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Abstrak 

Keupayaan meramalkan masa depan membolehkan keputusan termaklum dan 

perancangan strategik dilakukan. Dalam ekonomi moden, keseimbangan pengeluaran 

dan penggunaan  elektrik amat penting. Ramalan beban melibatkan anggaran 

penggunaan elektrik pada masa hadapan, dan ia dipengaruhi oleh kepadatan populasi, 

cuaca, polisi dan aktiviti sosio-ekonomi. Regresi Vektor Sokongan (SVR) digunakan 

secara meluas dalam ramalan tetapi keberkesannnya  bergantung kepada nilai 

penyesuaian, toleransi, parameter kernel. Kajian ini mencadangkan algoritma hibrid 

yang dinamakan sebagai SVR- Algoritma Optimisasi African Buffalo (ABO). Proses 

pengoptimuman ABO melibatkan empat fasa; SVR-ABO, SVR-popABO, SVR-

explrABO, dan SVR-expltABO. SVR-ABO menggunakan ABO untuk 

mengoptimumkan hiperparameter SVR. Manakala, SVR-popABO meningkatkan 

kepelbagaian ABO menggunakan fungsi huru-hara, dan  explrABO menggunakan 

penerbangan levi untuk mencari dan mengatasi optima tempatan yang lebih baik. Di 

samping itu, expltABO menghalang penumpuan pramatang. Empat hibrid ini mewakili 

penambahbaikan progresif ABO klasik untuk mengoptimumkan hiperparameter SVR. 

Menggabungkan algoritma yang dipertingkatkan menghasilkan SVR-eABO, yang 

kebolehan ramalannya telah dinilai menggunakan MAE, MAPE, RMSE, PA dan R2. 

Dinilai menggunakan set data penanda aras, SVR-eABO mencapai ketepatan tinggi, 

mengatasi SVR standard dan varian SVR berasaskan pengoptimuman lain seperti 

SVR-PSO, SVR-ABC, SVR-CS, dan SVR-GA. Sebagai contoh, SVR-eABO 

mencapai ketepatan 98.51% pada set data Household, 98.15% pada set data Turkey, 

91.17% pada set data Appliances, dan 96.52% pada set data Panama. Algoritma SVR-

eABO yang dicadangkan mempunyai implikasi yang signifikan untuk meningkatkan 

ketepatan ramalan beban, membolehkan pengurusan grid elektrik yang lebih cekap, 

dan memudahkan pembuatan keputusan yang berinformasi untuk penyedia dan 

pengguna tenaga 

 

Kata Kunci: Regresi vektor sokongan, Pengoptimuman kerbau afrika, Penerbangan 

levi, Algoritma mcCulloch, Ramalan siri masa 
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Abstract 

Time series forecasting enables informed decision-making and stakeholder benefit. 

Electricity production-consumption balance is vital in modern economies. Load 

forecasting predicts electricity consumption, influenced by factors like population, 

weather, policies, and socio-economic activities. Support Vector Regression (SVR) is 

a widely used regression technique, but its efficacy depends on optimal tuning of 

parameters, which is challenging. This study proposes a hybrid approach combining 

SVR and the African Buffalo Optimization (ABO) algorithm. The classical ABO 

algorithm faces limitations in population initialization, exploration, and exploitation. 

Therefore, enhancements have been made to these stages to improve performance. The 

study presents a series of hybrid algorithms that leverage ABO to optimize SVR 

hyperparameters. SVR-ABO uses the classical ABO approach. SVR-popABO 

enhances population diversity using a chaotic function. SVR-explrABO includes Lévy 

flight to improve exploration and overcome local optima. SVR-expltABO modifies the 

exploitation mechanism to prevent premature convergence. These four hybrids 

represent a progressive refinement of the classical ABO for optimizing SVR 

hyperparameters. Combining the enhanced algorithms results in SVR-eABO, whose 

forecasting ability has been assessed using MAE, MAPE, RMSE, PA and R2. 

Evaluated using benchmark datasets, SVR-eABO achieves high accuracy, surpassing 

standard SVR and other optimization-based SVR variants like SVR-PSO, SVR-ABC, 

SVR-CS, and SVR-GA. For instance, SVR-eABO achieved 98.51% accuracy on the 

Household dataset, 98.15% accuracy on the Turkey dataset, 91.17% accuracy on the 

Appliances dataset, and 96.52% accuracy on the Panama dataset. The proposed SVR-

eABO algorithm holds significant implications for improving load forecasting 

accuracy, enabling more efficient electricity grid management, and facilitating 

informed decision-making for energy providers and consumers. 

 

Keywords: Support vector regression, African buffalo optimisation, Time series 

forecasting  

 

 

  



v 

 

Acknowledgement 

I am immensely grateful to Allah S.W.T for His blessings, including good health, 

strength, and resilience throughout this transformative journey.  

My deepest appreciation goes to my primary supervisor, Prof. Madya Dr. Yuhanis 

binti Yusof, whose unwavering support and invaluable guidance have shaped my 

research. Dr. Yuhanis has not only provided diverse methodologies for tackling 

research problems but has also instilled in me virtues such as courage, perseverance, 

and patience. I am profoundly grateful for her understanding and exceptional 

supervision.  

I also express my deep gratitude to my co-supervisor, Dr. Mohamad Farhan Bin 

Mohamad Mohsin, whose patient oversight and enthusiastic encouragement have 

significantly contributed to the progression of my research.  

I am fortunate to have worked under the exceptional advice and guidance of Prof. Dr. 

Ku Ruhana Ku Muhammad. Her kindness and dedication in fostering a supportive 

environment have promoted collaboration, innovation, and personal growth. I express 

my deepest appreciation for Prof. Dr. Ku Ruhana's remarkable leadership, unwavering 

support, and commitment to creating a positive and enriching learning experience for 

all in the lab. 

I am immensely grateful to TETFUND for their generous sponsorship of my PhD 

studies. Their financial support has been instrumental in enabling me to pursue my 

research goals and participate in valuable academic opportunities. I extend my heartfelt 

appreciation to TETFUND for their unwavering commitment to supporting higher 

education and research. 

Lastly, I offer my sincere regards and blessings to my family and friends who 

supported me in various capacities. I remain humble and grateful for their unwavering 

support in my life. I am deeply thankful to Allah for guiding me through this scholarly 

pursuit and for the opportunities that lie ahead. 

 

 

 

 

 



vi 

 

 

 

 

 

 

 

 

To the most Professional,  

Most Patient, and  

Most Caring Supervisor 

 

Prof. Dr. Yuhanis bint Yusof 
 

Simply, You’re the Best. 

  



vii 

 

Table of Content 

Permission to Use ....................................................................................................... ii 

Abstrak  .................................................................................................................. iii 

Abstract  .................................................................................................................. iv 

Acknowledgement ...................................................................................................... v 

Table of Content ....................................................................................................... vii 

List of Tables ........................................................................................................... xiii 

List of Figures ........................................................................................................... xv 

List of Algorithms ................................................................................................. xviii 

CHAPTER ONE INTRODUCTION ....................................................................... 1 

1.0   Background Study .............................................................................................. 1 

1.1   Time Series Forecasting ..................................................................................... 5 

1.2   Multivariate Time Series Forecasting .............................................................. 5 

1.3   Electric Load Forecasting.................................................................................. 6 

1.4   Problem Statement ............................................................................................. 9 

1.5   Research Questions .......................................................................................... 12 

1.6   Research Objectives ......................................................................................... 13 

1.7   Scope and Limitation of the Study ................................................................. 14 

1.8   Significance of Study ........................................................................................ 14 

1.9   Summary ........................................................................................................... 15 

CHAPTER TWO LITERATURE REVIEW ........................................................ 16 

2.1   Multivariate Time Series ................................................................................. 16 

2.2   Electric Load Forecasting Methods ................................................................ 17 

2.2.1   Machine Learning Methods .................................................................... 17 

2.3   Support Vector Regression.............................................................................. 26 

2.3.1 SVR Kernels ............................................................................................. 26 

2.3.2 Techniques for SVR Hyperparameter Optimisation ................................ 27 

2.3.3   Reviewed literature on Support Vector Regression with Swarm algorithms

  .................................................................................................................. 28 



viii 

 

2.4   African Buffalo Optimisation Algorithm ....................................................... 31 

2.4.1   African Buffalo Optimisation Algorithm in Literature .......................... 33 

2.4.2   Weaknesses of African Buffalo Optimisation ........................................ 41 

2.4.2.1   Population Generation .............................................................. 41 

2.4.1.2   Poor Exploration ...................................................................... 41 

2.4.2.3   Poor Exploitation ...................................................................... 42 

2.5   Chaotic Map Function ..................................................................................... 42 

2.5.1   Tent Map function .................................................................................. 43 

2.6   Lévy Probability Distribution ......................................................................... 43 

2.7 Research Gap Discovered .................................................................................. 48 

2.8 Summary ............................................................................................................. 49 

3. CHAPTER THREE RESEARCH METHODOLOGY .............................. 51 

3.1   Data Collection and Preparation .................................................................... 52 

3.1.1   Datasets ................................................................................................... 52 

3.2.1.1   Individual Household Electric Power Consumption Dataset ... 52 

3.2.1.2   Turkey Electricity Consumption dataset .................................. 54 

3.2.1.3   Appliances Energy Forecasting Dataset ................................... 55 

3.2.1.4   Panama Electricity dataset ....................................................... 57 

3.2   Data Pre-processing ......................................................................................... 59 

3.2.1   Test for Non-Linearity ............................................................................ 59 

3.2.2   Data Normalisation ................................................................................. 59 

3.3   Algorithm Design ............................................................................................. 62 

3.3.1   SVR-ABO Algorithm ............................................................................. 63 

3.3.2  ABO Enhancement .................................................................................. 64 

3.3.2.1   Population Initialisation ........................................................... 64 

3.3.2.2   Exploration Stage Enhancement .............................................. 66 

3.3.2.3   Exploitation Stage Enhancement ............................................. 67 

3.3.3   SVR-eABO Algorithm Flow .................................................................. 68 

3.4   Algorithm Development Environment ........................................................... 69 



ix 

 

3.5   Evaluation ......................................................................................................... 70 

3.5.1   Performance Metrics ............................................................................... 70 

3.5.2   CPU Execution Time .............................................................................. 71 

3.5.3   Percentage Accuracy .............................................................................. 72 

3.5.4   Standard Optimisation Functions ........................................................... 72 

3.5.5   Benchmarks ............................................................................................ 74 

3.6   Summary ........................................................................................................... 75 

CHAPTER FOUR AN ENHANCED AFRICAN BUFFALO OPTIMISATION 

ALGORITHM .......................................................................................................... 77 

4.1 SVR-ABO algorithm .......................................................................................... 77 

4.2 An Enhanced Population Initialisation in African Buffalo Optimisation 

Algorithm  ................................................................................................................. 79 

4.3 An Enhanced Exploration in African Buffalo Optimisation Algorithm ....... 80 

4.4 An Enhanced Exploitation in ABO .................................................................. 82 

4.5 SVR with an Enhanced ABO ............................................................................ 83 

4.6   Summary ........................................................................................................... 84 

CHAPTER FIVE DISCUSSION AND ANALYSIS ............................................. 86 

5.1 Household dataset .............................................................................................. 86 

5.1.1 Comparison Between Algorithms on Household Dataset ........................ 86 

5.1.1.1 Root Mean Square Error (RMSE) .............................................. 87 

5.1.1.2 Mean Absolute Percentage Error (MAPE) ................................. 88 

5.1.1.3 Mean Absolute Error (MAE) ..................................................... 89 

5.1.1.4 Coefficient of Determination (R2) .............................................. 90 

5.1.1.5 Percentage Accuracy (PA) ......................................................... 91 

5.1.2 Comparison of SVR-eABO Against Benchmarks on Household Dataset 92 

5.1.2.1 Root Mean Square Error (RMSE) .............................................. 93 

5.1.2.2 Mean Absolute Percentage Error (MAPE) ................................. 94 

5.1.2.3 Mean Absolute Error (MAE) ..................................................... 95 

5.1.2.4 Coefficient of Determination (R2) .............................................. 96 



x 

 

5.1.2.5 Percentage Accuracy (PA) ......................................................... 97 

5.1.2.6 CPU Execution Time ................................................................. 98 

5.2 Turkey dataset .................................................................................................... 99 

5.2.1 Comparison Between Algorithms on Turkey dataset ............................... 99 

5.2.1.1 Root Mean Square Error (RMSE) ............................................ 100 

5.2.1.2 Mean Absolute Percentage Error (MAPE) ............................... 101 

5.2.1.3 Mean Absolute Error (MAE) ................................................... 102 

5.2.1.4 Coefficient of Determination (R2) ............................................ 103 

5.2.1.5 Percentage Accuracy (PA) ....................................................... 104 

5.2.2 Comparison of SVR-eABO Against Benchmarks on Turkey Dataset ... 105 

5.2.2.1 Root Mean Square Error (RMSE) ............................................ 106 

5.2.2.2 Mean Absolute Percentage Error (MAPE) ............................... 107 

5.2.2.3 Mean Absolute Error (MAE) ................................................... 108 

5.2.2.4 Coefficient of Determination (R2) ............................................ 109 

5.2.2.5 Percentage Accuracy (PA) ....................................................... 110 

5.2.2.6 CPU Execution Time ............................................................... 111 

5.3 Appliances dataset ............................................................................................ 113 

5.3.1 Comparison Between Developed Algorithms on Appliances dataset .... 113 

5.3.1.1 Root Mean Square Error (RMSE) ............................................ 114 

5.3.1.2 Mean Absolute Percentage Error (MAPE) ............................... 115 

5.3.1.3 Mean Absolute Error (MAE) ................................................... 115 

5.3.1.4 Coefficient of Determination (R2) ............................................ 116 

5.3.1.5 Percentage Accuracy (PA) ....................................................... 117 

5.3.1.6 CPU Execution Time ............................................................... 118 

5.3.2 Comparison of SVR-eABO Against Benchmarks on Appliances Dataset

  ................................................................................................................ 119 

5.3.2.1 Root Mean Squared Error (RMSE) .......................................... 120 

5.3.2.2 Mean Absolute Percentage Error (MAPE) ............................... 121 

5.3.2.3 Mean Absolute Error (MAE) ................................................... 122 



xi 

 

5.3.2.4 Coefficient of Determination (R2) ............................................ 123 

5.3.2.5 Percentage of Accurate (PA) .................................................... 124 

5.3.2.6 CPU Execution Time ............................................................... 125 

5.4 Panama dataset ................................................................................................ 126 

5.4.1 Comparison Between Developed Algorithms on Panama dataset ......... 127 

5.4.1.1 Root Mean Square Error (RMSE) ............................................ 127 

5.4.1.2 Mean Absolute Percentage Error (MAPE) ............................... 128 

5.4.1.3 Mean Absolute Error (MAE) ................................................... 129 

5.4.1.4 Coefficient of Determination (R2): ........................................... 130 

5.4.1.5 Percentage of Accuracy (PA): .................................................. 131 

5.4.1.6 CPU Execution Time ............................................................... 132 

5.4.2 Comparison of SVR-eABO Against Benchmarks on Panama Dataset .. 134 

5.4.2.1 Root Mean Square Error (RMSE) ............................................ 134 

5.4.2.2 Mean Absolute Percentage Error (MAPE) ............................... 135 

5.4.2.3 Mean Absolute Error (MAE) ................................................... 136 

5.4.2.4 Coefficient of Determination (R2) ............................................ 137 

5.4.2.5 Percentage Accuracy (PA) ....................................................... 138 

5.4.2.6 CPU Execution Time ............................................................... 139 

5.5 Comparison Between Algorithms on Standard Optimisation Functions ... 141 

5.5.1 Performance of Developed algorithms on Standard Optimisation Functions

  ................................................................................................................ 142 

5.5.2 Performance of SVR-eABO against Benchmarks on Standard Optimization 

Functions ......................................................................................................... 143 

5.6 Comparison of CPU Time Based on Standard Optimisation Functions .... 144 

5.6.1 CPU Execution Time of Standard Optimization Functions: Proposed 

Algorithms ....................................................................................................... 144 

5.6.2 CPU Execution Time of Standard Optimization Functions:  Proposed 

Algorithms vs. Benchmarks ............................................................................ 146 

5.7 Summary ........................................................................................................... 147 

5. CHAPTER SIX CONCLUSIONS AND RECOMMENDATION ........... 149 



xii 

 

6.1   Conclusion ....................................................................................................... 149 

6.2   Contribution ................................................................................................... 151 

6.2.1   Knowledge Contribution ...................................................................... 152 

6.2.2   Practical Contribution ........................................................................... 152 

6.3   Recommendations for Future Works ........................................................... 153 

REFERENCES ....................................................................................................... 155 

Appendix A .............................................................................................................. 184 

 

 

  



xiii 

 

List of Tables 

Table 3.1 Household Dataset ..................................................................................... 52 

Table 3.2 Description Household Dataset Attributes ................................................. 53 

Table 3.3 Description of Turkey Electricity consumption Dataset Attributes ........... 54 

Table.3. 3.4 Description of Turkey Electricity consumption Dataset Attributes ....... 55 

Table 3.5 Appliances Energy Forecasting Dataset .................................................... 56 

Table 3.6 Description of Appliances Energy Forecasting Dataset Attributes ........... 56 

Table 3.7 Panama electricity load dataset .................................................................. 58 

Table 3.8 Description of Panama dataset attributes ................................................... 58 

Table 3.9 Sample of Raw Household dataset............................................................. 60 

Table 3.10 Sample of Normalised Household dataset ............................................... 61 

Table 3.11 Sample of Raw Turkey dataset ................................................................ 61 

Table 3.12 Sample of Normalised Turkey dataset ..................................................... 61 

Table 3.13 System Specification ................................................................................ 70 

Table 3.14 Benchmark functions ............................................................................... 73 

Table 5.1 Comparative performance of algorithms on Household Dataset ............... 87 

Table 5.2 Comparative performance of eABO algorithm against Benchmarks ........ 93 

Table 5.3 Comparative performance of algorithms on Turkey Dataset ................... 100 

Table 5.4 Comparison of algorithm with benchmarks on Turkey Dataset .............. 106 

Table 5.5 Comparison of developed Algorithms on Appliances dataset ................. 113 

Table 5.6 Comparison against eABO with Benchmarks on Appliances dataset ..... 120 

Table 5.8 Comparison against developed algorithms on Panama dataset ............... 127 

Table 5.9 Comparison against eABO with Benchmarks on Panama dataset ........... 134 

Table 5.9 Comparison of developed algorithms on SOF ......................................... 142 

Table 5.10 Comparison against Benchmarks on Standard Optimisation functions . 143 



xiv 

 

Table 5.11 Comparison of developed algorithms on Standard Optimisation functions

 .................................................................................................................................. 145 

Table 5.12 Comparison against Benchmarks on Standard Optimisation functions . 147 

 



xv 

 

List of Figures 

Figure 3.1. Research Process ..................................................................................... 51 

Figure 3.2. SVR-ABO algorithm flow ....................................................................... 63 

Figure 3.3. Enhancement Population Initialisation phase (popABO) ........................ 65 

Figure 3.4. Enhanced exploration phase of ABO (explrABO) flowchart .................. 66 

Figure 3.5. Enhanced exploitation phase of ABO (expltABO) flowchart ................. 68 

Figure 3.6. Flowchart of SVR-eABO ........................................................................ 69 

Figure 3.7. General Flow of the Research.................................................................. 76 

Figure 5.1: Comparison of RMSE (developed algorithms) on Household dataset .... 88 

Figure 5.2: Comparison of MAPE (developed algorithms) on Household dataset ... 89 

Figure 5.3: Comparison of MAE (developed algorithms) on Household dataset ...... 90 

Figure 5.4: Comparison of R2 (developed algorithms) on Household dataset ........... 91 

Figure 5.5: Comparison of PA (developed algorithms) on Household dataset.......... 92 

Figure 5.6: Comparison of RMSE (against Benchmarks) on Household dataset ...... 94 

Figure 5.7: Comparison of MAPE (against Benchmarks) on Household dataset ...... 95 

Figure 5.8: Comparison of MAE (against Benchmarks) on Household dataset ........ 96 

Figure 5.9: Comparison of R2 (against Benchmarks) on Household dataset ............ 97 

Figure 5.10: Comparison of PA (against Benchmarks) on Household dataset .......... 98 

Figure 5.11: Comparison of CPU Time (against Benchmarks) on Household dataset

 .................................................................................................................................... 99 

Figure 5.12: Comparison of RMSE (developed algorithms) on Turkey dataset...... 101 

Figure 5.13: Comparison of MAPE (developed algorithms) on Turkey dataset ..... 102 

Figure 5.14: Comparison of MAE (developed algorithms) on Turkey dataset ....... 103 

Figure 5.15: Comparison of R2 (developed algorithms) on Turkey dataset ............ 104 

Figure 5.16: Comparison of PA (developed algorithms) on Turkey dataset ........... 105 



xvi 

 

Figure 5.17: Comparison of RMSE (against Benchmarks) on Turkey dataset ........ 107 

Figure 5.18: Comparison of MAPE (against Benchmarks) on Turkey dataset........ 108 

Figure 5.19: Comparison of MAE (against Benchmarks) on Turkey dataset .......... 109 

Figure 5.20: Comparison of R2 (against Benchmarks) on Turkey dataset ............... 110 

Figure 5.21: Comparison of PA (against Benchmarks) on Turkey dataset.............. 111 

Figure 5.22: Comparison of CPU Time (against Benchmarks) on Turkey dataset . 112 

Figure 5.23: Comparison of RMSE on Appliances dataset ..................................... 114 

Figure 5.24: Comparison of MAPE on Appliances dataset ..................................... 115 

Figure 5.25: Comparison of MAE on Appliances dataset ....................................... 116 

Figure 5.26: Comparison of R2 on Appliances dataset ............................................ 117 

Figure 5.27: Comparison of Percentage Accuracy (PA) on Appliances dataset...... 118 

Figure 5.28: Comparison of CPU Execution Time on Appliances dataset .............. 119 

Figure 5.29: Comparison of RMSE based on Benchmarks on Appliances dataset . 121 

Figure 5.30: Comparison of RMSE based on Benchmarks on Appliances dataset . 122 

Figure 5.31: Comparison of MAE based on Benchmarks on Appliances dataset ... 123 

Figure 5.32: Comparison of R2 based on Benchmarks on Appliances dataset ........ 124 

Figure 5.33: Comparison of PA based on Benchmarks on Appliances dataset ....... 125 

Figure 5.34: Comparison of CPU Time (against Benchmarks) on Appliances dataset

 .................................................................................................................................. 126 

Figure 5.35: Comparison of RMSE on Panama dataset ........................................... 128 

Figure 5.36: Comparison of MAPE on Panama dataset .......................................... 129 

Figure 5.37: Comparison of MAE on Panama dataset ............................................. 130 

Figure 5.38: Comparison of R2 on Panama dataset ................................................. 131 

Figure 5.39: Comparison of Percentage Accuracy (PA) on Panama dataset ........... 132 

Figure 5.40: Comparison of CPU Execution Time on Panama dataset ................... 133 



xvii 

 

Figure 5.41: Comparison of RMSE based on Benchmarks on Panama dataset....... 135 

Figure 5.42: Comparison of MAPE based on Benchmarks on Panama dataset ...... 136 

Figure 5.43: Comparison of MAE based on Benchmarks on Panama dataset ........ 137 

Figure 5.44: Comparison of R2 based on Benchmarks on Panama dataset ............. 138 

Figure 5.45: Comparison of Percentage Accuracy based on Benchmarks on Panama 

dataset ....................................................................................................................... 139 

Figure 5.46: Comparison of CPU Time (against Benchmarks) on Panama dataset 140 

 

 

  



xviii 

 

List of Algorithms 

Algorithm 4.1. SVR-ABO Algorithm ........................................................................ 78 

Algorithm 4.2. SVR-popABO Algorithm .................................................................. 79 

Algorithm 4.3: SVR-explrABO Algorithm ............................................................... 81 

Algorithm 4.4: SVR-expltABO Algorithm ................................................................ 82 

Algorithm 4.5: SVR-eABO Algorithm ...................................................................... 83 

 



1 

 

1. CHAPTER ONE 

           INTRODUCTION 

This chapter serves as a foundational overview of the study, establishing the context 

and significance of the research on electric load forecasting using machine learning 

algorithms. It delineates the critical aspects of multivariate time series forecasting and 

highlights the challenges associated with accurately forecasting electricity 

consumption. The chapter further elaborates on the role of Support Vector Regression 

and the African Buffalo Optimization algorithm in addressing these challenges. By 

outlining the background, research questions, objectives, and limitations of the study, 

this chapter aims to provide a comprehensive framework for understanding the 

subsequent analysis and findings presented throughout the thesis. 

1.0   Background Study 

Accurate forecasting of electric load holds significant importance in facilitating 

decision-making processes pertaining to power unit commitment, economic load 

dispatch, power system operation and security, contingency scheduling, among others. 

Previous studies have highlighted that even a 1% increase in forecasting errors for 

electric load can result in an additional operational cost of £10 million (Dong et al., 

2018). Conversely, reducing forecasting errors by 1% can yield notable operational 

benefits. Consequently, there is a strong impetus to explore more accurate forecasting 

models and novel intelligent algorithms to achieve satisfactory load forecasting 

outcomes. This pursuit aims to optimize the decisions pertaining to electricity supplies 

and load plans, enhance the efficiency of power system operations, and ultimately 

mitigate system risks within a manageable range. However, the complexity of electric 

load forecasting arises from various factors, including energy policy, urban population 

dynamics, socio-economic activities, weather conditions, holidays, and other pertinent 



2 

 

variables. The presence of seasonality, non-linearity, and chaotic patterns in electric 

load data further complicates the task of load forecasting. 

Numerous electric load forecasting models have been proposed with the aim of 

continuously improving forecasting accuracy. These models can generally be 

categorized into two types: those based on statistical methodologies and those utilizing 

artificial intelligence (AI) technology. Statistical models, such as ARIMA models, 

regression models, exponential smoothing models, Kalman filtering models, and 

Bayesian estimation models, rely on historical data to identify linear relationships 

among different time periods. However, these statistical models are inherently limited 

by their theoretical assumptions and are only capable of effectively handling linear 

relationships between electric loads and the aforementioned factors. Consequently, 

their forecasting performances often fall short of satisfactory results. 

Artificial intelligence (AI) technologies, including Artificial Neural Networks 

(ANNs), Expert System models, and Fuzzy Inference systems, have gained significant 

popularity in improving the performance of electric load forecasting owing to their 

superior ability to handle nonlinear processing. However, it is important to note that 

AI models, including hybrid and combined models, also possess their own limitations. 

These limitations include computational time requirements, challenges in determining 

structural parameters, and the potential for getting trapped in local minima.  

The Support Vector Machine (SVM) is a powerful algorithm that has found 

widespread application in various scientific fields, including machine learning (Che et 

al., 2017; Ouahilal et al., 2017). It was introduced by Vapnik, Boser, and Guyon in 

1992 (Boser et al., 1992), and further developed by Corinna and Vladimir in 1995 

(Corinna & Vladimir, 1995). The success of SVM can be attributed to its strong 

theoretical foundation. The algorithm's ability to generalize stems from its 
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effectiveness in solving classification problems involving non-linearly separable data 

in high-dimensional spaces. This capability has made SVM one of the most suitable 

algorithms for a range of data mining tasks, including classification and regression. 

In forecasting analytics, SVM is commonly used for classification or regression tasks, 

depending on the nature of the desired output. When the output is categorical, the 

technique is referred to as SVM, whereas when the output consists of continuous 

numerical values, it is typically referred to as Support Vector Regression (SVR) (Moon 

et al., 2018; Ouahilal et al., 2017). 

The support vector regression (SVR) model, known for its remarkable nonlinear 

processing capabilities and utilization of high-dimensional mapping and kernel 

computing techniques, has shown remarkable application results on various regression 

tasks. The empirical evidence highlights that an SVR model, when equipped with 

accurately computed parameters through the use of swarm-based algorithms, can 

deliver highly satisfactory forecasting performances.  

Despite the success of SVR, its effectiveness in a given task is highly dependent on 

the values of its hyperparameters, namely C, γ, and ε (Bing et al., 2018; Jiang et al., 

2018; Sarhani & El Afia, 2015). Therefore, studies focusing on the optimization of 

these hyperparameters are crucial to ensure optimal performance of the algorithm. 

In this respect, this study proposes to hybridize SVR algorithm with a population-

based optimisation algorithm named African Buffalo Optimisation (ABO), which was 

introduced by Odili, Kahar and Anwar (Odili et al., 2015). The ABO algorithm is based 

on the searching and foraging behaviour of African buffalo. This algorithm draws its 

inspiration from observing a specie of African wild cows called African Buffalos in 

their quest for grazing pastures in the African forests. The animal is in competition 

with other herbivorous animals which most times require less intake of pastures than 
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this large animal with big appetite. A lot of ingenuity is required if she is to survive 

the competition and sometimes the hostility of African lions and human hunters. The 

ABO algorithm models the animal’s ingenuity in navigating her way through several 

thousands of kilometres in the vast African forests with the sole aim of tracking the 

wet seasons in different locations where it could satisfy its appetite. Tracking the best 

position and speed of each buffalo ensures adequate exploitation of the search space 

and tapping into the experience of other buffalos as well as that of the best buffalo 

enables the ABO to achieve adequate exploration. The algorithm has been rigorously 

tested by the authors based on Symmetric Traveling Salesman’s Problem and proven 

to be effective in comparison to other well-established swarm-based optimisation 

algorithms like Particle Swarm Optimisation (PSO) (Eberhart & Kennedy, 2016; Jia, 

2015; Yan et al., 2012), Ant Colony Optimisation (ACO) (Deng et al., 2014; Gündüz 

et al., 2015), Honey Bee Mating Optimisation (HBMO) (Marinakis et al., 2011) and 

HPSACO (Odili, Kahar, Noraziah, et al., 2017). 

However, standard ABO algorithm operates by having its learning parameters (lp1 & 

lp2) set prior to execution (Odili et al., 2015). As these two learning parameters 

controls both personal and global best of the buffaloes, this could easily lead the 

algorithm to have poor exploration and exploitation. Similarly, the position update 

mechanism is solely controlled by a preset lambda parameter which obviously does 

not have element of diversity as it is also arbitrarily set prior to execution, this could 

easily lead the buffaloes to be trapped in local optima (El-Ashmawi, 2018). To address 

the mentioned limitations of ABO algorithm, consequently, to increase the ability of 

SVR in its generalisation, there is a need to enhance the ABO algorithm. This can be 

achieved by mitigating the problem of the learning parameters and, by making the 
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exploration controlling parameter to be from an efficient random source for effective 

exploration and exploitation.  

This study evaluates the proposed hybrid algorithm in the power sector due to the trend 

of deregulation especially as witnessed in developing countries (Hall & Nguyen, 2017; 

Weron, 2014). Deregulation in electricity market chain has already become the 

mainstream approach in the developed world. Monopoly and absolute control of the 

sector by government bodies is becoming more obsolete by day throughout the world. 

The electricity sector has witnessed total overhauling in terms of becoming standard 

market that has both vertical and horizontal integration of all related sectors from 

generation, distribution to consumption.  

1.1   Time Series Forecasting 

Time series forecasting is one of many interesting areas in various fields. It offers the 

ability to forecast future which can be relied upon for making informed decision or 

planning an action to be taken for the benefit of stakeholders. Time series forecasting 

relies on historical data as the main input in order to be able to forecast the future. The 

importance of time series forecasting has been witnessed in various domains including 

but not limited to electricity consumption (Dung et al., 2021), daily natural gas 

consumption (Wei et al., 2019), Air passenger flow (Ashraf et al., 2021), heat load 

(Bergsteinsson et al., 2023), wind power (Ashraf et al., 2021), solar energy (Cabello-

López et al., 2023), seasonal stream flow (Petry et al., 2023), and oil price (Ellwanger 

& Snudden, 2023). 

1.2   Multivariate Time Series Forecasting 

The field of time series analysis and forecasting research has been active for a long 

time especially in fields of statistics, signal processing, econometrics, and 
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mathematical finance, and there have been several articles published in this field 

(Agrawal et al., 2018; Fu et al., 2015; Huo et al., 2017; Kong et al., 2018; Lang et al., 

2018). However, researchers were only just concern scalar time series in most of the 

papers. In principle, according to the Takens’ embedding theorem, scalar time series 

are generally sufficient to reconstruct the dynamic of the underlying systems if there 

are enough delayed coordinates to be used. But in practice, this may be incorrect (Lang 

et al., 2018). Consequently, in practical problems it cannot be sure whether any given 

scalar time series are sufficient to reconstruct the dynamics. Furthermore, it is 

anticipated that there may be some substantial advantages if several different time 

series are used, especially when the system is noisy. Multivariate time series data are 

common in practice: physiological data, electroencephalograph (EEG) data, economic 

data, electric load forecasting data and so on. 

1.3   Electric Load Forecasting 

Electric load forecasting (ELF) is usually considered based on three forecasting 

horizons namely short term (Al-Musaylh et al., 2018; Avatefipour & Nafisian, 2018; 

Bandyopadhyay et al., 2018; Yusof & Mustaffa, 2015), medium-term (Bouktif et al., 

2018) and long term (Agrawal et al., 2018) as proposed by Mocanu, Nguyen, Gibescu 

and Kling (Mocanu, Nguyen, Gibescu, & Kling, 2016). Though there is no clear 

distinctive boundary for each of the three categories, yet some approximate threshold 

values are being used.  

Short-term load forecasting (STLF) generally refers to the type of forecasting that 

spans over a short period of time. The period can be from few minutes to few days 

ahead of present time (Fan et al., 2021; Masum et al., 2018). This type of forecasting 

is usually used by electricity producing firms for day-ahead and intra-day trading, and 

for day-to-day market operations. Hence, this study adopts the forecast electricity load.  
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Medium-term forecasting (MTLF) refers to the type of forecasting that spans from few 

days to few months ahead (P. Su et al., 2017). This type of forecasting is more useful 

to stakeholders for operations that is of less frequent in nature like risk management, 

derivatives pricing and balance sheet calculation. Also, this type of forecasting is 

usually more focused on how the prices are distributed rather than single point pricing 

forecast .  

Long-term load forecasting (LTLF) refers to type of forecasting period that spans from 

few months to several years (Sarhani et al., 2018). This type of forecasting is usually 

used for long-term investment profitability analysis like making decision to construct 

a new power plant or not.  

Various techniques are employed for ELF. These techniques can be broadly 

categorised into statistical and computational intelligence as stated by (Dong et al., 

2018). The most popular among statistical techniques are time series techniques that 

comprises of Autoregressive (AR), Moving Average (MA), Autoregressive Moving 

Average (ARMA) and its variants (Mat Daut et al., 2017) and Exponential Smoothing 

models (Hermias et al., 2018). However, statistical techniques were found to be poor 

of performance (Conejo et al., 2005; Ugurlu et al., 2018) due to their inability to deal 

with complex and non-linearity in multivariate data (Dong et al., 2018; Hamzaçebi, 

2008; Li et al., 2018; Mustaffa et al., 2015). Hence, they are not suitable to be used for 

electric load type of data which is complex and non-linear (Mocanu, Nguyen, Gibescu, 

& Kling, 2016; Salkuti, 2018). These highlighted shortcomings of statistical 

techniques prompt researchers to explore computational intelligence methods. Among 

the two popular computational intelligence methods in dealing with time series 

forecasting problems are the Artificial Neural Network (ANN) and Support Vector 

Machines (SVM) (Guo et al., 2015; B. Huang et al., 2018; Mocanu, Nguyen, Gibescu, 
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Larsen, et al., 2016). ANN forecasting ability relies on estimation of values for an 

unknown function which most times yield good forecasting result (Jaddi et al., 2017). 

However, despite positive forecasting outcomes from Artificial Neural Network 

(ANN), the method suffers from time-consuming training and vulnerability to 

overfitting (Eapen & Simon, 2018).  

In order to overcome the problems of ANN, Support vector Machines (SVM) 

introduced by Vapnik in (Corinna & Vladimir, 1995) were proven to be most effective 

due to its adoption of Structural Risk Minimisation (SRM) approach (Al-Musaylh et 

al., 2018). This approach focuses on minimising the generalisation error instead of 

minimising training errors as done by ERM. This makes SVM able to overcome the 

problem of over-fitting therefore capable to achieve good generalisation.  

The Support Vector Regression (SVR), as a of SVM, that is meant for regression task 

(Al-Musaylh et al., 2018; Chuang et al., 2002), has proven to be powerful in the field 

of load forecasting (Azad et al., 2018; Caraka et al., 2018; Dong et al., 2018; Jungwon 

et al., 2018; Li et al., 2018; Li et al., 2018; Moon et al., 2018a; Sarhani et al., 2018; Su 

& Chawalit, 2018; Sun et al., 2018; Velasco et al., 2018; Yang et al., 2019; S. Zhang 

et al., 2019; Zhang, 2018). However, the generalisation performance of SVR relies on 

two parameters values (Peng et al., 2016; Sarhani et al., 2018) which are cost error (C), 

tube size () and gamma () in the case whereby Radial Basis Function (RBF) kernel 

is selected as an additional parameter  (Hu et al., 2014; Humeau et al., 2013; Iliya et 

al., 2015; Peng et al., 2016; Sarhani et al., 2018; Sarhani & El Afia, 2015). Manual 

selection of these parameter value can be a complex task. This necessitates the need to 

find best approach in determining the optimal value for parameters of SVR in order to 

get the optimal generalisation that will eventually lead to better accuracy of the 

algorithm.  
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Three major approaches became popular in optimisation process viz: cross-validation 

(CV), grid search and metaheuristics techniques. As for the cross-validation and grid 

search techniques, it has been reported that they are computationally expensive and 

usually reported high error rate (Bing et al., 2018; Che et al., 2017; Yusof & Mustaffa, 

2016). This make CV and grid search techniques to be a bad choice for parameter 

value optimisation for SVR, hence led to adoption of metaheuristics techniques.  

The use of metaheuristic techniques is being widely reported in literature as a means 

of determining optimal values for SVR parameters through hybridisation (Dong et al., 

2018). The hybridisation proves to be yielding positive results in terms of obtaining 

optimal values for SVR parameters hence produce better generalisation as can be seen 

in (Chou et al., 2017; Chou & Pham, 2017; Chou & Truong, 2019; Li et al., 2018; Li 

et al., 2018; Sermpinis, Stasinakis, & Hassanniakalager, 2017). Among of the effective 

optimisers includes GA (Xie et al., 2017) and PSO (Mohanad et al., 2018) However, 

recently a new optimisation algorithm namely African Buffalo Optimisation (ABO) 

has also shown a promising result.  

This study therefore investigated the effectiveness of ABO in optimising SVR in 

multivariate forecasting. 

1.4   Problem Statement 

In spite of the aforementioned merits attributed to the Support Vector Regression 

(SVR) algorithm, as discussed in the background section, it is confronted with a 

significant obstacle pertaining to hyperparameter optimisation. 

SVR necessitates the careful tuning of three pivotal hyperparameters: Punishment 

factor (C), Tube size () and the kernel parameter () (Iliya et al., 2015; Peng et al., 

2016; Sarhani et al., 2018; Sarhani & El Afia, 2015).  
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The arduous nature of pinpointing the optimal parameter values in SVR underscores 

the compelling need to explore novel methodologies that can surmount these 

challenges and deliver enhanced performance. Hence, SVR has been combined with 

different metaheuristic algorithms like Genetic Algorithm (GA) (Xie et al., 2017), 

Particle Swarm Optimisation (PSO) (Jalalifar et al., 2019; Yao & Mao, 2023) and 

Grasshopper Optimisation Algorithm (GOA) (Barman et al., 2018). However, Genetic 

Algorithm relies on the initialisation of various parameters like population, fitness 

function, mutation rate, cross-over rate and selection method (Avatefipour & Nafisian, 

2018; Wei et al., 2018).  

Similarly, PSO performance is sensitive to its parameters, such as the inertia weight, 

cognitive and social learning factors, and population size. Selecting appropriate 

parameter values can be challenging and may require some trial and error. In addition, 

PSO has the potential for premature, and an inherent problem of slow convergence 

(Avatefipour & Nafisian, 2018; Lai & Zhou, 2019).  

Likewise, GOA encounters a challenge of becoming entrapped into local optima as 

iterations progress. This is attributed to a reduction in the diversity of the swarm. 

Additionally, GOA lacks a mechanism to preserve the elite grasshoppers discovered 

thus far within each index, resulting in a compromised exploitation ability and 

diminished convergence rate for the algorithm (Ingle & Jatoth, 2023). 

The issues delineated concerning Genetic Algorithm (GA), Particle Swarm 

Optimization (PSO) and Grasshopper Optimisation algorithm (GOA) techniques have 

the potential to adversely influence the efficacy of Support Vector Regression (SVR) 

models generated through either of these optimisation methods. Consequently, the 

forecasting accuracy of any SVR model constructed using these optimisation 

approaches might be compromised (Bing et al., 2018). 
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African Buffalo Optimisation (ABO) which has gained significant popularity across 

diverse optimization domains. Examples of its applications include team formation 

(El-Ashmawi, 2018), the Traveling Salesman Problem (TSP) (Odili, Kahar, Noraziah, 

et al., 2017), biodiversity conservation area selection with constraints (Almonacid et 

al., 2017), and PID controller parameter tuning (Odili, Kahar, & Noraziah, 2017). The 

ABO algorithm has the advantage demonstrated rapid convergence, and effective 

tracking of the best position over other similar algorithms like PSO, GA, and Cuckoo 

algorithms as put forward by its authors (Odili & Kahar, 2015). However, these 

attributes have yet to be empirically validated when employing the ABO algorithm as 

an optimizer for Support Vector Regression (SVR) models. Despite its utilisation in 

various domains in literature, the ABO algorithm encounters difficulties pertaining to 

population initialisation, exploration, and exploitation (Arif et al., 2022; J. B. Odili, 

Kahar, Noraziah, et al., 2017b; Peace Igiri et al., 2018; S. Zhang et al., 2019; Zhu et 

al., 2020).  

ABO population initialisation mechanism uses simple random distribution. However, 

using simple random distribution as a method of population initialisation leads to less 

diversity of population sample in search space, hence hampering with the convergence 

speed and prevents population to escape local optima entrapment (Arif et al., 2022; 

Zhang et al., 2019).  

Despite several attempts made by researchers to improve population initialisation 

segment of ABO algorithm as can be found in (Algaphari, 2023; Barnwal et al., 2023; 

Jiang, Tianhua-Zhu & Deng, 2020; Mishra, 2022). However, none has tried employing 

Tent map function for population initialisation in ABO algorithm. 

As for the exploration process, researchers employed chaotic map with logistic map 

function to modify exploration process of ABO algorithm (Igiri, Singh, & Bhargava, 
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2019b). However, logistic map function relies on Chebyshev-type distribution that 

require the function to go through multiple search iterations which are unnecessary as 

argued by Lu (Lu et al., 2014). This makes the exploration process to repeat similar 

visited position in the searching space and most of times lead to premature 

convergence.(Lu et al., 2014). There are evidently several efforts made by researchers 

to improve the exploration function of ABO as can be found in literature (Algaphari, 

2023; Igiri, Singh, & Poonia, 2019; Jiang, Tianhua-Zhu & Deng, 2020; Sheeba et al., 

2023), yet none has tried using McCulloch based levy flight function for the 

enhancement of ABO exploration mechanism.  

On top of that, the exploitation process in ABO algorithm uses manual assignment of 

exploitation control values, which are mostly obtained through a more of trial-and-

error approach. This arbitrary approach of manual assignment of exploitation process 

values could result into missing the ideal values needed for an optimal exploitation 

process, that eventually lead to local optima entrapment (Igiri et al., 2019b; Odili et 

al., 2017). Like in the case of exploitation mechanism of ABO, several attempts have 

been made as can be found in literature (Igiri, Singh, & Poonia, 2019; Jiang, Tianhua-

Zhu & Deng, 2020; Mishra, 2022). However, none among the mentioned researchers 

employs the use of Tent-map function for enhancement of exploitation mechanism in 

ABO algorithm. 

Conclusively, this study proposes to enhance the ABO prior to its deployment as an 

optimiser for SVR algorithm. Prior to that, the SVR will be optimised using the 

classical ABO.  

1.5   Research Questions 

The questions to be answered by this research are as follows: 
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1. How to automatically optimise SVR algorithm’s hyper-parameter using 

ABO algorithm? 

2. How to design ABO with diverse solution population using Tent-map 

based chaotic function to increase convergence speed?  

3. How to enhance the exploration ability of ABO algorithm using Mc-

Culloch based Levy flight function to avoid premature convergence? 

4. How to automatically tune the ABO’s exploitation process parameters 

using Tent-map based chaotic function to avoid being entrapped in local 

optima? 

5. How to evaluate the proposed SVR-ABO and other enhancements made on 

ABO algorithm? 

1.6   Research Objectives 

The aim of this research is to propose a multivariate time series forecasting algorithm 

based on the integration of SVR and ABO algorithm. The following specific research 

objectives are to be fulfilled: 

i) To design an optimised SVR algorithm using classical ABO algorithm. 

ii) To design ABO population initialisation function using Tent-map 

based chaotic function for maximum population diversity in the search 

area to increase convergence speed.  

iii) To reformulate ABO exploration function using Mc-Culloch based 

Levy flight function to enable the algorithm to be more resilient to 

premature convergence by optimal placement of buffaloes in a wider 

search space.  

iv) To reformulate ABO exploitation function using Tent-map based 

chaotic function to prevent falling into local optima. 
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v) To evaluate the proposed enhanced SVR-ABO algorithm against 

existing optimised SVR algorithms. 

 

1.7   Scope and Limitation of the Study 

The scope of this study is based on multivariate short-term of electric load forecasting 

that can be determined based on consumption. The study intends to use four (4) 

datasets as follows: 

i. Individual Household Electricity Consumption dataset (Hebrail, Georges and 

Berard, 2012; Sinha et al., 2021).  

ii. Appliances Energy Forecasting dataset (L. Candanedo, 2017). 

iii. Turkey electricity consumption (Tutun, 2016). 

iv. Panama Electric load consumption (Madrid & Antonio, 2021). 

This study aims to hybridise a machine learning technique (i.e., SVR) with Swarm 

Intelligence (SI) method for forecasting task with attention on SVR parameter tuning 

with SI method. However, the study is limited to employing ABO algorithm to 

optimise SVR algorithm’s parameters towards building an enhanced algorithm for an 

electric load forecasting purpose.   

1.8   Significance of Study 

The primary contribution of this research lies in its advancement of the existing body 

of knowledge, specifically in the context of hybridizing SVR-ABO and enhancing the 

ABO method. Notably, the researcher has developed an enhanced ABO algorithm that 

encompasses three crucial stages: population initialization, exploration, and 

exploitation. 
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The novelty of this approach is underscored by its potential to make accurate forecasts 

regarding future electricity consumption. By employing an optimized multivariate 

time series forecasting algorithm, SVR-ABO, the algorithm effectively learns the 

consumption patterns of consumers. This has significant implications for efficient 

management and effective future planning in the power generation industry. By 

reducing resource losses and minimizing wastage production, the algorithm can 

enhance profitability and minimize excess production, which is particularly crucial 

given the inherent limitations of storing excess electricity. 

The proposed algorithm draws upon the generalization ability of SVR and leverages 

the rapid convergence speed of the ABO algorithm. This unique combination yields 

an optimal electric load forecasting algorithm that is both diverse and efficient in its 

exploration and exploitation processes. By integrating these elements, the algorithm 

offers a novel and promising approach to electric load forecasting, contributing to the 

advancement of knowledge in this field. 

1.9   Summary 

In this chapter, the introduction of the research domain is provided as part of the 

background of the study. The introduction of the key algorithm, upon which this study 

has been built, is also presented, along with the introduction of the optimisation 

algorithm. The strengths and shortcomings of the key algorithm, SVR, are highlighted. 

Furthermore, the need for hybridization with a swarm intelligence-based algorithm is 

presented. The chosen SI algorithm, ABO, is presented, along with the justification for 

the hybridization based on its strengths. The weaknesses of ABO algorithm are 

addressed in the problem statement. This lays the foundation for the formulation of 

research questions that guide the development of the research objectives in this study. 

Finally, the scope, significance, and limitations of the study are also presented.  
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2. CHAPTER TWO 

          LITERATURE REVIEW 

As highlighted in previous chapter, there are two major approaches employed in 

forecasting namely Statistical and Machine learning methods. With respect to that 

matter, this section reviews the existing work that employs different Statistical 

methods as well as Machine learning methods. Review of SVR, and hyper-parameter 

optimisation techniques were also provided. Lastly, African Buffalo Optimisation 

algorithm was discussed, highlighting its strengths & weaknesses, as well as various 

literature that mentioned its application fields. 

2.1   Multivariate Time Series 

A time series pertains to a sequential arrangement of values that are observed at 

consistent intervals throughout a predetermined temporal span. For a model to be 

considered multivariate, it must involve other related time series factors that affect the 

target (Ziel, 2015). For example, in a study by Javedani et al., the authors considered 

temperature as an influencing factor of power consumption in companies located in 

Johor, Malaysia (Sadaei et al., 2019). In other studies, such as those conducted by 

Cinar and Madhavi, and Madhavi, temperature, humidity, solar radiation, and traffic 

flow were considered as influencing variables for electricity load consumption (Cinar 

et al., 2018) (Madhavi et al., 2017). 

Cheung et al., (2018) considered temperature as a factor that makes data to be 

considered as multivariate. This research employs multivariate time series analysis, 

considering variables such as temperature and humidity in building the forecasting 

model. 
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2.2   Electric Load Forecasting Methods 

Accurately forecasting electric load consumption plays a critical role in ensuring 

efficient energy management, grid stability, and informed decision-making across 

various sectors. The challenges associated with load forecasting necessitate the 

utilization of effective methods capable of capturing the intricate dynamics of 

electricity demand. This sub-section aims to delve into an examination of the methods 

employed in electric load forecasting, with the objective of providing valuable insights 

into their applicability, strengths, and limitations. 

The selection of appropriate forecasting methods is contingent upon the specific 

requirements and scenarios encountered within the field. Several pivotal scenarios 

underscore the importance of precise load forecasting, encompassing optimizing 

power generation and distribution, managing grid stability, facilitating energy trading 

and market operations, integrating renewable energy sources, supporting demand 

response programs, and enhancing smart grid management. 

The field of forecasting has numerous techniques documented in the literature, which 

can be classified into two groups: statistical methods and machine methods. The 

following sections outline the characteristics, strengths, and weaknesses of each 

category. 

2.2.1   Machine Learning Methods 

Machine learning offers a range of techniques for electric load forecasting, including 

Fuzzy Time Series, K-Nearest Neighbour, Artificial Neural Network (ANN), and 

Support Vector Regression (SVR). Extensive research has been conducted across 

various forecasting domains to investigate the efficacy of these methods. Following 

presents a comprehensive review of relevant literature encompassing studies that have 

leveraged these approaches for electric load forecasting. 
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(a) Fuzzy Time series 

The initial proposal of fuzzy time series was presented by (Qiang & Brad, 1993). 

Instead of using numerical values, it was based on linguistic values. Thus, after 

constructing the fuzzy relationships among the samples, the values need to be 

transformed into numerical values for output. Model developed base-on fuzzy time 

series has its accuracy dependant on the proper interval chosen (Deb et al., 2017). 

Although fuzzy time series has been used in various forecasting models, it has some 

limitations such as determining fuzzy logic weights, membership functions, and 

optimal rules (Deb et al., 2017).  

Sadaei et al., (2017) proposed a novel approach referred to as the SARFIMA-FTS 

method, combines elements of SARFIMA (Seasonal Autoregressive Fractionally 

Integrated Moving Average) and Fuzzy Time Series (FTS) models to increase 

accuracy of seasonal memory time series (SMTS). The study was founded upon 

higher-order time series and utilised PSO for tuning SARFIMA-FTS hyper-

parameters. The validity of the SARFIMA-FTS method was further established 

through testing on additional STLF datasets from various domains. The results 

demonstrated that the SARFIMA-FTS method significantly outperformed benchmark 

models as determined by the SMAPE metric. 

Chang et al., (2019) introduced an innovative approach for electricity consumption 

forecast in Taiwan. The method integrated the Nth Quartile Discretisation Approach 

(NQDA) within the Fuzzy time series model. Using electricity consumption data from 

1996 to 2017, the study demonstrated the superior accuracy of the proposed 

methodology. It achieved improved forecasting accuracy by minimizing the Root 

Mean Square Error (RMSE) metric through the incorporation of the NQDA technique. 
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Silva et al., (2018) use Advanced Fuzzy Time Series (AFTS) as a forecasting method 

for short-term electricity consumption based on different time intervals. The 

performance was measured by the MAPE and Inter Quartile Range (IQR) metrics. The 

result from the investigation suggested that the proposed method had a statistically 

significant relevance, as evidenced by a p-value of 0.618. 

Luferov et al., (2017) developed a method based on fuzzy time series for forecasting 

electric power load consumption. They analysed the impact of weather on power 

consumption using data from Smolensk, Russia, spanning from 2016 to 2017. The 

research revealed a significant correlation between temperature and power usage, 

highlighting the temperature's influential role. The proposed approach showed 

improved short-term forecasting accuracy, evaluated using the MAPE metric. 

Sadaei et al., (2019) developed a method that combines fuzzy time series with 

Convolutional Neural Network (CNN) for short-term forecasting of electric power 

consumption. They used a multivariate dataset of hourly electric load consumption and 

temperature data to assess the impact of temperature. The CNN extracted features, 

while fuzzy time series performed the forecasting. Evaluation metrics such as MAPE, 

RMSE, and APE were used to measure accuracy. The approach aimed to improve 

forecasting accuracy and understand the temperature-power consumption relationship. 

Chen (2016)  proposed a hybrid method that hybridised fuzzy time series with LS-

SVM and the Global Harmony Search algorithm to build an electricity forecasting 

model (Chen et al., 2016). The Global Harmony Search algorithm was employed for 

its search performance efficiency. This method was applied to electric power 

consumption data from the Guandong province in China. Empirical evidence shows 

that, the proposed model was able to achieve higher forecasting accuracy and faster 

convergence. The summary of forecasting methods in the electric load forecasting 
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domain, utilizing the Fuzzy time series approach with various data frequencies, is 

provided in Table 2.2. 

Table 2. 1  

Fuzzy Time Series based Approach for Electric Load Forecasting 

Authors Approach 

Data 

Frequency 

Evaluation 

Metric 

Sadaei et al., (2017) SARIMA-FTS Half-hourly SMAPE 

Chang et al., (2019) 

FTS and Nth Quartile 

(NQDA) Daily RMSE 

Silva et al., (2018) AFTS 

Weekly, Daily 

and Hourly IQR and MAPE  

Luferov et al., (2017) FTS Hourly MAPE 

Sadaei et al., (2019) FTS-ANN Hourly 

MAPE, RMSE, 

APE 

Y. H. Chen et al., 

(2016) FTS-LSSVM Monthly 

MAPE, MAE and 

RMSE 

    

(b) K-Nearest Neighbour 

The K-Nearest Neighbour (KNN) algorithm is a well-known technique utilised in 

classification tasks. It functions by evaluating the similarity between different samples 

within a designated group. The similarity has to be calculated by determining the 

properties of each sample. Samples with higher degree of semblance are grouped 

together, newer samples are assigned group based-on exhibited property. Although the 

KNN algorithm has been employed in forecasting across a wide range of domains, it 

still faces several challenges such as determining the optimal number of neighbours 

and similarity computation metric. These parameters are often determined through a 

trial-and-error approach, this can become burdensome, especially when dealing with a 
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complex objective function (Deb et al., 2017). These issues associated with the KNN 

algorithm make it unsuitable for electric load forecasting models, where accuracy is of 

paramount importance. 

Wahid & Kim  explored the use of KNN for forecasting daily residential energy 

requirements (Wahid & Kim, 2016). The research methodology employed in their 

study is rooted in the classification properties of the K-nearest neighbours (KNN) 

algorithm. The KNN classifier utilizes the Euclidean distance as a measurement 

metric. Similarity of sample is determined through close resemblance of its properties 

with the classified previous data sample.  

Xianlong et al., (2018), investigated the use of K-NN algorithm to build a forecasting 

model for electrical energy consumption. The authors were able to determine the effect 

of unbalanced data on forecasting accuracy of a classification model. To mitigate the 

discovered issue, the authors utilised KNN algorithm based on computed weights. The 

model was evaluated using a data obtained from electricity consumption of a 

household.  

(Al-Qahtani & Crone, (2013) developed a forecasting model based KNN electricity 

demand. The proposed model uses historical electricity consumption data obtained 

from United Kingdom. The model was trained using hourly electricity consumption 

data collected in 2004 and was used to predict daily electric consumption for 2005. 

The results, as measured by the MAPE metric, showed a significant accuracy of 

1.8133%. 

In another study, authors aimed to develop an accurate and reliable method for 

predicting electric consumption in order to support energy management and planning. 

The authors presented a forecasting model based on of KNN and considered the 

consumption levels of individual appliances and total home electricity consumption 
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using historical data obtained from residential buildings in Maryland and California 

(Lachut et al., 2015).  

In another study, authors presented a novel approach for forecasting electric power 

consumption in Cameroon Tchuidjan et al., (2014). Multiple-Input Multiple-Output 

(MIMO) framework is the methodology employed to implement a K-Nearest 

Neighbour (KNN) model using data spanning from 1972 to 2009. The model 

performance was evaluated  using MAPE metric. The model developed was used for 

long term load forecast of fifteen years in to future.  

Table 2.2 presents a summary of literature that explores various methods utilising 

KNN as a forecasting technique for Electric load forecasting across different 

forecasting horizons. 

Table 2. 2 

KNN-based approach for Electric load forecasting 

Authors Method Type of 

Consumption 

Evaluation Metric 

Wahid & Kim, 2016 KNN Hourly Statistical metrics 

Xianlong et al., 2018 Balanced 

KNN 

Monthly MAE 

Al-Qahtani & Crone, 

2013 

Multivariate 

KNN 

Hourly MAPE 

Lachut et al., 2015 KNN, ARMA, 

Bayesian, 

SVM 

Weekly Accuracy 

Tchuidjan et al., 2014 MIMO-based 

KNN 

Years MAPE 
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(c) Artificial Neural Network 

Artificial Neural Networks are a group of learning algorithms that draw inspiration 

from the functioning of biological neural networks. They are widely utilized for 

approximating values of unknown functions. (Jaddi et al., 2017).  

Different type of ANN can be found in the literature depending on the type of the 

network architecture (Zheng et al., 2019). Few examples of ANN are; Feed-Forward 

Neural Network (FFNN), Radial Basis Function Network (RBFN), Recurrent Neural 

Network (RNN). However, among the different mentioned ANN-based architecture, 

RNN proves to be the most suitable and most popular architecture used for time series 

related tasks like power load forecasting(Kong et al., 2017; Ugurlu et al., 2018).  

Recurrent Neural Network is a type of ANN that employs usage of information from 

previous feed-forward Recurrent Neural Networks (RNNs) (Kumar et al., 2018). 

RNN-based architecture can be found in various forms of either Gated Recurrent Units 

(GRU) or Long-Short Term Memory (LSTM). These mentioned RNN-based 

variations of architectures were proposed to mitigate the problem of exploding and 

vanishing gradient that is been associated with RNN (Kong et al., 2017). 

Despite the positive predictive outcomes demonstrated by RNN-based methodologies 

in existing literature, which have shown their ability to address complex and nonlinear 

problems, these techniques have limitations such as time-intensive processes and 

susceptibility to overfitting (Hamzaçebi, 2008; Mat Daut et al., 2017; Ugurlu et al., 

2018). The susceptibility to overfitting in RNN-based techniques arises from their use 

of the Empirical Risk Minimization (ERM) approach, which focuses on minimizing 

training errors  (Eapen & Simon, 2018; Mat Daut et al., 2017). Moreover, Recurrent 

Neural Networks (RNNs) encompass numerous control parameters that require 

optimization. These parameters include determining the optimal number of hidden 
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layers, selecting the suitable activation function for each layer, specifying the number 

of training epochs, and choosing the activation function for the output layer (Kong et 

al., 2018; Yusof & Mustaffa, 2015). This complex parameter landscape makes RNN-

based models unsuitable for power consumption forecasting tasks. 

Artificial Neural Networks (ANNs) are a widely utilized type of model building 

technique, employed in resolving various time series forecasting issues across various 

domains. They have the potential to be synergistically combined with various 

intelligence techniques, such as swarm intelligence and genetic algorithms. This 

integration can lead to the generation of highly efficient and optimized outcomes (Ray 

et al., 2019). ANNs are often employed as forecasting models in domains where the 

relationship between features of data samples is non-linear. 

The primary objective of artificial neural network (ANN) models is to ascertain the 

optimal weights associated with individual features, thereby minimizing the disparity 

between actual and target values through utilization of back-propagation process 

(Rumelhart et al., 1986). The utilisation of back-propagation technique significantly 

reduced training time of a model while improving forecasting accuracy. ANNs have 

been utilized as forecasting models for all horizons in electricity consumption 

forecasting. Electricity consumption is frequently evaluated by taking into account 

additional time series data, such as temperature and humidity. These factors are 

instrumental in assessing and understanding the patterns of power usage. Incorporating 

temperature and humidity information allows for more accurate analysis and 

forecasting of electric power consumption (Chae et al., 2016; Chitsaz et al., 2015; 

Hussain et al., 2016; Kelo & Dudul, 2012; Rezaeian-Zadeh et al., 2012). 
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(d) Support Vector Machines 

The Support Vector Machine (SVM) framework was originally conceived and 

introduced to the academic community by Vapnik and his colleagues at AT&T 

(Corinna & Vladimir, 1995). They presented this innovative concept as a powerful 

machine learning algorithm that has since gained significant recognition and adoption 

in various fields. The pioneering work of Vapnik and his team laid the foundation for 

the widespread application of SVM in solving classification and regression problems.  

The SVM is a classifying algorithm designed to identify a hyperplane that can 

accurately divide a set of training data into separate classes using linear separation. 

The points of data that are used to determine the optimal distance between the data 

points and the margin often referred as hyperplane. These points are , are termed as 

support vectors. In practical situations, it is uncommon to encounter data that can be 

perfectly separated by a linear boundary. Therefore, when faced with non-linearly 

separable data, the SVM employs a technique that involves mapping the data points 

into a higher dimensional space to identify the hyperplane. This is followed by a 

process called the kernel trick, which maps the features back to the original space. 

Additionally, the SVM provides the option for non-correctly classified data points 

through the implementation of a penalty factor, C, which regulates the acceptable 

amount of misclassification during optimization while penalizing any errors beyond a 

predetermined limit. 

In addition to its successful application in classification, the SVM algorithm has 

proven to be effective in regression tasks as well. By aiming to establish a function 

that minimizes the deviation between output measurements and the cumulative error 

of input values, Support Vector Regression (SVR) emerges as a powerful technique in 

forecasting modeling. 
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2.3   Support Vector Regression 

Support Vector Regression (SVR) is a variant of the Support Vector Machine (SVM) 

algorithm in the field of machine learning. SVR is specifically designed for regression 

tasks, while SVM is primarily used for classification tasks. SVR was developed by 

Smola and Scholkopf (Smola & Scholkopf, 2004) to address regression problems and 

has been proven to be highly effective in classification tasks. The algorithm has 

become widely used in various applications, including stock market and electric load 

forecasting (Barman & Dev Choudhury, 2018; Qu & Zhang, 2016; Sermpinis, 

Stasinakis, Rosillo, et al., 2017).  One of the advantages of SVR is the use of kernel 

functions, which enable the algorithm to perform linear and non-linear 

approximations. Additionally, SVR is renowned for its superior performance, as it 

only utilises support vectors to determine the model boundary. Also, due to employing  

convex objective function, the problem of local minima is eliminated. Another key 

advantage of SVR is its ability to minimise generalisation error due to adoption of 

structural risk minima which aims to minimise generalisation error instead of just 

training error. It should be noted that the authors opted to employ SVR instead of LS-

SVR due to its limited generalisation ability (Yan et al., 2017). 

2.3.1   SVR Kernels 

Kernels are the key functions that allows SVR to be able to exhibits its potentials both 

in regression and classification tasks. 𝑘(𝑥𝑖, 𝑥𝑗) as defined in Eq. (2.1) represents a 

kernel function that has a value equivalent to the value of inner product of two vectors 

𝑥𝑖𝑥𝑗in the feature space 𝜑(𝑥𝑖) and 𝜑(𝑥𝑗) . 

 𝑘(𝑥𝑖 , 𝑥𝑗) = 𝜑(𝑥𝑖) ∗ 𝜑(𝑥𝑗) (2.1) 

𝑘(𝑥𝑖 , 𝑥𝑗) is a function that is used map the input data in original space into higher 

dimensional space. This enables the determination of linearly optimal separating 
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hyperplane in the higher dimensional feature space rather than non-linear separating 

plane in the original input space. There exist four (4) kernel functions that can be found 

in literature that are mostly used with SVR (Wang & Wang, 2019) namely, Polynomial 

kernel function, Gaussian Radial Basis kernel function Sigmoid function and Radial 

Basis kernel function:  

1) Polynomial kernel function denoted as: 

 𝐾(𝑥𝑖 , 𝑥𝑗) = (𝑥𝑖, 𝑥𝑗)
𝑑
, 𝑑 = 1,2, … (2.2) 

where d is the degree of the polynomial. 

2) Radial basis function (RBF) kernel denoted as: 

 𝐾(𝑥𝑖, 𝑥𝑗) = 𝑒−𝛾 (‖𝑥𝑖, 𝑥𝑗‖
2
) (2.3) 

3) Gaussian radial basis (Special case of RBF) kernel function is denoted as: 

 
𝐾(𝑥𝑖, 𝑥𝑗) = 𝑒𝑥𝑝(

−(𝑥𝑖 − 𝑥𝑗)
2

𝜎2
) (2.4) 

where 𝜎2 > 0 denotes the kernel width. 

4) Sigmoid kernel function is denoted as: 

 𝐾(𝑥𝑖, 𝑥𝑗) = 𝑡𝑎𝑛ℎ(𝑏(𝑥𝑖 ∙ 𝑥𝑗) + 𝑐) (2.5) 

where b represent the slope and C represent the bias of the function. 

This research uses the radial basis function (RBF) kernel as it is the most widely used 

kernel with SVR (Chou & Truong, 2019; Li et al., 2018; Li et al., 2018; Velasco et al., 

2018; Zhang et al., 2019). This is due to its ability to outperform other kernels in terms 

of accuracy and faster training speed in training phase (Al-Musaylh et al., 2018). The 

effect of this is the reduction of computational time in terms of tuning for optimum 

hyper-parameters.  

2.3.2 Techniques for SVR Hyperparameter Optimisation 

Optimisation technique primary’s aim is to help the SVR algorithm to avoid under-

fitting or over-fitting during training, which consequently affect the algorithm’s 
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generalisation ability. There are two prominent methods for SVR optimisation task 

that can be found in literature. These are cross-validation and using swarm intelligence. 

(a) Cross-Validation Approach 

The most commonly methods found in literature that are used for SVR hyper-

parameter optimisation in SVR are Cross-validation and grid search method (Bing et 

al., 2018). However, cross-validation optimisation methods are computationally 

expensive and easily falls into local optimum(Mustaffa et al., 2018), hence researchers 

opt for better approach of using meta-heuristics approaches. 

(b) Swarm Intelligence Approach 

Due to in adequacy and problems associated with grid and cross-validation approaches 

of optimisation, meta-heuristics approaches were tried in academia, with the 

associated promising result, the meta-heuristic approaches are becoming dominant 

methods for optimisation process in various fields of research. Following are literature 

where SVR algorithm has been optimised using metaheuristic techniques. 

2.3.3   Reviewed literature on Support Vector Regression with Swarm algorithms 

Zhang et al., (2019) utilised the Artificial Bee Colony (ABC) algorithm to optimise 

Support Vector Regression (SVR) parameters for electricity consumption forecasting 

in China. They emphasised the importance of population initialization in evolutionary 

algorithms and introduced a tent chaotic strategy and tournament selection procedure 

to initialize the ABC population and assign values to individual bees. Their proposed 

approach, ABC-SVR, achieved notable accuracy in terms of Mean Absolute 

Percentage Error (MAPE) compared to other state-of-the-art, and classical SVR with 

default parameters. 

In a distinct scholarly investigation, the authors have harnessed the potential of the 

cuckoo search algorithm to effectively optimize Support Vector Regression (SVR) for 
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the purpose of short-term electric load forecasting in residential electricity 

consumption. However, with the shortcomings of Cuckoo Search algorithm (CSA) of 

premature convergence and slow convergence rate in later searching period (Dong et 

al., 2018). The authors applied chaotic mapping function to mitigate the mentioned 

problems of CSA. The model proposed improve the forecasting capability of SVR 

algorithm.  

Li et al., (2018) discovered that the Fruitfly Optimization Algorithm (FOA) had 

limitations, including premature convergence and a high likelihood of getting stuck in 

local optima. To address these issues, the authors proposed enhancements to FOA 

using Quantum Computing Mechanism (QCM) and a cat chaotic mapping function. 

QCM was employed to improve the searching ability of FOA and prevent premature 

convergence. The cat chaotic mapping function was used to assist the algorithm in 

escaping local optima when population diversity is low. The authors' optimised model 

demonstrated improvement based on MAE, MAPE, and RMSE as statistical metrics 

against compared techniques. 

Chou & Truong, (2019) conducted study by employing Support Vector Regression 

(SVR) for accurate forecasting of the exchange rate between the Canadian dollar and 

the United States dollar (USD). To enhance the performance of SVR, the authors 

utilized an enhanced firefly algorithm (FA) that was tailored specifically for parameter 

optimization, employing a sliding-window technique. The authors use Gauss/mouse 

mapping and logistic mapping for tuning attractiveness of FA and population 

initialisation activities respectively. Also, the authors us Lévy flight and Adaptive 

Inertia Weight (AIW) for enhancement of local search and local exploitation cum 

global exploration capabilities respectively. The model proposed was able to record 

higher accuracy based on RMSE, MAE and MAPE as statistical metrics for evaluation. 
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Chou & Pham, (2017) forecast the scour depth effect caused by flowing water against 

bridge. The authors use SVR as forecasting algorithm optimised with Firefly 

algorithm. The authors also use chaotic map function for effective random 

initialisation and Lévy flight to enhance local search. SAFCAF as the developed model 

shows significant accuracy against benchmarked algorithms. 

Tran & Hoang, (2017) used Flower Pollination Algorithm (FPA) to optimise 

SVR parameters for forecasting algal colony growth on façade structures. They 

enhanced the FPA's search functionality by incorporating Lévy flight. The 

resulting LSVR-FPA model outperformed several statistical and machine learning 

based benchmarks in terms of accuracy, as measured by RMSE and R2 metrics. 

Verma et al., (2017) conducted a study on optimising Support Vector Regression 

(SVR) for predicting cement compressive strength using multivariate parameters. The 

authors employed Particle Swarm Optimization (PSO) and Symbiotic Organism 

Search (SOS) as optimization algorithms for SVR. Their models demonstrated 

superior accuracy compared to benchmark models such as ANN, RVM, and GPR. 

Various metrics, including, MSE, MAE, and MAPE were used to evaluate the 

performance of the models.  

Though, Swarm Intelligence methods have proven to be an effective means of 

parameter optimisation for machine learning algorithms as mentioned in the literature. 

However, these methods are prone to be trapped in local optima, most of times 

converged prematurely or takes longer time to converge (Chou & Pham, 2017; Chou 

& Truong, 2019; Dong et al., 2018; Li et al., 2018). Table 2.5 present the summary of 

different swarm intelligence algorithms used to optimise SVR algorithm with RBF 

kernel. 
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Table 2. 3 

Swarm Intelligence based algorithms for SVR parameter optimisation 

Sno Year Application Area 

Hybrid 

Algorithm 

1  Zhang et al., (2019) Electricity Consumption ABC 

2  Dong et al., (2018) Household electric 

demand 

Cuckoo search 

3  Li et al., (2018) Grid load Forecast Firefly 

4  Chou & Pham, (2017) Scour depth forecast Firefly 

5 Tran & Hoang, (2017) Algal growth forecast Flower 

pollination 

algorithm 

6 Verma et al., (2017) Forecasting of Cement 

compressive strength 

PSO and SOS 

7 Mahmoudi et al., (2016) Forecasting of water 

quality 

Shuffled frog 

leaping algo 

(SFLA) 

 

Swarm Intelligence (SI) has been proven to be an effective method of parameter 

optimisation for machine learning algorithms as demonstrated in the literature. 

However, these methods exhibited inherent weaknesses of having tendency to be 

trapped in local optima, slow and premature convergence (Chou & Pham, 2017; Chou 

& Truong, 2019; Dong et al., 2018; Li et al., 2018) of which African Buffalo 

Optimisation algorithm is part of. Hence the need for exploring other techniques to 

mitigate such weaknesses of SI based techniques. ABO algorithm is one of such SI 

based methods used for optimisation process in machine learning domain.  

2.4   African Buffalo Optimisation Algorithm 

The African Buffalo Optimisation (ABO) algorithm, developed by Odili, belongs to 

the class of swarm intelligence (Odili et al., 2015). It models the foraging and 
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defending behaviour of African buffaloes, which exhibit unique features such as 

extensive memory capacity, communal lifestyle, and democratic decision-making 

lifestyle (Ghosh, 2022; Ullah Khan et al., 2021; Vaza et al., 2022). These animals 

communicate danger and safety using the sounds "waaa" and "maaa" respectively, 

which are mapped to the algorithm's organisational lifestyle characteristics (Odili et 

al., 2016; Odili, Kahar, Noraziah, et al., 2017). 

The ABO algorithm utilises parameters such as "waaa" sound denoted by wk, "maaa" 

sound denoted by mk, and learning parameters denoted by l1 and l2. It also involves 

global best (bgmax) and personal best (bpmax(k)) positions. The algorithm follows two 

equations: the democratic equation (Eqn. 2.8) and the location update equation (Eqn. 

2.9). Algorithm 2.1 outlines the basic flow of the ABO algorithm. It subtracts the 

"waaa" value (wk) from the maximum vector (bgmax and bpmax(k)), which is then 

multiplied by the learning parameters (l1 and l2). While λ is a variable that determines 

the time interval over movement of buffalo and generally fixed to 1 (Alweshah et al., 

2022; Barnwal et al., 2023; Kesavan et al., 2022; Sushma et al., 2022).  

The "maaa" value (mk) indicates that the herds should remain in that location and 

continue grazing. The exploitation and exploration stages of the ABO algorithm are 

represented by Eqn. (2.6) and Eqn. (2.7) respectively. The complete basic ABO 

algorithm is presented in Algorithm 2.1 (Odili et al., 2015). 

 𝑚𝑘+1 = 𝑚𝑘 + 𝑙1(𝑏𝑔𝑚𝑎𝑥 − 𝑤𝑘) + 𝑙2(𝑏𝑝𝑚𝑎𝑥(𝑘) − 𝑤𝑘) (2.6) 

 
𝑤𝑘+1 =

(𝑤𝑘 +𝑚𝑘)

𝜆
 (2.7) 
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Algorithm 2.1: African Buffalo Optimisation  

Step 1: Random initialisation of buffaloes in search space 

Step 2: Updating the exploitation behaviour using equation 2.8 

Step 3: Update the individual location of buffalo using equation 2.9 

Step 4: If equation 3.18 and 3.19 are updating, continue to step 5, else go to step 1 

Step 5: If stopping criteria* is reached go to step 6, otherwise go to step 2 

Step 6: Output the best result. 

 

*where the stopping criteria can be either the maximum number of iterations is 

reached, or when the improvement in the fitness value becomes negligible over 

consecutive iterations. 

2.4.1   African Buffalo Optimisation Algorithm in Literature 

ABO as metaheuristic-based optimisation algorithm has been compared with other 

meta-heuristics algorithms (Odili, Kahar, Noraziah, et al., 2017) to establish its 

performance. The algorithm has also been used in literature for solving various 

optimisation problems in different domains such as collaborative team formation in 

social network (El-Ashmawi, 2018), symmetrical and asymmetrical problem of 

travelling salesman (Odili et al., 2016; Odili & Mohmad Kahar, 2016), spatial 

modeling of Prey-Predator based cellular automata (Palyulin et al., 2014), numerical 

function optimisation (Odili & Kahar, 2015), Proportional-Integral-Derivative (PID) 

controller parameter tuning (Zhang et al., 2018) and determining the best biodiversity 

area for conservation with constrained budget (Almonacid et al., 2017). 

Furthermore, , the algorithm was compared with other well established nature inspired 

algorithms. Results obtained from the study demonstrated that ABO has a better 

performance than genetic algorithm (GA), honey-bee mating optimisation (HBMO), 

ant colony optimisation (ACO) and simulated annealing (SI) and many other 

metaheuristic algorithms (Odili, Kahar, Noraziah, et al., 2017).  
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The ABO algorithm has demonstrated notably superior performance compared 

to Genetic Algorithm (GA) and an enhanced version of GA in various applications. In 

an evaluation against numerical functions and the tuning of PID controller parameters, 

the ABO algorithm exhibited remarkable success, surpassing the performance of both 

GA and the enhanced GA Odili, Kahar, & Noraziah, (2017). Furthermore, when 

applied to a metaheuristic-based simulation of a dynamic prey-predator model using 

cellular automata, the ABO algorithm exhibited superior performance (Almonacid, 

2017). 

In a related study by (Igiri, Singh, & Bhargava, 2019a), the authors further enhanced 

the ABO algorithm by improving its population initialization and exploration process 

using logistic-map based chaotic function, and Mantegna-based Levy flight function 

respectively. This improvement aimed to enhance the algorithm's efficiency and 

effectiveness in finding optimal solutions. The authors' enhancements contribute to the 

continuous refinement and advancement of the ABO algorithm for solving complex 

optimization problems. 

Jiang et al., (2020)  Improved several aspects of ABO algorithm within domain 

Scheduling Problem (Energy consumption as the considered factor). The authors 

improved on Population initialisation, Exploitation and Exploration part of ABO 

algorithm to produce Improved African Buffalo Optimisation (IABO) algorithm. The 

improvement based on each section is as follows: 

The authors use three different methods (Global selection, Local selection, and 

Random selection) for population initialisation in ABO. The methods were applied at 

random at each iteration to generate locations of buffaloes in search space.  Similarly, 

the authors introduce three distinct different age-based mechanisms for the buffaloes 

during training. This is to enhance the exploration process of the proposed algorithm. 
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At the exploitation stage, the authors added a random buffalo location and a randomly 

value as new learning additional parameter in the exploitation equation to avoid 

premature convergence 

Krisnawati et al., (2020)   conducted study on Flow-shop Scheduling Problem (FSP) 

in muffler production industry. The authors use classical ABO as an optimiser  and use 

Friedman test to determine the performance of the solution produced by ABO and 

benchmarked algorithms (Hybrid GA, PSO, and CSA) . The result shows that  ABO 

was able to produce optimal solution compared to other algorithms. However, the 

authors observed that ABO records higher computational time than other benchmarked 

algorithms 

In a study conducted by (Panhalkar & Doye, 2022) , the authors employ ABO 

algorithm to improve the shortcomings of Decision trees for feature selection on 

classification task that has been applied on a large dataset . The authors mentioned that 

Decision Trees are highly instable and prone to overfitting, Based on the application 

of ABO algorithm the newly developed hybrid ABODT algorithm was able to 

outperform all benchmarked algorithms namely Antminer-Decision Trees, and Ant 

Colony- Decision Trees (ACDT) on four out of six (6) real world dataset used to test 

the algorithm. 

In (Mishra, 2022), the authors employ ABO algorithm to optimise Decision trees for 

Intrusion Detection System. However, the authors enhanced  ABO’s population 

initialisation and exploitation mechanism. Population re-initialisation was modified 

using Discreet Cross-over method where new buffaloes’ locations are created based  

new arbitrary value between Global best and Personal best.  

To modify the exploitation process, the authors employ utilisation of random Swap 

Operator on both l1 and l2 parameters. The developed algorithm was tested on Three 
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datasets on feature selection, and sample selection for classification task. The result 

shows that the developed hybrid algorithm shows superior performance against 

classical Decision Trees, SVM, ANN, and KNN on all datasets. 

Improved African Buffalo Optimization-Based Takagi–Sugeno–Kang Fuzzy PI 

Controller for Speed Control in BLDC Motor has been proposed by (Subramani et al., 

2023). The authors hybridised ABO with Takagi-Sugeno-Kang (TSKF) fuzzy 

algorithm to control the speed of BLDC motor.  However, upon close inspection, the 

authors utilise classical ABO algorithm without any improvement. The developed 

algorithm was compared with PSO, GSA, CSS, GWO, and WOA as benchmarks. The 

developed IABO outperforms all the benchmarks in terms of determining optimal 

values, lower optimisation error rate, while only GSA converge faster than IABO. 

In another study, (Sheeba et al., 2023) enhanced the exploration mechanism of 

classical ABO using Mantegna-based Levy flight for feature selection purpose for 

Deep learning algorithm. The authors argued that the newly developed Intrusion 

Detection using Modified Buffalo Optimization Algorithm with Deep Learning 

(IDMBOA-DL) shows a remarkable classification accuracy of 99.50% better than all 

benchmarks. 

Barnwal et al., (2023)  The ABO algorithm was used to design a fitness function based 

on multiple parameters in order to achieve efficient clustering of sensors nodes for 

better routing. The ABO was hybridised with Whale month flame optimisation 

algorithm to achieve the said purpose. The ABO was used to mitigate weak 

exploitation capability of whale Moth Flame Optimisation algorithm. Before 

employing the ABO algorithm, the authors utilise Oppositional Based Learning (OBL) 

method for population initialisation in order to improve the convergence speed of 

ABO. 
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The developed IABO algorithm has shown a better performance on all metrics 

(Throughput, Energy consumption, and Network lifetime) compared to benchmarked 

algorithms slightly followed by GWO. 

Algaphari, 2023 evaluated an enhanced ABO algorithm on Travelling Salesman 

Problem (TSP). The author enhanced ABO population initialisation, and the speed of 

buffaloes during exploration with Fuzzy matrices instead of classical gaussian-based 

random numbers. The proposed Fuzzy-ABO algorithm was tested on several TSP 

dataset including Berlin52, Ulysses16, and Burma14 benchmarks. Where fuzzified ABO was 

the overall best by achieving smallest and optimal solution to the TSP problem. The developed 

algorithm was compared with classical ACO and PSO, of which the Fuzzy-ABO outperform 

both. 

In another study conducted by (Singhal et al., 2023), the authors use classical ABO as 

multi-objective optimiser for Test Case for Fault tolerance. The authors designed a 

Multi-objective Test case selection and Prioritization (TCS&P) model where the 

artificial buffalos correspond to the test cases and the path (the result of the buffalo’s 

search) is marked as the selected/prioritized test suite. The developed ABO_TCS&P 

algorithm exhibit remarkable performance in comparison to Ant Colony Optimisation 

(ACO) as the benchmarked algorithm of which ABO performed exceptionally higher 

than the ACO. 

The aforementioned studies collectively highlight the superior performance of the 

ABO algorithm in comparison to other notable swarm-based optimization algorithms, 

such as GA, and the ongoing efforts to enhance its capabilities through algorithmic 

improvements. These findings contribute to the growing body of research on 

metaheuristic algorithms and their potential applications in various fields. 
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Table 2.6 presents several application domains where ABO algorithm has been 

applied, and also presents various effort by researchers to enhance the ABO algorithm 

at different instances.
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Table 2. 4 

ABO as an optimisation algorithm 

       

Sno Study Domain Improvement 

on ABO 

Improved 

Part 

Method Used for 

Improvement 

Remark 

1 Odili et al., 

(2016)  

Solving Travelling 

Salesman Problem (TSP) 

 

No N/A N/A Outperform GA, HBM, SA etc 

2 Odili et al., 

(2015) 

Numerical Function 

Evaluation 

 

No N/A N/A Outperform both GA and 

Improved GA 

3 Odili et al., 

(2017) 

PID controller parameter 

tuning 

No N/A N/A Outperform ACO, PSO and 

BFO 

4 Almonacid 

et. al.,(2017) 

Budget constraint maximal 

covering location  

No N/A N/A Perform competitively with 

other metaheuristic algorithms 

6 Chinwe et. 

al., (2019)  

Classical Optimisation 

Problem 

Yes Exploration 

and 

Exploitation 

Levy flight (Mantegna) 

Chaotic function (Logistic 

map) 

Best overall performance 

against PSO on  Sphere. 

Schaffer, Beale, and 

Bochachvesky standard 

optimisation functions. 

7 Jiang et, al., 

(2020) 

Job Scheduling Problem Yes Population,  

Exploration, 

and  

Exploitation 

 

 

Pop: Global, Local, and 

Random selection 
 

Explr: Aging-based re-

initialisation mechanism 

 

Explt: Discreet individual 

update 

Performed better than modified 

GA 
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8 Krisnawati 

et. al., (2020) 

Flowshop Scheduling 

Problem 

No N/A N/A Performed better than Hybrid 

GA, PSO and CSA in terms of 

accuracy with higher 

computational time 

9 Panhalkar et. 

al., (2022) 

Enhance Decision Tree 

with ABO  

No N/A N/A Performed better than AMDT, 

ACDT 

10 Mishra et. 

al., (2022) 

Intrusion Detection System Yes Population 

Initialisation, 

and 

Exploitation 

Pop: Discreet Cross-Over 

method 

Explt: Random swap of l1 and 

l2 

Performed better than Classical 

DT, SVM, ANN, and KNN 

11 Subramani 

et. al., (2023) 
BLDC Motor Control No N/A N/A Performed better than FA, 

PSO, GSA, CSS, GWO and 

WOA algorithms 

12 Sheeba 

(2023) 

Big Data in IoT Yes Exploration Mantegna-based Levy flight The proposed algorithm 

performed better than Classical 

DL, SVM, CNN, LSTM, 

CNN-LSTM  

13 Barnawal et. 

al., (2023) 

Wireless Sensor Network Yes Population 

Initialisation  

Opposition-based Learning 

(OBL) 

Better performance than 

LEECH, HEED, MBC, 

FRLDG, and GWO on 

different metrics 

14 Algaphari et. 

al., (2023) 
General Optimisation 

(TSP) 

Yes Population 

Initialisation 

and 

Exploration 

Fuzzy matrices for both 

population and Exploration 

enhancement 

Overall best against PSO and 

ACO 

15 Sighal (2023) Software Engineering (Test 

Case for Fault Tolerance) 

No N/A N/A ABO performed better than 

ACO as the benchmarked 

algorithm 
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2.4.2   Weaknesses of African Buffalo Optimisation 

African Buffalo Optimisation (ABO) algorithm as a metaheuristic algorithm has been 

proven to be one of the best performing optimisation algorithms (Alweshah et al., 

2022). This could be associated with its simple implementation and its fewer number 

of parameters. The algorithm superiority has been established in previous section in 

relation to different domains and tasks where it has been used. However, with all the 

strengths of ABO, as a metaheuristic algorithm it has the inherent weaknesses as 

follows: 

2.4.2.1   Population Generation 

One notable weakness of ABO lies in its population initialisation strategy, which can 

lead to a deficiency in diversity among the initial solutions. ABO typically initialises 

its particles randomly within the search space. However, this random placement might 

result in particles congregating in localised regions of the solution space, known as 

convergence to suboptimal solutions or premature convergence. Consequently, this 

lack of diversity in the initial population can hinder the algorithm's ability to explore 

and exploit the broader solution space effectively, potentially limiting its capacity to 

discover the global optimum (Arif et al., 2022; Jiang, Tianhua-Zhu & Deng, 2020; S. 

Zhang et al., 2019). 

2.4.1.2   Poor Exploration 

 The conventional ABO (African Buffalo Optimisation) algorithm functions by 

predefining its learning parameters (lp1 and lp2) before initiating the execution phase 

(Odili et al., 2015). Notably, these two learning parameters govern both the individual 

and collective optimal states of the buffaloes within the algorithm. However, this pre-

defined specification of learning parameters has the potential to compromise the 
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algorithm's proficiency in exploration performance. Particularly, it may impede the 

algorithm's ability to thoroughly explore novel solution spaces efficiently, thus 

potentially yielding suboptimal performance outcomes (Peace Igiri et al., 2018). 

2.4.2.3   Poor Exploitation 

Similarly, the process governing the update of positions is constrained by a pre-

established lambda parameter, devoid of inherent variability owing to its a priori 

configuration (El-Ashmawi, 2018). This characteristic susceptibility can potentially 

result in the entrapment of the algorithm within local optima or experiencing premature 

convergence during optimisation process (Igiri, Singh, & Bhargava, 2019a). This 

necessitated various researchers to find better approach to mitigate the mentioned 

problems of ABO for it to attain most efficient performance. 

2.5   Chaotic Map Function 

Chaos is a known character of non-linear systems which can be mathematically 

defined as a randomness generated by a simple deterministic function (Rezaee Jordehi, 

2015). However, the random behaviour of chaotic randomness has better dynamical 

and statistical properties (Tharwat & Hassanien, 2018). The statistical properties of 

drawing from gaussian distribution by chaos functions makes chaos to be able to go 

through all values specified with a given range without repetition. This behaviour 

enables chaos search to be able to escape from falling into local optimal solution. 

Various stochastic optimisation problems usually get trapped into local optima; 

however, research has shown that employing chaotic map function results into 

enabling such optimisation problem to escape from falling into such problem (Igiri, 

Singh, & Bhargava, 2019a). Basically, chaotic optimisation can simply refer to 

utilising sequences generated from chaotic map function instead of random values in 
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an optimisation process. Initial value of chaotic map function highly affects its 

behaviour and is denoted by 𝑥0. Various chaotic functions exist in literature such as 

logistic, Tent, Sinusoidal, circle, Sinus, Gauss, Chebyshev, Singer (Igiri et al., 2020, 

Farah & Belazi, 2018; Zaimoğlu et al., 2023; Zhang et al., 2019). However, Logistic 

and Tent map functions are the popularly known chaotic function used in literature 

(Sayed et al., 2017). This study adopts the Tent map function for population 

initialisation and reformulation of ABO exploitation. This is due to the inherent 

behaviour of Tent chaotic map function to exhibits a continuum of dynamic 

behaviours, spanning from predictability to chaos, characterised by strong ergodic 

uniformity (Dong et al., 2018). 

2.5.1   Tent Map function 

The method of chaotic mapping is an optimization strategy used to transform the initial 

data series. This transformation highlights its susceptibility to initial conditions and 

yields numerous distinct periodic patterns, a phenomenon known as chaotic ergodicity. 

This approach has been employed in several studies to produce diverse population 

characteristics throughout the optimisation process, enhancing search patterns and 

preventing premature convergence (Dong et al., 2018). Tent map function has been 

defined as in Eqn. (2.8). 

𝑥𝑘+1 = {
2𝑥𝑘   𝑥             𝜖 (0, 0.5)

2(1 − 𝑥𝑘)𝑥   𝜖(0.5, 1)
 

(2.8) 

Where 𝑥𝑘 represents an iterative value of variable x in the kth step, and k represents 

number of iteration steps. 

2.6   Lévy Probability Distribution 

Lévy probability distribution (LPD) is a distribution obtained from Lévy flight 

function. It is a type of random walk introduced by Paul Lévy in 1937 that has a 
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characteristic of intensive probability in its movement (Dash et al., 2021). The Lévy 

walk phenomenon describes the diffusion pattern observed in organisms, where their 

searching behaviour is focused on potential solution locations. The Lévy flight 

foraging hypothesis suggests that organisms migrate from less-resource to more-

resource environments, leading to optimal search strategies (Pang et al., 2018). 

Animals with high memory capabilities utilize this model to explore their search space 

effectively. The theory of optimal foraging extends the concept of Lévy flight foraging, 

proposing that organisms prioritize the search for optimal solution locations rather than 

engaging in aimless exploration within the search space. Loosely speaking, Lévy 

flights are random walks whose step length is drawn from a distribution, often in terms 

of a simple power-law formula 𝐿(𝜆) |𝜆|−1−𝛽where 0 𝛽 ≤ 2 is an index. Mathematical 

representation of a Lévy distribution as defined in (Kołodziejczyk & Tarasenko, 2021) 

is as presented in Eqn. (2.9). 

𝐿(𝜆, 𝛾, 𝜇) = {
√
𝛾

2𝜋

1

(𝜆 − 𝜇)
3
2

𝑒𝑥𝑝 [
−𝛾

2(𝜆 − 𝜇)
] , 0 < 𝜇 < 𝜆 < ∞

0𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(2.9) 

where µ > 0 is a minimum step and 𝛾 is a scale parameter.  

In terms of implementation, generating random numbers using Lévy flights involves 

two steps: selecting the flight direction appropriately and generating steps that adhere 

to the Lévy distribution (Suresh & Lal, 2016). To achieve optimal result, the direction 

value has to be drawn from a uniform distribution, whereas the generation of steps 

proves to be challenging. Few methods existed in the literature of achieving effective 

way of providing the steps in Lévy distribution, two (2) most prominent ones are 

through Mantegna and McCulloch algorithms (Bashath et al., 2022; Gopal Dhal et al., 

2015; Ismail et al., 2021; Suresh & Lal, 2016). The McCulloch algorithm (McCulloch 
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& Pitts, 1943) is adopted for Lévy flight implementation in this study due to its better 

performance in terms of ability to search wider space, faster convergence speed and 

better accuracy that supersede Mantegna algorithm (Ismail et al., 2021; Singh & 

Agarwal, 2022; Soneji & Sanghvi, 2014).  

The McCulloch algorithm, developed by McCulloch (Bashath et al., 2022), utilizes an 

explicit formula to generate random numbers from a Lévy process. This formula 

involves two independent variables, w and φ, which follow a uniform distribution in 

the range (
−𝜋

2
,
𝜋

2
)  and a standard exponential distribution, respectively. The equation 

for generating these random numbers is given by Eqn. (2.10) that returns random 

values as steps (Bashath et al., 2022; Soneji & Sanghvi, 2014): 

        𝐶
𝑁1𝑁2

𝐷
+ 𝜏 𝑆𝑎(𝑐, 𝛽, 𝜏)  (2.10) 

Where: 

𝑁1 = 𝑠𝑖𝑛 [𝛼𝜑 + 𝑡𝑎𝑛
−1 (𝛽𝑡𝑎𝑛 (

𝛼𝜋

2
))] 

𝑁2 = (𝑐𝑜𝑠 [(1 − 𝛼)𝜑 − 𝑡𝑎𝑛
−1 (𝛽𝑡𝑎𝑛 (

𝛼𝜋

2
))])

1
𝛼
−1

 

𝐷 = (𝑐𝑜𝑠 [𝑡𝑎𝑛−1 (𝛽𝑡𝑎𝑛 (
𝛼𝜋

2
))])

1
𝛼

(𝑐𝑜𝑠𝜑)
1
𝛼
𝑤
1
𝛼
−1

 

The function generates a matrix of random numbers with dimensions n x m. It requires 

certain parameters, including the characteristic exponent (α), skewness parameter (β), 

scale (c), and location parameter (τ). To prevent potential overflow, the minimum 

value for α is set to 0.1. If any of the input parameters are outside the valid range, the 

resulting matrix will contain NaNs. In such instances, the algorithm employs Eqn. 

(2.11) to handle the computation. 
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𝑥 = 𝑐 (
𝑐𝑜𝑠((1 − 𝛼)𝜑)

𝑤
)

1
𝛼
−1
𝑠𝑖𝑛(𝛼𝜑)

𝑐𝑜𝑠(𝜑)
1
𝛼

+ 𝜏 (2.11) 

where two special cases are handled separately: 

case 𝛼 = 2: This evaluates to Gaussian case where x becomes  

 𝑥 = 𝑐2√𝑤𝑠𝑖𝑛(𝜑) + 𝜏 (2.12) 

case 𝛼 = 1: This evaluates to Cauchy case, hence x becomes 

 𝑥 = 𝑐𝑡𝑎𝑛(𝜑) + 𝜏   (2.13) 

Soneji & Sanghvi, (2014) use Lévy-flight to enhance searching behaviour of cuckoo 

algorithm. The authors use McCulloch and Mantegna algorithms as Lévy’s random 

number generator. The enhanced cuckoo algorithm was used as optimisation algorithm 

for SVR in design of electric load forecasting. The resulting Lévy-based function has 

shown that McCulloch-based outperformed Mantegna-based Lévy function in terms 

of execution time. Hence, shows favourable result when benchmarked with Sphere, 

Ackley, Dixon and Price, Griewank, Step, Lévy, Generalised Schwfel 2.6, Generalised 

Rosenbrock, Rastrigin and Weierstrass functions.  

In another study, Pang et al., (2018) use Lévy flight to help Evolutionary Programming 

(EP) escape local optima. They enhance Lévy flight by adapting the function to local 

fitness landscapes. This enhancement improves the searching process of the EP 

algorithm. The hybridized EP with adaptive Lévy function (HEP) outperforms other 

techniques on unimodal functions, including Schwefel, Rastrigin, Ackley, Griewank, 

Foxholes, and more. 

Megala et al., (2016) proposed an adaptive Lévy mutation for improved performance. 

They argued that the tuning parameter of the Lévy function should depend on the 

specific problem and that different tuning is needed at each stage of the searching 
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process. The authors used Mantegna's algorithm to generate random numbers for the 

adaptive Lévy function in the Clonal Selection Algorithm (CSA).  

Additionally, the modified Lévy function was assessed against the Sphere, 

generalized Rastrigin, and Ackley functions to determine its effectiveness in escaping 

local minima. 

As shown in Table 2.5, the application of the Lévy function as a random number 

generator has been documented in the literature for various heuristic algorithms. This 

highlights the versatility and wide-ranging utilization of the Lévy function within the 

field of optimization. The studies listed in the table demonstrate the use of the Lévy 

function in different contexts, showcasing its applicability in solving diverse 

optimization problems. 

These evaluations and applications contribute to the understanding of the Lévy 

function's performance characteristics and its potential as a valuable tool in improving 

the efficiency and effectiveness of heuristic algorithms. 

Table 2. 5 

Lévy-flight as Random Generator 

Authors Target 

Algorithm 

Lévy-flight 

Random 

Generator 

Benchmarks 

Soneji & 

Sanghvi, 

(2014) 

Cuckoo 

Search 

McCulloch Sphere, Ackley, Dixon and 

Price, Griewank, Step, Lévy, 

Generalised Schwfel 2.6, 

Generalised Rosenbrock, 

Rastrigin and Weierstrass 

functions 



48 

 

Pang et al., 

(2018) 

Evolutionary 

Programming 

(EP) 

Standard Random 

Number 

Thirty-nine (39) functions 

including Schwefels, Ackley, 

Rastrigin, Shekels, Schaffer, 

Sinusoidal etc 

Y. Peng et 

al., (2013) 

PSO Gaussian Sphere, Rosenbrock, Rastrigin, 

Griewank and Ackley 

Megala et 

al., (2016) 

Clonal 

selection 

Algorithm 

(CSA) 

Mantegna Sphere, generalised Rastrigin 

and Ackley 

 

2.7 Research Gap Discovered 

The Support Vector Regression (SVR) algorithm is widely used for regression tasks, 

but its performance relies heavily on selecting appropriate hyperparameters. However, 

traditional methods like Grid search and Cross-Validation (CV) have limitations such 

as extensive search ranges, sensitivity to step size, and high computational 

requirements. To overcome these limitations, researchers have explored swarm 

optimization techniques with promising results. Yet, the African Buffalo Optimisation 

(ABO) algorithm, a recently introduced swarm-based approach, has not been studied 

in combination with SVR. Therefore, this study aims to fill this research gap by 

implementing the ABO algorithm to find optimal hyperparameters for SVR, 

introducing a new approach called SVR-ABO. 

Another research gap is in the population initialization of the ABO algorithm. Previous 

studies have used conventional techniques, but there is a need for innovative 

approaches to improve optimization performance. This study addresses this gap by 

proposing SVR-popABO, an algorithm that focuses on effective population 

initialization to enhance convergence rates and overall performance. 
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Additionally, the exploration mechanism of the ABO algorithm is an area for 

improvement. While Gaussian random and Mantegna-based Levy flight mechanism 

have been commonly used, this study explores application of McCulloch-based Levy 

flight as an alternative method. The McCulloch-based Levy flight has been identified 

as a more efficient way to explore the search space, leading to the development of 

SVR-explrABO, an algorithm that improves optimization performance through 

enhanced exploration. 

Furthermore, the exploitation mechanism of the ABO algorithm also requires 

improvement. Previous studies relied on utilising Logistic map function, but this study 

introduces the use of the Tent map function. The resulting algorithm, SVR-expltABO, 

shows promise in exploiting the search space more effectively. 

In conclusion, addressing the research gaps in SVR optimization using the ABO 

algorithm contributes to the advancement of population initialization, exploration, and 

exploitation mechanisms. This study presents new algorithms (SVR-ABO, SVR-

popABO, SVR-explrABO, and SVR-expltABO) that enhance the robustness and 

efficiency of optimization, ultimately improving the performance of SVR in various 

domains. 

2.8 Summary 

In this chapter, a range of forecasting techniques from both statistical and machine 

learning fields were discussed. However, the literature suggests that statistical 

techniques may not be suitable for accurate forecasting in cases where there is a 

presence of non-linear relationships among the features. As a result, researchers have 

turned to various machine learning techniques to develop more effective and efficient 

algorithms for forecasting purposes. According to the literature, ANN-based 

techniques such as RNN and LSTM have shown promising results in various domains. 
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However, these techniques have certain issues that make them unsuitable for electric 

load forecasting. The most prominent issues include overfitting and the need for 

optimization of a large number of parameters. On the other hand, SVR has been found 

to overcome the problems associated with ANN-based methods. SVR algorithm's 

performance depends on several factors, including the choice of kernel function, the 

penalty factor (C), the tube size (ε), and the RBF kernel parameter (γ). These factors 

play a crucial role in determining the accuracy and effectiveness of the SVR algorithm 

for electric load forecasting. Finding the optimal parameter values for SVR can be 

challenging. One approach is to use an optimization algorithm like ABO. However, 

ABO has drawbacks such as aimless searching and premature convergence. To address 

these issues and achieve optimal SVR values for efficient and accurate forecasting, 

there is a need to mitigate the shortcomings of the ABO algorithm. 
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3. CHAPTER THREE 

RESEARCH METHODOLOGY 

 

This chapter presents the deployed methodology in this study. This study followed the 

outlined five (5) stages as the research framework as depicted in Figure 3.1 (adapted 

from (Mustaffa, 2014)) based on the categorisation of major tasks involved viz. data 

collection and preparation, algorithm design, algorithm development, and evaluation.  

The source and description of data used in the study and the data treatment applied on 

the data are hereby presented. At algorithm design stage, the description of steps 

involved on how to enhance the SVR, population initialisation, exploration and 

exploitation ability of ABO are also described in subsequent sections. The final 

resulting hybrid SVR-eABO algorithm is used on the treated dataset for the ELF 

forecasting purpose. Figure 3.1 depicts the flow of the process.  

 

   Figure 3.1. Research Process 
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3.1   Data Collection and Preparation 

This research employed four (4) secondary multivariate time-series datasets acquired 

from the UCI machine learning repository, Mendeley data repository. The datasets are 

as follows: (a) Individual household electric power consumption dataset. (b) 

Appliances energy forecasting dataset (c) Turkey electricity load dataset, and  (d) 

Panama electricity load dataset. These datasets were selected based on the suitability 

for electricity load forecasting as employed in several research in literature  (L. M. 

Candanedo et al., 2017; Gasparin et al., 2022a; Madrid & Antonio, 2021; Sinha et al., 

2021; Tutun et al., 2015). 

3.1.1   Datasets 

The dataset was partitioned into three on 70%, 15%, and 15% ratio for Training, 

Validation and Testing respectively (Cheung et al., 2018). 

3.2.1.1   Individual Household Electric Power Consumption Dataset 

The dataset concerning time-series and multivariate household electric power 

consumption was provided to the UCI repository by Georges Herbrail and Alice 

Berard of EDF R&D situated in Clamart, France (Hebrail, Georges and Berard, 2012; 

Sinha et al., 2021) . This dataset was donated to UCI repository on the 30th of August 

2012. The description of the data set is as presented in table 3.1. 

Table 3.1 

Household Dataset  

Dataset Characteristics Number 

of 

Attribute

s 

Attribute 

Type 

No of 

Instances 

Missing 

values 

 

A 

Multivariate, 

Time-series 

 

9 

 

Real values 

 

2,075,259 

 

Yes 
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The dataset exhibits a presence of missing values within the measurement data, 

accounting for approximately 1.25% of the total dataset rows. While all calendar 

timestamps are recorded, a subset of these timestamps have corresponding 

measurement values that are absent. In the dataset, the absence of a value is denoted 

by the lack of information between two consecutive semi-colon attribute separators. 

As an example, the dataset illustrates the occurrence of missing values specifically on 

April 28, 2007. To address this issue, we employed a strategy to impute the missing 

values by substituting them with the mean values of power consumption recorded 

during the corresponding minutes from other years as performed in (Gasparin et al., 

2022a; Mocanu, Nguyen, Gibescu, & Kling, 2016). This is to ensure a more complete, 

and representative dataset, allowing for a more accurate analysis of the power 

consumption patterns across time. The description of the nine attributes of the 

Household dataset is as shown in table 3.2. 

Table 3.2 

Description Household Dataset Attributes 

Sno Attribute Description 

1 Date Date in format dd/mm/yyyy 

2 Time Time in format hh:mm:ss 

 

3 Global_Active_Power Household global minute-averaged active 

power (in kilowatt) 

4 Global_Reactive_Power Household global minute reactive power (in 

kilowatt) 

5 Voltage Minute-averaged voltage (in volt) 

6 Global_Intensity Household global minute-averaged current 

intensity (in ampere) 
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7 Sub_metering_1 Energy sub_metering No. 1 (in watt-hour of 

active energy) * 

8 Sub_metering_2 Energy sub_metering No. 2 (in watt-hour of 

active energy) ** 

9 Sub_metering_3 Energy sub_metering No. 3 (in watt-hour of 

active energy) *** 

*: Corresponds to kitchen, containing mainly a dishwasher, an oven and a microwave  

**: Corresponds to laundry room, containing a washing-machine, a tumble-drier, a 

refrigerator and a light 

***: Corresponds to an electric water-heater and an air-conditioner. 

The target value that was forecasted from this dataset is the global active power. It 

comprises of sub_metering_1, sub_metering_2, sub_metering_3 and the remaining 

difference obtained. 

3.2.1.2   Turkey Electricity Consumption dataset 

This dataset represents a multivariate monthly record of electricity consumption 

sourced from Turkey and was released in October 2016 (Tutun, 2016), encompassing 

twelve (12) attributes. The dataset spans from January 1976 to December 2010, 

comprising a total of four hundred and twenty (420) records. This dataset was 

contributed to the Mendeley repository by Tutun Salih and has been notably employed 

in scholarly works concerning electricity consumption analysis (Tutun et al., 2015). A 

comprehensive depiction of the dataset's attributes can be found in Table 3.3. 

Table 3.3 

Description of Turkey Electricity consumption Dataset Attributes 

Characteristics Number of 

Attributes 

Attribute 

Type 

No of 

Instances 

Missing 

values 

Multivariate  12 Real 420 No 

Description of Turkey electricity consumption attributes is as shown in table 3.4. 
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Table 3.4 

Description of Turkey Electricity consumption Dataset Attributes 

Sno Attribute Description 

1. Date Time Stamp (monthly) 

2. Gross Income Amount of money at people disposal in 

the current month 

3. Population Number of present living people 

4. Load Electricity load (MWh) 

5. Immediate load Immediate National electricity load (MWh) 

6. Import  Import recorded for the month 

7. Export  Export recorded for the month 

8. Gross production  Total production for the month 

9. Transmitted energy Amount of electricity transmitted 

10. Net electricity Consumption Electricity consumed 

11. T.C electricity Consumption Electricity demand  

12. Lost electricity Electricity lost  

The target value used in the forecast is attribute “Net electricity consumption, while 

other attributes serve as features used by the developed model for making forecast 

3.2.1.3   Appliances Energy Forecasting Dataset 

This dataset represents a collection of energy consumption data for a residential house 

in Belgium. It is characterised by being a time series dataset with multiple variables. 

The data was gathered at intervals of ten (10) minutes, spanning over a duration of 

four and a half months. 

There are twenty-nine (29) distinct features in the dataset. These features pertain to 

various aspects such as temperature and humidity, both of which were sourced from 

the closest weather station, specifically Chievres Airport in Belgium.  
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The dataset was initially utilised in a study conducted by (L. Candanedo, 2017), 

contributed to the UCI repository on February 15, 2017. Additional details regarding 

the dataset's characteristics and attributes can be found in Table 3.5.  

Table 3.5 

Appliances Energy Forecasting Dataset 

Dataset Characteristics Number 

of 

Attribute

s 

Attribute 

Type 

No of 

Instances 

Missing 

values 

 

B 

Multivariate, 

Time-series 

 

29 

 

Real 

 

19,735 

 

No 

The description of the twenty-nine (29) attributes of the Appliances dataset is as shown 

in table 3.6. 

Table 3.6 

Description of Appliances Energy Forecasting Dataset Attributes 

Sno Attribute Description 

1 Date Year-Month-Day Hour: Minute: Second 

2 Appliance

s 

Energy use of appliances (Wh) 

3 Lights Energy use of light fixtures in the house (Wh) 

4 T1 Temperature in kitchen area (oC) 

5 RH_1 Humidity in kitchen area 

6 T2 Temperature in living room area (oC) 

7 RH_2 Humidity in living room area 

8 T3 Temperature in laundry room (oC) 

9 RH_3 Humidity in laundry room 

10 T4 Temperature in office room (oC) 
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11 RH_4 Humidity in office room (%) 

12 T5 Temperature in bathroom (oC) 

13 RH_5 Humidity in bathroom (%) 

14 T6 Temperature outside the building (north side) (oC) 

15 RH_6 Humidity outside the building (north side) (%) 

16 T7 Temperature in Ironing room (oC) 

17 RH_7 Humidity in Ironing room (%) 

18 T8 Temperature in teenager room 2 (oC) 

19 RH_8 Humidity in teenager room 2 (%) 

20 T9 Temperature in parent’s room (oC) 

21 RH_9 Humidity in parent’s room (%) 

22 T0 Outside Temperature from Chievres airport weather station (%) 

23 Pressure Outside pressure from Chievres airport weather station (%) 

24 RH_Out Outside humidity from Chievres airport weather station (mm 

Hg) 

25 Wind speed Wind speed from Chievres airport weather station (m/s) 

26 Visibility Visibility readings from Chievres airport weather station (km)  

27 Dew Point Dew point readings from Chievras airport weather station (AoC) 

28 RV1 Random variable 1 (non-dimensional) 

29 RV2 Random variable 2 (non-dimensional) 

The target value of the dataset is the summation of power consumed by appliances and 

lights, while other values served as the features to assist in determining the target value. 

3.2.1.4   Panama Electricity dataset 

This is an hourly multivariate dataset comprising of electricity load data along with 

timestamp as index, temperature, wind, precipitation, and humidity as weather 
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variables obtained from various sources in Panama. The dataset was obtained over 

period of five years from 2015 to 2020.  The dataset has a total of forty-eight thousand, 

and forty-eight records (48,048) with no missing values. It is a publicly available 

dataset used in literature for short-term electricity load forecast (Madrid & Antonio, 

2021). The description of the dataset is as presented in table 3.7. 

Table 3.7 

Panama electricity load dataset 

Dataset Characteristics Number of 

Attributes 

Attribute 

Type 

No of 

Instances 

Missing 

values 

C Multivariate  7 Real and 

binary 

49,048 No 

The description of the seven (7) features of the Panama dataset are as shown in table 

3.8. 

Table 3.8 

Description of Panama dataset attributes 

Sno Attribute Description 

1 National load National electricity load (MWh) 

2 Holiday Holiday period (binary) 

3 School School period (binary) 

4 Temp Air temperature (oC) 

5 Hum Specific humidity (%) 

6 Wind Wind speed (m/s) 

7 Precipitation Water droplet in air (l/m2) 

In this dataset, the National load  is the target value that has been forecasted from the 

dataset, while other attributes serve as features used by the developed model for 

making forecast. 
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3.2   Data Pre-processing 

This phase describes operations performed on the datasets before building the models  

based on developed algorithms. A comprehensive evaluation was conducted on each 

dataset to discern the extent of linearity exhibited between the features and the target 

value. Furthermore, normalisation was applied on each feature to mitigating 

prospective bias stemming from the features during phase of model training. 

Household dataset is the only dataset with missing values. Nearly 1.25% of 

observations are missing.  The missing values were replaced with recorded data from 

the corresponding time on the previous day, similar process was performed literature 

(Gasparin et al., 2022b) 

3.2.1   Test for Non-Linearity 

The main reason behind selecting SVR algorithm instead of other classical statistical 

time-series based forecasting models is due to the assumed non-linearity properties of 

the targeted dataset. Hence there is need to ascertain the non-linearity or otherwise of 

the dataset that will be use in this study. This study uses BDS test in Eviews Statistical 

software for linearity test on the targeted datasets  (Gerolimetto & Bisaglia, 2014; Lim 

et al., 2005; M. O., 2015; Skare et al., 2019). The result of the test on each dataset 

proved that there is absence of linearity in the dataset. The results are presented in 

appendix A. 

3.2.2   Data Normalisation 

The quality of data fed into machine learning algorithm has a direct influence on the 

quality of the produced result. Hence, systematic conversion of data to a more standard 

format is a data processing task that cannot be over emphasised. The presence of 

difference in magnitude in our datasets, if not addressed, can lead to difficulty of 

learning by the employed algorithm. Therefore, to ensure the elimination of training 
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bias by the algorithm, the data values of the datasets were normalised by using Decimal 

Scaling Normalization DSN (Mustaffa & Yusof, 2011; Pan et al., 2016). The DSN 

method works by moving the decimal point of the values of an attribute X to its 

maximum absolute value. The number of decimal points moved depends on the 

maximum absolute value of the dataset. Normalisation of data computed using 

normalisation formula represented by Eqn. 3.1 (Pan et al., 2016). where given value in 

the dataset is normalized to by Eqn 3.1 

 𝑥𝑖
′ =

𝑥𝑖
10𝑗

 (3.1) 

Where, 𝑥′ represents a normalised value of the dataset and j represents a smallest value 

such that max(|𝑥𝑖
′|)< 1  

The selection of this normalisation method was informed based on the comparative 

analysis result obtained in literature showing the superiority of DSN over Min-Max 

and Z-score normalisation methods (Mustaffa & Yusof, 2011). Sample of normalised 

Household table 3.9 and 3.10.  

Table 3.9 

Sample of Raw Household dataset 

Datetime GAP GRP Volt GI Total 

12/16/2006 1209.176 34.922 93552.53 5180.8 20152.93 

12/17/2006 3390.46 226.006 345725.3 14398.6 56507.67 

12/18/2006 2203.826 161.792 347373.6 9247.2 36730.43 

12/20/2006 2225.748 160.998 348923.6 9313 37095.8 
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Table 3.10 

Sample of Normalised Household dataset 

Datetime GAP GRP Volt GI Total 

12/16/2006 0.120918 0.034922 0.093553 0.051808 0.201529 

12/17/2006 0.339046 0.226006 0.345725 0.143986 0.565077 

12/18/2006 0.220383 0.161792 0.347374 0.092472 0.367304 

12/19/2006 0.166619 0.150942 0.348479 0.07094 0.277699 

12/20/2006 0.222575 0.160998 0.348924 0.09313 0.370958 

While sample of both raw and normalised data for Turkey dataset is as presented in 

table 3.11 and 3.12. 

Table 3.11 

Sample of Raw Turkey dataset 

Load IL IG EG GP TE GD LE NEC 

2676.8 2701.6 0.3 0 1321.1 1194 1530.309 208.0999 1322.209577 

2700.5 2736.9 0.2 0 1139.8 1118.2 1428.754 194.2898 1234.464261 

2725.6 2762.4 24.5 0 1262.2 1214.6 1541.605 209.6359 1331.969144 

IL, IG,EG, GP, TE, GD, LE, and NEC stand for  Immediate Load, Immediate Growth, 

Export Growth, Growth Production, Transmitted Energy, Gross Demand, Lost 

Electricity and Net Electricity Consumption respectively. 

Table 3.12 

Sample of Normalised Turkey dataset 

Load IL IG EG GP TE GD LE NEC 

2676.8 2701.6 0.3 0.0 1321.1 1194.0 1530.3 208.1 1322.2 

2700.5 2736.9 0.2 0.0 1139.8 1118.2 1428.8 194.3 1234.5 
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2725.6 2762.4 24.5 0.0 1262.2 1214.6 1541.6 209.6 1332.0 

2664.7 2702.2 32.7 0.0 1219.7 1118.0 1428.7 194.3 1234.5 

 

3.3   Algorithm Design 

This section presents the approach used to achieve the stated objectives of this research 

(see Chapter 1, section 1.6). The process was carried out in two (2) phases. In the first 

phase, classical ABO algorithm was used to optimise SVR hyperparameters. The 

resulting algorithm is SVR-ABO. Details of the developed SVR-ABO algorithm is 

presented in Chapter 4, while in the second phase the procedure for enhancing ABO 

is presented.  

In the beginning, the explanation on procedure for the design of new population 

initialisation function for ABO algorithm is presented. The resulting algorithm from 

the enhancement is termed as popABO. In addition, explanation on method used for 

formulation of an enhanced exploration function for the ABO algorithm is presented. 

The resulting algorithm from the enhancement of the exploration process is termed as 

explrABO. Furthermore, the explanation of method used to enhance the exploitation 

function of ABO is described. The resulting algorithm from the enhancement of the 

exploitation process is termed as expltABO. In conclusion, all the mentioned 

enhancement on ABO algorithm at population initialisation phase, exploration phase 

and at exploitation phases were incorporated together and produce an enhanced ABO 

(eABO) algorithm. The eABO algorithm was used to optimise SVR hyperparameters, 

consequently producing a hybrid algorithm named SVR-eABO. 

Details of the population initialisation function explrABO,  expltABO, and  detailed 

description of SVR-eABO is presented in Chapter 4. 
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3.3.1   SVR-ABO Algorithm 

The classical ABO algorithm has been used in the SVR-ABO algorithm to 

automatically tune the SVR parameters in this study. The ABO algorithm generated a 

result after a series of iterations based on boundary values of the search space and 

objective function, which was used to set the values of the SVR algorithm parameters.  

 

Figure 3.2. SVR-ABO algorithm flow 
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As presented in figure 3.2 that shows the flow of SVR-ABO algorithm. The  ABO 

algorithm has to be continuously checking during the running time whether there is an 

improvement in the status of the obtained best global buffalo within the range of 

specified number of iterations, because stagnation of the buffaloes simply indicates 

that the buffaloes are trapped in local optima, hence need to restart again. The ABO 

algorithm supposed to be running until the best value are achieved based on 

termination criteria, which in this study case is the objective function.  

3.3.2  ABO Enhancement 

Several steps were explored to enhanced ABO algorithm at various stages of operation. 

These enhancements were performed due to discovered shortcomings of ABO 

algorithm as described in literature. The following sub-section provide detailed 

description of the enhancement performed on ABO at each phase. 

3.3.2.1   Population Initialisation 

The initialisation stage of the ABO is where the buffaloes are randomly initialised in 

the search space. Population initialisation is of vital importance and is of high 

sensitivity in meta-heuristic algorithms, this is because it has tendency to affect the 

convergence speed and quality of the final solution (S. Zhang et al., 2019). In many 

nature-inspired optimisation algorithms, the researchers obtain randomness through 

uniform or Gaussian distribution (Tharwat & Hassanien, 2018). In the event where 

information about defined boundary of solution is not available, researchers usually 

resolved to using random initialisation method through chaotic map function (Zhang 

et al., 2019). Chaotic map functions act like normal random generators but with better 

dynamic and statistics properties (Tharwat & Hassanien, 2018) The usage of chaotic 

map in the literature can be broadly categorised into (i) determining global optimal 

solutions, (ii) generation of chaotic sequences such pseudorandom values, and (iii) 
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providing solution to non-linear equation. In this study, Tent map based  chaotic 

function is used to initialise the buffalo population in the search space (Sayed et al., 

2017). Tent map function is mathematically presented as in Eqn. (3.2) (Dong et al., 

2018): 

𝑥𝑘+1 = {
2𝑥𝑘  𝑥             𝜖 (0, 0.5)

2(1 − 𝑥𝑘)𝑥   𝜖(0.5, 1)
 

(3.2) 

Tent map for chaotic function is being considered as simple, yet effective mapping 

function with ability to provide better diversity than the one provided by normal 

randomisation function. 

 

Figure 3.3. Enhancement Population Initialisation phase (popABO) 
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Figure 3.3 depict the position of utilising the Tent chaotic function in the enhancement 

process of ABO algorithm. 

3.3.2.2   Exploration Stage Enhancement 

The standard African Buffalo Optimisation algorithm exploration process is based on 

Eqn. (3.3). However, as described in chapter two, section 2.5, this could easily result 

into an aimless search. 

 
𝑤𝑘+1 =

(𝑤𝑘 +𝑚𝑘)

𝜆
 (3.3) 

 

Figure 3.4. Enhanced exploration phase of ABO (explrABO) flowchart 
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Hence, this research proposes an enhanced exploration process based on Lévy function 

that will help to guide the exploration process of the buffalo population in the search 

space. This was achieved by reformulating the updating equation Eqn. (3.5) of ABO 

with values generated from a Lévy-flight function. The dotted area in figure 3.4 

denotes the step where the enhancement in ABO exploration process took place. 

3.3.2.3   Exploitation Stage Enhancement 

As pointed out in section 2.5.2 that ABO algorithm’s exploitation process depends on 

Eqn. 3.4.  

 𝑚𝑘+1 = 𝑚𝑘 + 𝑙1(𝑏𝑔𝑚𝑎𝑥 − 𝑤𝑘) + 𝑙2(𝑏𝑝𝑚𝑎𝑥(𝑘) − 𝑤𝑘) (3.4) 

The ABO algorithm’s exploitation performance depends on the collective intelligence 

of the herds by being intelligent enough to know the location of greener pasture which 

is determine based on previous grazing positions. However, the formulation of the 

exploitation process of ABO algorithm does not account for this feature (Igiri, Singh, 

& Bhargava, 2019b). This exposes the algorithm to possible local optima entrapment 

during exploitation (Igiri et al., 2019b, 2019a; Ben et al., 2017). Therefore, this study 

uses Tent map function is used as dynamic function for both global and local fitness 

functions of ABO algorithm as depicted in figure 3.5. 
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Figure 3.5. Enhanced exploitation phase of ABO (expltABO) flowchart 

3.3.3   SVR-eABO Algorithm Flow 

The cumulative enhancement ABO algorithm as described in section 3.4.2.1 through 

section 3.4.2.3 were used to produce an enhanced ABO (eABO) algorithm. The eABO 

was used to determine optimal parameters of SVR resulting to developing a hybrid 

SVR-eABO algorithm for forecasting purpose. The overall flow of the SVR-eABO 

algorithm has been achieved as depicted in figure 3.6. 



69 

 

 

Figure 3.6. Flowchart of SVR-eABO 

3.4   Algorithm Development Environment 

The proposed algorithm was developed using Python programming language with 

incorporated Panda, NumPy and Matplotlib modules for dataframe, matrix and 
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visualisation functions respectively. The algorithm was developed on a computer 

system with specifications as shown in table 3.13. 

Table 3.13 

System Specification 

Sno Item Specification 

1 Operating system Fedora 38 

2 Linux kernel 4.15.0-46-generic* 

2 CPU Intel CoreTM i7-6700HQ @ 2.6 GHz x 4 

3 RAM 8 GB 

4 HDD Samsung SSD 512GB 

3.5   Evaluation 

The performance of the developed algorithms in this study have been evaluated based 

on several metrics ranging from statistical-based performance metrics (MAPE, MAE 

RMSE and R2), Execution time, Convergence speed, Standard optimisation 

benchmark functions and benchmarked with some selected swarm-based state-of-the-

art algorithms.  

3.5.1   Performance Metrics 

This study uses total of six (6) performance evaluation metrics of which four are purely 

statistical based metrics. The use of metrics is to determine the performance of the 

developed algorithms on different dataset used in this study as presented in Chapter 3, 

(Section 3.2.1). As this study relies on the analysis of time series data, it is imperative 

to emphasize the criticality of employing a suitable evaluation metric. The selection of 

an appropriate evaluation metric assumes paramount importance as it serves the crucial 

purpose of substantiating and justifying the obtained results. Four (4) statistical 
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evaluation metrics have been chosen owing to their suitability for the evaluation of 

time series data. The four (4) statistical metrics used for performance evaluation in this 

study are Mean Absolute Percentage (MAPE) as used in (Agga et al., 2022; Halaš et 

al., 2017; Kristjanpoller & Minutolo, 2018), Root Mean Squared Error (RMSE) as 

used by (Agga et al., 2022; Chow, 2021), Correlation Coefficient (R2) as used by 

(Dieudonné et al., 2023; C. J. Huang & Kuo, 2018; Kari et al., 2018), and Mean 

Average Error (MAE) as used by (Agga et al., 2022; Dieudonné et al., 2023). The 

formulas for the MAPE, RSME, R2, and MAE performance evaluation metrics are 

presented in equation 3.5, 3.6, 3.7, and 3.8 respectively. 

 

𝑀𝐴𝑃𝐸 =
1

𝑁
[∑ |

𝑎𝑖 − 𝑓𝑖
𝑎𝑖

|

𝑁

𝑛=1

] ∗ 100% 

(3.5) 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑎𝑖 − 𝑓𝑖)2
𝑁
𝑖=1

𝑁
 

(3.6) 

 

𝑅2 = 1 −
∑ (𝑎𝑖 − 𝑓𝑖)

2
𝑁
𝑖=1

∑ (𝑎𝑖 − 𝑓𝑖)2
𝑁
𝑖=1

∗ 100% 

(3.7) 

 

𝑀𝐴𝐸 =  
1

𝑁
[∑ |

𝑎𝑖 − 𝑓𝑖
𝑎𝑖

|

𝑁

𝑛=1

] 
(3,8) 

Where 𝑁, represents number of observations, 𝑎𝑖, 𝑓𝑖 represent nth individual observed 

and forecasted values respectively. While 𝑓
𝑛

 represents mean of the forecasted data 

points of the dependant variable.  

3.5.2   CPU Execution Time 

The CPU execution time as the fifth metric for performance determination  was also 

used on both SVR-ABO and SVR-eABO (Ludwig & Schoene, 2012; Singhal et al., 

2023). Similarly, the execution time of SVR-popABO, SVR-explrABO, and SVR-
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expltABO were all evaluated to determine the effect of the enhancement performed on 

ABO at each corresponding stage.  

3.5.3   Percentage Accuracy 

The Percentage Accuracy (PA), as the sixth (6) performance metric, has also been 

employed in this study in order to determine the forecasting accuracy of developed 

algorithms. The percentage Accuracy shows the degree of making right future forecast 

in comparison to actual values of test data. The higher the PA value, the better in terms 

of forecasting model performance . Percentage Accuracy is  computed based on the 

Eqn 3.9 as follows: 

 

𝑃𝐴 = 100 − (
1

𝑁
[∑ |

𝑎𝑖 − 𝑓𝑖
𝑎𝑖

|

𝑁

𝑛=1

] ∗ 100%) 

(3.9) 

3.5.4   Standard Optimisation Functions 

The performance of the enhancement made on population initialisation, exploration 

and exploitation phases of ABO were evaluated using selected standard optimisation 

functions found in literature (Bashath et al., 2022; J. S. Chou & Pham, 2017; Jamil & 

Yang, 2013; Soneji & Sanghvi, 2014). The optimisation functions employed to 

evaluate the performance of SVR-popABO, SVR-explrABO, and SVR-expltABO 

algorithms are as follows: F1 = Sphere, F2 = SumSquares, F3 = Whitley, F4 = 

Griewank, F5 = Ackley, F6 = Pinter, F7 = Rastrigin, F8 = Schaffer, F9 = Rosenbrock, 

F10 = Schwefel, F11 = Alpine, F12 = Dixonprice, F13 = Zakharov, F14 = Powell, F15 

= Csendes, F16 = Weierstrass. These functions comprise of both unimodal and 

multimodal meant to test exploitation and exploration capability of an algorithm due 

to various level and type of challenges posed to optimisation algorithms. 

These functions are widely utilised as benchmarks to evaluate the exploration and 

exploitation abilities of optimization algorithms. The classical functions selected 
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exhibit distinctive properties, with some characterized by multiple local minima 

(multimodal), which can potentially ensnare a searching algorithm, while others 

present wide plateaus containing challenging-to-reach single optima (unimodal). An 

algorithm capable of effectively navigating through multimodal functions 

demonstrates strong exploration capabilities, whereas one that accurately identifies a 

single optimum in unimodal functions showcases excellent exploitation capabilities. 

The suitability of these functions as optimization benchmarks is well-established in 

the existing literature due to their intrinsic characteristics and challenges, they pose to 

searching algorithms (Jamil & Yang, 2013). Table 3.14 provides a comprehensive 

overview of the mentioned standard benchmarks, including essential details such as 

their global optima position and value, modality, and corresponding mathematical 

formulas. While results obtained for population initialisation, exploration and 

exploitation phases are presented in Chapter 5, (Section 5.6), Chapter 6, (Section 6.6), 

Chapter 7, (Section 7.6), and Chapter 8, (Section 8.6) respectively. 

 

Table 3.14 

Benchmark functions 

Sno 

Function 

Name Mathematical Formula 

Moda

lity 

Search 

space 

Global  

Minimum 

1 Sphere  
𝑓1 =∑𝑥𝑖

2

𝐷

𝑖=1

 
MM [−10,10] 0(0,0,… 0) 

2 SumSquares 
𝑓1 =∑𝑖𝑥𝑖

2

𝐷

𝑖=1

 
UM [−10,10] 0(0,0,… 0) 

3 Whitley 

𝑓3 =∑∑[
(100(𝑥𝑖

2 − 𝑥𝑗)
2
+ (1 − 𝑥𝑗)

2
)
2

4000
]

𝐷

𝑗=1

𝐷

𝑖=1

 

MM [−100,100] 0(0,0,… 0) 
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4 Griewank 
𝑓4 =∑

𝑥𝑖
2

4000
−∏𝑐𝑜𝑠 (

𝑥𝑖

√𝑖
) + 1

𝑛

𝑖=1

 
MM [−100,100] 0(0,0,… 0) 

5 Ackley 

𝑓4 = −20𝑒𝑥𝑝

{
 

 
√
1

𝐷
∑𝑥𝑖

2

𝐷

𝑖=1

−0.2

}
 

 

− 𝑒𝑥𝑝 {
1

𝐷
∑𝑐𝑜𝑠(2𝜋𝑥𝑖)

𝐷

𝑖=1

}

+ 20 + 𝑒 MM [−35,35] 0(0,0,… 0) 

6 Pinter 

𝑓6 =∑𝑖𝑥𝑖
2∑20𝑖𝑠𝑖𝑛2𝐴

𝐷

𝑖=1

𝐷

𝑖=1

+∑𝑖𝑙𝑜𝑔10(1 + 𝑖𝐵
2)

𝐷

𝑖=1

 
MM [−5.12,5.12] 0(0,0,… 0) 

7 Rastrigin 
𝑓7 =∑[𝑥𝑖

2 − 10𝑐𝑜𝑠(2𝜋𝑥𝑖) + 10]

𝐷

𝑖=1

 
MM [−5.12,5.12] 0(0,0,… 0) 

8 Schaffer1 
𝑓8 = 0.5 +

𝑠𝑖𝑛2(𝑥1
2 + 𝑥2

2)2 − 0.5

1 + 0.001(𝑥1
2 + 𝑥2

2)2
 

UM [−100,100] 0(0,0,… 0) 

9 Rosenbrock 
𝑓9 = ∑ [100(𝑥𝑖+1 − 𝑥𝑖

2)
2
+ (𝑥𝑖 − 1)

2]

𝐷−1

𝑖=1

 
UM [−30,30] 0(1,1,… 1) 

10 Schwefel 
𝑓10 = (∑𝑥𝑖

2

𝐷

𝑖=1

)

𝛼

 
UM [−100,100] 0(0,0,… 0) 

11 Alpine1 
𝑓11 =∑|𝑥𝑖𝑠𝑖𝑛(𝑥𝑖) + 0.1𝑥𝑖|

𝐷

𝑖=1

 
MM [−10,10] 0(0,0,… 0) 

12 Dixonprice 
𝑓12 = (𝑥1−1)

2 +∑𝑖(2𝑥𝑖
2 − 𝑥𝑖−1)

2
𝐷

𝑖=1

 
UM 

𝑥𝑖𝜖[−10,10], 𝑖

= 1,2,3, . . 𝐷 0(0,0,… 0) 

13 Zakharov 
𝑓13 =∑𝑥𝑖

2

𝑛

𝑖=1

+ (
1

2
∑𝑖𝑥𝑖

𝑛

𝑖=1

)

2

+ (
1

2
∑𝑖𝑥𝑖

𝑛

𝑖=1

)

4

 
MM 

𝑥𝑖𝜖[−5,5], 

𝑖

= 1,2,3, . . 𝐷 0(0,0,… 0) 

14 Powell Sum 
𝑓14 =∑|𝑥𝑖|

𝑖+1

𝐷

𝑖=1

 
UM 

𝑥𝑖𝜖[−1,1], 𝑖

= 1,2,3, . . 𝐷 0(0,0,… 0) 

15 Csendes 
𝑓15 =∑𝑥𝑖

6

𝐷

𝑖=1

(2 + 𝑠𝑖𝑛
1

𝑥𝑖
) 

MM 

𝑥𝑖𝜖[−1,1], 𝑖

= 1,2,3, . . 𝐷 0(0,0,… 0) 

16 Weierstrass 
𝑓16 =∑[ ∑ 𝑎𝑘𝑐𝑜𝑠 (2𝜋𝑏𝑘(𝑥𝑖 + 0.5))

𝑘𝑚𝑎𝑥

𝑘=0

]

𝑛

𝑖=1

 
MM 

𝑥𝑖𝜖[−0.5,0.5], 𝑖

= 1,2,3, . . 𝐷 0(0,0,… 0) 

Where MM and UM represent Multimodal and Unimodal respectively. 

3.5.5   Benchmarks 

The performance of SVR-ABO, SVR-popABO, SVR-explrABO, SVR-expltABO, 

and SVR-eABO algorithms have been benchmarked with classical SVR (Smola & 

Scholkopf, 2004), SVR-ABC, SVR-GA (Xie et al., 2017), SVR-Cuckoo (Dong et al., 
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2018) and SVR-PSO (Mohanad et al., 2018). Similarly, the results obtained from. The 

final developed SVR-eABO algorithm has also been benchmarked with other meta-

heuristic based SVR algorithms as follows: SVR-GA and SVR-PSO. 

3.6   Summary 

This chapter presents the methodology followed to achieve the proposed objectives of 

this study. Initially, the datasets have been described. Followed by procedures applied 

to hybridise SVR with classical ABO for SVR hyperparameter optimisation that 

produced SVR-ABO. Then description of procedures applied for the enhancement of 

ABO algorithm at population initialisation, exploration, and exploitation phases that 

produced eABO was presented. Subsequently, the process of hybridising SVR with 

eABO that produced SVR-eABO was also presented. Finally, the metrics, standard 

optimisation functions, and benchmarks algorithms used for evaluation at each phase 

of the algorithm development were presented. Figure 3.7 depicts the flow of the study. 
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Figure 3.7. General Flow of the Research
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4. CHAPTER FOUR 

AN ENHANCED AFRICAN BUFFALO OPTIMISATION 

ALGORITHM  

This chapter presents all the milestones achieved in this study which were defined as 

objectives in Chapter 1, (Section 1.6). The primary objective of this study as earlier 

highlighted is to determine optimal hyperparameters of SVR algorithm using an 

enhanced ABO as an optimising algorithm. However, before several enhancements on 

ABO algorithm, classical ABO has been used as an optimisation algorithm for SVR. 

Subsequent sections present detailed explanation of each milestone achieved.  

4.1 SVR-ABO algorithm 

In this section, we employed the classical ABO algorithm to automatically select 

hyperparameters for the SVR algorithm. The hybridized SVR-ABO algorithm was 

evaluated on four datasets mentioned in Chapter 3, (Sec 3.1.1), using regression 

performance metrics viz: MAE, RMSE, MAPE, and R2. As already mentioned, the 

SVR's performance heavily relies on hyperparameter selection, which can be 

challenging. To address this, we integrated the ABO algorithm with SVR to optimize 

the hyperparameters. The ABO algorithm's position values were used as potential 

hyperparameter values, and the MAPE was minimized to determine the optimal 

values. The SVR-ABO algorithm  is presented in Algorithm 4.1. 
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Algorithm 4.1. SVR-ABO Algorithm 

 Input: Training Data, P D, Max_I, l1, l2 

/* P= Number of individual Buffaloes (population size), D= Problem 

dimension (SVR control parameters), Max_I = Maximum number of 

Iterations, l1= Cognitive Learning parameter, l2= Social Learning 

parameter*/ 

 Output: Optimal values for SVR (C, γ and ε) as Global best buffalo position 

1: For buffalo i = 0 to P do: 

2: Random initialisation of buffalo position vector 𝑚𝑘 with three (3)           

values based  on [C, γ and ε] ranges using Gaussian distribution  

3:  Random initialisation of each buffalo movement vector 𝑤𝑘 

4: End For 

5: Initialise t = 1 

6: While (t≠ Max_I) do: 

7:  For each buffalo i do: 

8:   Calculate fitness_value using SVR regressor 

9:   If buffalo’s fitness_value is better than 𝑏𝑝𝑚𝑎𝑥(𝑘) 

10:     Set 𝑏𝑝𝑚𝑎𝑥(𝑘) = buffalo’s current fitness 

11:   End If 

12:  End For 

13:  Set 𝑏𝑔𝑚𝑎𝑥 = Best previous buffalo’s fitness_value 

14: /* Updating each buffalo’s movement and position */ 

15:  For buffalo i = 0 to P do: 

16:   For dimension d = 0 to D do: 

17:    𝑚𝑖𝑑
𝑡+1 = 𝑚𝑖𝑑

𝑡 + 𝑙1(𝑏𝑔𝑚𝑎𝑥 − 𝑤𝑖𝑑
𝑡 ) + 𝑙2(𝑏𝑝𝑖

𝑡 −

𝑤𝑖𝑑
𝑡 ) 

   𝑤𝑖𝑑
𝑡+1 =

(𝑤𝑖𝑑
𝑡 +𝑚𝑖𝑑

𝑡+1)

𝜆
 

18:   End For 

19:  End For 

20:  Set t = t + 1 

21: End While 

22: Evaluate the solution on testing set 

23: Result: The forecasting values and performance measurement on the testing 

set 
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The developed SVR-ABO algorithm has been evaluated on several datasets see 

Chapter 3, (Section 3.2.1) and the result obtained has been evaluated based on selected 

regression metrics see Chapter 3, Section 3.6.1. 

4.2 An Enhanced Population Initialisation in African Buffalo Optimisation 

Algorithm  

In this section, the ABO algorithm part of SVR-ABO has been enhanced by modifying 

the population initialization mechanism using the chaotic Tent-map function, resulting 

in SVR-popABO. The conventional ABO algorithm's population generation is by 

using Gaussian-based random numbers which hinders convergence speed, as 

discussed in Chapter 3, Section 3.3. To overcome this limitation, this study introduced 

the Tent map function for population generation within the search space as highlighted 

in Algorithm 4.2. The performance evaluation of the enhanced algorithm utilised four 

datasets detailed in Chapter 3, Section 3.1.1. The enhanced algorithm has been 

evaluated using several metrics as explained in Chapter 3, Section 5.1.  

 

Algorithm 4.2. SVR-popABO Algorithm 

 Input: Training Data, P D, Max_I, l1, l2 

/* P= Number of individual Buffaloes (population size), D= Problem 

dimension (SVR control parameters), Max_I = Maximum number of 

Iterations, l1= Cognitive Learning parameter, l2= Social Learning 

parameter*/ 

 Output: Optimal values for SVR (C, γ and ε) as Global best buffalo position 

1: For buffalo i = 0 to P do: 

2:  Random initialisation of buffalo position vector 𝑚𝑘 with three (3)     values 

based on [C, γ and ε] ranges using distribution based on Tent-map 

function as follows: 𝑥𝑛+1 = {
2𝑥𝑛𝑥 ∈ [0,0.5]

2(1 − 𝑥𝑛)𝑥 ∈ [0,0.5]
 

3: Random initialisation of each buffalo movement vector 𝑤𝑘 

4: End For 

5: Initialise t = 1 

6: While (t≠ Max_I) do: 

7:  For each buffalo i do: 

8:      Calculate fitness_value using SVR regressor 
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9:  If buffalo’s fitness_value is better than 𝑏𝑝𝑚𝑎𝑥(𝑘) 

10:        Set 𝑏𝑝𝑚𝑎𝑥(𝑘) = buffalo’s current fitness 

11:  End If 

12:  End For 

13:  Set 𝑏𝑔𝑚𝑎𝑥 = Best previous buffalo’s fitness_value 

14:       /* Updating each buffalo’s movement and position */ 

15:  For buffalo i = 0 to P do: 

16:      For dimension d = 0 to D do: 

17:     𝑚𝑖𝑑
𝑡+1 = 𝑚𝑖𝑑

𝑡 + 𝑙1(𝑏𝑔𝑚𝑎𝑥 − 𝑤𝑖𝑑
𝑡 ) + 𝑙2(𝑏𝑝𝑖

𝑡 − 𝑤𝑖𝑑
𝑡 ) 

   𝑤𝑖𝑑
𝑡+1 =

(𝑤𝑖𝑑
𝑡 +𝑚𝑖𝑑

𝑡+1)

𝜆
 

18:      End For 

19:  End For 

20:  Set t = t + 1 

21: End While 

22: Evaluate the solution on testing set 

23: Result: The forecasting values and performance measurement on the testing 

set 
 

4.3 An Enhanced Exploration in African Buffalo Optimisation Algorithm   

In this section, the exploration part of the ABO algorithm has been enhanced by 

incorporating Lévy flight. The standard exploration process in the ABO algorithm, as 

described in Section 3.3.4, is based on Equation (4.1):  

 
𝑤𝑘+1 =

(𝑤𝑘 +𝑚𝑘)

𝜆
 (4.1) 

However, this approach can result in an undirected search and could led to premature 

convergence due to inefficient in a wider search space as elicited Chapter 1, Section 

1.4. To address this limitation and prevent early convergence and assist the buffalo 

population to escape local minima during exploration, a McCulloch-based Lévy flight 

function was used to enhance the exploration mechanism. The exploration process is 

modified according to Equation (4.2): 

 𝑤𝑘+1 =
(𝑤𝑘+𝑚𝑘)

𝜆
⊗𝐿𝑒𝑣𝑦(𝜆)  (4.2) 



81 

 

Here, Levy(λ) represents random walks with step sizes following the Lévy 

distribution, which is defined as: 

 𝐿𝑒𝑣𝑦(𝜆) = 𝑡−𝜆; 1 < 𝜆 ≤ 3  (4.3) 

The non-linear relationship in the variance of a Lévy flight enables more effective 

exploration of large unknown search spaces compared to models with a linear 

relationship. The iterative process continues until the global optimum is reached, 

thereby avoiding the problem of getting trapped in local optima that often occurs in 

the ABO algorithm. The modified algorithm (termed as SVR-explrABO) is presented 

in Algorithm 4.3. 

Algorithm 4.3: SVR-explrABO Algorithm 

 Input: Training Data, P, D, Max_I, lp1, lp2 

/* P= Number of individual Buffaloes (population size), D= Problem 

dimension (SVR control parameters), Max_I = Maximum number of 

Iterations, i=present Iteration, lp1= Cognitive learning parameter, lp2= Social 

Learning parameter, 𝜉 = 𝐿é𝑣𝑦𝑓𝑙𝑖𝑔ℎ𝑡 */ 

 Output: Optimal values for SVR (C, γ and ε) as Global best buffalo position 

1: For buffalo i = 0 to P do: 

2: Random initialisation of buffalo position vector 𝑚𝑘 with three (3) values 

 based on [C, γ and ε] ranges using normal gaussian distribution 

3: Random initialisation of each buffalo movement vector 𝑤𝑘 

4: End For 

5: Initialise t = 1 

6: While (t≠ Max_I) do: 

7:  For each buffalo i do: 

8:       Calculate fitness_value using SVR regressor 

9:  If buffalo’s fitness_value is better than 𝑏𝑝𝑚𝑎𝑥(𝑘) 

10:         Set 𝑏𝑝𝑚𝑎𝑥(𝑘) = buffalo’s current fitness 

11:  End If 

12:  End For 

13:  Set 𝑏𝑔𝑚𝑎𝑥 = Best previous buffalo’s fitness_value 

14:      /* Updating each buffalo’s movement and position */ 

15:  For buffalo i = 0 to P do: 
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16:       For dimension d = 0 to D do: 

17:                          𝑚𝑖𝑑
𝑡+1 = 𝑚𝑖𝑑

𝑡 + 𝑙1⊗𝑳𝒆𝒗𝒚(𝝀)(𝑏𝑔𝑚𝑎𝑥 − 𝑤𝑖𝑑
𝑡 ) + 

𝑙2(𝑏𝑝𝑖
𝑡 − 𝑤𝑖𝑑

𝑡 ) 
 

  𝑤𝑖𝑑
𝑡+1 = (𝑤𝑖𝑑

𝑡 +𝑚𝑖𝑑
𝑡+1) +⊗ 𝑳𝒆𝒗𝒚(𝝀) 

18:  End For 

19:  End For 

20:  Set t = t + 1 

21: End While 

22: Evaluate the solution on testing set 

23: Result: The forecasting values and performance measurement on testing set 
 

4.4 An Enhanced Exploitation in ABO  

In this section, the exploitation part of the ABO algorithm is enhanced through the 

introduction of Equation (4.4).  

𝑓𝜇: = 𝜇𝑚𝑖𝑛(𝑥, 1 − 𝑥) (4.4) 

The modification aims to maximize the algorithm's exploitation potential, resulting in 

improved convergence speed and avoidance of local optima entrapment (Tarkhaneh & 

Shen, 2019). The modified algorithm (i.e SVR-expltABO) is presented below as 

Algorithm 4.4. 

Algorithm 4.4: SVR-expltABO Algorithm 

 Input: Training Data, P D, Max_I, lp1, lp2 

/* P= Number of individual Buffaloes (population size), D= Problem 

dimension (SVR control parameters), Max_I = Maximum number of 

Iterations, i=present Iteration, lp1= Cognitive learning parameter, l2= Social 

Learning parameter, L𝐿é𝑣𝑦𝑓𝑙𝑖𝑔ℎ𝑡 */ 

 Output: Optimal values for SVR (C, γ and ε) as Global best buffalo position 

1: For buffalo i = 0 to P do: 

2:    Random initialisation of buffalo position vector 𝑚𝑘 with three (3) values 

       based on [C, γ and ε] ranges using normal gaussian distribution 

3:    Random initialisation of each buffalo movement vector 𝑤𝑘 

4: End For 

5: Initialise t = 1 

6: While (t≠ Max_I) do: 

7:      For each buffalo i do: 
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8:           Calculate fitness_value using SVR regressor 

9:     If buffalo’s fitness_value is better than 𝑏𝑝𝑚𝑎𝑥(𝑘) 

10:                         Set 𝑏𝑝𝑚𝑎𝑥(𝑘) = buffalo’s current fitness 

11:              End If 

12:      End For 

13:      Set 𝑏𝑔𝑚𝑎𝑥 = Best previous buffalo’s fitness_value 

14:      /* Updating each buffalo’s movement and position */ 

15:      For buffalo i = 0 to P do: 

16:           For dimension d = 0 to D do: 

17:                𝑚𝑘+1 = 𝑚𝑘 + 𝑓𝜇(𝑏𝑔𝑚𝑎𝑥 − 𝑤𝑘) + 𝑓𝜇(𝑏𝑝𝑚𝑎𝑥(𝑘) + 𝑤𝑘) 

                𝑤𝑖𝑑
𝑡+1 = (𝑤𝑖𝑑

𝑡 +𝑚𝑖𝑑
𝑡+1) 

18:           End For 

19:      End For 

20:      Set t = t + 1 

21: End While 

22: Evaluate the solution on testing set 

23: Result: Forecasting values and performance measurement on the testing set 

 

4.5 SVR with an Enhanced ABO  

In this section, SVR-eABO as hybrid algorithm has been introduced. The algorithm 

combines the enhanced ABO (eABO) algorithm with the classical SVR algorithm. The 

eABO algorithm incorporates the enhancements performed on ABO algorithm at 

different stages of this study (population, exploration, and exploitation). The hybrid 

SVR-eABO has been evaluated using datasets mentioned in Chapter3 (section 3.2.1) 

The results obtained shows significant influence in selecting optimal SVR parameters 

for optimisation purpose. Results are presented in Chapter 5 with detailed analysis and 

interpretations. The SVR-eABO algorithm is presented in algorithm 4.5.  

Algorithm 4.5: SVR-eABO Algorithm  

 Input: Training Data, P D, Max_I, l1, l2 

/* P= Number of individual Buffaloes (population size), D= Problem 

dimension (SVR control parameters), Max_I = Maximum number of 

Iterations, l1= Cognitive Learning parameter, l2= Social Learning 

parameter*/ 

 Output: Optimal values for SVR (C, γ and ε) as Global best buffalo position 

1: For buffalo i = 0 to P do: 
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2:  Random initialisation of buffalo position vector 𝑚𝑘 with three (3)     values 

based on [C, γ and ε] ranges using distribution based on Tent-map 

function as follows: 𝑥𝑛+1 = {
2𝑥𝑛𝑥 ∈ [0,0.5]

2(1 − 𝑥𝑛)𝑥 ∈ [0,0.5]
 

3:  Random initialisation of each buffalo movement vector 𝑤𝑘 

4: End For 

5: Initialise t = 1 

6: While (t≠ Max_I) do: 

 

7:  For each buffalo i do: 

8:   Calculate fitness_value using SVR regressor 

9:   If buffalo’s fitness_value is better than 𝑏𝑝𝑚𝑎𝑥(𝑘) 

10:     Set 𝑏𝑝𝑚𝑎𝑥(𝑘) = buffalo’s current fitness 

11:   End If 

12:  End For 

13:  Set 𝑏𝑔𝑚𝑎𝑥 = Best previous buffalo’s fitness_value 

14: /* Updating each buffalo’s movement and position */ 

15:  For buffalo i = 0 to P do: 

16:   For dimension d = 0 to D do: 

17:    𝑚𝑖𝑑
𝑡+1 = 𝑚𝑖𝑑

𝑡 + 𝑙1⊗𝐿𝑒𝑣𝑦(𝜆)(𝑏𝑔𝑚𝑎𝑥 − 𝑤𝑖𝑑
𝑡 ) + 

𝑙2𝐿.∗ (𝑏𝑝𝑖
𝑡 −𝑤𝑖𝑑

𝑡 ) 

   𝑤𝑖𝑑
𝑡+1 = (𝑤𝑖𝑑

𝑡 +𝑚𝑖𝑑
𝑡+1) +⊗ 𝐿𝑒𝑣𝑦(𝜆) 

18:   End For 

19:  End For 

20:  Set t = t + 1 

21: End While 

22: Evaluate the solution on testing set 

23: Result: The forecasting values and performance measurement on testing set 

4.6   Summary 

In this chapter, the algorithms developed through targeted enhancements to the African 

Buffalo Optimization (ABO) algorithm were presented in detail. The chapter began 

with the introduction of the SVR-ABO algorithm, which serves as a foundational 

integration of Support Vector Regression and ABO algorithm. Subsequent sections 

elaborated on specific enhancements, including improved population initialization, 

exploration, and exploitation techniques, each aimed at bolstering the optimization 

effectiveness of the ABO algorithm. The chapter concluded with the presentation of 
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the SVR with an Enhanced ABO, showcasing the cumulative impact of these 

modifications on algorithmic performance. This chapter emphasized the structured 

development of these algorithms, laying the groundwork for the subsequent analysis 

of their effectiveness on various datasets, which will be explored in the following 

chapter. The focus on algorithmic enhancements sets a clear context for understanding 

how these advancements contribute to improved forecasting modeling and 

optimization in machine learning applications. 
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CHAPTER FIVE 

DISCUSSION AND ANALYSIS 

This chapter transitioned from the development of the enhanced algorithms to their 

practical application and evaluation. The algorithms introduced in the previous chapter 

are rigorously tested on several datasets, allowing to assess their performance in real-

world scenarios. Utilizing the metrics outlined in Chapter 3, section 3.5, each of 

developed algorithm effectiveness has been systematically evaluated thereby 

providing a comprehensive analysis of each algorithm’s forecasting capabilities. The 

results obtained from these experiments are thoroughly discussed, highlighting the 

strengths and weaknesses of the enhanced algorithms in various contexts. This chapter 

aims to offer valuable insights into how these advancements translate into measurable 

improvements in performance, thereby establishing a clear link between algorithmic 

enhancements and their impact on forecasting modeling outcomes. 

5.1 Household dataset 

In this section, the performance of various improved algorithms was evaluated using 

a household dataset. Additionally, the performance of the final algorithm (SVR-

eABO) was compared to selected benchmarks, as discussed in Chapter 3, section 3.6.5, 

using the same dataset. The results obtained from these evaluations are presented in 

Table 5.1 and 5.2, as shown in sections 5.1.1 and 5.1.2 respectively. 

5.1.1 Comparison Between Algorithms on Household Dataset 

This section presents the results obtained from evaluating the five algorithms  

developed in this study on Household dataset. The obtained results of the evaluations 

are presented below in table 5.1, while the interpretation and analysis of the result 

followed in subsequent sub-sections. 
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Table 5.1 

Comparative performance of algorithms on Household Dataset 

 SVR-ABO SVR-

popABO 

SVR-

explrABO 

SVR-

expltABO 

SVR-

eABO 

C 4077.5628 1634.4331 1534.8185 1994.0814 1949.6717 

Epsilon 0.2127 0.1897 0.1409 0.12090 0.0979 

Gamma 0.0101 0.0032 0.0082 0.00350 0.0018 

RMSE 679.2352 666.4441 495.2717 390.9594 327.4449 

MAPE 3.0544 3.1949 2.2088 1.7844 1.4924 

MAE 514.9804 521.2221 352.1861 273.9614 239.2793 

R2 0.9941 0.9943 0.9969 0.9980 0.9986 

PA (%) 96.9456 96.8051 97.7912 98.2156 98.5076 

CPU Time 19.0383 16.3259 23.1244 19.4708 24.4815 

5.1.1.1 Root Mean Square Error (RMSE) 

The RMSE measures the average deviation between the predicted values and the actual 

values. It provides an overall assessment of the accuracy of the algorithms. Among the 

algorithms, SVR-eABO achieved the lowest RMSE (327.4449), indicating the 

smallest average deviation from the actual values. SVR-expltABO (390.9594), SVR-

explrABO (495.2717), SVR-popABO (666.4441), and SVR-ABO (679.2352) follow 

with progressively higher RMSE values. Figure 5.1 depict a visual comparison of 

RMSE values of the developed algorithms. 
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Figure 5.1: Comparison of RMSE (developed algorithms) on Household dataset 

5.1.1.2 Mean Absolute Percentage Error (MAPE) 

The MAPE measures the average percentage deviation between the predicted values 

and the actual values. It indicates the relative accuracy of the algorithms. SVR-eABO 

achieved the lowest MAPE (1.4924), indicating the smallest average percentage 

deviation from the actual values. SVR-expltABO (1.7844), SVR-explrABO (2.2088), 

SVR-popABO (3.1949), and SVR-ABO (3.0544) follow with progressively higher 

MAPE values. Figure 5.2 presents visual comparison of MAPE values of the 

developed algorithms. 
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Figure 5.2: Comparison of MAPE (developed algorithms) on Household dataset 

5.1.1.3 Mean Absolute Error (MAE) 

The MAE measures the average deviation between the predicted values and the actual 

values. It provides a similar assessment to RMSE but without considering the squared 

values. SVR-eABO achieved the lowest MAE (239.2793), indicating the smallest 

average deviation from the actual values. SVR-expltABO (273.9614), SVR-explrABO 

(352.1861), SVR-popABO (521.2221), and SVR-ABO (514.9804) follow with 

progressively higher MAE values. Figure 5.3 shows a visual comparison of MAE 

values of the developed algorithms. 
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Figure 5.3: Comparison of MAE (developed algorithms) on Household dataset 

5.1.1.4 Coefficient of Determination (R2) 

The R2 value represents the proportion of the variance in the dependent variable that 

is predictable from the independent variables. It quantifies the goodness-of-fit of the 

algorithms. SVR-eABO achieved the highest R2 (0.9986), indicating the highest 

degree of predictability and goodness-of-fit. SVR-expltABO (0.9980), SVR-

explrABO (0.9969), SVR-popABO (0.9943), and SVR-ABO (0.9941) follow with 

progressively lower R2 values. Figure 5.4 demonstrate a visual comparison of R2 

values of the developed algorithms. 
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Figure 5.4: Comparison of R2 (developed algorithms) on Household dataset 

5.1.1.5 Percentage Accuracy (PA) 

Percentage Accuracy represents the proportion of correctly predicted values. It 

provides an assessment of the overall accuracy of the algorithms. SVR-eABO achieved 

the highest PA of 98.5076%, indicating the highest proportion of correct forecasting. 

SVR-expltABO was able to record PA value of 98.2156%, SVR-explrABO 

(97.7912%), SVR-popABO (96.8051%), and SVR-ABO (96.9456%) follow with 

progressively lower PA values. Figure 5.5 illustrates a visual comparison of PA values 

of the enhanced ABO algorithm against on Household dataset.  
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Figure 5.5: Comparison of PA (developed algorithms) on Household dataset 

In summary, the enhanced algorithms (SVR-popABO, SVR-explrABO, SVR-

expltABO, and SVR-eABO) consistently outperformed the classical SVR-ABO 

algorithm based on RMSE, MAPE, MAE, R2, and PA as evaluation metrics. SVR-

eABO achieved the best overall performance, with the lowest RMSE, MAPE, MAE, 

and the highest R2 and PA values.  

5.1.2 Comparison of SVR-eABO Against Benchmarks on Household Dataset 

In this section, the performance of the enhanced ABO algorithm as an SVR optimiser 

has been compared with selected benchmarks based on five evaluation metrics, the 

comparative performance of these benchmarks is as presented in table 5.2, while 

subsequent subheadings present detailed analysis of the result presented in the 

mentioned table.   
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Table 5.2 

Comparative performance of eABO algorithm against Benchmarks 

 SVR SVR-

ABC 

SVR-GA SVR-PSO SVR-CS SVR-

eABO 

C - 2717.5632 3537.7894 1045.0209 2917.6543 1949.6717 

Epsilon - 0.21342 0.2142 0.2017 0.1941 0.0979 

Gamma - 0.00634 0.0030 0.0029 0.0071 0.0018 

RMSE 2222.0536 712.9428 773.2354 719.5689 732.8290 327.4449 

MAPE 3.8343 3.2897 3.7564 3.4704 3.5261 1.4924 

MAE 1008.7593 511.3731 591.0755 544.1635 537.1287 239.2793 

R2 0.9366 0.9935 0.9923 0.9934 0.99041 0.9986 

PA (%) 96.1657 96.7103 96.2436 96.5296 96.4739 98.5076 

CPU Time 0.0287 15.2454 14.6549 18.0093 16.9270 24.4815 

 

5.1.2.1 Root Mean Square Error (RMSE) 

Lower RMSE values indicate better predictive accuracy, with less deviation between 

the predicted and actual values. SVR-eABO achieves the lowest RMSE value among 

all the algorithms, indicating superior predictive accuracy. SVR-ABC, SVR-GA, 

SVR-PSO, and SVR-CS also show lower RMSE values compared to SVR, suggesting 

improved accuracy in predicting the target variable. Figure 5.6 illustrates a visual 

comparison of RMSE values of the enhanced ABO algorithm against benchmarked 

algorithms. 
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Figure 5.6: Comparison of RMSE (against Benchmarks) on Household dataset 

5.1.2.2 Mean Absolute Percentage Error (MAPE) 

MAPE measures the average percentage difference between the predicted and actual 

values. Lower MAPE values indicate better predictive accuracy, with less relative 

error in forecasting. SVR-eABO achieves the lowest MAPE value among all the 

algorithms, indicating superior accuracy in predicting the target variable. SVR-ABC, 

SVR-GA, SVR-PSO, and SVR-CS also show lower MAPE values compared to SVR, 

suggesting improved accuracy in predicting relative errors. Figure 5.7 shows a visual 

comparison of MAPE values of the enhanced ABO algorithm against benchmarked 

algorithms.  
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Figure 5.7: Comparison of MAPE (against Benchmarks) on Household dataset 

5.1.2.3 Mean Absolute Error (MAE) 

MAE measures the average absolute difference between the predicted and actual 

values. Lower MAE values indicate better predictive accuracy, with less absolute error 

in forecasting. SVR-eABO achieves the lowest MAE value among all the algorithms, 

indicating superior accuracy in predicting the target variable. SVR-ABC, SVR-GA, 

SVR-PSO, and SVR-CS also show lower MAE values compared to SVR, suggesting 

improved accuracy in predicting absolute errors. Figure 5.8 depicts a visual 

comparison of MAE values of the enhanced ABO algorithm against benchmarked 

algorithms.  
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Figure 5.8: Comparison of MAE (against Benchmarks) on Household dataset 

5.1.2.4 Coefficient of Determination (R2) 

Coefficient of Determination (R2) measures the proportion of variance in the target 

variable that can be explained by the model. Higher R2 values indicate a better fit of 

the model to the data. SVR-eABO achieves the highest R2 value among all the 

algorithms, indicating the best overall model fit. SVR-ABC, SVR-GA, SVR-PSO, and 

SVR-CS also show higher R2 values compared to SVR, suggesting improved model 

fit. Figure 5.9 presents a visual comparison of Coefficient of Determination values of 

the enhanced ABO algorithm against benchmarked algorithms.  
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Figure 5.9: Comparison of R2 (against Benchmarks) on Household dataset 

5.1.2.5 Percentage Accuracy (PA) 

Percentage Accuracy (PA) represents the percentage of accurate forecasting made by 

the model. Higher PA % values indicate better precision in predicting the correct 

outcomes. SVR-eABO achieves the highest PA % value among all the algorithms, 

indicating superior precision. SVR-ABC, SVR-GA, SVR-PSO, and SVR-CS also 

show higher PA values compared to SVR, suggesting improved precision. Figure 5.10 

depicts a visual comparison of MAE values of the enhanced ABO algorithm against 

benchmarked algorithms.  
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Figure 5.10: Comparison of PA (against Benchmarks) on Household dataset 

SVR-eABO consistently outperforms the other algorithms in terms of RMSE, MAPE, 

MAE, R2, and PA. The algorithm demonstrates the best overall predictive accuracy, 

model fit, and precision among the tested algorithms.  

5.1.2.6 CPU Execution Time  

The time taken by each algorithm has also been evaluated. The results shows that 

classical SVR algorithm was able to finish execution within the least amount of time. 

It is followed by SVR-GA and SVR-ABC with CPU time of 14.6549 and 15.2454 

seconds respectively. While  Figure 5.11 shows a visual comparison of MAE values of 

the enhanced ABO algorithm against benchmarked algorithms.  
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Figure 5.11: Comparison of CPU Time (against Benchmarks) on Household dataset  

5.2 Turkey dataset 

In this section the performance of all enhanced algorithms was compared on Turkey 

dataset likewise, the performance of the final algorithm (SVR-eABO) has been 

compared with the selected benchmarks on the same dataset. Below are the 

performances based on enhancement at each stage and in comparison, to the 

benchmarks. 

5.2.1 Comparison Between Algorithms on Turkey dataset 

This section presents the results obtained from evaluating the five algorithms  

developed in this study on Turkey dataset. The obtained results of the evaluations are 

presented below in table 5.3, while the interpretation and analysis of the result 

followed in subsequent sub-sections. 
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Table 5.3 

Comparative performance of algorithms on Turkey Dataset 

 SVR-ABO SVR-

popABO 

SVR-

explrABO 

SVR-

expltABO 
SVR-eABO 

C 2249.2718 1440.0861 1468.0306 4.10072 2161.9007 

Epsilon 0.091542 0.3000 0.04879 0.0706 0.0915 

Gamma 0.0989 0.0089 0.09902 0.00031 0.0097 

RMSE 531.6825 473.3348 436.3436 367.2885 298.6726 

MAPE 3.0895 2.9468 2.4841 2.1836 1.8522 

MAE 395.0339 376.7470 317.2447 288.4540 238.1015 

R2 0.7908 0.8342 0.8591 0.90017 0.93398 

PA (%) 96.9106 97.0532 97.5159 97.8164 98.1478 

CPU Time 41.8235 45.4421 52.56740 84.1104 61.8235 

5.2.1.1 Root Mean Square Error (RMSE) 

Lower RMSE values indicate better predictive accuracy, with less deviation between 

the predicted and actual values. SVR-eABO consistently achieves the lowest RMSE 

value among all the variants, suggesting it has the best overall predictive accuracy. 

SVR-popABO, SVR-explrABO, and SVR-expltABO also show lower RMSE values 

compared to SVR, indicating improved accuracy in predicting the target variable. 

SVR-ABO exhibits a slightly higher RMSE value, indicating a potential limitation in 

terms of predictive accuracy. Figure 5.12 depict a visual comparison of RMSE values 

of the developed algorithms. 



101 

 

 
Figure 5.12: Comparison of RMSE (developed algorithms) on Turkey dataset 

5.2.1.2 Mean Absolute Percentage Error (MAPE) 

MAPE measures the average percentage difference between the predicted and actual 

values. Lower MAPE values indicate better predictive accuracy, with less relative 

error in forecasting. SVR-eABO consistently achieves the lowest MAPE value among 

all the variants, indicating superior accuracy in predicting the target variable. SVR-

popABO, SVR-explrABO, and SVR-expltABO also show lower MAPE values 

compared to SVR, suggesting improved accuracy in predicting relative errors. SVR-

ABO displays a slightly higher MAPE value, indicating a potential limitation in 

predicting relative errors. . Figure 5.13 depict a visual comparison of MAPE values of 

the developed algorithms. 



102 

 

 

Figure 5.13: Comparison of MAPE (developed algorithms) on Turkey dataset 

5.2.1.3 Mean Absolute Error (MAE) 

MAE measures the average absolute difference between the predicted and actual 

values. Lower MAE values indicate better predictive accuracy, with less absolute error 

in forecasting. SVR-eABO consistently achieves the lowest MAE value among all the 

variants, indicating superior accuracy in predicting the target variable. SVR-popABO, 

SVR-explrABO, and SVR-expltABO also show lower MAE values compared to SVR, 

suggesting improved accuracy in predicting absolute errors. SVR-ABO exhibits a 

slightly higher MAE value than SVR, indicating a potential limitation in predicting 

absolute errors. Figure 5.14 depict a visual comparison of MAE values of the 

developed algorithms. 
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Figure 5.14: Comparison of MAE (developed algorithms) on Turkey dataset 

5.2.1.4 Coefficient of Determination (R2) 

R2 measures the proportion of variance in the target variable that can be explained by 

the model. Higher R2 values indicate a better fit of the model to the data. SVR-eABO 

consistently achieves the highest R2 value among all the variants, indicating the best 

overall model fit. SVR-popABO, SVR-explrABO, and SVR-expltABO also show 

higher R2 values compared to SVR, suggesting improved model fit. SVR-ABO 

displays a slightly lower R2 value than SVR, indicating a potential limitation in terms 

of model fit. Figure 5.15 depict a visual comparison of Coefficient of Determination 

(R2) values of the developed algorithms. 
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Figure 5.15: Comparison of R2 (developed algorithms) on Turkey dataset 

5.2.1.5 Percentage Accuracy (PA) 

Percentage Accuracy represents the percentage of accurate forecasting made by the 

model. Higher PA values indicate better precision in predicting the correct outcomes. 

SVR-eABO consistently achieves the highest PA value among all the variants, 

indicating superior precision. SVR-popABO, SVR-explrABO, and SVR-expltABO 

also show higher PA % values compared to SVR, suggesting improved precision. 

SVR-ABO exhibits a slightly lower PA value than SVR, indicating a potential 

limitation in terms of precision. . Figure 5.16 depict a visual comparison of Percentage 

Accuracy of the developed algorithms. 
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Figure 5.16: Comparison of PA (developed algorithms) on Turkey dataset 

In summary, SVR-eABO consistently outperforms the other variants in terms of 

RMSE, MAPE, MAE, R2, and PA. It demonstrates the best overall predictive accuracy, 

model fit, and precision among the tested variants. SVR-popABO, SVR-explrABO, 

and SVR-expltABO also show improvements in these metrics compared to the 

conventional SVR model, although to a lesser extent than SVR-eABO. SVR-ABO, on 

the other hand, exhibits performance comparable to or slightly worse than SVR. 

5.2.2 Comparison of SVR-eABO Against Benchmarks on Turkey Dataset 

In this section, the performance of the enhanced ABO algorithm as an SVR optimiser 

has been compared with selected benchmarks based on five evaluation metrics, the 

comparative performance is as presented in table 5.4 and detailed analysis is presented 

in subsequent subheadings.   
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Table 5.4 

Comparison of algorithm with benchmarks on Turkey Dataset 

  

SVR 

 

SVR-ABC 

 

SVRGA 

 

SVR-PSO 

 

SVR-CS 

 

SVR-eABO 

C - 340.9366 303.7596 343.2435 409.8105 2161.9007 

Epsilon - 0.1029 0.1029 0.0977 0.7901 0.0915 

Gamma - 0.0996 0.0994 0.0948 0.8941 0.0097 

RMSE 549.2810 548.6059 547.9467 532.4462 337.3901 298.6726 

MAPE 3.2048 3.1903 3.1866 3.0970 2.9386 1.8522 

MAE 409.7200 407.8633 407.3945 395.9976 287.9617 238.1015 

R2 0.7767 0.7773 0.7778 0.7902 0.9251 0.93398 

PA (%) 96.7952 96.8097 96.8134 96.9030 97.0614 98.1478 

CPU Time 0.0014 46.6948 47.4956 42.1758 45.9268 61.8235 

 

5.2.2.1 Root Mean Square Error (RMSE) 

SVR-eABO achieves the lowest RMSE value (298.6726), indicating superior accuracy 

in predicting the target variable compared to the other algorithms. A lower RMSE 

signifies that the predicted values are closer to the actual values, reflecting better 

overall model performance. SVR-PSO (532.4462) and SVR-GA (547.9467) also 

demonstrate relatively lower RMSE values, suggesting good predictive accuracy. 

SVR-ABC (548.6059), SVR-CS (337.3901), and SVR (549.2810) have slightly higher 

RMSE values, indicating larger forecasting errors. Figure 5.17 shows a visual 

comparison of all benchmarked algorithms’ performances based on RMSE metric on 

Turkey dataset.  
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Figure 5.17: Comparison of RMSE (against Benchmarks) on Turkey dataset 

5.2.2.2 Mean Absolute Percentage Error (MAPE) 

SVR-eABO achieves the lowest MAPE value (1.8522), indicating the smallest average 

percentage difference between the predicted and actual values. A lower MAPE 

signifies better accuracy and a better fit of the model. SVR-PSO (3.0970), SVR-GA 

(3.1866), and SVR-ABC (3.1903) also exhibit relatively low MAPE values, 

suggesting good predictive accuracy. SVR-CS (2.9386) and SVR (3.2048) have 

slightly higher MAPE values, indicating a slightly larger average percentage 

difference between the predicted and actual values. Figure 5.18 shows a visual 

comparison of values recorded by the SVR-eABO and the benchmarked algorithms 

based on MAPE metric.  
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Figure 5.18: Comparison of MAPE (against Benchmarks) on Turkey dataset 

5.2.2.3 Mean Absolute Error (MAE) 

SVR-eABO achieves the lowest MAE value (238.1015), indicating the smallest 

average deviation between the predicted and actual values. A lower MAE suggests 

better accuracy and a better fit of the model. SVR-PSO (395.9976) and SVR-GA 

(407.3945) also demonstrate relatively low MAE values, suggesting good predictive 

accuracy. SVR-ABC (407.8633), SVR-CS (287.9617), and SVR (409.7200) have 

slightly higher MAE values, indicating a slightly larger average deviation between the 

predicted and actual values. Comparative analysis is as presented in figure 5.19. 
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Figure 5.19: Comparison of MAE (against Benchmarks) on Turkey dataset 

5.2.2.4 Coefficient of Determination (R2) 

SVR-eABO achieves the highest R2 value (0.93398), indicating the best goodness-of-

fit compared to the other algorithms. A higher R2 value signifies that a larger 

proportion of the variance in the dependent variable is explained by the independent 

variables. SVR (0.7767), SVR-ABC (0.7773), and SVR-GA (0.7778) also demonstrate 

relatively high R2 values, suggesting good explanatory power. SVR-PSO (0.7902) and 

SVR-CS (0.9251) have slightly lower R2 values, indicating relatively less variance 

explained by the independent variables as presented in figure 5.20. 
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Figure 5.20: Comparison of R2 (against Benchmarks) on Turkey dataset 

5.2.2.5 Percentage Accuracy (PA) 

SVR-eABO achieves the highest PA value (98.1478%), indicating the highest 

accuracy in predicting instances. A higher PA value suggests a higher proportion of 

correctly predicted instances. SVR-CS (97.0614%) and SVR-ABC (96.8097%) also 

demonstrate relatively high PA values, indicating good predictive accuracy. SVR-GA 

(96.8134%), SVR-PSO (96.9030%), and SVR (96.7952%) have slightly lower PA 

values, suggesting a slightly lower proportion of correctly predicted instances. Figure 

5.21 presents the visual depiction of the algorithms’ performances based on PA values. 
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Figure 5.21: Comparison of PA (against Benchmarks) on Turkey dataset 

5.2.2.6 CPU Execution Time  

SVR-PSO has the lowest duration (42.1758) among the algorithms apart from the 

classical SVR algorithm that records overall lowest, indicating the shortest execution 

time among the algorithms as presented in figure 5.22. A lower duration suggests faster 

processing speed. SVR-GA (47.4956) also demonstrates relatively low duration, 

indicating fast execution. SVR-CS (45.9268) and SVR-ABC (46.6948) have slightly 

higher durations, suggesting slightly longer execution times. SVR-eABO has the 

highest duration (61.8235), indicating the longest execution time. 



112 

 

 

Figure 5.22: Comparison of CPU Time (against Benchmarks) on Turkey dataset 

In summary, SVR-eABO consistently demonstrates superior performance across 

multiple metrics, including the lowest RMSE, MAPE, MAE values, highest R2 value, 

highest PA, and relatively longer duration. This algorithm shows excellent accuracy, 

good model fit, and a high proportion of correctly predicted instances but requires a 

longer execution time. SVR-PSO and SVR-GA also exhibit competitive performance, 

with relatively low RMSE, MAPE, MAE values, high R2 values, and relatively shorter 

duration. These algorithms provide good accuracy, decent model fit, and a high 

proportion of correctly predicted instances while being computationally efficient. 

SVR-ABC, SVR-CS, and SVR perform relatively well in terms of RMSE, MAPE, and 

MAE values, with slightly higher values compared to SVR-eABO, SVR-PSO, and 

SVR-GA. However, they have lower R2 values and slightly lower PA. SVR-ABC and 

SVR-CS have relatively shorter execution times, while SVR has a shortest execution 

time. 

Overall, SVR-eABO stands out as the best-performing algorithm in terms of accuracy 

and model fit, but it comes at the cost of longer execution time. SVR-PSO and SVR-
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GA provide a good balance between accuracy and execution time. SVR-ABC, SVR-

CS, and SVR also offer decent performance, but they may have slightly lower accuracy 

and model fit compared to the top-performing algorithms. 

5.3 Appliances dataset 

In this section, a comparative analysis was conducted to assess the performance of 

various enhanced algorithms on the Appliances dataset. Additionally, the performance 

of the final algorithm (SVR-eABO) was evaluated in comparison to the developed 

hybrid algorithms at various stages mentioned using the same dataset as presented in 

table 5.5. The subsequent results outline the performance enhancements achieved at 

each stage and provide a comparative assessment against the final SVR-eABO. 

5.3.1 Comparison Between Developed Algorithms on Appliances dataset 

This section presents the results obtained from evaluating the five algorithms  

developed in this study on Appliances dataset. The obtained results of the evaluations 

are presented below in table 5.5, while the interpretation and analysis of the result 

followed in subsequent sub-sections. 

Table 5.5 

Comparison of developed Algorithms on Appliances dataset 

 SVR-ABO SVR - 

popABO 

SVR-

explrABO 

SVR-

expltABO 

SVR-

eABO 

C 11.3242 0.44910 0.2349 1.7912 3.0768 

Epsilon 0.0934 0.02340 0.0206 0.0619 0.0534 

Gamma 0.0030 0.02713 0.02321 0.0027 0.0009 

RMSE 453.1873 430.0246 425.2804 452.6258 434.9740 

MAPE 9.8529 9.6602 9.0144 8.6573 8.8263 

MAE 0.3370 0.3473 0.3229 0.3166 0.3112 
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R2 0.1311 0.2176 0.2350 0.1327 0.1994 

PA (%) 90.1471 90.3398 90.9856 91.3427 91.1737 

CPU Time 358.9556 404.8427 331.3231 421.3143 435.0065 

 

5.3.1.1 Root Mean Square Error (RMSE) 

RMSE as a metric that measures the average magnitude of forecasting errors has been 

employed to measure the performance of the developed algorithms. Lower RMSE 

values, such as those achieved by SVR-expltABO (0.4252) and SVR-eABO (0.4349), 

indicate better accuracy and smaller forecasting errors. This suggests that the predicted 

values are closer to the actual values. In contrast, higher RMSE values, as seen in SVR-

popABO (0.43), SVR-ABO (0.4531), and SVR (0.4559), indicate larger forecasting 

errors. This may imply that the models have more difficulty to accurately predict the 

target variable. Figure 5.23 depict a visual comparison of RMSE values of the 

developed algorithms. 

 

Figure 5.23: Comparison of RMSE on Appliances dataset 
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5.3.1.2 Mean Absolute Percentage Error (MAPE) 

MAPE measures the average percentage difference between predicted and actual 

values. Lower MAPE values, such as those achieved by SVR-expltABO (8.6573) and 

SVR-eABO (8.8263), indicate smaller average percentage differences and better 

accuracy. Higher MAPE values, seen in SVR-popABO (9.6602), SVR-ABO (9.8529), 

and SVR (9.7568), suggest larger average percentage differences, indicating a higher 

degree of deviation between the predicted and actual values. Figure 5.24 depict a visual 

comparison of MAPE values of the developed algorithms. 

 

Figure 5.24: Comparison of MAPE on Appliances dataset 

5.3.1.3 Mean Absolute Error (MAE) 

MAE measures the average magnitude of forecasting errors without considering their 

direction. A lower MAE value, as achieved by SVR-eABO (0.3112), indicates smaller 

average deviations between the predicted and actual values. Slightly higher MAE 

values in SVR-ABO (0.3370), SVR-popABO (0.3473), and SVR (0.3742) suggest 
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slightly larger average deviations. Figure 5.25 depict a visual comparison of MAE 

values of the developed algorithms. 

 

Figure 5.25: Comparison of MAE on Appliances dataset 

5.3.1.4 Coefficient of Determination (R2) 

The coefficient of determination (R2) is utilized to assess the degree to which a model 

fits the data. It quantifies the proportion of variance in the dependent variable that can 

be explained by the independent variables. A higher R2 value, exemplified by SVR-

eABO (0.8994), signifies a superior fit and a greater proportion of explained variance. 

Conversely, lower R2 values observed in SVR-popABO (0.8176), SVR-ABO 

(0.8311), and SVR (0.8203) indicate a relatively less variance explained by the 

independent variables and a lower level of goodness-of-fit. Figure 5.26 presents a 

visual comparison of the R2 values achieved by the developed algorithms. 
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Figure 5.26: Comparison of R2 on Appliances dataset 

5.3.1.5 Percentage Accuracy (PA) 

Percentage Accuracy (PA) measures the percentage of correctly predicted instances. 

A higher PA value, such as that achieved by SVR-eABO (91.1737%), indicates a 

higher accuracy in predicting instances. Slightly lower PA values, observed in SVR-

popABO (90.3398%), SVR-ABO (90.1471%), and SVR (90.2432%), suggest a 

slightly lower proportion of correctly predicted instances. Figure 5.27 depict a visual 

comparison of PA values of the developed algorithms. 
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Figure 5.27: Comparison of Percentage Accuracy (PA) on Appliances dataset 

5.3.1.6 CPU Execution Time 

CPU execution represents the total execution time of the algorithms. Higher duration 

values, as seen in SVR-expltABO (331.3231) and SVR-eABO (435.0065), indicate 

longer execution times. Lower duration values, exhibited by SVR-popABO 

(404.8427), SVR-ABO (358.9556), and SVR (0.3461), suggest faster execution times. 

It is observed that, though SVR-eABO was able to record higher accuracy in terms of 

PA, yet it was achieved at the cost of higher execution time. Figure 5.28 depict a visual 

comparison of CPU time values of the developed algorithms. 



119 

 

 

Figure 5.28: Comparison of CPU Execution Time on Appliances dataset 

In summary, SVR-expltABO and SVR-eABO generally show better performance, 

with lower RMSE, MAPE, MAE values, higher R2 and PA values indicates higher 

accuracy, lower forecasting errors, better goodness-of-fit, and a higher proportion of 

correctly predicted instances. SVR-ABO, SVR-popABO, and SVR have slightly lower 

performance metrics, suggesting slightly higher forecasting errors, lower goodness-of-

fit, and a slightly lower percentage of correctly predicted instances. SVR-expltABO 

and SVR-eABO have longer execution times compared to SVR-popABO, SVR-ABO, 

and SVR. 

5.3.2 Comparison of SVR-eABO Against Benchmarks on Appliances Dataset  

The performance of SVR-eABO has been compared with various Support Vector 

Regression (SVR) variants, namely SVR-ABC, SVR-GA, SVR-PSO, SVR-CS, and 

was evaluated using several performance metrics. These metrics include Root Mean 

Squared Error (RMSE), Mean Absolute Percentage Error (MAPE), Mean Absolute 

Error (MAE), Coefficient of Determination (R2), Percentage of Accurate Forecasting, 
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and CPU execution time. Table 5.6 presents the comparative performance of the SVR-

eABO with benchmark algorithms. 

Table 5.6 

Comparison against eABO with Benchmarks on Appliances dataset 

 SVR SVR-ABC SVR-GA SVR-PSO SVR-CS SVR-

eABO 

C - 23.3082 0.4001 22.0227 48.3921 3.0768 

Epsilon - 0.0361 0.0836 0.0495 0.2108 0.0534 

Gamma - 0.0004 0.0302 0.0008 0.9053 0.0009 

RMSE 455.9657 475.5483 444.0689 431.2986 480.6516 434.9863 

MAPE 9.7568 9.0235 9.5019 9.1855 9.4894 8.8263 

MAE 0.3742 0.3472 0.3205 0.3461 0.3701 0.3112 

R2 0.8127 0.8143 0.8166 0.8213 0.8154 0.8299 

PA (%) 90.2432 90.9765 90.4981 90.8145 90.5106 91.1737 

CPU Time 0.3461 363.0456 355.8537 412.4585 329.6102 435.0065 

 

5.3.2.1 Root Mean Squared Error (RMSE) 

Among the SVR variants, SVR-PSO achieved the lowest RMSE value of 431.2986, 

indicating superior performance in minimizing forecasting errors. It outperformed 

SVR-eABO, which had an RMSE of 434.9863, as well as SVR-GA with an RMSE of 

444.0689, SVR-ABC with an RMSE of 475.5483, SVR-CS with an RMSE of 

480.6516, and the classical SVR model with an RMSE of 455.9657. These results 

highlight that SVR-PSO is slightly better than the developed SVR-eABO algorithm in 

terms of minimizing forecasting errors based on RMSE compared to the other SVR 

variants and the classical SVR model on Appliances dataset. Figure 5.29 shows a 
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visual comparative performance on RMSE metric of all the benchmarks and the 

developed SVR-eABO algorithm. 

 

Figure 5.29: Comparison of RMSE based on Benchmarks on Appliances dataset 

5.3.2.2 Mean Absolute Percentage Error (MAPE) 

In terms of MAPE, SVR-eABO achieved the lowest value of 8.8263, followed by 

SVR-ABC with a MAPE of 9.0235, SVR-GA with a MAPE of 9.5019, SVR-PSO with 

a MAPE of 9.1855, SVR-CS with a MAPE of 9.4894, and the classical SVR model 

with a MAPE of 9.7568. These results indicate that SVR-eABO exhibited the smallest 

average relative deviation from the true values in percentage terms, indicating its 

superior performance in accuracy. Figure 5.30 shows a visual comparative 

performance on MAPE metric of all the benchmarks and the developed SVR-eABO 

algorithm. 
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Figure 5.30: Comparison of RMSE based on Benchmarks on Appliances dataset 

5.3.2.3 Mean Absolute Error (MAE) 

SVR-eABO achieved the lowest MAE value of 0.3112, followed by SVR-GA with a 

MAE of 0.3205, SVR-PSO with a MAE of 0.3461, SVR-ABC with a MAE of 0.3472, 

SVR-CS with a MAE of 0.3701, and the classical SVR model with a MAE of 0.3742. 

These results suggest that SVR-eABO minimized the absolute forecasting errors more 

effectively compared to the other SVR variants and the classical SVR model. Figure 

5.31 shows a visual comparative performance on MAE metric of all the benchmarks 

and the developed SVR-eABO algorithm. 
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Figure 5.31: Comparison of MAE based on Benchmarks on Appliances dataset 

5.3.2.4 Coefficient of Determination (R2) 

SVR-eABO achieved an R2 value of 0.8299, followed by SVR-PSO with an R2 of 

0.8213, SVR-GA with an R2 of 0.8166, SVR-CS with an R2 of 0.8154, SVR-ABC with 

an R2 of 0.8143, and the classical SVR model with an R2 of 0.1827. These results 

indicate that SVR-eABO exhibited the highest ability to explain the variance in the 

target variable compared to the other SVR variants and the classical SVR model. 

Figure 5.32 shows a visual comparative performance on R2 metric of all the 

benchmarks and the developed SVR-eABO algorithm. 
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Figure 5.32: Comparison of R2 based on Benchmarks on Appliances dataset 

5.3.2.5 Percentage of Accurate (PA) 

SVR-eABO achieved the highest accuracy with a PA of 91.1737, followed by SVR-

ABC with a PA (%) of 90.9765, SVR-GA with a PA of 90.4981, SVR-CS with a PA 

of 90.5106, SVR-PSO with a PA of 90.8145, and the classical SVR model with a PA 

of 90.2432. These results indicate that SVR-eABO produced the highest proportion of 

accurate forecasting among the SVR variants and the classical SVR model. Figure 5.33 

shows a visual comparative performance on R2 metric of all the benchmarks and the 

developed SVR-eABO algorithm. 
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Figure 5.33: Comparison of PA based on Benchmarks on Appliances dataset 

5.3.2.6 CPU Execution Time 

Among the SVR variants, classical SVR reported the shortest CPU execution time of 

0.3461 followed SVR-CS with CPU execution time of 329.6102, followed by SVR-ABC 

with a CPU execution time of 402.5136, SVR-GA with a duration of 421.2799, SVR-

PSO with a duration of 448.6087, and SVR-eABO with a duration of 518.4234. These 

results indicate that classical SVR exhibited the highest computational efficiency 

among the SVR variants considered. Figure 5.34 shows a visual comparative 

performance on CPU execution time  as evaluation metric of all the benchmarks and 

the developed SVR-eABO algorithm. 
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Figure 5.34: Comparison of CPU Time (against Benchmarks) on Appliances dataset 

In summary, the comparative analysis of the SVR variants reveals that SVR-eABO 

consistently outperformed the other models in terms of RMSE, MAPE, MAE, R2, and 

PA (%). These results indicate that SVR-eABO exhibited superior performance in 

minimizing forecasting errors, and higher forecasting accuracy compared to the other 

SVR variants and the classical SVR model. Additionally, classical SVR demonstrated 

the highest computational efficiency among the SVR variants in terms of CPU 

execution time.  

5.4 Panama dataset 

This section presents a comparative analysis evaluating the performance of several 

enhanced algorithms on the Panama dataset. Furthermore, the performance of the final 

algorithm, SVR-eABO, was assessed in comparison to the hybrid algorithms 

developed at various stages, utilizing the same dataset. The subsequent results 

delineate the performance improvements attained at each stage and provide a 
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comparative evaluation against the culminating SVR-eABO approach. Table 5.7 

provides performance values of the comparisons. 

5.4.1 Comparison Between Developed Algorithms on Panama dataset 

Table 5.7 

Comparison against developed algorithms on Panama dataset 

 SVR-

ABO 

SVR-

popABO 

SVR-

explrABO 

SVR-

expltABO 

SVR-

eABO 

C 0.5687 888.1198 888.1198 478.9911 560.8820 

Epsilon 0.4130 0.0061 0.0061 0.0072 0.0073 

Gamma 0.0862 0.0381 0.0381 0.0436 0.0394 

RMSE 1406.6100 1425.9649 1429.3005 1423.1092 1419.3501 

MAPE 3.5081 3.4897 3.4882 3.4792 3.4765 

MAE 1021.1916 1017.0317 1016.1864 1039.0039 1012.9322 

R2 0.8509 0.8495 0.8493 0.8500 0.8500 

PA (%) 96.4919 96.5103 96.5118 96.5208 96.5235 

CPU Time 621.2687 712.4568 798.6220 681.2687 786.2687 

5.4.1.1 Root Mean Square Error (RMSE) 

RMSE measures the average magnitude of forecasting errors. A lower RMSE value 

indicates better accuracy and smaller forecasting errors, suggesting that the predicted 

values are closer to the actual values. Among the algorithms, SVR-ABO has the lowest 

RMSE value (1406.6100), followed closely by SVR-eABO (1419.3501). This 

suggests that both algorithms have better accuracy and smaller forecasting errors 

compared to the other algorithms. On the other hand, SVR-popABO (1425.9649), 

SVR-explrABO (1429.3005), SVR-expltABO (1423.1092), and SVR (1425.1367) 

have higher RMSE values, indicating larger forecasting errors. These algorithms 
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demonstrate more difficulty to  accurately predict the target variable. Figure 5.35 

depict a visual comparison of RMSE values of the developed algorithms. 

 

Figure 5.35: Comparison of RMSE on Panama dataset 

5.4.1.2 Mean Absolute Percentage Error (MAPE) 

MAPE measures the average percentage deviation between the predicted and actual 

values. A lower MAPE value indicates better accuracy and smaller forecasting errors 

in percentage terms. SVR-ABO (3.5081), SVR-eABO (3.4765), and SVR-popABO 

(3.4897) have relatively lower MAPE values, suggesting better accuracy and smaller 

forecasting errors in percentage terms. SVR-explrABO (3.4882), SVR-expltABO 

(3.4792), and SVR (3.5260) have slightly higher MAPE values, indicating larger 

forecasting errors in percentage terms. Figure 5.36 depict a visual comparison of 

MAPE values of the developed algorithms. 
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Figure 5.36: Comparison of MAPE on Panama dataset 

5.4.1.3 Mean Absolute Error (MAE) 

MAE measures the average magnitude of forecasting errors without considering their 

direction. A lower MAE value indicates better accuracy and smaller forecasting errors. 

SVR-eABO (1012.9322) has the lowest MAE value, followed by SVR-ABO 

(1021.1916) and SVR (1025.3182). These algorithms exhibit better accuracy and 

smaller forecasting errors compared to the other algorithms. SVR-popABO 

(1017.0317), SVR-explrABO (1016.1864), and SVR-expltABO (1039.0039) have 

slightly higher MAE values, indicating larger forecasting errors. Figure 5.37 depict a 

visual comparison of MAE values of the developed algorithms. 
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Figure 5.37: Comparison of MAE on Panama dataset 

5.4.1.4 Coefficient of Determination (R2): 

R2 measures the proportion of the variance in the dependent variable that is explained 

by the independent variables. A higher R2 value indicates a better fit to the data. SVR-

ABO (0.508467) has the highest R2 value among the algorithms, suggesting a better 

fit to the data and a higher proportion of variance explained. SVR-eABO (0.4995) and 

SVR (0.49543381) also exhibit moderate R2 values, indicating reasonable fits to the 

data. SVR-popABO (0.4949), SVR-explrABO (0.4925), and SVR-expltABO 

(0.4968684) have slightly lower R2 values compared to the other algorithms. Figure 

5.38 depict a visual comparison of R2 values of the developed algorithms. 
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Figure 5.38: Comparison of R2 on Panama dataset 

 5.4.1.5 Percentage of Accuracy (PA): 

The analysis of the forecasting accuracy values revealed that all the evaluated 

algorithms demonstrated similar performance, with values ranging from 96.4740% to 

96.5235%. These results indicate that the algorithms are capable of making accurate 

forecasting with a high degree of consistency. The narrow range of forecasting 

accuracy values suggests that the algorithms have comparable capabilities in capturing 

the underlying patterns in the dataset and generating accurate forecasting. However, 

upon closer examination, SVR-eABO consistently outperformed the other algorithms 

by achieving the highest forecasting accuracy of 96.5235%. This indicates that SVR-

eABO exhibits superior predictive capabilities compared to both the classical SVR 

model and the other SVR variants considered in this study. The incorporation of 

swarm-based ABO in SVR-eABO contributes to its improved predictive accuracy by 

enhancing the optimization process. The ABO algorithm enables SVR-eABO to 

effectively explore the solution space and find optimal parameter settings, leading to 
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enhanced forecasting accuracy. The superior performance of SVR-eABO in terms of 

forecasting accuracy suggests its potential as a preferred choice for predictive 

modeling tasks. Figure 5.39 depict a visual comparison of PA values of the developed 

algorithms. 

 

Figure 5.39: Comparison of Percentage Accuracy (PA) on Panama dataset 

5.4.1.6 CPU Execution Time 

SVR demonstrates the shortest execution time among all the algorithms, with a 

duration of 0.06721. This indicates that SVR is highly efficient in terms of CPU 

execution. However, despite its longer duration of 621.2687, SVR-ABO was able to 

achieve a higher percentage accuracy (PA) of 96.4919 compared to basic SVR. SVR-

popABO exhibits a further increase in duration compared to both SVR and SVR-ABO, 

with a value of 712.4568. Although it incurs a higher computational overhead, SVR-

popABO still manages to achieve a slightly higher PA of 96.5103 compared to SVR-

ABO. On the other hand, SVR-explrABO has a significantly longer duration of 

798.6220 compared to the previous algorithms. Despite this, SVR-explrABO was able 
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to record a PA value of 96.5118. In contrast, SVR-expltABO demonstrates a slightly 

shorter duration compared to SVR-explrABO, with a value of 681.2687. Interestingly, 

SVR-expltABO achieves a slightly higher PA of 96.5208 compared to SVR-

explrABO. Finally, SVR-eABO exhibits a significantly longer duration of 786.2687 

compared to SVR. However, the algorithm still manages to achieve a slightly higher 

PA value of 96.5235. Figure 5.40 depict a visual comparison of CPU execution time 

in seconds of the developed algorithms. 

 

Figure 5.40: Comparison of CPU Execution Time on Panama dataset 

Conclusively, SVR-eABO generally demonstrates better accuracy and smaller 

forecasting errors compared to the other algorithms, as indicated by lower values in 

RMSE, MAPE, and MAE. SVR-ABO has the highest R2 value, suggesting a better fit 

to the data and a higher proportion of variance explained. The other algorithms (SVR, 

SVR-popABO, SVR-explrABO, SVR-expltABO) generally exhibit slightly higher 

RMSE, MAPE, and MAE values, indicating larger forecasting errors and reduced 

accuracy compared to SVR-eABO.  



134 

 

5.4.2 Comparison of SVR-eABO Against Benchmarks on Panama Dataset 

The performance of SVR-eABO has been compared with various Support Vector 

Regression (SVR) variants, namely SVR-ABC, SVR-GA, SVR-PSO, SVR-CS, and 

was evaluated using several performance metrics. These metrics include Root Mean 

Squared Error (RMSE), Mean Absolute Percentage Error (MAPE), Mean Absolute 

Error (MAE), Coefficient of Determination (R2), Percentage of Accurate Forecasting, 

and CPU execution time. Table 5.8 presents the comparative performance of the SVR-

eABO with benchmark algorithms. 

Table 5.8 

Comparison against eABO with Benchmarks on Panama dataset 

 SVR SVR-

ABC 

 

SVR-GA 

 

SVR-PSO 

 

SVR-CS 

SVR-

eABO 

C - 6.5927 0.0472 0.1124 17.0917 560.8820 

Epsilon - 0.16215 0.0710 0.3149 0.0482 0.0073 

Gamma - 0.0192 0.0636 0.4443 0.0390 0.0394 

RMSE 1425.1367 1444.8945 1418.0946 1454.0075 1430.9824 1419.3501 

MAPE 3.5260 3.5544 3.6329 3.6094 3.5902 3.4765 

MAE 1025.3182 1036.1330 1059.3854 1052.4854 1031.5462 1012.9322 

R2 0.4954 0.5004 0.4748 0.4814 0.4853 0.4995 

PA (%) 96.4740 96.4456 96.3671 96.3906 96.4098 96.5235 

CPU Time 0.06721 611.4653 624.9735 774.0880 683.8492 786.2687 

 

 

5.4.2.1 Root Mean Square Error (RMSE) 

The Root Mean Square Error (RMSE) analysis revealed that SVR-GA outperformed 

SVR-ABC with a slightly lower RMSE value of 1418.0946 compared to 1444.8945. 

Despite a higher RMSE of 1454.0075, SVR-PSO competes closely with SVR-GA in 

predictive accuracy. SVR-CS maintained a competitive edge with an RMSE of 
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1430.9824, while SVR-eABO, as the algorithm that has been benchmarked with these 

just mentioned algorithms, showcased robust predictive capabilities with an RMSE of 

1419.3501 as demonstrated in figure 5.41. 

 

Figure 5.41: Comparison of RMSE based on Benchmarks on Panama dataset 

5.4.2.2 Mean Absolute Percentage Error (MAPE) 

SVR-eABO, the algorithm developed in this study, showcased exceptional accuracy 

in comparison to the benchmarked algorithms. It achieved a notably low Mean 

Absolute Percentage Error (MAPE) value of 3.4765, outperforming SVR-ABC 

(MAPE = 3.5260), SVR-GA (MAPE = 3.6329), SVR-PSO (MAPE = 3.6094), and 

SVR-CS (MAPE = 3.5902). This indicates that SVR-eABO yielded highly precise 

forecasting with minimal deviation from the actual values. 

Furthermore, SVR-eABO demonstrated a superior performance across the board, 

displaying the lowest MAPE value of 3.4765. Following SVR-eABO, SVR-CS 

exhibited the next best performance with a MAPE value of 3.5902, implying a 
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relatively higher but still commendable level of accuracy. SVR-GA, although slightly 

less accurate, achieved a MAPE value of 3.6329. 

The results highlight the effectiveness of SVR-eABO in minimizing forecasting errors 

and enhancing the overall accuracy of the algorithm. This suggests the potential of 

SVR-eABO for accurate forecasting and its superiority over the other benchmarked 

algorithms in the specific context of this study. 

 

Figure 5.42: Comparison of MAPE based on Benchmarks on Panama dataset 

5.4.2.3 Mean Absolute Error (MAE) 

SVR-eABO demonstrated exceptional performance with a MAE value of 1012.9322. 

This indicates that SVR-eABO exhibited a lower error magnitude and higher accuracy 

in comparison to the benchmarked algorithms, namely SVR-ABC, SVR-GA, SVR-

PSO, and SVR-CS. Specifically, SVR-ABC recorded a MAE value of 1036.1330, 

implying a relatively higher error magnitude compared to SVR-eABO. Similarly, 

SVR-GA and SVR-PSO displayed slightly higher error magnitudes, suggesting a 

reduced level of accuracy in their forecasting. These findings reinforce the superior 
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accuracy and improved forecasting capability of SVR-eABO over the other 

benchmarked algorithms, as evident from its lower MAE value. SVR-eABO emerges 

as a promising algorithm for minimizing error and enhancing accuracy in the specific 

context of this study. Figure 5.43 shows the graphical representation of the algorithms’ 

performance. 

 

Figure 5.43: Comparison of MAE based on Benchmarks on Panama dataset 

5.4.2.4 Coefficient of Determination (R2) 

The analysis of the Coefficient of Determination (R2) revealed distinct levels of 

predictive power among the algorithms, namely SVR-ABC, SVR-GA, SVR-PSO, 

SVR-CS, and SVR-eABO. Notably, SVR-eABO emerged as the frontrunner with an 

R2 value of 0.4995, indicating strong predictive abilities and high explanatory power. 

Comparatively, the conventional SVR algorithm (SVR) achieved an R2 value of 

0.4954, suggesting a relatively lower level of predictive power. SVR-ABC exhibited 

a slightly higher R2 value of 0.5004, indicating better predictive performance than the 

conventional SVR algorithm. SVR-GA and SVR-PSO demonstrated R2 values of 
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0.4748 and 0.4814, respectively, indicating a moderate level of predictive power. 

SVR-CS achieved an R2 value of 0.4853, indicating a similar level of predictive 

performance as graphically presented in figure 5.44. Overall, these findings underscore 

the superior predictive capabilities and higher explanatory power of SVR-eABO, as 

reflected by its higher R2 value when compared to the other algorithms considered in 

this analysis. 

 

Figure 5.44: Comparison of R2 based on Benchmarks on Panama dataset 

5.4.2.5 Percentage Accuracy (PA)  

Upon assessing the Percentage Accuracy (PA), SVR-eABO exhibited superior 

accuracy in making forecasting, achieving a value of 96.5235. This surpassed the 

forecasting accuracy of SVR-ABC, SVR-GA, SVR-PSO, and SVR-CS. Specifically, 

the conventional SVR algorithm (SVR) achieved a forecasting accuracy of 96.4740, 

SVR-ABC attained 96.4456, SVR-GA achieved 96.3671, SVR-PSO reached 96.3906, 

and SVR-CS obtained 96.4098. 
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The higher PA % of SVR-eABO (96.5235) suggests greater precision and accuracy in 

predicting outcomes compared to the other algorithms. These results, as depicted in 

figure 5.45, highlight the superior predictive performance of SVR-eABO in terms of 

forecasting accuracy, reinforcing its efficacy as a reliable model for generating 

accurate forecasting. 

 

Figure 5.45: Comparison of Percentage Accuracy based on Benchmarks on Panama 

dataset 

5.4.2.6 CPU Execution Time 

The SVR algorithm has a CPU execution time of 0.06721. This indicates that it is the 

fastest algorithm among the considered variants, with the lowest execution time. 

However, it is important to note that its forecasting accuracy, as mentioned earlier, is 

also the lowest. The SVR-ABC variant has a CPU execution time of 611.4653. This 

suggests that it takes significantly longer to execute compared to SVR. Despite the 

increased execution time, SVR-ABC achieves a higher forecasting accuracy, 

indicating a trade-off between computational cost and accuracy.  
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On other hand, SVR-GA variant has a CPU execution time of 624.9735. This is similar 

to the CPU execution time of SVR-ABC, indicating that both variants require a 

comparable number of computational resources. SVR-GA also achieves a higher 

forecasting accuracy, suggesting that the additional execution time may be justified by 

improved accuracy. The SVR-PSO variant has a CPU execution time of 774.0880. 

This indicates a further increase in execution time compared to SVR-ABC and SVR-

GA. The SVR-CS variant has a CPU execution time of 683.8492. This execution time 

is similar to that of SVR-ABC and SVR-GA, indicating comparable computational 

requirements. SVR-CS achieves a slightly lower forecasting accuracy compared to 

SVR-PSO but still outperforms SVR and SVR-ABC in terms of accuracy. The SVR-

eABO algorithm has a CPU execution time of 786.2687. This is the highest execution 

time among the considered variants as can be seen from figure 5.46, indicating that it 

requires the most computational resources. However, SVR-eABO also achieves the 

highest forecasting accuracy, suggesting that the additional computational cost may be 

justified by its superior performance. 

 

Figure 5.46: Comparison of CPU Time (against Benchmarks) on Panama dataset 
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In summary, the benchmark algorithms (SVR-ABC, SVR-GA, SVR-PSO, and SVR-

CS) generally exhibit higher CPU execution times compared to the base SVR 

algorithm. However, they also achieve higher forecasting accuracies, indicating 

improved performance. Among the benchmark algorithms, SVR-eABO has the 

highest execution time but also the highest forecasting accuracy. This suggests that 

SVR-eABO may provide a good trade-off between computational cost and predictive 

performance, making it a promising algorithm for applications where accuracy is 

crucial and computational resources are available. 

5.5 Comparison Between Algorithms on Standard Optimisation Functions 

In this section, the developed algorithm has been tested on sixteen (16) selected 

optimisation functions as described in section 3.5.2. Some of these optimisation 

functions have single local optima (unimodal), while others have several optima 

(multi-modal) with unique global optima. The developed algorithm was run for 

hundred (100) number of independent runs of which the mean and standard deviation 

were recorded. This is to ensure that performance of each algorithm is adequately 

represented. The test was performed with a hundred (100) buffaloes in three (3) 

dimension space representing the number of dimensions of problem at hand. While 

each algorithm was run within the range of thirty (30) function evaluations as 

suggested in (Long et al., 2018; Mirjalili et al., 2014). The performance of the 

enhanced ABO (SVR-eABO) algorithm based on cumulative enhancements 

performed at all three stages (Population Initialisation, Exploration, and Exploitation) 

has been compared with the SVR-PSO, SVR-ABC, SVR-CS and SVR-GA. The result 

obtained is as presented in table 5.9 and table 5.10 respectively.
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5.5.1 Performance of Developed algorithms on Standard Optimisation Functions 

Table 5.9 

Comparison of developed algorithms on SOF 

   SVR-popABO  SVR-explrABO SVR-expltABO SVR- eABO 

Function C GO Mean Stdv Mean Stdv Mean Stdv Mean Mean 

F1 M 0 5.47E-05 3.09E-05 8.10E-08 1.17E-07 1.65E-03 8.04E-03 8.31E-08 8.31E-08 

F2 U 0 4.087E-05 3.92E-05 2.09E-09 3.63E-09 1.85E-06 1.82E-03 2.16E-09 2.16E-09 

F3 M 1 1.29E+00 1.31E-01 4.04E+00 1.45E-01 1.08E+00 1.17E-05 2.51E-00 2.51E-00 

F4 M 0 3.8385-02 2.46E-02 3.84E-08 3.64E-08 9.42E-02 3.37E-02 4.35E-06 4.35E-06 

F5 M 0 5.38E-02 3.81E-02 4.64E-04 4.79E-04 3.37E+00 6.17E-01 4.92E-04 4.92E-04 

F6 M 0 3.47E-03 2.21E-01 3.96E-06 5.10E-06 2.87E+00 1.56E+00 7.87E-03 7.87E-03 

F7 M 0 4.261E-01 4.30E-01 1.08E-05 1.64E-05 1.37E+00 7.24E-01 1.16E-05 1.16E-05 

F8 U 0 2.62E-04 2.49E-04 4.81E-06 5.97E-05 1.58E-04 1.83E-03 3.29E-06 3.29E-06 

F9 U 0 4.76E+00 3.17E+00 1.35E+00 3.72E-02 2.01E-03 1.52E-03 5.94E-2 5.94E-2 

F10 U 0 2.82E-02 2.11E-02 9.22E+01 4.12E+01 1.76E-03 1.25E-04 9.22E-04 9.22E-04 

F11 M 0 7.05E-03 6.03E-03 4.65E-04 2.59E-04 6.06E-02 2.35E-02 1.99E-04 1.99E-04 

F12 U 0 5.06E-05 3.41E-05 7.65E-02 6.31E-02 7.67E-07 1.05E-07 2.97E-07 2.97E-07 

F13 M 0 3.29E-04 1.95E-04 1.05E-07 1.41E-07 5.68E-04 3.53E-02 1.35E-07 1.35E-07 

F14 U 0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F15 M 0 2.94E-17 2.07-16 3.14E-25 1.06E-24 6.09E-10 1.19E-09 3.09E-21 3.09E-21 

F16 M 0 5.71E-01 3.06E-01 8.19E-02 1.63E-02 6.54E-01 1.31E-01 9.70E-02 9.70E-02 
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5.5.2 Performance of SVR-eABO against Benchmarks on Standard Optimization Functions  

Table 5.10 

Comparison against Benchmarks on Standard Optimisation functions 

   SVR-PSO  SVR-ABC SVR-GA SVR-CS SVR-eABO 

Function C GO Mean Stdv Mean Stdv Mean Stdv Mean Stdv Mean Stdv 

F1 M 0 5.35E-04 3.22E-04 6.85E-07 5.38E-07 2.22E-02 1.33E-02 4.98E-04 4.71E-04 8.31E-08 2.52E-08 

F2 U 0 5.29E-05 5.27E-05 6.89E-07 8.11E-07 2.00E-03 1.62E-03 5.38E-06 7.41E-06 2.16E-09 4.52E-09 

F3 M 1 1.21E+00 7.86E-01 1.48E-03 1.81E-03 4.54E+00 1.05E+00 1.27E-02 3.82E-02 2.51E-00 2.30E-02 

F4 M 0 7.10E-02 2.89E-02 1.16E-02 4.07E-03 1.03E-01 3.74E-02 2.92E-02 2.60E-02 4.35E-06 2.90E-08 

F5 M 0 3.35E+00 1.12E+00 1.39E-01 1.04E-01 3.27E+00 6.28E-01 2.83E-01 3.92E-01 4.92E-04 5.07E-04 

F6 M 0 4.46E-01 2.66E-01 5.03E-03 3.86E-03 3.07E+00 1.86E+00 3.49E+00 4.48E+00 7.87E-03 5.35E-03 

F7 M 0 4.82E-01 4.11E-01 1.96E-03 1.74E-03 1.54E+00 7.00E-01 4.20E-02 2.07E-02 1.16E-05 1.93E-05 

F8 U 0 1.49E-03 2.01E-03 2.63E-04 3.32E-04 2.47E-03 3.24E-03 3.06E-03 3.69E-03 3.29E-06 2.17E-05 

F9 U 0 8.92E+00 6.79E+00 5.92E-02 7.57E-02 1.96E+01 1.42E+01 7.33E-01 5.92E-01 5.94E-02 3.91E-02 

F10 U 0 9.50E+01 5.46E+01 2.78E-02 2.35E-02 1.81E+01 1.30E+01 1.86E+01 4.28E+01 9.22E-04 6.83E-03 

F11 M 0 4.05E-02 1.52E-02 8.09E-03 3.90E-03 6.40E-02 2.46E-02 5.39E-02 2.99E-02 1.99E-04 2.73E-04 

F12 U 0 7.70E-04 6.72E-04 8.17E-07 6.66E-07 1.01E-02 9.81E-03 9.03E-04 7.92E-03 2.97E-07 3.06E-07 

F13 M 0 2.98E-03 1.96E-03 5.73E-05 4.20E-05 6.79E-02 4.08E-02 4.91E-02 4.28E-04 1.35E-07 1.62E-07 

F14 U 0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F15 M 0 5.54E-14 1.07E-13 7.19E-18 1.01E-17 5.86E-10 1.12E-09 6.29E-09 1.35E-11 3.09E-21 2.75E-21 

F16 M 0 3.96E-01 1.95E-01 0.00E+00 0.00E+00 6.17E-01 1.71E-01 4.07E-01 1.91E+00 9.70E-02 7.71E-02 
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5.6 Comparison of CPU Time Based on Standard Optimisation Functions 

This section presents the performance of all the developed algorithms in this study viz 

SVR-popABO, SVR-explrABO, SVR-expltABO, and the final SVR-eABO 

algorithms in terms of CPU execution time. Likewise, the performance of the final 

SVR-eABO algorithm has been compared with several benchmarks on the same CPU 

time metrics. The following sub-sections presented the detailed analysis of the 

obtained results.  

5.6.1 CPU Execution Time of Standard Optimization Functions: Proposed 

Algorithms   

The data in table 5.11 reveals a distinct comparative performance assessment of the 

four algorithms under evaluation: SVR-popABO, SVR-explrABO, SVR-expltABO, 

and SVR-eABO. A careful examination of the execution times demonstrates that the 

SVR-eABO algorithm consistently exhibits the lengthiest CPU processing times 

across the majority of the benchmark functions. Conversely, the SVR-popABO and 

SVR-explrABO algorithms emerge as the most efficient, displaying the shortest 

execution times for the vast preponderance of the tested functions. 

Further scrutiny of the performance trends indicates that Sphere, SumSquares, 

Schaffer2, and Zakharov, consistently exhibit relatively lower execution times across 

all four algorithms in comparison to the other functions evaluated. Conversely, the 

Weierstrass function stands out as an outlier, with significantly elevated execution 

times, particularly for the SVR-eABO algorithm. Additionally, the Whitley, 

Griewank, Schwefel, and Dixonprice functions also demonstrate comparatively higher 

execution times irrespective of the algorithm employed. 
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The comparative analysis suggests that the SVR-popABO and SVR-explrABO 

algorithms possess a distinct advantage in terms of computational efficiency, as 

evidenced by their consistently expeditious execution times. Conversely, the SVR-

eABO algorithm, while potentially offering enhanced performance in other facets, 

appears to be the most computationally intensive of the four, exhibiting the lengthiest 

CPU processing times. The SVR-expltABO algorithm's performance falls within the 

intermediate range, striking a balance between execution time and potentially other 

relevant performance metrics. 

Table 5.11 

Comparison of developed algorithms on Standard Optimisation functions 

Functions SVR-popABO  

SVR-

explrABO 

SVR-

expltABO SVR-eABO 

Sphere 2.99E+00 3.54E+00 3.15E+00 5.82E+00 

SumSquares 2.76E+00 2.39E+00 2.28E+00 3.90E+00 

Whitley 4.38E+00 4.62E+00 4.57E+00 7.03E+00 

Griewank 2.96E+00 3.81E+00 3.77E+00 6.99E+00 

Ackley 3.35E+00 4.07E+00 3.82E+00 5.03E+00 

Pinter 3.24E+00 3.43E+00 3.39E+00 5.17E+00 

Rastrigin 2.11E+00 3.71E+00 3.61E+00 4.91E+00 

Schaffer2 2.13E+00 2.51E+00 2.48E+00 3.97E+00 

Rosenbrock 3.16E+00 4.07E+00 3.97E+00 5.33E+00 

Schwefel 4.17E+00 4.92E+00 4.63E+00 5.62E+00 

Alpine 3.59E+00 3.64E+00 3.48E+00 4.41E+00 

Dixonprice 2.98E+00 3.01E+00 2.79E+00 4.88E+00 

Zakharov 2.38E+00 2.69E+00 2.42E+00 3.49E+00 

Powell 2.27E+00 2.74E+00 2.61E+00 4.08E+00 

Infinity 3.36E+00 3.42E+00 3.28E+00 4.25E+00 

Weierstrass 8.32E+00 1.02E+01 9.07E+00 1.88E+02 
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5.6.2 CPU Execution Time of Standard Optimization Functions:  Proposed 

Algorithms vs. Benchmarks   

Table 5.12 presents the execution time (CPU time) performance of the developed 

algorithms - SVR-PSO, SVR-ABC, SVR-GA, SVR-CS, and SVR-eABO - across a 

variety of benchmark functions. A thorough analysis of the data reveals several key 

insights. Firstly, the SVR-PSO algorithm consistently exhibits the shortest execution 

times across the majority of the benchmark functions, demonstrating its superior 

computational efficiency. This is particularly evident in functions such as Sphere, 

SumSquares, Schaffer2, Powell, and Zakharov, where the SVR-PSO algorithm 

significantly outperforms the other algorithms.  

In contrast, the SVR-eABO algorithm appears to be the most computationally 

intensive, displaying the longest execution times for almost all of the benchmark 

functions. This is particularly noticeable in the Weierstrass function, where the SVR-

eABO algorithm exhibits an exceptionally high CPU time of 2.100E+01, significantly 

higher than the other algorithms. 

The SVR-ABC and SVR-GA algorithms occupy an intermediate performance range, 

generally exhibiting longer execution times than the SVR-PSO algorithm but shorter 

times than the SVR-eABO algorithm. The SVR-CS algorithm's performance falls 

within a similar range, with some functions, such as Sphere and SumSquares, showing 

relatively efficient execution times, while others, like Weierstrass and Alpine, 

demonstrate comparatively longer CPU processing times.  

It is also noteworthy that certain benchmark functions, such as Sphere, SumSquares, 

and Zakharov, consistently exhibit lower execution times across all five algorithms, 

suggesting that these functions may be relatively less computationally demanding. 

Conversely, functions like Weierstrass, Schwefel, and Alpine appear to be more 
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computationally intensive, with significantly higher execution times observed across 

the algorithms. 

Table 5.12 

Comparison against Benchmarks on Standard Optimisation functions 

Functions SVR-PSO SVR-ABC SVR-GA SVR-CS SVR-eABO 

Sphere 2.72E+00 4.48E+00 6.92E+00 3.30E+00 7.04E+00 

SumSquares 2.78E+00 4.46E+00 7.03E+00 3.81+00 7.98E+00 

Whitley 4.29E+00 5.65E+00 8.56E+00 5.20E+00 10.04E+00 

Griewank 2.96E+00 4.62E+00 7.10E+00 5.11E+00 8.93E+00 

Ackley 3.72E+00 5.51E+00 7.92E+00 6.18E+00 10.17E+00 

Pinter 3.49E+00 5.00E+00 8.05E+00 4.72E+00 8.79E+00 

Rastrigin 2.83E+00 4.17E+00 6.95E+00 7.31E+00 9.07E+00 

Schaffer2 2.73E+00 4.60E+00 7.25E+00 4.15E+00 8.59E+00 

Rosenbrock 3.00E+00 4.54E+00 7.81E+00 6.43E+00 9.37E+00 

Schwefel 5.07E+00 6.63E+00 9.83E+00 5.99E+00 12.77E+00 

Alpine 3.65E+00 5.59E+00 8.75E+00 8.35E+00 11.07E+00 

Dixonprice 2.92E+00 4.73E+00 7.37E+00 5.33E+00 9.94E+00 

Zakharov 2.77E+00 4.38E+00 6.91E+00 7.630E+00 10.83E+00 

Powell 2.38E+00 3.71E+00 6.51E+00 5.74E+00 9.57E+00 

Infinity 3.27E+00 5.03E+00 7.44E+00 5.53E+00 9.35E+00 

Weierstrass 8.46E+00 1.05E+01 1.41E+01 1.85E+01 2.10+01 

 

5.7 Summary 

This chapter presents a comprehensive evaluation of the performance of several 

enhanced variants of the SVR-ABO algorithm for electricity forecasting tasks. The 

algorithms under investigation include SVR-ABO, SVR-popABO, SVR-explrABO, 

SVR-expltABO, and SVR-eABO, which were tested on four real-world datasets: the 
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Household dataset, the Panama electricity consumption dataset, the Appliances 

electricity consumption dataset, and the Turkey electricity consumption dataset. The 

study compared the performance of the developed SVR-ABO algorithms against SVR, 

SVR-PSO, SVR-ABC, SVR-GA, and SVR-CS as benchmarks. Additionally, the 

algorithms were evaluated using standard optimization functions to provide a broader 

assessment of their capabilities. 

The results obtained from this evaluation demonstrate that the enhancements made to 

the original ABO algorithm have significantly contributed to improving its 

performance as an optimization algorithm for SVR. The enhanced versions, such as 

SVR-popABO, SVR-explrABO, and SVR-expltABO, consistently outperformed the 

classical benchmarks in terms of finding optimal parameters for the SVR model, 

leading to better electricity forecasting accuracy across the tested datasets. 

Specifically, the SVR-popABO and SVR-explrABO algorithms exhibited the most 

efficient computational performance, as evidenced by their shorter execution times 

compared to the other algorithms. In contrast, the SVR-eABO algorithm, while 

potentially offering enhanced performance in other aspects, was found to be the most 

computationally intensive of the group. 

Overall, this chapter provides valuable insights into the comparative performance of 

the developed variants of SVR-ABO algorithms and their ability to optimize SVR 

models for improved electricity forecasting accuracy. The findings demonstrate the 

effectiveness of the enhancements made to the original SVR-ABO algorithm and its 

potential for practical applications in the energy forecasting domain. 
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5. CHAPTER SIX 

CONCLUSIONS AND RECOMMENDATION 

In this concluding chapter, the key findings of the research were encapsulated 

reinforcing the significance of the enhanced algorithms developed throughout the 

thesis. The chapter reflects on the contributions made to both knowledge and practical 

applications, emphasizing how the advancements in the African Buffalo Optimization 

(ABO) algorithm have enriched the field of optimization and machine learning. The 

discussion extends to the practical implications of the work, illustrating the potential 

for real-world applications. Furthermore, the chapter outlined recommendations for 

future research endeavours, suggesting avenues for further exploration and 

enhancement of the algorithms. This chapter serves as a comprehensive wrap-up, 

summarizing the research journey and its impact while paving the way for continued 

innovation in the domain. 

6.1   Conclusion 

Forecasting of electricity has witnessed major changes in past decades. Beginning 

from conventional statistical techniques to Computational Intelligence (CI) based 

approaches which attracted attention of both academia and practitioners’ communities. 

This is due to the peculiar nature of the electricity as it cannot be stored in large 

quantities for future consumption taking into cognizance of the importance of electric 

energy in present day economy as highlighted in chapter one. With respect to that 

matter, vast studies regarding electricity load forecasting have been a promising, and 

is presently an active area of research. This has been ascertained as demonstrated in 

Chapter Two of this report. It is from the studied literature that the discovered existing 

gaps in the forecasting technique that led to the developed SVR-eABO algorithm 
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through various stages. This has been proven to be essential as the forecasting accuracy 

is of paramount importance.  

Through using various real datasets of electricity load consumption, the SVR and ABO 

algorithms were hybridised, for the purpose of optimising the SVR hyper-parameters. 

This was meant to achieve the objective one of this study as highlighted in section 1.7. 

In order to address the highlighted problems of ABO algorithm (see Chapter One, 

section 1.5), enhancements introduced to the standard ABO algorithm were proven to 

be of significance in respect of the problem under study.  

A novel population generation function based on the Tent-map function was 

introduced to replace the existing population generation method of the algorithm. The 

objective of this enhancement was to generate a population of buffaloes with 

maximum diversity, thereby facilitating improved solution generation. The outcomes 

of the experimentation reveal a notable increase in the convergence speed across 

different datasets. The enhanced algorithm demonstrates a faster convergence rate, 

implying that it is capable of reaching optimal solutions more efficiently. This 

improvement in convergence speed can be attributed to the enhanced diversity 

achieved through the new population generation function. 

The exploration function of the ABO algorithm was subsequently enhanced through 

the application of the McCulloch algorithm, utilizing a Lévy mutation approach. This 

enhancement aimed to generate random values with varying magnitudes and sporadic 

occurrence of large values. By doing so, it facilitated the computation of the next 

position of the buffalo within the search space, thereby mitigating the aimless search 

characteristic of the ABO algorithm. This improvement effectively addresses the 

potential issues of over-fitting and under-fitting. Consequently, the second objective 

of this research has been successfully accomplished. 
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Furthermore, the exploitation behaviour of the ABO algorithm has been enhanced 

through the utilisation of the proposed function in section 3.3.5, specifically 

incorporating the Tent-map-based approach. The integration of the Tent-map-based 

exploitation function ensures a more comprehensive search of the solution space, 

allowing the algorithm to overcome the limitations associated with local optima and 

improve its overall performance. 

In conclusion, the empirical results obtained from the implementation of the 

enhancements in the ABO algorithm, as presented in the various stages discussed 

above, demonstrate the improved forecasting capabilities of the developed hybrid 

SVR-eABO algorithm. Notably, the combined implementation of SVR-popABO, 

SVR-explrABO, and SVR-expltABO yields significantly improved forecasting 

results. By incorporating these enhancements, the new developed hybrid SVR-eABO 

algorithm is able to overcome the issue of premature convergence, increased speed of 

convergence and effective exploration in search space, thereby leading to more 

accurate and reliable forecasting. Consequently, the fourth objective of this study has 

been successfully accomplished. 

6.2   Contribution 

Several contributions have been made in the course achieving SVR-eABO, which can 

be broadly classified into two categories: knowledge-based contributions and 

practical-based contributions. Each of these categories can be further subdivided into 

specific subcategories, as delineated in the subsequent sections. 
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6.2.1   Knowledge Contribution 

This study contributes the following contributions: 

i. SVR-ABO algorithm that can automatically optimised SVR parameters (i.e., 

cost error (C), tube size () and kernel parameter () This is defined as 

objective one.  

ii. SVR-popABO algorithm that offers maximum diversity of population 

generation. The improvement in searching capability thereby increases the 

convergence speed of the developed SVR-eABO algorithm. This is defined as 

objective two. 

iii. SVR-explrABO (presented as objective three) algorithm that addresses local 

minima problem by enhancing the exploration ability of ABO algorithm by 

preventing the buffaloes from aimless searching. This helps the algorithm to 

have maximum potential in finding optimal solution.  

iv. The SVR-expltABO algorithm that also prevents the ABO algorithm from 

falling into local optima. This is achieved through enhancing the exploitation 

ability of the ABO algorithm. This is defined as objective four. 

v. The SVR-eABO algorithm that combines all improvements made in ABO to 

escape from premature convergence and increase convergence speed. This is 

defined as fifth objective. 

6.2.2   Practical Contribution 

As all the algorithms developed in this study were tested on real-world datasets, the 

results obtained shows that the algorithms can make good electricity consumption 

forecast. Hence, this study has practical contributions as follows:  

i. Improved resource planning: Accurate forecasts help utility companies plan 

power generation and transmission capacity effectively, ensuring sufficient 
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resources are available to meet demand and minimizing the risk of shortages 

or overcapacity. 

ii. Cost optimisation: Accurate demand forecasts enable companies to optimise 

operations and resource allocation, including power generation schedules, 

electricity purchases, and energy storage management. This leads to cost 

savings and efficient resource utilization. 

iii. Demand response management: Accurate electricity forecasts could allow 

utility companies to anticipate peak demand periods and encourage consumers 

to reduce electricity usage during those times. This helps balance the grid, 

reduce strain, and prevent blackouts or disruptions. 

iv. Energy efficiency initiatives: Accurate forecasts provide insights into 

consumption patterns and highlight areas for energy efficiency improvements. 

This information guides energy conservation initiatives, promotes sustainable 

practices, and reduces overall energy consumption. 

Overall, a model built for electricity forecasting can contribute to improved operational 

efficiency, cost savings, grid stability, renewable energy integration, and promoting 

energy conservation efforts. 

6.3   Recommendations for Future Works 

Based on the results and discussion presented in Chapter Five (5), the proposed SVR-

eABO hybrid algorithm has been proven to be more superior based on metrics as 

compared to other forecasting algorithms. This indicates that the SVR-eABO possess 

significant capability on the problem of interest. However, there is always other areas 

that require further improvement in order to improve upon potential yet to be 

discovered limitations.  
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To begin with, classical ABO algorithm has a great speed of convergence as mentioned 

in Odili & Noraziah, (2018). However, upon the execution of the proposed 

improvements it has been noticed that the speed of convergence reduced to some 

extent. This proves that achieving both speed of convergence and avoiding local 

optima entrapment is a challenging task. However, it is an interesting challenge that 

can be considered as future work to improve the speed of the algorithm without 

sacrificing of its efficiency. 

In addition, the algorithm performance was tested on a single computer system. It will 

be interesting to measure the performance on grid computing architecture. By so doing, 

the jobs between the buffaloes in ABO algorithm could be distributed to various 

computing resources. This may lead to faster and more efficient computation. 
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Appendix A 

BDS Test Results on Datasets 

 

Figure A1. Household dataset BDS test result 

 

 

Figure A2. Turkey electricity consumption dataset BDS result 
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Figure A3. Appliances electricity consumption dataset BDS test result 

 

 

Figure A4. Panama electricity consumption dataset BDS test result 
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