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Abstrak

Carta kawalan sering digunakan untuk memantau dan meningkatkan kualiti sesuatu
proses. Kaedah statistik ini boleh dikategorikan kepada carta kawalan tanpa memori
dan jenis-memori. Contoh carta kawalan tanpa memori ialah carta Shewhart yang
menggunakan maklumat sampel paling terkini dalam sebarang proses. Sebaliknya,
carta kawalan jenis-memori seperti hasil tambah kumulatif (CUSUM) dan purata
bergerak berpemberat eksponen (EWMA) yang menggunakan kedua-dua maklumat
lampau dan terkini dalam proses. Justeru, menjadikan carta lebih sensitif dalam
mengesan anjakan kecil hingga sederhana. Terbaharu, carta CUSUM dan EWMA
telah digabungkan untuk membentuk carta campuran EWMA-CUSUM (MEC) dan
campuran CUSUM-EWMA (MCE) bagi meningkatkan lagi keupayaan pengesanan
anjakan kecil. Walau bagaimanapun, carta MEC dan MCE adalah berasaskan min,
maka carta ini bergantung pada andaian kenormalan. Dalam keadaan
ketidaknormalan, penganggaran parameter berdasarkan min akan terganggu,
membawa kepada peningkatan isyarat palsu dan melengahkan pengesanan anjakan.
Untuk menyelesaikan masalah ini dan meningkatkan proses pemantauan, tiga
penganggar lokasi berasaskan-median (median, M-satu langkah terubahsuai (MOM),
MOM terwinsor (WMOM)) yang mempunyai titik kerosakan tertinggi (50%) telah
digunakan dalam pembinaan carta MEC dan MCE, menghasilkan enam carta teguh
yang baharu, dinamakan sebagai MECg, MECuo0s, MECwaon, MCEg, MCEwnownm, dan
MCEwumom. Melalui kajian simulasi yang mendalam menggunakan perisian
pengaturcaraan SAS, carta teguh yang dicadangkan telah diuji dalam beberapa
keadaan, menumpu kepada taburan g-dan-/, saiz sampel, anjakan reka bentuk dan saiz
anjakan. Parameter optimum untuk carta telah diterbitkan bagi mencapai pra-penentu
purata panjang larian (ARL) dalam keadaan normal dan seterusnya, keteguhan carta
dinilai berdasarkan ARL apabila tersimpang daripada taburan. Pengesahan prestasi
carta telah dijalankan menggunakan data kualiti air dan data jalur penanda. Daripada
simulasi, carta MEC berdasarkan penganggar MOM dan WMOM adalah terbaik
memandangkan carta tersebut mempunyai keteguhan dalam keadaan terkawal yang
baik dan keupayaan pengesanan yang pantas. Tambahan pula, carta yang dicadangkan
telah disahkan menggunakan data sebenar, mempamerkan kebolehgunaan carta secara
praktikal. Kedua-dua simulasi dan analisis data sebenar menunjukkan bahawa carta
berasaskan-median yang dicadangkan mengatasi carta piawai meliputi pelbagai
keadaan yang dinyatakan dalam kajian ini. Hasil kajian menawarkan kepada pengamal
carta alternatif berdaya saing untuk proses kawalan apabila data tersasar dari
kenormalan.

Kata Kunci: Purata panjang larian, carta kawalan jenis-memori, ketidaknormalan,
penganggar teguh, kawalan proses statistik.
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Abstract

Control chart is popularly used to monitor and improve the quality of a process. This
statistical tool can be categorized into memoryless and memory-type control charts.
An example of memoryless control chart is Shewhart chart which uses the most recent
information of samples in a process. Conversely, the memory-type control charts such
as cumulative sum (CUSUM) and exponentially weighted moving average (EWMA)
use both past and recent information in the process. Thus, make the charts more
sensitive in detecting small to moderate shifts. Recently, the CUSUM and EWMA
charts were combined to form mixed EWMA-CUSUM (MEC) and mixed CUSUM-
EWMA (MCE) charts to further improve small shift detection. However, these MEC
and MCE charts are based on mean, thus they rely on the normality assumption. Under
non-normality, parameters estimation based on the mean will be perturbed, leading to
increased false signal and delayed detection of shifts. To solve this problem and
improve the monitoring process, three median-based location estimators (median,
modified one step M-estimator (MOM), winsorized MOM (WMOM)) which possess
the highest possible breakdown point (50%) were used in the construction of the MEC
and MCE charts, yielding six newly robust charts, namely MECgz, MECuou,
MECwaom, MCEg, MCEyoum, and MCEwyoum. Via extensive simulation studies using
SAS programming software, the proposed robust charts were tested under several
conditions, focusing on g-and-/ distributions, sample sizes, design shifts and shift
sizes. Optimal parameters for the charts were derived to achieve the pre-determined
average run length (ARL) under normality and subsequently, the robustness of the
charts were assessed based on the ARL upon departure from the distribution.
Validation of the charts’ performance were conducted using water quality and marker
band data. From the simulation, the MEC charts based on the MOM and WMOM
estimators are the best since the charts have good in-control robustness and fast
detection capability. Moreover, the proposed charts have been validated using real
data, demonstrating their practical applicability. Both simulation and real data
analyses show that the proposed median-based charts outperform the standard charts
across various conditions specified in this study. The findings offer practitioners
feasible alternative charts for monitoring processes when the underlying data deviate
from normality.

Keywords: Average run length, memory-type control charts, non-normality, robust
estimators, statistical process control.
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CHAPTER ONE
INTRODUCTION

1.1 Background of Statistical Process Control

Statistical process control (SPC) is a collection of statistical tools that is used to
monitor, control, and enhance the quality of a process through variance reduction
(Montgomery, 2009). In utilizing the SPC tools to monitor and reduce variation,
samples are taken randomly from the production process, and some quality
characteristic is measured and plotted on a graph known as a control chart.
Subsequently, the presence of ‘harmful’ variations in the process shall be detected.
Consequently, a corrective action may be undertaken to remove the source of the

variations and hence, improve the quality of the process (Parkash et al., 2013).

Control chart was initially pioneered in the manufacturing process by Walter Andrew
Shewhart in the 1920s (Montgomery, 2009). It is used to differentiate between two
types of variations in the process, namely chance causes and assignable causes. The
chance causes of variation, also known as common causes, are inherent to the process
and thus, harmless. According to Swamidass (2000), examples of this type of variation
include “poor lighting, poor temperature and humidity, vibration of machinery,
inadequate maintenance of equipment, and inadequate environmental conditions due

to noise and/or dust.”

Conversely, the assignable causes of variation, generally known as special causes, are
variability larger than the background noise; typically caused by improperly adjusted

machines, human errors, or malfunctioning raw material (Montgomery, 2009).

1



Thus, their presence is considered harmful to the process as they cause the process

parameter(s) to shift to an out-of-control value.

Common causes of variation are present when a process is stable or in-control. In this
situation, both process parameters, i.e., the mean and standard deviation, are at their
in-control values, say u, and oy, respectively. Supposedly, at time t;, a special cause
occurs and results in a shift in the process parameter value, either y; > o and/or
01 > 0y. Thus, from time t; forward, the process is deemed unstable, i.e., out-of-
control, until the special cause variability is eliminated. Subsequently, bringing back

the process into an in-control state.

Control charts are designed to quickly detect a change in the process caused by special
causes. The change in the process, i.e., from an in-control state to an out-of-control
state, can easily be ascertained by looking at the graphical display of the measured
quality characteristic. Figure 1.1 illustrates a typical set-up of control charts which
includes a center line (CL), an upper control limit (UCL), and a lower control limit
(LCL). The UCL and LCL are chosen so that if the process is in-control, all the
measured quality characteristics are plotted within them. On the other hand, if a point
crosses either the UCL or LCL, the process is deemed to be out-of-control.
Subsequently, an investigation needs to be done to identify and possibly, remove the

special causes responsible for this out-of-control condition.



The graph depicted in Figure 1.1 is known as the Shewhart control chart; a simple but
useful statistical tool in SPC (Sinha & Vatsa, 2022). The chart has been used
extensively in the manufacturing process (Smajdorova & Noskievicova, 2022). Today,
its application has been extended to various fields of study including healthcare
(Maravelakis et al., 2022), education (Masnar & Namoco, 2024), engineering
(Alduais & Khan, 2023), finance (Yeganeh & Shongwe, 2023), and water quality

analysis (Balcerowska-Czerniak & Gorczyca, 2024).
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Figure 1.1 Shewhart Control Chart



Generally, control charts can be classified into memoryless and memory-type control
charts. The memoryless control charts, such as the Shewhart chart, only utilize
information from the most recent samples in the charts’ structure. Thus, lacking a
wealth of information to quickly detect a small shift in the process parameter values
(Ajadi & Riaz, 2017; Naveed et al., 2018; Wu, 2018). Meanwhile, the memory-type
charts combine information from both recent and past samples in the process, which
makes the charts sensitive to a change in the process even when the shift in the process
parameter value is relatively small. The following section focuses on commonly

discussed memory-type control charts in SPC literature.

1.2 Memory-type Control Charts

Two main examples of memory-type control charts are cumulative sum (CUSUM) and
exponentially weighted moving average (EWMA) charts. Other memory-type control
charts are mixed EWMA-CUSUM (MEC) and mixed CUSUM-EWMA (MCE) charts

which integrate both the EWMA and CUSUM control structures into one new chart.

The CUSUM control chart was introduced by Page (1954) to overcome the Shewhart’s
limitation in detecting small shifts. Unlike the Shewhart chart which utilizes only the
most recent sample in the process, the CUSUM chart focuses on cumulative
observations (based on past and recent samples) in constructing the graph displayed in
Figure 1.2. The CUSUM chart signals a change in the process from an in-control state
to an out-of-control state when either of its CUSUM statistics, denoted by C;* and C;i,

crosses the control limit, H.
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Figure 1.2 CUSUM Control Chart

Like the CUSUM, the EWMA chart also makes use of the past and recent information
from the samples. However, unlike the CUSUM chart which accumulates and treats
the past and recent samples equally, the EWMA control chart assigns weightage to all
samples in the process (Roberts, 1959). The weight decreases exponentially as the
sample gets older. In the EWMA structure, the weight is denoted by 4 € (0, 1]. A small
value of 4 reflects the high importance of including past samples. Subsequently, more
information can be retrieved and used to quickly detect small process shifts
(Hamasha et al., 2023). When 4 is getting close to 1, the EWMA chart becomes less
powerful to quickly detect a small change in the process. This is due to the emphasis
on more recent samples while discarding information supposedly obtained from older
samples in the process. Notably, when 4 = 1, only information from the most recent
sample is used in the chart’s structure; essentially reducing the EWMA structure to

Shewhart.



A distinction between the EWMA chart and the Shewhart chart is further highlighted
in Figure 1.3. The control limits of the EWMA control chart, as illustrated in the figure,
are time-varying limits; allowing a quicker detection when shifts occur early in the
process, especially when a small A is used to construct the chart
(Letshedi et al., 2021; Taboran & Sukparungsee, 2023). These time-varying limits
approach asymptotic limits, i.e., constant limits, as time increases. There is a negligible
difference between the time-varying and constant limits in terms of the EWMA
performance (Duong-Tran et al., 2022; Li et al., 2024; Thanwane et al., 2021). Using
either of the types of control limits, defined by UCL and LCL, the EWMA chart
concludes that the process is out-of-control when the chart statistic, Z;, exceeds the

control limit.
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Figure 1.3 EWMA Control Chart



Numerous SPC literature claimed that the EWMA and CUSUM charts are equally
good in detecting small process shifts (Kuiper & Goedhart, 2023; Li et al., 2024).
However, several researchers claimed that the EWMA chart is more convenient to

construct and employ since it resembles the Shewhart’s control structure

(Alduais & Khan, 2023; Malela-Majika et al., 2024).

The salient feature of both the CUSUM and EWMA charts, i.e., their flexibility to be
designed for a quicker small shift detection than the Shewhart chart, is retained in the
MEC and MCE charts. Introduced by Abbas et al. (2013a), the MEC chart uses the
EWMA chart statistic within the CUSUM structure. Conversely, the MCE chart,
which was introduced by Zaman et. al (2015), integrates the CUSUM chart statistic as
an input in the EWMA structure. Both the MEC and MCE charts aim to further
improve the performance of their predecessors, i.e., the CUSUM and the EWMA,
especially ~when a very small shift occurs in the  process
(Mohamadkhani & Amiri, 2022). Examples of the MEC and MCE charts are

displayed in Figures 1.4 and 1.5, respectively.
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Figure 1.4 MEC Control Chart
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Figure 1.5 MCE Control Chart



Utilizing features in the CUSUM, the MEC and MCE charts also use two chart
statistics to identify a change in the process. If either of the chart statistics goes across
the control limit, the process is classified as out-of-control. For instance, based on
Figure 1.4, the MEC;" indicates a rapid increase in the mean value before the value
shifts to an out-of-control at sample 30. A special cause may cause this variation in the
mean value and thus, needs to be removed from the process. Subsequently, bringing

the process back to an in-control state.

1.3 Problem Statement

Most of the parametric approaches in statistics rely on the normality assumptions
which may not be easily practiced (Hernandez, 2021; Kelter, 202I;
Osborne & Waters, 2019). Unfortunately, when data contain an outlier(s), which is a
common cause of non-normality, classical parameter estimations in the parametric
approaches are easily distorted (Knief & Forstmeier, 2021). Consequently, the

methods will perform badly, resulting in inaccurate findings (Brobbey, 2021).

The classical estimators, i.e., the sample mean and the sample standard deviation, are
very susceptible to outliers, that is, sensitive to even one aberrant value out of the n
observations (Aguinis et al. 2013; Domanski, 2020; Rousseeuw, 1991). As such, their
breakdown points (BP), i.e., the proportion of aberrant observations that an estimator
can handle before being underestimated or overestimated, are 0%

(Croux & Rousseeuw, 1992; Geyer, 2000).



The traditional approach control chart utilizes the classical estimators, such as mean
and standard deviation to determine the control limits and monitor the process. This
approach relies on a normal distribution (Jensen et al., 2006). The robust approach
utilizes robust estimators such as median, trimmed mean, winsorized mean and
M-estimator to make control charts less sensitive to non-normality or outliers
(Sanaullah et al., 2024). This approach are less dependent on distributional

assumptions and can perform well under various range of conditions.

Unlike the traditional approaches which focus on the classical estimators and thus, are
confined to the normality assumption, robust approaches are not influenced by outliers
(Cabana et al., 2021). This ensures that the methods work across many different
situations regardless of the data distributions. Thus, warrants reliable performance

upon its application in the real world.

In SPC, a better control of the Type I error can be achieved when control charts are
integrated with robust estimators (Ahsan et al., 2020). Works by Fan et al. (2023),
Santhanasamy and Abdul-Rahman (2022), and Wei et al. (2020), indicate the
superiority of the robust control charts which is more sensitive in small shift detection
upon far deviation from the normality assumption when compared to the standard
control charts. Yet, balancing the Type I and Type II errors is not easily achieved in
SPC especially when monitoring small process shifts (Lepore et al., 2022;

Mohammed, 2024; Zamzmi et al., 2024).
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Notably, it is important to quickly detect small process shifts and promptly address
them to minimize the occurrence of defective products
(Lietal., 2021; Quinino et al., 2021). Moreover, a fast detection of small process shifts
can save time and cost in manufacturing and business sectors

(Amiri et al., 2022; Naveed et al., 2024; Shamsuzzaman et al., 2022).

Therefore, in this study, an integration of highly robust location estimators was
conducted within the structure of the recently introduced memory-type control charts,
i.e., MEC and MCE charts. It is important to note that these two charts use classical

estimator in their standard structure, thus easily perturb by outliers.

Focusing on the small and moderate shift detection
(due to their merits in industries), the MEC and MCE charts were designed for these
shift sizes and their performances were later assessed based on the ARL under
non-normality. For such purpose, three median-based location estimators which
possess the highest BP were chosen, namely median, modified one-step M-estimator
(MOM), and the winsorized version of MOM (WMOM). By incorporating these robust
estimators into the MEC and MCE charts, six robust memory-type control charts were

formed for monitoring process location.
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1.4 Research Questions

Classical estimators used in control charts are highly sensitive to outliers and rely on
normality assumptions, making them less effective in real-world scenarios. To address
these issues, this study focuses on enhancing memory-type control charts (MEC and
MCE) by integrating robust location estimators. The research seeks to answer the

following questions:

1. How to develop the robust MEC charts for location using three median-based

estimators, i.e., median, MOM, and WMOM?

2. How to develop the robust MCE charts for location using three median-based

estimators, i.e., median, MOM, and WMOM?

3. How to evaluate the performance of the proposed robust MEC and MCE charts

against their standard charts based on the ARLy and ARL;?

4. How to assess the performance of the proposed robust MEC and MCE control

charts via water quality and marker band data?

These questions aim to develop more reliable control charts that are better suited for

monitoring processes in real-world applications.
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1.5 Objectives

The goal is to develop robust control charts which are able to control the Type I error
while improving the small shift detection capability of the MEC and MCE control
charts for monitoring process location parameter under non-normal data. To

accomplish this goal, the following objectives need to be achieved.

1)  Todevelop robust MEC charts for location using three median-based estimators,
1.e., median, MOM, and WMOM.

2)  Todevelop robust MCE charts for location using three median-based estimators,
1.e., median, MOM, and WMOM.

3) To evaluate the performance of the proposed robust MEC and MCE charts
against their standard charts based on the ARLy and ARL;.

4)  To assess the performance of the proposed robust MEC and MCE control charts

via water quality and manufacturing data.
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1.6 Scope of the Study

This study concentrates on two specific memory-type control charts, namely the MEC
and MCE charts. Both the MEC and MCE charts in this study are targeted to monitor
shifts in the process location where only the ARL was used to design and assess the
performance of the proposed charts under normal and non-normal distributions. The
focus is on small and moderate shift detection due to their merits in industries as
explained earlier. Thus, in this thesis, the newly proposed robust control charts were
designed to ensure optimal detection of small and moderate shifts. Albeit being
designed specifically for the small and moderate magnitude of shifts, the performance
of the memory-type charts is claimed to evenly match the one designed for large shifts.

This is covered in detail in Chapter 2.

1.7 Significance of the Study

The findings of this research contribute to the industries and practitioners such as
engineers, researchers and lecturers who can use the findings to be applied in their
fields or works regarding statistical quality control. Specifically, robust tools that can
be effectively used to reduce variations in the process. Through this study, robust
structures of control charts can be obtained. Subsequently, these robust control charts
can be applied to various types of process data without being confined to the normality
assumption. Moreover, these robust charts can perform optimally and reliably across

all ranges of shifts regardless of the underlying data distributions.
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CHAPTER TWO
LITERATURE REVIEW

2.1 Introduction

Normality assumption is crucial in determining the optimal and reliable performance
of standard charts, as it ensure the accurate calculation of control limits and effective
detection of process variations (Montgomery, 2009). A standard control chart uses
classical estimators in its control structure. Thus, under non-normality, its capability
to signal a change in the process across various magnitudes of shifts may not be reliable
as the control limits can either be underestimated (narrower) or overestimated (wider).
A narrow control limits are closer to the center, i.e the center line, there is a higher
probability that the plotting statistic will exceed the control limits, thus leading to an
increase in false signals (Type I error). However, a wide control limits will further
away from the center line, so become less sensitive to smaller change in the process
and leads to a decrease in the chart’s statistical power to quickly signal shifts
(Mao & Spencer, 2021). Therefore, it is imperative for researchers and practitioners to

explore alternative approaches that can solve this dilemma.

2.2 Measures of Control Chart’s Performance

The construction of a control chart involves two distinct phases, namely Phase I and
Phase II. Phase I is known as the retrospective phase as it involves historical data and
concentrates on the estimation of process parameters for control limits. Meanwhile,
Phase II is referred to as the prospective phase; commonly known as the monitoring

phase and concentrates on monitoring the prospective samples to eliminate possible
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variations in the process that may cause the process mean to shift to an out-of-control
value. In Phase II, the chart is being evaluated on how quickly it can detect the

out-of-control situation. This assessment is typically done based on the ARL.

As previously discussed in Section 2.1 earlier, non-normality will cause the width of
the control limits to either be narrower or wider in Phase I (Hernandez, 2020), leading
to an increase in false alarm rates or detection delay in out-of-control conditions,
respectively. These issues have been covered by many researchers in SPC across
different types of control charts. See for examples, Jardim et al. (2020), Noor et al.

(2023), and Yao et al. (2023).

2.2.1 Average Run Length (ARL)

Numerous SPC literature focuses on ARL as a fundamental tool for designing and
comparing the performance of control charts. See for examples, Atalay et al. (2020),
Kostyszyn (2021), Ottenstreuer et al. (2023), and Tegegne et al. (2022). Run length
(RL) can be defined as the sequence of samples plot on a chart until a signal (i.e., a
sample plots outside a control limit) is detected (Arslan et al., 2023; Chong et al.,
2022). Thus, the ARL represent the expected number of plotted samples before a signal

is detected (Batool & Haq, 2024).

When the process parameters are known, the Shewhart control chart with 3-sigma
control limits is expected to produce ARL = 370 under an in-control state when the
process underlying distribution follows normal (Murat et al., 2024;
Nidsunkid & Chometee, 2022; Zwetsloot et al., 2023). That is, a user can expect to

obtain a signal, on average, once in every 370 plotted statistics.
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The memory-type control charts, as discussed earlier, can be designed to produce an
in-control ARL value like the Shewhart control chart. See for examples, Muhammad
et al. (2023), Noor et al. (2024), Osei-Aning et al. (2017), Shafqat et al. (2023).
Meanwhile, the out-of-control ARL assesses how quickly an out-of-control situation

can be detected.

In this thesis, the in-control and out-of-control ARLs are henceforth denoted as ARLy

1

— ——. Under an
Probability of a signal

and ARL;, respectively, and can be computed as

in-control state, the probability of obtaining a signal is analogous to the Type I error,
i.e., false alarm rate. Meanwhile, under an out-of-control state, the probability of
obtaining a signal is equivalent to 1 — 8, where [ is the Type II error. Thus, an ideal
control chart shall produce a large ARL, but exhibits small ARL; values. The former
indicates the chart’s capability to minimize false signals while the latter indicates the
chart’s capability to quickly signal out-of-control conditions

(Sunthornwat & Areepong, 2020; Sunthornwat et al., 2024).

In designing a memory-type control chart, it is crucial to balance the Type I and
Type 1II errors carefully under normality, especially without the priori value of the
process parameters. A typical approach is to set ARLpbased on the user’s specification
and derive control limits in Phase I under normality to achieve that value. A lot of
studies focused on the nominal value of 370 as it is said to be a good balance between
searching for the nonexistent special causes of variation (i.e., false signals) and true
detection of process shifts which is a true signal. This is analogous to the Shewhart’s

selection criteria of the 3-sigma control limits (Montgomery, 2024).
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It is noted that the calculation of the ARL is sensitive to the departure of the normality
in the case of standard control charts (Chaudhary et al., 2023; Nazir et al. 2021;
Prabawani & Mashuri, 2020). The good balance ARL control chart, i.e., ARLy is
greater than ARL,, is favored (Chen et al., 2023). Many studies in SPC strive to obtain
the balance ARL chart when extending their work to cover non-normality effect on
control charts. However, this feat is not easily achieved as portrayed in the work by
Morales and Panza (2022) who focused on skewed distributions. A relatively small
value of an ARLyimplies that there are many false alarms, leading to a waste of time
and effort in searching for the non-existent special causes of variation in the process

(Does et al., 2020; Kumar & Singh, 2020; Tu & Zi, 2020).

While a higher ARL might seem favorable, it may lead to higher ARL; and thus, taking
longer to detect a change when a shift occurs in the process (Human et al., 2020). This
was hinted in the work by Human et al. (2011) when designing and assessing an
in-control performance of the EWMA control chart based on individual observations
under two contaminated normal distributions. The findings in Abdul-Rahman (2020)
concur with the previous study where the researcher extended the work to cover the
out-of-control performance of the EWMA, CUSUM, and generalized Shewhart charts
based on the rational subgroup data under specific g-and-4 distributions. Indeed, a high
ARLy leads to detection delay, specifically when the shift size is relatively small. This
beats the purpose of using a memory-type chart that is allegedly superior in detecting

tiny changes in the process data.
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Therefore, the emphasis on the robust in-control performance of the memory-type
charts is prominent in many SPC literature. A control chart is robust if its ARLy remains
close to the nominal value, say 370, under non-normal data which is the key

implementation for a reliable control chart.

2.3 Consequences of Applying Standard Control Charts to Non-Normal Data

Orr et al. (1991) defined outliers as the most extreme observations when compared to
the rest of the dataset in which their presence can negatively affect the parameter
estimation statistical models. In their study, Orr et al. (1991) have identified five
origins of outliers: (i) unrepresentative data, (ii) representative data but modeled
incorrectly, (iiii) error components, (iv) erroneous data entry, and (v) erroneous data

analysis.

In dealing with outliers, Ratcliff (1993) noted that an outlier is a response produced by
processes that are not part of the study interest. Therefore, he advised it to be removed
from the data to avoid any misinterpretation of the data. However, removing outliers
requires them to be properly identified which is not an easy task. While it is
acknowledged that outliers negatively impact classical parameter estimations to be
overestimated or underestimate such as mean, the idea to include or exclude outliers
from data before performing statistical analyses has been debated among many
researchers (Andre, 2022; Bondarenko et al., 2024; Fan et al., 2024; Karch, 2023;
Rakotosaona et al., 2020). Kruskal et al. (1960), for instance, argued that it would be
best to compare findings between two analyses; one that excludes the outliers and vice
versa; especially when the origin of those outliers is unknown. A comparable result
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between the two analyses implies that the presence of the outliers is not concerning.
Conversely, if the result differs significantly, the root causes of the problems need to
be examined before conclusions can be drawn from the research. Yet, this approach is

not feasible in practice as argued by Knott et al. (2023).

Outliers are typically observed as extreme values in the elongated tail of a skewed
distribution or at both ends of a symmetric distribution (Abdiweli, 2023; Domanski,
2020; Wada, 2020). These types of non-normal distributions are commonly
encountered across many control charts’ applications (John & Subhani, 2020; Riaz et
al., 2021; Taboran et al., 2021). Thus, with importance of control charts across many
areas in industries (Emad et al., 2023; Tegegne et al., 2022), there have been
continuous efforts over the years to mitigate the effect of outliers on the performance
of control charts. In the past decade, many of these efforts have concentrated on
robustifying control charts’ structure via the use of robust estimators (Ahsan et al.,

2020).

Typically, control chart utilizes classical parameters hence known as the standard
control chart which is constricted to the normality assumption. Nevertheless, in
practical situations, many processes such as semiconductor (Zhuang et al., 2023),
economic activity (Nariswari & Nugraha, 2020), and finance (Sunaryo, 2021) are not
normally distributed. Often, practitioners’ persistent use of the standard control charts
on these non-normal processes would result in misinterpretation of the signals.
Consequently, costing money and time (Galetto, 2020; Riaz et al., 2021; Shper et al.,

2023).

20



According to Yourstone and Zimmer (1992) concluded that the impact of skewness
and kurtosis could be substantial on the ARL of the standard Shewhart chart. As a
solution, the researchers proposed non-symmetrical control limits for the chart in
dealing with non-normal data. Thus, the chart is able to balance the Type I and
Type 1I errors. By using a heuristic approach, Samanta and Bhattacherjee (2004)
employed a weighted variance (WV) method to adjust Shewhart control limits when
subjected to skewed distributions. Aiming to control the occurrence of false alarms
when the underlying process follows skewed distributions, the method is not suitable

when dealing with symmetric heavy-tailed distribution.

2.4 Shifts Detection via Control Charts

The popularity of the Shewhart chart among practitioners in SPC is mainly due to its
simple structure that can be easily constructed. However, apart from the normality
issue, the Shewhart chart frequently fails to capture shifts in the process when the
change is not large (Alduais & Khan, 2023; Sabahno &Amiri, 2023). This limitation
is due to the exclusion of past information from the samples in the process; a restriction
commonly associated with a memoryless control chart (Diko et al., 2020;
Ottenstreuer et al., 2023; Peerajit, 2023). This limitation can be overcome through the

application of the memory-type control charts.

The CUSUM and EWMA are the two charts initially introduced as memory-type
control charts in SPC. These control charts provide better protection against small and
moderate process shifts (Aslam et al, 2021; Malela-Majika, 2021).

The merits of the CUSUM and EWMA charts have been widely explored by several
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researchers such as Aslam et al. (2021), Faisal et al. (2018), and Nazir et al. (2015)
who emphasized that these memory-type charts are good in controlling the false alarm

rate under non-normal distributions.

Research focus on the memory-type control charts have been seen increasing since
they were first introduced (Jensen et al., 2018). According to Sanusi et al. (2017),
Lucas (1982) explored the combination of the Shewhart-CUSUM (CSC) chart by
adding the Shewhart limits to CUSUM chart. This modification aimed to improve
detection of large shifts while maintaining CUSUM’s sensitivity to smaller shifts by
widening the control limits of the two charts. However, the study found that this
approach was less effective in detecting large shifts when compared to the standard
Shewhart chart. For further improvement, a combined Shewhart-EWMA (CSE) chart
was recommended by adding the Shewhart control limit to the EWMA chart (Lucas &
Saccucci, 1990). The chart has a good performance in terms of the ARL values, akin
to the CSC chart. Subsequent discussions on the combined Shewhart-EWMA control
chart and its application are covered by Malela-Majika et al. (2022), Nawaz and Han

(2020), and Shamsuzzaman et al. (2023).
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2.4.1 Detection Ability of Various Control Charts

The modification of the standard CUSUM chart to avoid delay in detecting
out-of-control situations was covered by Lucas and Crosier (1982). The approach,
known as fast initial response (FIR), is useful when a shift allegedly occurs right upon
start-up or restart. While the standard procedure requires the CUSUM chart statistics
(C; and C;") to be set at 0, the FIR procedure sets them to some positive (nonzero)
constant. This is to allow an out-of-control condition to be detected in fewer runs
unlike in the standard CUSUM procedure. The initial value is suggested at half of the
CUSUM limit, H (Lucas & Crosier, 1982). The same initial feature was incorporated
in the EWMA structure which is fast to detect than the standard EWMA chart (Steiner,

1999).

Unlike the EWMA chart, the CUSUM chart treats past and recent samples
indifferently (Kuiper & Goedhart; 2023). While this feature still makes the two charts
perform comparably (Haq et al., 2021; Rosa et al., 2022), an enhancement in both
charts’ structure is always sought-after in SPC due to the importance of monitoring
small process shifts in the industries (Ali, 2020; Li et al., 2024; Nawaz et al., 2021).
Yashchin (1989), for instance, proposed to assign weights to all past samples in the
CUSUM structure, just like the EWMA. The weighted CUSUM chart outperforms the

standard CUSUM in detecting small shifts (Shu et al., 2011).

The CUSUM charts as discussed previously in this section are designed based on a
specific shift size. Zhao et al. (2005) argued that in practice, the exact value of any

shift to occur in a process is typically unknown and may vary within a certain range
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than the predicted one. Thus, Zhao et al. (2005) proposed a dual CUSUM (DCUSUM)
chart to simultaneously monitor shifts in the process. The chart combines two CUSUM
charts where an out-of-control condition is signaled when either of the CUSUM charts
signals. The findings revealed that the DCUSUM chart surpasses the standard
CUSUM and CSC charts. Meanwhile, Jiang et al. (2008) introduced an adaptive
CUSUM (ACUSUM) chart which performs more superior than the adaptive EWMA
(AEWMA) chart by Capizzi and Masarotto (2003). Both adaptive charts make use of

a parameter adjustment on the standard charts.

The use of run rules schemes was introduced by Riaz et al. (2011) in the CUSUM
control structure for monitoring shifts in the mean. In their study, three run rules were
proposed, Rule 1: T(1,1, a, ©), Rule 2: T(2,3, b, ) and Rule 3: T(4,5, ¢, ). Rule 1
is designed to detect large shifts, relying on a single point falling above or below the
centerline. Rule 2 focuses on smaller shifts and requires two out of three consecutive
points falling outside of the centerline. Rule 3 requires four out of five consecutive
points falling outside of the centerline. The approach yields better ARL:, which can
quickly detect a shift in a process compared to the standard CUSUM and EWMA
charts. It was also claimed to outperform the ARL: of the enhanced CUSUM based on
the FIR and weighted approaches upon small to moderate shifts. Yet, the run rule
schemes as commonly seen in the Shewhart’s application (Shan & Huang, 2021;
Shongwe & Malela-Majika, 2022) shall be applied carefully since the boast in the
detection may come at the cost of increasing the false alarm rates (Koutras, 2007;

Lu et al.,, 2020; Yeganeh & Shadman, 2021). Abbas et al. (2011) proceeded to apply
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the run rule schemes in discussing the performance of the EWMA chart in which they

claimed to now improve the sensitivity of the chart for small shifts.

Recently, Abbas et al. (2013a) introduced a new chart for process location. The chart
retains the salient features from both CUSUM and EWMA as it was constructed by
integrating the EWMA chart statistics into the CUSUM original control structure.
As a result, this newly introduced chart; known as mixed EWMA-CUSUM (MEC),
claimed to surpass the original memory-type control charts in monitoring very small
shifts in the process. Abbas et al. (2013b) focused on combining both the CUSUM and
EWMA charts known as CS-EWMA to monitor shifts in process dispersion.
The CS-EWMA chart plots the cumulative sum of the exponentially weighted moving
averages to signal a change when a process is out-of-control. When comparing the
CS-EWMA chart’s performance against the standard CUSUM and EWMA charts
based on the ARL, it was shown to be superior for both small and large shifts in the

process dispersion.

Ajadi et al. (2016) enhanced the performance of the MEC control chart with various
FIR features, known as the MEC head start (MECHS), MEC fast initial response
(MECFIR), and the MEC with the combination of the FIR and head start (HS) features
denoted as MECFIRHS. They also proposed the MEC with run rules (MECRR) chart
via 2/3 run rule schemes. The proposed charts are then compared with existing charts,
including the standard CUSUM and EWMA, the FIR CUSUM and EWMA, as well
as the CUSUM and EWMA with 2/3 run rule schemes. The comparisons showed that

the proposed charts are superior in a smaller shift detection than the existing charts.
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Following the success demonstrated by Abbas et al. (2013a) and Abbas et al. (2013b),
Zaman et al. (2015) proposed an inverted version of the MEC control chart; nowadays
known as a mixed CUSUM-EWMA (MCE) control chart. The MCE control chart was
shown to be just as effective as the standard CUSUM and EWMA charts but better
than the standard Shewhart X chart across magnitudes of shifts. In their work,
Zaman et al. (2015) claimed that the inverted version of the MEC chart outperforms
the original version in detecting various magnitudes of shifts, &, starting from
6 = 0.5¢ if the MCE chart is designed for A > 0.5. Thus, meeting the demand of fast
detection of small process shifts in many areas of SPC. Measured in a standard
deviation unit, a small shift is defined to be less than 1.5 (Montgomery., 2009; Alwan
et al.,, 2023). For moderate and large shifts, § is usually set at 16 < § < 20 and

6 > 20, respectively.

While the Shewhart chart is known to be effective when § is large, Zaman et al. (2015)
have shown that the proposed MCE control chart can outrun the Shewhart’s
performance for varying choices of 4 unlike seen in the MEC chart’s performance.
This ARL finding was supplemented with the standard deviation run length (SDRL).
Notably, across a wide range of 4 used in designing the charts, the difference in the
SDRLs between the MCE and MCE charts diminishes  when

0=>1.250.

Continuing their previous work on monitoring process location, Zaman et al. (2016)
then focused on process dispersion. The MCE chart control structure now centered on

the transformation of the sample variance via three different approaches, yielding three
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new MCE charts denoted as MCE-T, MCE-J, and MCE-V. The findings revealed that
the performance of the three charts is superior by rapidly detecting the shifts process
dispersion when compared to the following dispersion charts: S-EWMA
(Castagliola, 2005), CUSUM-S? (Castagliola et al., 2009), and CS-EWMA

(Abbas et al., 2013b).

Most recently, Abbas (2018) proposed a newer version of the memory-type control
chart known as homogeneously weighted moving average (HWMA) chart. Unlike the
EWMA chart, the HWMA chart assigns equal weight to the previous samples and
claims to surpass the performance of the standard CUSUM, EWMA and MEC charts
when designed with a small A value. Yet, the practice of assigning equal importance

to the past samples is claimed to be biased, especially at the beginning of the process

monitoring (Knoth et al., 2021, 2023).

The improvement in the performance of the memory-type charts over the Shewhart
chart is laudable. Moreover, the recent MEC and MCE control charts offer an
advantage over the standard CUSUM and EMWA charts upon relatively small changes
in the process. Yet, they are still confined to the normality assumption as these standard
charts use the sample mean and the sample standard deviation in their control structure,

making them highly susceptible to the presence of outliers (Chaudhary et al., 2023).
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2.5 Approaches upon Deviation from the Normality Assumption

Continuous works in SPC have been concentrated on limiting the effect of outliers;
focusing on balancing the Type I and Type II errors on charts’ performance.

The following subsections explain the works involved in detail.

2.5.1 Nonparametric Control Charts

To accommodate many practical situations that usually involve non-normal data,
works concentrating on a distribution-free method, i.e., a nonparametric chart, have
been explored in SPC. Earlier on, many works concentrated on modifying the
Shewhart chart to not be restricted to the normality assumption. For instance,
Amin et al. (1995) proposed a nonparametric control chart for the Shewhart based on
sign test statistics. Later, Chakraborti et al. (2009) proposed two nonparametric
Shewhart control charts to monitor process location which limits are constructed via
two specified order statistics in Phase I data. The detection in Phase II employs some
runs-type signaling rules. The chart statistic can be any order of statistic in Phase II
data; the median is used in the study for its simplicity and robustness.
The results show that the proposed approaches are robust regarding the ARL

performance, supplemented by the SDRLs.

Chakraborti and Wiel (2008) also applied the Mann-Whitney Statistic on the
nonparametric Shewhart chart and observed that it is superior to the parametric
Shewhart chart, which is based on the sample mean, when the underlying process
follows heavy-tailed and skewed distributions. Moreover, Jones-Farmer et al. (2009)

proposed to use a mean-rank signal in signaling an out-of-control process via the

28



Shewhart chart. Their study strictly focuses on the use of a control chart in Phase I for
getting representative samples to be used for estimating the Shewhart’s limit later.
When comparing the mean-rank chart with the Shewhart X chart via the Monte Carlo
simulation, the nonparametric chart always signals better across normal and skewed

distributions.

Mukherjee et al. (2019) constructed nonparametric EWMA and CUSUM charts based
on the Wilcoxon rank-sum, Hogg-Fisher-Randle (HFS), and precedence test statistics
for monitoring process location. These nonparametric charts were identified as
NPEWMA and NPCUSUM, respectively, and showed superior performance over the
standard charts, particularly in detecting small and moderate shifts under skewed
distributions. Additionally, Abbas et al. (2020) introduced the nonparametric double
EWMA chart by utilizing the Wilcoxon signed-rank statistic for monitoring process
location. Their chart displayed an improved out-of-control performance when
compared to these nonparametric charts: the EWMA sign chart, as well as the CUSUM
and EWMA signed rank charts. Meanwhile, Yue and Liu (2022) opted for a
progressive approach for monitoring a change in process dispersion. Their more recent
work extended the progressive approach for a chart to simultaneously monitor process

location and dispersion parameters.

Many works on the nonparametric control charts focus on ranking information among
observations (Hawkins & Deng, 2010; Jones-Farmer et al., 2009; Li et al., 2010;
Zou et al., 2012). Some of the nonparametric control charts are based on data

categorization and category data analysis (Qiu & Li, 2011).
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However, the nonparametric charts are claimed to be less efficient (i.e., fail to signal
out-of-control conditions), compared to their parametric counterparts, and less popular
among control chart practitioners due to failure of incorrect non-rejection of untrue

null hypothesis (Smajdorova & Noskievicova, 2016).

To balance a good control of the false alarm rates while maintaining charts’ capability
to fast detect an out-of-control condition, robust approaches have been tackled by

many SPC researchers.

2.5.2 Robust Control Charts

As discussed in the previous section, nonparametric control charts pose some
limitation. Thus, a robust approach is favored in SPC since with non-rigid
distributional assumption, it is still considered to be part of the parametric models and

thus, retaining its merits (Huber, 1981).

Focusing on the robust approach, Langenberg and Iglewicz (1986) recommended
estimating process parameters of the Shewhart chart in Phase I via the trimmed mean
of subgroup averages and trimmed mean of subgroup ranges. This robust approach
was subsequently shown to be less affected by outliers than the standard
Shewhart X chart. Meanwhile, Rocke (1992) suggested control limits defined by the
mean of the subgroup interquartile ranges in constructing the Shewhart charts for
monitoring location and dispersion, separately. Both location and dispersion robust

charts were claimed to be good in detecting occasional outliers.
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Meanwhile, Hawkins (1993) proposed to winsorize the observations in Phase I in
limiting the effect of outliers on the parameter estimation. A winsorized approach
focuses on limiting the effect of outlier, rather than eliminating it. The identified
outliers that are supposedly trimmed will now be replaced by the highest and lowest
end of the ‘clean’ data (Dixon & Tukey, 1968; Tukey & McLaughlin, 1963). Thus,
keeping the original number of observations. Dixon and Tukey (1968), and Rivest
(1994) claimed that this approach works well under skewed distributions. The
approach was first taken by Hawkins (1993) in SPC by winsorizing the subgroup mean
and range to limit the effect of outliers on the CUSUM chart’s performance. This work
concentrates on making the CUSUM chart performs well in signaling out-of-control
conditions while still maintaining the occurrences of the false alarm to the nominal

value under non-normality.

Focusing on robustifying the Shewhart control structure,
Abu-Shawiesh and Abdullah (1999) applied robust estimators, namely,
the Hodges-Lehmann (HL) for the location parameter and the
Shamos-Bickel-Lehmann (SBL) for the scale parameter. Both the HL and SBL
estimators have 29% BP, thus, giving the Shewhart chart a good performance under
heavy-tailed distributions. Notably, the robust chart performance is getting better with

a large sample size when tails become heavier, unlike the standard Shewhart chart.

Abu-Shawiesh (2009) focused on the sample median and the median absolute
deviation about sample median (MADn) for estimating the Shewhart limit. By
replacing the classical estimators with the robust estimators, the chart which was tested

under various non-normal distributions, indicates the ability to control Type I and
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Type 11 error, unlike the standard Shewhart X chart. Similarly, Wu et al. (2002)
employed several robust scale estimators, namely the MADn, average absolute
deviation to the median (44DM), and median of average absolute deviation (MAAD)
to estimate the process dispersion in the Shewhart X chart. These robust estimators
were again proved to limit the effect of outliers on the control chart’s performance.
Focusing on monitoring dispersion in the process, Abu-Shawiesh (2008) employed the
median absolute deviation (MAD) in a Shewhart chart. Similarly, Adekeye (2012) used
the MAD to construct control limits for the Shewhart X chart and Shewhart S chart.
In both works, the robustification improves the detection capability of the Shewhart

charts upon violation of the normality assumption.

The application of the MAD or MADn is popular in SPC as a pairing for robust location
estimators in Phase I, or in constructing a dispersion chart since this robust scale
estimator is highly unaffected by the outliers. Sindhumol et al. (2016) claimed that the
MAD can provide a better estimate when compared to the Gini’s Mean Difference (G)
which is another robust scale estimator. Between these two robust scale estimators, a
control chart for monitoring mean shift shows a better control of the false alarm rate
in the presence of outliers when the MAD was used in Phase I to estimate the process

dispersion (Sindhumol et al., 2016).

The use of robust statistics in SPC is not only commendable in Phase I but also in the
Phase II when applications involve memory-type charts. A memory-type chart is
specifically designed to detect a difference in the mean of a process. Thus, a user is
focusing on an upward or downward shift in the process mean until it eventually causes

the mean value to be out-of-control. Therefore, as argued by Rocke (1989),
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“outliers in the subgroup should not cause a signal to occur since they do not directly
represent a shift in the mean”. Therefore, in limiting the effect of outliers on the chart
statistic, a robust statistic is favored in place of the sample mean in Phase II. It is worth
to note that the robust work in Phase I focuses on parameter estimation when Phase I
data are non-normal. Meanwhile, the robust statistic employed in Phase II concentrates
on the calculation of the chart statistic when Phase II data are non-normal. Several
notable studies that focus on robustifying the memory-type charts on both phases are

discussed next.

Nazir et al. (2016) substituted several robust location estimators such as trimmed
mean, HL, tri-mean, midrange, and median, in the plotting statistics of the CUSUM,
EWMA, and MEC control charts. These memory-type charts were then tested for
normal and contaminated normal distributions. Assessments via the ARL and varying
percentiles of the run length (RL) distribution reveal that no chart was found to
satisfactorily perform the best in all conditions. However, their study concluded that
the EWMA chart with the median estimator consistently performs the best across most

of the conditions specified.

The advantage of using the median charts, i.e., charts that focus on the sample median
in its plotting statistics, over the standard chart as well as other robust control charts
has been demonstrated by many researchers. See for examples,
Abdul-Rahman et al., (2018, 2021), Ahmad et al., (2014), Mim et al. (2023),
Noor et al. (2023, 2024), Park (2009), and Yang et al. (2010). However, since the
distribution of the sample median is unknown, constructing a median control chart

typically relies on a simulation in deriving the standard error of the estimator.
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Most recently, Abbas et al. (2018) proposed a mixed control chart that is based on the
EWMA and dual CUSUM (DCUSUM) charts for monitoring process location. Known
as mixed EWMA DCUSUM, the chart was constructed with five different estimators,
namely mean, median, midrange, tri-mean and HL, and evaluated based on the ARL
under normal and contaminated data. The finding shows that the proposed chart, when
constructed with the robust tri-mean estimator, is the most superior among others.
Even though the charts based on the HL and median estimators are less superior to the
tri-mean chart under contaminated data, they are still better than the mean chart.
Abdul-Rahman et al. (2018) proposed the EWWA chart using the MOM estimator
which is claimed to gain good control of the false alarm rate
(supported by the robust ARLy) under heavily skewed distribution while maintaining
quick detection under various skewness levels. In their subsequent work, i.e.,
Abdul-Rahman et al. (2020), the same good performance is observed when integrating
the robust estimator into the CUSUM control structure. Recently, Noor et al. (2024)
published a finding on the MEC chart under the g-and-# distribution, emphasizing that
the MOM estimator offers a robust performance to the chart under in-control and

out-of-control conditions, not only when data are skewed but also heavy-tailed.
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2.6 Robust Estimators

The classical estimators, i.e., the sample mean and sample standard deviation, are
highly susceptible to the effect of outliers. Thus, in the context of SPC, outliers may
appear in Phase I and/or Phase 11, causing the performance of the standard control chart
to deteriorate as discussed in Section 2.3. Notable robust works as introduced in
Section 2.4 attested to the superiority of the robust statistics over the classical
estimators. This is due to a high breakdown point (BP) and bounded influence function

possessed by robust statistics.

2.6.1 Properties of Robust Estimators

The robustness of a statistical procedure is commonly assessed via the BP
(Raymaekers & Rousseeuw, 2023), statistical efficiency and influence function
(Hampel, 1986). The concept of BP was introduced by Hampel (1968) and Hampel
(1971) who defined the BP as the percentage of outliers or contaminated data that
would cause a calculation for an estimator in a finite sample to deviate significantly
from the parameter value. The same explanations were given by Donoho (1982) and
elaborated by Donoho and Huber (1983). Geyer (2006) introduced a concept known
as the finite sample BP for an estimator which describes the proportion of data that can
be assigned arbitrary values without causing a significant decline in the estimator's
performance. Typically, this BP is expressed as a function of a sample size, n. To
simplify this concept into a single numerical value, Geyer (2006) also introduced the
concept of the asymptotic BP. The asymptotic BP represents the limit of the finite
sample BP as n approaches infinity. Since then, the BP has been used to evaluate the

robustness of scale, regression, and other situations (Alshqaq & Abuzaid, 2023; Dibal
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& Dallah, 2021; Fan et al., 2023; Fishbone & Mili, 2023; Liu et al., 2023; Lopuhaa,

2023).

Donoho and Huber (1983) defined the BP of T at X is &, as
(X, T) = inf{e:b(g; X,T) = o}, where X = (x1, x5, ..., X,) be a fixed sample of
sizen, T = {T}pn=1n=2, -.- be an estimator with values in some Euclidean space, " is
the smallest value of € = % with replacing an arbitrary subset of size m of the sample
by arbitrary values Y = (y1,¥2, ..., ¥m), b(&; X, T) = sup|T(X") — T(X)| with T(X)
be its value at sample X. Following that, the BP for the sample mean is % In other
words, a single outlier can significantly disrupt the estimation of this estimator.

Conversely, the BP of the sample median in a finite sample is nz—_nl

Another robust property is the influence function that was introduced by Hampel in
1968. For an estimator to be robust, its influence function must be bounded, meaning
it limits the impact of outliers (Hampel, 1974). According to De Menezes et al. (2021),
the influence function, 1, represents the impact of outliers, often measured as a

multiple of the standardized residual, &, on the estimator. The influence function is the

first derivative of function p with respect to the &, and can be defined as Y (§) = a;;_(;)'
The classical mean has unbounded influence functions, meaning that a single outlier

can affect the mean.

The efficiency refers to the performance of an estimator in fitting the data when the
errors follow a different distribution than expected, usually assumed as normal

distribution (De Menezes et al., 2021). The smaller the variance in its sampling
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distribution, the more efficient is the estimator (Serfling, 2009). The classical mean is
the most efficient location estimator for the normal distribution but not the best
location estimator when the assumptions are not met. The loss efficiency of classical
estimators when all assumptions are not satisfied is estimated to be in the range 5% to
50% (Hampel, 1986). The robust estimator is more resistant to departure of normality

and the presence of outliers.

2.6.2 Robust location estimators

Notably, the asymptotic BP of the sample mean is 0%. Meanwhile, the asymptotic BP
of the sample median is 50%, which is the highest possible BP for location
(Acharya et al., 2022; Santhanasamy & Abdul-Rahman, 2022). A BP of 50% implies
that the sample median can tolerate up to 50% of outliers in the dataset before its
calculation is disrupted. Another robust estimator with 50% BP is the M-estimator of
location which was introduced by Huber (1981). Yet, despite gaining significant
attention in various fields, including statistics, economics, and machine learning, due
to its capability to handle data containing outliers, the M-estimator does not produce a
unique solution, which may pose a disadvantage to practitioners
(Crisp & Burridge, 1993). Alternatively, Wang et al., (2007) introduced a weighted
randomly trimmed means as the robust location estimator and proved that the estimator
possesses the highest breakdown point as the sample median. This robust location
estimator is recommended upon a heavy-tailed distribution while the
Huber’s M-estimator is seen as more suitable for the light-tailed distribution

(Wang et al., 2007).
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Other notable robust estimators commonly used in SPC have a BP that hovers between
0% and 50%. For instance, the (k/n)-trimmed mean which averages the data except
for k smallest and k largest observation is noted with the BP of (k + 1)/n, while the
BP of the HL is 29% (Rousseeuw & Verboven, 2002). With a lower BP, the HL and
the trimmed mean are more susceptible to the outliers and thus, considered to be less

robust than the sample median.

Often, it is recommended to remove or provide less weightage to the outliers in the
dataset so that its effect on the parameter estimation can be minimized
(Sindhumol et al., 2016). Proposed by Tukey (1948), the trimmed mean estimator, as
briefly discussed, focuses on symmetric trimming in removing outliers from the
dataset (Tukey, 1948). However, the trimmed mean estimator focuses on the
symmetric trimming. Thus, this robust approach works best only when outliers appear
on both tails of the distribution. Another alternative to the trimmed mean estimator is
the scaled deviation trimmed mean proposed by Wu and Zuo (2009) which is
recommended upon a light-tail symmetric distribution. However, this robust location
estimator still assumes the symmetric trimming approach in eliminating outliers. For
asymmetric trimming, the MOM estimator, which was proposed by
Wilcox and Keselman (2003a), is more effective. This robust estimator uses trimming
criteria based on the sample median and the MADn (thus, yielding a 50% BP) to flag
outliers on either side (or both) of the tails. The identified outliers will be removed
before averaging the remaining observations. Therefore, without outliers as in normal
distribution, MOM becomes the classical mean estimator. This makes the MOM

estimator flexible and can adapt to the presence or absence of outliers.
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The MOM estimator is also claimed to possess better efficiency, i.e., smaller standard
error, when compared to the 20% trimmed means when outliers are very common

(Wilcox, 2003).

Later, Haddad et al. (2013) proposed a winsorized version of the MOM, known as the
WMOM estimator, to limit the effect of outliers on the multivariate version of the
Shewhart chart for process location. Rather than excluding the outliers in averaging
the dataset, the WMOM replaces the identified outliers based on the MOM trimming
criteria with the smallest and largest value in the ‘clean’ dataset. Thus, like the MOM,
the WMOM possesses a 50% BP as its trimming criteria are based on the sample

median and the MADn.

2.6.3 Robust scale estimators

Median absolute deviation (MAD) was proposed by Hampel (1974). Implemented in
numerous applications, the MAD has the highest BP for the scale, i.e., 50%, which is
double of interquartile range (IQR) BP (Rousseeuw & Croux, 1993). This high BP
compensates for its drawback, i.e., only 37% of efficiency under normality as opposed
to 64% by the sample median when data are highly contaminated
(Rousseeuw & Croux, 1993). The MAD is frequently compared to the G estimator as
discussed briefly in section 2.4.2. The G estimator was introduced by Gini (1912) and
noted with an extremely high efficiency at 98% (David, 1981). With 50% BP, the
G estimator is very robust unlike the sample standard deviation
(Saeed & Kamal, 2016). While the MAD is more popular due to the highest BP and

simple structure of the estimator. the application of the G estimator as a scale measure
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has been discussed positively by Ceriani and Verme (2012), Riaz and Saghirr (2007),

and Yitzhaki and Lambert (2012).

2.7 Summary of Research Work in SPC

Sections 2.1 — 2.5 discussed the application of the robust methods within the context
of SPC. The discussion concentrated on the negative influence of outliers on the ARL
performance and how the robust statistics can mitigate their effect in process
monitoring. The significance of the robust methods extends beyond their application
in SPC since the methods are not restricted to the underlying distributional assumption.

Thus, they can work well across many data scenarios and applications.

In SPC, the performance of the standard charts deteriorates as data deviate from
normal. Comparison between the robust charts and their standard counterparts under
heavy-tailed, skewed distribution, or contaminated distributions indicates that in the
majority of the situations, the robust charts supersede the detection capability of the
standard charts. Yet, in SPC, finding a good balance between the Type I and
Type 1II errors is still an ongoing study. This is due to the unpredictable nature of the

underlying process.

Getting the balance ARL chart (ARLo > ARL;) is always the goal in SPC as it indicates
that the chart can quickly signal shifts in the process. Yet, if ARLy = 370 is desirable,
how far can we allow the ARLyto deviate from its nominal value under non-normality
before conceding that the chart is no longer robust. This issue was noted by
Woodall (2017) who also emphasized that the control of the false alarm rate has always

been important in SPC research.
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Thus, the key implementation to a reliable control chart is via the robust ARL,. Without
it, the chart’s detection capability is questionable as noted in the work by
Human et al. (2011) and Abdul-Rahman (2020). Therefore, constructing a reliable
control chart that passes the ARL evaluation is important before applying it in real

practice since ‘controlling’ the ARLcan only be done theoretically but not in practice.
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CHAPTER THREE
RESEARCH METHODOLOGY

3.1 Introduction

The focus of this study is on the monitoring of process location via two distinct
memory-type charts known as the mixed EWMA-CUSUM (MEC) and the mixed
CUSUM-EWMA (MCE). By employing three locations estimators with the highest
possible breakdown point (BP), namely the median, modified one-step M-estimator
(MOM), and winsorized MOM (WMOM), six new robust memory-type control charts
were produced as listed in Table 3.1. Notations in the third column of Table 3.1 are

used throughout the thesis, henceforth.

Table 3.1

The Proposed Control Charts

Control Chart Location Estimator Proposed Control Charts
median MECy
MEC MOM MECyom
WMOM MECymom
median MCE3
MCE MOM MCEyom
WMOM MCEwnom
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Unlike the Shewhart control chart, which is categorized under the memory-less control
chart, and thus, less sensitive in detecting small process shifts (§ < 1.5)
(Montgomery, 2009), the MEC and MCE charts are claimed to perform well under
this scenario (Nazir et al. 2015; Zaman et al., 2015). Thus, focusing on the small and
moderate shift detection, the six newly proposed robust charts (in Table 3.1) were
designed and assessed based on the ARL under in-control and out-of-control states via
Monte Carlo simulation studies. Figure 3.1 depicts the flowchart of the simulation

study.

Figure 3.1 Flowchart of the Simulation Study
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3.2 Construction of the Memory-Type Control Charts
The subsequent subsections focus on the structure of the MEC and MCE charts for
monitoring process location. To equip the reader with the structure of the charts, the

discussion starts with the two original memory-type charts, namely the CUSUM and

EWMA.

3.2.1 CUSUM 8 control chart

The CUSUM chart involves two chart statistics, namely C;" and C;, for detecting an
upward shift and a downward shift in the process location, respectively. Both are

defined as follows (Montgomery, 2009):

¢t =max|0,(8; — 0,) —Kp + Ciy], fori=1,23..,m (3.1)
and
C7 =max[0,—(0; —6,) — Kz + C_y], fori=123..,m (3.2)

where i = the sample number, m = the subgroup number, 8 = estimator of location
parameter 6, 6, = in-control location parameter, Kz = reference value, and

Hg = control limit.

The initial value of the chart statistics is usually set at 0 (Cf =0, Cy; = 0)
(Abbas et al., 2013a). The chart signals an out-of-control condition when either of the
C; or C exceeds the Hy. Typically, the parameters K and Hy are standardized as in

Equations (3.3) and (3.4) so that they are not influenced by the standard deviation of
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the sampling distribution (Abdul-Rahman, 2020).

Ky = k x o (3.3)
and
Hz = hXop 3.4)

where o3 is the standard deviation of 0, and k and h are the constants that are chosen
to satisfy a pre-determined ARLy, respectively. A common practice is to set k at half of
the standard deviation of § to make the chart responsive to small and moderate shifts
in the process mean (Montgomery, 2009) and derive the 4 corresponding to the chosen

k value to achieve the pre-determined ARLy, say 370, under normality.

It shall be noted that the description used for the i, m, 6, and oy are carried through,

henceforth.

3.2.2 EWMA 8 control chart

The EWMA control structure is defined as (Roberts, 1959):

Z; =20, +(1-0Z;_, fori=1213...m (3.5)
UCL; = 6y + L@\/Var(é)ﬁ(l - (1-21%) (3.6)
LCL; = 6, — L@\/Var(é)ﬁ(l - (1-21%) G.7)
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where Lj is a positive constant that determines the width of the EWMA control limits
and A is the smoothing constant that takes a value between 0 and 1 (0 < 1 < 1). The
initial value, Zy, is typically set at 8, i.e., in-control location parameter. The Z; in
Equation (3.5) is compared against the upper control limit (UCL) and the lower control

limit (LCL) as defined in Equations (3.6) and (3.7). The constant L3 are chosen based

on the specified A to achieve the pre-determined ARLy under normality.

The control limits specified by Equations (3.6) and (3.7) are time-varying limits. When
i in Equation (3.6) and (3.7) are approaching infinity (i = o), the control limits

become asymptotic limits. Thus, UCL; and LCL; become:

UCL; = 6, + L /Var(@)% (3.8)
LCL; = 6, — Ly /Var(@)% ) (3.9)
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3.2.3 MEC 0 control chart

Introduced by Abbas et. al (2013a), the MEC chart integrates the EWMA chart statistic
(defined in Equation (3.5)) into the CUSUM control structure (defined in Equations

(3.1) and (3.2)). The MEC chart statistics are defined as:

MEC; = max|0,(Z; — 6,) — K,, + MEC{",|, fori=1 213 ., m (3.10)
and
MEC;] = max[0,—(Z; — 6,) — K, + MEC{_,], fori=123..m (3.11)

where the initial values, MEC; and MEC; , are usually set at 0; analogous to the

CUSUM chart. The MEC chart’s variance is defined as:
2[4 2i
Var(Z;) = o? [5(1 —(1=2) )] (3.12)

where 1 € (0, 1]. The standardized of K,, and H,,, which are the reference value and

control limits of the chart, respectively, are the function of the standard error of the

chart.

K, = k x\[Var(Z) (3.13)

and
H, =hxVar(Z). (3.14)
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Notably, when i in Equation (3.9) is approaching infinity (i — o0) , Var(Z;) becomes:
2 2

Var(Z;) = o2 [ﬂ (3.15)

Thus, both K, and H, , become:

A

K, =kxop |2 (3.16)
and

A
Hzi:hXO"g PP (3.17)

The values of /# and A, paired with a fixed value of k, need to be derived to achieve the
pre-determined ARLy. Typically, k = % is employed to carry the salient features of

the CUSUM for fast detection of small and moderate shifts (refer to Section 3.2.1).

Like the CUSUM chart, the MEC;" (in Equation (3.10)) detects an upward shift in the
mean until the value shifts to out-of-control. A similar explanation goes for the
MEC; (in Equation (3.11)) but for a downward shift in the mean. Both are compared
against Hg, and if either of the MEC;" or MEC; exceeds H,,, the process is deemed

out-of-control. Otherwise, the process is in statistical control.

48



3.2.4 MCE 9 control chart

The MCE control chart was introduced by Zaman et. al (2015) by integrating the
CUSUM statistics (defined in Equations (3.1) and (3.2) into the EWMA control
structure (defined in Equations (3.5) — (3.7)). The structure of the MCE chart, which
is constructed based on two chart statistics, can be said analogous to the reversed
version of the MEC chart. The MCE chart has two chart statistics, namely MCE;" and
MCE;, for detecting an upward shift and a downward shift in the process location,

respectively. Both are defined as follows:

MCE} = (1 = A)MCE} |+ ACS, fori=1,23,..,m (3.18)
and
MCE; = (1 —-A)MCE_, + AC, fori=1 2 3,..., m. (3.19)

The CUSUM statistic, C;* and C;, are defined as in Equations (3.1) and (3.2).
Following the EWMA chart, the smoothing constant that determines the weight of the
samples is set at: 1 € (0, 1] and the initial values, MCE{ and MCEj , are taken to be

equal to target mean value 6y, as in the EMWA (i.e., MCEf = MCE; = 6,).
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Recalling the EWMA control structure as discussed in Section 3.2.2, the control limits
of the MCE chart (UCL and LCL) follow the EWMA which are time-varying up to a
specific value of i and become constant as i — o0. The MEC control limits are defined

as follows:

UCL; = p, + K0, \[Zf—l (1—(1— 1)) (3.20)

where K. is a positive constant that determines the width of the control limit; and g,

and o, are mean and standard error, respectively.

If i - oo, the time-varying limit in Equation (3.20) becomes an asymptotic limit as

defined below:

UCL; = pe, + K0, /% (3.21)

The MEC chart signals an out-of-control condition when either of the MCE;" or MCE;
defined in Equations (3.18) and (3.19), respectively, exceeds the UCL;. The K. is
typically chosen for specified values of A and & to achieve the pre-determined ARLo

under normality.

The following section explains on the robust location estimators (f) employed in this

study.
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3.2.5 Description of The Location Estimators

In this study, 8; in the MEC and MCE charts were estimated with the following robust
location estimators, namely the median, modified one-step M-estimator (MOM), and
winsorized MOM (WMOM) for monitoring process location. These median based
location estimators possess the highest possible BP for location (50%) as discussed in
Section 2.5.2 of Chapter 2. For a comparison, the classical mean is included where it

was used to construct the standard MEC and MCE chart.

Suppose for a random sample of size n, X = {X;,X,,...,X,}, then the location

estimator (9 ) can be defined as:

i. Mean

For a comparison purpose, the sample mean is included and can be computed as:

g=yr 2. (3.22)

Unlike the rest of the chosen robust estimators, the sample mean possesses 0% BP as
discussed in Section 2.5.1 of Chapter 2. Thus, its computation can easily be corrupted

when data are non-normal.
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ii. Median

The sample median is defined as (Abdul-Rahman et al., 2021):

Xn+1, if nis odd

2

)
I

(3.23)

2

;(Xg + Xn+2), if nis even.
2

iii. Modified one-step m-estimator (MOM)
The MOM can be computed as (Wilcox & Keselman, 2003a).
Z?=_iilz+ 1 X

= Zisan P (3.24)

n—il—iz

D)

where

X(iy = ith ordered observation

iy = number of observations X; such that (X; — M) < —K(MAD,,)

i, =number of observations X; such that (X; — M) > K(MAD,,).

Equation (3.24) defines the trimming criteria based on M = median and
MADn = 1.4826 medi|xi - medjxj|. The constant 1.4826 is applied in the MADn

formula to ensure that this scale estimator remains consistent when the underlying

distribution follows normal (Rousseeuw & Hubert, 2018).
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A common practice is to set K = 2.24 to achieve high efficiency under normality when
n is less than 100 (Wilcox & Keselman, 2003b). Using the MOM estimator, it is
possible to trim a different number of observations in each tail or even, no trimming
involves when the underlying distribution is normal. When data are symmetric heavy-
tailed, the MOM will trim the data symmetrically, analogous to the usual trimmed

mean estimator.

iv. Winsorized MOM (WMOM)

The WMOM estimator was proposed by Haddad et al. (2013) who defined it as:

(3.25)

where

W;; = the ith ordered observations in group j (after replacing outliers flagged in

Equation 3.24)

n; = number of observations for group ;.

The construction of the winsorized sample is defined as follows:

(X0 HXij < X 41y

Wy=1  Xip I Xayenj < Xij <X-iy)) (3.26)

\ Xnj—iy o I Xij 2 Xy

jTi2?
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where

X;j = the ith ordered observations in group j (before replacing outliers)

i; = total number of smaller outliers in the data

i, = total number of larger outliers in the data.

Defined in Equation (3.26), X;; < X(;, +1)j and X;; = X(n],_iz)j are for determining the
lower and upper winsorized values, respectively. That is, the values to replace the
outliers flagged by the MOM’s trimming criteria in Equation (3.23) earlier. Following
the winsorizing process, the ‘clean’ data ( W, j) 1s obtained and used to get an average

as defined in Equation (3.25).

3.2.5.1 Unknown parameter cases
In this study, the in-control parameters of the process were assumed to be unknown.
Thus, the location parameter was estimated based on Phase I data which might not be

representative of the process (i.e., contains outliers).

Specifically, Phase I involved two series of simulation procedures. The first series was
for determining the standard deviation of the sampling distribution of the location

estimator, o, based on 10¢ iterations. The second series involves 10* trials of
subgroup, m, in-control Phase I with sample size, n, to estimate the process mean, 6.

Let the Phase I data be represented by Y;; = {Y;4, ..., Yy} wherei = 1,2,..n and

Jj = 12,..m. We assume that ¥;; to be independent and identically distributed (i.i.d)
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following an unknown distribution # which has a mean 6, and a standard deviation

oy, Yij~W(6y,03). The 6,, was estimated using the mean of 6, given by:

6, === (3.27)

In Phase I of this study, 8, was estimated to isolate the effect of estimating the location
parameter on the proposed MEC and MCE charts. This approach was emphasized by
Schoonhoven et al. (2011) and later by Abdul-Rahman (2020) in their simulation
studies when studying the performance of control charts for process location when

parameters of the process are unknown.

3.3 Variables Manipulated

The investigation of the performance of the newly proposed robust memory-type
control charts was conducted by manipulating several variables frequently discussed
in SPC and commonly encountered in real practice. The following subsections focus
on those variables, namely the types of distribution, design shifts (§*),
sample sizes (n), and shift sizes (§). Those variables were selected due to their

influence on the ARL performance of the memory-type charts as illustrated later.

3.3.1 Types of Distribution

When a process fails to follow the normality assumption, the ARL value of the chart
can vary substantially as discussed in Sections 2.2 and 2.3. The severity of the situation
depends on the types of distribution, or the level of contamination observed in the data.

Thus, in this study, g-and-# distributions were chosen to mimic normal and non-normal
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distributions while analyzing their impact on the ARL performances of the newly

proposed robust charts in Table 3.1.

The g-and-/ distribution was introduced by Tukey (1977) which can be derived
through transformations of the standard normal distribution. This transformation
process allows statisticians to capture symmetric, heavy tails, and skewed data to
varying degrees based on g and /4 values (Yan & Genton, 2019a, 2019b). Therefore,
the g-and-4 distribution has gained considerable attention in statistical modeling
(Mondal et al., 2022), simulation studies (Astivia & Edward, 2022), and distributional
shape analysis (Jorge & Boris, 1984). The g-and-/ distribution has been utilized in a
range of disciplines including environmental science, economics, finance, and more

areas of application (Ley, 2015).

The g-and-/ distribution captures the non-normality through the g and/or 4 parameters,
as it is aptly name. Let Z~N(0,1) denote a standard normal random variable. To

generate data for the g-and-/ distributions, the following steps are adhered to:
i. Generate a standard normal variate, Z;.

1i. Convert the standard normal variates to random variables as follows:

(exp(gZij)—l hZLZJ/
p exp 2], g#0

Yy = (3.28)

hZ?
kZijexp< ”/2> , g=0.
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The parameters g and / control the skewness and kurtosis, respectively. When g = 0

and h = 0, Y;; = Z;;, represents a standard normal distribution. As / gets larger, the

ijs
tails of the distribution become heavier. The same goes for g which controls the
skewness. Following Wilcox (2022), four g-and-/4 distributions were specified as in
Table 3.2 to capture possible non-normal data scenarios in SPC, that is, symmetric but

heavy-tails, skewed, and skewed with heavy-tails. Henceforth, the notations in the first

column of Table 3.2 are used when describing each of the chosen g-and-# distributions.

Table 3.2

The Chosen g-and-h Distribution

Distribution (g, h) Description
GOHO (0, 0) Normal distribution
GOHO.5 (0,0.5) Symmetric heavy-tailed distribution
G0.5HO (0.5, 0) Skewed normal-tailed distribution
GO0.5H0.5 (0.5, 0.5) Skewed heavy-tailed distribution

To illustrate the non-normal shape assumed by each of the chosen g-and-k
distributions, their probability density functions (PDFs) and the cumulative
distribution functions (CDFs) are given in the form of graphs as illustrated in columns
2 and 3 of Table 3.3. Column 1 of the table illustrates the skewness (7;) and

kurtosis (¥,) values for the respective g-and-4 distribution. Row 4 of Table 3.3 is an
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extreme non-normal data scenario as indicated by ; and j,. Represented by

G0.5HO0.5, this extreme data condition was included in assessing the newly proposed

robust charts’ performance. The idea is that, if the proposed robust control charts can

balance the Type I and Type II errors under this extreme non-normality, they shall

perform well under a lesser condition in real practice.

Table 3.3

PDF and CDF of the g-and-h Distribution

Parameters PDF CDF
Normal
g= 0 1.0
08
h=0
06
04
71 = —0.0298 %
o T T T T |
¥2 = 23838 4 2 2 4 4 2 2 4
z
Symmetric heavy-tailed
=0 1.0 4~
04 |
h=0.5 08
03 06 -
02 04 —
y1 = 1.7030 0.1 02 —
?2 = 332.0013 T T T T T T T T T T
4100 -50 50 100 150 4100 -50 50 100 150
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Skewed normal-tailed

g=205 10 _r
0.8
h=0 06
04 -°
7, = 1.6191 027
~ T T T T T T T
V2 = 7.6453 2 2 4 6 8 10 12
z z
Skewed heavy-tailed
=0.5 L 4
g 0.6 0.8
h=05 . o6
04
0.2 |
71 = 35.1766 02
7, = 2080.646 ] " .
100 200 300 400 -100 100 200 300 400 500

3.3.2 Sample Sizes

The selection of the sample size (n) is important for effective process monitoring. To
study the effect of n on the ARL, this study focused on small and moderate n,
i.e.,n=>5and9, respectively. According to Montgomery (2009), it is common practice
to opt for sample sizes of 4, 5 or 6. Moreover, Teoh et al. (2013) highlighted the
benefits of employing small to moderate sample sizes in industrial environments. This
approach can effectively minimize costs, reduce time requirements, and reduce

inspection processes. Moreover, in various industries, n» = 5 is the most common
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sample size utilized in process monitoring because it can easily be attained, practical

and give minimum variation within subgroups (Swamidass, 2000).

3.3.3 Design Shifts

The memory-type charts offer flexibility to the practitioners, unlike the Shewhart
chart. That is, the memory-type charts can be designed (or tuned) to any shift that is
expected to occur in the process. For instance, based on prior information, a process
always exhibits a small change in mean value, say 6 = 0.75, after a long run.
A memory-type chart can be designed relative to this size of shift so that it can quickly

signal a change in the process when this size of shift occurs.

It is important to note the actual shift that occurs may vary from what the chart is
designed for. For instance, an MEC chart can be designed for 6 = 0.75 but suddenly,
a much smaller shift, say § = 0.25, occurs in the process. Will the chart fail to detect
this relatively small shift? This question would be tackled in Chapter 4 when assessing

the ARL performance of the proposed memory-type charts.

In this study, all six newly proposed robust memory-type charts were designed for the
optimal detection of small and moderate shifts to accommodate their importance in
SPC (refer to Section 2.3 of Chapter 2). The design shifts used are specified in

Table 3.4 (Crowder, 1989; Lucas & Saccucci, 1990).

60



Table 3.4

Design Shifts (§*)

6" Description
0.5 Small design shift
1 Moderate design shift

3.3.4 Shift Sizes
To assess the effectiveness of the proposed robust control charts in detecting process
shifts, &, (which are measured in standard error units), this study considered various

magnitudes of shifts. The range of & investigated in this study is displayed in

Table 3.5.
Table 3.5
Shift Size (6)
) Description State of the process
0 No shift In-control
0.25, 0.5, 0.75 Small shift =
1,1.5,1.75 Moderate shift — QOut-of-control
2,3 Large shift _
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Following Abdul-Rahman et al. (2020), the chosen range of § enables us to illustrate
the effect of small, moderate, and large shifts on the ARL values of the proposed robust
memory-type charts. For § # 0, the charts’ capability to signal out-of-control
conditions would be assessed. Meanwhile, § = 0 would allow us to monitor the
occurrences of false alarms across all four g-and-% distributions and thus, able to gauge

the charts’ capability to control the Type I error as the data deviate from normal.

For the reader’s convenience, the following notations are used, henceforth:

= §" is the design shift (Section 3.3.3)

= § is the actual shift (Section 3.3.4).

3.4 Simulation Procedures

3.4.1 Optimal Parameter Derivation

The design of the investigated MEC and MCE charts involves derivations of the
optimal parameters. For the MEC chart, the parameters are /; and for the MCE charts,
they are Kc. In this study, the optimal parameters were derived via
Monte Carlo simulation studies according to the specified design shifts (§*) in

Section 3.3.3.

In this study, the location parameter was assumed to be unknown and thus, needed to
be estimated using the Phase I data. The following steps were followed through in
deriving the optimal parameters for the MEC charts when the nominal ARL,was set at

370.
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1. Fixed n.

2. Fixed ARLy = 370 when the process is in-control (6 = 0) and
GOHO.

3. Set the design shift, 6" = 1.0.

4. Set the smoothing constant, 1 = 0.13.

5. Set the reference value, k = 0.5.

6. Determine the optimal parameter, 4 such that the value yields

ARLy =~ 370 for the chart.

To derive the optimal parameters for the MCE charts, Steps 1 — 5 in the MEC charts
were adhered to. Now, Step 6 differs from before, i.e., the optimal parameter, K., needs

to be derived such that the yields ARLy =~ 370 for the MCE chart.

Note that the value of 6" specified in Step 3 dictates the value of 4 in Step 4. The value
of A for pertinent to 6" can be referred to Crowder (1989). Figure 3.2 presents the

flowchart of designing the MEC and MCE charts.
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Figure 3.2. The Flowchart to Derive Optimal Parameters of the MEC and MCE Charts
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3.5 Data Generation

The simulation procedures defined in Section 3.4 were executed using SAS software
for Windows version 9.4. To assess the effect of non-normality on the investigated
charts under in-control and out-of-control states, data from the four g-and-k
distributions as specified in Table 3.2 were generated in Phase I and Phase II

(refer to Section 3.4).

A standard normal variate, Z; was generated. Specifically, the random-number
function, RANNOR, in SAS, was employed to generate a random number following a
standard normal distribution with u = 0 and 02 = 1. The generated random numbers
were simulated with a seed number set to 33333. The next process involved
transforming Z; into a random variable, Y;; using g-and-4 distributions as defined in

Equation (3.28).

3.6 Measure of Control Chart Performance

All investigated charts were evaluated using the ARL value. Specifically, the ARL
was used to assess the in-control robustness, while the ARL; was used to measure the

detection capability.

In this study, Bradley's stringent criterion of robustness was used to assess the ARLy
(Bradley, 1978). A statistical procedure is deemed robust if its false alarm rate (@) falls

within this robust interval [0.9a, 1.1a] (Bradley, 1978). Thus, for a pre-determined

1

ARLy= 370, the a is equivalent to 0.0027 (a = ﬁ) as discussed in Section 1.3 of
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Chapter 1. This yields a stringent robust criterion defined as [0.00243, 0.00297] which

is equivalent to [337, 412].

The investigated charts are considered robust when its ARL falls between 337 to 412
when data are non-normal. The most robust chart is the chart with the closest value to
370. Moreover, a chart with the smallest ARL; under a specified condition is the most

efficient chart in signaling an out-of-control condition.

3.7 ARL Simulation
The ARL represents the average number of sample plots on a chart before a signal is
given (Atalay et al., 2020). Here, the ARL was derived via Monte Carlo simulation in

SAS. The following explains the ARL simulation involved in the study.

3.7.1 ARL simulation procedure for the MEC 8 control chart

1. Determine the optimal parameters (4, &, h).

2. Select one of the four underlying process distributions (specified in
Table 3.2), and establish the size of the in-control Phase I data, Y; where
i=mxn,m=>50.

3. Generate the in-control Phase I data. Utilize Equation (3.27) to compute
0, based on the data, and pair it with o7 .

4. Generate n observations from subgroup m, based on the selected
distribution (which matches the Phase I distribution). Subsequently,
calculate the chart statistics, MEC;" and MEC;", using Equation (3.10) and

(3.11), respectively and set MEC{ = MECy; = 0.
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5. Ifboth MEC;" and MEC; are less than H,, increase the run-length counter.

6. Repeat Steps 3 and 4 until either MEC;" and MEC; are greater than or

equal to H, . At this point, a signal is given, and the corresponding run
q ; p g g p g

length equals to i. Do for all 6.
7. Repeat Steps 3 to 6 for 10*iterations. These 10* independent run-lengths

were used to determine the mean of the RL, i.e., the ARL.

Note that Step 1 outlines in the ARL simulation above, i.e., determining the values for
A, k, and h, follows Steps 2 — 7 that were explained in Subsection 3.4. Moreover, Step
3 outlines in the ARL simulation above considered ¢ = 0 to get an in-control data, i.e.,

no shift in  the process. In step 6, various values of

6 ={0.25,0.5,0.75,1,1.5,1.75, 2, 3} was integrated into equation 3.28, such that,

A~

0, =0+Y, ; to get out-of-control data.

3.7.2 ARL simulation procedure for the MCE 8 control chart

1. Determine the optimal parameters (4, &, K.).

2. Select one of the four underlying process distributions (specified in Table
3.2), and establish the size of the in-control Phase I data, Y; where
i=mxn,m=50.

3. Generate the in-control Phase I data. Utilize Equation (3.27) to compute
0, based on the data, and pair it with o7 .

4. Generate n observations from subgroup m, based on the selected

distribution (which matches the Phase I distribution). Subsequently,
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calculate the chart statistics, MCE;" and MCE;, using Equation (3.18) and
(3.19), respectively and set MEC; = MEC; = 0, .

5. If both MCE;} and MCE; are less than UCL;, increase the run-length
counter.

6. Repeat Steps 3 and 4 until either MCE;" and MCE; are greater than or
equal to UCL,. At this point, a signal is given, and the corresponding run
length equals to i. Do for all 6.

7. Repeat Steps 3 to 6 for 10* iterations. These 10* independent run-lengths

were used to determine the mean of the RL, i.e., the ARL.

As in the MEC chart, Step 1 outlines in the ARL simulation for the MCE chart, i.e.,
determining the values for 4, k, and K., follows Steps 2 — 7 that were explained in
Subsection 3.4. Moreover, Step 3 outlines in the ARL simulation above considered
0 = 0 to get an in-control data, i.e., no shift in the process. In step 6, various values of
6 ={0.25,0.5,0.75,1,1.5,1.75, 2,3} was integrated into equation 3.28, such that,

A~

0, =0+Y, ; to get out-of-control data.

In Section 3.2.5.1, process dispersion in Phase I was assumed known to isolate the
effect of estimating process location in this study. However, sampling distribution of
robust estimators is hardly attainable (Relles & Rogers, 1977). Thus, in employing the
chosen median based estimators, their standard error (03) in Step 3 of the ARL
simulation were simulated based on 10° samples of size n from the relevant g-and-4

distribution when § = 0.
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3.8 Real Data Analysis

The performance of all investigated charts was validated using water quality and
manufacturing data. For water quality data, two meteorological variables were
involved which are, (i) total suspended solids (TSS) (in milligrams/Liter, mg/L) and
dissolved oxygen concentration (DOC) (in milligrams/Liter, mg/L). This water quality
dataset concentrated on Pengkalan Sungai Udang station in Selangor, Malaysia. Both
meteorological variables, i.e., the TSS and DOC, are part of the water quality index
(WQI) assessment and thus, crucial in determining the quality of the process. The
dataset was acquired from the Selangor Maritime Gateway (SMG) and the Malaysian
National Water Quality Standard (NWQS). From both variables, 560 observations

were collected and grouped into 80 samples, each with a sample size of 7 (n = 7).

After validating the real data using TSS and DOC data, the manufacturing data from
medical specialties company were applied to enhance the validity of the study.
Specifically, the balloon catheter dataset of synergy XD everolimus-eluting platinum
chromium coronary stent system were used which consist of variables namely, marker
band length, marker band diameter, bond diameter and tip to proximal marker band.
For this study, the marker band length of size 49mm were chosen because this variable
was found to be easily failed while measuring using marker band inspection and result
in significant variation between samples. For manufacturing data, the variable is the
marker band length (mm) consist of 375 observations collected and grouped into 75

samples, each with a sample size of 5 (n =5).
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The first half of the dataset was used to construct the control limits (Phase I), and the
latter half was used to monitor the out-of-control samples (Phase II). The findings
would be used to identify the best performance from the MEC and MCE control charts
and most importantly, to check if the results corroborated with findings in the

simulation studies.
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CHAPTER FOUR
RESULTS OF ANALYSIS

4.1 Introduction

This chapter focuses on the in-control and out-of-control performances of two distinct
memory-type control charts, namely the mixed EWMA-CUSUM (MEC) and mixed
CUSUM-EWMA (MCE) charts. Six robust memory-type charts for process location
were constructed using three median based location estimators. Their performances
were assessed based on the average run length (ARL) and subsequently compared

against their standard counterparts.

Several variables were manipulated to study the strengths and weaknesses of the
proposed charts, which include types of distribution (by g-and-4 distributions), sample
sizes (n), actual shift sizes (§) and design shifts (§*), in mimicking frequently
encountered conditions in real practice. Based on these four variables, 128 conditions
were generated and used to evaluate the performances of the investigated charts based
on the ARL via a Monte Carlo simulation study. The findings are depicted in tables in

the forms of ARLy and ARL; and discussed in detail in this chapter.

All investigated charts were designed to produce an ARLy = 370 under normality;
a distribution represented by GOHO in this study. The first evaluation of each type of
chart in this chapter concentrates on how far the ARLy of the investigated charts deviate
from the nominal value when the underlying process follows GOHO0.5, G0.5HO, and
G0.5.H0.5. Respectively, these three distributions represent the symmetric

heavy-tailed, skewed normal-tailed, and skewed heavy-tailed distributions. The ARL¢
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produced by each chart under these three non-normal data across n = {5,9} and § =0
when they were designed for 6* = {0.5, 1} determines the ability of the charts to

control the Type I error.

In Section 3.6 of Chapter 3, the ability of the charts to control Type I error is gauged

based on the Bradley's stringent criterion of robustness defined by [0.9 a, 1.1 a]. For
a pre-determined ARLo= 370 which is equivalent to a = 0.0027 (a = 1/370), the

investigated chart is considered robust when the & falls between 0.00243 and 0.00297,
where the upper and lower boundaries are included. Thus, this study, which focuses
on the ARL performance, concludes that a chart is robust if it can produce an ARLy

within [337, 412] under non-normality.

The second evaluation of each type of chart in this chapter concentrates on the ARL;
for § = {0.25, 0.5, 0.75, 1, 1.5, 2, 3} across all four g-and-# distributions. A chart with
the smallest ARL; across the investigated conditions is deemed to be the most effective

chart in signaling out-of-control conditions.

The following sections are organized based on the types of memory-type charts under
investigation. Section 4.2 focuses on the MEC control charts’ performances under the
in-control state (based on the ARLy), followed by the out-of-control performance
(based on the ARL;). Similarly, Section 4.3 focuses on the MCE control charts’
performances under both states of the process. In Section 4.4, all charts investigated
under the MEC and MCE are compared in terms of the ARLyp and ARL;. The
comparison includes the performance of the Shewhart X chart to support the claim that

memory-type charts are allegedly better than memory-less charts.
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4.2 MEC Charts

Four MEC control charts were investigated in this study. Three of them are the robust
MEC charts based on the median, MOM, and WMOM estimators. Referring to
Table 3.1 in Chapter 3, the notations for the robust charts are MECg, MECyop, and
MECy oM, respectively. These robust MEC charts were compared against the

standard chart based on the sample mean (MECy).

The construction of the four MEC charts started with the optimal parameter derivation,
i.e., the reference value (k) and the decision limit (/) as discussed in Section 3.4.1 of
Chapter 3, under normality (GOHO). The optimal parameter values are listed in

Table 4.1.

Table 4.1

Optimal Parameters of the MEC Chart for ARLo~ 370

Charts

5 0.05 0.5 h=107.6 h=10791 h=107.61 h=108.63

5 0.13 1 h=36.61 h=237 h=36.74 h=3751

9 0.05 0.5 h =107 h=107.74 h=107.59 h=107.98

9 0.13 1

=
Il

37 h=36.78 h=36.87 h=36.87
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The following hypotheses are adhered to in assessing the MEC charts’ performances
where the charts were specifically designed to signal a shift in the process location

when the process is out-of-control. The hypotheses are:

Hy: The process is in-control, i.e., 8 = 6,

H;: The process is out-of-control, i.e., 8 # 6,

where 8 = mean, and 6, = in-control location parameter.

4.2.1 ARLy

A Type I error occurs when the Hy is falsely rejected with no special cause exists in
the process (i.e., the process is in-control). This section analyzes the occurrences of
the Type I error when the newly proposed robust MEC charts were subjected to the
three non-normal g-and-/ distributions under an in-control state. Via the simulation

study, this in-control state was produced by setting § = 0.

The ARLy of the investigated MEC charts for n = {5, 9} are presented in Tables 4.2
and 4.3, respectively. Specifically, §* = {0.5, 1} are shown in the first column of the
tables followed by the values of ARLo for the MECz, MECg, MECyoy, and
MECypoum- As discussed in Section 3.3.4 of Chapter 3, the two design shifts are of

interest due to the importance of small shifts detection in SPC.

The g-and-4 distributions were used to study the effect of skewness and/or heavy tails
on the ARLy. Specifically, GOHO.5, GO.5HO, and G0.5H0.5 where each refers to the

symmetric heavy-tailed, skewed normal-tailed, and skewed heavy-tailed distributions,
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respectively, were employed in this study. The ARLy results for all four MEC charts

are shown in Tables 4.2 and 4.3.

Table 4.2

ARLyfor the MEC Charts when n = 5

Charts
6" Distribution MECy MEC3 MECyoum MECyyom
GOHO 370.05 370.05 370.79 370.80
GOHO.5 771.11 370.47 372.79 370.96
0 G0.5HO 369.75 364.77 359.40 362.39
G0.5HO0.5 1471.99 378.23 374.10 363.86
GOHO 369.61 369.82 369.79 369.58
GOHO.5 948.99 371.07 374.40 374.52
G0.5HO 368.32 370.31 371.42 371.06
G0.5HO0.5 1667.37 382.85 362.88 367.37
Table 4.3
ARLy for the MEC Charts when n = 9
Charts
5*  Distribution MECy MECy MECyom MECymon
GOHO 369.42 370.37 368.82 370.09
GOHO.5 820.62 372.08 377.22 367.73
0 G0.5HO 365.66 367.92 363.78 373.06
G0.5H0.5 2464.16 368.39 368.57 367.08
GOHO 369.44 370.35 370.89 369.49
GOHO.5 1052.48 371.10 372.93 370.90
G0.5HO 379.08 367.21 371.62 371.25
G0.5HO0.5 2845.33 366.45 375.96 366.39
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Tables 4.2 and 4.3 highlight the ARL values that fall within the Bradley’s stringent
criterion which requires the value to be between 337 to 412 including both lower and
upper boundaries. From both tables, all charts yield an ARLy) = 370 under GOHO,
as they were designed to produce under normality. Concerning the three non-normal
distributions taken into consideration in this study, i.e., GOH.5, G.5HO, and G.5H.5,
the ARLy of all robust control charts (MECg, MECy o, and MECyyp0n) fall within the
stringent criterion. More importantly, their ARLodo not deviate much from the nominal
value even under an extreme data condition (G0.5HO.5). This is not true for the
standard MEC chart (MEC5) which only exhibits good control of ARLyunder G0.5HO.
It shall be emphasized that the MECy fail to control the false alarm rate when outliers

were captured in heavy-tailed distributions.

Under GOHO.5 and G0.5HO.5, the MECz produces higher ARL, than the nominal value
(370) for both n. Their ARL are far exceeding the upper limit of the stringent criterion.
To illustrate, when the MECgz was designed based on 6" =0.5 and n = 5,
its ARLy = 2464.16, which is approximately 6.7 times higher than the nominal value
as shown in Table 4.2 for GO.5HO.5. Increasing the 6" and n in designing the chart
pushes the ARL further away from the stringent criterion as illustrated in Table 4.3.
As the ARLyand the false alarm rate are inversely related, this large ARLy exhibits by
the MEC% indicates an incredibly small false alarm rate. This is not ideal as the

statistical power of the chart would be affected as discussed in Section 4.2.2.
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4.2.2 ARL,

A Type II error occurs when the Hy fails to be rejected when a special cause(s) exists
in the process (i.e., the process is out-of-control). The efficiency of a control chart in
signaling out-of-control conditions decreases as the Type II error increases

(i.e., 1 — B where f is the Type II error).

This section analyzes the occurrences of the efficiency of the MEC charts when the
newly proposed robust MEC charts were subjected to the three non-normal
g-and-A distributions under an out-of-control state. Via the simulation study, this
out-of-control state was produced by setting § = {0.25, 0.5, 0.75, 1, 1.5, 2, 3}. The
impact of non-normality on the MEC charts’ capability to detect this various

magnitude of shifts was discussed based on the ARL;.

Four distinct tables, each displaying one of the g-and-/ distributions, are used to list
the results. The n is shown in the first column of every table, followed by 6*. The third
column focuses on the actual shift that may occur in the process, i.e., . The last four
columns list the ARL; values for the specific pair of §* and ». Ideally, it could be hard
to single out a chart with the smallest ARL; for each investigated condition since we
have a total of 128 conditions. Thus, the aim here is to find a chart that can maintain

small ARL; values consistently across the investigated scenarios.
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a. GOHO

Table 4.4 shows the ARL; performance of the four MEC charts under normality. The
results show that the chart designed for §* = 0.5 has the largest ARL; for small shifts
(0.25 < 6§ <£0.7), while the chart designed for 6" = 1 is the best for all § values. An
increase in n leads to an improved detection of out-of-control conditions for all four
MEC charts, regardless of the design. This is shown by a decreasing value in the ARL;.
However, when n =5 and 6 = 0.25, the ARL; of the MECyy3;0m, as italicized in Table
4.4, is larger than the other charts. As expected, with an increase in n, the MECy
outperforms the robust charts under normality in detecting the smallest shift under

investigation, i.e., § = 0.25 forn = 9.

b. GOHO.5

In Table 4.5, the ARL; correspond to the MECg, MECg, MECyon, and MECy yom
under symmetric heavy-tailed distribution are listed. The result shows that by
increasing n from 5 to 9, the values of the ARL; can be decreased. Hence, a better
detection of out-of-control conditions. This is true for all charts under each respective
6*. More importantly, when # is large, the ARL; of all MEC charts are comparable
across small process shifts, irrespective of 6*. However, for n = 5 and § = 0.25, the
ARL;of the MECy,pon 18 slightly affected. The italicized ARL; of the MECy,pon 18
the largest among the investigated charts. On the other hand, the ARL; of the MECx
(in bold) exhibit smaller values except for n =9 and §* = 1. Under this design, the
MECyou yields smaller ARL, than the rest of the charts. The claim is supported by the

values in bold in Table 4.5.
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Table 4.4

ARL; of the MEC Charts for GOHO Distribution

Charts
n 0" 10) MEC5 MECy3 MECyoum MECymom
5 0.5 0.25 57.4233 57.6721 57.9755 58.0681
0.5 32.3803 32.358 32.2952 32.5305
0.75 24.3139 24.4304 24.3303 24.485
1 19.9896 20.0494 19.9981 20.1275
1.5 15.2903 15.3212 15.2942 15.3995
2 12.6365 12.6553 12.6447 12.7289
3 9.6897 9.7119 9.6951 9.7568
1 0.25 37.2868 37.4978 37.1556 38.2665
0.5 32.3803 32.358 32.2952 32.5305
0.75 12.5781 12.6622 12.6085 12.78
1 10.1606 10.2236 10.1877 10.3203
1.5 7.6285 7.686 7.6472 7.7563
2 6.2565 6.2938 6.2636 6.3493
3 4.8388 4.8782 4.8479 49018
9 0o 0.25 43.7733 44.1136 44.0715 44.1106
0.5 26.2343 26.3046 26.3265 26.3544
0.75 19.8334 19.9498 19.9228 19.9663
1 16.3952 16.441 16.4645 16.4927
1.5 12.5419 12.6053 12.5906 12.6136
2 10.3656 10.4087 10.3984 10.4373
3 7.9789 7.9973 7.9896 7.9998
1 0.25 25.9735 25.8084 25.9451 25.8538
0.5 13.7853 13.7535 13.7585 13.7903
0.75 10.2063 10.1406 10.1582 10.1791
1 8.3088 8.2792 8.2853 8.2672
1.5 6.2696 6.2402 6.2507 6.2561
2 5.1225 5.1064 5.1076 5.1212
3 3.9961 3.994 3.9952 3.9948
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Table 4.5

ARL; of the MEC Charts for GOHO.5 Distribution

Charts
n 0" 10) MEC5 MECy3 MECyoum MECymom
0.25 55.7716 57.8502 57.6178 58.3458
0.5 32.7493 32.3581 32.2826 32.5013
0.75 24.3453 24.4009 24.3386 24.5025
0.5 1 19.9764 20.0478 20.0088 20.1393
1.5 15.2703 15.3071 15.2885 15.3817
2 12.6563 12.6603 12.6416 12.7183
3 9.8069 9.7229 9.6981 9.7556
5
0.25 36.3416 37.6629 37.5713 37.9341
0.5 17.3877 17.4988 17.4459 17.6981
0.75 12.6103 12.6649 12.6216 12.7805
1 1 10.126 10.2038 10.1857 10.306
1.5 7.7897 7.6799 7.6389 7.7551
» 6.1297 6.282 6.2619 6.3338
3 4.9624 4.8911 4.8624 4922
0.25 43.9238 44.0871 44,2294 44.1574
0.5 26.4951 26.3148 26.2782 26.3973
0.75 19.8596 19.9466 19.9293 19.9859
0.5 1 16.6486 16.4613 16.4394 16.4767
1.5 12.5302 12.6222 12.5906 12.6152
2 10.2783 10.4072 10.3992 10.4289
3 7.998 7.9978 7.991 8.0011
9
0.25 26.1591 25.877 25.895 25.8163
0.5 13.7305 13.791 13.7908 13.7819
0.75 10.1872 10.148 10.1693 10.165
1 1 8.2738 8.2952 8.2917 8.284
1.5 6.1377 6.2385 6.2563 6.252
2 5.0304 5.0979 5.1036 5.1056
3 3.9982 3.993 3.9938 3.994
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c. GO.SHO

The value of ARL; for the MEC3, MECg%, MECyopn, and MECy,yon charts under
skewed normal-tailed distribution are presented in Table 4.6. The effect of utilizing
small sample sizes (specifically n =5 in this study) in detecting a relatively small shift
in the process, § = 0.25, is the worst on the MECx chart. The impact is lessened as &
increases beyond 0.75, i.e., when the magnitude of shifts is moderate and large.
Notably, for the smallest size of shift observed in this study (6 = 0.25), the ARL; of
the MECyoy is slightly affected as n increases (italicized values in Table 4.6) but
outperforms the other charts for the rest of the small shifts. For moderate and large

shifts, i.e., § = 0.75, all charts perform comparably.

d. GO.5H0.5

Focusing on an extreme case whereby both skewness and heavy-tailed are observed in
the data. Table 4.7 shows the ARL; values of all charts when G0.5H0.5. The result
clearly shows that there is a significant difference in the performance of the MECx
when compared to the robust MEC charts for relatively small shifts in the study, i.e.,
6 = {0.25,0.5}. Except forn=15,5"=0.5and § = 0.25, this standard chart performs
the worst as indicated by the italicized values. From the results, increasing n while
designing the chart for a larger §* can lead to better detection by the proposed charts.
With the addition to the bold values in Table 4.7 that suggest the MECyp0onm 18 the
most efficient in signaling a very small change in the process, this robust chart also
performs consistently well across other small values of § when compared to the rest
of the investigated charts. It is crucial to note that, the difference among the charts’

performance is significant when the shift is relatively small, ie., § < 0.5.
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Meanwhile, for moderate and large shifts (0.75 < § < 3), all charts perform similarly.

The analyses across all four g-and-/ distributions on the newly proposed robust MEC
charts against their standard counterpart conclude that the standard chart (MECy )
chart is not effective at detecting process shifts, especially for skewed and extreme
non-normal distributions. When designed for a quick detection of moderate shifts
(6" =1),the MEC3 loses its ability to signal small shifts in the location which becomes
worse under skewed and heavy-tailed distributions. Across the non-normal
distributions observed, the MECx yield large ARL; across both n, 6, and data
distribution in most of the conditions specified. Conversely, the three robust MEC
charts are superior to the MEC5 chart. The MEC3, MECy 0y, and MECy o can
quickly detect a change in the data under non-normality, especially when a small shift
occurs in the process. Under the extreme data distribution (G0.5H0.5), the MECyou
and MECyyonm perform similarly for moderate shifts when designed for §* = 0.5.
However, when 6" = § = 1, the MECy0pm 1S the best across both n. That is, the

MECypoum 1s the most efficient for the shift it is designed to detect.
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Table 4.6

ARL; of the MEC Charts for G0.5HO0 Distribution

Charts
n 0" 10) MEC5 MECy3 MECyoum MECymom
0.25 58.3907 58.5201 57.7659 55.918
0.5 32.2639 32.4264 32.3091 31.9695
0.75 24.3031 24.3881 24.3639 24.2342
0.5 1 20.0038 20.0584 20.0224 19.9883
1.5 15.2868 15.3091 15.2887 15.3136
2 12.6367 12.6557 12.6343 12.6797
3 9.6839 9.7144 9.6877 9.7334
5
0.25 37.6736 38.3764 37.5049 35.4651
0.5 17.409 17.5037 17.5108 17.4043
0.75 12.6186 12.659 12.6193 12.6994
1 1 10.1471 10.2304 10.17 10.2264
1.5 7.6342 7.6844 7.6391 7.711
2 6.2563 6.2863 6.2652 6.3199
3 4.8363 4.8638 4.845 4.8932
0.25 43.7372 44.1839 44.2179 43.4809
0.5 26.1936 26.2797 26.3085 26.1419
0.75 19.8707 19.9498 19.9374 19.892
0.5 1 16.3851 16.4597 16.4374 16.4305
1.5 12.5428 12.5962 12.5973 12.6003
2 10.3731 10.4191 10.4037 10.4132
3 7.9662 7.9802 7.984 7.9855
9
0.25 25.9382 25.8481 26.0739 25.444
0.5 13.7891 13.7515 13.7537 13.708
0.75 10.1996 10.1311 10.1817 10.1209
1 1 8.3093 8.2839 8.2792 8.2594
1.5 6.2629 6.2401 6.2591 6.2346
2 5.1061 5.0987 5.0991 5.090
3 3.9895 3.9871 3.9892 3.9911
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Table 4.7

ARL; of the MEC Charts for G0.5HO0.5 Distribution

Charts
n 0" 10) MEC5 MECy3 MECyoum MECymom
0.25 57.7078 58.7546 58.7422 55.9965
0.5 33.4925 32.3743 32.5065 32.0692
0.75 24.3665 24.393 24.3578 24.2031
0.5 1 20.0034 20.0572 19.991 19.9502
1.5 15.2836 15.3104 15.2962 15.2909
2 12.7832 12.6653 12.6513 12.6746
3 9.9033 9.7349 9.7085 9.7426
5
0.25 42,4726 38.7902 38.5031 36.3152
0.5 18.6151 17.5717 17.4657 17.3207
0.75 13.0525 12.6705 12.6188 12.6406
1 1 10.3018 10.2123 10.1766 10.2043
1.5 7.7539 7.6794 7.6482 7.7035
2 6.0406 6.2826 6.2595 6.3107
3 4.9685 4.8878 4.8672 4.9069
0.25 46.1313 44.2827 44.2061 42.7723
0.5 26.3144 26.3103 26.2725 25.9913
0.75 19.8215 19.9544 19.9456 19.7653
0.5 1 16.3485 16.4624 16.4625 16.3756
1.5 12.6176 12.6045 12.5872 12.5582
2 10.1364 10.4155 10.3994 10.3976
3 7.9939 7.9807 7.9755 7.9763
9
0.25 27.6188 25.8908 26.2369 24.8487
0.5 13.9225 13.7901 13.7518 13.5839
0.75 10.3488 10.143 10.1702 10.0811
1 1 8.112 8.2818 8.2874 8.2285
1.5 6.0243 6.2328 6.2426 6.2173
2 4.9986 5.0835 5.086 5.0737
3 3.9975 3.9849 3.9852 3.9812
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4.3 MCE Charts
Four MEC control charts based on the sample mean, median, MOM, and WMOM were
designed and assessed in this section. They are denoted as MCEg, MCEjy,

MCEyom,and MCEy,y0um, respectively. The hypotheses in assessing the performances

of these charts under the ARLy and ARL; are as defined in Section 4.2.

Table 4.8 lists the optimal parameter, K., of the MCEg, MCEg, MCEy oy, and
MCEy; oM chart that were derived for n = {5, 9}. The smoothing constant, 4 is

determined based on the chosen 6 = {0.5, 1} following

Table 4.8

Optimal Parameters of the MCE Charts for ARLo~ 370

Charts

5 005 05 K.=6.5605 K:.=6.0599 K.=06.1815 K.=6.2806

5 0.13 1 K.=47750 K.=4.3533 K.=4.4855 K.=4.5103

9 005 05 Kc=74511 K.=68482 K.=71118 K.=7.3039

9 0.13 1 K.=55710 K:.=5.0227 K.=352828 K.=5.4132
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4.3.1 ARL,

The ARLy values shown in Tables 4.9 - 4.10 are based on the n = {5, 9} when the
underlying process data follows the g-and-/ distributions. All the MCE charts used in
this study were designed for ARLy =~ 370 under normality, i.e., GOHO. The in-control
performance of the MCE charts was then investigated when the underlying distribution
deviates from normal, that is, when GOHO.5, G0.5HO, and G0.5HO0.5. In Tables 4.9
and 4.10, the performance of the charts that complies with the Bradley’s stringent
criterion of robustness, i.e., [337, 412] is indicated by the highlighted ARL,. The robust
MCE charts can control the false alarm rate according to the Bradley’s stringent
criterion under GOHO.5 for certain conditions only. A thorough comparison of the

MEC and MCE charts is given at this chapter's conclusion.

From Tables 4.9 and 4.10, designing the robust MCE charts with either §* = 0.5 and
6 = 1, can limit the effects of outliers on the design structures of the charts whereby
they can still control the false alarm rate under non-normal data scenarios. In contrast,
the standard MCE chart (MCE z), may produce large values of ARL under heavy-tailed
cases (GOHO.5 and G0.5H0.5). As shown in Tables 4.9 and 4.10, the ARLy for the
MCE g under heavy-tailed cases are much higher than the pre-determined value of 370.
This can negatively affect the power, i.e., the shift detection capability of the chart, as

discussed in the subsequent section.
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Table 4.9

ARLyfor the MCE Charts when n = 5

Charts
6" Distribution MCE3 MCE3 MCEyou MCEywmom
GOHO 370.07 369.92 369.95 370.05
GOHO.5 4969.67 352.49 420.67 448.80
0 G0.5HO 233.65 176.47 211.58 214.06
G0.5HO0.5 7019.21 214.23 249.71 256.89
GOHO 370.02 370.07 369.93 369.82
GOHO.5 4624.08 305.17 371.56 369.46
G0.5HO 189.08 145.12 183.36 177.94
G0.5HO0.5 6906.74 175.32 205.45 207.62
Table 4.10
ARLy for the MCE Charts n = 9
Charts
6" Distribution MCEy MCE3 MCEyou MCEywmom
GOHO 370.33 370.02 370.02 370.02
GOHO.5 5118.65 320.92 426.71 513.36
0 G0.5HO 242.08 184.25 239.70 244.90
G0.5HO0.5 7113.52 187.14 228.24 254.43
GOHO 370.12 370.02 370.11 369.95
GOHO.5 4744.94 286.43 385.55 447.21
G0.5HO 196.59 156.22 209.77 203.97
G0.5HO0.5 7055.53 153.25 189.74 213.87
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4.3.2 ARL;

The four g-and-/ distributions are covered in the ARL; findings where the results are

organized following the table layout specified in this section.

a. GOHO

The ARL; values for each of  the four MCE charts
(MCEg, MCEg , MCEy o and MCEy0nm) are listed in Table 4.11 following data
normally distributed. The results show that the ARL; values are consistent when
6 > 0.5. However, when a small n is employed for monitoring § < 0.5, there is a
fluctuation in the control chart performance, with MCE;,, and MCE g turning out as
the least effective methods. Both robust charts show larger ARL; values when
compared to the other investigated MCE charts as italicized in Table 4.11. This
suggests that under these circumstances, the MCEy; ), and MCE 3 have less power in
detecting small shifts. Generally, a change in # and § has the same impact for all the
charts. As the n increases from 5 to 9, the ARL; values decrease significantly when the
charts were designed for 6 = 0.5. Moreover, an increase » is shown to enhance the
performance of control charts especially for a relatively small change in the process
(6 < 0.5). On the other hand, the bold values in Table 4.11 present smaller ARL; for
the MCEg and MECy, 0y When compared to the other MCE charts, irrespective of

6"
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Table 4.11

ARL; of the MCE Charts for GOHO Distribution

Charts
n o ) MCE5 MCE MCEyou  MCEywyom
5 0.5 0.25 28.285 27.1063 28.3735 27.665
0.5 6.999 7.0191 7.1392 6.9455
0.75 4.25 4.4242 4.4397 4.3352
1 3.42 3.5718 3.5791 3.4955
1.5 2.635 2.7979 2.8088 2.7205
2 2.111 2.2203 2.2208 2.1666
3 1.998 2.0001 2 1.9997
0.25 42.025 40.6295 43.0593 40.1805
0.5 9.218 8.7358 9.2424 8.8618
0.75 3.819 3.8373 3.9653 3.8379
1 1 2.63 2.7202 2.731 2.6719
1.5 1.983 2.0475 2.0595 2.0179
2 1.635 1.7822 1.7952 1.6991
3 1.033 1.0713 1.0796 1.0495
0.25 16.96 15.9278 16.9205 16.9741
0.5 4.488 4.6185 4.6323 4.5771
0.75 3.156 3.3383 3.3041 3.2151
0.5 1 2.583 2.756 2.7183 2.6439
1.5 2.028 2.0745 2.0614 2.0411
2 1.985 1.9995 1.9986 1.9955
3 1.213 1.5735 1.5025 1.3265
9
0.25 26.673 24.4725 26.8084 26.0821
0.5 4921 4.8153 5.0463 49134
0.75 2.511 2.5886 2.5863 2.5497
1 1 1.989 2.0732 2.0692 2.0247
1.5 1.409 1.5593 1.5486 1.4579
2 1.043 1.0908 1.0847 1.0543
3 1 1 1.0000 1
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b. GOHO0.5

For the symmetric heavy-tailed distributions (GOHO.5), the findings are presented in
Table 4.12. The MCE control chart displays the largest ARL; values across all n and
6, suggesting poor shift detection capability, as indicated by the italicized values.
Contrarily, all robust MCE charts consistently yield small values of ARL; for all n and
6. The MCE g chart shows the best performance among all the robust MCE charts with
the smallest ARL; values in bold. This result suggests that the robust MCE charts are
best to detect small shifts in symmetric heavy-tailed distributions when compared to
the MCEz chart. The ARL; values for the robust MCE charts remain stable despite a
change in n and §. Unexpectedly, the MCE 3 chart performs the best when the shifts

are relatively small § < 1 and can be considered the best at § = 0.5.

c. GO.SHO

Table 4.13 presents the results for GO0.5HO which is a skewed normal-tailed
distribution. For n =5, the MCE 3 control chart shows the largest ARL; across both §*.
When 7 increases from 5 to 9, the MCEz shows the highest ARL; values across both
6", given by the italicized values. This suggests a poor shift detection. On the other
hand, the MCE g chart shows the best performance and consistently produces a much

smaller ARL; for both n and J utilized in the study than the rest of the MCE charts.
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Table 4.12

ARL; of the MCE Charts for GOHO.5 Distribution

Charts
n 0" o) MCE5 MCE% MCEyomy  MCEywyom
0.25 2447.888  41.6979 46.8074 50.9045
0.5 42.253 8.2627 8.6868 8.7433
0.75 12.61 5.028 5.219 5.249
0.5 1 9.834 4.0575 4.1841 4.2507
1.5 8.282 3.1165 3.198 3.2127
2 6.129 2.7677 2.8842 2.9052
3 5.004 2.0142 2.0279 2.031
5
0.25 3217.882  63.3546 74.8538 76.2744
0.5 955.602 12.5394 14.0416 14.2362
0.75 20.801 4.4012 4.7233 4.7276
1 1 9.989 3.0943 3.2314 3.248
1.5 5.733 2.1931 2.2669 2.2775
2 4.779 1.9981 2.0125 2.0161
3 4.057 1.4551 1.6868 1.7019
0.25 1774.465 19.3528 22.5912 26.0661
0.5 15.782 4.9942 5.204 5.4423
0.75 9.906 3.5329 3.6813 3.8158
0.5 1 7.82 2.9778 3.0791 3.1501
1.5 6.013 2.1843 2.298 2.4301
2 5.01 2.0047 2.0102 2.0195
3 4.002 1.9392 1.9846 1.9943
9
0.25 2901.115 31.628 38.1524 46.1582
0.5 285.697 5.2957 6.0281 6.4173
0.75 8.796 2.7461 2.8958 3.0064
1 1 6.041 2.1692 2.2558 2.3082
1.5 4.354 1.8053 1.8981 1.9495
2 3.976 1.2147 1.3576 1.5115
3 3 1.001 1.0036 1.0055
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Table 4.13

ARL; of the MCE Charts for G0.5HO Distribution

Charts
n o ) MCE5 MCE MCEyou  MCEywyom
0.25 34.624 28.0118 30.2872 30.1997
0.5 8.501 7.5523 7.7945 7.7748
0.75 4.716 4.5674 4.6577 4.5983
0.5 1 3.753 3.6543 3.7296 3.6825
1.5 2.922 2.8735 2.9197 2.8734
2 2.393 2.326 2.3926 2.3337
3 2 1.9981 1.9994 1.9993
5
0.25 42.373 35.0015 39.413 37.5749
0.5 11.651 9.8228 10.6478 10.3831
0.75 4.493 4.12 4.2607 4.1873
1 1 2.93 2.8117 2.8881 2.8539
1.5 2.083 2.0422 2.0804 2.0608
2 1.888 1.8519 1.8882 1.8486
3 1.157 1.0857 1.1529 1.0961
0.25 20.535 16.8715 18.4085 19.1788
0.5 5.066 4.772 4.8915 4.8836
0.75 3.458 3.3752 3.4362 3.4132
0.5 1 2.878 2.8143 2.8573 2.8392
1.5 2.12 2.0722 2.1125 2.0951
2 1.999 1.9974 1.999 1.9988
3 1.812 1.7137 1.7881 1.7417
9
0.25 28.51 22.7873 26.7697 26.4923
0.5 6.066 5.1688 5.5566 5.603
0.75 2.763 2.6528 2.7113 2.6947
1 1 2.135 2.0691 2.1173 2.1004
1.5 1.726 1.6456 1.7036 1.6684
2 1.165 1.099 1.1487 1.1244
3 1 1 1 1
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d. G0.5H0.5

The findings for G0.5HO0.5 are summarized in Table 4.14. The findings follow an
almost similar pattern as observed under GOHO.5. Again, the MCE3 control chart
exhibits worse performance, i.e., the largest value of ARL; across all n and o
(italicized values in Table 4.14). Even with an increase in n, there is not much
difference in the ARL; performance of the standard chart. For example, there is just as
slight decrease in the ARL; value in detecting § = 0.25 which is observed for 6* = 1

when increasing the » from 5 to 9.

In contrast, all three robust charts (MCEg, MCEyopm, and MCEy,p0n) consistently
produce small ARL; across all n and o. The bold values in Table 4.14 indicate the
smallest ARL; for the MCE g, which performs better than the other investigated robust
MCE charts. This indicates that the robust MCE charts can still quickly detect shifts
despite far deviation in the normality assumption. For both n, the performance of the
MCEyoy and MCEy,yon improves as 8 increases, i.e., smaller ARL;. This is true
for small shifts, i.e., 0.25 < § < 0.5. Moreover, the MCEy;o), is the next best chart

followed by the MCEy, prom-
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Table 4.14

ARL; of the MCE Charts for G0.5HO0.5 Distribution

Charts
n 0" o) MCE5 MCE5 MCEyomy  MCEywyom
0.25 6512.278 44.269 49.149 50.5071
0.5 652.723 9.2207 9.616 9.8837
0.75 33.331 5.2523 5.429 5.5242
0.5 1 21.278 4.229 4.3446 4431
1.5 15.71 3.2156 3.313 3.3865
2 12.993 2.9025 2.9473 2.9652
3 9.999 2.0159 2.0409 2.0675
5
0.25 6881.463  57.4109 65.8081 66.4383
0.5 5520.929  14.9059 16.653 16.9199
0.75 320.486 4.8075 5.0824 5.1931
1 1 24.564 3.2333 3.3711 3.4181
1.5 12.899 2.2884 2.3934 2.4394
2 9.986 1.9909 2.0055 2.0078
3 7.508 1.7611 1.8664 1.8964
0.25 5871.863  20.3336 23.2598 27.4094
0.5 46.154 5.1167 5.3582 5.7123
0.75 21.006 3.6135 3.7548 3.9669
0.5 1 15.827 3.011 3.1042 3.2343
1.5 12.39 2.2414 2.3898 2.6269
2 10.045 2.0008 2.0041 2.0191
3 7.998 1.9594 1.9843 1.9958
9
0.25 6469.581 28.9977 34,9416 40.4806
0.5 3472.864 5.8619 6.4293 7.4136
0.75 27.641 2.8326 2.9599 3.1504
1 1 13.25 2.1838 2.272 2.4018
1.5 9.079 1.861 1.9191 1.9646
2 7.932 1.2975 1.4773 1.7175
3 5.996 1.0005 1.0007 1.0029
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4.4 Comparison of the MEC and MCE Charts

In this section, the ARL performances of the investigated MEC and MCE charts are
compared with respect to several shifts observed in the process. Three values of shifts
(0) are taken into consideration for comparison purposes. They are, (i) & = 0 (no shift),
o0 = 0.5 (small actual shift), and 6 = 1 (moderate actual shift). Tables 4.15 to 4.17
display the ARL values corresponding to the abovementioned ¢ values. Each table is
dedicated to a specific g-and-4 distribution and presents the ARL values corresponding
to the specific combination of n, §* and . To further emphasize the strength of the
proposed robust memory-type charts, this study includes the ARL performance of the
Shewhart X control with 3-sigma control limits, listed on the final column of each
table. Henceforth, the Shewhart chart is denoted by X. Since the X cannot be designed,
i.e., tuned, for a specific magnitude of shifts due to its reliance on fixed control limits
and the sample mean as the estimator (Haridy & Benneyan, 2024), the ARL values
for this chart when n = {5, 9} are displayed repeatedly across the two design shifts
(6" = {0.5, 1}). These 6" were used to design the MEC and MCE chart for

ARLy = 370; analogous to the Shewhart chart with 3-sigma limits.

The comparison among the MEC charts (MECgz, MECg, MECy o, and MECy pom),
MCE charts (MCEg, MCE g, MCE)y;0p,, and MCEy;401), and X chart are based on the
ARLj and ARL;. As mentioned before, the ARLy assesses the in-control robustness of
the chart. Meanwhile, the ARL; evaluates the capability of the chart to quickly detect
shifts in the process. Ideally, a good chart has a large value of ARLy and small ARL;.
In the following tables, the ARLy results are listed under § = 0 (no shift). When 6§ =0,

the results are referred to the ARL;.
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a. GOHO

Table 4.15 compares the ARL of the nine charts under GOHO. When 6 = 0, all ARLy
values are as expected, i.e., 370, as the charts were designed to have. For 6 # 0, the
following are observed. The MCE charts in general, exhibit superior performances
(i.e., smaller ARL;) when compared to the MEC charts when a change in the process
is small, i.e., & = 0.5. However, it is important to note that the effectiveness of these
MEC and MCE charts differs based on the #. It has been observed that in both sample
sizes, the MCE charts can effectively detect small process shifts (0.25 < § <0.5),
judging by the smallest ARL; values for both §*. Overall, the MCE charts consistently
outperform the MEC charts, across all conditions in this study. This is due to the design
of their control structure, which enhances sensitivity and enables faster detection of
process shifts. In contrast, the MEC charts are comparatively less efficient in detecting

shifts when data follows a normal distribution.

It is important to note that the shift detection capability of the investigated charts,
including the X, increases with a larger value of 7. When 7 increases, the MCE charts
show better out-of-control performances compared to the MEC charts. When the actual
shift size is aligned with the design shift, i.e., (0 = §"), the MCE\ ;o) demonstrates
the capability to detect a small shift even when #z is small. Specifically, the MCEy, pom
displays the smallest ARL; for small 6 value (0.25 < § < 0.5). Thus, highlighting the
MCEy, oM efficiency. However, as n increases, the performance of the MCE g chart
exceeds the MCEy, pyop in performance. Notably, MCE 3 stands out as the best choice
for detecting a small shift (6 = 0.5) faster even when it was designed for a moderate

shift detection (0 * = 1).
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Table 4.15

ARL of the MEC and MCE Charts for GOHO Distribution

MEC MCE X
n 5 6 MECy MEC;  MECyom MECymom MCEy MCE;  MCEyoy MCEwmon

0 370.05 370.05 370.79 370.80 370.07 369.92 369.95 370.05 369.68

05 0.5 323803 32358 322952 32.5305 6.999 7.0191 7.1392 6.9455 37.75

1 19.9896  20.0494  19.9981  20.1275 3.42 3.5718 3.5791 3.4955 4.76

. 0 369.61 369.82 369.79 369.58 370.02 370.07 369.93 369.82 369.68

1 05 323803 32358 322952 32.5305 9.218 8.7358 9.2424 8.8618 37.75

1 10.1606  10.2236  10.1877  10.3203 2.63 2.7202 2.731 2.6719 4.76

0 369.42 370.37 368.82 370.09 369.42 370.37 368.82 370.09 369.96

05 05 262343 263046 263265  26.3544 4.488 4.6185 4.6323 4.5771 16.41

1 163952  16.441 16.4645  16.4927 2.583 2.756 2.7183 2.6439 2.06

’ 0 369.44 370.35 370.89 369.49 370.12 370.02 370.11 369.95 369.96

1 05 13.7853  13.7535  13.7585  13.7903 4.921 4.8153 5.0463 4.9134 16.41

1 8.3088 8.2792 8.2853 8.2672 1.989 2.0732 2.0692 2.0247 2.06




b. GOHO0.5

The ARL for all charts under GOHO.5 is listed in Table 4.16. The main focus is to
identify a control chart that maintains the ARLy value within the Bradley’s stringent
criterion while consistently producing high ARL; (i.e., good detection capability). As
mentioned previously, the Bradley’s stringent criterion is set at [337, 412]. The values

highlighted in Table 4.16 correspond to the ARL that falls within the robust criteria.

For a small design shift (6* = 0.5), all the robust MEC charts (MECgz, MECy; 0, and
MECyy0m) demonstrates remarkable in-control robustness and consistently yields
small ARL; values for 6 > 0. These consistent detection capabilities are evident in both
n. For a moderate design shift (6* = 1.0), the ranking of charts varies depending on the
n. For n = 5, the MCEyoy displays the robust in-control performance with
ARLy=371.56 and consistent detection capability across §. Despite this, making it the
most robust chart under symmetric heavy-tailed distributions. For n = 9, the
MECypom chart not only maintains consistency in providing quick detection for

0 >0, but it emerges as the most robust chart.

In conclusion, the MEC charts have illustrated their robustness and detection capability
across varying settings, and the MCE chart has displayed consistent detection
capabilities with different levels of robustness across the conditions specified. It has
been noted that the ARLy of the MEC% and MCE is comparatively less robust than
other charts under investigation. However, Table 4.16 demonstrates that the MECyo
exhibits greater detection power than the MECy, 0y chart, particularly when the

actual shift is relatively small.
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The X fails to meet the Bradley’s stringent criterion as shown by the ARLy for 5= 0
in Table 4.16. Even with an increase in n, the ARLy value does not approach the
expected 370. Consequently, its detection capability is not worth pursuing for

discussion as it is consistently being outperformed by the MEC and MCE charts.

c. GO.5HO

GO. 5HO denotes the impact of non-normality on skewness. Table 4.17 lists the ARL
results. The ARL highlighted for § = 0 indicates that all ARL, generated by the MEC
charts under investigation fall within the Bradley’s stringent criterion. In contrast,
none of the ARLy for MCE charts falls within the stringent criterion, suggesting that
the MCE charts under this investigation are not robust. The level of robustness
exhibited by the MEC varies based on the §* which exhibits better in-control

robustness, i.e., an improved ARLy, when designed for small shift (§* = 0.5).

When the value of 6 is set to 0.5, the MEC chart emerges as the best choice to be
used due to its combined robustness and consistent high detection. Specifically, the
MECy3 is identified as the top performer for n = 5, and MECy, oy for n = 9,
respectively. For 6 * = 1 and n = 5, the MECyx is recognized as the most robust,
exhibiting consistent quick detection and robust ARLy values. For n = 9, the

MECy 1 0m chart is deemed the most suitable chart to be used.
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Table 4.16

ARL of the MEC and MCE Charts for GOH0.5 Distribution

MEC MCE X
n 5 68 MECy MEC;  MECyom MECymom MCEjy MCE; ~ MCEyoy MCEwmon

0 771.11 370.47 372.79 370.96 4969.67  352.49 420.67 448.80 222.29

05 05 32.7493 323581 322826  32.5013 42253 8.2627 8.6868 8.7433 152.70

1 19.9764  20.0478  20.0088  20.1393 9.834 4.0575 4.1841 42507 35.64

> 0 948.99 371.07 374.40 374.52 4624.08  305.17 371.56 369.46 222.29

1 05 17.3877 174988  17.4459  17.6981 955.602  12.5394  14.0416  14.2362 152.70

1 10.126  10.2038  10.1857 10.306 9.989 3.0943 3.2314 3.248 35.64

0 820.62 372.08 377.22 367.73 5118.65  320.92 426.71 513.36 241.86

05 05 264951 263148 262782  26.3973 15.782 4.9942 5.204 5.4423 116.77

1 16.6486 164613  16.4394  16.4767 7.82 2.9778 3.0791 3.1501 2.48

’ 0 1052.48  371.10 372.93 370.90 474494  286.43 385.55 44721 241.86

1 05 13.7305 13.791 13.7908  13.7819 285.697  5.2957 6.0281 6.4173 116.77

1 8.2738 8.2952 8.2917 8.284 6.041 2.1692 2.2558 2.3082 2.48
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Table 4.17

ARL of The MEC and MCE Charts for GO.5H0 Distribution

MEC MCE X
n 5 6 MECy MEC;  MECyom MECymom MCE5 MCE;  MCEwoy MCEwmon

0 369.75 364.77 359.40 362.39 233.65 176.47 211.58 214.06 126.23

05 05 322639 324264 323091  31.9695 8.501 7.5523 7.7945 7.7748 23.34

1 20.0038  20.0584  20.0224  19.9883 3.753 3.6543 3.7296 3.6825 5.20

> 0 368.32 370.31 371.42 371.06 189.08 145.12 183.36 177.94 126.23

105 17.409  17.5037  17.5108  17.4043 11.651 9.8228 10.6478  10.3831 23.34

1 10.1471  10.2304 10.17 10.2264 2.93 2.8117 2.8881 2.8539 5.20

0 365.66 367.92 363.78 373.06 242.08 184.25 239.70 244.90 164.54

05 0.5 26.1936 262797 263085  26.1419 5.066 4.772 4.8915 4.8836 13.55

1 163851 164597  16.4374  16.4305 2.878 2.8143 2.8573 2.8392 2.24

’ 0 379.08 367.21 371.62 371.25 196.59 156.22 209.77 203.97 164.54

105 13.7891  13.7515  13.7537 13.708 6.066 5.1688 5.5566 5.603 13.55

1 8.3093 8.2839 8.2792 8.2594 2.135 2.0691 2.1173 2.1004 2.24




d. G0.5H0.5

Table 4.18 presents a comparison of ARL performance among the nine charts for
G0.5HO0.5. This distribution holds particular significance as it provides insights into
the charts' behavior under extreme data distribution, i.e., i.e., high kurtosis and
skewness. The findings indicate that employing the standard charts is not advisable,
as these standard charts fail to maintain the ARLy values within the acceptable range
of 337 to 412, making their effectiveness in detecting shifts dubious. The MCE charts
are more likely to be impacted than the MEC chart under this scenario, judging by the
ARLy of the MCE charts. Notably, X struggles to control the 4RLy within the

acceptable range with the worst performances when § # 0.

It is important to emphasize that the MEC charts constructed based on robust
estimators, as shown in this section, can perform reliably when dealing with extreme
non-normality when designing for an optimal small shift detection, i.e., §* = 0.5. That
is, a robust ARLycan be achieved (as highlighted in yellow) when these robust charts
were designed specifically based on §* = 0.5. Thus, ensuring reliable small shift

detection as the charts are intended for.

When n = 5, it has been observed that the MECy, oy demonstrates exceptional
performance in robustness and consistently high detection. On the other hand, when
n =9, the MEC,;op is identified as the most robust chart. As » increases, the ARLy of
both robust charts exhibit significant improvement and move toward the nominal
value (370). Hence, the MECyy 500 1 selected for its most robust and consistently high

detection for n =5, and MECy;y, is chosen for n =9.
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Table 4.18

ARL of the MEC and MCE Charts G0.5H0.5 Distribution

MEC MCE X
n 5 6 MEC; MEC;  MECyom MECymom MCE5 MCE;  MCEwom MCEwmon

0 1471.99  378.23 374.10 363.86 701921  214.23 249.71 256.89 819.77

05 0.5 33.4925 323743 325065  32.0692 652.723  9.2207 9.616 9.8837 403.42

1 20.0034  20.0572 19.991 19.9502 21.278 4229 4.3446 4.431 108.12

. 0 1667.37  382.85 362.88 367.37 6906.74 17532 205.45 207.62 819.77

1 05 18.6151  17.5717  17.4657  17.3207 5520.929  14.9059 16.653 16.9199 403.42

1 103018 10.2123  10.1766  10.2043 24.564 3.2333 3.3711 3.4181 108.12

0 2464.16  368.39 368.57 367.08 711352 187.14 228.24 254.43 770.42

05 05 263144 263103 262725  25.9913 46.154 5.1167 5.3582 5.7123 263.44

1 163485 164624 164625  16.3756 15.827 3.011 3.1042 3.2343 4.46

’ 0 284533  366.45 375.96 366.39 7055.53 153.25 189.74 213.87 770.42

1 05 13.9225  13.7901  13.7518  13.5839 3472.864  5.8619 6.4293 7.4136 263.44

1 8.112 8.2818 8.2874 8.2285 13.25 2.1838 2272 2.4018 4.46




Throughout this study, which covers the MEC and MCE charts, it is evident that the
specification of 6" is crucial as it has an impact on the robustness and detection
capabilities of these memory-type charts, as demonstrated in this chapter. Notably, the
robust MEC charts demonstrate high robustness against non-normality when designed

for an optimal detection of small shift, i.e., 6 =0.5.

4.5 Real Data Application

To demonstrate the application of the investigated MEC and MCE chart on real data,
the charts were applied to water quality data from Selangor Maritime Gateway (SMQ)
and the Malaysian National Water Quality Standard (NWQS), and manufacturing data

from medical specialties company.

4.5.1 MEC and MCE Charts on DOC and TSS data

Figures 4.1 and 4.2 illustrate line charts that were constructed for hourly TSS and DOC
data, respectively from 27th June 2023 until 22nd July 2023. For this study, 560 data
values from TSS and DOC data were selected. An increasing trend can be observed
for the TSS, starting in July as depicted in Figure 4.1. Meanwhile, in

Figure 4.2, the highest data values in the DOC data are observed in June.
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Figure 4.1 Line Chart of TSS Data

2.50

2.00

= ]
7 S

(1/3w) DOA

ol

o
\n
o

0.00

924
6¢CS
€IS
L6v
18y
S9v
(124
1 29%
L1y
107
¢8¢
69¢
€6¢
LEE
¥43
S0¢
68¢

Hourly data from 27/6/23 to 22/7/23

Figure 4.2 Line Chart of DOC Data
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Table 4.19 shows the estimator values for TSS and DOC data. Based on the result, the
values of mean for TSS and DOC are higher than their respective median values,
indicating that the distribution shape is right-skewed. Since the distribution is skewed,
the mean is not the best estimator of central tendency, as it is in influenced by extreme
values. Therefore, the median-based estimators i.e., median, MOM, and WMOM are

more appropriate for accurately representing the central tendency of the data.

Table 4.19

Estimator Values of TSS and DOC Data

Estimator
Mean Median MOM WMOM
TSS 119.53 88.75 88.0228 104.5449
Data
DOC 0.2253 0.2025 0.2029 0.2043

Figures 4.3 and 4.4 show the normality test using the Kolmogrov-Smirnov test on TSS
and DOC for the 560 data values. With p-value < 0.01, both TSS and DOC data are
concluded to be non-normally distributed at 5% significance level, making them
suitable to be applied on the newly proposed robust MEC and MCE charts in this

study.
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Figure 4.3 Normality Test of the TSS Data

Figure 4.4 Normality Test of the DOC Data
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Following the normality test, the 560 data values of the TSS and DOC data were
grouped into 80 samples (m = 80), each with a sample size of 7 (n = 7) as presented in
Figures 4.5 and 4.6. This rational subgrouping value, i.e., n = 7, was opted in this real
data analysis due to the similar characteristics exhibited by the TSS and DOC data
within a seven-hourly period. For example, observations taken between 12 am to 7 am
vary with the next cycle (7 am — 1 pm) which could be attributed to the varying
temperature in day versus night. Thus, to minimize the variation within the subgroup

while maximizing the variation between the subgroups, n = 7 was chosen.
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Figure 4.5 Line Chart for 80 Samples of TSS Data
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Figure 4.6 Line Chart for 80 Samples of DOC Data

The first half of the dataset was used to construct the control limits (Phase I) and the
latter half was used to monitor the out-of-control samples (Phase II). For n = 7 and
A=0.13 and k£ = 0.5 (as in the simulation study), the optimal parameters of the MEC

and MCE charts were derived and listed in Tables 4.20 —4.21.

Table 4.20

Optimal Parameters of the MEC Chart for ARLo~ 370

Charts

7 0.13 1 h =36.54 h=36.65 h=36.68 h =369
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Table 4.21

Optimal Parameters of the MCE Chart for ARLy~ 370

Charts
7 0.13 1 K.=35.21 K.=4732 K.=4942 K.=5.032

The outcomes of the proposed MEC and MCE charts can be observed in Figures 4.7
to 4.22. For the MEC charts, both statistics, MEC;" and MEC;, are plotted against the
control limit, H, while for MCE charts, both statistics, MCE;" and MCE;, are plotted

against the control limit, UCL,.

Figures 4.7 to 4.10 illustrate the output of the MEC charts for the TSS data. The
MEC%, as presented in Figure 4.7, shows no out-of-control samples. Meanwhile,
Figure 4.8 indicates 8 out-of-control samples (samples 23 to 30) for the robust MECy.
Lastly, Figures 4.9 and 4.10 show the output for the robust MECy; oy and MECyyyom
with 7 out-of-control samples (samples 24 to 30). This implies that all the robust charts
(MECg, MECy0p, MECyypom) are quicker than the MECx chart in detecting a change
in the TSS data. The findings from both the simulation analysis and real data analysis
consistently indicate that all robust charts (MECg, MECyom, MECyyon) €Xxbibit
superior performance in detecting shifts under non-normal data condition compared

to the MECy chart.
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Figure 4.7. MECx Chart for the TSS Data
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Figure 4.8. MECy Chart for the TSS Data
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Figure 4.9 MECy oy Chart for the TSS Data
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Figure 4.10 MECyy 0 for the TSS Data
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Figures 4.11 - 4.14 illustrate the output of MCE charts for the TSS data which show
no out-of-control samples for all investigated MCE charts. This finding contrasts with
the results obtained from MEC charts, where all robust charts
(MECg%, MECy0p, MECyypom) demonstrated superior sensitivity to  shifts in
non-normal data compared to MECx chart. Furthermore, this finding aligns with the
simulation results, which similarly indicated that the MCE charts are less sensitive in

detecting shifts compared to MEC charts.
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Figure 4.11 MCE 3 Chart for the TSS Data
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Figure 4.12 MCE 3 Chart for the TSS Data
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Figure 4.13 MCE;op Chart for the TSS Data

114




120
100 -------------------------------

80

—a&— MCE+

MCE,
[e))
o

—&— MCE-

40
-=ee UCL

20

1234567 8 9101112131415161718192021222324252627282930
Sample number

Figure 4.14 MCE ;0 Chart for the TSS Data

Figures 4.15 to 4.18 illustrate the output of the MEC charts for the DOC data. The
MECg, as presented, in Figure 4.15 shows 23 out-of-control samples
(samples 8 to 30) for the MEC;~, while no out-of-control samples were identified for
the MEC;*. Meanwhile, all the robust MEC charts (MECg, MECyopn, and MECy pom)
in Figures 4.16 to 4.18 consistently indicated 30 out-of-control samples
(samples 1 to 30) for the MEC;~ and no out-of-control samples for the MEC;*. This
implies that the proposed robust charts are more sensitive to changes in the DOC data

when compared to the MECx chart.

The charts show more out-of-control samples for the MEC;~ compared to the MEC;".
The difference may be due to the external factors, such as temperature changes

between day and night, which can affect the process behavior during each cycle.
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Figure 4.15 MECz Chart for the DOC Data
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Figure 4.16 MEC3 Chart for the DOC Data
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Figure 4.17 MECy;opChart for the DOC Data
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Figure 4.18 MECyy 0 Chart for the DOC Data
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Figures 4.19 to 4.22 illustrate the output of the MCE charts for the DOC data. The
MCE5 and MCE 3 charts, as presented in Figure 4.19 and 4.20, shows no out-of-control
samples. Meanwhile, the robust MCEj o, chart in Figure 4.21 indicates 25
out-of-control samples (samples 6 to 30) for the increasing trend and eight (8)
out-of-control samples (samples 23 to 30) for the decreasing trend. The robust
MCEy; oM 1n Figure 4.22 indicates 24 out-of-control samples (samples 7 to 30) for
the increasing trend and seven (7) out-of-control samples (samples 24 to 30) for the
decreasing trend. This implies that the MCEy;op MCEyy 100 charts are more sensitive

to the changes in the DOC data, unlike the MCEg and MCEj; charts.
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Figure 4.19 MCE 3 Chart for the DOC Data
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Figure 4.20 MCE 3 Chart for the DOC Data
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Figure 4.21 MCE;oy for the DOC Data
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4.5.2 MEC and MCE Charts on Marker band Data

To further explore the robustness of the proposed charts, this study validates the
findings using real manufacturing data. For this study, 375 data values from marker
band data were selected and grouped into 75 samples (m = 75), each with a sample
size of 5 (n = 5) as presented in Figure 4.23. The chart shows the increasing trend of

the marker band data.

Length (mm)
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Figure 4.23 Line Chart of Marker Band Data

Table 4.22 shows the estimator values for marker band data. Based on the result, all
estimator values including the mean, median, MOM and WMOM are approximately
equal, indicating that the distribution shape is symmetric. Since the distribution is

symmetric, the mean is the best estimator of central tendency for marker band data.
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Table 4.22

Estimator Values of Marker Band Data

Estimator

Mean Median MOM WMOM

49.2895  49.2973 49.2890 49.2891

Figures 4.24 show the normality test using the Kolmogrov-Smirnov test on marker
band for the 375 data values. With p-value = 0.08, the marker band data are concluded

to be normally distributed at 5% significance level.
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Figure 4.24 Normality Test of the Marker Band Data
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Figures 4.25 to 4.28 illustrate the output of the MEC charts for the marker band data.
The MECg, as presented, in Figure 4.25 shows 7 out-of-control samples
(samples 19 to 25) for the MEC;". Meanwhile, the robust MEC charts (MECg and
MECyp0m) in Figures 4.26 and 4.28 indicate at least 4 out-of-control samples for the
MEC;*. The robust MECyop chart in Figure 4.27 shows 18 out-of-control samples
(samples 8 to 25) for the MEC;". This implies that the proposed robust ME Cy;op chart
are more sensitive to changes in the marker band data when compared to the MECx
and other robust charts. This finding aligns with the results obtained from the
simulation study, which concluded that MEC,,, chart demonstrate superior
robustness and consistently high detection capability, particularly under non-normal

data conditions.
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Figure 4.25 MECz Chart for the Marker Band Data
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Figure 4.26 MEC Chart for the Marker Band Data
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Figure 4.27 MECy;opn Chart for the Marker Band Data
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Figure 4.28 MECyyy0nm Chart for the Marker Band Data

Figures 4.29 to 4.32 illustrate the output of the MCE charts for the marker band data.
All the control charts show the earliest 4 out-of-control samples (samples 1 to 4) at the

very beginning for the MCE;" and MCE;".
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Figure 4.29 MCE 3 Chart for the Marker Band Data
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Figure 4.30 MCE 3 Chart for the Marker Band Data
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Figure 4.31 MCE;opn Chart for the Marker Band Data
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Figure 4.32 MCE ;0 Chart for the Marker Band Data

In conclusion, the analysis of the real data from TSS, DOC and marker band data
consistently supports the findings from the simulation study. The robust control charts,
particularly MECy oy and MECy 0y charts, demonstrated superior performance in
detecting shifts compared to MECg; chart. The consistent results of real data and
simulation study confirms the robustness and capability in detecting shifts of these

control charts in handling non-normal data conditions.
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CHAPTER FIVE
CONCLUSION

5.1 Introduction

This study aims to develop robust control charts which are able control the
Type I error while improving the small shift detection capability. The focus is on the
mixed EWMA-CUSUM (MEC) and mixed CUSUM-EWMA (MCE) charts as
introduced by Abbas et al. (2013) and Zaman et al. (2015), respectively. In this study,
three median based control charts were proposed under each category of the memory-
type charts. Specifically, the median, modified one-step M-estimator (MOM), and
winsorized WMOM; all possess 50% BP, were employed to construct the robust MEC
and MCE charts. Six robust charts were produced which are denoted by MECy,
MECyoms MECyyom, MCEg, MCEy o, and MCEy, 0nm- Their performances were
evaluated based on the average run length (ARL) and compared against the standard

MEC, MCE charts and Shewhart X chart.

In this study, the performance of the proposed MEC and MCE charts was evaluated
based on ARL across 128 conditions. These conditions were generated via
Monte Carlo simulation studies by manipulating types of distribution (i.e., g-and-#),
design shifts (6*), sample sizes (n), and shift sizes (§) to generate conditions that
highlight the strengths and weaknesses of each chart. To fully utilize the salient
features of the memory-type charts, the investigated charts in this study were designed
for the optimal detection of small and moderate shifts only. The results can be found

in section 4.4.
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The Shewhart X chart was shown to be highly sensitive to non-normality and
ineffective for small and moderate shifts. This attests to the loss of information in
signaling out-of-control conditions as the chart only uses the most recent data and
discards the rest of it. Conversely, the MEC and MCE charts use all samples in the
process. With this wealth of information from the samples in the process, both charts
are claimed to be effective in signaling out-of-control conditions even when only a
small change occurs. Yet, the MEC and MCE charts are confined to the normality
assumption as they use the sample mean to monitor a change in the process location,
making the charts highly susceptible to the effect of outliers. This rigidity to the
normality assumption and its impact on the charts’ performance is further emphasized
when the process parameters in Phase I are unknown. Parameter estimation in Phase I
can be perturbed by the presence of outliers. With this, the control limits can either be
overestimated or underestimated. Thus, fluctuating the Type I and Type II errors of

the charts. In SPC, these measurement criteria are analogous to the ARL.
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5.2 Comparison of the Robustness, ARLy

The Bradley’s stringent criterion was used to determine robust charts among the
investigated control charts. Specifically, charts with an ARLy [337, 412] were
identified to be robust when the pre-determined value was set at 370. The results in
section 4.4 depicted that the proposed MEC and MCE charts are highly robust
compared to the standard MEC and MCE charts across various conditions tested.
Specifically, in the MEC charts’ performance, all the proposed MEC charts
(MECg3, MECyoy, and MECyyon) are comparable in robustness against the
MECy%. Under GOHO.5, as n increases, the MECy 0y remains as the most robust
chart, followed by the MECg and MECyo - The MEC5 results in the best control of
the ARLy) when 0* =1 and n = 5, while the MEC; ;05 1S the most robust when
0* =1and n =9 under GO.5HO. When G0.5HO0.5, the MEC,,0;, chart indicates as the
most robust chart compared to the MECg and the MECy oy When

o0*¥=0.5andn =9.

Focusing on the MCE charts performance, only certain median based MCE charts are
robust under GOHO.5. The MCE;on and MCEy, p 0 are identified as the most robust
charts when compared to the MCE under this symmetric heavy-tailed distribution
when 6* =1 and n = 5. Meanwhile, the MCE charts under G0.5HO and G0.5HO.5 fail
to meet the robustness criteria because their ARLy values fall outside the Bradley’s
stringent criterion. It can be concluded that the MECy,op and MECyy 0 €xhibit the
best control of the ARLy when compared to the rest of the charts under investigation

across the specified scenarios.
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5.3 Comparison of the Shift Detection Capability, ARL;

The results of this comparison can be found in the section 4.3.2. The ARL; value
evaluates the shift detection capability of the chart. The smallest ARL; indicates that
the chart has the fastest detection capability. Under normality, the MCE charts exhibit
better performance and can quickly detect small shifts in the process compared to the
MEC charts. This is indicated by smaller ARL; for the MCE charts, especially when n
increases. Specifically, the MCEy,on chart has a consistent detection capability,
yielding small ARL; values across different process shifts and sample sizes. The
MCEyom chart exhibits a greater detection power than the MEC, o chart,

particularly when the actual shift is relatively small.

When the distribution is heavy-tailed, GOHO.5, the MCE,,;,,, detects the shifts faster
compared to other charts when 6 * = 1 and n = 5. For G0.5HO and G0.5HO0.5, the
robust MEC charts emerges as the best choice with consistently high detection
performance. The MEC,0n shows the best detection capability under GO.5HO.
Again, the MECy,p0n shows a good detection capability followed by MECyo and
MECg under G0.5HO.5. It can be concluded that all median based MEC charts are
comparable in term of the detection capability, and result in a better out-of-control

performance than the standard charts.
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5.4 Real Data Application

The real data application of the MEC and MCE charts results in all eight charts being
applied to the water quality data and marker band data. All the robust MEC charts
(MECg, MECyom> MECy0nm) are shown with quick detection to small changes in
the TSS and DOC data when compared to the MCE charts. From the TSS real data
analysis, the robust MECy chart outperforms the rest of the robust charts. In contrast,
for the DOC real data study, all the robust MEC charts (MECg, MECyon, MECymom)
outperform the standard MECg and MCE charts. For marker band data analysis, the
MEC oy shown a quick detection to small changes compared to other control charts.
These findings align with the results obtained from the simulation study in terms of
the detection capability. All robust charts perform comparably with the MECy;0), and
MECy0m being considered as the best charts, followed by the MECy in detecting

many out-of-control samples.

132



5.5 Implications

In this chapter, the key findings from Chapter 4 were highlighted which offer
advantages in utilizing the proposed robust MECy oy and MECy oM which
demonstrated both robustness and fast detection capability, while attesting to the
disadvantages of using the standard charts under non-normality. The findings suggest
that relying solely on standard control charts, with normality assumption, may lead to
poor performance in shifts detection capability, especially in the presence of
non-normal data. Under simulation and real data study, the standard charts display
poor detection capability when the real data followed skewed distributions, unlike the
median based charts. Thus, highlighting the importance of using robust approaches in

process monitoring.

5.6 Recommendation for Future Study

In this study, the analysis focused on the univariate data under non-normal
distribution. Based on the good performance of the proposed charts in terms of
robustness and detection capability under non-normality, it is recommended to

continue the work in the multivariate version of the charts.

However, to comprehensively explore the effects on ARL, future research should
extend the investigation to include the estimation of the dispersion parameter. Thus,
further research is needed to develop appropriate design procedures for the MEC and
MCE control charts based on an estimated dispersion parameter with consideration of
the robustness perspectives. By exploring this new challenge, valuable insights can be

provided which are worth pursuing in future research.
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Appendix

Appendix 1

Real Dataset

TSS Data for Sungai Udang Station (MB1004)

Station Date Time TSS (mg/L)
MBI004 06/27/2023 5:00 141.50
MBI004 06/27/2023 6:00 130.75
MBI004 06/27/2023 7:00 131.00
MBI004
MBI004
MBI004
MBI004 07/22/2023 3:00 279.75
MBI004 07/22/2023 4:00 296.00
MBI004 07/22/2023 5:00 296.00
MBI004 07/22/2023 6:00 296.00
MBI004 07/22/2023 7:00 296.00
MBI004 07/22/2023 8:00 296.00
MBI004 07/22/2023 9:00 233.00
MBI004 07/22/2023 10:00 102.50
MBI004 07/22/2023 11:00 106.00
MBI004 07/22/2023 12:00 105.75
MBI004 07/22/2023 13:00 113.75
MBI004 07/22/2023 14:00 105.25
MBI004 07/22/2023 15:00 113.25
MBI004 07/22/2023 16:00 114.00
MBI004 07/22/2023 17:00 120.00
MBI004 07/22/2023 18:00 120.00
MBI004 07/22/2023 19:00 120.00
MBI004 07/22/2023 20:00 120.00
MBI004 07/22/2023 21:00 120.00
MBI004 07/22/2023 22:00 120.00
MBI004 07/22/2023 23:00 120.00
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Appendix 2

DOC Data for Sungai Udang Station (MB1004)

Station ID Date Time DOC (mg/L)
MBI004 07/08/2023 5:00 0.20
MBI004 07/08/2023 5:00 0.20
MBI004 07/08/2023 7:00 0.20
MBI004
MBI004
MBI004
MBI004 07/22/2023 0:00 0.21
MBI004 07/22/2023 1:00 0.21
MBI004 07/22/2023 2:00 0.21
MBI004 07/22/2023 3:00 0.21
MBI004 07/22/2023 4:00 0.21
MBI004 07/22/2023 5:00 0.21
MBI004 07/22/2023 6:00 0.21
MBI004 07/22/2023 7:00 0.21
MBI004 07/22/2023 8:00 0.21
MBI1004 07/22/2023 9:00 0.21
MBI004 07/22/2023 10:00 0.21
MBI004 07/22/2023 11:00 0.21
MBI004 07/22/2023 12:00 0.21
MBI004 07/22/2023 13:00 0.21
MBI004 07/22/2023 14:00 0.21
MBI004 07/22/2023 15:00 0.21
MBI004 07/22/2023 16:00 0.21
MBI004 07/22/2023 17:00 0.21
MBI004 07/22/2023 18:00 0.21
MBI004 07/22/2023 19:00 0.21
MBI004 07/22/2023 20:00 0.21
MBI004 07/22/2023 21:00 0.21
MBI004 07/22/2023 22:00 0.21
MBI004 07/22/2023 23:00 0.21
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Appendix 3

Marker Band Data

Marker Band Length (mm) Begin Run Time End Run Time

49.13 15:16.1 15:31.1
49.10 17:39.7 17:49.7
49.20 42:10.3 42:28.3
49.31 09:44.3 10:02.3
49.39 10:13.4 10:31.4
49.37 10:39.5 10:53.5
49.36 10:59.1 11:14.1
49.34 11:21.9 11:31.9
49.34 11:37.0 11:55.0
49.37 12:00.3 12:18.3
49.44 12:24.1 12:35.1
49.35 12:47.9 13:04.9
49.43 13:11.4 13:21.4
49.31 22:53.7 23:10.7
49.37 24:00.9 24:17.9
49.24 30:08.4 30:22.4
49.25 30:46.6 31:00.6
49.32 31:10.3 31:28.3
49.34 31:34.0 31:52.0
49.31 31:57.8 32:16.8
49.33 43:14.9 43:33.9
49.29 43:41.3 43:58.3
49.29 45:11.6 45:28.6
49.35 46:08.8 46:25.8
49.44 46:39.3 46:50.3
49.34 47:04.0 47:22.0
49.31 47:31.5 47:48.5
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