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Abstrak

Faktor manusia memainkan peranan penting dalam kejuruteraan perisian (SE) kerana
perisian dibangunkan dan digunakan oleh manusia. Salah satu sebab utama kegagalan
projek perisian adalah tidak memberikan tugasan kepada individu yang sesuai untuk tugas
yang tepat semasa perancangan projek. Isu ini menjadi lebih kritikal apabila pembangun
perisian bekerja di bawah tekanan masa (TP), yang sering menyebabkan prestasi kurang
baik dan kelewatan projek. Setiap jenis personaliti mempunyai cara tersendiri untuk
mengatasi TP, dan perbezaan gender mempengaruhi cara pembangun perisian menangani
TP, yang memberikan hasil yang berbeza. Di samping itu, kompleksiti tugasan dan
pengetahuan pembangun saling berhubung dengan jenis personaliti dan gender, yang
berpotensi mempengaruhi prestasi projek di bawah TP. Tujuan utama kajian ini adalah
untuk mencadangkan model i-SYNERGY dengan mengkaji hubungan antara TP, jenis
personaliti, gender, pengetahuan, dan kompleksiti tugasan. Untuk membangunkan model
ini, bukti empirikal dikumpulkan daripada eksperimen terkawal yang dijalankan bersama
pelajar SE, dan digeneralisasikan daripada data industri melalui dua kajian kes. Indikator
jenis personaliti Myers-Briggs (MBTI) dan indeks beban tugas NASA (TLX) digunakan
untuk mengukur jenis personaliti dan TP. Analisis data dibahagikan kepada dua peringkat.
Peringkat pertama melibatkan pemeriksaan angka data untuk membangunkan model,
manakala peringkat kedua melibatkan eksperimen ramalan untuk membangunkan model
di bawah proses penemuan pengetahuan dalam pangkalan data (KDD). Lima teknik
perlombongan data—rangkaian neural tiruan (ANN), mesin vektor sokongan (SVM),
pokok keputusan, K-jiran terdekat (KNN), dan regresi logistik digunakan untuk mengenal
pasti teknik yang paling sesuai untuk pembangunan model. Regresi logistik memberikan
hasil paling signifikan dalam pembangunan model kajian, mengesahkan bahawa jenis
personaliti dan perbezaan gender mempengaruhi keupayaan pembangun perisian untuk
menangani TP. Kajian ini menawarkan bukti empirikal mengenai kesan tekanan masa
terhadap aspek humanistik. Tambahan pula, model yang dibangunkan berupaya untuk
meningkatkan kadar kejayaan projek perisian dalam bidang SE.

Kata Kunci: Tekanan masa, jenis personaliti, kerumitan tugas, gender, pengetahuan



Abstract

Human factors play a crucial role in software engineering (SE) as software is developed
and utilized by people. One of the key reasons for software project failure is not assigning
the right people to the right tasks during project planning. This issue becomes critical when
developers work under time pressure (TP), often resulting in poor performance and delays.
Each personality type approaches TP differently, and gender-based personality differences
may further influence how developers handle TP, leading to varied outcomes. In addition,
task complexity and developers’ knowledge interrelate with personality types and gender,
potentially affecting project performance under TP. The main aim of this study is to
propose the i-SYNERGY model by investigating the relationship between TP, personality
types, gender, knowledge, and task complexity. To develop this model, empirical evidence
was gathered from controlled experiments conducted with SE students, and generalised
from industrial data through two case studies. The Myers-Briggs Type Indicator (MBTI)
and NASA task load index (TLX) were used to measure personality types and TP,
respectively. The data analysis was divided into two stages. The first stage involved
examining factual figures of data to develop the model, while the second stage involved
predictive experiments for developing the model under the knowledge discovery in
databases (KDD) process. Five data mining techniques—artificial neural network (ANN),
support vector machine (SVM), decision tree, K-nearest neighbor (KNN) and logistic
regression were employed to identify the most suitable technique for model development.
Logistic regression yielded the most significant results for developing the study model,
confirming that personality types and gender differences influence software developers'
ability to handle TP. This study offers empirical evidence regarding the impact of TP on
humanistic aspects. Furthermore, the model developed can be leveraged to enhance the
success rate of software projects in the field of SE.

Keywords: Time pressure, Personality types, Gender, Task complexity, Knowledge
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CHAPTER ONE

INTRODUCTION

1.1 Overview

This chapter introduces the study's background and is followed by a discussion of the
addressed problems. The research questions and constructs of the objectives of the study
are discussed in the next sections. Furthermore, this chapter also addresses the scope and
significance of the study. Moreover, this chapter includes the terms' operational definitions
and the study's conceptual framework. Finally, this chapter gives an overview of the

subsequent chapters of this study.

1.2 Background of the Study

The demand for software in human daily life is growing exponentially. Driven by the
increasing reliance on digital technologies and the integration of software solutions into
various aspects of daily routines. From communication and entertainment to work and
education, software has become an integral part of modern life, shaping the way to interact,
learn, and conduct daily activities. This surge in demand reflects the pivotal role that
software plays in addressing the evolving needs and expectations of individuals in today's
technologically driven world. Software engineering (SE) activities are significantly
influenced by human aspects (Hidellaarachchi et al., 2023; Mello & Coelho, 2021; Zykov
& Attakorah, 2020; Fuggetta & Di Nitto, 2014; Santos, Magalhaes, & Correia-Neto, 2017).
Software is developed and used by a variety of people; therefore, understanding an

individual’s behavior is necessary for software development (Hidellaarachchi et al., 2023;
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Appendix A

Consent to Take Part in Research

This appendix includes the consent form, which was used to ensure that all participants
were fully informed about the study's objectives, their roles, and their rights. It highlights
that participation was voluntary, and participants had the option to withdraw at any point
without any consequences.

Thank you for volunteering as a participants in this research on I-SYNERGY Model for
Software Development Projects. Project contact details for further information.

1. Rugaya Gilal (rugaya_gilal@ahsgs.uum.edu.my)
2. Assosiate Prof. Dr. Mazni Omar (mazni@uum.edu.my)
3. Dr.Mawarny Md. Rejab (mawarny@uum.edu.my)

This research is conducted as following conditions:

e Participation in this research will not impact in any way on their assessment.

e Participants can withdraw at any time or refuse to give answer about research,
there will be no disadvantage if they do.

e Participants will not benefit directly from participating in this research.

¢ Allinformation that student will provide for this study will be treated confidentially.

e In any report on the results of this research participants identity will remain
anonymous. This will be done by changing their names.

| (Full name)

Contact details

Declare that | am aware of the information provided above and have willingly served as a
participants in the research. | am aware that the findings of this study might be published
in academic sources, but that my hame will not be disclosed.

Signature of the participant:

Date:

| believe the participant is giving informed consent to participate in this study

Signature of the researcher: Date:

376


mailto:ruqaya_gilal@ahsgs.uum.edu.my
mailto:mazni@uum.edu.my

Appendix B

Personal Particulars

This appendix contains the form used to collect personal information from participants,
including their age, gender, and academic background etc.

This study is about proposing i-SYNERGY Model for software development to reduce the
failure rate in SE. The model is about which types of people personality can manage the
TP in a better way. In this study, the collection of data will help to propose a model, all the
data will be confidential.

Name:

Matric No: Semester:
Age: Gender:

Race: First language:

Marital Status: (Bachelor/Married/Widow)

Education Background: Matriculation/ Intermediate/ Graduation /Diploma/

Preferred e-mail address:

Signature:

Date:
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Appendix C

The sample of Expert’s invitation E-mail and response

This appendix includes the email invitation sent to experts, requesting their participation
in the review process, along with their responses. The purpose of this communication was
to involve experts in validating the instruments and providing insights to ensure the
model's relevance and accuracy.

M Gmail

Compose

Inbox
Starred
Snoozed
Sent
Drafts
More

< DVvVoeoxEa N

Labels

Q Search mail S ® @ = e

« B 0w & 0 & & D 10f930 » B
Request for Proposed Model Evaluation irbor x X80
Rugaya Gilal <rugayagilali@gmail com> Sun, 31Jan 2021, 1901 ¢ @ a @
to chandio.aftab@usindh.edu.pk v
Dear Dr. Aftab Chandio, i
[ ]
| hope this message finds you well. My name is Rugaya Gilal, and | am currently doing Ph.D within the software engineering domain. Your expertise in the field has caught my
attention, and | would be honored to invite you to evaluate and provide feedback on my proposed software engineering model, i-SYNERGY: An Integrated Predictive Mode! of
Time Pressure, Personality Types, Gender, Knowledge and Task Complexity to Determine Software Developer's Performance. Your insights are invaluable in ensuring the
model's robustness and applicability. If you are willing to participate, | will share a brief questionnaire outlining specific aspects for your evaluation. Your contribution will be duly
acknowledged in the final research publication. Please let me know if you are available for this collaboration. Your time and expertise are greatly appreciated. +
Thank you for considering this request. Looking forward to the possibility of your involvement.
Best regards,
Rugaya Gilal
Aftab Chandio Sun,310an202,2208 ¢ @ @
tome v
Thank you for considering me for the expert review of your proposed model. | am honored to accept your invitation.
Kindly provide the necessary details, including the questionnaire or any specific guidelines you'd like me to follow during the evaluation.
Thank you for your response. ‘ ‘ | will send you the details. ‘ ‘ Yes, | will participate. |
\ ) ;
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Appendix D

The Instrument for Expert Review

This appendix contains the evaluation of proposed model by experts to review. The feedback
collected was crucial in refining the model and ensuring the reliability of the results.

An Evaluation of i-SYNERGY: An Integrated Predictive Model of Time Pressure,
Personality Types, Gender, Knowledge and Task Complexity to Determine Software
Developer’s Performance

Dear Prof/ Dr/ Sir/ Madam,

I am Rugaya Gilal, matric no: 903684, currently enrolled in the PhD program in Computer Science
at Universiti Utara Malaysia (UUM), Malaysia. | am thrilled to extend a cordial invitation to you
for participation in an expert review. Your selection is based on your fulfillment of one or more of
the following criteria:

1. Possession of a PhD or any advanced degree in Software Engineering (SE), Software Project
Management (SPM), Computer Science (CS), or related fields.

2. Accumulation of at least five years of study or research experience in the aforementioned areas
or any relevant field.

3. Accumulation of at least 3 to 5 years of practical experience in software project development.

My PhD research proposes i-SYNERGY: An Integrated Predictive Model of Time Pressure,
Personality Types, Gender, Knowledge and Task complexity to Determine Software
Developer’s Performance. The primary objective of the model is to predict and understand the
impact of various variables on the performance of software developers under time pressure
conditions. The model aims to contribute valuable insights into the nuanced interplay between time
pressure, personality types, gender, knowledge, task complexity, and software developer
performance. The operational definitions used in this study are defined below:

e Time pressure (TP) refers to the perceived urgency and constraints imposed by deadlines or
limited time frames within the software development context. In this study, time pressure is
quantified using a Likert scale where participants rate their perceived time pressure levels.

e Personality types are distinctive patterns of behavior, cognition, and emotion that characterize
individuals. Personality types are assessed using the Myers-Briggs Type Indicator (MBTI).
Participants' responses categorize them into specific personality types such as Extroverted (E)
or Introverted (1), Sensing (S) or Intuitive (N), etc.

e Gender refers to the social and cultural roles, behaviors, and expectations associated with
being male or female. Gender is recorded as male or female based on participants' self-
identification during the data collection process.

¢ Knowledge represents the information, skills, and expertise possessed by software developers
relevant to their tasks. Knowledge levels are measured using their previous academic records
and for professionals’ years of experience in specific areas related to software development.
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e Task complexity refers to the level of intricacy and difficulty involved in software
development tasks. Task complexity is categorized into three levels—easy, medium, and
hard—based on expert suggestions.

The model is constructed using advanced data mining techniques, considering its suitability for
predicting binary outcomes. Data mining techniques allows us to understand the probability of
effective software developer performance under varying conditions. This methodology allows us
to delve into the intricacies of the probability associated with effective outcomes, shedding light on
the multifaceted relationships between the variables at play. The outcomes derived from this
analysis provide estimations, offering valuable insights into the nuanced interconnections and
dependencies among the identified variables within the software development landscape.

This model's conceptual framework is organised around a series of well-considered hypotheses
meant to clarify the intricate relationships present in the software development environment. With
the purpose of examining certain connections and interactions between important variables, each
hypothesis aims to advance our understanding of the variables that affect software engineers'
performance. We set out to explore the hypotheses in order to find subtle insights that shed light
on the intricate interactions between time pressure, personality types, gender, knowledge, task
complexity, that affect software development endeavours as a whole. The study's alternative
hypotheses are as follows:

H1: There is a significant association between time pressure (TP) and the performance of
software developers.

H2: There is a significant moderation by different personality types on the effect of TP on
software developer’s performance.

H3: There is a significant moderation by different gender (male and female) on the effect of
TP on the software developer’s performance.

H4: There is a significant mediation by task complexity on the relationship between TP and
software developer’s performance.

H5: There is significant mediation by knowledge on the relationship between TP and software
developer’s performance.

These variables play a pivotal role in shaping the dynamics of the model, influencing the
relationships between key variables. By elucidating on the mediating variables, specifically
knowledge and task complexities, we aim to delve deeper into the underlying mechanisms through
which these variables contribute to the performance of software developers under time pressure.
Additionally, the explanation will encompass the moderating variables, such as personality types
and gender, highlighting their role in influencing the strength and nature of the relationships within
the model. This enhancement will provide a comprehensive understanding of the intricate interplay
between these variables, fortifying the model's predictive capabilities. We anticipate that the model
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will provide a robust foundation for predicting how software developers perform under time
pressure based on their personality types, gender, knowledge levels, and task complexities. The
outcomes aim to inform software managers, aiding in better task allocation, training strategies, and
overall project management.

This assessment form plays a pivotal role in not only validating the model's effectiveness and
assessing its practical applicability in real-world settings but also in evaluating its substantial
theoretical contribution. Your valuable feedback and suggestions, as guided by the provided
instructions, are crucial for refining and validating the model. It is essential to underscore that all
information shared will be treated with the utmost confidentiality, exclusively used for research
purposes. The model is designed to enhance software developer performance under time pressure,
making noteworthy strides in theoretical understanding. By advancing our comprehension of the
intricate relationships between time pressure, personality types, knowledge and task complexities
in software development, the model delves into theoretical underpinnings. This dual commitment,
addressing both practical and theoretical dimensions, positions the model as a valuable asset for
practitioners and researchers alike, fostering advancements in both applied and academic domains.
Your thoughtful input is highly valued and will contribute significantly to the credibility and
robustness of this research endeavor, with any insights provided being presented anonymously in
academic publications.

RUQAYA GILAL

PhD candidate

School of Computing
Universiti Utara Malaysia

Supervisors:

Associate Prof. Dr. Mazni Omar
Dr. Mawarny Md. Rejab
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PARTICIPANTS’ DEMOGRAPHIC INFORMATION

Name:

E-mail:

Gender: (OMALE () FEMALE
Age:

Affiliation:

Position/Title:

Experience in the field:

Expertise level: () Novice (] Intermediate (] Expert

Have you been involved in the assessment or evaluation of software developers'
performance in the past?

(JYes L JNO

How often do you encounter challenges related to time pressure in your role
within the context of software development?

(JFrequently (CJRarely
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i-SYNERGY: CONCEPTUAL MODEL

TIME PRESSURE

PERSOMALITY
TYPE

GEMNDER

Moderating variables

SOFTWARE

» DEVELOPER'S

Independent
variable

KNOWLEDGE

L 4

PERFORMANCE

F A

Dependent
variable

TASK COMPLEXITY

Mediating variables

Figure 1. Conceptual Model
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FIGURE 2. Model with Hypotheses
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MODEL EVALUATION
Dear Respondent,

Kindly review the i-SYNERGY model Figure 1 & 2 attentively. Following your expertise, please
provide feedback for all questions in the designated spaces. This section aims to assess the
effectiveness of i-SYNERGY model across five dimensions:

e Understandability: Ensuring that all terms used in i-SYNERGY model are clear and
unambiguous.

e Relevance: Examining the consistency between variables and study objectives, as well as
assessing the relationship between variables within i-SYNERGY model.

e Feasibility: Evaluating the practical suitability of using the criteria in i-SYNERGY model.

e Organization: Verifying that all variables of i-SYNERGY model are well-organised.

e Comprehensiveness: Confirming the inclusion of all necessary variables within i-SYNERGY
model.

1. Understandability

Please tick (v ) your choice

No | Terminology It is easy to | Needs some | Needs very
understand | explanation | detailed
explanation

1. How clear is the term "time pressure”
in the context of the I-SYNERGY
model?

2. Does the term "personality types"
require additional explanation for
better understanding?

3. How easily understood is the variable
"gender" in the context of the i-
SYNERGY model?

4. How straightforward is the term
"knowledge" in your interpretation
within the i-SYNERGY model?

5. How well do you understand the
concept of "task complexity" in the i-
SYNERGY model?

6. How clear is the term "“software
developer’s performance" within the i-
SYNERGY model?

385



2. | Relevance

Please tick (v ) your choice

No | Components Not Relevant | Highly
relevant Relevant

1. | To what extent is "time pressure" significantly
associated with software developer performance in
the i-SYNERGY model, as proposed in H1?

2. | How well does "personality types" align with the i-
SYNERGY model's focus on software developer
performance, considering H2 that suggests a
moderation effect of different personality types on
the relationship between time pressure and
performance?

3. | In the context of H3, which posits that gender
significantly impacts the performance of software
developers under time pressure conditions, how
essential is the variable "gender" in studying its
impact within i-SYNERGY?

4. | Considering H4, which suggests that the effect of
time pressure on software developer performance
is significantly influenced by task complexity, how
crucial is "task complexity™ in providing insights
into software developer performance within i-
SYNERGY?

5. | How relevant is "knowledge" to the i-SYNERGY
model's objective of assessing software developer
performance, particularly with regard to H5, which
proposes that knowledge significantly mediates the
relationship between time pressure and software
developer performance?

3. Feasibility

1 Strongly Disagree, 2 Disagree, 3 Agree, 4 Strongly Agree

No | Model Practicability Isb [D |A |[SA
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The i-SYNERGY model is suited to determine software | 1

developer performance.

Time pressure in i-SYNERGY model in real-world scenarios | 1

impact the software developer’s performance.

Personality and gender moderating the impact of TP on | 1

software developer’s performance real-world scenarios.

The i-SYNERGY model might encounter limitations or | 1

difficulties when applied to different software development
projects?

The i-SYNERGY model suitable for assessing software | 1

developer performance in projects with varying levels of
complexity and time pressure.

The task complexity and knowledge mediating the impact of | 1

TP on software developer’s performance real-world
scenarios.

There are no adjustments or modifications to enhance the | 1

feasibility of implementing the i-SYNERGY model in a
software development context.

The i-SYNERGY model has ability to provide meaningful | 1

insights into software developer performance in real-world

situations?

4. Organisation

The connections and flows of all the components in i-SYNERGY are well organised.

Yes[]No[]
If No, please give @ COMIMENE. -------==mm-mmmm oo e e e oo
5. Comprehensiveness
Overall, i-SYNERGY model is a comprehensive model. Yes[]No[]

If No, please give @ COMMENt. ------=---mmmmmmmmm oo
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Other comments

Please write further comments (if any) : --------m-mmmm oo e

THANK YOU
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Appendix E

The Application Letter for Conducting a Case Study at APTECH

This appendix provides the formal application letter submitted to APTECH, requesting
permission to conduct a case study at their software development institute. The letter
outlines the purpose of the study and the data collection methods to be employed.

PUSAT PENGAJIAN PENGKOMPUTERAN
SCHOOL OF COMPUTING
College of Arts and Sclences
Universiti Ntara Malaysia
06010 UUM SINTOK
KEDAH DARUL AMAN
Tel - 5
MALAYSIA Faks (Faxy: 604028 5067
Laman Web (Wob): www.soc.uum.edu.my

Director
Aptech Institute of Learning
Jamshoro, Hyderabad

Dear Sir,

REQUEST FOR PERMISSION TO CONDUCT CASE STUDY AT APTECH INSTITUTE OF
LEARNING

| hope this letter finds you well. | am writing to seek your permission on behalf of Ruqaya Gilal
(903684), a Ph.D. student under my supervision, to conduct a case study at Aptech Institute
of Learning.

Her research focuses on the development of A Predictive Model to Assess Software
Developer Performance. The main goal of this study is to propose a model that assists in
mitigating the impact of time pressure on various aspects within the software development
process. The investigated factors also encompass personality types, gender, knowledge, and
task complexity. It is anticipated that the implementation of this model will aid software
managers in effectively strategizing for the humanistic aspects crucial to the success of
software projects.

Aptech, being a prominent software house, provides an ideal environment for her to gather
valuable insights and data for their research. The case study at Aptech will specifically aim to
analyze how time pressure influences different personality types of male and female with the
different way of dealing with the things in software development which impact the overall
project success.

We believe that conducting this case study at Aptech will significantly contribute to the depth
and breadth of the research, allowing for a comprehensive understanding of the real-world
implications of time pressure in software development.

| assure you that she will adhere to all ethical standards and guidelines throughout the
research process. Additionally, any sensitive information obtained during the case study will
be treated with utmost confidentiality and used solely for academic purposes. If you require
any further information or have specific concerns regarding the case study, please do not

hesitate to contact me at mazni@uum.edu.my.
Thank you for considering this request, and | look forward to your positive response.

Sincerely,

Dr. Mazni Omar

Associate Professor

School of Computing (SOC)
Universiti Utara Malaysia

Universiti Pengurusan Terkemuka
The Eminent Management University
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Appendix F

Acceptance Letter from APTECH

This appendix contains the official acceptance letter from APTECH, granting permission
to conduct the case study.

Unleash your potential

Dr Mazni Omar
Associate professor
School of Computing (SOC)

Universiti Utara Malaysia

Acceptance of Request for Case Study at APTECH learning

We are pleased to acknowledge and accept your request for case study collaboration with Aptech for the
research project proposed by your Ph.D. student Rugaya Gilal.

Having reviewed the details of the research project, we believe that Aptech can provide a valuable and
conducive environment for the successful execution of the study. We understand the importance of
fostering research initiatives and are committed to supporting academic endeavors that contribute to the
advancement of knowledge in the field.

We appreciate the opportunity to contribute to the academic community through this collaboration and are
confident that the outcomes of the research will be beneficial to both parties involved.

Thank you for choosing Aptech as the partner for this case study endeavor. We are eager to commence
this collaboration and look forward to a fruitful and successful research project.

Best regards,

A

Shabir Shaikh
Director
Aptech Learning

Jasmhoro,Hyderabad

www.aptech-education.com/pk 111-APTECH (278324)
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Appendix G

The Application Letter for Conducting a Case Study at HIST

This appendix provides the formal application letter submitted to HIST, requesting
permission to conduct a case study at their software development institute.

PUSAT PENGAJIAN PENGKOMPUTERAN
SCHOOL OF COMPUTING
College of Arts and Sclences
Universiti Utara Malaysa
06010 UUM SINTOK
KEDAH DARUL AMAN a
MALAYSIA Faks (P 604.028 5087
Laman Web (Wob): www.soc.uum.edu.my

UUM

Unlversitl Utars Maleysia

Director
Hidaya Institute of Science and Technology
Jamshoro, Hydearabad

Dear Sir,

REQUEST FOR PERMISSION TO CONDUCT CASE STUDY AT HIDAYA SOFTWARE
HOUSE (HIST)

| hope this letter finds you well. | am writing to seek your permission on behalf of Ruqaya Gilal
(903684), a Ph.D. student under my supervision, to conduct a case study at Hidaya Software
House (HIST).

Her research focuses on the development of A Predictive Model to Assess Software
Developer Performance. The main goal of this study is to propose a model that assists in
mitigating the impact of time pressure on various aspects within the software development
process. The investigated factors also encompass personality types, gender, knowledge, and
task complexity. It is anticipated that the implementation of this model will aid software
managers in effectively strategizing for the humanistic aspects crucial to the success of
software projects.

HIST, being a prominent software house, provides an ideal environment for her to gather
valuable insights and data for their research. The case study at HIST will specifically aim to
analyze how time pressure influences different personality types of male and female with the
different way of dealing with the things in software development which impact the overall
project success.

We believe that conducting this case study at HIST will significantly contribute to the depth
and breadth of the research, allowing for a comprehensive understanding of the real-world
implications of time pressure in software development.

| assure you that she will adhere to all ethical standards and guidelines throughout the
research process. Additionally, any sensitive information obtained during the case study will
be treated with utmost confidentiality and used solely for academic purposes. If you require
any further information or have specific concerns regarding the case study, please do not

hesitate to contact me at mazni@uum.edu.my.

Thank you for considering this request, and | look forward to your positive response.

Sincerely,

ra

Dr. Mazni Omar

Associate Professor

School of Computing (SOC)
Universiti Utara Malaysia

Universiti Pengurusan Terkemuka
The Eminent Management University
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Appendix H

Acceptance letter from HIST

This appendix includes the acceptance letter from HIST, allowing the case study to be
conducted at their institute.

Hidaya Institute Of Science & Technology

Email: software.hist@hidayatrust.org Phone: (022) 2115476

Dr Mazni Omar
Associate professor
School of Computing (SOC)

Universiti Utara Malaysia

Acceptance of Request for Case Study at Hidaya Institute of Science and Technology (HIST)

I trust this message finds you well. We have received your request regarding the proposed case study to be
conducted by Ruqgaya Gilal, your Ph.D. student, at Hidaya.

After careful consideration, we are pleased to grant permission to conduct the case study at HIST. We
understand the importance of academic research and appreciate the opportunity to collaborate in advancing
knowledge in the field of software development. HIST is committed to supporting research endeavors, and
we will provide the necessary cooperation to facilitate a smooth and productive case study.

She will have the full cooperation of our team during the research period. We look forward to the outcomes
of the study and hope that it proves beneficial not only her academic pursuits but also to the broader research
community.

If there are any specific requirements or arrangements needed for the case study, please do not hesitate to
reach out to our team. We are eager to contribute to the success of this research initiative.

Thank you for considering HIST as the chosen location for the case study, and we look forward to a fruitful
collaboration.

Best regards,

Imran Baloch
Hidaya Institute of Science and Technology (HIST)
Jamshoro, Hyderabad
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Appendix |

Personality Test Questionnaire

This appendix contains the Myers-Briggs Type Indicator (MBTI) questionnaire, which
was used to assess the personality types of participants.

PERSONALITY TEST QUESTIONNAIRE

This questionnaire takes about 30 minutes to complete. Please tick (v ) one box for each
question. This questionnaire is NOT to assess people, their work, or knowledge. Please
answer ALL the questions. The data collected from this questionnaire is strictly
CONFIDENTIAL and will be used for research purposes only.

Thank you for your participation and valuable time in completing this questionnaire.

Name:

Matric Number:

E-Mail Address:

All the questions answer like: YES or NO
1. You are almost never late for your appointments
O YES O NO
2. You like to be engaged in an active and fast-paced job
O YES O NO
3. You enjoy having a wide circle of acquaintances
O YES O NO
4. You feel involved when watching TV soaps
O YES O NO

5. You are usually the first to react to a sudden event: the telephone ringing or unexpected
question
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0 YES 0O NO
6. You feel that the world is founded on compassion
0 YES 0 NO
7. You think that everything in the world is relative
0 YES 0 NO
8. Strict observance of the established rules is likely to prevent attaining a good outcome
0 YES 0 NO
9. It is difficult to get you excited
0 YES 00 NO

10. When making a decision, you rely more on your feelings than on analysis of the
situation

O YES O NO
11. You often think about humankind and its destiny
O YES O NO
12. You believe the best decision is one which can be easily changed
O YES O NO
13. You often ponder the root cause of phenomena and things
O YES O NO

14. You prefer to act immediately rather than speculate about various options 15. You trust
reason rather than feelings

0O YES O NO
16. You are inclined to rely more on improvisation than on prior planning
0O YES 0O NO

17. You spend your leisure time actively socializing with a group of people, attending
parties, shopping, etc.
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18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

O YES O NO

You usually plan your actions in advance
O YES O NO

Your actions are frequently influenced by your emotions
O YES O NO

You are a person somewhat reserved and distant in communication
0O YES 0O NO

You know how to put every minute of your time to good purpose
0 YES 0O NO

You often contemplate the complexity of life
0O YES 0 NO

After prolonged socializing you feel you need to get away and be alone
O YES O NO

You often do jobs in a hurry
O YES O NO

You easily see the general principle behind specific occurrences
O YES O NO

You frequently and easily express your feelings and emotions
O YES O NO

You find it difficult to speak loudly
O YES O NO

You get bored if you have to read theoretical books

O YES 0O NO
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29.

30.

31.

32.

33.

34.

35.

36.

You tend to sympathize with other people
0 YES 0O NO
You value justice higher than mercy
0 YES 0 NO
You rapidly get involved in the social life of a new workplace
0 YES 0 NO
The more people you speak to, the better you feel
0 YES 0 NO
You tend to rely on your experience rather than on theoretical alternatives
0 YES 0O NO
As a rule, you proceed only when you have a clear and detailed plan
O YES ONO
You easily empathize with the concerns of other people
O YES 00 NO
Often you prefer to read a book than go to a party

O YES O NO

37. When with a group of people, you enjoy being directly involved and being at the center
of attention

38.

39.

40.

0O YES O NO

You are more inclined to experiment than to follow familiar approaches
0O YES 0O NO

You are strongly touched by the stories about people's troubles
0O YES 0O NO

Deadlines seem to you to be of relative rather than absolute importance
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41.

42.

0 YES 0O NO
You prefer to isolate yourself from outside noises
0 YES 0 NO

For you, it is easier to gain knowledge through hands-on experience than from books

or manuals

43.

44,

45.

46.

47.

48.

49,

50.
one

51.

0 YES 0 NO
You think that almost everything can be analysed
0 YES 0 NO
For you, no surprises is better than surprises - bad or good ones
0 YES 00 NO
You take pleasure in putting things in order
O YES O NO
You feel at ease in a crowd
O YES O NO
You have good control over your desires and temptations
0O YES O NO
You easily understand new theoretical principles
0O YES O NO
You usually place yourself nearer to the side than in the center of the room
0O YES O NO

When solving a problem you would rather follow a familiar approach than seek a new

O YES 0O NO

A thirst for adventure is something close to your heart
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52.

O YES 0O NO

When considering a situation you pay more attention to the current situation and less

to a possible sequence of events

53.

54,

55.

0 YES 0 NO
When solving a problem you consider the rational approach to be the best
0 YES 0 NO
You find it difficult to talk about your feelings

O YES 0O NO

Your decisions are based more on the feeling of a moment than on the thorough

planning

56.

S7.

58.

59.

60.

61.

62.

O YES 0 NO

You prefer to spend your leisure time alone or relaxing in a tranquil atmosphere

O YES ONO

You feel more comfortable sticking to conventional ways
O YES 0 NO

You are easily affected by strong emotions
0O YES O NO

You are always looking for opportunities
0O YES O NO

As a rule, current preoccupations worry you more than your future plans
0O YES O NO

It is easy for you to communicate in social situations
0O YES 0O NO

You rarely deviate from your habits
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0 YES 0O NO

63. You willingly involve yourself in matters which engage your sympathies
0 YES 0O NO

64. You easily perceive various ways in which events could develop

O YES 0O NO
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Appendix J

Academic Achievements/ Records

This appendix presents the academic record form, which was used to assess the
participants' knowledge in specific subjects relevant to software development. The form
captured their grades in key subjects, such as structured programming, object oriented
programming, and C++, which were used as a measure of their knowledge and expertise.

Please fill in your previous grade for the following courses:

Structured Programming | Object Oriented | Programming languages
Programming (C++)

*Please mention the obtained results in GRADE or GPA

Name:

Matric No:

E-mail address:

Signature:

Date:
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Appendix K

NASA Task Load Index (NASA-TLX)

The NASA Task Load Index (TLX) included in this appendix was used to measure
participants' perceived workload during tasks. This tool helped to quantify cognitive load
and stress levels, allows to understand how time pressure (TP) influences performance
under different conditions.

NASA Task Load Index

Hart and Staveland’s NASA Task Load Index (TLX) method assesses
work load on five 7-point scales. Increments of high, medium and low
estimates for each point result in 21 gradations on the scales.

Name Task Date

Mental Demand How mentally demanding was the task?
N T T T Y B BB
Very Low Very High

Physical Demand How physically demanding was the task?
L G RIS () | (., | | T
Very Low Very High

Temporal Demand How hurried or rushed was the pace of the task?
N T Y T T Y A B A O
Very Low Very High

Performance How successful were you in accomplishing what

you were asked to do?

N T T T T T A O

Perfect Failure

Effort How hard did you have to work to accomplish
your level of performance?

IlIIIIIIIlIIIIIIIllII
Very Low Very High

Frustration How insecure, discouraged, irritated, stressed,
and annoyed wereyou?

NN T T T T O

Very Low Very High
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Appendix L

Software Developers’ Knowledge and Experience Assessment Questionnaire/Form

This appendix contains the questionnaire used to assess the knowledge and experience of the
participating software developers. It captures their years of experience, technical skills, and
familiarity with specific programming languages, contributing to the analysis of their performance.

Dear Participant's, Thank you for participating in our study.

Purpose Statement: The purpose of the questionnaire is to assess and gather information about
participants' experience and background in the field of software development within software
development houses. This information is valuable for understanding their professional backgrounds
and how it may relate to various aspects of our study.

Confidentiality Assurance: Rest assured that all responses you provide will be kept confidential
and used solely for research purposes.

Instructions: Please read each question carefully and answer honestly to the best of your
knowledge. Your feedback will help us better understand the dynamics between time pressure,
knowledge, and software developer performance.

1. Name (Optional):
2. Age:
3. Gender:

4. Educational Background:

5. Current Job Title:

6. Job Role:

7. Current project:

8 Years of Professional Experience:

9. Industry/Field:

10. How many years have you worked in your current field/industry?

11. How would you rate your overall work experience on a scale of 1 to 10 (1 being least
experienced, 10 being highly experienced)?

12. What software development methodologies have you worked with?

13. Which programming languages are you proficient in?
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Appendix M

Questions for Experimental Tasks for Dataset A&B

This appendix presents the set of experimental tasks which were in C++ programming language
with the estimated time and allocated time given to participants, which were designed to evaluate
their performance under time pressure and no time pressure.

Questions

Task
complexity

TP/NTP

Estimated
time

Allocated
time

Write a C program that asks the user to
input their name and age, and then
displays the information in the following
format:

Your name is [name] and you are [age]
years old.

Easy

NTP

30 minutes

1 hour

Write a C program that generates 5
random numbers between 1 and 10,
displays them to the user, and then
prompts the user to enter the sum of those
numbers within a time limit of 5 seconds.

Easy

TP

30 minutes

15 minutes

Write a C program that takes an integer
input from the user, and then calculates
and prints the sum of all the even numbers
between 1 and the input number
(inclusive).

Medium

NTP

45 minutes

75 minutes

Write a C program that generates a
random 4-digit number and prompts the
user to guess the number within a time
limit of 10 seconds. The program should
provide feedback to the user after each
guess indicating if the guess is too high or
too low.

Medium

TP

45 minutes

30 minutes

Write a C program that simulates a simple
inventory system. The program should
allow the user to add new items to the
inventory, remove items from the
inventory, and display the current
inventory. Each item in the inventory
should have a name, a quantity, and a
price.

Hard

NTP

lhour 30
minutes

2 hours

Write a C program about what is the sum
of the diagonal elements in the 5*5 grid
of random numbers?

Hard

TP

lhour 30
minutes

1 hour
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Tasks for group B dataset

Questions

Task
complexity

TP/NTP

Estimated
time

Allocated
time

Write a C program that takes in two
integers from the user and outputs their
sum.

Easy

NTP

10 minutes

20 minutes

Write a program that generates a random
integers between 1 and 10. And asks the
user to guess the number. The program
should give the feedback on whether the
guess was too high or too low, and
continue the correct number is guessed.

Easy

TP

10 minutes

5 minutes

Write a program that reads in a list of
integer from the user, and output the
average of the result.

Medium

NTP

30 minutes

1 hour

Write a C program that generates a random
list of integers and sorts them in ascending
order, the program should output both the
original list and the sorted list.

Medium

TP

20 minutes

12 minutes

Write a C program that simulates a game
of blackjack. The program should allow
the user to play against computer and
should keep track the user’s score and
dealer’s score.

Hard

NTP

2 hour

3 hours

Write a C program that read in a string
from the user and output the longest
substring that is a palindrome(a word that
is the same forward and backwards)

Hard

TP

45 minutes

30 minutes
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Appendix N

Decision Tree Using WEKA Tool

This appendix shows the decision tree generated using the WEKA tool, which was applied
to classify and predict software developers' performance based on the collected data.

&J Weka GUI Chooser — O -
Proagram Visualization Tools Help
Applications
Explorer
'WEKA
Experimenter

The University
of Waikato

KnowledgeFlow

Waorkbench
Waikato Envircnment for Knowledge Analysis
Version 3.9.5
c) 1999 - 2020 ;
(e} - ] - Simple CLI
The University of Waikato
Hamilton, New Zealand
&3 Weka Explorer — (] >
| ferr [ Ciassiw | Giuster | Assoaia 1o | Seict atnbutes | visuanz |
[ ocpenme ] L Spen URL. | [ openbe ] L Senerate 1L Unao ] L Eait 1L Save J
Fitter
Choose None Apply Stop
o attribute
Relation: easyTP-weka filters unsupervised. attribute Re. Aftributes: 7 MName: Gendel Type: Nominal
Instances: 180 Sum of weights: 180 Missin, g: 0 (0%} Distinct: 2 Unigue: 0 (0%)
Attributes MNo | Label | Count | wWeight
T Female 77 7.0
[ an N None Nt invert 1( Pattern ] 2_maLs 2o 2o=2
No. | | Name |
2 ] Knowledge
3LE
4 ) sN
51 FT
e | ciass: class quom) =] wisuaiize an_|
—
 status

Select Dataset
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& Weka Explorer

[ Preprocess [ classity | Cluster | Associate | Selectatirinutes | Visualize |

Classifier

| cnoose ]|.J48—C 0.25-M2

‘| Test options

Classifier output

() Use training set
() Suppliedtestset Set.. J

(®) Crossvalidation Folds

(_) Percentage split % 66

( More options... |

{ {Nom) class

Stop

[ kSt ]l.

Result list {right-click for opti

Time taken to build model: 0.04 seconds

=== Stratified cross-validation =—
=== Summary ===

Correctly Classified Instances

Incorrectly Classified Instances

Kappa statistic

Mean absclute error

Root mean squared error
Relative absclute error
Root relative sguared error
Total Number of Instances

=== Detailed Rccuracy By Class ===

TP Rate FFP Rate

0.945 0.667 0.30.

0.333 0.051 Q.50
Welghted Avg. 0.367 0.58% 0.84

=== Confusion Matrix ===

a I <-- classified as
143 8 | a = Effective
16 8 | b = Ineffective

158
24
0.3284
0.1876
0.3417
79.5397 %
100.4284 %
1s0

Precision Recall

2 0.945
a 0.333
9 0.367

e

86.6667 §

13.3333 %
F-Measure MCC ROC Rrea FPRC Area Cla
0.925 0.337 0.6842 0.892 Eff|
0.400 0.337 0.642 0.333 Ine
0.855 0.337 0.642 0.81%

Select Classification Decision Tree Algorithm (J48)

€ Weka Classifier Tree Visualizer: 16:30:20 - trees. )48 (easyTP)

Treea View
f*

T Tia T

=Female =M ale
=3Sensing  =ntuiting
=Thinking =Feeling

Sample of decision tree of easy TP
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€ Weka Classifier Tree Visualizer: 13:19:53 - trees.J48 (EasyNTP)
Tree View

=Female =Male

=Sensing _ ntuiting =Exfrouet =introver

=272 =272

=Judging =P ercemng

[remnsawror] [ememmaor |

Sample of decision tree of easy NTP

€ Weka Classifier Tree Visualizer: 20:30:44 - trees.J48 (mediumTP)
Tree View

P

=Famale =Male

=Fesling =Thinking

‘}md"’ =Percaiving

=Perceiing =Judging

==3 29

Sample of decision tree of Medium TP
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& Weka Classifier Tree Visualizer: 16:31:24 - trees.J48 (mediumNTP) = 0 X
Tree View

r g

=Introvert  =Extrovert

=Thinking =Feeling =Feeling =Thinking
=Pemening =Judging

é_

<=335 >3.35

(== o

Sample of decision tree of Medium NTP

&) Weka Classifier Tree Visualizer: 16:31:47 - trees )48 (hardTP) - [m] >
r‘l’m\ﬂﬂw .
=Female =M abe
Introvest  =Extrovert =Extroven  =imrovert
[rtecmarono |
=Sensing =Imlitir“|g\\ =Thinking =Feeling
[rrmaiono | ==
<=3 45 >345 =Judging =Pemrceiving
=l =y e owo] *
=3 65 =3 65
T e

Sample of decision tree of hard TP
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O Weka Classifier Tree Visualizer: 16:32:09 - trees.J48 (hardNTP) - o X
Tree View

r ) )

=Thinking =Feeling =Sensing =jiting

=Perceiving =Judging =Thinking =Feeling

==

<=315 >3.15 =Judging =Perceiving

[srna) Feeno]

Sample of decision tree of hard NTP
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This appendix provides the screenshots of applying Artificial Neural Network (ANN) model

Appendix O

Artificial Neural Network Using WEKA Tool

generated using WEKA

o ‘Weka Explorer

IJ Preprocess T Classify T Cluster T Associate T Select attributes T Visualize ]

l Open file J l Open URL. J { Open DB. J l Generate J l Undo J { Edit J l Save J
Filter
l Choose J|Nune H Apply j Stop
Current relation
Relation: easyTP-weka filters unsupenvised attribute Re Aftributes: 7 MName: Gender Type: Mominal
Instances: 180 Sum of weights: 180 Missing: 0 (0%) Distinct: 2 Unigue: 0 (0%}
Attributes No. | Label | count | weight
1 FEMALE 77 770
2 MALE 103 103.0
{ All J { None J { Invert J { Pattern J
Mo | | Name
2 || Knowledge
3 IE
44 8N
5 L) FT N I
6 JF — — 3 1
7 H class Class: class (Nom) 'Jl Visualize All J
Rem:

Status

Select dataset
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& Weka Explorer

Preprocess | Classify | Cluster | Associate | Selectatiributes | Visualize

Classifier

| Choose "Mullilayerperceptrnn L03-M0.2-N 00V 0-80-E30-Ha

Test options Classifier output

() Use training set .
Time taken to build model: 0.09 seconds

() Supplied test set

(®) Cross-validation Folds 10 Stratified cross-validation ===

Sumpary ===
(O Percentage split % 66
Correctly Clessified Instances 125 65.3333 &
i More options. J Incorrectly Classified Instances 57 31.666
Kapra statistic 0.3284
Mean absolute error 0.3%07
I ome==s I ] Root mean squared error 0.5115
— Relative absolute error 63.0219 %
Start Root relative squered error 105.4715 %
Total Number of Instences 180

Result list {right.click for options)

13:28:43 -funclions MultilayerPerceptron === betailed Rccuracy By Class ===

13:30:11 - functions MultilayerPerceptron

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class
13:30:49 -functions MultilayerPerceptron 0.588  0.259  0.580 0.588  0.584 0.328 0.495 Effective
13:31:29 - funclions MultilayerPercepiron 0,741 0.412  0.748 0,741 0.744 0.328 0.720 Ineffective
13:31:53 - functions MultilayerPerceptron Weighted Avg.  0.683  0.354  0.684 0.683  0.684 0.328 0.635

.23 - funclions.MultilayerPerceptron

=== Confusion Matrix ===

a b < classified as
40 28 | a = Effective
29 83 | Db = Ineffective

Status

oK Log e

Select multilayer perceptron algorithm (ANN) in WEKA tool

Appendix P

K-Nearest Neighbour Using WEKA Tool

This appendix provides the screenshots of K-Nearest Neighbour (KNN) model generated using

WEKA.

Qe - X
[ Preprocess [classnfy Cluster | Associate [ Select attributes T Visualize }
Classifier
&9 weka.gui.GenericObjectEditor X
L Choose J||Bk-K13-WD-A"wEka core neighboursearch.LinearhiNg oo a7y 1Bk
Test options Classifier output | About
—_—— —
@) de e Time taken te| | K-nearestneighbours dassifier More k|
() Suppliedtestset —_—
S . Capabilities
_ === Stratifie
@) Crossalidation Folds 10 — Sumary -
(_) Percentage split % 66
Correctly Clal KN [13 \
L More options ) Incorrectly Cl
HKappa statist batchSize 100
Mean absolute
{ (Nom) class "] ROOT mean Squf crossValidate [False |V]
Relative absol

Start Stop oot relativg debug |False v
Total Number

Result list {right-click for options) {Nﬂ distance weighting |']
=== Detailed
doNotCheckCapabilities [False |'] Class
Effective
meanSquared | False W | tnerrecoive
Weighted Avg.
nearestNeighbourSearchAlgorithm | Chaose J||_i...,¢. -4 "weka.core. :)ma‘
== Confusion]
numbDecimalPlaces 2
a b <
123 161 windowsize 0
17 24|
| Open. J L Save J L oK J L Cancel )
Status.
oK Log ‘?. x0

Select K value
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&) Weka Explorer

- x
[ Preprocess | ciassity | Cluster | associate | Select atiibutes | visuaiize |
Classifier
| Choose J||Bk K10 -A"weka.core Li h-A Pweka.core. Distance -R first-last™
Test options Classifier output
r o s
() Use training set .
- Time taken to build model: 0 seconds -
(U Suppliedtestsat Set
— === Stratified cross-validation ===
@ Cross-validation Folds 10 ——— Summary ——
(U Percentage spiit % 66
Correctly Classified Instances 163 90.5556 %
{ More options. J Incorrectly Classified Instances 17 9.4442 3
Kappa statistic 0.0567
Mean absolute error 0.102
{ (Nom) dlass M Root mean squared error 0.3078
Relative absolute error 95.3747 %
— = Root relative squared error 128.3798 3
Total Number of Instances 180 i
Result list (right-click for options)
r === Detailed Accuracy By Class ===
TP Rate FP Rate Precision Recall F-Measure MOC ROC Area DPRC Area Class
0.85%  0.808  0.842 0.85%  0.950 0.058  0.538 0.943 Effective
0.081  0.041  0.125 0.081  0.105 0.058  0.53% 0.06% Ineffective
Weighted Avg.  0.906  0.856  0.282 0.506  0.83% 0.058  0.538 0.890

=== Confusion Matrix ===

a b <-- classified as
162 71 a = Effective
10 1| b= Ineffective

Status.

oK

Log ‘ x0

Select IBK (KNN) in WEKA tool
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Appendix Q

Support Vector Machine Using WEKA Tool

This appendix provides the screenshots of Support Vector Machine (SVM) model generated using
WEKA.

& Weka Explorer — %
[ Preprocess | Glassify | Cluster | Associate | Select atiributes | Visualize |
Classifier
{ Choose J|5M070 1.0-L0.001 -P1.0E-12-N 0-V-1-W 1 -K"weka.classifiers.functions supportvector.Polkemel -E 1.0 -C 250007 -calibrator "weka.classifiers.functions.Logistic -R 1.0E-8 - -1 -num-decimal-places 4"
Test options Classifier output
—_——
O Use training set TImE TEKEN TO BULID WOGElT ULUY second F
- r
() Suppliedtest sat === Stratified cross-validation ===
_ j— —
(®) Crossvalidation Folds 10 Ay
() Percentage split Correctly Classified Instances 155 86.1111 %
I 1y Classified Instances 25 13.8280 %
{ More opions. j Heppa statistic 0.5789
Mean absolute error LISEEL]
Root mean squared error 0.3727
{ (Nom) class v Relative absolute error 39.272 %
Root relative squared error 88.8411 ¢
Start Total Number of Instances 180
Result list (right-click for options) === Detailed Rocuracy By Class ===
e
22:41:15 - functions. SMO TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Rrea Class
22:4158 - functions.SMO 0.935  0.390  0.890 0.535  0.912 0.584  0.77% 0.883 Effective
0.610  0.065  0.73% 0.610 0.667 0.584  0.773 0.537 Ineffzctive
Weighted Avg.  0.861  0.31  0.85% 0.861  0.856 0.584  0.77% 0.804

== Confusion Matrix =—

| 2 b <-- classified as
a = Effective
b = Ineffective

Select SMO as a SVM in WEKA tool

@ Weka B € weka.gui.GenericObjectEditor x - kel
| Preprocess [ classify | Cluster | Associate | Select attributes | Visu TR P T R R
Classifier
About
[ Choose |/SMO -C1.0-L0.001 -F 10512 -1 0 v -1 -4 1 -K*wekacla s.Logistic -R 1.0E-8 -M -1 -num-decimal-places 4"
John Platts minimal aigorithm | Were |

Test options Classifier output for training a SUppORt vector classifier

O Use training set TINE CRReR Co DOCE 0

Supplied test set

=== Stratified crof batchSize | 100

== Summary ===

buildc: | False

o
@® Cross-validation Folds 10
o

Corrsctly Classifi
rrectly Classi

More options. Kappa statistic c |10

Mean absclute errof

Percentage split 6

Root mean squared calibrator | Choose J‘Lnuls‘itﬂ1 0E-8-M -1 -nurm-decimal-places 4 |
{ (Nom) class v ] Relative absolute
Root relative squal checksTumedofl | False =
S = Total Number of In|
f— —) el TUMS time-consuming checks of - use with caution v
Result list (right-click for options) === Detailed Accur|
doNotCheckCapabilities | False |v
T Class
5 epsilon | 1.0E-12 roective
0 Ineffective
Weighted Avg. 0
filterType | Normalize training data .v]
=== Confusion Matr|
kemel | Choose ”anemel -E 1.0 -G 250007 |
a b <-- claf
s 01 as=F numDecimalPlaces |2
1 01 b=
numFolds | [/
N 1 s
status
oK
ﬂ £ Type here to search o v RIOT ~ & = € 3) NG

Select kernel polynomial
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Appendix R

Logistic Regression Using SPSS

This appendix contains the screenshots of logistic regression analysis conducted using
SPSS.

@ *SPSS both data for logistic regression ETP.sav [DataSet2] - IBM SPSS Statistics Data Editor - a X
— File Edit View Data Transform Analyze DirectMarketing Graphs  Utilities Add-ons  Window  Help
i o =
|GHE M e ~ B, Al W BaE 490 %
Ofs: I [Visible: & of 8 Variables
Gender E |l SN FT J P |Effective_inef| Knowledge | knowledge. var
| N I I I == N N (= = =
& 1 0 2 2 2 2 1 320 2 =
IE| 2 1 1 1 1 1 1 370 3
B 3 1 1 1 1 1 0 3.7 2
5 4 0 2 1 2 2 0 348 2
& 0 1 1 2 1 1 291 2 1
8 6 0 2 1 2 2 0 257 2
B 7 0 2 1 2 1 1 253 2
& 0 1 2 2 1 1 350 2
v 9 1 2 2 2 2 1 343 2
B 10 1 1 1 1 1 0 3.63 2
5 11 1 2 2 1 1 1 342 2
& 12 1 1 2 2 2 0 268 2
IE| 13 0 2 1 1 1 1 318 2
B 14 1 2 2 1 1 1 3.37 2
& 15 0 1 1 2 2 1 317 2
v 16 0 2 2 1 2 1 337 2
8 17 0 1 2 2 1 1 3.00 2
B 18 1 2 1 1 1 0 3.23 2
& 19 0 ] 1 2 1 1 373 3
IE| 20 1 2 2] 1 2 0 320 2
B 2 0 4 1 2 1 1 3.70 3
B 2 1 2 2 1 2 1 317 2 =
4 LW ]
pat viw, Vel e,
L — LiBu ep tatict icraacy || (inicagoom | [ [
Sample of dataset
@ *SPSS both data for logistic regression ETP.sav [DataSet2] - IBM SPSS Statistics Data Editor - [m] X
File Edit View Data Transform Analyze DirectMarketng Graphs Utiities Add-ons — Window  Help
SHegMe~ BLANNAEE BIE 190
Name ‘l Type H Width H Decimals H Label ‘l Values ‘l Missing H Columns || Align H Measure H Role
1 Gender Numeric 8 0 gender of partic._. {0, MALE}  None 8 = Right & Nominal . Input :
2 E_| Numeric 8 0 personality typ... {1, Introvert}... None 8 Right & Nominal “ Input
3 SN Numeric 8 0 personality typ... {1, Sensing}... None 8 Right & Nominal N Input
4 FT Numeric 8 0 personality typ. {1, Thinking}. . None 8 Right & Nominal N Input
5 JP Numeric 8 0 personality typ... {1. Judging}... None 8 Right & Nominal N Input
6 Effective_in... Numeric 8 0 Effective_Ineffe... {0, Ineffectiv... None 8 Right & Nominal “ Input
7 Knowledge  Numeric 8 2 None None 1 Right & Scale N Input
8 knowledge_ct Numeric 8 0 overall knowledge {1, Low} . None 8 = Right & Nominal . Input
[ o ]
[ 0 ]
[ 11 ]
[ 2 ]
EE
[ 4 ]
[ 15 |
[ 16 |
[ 7 ]
[ 5 ]
I
T
[ 21 ]
I
[ = |
[ 22 ] L
T o
[T ]
I DAY | Vil View
LB sp tatict israacy || (nicagaon | [ [

List of Variables
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118 ~SPSS both data for logistic regression ETP.sav [DataSet2] - IBM SPSS Statistics Data Editor - ] X
File  Edit View Data Transform Analyze DirectMarketing Graphs  Ulilities Add-ons  Window  Help
= B {i9%
HE 0 e Bl R E e oL [ .
I [visible: & of 8 variablee
Gender E |l SN FT JP Effective_inef Knowledge knowledge... var ar var ar ar ar var ar
1 ective 1
5 1 0 2 2 2 =
I = 4 F B 1 &R Logistic Regression X
4 3 1 1 1 1 Dependent
{ o2 [ ] (B (o)
q 5 0 1 1 2| | &b personaliy ypes (ex.. | mockqoti— E
I 6 0 2 1 5| | & personality types (se m
& personality types (fe Previous @ C o |
& personality types (Ju. Covariates.
| 0 1 2 2| & knowedse £ [
s 9 1 2 2 2 & overall knowledge [k
& 11 1 2 2 1
»aths
v 12 1 1 2 2 -
i 3 0 2 1 1 P —
B 14 1 2 2 1
I I 0 1 1 > Selection Variable:
8 17 0 1 2 2
I i 2 1 1 (L0 ) (rsst ] meset | [csnce [ riels
& 19 0 1 1 2 1 1 373 3
v 20 1 2 2 1 2 320 2
8 21 0 1 1 2 1 1 3.70 3
B 22 1 2| 2| 1 2 1 347 2 -]
U £ I
DaoViw, Vet v,

o it (| T EECYy iemace | ooy |

Select binary logistic regression

415



Appendix S

Sample of Logistic Regression (SPSS Output)

This appendix showcases a sample output from the logistic regression analysis in SPSS. It includes
the coefficients, odds ratios, and significance levels, which help explain the relationship between
independent variables and performance.

1. This block presents the results with only the constant included before any coefficients (predictor

variables) are entered in the equation.

Classification Table*”
Predicted
Performance
Observed Ineffective | Effective | Percentage Correct
Step 0 | Performance Ineffective 0 50 .0
Effective 0 130 100.0
Overall Percentage 72.0
a. Constant is included in the model.
b. The cut value is .500

2. The variables not in the equation show whether each predictor variables used improves the
model. When the Sig. < .05, this shows that the variables are significant and would add the
predictive power of the model. In this case only S_| Personality types was not contribute

significantly to the model.

Variables not in the Equation
Score df Sig.
Step 0 Variables Gender(1) .825 1 .364
E_I(1) 297 1 586
S N(1) 1.833 1 176
F T(1) 4.131 1 042
J_P(1) 3.006 1 .083
Knowledge 84.536 1 .000
TP(1) 22.073 1 .000
TC 63.764 1 .000
Overall Statistics 186.221 8 .000
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3. This block presents the results when the predictor variables are included; the model achieved
87% accuracy.

Classification Table?

Predicted
Performance
Observed Ineffective  Effective  Percentage Correct
Step 1  Performance Ineffective 35(TN) 15(FP) 70.0
Effective 11(FN) 119(TP) 915
Overall Percentage 85.0

a. The cut value is .500

4. The variables in the equation determine which predictor variables contribute
significantly to the model using Wald statistic. If the significant value less than .05, the
variables do make a significant contribution. In this case, only S_I Personality types was

not contributed significantly to the model.

Variables in the Equation

95% C.l.for EXP(B)
B S.E. Wald df Sig. Exp(B) Lower Upper

Step 12 Gender(1) .646 .259 6.236 1 .013 1.907 1.149 3.166

E_I(1) -.676 .259 6.792 1 .009 .509 .306 .846

S_N(1) ATT .254 3,511 1 .061 1.611 .978 2.653

FTQ) .634 .264 5.771 1 .016 1.885 1.124 3.163

J_P(1) .598 .255 5.489 1 .019 1.818 1.103 2.996

Knowledge 3.668 404 82.574 1 .000| 39.185 17.763| 86.445

TP(2) 1.461 .263 30.844 1 .000 4311 2.574 7.220

TC -1.529 .182 70.296 1 .000 217 152 .310
Constant -8.890 1.250 50.556 1 .000 .000

a. Variable(s) entered on step 1: Gender, E_I, S_N, F_T, J_P, Knowledge, TP, TC.
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Appendix T

Sample of Decision Tree (WEKA Outputs)

This appendix includes a sample decision tree generated using the WEKA tool. It illustrates how
the decision tree model was applied to classify the participants' performance.

This is a sample output of WEKA tool for decision tree prediction accuracy using 10-fold cross-
validation.

» Easy NTP
=== Run information ===

Scheme: weka.classifiers.trees.J48 -C 0.25 -M 2
Relation: easyNTP
Instances: 180
Attributes: 7
Gender
Knowledge
IE
SN
FT
JP
class
Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

J48 pruned tree
Gender = Male
| El = Introvert: Effective (4.0/2.0)

| El = Extrovert

| | SN = Sensing

| | | Knowledge <=2.8

| | | | JP=perceiving: Effective (2.0)

| | | JP=Judging: Ineffective (3.0/1.0)

| | Knowledge > 2.8: Effective (141.0/1.0)
| | SN =Intuiting: Ineffective (4.0/2.0)

Gender = Female

| SN = Sensing

| | Knowledge <=2.72: Ineffective (3.0)

| | Knowledge > 2.72: effective (21.0)

| SN = Intuiting: Ineffective (2.0/1.0)

Number of Leaves : 8

Size of the tree ; 15
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Time taken to build model: O seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 169 93.8889 %
Incorrectly Classified Instances 11 6.1111 %
Kappa statistic 0

Mean absolute error 0.1148

Root mean squared error 0.2397

Relative absolute error 96.0695 %

Root relative squared error 99.9758 %

Total Number of Instances 180

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class
1.000 1.000 0.939 1.000 0.968 0.6323 0.456 0.934 Effective

1.000 1.000 0.939 1.000 0.968 0.6323 0.456 0.057
Weighted Avg. 1.000 0.939 0.939 1.000 0.968 0.6323 0.456 0.881

=== Confusion Matrix ===

a b <--classified as
166 0| a= Effective
11 3| b= Ineffective

> EASY TP

=== Run information ===

Scheme: weka.classifiers.trees.J48 -C 0.25 -M 2
Relation:  easyTP
Instances: 180
Attributes: 7
Gender
Knowledge
IE
SN
FT
JP
class
Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

J48 pruned tree
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Gender = Male

| SN = Sensing

| | TF=Thinking: Effective (63.0/1.0)
| | TF=Feeling: Ineffective (16.0)

| SN = Intuiting: Effective (3.0)

Gender = Female

|  El=Extrovert

| | Knowledge > 2.62: Effective (18.0)

| | Knowledge <=2.62: Ineffective (6.0)
|  El = Introvert: Ineffective (4.0)

Number of Leaves: 6

Size of the tree: 11

Time taken to build model: 0 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 156 86.6667 %
Incorrectly Classified Instances 24 13.3333 %
Kappa statistic 0.3284

Mean absolute error 0.1876

Root mean squared error 0.3417

Relative absolute error 79.9897 %

Root relative squared error 100.4294 %

Total Number of Instances 180

=== Detailed Accuracy By Class ===
TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class
0.949 0.667 0.902 0.949 0.925 0.337 0.642 0.892 Effective

0.333 0.051 0.500 0.333 0.400 0.337 0.642 0.333 Ineffective
Weighted Avg. 0.867 0.585 0.849 0.867 0.855 0.337 0.642 0.818

=== Confusion Matrix ===
a b <--classified as

148 8| a= Effective
16 8| b = Ineffective

» MEDIUM TP

=== Run information ===

Scheme: weka.classifiers.trees.J48 -C 0.25 -M 2
Relation: mediumTP
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Instances: 180
Attributes: 7
Gender
Knowledge
IE
SN
FT
JP
class
Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

J48 pruned tree

Gender = Male
| TF = Thinking: Effective (20.0/3.0)

| TF = Feeling

| | JP=Judging: Ineffective (24.0/3.0)

| | JP=Perceiving

| | | Knowledge: >3.55 Effective (23.0/4.0)

| | |  Knowledge: <=3.55 Ineffective (7.0/2.0)
Gender = Female

|  El = Extrovert: Effective (30.0)

|  El=Introvert

| | JP=Perceiving: Ineffective (24.0/3.0)

| | JP=Judging

| | | Knowledge: >3.29 Effective (43.0/8.0)
| | | Knowledge: <=3.29 Ineffective (15.0/1.0)

Number of Leaves: 8

Size of the tree: 15

Time taken to build model: 0.02 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 123 68.3333 %
Incorrectly Classified Instances 57 31.6667 %
Kappa statistic 0.3081

Mean absolute error 0.4165

Root mean squared error 0.4769

Relative absolute error 85.3143 %

Root relative squared error 96.5197 %

Total Number of Instances 180
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=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure MCC  ROC Area PRC Area Class
0.894 0.605 0.669 0.894 0.765 0.340 0.616 0.630

Effective
0.395 0.106 0.732 0.395 0.513 0.340 0.616 0.568

Ineffective
Weighted Avg. 0.683 0.394 0.696 0.683 0.659 0.340 0.616 0.604

=== Confusion Matrix ===

a b <--classified as
93 11| a = Effective
46 30| b= Ineffective

» MEDIUM NTP

=== Run information ===

Scheme: weka.classifiers.trees.J48 -C 0.25 -M 2
Relation: mediumNTP
Instances: 180
Attributes: 7
Gender
Knowledge
IE
SN
FT
JP
class
Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

J48 pruned tree

Gender = Male
El = Extrovert: Effective (38.0/11.0)
El = Introvert
| TF =Thinking: Effective (33.0/2.0)
TF = Feeling

|

|

| |
| | | JP=Judging: Ineffective (15.0/7.0)

| | | JP=Perceiving

| | | Knowledge: >3.35 Effective (20.0)

| | |  Knowledge: <=3.35 Ineffective (10.0/5.0)
Gender = Female

|  El = Extrovert: Effective (35.0/9.0)

|  El=Introvert
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| | TF = Thinking: Effective (18.0/2.0)
| | TF = Feeling: Ineffective (11.0/7.0)

Number of Leaves : 8

Size of the tree : 15

Time taken to build model: 0 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 147 81.6667 %
Incorrectly Classified Instances 33 18.3333 %
Kappa statistic 0.4743

Mean absolute error 0.2434

Root mean squared error 0.3885

Relative absolute error 68.8204 %

Root relative squared error 92.621 %

Total Number of Instances 180

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure MCC
0.885  0.415 0.879 0.885 0.882 0.474
Effective
0.585 0.115 0.600 0.585 0.593 0.474
Ineffective
Weighted Avg. 0.817  0.346 0.815 0.817 0.816 0.474

=== Confusion Matrix ===

a b <--classified as
123 16| a = Effective
17 24| b = Ineffective

» HARD NTP

=== Run information ===

Scheme: weka.classifiers.trees.J48 -C 0.25 -M 2
Relation: hardNTP
Instances: 180
Attributes: 7
Gender
Knowledge
IE
SN
FT
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JP
class
Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

J48 pruned tree

Gender = Male
SN = Sensing: Effective (42.0/8.0)
SN = Intuiting
TF = Feeling: Ineffective (4.0/2.0)
TF = Thinking

|
| | JP=Judging: Ineffective (16.0/9.0)
| | JP=Perceiving
| | Knowledge >3.17 : Effective (27.0/4.0)
| |  Knowledge <=3.17: Ineffective (18.0/14.0)
TF = Feeling: Ineffective (19.0/3.0)
TF = Thinking

| JP= Perceiving: Effective (20.0/7.0)
| JP = Judging
| | Knowledge >3.15 : Effective (26.0/11.0)
|

|
|
|
|
|
|
|
|
Gender = Female
|
|
|
| | Knowledge <=3.15: Ineffective (8.0/3.0)

Number of Leaves : 9

Size of the tree : 17

Time taken to build model: 0 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 146 81.1111 %
Incorrectly Classified Instances 34 18.8889 %
Kappa statistic 0.5759

Mean absolute error 0.2319

Root mean squared error 0.3877

Relative absolute error 50.5239 %

Root relative squared error 80.9541 %

Total Number of Instances 180

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure MCC  ROC Area PRC Area Class
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0.888  0.328 0.831 0.888 0.858 0.579 0.794 0.810

Effective
0.672 0.112 0.768 0.672 0.717 0579 0.794 0.675

Ineffective
Weighted Avg. 0.811 0.251 0.808 0.811 0.808 0.579 0.794 0.762

=== Confusion Matrix ===

a b <--classified as
103 13| a = Effective
21 43| b = Ineffective

> HARDTP
=== Run information ===

Scheme: weka.classifiers.trees.J48 -C 0.25 -M 2
Relation:  hardTP-weka.filters.unsupervised.attribute.Remove-R7
Instances: 180
Attributes: 7

Gender

Knowledge

IE

SN

FT

JP

class
Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

J48 pruned tree

Gender = Male
|  El = Extrovert: Effective (15.0/8.0)
El = Introvert
| TF = Feeling: Ineffective (9.0/2.0)
TF = Thinking

|

| | JP=Judging: Ineffective (28.0/8.0)

| | JP=Perceiving

| | Knowledge >3.65 : Effective (20.0/4.0)
| | Knowledge <=3.65: Ineffective (22.0/1.0)

El = Extrovert: Ineffective (27.0/6.0)

El = Introvert

| SN= Intuiting: Ineffective (21.0/6.0)

| SN = Sensing

| | Knowledge >3.45 : Effective (21.0/4.0)
|

|
|
|
|
|
|
Gender = Female
|
I
|
| | Knowledge <=3.45: Ineffective (17.0/5.0)
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Number of Leaves : 9

Size of the tree : 17

Time taken to build model: 0 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 109 60.5556 %
Incorrectly Classified Instances 71 39.4444 %
Kappa statistic 0.1822

Mean absolute error 0.4113

Root mean squared error 0.5108

Relative absolute error 87.4088 %

Root relative squared error 105.3258 %

Total Number of Instances 180

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

0.544 0.357 0.481 0.544 0.510 0.183 0.623 0.457
Effective

0.643 0.456 0.699 0.643 0.670 0.183 0.623 0.725
Ineffective
Weighted Avg. 0.606 0.419 0.616 0.606 0.610 0.183 0.623 0.624

=== Confusion Matrix ===
a b <--classified as

37 31| a = Effective
40 72| b = Ineffective
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Appendix U

Sample of ROC Value Output Using SPSS Tool

This appendix presents the Receiver Operating Characteristic (ROC) curve and value output from
SPSS. The ROC curve was used to assess the performance of the predictive models, particularly

their ability to distinguish between different performance classes.

1 *Output? [Document1] - IBM PSS Statistics Viewer

File Edit View Data Transform Insett Format Analyze DirectMarkstng — Graphs  Utiities  Add-ons  Window  Help
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This is a sample of logistic regression area under ROC value output using SPSS tool.
» Area Under the Curve

Area Under the Curve

Test Result Variable(s): Predicted probability
Asymptotic 95% Confidence Interval
Area Std. Error? Asymptotic Sig.” Lower Bound Upper Bound
.877 .016 .000 .845 .909

The test result variable(s): Predicted probability has at least one tie between the positive actual state group

and the negative actual state group. Statistics may be biased.
a. Under the nonparametric assumption

b. Null hypothesis: true area = 0.5
> Table of the coordinated of the curves

Coordinates of the Curve

Test Result Variable(s): Predicted probabilit

Positive if Greater Than or Equal To? Sensitivity 1 - Specificity
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.0000000
.0202824
.0287332
.0329347
.0371233
.0389613
.0452935
.0584207
.0677662
.0703781
.0764225
.0871294
.0957128
.0991184
.1017506
.1049373
.1068945
.1086095
1099426
1116574
.1133949
1163641
1221460
.1320608
1406226
.1449859
.1495618
.1547303
.1670099
.1855494
.1980402
.2166509
.2354080
.2387813
.2431642
.2565761
.2691558
.2800787
.2911487
.2991329
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1.000
1.000
1.000
1.000
.980
.980
.980
.980
.980
.980
.980
961
941
922
922
922
922
922
922
922
.922
922
.922
.922
.922
.922
.922
.922
.922
.922
.922
.922
.902
.902
.902
.902
.902
.902
.892
.892

1.000
.986
971
957
957
942
.928
913
.899
.884
.870
.870
.870
.870
.855
.841
.826
.812
797
.783
.768
754
739
725
.710
.696
.681
.667
.652
.638
.623
.609
.609
.594
.580
.565
.551
.536
.536
522




.3099393
.3183179
.3215377
.3256601
.3322520
.3365980
3377421
.3405317
.3436240
.3450636
.3490349
.3537606
.3560362
.3587788
.3628548
3712444
.3826762
14018615
4199693
4278312
4376323
4466397
4528386
14860710
.5185848
5226381
5442137
5673362
.5758607
.5856884
5927218
5979844
.6033616
6071771
.6200465
.6321110
.6358551
.6414809
.6614873
.6814723
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.891
.889
.886
.882
.882
.822
.880
.880
.879
.878
.879
.879
877
874
871
871
.845
.824
.824
.824
.804
.804
.804
.804
.804
.804
.784
765
765
745
745
745
745
725
.706
.686
.686
.667
.647
.627

522
522
507
493
478
464
449
435
420
406
398
291
291
291
291
285
281
279
278
275
275
261
246
232
217
203
203
203
188
188
174
159
145
145
145
145
130
130
130
130




.6864132
.6904506
.6951263
.6995159
7029652
.7058353
7099360
7136396
7141547
7171876
7222509
7301039
7434881
7555885
7606433
7627721
7693733
7753777
.7805204
7939784
.8180041
.8395441
.8495498
.8607180
.8697731
.8767519
.8847038
.8872856
.8888837
.8975608
.9080958
.9130525
9147383
9237325
.9383277
9494956
.9572649
.9606474
.9648778
1.0000000

.608
.608
.608
.608
.608
.588
.569
.569
.549
.529
.529
.529
510
490
451
431
412
.392
373
373
.353
.353
.333
314
.294
275
.255
.235
216
.196
176
157
137
118
.098
.078
.059
.039
.020
.000

.130
116
101
.087
.072
.072
.072
.058
.058
.058
.043
.029
.029
.029
.029
.029
.029
.029
.029
.014
.014
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
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a. The smallest cutoff value is the minimum observed test value minus 1, and the largest cutoff value is the maximum

observed test value plus 1. All the other cutoff values are the averages of two consecutive ordered observed test values.
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Appendix V

Sample of ANN (WEKA outputs)

This appendix contains the output from the ANN model generated using WEKA. It shows how the
ANN model performed in predicting developers' performance, providing key metrics.

» Easy NTP
=== Run information ===

Scheme:  weka.classifiers.functions.MultilayerPerceptron -L 0.3 -M 0.2-N 500 -V0-S0-E20-H a
Relation:  easyNTP
Instances: 180
Attributes: 7
Gender
Knowledge
IE
SN
FT
JP
class
Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

Sigmoid Node 0
Inputs  Weights
Threshold -1.612323991080546
Node 2 4.079162368936238
Node 3 4.104727445668504
Node 4 5.247351573734934
Node 5 3.1777362869507515
Sigmoid Node 1
Inputs Weights
Threshold 1.6123450792869298
Node 2 -4.1076454996743745
Node 3 -4.075942931252122
Node 4 -5.247319954365999
Node 5 -3.177646115985696
Sigmoid Node 2
Inputs Weights
Threshold 1.6319834284718058
Attrib Gender=MALE 1.1844660639065632
Attrib Knowledge 9.026732310349168
Attrib IE=Introvert 0.5314094885708147
Attrib SN=Inituiting 0.09204460600113731
Attrib FT=Feeling 3.0948677179438286
Attrib JP=Judging -0.37823219952998555
Sigmoid Node 3
Inputs  Weights
Threshold 1.5964033464805456
Attrib Gender=MALE 1.019012189844543
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Attrib Knowledge 8.88492206004524
Attrib IE=Introvert 0.8588663459270639
Attrib SN=Inituiting 0.050506935843821384
Attrib FT=Feeling 3.265965524741468
Attrib JP=Judging -0.4711669934442308
Sigmoid Node 4
Inputs  Weights
Threshold -1.6705827346063178
Attrib Gender=MALE 2.2929243066465634
Attrib Knowledge 5.058311374612433
Attrib IE=Introvert 1.172909852667952
Attrib SN=Inituiting -2.9535195628683235
Attrib FT=Feeling -3.31154274000043
Attrib JP=Judging -5.329264347834518
Sigmoid Node 5
Inputs  Weights
Threshold 2.182455439077911
Attrib Gender=MALE 2.8294468797991916
Attrib Knowledge 3.8237876476374724
Attrib IE=Introvert 2.4295701586303284
Attrib SN=Inituiting 3.561823936269066
Attrib FT=Feeling -0.9728854021178202
Attrib JP=Judging 0.8795926486385012
Class Effective
Input
Node 0
Class Ineffective
Input
Node 1

Time taken to build model: 0.24 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 166 92.2222 %
Incorrectly Classified Instances 14 717778 %
Kappa statistic 0.1834

Mean absolute error 0.0965

Root mean squared error 0.2707

Relative absolute error 80.7291 %

Root relative squared error 112.9339 %

Total Number of Instances 180

=== Detailed Accuracy By Class ===
TP Rate FP Rate Precision Recall F-Measure MCC  ROC Area PRC Area Class
0.970 0.818 0.948 0.970 0.959 0.189 0.806 0.984 Effective
0.182 0.030 0.286 0.182 0.222 0.189 0.806 0.196 Ineffective
Weighted Avg. 0.922 0.770 0.908 0.922 0.914 0.189 0.806 0.936
=== Confusion Matrix ===

a b <--classified as
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164 5| a= Effective
9 2| b=Ineffective

» Easy TP
=== Run information ===

Scheme:  weka.classifiers.functions.MultilayerPerceptron -L 0.3 -M 0.2-N500-V0-S0-E20-H a
Relation:  easyTP
Instances: 180
Attributes: 7
Gender
Knowledge
IE
SN
FT
JP
class
Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

Sigmoid Node 0
Inputs  Weights
Threshold -7.22168273048237
Node 2 7.333868135387107
Node 3 4.562277510401897
Node 4 3.797147805782776
Node 5 3.453582937255274
Sigmoid Node 1
Inputs  Weights
Threshold 7.222307991067093
Node 2 -7.334629072986696
Node 3 -4.5626594554813895
Node 4 -3.7974248993198745
Node 5 -3.453847221245762
Sigmoid Node 2
Inputs Weights
Threshold 0.5226748837965672
Attrib Gender=MALE 5.146757419581444
Attrib Knowledge 5.999725607573578
Attrib IE=Introvert -3.2667817370684906
Attrib SN=Inituiting 4.268784523490736
Attrib FT=Feeling 3.8644008532666367
Attrib JP=Judging -3.9616957991438526
Sigmoid Node 3
Inputs Weights
Threshold 7.302698585129874
Attrib Gender=MALE 2.3656979259129978
Attrib Knowledge 8.948062681036513
Attrib IE=Introvert 2.9376912177422803
Attrib SN=Inituiting -2.107777387157654
Attrib FT=Feeling -0.9624181933347362
Attrib JP=Judging -0.1365005990787547
Sigmoid Node 4
Inputs Weights
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Threshold 4.969538916384451
Attrib Gender=MALE -1.8808851521312042
Attrib Knowledge 9.972278549828708
Attrib IE=Introvert -1.2675324582671317
Attrib SN=Inituiting -1.2643120674751522
Attrib FT=Feeling 0.16899828294881278
Attrib JP=Judging 1.3656926864663814
Sigmoid Node 5
Inputs  Weights
Threshold 0.06478190927587092
Attrib Gender=MALE 3.6909988879126376
Attrib Knowledge 3.4395861992450745
Attrib IE=Introvert -3.2186829000064963
Attrib SN=Inituiting 1.2640601708427424
Attrib FT=Feeling -5.66595331919958
Attrib JP=Judging 1.3997385073246207
Class Effective
Input
Node 0
Class Ineffective
Input
Node 1

Time taken to build model: 0.1 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 155 86.1111 %
Incorrectly Classified Instances 25 13.8889 %
Kappa statistic 0.2545

Mean absolute error 0.1559

Root mean squared error 0.3516

Relative absolute error 66.474 %

Root relative squared error 103.3485 %

Total Number of Instances 180

=== Detailed Accuracy By Class ===
TP Rate FP Rate Precision Recall F-Measure MCC  ROC Area PRC Area Class
0.955 0.750 0.892 0.955 0.923 0.269 0.731 0.933 Effective
0.250 0.045 0.462 0.250 0.324 0.269 0.731 0.350 Ineffective

Weighted Avg. 0.861 0.656 0.835 0.861 0.843 0.269 0.731 0.855

=== Confusion Matrix ===

a b <--classified as

149 7| a=Effective

18 6| b= Ineffective

> Medium NTP

=== Run information ===

Scheme:  weka.classifiers.functions.MultilayerPerceptron -L 0.3 -M 0.2-N 500 -V0-S0-E20-H a
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Relation: mediumNTP
Instances: 180
Attributes: 7

Gender

Knowledge

IE

SN

FT

JP

class
Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

Sigmoid Node 0
Inputs  Weights
Threshold -8.308990761461665
Node 2 7.082345751040713
Node 3 4.9429271389675415
Node 4 4.983408930490522
Node 5 8.353746079837427
Sigmoid Node 1
Inputs  Weights
Threshold 8.309255160641099
Node 2 -7.082578553926097
Node 3 -4.9430688433524965
Node 4 -4.983546064557313
Node 5 -8.354010955402025
Sigmoid Node 2
Inputs  Weights
Threshold 1.0682762291753949

Attrib Gender=MALE 1.7540606294167198

Attrib Knowledge 12.088343832505172

Attrib IE=Introvert -6.6308943415813415

Attrib SN=Inituiting 2.4992510789914255

Attrib FT=Feeling 4.76043748753173

Attrib JP=Judging -6.255527322652588
Sigmoid Node 3

Inputs Weights

Threshold 1.0217402331726657

Attrib Gender=MALE -1.0800195912550934

Attrib Knowledge 11.288263609867677

Attrib IE=Introvert -1.7480956032330501

Attrib SN=Inituiting -2.7326496916400815

Attrib FT=Feeling -2.4444863043685476

Attrib JP=Judging -0.6310326956320127
Sigmoid Node 4

Inputs Weights

Threshold -0.973075837212566

Attrib Gender=MALE -0.6632313401524159

Attrib Knowledge 10.283039276639531

Attrib IE=Introvert 1.3521304086695598

Attrib SN=Inituiting -0.3949393512713436

Attrib FT=Feeling 4.135536681904543

Attrib JP=Judging 3.1341233560419135
Sigmoid Node 5
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Inputs  Weights
Threshold -1.0371385053461835
Attrib Gender=MALE 4.550485242557211
Attrib Knowledge 4.584979339481953
Attrib IE=Introvert 3.9938344458141963
Attrib SN=Inituiting 4.409500198516426
Attrib FT=Feeling -1.9596509054419995
Attrib JP=Judging -1.7911377321578088
Class Effective
Input
Node 0
Class Ineffective
Input
Node 1

Time taken to build model: 0.07 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 151 83.8889 %
Incorrectly Classified Instances 29 16.1111 %
Kappa statistic 0.5381

Mean absolute error 0.1761

Root mean squared error 0.3544

Relative absolute error 49.7877 %

Root relative squared error 84.4754 %

Total Number of Instances 180

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure MCC  ROC Area PRC Area Class

0.899 0.366 0.893 0.899 0.896 0.538 0.849 0.933 Effective

0.634 0.101 0650 0.634 0.642 0.538 0.849 0.715 Ineffective
Weighted Avg. 0.839 0.305 0.838 0.839 0.838 0.538 0.849 0.883

=== Confusion Matrix ===

a b <--classified as
125 14| a= Effective
15 26| b = Ineffective

> Medium TP

=== Run information ===

Scheme:  weka.classifiers.functions.MultilayerPerceptron -L 0.3 -M 0.2-N 500 -V0-S0-E20-H a
Relation:  mediumTP
Instances: 180
Attributes: 7
Gender
Knowledge
IE
SN
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FT
JP
class
Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

Sigmoid Node 0
Inputs  Weights
Threshold -2.747814463835889
Node 2 2.675676674061201
Node 3 2.367000195416931
Node 4 2.77036049432141
Node 5 2.2527349422836687
Sigmoid Node 1
Inputs  Weights
Threshold 2.747814463833765
Node 2 -2.675676674058894
Node 3 -2.3670001954153013
Node 4 -2.7703604943197457
Node 5 -2.252734942281631
Sigmoid Node 2
Inputs  Weights
Threshold -8.28044612238649
Attrib Gender=MALE -1.9982507868510968
Attrib Knowledge 9.06411570924355
Attrib IE=Introvert -0.2616024964660808
Attrib SN=Inituiting -0.9992850432639037
Attrib FT=Feeling 4.538041884732333
Attrib JP=Judging 4.860527539396203
Sigmoid Node 3
Inputs  Weights
Threshold -6.180477210730169
Attrib Gender=MALE 11.008644131822377
Attrib Knowledge 5.746034282035654
Attrib IE=Introvert -2.3054202879031847
Attrib SN=Inituiting 3.355508331343503
Attrib FT=Feeling 1.4565793977379453
Attrib JP=Judging -4.722796461675759
Sigmoid Node 4
Inputs Weights
Threshold  -6.499403034610365
Attrib Gender=MALE 0.42648505651798974
Attrib Knowledge 14.424367329423161
Attrib IE=Introvert -2.6182749082380745
Attrib SN=Inituiting 1.2068771221576318
Attrib FT=Feeling -5.8368848340413
Attrib JP=Judging 0.9879813423522679
Sigmoid Node 5
Inputs  Weights
Threshold -7.421029274386928
Attrib Gender=MALE -5.078691567410166
Attrib Knowledge 3.793183095559527
Attrib IE=Introvert 6.98982559567093
Attrib SN=Inituiting -4.69560378282179
Attrib FT=Feeling 3.478157325932317
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Attrib JP=Judging -5.026291284959339
Class Effective

Input

Node 0
Class Ineffective

Input

Node 1

Time taken to build model: 0.1 seconds

=== Stratified cross-validation ===

=== Summary —==

Correctly Classified Instances 113 62.7778 %
Incorrectly Classified Instances 67 37.2222 %
Kappa statistic 0.2275

Mean absolute error 0.4146

Root mean squared error 0.5424

Relative absolute error 84.9177 %

Root relative squared error 109.7794 %

Total Number of Instances 180

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure MCC  ROC Area PRC Area Class

0.712 0.487 0.667 0.712 0.688 0.228 0.626 0.707 Effective

0513 0.288 0.565 0.513 0.538 0.228 0.626 0.517 Ineffective
Weighted Avg. 0.628 0.403 0.624 0.628 0.625 0.228 0.626 0.627

=== Confusion Matrix ===

a b <--classified as
74 30 | a = Effective
37 39| b= Ineffective

» Hard NTP
=== Run information ===

Scheme:  weka.classifiers.functions.MultilayerPerceptron -L 0.3 -M 0.2-N500-V0-S0-E20-Ha
Relation: hard NTP
Instances: 180
Attributes: 7
Gender
Knowledge
IE
SN
FT
JP
class
Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===
Sigmoid Node 0
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Inputs  Weights

Threshold -10.217541248679213
Node 2 4.647094885955859
Node 3 6.202629706150964
Node 4 6.623577461305876
Node 5 6.5178911602332334

Sigmoid Node 1

Inputs  Weights

Threshold 10.217500395288742
Node 2 -4.6470804961408465
Node 3 -6.202604025428656
Node 4 -6.623552965281675
Node5 -6.517863401273089

Sigmoid Node 2

Inputs  Weights

Threshold  -2.0356576356135623

Attrib Gender=MALE 6.2272580642629825
Attrib Knowledge 13.577551074252629
Attrib IE=Introvert -1.4099865874551059
Attrib SN=Inituiting 5.225396245134555
Attrib FT=Feeling 2.988598282838154
Attrib JP=Judging -0.042940751742980184

Sigmoid Node 3

Inputs  Weights

Threshold -1.3518520568456518

Attrib Gender=MALE -1.8596118294147514
Attrib Knowledge 6.456161446393677
Attrib IE=Introvert -7.707807228829701
Attrib SN=Inituiting 4.921657865510223
Attrib FT=Feeling 1.7777401192795685
Attrib JP=Judging -3.276457638348229

Sigmoid Node 4

Inputs  Weights

Threshold -1.3535244805541669

Attrib Gender=MALE -4.2815380665894
Attrib Knowledge 17.12174623844943
Attrib IE=Introvert 1.146227607473292
Attrib SN=Inituiting -1.6775641796273912
Attrib FT=Feeling 0.2594982298094743
Attrib JP=Judging -4.628070499944366

Sigmoid Node 5

Inputs Weights

Threshold -1.2857259631462126

Attrib Gender=MALE 2.6256636016308184
Attrib Knowledge 10.85448628883054
Attrib IE=Introvert 2.639042912070103
Attrib SN=Inituiting -1.6077392161628798
Attrib FT=Feeling 3.846591774591153
Attrib JP=Judging 6.687131032861244

Class Effective

Input
Node 0

Class Ineffective

Input
Node 1
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Time taken to build model: 0.12 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 153 85 %
Incorrectly Classified Instances 27 15 %
Kappa statistic 0.662

Mean absolute error 0.1846

Root mean squared error 0.3638

Relative absolute error 40.2288 %

Root relative squared error 75.9792 %

Total Number of Instances 180

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure MCC  ROC Area PRC Area Class

0.922 0.281 0.856 0.922 0.888 0.666 0.874 0.905 Effective

0.719 0.078 0.836 0.719 0.773 0.666 0.874 0.834 |Ineffective
Weighted Avg. 0.850 0.209 0.849 0.850 0.847 0.666 0.874 0.880

=== Confusion Matrix ===

a b <--classified as
107 9| a= Effective
18 46| b = Ineffective

» Hard TP
=== Run information ===

Scheme:  weka.classifiers.functions.MultilayerPerceptron -L 0.3 -M 0.2-N 500-V0-S0-E20-Ha
Relation: hardTP
Instances: 180
Attributes: 7
Gender
Knowledge
IE
SN
FT
JP
class
Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

Sigmoid Node 0
Inputs Weights
Threshold 6.749454483898948
Node 2 -5.891968918232094
Node 3 -1.9431110314402587
Node 4 -5.941932241639852
Node 5 -5.605640441552534
Sigmoid Node 1
Inputs Weights
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Threshold -6.74945710251745
Node 2 5.89197137132199
Node 3 1.9431112183019503
Node 4 5.941934803239858
Node 5 5.605642912082491
Sigmoid Node 2
Inputs  Weights
Threshold 3.7923355025233945
Attrib Gender=MALE -2.754960570670259
Attrib Knowledge -3.6537758551882233
Attrib IE=Introvert -10.191853420058983
Attrib SN=Inituiting 6.406966929060274
Attrib FT=Feeling 3.3751456067965697
Attrib JP=Judging -8.441706674597368
Sigmoid Node 3
Inputs  Weights
Threshold 9.67122823469385
Attrib Gender=MALE -5.868995538609118
Attrib Knowledge -10.174776639899621
Attrib IE=Introvert -2.5492162088030956
Attrib SN=Inituiting 0.3676612734120312
Attrib FT=Feeling 7.937850673599199
Attrib JP=Judging -0.5429045564379983
Sigmoid Node 4
Inputs  Weights
Threshold -10.974570833535184
Attrib Gender=MALE 3.4103457217936923
Attrib Knowledge -7.735146406566782
Attrib IE=Introvert -0.6282057153681436
Attrib SN=Inituiting -5.435086974770956
Attrib FT=Feeling -4.989358659368399
Attrib JP=Judging 5.513238001430623
Sigmoid Node 5
Inputs Weights
Threshold 0.7672781382156343
Attrib Gender=MALE -1.9008896623159002
Attrib Knowledge -12.640560004902985
Attrib IE=Introvert 8.911869390538838
Attrib SN=Inituiting -2.343580264323733
Attrib FT=Feeling -4.5928840990501305
Attrib JP=Judging 4.376194875912708
Class Effective
Input
Node 0
Class Ineffective
Input
Node 1

Time taken to build model: 0.09 seconds

=== Stratified cross-validation ===

=== Summary ===
Correctly Classified Instances 123 68.3333 %
Incorrectly Classified Instances 57 31.6667 %
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Kappa statistic 0.3284

Mean absolute error 0.3907

Root mean squared error 0.5115
Relative absolute error 83.0219 %
Root relative squared error 105.4715 %
Total Number of Instances 180

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure MCC  ROC Area PRC Area Class

0.588 0.259 0.580 0.588 0.584 0.328 0.643 0.495 Effective

0.741 0.412 0.748 0.741 0.744 0.328 0.643 0.720 Ineffective
Weighted Avg. 0.683 0.354 0.684 0.683 0.684 0.328 0.643 0.635

=== Confusion Matrix ===
a b <--classified as

40 28 | a = Effective
29 83| b = Ineffective
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Appendix W

Sample of K-Nearest Neighbour Algorithm (WEKA outputs)

This appendix includes a sample output from the KNN algorithm in WEKA. It displays the
classification results and performance metrics, helping to evaluate the algorithm's accuracy in
predicting developer performance.

The results of KNN when K value is 13
» [Easy NTP

=== Run information ===

Scheme:  weka.classifiers.lazy.1Bk -K 13 -W 0 -A "weka.core.neighboursearch.LinearNNSearch -A
\"weka.core.EuclideanDistance -R first-last\""
Relation:  easyNTP
Instances: 180
Attributes: 7

Gender

Knowledge

IE

SN

FT

JP

class
Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===
IB1 instance-based classifier

using 13 nearest neighbour(s) for classification
Time taken to build model: 0 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 169 93.8889 %
Incorrectly Classified Instances 11 6.1111 %
Kappa statistic 0

Mean absolute error 0.0916

Root mean squared error 0.2249

Relative absolute error 76.6376 %

Root relative squared error 93.8053 %

Total Number of Instances 180

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure MCC  ROC Area PRC Area Class

1.000 1.000 0.939 1.000 0968 ? 0.857 0.985 Effective
0.000 0.000 0 0.000 0 ? 0.857  0.239 Ineffective
Weighted Avg.0.939 0.939 0 0.939 0 ? 0.857 0.939
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=== Confusion Matrix ===

a b <--classified as
169 0| a= Effective
11 0| b= Ineffective

> FEasy TP
=== Run information ===

Scheme:  weka.classifiers.lazy.1Bk -K 13 -W 0 -A "weka.core.neighboursearch.LinearNNSearch -A
\"weka.core.EuclideanDistance -R first-last\""
Relation:  easyTP
Instances: 180
Attributes: 7

Gender

Knowledge

IE

SN

FT

JP

class
Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===
IB1 instance-based classifier

using 13 nearest neighbour(s) for classification
Time taken to build model: 0 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 156 86.6667 %
Incorrectly Classified Instances 24 13.3333 %
Kappa statistic 0

Mean absolute error 0.2053

Root mean squared error 0.3399

Relative absolute error 87.5438 %

Root relative squared error 99.897 %

Total Number of Instances 180

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure MCC  ROC Area PRC Area Class
1.000 1.000 0.867 1.000 0.929 ~? 0.633 0.898 Effective
0.000 0.000 ? 0.000 ? ? 0.633 0.207 Ineffective

Weighted Avg. 0.867 0.867 ? 0.867 ? ? 0.633 0.806

=== Confusion Matrix ===
a b <--classified as

156 0| a= Effective
24 0| b= Ineffective
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» Medium NTP
=== Run information ===

Scheme:  weka.classifiers.lazy.1Bk -K 13 -W 0 -A "weka.core.neighboursearch.LinearNNSearch -A
\"weka.core.EuclideanDistance -R first-last\""
Relation: mediumNTP
Instances: 180
Attributes: 7

Gender

Knowledge

IE

SN

FT

JP

class
Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===
IB1 instance-based classifier

using 13 nearest neighbour(s) for classification
Time taken to build model: 0 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 142 78.8889 %
Incorrectly Classified Instances 38 211111 %
Kappa statistic 0.1913

Mean absolute error 0.2769

Root mean squared error 0.3708

Relative absolute error 78.2821 %

Root relative squared error 88.3921 %

Total Number of Instances 180

=== Detailed Accuracy By Class ===
TP Rate FP Rate Precision Recall F-Measure MCC  ROC Area PRC Area Class
0971 0.829 0.799 0.971 0.877 0.249 0.800 0.905 Effective
0.171 0.029 0.636 0.171 0.269 0.249 0.800 0.548 Ineffective

Weighted Avg. 0.789 0.647 0.762 0.789 0.738 0.249 0.800 0.824

=== Confusion Matrix ===

a b <--classified as

135 4| a=Effective

34 7| b= lIneffective

» Medium TP

=== Run information ===

Scheme:  weka.classifiers.lazy.IBk -K 13 -W 0 -A "weka.core.neighboursearch.LinearNNSearch -A
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\"weka.core.EuclideanDistance -R first-last\
Relation: mediumTP
Instances: 180
Attributes: 7
Gender
Knowledge
IE
SN
FT
JP
class
Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===
IB1 instance-based classifier

using 13 nearest neighbour(s) for classification
Time taken to build model: 0 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 115 63.8889 %
Incorrectly Classified Instances 65 36.1111 %
Kappa statistic 0.2313

Mean absolute error 0.4427

Root mean squared error 0.4758

Relative absolute error 90.6707 %

Root relative squared error 96.2946 %

Total Number of Instances 180

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure MCC  ROC Area PRC Area Class

0.788 0.566 0.656 0.788 0.716 0.239 0.660 0.694 Effective

0.434 0.212 0.600 0.434 0.504 0.239 0.660 0.564 Ineffective
Weighted Avg. 0.639 0.416 0.632 0.639 0.627 0.239 0.660 0.639

=== Confusion Matrix ===

a b <--classified as
82 22| a = Effective
43 33| b = Ineffective

» Hard NTP
=== Run information ===

Scheme:  weka.classifiers.lazy.IBk -K 13 -W 0 -A "weka.core.neighboursearch.LinearNNSearch -A
\"weka.core.EuclideanDistance -R first-last\""
Relation:  hardNTP
Instances: 180
Attributes: 7
Gender
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Knowledge
IE
SN
FT
JP
class
Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===
IB1 instance-based classifier

using 13 nearest neighbour(s) for classification
Time taken to build model: 0 seconds

=== Stratified cross-validation ===

=== Summary —==

Correctly Classified Instances 144 80 %
Incorrectly Classified Instances 36 20 %
Kappa statistic 0.5199

Mean absolute error 0.3372

Root mean squared error 0.3986

Relative absolute error 73.4745 %

Root relative squared error 83.2342 %

Total Number of Instances 180

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure MCC  ROC Area PRC Area Class

0.957 0.484 0.782 0.957 0.860 0.554 0.833 0.861 Effective

0.516 0.043 0.868 0.516 0.647 0.554 0.833 0.740 Ineffective
Weighted Avg. 0.800 0.327 0.813 0.800 0.785 0.554 0.833 0.818

=== Confusion Matrix ===

a b <--classified as
111 5| a= Effective
31 33| b= Ineffective

» Hard TP
=== Run information ===

Scheme:  weka.classifiers.lazy.IBk -K 13 -W 0 -A "weka.core.neighboursearch.LinearNNSearch -A
\"weka.core.EuclideanDistance -R first-last\""
Relation:  hardTP
Instances: 180
Attributes: 7

Gender

Knowledge

IE

SN

FT

JP
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class
Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===
IB1 instance-based classifier

using 13 nearest neighbour(s) for classification
Time taken to build model: 0 seconds

=== Stratified cross-validation ===

=== Summary —==

Correctly Classified Instances 117 65 %
Incorrectly Classified Instances 63 35 %
Kappa statistic 0.1925

Mean absolute error 0.4422

Root mean squared error 0.4756

Relative absolute error 93.9554 %

Root relative squared error 98.0794 %

Total Number of Instances 180

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure MCC
0.338 0.161 0.561 0.338 0.422 0.205 0.636
0.839 0.662 0.676 0.839 0.749 0.205 0.636

ROC Area PRC Area Class
0.475 Effective
0.734  Ineffective

Weighted Avg. 0.650 0.472 0.633 0.650 0.625 0.205 0.636 0.636

=== Confusion Matrix ===
a b <--classified as

23 45| a = Effective
18 94 | b = Ineffective
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Appendix X

Sample of Support Vector Machine (WEKA output)

This appendix contains the output from the SVM model in WEKA, providing classification results
and metrics used to evaluate the model's performance in predicting the outcomes.

» [Easy NTP
=== Run information ===

Scheme:  weka.classifiers.functions.SMO -C 1.0 -L 0.001 -P 1.0E-12-N 0 -V -1-W 1 -K
"weka.classifiers.functions.supportVector.PolyKernel -E 1.0 -C 250007 -calibrator
"weka.classifiers.functions.Logistic -R 1.0E-8 -M -1 -num-decimal-places 4"
Relation:  easyNTP
Instances: 180
Attributes: 7

Gender

Knowledge

IE

SN

FT

JP

class
Test mode:  10-fold cross-validation

=== Classifier model (full training set) ===
SMO

Kernel used:
Linear Kernel: K(X,y) = <x,y>

Classifier for classes: Effective, Ineffective
BinarySMO
Machine linear: showing attribute weights, not support vectors.

-0.004 * (normalized) Gender=MALE
-0.018 * (normalized) Knowledge
-0.0014 * (normalized) IE=Introvert
-0.0004 * (normalized) SN=Inituiting
-0.0005 * (normalized) FT=Feeling
0.0019 * (normalized) JP=Judging

- 0.9942

+ + + + +

Number of kernel evaluations: 2289 (82.396% cached)
Time taken to build model: 0.2 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 169 93.8889 %
Incorrectly Classified Instances 11 6.1111 %
Kappa statistic 0
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Mean absolute error 0.0611

Root mean squared error 0.2472
Relative absolute error 51.1338 %
Root relative squared error 103.1196 %
Total Number of Instances 180

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure MCC  ROC Area PRC Area Class
1.000 1.000 0.939 1.000 0.968 ? 0.500 0.939 Effective
0.000 0.000 ? 0.000 ? ? 0.500 0.061 Ineffective

Weighted Avg. 0.939 0.939 ? 0939 ? ? 0.500 0.885

=== Confusion Matrix ===

a b <--classified as
169 0| a = Effective
11 0| b= Ineffective

> Easy TP
=== Run information ===

Scheme:  weka.classifiers.functions.SMO -C 1.0 -L 0.001 -P 1.0E-12-N 0 -V -1-W 1 -K
"weka.classifiers.functions.supportVector.PolyKernel -E 1.0 -C 250007 -calibrator
"weka.classifiers.functions.Logistic -R 1.0E-8 -M -1 -num-decimal-places 4"
Relation:  easyTP
Instances: 180
Attributes: 7

Gender

Knowledge

IE

SN

FT

JP

class
Test mode:  10-fold cross-validation

=== Classifier model (full training set) ===
SMO

Kernel used:
Linear Kernel: K(x,y) = <x,y>

Classifier for classes: Effective, Ineffective
BinarySMO
Machine linear: showing attribute weights, not support vectors.

-0.0012 * (normalized) Gender=MALE
-0.0051 * (normalized) Knowledge
0.0007 * (normalized) IE=Introvert
0.0004 * (normalized) SN=Inituiting
-0.0003 * (normalized) FT=Feeling
0.0002 * (normalized) JP=Judging

+ + + + +
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- 09978

Number of kernel evaluations: 5228 (81.418% cached)

Time taken to build model: 0.01 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 156 86.6667 %
Incorrectly Classified Instances 24 13.3333 %
Kappa statistic 0

Mean absolute error 0.1333

Root mean squared error 0.3651

Relative absolute error 56.8458 %

Root relative squared error 107.3283 %

Total Number of Instances 180

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure MCC  ROC Area PRC Area Class
1.000 1.000 0.867 1.000 0.929 ~? 0.500 0.867 Effective
0.000 0.000 2 0.000 ? ? 0.500 0.133 Ineffective

Weighted Avg. 0.867 0.867 ? 0.867 ? ? 0.500 0.769

=== Confusion Matrix ===

a b <--classified as
156 0| a= Effective
24 0| b= Ineffective

» Medium NTP

=== Run information ===

Scheme:  weka.classifiers.functions.SMO -C 1.0 -L 0.001 -P 1.0E-12-N0 -V -1 -W 1 -K
"weka.classifiers.functions.supportVector.PolyKernel -E 1.0 -C 250007" -calibrator
"weka.classifiers.functions.Logistic -R 1.0E-8 -M -1 -num-decimal-places 4"
Relation:  mediumNTP
Instances: 180
Attributes: 7

Gender

Knowledge

IE

SN

FT

JP

class
Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

SMO
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Kernel used:
Linear Kernel: K(x,y) = <x,y>

Classifier for classes: Effective, Ineffective
BinarySMO
Machine linear: showing attribute weights, not support vectors.

-0.6142 * (normalized) Gender=MALE
-3.7482 * (normalized) Knowledge
0.1089 * (normalized) IE=Introvert
-0.095 * (normalized) SN=Inituiting
-0.0398 * (normalized) FT=Feeling
0.5802 * (normalized) JP=Judging
1.1749

+ + + 4+ + +

Number of kernel evaluations: 4569 (75.082% cached)
Time taken to build model: 0.04 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 155 86.1111 %
Incorrectly Classified Instances 25 13.8889 %
Kappa statistic 0.5799

Mean absolute error 0.1389

Root mean squared error 0.3727

Relative absolute error 39.272 %

Root relative squared error 88.8411 %

Total Number of Instances 180

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure MCC  ROC Area PRC Area Class

0.935 0.390 0.890 0935 0.912 0.584 0.773 0.883 Effective

0.610 0.065 0.735 0.610 0.667 0.584 0.773 0.537 Ineffective
Weighted Avg. 0.861 0.316 0.855 0.861 0.856 0.584 0.773 0.804

=== Confusion Matrix ===

a b <--classified as
130 9| a=Effective
16 25| b = Ineffective

» Medium TP
=== Run information ===

Scheme:  weka.classifiers.functions.SMO -C 1.0 -L 0.001 -P 1.0E-12-N0 -V -1-W 1 -K
"weka.classifiers.functions.supportVector.PolyKernel -E 1.0 -C 250007" -calibrator
"weka.classifiers.functions.Logistic -R 1.0E-8 -M -1 -num-decimal-places 4"

Relation:  mediumTP

Instances: 180

Attributes: 7
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Gender
Knowledge
IE
SN
FT
JP
class
Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===
SMO

Kernel used:
Linear Kernel: K(x,y) = <x,y>

Classifier for classes: Effective, Ineffective
BinarySMO
Machine linear: showing attribute weights, not support vectors.

-0.4416 * (normalized) Gender=MALE
-3.0824 * (normalized) Knowledge
-0.0853 * (normalized) IE=Introvert
0.0504 * (normalized) SN=Inituiting
0.2821 * (normalized) FT=Feeling
0.0285 * (normalized) JP=Judging
1.6227

+ 4+ + + + +

Number of kernel evaluations: 5828 (76.486% cached)

Time taken to build model: 0.03 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 126 70 %
Incorrectly Classified Instances 54 30 %
Kappa statistic 0.3649

Mean absolute error 0.3

Root mean squared error 0.5477

Relative absolute error 61.4488 %

Root relative squared error 110.8552 %

Total Number of Instances 180

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure MCC
0.827 0.474 0705 0.827 0.761 0.373 0.677
0.526 0.173 0.690 0.526 0.597 0.373 0.677

ROC Area PRC Area Class

0.683 Effective

0.563

Ineffective

Weighted Avg. 0.700 0.347 0.698 0.700 0.692 0.373 0.677 0.632

=== Confusion Matrix ===
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a b <--classified as
86 18 | a = Effective
36 40| b = Ineffective

> Hard NTP

=== Run information ===

Scheme:  weka.classifiers.functions.SMO -C 1.0 -L 0.001 -P 1.0E-12-N 0 -V -1-W 1 -K
"weka.classifiers.functions.supportVector.PolyKernel -E 1.0 -C 250007 -calibrator
"weka.classifiers.functions.Logistic -R 1.0E-8 -M -1 -num-decimal-places 4"
Relation:  hardNTP
Instances: 180
Attributes: 7

Gender

Knowledge

IE

SN

FT

JP

class
Test mode:  10-fold cross-validation

=== Classifier model (full training set) ===
SMO

Kernel used:
Linear Kernel: K(x,y) = <x,y>

Classifier for classes: Effective, Ineffective
BinarySMO
Machine linear: showing attribute weights, not support vectors.

-0.114 * (normalized) Gender=MALE
-4.4003 * (normalized) Knowledge
0.4335 * (normalized) IE=Introvert
-0.3197 * (normalized) SN=Inituiting
-0.2605 * (normalized) FT=Feeling
-0.0261 * (normalized) JP=Judging
2.1269

+ + + + + +

Number of kernel evaluations: 5468 (79.383% cached)
Time taken to build model: 0.02 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 150 83.3333 %
Incorrectly Classified Instances 30 16.6667 %
Kappa statistic 0.6204
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Mean absolute error 0.1667

Root mean squared error 0.4082
Relative absolute error 36.3153 %
Root relative squared error 85.2535 %
Total Number of Instances 180

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure MCC  ROC Area PRC Area Class

0.922 0.328 0.836 0.922 0.877 0.628 0.797 0.821 Effective

0.672 0.078 0.827 0.672 0.741 0.628 0.797 0.672 Ineffective
Weighted Avg. 0.833 0.239 0.833 0.833 0.829 0.628 0.797 0.768

=== Confusion Matrix ===

a b <--classified as
107 9| a= Effective
21 43| b = Ineffective

» Hard TP
=== Run information ===

Scheme:  weka.classifiers.functions.SMO -C 1.0 -L 0.001 -P 1.0E-12-N0-V -1 -W 1 -K
"weka.classifiers.functions.supportVector.PolyKernel -E 1.0 -C 250007" -calibrator
"weka.classifiers.functions.Logistic -R 1.0E-8 -M -1 -num-decimal-places 4"
Relation:  hardTP
Instances: 180
Attributes: 7

Gender

Knowledge

IE

SN

FT

JP

class
Test mode:  10-fold cross-validation

=== Classifier model (full training set) ===
SMO

Kernel used:
Linear Kernel: K(x,y) = <x,y>

Classifier for classes: Effective, Ineffective
BinarySMO
Machine linear: showing attribute weights, not support vectors.
-0.7429 * (normalized) Gender=MALE
-2.3056 * (normalized) Knowledge
0.3795 * (normalized) IE=Introvert

0.4815 * (normalized) SN=Inituiting
0.3004 * (normalized) FT=Feeling

+ + + +
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+ -0.3786 * (normalized) JP=Judging
+  1.8975

Number of kernel evaluations: 6197 (77.3% cached)

Time taken to build model: 0.03 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 115 63.8889 %
Incorrectly Classified Instances 65 36.1111 %
Kappa statistic 0.1873

Mean absolute error 0.3611

Root mean squared error 0.6009

Relative absolute error 76.7348 %

Root relative squared error 123.9144 %

Total Number of Instances 180

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure MCC
0.382 0.205 0.531 0.382 0.444 0.193 0.588
0.795 0.618 0.679 0.795 0.733 0.193 0.588

ROC Area PRC Area Class

0.436 Effective

0.668

Ineffective

Weighted Avg. 0.639 0.462 0.623 0.639 0.624 0.193 0.588 0.580

=== Confusion Matrix ===
a b <--classified as

26 42 | a = Effective
23 89| b = Ineffective
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Appendix Y

Experimental Session Script

This appendix provides the detailed script used during experimental sessions to communicate with
participants about the task's duration. The script includes time duration announcements made
throughout the tasks to ensure participants are aware of the total time available and how much time
remains. This helped induce the desired level of time pressure (TP), particularly for the TP tasks.

No-Time-Pressure (NTP) — Instructions
**ROUND 1:**

[Instructions are in italics and bold, while regular text represents spoken content.]

**10:00 AM:**

Welcome to our experimental session! Today, we have a series of programming tasks in C++ lined
up for you. Please pay close attention to the instructions provided for each task.

Before we move forward, could each of you please confirm that you've completed the consent form
and the questionnaire?

**10:20 AM:**

Once everyone is ready,

Let's begin with **Task 1**:
**Time Context:** No Time Pressure (NTP)
**Task Complexity:** Easy

**Estimated Time:** 45 minutes

You have a total of 45 minutes for this task. We'll remind you of the remaining time only once, so
please focus on completing the task efficiently.

**10:30 AM:**

Take the next 5 minutes to review the task. If you have any questions or uncertainties, don't hesitate
to ask for clarification. And don't forget to include your student ID on the sheet.

**10:40 AM:**
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You now have 45 minutes to complete the task. If you finish early, raise your hand to indicate
you're done.

If someone finishes the task, timestamp their sheet, and they can choose to continue if they wish.

Remember, this is an individual task, so please refrain from discussing it with your peers. If you
have any questions about the task, feel free to ask me. You can begin now.

Time is ticking...

If someone asks about the time, simply provide them with the current time. If they have questions
about the task, encourage them to do what they understand from the instructions.

**11:25 AM:**

Time's up! Please stop your work and pass your sheets to the person sitting next to you. We'll collect
them from there.

Now, we'd like to gather your feedback on the perceived task load. NASA developed this technique
to assess how individuals perceive the workload of a task.

We're handing out the Magnitude of Load (Ratings) sheets. On these sheets, you'll find various
sources of workload demands, each with a rating scale ranging from 0 to 100 in increments of 5.
Your task is to rate each workload source by marking the appropriate point on the scale. Feel free
to ask if you have any questions.

**11:40 AM:**

We'll now collect all NASA-TLX materials, including your ratings sheets. Please ensure that you've
placed your student ID on all the materials you're returning. Thank you!
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**Experimental Session Script**
Time-Pressure (TP) — Instructions
**ROUND 2:**

[Instructions are in italics and bold, while regular text represents spoken content.]

**10:00 AM:**

Welcome to our experimental session! Today, we have another series of programming tasks in
C++. Please make sure to carefully follow the instructions provided for each task.

Before we continue, may I please confirm with each of you whether you've signed the consent form
and completed the questionnaire?

**10:20 AM:**

Once everyone is ready,

Let's move on to **Task 2**:
**Time Context:** Time Pressure (TP)
**Task Complexity:** Easy

**Estimated Time:** 15 minutes

For this task, you have 15 minutes. We'll give you reminders at the 8-minute mark and every 2
minutes after that. Please focus on completing the task efficiently within this time frame.

**10:30 AM:**

Take the next 5 minutes to quickly review the task. If there's anything you don't understand, please
feel free to ask. Also, don't forget to write your student 1D on the sheet.

**10:40 AM:**

You have 15 minutes to complete the entire task. If you finish before the time is up, please let me
know by raising your hand.
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When someone finishes the task, I'll timestamp the sheet against the latest easy task under TP
they've completed, and they can choose to continue if they wish.

This is an individual task, so please refrain from discussing it with your peers. If you have any
questions about the task, direct them to me.

You may begin now.

Time is ticking...

You have Only 8 minutes left to complete the Task.
Tick, tick, tick...

You have Only 5 minutes left now for the Task.
Tick, tick, tick...

Only 2 minutes left

If someone asks about the time, I'll provide the current time. If there are questions about the
task, encourage participants to proceed with what they understand.

**10:55 AM:**

Time's up! Please stop your work and pass your sheets to the person sitting next to you. We'll collect
them from there.

Now, we'd like to gather your feedback on the perceived task load. NASA developed this technigue
to assess how individuals perceive the workload of a task.

We're handing out the Magnitude of Load (Ratings) sheets. These sheets list various sources of
workload demands, each with a rating scale from 0 to 100 in increments of 5, covering a range
from low to high. Your task is to rate each workload source by marking a tick on the scale. If you
have any questions, please don't hesitate to ask.

**11:10 AM:**

WEe'll now collect all NASA-TLX materials, including your ratings sheets. Please ensure that you've
placed your student ID on all the materials you're returning. Thank you!
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No-Time-Pressure (NTP) — Instructions
**ROUND 3:**

[Instructions are in italics and bold, while regular text represents spoken content.]

**10:00 AM:**

Welcome to our experimental session! Today, we have another set of programming tasks in C++.
Please make sure to carefully follow the instructions provided for each task.

**10:20 AM:**

Once everyone is ready,

Let's proceed with **Task 3**:
**Time Context:** No Time Pressure (NTP)
**Task Complexity:** Medium

**Estimated Time:** 60 minutes

For this task, you have a total of 60 minutes. We'll remind you about the remaining time only once,
so please focus on completing the task efficiently.

**10:30 AM:**

Take the next 5 minutes to review the task briefly. If you have any uncertainties or questions, please
don't hesitate to ask for clarification. Also, don't forget to include your student ID on the sheet.

**10:40 AM:**

You have the full 60 minutes to complete this task. If you finish before the allotted time, kindly
raise your hand to indicate your completion.

When someone finishes the task, I'll timestamp the sheet against the medium NTP task they've
completed, and they can choose to continue if they wish.

Remember, this is an individual task, so please avoid discussing it with your peers. If you have any
questions about the task, feel free to direct them to me.
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You may begin now.

Time is ticking...

If someone asks about the time, I'll provide the current time. If there are questions about the
task, encourage participants to proceed with what they understand.

**11:40 AM:**

Time's up! Please stop your work and pass your sheets to the person sitting next to you. We'll collect
them from there.

Now, we'd like to gather your feedback on the perceived task load. NASA developed this technique
to assess how individuals perceive the workload of a task.

We're handing out the Magnitude of Load (Ratings) sheets. These sheets list various sources of
workload demands, each with a rating scale from 0 to 100 in increments of 5, covering a range
from low to high. Your task is to rate each workload source by marking a tick on the scale. If you
have any questions, please don't hesitate to ask.

**12:00 PM:**

We'll now collect all NASA-TLX materials, including your ratings sheets. Please ensure that you've
placed your student ID on all the materials you're returning. Thank you!
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Time-Pressure (TP) — Instructions
**ROUND 4:**

[Instructions are in italics and bold, while regular text represents spoken content.]

**10:00 AM:**

Welcome to our experimental session! Today, we have another set of programming tasks in C++.
Please make sure to carefully follow the instructions provided for each task.

**10:20 AM:**

Once everyone is ready,

Let's proceed with **Task 4**:
**Time Context:** Time Pressure (TP)
**Task Complexity:** Medium

**Estimated Time:** 30 minutes

For this task, you have 30 minutes. We'll provide the first reminder after fifteen minutes and
subsequent reminders every five minutes. Please focus on efficiently completing the task within
the given time frame.

**10:30 AM:**

Take the next 5 minutes to quickly review the task. If there's anything you don't understand, please
don't hesitate to ask for clarification. Also, don't forget to include your student ID on the sheet.

**10:40 AM:**

You have the full 30 minutes to complete this task. If you finish before the time is up, please let me
know by raising your hand.

When someone finishes the task, I'll timestamp the sheet against the latest medium TP task
they've completed, and they can choose to continue if they wish.

Remember, this is an individual task, so please refrain from discussing it with your peers. If you
have any questions about the task, feel free to direct them to me.
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You may begin now.

Time is ticking...

You have Only 15 minutes left to complete the Task.
Tick, tick, tick...

You have Only 10 minutes left now for the Task.
Tick, tick, tick...

You have Only 5 minutes left now for the Task
Tick, tick, tick...

Only 2 minutes left

If someone asks about the time, I'll provide the current time. If there are questions about the
task, encourage participants to proceed with what they understand.

**11:10 AM:**

Time's up! Please stop your work and pass your sheets to the person sitting next to you. We'll collect
them from there.

Now, we'd like to gather your feedback on the perceived task load. NASA developed this technique
to assess how individuals perceive the workload of a task.

We're handing out the Magnitude of Load (Ratings) sheets. These sheets list various sources of
workload demands, each with a rating scale from 0 to 100 in increments of 5, covering a range
from low to high. Your task is to rate each workload source by marking a tick on the scale. If you
have any questions, please don't hesitate to ask.

**11:25 AM:**

We'll now collect all NASA-TLX materials, including your ratings sheets. Please ensure that you've
placed your student ID on all the materials you're returning. Thank you!
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No-Time-Pressure (NTP) — Instructions
**ROUND 5:**

[Instructions are in italics and bold, while regular text represents spoken content.]

**10:00 AM:**

Welcome to our experimental session! Today, we have another set of programming tasks in C++.
Please make sure to carefully follow the instructions provided for each task.

Before we proceed, may | please confirm with each of you whether you've signed the consent form
and completed the questionnaire?

**10:20 AM:**

Once everyone is ready,

Let's start with **Task 1**:
**Time Context:** No Time Pressure (NTP)
**Task Complexity:** Hard

**Estimated Time:** 1 hour and 45 minutes

For this task, you have a total of 1 hour and 45 minutes. We'll remind you about the remaining time
only once, so please focus on efficiently completing the task.

**10:30 AM:**

Take the next 5 minutes to briefly review the task. If there are any uncertainties or questions, please
don't hesitate to ask for clarification. Also, ensure that you include your student ID on the sheet.

**10:40 AM:**

You have the full 1 hour and 45 minutes to complete this task. If you finish before the time is up,
please let me know by raising your hand.

When someone finishes the task, I'll timestamp the sheet against the hard NTP task they've
completed, and they can choose to continue if they wish.
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Remember, this is an individual task, so please refrain from discussing it with your peers. If you
have any questions about the task, feel free to direct them to me.

You may begin now.

Time is ticking...

If someone asks about the time, I'll provide the current time. If there are questions about the
task, encourage participants to proceed with what they understand.

**12:25 PM:**

Time's up! Please stop your work and pass your sheets to the person sitting next to you. We'll collect
them from there.

Now, we'd like to gather your feedback on the perceived task load. NASA developed this technique
to assess how individuals perceive the workload of a task.

We're handing out the Magnitude of Load (Ratings) sheets. These sheets list various sources of
workload demands, each with a rating scale from 0 to 100 in increments of 5, covering a range
from low to high. Your task is to rate each workload source by marking a tick on the scale. If you
have any questions, please don't hesitate to ask.

**12:40 PM:**

We'll now collect all NASA-TLX materials, including your ratings sheets. Please ensure that you've
placed your student ID on all the materials you're returning. Thank you!
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Time-Pressure (TP) — Instructions
**ROUND 6:**

[Instructions are in italics and bold, while regular text represents spoken content.]

**10:00 AM:**

Welcome to our experimental session! Today, we have another set of programming tasks in C++.
Please make sure to carefully follow the instructions provided for each task.

**10:20 AM:**

Once everyone is ready,

Let's begin with **Task 6**:
**Time Context:** Time Pressure (TP)
**Task Complexity:** Hard

**Estimated Time:** 1 hour and 15 minutes

For this task, you have 1 hour and 15 minutes. We'll provide the first reminder after fifteen minutes
and subsequent reminders every five minutes. Please focus on efficiently completing the task within
this time frame.

**10:30 AM:**

Take the next 5 minutes to quickly review the task. If there's anything you don't understand, please
don't hesitate to ask for clarification. Also, don't forget to include your student ID on the sheet.

**10:40 AM:**

You have the full 1 hour and 15 minutes to complete this task. If you finish before the time is up,
please let me know by raising your hand.

When someone finishes the task, I'll timestamp the sheet against the latest medium TP task
they've completed, and they can choose to continue if they wish.

Remember, this is an individual task, so please refrain from discussing it with your peers. If you
have any questions about the task, feel free to direct them to me.
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You may begin now.

Time is ticking...

You have Only 50 minutes left now for the Task.
Tick, tick, tick...

You have Only 40 minutes left now for the Task
Tick, tick, tick...

You have Only 30 minutes left now for the Task.
Tick, tick, tick...

You have Only 20 minutes left now for the Task
Tick, tick, tick...

You have Only 15 minutes left now for the Task.
Tick, tick, tick...

You have Only 10 minutes left now for the Task
Tick, tick, tick...

You have Only 5 minutes left now for the Task.
Tick, tick, tick...

Only 2 minutes left

If someone asks about the time, I'll provide the current time. If there are questions about the
task, encourage participants to proceed with what they understand.

**11:55 AM:**

Time's up! Please stop your work and pass your sheets to the person sitting next to you. We'll collect
them from there.

Now, we'd like to gather your feedback on the perceived task load. NASA developed this technique
to assess how individuals perceive the workload of a task.

We're handing out the Magnitude of Load (Ratings) sheets. These sheets list various sources of
workload demands, each with a rating scale from 0 to 100 in increments of 5, covering a range
from low to high. Your task is to rate each workload source by marking a tick on the scale. If you
have any questions, please don't hesitate to ask.
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**12:20 PM:**

We'll now collect all NASA-TLX materials, including your ratings sheets. Please ensure that you've
placed your student ID on all the materials you're returning. Thank you!
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Appendix Z (A)

Photos of Experiments

This appendix contains photographs taken during the experimental sessions, capturing the setup
and participants performing the tasks. These photos provide a visual representation of the
experimental environment and demonstrate the conditions under which data were collected.
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Appendix Z (B)

Photos of Case Studies

This appendix contains photographs taken during the ovbersavation of case studies in software
houses, capturing the setup and participants performing the tasks. These photos provide a visual
representation and demonstrate the conditions under which data were collected.
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