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Abstrak

Keupayaan meramalkan masa depan membolehkan keputusan termaklum dan
perancangan strategik dilakukan. Dalam ekonomi moden, keseimbangan pengeluaran
dan penggunaan elektrik amat penting. Ramalan beban melibatkan anggaran
penggunaan elektrik pada masa hadapan, dan ia dipengaruhi oleh kepadatan populasi,
cuaca, polisi dan aktiviti sosio-ekonomi. Regresi Vektor Sokongan (SVR) digunakan
secara meluas dalam ramalan tetapi keberkesannnya bergantung kepada nilai
penyesuaian, toleransi, parameter kernel. Kajian ini mencadangkan algoritma hibrid
yang dinamakan sebagai SVR- Algoritma Optimisasi African Buffalo (ABO). Proses
pengoptimuman ABO melibatkan empat fasa; SVR-ABO, SVR-popABO, SVR-
explrABO, dan SVR-expltABO. SVR-ABO menggunakan ABO untuk
mengoptimumkan hiperparameter SVR. Manakala, SVR-popABO meningkatkan
kepelbagaian ABO menggunakan fungsi huru-hara, dan explrABO menggunakan
penerbangan levi untuk mencari dan mengatasi optima tempatan yang lebih baik. Di
samping itu, expltABO menghalang penumpuan pramatang. Empat hibrid ini mewakili
penambahbaikan progresif ABO klasik untuk mengoptimumkan hiperparameter SVR.
Menggabungkan algoritma yang dipertingkatkan menghasilkan SVR-eABO, yang
kebolehan ramalannya telah dinilai menggunakan MAE, MAPE, RMSE, PA dan R2.
Dinilai menggunakan set data penanda aras, SVR-eABO mencapai ketepatan tinggi,
mengatasi SVR standard dan varian SVR berasaskan pengoptimuman lain seperti
SVR-PSO, SVR-ABC, SVR-CS, dan SVR-GA. Sebagai contoh, SVR-eABO
mencapai ketepatan 98.51% pada set data Household, 98.15% pada set data Turkey,
91.17% pada set data Appliances, dan 96.52% pada set data Panama. Algoritma SVR-
eABO yang dicadangkan mempunyai implikasi yang signifikan untuk meningkatkan
ketepatan ramalan beban, membolehkan pengurusan grid elektrik yang lebih cekap,
dan memudahkan pembuatan keputusan yang berinformasi untuk penyedia dan
pengguna tenaga

Kata Kunci: Regresi vektor sokongan, Pengoptimuman kerbau afrika, Penerbangan
levi, Algoritma mcCulloch, Ramalan siri masa



Abstract

Time series forecasting enables informed decision-making and stakeholder benefit.
Electricity production-consumption balance is vital in modern economies. Load
forecasting predicts electricity consumption, influenced by factors like population,
weather, policies, and socio-economic activities. Support Vector Regression (SVR) is
a widely used regression technique, but its efficacy depends on optimal tuning of
parameters, which is challenging. This study proposes a hybrid approach combining
SVR and the African Buffalo Optimization (ABO) algorithm. The classical ABO
algorithm faces limitations in population initialization, exploration, and exploitation.
Therefore, enhancements have been made to these stages to improve performance. The
study presents a series of hybrid algorithms that leverage ABO to optimize SVR
hyperparameters. SVR-ABO uses the classical ABO approach. SVR-popABO
enhances population diversity using a chaotic function. SVR-explrABO includes Lévy
flight to improve exploration and overcome local optima. SVR-expltABO modifies the
exploitation mechanism to prevent premature convergence. These four hybrids
represent a progressive refinement of the classical ABO for optimizing SVR
hyperparameters. Combining the enhanced algorithms results in SVR-eABO, whose
forecasting ability has been assessed using MAE, MAPE, RMSE, PA and R2
Evaluated using benchmark datasets, SVR-eABO achieves high accuracy, surpassing
standard SVR and other optimization-based SVR variants like SVR-PSO, SVR-ABC,
SVR-CS, and SVR-GA. For instance, SVR-eABO achieved 98.51% accuracy on the
Household dataset, 98.15% accuracy on the Turkey dataset, 91.17% accuracy on the
Appliances dataset, and 96.52% accuracy on the Panama dataset. The proposed SVR-
eABO algorithm holds significant implications for improving load forecasting
accuracy, enabling more efficient electricity grid management, and facilitating

informed decision-making for energy providers and consumers.

Keywords: Support vector regression, African buffalo optimisation, Time series
forecasting
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CHAPTER ONE
INTRODUCTION

This chapter serves as a foundational overview of the study, establishing the context
and significance of the research on electric load forecasting using machine learning
algorithms. It delineates the critical aspects of multivariate time series forecasting and
highlights the challenges associated with accurately forecasting electricity
consumption. The chapter further elaborates on the role of Support Vector Regression
and the African Buffalo Optimization algorithm in addressing these challenges. By
outlining the background, research questions, objectives, and limitations of the study,
this chapter aims to provide a comprehensive framework for understanding the

subsequent analysis and findings presented throughout the thesis.

1.0 Background Study

Accurate forecasting of electric load holds significant importance in facilitating
decision-making processes pertaining to power unit commitment, economic load
dispatch, power system operation and security, contingency scheduling, among others.
Previous studies have highlighted that even a 1% increase in forecasting errors for
electric load can result in an additional operational cost of £10 million (Dong et al.,
2018). Conversely, reducing forecasting errors by 1% can yield notable operational
benefits. Consequently, there is a strong impetus to explore more accurate forecasting
models and novel intelligent algorithms to achieve satisfactory load forecasting
outcomes. This pursuit aims to optimize the decisions pertaining to electricity supplies
and load plans, enhance the efficiency of power system operations, and ultimately
mitigate system risks within a manageable range. However, the complexity of electric
load forecasting arises from various factors, including energy policy, urban population

dynamics, socio-economic activities, weather conditions, holidays, and other pertinent
1



variables. The presence of seasonality, non-linearity, and chaotic patterns in electric

load data further complicates the task of load forecasting.

Numerous electric load forecasting models have been proposed with the aim of
continuously improving forecasting accuracy. These models can generally be
categorized into two types: those based on statistical methodologies and those utilizing
artificial intelligence (Al) technology. Statistical models, such as ARIMA models,
regression models, exponential smoothing models, Kalman filtering models, and
Bayesian estimation models, rely on historical data to identify linear relationships
among different time periods. However, these statistical models are inherently limited
by their theoretical assumptions and are only capable of effectively handling linear
relationships between electric loads and the aforementioned factors. Consequently,

their forecasting performances often fall short of satisfactory results.

Artificial intelligence (Al) technologies, including Artificial Neural Networks
(ANNS), Expert System models, and Fuzzy Inference systems, have gained significant
popularity in improving the performance of electric load forecasting owing to their
superior ability to handle nonlinear processing. However, it is important to note that
Al models, including hybrid and combined models, also possess their own limitations.
These limitations include computational time requirements, challenges in determining

structural parameters, and the potential for getting trapped in local minima.

The Support Vector Machine (SVM) is a powerful algorithm that has found
widespread application in various scientific fields, including machine learning (Che et
al., 2017; Quahilal et al., 2017). It was introduced by Vapnik, Boser, and Guyon in
1992 (Boser et al., 1992), and further developed by Corinna and Vladimir in 1995
(Corinna & Vladimir, 1995). The success of SVM can be attributed to its strong

theoretical foundation. The algorithm's ability to generalize stems from its

2



effectiveness in solving classification problems involving non-linearly separable data
in high-dimensional spaces. This capability has made SVM one of the most suitable

algorithms for a range of data mining tasks, including classification and regression.

In forecasting analytics, SVM is commonly used for classification or regression tasks,
depending on the nature of the desired output. When the output is categorical, the
technique is referred to as SVM, whereas when the output consists of continuous
numerical values, it is typically referred to as Support Vector Regression (SVR) (Moon

et al., 2018; Ouahilal et al., 2017).

The support vector regression (SVR) model, known for its remarkable nonlinear
processing capabilities and utilization of high-dimensional mapping and kernel
computing techniques, has shown remarkable application results on various regression
tasks. The empirical evidence highlights that an SVR model, when equipped with
accurately computed parameters through the use of swarm-based algorithms, can

deliver highly satisfactory forecasting performances.

Despite the success of SVR, its effectiveness in a given task is highly dependent on
the values of its hyperparameters, namely C, y, and ¢ (Bing et al., 2018; Jiang et al.,
2018; Sarhani & El Afia, 2015). Therefore, studies focusing on the optimization of

these hyperparameters are crucial to ensure optimal performance of the algorithm.

In this respect, this study proposes to hybridize SVR algorithm with a population-
based optimisation algorithm named African Buffalo Optimisation (ABO), which was
introduced by Odili, Kahar and Anwar (Odili et al., 2015). The ABO algorithm is based
on the searching and foraging behaviour of African buffalo. This algorithm draws its
inspiration from observing a specie of African wild cows called African Buffalos in
their quest for grazing pastures in the African forests. The animal is in competition

with other herbivorous animals which most times require less intake of pastures than
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this large animal with big appetite. A lot of ingenuity is required if she is to survive
the competition and sometimes the hostility of African lions and human hunters. The
ABO algorithm models the animal’s ingenuity in navigating her way through several
thousands of kilometres in the vast African forests with the sole aim of tracking the
wet seasons in different locations where it could satisfy its appetite. Tracking the best
position and speed of each buffalo ensures adequate exploitation of the search space
and tapping into the experience of other buffalos as well as that of the best buffalo
enables the ABO to achieve adequate exploration. The algorithm has been rigorously
tested by the authors based on Symmetric Traveling Salesman’s Problem and proven
to be effective in comparison to other well-established swarm-based optimisation
algorithms like Particle Swarm Optimisation (PSO) (Eberhart & Kennedy, 2016; Jia,
2015; Yan et al., 2012), Ant Colony Optimisation (ACQO) (Deng et al., 2014; Glndiz
et al., 2015), Honey Bee Mating Optimisation (HBMO) (Marinakis et al., 2011) and

HPSACO (Odili, Kahar, Noraziah, et al., 2017).

However, standard ABO algorithm operates by having its learning parameters (Ip1 &
Ip2) set prior to execution (Odili et al., 2015). As these two learning parameters
controls both personal and global best of the buffaloes, this could easily lead the
algorithm to have poor exploration and exploitation. Similarly, the position update
mechanism is solely controlled by a preset lambda parameter which obviously does
not have element of diversity as it is also arbitrarily set prior to execution, this could
easily lead the buffaloes to be trapped in local optima (EI-Ashmawi, 2018). To address
the mentioned limitations of ABO algorithm, consequently, to increase the ability of
SVR in its generalisation, there is a need to enhance the ABO algorithm. This can be

achieved by mitigating the problem of the learning parameters and, by making the



exploration controlling parameter to be from an efficient random source for effective

exploration and exploitation.

This study evaluates the proposed hybrid algorithm in the power sector due to the trend
of deregulation especially as witnessed in developing countries (Hall & Nguyen, 2017,
Weron, 2014). Deregulation in electricity market chain has already become the
mainstream approach in the developed world. Monopoly and absolute control of the
sector by government bodies is becoming more obsolete by day throughout the world.
The electricity sector has witnessed total overhauling in terms of becoming standard
market that has both vertical and horizontal integration of all related sectors from

generation, distribution to consumption.

1.1 Time Series Forecasting

Time series forecasting is one of many interesting areas in various fields. It offers the
ability to forecast future which can be relied upon for making informed decision or
planning an action to be taken for the benefit of stakeholders. Time series forecasting
relies on historical data as the main input in order to be able to forecast the future. The
importance of time series forecasting has been witnessed in various domains including
but not limited to electricity consumption (Dung et al., 2021), daily natural gas
consumption (Wei et al., 2019), Air passenger flow (Ashraf et al., 2021), heat load
(Bergsteinsson et al., 2023), wind power (Ashraf et al., 2021), solar energy (Cabello-
Lopez et al., 2023), seasonal stream flow (Petry et al., 2023), and oil price (Ellwanger

& Snudden, 2023).

1.2 Multivariate Time Series Forecasting

The field of time series analysis and forecasting research has been active for a long

time especially in fields of statistics, signal processing, econometrics, and



mathematical finance, and there have been several articles published in this field
(Agrawal et al., 2018; Fu et al., 2015; Huo et al., 2017; Kong et al., 2018; Lang et al.,
2018). However, researchers were only just concern scalar time series in most of the
papers. In principle, according to the Takens’ embedding theorem, scalar time series
are generally sufficient to reconstruct the dynamic of the underlying systems if there
are enough delayed coordinates to be used. But in practice, this may be incorrect (Lang
et al., 2018). Consequently, in practical problems it cannot be sure whether any given
scalar time series are sufficient to reconstruct the dynamics. Furthermore, it is
anticipated that there may be some substantial advantages if several different time
series are used, especially when the system is noisy. Multivariate time series data are
common in practice: physiological data, electroencephalograph (EEG) data, economic

data, electric load forecasting data and so on.

1.3 Electric Load Forecasting

Electric load forecasting (ELF) is usually considered based on three forecasting
horizons namely short term (Al-Musaylh et al., 2018; Avatefipour & Nafisian, 2018;
Bandyopadhyay et al., 2018; Yusof & Mustaffa, 2015), medium-term (Bouktif et al.,
2018) and long term (Agrawal et al., 2018) as proposed by Mocanu, Nguyen, Gibescu
and Kling (Mocanu, Nguyen, Gibescu, & Kling, 2016). Though there is no clear
distinctive boundary for each of the three categories, yet some approximate threshold

values are being used.

Short-term load forecasting (STLF) generally refers to the type of forecasting that
spans over a short period of time. The period can be from few minutes to few days
ahead of present time (Fan et al., 2021; Masum et al., 2018). This type of forecasting
is usually used by electricity producing firms for day-ahead and intra-day trading, and

for day-to-day market operations. Hence, this study adopts the forecast electricity load.
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Medium-term forecasting (MTLF) refers to the type of forecasting that spans from few
days to few months ahead (P. Su et al., 2017). This type of forecasting is more useful
to stakeholders for operations that is of less frequent in nature like risk management,
derivatives pricing and balance sheet calculation. Also, this type of forecasting is
usually more focused on how the prices are distributed rather than single point pricing

forecast .

Long-term load forecasting (LTLF) refers to type of forecasting period that spans from
few months to several years (Sarhani et al., 2018). This type of forecasting is usually
used for long-term investment profitability analysis like making decision to construct

a new power plant or not.

Various techniques are employed for ELF. These techniques can be broadly
categorised into statistical and computational intelligence as stated by (Dong et al.,
2018). The most popular among statistical techniques are time series techniques that
comprises of Autoregressive (AR), Moving Average (MA), Autoregressive Moving
Average (ARMA) and its variants (Mat Daut et al., 2017) and Exponential Smoothing
models (Hermias et al., 2018). However, statistical techniques were found to be poor
of performance (Conejo et al., 2005; Ugurlu et al., 2018) due to their inability to deal
with complex and non-linearity in multivariate data (Dong et al., 2018; Hamzacebi,
2008; Li et al., 2018; Mustaffa et al., 2015). Hence, they are not suitable to be used for
electric load type of data which is complex and non-linear (Mocanu, Nguyen, Gibescu,
& Kiling, 2016; Salkuti, 2018). These highlighted shortcomings of statistical
techniques prompt researchers to explore computational intelligence methods. Among
the two popular computational intelligence methods in dealing with time series
forecasting problems are the Artificial Neural Network (ANN) and Support Vector

Machines (SVM) (Guo et al., 2015; B. Huang et al., 2018; Mocanu, Nguyen, Gibescu,
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Larsen, et al., 2016). ANN forecasting ability relies on estimation of values for an
unknown function which most times yield good forecasting result (Jaddi et al., 2017).
However, despite positive forecasting outcomes from Artificial Neural Network
(ANN), the method suffers from time-consuming training and vulnerability to

overfitting (Eapen & Simon, 2018).

In order to overcome the problems of ANN, Support vector Machines (SVM)
introduced by Vapnik in (Corinna & Vladimir, 1995) were proven to be most effective
due to its adoption of Structural Risk Minimisation (SRM) approach (Al-Musaylh et
al., 2018). This approach focuses on minimising the generalisation error instead of
minimising training errors as done by ERM. This makes SVM able to overcome the

problem of over-fitting therefore capable to achieve good generalisation.

The Support Vector Regression (SVR), as a of SVM, that is meant for regression task
(Al-Musaylh et al., 2018; Chuang et al., 2002), has proven to be powerful in the field
of load forecasting (Azad et al., 2018; Caraka et al., 2018; Dong et al., 2018; Jungwon
etal., 2018; Lietal., 2018; Li et al., 2018; Moon et al., 2018a; Sarhani et al., 2018; Su
& Chawalit, 2018; Sun et al., 2018; Velasco et al., 2018; Yang et al., 2019; S. Zhang
etal., 2019; Zhang, 2018). However, the generalisation performance of SVR relies on
two parameters values (Peng et al., 2016; Sarhani et al., 2018) which are cost error (C),
tube size (g) and gamma (y), in the case whereby Radial Basis Function (RBF) kernel
is selected as an additional parameter (Hu et al., 2014; Humeau et al., 2013; Iliya et
al., 2015; Peng et al., 2016; Sarhani et al., 2018; Sarhani & El Afia, 2015). Manual
selection of these parameter value can be a complex task. This necessitates the need to
find best approach in determining the optimal value for parameters of SVR in order to
get the optimal generalisation that will eventually lead to better accuracy of the

algorithm.



Three major approaches became popular in optimisation process viz: cross-validation
(CV), grid search and metaheuristics techniques. As for the cross-validation and grid
search techniques, it has been reported that they are computationally expensive and
usually reported high error rate (Bing et al., 2018; Che et al., 2017; Yusof & Mustaffa,
2016). This make CV and grid search techniques to be a bad choice for parameter

value optimisation for SVR, hence led to adoption of metaheuristics techniques.

The use of metaheuristic techniques is being widely reported in literature as a means
of determining optimal values for SVR parameters through hybridisation (Dong et al.,
2018). The hybridisation proves to be yielding positive results in terms of obtaining
optimal values for SVR parameters hence produce better generalisation as can be seen
in (Chou et al., 2017; Chou & Pham, 2017; Chou & Truong, 2019; Li et al., 2018; Li
etal., 2018; Sermpinis, Stasinakis, & Hassanniakalager, 2017). Among of the effective
optimisers includes GA (Xie et al., 2017) and PSO (Mohanad et al., 2018) However,
recently a new optimisation algorithm namely African Buffalo Optimisation (ABO)

has also shown a promising result.

This study therefore investigated the effectiveness of ABO in optimising SVR in

multivariate forecasting.

1.4 Problem Statement

In spite of the aforementioned merits attributed to the Support Vector Regression
(SVR) algorithm, as discussed in the background section, it is confronted with a
significant obstacle pertaining to hyperparameter optimisation.

SVR necessitates the careful tuning of three pivotal hyperparameters: Punishment
factor (C), Tube size (¢) and the kernel parameter (y) (lliya et al., 2015; Peng et al.,

2016; Sarhani et al., 2018; Sarhani & EIl Afia, 2015).



The arduous nature of pinpointing the optimal parameter values in SVR underscores
the compelling need to explore novel methodologies that can surmount these
challenges and deliver enhanced performance. Hence, SVR has been combined with
different metaheuristic algorithms like Genetic Algorithm (GA) (Xie et al., 2017),
Particle Swarm Optimisation (PSO) (Jalalifar et al., 2019; Yao & Mao, 2023) and
Grasshopper Optimisation Algorithm (GOA) (Barman et al., 2018). However, Genetic
Algorithm relies on the initialisation of various parameters like population, fitness
function, mutation rate, cross-over rate and selection method (Avatefipour & Nafisian,

2018; Wei et al., 2018).

Similarly, PSO performance is sensitive to its parameters, such as the inertia weight,
cognitive and social learning factors, and population size. Selecting appropriate
parameter values can be challenging and may require some trial and error. In addition,
PSO has the potential for premature, and an inherent problem of slow convergence

(Avatefipour & Nafisian, 2018; Lai & Zhou, 2019).

Likewise, GOA encounters a challenge of becoming entrapped into local optima as
iterations progress. This is attributed to a reduction in the diversity of the swarm.
Additionally, GOA lacks a mechanism to preserve the elite grasshoppers discovered
thus far within each index, resulting in a compromised exploitation ability and

diminished convergence rate for the algorithm (Ingle & Jatoth, 2023).

The issues delineated concerning Genetic Algorithm (GA), Particle Swarm
Optimization (PSO) and Grasshopper Optimisation algorithm (GOA) techniques have
the potential to adversely influence the efficacy of Support Vector Regression (SVR)
models generated through either of these optimisation methods. Consequently, the
forecasting accuracy of any SVR model constructed using these optimisation
approaches might be compromised (Bing et al., 2018).
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African Buffalo Optimisation (ABO) which has gained significant popularity across
diverse optimization domains. Examples of its applications include team formation
(El-Ashmawi, 2018), the Traveling Salesman Problem (TSP) (Odili, Kahar, Noraziah,
et al., 2017), biodiversity conservation area selection with constraints (Almonacid et
al., 2017), and PID controller parameter tuning (Odili, Kahar, & Noraziah, 2017). The
ABO algorithm has the advantage demonstrated rapid convergence, and effective
tracking of the best position over other similar algorithms like PSO, GA, and Cuckoo
algorithms as put forward by its authors (Odili & Kahar, 2015). However, these
attributes have yet to be empirically validated when employing the ABO algorithm as
an optimizer for Support Vector Regression (SVR) models. Despite its utilisation in
various domains in literature, the ABO algorithm encounters difficulties pertaining to
population initialisation, exploration, and exploitation (Arif et al., 2022; J. B. Odili,
Kahar, Noraziah, et al., 2017b; Peace Igiri et al., 2018; S. Zhang et al., 2019; Zhu et

al., 2020).

ABO population initialisation mechanism uses simple random distribution. However,
using simple random distribution as a method of population initialisation leads to less
diversity of population sample in search space, hence hampering with the convergence
speed and prevents population to escape local optima entrapment (Arif et al., 2022;

Zhang et al., 2019).

Despite several attempts made by researchers to improve population initialisation
segment of ABO algorithm as can be found in (Algaphari, 2023; Barnwal et al., 2023;
Jiang, Tianhua-Zhu & Deng, 2020; Mishra, 2022). However, none has tried employing

Tent map function for population initialisation in ABO algorithm.
As for the exploration process, researchers employed chaotic map with logistic map

function to modify exploration process of ABO algorithm (lgiri, Singh, & Bhargava,
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2019b). However, logistic map function relies on Chebyshev-type distribution that
require the function to go through multiple search iterations which are unnecessary as
argued by Lu (Lu et al., 2014). This makes the exploration process to repeat similar
visited position in the searching space and most of times lead to premature
convergence.(Lu et al., 2014). There are evidently several efforts made by researchers
to improve the exploration function of ABO as can be found in literature (Algaphari,
2023; Igiri, Singh, & Poonia, 2019; Jiang, Tianhua-Zhu & Deng, 2020; Sheeba et al.,
2023), yet none has tried using McCulloch based levy flight function for the

enhancement of ABO exploration mechanism.

On top of that, the exploitation process in ABO algorithm uses manual assignment of
exploitation control values, which are mostly obtained through a more of trial-and-
error approach. This arbitrary approach of manual assignment of exploitation process
values could result into missing the ideal values needed for an optimal exploitation
process, that eventually lead to local optima entrapment (Igiri et al., 2019b; Odili et
al., 2017). Like in the case of exploitation mechanism of ABO, several attempts have
been made as can be found in literature (lgiri, Singh, & Poonia, 2019; Jiang, Tianhua-
Zhu & Deng, 2020; Mishra, 2022). However, none among the mentioned researchers
employs the use of Tent-map function for enhancement of exploitation mechanism in

ABO algorithm.

Conclusively, this study proposes to enhance the ABO prior to its deployment as an
optimiser for SVR algorithm. Prior to that, the SVR will be optimised using the

classical ABO.

1.5 Research Questions

The questions to be answered by this research are as follows:
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How to automatically optimise SVR algorithm’s hyper-parameter using
ABO algorithm?

How to design ABO with diverse solution population using Tent-map
based chaotic function to increase convergence speed?

How to enhance the exploration ability of ABO algorithm using Mc-
Culloch based Levy flight function to avoid premature convergence?
How to automatically tune the ABO’s exploitation process parameters
using Tent-map based chaotic function to avoid being entrapped in local
optima?

How to evaluate the proposed SVR-ABO and other enhancements made on

ABO algorithm?

1.6 Research Objectives

The aim of this research is to propose a multivariate time series forecasting algorithm

based on the integration of SVR and ABO algorithm. The following specific research

objectives are to be fulfilled:

i)
i)

i)

To design an optimised SVR algorithm using classical ABO algorithm.
To design ABO population initialisation function using Tent-map
based chaotic function for maximum population diversity in the search
area to increase convergence speed.

To reformulate ABO exploration function using Mc-Culloch based
Levy flight function to enable the algorithm to be more resilient to
premature convergence by optimal placement of buffaloes in a wider
search space.

To reformulate ABO exploitation function using Tent-map based

chaotic function to prevent falling into local optima.
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V) To evaluate the proposed enhanced SVR-ABO algorithm against

existing optimised SVR algorithms.

1.7 Scope and Limitation of the Study

The scope of this study is based on multivariate short-term of electric load forecasting
that can be determined based on consumption. The study intends to use four (4)

datasets as follows:

i.  Individual Household Electricity Consumption dataset (Hebrail, Georges and
Berard, 2012; Sinha et al., 2021).
ii.  Appliances Energy Forecasting dataset (L. Candanedo, 2017).
iii.  Turkey electricity consumption (Tutun, 2016).

iv.  Panama Electric load consumption (Madrid & Antonio, 2021).

This study aims to hybridise a machine learning technique (i.e., SVR) with Swarm
Intelligence (SI) method for forecasting task with attention on SVR parameter tuning
with SI method. However, the study is limited to employing ABO algorithm to
optimise SVR algorithm’s parameters towards building an enhanced algorithm for an

electric load forecasting purpose.

1.8 Significance of Study

The primary contribution of this research lies in its advancement of the existing body
of knowledge, specifically in the context of hybridizing SVR-ABO and enhancing the
ABO method. Notably, the researcher has developed an enhanced ABO algorithm that
encompasses three crucial stages: population initialization, exploration, and

exploitation.
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The novelty of this approach is underscored by its potential to make accurate forecasts
regarding future electricity consumption. By employing an optimized multivariate
time series forecasting algorithm, SVR-ABO, the algorithm effectively learns the
consumption patterns of consumers. This has significant implications for efficient
management and effective future planning in the power generation industry. By
reducing resource losses and minimizing wastage production, the algorithm can
enhance profitability and minimize excess production, which is particularly crucial

given the inherent limitations of storing excess electricity.

The proposed algorithm draws upon the generalization ability of SVR and leverages
the rapid convergence speed of the ABO algorithm. This unique combination yields
an optimal electric load forecasting algorithm that is both diverse and efficient in its
exploration and exploitation processes. By integrating these elements, the algorithm
offers a novel and promising approach to electric load forecasting, contributing to the

advancement of knowledge in this field.

1.9 Summary

In this chapter, the introduction of the research domain is provided as part of the
background of the study. The introduction of the key algorithm, upon which this study
has been built, is also presented, along with the introduction of the optimisation
algorithm. The strengths and shortcomings of the key algorithm, SVR, are highlighted.
Furthermore, the need for hybridization with a swarm intelligence-based algorithm is
presented. The chosen Sl algorithm, ABO, is presented, along with the justification for
the hybridization based on its strengths. The weaknesses of ABO algorithm are
addressed in the problem statement. This lays the foundation for the formulation of
research questions that guide the development of the research objectives in this study.

Finally, the scope, significance, and limitations of the study are also presented.
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CHAPTER TWO
LITERATURE REVIEW

As highlighted in previous chapter, there are two major approaches employed in
forecasting namely Statistical and Machine learning methods. With respect to that
matter, this section reviews the existing work that employs different Statistical
methods as well as Machine learning methods. Review of SVR, and hyper-parameter
optimisation techniques were also provided. Lastly, African Buffalo Optimisation
algorithm was discussed, highlighting its strengths & weaknesses, as well as various

literature that mentioned its application fields.

2.1 Multivariate Time Series

A time series pertains to a sequential arrangement of values that are observed at
consistent intervals throughout a predetermined temporal span. For a model to be
considered multivariate, it must involve other related time series factors that affect the
target (Ziel, 2015). For example, in a study by Javedani et al., the authors considered
temperature as an influencing factor of power consumption in companies located in
Johor, Malaysia (Sadaei et al., 2019). In other studies, such as those conducted by
Cinar and Madhavi, and Madhavi, temperature, humidity, solar radiation, and traffic
flow were considered as influencing variables for electricity load consumption (Cinar

et al., 2018) (Madhavi et al., 2017).

Cheung et al., (2018) considered temperature as a factor that makes data to be
considered as multivariate. This research employs multivariate time series analysis,
considering variables such as temperature and humidity in building the forecasting

model.
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2.2 Electric Load Forecasting Methods

Accurately forecasting electric load consumption plays a critical role in ensuring
efficient energy management, grid stability, and informed decision-making across
various sectors. The challenges associated with load forecasting necessitate the
utilization of effective methods capable of capturing the intricate dynamics of
electricity demand. This sub-section aims to delve into an examination of the methods
employed in electric load forecasting, with the objective of providing valuable insights

into their applicability, strengths, and limitations.

The selection of appropriate forecasting methods is contingent upon the specific
requirements and scenarios encountered within the field. Several pivotal scenarios
underscore the importance of precise load forecasting, encompassing optimizing
power generation and distribution, managing grid stability, facilitating energy trading
and market operations, integrating renewable energy sources, supporting demand

response programs, and enhancing smart grid management.

The field of forecasting has numerous techniques documented in the literature, which
can be classified into two groups: statistical methods and machine methods. The
following sections outline the characteristics, strengths, and weaknesses of each
category.

2.2.1 Machine Learning Methods

Machine learning offers a range of techniques for electric load forecasting, including
Fuzzy Time Series, K-Nearest Neighbour, Artificial Neural Network (ANN), and
Support Vector Regression (SVR). Extensive research has been conducted across
various forecasting domains to investigate the efficacy of these methods. Following
presents a comprehensive review of relevant literature encompassing studies that have

leveraged these approaches for electric load forecasting.
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(a) Fuzzy Time series

The initial proposal of fuzzy time series was presented by (Qiang & Brad, 1993).
Instead of using numerical values, it was based on linguistic values. Thus, after
constructing the fuzzy relationships among the samples, the values need to be
transformed into numerical values for output. Model developed base-on fuzzy time
series has its accuracy dependant on the proper interval chosen (Deb et al., 2017).
Although fuzzy time series has been used in various forecasting models, it has some
limitations such as determining fuzzy logic weights, membership functions, and

optimal rules (Deb et al., 2017).

Sadaei et al., (2017) proposed a novel approach referred to as the SARFIMA-FTS
method, combines elements of SARFIMA (Seasonal Autoregressive Fractionally
Integrated Moving Average) and Fuzzy Time Series (FTS) models to increase
accuracy of seasonal memory time series (SMTS). The study was founded upon
higher-order time series and utilised PSO for tuning SARFIMA-FTS hyper-
parameters. The validity of the SARFIMA-FTS method was further established
through testing on additional STLF datasets from various domains. The results
demonstrated that the SARFIMA-FTS method significantly outperformed benchmark
models as determined by the SMAPE metric.

Chang et al., (2019) introduced an innovative approach for electricity consumption
forecast in Taiwan. The method integrated the Nth Quartile Discretisation Approach
(NQDA) within the Fuzzy time series model. Using electricity consumption data from
1996 to 2017, the study demonstrated the superior accuracy of the proposed
methodology. It achieved improved forecasting accuracy by minimizing the Root

Mean Square Error (RMSE) metric through the incorporation of the NQDA technique.
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Silva et al., (2018) use Advanced Fuzzy Time Series (AFTS) as a forecasting method
for short-term electricity consumption based on different time intervals. The
performance was measured by the MAPE and Inter Quartile Range (IQR) metrics. The
result from the investigation suggested that the proposed method had a statistically

significant relevance, as evidenced by a p-value of 0.618.

Luferov et al., (2017) developed a method based on fuzzy time series for forecasting
electric power load consumption. They analysed the impact of weather on power
consumption using data from Smolensk, Russia, spanning from 2016 to 2017. The
research revealed a significant correlation between temperature and power usage,
highlighting the temperature's influential role. The proposed approach showed

improved short-term forecasting accuracy, evaluated using the MAPE metric.

Sadaei et al., (2019) developed a method that combines fuzzy time series with
Convolutional Neural Network (CNN) for short-term forecasting of electric power
consumption. They used a multivariate dataset of hourly electric load consumption and
temperature data to assess the impact of temperature. The CNN extracted features,
while fuzzy time series performed the forecasting. Evaluation metrics such as MAPE,
RMSE, and APE were used to measure accuracy. The approach aimed to improve

forecasting accuracy and understand the temperature-power consumption relationship.

Chen (2016) proposed a hybrid method that hybridised fuzzy time series with LS-
SVM and the Global Harmony Search algorithm to build an electricity forecasting
model (Chen et al., 2016). The Global Harmony Search algorithm was employed for
its search performance efficiency. This method was applied to electric power
consumption data from the Guandong province in China. Empirical evidence shows
that, the proposed model was able to achieve higher forecasting accuracy and faster
convergence. The summary of forecasting methods in the electric load forecasting
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domain, utilizing the Fuzzy time series approach with various data frequencies, is

provided in Table 2.2.
Table 2.1

Fuzzy Time Series based Approach for Electric Load Forecasting

Data Evaluation
Authors Approach Frequency Metric
Sadaei et al., (2017) SARIMA-FTS Half-hourly SMAPE
FTS and Nth Quartile
Chang et al., (2019) (NQDA) Daily RMSE
Weekly, Daily
Silva et al., (2018) AFTS and Hourly IQR and MAPE
Luferov et al., (2017) FTS Hourly MAPE
MAPE, RMSE,

Sadaei et al., (2019) FTS-ANN Hourly APE

Y. H. Chenetal, MAPE, MAE and
(2016) FTS-LSSVM Monthly RMSE

(b) K-Nearest Neighbour

The K-Nearest Neighbour (KNN) algorithm is a well-known technique utilised in
classification tasks. It functions by evaluating the similarity between different samples
within a designated group. The similarity has to be calculated by determining the
properties of each sample. Samples with higher degree of semblance are grouped
together, newer samples are assigned group based-on exhibited property. Although the
KNN algorithm has been employed in forecasting across a wide range of domains, it
still faces several challenges such as determining the optimal number of neighbours
and similarity computation metric. These parameters are often determined through a

trial-and-error approach, this can become burdensome, especially when dealing with a
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complex objective function (Deb et al., 2017). These issues associated with the KNN
algorithm make it unsuitable for electric load forecasting models, where accuracy is of

paramount importance.

Wahid & Kim explored the use of KNN for forecasting daily residential energy
requirements (Wahid & Kim, 2016). The research methodology employed in their
study is rooted in the classification properties of the K-nearest neighbours (KNN)
algorithm. The KNN classifier utilizes the Euclidean distance as a measurement
metric. Similarity of sample is determined through close resemblance of its properties

with the classified previous data sample.

Xianlong et al., (2018), investigated the use of K-NN algorithm to build a forecasting
model for electrical energy consumption. The authors were able to determine the effect
of unbalanced data on forecasting accuracy of a classification model. To mitigate the
discovered issue, the authors utilised KNN algorithm based on computed weights. The
model was evaluated using a data obtained from electricity consumption of a

household.

(Al-Qahtani & Crone, (2013) developed a forecasting model based KNN electricity
demand. The proposed model uses historical electricity consumption data obtained
from United Kingdom. The model was trained using hourly electricity consumption
data collected in 2004 and was used to predict daily electric consumption for 2005.
The results, as measured by the MAPE metric, showed a significant accuracy of

1.8133%.

In another study, authors aimed to develop an accurate and reliable method for
predicting electric consumption in order to support energy management and planning.
The authors presented a forecasting model based on of KNN and considered the

consumption levels of individual appliances and total home electricity consumption
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using historical data obtained from residential buildings in Maryland and California

(Lachut et al., 2015).

In another study, authors presented a novel approach for forecasting electric power
consumption in Cameroon Tchuidjan et al., (2014). Multiple-Input Multiple-Output
(MIMO) framework is the methodology employed to implement a K-Nearest
Neighbour (KNN) model using data spanning from 1972 to 2009. The model
performance was evaluated using MAPE metric. The model developed was used for

long term load forecast of fifteen years in to future.

Table 2.2 presents a summary of literature that explores various methods utilising
KNN as a forecasting technique for Electric load forecasting across different
forecasting horizons.

Table 2. 2

KNN-based approach for Electric load forecasting

Authors Method Type of Evaluation Metric
Consumption
Wahid & Kim, 2016 KNN Hourly Statistical metrics
Xianlong et al., 2018 Balanced Monthly MAE
KNN
Al-Qahtani & Crone, Multivariate Hourly MAPE
2013 KNN
Lachut et al., 2015 KNN, ARMA, Weekly Accuracy
Bayesian,
SVM
Tchuidjan et al., 2014 MIMO-based Years MAPE
KNN
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(c) Artificial Neural Network

Artificial Neural Networks are a group of learning algorithms that draw inspiration
from the functioning of biological neural networks. They are widely utilized for

approximating values of unknown functions. (Jaddi et al., 2017).

Different type of ANN can be found in the literature depending on the type of the
network architecture (Zheng et al., 2019). Few examples of ANN are; Feed-Forward
Neural Network (FFNN), Radial Basis Function Network (RBFN), Recurrent Neural
Network (RNN). However, among the different mentioned ANN-based architecture,
RNN proves to be the most suitable and most popular architecture used for time series

related tasks like power load forecasting(Kong et al., 2017; Ugurlu et al., 2018).

Recurrent Neural Network is a type of ANN that employs usage of information from
previous feed-forward Recurrent Neural Networks (RNNs) (Kumar et al., 2018).
RNN-based architecture can be found in various forms of either Gated Recurrent Units
(GRU) or Long-Short Term Memory (LSTM). These mentioned RNN-based
variations of architectures were proposed to mitigate the problem of exploding and

vanishing gradient that is been associated with RNN (Kong et al., 2017).

Despite the positive predictive outcomes demonstrated by RNN-based methodologies
in existing literature, which have shown their ability to address complex and nonlinear
problems, these techniques have limitations such as time-intensive processes and
susceptibility to overfitting (Hamzacebi, 2008; Mat Daut et al., 2017; Ugurlu et al.,
2018). The susceptibility to overfitting in RNN-based techniques arises from their use
of the Empirical Risk Minimization (ERM) approach, which focuses on minimizing
training errors (Eapen & Simon, 2018; Mat Daut et al., 2017). Moreover, Recurrent
Neural Networks (RNNs) encompass numerous control parameters that require

optimization. These parameters include determining the optimal number of hidden
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layers, selecting the suitable activation function for each layer, specifying the number
of training epochs, and choosing the activation function for the output layer (Kong et
al., 2018; Yusof & Mustaffa, 2015). This complex parameter landscape makes RNN-

based models unsuitable for power consumption forecasting tasks.

Artificial Neural Networks (ANNs) are a widely utilized type of model building
technique, employed in resolving various time series forecasting issues across various
domains. They have the potential to be synergistically combined with various
intelligence techniques, such as swarm intelligence and genetic algorithms. This
integration can lead to the generation of highly efficient and optimized outcomes (Ray
et al., 2019). ANNs are often employed as forecasting models in domains where the

relationship between features of data samples is non-linear.

The primary objective of artificial neural network (ANN) models is to ascertain the
optimal weights associated with individual features, thereby minimizing the disparity
between actual and target values through utilization of back-propagation process
(Rumelhart et al., 1986). The utilisation of back-propagation technique significantly
reduced training time of a model while improving forecasting accuracy. ANNs have
been utilized as forecasting models for all horizons in electricity consumption
forecasting. Electricity consumption is frequently evaluated by taking into account
additional time series data, such as temperature and humidity. These factors are
instrumental in assessing and understanding the patterns of power usage. Incorporating
temperature and humidity information allows for more accurate analysis and
forecasting of electric power consumption (Chae et al., 2016; Chitsaz et al., 2015;

Hussain et al., 2016; Kelo & Dudul, 2012; Rezaeian-Zadeh et al., 2012).
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(d) Support Vector Machines

The Support Vector Machine (SVM) framework was originally conceived and
introduced to the academic community by Vapnik and his colleagues at AT&T
(Corinna & Vladimir, 1995). They presented this innovative concept as a powerful
machine learning algorithm that has since gained significant recognition and adoption
in various fields. The pioneering work of Vapnik and his team laid the foundation for

the widespread application of SVM in solving classification and regression problems.

The SVM s a classifying algorithm designed to identify a hyperplane that can
accurately divide a set of training data into separate classes using linear separation.
The points of data that are used to determine the optimal distance between the data
points and the margin often referred as hyperplane. These points are , are termed as
support vectors. In practical situations, it is uncommon to encounter data that can be
perfectly separated by a linear boundary. Therefore, when faced with non-linearly
separable data, the SVM employs a technique that involves mapping the data points
into a higher dimensional space to identify the hyperplane. This is followed by a
process called the kernel trick, which maps the features back to the original space.
Additionally, the SVM provides the option for non-correctly classified data points
through the implementation of a penalty factor, C, which regulates the acceptable
amount of misclassification during optimization while penalizing any errors beyond a

predetermined limit.

In addition to its successful application in classification, the SVM algorithm has
proven to be effective in regression tasks as well. By aiming to establish a function
that minimizes the deviation between output measurements and the cumulative error
of input values, Support Vector Regression (SVR) emerges as a powerful technique in
forecasting modeling.
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2.3 Support Vector Regression

Support Vector Regression (SVR) is a variant of the Support Vector Machine (SVM)
algorithm in the field of machine learning. SVR is specifically designed for regression
tasks, while SVM is primarily used for classification tasks. SVR was developed by
Smola and Scholkopf (Smola & Scholkopf, 2004) to address regression problems and
has been proven to be highly effective in classification tasks. The algorithm has
become widely used in various applications, including stock market and electric load
forecasting (Barman & Dev Choudhury, 2018; Qu & Zhang, 2016; Sermpinis,
Stasinakis, Rosillo, et al., 2017). One of the advantages of SVR is the use of kernel
functions, which enable the algorithm to perform linear and non-linear
approximations. Additionally, SVR is renowned for its superior performance, as it
only utilises support vectors to determine the model boundary. Also, due to employing
convex objective function, the problem of local minima is eliminated. Another key
advantage of SVR is its ability to minimise generalisation error due to adoption of
structural risk minima which aims to minimise generalisation error instead of just
training error. It should be noted that the authors opted to employ SVR instead of LS-
SVR due to its limited generalisation ability (Yan et al., 2017).

2.3.1 SVR Kernels

Kernels are the key functions that allows SVR to be able to exhibits its potentials both
in regression and classification tasks. k(xl-,xj) as defined in Eq. (2.1) represents a
kernel function that has a value equivalent to the value of inner product of two vectors

x;x;in the feature space ¢ (x;) and ¢(x;) .

k(xi,x;) = () * o(x;) (2.1)
k(xl-,xj) is a function that is used map the input data in original space into higher

dimensional space. This enables the determination of linearly optimal separating
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hyperplane in the higher dimensional feature space rather than non-linear separating
plane in the original input space. There exist four (4) kernel functions that can be found
in literature that are mostly used with SVR (Wang & Wang, 2019) namely, Polynomial
kernel function, Gaussian Radial Basis kernel function Sigmoid function and Radial

Basis kernel function:

1) Polynomial kernel function denoted as:

K(xx;) = (xx5)",d = 1,2, . 2.2)
where d is the degree of the polynomial.

2) Radial basis function (RBF) kernel denoted as:

K (o) = e ([l x[1%) (2.3)

3) Gaussian radial basis (Special case of RBF) kernel function is denoted as:

K(xi,xj)=exp< (i~ x,)> (24)

where o2 > 0 denotes the kernel width.
4) Sigmoid kernel function is denoted as:
K(xi,x]-) = tanh(b(xl- -xj) + c) (2.5)

where b represent the slope and C represent the bias of the function.

This research uses the radial basis function (RBF) kernel as it is the most widely used
kernel with SVR (Chou & Truong, 2019; Li et al., 2018; Li et al., 2018; Velasco et al.,
2018; Zhang et al., 2019). This is due to its ability to outperform other kernels in terms
of accuracy and faster training speed in training phase (Al-Musaylh et al., 2018). The
effect of this is the reduction of computational time in terms of tuning for optimum
hyper-parameters.

2.3.2 Techniques for SVR Hyperparameter Optimisation

Optimisation technique primary’s aim is to help the SVR algorithm to avoid under-

fitting or over-fitting during training, which consequently affect the algorithm’s
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generalisation ability. There are two prominent methods for SVR optimisation task
that can be found in literature. These are cross-validation and using swarm intelligence.
(a) Cross-Validation Approach

The most commonly methods found in literature that are used for SVR hyper-
parameter optimisation in SVR are Cross-validation and grid search method (Bing et
al., 2018). However, cross-validation optimisation methods are computationally
expensive and easily falls into local optimum(Mustaffa et al., 2018), hence researchers
opt for better approach of using meta-heuristics approaches.

(b) Swarm Intelligence Approach

Due to in adequacy and problems associated with grid and cross-validation approaches
of optimisation, meta-heuristics approaches were tried in academia, with the
associated promising result, the meta-heuristic approaches are becoming dominant
methods for optimisation process in various fields of research. Following are literature
where SVR algorithm has been optimised using metaheuristic techniques.

2.3.3 Reviewed literature on Support Vector Regression with Swarm algorithms

Zhang et al., (2019) utilised the Artificial Bee Colony (ABC) algorithm to optimise
Support Vector Regression (SVR) parameters for electricity consumption forecasting
in China. They emphasised the importance of population initialization in evolutionary
algorithms and introduced a tent chaotic strategy and tournament selection procedure
to initialize the ABC population and assign values to individual bees. Their proposed
approach, ABC-SVR, achieved notable accuracy in terms of Mean Absolute
Percentage Error (MAPE) compared to other state-of-the-art, and classical SVR with

default parameters.

In a distinct scholarly investigation, the authors have harnessed the potential of the

cuckoo search algorithm to effectively optimize Support Vector Regression (SVR) for
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the purpose of short-term electric load forecasting in residential electricity
consumption. However, with the shortcomings of Cuckoo Search algorithm (CSA) of
premature convergence and slow convergence rate in later searching period (Dong et
al., 2018). The authors applied chaotic mapping function to mitigate the mentioned
problems of CSA. The model proposed improve the forecasting capability of SVR

algorithm.

Li et al., (2018) discovered that the Fruitfly Optimization Algorithm (FOA) had
limitations, including premature convergence and a high likelihood of getting stuck in
local optima. To address these issues, the authors proposed enhancements to FOA
using Quantum Computing Mechanism (QCM) and a cat chaotic mapping function.
QCM was employed to improve the searching ability of FOA and prevent premature
convergence. The cat chaotic mapping function was used to assist the algorithm in
escaping local optima when population diversity is low. The authors' optimised model
demonstrated improvement based on MAE, MAPE, and RMSE as statistical metrics

against compared techniques.

Chou & Truong, (2019) conducted study by employing Support Vector Regression
(SVR) for accurate forecasting of the exchange rate between the Canadian dollar and
the United States dollar (USD). To enhance the performance of SVR, the authors
utilized an enhanced firefly algorithm (FA) that was tailored specifically for parameter
optimization, employing a sliding-window technique. The authors use Gauss/mouse
mapping and logistic mapping for tuning attractiveness of FA and population
initialisation activities respectively. Also, the authors us Lévy flight and Adaptive
Inertia Weight (AIW) for enhancement of local search and local exploitation cum
global exploration capabilities respectively. The model proposed was able to record

higher accuracy based on RMSE, MAE and MAPE as statistical metrics for evaluation.
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Chou & Pham, (2017) forecast the scour depth effect caused by flowing water against
bridge. The authors use SVR as forecasting algorithm optimised with Firefly
algorithm. The authors also use chaotic map function for effective random
initialisation and Lévy flight to enhance local search. SAFCAF as the developed model

shows significant accuracy against benchmarked algorithms.

Tran & Hoang, (2017) used Flower Pollination Algorithm (FPA)to optimise
SVR parameters for forecasting algal colony growth on facade structures. They
enhanced the FPA's search functionality by incorporating Lévy flight. The
resulting LSVR-FPA model outperformed several statistical and machine learning

based benchmarks in terms of accuracy, as measured by RMSE and R? metrics.

Verma et al., (2017) conducted a study on optimising Support Vector Regression
(SVR) for predicting cement compressive strength using multivariate parameters. The
authors employed Particle Swarm Optimization (PSO) and Symbiotic Organism
Search (SOS) as optimization algorithms for SVR. Their models demonstrated
superior accuracy compared to benchmark models such as ANN, RVM, and GPR.
Various metrics, including, MSE, MAE, and MAPE were used to evaluate the

performance of the models.

Though, Swarm Intelligence methods have proven to be an effective means of
parameter optimisation for machine learning algorithms as mentioned in the literature.
However, these methods are prone to be trapped in local optima, most of times
converged prematurely or takes longer time to converge (Chou & Pham, 2017; Chou
& Truong, 2019; Dong et al., 2018; Li et al., 2018). Table 2.5 present the summary of
different swarm intelligence algorithms used to optimise SVR algorithm with RBF

kernel.
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Table 2.3

Swarm Intelligence based algorithms for SVR parameter optimisation

Hybrid
Sno Year Application Area Algorithm
1 Zhang et al., (2019) Electricity Consumption ABC
2 Dong et al., (2018) Household electric Cuckoo search
demand
3 Lietal., (2018) Grid load Forecast Firefly
4 Chou & Pham, (2017) Scour depth forecast Firefly
5 Tran & Hoang, (2017) Algal growth forecast Flower
pollination
algorithm
6 Vermaet al., (2017) Forecasting of Cement ~ PSO and SOS
compressive strength
7 Mahmoudi et al., (2016)  Forecasting of water Shuffled frog
quality leaping algo
(SFLA)

Swarm Intelligence (SI) has been proven to be an effective method of parameter
optimisation for machine learning algorithms as demonstrated in the literature.
However, these methods exhibited inherent weaknesses of having tendency to be
trapped in local optima, slow and premature convergence (Chou & Pham, 2017; Chou
& Truong, 2019; Dong et al., 2018; Li et al., 2018) of which African Buffalo
Optimisation algorithm is part of. Hence the need for exploring other techniques to
mitigate such weaknesses of Sl based techniques. ABO algorithm is one of such Sl

based methods used for optimisation process in machine learning domain.

2.4 African Buffalo Optimisation Algorithm

The African Buffalo Optimisation (ABO) algorithm, developed by Odili, belongs to
the class of swarm intelligence (Odili et al., 2015). It models the foraging and
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defending behaviour of African buffaloes, which exhibit unique features such as
extensive memory capacity, communal lifestyle, and democratic decision-making
lifestyle (Ghosh, 2022; Ullah Khan et al., 2021; Vaza et al., 2022). These animals
communicate danger and safety using the sounds "waaa" and "maaa" respectively,
which are mapped to the algorithm's organisational lifestyle characteristics (Odili et

al., 2016; Odili, Kahar, Noraziah, et al., 2017).

The ABO algorithm utilises parameters such as "waaa" sound denoted by wg, "maaa”
sound denoted by mk, and learning parameters denoted by 11 and I>. It also involves
global best (bgmax) and personal best (bpmaxx)) positions. The algorithm follows two
equations: the democratic equation (Eqn. 2.8) and the location update equation (Eqgn.
2.9). Algorithm 2.1 outlines the basic flow of the ABO algorithm. It subtracts the
"waaa" value (wk) from the maximum vector (bgmax and bpmaxw), Which is then
multiplied by the learning parameters (I and l2). While A is a variable that determines
the time interval over movement of buffalo and generally fixed to 1 (Alweshah et al.,

2022; Barnwal et al., 2023; Kesavan et al., 2022; Sushma et al., 2022).

The "maaa” value (mk) indicates that the herds should remain in that location and
continue grazing. The exploitation and exploration stages of the ABO algorithm are
represented by Eqn. (2.6) and Eqn. (2.7) respectively. The complete basic ABO

algorithm is presented in Algorithm 2.1 (Odili et al., 2015).

Mypr =My + 1y (bgmax - Wk) + 1, (bpmax(k) - Wk) (26)
(wy + my)
Wipq = % (2.7)
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Algorithm 2.1: African Buffalo Optimisation

Step 1: Random initialisation of buffaloes in search space

Step 2: Updating the exploitation behaviour using equation 2.8

Step 3: Update the individual location of buffalo using equation 2.9

Step 4: If equation 3.18 and 3.19 are updating, continue to step 5, else go to step 1
Step 5: If stopping criteria* is reached go to step 6, otherwise go to step 2

Step 6: Output the best result.

*where the stopping criteria can be either the maximum number of iterations is
reached, or when the improvement in the fitness value becomes negligible over
consecutive iterations.

2.4.1 African Buffalo Optimisation Algorithm in Literature

ABO as metaheuristic-based optimisation algorithm has been compared with other
meta-heuristics algorithms (Odili, Kahar, Noraziah, et al., 2017) to establish its
performance. The algorithm has also been used in literature for solving various
optimisation problems in different domains such as collaborative team formation in
social network (El-Ashmawi, 2018), symmetrical and asymmetrical problem of
travelling salesman (Odili et al., 2016; Odili & Mohmad Kahar, 2016), spatial
modeling of Prey-Predator based cellular automata (Palyulin et al., 2014), numerical
function optimisation (Odili & Kahar, 2015), Proportional-Integral-Derivative (PID)
controller parameter tuning (Zhang et al., 2018) and determining the best biodiversity

area for conservation with constrained budget (Almonacid et al., 2017).

Furthermore, , the algorithm was compared with other well established nature inspired
algorithms. Results obtained from the study demonstrated that ABO has a better
performance than genetic algorithm (GA), honey-bee mating optimisation (HBMO),
ant colony optimisation (ACO) and simulated annealing (SI) and many other

metaheuristic algorithms (Odili, Kahar, Noraziah, et al., 2017).
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The ABO algorithm has demonstrated notably superior performance compared
to Genetic Algorithm (GA) and an enhanced version of GA in various applications. In
an evaluation against numerical functions and the tuning of PID controller parameters,
the ABO algorithm exhibited remarkable success, surpassing the performance of both
GA and the enhanced GA Odili, Kahar, & Noraziah, (2017). Furthermore, when
applied to a metaheuristic-based simulation of a dynamic prey-predator model using
cellular automata, the ABO algorithm exhibited superior performance (Almonacid,

2017).

In a related study by (lgiri, Singh, & Bhargava, 2019a), the authors further enhanced
the ABO algorithm by improving its population initialization and exploration process
using logistic-map based chaotic function, and Mantegna-based Levy flight function
respectively. This improvement aimed to enhance the algorithm's efficiency and
effectiveness in finding optimal solutions. The authors' enhancements contribute to the
continuous refinement and advancement of the ABO algorithm for solving complex

optimization problems.

Jiang et al., (2020) Improved several aspects of ABO algorithm within domain
Scheduling Problem (Energy consumption as the considered factor). The authors
improved on Population initialisation, Exploitation and Exploration part of ABO
algorithm to produce Improved African Buffalo Optimisation (IABO) algorithm. The

improvement based on each section is as follows:

The authors use three different methods (Global selection, Local selection, and
Random selection) for population initialisation in ABO. The methods were applied at
random at each iteration to generate locations of buffaloes in search space. Similarly,
the authors introduce three distinct different age-based mechanisms for the buffaloes
during training. This is to enhance the exploration process of the proposed algorithm.
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At the exploitation stage, the authors added a random buffalo location and a randomly
value as new learning additional parameter in the exploitation equation to avoid

premature convergence

Krisnawati et al., (2020) conducted study on Flow-shop Scheduling Problem (FSP)
in muffler production industry. The authors use classical ABO as an optimiser and use
Friedman test to determine the performance of the solution produced by ABO and
benchmarked algorithms (Hybrid GA, PSO, and CSA) . The result shows that ABO
was able to produce optimal solution compared to other algorithms. However, the
authors observed that ABO records higher computational time than other benchmarked

algorithms

In a study conducted by (Panhalkar & Doye, 2022) , the authors employ ABO
algorithm to improve the shortcomings of Decision trees for feature selection on
classification task that has been applied on a large dataset . The authors mentioned that
Decision Trees are highly instable and prone to overfitting, Based on the application
of ABO algorithm the newly developed hybrid ABODT algorithm was able to
outperform all benchmarked algorithms namely Antminer-Decision Trees, and Ant
Colony- Decision Trees (ACDT) on four out of six (6) real world dataset used to test

the algorithm.

In (Mishra, 2022), the authors employ ABO algorithm to optimise Decision trees for
Intrusion Detection System. However, the authors enhanced ABO’s population
initialisation and exploitation mechanism. Population re-initialisation was modified
using Discreet Cross-over method where new buffaloes’ locations are created based

new arbitrary value between Global best and Personal best.

To modify the exploitation process, the authors employ utilisation of random Swap

Operator on both I1 and I> parameters. The developed algorithm was tested on Three
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datasets on feature selection, and sample selection for classification task. The result
shows that the developed hybrid algorithm shows superior performance against

classical Decision Trees, SVM, ANN, and KNN on all datasets.

Improved African Buffalo Optimization-Based Takagi—Sugeno-Kang Fuzzy PI
Controller for Speed Control in BLDC Motor has been proposed by (Subramani et al.,
2023). The authors hybridised ABO with Takagi-Sugeno-Kang (TSKF) fuzzy
algorithm to control the speed of BLDC motor. However, upon close inspection, the
authors utilise classical ABO algorithm without any improvement. The developed
algorithm was compared with PSO, GSA, CSS, GWO, and WOA as benchmarks. The
developed IABO outperforms all the benchmarks in terms of determining optimal

values, lower optimisation error rate, while only GSA converge faster than IABO.

In another study, (Sheeba et al., 2023) enhanced the exploration mechanism of
classical ABO using Mantegna-based Levy flight for feature selection purpose for
Deep learning algorithm. The authors argued that the newly developed Intrusion
Detection using Modified Buffalo Optimization Algorithm with Deep Learning
(IDMBOA-DL) shows a remarkable classification accuracy of 99.50% better than all

benchmarks.

Barnwal et al., (2023) The ABO algorithm was used to design a fitness function based
on multiple parameters in order to achieve efficient clustering of sensors nodes for
better routing. The ABO was hybridised with Whale month flame optimisation
algorithm to achieve the said purpose. The ABO was used to mitigate weak
exploitation capability of whale Moth Flame Optimisation algorithm. Before
employing the ABO algorithm, the authors utilise Oppositional Based Learning (OBL)
method for population initialisation in order to improve the convergence speed of
ABO.
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The developed IABO algorithm has shown a better performance on all metrics
(Throughput, Energy consumption, and Network lifetime) compared to benchmarked

algorithms slightly followed by GWO.

Algaphari, 2023 evaluated an enhanced ABO algorithm on Travelling Salesman
Problem (TSP). The author enhanced ABO population initialisation, and the speed of
buffaloes during exploration with Fuzzy matrices instead of classical gaussian-based
random numbers. The proposed Fuzzy-ABO algorithm was tested on several TSP
dataset including Berlin52, Ulysses16, and Burmal4 benchmarks. Where fuzzified ABO was
the overall best by achieving smallest and optimal solution to the TSP problem. The developed
algorithm was compared with classical ACO and PSO, of which the Fuzzy-ABO outperform
both.

In another study conducted by (Singhal et al., 2023), the authors use classical ABO as
multi-objective optimiser for Test Case for Fault tolerance. The authors designed a
Multi-objective Test case selection and Prioritization (TCS&P) model where the
artificial buffalos correspond to the test cases and the path (the result of the buffalo’s
search) is marked as the selected/prioritized test suite. The developed ABO_TCS&P
algorithm exhibit remarkable performance in comparison to Ant Colony Optimisation
(ACO) as the benchmarked algorithm of which ABO performed exceptionally higher

than the ACO.

The aforementioned studies collectively highlight the superior performance of the
ABO algorithm in comparison to other notable swarm-based optimization algorithms,
such as GA, and the ongoing efforts to enhance its capabilities through algorithmic
improvements. These findings contribute to the growing body of research on

metaheuristic algorithms and their potential applications in various fields.
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Table 2.6 presents several application domains where ABO algorithm has been
applied, and also presents various effort by researchers to enhance the ABO algorithm

at different instances.
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Table 2. 4

ABO as an optimisation algorithm

Sno | Study Domain Improvement | Improved | Method Used for Remark
on ABO Part Improvement
1 Odili et al., Solving Travelling No N/A N/A Outperform GA, HBM, SA etc
(2016) Salesman Problem (TSP)
2 Odili et al., Numerical Function No N/A N/A Outperform both GA and
(2015) Evaluation Improved GA
3 Odili et al., PID controller parameter No N/A N/A Outperform ACO, PSO and
(2017) tuning BFO
4 Almonacid Budget constraint maximal No N/A N/A Perform competitively with
et. al.,(2017) | covering location other metaheuristic algorithms
6 Chinwe et. Classical Optimisation Yes Exploration | Levy flight (Mantegna) Best overall performance
al., (2019) Problem and Chaotic function (Logistic against PSO on Sphere.
Exploitation | map) Schaffer, Beale, and
Bochachvesky standard
optimisation functions.
7 Jiang et, al., Job Scheduling Problem Yes Population, Pop: Global, Local, and Performed better than modified
(2020) Ex(g)loration, Random selection GA
an
Exploitation | Explr: Aging-based re-

initialisation mechanism

Explt: Discreet individual
update
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Case for Fault Tolerance)

8 Krisnawati Flowshop Scheduling No N/A N/A Performed better than Hybrid
et. al., (2020) | Problem GA, PSO and CSA in terms of
accuracy with higher
computational time
9 Panhalkar et. | Enhance Decision Tree No N/A N/A Performed better than AMDT,
al., (2022) with ABO ACDT
10 Mishra et. Intrusion Detection System Yes Population Pop: Discreet Cross-Over | Performed better than Classical
al., (2022) Initialisation, | method DT, SVM, ANN, and KNN
and Explt: Random swap of |; and
Exploitation | I,
11 Subramani BLDC Motor Control No N/A N/A Performed better than FA,
et. al., (2023) PSO, GSA, CSS, GWO and
WOA algorithms
12 Sheeba Big Data in loT Yes Exploration | Mantegna-based Levy flight The proposed algorithm
(2023) performed better than Classical
DL, SVM, CNN, LSTM,
CNN-LSTM
13 Barnawal et. | Wireless Sensor Network Yes Population Opposition-based Learning | Better  performance  than
al., (2023) Initialisation | (OBL) LEECH, HEED, MBC,
FRLDG, and GWO on
different metrics
14 Algaphari et. | General Optimisation Yes Population Fuzzy matrices for both | Overall best against PSO and
al., (2023) Initialisation | population and Exploration | ACO
(TSP) and enhancement
Exploration
15 Sighal (2023) | Software Engineering (Test No N/A N/A ABO performed better than

ACO as the benchmarked
algorithm
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2.4.2 Weaknesses of African Buffalo Optimisation
African Buffalo Optimisation (ABO) algorithm as a metaheuristic algorithm has been

proven to be one of the best performing optimisation algorithms (Alweshah et al.,
2022). This could be associated with its simple implementation and its fewer number
of parameters. The algorithm superiority has been established in previous section in
relation to different domains and tasks where it has been used. However, with all the
strengths of ABO, as a metaheuristic algorithm it has the inherent weaknesses as

follows:

2.4.2.1 Population Generation

One notable weakness of ABO lies in its population initialisation strategy, which can
lead to a deficiency in diversity among the initial solutions. ABO typically initialises
its particles randomly within the search space. However, this random placement might
result in particles congregating in localised regions of the solution space, known as
convergence to suboptimal solutions or premature convergence. Consequently, this
lack of diversity in the initial population can hinder the algorithm's ability to explore
and exploit the broader solution space effectively, potentially limiting its capacity to
discover the global optimum (Arif et al., 2022; Jiang, Tianhua-Zhu & Deng, 2020; S.

Zhang et al., 2019).

2.4.1.2 Poor Exploration

The conventional ABO (African Buffalo Optimisation) algorithm functions by
predefining its learning parameters (Ip1 and Ip2) before initiating the execution phase
(Odili et al., 2015). Notably, these two learning parameters govern both the individual
and collective optimal states of the buffaloes within the algorithm. However, this pre-

defined specification of learning parameters has the potential to compromise the
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algorithm's proficiency in exploration performance. Particularly, it may impede the
algorithm's ability to thoroughly explore novel solution spaces efficiently, thus

potentially yielding suboptimal performance outcomes (Peace Igiri et al., 2018).

2.4.2.3 Poor Exploitation

Similarly, the process governing the update of positions is constrained by a pre-
established lambda parameter, devoid of inherent variability owing to its a priori
configuration (EI-Ashmawi, 2018). This characteristic susceptibility can potentially
result in the entrapment of the algorithm within local optima or experiencing premature
convergence during optimisation process (Igiri, Singh, & Bhargava, 2019a). This
necessitated various researchers to find better approach to mitigate the mentioned

problems of ABO for it to attain most efficient performance.

2.5 Chaotic Map Function

Chaos is a known character of non-linear systems which can be mathematically
defined as a randomness generated by a simple deterministic function (Rezaee Jordehi,
2015). However, the random behaviour of chaotic randomness has better dynamical
and statistical properties (Tharwat & Hassanien, 2018). The statistical properties of
drawing from gaussian distribution by chaos functions makes chaos to be able to go
through all values specified with a given range without repetition. This behaviour
enables chaos search to be able to escape from falling into local optimal solution.
Various stochastic optimisation problems usually get trapped into local optima;
however, research has shown that employing chaotic map function results into
enabling such optimisation problem to escape from falling into such problem (lgiri,
Singh, & Bhargava, 2019a). Basically, chaotic optimisation can simply refer to

utilising sequences generated from chaotic map function instead of random values in

42



an optimisation process. Initial value of chaotic map function highly affects its
behaviour and is denoted by x,. Various chaotic functions exist in literature such as
logistic, Tent, Sinusoidal, circle, Sinus, Gauss, Chebyshev, Singer (lgiri et al., 2020,
Farah & Belazi, 2018; Zaimoglu et al., 2023; Zhang et al., 2019). However, Logistic
and Tent map functions are the popularly known chaotic function used in literature
(Sayed et al.,, 2017). This study adopts the Tent map function for population
initialisation and reformulation of ABO exploitation. This is due to the inherent
behaviour of Tent chaotic map function to exhibits a continuum of dynamic
behaviours, spanning from predictability to chaos, characterised by strong ergodic
uniformity (Dong et al., 2018).

2.5.1 Tent Map function

The method of chaotic mapping is an optimization strategy used to transform the initial
data series. This transformation highlights its susceptibility to initial conditions and
yields numerous distinct periodic patterns, a phenomenon known as chaotic ergodicity.
This approach has been employed in several studies to produce diverse population
characteristics throughout the optimisation process, enhancing search patterns and
preventing premature convergence (Dong et al., 2018). Tent map function has been

defined as in Eqgn. (2.8).

_(2xp x € (0,0.5) (2.8)
X+l = {2(1 —x)x €(0.5,1)

Where x; represents an iterative value of variable x in the kth step, and k represents

number of iteration steps.

2.6 Lévy Probability Distribution
Lévy probability distribution (LPD) is a distribution obtained from Lévy flight

function. It is a type of random walk introduced by Paul Lévy in 1937 that has a
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characteristic of intensive probability in its movement (Dash et al., 2021). The Lévy
walk phenomenon describes the diffusion pattern observed in organisms, where their
searching behaviour is focused on potential solution locations. The Lévy flight
foraging hypothesis suggests that organisms migrate from less-resource to more-
resource environments, leading to optimal search strategies (Pang et al., 2018).
Animals with high memory capabilities utilize this model to explore their search space
effectively. The theory of optimal foraging extends the concept of Lévy flight foraging,
proposing that organisms prioritize the search for optimal solution locations rather than
engaging in aimless exploration within the search space. Loosely speaking, Lévy
flights are random walks whose step length is drawn from a distribution, often in terms
of a simple power-law formula L(1) |A|~*~Awhere 0 8 < 2 is an index. Mathematical
representation of a Lévy distribution as defined in (Kotodziejczyk & Tarasenko, 2021)

is as presented in Egn. (2.9).

(2.9)

—_— ex O<u<i<oo
Ly, p) = IN27 ALE tla=mls
Ootherwise

where i > 0 is a minimum step and y is a scale parameter.

In terms of implementation, generating random numbers using Lévy flights involves
two steps: selecting the flight direction appropriately and generating steps that adhere
to the Lévy distribution (Suresh & Lal, 2016). To achieve optimal result, the direction
value has to be drawn from a uniform distribution, whereas the generation of steps
proves to be challenging. Few methods existed in the literature of achieving effective
way of providing the steps in Lévy distribution, two (2) most prominent ones are
through Mantegna and McCulloch algorithms (Bashath et al., 2022; Gopal Dhal et al.,

2015; Ismail et al., 2021; Suresh & Lal, 2016). The McCulloch algorithm (McCulloch
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& Pitts, 1943) is adopted for Lévy flight implementation in this study due to its better
performance in terms of ability to search wider space, faster convergence speed and
better accuracy that supersede Mantegna algorithm (Ismail et al., 2021; Singh &
Agarwal, 2022; Soneji & Sanghvi, 2014).

The McCulloch algorithm, developed by McCulloch (Bashath et al., 2022), utilizes an
explicit formula to generate random numbers from a Lévy process. This formula

involves two independent variables, w and ¢, which follow a uniform distribution in
the range (_T"E) and a standard exponential distribution, respectively. The equation

for generating these random numbers is given by Eqgn. (2.10) that returns random
values as steps (Bashath et al., 2022; Soneji & Sanghvi, 2014):

NN,
D

G

+15,(c,B,71) (2.10)

Where:

N; = sin [a(p + tan™t (,Btan (?))l

i A T\S"
N, = <cos (1-a)p —tan? (ﬁtan (7)>D

D= <cos -tan‘1 (ﬁtan (?))DE (coscp)éwé"l

The function generates a matrix of random numbers with dimensions n x m. It requires

certain parameters, including the characteristic exponent (o), skewness parameter (),
scale (c), and location parameter (t). To prevent potential overflow, the minimum
value for a is set to 0.1. If any of the input parameters are outside the valid range, the
resulting matrix will contain NaNs. In such instances, the algorithm employs Eqgn.

(2.11) to handle the computation.
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w

1
e <cos((1 — a)(p)>“ sin(agoz s (2.11)
cos(p)a

where two special cases are handled separately:

case a = 2: This evaluates to Gaussian case where X becomes

x = c2yJwsin(p) + 1 (2.12)
case a« = 1: This evaluates to Cauchy case, hence x becomes
x =ctan(p) +1 (2.13)

Soneji & Sanghvi, (2014) use Lévy-flight to enhance searching behaviour of cuckoo
algorithm. The authors use McCulloch and Mantegna algorithms as Lévy’s random
number generator. The enhanced cuckoo algorithm was used as optimisation algorithm
for SVR in design of electric load forecasting. The resulting Lévy-based function has
shown that McCulloch-based outperformed Mantegna-based Lévy function in terms
of execution time. Hence, shows favourable result when benchmarked with Sphere,
Ackley, Dixon and Price, Griewank, Step, Lévy, Generalised Schwfel 2.6, Generalised

Rosenbrock, Rastrigin and Weierstrass functions.

In another study, Pang et al., (2018) use Lévy flight to help Evolutionary Programming
(EP) escape local optima. They enhance Lévy flight by adapting the function to local
fitness landscapes. This enhancement improves the searching process of the EP
algorithm. The hybridized EP with adaptive Lévy function (HEP) outperforms other
technigques on unimodal functions, including Schwefel, Rastrigin, Ackley, Griewank,

Foxholes, and more.

Megala et al., (2016) proposed an adaptive Lévy mutation for improved performance.
They argued that the tuning parameter of the Leévy function should depend on the

specific problem and that different tuning is needed at each stage of the searching
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process. The authors used Mantegna's algorithm to generate random numbers for the

adaptive Lévy function in the Clonal Selection Algorithm (CSA).

Additionally, the modified Lévy function was assessed against the Sphere,
generalized Rastrigin, and Ackley functions to determine its effectiveness in escaping

local minima.

As shown in Table 2.5, the application of the Lévy function as a random number
generator has been documented in the literature for various heuristic algorithms. This
highlights the versatility and wide-ranging utilization of the Lévy function within the
field of optimization. The studies listed in the table demonstrate the use of the Lévy
function in different contexts, showcasing its applicability in solving diverse

optimization problems.

These evaluations and applications contribute to the understanding of the Lévy
function's performance characteristics and its potential as a valuable tool in improving

the efficiency and effectiveness of heuristic algorithms.
Table 2.5

Lévy-flight as Random Generator

Authors Target Lévy-flight Benchmarks
Algorithm Random
Generator
Soneji & Cuckoo McCulloch Sphere, Ackley, Dixon and
Sanghvi, Search Price, Griewank, Step, Lévy,
(2014) Generalised Schwfel 2.6,

Generalised Rosenbrock,
Rastrigin and Weierstrass

functions
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Pang et al., Evolutionary Standard Random Thirty-nine (39) functions

(2018) Programming Number including Schwefels, Ackley,
(EP) Rastrigin, Shekels, Schaffer,
Sinusoidal etc
Y. Peng et PSO Gaussian Sphere, Rosenbrock, Rastrigin,
al., (2013) Griewank and Ackley
Megala et Clonal Mantegna Sphere, generalised Rastrigin
al., (2016)  selection and Ackley
Algorithm
(CSA)

2.7 Research Gap Discovered

The Support Vector Regression (SVR) algorithm is widely used for regression tasks,
but its performance relies heavily on selecting appropriate hyperparameters. However,
traditional methods like Grid search and Cross-Validation (CV) have limitations such
as extensive search ranges, sensitivity to step size, and high computational
requirements. To overcome these limitations, researchers have explored swarm
optimization techniques with promising results. Yet, the African Buffalo Optimisation
(ABO) algorithm, a recently introduced swarm-based approach, has not been studied
in combination with SVR. Therefore, this study aims to fill this research gap by
implementing the ABO algorithm to find optimal hyperparameters for SVR,

introducing a new approach called SVR-ABO.

Another research gap is in the population initialization of the ABO algorithm. Previous
studies have used conventional techniques, but there is a need for innovative
approaches to improve optimization performance. This study addresses this gap by
proposing SVR-popABO, an algorithm that focuses on effective population

initialization to enhance convergence rates and overall performance.
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Additionally, the exploration mechanism of the ABO algorithm is an area for
improvement. While Gaussian random and Mantegna-based Levy flight mechanism
have been commonly used, this study explores application of McCulloch-based Levy
flight as an alternative method. The McCulloch-based Levy flight has been identified
as a more efficient way to explore the search space, leading to the development of
SVR-explrABO, an algorithm that improves optimization performance through

enhanced exploration.

Furthermore, the exploitation mechanism of the ABO algorithm also requires
improvement. Previous studies relied on utilising Logistic map function, but this study
introduces the use of the Tent map function. The resulting algorithm, SVR-expltABO,

shows promise in exploiting the search space more effectively.

In conclusion, addressing the research gaps in SVR optimization using the ABO
algorithm contributes to the advancement of population initialization, exploration, and
exploitation mechanisms. This study presents new algorithms (SVR-ABO, SVR-
popABO, SVR-explrABO, and SVR-expltABO) that enhance the robustness and
efficiency of optimization, ultimately improving the performance of SVR in various

domains.

2.8 Summary

In this chapter, a range of forecasting techniques from both statistical and machine
learning fields were discussed. However, the literature suggests that statistical
techniques may not be suitable for accurate forecasting in cases where there is a
presence of non-linear relationships among the features. As a result, researchers have
turned to various machine learning techniques to develop more effective and efficient
algorithms for forecasting purposes. According to the literature, ANN-based

techniques such as RNN and LSTM have shown promising results in various domains.
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However, these techniques have certain issues that make them unsuitable for electric
load forecasting. The most prominent issues include overfitting and the need for
optimization of a large number of parameters. On the other hand, SVR has been found
to overcome the problems associated with ANN-based methods. SVR algorithm's
performance depends on several factors, including the choice of kernel function, the
penalty factor (C), the tube size (¢), and the RBF kernel parameter (y). These factors
play a crucial role in determining the accuracy and effectiveness of the SVR algorithm
for electric load forecasting. Finding the optimal parameter values for SVR can be
challenging. One approach is to use an optimization algorithm like ABO. However,
ABO has drawbacks such as aimless searching and premature convergence. To address
these issues and achieve optimal SVR values for efficient and accurate forecasting,

there is a need to mitigate the shortcomings of the ABO algorithm.
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This chapter presents the deployed methodology in this study. This study followed the
outlined five (5) stages as the research framework as depicted in Figure 3.1 (adapted
from (Mustaffa, 2014)) based on the categorisation of major tasks involved viz. data

collection and preparation, algorithm design, algorithm development, and evaluation.

The source and description of data used in the study and the data treatment applied on
the data are hereby presented. At algorithm design stage, the description of steps
involved on how to enhance the SVR, population initialisation, exploration and
exploitation ability of ABO are also described in subsequent sections. The final

resulting hybrid SVR-eABO algorithm is used on the treated dataset for the ELF

CHAPTER THREE
RESEARCH METHODOLOGY

forecasting purpose. Figure 3.1 depicts the flow of the process.

Data Collection and Preparation
*
Design SVE-ADBQO hybrid algorithmn

Design ABO Population Initialisation
function
+

Formmlate ABO Exploration function
¥
Formulate ABQO Exploitation function

Algorithuin Developiment

*

Algorithim Evaluation

Figure 3.1. Research Process
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3.1 Data Collection and Preparation

This research employed four (4) secondary multivariate time-series datasets acquired
from the UCI machine learning repository, Mendeley data repository. The datasets are
as follows: (a) Individual household electric power consumption dataset. (b)
Appliances energy forecasting dataset (c) Turkey electricity load dataset, and (d)
Panama electricity load dataset. These datasets were selected based on the suitability
for electricity load forecasting as employed in several research in literature (L. M.
Candanedo et al., 2017; Gasparin et al., 2022a; Madrid & Antonio, 2021; Sinha et al.,
2021; Tutun et al., 2015).

3.1.1 Datasets

The dataset was partitioned into three on 70%, 15%, and 15% ratio for Training,

Validation and Testing respectively (Cheung et al., 2018).

3.2.1.1 Individual Household Electric Power Consumption Dataset

The dataset concerning time-series and multivariate household electric power
consumption was provided to the UCI repository by Georges Herbrail and Alice
Berard of EDF R&D situated in Clamart, France (Hebrail, Georges and Berard, 2012;
Sinha et al., 2021) . This dataset was donated to UCI repository on the 30th of August

2012. The description of the data set is as presented in table 3.1.

Table 3.1

Household Dataset

Dataset Characteristics Number Attribute No of Missing
of Type Instances values
Attribute
S
Multivariate,
A Time-series 9 Real values 2,075,259 Yes
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The dataset exhibits a presence of missing values within the measurement data,
accounting for approximately 1.25% of the total dataset rows. While all calendar
timestamps are recorded, a subset of these timestamps have corresponding
measurement values that are absent. In the dataset, the absence of a value is denoted
by the lack of information between two consecutive semi-colon attribute separators.
As an example, the dataset illustrates the occurrence of missing values specifically on
April 28, 2007. To address this issue, we employed a strategy to impute the missing
values by substituting them with the mean values of power consumption recorded
during the corresponding minutes from other years as performed in (Gasparin et al.,
2022a; Mocanu, Nguyen, Gibescu, & Kling, 2016). This is to ensure a more complete,
and representative dataset, allowing for a more accurate analysis of the power
consumption patterns across time. The description of the nine attributes of the

Household dataset is as shown in table 3.2.

Table 3.2

Description Household Dataset Attributes

Sno Attribute Description

1 Date Date in format dd/mm/yyyy

2 Time Time in format hh:mm:ss

3 Global_Active_Power  Household global minute-averaged active

power (in kilowatt)

4 Global_Reactive_Power Household global minute reactive power (in
kilowatt)

5 Voltage Minute-averaged voltage (in volt)

6 Global_Intensity Household global minute-averaged current

intensity (in ampere)

53



7 Sub_metering_1 Energy sub_metering No. 1 (in watt-hour of

active energy) *

8 Sub_metering_2 Energy sub_metering No. 2 (in watt-hour of

active energy) **

9 Sub_metering_3 Energy sub_metering No. 3 (in watt-hour of

active energy) ***

*: Corresponds to kitchen, containing mainly a dishwasher, an oven and a microwave

**. Corresponds to laundry room, containing a washing-machine, a tumble-drier, a
refrigerator and a light

***: Corresponds to an electric water-heater and an air-conditioner.

The target value that was forecasted from this dataset is the global active power. It
comprises of sub_metering_1, sub_metering_2, sub_metering_3 and the remaining

difference obtained.

3.2.1.2 Turkey Electricity Consumption dataset

This dataset represents a multivariate monthly record of electricity consumption
sourced from Turkey and was released in October 2016 (Tutun, 2016), encompassing
twelve (12) attributes. The dataset spans from January 1976 to December 2010,
comprising a total of four hundred and twenty (420) records. This dataset was
contributed to the Mendeley repository by Tutun Salih and has been notably employed
in scholarly works concerning electricity consumption analysis (Tutun et al., 2015). A

comprehensive depiction of the dataset's attributes can be found in Table 3.3.

Table 3.3

Description of Turkey Electricity consumption Dataset Attributes

Characteristics Number of  Attribute No of Missing
Attributes Type Instances values
Multivariate 12 Real 420 No

Description of Turkey electricity consumption attributes is as shown in table 3.4.
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Table 3.4

Description of Turkey Electricity consumption Dataset Attributes

Sno Attribute

Description

1. Date

2. Gross Income

Population
Load
Immediate load
Import

Export

Gross production

© 0o N o o &~ W

Transmitted energy
10. Net electricity Consumption
11. T.C electricity Consumption

12. Lost electricity

Time Stamp (monthly)

Amount of money at people disposal in

the current month

Number of present living people
Electricity load (MWh)

Immediate National electricity load (Mwh)
Import recorded for the month

Export recorded for the month

Total production for the month

Amount of electricity transmitted
Electricity consumed

Electricity demand

Electricity lost

The target value used in the forecast is attribute “Net electricity consumption, while

other attributes serve as features used by the developed model for making forecast

3.2.1.3 Appliances Energy Forecasting Dataset

This dataset represents a collection of energy consumption data for a residential house
in Belgium. It is characterised by being a time series dataset with multiple variables.

The data was gathered at intervals of ten (10) minutes, spanning over a duration of

four and a half months.

There are twenty-nine (29) distinct features in the dataset. These features pertain to

various aspects such as temperature and humidity, both of which were sourced from

the closest weather station, specifically Chievres Airport in Belgium.
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The dataset was initially utilised in a study conducted by (L. Candanedo, 2017),
contributed to the UCI repository on February 15, 2017. Additional details regarding
the dataset's characteristics and attributes can be found in Table 3.5.

Table 3.5

Appliances Energy Forecasting Dataset

Dataset Characteristics Number Attribute No of Missing
of Type Instances values
Attribute
s
Multivariate,
B Time-series 29 Real 19,735 No

The description of the twenty-nine (29) attributes of the Appliances dataset is as shown

in table 3.6.

Table 3.6

Description of Appliances Energy Forecasting Dataset Attributes

Sno Attribute  Description

1 Date Year-Month-Day Hour: Minute: Second

2 Appliance  Energy use of appliances (Wh)

S
3 Lights Energy use of light fixtures in the house (Wh)
4 Tl Temperature in Kitchen area (°C)

5 RH_ 1 Humidity in kitchen area

6 T2 Temperature in living room area (°C)

7 RH 2 Humidity in living room area

8 T3 Temperature in laundry room (°C)

9 RH_3 Humidity in laundry room

10 T4 Temperature in office room (°C)
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11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

RH_4
T5
RH_5
T6
RH_6
T7
RH_7
T8
RH_8
T9
RH_9
TO
Pressure

RH_Out

Wind speed
Visibility
Dew Point
RV1

RV2

Humidity in office room (%)

Temperature in bathroom (°C)

Humidity in bathroom (%)

Temperature outside the building (north side) (°C)
Humidity outside the building (north side) (%)
Temperature in Ironing room (°C)

Humidity in Ironing room (%)

Temperature in teenager room 2 (°C)

Humidity in teenager room 2 (%)

Temperature in parent’s room (°C)

Humidity in parent’s room (%)

Outside Temperature from Chievres airport weather station (%)
Outside pressure from Chievres airport weather station (%)

Outside humidity from Chievres airport weather station (mm

Hg)

Wind speed from Chievres airport weather station (m/s)
Visibility readings from Chievres airport weather station (km)

Dew point readings from Chievras airport weather station (A°C)

Random variable 1 (non-dimensional)

Random variable 2 (non-dimensional)

The target value of the dataset is the summation of power consumed by appliances and

lights, while other values served as the features to assist in determining the target value.

3.2.1.4 Panama Electricity dataset

This is an hourly multivariate dataset comprising of electricity load data along with

timestamp as index, temperature, wind, precipitation, and humidity as weather
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variables obtained from various sources in Panama. The dataset was obtained over
period of five years from 2015 to 2020. The dataset has a total of forty-eight thousand,
and forty-eight records (48,048) with no missing values. It is a publicly available
dataset used in literature for short-term electricity load forecast (Madrid & Antonio,

2021). The description of the dataset is as presented in table 3.7.

Table 3.7

Panama electricity load dataset

Dataset Characteristics Number of  Attribute No of Missing
Attributes Type Instances values
C Multivariate 7 Real and 49,048 No
binary

The description of the seven (7) features of the Panama dataset are as shown in table

3.8.

Table 3.8

Description of Panama dataset attributes

Sno  Attribute Description

1 National load National electricity load (MWh)
2 Holiday Holiday period (binary)

3 School School period (binary)

4 Temp Air temperature (°C)

5 Hum Specific humidity (%)

6 Wind Wind speed (m/s)

7 Precipitation Water droplet in air (I/m?)

In this dataset, the National load is the target value that has been forecasted from the
dataset, while other attributes serve as features used by the developed model for

making forecast.
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3.2 Data Pre-processing

This phase describes operations performed on the datasets before building the models
based on developed algorithms. A comprehensive evaluation was conducted on each
dataset to discern the extent of linearity exhibited between the features and the target
value. Furthermore, normalisation was applied on each feature to mitigating

prospective bias stemming from the features during phase of model training.

Household dataset is the only dataset with missing values. Nearly 1.25% of
observations are missing. The missing values were replaced with recorded data from
the corresponding time on the previous day, similar process was performed literature
(Gasparin et al., 2022b)

3.2.1 Test for Non-Linearity

The main reason behind selecting SVR algorithm instead of other classical statistical
time-series based forecasting models is due to the assumed non-linearity properties of
the targeted dataset. Hence there is need to ascertain the non-linearity or otherwise of
the dataset that will be use in this study. This study uses BDS test in Eviews Statistical
software for linearity test on the targeted datasets (Gerolimetto & Bisaglia, 2014; Lim
et al., 2005; M. O., 2015; Skare et al., 2019). The result of the test on each dataset
proved that there is absence of linearity in the dataset. The results are presented in
appendix A.

3.2.2 Data Normalisation

The quality of data fed into machine learning algorithm has a direct influence on the
quality of the produced result. Hence, systematic conversion of data to a more standard
format is a data processing task that cannot be over emphasised. The presence of
difference in magnitude in our datasets, if not addressed, can lead to difficulty of

learning by the employed algorithm. Therefore, to ensure the elimination of training
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bias by the algorithm, the data values of the datasets were normalised by using Decimal
Scaling Normalization DSN (Mustaffa & Yusof, 2011; Pan et al., 2016). The DSN
method works by moving the decimal point of the values of an attribute X to its
maximum absolute value. The number of decimal points moved depends on the
maximum absolute value of the dataset. Normalisation of data computed using
normalisation formula represented by Eqn. 3.1 (Pan et al., 2016). where given value in
the dataset is normalized to by Eqn 3.1

r_ i
X =To7 (3.1)

Where, x' represents a normalised value of the dataset and j represents a smallest value

such that max(|x;|)< 1

The selection of this normalisation method was informed based on the comparative
analysis result obtained in literature showing the superiority of DSN over Min-Max
and Z-score normalisation methods (Mustaffa & Yusof, 2011). Sample of normalised

Household table 3.9 and 3.10.

Table 3.9

Sample of Raw Household dataset

Datetime GAP GRP Volt Gl Total

12/16/2006  1209.176 34.922 93552.53  5180.8 20152.93

12/17/2006  3390.46 226.006 345725.3  14398.6 56507.67

12/18/2006  2203.826 161.792 347373.6  9247.2 36730.43

12/20/2006  2225.748 160.998 348923.6 9313 37095.8
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Table 3.10

Sample of Normalised Household dataset

Datetime GAP GRP Volt Gl Total

12/16/2006 0.120918  0.034922  0.093553  0.051808 0.201529

12/17/2006 0.339046  0.226006  0.345725 0.143986 0.565077

12/18/2006 0.220383  0.161792  0.347374  0.092472 0.367304

12/19/2006 0.166619  0.150942  0.348479 0.07094 0.277699

12/20/2006 0.222575  0.160998  0.348924  0.09313 0.370958

While sample of both raw and normalised data for Turkey dataset is as presented in

table 3.11 and 3.12.

Table 3.11

Sample of Raw Turkey dataset

Load IL IG EG GP TE GD LE NEC

2676.8 27016 0.3 0 1321.1 1194 1530.309 208.0999 1322.209577
2700.5 2736.9 0.2 0 1139.8 1118.2 1428.754 194.2898 1234.464261
27256 27624 245 O 1262.2 1214.6 1541.605 209.6359 1331.969144

IL, IG,EG, GP, TE, GD, LE, and NEC stand for Immediate Load, Immediate Growth,
Export Growth, Growth Production, Transmitted Energy, Gross Demand, Lost

Electricity and Net Electricity Consumption respectively.

Table 3.12

Sample of Normalised Turkey dataset

Load IL €] EG GP TE GD LE NEC

2676.8  2701.6 0.3 0.0 13211 11940 1530.3 208.1 13222
2700.5  2736.9 0.2 0.0 1139.8  1118.2 1428.8 1943 12345
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27256  2762.4 24.5 0.0 1262.2 12146 15416 209.6 1332.0
2664.7  2702.2 32.7 0.0 1219.7  1118.0 1428.7 1943 12345

3.3 Algorithm Design

This section presents the approach used to achieve the stated objectives of this research
(see Chapter 1, section 1.6). The process was carried out in two (2) phases. In the first
phase, classical ABO algorithm was used to optimise SVR hyperparameters. The
resulting algorithm is SVR-ABO. Details of the developed SVR-ABO algorithm is
presented in Chapter 4, while in the second phase the procedure for enhancing ABO

is presented.

In the beginning, the explanation on procedure for the design of new population
initialisation function for ABO algorithm is presented. The resulting algorithm from
the enhancement is termed as popABO. In addition, explanation on method used for
formulation of an enhanced exploration function for the ABO algorithm is presented.
The resulting algorithm from the enhancement of the exploration process is termed as
explrABO. Furthermore, the explanation of method used to enhance the exploitation
function of ABO is described. The resulting algorithm from the enhancement of the
exploitation process is termed as expltABO. In conclusion, all the mentioned
enhancement on ABO algorithm at population initialisation phase, exploration phase
and at exploitation phases were incorporated together and produce an enhanced ABO
(eABO) algorithm. The eABO algorithm was used to optimise SVR hyperparameters,

consequently producing a hybrid algorithm named SVR-eABO.

Details of the population initialisation function explrABO, expltABO, and detailed

description of SVR-eABO is presented in Chapter 4.
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3.3.1 SVR-ABO Algorithm
The classical ABO algorithm has been used in the SVR-ABO algorithm to

automatically tune the SVR parameters in this study. The ABO algorithm generated a
result after a series of iterations based on boundary values of the search space and

objective function, which was used to set the values of the SVR algorithm parameters.

Figure 3.2. SVR-ABO algorithm flow
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As presented in figure 3.2 that shows the flow of SVR-ABO algorithm. The ABO
algorithm has to be continuously checking during the running time whether there is an
improvement in the status of the obtained best global buffalo within the range of
specified number of iterations, because stagnation of the buffaloes simply indicates
that the buffaloes are trapped in local optima, hence need to restart again. The ABO
algorithm supposed to be running until the best value are achieved based on
termination criteria, which in this study case is the objective function.

3.3.2 ABO Enhancement

Several steps were explored to enhanced ABO algorithm at various stages of operation.
These enhancements were performed due to discovered shortcomings of ABO
algorithm as described in literature. The following sub-section provide detailed

description of the enhancement performed on ABQO at each phase.

3.3.2.1 Population Initialisation

The initialisation stage of the ABO is where the buffaloes are randomly initialised in
the search space. Population initialisation is of vital importance and is of high
sensitivity in meta-heuristic algorithms, this is because it has tendency to affect the
convergence speed and quality of the final solution (S. Zhang et al., 2019). In many
nature-inspired optimisation algorithms, the researchers obtain randomness through
uniform or Gaussian distribution (Tharwat & Hassanien, 2018). In the event where
information about defined boundary of solution is not available, researchers usually
resolved to using random initialisation method through chaotic map function (Zhang
et al., 2019). Chaotic map functions act like normal random generators but with better
dynamic and statistics properties (Tharwat & Hassanien, 2018) The usage of chaotic
map in the literature can be broadly categorised into (i) determining global optimal

solutions, (ii) generation of chaotic sequences such pseudorandom values, and (iii)
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providing solution to non-linear equation. In this study, Tent map based chaotic
function is used to initialise the buffalo population in the search space (Sayed et al.,
2017). Tent map function is mathematically presented as in Eqn. (3.2) (Dong et al.,
2018):

_(2x, x € (0,0.5) (3.2)
X+l = {2(1 —x)x €(0.5,1)

Tent map for chaotic function is being considered as simple, yet effective mapping
function with ability to provide better diversity than the one provided by normal

randomisation function.

Figure 3.3. Enhancement Population Initialisation phase (popABO)
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Figure 3.3 depict the position of utilising the Tent chaotic function in the enhancement

process of ABO algorithm.

3.3.2.2 Exploration Stage Enhancement

The standard African Buffalo Optimisation algorithm exploration process is based on
Eqgn. (3.3). However, as described in chapter two, section 2.5, this could easily result

into an aimless search.

Wi +m
Wiy = T 53)

Figure 3.4. Enhanced exploration phase of ABO (explrABO) flowchart

66



Hence, this research proposes an enhanced exploration process based on Lévy function
that will help to guide the exploration process of the buffalo population in the search
space. This was achieved by reformulating the updating equation Egn. (3.5) of ABO
with values generated from a Lévy-flight function. The dotted area in figure 3.4

denotes the step where the enhancement in ABO exploration process took place.

3.3.2.3 Exploitation Stage Enhancement

As pointed out in section 2.5.2 that ABO algorithm’s exploitation process depends on

Eqn. 3.4.

M1 = My + 1 (DGmax — Wie) + La(BPmax(ey — W) (3.4)
The ABO algorithm’s exploitation performance depends on the collective intelligence
of the herds by being intelligent enough to know the location of greener pasture which
is determine based on previous grazing positions. However, the formulation of the
exploitation process of ABO algorithm does not account for this feature (Igiri, Singh,
& Bhargava, 2019b). This exposes the algorithm to possible local optima entrapment
during exploitation (Igiri et al., 2019b, 2019a; Ben et al., 2017). Therefore, this study
uses Tent map function is used as dynamic function for both global and local fitness

functions of ABO algorithm as depicted in figure 3.5.
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Figure 3.5. Enhanced exploitation phase of ABO (expltABO) flowchart

3.3.3 SVR-eABO Algorithm Flow

The cumulative enhancement ABO algorithm as described in section 3.4.2.1 through
section 3.4.2.3 were used to produce an enhanced ABO (eABO) algorithm. The eABO
was used to determine optimal parameters of SVR resulting to developing a hybrid
SVR-eABO algorithm for forecasting purpose. The overall flow of the SVR-eABO

algorithm has been achieved as depicted in figure 3.6.
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Figure 3.6. Flowchart of SVR-eABO

3.4 Algorithm Development Environment

The proposed algorithm was developed using Python programming language with

incorporated Panda, NumPy and Matplotlib modules for dataframe, matrix and
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visualisation functions respectively. The algorithm was developed on a computer

system with specifications as shown in table 3.13.

Table 3.13

System Specification

Sno Item Specification

1 Operating system Fedora 38

2 Linux kernel 4.15.0-46-generic*

2 CPU Intel Core™ i7-6700HQ @ 2.6 GHz x 4
3 RAM 8 GB

4 HDD Samsung SSD 512GB

3.5 Evaluation

The performance of the developed algorithms in this study have been evaluated based
on several metrics ranging from statistical-based performance metrics (MAPE, MAE
RMSE and R?), Execution time, Convergence speed, Standard optimisation
benchmark functions and benchmarked with some selected swarm-based state-of-the-
art algorithms.

3.5.1 Performance Metrics

This study uses total of six (6) performance evaluation metrics of which four are purely
statistical based metrics. The use of metrics is to determine the performance of the
developed algorithms on different dataset used in this study as presented in Chapter 3,
(Section 3.2.1). As this study relies on the analysis of time series data, it is imperative
to emphasize the criticality of employing a suitable evaluation metric. The selection of
an appropriate evaluation metric assumes paramount importance as it serves the crucial

purpose of substantiating and justifying the obtained results. Four (4) statistical
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evaluation metrics have been chosen owing to their suitability for the evaluation of
time series data. The four (4) statistical metrics used for performance evaluation in this
study are Mean Absolute Percentage (MAPE) as used in (Agga et al., 2022; Halas et
al., 2017; Kristjanpoller & Minutolo, 2018), Root Mean Squared Error (RMSE) as
used by (Agga et al., 2022; Chow, 2021), Correlation Coefficient (R?) as used by
(Dieudonné et al., 2023; C. J. Huang & Kuo, 2018; Kari et al., 2018), and Mean
Average Error (MAE) as used by (Agga et al., 2022; Dieudonné et al., 2023). The
formulas for the MAPE, RSME, R?, and MAE performance evaluation metrics are

presented in equation 3.5, 3.6, 3.7, and 3.8 respectively.

N
MAPE = — o Ji 9)
= — * 100%
N ~ ai
(3.6)
N (a; — f;)?
_ 1=1\"1 l
RMSE = \/—N
S——)
¥ (a—7,) (3.7)
Rz i giEte it 1 3 4909
§V=1(ai - fl)z ’
N
MAE = l[z |ai - ﬁ|] (3:8)
N al-
n=1

Where N, represents number of observations, a;, f; represent ny individual observed
and forecasted values respectively. While 771 represents mean of the forecasted data

points of the dependant variable.

3.5.2 CPU Execution Time

The CPU execution time as the fifth metric for performance determination was also
used on both SVR-ABO and SVR-eABO (Ludwig & Schoene, 2012; Singhal et al.,

2023). Similarly, the execution time of SVR-popABO, SVR-explrABO, and SVR-
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expltABO were all evaluated to determine the effect of the enhancement performed on
ABO at each corresponding stage.

3.5.3 Percentage Accuracy

The Percentage Accuracy (PA), as the sixth (6) performance metric, has also been
employed in this study in order to determine the forecasting accuracy of developed
algorithms. The percentage Accuracy shows the degree of making right future forecast
in comparison to actual values of test data. The higher the PA value, the better in terms
of forecasting model performance . Percentage Accuracy is computed based on the

Eqgn 3.9 as follows:

N
N
a;

N
n=1

(3.9)
PA = 100 — (— ] x 100%)

3.5.4 Standard Optimisation Functions

The performance of the enhancement made on population initialisation, exploration
and exploitation phases of ABO were evaluated using selected standard optimisation
functions found in literature (Bashath et al., 2022; J. S. Chou & Pham, 2017; Jamil &
Yang, 2013; Soneji & Sanghvi, 2014). The optimisation functions employed to
evaluate the performance of SVR-popABO, SVR-explrABO, and SVR-expltABO
algorithms are as follows: F1 = Sphere, F2 = SumSquares, F3 = Whitley, F4 =
Griewank, F5 = Ackley, F6 = Pinter, F7 = Rastrigin, F8 = Schaffer, F9 = Rosenbrock,
F10 = Schwefel, F11 = Alpine, F12 = Dixonprice, F13 = Zakharov, F14 = Powell, F15
= Csendes, F16 = Weierstrass. These functions comprise of both unimodal and
multimodal meant to test exploitation and exploration capability of an algorithm due

to various level and type of challenges posed to optimisation algorithms.

These functions are widely utilised as benchmarks to evaluate the exploration and

exploitation abilities of optimization algorithms. The classical functions selected
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exhibit distinctive properties, with some characterized by multiple local minima
(multimodal), which can potentially ensnare a searching algorithm, while others
present wide plateaus containing challenging-to-reach single optima (unimodal). An
algorithm capable of effectively navigating through multimodal functions
demonstrates strong exploration capabilities, whereas one that accurately identifies a

single optimum in unimodal functions showcases excellent exploitation capabilities.

The suitability of these functions as optimization benchmarks is well-established in
the existing literature due to their intrinsic characteristics and challenges, they pose to
searching algorithms (Jamil & Yang, 2013). Table 3.14 provides a comprehensive
overview of the mentioned standard benchmarks, including essential details such as
their global optima position and value, modality, and corresponding mathematical
formulas. While results obtained for population initialisation, exploration and
exploitation phases are presented in Chapter 5, (Section 5.6), Chapter 6, (Section 6.6),

Chapter 7, (Section 7.6), and Chapter 8, (Section 8.6) respectively.

Table 3.14

Benchmark functions

Function Moda Search Global
Sno  Name Mathematical Formula lity space Minimum
D
fi= Z xf
1 Sphere = MM [—10,10] 0(0,0,...0)
D
A= Z ixf

2 SumSquares ‘ UM [—10,10] 0(0,0,...0)

D 2 1(100(x? - x)* + (1-x)°)
fs= ZZ [( 4000 )

3 Whitley i=1j=1

I
-

MM [-100,100] 0(0,0,...0)
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11

12
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15

16

Griewank

Ackley
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Schafferl

Rosenbrock
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Alpinel

Dixonprice

Zakharov

Powell Sum

Csendes

Weierstrass

i=
D
+ Z ilog10(1 + lBZ)

fr = Z[xlz — 10cos(2mx;) + 10]
=1

sin?(x? + x2)2 — 0.5

14 0.001(x2 + x2)?

D-1
fo= Z [100(xi+1 - xlz)z +(x — 1)2]
i=1

-5

i=1

a

D
fir= le,-sin(xi) + 0.1x;|
i=1

D

] 2
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Where MM and UM represent Multimodal and Unimodal respectively.

3.5.5 Benchmarks

The performance of SVR-ABO, SVR-popABO, SVR-explrABO, SVR-expltABO,

and SVR-eABO algorithms have been benchmarked with classical SVR (Smola &

Scholkopf, 2004), SVR-ABC, SVR-GA (Xie et al., 2017), SVR-Cuckoo (Dong et al.,
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2018) and SVR-PSO (Mohanad et al., 2018). Similarly, the results obtained from. The
final developed SVR-eABO algorithm has also been benchmarked with other meta-
heuristic based SVR algorithms as follows: SVR-GA and SVR-PSO.

3.6 Summary

This chapter presents the methodology followed to achieve the proposed objectives of
this study. Initially, the datasets have been described. Followed by procedures applied
to hybridise SVR with classical ABO for SVR hyperparameter optimisation that
produced SVR-ABO. Then description of procedures applied for the enhancement of
ABO algorithm at population initialisation, exploration, and exploitation phases that
produced eABO was presented. Subsequently, the process of hybridising SVR with
eABO that produced SVR-eABO was also presented. Finally, the metrics, standard
optimisation functions, and benchmarks algorithms used for evaluation at each phase

of the algorithm development were presented. Figure 3.7 depicts the flow of the study.
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Figure 3.7. General Flow of the Research
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CHAPTER FOUR
AN ENHANCED AFRICAN BUFFALO OPTIMISATION
ALGORITHM

This chapter presents all the milestones achieved in this study which were defined as
objectives in Chapter 1, (Section 1.6). The primary objective of this study as earlier
highlighted is to determine optimal hyperparameters of SVR algorithm using an
enhanced ABO as an optimising algorithm. However, before several enhancements on
ABO algorithm, classical ABO has been used as an optimisation algorithm for SVR.

Subsequent sections present detailed explanation of each milestone achieved.

4.1 SVR-ABO algorithm

In this section, we employed the classical ABO algorithm to automatically select
hyperparameters for the SVR algorithm. The hybridized SVR-ABO algorithm was
evaluated on four datasets mentioned in Chapter 3, (Sec 3.1.1), using regression
performance metrics viz: MAE, RMSE, MAPE, and R?. As already mentioned, the
SVR's performance heavily relies on hyperparameter selection, which can be
challenging. To address this, we integrated the ABO algorithm with SVR to optimize
the hyperparameters. The ABO algorithm's position values were used as potential
hyperparameter values, and the MAPE was minimized to determine the optimal

values. The SVR-ABO algorithm is presented in Algorithm 4.1.
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Algorithm 4.1. SVR-ABO Algorithm

Input: Training Data, P D, Max_I, I1, 12

/* P= Number of individual Buffaloes (population size), D= Problem
dimension (SVR control parameters), Max_I = Maximum number of
Iterations, 11= Cognitive Learning parameter, I12= Social Learning
parameter*/

Output: Optimal values for SVR (C, y and &) as Global best buffalo position

1: For buffaloi=0to P do:
2: Random initialisation of buffalo position vector m;, with three (3)
values based on [C, v and &] ranges using Gaussian distribution
3: Random initialisation of each buffalo movement vector wy,
4: End For
5. Initialiset=1
6:  While (t# Max_I) do:
7 For each buffalo i do:
8: Calculate fitness_value using SVR regressor
9: If buffalo’s fitness_value is better than bpy, k)
10: Set bpmax (k) = buffalo’s current fitness
11: End If
12: End For
13: Set bgmqx = Best previous buffalo’s fitness_value
14: /* Updating each buffalo’s movement and position */
15: For buffaloi=0to P do:
16: For dimensiond =0 to D do:
17: mixt = miy 4+ L(bgmax — wiy) + L, (bpf —
Wig)
Wit(;-l — (Witd*'/lmf;l
18: End For
19: End For
20: Sett=t+1
21: End While

22: Evaluate the solution on testing set

23: Result: The forecasting values and performance measurement on the testing
set
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The developed SVR-ABO algorithm has been evaluated on several datasets see
Chapter 3, (Section 3.2.1) and the result obtained has been evaluated based on selected

regression metrics see Chapter 3, Section 3.6.1.

4.2 An Enhanced Population Initialisation in African Buffalo Optimisation
Algorithm

In this section, the ABO algorithm part of SVR-ABO has been enhanced by modifying
the population initialization mechanism using the chaotic Tent-map function, resulting
in SVR-popABO. The conventional ABO algorithm's population generation is by
using Gaussian-based random numbers which hinders convergence speed, as
discussed in Chapter 3, Section 3.3. To overcome this limitation, this study introduced
the Tent map function for population generation within the search space as highlighted
in Algorithm 4.2. The performance evaluation of the enhanced algorithm utilised four
datasets detailed in Chapter 3, Section 3.1.1. The enhanced algorithm has been

evaluated using several metrics as explained in Chapter 3, Section 5.1.

Algorithm 4.2. SVR-popABO Algorithm

Input: Training Data, P D, Max_|, Iy, |2

/* P= Number of individual Buffaloes (population size), D= Problem
dimension (SVR control parameters), Max_| = Maximum number of
Iterations, 1= Cognitive Learning parameter, I,= Social Learning
parameter*/

Output: Optimal values for SVR (C, y and &) as Global best buffalo position
1:  For buffaloi=0to P do:
2: Random initialisation of buffalo position vector m;, with three (3) values
based on [C, y and &] ranges using distribution based on Tent-map
2x,x € [0,0.5]

function as follows: x,, .1 = {2(1 — x,)x € [0,0.5]
n re

Random initialisation of each buffalo movement vector wy,
End For
Initialiset =1

While (t# Max_I) do:

For each buffalo i do:
Calculate fitness_value using SVR regressor

N 20 kR w
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9: If buffalo’s fitness_value is better than bp,qx (k)

10: Set bpmax(k) = buffalo’s current fitness

11: End If

12: End For

13: Set bg.qx = Best previous buffalo’s fitness_value

14: /* Updating each buffalo’s movement and position */

15: For buffalo i = 0 to P do:

16: For dimension d = 0 to D do:

17: mfc_li—l = mfd + ll(bgmax - Witd) + lz(bpit - Wle)
witl = (Wfd':nf;l

18: End For

19: End For

20: Sett=t+1

21: End While

22: Evaluate the solution on testing set

23. Result: The forecasting values and performance measurement on the testing
set

4.3 An Enhanced Exploration in African Buffalo Optimisation Algorithm

In this section, the exploration part of the ABO algorithm has been enhanced by
incorporating Lévy flight. The standard exploration process in the ABO algorithm, as

described in Section 3.3.4, is based on Equation (4.1):

_ (w +my)
Wier = =

(4.1)

However, this approach can result in an undirected search and could led to premature
convergence due to inefficient in a wider search space as elicited Chapter 1, Section
1.4. To address this limitation and prevent early convergence and assist the buffalo
population to escape local minima during exploration, a McCulloch-based Lévy flight
function was used to enhance the exploration mechanism. The exploration process is

modified according to Equation (4.2):

_ (wptmy)

Wiy = AT @ Levy (D) 42)
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Here, Levy(L) represents random walks with step sizes following the Lévy
distribution, which is defined as:
Levy(M) =t™41<1<3 (4.3)

The non-linear relationship in the variance of a Lévy flight enables more effective
exploration of large unknown search spaces compared to models with a linear
relationship. The iterative process continues until the global optimum is reached,
thereby avoiding the problem of getting trapped in local optima that often occurs in
the ABO algorithm. The modified algorithm (termed as SVR-explrABO) is presented

in Algorithm 4.3.

Algorithm 4.3: SVR-explrABO Algorithm
Input: Training Data, P, D, Max_l, Ips, Ip2
/* P= Number of individual Buffaloes (population size), D= Problem
dimension (SVR control parameters), Max_I = Maximum number of
Iterations, i=present Iteration, Ip.= Cognitive learning parameter, Ip,= Social
Learning parameter, ¢ = Lévyflight */
Output: Optimal values for SVR (C, y and €) as Global best buffalo position
For buffalo i = 0 to P do:

2: Random initialisation of buffalo position vector m;, with three (3) values
based on [C, y and &] ranges using normal gaussian distribution

3: Random initialisation of each buffalo movement vector w,

4:  EndFor

5. Initialiset=1

6:  While (t# Max_I) do:

7 For each buffalo i do:

8: Calculate fitness_value using SVR regressor

9: If buffalo’s fitness_value is better than bpy, (k)

10: Set bpmax(k) = buffalo’s current fitness

11: End If

12: End For

13: Set bgmax = Best previous buffalo’s fitness value

14: /* Updating each buffalo’s movement and position */

15: For buffaloi=0to P do:
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16: For dimension d = 0 to D do:
17: mltt-ii-l = mitd + ll ® Levy()')(bgmax - Witd) +
lz(bpit - Witd)

wig 't = Wig +mig") +@ Levy(d)

18: End For
19: End For

20: Sett=t+1

21: End While

22: Evaluate the solution on testing set
23: Result: The forecasting values and performance measurement on testing set

4.4 An Enhanced Exploitation in ABO

In this section, the exploitation part of the ABO algorithm is enhanced through the

introduction of Equation (4.4).

fu: = pmin(x,1 — x) (4.4)
The modification aims to maximize the algorithm's exploitation potential, resulting in
improved convergence speed and avoidance of local optima entrapment (Tarkhaneh &

Shen, 2019). The modified algorithm (i.e SVR-expltABO) is presented below as

Algorithm 4.4.

Algorithm 4.4: SVR-expltABO Algorithm

Input: Training Data, P D, Max_, Ip1, Ip2

/* P= Number of individual Buffaloes (population size), D= Problem
dimension (SVR control parameters), Max_| = Maximum number of
Iterations, i=present lteration, Ip1= Cognitive learning parameter, 12= Social
Learning parameter, LLévyflight */

Output: Optimal values for SVR (C, y and €) as Global best buffalo position
1:  For buffaloi=0to P do:

Random initialisation of buffalo position vector m;, with three (3) values
based on [C, y and &] ranges using normal gaussian distribution

Random initialisation of each buffalo movement vector wy,
End For
Initialiset=1
While (t# Max_1) do:
For each buffalo i do:

N

N gk w
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10:
11:
12:
13:
14:
15:
16:
17:

18:
19:
20:
21:
22:
23:

Calculate fitness_value using SVR regressor
If buffalo’s fitness_value is better than bpax k)

Set bppmax (k) = buffalo’s current fitness
End If
End For
Set bgmax = Best previous buffalo’s fitness value
/* Updating each buffalo’s movement and position */
For buffalo i =0 to P do:
For dimensiond =0 to D do:
My = My + fu(bgmax —wy) + fu(bpmax(k) + Wk)
Wit = (wly + mi?
End For
End For
Sett=t+1
End While
Evaluate the solution on testing set
Result: Forecasting values and performance measurement on the testing set

4.5 SVR with an Enhanced ABO

In this section, SVR-eABO as hybrid algorithm has been introduced. The algorithm

combines the enhanced ABO (eABO) algorithm with the classical SVR algorithm. The

eABO algorithm incorporates the enhancements performed on ABO algorithm at

different stages of this study (population, exploration, and exploitation). The hybrid

SVR-eABO has been evaluated using datasets mentioned in Chapter3 (section 3.2.1)

The results obtained shows significant influence in selecting optimal SVR parameters

for optimisation purpose. Results are presented in Chapter 5 with detailed analysis and

interpretations. The SVR-eABO algorithm is presented in algorithm 4.5.

Algorithm 4.5: SVR-eABO Algorithm

Input: Training Data, P D, Max_l, Iy, |2

/* P= Number of individual Buffaloes (population size), D= Problem
dimension (SVR control parameters), Max_I = Maximum number of
Iterations, 11= Cognitive Learning parameter, 12= Social Learning
parameter*/

Output: Optimal values for SVR (C, y and &) as Global best buffalo position

For buffaloi =0 to P do:
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)

10:
11:
12:
13:
14:
15:
16:
17:

18:
19:
20:
21:
22:
23:

Random initialisation of buffalo position vector m; with three (3) values
based on [C, y and &] ranges using distribution based on Tent-map
2x,x € [0,0.5]
2(1 —x,)x €[0,0.5]
Random initialisation of each buffalo movement vector w,,
End For
Initialiset =1
While (t# Max_I) do:

function as follows: x,,,; = {

For each buffalo i do:
Calculate fitness_value using SVR regressor
If buffalo’s fitness_value is better than bpy,qx k)
Set bpmax (k) = buffalo’s current fitness
End If
End For
Set b g4 = Best previous buffalo’s fitness value
/* Updating each buffalo’s movement and position */
For buffalo i = 0 to P do:
For dimension d = 0 to D do:
mfgl = mitd + ll 02 LeUY(/D(bgmax - Witd) +
LL* (bp; — wig)
wig' = wig + mii") +@ Levy(2)

End For
End For
Sett=t+1

End While
Evaluate the solution on testing set
Result: The forecasting values and performance measurement on testing set

4.6 Summary

In this chapter, the algorithms developed through targeted enhancements to the African

Buffalo Optimization (ABO) algorithm were presented in detail. The chapter began

with the introduction of the SVR-ABO algorithm, which serves as a foundational

integration of Support Vector Regression and ABO algorithm. Subsequent sections

elaborated on specific enhancements, including improved population initialization,

exploration, and exploitation techniques, each aimed at bolstering the optimization

effectiveness of the ABO algorithm. The chapter concluded with the presentation of
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the SVR with an Enhanced ABO, showcasing the cumulative impact of these
modifications on algorithmic performance. This chapter emphasized the structured
development of these algorithms, laying the groundwork for the subsequent analysis
of their effectiveness on various datasets, which will be explored in the following
chapter. The focus on algorithmic enhancements sets a clear context for understanding
how these advancements contribute to improved forecasting modeling and

optimization in machine learning applications.
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CHAPTER FIVE
DISCUSSION AND ANALYSIS

This chapter transitioned from the development of the enhanced algorithms to their
practical application and evaluation. The algorithms introduced in the previous chapter
are rigorously tested on several datasets, allowing to assess their performance in real-
world scenarios. Utilizing the metrics outlined in Chapter 3, section 3.5, each of
developed algorithm effectiveness has been systematically evaluated thereby
providing a comprehensive analysis of each algorithm’s forecasting capabilities. The
results obtained from these experiments are thoroughly discussed, highlighting the
strengths and weaknesses of the enhanced algorithms in various contexts. This chapter
aims to offer valuable insights into how these advancements translate into measurable
improvements in performance, thereby establishing a clear link between algorithmic

enhancements and their impact on forecasting modeling outcomes.

5.1 Household dataset

In this section, the performance of various improved algorithms was evaluated using
a household dataset. Additionally, the performance of the final algorithm (SVR-
eABO) was compared to selected benchmarks, as discussed in Chapter 3, section 3.6.5,
using the same dataset. The results obtained from these evaluations are presented in
Table 5.1 and 5.2, as shown in sections 5.1.1 and 5.1.2 respectively.

5.1.1 Comparison Between Algorithms on Household Dataset

This section presents the results obtained from evaluating the five algorithms
developed in this study on Household dataset. The obtained results of the evaluations
are presented below in table 5.1, while the interpretation and analysis of the result

followed in subsequent sub-sections.
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Table 5.1

Comparative performance of algorithms on Household Dataset

SVR-ABO SVR- SVR- SVR- SVR-
popABO explrABO  expltABO eABO
C 4077.5628 1634.4331 1534.8185 1994.0814 1949.6717
Epsilon 0.2127 0.1897 0.1409 0.12090 0.0979
Gamma 0.0101 0.0032 0.0082 0.00350 0.0018
RMSE 679.2352 666.4441 495.2717 390.9594 327.4449
MAPE 3.0544 3.1949 2.2088 1.7844 1.4924
MAE 514.9804 521.2221 352.1861 273.9614 239.2793
R? 0.9941 0.9943 0.9969 0.9980 0.9986
PA (%) 96.9456 96.8051 97.7912 98.2156 98.5076
CPU Time 19.0383 16.3259 23.1244 19.4708 24.4815

5.1.1.1 Root Mean Square Error (RMSE)

The RMSE measures the average deviation between the predicted values and the actual
values. It provides an overall assessment of the accuracy of the algorithms. Among the
algorithms, SVR-eABO achieved the lowest RMSE (327.4449), indicating the
smallest average deviation from the actual values. SVR-expltABO (390.9594), SVR-
explrABO (495.2717), SVR-popABO (666.4441), and SVR-ABO (679.2352) follow
with progressively higher RMSE values. Figure 5.1 depict a visual comparison of

RMSE values of the developed algorithms.
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Figure 5.1: Comparison of RMSE (developed algorithms) on Household dataset

5.1.1.2 Mean Absolute Percentage Error (MAPE)

The MAPE measures the average percentage deviation between the predicted values
and the actual values. It indicates the relative accuracy of the algorithms. SVR-eABO
achieved the lowest MAPE (1.4924), indicating the smallest average percentage
deviation from the actual values. SVR-expltABO (1.7844), SVR-explrABO (2.2088),
SVR-popABO (3.1949), and SVR-ABO (3.0544) follow with progressively higher
MAPE values. Figure 5.2 presents visual comparison of MAPE values of the

developed algorithms.
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Figure 5.2: Comparison of MAPE (developed algorithms) on Household dataset

5.1.1.3 Mean Absolute Error (MAE)

The MAE measures the average deviation between the predicted values and the actual
values. It provides a similar assessment to RMSE but without considering the squared
values. SVR-eABO achieved the lowest MAE (239.2793), indicating the smallest
average deviation from the actual values. SVR-expltABO (273.9614), SVR-explrABO
(352.1861), SVR-popABO (521.2221), and SVR-ABO (514.9804) follow with
progressively higher MAE values. Figure 5.3 shows a visual comparison of MAE

values of the developed algorithms.
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Figure 5.3: Comparison of MAE (developed algorithms) on Household dataset

5.1.1.4 Coefficient of Determination (R?)

The R? value represents the proportion of the variance in the dependent variable that
is predictable from the independent variables. It quantifies the goodness-of-fit of the
algorithms. SVR-eABO achieved the highest R? (0.9986), indicating the highest
degree of predictability and goodness-of-fit. SVR-expltABO (0.9980), SVR-
explrABO (0.9969), SVR-popABO (0.9943), and SVR-ABO (0.9941) follow with
progressively lower R? values. Figure 5.4 demonstrate a visual comparison of R?

values of the developed algorithms.
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Figure 5.4: Comparison of R? (developed algorithms) on Household dataset

5.1.1.5 Percentage Accuracy (PA)

Percentage Accuracy represents the proportion of correctly predicted values. It
provides an assessment of the overall accuracy of the algorithms. SVR-eABO achieved
the highest PA of 98.5076%, indicating the highest proportion of correct forecasting.
SVR-expltABO was able to record PA value of 98.2156%, SVR-explrABO
(97.7912%), SVR-popABO (96.8051%), and SVR-ABO (96.9456%) follow with
progressively lower PA values. Figure 5.5 illustrates a visual comparison of PA values

of the enhanced ABO algorithm against on Household dataset.
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Figure 5.5: Comparison of PA (developed algorithms) on Household dataset

In summary, the enhanced algorithms (SVR-popABO, SVR-explrABO, SVR-
expltABO, and SVR-eABO) consistently outperformed the classical SVR-ABO
algorithm based on RMSE, MAPE, MAE, R?, and PA as evaluation metrics. SVR-
eABO achieved the best overall performance, with the lowest RMSE, MAPE, MAE,
and the highest R? and PA values.

5.1.2 Comparison of SVR-eABO Against Benchmarks on Household Dataset

In this section, the performance of the enhanced ABO algorithm as an SVR optimiser
has been compared with selected benchmarks based on five evaluation metrics, the
comparative performance of these benchmarks is as presented in table 5.2, while
subsequent subheadings present detailed analysis of the result presented in the

mentioned table.
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Table 5.2

Comparative performance of eABO algorithm against Benchmarks

SVR SVR- SVR-GA SVR-PSO SVR-CS SVR-

ABC eABO
C - 2717.5632 3537.7894 1045.0209 2917.6543 1949.6717
Epsilon - 0.21342 0.2142 0.2017 0.1941 0.0979
Gamma - 0.00634 0.0030 0.0029 0.0071 0.0018
RMSE 2222.0536  712.9428  773.2354  719.5689  732.8290  327.4449
MAPE 3.8343 3.2897 3.7564 3.4704 3.5261 1.4924
MAE 1008.7593  511.3731  591.0755  544.1635 537.1287  239.2793
R? 0.9366 0.9935 0.9923 0.9934 0.99041 0.9986
PA (%) 96.1657 96.7103 96.2436 96.5296 96.4739 98.5076
CPU Time 0.0287 15.2454 14.6549 18.0093 16.9270 24.4815

5.1.2.1 Root Mean Square Error (RMSE)

Lower RMSE values indicate better predictive accuracy, with less deviation between

the predicted and actual values. SVR-eABO achieves the lowest RMSE value among

all the algorithms, indicating superior predictive accuracy. SVR-ABC, SVR-GA,

SVR-PSO, and SVR-CS also show lower RMSE values compared to SVR, suggesting

improved accuracy in predicting the target variable. Figure 5.6 illustrates a visual

comparison of RMSE values of the enhanced ABO algorithm against benchmarked

algorithms.
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Figure 5.6: Comparison of RMSE (against Benchmarks) on Household dataset

5.1.2.2 Mean Absolute Percentage Error (MAPE)

MAPE measures the average percentage difference between the predicted and actual
values. Lower MAPE values indicate better predictive accuracy, with less relative
error in forecasting. SVR-eABO achieves the lowest MAPE value among all the
algorithms, indicating superior accuracy in predicting the target variable. SVR-ABC,
SVR-GA, SVR-PSO, and SVR-CS also show lower MAPE values compared to SVR,
suggesting improved accuracy in predicting relative errors. Figure 5.7 shows a visual
comparison of MAPE values of the enhanced ABO algorithm against benchmarked

algorithms.
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Figure 5.7: Comparison of MAPE (against Benchmarks) on Household dataset

5.1.2.3 Mean Absolute Error (MAE)

MAE measures the average absolute difference between the predicted and actual
values. Lower MAE values indicate better predictive accuracy, with less absolute error
in forecasting. SVR-eABO achieves the lowest MAE value among all the algorithms,
indicating superior accuracy in predicting the target variable. SVR-ABC, SVR-GA,
SVR-PSO, and SVR-CS also show lower MAE values compared to SVR, suggesting
improved accuracy in predicting absolute errors. Figure 5.8 depicts a visual
comparison of MAE values of the enhanced ABO algorithm against benchmarked

algorithms.
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Figure 5.8: Comparison of MAE (against Benchmarks) on Household dataset

5.1.2.4 Coefficient of Determination (R?)

Coefficient of Determination (R?) measures the proportion of variance in the target
variable that can be explained by the model. Higher R? values indicate a better fit of
the model to the data. SVR-eABO achieves the highest R? value among all the
algorithms, indicating the best overall model fit. SVR-ABC, SVR-GA, SVR-PSO, and
SVR-CS also show higher R? values compared to SVR, suggesting improved model
fit. Figure 5.9 presents a visual comparison of Coefficient of Determination values of

the enhanced ABO algorithm against benchmarked algorithms.
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Figure 5.9: Comparison of R? (against Benchmarks) on Household dataset

5.1.2.5 Percentage Accuracy (PA)

Percentage Accuracy (PA) represents the percentage of accurate forecasting made by
the model. Higher PA % values indicate better precision in predicting the correct
outcomes. SVR-eABO achieves the highest PA % value among all the algorithms,
indicating superior precision. SVR-ABC, SVR-GA, SVR-PSO, and SVR-CS also
show higher PA values compared to SVR, suggesting improved precision. Figure 5.10
depicts a visual comparison of MAE values of the enhanced ABO algorithm against

benchmarked algorithms.
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Figure 5.10: Comparison of PA (against Benchmarks) on Household dataset
SVR-eABO consistently outperforms the other algorithms in terms of RMSE, MAPE,
MAE, R?, and PA. The algorithm demonstrates the best overall predictive accuracy,

model fit, and precision among the tested algorithms.

5.1.2.6 CPU Execution Time

The time taken by each algorithm has also been evaluated. The results shows that
classical SVR algorithm was able to finish execution within the least amount of time.
It is followed by SVR-GA and SVR-ABC with CPU time of 14.6549 and 15.2454
seconds respectively. While Figure 5.11 shows a visual comparison of MAE values of

the enhanced ABO algorithm against benchmarked algorithms.
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Figure 5.11: Comparison of CPU Time (against Benchmarks) on Household dataset

5.2 Turkey dataset

In this section the performance of all enhanced algorithms was compared on Turkey
dataset likewise, the performance of the final algorithm (SVR-eABO) has been
compared with the selected benchmarks on the same dataset. Below are the
performances based on enhancement at each stage and in comparison, to the
benchmarks.

5.2.1 Comparison Between Algorithms on Turkey dataset

This section presents the results obtained from evaluating the five algorithms
developed in this study on Turkey dataset. The obtained results of the evaluations are
presented below in table 5.3, while the interpretation and analysis of the result

followed in subsequent sub-sections.
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Table 5.3

Comparative performance of algorithms on Turkey Dataset

SVR-ABO SVR- SVR- SVR-

PopABO  explrABO  expltABO SVR-ABO

C 22492718 1440.0861 1468.0306 410072 2161.9007
Epsilon 0.091542 0.3000 0.04879 0.0706 0.0915
Gamma 0.0989 0.0089 0.09902 0.00031 0.0097
RMSE 531.6825  473.3348 436.3436 367.2885 298.6726
MAPE 3.0895 2.9468 2.4841 2.1836 1.8522
MAE 3950339  376.7470 317.2447 288.4540 238.1015
R? 0.7908 0.8342 0.8591 0.90017 0.93398
PA (%) 96.9106 97.0532 97.5159 97.8164 98.1478
CPU Time 41.8235 45.4421 52.56740 84.1104 61.8235

5.2.1.1 Root Mean Square Error (RMSE)

Lower RMSE values indicate better predictive accuracy, with less deviation between
the predicted and actual values. SVR-eABO consistently achieves the lowest RMSE
value among all the variants, suggesting it has the best overall predictive accuracy.
SVR-popABO, SVR-explrABO, and SVR-expltABO also show lower RMSE values
compared to SVR, indicating improved accuracy in predicting the target variable.
SVR-ABO exhibits a slightly higher RMSE value, indicating a potential limitation in
terms of predictive accuracy. Figure 5.12 depict a visual comparison of RMSE values

of the developed algorithms.
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Figure 5.12: Comparison of RMSE (developed algorithms) on Turkey dataset

5.2.1.2 Mean Absolute Percentage Error (MAPE)

MAPE measures the average percentage difference between the predicted and actual
values. Lower MAPE values indicate better predictive accuracy, with less relative
error in forecasting. SVR-eABO consistently achieves the lowest MAPE value among
all the variants, indicating superior accuracy in predicting the target variable. SVR-
popABO, SVR-explrABO, and SVR-expltABO also show lower MAPE values
compared to SVR, suggesting improved accuracy in predicting relative errors. SVR-
ABO displays a slightly higher MAPE value, indicating a potential limitation in
predicting relative errors. . Figure 5.13 depict a visual comparison of MAPE values of

the developed algorithms.
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Figure 5.13: Comparison of MAPE (developed algorithms) on Turkey dataset

5.2.1.3 Mean Absolute Error (MAE)

MAE measures the average absolute difference between the predicted and actual
values. Lower MAE values indicate better predictive accuracy, with less absolute error
in forecasting. SVR-eABO consistently achieves the lowest MAE value among all the
variants, indicating superior accuracy in predicting the target variable. SVR-popABO,
SVR-explrABO, and SVR-expltABO also show lower MAE values compared to SVR,
suggesting improved accuracy in predicting absolute errors. SVR-ABO exhibits a
slightly higher MAE value than SVR, indicating a potential limitation in predicting
absolute errors. Figure 5.14 depict a visual comparison of MAE values of the

developed algorithms.
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Figure 5.14: Comparison of MAE (developed algorithms) on Turkey dataset

5.2.1.4 Coefficient of Determination (R?)

R2 measures the proportion of variance in the target variable that can be explained by
the model. Higher R? values indicate a better fit of the model to the data. SVR-eABO
consistently achieves the highest R? value among all the variants, indicating the best
overall model fit. SVR-popABO, SVR-explrABO, and SVR-expltABO also show
higher R? values compared to SVR, suggesting improved model fit. SVR-ABO
displays a slightly lower R? value than SVR, indicating a potential limitation in terms
of model fit. Figure 5.15 depict a visual comparison of Coefficient of Determination

(R?) values of the developed algorithms.
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Figure 5.15: Comparison of R? (developed algorithms) on Turkey dataset

5.2.1.5 Percentage Accuracy (PA)

Percentage Accuracy represents the percentage of accurate forecasting made by the
model. Higher PA values indicate better precision in predicting the correct outcomes.
SVR-eABO consistently achieves the highest PA value among all the variants,
indicating superior precision. SVR-popABO, SVR-explrABO, and SVR-expltABO
also show higher PA % values compared to SVR, suggesting improved precision.
SVR-ABO exhibits a slightly lower PA value than SVR, indicating a potential
limitation in terms of precision. . Figure 5.16 depict a visual comparison of Percentage

Accuracy of the developed algorithms.
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Figure 5.16: Comparison of PA (developed algorithms) on Turkey dataset

In summary, SVR-eABO consistently outperforms the other variants in terms of
RMSE, MAPE, MAE, R?, and PA. It demonstrates the best overall predictive accuracy,
model fit, and precision among the tested variants. SVR-popABO, SVR-explrABO,
and SVR-expltABO also show improvements in these metrics compared to the
conventional SVR model, although to a lesser extent than SVR-eABO. SVR-ABO, on
the other hand, exhibits performance comparable to or slightly worse than SVR.

5.2.2 Comparison of SVR-eABO Against Benchmarks on Turkey Dataset

In this section, the performance of the enhanced ABO algorithm as an SVR optimiser
has been compared with selected benchmarks based on five evaluation metrics, the
comparative performance is as presented in table 5.4 and detailed analysis is presented

in subsequent subheadings.

105



Table 5.4

Comparison of algorithm with benchmarks on Turkey Dataset

SVR  SVR-ABC SVRGA  SVR-PSO SVR-CS SVR-cABO
c 340.9366  303.7596 3432435 409.8105  2161.9007
Epsilon 0.1029 0.1029 0.0977 0.7901 0.0915
Gamma 0.0996 0.0994 0.0948 0.8941 0.0097
RMSE 5492810  548.6059  547.9467 532.4462  337.3901 298.6726
MAPE 3.2048 3.1903 3.1866 3.0970 2.9386 1.8522
MAE 4097200  407.8633  407.3945 395.9976  287.9617 238.1015
R? 0.7767 0.7773 0.7778 0.7902 0.9251 0.93398
PA(%) 967952  96.8097  96.8134 96.9030  97.0614 98.1478
CPUTime 00014  46.6948  47.4956 421758 459268 61.8235

5.2.2.1 Root Mean Square Error (RMSE)

SVR-eABO achieves the lowest RMSE value (298.6726), indicating superior accuracy

in predicting the target variable compared to the other algorithms. A lower RMSE

signifies that the predicted values are closer to the actual values, reflecting better

overall model performance. SVR-PSO (532.4462) and SVR-GA (547.9467) also

demonstrate relatively lower RMSE values, suggesting good predictive accuracy.

SVR-ABC (548.6059), SVR-CS (337.3901), and SVR (549.2810) have slightly higher

RMSE values, indicating larger forecasting errors. Figure 5.17 shows a visual

comparison of all benchmarked algorithms’ performances based on RMSE metric on

Turkey dataset.
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Figure 5.17: Comparison of RMSE (against Benchmarks) on Turkey dataset

5.2.2.2 Mean Absolute Percentage Error (MAPE)

SVR-eABO achieves the lowest MAPE value (1.8522), indicating the smallest average
percentage difference between the predicted and actual values. A lower MAPE
signifies better accuracy and a better fit of the model. SVR-PSO (3.0970), SVR-GA
(3.1866), and SVR-ABC (3.1903) also exhibit relatively low MAPE values,
suggesting good predictive accuracy. SVR-CS (2.9386) and SVR (3.2048) have
slightly higher MAPE values, indicating a slightly larger average percentage
difference between the predicted and actual values. Figure 5.18 shows a visual
comparison of values recorded by the SVR-eABO and the benchmarked algorithms

based on MAPE metric.
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Figure 5.18: Comparison of MAPE (against Benchmarks) on Turkey dataset

5.2.2.3 Mean Absolute Error (MAE)

SVR-eABO achieves the lowest MAE value (238.1015), indicating the smallest
average deviation between the predicted and actual values. A lower MAE suggests
better accuracy and a better fit of the model. SVR-PSO (395.9976) and SVR-GA
(407.3945) also demonstrate relatively low MAE values, suggesting good predictive
accuracy. SVR-ABC (407.8633), SVR-CS (287.9617), and SVR (409.7200) have
slightly higher MAE values, indicating a slightly larger average deviation between the

predicted and actual values. Comparative analysis is as presented in figure 5.19.
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Figure 5.19: Comparison of MAE (against Benchmarks) on Turkey dataset

5.2.2.4 Coefficient of Determination (R?)

SVR-eABO achieves the highest R? value (0.93398), indicating the best goodness-of-
fit compared to the other algorithms. A higher R? value signifies that a larger
proportion of the variance in the dependent variable is explained by the independent
variables. SVR (0.7767), SVR-ABC (0.7773), and SVR-GA (0.7778) also demonstrate
relatively high R? values, suggesting good explanatory power. SVR-PSO (0.7902) and
SVR-CS (0.9251) have slightly lower R? values, indicating relatively less variance

explained by the independent variables as presented in figure 5.20.
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Figure 5.20: Comparison of R? (against Benchmarks) on Turkey dataset

5.2.2.5 Percentage Accuracy (PA)

SVR-eABO achieves the highest PA value (98.1478%), indicating the highest
accuracy in predicting instances. A higher PA value suggests a higher proportion of
correctly predicted instances. SVR-CS (97.0614%) and SVR-ABC (96.8097%) also
demonstrate relatively high PA values, indicating good predictive accuracy. SVR-GA
(96.8134%), SVR-PSO (96.9030%), and SVR (96.7952%) have slightly lower PA
values, suggesting a slightly lower proportion of correctly predicted instances. Figure

5.21 presents the visual depiction of the algorithms’ performances based on PA values.
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Figure 5.21: Comparison of PA (against Benchmarks) on Turkey dataset

5.2.2.6 CPU Execution Time

SVR-PSO has the lowest duration (42.1758) among the algorithms apart from the
classical SVR algorithm that records overall lowest, indicating the shortest execution
time among the algorithms as presented in figure 5.22. A lower duration suggests faster
processing speed. SVR-GA (47.4956) also demonstrates relatively low duration,
indicating fast execution. SVR-CS (45.9268) and SVR-ABC (46.6948) have slightly
higher durations, suggesting slightly longer execution times. SVR-eABO has the

highest duration (61.8235), indicating the longest execution time.
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Figure 5.22: Comparison of CPU Time (against Benchmarks) on Turkey dataset

In summary, SVR-eABO consistently demonstrates superior performance across
multiple metrics, including the lowest RMSE, MAPE, MAE values, highest R? value,
highest PA, and relatively longer duration. This algorithm shows excellent accuracy,
good model fit, and a high proportion of correctly predicted instances but requires a
longer execution time. SVR-PSO and SVR-GA also exhibit competitive performance,
with relatively low RMSE, MAPE, MAE values, high R? values, and relatively shorter
duration. These algorithms provide good accuracy, decent model fit, and a high
proportion of correctly predicted instances while being computationally efficient.
SVR-ABC, SVR-CS, and SVR perform relatively well in terms of RMSE, MAPE, and
MAE values, with slightly higher values compared to SVR-eABO, SVR-PSO, and
SVR-GA. However, they have lower R? values and slightly lower PA. SVR-ABC and
SVR-CS have relatively shorter execution times, while SVR has a shortest execution

time.

Overall, SVR-eABO stands out as the best-performing algorithm in terms of accuracy

and model fit, but it comes at the cost of longer execution time. SVR-PSO and SVR-
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GA provide a good balance between accuracy and execution time. SVR-ABC, SVR-
CS, and SVR also offer decent performance, but they may have slightly lower accuracy

and model fit compared to the top-performing algorithms.

5.3 Appliances dataset

In this section, a comparative analysis was conducted to assess the performance of
various enhanced algorithms on the Appliances dataset. Additionally, the performance
of the final algorithm (SVR-eABO) was evaluated in comparison to the developed
hybrid algorithms at various stages mentioned using the same dataset as presented in
table 5.5. The subsequent results outline the performance enhancements achieved at
each stage and provide a comparative assessment against the final SVR-eABO.

5.3.1 Comparison Between Developed Algorithms on Appliances dataset

This section presents the results obtained from evaluating the five algorithms
developed in this study on Appliances dataset. The obtained results of the evaluations
are presented below in table 5.5, while the interpretation and analysis of the result

followed in subsequent sub-sections.

Table 5.5

Comparison of developed Algorithms on Appliances dataset

SVR-ABO SVR - SVR- SVR- SVR-

popABO explrABO  expltABO e¢ABO

C 11.3242 0.44910 0.2349 1.7912 3.0768
Epsilon 0.0934 0.02340 0.0206 0.0619 0.0534
Gamma 0.0030 0.02713 0.02321 0.0027 0.0009
RMSE 453.1873 430.0246 425.2804 452.6258  434.9740
MAPE 9.8529 9.6602 9.0144 8.6573 8.8263
MAE 0.3370 0.3473 0.3229 0.3166 0.3112
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R? 0.1311 0.2176 0.2350 0.1327 0.1994
PA (%) 90.1471 90.3398 90.9856 91.3427  91.1737

CPU Time 358.9556  404.8427 331.3231 421.3143  435.0065

5.3.1.1 Root Mean Square Error (RMSE)

RMSE as a metric that measures the average magnitude of forecasting errors has been
employed to measure the performance of the developed algorithms. Lower RMSE
values, such as those achieved by SVR-expltABO (0.4252) and SVR-eABO (0.4349),
indicate better accuracy and smaller forecasting errors. This suggests that the predicted
values are closer to the actual values. In contrast, higher RMSE values, as seen in SVR-
popABO (0.43), SVR-ABO (0.4531), and SVR (0.4559), indicate larger forecasting
errors. This may imply that the models have more difficulty to accurately predict the
target variable. Figure 5.23 depict a visual comparison of RMSE values of the

developed algorithms.

Figure 5.23: Comparison of RMSE on Appliances dataset
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5.3.1.2 Mean Absolute Percentage Error (MAPE)

MAPE measures the average percentage difference between predicted and actual
values. Lower MAPE values, such as those achieved by SVR-expltABO (8.6573) and
SVR-eABO (8.8263), indicate smaller average percentage differences and better
accuracy. Higher MAPE values, seen in SVR-popABO (9.6602), SVR-ABO (9.8529),
and SVR (9.7568), suggest larger average percentage differences, indicating a higher
degree of deviation between the predicted and actual values. Figure 5.24 depict a visual

comparison of MAPE values of the developed algorithms.

Figure 5.24: Comparison of MAPE on Appliances dataset

5.3.1.3 Mean Absolute Error (MAE)

MAE measures the average magnitude of forecasting errors without considering their
direction. A lower MAE value, as achieved by SVR-eABO (0.3112), indicates smaller
average deviations between the predicted and actual values. Slightly higher MAE

values in SVR-ABO (0.3370), SVR-popABO (0.3473), and SVR (0.3742) suggest
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slightly larger average deviations. Figure 5.25 depict a visual comparison of MAE

values of the developed algorithms.

Figure 5.25: Comparison of MAE on Appliances dataset

5.3.1.4 Coefficient of Determination (R?)

The coefficient of determination (R?) is utilized to assess the degree to which a model
fits the data. It quantifies the proportion of variance in the dependent variable that can
be explained by the independent variables. A higher R? value, exemplified by SVR-
eABO (0.8994), signifies a superior fit and a greater proportion of explained variance.
Conversely, lower R? values observed in SVR-popABO (0.8176), SVR-ABO
(0.8311), and SVR (0.8203) indicate a relatively less variance explained by the
independent variables and a lower level of goodness-of-fit. Figure 5.26 presents a

visual comparison of the R? values achieved by the developed algorithms.
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Figure 5.26: Comparison of R? on Appliances dataset

5.3.1.5 Percentage Accuracy (PA)

Percentage Accuracy (PA) measures the percentage of correctly predicted instances.
A higher PA value, such as that achieved by SVR-eABO (91.1737%), indicates a
higher accuracy in predicting instances. Slightly lower PA values, observed in SVR-
popABO (90.3398%), SVR-ABO (90.1471%), and SVR (90.2432%), suggest a
slightly lower proportion of correctly predicted instances. Figure 5.27 depict a visual

comparison of PA values of the developed algorithms.
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Figure 5.27: Comparison of Percentage Accuracy (PA) on Appliances dataset

5.3.1.6 CPU Execution Time

CPU execution represents the total execution time of the algorithms. Higher duration
values, as seen in SVR-expltABO (331.3231) and SVR-eABO (435.0065), indicate
longer execution times. Lower duration values, exhibited by SVR-popABO
(404.8427), SVR-ABO (358.9556), and SVR (0.3461), suggest faster execution times.
It is observed that, though SVR-eABO was able to record higher accuracy in terms of
PA, yet it was achieved at the cost of higher execution time. Figure 5.28 depict a visual

comparison of CPU time values of the developed algorithms.
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Figure 5.28: Comparison of CPU Execution Time on Appliances dataset

In summary, SVR-expltABO and SVR-eABO generally show better performance,
with lower RMSE, MAPE, MAE values, higher R? and PA values indicates higher
accuracy, lower forecasting errors, better goodness-of-fit, and a higher proportion of
correctly predicted instances. SVR-ABO, SVR-popABO, and SVR have slightly lower
performance metrics, suggesting slightly higher forecasting errors, lower goodness-of-
fit, and a slightly lower percentage of correctly predicted instances. SVR-expltABO
and SVR-eABO have longer execution times compared to SVR-popABO, SVR-ABO,
and SVR.

5.3.2 Comparison of SVR-eABO Against Benchmarks on Appliances Dataset

The performance of SVR-eABO has been compared with various Support Vector
Regression (SVR) variants, namely SVR-ABC, SVR-GA, SVR-PSO, SVR-CS, and
was evaluated using several performance metrics. These metrics include Root Mean
Squared Error (RMSE), Mean Absolute Percentage Error (MAPE), Mean Absolute

Error (MAE), Coefficient of Determination (R?), Percentage of Accurate Forecasting,
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and CPU execution time. Table 5.6 presents the comparative performance of the SVR-
eABO with benchmark algorithms.
Table 5.6

Comparison against eABO with Benchmarks on Appliances dataset

SVR SVR-ABC SVR-GA SVR-PSO SVR-CS SVR-

¢ABO

C - 23.3082 0.4001 22.0227 48.3921 3.0768
Epsilon - 0.0361 0.0836 0.0495 0.2108 0.0534
Gamma - 0.0004 0.0302 0.0008 0.9053 0.0009

RMSE 455.9657 4755483  444.0689  431.2986  480.6516 434.9863
MAPE 9.7568 9.0235 9.5019 9.1855 9.4894 8.8263
MAE 0.3742 0.3472 0.3205 0.3461 0.3701 0.3112
R? 0.8127 0.8143 0.8166 0.8213 0.8154 0.8299
PA (%) 90.2432 90.9765 90.4981 90.8145 90.5106 91.1737

CPUTime  0.3461 363.0456  355.8537  412.4585  329.6102 435.0065

5.3.2.1 Root Mean Squared Error (RMSE)

Among the SVR variants, SVR-PSO achieved the lowest RMSE value of 431.2986,
indicating superior performance in minimizing forecasting errors. It outperformed
SVR-eABO, which had an RMSE of 434.9863, as well as SVR-GA with an RMSE of
444.0689, SVR-ABC with an RMSE of 475.5483, SVR-CS with an RMSE of
480.6516, and the classical SVR model with an RMSE of 455.9657. These results
highlight that SVR-PSO is slightly better than the developed SVR-eABO algorithm in
terms of minimizing forecasting errors based on RMSE compared to the other SVR

variants and the classical SVR model on Appliances dataset. Figure 5.29 shows a
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visual comparative performance on RMSE metric of all the benchmarks and the

developed SVR-eABO algorithm.

Figure 5.29: Comparison of RMSE based on Benchmarks on Appliances dataset

5.3.2.2 Mean Absolute Percentage Error (MAPE)

In terms of MAPE, SVR-eABO achieved the lowest value of 8.8263, followed by
SVR-ABC with a MAPE of 9.0235, SVR-GA with a MAPE of 9.5019, SVR-PSO with
a MAPE of 9.1855, SVR-CS with a MAPE of 9.4894, and the classical SVR model
with a MAPE of 9.7568. These results indicate that SVR-eABO exhibited the smallest
average relative deviation from the true values in percentage terms, indicating its
superior performance in accuracy. Figure 5.30 shows a visual comparative
performance on MAPE metric of all the benchmarks and the developed SVR-eABO

algorithm.
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Figure 5.30: Comparison of RMSE based on Benchmarks on Appliances dataset

5.3.2.3 Mean Absolute Error (MAE)

SVR-eABO achieved the lowest MAE value of 0.3112, followed by SVR-GA with a
MAE of 0.3205, SVR-PSO with a MAE of 0.3461, SVR-ABC with a MAE of 0.3472,
SVR-CS with a MAE of 0.3701, and the classical SVR model with a MAE of 0.3742.
These results suggest that SVR-eABO minimized the absolute forecasting errors more
effectively compared to the other SVR variants and the classical SVR model. Figure
5.31 shows a visual comparative performance on MAE metric of all the benchmarks

and the developed SVR-eABO algorithm.
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Figure 5.31: Comparison of MAE based on Benchmarks on Appliances dataset

5.3.2.4 Coefficient of Determination (R?)

SVR-eABO achieved an R? value of 0.8299, followed by SVR-PSO with an R? of
0.8213, SVR-GA with an R? 0f 0.8166, SVR-CS with an R? of 0.8154, SVR-ABC with
an R? of 0.8143, and the classical SVR model with an R? of 0.1827. These results
indicate that SVR-eABO exhibited the highest ability to explain the variance in the
target variable compared to the other SVR variants and the classical SVR model.
Figure 5.32 shows a visual comparative performance on R? metric of all the

benchmarks and the developed SVR-eABO algorithm.
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Figure 5.32: Comparison of R? based on Benchmarks on Appliances dataset

5.3.2.5 Percentage of Accurate (PA)

SVR-eABO achieved the highest accuracy with a PA of 91.1737, followed by SVR-
ABC with a PA (%) of 90.9765, SVR-GA with a PA of 90.4981, SVR-CS with a PA
of 90.5106, SVR-PSO with a PA of 90.8145, and the classical SVR model with a PA
of 90.2432. These results indicate that SVR-eABO produced the highest proportion of
accurate forecasting among the SVR variants and the classical SVR model. Figure 5.33
shows a visual comparative performance on R? metric of all the benchmarks and the

developed SVR-eABO algorithm.
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Figure 5.33: Comparison of PA based on Benchmarks on Appliances dataset

5.3.2.6 CPU Execution Time

Among the SVR variants, classical SVR reported the shortest CPU execution time of
0.3461 followed SVR-CS with CPU execution time of 329.6102, followed by SVR-ABC
with a CPU execution time of 402.5136, SVR-GA with a duration of 421.2799, SVR-
PSO with a duration of 448.6087, and SVR-eABO with a duration of 518.4234. These
results indicate that classical SVR exhibited the highest computational efficiency
among the SVR variants considered. Figure 5.34 shows a visual comparative
performance on CPU execution time as evaluation metric of all the benchmarks and

the developed SVR-eABO algorithm.

125



Figure 5.34: Comparison of CPU Time (against Benchmarks) on Appliances dataset

In summary, the comparative analysis of the SVR variants reveals that SVR-eABO
consistently outperformed the other models in terms of RMSE, MAPE, MAE, R?, and
PA (%). These results indicate that SVR-eABO exhibited superior performance in
minimizing forecasting errors, and higher forecasting accuracy compared to the other
SVR variants and the classical SVR model. Additionally, classical SVR demonstrated
the highest computational efficiency among the SVR variants in terms of CPU

execution time.

5.4 Panama dataset

This section presents a comparative analysis evaluating the performance of several
enhanced algorithms on the Panama dataset. Furthermore, the performance of the final
algorithm, SVR-eABO, was assessed in comparison to the hybrid algorithms
developed at various stages, utilizing the same dataset. The subsequent results

delineate the performance improvements attained at each stage and provide a
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comparative evaluation against the culminating SVR-eABO approach. Table 5.7
provides performance values of the comparisons.

5.4.1 Comparison Between Developed Algorithms on Panama dataset

Table 5.7

Comparison against developed algorithms on Panama dataset

SVR- SVR- SVR- SVR- SVR-

ABO popABO  explrABO  expltABO eABO

C 0.5687 888.1198 888.1198 478.9911  560.8820
Epsilon 0.4130 0.0061 0.0061 0.0072 0.0073
Gamma 0.0862 0.0381 0.0381 0.0436 0.0394

RMSE 1406.6100 1425.9649 1429.3005 1423.1092 1419.3501
MAPE 3.5081 3.4897 3.4882 3.4792 3.4765

MAE 1021.1916 1017.0317 1016.1864 1039.0039 1012.9322
R? 0.8509 0.8495 0.8493 0.8500 0.8500
PA (%) 96.4919 96.5103 96.5118 96.5208 96.5235

CPUTime 621.2687  712.4568 798.6220 681.2687  786.2687

5.4.1.1 Root Mean Square Error (RMSE)

RMSE measures the average magnitude of forecasting errors. A lower RMSE value
indicates better accuracy and smaller forecasting errors, suggesting that the predicted
values are closer to the actual values. Among the algorithms, SVR-ABO has the lowest
RMSE value (1406.6100), followed closely by SVR-eABO (1419.3501). This
suggests that both algorithms have better accuracy and smaller forecasting errors
compared to the other algorithms. On the other hand, SVR-popABO (1425.9649),
SVR-explrABO (1429.3005), SVR-expltABO (1423.1092), and SVR (1425.1367)

have higher RMSE values, indicating larger forecasting errors. These algorithms
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demonstrate more difficulty to accurately predict the target variable. Figure 5.35

depict a visual comparison of RMSE values of the developed algorithms.

Figure 5.35: Comparison of RMSE on Panama dataset

5.4.1.2 Mean Absolute Percentage Error (MAPE)

MAPE measures the average percentage deviation between the predicted and actual
values. A lower MAPE value indicates better accuracy and smaller forecasting errors
in percentage terms. SVR-ABO (3.5081), SVR-eABO (3.4765), and SVR-popABO
(3.4897) have relatively lower MAPE values, suggesting better accuracy and smaller
forecasting errors in percentage terms. SVR-explrABO (3.4882), SVR-expltABO
(3.4792), and SVR (3.5260) have slightly higher MAPE values, indicating larger
forecasting errors in percentage terms. Figure 5.36 depict a visual comparison of

MAPE values of the developed algorithms.
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Figure 5.36: Comparison of MAPE on Panama dataset

5.4.1.3 Mean Absolute Error (MAE)

MAE measures the average magnitude of forecasting errors without considering their

direction. A lower MAE value indicates better accuracy and smaller forecasting errors.

SVR-eABO (1012.9322) has the lowest MAE value, followed by SVR-ABO
(1021.1916) and SVR (1025.3182). These algorithms exhibit better accuracy and
smaller forecasting errors compared to the other algorithms. SVR-popABO
(1017.0317), SVR-explrABO (1016.1864), and SVR-expltABO (1039.0039) have
slightly higher MAE values, indicating larger forecasting errors. Figure 5.37 depict a

visual comparison of MAE values of the developed algorithms.
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Figure 5.37: Comparison of MAE on Panama dataset

5.4.1.4 Coefficient of Determination (R?):

R? measures the proportion of the variance in the dependent variable that is explained
by the independent variables. A higher R? value indicates a better fit to the data. SVR-
ABO (0.508467) has the highest R? value among the algorithms, suggesting a better
fit to the data and a higher proportion of variance explained. SVR-eABO (0.4995) and
SVR (0.49543381) also exhibit moderate R? values, indicating reasonable fits to the
data. SVR-popABO (0.4949), SVR-explrABO (0.4925), and SVR-expltABO
(0.4968684) have slightly lower R? values compared to the other algorithms. Figure

5.38 depict a visual comparison of R? values of the developed algorithms.
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Figure 5.38: Comparison of R? on Panama dataset

5.4.1.5 Percentage of Accuracy (PA):

The analysis of the forecasting accuracy values revealed that all the evaluated
algorithms demonstrated similar performance, with values ranging from 96.4740% to
96.5235%. These results indicate that the algorithms are capable of making accurate
forecasting with a high degree of consistency. The narrow range of forecasting
accuracy values suggests that the algorithms have comparable capabilities in capturing
the underlying patterns in the dataset and generating accurate forecasting. However,
upon closer examination, SVR-eABO consistently outperformed the other algorithms
by achieving the highest forecasting accuracy of 96.5235%. This indicates that SVR-
eABO exhibits superior predictive capabilities compared to both the classical SVR
model and the other SVR variants considered in this study. The incorporation of
swarm-based ABO in SVR-eABO contributes to its improved predictive accuracy by
enhancing the optimization process. The ABO algorithm enables SVR-eABO to

effectively explore the solution space and find optimal parameter settings, leading to
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enhanced forecasting accuracy. The superior performance of SVR-eABO in terms of
forecasting accuracy suggests its potential as a preferred choice for predictive
modeling tasks. Figure 5.39 depict a visual comparison of PA values of the developed

algorithms.

Figure 5.39: Comparison of Percentage Accuracy (PA) on Panama dataset

5.4.1.6 CPU Execution Time

SVR demonstrates the shortest execution time among all the algorithms, with a
duration of 0.06721. This indicates that SVR is highly efficient in terms of CPU
execution. However, despite its longer duration of 621.2687, SVR-ABO was able to
achieve a higher percentage accuracy (PA) of 96.4919 compared to basic SVR. SVR-
popABO exhibits a further increase in duration compared to both SVR and SVR-ABO,
with a value of 712.4568. Although it incurs a higher computational overhead, SVR-
popABO still manages to achieve a slightly higher PA of 96.5103 compared to SVR-
ABO. On the other hand, SVR-explrABO has a significantly longer duration of

798.6220 compared to the previous algorithms. Despite this, SVR-explrABO was able
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to record a PA value of 96.5118. In contrast, SVR-expltABO demonstrates a slightly
shorter duration compared to SVR-explrABO, with a value of 681.2687. Interestingly,
SVR-expltABO achieves a slightly higher PA of 96.5208 compared to SVR-
explrABO. Finally, SVR-eABO exhibits a significantly longer duration of 786.2687
compared to SVR. However, the algorithm still manages to achieve a slightly higher
PA value of 96.5235. Figure 5.40 depict a visual comparison of CPU execution time

in seconds of the developed algorithms.

Figure 5.40: Comparison of CPU Execution Time on Panama dataset

Conclusively, SVR-eABO generally demonstrates better accuracy and smaller
forecasting errors compared to the other algorithms, as indicated by lower values in
RMSE, MAPE, and MAE. SVR-ABO has the highest R? value, suggesting a better fit
to the data and a higher proportion of variance explained. The other algorithms (SVR,
SVR-popABO, SVR-explrABO, SVR-expltABO) generally exhibit slightly higher
RMSE, MAPE, and MAE values, indicating larger forecasting errors and reduced

accuracy compared to SVR-eABO.
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5.4.2 Comparison of SVR-eABO Against Benchmarks on Panama Dataset

The performance of SVR-eABO has been compared with various Support Vector
Regression (SVR) variants, namely SVR-ABC, SVR-GA, SVR-PSO, SVR-CS, and
was evaluated using several performance metrics. These metrics include Root Mean
Squared Error (RMSE), Mean Absolute Percentage Error (MAPE), Mean Absolute
Error (MAE), Coefficient of Determination (R?), Percentage of Accurate Forecasting,
and CPU execution time. Table 5.8 presents the comparative performance of the SVR-

eABO with benchmark algorithms.

Table 5.8

Comparison against eABO with Benchmarks on Panama dataset

SVR SVR- SVR-
ABC SVR-GA SVR-PSO  SVR-CS eABO

C - 6.5927 0.0472 0.1124 17.0917 560.8820
Epsilon - 0.16215 0.0710 0.3149 0.0482 0.0073
Gamma - 0.0192 0.0636 0.4443 0.0390 0.0394

RMSE 14251367 1444.8945 1418.0946  1454.0075  1430.9824 1419.3501
MAPE 3.5260 3.5544 3.6329 3.6094 3.5902 3.4765

MAE 1025.3182 1036.1330 1059.3854  1052.4854 1031.5462 1012.9322
R? 0.4954 0.5004 0.4748 0.4814 0.4853 0.4995
PA (%) 96.4740 96.4456 96.3671 96.3906 96.4098 96.5235

CPU Time 0.06721 611.4653  624.9735 774.0880 683.8492  786.2687

5.4.2.1 Root Mean Square Error (RMSE)

The Root Mean Square Error (RMSE) analysis revealed that SVR-GA outperformed
SVR-ABC with a slightly lower RMSE value of 1418.0946 compared to 1444.8945.
Despite a higher RMSE of 1454.0075, SVR-PSO competes closely with SVR-GA in

predictive accuracy. SVR-CS maintained a competitive edge with an RMSE of
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1430.9824, while SVR-eABO, as the algorithm that has been benchmarked with these
just mentioned algorithms, showcased robust predictive capabilities with an RMSE of

1419.3501 as demonstrated in figure 5.41.

Figure 5.41: Comparison of RMSE based on Benchmarks on Panama dataset

5.4.2.2 Mean Absolute Percentage Error (MAPE)

SVR-eABO, the algorithm developed in this study, showcased exceptional accuracy
in comparison to the benchmarked algorithms. It achieved a notably low Mean
Absolute Percentage Error (MAPE) value of 3.4765, outperforming SVR-ABC
(MAPE = 3.5260), SVR-GA (MAPE = 3.6329), SVR-PSO (MAPE = 3.6094), and
SVR-CS (MAPE = 3.5902). This indicates that SVR-eABO vyielded highly precise

forecasting with minimal deviation from the actual values.

Furthermore, SVR-eABO demonstrated a superior performance across the board,
displaying the lowest MAPE value of 3.4765. Following SVR-eABO, SVR-CS

exhibited the next best performance with a MAPE value of 3.5902, implying a
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relatively higher but still commendable level of accuracy. SVR-GA, although slightly

less accurate, achieved a MAPE value of 3.6329.

The results highlight the effectiveness of SVR-eABO in minimizing forecasting errors
and enhancing the overall accuracy of the algorithm. This suggests the potential of
SVR-eABO for accurate forecasting and its superiority over the other benchmarked

algorithms in the specific context of this study.

Figure 5.42: Comparison of MAPE based on Benchmarks on Panama dataset

5.4.2.3 Mean Absolute Error (MAE)

SVR-eABO demonstrated exceptional performance with a MAE value of 1012.9322.
This indicates that SVR-eABO exhibited a lower error magnitude and higher accuracy
in comparison to the benchmarked algorithms, namely SVR-ABC, SVR-GA, SVR-
PSO, and SVR-CS. Specifically, SVR-ABC recorded a MAE value of 1036.1330,
implying a relatively higher error magnitude compared to SVR-eABO. Similarly,
SVR-GA and SVR-PSO displayed slightly higher error magnitudes, suggesting a

reduced level of accuracy in their forecasting. These findings reinforce the superior
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accuracy and improved forecasting capability of SVR-eABO over the other
benchmarked algorithms, as evident from its lower MAE value. SVR-eABO emerges
as a promising algorithm for minimizing error and enhancing accuracy in the specific
context of this study. Figure 5.43 shows the graphical representation of the algorithms’

performance.

Figure 5.43: Comparison of MAE based on Benchmarks on Panama dataset

5.4.2.4 Coefficient of Determination (R?)

The analysis of the Coefficient of Determination (R?) revealed distinct levels of
predictive power among the algorithms, namely SVR-ABC, SVR-GA, SVR-PSO,
SVR-CS, and SVR-eABO. Notably, SVR-eABO emerged as the frontrunner with an
R? value of 0.4995, indicating strong predictive abilities and high explanatory power.
Comparatively, the conventional SVR algorithm (SVR) achieved an R? value of
0.4954, suggesting a relatively lower level of predictive power. SVR-ABC exhibited
a slightly higher R? value of 0.5004, indicating better predictive performance than the
conventional SVR algorithm. SVR-GA and SVR-PSO demonstrated R? values of
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0.4748 and 0.4814, respectively, indicating a moderate level of predictive power.
SVR-CS achieved an R? value of 0.4853, indicating a similar level of predictive
performance as graphically presented in figure 5.44. Overall, these findings underscore
the superior predictive capabilities and higher explanatory power of SVR-eABO, as
reflected by its higher R? value when compared to the other algorithms considered in

this analysis.

Figure 5.44: Comparison of R? based on Benchmarks on Panama dataset

5.4.2.5 Percentage Accuracy (PA)

Upon assessing the Percentage Accuracy (PA), SVR-eABO exhibited superior
accuracy in making forecasting, achieving a value of 96.5235. This surpassed the
forecasting accuracy of SVR-ABC, SVR-GA, SVR-PSO, and SVR-CS. Specifically,
the conventional SVR algorithm (SVR) achieved a forecasting accuracy of 96.4740,
SVR-ABC attained 96.4456, SVR-GA achieved 96.3671, SVR-PSO reached 96.3906,

and SVR-CS obtained 96.4098.
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The higher PA % of SVR-eABO (96.5235) suggests greater precision and accuracy in
predicting outcomes compared to the other algorithms. These results, as depicted in
figure 5.45, highlight the superior predictive performance of SVR-eABO in terms of
forecasting accuracy, reinforcing its efficacy as a reliable model for generating

accurate forecasting.

Figure 5.45: Comparison of Percentage Accuracy based on Benchmarks on Panama

dataset

5.4.2.6 CPU Execution Time

The SVR algorithm has a CPU execution time of 0.06721. This indicates that it is the
fastest algorithm among the considered variants, with the lowest execution time.
However, it is important to note that its forecasting accuracy, as mentioned earlier, is
also the lowest. The SVR-ABC variant has a CPU execution time of 611.4653. This
suggests that it takes significantly longer to execute compared to SVR. Despite the
increased execution time, SVR-ABC achieves a higher forecasting accuracy,

indicating a trade-off between computational cost and accuracy.
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On other hand, SVR-GA variant has a CPU execution time of 624.9735. This is similar
to the CPU execution time of SVR-ABC, indicating that both variants require a
comparable number of computational resources. SVR-GA also achieves a higher
forecasting accuracy, suggesting that the additional execution time may be justified by
improved accuracy. The SVR-PSO variant has a CPU execution time of 774.0880.
This indicates a further increase in execution time compared to SVR-ABC and SVR-
GA. The SVR-CS variant has a CPU execution time of 683.8492. This execution time
is similar to that of SVR-ABC and SVR-GA, indicating comparable computational
requirements. SVR-CS achieves a slightly lower forecasting accuracy compared to
SVR-PSO but still outperforms SVR and SVR-ABC in terms of accuracy. The SVR-
eABO algorithm has a CPU execution time of 786.2687. This is the highest execution
time among the considered variants as can be seen from figure 5.46, indicating that it
requires the most computational resources. However, SVR-eABO also achieves the
highest forecasting accuracy, suggesting that the additional computational cost may be

justified by its superior performance.

Figure 5.46: Comparison of CPU Time (against Benchmarks) on Panama dataset
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In summary, the benchmark algorithms (SVR-ABC, SVR-GA, SVR-PSO, and SVR-
CS) generally exhibit higher CPU execution times compared to the base SVR
algorithm. However, they also achieve higher forecasting accuracies, indicating
improved performance. Among the benchmark algorithms, SVR-eABO has the
highest execution time but also the highest forecasting accuracy. This suggests that
SVR-eABO may provide a good trade-off between computational cost and predictive
performance, making it a promising algorithm for applications where accuracy is

crucial and computational resources are available.

5.5 Comparison Between Algorithms on Standard Optimisation Functions

In this section, the developed algorithm has been tested on sixteen (16) selected
optimisation functions as described in section 3.5.2. Some of these optimisation
functions have single local optima (unimodal), while others have several optima
(multi-modal) with unique global optima. The developed algorithm was run for
hundred (100) number of independent runs of which the mean and standard deviation
were recorded. This is to ensure that performance of each algorithm is adequately
represented. The test was performed with a hundred (100) buffaloes in three (3)
dimension space representing the number of dimensions of problem at hand. While
each algorithm was run within the range of thirty (30) function evaluations as
suggested in (Long et al., 2018; Mirjalili et al., 2014). The performance of the
enhanced ABO (SVR-eABO) algorithm based on cumulative enhancements
performed at all three stages (Population Initialisation, Exploration, and Exploitation)
has been compared with the SVR-PSO, SVR-ABC, SVR-CS and SVR-GA. The result

obtained is as presented in table 5.9 and table 5.10 respectively.
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5.5.1 Performance of Developed algorithms on Standard Optimisation Functions

Table 5.9

Comparison of developed algorithms on SOF

SVR-popABO SVR-explrABO SVR-expltABO SVR- eABO

Function C GO Mean Stdv Mean Stdv Mean Stdv Mean Mean
F1 M 0 5.47E-05 3.09E-05  8.10E-08 1.17E-07 1.65E-03 8.04E-03 8.31E-08 8.31E-08
F2 U 0 4.087E-05 3.92E-05 2.09E-09 3.63E-09 1.85E-06 1.82E-03 2.16E-09 2.16E-09
Fs3 M 1 1.29E+00 1.31E-01  4.04E+00 1.45E-01 1.08E+00 1.17E-05 2.51E-00 2.51E-00
Fa M 0 3.8385-02 2.46E-02 3.84E-08 3.64E-08 9.42E-02 3.37E-02 4.35E-06 4.35E-06
Fs M 0 5.38E-02 3.81E-02  4.64E-04 4,79E-04 3.37E+00 6.17E-01 4.92E-04 4.92E-04
Fe M 0 3.47E-03 2.21E-01  3.96E-06 5.10E-06 2.87E+00 1.56E+00 7.87E-03 7.87E-03
F7 M 0 4.261E-01 4.30E-01 1.08E-05 1.64E-05 1.37E+00 7.24E-01 1.16E-05 1.16E-05
Fs U 0 2.62E-04 2.49E-04 4.81E-06 5.97E-05 1.58E-04 1.83E-03 3.29E-06 3.29E-06
Fo U 0 4.76E+00 3.17E+00  1.35E+00 3.72E-02 2.01E-03 1.52E-03 5.94E-2 5.94E-2
F1o U 0 2.82E-02 2.11E-02  9.22E+01  4.12E+01 1.76E-03 1.25E-04 9.22E-04 9.22E-04
Fu1 M 0 7.05E-03 6.03E-03 4.65E-04 2.59E-04 6.06E-02 2.35E-02 1.99E-04 1.99E-04
Fi2 U 0 5.06E-05 3.41E-05 7.65E-02 6.31E-02 7.67E-07 1.05E-07 2.97E-07 2.97E-07
Fis M 0 3.29E-04 1.95E-04 1.05E-07 1.41E-07 5.68E-04 3.53E-02 1.35E-07 1.35E-07
F1a U 0 0.00E+00 0.00E+00  0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Fis M 0 2.94E-17 2.07-16 3.14E-25 1.06E-24 6.09E-10 1.19E-09 3.09E-21 3.09E-21
Fie M 0 5.71E-01 3.06E-01  8.19E-02 1.63E-02 6.54E-01 1.31E-01 9.70E-02 9.70E-02
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5.5.2 Performance of SVR-eABO against Benchmarks on Standard Optimization Functions

Table 5.10

Comparison against Benchmarks on Standard Optimisation functions

SVR-PSO SVR-ABC SVR-GA SVR-CS SVR-eABO

Function Cc GO Mean Stdv Mean Stdv Mean Stdv Mean Stdv Mean Stdv

F1 M 0 5.35E-04  3.22E-04 6.85E-07 5.38E-07 2.22E-02 1.33E-02 4.98E-04  4.71E-04  8.31E-08 2.52E-08
F2 u 0 5.29E-05  5.27E-05 6.89E-07 8.11E-07 2.00E-03 1.62E-03 5.38E-06  7.41E-06  2.16E-09 4.52E-09
F3 M 1 1.21E+00  7.86E-01 1.48E-03 1.81E-03 4.54E+00 1.056E+00 1.27E-02  3.82E-02  251E-00 2.30E-02
Fa M 0 7.10E-02  2.89E-02 1.16E-02 4.07E-03 1.03E-01 3.74E-02 2.92E-02  2.60E-02  4.35E-06 2.90E-08
Fs M 0 3.35E+00 1.12E+00 1.39E-01 1.04E-01 3.27E+00 6.28E-01  2.83E-01  3.92E-01  4.92E-04 5.07E-04
Fe M 0 4.46E-01  2.66E-01 5.03E-03 3.86E-03 3.07E+00 1.86E+00 3.49E+00 4.48E+00  7.87E-03 5.35E-03
F7 M 0 4.82E-01  4.11E-01 1.96E-03 1.74E-03 1.54E+00 7.00E-01  420E-02  2.07E-02  1.16E-05 1.93E-05
Fs u 0 1.49E-03  2.01E-03 2.63E-04 3.32E-04 2.47E-03 3.24E-03 3.06E-03  3.69E-03  3.29E-06 2.17E-05
Fo u 0 8.92E+00 6.79E+00 5.92E-02 7.57E-02 1.96E+01 1.42E+01  7.33E-01  5.92E-01  594E-02 3.91E-02
Fio u 0 9.50E+01 5.46E+01 2.78E-02 2.35E-02 1.81E+01 1.30E+01 1.86E+01 4.28E+01  9.22E-04 6.83E-03
Fu M 0 4.05E-02  1.52E-02 8.09E-03 3.90E-03 6.40E-02 2.46E-02 539E-02  2.99E-02  1.99E-04 2.73E-04
Fi2 u 0 7.70E-04  6.72E-04 8.17E-07 6.66E-07 1.01E-02 9.81E-03  9.03E-04  7.92E-03  2.97E-07 3.06E-07
Fi3 M 0 2.98E-03  1.96E-03 5.73E-05 4.20E-05 6.79E-02 4.08E-02 4.91E-02  4.28E-04  1.35E-07 1.62E-07
Fia u 0 0.00E+00 0.00E+00  0.00E+00  0.00E+00  0.00E+00  0.00E+00 0.00E+00 0.00E+00 (0.00E+00  0.00E+00
Fis M 0 5.54E-14  1.07E-13 7.19E-18 1.01E-17 5.86E-10 1.12E-09 6.29E-09  1.35E-11  3.09E-21 2.75E-21
Fis M 0 3.96E-01  1.95E-01 0.00E+00  0.00E+00 6.17E-01 1.71E-01  4.07E-01  191E+00 9.70E-02 7.71E-02
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5.6 Comparison of CPU Time Based on Standard Optimisation Functions

This section presents the performance of all the developed algorithms in this study viz
SVR-popABO, SVR-explrABO, SVR-expltABO, and the final SVR-eABO
algorithms in terms of CPU execution time. Likewise, the performance of the final
SVR-eABO algorithm has been compared with several benchmarks on the same CPU
time metrics. The following sub-sections presented the detailed analysis of the
obtained results.

5.6.1 CPU Execution Time of Standard Optimization Functions: Proposed
Algorithms

The data in table 5.11 reveals a distinct comparative performance assessment of the
four algorithms under evaluation: SVR-popABO, SVR-explrABO, SVR-expltABO,
and SVR-eABO. A careful examination of the execution times demonstrates that the
SVR-eABO algorithm consistently exhibits the lengthiest CPU processing times
across the majority of the benchmark functions. Conversely, the SVR-popABO and
SVR-explrABO algorithms emerge as the most efficient, displaying the shortest

execution times for the vast preponderance of the tested functions.

Further scrutiny of the performance trends indicates that Sphere, SumSquares,
Schaffer2, and Zakharov, consistently exhibit relatively lower execution times across
all four algorithms in comparison to the other functions evaluated. Conversely, the
Weierstrass function stands out as an outlier, with significantly elevated execution
times, particularly for the SVR-eABO algorithm. Additionally, the Whitley,
Griewank, Schwefel, and Dixonprice functions also demonstrate comparatively higher

execution times irrespective of the algorithm employed.
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The comparative analysis suggests that the SVR-popABO and SVR-explrABO
algorithms possess a distinct advantage in terms of computational efficiency, as
evidenced by their consistently expeditious execution times. Conversely, the SVR-
eABO algorithm, while potentially offering enhanced performance in other facets,
appears to be the most computationally intensive of the four, exhibiting the lengthiest
CPU processing times. The SVR-expltABO algorithm's performance falls within the
intermediate range, striking a balance between execution time and potentially other

relevant performance metrics.

Table 5.11

Comparison of developed algorithms on Standard Optimisation functions

SVR- SVR-
Functions SVR-POPABO explrABO expltABO SVR-eABO
Sphere 2.99E+00 3.54E+00 3.15E+00 5.82E+00
SumsSquares 2.76E+00 2.39E+00 2.28E+00 3.90E+00
Whitley 4.38E+00 4.62E+00 4.57E+00 7.03E+00
Griewank 2.96E+00 3.81E+00 3.77E+00 6.99E+00
Ackley 3.35E+00 4,07E+00 3.82E+00 5.03E+00
Pinter 3.24E+00 3.43E+00 3.39E+00 5.17E+00
Rastrigin 2.11E+00 3.71E+00 3.61E+00 4.91E+00
Schaffer2 2.13E+00 2.51E+00 2.48E+00 3.97E+00
Rosenbrock 3.16E+00 4.07E+00 3.97E+00 5.33E+00
Schwefel 4.17E+00 4.92E+00 4.63E+00 5.62E+00
Alpine 3.59E+00 3.64E+00 3.48E+00 4.41E+00
Dixonprice 2.98E+00 3.01E+00 2.79E+00 4.88E+00
Zakharov 2.38E+00 2.69E+00 2.42E+00 3.49E+00
Powell 2.27E+00 2.74E+00 2.61E+00 4.08E+00
Infinity 3.36E+00 3.42E+00 3.28E+00 4.25E+00
Weierstrass 8.32E+00 1.02E+01 9.07E+00 1.88E+02

145



5.6.2 CPU Execution Time of Standard Optimization Functions: Proposed
Algorithms vs. Benchmarks

Table 5.12 presents the execution time (CPU time) performance of the developed
algorithms - SVR-PSO, SVR-ABC, SVR-GA, SVR-CS, and SVR-eABO - across a
variety of benchmark functions. A thorough analysis of the data reveals several key
insights. Firstly, the SVR-PSO algorithm consistently exhibits the shortest execution
times across the majority of the benchmark functions, demonstrating its superior
computational efficiency. This is particularly evident in functions such as Sphere,
SumSquares, Schaffer2, Powell, and Zakharov, where the SVR-PSO algorithm

significantly outperforms the other algorithms.

In contrast, the SVR-eABO algorithm appears to be the most computationally
intensive, displaying the longest execution times for almost all of the benchmark
functions. This is particularly noticeable in the Weierstrass function, where the SVR-
eABO algorithm exhibits an exceptionally high CPU time of 2.100E+01, significantly

higher than the other algorithms.

The SVR-ABC and SVR-GA algorithms occupy an intermediate performance range,
generally exhibiting longer execution times than the SVR-PSO algorithm but shorter
times than the SVR-eABO algorithm. The SVR-CS algorithm's performance falls
within a similar range, with some functions, such as Sphere and SumSquares, showing
relatively efficient execution times, while others, like Weierstrass and Alpine,
demonstrate comparatively longer CPU processing times.

It is also noteworthy that certain benchmark functions, such as Sphere, SumSquares,
and Zakharov, consistently exhibit lower execution times across all five algorithms,
suggesting that these functions may be relatively less computationally demanding.

Conversely, functions like Weierstrass, Schwefel, and Alpine appear to be more

146



computationally intensive, with significantly higher execution times observed across

the algorithms.

Table 5.12

Comparison against Benchmarks on Standard Optimisation functions

Functions SVR-PSO  SVR-ABC SVR-GA SVR-CS  SVR-eABO
Sphere 2.72E+00 4.48E+00 6.92E+00 3.30E+00 7.04E+00
SumSquares  2.78E+00 4.46E+00 7.03E+00 3.81+00 7.98E+00
Whitley 4.29E+00 5.65E+00 8.56E+00 5.20E+00  10.04E+00
Griewank 2.96E+00 4.62E+00 7.10E+00 5.11E+00 8.93E+00
Ackley 3.72E+00 5.51E+00 7.92E+00 6.18E+00  10.17E+00
Pinter 3.49E+00 5.00E+00 8.05E+00 4.72E+00 8.79E+00
Rastrigin 2.83E+00 4.17E+00 6.95E+00 7.31E+00 9.07E+00
Schaffer2 2.73E+00 4.60E+00 7.25E+00 4.15E+00 8.59E+00
Rosenbrock  3.00E+00 4.54E+00 7.81E+00 6.43E+00 9.37E+00
Schwefel 5.07E+00 6.63E+00 9.83E+00 5.99E+00  12.77E+00
Alpine 3.65E+00 5.59E+00 8.75E+00 8.35E+00  11.07E+00
Dixonprice ~ 2.92E+00 4.73E+00 7.37E+00 5.33E+00 9.94E+00
Zakharov 2.77E+00 4.38E+00 6.91E+00 7.630E+00 10.83E+00
Powell 2.38E+00 3.71E+00 6.51E+00 5.74E+00 9.57E+00
Infinity 3.27E+00 5.03E+00 7.44E+00 5.53E+00 9.35E+00
Weierstrass 8.46E+00 1.05E+01 1.41E+01 1.85E+01 2.10+01

5.7 Summary

This chapter presents a comprehensive evaluation of the performance of several

enhanced variants of the SVR-ABO algorithm for electricity forecasting tasks. The

algorithms under investigation include SVR-ABO, SVR-popABO, SVR-explrABO,

SVR-expltABO, and SVR-eABO, which were tested on four real-world datasets: the
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Household dataset, the Panama electricity consumption dataset, the Appliances
electricity consumption dataset, and the Turkey electricity consumption dataset. The
study compared the performance of the developed SVR-ABO algorithms against SVR,
SVR-PSO, SVR-ABC, SVR-GA, and SVR-CS as benchmarks. Additionally, the
algorithms were evaluated using standard optimization functions to provide a broader

assessment of their capabilities.

The results obtained from this evaluation demonstrate that the enhancements made to
the original ABO algorithm have significantly contributed to improving its
performance as an optimization algorithm for SVR. The enhanced versions, such as
SVR-popABO, SVR-explrABO, and SVR-expltABO, consistently outperformed the
classical benchmarks in terms of finding optimal parameters for the SVR model,
leading to better electricity forecasting accuracy across the tested datasets.
Specifically, the SVR-popABO and SVR-explrABO algorithms exhibited the most
efficient computational performance, as evidenced by their shorter execution times
compared to the other algorithms. In contrast, the SVR-eABO algorithm, while
potentially offering enhanced performance in other aspects, was found to be the most

computationally intensive of the group.

Overall, this chapter provides valuable insights into the comparative performance of
the developed variants of SVR-ABO algorithms and their ability to optimize SVR
models for improved electricity forecasting accuracy. The findings demonstrate the
effectiveness of the enhancements made to the original SVR-ABO algorithm and its

potential for practical applications in the energy forecasting domain.
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CHAPTER SIX
CONCLUSIONS AND RECOMMENDATION

In this concluding chapter, the key findings of the research were encapsulated
reinforcing the significance of the enhanced algorithms developed throughout the
thesis. The chapter reflects on the contributions made to both knowledge and practical
applications, emphasizing how the advancements in the African Buffalo Optimization
(ABO) algorithm have enriched the field of optimization and machine learning. The
discussion extends to the practical implications of the work, illustrating the potential
for real-world applications. Furthermore, the chapter outlined recommendations for
future research endeavours, suggesting avenues for further exploration and
enhancement of the algorithms. This chapter serves as a comprehensive wrap-up,
summarizing the research journey and its impact while paving the way for continued

innovation in the domain.

6.1 Conclusion

Forecasting of electricity has witnessed major changes in past decades. Beginning
from conventional statistical techniques to Computational Intelligence (Cl) based
approaches which attracted attention of both academia and practitioners’ communities.
This is due to the peculiar nature of the electricity as it cannot be stored in large
quantities for future consumption taking into cognizance of the importance of electric
energy in present day economy as highlighted in chapter one. With respect to that
matter, vast studies regarding electricity load forecasting have been a promising, and
is presently an active area of research. This has been ascertained as demonstrated in
Chapter Two of this report. It is from the studied literature that the discovered existing

gaps in the forecasting technique that led to the developed SVR-eABO algorithm
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through various stages. This has been proven to be essential as the forecasting accuracy

Is of paramount importance.

Through using various real datasets of electricity load consumption, the SVR and ABO
algorithms were hybridised, for the purpose of optimising the SVR hyper-parameters.
This was meant to achieve the objective one of this study as highlighted in section 1.7.
In order to address the highlighted problems of ABO algorithm (see Chapter One,
section 1.5), enhancements introduced to the standard ABO algorithm were proven to

be of significance in respect of the problem under study.

A novel population generation function based on the Tent-map function was
introduced to replace the existing population generation method of the algorithm. The
objective of this enhancement was to generate a population of buffaloes with
maximum diversity, thereby facilitating improved solution generation. The outcomes
of the experimentation reveal a notable increase in the convergence speed across
different datasets. The enhanced algorithm demonstrates a faster convergence rate,
implying that it is capable of reaching optimal solutions more efficiently. This
improvement in convergence speed can be attributed to the enhanced diversity

achieved through the new population generation function.

The exploration function of the ABO algorithm was subsequently enhanced through
the application of the McCulloch algorithm, utilizing a Lévy mutation approach. This
enhancement aimed to generate random values with varying magnitudes and sporadic
occurrence of large values. By doing so, it facilitated the computation of the next
position of the buffalo within the search space, thereby mitigating the aimless search
characteristic of the ABO algorithm. This improvement effectively addresses the
potential issues of over-fitting and under-fitting. Consequently, the second objective

of this research has been successfully accomplished.
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Furthermore, the exploitation behaviour of the ABO algorithm has been enhanced
through the utilisation of the proposed function in section 3.3.5, specifically
incorporating the Tent-map-based approach. The integration of the Tent-map-based
exploitation function ensures a more comprehensive search of the solution space,
allowing the algorithm to overcome the limitations associated with local optima and

improve its overall performance.

In conclusion, the empirical results obtained from the implementation of the
enhancements in the ABO algorithm, as presented in the various stages discussed
above, demonstrate the improved forecasting capabilities of the developed hybrid
SVR-eABO algorithm. Notably, the combined implementation of SVR-popABO,
SVR-explrABO, and SVR-expltABO vyields significantly improved forecasting
results. By incorporating these enhancements, the new developed hybrid SVR-eABO
algorithm is able to overcome the issue of premature convergence, increased speed of
convergence and effective exploration in search space, thereby leading to more
accurate and reliable forecasting. Consequently, the fourth objective of this study has
been successfully accomplished.

6.2 Contribution

Several contributions have been made in the course achieving SVR-eABO, which can
be broadly classified into two categories: knowledge-based contributions and
practical-based contributions. Each of these categories can be further subdivided into

specific subcategories, as delineated in the subsequent sections.
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6.2.1 Knowledge Contribution

This study contributes the following contributions:

SVR-ABO algorithm that can automatically optimised SVR parameters (i.e.,
cost error (C), tube size (¢) and kernel parameter (y). This is defined as
objective one.

SVR-popABO algorithm that offers maximum diversity of population
generation. The improvement in searching capability thereby increases the
convergence speed of the developed SVR-eABO algorithm. This is defined as
objective two.

SVR-explrABO (presented as objective three) algorithm that addresses local
minima problem by enhancing the exploration ability of ABO algorithm by
preventing the buffaloes from aimless searching. This helps the algorithm to
have maximum potential in finding optimal solution.

The SVR-expltABO algorithm that also prevents the ABO algorithm from
falling into local optima. This is achieved through enhancing the exploitation
ability of the ABO algorithm. This is defined as objective four.

The SVR-eABO algorithm that combines all improvements made in ABO to
escape from premature convergence and increase convergence speed. This is

defined as fifth objective.

6.2.2 Practical Contribution

As all the algorithms developed in this study were tested on real-world datasets, the

results obtained shows that the algorithms can make good electricity consumption

forecast. Hence, this study has practical contributions as follows:

Improved resource planning: Accurate forecasts help utility companies plan

power generation and transmission capacity effectively, ensuring sufficient
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resources are available to meet demand and minimizing the risk of shortages

or overcapacity.

ii.  Cost optimisation: Accurate demand forecasts enable companies to optimise
operations and resource allocation, including power generation schedules,
electricity purchases, and energy storage management. This leads to cost

savings and efficient resource utilization.

iii.  Demand response management: Accurate electricity forecasts could allow
utility companies to anticipate peak demand periods and encourage consumers
to reduce electricity usage during those times. This helps balance the grid,

reduce strain, and prevent blackouts or disruptions.

iv. Energy efficiency initiatives: Accurate forecasts provide insights into
consumption patterns and highlight areas for energy efficiency improvements.
This information guides energy conservation initiatives, promotes sustainable

practices, and reduces overall energy consumption.

Overall, a model built for electricity forecasting can contribute to improved operational
efficiency, cost savings, grid stability, renewable energy integration, and promoting
energy conservation efforts.

6.3 Recommendations for Future Works

Based on the results and discussion presented in Chapter Five (5), the proposed SVR-
eABO hybrid algorithm has been proven to be more superior based on metrics as
compared to other forecasting algorithms. This indicates that the SVR-eABO possess
significant capability on the problem of interest. However, there is always other areas
that require further improvement in order to improve upon potential yet to be

discovered limitations.
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To begin with, classical ABO algorithm has a great speed of convergence as mentioned
in Odili & Noraziah, (2018). However, upon the execution of the proposed
improvements it has been noticed that the speed of convergence reduced to some
extent. This proves that achieving both speed of convergence and avoiding local
optima entrapment is a challenging task. However, it is an interesting challenge that
can be considered as future work to improve the speed of the algorithm without
sacrificing of its efficiency.

In addition, the algorithm performance was tested on a single computer system. It will
be interesting to measure the performance on grid computing architecture. By so doing,
the jobs between the buffaloes in ABO algorithm could be distributed to various

computing resources. This may lead to faster and more efficient computation.
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Appendix A

BDS Test Results on Datasets

Figure Al. Household dataset BDS test result

Figure A2. Turkey electricity consumption dataset BDS result
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Figure A3. Appliances electricity consumption dataset BDS test result

Figure A4. Panama electricity consumption dataset BDS test result
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