

The copyright © of this thesis belongs to its rightful author and/or other copyright owner. Copies can be accessed and downloaded for non-commercial or learning purposes without any charge and permission. The thesis cannot be reproduced or quoted as a whole without the permission from its rightful owner. No alteration or changes in format is allowed without permission from its rightful owner.

**A SEAMLESS PRODUCER MOBILITY MANAGEMENT
MODEL FOR NAMED DATA NETWORKS**

**DOCTOR OF PHILOSOPHY
UNIVERSITI UTARA MALAYSIA
2025**

Awang Had Salleh
Graduate School
of Arts And Sciences

Universiti Utara Malaysia

PERAKUAN KERJA TESIS / DISERTASI
(*Certification of thesis / dissertation*)

Kami, yang bertandatangan, memperakukan bahawa
(*We, the undersigned, certify that*)

AHMAD ABRAR

calon untuk Ijazah
(*candidate for the degree of*)

PhD

telah mengemukakan tesis / disertasi yang bertajuk:
(*has presented his/her thesis / dissertation of the following title*):

**“A SEAMLESS PRODUCER MOBILITY MANAGEMENT MODEL
FOR NAMED DATA NETWORKS”**

seperti yang tercatat di muka surat tajuk dan kulit tesis / disertasi.
(*as it appears on the title page and front cover of the thesis / dissertation*).

Bahawa tesis/disertasi tersebut boleh diterima dari segi bentuk serta kandungan dan meliputi bidang ilmu dengan memuaskan, sebagaimana yang ditunjukkan oleh calon dalam ujian lisan yang diadakan pada : **23 September 2024**.

That the said thesis/dissertation is acceptable in form and content and displays a satisfactory knowledge of the field of study as demonstrated by the candidate through an oral examination held on:

23 September 2024.

Pengerusi Viva:
(*Chairman for VIVA*)

Assoc. Prof. Dr. Yuhanis Yusof

Tandatangan
(*Signature*)

Pemeriksa Luar:
(*External Examiner*)

Assoc. Prof. Dr. Mohamad Nazim Jambli

Tandatangan
(*Signature*)

Pemeriksa Dalam:
(*Internal Examiner*)

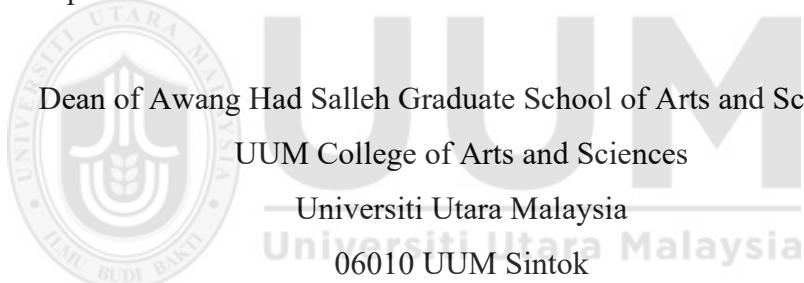
Prof. Ts. Dr. Suhaidi Hassan

Tandatangan
(*Signature*)

Nama Penyelia/Penyelia-penya: **Dr. Ahmad Suki Che Mohamed Arif**
(*Name of Supervisor/Supervisors*)

Tandatangan
(*Signature*)

Nama Penyelia/Penyelia-penya: **Dr. Khuzairi Mohd Zaini**
(*Name of Supervisor/Supervisors*)


Tandatangan
(*Signature*)

Tarikh:
(*Date*) **23 September 2024**

Permission to Use

In presenting this thesis in fulfilment of the requirements for a postgraduate degree from Universiti Utara Malaysia, I agree that the Universiti Library may make it freely available for inspection. I further agree that permission for the copying of this thesis in any manner, in whole or in part, for scholarly purpose may be granted by my supervisor or, in their absence, by the Dean of Awang Had Salleh Graduate School of Arts and Sciences. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use which may be made of any material from my thesis.

Requests for permission to copy or to make other use of materials in this thesis, in whole or in part should be addressed to:

Abstrak

Rangkaian Data Bernama (NDN) ialah senibina Rangkaian Berorientasikan Maklumat (ICN) yang direka untuk menyokong mobiliti sumber kandungan. Walaupun ia berkesan dalam mengendalikan mobiliti pengguna melalui penempatan cache kandungan, mobiliti pengeluar masih menjadi cabaran. Apabila pengeluar berpindah lokasi, penghala NDN masih mengarahkan permintaan ke lokasi asal, menyebabkan kehilangan paket Interest, kos isyarat yang tinggi, dan peningkatan kependaman peralihan. Masalah ini menjelaskan prestasi rangkaian dan kadar penghantaran data, sekali gus mendedahkan jurang dalam pengurusan mobiliti NDN. Kajian ini meneroka penyelesaian yang berkesan untuk meningkatkan mobiliti pengeluar, memastikan penghantaran kandungan yang lancar dan dioptimumkan dalam persekitaran rangkaian yang dinamik. Oleh itu, kajian ini bertujuan untuk mencadangkan Model Pengurusan Mobiliti Pengeluar (PMMM) untuk menangani cabaran mobiliti pengeluar yang berkaitan dan menyediakan laluan yang optimum. PMMM menggabungkan paket pengurusan mobiliti, termasuk Paket Pemberitahuan Mobiliti (MNP) dan Paket Kemaskini Mobiliti (MUP), dan mengubah suai proses penghantaran standard untuk menyokong paket pengurusan mobiliti ini dengan berkesan. MNP digunakan untuk memaklumkan rangkaian dan pengguna tentang mobiliti pengeluar, membantu mengurangkan kehilangan paket berlebihan dan kos isyarat yang tinggi. Sementara itu, MUP mengemaskini lokasi pengeluar dalam rangkaian, memaklumkan pengguna tentang ketersediaan pengeluar, dan mewujudkan laluan komunikasi yang optimum. Siri eksperimen mengesahkan bahawa PMMM meningkatkan prestasi rangkaian dengan mengurangkan kependaman peralihan, kos isyarat, dan kehilangan paket, serta meningkatkan pengoptimuman laluan dan kadar penghantaran data. Berbanding dengan IBM, PMSS, dan KITE, PMMM mengurangkan kependaman peralihan sehingga 24%, memastikan peralihan yang lebih lancar apabila pengeluar berpindah lokasi. Ia juga mengurangkan kos isyarat sehingga 31%, sekali gus mengurangkan beban rangkaian. Selain itu, pengoptimuman laluan meningkat sebanyak 25%, membolehkan penghantaran data yang lebih cekap. Kehilangan paket berkurang sebanyak 44% berbanding KITE dan 32% berbanding PMSS, memastikan penghantaran data yang lebih boleh dipercayai. Akhirnya, PMMM meningkatkan kadar penghantaran data sebanyak 17% berbanding KITE dan 12% berbanding PMSS, memperkuuh kestabilan rangkaian. Penemuan ini membuktikan bahawa PMMM berkesan dalam menangani cabaran mobiliti dalam NDN. Peningkatan ketara ini menyerlahkan potensi besar PMMM untuk penerapan masa depan, terutamanya dalam konteks teknologi termaju seperti Internet of Things (IoT), Internet of Medical Things (IoMT), dan rangkaian mudah alih generasi keenam (6G).

Kata Kunci: Rangkaian berpusatkan maklumat, Pemodelan analitik, serahan, Paket pengurusan mobiliti.

Abstract

Named Data Networking (NDN) is an Information-Centric Networking (ICN) architecture designed to support content source mobility. While it efficiently handles consumer mobility through content caching, producer mobility remains a challenge. When a producer relocates, NDN routers still direct requests to the original location, causing Interest packet loss, high signalling overhead, and increased handoff latency. These issues degrade network performance and throughput, highlighting a gap in NDN's mobility management. This study explores efficient solutions to enhance producer mobility, ensuring seamless and optimized content delivery in dynamic networks. Therefore, this research aims to propose a Producer Mobility Management Model (PMMM) to handle the associated producer mobility challenges and provides the optimal path. The PMMM incorporates mobility management packets, including the Mobility Notification Packet (MNP) and the Mobility Update Packet (MUP), and modifies standard forwarding processes to support these mobility management packets effectively. The MNP is used to inform the network and consumers about producer mobility, helping to reduce excessive packet loss and high signalling costs. Meanwhile, the MUP updates the producer's location within the network, notifies consumers of the producer's availability, and establishes an optimal communication path. A series of experiments confirm that PMMM improves network performance by reducing handoff latency, signalling costs, and packet loss, while enhancing path optimization and throughput. Compared to IBM, PMSS, and KITE, PMMM reduces handoff latency by up to 24%, ensuring smoother transitions when producers relocate. It also lowers signalling costs by up to 31%, reducing network overhead. Additionally, path optimization improves by 25%, leading to more efficient data routing. Packet loss decreases by 44% compared to KITE and 32% compared to PMSS, ensuring reliable data delivery. Finally, PMMM increases throughput by 17% over KITE and 12% over PMSS, improving network stability. These findings demonstrate that PMMM effectively addresses mobility challenges in NDN. This significant improvement highlights the PMMM's immense potential for future deployment, especially in the context of advanced technologies such as the Internet of Things (IoT), the Internet of Medical Things (IoMT), and sixth-generation (6G) mobile networks.

Keywords: Information-centric networking, Analytical modelling, Handoff, Mobility management packets.

Acknowledgement

In the name of Allah, the Most Gracious, the Most Merciful, the Giver of Wisdom:

“The ink of the scholar is more sacred than the blood of the martyr.”

— Prophet Muhammad (peace be upon him)

I am deeply grateful to my esteemed supervisors, Dr. Ahmad Suki Che Mohamed Arif and Dr. Khuzairi Mohd Zaini, for their invaluable guidance and support throughout this remarkable journey. Your encouragement and professional oversight have been instrumental in my growth and success. The space you provided for exploration and learning has profoundly enhanced my understanding and sharpened my critical thinking skills. I sincerely appreciate your dedication, and may the Almighty bless you with continued wisdom, strength, health, and prosperity.

I would also like to express my heartfelt appreciation to the staff of the School of Computing (SoC) at Universiti Utara Malaysia (UUM) for their invaluable assistance throughout my academic journey. Your dedication and willingness to help have made a significant impact on my experience.

I extend my sincere gratitude to Dr. Ahmad Suki Che Mohamed Arif and the Research Innovation and Management Center (RIMC) at UUM for providing me with the opportunity to receive the Fundamental Research Grant Scheme (FRGS). I would also like to thank RIMC for appointing me as a Graduate Research Assistant (GRA), which has allowed me to explore my research interests and deepen my knowledge in the field. This role has been instrumental in enhancing my learning experience and fostering my development as a researcher.

I am profoundly grateful to my wonderful parents, whose unwavering love and encouragement have been the foundation of my achievements. Their selfless sacrifices and unwavering belief in my potential have inspired me to relentlessly pursue my dreams. The depth of my gratitude for them is beyond what words can convey.

I wish to extend my heartfelt appreciation to my friends, Dr. Muhammad Ali Naeem and Dr. Waqar Hafeez, for their invaluable support in my research. Your insightful feedback, collaborative spirit, and shared knowledge have enriched my work significantly. Thank you for being there through the highs and lows, and for your steadfast friendship during this journey.

Lastly, I want to acknowledge the entire InterNetWorks Research Laboratory (IRL) team at UUM. You have become my academic family, and it has been an honor to collaborate with you. Your unwavering motivation and support have been my anchor during the most challenging times of my studies, and your camaraderie has played a crucial role in my accomplishments.

Table of Contents

Permission to Use	i
Abstrak	ii
Abstract	iii
Acknowledgement	iv
Table of Contents	v
List of Figures	ix
List of Tables	xi
List of Abbreviations	xii
CHAPTER ONE INTRODUCTION	1
1.1 Background of the study	2
1.1.1 Named Data Network Architecture and Mobility	7
1.2 Research Motivation	10
1.3 Problem Statement	13
1.4 Research Questions	15
1.5 Research Objectives	15
1.6 Significance of the Study	16
1.7 Scope of the Study	17
1.8 Organization of the Thesis	18
CHAPTER TWO LITERATURE REVIEW	21
2.1 Information-Centric Networking	21
2.1.1 Mobility Significance and Limitations	22
2.2 Named Data Networks in a Nutshell	23
2.3 Mobility in Name Data Networking	27
2.3.1 Consumer Mobility in NDN	29
2.3.2 Producer Mobility in NDN	31
2.4 The Producer Mobility Approaches in NDN	33

2.4.1 Router-based Approaches	35
2.4.1.1 Indirection Based Mobility	35
2.4.1.2 Locator/Identifier Split Based Mobility.....	45
2.4.1.3 Caching Based Mobility	50
2.5.2 Server-based Approaches	56
2.5.1 DNS Based Mobility.....	56
2.5.2 Control Data plane Split Based Mobility.....	60
2.6 Summary	67
CHAPTER THREE RESEARCH METHODOLOGY.....	68
3.1 Research Framework Approach.....	68
3.2 Research Clarification.....	72
3.3 Descriptive Study-I	73
3.3.1 Conceptual Model of PMMM in NDN	74
3.4 Prescriptive Study	78
3.4.1 Verification and Validation.....	79
3.5 Descriptive Study-II.....	81
3.5.1 Performance Evaluation Approaches	81
3.5.2 Network Simulators.....	84
3.5.3 Network Simulation Steps.....	86
3.5.4 Performance Metrics	90
3.6 Summary	93
CHAPTER FOUR ANALYTICAL MODELLING OF PRODUCER MOBILITY MANAGEMENT MODEL	94
4.1 Conceptual Model Analysis	95
4.1.1 Factor Analysis.....	97
4.1.2 Influencing Factor Analysis	98
4.1.3 Impact Model Analysis	100

4.2 Delving into Conceptual Model Analysis	101
4.3 Network Analysis Model	103
4.3.1 Hop Count Formulation for Handoff Latency Analysis.....	107
4.3.2 Hop Count Formulation for Signalling Cost.....	115
4.3.3 Hop Count Formulation for Packet Delivery Cost.....	119
4.4 Model Design and Implementation.....	122
4.4.1 Algorithms.....	123
4.4.2 Model Verification	127
4.4.3 Model Validation and Performance Evaluation	129
4.5 Summary	139

CHAPTER FIVE PRODUCER MOBILITY MANAGEMENT MODEL	
DESIGN AND IMPLEMENTATION	140
5.1 Introduction.....	141
5.2 High-Level Overview	142
5.2.1 NDN Forwarding Daemon	142
5.2.1.1 Unsolicited Data Stream.....	144
5.2.2 NDN-CXX	147
5.3 Detailed Design of MNP and MUP	148
5.3.1 Mobility Notification Packet.....	148
5.3.2 Mobility Update Packet.....	149
5.4 Application.....	154
5.4.1 Producer Application.....	155
5.4.2 Consumer Application.....	161
5.5 Mobility Management Packets Transmission Pipeline Design.....	164
5.6 Numerical Performance Evaluation	169
5.6.1 Handoff Latency.....	170
5.6.2 Signalling Cost	172

5.6.3 Path Optimization.....	174
5.7 Summary	176
CHAPTER SIX PRODUCER MOBILITY MANAGEMENT MODEL	
SIMULATION IMPLEMENTATION AND EVALUATION	177
6.1 Implementation and Simulation Environment	177
6.1.1 Algorithm's Implementation	180
6.1.2 Simulation Parameters.....	185
6.1.3 Simulation Topologies	186
6.1.4 Simulation Scenarios Design	187
6.1.4.1 Grid-based Scenario.....	188
6.1.4.2 Abilene-based Scenario	188
6.4 Designing Tools	189
6.5 Verification and Validation.....	191
6.6 Simulation Results Analysis	197
6.6.1 Handoff Latency and Path Optimization.....	199
6.6.2 Handoff Signalling Cost.....	202
6.6.3 Interest Packet Loss.....	204
6.6.4 Throughput	206
6.7 Summary	208
CHAPTER SEVEN CONCLUSION AND FUTURE WORK	209
7.1 Introduction.....	209
7.2 Research Summary	210
7.3 Research Contribution	212
7.4 Research Limitation	213
7.5 Future Direction	214
REFERENCES.....	219

List of Figures

Figure 1.1. Global Internet User Growth [7]	3
Figure 1.2. Global Mobile Devices and Connection Growth [7].....	4
Figure 1.3. The IP-based Content Communication Architecture	6
Figure 1.4. Producer Mobility in NDN	12
Figure 1.5. Scope of the Study	18
Figure 2.1. Comparing IP and NDN Hourglass Architecture	24
Figure 2.2. Interest and Data Packet in NDN Architecture [40].....	25
Figure 2.3. Data Structure in NDN Architecture [23].....	26
Figure 2.4. Forwarding Process in NDN [30].....	27
Figure 2.5. Consumer Mobility in NDN	31
Figure 2.6. The FIB in NDN architecture	32
Figure 2.7. The Producer Mobility in NDN.....	33
Figure 2.8. Operational Representation of IBM in NDN.....	36
Figure 2.9. Operational Representation of LISBM in NDN	46
Figure 2.10. Operational Representation of CBM in NDN	51
Figure 2.11. Operational Representation of DNSBM in NDN	57
Figure 2.12. Operational Representation of CDSBM in NDN	61
Figure 3.1. Research Framework Approach [68].....	71
Figure 3.2. Research Clarification (RC) [68].....	72
Figure 3.3. Descriptive Study-I (DS-I) [68].....	74
Figure 3.4. The Proposed Conceptual Model of PMMM	75
Figure 3.5. Mobility Management Packets Dissemination in PMMM Data Structure	77
Figure 3.6. Prescriptive Study (PS) Steps [71]	79
Figure 3.7. Performance Evaluation Approaches [73].....	82
Figure 3.8. Comparison Between Performance Evaluation Approaches [78]	84
Figure 3.9. Simulation Steps	87
Figure 4.1. Initial Reference Model of Mobility Management in NDN	95
Figure 4.2. Impact Model Representation of PMMM Conceptual Model.....	96
Figure 4.3. Network Analysis Model.....	105
Figure 4.4. Handoff Latency Analysis in IBM	109
Figure 4.5. Handoff Latency Analysis in PMSS.....	111
Figure 4.6. Handoff Latency Analysis in KITE.....	113
Figure 4.7. Handoff Latency Analysis in PMMM	114
Figure 4.8. Model Verification Code Sample	128
Figure 4.9. Proof of Successful Model Verification Code.....	129
Figure 4.10. Handoff Latency Impact on a	131
Figure 4.11. Handoff Latency Impact on b	131
Figure 4.12. Handoff Latency Impact on c	132
Figure 4.13. Signalling Cost Impact on a	134

Figure 4.14. Signalling Cost Impact on b	134
Figure 4.15. Signalling Cost Impact on c	135
Figure 4.16. Data Packet Delivery Impact on a	136
Figure 4.17. Data Packet Delivery Impact on b	137
Figure 4.18. Data Packet Delivery Impact on c	137
Figure 5.1. A Shape of NDN Forwarding Daemon Pipelines.....	143
Figure 5.2. PMMM-based Forwarding Pipelines	146
Figure 5.3. Mobility Management Packets Structure	150
Figure 5.4. The Integration of PMMM in NDN Data Structure	152
Figure 5.5. Message Flow in Proposed PMMM	154
Figure 5.6. Producer Dissociation Function Flow Control	156
Figure 5.7. Producer Association Function Flow Control	159
Figure 5.8. Consumer Flow Control Operation	163
Figure 5.9. Forwarding Pipelines Function Flow Control in PMMM	166
Figure 5.10. Handoff Latency Variation with Link Failure Probability	171
Figure 5.11. Signalling Cost Variation with Subnet Crossing Rate	173
Figure 5.12. Packet Optimization Cost with Interest Arrival Rate	174
Figure 6.1. The Core Structure of ndnSIM	179
Figure 6.2. The Structure of Grid and Abilene Network Topologies in ndnSIM	187
Figure 6.3. Showcase of Scenario File Programming Code	191
Figure 6.4. The Successful Execution and Build of Scenario File with Output	192
Figure 6.5. The Data Rate Trace File Output.....	193
Figure 6.6. The Delay Rate Trace File Output.....	193
Figure 6.7. Uncovering Performance Bottlenecks Through Trace File Investigation in RStudio	195
Figure 6.8. The Interest Data Rate Validation of PMMM, KITE, and PMSS in GS196	
Figure 6.9. The Interest Data Rate Validation of PMMM, KITE, and PMSS in AS197	
Figure 6.10. Data Rate of PMMM vs KITE and PMSS in GS	200
Figure 6.11. Data Rate of PMMM vs KITE and PMSS in AS	201
Figure 6.12. Handoff Signalling Cost between PMMM, KITE, and PMSS in GS .202	
Figure 6.13. Handoff Signalling Cost between PMMM, KITE, and PMSS in AS .203	
Figure 6.14. Interest Packet Loss in PMMM, KITE, and PMSS in GS.....204	
Figure 6.15. Interest Packet Loss in PMMM, KITE, and PMSS in AS.....205	
Figure 6.16. Throughput between PMMM, KITE, and PMSS in GS.....206	
Figure 6.17. Throughput between PMMM, KITE, and PMSS in AS.....207	

List of Tables

Table 2.1 Indirection Based Mobility Approach Schemes	44
Table 2.2 Locator/Identifier Split Based Mobility Approach Schemes.....	50
Table 2.3 Caching Based Mobility Approach Schemes	55
Table 2.4 DNS Based Mobility Approach Schemes.....	60
Table 2.5 Control Data Plane Split Based Mobility Approach Schemes	64
Table 2.6 Summary and Comparison of Producer Mobility Approaches.....	65
Table 3.1 Simulation Parameters and Values	88
Table 4.1 Measurable Reference Model Success Factors.....	98
Table 4.2 Measurable Impact Model Success Factors	98
Table 4.3 Influencing Factors Analysis	99
Table 4.4 Influencing Factors Analysis	102
Table 4.5 Parameter Values of Network Analysis Model	106
Table 4.6 Handoff Latency Algorithm.....	125
Table 4.7 Signalling Cost Algorithm	126
Table 4.8 Packet Delivery Cost Algorithm.....	127
Table 5.1 Unsolicited Data Stream	145
Table 5.2 Algorithm on Dissociation of Producer in PMMM	157
Table 5.3 Algorithm on Association of Producer in PMMM	160
Table 5.4 Algorithm for Consumer in PMMM.....	164
Table 5.5 Algorithm for Consumer in PMMM.....	168
Table 5.6. Numerical Results on Handoff Latency with Link Failure Probability..	172
Table 6.1 The PMMM Solution Implementation Algorithm.....	183
Table 6.2 Simulation Parameters Configuration and Associated Values	186

List of Abbreviations

4WARD	Forward
4G	Fourth Generation
AS	Autonomous System
BU	Binding Update
BA	Binding Acknowledgement
BT	BitTorrent
CAGR	Compound Annual Growth Rate
CCN	Content-Centric Networking
CDSBM	Control/Data Plane Split Based Mobility
CBM	Caching Based Mobility
CDN	Content Distribution Network
COAST	Content-Aware Searching retrieval and sTreaming
COMET	COntent Mediator architecture for content-aware nETworks
COMIT	Active Content Management at Internet Scale
CONET	Content Network
CONVERGENCE	Convergence Project
CR	Content Router
CS	Content Store
DNS	Domain Name System
DNSBM	Domain Name System Based Mobility
DONA	Data-Oriented Network Architecture
DPDR	Data Packets Delivery Ratio
DRM	Design Research Methodology
DS-I	Descriptive Study-I
DS-II	Descriptive Study-II
EB	Exabyte
EUFP7	European Union Research and Innovation program
FIB	Forwarding Information Base
GreenICN	Green Information Centric Networking
HIP	Host Identification Protocol
IBM	Indirection Based Mobility

ICN	Information Centric Networking
IETF	Internet Engineering Task Force
IP	Internet Protocol
IRTF	Internet Research Task Force
LISBM	Locator/Identifier Split Based Mobility
LFBL	Listen First Broadcast Later
MI	Mobility Interest
MU	Mobility Update
MobiNDN	Mobility Support Architecture for Named Data Networks
MIPv4	Mobile Internet Protocol Version 4
MIPv6	Mobile Internet Protocol Version 6
NDN	Named Data Networking
NetInf	Network of Information
NACK	Negative Acknowledgement
NS-3	Network Simulator version 3
NS-2	Network Simulator version 2
ndnSIM	Named Data Networking Simulator
NFD	NDN Forwarding Daemon
OMNeT++	Objective Modular Network Testbed in C++
OPML	Optimal Provider Mobility in Large-Scale
POA	Point of Attachment
PMSS	Producer Mobility Support Scheme
PSI	Public Subscriber Internet
PIT	Pending Interest Table
PSIRP	Publish-Subscribe Internet Routing Paradigm
PURSUIT	Publish Subscribe Internet Technology
PS	Partial Separation
PACK	Prefix Update
PS	Prefix Update Acknowledgement
PMC	Publisher Mobility Support
PNPCCN	Proactive Neighbor Pushing in Content-Centric Networks
PS	Prescriptive Study

RFC	Request for Comment
RH	Resource Handler
RP	Rendezvous Point
RD	Rendezvous Domain
RC	Research Clarification
RTT	Round Trip Time
SAIL	Scalable and Adaptive Internet Solution
SMM	Scalable Mobility Management
SDC	Software Define Controller
TCP	Transmission Control Protocol
TCP/IP	Transport Control Protocol/Internet Protocol
TS	Total Separation
TRIAD	Translating Relaying Internet Architecture Integrating Active Directories
UCL	University College London
URL	Uniform Resource Locator
UDP	User Datagram Protocol
US	United States
UUM	Universiti Utara Malaysia
VNI	Visual Networking Index
IoTs	Internet of Things
IoE	Internet of Everything
IoMTs	Internet of Medical Things
MANET	Mobile Ad hoc Network
VANET	Vehicular Ad hoc Network
6G	Six Generation

CHAPTER ONE

INTRODUCTION

This research is intended to resolve and contribute a solution to enhance the producer mobility support for Named Data Networking (NDN). Producer mobility is where the source of data moves to a new location, but the reference of Interest packets forwarding is still pointed to the previous location of the producer. The change of the producer location induces various issues such as long handoff latency, high signalling, Interest packet loss, and inefficient delivery path. This chapter aimed to highlight the issues or research gaps in the producer mobility domain then to propose a solution. This chapter is organized into different sections that initiate with Section 1.1 in which we cover the background of the study to provide comprehensive knowledge and fundamental issues of the Internet architecture. In Section 1.2, the research motivation is explained wherein it defines the NDN features, benefits and issues are discussed. In Section 1.3, the problem statement that provides the key issues of producer mobility in NDN architecture. In Section 1.4, research questions derived from the problem statement to specify the basic issue that needs to be addressed in producer mobility. Section 1.5 defines the research objectives to propose an efficient solution for NDN producer mobility problems. In Section 1.6, significance of the study and benefits of the present study are explained. In Section 1.7, scope of the study is presented to provide the logical conclusion and performance measurement of this research. Lastly, Section 1.8, describes the organization of the thesis that reveals the outline of this proposal.

REFERENCES

- [1] B. Feng, H. Zhou, and Q. Xu, "Mobility support in named data networking: A survey," *EURASIP Journal on Wireless Communications and Networking*, vol. 2016, no. 1, p. 220, 2016.
- [2] M. A. Naeem, R. Ali, M. Alazab, M. Yhui, and Y. B. Zikria, "Enabling the content dissemination through caching in the state-of-the-art sustainable information and communication technologies," *Sustainable Cities and Society*, p. 102291, 2020.
- [3] M. A. Naeem, M. A. U. Rehman, R. Ullah, and B.-S. Kim, "A Comparative Performance Analysis of Popularity-Based Caching Strategies in Named Data Networking," *IEEE Access*, vol. 8, pp. 50057-50077, 2020.
- [4] N. H. A. Zukri, A. S. C. M. Arif, M. AlSamman, and A. Abrar, "Enabling a Sustainable and Inclusive Digital Future with Proactive Producer Mobility Management Mechanism in Named Data Networking," in *International Conference on Computing and Informatics*, 2023, pp. 343-354: Springer.
- [5] A. Abrar, A. S. C. M. Arif, K. M. Zaini, M. H. Omar, and Y. Meng, "Advancing producer mobility management in Named Data Networking: A comprehensive analytical model," *Journal of King Saud University-Computer and Information Sciences*, vol. 36, no. 4, p. 102045, 2024.
- [6] A. Abrar, A. S. C. M. Arif, and K. M. Zaini, "Internet of things producer mobility management in named data networks: a survey, outlook, and open issues," *International Journal of Communication Networks and Distributed Systems*, vol. 29, no. 5, pp. 493-512, 2023.
- [7] Cisco. (March 9, 2020). *Cisco Annual Internet Report (2018–2023) White Paper*. Available: <https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html>
- [8] A. Afanasyev, J. Burke, T. Refaei, L. Wang, B. Zhang, and L. Zhang, "A brief introduction to Named Data Networking," in *MILCOM 2018-2018 IEEE Military Communications Conference (MILCOM)*, 2018, pp. 1-6: IEEE.
- [9] M. Hussaini, S. A. Nor, and A. Ahmad, "Producer mobility support for Information Centric Networking approaches: A review," *Int. J. Appl. Eng. Res*, vol. 13, no. 6, pp. 3272-3280, 2018.
- [10] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and R. L. Braynard, "Networking named content," in *Proceedings of the 5th international conference on Emerging networking experiments and technologies*, 2009, pp. 1-12: ACM.
- [11] K. Swaroopa, S. K. Magal, and T. Nedunchezhian, "A FAVE Cache Strategy for Producer Mobility in Content Centric Networks," 2020.
- [12] A. Abrar, A. S. C. M. Arif, and K. M. Zaini, "Producer mobility support in information-centric networks: research background and open issues," *International Journal of Communication Networks and Distributed Systems*, vol. 28, no. 3, pp. 312-336, 2022.

- [13] G. Xylomenos *et al.*, "A survey of information-centric networking research," *IEEE Communications Surveys & Tutorials*, vol. 16, no. 2, pp. 1024-1049, 2013.
- [14] M. Aggarwal, K. Nilay, and K. Yadav, "Survey of named data networks: future of internet," *International Journal of Information Technology*, vol. 9, no. 2, pp. 197-207, 2017.
- [15] A. Aboodi, T.-C. Wan, and G.-C. Sodhy, "Survey on the Incorporation of NDN/CCN in IoT," *IEEE Access*, vol. 7, pp. 71827-71858, 2019.
- [16] C. Fang, F. R. Yu, T. Huang, J. Liu, and Y. Liu, "A survey of green information-centric networking: Research issues and challenges," *IEEE Communications Surveys & Tutorials*, vol. 17, no. 3, pp. 1455-1472, 2015.
- [17] C. Fang, H. Yao, Z. Wang, W. Wu, X. Jin, and F. R. Yu, "A survey of mobile information-centric networking: Research issues and challenges," *IEEE Communications Surveys & Tutorials*, vol. 20, no. 3, pp. 2353-2371, 2018.
- [18] D. Saxena, V. Raychoudhury, N. Suri, C. Becker, and J. Cao, "Named data networking: a survey," *Computer Science Review*, vol. 19, pp. 15-55, 2016.
- [19] R. N. B. Rais and O. Khalid, "Study and analysis of mobility, security, and caching issues in CCN," *International Journal of Electrical & Computer Engineering (2088-8708)*, vol. 10, 2020.
- [20] M. Hussaini, M. A. Naeem, B.-S. Kim, and I. S. Maijama'a, "Efficient Producer Mobility Management Model in Information-Centric Networking," *IEEE Access*, vol. 7, pp. 42032-42051, 2019.
- [21] M. Hussaini, S. A. Nor, and A. Ahmad, "Producer mobility support schemes for named data networking: A survey," *International Journal of Electrical and Computer Engineering*, vol. 8, no. 6, p. 5432, 2018.
- [22] S. Fayyaz, M. A. U. Rehman, M. S. ud Din, M. I. Biswas, A. K. Bashir, and B.-S. Kim, "Information-centric mobile networks: a survey, discussion, and future research directions," *IEEE Access*, 2023.
- [23] A. Abrar, A. S. M. Arif, and K. M. Zaini, "A systematic analysis and review on producer mobility management in named data networks: Research background and challenges," *Alexandria Engineering Journal*, vol. 69, pp. 785-808, 2023.
- [24] L. Alkwai, A. Belghith, A. Gazdar, and S. Al-Ahmadi, "Comparative Analysis of Producer Mobility Management Approaches in Named Data Networking," *Applied Sciences*, vol. 12, no. 24, p. 12581, 2022.
- [25] M. Meddeb, A. Dhraief, A. Belghith, T. Monteil, and K. Drira, "Producer mobility support in named data internet of things network," *Procedia Computer Science*, vol. 109, pp. 1067-1073, 2017.
- [26] G. Tyson, N. Sastry, I. Rimac, R. Cuevas, and A. Mauthe, "A survey of mobility in information-centric networks: Challenges and research directions," in *Proceedings of the 1st ACM workshop on Emerging Name-Oriented Mobile Networking Design-Architecture, Algorithms, and Applications*, 2012, pp. 1-6: ACM.

- [27] T.-X. Do and Y. Kim, "Optimal Provider Mobility in Large-Scale Named-Data Networking," *KSII Transactions on Internet & Information Systems*, vol. 9, no. 10, 2015.
- [28] D. Kim and Y.-B. Ko, "On-demand anchor-based mobility support method for named data networking," in *2017 19th International Conference on Advanced Communication Technology (ICACT)*, 2017, pp. 19-23: IEEE.
- [29] Y. Zhang, H. Zhang, and L. Zhang, "Kite: A mobility support scheme for ndn," in *Proceedings of the 1st ACM Conference on Information-centric Networking*, 2014, pp. 179-180: ACM.
- [30] A. Abrar, K. Mohd Zaini, A. S. Che Mohamed Arif, and M. H. Omar, "Towards a Sustainable Digital Society: Supporting Producer Mobility in Named Data Networking Through Immobile Anchor-Based Mechanism," in *International Conference on Computing and Informatics*, 2023, pp. 330-342: Springer.
- [31] J. Lee, S. Cho, and D. Kim, "Device mobility management in content-centric networking," *IEEE Communications Magazine*, vol. 50, no. 12, pp. 28-34, 2012.
- [32] D. Han, M. Lee, K. Cho, T. Kwon, and Y. Choi, "Publisher mobility support in content centric networks," in *The International Conference on Information Networking 2014 (ICOIN2014)*, 2014, pp. 214-219: IEEE.
- [33] F. Hermans, E. Ngai, and P. Gunningberg, "Mobile sources in an information-centric network with hierarchical names: An indirection approach," *7th SNCNW*, 2011.
- [34] D. h. Kim, J. h. Kim, Y. s. Kim, H. s. Yoon, and I. Yeom, "End-to-end mobility support in content centric networks," *International Journal of Communication Systems*, vol. 28, no. 6, pp. 1151-1167, 2015.
- [35] M. Hussaini, S. Nor, and A. Ahmad, "PMSS: Producer Mobility Support Scheme optimization with RWP Mobility Model in Named Data Networking," *International Journal of Communication Networks and Information Security*, vol. 10, no. 2, pp. 329-339, 2018.
- [36] L. Liu, Z. Ye, and A. Ito, "CAMS: Coordinator assisted mobility support for seamless and bandwidth-efficient handover in ICN," in *2015 IEEE Globecom Workshops (GC Wkshps)*, 2015, pp. 1-7: IEEE.
- [37] A. F. Khan and C. Rajalakshmi, "A multi-attribute based trusted routing for embedded devices in MANET-IoT," *Microprocessors and Microsystems*, vol. 89, p. 104446, 2022.
- [38] A. Ferozkhan and G. Anandharaj, "The Embedded Framework for Securing the Internet of Things," *Journal of Engineering Research*, vol. 9, no. 2, 2021.
- [39] H. Lim, A. Ni, D. Kim, Y.-B. Ko, S. Shannigrahi, and C. Papadopoulos, "NDN construction for big science: Lessons learned from establishing a testbed," *IEEE Network*, vol. 32, no. 6, pp. 124-136, 2018.
- [40] M. N. Sadiku, A. E. Shadare, and S. M. Musa, "Named data networking," *International Journal of Engineering Research*, vol. 6, no. 7, pp. 371-372, 2017.

- [41] A. Abrar, A. S. C. M. Arif, and K. M. Zaini, "A Mobility Mechanism to Manage Producer Mobility in Named Data Networking," in *2022 IEEE Region 10 Symposium (TENSYMP)*, 2022, pp. 1-6: IEEE.
- [42] L. Zhang *et al.*, "Named data networking," *ACM SIGCOMM Computer Communication Review*, vol. 44, no. 3, pp. 66-73, 2014.
- [43] M. A. Naeem, S. A. Nor, S. Hassan, and B.-S. Kim, "Performances of Probabilistic Caching Strategies in Content Centric Networking," *IEEE Access*, vol. 6, pp. 58807-58825, 2018.
- [44] G. M. De Brito, P. B. Velloso, and I. M. Moraes, *Information-centric Networks: A New Paradigm for the Internet*. John Wiley & Sons, 2013.
- [45] D. Mars, S. M. Gammar, A. Lahmadi, and L. A. Saidane, "Using Information Centric Networking in Internet of Things: A Survey," *Wireless Personal Communications*, pp. 1-17, 2019.
- [46] A. V. Ventrella, G. Piro, and L. A. Grieco, "Publish-subscribe in mobile information centric networks: Modeling and performance evaluation," *Computer Networks*, vol. 127, pp. 317-339, 2017.
- [47] L. Wang, O. Waltari, and J. Kangasharju, "Mobiccn: Mobility support with greedy routing in content-centric networks," in *2013 IEEE Global Communications Conference (GLOBECOM)*, 2013, pp. 2069-2075: IEEE.
- [48] X. Jiang, J. Bi, Y. Wang, P. Lin, and Z. Li, "A content provider mobility solution of named data networking," in *2012 20th IEEE International Conference on Network Protocols (ICNP)*, 2012, pp. 1-2: IEEE.
- [49] Y.-S. Chen, C.-S. Hsu, and D.-Y. Huang, "A pipe-assisted mobility management in named data networking networks," in *The 16th Asia-Pacific Network Operations and Management Symposium*, 2014, pp. 1-4: IEEE.
- [50] J. Augé, G. Carofiglio, G. Grassi, L. Muscariello, G. Pau, and X. Zeng, "Anchor-less producer mobility in ICN," in *Proceedings of the 2nd ACM Conference on Information-Centric Networking*, 2015, pp. 189-190: ACM.
- [51] Z. Zhu, A. Afanasyev, and L. Zhang, "A new perspective on mobility support," *Named-Data Networking Project, Tech. Rep.*, 2013.
- [52] Y. Rao, H. Luo, D. Gao, H. Zhou, and H. Zhang, "Lbma: A novel locator based mobility support approach in named data networking," *China Communications*, vol. 11, no. 4, pp. 111-120, 2014.
- [53] Y.-C. Tseng, S.-Y. Ni, Y.-S. Chen, and J.-P. Sheu, "The broadcast storm problem in a mobile ad hoc network," *Wireless networks*, vol. 8, no. 2-3, pp. 153-167, 2002.
- [54] F. Hermans, E. Ngai, and P. Gunningberg, "Global source mobility in the content-centric networking architecture," in *Proceedings of the 1st ACM workshop on Emerging Name-Oriented Mobile Networking Design-Architecture, Algorithms, and Applications*, 2012, pp. 13-18: ACM.
- [55] L. Rui, S. Yang, and H. Huang, "A producer mobility support scheme for real-time multimedia delivery in named data networking," *Multimedia Tools and Applications*, vol. 77, no. 4, pp. 4811-4826, 2018.

- [56] Z. Yan, Y.-J. Park, Y.-B. Leau, L. Ren-Ting, and R. Hassan, "Hybrid Network Mobility Support in Named Data Networking," in *2020 International Conference on Information Networking (ICOIN)*, 2020, pp. 16-19: IEEE.
- [57] T. Woo, H. Park, S. Jung, and T. Kwon, "Proactive neighbor pushing for enhancing provider mobility support in content-centric networking," in *2014 Sixth International Conference on Ubiquitous and Future Networks (ICUFN)*, 2014, pp. 158-163: IEEE.
- [58] M. B. Lehmann, M. P. Barcellos, and A. Mauthe, "Providing producer mobility support in NDN through proactive data replication," in *NOMS 2016-2016 IEEE/IFIP Network Operations and Management Symposium*, 2016, pp. 383-391: IEEE.
- [59] H. Farahat and H. S. Hassanein, "Proactive caching for producer mobility management in named data networks," in *2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC)*, 2017, pp. 171-176: IEEE.
- [60] S. Korla and S. Chilukuri, "T-Move: A Light-Weight Protocol for Improved QoS in Content-Centric Networks with Producer Mobility," *Future Internet*, vol. 11, no. 2, p. 28, 2019.
- [61] X. Jiang, J. Bi, and Y. Wang, "What benefits does NDN have in supporting mobility," in *2014 IEEE Symposium on Computers and Communications (ISCC)*, 2014, pp. 1-6: IEEE.
- [62] S. Gao and H. Zhang, "Scalable mobility management for content sources in Named Data Networking," in *2016 13th IEEE Annual Consumer Communications & Networking Conference (CCNC)*, 2016, pp. 79-84: IEEE.
- [63] M. Gohar, N. Khan, A. Ahmad, M. Najam-Ul-Islam, S. Sarwar, and S.-J. Koh, "Cluster-based device mobility management in named data networking for vehicular networks," *Mobile Information Systems*, vol. 2018, 2018.
- [64] W. M. H. Azamuddin, A. H. M. Aman, H. Sallehuddin, Z. S. Attarbashi, W. Zhang, and S. Hassan, "Performance Analysis for Producer Mobility in Named Data Networking," *Journal of Advanced Research in Applied Sciences and Engineering Technology*, pp. 252-261, 2024.
- [65] J. Tang, H. Zhou, Y. Liu, H. Zhang, and D. Gao, "A source mobility management scheme in content-centric networking," in *2014 IEEE 11th Consumer Communications and Networking Conference (CCNC)*, 2014, pp. 176-181: IEEE.
- [66] Z. Zhou, X. Tan, H. Li, Z. Zhao, and D. Ma, "MobiNDN: A mobility support architecture for NDN," in *Proceedings of the 33rd Chinese Control Conference*, 2014, pp. 5515-5520: IEEE.
- [67] F. Ren, Y. Qin, H. Zhou, and Y. Xu, "Mobility management scheme based on software defined controller for content-centric networking," in *2016 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)*, 2016, pp. 193-198: IEEE.
- [68] L. T. M. Blessing, Chakrabarti, Amresh. (2009). *DRM, a Design Research Methodology*. Available: <https://www.springer.com/us/book/9781848825864>

- [69] L. T. Blessing and A. Chakrabarti, *DRM: A design research methodology*. Springer, 2009.
- [70] V. Goebel and T. Plagemann, "REsearch/Scientific Methods in Computer Science," *Departament of Informatics, University of Oslo*, 2015.
- [71] A. R. Mohsen Guizani, Bilal Khan, Ala Al-Fuqaha. (2010). *Network Modeling and Simulation: A Practical Perspective*. Available: <https://www.wiley.com/en-sg/Network+Modeling+and+Simulation%3A+A+Practical+Perspective+-p-9780470035870>
- [72] D. Thomas, A. Joiner, W. Lin, M. Lowry, and T. Pressburger, "The unique aspects of simulation verification and validation," in *2010 IEEE Aerospace Conference*, 2010, pp. 1-7: IEEE.
- [73] A. S. Toor and A. Jain, "A survey on wireless network simulators," *Bulletin of Electrical Engineering and Informatics*, vol. 6, no. 1, pp. 62-69, 2017.
- [74] O. M. D. Al-Momani, "Dynamic Redundancy Forward Error Correction Mechanism for the Enhancement of Internet-Based Video Streaming," ph.d., School of computing, Universiti Utara Malaysia 2010.
- [75] M. M. Kadhum, "Network Performance and NS2," ed: Universiti Utara Malaysia, 2010.
- [76] B. L. Ong, "A hybrid mechanism for SIP over IPv6 macromobility and micromobility management protocols," Universiti Utara Malaysia, 2008.
- [77] L. F. Perrone and Y. Yuan, "Modeling and simulation best practices for wireless ad hoc networks," in *Proceedings of the 2003 Winter Simulation Conference, 2003.*, 2003., vol. 1, pp. 685-693: IEEE.
- [78] R. Jain, *The art of computer systems performance analysis: techniques for experimental design, measurement, simulation, and modeling*. John Wiley & Sons, 1990.
- [79] L. Campanile, M. Gribaudo, M. Iacono, F. Marulli, and M. Mastroianni, "Computer network simulation with ns-3: A systematic literature review," *Electronics*, vol. 9, no. 2, p. 272, 2020.
- [80] S. Sharma, A. N. Mahajan, and R. C. Poonia, "An Inclusive survey of Network Simulators," in *Proceedings of International Conference on Sustainable Computing in Science, Technology and Management (SUSCOM), Amity University Rajasthan, Jaipur-India*, 2019.
- [81] S. Mastorakis, A. Afanasyev, and L. Zhang, "On the evolution of ndnSIM: An open-source simulator for NDN experimentation," *ACM SIGCOMM Computer Communication Review*, vol. 47, no. 3, pp. 19-33, 2017.
- [82] M. Hassan and R. Jain, *High performance TCP/IP networking*. Prentice Hall Upper Saddle River, NJ, 2003.
- [83] M. Hussaini, S. A. Nor, A. Ahmad, R. Mustapha, and A. F. Abdulateef, "A conceptual model of producer mobility support for named data networking using design research methodology," *IAENG International Journal of Computer Science*, vol. 46, no. 3, pp. 1-11, 2019.

- [84] M. Hussaini, S. A. Nor, and A. Ahmad, "Analytical modelling solution of producer mobility support scheme for named data networking," *International Journal of Electrical and Computer Engineering*, vol. 9, no. 5, p. 3850, 2019.
- [85] Y. Zhang, Z. Xia, S. Mastorakis, and L. Zhang, "Kite: Producer mobility support in named data networking," in *Proceedings of the 5th ACM Conference on Information-Centric Networking*, 2018, pp. 125-136.
- [86] V. Sivaraman and B. Sikdar, "Hop-count based forwarding for seamless producer mobility in ndn," in *GLOBECOM 2017-2017 IEEE Global Communications Conference*, 2017, pp. 1-6: IEEE.
- [87] I. Ali and H. Lim, "Anchor-less producer mobility management in named data networking for real-time multimedia," *Mobile Information Systems*, vol. 2019, 2019.
- [88] P. Kar, R. Chen, and Y. Qian, "An efficient producer mobility management technique for real-time communication in NDN-based remote health monitoring systems," *Smart Health*, vol. 26, p. 100309, 2022.
- [89] M. Hussaini, M. A. Naeem, B.-S. Kim, and I. S. Maijama'a, "Efficient Producer Mobility Management Model in Information-Centric Networking," *IEEE Access*, 2019.
- [90] W. Rafique, A. S. Hafid, and S. Cherkaoui, "Complementing IoT Services Using Software Defined Information Centric Networks: A Comprehensive Survey," *IEEE Internet of Things Journal*, 2022.
- [91] Y. Rao, D. Gao, and H. Luo, "NLBA: A novel provider mobility support approach in mobile NDN environment," in *2014 IEEE 11th Consumer Communications and Networking Conference (CCNC)*, 2014, pp. 188-193: IEEE.
- [92] M. Meddeb, A. Dhraief, A. Belghith, T. Monteil, K. Drira, and S. Gannouni, "AFIRM: Adaptive forwarding based link recovery for mobility support in NDN/IoT networks," *Future Generation Computer Systems*, vol. 87, pp. 351-363, 2018.
- [93] C. Lynch, "Named Data Networking in Vehicular Ad-Hoc Networks: The Support of Push-Based Traffic for Transient, Periodic Data," 2020.
- [94] J. Augé, G. Carofiglio, G. Grassi, L. Muscariello, G. Pau, and X. Zeng, "Map-me: Managing anchor-less producer mobility in content-centric networks," *IEEE Transactions on Network and Service Management*, vol. 15, no. 2, pp. 596-610, 2018.