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Abstrak 

Carta kawalan sering digunakan untuk memantau dan meningkatkan kualiti sesuatu 
proses. Kaedah statistik ini boleh dikategorikan kepada carta kawalan tanpa memori 
dan jenis-memori. Contoh carta kawalan tanpa memori ialah carta Shewhart yang 
menggunakan maklumat sampel paling terkini dalam sebarang proses. Sebaliknya, 
carta kawalan jenis-memori seperti hasil tambah kumulatif (CUSUM) dan purata 
bergerak berpemberat eksponen (EWMA) yang menggunakan kedua-dua maklumat 
lampau dan terkini dalam proses. Justeru, menjadikan carta lebih sensitif dalam 
mengesan anjakan kecil hingga sederhana. Terbaharu, carta CUSUM dan EWMA 
telah digabungkan untuk membentuk carta campuran EWMA-CUSUM (MEC) dan 
campuran CUSUM-EWMA (MCE) bagi meningkatkan lagi keupayaan pengesanan 
anjakan kecil. Walau bagaimanapun, carta MEC dan MCE adalah berasaskan min, 
maka carta ini bergantung pada andaian kenormalan. Dalam keadaan 
ketidaknormalan, penganggaran parameter berdasarkan min akan terganggu, 
membawa kepada peningkatan isyarat palsu dan melengahkan pengesanan anjakan. 
Untuk menyelesaikan masalah ini dan meningkatkan proses pemantauan, tiga 
penganggar lokasi berasaskan-median (median, M-satu langkah terubahsuai (MOM), 
MOM terwinsor (WMOM)) yang mempunyai titik kerosakan tertinggi (50%) telah 
digunakan dalam pembinaan carta MEC dan MCE, menghasilkan enam carta teguh 
yang baharu, dinamakan sebagai MEC!" , MECMOM, MECWMOM, MCE!" , MCEMOM, dan 
MCEWMOM. Melalui kajian simulasi yang mendalam menggunakan perisian 
pengaturcaraan SAS, carta teguh yang dicadangkan telah diuji dalam beberapa 
keadaan, menumpu kepada taburan g-dan-h, saiz sampel, anjakan reka bentuk dan saiz 
anjakan. Parameter optimum untuk carta telah diterbitkan bagi mencapai pra-penentu 
purata panjang larian (ARL) dalam keadaan normal dan seterusnya, keteguhan carta 
dinilai berdasarkan ARL apabila tersimpang daripada taburan. Pengesahan prestasi 
carta telah dijalankan menggunakan data kualiti air dan data jalur penanda. Daripada 
simulasi, carta MEC berdasarkan penganggar MOM dan WMOM adalah terbaik 
memandangkan carta tersebut mempunyai keteguhan dalam keadaan terkawal yang 
baik dan keupayaan pengesanan yang pantas. Tambahan pula, carta yang dicadangkan 
telah disahkan menggunakan data sebenar, mempamerkan kebolehgunaan carta secara 
praktikal. Kedua-dua simulasi dan analisis data sebenar menunjukkan bahawa carta 
berasaskan-median yang dicadangkan mengatasi carta piawai meliputi pelbagai 
keadaan yang dinyatakan dalam kajian ini. Hasil kajian menawarkan kepada pengamal 
carta alternatif berdaya saing untuk proses kawalan apabila data tersasar dari 
kenormalan. 
 
 

Kata Kunci: Purata panjang larian, carta kawalan jenis-memori, ketidaknormalan, 
penganggar teguh, kawalan proses statistik. 
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Abstract 

Control chart is popularly used to monitor and improve the quality of a process. This 
statistical tool can be categorized into memoryless and memory-type control charts. 
An example of memoryless control chart is Shewhart chart which uses the most recent 
information of samples in a process. Conversely, the memory-type control charts such 
as cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) 
use both past and recent information in the process. Thus, make the charts more 
sensitive in detecting small to moderate shifts. Recently, the CUSUM and EWMA 
charts were combined to form mixed EWMA-CUSUM (MEC) and mixed CUSUM-
EWMA (MCE) charts to further improve small shift detection. However, these MEC 
and MCE charts are based on mean, thus they rely on the normality assumption. Under 
non-normality, parameters estimation based on the mean will be perturbed, leading to 
increased false signal and delayed detection of shifts. To solve this problem and 
improve the monitoring process, three median-based location estimators (median, 
modified one step M-estimator (MOM), winsorized MOM (WMOM)) which possess 
the highest possible breakdown point (50%) were used in the construction of the MEC 
and MCE charts, yielding six newly robust charts, namely MEC!" , MECMOM, 
MECWMOM, MCE!" , MCEMOM, and MCEWMOM. Via extensive simulation studies using 
SAS programming software, the proposed robust charts were tested under several 
conditions, focusing on g-and-h distributions, sample sizes, design shifts and shift 
sizes. Optimal parameters for the charts were derived to achieve the pre-determined 
average run length (ARL) under normality and subsequently, the robustness of the 
charts were assessed based on the ARL upon departure from the distribution. 
Validation of the charts’ performance were conducted using water quality and marker 
band data. From the simulation, the MEC charts based on the MOM and WMOM 
estimators are the best since the charts have good in-control robustness and fast 
detection capability. Moreover, the proposed charts have been validated using real 
data, demonstrating their practical applicability. Both simulation and real data 
analyses show that the proposed median-based charts outperform the standard charts 
across various conditions specified in this study. The findings offer practitioners 
feasible alternative charts for monitoring processes when the underlying data deviate 
from normality. 
 
 
Keywords: Average run length, memory-type control charts, non-normality, robust 
estimators, statistical process control. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background of Statistical Process Control 

Statistical process control (SPC) is a collection of statistical tools that is used to 

monitor, control, and enhance the quality of a process through variance reduction 

(Montgomery, 2009). In utilizing the SPC tools to monitor and reduce variation, 

samples are taken randomly from the production process, and some quality 

characteristic is measured and plotted on a graph known as a control chart. 

Subsequently, the presence of ‘harmful’ variations in the process shall be detected. 

Consequently, a corrective action may be undertaken to remove the source of the 

variations and hence, improve the quality of the process (Parkash et al., 2013).  

Control chart was initially pioneered in the manufacturing process by Walter Andrew 

Shewhart in the 1920s (Montgomery, 2009). It is used to differentiate between two 

types of variations in the process, namely chance causes and assignable causes. The 

chance causes of variation, also known as common causes, are inherent to the process 

and thus, harmless. According to Swamidass (2000), examples of this type of variation 

include “poor lighting, poor temperature and humidity, vibration of machinery, 

inadequate maintenance of equipment, and inadequate environmental conditions due 

to noise and/or dust.”  

Conversely, the assignable causes of variation, generally known as special causes, are 

variability larger than the background noise; typically caused by improperly adjusted 

machines, human errors, or malfunctioning raw material (Montgomery, 2009).  
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Thus, their presence is considered harmful to the process as they cause the process 

parameter(s) to shift to an out-of-control value.  

Common causes of variation are present when a process is stable or in-control. In this 

situation, both process parameters, i.e., the mean and standard deviation, are at their 

in-control values, say 𝜇. and 𝜎., respectively. Supposedly, at time 𝑡/, a special cause 

occurs and results in a shift in the process parameter value, either 𝜇/ > 𝜇. and/or  

𝜎/ > 𝜎.. Thus, from time 𝑡/ forward, the process is deemed unstable, i.e., out-of-

control, until the special cause variability is eliminated. Subsequently, bringing back 

the process into an in-control state.  

Control charts are designed to quickly detect a change in the process caused by special 

causes. The change in the process, i.e., from an in-control state to an out-of-control 

state, can easily be ascertained by looking at the graphical display of the measured 

quality characteristic. Figure 1.1 illustrates a typical set-up of control charts which 

includes a center line (CL), an upper control limit (UCL), and a lower control limit 

(LCL). The UCL and LCL are chosen so that if the process is in-control, all the 

measured quality characteristics are plotted within them. On the other hand, if a point 

crosses either the UCL or LCL, the process is deemed to be out-of-control. 

Subsequently, an investigation needs to be done to identify and possibly, remove the 

special causes responsible for this out-of-control condition. 
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The graph depicted in Figure 1.1 is known as the Shewhart control chart; a simple but 

useful statistical tool in SPC (Sinha & Vatsa, 2022). The chart has been used 

extensively in the manufacturing process (Smajdorova & Noskievicova, 2022). Today, 

its application has been extended to various fields of study including healthcare 

(Maravelakis et al., 2022), education (Masnar & Namoco, 2024), engineering  

(Alduais & Khan, 2023), finance (Yeganeh & Shongwe, 2023), and water quality 

analysis (Balcerowska-Czerniak & Gorczyca, 2024).  

 

Figure 1.1 Shewhart Control Chart  
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Generally, control charts can be classified into memoryless and memory-type control 

charts. The memoryless control charts, such as the Shewhart chart, only utilize 

information from the most recent samples in the charts’ structure. Thus, lacking a 

wealth of information to quickly detect a small shift in the process parameter values 

(Ajadi & Riaz, 2017; Naveed et al., 2018; Wu, 2018). Meanwhile, the memory-type 

charts combine information from both recent and past samples in the process, which 

makes the charts sensitive to a change in the process even when the shift in the process 

parameter value is relatively small.  The following section focuses on commonly 

discussed memory-type control charts in SPC literature. 

1.2 Memory-type Control Charts 

Two main examples of memory-type control charts are cumulative sum (CUSUM) and 

exponentially weighted moving average (EWMA) charts. Other memory-type control 

charts are mixed EWMA-CUSUM (MEC) and mixed CUSUM-EWMA (MCE) charts 

which integrate both the EWMA and CUSUM control structures into one new chart.  

The CUSUM control chart was introduced by Page (1954) to overcome the Shewhart’s 

limitation in detecting small shifts. Unlike the Shewhart chart which utilizes only the 

most recent sample in the process, the CUSUM chart focuses on cumulative 

observations (based on past and recent samples) in constructing the graph displayed in 

Figure 1.2. The CUSUM chart signals a change in the process from an in-control state 

to an out-of-control state when either of its CUSUM statistics, denoted by Ci+ and Ci-, 

crosses the control limit, H.  
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Figure 1.2 CUSUM Control Chart 

Like the CUSUM, the EWMA chart also makes use of the past and recent information 

from the samples. However, unlike the CUSUM chart which accumulates and treats 

the past and recent samples equally, the EWMA control chart assigns weightage to all 

samples in the process (Roberts, 1959). The weight decreases exponentially as the 

sample gets older. In the EWMA structure, the weight is denoted by λ ∈ (0, 1]. A small 

value of λ reflects the high importance of including past samples. Subsequently, more 

information can be retrieved and used to quickly detect small process shifts  

(Hamasha et al., 2023). When 𝜆 is getting close to 1, the EWMA chart becomes less 

powerful to quickly detect a small change in the process. This is due to the emphasis 

on more recent samples while discarding information supposedly obtained from older 

samples in the process. Notably, when λ = 1, only information from the most recent 

sample is used in the chart’s structure; essentially reducing the EWMA structure to 
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A distinction between the EWMA chart and the Shewhart chart is further highlighted 

in Figure 1.3. The control limits of the EWMA control chart, as illustrated in the figure, 

are time-varying limits; allowing a quicker detection when shifts occur early in the 

process, especially when a small 𝜆 is used to construct the chart  

(Letshedi et al., 2021; Taboran & Sukparungsee, 2023). These time-varying limits 

approach asymptotic limits, i.e., constant limits, as time increases. There is a negligible 

difference between the time-varying and constant limits in terms of the EWMA 

performance (Duong-Tran et al., 2022; Li et al., 2024; Thanwane et al., 2021). Using 

either of the types of control limits, defined by UCL and LCL, the EWMA chart 

concludes that the process is out-of-control when the chart statistic, Zi, exceeds the 

control limit.  

 

Figure 1.3 EWMA Control Chart  
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Numerous SPC literature claimed that the EWMA and CUSUM charts are equally 

good in detecting small process shifts (Kuiper & Goedhart, 2023; Li et al., 2024). 

However, several researchers claimed that the EWMA chart is more convenient to 

construct and employ since it resembles the Shewhart’s control structure 

(Alduais & Khan, 2023; Malela-Majika et al., 2024).  

The salient feature of both the CUSUM and EWMA charts, i.e., their flexibility to be 

designed for a quicker small shift detection than the Shewhart chart, is retained in the 

MEC and MCE charts.  Introduced by Abbas et al. (2013a), the MEC chart uses the 

EWMA chart statistic within the CUSUM structure. Conversely, the MCE chart, 

which was introduced by Zaman et. al (2015), integrates the CUSUM chart statistic as 

an input in the EWMA structure. Both the MEC and MCE charts aim to further 

improve the performance of their predecessors, i.e., the CUSUM and the EWMA, 

especially when a very small shift occurs in the process  

(Mohamadkhani & Amiri, 2022).  Examples of the MEC and MCE charts are 

displayed in Figures 1.4 and 1.5, respectively.  
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Figure 1.4 MEC Control Chart  

 

 

 

Figure 1.5 MCE Control Chart 
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Utilizing features in the CUSUM, the MEC and MCE charts also use two chart 

statistics to identify a change in the process. If either of the chart statistics goes across 

the control limit, the process is classified as out-of-control. For instance, based on 

Figure 1.4, the MECi+ indicates a rapid increase in the mean value before the value 

shifts to an out-of-control at sample 30. A special cause may cause this variation in the 

mean value and thus, needs to be removed from the process. Subsequently, bringing 

the process back to an in-control state.  

1.3 Problem Statement 

Most of the parametric approaches in statistics rely on the normality assumptions 

which may not be easily practiced (Hernandez, 2021; Kelter, 2021;  

Osborne & Waters, 2019). Unfortunately, when data contain an outlier(s), which is a 

common cause of non-normality, classical parameter estimations in the parametric 

approaches are easily distorted (Knief & Forstmeier, 2021). Consequently, the 

methods will perform badly, resulting in inaccurate findings (Brobbey, 2021). 

The classical estimators, i.e., the sample mean and the sample standard deviation, are 

very susceptible to outliers, that is, sensitive to even one aberrant value out of the n 

observations (Aguinis et al. 2013; Domanski, 2020; Rousseeuw, 1991). As such, their 

breakdown points (BP), i.e., the proportion of aberrant observations that an estimator 

can handle before being underestimated or overestimated, are 0%  

(Croux & Rousseeuw, 1992; Geyer, 2006).  
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The traditional approach control chart utilizes the classical estimators, such as mean 

and standard deviation to determine the control limits and monitor the process. This 

approach relies on a normal distribution (Jensen et al., 2006). The robust approach 

utilizes robust estimators such as median, trimmed mean, winsorized mean and  

M-estimator to make control charts less sensitive to non-normality or outliers 

(Sanaullah et al., 2024). This approach are less dependent on distributional 

assumptions and can perform well under various range of conditions. 

Unlike the traditional approaches which focus on the classical estimators and thus, are 

confined to the normality assumption, robust approaches are not influenced by outliers 

(Cabana et al., 2021). This ensures that the methods work across many different 

situations regardless of the data distributions. Thus, warrants reliable performance 

upon its application in the real world.  

In SPC, a better control of the Type I error can be achieved when control charts are 

integrated with robust estimators (Ahsan et al., 2020). Works by Fan et al. (2023), 

Santhanasamy and Abdul-Rahman (2022), and Wei et al. (2020), indicate the 

superiority of the robust control charts which is more sensitive in small shift detection 

upon far deviation from the normality assumption when compared to the standard 

control charts. Yet, balancing the Type I and Type II errors is not easily achieved in 

SPC especially when monitoring small process shifts (Lepore et al., 2022; 

Mohammed, 2024; Zamzmi et al., 2024).  
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Notably, it is important to quickly detect small process shifts and promptly address 

them to minimize the occurrence of defective products  

(Li et al., 2021; Quinino et al., 2021). Moreover, a fast detection of small process shifts 

can save time and cost in manufacturing and business sectors  

(Amiri et al., 2022; Naveed et al., 2024; Shamsuzzaman et al., 2022). 

Therefore, in this study, an integration of highly robust location estimators was 

conducted within the structure of the recently introduced memory-type control charts, 

i.e., MEC and MCE charts. It is important to note that these two charts use classical 

estimator in their standard structure, thus easily perturb by outliers. 

Focusing on the small and moderate shift detection  

(due to their merits in industries), the MEC and MCE charts were designed for these 

shift sizes and their performances were later assessed based on the ARL under  

non-normality. For such purpose, three median-based location estimators which 

possess the highest BP were chosen, namely median, modified one-step M-estimator 

(MOM), and the winsorized version of MOM (WMOM). By incorporating these robust 

estimators into the MEC and MCE charts, six robust memory-type control charts were 

formed for monitoring process location.  

 

 



  

 12 

1.4 Research Questions 

Classical estimators used in control charts are highly sensitive to outliers and rely on 

normality assumptions, making them less effective in real-world scenarios. To address 

these issues, this study focuses on enhancing memory-type control charts (MEC and 

MCE) by integrating robust location estimators. The research seeks to answer the 

following questions: 

1. How to develop the robust MEC charts for location using three median-based 

estimators, i.e., median, MOM, and WMOM? 

2. How to develop the robust MCE charts for location using three median-based 

estimators, i.e., median, MOM, and WMOM? 

3. How to evaluate the performance of the proposed robust MEC and MCE charts 

against their standard charts based on the ARL0 and ARL1? 

4. How to assess the performance of the proposed robust MEC and MCE control 

charts via water quality and marker band data? 

These questions aim to develop more reliable control charts that are better suited for 

monitoring processes in real-world applications. 
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1.5 Objectives 

The goal is to develop robust control charts which are able to control the Type I error 

while improving the small shift detection capability of the MEC and MCE control 

charts for monitoring process location parameter under non-normal data. To 

accomplish this goal, the following objectives need to be achieved.  

1) To develop robust MEC charts for location using three median-based estimators, 

i.e., median, MOM, and WMOM. 

2) To develop robust MCE charts for location using three median-based estimators, 

i.e., median, MOM, and WMOM. 

3) To evaluate the performance of the proposed robust MEC and MCE charts 

against their standard charts based on the ARL0 and ARL1. 

4) To assess the performance of the proposed robust MEC and MCE control charts 

via water quality and manufacturing data. 
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1.6 Scope of the Study 

This study concentrates on two specific memory-type control charts, namely the MEC 

and MCE charts. Both the MEC and MCE charts in this study are targeted to monitor 

shifts in the process location where only the ARL was used to design and assess the 

performance of the proposed charts under normal and non-normal distributions. The 

focus is on small and moderate shift detection due to their merits in industries as 

explained earlier. Thus, in this thesis, the newly proposed robust control charts were 

designed to ensure optimal detection of small and moderate shifts. Albeit being 

designed specifically for the small and moderate magnitude of shifts, the performance 

of the memory-type charts is claimed to evenly match the one designed for large shifts. 

This is covered in detail in Chapter 2.  

1.7 Significance of the Study 

The findings of this research contribute to the industries and practitioners such as 

engineers, researchers and lecturers who can use the findings to be applied in their 

fields or works regarding statistical quality control. Specifically, robust tools that can 

be effectively used to reduce variations in the process.  Through this study, robust 

structures of control charts can be obtained. Subsequently, these robust control charts 

can be applied to various types of process data without being confined to the normality 

assumption. Moreover, these robust charts can perform optimally and reliably across 

all ranges of shifts regardless of the underlying data distributions.  



  

 15 

CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

Normality assumption is crucial in determining the optimal and reliable performance 

of standard charts, as it ensure the accurate calculation of control limits and effective 

detection of process variations (Montgomery, 2009). A standard control chart uses 

classical estimators in its control structure. Thus, under non-normality, its capability 

to signal a change in the process across various magnitudes of shifts may not be reliable 

as the control limits can either be underestimated (narrower) or overestimated (wider). 

A narrow control limits are closer to the center, i.e the center line, there is a higher 

probability that the plotting statistic will exceed the control limits, thus leading to an 

increase in false signals (Type I error). However, a wide control limits will further 

away from the center line, so become less sensitive to smaller change in the process 

and leads to a decrease in the chart’s statistical power to quickly signal shifts  

(Mao & Spencer, 2021). Therefore, it is imperative for researchers and practitioners to 

explore alternative approaches that can solve this dilemma. 

2.2  Measures of Control Chart’s Performance 

The construction of a control chart involves two distinct phases, namely Phase I and 

Phase II. Phase I is known as the retrospective phase as it involves historical data and 

concentrates on the estimation of process parameters for control limits. Meanwhile, 

Phase II is referred to as the prospective phase; commonly known as the monitoring 

phase and concentrates on monitoring the prospective samples to eliminate possible 
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variations in the process that may cause the process mean to shift to an out-of-control 

value. In Phase II, the chart is being evaluated on how quickly it can detect the  

out-of-control situation. This assessment is typically done based on the ARL.  

As previously discussed in Section 2.1 earlier, non-normality will cause the width of 

the control limits to either be narrower or wider in Phase I (Hernandez, 2020), leading 

to an increase in false alarm rates or detection delay in out-of-control conditions, 

respectively. These issues have been covered by many researchers in SPC across 

different types of control charts. See for examples, Jardim et al. (2020), Noor et al. 

(2023), and Yao et al. (2023). 

2.2.1 Average Run Length (ARL) 

Numerous SPC literature focuses on ARL as a fundamental tool for designing and 

comparing the performance of control charts. See for examples, Atalay et al. (2020), 

Kostyszyn (2021), Ottenstreuer et al. (2023), and Tegegne et al. (2022). Run length 

(RL) can be defined as the sequence of samples plot on a chart until a signal (i.e., a 

sample plots outside a control limit) is detected (Arslan et al., 2023; Chong et al., 

2022). Thus, the ARL represent the expected number of plotted samples before a signal 

is detected (Batool & Haq, 2024).  

When the process parameters are known, the Shewhart control chart with 3-sigma 

control limits is expected to produce ARL = 370 under an in-control state when the 

process underlying distribution follows normal (Murat et al., 2024;  

Nidsunkid & Chometee, 2022; Zwetsloot et al., 2023). That is, a user can expect to 

obtain a signal, on average, once in every 370 plotted statistics.  
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The memory-type control charts, as discussed earlier, can be designed to produce an 

in-control ARL value like the Shewhart control chart. See for examples, Muhammad 

et al. (2023), Noor et al. (2024), Osei-Aning et al. (2017), Shafqat et al. (2023). 

Meanwhile, the out-of-control ARL assesses how quickly an out-of-control situation 

can be detected.  

In this thesis, the in-control and out-of-control ARLs are henceforth denoted as ARL0 

and ARL1, respectively, and can be computed as /
012343(5(67	29	4	:(;<45

. Under an  

in-control state, the probability of obtaining a signal is analogous to the Type I error, 

i.e., false alarm rate. Meanwhile, under an out-of-control state, the probability of 

obtaining a signal is equivalent to 1 − 𝛽, where 𝛽 is the Type II error. Thus, an ideal 

control chart shall produce a large ARL0 but exhibits small ARL1 values. The former 

indicates the chart’s capability to minimize false signals while the latter indicates the 

chart’s capability to quickly signal out-of-control conditions  

(Sunthornwat & Areepong, 2020; Sunthornwat et al., 2024). 

In designing a memory-type control chart, it is crucial to balance the Type I and  

Type II errors carefully under normality, especially without the priori value of the 

process parameters. A typical approach is to set ARL0 based on the user’s specification 

and derive control limits in Phase I under normality to achieve that value. A lot of 

studies focused on the nominal value of 370 as it is said to be a good balance between 

searching for the nonexistent special causes of variation (i.e., false signals) and true 

detection of process shifts which is a true signal. This is analogous to the Shewhart’s 

selection criteria of the 3-sigma control limits (Montgomery, 2024).  
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It is noted that the calculation of the ARL is sensitive to the departure of the normality 

in the case of standard control charts (Chaudhary et al., 2023; Nazir et al. 2021; 

Prabawani & Mashuri, 2020). The good balance ARL control chart, i.e., ARL0 is 

greater than ARL1, is favored (Chen et al., 2023). Many studies in SPC strive to obtain 

the balance ARL chart when extending their work to cover non-normality effect on 

control charts. However, this feat is not easily achieved as portrayed in the work by 

Morales and Panza (2022) who focused on skewed distributions. A relatively small 

value of an ARL0 implies that there are many false alarms, leading to a waste of time 

and effort in searching for the non-existent special causes of variation in the process 

(Does et al., 2020; Kumar & Singh, 2020; Tu & Zi, 2020).  

While a higher ARL0 might seem favorable, it may lead to higher ARL1 and thus, taking 

longer to detect a change when a shift occurs in the process (Human et al., 2020). This 

was hinted in the work by Human et al. (2011) when designing and assessing an  

in-control performance of the EWMA control chart based on individual observations 

under two contaminated normal distributions. The findings in Abdul-Rahman (2020) 

concur with the previous study where the researcher extended the work to cover the 

out-of-control performance of the EWMA, CUSUM, and generalized Shewhart charts 

based on the rational subgroup data under specific g-and-h distributions. Indeed, a high 

ARL0 leads to detection delay, specifically when the shift size is relatively small. This 

beats the purpose of using a memory-type chart that is allegedly superior in detecting 

tiny changes in the process data.  
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Therefore, the emphasis on the robust in-control performance of the memory-type 

charts is prominent in many SPC literature. A control chart is robust if its ARL0 remains 

close to the nominal value, say 370, under non-normal data which is the key 

implementation for a reliable control chart.  

2.3 Consequences of Applying Standard Control Charts to Non-Normal Data  

Orr et al. (1991) defined outliers as the most extreme observations when compared to 

the rest of the dataset in which their presence can negatively affect the parameter 

estimation statistical models. In their study, Orr et al. (1991) have identified five 

origins of outliers: (i) unrepresentative data, (ii) representative data but modeled 

incorrectly, (iiii) error components, (iv) erroneous data entry, and (v) erroneous data 

analysis. 

In dealing with outliers, Ratcliff (1993) noted that an outlier is a response produced by 

processes that are not part of the study interest. Therefore, he advised it to be removed 

from the data to avoid any misinterpretation of the data. However, removing outliers 

requires them to be properly identified which is not an easy task. While it is 

acknowledged that outliers negatively impact classical parameter estimations to be 

overestimated or underestimate such as mean, the idea to include or exclude outliers 

from data before performing statistical analyses has been debated among many 

researchers (Andre, 2022; Bondarenko et al., 2024; Fan et al., 2024; Karch, 2023; 

Rakotosaona et al., 2020). Kruskal et al. (1960), for instance, argued that it would be 

best to compare findings between two analyses; one that excludes the outliers and vice 

versa; especially when the origin of those outliers is unknown. A comparable result 
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between the two analyses implies that the presence of the outliers is not concerning. 

Conversely, if the result differs significantly, the root causes of the problems need to 

be examined before conclusions can be drawn from the research. Yet, this approach is 

not feasible in practice as argued by Knott et al. (2023). 

Outliers are typically observed as extreme values in the elongated tail of a skewed 

distribution or at both ends of a symmetric distribution (Abdiweli, 2023; Domanski, 

2020; Wada, 2020). These types of non-normal distributions are commonly 

encountered across many control charts’ applications (John & Subhani, 2020; Riaz et 

al., 2021; Taboran et al., 2021). Thus, with importance of control charts across many 

areas in industries (Emad et al., 2023; Tegegne et al., 2022), there have been 

continuous efforts over the years to mitigate the effect of outliers on the performance 

of control charts. In the past decade, many of these efforts have concentrated on 

robustifying control charts’ structure via the use of robust estimators (Ahsan et al., 

2020).  

Typically, control chart utilizes classical parameters hence known as the standard 

control chart which is constricted to the normality assumption. Nevertheless, in 

practical situations, many processes such as semiconductor (Zhuang et al., 2023), 

economic activity (Nariswari & Nugraha, 2020), and finance (Sunaryo, 2021) are not 

normally distributed. Often, practitioners’ persistent use of the standard control charts 

on these non-normal processes would result in misinterpretation of the signals. 

Consequently, costing money and time (Galetto, 2020; Riaz et al., 2021; Shper et al., 

2023). 
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According to Yourstone and Zimmer (1992) concluded that the impact of skewness 

and kurtosis could be substantial on the ARL0 of the standard Shewhart chart. As a 

solution, the researchers proposed non-symmetrical control limits for the chart in 

dealing with non-normal data. Thus, the chart is able to balance the Type I and  

Type II errors.  By using a heuristic approach, Samanta and Bhattacherjee (2004) 

employed a weighted variance (WV) method to adjust Shewhart control limits when 

subjected to skewed distributions. Aiming to control the occurrence of false alarms 

when the underlying process follows skewed distributions, the method is not suitable 

when dealing with symmetric heavy-tailed distribution.  

2.4 Shifts Detection via Control Charts 

The popularity of the Shewhart chart among practitioners in SPC is mainly due to its 

simple structure that can be easily constructed. However, apart from the normality 

issue, the Shewhart chart frequently fails to capture shifts in the process when the 

change is not large (Alduais & Khan, 2023; Sabahno &Amiri, 2023). This limitation 

is due to the exclusion of past information from the samples in the process; a restriction 

commonly associated with a memoryless control chart (Diko et al., 2020;  

Ottenstreuer et al., 2023; Peerajit, 2023). This limitation can be overcome through the 

application of the memory-type control charts. 

The CUSUM and EWMA are the two charts initially introduced as memory-type 

control charts in SPC. These control charts provide better protection against small and 

moderate process shifts (Aslam et al., 2021; Malela-Majika, 2021).  

The merits of the CUSUM and EWMA charts have been widely explored by several 
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researchers such as Aslam et al. (2021), Faisal et al. (2018), and Nazir et al. (2015) 

who emphasized that these memory-type charts are good in controlling the false alarm 

rate under non-normal distributions.  

Research focus on the memory-type control charts have been seen increasing since 

they were first introduced (Jensen et al., 2018). According to Sanusi et al. (2017), 

Lucas (1982) explored the combination of the Shewhart-CUSUM (CSC) chart by 

adding the Shewhart limits to CUSUM chart. This modification aimed to improve 

detection of large shifts while maintaining CUSUM’s sensitivity to smaller shifts by 

widening the control limits of the two charts. However, the study found that this 

approach was less effective in detecting large shifts when compared to the standard 

Shewhart chart.  For further improvement, a combined Shewhart-EWMA (CSE) chart 

was recommended by adding the Shewhart control limit to the EWMA chart (Lucas & 

Saccucci, 1990). The chart has a good performance in terms of the ARL values, akin 

to the CSC chart. Subsequent discussions on the combined Shewhart-EWMA control 

chart and its application are covered by Malela-Majika et al. (2022), Nawaz and Han 

(2020), and Shamsuzzaman et al. (2023). 
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2.4.1 Detection Ability of Various Control Charts 

The modification of the standard CUSUM chart to avoid delay in detecting  

out-of-control situations was covered by Lucas and Crosier (1982). The approach, 

known as fast initial response (FIR), is useful when a shift allegedly occurs right upon 

start-up or restart. While the standard procedure requires the CUSUM chart statistics  

(𝐶() and 𝐶(*) to be set at 0, the FIR procedure sets them to some positive (nonzero) 

constant. This is to allow an out-of-control condition to be detected in fewer runs 

unlike in the standard CUSUM procedure. The initial value is suggested at half of the 

CUSUM limit, H (Lucas & Crosier, 1982). The same initial feature was incorporated 

in the EWMA structure which is fast to detect than the standard EWMA chart (Steiner, 

1999). 

Unlike the EWMA chart, the CUSUM chart treats past and recent samples 

indifferently (Kuiper & Goedhart; 2023). While this feature still makes the two charts 

perform comparably (Haq et al., 2021; Rosa et al., 2022), an enhancement in both 

charts’ structure is always sought-after in SPC due to the importance of monitoring 

small process shifts in the industries (Ali, 2020; Li et al., 2024; Nawaz et al., 2021). 

Yashchin (1989), for instance, proposed to assign weights to all past samples in the 

CUSUM structure, just like the EWMA. The weighted CUSUM chart outperforms the 

standard CUSUM in detecting small shifts (Shu et al., 2011).  

The CUSUM charts as discussed previously in this section are designed based on a 

specific shift size. Zhao et al. (2005) argued that in practice, the exact value of any 

shift to occur in a process is typically unknown and may vary within a certain range 
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than the predicted one. Thus, Zhao et al. (2005) proposed a dual CUSUM (DCUSUM) 

chart to simultaneously monitor shifts in the process. The chart combines two CUSUM 

charts where an out-of-control condition is signaled when either of the CUSUM charts 

signals. The findings revealed that the DCUSUM chart surpasses the standard 

CUSUM and CSC charts. Meanwhile, Jiang et al. (2008) introduced an adaptive 

CUSUM (ACUSUM) chart which performs more superior than the adaptive EWMA 

(AEWMA) chart by Capizzi and Masarotto (2003). Both adaptive charts make use of 

a parameter adjustment on the standard charts. 

The use of run rules schemes was introduced by Riaz et al. (2011) in the CUSUM 

control structure for monitoring shifts in the mean. In their study, three run rules were 

proposed, Rule 1: 𝑇(1,1, 𝑎,∞), Rule 2: 𝑇(2,3, 𝑏,∞) and Rule 3: 𝑇(4,5, 𝑐,∞). Rule 1 

is designed to detect large shifts, relying on a single point falling above or below the 

centerline. Rule 2 focuses on smaller shifts and requires two out of three consecutive 

points  falling  outside  of  the  centerline.  Rule  3 requires  four  out  of  five  consecutive 

points falling outside of the centerline. The approach yields better ARL1, which can 

quickly detect a shift in a process compared to the standard CUSUM and EWMA 

charts. It was also claimed to outperform the ARL1 of the enhanced CUSUM based on 

the FIR and weighted approaches upon small to moderate shifts. Yet, the run rule 

schemes as commonly seen in the Shewhart’s application (Shan & Huang, 2021; 

Shongwe & Malela-Majika, 2022) shall be applied carefully since the boast in the 

detection may come at the cost of increasing the false alarm rates (Koutras, 2007;  

Lu et al., 2020; Yeganeh & Shadman, 2021). Abbas et al. (2011) proceeded to apply 
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the run rule schemes in discussing the performance of the EWMA chart in which they 

claimed to now improve the sensitivity of the chart for small shifts.  

Recently, Abbas et al. (2013a) introduced a new chart for process location. The chart 

retains the salient features from both CUSUM and EWMA as it was constructed by 

integrating the EWMA chart statistics into the CUSUM original control structure. 

As a result, this newly introduced chart; known as mixed EWMA-CUSUM (MEC), 

claimed to surpass the original memory-type control charts in monitoring very small 

shifts in the process. Abbas et al. (2013b) focused on combining both the CUSUM and 

EWMA charts known as CS-EWMA to monitor shifts in process dispersion.  

The CS-EWMA chart plots the cumulative sum of the exponentially weighted moving 

averages to signal a change when a process is out-of-control. When comparing the  

CS-EWMA chart’s performance against the standard CUSUM and EWMA charts 

based on the ARL, it was shown to be superior for both small and large shifts in the 

process dispersion.  

Ajadi et al. (2016) enhanced the performance of the MEC control chart with various 

FIR features, known as the MEC head start (MECHS), MEC fast initial response 

(MECFIR), and the MEC with the combination of the FIR and head start (HS) features 

denoted as MECFIRHS. They also proposed the MEC with run rules (MECRR) chart 

via 2/3 run rule schemes. The proposed charts are then compared with existing charts, 

including the standard CUSUM and EWMA, the FIR CUSUM and EWMA, as well 

as the CUSUM and EWMA with 2/3 run rule schemes. The comparisons showed that 

the proposed charts are superior in a smaller shift detection than the existing charts.  
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Following the success demonstrated by Abbas et al. (2013a) and Abbas et al. (2013b), 

Zaman et al. (2015) proposed an inverted version of the MEC control chart; nowadays 

known as a mixed CUSUM-EWMA (MCE) control chart. The MCE control chart was 

shown to be just as effective as the standard CUSUM and EWMA charts but better 

than the standard Shewhart 𝑋0 chart across magnitudes of shifts. In their work,  

Zaman et al. (2015) claimed that the inverted version of the MEC chart outperforms 

the original version in detecting various magnitudes of shifts, 𝛿, starting from 

 𝛿 = 0.5𝜎 if the MCE chart is designed for 𝜆 ≥ 0.5. Thus, meeting the demand of fast 

detection of small process shifts in many areas of SPC. Measured in a standard 

deviation unit, a small shift is defined to be less than 1.5𝜎 (Montgomery., 2009; Alwan 

et al., 2023). For moderate and large shifts, 𝛿 is usually set at 1𝜎 ≤ 𝛿 ≤ 2𝜎 and 

 𝛿 > 2𝜎, respectively.  

While the Shewhart chart is known to be effective when 𝛿 is large, Zaman et al. (2015) 

have shown that the proposed MCE control chart can outrun the Shewhart’s 

performance for varying choices of λ unlike seen in the MEC chart’s performance. 

This ARL finding was supplemented with the standard deviation run length (SDRL). 

Notably, across a wide range of λ used in designing the charts, the difference in the 

SDRLs between the MCE and MCE charts diminishes when  

δ ≥ 1.25𝜎.  

Continuing their previous work on monitoring process location, Zaman et al. (2016) 

then focused on process dispersion. The MCE chart control structure now centered on 

the transformation of the sample variance via three different approaches, yielding three 
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new MCE charts denoted as MCE-T, MCE-J, and MCE-V. The findings revealed that 

the performance of the three charts is superior by rapidly detecting the shifts process 

dispersion when compared to the following dispersion charts: S2-EWMA  

(Castagliola, 2005), CUSUM-S2 (Castagliola et al., 2009), and CS-EWMA  

(Abbas et al., 2013b).  

Most recently, Abbas (2018) proposed a newer version of the memory-type control 

chart known as homogeneously weighted moving average (HWMA) chart. Unlike the 

EWMA chart, the HWMA chart assigns equal weight to the previous samples and 

claims to surpass the performance of the standard CUSUM, EWMA and MEC charts 

when designed with a small 𝜆 value. Yet, the practice of assigning equal importance 

to the past samples is claimed to be biased, especially at the beginning of the process 

monitoring (Knoth et al., 2021, 2023).   

The improvement in the performance of the memory-type charts over the Shewhart 

chart is laudable. Moreover, the recent MEC and MCE control charts offer an 

advantage over the standard CUSUM and EMWA charts upon relatively small changes 

in the process. Yet, they are still confined to the normality assumption as these standard 

charts use the sample mean and the sample standard deviation in their control structure, 

making them highly susceptible to the presence of outliers (Chaudhary et al., 2023). 
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2.5 Approaches upon Deviation from the Normality Assumption  

Continuous works in SPC have been concentrated on limiting the effect of outliers; 

focusing on balancing the Type I and Type II errors on charts’ performance.  

The following subsections explain the works involved in detail.  

2.5.1 Nonparametric Control Charts 

To accommodate many practical situations that usually involve non-normal data, 

works concentrating on a distribution-free method, i.e., a nonparametric chart, have 

been explored in SPC.  Earlier on, many works concentrated on modifying the 

Shewhart chart to not be restricted to the normality assumption. For instance,  

Amin et al. (1995) proposed a nonparametric control chart for the Shewhart based on 

sign test statistics. Later, Chakraborti et al. (2009) proposed two nonparametric 

Shewhart control charts to monitor process location which limits are constructed via 

two specified order statistics in Phase I data. The detection in Phase II employs some 

runs-type signaling rules. The chart statistic can be any order of statistic in Phase II 

data; the median is used in the study for its simplicity and robustness.  

The results show that the proposed approaches are robust regarding the ARL 

performance, supplemented by the SDRLs.  

Chakraborti and Wiel (2008) also applied the Mann-Whitney Statistic on the 

nonparametric Shewhart chart and observed that it is superior to the parametric 

Shewhart chart, which is based on the sample mean, when the underlying process 

follows heavy-tailed and skewed distributions. Moreover, Jones-Farmer et al. (2009) 

proposed to use a mean-rank signal in signaling an out-of-control process via the 
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Shewhart chart. Their study strictly focuses on the use of a control chart in Phase I for 

getting representative samples to be used for estimating the Shewhart’s limit later. 

When comparing the mean-rank chart with the Shewhart 𝑋0 chart via the Monte Carlo 

simulation, the nonparametric chart always signals better across normal and skewed 

distributions.  

Mukherjee et al. (2019) constructed nonparametric EWMA and CUSUM charts based 

on the ⁠Wilcoxon rank-sum, ⁠Hogg-Fisher-Randle (HFS), and precedence test statistics 

for monitoring process location. These nonparametric charts were identified as 

NPEWMA and NPCUSUM, respectively, and showed superior performance over the 

standard charts, particularly in detecting small and moderate shifts under skewed 

distributions. Additionally, Abbas et al. (2020) introduced the nonparametric double 

EWMA chart by utilizing the Wilcoxon signed-rank statistic for monitoring process 

location. Their chart displayed an improved out-of-control performance when 

compared to these nonparametric charts: the EWMA sign chart, as well as the CUSUM 

and EWMA signed rank charts. Meanwhile, Yue and Liu (2022) opted for a 

progressive approach for monitoring a change in process dispersion. Their more recent 

work extended the progressive approach for a chart to simultaneously monitor process 

location and dispersion parameters. 

Many works on the nonparametric control charts focus on ranking information among 

observations (Hawkins & Deng, 2010; Jones-Farmer et al., 2009; Li et al., 2010;  

Zou et al., 2012). Some of the nonparametric control charts are based on data 

categorization and category data analysis (Qiu & Li, 2011).  
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However, the nonparametric charts are claimed to be less efficient (i.e., fail to signal 

out-of-control conditions), compared to their parametric counterparts, and less popular 

among control chart practitioners due to failure of incorrect non-rejection of untrue 

null hypothesis (Smajdorova & Noskievicova, 2016). 

To balance a good control of the false alarm rates while maintaining charts’ capability 

to fast detect an out-of-control condition, robust approaches have been tackled by 

many SPC researchers.   

2.5.2 Robust Control Charts 

As discussed in the previous section, nonparametric control charts pose some 

limitation. Thus, a robust approach is favored in SPC since with non-rigid 

distributional assumption, it is still considered to be part of the parametric models and 

thus, retaining its merits (Huber, 1981). 

Focusing on the robust approach, Langenberg and Iglewicz (1986) recommended 

estimating process parameters of the Shewhart chart in Phase I via the trimmed mean 

of subgroup averages and trimmed mean of subgroup ranges. This robust approach 

was subsequently shown to be less affected by outliers than the standard  

Shewhart 𝑋0	chart. Meanwhile, Rocke (1992) suggested control limits defined by the 

mean of the subgroup interquartile ranges in constructing the Shewhart charts for 

monitoring location and dispersion, separately. Both location and dispersion robust 

charts were claimed to be good in detecting occasional outliers. 
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Meanwhile, Hawkins (1993) proposed to winsorize the observations in Phase I in 

limiting the effect of outliers on the parameter estimation. A winsorized approach 

focuses on limiting the effect of outlier, rather than eliminating it. The identified 

outliers that are supposedly trimmed will now be replaced by the highest and lowest 

end of the ‘clean’ data (Dixon & Tukey, 1968; Tukey & McLaughlin, 1963). Thus, 

keeping the original number of observations. Dixon and Tukey (1968), and Rivest 

(1994) claimed that this approach works well under skewed distributions. The 

approach was first taken by Hawkins (1993) in SPC by winsorizing the subgroup mean 

and range to limit the effect of outliers on the CUSUM chart’s performance. This work 

concentrates on making the CUSUM chart performs well in signaling out-of-control 

conditions while still maintaining the occurrences of the false alarm to the nominal 

value under non-normality.  

Focusing on robustifying the Shewhart control structure,  

Abu-Shawiesh and Abdullah (1999) applied robust estimators, namely,  

the Hodges–Lehmann (HL) for the location parameter and the  

Shamos-Bickel-Lehmann (SBL) for the scale parameter. Both the HL and SBL 

estimators have 29% BP, thus, giving the Shewhart chart a good performance under 

heavy-tailed distributions. Notably, the robust chart performance is getting better with 

a large sample size when tails become heavier, unlike the standard Shewhart chart. 

Abu-Shawiesh (2009) focused on the sample median and the median absolute 

deviation about sample median (MADn) for estimating the Shewhart limit. By 

replacing the classical estimators with the robust estimators, the chart which was tested 

under various non-normal distributions, indicates the ability to control Type I and  
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Type II error, unlike the standard Shewhart 𝑋0 chart. Similarly, Wu et al. (2002) 

employed several robust scale estimators, namely the MADn, average absolute 

deviation to the median (AADM), and median of average absolute deviation (MAAD) 

to estimate the process dispersion in the Shewhart 𝑋0 chart. These robust estimators 

were again proved to limit the effect of outliers on the control chart’s performance. 

Focusing on monitoring dispersion in the process, Abu-Shawiesh (2008) employed the 

median absolute deviation (MAD) in a Shewhart chart. Similarly, Adekeye (2012) used 

the MAD to construct control limits for the Shewhart 𝑋0 chart and Shewhart S chart.  

In both works, the robustification improves the detection capability of the Shewhart 

charts upon violation of the normality assumption.   

The application of the MAD or MADn is popular in SPC as a pairing for robust location 

estimators in Phase I, or in constructing a dispersion chart since this robust scale 

estimator is highly unaffected by the outliers. Sindhumol et al. (2016) claimed that the 

MAD can provide a better estimate when compared to the Gini’s Mean Difference (G) 

which is another robust scale estimator. Between these two robust scale estimators, a 

control chart for monitoring mean shift shows a better control of the false alarm rate 

in the presence of outliers when the MAD was used in Phase I to estimate the process 

dispersion (Sindhumol et al., 2016). 

The use of robust statistics in SPC is not only commendable in Phase I but also in the  

Phase II when applications involve memory-type charts. A memory-type chart is 

specifically designed to detect a difference in the mean of a process.  Thus, a user is 

focusing on an upward or downward shift in the process mean until it eventually causes 

the mean value to be out-of-control. Therefore, as argued by Rocke (1989),  
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“outliers in the subgroup should not cause a signal to occur since they do not directly 

represent a shift in the mean”.  Therefore, in limiting the effect of outliers on the chart 

statistic, a robust statistic is favored in place of the sample mean in Phase II. It is worth 

to note that the robust work in Phase I focuses on parameter estimation when Phase I 

data are non-normal. Meanwhile, the robust statistic employed in Phase II concentrates 

on the calculation of the chart statistic when Phase II data are non-normal. Several 

notable studies that focus on robustifying the memory-type charts on both phases are 

discussed next.  

Nazir et al. (2016) substituted several robust location estimators such as trimmed 

mean, HL, tri-mean, midrange, and median, in the plotting statistics of the CUSUM, 

EWMA, and MEC control charts. These memory-type charts were then tested for 

normal and contaminated normal distributions. Assessments via the ARL and varying 

percentiles of the run length (RL) distribution reveal that no chart was found to 

satisfactorily perform the best in all conditions.   However, their study concluded that 

the EWMA chart with the median estimator consistently performs the best across most 

of the conditions specified.  

The advantage of using the median charts, i.e., charts that focus on the sample median 

in its plotting statistics, over the standard chart as well as other robust control charts 

has been demonstrated by many researchers. See for examples,  

Abdul-Rahman et al., (2018, 2021), Ahmad et al., (2014), Mim et al. (2023),  

Noor et al. (2023, 2024), Park (2009), and Yang et al. (2010). However, since the 

distribution of the sample median is unknown, constructing a median control chart 

typically relies on a simulation in deriving the standard error of the estimator.  
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Most recently, Abbas et al. (2018) proposed a mixed control chart that is based on the 

EWMA and dual CUSUM (DCUSUM) charts for monitoring process location. Known 

as mixed EWMA DCUSUM, the chart was constructed with five different estimators, 

namely mean, median, midrange, tri-mean and HL, and evaluated based on the ARL 

under normal and contaminated data. The finding shows that the proposed chart, when 

constructed with the robust tri-mean estimator, is the most superior among others. 

Even though the charts based on the HL and median estimators are less superior to the 

tri-mean chart under contaminated data, they are still better than the mean chart.  

Abdul-Rahman et al. (2018) proposed the EWWA chart using the MOM estimator 

which is claimed to gain good control of the false alarm rate  

(supported by the robust ARL0) under heavily skewed distribution while maintaining 

quick detection under various skewness levels. In their subsequent work, i.e.,  

Abdul-Rahman et al. (2020), the same good performance is observed when integrating 

the robust estimator into the CUSUM control structure. Recently, Noor et al. (2024) 

published a finding on the MEC chart under the g-and-h distribution, emphasizing that 

the MOM estimator offers a robust performance to the chart under in-control and  

out-of-control conditions, not only when data are skewed but also heavy-tailed. 
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2.6 Robust Estimators  

The classical estimators, i.e., the sample mean and sample standard deviation, are 

highly susceptible to the effect of outliers. Thus, in the context of SPC, outliers may 

appear in Phase I and/or Phase II, causing the performance of the standard control chart 

to deteriorate as discussed in Section 2.3. Notable robust works as introduced in 

Section 2.4 attested to the superiority of the robust statistics over the classical 

estimators. This is due to a high breakdown point (BP) and bounded influence function 

possessed by robust statistics. 

2.6.1 Properties of Robust Estimators 

The robustness of a statistical procedure is commonly assessed via the BP 

(Raymaekers & Rousseeuw, 2023), statistical efficiency and influence function 

(Hampel, 1986). The concept of BP was introduced by Hampel (1968) and Hampel 

(1971) who defined the BP as the percentage of outliers or contaminated data that 

would cause a calculation for an estimator in a finite sample to deviate significantly 

from the parameter value. The same explanations were given by Donoho (1982) and 

elaborated by Donoho and Huber (1983). Geyer (2006) introduced a concept known 

as the finite sample BP for an estimator which describes the proportion of data that can 

be assigned arbitrary values without causing a significant decline in the estimator's 

performance.  Typically, this BP is expressed as a function of a sample size, n. To 

simplify this concept into a single numerical value, Geyer (2006) also introduced the 

concept of the asymptotic BP. The asymptotic BP represents the limit of the finite 

sample BP as n approaches infinity. Since then, the BP has been used to evaluate the 

robustness of scale, regression, and other situations (Alshqaq & Abuzaid, 2023; Dibal 
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& Dallah, 2021; Fan et al., 2023; Fishbone & Mili, 2023; Liu et al., 2023; Lopuhaa, 

2023). 

Donoho and Huber (1983) defined the BP  of T at X is 𝜀∗, as  

𝜀∗(𝑋, 𝑇) = 𝑖𝑛𝑓{𝜀: 𝑏(𝜀; 𝑋, 𝑇) = ∞}, where 𝑋 = (𝑥/, 𝑥=, … , 𝑥<) be a fixed sample of 

size n, 𝑇 = {𝑇<}<>/,<>=,… be an estimator with values in some Euclidean space, 𝜀∗ is 

the smallest value of 𝜀 = @
<

 with replacing an arbitrary subset of size m of the sample 

by arbitrary values 𝑌 = (𝑦/, 𝑦=, … , 𝑦@), 𝑏(𝜀; 𝑋, 𝑇) = 𝑠𝑢𝑝|𝑇(𝑋′) − 𝑇(𝑋)| with 𝑇(𝑋) 

be its value at sample X. Following that, the BP for the sample mean is /
<
. In other 

words, a single outlier can significantly disrupt the estimation of this estimator. 

Conversely, the BP of the sample median in a finite sample is <*/
=<

. 

Another robust property is the influence function that was introduced by Hampel in 

1968. For an estimator to be robust, its influence function must be bounded, meaning 

it limits the impact of outliers (Hampel, 1974). According to De Menezes et al. (2021), 

the influence function, 𝜓, represents the impact of outliers, often measured as a 

multiple of the standardized residual, 𝜉, on the estimator. The influence function is the 

first derivative of function 𝜌 with respect to the 𝜉, and can be defined as 𝜓(𝜉) = AB(D)
AD

. 

The classical mean has unbounded influence functions, meaning that a single outlier 

can affect the mean.  

The efficiency refers to the performance of an estimator in fitting the data when the 

errors follow a different distribution than expected, usually assumed as normal 

distribution (De Menezes et al., 2021). The smaller the variance in its sampling 
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distribution, the more efficient is the estimator (Serfling, 2009). The classical mean is 

the most efficient location estimator for the normal distribution but not the best 

location estimator when the assumptions are not met. The loss efficiency of classical 

estimators when all assumptions are not satisfied is estimated to be in the range 5% to 

50% (Hampel, 1986). The robust estimator is more resistant to departure of normality 

and the presence of outliers.  

2.6.2 Robust location estimators 

Notably, the asymptotic BP of the sample mean is 0%. Meanwhile, the asymptotic BP 

of the sample median is 50%, which is the highest possible BP for location  

(Acharya et al., 2022; Santhanasamy & Abdul-Rahman, 2022). A BP of 50% implies 

that the sample median can tolerate up to 50% of outliers in the dataset before its 

calculation is disrupted. Another robust estimator with 50% BP is the M-estimator of 

location which was introduced by Huber (1981). Yet, despite gaining significant 

attention in various fields, including statistics, economics, and machine learning, due 

to its capability to handle data containing outliers, the M-estimator does not produce a 

unique solution, which may pose a disadvantage to practitioners  

(Crisp & Burridge, 1993). Alternatively, Wang et al., (2007) introduced a weighted 

randomly trimmed means as the robust location estimator and proved that the estimator 

possesses the highest breakdown point as the sample median. This robust location 

estimator is recommended upon a heavy-tailed distribution while the  

Huber’s M-estimator is seen as more suitable for the light-tailed distribution  

(Wang et al., 2007). 
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Other notable robust estimators commonly used in SPC have a BP that hovers between 

0% and 50%. For instance, the (𝑘/𝑛)-trimmed mean which averages the data except 

for k smallest and k largest observation is noted with the BP of (𝑘	 + 	1)/𝑛, while the 

BP of the HL is 29% (Rousseeuw & Verboven, 2002). With a lower BP, the HL and 

the trimmed mean are more susceptible to the outliers and thus, considered to be less 

robust than the sample median. 

Often, it is recommended to remove or provide less weightage to the outliers in the 

dataset so that its effect on the parameter estimation can be minimized  

(Sindhumol et al., 2016). Proposed by Tukey (1948), the trimmed mean estimator, as 

briefly discussed, focuses on symmetric trimming in removing outliers from the 

dataset (Tukey, 1948).  However, the trimmed mean estimator focuses on the 

symmetric trimming. Thus, this robust approach works best only when outliers appear 

on both tails of the distribution. Another alternative to the trimmed mean estimator is 

the scaled deviation trimmed mean proposed by Wu and Zuo (2009) which is 

recommended upon a light-tail symmetric distribution. However, this robust location 

estimator still assumes the symmetric trimming approach in eliminating outliers. For 

asymmetric trimming, the MOM estimator, which was proposed by  

Wilcox and Keselman (2003a), is more effective. This robust estimator uses trimming 

criteria based on the sample median and the MADn (thus, yielding a 50% BP) to flag 

outliers on either side (or both) of the tails. The identified outliers will be removed 

before averaging the remaining observations. Therefore, without outliers as in normal 

distribution, MOM becomes the classical mean estimator. This makes the MOM 

estimator flexible and can adapt to the presence or absence of outliers. 
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The MOM estimator is also claimed to possess better efficiency, i.e., smaller standard 

error, when compared to the 20% trimmed means when outliers are very common  

(Wilcox, 2003). 

Later, Haddad et al. (2013) proposed a winsorized version of the MOM, known as the 

WMOM estimator, to limit the effect of outliers on the multivariate version of the 

Shewhart chart for process location. Rather than excluding the outliers in averaging 

the dataset, the WMOM replaces the identified outliers based on the MOM trimming 

criteria with the smallest and largest value in the ‘clean’ dataset. Thus, like the MOM, 

the WMOM possesses a 50% BP as its trimming criteria are based on the sample 

median and the MADn.  

2.6.3 Robust scale estimators 

Median absolute deviation (MAD) was proposed by Hampel (1974). Implemented in 

numerous applications, the MAD has the highest BP for the scale, i.e., 50%, which is 

double of interquartile range (IQR) BP (Rousseeuw & Croux, 1993). This high BP 

compensates for its drawback, i.e., only 37% of efficiency under normality as opposed 

to 64% by the sample median when data are highly contaminated  

(Rousseeuw & Croux, 1993). The MAD is frequently compared to the G estimator as 

discussed briefly in section 2.4.2. The G estimator was introduced by Gini (1912) and 

noted with an extremely high efficiency at 98% (David, 1981). With 50% BP, the  

G estimator is very robust unlike the sample standard deviation  

(Saeed & Kamal, 2016). While the MAD is more popular due to the highest BP and 

simple structure of the estimator.  the application of the G estimator as a scale measure 
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has been discussed positively by Ceriani and Verme (2012), Riaz and Saghirr (2007), 

and Yitzhaki and Lambert (2012).  

2.7 Summary of Research Work in SPC 

Sections 2.1 – 2.5 discussed the application of the robust methods within the context 

of SPC. The discussion concentrated on the negative influence of outliers on the ARL 

performance and how the robust statistics can mitigate their effect in process 

monitoring. The significance of the robust methods extends beyond their application 

in SPC since the methods are not restricted to the underlying distributional assumption. 

Thus, they can work well across many data scenarios and applications.  

In SPC, the performance of the standard charts deteriorates as data deviate from 

normal. Comparison between the robust charts and their standard counterparts under 

heavy-tailed, skewed distribution, or contaminated distributions indicates that in the 

majority of the situations, the robust charts supersede the detection capability of the 

standard charts. Yet, in SPC, finding a good balance between the Type I and  

Type II errors is still an ongoing study. This is due to the unpredictable nature of the 

underlying process.  

Getting the balance ARL chart (ARL0 > ARL1) is always the goal in SPC as it indicates 

that the chart can quickly signal shifts in the process. Yet, if ARL0 ≈ 370 is desirable, 

how far can we allow the ARL0 to deviate from its nominal value under non-normality 

before conceding that the chart is no longer robust. This issue was noted by  

Woodall (2017) who also emphasized that the control of the false alarm rate has always 

been important in SPC research.  
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Thus, the key implementation to a reliable control chart is via the robust ARL0. Without 

it, the chart’s detection capability is questionable as noted in the work by  

Human et al. (2011) and Abdul-Rahman (2020). Therefore, constructing a reliable 

control chart that passes the ARL evaluation is important before applying it in real 

practice since ‘controlling’ the ARL0 can only be done theoretically but not in practice.  
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CHAPTER THREE 

RESEARCH METHODOLOGY 

3.1 Introduction 

The focus of this study is on the monitoring of process location via two distinct 

memory-type charts known as the mixed EWMA-CUSUM (MEC) and the mixed 

CUSUM-EWMA (MCE). By employing three locations estimators with the highest 

possible breakdown point (BP), namely the median, modified one-step M-estimator 

(MOM), and winsorized MOM (WMOM), six new robust memory-type control charts 

were produced as listed in Table 3.1. Notations in the third column of Table 3.1 are 

used throughout the thesis, henceforth.  

Table 3.1  

The Proposed Control Charts 

Control Chart Location Estimator Proposed Control Charts 

MEC 

median  𝑀𝐸𝐶!"  

MOM  𝑀𝐸𝐶+,+ 

WMOM 𝑀𝐸𝐶-+,+ 

MCE 

median  𝑀𝐶𝐸!"  

MOM  𝑀𝐶𝐸+,+ 

WMOM 𝑀𝐶𝐸-+,+ 
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Unlike the Shewhart control chart, which is categorized under the memory-less control 

chart, and thus, less sensitive in detecting small process shifts (𝛿 ≤ 1.5)  

(Montgomery, 2009), the MEC and MCE charts are claimed to perform well under 

this scenario (Nazir et al. 2015; Zaman et al., 2015).  Thus, focusing on the small and 

moderate shift detection, the six newly proposed robust charts (in Table 3.1) were 

designed and assessed based on the ARL under in-control and out-of-control states via 

Monte Carlo simulation studies. Figure 3.1 depicts the flowchart of the simulation 

study. 

 

Figure 3.1 Flowchart of the Simulation Study 
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3.2 Construction of the Memory-Type Control Charts 

The subsequent subsections focus on the structure of the MEC and MCE charts for 

monitoring process location. To equip the reader with the structure of the charts, the 

discussion starts with the two original memory-type charts, namely the CUSUM and 

EWMA. 

3.2.1 CUSUM 𝜽% control chart 

The CUSUM chart involves two chart statistics, namely 𝐶() and 𝐶(*, for detecting an 

upward shift and a downward shift in the process location, respectively. Both are 

defined as follows (Montgomery, 2009): 

𝐶() = 𝑚𝑎𝑥d0, e𝜃'( − 𝜃.g − 𝐾FG + 𝐶(*/
) i,     for i = 1, 2, 3,…, m                  (3.1) 

and 

𝐶(* = 𝑚𝑎𝑥d0, −e𝜃'( − 𝜃.g − 𝐾FG + 𝐶(*/
* i,   for i = 1, 2, 3,…, m          (3.2) 

where i = the sample number, m = the subgroup number, 	𝜃' = estimator of location 

parameter 𝜃, 𝜃. = in-control location parameter, 𝐾FG  = reference value, and 

𝐻FG  = control limit. 

The initial value of the chart statistics is usually set at 0 (𝐶.) = 0, 𝐶.* = 0)  

(Abbas et al., 2013a). The chart signals an out-of-control condition when either of the 

𝐶()	or 𝐶(* exceeds the 𝐻FG . Typically, the parameters 𝐾FG  and 𝐻FG  are standardized as in 

Equations (3.3) and (3.4) so that they are not influenced by the standard deviation of 
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the sampling distribution (Abdul-Rahman, 2020). 

𝐾FG = 𝑘 × 𝜎FG                             (3.3) 

and 

𝐻FG = ℎ × 𝜎FG                        (3.4) 

where 𝜎FG  is the standard deviation of 	𝜃', and k and h are the constants that are chosen 

to satisfy a pre-determined ARL0, respectively. A common practice is to set k at half of 

the standard deviation of	𝜃' to make the chart responsive to small and moderate shifts 

in the process mean (Montgomery, 2009) and derive the h corresponding to the chosen 

k value to achieve the pre-determined ARL0, say 370, under normality. 

It shall be noted that the description used for the i, m, 𝜃', and 𝜎FG  are carried through, 

henceforth.  

3.2.2 EWMA 𝜽% control chart 

The EWMA control structure is defined as (Roberts, 1959): 

 𝑍( = 𝜆𝜃'( + (1 − 𝜆)𝑍(*/       for i = 1, 2, 3,…, m              (3.5) 

𝑈𝐶𝐿( = 𝜃. + 𝐿FGp𝑉𝑎𝑟e𝜃'g
H

=*H
(1 − (1 − 𝜆)=()             (3.6) 

𝐿𝐶𝐿( = 𝜃. − 𝐿FGp𝑉𝑎𝑟e𝜃'g
H

=*H
(1 − (1 − 𝜆)=()             (3.7) 
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where 𝐿FG  is a positive constant that determines the width of the EWMA control limits 

and l is the smoothing constant that takes a value between 0 and 1 (0 < 𝜆 ≤ 1). The 

initial value, Z0, is typically set at 𝜃., i.e., in-control location parameter. The Zi in  

Equation (3.5) is compared against the upper control limit (UCL) and the lower control 

limit (LCL) as defined in Equations (3.6) and (3.7). The constant 𝐿FG  are chosen based 

on the specified l to achieve the pre-determined ARL0 under normality.  

The control limits specified by Equations (3.6) and (3.7) are time-varying limits. When 

i in Equation (3.6) and (3.7) are approaching infinity (𝑖 → ∞), the control limits 

become asymptotic limits. Thus, 𝑈𝐶𝐿( and 𝐿𝐶𝐿( 	become: 

𝑈𝐶𝐿( = 𝜃. + 𝐿FGp𝑉𝑎𝑟e𝜃'g
H

=*H
                   (3.8) 

𝐿𝐶𝐿( = 𝜃. − 𝐿FGp𝑉𝑎𝑟e𝜃'g
H

=*H
  .                (3.9) 
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3.2.3 MEC 𝜽% control chart 

Introduced by Abbas et. al (2013a), the MEC chart integrates the EWMA chart statistic 

(defined in Equation (3.5)) into the CUSUM control structure (defined in Equations 

(3.1) and (3.2)). The MEC chart statistics are defined as:  

𝑀𝐸𝐶() = 𝑚𝑎𝑥d0, (𝑍( − 𝜃.) − 𝐾I! +𝑀𝐸𝐶(*/
) i,      for i = 1, 2, 3,…, m        (3.10) 

and 

𝑀𝐸𝐶(* = 𝑚𝑎𝑥d0, −(𝑍( − 𝜃.) − 𝐾I! +𝑀𝐸𝐶(*/
* i,		  for i = 1, 2, 3,…, m        (3.11)       

where the initial values, 𝑀𝐸𝐶.) and  𝑀𝐸𝐶.*, are usually set at 0; analogous to the 

CUSUM chart. The MEC chart’s variance is defined as:  

𝑉𝑎𝑟(𝑍() = 𝜎I!
= u H

=*H
e1 − (1 − 𝜆)=(gv                     (3.12) 

where 𝜆 ∈ (0, 1]. The standardized of 𝐾I! and 𝐻I!, which are the reference value and 

control limits of the chart, respectively, are the function of the standard error of the 

chart.  

𝐾I! = 𝑘 × x𝑉𝑎𝑟(𝑍()                                            (3.13) 

and 

𝐻I! = ℎ × x𝑉𝑎𝑟(𝑍().                                              (3.14) 
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Notably, when i in Equation (3.9) is approaching infinity (𝑖 → ∞) , 𝑉𝑎𝑟(𝑍() becomes: 

𝑉𝑎𝑟(𝑍() = 𝜎FG
= u H

=*H
v                                          (3.15) 

Thus, both 𝐾I! and 𝐻I!, become: 

𝐾I! 	= 𝑘 × 𝜎FGp
H

=*H
                                           (3.16) 

and 

𝐻I! = ℎ × 𝜎FGp
H

=*H
 .                                         (3.17) 

The values of h and 𝜆, paired with a fixed value of k, need to be derived to achieve the 

pre-determined ARL0. Typically, 𝑘 = ½ is employed to carry the salient features of 

the CUSUM for fast detection of small and moderate shifts (refer to Section 3.2.1). 

Like the CUSUM chart, the 𝑀𝐸𝐶() (in Equation (3.10)) detects an upward shift in the 

mean until the value shifts to out-of-control. A similar explanation goes for the 

 𝑀𝐸𝐶(* (in Equation (3.11)) but for a downward shift in the mean. Both are compared 

against 𝐻FG , and if either of the 𝑀𝐸𝐶() or 𝑀𝐸𝐶(* exceeds 𝐻I!, the process is deemed 

out-of-control. Otherwise, the process is in statistical control. 
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3.2.4 MCE 𝜽% control chart 

The MCE control chart was introduced by Zaman et. al (2015) by integrating the 

CUSUM statistics (defined in Equations (3.1) and (3.2) into the EWMA control 

structure (defined in Equations (3.5) – (3.7)). The structure of the MCE chart, which 

is constructed based on two chart statistics, can be said analogous to the reversed 

version of the MEC chart. The MCE chart has two chart statistics, namely 𝑀𝐶𝐸() and 

𝑀𝐶𝐸(*, for detecting an upward shift and a downward shift in the process location, 

respectively. Both are defined as follows: 

𝑀𝐶𝐸() = (1 − 𝜆)𝑀𝐶𝐸(*/) + 𝜆𝐶(),      for i = 1, 2, 3,…, m                 (3.18) 

and 

𝑀𝐶𝐸(* = (1 − 𝜆)𝑀𝐶𝐸(*/* + 𝜆𝐶(*,								  for i = 1, 2, 3,…, m.                    (3.19)       

The CUSUM statistic, 𝐶() and 𝐶(*, are defined as in Equations (3.1) and (3.2). 

Following the EWMA chart, the smoothing constant that determines the weight of the 

samples is set at: 𝜆 ∈ (0, 1] and the initial values,	𝑀𝐶𝐸.) and 𝑀𝐶𝐸.*, are taken to be 

equal to target mean value 𝜃., as in the EMWA (i.e., 𝑀𝐶𝐸.) = 𝑀𝐶𝐸.* = 𝜃.). 
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Recalling the EWMA control structure as discussed in Section 3.2.2, the control limits 

of the MCE chart (UCL and LCL) follow the EWMA which are time-varying up to a 

specific value of i and become constant as 𝑖 → ∞. The MEC control limits are defined 

as follows: 

𝑈𝐶𝐿( = 𝜇J! + 𝐾J𝜎J!p
H

=*H
(1 − (1 − 𝜆)=()           (3.20) 

where Kc is a positive constant that determines the width of the control limit; and 𝜇J! 

and 𝜎J! are mean and standard error, respectively.  

If 𝑖 → ∞ , the time-varying limit in Equation (3.20) becomes an asymptotic limit as 

defined below: 

𝑈𝐶𝐿( = 𝜇J! + 𝐾J𝜎J!p
H

=*H
 .
                         

(3.21) 

The MEC chart signals an out-of-control condition when either of the	𝑀𝐶𝐸() or 𝑀𝐶𝐸(* 

defined in Equations (3.18) and (3.19), respectively, exceeds the UCLi. The Kc is 

typically chosen for specified values of 𝜆 and k to achieve the pre-determined ARL0 

under normality. 

The following section explains on the robust location estimators (𝜃') employed in this 

study. 
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3.2.5 Description of The Location Estimators 

In this study, 𝜃'( in the MEC and MCE charts were estimated with the following robust 

location estimators, namely the median, modified one-step M-estimator (MOM), and 

winsorized MOM (WMOM) for monitoring process location. These median based 

location estimators possess the highest possible BP for location (50%) as discussed in 

Section 2.5.2 of Chapter 2. For a comparison, the classical mean is included where it 

was used to construct the standard MEC and MCE chart.  

Suppose for a random sample of size n,  𝑋 = {𝑋/, 𝑋=, … , 𝑋<}, then the location 

estimator e𝜃'g can be defined as: 

i. Mean  

For a comparison purpose, the sample mean is included and can be computed as:  

𝜃' = ∑ !!
<

<
(>/  .                (3.22) 

Unlike the rest of the chosen robust estimators, the sample mean possesses 0% BP as 

discussed in Section 2.5.1 of Chapter 2. Thus, its computation can easily be corrupted 

when data are non-normal.  
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ii. Median 

The sample median is defined as (Abdul-Rahman et al., 2021): 

𝜃' =

⎩
⎨

⎧
															𝑋"#$

%
,								if	n	is	odd

/
=
�𝑋"

%
+ 𝑋"#%

%
� ,							if	n	is	even.

             (3.23) 

 

iii. Modified one-step m-estimator (MOM) 

The MOM can be computed as (Wilcox & Keselman, 2003a). 

𝜃' =
∑ !(!)
"(!%
!)!$#$

<*($*(%
                (3.24) 

where 

𝑋(() =	ith ordered observation 

𝑖/ 			=	number of observations 𝑋( such that (𝑋( −𝑀) < −𝐾(𝑀𝐴𝐷<) 

𝑖= 			=	number of observations 𝑋( such that (𝑋( −𝑀) > 𝐾(𝑀𝐴𝐷<).  

Equation (3.24) defines the trimming criteria based on M = median and  

MADn = 1.4826 𝑚𝑒𝑑(�𝑥( −𝑚𝑒𝑑L𝑥L�. The constant 1.4826 is applied in the MADn 

formula to ensure that this scale estimator remains consistent when the underlying 

distribution follows normal (Rousseeuw & Hubert, 2018).  
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A common practice is to set K = 2.24 to achieve high efficiency under normality when 

n is less than 100 (Wilcox & Keselman, 2003b). Using the MOM estimator, it is 

possible to trim a different number of observations in each tail or even, no trimming 

involves when the underlying distribution is normal. When data are symmetric heavy-

tailed, the MOM will trim the data symmetrically, analogous to the usual trimmed 

mean estimator. 

iv. Winsorized MOM (WMOM) 

The WMOM estimator was proposed by Haddad et al. (2013) who defined it as: 

𝜃' =
∑ -!*
"*
!$
<*

                        (3.25) 

where 

𝑊(L = the ith 	ordered observations in group j (after replacing outliers flagged in 

Equation 3.24)  

𝑛L = number of observations for group j. 

The construction of the winsorized sample is defined as follows:  

𝑊(L =

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑋(($)/)L , if	𝑋(L ≤ 𝑋(($)/)L

𝑋(L , 	if		𝑋(($)/)L < 	𝑋(L < 𝑋(<*(%)L

𝑋<**(%	, if	𝑋(L ≥ 𝑋(<*(%)L

                (3.26) 



  

 54 

where 

𝑋(L = the ith ordered observations in group j (before replacing outliers) 

𝑖/  = total number of smaller outliers in the data 

𝑖= = total number of larger outliers in the data. 

Defined in Equation (3.26), 𝑋(L ≤ 𝑋(($)/)L and 	𝑋(L ≥ 𝑋M<**(%NL are for determining the 

lower and upper winsorized values, respectively. That is, the values to replace the 

outliers flagged by the MOM’s trimming criteria in Equation (3.23) earlier.  Following 

the winsorizing process, the ‘clean’ data (	𝑊�(L) is obtained and used to get an average 

as defined in Equation (3.25). 

3.2.5.1 Unknown parameter cases 

In this study, the in-control parameters of the process were assumed to be unknown. 

Thus, the location parameter was estimated based on Phase I data which might not be 

representative of the process (i.e., contains outliers).  

Specifically, Phase I involved two series of simulation procedures. The first series was 

for determining the standard deviation of the sampling distribution of the location 

estimator, 𝜎FG , based on 106 iterations. The second series involves 104 trials of  

subgroup, m, in-control Phase I with sample size, n, to estimate the process mean, 𝜃.%  

Let the Phase I data be represented by 𝑌(L = {𝑌//, … , 𝑌<@} where	𝑖 = 1,2, …𝑛 and  

𝑗 = 1,2, …𝑚. We assume that 𝑌(L to be independent and identically distributed (i.i.d) 
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following an unknown distribution W which has a mean 𝜃. and a standard deviation 

𝜎FG , 𝑌(L~𝑊(𝜃., 𝜎FG). The 𝜃., was estimated using the mean of 𝜃', given by: 

𝜃'. 	=
∑ FG*
+
*)$

@
	.                                (3.27) 

In Phase I of this study, 𝜃. was estimated to isolate the effect of estimating the location 

parameter on the proposed MEC and MCE charts. This approach was emphasized by 

Schoonhoven et al. (2011) and later by Abdul-Rahman (2020) in their simulation 

studies when studying the performance of control charts for process location when 

parameters of the process are unknown.  

3.3 Variables Manipulated 

The investigation of the performance of the newly proposed robust memory-type 

control charts was conducted by manipulating several variables frequently discussed 

in SPC and commonly encountered in real practice. The following subsections focus 

on those variables, namely the types of distribution, design shifts (𝛿∗),  

sample sizes (n), and shift sizes (𝛿). Those variables were selected due to their 

influence on the ARL performance of the memory-type charts as illustrated later.  

3.3.1 Types of Distribution 

When a process fails to follow the normality assumption, the ARL value of the chart 

can vary substantially as discussed in Sections 2.2 and 2.3. The severity of the situation 

depends on the types of distribution, or the level of contamination observed in the data. 

Thus, in this study, g-and-h distributions were chosen to mimic normal and non-normal 
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distributions while analyzing their impact on the ARL performances of the newly 

proposed robust charts in Table 3.1. 

The g-and-h distribution was introduced by Tukey (1977) which can be derived 

through transformations of the standard normal distribution. This transformation 

process allows statisticians to capture symmetric, heavy tails, and skewed data to 

varying degrees based on g and h values (Yan & Genton, 2019a, 2019b). Therefore, 

the g-and-h distribution has gained considerable attention in statistical modeling 

(Mondal et al., 2022), simulation studies (Astivia & Edward, 2022), and distributional 

shape analysis (Jorge & Boris, 1984). The g-and-h distribution has been utilized in a 

range of disciplines including environmental science, economics, finance, and more 

areas of application (Ley, 2015). 

The g-and-h distribution captures the non-normality through the g and/or h parameters, 

as it is aptly name. Let 𝑍~𝑁(0, 1) denote a standard normal random variable. To 

generate data for the g-and-h distributions, the following steps are adhered to: 

i.    Generate a standard normal variate, Zij. 

ii.   Convert the standard normal variates to random variables as follows: 

𝑌(L =	

⎩
⎪
⎨

⎪
⎧ OPQM;R!*N*/

;
	exp �

ℎ𝑍(L=
2
� �	 ,			𝑔 ≠ 0

𝑍(Lexp �
ℎ𝑍(L=

2
� � 																	,			𝑔 = 0.

             (3.28) 
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The parameters g and h control the skewness and kurtosis, respectively.  When 𝑔 = 0 

and ℎ = 0,  𝑌(L = 𝑍(L, represents a standard normal distribution. As h gets larger, the 

tails of the distribution become heavier. The same goes for g which controls the 

skewness. Following Wilcox (2022), four g-and-h distributions were specified as in 

Table 3.2 to capture possible non-normal data scenarios in SPC, that is, symmetric but 

heavy-tails, skewed, and skewed with heavy-tails. Henceforth, the notations in the first 

column of Table 3.2 are used when describing each of the chosen g-and-h distributions. 

     Table 3.2 

     The Chosen g-and-h Distribution 

Distribution (g, h) Description 

G0H0 (0, 0) Normal distribution 

G0H0.5 (0, 0.5) Symmetric heavy-tailed distribution 

G0.5H0 (0.5, 0) Skewed normal-tailed distribution 

G0.5H0.5 (0.5, 0.5) Skewed heavy-tailed distribution 

 

To illustrate the non-normal shape assumed by each of the chosen g-and-h 

distributions, their probability density functions (PDFs) and the cumulative 

distribution functions (CDFs) are given in the form of graphs as illustrated in columns 

2 and 3 of Table 3.3. Column 1 of the table illustrates the skewness (𝛾�/) and  

kurtosis (𝛾�=) values for the respective g-and-h distribution. Row 4 of Table 3.3 is an 
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extreme non-normal data scenario as indicated by 𝛾�/ and 𝛾�=. Represented by 

G0.5H0.5, this extreme data condition was included in assessing the newly proposed 

robust charts’ performance. The idea is that, if the proposed robust control charts can 

balance the Type I and Type II errors under this extreme non-normality, they shall 

perform well under a lesser condition in real practice.  

Table 3.3 

PDF and CDF of the g-and-h Distribution 

Parameters PDF CDF 

 

𝑔 = 0 

ℎ = 0 

 

𝛾�/ = −0.0298 

𝛾�= = 2.9834 
 

  

 

 

𝑔 = 0 

ℎ = 0.5 

 

𝛾�/ = 1.7030 

𝛾�= = 332.0013 
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𝑔 = 0.5 

ℎ = 0 

 

𝛾�/ = 1.6191 

𝛾�= = 7.6453 

 

   

 

 

 

𝑔 = 0.5 

ℎ = 0.5 

 

𝛾�/ = 35.1766 

𝛾�= = 2080.646 

 

 

 
  

 

3.3.2 Sample Sizes 

The selection of the sample size (n) is important for effective process monitoring. To 

study the effect of n on the ARL, this study focused on small and moderate n,  

i.e., n = 5 and 9, respectively. According to Montgomery (2009), it is common practice 

to opt for sample sizes of 4, 5 or 6. Moreover, Teoh et al. (2013) highlighted the 

benefits of employing small to moderate sample sizes in industrial environments. This 

approach can effectively minimize costs, reduce time requirements, and reduce 

inspection processes. Moreover, in various industries, n = 5 is the most common 
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sample size utilized in process monitoring because it can easily be attained, practical 

and give minimum variation within subgroups (Swamidass, 2000). 

3.3.3 Design Shifts 

The memory-type charts offer flexibility to the practitioners, unlike the Shewhart 

chart. That is, the memory-type charts can be designed (or tuned) to any shift that is 

expected to occur in the process. For instance, based on prior information, a process 

always exhibits a small change in mean value, say 𝛿 = 0.75,  after a long run.  

A memory-type chart can be designed relative to this size of shift so that it can quickly 

signal a change in the process when this size of shift occurs. 

It is important to note the actual shift that occurs may vary from what the chart is 

designed for. For instance, an MEC chart can be designed for 𝛿 = 0.75 but suddenly, 

a much smaller shift, say 𝛿 = 0.25, occurs in the process. Will the chart fail to detect 

this relatively small shift? This question would be tackled in Chapter 4 when assessing 

the ARL performance of the proposed memory-type charts.  

In this study, all six newly proposed robust memory-type charts were designed for the 

optimal detection of small and moderate shifts to accommodate their importance in 

SPC (refer to Section 2.3 of Chapter 2). The design shifts used are specified in  

Table 3.4 (Crowder, 1989; Lucas & Saccucci, 1990). 
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       Table 3.4 

       Design Shifts (𝛿∗) 

𝜹∗ Description 

0.5 Small design shift 

1 Moderate design shift 

3.3.4 Shift Sizes 

To assess the effectiveness of the proposed robust control charts in detecting process 

shifts,  𝛿, (which are measured in standard error units), this study considered various 

magnitudes of shifts. The range of 𝛿 investigated in this study is displayed in  

Table 3.5. 

       Table 3.5 

       Shift Size (𝛿) 

𝜹 Description State of the process 

0 No shift In-control 

0.25, 0.5, 0.75 Small shift 
     

      Out-of-control 1, 1.5, 1.75 Moderate shift 

2, 3 Large shift 
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Following Abdul-Rahman et al. (2020), the chosen range of 𝛿 enables us to illustrate 

the effect of small, moderate, and large shifts on the ARL values of the proposed robust 

memory-type charts. For 𝛿 ≠ 0, the charts’ capability to signal out-of-control 

conditions would be assessed. Meanwhile, 𝛿 = 0 would allow us to monitor the 

occurrences of false alarms across all four g-and-h distributions and thus, able to gauge 

the charts’ capability to control the Type I error as the data deviate from normal. 

 

For the reader’s convenience, the following notations are used, henceforth:  

§ 𝛿∗ is the design shift (Section 3.3.3)  

§ 𝛿 is the actual shift (Section 3.3.4).  

3.4 Simulation Procedures 

3.4.1 Optimal Parameter Derivation  

The design of the investigated MEC and MCE charts involves derivations of the 

optimal parameters. For the MEC chart, the parameters are h; and for the MCE charts, 

they are Kc. In this study, the optimal parameters were derived via  

Monte Carlo simulation studies according to the specified design shifts (𝛿∗) in  

Section 3.3.3. 

In this study, the location parameter was assumed to be unknown and thus, needed to 

be estimated using the Phase I data.  The following steps were followed through in 

deriving the optimal parameters for the MEC charts when the nominal ARL0 was set at 

370.   
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1. Fixed n. 

2. Fixed ARL0 ≈ 370 when the process is in-control (𝛿 = 0) and 

G0H0. 

3. Set the design shift, 𝛿∗ = 1.0. 

4. Set the smoothing constant, 𝜆 = 0.13. 

5. Set the reference value, 𝑘 = 0.5. 

6. Determine the optimal parameter, h such that the value yields  

ARL0 ≈ 370 for the chart. 

To derive the optimal parameters for the MCE charts, Steps 1 – 5 in the MEC charts 

were adhered to. Now, Step 6 differs from before, i.e., the optimal parameter, Kc, needs 

to be derived such that the yields ARL0 ≈ 370 for the MCE chart.  

Note that the value of 𝛿∗ specified in Step 3 dictates the value of 𝜆 in Step 4. The value 

of 𝜆	for pertinent to 𝛿∗ can be referred to Crowder (1989). Figure 3.2 presents the 

flowchart of designing the MEC and MCE charts. 
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Figure 3.2. The Flowchart to Derive Optimal Parameters of the MEC and MCE Charts 
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3.5 Data Generation 

The simulation procedures defined in Section 3.4 were executed using SAS software 

for Windows version 9.4. To assess the effect of non-normality on the investigated 

charts under in-control and out-of-control states, data from the four g-and-h 

distributions as specified in Table 3.2 were generated in Phase I and Phase II  

(refer to Section 3.4). 

A standard normal variate, Zi was generated. Specifically, the random-number 

function, RANNOR, in SAS, was employed to generate a random number following a 

standard normal distribution with 𝜇 = 0 and 𝜎= = 1. The generated random numbers 

were simulated with a seed number set to 33333. The next process involved 

transforming Zi into a random variable, Yij using g-and-h distributions as defined in 

Equation (3.28). 

3.6 Measure of Control Chart Performance 

All investigated charts were evaluated using the ARL value. Specifically, the ARL0 

was used to assess the in-control robustness, while the ARL1 was used to measure the 

detection capability.  

In this study, Bradley's stringent criterion of robustness was used to assess the ARL0 

(Bradley, 1978). A statistical procedure is deemed robust if its false alarm rate (𝛼�) falls 

within this robust interval [0.9𝛼, 1.1𝛼] (Bradley, 1978). Thus, for a pre-determined 

ARL0 = 370, the 𝛼 is equivalent to 0.0027 £𝛼 = /
ST.
¤ as discussed in Section 1.3 of 
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Chapter 1. This yields a stringent robust criterion defined as [0.00243, 0.00297] which 

is equivalent to [337, 412].  

The investigated charts are considered robust when its ARL0 falls between 337 to 412 

when data are non-normal. The most robust chart is the chart with the closest value to 

370. Moreover, a chart with the smallest ARL1 under a specified condition is the most 

efficient chart in signaling an out-of-control condition.  

3.7 ARL Simulation 

The ARL represents the average number of sample plots on a chart before a signal is 

given (Atalay et al., 2020). Here, the ARL was derived via Monte Carlo simulation in 

SAS. The following explains the ARL simulation involved in the study.  

3.7.1 ARL simulation procedure for the MEC 𝜽% control chart 

1. Determine the optimal parameters (l, k, h). 

2. Select one of the four underlying process distributions (specified in  

Table 3.2), and establish the size of the in-control Phase I data, Yi where  

𝑖 = 𝑚 × 𝑛, 𝑚 = 50. 

3. Generate the in-control Phase I data. Utilize Equation (3.27) to compute 

𝜃'. based on the data, and pair it with 𝜎FG  . 

4. Generate n observations from subgroup m, based on the selected 

distribution (which matches the Phase I distribution). Subsequently, 

calculate the chart statistics, 𝑀𝐸𝐶() and 𝑀𝐸𝐶(*, using Equation (3.10) and 

(3.11), respectively and set 𝑀𝐸𝐶.) = 𝑀𝐸𝐶.* = 0. 
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5. If both 𝑀𝐸𝐶() and 𝑀𝐸𝐶(* are less than 𝐻I!, increase the run-length counter. 

6. Repeat Steps 3 and 4 until either 𝑀𝐸𝐶() and 𝑀𝐸𝐶(* are greater than or 

equal to 𝐻I!. At this point, a signal is given, and the corresponding run 

length equals to i. Do for all d. 

7. Repeat Steps 3 to 6 for 104 iterations. These 104 independent run-lengths 

were used to determine the mean of the RL, i.e., the ARL. 

Note that Step 1 outlines in the ARL simulation above, i.e., determining the values for 

l, k, and h, follows Steps 2 – 7 that were explained in Subsection 3.4. Moreover, Step 

3 outlines in the ARL simulation above considered δ = 0 to get an in-control data, i.e., 

no shift in the process. In step 6, various values of   

𝛿 = {0.25, 0.5, 0.75, 1, 1.5, 1.75, 2, 3} was integrated into equation 3.28, such that, 

𝜃'( = 𝜃' + 𝑌(L to get out-of-control data. 

3.7.2 ARL simulation procedure for the MCE 𝜽% control chart 

1. Determine the optimal parameters (l, k, Kc). 

2. Select one of the four underlying process distributions (specified in Table 

3.2), and establish the size of the in-control Phase I data, Yi where  

𝑖 = 𝑚 × 𝑛, 𝑚 = 50. 

3. Generate the in-control Phase I data. Utilize Equation (3.27) to compute 

𝜃'. based on the data, and pair it with 𝜎FG  . 

4. Generate n observations from subgroup m, based on the selected 

distribution (which matches the Phase I distribution). Subsequently, 
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calculate the chart statistics, 𝑀𝐶𝐸() and 𝑀𝐶𝐸(*, using Equation (3.18) and 

(3.19), respectively and set 𝑀𝐸𝐶.) = 𝑀𝐸𝐶.* = 𝜃'. . 

5. If both 𝑀𝐶𝐸() and 𝑀𝐶𝐸(* are less than UCLi, increase the run-length 

counter. 

6. Repeat Steps 3 and 4 until either 𝑀𝐶𝐸() and 𝑀𝐶𝐸(*  are greater than or 

equal to UCLi. At this point, a signal is given, and the corresponding run 

length equals to i. Do for all d. 

7. Repeat Steps 3 to 6 for 104 iterations. These 104 independent run-lengths 

were used to determine the mean of the RL, i.e., the ARL. 

As in the MEC chart, Step 1 outlines in the ARL simulation for the MCE chart, i.e., 

determining the values for l, k, and Kc, follows Steps 2 – 7 that were explained in 

Subsection 3.4. Moreover, Step 3 outlines in the ARL simulation above considered  

δ = 0 to get an in-control data, i.e., no shift in the process. In step 6, various values of  

𝛿 = {0.25, 0.5, 0.75, 1, 1.5, 1.75, 2, 3} was integrated into equation 3.28, such that, 

𝜃'( = 𝜃' + 𝑌(L to get out-of-control data. 

In Section 3.2.5.1, process dispersion in Phase I was assumed known to isolate the 

effect of estimating process location in this study. However, sampling distribution of 

robust estimators is hardly attainable (Relles & Rogers, 1977). Thus, in employing the 

chosen median based estimators, their standard error (𝜎FG ) in Step 3 of the ARL 

simulation were simulated based on 109 samples of size n from the relevant g-and-h 

distribution when 𝛿 = 0.  
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3.8 Real Data Analysis 

The performance of all investigated charts was validated using water quality and 

manufacturing data. For water quality data, two meteorological variables were 

involved which are, (i) total suspended solids (TSS) (in milligrams/Liter, mg/L) and 

dissolved oxygen concentration (DOC) (in milligrams/Liter, mg/L). This water quality 

dataset concentrated on Pengkalan Sungai Udang station in Selangor, Malaysia. Both 

meteorological variables, i.e., the TSS and DOC, are part of the water quality index 

(WQI) assessment and thus, crucial in determining the quality of the process. The 

dataset was acquired from the Selangor Maritime Gateway (SMG) and the Malaysian 

National Water Quality Standard (NWQS). From both variables, 560 observations 

were collected and grouped into 80 samples, each with a sample size of 7 (n = 7).  

After validating the real data using TSS and DOC data, the manufacturing data from 

medical specialties company were applied to enhance the validity of the study. 

Specifically, the balloon catheter dataset of synergy XD everolimus-eluting platinum 

chromium coronary stent system were used which consist of variables namely, marker 

band length, marker band diameter, bond diameter and tip to proximal marker band. 

For this study, the marker band length of size 49mm were chosen because this variable 

was found to be easily failed while measuring using marker band inspection and result 

in significant variation between samples.  For manufacturing data, the variable is the 

marker band length (mm) consist of 375 observations collected and grouped into 75 

samples, each with a sample size of 5 (n = 5).  
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The first half of the dataset was used to construct the control limits (Phase I), and the 

latter half was used to monitor the out-of-control samples (Phase II). The findings 

would be used to identify the best performance from the MEC and MCE control charts 

and most importantly, to check if the results corroborated with findings in the 

simulation studies. 
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CHAPTER FOUR 

RESULTS OF ANALYSIS 

4.1 Introduction 

This chapter focuses on the in-control and out-of-control performances of two distinct  

memory-type control charts, namely the mixed EWMA-CUSUM (MEC) and mixed 

CUSUM-EWMA (MCE) charts. Six robust memory-type charts for process location 

were constructed using three median based location estimators. Their performances 

were assessed based on the average run length (ARL) and subsequently compared 

against their standard counterparts. 

Several variables were manipulated to study the strengths and weaknesses of the 

proposed charts, which include types of distribution (by g-and-h distributions), sample 

sizes (n), actual shift sizes (𝛿) and design shifts (𝛿∗), in mimicking frequently 

encountered conditions in real practice. Based on these four variables, 128 conditions 

were generated and used to evaluate the performances of the investigated charts based 

on the ARL via a Monte Carlo simulation study. The findings are depicted in tables in 

the forms of ARL0 and ARL1 and discussed in detail in this chapter.  

All investigated charts were designed to produce an ARL0 ≈ 370 under normality;  

a distribution represented by G0H0 in this study. The first evaluation of each type of 

chart in this chapter concentrates on how far the ARL0 of the investigated charts deviate 

from the nominal value when the underlying process follows G0H0.5, G0.5H0, and 

G0.5.H0.5. Respectively, these three distributions represent the symmetric  

heavy-tailed, skewed normal-tailed, and skewed heavy-tailed distributions. The ARL0 
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produced by each chart under these three non-normal data across n = {5, 9} and 𝛿 = 0 

when they were designed for  𝛿∗ = {0.5, 1} determines the ability of the charts to 

control the Type I error.  

In Section 3.6 of Chapter 3, the ability of the charts to control Type I error is gauged 

based on the Bradley's stringent criterion of robustness defined by [0.9	𝛼, 1.1	𝛼]. For 

a pre-determined ARL0 = 370 which is equivalent to 𝛼 = 0.0027 e𝛼 = 1
370¥ g, the 

investigated chart is considered robust when the 𝛼� falls between 0.00243 and 0.00297, 

where the upper and lower boundaries are included. Thus, this study, which focuses 

on the ARL performance, concludes that a chart is robust if it can produce an ARL0 

within [337, 412] under non-normality.  

The second evaluation of each type of chart in this chapter concentrates on the ARL1 

for 𝛿 = {0.25, 0.5, 0.75, 1, 1.5, 2, 3} across all four g-and-h distributions. A chart with 

the smallest ARL1 across the investigated conditions is deemed to be the most effective 

chart in signaling out-of-control conditions.  

The following sections are organized based on the types of memory-type charts under 

investigation. Section 4.2 focuses on the MEC control charts’ performances under the 

in-control state (based on the ARL0), followed by the out-of-control performance 

(based on the ARL1). Similarly, Section 4.3 focuses on the MCE control charts’ 

performances under both states of the process. In Section 4.4, all charts investigated 

under the MEC and MCE are compared in terms of the ARL0 and ARL1. The 

comparison includes the performance of the Shewhart 𝑋0 chart to support the claim that 

memory-type charts are allegedly better than memory-less charts.  
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4.2 MEC Charts 

Four MEC control charts were investigated in this study. Three of them are the robust 

MEC charts based on the median, MOM, and WMOM estimators. Referring to  

Table 3.1 in Chapter 3, the notations for the robust charts are 𝑀𝐸𝐶!" , 𝑀𝐸𝐶+,+, and 

𝑀𝐸𝐶-+,+, respectively. These robust MEC charts were compared against the 

standard chart based on the sample mean (𝑀𝐸𝐶!$).   

The construction of the four MEC charts started with the optimal parameter derivation, 

i.e., the reference value (k) and the decision limit (h) as discussed in Section 3.4.1 of 

Chapter 3, under normality (G0H0). The optimal parameter values are listed in  

Table 4.1. 

Table 4.1 

Optimal Parameters of the MEC Chart for ARL0 » 370 

  Charts 

n 𝜆 𝛿∗ 𝑀𝐸𝐶!$  𝑀𝐸𝐶!"  𝑀𝐸𝐶+,+ 𝑀𝐸𝐶-+,+ 

5 0.05 0.5 h = 107.6 h = 107.91 h = 107.61 h = 108.63 

5 0.13 1 h = 36.61 h = 37 h = 36.74 h = 37.51 

       

9 0.05 0.5 h = 107 h = 107.74 h = 107.59 h = 107.98 

9 0.13 1 h = 37 h = 36.78 h = 36.87 h = 36.87 
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The following hypotheses are adhered to in assessing the MEC charts’ performances 

where the charts were specifically designed to signal a shift in the process location 

when the process is out-of-control. The hypotheses are: 

H0: The process is in-control, i.e., 𝜃 = 𝜃.   

H1: The process is out-of-control, i.e., 𝜃 ≠ 𝜃. 

where 𝜃 = mean, and 𝜃. = in-control location parameter. 

4.2.1 ARL0 

A Type I error occurs when the H0 is falsely rejected with no special cause exists in 

the process (i.e., the process is in-control). This section analyzes the occurrences of 

the Type I error when the newly proposed robust MEC charts were subjected to the 

three non-normal g-and-h distributions under an in-control state. Via the simulation 

study, this in-control state was produced by setting 𝛿 = 0. 

The ARL0 of the investigated MEC charts for n = {5, 9} are presented in Tables 4.2 

and 4.3, respectively. Specifically, 𝛿∗ = {0.5, 1} are shown in the first column of the 

tables followed by the values of ARL0 for the 𝑀𝐸𝐶!$ , 𝑀𝐸𝐶!" , 𝑀𝐸𝐶+,+, and 

𝑀𝐸𝐶-+,+ .	As discussed in Section 3.3.4 of Chapter 3, the two design shifts are of 

interest due to the importance of small shifts detection in SPC.  

The g-and-h distributions were used to study the effect of skewness and/or heavy tails 

on the ARL0. Specifically, G0H0.5, G0.5H0, and G0.5H0.5 where each refers to the 

symmetric heavy-tailed, skewed normal-tailed, and skewed heavy-tailed distributions, 
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respectively, were employed in this study. The ARL0 results for all four MEC charts 

are shown in Tables 4.2 and 4.3. 

Table 4.2 

ARL0 for the MEC Charts when n = 5 

 Charts 

𝛿∗ Distribution 𝑀𝐸𝐶!$  𝑀𝐸𝐶!"  𝑀𝐸𝐶+,+ 𝑀𝐸𝐶-+,+ 

0.5 

G0H0 370.05 370.05 370.79 370.80 

G0H0.5 771.11 370.47 372.79 370.96 

G0.5H0 369.75 364.77 359.40 362.39 

G0.5H0.5 1471.99 378.23 374.10 363.86 

      

1 

G0H0 369.61 369.82 369.79 369.58 

G0H0.5 948.99 371.07 374.40 374.52 

G0.5H0 368.32 370.31 371.42 371.06 

G0.5H0.5 1667.37 382.85 362.88 367.37 

 
Table 4.3 

ARL0 for the MEC Charts when n = 9 

 Charts 

𝛿∗ Distribution 𝑀𝐸𝐶!$  𝑀𝐸𝐶!"  𝑀𝐸𝐶+,+ 𝑀𝐸𝐶-+,+ 

0.5 

G0H0 369.42 370.37 368.82 370.09 

G0H0.5 820.62 372.08 377.22 367.73 

G0.5H0 365.66 367.92 363.78 373.06 

G0.5H0.5 2464.16 368.39 368.57 367.08 

      

1 

G0H0 369.44 370.35 370.89 369.49 

G0H0.5 1052.48 371.10 372.93 370.90 

G0.5H0 379.08 367.21 371.62 371.25 

G0.5H0.5 2845.33 366.45 375.96 366.39 
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Tables 4.2 and 4.3 highlight the ARL0 values that fall within the Bradley’s stringent 

criterion which requires the value to be between 337 to 412 including both lower and 

upper boundaries. From both tables, all charts yield an ARL0 ≈ 370 under G0H0,  

as they were designed to produce under normality. Concerning the three non-normal 

distributions taken into consideration in this study, i.e., G0H.5, G.5H0, and G.5H.5, 

the ARL0 of all robust control charts (𝑀𝐸𝐶!" , 𝑀𝐸𝐶+,+, and 𝑀𝐸𝐶-+,+) fall within the 

stringent criterion. More importantly, their ARL0 do not deviate much from the nominal 

value even under an extreme data condition (G0.5H0.5). This is not true for the 

standard MEC chart (𝑀𝐸𝐶!$) which only exhibits good control of ARL0 under G0.5H0. 

It shall be emphasized that the 𝑀𝐸𝐶!$  fail to control the false alarm rate when outliers 

were captured in heavy-tailed distributions.   

Under G0H0.5 and G0.5H0.5, the 𝑀𝐸𝐶!$  produces higher ARL0 than the nominal value 

(370) for both n. Their ARL0 are far exceeding the upper limit of the stringent criterion. 

To illustrate, when the 𝑀𝐸𝐶!$  was designed based on 𝛿∗ = 0.5 and 𝑛 = 5,  

its ARL0 = 2464.16, which is approximately 6.7 times higher than the nominal value 

as shown in Table 4.2 for G0.5H0.5. Increasing the 𝛿∗ and n in designing the chart 

pushes the ARL0 further away from the stringent criterion as illustrated in Table 4.3. 

As the ARL0 and the false alarm rate are inversely related, this large ARL0 exhibits by 

the 𝑀𝐸𝐶!$   indicates an incredibly small false alarm rate. This is not ideal as the 

statistical power of the chart would be affected as discussed in Section 4.2.2. 
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4.2.2 ARL1 

A Type II error occurs when the H0 fails to be rejected when a special cause(s) exists 

in the process (i.e., the process is out-of-control). The efficiency of a control chart in 

signaling out-of-control conditions decreases as the Type II error increases  

(i.e., 1 – 𝛽 where 𝛽 is the Type II error).  

This section analyzes the occurrences of the efficiency of the MEC charts when the 

newly proposed robust MEC charts were subjected to the three non-normal  

g-and-h distributions under an out-of-control state. Via the simulation study, this  

out-of-control state was produced by setting 𝛿 = {0.25, 0.5, 0.75, 1, 1.5, 2, 3}. The 

impact of non-normality on the MEC charts’ capability to detect this various 

magnitude of shifts was discussed based on the ARL1.  

Four distinct tables, each displaying one of the g-and-h distributions, are used to list 

the results. The n is shown in the first column of every table, followed by 𝛿∗. The third 

column focuses on the actual shift that may occur in the process, i.e., d . The last four 

columns list the ARL1 values for the specific pair of 𝛿∗ and n. Ideally, it could be hard 

to single out a chart with the smallest ARL1 for each investigated condition since we 

have a total of 128 conditions. Thus, the aim here is to find a chart that can maintain 

small ARL1 values consistently across the investigated scenarios.  
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a. G0H0 

Table 4.4 shows the ARL1 performance of the four MEC charts under normality. The 

results show that the chart designed for 𝛿∗ = 0.5 has the largest ARL1 for small shifts 

(0.25 ≤ 𝛿 ≤ 0.7), while the chart designed for 𝛿∗ = 1 is the best for all 𝛿	values. An 

increase in n leads to an improved detection of out-of-control conditions for all four 

MEC charts, regardless of the design. This is shown by a decreasing value in the ARL1. 

However, when n = 5 and 𝛿 = 0.25, the ARL1 of the  𝑀𝐸𝐶-+,+, as italicized in Table 

4.4, is larger than the other charts. As expected, with an increase in n, the 𝑀𝐸𝐶!$  

outperforms the robust charts under normality in detecting the smallest shift under 

investigation, i.e., 𝛿 = 0.25 for n = 9.  

b. G0H0.5 

In Table 4.5, the ARL1 correspond to the  𝑀𝐸𝐶!$ , 𝑀𝐸𝐶!" , 𝑀𝐸𝐶+,+ ,	and 𝑀𝐸𝐶-+,+ 

under symmetric heavy-tailed distribution are listed.  The result shows that by 

increasing n from 5 to 9, the values of the ARL1 can be decreased. Hence, a better 

detection of out-of-control conditions. This is true for all charts under each respective 

𝛿∗. More importantly, when n is large, the ARL1 of all MEC charts are comparable 

across small process shifts, irrespective of 𝛿∗. However, for n = 5 and 𝛿 = 0.25, the 

ARL1 of the  𝑀𝐸𝐶-+,+ is slightly affected. The italicized ARL1 of the  𝑀𝐸𝐶-+,+ is 

the largest among the investigated charts. On the other hand, the ARL1 of the  𝑀𝐸𝐶!$  

(in bold) exhibit smaller values except for n = 9 and  𝛿∗	= 1.  Under this design, the 

𝑀𝐸𝐶+,+ yields smaller ARL1 than the rest of the charts. The claim is supported by the 

values in bold in Table 4.5. 
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Table 4.4 

ARL1 of the MEC Charts for G0H0 Distribution 

  Charts 

n 𝛿∗ 𝛿 𝑀𝐸𝐶!$  𝑀𝐸𝐶!"  𝑀𝐸𝐶+,+ 𝑀𝐸𝐶-+,+ 

5 0.5 0.25 57.4233 57.6721 57.9755 58.0681 
  0.5 32.3803 32.358 32.2952 32.5305 
  0.75 24.3139 24.4304 24.3303 24.485 
  1 19.9896 20.0494 19.9981 20.1275 
  1.5 15.2903 15.3212 15.2942 15.3995 
  2 12.6365 12.6553 12.6447 12.7289 
  3 9.6897 9.7119 9.6951 9.7568 
       
 1 0.25 37.2868 37.4978 37.1556 38.2665 
  0.5 32.3803 32.358 32.2952 32.5305 
  0.75 12.5781 12.6622 12.6085 12.78 
  1 10.1606 10.2236 10.1877 10.3203 
  1.5 7.6285 7.686 7.6472 7.7563 
  2 6.2565 6.2938 6.2636 6.3493 
  3 4.8388 4.8782 4.8479 4.9018 
       
9 0.5 0.25 43.7733 44.1136 44.0715 44.1106 
  0.5 26.2343 26.3046 26.3265 26.3544 
  0.75 19.8334 19.9498 19.9228 19.9663 
  1 16.3952 16.441 16.4645 16.4927 
  1.5 12.5419 12.6053 12.5906 12.6136 
  2 10.3656 10.4087 10.3984 10.4373 
  3 7.9789 7.9973 7.9896 7.9998 
       
 1 0.25 25.9735 25.8084 25.9451 25.8538 
  0.5 13.7853 13.7535 13.7585 13.7903 
  0.75 10.2063 10.1406 10.1582 10.1791 
  1 8.3088 8.2792 8.2853 8.2672 
  1.5 6.2696 6.2402 6.2507 6.2561 
  2 5.1225 5.1064 5.1076 5.1212 
  3 3.9961 3.994 3.9952 3.9948 
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Table 4.5 
 
ARL1 of the MEC Charts for G0H0.5 Distribution 
 
  Charts 

n 𝛿∗ 𝛿 𝑀𝐸𝐶!$  𝑀𝐸𝐶!"  𝑀𝐸𝐶+,+ 𝑀𝐸𝐶-+,+ 

5 

0.5 

0.25 55.7716 57.8502 57.6178 58.3458 
0.5 32.7493 32.3581 32.2826 32.5013 
0.75 24.3453 24.4009 24.3386 24.5025 

1 19.9764 20.0478 20.0088 20.1393 
1.5 15.2703 15.3071 15.2885 15.3817 
2 12.6563 12.6603 12.6416 12.7183 
3 9.8069 9.7229 9.6981 9.7556 

      

1 

0.25 36.3416 37.6629 37.5713 37.9341 
0.5 17.3877 17.4988 17.4459 17.6981 
0.75 12.6103 12.6649 12.6216 12.7805 

1 10.126 10.2038 10.1857 10.306 
1.5 7.7897 7.6799 7.6389 7.7551 
2 6.1297 6.282 6.2619 6.3338 
3 4.9624 4.8911 4.8624 4.922 

       

9 

0.5 

0.25 43.9238 44.0871 44.2294 44.1574 
0.5 26.4951 26.3148 26.2782 26.3973 
0.75 19.8596 19.9466 19.9293 19.9859 

1 16.6486 16.4613 16.4394 16.4767 
1.5 12.5302 12.6222 12.5906 12.6152 
2 10.2783 10.4072 10.3992 10.4289 
3 7.998 7.9978 7.991 8.0011 

      

1 

0.25 26.1591 25.877 25.895 25.8163 
0.5 13.7305 13.791 13.7908 13.7819 
0.75 10.1872 10.148 10.1693 10.165 

1 8.2738 8.2952 8.2917 8.284 
1.5 6.1377 6.2385 6.2563 6.252 
2 5.0304 5.0979 5.1036 5.1056 
3 3.9982 3.993 3.9938 3.994 
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c. G0.5H0 

The value of ARL1 for the 𝑀𝐸𝐶!$ , 𝑀𝐸𝐶!" , 𝑀𝐸𝐶+,+, and 𝑀𝐸𝐶-+,+ charts under 

skewed normal-tailed distribution are presented in Table 4.6. The effect of utilizing 

small sample sizes (specifically n = 5 in this study) in detecting a relatively small shift 

in the process,  𝛿 = 0.25, is the worst on the 𝑀𝐸𝐶!"  chart. The impact is lessened as 𝛿 

increases beyond 0.75, i.e., when the magnitude of shifts is moderate and large. 

Notably, for the smallest size of shift observed in this study (𝛿 = 0.25), the ARL1 of 

the  𝑀𝐸𝐶+,+ is slightly affected as n increases (italicized values in Table 4.6) but 

outperforms the other charts for the rest of the small shifts. For moderate and large 

shifts, i.e., 𝛿	 ≥ 0.75, all charts perform comparably. 

d. G0.5H0.5 

Focusing on an extreme case whereby both skewness and heavy-tailed are observed in 

the data. Table 4.7 shows the ARL1 values of all charts when G0.5H0.5. The result 

clearly shows that there is a significant difference in the performance of the 𝑀𝐸𝐶!$  

when compared to the robust MEC charts for relatively small shifts in the study, i.e., 

𝛿 = {0.25, 0.5}. Except for n = 5, 𝛿∗ = 0.5 and  𝛿 = 0.25, this standard chart performs 

the worst as indicated by the italicized values. From the results, increasing n while 

designing the chart for a larger 𝛿∗ can lead to better detection by the proposed charts. 

With the addition to the bold values in Table 4.7 that suggest the 𝑀𝐸𝐶-+,+ 	is the 

most efficient in signaling a very small change in the process, this robust chart also 

performs consistently well across other small values of 𝛿 when compared to the rest 

of the investigated charts. It is crucial to note that, the difference among the charts’ 

performance is significant when the shift is relatively small, i.e., 𝛿 ≤ 0.5.  
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Meanwhile, for moderate and large shifts (0.75		≤ 	𝛿 ≤	3),	all charts perform similarly. 

The analyses across all four g-and-h distributions on the newly proposed robust MEC 

charts against their standard counterpart conclude that the standard chart (𝑀𝐸𝐶!$ 	) 

chart is not effective at detecting process shifts, especially for skewed and extreme 

non-normal distributions. When designed for a quick detection of moderate shifts  

(𝛿∗ = 1), the 𝑀𝐸𝐶!$ 	 loses its ability to signal small shifts in the location which becomes 

worse under skewed and heavy-tailed distributions. Across the non-normal 

distributions observed, the	 𝑀𝐸𝐶!$  yield large ARL1 across both n, 𝛿∗, and data 

distribution in most of the conditions specified. Conversely, the three robust MEC 

charts are superior to the 𝑀𝐸𝐶!$ 	 chart. The 𝑀𝐸𝐶!" , 𝑀𝐸𝐶+,+, and 𝑀𝐸𝐶-+,+ can 

quickly detect a change in the data under non-normality, especially when a small shift 

occurs in the process. Under the extreme data distribution (G0.5H0.5),	the	𝑀𝐸𝐶+,+	

and 𝑀𝐸𝐶-+,+ perform similarly for moderate shifts when designed for 𝛿∗ = 0.5. 

However, when 𝛿∗ = 𝛿 = 1, the 𝑀𝐸𝐶-+,+ is the best across both n. That is, the 

𝑀𝐸𝐶-+,+ is the most efficient for the shift it is designed to detect.  
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Table 4.6 

ARL1 of the MEC Charts for G0.5H0 Distribution 

  Charts 

n 𝛿∗ 𝛿 𝑀𝐸𝐶!$  𝑀𝐸𝐶!"  𝑀𝐸𝐶+,+ 𝑀𝐸𝐶-+,+ 

5 

0.5 

0.25 58.3907 58.5201 57.7659 55.918 
0.5 32.2639 32.4264 32.3091 31.9695 
0.75 24.3031 24.3881 24.3639 24.2342 

1 20.0038 20.0584 20.0224 19.9883 
1.5 15.2868 15.3091 15.2887 15.3136 
2 12.6367 12.6557 12.6343 12.6797 
3 9.6839 9.7144 9.6877 9.7334 

      

1 

0.25 37.6736 38.3764 37.5049 35.4651 
0.5 17.409 17.5037 17.5108 17.4043 
0.75 12.6186 12.659 12.6193 12.6994 

1 10.1471 10.2304 10.17 10.2264 
1.5 7.6342 7.6844 7.6391 7.711 
2 6.2563 6.2863 6.2652 6.3199 
3 4.8363 4.8638 4.845 4.8932 

       

9 

0.5 

0.25 43.7372 44.1839 44.2179 43.4809 
0.5 26.1936 26.2797 26.3085 26.1419 
0.75 19.8707 19.9498 19.9374 19.892 

1 16.3851 16.4597 16.4374 16.4305 
1.5 12.5428 12.5962 12.5973 12.6003 
2 10.3731 10.4191 10.4037 10.4132 
3 7.9662 7.9802 7.984 7.9855 

      

1 

0.25 25.9382 25.8481 26.0739 25.444 
0.5 13.7891 13.7515 13.7537 13.708 
0.75 10.1996 10.1311 10.1817 10.1209 

1 8.3093 8.2839 8.2792 8.2594 
1.5 6.2629 6.2401 6.2591 6.2346 
2 5.1061 5.0987 5.0991 5.090 
3 3.9895 3.9871 3.9892 3.9911 
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Table 4.7	

ARL1 of the MEC Charts for G0.5H0.5 Distribution 

  Charts 

n 𝛿∗ 𝛿 𝑀𝐸𝐶!$  𝑀𝐸𝐶!"  𝑀𝐸𝐶+,+ 𝑀𝐸𝐶-+,+ 

5 

0.5 

0.25 57.7078 58.7546 58.7422 55.9965 
0.5 33.4925 32.3743 32.5065 32.0692 
0.75 24.3665 24.393 24.3578 24.2031 

1 20.0034 20.0572 19.991 19.9502 
1.5 15.2836 15.3104 15.2962 15.2909 
2 12.7832 12.6653 12.6513 12.6746 
3 9.9033 9.7349 9.7085 9.7426 

      

1 

0.25 42.4726 38.7902 38.5031 36.3152 
0.5 18.6151 17.5717 17.4657 17.3207 
0.75 13.0525 12.6705 12.6188 12.6406 

1 10.3018 10.2123 10.1766 10.2043 
1.5 7.7539 7.6794 7.6482 7.7035 
2 6.0406 6.2826 6.2595 6.3107 
3 4.9685 4.8878 4.8672 4.9069 

       

9 

0.5 

0.25 46.1313 44.2827 44.2061 42.7723 
0.5 26.3144 26.3103 26.2725 25.9913 
0.75 19.8215 19.9544 19.9456 19.7653 

1 16.3485 16.4624 16.4625 16.3756 
1.5 12.6176 12.6045 12.5872 12.5582 
2 10.1364 10.4155 10.3994 10.3976 
3 7.9939 7.9807 7.9755 7.9763 

      

1 

0.25 27.6188 25.8908 26.2369 24.8487 
0.5 13.9225 13.7901 13.7518 13.5839 
0.75 10.3488 10.143 10.1702 10.0811 

1 8.112 8.2818 8.2874 8.2285 
1.5 6.0243 6.2328 6.2426 6.2173 
2 4.9986 5.0835 5.086 5.0737 
3 3.9975 3.9849 3.9852 3.9812 
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4.3 MCE Charts 

Four MEC control charts based on the sample mean, median, MOM, and WMOM were 

designed and assessed in this section. They are denoted as 𝑀𝐶𝐸!$ , 𝑀𝐶𝐸!" ,	

𝑀𝐶𝐸+,+, and 𝑀𝐶𝐸-+,+, respectively. The hypotheses in assessing the performances 

of these charts under the ARL0 and ARL1 are as defined in Section 4.2. 

Table 4.8 lists the optimal parameter, Kc, of the 𝑀𝐶𝐸!$ , 𝑀𝐶𝐸!" , 𝑀𝐶𝐸+,+, and		

𝑀𝐶𝐸-+,+ 	 chart that were derived for n = {5, 9}. The smoothing constant, 𝜆 is 

determined based on the chosen 𝛿∗ = {0.5, 1} following  

Table 4.8 

Optimal Parameters of the MCE Charts for ARL0 » 370 

  Charts 

n 𝜆 𝛿∗ 𝑀𝐶𝐸!$  𝑀𝐶𝐸!"  𝑀𝐶𝐸+,+ 𝑀𝐶𝐸-+,+ 

5 0.05 0.5 Kc = 6.5605 Kc = 6.0599 Kc = 6.1815 Kc = 6.2806 

5 0.13 1 Kc = 4.7750 Kc = 4.3533 Kc = 4.4855 Kc = 4.5103 

       

9 0.05 0.5 Kc = 7.4511 Kc = 6.8482 Kc = 7.1118 Kc = 7.3039 

9 0.13 1 Kc = 5.5710 Kc = 5.0227 Kc = 5.2828 Kc = 5.4132 
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4.3.1 ARL0 

The ARL0 values shown in Tables 4.9 - 4.10 are based on the n = {5, 9} when the 

underlying process data follows the g-and-h distributions. All the MCE charts used in 

this study were designed for ARL0 ≈ 370 under normality, i.e., G0H0.  The in-control 

performance of the MCE charts was then investigated when the underlying distribution 

deviates from normal, that is, when G0H0.5, G0.5H0, and G0.5H0.5. In Tables 4.9 

and 4.10, the performance of the charts that complies with the Bradley’s stringent 

criterion of robustness, i.e., [337, 412] is indicated by the highlighted ARL0. The robust 

MCE charts can control the false alarm rate according to the Bradley’s stringent 

criterion under G0H0.5 for certain conditions only. A thorough comparison of the 

MEC and MCE charts is given at this chapter's conclusion. 

From Tables 4.9 and 4.10, designing the robust MCE charts with either 𝛿∗ = 0.5 and  

𝛿 = 1, can limit the effects of outliers on the design structures of the charts whereby 

they can still control the false alarm rate under non-normal data scenarios. In contrast, 

the standard MCE chart (𝑀𝐶𝐸!$), may produce large values of ARL0 under heavy-tailed 

cases (G0H0.5 and G0.5H0.5). As shown in Tables 4.9 and 4.10, the ARL0 for the 

𝑀𝐶𝐸!$  under heavy-tailed cases are much higher than the pre-determined value of 370.  

This can negatively affect the power, i.e., the shift detection capability of the chart, as 

discussed in the subsequent section. 
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Table 4.9 

ARL0 for the MCE Charts when n = 5 

 Charts 

𝛿∗ Distribution 𝑀𝐶𝐸!$  𝑀𝐶𝐸!"  𝑀𝐶𝐸+,+ 𝑀𝐶𝐸-+,+ 

0.5 

G0H0 370.07 369.92 369.95 370.05 

G0H0.5 4969.67 352.49 420.67 448.80 

G0.5H0 233.65 176.47 211.58 214.06 

G0.5H0.5 7019.21 214.23 249.71 256.89 

      

1 

G0H0 370.02 370.07 369.93 369.82 

G0H0.5 4624.08 305.17 371.56 369.46 

G0.5H0 189.08 145.12 183.36 177.94 

G0.5H0.5 6906.74 175.32 205.45 207.62 

 

Table 4.10 

ARL0 for the MCE Charts n = 9 

 Charts 

𝛿∗ Distribution 𝑀𝐶𝐸!$  𝑀𝐶𝐸!"  𝑀𝐶𝐸+,+ 𝑀𝐶𝐸-+,+ 

0.5 

G0H0 370.33 370.02 370.02 370.02 

G0H0.5 5118.65 320.92 426.71 513.36 

G0.5H0 242.08 184.25 239.70 244.90 

G0.5H0.5 7113.52 187.14 228.24 254.43 

      

1 

G0H0 370.12 370.02 370.11 369.95 

G0H0.5 4744.94 286.43 385.55 447.21 

G0.5H0 196.59 156.22 209.77 203.97 

G0.5H0.5 7055.53 153.25 189.74 213.87 
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4.3.2 ARL1 

The four g-and-h distributions are covered in the ARL1 findings where the results are 

organized following the table layout specified in this section.  

a. G0H0 

The ARL1 values for each of the four MCE charts  

(𝑀𝐶𝐸!$ , 	𝑀𝐶𝐸!" 	,	𝑀𝐶𝐸+,+			and		𝑀𝐶𝐸-+,+)  are listed in Table 4.11 following data 

normally distributed. The results show that the ARL1 values are consistent when  

𝛿 > 0.5. However, when a small n is employed for monitoring 𝛿 < 0.5, there is a 

fluctuation in the control chart performance, with 𝑀𝐶𝐸+,+ and 𝑀𝐶𝐸!$  turning out as 

the least effective methods. Both robust charts show larger ARL1 values when 

compared to the other investigated MCE charts as italicized in Table 4.11. This 

suggests that under these circumstances, the 𝑀𝐶𝐸+,+ and 𝑀𝐶𝐸!$  have less power in 

detecting small shifts. Generally, a change in n and 𝛿∗ has the same impact for all the 

charts. As the n increases from 5 to 9, the ARL1 values decrease significantly when the 

charts were designed for 𝛿∗ = 0.5.  Moreover, an increase n is shown to enhance the 

performance of control charts especially for a relatively small change in the process 

(𝛿 ≤ 0.5). On the other hand, the bold values in Table 4.11 present smaller ARL1 for 

the 𝑀𝐶𝐸!"  and 𝑀𝐸𝐶-+,+ when compared to the other MCE charts, irrespective of  

𝛿∗.  
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Table 4.11 

ARL1 of the MCE Charts for G0H0 Distribution 

  Charts 

n 𝛿∗ 𝛿 𝑀𝐶𝐸!$  𝑀𝐶𝐸!"  𝑀𝐶𝐸+,+ 𝑀𝐶𝐸-+,+ 

5 0.5 0.25 28.285 27.1063 28.3735 27.665 
  0.5 6.999 7.0191 7.1392 6.9455 
  0.75 4.25 4.4242 4.4397 4.3352 
  1 3.42 3.5718 3.5791 3.4955 
  1.5 2.635 2.7979 2.8088 2.7205 
  2 2.111 2.2203 2.2208 2.1666 
  3 1.998 2.0001 2 1.9997 
       
 

1 

0.25 42.025 40.6295 43.0593 40.1805 
 0.5 9.218 8.7358 9.2424 8.8618 
 0.75 3.819 3.8373 3.9653 3.8379 
 1 2.63 2.7202 2.731 2.6719 
 1.5 1.983 2.0475 2.0595 2.0179 
 2 1.635 1.7822 1.7952 1.6991 
 3 1.033 1.0713 1.0796 1.0495 
       

9 

0.5 

0.25 16.96 15.9278 16.9205 16.9741 
0.5 4.488 4.6185 4.6323 4.5771 
0.75 3.156 3.3383 3.3041 3.2151 

1 2.583 2.756 2.7183 2.6439 
1.5 2.028 2.0745 2.0614 2.0411 
2 1.985 1.9995 1.9986 1.9955 
3 1.213 1.5735 1.5025 1.3265 

      

1 

0.25 26.673 24.4725 26.8084 26.0821 
0.5 4.921 4.8153 5.0463 4.9134 
0.75 2.511 2.5886 2.5863 2.5497 

1 1.989 2.0732 2.0692 2.0247 
1.5 1.409 1.5593 1.5486 1.4579 
2 1.043 1.0908 1.0847 1.0543 
3 1 1 1.0000 1 
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b. G0H0.5 

For the symmetric heavy-tailed distributions (G0H0.5), the findings are presented in 

Table 4.12. The 𝑀𝐶𝐸!$   control chart displays the largest ARL1 values across all n and 

𝛿, suggesting poor shift detection capability, as indicated by the italicized values. 

Contrarily, all robust MCE charts consistently yield small values of ARL1 for all n and 

𝛿. The 𝑀𝐶𝐸!"  chart shows the best performance among all the robust MCE charts with 

the smallest ARL1 values in bold.  This result suggests that the robust MCE charts are 

best to detect small shifts in symmetric heavy-tailed distributions when compared to 

the	𝑀𝐶𝐸!$ 	chart. The ARL1 values for the robust MCE charts remain stable despite a 

change in n and 𝛿. Unexpectedly, the 𝑀𝐶𝐸!"  chart performs the best when the shifts 

are relatively small 	𝛿 ≤	1 and can be considered the best at 𝛿 = 0.5.  

c. G0.5H0 

Table 4.13 presents the results for G0.5H0 which is a skewed normal-tailed 

distribution. For n = 5, the 𝑀𝐶𝐸!$  control chart shows the largest ARL1 across both 𝛿∗. 

When n increases from 5 to 9, the 𝑀𝐶𝐸!$  shows the highest ARL1 values across both 

𝛿∗, given by the italicized values. This suggests a poor shift detection. On the other 

hand, the 𝑀𝐶𝐸!"  chart shows the best performance and consistently produces a much 

smaller ARL1 for both n and d utilized in the study than the rest of the MCE charts.  
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Table 4.12 

ARL1 of the MCE Charts for G0H0.5 Distribution 

  Charts 
n 𝛿∗ 𝛿 𝑀𝐶𝐸!$  𝑀𝐶𝐸!"  𝑀𝐶𝐸+,+ 𝑀𝐶𝐸-+,+ 

5 

0.5 

0.25 2447.888 41.6979 46.8074 50.9045 
0.5 42.253 8.2627 8.6868 8.7433 
0.75 12.61 5.028 5.219 5.249 

1 9.834 4.0575 4.1841 4.2507 
1.5 8.282 3.1165 3.198 3.2127 
2 6.129 2.7677 2.8842 2.9052 
3 5.004 2.0142 2.0279 2.031 

      

1 

0.25 3217.882 63.3546 74.8538 76.2744 
0.5 955.602 12.5394 14.0416 14.2362 
0.75 20.801 4.4012 4.7233 4.7276 

1 9.989 3.0943 3.2314 3.248 
1.5 5.733 2.1931 2.2669 2.2775 
2 4.779 1.9981 2.0125 2.0161 
3 4.057 1.4551 1.6868 1.7019 

       

9 

0.5 

0.25 1774.465 19.3528 22.5912 26.0661 
0.5 15.782 4.9942 5.204 5.4423 
0.75 9.906 3.5329 3.6813 3.8158 

1 7.82 2.9778 3.0791 3.1501 
1.5 6.013 2.1843 2.298 2.4301 
2 5.01 2.0047 2.0102 2.0195 
3 4.002 1.9392 1.9846 1.9943 

      

1 

0.25 2901.115 31.628 38.1524 46.1582 
0.5 285.697 5.2957 6.0281 6.4173 
0.75 8.796 2.7461 2.8958 3.0064 

1 6.041 2.1692 2.2558 2.3082 
1.5 4.354 1.8053 1.8981 1.9495 
2 3.976 1.2147 1.3576 1.5115 
3 3 1.001 1.0036 1.0055 
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Table 4.13 

ARL1 of the MCE Charts for G0.5H0 Distribution 

  Charts 

n 𝛿∗ 𝛿 𝑀𝐶𝐸!$  𝑀𝐶𝐸!"  𝑀𝐶𝐸+,+ 𝑀𝐶𝐸-+,+ 

5 

0.5 

0.25 34.624 28.0118 30.2872 30.1997 
0.5 8.501 7.5523 7.7945 7.7748 
0.75 4.716 4.5674 4.6577 4.5983 

1 3.753 3.6543 3.7296 3.6825 
1.5 2.922 2.8735 2.9197 2.8734 
2 2.393 2.326 2.3926 2.3337 
3 2 1.9981 1.9994 1.9993 

      

1 

0.25 42.373 35.0015 39.413 37.5749 
0.5 11.651 9.8228 10.6478 10.3831 
0.75 4.493 4.12 4.2607 4.1873 

1 2.93 2.8117 2.8881 2.8539 
1.5 2.083 2.0422 2.0804 2.0608 
2 1.888 1.8519 1.8882 1.8486 
3 1.157 1.0857 1.1529 1.0961 

       

9 

0.5 

0.25 20.535 16.8715 18.4085 19.1788 
0.5 5.066 4.772 4.8915 4.8836 
0.75 3.458 3.3752 3.4362 3.4132 

1 2.878 2.8143 2.8573 2.8392 
1.5 2.12 2.0722 2.1125 2.0951 
2 1.999 1.9974 1.999 1.9988 
3 1.812 1.7137 1.7881 1.7417 

      

1 

0.25 28.51 22.7873 26.7697 26.4923 
0.5 6.066 5.1688 5.5566 5.603 
0.75 2.763 2.6528 2.7113 2.6947 

1 2.135 2.0691 2.1173 2.1004 
1.5 1.726 1.6456 1.7036 1.6684 
2 1.165 1.099 1.1487 1.1244 
3 1 1 1 1 
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d. G0.5H0.5 

The findings for G0.5H0.5 are summarized in Table 4.14. The findings follow an 

almost similar pattern as observed under G0H0.5. Again, the 𝑀𝐶𝐸!$  control chart 

exhibits worse performance, i.e., the largest value of ARL1 across all n and d   

(italicized values in Table 4.14). Even with an increase in n, there is not much 

difference in the ARL1 performance of the standard chart. For example, there is just as 

slight decrease in the ARL1 value in detecting 𝛿 = 0.25 which is observed for 𝛿∗ = 1 

when increasing the n from 5 to 9.  

In contrast, all three robust charts (𝑀𝐶𝐸!" , 	𝑀𝐶𝐸+,+,	and	𝑀𝐶𝐸-+,+) consistently 

produce small ARL1 across all n and d. The bold values in Table 4.14 indicate the 

smallest ARL1 for the 𝑀𝐶𝐸!" , which performs better than the other investigated robust 

MCE charts. This indicates that the robust MCE charts can still quickly detect shifts 

despite far deviation in the normality assumption. For both n, the performance of the 

𝑀𝐶𝐸+,+	 and 	𝑀𝐶𝐸-+,+ 	improves as 𝛿∗ increases, i.e., smaller ARL1. This is true 

for small shifts, i.e., 0.25		≤ 	𝛿 ≤	0.5.	Moreover, the	𝑀𝐶𝐸+,+	is the next best chart 

followed by the	𝑀𝐶𝐸-+,+. 
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Table 4.14 

ARL1 of the MCE Charts for G0.5H0.5 Distribution 

  Charts 

n 𝛿∗ 𝛿 𝑀𝐶𝐸!$  𝑀𝐶𝐸!"  𝑀𝐶𝐸+,+ 𝑀𝐶𝐸-+,+ 

5 

0.5 

0.25 6512.278 44.269 49.149 50.5071 
0.5 652.723 9.2207 9.616 9.8837 
0.75 33.331 5.2523 5.429 5.5242 

1 21.278 4.229 4.3446 4.431 
1.5 15.71 3.2156 3.313 3.3865 
2 12.993 2.9025 2.9473 2.9652 
3 9.999 2.0159 2.0409 2.0675 

      

1 

0.25 6881.463 57.4109 65.8081 66.4383 
0.5 5520.929 14.9059 16.653 16.9199 
0.75 320.486 4.8075 5.0824 5.1931 

1 24.564 3.2333 3.3711 3.4181 
1.5 12.899 2.2884 2.3934 2.4394 
2 9.986 1.9909 2.0055 2.0078 
3 7.508 1.7611 1.8664 1.8964 

       

9 

0.5 

0.25 5871.863 20.3336 23.2598 27.4094 
0.5 46.154 5.1167 5.3582 5.7123 
0.75 21.006 3.6135 3.7548 3.9669 

1 15.827 3.011 3.1042 3.2343 
1.5 12.39 2.2414 2.3898 2.6269 
2 10.045 2.0008 2.0041 2.0191 
3 7.998 1.9594 1.9843 1.9958 

      

1 

0.25 6469.581 28.9977 34.9416 40.4806 
0.5 3472.864 5.8619 6.4293 7.4136 
0.75 27.641 2.8326 2.9599 3.1504 

1 13.25 2.1838 2.272 2.4018 
1.5 9.079 1.861 1.9191 1.9646 
2 7.932 1.2975 1.4773 1.7175 
3 5.996 1.0005 1.0007 1.0029 
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4.4 Comparison of the MEC and MCE Charts 

In this section, the ARL performances of the investigated MEC and MCE charts are 

compared with respect to several shifts observed in the process. Three values of shifts 

(d ) are taken into consideration for comparison purposes. They are, (i) d  = 0 (no shift), 

d  = 0.5 (small actual shift), and d = 1 (moderate actual shift). Tables 4.15 to 4.17 

display the ARL values corresponding to the abovementioned d values. Each table is 

dedicated to a specific g-and-h distribution and presents the ARL values corresponding 

to the specific combination of n, 𝛿∗	and  𝛿. To further emphasize the strength of the 

proposed robust memory-type charts, this study includes the ARL performance of the 

Shewhart 𝑋0 control with 3-sigma control limits, listed on the final column of each 

table. Henceforth, the Shewhart chart is denoted by 𝑋0. Since the 𝑋0 cannot be designed, 

i.e., tuned, for a specific magnitude of shifts due to its reliance on fixed control limits 

and the sample mean as the estimator (Haridy & Benneyan,  2024), the ARL values 

for this chart when n = {5, 9} are displayed repeatedly across the two design shifts  

(𝛿∗ = {0.5, 1}). These 𝛿∗ were used to design the MEC and MCE chart for  

ARL0 ≈ 370; analogous to the Shewhart chart with 3-sigma limits. 

The comparison among the MEC charts (𝑀𝐸𝐶!$ , 𝑀𝐸𝐶!" , 𝑀𝐸𝐶+,+, and	𝑀𝐸𝐶-+,+),	

MCE charts	(𝑀𝐶𝐸!$ , 𝑀𝐶𝐸!" , 𝑀𝐶𝐸+,+, and	𝑀𝐶𝐸-+,+),	and	𝑋0 chart are based on the 

ARL0 and ARL1. As mentioned before, the ARL0 assesses the in-control robustness of 

the chart. Meanwhile, the ARL1 evaluates the capability of the chart to quickly detect 

shifts in the process. Ideally, a good chart has a large value of ARL0 and small ARL1. 

In the following tables, the ARL0 results are listed under d  = 0 (no shift). When d  ¹ 0, 

the results are referred to the ARL1. 
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a. G0H0 

Table 4.15 compares the ARL of the nine charts under G0H0. When d  = 0, all ARL0 

values are as expected, i.e., 370, as the charts were designed to have. For d  ≠ 0, the 

following are observed. The MCE charts in general, exhibit superior performances 

(i.e., smaller ARL1) when compared to the MEC charts when a change in the process 

is small, i.e., d  = 0.5. However, it is important to note that the effectiveness of these 

MEC and MCE charts differs based on the n. It has been observed that in both sample 

sizes, the MCE charts can effectively detect small process shifts (0.25	 	≤ 	𝛿 ≤	0.5), 

judging by the smallest ARL1 values for both 𝛿∗. Overall, the MCE charts consistently 

outperform the MEC charts, across all conditions in this study. This is due to the design 

of their control structure, which enhances sensitivity and enables faster detection of 

process shifts. In contrast, the MEC charts are comparatively less efficient in detecting 

shifts when data follows a normal distribution. 

It is important to note that the shift detection capability of the investigated charts, 

including the 𝑋0, increases with a larger value of n. When n increases, the MCE charts 

show better out-of-control performances compared to the MEC charts. When the actual 

shift size is aligned with the design shift, i.e., (d  = 𝛿∗), the 𝑀𝐶𝐸-+,+ demonstrates 

the capability to detect a small shift even when n is small. Specifically, the 𝑀𝐶𝐸-+,+  

displays the smallest ARL1 for small d  value (0.25		≤ 	𝛿 ≤	0.5). Thus, highlighting the 

𝑀𝐶𝐸-+,+ efficiency. However, as n increases, the performance of the 𝑀𝐶𝐸!$  chart 

exceeds the 𝑀𝐶𝐸-+,+ in performance. Notably, 𝑀𝐶𝐸!$  stands out as the best choice 

for detecting a small shift (d 	= 0.5) faster even when it was designed for a moderate 

shift detection (d * = 1). 



  

 

Table 4.15 

ARL of the MEC and MCE Charts for G0H0 Distribution 

    MEC  MCE   

n 𝛿∗ 𝛿  𝑀𝐸𝐶!$  𝑀𝐸𝐶!"  𝑀𝐸𝐶+,+ 𝑀𝐸𝐶-+,+  𝑀𝐶𝐸!$  𝑀𝐶𝐸!"  𝑀𝐶𝐸+,+ 𝑀𝐶𝐸-+,+   

5 

0.5 

0  370.05 370.05 370.79 370.80  370.07 369.92 369.95 370.05  369.68 

0.5  32.3803 32.358 32.2952 32.5305  6.999 7.0191 7.1392 6.9455  37.75 

1  19.9896 20.0494 19.9981 20.1275  3.42 3.5718 3.5791 3.4955  4.76 

1 

0  369.61 369.82 369.79 369.58  370.02 370.07 369.93 369.82  369.68 

0.5  32.3803 32.358 32.2952 32.5305  9.218 8.7358 9.2424 8.8618  37.75 

1  10.1606 10.2236 10.1877 10.3203  2.63 2.7202 2.731 2.6719  4.76 

9 

0.5 

0  369.42 370.37 368.82 370.09  369.42 370.37 368.82 370.09  369.96 

0.5  26.2343 26.3046 26.3265 26.3544  4.488 4.6185 4.6323 4.5771  16.41 

1  16.3952 16.441 16.4645 16.4927  2.583 2.756 2.7183 2.6439  2.06 

1 

0  369.44 370.35 370.89 369.49  370.12 370.02 370.11 369.95  369.96 

0.5  13.7853 13.7535 13.7585 13.7903  4.921 4.8153 5.0463 4.9134  16.41 

1  8.3088 8.2792 8.2853 8.2672  1.989 2.0732 2.0692 2.0247  2.06 

97 
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b. G0H0.5 
 
The ARL for all charts under G0H0.5 is listed in Table 4.16. The main focus is to 

identify a control chart that maintains the ARL0 value within the Bradley’s stringent 

criterion while consistently producing high ARL1 (i.e., good detection capability). As 

mentioned previously, the Bradley’s stringent criterion is set at [337, 412]. The values 

highlighted in Table 4.16 correspond to the ARL0 that falls within the robust criteria.  

For a small design shift (𝛿∗ = 0.5), all the robust MEC charts (𝑀𝐸𝐶!" , 𝑀𝐸𝐶+,+, and	

𝑀𝐸𝐶-+,+)	demonstrates remarkable in-control robustness and consistently yields 

small ARL1 values for d  > 0. These consistent detection capabilities are evident in both 

n. For a moderate design shift (𝛿∗ = 1.0), the ranking of charts varies depending on the 

n. For n = 5, the 𝑀𝐶𝐸+,+ displays the robust in-control performance with  

ARL0 = 371.56 and consistent detection capability across 𝛿. Despite this, making it the 

most robust chart under symmetric heavy-tailed distributions. For n = 9, the 

𝑀𝐸𝐶-+,+ chart not only maintains consistency in providing quick detection for  

d  > 0, but it emerges as the most robust chart. 

In conclusion, the MEC charts have illustrated their robustness and detection capability 

across varying settings, and the MCE chart has displayed consistent detection 

capabilities with different levels of robustness across the conditions specified. It has 

been noted that the ARL0 of the 𝑀𝐸𝐶!$  and 𝑀𝐶𝐸!$  is comparatively less robust than 

other charts under investigation. However, Table 4.16 demonstrates that the 𝑀𝐸𝐶+,+ 

exhibits greater detection power than the 𝑀𝐸𝐶-+,+ chart, particularly when the 

actual shift is relatively small.  
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The 𝑋0 fails to meet the Bradley’s stringent criterion as shown by the ARL0 for d = 0  

in Table 4.16. Even with an increase in n, the ARL0 value does not approach the 

expected 370. Consequently, its detection capability is not worth pursuing for 

discussion as it is consistently being outperformed by the MEC and MCE charts. 

c. G0.5H0 

G0. 5H0 denotes the impact of non-normality on skewness. Table 4.17 lists the ARL 

results. The ARL highlighted for 𝛿 = 0 indicates that all ARL0 generated by the MEC 

charts under investigation fall within the Bradley’s stringent criterion. In contrast, 

none of the ARL0 for MCE charts falls within the stringent criterion, suggesting that 

the MCE charts under this investigation are not robust. The level of robustness 

exhibited by the MEC varies based on the 𝛿∗	 which exhibits better in-control 

robustness, i.e., an improved ARL0, when designed for small shift (𝛿∗	=	0.5).  

When the value of 𝛿∗	 is set to 0.5, the MEC chart emerges as the best choice to be 

used due to its combined robustness and consistent high detection. Specifically, the 

𝑀𝐸𝐶!$  is identified as the top performer for n = 5, and 𝑀𝐸𝐶-+,+ for n = 9, 

respectively. For d * = 1 and n = 5, the 𝑀𝐸𝐶!"  is recognized as the most robust, 

exhibiting consistent quick detection and robust ARL0 values. For n = 9, the 

𝑀𝐸𝐶-+,+ chart is deemed the most suitable chart to be used.  



  

 

Table 4.16 

ARL of the MEC and MCE Charts for G0H0.5 Distribution 

    MEC  MCE   

n 𝛿∗ 𝛿  𝑀𝐸𝐶!$  𝑀𝐸𝐶!"  𝑀𝐸𝐶+,+ 𝑀𝐸𝐶-+,+  𝑀𝐶𝐸!$  𝑀𝐶𝐸!"  𝑀𝐶𝐸+,+ 𝑀𝐶𝐸-+,+   

5 

0.5 

0  771.11 370.47 372.79 370.96  4969.67 352.49 420.67 448.80  222.29 

0.5  32.7493 32.3581 32.2826 32.5013  42.253 8.2627 8.6868 8.7433  152.70 

1  19.9764 20.0478 20.0088 20.1393  9.834 4.0575 4.1841 4.2507  35.64 

1 

0  948.99 371.07 374.40 374.52  4624.08 305.17 371.56 369.46  222.29 

0.5  17.3877 17.4988 17.4459 17.6981  955.602 12.5394 14.0416 14.2362  152.70 

1  10.126 10.2038 10.1857 10.306  9.989 3.0943 3.2314 3.248  35.64 

9 

0.5 

0  820.62 372.08 377.22 367.73  5118.65 320.92 426.71 513.36  241.86 

0.5  26.4951 26.3148 26.2782 26.3973  15.782 4.9942 5.204 5.4423  116.77 

1  16.6486 16.4613 16.4394 16.4767  7.82 2.9778 3.0791 3.1501  2.48 

1 

0  1052.48 371.10 372.93 370.90  4744.94 286.43 385.55 447.21  241.86 

0.5  13.7305 13.791 13.7908 13.7819  285.697 5.2957 6.0281 6.4173  116.77 

1  8.2738 8.2952 8.2917 8.284  6.041 2.1692 2.2558 2.3082  2.48 
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Table 4.17 

ARL of The MEC and MCE Charts for G0.5H0 Distribution 

    MEC  MCE   

n 𝛿∗ 𝛿  𝑀𝐸𝐶!$  𝑀𝐸𝐶!"  𝑀𝐸𝐶+,+ 𝑀𝐸𝐶-+,+  𝑀𝐶𝐸!$  𝑀𝐶𝐸!"  𝑀𝐶𝐸+,+ 𝑀𝐶𝐸-+,+   

5 

0.5 

0  369.75 364.77 359.40 362.39  233.65 176.47 211.58 214.06  126.23 

0.5  32.2639 32.4264 32.3091 31.9695  8.501 7.5523 7.7945 7.7748  23.34 

1  20.0038 20.0584 20.0224 19.9883  3.753 3.6543 3.7296 3.6825  5.20 

1 

0  368.32 370.31 371.42 371.06  189.08 145.12 183.36 177.94  126.23 

0.5  17.409 17.5037 17.5108 17.4043  11.651 9.8228 10.6478 10.3831  23.34 

1  10.1471 10.2304 10.17 10.2264  2.93 2.8117 2.8881 2.8539  5.20 

9 

0.5 

0  365.66 367.92 363.78 373.06  242.08 184.25 239.70 244.90  164.54 

0.5  26.1936 26.2797 26.3085 26.1419  5.066 4.772 4.8915 4.8836  13.55 

1  16.3851 16.4597 16.4374 16.4305  2.878 2.8143 2.8573 2.8392  2.24 

1 

0  379.08 367.21 371.62 371.25  196.59 156.22 209.77 203.97  164.54 

0.5  13.7891 13.7515 13.7537 13.708  6.066 5.1688 5.5566 5.603  13.55 

1  8.3093 8.2839 8.2792 8.2594  2.135 2.0691 2.1173 2.1004  2.24 
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d. G0.5H0.5 
 
Table 4.18 presents a comparison of ARL performance among the nine charts for 

G0.5H0.5. This distribution holds particular significance as it provides insights into 

the charts' behavior under extreme data distribution, i.e., i.e., high kurtosis and 

skewness.  The findings indicate that employing the standard charts is not advisable, 

as these standard charts fail to maintain the ARL0 values within the acceptable range 

of 337 to 412, making their effectiveness in detecting shifts dubious. The MCE charts 

are more likely to be impacted than the MEC chart under this scenario, judging by the 

ARL0 of the MCE charts. Notably, 𝑋0 struggles to control the ARL0 within the 

acceptable range with the worst performances when 𝛿 ≠ 0.		

It is important to emphasize that the MEC charts constructed based on robust 

estimators, as shown in this section, can perform reliably when dealing with extreme 

non-normality when designing for an optimal small shift detection, i.e., 𝛿∗ = 0.5. That 

is, a robust ARL0 can be achieved (as highlighted in yellow) when these robust charts 

were designed specifically based on 𝛿∗ = 0.5. Thus, ensuring reliable small shift 

detection as the charts are intended for.  

When n = 5, it has been observed that the 𝑀𝐸𝐶-+,+ demonstrates exceptional 

performance in robustness and consistently high detection. On the other hand, when  

n = 9, the 𝑀𝐸𝐶+,+ is identified as the most robust chart. As n increases, the ARL0 of 

both robust charts exhibit significant improvement and move toward the nominal 

value (370). Hence, the 𝑀𝐸𝐶-+,+ is selected for its most robust and consistently high 

detection for n = 5, and 𝑀𝐸𝐶+,+ is chosen for n = 9. 



  

 

Table 4.18 

ARL of the MEC and MCE Charts G0.5H0.5 Distribution 

    MEC  MCE   

n 𝛿∗ 𝛿  𝑀𝐸𝐶!$  𝑀𝐸𝐶!"  𝑀𝐸𝐶+,+ 𝑀𝐸𝐶-+,+  𝑀𝐶𝐸!$  𝑀𝐶𝐸!"  𝑀𝐶𝐸+,+ 𝑀𝐶𝐸-+,+   

5 

0.5 

0  1471.99 378.23 374.10 363.86  7019.21 214.23 249.71 256.89  819.77 

0.5  33.4925 32.3743 32.5065 32.0692  652.723 9.2207 9.616 9.8837  403.42 

1  20.0034 20.0572 19.991 19.9502  21.278 4.229 4.3446 4.431  108.12 

1 

0  1667.37 382.85 362.88 367.37  6906.74 175.32 205.45 207.62  819.77 

0.5  18.6151 17.5717 17.4657 17.3207  5520.929 14.9059 16.653 16.9199  403.42 

1  10.3018 10.2123 10.1766 10.2043  24.564 3.2333 3.3711 3.4181  108.12 

9 

0.5 

0  2464.16 368.39 368.57 367.08  7113.52 187.14 228.24 254.43  770.42 

0.5  26.3144 26.3103 26.2725 25.9913  46.154 5.1167 5.3582 5.7123  263.44 

1  16.3485 16.4624 16.4625 16.3756  15.827 3.011 3.1042 3.2343  4.46 

1 

0  2845.33 366.45 375.96 366.39  7055.53 153.25 189.74 213.87  770.42 

0.5  13.9225 13.7901 13.7518 13.5839  3472.864 5.8619 6.4293 7.4136  263.44 

1  8.112 8.2818 8.2874 8.2285  13.25 2.1838 2.272 2.4018  4.46 
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Throughout this study, which covers the MEC and MCE charts, it is evident that the 

specification of 	𝛿∗ is crucial as it has an impact on the robustness and detection 

capabilities of these memory-type charts, as demonstrated in this chapter. Notably, the 

robust MEC charts demonstrate high robustness against non-normality when designed 

for an optimal detection of small shift, i.e., 	𝛿∗ = 0.5.  

4.5 Real Data Application 

To demonstrate the application of the investigated MEC and MCE chart on real data, 

the charts were applied to water quality data from Selangor Maritime Gateway (SMG) 

and the Malaysian National Water Quality Standard (NWQS), and manufacturing data 

from medical specialties company.  

4.5.1 MEC and MCE Charts on DOC and TSS data 

Figures 4.1 and 4.2 illustrate line charts that were constructed for hourly TSS and DOC 

data, respectively from 27th June 2023 until 22nd July 2023. For this study, 560 data 

values from TSS and DOC data were selected. An increasing trend can be observed 

for the TSS, starting in July as depicted in Figure 4.1. Meanwhile, in  

Figure 4.2, the highest data values in the DOC data are observed in June.  
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Figure 4.1 Line Chart of TSS Data  

 

 

Figure 4.2 Line Chart of DOC Data 

 

 
 

 

0
50

100
150
200
250
300
350
400
450
500

1 17 33 49 65 81 97 11
3

12
9

14
5

16
1

17
7

19
3

20
9

22
5

24
1

25
7

27
3

28
9

30
5

32
1

33
7

35
3

36
9

38
5

40
1

41
7

43
3

44
9

46
5

48
1

49
7

51
3

52
9

54
5

TS
S 

(m
g/

L)

Hourly data from 27/6/23 to 22/7/23

0.00

0.50

1.00

1.50

2.00

2.50

1 17 33 49 65 81 97 11
3

12
9

14
5

16
1

17
7

19
3

20
9

22
5

24
1

25
7

27
3

28
9

30
5

32
1

33
7

35
3

36
9

38
5

40
1

41
7

43
3

44
9

46
5

48
1

49
7

51
3

52
9

54
5

D
O

C 
(m

g/
L)

Hourly data from 27/6/23 to 22/7/23



  

 106 

Table 4.19 shows the estimator values for TSS and DOC data. Based on the result, the 

values of mean for TSS and DOC are higher than their respective median values, 

indicating that the distribution shape is right-skewed. Since the distribution is skewed, 

the mean is not the best estimator of central tendency, as it is in influenced by extreme 

values. Therefore, the median-based estimators i.e., median, MOM, and WMOM are 

more appropriate for accurately representing the central tendency of the data. 

Table 4.19 

Estimator Values of TSS and DOC Data 

  Estimator 

  Mean Median MOM WMOM 

Data 
TSS 119.53 88.75 88.0228 104.5449 

DOC 0.2253 0.2025 0.2029 0.2043 

 

Figures 4.3 and 4.4 show the normality test using the Kolmogrov-Smirnov test on TSS 

and DOC for the 560 data values. With p-value < 0.01, both TSS and DOC data are 

concluded to be non-normally distributed at 5% significance level, making them 

suitable to be applied on the newly proposed robust MEC and MCE charts in this 

study.  
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Figure 4.3 Normality Test of the TSS Data 

 

 

Figure 4.4 Normality Test of the DOC Data 
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Following the normality test, the 560 data values of the TSS and DOC data were 

grouped into 80 samples (m = 80), each with a sample size of 7 (n = 7) as presented in 

Figures 4.5 and 4.6. This rational subgrouping value, i.e., n = 7, was opted in this real 

data analysis due to the similar characteristics exhibited by the TSS and DOC data 

within a seven-hourly period. For example, observations taken between 12 am to 7 am 

vary with the next cycle (7 am – 1 pm) which could be attributed to the varying 

temperature in day versus night. Thus, to minimize the variation within the subgroup 

while maximizing the variation between the subgroups, n = 7 was chosen.  

Figure 4.5 Line Chart for 80 Samples of TSS Data 
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Figure 4.6 Line Chart for 80 Samples of DOC Data 

The first half of the dataset was used to construct the control limits (Phase I) and the 

latter half was used to monitor the out-of-control samples (Phase II). For n = 7 and  

l = 0.13 and k = 0.5 (as in the simulation study), the optimal parameters of the MEC 

and MCE charts were derived and listed in Tables 4.20 – 4.21.  

Table 4.20 

Optimal Parameters of the MEC Chart for ARL0 » 370 

  Charts 

𝑛 𝜆 𝛿∗ 𝑀𝐸𝐶!$  𝑀𝐸𝐶!"  𝑀𝐸𝐶+,+ 𝑀𝐸𝐶-+,+ 

7 0.13 1 h = 36.54 h = 36.65 h = 36.68 h = 36.9 
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Table 4.21 

Optimal Parameters of the MCE Chart for ARL0 » 370 

  Charts 

𝑛 𝜆 𝛿∗ 𝑀𝐶𝐸!$  𝑀𝐶𝐸!"  𝑀𝐶𝐸+,+ 𝑀𝐶𝐸-+,+ 

7 0.13 1 Kc = 5.21 Kc = 4.732 Kc = 4.942 Kc = 5.032 

 

The outcomes of the proposed MEC and MCE charts can be observed in Figures 4.7 

to 4.22. For the MEC charts, both statistics, 𝑀𝐸𝐶() and 𝑀𝐸𝐶(*, are plotted against the 

control limit, H, while for MCE charts, both statistics, 𝑀𝐶𝐸() and 𝑀𝐶𝐸(*, are plotted 

against the control limit, UCLi. 

Figures 4.7 to 4.10 illustrate the output of the MEC charts for the TSS data. The 	

𝑀𝐸𝐶!$ , as presented in Figure 4.7, shows no out-of-control samples. Meanwhile, 

Figure 4.8 indicates 8 out-of-control samples (samples 23 to 30) for the robust 𝑀𝐸𝐶!" . 

Lastly, Figures 4.9 and 4.10 show the output for the robust 𝑀𝐸𝐶+,+ and 𝑀𝐸𝐶-+,+ 

with 7 out-of-control samples (samples 24 to 30). This implies that all the robust charts 

(𝑀𝐸𝐶!" , 𝑀𝐸𝐶+,+ , 𝑀𝐸𝐶-+,+) are quicker than the 𝑀𝐸𝐶!$ 	chart in detecting a change 

in the TSS data. The findings from both the simulation analysis and real data analysis 

consistently indicate that all robust charts (𝑀𝐸𝐶!" , 𝑀𝐸𝐶+,+ , 𝑀𝐸𝐶-+,+) exbibit 

superior performance in detecting shifts under non-normal data condition compared 

to the 𝑀𝐸𝐶!$  chart. 
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Figure 4.7. 𝑀𝐸𝐶!$ 	 Chart for the TSS Data 

 
 
 

 

Figure 4.8. 𝑀𝐸𝐶!"  Chart for the TSS Data 
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Figure 4.9 𝑀𝐸𝐶+,+ Chart for the TSS Data 

 

 

 

Figure 4.10 𝑀𝐸𝐶-+,+ for the TSS Data 

 

 

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930

M
EC

i

Sample number

MEC+

MEC-

H

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930

M
EC

i

Sample number

MEC+

MEC-

H



  

 113 

Figures 4.11 - 4.14 illustrate the output of MCE charts for the TSS data which show 

no out-of-control samples for all investigated MCE charts. This finding contrasts with 

the results obtained from MEC charts, where all robust charts 

(𝑀𝐸𝐶!" , 𝑀𝐸𝐶+,+ , 𝑀𝐸𝐶-+,+) demonstrated superior sensitivity to shifts in  

non-normal data compared to 𝑀𝐸𝐶!$  chart. Furthermore, this finding aligns with the 

simulation results, which similarly indicated that the MCE charts are less sensitive in 

detecting shifts compared to MEC charts. 

 

Figure 4.11 𝑀𝐶𝐸!$  Chart for the TSS Data 
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Figure 4.12 𝑀𝐶𝐸!"  Chart for the TSS Data 

 
 
 

 

Figure 4.13 𝑀𝐶𝐸+,+ Chart for the TSS Data 
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Figure 4.14 𝑀𝐶𝐸-+,+ Chart for the TSS Data 

 

Figures 4.15 to 4.18 illustrate the output of the MEC charts for the DOC data. The 

𝑀𝐸𝐶!$ , as presented, in Figure 4.15 shows 23 out-of-control samples  

(samples 8 to 30) for the MECi- , while no out-of-control samples were identified for 

the MECi+. Meanwhile, all the robust MEC charts (𝑀𝐸𝐶!" , 𝑀𝐸𝐶+,+, and 𝑀𝐸𝐶-+,+) 

in Figures 4.16 to 4.18 consistently indicated 30 out-of-control samples  

(samples 1 to 30) for the MECi- and no out-of-control samples for the MECi+. This 

implies that the proposed robust charts are more sensitive to changes in the DOC data 

when compared to the 𝑀𝐸𝐶!$  chart. 

The charts show more out-of-control samples for the MECi-  compared to the MECi+. 

The difference may be due to the external factors, such as temperature changes 

between day and night, which can affect the process behavior during each cycle. 
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Figure 4.15 𝑀𝐸𝐶!$  Chart for the DOC Data 

 

 

 

Figure 4.16 𝑀𝐸𝐶!"  Chart for the DOC Data 
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Figure 4.17 𝑀𝐸𝐶+,+Chart for the DOC Data 

 

 

 

 

Figure 4.18 𝑀𝐸𝐶-+,+ Chart for the DOC Data 
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Figures 4.19 to 4.22 illustrate the output of the MCE charts for the DOC data. The 

𝑀𝐶𝐸!$  and 𝑀𝐶𝐸!"  charts, as presented in Figure 4.19 and 4.20, shows no out-of-control 

samples. Meanwhile, the robust 𝑀𝐶𝐸+,+ chart in Figure 4.21 indicates 25  

out-of-control samples (samples 6 to 30) for the increasing trend and eight (8)  

out-of-control samples (samples 23 to 30) for the decreasing trend. The robust 

𝑀𝐶𝐸-+,+ in Figure 4.22 indicates 24 out-of-control samples (samples 7 to 30) for 

the increasing trend and seven (7) out-of-control samples (samples 24 to 30) for the 

decreasing trend. This implies that the 𝑀𝐶𝐸+,+ 𝑀𝐶𝐸-+,+ charts are more sensitive 

to the changes in the DOC data, unlike the 𝑀𝐶𝐸!$ 	 and 𝑀𝐶𝐸!"  charts.   

 

 

Figure 4.19 𝑀𝐶𝐸!$  Chart for the DOC Data 
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Figure 4.20 𝑀𝐶𝐸!"  Chart for the DOC Data 

 

 

 

 

Figure 4.21 𝑀𝐶𝐸+,+ for the DOC Data 
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Figure 4.22 𝑀𝐶𝐸-+,+ for the DOC Data 
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4.5.2 MEC and MCE Charts on Marker band Data 

To further explore the robustness of the proposed charts, this study validates the 

findings using real manufacturing data. For this study, 375 data values from marker 

band data were selected and grouped into 75 samples (m = 75), each with a sample 

size of 5 (n = 5) as presented in Figure 4.23. The chart shows the increasing trend of 

the marker band data. 

Figure 4.23 Line Chart of Marker Band Data 

Table 4.22 shows the estimator values for marker band data. Based on the result, all 

estimator values including the mean, median, MOM and WMOM are approximately 

equal, indicating that the distribution shape is symmetric. Since the distribution is 

symmetric, the mean is the best estimator of central tendency for marker band data.  
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Table 4.22 

Estimator Values of Marker Band Data 

Estimator 

Mean Median MOM WMOM 

49.2895 49.2973 49.2890 49.2891 

 

Figures 4.24 show the normality test using the Kolmogrov-Smirnov test on marker 

band for the 375 data values. With p-value = 0.08, the marker band data are concluded 

to be normally distributed at 5% significance level.  

 

Figure 4.24 Normality Test of the Marker Band Data 
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Figures 4.25 to 4.28 illustrate the output of the MEC charts for the marker band data. 

The 𝑀𝐸𝐶!$ , as presented, in Figure 4.25 shows 7 out-of-control samples  

(samples 19 to 25) for the MECi+. Meanwhile, the robust MEC charts (𝑀𝐸𝐶!"  and 

𝑀𝐸𝐶-+,+) in Figures 4.26 and 4.28 indicate at least 4 out-of-control samples for the 

MECi+. The robust 𝑀𝐸𝐶+,+ chart in Figure 4.27 shows 18 out-of-control samples 

(samples 8 to 25) for the MECi+. This implies that the proposed robust 𝑀𝐸𝐶+,+ chart 

are more sensitive to changes in the marker band data when compared to the 𝑀𝐸𝐶!$  

and other robust charts. This finding aligns with the results obtained from the 

simulation study, which concluded that 𝑀𝐸𝐶+,+ chart demonstrate superior 

robustness and consistently high detection capability, particularly under non-normal 

data conditions. 

 

Figure 4.25 𝑀𝐸𝐶!$  Chart for the Marker Band Data 
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Figure 4.26 𝑀𝐸𝐶!"  Chart for the Marker Band Data 

 

 

Figure 4.27 𝑀𝐸𝐶+,+ Chart for the Marker Band Data 
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Figure 4.28 𝑀𝐸𝐶-+,+ Chart for the Marker Band Data 

Figures 4.29 to 4.32 illustrate the output of the MCE charts for the marker band data. 

All the control charts show the earliest 4 out-of-control samples (samples 1 to 4) at the 

very beginning for the MCEi+ and MCEi-.   

 

 

Figure 4.29 𝑀𝐶𝐸!$  Chart for the Marker Band Data 
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Figure 4.30 𝑀𝐶𝐸!$  Chart for the Marker Band Data 

 

 

 

 

Figure 4.31 𝑀𝐶𝐸+,+ Chart for the Marker Band Data 

 

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

M
CE

i

Sample number

MCE+

MCE-

UCL

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

M
CE

i

Sample number

MCE+

MCE-

UCL



  

 127 

 

Figure 4.32 𝑀𝐶𝐸-+,+ Chart for the Marker Band Data 
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CHAPTER FIVE 

CONCLUSION 

5.1 Introduction 

This study aims to develop robust control charts which are able control the  

Type I error while improving the small shift detection capability. The focus is on the 

mixed EWMA-CUSUM (MEC) and mixed CUSUM-EWMA (MCE) charts as 

introduced by Abbas et al. (2013) and Zaman et al. (2015), respectively. In this study, 

three median based control charts were proposed under each category of the memory-

type charts. Specifically, the median, modified one-step M-estimator (MOM), and 

winsorized WMOM; all possess 50% BP, were employed to construct the robust MEC 

and MCE charts. Six robust charts were produced which are denoted by	𝑀𝐸𝐶!" , 

𝑀𝐸𝐶+,+, 𝑀𝐸𝐶-+,+, 𝑀𝐶𝐸!" , 𝑀𝐶𝐸+,+, and 𝑀𝐶𝐸-+,+. Their performances were 

evaluated based on the average run length (ARL) and compared against the standard 

MEC, MCE charts and Shewhart 𝑋0 chart. 

In this study, the performance of the proposed MEC and MCE charts was evaluated 

based on ARL across 128 conditions. These conditions were generated via  

Monte Carlo simulation studies by manipulating types of distribution (i.e., g-and-h), 

design shifts (𝛿∗), sample sizes (n), and shift sizes (𝛿) to generate conditions that 

highlight the strengths and weaknesses of each chart. To fully utilize the salient 

features of the memory-type charts, the investigated charts in this study were designed 

for the optimal detection of small and moderate shifts only. The results can be found 

in section 4.4. 
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The Shewhart 𝑋0 chart was shown to be highly sensitive to non-normality and 

ineffective for small and moderate shifts. This attests to the loss of information in 

signaling out-of-control conditions as the chart only uses the most recent data and 

discards the rest of it. Conversely, the MEC and MCE charts use all samples in the 

process. With this wealth of information from the samples in the process, both charts 

are claimed to be effective in signaling out-of-control conditions even when only a 

small change occurs. Yet, the MEC and MCE charts are confined to the normality 

assumption as they use the sample mean to monitor a change in the process location, 

making the charts highly susceptible to the effect of outliers. This rigidity to the 

normality assumption and its impact on the charts’ performance is further emphasized 

when the process parameters in Phase I are unknown. Parameter estimation in Phase I 

can be perturbed by the presence of outliers. With this, the control limits can either be 

overestimated or underestimated. Thus, fluctuating the Type I and Type II errors of 

the charts. In SPC, these measurement criteria are analogous to the ARL.  
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5.2 Comparison of the Robustness, ARL0 

The Bradley’s stringent criterion was used to determine robust charts among the 

investigated control charts. Specifically, charts with an ARL0 [337, 412] were 

identified to be robust when the pre-determined value was set at 370. The results in 

section 4.4 depicted that the proposed MEC and MCE charts are highly robust 

compared to the standard MEC and MCE charts across various conditions tested. 

Specifically, in the MEC charts’ performance, all the proposed MEC charts  

(𝑀𝐸𝐶!" , 𝑀𝐸𝐶+,+, and 𝑀𝐸𝐶-+,+) are comparable in robustness against the 

𝑀𝐸𝐶!$ .	Under G0H0.5, as n increases,  the 	𝑀𝐸𝐶-+,+ remains as the most robust 

chart, followed by the 𝑀𝐸𝐶!"  and 𝑀𝐸𝐶+,+	. The 𝑀𝐸𝐶!"  results in the best control of 

the ARL0 when d *  = 1 and  n = 5, while the 𝑀𝐸𝐶-+,+ 	 is the most robust when  

d *  = 1 and n = 9 under G0.5H0. When G0.5H0.5, the 𝑀𝐸𝐶+,+ chart indicates as the 

most robust chart compared to the 𝑀𝐸𝐶!"  and the 𝑀𝐸𝐶-+,+ when  

d * = 0.5 and n = 9.  

Focusing on the MCE charts performance, only certain median based MCE charts are 

robust under G0H0.5. The 	𝑀𝐶𝐸+,+ and 𝑀𝐶𝐸-+,+ 	are identified as the most robust 

charts when compared to the 𝑀𝐶𝐸!"  under this symmetric heavy-tailed distribution 

when d * = 1 and n = 5. Meanwhile, the MCE charts under G0.5H0 and G0.5H0.5 fail 

to meet the robustness criteria because their ARL0 values fall outside the Bradley’s 

stringent criterion. It can be concluded that the 𝑀𝐸𝐶+,+ and 𝑀𝐸𝐶-+,+ 	exhibit the 

best control of the ARL0 when compared to the rest of the charts under investigation 

across the specified scenarios.  



  

 131 

 

5.3 Comparison of the Shift Detection Capability, ARL1 

The results of this comparison can be found in the section 4.3.2. The ARL1 value 

evaluates the shift detection capability of the chart. The smallest ARL1 indicates that 

the chart has the fastest detection capability. Under normality, the MCE charts exhibit 

better performance and can quickly detect small shifts in the process compared to the 

MEC charts. This is indicated by smaller ARL1 for the MCE charts, especially when n 

increases. Specifically, the 𝑀𝐶𝐸-+,+ chart has a consistent detection capability, 

yielding small ARL1 values across different process shifts and sample sizes. The 

𝑀𝐶𝐸-+,+ chart exhibits a greater detection power than the 𝑀𝐸𝐶-+,+ chart, 

particularly when the actual shift is relatively small. 

When the distribution is heavy-tailed, G0H0.5, the 𝑀𝐶𝐸+,+ detects the shifts faster 

compared to other charts when d * = 1 and n = 5. For G0.5H0 and G0.5H0.5, the 

robust MEC charts emerges as the best choice with consistently high detection 

performance. The 𝑀𝐸𝐶-+,+ shows the best detection capability under G0.5H0. 

Again, the 𝑀𝐸𝐶-+,+ shows a good detection capability followed by 𝑀𝐸𝐶+,+ and 

𝑀𝐸𝐶!"   under G0.5H0.5. It can be concluded that all median based MEC charts are 

comparable in term of the detection capability, and result in a better out-of-control 

performance than the standard charts. 
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5.4 Real Data Application 

The real data application of the MEC and MCE charts results in all eight charts being 

applied to the water quality data and marker band data. All the robust MEC charts 

(𝑀𝐸𝐶!" , 𝑀𝐸𝐶+,+, 𝑀𝐸𝐶-+,+) are shown with quick detection to small changes in 

the TSS and DOC data when compared to the MCE charts. From the TSS real data 

analysis, the robust 𝑀𝐸𝐶!"  chart outperforms the rest of the robust charts.  In contrast, 

for the DOC real data study, all the robust MEC charts (𝑀𝐸𝐶!" , 𝑀𝐸𝐶+,+, 𝑀𝐸𝐶-+,+) 

outperform the standard 𝑀𝐸𝐶!$  and MCE charts. For marker band data analysis, the 

𝑀𝐸𝐶+,+ shown a quick detection to small changes compared to other control charts. 

These findings align with the results obtained from the simulation study in terms of 

the detection capability. All robust charts perform comparably with the 𝑀𝐸𝐶+,+ and 

𝑀𝐸𝐶-+,+ 	being considered as the best charts, followed by the 𝑀𝐸𝐶!"  in detecting 

many out-of-control samples.  
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5.5 Implications 

In this chapter, the key findings from Chapter 4 were highlighted which offer 

advantages in utilizing the proposed robust 𝑀𝐸𝐶+,+ and 𝑀𝐸𝐶-+,+ which 

demonstrated both robustness and fast detection capability, while attesting to the 

disadvantages of using the standard charts under non-normality. The findings suggest 

that relying solely on standard control charts, with normality assumption, may lead to 

poor performance in shifts detection capability, especially in the presence of 

non-normal data. Under simulation and real data study, the standard charts display 

poor detection capability when the real data followed skewed distributions, unlike the 

median based charts. Thus, highlighting the importance of using robust approaches in 

process monitoring.  

5.6 Recommendation for Future Study 

In this study, the analysis focused on the univariate data under non-normal 

distribution. Based on the good performance of the proposed charts in terms of 

robustness and detection capability under non-normality, it is recommended to 

continue the work in the multivariate version of the charts.  

However, to comprehensively explore the effects on ARL, future research should 

extend the investigation to include the estimation of the dispersion parameter. Thus, 

further research is needed to develop appropriate design procedures for the MEC and 

MCE control charts based on an estimated dispersion parameter with consideration of 

the robustness perspectives. By exploring this new challenge, valuable insights can be 

provided which are worth pursuing in future research. 
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Appendix 

Real Dataset 

Appendix 1 

TSS Data for Sungai Udang Station (MB1004) 

Station Date Time TSS (mg/L) 

MBI004 06/27/2023 5:00 141.50 

MBI004 06/27/2023 6:00 130.75 

MBI004 06/27/2023 7:00 131.00 

MBI004 . . . 

MBI004 . . . 

MBI004 . . . 

MBI004 07/22/2023 3:00 279.75 

MBI004 07/22/2023 4:00 296.00 

MBI004 07/22/2023 5:00 296.00 

MBI004 07/22/2023 6:00 296.00 

MBI004 07/22/2023 7:00 296.00 

MBI004 07/22/2023 8:00 296.00 

MBI004 07/22/2023 9:00 233.00 

MBI004 07/22/2023 10:00 102.50 

MBI004 07/22/2023 11:00 106.00 

MBI004 07/22/2023 12:00 105.75 

MBI004 07/22/2023 13:00 113.75 

MBI004 07/22/2023 14:00 105.25 

MBI004 07/22/2023 15:00 113.25 

MBI004 07/22/2023 16:00 114.00 

MBI004 07/22/2023 17:00 120.00 

MBI004 07/22/2023 18:00 120.00 

MBI004 07/22/2023 19:00 120.00 

MBI004 07/22/2023 20:00 120.00 

MBI004 07/22/2023 21:00 120.00 

MBI004 07/22/2023 22:00 120.00 

MBI004 07/22/2023 23:00 120.00 
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Appendix 2 

DOC Data for Sungai Udang Station (MB1004) 

Station ID Date Time DOC (mg/L) 

MBI004 07/08/2023 5:00 0.20 

MBI004 07/08/2023 5:00 0.20 

MBI004 07/08/2023 7:00 0.20 

MBI004 . . . 

MBI004 . . . 

MBI004 . . . 

MBI004 07/22/2023 0:00 0.21 

MBI004 07/22/2023 1:00 0.21 

MBI004 07/22/2023 2:00 0.21 

MBI004 07/22/2023 3:00 0.21 

MBI004 07/22/2023 4:00 0.21 

MBI004 07/22/2023 5:00 0.21 

MBI004 07/22/2023 6:00 0.21 

MBI004 07/22/2023 7:00 0.21 

MBI004 07/22/2023 8:00 0.21 

MBI004 07/22/2023 9:00 0.21 

MBI004 07/22/2023 10:00 0.21 

MBI004 07/22/2023 11:00 0.21 

MBI004 07/22/2023 12:00 0.21 

MBI004 07/22/2023 13:00 0.21 

MBI004 07/22/2023 14:00 0.21 

MBI004 07/22/2023 15:00 0.21 

MBI004 07/22/2023 16:00 0.21 

MBI004 07/22/2023 17:00 0.21 

MBI004 07/22/2023 18:00 0.21 

MBI004 07/22/2023 19:00 0.21 

MBI004 07/22/2023 20:00 0.21 

MBI004 07/22/2023 21:00 0.21 

MBI004 07/22/2023 22:00 0.21 

MBI004 07/22/2023 23:00 0.21 
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Appendix 3 

Marker Band Data 

Marker Band Length (mm) Begin Run Time End Run Time 

49.13 15:16.1 15:31.1 

49.10 17:39.7 17:49.7 

49.20 42:10.3 42:28.3 

. . . 

. . . 

. . . 

49.31 09:44.3 10:02.3 

49.39 10:13.4 10:31.4 

49.37 10:39.5 10:53.5 

49.36 10:59.1 11:14.1 

49.34 11:21.9 11:31.9 

49.34 11:37.0 11:55.0 

49.37 12:00.3 12:18.3 

49.44 12:24.1 12:35.1 

49.35 12:47.9 13:04.9 

49.43 13:11.4 13:21.4 

49.31 22:53.7 23:10.7 

49.37 24:00.9 24:17.9 

49.24 30:08.4 30:22.4 

49.25 30:46.6 31:00.6 

49.32 31:10.3 31:28.3 

49.34 31:34.0 31:52.0 

49.31 31:57.8 32:16.8 

49.33 43:14.9 43:33.9 

49.29 43:41.3 43:58.3 

49.29 45:11.6 45:28.6 

49.35 46:08.8 46:25.8 

49.44 46:39.3 46:50.3 

49.34 47:04.0 47:22.0 

49.31 47:31.5 47:48.5 

 


	FRONT MATTER
	COPYRIGHT PAGE
	TITLE PAGE
	CERTIFICATION
	Permission to Use
	Abstrak
	Abstract
	Acknowledgement
	Table of Contents
	List of Tables
	List of Figures
	List of Appendices
	List of Abbreviations

	MAIN CHAPTER
	CHAPTER ONE: INTRODUCTION
	1.1 Background of Statistical Process Control
	1.2 Memory-type Control Charts
	1.3 Problem Statement
	1.4 Research Questions
	1.5 Objectives
	1.6 Scope of the Study
	1.7 Significance of the Study

	CHAPTER TWO: LITERATURE REVIEW
	2.1 Introduction
	2.2 Measures of Control Chart’s Performance
	2.2.1 Average Run Length (ARL)

	2.3 Consequences of Applying Standard Control Charts to Non-Normal Data
	2.4 Shifts Detection via Control Charts
	2.4.1 Detection Ability of Various Control Charts

	2.5 Approaches upon Deviation from the Normality Assumption
	2.5.1 Nonparametric Control Charts
	2.5.2 Robust Control Charts

	2.6 Robust Estimators
	2.6.1 Properties of Robust Estimators
	2.6.2 Robust location estimators
	2.6.3 Robust scale estimators

	2.7 Summary of Research Work in SPC

	CHAPTER THREE: RESEARCH METHODOLOGY
	3.1 Introduction
	3.2 Construction of the Memory-Type Control Charts
	3.2.1 CUSUM 𝜽 % control chart
	3.2.2 EWMA 𝜽 % control chart
	3.2.3 MEC 𝜽 % control chart
	3.2.4 MCE 𝜽 % control chart
	3.2.5 Description of The Location Estimators
	3.2.5.1 Unknown parameter cases


	3.3 Variables Manipulated
	3.3.1 Types of Distribution
	3.3.2 Sample Sizes
	3.3.3 Design Shifts
	3.3.4 Shift Sizes

	3.4 Simulation Procedures
	3.4.1 Optimal Parameter Derivation

	3.5 Data Generation
	3.6 Measure of Control Chart Performance
	3.7 ARL Simulation
	3.7.1 ARL simulation procedure for the MEC 𝜽 % control chart
	3.7.2 ARL simulation procedure for the MCE 𝜽 % control chart

	3.8 Real Data Analysis

	CHAPTER FOUR: RESULTS OF ANALYSIS
	4.1 Introduction
	4.2 MEC Charts
	4.2.1 ARL𝜊
	4.2.2 ARL₁

	4.3 MCE Charts
	4.3.1 ARL𝜊
	4.3.2 ARL₁

	4.4 Comparison of the MEC and MCE Charts
	4.5 Real Data Application
	4.5.1 MEC and MCE Charts on DOC and TSS data
	4.5.2 MEC and MCE Charts on Marker band Data


	CHAPTER FIVE: CONCLUSION
	5.1 Introduction
	5.2 Comparison of the Robustness, ARL𝜊
	5.3 Comparison of the Shift Detection Capability, ARL₁
	5.4 Real Data Application
	5.5 Implications
	5.6 Recommendation for Future Study

	REFERENCES
	APPENDIX




