.867	?	?	0.633	0.806

==== Confusion Matrix ====

 a b <- classified as
156 0 | a = Effective
24 0 | b = Ineffective

➤ **Medium NTP**

==== Run information ===

Scheme: weka.classifiers.lazy.IBk -K 13 -W 0 -A "weka.core.neighboursearch.LinearNNSearch -A \"weka.core.EuclideanDistance -R first-last\""

Relation: mediumNTP

Instances: 180

Attributes: 7

Gender
Knowledge
IE
SN
FT
JP
class

Test mode: 10-fold cross-validation

==== Classifier model (full training set) ===

IB1 instance-based classifier
using 13 nearest neighbour(s) for classification

Time taken to build model: 0 seconds

==== Stratified cross-validation ===

==== Summary ===

Correctly Classified Instances	142	78.8889 %
Incorrectly Classified Instances	38	21.1111 %
Kappa statistic	0.1913	
Mean absolute error	0.2769	
Root mean squared error	0.3708	
Relative absolute error	78.2821 %	
Root relative squared error	88.3921 %	
Total Number of Instances	180	

==== Detailed Accuracy By Class ===

	TP	Rate	FP	Rate	Precision	Recall	F-Measure	MCC	ROC	Area	PRC	Area	Class
Effective	0.971	0.829	0.799	0.971	0.877	0.249	0.800	0.905	0.905				Effective
Ineffective	0.171	0.029	0.636	0.171	0.269	0.249	0.800	0.548	0.548				Ineffective
Weighted Avg.	0.789	0.647	0.762	0.789	0.789	0.738	0.249	0.800	0.800				

==== Confusion Matrix ===

a b <-- classified as
135 4 | a = Effective
34 7 | b = Ineffective

➤ **Medium TP**

==== Run information ===

Scheme: weka.classifiers.lazy.IBk -K 13 -W 0 -A "weka.core.neighboursearch.LinearNNSearch -A

\"weka.core.EuclideanDistance -R first-last\""

Relation: mediumTP

Instances: 180

Attributes: 7

Gender

Knowledge

IE

SN

FT

JP

class

Test mode: 10-fold cross-validation

==== Classifier model (full training set) ====

IB1 instance-based classifier
using 13 nearest neighbour(s) for classification

Time taken to build model: 0 seconds

==== Stratified cross-validation ====

==== Summary ====

Correctly Classified Instances	115	63.8889 %
Incorrectly Classified Instances	65	36.1111 %
Kappa statistic	0.2313	
Mean absolute error	0.4427	
Root mean squared error	0.4758	
Relative absolute error	90.6707 %	
Root relative squared error	96.2946 %	
Total Number of Instances	180	

==== Detailed Accuracy By Class ====

	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
0.788	0.566	0.656	0.788	0.716	0.239	0.660	0.694		Effective
0.434	0.212	0.600	0.434	0.504	0.239	0.660	0.564		Ineffective
Weighted Avg.	0.639	0.416	0.632	0.639	0.627	0.239	0.660	0.639	

==== Confusion Matrix ====

a b <-- classified as
82 22 | a = Effective
43 33 | b = Ineffective

➤ Hard NTP

==== Run information ====

Scheme: weka.classifiers.lazy.IBk -K 13 -W 0 -A "weka.core.neighboursearch.LinearNNSearch -A \"weka.core.EuclideanDistance -R first-last\""

Relation: hardNTP

Instances: 180

Attributes: 7

Gender

Knowledge
IE
SN
FT
JP
class
Test mode: 10-fold cross-validation

==== Classifier model (full training set) ====

IB1 instance-based classifier
using 13 nearest neighbour(s) for classification

Time taken to build model: 0 seconds

==== Stratified cross-validation ====

==== Summary ====

Correctly Classified Instances	144	80	%
Incorrectly Classified Instances	36	20	%
Kappa statistic	0.5199		
Mean absolute error	0.3372		
Root mean squared error	0.3986		
Relative absolute error	73.4745 %		
Root relative squared error	83.2342 %		
Total Number of Instances	180		

==== Detailed Accuracy By Class ====

	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
Effective	0.957	0.484	0.782	0.957	0.860	0.554	0.833	0.861	Effective
Ineffective	0.516	0.043	0.868	0.516	0.647	0.554	0.833	0.740	Ineffective
Weighted Avg.	0.800	0.327	0.813	0.800	0.785	0.554	0.833	0.818	

==== Confusion Matrix ====

a	b	<-- classified as
111	5	a = Effective
31	33	b = Ineffective

➤ Hard TP

==== Run information ====

Scheme: weka.classifiers.lazy.IBk -K 13 -W 0 -A "weka.core.neighboursearch.LinearNNSearch -A \"weka.core.EuclideanDistance -R first-last\""

Relation: hardTP

Instances: 180

Attributes: 7

Gender
Knowledge
IE
SN
FT
JP

class
Test mode: 10-fold cross-validation

==== Classifier model (full training set) ====

IB1 instance-based classifier
using 13 nearest neighbour(s) for classification

Time taken to build model: 0 seconds

==== Stratified cross-validation ====

==== Summary ====

Correctly Classified Instances	117	65	%
Incorrectly Classified Instances	63	35	%
Kappa statistic	0.1925		
Mean absolute error	0.4422		
Root mean squared error	0.4756		
Relative absolute error	93.9554 %		
Root relative squared error	98.0794 %		
Total Number of Instances	180		

==== Detailed Accuracy By Class ====

	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
0.338	0.161	0.561	0.338	0.422	0.205	0.636	0.475		Effective
0.839	0.662	0.676	0.839	0.749	0.205	0.636	0.734		Ineffective
Weighted Avg.	0.650	0.472	0.633	0.650	0.625	0.205	0.636	0.636	

==== Confusion Matrix ====

a b <-- classified as
23 45 | a = Effective
18 94 | b = Ineffective

Universiti Utara Malaysia

Appendix X

Sample of Support Vector Machine (WEKA output)

This appendix contains the output from the SVM model in WEKA, providing classification results and metrics used to evaluate the model's performance in predicting the outcomes.

➤ Easy NTP

==== Run information ===

Scheme: weka.classifiers.functions.SMO -C 1.0 -L 0.001 -P 1.0E-12 -N 0 -V -1 -W 1 -K
"weka.classifiers.functions.supportVector.PolyKernel -E 1.0 -C 250007" -calibrator
"weka.classifiers.functions.Logistic -R 1.0E-8 -M -1 -num-decimal-places 4"

Relation: easyNTP

Instances: 180

Attributes: 7

Gender
Knowledge
IE
SN
FT
JP
class

Test mode: 10-fold cross-validation

==== Classifier model (full training set) ===

SMO

Kernel used:

Linear Kernel: $K(x,y) = \langle x,y \rangle$

Classifier for classes: Effective, Ineffective

BinarySMO

Machine linear: showing attribute weights, not support vectors.

-0.004 * (normalized) Gender=MALE
+ -0.018 * (normalized) Knowledge
+ -0.0014 * (normalized) IE=Introvert
+ -0.0004 * (normalized) SN=Intuiting
+ -0.0005 * (normalized) FT=Feeling
+ 0.0019 * (normalized) JP=Judging
- 0.9942

Number of kernel evaluations: 2289 (82.396% cached)

Time taken to build model: 0.2 seconds

==== Stratified cross-validation ===

==== Summary ===

Correctly Classified Instances	169	93.8889 %
Incorrectly Classified Instances	11	6.1111 %
Kappa statistic	0	

Mean absolute error	0.0611
Root mean squared error	0.2472
Relative absolute error	51.1338 %
Root relative squared error	103.1196 %
Total Number of Instances	180

==== Detailed Accuracy By Class ====

TP	Rate	FP	Rate	Precision	Recall	F-Measure	MCC	ROC	Area	PRC	Area	Class
1.000	1.000	0.939	1.000	0.968	?	0.500	0.939					Effective
0.000	0.000	?	0.000	?	?	0.500	0.061					Ineffective
Weighted Avg.	0.939	0.939	?	0.939	?	?	0.500	0.885				

==== Confusion Matrix ====

a b <-- classified as
 169 0 | a = Effective
 11 0 | b = Ineffective

➤ **Easy TP**

==== Run information ====

Scheme: weka.classifiers.functions.SMO -C 1.0 -L 0.001 -P 1.0E-12 -N 0 -V -1 -W 1 -K
 "weka.classifiers.functions.supportVector.PolyKernel -E 1.0 -C 250007" -calibrator
 "weka.classifiers.functions.Logistic -R 1.0E-8 -M -1 -num-decimal-places 4"

Relation: easyTP

Instances: 180

Attributes: 7

Gender
 Knowledge
 IE
 SN
 FT
 JP
 class

Test mode: 10-fold cross-validation

==== Classifier model (full training set) ====

SMO

Kernel used:

Linear Kernel: $K(x,y) = \langle x,y \rangle$

Classifier for classes: Effective, Ineffective

BinarySMO

Machine linear: showing attribute weights, not support vectors.

-0.0012 * (normalized) Gender=MALE
 + -0.0051 * (normalized) Knowledge
 + 0.0007 * (normalized) IE=Introvert
 + 0.0004 * (normalized) SN=Inituiting
 + -0.0003 * (normalized) FT=Feeling
 + 0.0002 * (normalized) JP=Judging

- 0.9978

Number of kernel evaluations: 5228 (81.418% cached)

Time taken to build model: 0.01 seconds

==== Stratified cross-validation ====

==== Summary ====

Correctly Classified Instances	156	86.6667 %
Incorrectly Classified Instances	24	13.3333 %
Kappa statistic	0	
Mean absolute error	0.1333	
Root mean squared error	0.3651	
Relative absolute error	56.8458 %	
Root relative squared error	107.3283 %	
Total Number of Instances	180	

==== Detailed Accuracy By Class ====

	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
1.000	1.000	0.867	1.000	0.929	?	0.500	0.867	Effective	
0.000	0.000	?	0.000	?	?	0.500	0.133	Ineffective	
Weighted Avg.	0.867	0.867	?	0.867	?	?	0.500	0.769	

==== Confusion Matrix ====

a	b	<-- classified as
156	0	a = Effective
24	0	b = Ineffective

➤ **Medium NTP**

==== Run information ====

Scheme: weka.classifiers.functions.SMO -C 1.0 -L 0.001 -P 1.0E-12 -N 0 -V -1 -W 1 -K
"weka.classifiers.functions.supportVector.PolyKernel -E 1.0 -C 250007" -calibrator
"weka.classifiers.functions.Logistic -R 1.0E-8 -M -1 -num-decimal-places 4"

Relation: mediumNTP

Instances: 180

Attributes: 7

Gender
Knowledge
IE
SN
FT
JP
class

Test mode: 10-fold cross-validation

==== Classifier model (full training set) ====

SMO

Kernel used:

Linear Kernel: $K(x,y) = \langle x,y \rangle$

Classifier for classes: Effective, Ineffective

BinarySMO

Machine linear: showing attribute weights, not support vectors.

```
-0.6142 * (normalized) Gender=MALE
+ -3.7482 * (normalized) Knowledge
+ 0.1089 * (normalized) IE=Introvert
+ -0.095 * (normalized) SN=Inituiting
+ -0.0398 * (normalized) FT=Feeling
+ 0.5802 * (normalized) JP=Judging
+ 1.1749
```

Number of kernel evaluations: 4569 (75.082% cached)

Time taken to build model: 0.04 seconds

==== Stratified cross-validation =====

==== Summary =====

Correctly Classified Instances	155	86.1111 %
Incorrectly Classified Instances	25	13.8889 %
Kappa statistic	0.5799	
Mean absolute error	0.1389	
Root mean squared error	0.3727	
Relative absolute error	39.272 %	
Root relative squared error	88.8411 %	
Total Number of Instances	180	

==== Detailed Accuracy By Class =====

	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
0.935	0.390	0.890	0.935	0.912	0.584	0.773	0.883		Effective
0.610	0.065	0.735	0.610	0.667	0.584	0.773	0.537		Ineffective
Weighted Avg.	0.861	0.316	0.855	0.861	0.856	0.584	0.773	0.804	

==== Confusion Matrix =====

a	b	<-- classified as
130	9	a = Effective
16	25	b = Ineffective

➤ **Medium TP**

==== Run information =====

Scheme: weka.classifiers.functions.SMO -C 1.0 -L 0.001 -P 1.0E-12 -N 0 -V 1 -W 1 -K
"weka.classifiers.functions.supportVector.PolyKernel -E 1.0 -C 250007" -calibrator
"weka.classifiers.functions.Logistic -R 1.0E-8 -M 1 -num-decimal-places 4"

Relation: mediumTP

Instances: 180

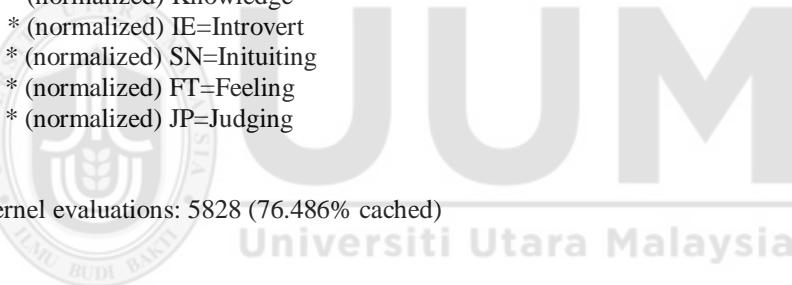
Attributes: 7

Gender
Knowledge
IE
SN
FT
JP
class
Test mode: 10-fold cross-validation

==== Classifier model (full training set) ====

SMO

Kernel used:
Linear Kernel: $K(x,y) = \langle x,y \rangle$


Classifier for classes: Effective, Ineffective

BinarySMO

Machine linear: showing attribute weights, not support vectors.

-0.4416 * (normalized) Gender=MALE
+ -3.0824 * (normalized) Knowledge
+ -0.0853 * (normalized) IE=Introvert
+ 0.0504 * (normalized) SN=Initiating
+ 0.2821 * (normalized) FT=Feeling
+ 0.0285 * (normalized) JP=Judging
+ 1.6227

Number of kernel evaluations: 5828 (76.486% cached)

Time taken to build model: 0.03 seconds

==== Stratified cross-validation ====
==== Summary ====

Correctly Classified Instances	126	70	%
Incorrectly Classified Instances	54	30	%
Kappa statistic	0.3649		
Mean absolute error	0.3		
Root mean squared error	0.5477		
Relative absolute error	61.4488 %		
Root relative squared error	110.8552 %		
Total Number of Instances	180		

==== Detailed Accuracy By Class ====

	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
Effective	0.827	0.474	0.705	0.827	0.761	0.373	0.677	0.683	Effective
Ineffective	0.526	0.173	0.690	0.526	0.597	0.373	0.677	0.563	Ineffective
Weighted Avg.	0.700	0.347	0.698	0.700	0.692	0.373	0.677	0.632	

==== Confusion Matrix ====

a b <- classified as
86 18 | a = Effective
36 40 | b = Ineffective

➤ Hard NTP

==== Run information ====

Scheme: weka.classifiers.functions.SMO -C 1.0 -L 0.001 -P 1.0E-12 -N 0 -V -1 -W 1 -K
"weka.classifiers.functions.supportVector.PolyKernel -E 1.0 -C 250007" -calibrator
"weka.classifiers.functions.Logistic -R 1.0E-8 -M -1 -num-decimal-places 4"

Relation: hardNTP

Instances: 180

Attributes: 7

Gender
Knowledge
IE
SN
FT
JP
class

Test mode: 10-fold cross-validation

==== Classifier model (full training set) ====

SMO

Kernel used:

Linear Kernel: $K(x,y) = \langle x,y \rangle$

Classifier for classes: Effective, Ineffective

BinarySMO

Machine linear: showing attribute weights, not support vectors.

-0.114 * (normalized) Gender=MALE
+ -4.4003 * (normalized) Knowledge
+ 0.4335 * (normalized) IE=Introvert
+ -0.3197 * (normalized) SN=Intuiting
+ -0.2605 * (normalized) FT=Feeling
+ -0.0261 * (normalized) JP=Judging
+ 2.1269

Number of kernel evaluations: 5468 (79.383% cached)

Time taken to build model: 0.02 seconds

==== Stratified cross-validation ====

==== Summary ====

Correctly Classified Instances	150	83.3333 %
Incorrectly Classified Instances	30	16.6667 %
Kappa statistic	0.6204	

Mean absolute error	0.1667
Root mean squared error	0.4082
Relative absolute error	36.3153 %
Root relative squared error	85.2535 %
Total Number of Instances	180

==== Detailed Accuracy By Class ====

TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
0.922	0.328	0.836	0.922	0.877	0.628	0.797	0.821	Effective
0.672	0.078	0.827	0.672	0.741	0.628	0.797	0.672	Ineffective
Weighted Avg.	0.833	0.239	0.833	0.833	0.829	0.628	0.797	0.768

==== Confusion Matrix ====

a	b	<-- classified as
107	9	a = Effective
21	43	b = Ineffective

➤ Hard TP

==== Run information ====

Scheme: weka.classifiers.functions.SMO -C 1.0 -L 0.001 -P 1.0E-12 -N 0 -V -1 -W 1 -K "weka.classifiers.functions.supportVector.PolyKernel -E 1.0 -C 250007" -calibrator "weka.classifiers.functions.Logistic -R 1.0E-8 -M -1 -num-decimal-places 4"

Relation: hardTP

Instances: 180

Attributes: 7

- Gender
- Knowledge
- IE
- SN
- FT
- JP
- class

Test mode: 10-fold cross-validation

==== Classifier model (full training set) ====

SMO

Kernel used:

Linear Kernel: $K(x,y) = \langle x,y \rangle$

Classifier for classes: Effective, Ineffective

BinarySMO

Machine linear: showing attribute weights, not support vectors.

- 0.7429 * (normalized) Gender=MALE
- + -2.3056 * (normalized) Knowledge
- + 0.3795 * (normalized) IE=Introvert
- + 0.4815 * (normalized) SN=Initiating
- + 0.3004 * (normalized) FT=Feeling

+ -0.3786 * (normalized) JP=Judging
+ 1.8975

Number of kernel evaluations: 6197 (77.3% cached)

Time taken to build model: 0.03 seconds

==== Stratified cross-validation =====

==== Summary =====

Correctly Classified Instances	115	63.8889 %
Incorrectly Classified Instances	65	36.1111 %
Kappa statistic	0.1873	
Mean absolute error	0.3611	
Root mean squared error	0.6009	
Relative absolute error	76.7348 %	
Root relative squared error	123.9144 %	
Total Number of Instances	180	

==== Detailed Accuracy By Class =====

	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
0.382	0.205	0.531	0.382	0.444	0.193	0.588	0.436		Effective
0.795	0.618	0.679	0.795	0.733	0.193	0.588	0.668		Ineffective
Weighted Avg.	0.639	0.462	0.623	0.639	0.624	0.193	0.588	0.580	

==== Confusion Matrix =====

a b <-- classified as
26 42 | a = Effective
23 89 | b = Ineffective

Universiti Utara Malaysia

Appendix Y

Experimental Session Script

This appendix provides the detailed script used during experimental sessions to communicate with participants about the task's duration. The script includes time duration announcements made throughout the tasks to ensure participants are aware of the total time available and how much time remains. This helped induce the desired level of time pressure (TP), particularly for the TP tasks.

No-Time-Pressure (NTP) – Instructions

****ROUND 1:****

[Instructions are in italics and bold, while regular text represents spoken content.]

****10:00 AM:****

Welcome to our experimental session! Today, we have a series of programming tasks in C++ lined up for you. Please pay close attention to the instructions provided for each task.

Before we move forward, could each of you please confirm that you've completed the consent form and the questionnaire?

****10:20 AM:****

Once everyone is ready,

Let's begin with ****Task 1****:

****Time Context:** No Time Pressure (NTP)**

****Task Complexity:** Easy**

****Estimated Time:** 45 minutes**

You have a total of 45 minutes for this task. We'll remind you of the remaining time only once, so please focus on completing the task efficiently.

****10:30 AM:****

Take the next 5 minutes to review the task. If you have any questions or uncertainties, don't hesitate to ask for clarification. And don't forget to include your student ID on the sheet.

****10:40 AM:****

You now have 45 minutes to complete the task. If you finish early, raise your hand to indicate you're done.

If someone finishes the task, timestamp their sheet, and they can choose to continue if they wish.

Remember, this is an individual task, so please refrain from discussing it with your peers. If you have any questions about the task, feel free to ask me. You can begin now.

Time is ticking...

If someone asks about the time, simply provide them with the current time. If they have questions about the task, encourage them to do what they understand from the instructions.

****11:25 AM:****

Time's up! Please stop your work and pass your sheets to the person sitting next to you. We'll collect them from there.

Now, we'd like to gather your feedback on the perceived task load. NASA developed this technique to assess how individuals perceive the workload of a task.

We're handing out the Magnitude of Load (Ratings) sheets. On these sheets, you'll find various sources of workload demands, each with a rating scale ranging from 0 to 100 in increments of 5. Your task is to rate each workload source by marking the appropriate point on the scale. Feel free to ask if you have any questions.

****11:40 AM:****

We'll now collect all NASA-TLX materials, including your ratings sheets. Please ensure that you've placed your student ID on all the materials you're returning. Thank you!

****Experimental Session Script****

Time-Pressure (TP) – Instructions

****ROUND 2:****

[Instructions are in *italics* and **bold**, while regular text represents spoken content.]

****10:00 AM:****

Welcome to our experimental session! Today, we have another series of programming tasks in C++. Please make sure to carefully follow the instructions provided for each task.

Before we continue, may I please confirm with each of you whether you've signed the consent form and completed the questionnaire?

****10:20 AM:****

Once everyone is ready,

Let's move on to **Task 2:**

****Time Context:** Time Pressure (TP)**

****Task Complexity:** Easy** Universiti Utara Malaysia

****Estimated Time:** 15 minutes**

For this task, you have 15 minutes. We'll give you reminders at the 8-minute mark and every 2 minutes after that. Please focus on completing the task efficiently within this time frame.

****10:30 AM:****

Take the next 5 minutes to quickly review the task. If there's anything you don't understand, please feel free to ask. Also, don't forget to write your student ID on the sheet.

****10:40 AM:****

You have 15 minutes to complete the entire task. If you finish before the time is up, please let me know by raising your hand.

When someone finishes the task, I'll timestamp the sheet against the latest easy task under TP they've completed, and they can choose to continue if they wish.

This is an individual task, so please refrain from discussing it with your peers. If you have any questions about the task, direct them to me.

You may begin now.

Time is ticking...

You have Only 8 minutes left to complete the Task.

Tick, tick, tick...

You have Only 5 minutes left now for the Task.

Tick, tick, tick...

Only 2 minutes left

If someone asks about the time, I'll provide the current time. If there are questions about the task, encourage participants to proceed with what they understand.

****10:55 AM:****

Time's up! Please stop your work and pass your sheets to the person sitting next to you. We'll collect them from there.

Now, we'd like to gather your feedback on the perceived task load. NASA developed this technique to assess how individuals perceive the workload of a task.

We're handing out the Magnitude of Load (Ratings) sheets. These sheets list various sources of workload demands, each with a rating scale from 0 to 100 in increments of 5, covering a range from low to high. Your task is to rate each workload source by marking a tick on the scale. If you have any questions, please don't hesitate to ask.

****11:10 AM:****

We'll now collect all NASA-TLX materials, including your ratings sheets. Please ensure that you've placed your student ID on all the materials you're returning. Thank you!

No-Time-Pressure (NTP) – Instructions

****ROUND 3:****

[Instructions are in italics and bold, while regular text represents spoken content.]

****10:00 AM:****

Welcome to our experimental session! Today, we have another set of programming tasks in C++. Please make sure to carefully follow the instructions provided for each task.

****10:20 AM:****

Once everyone is ready,

Let's proceed with **Task 3:**

****Time Context:** No Time Pressure (NTP)**

****Task Complexity:** Medium**

****Estimated Time:** 60 minutes**

For this task, you have a total of 60 minutes. We'll remind you about the remaining time only once, so please focus on completing the task efficiently.

****10:30 AM:****

Take the next 5 minutes to review the task briefly. If you have any uncertainties or questions, please don't hesitate to ask for clarification. Also, don't forget to include your student ID on the sheet.

****10:40 AM:****

You have the full 60 minutes to complete this task. If you finish before the allotted time, kindly raise your hand to indicate your completion.

When someone finishes the task, I'll timestamp the sheet against the medium NTP task they've completed, and they can choose to continue if they wish.

Remember, this is an individual task, so please avoid discussing it with your peers. If you have any questions about the task, feel free to direct them to me.

You may begin now.

Time is ticking...

If someone asks about the time, I'll provide the current time. If there are questions about the task, encourage participants to proceed with what they understand.

****11:40 AM:****

Time's up! Please stop your work and pass your sheets to the person sitting next to you. We'll collect them from there.

Now, we'd like to gather your feedback on the perceived task load. NASA developed this technique to assess how individuals perceive the workload of a task.

We're handing out the Magnitude of Load (Ratings) sheets. These sheets list various sources of workload demands, each with a rating scale from 0 to 100 in increments of 5, covering a range from low to high. Your task is to rate each workload source by marking a tick on the scale. If you have any questions, please don't hesitate to ask.

****12:00 PM:****

We'll now collect all NASA-TLX materials, including your ratings sheets. Please ensure that you've placed your student ID on all the materials you're returning. Thank you!

Time-Pressure (TP) – Instructions

****ROUND 4:****

[Instructions are in italics and bold, while regular text represents spoken content.]

****10:00 AM:****

Welcome to our experimental session! Today, we have another set of programming tasks in C++. Please make sure to carefully follow the instructions provided for each task.

****10:20 AM:****

Once everyone is ready,

Let's proceed with **Task 4:**

****Time Context:** Time Pressure (TP)**

****Task Complexity:** Medium**

****Estimated Time:** 30 minutes**

For this task, you have 30 minutes. We'll provide the first reminder after fifteen minutes and subsequent reminders every five minutes. Please focus on efficiently completing the task within the given time frame.

****10:30 AM:****

Take the next 5 minutes to quickly review the task. If there's anything you don't understand, please don't hesitate to ask for clarification. Also, don't forget to include your student ID on the sheet.

****10:40 AM:****

You have the full 30 minutes to complete this task. If you finish before the time is up, please let me know by raising your hand.

When someone finishes the task, I'll timestamp the sheet against the latest medium TP task they've completed, and they can choose to continue if they wish.

Remember, this is an individual task, so please refrain from discussing it with your peers. If you have any questions about the task, feel free to direct them to me.

You may begin now.

Time is ticking...

You have Only 15 minutes left to complete the Task.

Tick, tick, tick...

You have Only 10 minutes left now for the Task.

Tick, tick, tick...

You have Only 5 minutes left now for the Task

Tick, tick, tick...

Only 2 minutes left

If someone asks about the time, I'll provide the current time. If there are questions about the task, encourage participants to proceed with what they understand.

****11:10 AM:****

Time's up! Please stop your work and pass your sheets to the person sitting next to you. We'll collect them from there.

Now, we'd like to gather your feedback on the perceived task load. NASA developed this technique to assess how individuals perceive the workload of a task.

We're handing out the Magnitude of Load (Ratings) sheets. These sheets list various sources of workload demands, each with a rating scale from 0 to 100 in increments of 5, covering a range from low to high. Your task is to rate each workload source by marking a tick on the scale. If you have any questions, please don't hesitate to ask.

****11:25 AM:****

We'll now collect all NASA-TLX materials, including your ratings sheets. Please ensure that you've placed your student ID on all the materials you're returning. Thank you!

No-Time-Pressure (NTP) – Instructions

****ROUND 5:****

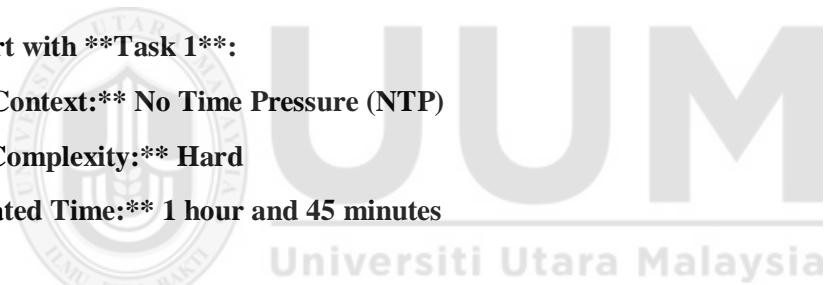
[Instructions are in italics and bold, while regular text represents spoken content.]

****10:00 AM:****

Welcome to our experimental session! Today, we have another set of programming tasks in C++. Please make sure to carefully follow the instructions provided for each task.

Before we proceed, may I please confirm with each of you whether you've signed the consent form and completed the questionnaire?

****10:20 AM:****


Once everyone is ready,

Let's start with **Task 1:**

****Time Context:** No Time Pressure (NTP)**

****Task Complexity:** Hard**

****Estimated Time:** 1 hour and 45 minutes**

For this task, you have a total of 1 hour and 45 minutes. We'll remind you about the remaining time only once, so please focus on efficiently completing the task.

****10:30 AM:****

Take the next 5 minutes to briefly review the task. If there are any uncertainties or questions, please don't hesitate to ask for clarification. Also, ensure that you include your student ID on the sheet.

****10:40 AM:****

You have the full 1 hour and 45 minutes to complete this task. If you finish before the time is up, please let me know by raising your hand.

When someone finishes the task, I'll timestamp the sheet against the hard NTP task they've completed, and they can choose to continue if they wish.

Remember, this is an individual task, so please refrain from discussing it with your peers. If you have any questions about the task, feel free to direct them to me.

You may begin now.

Time is ticking...

If someone asks about the time, I'll provide the current time. If there are questions about the task, encourage participants to proceed with what they understand.

****12:25 PM:****

Time's up! Please stop your work and pass your sheets to the person sitting next to you. We'll collect them from there.

Now, we'd like to gather your feedback on the perceived task load. NASA developed this technique to assess how individuals perceive the workload of a task.

We're handing out the Magnitude of Load (Ratings) sheets. These sheets list various sources of workload demands, each with a rating scale from 0 to 100 in increments of 5, covering a range from low to high. Your task is to rate each workload source by marking a tick on the scale. If you have any questions, please don't hesitate to ask.

****12:40 PM:****

We'll now collect all NASA-TLX materials, including your ratings sheets. Please ensure that you've placed your student ID on all the materials you're returning. Thank you!

Time-Pressure (TP) – Instructions

****ROUND 6:****

[Instructions are in italics and bold, while regular text represents spoken content.]

****10:00 AM:****

Welcome to our experimental session! Today, we have another set of programming tasks in C++. Please make sure to carefully follow the instructions provided for each task.

****10:20 AM:****

Once everyone is ready,

Let's begin with **Task 6**:

****Time Context:** Time Pressure (TP)**

****Task Complexity:** Hard**

****Estimated Time:** 1 hour and 15 minutes**

For this task, you have 1 hour and 15 minutes. We'll provide the first reminder after fifteen minutes and subsequent reminders every five minutes. Please focus on efficiently completing the task within this time frame.

****10:30 AM:****

Take the next 5 minutes to quickly review the task. If there's anything you don't understand, please don't hesitate to ask for clarification. Also, don't forget to include your student ID on the sheet.

****10:40 AM:****

You have the full 1 hour and 15 minutes to complete this task. If you finish before the time is up, please let me know by raising your hand.

When someone finishes the task, I'll timestamp the sheet against the latest medium TP task they've completed, and they can choose to continue if they wish.

Remember, this is an individual task, so please refrain from discussing it with your peers. If you have any questions about the task, feel free to direct them to me.

You may begin now.

Time is ticking...

You have Only 50 minutes left now for the Task.

Tick, tick, tick...

You have Only 40 minutes left now for the Task

Tick, tick, tick...

You have Only 30 minutes left now for the Task.

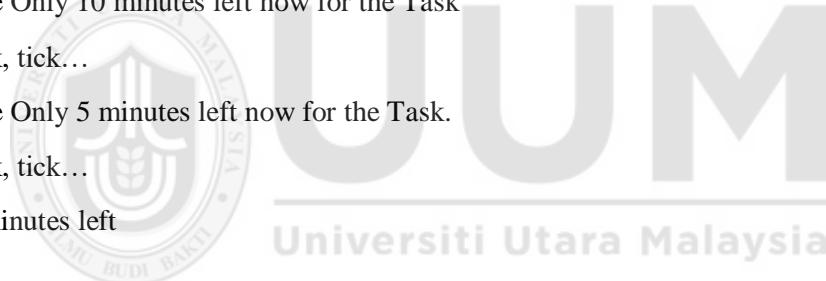
Tick, tick, tick...

You have Only 20 minutes left now for the Task

Tick, tick, tick...

You have Only 15 minutes left now for the Task.

Tick, tick, tick...


You have Only 10 minutes left now for the Task

Tick, tick, tick...

You have Only 5 minutes left now for the Task.

Tick, tick, tick...

Only 2 minutes left

If someone asks about the time, I'll provide the current time. If there are questions about the task, encourage participants to proceed with what they understand.

****11:55 AM:****

Time's up! Please stop your work and pass your sheets to the person sitting next to you. We'll collect them from there.

Now, we'd like to gather your feedback on the perceived task load. NASA developed this technique to assess how individuals perceive the workload of a task.

We're handing out the Magnitude of Load (Ratings) sheets. These sheets list various sources of workload demands, each with a rating scale from 0 to 100 in increments of 5, covering a range from low to high. Your task is to rate each workload source by marking a tick on the scale. If you have any questions, please don't hesitate to ask.

****12:20 PM:****

We'll now collect all NASA-TLX materials, including your ratings sheets. Please ensure that you've placed your student ID on all the materials you're returning. Thank you!

Appendix Z (A)

Photos of Experiments

This appendix contains photographs taken during the experimental sessions, capturing the setup and participants performing the tasks. These photos provide a visual representation of the experimental environment and demonstrate the conditions under which data were collected.

Appendix Z (B)

Photos of Case Studies

This appendix contains photographs taken during the observation of case studies in software houses, capturing the setup and participants performing the tasks. These photos provide a visual representation and demonstrate the conditions under which data were collected.

